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Preface

Almost 24 years ago, the 1999 EUSFLAT-ESTYLF Joint Conference was held in Palma.
This conference, which took place from September 22 to 25, 1999, was organized by
the University of the Balearic Islands and the European Society for Fuzzy Logic and
Technology (EUSFLAT) and it was the first edition of the conferences of this society,
after its foundation that same year. After the success of the first edition, this conference
has been organized every two years in many European towns. Namely, Leicester (United
Kingdom), Zittau (Germany), Barcelona and Gijon (Spain), Ostrava and Prague (Czech
Republic), Lisbon (Portugal), Aix-Les-Bains (France), Milano (Italy), Warsaw (Poland)
and Bratislava (Slovak Republic) have been the venue for subsequent editions. Now, on
the eve of the 25th anniversary, it is time for the EUSFLAT conference to return to its
origins, back to its roots.

The world has changed a lot since 1999. However, some facts remain stable. The
aim of the conference, in line with the mission of the EUSFLAT Society, is to bring
together theoreticians and practitioners working on fuzzy logic, fuzzy systems, soft
computing, and related areas and to provide for thema platform for the exchange of ideas,
discussing newest trends and networking. During these years and due to the successful
development of fuzzy logic and the corresponding technology, interest in fuzzy logic
has been growing steadily, and the EUSFLAT conference has been the main European
conference in this scientific field. However, despite being a predominantly European
conference, many researchers from other continents attend the EUSFLAT conferences
edition after edition, recognizing that they constitute a reference point every two years
for important advances in the lines of research associated with this field. In the specific
case of the Balearic Islands, it should be noted that since the late 1980s intense research
in fuzzy logic has been developed within the framework of the research group led by
Gaspar Mayor and Joan Torrens, who are now happily retired. The new generation took
the baton and the responsibility of organizing this edition of the EUSFLAT conference.

This 2023 edition of the EUSFLAT conference was co-located for the second time
with two traditional events, namely with AGOP 2023 - International Summer School
on Aggregation Operators; and with FQAS 2023 - International Conference on Flexible
Query Answering Systems. We would like to express our thanks to the management
of these events for sharing the vision of the joint multiconference. Special mention
should be given to the AGOP summer school, with which these proceedings are shared.
The AGOP summer school is organized biannually by the AGOP working group of
EUSFLAT, reaching this year its 12th edition after its birth in 2001 in Oviedo (Spain).
This event focuses on aggregation functions, a family of operators which have numerous
applications, including, but not limited to, data fusion, statistics, image processing and
decision making.

Therefore, this volume constitutes the proceedings of the 13th Conference of the
European Society for Fuzzy Logic and Technology (EUSFLAT) and the 12th Interna-
tional Summer School on Aggregation Operators (AGOP). The papers included in the
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proceedings volume have been subject to a thorough review process by at least two
highly qualified peer reviewers, by using a single-blind process. The volume contains
very attractive and up-to-date topics in fuzzy logic and related fields, which will result
in significant interest of the international research communities active in the covered
areas. Special gratitude is due to the extremely relevant role of the organizers of the spe-
cial sessions. Thanks to their vision and hard work, we have been able to collect many
papers on focused topics which we are sure will result, during the conference, in very
interesting presentations and stimulating discussions at the sessions. It should be noted
that for EUSFLAT and AGOP 2023, 71 full papers and 90 abstracts (161 submissions
in total) were submitted from which 61 full papers have been accepted.

Finally, we would like to express our gratitude to all chairs and the organizing team
for making these conferences possible. We believe that we will experience an excellent
and unforgettable conference. We hope that you enjoyed it and that it brought home
many new fruitful ideas for your research, and also that you enjoyed this beautiful
island, Mallorca, the largest island in the Balearic Islands, set in the Mediterranean Sea,
with its great beaches, amazing atmosphere and cultural richness.

September 2023 Sebastia Massanet
Susana Montes

Daniel Ruiz-Aguilera
Manuel González-Hidalgo
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Baczyński, Michal University of Silesia in Katowice, Poland
Batyrshin, Ildar Instituto Politécnico Nacional, Mexico
Bloch, Isabelle Sorbonne Université, CNRS, France
Bobillo, Fernando Universidad de Zaragoza, Spain
Boffa, Stefania University of Milano-Bicocca, Italy
Borisov, Vadim V. Moscow Power Engineering Institute, Russia
Bouchon-Meunier, Bernadette Sorbonne Université, France
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Abstract. Fuzzy Logic, in its fuzzy control incarnation, can be as well
seen as an answer to the belated question on how can an algorithm take
in account the subtle variations in a complex system – be it the simple
and paradigmatic thermostat, the description of a traffic jam or the inner
workings of a spaceship. Contrary to the best whodunit, the answer is
given at the very start, and the history of the following years of fuzziness
is a long demonstration of how, thanks to its explanatory power, a simple
idea can be implemented in countless devices, and become the manifest
for a technological society in which the logic discourse is based more on
the human approach and on embracing the permanent state of flux and
uncertainty that is the human experience than on the futile search for
absolute truths and endless precision. If the control answer is somehow
a given, so many other answers that concern foundations of Fuzzy Logic
still beget proper questions. In this paper some of such foundational
questions pertaining vagueness, its role in the definition of fuzziness and
its many incarnations are set in their historical perspective, and some of
the dots outlining the path from a rigid search for truth typical of the
end of the nineteenth century to the more nuanced approach that has
swept the twentieth century are connected.

Keywords: Vagueness · Fuzzy Logic

1 Jean van Heijenoort and the Inevitability of Vagueness

The approach of Gottlob Frege to the ‘vagaries of vagueness’ [10], in the recount
of Jan van Heijenoort [13], has been already discussed in [9]: vagueness can
wreak havoc on logic, and has to be avoided at all costs. Frege is in good com-
pany, as Russell and Quine are apparently guilty as well of such reductionist
stance, despite Quine attributing a different ontological status to his universe
of discourse and Russell limiting the bivalent approach to an idealised image of
the world – the «imagined celestial world» in which a perfect logic should be
applicable. Both Russell and Quine seem in this view not that concerned with
real applications – embodied, realisable – but more interested in keeping the
score with a fast changing world. Frege’s position is somehow justified by the
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historical period in which he was active, an aftertaste of positivism and a hint of
constructivism [1] and a general attitude toward sharply delimited concepts and
final definitions. van Heijenoort summarises the evident connection between the
three approaches as follows [13]:

Russell’s artificial construction of a bivalent world by imagination is closer
to Quine’s free creation of an ontology-oriented language than to Frege’s
objective realism. But the three of them, Frege, Russell, Quine, agree on
one point, namely that ordinary language has to be supplanted by a biva-
lent regimented discourse if logic is to function properly.

This focal point, i.e. the necessity of a synthesis that eliminates (or at least
reduces at a minimum) vagueness from the linguistic discourse in order to obtain
once again, as in Aristoteles’ times, a logic that ‘works’, appears more manda-
tory for Frege: «Thus nowhere do we have firm ground under our feet. Without
final definitions, no final theorems. One would not come out of imperfection
and vacillation» [13]); something that is done by trade and automatically, but
without respect for the true nature of things for Russell: «none of the raw mate-
rial of the world has smooth logical properties, but whatever appears to have
such properties is constructed artificially in order to have them» [13]; and as a
mechanical construction of commonsense reasoning at the pure mercy of com-
munication from Quine: «Implicitly the learner of [a concept by ostension] is
working inductively toward a general law of English verbal behavior, though a
law that he will never try to state; he is working up to where he can in general
judge when an English speaker would assent...» [12]. All three were able to see
how vagueness is pervasive in natural language, but at the same time they fail to
take this consideration a step further, and include the vagaries of vagueness into
the logical discourse (the very job that fuzziness and other non-classical logics
will be set to fulfill in the years to come), preferring instead to imagine that
in order to have a perfect logic in search of a perfect truth, logic and common
language can be divorced; it is of marginal importance if this is due to some
sort of what van Heijenoort calls objective realism (i.e. some truth that exists
beyond language and whose mirror in language is but a corruption of the origi-
nal, sharp idea), to the necessity of an ontological approach that is to be applied
only for some particular purposes, or to the construction of an imagined world
of perfectly bivalent concepts.

The closing of van Heijenoort can be read as a sort of testament (also due to
this essay being among the last he wrote) [13]:

Frege’s disregard of vagueness and other vagaries was, in a way, inevitable.
But his logical laws have been formulated more than hundred years ago,
and it is now perhaps time to look at the vagaries.

True to the time, in 1985 Fuzzy Logic and its applications to control have been
around for more than twenty years, and while the formalised idea of Computing
with Words [20] was still years in conceiving, the vagaries of language were
already one of the primary foci of investigation in fuzziness and beyond. In order
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to find something that can really be called a precursor of the idea of meddling
with vagaries, a step back in time has to be done: more precisely to the short
period between 1937 and 1939.

2 Max Black and the Ineluctability of Vagueness

Among all the precursors to Fuzzy Logic and the work of Lotfi A. Zadeh, a
special place is surely occupied by the analytical philosopher Max Black, and
his well known paper on vagueness [2]; the two shared a curious coincidences
in upbringing – both men born in Baku, and both moved to the States in the
forties, albeit Zadeh was educated mainly in Iran and Black in England. But the
strongest connection between the two, not explicitly mentioned in Zadeh’s work
but noted by historians of Fuzzy Logic (see e.g. [3,10]) has to do with the desire
to tackle a constructive approach to the problem of vagueness in science: Black
states [2, p.429] that:

[T]he purpose of the constructive part of the paper [is] to indicate in outline
an appropriate symbolism for vagueness by means of which deviations from
a standard can be absorbed by a re-interpretation of the same standards in
such a way that the laws of logic in their usual absolutistic interpretation
appear as a point of departure for more elaborate laws of which they now
appear as special or limiting cases. The method yields a process by which
deviations, when recognized as such, can be absorbed into the form. [...]
[W]ith the provision of an adequate symbolism the need is removed for
regarding vagueness as a defect.

There is a direct parallel with the proposal of Zadeh [16] regarding classes
that are not directly relatable to the strict mathematical definition, such as the
«class of all real numbers which are much greater than 1», «the class of beautiful
women» or «the class of tall men»:

The purpose of this note is to explore in a preliminary way some of the
basic properties and implications of a concept which may be of use in
dealing with “classes” of the type cited above. [...] [This] notion provides a
convenient point of departure for the construction of a conceptual frame-
work which parallels in many respects the framework used in the case of
ordinary sets, but is more general than the latter and, potentially, may
prove to have a much wider scope of applicability.

The notion is that of a Fuzzy Set (in its first incarnation), and while the
two approaches come from a different background – Black more from a linguistic
point of view, Zadeh with control systems in mind, the essential problem of
vagueness is posed in a strikingly similar way.

2.1 Defining Vagueness

Zadeh starts with the general problem of attributing special object to general
classes, with a prudential admission that vagueness can sometimes creep in the
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standard definition of a class: «More often than not, the classes of objects encoun-
tered in the real physical world do not have precisely defined criteria of mem-
bership»; but then put the accent on the idea that vaguely defined classes are
especially so when containing attributes that render them vague (tall, beautiful,
much greater), which lends well to further the idea of a Fuzzy Set and its math-
ematical definition. Implicit in Zadeh’s approach is the idea of measurement of
class membership, and in his view of vagueness, Fuzzy sets «provide a natural
way of dealing with problems in which the source of imprecision is the absence of
sharply defined criteria of class membership rather than the presence of random
variables».

Black, due to his background as a philosopher of language as well as of science,
invests on the search of a symbolism for the «vagueness or lack of precision of a
language», while at the same time recognising that vagueness is a part (and not
a defective one) of each scientific endeavour. In pointing to the search of extreme
precision that is the staple of mathematics, Black focus on how this creates a sort
of translation problem in experimental sciences, where mathematical precision
is quite useful to describe and summarise a phenomenon, but at the same time
limits this description to an idealised model, that rarely if ever corresponds to
the true reality of human experience [2, p. 428]:

While the mathematician constructs a theory in terms of “perfect”
objects, the experimental scientist observes objects of which the properties
demanded by the theory are and can, in the very nature of measurement,
be only approximately true.
[...] There remains a gap between scientific theory and its application,
which ought to be, but is not, bridged.

As a contribution to the construction of this bridge, Black proposes the afore-
mentioned construction of the outline of an appropriate symbolism for vagueness,
which would dispel the myth that vagueness by itself is a defect to be eradicated,
and not part of the richness of human experience, in sciences and language alike:
«vagueness is a feature of scientific as of other discourse». In carrying out this
operation there is a non explicit but strong desire to free logic from the con-
straint of mathematics. The prevalent paradigm of the time was dictating that
logic is a sort of languagey version of mathematics, using the same devices and
appealing to the same devotion of precision, as van Heijenoort has observed in
Frege, Russell and Quine. In this context logic is condemned to follow mathe-
matics in being an abstraction of reality, something Black does not subscribe.
Logic should be instead regarded more as an applicative science, with uncer-
tainty built in and the realisation of objects and predicates a continuous process
prone to revision. This method should not abandon mathematics tout court: “at
every stage the mathematics we already employ will provide the material for the
increasing accuracy of the next stage”, but there is no fixed point to which this
process is anchored or targeted. This is another strong similarity with Zadeh’s
position, which was trying to escape from the research of an exasperate preci-
sion which was typical to the control science of the time, in this shaped by the
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advancements in computer science proper of the fifties and sixties – something
for which Zadeh himself had coined a specific term [11,21]:

In moving in the countertraditional direction, we are sacrificing precision
to achieve significant advantages down the line. This important feature of
fuzzy logic is referred to as “the fuzzy logic gambit”.

The gambit entices to trade off precision for a better power of representation
of vague concepts, and an actionable solution to the problem of control. To
“bridge the gap”, Black goes another way, offering the outline of something that
can be described as a pyramidal solution to the problem of tackling vagueness,
an idea quite advanced at the time, that would have been more at home with the
development of computer science in the eighties. Black has a clear view of the
fact that vagueness is a feature that has different levels of implementation, and
that while this is a specific trait, it is generally found in all instances, not only
in language. The non-linguistic example he makes is that of an «impressionist
painting of a London street in a fog» that while not vague when considered as
a visual impression (and, more subtly hinted but not directly expressed, when
compared to the avant-garde movements already established at the time), is
vague when compared to the exact measurements that could be used to represent
the scene in question as measured by what we call today a digital scanning.
Different levels of detail – by extending Black’s example – can be considered: a
cubist painting of the scene, an impressionist painting of a scene, a photograph,
a digital scanning using multispectral reflectografy, a complete description of
the physical system generating the scene in a 3D rendering, particle by particle.
Each of these provides different levels of detail (and as such of vagueness), and
by choosing one over the other a trade off, not that different from the Fuzzy
Logic gambit, is made: in increasing precision and decreasing vagueness, some
of the relationships between concepts, language and scientific reality are lost.
Black hopes to offer a model to take this into account, without sacrificing the
possibility to represent inherent vagueness but at the same time with no renounce
to precision when deemed necessary. In his words [2, p. 429–430] (Cursive added
by the author):

While the vague symbol has a part to play in language (and elsewhere)
which cannot be equally well performed by more accurate symbols from
another level, transition to levels of higher accuracy can always in principle
be made.

2.2 What Exactly Is Vagueness?

Another strong point of contact between Zadeh and Black is the search for
a less vague definition of what vagueness is – an ironic necessity pointed out
by both authors. After having discussed vagueness as a general concept that
intercepts both hard and soft sciences, Black concentrates his attention on the
meaning of vagueness when applied to linguistics. According to him, in that
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field, vagueness is strictly related with the use of symbols to describe objects,
and how the building of this relationship is not just an one-to-one affair. From
an object’s perspective, a symbol can often be applicable or not applicable to it
with certainty, but it is possible that such application is impossible to determine.
In this instance, Black chooses to term the set of objects for which an application
to the symbol (or its negation) is not certain as «the fringe». This is a choice of
words that resonates in what was then a yet to be defined fuzziness: a fringe is
a border, but of uncertain confines1.

Black understands quite well that this «crude» definition, while helping in
imbuing vagueness with more precision, still lacks the rigor that is necessary to
measure vagueness. In the more technical part of the paper, he aims at introduc-
ing a way to replace the vague concept of fringe with a «statistical analysis of
the frequency of deviation from strict uniformity by the “users” of a vague sym-
bol». Resorting to opinion gathering and statistics to model vague concepts will
have more than an echo in later Zadeh’s proposals, where in order to determine
linguistic quantifiers a recourse is made to collecting a body of evidence about
them [19].

But before the technicalities, comes the disambiguation: in order to build a
system that can describe vagueness in a measurable manner, using the concept
of the fringe, and extending it by subsequent frequentistic analysis using human
response as a data source, it is paramount to define exactly what vagueness is,
and even more important what it is not. Two concepts that are often mistaken for
vagueness, which is an intrinsic property of the world, are singled out: generality
and ambiguity. The distinction is defined accordingly [2, p. 430]:

[Generality] is constituted by the application of a symbol to a multiplicity
of objects in the field of reference, [ambiguity] by the association of a finite
number of alternative meanings having the same phonetic form. [...] vague-
ness is a feature of the boundary of its extension, and is not constituted
by the extension itself.

While the distinction between generality and ambiguity may seem quite
forced, this allows Black to explicitly counter Russell’s argument that [8]:

Vagueness in our knowledge is, I believe, merely a particular case of a gen-
eral law of physics, namely that law that what may be called the appear-
ances of a thing at different places are less and less differentiated as we get
further away from the thing. When I speak of “appearances” I am speak-
ing of something purely physical – the sort of thing, in fact, that, if it is
visual, can be photographed. From a close-up photograph it is possible to
infer a photograph of the same object at a distance, while the contrary
inference is much more precarious. That is to say, there is a one-many

1 As an example, the definition of a fringe of a city center is often just in the eyes of a
building’s owner: the author has been personally offered a rent in what was defined
“a fringe” of the center, and the fastest train to the “real” center was in the best
cases a 45 min trip.
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relation between distant and close-up appearances. Therefore the distance
appearance, regarded as a representation of the close-up appearance, is
vague according to our definition. I think all vagueness in language and
thought is essentially analogous to this vagueness which may exist in a
photograph.

At the same time, to go back to van Heijenoort’s examination, the same
vagueness is a one-to-many kind of relationship critique is also applicable to
Frege’s stance on vagueness, and at least partially, and in retrospect, to some of
the arguments that Quine will propose forty years later.

In [16], Zadeh is much less preoccupied with the definition or disambiguation
of vagueness. As his aim is to present an extension of Set Theory that can include
vagueness in working order, he singles out a definition of vagueness, without even
mentioning the word, in relationship with sets: «More often than not, the classes
of objects encountered in the real physical world do not have precisely defined
criteria of membership. [...] Yet, the fact remains that such imprecisely defined
“classes” play an important role in human thinking, particularly in the domains
of pattern recognition, communication of information, and abstraction». This
has a sharp counterpart in Black. He discusses the definition of the concept of a
chair2, its multiple realisations and the fact that [2, p. 432]:

«One can imagine an exhibition in some unlikely museum of applied logic
of a series of “chairs” differing in quality by least noticeable amounts. At
one end of a long line, containing perhaps thousands of exhibits, might be
a Chippendale chair: at the other, a small nondescript lump of wood. Any
“normal” observer inspecting the series finds extreme difficulty in drawing
the line between chair and not-chair. Indeed the demand to perform this
operation is felt to be inappropriate in principle: chair is not the kind of
word which admits of this sharp distinction.»

The concept of membership and its ill definition for some objects is expressed
in a strikingly similar way to Zadeh: «in speaking of the vagueness of the word
chair, attention is directed only to the fact that objects can be presented whose
membership of the class of chairs is incurably “uncertain” or “doubtful”», the
difference being in the choice of terms: “imprecise” and “ambiguous” for Zadeh,
“vague” and “uncertain” for Black.

Even the graphical idea of how to represent vagueness bears resemblances
between Black and Zadeh. And that despite the differences in how the graph is
constructed: the meaning of axes; the process employed to build the curve, that
in Black is by polling while in Zadeh is given as an example – Zadeh will turn
his attention on to how to build fuzzy sets later on (Fig. 1).

2.3 Vagueness and Human Intelligence

Soon after Zadeh will develop a keen interest in the application of Fuzzy Sets to
what he chose to call “humanistic problems”, in his three-parter for Information
2 There is a strange fixation with furniture in the history of fuzziness: probably the

most egregious example, with his chair-that-transforms-into-stairs, is Bart Kosko [5].
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Fig. 1. Black’s Consistency Profile of a symbol (left column, from [2, pp. 443–445]),
and Zadeh’s Fuzzy Concepts (right column, from [15]).

Science [17,18,22], and especially in [14] (preceded by a memorandum dated
August 1971, but explicitly introduced as a the notes from a presentation at a
“Man and Computer” conference in Bordeaux, June 1970) and [15] (preceded
by a research note of the same title published internally in 1974), where the
term “imprecise” is used already in the title. If vagueness is (also) a problem of
language, language can be used to at least partially solve it.

Already in [14], just less than five years after the publication of [16], the
aim of Zadeh moves from a better control system to a much more ambitious
plan: tackling human reasoning using Fuzzy Logic. Zadeh introduces the con-
cept of Fuzzy Language, and describes its relevance to human intelligence, and
in another common thread with Black, to human language. Vagueness, once
again termed as uncertainty and imprecision by Zadeh, is a central feature of
the proclaimed superiority of Fuzziness in dealing with human reasoning and
language [14, p. 1]:
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It is suggested that the theory of fuzzy languages may have the potential
of providing better models for natural languages than is possible within
the framework of the classical theory of formal languages. [...] There is
indeed a very basic difference between human and machine intelligence
which may well prove to be a very difficult obstacle in the path of design-
ing machines that can outperform humans in the realm of cognitive pro-
cesses involving concept formation, abstraction, pattern recognition, and
decision-making under uncertainty. The difference in question lies in the
ability of the human brain – an ability which present day digital computers
do not possess – to think and reason in imprecise, non-quantitative, terms.

Zadeh ascribes this to the relationship between complexity and precision,
again remarking how the more the real world is the centre of discourse, the more
vagueness comes into play: «complexity and precision bear an inverse relation
to one another in the sense that, as the complexity of a problem increases, the
possibility of analyzing it in precise terms diminishes. Thus it is a truism that
the class of problems which are susceptible of exact solution is much smaller
than that which can be solved approximately».

Many of the examples presented in the paper (autonomous parking, sum-
marising of texts) are only been satisfactorily automatised in the present times,
and this just because a vast amount of information is now at our disposal. No real
advancement is currently been made on «the ability of a human brain, weighing
only a few hundred grams, to manipulate complicated fuzzy concepts and act
on multidimensional fuzzy sensory inputs endows it with a capability to solve
rather easily a wide variety of problems. [...] the capacity of a human brain to
manipulate fuzzy concepts and non-quantitative sensory inputs may well be one
of its most important assets». The main takeaway notions is the fact that many
problems can be solved efficiently only if a level of approximation in the result is
accepted, and the idea that human reasoning thrives on this is still valid today
as it was then. More than the successes of AI, this explains its failures, and high-
lights the fact that without «syntax or semantics or both are fuzzy in nature»,
as in Zadeh’s proposal of a Fuzzy Language, an important part of the discourse
is missing.

3 Carl G. Hempel: The Gradation of Vagueness

The debate on vagueness, language and logic will continue in the following years,
mainly using the Philosophy of Science journal as its outlet3. Notable in this

3 In reality the debate will go on and on, and on, slowing only during the second
world war. Notable more recent examples with a direct reference to the work of
Black and Hempel are [6,7]. While interesting in their own right, most of the more
contemporary debate from the field of language seem to ignore the advancement
made by Fuzzy Logic (and other non classical logics) in the field of dealing with
vagueness. It is not known if this is due to a sort of bubble effect, to sheer lack of
knowledge or to any other, more esoteric explanation.
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sense is an article by Carl G. Hempel [4], a direct answer to [2] in which a number
of issues in Black’s method for measuring vagueness using the judgement from a
panel. While technicalities are out of scope in the present context, the conclusion
is anyway of interest here, as it is another of the forebears of fuzziness ideas of
later [4, pp. 179–180]:

Vagueness is a gradable relation of strictly semiotic character; it involves,
besides the vague term and its subject matter, also the users of the lan-
guage in question. Vagueness is ineradicably connected with all terms,
logical as well as descriptive, of any interpreted language. [...] The occur-
rence of symbols with a high degree vagueness may suggest a modification
in the logical structure of the conceptual apparatus of science, namely the
transition from non-gradable to gradable concepts; this procedure is in fact
frequently carried out, and it contributes very essentially to diminution of
vagueness in scientific language.

As Black does, Hempel recognises that vagueness is intrinsic in language,
and that no amount of Fregean strong will or Russelian resorting to an idealised
plane can leave it out from a logic of language. It is then time to find a perma-
nent solution to the problem of including vagueness in the discourse, and this
solution is gradation. It will just take another seventeen years to find a concrete,
applicable model that will admit vagueness to the realm of hard sciences.
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Abstract. Coronary artery disease (CAD) is the primary cause of death and
chronic disability among cardiovascular conditions worldwide. Its diagnosis is
challenging and cost-effective. In this research work, Fuzzy Cognitive Maps
with Particle Swarm Optimization (FCM-PSO) were used for CAD classifica-
tion (healthy and diseased). In particular, a new DeepFCM framework, which
integrates image and clinical data of the patients is proposed. In this context, we
employed the FCM-PSO method enhanced by experts’ knowledge, along with
an efficient attention Convolutional Neural Network, to improve diagnosis. The
proposed method is evaluated using 571 participants and achieved 77.95± 5.58%
accuracy, 0.22 ± 0.05 loss, 76.98 ± 8.27% sensitivity, 77.39 ± 7.13% speci-
ficity, and 73.97± 0.09% precision, implementing a 10-fold cross-validation pro-
cess. The results extracted from the proposed model demonstrate the model’s
efficiency and outperform traditional machine learning algorithms. An essential
asset of the proposedDeepFCMframework is the explainability, as it offers nuclear
physicians’ meaningful causal relationships between clinical factors regarding the
diagnosis.

Keywords: Fuzzy Cognitive Maps · Particle Swarm Optimization ·
Classification · Coronary artery disease

1 Introduction

Obstructive Coronary Artery Disease (CAD) is the most frequent type of cardiovascular
disease [1–3], and it occurs when at least one of the coronary arteries is blocked, which
leads to the reduction of blood inserted into the myocardium, causing stenosis. CAD is a
life-threatening disease. It requires early appropriate diagnosis and treatment to improve
a patient’s condition and deflect death. Consequently, it is crucial to detect the existence
of stenosis and the danger of its advancement [4–7].
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With respect to the previous studies regarding Fuzzy Cognitive Map (FCM) imple-
mentation for medical data classification, the following research studies have been ana-
lyzed. Papageorgiou et al. [8] developed an FCMmodel for brain tumor characterization
utilizing the Activation Hebbian Algorithm. The proposed model defines the degree
of tumor abnormality, with only qualitative data and experts’ knowledge as input. The
model achieved 90.26% and 93.22% accuracy for brain tumors of low-grade and high-
grade, accordingly. Nasiriyan-Rad et al. [9] presented a new method for grading Celiac
disease (CD) with the combination of FCM and Support Vector Machine (SVM), with
Particle Swarm Optimization (PSO) for enhancing the results. The performance of the
proposed model was compared against the fuzzy rule-based Bayesian Networks (BN),
and the FCM-SVM model performed better with accuracy of 87%, 86%, and 84% for
each of the three possible CD grades. Papageorgiou et al. [10] introduced a new approach
for FCM learning, utilizing ensemble-based learning approaches, along with non-linear
Hebbian learning (NHL) for autism classification. The proposed model outperformed
with 89.41% accuracy, in contrast to FCM models that support their training proce-
dure only on Hebbian-based learning algorithms and extracted 79.62% accuracy. The
proposed model demonstrates remarkably improved performance with the utilization of
ensemble techniques. Papageorgiou et al. [11] presented FCMs for the diagnosis of thy-
roid, combining linguistic values acquired from experts, and fuzzy rules obtained from
historical data. The dataset consists of 215 samples. The developed model achieved
89.80% accuracy. Carvajal et al. [12] aimed to develop a General Type-2 (GT2) Fuzzy
Logic (FL) model for blood pressure level classification and optimize the general type-2
membership functions parameters with the usage of Ant Lion Optimizer, which is a
metaheuristic algorithm. The dataset included 4240 patients, and the holdout method is
applied. The GT2 FL classifier outperformed with an average of 99% accuracy for all
experiments, in contrast to interval-type-2 and type-1 fuzzy classifiers. Guzman et al. in
[13] aimed to develop a type-2 fuzzy system for the classification of blood pressure level
based on knowledge of an expert. The model attained 99.408% classification rate with a
type-2 fuzzy system utilizing triangular membership functions, whereas the type-1 clas-
sifier in previous study reached 98%.Miramontes et al. [14] aimed tomodifyBird Swarm
algorithm (BSA), with utilizing dynamic parameter adaptation based on type-1 fuzzy
systems to obtain the nocturnal blood pressure profile. The model utilized both Gaussian
and trapezoidal membership functions and they performed remarkably. The proposed
model exceeded the original approach and achieved 97% classification accuracy. Hoyos
et al. [15] proposed a clinical decision-support system based on Fuzzy Cognitive Maps
architecture to classify patients that suffer from dengue. The developed model outper-
formed compared to other machine learning approaches, and attained 89.4% accuracy,
while providing analysis of factors and explainability of decision of results.

The contribution of this research is the development of a DeepFCM model utilizing
Particle Swarm as an optimization technique for the provision of an automatic classifi-
cation tool that diagnoses CAD non-invasively and is based on both image and clinical
risk factors. The classification problem is two-class, and it is devoted to the presence
of CAD. The added value of this research is the proposal of an explainable tool that
provides interpretability, which is an important factor in sensitive areas like healthcare,
compared to machine learning approaches, which are known as “black boxes”. The
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DeepFCM provides an analysis of relationships among features, where we can detect
signs of CAD before the clinical diagnosis and recommend precautionary treatment to
avoid complications and mortality [15]. The results demonstrate that our model offers
high consistency and robustness, denoting that it can be adjusted in the nuclear medicine
domain and assist in decision-making, as far as CAD diagnosis is concerned.

2 Material and Methods

2.1 CAD Dataset

The dataset of this study was obtained from the Clinical Sector of the Department of
Nuclear Medicine of the University Hospital of Patras from 16/2/2018 to 28/02/2022.
Dataset acquisition is authorized by the ethical committee of the University Hospital of
Patras. All patientswere given authorization for their results to be obtained anonymously.
The performed methods agree with the Declaration of Helsinki.

The corresponding dataset consists of 571 instances, where 248 cases are classified
as CAD-diseased and 323 as normal. The dataset consists of 79.68% male participants
and 20.32% female. The age ranges from 32 to 90 years.

The participants underwent gated-SPECT-MPI (Single Photon Computed
Tomography- Myocardial Perfusion Imaging) and Invasive Coronary Angiography
(ICA) after 60 days of the MPI procedure. The result of this process shapes a patient’s
status regarding the CAD diagnosis and the result is utilized as ground truth in our study.

The available dataset contains information about the patient’s status. The features
used as input by the FCM classification model, after binary normalization are twenty-
two: (1) Sex, (2) Age, (3) BMI, (4) known CAD, (5) previous AMI, (6) previous PCI,
(7) previous CABG, (8) previous STROKE, (9) Diabetes, (10) Smoking, (11) Hyperten-
sion, (12) Dyslipidemia, (13) Peripheral Angiopathy, (14) Chronic Kidney Disease, (15)
Family History of CAD, (16) Asymptomatic, (17) Atypical Symptoms, (18) Angina-
like, (19) Dyspnea on Exertion, (20) Incident of precordial pain, (21) ECG, and (22)
Preliminary Expert Diagnosis.

Tomographic reconstruction of raw image data was carried out on a dedicated work-
station (Xeleris 3, GEHealthcare) by theOSEM(ordered subsets-expectationmaximiza-
tion) algorithm, using two iterations and ten subsets. After reconstruction, a low-pass
filter (Butterworth, with power ten and a cut-off value of 0.40 for stress and 0.45 for
rest images) was applied. Apart from 3-plane tomographic slices (in short, vertically
long, and horizontal long axes), polar maps were created automatically by the software.
The polar map is an image that summarizes the results of the 3-D tomographic slices
into a single 2-D circular presentation. Polar maps were extracted from the worksta-
tion in DICOM (Digital Imaging and Communications in Medicine) format for further
processing.

2.2 Methodology of the Proposed Framework DeepFCM

Our proposed DeepFCM model consists of the combination of CNN (Convolutional
Neural Network) and FCM-PSO methodology. CNN is responsible for handling the
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image data and supplying the FCM-PSOmodelwith its prediction. TheDeepFCMmodel
integrates the clinical data and the CNN’s output and facilitates the final diagnosis (see
Fig. 1). The fundamental concepts of the FCM are discussed in Sect. 2.2.1. The design
and learning of FCM-PSO are described in Sects. 2.2.2 and 2.2.3. The CNN predictions
are analyzed in Sect. 2.2.4 and the proposed DeepFCMmodel is discussed in Sect. 2.2.5.

2.2.1 Fuzzy Cognitive Maps

FCMs were introduced by Kosko [16] in 1986 and they are an advanced version of
cognitive maps. The FCM architecture is similar to an Artificial Neural Network, since
it mimics the human process of making decisions [7, 8]. FCM utilizes all the accessible
knowledge and translates it into the form of concepts and interconnections between
them. Concepts represent the characteristics/states of the examined system whereas
interconnections denote theweighted-directed cause-effect relationships of the concepts,
Interconnections values are in the spectrum of [−1, 1]. Whether an interconnection has
a positive or negative or zero value depends on the kind of connection [8, 9].

The construction of an FCM involves the definition of concepts and the equation of
calculating the future values of concepts according to historical data. The fundamental
equation for computing FCM concepts is Eq. (1). To normalize the predicted values of
concepts into a specific range, a transfer function is used. Generally, the sigmoid or the
trivalent function is preferred.

A(K+1)
i = f

(
A(K)
i +

∑N

i,j
wijA

(K)
j

)
(1)

where, A(K+1)
i is the value of the concept iteration (k+ 1) and A(K)

j is the concept at the
iteration (k) and f is the sigmoid function.

The strength of FCMs in general is that they consider the last state of each concept
to calculate the future value. Regarding FCM learning, it is based on the construction
of a weight matrix, which contains all the relationships between the concepts, utiliz-
ing unsupervised techniques with Hebbian adaptation, supervised with the inclusion of
evolutionary algorithms and gradient methods. Well-known methods of FCM learning
using historical data are RCGA and PSO.

2.2.2 Design of FCM Model Using Experts’ Knowledge

The FCM-PSO model consists of 22 concepts, which are clinical features, with one
output regarding CAD presence. All concepts have a value of 0 or 1, except for the age
and BMI, where their values are normalized and rescaled into the spectrum of [0,1].
The nuclear experts of the study assigned linguistic values (represented by fuzzy sets)
on the interconnections between inputs and output concepts. Table 1 gathers the fuzzy
relationships among some of themost influential concepts to the output. In particular, the
following fuzzy sets were defined: Very Weak (VW), Weak (W), Medium (M), Strong
(S), and Very Strong (VS). For each linguistic value, we assigned a specific range of
values as it is reported in the literature [17], to perform FCM learning considering the
respective ranges. For the fuzzy sets VeryWeak (VW) andWeak (W) we determined the
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ranges to be [0–0.3] and [0.15–0.5] accordingly. Also, for Medium (M), for Strong (S)
and Very Strong (VS) we assigned the values to be randomly selected from the ranges
[0.35–0.65], [0.5–0.85] and [0.7–1] accordingly. Concerning the negative linguistic val-
ues, we adjusted the provided values according to the positive ones. For the rest of the
relationships, where no experts’ knowledge is provided, they take random values within
the range [−1, 1].

Table 1. Presentation of the suggested weights between meaningful input-input concepts and
input-output concepts obtained from nuclear experts.

Relationships Suggested
Weight

Relationships Suggested
Weight

Sex>>Output M Dyslipidemia>>Output M

AGE>>ECG W Angiopathy>>Output M

BMI>>Output W Chronic Kidney Disease>>Output W

Known CAD>>Output S Family History of CAD>>Output W

Previous
AMI>>Output

VW Asymptomatic>>Output -S

Previous PCI>>Output W Atypical symptoms>>ECG M

Previous
CABG>>Output

W Atypical Symptoms>>Output VS

Previous
Stroke>>Output

M Angina Like>>Output S

Diabetes>>Output S Dyspnea on exertion>>Output M

Smoking>>Output M Incident of precordial
pain>>Output

M

Hypertension>>Output M Expert_Diagnosis_Binary>>Output VS

2.2.3 Learning FCM with Particle Swarm Optimization

The initialization ofweightmatrices is based on the linguistic values provided by experts,
which are in fuzzy format. Concerning the fuzziness contained in the suggested values,
the learning of FCM should be adjusted accordingly, since FCM’s performance is depen-
dent on the calculation of the weight matrix. Instead of taking the suggested weights for
granted, which would result in a static FCM, we considered assigning the FCM some
freedom to learn around the suggested values and fit to the data. For this reason, we
implemented FCM learning with the PSO approach.

Particle Swarm Optimization (PSO) [18] is an optimization methodology that was
introduced in 1995 [9] and has a similar approach to evolutionary algorithms. PSO is
a population-based methodology, and applies random initialization, among the interac-
tions of population members, and uses a small number of parameters [9, 14]. In general,
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PSO is utilized for the optimization of the objective function [14]. Regarding FCM
learning, PSO is applied for the adjustment and calculation of relationships among the
concepts. The estimation of the weight matrix, which consists of the relationships among
all concepts is a crucial step and determines FCM’s performance. The ideal conditions
of the produced weight matrix are to be in a steady state, representative of the corre-
sponding dataset and able to generate minimal error. Applying PSO to FCM learning
improves FCM’s performance and intensifies FCM’s ability to classify correctly.

2.2.4 Attention-Based VGG-19

To make use of the Polar Map images, we trained an attention-based VGG19 network
that facilitates CAD diagnosis based solely on Polar Maps.

Regarding the attention-based VGG-19 network, this modified version includes
attention blocks and branch-diverging (BD) paths to improve the feature extraction
capabilities of VGG-19. The attention blocks aim to focus on important image regions
during feature extraction by multiplying the features with a weight mask that highlights
regions of interest. This is achieved by creating a small CNN that takes the features as
input and outputs a mask that is then used to weigh the original features. The BD paths,
on the other hand, aim to capture more diverse features by creating multiple branches
that diverge from the main CNN path and then recombine the features later in the net-
work. This helps the model learn more complex patterns and improves its generalization
capabilities. Finally, the model is trained to classify images into different categories
using the categorical cross-entropy loss function and the Adam optimizer.

2.2.5 DeepFCM

The conception of a DeepFCM lies in the need to handle both clinical and image data, as
illustrated in Fig. 1. Initially, we developed the attention-based VGG-19 model to pro-
cess the Polar Maps and predict the class of each instance based solely on the images.
Secondly, we pre-processed the clinical data, performing normalization. Thirdly, we
developed an FCM for handling both the clinical data and the attention-based VGG-19
prediction. Nuclear experts have provided suggested linguistic values for most of the
interconnections of input-output concepts, where we utilized them for the initialization
of weight matrices. With the application of PSO methodology, the best weight matrix
includes variations, of the provided suggested linguistic values, that correlate to our
dataset, in order to globally minimize the error function, among the predicted and actual
values of concepts. Afterward, a 10-fold cross-validation approach is applied for the
assurance of stability and generability of DeepFCM results. With the predicted Deep-
FCM values from the final weight matrix, the metrics are calculated, which define the
model’s performance.

By combining both imaging and clinical data, the proposed model DeepFCM pro-
vides a comprehensive and integrated approach to diagnosis, potentially improving
accuracy and reducing the need for invasive tests.

DeepFCM is an explainable method providing interpretability, clarification, and
transparency of results to reduce the complexity and scalability of other methods.
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In Fig. 1, we demonstrate the total process of our proposed methodological frame-
work. The developed DeepFCM model is provided on GitHub [https://github.com/Ann
aFeleki/FCM-PSO-learning].

Fig. 1. Proposed methodological framework of our proposed model DeepFCM.

3 Results

In the following section, we demonstrate themost representative results of the conducted
experiments where 10-fold cross-validation is applied.

Theproposedmodel is executed on adesktopwithAMDRyzen75800HwithRadeon
Graphics with 16 GB RAM, and NVIDIA Ge-Force RTX 3060 GPU. As regards the
development of the model and the libraries, Python v3.9.13 was employed, along with
TensorFlow v2.9.3 and Keras v2.9.0.

To conclude the proposed architecture, various experiments were performed, and a
comparison has been applied with traditional machine learning algorithms to evaluate
each model’s metrics.

For model evaluation and performance testing, the metrics that were selected are
accuracy, loss, sensitivity, specificity, and precision. Accuracy refers to the ratio of total
number of instances classified correctly by the total number of instances [19]. Loss is the
calculated error of predicted and actual values. A small loss is desirable denoting aminor
deviation [5]. Sensitivity and specificity represent the percentage of true positives and
true negatives, respectively. Precision indicates the ratio of the number of true positives
to the total number of positive predictions [5].

We followed the inspection of the equilibrium point’s exact position, where the FCM
presents a steady state by experimenting with different epochs. The epochs tested are in

https://github.com/AnnaFeleki/FCM-PSO-learning
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the range of 15 to 120. The results regarding accuracy and loss for the examined number
of epochs are depicted in Fig. 2. It is observed that the best value for the epochs and the
equilibrium point for the proposed FCM is 35, which is achieved in the position of the
highest accuracy and the lowest loss.

Fig. 2. Performance of proposed model with different epochs, regarding (a) Accuracy (b) Loss

The values of the performance metrics of the proposed DeepFCM model are illus-
trated in Table 2. The spectrum of the initial interconnections of concepts with the output
for DeepFCM was based on the suggested linguistic values provided by experts. It has
to be mentioned that for CNN predictions, that is utilized as added input in proposed
DeepFCM model, the nuclear experts assigned a Strong relationship with the output.
For comparison reasons, the previous experiment was repeated, with randomly produced
relationships between input and output concepts, within the range [−1, 1]. Furthermore,
we experimented with FCM-PSO with the suggested linguistic values and with random
values for the initialization of the weight matrix as well. Additionally, for a further in-
depth evaluation of the proposed model, a comparative analysis has been made with
robust machine learning algorithms such as Bayes, Random Forest, Decision Tree, and
Neural Network in their default specifications. Regarding Neural network architecture,
we experimented with different network configurations, for example, the number of
nodes, number of layers, optimization algorithms, and activation functions. The optimal
parameters of the final model were 3 three hidden layers with 16-32-64 nodes in each
layer, with 16 batch size, Adam optimizer, and sigmoid activation function. The reason
we developed machine learning algorithms for our dataset is to compare the metrics of
methodologies that have demonstrated efficient performance on structure data.

Comparing the results provided in Table 2, we conclude that the proposed DeepFCM
model utilizing theweights suggestedby experts outperforms theDeepFCMwith random
values and also the FCM-PSO approaches that did not contain the CNN predictions from
the VGG-19 model and the machine learning methodologies as well. In this case, the
proposed DeepFCMmodel exceeded in terms of efficiency when utilizing historical data
and additional knowledge from experts.
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Table 2. Comparison of results of DeepFCMmodel with FCM-PSO andwith traditional machine
learning algorithms

Models Accuracy Loss Sensitivity Specificity Precision

Clinical Data

FCM-PSO with
random weights

72.9 ± 6.39 0.27 ± 0.06 64.89 ± 11.7 80.11 ± 8.96 70.05 ± 0.07

FCM-PSO with
suggested weights

74.98 ± 5.95 0.25 ± 0.06 74.96 ± 7.29 74.6 ± 15.34 75.01 ± 0.04

Clinical Data and polar map Images

DeepFCM with
suggested weights

77.95 ± 5.58 0.22 ± 0.05 76.98 ± 8.27 77.39 ± 7.13 73.97 ± 0.09

DeepFCM with
random weights

65.91 ± 4.42 0.36 ± 0.04 71.01 ± 5.96 68.36 ± 9.97 65.63 ± 5.65

Bayes 75.45 ± 5.57 0.24 ± 0.05 81.26 ± 5.29 69.54 ± 8.28 78.51 ± 0.07

Random Forest 78.87 ± 3.42 0.22 ± 0.03 74.26 ± 5.46 83.37 ± 5.48 76.43 ± 0.05

Decision Tree 74.13 ± 4.23 0.26 ± 0.04 72.34 ± 6.14 75.82 ± 6.14 73.43 ± 0.05

Neural Network 78.57 ± 5.49 0.28 ± 0.02 78.08 ± 6.7 79.28 ± 6.16 73.5 ± 0.09

In Table 3, we gather the range of values for every relationship between input and
output concepts, that were i) suggested by nuclear experts, ii) produced from the Deep-
FCM learning approach with suggested linguistic values by the experts. The first col-
umn demonstrates the suggested weights from experts for the connection of every input
concept with the output, except for some Nan values. Nan values demonstrate the inter-
connections’ values that were randomly selected from the spectrum [−1, 1]. The second
column presents the produced weights for the interconnection between input and output
concepts from the DeepFCM learning model, whose initial values are provided from the
suggested ranges displayed in the first column.

Theweights produced from theDeepFCMmodel utilizing experts’ values of weights
are close to the values suggested by experts and donot present large deviations, in contrast
to those interconnections randomly initialized as Nan, in which large deviations were
observed.

4 Discussion

We proposed a DeepFCM model for CAD diagnosis. It achieves high accuracy and
also exceeds traditional machine learning algorithms. Moreover, it utilizes historical
data and experts’ opinions, with CNN predictions extracted from trained VGG-19. Con-
cerning the results, DeepFCM is a transparent and explainable tool, since it produces
interconnections between every input concept and the output CAD concept, which is a
great advantage, in comparison to Random Forest, Bayes, Decision Tree, and Neural
Networks that do not provide interpretability of conclusion of results [5].
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Table 3. Presentation of extracted ranges for the relationship between input concepts and output
produced from the DeepFCM model.

Suggested interconnections Weights from experts Produced weights by
DeepFCM

Sex>>Output [0.35–0.65] [0.49 ± 0.09]

Age>>Output Nan [−0.35 ± 0.39]

BMI>>Output [0.15–0.5] [0.3 ± 0.11]

known CAD>>Output [0.5–0.85] [0.66 ± 0.07]

previous AMI>>Output [0–0.3] [0.16 ± 0.08]

previous PCI>>Output [0.15–0.5] [0.32 ± 0.12]

previous CABG>>Output [0.15–0.5] [0.29 ± 0.09]

previous STROKE>>Output [0.35–0.65] [0.47 ± 0.1]

Diabetes>>Output [0.5–0.85] [0.69 ± 0.11]

Smoking>>Output [0.35–0.65] [0.49 ± 0.07]

Hypertension>>Output [0.35–0.65] [0.48 ± 0.1]

Dyslipidemia>>Output [0.35–0.65] [0.51 ± 0.1]

Angiopathy>>Output [0.35–0.65] [0.48 ± 0.06]

Chronic Kidney Disease>>Output [0.15–0.5] [0.38 ± 0.14]

Family History of CAD>>Output [0.15–0,5] [0.34 ± 0.06]

Asymptomatic>>Output [−0.85–−0.5] [−0.66 ± 0.07]

Atypical symptoms>>Output [0.7–1] [0.83 ± 0.08]

Angina like>>Output [0.5–0.85] [0.67 ± 0.06]

Dyspnea on exertion>>Output [0.5–0.85] [0.6 ± 0.08]

Incident of precordial pain>>Output [0.35–0.65] [0.56 ± 0.8]

ECG>>Output Nan [−0.16 ± 0.57]

Expert_Diagnosis_Binary>>Output [0.7–1] [0.89 ± 0.07]

CNN predictions>>Output [0.5–0.85] [0.7 ± 0.15]

We experimented with different learning methods to determine the optimal for our
study that achieves generability as well. We developed DeepFCM with random values
and FCM-PSO with suggested values and with random values for the initial values of
interconnections. DeepFCMwith suggested values from experts performed better results
among all the experiments. It is demonstrated that the doctor-in-the-loop approach yields
better results and makes the system more informative and explainable. In addition, the
integration of a CNN for offering an extra input to our system benefits themodel, because
it leverages the feature extraction capabilities of the CNNs in CAD screening.
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The developed code can be implemented to produce results effortlessly providing
nuclear experts with an autonomous decision-making tool for patients’ health, regarding
CAD diagnosis.

5 Conclusions

In this research study, the DeepFCM model achieved remarkable results, providing an
integral tool that can assist decisions in nuclear medicine. In future work, the authors
intend to implement state equations for FCM learning and obtain nuclear experts’ opin-
ions that entail certain conditions regarding patient characteristics. Furthermore, we
plan to extend our work by improving FCM’s performance with random values for ini-
tial interconnections. Last but not least, we intend to insert into our proposed model
DeepFCM image data and perform image classification with the application of FCMs,
along with clinical data and CNN predictions and develop a robust hybrid method.
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Abstract. Uninorms on bounded lattices have recently become a signif-
icant area of study. In the present study, we describe two new approaches
for creating uninorms on bounded lattices, where some necessary and suf-
ficient conditions are required. These structures use a t-conorm and an
interior operator or a t-norm and a closure operator on a bounded lattice.
The newly introduced classes of uninorms and the differences between
them and already existing classes of uninorms are also illustrated on
several examples.

Keywords: Bounded lattice · Construction method · Closure
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1 Introduction

Triangular norms (t-norms, for short) and triangular conorms (t-conorms, for
short) were first developed in the context of probabilistic metric spaces by
Menger [30] in 1942 and Schweizer and Sklar [35] in 1961, respectively. In fuzzy
set theory and fuzzy logic, t-norms and t-conorms operate effectively as natural
extensions of logical connectives, i.e., conjunction and disjunction, respectively.
As a result, these operators have been widely applied in many fields of research,
including fuzzy set theory, fuzzy logic, fuzzy systems modeling, decision-making,
probabilistic metric spaces, approximate reasoning, and information aggregation
[3,20,25,28].

Yager and Rybalov [37] presented uninorms on the unit interval [0, 1] as
aggregation functions concurrently generalizing t-norms and t-conorms in 1996,
and Fodor et al. [23] investigated them thoroughly in 1997. Since then, they have
been extensively involved in a wide range of research fields, including neural net-
works, fuzzy system modeling, decision-making, fuzzy mathematical morphology,
fuzzy logic, and others [4,31,36,38]. Uninorms enable their neutral element to
be anywhere in the unit interval rather than at point 1 (as in t-norms) or point
0 (as in t-conorms). There are various studies about uninorms (e.g., [15–17,19]).

Because bounded lattices are more general structures than the unit interval,
generalizing binary aggregation operators from the unit interval to bounded
lattices becomes an attractive issue. Karaçal and Mesiar [27] in 2015 modified
the notion of uninorms from the real unit interval to bounded lattices. They also
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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discovered the smallest and greatest uninorms on bounded lattices. Recently,
these operators on bounded lattices have received considerable interest, and
numerous building approaches have been provided in the literature. Bodjanova
and Kalina [6] introduced the structure of uninorms based on both t-norms
and t-conorms on bounded lattices. Subsequently, Çaylı et al. [12] provided two
construction methods for internal and locally internal uninorms on bounded
lattices using only one of the t-norm and the t-conorm. Furthermore, Çaylı [9]
investigated the classes of idempotent uninorms on bounded lattices. Dan et al.
[13], and Dan and Hu [14] presented further characterizations of uninorms on
bounded lattices. Other corresponding constructions of uninorms on bounded
lattices can also be found in (e.g., [1,2,7,8,10,24,26,33,39]).

In a general topology, letting the set K �= ∅ and ℘ (K) be the set of all
subsets of K, if a map int : ℘ (K) → ℘ (K) (resp. cl : ℘ (K) → ℘ (K)) is idempo-
tent, isotone and contractive (resp. expansive), then it is said to be an interior
(resp. closure) operator on ℘ (K). Both these maps can be applied for generating
topologies on K [21]. In particular, from the set of all interior (closure) operators
on ℘ (K) to one of all topologies on K, a one-to-one correspondence exists. That
is to say that the interior (closure) operator on ℘ (K) can be generated by any
topology on K. Notably, interior (closure) operators on a lattice (℘ (K) ,⊆) can
be described when the set intersection and union are meet and join, respectively.
Thence, the interior (resp. closure) operator on ℘ (K) to a lattice L was gen-
eralized by Everett [22], where the condition int (K) = K (resp. cl (∅) = ∅) is
removed.

Ouyang and Zhang [32] enhanced the generation methods for uninorms
employing closure and interior operators on bounded lattices. They include those
presented in [27] as a particular instance inside their constructions. In this situ-
ation, one may wonder if the interior and closure operators provide new classes
of uninorms on bounded lattices. This thought inspires us to characterize two
new classes of uninorms on bounded lattices in the present work using closure
and interior operators. Characterization investigations are crucial working areas
because they provide the uninorms on bounded lattices with the appropriate
structures. To be more precise, we first introduce a new technique to get uni-
norms on a bounded lattice L with the neutral element e ∈ L\{0L, 1L}, via a
t-norm on [0L, e]2 and a closure operator defined on L. Then, by virtue of a
t-conorm on [e, 1L]2 and an interior operator defined on L, we describe a dual
construction of uninorms on L. In addition, we explore the relationship between
our constructions and those introduced in [8,11,39]. We also show that the con-
struction means in the present paper differ from the ones in [8,11,32,39].

The remainder of this paper is structured as follows: In Sect. 2, we present
some fundamental definitions and characteristics of uninorms on bounded lat-
tices. In Sect. 3, we enhance two generation ways for uninorms on a bounded
lattice L with the neutral element e ∈ L\{0L, 1L}, where some necessary and
sufficient conditions are required. These ways use an interior operator on L and
a t-conorm on [e, 1L]2 or a closure operator on L and a t-norm on [0L, e]2 .
We also provide some illustrative examples to highlight the differences between
our approaches and those already in use. Some of our discussion findings are
mentioned in the concluding section.
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2 Preliminaries

In this section, we recall some basic concepts and results related to bounded
lattices (for more information, see, e.g., [5]) and uninorms on them.

A poset (L,�) is a nonempty set L equipped with an order relation � (i.e.,
a reflexive, antisymmetric and transitive binary relation). For a, b ∈ L, the nota-
tion a < b means that a � b and a �= b. The notation a ‖ b implies that a and b
are incomparable, i.e., neither a � b nor b < a. Ia denotes the set of all elements
incomparable with a, i.e., Ia = {u ∈ L : u‖a}. An element a of a subset P of L
is called a smallest (resp. greatest) element of P if x � a (resp. x � a) for all
x ∈ P . L is called bounded if it has a greatest (also known as top) element and
a smallest (also known as bottom) element.

A lattice (L,�) is a poset such that any two elements a and b have a greatest
lower bound (called meet or infimum), denoted by a ∧ b, as well as a smallest
upper bound (called join or supremum), denoted by a ∨ b. In this paper, unless
otherwise stated, L denotes a bounded lattice (L,�,∧,∨) with a top element 1L
and a bottom element 0L.

For a, b ∈ L with a � b, the subinterval [a, b] of L is defined such that

[a, b] = {u ∈ L : a � u � b}.

The subintervals [a, b[, ]a, b], and ]a, b[ of L can be defined similarly. ([a, b],�
,∧,∨) is a bounded lattice with the top element b and the bottom element a.

Definition 1 ([12,27]). A function U : L × L → L is said to be a uninorm if,
for any a, b, c ∈ L, the following conditions are fulfilled:

(i) U(b, a) = U(a, b) (commutativity);
(ii) If b � a, then U(b, c) � U(a, c) (increasingness);
(iii) U(b, U(a, c)) = U(U(b, a), c) (associativity);
(iv) There is an element e ∈ L, called a neutral element, such that U(b, e) = b.

In particular, a uninorm U is a t-norm T (resp. t-conorm S) if e = 1L (resp.
e = 0L) (for more information about t-norms and t-conorms, see, e.g., [29,34]).

Example 1. (i) The largest t-norm is T∧ on [a, b]2 defined such that T∧(x, y) =
x ∧ y for all x, y ∈ [a, b], while the smallest one TW on [a, b]2 takes the value of
x ∧ y if b ∈ {x, y} and a otherwise. Thus, we obtain that TW � T � T∧ for any
t-norm T on [a, b]2.

(ii) The smallest t-conorm is S∨ on [a, b]2 defined such that S∨(x, y) = x ∨ y
for all x, y ∈ [a, b], while the largest one SW on [a, b]2 takes the value of x ∨ y if
a ∈ {x, y} and b otherwise. Thus, we obtain that S∨ � S � SW for any t-conorm
S on [a, b]2.

Definition 2 ([18,22]). A function cl : L → L is said to be a closure operator
if, for any a, b ∈ L, the following conditions are fulfilled:

(i) Expansion: b � cl(b).
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(ii) Preservation of join: cl(a ∨ b) = cl(a) ∨ cl(b).
(iii) Idempotence: cl (cl(b)) = cl(b).

By (i), the case (iii) equals to cl (cl(b)) � cl(b). Additionally, (ii) implies (ii)′ :
cl(a) � cl(b) if a � b. Birkhoff [5] defines a closure operator by (i), (ii)′ and (iii).

Definition 3 ([18,22]). A function int : L → L is said to be an interior operator
if, for any a, b ∈ L, the following conditions are fulfilled:

(i) Contraction: int(b) � b.
(ii) Preservation of meet: int(a ∧ b) = int(a) ∧ int(b).
(iii) Idempotence: int (int(b)) = int(b).

By (i), the case (iii) equals to int(b) � int (int(b)). Additionally, (ii) implies
(ii)′ : int(a) � int(b) if a � b. Birkhoff [5] defines an interior operator by (i), (ii)′

and (iii).

3 Construction Approaches for Uninorms

In this section, we introduce in Theorem 1 a novel method for getting the family
of uninorms U(T,cl) on a bounded lattice L with a neutral element e ∈ L\{0L, 1L}.
The uninorm U(T,cl) is derived from a t-norm T on [0L, e]2 and a closure operator
cl on L. In addition, we propose in Theorem 2 a different method to obtain the
family of uninorms U(S,int) on L with a neutral element e ∈ L\{0L, 1L}. This
construction is based on the existence of a t-conorm S on [e, 1L]2 and an interior
operator int on L.

Theorem 1. Let e ∈ L\{0L, 1L}, T : [0L, e]2 → [0L, e] be a t-norm and cl : L →
L be a closure operator. The function U(T,cl) : L × L → L, given by the formula
(1), is a uninorm on L with a neutral element e iff cl (x)∨ cl (y) ∈ Ie ∪{1L} and
x > z for all x, y ∈ Ie, z ∈ [0L, e[.

U(T,cl) (a, b) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

T (a, b) if (a, b) ∈ [0L, e]2,
1L if (a, b) ∈]e, 1L]2,
cl (a) ∨ cl (b) if (a, b) ∈]e, 1L] × Ie ∪ Ie×]e, 1L] ∪ Ie × Ie,
a if (a, b) ∈ (Ie ∪ [e, 1L]) × {e} ,
b if (a, b) ∈ {e} × (Ie ∪ [e, 1L]) ,
a ∧ b otherwise.

(1)

Remark 1. The uninorm U(T,cl) : L × L → L in Theorem 1 can be also defined
by

U(T,cl) (a, b) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

T (a, b) if (a, b) ∈ [0L, e]2,
1L if (a, b) ∈]e, 1L]2,

a
if (a, b) ∈ [0L, e[×Ie ∪ [0L, e[× [e, 1L]

∪ (Ie ∪ [e, 1L]) × {e} ,

b
if (a, b) ∈ Ie × [0L, e[∪ [e, 1L] × [0L, e[

∪ {e} × (Ie ∪ [e, 1L]) ,
cl (a) ∨ cl (b) if (a, b) ∈ Ie×]e, 1L]∪]e, 1L] × Ie ∪ Ie × Ie.
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Fig. 1. Uninorm U(T,cl) on L Fig. 2. Uninorm U(S,int) on L

Remark 2. The structure of the uninorm U(T,cl) : L × L → L is illustrated in
Fig. 1.

If we take in Theorem 1 the t-norm T : [0L, e]2 → [0L, e] stated by T = T∧,
we define the corresponding uninorm as the following structure:

Corollary 1. Let e ∈ L\{0L, 1L} and cl : L → L be a closure operator. The
function U(cl) : L × L → L, given by the formula (2), is a uninorm on L with
a neutral element e iff cl (x) ∨ cl (y) ∈ Ie ∪ {1L} and x > z for all x, y ∈ Ie,
z ∈ [0L, e[.

U(cl) (a, b) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1L if (a, b) ∈]e, 1L]2,
cl (a) ∨ cl (b) if (a, b) ∈]e, 1L] × Ie ∪ Ie×]e, 1L] ∪ Ie × Ie,
a if (a, b) ∈ (Ie ∪ [e, 1L]) × {e} ,
b if (a, b) ∈ {e} × (Ie ∪ [e, 1L]) ,
a ∧ b otherwise.

(2)

If we allow in Theorem 1 the element e ∈ L\{0L, 1L} to be an atom, we
define the corresponding uninorm as the following structure:

Corollary 2. Let e ∈ L\{0L, 1L} be an atom and cl : L → L be a closure
operator. The function U(e,cl) : L × L → L, given by the formula (3), is a
uninorm on L with a neutral element e iff cl (x) ∨ cl (y) ∈ Ie ∪ {1L} for all
x, y ∈ Ie.

U(e,cl) (a, b) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1L if (a, b) ∈]e, 1L]2,
cl (a) ∨ cl (b) if (a, b) ∈]e, 1L] × Ie ∪ Ie×]e, 1L] ∪ Ie × Ie,
a if (a, b) ∈ (Ie ∪ [e, 1L]) × {e} ,
b if (a, b) ∈ {e} × (Ie ∪ [e, 1L]) ,
0L otherwise.

(3)

Remark 3. Let e ∈ L\{0L, 1L}, S : [e, 1L]2 → [e, 1L] be a t-conorm and cl :
L → L be a closure operator. We introduce in Theorem 1 a new construction
approach for uninorms on bounded lattices. To be more precise, (i) If (a, b) ∈
]e, 1L]2∪]e, 1L]×Ie∪Ie×]e, 1L]∪I2e , the method in [8, Theorem 8] puts for U(a, b)
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the value of S (a ∨ e, b ∨ e) . On the other hand, in our construction U(T,cl)(a, b) =
1L for (a, b) ∈]e, 1L]2 and U(T,cl)(a, b) = cl (a) ∨ cl (b) for (a, b) ∈]e, 1L] × Ie ∪
Ie×]e, 1L] ∪ I2e . However, both constructions coincide in the remaining domains;
(ii) If (a, b) ∈]e, 1L]2, the method in [11, Theorem 3.1] puts for U(a, b) the value
of cl (a)∨cl (b) while our construction puts for U(T,cl)(a, b) the value 1L. However,
both constructions coincide in the remaining domains;
(iii) If (a, b) ∈]e, 1L]2 (resp. (a, b) ∈]e, 1L] × Ie ∪ Ie×]e, 1L]), the method in [11,
Theorem 3.4] puts for U(a, b) the value of S (a, b) (resp. a ∨ b) while our con-
struction puts for U(T,cl)(a, b) the value 1L (resp. cl (a) ∨ cl (b)). However, both
constructions coincide in the remaining domains;

(iv) If (a, b) ∈]e, 1L]×Ie∪Ie×]e, 1L], the method in [39, Proposition 3.5] puts
for U(a, b) the value 1L while our construction puts for U(T,cl)(a, b) the value of
cl (a) ∨ cl (b) . However, both constructions coincide in the remaining domains.

Remark 4. Let e ∈ L\{0L, 1L}. Then we have the following statements:

(1) If the closure operator cl : L → L is defined by cl(x) = 1L for all x ∈ L,
(1-i) the uninorm U(T,cl) in Theorem 1 coincides with the uninorms in [11,

Theorem 3.1] and [39, Proposition 3.5];
(1-ii) the uninorm U(T,cl) in Theorem 1 coincides with the uninorm in [8, The-

orem 8], where e is a coatom;
(1-iii) the uninorm U(T,cl) in Theorem 1 coincides with the uninorms in [8,

Theorem 8] and [39, Proposition 3.6], where the t-conorm S : [e, 1L]2 →
[e, 1L] is S = SW ;

(1-iv) the uninorm U(T,cl) in Theorem 1 coincides with the uninorm in [11,
Theorem 3.4], where y ‖ z for all y ∈ [e, 1L[, z ∈ Ie, and the t-conorm
S : [e, 1L]2 → [e, 1L] is S = SW .

(2) If the closure operator cl : L → L is defined by cl(x) = x for all x ∈ L, the
uninorm U(T,cl) in Theorem 1 coincides with the uninorm in [11, Theorem
3.4], where the t-conorm S : [e, 1L]2 → [e, 1L] is S = SW .

(3) If e is a coatom, the uninorm U(T,cl) in Theorem 1 coincides with the uni-
norms in [11, Theorems 3.1 and 3.4] and [39, Propositions 3.5 and 3.6].

We should point out that in [39, Proposition 3.6] it is enough to select SW as
a t-conorm on [e, 1L]2 and the construction in Theorem 1 is obtained. However,
the construction in Theorem 1 can be used also in the case when the condition
f ‖ g for all f ∈ Ie and g ∈ [e, 1[ is not satisfied.

Notice that the uninorm constructed by the method in Theorem 1 does not
have to coincide with those introduced in [8, Theorem 8], [11, Theorems 3.1 and
3.4], and [39, Propositions 3.5 and 3.6]. In the following examples, we demon-
strate this observation.

Example 2. Consider the lattice L1 characterized by Hasse diagram in Fig. 3.
Identify the closure operator cl : L1 → L1 by cl(0L1) = 0L1 , cl (e) = e, cl (n) =
cl (m) = m, cl (p) = cl (q) = q and cl(1L1) = 1L1 . By virtue of the structure
determined in Theorem 1, the uninorm U1

(T,cl) : L1 × L1 → L1 is presented in
Table 1.
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Table 1. Uninorm U1
(T,cl) on L1

U1
(T,cl)

0L1 e n m p q 1L1

0L1 0L1 0L1 0L1 0L1 0L1 0L1 0L1

e 0L1 e n m p q 1L1

n 0L1 n m m 1L1 1L1 1L1

m 0L1 m m m 1L1 1L1 1L1

p 0L1 p 1L1 1L1 1L1 1L1 1L1

q 0L1 q 1L1 1L1 1L1 1L1 1L1

1L1 0L1 1L1 1L1 1L1 1L1 1L1 1L1

Table 2. Uninorm U1 on L1

U1 0L1 e n m p q 1L1

0L1 0L1 0L1 0L1 0L1 0L1 0L1 0L1

e 0L1 e n m p q 1L1

n 0L1 n 1L1 1L1 1L1 1L1 1L1

m 0L1 m 1L1 1L1 1L1 1L1 1L1

p 0L1 p 1L1 1L1 p q 1L1

q 0L1 q 1L1 1L1 q q 1L1

1L1 0L1 1L1 1L1 1L1 1L1 1L1 1L1

Table 3. Uninorm U2 on L1

U2 0L1 e n m p q 1L1

0L1 0L1 0L1 0L1 0L1 0L1 0L1 0L1

e 0L1 e n m p q 1L1

n 0L1 n m m 1L1 1L1 1L1

m 0L1 m m m 1L1 1L1 1L1

p 0L1 p 1L1 1L1 p q 1L1

q 0L1 q 1L1 1L1 q q 1L1

1L1 0L1 1L1 1L1 1L1 1L1 1L1 1L1

Table 4. Uninorm U3 on L1

U3 0L1 e n m p q 1L1

0L1 0L1 0L1 0L1 0L1 0L1 0L1 0L1

e 0L1 e n m p q 1L1

n 0L1 n m m 1L1 1L1 1L1

m 0L1 m m m 1L1 1L1 1L1

p 0L1 p 1L1 1L1 q q 1L1

q 0L1 q 1L1 1L1 q q 1L1

1L1 0L1 1L1 1L1 1L1 1L1 1L1 1L1

If we utilize the construction means in [8, Theorem 8] and [39, Proposition
3.6], respectively, the uninorms U1, U2 : L1 ×L1 → L1 are presented in Tables 2
and 3, respectively, where the t-conorm S : [e, 1L1 ]

2 → [e, 1L1 ] is S = S∨. By
virtue of the method in [11, Theorem 3.1], the uninorm U3 : L1 × L1 → L1 is
presented in Table 4. Then we have the following facts:

(i) the uninorm U1
(T,cl) satisfies that U1

(T,cl) (n,m) = m and U1
(T,cl) (p, q) = 1L1 ;

(ii) the uninorm U1 satisfies that U1 (n,m) = 1L1 ;
(iii) the uninorms U2 and U3 satisfy that U2 (p, q) = U3 (p, q) = q.

Hence, U1
(T,cl) differs from the uninorms U1, U2 and U3 on L1.

Example 3. Consider the lattice L2 characterized by Hasse diagram in Fig. 4.
Identify the closure operator cl : L2 → L2 by cl(0L2) = 0L2 , cl (e) = cl (m) =
cl (n) = cl (n) = s, cl (k) = k and cl(1L2) = 1L2 . By virtue of the structure
determined in Theorem 1, the uninorm U2

(T,cl) : L2 × L2 → L2 is presented in
Table 5.

If we utilize the construction means in [11, Theorem 3.4] and [39, Proposition
3.5], respectively, the uninorms U4, U5 : L2 ×L2 → L2 are presented in Tables 6
and 7, respectively, where the t-conorm S : [e, 1L2 ]

2 → [e, 1L2 ] is S = S∨. Then
we get the following facts:
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Table 5. Uninorm U2
(T,cl) on L2

U2
(T,cl)

0L2 e k m n s 1L2

0L2 0L2 0L2 0L2 0L2 0L2 0L2 0L2

e 0L2 e k m n s 1L2

k 0L2 k k s s s 1L2

m 0L2 m s 1L2 1L2 1L2 1L2

n 0L2 n s 1L2 1L2 1L2 1L2

s 0L2 s s 1L2 1L2 1L2 1L2

1L2 0L2 1L2 1L2 1L2 1L2 1L2 1L2

Table 6. Uninorm U4 on L2

U4 0L2 e k m n s 1L2

0L2 0L2 0L2 0L2 0L2 0L2 0L2 0L2

e 0L2 e k m n s 1L2

k 0L2 k k m n s 1L2

m 0L2 m m m n s 1L2

n 0L2 n n n n s 1L2

s 0L2 s s s s s 1L2

1L2 0L2 1L2 1L2 1L2 1L2 1L2 1L2

(i) the uninorm U2
(T,cl) satisfies that U2

(T,cl) (k, n) = s;
(ii) the uninorms U4 and U5 satisfy that U4 (k, n) = n and U5 (k, n) = 1L2 .

Hence, U2
(T,cl) differs from the uninorms U4 and U5 on L2.

Fig. 3. The lattice L1 Fig. 4. The lattice L2

Remark 5. The formula (1) in Theorem 1 clearly shows that the uninorm U(T,cl)

coincides with the t-conorm SW on [e, 1L]2. If we change the construction method
in Theorem 1 in such a way that it will differ only on [e, 1L]2 where we will take
some t-conorm S then this t-conorm cannot be arbitrary. In order to obtain the
associativity and increasingness of U(T,cl), this t-conorm satisfies the following
conditions:

(i) S (a, cl (b ∨ c)) = cl (S (a, b) ∨ c) for a, b ∈ [e, 1] and c ∈ Ie;
(ii) S (a, cl (b ∨ c)) = S (cl (a ∨ b) , c) for b ∈ Ie and a, c ∈ [e, 1] ;
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Table 7. Uninorm U5 on L2

U5 0L2 e k m n s 1L2

0L2 0L2 0L2 0L2 0L2 0L2 0L2 0L2

e 0L2 e k m n s 1L2

k 0L2 k k 1L2 1L2 1L2 1L2

m 0L2 m 1L2 1L2 1L2 1L2 1L2

n 0L2 n 1L2 1L2 1L2 1L2 1L2

s 0L2 s 1L2 1L2 1L2 1L2 1L2

1L2 0L2 1L2 1L2 1L2 1L2 1L2 1L2

Table 8. T-conorm S′ on [e, 1L2 ]
2

S′ e m n s 1L2

e e m n s 1L2

m m n n 1L2 1L2

n n n n 1L2 1L2

s s 1L2 1L2 1L2 1L2

1L2 1L2 1L2 1L2 1L2 1L2

(iii) S (b, c) ≥ cl (a ∨ c) for a ∈ Ie and b, c ∈ [e, 1] such that b ≥ a.

To exemplify this assertion, for the lattice L2 in Fig. 4, the closure operator cl :
L2 → L2 is defined as in Example 3. Presume that the uninorm U(T,cl) | [e, 1L2 ]

2

is the t-conorm S′ : [e, 1L2 ]
2 → [e, 1L2 ] represented in Table 8 .

If we use the building technique in Theorem 1, then we get that

U(T,cl)

(
U(T,cl) (n,m) , k

)
= U(T,cl)

(
S′ (n,m) , k

)
= U(T,cl) (n, k) = cl (n) ∨ cl (k) = s,

and

U(T,cl)

(
n,U(T,cl) (m, k)

)
= U(T,cl) (n, cl (m) ∨ cl (k)) = U(T,cl) (n, s) = S′ (n, s) = 1L2 .

It contradicts the associativity property of U(T,cl).

We suggest in Theorem 2 a dual construction method for uninorms on
bounded lattices. Namely, based on a t-conorm S on [e, 1L]2 and an interior
operator int on L, we define the family of uninorm U(S,int) on L with a neutral
element e ∈ L\{0L, 1L}.

Theorem 2. Let e ∈ L\{0L, 1L}, S : [e, 1L]2 → [e, 1L] be a t-conorm and int :
L → L be an interior operator. The function U(S,int) : L × L → L, given by the
formula (4), is a uninorm on L with a neutral element e iff int(x) ∧ int(y) ∈
Ie ∪ {0L} and x < z for all x, y ∈ Ie, z ∈]e, 1L].

U(S,int) (a, b) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

S (a, b) if (a, b) ∈ [e, 1L]2,
0L if (a, b) ∈ [0L, e[2,
int (a) ∧ int (b) if (a, b) ∈ Ie × [0L, e[∪[0L, e[×Ie ∪ Ie × Ie,
a if (a, b) ∈ (Ie ∪ [0L, e]) × {e} ,
b if (a, b) ∈ {e} × (Ie ∪ [0L, e]) ,
a ∨ b otherwise.

(4)
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Remark 6. The uninorm U(S,int) : L × L → L in Theorem 2 can be also defined
by

U(S,int) (a, b) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

S (a, b) if (a, b) ∈ [e, 1L]2,
0L if (a, b) ∈ [0L, e[2,

a
if (a, b) ∈]e, 1L] × Ie∪]e, 1L] × [0L, e]

∪ (Ie ∪ [0L, e]) × {e} ,

b
if (a, b) ∈ Ie×]e, 1L] ∪ [0L, e] ×]e, 1L]

∪ {e} × (Ie ∪ [0L, e]) ,
int (a) ∧ int (b) if (a, b) ∈ Ie × [0L, e[∪[0L, e[×Ie ∪ Ie × Ie.

Remark 7. The structure of the uninorm U(S,int) : L × L → L is illustrated in
Fig. 2.

If we take in Theorem 2 the t-conorm S : [e, 1L]2 → [e, 1L] given by S = S∨,
we define the corresponding uninorm as the following structure:

Corollary 3. Let e ∈ L\{0L, 1L} and int : L → L be an interior operator. The
function U(int) : L × L → L, given by the formula (5), is a uninorm on L with
a neutral element e iff int(x) ∧ int(y) ∈ Ie ∪ {0L} and x < z for all x, y ∈ Ie,
z ∈]e, 1L].

U(int) (a, b) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0L if (a, b) ∈ [0L, e[2,
int (a) ∧ int (b) if (a, b) ∈ Ie × [0L, e[∪[0L, e[×Ie ∪ Ie × Ie,
a if (a, b) ∈ (Ie ∪ [0L, e]) × {e} ,
b if (a, b) ∈ {e} × (Ie ∪ [0L, e]) ,
a ∨ b otherwise.

(5)

If we allow in Theorem 2 the element e ∈ L\{0L, 1L} to be a coatom, we
define the corresponding uninorm as the following structure:

Corollary 4. Let e ∈ L\{0L, 1L} be a coatom and int : L → L be an interior
operator. The function U(e,int) : L × L → L, given by the formula (6), is a
uninorm on L with a neutral element e iff int(x) ∧ int(y) ∈ Ie ∪ {0L} for all
x, y ∈ Ie.

U(e,int) (a, b) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0L if (a, b) ∈ [0L, e[2,
int (a) ∧ int (b) if (a, b) ∈ Ie × [0L, e[∪[0L, e[×Ie ∪ Ie × Ie,
a if (a, b) ∈ (Ie ∪ [0L, e]) × {e} ,
b if (a, b) ∈ {e} × (Ie ∪ [0L, e]) ,
1L otherwise.

(6)

Similarly to Examples 2 and 3, we can show that the uninorm obtained via
the approach in Theorem 2 does not have to coincide with the ones introduced
by [8, Theorem 11], [11, Theorems 3.10 and 3.12], and [39, Corollaries 4.2 and
4.4].

Remark 8. Let e ∈ L\{0L, 1L}, cl : L → L be a closure operator, and int : L →
L be an interior operator. Uninorms obtained by the methods in Theorems 1
and 2 do not have to coincide with those introduced by [32, Theorems 4.1 and
5.1]. Namely, for any x ∈ Ie
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(i) the uninorm U(T,cl) in Theorem 1 satisfies that U(T,cl) (0L, 1L) = 0L and
U(T,cl) (1L, x) = 1L;

(ii) the uninorm U(S,int) in Theorem 2 satisfies that U(S,int) (0L, 1L) = 1L and
U(S,int) (0L, x) = 0L;

(iii) the uninorm U in [32, Theorem 4.1] satisfies that U (0L, 1L) = 1L and
U (0L, x) = x;

(iv) the uninorm U in [32, Theorem 5.1] satisfies that U (0L, 1L) = 0L and
U (1L, x) = x.

Remark 9. The formula (4) in Theorem 2 clearly shows that the uninorm U(S,int)

coincides with the t-norm TW on [0L, e]2. If we change the construction method
in Theorem 2 in such a way that it will differ only on [0L, e]2 where we will
take some t-norm T then this t-norm cannot be arbitrary. In order to obtain the
associativity and increasingness of U(S,int), this t-norm satisfies the following
conditions:

(i) T (a, int (b ∧ c)) = int (T (a, b) ∧ c) for a, b ∈ [0, e] and c ∈ Ie;
(ii) T (a, int (b ∧ c)) = T (int (a ∧ b) , c) for b ∈ Ie and a, c ∈ [0, e] ;
(iii) T (a, c) ≤ int (b ∧ c) for b ∈ Ie and a, c ∈ [0, e] such that a ≤ b.

To exemplify this assertion, take into consideration the lattice L3 =
{0L3 , p, q, e, 1L3} being 0L3 < p < e < 1L3 , p < q < 1L3 , q‖e. Identify the
interior operator int : L3 → L3 by int(0L3) = int(p) = int(q) = 0L3 , int(e) = e

and int(1L3) = 1L3 . Presume that the uninorm U(S,int) | [0L3 , e]
2 is the t-norm

T∧ : [0L3 , e]
2 → [0L3 , e]. If we apply the generation tool in Theorem 2, we get

that

U(S,int) (p, p) = T∧ (p, p) = p > 0L3 = int(p) ∧ int(q) = U(S,int) (p, q) ,

for p < q. It contradicts the increasingness property of U(S,int).

4 Conclusion

This paper characterized two novel classes of uninorms on bounded lattices via
the closure and interior operators. We presented two techniques for getting uni-
norms on a bounded lattice L with a neutral element e ∈ L\{0L, 1L}, where
some necessary and sufficient conditions are required. It should be pointed out
that our techniques exploit a t-norm on [0L, e]2 and a closure operator on L or a
t-conorm on [e, 1L]2 and an interior operator on L. Furthermore, we added some
corresponding examples in order to show that our tools do not have to coincide
with the existing ones in [8,11,32,39].
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Abstract. The Choquet integral is a powerful tool in multi-criteria deci-
sion making and decision under uncertainty. This paper studies the use
of its discrete form for the definition of norms, in the general case beyond
the often considered case of Ordered Weighted Averages. It proposes a
discussion of the characterisation based on Metric Inducing Fuzzy Mea-
sures (MIFM) introduced by Bolton et al., 2008, questioning its results.
It then describes a characterisation for the discrete case that relates to
the notion of properties holding almost everywhere derived from the null
sets associated to a fuzzy measure. It discusses in particular the case of
Choquet integrals induced by possibility measures.
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1 Introduction

The Choquet integral is a powerful tool in multi-criteria decision making and
decision under uncertainty [5]: it has a high expressive power, through its param-
eter, namely the fuzzy measure it relies on. Depending on the definition of the
latter, it can model many different types of aggregation operators, among which
weighted sums and Ordered Weighted Averages (OWA) to name a few.

This paper proposes to study the use of its discrete form for the definition
of distances: when applied to data described by a set of features, distances can
be seen as the aggregation of the comparisons computed for each feature. For
instance the Minkowski distances are defined as, possibly weighted, power means,
where the individual feature comparison is defined as the absolute value of the
difference in case of numerical features.

This paper examines the possibility to use the generic aggregation operators
offered by the discrete Choquet integral. It studies conditions a fuzzy measure
must satisfy so that the Choquet integral it induces satisfies the required prop-
erties of a norm. As detailed in Sect. 2, this question has mainly be studied
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for OWA or in the continuous case. This paper first proposes, in Sect. 3, a dis-
cussion of the characterisation proposed in [1] based on Metric Inducing Fuzzy
Measures (MIFM). Section 4 then describes a characterisation that expresses, in
the discrete case, conditions related to the notion of properties holding almost
everywhere derived from the null sets associated to a fuzzy measure [7]. It dis-
cusses in particular the case of Choquet integrals induced by possibility measures.
Section 5 concludes the paper and discusses directions for future works.

2 Background and Related Works

This section presents the background and formal definitions of the main concepts
used throughout the paper, norms, distances and Choquet integrals, before sum-
marizing some existing works studying connections between them.

2.1 Norms and Distances

Formally, for elements taken from a domain X , a norm is a function s : X → R

that satisfies the following properties for any x, y ∈ X :

– s(x) ≥ 0 (non-negativity)
– s(x) = 0 if and only if x = 0 (separability)
– s(kx) = |k|s(x) for all k ∈ R (homogeneity)
– s(x + y) ≤ s(x) + s(y) (triangular inequality)

The non-negativity property can actually be deduced from the other ones, but
it is most often stated explicitly in the list of properties.

A norm s induces a distance d, defined by d(x, y) = s(x − y), which is non-
negative, separable, commutative and satisfies the triangular inequality.

This paper focuses on the classical case of numerical vectors of dimension n,
i.e. it considers X = R

n.

2.2 Fuzzy Measures and Discrete Choquet Integrals

The discrete Choquet integral (see e.g. [5] for a survey of its definition, variants
and applications) is an aggregation function commonly used in multicriteria deci-
sion making. Given a finite set of n criteria N = {1, · · · , n}, and an alternative
described by its evaluation over these criteria, x = (x1, · · · , xn), it calculates
a global evaluation aggregating all the xi values. The latter is a generalisation
of the weighted sum that allows to take into account interactions between the
criteria, through the use of a so-called fuzzy measure.

This section first reminds the formal definition of these fuzzy measures. It
then provides the two main, equivalent, definitions of the discrete Choquet inte-
grals and some specific cases of interest.
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Fuzzy Measures. The definition of a Choquet integral relies on the specifica-
tion of a fuzzy measure, also named capacity: this function associates, to any
group of criteria A ⊆ N , a numerical value that can be viewed as the weight or
the importance given to these criteria. Formally

Definition 1. A fuzzy measure (or capacity) is a set function μ : 2N → [0, 1]
such that

– μ(∅) = 0 and μ(N ) = 1 (boundary conditions)
– if A ⊆ B then μ(A) ≤ μ(B) (monotonicity)

Specific properties of interest for a fuzzy measure μ include:

– additivity iff ∀A,B ⊆ N , μ(A ∪ B) + μ(A ∩ B) = μ(A) + μ(B)
– submodularity iff ∀A,B ⊆ N , μ(A ∪ B) + μ(A ∩ B) ≤ μ(A) + μ(B).
– subadditivity iff ∀A,B ⊆ N such that A ∩ B = ∅, μ(A ∪ B) ≤ μ(A) + μ(B)

Note that a submodular fuzzy measure is subadditive.
Another property of interest, used in examples in this paper, is the symmetry

one, that is satisfied when the capacity only depends on the cardinality of the
subsets it applies to: μ is symmetric iff ∀A,B ⊆ N , |A| = |B| ⇒ μ(A) = μ(B).

A specific case of fuzzy measure corresponds to possibility measures [3]: they
are defined as set functions Π : 2N → [0, 1] such that Π(∅) = 0, Π(N ) = 1 and
Π(A ∪ B) = max(Π(A),Π(B)).

Discrete Choquet Integrals. Given a fuzzy measure indicating the weight of
any subset of criteria and an alternative x, the Choquet integral [5] aggregates
the evaluation of the individual criteria in x as follows

Definition 2. The discrete Choquet integral of x = (x1, · · · , xn) ∈ R
n with

respect to a fuzzy measure μ is defined as

Cμ(x) =
n∑

i=1

(
x�i� − x�i−1�

)
μ(A�i�)) (1)

=
n∑

i=1

x�i�
(
μ(A�i�) − μ(A�i+1�)

)
(2)

where

• �.
 is a permutation on N that sorts x in increasing order: x�1� ≤ · · · ≤ x�n�
• A�i� = {�i
, · · · , �n
}
• x�0� = 0 and A�n+1� = ∅.

The above definition is the usual presentation of the Choquet integral. An
equivalent definition based on sorting x in decreasing order can be considered
as well, as proposed in [1]. As this paper proposes, in Sect. 3, a discussion of
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the results presented in the latter paper, we consider both notations: Cμ(x) can
equivalently be defined as

Cμ(x) =
n∑

i=1

x�i�
(
μ(B�i�) − μ(B�i−1�)

)
(3)

where

• �.� is a decreasing permutation: x�1� ≥ x�2� ≥ · · · ≥ x�n�
• B�i� = {�1�, · · · , �i�} and
• B�0� = ∅

It is useful to introduce the following notations: for any permutation σ on N ,
∀i ∈ N ,

wσ(i) = μ(Bσ(i)) − μ(Bσ(i−1)) (4)
with Bσ(i) = {σ(1), · · · , σ(i)} and Bσ(0) = ∅. Indeed, Eq. (3) can then be written
Cμ(x) =

∑n
i=1 x�i�w�i�.

Special Cases. Depending on the properties of the chosen fuzzy measure μ, spe-
cific cases of the Choquet integrals are induced, possibly with simplified expres-
sions. In particular, in the case where μ is an additive measure, the Choquet
integral takes the simplified form of a weighted sum: Cμ(x) =

∑n
i=1 μ({i})xi.

This follows from the fact that both the A�i� and the B�i� satisfy an inclusion
property: for any i, A�i+1� ⊆ A�i� and B�i� ⊆ B�i+1�.

A specific class of Choquet integrals implements the Ordered Weighted Aver-
age operator [8], defined as
Definition 3. Let (w1, · · · , wn) ∈ [0, 1]n such that

∑n
i=1 wi = 1. The Ordered

Weighted Average (OWAw) is the aggregation operator defined by,
for any (x1, · · · , xn) ∈ R

n

OWAw(x1, · · · , xn) =
n∑

i=1

wix�i� (5)

The following relation holds between OWA and Choquet integral [4]:

Proposition 1 (from [4]). A discrete Choquet integral with respect to μ is an
OWA if and only if μ is symmetric, i.e. the fuzzy measure only depends on the
set cardinality.

More precisely, it is then the OWAw whose weights are defined as wi =
μ(An−i+1) − μ(An−i) where Ai denotes any subset with cardinality equal to i.

This weight definition is an instanciation of Eq. (4) for the considered par-
ticular case of fuzzy measures.

A specific case of interest among the OWA, as detailed in Sect. 3, are the
ones that satisfy an ordering constraints on the weights, called buoyancy [8]:

Definition 4. The OWAw satisfies the buyoancy property iff

w1 ≤ · · · ≤ wn (6)
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2.3 Related Works

Within the framework recalled in the previous sections, the question is then to
exploit a discrete Choquet integral to define a norm: given two data points a
and b described by n features, an alternative is defined by their individual feature
comparisons, ∀i ∈ {1, . . . , n}, xi = cmp(ai, bi), e.g. for numerical features, xi =
|ai − bi|. An alternative to be assessed is thus denoted x = (x1, · · · , xn) ∈ R

+n.
Indeed, the individual comparison are assumed to be non-negative values. The
question is then to define a Choquet integral Cμ such that s(x) = Cμ(x1, . . . , xn)
defines a norm, i.e. satisfies the properties recalled in Sect. 2.1.

This section summarises results that have been established in previous works
regarding this issue, except for [1], discussed in details in the next section.

Submodularity and Triangular Inequality. A first theorem establishes suf-
ficient conditions for a Choquet integral to satisfy the triangular inequality [2]:

Proposition 2 (from [2]). If the fuzzy measure μ is submodular, then the
Choquet integral it induces satisfies the triangular inequality: for any x, y

Cμ(x + y) ≤ Cμ(x) + Cμ(y)

It is easy to check that this is a necessary and sufficient condition. Indeed, let
us consider a fuzzy measure μ such that for any x, y, Cμ(x + y) ≤ Cμ(x) +
Cμ(y) and two sets A,B ⊆ N . The characteristic functions 1A∪B and 1A∩B are
comonotonic with a sum equals to 1A +1B . It then holds that μ(A ∪ B)+μ(A∩
B) = Cμ(1A∪B + 1A∩B) since Choquet integral is comonotonic additive. Hence
μ(A ∪ B) + μ(A ∩ B) = Cμ(1A + 1B) ≤ Cμ(1A) + Cμ(1B) = μ(A) + μ(B) by
hypothesis.

Proposition 2 can be generalised to Hölder inequalities, as shown in [7] for
continuous Choquet integrals.

Relations Between OWA and Norms. Most results about the relations
between Choquet integrals and norms consider the case of OWA. It has first
been established by Yager [9] that OWA possessing the buoyancy property are
norms:

Theorem 3 (from [9]). Given (w1, . . . , wn) ∈ [0, 1]n, the function
s : R+n → R

+ defined by s(x) =
∑n

i=1 wix�i� is a norm if and only if ∀i,
wi ≥ wi+1.

Note that the wi ordering is here reversed as compared to Eq. (6) because the
OWA is written in [9] with the �.� ordering instead of the �.
 one.

Due to the relationship between Choquet integrals and OWA, this theorem
allows us to deduce the following corollary:

Corollary 4. A discrete Choquet integral defined by a symmetric measure is a
norm if and only if for all i, μ(An−i+1)−μ(An−i) ≤ μ(An−i)−μ(An−i−1) where
Ai represents any set of cardinality i.
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Proof. Under the condition that μ is symmetric, Cμ induces an OWA according
to Proposition 1 whose weights satisfy the buoyancy property according to the
considered hypothesis. Theorem 3 then gives the result. ��

The relation between OWA and norms is studied in more details by [9],
who examines the relations between the order of Minkowski distances and the
distribution of the OWA weights satisfying the buoyancy property.

General Case. Beyond the specific property of the triangular and Hölder
inequalities and the specific case of OWA, studies have been conducted for con-
tinuous Choquet integrals [7], generalising the discrete sum definition (as given
in Eq. (2)). The conditions under which they define norms over measurable
functions are established, allowing the author to define distances for fuzzy sets
defined over compact subsets of Rn. One of the established theorems states that
the Choquet integral induced by a submodular fuzzy measure that is continuous
from below defines a norm on the quotient of the set of measurable functions by
the equivalence relation ∼ a.e., based on the notion of almost everywhere (see
the reminder of its definition in Sect. 4.3).

In this paper, in Sect. 4, we consider the case of discrete Choquet integrals,
which leads to a specific characterisation of the latter case, and we study its
expression in the particular case of possibility measures. Before, we discuss in
Sect. 3 the equivalence proposed in a similar framework in [1].

3 A Discussion on MIFM and Induced Choquet Integrals

This section proposes a discussion of the characterisation proposed by Bolton et
al. [1] of discrete Choquet integrals defining norms, which relies on the specific
class of capacities called MIFM. The definition of the latter are first reminded,
before presenting and questioning some results proposed in this paper.

3.1 Reminder: MIFM Induced Choquet Integrals

A specific class of specific Choquet integrals has been proposed in [1], based on
a generalisation of the OWA buoyancy property (see Definition 4) to fuzzy mea-
sures using the weight definition reminded in Eq. (4) and the notation introduced
in Sect. 2, where, for any permutation σ on N , Bσ(i) = {σ(1), . . . , σ(i)}:

Definition 5. A fuzzy measure μ on N is a Metric Inducing Fuzzy Measure
(MIFM) if for any permutation σ on N , for all j ∈ N \ {n}, wσ(j) ≥ wσ(j+1)

where wσ(j) is defined as in Eq. (4), i.e. wσ(j) = μ(Bσ(j))− μ(Bσ(j−1)) with the
convention Bσ(0) = ∅.

This property is equivalent to the buoyancy imposed on OWA (see Eq. 6), up to
the choice of the considered (increasing vs decreasing) ordering of the x values.

To make it friendlier, we propose to illustrate this definition, first for a uni-
verse of size 2, then for a universe of size 3.
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Fig. 1. (Left) Example of a MIFM for a universe containing two values, N = {1, 2},
(right) level lines of Choquet integral it induces (see analytical expression in Exam-
ple 1).

Example 1. Let us consider N = {1, 2} and the capacity measure μ represented
graphically on the left part of Fig. 1. This graph represents the lattice of the
universe subsets, gives for each of them their associated capacity value, as well
as the induced w values.

μ is a MIFM: on N , only two permutations can be considered: (i) σ equals
to the identity (σ(1) = 1, σ(2) = 2, that leads to Bσ(0) = ∅, Bσ(1) = {1},
Bσ(2) = {1, 2}), which corresponds to the left path in the graph shown on the
figure, and (ii) τ that corresponds to the right path on the graph (τ(1) = 2,
τ(2) = 1). On each path, the w indeed satisfy a non-increasing ordering property.

The right part of the graph shows the level lines of the Choquet integral
induced when applying the definition given in Eq. (3): analytically, Cμ(x) =
1
2 (x1 + x2) if x1 ≥ x2, and Cμ(x) = 1

10 (9x2 + x1) otherwise. This Choquet inte-
gral also illustrates the fact that it offers the possibility to define more expressive
aggregation operators than weighted (or ordered weighted) average, introducing
different behaviours on subregions of the domain.

The next example considers a more complex case, illustrating the richness of
the MIFM framework.

Example 2. Let us consider N = {1, 2, 3} and the symmetric fuzzy measure
graphically represented in Fig. 2 and analytically defined by

μ(A) =

⎧
⎨

⎩

1
2 if |A| = 1
1 if |A| = 2
1 if A = {1, 2, 3}.

As it is symmetric, the capacity values are constant level-wise on the graph, where
each level is associated with a fixed cardinality and, as pointed out in Proposi-
tion 1, the induced w values are also constant level-wise (i.e. are independent
of the permutation, and the path followed in the graph). In addition, for this
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Fig. 2. Graphical representation of the fuzzy measure introduced in Example 2.

example, w is defined as w1 = 1
2 ≥ w2 = 1 − 1

2 = 1
2 ≥ w3 = 1 − 1 = 0. It thus

satisfies the buoyancy property, or equivalently in terms of fuzzy measures, the
MIFM definition. μ is submodular, and thus also subadditive, as can be shown
by exhaustive examination of subsets of N .

As a consequence, the induced Choquet integral has the following analytical
definition: Cμ(x) = x�1�w1 + x�2�w2 + x�3�w3 = 1

2x�1� + 1
2x�2�.

3.2 Discussing the Relations Between MIFM and Norms

Based on the notion of MIFM, the following relation between the specific class
of Choquet integrals and norms is established in [1]

Proposition 5 (from [1]). The Choquet integral with respect to a measure μ
is a norm if and only if μ is a MIFM.

The proofs provided in [1] are complex and we argue a counterexample can be
proposed to the assertion that the MIFM is a necessary condition. Indeed, let us
consider the fuzzy measure Π∗ graphically defined in Fig. 3 on N = {1, 2, 3} that
possesses by construction the property of being a possibility measure: Π∗(A) is
defined as maxi∈A πi for the possibility distribution π defined by the μ values
associated to the singletons, i.e. at the first level of the graph. As such, it is a
norm, as can be proved applying Corollary 9 established in the next section.

Yet this capacity does not satisfy the properties of a MIFM, as shown for
instance when considering the permutation σ such that σ(1) = 3, σ(2) = 2,
σ(3) = 1, i.e. the B path ∅, {3}, {2, 3}, {1, 2, 3}: on this path, the w values do
not satisfy the required monotonicity constraint.
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Fig. 3. Graphical representation of the possibility measure Π∗ that is not a MIFM.

3.3 Discussing the Relations Between MIFM and Submodularity

In [1], it is mentioned that MIFM are mathematically equivalent to the class
of submodular fuzzy measures, although this claim is not proved. We question
this assertion as, by transitivity with Proposition 5 the same paper establishes,
it would imply Choquet integrals induced by submodular fuzzy measures are
norms.

Now this property does not hold: submodularity guarantees the triangular
inequality is satisfied (see Proposition 2), but it does not guarantee the separa-
bility property is, as can be shown by the following counter-example:

Example 3. Consider N = {1, 2, 3} and the possibility fuzzy measure Π derived
from 1 = π1 ≥ π2 = 1

2 ≥ π3 = 0. It holds that CΠ(x) = 1
2x1 + 1

2x2. As a
consequence, CΠ(x) = 0 iff x1 = x2 = 0. Therefore, CΠ((0, 0, 1)) = 0, which
violates the separability property: CΠ is not a norm.

However, as any possibility measure, Π is submodular (see e.g. proof of Corol-
lary 9 in Sect. 4.1).

4 Discrete Choquet Integrals and Norms: A Discussion

This section discusses a necessary and sufficient characterisation that can be
established in the discrete case and the characterisation it induces in the case of
Choquet integrals induced by possibility measures. However, in the general case,
the separability property does not hold in general and requires to consider the
notion of “almost everywhere” related to that of null sets.
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4.1 Characterization of the Discrete Case

Three of the properties defining a norm are obviously satisfied for a Choquet
integral derived from a submodular capacity and restricted to domain R

+:

Proposition 6. Given a submodular μ fuzzy measure, Cμ : R+n → R satisfies
the properties of non-negativity, homogeneity and triangular inequality.

Proof. Restricting Cμ to R
+ allows to prove it is non-negative and homogeneous.

The triangular inequality follows from μ submodularity and Proposition 2. ��
The restriction to R

+ is not a limitation: as discussed previously, when used
to define a norm, the Choquet integral aggregates the individual comparisons
computed for each feature individually, that are positive numbers.

In order to guarantee the separability property, we propose to use the fol-
lowing characterisation, using the notation as in Definition 2:

Proposition 7. Given μ a fuzzy measure and x ∈ R
+n, Cμ(x) = 0 if and only

if {i|x�i� �= 0} ⊆ {i|μ(A�i�) = μ(A�i+1�)}.
Proof. From the Choquet integral definition written as in Eq. (2), Cμ(x) =∑n

i=1 x�i�[μ(A�i�) − μ(A�i+1�)], it follows that when x ∈ R
+n, Cμ(x) = 0 if and

only if, for all i, x�i�[μ(A�i�) − μ(A�i+1�)] = 0,
i.e. either x�i� = 0 or μ(A�i�) − μ(A�i+1�) = 0. This condition is equivalent to
{i|x�i� �= 0} ⊆ {i|μ(A�i�) = μ(A�i+1�)}. ��

Note that, according to the proof presented above, if for all σ, μ(Aσ(i)) >
μ(Aσ(i+1)) then {i|μ(Aσ(i)) = μ(Aσ(i+1))} = ∅ and Cμ(x) = 0 if and only if
x = 0.

4.2 Case of Possibility Measure Induced Choquet Integral

In the case where the considered capacity is a possibility measure, the charac-
terisation established in the previous section takes a simple form:

Proposition 8. If Π is a possibility measure such that, for all i, π({i}) �= 0
then CΠ(x) = 0 if and only if x = 0.

Proof. The Choquet integral with respect to a possibility measure possesses an
expression depending only on the permutation corresponding to order on the
values of π. Let us denote πi = π({i}) and σ the permutation on N that sorts
the πi in decreasing order, i.e. such that 1 = πσ(1) ≥ · · · ≥ πσ(n) > πσ(n+1) = 0.
The Choquet integral of x with respect to Π can be computed as CΠ(x) =∑n

i=1(πσ(i) − πσ(i+1))maxi
j=1 xσ(j).

Under the considered hypothesis, πi �= 0 for all i ∈ N , πσ(n) − πσ(n+1) =
πσ(n) �= 0 so CΠ(x) = 0 implies maxn

i=1 xσ(i) = 0, i.e., for x ∈ R
+, x = 0. ��
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Example 4. Let us consider the possibility measure presented in Fig. 3. We
have 1 = π1 > π2 = π3 = 1

2 and for all x, CΠ(x) = (π1 − π2)x1 + (π2 −
π3)max(x1, x2) + (π3 − π4)max(x1, x2, x3) = 1

2x1 + 1
2 max(x1, x2, x3).

So CΠ(x) = 0 if and only if x = 0.

Corollary 9. If Π is a possibility measure such that π({i}) �= 0 for all i, then
CΠ is a norm on R

+n.

Proof. Let us first prove that Π is a submodular fuzzy measure. Let A,B ⊆ N .
Π monotonicity implies Π(A ∩ B) ≤ Π(A) and Π(A ∩ B) ≤ Π(B) and thus
Π(A ∩ B) ≤ min(Π(A), π(B)). In addition, as it is a possibility measure,
Π(A ∪ B) = max(Π(A), π(B)). As a consequence, Π(A ∪ B) + Π(A ∩ B) ≤
max(Π(A),Π(B)) + min(Π(A),Π(B)) = Π(A) + Π(B).

Proposition 6 can thus be applied and implies that the Choquet integral
induced by Π satisfies the properties of non-negativity, homogeneity and trian-
gular inequality. Separability follows from Proposition 8. ��

4.3 General Case

In the general case, beyond possibility measures, the separability property does
not hold in general (see Sect. 3.3) and requires to consider the notion of null
sets, as also shown for the continuous case in [7]. This section first reminds the
definition of null sets and properties holding almost everywhere.

Reminder on Null Sets. Given a universe N and a fuzzy measure μ, null
sets [6] are subsets of N that act as neutral elements with respect to μ:

Definition 6. A null set with respect to a fuzzy measure μ is a set N ⊆ N such
that ∀A ⊆ N , μ(A ∪ N) = μ(A).

It is easy to check that the empty set is a null set, so there always exists at
least one null set with respect to any fuzzy measure μ.

As established in [6], if μ is subadditive, then a set N is a null set with respect
to μ if and only if μ(N) = 0. Note that if μ is submodular then μ is subadditive
and the same result holds. As a consequence, in the following, to prove that a
candidate set is a null set, we show that its measure is equal to 0.

The notion of null sets is used to define the concept of “almost everywhere”,
with abbreviation a.e [2,6]: a logical proposition P (x) is said to hold “almost
everywhere” if it holds everywhere except on subsets with measure 0. Formally,
P (x) a.e holds if there exists a null set N such that P (x) is true for all x ∈ N c

where N c is the complement of N . Note that a true proposition P (x) is also true
a.e. since the empty set is a null set.

Use for the Separability Property. Using the notion of null sets, the sepa-
rability property can be established almost everywhere:
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Proposition 10. Given μ a submodular fuzzy measure and x ∈ R
+n, Cμ(x) = 0

if and only if x = 0 a.e.

Proof. Let x be such that Cμ(x) = 0. To show that x = 0 a.e, let us show
that the candidate set N = {i|xi �= 0} is a null set with respect to μ, i.e.
μ({i|xi �= 0}) = 0 (indeed, x = 0 holds on N c). Then Cμ(x) =

∑n
i=1[xσ(i) −

xσ(i−1)]μ(Aσ(i)) = 0 is equivalent to the fact that, for all i, it holds that [xσ(i) −
xσ(i−1)]μ(Aσ(i)) = 0. Let us denote the first coordinate different from 0 by
xσ(p), x = (0, · · · , 0, xσ(p), · · · , xσ(n)). We must have xσ(p)μ(Aσ(p)) = 0 where
Aσ(p) = {i|xi �= 0}. Thus μ({i|xi �= 0}) = 0.

Reciprocally, if x = 0 a.e, without loss of generality, x = (0, . . . , 0, xq, . . . xn)
and {q, . . . , n} and its subsets are null sets. Then Cμ(x) = 0, as all terms in the
sum are 0, either because of the xσ(i) difference or because of μ(Aσ(i)) = 0. ��

In the above proposition, {i|xi �= 0} may be a null set different from the
empty set, as illustrated in Example 3. However, the latter can now be analysed
in terms of null sets:

Example 5. Consider again Example 3, where Π is the possibility measure
induced by 1 = π1 ≥ π2 = 1

2 ≥ π3 = 0 and Cπ(x) = 1
2x1 + 1

2x2.
CΠ(x) = 0 iff x1 = x2 = 0. However, π3 = 0 and Π is a submodular measure

so {3} = {1, 2}c is a null set. CΠ is a norm a.e.

5 Conclusion

In the context of establishing relations between discrete Choquet integrals and
norms, this paper proposed a discussion questioning the properties of the Metric
Inducing Fuzzy Measure, illustrating by a specific possibility measure that the
separability property is not guaranteed by the generalisation of the buoyancy
property. In the special case of possibility measures, it proposes a necessary
and sufficient condition under which the induced Choquet integral is a norm.
In the general case, the characterisation leads to a separability property that
holds almost everywhere, but not in general. As a direction for future works,
establishing the properties allowing to achieve a general result still remains an
open question.
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Abstract. In this paper, we investigate sufficient conditions for the exis-
tence of a solution for a dynamical system based on a metric structure
(G, uN ). Moreover, a slight variation in the assumptions allows to apply
it for fuzzy functions. So, we study the existence of the solution to fuzzy
differential equations under the concept of metric differentiability.
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1 Introduction

The study of fuzzy differential equations forms an appropriate context for the
mathematical modeling of real world subjects in which uncertainty or vague-
ness pervades. There are several different approaches to studying fuzzy differ-
ential equations [3,6,7,9]. However, the meaning of a fuzzy differential equation
powerfully depends on picking the concept of fuzzy derivative [2]. Therefore,
there are some popular approaches to define the derivative of fuzzy functions
and to examine fuzzy differential equations, for instance, Hukuhara derivative,
gH-derivative, etc., see [1,4,5]. In most of the mentioned derivatives for fuzzy
functions, we need to guarantee the existence of the corresponding differences.
To overcome this shortcoming, a derivative is proposed for fuzzy functions that
is based on the Hausdorff distance between the fuzzy numbers called metric
derivative. Metric differentiability has its origins in [9] and has been extended
and studied, for instance, in [8,10].
Dynamical systems from the metric perspective have their origin in the work
by Panasyuk [12] who considered approximation or quasi-differential equations
in the framework of a locally compact metric space. Later, Panasyuk expanded
the Euler polygonal method to show the existence of solution for the equations
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of approximation, but the results attained were restricted to the locally com-
pact metric space. Also, in [13], the existence of solution to ordinary differential
equations with function f continuous is analyzed. However, for arbitrary spaces
which are not locally compact, further results were needed. To overcome the
above mentioned shortcomings, Nieto and Rodŕıguez-López renamed the frame-
work presented by Panasyuk as Metric Dynamical Systems (MDS, for short) and
proved several results considering the properties of the solution to MDS. In par-
ticular, in [11], they developed Euler Polygonal Method to prove the existence of
solution for general MDS including equations with a nonlinear differential. From
this approach, the existence of solution to fuzzy differential equations under (i)-
D-derivative can be derived. Regarding the ideas presented in [11], we consider
a slightly different notion of MDS (G, uN ) which is a kind of backward opera-
tor, and we prove the uniqueness and existence of solution under appropriate
hypotheses. This result allows to derive, as a consequence, some results for fuzzy
differential equations under a type (ii) metric derivative.
The paper is organized as follows. In Sect. 2, we recall some basic concepts and
results that will be used in the rest of the paper. In Sect. 3, we study the metric
dynamical system. In particular, we examined the existence of the solution of
fuzzy differential equations under the concept of metric derivative.

2 Preliminaries

In this section, we recall some definitions and present the notation which will be
used throughout the paper, see for example [1,5]. A fuzzy subset of Rn is a map
v : Rn → [0, 1], where v(t) is the degree of membership of t ∈ R

n to the fuzzy
set v. For each α ∈ (0, 1], the α-cut is defined by [v]α = {t ∈ R

n|v(t) ≥ α}. The
support of v, denoted by [v]0, is the closure of the union of all its α-cuts with
α ∈ (0, 1]. The set of normal, fuzzy convex, upper semicontinuous and compact
support fuzzy sets is called the space of fuzzy numbers and it is marked by R

n
F .

The addition in R
n
F is given levelwise by

[v + w]α = [v]α + [w]α, α ∈ [0, 1], v, w ∈ R
n
F ,

and, for c ∈ R, the scalar multiplication is given by

[cv]α = c[v]α, v ∈ R
n
F .

The distance between elements of Rn
F is defined by the supremum of the Haus-

dorff distance between the cuts as

D(v, w) = sup
α∈[0,1]

dH([v]α, [w]α) v, w ∈ R
n
F .

It is worth mentioning that the metric space (Rn
F ,D) is complete.

Theorem 1. [5] Let u, v, w, z ∈ R
n
F and λ, μ ∈ R, we have

1. D(v + z, w + z) = D(v, w),
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2. D(μv, μw) = |μ|D(v, w),
3. D(u + v, w + z) ≤ D(u,w) + D(v, z),
4. D(λw, μw) = |λ − μ|D(w, 0̃), λμ > 0, as 0̃ = χ{0}.

Theorem 2. [1]

(i) For any μ, λ ∈ R with μ, λ ≥ 0 or μ, λ ≤ 0 and any v ∈ R
n
F , we get

(μ + λ)v = μv + λv. For general μ, λ ∈ R, the mentioned property does not
hold.

(ii) For any λ ∈ R and any v, w ∈ R
n
F , we have λ(v + w) = λv + λw.

(iii) For any λ, μ ∈ R and any v ∈ R
n
F , we have λ(μv) = (λμ)v.

Definition 1. [8] Let v : I ⊆ R → R
n
F be named (ii)-D-differentiable at t ∈ I

if there is v′(t) ∈ R
n
F such that

lim
h→0−

1
h

D(v(t), v(t − h) + hv′(t)) = lim
h→0−

1
h

D(v(t + h), v(t) + hv′(t)) = 0.

3 Existence of a Solution in [0, tN ]

To clarify the concept of this type of MDS, we consider the differential equation
in R below:

v′(t) =
{

g(t, v(t)), t ∈ [0, tN ],
v(tN ) = vN ,

(1)

where g : [0, tN ] × R → R and vN ∈ R.

Definition 2. Let v : [0, tN ] → R be a solution to problem (1) if v(tN ) = vN

and, for every t ∈ [0, tN ],

lim
h→0

v(t − h) − v(t)
−h

= g(t, v(t)).

This implies that

lim inf
h→0+

v(t − h) − v(t) + hg(t, v(t))
h

= 0, t ∈ [0, tN ].

It is equivalent to

lim inf
h→0+

1
h

d(v(t − h), G(t, h, u)) = 0, t ∈ [0, tN ], (2)

when d(a, b) = |a − b| and

G(t, h, v) = v − hg(t, v). (3)

Definition 3. Let (Y, d) be a metric space and G : [0, tN ] × [0,∞) × Y → Y. A
function v : [0, tN ] → Y is a solution to the MDS given by G with the final data
vN ∈ Y , if v(tN ) = vN , and condition (2) holds in [0, tN ].
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In the sequel, for this type of MDS, we achieve solutions satisfying (2) changing
the lim inf by the lim.

Example 1. For the differential equation (1) and considering G given by (3), we
have that, if v is a solution to (1), then v is a solution for the MDS given by G
with the final condition vN .

Example 2. Consider the fuzzy differential equation below

v′(t) =
{

g(t, v(t)), t ∈ [0, tN ],
v(tN ) = vN ∈ R

n
F ,

where g : [0, tN ] × R
n
F → R

n
F , and v : [0, tN ] → R

n
F is differentiable in the sense

of Definition 1. Therefore, the function G is considered as follows:

G(t, h, v) = v − hg(t, v),

for h > 0.

Analogously to the results in [11] for the concept of Metric Dynamical Systems
considered in Definition 1.1 [11], we search for sufficient conditions for the exis-
tence of a unique solution in the interval I = [0, tN ].

Let G : I × [0, ε0] × Y → Y such that the following properties hold:

– Condition 1. G(t, 0, y) = y, for every t ∈ I, y ∈ Y.
– Condition 2. (t − h, h̃, G(t, h, y)) ∈ U for (t, h, y) ∈ U, h̃ ≥ 0, t − h ≤ tN .
– Condition 3. There is a constant L > 0 so that

d(G(t, h, y), G(t, h, z)) ≤ eLhd(y, z),

for any (t, h, y), (t, h, z) ∈ U .
– Condition 4. There exists B : R+ → R

+ non-decreasing with lim
h→0+

B(h) = 0

such that

d(G(t − h, h̃, G(t, h, y)), G(t, h + h̃, y)) ≤ B(h)(eLh̃ − 1).

Let P be a partition of I, with step |P|. For a partition P, we define

(XP)τ
tN yN =

{
G(tN , tN − τ, yN ), P ∩ (τ, tN ) = ∅,
G(al, al − τ, (XP)al

tN yN ), al = min P ∩ (τ, tN ), (4)

for yN ∈ UtN and τ ∈ I. Therefore, functions XP are a development of the
switching quasi-flows for equations in metric spaces.

Lemma 1. Let P be a partition of [t0, tN ], then we have

i (XP)τ
aj

(XP)aj

tN yN = (XP)τ
tN yN .

ii d((XP)τ
tN yN , (XP)τ

tN ȳN ) ≤ eL(tN−τ)d(yN , ȳN ), ∀yN , ȳN ∈ UtN , τ ∈ I.

iii d((XP)τ
tN yN , G(tN , tN −τ, yN )) ≤ B(tN −τ)(eL(tN−τ)−1), ∀yN ∈ UtN , τ ∈ I.
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iv d((XP)τ
tN zN , G(tN , tN − τ, yN )) ≤ d(yN , zN )eL(tN−τ) +B(tN − τ)(eL(tN−τ) −

1), ∀yN , zN ∈ UtN , τ ∈ I.

Proof. The proof of (i) is an immediate consequence of (4). To prove (ii), let P
be a partition by the set {c0, c1, . . . , cn = tN} . If τ = tN , then we have

d((XP)tN
tN yN , (XP)tN

tN ȳN ) = eL(tN−tN )d(yN , ȳN ).

Let τ < tN . If P ∩ (τ, tN ) = ∅, then τ ∈ [cn−1, tN ] and

d((XP)τ
tN yN , (XP)τ

tN ȳN ) = d(G(tN , tN − τ, yN ), G(tN , tN − τ, ȳN ))

≤ eL(tN−τ)d(yN , ȳN ).

By induction, we assume that (ii) is valid in [ck+1, tN ]. If τ ∈ [ck, ck+1), then we
get

d((XP)τ
tN yN , (XP)τ

tN ȳN )
= d(G(ck+1, ck+1 − τ, (XP)ck+1

tN yN ), G(ck+1, ck+1 − τ, (XP)ck+1
tN ȳN ))

= eL(ck+1−τ)d((XP)ck+1
tN yN , (XP)ck+1

tN ȳN )

≤ eL(tN−ck+1)eL(ck+1−τ)d(yN , ȳN )

≤ eL(tN−τ)d(yN , ȳN ),

which is desired result. To prove (iii), regarding the same partition as (ii) and
τ ∈ [cn−1,tN ], we get

d((XP)τ
tN yN , G(tN , tN − τ, yN )) = d(G(tN , tN − τ, yN ), G(tN , tN − τ, yN )) = 0.

Let τ ∈ [cn−2, cn−1], by Condition 4, we have

d((XP)τ
tN yN , G(tN , tN − τ, yN ))

= d(G(cn−1, cn−1 − τ,G(tN , tN − cn−1, yN )), G(tN , tN − τ, yN ))

≤ B(tN − cn−1)(eL(cn−1−τ) − 1)

≤ B(tN − τ)(eL(tN−τ) − 1).

By induction, we assume that (iii) is valid in [ck+1, tN ]. Let τ ∈ [ck, ck+1), then
by Conditions 3,4 and the triangle inequality, we get

d((XP)τ
tN yN , G(tN , tN − τ, yN ))

= d(G(ck+1, ck+1 − τ, (XP)ck+1
tN yN ), G(tN , tN − τ, yN ))

≤ d(G(ck+1, ck+1 − τ, (XP)ck+1
tN yN ),

G(ck+1, ck+1 − τ,G(tN , tN − ck+1, G(tN , tN − ck+1, yN )))
+ d(G(ck+1, ck+1 − τ,G(tN , tN − ck+1, G(tN , tN − ck+1, yN )), G(tN , tN − τ, yN ))

≤ B(tN − ck+1)(eL(tN−τ) − 1)

≤ B(tN − τ)(eL(tN−τ) − 1).
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To prove (iv), by (ii) and (iii), we have

d((XP)τ
tN zN , G(tN , tN − τ, yN ))

≤ d((XP)τ
tN zN , (XP)τ

tN yN ) + d((XP)τ
tN yN , G(tN , tN − τ, yN ))

≤ d(yN , zN )eL(tN−τ) + B(tN − τ)(eL(tN−τ) − 1).

Lemma 2. Let the partitions be comparable, that is, P ≺ P̃, then we have

d((XP)τ
tN yN , (X

˜P)τ
tN yN ) ≤ B(|P|)(eL(tN−τ) − 1), ∀yN ∈ UtN , τ ∈ I. (5)

Proof. We suppose that P̃ is given by the points {c0, c1, . . . , cn = tN} . If τ ∈
[cn−1, tN ], then we have

d((XP)τ
tN yN , (X

˜P)τ
tN yN ) = d(G(tN , tN − τ, yN ), G(tN , tN − τ, xN )) = 0.

If τ ∈ [cn−2, cn−1], we proceed in two steps:
Step1a. Let cn−1 ∈ P. In this case, we obtain that

d((XP)τ
tN yN , (X

˜P)τ
tN yN )

= d(G(cn−1, cn−1 − τ, (XP)cn−1
tN yN ), G(cn−1, cn−1 − τ, (X

˜P)cn−1
tN yN ))

= d(G(cn−1, cn−1 − τ,G(tN , tN − cn−1, yN )), G(cn−1, cn−1 − τ,G(tN , tN − cn−1, xN )))
= 0.

Step2a. Let cn−1 /∈ P. Therefore, by Lemma 1, we have

d((XP)τ
tN yN , (X

˜P)τ
tN yN ) = d(G(tN , tN − τ, yN ), (X

˜P)τ
tN yN )

≤ B(tN − τ)(eL(tN−τ) − 1)
≤ B(|P|)(eL(tN−τ) − 1),

where B is nondecreasing, the relation tN − τ ≤ tN − cn−1 ≤ |P|. Besides, we
assume that (5) is correct for τ ∈ [ck+1, tN ] and we prove that (5) is valid for
τ ∈ (ck, ck+1]. Again, we proceed in two steps:
Step1b. If P ∩ (τ, tN ) = ∅, then by Lemma 1, we have

d((XP)τ
tN yN , (X

˜P)τ
tN yN ) = d(G(tN , tN − τ, yN ), (X

˜P)τ
tN yN )

≤ B(tN − τ)(eL(tN−τ) − 1)
≤ B(|P|)(eL(tN−τ) − 1).

Step2b. Let min P ∩ (τ, tN ) = cj such that τ − cj ≤ |P|. Hence, we obtain that

d((XP)τ
tN yN , (X

˜P)τ
tN yN ) = d(G(cj , cj − τ, (XP)cj

tN yN ), (X
˜P)cj

tN (X
˜P)τ

cjyN )

≤ d((XP)cj
tN yN , (X

˜P)cj
tN yN )eL(cj−τ)

+B(cj − τ)(eL(cj−τ) − 1)

≤ B(|P|)(eL(tN−τ) − 1).
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Lemma 3. Let P and P̃ be the non comparable partitions, then

d((XP)τ
tN yN , (X

˜P)τ
tN yN ) ≤ (B(|P|) + B(|P̃|))(eL(tN−τ) − 1)

≤ 2B(max{|P|, |P̃ |})(eL(tN−τ) − 1).

Proof. It is an immediate consequence of Lemma 2 regarding P∪P̃ as a partition.

Theorem 3. Let the metric space Y be complete. Suppose that G satisfies Con-
ditions 1–4 and is continuous in the second variable h. Then, there is a solution
φ(t) = f t

tN yN of the Metric Dynamical System (G, tN , yN ) on I and

d((XP)t
tN yN , f t

tN yN ) ≤ B(|P|)(eL(tN−t) − 1). (6)

Proof. By Lemma 3 and the Cauchy Criterion, the function (XP)t
tN yN converges

uniformly on I to a function φ(t) = f t
tN yN as |P| → 0. Moreover, taking the limit

as |P̃ | → 0 in (5) with t instead of τ gives (6). Now, we need to show that φ is
a solution of the final value problem metric dynamical system (G, tN , xN ). The
function φ satisfies the last condition. Indeed, (XP)tN

tN yN = G(tN , tN −tN , yN ) =
yN and, passing the limit as |P| → 0, we deduce φ(tN ) = yN .
Let t, t−h ∈ I be given and let P be a partition that includes the points t, t−h
and satisfies P ∩ (t − h, t) = ∅ as well as |P| = h. Then, by (6), respectively
yN , t, tN instead of φ, t − h, t, we obtain

d(φ(t − h), G(t, h, φ(t)))
h

≤ B(h)
eLh − 1

h
,

as h → 0+, we deduce that φ is a solution of the MDS (G, tN , yN ) on I.

Corollary 1. Let vN ∈ R
n
F and N̄(vm, r) = {u ∈ R

n
F : D(u, vm) ≤ r}. Also, let

g : I × N̄(vm, r) → R
n
F be continuous, L-lipschitzian in the second variable and

such that D(G(t, v), 0̃) ≤ M . Then, the MDS (G, tN , vN ) given by G(t, h, v) =
v − hg(t, v) has a solution φ such that φ(tN ) = vN .

Proof. It is easy to find the set U satisfying Condition 2, so we just show that
the remaining Conditions hold. Indeed, we have
Condition 1. G(t, 0, v) = v, for any t ∈ I, v ∈ R

n
F .

Condition 3. By Theorem 1, we gain

D(G(t, h, u), G(t, h, v)) = D(u − hg(t, u), v − hg(t, v))
= D(u, v) + hD(g(t, u), g(t, v))
≤ D(u, v) + LhD(u, v)
≤ eLhD(u, v).
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Condition 4. According to Theorems 1, 2, we have

D(G(t − h, h̃, G(t, h, u)), G(t, h + h̃, u))
= D(G(t, h, u) − h̃g(t − h,G(t, h, u)), u − (h + h̃)g(t, u))
= D(u − hg(t, u(t)) − h̃g(t − h,G(t, h, u)), u − hg(t, x) − h̃g(t, u))
= h̃D(g(t − h,G(t, h, u)), g(t, u))
≤ h̃ (D(g(t − h,G(t, h, u)), g(t − h, u)) + D(g(t − h, u), g(t, u)))
≤ h̃(LhM + ρ(h))

= Lh̃

(
hM +

ρ(h)
L

)

≤ B(h)(eLh̃ − 1),

where ρ(h) = sup{D(g(l, x), g(l̃, x)) : l, l̃ ∈ I, |l− l̃| ≤ h}. Therefore, by Theorem
3, the requested result is obtained.

Corollary 2. Let g : I × R
n
F → R

n
F be continuous, L-lipschitzian in the second

variable and D(g(t, v), 0̃) ≤ M . The fuzzy differential equation

v′(t) = g (t, v(t)) , v(tN ) = vN ,

has a solution when the derivative v′ is considered in the sense of (ii)-D-
differentiability.

Proof. It is a direct consequence of Theorem 3 and Corollary 1.
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11. Nieto, J.J., Rodŕıguez-López, R.: Euler polygonal method for metric dynamical
systems. Inf. Sci. 177, 4256–4270 (2007)

12. Panasyuk, A.I.: Quasidifferential equations in metric spaces. Differ. Equ. 21, 914–
921 (1985)

13. Pederson, S., Sambandham, M.: Numerical solution to hybrid fuzzy systems. Math.
Comput. Model. 45, 1133–1144 (2006)



Elements of Relational Power Set
Theories for Semiring-Valued Fuzzy

Structures
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Abstract. Semiring-valued fuzzy sets represent fuzzy objects with new
value set structures, which make it possible to unify part of new and
frequently used fuzzy structures. The theory of semiring-valued fuzzy
sets uses some basic tools of category theory and can be applied directly
to these new fuzzy structures. For this reason, the development of this
theory appears to be useful not only for the theory of semiring-valued
fuzzy sets but also for the theory of new fuzzy structures. In this paper,
we will therefore develop another part of this theory, namely, we define
two basic types of relational power set theory for these structures and
examine the basic relationships between these theories.

Keywords: power set theory · dual pair of semirings · monads ·
monadic relations · new fuzzy sets

1 Introduction

Semiring-valued fuzzy sets [11,12] represent fuzzy structures with specific sets
of values. This structure is represented by a pair (R,R∗) of dual commutative
idempotent semirings defined on the same underlying set, with an involutive
isomorphism between them. This construction makes it possible to use a single
set of formulas to define most of the dual concepts that occur in classical fuzzy
set theory, such as upper and lower approximations using fuzzy relations, upper
and lower F -transformations of fuzzy sets, extensional and dual extensional fuzzy
sets, closure and interior operators for fuzzy sets, and many others.

From the point of view of ordered structures, this value structure represents
an intermediate stage between complete residuated lattices on the one hand and
complete MV -algebras on the other. The primary motivation for the introduc-
tion of this structure was the effort to unify the theory of some new MV -valued
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fuzzy structures, such as intuitionistic fuzzy sets [2,3], fuzzy soft sets [1,9] or neu-
trosophic fuzzy sets [8,18] and their mutual combinations such as intuitionistic
fuzzy soft sets [14]. Although these new structures in a set X are traditionally
called L-fuzzy sets, where L is a given MV -algebra, they are not, in fact, the
classical mapping X → L. A typical example is L-fuzzy soft set with the set of
criteria K in a set X, which are mappings X →M(L,K), where M(L,K) is the
new value structure. All these structures can be transformed to (R,R∗)-valued
fuzzy sets for specific dual pair of semirings [12].

In previous papers [11,12], we dealt with the construction of some parts of
the theory of (R,R∗)-fuzzy sets, such as F -transform theory or rough theory for
(R,R∗)-fuzzy sets. In this paper, we continue to build an analogy of classical
fuzzy sets theory for (R,R∗)-fuzzy sets. We will focus on another frequently
used area of fuzzy sets, namely the theory of power set structures with relational
morphism. The power set structures for L-fuzzy sets represent one of the most
frequently used constructions in the theory of fuzzy sets. The foundations of
this theory were published by Zadeh [17], who first defined the extension of a
mapping between two sets to a mapping between the respective power sets. This
procedure, called Zadeh’s extension principle, is still used in various variants in
a wide range of applications and theories of fuzzy sets. Since then, a number of
works have been published dealing with this issue and its generalization, such
as [4–6,13,15,16].

For (R,R∗)-fuzzy sets (as well as for classic fuzzy sets), there are two basic
types of power set structure, namely the classical set of all (R,R∗)-fuzzy sets
defined in sets and the set of all (R,R∗)-fuzzy sets defined in sets with (R,R∗)-
valued similarity relations. Moreover, due to the existence of two dual monads
defined by the pair (R,R∗), each of these power set structures exists in two
variants. In this contribution, we describe the basic definitions and properties of
these variants of power set structures.

2 Preliminaries

In this section, we repeat several basic definitions and facts that are important
for the reader to understand the next parts of the paper.

Definition 1 ([12]). Let R = (R,+,×, 0, 1) and R∗ = (R,+∗,×∗, 0∗, 1∗) be com-
plete idempotent commutative semirings with the same underlying set R, where
0, 1, 0∗, 1∗ are also elements of R. The pair (R,R∗) is called the dual pair of
semirings if there exists a mapping ¬ ∶R→R and the following axioms hold:

1. ¬ ∶R→R∗ is the involutive isomorphism of the semirings,
2. ∀a ∈R,S ⊆R a ×∗ (∑b∈Sb) =∑b∈S(a ×∗ b),
3. ∀a ∈R,S ⊆R a+ (∑∗b∈Sb)=∑∗b∈S(a+ b), where ∑∗ is the complete operation
+
∗ in R∗,

4. ∀a, b ∈R, a + b = a⇔ a +∗ b = b.

From this definition, the following simple lemma follows directly.



Elements of Relational Power Set Theories 63

Lemma 1 ( [12]). Let (R,R∗) be a dual pair of semirings and let the relations
≤ and ≤∗ be defined by

x, y ∈R, x ≤ y⇔ x + y = y, x ≤∗ y⇔ x +∗ y = y.

Then R and R∗ are isomorphic complete lattice-ordered semirings, where, for
arbitrary S⊆R, supS=∑x∈Sx, inf S=∑∗x∈Sx in (R, ≤), supS=∑∗x∈Sx, inf S=∑x∈S

in (R, ≤∗).

For an arbitrarily dual pair of semirings (R,R∗) we can introduce the notion of
(R,R∗)-fuzzy sets.

Definition 2 ( [12]). Let (R,R∗) be a dual pair of semirings.

1. A mapping s ∶X →R is called a (R,R∗)-fuzzy set in a set X.
2. Operations with (R,R∗)-fuzzy sets are defined by

(a) The intersection s ⊓ t is defined by (s ⊓ t)(x) = s(x) +∗ t(x), x ∈X,
(b) The union s ⊔ t is defined by (s ⊔ t)(x) = s(x) + t(x), x ∈X,
(c) Complement ¬s is defined by (¬s)(x) = ¬(s(x)),
(d) The external multiplication � by elements of R is defined by

(a � s)(x) = a × s(x),
(e) The order relation ≤ between s, t is defined by s ≤ t⇔ (∀x ∈X)s(x) ≤ t(x)

where ≤ is the order relation defined in Lemma 1.

It is clear that, for these operations, we can define their dual versions. For exam-
ple, we can set ¬(s ⊓∗ t) = ¬s ⊓ ¬t, ¬(a �∗ s) = ¬a � ¬s.

For our purposes, we use basic properties of monads in the category Set of
sets and mapping. For more properties of monads, see [7].

Definition 3. The structure T = (T,◊, η) is a monad in the category Set, if

1. T ∶ Set→ Set is mapping of objects,
2. η is a system of mappings {ηX ∶X → T (X)|X ∈ Set},
3. For each pair of mappings f ∶X→T (Y ), g ∶Y →T (Z), there exists a composition

(called a Kleisli composition) g ◊ f ∶X → T (Z), which is associative,
4. For every mapping f ∶X → T (Y ), ηY ◊ f = f and f ◊ ηX = f hold,
5. ◊ is compatible with the composition of mappings, that is, for mappings f ∶

X → Y , g ∶ Y → T (Z), we have g ◊ (ηY .f) = g.f ,

For arbitrary dual pairs of semirings (R,R∗) we can define a pair of basic
monads describing the basis of the dual power set structures of all (R,R∗)-fuzzy
sets.

Proposition 1 [12]. Let R be a complete commutative idempotent semiring and
let the structure TR = (TR,◊, η) be defined by

1. The mapping T (=TR) ∶ Set→ Set of objects is defined by T (X) =RX ,
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2. For the mappings f ∶X→T (Y ) and g∶Y→T (Z) their composition g◊f ∶X→T (Z)
is defined for x ∈X, z ∈ Z by

(g ◊ f)(x)(z) =∑y∈Y f(x)(y) × g(y)(z).

3. ηX is the mapping X → T (X) defined by

ηX(x)(y) =

{
1R, x = y,

0R, x ≠ y,
.

Then TR is the monad in category Set.

Remark 1. For arbitrary complete commutative idempotent semiring R, by ◊
we denote the composition operation of Proposition 1.

It is clear that for a dual pair of semirings, there exist two monads TR
and TR∗ , respectively, namely the monads (T,◊, η) and (T,◊∗, η∗), defined by
operations from R and R∗, respectively.

We need the notion of a monadic relation, which was introduced by Manes
[10]. This notion generalizes the notion of a classical fuzzy relation, including
the composition of monadic relations, and generalizes the classical composition
of fuzzy relations.

Definition 4. Let R be a complete commutative idempotent semiring and X,Y
be sets. A (monadic) R-relation Q from X to Y (denoted Q∶X�Y ) is a mapping
Q ∶X → T (Y ). If Q ∶X � Y and S ∶ Y � Z are R-relations, their composition is
the R-relation S ◊ Q ∶X � Z. A R-relation Q ∶X �X is called a R-similarity
relation if

1. It is reflexive, that is, ηX ⪯Q,
2. it is transitive, that is, Q ◊Q ⪯Q,
3. it is symmetric, that is, Q(x)(y) =Q(y)(x), for arbitrary x, y ∈X.

Remark 2. From this definition it follows that for a dual pair of semirings
(R,R∗) we can consider two types of relations, namely R-relation and R∗-
relation. These two types are, in fact, identical, as follows from their definitions.
Therefore, we can use the common name (R,R∗)-relations for both types of rela-
tion, or only relations, if the dual pair (R,R∗) is obvious. On the other hand, if
we consider the compositions of these relations, we need to distinguish between
the types of composition, that is, ◊ and ◊∗, respectively. Therefore, we also need
to distinguish between R-similarity relations and R∗-similarity relations.

If (R,R∗) is a dual pair of semirings, we can construct two relational versions
of the classical category Set, where instead of mappings as morphisms, the R
or R∗-relations are used, respectively, with the compositions of these morphisms
defined by ◊ or ◊∗, respectively. These categories will be denoted SetR and
SetR∗ , respectively, and called the Kleisli categories of monads TR and TR∗ ,
respectively.
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3 Relational Power Set Theories in Kleisli Categories
SetR and SetR∗

The notion of a power set theory in the category Set of sets was introduced by
Rodabaugh [15]. In the following definition we introduce a generalized version
of this notion, called relational power set theory, where instead of the category
Set we use the Kleisli categories SetR and SetR∗ , respectively.

Definition 5. Let R be a complete commutative idempotent semiring and let
CSLAT be the category of complete ⋁-semilattices with homomorphisms of
semilattices as morphisms. The structure (P,→, μ) is called a R-relational
power set theory in the Kleisli category SetR if

1. P ∶ SetR → CSLAT is a mapping of objects.
2. For each morphism f ∶X � Y in the category SetR there exists a morphism

f→ ∶ P (X)→ P (Y ) in CSLAT ,
3. For each object X ∈ SetR, μX is a mapping μX ∶X → P (X) in the category

Set,
4. For each morphism f ∶X � Y in SetR,

f→.μX = μY ◊ f, (1)

holds.

An important example of R-relational power set theory in SetR is described
by the following proposition.

Proposition 2. Let R be a complete commutative idempotent semiring, and
let TR = (TR,◊, η) be the corresponding monad of Proposition 1. The structure
(TR,→, η) is the R-relational power set theory in category SetR, where for arbi-
trary R-relation f ∶X � Y , the mapping f→R ∶R

X
→RY is defined by

f→R = f ◊ 1RX .

Moreover, TR ∶ SetR → Set is a functor such that for f ∶X � Y , TR(f) = f→R .

Proof. The proof is only a simple verification that identity (1) holds for both
structures. It follows directly from the properties of the compositions ◊ and ◊∗.

�

It is obvious that for dual pairs of semirings (R,R∗) we can also define the
notion of the R∗-relational power set theory (TR∗ ,←, η∗) in SetR∗ , where we
use the composition ◊∗ instead of ◊. Because objects of the Kleisli categories
SetR and SetR∗ are identical, the mappings TR and TR∗ are identical.

To compare different theory of relational power sets, we introduce the notion
of a morphism between theory of relational power sets in the Kleisli category
SetR.
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Definition 6. Let R and S be complete commutative idempotent semirings and
let (P,→, μ) and (V,←, ρ), respectively, be R and S-relational power set theories
in SetR. Then α ∶ (P,→, μ)→ (V,←, ρ) is a morphism of these relational power
set theories, if

1. α = {αX ∶X ∈ Set}, where αX is a morphism P (X)→ V (X) in the category
CSLAT .

2. For an arbitrary morphism f ∶X�Y in SetR the following diagrams commute.

X P (X)
f→ � P (Y )

P (X)
αX �

�

μX

V (X)

ρ
X

�

V (X)

αX

�
(αY .f)←� V (Y ).

αY

�

The basic example of a morphism between relational power set theories in
Kleisli categories is presented below. We use the following notation. If Φ ∶R→S
is a semiring homomorphism, for an arbitrary set X the mapping αX ∶R

X
→SX

is defined by (αX(s))(x) = Φ(s(x)), where s ∈RX , x ∈X.

Proposition 3. Let R and S be complete commutative idempotent semirings
and let (TR,◊R, ηR) and (TS ,◊S , η) be the corresponding monads, respectively.
If Φ ∶R↠ S is a semiring epimorphism, then

α = {αX ∶X ∈ Set} ∶ (TR,→, ηR)→ (TS ,←, ηS),

is a morphism of these relational power set theories.

Proof. We show that for arbitrary X ∈ Set, ηS,X = αX .ηR,X . In fact, since α is
a semiring homomorphism, for arbitrary x, x′

∈X we obtain

α.ηR,X(x)(x′) =

{
1S , ηR,X(x)(x′) = 1R,

0S , ηR,X(x)(x′) = 0R

= ηS,X(x)(x′).

Further, we prove that for arbitrary R-relation f ∶X � Y , the identity αY .f→ =
(αX .f)←.αX holds. We have

αY .f→ = αY .(f ◊R 1RX ) = (αY .f) ◊S (αX .1RX ) = (αY .f) ◊S (1SX .αX)=
(αY .f ◊S 1SX ).αX = (αY .f)←.αX .

Therefore, α is a morphism of relational power set theories. �

Corollary 1. Let (R,R∗) be a dual pair of semirings.

1. The relational power set theories (TR,→, η) and (TR∗ ,←, η∗), respectively,
presented in Proposition 2 for semirings R and R∗, respectively, are isomor-
phic.
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2. The following diagram of functors commutes, where the functor Δ is such
that Δ(X) =X,Δ(f) = ¬f , where ¬f is defined point-wise.

SetR
Δ � SetR∗

Set

�

T R
∗

TR

�

Proof. Because ¬ ∶ R → R∗ is a semiring isomorphism, the first part follows
directly from Proposition 3. In that case, for an arbitrarily f ∶X�Y , the following
equality holds.

f←R∗ = (¬f)→R = (¬f) ◊∗ 1RX . (2)

�
For a dual pair of semirings, we show some relationships between operators

→ and ←. According to Remark 1, instead of R or R∗-relations, we can speak
of (R,R∗)-relations.

Lemma 2. Let (R,R∗) be the dual pair of semirings and let f ∶ X � Y be a
(R,R∗)-relation. Let a ∈R and s, t, si ∈RX , i ∈ I.

1. f→(⊔i∈Isi) = ⊔i∈If
→(si), f←(⊓i∈Isi) = ⊓i∈If

←(si),
2. f→(a � s) = a � f→(s), f←(a �∗ s) = a �∗ f←(s),
3. s ≤ t← f←(s) ≤ f←(t), f→(s) ≤ f→(t),
4. f←(s) = ¬f→(¬s), f→(s) = ¬f←(¬s).
5. If f ∶X �X is reflexive, f←(s) ≤ s ≤ f→(s).
6. Let g ∶X � Y and f ∶ Y � Z be (R,R∗)-relations. We have

f→.g→ = (f ◊ g)→, f←.g← = (f ◊ g)←.

4 Relational Power Set Theorie in Categories Set(R)
and Set(R∗)

As we mentioned in the Introduction, the other objects for which we can define
the theory of R-relational power sets are sets with R-relations. In order to build
such a theory, instead of the Kleisli category SetR, we need another category
with these objects, where the morphisms should be suitable R-relations.

Definition 7. Let R be a complete commutative idempotent semiring. The cat-
egory Set(R) of sets with R-similarity relations is defined by

1. The objects are pairs (X,Q), where X is a set and Q ∶X�X is a R-similarity
relation.
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2. Morphisms f ∶ (X,Q)� (Y, S) are R-relations f ∶X � Y such that f ◊Q = f ,
S ◊ f = f .

3. The composition of the morphisms f ∶ (X,Q)� (Y, S) and g ∶ (Y, S)� (Z, V )
is defined by g ◊ f .

4. For arbitrary object (X,Q), 1(X,Q) =Q ∶ (X,Q)� (X,Q).

If (R,R∗) is a dual pair of semirings, we can also define the category Set(R∗)
of sets with R∗-similarity relations, where instead of ◊ we use ◊∗.

Analogously, as we introduced the R-relational power set theory in the Kleisli
category SetR, we can introduce the R-relational power set theory in the cate-
gory Set(R).

Definition 8. Let R be a complete commutative idempotent semiring. Structure
(F, ↑, τ) is called a R-relational power set theory in the category Set(R) if

1. F ∶ Set(R)→ CSLAT is a mapping of objects.
2. For each morphism f ∶ (X,Q)� (Y, S) in the category Set(R) there exists a

morphism f ↑ ∶ F (X,Q)→ F (Y, S) in CSLAT ,
3. For each object (X,Q) ∈ Set(R), τ(X,Q) is a mapping X → F (X,Q) in the

category Set,
4. For each morphism f ∶ (X,Q)� (Y, S) in Set(R),

f ↑.τ(X,Q) = τ(Y,S) ◊ f.

An example of R-relational power set theory in Set(R) is described by the
following proposition.

Proposition 4. Let R be a complete commutative idempotent semiring. The
structure (FR, ⇑, σ) is the R-relational power set theory in the category Set(R),
where

1. For an arbitrary object (X,Q) ∈ Set(R),

FR(X,Q) = {s ∈RX
∶Q→R(s) = (Q ◊ 1RX )(s) ≤ s},

2. For arbitrary morphism f ∶ (X,Q)� (Y, S) in the category Set(R), the mor-
phism f⇑R ∶ FR(X,Q)→ FR(Y, S) in the category CSLAT is defined by

f⇑R = S ◊ f ◊ 1RX (=f ◊ 1RX ).

3. For arbitrary object (X,Q), the mapping σ∶X→FR(X,Q) is defined by σ(X,Q)=

Q.

Moreover, FR ∶ Set(R)→ Set is the functor such that FR(f) = f⇑R.

Proof (sketch). First, we show that for arbitrarily s ∈ FR(X,Q) we have
FR(f)(s) ∈ FR(Y, S). In fact, we have
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(S ◊ 1RY )(FR(f)(s)) = (S ◊ 1RY )(S ◊ f ◊ 1RX )(s) = S ◊ 1RY .(S ◊ f ◊ 1RX )(s)=
(S ◊ S ◊ f ◊ 1RX )(s) ≤ (S ◊ f ◊ 1RX )(s) = FR(f)(s),

Furthermore, we have

FR(Q) =Q ◊Q ◊ 1RX =Q ◊ 1RX , s ≤ (Q ◊ 1RX )(s) ≤ s,

and it follows that (Q◊1RX )(s)=s. Therefore, FR(1(X,Q))=(Q◊1RX )=1FR(X,Q).
Finally, let f ∶ (X,Q)� (Y, S) and g ∶ (Y, S)� (Z,W ) be morphisms in Set(R).
Therefore, f ◊Q = f = S ◊ f and g ◊ S = g =W ◊ g and we obtain the following.

FR(g).FR(f) = (W ◊ g ◊ 1RY ).(S ◊ f ◊ 1RX ) =W ◊ g ◊ S ◊ f ◊ 1RX=

W ◊ g ◊ f ◊ 1RX = FR(g ◊ f),

as follows from identity rule W ◊W =W and composition rules for ◊. Therefore,
FR is the functor. �

If (R,R∗) is a dual pair of semirings, we can also define the R∗-relational
power set theory in the category Set(R).

Proposition 5. Let (R,R∗) be a dual pair of semirings and let the structure
(FR∗ , ⇓, σ∗) be defined formally in the same way as the structure (FR, ↑, σ), where
◊
∗ is used instead of ◊. Then (FR, ⇓, σ) is the R∗-relational power set theory in

Set(R∗) and FR ∶ Set(R∗)→ Set is a functor such that FR∗(f) = f⇓.

The proof can be done analogously to Proposition 4 and will be omitted. �
For R-relational power set theories in the category Set(R) we can also define

the notion of a morphism between these theories.

Definition 9. Let R and S be complete commutative idempotent semirings and
let (P, ↑, μ) and (V, ⇑, ρ), respectively, be R and S-relational power set theories
in the category Set(R). Then α ∶ (P, ↑, μ)→ (V, ⇑, ρ) is a morphism of relational
power set theories in Set(R), if

1. α={α(X,Q) ∶(X,Q)∈Set(R)}, where α(X,Q) ∶P (X,Q)→V (X,Q) is a morphism
in the category CSLAT .

2. For arbitrary morphism f ∶ (X,Q)� (Y, S) in Set(R), the following diagrams
commute.

X P (X,Q)
f ↑ � P (Y, S)

P (X,Q)
α(X,Q) �

�

μ (X
,Q

)

V (X,Q)

ρ
(X

,Q
)

�

V (X,Q)

α(X,Q)

�
(α(Y,S).f)

⇑

� V (Y, S)

α(Y,S)

�

The basic example of a morphism between relational power set theories in the
category Set(R) is presented below. We use the same notation Φ,αX as in
previous Section.
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Proposition 6. Let R and S be complete commutative idempotent semirings
and let (FR, ⇑R, σR) and (FS , ⇑S , σS), respectively, be the corresponding rela-
tional power set theorie in the category Set(R), defined in Proposition 4. If
Φ ∶R↠ S is a semiring epimorphism, then

α = {αX ∶X ∈ Set} ∶ (FR, ⇑R, σR)→ (FS , ⇑S , σS),

is a morphism of these relational power set theories.

Corollary 2. Let (R,R∗) be a dual pair of semirings.

1. The relational power set theories (FR, ⇑, σ) and (FR∗ , ⇓, σ∗), respectively, pre-
sented in Proposition 5 are isomorphic.

2. There exists the natural isomorphism Ψ ∶ FR → FR∗ .Ω, where the functor
Ω ∶ Set(R)→ Set(R∗) is such that Ω(X,Q) = (X,¬Q), Ω(f) = ¬f .

Proof (Sketch). For arbitrary (X,Q) ∈ Set(R) the mapping

Ψ(X,Q) ∶ FR(X,Q)→ FR∗ .Ω(X,Q) = FR∗(X,¬Q)

is defined by Ψ(X,Q)(s) = ¬s, where s ∈ FR(X,Q). For illustration only, we prove
that Ψ is a natural transformation. That is, for an arbitrary morphism f ∶(X,Q)�
(Y, S) in Set(R), the following diagram commutes.

FR(X,Q)
Ψ(X,Q)� FR∗ .Ω(X,Q)

FR(Y, S)

f
⇑

R

�
Ψ(Y,S)� FR∗ .Ω(Y, S).

(Ω(f))
⇓

R∗

�

Using Propositions 4 and 5, for an arbitrary s ∈ FR(X,Q) we obtain

(Ω(f))⇓R∗ .Ψ(X,Q)(s) = (¬f)⇓R∗(¬s) = (¬f ◊∗ 1RX )(¬s) = (¬f ◊∗ ¬1RX )(s)=

¬(f ◊ 1RX )(s) = ¬f⇑R(s) = ΨY,S).f
⇑

R(s).

Therefore, Ψ is a natural transformation. �

5 Example

As we mentioned in Introduction, semirings-valued fuzzy sets can be universal
value sets for many new fuzzy structures. In this section, as an illustrative exam-
ple, we recall how intuitionistic fuzzy sets can be transformed into (R,R∗)-fuzzy
sets and how the methods presented in the paper can be applied to intuitionistic
fuzzy sets.

Let (L,∨,∧,⊗,⊕,¬, 0L, 1L) be a complete MV -algebra. In [11] we showed
that L-intuitionistic fuzzy sets can be transformed into (R,R∗)-fuzzy sets, where
R = {(α, β) ∈ L2

∶ ¬α ≥ β}, and
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1. (α, β) + (α1, β1) ∶ =(α ∨ α1, β ∧ β1),
2. (α, β) × (α1, β1) ∶ =(α ⊗ α1, β ⊕ β1),
3. 0R = (0, 1), 1R = (1, 0),
4. (α, β) +∗ (α1, β1) ∶ =(α ∧ α1, β ∨ β1),
5. (α, β) ×∗ (α1, β1) ∶ =(α ⊕ α1, β ⊗ β1),
6. 0∗R = (1, 0), 1∗R = (0, 1),
7. ¬R→R is defined by ¬(α, β) = (β, α).
8. From the definition of ordering in R it follows that (α, β)≤(α′, β′)⇔(α≤α′, β ≥

β′).

Then the algebraic structure of L-intuitionistic fuzzy sets is isomorphic to the
algebraic structure of (R,R∗)-fuzzy sets. We present an example of the (R,R∗)-
similarity relation Q ∶X �X and show what elements of R-relational power set
FR(X,Q) (that is, intuitionistic fuzzy sets extensional with respect to Q) from
Proposition 4 look like.

Example 1. Let φ1, φ2 be arbitrary (standard) L-valued fuzzy relations X ×X→
L, such that

1. φ1 is a L-valued similarity relation in X,
2. φ2 = ¬ψ, where ψ is a L-valued similarity relation in X,
3. ¬φ1(x, y) ≤ φ2(x, y), for arbitrary x, y ∈X.

Let the example of the R-relation Q ∶X �X be defined by

x, y ∈X, Q(x)(y) = (φ1(x, y), φ2(x, y)) ∈R.

Then, Q is the R-similarity relation, that is, Q ◊ Q ≤ Q, Q is symmetric and
Q ≥ ηX . In fact, we have

Q ◊Q(x)(y) = ∑
t∈X

Q(x)(t) ×Q(t)(y) = ∑
t∈X

(φ1(x, t), φ2(x, t) × (φ1(t, y), φ2(t, y))=

∑

t∈X

(φ1(x, t) ⊗ φ1(t, y), φ2(x, t) ⊕ φ2(t, y))=(
⋁

t∈X
φ1(x, t) ⊗ φ1(t, y), ⋀

t∈X
φ2(x, t) ⊕ φ2(t, y)

)
.

Since φ1 is a L-similarity relation, we have ⋁t∈Xφ1(x, t) ⊗ φ1(t, y) ≤ φ1(x, y). In
addition, we have the following.

⋀

t∈X
φ2(x, t) ⊕ φ2(t, y) = ⋀

t∈X
¬(¬φ2(x, t) ⊗ ¬φ2(t, y))=

¬ ⋁

t∈X
ψ(x, t) ⊗ ψ(t, y) ≥ ¬ψ(x, y) = φ2(x, y).

Therefore, Q ◊ Q ≤ Q is true. Because φ1, φ2 are symmetric and reflexive L-
fuzzy relations, Q also symmetric and Q ≥ ηX . Therefore, Q is the R-similarity
relation.
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Now, let s ∶X →R be an intuitionistic fuzzy set (that is, (R,R∗)-fuzzy set),
where s(x) = (s1(x), s2(x)) ∈R. Then s is extensional to Q if s ∈ FR(X,Q), that
is, (Q ◊ 1RX )(s) ≤ s and we should have

(Q ◊ 1RX )(s) = ∑
t∈X

s(t) ×Q(t)(x)=(
⋁

t∈X
s1(t) ⊗ φ1(t, x), ⋀

t∈X
s2(t) ⊕ φ2(t, x)

)
≤ (s1(x), s2(x)).

Therefore, s = (s1, s2) is an element of the power set FR(X,Q) if and only if s1
is extensional with respect to φ1 and ¬s2 is extensional with respect to ψ = ¬φ2.

6 Conclusions

In the paper, we dealt with the issue of building another part of the theory
of semiring-valued fuzzy sets and its applications to new fuzzy sets. We focus
on theories of power set structures in two basic categories whose objects are
semiring-valued fuzzy sets. The first category SetR was an analogy of the clas-
sical category of sets, but with R-relations as morphisms. The other category
Set(R) was a generalization of the category SetR, where objects are pairs of sets
with R-similarity relations. The advantage of using semiring-valued fuzzy sets
is, among other things, that this value structure enables the direct use of monad
theory methods for the construction of pairs of concepts that are interconnected.
In this way, for example, for semiring-valued fuzzy sets, two variants of power set
structures describing two variants of extensional fuzzy sets can be defined and
the relationships between these variants can be examined. In further research,
we will focus on the application of the obtained theoretical results in new fuzzy
structures, such as neutrosophic, fuzzy soft sets or their mutual combinations.
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Abstract. The article focuses on a problem that naturally comes to an
interest by joining two classical topics, namely the solvability of systems
of fuzzy relational equations, and the partiality as a tool for modeling
undefined values. As the first topic basically formally investigates the cor-
rectness of fuzzy rule-based systems by the investigation of the preserva-
tion of modus ponens, the other one allows dealing in an elegant algebraic
way with distinct undefined values, in the particular case of the Dragon-
fly algebra, the focus is on missing values, their connection is straight-
forward. Indeed, dealing with missing values is rather omnipresent, and
distinct expert rule-based systems are not immune to it so, such an inves-
tigation is highly desirable. What is not so straightforward are the results
ensuring the solvability of such systems, i.e., the existence of safe models
of the rules. Some previous results have been published and they relied
on restrictions on the algebraic level. This article brings a new insight
and investigates, what happens if we refuse to accept such a restriction.
The answer is interesting as restricting the choice of the algebra does not
seem to be critical but it imposes some restrictions on the sides of the
consequents. Luckily, these restrictions are not so critical and restrictive
from the application point of view.

Keywords: Fuzzy relational equations · Partial Fuzzy Set Theory ·
Dragonfly Algebra

1 Introduction and Preliminaries

1.1 Introduction

Systems of fuzzy relational equations [15,16,25] can be viewed as a mathemat-
ical formalization of the preservation of the modus ponens property by a fuzzy
inference system. Let the antecedent and consequent fuzzy sets be given. If the
derived system is not solvable, i.e., if there is no fuzzy relation that would solve
the given system, the incorrectness is inherent in the antecedents and conse-
quents and there is no way how to build a fuzzy relation modeling the given
fuzzy rule base that would not harm the preservation of modus ponens.
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This rather clear and fundamental area is widely explored by numerous
researchers and referring to all the relevant sources is by far beyond the extent
of the single article, however, whenever we move to the area of partial fuzzy
set theory [3,4] the situation significantly changes. Partial fuzzy set theory, as a
counterpart of partial fuzzy logic [20], allows considering elements of universes
that do not have defined membership degrees to partial fuzzy set. Partial fuzzy
logic is technically only an appropriate multiple-valued extension of partial 3-
valued logics [13] that belong to classical topics being under investigation already
since 1920. And indeed, if we consider partial fuzzy sets entering the investigation
of the preservation of the modus ponens, the situation gets more complicated
and much less investigated. Anyhow, even here we may point the interest of
readers to the first results, namely to [8,10,11].

This particular contribution stems mainly from [9] and continues in the direc-
tions that were set up there. The object of the investigation is again a direct
system of partial fuzzy relational equations and its solvability. The chosen alge-
bra of the operations for the considered partial fuzzy set theory is the Dragonfly
algebra [27]. The mainly studied model also stems from implicative fuzzy rules
and also uses the external assertion operation. The investigated question is, what
happens if we drop the assumption on the underlying algebra with the multipli-
cation that has no zero divisors, which was essential for the results provided in
[9].

1.2 System of Fuzzy Relational Equations

Recall the standard form of the system of fuzzy relational equations

Ai ◦ R = Bi, i = 1, . . . , m (1)

which considers the direct products (also sup-T composition) denoted by ◦.
Fuzzy sets Ai ∈ F(X) and Bi ∈ F(Y ) are respectively given antecedent and
consequent fuzzy sets, and fuzzy relation R ∈ F(X × Y ) is unknown.

In other words, antecedents Ai, consequents Bi, and consequently a fuzzy rule
base are given, while a fuzzy relation R ∈ F(X ×Y ) that solves the above-given
system is a safe model [21] of the given fuzzy rule base. The use of the words
comes from the fact that it is safe w.r.t. the preservation of modus ponens and
we know that it guarantees that the inference, i.e., the mechanism of reasoning,
is not harming basic logical prerequisites of correct functioning.

Let us recall the widely known fact that system (1) is solvable if and only if the
implicative model R̂(x, y) =

∧m
i=1(Ai(x) → Bi(y)) is its solution. Consequently,

fuzzy relation R̂ is the primary choice for modeling the fuzzy rule bases whenever
we consider the composition rule of inference modeled by ◦, if R̂ does not work,
nothing works.
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2 Dragonfly Operations and Properties

2.1 Dragonfly Algebra

As mentioned in the Introduction, partial fuzzy sets allow not only membership
degrees from the unit interval [0, 1] but some elements of the universe may have
undefined membership degrees. In its logical counterpart, it means we may con-
sider propositions that are not only evaluated by truth degrees, but for some
propositions, we may have undefined truth degrees. The need for such an exten-
sion stem from natural cases of distinct nature and we only refer to relevant
sources [1,7,13,14].

As most of the algebras, let us mention, e.g., Bochvar, Sobocński, McCarthy,
or Kleene, referred rather to other motivations for undefinedness than model-
ing missing or unknown values, the authors of [27] designed specific Dragonfly
algebra that was designed in order to deal with the missing or unknown values.
One could easily object that there are other natural approaches for modeling the
unknown values, e.g., the possibility theory, and it is needed to state that this is
true, however, the curse of dimensionality makes some of them hardly usable for
a bit more complicated problems and so, the algebraic approach may be viewed
as an approximation that is, nevertheless, easy to use and leads to meaningful
results. Let us note that all the algebraic operations are implemented in the lfl
R-package [5,6] which makes their use very straightforward.

Let us start from an underlying residuated lattice 〈[0, 1],∧,∨,⊗,→, 0, 1〉 that
provides operations for “standard” (fully defined, non-partial) fuzzy sets. As in
all previous studies, let us use the � as a denotation of the undefined value and
let [0, 1]� = [0, 1] ∪ {�}. Then the operations of the Dragonfly algebra operating
on the support [0, 1]� are recalled in Table 1 and of course, if both values a, b ∈
[0, 1], the Dragonfly operations comply with the operations from the underlying
residuated lattice, i.e., a⊗D b = a ⊗ b, for instance. It is important to mention
that the new structure of the Dragonfly algebra 〈[0, 1]�,∧D,∨D,⊗D,→D, 0, 1〉 is
no more a residuated lattice [12].

Table 1. Dragonfly algebra operations for a, b ∈ (0, 1].

(⊗D, ∧D)

a � �

� b �

� � �

� 0 0

0 � 0

,

(∨D)

a � a

� b b

� � �

� 0 �

0 � �

,

(→D)

a � �

� b b

� � 1

0 � 1

� 0 �

Note, that the Dragonfly operations employ the so-called lower bound strat-
egy, i.e., they lead to a value that can be “at least” guaranteed even without
knowing what is the real value that is currently not known to us and modeled by
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�. Indeed, a∧D � = � as we cannot guarantee anything about the conjunction of
a and an unknown value. On the other hand a∨D � = a because no matter how
small the value would replace � later on, we can be sure that the result would
be still greater or equal to a.

This principle leads to two ordering relations on [0, 1]�. The first one that
is default and identical to, e.g., ordering on the Kleene algebra, considers � to
be incomparable to any value a ∈ (0, 1) and allows to compare � only with
values 0 and 1 as follows: 0 ≤ � ≤ 1. From the “lattice-like” operations ∧D and
∨D, however, we can define a lattice-like ordering (denoted by ≤�) as follows:
0 ≤� � ≤� a for any a ∈ (0, 1]. This ordering naturally stems from the following
facts: a∧D � = � and a∨D � = a. As stated above, both relations ≤ as well
as ≤� are partial orders and so, the pairs of facts a ≤ b and a ≥ b as well as
a ≤� b and a ≥� b lead to the same conclusion that a = b. Note, that for values
a, b ∈ [0, 1], both orderings coincide. Technically, this puts Dragonfly algebra
in a comfortable position among other partial algebras and allows us to prove
required equalities using an alternative ordering whenever one of them does not
lead to the positive end.

Finally, let us also recall the external operation of assertion [7,18,24] that
can enrich any algebra for partial fuzzy set theory and that has been shown
useful in [9]. It is worth mentioning that this assertion is also included in the
investigation [2]. In particular, one may find that it meets the conditions defined
for the so-called intensifying hedge, one of the unary functions used to extend the
solvability results of standard fuzzy relational equations. The achieved results
were developed for the complete residuated lattices as the structure of truth
degrees [2].

Definition 1. The operation ↓: [0, 1]� → [0, 1]� that is defined by ↓a = 0 if
a = � and ↓a = a otherwise is called assertion.

2.2 Auxiliary Properties

First, we present several auxiliary properties that will be needed later on.

Lemma 1. [11] For any a, b, c ∈ [0, 1]�:

a∧D b ≤� a, a∧D b ≤� b.

Lemma 2. For any a, b ∈ [0, 1] and c ∈ [0, 1]�:

a ≤ b ⇒ a⊗D c ≤� b ⊗D c, (2)
a ≤ b ⇒ c→D a ≤� c→D b. (3)

Sketch of the Proof: Property (2) is taken from [11]. Consider the case of c = �.
Then �→D a ≤� �→D b holds trivially for any a ≤ b in [0, 1] which proves (3). ��
Lemma 3. For any a, b ∈ [0, 1]� and c ∈ [0, 1]:

a⊗D b ≤� c ⇒ b ≤� (↓ a) → c. (4)
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Sketch of the Proof: The proof is done by checking all combinatorial possibilities
of the replacement of a, b by � in the left inequality of (4). ��
Lemma 4. [9,11] For any a, b, c ∈ [0, 1]�:

a ≤� b, a ≤� c ⇔ a ≤� b ∧D c, (5)
a ≤� c, b ≤� c ⇔ a∨D b ≤� c. (6)

Lemma 5. For any a, c ∈ [0, 1]� and b ∈ [0, 1]:

a ≤� b ⇒ (↓ c)→D a ≤� (↓ c)→D b.

Sketch of the Proof: The case of c = � is trivial. Let a = � and b > 0. Then
� ≤� b is preserved and (↓ c)→D a = � on the left-hand side, which is smaller or
equal to (↓ c)→D b. ��
Lemma 6. For any a, b ∈ [0, 1]�:

b ≤� (↓ a)→D(a⊗D b).

Sketch of the Proof: The case of a ∈ {0, �} trivially leads to the preservation of
the inequality as the right-hand side is equal to 1. Let a /∈ {0, �} and let b = �.
Then we get � ≤� a→D(a⊗D �) = a→D � = �. ��

3 System with the Direct Product

Let F�(U) = {A | A : U → [0, 1]�} denote the set of all partially defined fuzzy
sets on a universe U . In this section, we consider the following system of partial
fuzzy relational equations employing the partial Dragonfly operations and using
the direct product ◦:

Ai ◦D R = Bi, i = 1, . . . , m (7)

where partially defined Ai ∈ F�(X) and fully defined Bi ∈ F(Y ) be given, and
R ∈ F�(X × Y ) is an unknown partial fuzzy relation we seek.

This particular setting differs from the very general setting investigated in
[11] by imposing the consequents to be fully defined. Though at the first sight,
it might be viewed as restrictive, however, it mimics a rather natural situation
when the outputs (decisions, states, classes, control actions) are always known,
however, on the input, we can meet undefined (mostly missing, unobserved) val-
ues. For example, in the expert classification of dragonfly species, which was the
motivating application for the development of the Dragonfly algebras [27], one
can often miss whether the flying dragonfly had some red dots on its body or not.
Thus, such a feature xk is missing in the input vector x = (x1, . . . , xk, . . . , xK)
and we have an undefined value A(xk) = � that leads to the input fuzzy set
A(x) = (A(x1), . . . , �, . . . , A(xK)).
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3.1 Solvability Issues

Mimicking the default solution R̂ for the standard systems of fuzzy relational
equations led the authors of [9] to deal with R̂↓ ∈ F�(X × Y ) given by
R̂↓(x, y) =

∧

D

m

i=1
(↓ Ai(x)→D Bi(y)) as the candidate for the solution to the

system of partial fuzzy relational equations. As the problem that we study
assumes the consequents to be fully defined, we may replace operation →D by
→ and operation ∧D by ∧, and we get R̂↓ ∈ F(X × Y ) given by:

R̂↓(x, y) =
m∧

i=1

(↓ Ai(x) → Bi(y)) . (8)

The searched solution or its candidate for the studied systems is naturally
the implicative model in which, we simply replace missing values with values 0
as the previous study [9] showed us that this strategy may lead to satisfactory
results.

As the lattice-like ordering will play an essential role in the latter parts of our
investigation, we also introduce the following lattice-like inclusion denotation:

A1 ⊆� A2 if A1(u) ≤� A2(u), for all u ∈ U.

Theorem 1. Let Bi(y) > 0 for any y ∈ Y . Then for each i ∈ {1, . . . , m}:
Ai ◦D R̂↓ ⊆� Bi. (9)

Proof. Taking into account the unlimited support of Bi due to which � ≤� Bi(y),
and the fact that R̂↓(x, y) �= �, it suffices to use Lemma 1, Lemma 2, and the
property a ⊗ (a → b) ≤ b valid for a, b ∈ [0, 1], as follows

(Ai ◦D R̂↓)(y) =
∨

D
x∈X

⎛

⎝Ai(x)⊗D

m∧

j=1

(↓ Aj(x) → Bj(y))

⎞

⎠

≤�

∨

D
x∈X

Ai(x)⊗D (↓ Ai(x) → Bi(y))

≤�

∨

x∈X:Ai(x)=0

(Ai(x) ⊗ (↓ Ai(x) → Bi(y)))

∨D

∨

D
x∈X:Ai(x)=�

(Ai(x)⊗D (↓ Ai(x) → Bi(y)))

∨D

∨

x∈X:Ai(x)/∈{0,�}
(Ai(x) ⊗ (↓ Ai(x) → Bi(y)))

= 0∨D �∨D

∨

x∈X:Ai(x)/∈{0,�}
(Ai(x) ⊗ (Ai(x) → Bi(y)))

≤ Bi(y).

As ≤ and ≤� coincide for the fully defined fuzzy sets, and as y ∈ Y has been
chosen arbitrarily, we get the proof of (9). ��
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Theorem 2. Let system (7) be solvable, and let Bi(y) > 0 for any y ∈ Y . Then,
for each i ∈ {1, . . . , m}:

Ai ◦D R̂↓ ⊇� Bi. (10)

Proof. Let R ∈ F�(X × Y ) be a solution of system (7). Notice that if there
was an x such that Bi(y) <� Ai(x) ⊗ R(x, y) then by the definition of ∨D we
would get Bi(y) <� (Ai ◦D R)(y). Therefore, Ai(x)⊗D R(x, y) ≤� Bi(y) for all
x ∈ X, and with help of Lemma 3 and Lemma 4, the following sequence of the
inequalities can be derived

Ai(x)⊗D R(x, y) ≤� Bi(y), i = 1, . . . , m, y ∈ Y

R(x, y) ≤�↓ Ai(x) → Bi(y), i = 1, . . . , m, y ∈ Y

R(x, y) ≤�

m∧

i=1

(↓ Ai(x) → Bi(y)) , y ∈ Y

and hence, R ⊆� R̂↓. Furthermore, as R is a solution of the system, i.e.,
∨

D
x∈X

(Ai(x)⊗D R(x, y)) = Bi(y) > 0,

there has to exist an x′ ∈ X such that Ai(x′) �= � and R(x′, y) �= �, and
for which Ai(x′) ⊗ R(x′, y) > 0. And because R(x, y) ≤� R̂↓(x, y) holds for
any pair (x, y), it has to hold also for the above-given value x′ and we get
Ai(x′) ⊗ R(x′, y) ≤� Ai(x′) ⊗ R̂↓(x′, y) and Ai(x′) ⊗ R̂↓(x′, y) > 0. Using the
definition of operation ∨D, this fact leads to the following inequality

∨

D
x∈X

(Ai(x)⊗D R(x, y)) ≤�

∨

D
x∈X

(
Ai(x)⊗D R̂↓(x, y)

)
,

which means that Ai ◦D R ⊆� Ai ◦D R̂↓. Thus, Bi = Ai ◦D R ⊆� Ai ◦D R̂↓. ��
Theorem 3. Let Bi(y) > 0 for any y ∈ Y . System (7) is solvable if and only if
R̂↓ is its solution. Moreover, R̂↓ is the greatest solution of the system w.r.t. to
ordering ≤�.

Sketch of the Proof: A direct consequence of Theorem 1 and Theorem 2. ��
For the sake of achieving the inclusion (10) and consequently the solvability

criterion formulated in Theorem 3, we restricted our focus to consequents Bi

that have unlimited supports, i.e., Bi(y) > 0 for all y ∈ Y . Such a restriction
might be viewed as a too high price for dropping the restriction imposed on the
underlying algebra however if we do dare to step out of conservative settings often
mirrored in triangles, we learn that it does not limit us from the application point
of view. Indeed, e.g. the Gaussian-shaped fuzzy sets were often experimentally
confirmed as useful. And also on a theoretical level, such or any other fuzzy
sets with unlimited supports were proved to ensure distinct desirable properties,
e.g. the preservation of the continuity of the resulting function produced by a
fuzzy rule-based system [26]. They have been also discussed in [11] as meaningful
consequents with a positive impact.
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3.2 Beyond the Solvability – Approximate Solutions

For the cases of the non-existence of a solution to a given system of fuzzy rela-
tional equations, distinct authors proposed so-called approximate solutions, see
[22,23]. This direction has been followed also for the partial fuzzy relational
equations in [9] and we again adopt the approach as it has been confirmed as
inspiring and beneficial.

So, let us assume that there exists no solution of system (7). Model R̂↓ is
formulated in a form that mimics the implicative model R̂. Moreover, it has
been proven [17,22] that when system (1) is not solvable then R̂ is its greatest
approximate solution in a suitable space of approximate solutions called “space of
lower approximate solutions”. Such a space contains fuzzy relation R ∈ F(X ×
Y ) such that Ai ◦ R ⊆ Bi. The question is whether an analogous result is
preserved for the case of partial fuzzy relational equations, i.e., when system
(7) is not solvable. So, we concentrate on the question of whether R̂↓ is an
approximate solution and whether it is the biggest one among the others. Under
some additional assumptions, we get the positive answer. Due to the positive
impact of consequents with unlimited supports on the results in the previous
section, we keep this assumption also in this section.

First of all, let us refer to relevant previous works [19,22,28] and introduce
the definition of an approximate solution of system (7).

Definition 2. A partial fuzzy relation R′ ∈ F�(X ×Y ) is called an approximate
solution of system (7) if it satisfies for i = 1, . . . , m the following:

(i) the inferred output B′
i = Ai ◦D R′ is fully defined (B′

i ∈ F(Y )), it meets
B′

i ⊆� Bi, and it has an unlimited support (B′
i(y) > 0, ∀y ∈ Y );

(ii) the inferred output is maximal, i.e., for any R′′ ∈ F�(X × Y ) and for any
B′′

i ∈ F(Y ) such that B′′
i = Ai ◦D R′′ and B′

i ⊆� B′′
i ⊆� Bi, it holds that

B′′
i = B′

i.

Definition 2 states that R′ is an approximate solution of system (7) if it
generates an output B′

i that is the maximal lower approximation of the required
output Bi and it has no limited support similarly as Bi. Model R′ can be also
viewed as an exact solution to the modified system of partial fuzzy relational
equations with Ai and B′

i. As the system associated with Ai and B′
i may have

several solutions, system (7) may have several approximate solutions as well.

Theorem 4. Assume that system (7) is not solvable and moreover, assume that
(Ai ◦D R̂↓)(y) /∈ {0, �} for any y ∈ Y . Then R̂↓ is an approximate solution of
system (7), and it is the biggest one compared to the other approximate solutions
of the system, with respect to ordering ≤�.

Sketch of the Proof: Let B′
i = Ai ◦D R̂↓. Based on the assumption that

(Ai ◦D R̂↓)(y) /∈ {0, �} for all y ∈ Y , B′
i ∈ F(Y ) and B′

i(y) > 0 ∀y ∈ Y .
Theorem 1 shows that Ai ◦D R̂↓ ⊆� Bi and so, B′

i ⊆� Bi. Thus, condition (i) in
Definition 2 is satisfied. Now, let there exist R′′ and B′′

i such that Ai ◦D R′′ = B′′
i
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and B′
i ⊆� B′′

i ⊆� Bi. Clearly, B′′
i ∈ F(Y ) and B′′

i (y) > 0 for any y ∈ Y , and
R′′ ⊆� R̂′′

↓ , where

R̂′′
↓(x, y) =

m∧

i=1

(↓ Ai(x) → B′′
i (y)) .

By Lemma 5 and by B′
i ⊆� B′′

i ⊆� Bi, we get for any x and y

(↓ Ai)(x)→D B′
i(y) ≤� (↓ Ai)(x)→D B′′

i (y) ≤� (↓ Ai)(x)→D Bi(y),

which leads to
m∧

i=1

(↓ Ai(x)→D B′
i(y)) ≤� R̂′′

↓(x, y) ≤� R̂↓(x, y). (11)

With help of Lemma 5 and then Lemma 6, we obtain:

m∧

i=1

(↓ Ai(x)→D B′
i(y)) =

m∧

i=1

(

↓ Ai(x)→D

(
∨

D
x′∈X

Ai(x′)⊗D R̂↓(x′, y)

))

≥�

m∧

i=1

(
↓ Ai(x)→D

(
Ai(x)⊗D R̂↓(x, y)

))

≥� R̂↓(x, y).

Thus, the inequalities in (11) turn to equalities. Then,

B′′
i (y) = (Ai ◦D R̂′′

↓)(y) = (Ai ◦D R̂↓)(y) = B′
i(y).

Hence, condition (ii) from Definition 2 is met and R̂↓ is an approximate
solution of system (7).

Let R̄ be another approximate solution of the system, i.e., B̄i = Ai ◦D R̄ is
another maximal lower approximation of Bi, that is B̄i ⊆� Bi. Then necessarily
R̄ ⊆� R̄↓ where

R̄↓(x, y) =
m∧

i=1

(↓ Ai(x) → B̄i(y)
)
.

And as for any pair (x, y) ∈ X × Y the following inequality

↓ Ai(x) → B̄i(y) ≤�↓ Ai(x) → Bi(y)

holds, we obtain R̄ ⊆� R̄↓ ⊆� R̂↓. ��
In order to estimate the quality or accuracy of the approximate solution, the

so-called approximation index was defined in [9].
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Definition 3. [9] Let R′ be an approximate solution of system (7). The approx-
imation index of R′ denoted by ϕ(R̃) is defined as follows

ϕ(R′) =
m∧

D
i=1

∧

D
y∈Y

((Ai ◦D R′) (y) ↔D Bi(y)) . (12)

Definition 4. R′ is said to be the optimal approximate solution of system (7)
if for any approximate solution R′′ it holds that ϕ(R′′) ≤� ϕ(R′).

Lemma 7 below conveys the information that the greatest approximate solu-
tion R̂↓ is also the optimal approximate solution.

Lemma 7. Let system (7) be not solvable and let (Ai ◦D R̂↓)(y) /∈ {0, �} for any
y ∈ Y . Then R̂↓ is the optimal approximate solution of system (7).

Sketch of the Proof: For an approximate solution R′ of system (7) it holds that
R′ ⊆� R̂↓. As (Ai ◦D R′)(y) /∈ {0, �}, we can verify that Ai ◦D R′ ⊆� Ai ◦D R̂↓
and so, we get ϕ(R′) ≤� ϕ(R̂↓).

��
The condition (Ai ◦D R̂↓)(y) /∈ {0, �} assumed in Theorem 4 for any y ∈ Y

guarantees the existence of an approximate solution whenever the exact solution
does not exist. The following theorem shows, that without such an assumption,
there does not exist any approximate solution.

Theorem 5. Let system (7) be not solvable. Moreover, let there exists an y′ ∈ Y
and i′ ∈ {1, . . . , m} such that (Ai′ ◦D R̂↓)(y′) ∈ {0, �}. Then there exists no
approximate solution of system (7).

Sketch of the Proof: Let R ∈ F�(X × Y ) be such that Ai ◦D R ⊆� Bi. Following
the proof of Theorem 2, we get R ⊆� R̂↓. The fact that (Ai′ ◦D R̂↓)(y′) ∈ {0, �}
implies that Ai′(x)⊗D R̂↓(x, y′) ∈ {0, �} for all x ∈ X, and consequently also
Ai′(x)⊗D R(x, y′) ∈ {0, �} for all x ∈ X. Hence, (Ai′ ◦D R)(y′) ∈ {0, �}. Conse-
quently, R cannot be a solution of any system Ai ◦D R′ = B′

i in which B′
i ⊆� Bi

and B′
i(y) /∈ {0, �} for any y ∈ Y and condition (i) in Definition 2 is not satisfied.

��
Theorems 4 and 5 directly lead to Corollary 1 formulated below.

Corollary 1. Let system (7) be not solvable. Then system (7) has an approxi-
mate solution if and only if for any y ∈ Y and for any i ∈ {1, . . . , m} we have
(Ai ◦D R̂↓)(y) /∈ {0, �}.



84 N. Cao and M. Štěpnička

4 Conclusion

We have revisited the problem of systems of partial fuzzy relational equations,
which was firstly addressed for the Dragonfly algebras in [9] and then elabo-
rated in the general setting in [11]. This contribution also addresses the case
of the Dragonfly algebra and compared to [9] tries to answer the question of
what happens if the essential assumption on the underlying algebra without zero
divisors is dropped. The answer is positive and interesting, it leads to another
setting that relaxes this algebraic condition but to assuming fully defined con-
sequents, moreover, with unlimited supports. As long as the first assumption
changes the semantics of the studied problem (which does not mean it makes
it less interesting), the second is purely technical (yet still acceptable for most
of the applications). Apart from the exact solvability, we have addressed also
the approximate solution for the systems that are not solvable. Interestingly, the
implicative model R̂↓ that is the primary candidate for the exact solution is also
the optimal approximate solution whenever an exact solution is not feasible. It
only confirms its importance.
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Abstract. A serious obstacle for the use of fuzzy concept analysis in
practical issues is the problem of matching between sets of objects and
properties in fuzzy environment. To overcome this problem several mod-
ified versions of fuzzy concept analysis were developed. In this paper
we combine Bĕlohlávek’s crisply generated fuzzy concept approach and
gradation of fuzzy preconcepts initiated in our previous papers and lay
the basics of the theory of graded crisply generated oriented fuzzy pre-
concepts. We illustrate our ideas by two practical examples related to
zoology and astronomy.

Keywords: Formal fuzzy concept analysis · crisply generated fuzzy
concept · object oriented fuzzy concept · gradation of fuzzy preconcept
lattice

1 Introduction

Formal concept analysis initiated by R. Wille and B. Ganter [6,21] in 80-ties
of the previous century at present is one of fast developing areas of theoretical
mathematics, having numerous applications in different areas of applied sciences.
At present one can distinguish three branches of what could be united under the
name of a formal concept analysis: the first is the “classical” formal concept
analysis whose fundamentals were laid by R. Wille and B. Ganter, the second
is so called property-oriented concept analysis introduced by I. Düntch and G.
Gediga [5] in the process of carrying out the research in the field of model logic,
and the last one, the object-oriented concept analysis introduced by Y.Y. Yao
[22], as the dual one to the property-oriented approach. The starting framework
for all of them is a formal context, that is a triple (X,Y,R) where X is a set,
whose elements are interpreted as some abstract objects, Y is a set, whose ele-
ments are interpreted as some abstract properties and R ⊆ X × Y is a relation
where the entry xRy is interpreted as “an element x has property y”. The goal of
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each version of concept analysis is to distinguish pairs (A,B) where sets A ⊆ X
of objects and sets B ⊆ Y of properties are mutually connected by the relation
R. The difference between them is the interpretation of what does the statement
“are mutually connected by the relation R” actually mean.

All three branches of concept analysis started their “life” in crisp frame-
work. However, later on mathematicians as well as specialists working in appli-
cations showed interest in possible fuzzification of concept analysis. Specifically,
to develop the counterpart of each one of the three versions of concept analysis
for the case of a formal fuzzy context, that is a triple (X,Y,R) where X and Y are
still sets of objects and properties respectively, R : X ×Y → L is a fuzzy relation
and A : X → L, B : Y → L are fuzzy sets of objects and attributes respectively.
The goal of the formal fuzzy analysis is again to distinguish pairs (A,B) of
fuzzy objects and properties that are mutually connected by the fuzzy relation
R. Indeed, theoretically very sound fuzzy versions of context analysis were soon
created: the “classical” fuzzy formal analysis (i.e. in the spirits of Wille-Ganter)
was introduced by R. Bĕlohlávek [2], fuzzy versions of property-oriented and
object-oriented fuzzy analysis, as far as we know, first appeared in the paper [4].
However, as different from crisp concept analysis which has numerous applica-
tions in various areas of applied science, the direct practical use of fuzzy versions
of concept analysis ir rather problematic. Actually we know examples of only
fragmentary applications of fuzzy concept analysis in practice. The reason for
this is that the precise matching between sets of objects and sets of properties
in fuzzy environment is nearly impossible. Specifically, even if the set of objects
A ⊆ X and the set of properties B ⊆ Y are crisp and only R : X × Y → L is
fuzzy, then the pair (A,B) cannot make a concept in any of the concept analysis
versions except of some trivial cases. To overcome this problem different modi-
fications of concept analysis were proposed. For example, multi-adjoint concept
lattices [11], interval pattern structures [7], proto-fuzzy concepts [10], crisply
generated fuzzy concepts [3,15] were introduced on the lines of Wille-Ganter
fuzzy concepts, multi-adjoint concept lattices on the lines of object-oriented and
property-oriented fuzzy concepts were considered in [13,14]. In [1] the authors
attract the use of a structural element in the spirit of mathematical morphology
in the process of applying property-oriented concept lattices in signal process-
ing. In our papers [18,20] we introduced the so called graded approach to fuzzy
concept analysis where, instead of fuzzy concept lattices, more flexible, graded
fuzzy preconcept lattices were laid in the basis of the research.

Our preliminary goal when writing this paper was to propose crisply-
generated object- and property-oriented versions of fuzzy concept analysis, bas-
ing on the ideas developed in [3] for the case of Wille-Ganter fuzzy concept
analysis. However soon it became clear that such a direct transform of the ideas,
which work well in Wille-Ganter’s case, are not appropriate in other two versions
of fuzzy concept analysis. As a successful possible way around this problem we
suggested the combination of the two ideas: to start with the idea of crisply
generated fuzzy concept, but afterwards to “soften” its expected solution by
assigning to it the degree, i.e. some value in the lattice L estimating the “con-
ceptual quality” of the obtained concept.
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The paper is structured as follows. In the next, second section we recall
basic notions used in this work. A short Sect. 3 is devoted to what we call the
fuzzy preconcept lattice of a formal fuzzy context. Fuzzy preconcept lattices
implicitly appear in all works in the area of fuzzy concept analysis, but in our
paper they will play the framework of the study on the whole. The fourth section
is the central in the paper. Here we introduce the notion of a crisply generated
(object) oriented fuzzy preconcept and study its basic properties. (The restricted
conditions on the scope of this work forced us to limit ourselves to one of the
“oriented” approaches.) In the fifth section two examples of applications of our
theory are presented, one of them concerns classification of zoological species
and the second deals with the analysis of solar activity. In the last, Conclusion
section we sketch some directions where we foresee the prospects for further work
on the basis of this article.

2 Preliminaries

Lattices, Quantales and Residuated Lattices. In our paper L = (L,≤,∧,∨)
denotes a complete lattice, that is a lattice in which joins

∨
M and meets

∧
M

of all subsets M ⊆ L exist. In particular 0 ∈ L and 1 ∈ L are the bottom and the
top elements of L respectively. A complete lattice L is called join-distributive if
a ∧ (∨

i∈I bi
)

=
∨

i∈I(a ∧ bi) for every a ∈ L and every {bi | i ∈ I} ⊆ L. Dually,
a complete lattice L is called meet-distributive if a∨ (∧

i∈I bi
)

=
∧

i∈I(a∨ bi). A
complete lattice is called bi-distributive if it is join- and meet-distributive. Let
L be a complete lattice and ∗ : L × L → L be a binary associative monotone
operation. The tuple (L,≤,∧,∨, ∗) is called a quantale [17] if ∗ distributes over
arbitrary joins: a ∗ (∨

i∈Ibi
)

=
∨

i∈I(a ∗ bi),
(∨

i∈Ibi
) ∗ a =

∨
i∈I(bi ∗ a) ∀a ∈

L, {bi|i ∈ I} ⊆ L. A quantale is integral if the top element acts as the unit, i.e.
1 ∗ a = a. A quantale is commutative, if a ∗ b = b ∗ a for all a, b ∈ L. In what
follows by a quantale we mean a commutative integral quantale.

In a quantale a further binary operation 
→: L × L → L, the residuum, can
be introduced as associated with operation ∗ of the quantale (L,≤,∧,∨, ∗) via
the Galois connection, that is a ∗ b ≤ c ⇐⇒ a ≤ b 
→ c for all a, b, c ∈ L.

Fuzzy Sets and Fuzzy Relations. The concept of a fuzzy set was introduced
by L.A. Zadeh [23] and then extended to a more general concept of an L-fuzzy
set by J.A. Goguen [9] where L is a complete lattice, in particular a quantale.
Given a set X its L-fuzzy subset is a mapping A : X → L. The lattice and
the quantale structure of L is extended point-wise to the L-exponent of X, that
is to the set LX of all L-fuzzy subsets of X. An L-fuzzy relation between two
sets X and Y is an L-fuzzy subset of the product X × Y , that is a mapping
R : X × Y → L, see, e.g. [24]. An L-fuzzy relation R is called left connected
if

∧
y∈Y

∨
x∈X R(x, y) = 1. An L-fuzzy relation R is called right connected if∧

x∈X

∨
y∈Y R(x, y) = 1. An L-fuzzy relation R : X ×Y → L is called connected

if it is both left and right connected. Since in the paper L is a fixed lattice or
quantale, we omit the prefix L and speak just of fuzzy sets and fuzzy relations.
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Measure of Inclusion of L-Fuzzy Sets. The gradation of a preconcept lattice
presented below is based on the fuzzy inclusion between fuzzy sets.

Definition 1. By setting A ↪→ B =
∧

x∈X(A(x) 
→ B(x)) for all A,B ∈ LX ,
we obtain a mapping ↪→: LX × LX → L. We call A ↪→ B by the measure of
inclusion of a fuzzy set A into the fuzzy set B. Let A ←↩ B =def B ↪→ A. We
denote A ∼= B =def (A ↪→ B) ∧ (B ↪→ A) and view it as the degree of equality of
fuzzy sets A and B.

Proposition 1. Properties of the mapping ↪→: LX × LX → L, see, e.g. [8]:

(1) (
∨

i Ai) ↪→ B =
∧

i (Ai ↪→ B) for all {Ai | i ∈ I} ⊆ LX and for all B ∈ LX ;
(2) A ↪→ (

∧
i Bi) =

∧
i(A ↪→ Bi) for all A ∈ LX , and for all {Bi | i ∈ I} ⊆ LX ;

(3) A ↪→ B = 1 whenever A ≤ B;
(4) 1X ↪→ A =

∧
x A(x) for all A ∈ LX ;

(5) (A ↪→ B) ∗ (B ↪→ C) ≤ (A ↪→ C) for all A,B,C ∈ LX ;
(6) (

∧
iAi) ↪→ (

∧
iBi) ≥ ∧

i(Ai ↪→ Bi) for all {Ai : i ∈ I}, {Bi : i ∈ I} ⊆ LX ;
(7) (

∨
iAi) ↪→ (

∨
iBi) ≥ ∧

i(Ai ↪→ Bi) for all {Ai : i ∈ I}, {Bi : i ∈ I} ⊆ LX .

3 Fuzzy Preconcepts and Fuzzy Preconcept Lattices

Let L be a complete lattice (in particular, a quantale). Further, let X,Y be sets
and R : X × Y → L be a fuzzy relation. Following terminology accepted in
the theory of (fuzzy) concept lattices, see, e.g. [2,21,22] we refer to the tuple
(X,Y,R) as a fuzzy context.

Definition 2. Given a fuzzy context (X,Y,R), a pair P = (A,B) ∈ LX × LY

is called a fuzzy preconcept.

On the set P = LX ×LY of all fuzzy preconcepts a partial order � is introduced
as follows. Given P1 = (A1, B1) and P2 = (A2, B2), we set P1 � P2 if and only if
A1 ≤ A2 and B1 ≥ B2. Let (P,�) be the set LX ×LY endowed with this partial
order. Further, given a family of fuzzy preconcepts {Pi = (Ai, Bi) : i ∈ I} ⊆
LX × LY , we define its join (supremum) by �i∈IPi = (

∨
i∈I Ai,

∧
i∈I Bi) and its

meet (infimum) as �i∈IPi = (
∧

i∈I Ai,
∨

i∈I Bi).

Theorem 1. (see, e.g. [19]) P is a complete lattice. Besides, if L is a infinitely
bi-distributive lattice, then (P,�,�,�) is also a infinitely bi-distributive lattice.

Let P0 denotes the subset of P formed by crisp pairs of sets (A,B) ∈ 2X ×2Y .
It is easy to see that P0 is a complete sublattice of P and in case L is infinitely
bi-distributive the same is lattice P0.

4 Operators R� : LX → LY ,R� : LY → LX and Crisply
Generated ��-Preconcept Join Semilattice

4.1 Operators R� : LX → LY and R� : LY → LX

Let R : X × Y → L be a fuzzy relation. Interpreting the set X as the domain
and the set Y as the codomain of the fuzzy relation R gives rise to the induced
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forward and backward powerset operators. However, as different from the case of
a function f : X → Y where there is only one categorically justified version for
the image f→ : 2X → 2Y and the preimage f← : 2Y → 2X powerset operators
(see, e.g. [16]), in case of a fuzzy relation R there are two “natural” definitions for
image and preimage powerset operators which we call upper and lower forward
and backward powerset operators. Such operators can be found in the works of
different authors under various names. Since our goal is to use them as the base
of concept analysis, we introduce them in a form appropriate for this framework.

Definition 3. Let (X,Y,R) be a formal fuzzy context.
(�) R� denotes the lower forward operator R⇒ : LX → LY . That is, given
A ∈ LX and y ∈ Y , let R�(A)(y) =def A�(y) =

∧
x∈X(R(x, y) 
→ A(x)).

(�) R� denotes the upper backward operator R← : LY → LX . That is, given
B ∈ LY and x ∈ X, let R�(B)(x) =def B�(x) =

∨
y∈Y (R(x, y) ∗ B(y)).

The proof of the following two propositions is easy and can be found in, e.g.
[22] (in the crisp case) and in [19](in fuzzy case):

Proposition 2. Let X,Y be sets and R : X × Y → L a fuzzy relation. Then

(1) A1, A2 ∈ LX , A1 ≤ A2 =⇒ A�
1 ≤ A�

2 ;
(2) B1, B2 ∈ LY , B1 ≤ B2 =⇒ B�

1 ≤ B�
2 .

Proposition 3. Let {Ai | i ∈ I} ⊆ LX and {Bi | i ∈ I} ⊆ LY . Then:
(1)

(∧
i∈I Ai

)� =
∧

i∈I A�
i ; (2)

(∨
i∈I Bi

)� =
∨

i∈I B�
i .

Proposition 4. (see, e.g. [19])

(1) R�(1X) = 1Y If R is left connected, then R�(aX) = aY for every a ∈ L.
(2) R�(1Y ) = 1X If R is right connected, then R�(bY ) = bX for every b ∈ L.

Theorem 2. (see, e.g. [4]). Operators R� : LY → LY and R� : LX → LY form
an isotone Galois connection (i.e. form an adjoint pair (R�, R�)), that is B� ≤
A ⇐⇒ B ≤ A� for any A ∈ LX , B ∈ LY .

4.2 Crisply Generated ��-Preconcept Join Semilattice

Let (X,Y,R) be a formal fuzzy context. For each (A,B) ∈ P0 let (A,B)�� =def

(B�, A�). Obviously (A,B)�� is a fuzzy preconcept. We say that (A,B)�� is the
ob-oriented fuzzy preconcepts induced by the crisp preconcept (A,B). Further,
let P

�� = {(A,B)�� : (A,B) ∈ P0} be the family of all ob-oriented fuzzy
preconcept induced by crisp preconcepts (A,B). Thus we obtain an operator
�� : P0 → P

�� assigning to a crisp preconcept (A,B) the fuzzy preconcept
(A,B)��. Since operators R� : LY → LX and R� : LX → LY are isotone, we
conclude that operator E�� : P0 → P

�� is isotone, too.

Proposition 5. Operator E�� : P0 → P
�� is isotone: (A,B) � (C,D) =⇒

(A,B)�� � (C,D)�� for all (A,B), (C,D) ∈ P0.
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Theorem 3. P
�� is a complete join semilattice of fuzzy preconcept lattice P.

Proof Let {(Ai, Bi) : i ∈ I} ⊆ P0 be a family of crisp preconcepts and
{(Ai, Bi)�� : i ∈ I} ⊆ P

�� ⊆ P. We have to prove that
∨

i∈I(Ai, Bi)�� ⊆ P
��.

Referring to Proposition 3 and Theorem 1 we prove this as follows:
�i∈I(Ai, Bi)�� = �i∈I(B�

i , A�
i ) = (

∨
i∈IB

�
i ,

∧
i∈IA

�
i ) =

(
∨

i∈IBi)�, (
∧

i∈IAi)�).
We complete the proof noticing that

(∧
i∈IAi), (

∨
i∈IBi)

) ∈ P0 and that
(
(
∧

i∈IAi), (
∨

i∈IBi)
)�� = �i∈I(Ai, Bi)��.

4.3 Degree of Conceptuality of ��-Preconcepts

In the previous subsection we constructed an embedding of the lattice P0 into the
lattice P obtaining in the result a join subsemilattice P��. In this way we assigned
to each crisp preconcept (A,B) a fuzzy preconcept (A,B)��. In this section
we evaluate how well this procedure reflects the conceptuality for each specific
original crisp preconcept (A,B). Namely, we measure the degree of coordinance
between (A,B) and its image (A,B)�� by setting Dob : (A,B) = (A ∼= B�) ∧
(B ∼= A�). Varying pairs (A,B) over P0 we obtain operator Dob : P0 → P

�� ⊆ P.
Recalling that (A ∼= B�) = (A ↪→ B�) ∧ (A ←↩ B�) and (A� ∼= B) = (A� ↪→
B) ∧ (A� ←↩ B�) we consider separately operators D1

ob(A,B) = A� ↪→ B,
D2

ob(A,B) = A� ←↩ B, D3
ob(A,B) = A ↪→ B�, D4

ob(A,B) = A ←↩ B�. Obviously,
Dob(A,B) = D1

ob(A,B) ∧ D2
ob(A,B) ∧ D3

ob(A,B) ∧ D4
ob(A,B).

4.4 Operators D1
ob,D2

ob,D3
ob,D4

ob : P0 → L

In this section we characterize operators D1
ob,D2

ob,D3
ob,D4

ob : P0 → L separately.
Let a formal fuzzy context (X,Y,R) be given and let (A,B) ∈ P(X,Y,R). Since
we start with a crisp preconcept (A,B) for the description of these operators it
will be convenient to use notations Ac = X \ A and Bc = Y \ B. Unfortunately
strict limitations on the scope of this submission did not allow us to give the
proofs of the corresponding statements.

Proposition 6. D1
ob(A,B) =

∧
y∈Bc

∨
x∈Ac((R(x, y) 
→ 0) 
→ 0).

Notice that if L is a Girard monoid, then (a 
→ 0) 
→ 0 = a for any a ∈ L,
i.e. implication 
→ satisfies the double negation law. Hence from the previous
Proposition we get:

Corollary 1. If L is a Girard-monoid, in particular, an MV-algebra, then
D1

ob(A,B) =
∧

y∈Bc

∨
x∈Ac R(x, y).

Theorem 4. Properties of operator D1
ob : P(X,Y,R) → L.

1. Operator D1
ob : P(X,Y,R, ) → L is upper semicontinuous, that is

D1
ob

(∧
i∈I(Ai, Bi)

) ≥ ∧
i∈ID1

ob(Ai, Bi) ∀{(Ai, Bi) : i ∈ I} ⊆ P(X,Y,R).
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2. D1
ob(A, 1Y ) = 1 for every A ⊆ X. If R is left connected, then D1

ob(0X , B) = 1
for every B ⊆ Y .

Proposition 7. D2
ob(A,B) =

∧
y∈B

∧
x∈Ac(R(x, y) 
→ 0).

Theorem 5. Properties of operator D2
ob : P(X,Y,R) → L.

1. Operator D2
ob : P(X,Y,R) → L is lower semi-continuous, that is

D2
ob

(∨
i∈I(Ai, Bi)

) ≥ ∧
i∈ID2

ob(Ai, Bi) ∀{(Ai, Bi) : i ∈ I} ⊆ P(X,Y,R).
2. D2

ob(A, 0Y ) = 1 for every A ⊆ X and D2
ob(1X , B) = 1 for every B ⊆ Y .

Proposition 8. D3
ob(A,B) =

∧
x∈Ac

∨
y∈B(R(x, y)).

Theorem 6. Properties of operator D3
ob : P(X,Y,R) → L.

1. Operator D3
ob : P(X,Y,R) → L is upper semi-continuous, that is

D3
ob

(∧
i∈I(Ai, Bi)

) ≥ ∧
i∈ID3

ob(Ai, Bi) ∀{(Ai, Bi) : ∈ I} ⊆ P(X,Y,R, ).
2. D3

ob(0X , B) = 1 for every B ⊆ Y . If R is right connected, then D3
ob(A, 1Y ) = 1

for every A ⊆ X.

Proposition 9. D4
ob(A,B) =

∧
x∈A

(∨
y∈B(R(x, y) 
→ 0)

)
.

Theorem 7. Properties of operator D4
ob : P(X,Y,R) → L.

1. Operator D4
ob : P(X,Y,R) → L is lower semi-continuous, that is

D4
ob

(∨
i∈I(Ai, Bi)

) ≥ ∧
i∈ID

4
ob(Ai, Bi) ∀{(Ai, Bi) : i ∈ I} ⊆ P(X,Y,R,L).

2. D4
ob(A, 0Y ) = 1 for every A ⊆ X and D4

ob(1X , B) = 1 for every B ⊆ Y .

Remark 1. The simplest case to study the properties of a preconcept (A,B)��

on the lines of our work, is the case when the set of objects A coincides with
the domain X and the set of properties B coincides with the codomain Y of
the fuzzy relation R. In this case the formulas for calculation operators D1,
D2, D3 and D4 obtained above formulas can be essentially simplified. Namely,
notice first that in this case A� = B (in particular, this means that A� is a
crisp set) and B�(x) =

∨
y∈B R(x, y). Therefore D1(A,B) = A� ↪→ B = 1,

D2(A,B) = A� ←↩ B = 1 and D4(A,B) = B� ↪→ A = 1. In turn D3(A,B) =
1 
→ ∨

x∈A,y∈B R(x, y). Therefore: D(A,B) = 1 
→ ∨
x∈A,y∈B R(x, y). In particu-

lar, D(A,B) =
∨

x∈A,y∈B R(x, y) for product and �Lukasiewiucz t-norms and for
the Kleene-Dines implicator.

5 Examples

In this section we explain the meaning of the values expressed by operators
Di(A,B) on specific examples. In the first subsection these examples relate to
classification of zoological species, in the second subsection the analysis of solar
activity will be touched.
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5.1 Examples Related to Zoology

Let the set of objects X = {x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11} consist of
animals: x1 is an albatross, x2 is a swift, x3 is a sparrow x4 is an owl, x5 is a
flying fox, x6 is a pelican, x7 is an penguin, x8 is an ostrich x9 is a kiwi bird, x10 is
a fox x11 is a bear. The set of properties Y = {y1, y2}: y1 an animal has wings, y2
the animal has fur. The relation R : X × Y → L where L = ([0, 1],≤,∧,∨, ∗, 
→)
is defined and interpreted as follows:

R(x1, y1) = 1. Wings allow albatross to fly long distances over the oceans.
R(x2, y1) = 0.9. Wings allow swift to fly for hours, but usually it does not fly
for far distances.
R(x3, y1) = 0.7. Wings allow sparrow to fly constantly for short distances.
R(x4, y1) = 0.6. Wings allow owl to fly short distance (e.g. hunting for food).
R(x5, y1) = 0.6. Wings allow flying fox to fly for short distance (e.g. hunting
for food).
R(x6, y1) = 0.5. Wings are used by pelican to create a lift, to steer and
navigate in the air and fly very short distances.
R(x7, y1) = 0.3. Penguin does not use wings for flying, but it is important for
penguin, for example, to paddle through the water like a boat.
R(x8, y1) = 0.2. Ostrich does not use wings for flying, but it use them to
balance when running, especially when suddenly changing direction.
R(x9, y1) = 0.1. Kiwi has very short wings covered by feathers. It does not
use them, at least in the process of moving.
R(x10, y1) = 0, R(x11, y1) = 0. Foxes and bears do not have wings R(xi, y2) =
0 for i = 1, 2, 3, 6, 7. Animals do not have neither fur nor even dense feather
cover. R(xi, y2) = 0.3 for i = 4, 8, 9. Animals have dense feather cover looking
like a fur. R(xi, y2) = 0.8 for i = 5, 10. Animals have rather dense fur cover.
R(xi, y2) = 1 for i = 11. Animals have very dense fur cover.

Remark 2. The above information is based on materials found in the popular
literature and in Internet, see, e.g. https://faunafacts.com. The specific values
assigned to each relation are ours and just chosen for interpretation. Of course,
professional zoologist will argue about our choice. However, we hope that this
interpretation will help to illustrate the ideas and results presented in this paper.

5.1.1 The Basic Example
As the basic example we consider the case X = A, B = Y and R : X × Y → L
defined as above. In this case we can use formulas obtained in Remark 1. Hence
D1(A,B) = D2(A,B) = D4(A,B) = 1, D3(A,B) =

∧
x∈A(A(x) ↪→ B�(x)) and

D(A,B) = D3(A,B). We calculate it as follows: B�(x) =
∨

y∈B R(x, y) ∗ B(y):
B�(x1) = 1, B�(x2) = 0.9, B�(x3) = 0.7, B�(x4) = 0.6, B�(x5) = 0.8,
B�(x6) = 0.5, B�(x7) = 0.3, B�(x8) = 0.3, B�(x9) = 0.3, B�(x10) = 0.8,
B�(x11) = 1. In the result we have D3(A,B) = A ↪→ B� =

∧
i(1 
→ B�(xi)) =

1 
→ ∧
i B

�(xi) = 1 
→ 0.3. In particular, in case when ∗ is �Lukasiewicz t-norm
or the product t-norm D3(A,B) =

∧
i B

�(xi) = 0.3. Hence also D(A,B) = 0.3.

https://faunafacts.com
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5.1.2 Comments and Variation of the Example

– Such rather high value 0,3 of contentment may seem to be unexpected for
a group of so different animals. However, this is obtained because we based
the evaluation of the group taking into account very different properties: say
wings (wonderful for the albatross and for the swift) and fur (perfect suiting
for the bear and for the fox).

– On the other hand if we will change orientation in the parameter y2, namely
to assign higher value for animals WITHOUT thick fur and lower for animals
with a fur, then the estimation D(A,B) will look differently: for the case of
the Lukasiwicz and the Product t-norm we will get D3(A,B) = 0 (thank that
the fluffy bear cub has no wings!) and this seems much better corresponding
to our intuition.

– Now we extend the first example by including one more parameter y3 =
EGGS in B with the following interpretation: R(xi, y3) = 1 if an animal xi

lays eggs and R(xi, y3) = 0 otherwise. Then our table will drastically change
giving
B�(xi) = 1 for i = 1, 2, 3, 4, 5, 7, 8, 9 and leaving the same B�(x6) = 0.5,
B�(x10) = 0.8, and B�(x11) = 1.
In this case for the �Lukasiewicz t-norm and for the product t-norm we get
D3(A,B) = 0.5. And this result possibly in the best way corresponds to our
intuition looking at the animals x ∈ A as some group of animals “centered”
around the group BIRDS.

– We modify basic example by taking A = {x2, x3, x4, x5, x6, x7, x8, x9, x10} ⊂
X that is we exclude from the sample A the most “outstanding”animals:
albatross with “best wings” and bear with “best fur.” Since we did not change
B the set B� does not depend on A, we get D4(A,B) = 1 and D3(A,B) = 0.7
in case of the �Lukasiewicz and product t-norm. In turn

A�(y1) =
∧

i
(R(xi, y1) 
→ A(xi)) =

∨

i�=1,11
R(xi, y1) = 0.9;

A�(y2) =
∧

i
(R(xi, y2) 
→ A(xi)) =

∨

i�=1,11
R(xi, y1) = 0.8.

In the result we have D1(A,B) =
∧

yi
A�(yi) 
→ B(yi) = 1 and D2(A,B) =

∧
yi

(B(yi) 
→ A�(yi)) = 1 
→ ∨
i�=1,11R(xi, y1) = 1 
→ 0.9 ∨ 0.8 = 1 
→ 0.9 and

hence in case of �Lukasiewicz or product t-norm D2(A,B) = 0.9. Hence in the
result D(A,B) = 0.9.

5.2 Example of the Assessment of Solar Activity

For the purposes of practical application of fuzzy preconcepts we also propose an
example with analysis of solar activity with focus on sunspots as the most evident
and also spectacular structures providing visible information about changes in
the solar activity. While sunspots are neither something rare nor unique and
can be observed even during the solar minimum (more details regarding solar
activity and sunspots can be found on, e.g. www.swpc.noaa.gov/phenomena/

www.swpc.noaa.gov/phenomena/sunspotssolar-cycle
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sunspotssolar-cycle), we will focus on larger sunspots with more sophisticated
magnetic fields capable to produce weaker or stronger and geoeffective solar
flares.

We assume that the set of objects X contains all sunspots visible on the sun
on a given date. We consider the subset A = {x1, x2, x3, x4, x5} ⊂ X containing
five sunspots with more sophisticated magnetic fields and capable to produce
significant solar flares. We define the set of properties Y = {y1, y2} as follows:
y1 the sunspot has more or less sophisticated magnetic field, y2 the sunspot can
produce the solar flare. Relation R : X × Y → [0, 1].

R(x1, y1) = 0.9 means that the 1st sunspot has very sophisticated magnetic
field.
R(x2, y1) = 0.7 means that the 2nd sunspot has sophisticated magnetic field.
R(x3, y1) = 0.5 means that the 3rd sunspot has rather sophisticated magnetic
field.
R(x4, y1) = 0.4 means that the 4th sunspot has less sophisticated magnetic
field.
R(x5, y1) = 0.2 means that the 5th sunspot has rather simple magnetic field.
R(x1, y2) = 0.6 means that the 1st sunspot is rather capable to produce the
solar flares.
R(x2, y2) = 0.8 means that the 2nd sunspot is very capable to produce the
solar flares.
R(x3, y2) = 0.5 means that the 3rd sunspot is capable to produce the solar
flares.
R(x4, y2) = 0.3 means that the 4th sunspot is less capable to produce the
solar flares.
R(x5, y2) = 0.6 means that the 5th sunspot is rather capable to produce the
solar flares.

Based on the formulas obtained in Remark 1 D1(A,B) = D2(A,B) =
D4(A,B) = 1 and D3(A,B) =

∧
x∈A(A(x) ↪→ B�(x)) and D(A,B) = D3(A,B).

We calculate the following values of B�(x) =
∨

y∈B R(x, y) ∗ B(y):
B�(x1) = 0.9, B�(x2) = 0.8, B�(x3) = 0.5, B�(x4) = 0.4, B�(x5) = 0.6. We
obtain that D3(A,B) = A ↪→ B� =

∧
i(1 
→ B�(xi)) = 1 
→ ∧

i B
�(xi) = 1 
→

0.4. In particular, in case ∗ is �Lukasiewicz t-norm or product t-norm D3(A,B) =∧
i B

�(xi) = 0.4. Hence also D(A,B) = 0.4.
Such result means that the possibility of not producing geoeffective flares

by any of these five sunspots is 0.4 which is a kind of medium possibility with
slightly higher chance (0.6) that such flares can be produced.

Now we extend the example adding parameter y3 in B containing the addi-
tional condition which is very important for triggering the Northern Lights in
case of any geoeffective solar flares: R(x1, y3), R(x5, y3) = 1 meaning that the 1st
and the 5th sunspots directly face the Earth, R(x3, y3), R(x4, y3) = 0.5 meaning
that the 3rd and the 4th sunspot partly face the Earth and R(x2, y3) = 0.1
meaning that the 2nd sunspot does not face the Earth and is visible close to
the sun’s limb. Taking into account this condition we obtain that D1(A,B) =

www.swpc.noaa.gov/phenomena/sunspotssolar-cycle
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D2(A,B) = D4(A,B) = 1 and D3(A,B) = A ↪→ B� =
∧

i(1 
→ B�(xi)) =
1 
→ ∧

i B
�(xi) = 1 
→ 0.1. In case ∗ is �Lukasiewicz t-norm or product t-norm

D3(A,B) =
∧

i B
�(xi) = 0.1. Hence also D(A,B) = 0.1.

It means that the possibility of not producing geoeffective flares by any of
these five sunspots has decreased to 0.1 which is low possibility, and it means
that there is a very high chance (0.9) of geoeffective flares.

At the end we should admit that sunspots are often changing. This includes
further increase or decrease in sophistication of magnetic fields, their stability
and position on the solar disk. Therefore this example could be further enhanced
taking into account all these dynamic changes and comparing the data for dif-
ferent dates.

6 Conclusion

In the paper we proposed an alternative approach to the study of some issues
of formal fuzzy concept analysis. Of the three known to us versions of con-
cept analysis: “classical”, object-oriented and property-oriented, we stick here to
the framework of the object oriented version. Having as the original motivation
Bĕlohlávek’s crisply based fuzzy concept analysis (on the lines of Wille-Ganter
concept analysis) and noticing that the direct transform of Bĕlohlávek’s ideas to
object-oriented context does not make sense we decided to combine Bĕlohlávek’s
ideas with our graded approach to fuzzy concept analysis. In the result we intro-
duced the conceptuality degree of a crisp (object-oriented) preconcept, developed
the basics of the corresponding theory and illustrated the possible applications
of our theory by examples related to zoology and astronomy.

Concerning our future plans for the work initiated in this paper, as the first
and the most challenging one we foresee its applications in different practical
problems. As the most appropriate for the use of tools presented here we assume
problems of classification, specifically classification of biological issues, classifi-
cation of languages, and in the study of matters related to astronomy, some of
which could be of high practical value. Of course such kind of applications can
be developed only in tight cooperation with specialists in the related areas of
science.

On the other hand, we have perspectives for the work in this directions for
us, as mathematicians. Namely, we have important challenges for the study of
crisply generates fuzzy concepts in case of a more general lattice L (instead of
[0, 1]) as for the codomain of the fuzzy relation. Note that for the applications of
our theory in real world problems the assumption that all values are numbers in
the interval is absolutely inadequate. In this paper for animal classification we
used the assumption that their properties used for classification are comparable.
Such an assumption served well for us to illustrate the idea of application of our
method for classification, but of course it is not viable in any practical scientific
research. Thus we view a deeper investigation of crisply generated ob-oriented
fuzzy preconcepts in case of general quantales as the most important theoretical
problem to be studied in order to attract to our research scientists beyond pure
mathematics.
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2. Bĕlohlávek, R.: Concept lattices and order in fuzzy logic. Ann. Pure Appl. Logic
128, 277–298 (2004)
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Abstract. In this paper, we present a novel aggregation method for
intuitionistic fuzzy sets (IFS) based on interpolative Boolean algebra
(IBA) and logical aggregation (LA). The approach is founded on IFS-
IBA calculus, an approach that maintains intuitionistic presumptions
when dealing with IFS. The main contribution of IFS-IBA approach
is the explicit inclusion of attribute correlation and automated choice
of aggregation operator. That is accomplished by introducing paramet-
ric Frank t-norm in IFS-IBA calculus and by defining a clear relation
between correlation and Frank t-norm parameter. Frank t-norm is chosen
since it has the same mathematical properties as a generalized product in
IFS-IBA framework. Furthermore, the proposed IFS-IBA LA approach
incorporates guidelines for factor normalization, I-fuzzification, logical
expression modeling and aggregation. The main applicative benefits of
the proposed IFS-IBA LA approach are illustrated in the example of
ranking gifted students.

Keywords: IFS-IBA · aggregation · intuitionistic fuzzy sets ·
interpolative Boolean algebra · Frank t-norm

1 Introduction

Modeling and decision making in situations with plenty of vague, incomplete and
imprecise information is a very challenging problem. Still, many fuzzy logic-based
tools and approaches may facilitate that process. Many of them are based on
intuitionistic fuzzy sets (IFS) [1], the theory that takes into account information
about set membership, non-membership and uncertainty as separate variable.

On the other hand, attribute aggregation since it is the core of various ranking
or decision algorithms. The recent effort of many scholars, regarding the aggrega-
tion of IFS information initiated a new area of IFS theory [27]. Some aggregation
operators, e.g. triangular IF weighted averaging operator (TIFWA) [12] and IF
order weighted operator (IFOWA) [31], have significant theoretical and applica-
tive importance. Still, work on various aggregations of IFS is in progress.
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In this paper, we introduce a novel approach to the aggregation of IF val-
ues based on interpolative Boolean algebra (IBA) [23] and logical aggregation
(LA) [24]. In fact, we aim to transfer all benefits of LA for dealing with IFS via
IFS-IBA approach [21]. In that way, the aggregation procedure of IFS is trans-
parent, easy to implement and based on assumptions of intuitionism. The pro-
posed IFS-IBA LA approach is a complete aggregation procedure that contains
guidelines for factor normalization, I-fuzzification, automated operator selection,
logical expression modeling and finally aggregation of factors. From the technical
point of view, the main contributions of this paper are introducing Frank t-norm
as a parametric realization of IFS-IBA operations and relying on correlation for
operator selection. Frank t-norm is chosen as an adequate operator since it pro-
duces values in the same interval and has the same mathematical properties as a
generalized product operator in IFS-IBA framework. The aggregation procedure
is illustrated in the example regarding gifted student ranking.

This paper is organized as follows. In Sect. 2, a brief overview of IFS, IBA,
and IFS-IBA is presented. Section 3 reflects on the correlation measuring between
IFS. In Sect. 4, we provide a brief theoretical overview of parametric t-norms.
Special attention is devoted to Frank t-norm and its usage for dealing with gen-
eralized fuzzy sets. The background and main steps of the proposed IFS-IBA
logical aggregation approach are elaborated in Sect. 5. An illustrative example
regarding gifted students ranking is provided in Sect. 6. Finally, the main con-
clusions and potential directions of future work are listed in Sect. 7.

2 IFS-IBA Approach

In this section we first reflect on the essentials of IFS and IBA, and further we
give a brief overview of IFS-IBA approach.

2.1 Intuitionistic Fuzzy Sets

Intuitionistic fuzzy set theory is introduced by Atanassov in [1]. Unlike tradi-
tional fuzzy sets, IFS consider non-membership degree beside standard mem-
bership degree. Therefore, IFSs are able to include more information in the
modeling process and to handle a certain level of uncertainty in the data. As
a generalization of the traditional fuzzy sets, IFS A infinite set X is defined as
follows [1]:

A = {〈x, μA(x), νA(x)〉|x ∈ X} (1)

where μA(x) : X → [0, 1] and νA(x) : X → [0, 1] are membership and non-
membership degrees with condition 0 ≤ μA(x) + νA(x) ≤ 1 for every x ∈ X.

Only in the case when νA(x) = 1 − μA(x), IFS become a traditional fuzzy
set. Otherwise, IFS implies the hesitancy degree which shows the existence of a
certain level of uncertainty of the element x to IFS A [1]:

πA(x) = 1 − (μA(x) + νA(x)) (2)
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Basic operations and relations over two IFSs A and B are originally defined
by Atanassov [1]:

A ∩ B = 〈min(μA, μB),max(νA, νB)〉 (3)

A ∪ B = 〈max(μA, μB),min(νA, νB)〉 (4)

N(A) = 〈νA, μA〉 (5)

From Eqs. (3)–(5), it can be concluded that dual fuzzy operations, t-norm
and s-norm are applied over membership and non-membership degrees simulta-
neously when it comes to IF intersection and union. Besides standard IFS oper-
ations corresponding to minimum/maximum, many operators are introduced in
the literature, e.g. operations · and + modeled on algebraic product and prob-
abilistic sum, IFS t-norm [5], order relations, modal operations of necessity and
possibility [1], and many others [28] etc.

2.2 Interpolative Boolean Algebra

Interpolative Boolean algebra represents a consistent real-valued realization of a
finite Boolean algebra [23]. It is “interpolative” as a consequence of its semantics
based on a generalized Boolean polynomial (GBP). Its “consistency” comes from
the fact that all the laws of Boolean algebra are preserved. It is “real-valued”
realization because the elements can take any value from the unit interval [0,1],
so it can be applied to fuzzy logic and sets [23], as well as fuzzy relations [25].

IBA is a multi-valued logic that preserves all Boolean laws, including the
laws of contradiction and excluded middle [23]. This is achieved by introducing
two levels: symbolic and value level, i.e. by separating the value of an attribute
from its structure.

On the symbolic level, a logical expression is transformed into a cor-
responding generalized Boolean polynomial (GBP) according to the following
transformation rules [24]:

(β(a1, . . . , an) ∧ γ(a1, . . . , an))⊗ = β(a1, . . . , an) ⊗ γ(a1, . . . , an) (6)

(β(a1, . . . , an) ∨ γ(a1, . . . , an))⊗ = β(a1, . . . , an) + γ(a1, . . . , an)
−β(a1, . . . , an) ⊗ γ(a1, . . . , an)

(7)

(¬β(a1, . . . , an))⊗ = 1 − β(a1, . . . , an) (8)

where β(a1, . . . , an) and γ(a1, . . . , an) are complex elements of Boolean algebra,
i.e. all logical functions over attributes ai, i = 1, . . . , n.

For the primary attributes a1, . . . , an the following applies:

(ai ∧ aj)⊗ =

{
ai ⊗ aj , i �= j

ai, i = j
(9)

(ai ∨ aj)⊗ = ai + aj − ai ⊗ aj (10)
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(¬ai)⊗ = 1 − ai (11)

The generalized Boolean polynomial (GBP) is a polynomial whose variables
are elements of the Boolean algebra and the operators are standard +, stan-
dard -, and generalized product ⊗ (GP) [24]. GP can be any function that is
a subclass of the conventional t-norm satisfying the non-negativity axiom. The
choice of the appropriate t-norm for GP depends on the nature of the primary
attributes and/or on their correlation. Standard minimum, algebraic product,
and Lukasiewicz t-norm are the most common choices.

Only once the final structure of a logical function is determined, we can move
to the value level and introduce the values of the primary attributes. Each
element of Boolean algebra is valued using a generalized Boolean polynomial.

One of the most important applications of IBA is logical aggregation [24], a
consistent and transparent procedure for aggregating factors. LA consists of two
steps: data normalization and aggregation of attributes into a resulting value.

2.3 Essentials of IFS-IBA

IBA-based calculus for IFS is presented in [21], and further developed in [18,20].
The resulting IFS-IBA approach employs IFS in the original form and IBA-
based logical operations with several adaptations. This approach is developed
as a potential answers to the terminological debate regarding the name of IFS
theory [6]. In other words, the main idea behind IFS-IBA was to develop an
approach that is in line with the intuitionistic nature of IFS, i.e. the law of
contradiction and the double negation rule are valid in this approach. That is
accomplished by introducing IBA-based operations of conjunction and disjunc-
tion and choosing an appropriate existing IFS negation [2].

(A ∧ B)⊗ = 〈μA ⊗ μB , νA + νB − νA ⊗ νB)〉 (12)

(A ∨ B)⊗ = 〈μA + μB − μA ⊗ μB , νA ⊗ νB)〉 (13)

(¬A)⊗ = 〈νA, 1 − νA〉 (14)

Logical expressions with IFSs are structurally transformed into GBP using
the IBA transformation rules given in Eqs. (6)–(11) and an additional rule,
specific to IFS:

μA ⊗ νA = 0 (15)

Therefore, in IFS-IBA, IFS holds the idea of intuition and IBA provides
suitable algebra. Also, the conventional IF calculus is obtained as the special
case of IFS-IBA approach, when the minimum is used as GP.

This approach was a basis for proposing IFS-IBA similarity/dissimilarity
measure [20], later employed as a part of pattern recognition, clustering, and
classification algorithms. Also, on the path of IFS-IBA, LBIFS-IBA is proposed,
as an approach that is focused on Boolean properties [18]. However, there have
been no attempts to use IFS-IBA for factor aggregation, ranking or decision
making so far.
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3 Correlation of IFS

Correlation is an important measure that expresses the linear relationship
between elements of two sets. Since comparing fuzzy sets is an essential task, the
idea of the correlation coefficient of the IFSs in finite space is first introduced
in [8]. A standard/traditional correlation between the intuitionistic fuzzy set A
and B is defined as:

C(A,B) =
n∑

i=1

[μA(xi) · μB(xi) + νA(xi) · νB(xi)] (16)

and the correlation coefficient of A and B as:

ρ(A,B) =
C(A,B)

(C(A,A))1/2 · (C(B,B))1/2
(17)

Based on the paper [8], Yu proposed concept of the correlation of the IFSs
in the infinite space where C(A,B) was given as [32]:

C(A,B) =
1

b − a

∫ b

a

(μA(x) · μB(x) + νA(x) · νB(x))dx (18)

In [10], it has proposed another correlation coefficient of IFSs based on Hung’s
statistical point of view [9]. The main idea was to find out whether the sets are
negatively or positively related; hence this method calculates the correlation
coefficient of IFSs A and B by means of centroid.

Xu considers the situation in which the correlation coefficient of any two IFSs
equal 1 if and only if these two are the same [30]. Based on that, a new method
for calculating the correlation coefficient of IFSs A and B is developed.

The majority of correlation coefficients are based on membership and non-
membership degrees of IFS. Yet, Zeng and Li extended further these methods
by including the third parameter, the hesitancy degree [33]:

C(A,B) =
1
n

n∑
i=1

[μA(xi) · μB(xi) + νA(xi) · νB(xi) + πA(xi) · πB(xi)] (19)

Liu and others [17] gave another correlation coefficient in which they extend
the interval of value of the correlation coefficient into [−1,1] and treat the
membership degree and non-membership degree separately. Also, they aimed
to include deviations of IF values in the calculation.

4 Parametric t-norms

The notion of t-norms was first introduced in the context of probabilistic metric
spaces, but they found wide application in fuzzy set theory. A fuzzy t-norm is
a binary operation on the unit interval that must fulfill at least conditions of
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monotonicity, commutativity and associativity. Furthermore, if it satisfies the
conditions of continuity, subidempotency and strict monotonicity we can say
that t-norm is the strict Archimedean t-norm. More information and formal
definitions of t-norms can be found in [13].

In order to construct Archimedean t-norms we need to define properties
of unary functions i.e. generators. A decreasing generator is a continuous and
strictly decreasing function f from [0,1] to R such that f(1) = 0 [15]. The pseudo-
inverse of a decreasing generator f , denoted by f (−1) is a function from R to
[0,1] given by [15]:

f (−1)(a) =

⎧⎪⎨
⎪⎩
1, for a ∈ (−∞, 0)
f (−1)(a), for a ∈ [0, f(0)]
0, for a ∈ (f(0),∞)

(20)

A decreasing generator f and its pseudo-inverse f (−1) satisfy f (−1)(f(a)) = a
for any a ∈ [0, 1] [15]:

f (−1)(f(a)) =

⎧⎪⎨
⎪⎩
0, for a ∈ (−∞, 0)
a, for a ∈ [0, f(0)]
f(0), for a ∈ (f(0),∞)

(21)

One of the possible extensions of classical t-norms is parameterized t-norms,
e.g. Hamacher’s t-norm, Yager’s t-norm, Weber-Sugeno t-norm, Schweizer-Sklar
t-norm, etc. Each of them uses aggregation operators that include parameters
so the aggregation process is more flexible.

4.1 Frank t-norm

Franks t-norm is based on the class of decreasing generators

fs(a) = − ln
sa − 1
s − 1

for s > 0, s �= 1 (22)

Deduced from the equation above, it can be established

fFrank(a, b) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Tmin(a, b), if s = 0
Tprod(a, b), if s = 1
TLuk(a, b), if s = +∞
logs(1 +

(sa−1)(sb−1)
s−1 ), otherwise

(23)

Operators based on (parametric) t-norms are extended to the conventional
fuzzy logic in order to make the reasoning and decision-making process more
flexible. In [14], authors explore different approaches to fuzzy logic based on
Frank t-norms. In [4], authors investigate some classes of t-norms that provide
natural extensions of Lukasiewicz, product, Frank, Schweizer-Sklar and Yager t-
norms which can be generated. Also, Frank t-norm has been already introduced
in IBA [16].
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Many research aims to improve further generalization of the concept of fuzzy
sets. In [26], authors have developed operators based on Frank t-norm for picture
fuzzy sets and proposed a series of new aggregation operators. In [29], authors
have studied potential applications of Archimedean t-conorm and t-norm under
IF environment and proposed some other operations on IFS, while [11] proposed
IF similarity measures based on Frank t-norms family.

5 IFS-IBA Logical Aggregation

In this section, we introduce logical aggregation for dealing with IFSs based
on IFS-IBA approach. IFS-IBA LA can be used for the aggregation of IFSs
based on requirements formulated as logical conditions. Further, logical relations
are treated according to IFS-IBA transformation rules, i.e. they are mapped to
GBPs. Further, GP is automatically selected based on the correlation between
attributes, and expression is easily calculated.

Formally, IFS-IBA LA is based on IBA frame with Frank t-norm as a real-
ization of GP. This operator is considered as an appropriate choice since Frank
t-norm can model cases between Lukasiewicz t-norm and minimum t-norm, the
same as GP. By choosing parametric t-norm instead of some non-parametric
norms that can model several borderline cases properly, we have tried to facilitate
and automate aggregation process and enhance the generality of the approach.
In this procedure, we rely on the correlation of IFS explicitly in the aggregation
process in order to automate the selection of GP. In more detail, we aim to esti-
mate the value of parameter p of Frank t-norm based on correlations of IFSs to
be aggregated.

IFS-IBA LA procedure consists of these 6 steps:

I-fuzzification: Most problems are not intuitionistic by nature. Therefore, it is
usual to transform the initial set of attributes ω = {a1, a2, . . . , an} into an IFS
attribute set I = {A1, A2, . . . , Am}. This procedure may be conducted using a
chosen function Ai = f if−g(ai), e.g. intuitionistic fuzzy generator [3], which can
transform every element of ω into a corresponding element of I, i.e. n = m. On
the other hand, I-fuzzification may be realized using several standard aggregation
operators Ai = f if−ag(ai, . . . , aj), if some elements of ω are of same/similar
nature, i.e. n > m. The example regarding I-fuzzification using aggregation
operators is given in Sect. 6. The prerequisite for both I-fuzzification procedures
is that attributes ω = {a1, a2, . . . , an} are normalized.

IFS Correlation: In cases when a dataset consists of more than a few instances,
it is possible to determine correlation between attributes. Any IFS correlation
coefficient rkl = ρ(Ak, Al) that produces values on [−1,1] interval is appropriate
in the context of IFS-IBA LA approach. For the sake of simplicity, the coefficient
given in Eqs. (16) and (17) will be used further in this research.

Frank t-norm Parameter Estimation: Since the Frank t-norm is a paramet-
ric one, it is necessary to assess the value of its parameter p for each pair of
attributes. In this approach, we aim to map values of p based on values of IFS
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correlation. This can be performed using a suitable function pkl = fp−est(rkl)
that maps values from [−1,1] to [0,∞]. In fact, any function fp−est that satisfies
the following conditions can be used for this purpose:

– fp−est is monotonically decreasing function, i.e. for rkl ≤ rmn it stands that
fp−est(rkl) ≥ fp−est(rmn);

– If rkl = 0 then fp−est(0) = 1;
– If rkl ∈ [−1, 0] then fp−est(rkl) = pkl ∈ [1,∞];
– If rkl ∈ [0, 1] then fp−est(rkl) = pkl ∈ [0, 1].

IFS-IBA Symbolic Level-Structural Transformation: Before the struc-
tural transformation, in some cases, it is necessary to translate verbal
model/request to logical expression. After the expression is obtained, the struc-
tural transformation based on IFS-IBA rules is conducted, i.e. the logical expres-
sion is mapped into the corresponding GPB based on Eqs. (6)–(11), and (15).

IFS-IBA Valued Level Expression Calculation: Finally, on IFS-IBA valued
level, GP is realized using Frank t-norms with estimated values of parameter p,
and the expression value is calculated similarly as in classical LA.

I-defuzzification/IF Comparison Method: Finally, the resulting IF value
may be transformed to a crisp value in order to ease comparison and interpre-
tation. Although the simplest I-defuzzification considers using only membership
part of IF value, there are various methods in the literature [22]. On the other
hand, IF values may be compared using IF order relation [7].

The final result highly depends on the choice of functions for I-fuzzification,
IFS correlation, Frank t-norm parameter estimation and I-defuzzification/IF
comparison method. This makes the proposed approach to be a universal one
and easily adapted for a specific purpose. In other words, this allows a decision
maker certain freedom and the possibility to implement his expert knowledge in
the decision-making process. However, the predefined, default functions, suitable
for not-so-experienced users are given in Sect. 6.

The main advantage of the IFS-IBA LA approach compared with stan-
dard/simple aggregation operators, e.g. mean, max/min, weighted sum, is the
fact that it enables the inclusion of logical relations between attributes and thus
the possibility of compensability of one attribute to others. Also, the statistical
dependencies are also comprised in the aggregation process through the values of
parameter p. Finally, it is common to combine the LA approach with weighted
sum in order to create pseudo-LA functions. This is also possible for IFS-IBA
LA, as presented in Sect. 6. The main limitation of this approach is complexity,
especially when dealing with a large number of input attributes.

6 Application to Gifted Student Ranking

In this section, we aim to employ the proposed IFS-IBA LA approach for
gifted student ranking. In fact, we will consider one simple demonstrative exam-
ple of ranking 10 gifted elementary school students. The ranking should be
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performed based on the assessment made by three independent evaluators: a
teacher, a student’s parent, and a student’s peer. Each evaluator assesses 9 skills
of a student: logical-mathematical, linguistic/verbal, spatial, musical, bodily-
kinesthetic, intrapersonal, interpersonal, naturalistic and philosophical/spiritual.
The ranking criterion is that the grades given by a teacher are equally important
as the aggregated grade of a parent and a peer.

I-fuzzification: First, all attributes are normalized using min-max normaliza-
tion. Further, an aggregation operator is used for I-fuzzification, since a vast
number of input attributes, i.e. 3 evaluators e1, e2, e3 assess 9 skills ai

1, . . . , a
i
9, i =

1, 2, 3 of a student. Namely, after I-fuzzification each student will be represented
with 3 IF values, one for each evaluator using following functions:

Ai = 〈μi, νi〉, μi = min(ai
1, . . . , a

i
9), ν

i = max(ai
1, . . . , a

i
9) (24)

IFS Correlation: The next step in IFS-IBA LA approach is a calculation of
IF correlation coefficients. In this case, coefficients for each pair of attributes are
very high, suggesting a strong positive correlation among attributes.

Frank t-norm Parameter Estimation: In this case, we have used piece-wise
linear function to estimate values of parameter p:

pkl =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∞, if rkl = −1
1 − q · rkl, if rkl = (−1, 0)
1, if rkl = 0
1 − rkl, if rkl = (0, 1]

(25)

The value of coefficient q should be estimated by an expert from the interval
[1,∞). In this particular case, the value is set to q = 100.

In other words, Frank t-norm-based realization of GP between attributes k
and l is depending on the correlation coefficient in the following manner:

⊗kl =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

TLuk(ak, al), if rkl = −1
log(1−q·rkl) = (1 + ((1−q·rkl)

ak−1)·((1−q·rkl)
al−1)

q·rkl−1 )if rkl = (−1, 0)
Tprod(ak, al), if rkl = 0
log(1−rkl)

= (1 + ((1−rkl)
ak−1)·((1−rkl)

al−1)
rkl−1 )if rkl = (0, 1)

Tmin(ak, al), if rkl = 1

(26)

This is in line with GP definition in IBA-framework, as well as practical
guidelines for choosing the appropriate norm for GP given in [19].

IFS-IBA Symbolic Level-Structural Transformation: The verbal model
for gifted student ranking is formulated as following: “The student is considered
as a successful in two cases: if a student is graded well by both parents and
peers; if a student is graded well by the teacher. These expressions have the
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same importance. Thus, the final pseudo-logical expression for aggregation is
following:

aggIFS−IBA−LA = 0.5 · (IF parent ∧ IF peer) + 0.5 · IF teacher (27)

After IFS-IBA transformation, we can obtain the following GBP.

aggIFS−IBA−LA = 0.5 · (IF parent ⊗ IF peer) + 0.5 · IF teacher (28)

IFS-IBA Valued Level-Expression Calculation: According to calculated
IF corre-lation coefficient, a suitable realization of Frank t-norm is chosen, and
IF aggregation scores for each student are calculated.

I-defuzzification/IF Comparison Method: For the sake of simplicity, mem-
bership of the final IF scores is used as a base for final student ranking.

Final scores and ranking obtained using the IFS-IBA approach is given in
Table 1. Also, students are ranked with different IFS aggregation operator, e.g.
simple weighted sum, with the same I-fuzzification and I-defuzzification methods:

aggWS = 0.25 · IF parent + 0.25 · IF peer + 0.5 · IF teacher (29)

Table 1. Ranking results of gifted students.

Student
Score
(IFS-IBA LA)

Rank
(IFS-IBA LA)

Score
(weighted sum)

Rank
(weighted sum)

S1 0.375 6 0.470 7
S2 0.367 7 0.473 6
S3 0.298 10 0.400 10
S4 0.312 9 0.423 9
S5 0.406 4 0.517 5
S6 0.317 8 0.447 8
S7 0.564 1 0.680 1
S8 0.509 2 0.623 2
S9 0.393 5 0.523 4
S10 0.463 3 0.577 3

The final results suggest that the same three students (S7, S8 and S10) are
ranked as the best ones by both methods. However, the ranking of the next four
students differs since the usage of ∧ operator. In other words, the IFS-IBA LA
function punishes students with poor assessments given by a peer or a parent.



IFS-IBA Logical Aggregation with Frank t-norms 109

7 Conclusion

The aggregation of IFS values is still a hot topic for both researchers and practi-
tioners. It is mandatory that novel methods in this field include logical and sta-
tistical dependencies of input attributes as well as possible compensation effects.
The proposed IFS-IBA LA procedure is in line with current trends i.e. we have
introduced all benefits of standard LA into aggregation of IF values. Technically,
this is accomplished by introducing parametric Frank t-norm as a realization of
GP in IFS-IBA frame. Frank t-norm parameter estimation is performed based on
input correlation allowing automated operator selection. Finally, the procedure
is formalized as a list of consecutive steps with a suggestion of default param-
eter settings. Still, the end-user has the option to include domain knowledge
and possible affinities in the aggregation process by altering normalization, I-
fuzzification and parameter estimation functions, as well as a criterion function
formalized as a logical expression. The proposed approach is illustrated on the
problem of ranking gifted students. However, the example is limited in terms of
the number of instances and deeper understanding of a problem. Thus, one of
the routes of future research will be collecting a larger dataset and introducing
more expert knowledge in the ranking process.

Acknowledgements. This study was supported by University of Belgrade - Faculty
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Abstract. We are developing an approach that is an alternative to the
Zimmermann approach to solving a multiple objective linear program-
ming problem. We use fuzzy equivalence relations to solve the problem,
where fuzzy sets are used in the Zimmermann approach. We will prove
the effectiveness of the new approach, illustrate and compare the use of
different approaches with illustrative examples.
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1 Introduction

Since the definition of fuzzy sets by L. A. Zadeh in 1965 [6], the interest of many
researchers has been focused on the study of classical mathematical concepts and
theories in the context of fuzzy sets. At the same time, fuzzy sets and related
structures began to be used to solve some real-world problems and to be involved
in related mathematical algorithms.

In this paper we propose to use fuzzy relations for solving multiple objective
linear programming (MOLP) problems. Multiple objective linear programming
problems algorithms are important tools for solving real-life optimization prob-
lems such as production planning, logistics, environment management, finance
risk planning etc. Multiple objective linear programming problem is a problem
when we solve linear programming problem with several or many objective func-
tions which should be optimized at the same time. Thus the fuzzy approach here
helps to overcome the conflict of multiple objective functions which have their
optimal solutions in different points.
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The idea for our investigation came from the fuzzy approach proposed by
Zimmermann in ([7]) where the membership functions (or fuzzy sets) are involved
to prescribe how far the concrete point from the feasible solution set is from the
solution of an individual problem for each function which should be optimized.
Thus for each function, which should be optimized, the membership function
value for a concrete point is the belongness degree to the set which contains
the individual solution/solutions. Then these fuzzy sets are aggregated by using
an aggregation function and the obtained fuzzy set is optimized in the initial
feasible region. We should remark, that in Zimmermann approach all the fuzzy
sets are linear functions (or partially linear).

In our paper we propose to use fuzzy relations ([1,5]) instead of the mem-
bership functions used by Zimmermann and further developed by other authors.
The idea of using fuzzy relations is motivated by the fact that we want to find
a solution which is equal to all individual solutions. It is clear that generally it
is impossible to find equivalence relation to solve this problem but fuzzy equiv-
alence relation can help us. Here, the transitivity of fuzzy equivalence relation
helps us obtain a Pareto optimal solution, which, in fact, distinguishes our app-
roach from Zimmermann’s. Fuzzy equivalence approach (FEA) provides a more
general framework for handling multiple objectives. Specifically, when using the
�Lukasiewicz t-norm, FEA generalizes the Zimmermann approach. Additionally,
we demonstrate that working with fuzzy equivalence relations enables us to
defuzzify the solution approach and work with crisp metrics, which simplifies
calculations.

The paper is structured in the following way: Sect. 2 contains some known
facts about t-norms and fuzzy equivalence relations important for the further
understanding of the material; we propose the Zimmermann approach with illus-
trative examples in Sect. 3; we propose the solution approach with fuzzy equiv-
alence relations and observe the numerical example in Sect. 4; and we conclude
our paper by Sect. 5.

2 Preliminaries

2.1 Triangular Norms

We start with the definition of a t-norm which plays the crucial role for the
definition of transitivity for fuzzy relations:

Definition 1. [2] A triangular norm (t-norm for short) is a binary operation
T on the unit interval [0, 1], i.e. a function T : [0, 1]2 → [0, 1] such that for all
a, b, c ∈ [0, 1] the following four axioms are satisfied:

– T (a, b) = T (b, a) (commutativity);
– T (a, T (b, c)) = T (T (a, b), c) (associativity);
– T (a, b) ≤ T (a, c) whenever b ≤ c (monotonicity);
– T (a, 1) = a (a boundary condition).
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Some of often used t-norms are mentioned below:

– TM (a, b) = min(a, b) the minimum t-norm;
– TP (a, b) = a · b the product t-norm;
– TL(a, b) = max(a + b − 1, 0) the �Lukasiewicz t-norm;

– TH(a, b) =
{

a·b
a+b−a·b if a2 + b2 �= 0
0 otherwise

the Hamacher t-norm.

Definition 2. [2] A t-norm T is called Archimedean if and only if, for all pairs
(a, b) ∈ (0, 1)2, there is n ∈ N such that T (a, a, ..., a)

n times

< b.

Product and �Lukasiewicz t-norms are Archimedean while minimum t-norm
is not.

We proceed recalling an important tool for the construction and study of t-
norms involving only one-argument real function (additive generator) and addi-
tion. Later we use the same tool for constructing fuzzy equivalence.

Definition 3. [2] An additive generator g : [0, 1] → [0,∞] of a t-norm T is a
strictly decreasing function which is also right-semicontinuous at 0 and satisfies
g(1) = 0 such that for all (a, b) ∈ [0, 1]2 we have

g(a) + g(b) ∈ Ran(g) ∪ [g(0),∞],

T (a, b) = g(−1)(g(a) + g(b)).

where Ran(g) is the range of g.

Note that, if a t-norm T has an additive generator g, then it is uniquely
determined up to a non-zero positive constant. Each t-norm with an additive
generator is Archimedean.

2.2 Fuzzy Equivalence Relations

We continue with an overview of basic definitions and results on fuzzy equiva-
lence relations. Definition of a fuzzy equivalence relation was first introduced by
L.A. Zadeh in 1971 ([5]) under the name of fuzzy similarity relation.

Definition 4. (see e.g. [1]) A fuzzy binary relation E on a set S is called a
fuzzy equivalence relation with respect to a t-norm T (or T -equivalence), if and
only if the following three axioms are fulfilled for all a, b, c ∈ S :

1. E(a, a) = 1 reflexivity;
2. E(a, b) = E(b, a) symmetry;
3. T (E(a, b), E(b, c)) ≤ E(a, c) T-transitivity.

The following result establishes principles of construction of fuzzy equivalence
relations using pseudo-metrics.
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Theorem 1. [1] Let T be a continuous Archimedean t-norm with an additive
generator g. For any pseudo-metric d, the mapping

Ed(a, b) = g(−1)(min(d(a, b), g(0)))

is a T -equivalence.

Example 1. Let us consider the set of real numbers S = R and the metric
d(a, b) = |a − b| on it. Taking into account that gL(x) = 1 − x is an additive

generator of TL (�Lukasiewicz t-norm) and gP (x) = −ln(x) is an additive
generator of TP (product t-norm), we obtain fuzzy equivalence relations:

EL(a, b) = max(1 − |a − b|, 0);

EP (a, b) = e−|a−b|.

To fuse the information about the all objective functions we will use aggre-
gation functions:

Definition 5. [3] An aggregation function is a mapping A : [0, 1]k → [0, 1]
which fulfills the following properties:

– A(x1, ..., xk) ≤ A(y1, ..., yk) whenever xi ≤ yi for all i ∈ {1, ..., k} (mono-
tonicity);

– A(0, ..., 0) = 0 and A(1, ..., 1) = 1 (boundary conditions).

Namely, we need to fuse equivalence relations that is why we need the fol-
lowing theorem and example. Since in our approach we are constructing fuzzy
equivalence relations from pseudo-metrics (which is quite natural) we focus only
in Archimedean t-norms.

Theorem 2. [4] Let A : [0, 1]k → [0, 1] be an aggregation function, T be a
continuous Archimedean t-norm with an additive generator g : [0, 1] → [0, c] such
that g(0) = c and c ∈ (0,∞], and Ei for all i ∈ {1, ..., k} are fuzzy equivalence
relations (with respect to the t-norm T ). Then

E(x, y) = A(E1(x, y), ..., Ek(x, y))

is also a T -equivalence relation if and only if H : [0, c]k → [0, c] constructed as

H(a1, . . . , ak) = g
(
A(g−1(a1), . . . , g−1(ak))

)
.

is a subadditive function on [0, c], where ai ∈ [0, c], i ∈ {1, . . . , k}.

Example 2. Consider some weights p1, ..., pk ∈ [0, 1] such that
k∑

i=1

pi = 1. If

H(a1, . . . , ak) = min
(
c,

k∑
i=1

piai

)
, which is a subadditive function, then

A(a1, . . . , ak) = g(−1)

(
min(g(0),

k∑
i=1

pi · g(ai))
)

preserves T -equivalences. We will use this construction to aggregate fuzzy equiv-
alences in the further examples.
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3 Zimmermann Approach for MOLP Problem

A mathematical model of multiple objective linear programming (MOLP) prob-
lem can be represented as follows:

Maximize Z = (z1(x), ..., zk(x))

subject to
n∑

j=1

aijxj ≤ bi, i = 1, ...,m,
(1)

where x ∈ R
n, Z is a vector of objectives or objective functions zl =

n∑
j=1

cljxj

(linear functions) where l = 1, .., k. That is we must find a vector xopt =
(xopt

1 , ..., xopt
n ) which maximizes k objective functions of n variables, and with m

constraints. Let D denote a feasible region of the problem (1), which is the set of

all possible points x that satisfy the conditions
n∑

j=1

aijxj ≤ bi, i = 1, ...,m. For

the sake of brevity further we denote vectors (x1, ..., xn) as x (x = (x1, ..., xn)).
When solving problem (1), if trivial cases are not taken into account, all

objective functions cannot reach their optimums at the same points under given
constraints, since objective functions usually conflict with each other. Thus, the
Pareto optimal solution (or efficient solution) and the optimal compromise solu-
tion will be introduced to explain what solutions we are going to obtain by
solving problem (1):

Definition 6. [7] Point xpo from the feasible region D is called Pareto optimal
solution for the problem (1) if and only if there does not exist another x ∈ D
such that zl(xpo) ≤ zl(x) for all l = 1, ..., k and zj(xpo) �= zj(x) for at least one
j.

That is, if xpo is a Pareto optimal solution, then it is impossible to find such
x for which at least for one objective the value is greater than for xpo and for
all other objectives the values are not less than for x.

Definition 7. [7] The optimal compromise solution to the multiple objective
linear programming problem is the solution x ∈ D, which the decision maker
prefers to all other solutions, taking into account all the criteria. The optimal
compromise solution will simply be referred to as the optimal solution.

It is generally accepted that the optimal solution must be Pareto optimal. In
what follows, the decision maker choice between all Pareto optimal solution,
taking into account the criteria, proceeds from the original real problem to be
solved using the MOLP algorithm. On the other hand, the choice of algorithm
affects the choice of optimal solutions from all Pareto optimal ones.

The fuzzy approach to solving the MOLP problem proposed by Zimmermann
[7] provided an efficient way to measure the degree of satisfaction of maximiza-
tion of all objectives for points from the feasible region. The idea is to identify
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the membership functions prescribing the fuzzy goals (solutions of individual
problem) for the objective functions zi, i = 1, .., k. The following linear func-
tion is an example of a membership function, which is commonly used by other
authors in MOLP and will be used in our work:

µi(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, if zi(x) < zmin
i

zi(x) − zmin
i

zmax
i − zmin

i

, zmin
i ≤ zi(x) ≤ zmax

i

1, zi(x) > zmax
i

,

where zmax
i is the solution of individual problem

Maximize zi, s.t.
n∑

j=1

aijxj ≤ bi, i = 1, ...,m

and zmin
i is the solution of individual problem

Minimize zi, s.t.
n∑

j=1

aijxj ≤ bi, i = 1, ...,m.

Usually the membership functions µi are linear functions and it is argued by
the “facilitation computation for obtaining solutions”. Further in the “classical”
fuzzy approach membership functions µi are aggregated. The main subject which
is discussed in the large part of papers is the choice of an aggregation function.
Thus the problem (1) reduces to the following problem:

Maximize A(µ1(x), ..., µk(x))

subject to
n∑

j=1

aijxj ≤ bi, i = 1, ...,m,
(2)

where A is an aggregation function.

Theorem 3. If x is unique solution for problem (2) then it is a Pareto optimal
solution for problem (1).

Proof. Proof from the opposite. It is assumed that there exists a point y ∈ D
such that, {

zj(x) < zj(y)
zl(x) ≤ zl(y) ∀l = 1, ..., k.

It follows that µj(x) < µj(y) and µl(x) ≤ µl(y) ∀l = 1, ..., k; this follows from
the definition of membership functions µl. Then, from the monotonicity of an
aggregation function it follows that

A(µ1(x), ..., µk(x)) ≤ A(µ1(y), ..., µk(y)).

However, given that x is the solution of the problem (2), which means that

A(µ1(x), ..., µk(x)) = A(µ1(y), ..., µk(y)).

Now a contradiction arises with the unity of the solution of the problem (2). By
this the theorem is proven.
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Fig. 1. Feasible region for the problem (3); dotted lines indicate level lines for individual
solutions

Fig. 2. A(µ1(x), ..., µk(x)), where in a) A = TM ; b) A = TP ; c) A is the arithmetic
mean.

Fig. 3. Feasible region for the problem (4); dotted lines indicate level lines for individual
solutions
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Fig. 4. A(µ1(x), ..., µk(x)), where in a) A = TM ; b) A = TP ; c) A = TL; d) A is the
arithmetic mean.

We illustrate all approaches with two example:

1. Triangular example:

Maximize Z = (z1(x), z2(x)),
where z1 = x1, z2 = x2

subject to x1 + x2 ≤ 1,
x1, x2 ≥ 0

(3)

For this problem we visualize the feasible region D in Fig. 1.
The Fig. 2 demonstrates the function A(µ1(x), ..., µk(x)) for different aggre-
gation functions.
Table 1 shows optimal solutions for the triangular example using different
aggregation functions:

2. Zimmermann example

Maximize Z = (z1(x), z2(x)),
where z1(x) = −x1 + 2x2, z2(x) = 2x1 + x2

subject to − x1 + 3x2 ≤ 21
x1 + 3x2 ≤ 27

4x1 + 3x2 ≤ 45
3x1 + x2 ≤ 30

x1, x2 ≥ 0

(4)
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Table 1. Solutions for triangular example using different aggregation functions.

A Opt. solution

TP (0.5 ; 0.5)

TM (0.5 ; 0.5)

Arithmetic mean line x1 + x2 = 1

TL No solution

Table 2. Solutions for the Zimmermann’s example using different aggregation func-
tions.

A Opt. solution

TM (4.96 ; 7.35)

TP (5.7 ; 7.01)

Arithmetic mean (6 ; 7)

TL (6 ; 7)

For this problem we visualize the feasible region D in Fig. 2. The Fig. 4 demon-
strates the function A(µ1(x), ..., µk(x)) for different aggregation functions.
Table 2 shows optimal solutions for the Zimmermann example using different
aggregation functions.

Triangular example is a quite simple example, but seems important to us
since we would like to see how different approaches will work with the example
where the affect of each of two objective functions is identical and the feasible
region is symmetrical about individual solutions.
Zimmermann example was involved in [7] and since then many authors use it to
compare results.

4 Fuzzy Equivalence Relations Approach

In this section we realize the approach of using fuzzy equivalence relations to
show the degree of equivalence of the point from the feasible region and individual
solution. First we build the following pseudo-metrics on the set D:

di(x, y) =
|zi(x) − zi(y)|
zmax
i − zmin

i

.

Thus defined di are indeed pseudo-metrics and applying the Theorem 1 we can
build a T -equivalence relation:

Ei(x, y) = g(−1)(min(
|zi(x) − zi(y)|
zmax
i − zmin

i

, g(0))), (5)

where g is an additive generator of a continuous Archimedean t-norm T .
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Hence we should first choose a t-norm which plays a role of a generalized
conjunction and further construct T -equivalences using a correspondent additive
generator g.

Ei(x, y) = 1 − |zi(x) − zi(y)|
zmax
i − zmin

i

are fuzzy TL-equivalence relations.

Ei(x, y) = e
− |zi(x)−zi(y)|

zmax
i

−zmin
i

are fuzzy TP -equivalence relations.
Then we aggregate the equivalence relations and solve the following problem:

Maximize A(E1(xmax
1 , y), ..., Ek(xmax

k , y)).

The approach for different t-norms we illustrate for
Triangular example (Fig. 5):
In the both cases the solutions are points of the line x1 + x2 = 1 where

0 ≤ x1 ≤ 1.
Zimmermann example (Fig. 6):
In the both cases the solution is x = (6, 7).

Theorem 4. If there exists a unique solution to problem:

Maximize A(E1(xmax
1 , y), ..., Ek(xmax

k , y))

then it is a Pareto optimal MOLP problem’s solution for the problem (1).

Fig. 5. A(E1(x
max
1 , y), ..., Ek(xmax

k , y)) for different fuzzy equivalence relations

Fig. 6. A(E1(x
max
1 , y), ..., Ek(xmax

k , y)) for different fuzzy equivalence relations
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Proof. Let y be the unique solution to problem:

Maximize A(E1(xmax
1 , y), ..., Ek(xmax

k , y)).

Let denote A(E1(xmax
1 , y), ..., Ek(xmax

k , y)) by A
(
xmax, y

)
. Let prove the theorem

by contradiction: suppose there is another point x, that is Pareto optimal. That
means, ∀ i = 1, ..., k zi(y) ≤ zi(x) and there exists at least one j such that
zj(y) < zj(x).
Now lets look at fuzzy equivalences: Ei(xmax

i , y) =

= g(−1)

(
min

(
g(0), di(xmax

i , y)
))

= g(−1)

(
min

(
g(0),

∣∣zi(xmax
i ) − zi(y)

∣∣
zmax
i − zmin

i

))

Because of zj(y) < zj(x) and zi(y) ≤ zi(x) ∀i = 1, ..., k we have dj(xmax
j , y) >

dj(xmax
j , x) and di(xmax

i , y) ≥ di(xmax
i , x) ∀i = 1, ..., k. Thus Ei(xmax

i , y) ≤
Ei(xmax

i , x), which means A
(
xmax, y

) ≤ A
(
xmax, x

)
which is a contradiction to

y being a unique solution.

It is easy to see from the prove of the above theorem that the following
theorem fulfill for non-unique solutions.

Theorem 5. The solution to the problem:

Maximize A(E1(xmax
1 , y), ..., Ek(xmax

k , y))

is Pareto optimal MOLP problem’s solution for the problem (1) if zj(y) <
zj(x) =⇒ Ei(xmax

j , y) < Ej(xmax
j , x) and A is strictly monotone aggregation

function.

The next theorem shows that if we chose the base for the aggregation function
an arithmetic mean, then for any class of T -equivalences we will have the same
result (solution), which illustrate the above examples.

Theorem 6. If the aggregation function is defined as

A(a1, . . . ak) = f (−1)

(
min

(
f(0),

k∑
i=1

pif(ai)
))

where f is an additive-generator of some t-norm T and ai = Ei(xmax, y) are
T -equivalences constructed for pseudo-metric di such that di(xmax, y) ≤ f(0)

for all y ∈ D and
n∑

i=1

pi = 1 then max
y

A
(
xmax, y

)
= min

y

k∑
i=1

pidi(xmax, y).

The last theorem shows that in some (but typical) cases the solution of MOLP
problem with fuzzy approach reduces to the crisp approach using pseudo-metrics.
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5 Conclusion

In the paper we proposed a solution approach for multiple objective linear pro-
gramming problem where we have used fuzzy equivalence relations prescribing
the degree of equivalence of a point from the feasible region and individual solu-
tions. Fuzzy equivalence relations were aggregated to get the degree to which a
point from the feasible region is equal to all individual solutions.

We see the potential for the future research in generalizing approach to fuzzy
order relations since it will help to overcome the non-uniqueness for the solutions
which compensate one another. For example we believe that with fuzzy order
relations we will overcome the non-uniqueness for the triangular example.
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Abstract. The complexity of democratic public decision-making has augmented
with the surge of volumes of information. One response is using digital tools in
decision-making processes to enable more flexibility than the conventional yes
or no responses. We proposed a solution for a large-scale democratic decision-
makingprocess using soft computing and fuzzy logic, basedon systemic consensus
and action design research. Our integrative fuzzy decision-making process was
designed to allow the consideration of all the arguments, the deliberation of all the
alternatives, and the assessment of each alternative using comparative linguistic
expressions. The method was used to resolve a conflict-generating traffic problem
in Geuensee, a municipality in the Swiss canton of Luzern. The citizens voted on
two dimensions of resistance and support about each of the proposed alternatives.
The results were computed using fuzzy membership functions and a fuzzy logic
table, evaluated with different computational variants. The output was a ranking of
the best options, as assessed by the decision-makers.We found that thismethod for
smart participation of citizens was accepted and generated involvement, leading
to an effective outcome for the decision-makers. In the last section, we discuss
evaluation and ethical considerations.

Keywords: participative decision making · fuzzy voting · fuzzy logic ·
comparative linguistic expressions · smart governance · cognitive cities

1 Introduction

Democracies rely on the majority rule, a system of decision-making where the largest
group decides the outcome, while as the less numerous groups must succumb to the
majority’s decision. This generates the inevitable winners - losers paradigm, which
impacts all levels of our democratic mentality. Thus, whenever a controversial matter
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arises, most effort is allocated to gathering the majority by convincing as many people
as possible of one point of view or the other. The resulting power struggles utilize a lot of
resources and often shift the conversation from the main concern. [10, 25] To prevent the
manipulation of decision-makers with emotional or rhetorical methods, evidence-based
decision-making has been increasingly promoted in formal settings, in which a set of
objective criteria is used and weighed, based on impact or relevance. In some decision-
making methods, the focus is on maximizing consensus by discussing and voting in
successive rounds. [1, 7].

Also, citizens want and are expected to participate more than ever in thinking, decid-
ing, and implementing decisions in societies. Finger and Portmann [5] have argued that
the smart city – performing city-relevant duties by using ICT – must not only focus on
resource management and sustainability as it is often expected, but also on the needs of
the individual, which are often overlooked [19, 20]. The same applies to regions, where
value can be created by bringing citizens into the decision-making process. [14].

In the following, we will present our framework and case study of Unterdorf St.
in the canton of Luzern, Switzerland, where a real-life community traffic problem was
resolved, and subsequent conflict was mediated, by using systemic consensus principles.
We developed and applied a transdisciplinary [22] framework for large scale group
decision-making (LS-GDM) using fuzzy methods, to perform comparative linguistic
expressions on two scales of resistance and support about the 13 alternatives, resulting
into a ranking of to be pursued in descending order of priority.

Section 2briefly reviews the concepts of decision-making, large scale groupdecision-
making (LS-GDM), systemic consensus, fuzzy decision-making, and comparative lin-
guistic expressions (CLEs). Section 3 presents our framework for LS-GDM, using sys-
temic consensus, CLEs and fuzzy logic. Section 4 introduces the case study of Under-
dorfstrasse, a real LS-GDM, to demonstrate the functionality of the proposed process.
In Sect. 5, conclusions, ethical considerations, and reflections are presented.

2 Preliminary Definitions

2.1 Literature Review

Large-scale group decision-making [11] using fuzzy methods [26] has been researched
extensively, [11] by usingCLEs, trapezoidalmembership functions, [7, 9] and computing
withwords. [13] Someof these studies also present consensus reaching processes, related
to LS-GDM, often involving multi-criteria decision-making. [1, 7, 8] Public decisions
are a special case of LS-GDM, for which Torres van Grinsven, Hudec, Portmann and
D’Onofrio [21] proposed a paradigm of flexible voting using fuzzy sets to enable more
participation [19, 20] and human-computer interaction. [2].

Most of the literature on decision-making processes using fuzzy sets [1] involves
experts and focuses on arguments, criteria, weighting [7, 12] and the study of hesitance
[27] while as in our case study we chose the approach of including all the affected
individuals in the decision-making process and deciding only about the alternatives in
a single round of voting, without any other formal criteria than the self-evaluated levels
of resistance and support. [6, 22].
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The main difference from other fuzzy models such as fuzzy TOPSIS or AHP is that
the decision reflects the support and resistance of the citizens about the alternatives, and
not their assessment of criteria, as no objective criteria are used. [7, 8, 12] The decision-
makers learned all the information and the arguments collected in favor and against,
discussed about them, considered all the alternatives, and voted using fuzzy sliders over
the course of one single in-person event. We chose to use ordinary fuzzy sets although
recent extensions of them exist, in order to make the process of decision-making very
simple, explainable, and understandable by all people, since the model was used for a
public, democratic decision.

Thus, the framework proposed herein is built using a 7-step decision-making process
(Table 4, Appendix), ethical system design [4, 16], and action design research (ADR)
[18, 24]. The latter is a computer science research paradigm, known as “knowledge
through making” [10, 19, 24] Despite being criticized on its rigor and relevance, we
considered it most suitable for our participative fuzzy voting case, and we relied on
continuous evaluation [3] and feedback collection to ensure its validity. [15] Lastly,
in choosing to include transdisciplinarity, we strived for a “generative processes of
harvesting, capitalizing, and leveraging multiple expertise” [6, p. 116] by including all
the stakeholders and considering their life experience as “expertise”.

2.2 Group Decision-Making Methods

When a group of individuals are presented with a choice of one or more alternatives to
a problem, or of means to reach a desired goal, there is a case of group decision-making
(GDM). The main difference between GDM and LS-GDM, is the size of the group. [7,
11].

Consensus Reaching Process
In consensus reaching processes (CRP), the decision is themost optimal proposal that the
participants support unanimously. CRP is usually characterized by the following steps:
(1) gathering preferences, (2) computing agreement level, (3) consensus control, and (4)
feedback generation [7], repeated as many times as necessary, until the maximum level
of consensus is reached. Between repetitions, experts or representatives have guided
discussions, with the goal of maximising consensus [1]. When consensus or the highest
level of agreement is reached, the CRP ends.

Systemic Consensus
One alternative to classic consensus is the Systemic Consensus Principle (SCP). It does
not require full consensus, but only to strive to obtain the minimum dissensus, by assess-
ing resistance to all possible alternatives and prioritizing those with the lowest levels.
The result indicates where the highest union of interests lies, in relation to each of the
possibilities. [10, 25].

2.3 Fuzzy Decision-Making

In 1965 Lotfi Zadeh introduced a human computational decision-making approach that
allows for more flexibility than crisp voting and enables consensus-driven processes.
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[26] In contrast with 1 and 0 crisp calculation, the assignment of intermediate values
represents human reasoning more precisely, because inherent hesitancy, uncertainty, and
irrationality of human thinking processes can be integrated [19].

Comparative Linguistic Expressions (CLEs) and Membership Functions
Comparative linguistic expressions (CLEs) are used in fuzzy systems to implement fuzzy
membership functions along a rating scale. Any two consecutive CLEs may overlap in
their membership level. They enable fuzzy decision-making by using words and statuses
to express the opinion about an alternative.

Fig. 1. Trapezoidal membership functions for agreement

Figure 1 shows all possiblememberships by using four CLEs from “I do not agree” to
“I agree”. At any point, a maximum of two of the CLE statuses will have a membership-
value above 0.

On the x-axis of Fig. 1, the chosen rating scale value 0.45 leads to a membership of
the CLE “I tend to disagree” with a value of 0.6 and a membership of the CLE “I tend
to agree” with a value of 0.4. The other two CLEs have a membership-value of 0.

Fuzzy Logic
Fuzzy logic is a concept in fuzzy decision-making which refers to the fact that states are
linked logically and not exclusively mathematically to each other [20]. This approach
opens various possibilities for dynamic decision-making. All possible combinations are
to be listed in a logic table and a final state for each combination is to be defined. The
logical operators AND, OR, as well as others can be used. Fuzzy logic allows for making
logical connections and enables statements and weightings.

In this chapter we briefly introduced the concepts of LS-GSM, CRP, SCP, fuzzy
voting, CLEs, and fuzzy logic. In the next chapter, our framework for integrative fuzzy
decision-making will be introduced.

3 Framework of an Integrative Fuzzy Decision-Making Process
(I-FDM)

3.1 I-FDM Framework of the Decision-Making Process

Based on the concepts in the preliminary part, we developed a fuzzy decision-making
process, which integrates all affected individuals as equal impact decision-makers D =
{d1, … dn}, regardless of their specific expertise or lack thereof. The I-FDM process
follows the following steps of decision-making (Fig. 2):
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Fig. 2. The I-FDM process

After gathering the alternatives, we assess support and resistance levels by using
CLE-sliders computed with membership functions. Then, we create a matrix of fuzzy
logic rules, of how the CLE membership-values are computed to output statuses, indi-
cating whether an alternative should be pursued or not. In the last step, through applying
the fuzzy logic rules, a ranking of the alternatives by output statuses is generated.

3.2 Comparative Linguistic Expressions (CLEs)

In our framework, S = {s1, s2, s3, s4} is the set of CLEs of support and R = {r1, r2, r3,
r4} is the set of CLEs for resistance. They are both represented through four statuses,
as seen in Fig. 3. The following CLEs were considered the most suitable for the public
decision-making process, and used for the two-slider assessment:

Fig. 3. Fuzzy membership function of S

The fuzzy envelopes, envF(S) and envF(R) are defined as a trapezoidal fuzzy
membership function of support S(a, b, c, d) and resistance R(e, f , g, h) where
(a, b, . . . h) → [0, 1] and representing CLEs membership-degrees such that:

envF(S) = S(a, b, c, d) (1)

envF(R) = R(e, f , g, h) (2)

Since the single CLEs are not sharply divided, a trapezoidal membership-function of
each CLE is used. Thus, we enabled a wide range on each CLE of a membership-degree
of 1.00, as also shown in similar applications [1].
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Computing Fuzzy Envelopes
Every decision-maker di assesses all alternatives ALTj = {a1, a2… an}, evaluating
each of them by using the two sliders. These assessments Ti = {tijS,tijR} per ALTj are
modelled by their fuzzy envelope (1) tijS = envF(S) and (2) tijR = envF(R); where i is
the unique number of the decision-maker and j represents the unique number of each
alternative to be assessed.

The arithmetic average of allALTjR andALTjS were computed. In the cases where Aj
was very widely distributed, we considered the value to be not as significant as needed
for a resilient result.

3.3 Two-Dimensional Fuzzy Logic Table

When all decision-makers (D) have committed their opinion for each alternative through
the two sliders, a two-dimensional assessment dataset T= {Ti,…Tn} results. This dataset
is used for the defuzzification and fuzzy logic evaluation [1].

Table 1 shows the fuzzy logic rules in a matrix of how the assessments of support
and resistance (T) are calculated into output statuses (O) by a logical conjunction. The
output statuses are the CLEs O = (o1, o2, o3) →

{rather not pursue; pursue critical; pursue clearly}. All 16 rules are shown in the 4×
4 matrix in Table 1.

E.g., If tSj is s1 AND tRj is r1, then result = o1 (rather not pursue). (3)

Through this logic table, individuallyweighing the statuses is possible. Theweighing
rules were agreed upon at the beginning of the decision-making process.

The AND operation based on the rule table is computed as a MIN function (O =
(S ∩ R)). Each output status (o1, o2, o3) is computed by a logical disjunction function
(oTOTAL1 = oA1 ∪ oB1 ∪ · · · ∪ oN1 ), OR operator or MAX function.

3.4 The Ranking of the Alternatives

The output of the I-FDM is a list of alternatives, compiled by using the disjunction
value per output status. These alternatives are to be examined in detail, and, if possible,
implemented. If the implementation is not possible, the next highest-ranking alternative
will be checked.

The comparative order of the CLE sets, the formation of the alternatives, and the
highest outputmembership-values, define the subordination. For example, the alternative
ALTj with the highest value of o1 = {pursue clearly} will be at the top of the ranking.

In this chapter, the I-FDM framework was introduced, comprising of four steps: (1)
gathering alternatives, (2) computing SUP and RES using CLEs and fuzzy envelopes,
(4) using a fuzzy logic table to compute outputs based on SUP and RES, and (4) the final
output, as a ranking of alternatives. In the following chapter, the case study of Unterdorf
St. will be introduced.
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Table 1. Two-dimensional fuzzy logic rule in a matrix

Support CLEs S (s1, s2, s3, s4)

I do not
support at all
this
alternative

I accept this
alternative but
only support it
partially

I support this
alternative for
the most part

I fully support
this alternative

Resistance
CLEs (r1, r2,
r3, r4)

I am against
it and resist
active

rather not
pursue

rather not
pursue

rather not
pursue

pursue,
critical

I am critical
against this
alternative

rather not
pursue

rather not
pursue

pursue,
critical

pursue,
critical

I think it is
not the best
alternative

rather not
pursue

rather not
pursue

pursue,
critical

pursue,
critical

I am not
resisting at
all

pursue,
critical

pursue clearly pursue clearly pursue clearly

4 Case Study

We applied the I-FDM framework to solve a long withstanding conflict around Unter-
dorf St. in Geuensee, Luzern, Switzerland, where between March 2022 and December
2022 we implemented a participative process combining crowdsourcing alternatives and
arguments, voting workshops, and UX-designed digital tools for fuzzy voting, to decide
which of the alternative solutions should be pursued further.

4.1 Methodology

Based on the action design research methodology, we have developed a process of fuzzy
decision-making, striving for systemic consensus with the use of two dimensions of
resistance and support, which were then computed using a two-dimensional matrix for
obtaining a ranking of the top options favored by the decision-makers (Fig. 4).

An important part of the methodology was the continuous evaluation, by means of
collecting feedbacks in each production cycle: by assessing process steps, artifacts and
the app through the decision-makers and other people. The collection and processing of
arguments and alternatives was also reflected upon, optimized, and jointly decided by
those involved in the process.

Problem Formulation
The community of around 2000 people living in Geuensee, in the canton of Luzern,
Switzerland, was dissatisfied with the traffic to and from an industrial area, passing
through the residential street Unterdorf St., causing noise and safety risks. Previously
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Fig. 4. Applied action design research in the process of decision-making

proposed solutions have further escalated the conflict. The decision-making process
started with 9 alternatives, to which 4 others were added during the process [17].

Building and Intervention
UX experts were involved for developing a dedicated, digital web-based platform, com-
plying with all the values and requirements of the I-FDM process. In November 2022,
two votingworkshops have been organized, at which the decision-makers were informed
about the problem, presented with the final 13 proposed alternatives as well as with the
arguments collected in earlier stages. Finally, the decision-makers D = {d1, …, d88}
voted on the alternatives ALTj = {a1, a2, …, a13} using two CLE sliders of resistance
and support.

CLE Sliders
Figure 5 shows the display screen for one of the alternatives to be assessed. There is
a slider, where the CLEs describe resistance-levels. They use text-feedback only, with
different transparency levels, highlightedwith a blue line on the upper slider, representing
themembership level to theCLEs. In Fig. 5 theCLE“I amcritical against this alternative”
is chosen by a membership-degree of 80%, whereas the CLE “I think it is not the best
alternative” is chosen by 20%. No numerical values of the assessment were shown on
the screen.

Fig. 5. Fuzzy sliders with membership functions, using transparency feedback of CLEs

4.2 Data Processing of CLE Membership-Values

A number of 2288 data entries were submitted on the 13 alternatives (ALT) by 88
decision-makers (D), during the two voting workshops. For each alternative, the average
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value per slider and the membership-degree to the CLEs s1 to s4 and r1 to r4 were
calculated (Table 5, Appendix). Since the average values were the input variable in the
fuzzy logic calculation, wherever the single assessments were very widely distributed,
the values were classified as not sufficiently significant. Thus, we used the histograms
to analyze the resilience of each of membership-degrees. (Fig. 6 and Fig. 7, Appendix).

4.3 Application of the Two-Dimensional Fuzzy Logic Table

The output statuses per alternative were calculated by the fuzzy logic rules from Table 1
using conjunction and disjunction. In Table 2 the computed membership-values of the
output statuses are shown (Table 6, Appendix).

Table 2. Membership-degrees of output statuses of first 7 alternatives (only values > 0)

Alternative Output statuses as CLEs Rank

Pursue clearly Pursue critical Rather not pursue

3 Towards Sursee 0.167 0.833 1

8 Relocation 1.000 2

13 Repurposing 0.833 0.167 3

10 Combination time 0.750 0.250 4

7 Slow traffic 0.500 0.500 5

1 Schäracher St 0.500 0.500 6

9 No action 0.167 0.750 7

Only one alternative “3 Towards Sursee” reaches the output status “pursue clearly”,
with a membership-degree of 0.167. This option will therefore be the top priority on the
ranking, followed by a descending list of the membership-degrees in the second CLE
output status “pursue critical”. The second priority will be “8 Relocation”, followed by
“13 Repurposing”, and so on, and so forth. Only the alternatives that are above option 9
“No action”, are to be checked in detail (Table 2).

In the first part of the section, we have presented the case study of Unterdorf St., a
real-world application of the framework presented in Sect. 2. The output was a ranking
of 6 alternatives to be analysed for implementation by the decision-makers. Next, we
will present the evaluation of our ADR method, conclusions, and reflections.

4.4 Evaluation

Dujmovic [3] defines evaluation as a process of assessing whether an object meets the
requirements of the users and/or stakeholders. Considering this perspective, we have
used the following evaluation guidelines (Table 3).
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Table 3. Outcome of the evaluation of the I-FDM

Use of Tools and Artifacts We received a total of around 500 arguments
on the 13 alternatives. Also, a total of 2288
CLE assessments were submitted by the 88
participants

Outcome:
The Ranking

Through the I-FDM process, we have
generated and delivered a 6-item ranking of
the most favored alternatives to be pursued by
the decision-makers

Feedback from Users on the Tools: Surveying
the Decision-makers

A quantitative survey was applied to the voters
about the digital platform built for the
occasion. The feedback was positive: 97%
answered that the decision-making tool was
helpful for the assessment

User Experience An interesting UX observation potentially
indicating that decision-making participants
liked and deliberatively made use of the
possibility to choose in-between
membership-degrees (Fig. 5), was that almost
all of decision-makers (93%) chose one or
more answers where two CLEs were shown at
the same time, adding up to 32% of the 2288
assessments

Feedback on the Process The result was accepted by the representatives
of the decision-makers and used for further
verification. We employed qualitative methods
of directly speaking with them, as well as the
quantitative method of the survey. The result
was that 88% of the participants said that they
would use this method again

5 Conclusion

In this paper an integrative fuzzy decision-making framework has been presented, as it
was applied with good results in the real-life case study of Unterdorf St. Being integra-
tive and transdisciplinary, the model included all concerned parties as decision-makers,
rather than only experts. The method combined measuring support, which is conven-
tionally assessed in consensus-reaching processes (CRPs), with measuring resistance,
thus striving for systemic consensus. The voting cycles were not repeated.

The results were computed with trapezoidal functions into fuzzy envelopes. A rank-
ing was generated by applying fuzzy logic rules, allowing to weight the resistance as
considered in the SCP. The 6-item list was handed to the decision-makers, for further
verification and implementation, in descending order of priority.

In the evaluation section, we showed that the voting platform used the UX element
of transparency-opacity of the status description, i.e., the transition from one CLE status
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to the other, to communicate to the user the ability to choose concomitant status mem-
berships on each one of the CLE sliders. This feature was used by most of the users, for
around a third of the assessments.

The feedback collected through surveys and qualitative assessments was overall
positive, in terms of using the digital tools and other artifacts, of the result relative to the
initial goal, and of using this decision-making method again.

Ethical System and Process Design
Our application of the I-FDM framework and consequent tools and artifacts produced,
follows the paradigm of value-based IT design and ethical system design [16] by actively
involving the stakeholders in all the phases of the system design.Wewanted tomake sure
that the values of confidentiality, integrity, availability of data, authenticity, accuracy,
are embedded into our integrative FDM framework.

Some examples are that the decision makers had access to the entire process and to
intermediary results and were informed about how the data will be handled. Also, the
problem statement was made clear, known to all, as well as the decisions that were taken
and assumptions that were made in the beginning. The stage of gathering the alternatives
was handled with particular care and transparency.

Our transdisciplinary integrative approach allowed all the stakeholders to participate,
according to their ownknowledge and competencies, andobtained a democratically legit-
imate result. Sufficient time was given for each step, allowing participants to understand
and to find time to attend. Lastly, we tried to set the right expectations for the result.
We also recommended that in deciding about the implementation, short-term as well as
long-term perspectives would be carefully considered.

Reflection
The results of this process can be extrapolated in twomain directions. Firstly, the I-FDM
is suitable and effective in real-life case studies of urban planning, community conflict
resolution, and others. The people that contributed throughout and participated in the
voting, validated this method by giving their attendance and positive feedback. For the
design science method, a key future takeaway is continuing the evaluation frommultiple
perspectives, as well as maintaining constant contact with real-world cases. The lack of
excessive theorization of the researchmethod helped to design a lean process, that put the
users at its core. More analysis can be done of the data, by using different computational
methods.
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Abstract. In the field of machine learning, a crucial task is understand-
ing the relative importance of the different input features in a predictive
model. There is an approach in the literature whose aim is to analyze
the predictive capacity of some features with respect to others. Can we
explain a feature of the input space with others? Can we quantify this
capacity? We propose a practical approach for analyzing the importance
of features in a model and the explanatory capacity of some features over
others. It is based on the adaptation of existing definitions from the liter-
ature that use the Shapley value and fuzzy measures. Our new approach
aims to facilitate the understanding and application of these concepts by
starting from a simple idea and considering well known methods. The
main objective of this work is to provide a useful and practical approach
for analyzing feature importance in real world cases.

Keywords: Fuzzy Measures · Machine Learning · Features
Importance · Explainable Artificial Intelligence

1 Introduction

The goal of this work is inspired by the idea that the interpretability of a machine
learning model is closely related to the knowledge about the predictive capacity
of the features involved [1]. In [8] it was introduced a new methodology to anal-
yse and consider the whole available information of the known features. Based
on fuzzy measures, it avoids the problem of overfitting caused by continuous
features. Its goal is to predict the value of an unidentified feature knowing a set
of them. That method was inspired by those of Štrumbelj et al. [11–13], who
used the Shapley value [9] of a cooperative game to analyze the measurement
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of the importance of the features in a machine learning model. This solution
concept is used in the field of eXplainable Artificial Intelligence (XAI) to assess
the importance of features in a machine learning model and to measure the pre-
dictive ability of some features over others [3]. It has gained popularity due to
their flexibility and appealing axiomatization of fairness [7].

In this field, two extreme approaches are specially interesting. The method
in [11] assigns a random value to the unknown feature. On the opposite, [13],
fixed a specific instance to be predicted, only considers instances in which the
value of the unknown feature matches with the fixed. The method in [8] is an
intermediate solution between [11] and [13], which mixes random values with the
consideration of exact values. That mix is supported by the use of fuzzy mea-
sures [10], monotonic set functions useful to make decisions, find good methods
and logical operators for connectives and implications, represent and analyze
vagueness [2].

Our goal now is a practical application of [8]. With that method as starting
point, in this paper we develop an step by step methodology which details how to
proceed in any case to calculate the predictive capacity measure which quantifies
the predictive capacity of some features over others, apart from the predictions
obtained in any scenario. To do so, and in order to establish a realistic and
easy-to-implement proposal, we base on the idea of generating simple predictive
models. We include a illustrative example to explain the process in detail, and
a comparison with other measures in the literature.

The paper is organized as follows. The foundational concepts necessary for
a comprehensive understanding of this paper are established in Sect. 2. Sect. 3
explains step by step the characterization of the new explanation method and
the relative predictive fuzzy measure. Section 4 is about an application of the
model and its interpretation. We finish in Sect. 5 with some final remarks.

2 Preliminaries

In this work we suggest a real approach to the measurement of the predictive
ability of the features of a machine learning model. Now we introduce the theoret-
ical models which set the starting point of the proposed application. Specifically,
we show the methods [8,11,13], used to measure the importance of features in a
machine learning model using the Shapley value in a cooperative game [9] with
characteristic function w, Shi(w). This solution concept has been adapted to
the field of fuzzy measures [10], on whose basis we develop this paper.

On the following it is assumed that the set of players or individuals, N , refers
to the input features in a machine learning model, N = {v1, . . . , vn}. A denote
the set of instances, and for S ⊆ N , the Cartesian product of singles instances in
S is AS = A′

1 × A′
2 × . . . A′

n, being A′
i = {vi}, if i ∈ S, and A′

i = {ε} otherwise,
being ε a pre-defined value that represents a missing data [12].

Finally, we present three importance measures. Given a database D and a
specific instance x, to measure the predictive ability of the unknown features, ϕ1

[11] assigns them a random value; ϕ2 [13] only considers the instances in which
unknown features exactly match with x, and ϕ3 [8] is an intermediate solution.
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Definition 1 (Explanation method for an instance ϕ1 [11]). Let D denote
a database with n features N = {v1, . . . , vn} and a set A of m instances, being
x = (x1, . . . , xn) ∈ A. Let f denote a predictive model. The importance of the
feature vj in the instance x is defined as the Shapley value for a characteristic
function Δ1(S), defined ∀S ⊆ N .

ϕ1
j (x) =

∑

S⊆N\{vj}

(n − s − 1)!s!
n!

(
Δ1(S ∪ {vj}) − Δ1(S)

)
(1)

where s = |S|; Δ1(S) =
1

|AN\S |
∑

y∈AN\S

f (τ (x, y, S)) − 1
|AN |

∑

y∈AN

f(y)

τ (x, y, S) = (z1, z2, . . . , zn), being z� =
{

x� if v� ∈ S
y� if v� /∈ S

Definition 2 (Explanation method for an instance ϕ2 [13]). Let D denote
a database with n features N = {v1, . . . , vn} and a set A of m instances, being
x = (x1, . . . , xn) ∈ A. Let f denote a predictive model. The importance of the
feature vj in the instance x is defined as the Shapley value for a characteristic
function Δ2(S), defined ∀S ⊆ N .

ϕ2
j (x) =

∑

S⊆N\{vj}

(n − s − 1)!s!
n!

(
Δ2(S ∪ {vj}) − Δ2(S)

)
(2)

where s = |S|; Δ2(S) =
1

|BS |
∑

y∈BS

f(y) − 1
|B∅|

∑

y∈B∅

f(y)

being BS = {y ∈ D : x� = y�,∀v� ∈ S}
Finally, to define ϕ3, it is needed the concept of predictive fuzzy measure.

Definition 3 (Predictive fuzzy measure [8]). Let D denote a database with
n features N = {v1, . . . , vn} and a set A of m instances. Given vj ∈ N , ∀S ⊆ N ,
μj(S) is defined as the predictive ability in D, regardless randomness, of the
features in S over vj.

μj(S) =
Errorj(∅) − Errorj(S)

Errorj(∅)
(3)

where Errorj(∅) and Errorj(S) denote a measure of the error obtained when vj

is predicted randomly or with the features in S, respectively.

Definition 4 (Explanation method for an instance using fuzzy mea-
sures ϕ3[8]). Let D denote a database with n features N = {v1, . . . , vn} and a
set A of m instances. For every vj ∈ N and for every μj(S) predictive fuzzy
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measure of the features in S ⊆ N over feature vj, being f a predictive model and
x = (x1, . . . , xn) ∈ A, the importance of the feature vj in the instance x is defined
as the Shapley value for a characteristic function Δ3(S), defined ∀S ⊆ N .

ϕ3
j (x) =

∑

S⊆N\{vj}

(n − s − 1)!s!
n!

(
Δ3(S ∪ {vj}) − Δ3(S)

)
(4)

where s = |S|; Δ3(S, x) =
1

|AN\S |
∑

y∈AN\S

f(τ(x, y′, S)) − 1

|AN |
∑

y∈AN

f(τ(x, y′, ∅))

τ(x, y′, S) = (z1, . . . , zn), being z� =
{

x� if v� ∈ S
y′

� if v� /∈ S

being y′
� an estimation of the �− th feature, v�, when knowing the features in

S, with which an explainability percentage of μj(S) is guaranteed.

3 Mathematical Model

Our goal is the proposal of a specific characterization of μj and ϕ3
j , which allows

the calculation in real problems. To do so, we have to specify the mathematical
models for which the prediction errors are calculated for every type of feature
vj ∈ N (i.e. we have to specify the calculation of the predictive fuzzy measure
μj), and the way to obtain y′ in order to guarantee the conditions of μj .

3.1 On the Calculation of the Predictive Fuzzy Measure

Our proposal considers simple mathematical models of prediction. Otherwise,
the calculation of μj would be really complex. Specifically, given a database D
with a set N of n input features and a set A of m instances, and being y the
variable to be predicted, our methodology to calculate μj is:

(1) Organize the input features into a set of categorical features N c; ordinal
features No, and numeric features Nn, where N = N c ∪ No ∪ Nn, and
N ı ∩ N j = ∅, ∀ı �= j ∈ {n, o, c}.

(2) Preprocessing of the features depending on their nature.
(2a) Each categorical feature c ∈ N c is decomposed into dummy variables, dc.

Common methods can be used, as long as the representativeness among
other criteria are guaranteed; i.e., the number of instances in which each
category is observed should not be negligible, otherwise the feature has
to be debugged beforehand. For example, given the categorical feature
c = {F,M}, the dummy related with the category F has the values
dc.F = 1 if c = F ; dc.F = 0, otherwise.

(2b) Each ordinal feature o ∈ No is decomposed into cumulative dummy
variables, do, but not with common methods: for each specific category
of the ordinal feature, the corresponding dummy variable has the value
1 for each value below or equal to the analyzed category, and the value



Machine Learning and Fuzzy Measures 141

0 otherwise. Obviously, a dummy is not needed for the last or higher
category, it would trivially have all values as 1. For example, given the
ordinal feature o = (Low, Medium, High), the dummy related with
the category Medium has the values do.Medium = 1, if o = Low or
Medium; and do.Medium = 0, if o = High.

(2c) No preprocessing is needed for numeric features.
(3) For every categorical feature c ∈ N c:

(3a) For every subset S ⊆ N\{c} of feasible features to predict c, we have to
calculate the best logistic model (logit) to predict dc [4].

(3b) We aggregate the predictions made by each predictive model, obtained
in (3a), into a single prediction for the original categorical feature. This
aggregation is done, in each instance, taking into account the propor-
tionality obtained in the predictions of the different models. To calculate
MSEc (mean square deviation to measure the average of the squares of
the errors), we consider the probability of not hitting the real value of the
analyzed feature c when knowing S:

MSEc(S) =
1
m

m∑

k=1

(1 − P (ĉk = ck))2 (5)

where P (ĉk = ck) is the probability of the estimated value of the ana-
lyzed feature c in the instance k, ĉk, fixes the real value of o in k, ck.
Regarding c = {F,M}, if the best logistic model about dc.F provides
the probability 0.55, and the best logistic model about dc.M provides
the probability 0.65 in a specific instance k, the aggregation is done in
k as

(
0.55

0.55+0.65 , 0.65
0.55+0.65

)
=

(
0.55
1.2 , 0.65

1.2

)
. If ck = F , the summand of

MSEc(S) related to instance k is
(
1 − 0.55

1.2

)2.
(3c) For these variables, the calculation of μc(S) is done considering the

percent error in classification when the available information is the subset
S ⊆ N\{c} or when it is the ∅. Then, the predictive fuzzy measure μc for
a categorical feature c and a subset of features S is calculated as:

μc(S) =
MSEc(∅) − MSEc(S)

MSEc(∅)
(6)

(4) For every ordinal feature o ∈ No:
(4a) For every subset S ⊆ N\{o} of feasible features to predict o, we have to

calculate the best logistic model (logit) to predict do [4].
(4b) We aggregate the predictions made by each predictive model, obtained

in (4a), into a single prediction for the original ordinal feature. This aggre-
gation is done, in each instance, by taking into account the proportional-
ity obtained in the predictions of the different models and by combining
some dummy variables based on their definitions, which were obtained
from ordinal features. To calculate MSEo, we consider the probability of



142 I. Gutiérrez et al.

not hitting the real value of o when knowing S:

MSEo(S) =
1
m

m∑

k=1

(1 − P (ôk = ok))2 (7)

where P (ôk = ok) is the probability of the estimated value of the analyzed
feature o in the instance k, ôk, fixes the real value of o in k, ok. Regarding
o = (Low, Medium, High), if the best logistic model about do.Low
provides probability 0.5 and the best logistic model about do.Medium
provides probability 0.7 in a specific instance k, the aggregation is done
in k as (0.5, 0.7 − 0.5, 1 − 0.7) = (0.5, 0.2, 0.3). If ok = Medium, the
element of MSEo(S) regarding instance k is (1 − 0.2)2.

(4c) For these variables, the calculation of μo(S) is done considering the
percent error in classification when the available information is the subset
S ⊆ N\{o} or it is the ∅. Then, the predictive fuzzy measure μo for an
ordinal feature o and a subset of features S is calculated as:

μo(S) =
MSEo(∅) − MSEo(S)

MSEo(∅)
(8)

(5) For every numeric feature n ∈ Nn:
(5a)For every subset S ⊆ N\{n} of feasible features to predict n, we have to

calculate the best generalized linear model (GLM) to predict n [6].
(5b) We calculate the means squared error (MSE) for every model obtained

in (5a) to predict n when knowing S.

MSEn(S) =
1
m

m∑

k=1

(n̂k − nk)2 (9)

being n̂k and nk the estimated and the real value of n in the instance k.
(5c) We define the μn(S) of those features as

μn(S) =
MSEn(∅) − MSEn(S)

MSEn(∅)
(10)

(6) We have to recalculate μ to make it meet the condition of superadditivity.

μj(S) = max
R⊆S

μj(R) (11)

Let us note that this readjustment is not common, as, in general, models do
not get worse when the number of variables increases.

3.2 On the Calculation of the Estimation y′

To specific a particular application of the measure ϕ, we also have to explain the
calculation of y′. As mentioned in Definition 4, given a set of features S ⊆ N ,
the value y′

� is an estimation of the �− th feature, v�, when knowing the features
of a subset S. Our proposal is as follows:
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1) If v� is categorical, the value assigned to y′
� is a draw between the different

categories of the features, by considering the probabilities defined in (3b).
2) If v� is ordinal, the value assigned to y′

� is a draw between the different tidy
categories of the features, considering the probabilities defined in (4b).

3) If v� is numeric, the value assigned to y′
� is the prediction given by the best

GLM obtained in the point (5a) of previous section

4 An Application and Interpretation of the Method

4.1 Definition of the Problem

We have to explicitly characterize the database and the predictive model.
� Definition of the database:

– D = {N,A}
– N = {v1, v2, v3}, where v1 is categorical, v2 is ordinal, and v3 is numeric:

v1 = {c1, c2}; v2 = {o1, o2, o3}; v3 is generated as a random variable β(x, y)
whose parameters depends on the combination of the values of v1 and v2 (see
Fig. 1). The possible combinations of v1 and v2 are {c1 − o1; c1 − o2; c1 −
o3; c2 − o1; c2 − o2; c2 − o3}. On the following we consider this order, and we
state c1 − o1 as Case 1 ; c1 − o2 as Case 2, and so on.

– The output variable, y, is dichotomous. We establish a relation of y with the
explainable variables: we calculate an auxiliary value, aux = 0.2 ∗ v1.c

2 +
0.15 ∗ v2.o

2 + 0.3 ∗ v2.o
3 + v3 + 1.5 ∗ U(0, 1), and then y = 1, if aux > 1.5;

y = 0 otherwise. This relation is showed in red color in Fig. 1.
– Each one of the 6 cases is generated 25 times, so |A| = 6∗25 = 150 instances.

Fig. 1. Generation of the 150 instances of D and y.
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� Predictive model definition: considering the auxiliary value aux2 = 0.2∗v1.c
2+

0.15 ∗ v2.o
2 + 0.3 ∗ v2.o

3 + v3, the mode used to predict y is:

f =

⎧
⎨

⎩

1, if aux2 > 1.5
0, if aux2 < 0

aux2
1.5 , otherwise

4.2 Comparison of ϕ3 with Other Methods

We finish this section with the interpretation of the model and its comparison
with other proposals, particularly, ϕ1 and ϕ2 [11,13]. In Table 1 we show all the
calculations and elements mentioned in the enumeration proposed in Sect. 3.1,
needed to calculate ϕ3 for the case detailed in Sect. 4.1. The coefficients βi in
the columns refer to the parameters of each predictive model (logit or GLM);
specifically, β0 refers to intercept. To show a simple view outline we finish the
table with the calculation of the MSE; we do not explicitly show the value of
the predictive fuzzy measure as it is trivial with the available information.

Note that the MSE is defined for the features and not for a specific category
of them. Nevertheless, in Table 1 we show a value of MSE for every feature
just to have a cohesive presentation of the content. For this reason, the error of
predicting dv1 .c1 by knowing v3 matches with the error of predicting dv1 .c1 by
knowing v3, and it actually refers to MSEv1 ({v3}).

Table 1. Summary of the steps (3a), (4a), (5a), (3b), (4b), (5b).

id var. indep S method β0 β1 (v1.c1) β2 (v1.c2) β3 (v2.o1) β4 (v2.o2) β5 (v3) MSE

1 dv1 .c1 ∅ logit 0 − − − − − 0.25

2 dv1 .c1 {v2} logit 0 − − 0 0 − 0.25

3 dv1 .c1 {v3} logit 4.8 − − − − −9.8 0.099

4 dv1 .c1 {v2, v3} logit 9.94 − − −5.44 −2.67 −14.6 0.058

5 dv1 .c2 ∅ logit 0 − − − − − 0.25

6 dv1 .c2 {v2} logit 0 − − 0 0 − 0.25

7 dv1 .c2 {v3} logit −4.8 − − − − 9.8 0.099

8 dv1 .c2 {v2, v3} logit −9.94 − − 5.44 2.67 14.6 0.058

9 dv2 .o1 ∅ logit −0.69 − − − − − 0.44

10 dv2 .o1 {v1} logit −0.69 0 0 − − − 0.44

11 dv2 .o1 {v3} logit 0.59 − − − − −2.8 0.39

12 dv2 .o1 {v1, v3} logit 5.1 −3.96 0 − − −8.2 0.31

13 dv2 .o2 ∅ logit 0.69 − − − − − 0.44

14 dv2 .o2 {v1} logit 0.69 0 0 − − − 0.44

15 dv2 .o2 {v3} logit 2.07 − − − − −2.56 0.39

16 dv2 .o2 {v1, v3} logit 7.94 −4.52 0 − − −9.05 0.31

17 v3 ∅ GLM 0.5 − − − − − 0.093

18 v3 {v1} GLM 0.27 0 0.047 − − − 0.038

19 v3 {v2} GLM 0.65 − − −0.3 −0.14 − 0.078

20 v3 {v1, v2} GLM 0.42 0 0.047 −0.3 −0.14 − 0.023
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Table 2. Instances analyzed: Min., Max., Median of v3 for each case.

v1.c
1 v1.c

2 v2.o
1 v2.o

2 v2.o
3 v3

Min.(v3) Case 1 1 0 1 0 0 0.00259

Case 2 1 0 0 1 0 0.06073

Case 3 1 0 0 0 1 0.12488

Case 4 0 1 1 0 0 0.16851

Case 5 0 1 0 1 0 0.35727

Case 6 0 1 0 0 1 0.77265

Max.(v3) Case 1 1 0 1 0 0 0.60353

Case 2 1 0 0 1 0 0.61575

Case 3 1 0 0 0 1 0.57236

Case 4 0 1 1 0 0 0.87779

Case 5 0 1 0 1 0 0.97143

Case 6 0 1 0 0 1 0.99753

Median.(v3) Case 1 1 0 1 0 0 0.09972

Case 2 1 0 0 1 0 0.27631

Case 3 1 0 0 0 1 0.36674

Case 4 0 1 1 0 0 0.57562

Case 5 0 1 0 1 0 0.75059

Case 6 0 1 0 0 1 0.92766

Let us not that there is a Shapley value for each instance (125) and for
each measure, (ϕ1, ϕ2, ϕ3). Then, instead of comparing every value, we consider
some representative scenarios. Specifically, we compare the values of the three
measures ϕ1, ϕ2 and ϕ3 for the minimum, maximum and median value of v3,
for every scenario Case 1 - Case 6, i.e. for 18 different instances (see Table 2).

A good method based on the Shapley value should have internal consistency,
that is, if different information is known in different scenarios, the value obtained
in each scenario should also be different (unless the additional information is
absolutely irrelevant or redundant). This idea is fulfilled with ϕ1 and ϕ3, but
not with ϕ2: in Tables 3, 4, 5 it can be seen that Δ2({v3}) = Δ2({v1, v3}) =
Δ2({v2, v3}), i.e., it does not affect at all to know v1 or v2 if v3 is already known.
This problem is not casual; it will always happen when a numerical variable is
known, as already shown in [8].

Comparing ϕ1 and ϕ3, either one is applied depending on which of the two
provides values that are most similar to the real values. Clearly, ϕ1 approximates
reality less than ϕ3 by not taking into account the correlation between features
v1 and v2 with v3. For example, when we know that v1 = c1 and v2 = o1, it is
very unlikely for the prediction to be 1, given that this will only happen when the
sum of a random number from a β(1, 6) plus a random number from a uniform
multiplied by 1.5 exceeds the value 1.5 (if we do the calculations, that probability
is approximately 0.001; as the estimation in the absence of information is 0.5
due to symmetry, the ‘good’ value of Δ1({v1, v2}) and Δ1({v1, v2}) should be
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0.001 − 0.5 = −0.499), which is very far from the value −0.16667 obtained with
Δ1 and much closer to the value −0.42703 obtained with Δ3 (it is the same for
the minimum, the maximum or the median of v3). Other example is when v1 = c2

and v2 = o3; the ‘good’ value of Δ1 and Δ3 should be 0.85809 − 0.5 = 0.35809,
being Δ1({v1, v2}) = 0.16667 and Δ3({v1, v2}) = 0.42145.

Therefore, we can affirm that the method proposed, ϕ3, presents obvious
advantages over the proposals ϕ1 and ϕ3 [11,13] and it is desirable to carry out
a thorough comparison to decide in which situations each of them are better or
if one of them prevails over the others in most situations.

Table 3. Calculation of Δ1, Δ2 and Δ3. Minimum of v3.

Min. v3 Case {v1} {v2} {v3} {v1, v2} {v1, v3} {v2, v3} {v1, v2, v3} Shv1 Shv2 Shv3

Δ1 Case 1 −0.06667 −0.1 −0.33173 −0.16667 −0.39839 −0.43173 −0.49839 −0.06667 −0.1 −0.33173

Case 2 −0.06667 0 −0.29297 −0.06667 −0.35964 −0.29297 −0.35964 −0.06667 0 −0.29297

Case 3 −0.06667 0.1 −0.25020 0.03333 −0.31686 −0.15020 −0.21686 −0.06667 0.1 −0.25020

Case 4 0.06667 −0.1 −0.22112 −0.03333 −0.15445 −0.32112 −0.25445 0.06667 −0.1 −0.22112

Case 5 0.06667 0 −0.09527 0.06667 −0.02861 −0.09527 −0.02861 0.06667 0 −0.09527

Case 6 0.06667 0.1 0.18164 0.16667 0.24831 0.28164 0.34831 0.06667 0.1 0.18164

Δ2 Case 1 −0.22330 −0.20373 −0.49839 −0.41091 −0.49839 −0.49839 −0.49839 −0.10896 −0.09918 −0.29025

Case 2 −0.22330 0.00558 −0.35964 −0.21038 −0.35964 −0.35964 −0.35964 −0.11043 0.00401 −0.25323

Case 3 −0.22330 0.19815 −0.21686 −0.04861 −0.21686 −0.21686 −0.21686 −0.11556 0.09516 −0.19647

Case 4 0.22330 −0.20373 −0.25445 0.00344 −0.25445 −0.25445 −0.25445 0.10896 −0.10455 −0.25886

Case 5 0.22330 0.00558 −0.02861 0.22154 −0.02861 −0.02861 −0.02861 0.11043 0.00157 −0.14060

Case 6 0.22330 0.19815 0.34831 0.44491 0.34831 0.34831 0.34831 0.11556 0.10298 0.12977

Δ3 Case 1 −0.22330 −0.20373 −0.45012 −0.42703 −0.47055 −0.49688 −0.49839 −0.11556 −0.11894 −0.26389

Case 2 −0.22330 0.00558 −0.40512 −0.21771 −0.41982 −0.35941 −0.35964 −0.11417 0.03047 −0.27594

Case 3 −0.22330 0.19815 −0.35436 −0.02515 −0.36059 −0.21682 −0.21686 −0.11270 0.16990 −0.27407

Case 4 0.22330 −0.20373 −0.31893 0.01957 −0.25191 −0.37250 −0.25445 0.16217 −0.11164 −0.30498

Case 5 0.22330 0.00558 −0.14925 0.22888 −0.11746 −0.14676 −0.02861 0.15633 0.03282 −0.21776

Case 6 0.22330 0.19815 0.27100 0.42145 0.25381 0.32062 0.34831 0.11801 0.13885 0.09145

Table 4. Calculation of Δ1, Δ2 and Δ3. Maximum of v3.

Max. v3 Case {v1} {v2} {v3} {v1, v2} {v1, v3} {v2, v3} {v1, v2, v3} Shv1 Shv2 Shv3

Δ1 Case 1 −0.06667 −0.1 0.06890 −0.16667 0.00223 −0.03110 −0.09777 −0.06667 −0.1 0.06890

Case 2 −0.06667 0 0.07705 −0.06667 0.01038 0.07705 0.01038 −0.06667 0 0.07705

Case 3 −0.06667 0.1 0.04812 0.03333 −0.01855 0.14812 0.08145 −0.06667 0.1 0.04812

Case 4 0.06667 −0.1 0.25174 −0.03333 0.31840 0.15174 0.21840 0.06667 −0.1 0.25174

Case 5 0.06667 0 0.31416 0.06667 0.38083 0.31416 0.38083 0.06667 0 0.31416

Case 6 0.06667 0.1 0.33157 0.16667 0.39823 0.43157 0.49823 0.06667 0.1 0.33157

Δ2 Case 1 −0.22330 −0.20373 −0.09777 −0.41091 −0.09777 −0.09777 −0.09777 −0.10896 −0.09918 0.11037

Case 2 −0.22330 0.00558 0.01038 −0.21038 0.01038 0.01038 0.01038 −0.11043 0.00401 0.11679

Case 3 −0.22330 0.19815 0.08145 −0.04861 0.08145 0.08145 0.08145 −0.11556 0.09516 0.10185

Case 4 0.22330 −0.20373 0.21840 0.00344 0.21840 0.21840 0.21840 0.10896 −0.10455 0.21400

Case 5 0.22330 0.00558 0.38083 0.22154 0.38083 0.38083 0.38083 0.11043 0.00157 0.26884

Case 6 0.22330 0.19815 0.49823 0.44491 0.49823 0.49823 0.49823 0.11556 0.10298 0.27969

Δ3 Case 1 −0.22330 −0.20373 0.11484 −0.42703 0.08859 0.03380 −0.09777 −0.15988 −0.17749 0.23960

Case 2 −0.22330 0.00558 0.12724 −0.21771 0.09801 0.12350 0.01038 −0.15423 −0.02704 0.19165

Case 3 −0.22330 0.19815 0.08240 −0.02515 0.06400 0.10412 0.08145 −0.12227 0.10851 0.09521

Case 4 0.22330 −0.20373 0.35653 0.01957 0.35766 0.21837 0.21840 0.11185 −0.17131 0.27787

Case 5 0.22330 0.00558 0.42930 0.22888 0.44561 0.38070 0.38083 0.11441 −0.02690 0.29332

Case 6 0.22330 0.19815 0.44923 0.42145 0.46870 0.49694 0.49823 0.11533 0.11687 0.26604
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Table 5. Calculation of Δ1, Δ2 and Δ3. Median of v3.

Median v3 Case {v1} {v2} {v3} {v1, v2} {v1, v3} {v2, v3} {v1, v2, v3} Shv1 Shv2 Shv3

Δ1 Case 1 −0.06667 −0.1 −0.26698 −0.16667 −0.33364 −0.36698 −0.43364 −0.06667 −0.1 −0.26698

Case 2 −0.06667 0 −0.14925 −0.06667 −0.21591 −0.14925 −0.21591 −0.06667 0 −0.14925

Case 3 −0.06667 0.1 −0.08896 0.03333 −0.15562 0.01104 −0.05562 −0.06667 0.1 −0.08896

Case 4 0.06667 −0.1 0.05029 −0.03333 0.11696 −0.04971 0.01696 0.06667 −0.1 0.05029

Case 5 0.06667 0 0.16694 0.06667 0.23360 0.16694 0.23360 0.06667 0 0.16694

Case 6 0.06667 0.1 0.28499 0.16667 0.35166 0.38499 0.45166 0.06667 0.1 0.28499

Δ2 Case 1 −0.22330 −0.20373 −0.43364 −0.41091 −0.43364 −0.43364 −0.43364 −0.10896 −0.09918 −0.22550

Case 2 −0.22330 0.00558 −0.21591 −0.21038 −0.21591 −0.21591 −0.21591 −0.11043 0.00401 −0.10950

Case 3 −0.22330 0.19815 −0.05562 −0.04861 −0.05562 −0.05562 −0.05562 −0.11556 0.09516 −0.03523

Case 4 0.22330 −0.20373 0.01696 0.00344 0.01696 0.01696 0.01696 0.10896 −0.10455 0.01255

Case 5 0.22330 0.00558 0.23360 0.22154 0.23360 0.23360 0.23360 0.11043 0.00157 0.12161

Case 6 0.22330 0.19815 0.45166 0.44491 0.45166 0.45166 0.45166 0.11556 0.10298 0.23311

Δ3 Case 1 −0.22330 −0.20373 −0.37444 −0.42703 −0.38419 −0.42761 −0.43364 −0.11529 −0.12721 −0.19115

Case 2 −0.22330 0.00558 −0.22626 −0.21771 −0.21190 −0.21086 −0.21591 −0.11094 0.00402 −0.10899

Case 3 −0.22330 0.19815 −0.13972 −0.02515 −0.12152 −0.05428 −0.05562 −0.10906 0.13528 −0.08184

Case 4 0.22330 −0.20373 0.08585 0.01957 0.06372 0.01431 0.01696 0.10884 −0.12938 0.03749

Case 5 0.22330 0.00558 0.25223 0.22888 0.23195 0.23036 0.23360 0.10935 −0.00030 0.12456

Case 6 0.22330 0.19815 0.39557 0.42145 0.40539 0.44812 0.45166 0.11446 0.12325 0.21394

5 Conclusions and Further Research

In the field of machine learning, it is important to analyze the importance of
features in a model. There are several approaches to this problem in the liter-
ature, including the analysis of the predictive capacity of some features about
others [11–13]. In previous works, authors adapted existing definitions of feature
importance based on the Shapley value [9] to a fuzzy measure context, which
allows the consideration of the concepts of vagueness and capacity [5,8]. Our
goal now is to propose a practical application of these measures that is useful
for real-world cases, rather than being limited to a theoretical perspective. Our
method is based on a simple idea and is designed to be easy to understand and
apply, using well-known methods as a foundation.

The starting point of this paper is the proposal in [8] about the measurement
of the predictive ability of features in a machine learning model. Inspired by
previous works that used the Shapley value of a cooperative game to evaluate
the predictive ability of a set of features over an unknown one, the authors
proposed a solution based on the use of fuzzy measures, which allow them to
represent the power of the elements of a machine learning model in a realistic
way. They theoretically defined an intermediate solution that combines elements
from two previous works and mixes the consideration of random values with the
specification of exact values.

In this paper, we build upon a previously defined theoretical idea and focus
on developing a realistic and practical application of it. We provide detailed
implementation and execution instructions for applying the idea in a real-world
setting. Our idea is based on the calculation of simple predictive models after a
proper preprocessing of the features itself. We also include an illustrative example
to explain step by step how to apply our methodology. As it can be seen in Sect. 4,
a simple idea and process converge to a very interesting and helpful result.



148 I. Gutiérrez et al.

Although it is a preliminary application, an evaluation based on benchmark
is our next step, with the obtained results we can say that ϕ3 improves in some
aspects over other models from the literature. This new measure considers the
interaction between any type of variables, something that the other definitions
did not take into account. We are currently working in the development of a
general model, able to consider any database with any set of features (in terms
of type and amount). From our humble opinion, we think this methodology will
be an added value step when analyzing complex machine learning models.
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Abstract. A recommender system is a software tool designed to sup-
port users to filter out useless options within a multitude of choices
and provide them with the best possible ones. Group recommender sys-
tems have emerged as an important trend in recommendation since they
recommend social items that are enjoyed by more than one individual,
such as TV programs and travel packages, that are typically consumed
in groups. Although algorithm selection in recommender systems is a
research problem covered to some extent by the research community in
which individuals’ information is aggregated, this contribution is focused
on the automatic selection of the most appropriate aggregation function
in group recommendation. Specifically, a general framework that identi-
fies group characteristics to be matched with the most appropriate aggre-
gation function is presented. This approach is implemented by using a
fuzzy decision tree classifier, in a content-based group recommendation
approach. The development of an experimental protocol illustrates the
advantage of the new proposal in relation to its corresponding baselines.

Keywords: group recommendation · fuzzy decision tree · preference
aggregation

1 Introduction

The use of Recommender systems (RSs) is essential in online environments
that concentrate on suggesting to users the items that most closely align with
their preferences and requirements, given the overload of possible options in the
product search space. Due to their functional principles, RSs have been exten-
sively applied across a wide range of domains, including electronic commerce,
e-learning, e-health, and e-tourism [14,20].

RSs have traditionally been employed to suggest items to individual users.
Nonetheless, in recent times, different types of items, known as social items, that
are often consumed by groups have emerged within recommendation contexts.
Examples of such items include movies and tourist routes [7]. Recommending
this kind of item entails an additional effort compared to individual recommen-
dations, as preferences must be managed at both the individual and group level.
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This necessity has sparked the growth of Group Recommender Systems (GRSs)
[7] as a separate research branch in the field of RSs.

Primarily, GRSs concentrate on processing the data linked to the members of
a group. Such processing can be achieved by utilizing recommendation aggrega-
tion [8], where individual recommendations are initially calculated for each group
member, and then combined via a recommendation aggregation method. Alter-
natively, a preference aggregation approach can also be employed [8], wherein
a pseudo-user is generated that globally represents the group’s preferences, and
this pseudo-user profile is employed to compute the group recommendation. In
both paradigms, aggregation is crucial in the recommendation process. Several
authors such as De Pessemier et al. [8] have then incorporated different aggre-
gation schemes such as Average (Avg), Least Misery (LM) or Most Pleasure
(MP).

The current contribution concerns the automatic selection of the aggregation
methods in group recommendation. The automatic selection of the most appro-
priate recommendation algorithm considering the nature of the data has been
explored with some extent by the research community [6,17]. However, unlike
to these research works focused on algorithm selection, our current contribu-
tion is focused on the selection of a suitable aggregator for the recommendation
method. In addition, in contrast to the previous approaches centered on individ-
uals, it is focused on group recommendation. Finally, we explore the use of fuzzy
classification trees for managing the uncertainty associated to this scenario [21].

In this way, the current contribution aims at providing the following novelties:

– Developing a global methodology for performing an automatic selection of
the aggregation function in group recommendation, based on the nature of
the underlying group.

– The development of a working scenario for the application of the global
methodology in a content-based group recommendation scenario.

– The execution of a experimental protocol for evaluating the impact of the
proposed methodology in the working scenario.

The paper is structured as follows. Section 2 presents a background with an
overview of the knowledge related to the proposal presentation, including group
recommender systems, and automatic algorithm selection in recommender sys-
tems. Section 3 presents a general framework for automatic selection of aggre-
gation functions in GRS. Section 4 illustrates a specific implementation of such
framework, considering a fuzzy decision tree classifier and a content-based group
recommendation approach. Section 5 evaluates such implementation, comparing
it with associated baselines. Section 6 concludes the paper.

2 Preliminaries

The necessary background is provided here for the proposal discussion, focused
on group recommendation and algorithm selection in RS.
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2.1 Group Recommender Systems

RSs are AI-based systems used to provide users with the information that best fit
their preferences and needs in overloaded search spaces [1]. The more spread tax-
onomy for identifying recommender systems, groups them into three main cat-
egories: 1) content-based recommender systems, 2) collaborative filtering-based
recommender systems, and 3) hybrid recommender systems.

Herein, GRSs [8] have appeared as an emerging paradigm for scenarios in
which recommended items are usually enjoyed by groups of users. Movies, touris-
tic routes, or TV programs, are key examples of such kind of scenarios [14].

To perform item recommendations in such contexts by the content-based [16]
or the collaborative filtering paradigm [8], the literature has identified two main
recommendation techniques:

– Rating aggregation: The rating aggregation approach is based on the creation
of a pseudo-user profile that represents the group’s preferences [7,8]. This
profile then receives the recommendation, using individual recommendation
algorithms, as if it were a typical individual profile.
To construct pseudo-user profiles, several aggregation strategies are com-
monly used, as described in [8]. Three of the most frequently used strategies
include: 1) Average, which involves building the pseudo-user profile based on
the average rating given by each member of the group for the corresponding
item; 2) Least Misery, which involves building the pseudo-user profile based
on the lowest rating given by any member of the group for the corresponding
item; and 3) Most Pleasure, which involves building the pseudo-user profile
based on the highest rating given by any member of the group for the corre-
sponding item. These aggregation strategies are used to combine the ratings
provided by individual members of the group to form a single profile that
represents the group’s preferences.

– Recommendation aggregation: This approach aggregates individual recom-
mendations of each member of the group, to obtain the group’s recommen-
dation [8].
In this scenario, the final stage of aggregation is based on the individual pre-
dictions made for each member of the group. There are three commonly used
aggregation schemes for this purpose, as described in [8]. The first scheme is
the Average approach, which involves calculating the group’s prediction for a
particular item as the average of the predicted ratings made by each individ-
ual user in the group for the same item. The second scheme is Least Misery,
which determines the group’s rating as the minimum of the predicted rat-
ings made by each individual user. The third scheme is Most Pleasure, which
determines the group’s rating as the maximum of the predicted ratings made
by each individual user. It is important to note that while these aggregation
schemes are similar to the rating aggregation scheme, they have a different
meaning in this context.

The current research work is focused on proposing a framework for facil-
itating the automatic selection of the aggregation measures, taking as base
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the content-based group recommender system approach (CB-GRS) [16]. In this
way, while the previous works focused on content-based group recommendation
[13,16] incorporate the aggregation approaches based on a pre-defined viewpoint,
the aim of our proposal is the automatic identification of the most appropriate
aggregation approach tailored to the current group features.

2.2 Automatic Algorithm Selection in Recommender Systems

The automatic selection of the most suitable recommendation algorithm, based
on the nature of the data, has been explored by the research community to some
extent.

In an initial study, the problem of selecting the most appropriate Collaborative
Filtering (CF) algorithm was explored by representing the data as a graph rather
than a rating matrix [12]. The study derived metafeatures that are dependent
on the graph to choose among nearest neighbor (NN) algorithms. Additionally,
the selection process utilized a rules-based model that leveraged domain-specific
knowledge.

Subsequent studies investigated the rating matrix by utilizing statistical
and/or information-theoretical metafeatures to choose between nearest neigh-
bor (NN) and matrix factorization (MF) algorithms [2]. In these studies, the
task was approached as a regression problem, with the objective of improving
the Root Mean Square Error (RMSE) performance.

A different technique, which involved a decision tree regression model, was
later proposed to address the problem [9]. This method examined the connection
between user ratings and neighborhood data, as well as the anticipated error in
the recommendations provided by a nearest neighbor (NN) algorithm. Unlike
previous approaches, this method concentrated on characterizing metafeatures
for individual users instead of the entire dataset.

Furthermore, Cunha et al. [6] conducted an empirical study on algorithm
selection for collaborative filtering, considering statistical features of the RS
dataset and their impact on the performance of different CF approaches. More
recently, Polatidis et al. [17] proposed a methodology for recommender system
algorithm selection using a machine learning classifier, which indicated that tree-
based approaches such as Decision Tree and Random Forest perform well and
provide accurate and precise results.

Unlike previous works, our proposal focuses on selecting a specific aggrega-
tion operator of the recommendation method, rather than the algorithm as a
whole. Moreover, it is focused on group recommendation, rather than individual
recommendation as in previous studies.

3 A General Framework for Automatic Selection
of the Aggregation Measure

A methodology for performing the automatic selection of the aggregation func-
tions in group recommendation is presented here. Figure 1 depicts this method-
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Fig. 1. General methodology for automatic selection of the aggregation function in
GRS.

ology, which is composed of offline and online stages, and comprises the following
steps:

1. Group’s features characterization: It is focused on exploring groups’ pref-
erences values for extracting features that could be relevant for characterizing
groups. Such features could be directly obtained from such values (e.g. rat-
ing averages, amount of ratings, the higher rating value), or depending of
intermediate calculation such as the groups’ member correlation values.

2. Performance evaluation of the GRS aggregation functions: It explores
the performance of a selected GRS method, for each specific group and con-
sidering different aggregation functions. Here, the goal is to identify for each
mentioned group, the aggregation function that performs best. As mentioned
in Sect. 2, some of the aggregation measures usually considered in GRS are
Average, Least Misery, and Most pleasure [8]. Here it is important to point
out that in the next future it will be explored further power means and OWA
operators at this stage [5]; however it is necessary to characterize better their
behavior in the GRS context, before their use a part of an automatic selection
strategy.

3. Supervised classifier training: It trains a supervised classifier for linking
the features identified at Step 1, with the best aggregation functions identified
at Step 2. This approach assummes the hypothesis that the performance of
each aggregation function depends on the value of some group’s features.
Even though, these three stages have a low computational cost, they can be
also executed in an offline phase, previously to the real-time recommendation
generation process.

4. Identification of the most appropriate aggregation function: This
step represents the online phase of the procedure. It is focused on the use
of the classifier trained in the previous step, for identifying the most appro-
priate aggregation function that will be used for the active group, in the
recommendation generation process.

The presented methodology can be implemented in different GRS and super-
vised classifiers scenarios, exploiting the benefits at each specific case. The fol-
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lowing section will explore it, considering a content-based group recommendation
approach and a fuzzy decision tree-based classifier.

4 Automatic Selection of the Aggregation Function
in Content-Based Group Recommendation

This section illustrates the implementation of the methodology presented in the
previous section, in a content-based group recommendation scenarios [16]

Group’s Features Characterization: This step characterizes groups by using
features with a clear semantic meaning, to facilitate the understanding of the
classification procedure that will be used in the following steps.

The following group features are used:

– The minimum Pearson’s correlation coefficient value between any pair of
group members (M) (Eq. 1).

M(G) = min corr(u, v), ∀u, v ∈ G (1)

– The amount of ratings linked to the group (A) (Eq. 2). |Ru| is the number of
preferences of user u.

A(G) =
∑

u∈G

|Ru| (2)

– The amount of items that have been co-evaluated by all the current group
users (C) (Eq. 3).

C(G) = |Ic|, where Ic = {i : ∀u∈Grui ∈ R} (3)

– The rating average of the group (AV), formalized through Eqs. 4–5.

AV (G) =

∑
rui∈R rui

|R| (4)

R = ∪u∈GRu (5)

The selection of these features is based on previous work that raises the
relevance of such information in the GRS context [4,8].

In the next step of the procedure, it will be assumed that the features are
normalized into the interval [0, 1].

Performance Evaluation of the GRS Aggregation Functions: This step
will use the hybrid CB-GRS approach recently presented by Pérez-Almaguer et
al. [16], and that comprises the following components, not detailed here due to
space reasons:

1. A content-based item and user profiling stage, facilitating the use of the app-
roach in cold-start scenarios.
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2. The use of a weighting scheme for calculating the user-item matching values.
3. The addition of a virtual user profile to the group for boosting clear tendencies

across the member’s preferences.
4. The possibility of using the average or minimum aggregation, for aggregating

the individual predicted preferences into the group preferences.

This method is executed over the groups considered across the whole process,
using both the average and minimum aggregation approaches (Step 4). Taking
into account a performance metric (in this case Precision [10]), the aggregation
approach that performed best is stored for each group, using it as the class in
the next supervised classifier building.

Supervised Classifier Training. Here we introduce the procedure to build
the fuzzy decision tree, using the group features identified before.

Here the group G is represented by a membership value to the fuzzy set
D, which is initially 1 for all the groups. In this context, G is identified
through the corresponding values of the four attributes considered previously
(Ai ∈ {M,A,C,AV }), as well as the value of the corresponding class (Ck ∈
{Average,Minimum}). DCk is a fuzzy subset of D, being μDCk (G) = μD(G)
whether G class is Ck, and μDCk (G) = 0 in other case. |DCk | is the cardinality
of the fuzzy set DCk . [19].

For sake of simplicity, the numerical attribute Ai is featured by using three
triangular fuzzy sets low, medium, and high (Fig. 2). Table 1 illustrates the
group profiling process according to this viewpoint.

Table 1. Group profiling using the fuzzy sets low, medium, and high.

g1 (µM,low(g1),µM,medium(g1),µM,high(g1),µA,low(g1),µA,medium(g1),µA,high(g1),
µC,low(g1),µC,medium(g1),µC,high(g1),µAV,low(g1),µAV,medium(g1),µAV,high(g1))

g2 (µM,low(g2),µM,medium(g2),µM,high(g2),µA,low(g2),µA,medium(g2),µA,high(g2),
µC,low(g2),µC,medium(g2),µC,high(g2),µAV,low(g2),µAV,medium(g2),µAV,high(g2))

...

The approach for the fuzzy decision tree induction comprises then the sub-
sequent steps:

1. Construct a root node, as a fuzzy set D having the groups with 1 as mem-
bership value.

2. If a candidate node t with a fuzzy set of data D verifies that |DCk |
|D| ≥ θr, being

Ck ∈ {Average,Minimum}; or |D| ≤ θn; or that all the features have been
already analyzed, then the current node is a leaf, and its weight for each Ck

is |DCk |. θr and θn are thresholds which values are empirically determined.
3. Otherwise, the new decision node is constructed as follows, by selecting the

attribute that maximizes the information gain G(Ai,D). Therefore, for each
attribute Ai ∈ {M,A,C,AV } not considered before, calculate the information
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Fig. 2. Membership functions

gain G(Ai,D) (Eqs. 6–9) and select the attribute Amax that maximizes it:
G(Ai,D) = I(D) − E(Ai,D) where,

I(D) = −
n∑

k=1

(pk ∗ log2pk) (6)

E(Ai,D) =
m∑

j=1

(pij ∗ I(DAi,j)) (7)

pk =
|DCk |
|D| (8)

pij =
|DAi,j |∑m
l=1 |DAi,l|

(9)

Here I(D) at Eq. (6) is the total entropy of certain dataset D, while E(Ai,D)
at Eq. (7) is the fuzzy classification entropy of the attribute Ai. pk is the rela-
tive frequency of the class Ck in the dataset, and pij is the relative frequency
of all objects within the branch associated to the corresponding linguistic
label j and attribute Ai, into each class. DAi,j is the fuzzy subset which
membership is represented by the linguistic term j ∈ {low,medium, high}
linked to the group attribute Ai ∈ {M,A,C,AV }.

4. Once Amax is chosen, the current D is divided into three fuzzy subsets
DAmax,low

, DAmax,medium
, and DAmax,high

, each subset for each linguistic label
that characterizes such attribute. The membership value of each group g to
DAmax,j (j ∈ {low,medium, high}), is then the product of the membership
value of g to D, and the value μAmax,j

(g) associated to Amax in D.
5. Generate new nodes t1, t2, t3 for fuzzy subsets DAmax,low

,DAmax,medium
,

and DAmax,high
, labelling with each corresponding linguistic term j ∈

{low,medium, high}, to each edge that connect them with D.
6. For each fuzzy subset DAmax,low

,DAmax,medium
,DAmax,high

, repeat recursively
this algorithm from step 2.

This induced fuzzy decision tree is used in the online phase of the proposal,
for identifying the best aggregation function associated to a specific group.
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Identification of the Most Appropriate Aggregation Function: The
induced fuzzy decision tree is used for building classification rules, associated
to each branch, with the format:

Rule R = If Ai1 is j1 and ... and If Ain is jn then Class = Ck with weight Wk

(10)

Here Ai1 ∈ {M,A,C,AV }, j1 ∈ {low,medium, high}, and Ck ∈
{Average,Minimum}. The rule weight Wk is the sum of the membership of
all objects of class k, at the associated leaf.

For a group g, the classification is performed as:

1. Matching degree: The following equation obtains the activation degree of the
left part of the rule, for the current group:

μR(g) = T (μAi1,j1(g), μAi2,j2(g), ..., μAin,jn
(g)) (11)

where μAi,j
(g) is the membership degree of the value of the Ai ∈

{M,A,C,AV } attribute for group g with the fuzzy set associated to the
same attribute Ai and the linguistic term j ∈ {low,medium, high}. T is a
T-norm [15].

2. Association degree: The association degree of g with each rule R, considering
the class k is calculated as:

bRk(g) = T (μR(g),Wk) (12)

T is a T-norm [15].
3. Confidence degree: At last, the confidence degree of each class, for a specific

group g, is reached through the aggregation of the association degrees linked
to all the analyzed rules. This final calculation is used through the use of a
T-conorm T ∗ [15]:.

confk(g) = T ∗(b1k(g), b2k(g), b3k(g), ..., bRk(g)) (13)

The classification process assigns then to the group g, the class k that obtains
the higher association degree.

5 Experiments

This section is focused on the evaluation of the approach discussed previously.

5.1 Experimental Protocol

This evaluation will use the following databases, previously employed in related
works [16]:

– Movielens 100K, with 943 users, 1682 movies, and 100000 preferences in
the interval [1, 5] [11].
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– HetRec, containing heterogeneous information, with 2213 users, 10197
movies, and 855K+ ratings. The ratings are also in the range [1, 5] [3].

This evaluation process will be guided by the Precision metric (Eq. 14), fre-
quently used in the RS evaluation [13]. For sake of space other evaluation criteria
were not included here, but will be considered in the future research.

Precision =
|recommended items ∩ preferred items|

|recommended items| (14)

Here it is used a preference threshold rui ≥ 4, that is a usual criteria for this
parameter [18].

We use the subsequent stages for performing the evaluation [4,10]:

1. Train and test sets are created following the random procedure commonly
used in previous works [4,10].

2. We build user groups of different sizes, and the groups creation process is
executed considering users with common preferences.

3. The method presented across the current paper is developed, for choosing the
suitable aggregation scheme for each group.

4. For each group, we apply the CB-GRS approach proposed by Pérez-Almaguer
et al. [16], using the selected aggregation function in each case.

5. The top n recommendation performance is measured with the Precision, by
matching the recommendation output with the preferences in the test set. At
last, the average precision is calculated for all the groups.

5.2 Results

Using the previous protocol, the proposal is evaluated with θr = 0.9 and θn =
0.01 as parameters. This means that the fuzzy decision tree induction is stopped
if the relative frequency of a certain class exceeds 0.9, or if the current node
cardinality is less than 0.01. The used group size were 4 (Movielens) and 3
(HetRec), and several sizes of the recommendation sets were considered (see
Table 2).

This evaluation considers as baseline the hybrid proposal presented at [16],
considering both Average and the Minimum approaches (avg and min, in
Table 2), which are the state-of-art existing approaches that will be compared
with the current proposal. In the context of the experimental steps presented
in the previous section, Step 3 is omitted for the baseline evaluation. This step
introduces the execution of the procedure discussed across this paper (dyn, in
Table 2).

The results demonstrate that for both datasets, the proposal effectively iden-
tifies the optimal aggregation scheme to be used in a hybrid CB-GRS. This is
evidenced by its significant outperformance of two baselines that consistently
employ average and minimum aggregation.
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Table 2. Performance of the proposal, in relation to previous works. Precision metric.

Dataset top N 1 2 3 4 5 10

Movielens avg (baseline) 0.5787 0.5844 0.5788 0.5684 0.5740 0.5681
Movielens min (baseline) 0.5813 0.5725 0.5829 0.5841 0.5845 0.5754
Movielens dyn 0.6025 0.5806 0.5879 0.5844 0.5855 0.5760
HetRec avg (baseline) 0.5050 0.5075 0.5039 0.5000 0.5013 0.4957
HetRec min (baseline) 0.5700 0.5483 0.5417 0.5358 0.5297 0.5080
HetRec dyn 0.5817 0.5483 0.5422 0.5363 0.5299 0.5083

6 Conclusions

The automatic selection of the aggregation functions in GRS presented in this
contribution has been initially implemented over the content-based group rec-
ommendation context, but it can also be applied to other group recommender
systems. It aims to provide an automatic building of the recommendation system,
which can lead to an improvement in recommendation accuracy. It is worthy to
mention that most of the proposed approach can be executed offline, facilitating
its deployment in recommender context with a high volume of information.

Our future work includes the exploration of new features as well as feature
extraction algorithms to enrich the group profiling process. In addition, other
classifiers such as deep learning-based, will be studied for the selection of the
suitable aggregation approach.
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Abstract. This paper considers the problem of building monotone fuzzy
decision trees when the attributes and the labeling function are in the
form of partitions (in Ruspini’s sense) of totally ordered labels. We define
a fuzzy version of Shannon and Gini rank discrimination measures, based
on a definition of fuzzy dominance, to be used in the splitting phase of
a fuzzy decision tree inductive construction algorithm. These extensions
generalize the rank discrimination measures introduced in previous work.
Afterwards, we introduce a new algorithm to build a fuzzy decision tree
enforcing monotonicity and we present an experimental analysis on an
artificial data set.

Keywords: Monotone fuzzy decision tree · Fuzzy rank discrimination
measure · Totally ordered fuzzy partitions

1 Introduction

Starting from the seminal paper [1], monotone classification has attracted
increasing attention (see, e.g., [2,3,7,18]) due to its capacity of modeling seman-
tic concepts like preference, priority and importance. In turn, the possibility of
incorporating linguistic or vague information, has naturally led to fuzzy mono-
tone classification (see, e.g., [19,22,23]).

In this paper, we focus on fuzzy decision trees [11,17,24] in which we aim
at enforcing monotonicity, relying on a set of training examples. We consider
a learning problem where the data set consists of a finite number of objects
described by m attributes aj ’s, each referring to a totally ordered set of fuzzy
labels (Xj ,≤), together with a labeling function λ that refers to a totally ordered
set of fuzzy classes (C,≤). We further assume that each attribute and the labeling
function are fuzzy partitions in Ruspini’s sense [20]. Then, our goal is to build a
fuzzy decision tree T which encodes a labeling function λ′ : X1 ×· · ·×Xm → C,
that maps every m-tuple of attribute fuzzy labels to a fuzzy class and further
satisfies monotonicity, that is

(x1, . . . , xm) ≤ (y1, . . . , ym) =⇒ λ′(x1, . . . , xm) ≤ λ′(y1, . . . , ym), (1)
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Massanet et al. (Eds.): EUSFLAT 2023/AGOP 2023, LNCS 14069, pp. 161–173, 2023.
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where (x1, . . . , xm) ≤ (y1, . . . , ym) stands for xj ≤ yj , for j = 1, . . . ,m.
In general, enforcing global monotonicity requires a pre-processing of the

input data sets, so as to remove possible inconsistencies. Here, we face the prob-
lem by adopting a greedy approach: at each step of the building process we
choose the attribute aj “enforcing the most” a local form of monotonicity. This
approach has been already exploited in previous work [12] in case of crisp data
and relies on the introduction of rank discrimination measures (see also [8,9])
that are inspired by classical Shannon and Gini measures. In this paper, we
introduce fuzzy versions of measures introduced in [12], by relaying on a suit-
able additive fuzzy preference structure without incomparability [4,5,21], used
to model fuzzy dominant sets. We also propose an algorithm to build a mono-
tone fuzzy decision tree by relying on the introduced fuzzy rank discrimination
measures and we perform its analysis on an artificial data set.

The paper is structured as follows. In Sect. 2, we define Shannon and Gini
fuzzy rank discrimination measures. Section 3 presents a greedy construction
algorithm parameterized by the introduced fuzzy rank discrimination measures
and shows an experimental analysis on an artificial data set. Finally, Sect. 4
gathers conclusions and future perspectives.

2 Fuzzy Rank Discrimination Measures

In this section, after a recall on the background, fuzzy rank discrimination mea-
sures are presented. First of all, let us introduce the following notations:

– Ω = {ω1, . . . , ωn}, a finite set of objects;
– A = {a1, . . . , am}, a finite set of fuzzy attributes with totally ordered

range of fuzzy labels, where aj refers to the set of labels Xj =
{xj1 , . . . , xjtj

} and (Xj ,≤Xj
) is totally ordered;

– λ, a fuzzy labelling function referring to the set of fuzzy classes C =
{c1, . . . , ck} with (C,≤C) totally ordered.

To avoid cumbersome notation, in what follows we suppress the subscript Xj

and C from the total orders ≤Xj
and ≤C , relying on the context to clarify which

relation we are referring to.
The case of crisp aj and λ has been considered in [12]: in this case, aj and λ

correspond to (crisp) partitions of Ω:

aj = {{aj = xjs
} = {ωh ∈ Ω : aj(ωh) = xjs

} | xjs
∈ Xj}

= {χ{aj=xjs} : Ω → {0, 1} | xjs
∈ Xj},

λ = {{λ = cq} = {ωh ∈ Ω : λ(ωh) = cq} | cq ∈ C}
= {χ{λ=cq} : Ω → {0, 1} | cq ∈ C},

thus, they induce a (crisp) total preorder on Ω due to (Xj ,≤) and (C,≤):

Raj
(ωi, ωh) =

{
1 if aj(ωi) ≤ aj(ωh),
0 otherwise. Rλ(ωi, ωh) =

{
1 if λ(ωi) ≤ λ(ωh),
0 otherwise.
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The dominant sets of ωi generated by aj or λ have characteristic functions

χ
[ωi]

≤
aj

(·) = Raj
(ωi, ·) χ

[ωi]
≤
λ
(·) = Rλ(ωi, ·).

Therefore, A ∪ {λ} can be regarded as a collection of (crisp) partitions. More-
over, Raj

and Rλ form the preference structures (Paj
, Iaj

, Raj
) and (Pλ, Iλ, Rλ),

where Paj
, Pλ are strict preference relations, Iaj

, Iλ are indifference relations,
and Raj

, Rλ are weak preference relations.
In this paper, for the fuzzy case, we assume that both aj and λ are fuzzy

partitions (in the Ruspini’s sense [20]) of Ω:

aj =

⎧⎨
⎩μ{aj=xjs} : Ω → [0, 1]

∣∣∣∣∣∣ xjs
∈ Xj ,

∑
xjs ∈Xj

μ{aj=xjs}(ωi) = 1, ωi ∈ Ω

⎫⎬
⎭ ,

λ =

⎧⎨
⎩μ{λ=cq} : Ω → [0, 1]

∣∣∣∣∣∣ cq ∈ C,
∑

cq∈C

μ{λ=cq}(ωi) = 1, ωi ∈ Ω

⎫⎬
⎭ .

Therefore, in the fuzzy case, A∪{λ} can be regarded as a collection of Ruspini’s
fuzzy partitions.

Example 1. Let Ω = {ω1, ω2, ω3} be three cars evaluated according to the fuzzy
attributes and labeling function below, where orders express preferences:

– a1 = comfort with X1 = {low, medium, high} ordered as low < medium <
high,

– a2 = price with X2 = {cheap, expensive} ordered as expensive < cheap,
– λ = appreciation with C = {low, high} ordered as low < high.

comfort price appreciation

Ω low medium high cheap expensive low high

ω1 0.3 0.1 0.6 0.6 0.4 0.7 0.3

ω2 0.8 0.1 0.1 0.3 0.7 0.1 0.9

ω3 0.2 0.2 0.6 0.7 0.3 0.2 0.8

�

The totally ordered sets (Xj ,≤) and (C,≤) induce a total order on the fuzzy
labels {aj = xjs

} and {λ = cq} that we wish to “transport” somehow to Ω: the
best would be to obtain a fuzzy total T -preorder on Ω, where T is a t-norm [10].
In other terms, we search for a fuzzy counterpart of the relations Raj

and Rλ

defined in the non-fuzzy (crisp) case. At this aim we recall the definition of fuzzy
total T -preorder given in [6].

Definition 1. A function R : Ω × Ω → [0, 1] is a fuzzy total T -preorder for
a t-norm T if it satisfies:

(1) (strong completeness) max{R(ωi, ωh), R(ωh, ωi)} = 1, for all ωi, ωh ∈ Ω;
(2) (T -transitivity) R(ωi, ωh) ≥ T (R(ωi, ωl), R(ωl, ωh)), for all ωi, ωl, ωh ∈ Ω.
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A fuzzy preference structure is generally a weaker notion than a fuzzy total
T -preorder. To have “common properties” analogous to the crisp case, a ϕ-
transformation of the Łukasiewicz t-norm TL (whose dual t-conorm is SL) must
be used. Below we report the definition of additive fuzzy preference structure
with no incomparability [5] (see also [4,21]), where ∩L and ∪L refer to TL and
SL, the superscript t denotes the transpose relation and co the complement.

Definition 2. A triple (P, I,R) of functions on Ω ranging in [0, 1] are an addi-
tive fuzzy preference structure with no incomparability if:

(1) P is irreflexive and I is reflexive;
(2) P is TL-asymmetric and I is symmetric;
(3) P ∩L I = ∅;
(4) co(P ∪L I) = P t;
(5) R = P ∪L I, i.e., R(ωi, ωh) = SL(P (ωi, ωh), I(ωi, ωh)) = P (ωi, ωh) +

I(ωi, ωh).

Inspired to fuzzy preference structures built in the comparison of indepen-
dent random variables (see [13–15]), we can provide the following probabilistic
interpretation of our setup. For a fixed aj ∈ A, for each ωi ∈ Ω, we set

pj
i,s = μ{aj=xjs}(ωi), s = 1, . . . , tj

then we have

aj(ωi) xj1 xj2 . . . xtj

pj
i,s pj

i,1 pj
i,2 . . . pj

i,tj

⎧⎪⎪⎨
⎪⎪⎩

pj
i,s ≥ 0, s = 1, . . . , tj ,

tj∑
s=1

pj
i,s = 1.

The evaluation aj(ωi) can be interpreted as a discrete random variable with
assigned probability distribution.

Assumption 1. Since objects in Ω are assumed not to influence each other,
then {aj(ω1), . . . , aj(ωn)} can be considered as stochastically independent ran-
dom variables.

The above probabilistic interpretation allows us to refer to a fuzzy stochastic
preference [5]:

Fuzzy strict stochastic preference relation:

P̃aj
(ωi, ωh) = max{Prob(aj(ωi) < aj(ωh)) − Prob(aj(ωi) > aj(ωh)), 0},

Fuzzy stochastic indifference relation:

Ĩaj
(ωi, ωh) = 1 − |Prob(aj(ωi) < aj(ωh)) − Prob(aj(ωi) > aj(ωh))|,

Fuzzy weak stochastic preference relation:

R̃aj
(ωi, ωh) = SL(P̃aj

(ωi, ωh), Ĩaj
(ωi, ωh)) = P̃aj

(ωi, ωh) + Ĩaj
(ωi, ωh),
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where

Prob(aj(ωi) < aj(ωh)) =

{ ∑
s<q

pj
i,sp

j
h,q i 
= h,

0 i = h,

Prob(aj(ωi) > aj(ωh)) =

{ ∑
s>q

pj
i,sp

j
h,q i 
= h,

0 i = h.

We now consider the properties of (P̃aj
, Ĩaj

, R̃aj
). The triple (P̃aj

, Ĩaj
, R̃aj

)
is an additive fuzzy preference structure with no incomparability sat-
isfying the following properties

– (generalization) if aj is a crisp partition then R̃aj
= Raj

,
– (reflexivity) R̃aj

(ωi, ωi) = 1, for all ωi ∈ Ω,
– (strong completeness) max{R̃aj

(ωi, ωh), R̃aj
(ωh, ωi)} = 1 for all

ωi, ωh ∈ Ω.

Therefore, we can define the fuzzy dominant set generated by aj as

μ
˜

[ωi]
≤
aj

(·) = R̃aj
(ωi, ·). (2)

A natural question concerns the T -transitivity of R̃aj
. The following example

shows that generally R̃aj
is not guaranteed to be T -transitive for a t-norm T ,

even though it may be the case.

Example 2. Take A = {a1, a2} with X1 = X2 = {1, 2, 3} with the natural order
of numbers, and Ω = {ω1, ω2, ω3, ω4}.

{a1 = 1} {a1 = 2} {a1 = 3}
ω1 0.3 0.5 0.2
ω2 0.2 0.4 0.4
ω3 0.1 0.8 0.1
ω4 0.7 0.2 0.1

R̃a1 ω1 ω2 ω3 ω4

ω1 1 1 1 0.61
ω2 0.78 1 0.82 0.46
ω3 0.91 1 1 0.46
ω4 1 1 1 1

It follows that R̃a1 is not TL-transitive and so it is not T -transitive for any Frank
t-norm T (see [10]):

0.46 = R̃a1(ω3, ω4) < TL(R̃a1(ω3, ω1), R̃a1(ω1, ω4))
= max{0.91 + 0.61 − 1, 0} = 0.52.

{a2 = 1} {a2 = 2} {a2 = 3}
ω1 0.3 0.3 0.4
ω2 0.3 0.3 0.4
ω3 0.4 0.3 0.3
ω4 0.4 0.3 0.3

R̃a2 ω1 ω2 ω3 ω4

ω1 1 1 0.87 0.87
ω2 1 1 0.87 0.87
ω3 1 1 1 1
ω4 1 1 1 1
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On the other hand, we get that R̃a2 is TM -transitive and so it is T -transitive for
any t-norm T . �

Analogously, we can define the fuzzy dominant set generated by λ as

μ
˜

[ωi]
≤
λ

(·) = R̃λ(ωi, ·). (3)

The previous discussion allows us to fuzzify the rank discrimination measures
H∗

S and H∗
G introduced in [12] (see also [8,9]). To this purpose:

– we fix the Łukasiewicz De Morgan triple (TL, SL, 1 − x) for uniformity, to
compute fuzzy set-theoretic operations;

– we use the sigma-count to compute fuzzy cardinalities.

Definition 3. Given aj and λ we define

Fuzzy rank Shannon discrimination measure:

H̃∗
S(λ|aj) =

|Ω|∑
i=1

1
|Ω|

⎡
⎣− log2

⎛
⎝ ˜|[ωi]

≤
λ ∩L

˜[ωi]
≤
aj |

˜|[ωi]
≤
aj |

⎞
⎠

⎤
⎦ ,

Fuzzy rank Gini discrimination measure:

H̃∗
G(λ|aj) =

|Ω|∑
i=1

1
|Ω|

⎡
⎣1 −

⎛
⎝ |˜[ωi]

≤
λ ∩L

˜[ωi]
≤
aj |

˜|[ωi]
≤
aj |

⎞
⎠

⎤
⎦ .

The following example shows the computation of measures H̃∗
S and H̃∗

G.

Example 3. Let A = {a1} with X1 = {1, 2, 3} and C = {1, 2} with the usual
order of numbers and consider the following evaluations

{a1 = 1} {a1 = 2} {a1 = 3} {λ = 1} {λ = 2}
ω1 0.7 0.3 0 0.5 0.5
ω2 0.5 0.1 0.4 0.2 0.8
ω3 0.8 0.1 0.1 0.1 0.9
ω4 0.6 0.3 0.1 1 0

R̃a1 ω1 ω2 ω3 ω4

ω1 1 1 0.93 1
ω2 0.68 1 0.67 0.79
ω3 1 1 1 1
ω4 0.87 1 0.82 1

R̃λ ω1 ω2 ω3 ω4

ω1 1 1 1 0.5
ω2 0.7 1 1 0.2
ω3 0.6 0.9 1 0.1
ω4 1 1 1 1

Both R̃a1 and R̃λ are TL-transitive and it holds that

H̃∗
S(λ|a1) = 0.3582 H̃∗

G(λ|a1) = 0.2060.

�



Splitting Rules for Monotone Fuzzy Decision Trees 167

3 Enforcing Monotonicity in Decision Tree Construction

In order to evaluate the introduced fuzzy rank discrimination measures, we pro-
pose the following algorithm for building a fuzzy decision tree, in which mono-
tonicity between attributes and class labels is enforced in a greedy way. The
algorithm is parameterized by the choice of H̃∗ ∈ {H̃∗

S , H̃∗
G}. Since we deal with

a recursive algorithm, we keep notation simple by referring to Ω and A as those
available at the current stage of recursion.

Starting from the original Ω and A, that are assumed not to be empty, the
algorithm proceeds recursively, until a leaf is created with a label in C. If we are
in a stage of the recursion with set of objects Ω and set of attributes A, we first
check if a leaf can be created. The creation of a leaf is justified when a sufficient
degree of uniformity on the class label is observed in the current Ω. To choose
the label in C, we compute the local threshold for class labels

αC = max
cq∈C

∑
ω∈Ω

1
|Ω|μ{λ=cq}(ω), (4)

which corresponds to the highest average membership value to a class label, of
objects in the current Ω.

Next, for each cq ∈ C, we compute the percentage of objects in Ω whose
membership is greater than or equal to αC as

fcq =
|{ω ∈ Ω : μ{λ=cq}(ω) ≥ αC}|

|Ω| . (5)

We avoid over-fitting by creating a leaf in case there is at least one class label cq

such that fcq ≥ ρ, where ρ is a fixed hyper-parameter chosen from the beginning
of the procedure. We choose the class label cq with maximum percentage fcq .
Possible ties are broken by choosing the greatest class label, according to the
total order of C. If no leaf is created in the current stage, then we need to split
the current Ω by choosing an element of the current A. For that, we proceed by
computing H̃∗(λ|a), for all a ∈ A, and by solving

a∗ = argmin
a∈A

H̃∗(λ|a), (6)

where ties are broken choosing randomly. Once the splitting attribute a∗ has
been chosen, a branch is created for every element of the corresponding set of
labels X∗. Moreover, the following splitting threshold is computed

αa∗
= max

x∈X∗

∑
ω∈Ω

1
|Ω|μ{a∗=x}(ω), (7)

which, again, corresponds to the highest average membership value to an
attribute label, of objects in the current Ω.

Next, for every x ∈ X∗, we form the set

Ωx = {ω ∈ Ω : μ{a∗=x}(ω) ≥ αa∗}, (8)
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and repeat the procedure recursively on Ωx and A\{a∗}. We point out that for
different x, x′ ∈ X∗ it may happen Ωx ∩ Ωx′ 
= ∅.

We notice that the overlapping of splitting sets can affect labeling when
|A| = 1 and the creation of a leaf at current stage is not optimal. Indeed, in
this case the only choice for the splitting attribute is the unique element a∗

of A, so, the computation of (6) can be skipped. Therefore, a leaf is directly
created for each value of X∗ and labeling is carried out, again maximizing the
fcq ’s. Nevertheless, this could lead to some non-monotonicities due to objects
appearing in more than one splitting set. Hence, once the labeling of leaves is
over, a possible relabeling is applied to enforce monotonicity in the generated
leaves, by changing those leaves with lower value of fcq first. If the generated
sub-tree has leaves with all equal labels, then it is replaced by a single leaf with
the same label.

Algorithm 1 reports the pseudo-code of the procedure described above.

Algorithm 1. Construction of a fuzzy decision tree enforcing monotonicity
� input: A, λ, Ω, data set
� input: ρ, over-fitting hyper-parameter
� output: T , tree of fuzzy labels

Compute the threshold αC as in (4)
Compute fcq as in (5), for all cq ∈ C
if there is cq ∈ C such that fcq ≥ ρ then

Create a leaf in T choosing cq ∈ C with maximum fcq , possibly breaking ties
else if |A| = 1 then

for x in X∗ do
Create a leaf in T for the branch x
Compute Ωx as in (8)
Choose cq ∈ C with maximum fcq in Ωx, possibly breaking ties

end for
if there are non-monotone leaves then relabel those with lower fcq first
if all leaves have the same label then replace the sub-tree with a single leaf

else
Determine the splitting attribute a∗ as in (6), possibly breaking ties
for x in X∗ do

Compute Ωx as in (8)
Call Algorithm 1 on A\{a∗}, λ, Ωx, and ρ

end for
end if

We test Algorithm 1 by considering an artificial data set described by
attributes in the set A = {a1, a2, a3} and a labeling function λ. We assume
that the aj ’s and λ range in the interval [0, 10] and each is fuzzyfied using the
set of ordered labels Xj = C = {low, medium, high} that correspond to the fuzzy
partition (in Ruspini’s sense) reported in Fig. 1.
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Fig. 1. Fuzzy partition {low, medium, high}.

We derive the description of n = 1000 objects by generating three indepen-
dent random variables Aj ∼ Unif([0, 10]) and setting Λ = max

{
A1,

A2
2

10 ,
A3

3
100

}
, so

as to range in [0, 10] as well. Next, the realizations of each Aj and Λ are fuzzyfied
according to the fuzzy partition reported in Fig. 1, so each object ωi ∈ Ω gives
rise to a collection of probability distributions on the label set Xj = C. Table 1
shows the fuzzy partitions (2 decimal rounding) of Ω for the first 3 objects. We
further fix the over-fitting parameter to ρ = 70%.

Table 1. Fuzzy partitions for the first three objects.

a1 a2 a3 λ

Ω low medium high low medium high low medium high low medium high

ω1 0 0.82 0.18 0.65 0.35 0 1 0 0 0 0.82 0.18

ω2 1 0 0 0 0 1 0 0 1 0 0.69 0.31

ω3 0 0.97 0.03 0 0.35 0.65 0 1 0 0 0.97 0.03
...

...
...

...
...

Below, we show the explicit execution of Algorithm 1 on the generated data
set. To keep track of the evolution in the recursion, we add a subscript index
starting at 0 to all quantities, related to the current level in the tree.

Therefore, we initially set Ω0 := Ω and A0 := A, where |Ω0| = 1000. The
terminal condition is not met since flow

0 = 0.1600, fmedium
0 = 0.4660, fhigh

0 =
0.4310. Moreover, being |A0| > 1, since H∗

S(λ|a1) = 0.2475, H∗
S(λ|a2) = 0.4547,

H∗
S(λ|a3) = 0.6274, and H∗

G(λ|a1) = 0.1427, H∗
G(λ|a2) = 0.2419, H∗

G(λ|a3) =
0.3131, both measures agree in selecting a1 for splitting. Now, the set of objects
Ω0 is split in three subsets corresponding to labels in X1. The sets Ωlow

1 , Ωmedium
1

and Ω
high
1 are not disjoint since |Ωlow

1 ∩Ωmedium
1 | = 42, |Ωlow

1 ∩Ω
high
1 | = 0, |Ωmedium

1 ∩
Ωhigh

1 | = 42.
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We focus on Ωlow
1 with Alow

1 := {a2, a3}, where |Ωlow
1 | = 322. The terminal

condition is not met since flow
1 = 0.4814, fmedium

1 = 0.4006, f
high
1 = 0.1615.

Moreover, being |Alow
1 | > 1, since H∗

S(λ|a2) = 0.3001, H∗
S(λ|a3) = 0.7780, and

H∗
G(λ|a2) = 0.1691, H∗

G(λ|a3) = 0.3194, both measures agree in selecting a2 for
splitting. Now, the set of objects Ωlow

1 is split in three subsets corresponding to
labels in X2. The sets Ωlow,low

2 , Ωlow,medium
2 and Ωlow,high

2 are not disjoint since
|Ωlow,low

2 ∩Ωlow,medium
2 | = 10, |Ωlow,low

2 ∩Ω
low,high
2 | = 0, |Ωlow,medium

2 ∩Ω
low,high
2 | = 12.

We focus on Ωmedium
1 with Amedium

1 := {a2, a3}, where |Ωmedium
1 | = 440. The

terminal condition is not met since flow
1 = 0, fmedium

1 = 0.5955, fhigh
1 = 0.1227.

Moreover, being |Amedium
1 | > 1, since H∗

S(λ|a2) = 0.2505, H∗
S(λ|a3) = 0.4605, and

H∗
G(λ|a2) = 0.1432, H∗

G(λ|a3) = 0.2092, both measures agree in selecting a2 for
splitting. Now, the set of objects Ωmedium

1 is split in three subsets corresponding to
labels in X2. The sets Ωmedium,low

2 , Ωmedium,medium
2 and Ω

medium,high
2 are not disjoint as

|Ωmedium,low
2 ∩ Ωmedium,medium

2 | = 14, |Ωmedium,low
2 ∩ Ωmedium,high

2 | = 0, |Ωmedium,medium
2 ∩

Ω
medium,high
2 | = 18.

We focus on Ω
high
1 with Ahigh

1 := {a2, a3}, where |Ωhigh
1 | = 322. The terminal

condition is met since flow
1 = 0, fmedium

1 = 0, fhigh
1 = 0.7546. Thus, since fhigh

1 ≥
ρ, a leaf with label λ = high is created.

We focus on Ωlow,low
2 with Alow,low

2 := {a3}, where |Ωlow,low
2 | = 93. The ter-

minal condition is met since flow
2 = 0.7097, fmedium

2 = 0, fhigh
2 = 0. Thus, since

flow
2 ≥ ρ, a leaf with label λ = low is created.

We focus on Ωlow,medium
2 with Alow,medium

2 := {a3}, where |Ωlow,medium
2 | = 140.

The terminal condition is not met since flow
2 = 0.5071, fmedium

2 = 0.4285, fhigh
2 =

0. The splitting is made on a3 and the sets Ωlow,medium,low
3 , Ωlow,medium,medium

3 ,
Ωlow,medium,high

3 give rise to three leaves labelled, respectively, as λ = medium,
λ = low, λ = medium. Thus, we relabel leaves by setting, respectively, λ = low,
λ = low, λ = medium: the first label is indeed that with lower value of fcq .

We focus on Ωlow,high
2 with Alow,high

2 := {a3}, where |Ωlow,high
2 | = 111. The ter-

minal condition is not met since flow
2 = 0, fmedium

2 = 0.5405, fhigh
2 = 0.4595. The

splitting is made on a3 and the sets Ω
low,high,low
3 , Ω

low,high,medium
3 , Ω

low,high,high
3 give

rise to three leaves labelled, respectively, as λ = high, λ = medium, λ = medium.
Thus, we relabel leaves by setting, respectively, λ = medium, λ = medium,
λ = medium: the first label is indeed that with lower value of fcq . Therefore,
we replace the built sub-tree with a single leaf labelled as λ = medium.

We focus on Ωmedium,low
2 with Amedium,low

2 := {a3}, where |Ωmedium,low
2 | = 138.

The terminal condition is not met since flow
2 = 0, fmedium

2 = 0.6087, f
high
2 =

0. The splitting is made on a3 and the sets Ωmedium,low,low
3 , Ωmedium,low,medium

3 ,
Ω

medium,low,high
3 give rise to three leaves all labeled as λ = medium. Therefore,

we replace the built sub-tree with a single leaf labelled as λ = medium.
We focus on Ωmedium,medium

2 with Amedium,medium
2 := {a3}, where |Ωmedium,medium

2 | =
186. The terminal condition is not met since flow

2 = 0, fmedium
2 = 0.6290, f

high
2 =

0. The splitting is made on a3 and the sets Ωmedium,medium,low
3 , Ωmedium,medium,medium

3 ,
Ωmedium,medium,high

3 give rise to three leaves all labeled as λ = medium. Therefore,
we replace the built sub-tree with a single leaf labelled as λ = medium.
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We focus on Ω
medium,high
2 with Amedium,high

2 := {a3}, where |Ωmedium,high
2 | = 148.

The terminal condition is not met since flow
2 = 0, fmedium

2 = 0.4595, f
high
2 =

0.4865. The splitting is made on a3 and the sets Ωmedium,high,low
3 , Ωmedium,high,medium

3 ,
Ω

medium,high,high
3 give rise to three leaves labeled, respectively, as λ = medium,

λ = high, λ = high.
Figure 2 shows the monotone fuzzy decision tree T obtained by applying

Algorithm 1, where low, medium, and high, are abbreviated as l, m, and h,
respectively. A direct inspection shows that the λ′ encoded in T satisfies (1).

Fig. 2. Monotone fuzzy decision tree.

4 Conclusion

In this paper we consider the problem of building a fuzzy decision tree by enforc-
ing monotonicity of the class label with respect to attributes labels, both assumed
to range in totally ordered sets of labels. We propose two fuzzy versions of rank
discrimination measures that generalize those proposed in [12], together with
an associated construction algorithm. Due to space limitations we provided an
experimental analysis on an artificial data set. A first line of future research
consists in developing a hierarchical construction model of a general fuzzy rank
discrimination measure in analogy with [12], and a systematic analysis of their
analytical properties. Finally, we also plan to perform a deeper experimental
analysis on real data: at this aim we point out the necessity of a suitable fuzzy
non-monotonicity index, obtained, for instance, generalizing that in [16].

Acknowledgements. Davide Petturiti is member of the GNAMPA-INdAM research
group. This research was carried out during Davide Petturiti’s research stay at LIP6,
Sorbonne Université.
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Abstract. Production line calibration is a critical industrial task that requires
thoroughly planned actions. Even tiny deviations from the optimal settings can
cause dramatic deficiencies. Automated Root Cause Analysis can be employed
to suggest the actions that result in faulty states, and therefore, to resolve situa-
tions and prevent recurrence. This work presents a methodology for Root Cause
Analysis focused on the calibration process of a valve block in an elevator system.
The causalities (weighted interconnections) between oil flow control (actions) and
system velocity (output) are estimated using Pearson Correlation. The produced
weight matrix is evaluated by exploiting expert knowledge. An FCM model for
Root Cause Analysis is developed to study the system behavior and explore the
root causes of deficiencies. The proposed approach eliminates the need for labeled
root causes. Results support the efficiency of the proposed FCM model for cor-
recting the sub-optimal configurations; the proposed approach seems to work even
when the calibration actions are unknown.

Keywords: Root Cause Analysis · Fuzzy Cognitive Maps · Correlation
Coefficient · Elevator Industry

1 Introduction

The customization of products inmanufacturing requires frequent adjustments in the pro-
duction line. This process is usually performed manually and, therefore, prone to errors.
Optimal configurations are mostly obtained on a try-and-error basis, which consumes
valuable production time. Defects and operational deficiencies are usually associated
with possible causes of a sub-optimal calibration phase and therefore corrective actions
are pursued to eliminate defective products.

In the hydraulic elevator industry [1] the hydraulic power unit is a highly customized
product and one of the most critical components for smooth operation. The elements
of the hydraulic unit such as the pump, the valve systems, the control systems, etc.,
need to be modified based on the needs of the elevator installation. Several studies have
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emerged regarding the control systems of the pump operation [2–4], that address cabin
speed control. Moreover, anomaly detection methods have been proposed to identify
deficiencies in the operation [5]. However, less attention has been given to the valve
block configuration. Ineffective valve block configurations lead to inefficient oil flow
control and therefore to operational deficiencies. The velocity of the elevator is affected
by the correspondingoil flowadjusting bolts on the valve block.These valve bolts directly
affect the velocity profile, including acceleration/deceleration phase, cruising velocity
and breaking speed. Optimal velocity profiles have been determined bymanufacturers to
maximize passenger safety and convenience, as well as gear protection. Deviations from
the optimal velocity profile are considered as operational deficiencies. An example of an
optimal and a sub-optimal velocity profile is shown in Fig. 1. These curves represent the
journey of an elevator cabin between two floors. Considering a normal lifting operation
(Fig. 1a), the elevator initially accelerates until it reaches a predefined cruising velocity
(0.4m/s); before it reaches the desiredfloor, it decelerates to a lower speed, and eventually
stops smoothly. In a deficient configuration (Fig. 1b), the velocity profile is quite different
in terms of duration for the acceleration, cruising and deceleration/braking phases.

Fig. 1. Comparison between the velocity profiles for a calibrated (left) and deficient (right)
elevator system. Dotted lines designate the characteristics of the velocity profile (acceleration,
deceleration, breaking).

Identifying the causes of calibration deficiencies is a rather complex task that
involves manual adjustments on the valve block, based on try-and-error procedures,
which requires significant production time. Thus, the accurate and fast identification
of the causes that result in the sub-optimal calibration of the valve block is of major
importance for quality products and efficient production. This procedure is also known
as Root Cause Analysis (RCA).

RCA is widely used in various industrial sectors including information technology,
healthcare and manufacturing [6–8]. In essence, it aims to answer the question of why
something is happening, or what is the cause of an observable effect. Several manually
performed frameworks exist for RCAbased on expert knowledge [9, 10]. However, these
procedures pose limitations regarding the availability of knowledge, the required time
for thorough analysis, and the under-exploitation of the available data from production
processes. Artificial Intelligence (AI)-based RCA methods were engaged to tackle such
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limitations [11]. AI-based methods employ large databases to perform automated data-
driven RCA. Nevertheless, new challenges have arisen with the machine learning and
deep learning methods. So far, several works have addressed the data-driven RCA as
a classification problem [12–14] and the most applicable classifier for their task was
identified. However, these methods require massive data, as well as labeled root causes
for supervised learning, which are hard to obtain in a real industrial environment. In
this direction, it has been proposed to combine expert knowledge with data-driven tools
towards the development of enhanced RCA techniques [15].

Fuzzy CognitiveMaps (FCMs) [16] are able to represent expert knowledge and cope
with data learning, showing promising results in various domains [17]. Concentrating on
FCM capabilities, an exploitation of their application in hydraulic elevator industry and
the hidden causes of uncalibrated valve blocks is performed herein. FCMs are recruited
in this work to mitigate the data-driven problems of the RCA as a transparent model,
to address the complexity and provide decisions in a way similar to human thinking.
The proposed methodology exploits FCM abilities to perform RCA in the valve block
calibration where the root causes are unlabeled and unknown.

The main contribution of this research is the design of an efficient FCM model
to apply RCA on valve block calibration in the elevator industry. To the best of the
authors’ knowledge, there is no previous research work on the investigation of FCMs
for addressing the problem of determining root causes in elevator industry. The novelty
of this work is oriented toward the design and development of a new FCMmodel capable
of identifying the hidden causes of deficiencies in the velocity profiles.

2 Main Aspects of Fuzzy Cognitive Maps

Being a soft computing, powerful technique that combines the advantageous character-
istics of both fuzzy logic and neural networks, FCM is particularly useful and suitable
for modeling and decision-making for complex systems [18]. It is considered as an
extension to Cognitive Maps (CM), introduced by Axelrod in 1976 to graphically repre-
sent the cognitive state of a system in the decision-making process. Proposed by Kosko
[16], FCMs introduced fuzziness to Cognitive Maps applying fuzzy descriptions (fuzzy
binaries) to the connections in order to demonstrate causal influences on the relations
between concepts. From a structural point of view, FCMs can be graphically represented
as a fuzzy digraph, which has the ability to explain the behavior of complex systems
by integrating causal reasoning derived from the perception of expert knowledge. The
system is defined as a collection of concepts, interconnected to each other with connec-
tions in the form of directed edges, reflecting the cause-effect relationships between the
concepts [18].

Essentially, FCMs consist of twomain components: the nodes and the edges. A node,
which is commonly termed as a concept, defines a variable, a factor, a state or an attribute
of the examined system; an edge reflects the causal relationship between two concepts.
An FCM is comprised by a set of nodes C = {Ci : i = 1, 2, . . . ,N } where N denotes
the number of variables of this network. The overall state of the FCM can be described
by the state vector A = {Ai : i = 1, 2, . . . ,N } where the component Ai. is the degree of
presence (termed as activation level) of the concept Ci in the system at a particular time.
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Similarly, the degree of causal relationship (association) between two concepts Ci,Cj

can be expressed with a weight wi,j ∈ [−1, 1]. Equation (1) displays the computation
formula [21] for the activation level Ai of each concept Ci at time t + 1 in terms of
the respective values at the previous timestep t and the weighted interconnection wji for
conceptCj towardsCi. An activation function f is employed to keep the activation levels
within the desired interval; the hyperbolic tangent is employed to constrain Ai in [−1, 1],
while other implementations prefer the sigmoid function to constrain Ai in [0, 1].

Ai(t + 1) = f

⎡
⎢⎢⎢⎢⎢⎢⎣
Ai(t) +

N∑

j = 1
j �= i

Aj(t) · wji

⎤
⎥⎥⎥⎥⎥⎥⎦

(1)

3 Methodology

3.1 Dataset Acquisition

Experiments were performed to study the influence of each individual bolt adjustment on
the velocity profile; combinations of bolt adjustments were also considered. For a system
withM bolts and S possible states for each bolt, the total number of combinations to be
tested isMS . In the system under investigation, three bolts were considered and termed
as {M6, M9, M8} following the manufacturer’s notation. Three different states were
considered for each bolt: ‘Left’ indicates counter-clockwise rotation by 1800, ‘Right’
indicates clockwise rotation by 1800, and ‘Null’ implies no rotation. Thus,MS = 33 =
27 configurations were investigated.

The system was first calibrated by an expert. This defined the initial state of the
system as well as the ‘Null’ rotation for each bolt. Then, the valve block configuration
was systematically distorted by applying rotations {Left, Right, Null} to individual
bolts, as well as combinations of them. For each distorted configuration, the elevator
was allowed to travel a predefined route. Each velocity profile was then evaluated by
an expert. Six profiles indicated deficient operation, whereas the remaining twenty-one
were considered as optimal (within acceptable limits). Figure 2 presents some indicative
velocity profiles as acquired from the experimental testing. The velocity profiles are
presented as pairs (blue/cyan curves), indicating opposite bolt rotations, to assess how
the direction of the rotation affected the operation. For instance, the bottom left graph
in Fig. 2 depicts the effect of Left/Right rotation of bolt M6 while M9 and M8 remain at
Null position. Individual experiments were designated by a unique identifier in the form
180xx, as shown in the graphs.

3.2 Processing

As illustrated in Fig. 2, the distortions on bolt configuration strongly affected the accel-
eration duration, the deceleration duration, the breaking speed (velocity tail) and the
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breaking duration. These characteristics were extracted and further exploited for the
proposed FCM methodology. For the feature extraction, the time instants at which the
slope of the velocity changes direction were pursued. The curves were denoised prior
to the derivative calculation using a simple moving average filter with zero-padding.
In addition, a future time step was acquired in the line slope calculation instead of a
consecutive one, to avoid noisy estimations from sudden fluctuations in velocity. Then,
the estimated times were used to isolate and extract the changes in velocity and their
duration. Finally, the extracted features of each experiment were associated with the
corresponding bolt rotations to produce the dataset. For the sake of consistency with the
rotations of opposite directions, the derived dataset was normalized in [−1, 1].

Fig. 2. Indicative velocity profiles as acquired from experimental testing. The black dashed curve
is the response of the system, as calibrated by an expert. The effect of bolt rotations are depicted
by blue/cyan curves. (Color figure online)

3.3 Pearson Correlation and Fuzzy Cognitive Maps

The widely used descriptive statistic Pearson Correlation Coefficient was employed to
discover linear correlations between the actions performed on the bolts and the velocity
characteristics. Pearson Correlation describes the strength and direction of the linear
relationship between two quantitative variables in the range of [−1, 1]. However, it poses
limitations and requires a systematic examination of data [19] for statistical analysis. In
this work, the feature extraction procedure, that was focused on the time domain and the
average speed values, ensured that the correlation was calculated in noise-free data.

The calculated linear correlation matrix between actions and velocity characteristics
was fuzzified to be further evaluated by the limited available expert knowledge and by
studying curves, like the ones presented in Fig. 2. In other words, the crisp values of the
correlation matrix were transformed into fuzzy linguistic variables that were interpreted
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during the experiments to verify the causality of the output of Pearson Correlation; thus,
not focusing on the accuracy but on the consideration ofwhat proportion of the variability
in the independent variable (velocity characteristic) can be justified by the dependent
(bolt rotation) variable. An example of such a matrix is depicted in Fig. 3.

Fig. 3. The Pearson Correlation matrix and the corresponding fuzzified correlation matrix, to
express correlation between the rotational actions (M6, M9, M8) and the velocity characteristics
(breaking speed, acceleration duration, deceleration duration, breaking duration).

Based on these matrices, the strong influence of the actions on the velocity was
verified. However, there are more complex cases where indirect influence was discov-
ered. An example is illustrated in Fig. 4. In the first pair of curves, the Right rotation of
M6 (cyan curve) increased the acceleration duration; in the second pair of curves, M8
adjustments had no effect on the acceleration duration; in the third pair of curves, the
combination of the Right rotation for M6 and the Left for the M8 (cyan curve) resulted
in dramatic increase for the duration of the acceleration phase.

This concludes that the rotation of M6 had indeed a considerable influence on the
acceleration duration; however, when it was combined with a rotation of M8, this influ-
ence was further enhanced. The matrix in Fig. 3 shows that linear correlation of M8
with the acceleration duration is−0.11, which doesn’t indicate a Root Cause for the sub-
optimal operation. This is confirmed in Fig. 4b, where rotation of M8 has no significant
impact. In Sect. 4, Case 18023 demonstrates that rotation of M8 may affect the break-
ing duration and the breaking speed under certain conditions, and a more sophisticated
way is needed for studying such a system. Thus, the Pearson matrix was exploited with
Fuzzy Cognitive Maps (FCMs) as a weight matrix to study the non-linear behavior of
the system [20].



180 T. Tziolas et al.

Fig. 4. Demonstration of the effects of M6, M8 rotation on the velocity profile. (a) Only M6 is
rotated. (b) Only M8 is rotated. (c) Both bolts are rotated resulting in significant increase for the
duration of the acceleration phase. (Color figure online)

The FCMmodel consists of seven concepts: the three rotations for boltsM6,M9,M8,
and the four extracted velocity characteristics, namely the breaking speed, the accelera-
tion duration, the deceleration duration, and the breaking duration. The interconnections
among these concepts are initially assigned using Pearson Correlation.

The concept values correspond to the extracted velocity characteristics and the
applied bolt rotations of each experiment. The inference process was performed uti-
lizing Eq. (1) and the Hyperbolic Tangent activation function, so the state vector values
lie within [−1, 1]. The concepts of interest for root cause identification were the cali-
bration actions, i.e., rotations of bolts M6, M9 and M8. As annotated root causes were
unavailable, the state differences for these concepts between the FCM state convergence
for optimal and sub-optimal calibrations were further studied to identify causalities. In
simple terms, the FCM was expected to arrive in a fixed-point state, in which the acti-
vation level for the concepts M6, M9 and M8 would differ as compared to the initial
concept values for optimal and sub-optimal calibrations. According to Eq. (2), in case
an activation stateMi, i ∈ {6, 8, 9} lies in a different area than the activation state of the
optimal calibration, then this activation state is considered as a root cause:

Aoptimal
Mi (T ) �= Asuboptimal

Mi (T ), with AMi =
{−1, AMi < 0

1, AMi ≥ 0
(2)

where T the time of the fixed-point state (equilibrium point). To further verify the root
cause identification, a “what-if” scenario was pursued in which the alteration of values in
theM diverged concepts, and the effects on the velocity profiles were examined. These
are presented in the following.

4 Results and Discussion

The FCMmodels were developed with TensorFlow in Python 3.10 to benefit fromGPU-
accelerated operations. The RCA experiments were conducted assuming two scenarios:
1) with bolt rotations (M6, M9, M8 ∈ [−1, 1]), and 2) without any bolt rotation, i.e.,
all assumed Null. These scenarios exploit the identification of FCM causal relationships
and further verify the ability of the proposed FCM model to discover the root-cause.
Initially, to acquire the desired activation state of Eq. (2), the FCM convergence response
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was assessed for a specific target curve (Case 18002) which was calibrated by an expert.
The inference process of this curve is shown in Fig. 5. It merges so that when the FCM
considers the optimal velocity characteristics as inputs, all bolt rotations convergence to
−1.

Fig. 5. The inference process of the target curve. The concepts of interest (M6,M9,M8) converged
in values close to −1.

Subsequently, the values of the sub-optimal bolt configurations were considered to
study the convergence of the FCM. The deficient velocity profile of Case 18008 was
examined and presented as an example (Fig. 6). In this Case, only M8 was rotated,
and resulted in breaking failure. Since only one distortion was enforced, the root cause
was easy to identify. The FCM inference results for both scenarios of rotations (with
rotation and without rotation of M8) are presented in Fig. 6. It is observed that the M8
rotation converged in an activation state (AM 8 = 1) different than the optimal one in both
scenarios. Thus, compared to the velocity profile of the calibrated elevator, in which all
concepts converged to −1, the new FCM response can provide a decision concerning
the state of the valve block system with respect to the M8 rotation, and suggest that M8
is the root cause of the deficient system. Then, by rotating M8 Left, M8 was returned to
the Null position, the system got re-calibrated (black dashed curve).

A more complex example was studied in Case 18032. In this Case, the combined
bolt rotations completely distorted the velocity profile, and the root cause was harder to
identify. Working in the same manner, the FCM inference process for the two scenarios
(with rotations and without rotations) is presented in Fig. 7. As concluded by the FCM
inference, the model had M6 and M9 states activated in high values (AM 6 = AM 9 = 1)
which is different than the expected value for a calibrated system (AM 6 = AM 9 = −1).
Therefore, the FCM suggested that the distortion of this system was caused by the high
rotation values for M6 and M9, whereas the M8 rotation had practically no effect. As
a result, the Left rotation of M6 and M9 (i.e., bringing them back to the Null position)
would produce optimal performance.

To further support this, Case 18005 was also examined (Fig. 7). In this Case, Null
rotation was set for M6 and M9, and Left rotation for M8. The velocity profile suggests
that the Left rotation of M8 had no significant effect on the velocity profile and was
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characterized as optimal by the expert. Therefore, it can be stated that the FCM correctly
identified the root cause of deficiency, i.e., the combination of M6 and M9 rotations
distorted the velocity profile in Case 18032.

Fig. 6. Left: RCA for Case 18008 (red color). Top right: The FCM inference equilibrium point is
shown when the M8 rotation is known (M8 starts at 1). Bottom right: The inference equilibrium
point for unknown rotations (all Mi start at 0). (Color figure online)

Fig. 7. RCA of the sub-optimal Case 18032 (red color). Compared to the target curve (black
dashed curve), this curve had both M6 and M9 rotated Right by 180°, and M8 Left by 45°. Both
scenarios accomplished through FCM inference (known rotations bottom left, unknown rotations
bottom right) resulted in different activation states for the M6, and M9 values. If M6 and M9 had
been rotated Left by 180° in the 18032 experiment, the optimal curve with ID 18005 (green curve)
would have been produced.
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The same RCA process was applied to the remaining deficient operations of the
dataset, as well as to additional simulated experiments, so as to assess the potential of
the methodology and further understand the causalities of the system. The FCM exhib-
ited strong capabilities in identifying the root causes based on the underlying causalities.
Interestingly, it was observed that for the investigated valve block, M6 and M9 tended
to activate together, while M8 was acted as an individual root cause. Regarding the
required inference steps, the FCM inference process in the examined hardware config-
uration required less than 10 ms for an average number of 10 FCM iterations, which is
a promising performance of the FCM inference.

5 Summary

In this work, a data-driven Root Cause Analysis methodology is proposed, employing
Fuzzy Cognitive Maps to capture the causality between actions and resulting deficient
performance of an elevator valve block system. The weights of the FCMwere estimated
with Pearson Correlation and further validated with the limited existing expert knowl-
edge. The novelty of this approach is that it does not require supervised learning with
annotated root causes which can be hard to acquire. The proposed methodology can be
used in a semi-unsupervised way to capture causes of sub-optimal performance based
only on inputs of optimal calibration. The dataset employed for the development the
methodology, was produced in a real industrial environment by manually distorting the
bolt configuration of a valve block system.

Although promising, the proposed methodology exhibits a couple of limitations.
These are related to 1) data scarcity and 2) the weight matrix, and open the way for
further development. Data scarcity directs that the methodology should be applied in
more deficient operations and additional datasets to further assess the performance of the
proposed methodology. The weight matrix should be further examined with the inclu-
sion of more samples; this practically comes from limitations of Pearson Correlation.
Taking from these limitations, future work will focus on 1) the application of a more
comprehensive dataset, which could address the limitations of Pearson Correlation, and
2) the exploration of additional techniques for causality calculation. Furthermore, the
methodology will be extended to not only estimate the root cause, but also suggest
corrective actions.
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Abstract. Group Decision-Making is a process in which experts have
to choose one or more options from a finite set of alternatives. Group
Decision-Making methods were developed to assist in this type of event,
but often information is lost in the alternatives analysis since not all the
alternatives fulfil criteria in the same way. Moreover, in these methods,
once the debate is over, it is not usually possible to reopen the decision
process. Finally, the third problem that can occur in this type of method
is that the experts are forced to provide preferences even though they
know nothing about them, which makes the provided information incor-
rect. To solve these problems, we develop a novel Multi-Criteria Group
Decision-Making method that allows experts to modify the reciprocal
preference relation ratings whenever they wish and gives them the option
of not providing a preference value if they do not know anything about
it, that is, it works with incomplete reciprocal preference relations. Fur-
thermore, the weight of each criterion is self-adjusted according to the
assessments that have been made at that moment, which means that
each criterion will have a different weight, thus obtaining a more ver-
satile Group Decision-Making method that is adaptable to the different
situations that may arise during a decision process.

Keywords: Multi-criteria Group Decision-Making · Changeable
Scenarios · Reciprocal Preference Relations · Self-Adjustment

1 Introduction

Group Decision-Making (GDM) is a process that occurs when a set of experts
need to rank a finite set of alternatives [6,11]. GDM methods have evolved and
nowadays it is a standard line of research [4,23]. These methods have different
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ways of representing information, such as the representation of linguistic labels
[1] or numerical sets [18,20]. Nevertheless, they force the experts to evaluate the
alternatives by taking into account all their characteristics at once, preventing
them from evaluating each alternative in detail. Moreover, they cannot modify
their opinions when the process has started and must provide preferences for all
the alternatives. These three problems, together with the fact that the weights
of the criteria are usually equal, differentiating the experts, make it necessary
to look for a method that solves these problems, making these methods more
realistic and adaptable to the needs of the experts.

In this paper, we propose a novel GDM method that solves the problems
mentioned above. This system implements a Multi-Criteria GDM framework
with open debate allowing the experts to evaluate the criteria of the alternatives.
Furthermore, they can modify their opinions whenever they wish, without having
to state all their preferences at the end of the debate. Moreover, they have the
possibility that if they consider not providing a specific preference value, they
can skip it, as this method allows the use of incomplete reciprocal preference
relations. Finally, this method, using the number of ratings, creates the weights
for each criterion self-adjusting in such a way that, although the weight of the
experts is the same, the weight of each criterion is modified at each moment.

This article containing the novel method is organized as follows. In Sect. 2,
you can see the basic concepts related to Group Decision-Making problems. In
Sect. 3, our method is explained in detail. In Sect. 4, an illustrative example
is shown, to have a better understanding of the model explained in the previ-
ous section. In Sect. 5, we proceed to discuss the advantages of this model and
compare it with other methods in the current literature. At last, in Sect. 6, the
conclusions of the model are obtained.

2 Preliminaries

In this section, we are going to develop the basic concepts related to the GDM
method. The main objective of these problems is to help a finite group of experts
choose between a set of alternatives based on the information they generate
[12,21]. To be able to state these methods, initially, two necessary sets have to
be defined, the set of experts and the set of alternatives, E = {e1, . . . , ek} and
X = {x1, . . . , xL} respectively, where k ∈ N refers to the number of experts and
L ∈ N to the number of alternatives [3,14].

Once the two sets have been defined, it is necessary to define how the experts
will propose their preferences. However, there are different ways of presenting
the information, such as assessing each alternative separately [2]. In this article,
we have opted for the use of reciprocal preference relations, through the use
of numerical sets [7]. This option has been chosen because by using reciprocal
preference relations it is possible to visualise the comparison of one alternative
over another. Consequently, it is possible to define the reciprocal preference
relations as matrices of dimension L×L that have the main diagonal empty and,
in addition, as in this article the experts can choose which comparisons to make,
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there may be elements of the matrix other than the diagonal that is also empty
[25]. These matrices, denoted as γz

t z = 1 . . . , k; t = 1, . . . , m, where m ∈ N is the
number of criteria, is defined as γz

t = (βz
tXs,Xi

; s �= i = 1, . . . , L), where βz
tXs,Xi

is
the comparison between choice xs over choice xi. Each element of the matrix is
created by using the operator μs : X ×X → [0, 1]. Consequently, each element of
the reciprocal preference relation is equal to βz

tXs,Xi
= μz

t (Xs,Xi); Xs,Xi ∈ X

[24].
With the definition of the basic concepts, it is possible to define the parts of

a GDM method:

– Providing the preferences and opinions: in this first part, the experts show
their opinions and ideas by talking to each other and discussing. Then, once
this first part is finished, using the numerical set provided, they add to the
system, thus obtaining the reciprocal preference relations of each expert.

– Consensus Analysis: in this part, we are going to verify if the information of
the experts, who use the method to choose the alternative, is similar enough
to affirm that there is a consensus among them. For this purpose, a consensus
threshold is defined, denoted as α ∈ [0, 1], which must be exceeded by the
consensus value cns ∈ [0, 1] [13]. If this does not occur, a feedback process is
carried out, so that the experts seek to reach an agreement. To prevent this
process from being cyclical, a maximum number of rounds, ω ∈ N, is set at
the beginning of the process [10].

– Aggregation of information: when the consensus threshold has been exceeded,
it is necessary to aggregate the information to have only one reciprocal prefer-
ence relation, this reciprocal preference relation is called the collective recip-
rocal preference relation. To build the matrix, which has the same dimension
as the experts’ reciprocal preference relations, it is possible to use aggregation
operators such as the ordered weighted average (OWA) operator [16] or the
weighted average (WA) operator [8], the latter being the one chosen for our
method.

– Getting the ranking of alternatives: in this last part, a ranking of alternatives
is performed, which allows the experts to know their favourite alternatives. To
obtain such a ranking, it is necessary to use the collective reciprocal preference
relation and apply an operator. There is a wide variety of operators, such
as the Quantifier-Guided Degree of Dominance (QGDD) operator [5] or the
VlseKriterijumska Optimizacija I Kompromisno Resenje (VIKOR) operator
[22]. For this article, we have opted to use the former.

The number of methods that can currently be seen to solve a GDM problem
has increased. In [9], a method is found that uses a fuzzy dithered environment
for the solution of a specific problem. In [3], a Multi-Granular GDM method is
developed that seeks to increase consensus among experts through recommen-
dations. Finally, in [19], a Multi-Granular GDM method is created that seeks to
adapt to different situations to be more generalist.
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3 MCGDM Method in Changeable Scenarios Based
on Self-adjustment of Weight

In this section, the GDM method is developed which consists of the following
parts (see Fig. 1):

– Debate and provide the preferences: in this first part, the experts dis-
cuss the options. For this purpose, they discuss and contribute their ideas
and opinions. Once the debate is over, they give the preferences they want.
Nevertheless, they can change them at any time.

Fig. 1. Scheme of the proposed method
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– Verification of the consensus by analysis: in this second part, it is veri-
fied that the relationship preferences of each expert are sufficiently similar to
affirm that the decision taken by the experts is consensual. For this purpose,
a consensus threshold is set that must be exceeded. In case this threshold is
not exceeded, a feedback process takes place.

– Computation of the weights of the criteria: once the consensus among
the experts for each criterion has been overcome, the reciprocal preference
relations of each expert are aggregated to obtain a single reciprocal preference
relation for each criterion and the weight of each criterion relative to the
others is calculated.

– Aggregation of criteria: with the weights calculated and the criteria of
all the experts aggregated, obtaining single reciprocal preference relation per
criterion, are aggregated to obtain a single reciprocal preference relation,
called the collective reciprocal preference relation.

– Obtaining the ranking of alternatives: With the collective reciprocal
preference relation, the ranking of alternatives is computed, which determines
which alternative(s) are preferred by the experts.

3.1 Debate and Provide the Preferences

In this first part, the experts will discuss the alternatives, presenting their ideas
and preferences. Once the discussion is finished, the experts can state their pref-
erences for each criterion, which will require the use of the definitions in Sect. 2.
Once the experts have stated their preferences, they can modify them and dis-
cuss them at any other point in the process. Consequently, what you get is what
is known as an open debate. Moreover, the experts can make any comparisons
they want on any of the criteria.

3.2 Verification of the Consensus by Analysis

With the reciprocal preference relations obtained, this optional part, the consen-
sus analysis, is carried out. The main objective of this part is to verify that the
differences between the experts are not so significant as to carry out a feedback
process. To be able to affirm that there is a consensus among the experts, a con-
sensus threshold is established, denoted as α ∈ [0, 1]. This value together with a
limited number of rounds that aims to prevent the feedback process from cycling
denoted as ω ∈ N and that for this process will have a value of ω = 5, is set
at the beginning of the process. In this case, being a Multi-Criteria model, the
consensus value to be exceeded by the threshold, denoted as cns ∈ [0, 1], is com-
puted as the arithmetic mean of the consensus values of each critter. Initially,
the consensus value for each criterion, denoted as cnst ∈ [0, 1]; t = 1, . . . , m is
computed as follows:
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cnst = 1 −
2 ·

k−1∑

z=1

k∑

y=1;y>z

√√√√
L∑

s=1

L∑

i=1; s �=i

(βz
tXs,Xi

− βy
tXs,Xi

)2

L · L − L

(k − 1) · k

If one of the valuations does not exist, then the valuation is not performed and
the value of L in this equation would be one less than its original value. Once
the consensus has been calculated for each criterion, the arithmetic mean is
calculated to obtain the consensus value.

cns =

m∑

t=1

const

m

3.3 Computation of the Weights of the Criteria

Once the consensus value is higher than its respective consensus, it is necessary
to aggregate the results for each criterion. For this purpose, two factors have
to be taken into account: the first is that all experts have the same weight and
the second is that the ratings of each criterion have to be calculated separately
because the experts are free to decide which options they want to evaluate and
which they do not. Consequently, on the one hand, the number of ratings of a
criterion for two specific alternatives is defined as valuestXs,Xi

. On the other
hand, we define the reciprocal preference relation of a criterion as γt = (Θsi

t ; s �=
i; s, i = 1, . . . , L); t = 1, . . . , m. Where the element of this matrix is defined as
follows:

Θsi
t =

k∑

z=1;βz
tXs,Xi

�=∅

βz
tXs,Xi

valuestXs,Xi

Having obtained the reciprocal preference relations for each criterion, we
proceed to calculate the weight associated with each criterion, denoted as wt; t =
1, . . . , m as follows:

wt =

L∑

s=1

L∑

i=1; i�=s

valuestXs,Xi

m∑

t=1

L∑

s=1

L∑

i=1; i�=s

valuestXs,Xi

With the weights calculated and the reciprocal preference relations for each
criterion unified, the collective reciprocal preference relation is computed.
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3.4 Aggregation of Criteria

Once we have a reciprocal preference relation for each criterion and its associated
weight, we proceed to aggregate the criteria to obtain a single reciprocal pref-
erence relation, called the collective reciprocal preference relation and defined
as Γ = (δsi; s �= i = 1, . . . , L). This matrix has the same characteristics as the
reciprocal preference relations of each expert, it has dimension L × L and the
main diagonal is empty. To aggregate the criteria, an aggregation operator has
to be used, in this case, the WA operator has been chosen because the weights
of each criterion and its reciprocal preference relations have been calculated.
Consequently, each element of the matrix is defined as:

δsi =
m∑

t=1

Θsi
t ∗ wt

With this matrix, it is possible to calculate the ranking of alternatives for
the next section.

3.5 Obtaining the Ranking of Alternatives

In this last part of the method, the collective reciprocal preference relation, Γ ,
is used to determine the ranking of alternatives and therefore determine the
experts’ favourite option(s). For this purpose, the Quantifier-Guided Degree of
Dominance (QGDD) operator is used. This operator allows us to know the degree
of dominance that an alternative Xs; s = 1, . . . , L has over the rest. The QGDD
operator is obtained as follows:

QGDDs =

L∑

i=1;i�=s

δsi

L − 1

In the case that a δsi does not exist the value of L will be one minus the
original one. Once the values have been obtained using the average operator, as
the collective reciprocal preference relation is an additive matrix it is obtained
that Trillo’s theorem [17] can be applied to verify that the process carried out
does not have any problems. Once the theorem is verified, we proceed to obtain
the maximum of the values provided by the QGDD operator, as follows:

XQGDD = {Xs ∈ X | QGDDs = max
Xi∈X

QGDDi}

This maximum determines the experts’ favourite option, thus obtaining a
ranking of alternatives ordered in decreasing order according to the values pro-
vided by the QGDD operator.
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4 Illustrative Example

In this section, we are going to develop an illustrative example that allows us to
observe the usefulness of the method developed in Sect. 3. In this example, a set
of experts, denoted as E = {e1, e2, e3} want to invest money to improve their
constructions. For this, they have two criteria, the efficiency and the cost of the
investment, and a set of improvements denoted as X = {X1,X2,X3,X4}, where
X1 is to install solar panels, X2 is to improve the insulation of the windows, X3

is to install cold insulating floors and X4 is the investment in electric boilers.
The experts begin to discuss and when they have decided that they can state
their preferences, they state the preferences of the first criterion.

γ1
1 =

⎛

⎜⎜⎝

− 0.8 0.7 0.8
0.2 − − 0.5
0.3 − − 0.6
0.2 0.5 0.4 −

⎞

⎟⎟⎠ γ2
1 =

⎛

⎜⎜⎝

− 0.7 0.9 0.7
0.3 − 0.6 0.5
0.1 0.4 − 0.4
0.3 0.5 0.6 −

⎞

⎟⎟⎠ γ3
1 =

⎛

⎜⎜⎝

− 0.7 0.7 0.7
0.3 − 0.5 0.6
0.3 0.5 − −
0.3 0.4 − −

⎞

⎟⎟⎠

Once they have stated their preferences for the first criterion, they state their
preferences for the second criterion:

γ1
2 =

⎛

⎜⎜⎝

− 0.8 0.7 0.6
0.2 − 0.7 0.7
0.3 0.3 − 0.5
0.4 0.3 0.5 −

⎞

⎟⎟⎠ γ2
2 =

⎛

⎜⎜⎝

− 0.8 0.6 0.8
0.2 − 0.7 0.5
0.4 0.3 − 0.3
0.2 0.5 0.7 −

⎞

⎟⎟⎠ γ3
2 =

⎛

⎜⎜⎝

− 0.6 0.6 0.6
0.4 − 0.5 0.5
0.4 0.5 − 0.5
0.4 0.5 0.5 −

⎞

⎟⎟⎠

At this point, the expert e2 decides that he wants to change his preferences
of the first criterion because he does not consider that the values provided are
the correct ones. Consequently, the following reciprocal preference relation is
obtained:

γ2
1 =

⎛

⎜⎜⎝

− 0.7 0.9 0.7
0.3 − 0.6 −
0.1 0.4 − 0.4
0.3 − 0.6 −

⎞

⎟⎟⎠

With this new reciprocal preference relationship, the consensus among experts
is verified. For this purpose, a threshold of consensus is set at α = 0.9. As the
consensus value, cns = 0.9551 then it can be stated that there is a consensus
among the experts and the reciprocal preference relations of each criterion and
their associated weights can be obtained. The reciprocal preference relations of
each criterion are:

γ1 =

⎛

⎜⎜⎝

− 0.73 0.77 0.73
0.27 − 0.55 0.55
0.23 0.45 − 0.50
0.27 0.45 0.50 −

⎞

⎟⎟⎠ γ2 =

⎛

⎜⎜⎝

− 0.73 0.63 0.67
0.27 − 0.63 0.57
0.37 0.37 − 0.43
0.33 0.43 0.57 −

⎞

⎟⎟⎠

Before the modification of the expert e2 the weight of each criterion was w1 =
0.4706 and w2 = 0.5294. Nonetheless, with the modification of the expert, the
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weights are self-adjusted obtaining that the weights are w1 = 0.4545 and w2 =
0.5455. Consequently, the collective reciprocal preference relation is equal to the:

Γ =

⎛

⎜⎜⎝

− 0.73 0.69 0.70
0.27 − 0.60 0.56
0.31 0.40 − 0.47
0.30 0.44 0.54 −

⎞

⎟⎟⎠

The QGDD is applied to this matrix, which will provide the values for the
ranking of alternatives (see Table 1):

Table 1. QGDD values

X1 X2 X3 X4

QGDD 0.7080 0.4737 0.3914 0.4268

With the collective reciprocal preference relation and Table 1, we can apply
Trillo’s theorem [17] to verify that the whole procedure is correct. As the theorem
is verified, it can be stated that the procedure is correct and by obtaining the
maximum of Table 1 it can be seen that the preferred option by the experts is
the alternative X1 which is the placement of solar panels.

5 Discussion

This section will show the advantages of this method at a general level and
compare it with other processes in the current literature. This Multi-Criteria
GDM method enhances the knowledge of the experts in one criterion against
other criteria they do not know about. Moreover, it allows the experts not to
have the obligation to compare all the alternatives with each other, if they do not
know them, obtaining the valuations in which the experts have more knowledge.
Furthermore, this new system has other advantages to be discussed:

– Modification of reciprocal preference relations when the experts desired: this
method has an open debate, which means that when the debate is finished
the experts do not have to give their preferences at that moment or they can
give and modify them whenever they wish before the end of the process. This
is an advantage because in case there is an error by an expert or if there is a
simple change of opinion, he/she can make it if he/she wishes.

– Experts can answer as they wish: experts do not have to know how to make
all comparisons, e.g. an expert does not have to know that one alternative is
more expensive than the other. Nonetheless, in this method, they are given
the option of not being able to answer if they do not want to or do not know
the answer. In this way, the comments made by experts are because they can
make the comparison as they have the necessary knowledge to do so.
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This method has advantages when compared to other GDM methods. In [19], the
criteria have no associated weight and it is up to the experts to decide between
them who is more important. Nevertheless, in our method, the weights of each
criterion are associated according to the experts’ assessments. Moreover, while
in [19] the experts have to make all the comparisons even if they do not know
them, in this method they can make the comparisons they want. Additionally,
in [15], a GDM method is presented that seeks to reach a consensus among
experts. Nonetheless, in our method, apart from seeking consensus among the
experts, they can assess the alternatives in detail, unlike [15] which are assessed
in a general way. Furthermore, our method gives the option of modifying the
preferences when the experts wish to do so without the need to have limited
space to provide their information.

6 Conclusions

In this paper, a Multi-Criteria GDM method with open debate has been created
that allows experts not to compare all the options if they do not want to perform
the comparison. Moreover, with the number of ratings made by the experts, it
is possible to adjust each criterion’s weight, obtaining a higher weight for that
criterion with a higher number of ratings. Nevertheless, in case the experts’
comments are modified, the system self-adjusts their weights.

The developed system is a GDM method that makes the number of experts
limited, as future work we can see the possibility of creating an LSGDM system
that allows an application in a social network, making it adaptable to more
realistic situations.

Lastly, this new system gives importance to the number of ratings that are
made of a criterion and therefore, more weight is given to the criteria that the
experts are most familiar with. Therefore, the assessments made by the experts
on the criteria they know are more important than the criteria where they cannot
or do not want to decide.
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Abstract. There is a vast number of contributions in the literature
dealing with problems for which they explicitly consider the imprecision
in the inputs while keeping the output in crisp terms. Moreover, as the
complexity in the representation of imprecision increases (for example,
from triangular fuzzy numbers to type-2 fuzzy sets), a higher effort is
required from the user to determine the input information. This situation
is quite clear in the context of multicriteria decision making problems.
Here we focus on these problems under three premises: 1) the input
information is known to be of a fuzzy (imprecise) type but such fuzziness
is not represented explicitly, 2) the relative importance of the criteria is
given as ranked weights and 3) there exist an infinite number of potential
weights (under the ranked weights conditions) definitions thus leading
to an infinite number of potential scores that an alternative can achieve.
Under these premises, it has perfect sense to assign the alternatives an
imprecise score. The aim of this contribution is to propose how to model
and calculate such imprecise scores as intervals first, and as triangular
fuzzy numbers secondly. Using an illustrative example, the outputs are
displayed and compared. Several discussions regarding the usefulness of
more complex proposals are raised.

Keywords: multi-criteria decision making · fuzzy scores · fuzzy
numbers · intervals · imprecision · ranking

1 Introduction

Multi-criteria decision making (MCDM) [15] is becoming increasingly relevant
in today’s complex and dynamic decision-making environment. With the rise of
big data, the availability of multiple and conflicting information sources, and the
need to make decisions considering multiple aspects, MCDM provides a struc-
tured approach for considering various criteria and making informed choices.
MCDM techniques are used in various fields such as finance, engineering, health
care, environmental science and others to support decisions under uncertainty
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and ambiguity. Its use is growing as organizations strive to make decisions that
are not only technically sound but also socially, economically, and environmen-
tally responsible.

Our interest here is in MCDM problems containing a set of m alternatives
together with their overall performance on a set of n criteria. We assume that a
decision maker (DM) provides:

– Input 1: An evaluation matrix Em×n = {eij}, where eij is the evaluation
provided to alternative i at criterion j.

– Input 2: A preference order of criteria C = {c1, . . . , cn}, from which a rank for
the corresponding weights is derived: wπ(1) ≥ wπ(2)... ≥ wπ(n), where π : N →
N is an index permutation function. Additionally, weights are constrained to
w1 + . . . + wn = 1 and wj ≥ 0 (∀j = 1, . . . , n).

Let’s assume the global score of each alternative i is computed using a
weighted sum model:

zi(w) = wT ei (1)

where zi : Rn → R is the scoring function for alternative i at a given realization
of the vector of weights w = (w1, . . . , wn).

Under these basic premises, two critical aspects arise.
The first one is the representation of the eij . The simplest approach is to

assume eij ∈ R. But, if we consider that such values are given as “around eij”,
then fuzzy numbers [5] would be suitable tools to model such kind of imprecision,
thus leading to fuzzy multi-criteria decision making problems [7,11]. The body
of literature on potential representations of imprecision is huge. A good example
is the review in [14] where adaptations of the TOPSIS method are considered
for different types of imprecisions.

In the last years, a wide number of extensions of fuzzy sets have been pro-
posed (rough, hesitant, Pythagorean, Fermatean, etc.). However, in the context
of MCDM problems those extensions lead to a paradoxical situation: the DM
must provide an increasing number of precise values to define a single imprecise
eij value.

The second critical aspect is the weights determination, which is far from
trivial. One alternative is to resort to specific formulae to calculate “ranked
weights” as in [1]. Another alternative is to derive the weights from an AHP
process and then, some MCDM method, (like TOPSIS), is applied to rank the
alternatives [8].

In the MCDM setting we describe, it should be noted that there exist an
infinite number of realizations of weights’ vectors satisfying the conditions indi-
cated previously and, therefore, it makes perfect sense to assume that the score
of an alternative cannot be defined as a single value. In fact, there is a set of
potential scores that an alternative can achieve (one element for each vector w
satisfying the three constraints defined in Input 2 ).

The representation of the imprecision in the input has been extensively
explored in the past. But, as far as we know, the way an imprecise score can be
computed has been little studied.
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In turn, we consider that the output obtained after manipulation of imprecise
information of fuzzy type (either considering it implicitly or explicitly) should be
also imprecise. Consequently, we should not expect to provide a score like “3.234”
for an alternative. It would make more sense to say something like “the score
is in the interval [a, b]” or simply, “the solution score is high”. While the first
approach would involve approaching the problem from an interval perspective
[3], the second would do so from a linguistic labeling perspective [4,9]. In the
present paper we will focus on the first approach.

Considering the above motivations, the objectives of this contribution are:
1) to propose a model for such imprecise scores in two forms: as intervals and
as triangular fuzzy numbers; 2) to provide efficient ways to compute their corre-
sponding parameters. Both ideas are illustrated by means of a simple example.

The remainder of this paper is organized as follows. In Sect. 2 we establish
some definitions that we will use in our proposals, which are presented in Sect.
3. An illustrative example is developed in Sect. 4, while Sect. 5 is devoted to the
discussion and conclusions of the results obtained.

2 Preliminaries

In this section we recall some basic concepts that will be used later. The emphasis
is on weight approximation methods, which will help us to calculate the core of
the fuzzy numbers we use for defining the alternative scores.

2.1 Approximate Weighting Methods

There are several approaches in the literature to deal with the uncertainty of
decision scenarios where weights are not explicitly defined [10]. In the following,
we will consider the ones we use in our proposal; the interested reader is referred
to [2] for further information.

One of the most widespread weight approximation approaches in the context
of ranked weights is the rank-order centroid (ROC) [1]. According to this method,
each weight wj is obtained as:

wj =
1
n

n∑

k=j

1
k

∀j = 1, . . . , n (2)

Other two common methods are the rank-sum (RS) weights and rank recipro-
cal (RR) weights, which were proposed in [6] and [16], respectively. Specifically,
the RS weights wj are computed as follows:

wj =
n + 1 − j∑n

k=1 k
=

2(n + 1 − j)
n(n + 1)

∀j = 1, . . . , n (3)

In the case of RR, weights are obtained as:

wj =
1/j∑n

k=1 1/k
∀j = 1, . . . , n (4)
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3 Towards Imprecise Scores

From now on we consider that the input values have a fuzzy type (not proba-
bilistic, nor linguistic...) but we will not model such fuzziness in an explicit way.
So, initially eij ∈ R, thus reducing the effort required from the DM to define the
matrix of alternatives. The score of each alternative i is calculated as shown in
Eq. 1 and the ranked weights are given. Now we describe below our proposal for
modelling imprecise scores.

3.1 Imprecise Scores as Intervals

As we previously stated, there exist an infinite number of realizations of the w
vector, thus leading to an infinite number of potential scores that an alternative
can achieve. Two specific scores values are relevant: the minimum and the max-
imum. If we can calculate such values, then an interval for the alternative can
be readily obtained.

Following [17] and the references therein, it is possible to calculate such
bounds solving the two following linear programming problems for every alter-
native. Formally, let Pw be the region of admissible weights induced by the con-
straints defined in Input 2 (Sect. 1) and Ii = [li, ui] the interval of scores for the
solution i. Then li (respectively ui) is obtained by minimizing (resp. maximizing)
for w the following linear programming problem: {zi = wT ei : w ∈ Pw}.

Due to some properties of this model, obtaining the solution is simple. The
constraints over the weights (Input 2 ) induce a convex region of admissible
weights in the form of a n − 1 dimensional polyhedron Pw of n vertices [12].
As is well known, both the minimum and maximum of a linear problem (if they
exist) occur at a vertex of the feasible region. Here, every vertex is a particular
configuration of the weights, so we just need to evaluate the alternative i in every
vertex and keep the max/min scores found.

As shown in [12], those vertices (weights configurations) can be arranged in
a n × n matrix V with the following structure:

V =

⎛

⎜⎜⎜⎝

1 0 0 . . . 0
1
2

1
2 0 . . . 0

...
...

...
. . .

...
1
n

1
n

1
n . . . 1

n

⎞

⎟⎟⎟⎠ (5)

where each row vi is a vertex (extreme point) of Pw. As the reader may notice,
the first row indicate that all the weight is given to the more important criteria.
The second row divides the weight between the two more relevant criteria and
so on. The last row assigns the same weight to all the criteria.

So, using this strategy we can calculate an alternative’s imprecise score as
an interval containing the range of the potential scores that can be achieved.
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Table 1. Variants to obtain the core (b) of the fuzzy number corresponding to the
score of the solutions.

Variant Core value b is defined as

IC the midpoint of the interval
EW the score calculated with equals weights
ROC the score calculated with weights as in Eq. 2
RS the score calculated with weights as in Eq. 3
RR the score calculated with weights as in Eq. 4
MWS the mean of the scores calculated from the

previous weights

3.2 Imprecise Scores as Triangular Fuzzy Numbers

Let’s call z̃i the fuzzy score of an alternative i. For the sake of simplicity and as
a first approach, we represent z̃i as a triangular fuzzy number, which just require
three values (a, b, c) for its definition.

Given an alternative i, the results of the previous section allowed to obtain
an interval Ii = [li, ui] so we propose to define the support of z̃i as Sz̃i

= {z :
li < z < ui}.

Now, the problem is how to calculate the core value b. One approach that
immediately arise is to take b as the value corresponding to the center of the
interval, thus leading to a symmetrical triangular fuzzy number. However, such
approach completely ignores the inner distribution of the scores for a given set
of weights. Additionally, the score corresponding to this center of the interval
would not necessarily have the same weight associated with it for each solution
of the problem.

So, as an initial approach we propose to calculate the value of b from a set of
relevant scores. By relevant we mean those scores that are obtained from weights
that are representative within the set of admissible weights, that is, according to
the set of constraints for weights defined in Input 2 (Sect. 1). Here we would be
including those from the extreme points of matrix in Eq. 5, and those computed
from methods defined in Sect. 2.1. Although each weight configuration would
give us a specific value of b, it is also possible to obtain b from an aggregation
of these individual scores.

Table 1 summarizes a set of variants to calculate the b parameter. When
EW, ROC, RS, RR are stated, the meaning is that those weights are used to
calculate the corresponding scores. For sake of comparison, we have also included
the variant based on the center of the interval (IC ).

4 An Illustrative Example

Now, we present an example to illustrate our proposal and promote further
analyses. We consider a decision problem with ten solutions and five criteria.
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Without loss of generality, we will assume that the weights associated with these
criteria have the following order: w1 ≥ w2 ≥ w3 ≥ w4 ≥ w5. Besides, the entries
in the evaluation matrix are defined on a scale from 0 to 10. Consequently, the
score of each solution is also be defined in that range.

Firstly, the results using intervals for scores are presented. Secondly, those
related with fuzzy scores.

4.1 Scores as Intervals

Figure 1-a) shows the intervals of scores obtained for each solution. Some useful
information can be easily obtained. Consider solutions S3, S4. As their corre-
sponding intervals do not overlap, then it is impossible that S4 obtains a higher
crisp score than S3 under the given order of the weights.

For solution S9, there is a specific set of weights that allows to achieve the
highest score over all the solutions. It is also interesting to note the variability
in the lengths of the intervals. While (depending on the specific weights) S1 can
obtain a score between 0.0 to 5.7, or S9 between 5.0 to 10, the range of potential
scores for S4 is quite short.

In order to gain some insights in the inner distribution of the potential scores
within the intervals, Fig. 1-b) displays the scores associated with the extreme
weights. In this case, it can be seen how the corresponding scores do not show
any clear pattern.

In fact, the lower and upper bounds of each interval are obtained from dif-
ferent extreme weight vectors. For example, consider solution S1, in which its
lower bound is due to the score obtained in the weights (1, 0, 0, 0, 0). In con-
trast, solutions such as S4 or S8, S9, owe their lower bound to the vector of
weights (0.2, 0.2, 0.2, 0.2, 0.2), corresponding to the case where all criteria have
the same importance. Notice that this particular configuration, called Equal
Weights (EW ) allowed to obtain the maximum score for S3.

Similarly, Fig. 1-c) shows the distribution of scores associated with other
weight vectors: those obtained by applying the approximation methods defined
in Sect. 2. We include EW again in this plot for comparison purposes. Note that
the approximate weights ROC, RS and RR are distributed to inner zones of the
intervals. Again, no clear pattern arises. Looking at solution S1 we observe a
quite wide interval. However, most of the calculated scores are between 3.0 and
6.0 (considering both plots). For solution S7, a similar situation appears: most
of the scores are grouped closer to the upper than to the lower bound. For S9
the situation is exactly the opposite.

4.2 Scores as Fuzzy Numbers

Now, we will further elaborate on the proposal to model the score intervals as
triangular fuzzy numbers. As mentioned above, the main question here lies in
how to define the core of this number (parameter b). We explore here the options
described in Table 1.
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Fig. 1. Distribution of extreme weights (a) and approximated weights (b) along the
solution score interval.

Figure 2 displays the fuzzy scores of every alternative for the different ways of
assigning the b value. At first sight, the option in Fig. 2-a), where the core is the
centre of the interval, looks more “interpretable” than the other approaches, i.e.,
in the sense of a fuzzy number representing the concept of around the value x.

Among the other approaches, most of the differences appeared when com-
pared with the equal weights approach (Fig. 2-b)), where the core is closer to
the bounds of the support.

Differences among ROC, RR, RS, and MWS are hard to detect so one may
ask if having more complex ways to assign the b parameter provides any benefit.
One way to answer such question is the following: sort the alternatives and check
how similar the corresponding rankings are. In turn, this implies defining a way
to compare fuzzy numbers and here, the literature is enormous (see [18,19]).
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Fig. 2. Fuzzy scores for every alternative under different definitions of the core value.

Nevertheless, we set the question as follows: given the current dataset, and
the Yager’s Y 2 index [18] for comparison of fuzzy numbers, how similar the
different rankings of the alternatives (one for each plot in Fig. 2) are?

To quantify this level of coincidence we relied on two measures: the Kendall’s
tau correlation coefficient and the matching rate of the top 5 solutions. Figure 3
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Fig. 3. Kendall’s correlation coefficient (a) and matching rate for the top 5 solution
(b).

displays the results. Overall, there is indeed a strong correlation between the
variants (Fig. 3a). The rankings derived from RR and MWS are the same. The
more dissimilar rankings are those produced by IC and EW. It is interesting to
note here that the correlation between MWS and IC is very high. Regarding the
matching rate, it can be seen from Fig. 3b) that the variants exhibit high levels
of agreement in the top 5 alternatives.

5 Discussion and Conclusion

In this work, we focused in MCDM problems with three features: 1) we know
that the input information has a fuzzy (imprecise) type but we do not represent
such fuzziness explicitly, 2) the relative importance of the criteria is given as
ranked weights and 3) there exist an infinite number of potential weights (under
the ranked weights condition) thus leading to an infinite number of potential
scores that an alternative can achieve.

Under these assumptions, it makes a lot of sense to assign the alternatives
an imprecise score. We proposed first to model such scores as intervals, and
secondly, as triangular fuzzy numbers.

In general, there are a vast number of contributions in the literature that
explicitly considers the imprecision in the inputs while keeping the output in
crisp terms (crisp scores). This proposal explores a different way to deal with
imprecise information.

Although generalizations should be taken with caution due to the small
experimentation performed, some preliminary conclusions can be outlined.

Firstly, the use of intervals to model imprecise scores is simple to understand
and easy to calculate. However, it provides no information regarding the inner
distribution of the scores within the intervals.
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Secondly, when considering the imprecise scores as triangular fuzzy numbers,
the main problem is the determination of the kernel of the set, since the support
would be given by the interval of possible scores. In this sense, several proposals
were explored, including the trivial one (e.g., the core as the center of the interval)
leading to symmetric triangular fuzzy numbers.

Since each decision-maker may propose a different way of defining the core, we
suggest that to get some ideas about the advantages of the different proposals,
the alternatives should be ranked using any comparison index, and then the
rankings obtained should be analyzed.

In our case, and in the third place, the main conclusion of such analysis is that
the ranking produced when the core of the fuzzy number is calculated using the
basic approach (IC ) shows a high level of agreement with the one provided using
the MWS approach (which considers, at least partially, the inner distribution of
the scores within the interval).

In our opinion, this is unexpected. Even in the simple example we showed,
it was rather clear that the scores are not evenly distributed along the intervals.
Of course, other distributions can be observed if different sets of weights are
sampled, but this is a topic that deserves further research.

Also, and as future research, we plan to replicate these results over a wide
set of multi-criteria decision making problems to further understand the role of
considering imprecision scores.

In any case and following the line against the artificial complexification of
the problems being solved posed in [13], we discourage further exploration of
other (more complex) representations of fuzzy scores or exploring different ways
of sorting fuzzy numbers.

Acknowledgments. Authors acknowledge support from projects PID2020-112754GB-
I00, MCIN/AEI /10.13039/501100011033 and FEDER/Junta de Andalucía - Conse-
jería de Transformación Económica, Industria, Conocimiento y Universidades/Proyecto
(2020B-TIC-640-UGR20).

References

1. Barron, F.H., Barrett, B.E.: Decision quality using ranked attribute weights. Man-
age. Sci. 42(11), 1515–1523 (1996). https://doi.org/10.1287/mnsc.42.11.1515

2. Butler, J., Jia, J., Dyer, J.: Simulation techniques for the sensitivity analysis of
multi-criteria decision models. Eur. J. Oper. Res. 103(3), 531–546 (1997). https://
doi.org/10.1016/S0377-2217(96)00307-4

3. Chinnakum, W., Ramos, L.B., Iyiola, O., Kreinovich, V.: Decision making under
interval uncertainty: toward (somewhat) more convincing justifications for Hurwicz
optimism-pessimism approach. Asian J. Econ. Bank. 5(1), 32–45 (2021). https://
doi.org/10.1108/ajeb-07-2020-0029

4. Delgado, M., Verdegay, J.L., Vila, M.A.: Linguistic decision-making models. Int.
J. Intell. Syst. 7(5), 479–492 (1992). https://doi.org/10.1002/int.4550070507

5. Dubois, D., Prade, H.: Operations on fuzzy numbers. Int. J. Syst. Sci. 9(6), 613–626
(1978). https://doi.org/10.1080/00207727808941724

https://doi.org/10.1287/mnsc.42.11.1515
https://doi.org/10.1016/S0377-2217(96)00307-4
https://doi.org/10.1016/S0377-2217(96)00307-4
https://doi.org/10.1108/ajeb-07-2020-0029
https://doi.org/10.1108/ajeb-07-2020-0029
https://doi.org/10.1002/int.4550070507
https://doi.org/10.1080/00207727808941724


Towards Imprecise Scores in MCDM 207

6. Einhorn, H.J., McCoach, W.: A simple multiattribute utility procedure for evalua-
tion. In: Zionts, S. (ed.) Multiple Criteria Problem Solving. LNE, vol. 155, pp. 87–
115. Springer, Heidelberg (1978). https://doi.org/10.1007/978-3-642-46368-6_6

7. Guo, S., Zhao, H.: Fuzzy best-worst multi-criteria decision-making method and
its applications. Knowl.-Based Syst. 121, 23–31 (2017). https://doi.org/10.1016/
j.knosys.2017.01.010

8. Hanine, M., Boutkhoum, O., Tikniouine, A., Agouti, T.: Application of an inte-
grated multi-criteria decision making AHP-TOPSIS methodology for ETL soft-
ware selection. SpringerPlus 5(1), 1–17 (2016). https://doi.org/10.1186/s40064-
016-1888-z

9. Herrera, F., Herrera-Viedma, E., Verdegay, J.: A model of consensus in group
decision making under linguistic assessments. Fuzzy Sets Syst. 78(1), 73–87 (1996).
https://doi.org/10.1016/0165-0114(95)00107-7

10. Liu, D., Li, T., Liang, D.: An integrated approach towards modeling ranked
weights. Comput. Industr. Eng. 147, 106629 (2020). https://doi.org/10.1016/j.
cie.2020.106629

11. Liu, H.W., Wang, G.J.: Multi-criteria decision-making methods based on intu-
itionistic fuzzy sets. Eur. J. Oper. Res. 179(1), 220–233 (2007). https://doi.org/
10.1016/j.ejor.2006.04.009

12. Mármol, A.M., Puerto, J., Fernández, F.R.: The use of partial information on
weights in multicriteria decision problems. J. Multi-Criteria Decis. Anal. 7(6),
322–329 (1998). https://doi.org/10.1002/(SICI)1099-1360(199811)7:6<322::AID-
MCDA203>3.0.CO;2-4

13. Pelta, D.A., Lamata, M.T., Verdegay, J.L., Cruz, C., Salas, A.: Against artificial
complexification: crisp vs. fuzzy information in the TOPSIS method. In: Joint
Proceedings of the 19th World Congress of the International Fuzzy Systems Asso-
ciation (IFSA), the 12th Conference of the European Society for Fuzzy Logic and
Technology (EUSFLAT), and the 11th International Summer School on Aggrega-
tion Operators (AGOP). Atlantis Press (2021). https://doi.org/10.2991/asum.k.
210827.046

14. Salih, M.M., Zaidan, B., Zaidan, A., Ahmed, M.A.: Survey on fuzzy TOPSIS
state-of-the-art between 2007 and 2017. Comput. Oper. Res. 104, 207–227 (2019).
https://doi.org/10.1016/j.cor.2018.12.019

15. Stewart, T.J.: Multicriteria decision analysis. In: Lovric, M. (ed.) International
Encyclopedia of Statistical Science, pp. 872–875. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-04898-2_384

16. Stillwell, W.G., Seaver, D.A., Edwards, W.: A comparison of weight approximation
techniques in multiattribute utility decision making. Organ. Behav. Hum. Perform.
28(1), 62–77 (1981). https://doi.org/10.1016/0030-5073(81)90015-5

17. Torres, M., Pelta, D.A., Lamata, M.T., Yager, R.R.: An approach to identify
solutions of interest from multi and many-objective optimization problems. Neu-
ral Comput. Appl. 33(7), 2471–2481 (2021). https://doi.org/10.1007/s00521-020-
05140-x

18. Wang, X., Kerre, E.E.: Reasonable properties for the ordering of fuzzy quanti-
ties (I). Fuzzy Sets Syst. 118(3), 375–385 (2001). https://doi.org/10.1016/s0165-
0114(99)00062-7

19. Wang, X., Kerre, E.E.: Reasonable properties for the ordering of fuzzy quanti-
ties (II). Fuzzy Sets Syst. 118(3), 387–405 (2001). https://doi.org/10.1016/S0165-
0114(99)00063-9

https://doi.org/10.1007/978-3-642-46368-6_6
https://doi.org/10.1016/j.knosys.2017.01.010
https://doi.org/10.1016/j.knosys.2017.01.010
https://doi.org/10.1186/s40064-016-1888-z
https://doi.org/10.1186/s40064-016-1888-z
https://doi.org/10.1016/0165-0114(95)00107-7
https://doi.org/10.1016/j.cie.2020.106629
https://doi.org/10.1016/j.cie.2020.106629
https://doi.org/10.1016/j.ejor.2006.04.009
https://doi.org/10.1016/j.ejor.2006.04.009
https://doi.org/10.1002/(SICI)1099-1360(199811)7:6<322::AID-MCDA203>3.0.CO;2-4
https://doi.org/10.1002/(SICI)1099-1360(199811)7:6<322::AID-MCDA203>3.0.CO;2-4
https://doi.org/10.2991/asum.k.210827.046
https://doi.org/10.2991/asum.k.210827.046
https://doi.org/10.1016/j.cor.2018.12.019
https://doi.org/10.1007/978-3-642-04898-2_384
https://doi.org/10.1016/0030-5073(81)90015-5
https://doi.org/10.1007/s00521-020-05140-x
https://doi.org/10.1007/s00521-020-05140-x
https://doi.org/10.1016/s0165-0114(99)00062-7
https://doi.org/10.1016/s0165-0114(99)00062-7
https://doi.org/10.1016/S0165-0114(99)00063-9
https://doi.org/10.1016/S0165-0114(99)00063-9


A Multitask Deep Learning Approach
for Staples and Wound Segmentation
in Abdominal Post-surgical Images
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Abstract. Deep learning techniques provide a powerful and versatile
tool in different areas, such as object segmentation in medical images.
In this paper, we propose a network based on the U-Net architecture to
perform the segmentation of wounds and staples in abdominal surgery
images. Moreover, since both tasks are highly interdependent, we propose
a multitask architecture that allows to simultaneously obtain, in the same
network evaluation, the masks with the staples and wound location of the
image. When performing this multitasking, it is necessary to formulate a
global loss function that linearly combines the losses of both partial tasks.
This is why the study also involves the GradNorm algorithm to determine
which weight is associated to each loss function during each training step.
The main conclusion of the study is that multitask segmentation offers
superior performance compared to segmenting by separate tasks.

Keywords: Medical images · Abdominal surgery images · Deep
learning · Multitask learning · Segmentation

1 Introduction

Postoperative follow-ups are essential in ensuring the successful recovery of a
patient after a surgery and preventing potential complications. While the impor-
tance of these revisions cannot be overstated, advancements in telemedicine and
eHealth have made it possible for some of these evaluations to be conducted
remotely. This offers numerous benefits, including reducing the need for physical
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travel, which enhances the patient’s quality of life, and overcoming geographical
barriers. It is in this context that many studies on telemedicine and eHealth have
appeared, for instance [2,10,11,15,20]. In turn, the emergence of telemedicine
and eHealth has spurred the development of advanced techniques in the auto-
matic analysis of medical images in different areas. For example, using non-deep
learning techniques, in [8] the authors proposed the use of a 3D reconstruction
algorithm to determine the area of wounds of various types from an image. Fur-
thermore, in [5,6] the authors described a method for detecting complications
in images of abdominal surgery using staples as suture method through the
application of mathematical morphology based on fuzzy sets. With the location
of the staples, which are typically situated near the wound, the method classi-
fies the pixels based on chromatic information. This allows the identification of
regions classified as red, as redness is commonly considered a sign of infection.
On the other side of the coin, using deep learning techniques, studies such as
[18] have been conducted for dermal lesion segmentation, [4,9,19] for pressure
ulcer tracking, and [16] for corneal ulcer segmentation. Further advancements
have been made through the use of multitasking techniques in the deep learning
approaches, which not only perform segmentation, but also classify the complica-
tion into several categories. Examples of such studies are [1,17] in dermatology,
and [12,13] for segmentation, severity classification, and time tracking of ulcers.

Having established the context of our work, this paper builds upon the previ-
ous studies about automatic analysis of images of abdominal surgery conducted
in [5,6], without losing sight of the progress already made by the research com-
munity in other fields of medical image analysis. Our objective is to address
the wound and staples segmentation through the application of deep learning
methods. Furthermore, as well as other studies present in the literature, we aim
to examine the interdependence of these two tasks by proposing a multitask
approach that can perform simultaneous wound and staples segmentation on
postoperative wound images. Namely, we propose a deep learning multitasking
approach that leverages the widely recognised U-Net architecture, which was
originally designed for biomedical image segmentation. Our approach involves
a modification of the U-Net architecture by incorporating a second decoding
branch, as depicted in Fig. 1. This modification provides a common feature
extractor for two tasks: wound segmentation and staples segmentation, taking
advantage of the idea that many of the features that are beneficial for one task
are also useful for the other, while maintaining the independence of the two seg-
mentations. To accommodate the change in the architecture, the network loss
function must consist of two terms, which we balanced using the GradNorm
algorithm.

The paper is organized as follows. In Sect. 2, we present the methodology in
our study, including the description of the dataset, the neural network architec-
ture of our approach, and the metrics used in the evaluation process. In Sect. 3,
we outline the experimental framework used. Then, in Sect. 4, we present and
analyse the results obtained in our study. Finally, in Sect. 5, the paper concludes
with a summary of the findings and proposals for future work.
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Fig. 1. Simplified diagram of the proposed network.

2 Methodology

In this section, we outline the methodology and the experimental framework for
the study. First, in Sect. 2.1, we describe the dataset that will feed the experi-
mentation. Then, in Sect. 2.2, we explain the metrics that will be used to evaluate
performance. In Sects. 2.3, and 2.4, we delve into the neural network architec-
tures that will be considered and the weight balancing algorithm, respectively.

2.1 Dataset

The image dataset we utilized in this investigation was provided by the physi-
cians of the Department of Surgery at the University Hospital Son Espases
(HUSE) situated in Palma, Spain. In total, 394 images were acquired using
the cameras of patients’ smartphones, without any control of the lighting or
environmental conditions. The objective of that study was to assess the pres-
ence of any complications in post-surgical wounds through an automatic analysis
integrated within the Redscar mobile application. All the images in the dataset
depict post-operative wounds closed using staples as suture method.

To perform this study, we generated binary masks to accurately highlight
the location of the wounds and staples. These masks were created by marking
in white the pixels that correspond to the objects of interest, and also they
underwent validation by medical specialists to ensure their precision and accu-
racy. Furthermore, to enhance visualisation, the masks were superimposed on
the original images, allowing for a quick and clear assessment of the segmen-
tation results. Figure 2 shows a sample image from the dataset, along with the
two binary masks that depict the position of the staples and the wound, and
two colour masks that highlight the location of the objects of interest within the
image.
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Fig. 2. Example of an image from the dataset and the two ground truth masks we
used to perform the wound and staples segmentation tasks.

Finally, to ensure consistency across all experiments, the original images of
the dataset, which varied in size, were resized to a size of 512 × 512. We also
divided the dataset into training and test sets, which comprised 275 and 119
images, respectively. These sets remained constant throughout the study.

2.2 Metrics

To assess the efficacy of our method on the Redscar dataset and allow for future
comparisons, we adopted a set of evaluation metrics that are specific to the task
at hand. These metrics are based on the confusion matrix, which comprises the
following basic statistics: true positive (TP), true negative (TN), false positive
(FP), and false negative (FN). In the context of deep learning, the output is
typically continuous. Therefore, it is necessary to define positive and negative
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samples. In our case, we define a pixel as positive if its value is greater than 0.5
and negative otherwise.

For both, the wound and staples segmentation tasks, we employed the Inter-
section over Union (IoU) metric, also known as Jaccard’s index. This metric
calculates the extent of overlap between the predicted and ground-truth segmen-
tations and is widely used in the evaluation of image segmentation techniques.
It is calculated from the confusion matrix as follows:

IoU =
TP

TP + FP + FN
. (1)

2.3 Neural Network

The U-Net architecture, introduced by Ronnenberger et al. [14], is a Fully Con-
volutional Network (FCN) tailored for the purpose of segmenting biomedical
images. In this instance, we based our solution using the conventional version
of the network, with the integration of a batch normalization layer following
every convolution in the contracting section. Batch normalization standardizes
the inputs to a layer for each mini-batch, having the effect of stabilizing the
learning process and reducing the number of training epochs required to train
deep networks.

Dealing with a problem that involves multiple tasks requires a specialized
strategy. Initially, we attempted to solve the problem by adding more channels
at the network output, but this approach did not lead to successful segmentation
of two disjoint classes. Recognizing the need for a different approach, we decided
to modify the traditional U-Net architecture. We then attempted to solve the
problem using a two-step algorithm, involving two consecutive segmentations
with U-Net. Unfortunately, the results were not satisfactory. Finally, we pro-
posed to solve this problem by using two reconstruction branches, since we are
dealing with a problem that is solved by two distinct tasks that we assume share
characteristics. In this way, we can have a part of the network that is specific to
each task. In Fig. 3 we can see the details of the network architecture.

Loss Function. We defined our training loss function as

L = σ · Lwound + λ · Lstaples, (2)

where Lwound and Lstaples are the conventional Dice loss, and σ and λ are two
weighting coefficients that were initially set to 1. The Dice loss is defined as
D(p, q) = 1 − Dloss(p, q), where Dloss(p, q) is defined as

Dloss(p, q) =
2
∑

x,y(px,y · qx,y)
∑

x,y p
2
x,y +

∑
x,y q

2
x,y

. (3)

In this expression, px,y and qx,y refer to the value of pixel located at (x, y)
in the predicted soft mask p and the ground truth mask q. The soft mask range
for p is between 0 and 1, while q is a binary mask that can only take on the
values of 0 or 1. Despite this difference between the two masks, there is no issue
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Fig. 3. The proposed network has a Coder-Decoder shape with two decoding branches,
one for each of the two tasks. The encoder extracts high-level features from the input
data, which are then used by the two independent decoders to produce their respective
outputs. The network diagram shows the layers and connections involved in the process,
with shared and unique layers for each task in the decoding branches.

since the loss function utilized can handle both discrete and continuous values
in the same expression.

2.4 Adaptive Balancing Tasks: GradNorm

Multitask networks pose a significant challenge in training due to the need to
balance different objectives. This arises from the requirement to converge to a
shared solution that accounts for all tasks, rather than optimizing only one of
them. The difficulty can be addressed by using the weights of the loss function
to balance the tasks.

In multitask networks, loss functions are typically defined as the linear com-
bination of individual task-specific loss functions. In our approach, as discussed
previously, we have defined the loss functions as a weighted sum, see Eq. (2). This
composite loss function involves two weights, σ and λ, which were initially set to
the same value to indicate equal importance. However, as each task complexity
can vary, one of the tasks (in our case, segmenting the wound) can dominate the
training process, leading to unbalanced results.

To tackle the issue at hand, we propose leveraging the GradNorm algorithm
introduced by Chen et al. [3]. This adaptive method addresses the loss rate imbal-
ance problem by adjusting the weights of the neural network at each training
step. Specifically, the algorithm introduces an additional set of learnable param-
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eters, one for each task, which act as weights in the loss function. These weights
are optimized using the same learning algorithm as the network, incurring only
a negligible overhead. The method requires only one hyperparameter, denoted
as α, which determines the strength of the restoring force that pulls the tasks
back to a common training rate.

One notable advantage of GradNorm is that it ensures a convex combination
of the loss functions of the subtasks, thereby guaranteeing optimal training of
each task. This feature is critical for multi-task learning scenarios where the
tasks have different complexity, thereby also have different loss functions.

3 Experimental Setting

In this section, we explain the experiments we performed on the dataset described
above. To evaluate the impact of learning both tasks, we performed an ablation
study that consist on training the network with three different loss functions (see
Eq. 2): L, Lwound and Lstaples to evaluate the influence of each task into the other.
Finally, we evaluated the use of the well-known training technique, GradNorm,
to balance the importance of each task. The aim of the experiments is to assess
the feasibility and effectiveness of extracting shared features to perform the two
tasks or, alternatively, to determine if different learning approaches are more
effective.

3.1 Training Details

We experimented with two main configurations for our training: one utilising
GradNorm and one without. We want to minimise the differences between the
two configurations as much as possible to make a fair comparison between them.

To train our network, on the one hand we utilised 120 epochs. The config-
uration without GradNorm utilized Adam optimizer [7] with a learning rate of
1 · 10−3 and a weight decay of 1 · 10−4. Our training mini-batch was constructed
using a total of 10 images. On the other hand, the configuration with GradNorm
used the Adam optimizer for both the network and layer weights, with a learning
rate of 1 · 10−3 and 5 · 10−3, respectively. We used 2 images per mini-batch due
to the increase in parameters produced by the GradNorm algorithm, and the
limitations of our hardware. We set α to 0.006.

4 Results and Discussion

In this section, we present the results of our experiments, including an analysis
of the mean Intersection over Union (IoU) and standard deviation (STD) for
the wound and staple segmentation tasks across all images, which are gathered
in Table 1. In addition, we provide visual results of the segmentation output for
the image presented in Fig. 2. Finally, we conclude the section with a discussion
of the main findings and their implications.
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Table 1. Experimentation results: In the first column, the experiment performed is
indicated. In the second and third columns, the average IoU and standard deviation for
performing wound segmentation and the staples segmentation tasks among all images,
respectively, are given.

Experiment IoU of wound segm. IoU of staples segm.

Wound 0.670 ± 0.185 -

Staples - 0.459 ± 0.184

Wound and staples 0.714± 0.186 0.474 ± 0.174

GradNorm (Wound and staples) 0.711± 0.206 0.488± 0.171

From the results shown in Table 1, we can see that in terms of the IoU mea-
sure, performing one single task, which is indicated in the first and second rows,
provides worse performance than the multitasking approach, which is indicated
in the third and fourth rows. Therefore, we can conclude that the two tasks are
complementary and also that these two tasks share some features, as we obtain
better IoU.

Figure 4 illustrates the outcomes obtained using the GradNorm algorithm
and both tasks. Figure 4c displays the contrast between the ground truth and
the predicted mask for the staple positions. False positives (FP) are depicted by
the white regions, false negatives (FN) by the black regions, and true positives
(TP) by the gray regions. The proposed methods demonstrate a tendency to
over-segment the objects, leading to an increase in size in comparison to the
ground truth.

These visual results are compatible with the metrics shown in Table 1. The
low IoU values obtained for all methods in the tasks of segmenting the staples
can be attributed to the generation of coarse segmentation. Due to the small
size of the object to be segmented, even minor differences can have a significant
impact on the final result. In Fig. 5 we can see a challenging configuration in
our dataset, since most wounds are found to be vertically oriented. Correctly
segmenting this type of images shows us the generalisation capability of our
network. In Fig. 6 we can observe how the two tasks are closely related: in the
area where the network has not been able to correctly segment the wound, it
has not been able to find any staples.
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Fig. 4. Example of the results obtained with the proposed model using GradNorm on
the original image depicted in Fig. 2.

Fig. 5. Example of the results obtained with the proposed model using GradNorm on
an image with an horizontal wound.

Fig. 6. Example of the results obtained with the proposed model using GradNorm on
a difficult image. In this sample, we can see how the two tasks are closely related, in
the area where the network has not been able to correctly segment the wound, it has
not been able to find any staples.
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5 Conclusions and Future Work

The application of deep learning techniques in medical image processing has
emerged as a potent tool to improve healthcare professionals’ decision-making.
In this study, we undertook a novel investigation into the potential of deep
learning algorithms for wound and staple segmentation in abdominal surgery
images. Specifically, we proposed a multitask deep learning approach to segment
wounds and staples from medical images, and modified the well-known U-Net
network architecture by incorporating a second decoding branch. This modifica-
tion provided a common feature extractor for both tasks while maintaining the
independence of the two segmentations. To accommodate the change in architec-
ture, the loss function of the network was constructed using a linear combination
of the loss of each partial task, whose weights we balanced using the GradNorm
algorithm. To enable future work and for scientific progress, we published in
a GitHub repository the weights obtained after training the models and the
code definition of the two models we used in this research (https://github.com/
miquelmn/multitask-wounds).

Based on the results obtained from our experimental setup, we can conclude
that the multitask approach outperforms the single task approach. This suggests
that the two segmentation tasks share common features, and that they can
mutually benefit from each other.

As future work, we have identified two key areas for improvement. Firstly,
we need to address the size diversity within our dataset, which presents objects
of varying sizes. Convolutional networks, by definition, are not size invariant,
which can lead to suboptimal results as observed in our provided images. We
plan to incorporate to the model a pyramid of features maps, used extensively
in the literature, to overcome this challenge. Secondly, our dataset includes a
third task, which involves classifying wounds into two categories: infected or
non-infected. In our future work, we aim to integrate this additional task into
our neural network to enhance its overall performance.
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Abstract. Image noise can be viewed as unwanted disturbances in a
digital image that should be removed or reduced before further process-
ing and analysis. Impulsive noise, also known as impulse noise, is a very
disruptive type of noise, characterized by abrupt variations in bright-
ness in a subset of the image pixels. Impulsive noise commonly occurs
during image acquisition and transmission. To mitigate its effects, vari-
ous impulsive noise reduction methods have been proposed by the image
processing community. In contrast to classical filters such as the median
filter, most current impulsive noise reduction techniques implement a
two-step approach that consists of a noise detection phase to identify
noisy pixels and a filtering phase to reduce the amount of noise in the
presumably corrupted pixels.

The approach presented in this paper is also along this line. To be
more precise, we draw on the principles of two state-of-the-art impul-
sive noise reduction methods, namely the adaptive fuzzy transform based
image filter (ATIF) and the improved fuzzy mathematical morphology
open-close filter (i-FMMOCS), in order to propose a new method for
general impulsive noise reduction.

Keywords: Image noise · Impulsive noise · Fuzzy image processing ·
Noise detector · Fuzzy image filter

1 Introduction

There are a number of different ways in which fuzzy logic can be applied to
digital image processing. One possible option is to represent a grayscale digital
image as a function from a universe X to (a finite subset of) the unit interval,
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identifying these images with fuzzy sets. This way, one may use operators of
fuzzy logic such as (discrete) t-norms and implications as a tool for processing
grayscale images. Another option is to use fuzzy sets as a model for coping with
vagueness, imprecision, ambiguity, and uncertainty that frequently arise in image
processing, analysis, and understanding. In both scenarios, one may additionally
resort to fuzzy logic in order to extract valuable information regarding features
of an image [1]. Fuzzy logic may for instance be used to determine if a given pixel
should be considered corrupted or not. To this end, one often takes information
regarding the pixels with neighboring locations into account. This strategy was
in particular applied in the impulse noise detection phases of Schulte et al.’s
fuzzy impulse noise detection and reduction method (FIDRM) [2], Schuster’s
and Sussner’s adaptive image filter based on the fuzzy transform (ATIF) [3],
and Yueksel’s and Bastuerk’s type-2 fuzzy logic filtering to reduce noise in color
images [4]. Many other impulse noise reduction methods such as weighted couple
sparse representation of Chen et al. [5], unified impulse noise removal using a
reference sequence-to-sequence similarity detector [6], and the adaptive window-
based filter for high-density impulse noise suppression [7] also execute a noise
detection phase before proceeding with the filtering phase. This comment applies
in particular to the improved fuzzy mathematical morphology open-close filter
(i-FMMOCS) of González-Hidalgo et al. [8] that was specifically designed to first
detect and then remove salt-and-pepper noise in grayscale images.

Interestingly, the ATIF and i-FMMOCS methods share a common framework
in image algebra [9]. To be more precise, their filtering phases can be described in
terms of (compositions of direct and inverse) linear and lattice fuzzy transforms
[10,11]. The latter can be viewed as special cases of image-template products
in the mathematical theory of image algebra [12]. A number of comparative
experimental results in applications of the ATIF and i-FMMOCS methods [3,8]
to salt-and-pepper noise reduction indicate a superior performance of the ATIF
for low and medium and the i-FMMOCS for high noise levels [9].

Unfortunately, similar comparative experiments cannot be performed for the
purpose of impulse noise reduction because, due to its noise detection phase that
is only concerned with salt-and-pepper noise, the current version of i-FMMOCS
filter is not suitable for general impulse noise. However, its filtering phase is, in
principle, applicable to any type of impulsive noise and should entail excellent
results. Therefore, we propose to combine the noise detector phase of the ATIF,
which is essentially identical to the one of Schulte et al.’s fuzzy impulse noise
detection and reduction method (FIDRM) [2], with the filtering phase of the i-
FMMOCS so as to obtain a new filter, called fuzzy impulse noise detection based
open-close filter (FIDOC). Our paper is organized as follows:

In Sects. 2 and 3, we briefly review the ATIF of the i-FMMOCS models
including the necessary mathematical backgrounds. In Sect. 4, we introduce our
proposed combination of the noise detector phase of the ATIF with the filtering
phase of the i-FMMOCS. The next section presents some simulations in which we
compare the performance of the ATIF and the combination of the ATIF/FIDRM
noise detector and the i-FMMOCS filtering stage, using both flat and non-flat
structuring elements. We finish the paper with some concluding remarks.
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2 A Brief Review of the Adaptive Image Filter Based
on the Fuzzy Transform (ATIF)

The focus of this paper is on impulsive noise reduction for grayscale images.
Recall that a grayscale digital image is given by a function G from an M × N
array X to a finite value set such as {0, 1, . . . , 255}. For the purposes of this
paper, the values of G are normalized so as to reside in the interval [0, 1]. This
way, G can be identified with a fuzzy set over the universe X. A pixel is given
by its location (i, j) and its value G(i, j), where i and j range respectively from
1 to M and 1 to N . Let us recall the well-known random-valued impulse noise
(RVIN) model. Using the symbols G(i, j) and O(i, j) to denote, respectively, the
brightness values of the noisy and the original gray-scale images, we have

G(i, j) =

{
O(i, j) with probability 1 − p,

η(i, j) with probability p,
(1)

where η(i, j) is an uniformly generated brightness value and p ∈ [0, 1] a proba-
bility of occurrence of impulsive noise. Figure 1 depicts a grayscale image that is
corrupted by 50% impulse noise. As mentioned above, the ATIF model consists
of two stages, namely a noise detection followed by a filtering stage.

Fig. 1. Left: Original image; Center: Corrupted image containing 50% impulse noise;
Right: Locations of detected noisy pixels in white.

2.1 The Noise Detection Stage

Given any pixel ((i, j), G(i, j)), where (i, j) ∈ {1, . . . , M} × {1, . . . , N}, the goal
of the noise detection stage is to decide whether this pixel should be considered
corrupted or not. To this end, the ATIF noise detector takes eight directional
gradients into account. The eight directions in question are determined by the
Moore neighborhood of the pixel location (i, j), visualized in Fig. 1. It goes almost
without saying that the acronyms NW,N, . . . , SE stand for northwest, north,
. . ., and southeast, respectively.
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Fig. 2. Moore neighborhood of the pixel location (i, j).

According to Schulte et al. [2], the directional gradient value at (i, j) in
direction D ∈ {NW,N, . . . , SE}, denoted ∇DG(i, j), is given by a difference
G(i, j)−G(i+k, j+ l) for some k, l ∈ {−1, 0, 1}. For example, (k, l) equals (0, 1)
for D = E as the reader can easily check by taking a brief glance at Fig. 2.

Note that a high absolute value of ∇DG(i, j) may indicate either a cor-
ruption by impulsive noise or an edge. To distinguish between corrupted and
edge pixels, the ATIF noise detector also considers the so called related gra-
dient values of ∇DG(i, j), denoted ∇′

DG(i, j) and ∇′′
DG(i, j), for each loca-

tion (i, j). If ∇DG(i, j) = G(i + k, j + l) − G(i, j) for k, l ∈ {−1, 0, 1}, then
∇′

DG(i, j) = ∇DG(i + k, j − l) and ∇′′
DG(i, j) = ∇DG(i − k, j + l). Based on

this information, the ATIF noise detector evaluates the possibility that the pixel
at location (i, j) is an “impulse noise pixel in direction D” (cf. Schulte et al.) in
terms of the degree of truth of a fuzzy proposition IMPD. The latter involves
fuzzy sets “big positive” (BIG_POS), “big negative” (BIG_NEG), SMALL, and
LARGE (for simplicity, we write A(x) instead of μA(x) for any A ∈ F(X), where
F(X) stands for the class of fuzzy sets over the universe X).

Considering an arbitrary but fixed location (i, j) and modeling the logical
connectives AND and OR respectively using the minimum t-norm and maximum
t-conorm, denoted ∧ and ∨, respectively, IMPD(i, j) is given by

[LARGE(|∇D|) ∧ SMALL(|∇′
D|] ∨ [LARGE(|∇D|) ∧ SMALL(|∇′′

D|]
∨[BIG_POS(|∇D|) ∧ BIG_NEG(|∇′

D|) ∧ BIG_NEG(|∇′′
D|]

∨[BIG_NEG(|∇D|) ∧ BIG_POS(|∇′
D|) ∧ BIG_POS(|∇′′

D|].

The final decision depends on the outcome of the following decision rule: If
most of the eight values IMPD(i, j), where D ∈ {NW,N, . . . , SE}, are large,
i.e., ≥ θ, then the pixel at (i, j) is flagged as noisy.

Apart from the parameter θ ∈ [0, 1], the ATIF noise detector depends on
the specification of a′, a ∈ [−1, 0] and b, b′, c, c′ ∈ [0, 1] used to design trape-
zoidal fuzzy sets BIG_NEG, BIG_POS, SMALL, and LARGE. In this paper,
we adopted the same parameters as in [3]. On the right-hand side of Fig. 1, the
locations of the detected noisy pixels are depicted in white.
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2.2 The Filtering Stage

The filtering stage of the ATIF relies heavily on the linear fuzzy transform (FT)
introduced by Perfilieva [10]. Like classical transforms such as the Fourier and
wavelet transforms [12], the FT consists of a direct and an inverse transform,
denoted respectively F̄ and f̄ in this paper.

Given a corrupted grayscale image G, the noise detection stage results in a
set of locations of detected noisy pixels that we denote using the symbol D. Then
the ATIF executes the following steps in its filtering stage:

1. Application of a so called variably sized median filter, denoted μ, to every
(i, j) ∈ D, that is:
(a) Compute the median of the values in the 3× 3 window centered at (i, j).

The symbol μ3(i, j) stands for the resulting median value.
(b) If μ3(i, j) = G(p′, q′)) for some (p′, q′) in the 3 × 3 window centered at

(i, j) such that (p′, q′) �∈ D, then μ(G)(i, j) = μ3(i, j). Otherwise, increase
the window size until a median value is found which equals the value of
a presumably noiseless pixel in the current window.

2. Application of a coarse-grained direct fuzzy transform F̄ [10] to g given by

g(i, j) =
{

G(i, j), if (i, j) �∈ D
μ(G)(i, j), otherwise. , (2)

3. Application of the inverse fuzzy transform f̄ to F̄(g);
4. Substitution of the pixels marked as noisy with the ones produced by the

fuzzy transform, yielding an image R such that

R(i, j) =
{

G(i, j), if (i, j) �∈ D
(f̄ ◦ F̄)(g)(i, j), otherwise. , (3)

Generally speaking, the ATIF method was shown to produce excellent results
in terms of the peak-signal-to-noise ratio (PSNR) and the structural similarity
index in comparison with other competitive impulse noise reduction methods
[3,5].

3 The Filtering Stage of the I-FMMOCS

Let us briefly review the improved fuzzy mathematical morphology open-close
filter (i-FMMOCS) [8]. This filter employs operators of fuzzy mathematical mor-
phology [13,14] that are defined in terms of fuzzy connectives such as t-norms
and implications [15,16]. In the following, T denotes a t-norm, and I a fuzzy
implication.

The improved fuzzy mathematical morphology open-close filter (i-FMMOCS)
is based on the so called “uncorrupted” fuzzy dilation and erosion operators.
Consider an arbitrary image G : X → [0, 1]. Let D ⊆ X be the set of locations
of pixels that, according to some noise detection method, are deemed to be
corrupted. Thus, U = X \D consists of the locations of pixels that are considered
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uncorrupted. Let S be a fuzzy structuring element (SE) which is nothing else
than an image from a subset XS of X to [0, 1]. If XS is an N ×N array centered
at (0, 0), then S is said to be of size N × N .

Definition 1 ([8]). For every y = (iy, jy) ∈ X, the values of the uncorrupted
fuzzy dilation D∗

T (G,S) and the uncorrupted fuzzy erosion E∗
I (G,S) of G by S

at y are respectively given by

D∗
T (G,S)(y) = sup

x∈Uy

T (S(x − y), G(x)),

E∗
I (G,S)(y) = inf

x∈Uy

I(S(x − y), G(x)),
(4)

where Uy = U ∩ {x ∈ X |x − y ∈ XS}.
Definition 1 gives rise to the uncorrupted fuzzy opening and closing of a

grayscale image G by an SE S whose reflection S : −XS → [0, 1] is defined by
S(x) = S(−x). Here, −XS = {(−i,−j) | (i, j) ∈ XS}.

Definition 2 ([8]). For every y = (iy, jy) ∈ X, the values of the uncorrupted
fuzzy closing C∗

T,I(G,S) and the uncorrupted fuzzy opening O∗
T,I(G,S) of the

image G by the SE S at y are given by

C∗
T,I(G,S)(y) = EI(D∗

T (G,S), S)(y),
O∗

T,I(G,S)(y) = DT (E∗
I (G,S), S)(y).

(5)

Let us list the steps of the filtering stage of the improved fuzzy mathematical
morphology filter for each pixel (i, j) of the corrupted image G. Given set D
pixel locations that correspond to corrupted pixels according to a noise detection
method, the following steps are executed:

1. Determine the minimum value N ∈ {3, 5, . . .} for which there exists an ele-
ment of U = X \ D in an N × N window centered at position (i, j).

2. Following Definition 2, compute the arithmetic mean of the uncorrupted fuzzy
closing and the uncorrupted fuzzy opening using a structuring element of size
N × N , i.e., compute

F ′(i, j) =
C∗

T,I(G,S)(i, j) + O∗
T,I(G,S)(i, j)

2
,

3. Return the filtered pixel F (i, j) given by

F (i, j) =

{
G(i, j), if (i, j) ∈ U ,

F ′(i, j), if (i, j) ∈ D.
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4 Reduction of General Impulsive Noise Using a New
Combination of Noise Detection and Impulse Noise
Filtering

Just like general impulsive noise, salt-and-pepper noise is also characterized by
Eq. 1. However, η(i, j) is not uniformly distributed in the value set but equal to
its minimum or maximum value. Thus, for grayscale images whose values are
normalized in the range [0, 1], we have η(i, j) ∈ {0, 1}.

Both the ATIF and the i-FMMOCS are suited to remove salt-and-pepper
noise from images while preserving image details. Figure 3 taken from [9] presents
a visual comparison of the results. A visual inspection shows that the i-FMMOCS
yields a better result than the ATIF in Fig. 3. More generally, Sussner and Schus-
ter observed in a number of simulations that the ATIF outperformed the i-
FMMOCS in applications to images corrupted by 30 and 50% salt-and-pepper
noise. The contrary occurred for images corrupted by 80% salt-and-pepper noise.

Fig. 3. From left to right, top to bottom, detailed views of the original ’boats’ image, a
corrupted version containing 70% salt and pepper noise, and reconstructions generated
by the AFT-IF, and by the i-FMMOCS.

Note that the i-FMMOCS was designed for salt-and-pepper noise reduction
and is unsuited for removing general impulsive noise but this fact is only due
to its noise detection phase. Therefore, our proposal for high-density impulsive
noise reduction consists of the following two phases:

1. ATIF/FIDRM noise detection;
2. i-FMMOCS filtering.
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As mentioned before, we refer to this combined method as the fuzzy impulse
noise detection based open-close filter (FIDOC). Of course, it is questionable if
this combination outperforms - as expected - the ATIF when it comes to high-
density impulsive noise reduction. The following section presents some experi-
mental results.

Table 1. PSNR, SSIM and NMSE for the three filters considered for the ‘peppers’
image at different noise densities.

Noise PSNR SSIM NMSE

FIDOC-fl FIDOC-nfl ATIF FIDOC-fl FIDOC-nfl ATIF FIDOC-fl FIDOC-nfl ATIF

10 33.8395 33.8402 34.5464 0.9212 0.9173 0.9251 0.0095 0.0095 0.0181

20 32.0821 32.0146 31.8850 0.9057 0.9052 0.9087 0.0179 0.0180 0.0288

30 31.2367 31.3100 31.3128 0.8922 0.8920 0.8950 0.0205 0.0192 0.0299

40 30.4018 30.4213 30.3259 0.8768 0.8766 0.8741 0.0197 0.0197 0.0312

50 29.4635 29.5033 29.3979 0.8552 0.8554 0.8418 0.0181 0.0180 0.0292

60 28.1919 28.2233 28.0495 0.8264 0.8264 0.7984 0.0191 0.0197 0.0331

70 26.3920 26.4668 26.1541 0.7704 0.7719 0.7213 0.0257 0.0250 0.0381

80 24.4972 24.6157 24.4490 0.6932 0.6973 0.6458 0.0333 0.0329 0.0476

90 22.1173 22.2556 22.4982 0.5765 0.5837 0.5516 0.0497 0.0494 0.0631

5 Experimental Results

In this section, we evaluate the performances of the proposed FIDOC method and
the ATIF in the task of filtering images that are corrupted by impulsive noise.
To this end, we performed simulations using four well know images, namely
‘Barbara’, ‘boats’, ‘Lena’, and ‘peppers’, with the probability of impulsive noise
varying from 10% to 90% with increments of 10%. In addition to a visual com-
parison of the filtered images obtained by the algorithms, the restoration perfor-
mances are quantitatively measured in terms of three widely used performance
measures, namely peak signal-to-noise ratio (PSNR), structural similarity index
(SSIM), and normalized mean square error (NMSE).

The definition of the i-FMMOCS filter depends on the following parameters:
A t-norm and its residual implication, as well as the structuring elements for
Step 2 of the i-FMMOCS filter. In this work, we employed the minimum t-norm
TM and its residual implication IGD, i.e., the same operators that were previ-
ously used in [8]. With regards to the structuring elements, we only considered
isotropic shapes. The sizes of the structuring elements are determined by Step 2
of the algorithm anyway. Motivated by the work of González-Hidalgo et al., we
took flat structuring elements into account but in this paper we also conducted
experiments using normalized isotropic structuring elements with a Gaussian
decay from the origin, and a value of 1 at the center. In previous simulations
[8], the i-FMMOCS filter exhibited a better performance when used in conjunc-
tion with flat structuring elements. The FIDOC using flat and non-flat SEs are
respectively referred to using the acronyms “FIDOC-fl” and “FIDOC-nfl”.
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Fig. 4. SSIM and NMSE values produced by the ATIF, the FIDOC-nfl, and the
FIDOC-fl in applications to images that contain 10 to 90% impulsive noise.

Table 1 presents the PSNR, SSIM, and NMSE values resulting from appli-
cations of the FIDOC-fl, FIDOC-nfl, and ATIF methods to the ‘peppers’ image
corrupted by impulsive noise with densities ranging from 10 to 90%. Generally
speaking, the FIDOC-nfl method slightly outperformed both the FIDOC-fl and
the ATIF. This fact is especially noticeable for noise densities over 50%. Similar
observations can be made with respect to the other three images under consid-
eration. Figure 4 displays the evolution of the SSIM and NMSE values obtained
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Fig. 5. Top row from left to right: Detailed views of the original ‘peppers’ image, a
corrupted version containing 30% impulsive noise, and the ATIF and FIDOC-nfl filtered
images; Bottom row from left to right: A corrupted version containing 80% impulsive
noise, and the ATIF and FIDOC-nfl filtered images.

Fig. 6. Top row from left to right: Detailed views of the original ‘boats’ image, a
corrupted version containing 30% impulsive noise, and the ATIF and FIDOC-nfl filtered
images; Bottom row from left to right: A corrupted version containing 70% impulsive
noise, and the ATIF and FIDOC-nfl filtered images.
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for the restored images of the corrupted versions of ‘Barbara’, ‘boats’, ‘Lena’,
and ‘peppers’. Since the PSNR curves for the three methods under consideration
are almost indistinguishable, we decided to omit them.

Figures 5 and 6 show the restoration results for corrupted versions of the
‘peppers’ and ‘boats’ images, respectively. A visual inspection reveals that the
FIDOC-nfl method suppresses most of the impulsive noise while preserving
details and edges. The benefits of the FIDOC-nfl in comparison to the ATIF
are especially noticeable for the relatively high noise densities of 70 and 80%.

6 Concluding Remarks

It is of utmost importance to drastically reduce the amount of impulsive noise
while preserving image details before executing higher level image processing,
image analysis, or computer vision tasks. Therefore, impulse noise removal con-
tinues to be a very active area of research as indicated by the high number of
recent publications [17–19] and websites on this topic.

In this paper, we introduced the FIDOC method, a new approach for remov-
ing high-density impulsive noise in grayscale images. Our method combines the
ATIF/FIDRM noise detection stage with the i-FMMOCS filtering stage. The
motivation for this approach lies in the fact that – unlike the i-FMMOCS fil-
tering stage – the noise detector of the i-FMMOCS, that was designed as a
salt-and-pepper image noise reduction method, is not meant to be applied to
images corrupted by general impulsive noise.

Recall that the ATIF and the i-FMMOCS have exhibited excellent perfor-
mances [8,11] in comparison to a number of highly competitive filtering methods
in the tasks of random impulse and salt-and-pepper noise reduction, respectively.
The preliminary experimental results presented in this paper (due to limita-
tions in the number of pages, additional experiments including comparisons with
other state-of-the-art algorithms have to be postponed) indicate that the new
algorithm slightly outperforms its predecessors – both visually and in terms of
PSNR, SSIM and NMSE values – in applications to images corrupted by high
density impulsive noise, meaning that we have a very promising filtering method
at our disposal. Remarkably, the non-flat version of the FIDOC method achieved
the best performance in our simulations which may be due to the fact that the
values of the pixels corrupted by impulsive noise are uniformly distributed in
[0, 1]. However, further research is necessary in order to confirm this hypothesis.
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Helena Moniz1,3 , and Joao P. Carvalho1,2

1 INESC-ID, Lisbon, Portugal
{helena.moniz,joao.carvalho}@inesc-id.pt
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Abstract. Large pre-trained models like BERT and RoBERTa have
gained massive popularity as they have surpassed previous state-of-the-
art models in various Natural Language Processing (NLP) tasks. Never-
theless, interpreting their behavior is still an ongoing challenge as these
models are composed of millions of parameters. The introduction of the
Fuzzy Fingerprint (FFP) framework provided a straightforward classi-
fication technique able to deliver result interpretations, however, this
method was outperformed by these large pre-trained models. In this
work, we introduce a novel method that combines the simplicity of the
FFPs with the ability to detect complex patterns of large pre-trained
models, in order to build a more interpretable classification framework.
Furthermore, we show that it is feasible to obtain unique FFPs for each
label that enable the examination of incorrect classifications. We evalu-
ate our new method on four text classification benchmark datasets and
show that it is possible to gain interpretability without any noticeable
loss in performance.

Keywords: Fuzzy Fingerprints · Pre-Trained Language Models · Text
Classification

1 Introduction

The emergence of large pre-trained language models has contributed to major
advances in various NLP tasks. Particularly, in text classification tasks such
as sentiment analysis, topic classification, and emotion classification, these new
models have achieved state-of-the-art results by fine-tuning with a few samples
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from the target dataset [10,12,13]. However, interpreting the prediction out-
puts is notoriously difficult as they contain millions of parameters with complex
internal patterns.

Homem and Carvalho (2011) [2,3] introduced the Fuzzy Fingerprint (FFP)
framework1 for identifying users based on a minimal set of features that describe
their behaviors. These features are obtained from the idiosyncratic habits of the
users, for instance, the most frequent words utilized, the frequency someone calls
their contacts, the most accessed web pages, etc. Furthermore, the frequency of
the gathered features can be measured in order to construct individual finger-
prints, which can then be exploited for identifying and distinguishing between a
set of possible candidate users.

The principle of FFPs has been adapted to the classification setting [2,3,7].
The authors obtained the FFP of the test sample and compared it to the FFPs
from each label of the dataset using fuzzy-inspired similarity functions. Although
achieving competing results against other classification methods, especially when
the number of classes increased considerably, this method was later outperformed
by large pre-trained language models such as BERT [4] and RoBERTa [6]. Nev-
ertheless, FFPs have the advantage of being simpler and more interpretable than
these models, as it is possible to diagnose the classification errors by comparing
the FFP obtained against the FFPs from the classes.

In this paper, we propose to merge large deep learning models with the Fuzzy
Fingerprint framework and combine the robustness of pre-trained models and
the interpretability of FFPs. Moreover, we introduce a method that exploits
the hidden representations learned from large pre-trained models such as BERT
or RoBERTa to build compact fingerprints that uniquely identify each label
from the datasets. In the first stage, we follow the common procedure and fine-
tune a large pre-trained model in the target datasets; after that, we obtain the
fingerprint for each class using the samples from the training data; finally, to
classify, we compare the fingerprint from the test sample with the fingerprint
of each label using a fuzzy similarity function. We evaluate our models in the
sentiment analysis, topic classification, and ontology classification tasks, where
the results obtained demonstrate a promising research direction of the proposed
framework.

2 Background and Related Work

2.1 Pre-trained Models

Since the introduction of the Transformers framework [11], a deep neural net-
work encoder-decoder architecture, most of the previous state-of-the-art models
were surpassed in various NLP tasks. A very popular large pre-trained model
is BERT [4], a multi-layer bidirectional Transformer encoder trained to per-
form language modeling and next-sentence prediction. This model was trained
on English Wikipedia and the BooksCorpus during a computationally expensive

1 FFP should not be confused with the identically named work by Stein et al. [9].
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process, where it learns deep contextual embeddings, i.e., vectors representing
the semantics of each word or sequence of words. In a lesser expensive operation,
BERT can be fine-tuned to fulfill other tasks using a much smaller data size.
Currently, most NLP works resort to these pre-trained language models [1,5,8].
For instance, to fine-tune BERT for a downstream text classification task, a clas-
sification module, usually a fully connected Neural Network (NN), is attached to
the last layer of the language model. Due to the bidirectional setting of BERT, a
typical approach is to add a special classification token ([CLS]) at the beginning
of the input sequence and use the final hidden state of the [CLS] token as the
contextual representation of the whole input. This vector is then passed through
the classification module to output a probability for each label in the dataset.

RoBERTa [6], a successor to BERT, contains the same architecture as BERT
but leverages a different pre-training scheme. Furthermore, it is pre-trained with
more data and for a longer period of time than BERT. It also uses larger mini-
batches and a larger learning rate and discards BERT’s task of next-sentence
prediction. RoBERTa has outperformed BERT in various tasks using the same
amount of data.

In this work, we use fine-tuned BERT and RoBERTa as the basis for our
classification model: sentences are fed as inputs to the language model and we
use the final hidden state of the [CLS] classification token to create the FFPs.

2.2 Fuzzy Fingerprints

Fingerprint identification is a well-known and widely documented technique in
forensic sciences. In computer science, a fingerprint is a procedure that maps an
arbitrarily large data item (such as a computer file, or author set of texts) to
a much more compact information block (a fingerprint) that uniquely identifies
the original data for all practical purposes, just as human fingerprints uniquely
identify people for practical purposes.

In order to serve classification, a fingerprint must be able to capture the
identity of a given class. In other words, the probability of a collision, i.e., two
classes yielding the same fingerprint, must be small. Typically, FFPs are built
based on feature frequency. For example, for text classification purposes, we
consider a set of texts associated with a given class to build the class fingerprint
and can use the frequency of each word in each text to build the fingerprint for
that class.

The set of Fuzzy Fingerprints of all classes is known as the fingerprint library.
Given a fingerprint library and an instance to be classified, for example, a text,
we obtain the text fingerprint using a process similar to the one used to create
the fingerprint of each class, and then find the class that has the most similar
fingerprint.

Fuzzy Fingerprint Creation and Fuzzy Fingerprint Libraries. The train-
ing set is divided by the different classes and is processed to compute the top-k
feature list for each class. Consider Fj as the set of events of class j (simplistic
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example: the set of all words for all texts belonging to class j). The result consists
of a list of k pairs {vi, ni}, 1 < i ≤ k, where vi is the i-th most frequent feature
and ni the corresponding count (simplistic example: an ordered k-sized list con-
taining the most frequent distinct words). The next step consists in fuzzifying
each top-k list in order to obtain the class fingerprint: a membership value is
assigned to each feature in the set based only on the order in the list (the rank).
For instance, when the features are the word frequencies, the rank is considered
instead of the frequency due to empirical experiments that show that the order
of the frequency seems more relevant than the actual frequency value [2]. The
more frequent features will have a higher membership value.

The fingerprint (Φ), which is based on the top-k list, consists of a size-k fuzzy
vector where each position i contains an element vi and a membership value μi

representing the fuzzified value of vi’s rank (the membership of the rank). A class
j will be represented by its fingerprint Φj = Φ(Fj). Formally, the fingerprint
Φj = {(vji, μji) | i = 1 . . . kj} has length kj , with Sj = {vji | i = 1 . . . kj}
representing the set of v’s in Φj . The set of all class fingerprints will constitute
the fingerprint library.

Fuzzy Fingerprint Detection. In order to find the class of an unknown
instance, for example, a text T , we start by computing the size-k fingerprint
of T , ΦT . Then we compare the fingerprint of T with the fingerprints Φj of all
classes present in the fingerprint library. The unknown text is classified as j if it
has the most similar fingerprint to Φj . The fingerprint comparison, sim(ΦT , Φj),
is calculated using

sim(ΦT , Φj) =
∑

v∈ST ∪Sj

min(μv(ΦT ), μv(Φj))
k

, (1)

where μv(Φx) is the membership value associated with the rank of element v in
fingerprint x. This function is based on the fuzzy AND. We use the minimum
or Gōdel t-norm in accordance with [2], but other t-norms could also be used.

3 Fuzzy Fingerprinting Large Pre-trained Models

3.1 Fine-Tuning BERT and RoBERTa

In the first stage, we need to obtain a model capable of outputting represen-
tations for the target dataset. For that, we adopt the common procedure for
fine-tuning a large pre-trained encoder (ME) such as BERT or RoBERTa in the
text classification datasets.

Consider one sentence x = {[CLS], w1, ..., wn} composed of n words and the
[CLS] token. First, we utilize the encoder ME to obtain a hidden representation
h with size N from the input sentence x. Then, we include a softmax classifier on
top of ME to obtain the probability distribution over the set of possible classes.
Formally, we obtain the probability of label y with:

h = ME(x), p(y|x) = softmax(Wh), (2)
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where W is the learnable parameter matrix from the classification layer. We
fine-tune ME and learn W parameters by maximizing the log probability of the
correct label.

3.2 Fuzzy Fingerprint Creation from Pre-trained Models

Since the output from the model (the final hidden state of the [CLS] classification
token) is a real-valued vector with size N , where each element’s value does not
have a known meaning, it is simply not possible to create an FFP based on
feature frequencies (as described in Sect. 2.2). In order to address this issue, we
propose to use the intensity of the activation of each element from ME output
as a proxy for feature frequency.

The process to create a class fingerprint can be therefore succinctly described
as “ranking the activation of the ME outputs through the training set (of that
class)”. After fine-tuning ME for the task and considering an output size of N
from ME , the procedure is described as follows:

1. The training data is used to create Fuzzy Fingerprints for each class;
2. The fingerprint for each class begins as a N -sized vector of pairs, where each

pair in the vector is composed of an index (corresponding to a hidden unit
from ME out of the possible N units) and a value initialized to 0;

3. The fine-tuned ME is fed with all the training examples of a given class (one
by one);

4. For each example, the hidden vector h from Eq. 2 is added to the fingerprint
of the corresponding class. Hence, after all the training examples (of a given
class) are fed into ME , the fingerprint of the class consists of a vector where
each position contains an index of a hidden unit and the accumulated value
of the ME for that hidden unit;

5. Order the fingerprint vector by the accumulated value (in descending order);
6. Remove the element containing the accumulated values from the pairs (only

the rank matters). As a result, we have, for each class, a vector of dimension
N , containing the indexes of the most activated ME hidden outputs for that
class, i.e., the ME outputs are ranked by activation on the training set;

7. The final FFP is obtained by fuzzifying the top-k sized vector according to a
function inspired by the Pareto Rule, where roughly 80% of the membership
value is assigned to the first 20% positions of the ranking:

μi =

{
1 − 0.8×i

0.2k , i < 0.2k

− 0.2×i
0.8k + 0.25, 0.2k < i < k

, (3)

in which i is the position of an element in the sorted vector and k is the
fingerprint size;

8. Instead of the whole N outputs, the fingerprint only considers the top-k ME

outputs for classification purposes, i.e., only the top-k elements will have a
membership value higher than zero, and exactly zero for the remaining. For
simplicity, we refer to this representation as a fingerprint of size k.
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In sum, the FFP of a pre-trained language model is a Fuzzy Set in the
discrete universe of the N outputs from ME , where each one has associated a
membership value, and only the top-k elements have a membership greater than
zero. For practical purposes, the set is ordered by the membership function of
its elements (in descending order).

3.3 Classification Using Fuzzy Fingerprints

After obtaining the fingerprints for all classes (the Fingerprint Library), the
classification of a sample can be performed. Given an instance I to be classified:

1. Pass I through ME ;
2. Create the fingerprint of I using the same procedure used to create the finger-

print of a class (i.e. rank the activation of the output vector, select the top-k
elements and fuzzify the resulting vector (calculate the membership values
with Eq. 3);

3. Check the similarity of the fingerprint of I against the fingerprint of each
class using the Fuzzy similarity function from Eq. 1, and select the class with
the highest similarity.

In Fig. 1, we provide an illustration of the complete structure of the frame-
work. For simplification purposes, we omit the membership values and only
present the hidden units ranked by activation.

Fig. 1. Illustration of the classification using FFPs.
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4 Experiments

4.1 Datasets

We evaluate our models on four text classification benchmark datasets [14]:

– AG News: a topic classification dataset composed of a collection of news
articles that have been gathered from more than 2000 news sources by Come-
ToMyHead in more than 1 year of activity. ComeToMyHead is an academic
news search engine that has been running since July 2004.

– DBPedia: an ontology classification dataset composed of 14 non-overlapping
classes from DBpedia 2014, a project that focuses on the extraction of struc-
tured content from the Wikipedia project.

– Yelp-2 and Yelp-5: two sentiment classification datasets extracted from the
Yelp platform, from the Yelp Dataset Challenge 2015 data. The Yelp-5 con-
tains five sentiment labels ranging from 1 (Very Bad) to 5 (Very Good) while
Yelp-2 considers only two classes (positive or negative).

Table 1. Statistics of the text classification datasets.

AG News DBPedia Yelp-2 Yelp-5

Classification Task Topic Ontology Sentiment Sentiment

Num. Classes 4 14 2 5

Train Samples 120k 560k 560k 650k

Test Samples 7.6k 70k 38k 50k

In Table 1, we provide several statistics for the classification datasets
described. All datasets are balanced for each class, thus we select accuracy as
the evaluation metric of the models.

4.2 Experimental Details

We train BERT and RoBERTa models on 1 NVIDIA GeForce RTX 3080 using
a batch size of 16 for both bert-base-uncased (12 layers, 768 of hidden size, 12
attention heads, 110M parameters) and roberta-base (12 layers, 768 of hidden
size, 12 attention heads, 125M parameters). Models are trained to minimize the
cross entropy using Adam optimizer with a learning rate of 2e−5. We train the
models for all datasets for 35k steps in the training corpus. All experiments are
implemented using the HuggingFace2 and PyTorch3 libraries.

FFPs were implemented in Python using our own code. We experiment with
different k values for the fingerprints, varying between 1 and 768 (the maximum
hidden size of the models).
2 https://huggingface.co/.
3 https://pytorch.org/.

https://huggingface.co/
https://pytorch.org/
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4.3 Results and Discussion

We present the obtained results in the four classification datasets and compare
our results with fine-tuned BERT and RoBERTa models.

The accuracy of fine-tuned BERT and RoBERTa models is presented in
Table 2. We can observe that RoBERTa predominantly achieves the highest
score. The most challenging corpus for the models is Yelp-5, where the difference
between the best score with the other datasets is higher. This is plausible as the
dataset is composed of five sentiment labels, ranging from 1 (Very Bad) to 5
(Very Good), and, as we will investigate next, the models fail to distinguish the
labels that are closest to each other.

Fuzzy Fingerprints. In order to understand the influence of the fingerprint
size, we experiment the FFP framework for different k ranging from 1 to 768
(the maximum output size of BERT and RoBERTa from our experiments).

In Figs. 2 and 3, we plot the accuracy scores obtained by varying the size of
the FFPs. We only plot for k lower than 100, since for higher k the scores stabilize
and fluctuate minimally. We can observe that in all datasets, the accuracy con-
verges with the results obtained from the best fine-tuned model. In the datasets
with higher accuracy obtained from BERT and RoBERTa (DBPedia and Yelp-
2), the FFP models reach similar results using small k values. For instance,

Table 2. Accuracy (%) for fine-tuned BERT and RoBERTa.

Models AG News DBPedia Yelp-2 Yelp-5

BERT 94.78 99.33 97.40 69.00

RoBERTa 95.24 99.27 97.45 69.52

Fig. 2. Accuracy (%) for Fuzzy Fingerprint size up to k = 100. We also plot the best
model in the dataset from Table 2. Left: AG News. Right: DBPedia.
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Fig. 3. Accuracy (%) for Fuzzy Fingerprint size up to k = 100. We also plot the best
model in the dataset from Table 2. Left: Yelp-2. Right: Yelp-5.

Fig. 4. Confusion matrix for the Yelp-5 dataset using a fingerprint k = 20.

using a RoBERTa fingerprint of only 2 elements in Yelp-2 achieves 97.11% com-
pared to the 97.45% from the best model. In DBPedia, BERT achieves 98.81%
in accuracy using a FFP with size 8 compared to the best model that reaches
99.33%, which represents about 0.5% of difference. These results demonstrate
the effectiveness of Fuzzy Fingerprints: a fingerprint with only a few elements
can efficiently classify most of the examples correctly and compete with the large
pre-trained models that use a fully connected NN as the classification module.

Moreover, we can observe that the models converge slower in the most chal-
lenging Yelp-5 dataset. With a small fingerprint size, for instance, k = 10,
RoBERTa achieves a score of 62.50%, while with a fingerprint with k = 100,
it achieves 69.04%, a more ambitious result against the best model that scores
69.52%. As explained before, this is expected due to the nature of the Yelp-5 cor-
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Table 3. Fuzzy Fingerprints (k = 20) of the 5 sentiment classes from Yelp-5. For
readability purposes, the RoBERTa outputs are ordered by descending membership.
Color represents values that share exactly 2 fingerprints and in bold share 3 or more
class fingerprints.

FFP1 = {(588, 1), (453, 0.8), (77, 0.6), (664, 0.4), (409, 0.2), (553, 0.1875), (202, 0.175),
(397, 0.1625), (254, 0.15), (647, 0.1375), (493, 0.125), (240, 0.1125), (19, 0.1), (103,

0.0875), (206, 0.075), (573, 0.0625), (61, 0.05), (21, 0.0375), (79, 0.025), (344, 0.0125)}
FFP2 = {(588, 1), (453, 0.8), (77, 0.6), (248, 0.4), (409, 0.2), (61, 0.1875), (662, 0.175),
(647, 0.1625), (553, 0.15), (504, 0.1375), (521, 0.125), (573, 0.1125), (664, 0.1), (560,

0.0875), (490, 0.075), (163, 0.0625), (611, 0.05), (565, 0.0375), (156, 0.025), (765, 0.0125)}
FFP3 = {(588, 1), (453, 0.8), (611, 0.6), (561, 0.4), (131, 0.2), (629, 0.1875), (259, 0.175),
(248, 0.1625), (109, 0.15), (107, 0.1375), (240, 0.125), (34, 0.1125), (380, 0.1), (621,

0.0875), (121, 0.075), (449, 0.0625), (229, 0.05), (653, 0.0375), (765, 0.025), (155, 0.0125)}
FFP4 = {(588, 1), (453, 0.8), (664, 0.6), (4, 0.4), (103, 0.2), (265, 0.1875), (531, 0.175),
(240, 0.1625), (190, 0.15), (629, 0.1375), (131, 0.125), (255, 0.1125), (550, 0.1), (102,

0.0875), (580, 0.075), (523, 0.0625), (380, 0.05), (609, 0.0375), (408, 0.025), (432, 0.0125)}
FFP5 = {(588, 1), (453, 0.8), (4, 0.6), (523, 0.4), (647, 0.2), (476, 0.1875), (455, 0.175),
(473, 0.1625), (311, 0.15), (664, 0.1375), (564, 0.125), (359, 0.1125), (113, 0.1), (255,

0.0875), (78, 0.075), (259, 0.0625), (503, 0.05), (550, 0.0375), (504, 0.025), (131, 0.0125)}

pus: the fingerprint size needs to be larger to reasonably represent the differences
in representations from the reviews.

In Fig. 4, we report the confusion matrix obtained for a Fuzzy Fingerprint
RoBERTa with k = 20. This confirms our hypothesis about the difficulty of
Yelp-5: the majority of the incorrect predictions are the labels adjacent to the
correct label; additionally, in the extreme labels (1 and 5), the model is more
capable of identifying the correct labels, whereas it fails more frequently in the
central labels.

Fuzzy Fingerprint Analysis. We dissect the FFPs obtained from our frame-
work in order to understand the influence of the fingerprints and their compo-
nents in the final classification of the examples.

In Table 3, we present the fingerprints for the 5 sentiment classes present in
the Yelp-5 corpus, highlighting in color the values that are shared by exactly 2
labels. We observe that the fingerprints that share the most values are the ones
that are closest to each other, for instance, class 1 (Very Bad) shares the most
number of values with class 2 (Bad), while class 3 (Neutral) shares with class
2 (Bad) and class 4 (Good), etc. When we analyze the values shared by 3 or
more, we see that these values may induce some errors in the classification. For
instance, if we look again at the confusion matrix from Fig. 4, when the correct
class is 5, the model predicted 9% of the times the label 2. This could be induced
by the values shared between the fingerprints from classes 5 and 2: the value 647
appears in the 5th position in class 5 and appears in the 8th position in class
2. Additionally, the values 504 and 664 are shared between the two classes and
may also influence the decision of the model.

To further understand the influence of the shared components, in Table 4, we
present an example incorrectly predicted by our model along with the respective
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Table 4. Example of an incorrect classification for Yelp-5 dataset. For readability
purposes, the RoBERTa outputs are ordered by descending membership.

Class 5 FFP (Correct Class): FFP Similarity Score: 0.3375

FFP5 = {(588, 1), (453, 0.8), (4, 0.6), (523, 0.4), (647, 0.2), (476, 0.1875), (455, 0.175),
(473, 0.1625), (311, 0.15), (664, 0.1375), (564, 0.125), (359, 0.1125), (113, 0.1), (255,

0.0875), (78, 0.075), (259, 0.0625), (503, 0.05), (550, 0.0375), (504, 0.025), (131, 0.0125)}
Class 2 FFP (Predicted Class): FFP Similarity Score: 0.4875

FFP2 = {(588, 1), (453, 0.8), (77, 0.6), (248, 0.4), (409, 0.2), (61, 0.1875), (662, 0.175),
(647, 0.1625), (553, 0.15), (504, 0.1375), (521, 0.125), (573, 0.1125), (664, 0.1), (560,

0.0875), (490, 0.075), (163, 0.0625), (611, 0.05), (565, 0.0375), (156, 0.025), (765, 0.0125)}
Sample FFP:

FFPs = {(564, 1), (252, 0.8), (376, 0.1875), 0.6), (573, 0.4), (662, 0.2), (286, , 0.175), (441,
0.1625), (113, 0.15), (223, 0.1375), (561, 0.125), (497, 0.1125), (363, 0.1), (469, 0.0875),

(511, 0.075), (248, , 0.0625), (647, 0.05), (453, 0.0375), (229, 0.025), (8, (163, 0.0125)}
Sample Text:

I have been getting my hair cut here for 15 years. Marjorie is amazing and priceless. I am as

picky about my hairstylist as I am my dentist or doctor. I travel extensively for work and get

compliments no matter where I travel. Wouldn’t go anywhere else!

fingerprint. We can observe that the sample FFP contains more elements in
common with class 2 than class 5, although the top value from the sample FFP
(564) belongs to class 5. Moreover, the sample contains 2 elements that are shared
between both classes (647 and 453), where 647 appears in a higher position in
class 5 than class 2. However, as described in Eq. 1, the fuzzy similarity score
considers the minimum (lowest ranking) from both fingerprints, which delivers
a lower score. These results suggest further research in the FFP ranking directly
obtained from the large pre-trained models.

5 Conclusions and Future Work

In this work, we introduced a new technique that combines the interpretability
and compact characteristics of the Fuzzy Fingerprint framework with the robust-
ness of the large pre-trained models. We defined the approach that leverages the
FFPs from these models and evaluated our method on four text classification
datasets. The results showed that with a small FFP size, the models can gen-
eralize and compete with the results from fine-tuned models. Furthermore, we
give an example of how it is possible to interpret classification errors by checking
the FFP of the classes and the incorrectly classified instances. In future work,
we would like to extend the use of FFPs to other NLP tasks and investigate
unexplored optimizations for the FFPs acquired from pre-trained models.
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Abstract. This paper discusses the connection between the local
penalty function and the moderate deviation function in the construc-
tion of aggregation functions. The basic idea is related to the fact that
finding the minimum of a local penalty function and finding the roots of
its derivative leads to the corresponding moderate deviation function. It
is not always possible to obtain a local penalty function by integrating
the moderate deviation function. In addition, the paper introduces the
extension of the theory of the construction of aggregation functions using
the construction of global moderate deviation functions by different mod-
erate deviation functions, respectively, penalty functions using different
local penalty functions, and weighting functions, which are functional
values of individual inputs.

Keywords: Aggregation function · Local penalty function · Moderate
deviation function · Weights · Weighting functions

1 Introduction

The construction of specific averages using the so-called deviation function was
introduced by Daróczy more than 50 years ago [5]. These means are based on the
deviation between two real values and can be used to merge a set of input values
into one aggregated output value. The main goal of these functions is to obtain
an output value that represents the entire set of input values as accurately as
possible. However, Daróczy’s means do not always remain monotonic, so they
are generally not aggregation functions. We should mention, for example, the so-
called mixture functions, whose sufficient monotonicity conditions can be found
in [10,14].

Therefore, the authors in [6,7], have introduced the so-called moderate devi-
ation function, which ensures that functions based on moderate deviation func-
tions satisfy all properties of aggregation functions. Currently, research offers var-
ious constructions of aggregation functions, which are based on the use of mod-
erate deviation functions [1,6,7,12].
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Another option for the construction of aggregation functions is to deter-
mine them as the minimum of the so-called penalty functions. Yager in [16] has
attempted to present the initial ideas related to the use of a penalty function
to help the aggregation processes. Later, Yager and Rybalov in [17] extended
the initial idea of penalty-based aggregation. However, the existence of a mini-
mum was not yet guaranteed in their approach. The theory of the construction
of aggregation functions using penalty functions was further improved and devel-
oped in [2–4] and [13].

The basic idea of our contribution is to determine which aggregation functions
can be generated by the penalty function and, at the same time, by the mod-
erate deviation function. Another question is whether we can construct aggre-
gation functions using the penalty function, which cannot be constructed using
the moderate deviation function, or vice versa.

The paper is organized as follows. Section 2 – Preliminaries gives basic
definitions related to the moderate deviation function and the local penalty
function. Section 3 – Moderate deviation-based and penalty-based aggregation
points to the mutual relationship between the moderate deviation function and
the local penalty function when determining the aggregate value or the fused
value of the inputs. Section 4 – Generalization of the global moderate deviation
function and penalty function in a certain way expands the theory regarding
the interconnection of the mentioned functions, their weights, or weight func-
tions. Section 5 – Conclusion discusses possible open problems in the theory of
the construction of aggregation functions using both mentioned functions.

2 Preliminaries

We denote by I = [a, b] ⊂ R̄ = R∪{−∞,∞} a closed interval. Thus, In = {x =
(x1, . . . , xn) | xi ∈ I, i = 1, . . . , n} is the set of all vectors x whose components
are in the interval I. Taking into account x,y ∈ In, x = (x1, . . . , xn), y =
(y1, . . . , yn), we say that x ≤ y if and only if xi ≤ yi for each i = 1, . . . , n.

2.1 Moderate Deviation Function

In this section, we present the basic definitions that will lead us to the construc-
tion of aggregation functions using moderate deviation functions. The functions
generated in this way are idempotent symmetric aggregation functions.

Definition 1. ([1,12]) Consider a mapping D : I2 → R̄, which fulfills

(i) for every x ∈ I, D(x, ·) : I → R̄ is increasing (not necessarily strictly);
(ii) for every y ∈ I, D(·, y) : I → R̄ is decreasing (not necessarily strictly);
(iii) D(x, y) = 0 if and only if x = y, x ∈ I, y ∈ I.

Then D is called a moderate deviation function. The set of all moderate deviation
functions is denoted as D.
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Definition 2. [12] Consider a moderate deviation function D ∈ D and n ∈ N.
Then the function GD : In × I → R̄ given by

GD(x, y) =
n∑

i=1

D(xi, y) (1)

is called a global moderate deviation function.

Definition 3. [12] Consider a moderate deviation function D ∈ D and n ∈ N.
Then the mapping UD : In → I given by

UD(x) =
1
2

(
sup

{
y ∈ I

∣∣∣
n∑

i=1

D(xi, y) < 0

}

+ inf

{
y ∈ I

∣∣∣
n∑

i=1

D(xi, y) > 0

})
(2)

is called a D-mean, with standard conventions sup{y ∈ [a, b]|y ∈ ∅} = a and
inf{y ∈ [a, b]|y ∈ ∅} = b.

Theorem 1. [12] Let D ∈ D. Then the D-mean UD : In → I is an idempotent
symmetric aggregation function.

Remark 1. We also consider the convention sup{y ∈ [a, b]|y ∈ ∅} = a and inf{y ∈
[a, b]|y ∈ ∅} = b in other definitions.

2.2 Local Penalty Function

As we mentioned in the introduction, several authors tried to define the penalty
function and subsequently the penalty-based aggregation functions as precisely
as possible. For the purposes of our paper, we present the definitions of the most
recent articles [2,3].

Definition 4. (e.g. [2,3]) The function LP : I2 → R̄+; I ⊆ R̄ is said to be
a local penalty function if, for any xi, xj , y ∈ R̄ and i, j = 1, . . . , n, it satisfies:

(i) LP (xi, y) = 0 if and only if xi = y;
(ii) LP (xi, y) ≥ LP (xj , y) if |xi − y| ≥ |xj − y|.
Definition 5. (e.g. [2,3]) Let LP : I2 → R̄+ be a local penalty function. A
penalty function P : In+1 → R̄+ is defined for any x ∈ In and y ∈ I as

P (x, y) =
n∑

i=1

LP (xi, y), (3)

where y ∈ I is called the fused value of x ∈ In.
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The best fused value of the elements in x is the value y∗ that minimizes the
penalty function P

y∗ = fP (x1, . . . , xn).

Definition 6. (e.g. [2,3]) The best fused value of x is obtained as the value y∗

such that
P (x, y∗) = arg min

y
P (x, y), (4)

where y∗ is the unique minimizer or y∗ is the set of minimizers that is the interval
]a, b[⊂ I ([a, b]) then y∗ = a+b

2 , and y∗ is called a penalty based function.

2.3 Faithful Local Penalty Function

In order for the solution of the best fused value to be exactly one value, Calvo
et al. in [4] defined the so-called faithful local penalty function as follows:

Definition 7. (e.g. [3,4]) The function LP : I2 → R̄+ given by

LP (x, y) = K (f(x), f(y)) , (5)

where f : I → R̄ is some continuous strictly monotone function and K is a
penalty function on R̄ convex in each component, called a faithful penalty func-
tion.

Definition 8. (e.g. [3,4]) Let K : R̄ → R̄+ be a convex function with a unique
minimum K(0) = 0 and let f : I → R̄ be a strictly monotone continuous
function. Then the function LP : I2 → R̄+ given by LP (x, y) = K (f(x) − f(y))
is called a dissimilarity function (on I).

Definition 9. (e.g. [3,4]) Let LP : I2 → R̄+ be a faithful local penalty function.
A function fP :

⋃
n∈N In → I defined for all x ∈ In and n ∈ N, by

fP (x) =
1
2

(
sup

{
u ∈ I

∣∣∣∀v ∈ I : P (x, u) ≤ P (x, v)
}

+ inf
{

u ∈ I
∣∣∣∀v ∈ I : P (x, u) ≤ P (x, v)

})
(6)

is called a penalty-based function.

2.4 Weighted Penalty Function

If we consider that each observation has its own weight, then we can define
a weighted penalty function. We can assume both constant weights and weights
as weighting functions. For more information, see [3,15].
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Definition 10. ([3]) Let LP : I2 → R̄+ be a local penalty function. Then
a weighted penalty function wP : In+1 → R̄+ is defined for any x ∈ In and
y ∈ I as follows:

wP (x, y) =
n∑

i=1

wi · LP (xi, y) (7)

where wi ≥ 0 are the weights associated with the observations xi; i = 1, . . . , n.
The vector w = (w1, . . . , wn) is called a weighting vector.

Weighted penalty function - with weighting functions

Definition 11. (e.g. [15]) Let LP : I2 → R̄+ be a local penalty function. Then
a mixture penalty function gP : In+1 → R̄+ is defined for any x ∈ In and y ∈ I
as follows:

gP (x, y) =
n∑

i=1

gi(xi) · LP (xi, y), (8)

where gi : I →]0,∞[ are continuous weighting functions associated with the input
values xi, i = 1, 2, . . . , n.

3 Moderate Deviation-Based and Penalty-Based
Aggregations

In this section, we offer a summary of the aggregation functions that can be
generated using both the moderate deviation function and the penalty func-
tion. In some cases, in which weights are applied to the respective deviations,
the monotonicity of functions constructed in this way may be violated. In that
case, we are talking about the so-called fusion functions. However, under cer-
tain sufficient conditions, functions constructed in this way can be aggregation
functions.

3.1 Mean as a Penalty and Deviation-Based Function

Table 1 gives an overview of the aggregation functions that are generated by
the penalty function or the moderate deviation function. In some cases, conven-
tions are defined so that functions meet the required properties. The basic idea
is related to the fact that finding the minimum of the local penalty function and
finding the roots of its derivative leads to the corresponding moderate deviation
function. In some cases, certain conventions are necessary to obtain correct mod-
erate deviation functions by derivation. However, by integrating the moderate
deviation function, we do not get the local penalty function.

Table 1 gives an overview of some aggregation functions that can be con-
structed using a moderate deviation function and a local penalty function, too.

Remark 2. In the case of the geometric mean, we consider the convention log 0−
log 0 = 0, and in the case of the harmonic mean 1

0 − 1
0 = 0.
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Table 1. Deviation-based and penalty-based aggregation functions

Aggregation function Moderate deviation function Local penalty function

AM arithmetic mean D(x, y) = y − x LP (x, y) = (x− y)2

QAM quasi-arithmetic mean D(x, y) = f(y)− f(x) LP (x, y) = (f(x)− f(y))2

GM geometric mean D(x, y) = log y − log x LP (x, y) = (log x− log y)2

HM harmonic mean D(x, y) = 1
x
− 1

y
LP (x, y) =

(
1
y
− 1

x

)2

Example 1. Let us consider a local penalty function in the form

LP (x, y) =
(
x2k+1 − y2k+1

)2k (9)

for k ∈ Z+. By deriving this penalty function, we get a moderate deviation
function

LP ′
y(x, y) = 2k · (2k + 1) · y2k · (

y2k+1 − x2k+1
)2k−1

. (10)

It is obvious that the determination of the minimum penalty function actually
represents the search for the roots of the moderate deviation function.

Example 2. Let us look at the situation on the construction of the geometric
mean. The first derivative of the penalty function is as follows

P ′
y(x, y) =

2
y

·
n∑

i=1

(log y − log xi).

In general, for positive φ(y), we obtain the global moderate deviation function

in the form φ(y) ·
n∑

i=1

D(xi, y), from which we obtain the geometric mean.

Example 3. By integrating the moderate deviation function

D(x, y) = my − mx; (11)

m > 1, we do not obtain a local penalty function.

Based on Definitions 10 and 11, we can use the local penalty functions
and the moderate deviation functions of Table 1 to generate the correspond-
ing weighted averages. However, in the case of the local penalty function and
moderate deviation function, which are generated using continuous weighting
functions, the respective averages satisfy the properties of aggregation functions
only under certain conditions (Table 2). These conditions can be found, for exam-
ple, in [8,9,11,14,15].
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Table 2. Deviation-based and penalty-based aggregation functions

Aggregation function

under certain conditions

Moderate deviation function Local penalty function

mixture function

Mg

D(x, y) = g(x) · (y − x)

g weighting function

LP (x, y) = g(x) · (x − y)2

quasimixture function

Mf
g

D(x, y) = g(x) · (
f(y) − f(x)

)

f is strictly increasing continuous

LP (x, y) = g(x) · (
f(x) − f(y)

)2

3.2 Median and Other Quantiles

Until now, we only considered moderate deviation functions, which were contin-
uous and strictly monotone by Definition 1. We now want to turn our attention
to functions that are neither strictly monotonic nor continuous.

If we look at the function LP (x, y) = |x − y|, it is obvious that to obtain
a moderate deviation function it is necessary to introduce a convention.

LP ′
y(x, y) =

⎧
⎨

⎩

1 for x < y
convention 0 for x = y
−1 for x > y.

Therefore, we obtain the corresponding moderate deviation function.

D(x, y) = sign(y − x) =

⎧
⎨

⎩

1 for x < y
0 for x = y
−1 for x > y

For any I = [a, b] ⊂ R̄ let

D(x, y) =

⎧
⎨

⎩

1, y > x,
0, y = x,
−ci,n, y < x.

(12)

According to [4] we can take ci,n = i− 1
2

n−i+ 1
2
, ci,n ∈ [0,∞], n ∈ N. Then D-mean

w.r.t. Definition 3 is the ith-order statistics and represents α · 100% quantil
operator, where α = ci,n

1+ci,n
.

The similarity of the moderate deviation function (12) with the faithful
penalty function can be seen in [4]. However, the faithful penalty function does
not meet the monotonicity conditions based on Definition 1, so its derivative
according to y already meets them.

The authors in [11] discuss in detail the so-called mixture functions with
applied local penalty function in the form LP (x, y) = g(x) · |x − y|. At the same
time, they establish sufficient conditions under which they fulfill all the properties
of aggregation functions. The corresponding moderate deviation function is then
supplemented with a convention that is written in Table 3.
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Table 3. Deviation-based and penalty-based aggregation functions

Aggregation function
under certain conditions

Moderate deviation function Local penalty function

Median

Upper Median D(x, y) =

⎧
⎪⎨
⎪⎩

g(x) for y > x

convention 0 for x = y

−g(x) for y < x

LP (x, y) = g(x) · |x− y|

Lower Median g weighting function

It is obvious that individual deviations can have different weights; therefore,
aggregations or fusions, respectively, can be extended by introducing appropriate
weights. Weighted moderate deviation functions and weighted penalty functions
have already been investigated in various papers, for example, in [12,13,15], but
we formally introduce the corresponding definitions so that we can subsequently
extend the theory with the constructions of the so-called weighted global mod-
erate deviation functions and the mixture global moderate deviation functions.

Definition 12. (e.g. [6,7]) Consider a moderate deviation function D ∈ D and
n ∈ N. Then a weighted global moderate deviation function wGD : In+1 → R̄ is
defined for any x ∈ In and y ∈ I as follows:

wGD(x, y) =
n∑

i=1

wi · D(xi, y) (13)

where wi ≥ 0 are the weights associated with the observations xi; i = 1, . . . , n.
The vector w = (w1, . . . , wn) is called the weighting vector.

Definition 13. (e.g. [6,7]) Consider a moderate deviation function D ∈ D, n ∈
N and the weighting vector w = (w1, . . . , wn). Then the mapping wUD : In → I
given by

wUD(x) =
1
2

(
sup

{
y ∈ I

∣∣∣
n∑

i=1

wi · D(xi, y) < 0

}

+ inf

{
y ∈ I

∣∣∣
n∑

i=1

wi · D(xi, y) > 0

})
(14)

is called a weighted D-mean.

Weighted deviation functions have already been mentioned, for example, in [12],
but we now present concrete definitions using weighting functions on the basis
of which we would like to extend the theory of the construction of aggregation
functions.
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Definition 14. Consider a moderate deviation function D ∈ D and n ∈ N.
Then a mixture global moderate deviation function gGD : In+1 → R̄ is defined
for any x ∈ In and y ∈ I as follows:

gGD(x, y) =
n∑

i=1

gi(xi) · D(xi, y), (15)

where the vector g = (g1, . . . , gn) is called the weighting vector, where gi : I →
]0,∞[ are continuous weighting functions associated with the input values xi, i =
1, 2, . . . , n.

Definition 15. Consider a moderate deviation function D ∈ D, n ∈ N and the
weighting vector g = (g1, . . . , gn). Then the mapping gUD : In → I given by

gUD(x) =
1
2

(
sup

{
y ∈ I

∣∣∣
n∑

i=1

gi(xi) · D(xi, y) < 0

}

+ inf

{
y ∈ I

∣∣∣
n∑

i=1

gi(xi) · D(xi, y) > 0

})
(16)

is called a mixture D-mean.

However, in order for the fused functions that are constructed using thinning
definitions to be aggregation functions, they must satisfy certain conditions.
Several sufficient conditions are known, which can be found, e.g., in [11,14,15].
For example, a mixture D-mean (or a generalized mixture function) Mg : In → I
given by

Mg(x1, . . . , xn) =

n∑
i=1

gi(xi) · xi

n∑
i=1

gi(xi)
, (17)

Construction by D(x, y) = y − x on the interval I = [a, b], with increasing (no
necessity strictly), piecewise differentiable weighting functions g : I → [0,∞[,
based on Definition 15 is monotone increasing if weighting functions satisfy at
least one of the following conditions: gi(x) ≥ g′

i(x)·(b−a) or gi(x) ≥ g′
i(x)·(b−x)

or for a fixed n, n > 1, g2
i (x)∑

j �=i

gj(b)
+ gi(x) ≥ g′

i(x) · (b − x).

4 Generalization of the Global Moderate Deviation
Function and Penalty Function

Let us think about a situation where we would use different moderate deviation
functions for different inputs, or corresponding penalty functions for them, and,
moreover, the different inputs would have different weights. Therefore, we first
define the so-called generalized global moderate function and also the generalized
penalty function.
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Definition 16. Consider moderate deviation functions Di ∈ D; i = 1, . . . , n
and n ∈ N. Then a generalized weighted global moderate deviation function
GwGD : In+1 → R̄ is defined for any x ∈ In and y ∈ I as follows:

GwGD(x, y) =
n∑

i=1

wi · Di(xi, y), (18)

where wi ≥ 0 are the weights associated with the observations xi.
The vector w = (w1, . . . , wn) is called a weighting vector.

Definition 17. Consider moderate deviation functions Di ∈ D; i = 1, . . . , n,
n ∈ N and the weighting vector w = (w1, . . . , wn). Then the mapping GwUD :
In → I given by

GwUD(x) =
1
2

(
sup

{
y ∈ I

∣∣∣
n∑

i=1

wi · Di(xi, y) < 0

}

+ inf

{
y ∈ I

∣∣∣
n∑

i=1

wi · Di(xi, y) > 0

})
(19)

is called a generalized weighted D-mean.

Definition 18. Let LPi : I2 → R̄+; i = 1, . . . , n, be local penalty functions.
Then a generalized weighted penalty function GwP : In+1 → R̄+ is defined for
any x ∈ In and y ∈ I as follows:

GwP (x, y) =
n∑

i=1

wi · LPi(xi, y), (20)

where wi ≥ 0 are the weights associated to the observations xi.
The vector w = (w1, . . . , wn) is called a weighting vector.

Definition 19. Consider local penalty functions LPi : I2 → R̄+; i = 1, 2, . . . , n,
n ∈ N and the weighting vector w = (w1, . . . , wn). Then the mapping GwfP (x) :
In → I defined for all x ∈ In, by

GwfP (x) =
1
2

(
sup

{
u ∈ I

∣∣∣∀v ∈ I : GwP (x, u) ≤ GwP (x, v)
}

+ inf
{

u ∈ I
∣∣∣∀v ∈ I : GwP (x, u) ≤ GwP (x, v)

})
(21)

is called a generalized weighted penalty-based function.

Definition 20. Consider moderate deviation functions Di ∈ D; i = 1, 2, . . . , n
and n ∈ N. Then a generalized mixture global moderate deviation function
GgGD : In+1 → R̄ is defined for any x ∈ In and y ∈ I as follows:

GgGD(x, y) =
n∑

i=1

gi(xi) · Di(xi, y), (22)

where gi : I →]0,∞[ are continuous weighting functions associated with input
values xi. The vector g = (g1, . . . , gn) is called a weighting vector.



Aggregation Using Penalty and Moderate Deviation Functions 257

Definition 21. Consider moderate deviation functions Di ∈ D; i = 1, 2, . . . , n,
n ∈ N and a weighting vector g = (g1, . . . , gn). Then the mapping GgUD : In →
I given by

GgUD(x) =
1
2

(
sup

{
y ∈ I

∣∣∣
n∑

i=1

gi(xi) · Di(xi, y) < 0

}

+ inf

{
y ∈ I

∣∣∣
n∑

i=1

gi(xi) · Di(xi, y) > 0

})
(23)

is called a generalized mixture D-mean.

Example 4 points out that introducing weights into the fusion of input val-
ues when using penalty functions and their corresponding moderate deviation
functions may not give the same result.

Example 4. Consider the input values (0.6, 0.2), the corresponding weighting
vector w = (1/3, 2/3) and the moderate deviations functions D1(x, y) = y − x,
D2(x, y) = log y − log x. Based on Definition 16 we get

GwGD(x, y) =
1
3
(y − 0.6) +

2
3
(log y − log 0.2).

Then the mapping given by (19) acquires value GwUD(0.6, 0.2) = 0.239503.
But if we use a generalized weighted penalty function to aggregate the inputs
GwP (x, y) = 1

3 (0.6−y)2+ 2
3 (log 0.2− log y)2 and GwP ′

y = 2
3 (y−0.6)+ 4

3y (log y−
log 0.2) = 0, the result is GwfP (0.6,0.2) = 0.208328.

5 Conclusion

In the paper, we point out the mutual connection between the local penalty func-
tion and the moderate deviation function in the construction of aggregation func-
tions. We introduced the so-called generalized weighted/mixture penalty func-
tions and generalized weighted/mixture global moderate deviation functions,
where we assumed the application of different functions and different constant
weights for individual inputs or where the weights represent the functional val-
ues of individual inputs, respectively. We still have open problems. Our goal is
to determine aggregation functions that can be constructed using the penalty
function, but not using the moderate deviation function and vice versa. Our next
goal is to determine the conditions under which our generalized functions would
be aggregation functions.
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Abstract. In the traditional QUALIFLEX method to choose the best
ranking order among m alternatives, all m! permutations of the rank-
ing order of alternatives are considered; however, that is not required
always. Besides, the number of permutations increases drastically with an
increase in the number of alternatives. To avoid such significant computa-
tional intricacy, in this paper we tried to generate only the possible prefer-
ence orders of alternatives from the decision matrix by implementing the
EAST method premised on the graph-theoretic approach. To facilitate
this, the proposed decision-making framework considers the transforma-
tion of the decision matrix into a pair-wise comparison matrix where the
uncertainty is modeled by interval-valued fuzzy sets. The consistency
analysis is performed by modeling the interaction between the lower and
upper parts of the preference matrix. Further, to evaluate the aggregated
value in order to obtain the optimal ranking, we use discrete Choquet
integral which can capture some degree of inter-dependence among the
attribute set. Finally, the concordance/discordance index analysis is done
to choose the best alternative.

Keywords: Multi-attribute decision making · QUALIFLEX method ·
EAST method

1 Introduction

The main characteristic of the outranking method is comparing all feasible alter-
natives in pair and then exploiting it in an appropriate way for obtaining a final
ranking of alternatives. The aim of constructing one or several (crisp, fuzzy, or
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embedded) outranking relation(s) is to compare each pair of actions in a com-
prehensive way with the idea that for an outranking relation to be validated a
sufficient majority of attributes should be in favor of the required statement. A
binary outranking relation refers to the assertion “at least as good as” where
between two actions in any of these situations; preference, indifference, or incom-
parability can occur. For example, any couple of actions (a, b), “a outranks b”
means action a is preferable to action b. A survey of these outranking methods is
presented elaborately in [1]. Among the outranking methods, QUALIFLEX (i.e.,
QUALItative FLEXible multiple criteria method) is very well known where gen-
eral idea of outranking is globally implemented and has been applied to many
real-life problems in different environments. QUALIFLEX was first developed
as a generalization of Jacquet-Lagreze’s permutation method based on the eval-
uation of all possible rankings of alternatives under consideration [2]. Further
several significant achievements have been made by many researchers [3–7].

Due to the less complexity and high applicability, the QUALIFLEX method
in decision-making fields has been thoroughly studied in previous years.
Although the extant frameworks used in QUALIFLEX till now present some
drawbacks. First, this method evaluates all possible rankings or permutations
of alternatives, subsequently for each couple of alternatives of the said permu-
tations concordance and discordance index and comprehensive rank of them are
computed. In this process, it is worth noting that the number of permutations
increases drastically with an increase in the number of alternatives. Although, to
choose the best ranking order it is not required to always consider all permuta-
tions of the ranking order of alternatives. Second, in real-life problems, different
types of interrelationships exist among the attributes. However, the traditional
QUALIFLEX framework does not consider any type of dependency relationship
among the attributes. To obtain the aggregated value classical weighted arith-
metic mean is used [3,5] which is incompetent to capture interaction among the
attribute set. To handle such a situation, following [4], we can implement a non-
additive aggregation operator, known as Choque integral. Furthermore, fuzziness
exists in such evaluation information. Therefore, a new decision-making frame-
work, which can overcome the aforementioned deficiencies, is necessary.

With these observations, this study aims to develop a novel decision-making
framework based on the QUALIFLEX and EAST methods where we can
decrease the computational complexity by computing only the possible permu-
tations of alternatives, as well as to give an acceptable and satisfactory ranking
method. This new approach also belongs to the class of outranking methods
where the outranking relation can be interpreted as a simple crisp relation and
makes it easier to solve problems with less computational complexity. Moreover,
we take into account the fuzziness of the expert’s opinions modeled by interval-
valued fuzzy with respect to capturing dependence among the attributes during
the evaluation of alternatives, a suitable aggregation method is used.

The paper is set out as follows: Sect. 2 describes some basic concepts of
interval-valued fuzzy sets. Section 3 presents a transformation function for util-
ity values and multiplicative preference relations, with a detailed consistency
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analysis. Section 4 proposes a combined QUALIFLEX-EAST method to rank
alternatives. Finally, some conclusions and future works are presented in Sect. 5.

2 Preliminaries

2.1 Interval-Valued Fuzzy Set

Definition 1. [8] An IVFS Ã, on the universe U �= φ, is a set such that, Ã =
{(u, A(u) = [a−

A(u), a
+
A(u)]) |u ∈ U}, where the function A : U → L([0, 1]) is

called the membership function.

For a singleton space U = {u}, the class of all IVFS(s) is isomorphic to
that of (L,�)-fuzzy sets. Hence, an IVFS is a specific kind of L-fuzzy set, in
the sense that, for every u ∈ U, [a−

A(u), a
+
A(u)] ∈ (L,�). Thus, the lattice (L,�)

gives us an elegant and compact environment in which we can perform the
computations with IVFS(s). For this reason, we use the names “interval-valued
fuzzy set” and “(L,�)-fuzzy set” synonymously. Hereinafter, we shall call the
object ā = [a−, a+] as interval-valued representation of the data.

Next the most relevant for our purposes are logical connectives like conjunc-
tion and disjunction, which are modeled by t-norm and t-conorm.

Definition 2. [9] A t-norm (or, t-conorm) is a function T (or, S) : [0, 1] ×
[0, 1] → [0, 1] such that it is symmetric, associative, non decreasing in each argu-
ment and T (x, 1) = x (or, S(x, 0) = x),∀ x ∈ [0, 1]. A strict t-norm (or, strict
t-conorm) is represented by its additive generator g (or, h) : [0, 1] → [0,∞],
which is a decreasing function (or, increasing function), such that T (x, y) =
g−1(g(x) + g(y)) (or, S(x, y) = h−1(h(x) + h(y))).

If S is a strict t-conorm dual to a strict t-norm T , i.e. S(x, y) = 1 − T (1 −
x, 1 − y) and T has an additive generator g, then h given by h(x) = g(1 − x) is
an additive generator of S. Then using concept of strict t-conorm and strict t-
norm with their respective additive generators, one can define interval arithmetic
operational laws as follows:

Definition 3. Let ā = [a−, a+] and b̄ = [b−, b+] be the two intervals from
L([0, 1]). Then,

(I) ā ⊕ b̄ = [S(a−, b−), S(a+, b+)] = [h−1(h(a−) + h(b−)), h−1(h(a+) + h(b+))]
(II) ā ⊗ b̄ = [T (a−, b−), T (a+, b+)] = [g−1(g(a−) + g(b−)), g−1(g(a+) + g(b+))]
(III) αā = [h−1(αh(a−)), h−1(αh(a+))] , for any α ≥ 0
(IV) āα = [g−1(αg(a−)), g−1(αg(a+))] , for any α ≥ 0.

In this contribution, to prove all the relevant theorems, properties of the
proposed operators and to preserve the individual multiplicative preference
structure into collective decision in a convenient manner, we will use strict
t-norm Tp(x, y) = xy generated by h(t) = − log(1 − t) and we will use
S(x, y) = min{1, x + y} (which is not a strict t-conorm) generated by addi-
tive generator identity h(t) = t. Thus, here our used t-norm is conditionally
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distributive over S-norm. It is also needed to be mentioned that we will not
unnecessarily restrict the domain and range of these functions and we consider
L as the set L([a, b]), i.e., the set of all closed subintervals of some arbitrary
interval [a, b] ⊂ R

+ = [0,∞] i.e., L([a, b]) = {[a−, a+]|a ≤ a− ≤ a+ ≤ b}. With
the above notations and interpretations, the interval arithmetic operational laws
can be defined as follows:

Definition 4. Let ā = [a−, a+] and b̄ = [b−, b+] be the two intervals from
L([a, b]). Then,

(i) Addition: ā ⊕ b̄ = [a− + b−, a+ + b+]
(ii) Subtraction: ā − b̄ = [a− − b+, a+ − b−]
(iii) Multiplication: ā ⊗ b̄ = [a−b−, a+b+]
(iv) Division: ā/b̄ = [a−/b+, a+/b−] where b−, b+ > 0
(v) Scalar multiplication: αā = [αa−, αa+] , for any α ≥ 0
(vi) Exponential: āα = [a−α

, a+α

], for any α ≥ 0.

Remark 1. The division is derived from multiplication by means of Galois con-
nection.

As in this proposal we are dealing with the set of intervals from L([a, b]), thus
it is clear that to each interval [a−, a+] from L([a, b]) we can assign uniquely
a point (a−, a+) ∈ R

2 and the intervals can be ordered by using the usual
partial order in R

2. Thus the intervals can be ordered in the following way
[a−, a+] ≤2 [b−, b+] ⇔ a− ≤ b− ∧ a+ ≤ b+ [8].

3 Interval Valued Multiplicative Preference Relation

Definition 5. [10] Consider a set of alternatives {X1,X2, ...,Xm}. Preferences
are given on the basis of a positive ratio scale U = {ūi : i = 1, 2, ...,m}, ūi ∈
L([0, 1]). These interval values ūi for each alternative Xi are called utility values.

Another way of expressing opinions is based on pairwise comparison where
the experts affix some degree of credibility of preference of any alternative over
another. Consider that decision maker provides the ratio of preference intensity
for an alternative Xi to that of Xj by the value ζ̄ij ; i, j = 1, 2, ...m. It estimates
that alternative Xi is ζ̄ij times better than alternative Xj .

Definition 6. [11] An interval judgment matrix M = (ζ̄ij)m×m =
([ζ−

ij , ζ
+
ij ])m×m where, ζ−

ij and ζ+
ij are non negative real numbers and ζ−

ij ≤ ζ+
ij ,

is said to be a interval valued multiplicative preference relation, if the elements
of M satisfy ζ̄ij = 1/ζ̄ji, ζ−

ii = ζ+
ii = 1, 1/S ≤ ζ−

ij ≤ ζ+
ij ≤ S, ∀ i, j = 1, 2, ...,m

where, ζ̄ij represents a multiplicative preference degree of alternative Xi over Xj

and [1/S, S] be a multiplicative ratio scale with neutral value of 1.

In Definition (6), we are taking the condition of interval valued multiplicative
preference relation as, ζ̄ij = 1/ζ̄ji which implies ζ−

ij = 1/ζ+
ji and ζ+

ij = 1/ζ−
ji . From

interval arithmetic operational laws (Definition 4) one knows, ζ̄ij = 1/ζ̄ji �

ζ̄ij ⊗ ζ̄ji = 1. Thus for an interval valued matrix M = (ζ̄ij)m×m we often have
ζ̄ij ⊗ ζ̄ji �= 1, but to satisfy the multiplicative preference relation M has to satisfy
reciprocity law ζ̄ij = 1/ζ̄ji.
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3.1 Saaty’s Definition of Consistency for Multiplicative Preference
Relation and Its Extension with Interval Data

Definition of consistency for multiplicative preference matrix was first proposed
in [12]. According to Saaty, preference matrix M is said to be a consistent multi-
plicative preference relation if the preference relation satisfies transitivity prop-
erty i.e., if elements of the preference matrix M satisfy,

ζ̄ij = ζ̄ik ⊗ ζ̄kj ,∀ i, j, k = 1, 2, ...,m. (1)

Since we are here dealing with interval-valued preference matrix, according to
[13] an interval multiplicative reciprocal matrix M = (ζ̄ij)m×m = ([ζ−

ij , ζ
+
ij ])m×m

is said to be consistent if the two multiplicative reciprocal matrices ML =
(ζL

ij)m×m and MU = (ζU
ij )m×m are consistent where,

ζL
ij =

⎧
⎪⎨

⎪⎩

ζ+
ij if i < j

1 if i = j

ζ−
ij if i > j

ζU
ij =

⎧
⎪⎨

⎪⎩

ζ−
ij if i < j

1 if i = j

ζ+
ij if i > j

In [11,14], some drawbacks of Liu’s definition of consistency were illustrated
using examples. They also suggested a new definition for consistency of interval
multiplicative preference matrix as follows:

Definition 7. [14] An interval valued preference matrix M = (ζ̄ij)m×m is called
consistent if

ζ−
ij ζ

+
ij = ζ−

ikζ+
ikζ−

kjζ
+
kj ∀ i, j, k = 1, 2, ...,m (2)

The concept behind this definition was not clearly discussed there in [14].
With an aim to give more clarity, We analyze the Definition 7 as given below.

Remark 2. Basically, the interval arithmetic-based transitivity equation of the
interval-valued preference matrix M is defined by taking into account the inter-
action between both the lower and upper parts of the preference matrix. First,
the consistency condition of the lower and upper part of the interval-valued
preference matrix can be obtained based on Eq. (1) as follows.

ζ−
ij = ζ−

ikζ−
kj , ζ+

ij = ζ+
ikζ+

kj . (3)

Now the interaction between the lower and upper parts of the interval multiplica-
tive preference matrix can be modeled by using the t-norm. The effectiveness of
the product t-norm operator inspires us and we use it to define the condition of
consistency for the interval-valued preference matrix. Thus Eq. (3) leads us to
the Definition 7. Here instead of taking into account the consistency of two sep-
arated matrices, i.e., lower and upper matrices, we calculate the consistency for
the whole interval multiplicative reciprocal matrix. Thus by this new consistency
formula, we can avoid the loss of information that may arise by considering the
upper and lower boundaries of the interval data.
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Remark 3. If lower and upper matrices constructed from the interval multiplica-
tive preference matrix according to the concept of Liu et al. [13] is consistent
then the original matrix will be definitely consistent by (2). Further, there may
be some cases where the original multiplicative preference matrix is consistent,
however, the two separated matrices are not consistent.

In the following section, we analyze the functions to transform interval-based
utility values into multiplicative preference relations to facilitate our decision-
making process.

3.2 Transformation Between Utility Value and Multiplicative
Preference Relation

In the context of interval-valued data, a multiplicative preference relation from
a set of utility values can be obtained by using the following transformation
function f : L([0, 1]) × L([0, 1]) → L([a, b]) such that, ζ̄ij = f(ūi, ūj) where f
satisfies the following properties,

P1. Transformation function should satisfy multiplicative reciprocity condition
i.e., f(ūi, ūj) = 1

f(ūj ,ūi)
.

P2. When the alternatives satisfy some attributes with the same intensity, the
transformation function will take the value unity i.e., f(ūi, ūi) = [1, 1].

P3. Decision maker will give a higher preference value to the alternative with a
higher utility value than the other with respect to some other alternative
i.e., if ūi ≤ ūj then it implies, f(ūi, ūs) ≤ f(ūj , ūs) where s ∈ {1, 2, ..., n}.

If we assign some specific form of h, the multiplicative preference relation can
be evaluated by using a special type of transformation function. For example,

ζ̄ij = f(ūi, ūi) =
(

ūi

ūj

)c

where, c > 0. Taking c = 1 and using interval value

operational law (iv) we get the simplest function to obtain the ratio of preference
intensity for alternative Xi to that of Xj (where i �= j and i, j = 1, 2, ...,m) on
the basis of some specific attribute as,

ζ̄ij =
ūi

ūj
=

[u−
i , u+

i ]
[u−

j , u+
j ]

=
[
u−

i

u+
j

,
u+

i

u−
j

]

. (4)

Remark 4. Interval preference relation derived from utility values using Eq. (4)
is multiplicative reciprocal and consistent.

The fact that this special transformation function (Eq. 4) will also preserve
the preference relation i.e., alternatives with high utility value will be definitely
preferable to the decision maker than the other.

Remark 5. We have ūi ≤2 ūj for all i, j ∈ {1, 2, ...,m} then, using the ordering
principle of interval data we obtain, u−

i ≤ u−
j ∧ u+

i ≤ u+
j .
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Now for any s ∈ {1, 2, ..., n} we get, u−
i

u+
s

≤ u−
j

u+
s

∧ u+
i

u−
s

≤ u+
j

u−
s

.Which implies,
[

u−
i

u+
s

,
u+

i

u−
s

]

≤2

[
u−

j

u+
s

,
u+

j

u−
s

]

⇒ f(ūi, ūs) ≤2 f(ūj , ūs) ⇒ ζ̄is ≤2 ζ̄js.

Thus the transformation functions do not disturb the ranking among the
alternatives established by different representation structures.

Following the discussions provided in the previous sections, we will now
develop our decision-making mechanism.

4 The New Ranking Mechanism Combining QUALIFLEX
and EAST

4.1 Construction of Pairwise Comparison Matrix for Each
Attribute Based on the Decision Matrix

Consider a decision-making scenario where the decision maker provides his/her
opinion for m alternatives X1,X2, ...,Xm based on n attributes C1, C2, ..., Cn in
the form of interval number Āik = [A−

ik, A+
ik] ∈ L([0, 1]) for ith alternative with

respect to kth attribute. The decision maker’s opinion can be summarized in the
following decision matrix:

D =

C1 C2 · · · Cn
⎛

⎜
⎜
⎝

⎞

⎟
⎟
⎠

X1 Ā11 Ā12 · · · Ā1n

X2 Ā21 Ā22 · · · Ā2n

...
...

... · · · ...
Xm Ām1 Ām2 · · · Āmn

.

In a decision-making problem, benefit attributes and cost attributes may occur
simultaneously. In order to unify all attribute values, decision-makers need to
normalize the decision matrix. Suppose among n attributes {C1, C2, ..., Cn}, Ck

is the cost attribute then the evaluation value Āik of alternative Xi with respect
to attribute Ck should be normalised as, N(Āik) = 1 − Āik = 1 − [A−

ik, A+
ik] =

[1 − A+
ik, 1 − A−

ik]. Now let Āk
ij denotes the preference value of alternative Xi

over Xj for one particular attribute Ck, where k = 1, 2, ..., n. Then, the multi-
plicative preference relation Āk

ij can be evaluated by using the special type of
transformation function in the line of Eq. (4) as,

Āk
ij = [Ak−

ij , Ak+

ij ] =

⎧
⎨

⎩

[1, 1] if i = j
(

Āik

Ājk

)c

otherwise
(5)

where, c > 0. For the sake of simplicity, consider c = 1 and we get the ratio of
preference intensity for alternative Xi to that of Xj with respect to attribute

Ck (where i �= j and i, j = 1, 2, ...,m) as , Āik

Ājk
= [A−

ik,A+
ik]

[A−
jk,A+

jk]
=

[
A−

ik

A+
jk

,
A+

ik

A−
jk

]

.

The preference values with respect to attribute Ck can be summarized into the
interval decision matrix DCk

= (Āk
ij)m×m.
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Remark 6. For k-th attribute the interval matrix DCk
, derived from the decision

matrix D using Eq. (5) is multiplicative reciprocal and consistent.

4.2 Construction of the Aggregated Matrix After Accumulation
of the Preference Matrix over All Attributes

Now in order to aggregate individual judgments into collective judgments with
respect to all attributes, we use the interval-valued geometric mean operator
(IV-GM). This evaluation is represented in matrix format as,

M =

X1 X2 · · · Xm
⎛

⎜
⎜
⎝

⎞

⎟
⎟
⎠

X1 �̄11 �̄12 · · · �̄1m

X2 �̄21 �̄22 · · · �̄2m

...
...

... · · · ...
Xm �̄m1 �̄m2 · · · �̄mm

.

�̄ij = IV − GM(Ā1
ij , Ā

2
ij , ..., Ā

n
ij) =

[ n∏

k=1

(

Āk+

ij

)

,

n∏

k=1

(

Ak−
ij

)]

= [�−
ij , �

+
ij ].

Remark 7. As every interval matrix DCk
= (Āk

ij)m×m satisfies multiplica-
tive reciprocity and consistency conditions so, Āk

ij = 1
Āk

ji

,∀ k = 1, 2, ..., n.

i.e., Ak−
ij = 1

Ak+
ij

and Ak+

ij = 1

Ak−
ij

,∀ k = 1, 2, ..., n. Now, we get �̄ij =

IV − GM(Ā1
ij , Ā

2
ij , ..., Ā

n
ij) = [�−

ij , �
+
ij ] = 1

[ 1
�
+
ij

, 1
�
−
ij

]
= 1

[�−
ji,�

+
ji]

= 1
�̄ji

. Similarly,

we get �−
il�

+
il�

−
lj�

+
lj = �−

ij�
+
ij .

Thus, the aggregated preference matrix M = (�̄ij)m×m constructed above is
multiplicative reciprocal and consistent if all interval matrix DCk

= (Āk
ij)m×m

for k-th attribute, k = 1, 2, ..., n, are multiplicative reciprocal and consistent.

Thus utilizing the IV-GM operator, aggregated preference matrix M can be
generated over all attributes from the decision matrix D.

4.3 Enumerating only Possible Preference Orders from Aggregated
Preference Matrix Using Graph Theoretic Approach

Now before selecting the best ranking order, our aim is to generate only the pos-
sible preference orders from aggregated preference matrix M by using a graph
theoretic approach. For this purpose, we take the set of m alternatives as vertices
of a complete directed graph G = (X,J) and edges connecting them as prefer-
ence degrees between each pair of alternatives where J represents the weighted
edges. Then we can generate a forest Γ = {S1, S2, ..., Sη} containing η number of
spanning trees where each tree presents an independent judgment. Back in 1889,
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Cayley developed the well-known formula η = m(m−2) for the number of span-
ning trees in the complete graph with m vertices. If we draw all those spanning
trees in a figure then this displays every possible combination of minimum edges
connecting all those m vertices together. Each spanning tree Sl, l = 1, 2, ..., η
represents a set of (m − 1) independent judgments. For more details see [5].

From each independent judgment, the weight vector of the alternatives
W = (W1,W2, ...,Wm), where Wi > 0, can be calculated by using some weight
computation method for interval data using a fuzzy linear programming prob-
lem. Several methods have been proposed for weight computation of interval
data in the literature [11,15]. However, in this study, we focus on the weight
computation method given in [15] based on the linear membership function due
to their simplicity and usefulness in practical applications.

As our aggregated preference matrix M is perfectly consistent in its judg-
ments, thus weight vector W = (W1,W2, ...,Wm), where Wi > 0 of the set
of m alternatives {X1,X2, ...,Xm} can be calculated by using the formulas,
�̄ij = Wi

Wj
,

∑
Wi = 1. As, preference of an alternative Xi over Xj is repre-

sented as an interval �̄ij = [�−
ij , �

+
ij ] where �−

ij and �+
ij are respectively the lower

and upper bounds. So, in that context weight vector satisfies the constraint:
�−

ij ≤ Wi

Wj
≤ �+

ij .

By transforming this double-side inequality into a set of two single side-
inequalities we obtain,

Wi + �−
ijWj ≤ 0, Wi − �+

ijWj ≤ 0.

Evidently, the decision maker would prefer a solution around the middle of the
interval �̄ij denoted by mij . This implies that the DM’s degree of satisfaction
with the solution ratio should be represented as a monotonous continuous func-
tion, gradually increasing towards the interval mid-point which gives us a convex
membership function for this interval:

μij(Wi,Wj) =

⎧
⎨

⎩

1 − −Wi+�−
ijWj

dij
, if Wi

Wj
≤ mij

1 − Wi−�+
ijWj

dij
, otherwise.

(6)

where dij is the tolerance parameter for the considered interval. Without loss
of generality, one can assume that the tolerance parameters for the lower and
upper bounds are equal. Finally, the corresponding optimization problem can be
represented by the following fuzzy linear programming problem:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Max (λ)
Subject to,

dijλ − Wi + �−
ijWj ≤ dij .

dijλ + Wi − �+
ijWj ≤ dij .

i = 1, 2, ..., n, J = 1, 2, ..., n − 1, j > i.
∑

Wi = 1.

Wi > 0, i = 1, 2, ..., n.

(7)
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From the optimal value of λ one can measure the consistency of the DM’s judg-
ments. So it is called a consistency index. As in our decision model the aggregated
preference matrix M is perfectly consistent, thus the constraint of the weight
vector is purely satisfied, and in that case, the value of the membership function
given by Eq. (6) is equal or greater than one. Thus in our model we will get from
Eq. (7) λ ≥ 1.

From each spanning tree, depending on η by solving Eq. (7), different weight
vectors are generated and subsequently, we can rank alternatives in all possible
ways. So by this process, we obtain at most η different preference orderings of
alternatives.

4.4 Computation of Concordance/Discordance Index for Every
Possible Preference Ordering

Suppose from the aggregated preference matrix, P = {P1, P2, ..., Pη} be the
set of all possible rankings of alternatives obtained using Sect. 4.3. Let Pl =
(...,Xρ, ...,Xβ , ...) denote the l-th ranking order of alternatives where, l =
1, 2, ..., η and in Pl, alternative Xρ is ranked higher than or equal to Xβ .

To compute the value of concordance/discordance index denoted as,
I l
k(Xρ,Xβ), for each pair of alternatives (Xρ,Xβ) in the preference ranking Pl

with respect to the attribute Ck we use the following,

I l
k(Xρ,Xβ) = d(Āρk, 0̄) − d(Āβk, 0̄). (8)

where we can calculate the distance of the interval Āρk = [A−
ρk, A+

ρk] from 0̄ =
[0, 0], using the formula : d(Āρk, 0̄) = (mid Āρk − mid 0̄)2 + (spr Āρk − spr 0̄)2

with mid Āρk =
(A−

ρk+A+
ρk)

2 as the center of the interval and the spread of Āρk

as spr Āρk =
(A+

ρk−A−
ρk)

2 which is half of the length of an interval Āρk.
If I l

k(Xρ,Xβ) > 0, I l
k(Xρ,Xβ) = 0, I l

k(Xρ,Xβ) < 0, then it is said to be
concordance, ex-aequo, discordance index respectively.

Next, to determine the weighted concordance/discordance index for each
pair of alternative (Xρ,Xβ) in Pl on the ground that, there exists depen-
dence structure among the set of attributes, here we employ discrete Cho-
quet integral. In [4], the Choquet integral has been applied in the hierar-
chical QUALIFLEX method to capture the dependence relationships among
the main criteria. With the same spirit, in line of the idea of discrete
Choquet integral suppose I l

(k)(Xρ,Xβ) denotes the k-th smallest element in
the set {I l

1(Xρ,Xβ), I l
2(Xρ,Xβ), ..., I l

n(Xρ,Xβ)}. Let, μ(C(k)) denote the
degree of importance of the combination of sub-set of attributes C(k) =
{Ck, Ck+1, ..., Cn}. Thus, μ(C(1)) = 1 and μ(C(n+1)) = 0. Therefore, weighted
concordance/discordance index I l(Xρ,Xβ) for each pair of (Xρ,Xβ) in Pl can
be defined as follows,
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I l(Xρ,Xβ) =
n∑

k=1

I l
(k)(Xρ,Xβ).[μ(C(k)) − μ(C(k+1))]

=
n∑

k=1

(

d(Āρ(k), Āβ(k))
)

.[μ(C(k)) − μ(C(k+1))]. (9)

The value of the degree of importance of the combination of a subset of
attributes can be obtained by using some fuzzy integration procedure based
on λ-measure or by analytical hierarchy process or directly from the decision-
makers. Then, derive the comprehensive concordance/discordance index I l for
each Pl using formula:

I l =
∑

Xρ,Xβ∈X

n∑

k=1

I l
(k)(Xρ,Xβ).[μ(C(k)) − μ(C(k+1))]

=
∑

Xρ,Xβ∈X

n∑

k=1

(

d(Āρ(k), Āβ(k))
)

.[μ(C(k)) − μ(C(k+1))]. (10)

The highest value of the comprehensive concordance/discordance index indi-
cates a better ranking of the alternatives.

A structural comparison of the proposed method with the existing QUAL-
IFLEX methodologies is presented in Table 1.

Table 1. Comparison with different extended QUALIFLEX methodologies

Methods Environment Combined with method Conco./disco Dependence index

Zhang et al. [4] IVPFS – Closeness index Yes

Li and Wang [3] PHFE – Hausdorff distance No

Ji et al. [6] SVTNS TODIM Distance measure No

Liang et al. [7] LNN VIKOR Hamming distance No

Proposed method IVFS EAST Distance measure

with mid and spread

Yes

5 Conclusion

The contributions of this proposal are as follows. First, instead of considering all
m! permutations of alternatives the proposed framework employs the graph theo-
retic approach to find only the possible preference of alternatives, and subsequent
concordance-discordance analysis is done. Second, the proposed decision-making
framework employs discrete Choquet integral to model the dependence relation-
ship among the attribute set. Third, the transformation function is analyzed
to relate utility values and multiplicative preference relation within the interval
value context. In the future, we can extend this new outranking method to a
linguistic decision framework where due to lack of knowledge decision makers
will not be able to express their preferences precisely in exact quantitative form.
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Abstract. Aggregation functions have been used in the last decade in
several edge detectors with notable success. Recently, a new family of
aggregation functions defined as ordinal sums of conjunctive and dis-
junctive aggregation functions have been introduced with good results
in classification problems. Due to this performance, in this paper, this
family is considered in the aggregation step of the edge detection algo-
rithm based on uninorms. This new edge detector is compared with other
classical edge detectors concluding that this class of ordinal sums is a fea-
sible family to be used for edge detection.

Keywords: Edge detection · Aggregation functions · Ordinal sums ·
Uninorms · Canny

1 Introduction

Edge detection has been one of the most studied topics in image processing in
the last decades [15]. Being a low-level operation, its performance is important
for the final results of high-level operations such as segmentation, pattern recog-
nition or other computer vision techniques. Due to this reason, a plethora of
edge detection algorithms have been introduced by considering very different
theories and techniques. Namely, we can highlight the classical algorithms based
on convolution masks such as Sobel, Prewitt or Canny edge detectors (see [16])
or the new techniques based on fuzzy sets and their extensions (see [1,3]), which
take into account the fact that edges are an intuitive concept. In fact, almost
every mathematical theory has been considered for this task.
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Within the context of edge detectors based on fuzzy logic, aggregation func-
tions play a significant role in many of them. These operators are crucial to define
the fuzzy morphological gradient in any edge detector based on the fuzzy mathe-
matical morphology. In [9], the performance of the standard fuzzy morphological
gradient is studied depending on the choice of t-norm and fuzzy implication func-
tion considered in the definition of the fuzzy dilation and fuzzy erosion, respec-
tively. In [6] and [7], basic fuzzy morphological operators (and consequently,
the fuzzy morphological gradient) are generalized by considering more general
aggregation functions instead of the usual minimum and maximum. On the other
hand, other edge detectors which are not based on the fuzzy mathematical mor-
phology have been also proposed. For instance, in [8] a novel edge detection
algorithm is proposed that considers uninorms to aggregate the directional gra-
dients. All these edge detectors obtain competitive results with respect to the
classical algorithms based on convolution masks both from the quantitative and
qualitative points of view.

In this paper, a novel edge detector will be proposed by modifying the edge
detector based on uninorms presented in [8]. Although uninorms have proved
their potential for edge detection purposes, some of their properties such as
the associativity and the neutral element are quite restrictive and they do not
have a clear meaning in this context. For this reason, in this paper, we will
investigate the performance of an edge detector that considers the novel class
of ordinal sums of a conjunctive and disjunctive aggregation functions (instead
of the uninorms) to perform the aggregation of the directional gradients in the
edge detector proposed in [8]. This class of aggregation functions was proposed
in [12] (and improved in [11]) for classification problems with classes Yes, No and
Maybe containing a tendency to the classes Yes and No. Since edge detection
can be understood as a classification problem where a pixel must be classified
as edge or non-edge, it is worth studying their performance in edge detection.

The structure of the paper is as follows. First, in Sect. 2, some preliminar-
ies on aggregation functions are recalled. Then, in Sect. 3, the edge detector
presented in [8] is fully described in order to present, after that, the proposed
modification. Finally, Sects. 4 and 5 introduce the experimental setup for the
comparison experiments and the analysis of the results. The paper ends with
some conclusions and future work.

2 Preliminaries

In order to make this paper as self-contained as possible, the fundamental con-
cepts that will be used throughout the study are presented below. Let us start
with the basic concepts of fuzzy conjunction and disjunction.

Definition 1. A fuzzy conjunction ( fuzzy disjunction) is a binary operation
C : [0, 1]2 → [0, 1] (D : [0, 1]2 → [0, 1]) such that it is increasing in each argument
and satisfies the boundary conditions C(0, 1) = C(1, 0) = 0 and C(1, 1) = 1
(D(0, 1) = D(1, 0) = 1 and D(0, 0) = 0).
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As a particular case of fuzzy conjunction, we recall the concept of a t-norm.

Definition 2 ([13]). A t-norm is a fuzzy conjunction T : [0, 1]2 → [0, 1] such
that it is commutative, associative and has 1 as neutral element.

By modifying only the neutral element, the concept of t-conorm (a particular
case of fuzzy disjunction) can be derived from the axioms of t-norm; specifically,
a t-conorm is a fuzzy disjunction S : [0, 1]2 → [0, 1] that is commutative, asso-
ciative and has 0 as neutral element. In fact, the interrelated nature of the defi-
nitions of both families enables the transformation of a t-norm into a t-conorm,
and vice versa, through the notion of duality: S(x, y) = 1 − T (1 − x, 1 − y), for
all x, y ∈ [0, 1], is the dual t-conorm of the t-norm T .

In this paper, we will consider members of the family of Schweizer-Sklar
t-norms and t-conorms, given, respectively, by:

T SS
μ (x, y) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

TM(x, y), if μ = −∞,

TP(x, y), if μ = 0,

TD(x, y), if μ = +∞,

(max{0, xμ + yμ − 1})
1
µ , if μ ∈] − ∞, 0[∪]0,+∞[.

(1)

SSS
μ (x, y) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

SM(x, y), if μ = −∞,

SP(x, y), if μ = 0,

SD(x, y), if μ = +∞,

1−(max{0,(1−x)µ+(1−y)µ−1})
1
µ , if μ ∈] − ∞, 0[∪]0,+∞[.

(2)

where TM, TP and TD denote the t-norms minimum, product and drastic, respec-
tively, and SM, SP and SD denote their corresponding dual t-conorms, respec-
tively (see [13] for further details).

We will now focus on the family of uninorms.

Definition 3 ([4,14]). A uninorm is a binary operation U : [0, 1]2 → [0, 1]
such that it is commutative, associative, increasing in both arguments and has
e ∈ [0, 1] as the neutral element.

From its definition, it is straightforward to conclude that when e = 0, the uni-
norm is a t-conorm, whereas when e = 1, it is a t-norm. Otherwise, when
0 < e < 1, the uninorm is referred to as proper. Among the proper uni-
norms, their structure is completely known: In the subregion [0, e]2, a uninorm U
behaves as a t-norm, represented by TU ; in the subregion [e, 1]2, it behaves as a
t-conorm, denoted by SU . In the remaining area, denoted with Ce and referred to
as the compensation space, they satisfy min{x, y} ≤ U(x, y) ≤ max{x, y}, for all
(x, y) ∈ Ce = ([0, e[×]e, 1])∪(]e, 1]×[0, e[). Specifically, when U(x, y) = min{x, y}
or U(x, y) = max{x, y}, for all (x, y) ∈ Ce, two classes of uninorms are obtained.
We will denote these two classes by U = 〈T, e, S〉min and U = 〈T, e, S〉max,
respectively. For more information on uninorms and the different existing fami-
lies, we recommend the reader to consult [14].
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3 From the Edge Detector Based on Uninorms to a New
One Based on Ordinal Sums

In this section, the new edge detector based on ordinal sums of conjunctive and
disjunctive aggregation functions will be presented. First of all, in Sect. 3.1, we
will recall the key features of the edge detector based on uninorms (see [8]).
After that, in Sect. 3.2, we will introduce the new edge detector, focusing on the
differences with respect to the one based on uninorms.

3.1 Edge Detection Using Uninorms

The method outlined in [8] considers as input a grey-scale image, modeled as a
mapping I : DI ⊂ Z

2 → [0, 1], where DI represents the domain of the image.
The initial step of the method involves the computation of the basic directional
gradients of the image. Given a coordinate (i, j) ∈ DI and its 3×3 neighborhood,
the algorithm computes the following three directional gradients in the horizontal
direction, given by

yl
i−1,i+1 = |I(i − 1, l) − I(i + 1, l)|, (3)

for all l ∈ {j − 1, j, j + 1}, and the following three directional gradients in the
vertical direction, given by

xk
i−1,i+1 = |I(k, j − 1) − I(k, j + 1)|, (4)

for all k ∈ {i−1, i, i+1}. These six basic directional gradients are aggregated in
order to obtain two general gradients for each coordinate. Each of these general
gradients is defined as the aggregation of the three directional gradients of the
corresponding direction by a uninorm U = 〈T, e, S〉. Specifically, for the vertical
direction, the vertical gradient at point (i, j) is defined as

∇y(i, j) = U(xi−1
i−1,i+1, x

i
i−1,i+1, x

i+1
i−1,i+1), (5)

while the horizontal gradient at the point (i, j) is defined as

∇x(i, j) = U(yj−1
i−1,i+1, y

j
i−1,i+1, y

j+1
i−1,i+1). (6)

Remark 1. In Eqs. (5) and (6), the aggregation of three elements is performed
using a uninorm U , which is a binary operator. However, due to the associativity
and commutativity of U , the order in which the aggregation is performed is
inconsequential, as these properties ensure that the output is independent of the
order in which the elements are aggregated.

Remark 2. Given the construction of the gradients in Eqs. (3) and (4), it is
possible that some of the coordinates (i − 1, l), (i + 1, l), (k, j − 1), or (k, j + 1)
may fall outside the domain DI for some k ∈ {i−1, i, i+1} or l ∈ {j−1, j, j+1}.
To overcome this, the following convention is applied: if (i, j) is located on the
boundary of DI , then ∇y(i, j) = 0 and ∇x(i, j) = 0; otherwise, it is evaluated
using the corresponding expression.
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Finally, in order to combine the two gradients, the authors propose to com-
pute the magnitude of ∇x(i, j) and ∇y(i, j) by the expression

M(i, j) =
√

∇x(i, j)2 + ∇y(i, j)2. (7)

The computed value of M(i, j) can be greater than 1. To ensure the values
fall within [0, 1], a normalization process is applied. The resulting fuzzy edge
image contains, for each coordinate (i, j), the membership value of this coordi-
nate to the edge set. However, in order to compare the performance of several
edge detection algorithms, Canny’s restrictions establish that the edges must be
binary and of one-pixel width. Therefore, after obtaining the fuzzy edge image,
the final binary edge image is obtained through the application of a Non-Maxima
Suppression technique, followed by a hysteresis thresholding operation (see [8]
for the details).

3.2 Towards Edge Detection Using Commutative Aggregation
Functions

The approach outlined in Sect. 3.1 primarily depends on the choice of the uni-
norm U , considered for the aggregation of directional gradients. The idea behind
the use of uninorms for this specific task was explained in [8]. Namely, if the val-
ues of the basic directional gradients are high (belonging to the interval [e, 1]
where e is the neutral element of the uninorm), the respective directional gen-
eral gradient is computed by using the underlying t-conorm SU of the uninorm
U and since SU ≥ max, these values are boosted as an indicator of a presence of
a remarkable edge point. On the other hand, if the values of the basic directional
gradients are low (belonging to the interval [0, e]), the respective directional gen-
eral gradient is computed by using the underlying t-norm TU and since TU ≤ min,
these values are reduced taking into account that this coordinate seems not to
be an edge point.

Although this idea is interesting, uninorms present two features which are
not completely adequate for the edge detection task:

– The neutral element of the uninorm does not provide any positive outcome for
this task and it makes no sense that a particular value of gradient is neglected
in favour of the other when the aggregation is performed.

– The uninorms that provide the best results in [8] are the ones belonging to
the families U = 〈T, e, S〉min and U = 〈T, e, S〉max. Note that these uninorms
behave as the minimum or the maximum in Ce. In that region of the unit
square, the aggregation is performed between a high gradient value and a
small one. Therefore, there is a lack of sufficient information to definitively
determine if the values of the basic directional gradients correspond with
an edge or a non-edge. Consequently, the use of conjunctive or disjunctive
uninorms that in Ce behave as the minimum or the maximum should be
revised. Indeed, it would be more adequate for edge detection purposes that
the output in this case would be a truly averaging value between both inputs
and not exactly one of inputs as the minimum and the maximum provide.
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Moreover, the associativity reduces greatly the number of possible operators to
be considered. For all these reasons, the main goal of this paper is to consider
more general aggregation functions without neutral element such that in the
compensation region behave as a truly averaging function.

One class of aggregation functions that satisfy the above requirements is the
class of ordinal sums of conjunctive and disjunctive aggregation functions that
was considered in [12] and [11]. Their expression is, when adopting the convex
combination of geometric and dual geometric mean, given by

AC,D,e,λ(x, y) =

⎧
⎪⎪⎨

⎪⎪⎩

eC
(

x
e , y

e

)
, if (x, y) ∈ [0, e]2,

e + (1 − e) · D
(

x−e
1−e , y−e

1−e

)
, if (x, y) ∈ [e, 1]2,

λ
e xy + (1 − λ)

(
1 − 1

1−e · (1 − x)(1 − y)
)

, otherwise,
(8)

where C is a commutative conjunction and D is a commutative disjunction. We
will denote this function simply by A = 〈C,D, e, λ〉. The parameter e will play a
role similar to the neutral element of the uninorm being interpreted as follows:
if the values belong to the square [e, 1]2, the aggregation is performed using the
underlying disjunction since the coordinate is considered as a potential edge.
If the values belong to [0, e]2, the underlying conjunction is applied, indicating
that the coordinate does not seem an edge. In the case of values belonging to
the region ([0, e[×]e, 1])∪(]e, 1]× [0, e[), an scaled averaging aggregation function
generated from the geometric mean and its dual is used (see [11] for details). In
this case, the weight given to each function is adjusted by the parameter λ.

It is important to note several features of this family. First of all, e is not a
neutral element. Secondly, the aggregation function A = 〈C,D, e, λ〉 may not be
associative, even if C and D are a t-norm and a t-conorm, respectively.

By using aggregation functions of this family, we propose a modification of
the edge detector recalled in Sect. 3.1. Concretely, the overall framework will
be retained, except for the evaluation of Eqs. (5) and (6) which will be per-
formed using the aggregation functions AC,D,e,λ. Note that since these aggre-
gation functions are not associative, a criterion must be established to evaluate
the gradient ∇x(i, j) in a consistent manner. The proposed solution is to order
xi−1

i−1,i+1, x
i
i−1,i+1, x

i+1
i−1,i+1 in increasing order1, and then aggregate them pair-

wise from the smallest to the largest. Analogously, we apply this process to
evaluate ∇y(i, j).

4 Experimental Setup

To evaluate both the original method and the proposed modification along with
other edge detectors, a case study is conducted. In Sect. 4.1, the images used
in the study are presented. The metrics for performance evaluation are outlined
in Sect. 4.2, and the different combinations of parameters for each method are
described in Sect. 4.3. All experiments have been run on an Intel Core i7-10750H
processor with 32 GB of RAM.
1 The performance of the edge detector is similar if a decreasing order is applied.
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4.1 Image Dataset

The image set used in the study consists of 50 images from the public dataset
provided by the University of South Florida [2]. Each sample includes both the
original image and an image with edge specifications, that will be considered the
ground truth image, i.e., the image that contains the true edges. Figure 1 depicts
some images with their respective ground truths. Black pixels in the ground truth
indicate edges, grey pixels represent regions that should not be considered for
performance evaluation2, and white pixels represent non-edge pixels.

4.2 Evaluation Metrics

To evaluate the effectiveness of edge detection, three widely used measures in
the literature will be considered.

– The ρ-coefficient [10], defined as

ρ =
ETP

ETP + EFN + EFP
, (9)

where ETP indicates the number of correctly detected edges, EFN indicates
the number of non-detected edges that should have been detected, and EFP

indicates the number of detected edges that should not have been detected.
– The F -measure or F -score, defined as the harmonic mean of precision and

recall. Its final expression is given by

F =
2 · ETP

2 · ETP + EFN + EFP
. (10)

– The Pratt’s figure of merit [16]. This metric provides a measure of the good-
ness of edge detection while taking into account small deviations in the loca-
tion of the detected edge. The expression of this measure is

FoM =
1

max{EI , ETP + EFP}
ETP+EFP∑

i=1

1
1 + α · d(ei)2

, (11)

where EI is the number of ideal edges (those pixels in the ground truth that
are edges), α is a scaling constant (experimentally-set by Pratt to α = 1

9 )
and d(ei) is the distance of the edge ei detected by the method to the nearest
edge of the ground truth.

Although the expressions of the measures depend on the values of the con-
fusion matrix, as outlined in [10], it is recommended to adopt a more flexible
approach when determining TP, TN, FP, and FN. This is because the detected
edge may not exactly match the position of the edge in the ground truth, but it is
still considered a correct detection if an edge is present in a 5×5 neighbourhood
centred on the same coordinates in the ground truth. All measures have values
in [0, 1], with higher values indicating higher performance in edge detection.
2 These regions contain mostly textures and an edge detector should not be penalized
whatever result it obtains.
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4.3 Parameter Tuning

In order to thoroughly examine the behaviour of the method, we have tried
several combinations of parameters. With respect to the edge detector based
on ordinal sums introduced in Sect. 3.2, we have considered as conjunction the
Schweizer-Sklar t-norms parametrized by μ, and as disjunction the dual of the
considered t-norm (with the same parameter μ). The considered combinations
are:

– As neutral element of the aggregation function, e ∈ {0, 0.02, 0.04, . . . , 0.2} ∪
{0.01}.

– As weight-control, λ ∈ {0, 0.25, 0.5, 0.75, 1}.
– As t-norm selection, μ ∈ {−15,−14, . . . ,−1, 0}.

Thus, a total of 960 configurations have been performed. With respect to the
original method based on uninorms, we have considered the following configura-
tions:

– As uninorm selection, the families of U = 〈T, e, S〉min and U = 〈T, e, S〉max

with TnM, TP or TL, the nilpotent minumum, the product or the �Lukasiewicz
t-norms, respectively, as underlying t-norms and their duals, as underlying
t-conorms.

– As neutral element of the uninorm, e ∈ {0.02, 0.04, 0.06, 0.08}.

Thus, 24 configurations have been considered. Finally, in order to compare with
classical methods, we have implemented the edge detectors of Canny (with σ ∈
{0.5, 1, 1.5, 2, 2.5}), Sobel, Roberts and Prewitt (see [5] for more information
about these methods). In total, 992 different edge detectors have been tested.

5 Analysis of the Results

Each configuration has been applied to the 50 images and the three considered
measures have been computed for each result. Thus, Table 1 ranks, for each mea-
sure, the five top configurations in decreasing order of the average of the measure
values obtained by the configuration. As shown, the edge detector with configu-
ration U = 〈TP, 0.02, SP〉min obtains the first position according to ρ-coefficient
and F -measure, while Canny edge detector with σ = 1 hold the top position
according to FoM. Several configurations of the proposed edge detector based
on ordinal sums are listed in the ranking. Specifically, 3 in the top 5 of both
ρ-coefficient and FoM and 4 in the top 5 of F -measure. Only four edge detectors
appear in the top 5 for more than one measure. Namely, Canny edge detector
with σ = 1, the uninorm-based method with U = 〈TP, 0.02, SP〉min and the ordi-
nal sum-based methods with A =

〈
T SS

−2, S
SS
−2, 0.02, 1

〉
and A =

〈
T SS
0 , SSS

0 , 0.02, 1
〉

show a consistent performance. In Fig. 1, we have depicted the results of these
edge detectors for several images.

Now, in order to determine which method has statistically a better perfor-
mance, we have conducted a Wilcoxon signed-rank test to each metric to assess



Edge Detector Based on Ordinal Sums of Conjunctions and Disjunctions 279

whether there are significant differences between the 4 prominent edge detectors
outlined above. After conducting the tests with each metric, the same conclusion
is reached. The results of the tests indicate that there is no significant evidence
to support the claim that one method outperforms the others, concluding that
they perform similarly for each measure. Thus, it can be concluded that the edge
detectors with U = 〈TP, 0.02, SP〉min, A =

〈
T SS
0 , SSS

0 , 0.02, 1
〉
, Canny with σ = 1

and A =
〈
T SS

−2, S
SS
−2, 0.02, 1

〉
exhibit similar performance across all measures.

Table 1. Summary of the top five configurations for each metric, including the mean
and standard deviation computed for all images. Those configurations that ranked in
the top five for another metric are highlighted.

Ranking ρ-coefficient F -measure Pratt’s FoM

1
U = 〈TP, 0.02, SP〉min

0.7509 ± 0.1264

U = 〈TP, 0.02, SP〉min
0.8507 ± 0.1002

Canny, σ = 1
0.7839 ± 0.1956

2
A =

〈
T SS
0 , SSS

0 , 0.02, 1
〉

0.7505 ± 0.1255

A =
〈
T SS
0 , SSS

0 , 0.02, 1
〉

0.8504 ± 0.1022

Canny, σ = 1.5
0.7718 ± 0.1270

3
Canny, σ = 1

0.7503 ± 0.1929
A =

〈
TSS
0 , SSS

0 , 0.02, 0.75
〉

0.8499 ± 0.1022

A =
〈
TSS
0 , SSS

0 , 0.01, 0
〉

0.7676 ± 0.1287

4
A =

〈
T SS
−2, SSS

−2, 0.02, 1
〉

0.7502 ± 0.1277

A =
〈
T SS
−2, SSS

−2, 0.02, 1
〉

0.8498 ± 0.1058

A =
〈
TSS
0 , SSS

0 , 0.01, 1
〉

0.7672 ± 0.1304

5
A =

〈
TSS
−1, SSS

−1, 0.02, 1
〉

0.7498 ± 0.1275

A =
〈
TSS
−1, SSS

−1, 0.02, 1
〉

0.8497 ± 0.1049

A =
〈
TSS
0 , SSS

0 , 0.01, 0.75
〉

0.7670 ± 0.1307

Finally, we have computed, for each image and measure, the rankings of
the four prominent edge detectors. These results are summarized in Table 2.
Specifically, it shows, for each edge detector and measure, the number of images
in which the method achieved the first position, the average ranking of the
method across all images and edge detectors, and the average ranking of the
method considering only the 4 prominent edge detectors. As observed, both the
ρ-coefficient and the F -measure produce the same rankings in all cases. The
edge detector U = 〈TP, 0.02, SP〉min achieves the best mean absolute ranking for
both the ρ-coefficient and the F -measure. However, when considering the FoM,
the configuration A =

〈
T SS

−2, S
SS
−2, 0.02, 1

〉
has the best mean absolute ranking,

followed by A =
〈
T SS
0 , SSS

0 , 0.02, 1
〉
. Regarding the relative rankings, according

to ρ-coefficient and F -measure, Canny edge detector has the best mean relative
ranking, although it also has the highest standard deviation, indicating that it is
the least stable of the four methods. Both configurations A =

〈
T SS

−2, S
SS
−2, 0.02, 1

〉

and U = 〈TP, 0.02, SP〉min stand on the second best mean relative ranking, but
it is A =

〈
T SS

−2, S
SS
−2, 0.02, 1

〉
that has the lower standard deviation of the two

and, in fact, has the lowest standard deviation among all configurations.



280 M. Munar et al.

Fig. 1. Example of some images of the dataset, their ground truths and the results
of some edge detectors. In order of appearance, from left to right, Canny with
σ = 1, the uninorm-based method with U = 〈TP, 0.02, SP〉min, the ordinal sum-
based method with A =

〈
T SS
−2, S

SS
−2, 0.02, 1

〉
and the ordinal sum-based method with

A =
〈
T SS
0 , SSS

0 , 0.02, 1
〉
.

Table 2. Ranking of the selected methods for each metric. The second column indicates
the number of images for which the configuration was ranked first. The third column
indicates the mean and standard deviation of the ranking of that method among all
the considered configurations. The fourth column indicates the mean and standard
deviation of the ranking of the experiment when considering only the four selected
configurations.

Method and metric First positions Abs. ranking Rel. ranking

U = 〈TP, 0.02, SP〉min ρ-coef. 11 119.8 ± 227.81 2.54 ± 1.14

F -meas. 11 119.8 ± 227.81 2.54 ± 1.14

FoM 5 112.48 ± 209.42 2.82 ± 1.02

A =
〈
T SS
0 , SSS

0 , 0.02, 1
〉

ρ-coef. 0 154.32 ± 271.6 2.78 ± 0.61

F -meas. 0 154.32 ± 271.6 2.78 ± 0.61

FoM 2 110.6 ± 222.7 2.74 ± 0.69

A =
〈
T SS
−2, S

SS
−2, 0.02, 1

〉
ρ-coef. 9 147.2 ± 274.87 2.54 ± 1.05

F -meas. 9 147.2 ± 274.87 2.54 ± 1.05

FoM 9 93.8 ± 221.1 2.5 ± 1.07

Canny, σ = 1 ρ-coef. 30 306.26 ± 437.12 2.14 ± 1.44

F -meas. 30 306.26 ± 437.12 2.14 ± 1.44

FoM 34 253.08 ± 403.8 1.94 ± 1.39
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6 Conclusions and Future Work

In this paper, a modification of the edge detector based on uninorms presented
in [8] has been proposed by means of changing the uninorms by ordinal sums
of conjunctive and disjunctive aggregation functions of the class introduced in
[11]. The new edge detector has been compared with the one based on uninorms
and some classical edge detectors through a series of experiments by considering
three well-known performance measures in edge detection.

The comparison experiments lead to several conclusions. First of all, four
edge detectors highlight among the 960 considered, namely, Canny with σ = 1,
the uninorm-based method with U = 〈TP, 0.02, SP〉min, the ordinal sum-based
method with A =

〈
T SS

−2, S
SS
−2, 0.02, 1

〉
and the ordinal sum-based method with

A =
〈
T SS
0 , SSS

0 , 0.02, 1
〉
. Secondly, although a Wilcoxon signed-rank test ensures

that none of these edge detectors performs significantly better than the others,
they present different behavior according to the measures. While Canny edge
detector obtains the best results for a high number of images, it is more unstable
than the ordinal sum-based methods whose performance is more stable across
images. Finally, it seems that (i) the product t-norm and its dual t-conorm
present the best performance since they are considered in the best configurations
of both the uninorm-based method and the ordinal sum-based method (T SS

0 =
TP) and (ii) e = 0.02, which is associated to gradient values of 255 · 0.02 ≈ 5,
is the best value to delimit the borders between the different regions (non-edge,
edge, compensation) of the ordinal sum.

As future work, we would like to study which features of an image determine
the performance of each of these edge detectors. Moreover, it would be interest-
ing to propose an adaptive edge detector that applies, for each pixel, different
aggregation functions according to some criteria.
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7. González-Hidalgo, M., Massanet, S., Mir, A., Ruiz-Aguilera, D.: On the gener-
alization of the uninorm morphological gradient. In: Rojas, I., Joya, G., Catala,
A. (eds.) IWANN 2015. LNCS, vol. 9095, pp. 436–449. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-19222-2 37
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Abstract. In many practical situation, control experts can only for-
mulate their experience by using imprecise (“fuzzy”) words from natural
language. To incorporate this knowledge in automatic controllers, Lotfi
Zadeh came up with a methodology that translates the informal expert
statements into a precise control strategy. This methodology – and its
following modifications – is known as fuzzy control. Fuzzy control often
leads to a reasonable control – and we can get an even better control
result by tuning the resulting control strategy on the actual system.
There are many parameters that can be changed during tuning, so tun-
ing usually is rather time-consuming. Recently, it was empirically shown
that in many cases, quite good results can be attained by using a special
1-parametric tuning procedure called fractional fuzzy inference – we get
up to 40% improvements just by selecting the proper value of a single
parameter. In this paper, we provide a theoretical explanation of why
fractional fuzzy inference works so well.

Keywords: Fuzzy control · Fractional fuzzy inference · Tuning

1 Formulation of the Problem

Need for Expert Knowledge in Control. In some cases – e.g., in controlling
a spaceship – we know the exact equations describing the spaceship’s trajectory,
we know how exactly the spaceship will react to different controls. In such cases,
selection of a proper control becomes a mathematical problem.

However, there are also many control situations when an exact model is not
known. Such situations are typical in many areas, e.g., in chemical engineering, in

This work was supported in part by the project of the Guoqiang Research Institute of
Tsinghua University (No. 2020GQG1001), by the National Science Foundation grants
1623190 (A Model of Change for Preparing a New Generation for Professional Practice
in Computer Science), HRD-1834620 and HRD-2034030 (CAHSI Includes), and by the
AT&T Fellowship in Information Technology. It was also supported by the program of
the development of the Scientific-Educational Mathematical Center of Volga Federal
District No. 075-02-2020-1478, and by a grant from the Hungarian National Research,
Development and Innovation Office (NRDI).
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Massanet et al. (Eds.): EUSFLAT 2023/AGOP 2023, LNCS 14069, pp. 285–296, 2023.
https://doi.org/10.1007/978-3-031-39965-7_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-39965-7_24&domain=pdf
http://orcid.org/0000-0003-3116-3841
http://orcid.org/0000-0003-2587-4209
http://orcid.org/0000-0002-1244-1650
https://doi.org/10.1007/978-3-031-39965-7_24


286 M. Mazandarani et al.

medicine, etc. In many such situations, the control is implemented by experts.
The problem is that experts differ in their experience, and there are usually
very few top experts, not enough to cover all possible control applications. It is
therefore desirable to incorporate the knowledge of top experts into an automatic
system that would help others share the benefit of the top expert’s knowledge.

Need for Fuzzy Techniques. Most experts are willing to share their expertise:
most of them actually teach students and others. The problem is that they cannot
formulate their knowledge in precise numerical terms. This makes perfect sense;
e.g., in the US, the vast majority of people can drive, but hardly anyone can
answer a question that would naturally arise in automatic control: if you are on
a freeway at 100 km/hr, and the car 10m in front of you slows down to 95 km/hr,
with how many kiloNewtons of force and for how many milliseconds should you
press the brake pedal? A natural answer that most driver will give is “press a
little bit, for a short time”. Such answers – expressed by using imprecise (“fuzzy”)
words from natural language – are rather typical.

So, to incorporate expert knowledge into a precise control strategy, we need
to translate such imprecise statements into precise terms. Techniques for such a
translation – pioneered by Lofti Zadeh – are known as fuzzy techniques, see, e.g.,
[1,4,7–9,12].

Need for Tuning. In many practical situations, fuzzy techniques provide a rea-
sonable control strategy. However, the resulting control – based on approximate
imprecise expert rules – is usually not optimal. To improve the quality of the
resulting control, it is necessary to apply it to a real-life system and to “tune it”
– i.e., to modify the control strategy based on the results of this application.

Fractional Fuzzy Techniques are Surprisingly Successful. A control strat-
egy is a function that assigns, to each possible state of the system, an appropriate
value(s) of the control. To uniquely determine a function, we need to describe
infinitely many numerical values – e.g., the values of this function at all rational
inputs. Not surprisingly, most currently used tuning methods tune the values of
a large number of parameters – parameters of the corresponding membership
functions, etc. (see detailed explanation in the following text). Because we need
to determine the values of many different parameters, tuning usually requires a
significant amount of computation time.

Interestingly, recently a new tuning technique has been developed – called
fractional fuzzy technique – that allows to drastically improve the quality of the
resulting control by tuning the value of only one parameter; see, e.g., [5,6]. For
example, for the inverted pendulum, this simple 1-parametric tuning leads to a
40% improvement in control quality.

Remaining Challenge and What We Do in this Paper. While fractional
fuzzy technique has been empirically successful, there has been no convincing
theoretical explanation for its success. In this paper, we provide such an expla-
nation.

The structure of this paper is as follows. To make our explanations clear,
in Sect. 2, we briefly recall how fuzzy techniques work. In Sect. 3, we describe
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our main idea – the use of natural invariance, and we show that invariance
requirement indeed leads to a few-parametric family that includes fractional
fuzzy techniques as a particular case. In Sect. 4, we show that techniques from
this family are actually optimal – in some reasonable sense.

2 Fuzzy Control Techniques: A Brief Reminder

How Experts Present Their Knowledge. We want to describe, for each
state x – characterized by the values x1, . . . , xn of the corresponding parameters
– the appropriate value of the control y. We want to extract such a strategy from
the expert statements, and these statements are usually formulated by if-then
rules:

if x1, . . . , xn have certain property, then some restrictions are placed on y.

By definition, fuzzy techniques transform expert knowledge into a precise
control strategy. So, to describe fuzzy techniques, it is important to recall how
experts present their knowledge. This knowledge is usually represented by if-then
rules. The most typical situation is when both the conditions and the conclusions
of the rules are described by imprecise natural language terms, i.e., when all the
rules have the form

if x1 is A1 and . . . and xn is An, then y is B,

where Ai and B are the corresponding terms. For example, we can have a rule

if x1 is small positive, then y is small negative.

In some cases, experts have a more detailed approximate description of the
conclusion, i.e., use rules of the following type

if x1 is A1 and . . . and xn is An, then y is approximately equal to f(x1, . . . , xn),

for some function f(x1, . . . , xn).

What Needs to be Done to Transform this Knowledge into a Precise
Control Strategy. The expert rules are formed by using imprecise natural-
language terms by applying logical connectives like “and” and “if-then”. Thus, to
transform the experts’ if-then rules into a precise control strategy, we need:

– first, to describe natural-language terms like “small” in precise terms, and
– second, to describe how logical connectives – that are usually applied to pre-

cise statements – can be applied to the resulting imprecise statements.

Let us describe these two stages one by one.

How to Describe Natural-Language Terms Like “Small” in Precise
Terms. In the original fuzzy technique, to describe an imprecise property A, we
assign, to each real number x, the degree (from the interval [0, 1]) to which the
value x has this property – for example, to which x is small. Here:
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– the degree 1 means that we are absolutely sure that x has this property,
– the degree 0 means that we are absolutely sure that x does not have this

property, and
– values between 0 and 1 correspond to intermediate degrees of belief.

For most properties, as the input x increases, the degree first (non-strictly)
increases, then (non-strictly) decreases. Such properties are known as fuzzy num-
bers.

Where do we get these degrees from? For some values x, we can ask the expert
to provide such degrees by marking a number on the scale from 0 to 1. How-
ever, there are infinitely many real numbers, and we can only ask finitely many
questions. Thus, in practice, we ask the expert about several values, and then
use some extrapolation/interpolation techniques to estimate the other degrees.
The resulting function assigning a degree d(x) to each real number x is called a
membership function, or, alternatively, a fuzzy set.

For example:

– if we know that the degree d(x) is equal to 0 for x = x−, to 1 for x = m, and
to 0 for x = x+, for some x− < m < x+, then linear interpolation leads to a
so-called triangular membership function;

– if d(x−) = d(x+) = 0 and d(m−) = d(m+) = 1 for some x− < m− <
m+ < x+, then linear interpolation leads to a so-called trapezoid membership
function.

For continuous fuzzy numbers, and for each degree α > 0, the set of all the
values x for which μ(x) ≥ α is an interval. This interval is known as an α-
cut of the original fuzzy set. Alpha-cuts are nested: if α < α′, then the α-cut
corresponding to α′ is a subset of the α-cut corresponding to α. Once we know
all α-cuts x(α), we can uniquely reconstruct the original membership function
as d(x) = sup{α : x ∈ x(α)}. Thus, the nested family of α-cuts provides an
alternative representation of the fuzzy set. This representation is useful in many
applications – since it often makes computations easier.

How to Describe Logical Connectives and What to Do After that. In
situations when each statement is either true or false, the truth value of each
composite statement like A&B is uniquely determined by the truth values of the
component statements A and B. In our case, we only have degrees of confidence
in statements A and B, and this information does not uniquely determine the
expert’s degree of confidence in A&B.

In the ideal world, we should ask the expert about all such computations.
However, in practice, there are too many such combinations, and it is not possible
to ask the expect about all of them. It is therefore necessary to be able to
estimate the degree of confidence in a combination like A&B based only on the
available information, i.e., only on the experts’ degrees of certainty a and b in
the statements A and B. The function that assigns, to each pair of numbers a
and b, the corresponding degree is called an “and”-operation, or, for historical
reasons, a t-norm. We will denote the value of the t-norm by f&(a, b).
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Similarly, if all we know are the degrees of confidence a and b in statements
A and B, then our estimate for the degree of confidence in a statement A ∨ B
will be denoted by f∨(a, b), and our estimate for the degree of confidence in an
implication A → B will be denoted by f→(a, b).

How can we use these operations? For the general case, when we have rules
with imprecise conclusions

if x1 is Ak1 and . . . and xn is Akn, then y is Bk,

for k = 1, . . . ,K, there are two approaches: logical and Mamdani.
In the logical approach, we estimate the degree of belief dk(x1, . . . , xn, y) that

the k-th rule is satisfied as

dk(x1, . . . , xn, y) = f→(f&(Ak1(x1), . . . , Akn(xn)), Bk(y)),

and then compute the degree of belief d(x1, . . . , xn, y) that y is a reasonable
control for given data xi as

d(x1, . . . , xn, y) = f&(d1(x1, . . . , xn, y), . . . , dK(x1, . . . , xn, y)).

In the Mamdani approach, we take into account that y is reasonable if one of
the rules is applicable, i.e., if for one of the rules, all conditions are satisfied, and
the conclusion is satisfied too. In this case, the degree of belief dk(x1, . . . , xn, y)
that the k-th rule is satisfied is equal to

dk(x1, . . . , xn, y) = f&(Ak1(x1), . . . , Akn(xn), Bk(y)),

and the degree of belief d(x1, . . . , xn, y) that y is a reasonable control for given
data xi is equal to

d(x1, . . . , xn, y) = f∨(d1(x1, . . . , xn, y), . . . , dK(x1, . . . , xn, y)).

In both cases, for each input x1, . . . , xn, we get a membership function
m(y) def= d(x1, . . . , xn, y) that describes to what extent different values y are
possible. For automatic control, we need to select a single control value y. The
procedure of transforming a (fuzzy) membership function into a single value is
known as defuzzification. One of the most widely used defuzzification methods
is centroid defuzzification, where

y =
∫

y · m(y) dy
∫

m(y) dy
.

In situations when we know an exact description of the conclusion, i.e., when
we have rules of the type

if x1 is Ak1 and . . . and xn is Akn, then y is approximately equal to
fk(x1, . . . , xn),
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we first compute the degree dk(x1, . . . , xn) to which the conditions of each rule
are satisfied:

dk(x1, . . . , xn) = f&(Ak1(x1), . . . , Akn(xn)),

and then generate the following control value:

y =

K∑

k=1

dk(x1, . . . , xn) · fk(x1, . . . , xn)

K∑

k=1

dk(x1, . . . , xn)
.

Need for Tuning. In the above description, we only took into account the
expert’s imprecise knowledge. To get a more adequate control, we need to test
it on a real-life system, and make adjustments if needed. This real-system-based
procedure is known as tuning.

3 Fractional Fuzzy Techniques: Motivations, Description,
Successes, and Remaining Challenge

Motivations: Need for Faster Tuning Techniques. In general, there are
many parameters to tune: e.g., the parameters describing all the membership
functions Aki(xi) and Bk(y). Such tuning takes a lot of computation time. To
speed up computations, it is therefore desirable to come up with tuning methods
that require only a small number of parameters.

Fractional Fuzzy Techniques: Description. Recently, a new few-parametric
tuning method was proposed; see, e.g., [5,6]. There are, three versions of this
method:

– In the first version, we select a real number β+ > 0, and we replace each
α-cut interval [x, x] with a new interval [x, x + β+ · (x − x)].

– In the second version, we select a real number β− < 1, and we replace each
α-cut interval [x, x] with a new interval [x + β− · (x − x), x].

– In the combined third version, we select two numbers β− ≤ β+, and we
replace each α-cut interval [x, x] with a new interval

[x + β− · (x − x), x + β+ · (x − x)].

In each version of this method, we replace each α-cut with its fraction; thus, this
method is known as fractional fuzzy technique.

Fractional Fuzzy Techniques: Successes. Practical applications show that
these techniques work very well. For example, for the inverted pendulum, each
of the first two versions – corresponding to 1-parametric tuning – leads to a 40%
improvement in control quality [5,6].

Fractional Fuzzy Techniques: Remaining Challenge, and What We Do
in this Paper. A natural question is: how can we explain this empirical success?
In this paper, we explain why this method is so successful.
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4 Our Main Idea and How it Explains the Empirical
Success of Fractional Fuzzy Techniques

Experts Are Not Perfect. Suppose that the best estimate of the correspond-
ing quantity is x̃, and the actual uncertainty – that can be derived from what
we know – is ±Δ, meaning that the actual value of the quantity x is somewhere
in the interval [x̃ − Δ, x̃ + Δ]. This is what an ideal expert should return.

Actual experts are not perfect, they produce intervals [x0 − δ, x0 + δ] which
are, in general, different from the ideal interval:

– an expert may overestimate the value of the quantity x, by producing a larger
value x0 > x̃;

– an expert may underestimate this value, by producing x0 < x̃;
– an expert may overestimate the inaccuracy, by producing a value δ > Δ;
– an expert may underestimate the inaccuracy, by producing a value δ < Δ.

In all these cases, the interval [x0 − δ, x0 + δ] produced by an expert is different
from the desired interval [x̃ − Δ, x̃ + Δ].

So, to make a control more adequate, a natural idea is to take this into
account and to transform the expert’s interval back into the desired interval.
For this purpose, we need to come up with a transformation T that transforms
intervals into intervals.

Natural Properties of the Transformation T . Both inputs and outputs of
the transformation T are intervals of values of a physical quantity, i.e., intervals
for which both endpoints are values of this quantity. We would like to deal with
the actual values, but in practice, we can only deal with numerical values, and
numerical values depend on what unit we choose for this quantity and what
starting point we choose.

If we select a measuring unit which is λ times smaller than the original one,
then all the numerical values are multiplied by λ: x �→ λ · x. For example, if we
replace meters with centimeters, then 1.7m becomes 1.7 · 100 = 170 cm.

If we select a new starting point which is x0 units smaller than the original
one, then this value x0 is added to all the numerical values: x �→ x + x0. For
example, if we replace Celsius scale for temperature to Kelvin, then we need to
add 273 to all the numerical values.

The choices of a measuring unit and of a starting point are often arbitrary,
coming from a reasonably arbitrary agreement. It is therefore reasonable to
require that the desired transformation T lead to the same interval of real values.
So, we arrive at the following definitions.

Definition 1. We say that the mapping T from intervals to intervals is scale-
invariant if for every interval [a, b] and for every real number λ > 0, the equality
[c, d] = T ([a, b]) implies that [c′, d′] = T ([a′, b′]), where we denoted a′ = λ · a,
b′ = λ · b, c′ = λ · c, and d′ = λ · d.

Definition 2. We say that the mapping T from intervals to intervals is shift-
invariant if for every interval [a, b] and for every real number x0, the equality
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[c, d] = T ([a, b]) implies that [c′, d′] = T ([a′, b′]), where we denoted a′ = a + x0,
b′ = b + x0, c′ = c + x0, and d′ = d + x0.

Comment. Similar invariance conditions were used in [2] to explain another
empirically successful interval transformations [3,10,11]. However, these papers
only dealt with overestimation or underestimation of uncertainty. Our analysis
analyzes a more general situation, where the estimate itself can also be biased.

Proposition 1. A mapping T is scale- and shift-invariant if and only if it has
the form

T ([a, b]) = [a + β− · (b − a), a + β+ · (b − a)]

for some β− ≤ β+.

Comment.

– For β− = 0, we get the first version of the fractional fuzzy techniques.
– For β+ = 1, we get the second version of the fractional fuzzy techniques.
– In general, we get the third (combined) version of these techniques.

Thus, indeed, this proposition provides an explanation for fractional fuzzy tech-
niques.

Proof. Let us denote the endpoint of the interval T ([0, 1]) by, correspondingly,
β− and β+, i.e., T ([0, 1]) = [β−, β+]. Let us show that for every interval [a, b],
the result T ([a, b]) of applying this transformation has the desired form.

Indeed, due to scale-invariance for λ = b − a, we have

T ([0, b − a]) = [β− · (b − a), β+ · (b − a)].

Now, due to shift-invariance with x0 = a, we get the desired formula

T ([a, b]) = [a + β− · (b − a), a + β+ · (b − a)].

The proposition is proven.

5 Fractional Fuzzy Techniques are Optimal – In Some
Reasonable Sense

What Do We Mean by Optimal. Usually, when people talk about optimality,
they assume that there is some numerical criterion, and the optimal alternative is
the one that has the largest (or the smallest) value of this criterion. For example:

– an optimal path may be the shortest path,
– an optimal investment portfolio is the one with the largest expected gain, etc.
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However, this is not the most general description of optimality. For example,
if we have two alternative investment portfolios with the same expected gain,
it is reasonable to select the one with the smallest expected deviation from this
gain, etc. Thus, the optimality criterion can be more complicated than simply
comparing numerical values.

In general, what we want from an optimality criterion is that it should allow
us, at least for some pairs of alternatives a, a′ to decide:

– whether a is better than a′ (we will denote it by a′ < a)
– or a′ is better than a (a < a′),
– or a and a′ are of the same quality to the user (we will denote it by a ∼ a′).

Of course, there should be natural transitivity requirements: e.g., if a is better
than a′ and a′ is better than a′′, then a should be better than a′′.

As we have mentioned in the beginning of the previous paragraph, if we have
several alternatives which are optimal with respect to some optimality criterion,
this means that this criterion is not final: we can use this non-uniqueness to
optimize something else. So, when the criterion is final, there is exactly one
alternative that is optimal with respect to this criterion. Thus, we arrive at the
following definitions.

Definition 3. By an optimality criterion on a set A, we mean a pair (<,∼) of
binary relations on this set that satisfy the following properties:

– if a < b and b < c, then a < c;
– if a < b and b ∼ c, then a < c;
– if a ∼ b and b < c, then a < c;
– if a ∼ b and b ∼ c, then a ∼ c;
– if a < b then a 	∼ b;
– if a ∼ b, then b ∼ a;
– always a ∼ a.

Definition 4. We say that an alternative a is optimal with respect to an opti-
mality criterion (<,∼) if for every b ∈ A, we have either b < a or b ∼ a.

Definition 5. We say that an optimality criterion (<,∼) is final if there is
exactly one alternative that is optimal with respect to this criterion.

The Optimality Criterion Should be Invariant. In our case, alternatives
are transformation functions. It is reasonable to require that if one transforma-
tion is better than another one, then it will still be better if we use a different
measuring unit or a different starting point. Let us describe this in precise terms.

Suppose that we have an interval [a, b] expressed in the original units. If we
use a new measuring unit which is λ times smaller, then the interval becomes
λ · [a, b] def= [λ · a, λ · b]. If we apply a transformation T to this new interval, we
get the interval T ([λ · a, λ · b]). This interval is in the new units; in the original
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units, it will have the form λ−1 · T ([λ · a, λ · b]). This is equivalent to using a
transformation Tλ for which

Tλ([a, b]) = λ−1 · T ([λ · a, λ · b]). (1)

In these terms, invariance means that:

– if T < T ′, then we should have Tλ < T ′
λ, and

– if T ∼ T ′, then we should have Tλ ∼ T ′
λ.

Similarly, suppose that we have an interval [a, b] corresponding to the original
starting point. If we use a new starting point which is x0 units smaller, then the
interval becomes [a, b] + x0

def= [a + x0, b + x0]. If we apply a transformation T
to this new interval, we get the interval T ([a + x0, b + x0]). The endpoints of
this interval correspond to the new starting point; with respect to the original
starting point, it will have the form T ([a + x0, b + x0]) − x0. This is equivalent
to using a transformation T(x0) for which

T(x0)([a, b]) = T ([a + x0, b + x0]) − x0. (2)

In these terms, invariance means that:

– if T < T ′, then we should have T(x0) < T ′
(x0)

, and
– if T ∼ T ′, then we should have T(x0) ∼ T ′

(x0)
.

Definition 6. We say that an optimality criterion on the set of all interval-to-
interval transformation is scale-invariant if for every two transformations T and
T ′ and for every real number λ > 0,

– T < T ′ implies Tλ < T ′
λ and

– T ∼ T ′ implies Tλ ∼ T ′
λ,

where Tλ and T ′
λ are described by the formula (1).

Definition 7. We say that an optimality criterion on the set of all interval-to-
interval transformations is shift-invariant if for every two transformation T and
T ′ and for every real number x0,

– T < T ′ implies T(x0) < T ′
(x0)

and
– T ∼ T ′ implies T(x0) ∼ T ′

(x0)
,

where T(x0) and T ′
(x0)

are described by the formula (2).

Proposition 2. For every scale-invariant, shift-invariant, and final optimality
criterion, the optimal transformation has the form

t([a, b]) = [a + β− · (b − a), a + β+ · (b − a)]

for some β− ≤ β+.
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Comment. The optimal transformation has exactly the form used in fractional
fuzzy techniques. Thus, this result provides a theoretical explanation for the
empirical fact that these techniques work well in many control situations.

Proof. Let (<,∼) be scale-invariant, shift-invariant, and final optimality crite-
rion, and let t be optimal with respect to this criterion.

Let us prove that t is scale-invariant, i.e., that for all λ, we have tλ = t. Indeed,
since t is optimal, for every T , we have T < t or T ∼ t. In particular, this is true
for Tλ−1 , i.e., we have Tλ−1 < t or Tλ−1 ∼ t. Due to the fact that the optimality
criterion is scale-invariant, we conclude that for every T , we have either T < tλ
or T ∼ tλ. By definition of optimality, this means that the transformation tλ is
optimal. However, t is also optimal, and we assumed that the optimality criterion
is final, i.e., that there is only one optimal alternative. Thus, tλ = t.

Similarly, we can prove that the transformation t is shift-invariant. Thus, by
Proposition 1, the transformation t has the desired form.

6 Conclusions

In many areas of human activity, there are people who are very good in the
corresponding tasks: top medical doctors excel in diagnosing and treating dis-
eases, top pilots excel in piloting planes, etc. It is desirable to incorporate their
expertise into automated systems that would help others make similarly effective
decisions – or even make these decision by themselves, without the need for a
human controller. These top folks are usually willing to share their knowledge
and their skills, but the problem is that they often formulate a significant part of
their skills not in precise numerical terms, but by using imprecise (“fuzzy”) words
from natural language, like “small”. To transform such knowledge into numerical
computer-understandable form, Lotfi Zadeh invented fuzzy techniques. In these
techniques, we first translate expert knowledge into numerical terms, and then
tune the resulting control so as to make it as effective as possible.

This procedure has led to many successful applications. However, in many
cases, achieving this success required a lot of time and efforts: indeed, there are
usually many parameters to tune, and, as a result, tuning is often very time-
consuming. To speed up the tuning process, it is desirable to come up with
effective few-parametric tuning procedures. In this paper, we analyze one such
procedure – known as fractional fuzzy techniques – in which we replace each
α-cut interval with its (appropriately defined) fraction. This procedure turned
out to be very effective – e.g., it improves the quality of decisions by up to 40%
in the case of the reverse pendulum problem.

A natural question is: how to explain this empirical success? In this paper,
we provide a theoretical explanation for this success: namely, we show that the
corresponding few-parametric family of tunings is, in some reasonable sense,
optimal.
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Abstract. It has been recently shown that in some applications, e.g.,
in ship navigation near a harbor, it is convenient to use combinations of
basic colors – red, green, and blue – to represent different fuzzy degrees.
In this paper, we provide a natural explanation for the efficiency of this
empirical fact: namely, we show: (1) that it is reasonable to consider
discrete fuzzy logics, (2) that it is reasonable to consider their interval-
valued and set-valued extensions, and (3) that a set-valued extension of
the 3-valued logic is naturally equivalent to the use of color combinations.
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1 Formulation of the Problem

Color Optical Computing Representation of Fuzzy Degrees. It has been
recently shown that in some practical applications of fuzzy logic – e.g., in ship
navigation near a harbor – it is convenient to represent different fuzzy degrees
by colors, namely, by combinations of the three pure basic colors: red, green, and
blue; see, e.g., [10–13]. To be more precise, these papers use 23 = 8 combinations
of pure colors, where each of the three basic colors is either present or not present:

– black corresponding to no colors at all,
– white corresponding to the presence of all three basic colors,
– three pure colors corresponding to the case when only one of the three basic

colors is present, and
– three combinations of two basic colors.
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Question. This empirical success prompts a natural question: why is this rep-
resentation efficient?

What We Do in This Paper. In this paper, we explain the empirical success
of color optical computing representation by showing how the main ideas behind
fuzzy logic naturally lead to this representation. Namely, we show:

– that it is reasonable to consider discrete fuzzy logics,
– that it is reasonable to consider interval-valued and set-valued extensions of

these logics, and
– that a set-valued extension of the 3-valued logic is naturally equivalent to the

use of combinations of pure colors.

We also show that the set-valued extensions of discrete fuzzy logics are related
to the formalism of Belnap’s logic, that allows parts of the knowledge base to be
inconsistent.

2 Why Interval-Valued and Set-Valued Extensions
of Discrete Fuzzy Logics

Fuzzy Degrees: A Brief Reminder. One of the main ideas behind fuzzy logic
is to assign, to each imprecise natural-language statement such as “John is tall”,
a degree describing to what extent this statement is true – e.g., to what extent
John is tall; see, e.g., [3–5,8,9,14].

Need for Discrete Fuzzy Logic. In the original fuzzy logic, these degrees
were represented by numbers from the interval [0, 1]. From the mathematical
viewpoint, this interval contains infinitely many numbers. When the numbers
are significantly different, they represent different degrees of certainty. However,
when the two numbers are very close, we cannot distinguish the corresponding
degrees: e.g., hardly anyone can distinguish between degrees 0.80 and 0.81.

In general, according to psychological experiments, we can meaningfully dis-
tinguish at most 7±2 different degrees: some of us can only distinguish 7−2 = 5
different degrees, some can distinguish 7+2 = 9 different degrees; see, e.g., [6,7].
In other words, in practice, we use, in effect, a discrete set of fuzzy degrees.

Fuzzy Degrees Come with Uncertainty. In the ideal case, we have a single
perfect expert who selects a single degree – and experts are perfect in the sense
that other experts would assign the exact same degree. In practice, the situation
is more complicated.

– First, an expert can be unsure what exact degree to assign. At best, the expert
can provide a lower bound a and an upper bound b for this degree – just like
when estimating the height of a person entering the room, the expert will not
produce an exact value but rather a range of values. In this case, possible
degrees form an interval [a, b] def= {x : a ≤ x ≤ b}.

– Second, even if an expert produces an exact degree, other experts may pro-
duce different degrees. In this case, to describe uncertainty, it is reasonable
to list all these degrees, i.e., to produce the set of experts’ estimates. This
extension of fuzzy logic is known as hesitant fuzzy logic.
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In the following text, we will analyze such interval-valued and set-valued versions
of the simplest discrete fuzzy logics, and we will show that this analysis indeed
naturally leads to color optical computing.

Comment. Following this line of reasoning, it is also possible to have several
experts producing intervals. This option may be worth exploring.

3 Interval-Valued and Set-Valued Extensions of 2-Valued
Logic

Why 2-Valued Logic. In general, a discrete fuzzy logic is a finite subset of the
interval [0, 1] that contains both 0 (“false”) and 1 (“true”). From this viewpoint,
the simplest case is when this subset contains only 0 and 1, i.e., when we have
a usual 2-valued logic.

Interval-Values Extension of 2-Valued Logic. In a logic consisting of two
elements 0 < 1, there are exactly three possible intervals:

– two degenerate intervals [0, 0] = {0} and [1, 1] = {1} consisting of a single
original value, and

– a non-degenerate interval [0, 1] = {0, 1} containing both values.

The general interpretation of interval-valued extensions – that was described in
the previous section – provides the following explanation for the new truth value
[0, 1]: this truth value corresponds to the case when we do not know whether the
statement is true or false – i.e., corresponds to uncertainty. Thus, we get a usual
3-valued logic with three possible truth values: true, false, and uncertain. These
values can be naturally described as 1, 0, and an intermediate value 0.5.

Set-Valued Extension of 2-Valued Logic. In a 2-valued logic with the set
of truth values {0, 1}, there are four subsets:

– two 1-elements subsets {0} and {1};
– the original set {0, 1}, and
– the empty set ∅.

The general interpretation of set-valued extensions – that was described in the
previous section – provides the following interpretation of these four subsets:

– the set {0} means that all experts agree that the statement is false;
– the set {1} means that all experts agree that the statement is true;
– the set {0, 1} means that some experts believe that the statement is true,

while some other experts believe that the statement is false;
– finally, the empty set means that no experts have any opinion about this

statement.

Here, both the set {0, 1} and the empty set correspond to uncertainty, but there
is a difference between the two cases:
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– the empty set means, in effect, that we know nothing about the statement;
– in contrast, the set {0, 1} means, in effect, that we have some arguments in

favor of the given statement, and some arguments against this statement.

How is This Related to Interval-Valued Fuzzy Techniques. The need to
distinguish between these two types of uncertainty is often emphasized as the
need to go from the traditional fuzzy logic to its interval-valued version. Indeed,
in the traditional fuzzy logic, the same value 0.5 can mean two different things:

– it can mean that we know nothing about the given statement, and
– it can also mean that we have as many arguments in favor of this statement

as against it.

In the interval-valued case:

– the first situation – when we know nothing, the statement can be false or
true – is naturally described by the interval [0, 1] containing all possible truth
values, while

– for the second situation, a value 0.5 – corresponding to the degenerate (1-
point) interval [0.5, 0.5] seems to be a better match.

How is This Related to Belnap Logic. The above four truth values have
been analyzed in a non-fuzzy context, under the name of Belnap logic [1,2].
In this context, instead of expert opinions about the truth of a statement, we
consider the actual validity of this statement. In this interpretation, the set {0, 1}
corresponds to inconsistency – when our knowledge base mistakenly contains
both the information that this statement is true and the information that this
same statement is false.

The need to consider this logic was caused by the fact that in the usual
2-valued logic, once we have a single contradiction, we can conclude that all
statements are true – and that all statements are false. So, if we use the usual
logic, one wrong statement added to the database – e.g., that the train leaves
at 1 pm and that this same train leaves at 1.01 pm – would make the whole
knowledge base useless.

4 Interval-Valued and Set-Valued Extensions of 3-Valued
Logic and Their Relation to Color Optical Computing

3-Valued Logic. After the simplest 2-valued logic, the next simplest is 3-valued
logic, when we add, to the usual 0 (“false”) and 1 (“true”), and additional
intermediate degree corresponding to uncertainty. For simplicity, let us denote
this degree by 0.5.

Interval-Valued Extension of 3-Valued Logic. For this logic, with 3 truth
values 0 < 0.5 < 1, there are six possible intervals:

– the degenerate interval [0, 0] = {0} meaning that the expert believes that the
given statement is false;
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– the degenerate interval [1, 1] = {1} meaning that the expert believes that the
given statement is true;

– the degenerate interval [0.5, 0.5] = {0.5} meaning that the expert is uncertain;
– the interval [0, 0.5] = {0, 0.5} meaning the expert is uncertain but is leaning

towards “false”;
– the interval [0.5, 1] = {0.5, 1} meaning the expert is uncertain but is leaning

towards “true”; and
– the interval [0, 1] = {0, 0.5, 1} meaning that the expert is uncertain, but has

some arguments in favor and against the given statement.

Comment. In the 2-valued case, the interval extension did not allow us to dis-
tinguish between two different situations:

– not having any information about a statement and
– having arguments for and argument against the statement.

To distinguish between these two cases, we had to consider set-valued extension
of the 2-valued logic.

Interesting, in the 3-valued case, already the interval extension enables us to
distinguish between these two situations.

Set-Valued Extension of 3-Valued Logic. In the set-valued extension of
the 3-valued logic, in addition to the six sets corresponding to interval-valued
extension of this logic, we have two more sets:

– the empty set ∅ corresponding to situations in which no expert has any opin-
ion, and

– the set {0, 1} corresponding to the polarized case when some experts strongly
believe that the given statement is true while others as strongly believe that
this statement is false – case typical in politics.

Set-Valued Extension of 3-Valued Logic Naturally Leads to Color
Optical Computing. In color optical computing, we start with three basic
colors read (R), green (G), and blue (B) whose position on the spectrum is
described as R < G < B, and we consider combinations of some of these colors,
i.e., all subsets of the set {R,G,B}:

– we can have three pure colors corresponding to three 1-element sets {R}, {G},
and {B};

– we can have white – a combination of all three basic colors – corresponding
to the set {R,G,B};

– we can have black – where there are no colors at all – corresponding to the
empty set; and

– we can also have combinations of two of three colors.

These 23 = 8 combinations are in natural 1-to-1 correspondence with eight
subsets that form the set-valued extension of the 3-valued logic. This provides a
natural explanation of the color optical interpretation of fuzzy logic.
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5 Conclusions

In the classical logic, every statement is either true or false. In a computer, “true”
is usually represented by 1, and “false” by 0. In many practical situations, we
are unsure whether the statement is true or false. To describe different degrees
of confidence in a statement, Lotfi Zadeh proposed to use real numbers between
0 and 1. From the purely mathematical viewpoint, there are infinitely many real
numbers between 0 and 1. However, we humans can only meaningfully distin-
guish between a small number of different degrees of confidence. Thus, to make
the description of degrees of confidence more adequate, it makes sense to restrict
ourselves to finite (discrete) subsets of the interval [0, 1].

To make this description even more adequate, it is desirable to also take into
account that sometimes, experts are unsure which of the possible degrees better
describe their degree of confidence. To cover such situations, we need to consider
subsets of the set of possible degrees – i.e., set-valued extensions of discrete
fuzzy logics. An important particular case is an interval-valued extension, when
we only consider intervals – the set of all the degrees between two bounds.

It turns out that these extension ideas naturally lead to several known effec-
tive techniques – and thus, provide an explanation for their effectiveness. Namely:

– the set-theoretic extension of the 2-valued logic naturally leads to the known
technique of Belnap’s logic, technique that enables us to allow knowledge
bases with inconsistencies, and

– the set-theoretic extension of the 3-valued discrete fuzzy logic naturally leads
to color optical computing – an empirically successful way of representing and
processing fuzzy degrees by different colors.

Acknowledgment. The authors are greatly thankful the anonymous referees for valu-
able suggestions.
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Abstract. Probabilistic metric spaces are a natural generalization of
metric spaces in which the function that computes the distance outputs
a distribution on the real numbers rather than a single number. Such
a function is called a distribution function. In this paper, we construct
a distance for linear regression models using one type of probabilistic
metric space called F-space. F-spaces use fuzzy measures to evaluate a
set of elements under certain conditions. By using F-spaces to build a
metric on machine learning models, we permit to represent more complex
interactions of the databases that generate these models.
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1 Introduction

Probabilistic metric spaces [1] are a natural generalization of metric spaces in
which the function that computes the distance outputs a distribution on the real
numbers rather than a single number. Such a function is called a distribution
function. Constructing a probabilistic metric space (PMS) is not a straightfor-
ward process. There are different methods in the literature that aim to construct
these spaces. Among them we find the E-spaces [2,3], where the probabilistic
metric space is defined in terms of sets of functions and a probability space.
These functions map from a probability space into a metric space. Another con-
struction are the F-spaces, which generalize E-spaces by replacing the probabil-
ity space with a measure space. Hence, the distribution functions are defined in
terms of non-additive measures. We have introduced these F-spaces in a previous
work [4].

In this paper, our interest lies in measuring the distance between machine
learning models taking into account the set of databases that generate these
models. We call such sets generators. The distance between models is defined in
terms of distribution functions, and the probabilistic metric space is constructed
in terms of a F-space. Since we consider models that can be defined in terms

This study was partially funded by the Wallenberg AI, Autonomous Systems and
Software Program (WASP) funded by the Knut and Alice Wallenberg Foundation.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Massanet et al. (Eds.): EUSFLAT 2023/AGOP 2023, LNCS 14069, pp. 307–319, 2023.
https://doi.org/10.1007/978-3-031-39965-7_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-39965-7_26&domain=pdf
http://orcid.org/0000-0003-4233-3519
http://orcid.org/0000-0002-0368-8037
https://doi.org/10.1007/978-3-031-39965-7_26


308 M. Taha and V. Torra

of their generators, the distribution functions are based on these generators and
their distances. By using fuzzy measures and F-spaces to construct models dis-
tances, it would be possible to model the interactions of the databases in the
spaces. Such interactions can be interpreted in terms of coverage of a set of
databases or any other properties on the databases. The study of probabilistic
metric spaces and their relevance to the problem of model selection were previ-
ously studied in [12] where it was linked to data privacy, and in [5] where the
authors developed these spaces taking into account transitions that occur among
the database and modeled it using Markov chains and transition matrices.

This paper is structured as follows. In Sect. 2 we introduce the definitions that
are needed later in the paper. In particular, we review some concepts related to
fuzzy measures and their properties. In Sect. 3, we introduce probabilistic metric
spaces and F-spaces along with some results and toy examples. In Sect. 4 we
illustrate our results. Section 5 concludes the paper with some conclusions and
research directions.

2 Fuzzy Measures

Fuzzy measures were first introduced by Sugeno [6]. They are also called capac-
ities, nonadditive measures, and monotone measures. Fuzzy measures are con-
sidered as a generalization of classical measures [7–10].

Definition 1. Let (Ω,A) be a measurable space. A set function μ defined on A
is called a non-additive measure if an only if

– 0 ≤ μ(A) ≤ ∞ for any A ∈ A;
– μ(∅) = 0;
– If A1 ⊆ A2 ⊆ A then

μ(A1) ≤ μ(A2)

If in addition μ(A) = 1, then the fuzzy measure is said to be a normalized space.
We consider finite sets Ω, and for simplicity we assume A = 2Ω .

Definition 2. Let μ be a non-additive measure on the measurable space (X,A).
Then,

– μ is additive if μ(A ∪ B) = μ(A) + μ(B) when A ∩ B = ∅;
– μ is superadditive if μ(A ∪ B) ≥ μ(A) + μ(B) when A ∩ B = ∅;
– μ is subadditive if μ(A ∪ B) ≤ μ(A) + μ(B) when A ∩ B = ∅;
– μ is submodular if μ(A) + μ(B) ≥ μ(A ∪ B) + μ(A ∩ B);
– μ is supermodular if μ(A) + μ(B) ≤ μ(A ∪ B) + μ(A ∩ B);
– μ is symmetric if for finite X, when |A| = |B|, then μ(A) = μ(B).

A supermodular measure implies superadditivy, while a submodular measure
implies subadditivity. When additive fuzzy measures are normalized, they are
probability measures. In this paper we will use two families of fuzzy measures in
our experiments, Sugeno λ-measures and the non-additive measure μA0 . Their
definitions are as follows.
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Definition 3. Let Ω be a finite set and let λ > −1. A Sugeno λ-measure is a
function μ : 2Ω → [0, 1] such that

– μ(Ω) = 1
– if A,B ⊆ X with A ∩ B = ∅ then

μ(A ∪ B) = μ(A) + μ(B) + λμ(A)μ(B)

For Sugeno λ-measures, as a convention, the measure of the singletons ωi ∈ Ω is
called a density and it is noted by v(ωi). In this case, as the measure is normalized
when Ω = {ω1, ω2, ..., ωn}, λ should satisfy the following:

λ + 1 =
n∏

i=1

1 + λv(ωi). (1)

Once the densities are known, the above polynomial can be used to uniquely
determine the value of λ. Then given the densities and λ, the fuzzy measure
μ(A) is defined as:

μ(A) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

v(xi), A = xi
1
λ

∏

xi∈A

(1 + λv(xi)) − 1), |A| �= 1 & λ �= 0
∑

xi∈A

v(xi), λ = 0 & |A| �= 1

For Sugeno λ-measures, when λ > 0, μ is supermodular. Whereas, when λ > 0, μ
is submodular.

Definition 4. Let A0 be a subset of Ω, then the set function defined by
μA0(A) = 1 if and only if A0 ⊆ A, is a non-additive measure.

3 Probabilistic Metric Space

In this section, we review some concepts related to probabilistic metric spaces
and their properties. Following this, we introduce E-space and F-spaces.

Definition 5. Let d : S×S → R
+, then d is called a metric on S if the following

properties hold for a, b, c ∈ S:

– d(a, b) ≥ 0 with equality if and only if a = b (positive property),
– d(a, b) = d(b, a) (symmetry property), and
– d(a, b) ≤ d(a, c) + d(c, b) (triangle inequality property).

Definition 6. [11] The pair (S, d) is called a metric space when d is a metric
on the set S. Where d : S × S → R

+ plays the role of distance on the set S.
Here, we understand R

+ = [0,∞) and R+ = [0,∞].

When the distance does not satisfy the symmetry condition, we say that (S, d) is
a quasimetric space; and when the distance does not satisfy the triangle inequal-
ity, we say that (S, d) is a semimetric space. Probabilistic metric spaces are a
generalization of metric spaces in which the distance function is replaced by a
distribution distance function.
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Definition 7. [1] A distance distribution function F is a nondecreasing function
defined on R+ that satisfies (i) F (0) = 0; (ii) F (∞) = 1, and (iii) that is left
continuous on (0,∞).

Therefore, F (x) can be interpreted as the probability that the distance is less
than or equal to x. The set of all distance distribution functions is denoted as
Δ+, while the distance distribution function that represents a classical distance
is denoted by εa and is defined as below.

Definition 8. [1] For any a in R
+, we define εa ∈ Δ+ by

εa(x) =
{

0, 0 ≤ x ≤ a
1, a < x ≤ ∞

Next, we introduce the concepts of t-norms and triangle functions in order to
construct a probabilistic metric space.

Definition 9. [13] A function � : [0, 1] × [0, 1] → [0, 1] is a t-norm if and only
if it satisfies the following properties:

– �(x, y) = �(y, x) (symmetry or commutativity)
– �(�(x, y), z) = �(x,�(y, z)) (associativity)
– �(x, y) ≤ �(x′, y′) if x ≤ x′ and y ≤ y′ (monotonicity)
– �(x, 1) = x for all x (neutral element 1)

One example of t-norm is the minimum function T (x, y) = min(x, y) which is
denoted by ∧, i.e T (x, y) = ∧(x, y). Another t-norm is the bounded difference
W (x, y) defined as T (x, y) = max(0, x + y − 1).

Definition 10. [1] A Triangle function T is a binary operation on Δ+ that for
any F,G,H,K ∈ Δ+, it satisfies the following:

– T (F, ε0) = F
– T (F,G) = T (G,F )
– T (F,G) ≤ T (H,K) whenever F ≤ H,G ≤ K
– T (T (F,G),H) = T (F, T (G,H))

For a t-norm �, we have that the function τ�(F,G)(x) = �(F (x), G(x)) is a
triangle function. Next, we introduce probabilistic metric spaces along with their
properties.

Definition 11. [1] Let (S,F , τ) be a triple where S is a nonempty set, F is a
function from S × S into Δ+, and τ is a triangle function; then (S,F , τ) is a
probabilistic metric space (PM space) if the following conditions are satisfied for
all p, q, and r in S:

– F(p, p) = ε0
– F(p, q) �= ε0 if p �= q
– F(p, q) = F(q, p)
– F(p, r) ≥ τ(F(p, q),F(q, r)).
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For simplicity we will use Fpq instead of F(p, q) and denote the value of the latter
at x as Fpq(x). Special names are given when some of the above conditions fail.
A probabilistic metric space that doesn’t satisfy the second condition is called a
probabilistic pseudometric space. If the space doesn’t satisfy triangle inequality
it is called a probabilistic semimetric space, while it is a probabilistic quasi metric
space if the symmetry property is invalid.

F-spaces are one family of probabilistic metric spaces. They permit to com-
pute the distance between functions that map from a measurable space to a
metric space, where the distance distribution function is defined in terms of
measuring those elements that are at most at distance x.

Definition 12. [4] Let (Ω,A) be a measurable space, and let μ be a non-additive
measure on (Ω,A). Let (M,d) be a metric space, let S be a set of functions from
Ω into M and let F be a mapping from S × S into Δ+. Then, (S,F) is an
F-space with base (Ω,A, μ) and target (M,d) if

– For all p, q in S and all x in R
+ the set

{ω ∈ Ω|d(p(ω), q(ω)) < x}

belongs to A.
– For all p, q in S, F(p, q) = Fpq with

Fpq(x) = μ({ω ∈ Ω|d(p(ω), q(ω)) < x}). (2)

Definition 13. [2,3] When the measure μ is additive, Definition 12 corresponds
to E-spaces.

Lemma 1. [2,3] Let (S,F) be an F-space with base (Ω,A, μ) and target (M,d).
Then if μ is additive, it is an E-space .

If F satisfies the first three properties in Definition 11, then (S,F) is a canonical
F-space.

The following theorems have been proven in [4], which describe the type of
probabilistic metric space when a specific fuzzy measure is used

Theorem 1. [4] Let (Ω,A) be a measurable space, let μ be a non-additive
measure on (Ω,A) and (S,F) be an F-space with base (Ω,A, μ).

Then, if μ is a supermodular non-additive measure on (Ω,A), it follows that
(S,F) is a probabilistic pseudometric space under bounded difference τW .

Theorem 2. [4] Let (S,F) be an F-space. Let μA0 be a non-additive measure
defined on (Ω,A) for a given set A0 ⊆ A. Then (S,F) is a probabilistic pseudo-
metric space under τmin.

Next, we give an example to show how to construct an F-space.
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Example 1. Let Ω := {ω1, ω2, ω3}, and A := 2Ω . Then (Ω,A) is a measurable
space. Let M := [0,∞) and let d(a, b) := |a − b| for a, b ∈ M . Then, (M,d) is
a metric space. Define the functions p, q, r : Ω → M as given in Table 1. Then,
let S = {p, q, r} and define for p1, p2 ∈ S the following functions: Hp1p2(x) :=
{ω| |p1(ω) − p2(ω)| < x} for 0 ≤ x. Then we have the sets Hpq as given in
Table 2.

Now let us define a Sugeno λ-measure on (Ω,A) using Eq. 1 from Definition 3,
and solve the equation for λ = 0.4. Under the assumption that all the densities
are equal, we get v(ωi) = 0.296722. Therefore we construct the functions F as
described in Table 3.

Table 1. Functions p, q, and r from Ω := {ω1, ω2, ω3} into M for Example 1.

ω1 ω2 ω3

p 1 0 0

q 0 0 1

r 0 1 1

Table 2. Functions Hp1,p2 for p1, p2 ∈ S for Example 1.

x = 0 0 < x ≤ 1 x > 1

Hpq ∅ {ω2} Ω

Hpr ∅ ∅ Ω

Hqr ∅ {ω1, ω3} Ω

Table 3. Functions Fp1,p2 for p1, p2 ∈ S for Example 1.

x = 0 0 < x ≤ 1 x > 1

Fpq 0 0.296722 1

Fpr 0 0 1

Fqr 0 0.628662 1

If we choose the t-norm τ = W , then (S,F , τ) is a canonical space under W as
we can see that all inequalities hold in Definition 11.

4 Metrics for Machine Learning Models

In Machine Learning, data are continuously generated, hence models need to
be updated to reflect any new insights from the underlying data. However, it
has been shown [15] that an adversary can get access to sensitive information
by exploiting changes in the models themselves. One of the privacy models that
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overcome this issue is Integral Privacy [16]. Its goal is that model transformations
caused by the training data should not leak any information on the training data.
It recommends selecting a machine learning model which can be generated by
sufficiently large and diverse datasets. Such models are called recurrent models
and can be used to implement Integral privacy. Then, it may also happen that
even when two models are different they may be generated from similar data.

The similarity of models in terms of the data that generated them is relevant
for model selection. Between two such models we would prefer the one that is
more privacy-preserving. From an integral privacy perspective that would be
the one with more generators. Similarly, the same applies to the algorithms that
produce the models. As we have discussed in [12], probabilistic metric spaces
can be useful to define metrics for machine learning models, and thus helps in
this process.

In a previous work [5] we considered a simpler approach to construct PMS,
where we proposed the use of Markov chains, together with transition matrices
to represent, respectively, sequences of changes in databases and the probability
of changes of databases to define model similarities. In this paper, we are con-
sidering probabilities and fuzzy measures in the space of databases, in order to
define metrics on the models.

In this paper, we show how this can be applied to real machine learning
models. We consider simple machine learning models such as Linear Regres-
sion models. Our goal is to construct distances between such models taking
into account the interaction of their generators. We run the experiments on the
dataset Salary Data which describes the salaries of employees and their years
of experience. Figure 1 illustrates the scatter plot of this dataset [14]. In this
experiment, the space (Ω,A) corresponds to the space of possible databases and
A := 2Ω . Then, P and μ are probabilities and fuzzy measures, respectively, on
this space. In order to build the model space, we define the set S as the set of
three different linear regression algorithms p, q, and r defined as follows:

– Linear Regression as (p)
– Huber Regression as (q)
– Ridge Regression as (r)

Therefore, given our approximated database space (Ω,A) together with the set
S, we construct the target space (M,d) such that for any p ∈ S, p(DB) is
the trained model we obtain after applying one of the linear regression algo-
rithm p on the database DB. Since the problem is a simple linear regres-
sion, each model can be characterized by its slope β and y-intercept α. We
choose d here to be the Euclidean distance. Hence (M,d) = (R2, d) where
d =

√
(α1 − α2)2 + (β1 − β2)2, (αi, βi) ∈ R

2.
Finally, we identify F as a mapping from S × S into Δ+.
Following this setup, we illustrate our experiments to construct the space

(S,F) with respect to different measures and t-norms. Since it is impossible
to cover the full database space, we used the subsampling method to sample
1000 datasets in order to approximate the full space (Ω,A) [17]. We ran the
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Fig. 1. Scatter Plot of Salary Data dataset

Fig. 2. Three regression models of Salary Data dataset.

experiments under Python and Sklearn library, and the value of the penalty
term α in Ridge regression algorithm is chosen to be 0.1 (see Fig. 2).

We will consider in the next sections two different cases. First, an additive
measure. That is, a probability. This will permit us to obtain results that cor-
respond to an E-space. Then, we consider fuzzy measures, to obtain a proper
F-space. These measures permit us to represent a characteristic or property of
the space of databases. In our example, we will represent interactions between
databases which are all either positive or negative (as complementarity or redun-
dancy). We finish the section discussing the meaning of measures in this setting.

4.1 Case 1: Additive Measure

In this experiment, the database space is a probability space (Ω,A, P ) where P
is the additive measure defined by P (DB) = 1/1000 for any database (DB) in
the space. The model space is built as we described above. Figure 3 shows the
histograms of the distances among the three functions.

Now let us define the function Hp1p2 as follows: for any p1, p2 ∈ S and for
x ≥ 0,

Hp1,p2(x) = {DB| |p1(DB) − p2(DB)| < x}.
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Fig. 3. Histogram of the three different distances.

Let us define the function l(H) as the number of elements in H (i.e., the car-
dinality of the set). This function l(H) is given in Table 4. We will define the
probability P using l(H) and dividing by the total number of the generated
databases (i.e. 1000). This is detailed below.

Table 4. Functions l(Hp1p2)(x) for p1, p2 ∈ S.

x = 0 0 < x ≤ 500 x < 35000

l(Hpq) 0 475 1000

l(Hqr) 0 484 1000

l(Hpr) 0 968 1000

Now, using Eq. 2 and since P is additive, Fpq(x) = l(Hpq(x))
1000 . Functions F are

given in Table 5. Since F satisfies the first three properties in Definition 11, then
(S,F) is a canonical F-space.

Table 5. Functions Fp1,p2 for p1, p2 ∈ S based on additive measure P

x = 0 0 < x ≤ 500 x < 35000

Fpq 0 0.475 1

Fqr 0 0.484 1

Fpr 0 0.968 1

4.2 Case 2: Fuzzy Measures

In the following experiments, we use two different fuzzy measures. We start with
a Sugeno λ-measure (μ) followed by the fuzzy measure μA0 . We use Sugeno λ-
measures because they are easy to define and flexible enough to represent both
subadditive and superadditive cases. That is, negative and positive interactions.
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Table 6. Functions Fp1,p2 for p1, p2 ∈ S based on Sugeno λ-measure (λ = 0.5)

x = 0 0 < x ≤ 500 x < 35000

Fpq 0 0.424786 1

Fqr 0 0.43365 1

Fpr 0 0.961327 1

Table 7. Functions Fp1,p2 for p1, p2 ∈ S based on Sugeno λ-measure (λ = −0.96)

x = 0 0 < x ≤ 500 x < 35000

Fpq 0 0.815875 1

Fqr 0 0.822323 1

Fpr 0 0.995479 1

Sugeno λ-Measure. In this experiment, we use Sugeno λ-measure from Defi-
nition 3 to build the database space (Ω,A, μ). The construction of the databases
space, the Model Space M , and the set S is similar to the previous example.

For simplicity, all the singleton measures are assumed to be equal. I.e. v(xi) =
k, for all xi ∈ X. Therefore, solving Eq. 1 for k yields:

k =
1
λ

(exp(
1
n

ln(1 + λ) − 1) (3)

Suppose λ = 0.5, we use Eq. 3 to compute the values of the measure for the single-
tons. The functions F are derived for Table 4, and the results are given in Table 6.
Since the measure here is supermodular, the results are aligned with Theorem 1,
in which the space (S, F, τ) is a probabilistic pseudo metric space under bounded
difference τW . Figure 4(a) demonstrates the correctness of the triangular inequal-
ity of Definition 11. That is, in our case F(p, q) ≥ τ(F(p, r),F(q, r)) as the blue
line is larger than the orange one. Observe that in most of the domain both
distributions are the same.

The same steps are now repeated but with submodular measures. I.e., when
λ < 0 and also tested with respect to the t-norm τW . While some measures
resulted in probabilistic pseudo metric spaces, some measures yield probabilistic
semimetric spaces (i.e., triangle inequality does not hold). An example of the
latter case is when λ = −0.96. The results for this case are given by Table 7 and
Fig. 4(b). As we can see, in this case:

F(p, q) ≥ τ(F(p, r),F(q, r))
0.815 ≥ τ(0.822323, 0.995479)

0.815 ≥ max(0, 0.822323 + 0.995479 − 1) = 0.817.

Since 0.815 is not greater than 0.817, thus the inequality does not hold.

Fuzzy Measure μA0
. Our last experiment is based on the fuzzy measure μA0 ,

which is introduced in Definition 4. Let us define A0 as the set Hpq(x) for any
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x in the range 0 < x ≤ 500, then in this example the other two sets Hpr and
Hqr are incomparable with respect to inclusion of Hpq(x) i.e.: Hpr � Hpq and
Hqr � Hpq. The functions F are given in Table 8. It is clear that the space
(S,F) is a probabilistic pseudo metric space under τmin. Therefore, this result
is aligned with Theorem 2.

Fig. 4. Testing the triangle inequality with t-norm τW for λ = 0.5 and λ = −0.96 in
Case 2. We observe that the inequality holds when the λ = 0.5, and does not hold
when λ = −0.96.

Table 8. Functions Fp1,p2 for p1, p2 ∈ S based fuzzy measure μA0

x = 0 0 < x ≤ 500 x < 35000

Fpq 0 1 1

Fpr 0 0 1

Fqr 0 0 1

4.3 The Interpretation of the Fuzzy Measures

Fuzzy measures are set functions that use the monotonicity property instead
of additivity. Therefore, naturally, we would have that the larger the set of
databases, the larger the coverage. In our experiment, all the fuzzy measures are
defined on the space of the databases, where we considered either each database
has the same relevance with the probability P (DB) = 1/1000 (i.e. the measure is
additive), or all have the same interaction under the Sugeno λ-measure. Whereas,
in the fuzzy measure μA0 , the value of the measure is computed with respect
to the inclusion relationship of a reference set. Therefore the measure is either
zero or one. Fuzzy measures can alternatively be defined using the Choquet
integral or Sugeno integral, to define measures that represent the coverage with
a characteristic of the database itself [18].
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5 Conclusions

In this paper, we have constructed a probabilistic metric space to evaluate the
distance between machine learning models built from databases. The probabilis-
tic metric space is based on fuzzy measures and F-space in which the distance
distribution function is computed based on functions that map from the database
space to the model space. In our case, these functions were represented by dif-
ferent Linear Regression algorithms. Our experiment is based on different mea-
sures, both additives and non-additives. In future work, we consider studying
additional properties of these probabilistic metric spaces, as well as considering
their application in real-size databases. Also, since our experiments are based
only on deterministic functions, we would like to expand the study on random
functions and hence consider non-deterministic models.
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Abstract. Extensions of the concept of distance include the known mul-
tidistances and n-distances, which are related in this paper. In particular,
a characterization of those multidistances that can also be an n-distance
is given in terms of known properties of multidistances. A necessary con-
dition for a multidistance to be an n-distance is presented. Properties
of n-distances in order to be a multidistance is also considered. Some
exemples are also presented.
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1 Introduction

The concept of distance has been extended to more of two elements in order to
measure to what extent these elements are expanded, measuring how different
or separated are the coordinates [3,4]. These extensions include the wellknown
n-distances [2,5–7] and multidistances [1,8–10], which may be appropriate to
define dispersion measures in data analysis and/or statistics. Given an n-tuple
(x1, . . . , xn) ∈ Xn, n-distances and multidistances may be used to measure the
similarity among its elements. Both, n-distances [5–7] and multidistances [8–
10] are given as functions of n variables and include a natural generalization of
the triangle inequality to a higher dimensional setting. However, multidistances
have an indefinite number of arguments, contrary to n-distances that have a
fixed number of arguments. Furthermore, an n-distance can be defined without
referring to any ordinary distance.

We are interested in determining those properties that allow obtaining multi-
distances from n-distances and reciprocally. In this context, in the works of Kiss
et al. [5–7] it is showed that some n-distances can not be used to define multi-
distances [5–7]. For instance, the area of the smallest circle enclosing n points
in R

2 can not be used to define a multidistance (because the triangle inequality
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does not hold when n = 2). And the authors give a characterization about how
multidistances can be defined from a special type of n-distances as it is showed
in the following Proposition 1.

Proposition 1 ( [7]). Let (dn)n≥2 be a sequence, where dn : Xn → R+ is a
standard n-distance on X satisfying

dn(xn, zn, . . . , zn) ≤ d2(xn, zn), n ≥ 2, xn, zn ∈ X.

Then (Dn)n≥2 defined by Dn = dn for all n ≥ 2 is a multidistance on X.

On other hand, some n-distances can not be obtained from multidistances
as it is possible to see in [6,7]. Their authors establish the following result (see
Proposition 2) characterizing those multidistances that can also be n-distances.

Proposition 2 ( [7]). Let the sequence (Dn)n≥1 be a multidistance on X and
let n ≥ 3 be an integer. If (Dn)n≥1 satisfies:

(i) Dn(x1, . . . , xn−1, xn) ≥ Dn(x1, . . . , xn−1, x1) for any x1, . . . , xn ∈ X,
(ii) D2(x, z) ≤ Dn(x, z, . . . , z) for all x, z ∈ X,

then dn = Dn is an n-distance.

Property (i) in Proposition 2 is also referred as “non-increasing under identifi-
cation of variables” [7].

In this work we evaluate to what extend these properties give a complete
characterization. The paper is organized as follows, Sect. 2 presents the necessary
notions to follow this work. Section 3 studies properties that characterize multi-
distances that can be n-distances, and a necessary condition for a multidistance
in order to be an n-distance is given. Section 4 shows that the characterization of
n-distances to be a multidistance is always achieved by any multidistance. And
finally, in Sect. 5 some conclusions are given.

2 Preliminaries

An overview of the necessary background on this topic is given. Let us start
remembering the concept of metric space.

Definition 1. A metric space is a pair (X, d), where X is a non-empty set and
d is a function d : X2 → R+ (where R+ denotes [0,+∞)) satisfying the following
conditions:

(i) d(x1, x2) = 0 if and only if x1 = x2 (identity),
(ii) d(x1, x2) = d(x2, x1) (symmetry),
(iii) d(x1, x2) ≤ d(x1, z) + d(z, x2) for all x1, x2, z ∈ X (triangle inequality).

Function d is called a distance or metric on X.
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In [1,8] the concept of multidistance was introduced as a measure that deter-
mines how long are more than two points. A multidistance is defined on an
n-dimensional ordered list of elements by means of an axiomatic procedure.

Definition 2. Let X be a nonempty set. A sequence of functions (Dn)n≥1, with
Dn : Xn → R+ is said to be a multidistance when the following properties hold:
(i) For any n ∈ N and (x1, . . . , xn) ∈ Xn, Dn(x1, . . . , xn) = 0 if and only if

x1 = . . . = xn. In particular, D1(x) = 0 holds for every x ∈ X;
(ii) For all n ∈ N and (x1, . . . , xn) ∈ Xn, it holds that Dn(x1, . . . , xn) =

Dn(xπ(1), . . . , xπ(n)) for any permutation π of de set 1, . . . , n;
(iii) For any n ∈ N, n ≥ 2, and (x1, . . . , xn, y) ∈ Xn+1 it holds that

Dn(x1, . . . , xn) ≤ D2(x1, y) + . . . + D2(xn, y).

Observe that if (Dn)n≥1 is a multidistance on X, then the restriction of (Dn)n≥1

to X2, D|X2 = D2, is an ordinary distance on X. On other hand, any ordinary
distance d on X can be extended in order to obtain a multidistance. For instance,
we can define for any n ∈ N and (x1, . . . , xn) ∈ Xn a function DM

n in this way:
DM

n (x1, . . . , xn) = max{d(xi, xj), i < j}.
Properties of mutidistances have been studied in [1,9], let us remember the

notions of regular, replication invariance, and stable multidistance.
Definition 3. A multidistance (Dn)n≥1 is said to be regular if

Dn+1(x1, . . . , xn, y) ≥ Dn(x1, . . . , xn)

for all (x1, . . . , xn) ∈ ⋃
n≥1 Xn, y ∈ X.

In a regular multidistance, the multidistance of a list cannot decrease when
adding a new element.

Definition 4. A multidistance (Dn)n≥1 is stable if

Dn(x1, . . . , xn) = Dn+1(x1, . . . , xn, xi).

for all x1, . . . , xn ∈ X and for all xi in the list (x1, . . . , xn).

According to the last definition, the repetition of one element of the list in a
stable multidistance is superfluous.

Other generalizations of the concept of distance have been investigated by
several authors [4]. This is the case of the concept of n-distance, which is intro-
duced in [5–7] as a generalization on n elements of the classical notion of distance.

Definition 5. Let n ≥ 2 be an integer. Given a non-empty set X, (X, dn) is
an n-metric space if dn is a function dn : Xn → R+ satisfying the following
conditions:
(i) dn(x1, . . . , xn) = 0 if and only if x1 = . . . = xn,
(ii) dn(x1, . . . , xn) = dn(xπ(1), . . . , xπ(n)) for any permutation π of 1, . . . , n,
(iii) dn(x1, . . . , xn) ≤ ∑n

i=1 dn(x1, . . . , xn)xi=z for all x1, . . . , xn, z ∈ X.

Then, the function dn is called an n-distance.

Where condition (iii) in Definition 5 is referred to as the simplex inequality [4]
(triangle inequality if n = 2). When n = 2 the concept of 2-distance on a non
empty set is the same that the concept of distance on a non empty set.
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3 From Multidistances to n-Distances

In Proposition 2 in [7] the n-distances that can be obtained from multidistances
are characterized through two properties:

(i) Dn(x1, . . . , xn−1, xn) ≥ Dn(x1, . . . , xn−1, x1) for any x1, . . . , xn ∈ X,
(ii) D2(x, z) ≤ Dn(x, z, . . . , z) for all x, z ∈ X.

It seems natural to wonder to what extend these properties give a complete
characterization. However, there are n-distances that can be derived from mul-
tidistances and at least do not verified some property of the mentioned Propo-
sition 2 [7] as the following example shows.

Example 1. The sum based λ-multidistance (Dn,λ)n≥1 is defined by
{

D1,λ(x1) = 0
Dn,λ(x1, . . . , xn) = λ(n)

∑
i<j d(xi, xj).

and it is a multidistance if and only if:

(i) λ(2) = 1,
(ii) 0 < λ(n) ≤ 1/(n − 1) n ≥ 3.

Now, let us consider a sum based λ-multidistance, that verifies:

(i) λ(2) = 1,
(ii) 0 < λ(n) < 1/(n − 1) n ≥ 3.

which is also a multidistance. However, it does not verifies property (ii) of Propo-
sition 2 [7] when

(i) λ(2) = 1,
(ii) 0 < λ(n) < 1/(n − 1).

because

Dn,λ(x1, x2, . . . , x2) = λ(n)(n − 1)D2(x1, x2)

< 1
n−1 (n − 1)D2,λ(x1, x2)

= D2,λ(x1, x2).

Now, considering dn = Dn,λ is easy to see that it is an n-distance based on
λ(n) where (Dn,λ)n≥1 is a sum-based multidistance. Properties (i) and (ii) of
Definition 5 follow directly, and property (iii):
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∑n
i=1 dn(x1, . . . , xn)xi=z =

∑n
i=1 Dn,λ(x1, . . . , xn)xi=z =

Dn,λ(z, . . . , xn) + Dn,λ(x1, z, . . . , xn) + . . . + Dn,λ(x1, . . . , z) =

Dn,λ(y1
1 , . . . , y

1
n) + Dn,λ(y2

1 , . . . , y
2
n) + . . . + Dn,λ(yn

1 , . . . , yn
n) =

λ(n)
∑

i<j d(y1
i , y1

j ) + λ(n)
∑

i<j d(y2
i , y2

j ) + . . . + λ(n)
∑

i<j d(yn
i , yn

j ) ≥

λ(n)
∑

i<j d(xi, xj) = Dn,λ(x1, . . . , xn) = dn(x1, . . . , xn)

where (y1
1 , y

1
2 , . . . , y

1
n) = (z, x2, . . . , xn), (y2

1 , y
2
2 , . . . , y

2
n) = (x1, z, . . . , xn), . . .,

(yn
1 , yn

2 , . . . , yn
n) = (x1, x2, . . . , z).

In the following, we characterize those multidistances that can also be n-distances
in a more precise way.

Proposition 3. Let the sequence (Dn)n≥1 be a multidistance on X and let n ≥ 3
be an integer. If (Dn)n≥1 satisfies:

(i) Dn(x1, . . . , xn−1, xn) ≥ Dn(x1, . . . , xn−1, x1) for any x1, . . . , xn ∈ X,
(ii) D2(x, z) ≤ Dn(x, z, . . . , z) for all x, z ∈ X,

then Dn is a regular multidistance.

Proof. Assume by reduction to the absurd that (Dn)n≥1 is not regular, i.e.,
∃x1, . . . , xn such that Dn+1(x1, . . . , xn, y) < Dn(x1, . . . , xn). Therefore,

Dn(x1, . . . , xn) > Dn+1(x1, . . . , xn, y)

≥(i) Dn+1(x1, . . . , xn, x1)

...
...

≥(i) Dn+1(x1, x1 . . . , x1, x2)

≥(ii) D2(x1, x2)

but, as (Dn)n≥1 is a multidistance, we have,

Dn(x1, . . . , xn) ≤ D2(x1, y) + D2(x2, y) + . . . + D2(xn, y)

with (x1, . . . , xn, y) ∈ Xn+1 in particular for y = x2, and therefore we achieve a
contradiction.

�	
The following result shows that for regular multidistances is possible to

achieve property (ii) of Proposition 3.
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Proposition 4. Let the sequence (Dn)n≥1 be a regular multidistance on X then
D2(x, z) ≤ Dn(x, z, . . . , z) for all x, z ∈ X.

Proof. As (Dn)n≥1 is a regular multidistance,

Dn(x, z, . . . , z) ≥ Dn−1(x, z . . . , z) ≥ . . . ≥ D2(x, z).

�	
However property (i) of Proposition 3 is not always verified for a regular

multidistance.

Example 2. Let us consider a multidistance based on an OWA operator, where
w = {wn/n ≥ 2} is a family of OWA operators, and wn is of

(
n
2

)
dimension with

weights w
(n2)
1 , . . . , w

(n2)
(n2)

which are applied to the
(
n
2

)
distances of elements from

the list taken from two to two in a decreasing way, i.e.,

Dw
n (x1, . . . , xn) =

{
0 if n = 1
wn(d(x1, x2), . . . , d(xn−1, xn)) if n ≥ 2,

for all list (x1, . . . , xn) ∈ Xn.
Dw

n is a multidistance if and only if

w
(n2)
1 + . . . + w

(n2)
(n2)

> 0 ∀n ≥ 3.

Considering the OWA operator of weights (12 , 1
2 , 0, 0, . . . , 0) with n ≥ 2 is a

regular multidistance which is also an n-distance; Dw consists of the half sum
of the two biggest ordinary distances between two elements of the list. Let us
consider three points a, b, c ∈ X such that d(a, b) < d(a, c) < d(b, c), then

Dw
3 (a, b, c) =

d(a, c) + d(b, c)
2

Dw
3 (b, b, c) =

d(b, c) + d(b, c)
2

therefore, Dw
3 (a, b, c) < Dw

3 (b, b, c), and property (i) of Proposition 3 is not
satisfied.

The requirement to achieve property (i) of Proposition 3 for regular multi-
distances is given in the following proposition.

Proposition 5. Let the sequence (Dn)n≥1 be a regular and stable multidistance
on X, then (Dn)n≥1 verifies

Dn(x1, . . . , xn−1, xn) ≥ Dn(x1, . . . , xn−1, x1)

for any x1, . . . , xn ∈ X.
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Proof. Let x1, . . . , xn ∈ X, then,

Dn(x1, . . . , xn−1, xn) ≥(regularity) Dn−1(x1, . . . , xn−1)

=(stability) Dn(x1, . . . , xn−1, x1).

�	
The next result yields a necessary condition to ensure when a multidistance

can be regarded as an n-distance in terms of regular multidistances.

Proposition 6. Let (Dn)n≥1 be a regular multidistance on a non-empty set X,
then dn = Dn with n ≥ 2 is an n-distance on X.

Proof. Properties (i) and (ii) of an n-distance is derived directly from properties
(i) and (ii) of multidistances. Property (iii) can be obtained because of regularity
of D,

∑n
i=1 dn(x1, . . . , xn)xi=z =

∑n
i=1 Dn(x1, . . . , xn)xi=z ≥

D2(x1, z) + D2(x2, z) + . . . + D2(xn, z) ≥

Dn(x1, . . . , xn) = dn(x1, . . . , xn)

�

The reciprocal of Proposition 6 is not necessarily true as it is shown in the
following examples. Observe that the sum based λ-multidistance of Example 1
is not regular.

Proposition 7. The sum based λ-multidistance (Dn,λ)n≥1 is regular if and only
if λ(n) = 1

n−1 for all n ≥ 2.

Proof. Let us suppose (Dn,λ)n≥1 is regular, then taking (x, . . . , x
︸ ︷︷ ︸

n−1

, y)

Dn,λ(x, . . . , x, y) = λ(n)(n − 1)D2(x, y)

≥ D2,λ(x, y),

where the last inequality is due to regularity. So, λ(n) ≥ 1
n−1 and therefore

λ(n) = 1
n−1 .

Let now see that the multidistance is regular. the condition of regularity is

Dn,λ(x1, . . . , xn) ≤ Dn+1,λ(x1, . . . , xn, y)

1
n − 1

∑

i<j

d(xi, xj) ≤ 1
n

(
∑

i<j

d(xi, xj) +
n∑

i=1

d(xi, y)), ∀y ∈ X,
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therefore,
∑

i<j

d(xi, xj) ≤ (n − 1)(
n∑

i=1

d(xi, y)),

which is satisfied, as the triangular inequality shows
∑

i<j

d(xi, xj) ≤ (
∑

i<j

d(xi, y) + d(xj , y)),

= (n − 1)(
n∑

i=1

d(xi, y)).

Example 3. The λ-multidistance of Fermat (Dλ
n,F )n≥1 is only regular when

λ(n) = 1, so considering:

Dλ
n,F (x1, . . . , xn) = λ(n) min

y∈X

∑
d(xi, y) = λ(n)Dn,F (x1, . . . , xn)

where λ(n) ∈ (0, 1) and Dn,F denotes de multidistance of Fermat. Then, as Dn,F

is regular, it is also an n-distance (by Proposition 6) and verifies:

Dn,F (x1, . . . , xn) ≤ ∑
Dn,F (x1, . . . , xn)xi=y

λ(n)Dn,F (x1, . . . , xn) ≤ λ(n)
∑

Dn,F (x1, . . . , xn)xi=y

Dλ
n,F (x1, . . . , xn) ≤ ∑

Dλ
n,F (x1, . . . , xn)xi=y

therefore, Dλ
n,F is an n-distance.

Example 4. The λ-multidistance of Fermat (Dλ
n,F )n≥1 defined in (P, dk) where

P is a set of preferences, and a preference P ∈ P is represented by a matrix (aij),
in this framework dk is de Kemeny distance defined by

dk(P, P ′) =
∑

i<j

|aij − a′
ij | ∀ P and P ′ ∈ P

it can be proved that Dλ
n,F is not regular for λ(n) = 4

n2 as it is contractive,
however as Dn,F is regular, it is also an n-distance (by Proposition 6) and verifies:

Dn,F (x1, . . . , xn) ≤ ∑
Dn,F (x1, . . . , xn)xi=y

4
n2 Dn,F (x1, . . . , xn) ≤ 4

n2

∑
Dn,F (x1, . . . , xn)xi=y

Dλ
n,F (x1, . . . , xn) ≤ ∑

Dλ
n,F (x1, . . . , xn)xi=y

therefore, Dλ
n,F is an n-distance.
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4 From n-Distances to Multidistances

In the Proposition 1 of [7] the multidistances can be obtained from n-distances
whenever the property

dn(xn, zn, . . . , zn) ≤ d2(xn, zn), n ≥ 2, xn, zn ∈ X

holds. In this case, this property is always satisfy by any multidistance.
The following example shows that the arithmetic mean based n-distance can

be a multidistance whenever its binary version is doubled [6].

Example 5. Let us consider the sequence (dn)n≥2. The arithmetic mean based
n-distance (X = R)

dn(x1, . . . , xn) =
1
n

n∑

i=1

xi − min{x1, . . . , xn}.

For any n ≥ 3, dn(xn, zn . . . , zn) ≤ d2(xn, zn) if and only if zn ≤ xn. And
replacing d2 by the map (d2)′ : R2 → R+ defined by

(d2)′(x, z) = dn(x, z . . . , z) + dn(z, x . . . , x) = 2d2(x, z),

then, dn(xn, zn . . . , zn) ≤ d2(xn, zn) for all n ≥ 2, and xn, zn ∈ R, and the
sequence (dn)n≥2 is a multidistance (Dn)n≥2.

5 Conclusions

We have study multidistances and n-distances as an extension of the concept of
distance. Furthermore, we were interested in determining how the charaterization
given by Kiss et al. [5–7] to obtain n-distances from multidistances and recip-
rocally was a complete characterization. A characterization of multidistances in
terms of their properties was presented. Moreover, a necessary condition for a
multidistance to be an n-distance is given.
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Abstract. In this work, we compare different families of fuzzy integrals
in the context of feature aggregation for edge detection. We analyze the
behaviour of the Sugeno and Choquet integral and some of its general-
izations. In addition, we study the influence of the fuzzy measure over
the extracted image features. For testing purposes, we follow the Bezdek
Breakdown Structure for edge detection and compare the different fuzzy
integrals with some classical feature aggregation methods in the liter-
ature. The results of these experiments are analyzed and discussed in
detail, providing insights into the strengths and weaknesses of each app-
roach. The overall conclusion is that the configuration of the fuzzy mea-
sure does have a paramount effect on the results by the Sugeno integral,
but also that satisfactory results can be obtained by sensibly tuning such
parameter. The obtained results provide valuable guidance in choosing
the appropriate family of fuzzy integrals and settings for specific appli-
cations. Overall, the proposed method shows promising results for edge
detection and could be applied to other image-processing tasks.

Keywords: Fuzzy integrals · Choquet integral · Sugeno integral ·
Feature extraction · Edge detection

1 Introduction

Fuzzy integrals [29] are becoming one of the most relevant tools for informa-
tion fusion in the Fuzzy Set Theory, providing a framework for modelling and
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analysing uncertainty and imprecision. These integrals are based on the concept
of fuzzy sets [35], which allow the representation of uncertainty by assigning
values in the form of membership degrees to elements of a set. Fuzzy integrals
provide a way to combine the information contained in multiple fuzzy sets and
to model decision-making processes under uncertainty.

There is an extensive range of applications and research areas where
fuzzy integrals have been applied, such as Brain-Computer Interface [34],
Energy [23], Decision support [20], Medical image [36], Classification [33], sequen-
tial image/text classification [8], Multi-criteria [31] and Group Decision Making
[32].

A widely used example of fuzzy integrals is the fuzzy transform [25], a power-
ful tool used in data and image processing that enables the analysis of imprecise
and uncertain data. Fuzzy transforms are used, in the context of image pro-
cessing, to remove noise over data [24,27], improve image quality and extract
features [26]. In terms of image or signal processing, by transforming an image
into the fuzzy domain, it becomes possible to analyze and manipulate its data
in terms of fuzzy sets. This allows for more sophisticated processing, including
the ability to perform image operations that are not possible in the traditional
pixel-based domain and even define operations at a linguistic level.

Among the vast armamentarium of fuzzy integrals, this work focuses on two of
them: the Sugeno integral [29] and the Choquet integral [5]. Both integrals have
been used to aggregate information in many studies and have been generalized
to cope up with different types of information. See [6,9,21] for a detailed review
on the historical and contemporary use of these integrals.

Nowadays, one of the most studied problems in the field of computer vision is
related to edge detection [17]. The difficulty of this task arises from the inherent
capture process and even from the edge definition itself, as there is no exact
definition of what an edge is. Besides that, in a general way, an edge can be
considered a significant enough intensity variation between neighbour regions
or pixels [30]. But even with this simple definition, some essential aspects are
not considered, such as textures or hallucinated boundaries [17], where no edges
should be detected or do not appear with a clear intensity. It is necessary to
point out that this problem is also related to the type of considered image. That
is, if the colours are presented respectively in grayscale or coloured. In the first
case, the pixels present values between [0, 255], while in the second one, these
values appear for each RGB channel. While the idea of intensity change can be
indistinctly applied to both grayscale (monochannel) and colour (multichannel)
imagery, only the former can be straightforwardly based on partial derivatives;
In the latter, the derivatives would form a Jacobian matrix at each pixel, causing
severe interpretation problems.

Recently, we introduced an approach to edge feature aggregation based on the
Choquet integral and its generalizations [15]. This study, considered grey-scaled
images, demonstrated that the usage of fuzzy integrals and their generalizations
is an interesting approach to deal with this topic.

This study aims to analyze the performance of the Sugeno and Choquet
integrals when dealing with edge detection problems and study the influence of
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the selected fuzzy measure. Precisely, we consider these functions to aggregate
the values related to the neighbour of a specific pixel. Additionally, we provide
an exclusive analysis (in terms of detecting edges in coloured images), taking
into account the best generalizations achieved in [15]. We remark that the main
aim of this work is not to evaluate if the performance of the fuzzy integrals is
better to the literature approaches but to study the effects of the fuzzy measures
over the different fuzzy integrals family and show if they are suitable for using
them in colour edge detection.

This paper is organized as follows. In Sect. 2, the preliminaries concepts
are shown. Section 3 presents the adopted methodology. Section 4 point out the
achieved results, and the conclusions are drawn at the end.

2 Preliminaries

This section provides the main theoretical concepts related to the paper. First
we present the concepts of fuzzy measure, Choquet and Sugeno integrals. After
that, the concepts related to the evaluation of the proposal are shown.

2.1 Fuzzy Measure, Choquet and Sugeno Integral

Here, we present the definitions of the considered fuzzy measure and fuzzy inte-
grals. Additionally, any function F : [0, 1]n → [0, 1] is called a fusion function [3].

Definition 1. [22] A function m : 2N → [0, 1] is a fuzzy measure if, for all
X,Y ⊆ N = {1, . . . , n}, the following properties hold: (i) if X ⊆ Y , then m(X) ≤
m(Y ); (ii) m(∅) = 0 and m(N) = 1.

Definition 2. [5] The discrete Choquet integral, related with the fuzzy mea-
sure m, is the function Cm : [0, 1]n → [0, 1], defined, for all x ∈ [0, 1]n, by
Cm(x) =

∑n
i=1

(
x(i) − x(i−1)

) · m (
A(i)

)
, where (x(1), . . . , x(n)) is an increasing

permutation of x, x(0) = 0 and A(i) = {(i), . . . , (n)} is the subset of indices of
n − i + 1 largest components of x.

Definition 3. [14] The following properties of a bivariate fusion function F :
[0, 1]2 → [0, 1] are important: (LAE) (left 0-absorbent element) ∀y ∈ [0, 1] :
F (0, y) = 0; (RNE) Right Neutral Element: ∀x ∈ [0, 1] : F (x, 1) = x; (LC) Left
Conjunctive: ∀x, y ∈ [0, 1] : F (x, y) ≤ x.

An important concept on the context of fusion functions is the following:

Definition 4. [14] A fusion function A : [0, 1]n → [0, 1] is said to be an n-ary
r-pre-aggregation function, for some r ∈ R

n, r �= 0, if the following conditions
hold: (A1) A is r-increasing, that is, for all x ∈ [0, 1]n and c > 0 such that
x + cr ∈ [0, 1]n: A(x + cr) ≥ A(x); (A2) A satisfies the boundary conditions:
A(0) = 0 and A(1) = 0.
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Table 1. CF -integrals that obtained best results in [15]

CF -integral Base Function F Class of F [14]

C
CF
m CF (x, y) = xy + x2y(1 − x)(1 − y) copula

C
OB
m OB(x, y) = min{x√

y, y
√
x} overlap function

C
FBPC
m FBPC(x, y) = xy2 aggregation function

CHamacher
m THP (x, y) =

{
0 if x = y = 0

xy
x+y−xy

otherwise
t-norm

Definition 5. [14] Let F : [0, 1]2 → [0, 1] be a bivariate fusion function and m
be a fuzzy measure. The Choquet-like integral based on F with respect to m, called
CF -integral, is the function CF

m : [0, 1]n → [0, 1], defined, for all x ∈ [0, 1]n, by

CF
m(x) = min

{

1,

n∑

i=1

F
(
x(i) − x(i−1),m

(
A(i)

))
}

, (1)

where (i) is a permutation on 2N such that x(i−1) ≤ x(i) for all i = 1, . . . , n,
with x(0) = 0 and A(i) = {(1), . . . , (i)}.
Theorem 1. [14] For any fuzzy measure m: (i) if F satisfies (LAE-RNE), then
CF
m is a 1-pre-aggregation function; (ii) if F satisfies (LAE) and is an (1, 0)-pre-

aggregation function, then CF
m is a 1-pre-aggregation function; (iii) Moreover, if

F also satisfies (LC), then CF
m is idempotent and averaging.

In this study, we have selected the CF -integrals that presented the best results
in [15], which are defined by the functions F shown in Table 1, whose particular
properties were studied previously in [14].

Definition 6. [29] The discrete Sugeno integral is defined with respect to a fuzzy
measure m by:

Sum(x) =
n∨

i=1

(
x(i) ∧ m(A(i))

)

where (i) is a permutation on 2N such that x(i−1) ≤ x(i) for all i = 1, . . . , n,
with x(0) = 0 and A(i) = {(1), . . . , (i)}.

Sugeno and Choquet integrals share the same averaging and idempotency
characteristics [10]. The only CF -integral of Table 1 that is non-averaging (also
non-idempotent) is COB

m [15].

2.2 Evaluation of the Proposal

We consider images to be functions D : R × C �→ L, with R = {1, ..., r} and
C = {1, ..., c}, representing the set of rows and columns, and L representing the



334 C. Marco-Detchart et al.

set of tones of the image. The set L defines the type of image in question. For
binary images, L = {0, 1}, whereas L = {0, ..., 255} for gray-scale image pixels.
In the case of colour images, L is the Cartesian product of the tonal palettes
at each of the colour stimuli (e.g. L = {0, ..., 255}3 for RGB images). Assuming
some given D, IL represents the set of all images with a certain tonal palette L.
In this work, we consider real-valued colour images, i.e images in I[0,1]3 .

To detect whether our solution is correct, a confusion matrix is built following
Martin et al. approach [16], where True Positive (TP), True Negative (TN),
False Positive (FP) and False Negative (FN) are extracted. Then, to quantify
the results the following well-known Precision (Prec), Recall (Rec) and Fα

measures are considered:

Prec =
TP

TP + FP
, Rec =

TP
TP + FN

, Fα =
Prec ·Rec

α · Prec+(1 − α) · Rec
.

We select the most-used descriptor, which is the F0.5 measure [12,16].

3 Methodology

In this section, we provide the methodology followed in the experiments, along
with a brief explanation of the dataset and the configuration of the hyperparam-
eter used.

3.1 Dataset

To put to the test the selected fuzzy functions, experiments have been performed
on the Berkeley Segmentation Dataset (BSDS500) [1], composed of three differ-
ent partitions, train, test and val. For the sake of the experiment, we stick to the
test partition where 200 images can be found. Each of the images of the dataset
comes with 4 to 9 ground-truth images defined by experts (Fig. 1).

As ground-truth images are binary images where each pixel defines the pres-
ence of an edge or not, the performance of each method is evaluated as a
binary classification problem. The evaluation strategy consists of comparing the
obtained binary edges with those of the ground truth by using the standard pro-
cedure from Estrada and Jepson [7]. For this comparison to be fair and sound,
a certain tolerance must be taken into account. This tolerance is needed so that
some of the detected edges are counted as true positives, even if a slight dis-
placement exists. For the experiments conducted in this study, we set a spatial
tolerance of 2.5 % of the length of the diagonal of the image.

3.2 Experimental Framework

The experiments in this study have been done following the Bezdek Breakdown
Structure (BBS) framework [2], that specifies edge detection as a 4-step task:
(i) Conditioning (Application of a Gaussian filter), (ii) Feature extraction, (iii)
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Fig. 1. Schematic representation of the BBS followed in this article, along with the
performance evaluation process.

Blending (Obtention of a thinned image) and (iv) Scaling (Binarization of the
thinned image). The schema of this approach is detailed in Fig. 1.

The Conditioning phase is done by applying a Gaussian filter with σ = 2, in
order to remain the closest to the original Canny proposal and to have a simpler
and fast setup. Then for Feature extraction, either one of the fuzzy integrals
or a literature method is used to fuse intensity variations between pixels. Once
the feature images are generated, non-maxima suppression [4] is applied for the
Blending phase, and finally, the thinned image is binarized with hysteresis [19]
in the Scaling phase.

As it can be seen from the schema in Fig. 1, the second and third steps are
related to the application of the two considered fuzzy integrals. To do so, a 3×3
sliding window is used where the intensity variation between the central pixel
and its neighbours is computed and then ordered increasingly. Then the fuzzy
integrals are applied using as fuzzy measure the power measure, PM =

(
|A|
n

)q

,
considering a q exponent varying from 0.1 to 1.

The main objective of this work is to compare the different results obtained by
the selected variants of fuzzy integrals and study the influence of the fuzzy mea-
sure over each of them. As an additional experiment, to analyse the behaviour of
fuzzy integrals in colour edge detection, we compare their performance to those
obtained with some well-known classical methods of the literature:

– The Canny method [4] with σC = 2.25 as a usual value in [13,18].
– The Gravitational Edge Detection (GED) method [11] with two configura-

tions:
• Probabilistic sum (GSP

).
• Maximum (GSM

).
– Sobel filtering [28].
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4 Obtained Results

In this section, we provide the obtained results of the different fuzzy integrals
and their generalizations to cope with edge detection in coloured images. As
mentioned before, the results are related to different exponents with a fuzzy
measure, and the performance is analysed in terms of Prec, Rec and F0.5.

Fig. 2. Results obtained in terms of Prec, Rec and F0.5 with the different Fuzzy
Integrals compared to the classical methods in the literature.

The results are shown graphically in Fig. 2, where the different fuzzy mea-
sures are related to the performance measures. If we observe the graph obtained
by the Sugeno integral, we can see that the parameter q used does affects the
detection with higher values. In this sense, the performance values remain glob-
ally unaltered upon q = 0.7 and being the best performer when computed with
q = 1. If we observe the Choquet integral family, we can also depict a simi-
lar behaviour with a performance increase while q is increased, except for the
particular case of CFBPC

which obtains its best performance with q = 0.6.



Fuzzy Integrals for Edge Detection 337

We can state that both Choqued-based integrals family and Sugeno integral
are suited for edge detection and that the best choice for q is to have a higher
value. Moreover, in contrast to the classical methods to whom we compare,
all the tested fuzzy integrals obtain better performance, except for the Sobel
filtering method, which obtains the same performance as CFBPC

, as it can be
seen in Table 2.

In terms of visual results, we can observe in Fig. 3 that the Sugeno integral
and the Choquet integral and its generalizations obtain very similar features and
edges, varying only in some edges belonging to the ground texture of the image
and some od the object external limits. The CHamacher depicts more non-suitable
edges, thus obtaining lower performance. The Sobel filtering approach is among
the selected literature methods the best performer, being similar to the fuzzy
integrals approaches.

An important aspect to consider is the computational complexity of the dif-
ferent fuzzy measures. The Choquet integral and its generalizations are com-
putationally more complex than the Sugeno integral, which can be a limitation
for some applications. However, the improved performance obtained with the
Choquet integral family may outweigh the increased computational complexity
in certain cases.

In summary, the experiments demonstrate that fuzzy integrals are a com-
pelling option for edge detection, delivering comparable outcomes to well-
established methods such as the Sugeno filtering or the Canny method. However,
it is essential to carefully consider the parameter values and computational com-
plexity of the different fuzzy integral families before selecting the appropriate
approach for a particular application. Furthermore, it is worth noting that the
performance of the different methods may vary depending on the type and qual-
ity of the input image, and the specific requirements of the application. As a
result, the choice of method should be based on a thorough analysis of the appli-
cation’s specific requirements and the input data’s characteristics.

Another aspect to consider is the trade-off between accuracy and compu-
tational efficiency. In many applications, the computational resources available
are limited, and it may be necessary to balance the need for accuracy with the
need for processing speed. Fuzzy integrals offer a flexible approach that allows
the trade-off between accuracy and computational efficiency to be optimized,
making it possible to deliver reliable results while meeting the computational
constraints of the application.
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Fig. 3. Image features and final edges extracted from original image 29030 of the BSDS
test set with the different approaches tested.
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Table 2. Comparison of the different fuzzy functions selected, along with the gravita-
tional, Sobel filtering and the Canny method approaches in terms of Prec, Rec and
F0.5.

Method Prec Rec F0.5

Su1
m .756 .759 .745

C0.9
m .749 .807 .763

C1
CF .748 .807 .763

C1
OB

.748 .798 .759

C0.6
FBPC

.747 .809 .764

C1
Hamacher .757 .761 .746

GSM 745 .772 .743

GSP .740 .790 .749

Sobel .748 .809 .764

Canny .760 .785 .760

5 Conclusions and Future Works

In this work, we have considered the Sugeno and Choquet integrals and some
of their generalizations to study their behaviour in the context of colour edge
detection. The experimental results demonstrated a trend that the fuzzy measure
affects the fuzzy integrals, specially with higher q values and that the methods
achieved satisfactory results to cope with the problem. We provide a deeper
understanding of the behaviour of different fuzzy integral families in the context
of feature aggregation for edge detection and can help to improve the perfor-
mance of edge detection algorithms.

The experiments done in this work highlight the potential use of fuzzy inte-
gral for edge detection, providing a flexible and robust approach that can deliver
accurate results while accommodating the specific requirements of a given appli-
cation. Further research is needed to fully explore the potential of fuzzy integrals
and to develop new methods that can deliver even better results.

One of the possible future research lines considered is to study a broader
range of fuzzy measures in the context of using the Sugeno integral for feature
aggregation in edge detection. Another line of research is testing the experi-
mental framework we have used in this study with other generalizations of the
Choquet integral. While we have focused on the Sugeno and Choquet integrals in
this work, other variations of the Choquet integral have been proposed in the lit-
erature. These generalizations have been found to be effective in other contexts,
such as classification and decision-making. It would be interesting to see if they
can also be applied to edge detection with similar success. This could include
the study of the generalized CF1 F2 -integrals as well as the d-XC integrals.
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24. Novák, V., Perfilieva, I., Holčapek, M., Kreinovich, V.: Filtering out high frequen-
cies in time series using F-transform. Inf. Sci. 274, 192–209 (2014)

25. Perfilieva, I.: Fuzzy transforms: theory and applications. Fuzzy Sets Syst. 157(8),
993–1023 (2006)

26. Perfilieva, I., Hurtik, P.: The F-transform preprocessing for JPEG strong compres-
sion of high-resolution images. Inf. Sci. 550, 221–238 (2021)
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Abstract. This article investigates the use of two operational transfor-
mation techniques –that represent one interval-valued intuitionistic fuzzy
number by two intuitionistic fuzzy numbers in a constructive manner–
for the smooth aggregation of interval-valued intuitionistic fuzzy num-
bers, and for multi-attribute decision making in this framewok. Decisions
and prioritizations are made by comparison laws involving the concepts
of score and accuracy of an interval-valued intuitionistic fuzzy number.
We show how these figures can be derived from the corresponding prox-
ies for the intuitionistic fuzzy numbers that represent it. A comparative
study concludes this investigation.
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1 Introduction

This work concerns the interval-valued intuitionistic fuzzy set (IVIFS) model [2].
Any IVIFS evaluates every alternative of a set by means of an interval-valued
intuitionistic fuzzy number (IVIFN). In turn, an IVIFN shares characteristics of
both intuitionistic fuzzy numbers (IFN) [3,11] and interval-valued fuzzy num-
bers [9,13].
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Not surprisingly, the research about IVIFSs closely resembles the intuition-
istic fuzzy set (IFS) case. In addition to the study of arithmetic operations
and algebraic manipulations, a number of works contributed to the field with
their inspection of other topics. For example, scores and accuracies were defined
that produced comparison laws [12,14]. Also aggregation operators, or decision-
making methodologies, in the framework of IVIFSs were considered by other
authors. In fact, aggregation operators and comparison laws have taken part
in many decision making (DM) strategies [7,16,19]. This includes the case of
multi-attribute decision making (MADM).

It is noteworthy that in order to define aggregation operators for either IFSs
or IVIFSs, one simply needs to be able to aggregate their constituent IFNs and
IVIFNs. Two fundamental methodologies can be identified. One uses operational
laws for IFNs, respectively, IVIFNs, to produce aggregation operators for IFNs
and IFSs, respectively, IVIFNs and IVIFSs. Another methodology makes use of
aggregation operators on crisp numbers. Nevertheless, often the intricacy of the
IVIFS model generates long formulas, the intuitive interpretation of which is
lost.

This work investigates the utilization of two operational transformation tech-
niques –that represent one IVIFN by two related IFNs in a constructive manner–
for the smooth aggregation of IVIFNs, and for MADM in this framewok. These
transformation techniques were recently introduced in [1]. One focus will be the
derivation of scores and accuracies of IVIFNs from the scores and accuracies
of the two IFNs that characterize them. With both tools –transformation tech-
niques and scores/accuracies– it is possible to put forward respective flexible
MADM methodologies in the framework of IVIFSs –one for each transformation
technique. We just need to use an aggregation operator on IFNs to aggregate
the IFNs that characterize the IVIFNs that define each IVIFS, according to the
corresponding transformation, and then use a comparison law (for example, one
that is based on scores and accuracies) to prioritize the alternatives characterized
by the IVIFSs. We argue that in fact, if the aggregation operator and compari-
son law for IFNs remain fixed, both methodologies are equivalent. Finally, this
common methodology will be compared with existing solutions.

The rest of this article is organized as follows. We recall some necessary
concepts and results in Sect. 2. In particular, we state the two transformation
theorems for IVIFNs and their intuitive background. Visual representations illus-
trate the main ideas and the two theorems. Section 3 contains our results. Some
conclusions end this work in Sect. 4.

2 Preliminary Concepts

In this article X will be a fixed set of alternatives, and D[0, 1] will be the set of
all closed intervals that are included in I = [0, 1].

By an orthopair we mean a pair (μ, ν) ∈ I × I, thus 0 � μ, ν � 1. This
orthopair is an intuitionistic fuzzy number (also, IFN) when μ + ν � 1 [20].
Henceforth A will denote the set of all IFNs.
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Definition 1. Suppose that (μ1, ν1), (μ2, ν2) are orthopairs. Then we define the
following two orthopairs:

(μ1, ν1) ∨ (μ2, ν2) = (max{μ1, μ2},max{ν1, ν2}), and
(μ1, ν1) ∧ (μ2, ν2) = (min{μ1, μ2},min{ν1, ν2}).

We shall also need the following two partial orders � and �L on the set of
all orthopairs: suppose that (μ1, ν1), (μ2, ν2) are orthopairs, then we declare

(μ1, ν1) � (μ2, ν2) if and only if μ1 � μ2 and ν2 � ν1 [3], and
(μ1, ν1) �L (μ2, ν2) if and only if μ1 � μ2 and ν1 � ν2 [5].

The IFNs 1 = (1, 0) and 0 = (0, 1) are, respectively, the top and bottom
elements of the partial order �.

The partial order �L defined on I × I can be generalized to a partial order
on I× n. . . ×I in the following manner: if (a1, . . ., an), (b1, . . ., bn) ∈ I× n. . . ×I,
then the notation (a1, . . ., an) �L (b1, . . ., bn) is equivalent to ai � bi for each i.

2.1 Intuitionistic Fuzzy Sets: Concepts and operations

The concept of interval-valued intuitionistic fuzzy set was initiated by K.
Atanassov. For this reason, many authors use the term Atanassov’s intuitionistic
fuzzy sets.

Definition 2 (Atanassov [3]). An intuitionistic fuzzy set (also, IFS) A over
X is A = {〈x, (μA(x), νA(x))〉|x ∈ X}, with the condition that for each x ∈ X
(μA(x), νA(x)) is an IFN.

The set of all IFSs over X will be denoted by IFS(X).

On occasions the intuitionistic fuzzy set A is abbreviated as A = 〈μA, νA〉.
It is assumed that μA, νA : X → [0, 1] represent the membership degree (MD)

and non-membership degree (NMD) of each element x ∈ X to the intuitionistic
fuzzy set A.

The concepts defined for orthopairs (hence, for IFNs) in Definition 1 can be
applied to IFSs too. Consider the case of the two partial orders defined there.
To extend them, let A = 〈μA, νA〉 and B = 〈μB , νB〉 be two IFSs. Then the
notation A �L B, respectively, A � B, means (μA(x), νA(x)) �L (μB(x), νB(x)),
respectively, (μA(x), νA(x)) � (μB(x), νB(x)), for every x ∈ X. Of course, the
IFSs A∧B and A∨B can be given with the corresponding pointwise definitions.
Importantly, it is not guaranteed that A∨B produces an IFS when A and B are
IFSs (see Fig. 1 below). We can only assure that A ∨ B produces an orthopair
fuzzy set (associating an orthopair with each x ∈ X).

Some algebraic concepts have been extended to IFSs and IFNs:

Definition 3 [3]. The union and intersection of A = 〈μA, νA〉 and B =
〈μB , νB〉, two IFSs, are, respectively,

A ∪ B = {〈x, (max{μA(x), μB(x)},min{νA(x), νB(x)})〉|x ∈ X} (1)
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A ∩ B = {〈x, (min{μA(x), μB(x)},max{νA(x), νB(x)})〉|x ∈ X} (2)

Subsethood is defined by:

A ⊆ B ⇔ (μA(x), νA(x)) � (μB(x), νB(x)) for all x ∈ X. (3)

The concepts of union and intersection of IFSs induce union and intersection
of IFNs. Both operators produce respective IFNs as follows: let (μ1, ν1), (μ2, ν2)
be IFNs, then

(μ1, ν1) ∪ (μ2, ν2) = (max{μ1, μ2},min{ν1, ν2}), (4)
(μ1, ν1) ∩ (μ2, ν2) = (min{μ1, μ2},max{ν1, ν2}). (5)

Figure 1 illustrates concepts defined in this section. We consider two cases.
When (μ1, ν1), (μ2, ν2) are IFNs, we can observe that I1 ∨ I2 may not produce
an IFN.

Fig. 1. Visual representation of Definition 1 and Eqs. (4) and (5). Both I1 and I2 are
IFNs in the two figures.

Remark 1. Suppose that I1 and I2 are IFNs. Then one has:
I1 �L I2 ⇔ I1 ∨ I2 = I2 ⇔ I1 ∧ I2 = I1, and also
I1 � I2 ⇔ I1 ∪ I2 = I2 ⇔ I1 ∩ I2 = I1.

In order to compare IFNs by their performance, standard rules use their
scores and accuracies since [20, Definition 1]. The score of J = (μ, ν), an IFN,
was defined in [8] as S(J) = μ − ν. Higher scores are preferable, however ties
appear often. A tie-breaking rule in the case of equal scores uses the respective
accuracies of the IFNs. The accuracy of J was defined in [10] as H(J) = μ + ν.

To mention but one antecedent of transformation techniques in the frame-
work of IFSs, we recall that Atanassov and Gargov [2] defined a bijection between
IFS(X) and the set of all interval-valued fuzzy sets [13]. Both this bijection and
its inverse mapping are defined by explicit expressions. We shall not use them
in this article.
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2.2 Interval-Valued Intuitionistic Fuzzy Sets: Concepts and Results

The concept of interval-valued intuitionistic fuzzy set was initiated by Atanassov
and Gargov:

Definition 4 (Atanassov and Gargov [2]). An interval-valued intuitionis-
tic fuzzy set (IVIFS) A over X is A = {〈x, (μA(x), νA(x))〉|x ∈ X}, with the
condition that for each x ∈ X, μA(x) = [μA

L(x), μA
M (x)] ∈ D[0, 1], νA(x) =

[νA
L (x), νA

M (x)] ∈ D[0, 1] and μA
M (x) + νA

M (x) � 1.
The set of all IVIFSs over X will be denoted by IVIFS(X).

Any pair ([μ, μ′], [ν, ν′]) ∈ D[0, 1]×D[0, 1] such that μ′+ν′ � 1 is an interval-
valued intuitionistic fuzzy number (also, IVIFN) [19]. Equivalently, an IVIFN is
a pair P = ([μ, μ′], [ν, ν′]) ∈ D[0, 1]×D[0, 1] with the property that (μ′, ν′) is an
IFN. Its score is s(P ) = 1

2 (μ − ν + μ′ − ν′), and h(P ) = 1
2 (μ + μ′ + ν + ν′) is its

accuracy [19]. As in the case if IFNs, IVIFNs with higher scores are preferable,
and accuracy is used to break ties between IVIFNs with equal score.

Other scores that attempt to improve the performance of the definition above
include the next formulas from [14]:

swc1(P ) =
μ + μ′ +

√
μ′ν′(1 − μ − ν) +

√
μν(1 − μ′ − ν′)

2
, and

swc2(P ) =
(μ + μ′)(μ + ν) − (ν + ν′)(μ′ + ν′)

2
.

Alternative expressions for the accuracy have been proposed too [12], remarkably,

m(P ) = μ + ν − 1 +
1
2
(ν + ν′) =

μ − (1 − μ − ν) + μ′ − (1 − μ′ − ν′)
2

, and

l(P ) =
μ + μ′ − ν′(1 − μ′) − ν(1 − μ)

2
.

The basic set-theoretic operations (subsethood, union, and intersection), plus
arithmetic manipulations (sum and multiplication) were extended to IVIFSs
[2,4]. With their help, and other operational laws (such as Einstein’s sum and
product [16]) novel averaging operators were produced that rely on renewed
arithmetic operations on IVIFSs. The Einstein operational laws were also used
to the purpose of aggregation for multi-attribute decision-making in both [17]
and [15].

Now we proceed to recall two structural theorems proven in [1]. Both are
concerned with related transformation techniques that allow us to study IVIFN
by means of pairs of suitable IFNs. Their respective intuitive foundations are
represented by corresponding figures below in this section.

First Bijection. To state the first transformation theorem, we need to define
a subset O1 ⊆ IFS(X) × IFS(X) as follows:

O1 = {(A1, A2) |A1 � A2, A1 ∨ A2 ∈ IFS(X)}. (6)
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Now we are ready to define the following f1 : IVIFS(X) −→ O1. Let A =
{〈x, (μA(x), νA(x))〉|x ∈ X} ∈ IVIFS(X) such that for each x ∈ X, we write
μA(x) = [μA

L(x), μA
M (x)], νA(x) = [νA

L (x), νA
M (x)]. Then f1(A) = (IA1 , IA2 ) is

given by the formulas:

IA1 (x) = (μA
L(x), νA

M (x)), IA2 (x) = (μA
M (x), νA

L (x)) (7)

for each x ∈ X. In addition, consider the mapping (f1)−1 : O1 −→ IVIFS(X)
defined as follows. For any (I1, I2) ∈ O1 such that Ii = {〈x, (μi(x), νi(x))〉|x ∈
X}, i = 1, 2, consider

A(I1,I2) = {〈x, ([μ1(x), μ2(x)], [ν2(x), ν1(x)])〉|x ∈ X} (8)

and let (f1)−1(I1, I2) = A(I1,I2).

Theorem 1 [1]. The mapping f1 : IVIFS(X) −→ O1 is a bijection, and its
inverse mapping is (f1)−1 : O1 −→ IVIFS(X).

Second Bijection. To state the second transformation theorem, we need to
define another subset O2 ⊆ IFS(X)×IFS(X) as follows:

O2 = {(A1, A2) ∈ IFS(X)2 |A1 �L A2}. (9)

Now we are ready to define the following f2 : IVIFS(X) −→ O2. Consider
A = {〈x, (μA(x), νA(x))〉|x ∈ X} ∈ IVIFS(X) such that for each x ∈ X, we
write μA(x) = [μA

L(x), μA
M (x)], νA(x) = [νA

L (x), νA
M (x)]. Then f2(A) = (JA

1 , JA
2 )

is given by the formulas:

JA
1 (x) = (μA

L(x), νA
L (x)), JA

2 (x) = (μA
M (x), νA

M (x)) (10)

for each x ∈ X. In addition, consider the mapping (f2)−1 : O2 −→ IVIFS(X)
defined as follows. For any (I1, I2) ∈ O2 such that Ii = {〈x, (μi(x), νi(x))〉|x ∈
X}, i = 1, 2, consider

A(I1,I2) = {〈x, ([μ1(x), μ2(x)], [ν1(x), ν2(x)])〉|x ∈ X} (11)

and let (f2)−1(I1, I2) = A(I1,I2).

Theorem 2 [1]. The mapping f2 : IVIFS(X) −→ O1 is a bijection, and its
inverse mapping is (f2)−1 : O1 −→ IVIFS(X).

The intuitive performance of Theorems 1 and 2 is illustrated in Fig. 2.

3 Results

Note that the transformations f1 and f2 stated in Theorems 1 and 2 operate
on IVIFSs. By considering their constituent IVIFNs, they also induce respective
transformations that associate each IVIFN with respective pairs of IFNs. To
reduce notational burden, we denote those transformations of IVIFNs by the
same names, i.e., f1 and f2. And we shall refer to these reduced specifications
for IVIFNs in this section.
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Fig. 2. Visual representation of the transformations f1 and f2 stated in Theorems 1
and 2.

3.1 Scores and Accuracies

We proceed to prove that the transformations f1 and f2 enable us to compute
the standard scores, respectively, accuracies, for IVIFNs if we know the scores,
respectively, accuracies, of their associated IFNs. We do this in the next result:

Proposition 1. Let P = ([μ, μ′], [ν, ν′]) be an IVIFN. For i = 1, 2, let fi(P ) =
(Ii1, I

i
2), so that all I11 , I12 , I21 , I22 are IFNs. Then

s(P ) =
1
2
(S(I11 ) + S(I12 )) =

1
2
(S(I21 ) + S(I22 )) (12)

and
h(P ) =

1
2
(H(I11 ) + H(I12 )) =

1
2
(H(I21 ) + H(I22 )). (13)

Proof. By definition, f1(P ) = (I11 , I12 ) means I11 = (μ, ν′) and I12 = (μ′, ν),
whereas f2(P ) = (I21 , I22 ) means I21 = (μ, ν) and I22 = (μ′, ν′). Proofs follow from
direct computations. Notice that we can prove the equalities

s(P ) =
1
2
(μ − ν + μ′ − ν′) =

1
2
(S(I11 ) + S(I12 )) =

1
2
(S(I21 ) + S(I22 ))

because S(I11 ) = μ−ν′, S(I12 ) = μ′ −ν, S(I21 ) = μ−ν, S(I22 ) = μ′ −ν′. Similarly,
the equalities

h(P ) =
1
2
(μ + μ′ + ν + ν′) =

1
2
(H(I11 ) + H(I12 )) =

1
2
(H(I21 ) + H(I22 ))

follow from H(I11 ) = μ + ν′, H(I12 ) = μ′ + ν, H(I21 ) = μ + ν, H(I22 ) = μ′ + ν′.

Both f1 and f2 associate one IVIFN with two IFNs. Proposition 1 proves
that in each case, the score/accuracy of the IVIFN can be computed as the
arithmetic average of the scores/accuracies of the two IFNs that are linked to
them.
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3.2 Aggregation

The main purpose of [1] was to use the theoretical advancements proven by
Theorems 1 and 2 in order to design flexible strategies for the aggregation of
IVIFSs. This achievement was then applied to group decision making with the
help of scores. In this section we complement the information given in [1].

The strategy that was developed in [1] is summarized by Algorithm 1. As
said above, here we concentrate in IVIFNs, but [1] worked in the framework of
IVIFSs. So Algorithm 1 has been modified accordingly.

Algorithm 1. A flexible procedure for aggregation of IVIFNs. Alternatively: a
flexible procedure that encapsulates one IVIFS in one IVIFN.
Input: A finite list of IVIFNs (or alternatively: one IVIFS, characterized by one IVIFN

associated with each alternative).
Elective element : a suitable aggregation operator for IFNs.

1: Apply bijection f2 (defined in Theorem 2) to the IVIFNs.
With each IVIFN in the list we get a pair of IFNs.

2: Use an to aggregation operator to transform this list of pairs into one pair of IFNs
that satisfies the required structural property.
We apply aggregation separately to the first component of the pairs, and then to
their second components.

3: Apply f−1
2 to this aggregate pair of IFNs.

Output: Aggregate IVIFN of the original list of IVIFNs (or alternatively: one IVIFN
that encapsulates the information in the IVIFS).

The Effect of Replacing the Representation Theorem. Although [1] did
not consider the algorithm that uses the other representation theorem (i.e., f1
at step 1 and then f−1

1 at step 3), below we state that the reason is that both
algorithms are the same:

Proposition 2. If we replace f2 with f1 in Algorithm 1, then the aggregate
output does not change.

A formal proof of this proposition is long and tedious, but straightforward.
Hence we omit it here.

3.3 Multi-attribute Decision Making Using Representation
Theorems

Once an IVIFS is associated with an IVIFN (e.g., with the utilization of Algo-
rithm 1 or any other methodology), it is possible to use the scores and accuracies
of IVIFNs defined in Sect. 2.2 to rank the IVIFSs [1]. The next section explains
this issue and compares the results with existing methodologies.
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MADM: A Comparative Analysis. Another exercise that was missing in [1]
is a comparative analysis with respect to existing aggregation methodologies.
We do this in this section. We shall use data from a case study described in [19].
To simplify matters, consider the three IVIFSs described in Table 1. They are
from [19, Section 4], although that article studies ten IVIFSs.

Table 1. Three projects and their characteristics.

B1 B2 B3

A1 ([0.5, 0.6], [0.2, 0.3]) ([0.3, 0.4], [0.4, 0.6]) ([0.4, 0.5], [0.3, 0.5])

A9 ([0.2, 0.4], [0.4, 0.5]) ([0.6, 0.7], [0.2, 0.3]) ([0.5, 0.6], [0.2, 0.3])

A10 ([0.5, 0.7], [0.1, 0.3]) ([0.6, 0.7], [0.1, 0.3]) ([0.4, 0.5], [0.2, 0.5])

In Table 1, each project Ai is characterized by its performance in terms of
three attributes, namely, B1, B2 and B3. Then [19] suggest that the overall
performance of each Ai can be faithfully described by the aggregate IVIFNs of
their corresponding IVIFNs. Once these IVIFNs are computed, the projects are
ranked from highest to lowest score of the aggregate IVIFNs that summarize
them. We supplement their exercise with the calculation of scores by swc1 and
swc2.

We shall compare the results obtained with this methodology, and with the
flexible Algorithm 1 (or its counterpart with f1). We shall refer to two examples
of aggregation operators on IFNs. Both use a weighting vector v = (v1, . . . , vn),
which therefore satisfies v1 + . . . + vn = 1 and vi ∈ I for all i = 1, . . . , n [6, Def.
2.5]. Now when Ii = (μi, νi) are IFNs , i = 1, . . . , n:

– IWAMv(I1, . . . , In) = (
∑n

i=1 viμi,
∑n

i=1 viνi) [5, Eq. (13)] defines the intu-
itionistic fuzzy weighted arithmetic mean associated with v.

– IFWGv(I1, . . . , In) = (
∏n

i=1 μvi
i , 1 − ∏n

i=1(1 − νi)vi) [20, Definition 2] defines
the intuitionistic fuzzy weighted geometric mean associated with v.

It is timely to explain that a version of IFWGv has been defined that incor-
porates the foundations of the OWA operator, and it was named IFOWGv. And
also, that many other aggregation operators on IFNs have been proposed in the
literature.

In our comparison, we shall use the vector of weights v = (0.5, 0.3, 0.2) that
formed part of the aggregation methodology of [19]. And we shall compare the
results obtained by [19] and by the application of Algorithm 1 with IWAMv and
IFWGv. In each case, we work with three score rankings that correspond to the
formulas given in Sect. 2.2. Tables 2 and 3 summarize the elements that motivate
our subsequent discussion. Notice that we do not need to compute accuracies,
since ties do not appear in the score-based comparisons.

We can observe that the choice of the decision making mechanism is not
innocuous. Indeed, the prioritization recommended by each methodology varies:
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Table 2. Aggregate IFNs and scores of the projects in Table 1.

Method in [19] Algorithm 1 (IWAMv) Algorithm 1 (IFWGv)

A1 ([0.3941, 0.4990], [0.2852, 0.4380]) ([0.42, 0.52], [0.28, 0.43]) ([0.4102, 0.5123], [0.2855, 0.4467])

A9 ([0.3964, 0.5635], [0.2751, 0.3748]) ([0.38, 0.53], [0.3, 0.4]) ([0.3340, 0.5131], [0.3072, 0.4084])

A10 ([0.5237, 0.6560], [0.1218, 0.3440]) ([0.51, 0.66], [0.12, 0.34]) ([0.5051, 0.6544], [0.1210, 0.3456])

Table 3. Three scores for the projects in Table 1.

Method in [19] Algorithm 1 (IWAMv) Algorithm 1 (IFWGv)

s swc1 swc2 s swc1 swc2 s swc1 swc2

A1 0.0850 0.5321 −0.0355 0.115 0.5495 −0.0083 0.0952 0.5410 −0.0302

A9 0.1550 0.5656 0.0174 0.105 0.5405 −0.0161 0.06575 0.5182 −0.0581

A10 0.3570 0.6741 0.1478 0.355 0.6726 0.1386 0.34645 0.6687 0.1297

– If we use [19], the recommendation is A10 
 A9 
 A1 regardless of score
selection.

– If we use Algorithm 1 (either with IWAMv or with IFWGv), the recommen-
dation becomes A10 
 A1 
 A9 regardless of score selection.

Hence the decision between A1 and A9 is different. The recommendations by
Algorithm 1 coincide in declaring A1 
 A9, however the procedure in [19] con-
sistently declares A9 
 A1.

4 Concluding Remarks

This work has shown that the operational transformation techniques rendered
in [1] deserve further attention. We have not yet exploited the full capabilities
of Algorithm 1, because other aggregation operators can be used and their per-
formance compared with the cases studied so far.

In addition, it is possible to pose the problem of relating the alternative scores
swc1 and swc2, and accuracies m and l, defined in Sect. 2.2 with our transforma-
tions. Proposition 1 is our source of inspiration. And a similar exercise can be
done for the membership uncertainty index and hesitation uncertainty index of
an IVIFV defined in [18] to guarantee the anti-symmetry of ranking method.

We expect to return to these issues in the future.
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Abstract. The most reliable method for how the validity of a logical
syllogism can be verified is to formalize it and show that there is either
a formal proof or it is true in any model. A specific method for proving
validity is to use special rules that have been used by logicians. However,
we cannot be sure that they indeed verify the validity of syllogisms. The
goal of this paper is to show that the rules indeed work. In his book [15],
Peterson studied syllogisms with intermediate quantifiers and suggested
extension of the rules also to them. In this paper, we formalize them and
prove that a logical syllogism of Figure I with intermediate quantifiers is
valid iff it satisfies four extended Peterson’s rules.

Keywords: Intermediate quantifiers · Peterson’s rules · Validity of
logical syllogisms

1 Introduction

This paper continues study of logical syllogisms with intermediate quantifiers. In
papers [7,8], we presented these syllogisms and proved their validity/invalidity
using syntactic proofs. The main idea is based on the mathematical definition of
intermediate quantifiers which belong to the class of generalized (fuzzy) quan-
tifiers (see [4,5]). Intermediate quantifiers, were introduced by Peterson in [15]
and formalized by Novák in [11].

In this paper we utilize the position of intermediate quantifiers in the graded
Peterson’s square of opposition (see [6]) and verify validity of selected forms of
syllogisms with intermediate quantifiers using generalized Peterson’s rules, see
[12]. We prove that a logical syllogism of Figure I with intermediate quantifiers
is valid iff it satisfies all the extended Peterson’s rules quality, quantity and
distributivity.
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2 Preliminaries

2.1 The Algebraic Structure of the Truth Values

We will assume that truth values form the linearly ordered MVΔ-algebra (see
[1,14]) LΔ = 〈L,∨,∧,⊗,→, 0, 1,Δ〉. A special case is the standard �Lukasiewicz
MVΔ-algebra LLuk

Δ with L = [0, 1]. For a more detailed explanation of the
introduction of the delta operation, we refer the reader to [3]. By a fuzzy set A
we understand a function A : N → L where N is a universe. A set of all fuzzy
sets is denoted by F(N).

Intermediate quantifiers are modeled in a special theory T IQ of fuzzy type
theory. Its model will be denoted by N |= T IQ. If Aoα is a formula of type oα
then its interpretation N (Aoα) is a fuzzy set A ∈ F(N).

For the theory of intermediate quantifiers, we need a special operation called
cut of a fuzzy set B w.r.t. a fuzzy set Z which is defined as follows: let M be a
universum and B,Z ⊂∼ M . Then for any u ∈ M the operation B|Z “cuts” B is
B|Z(u) = B(u) = Z(u) if B(u) = Z(u). Otherwise (B|Z)(u) = 0. If there is no
such u then B|Z = ∅. The motivation and explanation for the introduction of
this operation can be found in [9].

2.2 Evaluative Linguistic Expressions

The theory of intermediate quantifiers is based on the theory of evaluative lin-
guistic expressions that are special natural language expressions such as very
small, about medium, roughly big, very short, more or less deep, quite roughly
strong, extremely high, etc. The formal theory TEv of their semantics and more
details about their structure can be found in [10,13].

Evaluative linguistic expressions are represented in the theory TEv by for-
mulas

Sm ννν,Me ννν,Bi ννν,Zeννν (1)

where ννν represents a linguistic hedge. For example, SmVe is a formula construing
the evaluative expression “very small”. We will also consider an empty hedge ν̄νν
that is always present in front of small, medium and big if no other hedge is
given.

Recall that very (Ve), extremely (Ex) and utmost (ΔΔΔ) are linguistic hedges
that are modeled using special unary functions on [0, 1] which are ordered as
follows:

Ex � Si � Ve � ν̄νν � ML � Ro � QR � VR (2)

where ν̄νν is the empty hedge.
Each evaluative expression characterizes a certain imprecisely determined

position on a bounded linearly ordered scale. The scale is represented by a context
which is an interval [vL, vS ] ∪ [vS , vR].1 The context is standard if vL = 0, vS =

1 We write this interval as a union of two intervals to emphasize the role of the central
point vS which represents “typical medium”.
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0.4, vR = 1. More details about the theory of evaluative linguistic expressions
can be found in [9,10] and elsewhere.

The following inequality can be proved in the theory of evaluative expressions.

Lemma 1. Let us consider the standard context. Then

anot Sm = inf Supp(¬¬¬Sm) < 0.5 < aBiVe = inf Supp(BiVe) ≤
aBiEx = inf Supp(BiEx) ≤ inf Supp(Bi ΔΔΔ) = 1.

In this paper, we also assume the following:

inf Supp(¬¬¬Sm) ⊕ inf Supp(BiEx) = 1, (3)
inf Supp(¬¬¬Sm) ⊕ inf Supp(BiVe) < 1. (4)

2.3 The Theory of Intermediate Quantifiers

Let us remind that intermediate quantifiers are modeled using special formulas
of the formal theory TEv from �L-FTTwhich express a quantification over the
universe represented by a fuzzy set whose size is characterized by a measure. The
reader will find a more detailed explanation of the introduction of the measure
and the required axioms in [9].

Syntactic Definition of Fuzzy Intermediate Quantifiers. In [9], we for-
mally characterized measure of a fuzzy set which characterizes its “size”. A
formula μo(oα)(oα) ≡ λzoα λxoα (Rzoα)xoα represents a measure on fuzzy sets in
the universe of type α ∈ Types. A fuzzy set is measurable if there is a measure
of it. The special theory of intermediate quantifiers is denoted by T IQ.

An intermediate quantifier of type 〈1, 1〉 is one of the following formulas:

(Q∀
Ev xα)(Boα, Aoα) ≡ (∃z)[(∀x)((B|z)x ⇒⇒⇒ Ax) ∧∧∧ Ev((μB)(B|z))], (5)

(Q∃
Ev xα)(Boα, Aoα) ≡ (∃z)[(∃x)((B|z)x ∧∧∧ Ax) ∧∧∧ Ev((μB)(B|z))]. (6)

where Ev is a formula representing some evaluative linguistic expression, z, x are
variables and A,B are formulas where B represents a universe of quantification
and it is a measurable fuzzy set. Either of the quantifiers (5) or (6) construes
the sentence

〈Quantifier〉B′s are A (7)

where 〈Quantifier〉 is a quantifier in a linguistic form.

Semantic Definition of Fuzzy Intermediate Quantifiers. The semantic
definition of the meaning of intermediate quantifiers follows from interpretation
of formulas (5) and (6).
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Definition 1. Interpretation of the measure μ is a function R : F(N) \ {∅} ×
F(N) → L fulfilling the following conditions for all A,A′ ∈ F(N) and B,B′ ∈
F(N) \ {∅}:
(i) R(B,B) = 1, R(B,B \ A) = ¬R(B,A).
(ii) If A �⊆ B then R(B,A) = 0.
(iii) If A ⊆ A′ then R(B,A) ≤ R(B,A′),
(iv) If B ⊆ B′ then R(B′, A) ≤ R(B,A).

Definition 2. Let N be a set, A,B,Z ∈ F(N). Put2

FR
Ev (B,B|Z) = Ev(R(B,B|Z)) (8)

where Ev is a fuzzy set representing extension of some evaluative expression
in the standard context 〈0, 0.4, 1〉 (for explanation, see [13]). Then a semantic
interpretation of the intermediate quantifiers (5) and (6) are the following truth
values:3

Q∀
Ev (B,A) =

∨
{

∧

u∈N

((B|Z)(u) → A(u)) ∧ FR
Ev (B,B|Z) | Z ∈ F(N)

}
, (9)

Q∃
Ev (B,A) =

∨
{

∨

u∈N

((B|Z)(u) ∧ A(u)) ∧ FR
Ev (B,B|Z) | Z ∈ F(N)

}
. (10)

If we replace the metavariable Ev in (5) or (6) by a formula representing
a specific evaluative linguistic expression then we obtain definition of the con-
crete intermediate quantifier. The following are semantic representations of the
specific intermediate quantifiers.

Definition 3.

(A) “All B’s are A”:
∧

u∈N (B(u) → A(u)),
(E) “No B’s is A”:

∧
u∈N (B(u) → ¬A(u)),

(P) “Almost all B’s are A”:∨
Z∈F(N)

(∧
u∈N ((B|Z)(u) → A(u)) ∧ FR

BiEx(B,B|Z)
)
,

(B) “Almost all B’s are not A”:∨
Z∈F(N)

(∧
u∈N ((B|Z)(u) → ¬A(u)) ∧ FR

BiEx(B,B|Z)
)
,

(T) “Most B’s are A”: ∨
Z∈F(N)

(∧
u∈N ((B|Z)(u) → A(u)) ∧ FR

BiVe(B,B|Z)
)
,

(D) “Most B’s are not A”:∨
Z∈F(N)

(∧
u∈N ((B|Z)(u) → ¬A(u)) ∧ FR

BiVe(B,B|Z)
)
,

(K) “Many B’s are A”: ∨
Z∈F(N)

(∧
u∈N ((B|Z)(u) → A(u)) ∧ FR

¬Sm(B,B|Z)
)
,

2 Note that (8) is a semantic interpretation of the formula Ev((µB)(B|z)) occurring
in (5) and (6).

3 Recall that the quantifiers ∀ and ∃ are in fuzzy logic interpreted by
∧

and
∨

,
respectively.
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(G) “Many B’s are not A”:∨
Z∈F(N)

(∧
u∈N ((B|Z)(u) → ¬A(u)) ∧ FR

¬Sm(B,B|Z)
)
,

(I) “Some B’s are A”:
∨

u∈N (B(u) ∧ A(u)),
(O) “Some B’s are not A”:

∨
u∈N (B(u) ∧ ¬A(u)).

3 Extended Syllogisms with Intermediate Quantifiers

A syllogism is a triple of formulas P1,P2, C of the theory T IQ where P1 is a
major premise, P2 a minor premise and C is a conclusion. We say that it is
valid if T IQ � P1 &&&P2 ⇒⇒⇒ C. By the completeness theorem, syllogism is valid iff
N (P1) ⊗ N (P2) ≤ N (C) holds in any model N |= T IQ. Validity of all syllogisms
presented in [15] was proven syntactically in [7,8].

Let Q1, Q2, Q3 be quantifier symbols from (5) or (6) and S, P,M be formulas4

representing properties of elemements of type α. The formula S is a subject, P
is a predicate and M is a middle formula. As usual, syllogisms are gathered into
the following four figures:

Figure I
Q1 M are P

Q2 S are M
Q3 S are P

Figure II
Q1 P are M

Q2 S are M
Q3 S are P

Figure III
Q1 M are P

Q2 M are S
Q3 S are P

Figure IV
Q1 P are M

Q2 M are S
Q3 S are P

where the first line in each figure is the major premise P1,o, the second line is
the minor premise P2,o and the third line is the conclusion Co. If all Q1, Q2, Q3 ∈
{∀,∃} then the corresponding syllogism is classical.

Lemma 2. Let X1,X2,X3 ∈ {P,B, T,D,K,G} be symbols (cf. Definition 3)
and M,P, S ∈ F(M) be fuzzy sets representing properties. Then, in general, the
inequality

QX1(M,P ) ⊗ QX2(S,M) ≤ QX3(S, P ) (11)

does not hold, i.e., the corresponding syllogism of Figure I is not valid.

Proof. By a counterexample: Let us consider fuzzy sets M,S, P ∈ F(M) as
follows.

Let Z = M ∩ P be such that M(u) = P (u) for u ∈ Supp(Z) except for
some u0 for which M(u0) > P (u0) and assume that Ev1(μ(M,M |Z)) = 1. Then
QX1(M,P ) = 1. Furthermore, let S be such that Supp(S ∩ M) is small w.r.t.
M but large enough so that Ev2(μ(S, S|Z ′)) = 1 for a suitable Z ′. Finally, let
S(u) ≥ M(u) ≥ P (u), u ∈ Supp(S ∩ M) and for at least one u0 let S(u0) >
M(u0) > P (u0). Then QX2(S,M) > QX3(S, P ).

4 Many authors speak about terms instead of formulas. We call S, P,M formulas as
is common in logic.
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It follows from this lemma, that syllogisms with three non-trivial intermediate
quantifiers (i.e., those different from ∀,∃) cannot be valid. For example, syllogism
saying that “Most(M is P ) and Most(S is M) implies Most(S is P )” is not
valid. Similarly for this kind of syllogism with the other non-trivial intermediate
quantifiers.

4 Extended Peterson’s Rules for Checking Validity
of Syllogisms

In Peterson’s approach, the distribution index is based on the number of inter-
mediate quantifiers which form Peterson’s square of opposition (cf. [2] and also
[12]).

The distribution index in our approach is derived from the characteristic
shape of the fuzzy set modeling the extension of the evaluative expression in the
standard context 〈0, 0.4, 1〉.
Definition 4 (Distribution index). Let A,B ∈ F(M) be fuzzy sets and
QK

Ev (B,A), K ∈ {∀,∃} be an intermediate quantifier determined by the eval-
uative expression Ev. The distribution index DI(X,QK

Ev (B,A)) (or shortly,
DI(X,QK)) of the fuzzy set X ∈ F(M) is:

DI(X,QK
Ev (B,A)) =

⎧
⎪⎪⎨

⎪⎪⎩

inf Supp(Ev) if K = ∀ and X = B,

0 if K = ∀ and X = A,

0 if K = ∃ and X ∈ {A,B},

DI(¬X,Q) = ¬DI(X,Q).

Let QP1 , QP2 , QC denote quantifiers occurring in the major premise, minor
premise, and conclusion, respectively. Below we recall extended Peterson’s rules
(denoted by (ERx)) and their formalization (denoted by (fERx)) using our nota-
tion and concepts. For the detailed explanation see [12].

1. Peterson’s Rules of Distribution
(ER1) In a valid syllogism, the sum of the distribution indices for the middle

formula must exceed 5.
(fER1) DI(X,QK

P1
) ⊕ DI(X,QL

P2
) = 1 where X ∈ {M,¬M}.

(ER2) No formula may be more nearly distributed in the conclusion than it is
in the premises. Let K,L ∈ {∀,∃}.

(fER2a) DI(X,QK
C ) ≤ DI(Y,QL

P2
) where X,Y ∈ {S,¬S},

(fER2b) DI(X,QK
C ) ≤ DI(Y,QL

P1
) where X,Y ∈ {P,¬P}.

2. Peterson’s Rules of Quality
(ER3) At least one premise must be affirmative.

(fER3) Let X,Y ∈ {S, P,M}, X �= Y and K ∈ {∀,∃}. Then at least one of
the following holds: P1 = QK

Ev (Y,X) or P2 = QK
Ev (Y,X).

(ER4) The conclusion is negative if and only if one of the premises is negative.
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(fER4) Let X,Y ∈ {S, P,M}, X �= Y and K,L ∈ {∀,∃}. Then

C = QK
Ev (S,¬¬¬P ) ⇐⇒ P = QL

Ev (Y,¬¬¬X)

where P ∈ {P1,P2}.
3. Peterson’s Rules of Quantity
(ER5) At least one premise must have a quantity of majority (T or D) or higher.

(fER5) 0.5 < inf Supp(EvP1) ∨ inf Supp(EvP2).
(ER6) If any premise is non-universal, then the conclusion must have a quantity

that is less than or equal to that premise.
(fER6) inf Supp(EvC) ≤ inf Supp(EvP1) ∧ inf Supp(EvP2).

Recall from [12] that rules (fER1)–(fER4) are sufficient because they imply
(fER5) and (fER6).

5 Checking Validity of Syllogisms by Extended Peterson’s
Rules

The main objective of this section is to show that Peterson’s rules can be used
for checking validity (or invalidity) of syllogisms with intermediate quantifiers.
First, we will verify that if a given logical syllogism is valid then it satisfies
extended Rules (fER1)–(fER4).

5.1 Valid Syllogisms Satisfy Extended Peterson’s Rules

Lemma 3. Syllogisms AAA, AAP, AAT, AAK, A(∗A)I of Figure I satisfy
Rules (fER1)–(fER4).

Proof. Let us consider syllogism AAA. Then P1 = Q∀
Bi ΔΔΔ(M,P ), P2 = Q∀

Bi ΔΔΔ

(S,M), C = Q∀
Bi ΔΔΔ(S, P ) and

Q∀
Bi ΔΔΔ(M,P ) ⊗ Q∀

Bi ΔΔΔ(S,M) ≤ Q∀
Bi ΔΔΔ(S, P ).

Then DI(M,Q∀
Bi ΔΔΔ(M,P )) = 1 and DI(M,Q∀

Bi ΔΔΔ(S,M)) = 0. Therefore,
Rule (fER1) is satisfied. The same argument can be applied also to syllogisms
AAP, AAT, AAK, A(∗A)I of Figure-I and, hence, they also satisfy Rule
(fER1).

Furthermore, DI(S,Q∀
Bi ΔΔΔ(S,M)) = 1 and DI(S,Q∀

Bi ΔΔΔ(S, P )) = 1. This
means that syllogism AAA satisfies Rule (fER2a). The inequality

DI(S,Q∀
¬¬¬Sm(S, P )) ≤ DI(S,Q∀

Bi Ve(S, P )) ≤ DI(S,Q∀
Bi Ex(S, P ))

≤ DI(S,Q∀
Bi ΔΔΔ(S,M)) = 1,

implies that Rule (fER2a) is satisfied by syllogisms AAP, AAT, AAK. Because
DI(S,Q∃

Bi ΔΔΔ(S, P )) = 0 then Rule (fER2a) is satisfied by syllogism A(∗A)I.
Let K = {∀,∃}. Rule (fER2b) is satisfied by all the considered syllogisms as

well because 0 = DI(P,QK
Ev (S, P )) ≤ DI(P,Q∀

Ev (M,P )).
Rule (fER3) is obviously satisfied and Rule (fER4) does not apply.
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Lemma 4. Syllogisms APP, APT, APK, A(∗P)I of Figure-I satisfy Rules
(fER1)–(fER4).

Proof. Let us consider syllogism APP. Then P1 = Q∀
Bi ΔΔΔ(M,P ), P2 =

Q∀
Bi Ex(S,M), C = Q∀

Bi Ex(S, P ) and

Q∀
Bi ΔΔΔ(M,P ) ⊗ Q∀

Bi Ex(S,M) ≤ Q∀
Bi Ex(S, P ).

Then DI(M,Q∀
Bi ΔΔΔ(M,P )) = 1 and DI(M,Q∀

Bi Ex(S,M)) = 0. Therefore,
Rule (fER1) is satisfied by APP and, consequently, also by APT, APK,
A(∗P)I.

Furthermore,

inf Supp(Bi ExC) ≤ inf Supp(Bi ExP2)

which means that DI(S,Q∀
Bi Ex(S, P )) ≤ DI(S,Q∀

Bi Ex(S,M)) and, therefore,
Rule (fER2a) is satisfied.

Let K = {∀,∃}. Since 0 = DI(P,Q∀
Bi ΔΔΔP1

(M,P )) = DI(P,QK
EvC (S, P )) = 0

for all the evaluative expressions occurring in syllogisms APP, APT, APK,
A(∗P)I, Rule (fER2b) is also satisfied.

Rule (fER3) is obviously satisfied and (fER4) does not apply.

Similarly to above, we can verify the validity for negative logical syllogisms
of Figure-I.

Theorem 1. All 30 valid syllogisms of Figure-I satisfy Rules (fER1)–(fER4).

Proof. It follows from Lemma 3 and Lemma 4.

5.2 Syllogisms Which Satisfy Extended Peterson’s Rules are Valid

In the previous subsection we showed that if a syllogism is valid then it satis-
fies generalized Rules (fER1)–(fER4). In this subsection we will prove also the
opposite implication.

Lemma 5. Let us consider an arbitrary syllogism of Figure-I and assume that
it satisfies Rules (fER1)–(fER4). Then it is valid.

Proof. Possible forms of syllogisms of Figure-I are the following:

(a):
QP1(M, P )
QP2 (S, M)
QC (S P )

(b):
QP1(M,¬¬¬P )
QP2 (S, M)
QC (S ¬¬¬P )

(c):
QP1(M, P )
QP2 (S,¬¬¬M)
QC (S ¬¬¬P )

(d):
QP1(M, ¬¬¬P )
QP2 (S,¬¬¬M)
QC (S ¬¬¬P )

(e):

QP1(M,¬¬¬P )
QP2 (S, M)
QC (S P )

(f):
QP1(M, ¬¬¬P )
QP2 (S,¬¬¬M)
QC (S P )

(g):
QP1(M, P )
QP2 (S,¬¬¬M)
QC (S P )

(h):
QP1(M, P )
QP2 (S, M)
QC (S ¬¬¬P )

It can be verified that forms (a) and (b) fulfill all Rules (fER1)-(fER4). Form
(c) violates Rule (fER2b), because DI(P,P1) = 0 and DI(P, C) = 1. So the
inequality DI(P, C) ≤ DI(P,P1) is not satisfied.
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Forms (d) and (f) violate Rule (fER3) because at least one premise must
have the form QK

Ev (Y,X) where K ∈ {∀,∃} and Y,X ∈ {S, P,M}, X �= Y .
The form (e), (g) and (h) violate Rule (fER4). We explain in the detail the

form (e). The first premise is negative which means that P1 = QK
Ev (M,¬¬¬P ). The

conclusion has the form C = QK
Ev (S, P ) which violates Rule (fER4). Forms (g)

and (h) do not fulfill Rule (fER4) for the same reason.
Let us examine two remaining forms:
Form (a) (affirmative): Put P1 = QP1(M,P ), P2 = QP2(S,M) and C =

QC(S, P ): Evidently, DI(M,P1) = inf Supp(EvP1), DI(M,P2) = 0 and because
of (fER1), inf Supp(EvP1) = 1 i.e., by [12, Lemma 10] QP1 is ∀ and we have

P1 =
∧

u∈N

(M(u) → P (u)). (12)

Using Rule (fER2b) for the subject, the minor premise must have the form:

P2 =
∨

Z∈F(N)

(
∧

u∈N

((S|Z)(u) �� M(u)) ∧ FR
EvP2

(S, S|Z)

)
(13)

and at the same time using Rule (fER2a) for predicate the conclusion has the
following possible form:

C =
∨

Z∈F(N)

(
∧

u∈N

((S|Z)(u) �� P (u)) ∧ FR
EvC (S, S|Z)

)
(14)

where EvP2 ≺ EvC and ��∈ {→,∧∧∧}.
Using (12), (13) and (14) we conclude that the following inequalities should

hold:

P1 ⊗ P2 =
∧

u∈N

(M(u) → P (u))⊗

∨

Z∈F(N)

(
∨

u∈N

(S|Z)(u) ⊗
∧

u∈N

((S|Z)(u) → M(u)) ∧ FR
Ev ,P2

(S, S|Z)
)

≤
∨

Z∈F(N)

(
∧

u∈N

((S|Z)(u) ∧∧∧ P (u)) ∧ FR
EvC (S, S|Z)

)
= C (15)

and

P1 ⊗ P2 =
∧

u∈N

(M(u) → P (u))⊗

∨

Z∈F(N)

(
∧

u∈N

((S|Z)(u) → M(u)) ∧ FR
EvP2

(S, S|Z)

)

≤
∨

Z∈F(N)

(
∧

u∈N

((S|Z)(u) → P (u)) ∧ FR
EvC (S, S|Z)

)

= C (16)
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P1 ⊗ P2 =
∧

u∈N

(M(u) → P (u))

⊗
∨

Z∈F(N)

(
∧

u∈N

((S|Z)(u) ∧∧∧ M(u)) ∧ FR
EvP2

(S, S|Z)

)

≤
∨

Z∈F(N)

(
∧

u∈N

((S|Z)(u) ∧∧∧ P (u)) ∧ FR
EvC (S, S|Z)

)

= C (17)

where EvP2 ≺ EvC . It can be verified using the properties of MV-algebra that
both inequalities (15), (16) and (17) hold true (cf. [12]). In case (15) this inequal-
ity holds true provided that the term with the existential import (presupposition)
is added. This term is in (15) marked by square brackets.

By setting concrete evaluative linguistic expressions we obtain several valid
forms of positive syllogisms of Figure-I. If in (15) we put EvP2 = EvC := Bi ΔΔΔ
then we obtain classical syllogism A(∗A)I-I. If in (17) we put EvP2 = EvC :=
Bi ΔΔΔ then we obtain classical syllogism AII-I.

Furthermore, if in (16) we put EvP2 = EvC := Bi ΔΔΔ we obtain classical
syllogism AAA-I. If in (15) we put EvP2 = EvC := Bi Ex,Bi Ve,¬¬¬Sm then we
obtain syllogisms APP-I, ATT-I, AKK-I, respectively.

At the same time, DI(S, C) = inf Supp(EvC) and DI(S,P2) =
inf Supp(EvP2). Rule (fER2a) says that

inf Supp(EvC) ≤ inf Supp(EvP2), (18)

which means from their position in 5-graded square of opposition that QK
P2

is
equal to or super-altern of QK

C where K = {∀,∃}. From it follows

QK
P2

(S, P ) ≤ QK
C (S, P ) (19)

which yields valid syllogisms AAP-I, AAT-I, AAK-I.
We continue with syllogisms with intermediate quantifiers in the minor

premise and in the conclusion. From the previous construction we know that
the first premise is universal. From (18) and (19) follow valid syllogisms ATK-
I, APT-I, APK-I. By putting concrete evaluative linguistic expressions in (15)
we obtain valid syllogisms A(∗P)I-I, A(∗T)I-I, A(∗K)I-I.

Form (b) (negative): Put P1 = QP1(M,¬P ), P2 = QP2(S,M) and C =
QC(S,¬P ). The proof is analogous to Figure-I (a).

We conclude that if an arbitrary syllogism of Figure-I fulfills all the extended
Peterson’s rules then it belongs among 30 valid syllogisms.

Theorem 2. If an arbitrary syllogism with intermediate quantifiers of Figures-I
satisfies Rules (fER1)–(fER4) then it is valid.

Proof. This is a consequence of Lemma 5 and others lemmas which can be proved
analogously.

Joining Theorems 1 and 2 we obtain the following corollary.

Corollary 1. A syllogism of Figures-I with intermediate quantifiers is valid iff
it satisfies Rules (fER1)–(fER4).
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6 Example of Peterson’s Logical Syllogism

In this section we will demonstrate application of Peterson’s rules. For this pur-
pose, we will consider the following syllogism of Figure-I:

PTT-I
Almost all M are P

Most S are M
Most S are P

This syllogism is invalid. We will demonstrate its invalidity on Venn’s diagram.

S PM

We can observe that the fuzzy set P is denoted by and the fuzzy set S is
denoted by . Furthermore, we can observe that if Almost all M are in P and
also Most S are in M then the resulting part, which is created by overlapping
both colors, does not represent a part Most S are P . The syllogism is invalid.

Verification of the invalidity of the above syllogism using extended Peterson’s
rules is the following:

Rule (fER1): DI(M,P1) = inf Supp(ExBiP1) > 0.5 and DI(M,P2) = 0. So
the Rule (fER1) is not satisfied.
Rule (fER2a): Furthermore, DI(S,P2) = inf Supp(Bi VeP2) > 0.5 and
DI(S, C) = inf Supp(Bi VeP2) which means that DI(S, C) ≤ DI(S,P2). So
Rule (fER2a) is satisfied.
Rule (fER2b): DI(P,P1) = 0 and DI(P, C) = 0. So DI(P, C) ≤ DI(P,P1)
and Rule (fER2b) is satisfied.
Rule (fER3): it is trivially fulfilled.
Rule (fER4): it is trivially fulfilled.

We can observe that the syllogism PTT-I is not valid because the
Rule (fER1) is not satisfied. However, if we replace the quantifier “Almost all”
with the universal quantifier “All” in the major premise, then Rule (fER1) will be
fulfilled and the syllogism becomes valid. The reason for changing the quantifier
in the first figure is based on the position of the middle formula in the antecedent
because then DI(M,P1) = 1.

7 Conclusion

In this article we returned to the extended Peterson’s rules for checking validity
of logical syllogisms. We proved that every syllogism of Figure-I with the inter-
mediate quantifiers “all, almost all, most, many, some” is valid if and only if it
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satisfies Peterson’s extended rules. A detailed elaboration of this theorem for all
figures will appear in a journal.

Further work will be focused on extension of the rules to syllogisms with other
kinds of intermediate quantifiers, namely “a few, several, a little”. Furthermore,
we will try to generalize the rules to syllogisms with arbitrary intermediate
quantifiers.

References

1. Cignoli, R.L.O., D’Ottaviano, I.M.L., Mundici, D.: Algebraic Foundations of Many-
valued Reasoning. Kluwer, Dordrecht (2000)

2. Gainor, J.: What is distribution in categorical syllogisms (2011). https://www.
youtube.com/watch?v=7 Y-Bxr4apQ
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Abstract. In this publication we will first focus on the construction
of the graded Aristotle’s hexagon in fuzzy natural logic (see [8]). The
main goal will be to mathematically formulate a new definition of the
contradictory property. In past publications, this definition was based on
delta operation, which gave very unnatural results. We will show that the
contradictory property can behave more naturally. In the end, we will
present another extension possibility in the form of a graded Peterson
hexagon with fuzzy intermediate quantifiers.
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1 Introduction

This publication will focus on the construction of the graded Aristotle’s and
Peterson’s hexagons of opposition in fuzzy natural logic as an extension of graded
Aristotle’s square of opposition. The Aristotle’s square of opposition ([20]) was
studied in many publications. Note that the Aristotle’s square of opposition
is fulfilled with presupposition only. The reader can find further details about
the necessity of presupposition in [9]. In [15,19]), the authors draw a crucial
distinction between the “classical” Aristotelian square of opposition and the
“modern” duality one based on the concepts of inner and outer negation. Another
extension using intermediate quantifiers, which in terms of meaning are just
among the classic quantifiers, was developed first by Thompson by adding the
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intermediate quantifiers “Almost all” and “Many” (see [18]). The final form
was later proposed by Peterson (see [16]), who introduced and philosophically
explained the position of the basic five intermediate quantifiers (“All”, “Almost
all”, “Most”, “Many” and “Some”) in the square. Graded version of both squares
was syntactically and also semantically analyzed in [9].

Béziau in [3] suggested to extend square of opposition into a hexagon. This
technically means to add two new formulas U and Y that are defined as dis-
junction of the two top corners of the square and conjunction of the two bottom
corners:

U = A∨∨∨ E : All or No B are A (1)
Y = I∧∧∧ O : Some but Not All B are A. (2)

We obtain Aristotelian hexagon as follows1:

U : All or No B are A

∗A : All B are A ∗E : No B are A

I : Some B are A O : Some B are Not A

Y : Some but Not All B are A

In [17], we can find differences between the Aristotelian hexagon and the
Duality hexagon. A more complex 3D generalization of the hexagon was proposed
by in ([6,14]). Polygons of opposition with quantifier-based operators in fuzzy
formal concept analysis were studied in [4].

Another motivation of this publication is the introduction of new forms of
fuzzy intermediate quantifiers based on the graded Peterson’s square of oppo-
sition and to construct graded Peterson’s hexagon of opposition. The new con-
struction leads us to the idea of using natural language to describe new proper-
ties.

A few people are vaccinated against COVID 19 and a few people are not
vaccinated against COVID 19

1 The diagonal lines represent contradictories, the formulas A and E are contraries,
A and E entail U, while Y entails both formulas I as well as O. It is interesting to
see that the logical hexagon obtains three Aristotle’s squares of opposition, namely,
AEIO,AYOU and EYUI.



From Graded Aristotle’s Hexagon to Graded Peterson’s Hexagon 371

2 Preliminaries

2.1 Formal Definition of fuzzy Intermediate Quantifiers

In this paper, we will work with the fuzzy type theory (the higher-order fuzzy
logic) and the theory of evaluative linguistic expressions. All the details can be
found in the papers [9]. Recall that the basic syntactical objects of �L-FTT are
classical, namely the concepts of type and formula (cf. [1]).

The semantics is defined using the concept of general model in which the type
o of truth values is assigned a linearly ordered MVΔΔΔ-algebra which is an MV-
algebra extended by the delta operation (see [5,13]). In this paper we will con-
sider only models whose algebra of truth values forms the standard �Lukasiewicz
MVΔ-algebra

L = 〈[0, 1],∨,∧,⊗,→, 0, 1,Δ〉. (3)

The following special formulas are important in our theory:

Υoo ≡ λzo · ¬¬¬ΔΔΔ(¬¬¬zo), (nonzero truth value)

Υ̂oo ≡ λzo · ¬¬¬ΔΔΔ(zo ∨∨∨ ¬¬¬zo). (general truth value)

Thus, M(Υ (Ao)) = 1 iff M(Ao) > 0, and M(Υ̂ (Ao)) = 1 iff M(Ao) ∈ (0, 1)
holds in any model M.

The main change is the introduction of the so-called cut of a fuzzy set. We
define the special operation “cut of a fuzzy set” for given fuzzy sets y, z ∈
Formoα: y|z ≡ λxα · zx&ΔΔΔ(Υ (zx) ⇒ (yx ≡ zx)).

Lemma 1 [9]. Let M be a model and p an assignment such that B = Mp(y) ⊂∼
Mα, Z = Mp(z) ⊂∼ Mα. Then for any m ∈ Mα

Mp(y|z)(m) = (B|Z)(m) =

{
B(m), if B(m) = Z(m),
0 otherwise.

As we can see in the Lemma 1 by this operation we pick elements from B exactly
in their degree of membership or we do not pick them at all.

The following completeness theorem will be often used below.

Theorem 1 ([10]).

(a) A theory T is consistent iff it has a general model M.
(b) For every theory T and a formula Ao, T 
 Ao iff T |= Ao.

2.2 Theories of Evaluative Linguistic Expressions

The main constituent of FNL is the theory of evaluative linguistic expressions.
These are special natural language expressions such as small, medium, big, very
short, more or less deep, quite roughly strong, extremely high, etc. A formal
theory of their semantics was introduced in [11].
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The evaluative linguistic expression is represented in the theory TEv by one
of the following formulas:

Sm ννν,Me ννν,Bi ννν,ννν (4)

where ννν is a hedge. For example, SmVe is a formula construing the evaluative
expression “very small”.

2.3 Fuzzy Intermediate Quantifiers

Definition 1 (Fuzzy intermediate quantifiers, [9]). Let Ev be a formula
representing an evaluative expression, x be variables and A,B, z be formulas.
Let μ be a fuzzy measure. Then either of the following formulas construes the
sentence “Quantifier B’s are A”.

(Q∀
Ev x)(B,A) ≡ (∃z)[(∀x)((B|z)x ⇒⇒⇒ Ax) ∧∧∧ Ev((μB)(B|z))), (5)

(Q∃
Ev x)(B,A) ≡ (∃z)[(∃x)((B|z)x ∧∧∧ Ax) ∧∧∧ Ev((μB)(B|z)). (6)

If we put instead of Ev concrete evaluative linguistic expressions we obtain the
following fuzzy intermediate quantifiers:

A: All B’s are A := (Q∀
BiΔΔΔx)(B,A),

E: No B’s are A := (Q∀
BiΔΔΔx)(B,¬¬¬A),

P: Almost all B’s are A := (Q∀
Bi Exx)(B,A)

B: Almost all B’s are not A := (Q∀
Bi Exx)(B,¬¬¬A)

T: Most B’s are A := (Q∀
Bi Vex)(B,A)

D: Most B’s are not A := (Q∀
Bi Vex)(B,¬¬¬A)

K: Many B’s are A := (Q∀
¬Smx)(B,A)

G: Many B’s are not A := (Q∀
¬Smx)(B,¬¬¬A)

F: A few (A little) B’s are A := (Q∀
Sm Six)(B,A)

V: A few (A little) B’s are not A := (Q∀
Sm Six)(B,¬¬¬A)

S: Several B’s are A := (Q∀
Sm Vex)(B,A)

Z: Several B’s are not A := (Q∀
Sm Vex)(B,¬¬¬A)

I: Some B’s are A := (Q∃
BiΔΔΔx)(B,A),

O: Some B’s are not A := (Q∃
BiΔΔΔx)(B,¬¬¬A).

In the following Theorem we will describe monotonic behavior of fuzzy inter-
mediate quantifiers.
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Theorem 2 [12]. Let A,. . . ,O are intermediate quantifiers. Then the following
set of implications is provable in T IQ (theory of intermediate quantifiers):

1. T IQ 
 A ⇒⇒⇒ P, T IQ 
 P ⇒⇒⇒ T, T IQ 
 T ⇒⇒⇒ K,
T IQ 
 K ⇒⇒⇒ F, T IQ 
 F ⇒⇒⇒ S, T IQ 
 S ⇒⇒⇒ I.

2. T IQ 
 E ⇒⇒⇒ B, T IQ 
 B ⇒⇒⇒ D, T IQ 
 D ⇒⇒⇒ G,
T IQ 
 G ⇒⇒⇒ V, T IQ 
 V ⇒⇒⇒ Z, T IQ 
 Z ⇒⇒⇒ O.

By *A, *E, *P, *B, *T, *D, *K, *G, *I, *O we denote fuzzy intermediate
quantifiers with presupposition (for precise definition see [9]).

3 From Graded Aristotle’s Square to Graded Aristotle’s
Hexagon

Before the actual construction of the graded Aristotle’s hexagon of opposition,
let us first recall the basic formulas that form the graded Aristotle’s square of
opposition. At this point, we will not recall and discuss in detail the necessity of
presupposition. We refer the reader to the publication [9].

The graded Aristotle’s square of opposition in �L-FTT works with the follow-
ing four formulas with presupposition:

∗A :All B are A (∀x)(Bx ⇒⇒⇒ Ax)&&&(∃x)Bx, (7)
E :No B are A (∀x)(Bx ⇒⇒⇒ ¬¬¬Ax), (8)
I :Some B are A (∃x)(Bx ∧∧∧ Ax), (9)

∗O :Some B are not A (∃x)(Bx ∧∧∧ ¬¬¬Ax)∇∇∇¬¬¬(∃x)Bx. (10)

We follow the classical approach of Béziau approach, who in [2,3] suggested
to extend a square of opposition into the hexagon of opposition. This techni-
cally means to add two new generalized formulas U and Y that are defined as
the strong disjunction of the two top corners of the square and the strong
conjunction of the two bottom corners:

We define the new general formulas as follows:

U := A∇∇∇E All or No B are A. (11)
Y := I&&&O Some but Not All B are A. (12)

3.1 Generalized Definition that Form Graded Structures

In this subsection we will focus on the mathematical formulation of the defini-
tions that form the graded Aristotle square, graded Peterson square as well as
their extension to hexagons of opposition.

Let us recall at this point that the first result of this publication is the presen-
tation of a modified definition of the contradictory property, which in previous
publications was designed using the delta logical operation (see [7]). We first
recall the original definition of the contradictory property with a concrete exam-
ple of the graded Aristotle’s hexagon and explain to the reader the motivation
of the new definition which will be introduced below. Other definitions of other
properties used in example below can be found in Definition 3.
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Definition 2. Let T be a consistent theory of �L-FTT, M |= T be its model.

– P1 and P2 are contradictories in the model M if
• M(ΔΔΔP1) ⊗ M(ΔΔΔP2)) = M(⊥)
• M(ΔΔΔP1) ⊕ M(ΔΔΔP2)) = M(�)

They are contraries in the theory T if
T 
 ¬¬¬(ΔΔΔP1 &&&ΔΔΔP2) and T 
 ΔΔΔP1 ∇∇∇ΔΔΔP2 . By completeness, this is equivalent
to semantic definition above for every model M |= T .

Example 1. Let us consider a model M |= T IQ such that M(A) = a > 0 (e.g.,
a = 0.2). Since A,E are contraries, we have M(E) = e ≤ 1 − a. We know
that M(ΔΔΔA) = 0 and so M(ΔΔΔO) = 1 because M(ΔΔΔA) ⊗ M(ΔΔΔO) = 0 and
M(ΔΔΔA) ⊕ M(ΔΔΔO) = 1 which means that A and O are contradictories. The
same is fulfilled for U and Y Consequently, O is subaltern of E.

The I is subaltern of A and thus M(I) = i ≥ 0.2. However, I is contradic-
tory with E and so M(I) = i = 1. Finally, I is sub-contrary with O because
M(O∇∇∇ I) = 1 and I is subaltern of A. These results are summarized in the
following scheme (Fig. 1):

Fig. 1. Graded Aristotle’s hexagon of opposition

From the example we can observe that the quantifiers U and Y are contra-
dictory and yet they can be true to quite a large degree, which is unnatural.

Below we present an overview of all mathematical definitions forming graded
structures of opposition, including a modified definition of the contradictory
property.

Definition 3. Let T be a consistent theory of �L-FTT, M |= T be its model and
P1, P2 ∈ Formo be closed formulas of type o.

– P1 and P2 are contraries in the model M if

M(P1) ⊗ M(P2) = 0. (13)

They are contraries in the theory T if T 
 ¬¬¬(P1 &&&P2). By completeness, this
is equivalent to (13) for every model M |= T .
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– P1 and P2 are sub-contraries in the model M if

M(P1) ⊕ M(P2) = 1. (14)

They are sub-contraries in the theory T if T 
 (P1 ∇∇∇ P2). By completeness,
this is equivalent to (14) for every model M |= T .

– P1 and P2 are contradictories in the model M if both

M(P1) ⊗ M(P2) = 0 as well as M(P1) ⊕ M(P2) = 1. (15)

They are contradictories in the theory T if both T 
 P1 &&& P2 ≡ ⊥ as well
as T 
 P1 ∇∇∇ P2. By completeness, this means that (15) hold for every model
M |= T .

– The formula P2 is a subaltern of P1 and the formula P1 is a superaltern of
P2 in the model M if

M(P1) ≤ M(P2). (16)

It is subaltern in the theory T if T 
 P1 ⇒⇒⇒ P2. By completeness, this means
that the inequality (16) holds true in every model M |= T .

3.2 Formal Proofs of Properties with A,E,I,O

Theorem 3. The formulas ∗A and ∗E are contraries in T IQ.

Proof. It follows from the following provable formula in T IQ:

T IQ 
 (∀x)(Bx ⇒⇒⇒ Ax)&&&(∀x)(Bx ⇒⇒⇒ ¬¬¬Ax) ⇒⇒⇒ ((∃x)(Bx)2 ⇒⇒⇒ ⊥).

By the provable property 
 (∃x)(Bx)2 ≡ (∃x)Bx&&&(∃x)Bx we obtain that

T IQ 
 (∀x)(Bx ⇒⇒⇒ Ax)&&&(∃x)Bx&&&(∀x)(Bx ⇒⇒⇒ ¬¬¬Ax)&&&(∃x)Bx ⇒⇒⇒ ⊥
which is equivalent to T IQ 
 ¬¬¬(∗A&&& ∗E).

Theorem 4. The formulas ∗I and ∗O are sub-contraries in T IQ.

Proof. Analogously as in Theorem 3.

Lemma 2. The following is true:

(a) T IQ 
 ¬¬¬(∗A&&&O), T IQ 
 A∇∇∇ ∗O, T IQ 
 ¬¬¬(∗E&&& I), T IQ 
 E∇∇∇ ∗I

Proof. (a) By properties of �L-FTT we have

T IQ 
 ((Bx ⇒⇒⇒ Ax)&&& Bx) ⇒⇒⇒ (Bx ∧∧∧ Ax).

By weakening and applying of transitivity we obtain

T IQ 
 ((Bx ⇒⇒⇒ Ax)&&& Bx) ⇒⇒⇒ Ax. (17)

By T IQ 
 (Bx ∧∧∧ ¬¬¬Ax) ⇒⇒⇒ ¬¬¬Ax and from (17) we get

T IQ 
 (((Bx ⇒⇒⇒ Ax)&&& Bx)&&&(Bx ∧∧∧ ¬¬¬Ax)) ⇒⇒⇒ ⊥.

By quantifiers properties we obtain

T IQ 
 ¬¬¬(((∀x)(Bx ⇒⇒⇒ Ax)&&&(∃x)Bx)&&&(∃x)(Bx ∧∧∧ ¬¬¬Ax)).
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Theorem 5 (contradictories). The following is true:

(a) the formulas ∗A and O are contradictories in T IQ,
(b) the formulas ∗E and I are contradictories in T IQ.

Proof It follows from Lemma (2).

3.3 Formal Proofs of Properties of A,E,Y

Theorem 6. The following is true:

(a) the formulas ∗A and Y are contraries in T IQ.
(b) the formulas ∗E and Y are contraries in T IQ.

Proof. (a) From Lemma 2(a) by the definition of negation and by weakening of &&&
we obtain T IQ 
 (∗A&&&(I&&&O)) ⇒⇒⇒ ⊥. Finally we conclude that T IQ 
 ¬¬¬(∗A&&&Y).

3.4 Formal Proofs of Properties of U,O,I

Theorem 7 (sub-contraries). The following is true:

(a) the formulas U and ∗O are sub-contraries in T IQ.
(b) the formulas U and ∗I are sub-contraries in T IQ.

Proof. (a) From Lemma 2(a) and by T IQ 
 (A∇∇∇ ∗O) ⇒⇒⇒ (E∇∇∇(A∇∇∇ ∗O)) and by
associativity of ∇∇∇ we conclude that T IQ 
 U∇∇∇ ∗O.

3.5 Formal Proofs of Properties of Y,U

Theorem 8. The following is true:

– the formulas U and Y are contradictories in T IQ.

Proof. By weakening of ∧∧∧ and by quantifiers properties we have

T IQ 
 (∃x)(Bx ∧∧∧ Ax)︸ ︷︷ ︸
I

&&& (∃x)(Bx ∧∧∧ ¬¬¬Ax)︸ ︷︷ ︸
O

⇒⇒⇒ ⊥ (18)

Once more by weakening of &&& we obtain

T IQ 
 (A∇∇∇E)&&&(I&&&O) ⇒⇒⇒ (I&&&O)

From this, applying of (18) and by transitivity we conclude that T IQ 
 ¬¬¬(U&&&Y).
The second property T IQ 
 U∇∇∇Y can be proved analogously.
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3.6 Formal Proofs of Properties of A,E,I,O,U,Y

Lemma 3. The following is provable:

(a) T IQ 
 A ⇒⇒⇒ U, T IQ 
 E ⇒⇒⇒ U,T IQ 
 Y ⇒⇒⇒ O, T IQ 
 Y ⇒⇒⇒ I.

Proof. All properties follow from the following provable formulas: T IQ 

(Ax&&& Bx) ⇒⇒⇒ Ax and T IQ 
 Ax ⇒⇒⇒ (Ax∇∇∇ Bx).

Theorem 9 (sub-alterns). The following is true:

(a) the formula A is superaltern of U, the formula E is superaltern of U,
(b) the formula Y is superaltern of O, the formula Y is superaltern of I.

Proof. It follows from Lemma 3.

Example 2. Let us consider the same model M |= T IQ as in the previous
example. We will discuss mainly the property of contradictory. The formula
A is contradictory with O as well as E with I. So M(A) ⊗ M(O) = 0 and
M(E) ⊕ M(I) = 1, The same is fulfilled for U with Y. Below we can see the
concrete example (Fig. 2).

Fig. 2. Modified graded Aristotle’s hexagon of opposition

From the above modified graded hexagon, we can see that the new quantifiers
U and Y satisfy the contradictory property. At the same time, the new definition
of the contradictory property gives more natural interpretations of the quantifiers
representing graded Aristotle square and hexagon of opposition.

4 Future Direction: From Graded Peterson’s Square to
Graded Peterson’s Hexagon

In this part of the article we outline another idea to continue studying the graded
Peterson’s hexagon of opposition.
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We propose new forms of fuzzy intermediate quantifiers as follows:

UBi Ex := Almost all B are A or Almost all B are not A (19)
UBi Ve := Most B are A or Most B are not A (20)
Y¬¬¬Sm := Many B are A and Many B are not A (21)
YSm Si := A few B are A and A few B are not A (22)
YSm Ve := Several B are A and Several B are not A. (23)

Below we present an overview of all new quantifiers, which are always formed
using one positive and one negative quantifier.

– UBi Ex := P∇∇∇B,UBi Ve := T∇∇∇D
– Y¬¬¬Sm := K&&&G,YSm Si := F&&&V,YSm Ve := S&&&Z.

New forms of fuzzy intermediate quantifiers offers the idea of working with
new natural language expressions.

4.1 Selected Properties of Fuzzy Intermediate Quantifiers

In this subsection, we will focus on formally proving selected properties related
to new fuzzy intermediate quantifiers. We will also mention the results that have
already been proven and are closely related to the construction of the graded
hexagon. Since we are limited by the number of pages, we will give an example
of a graded Peterson hexagon without showing all the proofs of the individual
properties for the sake of clarity for the reader.

Contraries

Lemma 4. The following is provable:

(a) T IQ 
 ¬¬¬(∗A&&&YSm Ve), T IQ 
 ¬¬¬(∗A&&&YSm Si), T IQ 
 ¬¬¬(∗A&&&Y¬¬¬Sm)
(d) T IQ 
 ¬¬¬(∗E&&&YSm Ve),T IQ 
 ¬¬¬(∗E&&&YSm Si), T IQ 
 ¬¬¬(∗E&&&Y¬¬¬Sm)

Proof. ad) (a) Using Lemma 2(a) we have that T IQ 
 ∗A&&&(I&&&O) ⇒⇒⇒ ⊥. Then
by Theorem 2 we know that T IQ 
 S&&&Z ⇒⇒⇒ I&&&O. From this we have

T IQ 
 ∗A&&&(S&&&Z) ⇒⇒⇒ ∗A&&&(I&&&O).

Finally, by the transitivity we obtain T IQ 
 ∗A&&&(S&&&Z) ⇒⇒⇒ ⊥.
Other properties can be proved analogously.

5 Conclusion

In this paper, we build on previous results concerning graded structures of oppo-
sitions. The first main result was to propose a modified definition of the con-
tradictory property, which already gives the expected results for the considered
fuzzy intermediate quantifiers. Furthermore, we focused on the introduction of
new forms of fuzzy intermediate quantifiers. Properties of the new forms of inter-
mediate quantifiers are shown in Table 1.



From Graded Aristotle’s Hexagon to Graded Peterson’s Hexagon 379

Table 1. Graded Peterson’s hexagon of opposition with “A few” and “Several”

U : M(A∇∇∇E) = 0.8

UExBi : M(P∇∇∇B) = 0.9

UVeBi : M(T∇∇∇D) = 0.95

∗A : M(A) = 0.2 ∗E : M(E) = 0.6

∗P : M(P) = 0.3 ∗B : M(B) = 0.6

∗T : M(T) = 0.3 ∗D : M(D) = 0.65

∗K : M(K) = 0.3 ∗G : M(G) = 0.7

∗F : M(F) = 0.35 ∗V : M(V) = 0.75

∗S : M(S) = 0.4 ∗Z : M(Z) = 0.8

I : M(I) = 0.4 O : M(O) = 0.8

Y¬¬¬ Sm : M(K&&&G) = 0

YSm Si : M(F&&&V) = 0.1

YSm Ve : M(S&&&Z) = 0.2

Y : M(I&&&O) = 0.2
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2. Béziau, J.: New light on the square of oppositions and its nameless corner. Log.
Investig. 10, 218–233 (2003)
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Abstract. This publication aims to continue the study of fuzzy Peter-
son’s logical syllogisms with fuzzy intermediate quantifiers. The main
idea of this article is not to formally or semantically prove the validity
of syllogisms, as was the case in previous publications. The main idea is
to find a mathematical formula by which we are able to derive the num-
ber of valid Peterson syllogisms based on the number of intermediate
quantifiers.
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1 Introduction

A syllogism is a kind of logical argument that applies deductive reasoning to
arrive at a conclusion based on two propositions that are asserted or assumed to
be true. Logical syllogisms were already addressed by Aristotle himself, whose
work was followed up by several authors from the fields of philosophy, psychol-
ogy, medicine, and other fields. In this publication, we will focus on the special
forms of logical syllogisms that were first proposed by Thompson [15] and then
continued by Peterson in his book [14]. Peterson devoted himself mainly to the
study of the basic five intermediate quantifiers “All, Almost all, Most, Many,
Some” and verified the validity of 105 logical syllogisms using Venn’s diagrams.
He thus followed the work of Thompson [15] and proposed 12 new non-trivial
syllogisms with intermediate quantifiers in both premises.

This group of logical syllogisms belongs to the group of generalized quantifiers
(see [3,5]). Another generalization came with the introduction of the concept of
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fuzzy set, which was proposed by Zadeh already in 1965 [17]. Therefore, another
group of authors [13,16] began to study fuzzy syllogisms of different types using
different verification methods. Zadeh himself was already studying fuzzy inter-
mediate quantifiers and related fuzzy logical syllogisms [18].

We followed Peterson’s work in several other publications [2,6,7], where we
first proposed mathematical definitions of the aforementioned quantifiers and
later formally verified the validity of all 105 fuzzy logical syllogisms with fuzzy
intermediate quantifiers.

As we stated above, in general, a logical syllogism assumes two premises and
a conclusion derived from them. Based on the position of the middle formula,
we are talking about four possible figures and assuming five quantifiers about
4000 possible forms of logical syllogisms.

In this publication, we will first discuss a mathematical formula proposed by
Peterson for calculating the number of valid logical syllogisms given a known
number of intermediate quantifiers. Furthermore, we will show that the pro-
posed Peterson formula does not give the correct number of valid syllogisms in
individual figures.

2 Preliminaries

2.1 The Algebraic Structure

We will assume for this work a linearly ordered MVΔ-algebra LΔ =
〈L,∨,∧,⊗,→, 0, 1,Δ〉. A special case is the standard �Lukasiewicz MVΔ-algebra
LLuk

Δ with L = [0, 1], a ⊗ b = max{0, a + b − 1}, a → b = min{1, 1 − a + b} and
a unary operation Δ(a) = 1 if a = 1 and Δ(a) = 0 otherwise, a, b ∈ [0, 1] (see
[1,12]). For the theory of intermediate quantifiers, we need a special operation
called cut of a fuzzy set B w.r.t. a fuzzy set Z which is defined as follows: let M
be a universum and B,Z ⊂∼ M . Then for any u ∈ M the operation B|Z “cuts”
B is B|Z(u) = B(u) = Z(u) if B(u) = Z(u). Otherwise (B|Z)(u) = 0. If there
is no such u then B|Z = ∅. The motivation and explanation for the introduction
of this operation can be found in [8].

Let M |= T IQ be a model of the theory T IQ. If A is a formula then its
interpretation M(A) is a fuzzy set A ∈ F(M). Precise definitions and other
details of T IQ can be found in [6,10].

2.2 Evaluative Linguistic Expressions

Natural language evaluation expressions are part of the mathematical definition
of fuzzy intermediate quantifiers. We have already written several times about
the theory of evaluative language expressions in previous publications. At this
point, we will therefore only mention the necessary terms for this publication.

The theory of intermediate quantifiers is based on the theory of evaluative
linguistic expressions that are expressions of natural language such as very small,
about medium, roughly big, very short, more or less deep, quite roughly strong,
extremely high, etc. The formal theory of their semantics and more details about
this theory can be found in [9,11].
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2.3 Mathematical Definition of Fuzzy Intermediate Quantifiers

Recall that fuzzy intermediate quantifiers are modeled by selected formulas of
a special formal theory of �L-FTT. These formulas express quantification over
the universe represented by a fuzzy set whose size is characterized by a measure
which was formally characterized in [8]. At this point, we will not present all the
definitions of the theory of intermediate quantifiers (T IQ) in detail. We refer the
reader to previous publications.

Let us recall that an intermediate quantifier of type 〈1, 1〉 is one of the fol-
lowing formulas:

(Q∀
Ev x)(B,A) ≡ (∃z)[(∀x)((B|z)x ⇒⇒⇒ Ax) ∧∧∧ Ev((μB)(B|z))], (1)

(Q∃
Ev x)(B,A) ≡ (∃z)[(∃x)((B|z)x ∧∧∧ Ax) ∧∧∧ Ev((μB)(B|z))]. (2)

where Ev is a formula representing some evaluative linguistic expression, z, x are
variables and A,B are formulas where B represents a universe of quantification
where B,B|z are measurable fuzzy sets. Either of the quantifiers (1) or (2)
construes the sentence

〈Quantifier〉 B′s are A (3)

where 〈Quantifier〉 is a quantifier in a linguistic form.
If we put concrete evaluative linguistic expression instead of Ev, we obtain

these fuzzy intermediate quantifiers:

A : All B’s are A := (Q∀
BiΔΔΔx)(B,A) ≡ (∀x)(Bx ⇒⇒⇒ Ax),

E : No B’s are A := (Q∀
BiΔΔΔx)(B,¬¬¬A) ≡ (∀x)(Bx ⇒⇒⇒ ¬¬¬Ax),

P : Almost all B’s are A := (Q∀
Bi Exx)(B,A)

B : Almost all B’s are not A := (Q∀
Bi Exx)(B,¬¬¬A)

T : Most B’s are A := (Q∀
Bi Vex)(B,A)

D : Most B’s are not A := (Q∀
Bi Vex)(B,¬¬¬A)

K : Many B’s are A := (Q∀
¬Smx)(B,A)

G : Many B’s are not A := (Q∀
¬Smx)(B,¬¬¬A)

I : Some B’s are A := (Q∃
BiΔΔΔx)(B,A) ≡ (∃x)(Bx ∧∧∧ Ax),

O : Some B’s are not A := (Q∃
BiΔΔΔx)(B,¬¬¬A) ≡ (∃x)(Bx ∧∧∧ ¬¬¬Ax).

By *A, *E, *P, *B, *T, *D, *K, *G, *I, *O we denote fuzzy interme-
diate quantifiers with presupposition (for precise definition see [8]). Quantifiers
A,P,T,K,I are called affirmative quantifiers. Quantifiers E,B,D,G,O are called
negative quantifiers. These fuzzy intermediate quantifiers can be ordered by
monotonicity:
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Theorem 1 (Monotonicity).[10] Let A,. . . ,O are fuzzy intermediate quan-
tifiers. Then the following set of implications is provable in T IQ:

1. T IQ � A ⇒⇒⇒ P, T IQ � P ⇒⇒⇒ T, T IQ � T ⇒⇒⇒ K, T IQ � K ⇒⇒⇒ I.
2. T IQ � E ⇒⇒⇒ B, T IQ � B ⇒⇒⇒ D, T IQ � D ⇒⇒⇒ G, T IQ � G ⇒⇒⇒ O.

2.4 Formalization of Syllogisms

The syllogism is a triple of formulas P1,P2, C of the theory T IQ where P1 is
a major premise, P2 a minor premise and C is a conclusion. We say that it is
strongly valid1 if

T IQ � P1 &&&P2 ⇒⇒⇒ C. (4)

By the completeness theorem, syllogism (4) is strongly valid iff

M(P1) ⊗ M(P2) ≤ M(C) (5)

holds in any model M |= T IQ. Validity of (4) for all syllogisms presented in [14]
was proven syntactically in [6,7].

Let Q1, Q2, Q3 be quantifier symbols and S, P,M be formulas2 representing
properties of elements. The formula S is a subject, P is a predicate and M is a
middle formula. As usual, syllogisms are gathered into the following four figures:

Figure-I
Q1 M are P

Q2 S are M
Q3 S are P

Figure-II
Q1 P are M

Q2 S are M
Q3 S are P

Figure-III
Q1 M are P

Q2 M are S
Q3 S are P

Figure-IV
Q1 P are M

Q2 M are S
Q3 S are P

where the first line in each figure is the major premise P1, the second line
is the minor premise P2 and the third line is the conclusion C. To write syllo-
gisms, we use the abbreviation P1P2C, where instead of P1P2C we substitute the
respective fuzzy intermediate quantifiers expressed by their letter abbreviation.
We distinguish between trivial and non-trivial syllogisms. Trivial syllogisms con-
tain one or two classical quantifiers (A, E, I, O) in the premises. Non-trivial
syllogisms do not contain classical quantifiers in the premises. In this text, we will
deal with Peterson’s syllogisms, they are formed by fuzzy intermediate quanti-
fiers defined by the formula (1) or (2). We will refer to these Peterson’s syllogisms
as syllogisms.

1 In Peterson’s approach, we use the term valid syllogism. Our definition is based on
strong conjunction then we use the term strongly valid syllogism.

2 Many authors speak about terms instead of formulas. We call S, P,M formulas as
is common in logic.
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3 The Number of Strongly Valid Peterson’s Syllogisms

In this section, we will focus on a detailed explanation of Peterson’s formula
(see [14]) for calculating the number of valid Peterson’s syllogisms. Recall that
we mean a group of logical syllogisms with intermediate quantifiers that form
Peterson’s square of opposition.

3.1 The Importance of the Size of the Quantifier

Below we present Peterson’s formula for computing the number of valid Peter-
son’s syllogisms with intermediate quantifiers. Let us recall that this formula
is designed to calculate logical syllogisms with two premises and therefore one
middle formula is assumed. This ensures that the resulting syllogisms will belong
to one of the four Figures.

Proposition 1. Let one middle formula be assumed. Let k be a number of inter-
mediate quantifiers.3 Then the formula as follows:

6(k2 + k)/2 + 3k, (6)

determines the number of valid Peterson’s syllogisms.

As we can see the formula (6) uses only the number of quantifiers to calculate
the number of valid Peterson’s syllogisms. This formula does not use the size of
particular quantifiers4. In the following example, we will show that the size of
particular quantifiers affects the number of strongly valid Peterson’s syllogisms.

Below we present strongly valid syllogisms that have been proved on the basis
of the old definition of fuzzy intermediate quantifiers. It should be emphasized
that the strongly valid syllogisms are also held for the modified definition given
in this publication. For details see [8].

Example 1. Let us have quantifiers all, almost all, most, many, some. We
know that these syllogisms of Figure-III are strongly valid:

Theorem 2. [7] The following syllogisms of Figure-III are strongly valid in
T IQ:

A(*A)I (*P)AI (*T)AI (*K)AI IAI
A(*P)I *(PP)I *(TP)I *(KP)I
A(*T)I *(PT)I *(TT)I
A(*K)I *(PK)I

AII

3 We count affirmative and negative form of the same quantifier as one quantifier. The
number of quantifiers on the page 383 is k = 5.

4 The size of the quantifier “Q B’s are A” is determined by the proportion of B which
has the property A.
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Let us add quantifier Q1 which is defined by formula (1), to these quantifiers.
We assume that added quantifier Q1 satisfies the following assumption.

Assumption 1. 1. T IQ � A ⇒ Q1, T
IQ � Q1 ⇒ P, T IQ � P ⇒ T,

T IQ � T ⇒ K, T IQ � K ⇒ I.

From these fuzzy intermediate quantifiers, we can obtain these strongly valid
Peterson’s syllogisms of Figure-III.

Theorem 3. The following syllogisms of Figure-III are strongly valid in T IQ:

A(*A)I (*Q1)AI (*P)AI (*T)AI (*K)AI IAI
A(*Q1)I *(Q1Q1)I *(PQ1)I *(TQ1)I *(KQ1)I
A(*P)I *(Q1P)I *(PP)I *(TP)I *(KP)I
A(*T)I *(Q1T)I *(PT)I *(TT)I
A(*K)I *(Q1K)I *(PK)I

AII

Proof. From strongly valid syllogism IAI-III and Assumption 1 we obtain
strong validity of syllogisms in the first row by transitivity. From strongly valid
syllogism *(KP)I-III and Assumption 1 we obtain strong validity of syllogisms
in the fifth column by transitivity. Similarly, we can obtain strong validity of syl-
logisms in the first, in the third, and in the fourth column. From strongly valid
syllogism *(PK)I-III and Assumption 1 we obtain strong validity of syllogism
*(Q1K)I-III by transitivity. Then from strongly valid syllogism *(Q1K)I-III
and by Assumption 1 we obtain strong validity of syllogisms in the second col-
umn by transitivity.

As we can see in Theorem 3, we obtained 24 strongly valid syllogisms. Let us
note that in Assumption 1 we ordered quantifiers by size, but we do not know
exactly their size.

Let us add to the quantifiers All, almost all, most, many, some a quan-
tifier Q2, which is defined by formula (1). We assume that added quantifier Q2

satisfies the following assumption.

Assumption 2. 1. T IQ � A ⇒ P, T IQ � P ⇒ T, T IQ � T ⇒ K,
T IQ � K ⇒ Q2, T

IQ � Q2 ⇒ I.

Let us note that now we assume a smaller quantifier than in Assumption 1.

Theorem 4. The following syllogisms of Figure-III are strongly valid in T IQ:

A(*A)I (*P)AI (*T)AI (*K)AI (*Q2)AI IAI
A(*P)I *(PP)I *(TP)I *(KP)I
A(*T)I *(PT)I *(TT)I
A(*K)I *(PK)I
A(*Q2)I

AII
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Proof. From strongly valid syllogism AII-III and by Assumption 2 we obtain
strong validity of syllogisms in the first column by transitivity. From strongly
valid syllogism IAI-III and by Assumption 2 we prove by transitivity strongly
valid syllogisms in the first row. We know that the remaining quantifiers are
strongly valid from Theorem 2. We can conclude that in this case, we obtain 17
affirmative valid logical syllogisms.

In Example 1, we added one quantifier to the quantifiers All, almost all,
most, many, some. Depending on the size of the quantifier, we got a different
number of strongly valid syllogisms.

We showed that the total number of strongly valid Peterson’s syllogisms is
affected by the size of intermediate quantifiers. Generally for calculating the
number of strongly valid syllogisms, we can not use Peterson’s formula, but as
we will see in the following subsections some parts of this formula can be applied.

3.2 Discussion about Non-trivial Syllogisms of Figure-III

In the previous subsection, we got a different number of strongly valid syllo-
gisms depending on the size of the added quantifier. This difference was caused
by non-trivial quantifiers which occur on Figure-III. We show an example of how
generally non-trivial syllogisms of Figure-III work. For that, we will use Venn
diagrams. Peterson proposed his quantifiers to a description of quantities by
words of natural language. He also assigned individual intermediate quantifiers
their percentage meaning. In the following example, we will deal with the quan-
tifier “Most” which we can express as a percentage of “at least 60 %”. Classical
quantifier “Some” express “at least one”.

Example 2. Let us assume that M consists of one hundred objects (for example
one hundred people), so M=100. Let us consider syllogism TTI-III:

T: Most M’s are P
T: Most M’s are S
I: Some S are P

We assume that the first premise is valid. That means that at least 60% of M’s
has a property P. Most M’s (60% of 100 = 60) are P. We assume that the second
premise is valid. That means that at least 60% of M’s has a property S. Most
M’s (60% of 100 = 60) are S. If we put these results into Venn’s diagram we
obtain this result:

S P

M
60 60

We can see that we can not have 60 M’s are S and 60 different M’s which are P,
because we have 100 M’s in total. That means that we have at least 20 of M’s
which are S and also P as we can see in Venn’s diagram:
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S P

M
40 40

20

From premises we concluded that at least 20 of S’s are P. This means that also
at least one of S’s are P which is classical quantifier “Some”.

We can see that in general, for valid non-trivial Peterson’s syllogisms we need
the percentage sum of the premises to be higher than 100 % since it guarantees
at least one of S’s are P in the conclusion.

3.3 Peterson’s Formula for Concrete Figure

In this subsection, we will discuss in detail how to use Peterson’s formula to
calculate strongly valid Peterson’s syllogisms for individual figures. We will show
that we can partially apply Peterson’s formula for individual figures.

Peterson’s formula can be split into these respective formulas for the concrete
figure as follows:

Figure-I: 2(k2 + k)/2
Figure-II: 2(k2 + k)/2
Figure-III: 2(k2 + k)/2
Figure-IV: 3k

3.4 Assumptions

Before we start to examine particular Figures we need to mention some assump-
tions for the calculation of the number of strongly valid syllogisms.

Let Ev1, . . . ,Evm be evaluative linguistic expressions that differ only in the
hedges they contain. The hedges induce the following natural ordering (the def-
inition can be found in [10]):

Ev1 � Ev2 � · · · � Evm . (7)

We introduce the following general intermediate quantifiers;

(Q∀
i,Evi

x)(B,A) := (∃z)(((∀x)((B|z)x ⇒⇒⇒ Ax)) ∧∧∧ Ev i((μB)(B|z)) (8)

for all i = 1, . . . ,m. If the presupposition is needed then (8) is modified as
follows:

(∗Q∀
i,Evi

x)(B,A) := (∃z)[((∀x)((B|z)x ⇒⇒⇒ Ax)&&&(∃x)zx)∧∧∧Ev i((μB)(B|z))] (9)

for all i = 1, . . . ,m.
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The quantifiers in (8) or (9) are called affirmative and we will denote them
by Qa

i or ∗Qa
i , respectively, i = 1, . . . ,m. If the formula A is replaced by its

negation ¬¬¬A then we call the respective quantifiers negative and denote them
by Qn

i or ∗Qn
i , respectively. Note that all intermediate quantifiers are, according

to the classification introduce in ([4]), of type 〈1, 1〉.
Assumption 3. We always assume classical quantifiers A,E,I,O.

Assumption 4. Let Qa
1, Q

a
2, . . . , Q

a
m and Qn

1 , Qn
2 , . . . , Qn

m be quantifiers
obtained by the formula (8).

For these quantifiers we assume:

– If there exists a quantifier Qa
k then also exists quantifier Qn

k and vice versa.
– These quantifiers are intermediate

Qa
1, Q

a
2, . . . , Q

a
m,Qn

1 , Qn
2 , . . . , Qn

m �≡ A,E, I,O.
– We assume different quantifiers Qa

1 �≡ Qa
2 �≡ . . . �≡ Qa

m and Qn
1 �≡ Qn

2 �≡ . . . �≡
Qn

m

We also assume that we are able to order these quantifiers by their size as follows:

Assumption 5. T IQ � A ⇒ Qa
1 , T IQ � Qa

1 ⇒ Qa
2, . . . T IQ � Qa

m ⇒ I .

Assumption 6. T IQ � A ⇒ Qn
1 , T IQ � Qn

1 ⇒ Qn
2 , . . . T IQ � Qn

m ⇒ I.

Validity of Assumption 5 and Assumption 6 was proved in [7]. The ordering
of evaluative language expressions was used for this proof.

We will distinguish affirmative syllogisms which contain only affirmative
quantifiers, and negative syllogisms which contain some negative quantifiers in
the following text.

3.5 Figure-I

If we assume quantifiers all, almost all, most, many, some we get these
affirmative strongly valid syllogisms:

Theorem 5 ([7]). The following syllogisms of Figure-I are strongly valid in
T IQ:

AAA
AAP APP
AAT APT ATT
AAK APK ATK AKK

A(*A)I A(*P)I A(*T)I A(*K)I AII

We can see that we ordered affirmative strongly valid syllogisms by monotonicity
in Theorem 5. We get there a triangle. In the vertexes of this triangle are classical
syllogisms (these syllogisms contain only classical quantifiers). In the diagonal
of this triangle are syllogisms whose first premise is a classical quantifier A, the
second premise and the conclusion consist of the same quantifier. We can see that
we are weakening the conclusion in the columns. We can use this information to
generalize this pattern of Figure-I.
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Theorem 6. The following syllogisms of Figure-I are strongly valid in T IQ:

AAA
AAQa

1 AQa
1Q

a
1

AAQa
2 AQa

1 Qa
2 AQa

2 Qa
2

...
...

...
. . .

AAQa
m AQa

1 Qa
m AQa

2 Qa
m · · · AQa

m Qa
m

A(*A)I A(*Qa
1)I A(*Qa

2)I · · · A(*Qa
m)I AII

Proof. This was already proved in [7].

We can see that we can obtain the number of strongly valid syllogisms by the
formula (k2 + k)/2 in Theorem 6. We can see that we ordered generalized syl-
logisms by monotonicity into the triangle in Theorem 6 and we will call this
triangle a general pattern of the respective Figure.

There are also negative strongly valid syllogisms of Figure-I. Their general
pattern is similar to the Theorem 6 (see [7]), so the number of strongly valid
syllogisms can be obtained by the same formula (k2 + k)/2.

Corollary 1. The number of strongly valid syllogisms for generalized patterns
of Figure-I is given by formula 2(k2 + k)/2.

3.6 Figure-II

We are able to order generalized syllogisms of Figure-II into similar generalized
patterns as generalized syllogisms of Figure-I (see [7]).

Corollary 2. The number of strongly valid syllogisms for generalized patterns
of Figure-II is given by formula 2(k2 + k)/2.

3.7 Figure-III

Figure-III contains both non-trivial and trivial valid syllogisms. As we can see
in Example 1 the number of strongly valid syllogisms depends also on the size
of the quantifiers. If we look at Example 1 more closely the difference between
the number of strongly valid syllogisms is caused by non-trivial syllogisms.

We will focus on the trivial syllogisms of Figure-III. From quantifiers all,
almost all, most, many, some, we can construct strongly valid trivial syllo-
gisms on this figure. We can find affirmative strongly valid trivial syllogisms of
Figure-III in the first row and the first column in Theorem 2.

We can generalize this case by using our assumptions.

Theorem 7. The following syllogisms of Figure-III are strongly valid in T IQ:
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A(*A)I (*Qa
1)AI (*Qa

2)AI . . . (*Qa
m) IAI

A(*Qa
1)I

A(*Qa
2)I

...
A*(Qa

m)I
AII

Proof. Syllogisms AII-III and IAI-III are strongly valid in T IQ. We obtain
from strongly valid syllogism IAI-III and from Assumption 5 strong validity of
syllogisms in the first row by transitivity. From strongly valid syllogism AII-
III and from Assumption 5 we obtain strong validity of syllogisms in the first
column by transitivity.

The formula for calculation of the number of strongly valid trivial syllogisms in
Theorem 7 is (2k −1). We can also find negative strongly valid trivial syllogisms
of Figure-III. Their generalized pattern is similar to the pattern in Theorem 7
(see [7]) and the number of strongly valid trivial syllogism can be obtained by
the same formula 2k − 1.

Corollary 3. The number of strongly valid syllogisms for generalized patterns
of Figure-III is given by formula 2(2k − 1).

3.8 Figure IV

We are able to order strongly valid generalized syllogisms of Figure-IV into
columns according to monotonicity.

Theorem 8 ([7]). The following syllogisms of Figure-IV are strongly valid in
T IQ:

(*A)AI AEE E(*A)O
(*Qa

1)AI AEQn
1 E(*Qa

1)O
(*Qa

2)AI AEQn
2 E(*Qa

2)O
...

...
...

(*Qa
m)AI AEQn

m E(*Qa
m)O

IAI A(*E)O EIO

Corollary 4. The number of strongly valid syllogisms of Figure-IV in Theo-
rem 8 is given by the formula 3k.

4 Conclusion and Future Work

In this article, we focused on studying Peterson’s formula for computing valid
Peterson’s logical syllogisms. We analyzed all four figures in detail and showed
that for the third figure, Peterson’s formula does not work quite exactly. As we
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showed in this paper the number of strongly valid syllogisms is also affected by
the size of quantifiers.

The size of quantifiers affects the number of strongly valid non-trivial syllo-
gisms. If we consider only trivial syllogisms we are able to compute the number of
strongly valid trivial syllogisms for generalized patterns by our assumptions and
the number of quantifiers by the formula 4(k2+k)/2+3k+2(2k−1) = 2k2+9k−2.

In the future, we will follow the work of this text by investigating of non-
trivial syllogisms from our mathematical point of view. The idea for the future is
also to program the generator of strongly valid syllogisms based on the presented
generalizations.
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Abstract. T-scaling quantifiers are special fuzzy quantifiers employed
to extract information from datasets in fuzzy relational concept analysis.
In this article, we expand the class of t-scaling quantifiers by introducing
the so-called negative t-scaling quantifiers and (positive and negative)
existential scaling quantifiers. Then, we explore the logical relations of
opposition between fuzzy formal contexts deriving from quantifiers of
different types. Finally, we study the consequences of such relations on
a special pair of operators used to construct concepts in fuzzy formal
concept analysis.

Keywords: Fuzzy quantifiers · Logical relations of opposition · Formal
concept analysis · Fuzzy relational concept analysis · Fuzzy Concepts

1 Introduction

T-scaling quantifiers are special fuzzy quantifiers employed to extract informa-
tion from datasets in fuzzy relational concept analysis [1]. A t-scaling quantifier
is a function St depending on a threshold t ∈ [0, 1] and assigning a value of [0, 1]
to each pair of fuzzy sets of a given universe X. Its meaning can be understood
with an example. Suppose that X is the set of users of a given community, and
A and B are fuzzy sets of X such that let x ∈ X, A(x) and B(x) are respec-
tively the degrees to which “x is young” and “x likes sport”; then S0.6(A,B)
expresses how much “a part (being at least as big as 0.6 in the scale [0, 1]) of the
young users of the community like sport”. T-scaling quantifiers generalize crisp
scaling quantifiers on classical sets introduced in [2] and are interpretations in
a model of intermediate quantifiers, which are special formulas of the formal
theory of generalized intermediate quantifiers [3,4]. Let us underline that the
t-scaling quantifiers formula carries an existential import, also called presupposi-
tion, corresponding to the assumption that the universe of quantification must
be non-empty.
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The first goal of this article is to introduce new quantifiers in fuzzy relational
concept analysis: the class of negative t-scaling quantifiers {S−

t | t ∈ [0, 1]}
and the (positive and negative) existential scaling quantifiers S∃ and S−

∃ . The
quantifiers S−

t with t ∈ [0, 1] and S−
∃ catch negative information in the initial

dataset, i.e. information based on the absence of a certain amount of properties.
According to the previous example, S−

t (A,B) with t ∈ [0, 1], S∃(A,B), and
S−

∃ (A,B) respectively represent the degrees to which “a part (being at least as
big as t in the scale [0, 1]) of the young users of the community do not like sport”,
“at least a young user of the community likes sport”, and “at least a young user
of the community do not like sport”.

Fuzzy relational concept analysis (FRCA) mines information from datasets
organized as fuzzy relational context families, which are collections of fuzzy
object-attribute relations called fuzzy formal contexts1 and fuzzy object-object
relations [6]. This approach extends the method proposed in [2,7] by using fuzzy
logic.

In this article, we focus on the simplest fuzzy relational context family K
containing a pair of fuzzy formal contexts (X,Y, I) and (Z,W, J), and a fuzzy
relation r : X × Z → [0, 1]. So, starting from K, a quantifier S is chosen
to generate a new fuzzy formal context (X,YJ , IS) by merging the informa-
tion related to (Z,W, J) and r. After that, using one of the techniques exist-
ing in literature [8], fuzzy formal concept lattices are extracted from (Z,W, J)
and (X,Y ∪ YJ , I ∪ IS) to represent the information hidden in K, where the
fuzzy formal context (X,Y ∪YJ , I ∪ IS) is obtained by integrating (X,Y, I) with
(X,YJ , IS): the attributes of YJ are added to those of Y together with IS , which
is applied to the pairs of X × YJ .

Let us notice that (X,YJ , IS) and (X,YJ , IS′) may not coincide when the
related quantifiers S and S ′ are diverse. Therefore, in order to understand if and
how (X,YJ , IS) and (X,YJ , IS′) are connected, the second aim of this article is to
present logical relations of opposition characterizing Aristotle’s square [9,10] and
holding between (X,YJ , IS) and (X,YJ , IS′). In mathematical logic, the logical
relations of opposition between the propositions A and E are the following: A
and E are contraries if and only if they cannot be true together, but they both
can be false; sub-alterns if and only if A implies E; sub-contraries if and only if
they cannot be false together, but they both can be true; contradictories if and
only if A is the negation of E.

There exist several approaches to derive fuzzy concepts from fuzzy formal
contexts and here, we have chosen that proposed in [8]. In this case, given a
fuzzy formal context (X,Y, I), fuzzy concepts are generated by using a pair of
operators (FI , GI) depending on a threshold T ∈ (0, 1]2, where FI transforms
a fuzzy set of objects in a crisp set of attributes and dually GI transforms a

1 Let us recall that a fuzzy formal context is a triple (X, Y, I), where X is a set of
objects, Y is a set of attributes, and I is a fuzzy relation between X and Y [5].

2 In this paper, we choose the symbols t and T to indicate different and independent
thresholds: t serves to define t-scaling quantifiers and T to define the operators FI

and GI .
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crisp set of attributes in a fuzzy set of objects [8]. So, the last goal of this article
is to show the existence of some relations between FIS and FIS′ , and GIS and
GIS′ , which derive from a given relation of opposition between (X,YJ , IS) and
(X,YJ , IS′).

2 Preliminaries

This section describes some preliminary notions and results that we need in this
article.

2.1 Mathematical Tools for Fuzzy Logic

In this paper, we consider the standard �Lukasiewicz MV-algebra

〈[0, 1],∧,∨,⊗,→, 0, 1〉
where a ∨ b = max{a, b}, a ∧ b = min{a, b}, a ⊗ b = max{0, a + b − 1}, and
a → b = min{1, 1 − a + b} for each a, b ∈ [0, 1].

Moreover, these additional operations are considered: for each a, b ∈ [0, 1],
¬a = 1 − a (negation) and a ⊕ b = min{1, a + b} (strong summation).

Lemma 1. [11] Let 〈[0, 1],∧,∨,⊗,→, 0, 1〉 be the standard �Lukasiewicz MV-
algebra, then the following properties hold for all a, b, c, ai, bi ∈ [0, 1] with i ∈ I:

1. a = ¬¬a (double negation law);
2. if a = b then ¬a = ¬b;
3. if ai = bi for each i ∈ I, then

∧
i∈I ai =

∧
i∈I bi;

4.
∧

i∈I ai ≤ ak for each k ∈ I;
5. a ≤ ai for each i ∈ I if and only if a ≤ ∧

i∈I ai;
6. if a ≤ b then c → a ≤ c → b;
7. if ai ≤ bi for each i ∈ I then

∧
i∈I ai ≤ ∧

i∈I bi;
8. if a ≤ b then a ⊗ c ≤ b ⊗ c;
9. if a ≤ b then a ⊕ c ≤ b ⊕ c;

10. a ⊗ ¬a = 0;
11. if a ≤ b then ¬b ≤ ¬a;
12. a ⊕ b = ¬(¬a ⊗ ¬b).

In the sequel, we use the symbol [0, 1]X to denote the collection of all fuzzy
sets of a universe X (i.e. the functions from X to [0, 1]).

The next definition lists the relations of opposition between predicates rep-
resented by fuzzy relations (by a fuzzy relation between X and Z we mean a
function X × Z → [0, 1]).

Definition 1 (Relations of opposition). Let PA and PB be predicates inter-
preted by A,B ∈ [0, 1]X×Z .

– PA and PB are contraries if and only if A(x, z) ⊗ B(x, z) = 0 for all x ∈ X
and z ∈ Z,
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– PA and PB are sub-contraries if and only if A(x, z) ⊕ B(x, z) = 1 for all
x ∈ X and z ∈ Z,

– PB is sub-altern of PA if and only if A(x, z) ≤ B(x, z) for all x ∈ X and
z ∈ Z,

– PA and PB are contradictories if and only if A(x, z) = ¬B(x, z) for all x ∈ X
and z ∈ Z.

2.2 Fuzzy Formal Concept Analysis

The next definition presents a pair of fuzzy formal concept analysis operators
(FFCA operators), which are employed to form fuzzy concepts in [8].

Definition 2. Let (X,Y, I) be a fuzzy formal context and let T ∈ (0, 1]. We
consider FI : [0, 1]X → 2Y 3 and G : 2Y → [0, 1]X such that given A ∈ [0, 1]X

and B ⊆ Y ,

(a)

FI(A) =

{

y ∈ Y |
∧

x∈X

(A(x) → I(x, y)) ≥ T

}

(b)

GI(B)(x) =

{∧
y∈B I(x, y) if

∧
y∈Y I(x, y) ≥ T

0 otherwise
for each x ∈ X.

FI(A) is the set of all attributes of Y shared by all objects of A with degree at
least T and GI(B)(x) represents the smallest degree to which x has the attributes
of B, when it is greater than or equal to T .

Definition 3. Let (X,Y, I) be a fuzzy formal context. A pair (A,B) with A ∈
[0, 1]X and B ∈ [0, 1]Y is a fuzzy concept of (X,Y, I) if and only if F (A) = B
and G(B) = A.

We denote the set of all fuzzy concepts of (X,Y, I) with B(X,Y, I). The
collection of all fuzzy concepts extracted from (X,Y, I), is usually equipped with
the following relation: (A1, B1) � (A2, B2) if and only if A1 ⊆ A2 (or equivalently
B2 ⊇ B1). On the other hand, in this paper, we are not interested in the algebraic
properties of (B(X,Y, I),�). Finally, let us recall that the method to construct
fuzzy concepts by means of (FI , GI) is called One-Sided Threshold Approach.

2.3 Fuzzy Relational Concept Analysis

This subsection recalls the definition of t-scaling quantifies and explains how
these are used in fuzzy relational concept analysis.

The definition of t-scaling quantifiers is based on the following notions4.
3 The symbol 2Y denotes the power set of Y .
4 We write A = ∅ when A(x) = 0 for each x ∈ X, A = B when A(x) = B(x) for each

x ∈ X, and A ⊆ B when A(x) ≤ B(x) for each x ∈ X.
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Definition 4. The cardinality of A ∈ [0, 1]X is given by |A| =
∑

x∈X A(x).

Definition 5. Let A,B ∈ [0, 1]X , we put

μA(B) =

⎧
⎪⎨

⎪⎩

1 if A = ∅;
|B|
|A| if A �= ∅ and B ⊆ A;

0 otherwise;

μA(B) measures “how large the size of B is w.r.t. the size of A”.

Definition 6. Let A,B ∈ [0, 1]X . We put

(A|B)(x) =

{
A(x) if A(x) = B(x);
0 otherwise;

for each x ∈ X.
A|B is called cut of A w.r.t. B.

Definition 7. Let t ∈ [0, 1], we consider the function Δt : [0, 1] → [0, 1] such
that

Δt(a) =

{
1 if a ≥ t;
0 otherwise;

for each a ∈ [0, 1].

Definition 8. A t-scaling quantifier is a function

St : [0, 1]X × [0, 1]X → [0, 1]X with t ∈ [0, 1]

such that for each A,B ∈ [0, 1]X ,

St(A,B) =
∨

Z∈[0,1]X

((
∧

x∈X

(A|Z)(x) → B(x)

)

⊗
∨

x∈X

(A|Z)(x)

)

∧Δt(μA(A|Z)).

St(A,B) is the degree of the statement: there exists a cut A|Z of A such that
“all elements of A|Z belong to B”, “there exists at least one element in A|Z”,
and “the size of A|Z is at least as large as t (in the scale [0, 1]) w.r.t. the size of
A”.

We have proved that S1 is the quantifier all having this formula:

S1(A,B) =
∧

x∈X

((A)(x) → B(x)) ⊗
∨

x∈X

A(x).

As a consequence, the formula of St(A,B) can be rewritten as follows:

St(A,B) =
∨

Z∈[0,1]X

( S1(A|Z,B) ∧ Δt(μA(A|Z)) ). (1)
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2.4 Extracting Concepts from a Fuzzy Relational Context Family

This subsection describes the FRCA procedure, which was introduced in [6] to
mine fuzzy concepts from fuzzy multi-relational datasets5.

We confine to the simplest fuzzy relational context family (K,R), where K
is made of two fuzzy formal contexts (X,Y, I) and (Z,W, J), and R is made of
a fuzzy relation r : X × Z → [0, 1]. Moreover, let x ∈ X, we use the symbol rx

to denote the fuzzy set of Z such that rx(z) = r(x, z) for each z ∈ Z.
The input of the FRCA procedure is (K,R) and the output is obtained in

three fundamental steps.

1. A collection of fuzzy concepts B(Z,W, J) is generated by using one of the
existing fuzzy FCA algorithms.

2. A new fuzzy formal context (X,Y ∪ YJ , I ∪ It) is constructed by uniting
(X,Y, I) and (X,YJ , It) such that YJ = {yC | C ∈ B(Z,W, J)}6 and

It(x, y) = St(rx, EC) for all x ∈ X and yC = y ∈ YJ , (2)

where EC is the extent of the concept C of B(Z,W, J). Therefore,

(I ∪ It)(x, y) =

{
I(x, y) if y ∈ Y ;
It(x, y) if y = yC .

(3)

3. A collection of fuzzy concepts B(X,Y ∪ YJ , I ∪ It) is extracted from (X,Y ∪
YJ , I ∪ It) adopting the same algorithm chosen in the first step.

So, {B(X,Y ∪ YJ , I ∪ It),B(Z,W, J)} is the final result generated by the FRCA
procedure.

3 Relations of Opposition Between Fuzzy Formal
Contexts

In this section, we provide the definition of new quantifiers in fuzzy relational
concept analysis and then we study the relations of opposition between fuzzy
formal contexts deriving from quantifiers of different types.

Definition 9. A negative t-scaling quantifier is a function

S−
t : [0, 1]X × [0, 1]X → [0, 1]X with t ∈ [0, 1]

such that for each A,B ∈ [0, 1]X ,

S−
t (A, B) =

∨

Z∈[0,1]X

((
∧

x∈X

(A|Z)(x) → ¬B(x)

)
⊗

∨

x∈X

(A|Z)(x)

)
∧ Δt(μA(A|Z)).

(4)

5 Recall that FRCA is the abbreviation of Fuzzy Relational Concept Analysis.
6 Notice that a new attribute yC is considered for each concept C of B(Z, W, J). See

[6] for more details on the meaning of yC .
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S−
t (A,B) is the truth degree of the statement: there exists a cut A|Z of A

such that “all elements of A|Z do not belong to B”, “there exists at least one
element in A|Z”, and “the size of A|Z is at least as large as t (in the scale [0,1])
w.r.t. the size of A”.

We can observe that S−
t (A,B) = St(A,¬B), for all A ∈ [0, 1]X and B ∈

[0, 1]X .
From now on, quantifiers given by Definition 8 are called positive t-scaling

quantifiers.

Definition 10. The positive existential quantifier is a function

S∃ : [0, 1]X × [0, 1]X → [0, 1]X

such that for each A,B ∈ [0, 1]X ,

S∃(A,B) =
∨

x∈X

A(x) →
∨

x∈X

(A(x) ⊗ B(x)).

S∃(A,B) is the degree of the statement: “if there exists at least one element in
A, then there exists at least one element in both A and B”.

Definition 11. The negative existential quantifier is a function

S−
∃ : [0, 1]X × [0, 1]X → [0, 1]X

such that for each A,B ∈ [0, 1]X ,

S−
∃ (A,B) =

∨

x∈X

A(x) →
∨

x∈X

(A(x) ⊗ ¬B(x)).

S−
∃ (A,B) is the degree of the statement: “if there exists at least one element in

A, then there exists at least one element in A that does not belong to B”.

Analogously the to positive and negative t-scaling quantifiers, the equality
S−

∃ (A,B) = S∃(A,¬B) is true for all A,B ∈ [0, 1]X .
In the sequel, let t ∈ [0, 1], we use the symbols (X,YJ , I+t ), (X,YJ , I−

t ),
(X,YJ , I+∃ ), and (X,YJ , I−

∃ ) to denote the fuzzy formal contexts respectively
obtained from St, S−

t , S∃, and S−
∃ by means of (2).

The following theorem lists some relations of opposition between fuzzy formal
contexts generated by quantifiers of different types. Its proof is analogous to those
of the theorems presented in [12] to prove that the so-called fuzzy quantifier-based
concept-forming operators form polygons of opposition.

Theorem 1. Let s, t ∈ [0, 1] such that s ≤ t, then

(a) I+1 and I−
1 are contraries;

(b) I+∃ and I−
∃ are sub-contraries;

(c) I+s is sub-altern of I+t ;
(d) I−

s is sub-altern of I−
t ;
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(e) I+∃ is sub-altern of I+1 ;
(f) I−

∃ is sub-altern of I−
1 ;

(g) I+1 and I−
∃ are contradictories;

(h) I−
1 and I+∃ are contradictories.

Example 1. Consider the fuzzy relational context family

(K = {(X,Y, I), (Z,W, J)},R = {r : X × Z → [0, 1]}).

Then, according to Subsect. 2.4, a fuzzy formal context (X,YJ , I∗) can be
constructed choosing one of the quantifiers of {St | t ∈ [0, 1]} ∪ {S−

t | t ∈
[0, 1]} ∪ {S∃ ∪ S−

∃ }. Let us focus on the value assumed by I∗ on (x, y(A,B)),
where x ∈ X and (A,B) is the concept of B(Z,W, J) having the following extent

A = {z1, 0.2/z2, 0.2/z3, z4, z5, 0.9/z6, z8, 0.5/z10}.

If rx = {z1, z2, 0.7/z3, 0.6/z4, z6, 0.8/z7, z8, 0.8/z9}, then we get

I+0.6(x, y(A,B)) = 0.5, I+1 (x, y(A,B)) = 0.2, I+∃ (x, y(A,B)) = 1,

I−
0.7(x, y(A,B)) = 0.1, I−

1 (x, y(A,B)) = 0, and I+∃ (x, y(A,B)) = 0.8.

Therefore, it is easy to verify that I+1 (x, y(A,B)) ⊗ I−
0.7(x, y(A,B)) = 0.2 ⊗ 0.1 = 0

(relation of contrary); I+1 (x, y(A,B) ≤ I+0.6(x, y(A,B) ≤ I+∃ (x, y(A,B) because 0.2 ≤
0.5 ≤ 1 and I−

1 (x, y(A,B) ≤ I−
0.7(x, y(A,B) ≤ I−

∃ (x, y(A,B) because 0 ≤ 0.1 ≤ 0.8
(relations of sub-alternation); I+1 (x, y(A,B)) = 0.2 = 1 − 0.8 = 1 − I−

∃ (x, y(A,B))
and I−

1 (x, y(A,B)) = 0 = 1 − 0 = 1 − I+∃ (x, y(A,B)) (relations of contradictory);
finally, I+∃ (x, y(A,B)) ⊕ I−

∃ (x, y(A,B)) = 1 ⊕ 0.8 = 1 (relation of sub-contrary).

Remark 1. Let us underline that I+1 , I−
1 , I+∃ , and I−

∃ can be viewed as the
vertices of a graded square of opposition, which is given in [13].

4 Relations Between FFCA Operators

In this section, we study the consequences of the relations of opposition between
fuzzy formal contexts proposed by Theorem 1 ((c)–(h)) on the operators given by
Definition 2. In addition to the contexts having the form (X,YJ , I∗) where I∗ ∈
{I+t , I−

t | t ∈ [0, 1]} ∪ {I+∃ , I−
∃ }, we also consider the contexts like (X,YJ ,¬I∗),

where ¬I∗(x, y) = 1 − I∗(x, y) for each x ∈ X and y ∈ YJ .

Proposition 1. Let A ∈ [0, 1]X , then

(a) FI+
1

(A) = F¬I−
∃

(A) and F¬I+
1

(A) = FI−
∃

(A);
(b) FI−

1
(A) = F¬I+

∃
(A) and F¬I−

1
(A) = FI+

∃
(A).

Proof.(a) Let y ∈ Y . By Theorem 1 (g), I+1 (x, y) is equal to ¬I−
∃ (x, y) for each

x ∈ X. Then, the thesis follows from Definition 2.
Let y ∈ Y . By Theorem 1 (g), I+1 (x, y) is equal to ¬I−

∃ (x, y) for each x ∈ X.
By Lemma 1 (2 and 1), ¬I+1 (x, y) = I−

∃ (x, y). Then, the thesis follows from
Definition 2.
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(b) The proof follows from Theorem 1 (h) and it is analogous to that of item (a).

Example 2. Let (K = {(X,Y, I), (Z,W, J)},R = {r : X × Z → [0, 1]}) be
the fuzzy relational context family defined in [6] (see Example 3.14). Then, the
extents of the concepts of B(Z,W, J) and the relation r are defined by Table 1.

Table 1. The extents of the concepts of B(Z, W, J) and the fuzzy relation r

z1 z2

EyC1
1 1

EyC2
1 0.5

EyC3
0.5 1

EyC4
0.5 0.5

EyC5
0 1

EyC6
0 0.5

r z1 z2

x1 1 0.5

x2 0 1

By (2), the fuzzy formal contexts (X,YJ , I+1 ), (X,YJ , I−
1 ), (X,YJ , I+∃ ), and

(X,YJ , I−
∃ ) are represented by the following tables (Table 2).

Table 2. .

I+
1 yC1 yC2 yC3 yC4 yC5 yC6

x1 1 1 0.5 0.5 0 0

x2 1 0.5 1 0.5 1 0.5

I+
∃ yC1 yC2 yC3 yC4 yC5 yC6

x1 1 1 0.5 0.5 0.5 0

x2 1 0.5 1 0.5 1 0.5

I−
1 yC1 yC2 yC3 yC4 yC5 yC6

x1 0 0 0.5 0.5 0.5 1

x2 0 0.5 0 0.5 0 0.5

I−
∃ yC1 yC2 yC3 yC4 yC5 yC6

x1 0 0 0.5 0.5 1 1

x2 0 0.5 0 0.5 0 0.5

If A = {1/x1, 0.5/x2} and T = 0.6, it is easy to verify that FI+
1

(A) =
F¬I−

∃
(A) = {yC1 , yC2}. Indeed,

∧
x∈X(A(x) → I+1 (x, yC1)) =

∧
x∈X(A(x) →

I+1 (x, yC2)) =
∧

x∈X(A(x) → ¬I−
∃ (x, yC1)) =

∧
x∈X(A(x) → ¬I−

∃ (x, yC2)) = 1,
∧

x∈X(A(x) → I+1 (x, yC3)) =
∧

x∈X(A(x) → I+1 (x, yC4)) =
∧

x∈X(A(x) →
¬I−

∃ (x, yC3)) =
∧

x∈X(A(x) → ¬I−
∃ (x, yC4)) = 0.5, and

∧
x∈X(A(x) →

I+1 (x, yC5)) =
∧

x∈X(A(x) → I+1 (x, yC6)) =
∧

x∈X(A(x) → ¬I−
∃ (x, yC5)) =

∧
x∈X(A(x) → ¬I−

∃ (x, yC6)) = 0.
Furthermore, F¬I+

1
(A) = FI−

∃
(A) = {yC6}, FI−

1
(A) = F¬I+

∃
(A) = {yC6}, and

F¬I−
1

(A) = FI+
∃

(A) = {yC1 , yC2}.
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Proposition 2. Let B ⊆ YJ , then GI+
1

(B) = G¬I−
∃

(B) and GI−
1

(B) =
G¬I+

∃
(B).

Proof. Let x ∈ X. By Theorem 1 (g), we get I+1 (x, y) = ¬I−
∃ (x, y) for each y ∈

B. Consequently,
∧

y∈B I+1 (x, y) =
∧

y∈B ¬I−
∃ (x, y) from Lemma 1 (3). Finally,

GI+
1

(B)(x) = G¬I−
∃

(B)(x).
Analogously, the proof of GI−

1
(B) = G¬I+

∃
(B) follows from Theorem 1 (h).

Example 3. Consider Example 2 and suppose that B = {yC1 , yC3}. Then, we get
GI+

1
(B) = G¬I−

∃
(B) = {x2}. Indeed, I+1 (x1, yC1)∧ I+1 (x1, yC3) = ¬I−

∃ (x1, yC1)∧
¬I−

∃ (x1, yC3) = 1∧ 0.5 = 0.5 that is less than T and I+1 (x2, yC1)∧ I+1 (x2, yC3) =
¬I−

∃ (x2, yC1) ∧ ¬I−
∃ (x2, yC3) = 1 ∧ 1 = 1.

Furthermore, GI−
1

(B) = G¬I+
∃

(B) = ∅, namely GI−
1

(B)(x1) = GI−
1

(B)(x2) =
0 and G¬I+

∃
(B)(x1) = G¬I+

∃
(B)(x2) = 0.

Proposition 3. Let s ≤ t, let A ∈ [0, 1]X , and B ⊆ YJ . Then,

(a) FI+
t

(A) ⊆ FI+
s

(A), FI−
t

(A) ⊆ FI−
s

(A), FI+
1

(A) ⊆ FI+
∃

(A), and FI−
1

(A) ⊆
FI−

∃
(A);

(b) GI+
t

(B) ⊆ GI+
s

(B), GI−
t

(B) ⊆ GI−
s

(B), GI+
1

(B) ⊆ GI+
∃

(B), and GI−
1

(B) ⊆
GI−

∃
(B).

Proof.(a) Let y ∈ FI+
t

(A), then
∧

x∈X(A(x) → I+t (x, y)) ≥ T . Consequently,
by Lemma 1 (5), A(x) → I+t (x, y) ≥ T for each x ∈ X. Furthermore,
using Theorem 1 (c), I+t (x, y) ≤ I+s (x, y) for each x ∈ X. By Lemma 1
(6) I+t (x, y) ≤ I+s (x, y) implies that A(x) → I+t (x, y) ≤ A(x) → I+s (x, y) for
each x ∈ X. Then, using 1 (5) again,

∧
x∈X A(x) → I+s (x, y) ≥ T . Finally,

y ∈ FI+
s

(A).
Analogously, the other implications respectively follow from Theorem 1 (d),
(e), and (f).

(b) Let x ∈ X. If GI+
s

(B)(x) = 0, then it is trivial that GI+
s

(B)(x) ≤ GI+
t

(B)(x).
So, let us suppose that GI+

s
(B)(x) > 0. Moreover, by Theorem 1 (c),

I+t (x, y) ≥ I+s (x, y) for each y ∈ YJ . Then,
∧

y∈B I+t (x, y) ≥ ∧
y∈B I+s (x, y)

from Lemma 1 (7); so, GI+
s

(B)(x) ≤ GI+
t

(B)(x).
Analogously, the other implications respectively follow from Theorem 1 (d),
(e), and (f).

Example 4. Consider Example 2, then I+0.3 and I−
0.3 are represented by Table 3.

Thus, the inclusions of Proposition 3 hold for A = {1/x1, 0.5/x2} and
B = {yC1 , yC3} because FI+

1
(A) = FI+

∃
(A) = {yC1 , yC2}, FI+

0.3
(A) = {yC1 , yC2},

FI−
1

(A) = FI−
∃

(A) = {yC6}, FI−
0.3

(A) = {yC2 , yC6}, GI+
1

(B) = GI+
∃

(B) = {x2},
GI+

0.3
(B) = {x2}, and GI−

1
(B) = GI−

0.3
(B) = GI−

∃
(B) = ∅.

Proposition 4. Let A ∈ [0, 1]X , then FI−
1

(A) ⊆ F¬I+
1

(A), FI+
1

(A) ⊆ F¬I−
1

(A),
F¬I+

∃
(A) ⊆ FI−

∃
(A), and F¬I−

∃
(A) ⊆ FI+

∃
(A).
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Table 3. .

I+
0.3 yC1 yC2 yC3 yC4 yC5 yC6

x1 1 1 0.5 0.5 0.5 0.5

x2 1 0.5 1 0.5 1 0.5

I−
0.3 yC1 yC2 yC3 yC4 yC5 yC6

x1 0 1 0.5 0.5 1 1

x2 0 0.5 0 0.5 0 0.5

Proof. The thesis clearly follows from Proposition 3(a) and Theorem 1 ((g) and
(h)).

Example 5. Consider Example 2 and A = {x1, 0.5/x2}, then FI−
1

(A) = F¬I+
1

(A)
= F¬I+

∃
(A) = FI−

∃
(A) = {yC6} and FI+

1
(A) = F¬I−

1
(A) = F¬I−

∃
(A) = FI+

∃
(A) =

{yC1 , yC2}.

Proposition 5. Let B ⊆ YJ , then GI+
1

(B) ⊆ G¬I−
1

(B), GI−
1

(B) ⊆ G¬I+
1

(B),
G¬I+

∃
(B) ⊆ GI−

∃
(B), and G¬I−

∃
(B) ⊆ GI+

∃
(B).

Proof. The thesis clearly follows from Proposition 3(b) and Theorem 1 ((g) and
(h)).

Example 6. Consider Example 2 and B = {yC1 , yC3}, then GI+
1

(B) = G¬I−
1

=
{x2}, GI−

1
(B) = G¬I+

1
(B) = ∅, G¬I+

∃
(B) = GI−

∃
(B) = ∅, and G¬I−

∃
(B) =

GI+
∃

(B) = {x2}.

5 Conclusions and Future Directions

In this article, we have discovered some logical relations of opposition between
the fuzzy formal contexts I and I∗, which are generated from two different quan-
tifiers S and S∗. To do this, we have expanded the class of t-scaling quantifiers by
defining the negative t- scaling quantifies and the (positive and negative) exis-
tential quantifiers. Furthermore, we have found out some consequences of the
relations of opposition between fuzzy formal contexts by focusing on a special
pair of fuzzy formal concept analysis operators. In the future, we will extend this
work as follows. Firstly, given a fuzzy relational context family, we want to find
[s1, s2], [t1, t2] ⊆ [0, 1] so that I+t and I−

s are contraries for each s ∈ [s1, s2] and
t ∈ [t1, t2]. Similarly, we will find [t+1 , t+2 ], [t−1 , t−2 ] ⊆ [0, 1] so that I+∃ is sub-altern
of I+t+ and I−

∃ is sub-altern of I−
t− for each t+ ∈ [t+1 , t+2 ] and t− ∈ [t−1 , t−2 ]. Then,

we intend to construct structures of opposition (analogous to those defined in
[12,14]), which have fuzzy formal contexts as vertices. Moreover, we would like
to discover the implications of the relations presented by Theorem 1 (especially
by items (a) and (b)) on the operators of Definition 2 and on other pairs of
FFCA operators like those defined in [5]. Eventually, we will find out connec-
tions between fuzzy concepts generated using different quantifiers. Finally, we
could analyze how the thresholds t and T are related, for example, by determin-
ing under which conditions (t1, T1) and (t2, T2) produce the same collection of
fuzzy concepts.
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Abstract. FRCA quantifiers are significant tools to extract information
from data organized as collections of fuzzy object-attribute and object-
object relations. This article mainly presents some comparisons between
classes of FRCA quantifiers introduced in previous works.
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1 Introduction

Formal Concept Analysis (FCA), introduced in [1], is a mathematical tool used
to deal with relations between objects and attributes. A formal concept is a pair
(A,B) made by a set of objects and a set of attributes such that all objects in
A have the properties of B and all properties of B are satisfied by the objects in
A. The set of all objects in a given context can be ordered by a lattice structure.
When the property of an object to have an attribute is vague, it is possible to
introduce Fuzzy Formal Concept Analysis (FFCA) [2] in which the context is a
fuzzy relation.

On the other hand, Relational Concept Analysis (RCA) has been introduced
to deal with multiple sets of attributes and objects and with relations between
them [3]. Dealing with such structures the typical question could be “how many
objects of X have all attributes of W , if we know that the objects of X are in
relation with the objects of Z and we also know the correspondence between the
objects of Z and the attributes of W?”. The answer was provided by using the
so-called scaling quantifiers in the RCA process [4]. An example is represented
by the relation Q60 such that given two sets A and B, Q60(A,B) = 1 if and only
if “more than 60% of elements of A belong to B”.

In order to extend RCA to the fuzzy case, we need the definitions for fuzzy
quantifiers. Indeed, Fuzzy relational concept analysis (FRCA) mines fuzzy con-
cepts from a fuzzy multi-relational datasets by employing FRCA quantifiers
together with the standard FFCA techniques [5,6].

FRCA quantifiers are special fuzzy quantifiers generalizing the quantifier all,
which is already used to construct concepts in fuzzy formal concept analysis.
Mathematically, a FRCA quantifier is a function assigning a value SV (A,B) of
the real interval [0, 1] to a pair of fuzzy sets A and B so that SV (A,B) expresses
how much “all A|Z are B”, where A|Z is a part of A having a certain size that is
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evaluated by V . According to the formula of V , we can distinguish the following
classes of FRCA quantifiers.

– T-scaling quantifiers are introduced in [6] by putting V = Δt, where t is a
threshold belonging to [0, 1]. Therefore, given t ∈ [0, 1], SΔt

(A,B) represents
how much “all A|Z are B”, where A|Z is a part of A being at least as big as
t (in the scale [0, 1]).

– Fuzzy scaling quantifiers are proposed in [5] by putting V = Biν such that
Biν is a normal and increasing function from [0, 1] to [0, 1] modeling an eval-
uative linguistic expression having the form 〈hedge〉〈big〉, where hedge is an
adverbial modification like very, extremely, roughly, and so on1. Therefore, if
Biν represents the expression Very Big, then SBiν

expresses how much “all
A|Z are B”, where A|Z is a Very Big part of A.

All FRCA quantifiers are generalizations of RCA quantifiers given in [4]
and are interpretations in a model of intermediate quantifiers, which are special
formulas of the formal theory of intermediate generalized quantifiers [9,10].

Let us underline that during the FRCA process, a quantifier must be selected
for each fuzzy object-object relation of the initial dataset. Thus, the final concept
classification depends on the choice of the quantifiers: we could obtain different
fuzzy concepts by employing different quantifiers. This aspect has motivated us
to investigate in this paper if and when fuzzy scaling and t-scaling quantifiers
produce the same fuzzy concepts. The article is composed of two main parts:
in Sect. 2 we recall the FRCA procedure and the notion of FRCA quantifiers
and we exhibit an illustrative example where the initial fuzzy relations have an
intuitive meaning. In Sect. 3 we find the conditions needed for a set of t-scaling
quantifiers to generate the same concepts of a given fuzzy scaling quantifier.

2 Fuzzy Relational Concept Analysis

2.1 Fuzzy Formal Concept Analysis

We assume that the basic structures of truth values is the standard �Lukasiewicz
MV-algebra 〈[0, 1],∧,∨,⊗,→, 0, 1〉, where a ∨ b = max{a, b}, a ∧ b = min{a, b},
a ⊗ b = max{0, a + b − 1}, and a → b = min{1, 1 − a + b} for each a, b ∈ [0, 1].

Moreover, we use the symbol [0, 1]X to denote the collection of all fuzzy sets
of a universe X.

Definition 1. A fuzzy formal context is a triple (X,Y, I), where X is a set of
objects, Y is a set of attributes, and I is a fuzzy relation on X × Y .

Definition 2. [2,11] Let (X,Y, I) be a fuzzy formal context. If A ∈ [0, 1]X and
B ∈ [0, 1]Y , then A↑I (y) =

∧
x∈X(A(x) → I(x, y)) and B↓I (x) =

∧
y∈Y (B(y) →

I(x, y)), for all x ∈ X and y ∈ Y .
1 Moreingeneral,evaluativelinguisticexpressionsareexpressionsofnaturallanguage

andtheirtheoryisconstructedinaformalsystemofhigher-order
fuzzylogic(fuzzytypetheory)[7,8].
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A↑I

(y) and B↓I (x) are the truth degrees of the statements “y is shared by all
objects of A” and “x has all attributes of B”, respectively.

Definition 3. Let (X,Y, I) be a fuzzy formal context, let A ∈ [0, 1]X , and let
B ∈ [0, 1]Y . Then, (A,B) is a fuzzy concept of (X,Y, I) if and only if A↑I = B
and B↓I = A.

We denote the set of all fuzzy concepts of (X,Y, I) with B(X,Y, I).
(B(X,Y, I),R) is a complete fuzzy lattice called the fuzzy concept lattice of

(X,Y, I), where R is defined by R((A1, B1), (A2, B2)) =
∧

x∈X(A1(x) → A2(x)),
for all (A1, B1), (A2, B2) ∈ B(X,Y, I) [12].

Example 1. We consider here an example taken from [12] and adapted with
fuzzy values. In this example, objects are pizzas and attributes are ingre-
dients that can be present with a certain degree. Figures 1 and 2 respec-
tively show the fuzzy formal context representing the relation between piz-
zas and ingredients, and the corresponding fuzzy concept lattice, where C0 =
({margherita, capricciosa, 4cheese veg}, ∅), C1 = ({margherita, capricciosa,
4cheese}, {dairy}), C2=({margherita, capricciosa, veg}, {tomato}), C3=({0.5
/capricciosa, veg}, {tomato, vegetables}), C4 = ({margherita, capricciosa},
{tomato, dairy}), and C5 = ({0.5/capricciosa}, {tomato, meat, dairy,
vegetables}).

Fig. 1. Fuzzy formal context Pizzas Fig. 2. Fuzzy concept lattice of Pizzas

2.2 Fuzzy Relational Concept Analysis

FRCA Quantifiers. We fix the notation for the following well-known concepts
in fuzzy logic as follows: let A,B ∈ [0, 1]X 2,

– |A| =
∑

x∈X A(x) is the cardinality of A;

2 We write A = ∅ when A(x) = 0 for each x ∈ X, A = B when A(x) = B(x) for each
x ∈ X, and A ⊆ B when A(x) ≤ B(x) for each x ∈ X.
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– μB(A) measures “how large the size of A is w.r.t. the size of B” and it is
given by

μB(A) =

⎧
⎪⎨

⎪⎩

1 if A = ∅ or A = B;
|A|
|B| if A 
= ∅ and A ⊆ B;

0 otherwise;

– A|B is the cut of A at B and it is defined, for every x ∈ X, by (A|B)(x) = A(x)
if A(x) = B(x) while (A|B)(x) = 0 otherwise.

– Δt is a function Δt : [0, 1] → [0, 1] such that let k ∈ [0, 1],

Δt(k) =

{
1 if k ≥ t;
0 otherwise.

By Biν : [0, 1] → [0, 1] we denote a normal and increasing function modeling a
given evaluative linguistic expression with the form 〈hedge〉〈big〉, where hedge
is an adverb related to big modeled by ν. The formal definition can be found in
[7], see Example 2 for a possible interpretation in the case hedge = very. We
further set E as the set of the models of all evaluative linguistic expressions like
〈hedge〉〈big〉.
Definition 4 (FRCA quantifiers). Let V ∈ E ∪ {Δt | t ∈ [0, 1]}. The FRCA
quantifier with respect to V is a function SV : [0, 1]X × [0, 1]X → [0, 1] defined
by

SV (A,B) =
∨

Z∈[0,1]X

((
∧

x∈X

(A|Z)(x) → B(x)

)

⊗
∨

x∈X

(A|Z)(x)

)

∧V (μA(A|Z)).

SBiν
and SΔt

are respectively called fuzzy scaling and t-scaling quantifiers.

We attach the following meaning to SV (A,B):

– if V = Biν , then SV (A,B) is the degree of the statement: there exists a cut
A|Z of A such that “all elements of A|Z belong to B”, “there exists at least
one element in A|Z”, and “the size of A|Z is 〈hedge〉 large w.r.t. the size of
A”;

– if V = Δt, then SV (A,B) is the degree of the statement: there exists a cut
A|Z of A such that “all elements of A|Z belong to B”, “there exists at least
one element in A|Z”, and “the size of A|Z is at least as large as t (in the
scale [0, 1]) w.r.t. the size of A”.

Note that the expression
∨

x∈X(A|Z)(x) in the definition of SV (A,B) is needed
to exclude the case in which the set of quantification (i.e., A|Z) is empty, see [5].

Remark 1. The first connection between t-scaling and fuzzy scaling quantifiers
is provided in [6]: if t ≥ 50, then there exists a fuzzy scaling quantifier SBiν

such
that SΔt

= SBiν
. In other words, {SΔt

| t ≥ 0.5} is strictly included in the class
of fuzzy scaling quantifiers {SBiν

| Biν ∈ E}.
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Putting S1(A|Z,B) =
∧

x∈X((A|Z)(x) → B(x)) ⊗ ∨
x∈X(A|Z)(x), we can

rewrite the formula of SV (A,B) as follows:

SV (A,B) =
∨

Z∈[0,1]X

( S1(A|Z,B) ∧ V (μA(A|Z)) ). (1)

Let us recall that S1 is the quantifiers all and it is equal to SΔ1 .
According to the next theorem, SV (A,B) has been computed in [6] by taking

into account the following class of fuzzy sets that depend on A and B.

Definition 5. Let A,B ∈ [0, 1]X , we consider K(A,B) = {k ∈ [0, 1] | A(x) →
B(x) = k, for some x ∈ X}. Then, let k ∈ K(A,B), we put

Ak(x) =

{
A(x) if A(x) → B(x) ≥ k;
0 otherwise.

for each x ∈ X.

In this article, we use the symbol C(A,B) to denote the set of all cuts given by
Definition 5, i.e. C(A,B) = {Ak | k ∈ K(A,B)}.

Theorem 1. [6] Let Biν ∈ E and t ∈ [0, 1]. Then, for each A,B ∈ [0, 1]X ,

(a) SBiν
(A,B) =

∨
Ak∈C(A,B)

( S1(Ak, B) ∧ Biν(μA(Ak)) );
(b) SΔt

(A,B) =
∨

{Ak∈C(A,B) | μA(Ak)≥t} S1(Ak, B).

2.3 Extracting Concepts from a Fuzzy Relational Context Family

The dataset analyzed in FRCA is called Fuzzy Relational Context Family (FRCF).
In this paper, we focus on the simplest FRCF (K,R), where K is made of two
fuzzy formal contexts (X,Y, I) and (Z,W, J), and R is made of a fuzzy relation
r : X × Z → [0, 1]. Moreover, in the sequel, we use the symbol rx to denote the
fuzzy set of Z such that rx(z) = r(x, z) for each z ∈ Z. The input of the FRCA
procedure is (K,R) and the output is obtained in three fundamental steps.

1. A fuzzy concept lattice B(Z,W, J) is generated by using one of the existing
fuzzy FCA algorithms.

2. A new fuzzy formal context (X,Y ∪ YJ , IV ) is constructed starting from
B(Z,W, J) and a selected quantifier SV ; in particular a new attribute yC

is added for every fuzzy concept C ∈ B(Z,W, J):

YJ = {yC | C ∈ B(Z,W, J)} and IV (x, y) =

{
I(x, y) if y ∈ Y ;
SV (rx, EC) if y = yC ;

(2)

where EC is the extent (i.e. the set of objects) of the concept C of B(Z,W, J).
3. A fuzzy concept lattice B(X,Y ∪ YJ , IV ) is extracted from (X,Y ∪ YJ , IV )

adopting the same algorithm chosen in the first step.

So, {B(X,Y ∪ YJ , IV ),B(Z,W, J)} is the final result generated by the FRCA
process.
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Example 2. Keeping the notation above, we extend here Example 1 denoting
by Z the set of pizzas and by W the set of ingredients (see Fig. 1). We further
consider the fuzzy formal context of Fig. 3 having the set X of people as set
of objects and, for the sake of readability, trivial attributes forming the set Y .
Moreover, Fig. 4 represents a fuzzy relation between people in X and pizzas in
Z (how much a person likes a pizza).

Fig. 3. Fuzzy formal context People Fig. 4. Fuzzy relation Like

FRCA process introduces new attributes YPizzas = {yC0 , . . . , yC7} for people
in Fig. 1, with degrees given by IV that can be interpreted as “how much” a
given person likes pizzas having the ingredients in a given concept. For example,
let us consider the quantifiers SBiVe and SΔ0.7 , where BiVe : [0, 1] → [0, 1] models
the linguistic expression “very big” and has the following formulas: let x ∈ [0, 1]

BiVe(x) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1, x ∈ [0.915, 1];

1 − (0.915−x)2

0.03 , x ∈ [0.79, 0.915);

(x−0.675)2

0.0276 , x ∈ (0.675, 0.79);

0, x ∈ [0, 0.675].

(3)

Since SBiVe in the quantifier “most”, IBiVe(Juliet, yC2) = SBiVe(A,B) = 0.48,
where A = {marherita, capricciosa, 0.5/4chees} expresses the degree of prefer-
ence of Juliet about the pizzas and B = {margherita, capricciosa, veg} is the
set of pizzas in C2, is the degree to which “Juliet likes most pizzas having tomato
(i.e. all ingredients of pizzas in C2)”. Analogously, IΔ0.7(Juliet, yC2) = 1 is the
degree to which “Juliet likes a part of pizzas in C2 being at least as big as 0.7
(in the scale [0,1]), namely a part of the pizzas characterized to have tomato as
ingredient”. Finally, it is easy to understand that the fuzzy concepts extracted
from B(X,Y ∪ YPizzas, IBiVe) and B(X,Y ∪ YPizzas, IΔ0.7) captures the prefer-
ences of people about the ingredients.

3 Comparing Fuzzy Scaling and t-Scaling Quantifiers

In this section, given Biν ∈ E , we investigate the existence of t ∈ [0, 1] such
that the corresponding fuzzy formal context (X,Y ∪ YJ , IΔt

) coincides with
(X,Y ∪ YJ , IBiν

).
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We suppose that I, J , and r are �Ln-relations, where n is a positive inte-
ger and the structure 〈�Ln,∧,∨,⊗,→, 0, 1〉 is a �Lukasiewicz chain, namely �Ln ={

k

n
| k ∈ Z and 0 ≤ k ≤ n

}

and ∧,∨,⊗, and → are the operations of the stan-

dard �Lukasiewicz MV-algebra.

Remark 2. First of all, we can observe that, for each t ∈ [0, 1], the relation IΔt

assumes all its values in �Ln. This is because IΔt
is defined using ∧,∨,⊗, and →

(see (2) and Definition 4), and �Ln is closed under the operations of the standard
�Lukasiewicz MV-algebra.

Reamark 2 cannot be extended to the relations in {IBiν
| Biν ∈ E}. Namely,

let Biν ∈ E , there exists a fuzzy relational context family so that “IBiν
(x, yC) /∈

�Ln for some x ∈ X and yC ∈ YJ”. This occurs when IBiν
(x, yC) = Biν(μrx(A))

with A ∈ C(rx,EC) and Biν(μrx(A)) /∈ �Ln (let us underline that x ∈ �Ln does not
imply that Biν(x) /∈ �Ln). See Example 2, IBiVe(Juliet, yC2) = 0.48 /∈ {0, 0.5, 1}.

Remark 3. Trivially, if IBiν
(x, yC) /∈ �Ln for some x ∈ X and yC ∈ Yj , then

IBiν

= IΔt

for each t ∈ [0, 1]. On the other hand, although IBiν
assumes all

its values in �Ln, it could not coincide with any IΔt
. This is possible whenever

“IBiν
(x, yC) = Biν(μrx(A)) and IBiν

(x, yC) 
= S1(B,EC) ∀B ∈ C′′
(rx,EC).

In case IBiν
(x, yC) ∈ �Ln for each (x, yC) ∈ X × YJ , it is sometimes possible

to find out a set of thresholds so that their related fuzzy formal context is equal
to (X,Y ∪ YJ , IBiν

). This aim is achieved by Theorem 2, which is based on the
following notations.

Definition 6. Let (x, yC) ∈ X × YJ such that IBiν
(x, yC) = S1(A,EC) with

A ∈ C(rx,EC), we put

L(x,yC) = {B ∈ C(rx,EC) | S1(B,EC) > S1(A,EC) and μrx(B) ≤ μrx(A)}.

Example 3. Suppose that rx = {z1, z2, z3, z4} and EC = {0.1/z2, 0.2/z3, 0.3/z4}.
Then, by Definition 5, C(rx,EC) = {rx, A,B,D}, where A = {z2, z3, z4}, B =
{z3, z4}, and D = {z4}.

According to Theorem 1 (a), if we consider BiVe given by (3), then
SBiVe(r

x, EC) = ( S1(rx, EC) ∧ BiVe(μrx(rx)) ) ∨ ( S1(A,EC) ∧ BiVe(μrx(A)) )∨
( S1(rx, B)∧BiVe(μrx(B)) )∨( S1(D,EC)∧BiVe(μrx(D)) ) = 0.1, where let H ∈
{rx, A,B,D}, the values S1(H,EC) and BiVe(μrx(H)) are defined by Table 1.

Therefore, we can easly verify that IBiVe(x, yC) = S1(A,EC) (both equal 0.1)
and L(x,yC) = {B,D} (the size of B and D is smaller than the size of A, moreover
S1(B,EC) = 0.2 and S1(B,EC) = 0.3 are greater than S1(A,EC) = 0.1).

Proposition 1. Let (x, yC) ∈ X × YJ such that IBiν
(x, yC) = S1(A,EC) with

A ∈ C(rx,EC). If L(x,yC) = ∅ then S1(A,EC) ≥ S1(B,EC) for each B ∈ C(rx,EC).

Proof. By Definition 6, for each B ∈ C(rx,EC), S1(B,EC) ≤ S1(A,EC) or
μrx(A) < μrx(B) by considering that L(x,yC) = ∅. Then, μrx(A) < μrx(B)
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Table 1. S1(H,EC) and BiVe(µrx(H)) with H ∈ {rx, A,B,D}.

H µrx(H) BiVe(µrx(H)) S1(H,EC)

rx 1 1 0

A 0.75 0.2 0.1

B 0.5 0 0.2

D 0.25 0 0.3

implies that Biν(μrx(A)) < Biν(μrx(B)) because Biν is an increasing func-
tion. Also, since IBiν

(x, yC) = S1(A,EC), it must be S1(A,EC) ≤ Biν(μrx(A))
and S1(A,EC) ≥ S1(B,EC) ∧ Biν(μrx(B)). Let us focus on the last inequal-
ity and suppose that S1(A,EC) ≥ Biν(μrx(B)). Then, the latter together with
Biν(μrx(B)) > Biν(μrx(A)) implies that S1(A,EC) > Biν(μrx(A)), which con-
tradicts S1(A,EC) ≤ Biν(μrx(A)). Finally, we have S1(B,EC) ≤ S1(A,EC).

Definition 7. Let (x, yC) ∈ X × YJ such that IBiν
(x, yC) = S1(A,EC) with

A ∈ C(rx,EC), we put

a(x,yC) =

{
max{μrx(B) | B ∈ L(x,yC)} if L(x,yC) 
= ∅,

0 otherwise,
and (4)

b(x,yC) = max{μrx(B) | B ∈ C(x,yC) and S1(B,EC) = S1(A,EC)}. (5)

Example 4. If we consider Example 3, then a(x,yC) = max{μrx(B), μrx(D)} =
max{0.5, 0.25} = 0.5 and b(x,yC) = μrx(A) = 0.75.

The most important result of this section is Theorem 2, which is based on the
following lemma.

In the sequel, given (x, yC) ∈ X × YJ such that IBiVe(x, yC) = S1(A,EC)
with A ∈ C(rx,EC), we put

Int(x,y) =
{

(a(x,yC), b(x,yC)

]
if L(x,yC) 
= ∅,[

a(x,yC), b(x,yC)

]
otherwise. (6)

Lemma 1. Let Biν ∈ E and let (x, yC) ∈ X × YJ , if IBiν
(x, yC) = S1(A,EC)

with A ∈ C(rx,EC), then IBiν
(x, yC) = IΔt

(x, yC) for each t ∈ Int(x,yC).

Proof. Let t ∈ Int(x,yC), we inted to prove that IΔt
(x, yC) = S1(A,EC).

According to Theorem 1 (b),

IΔt
(x, yC) =

∨

{B∈C(rx,EC ) | μrx (B)≥t}
S1(B,EC). (7)

By hypothesis, t ≤ b(x,yC). Thus, by (5), t is less than or equal to the size of
B, which is the biggest cut of C(rx,EC) satisfing S1(B,EC) = S1(A,EC). This
guarantees the existence of B ∈ C(rx,EC) such that μrx(B) ≥ t and S1(B,EC) =
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S1(A,EC). Hence, by (7), we get S1(A,EC) ≤ IΔt
(x, yC), considering that the

property “a ≤ a1 ∨ . . . ∨ al for each a ∈ {a1, . . . , al}” holds in the standard
�Lukasiewicz MV-algebra.

Now, we want to show that IΔt
(x, yC) ≤ S1(A,EC). If L(x,yC) = ∅, then

S1(B,EC) ≤ S1(A,B) for each B ∈ C(rx,EC) from Proposition 1. So, suppose
that L(x,yC) 
= ∅, then t ∈ (a(x,yC), b(x,yC)] from (6). Since the property “a1 ∨
. . . ∨ al ≤ a if and only if ai ≤ a for each i ∈ {1, . . . , l}” holds in the standard
�Lukasiewicz MV-algebra, we need to verify that

S1(A,EC) ≥ S1(B,EC) for each B ∈ C(rx,EC) such that μrx(B) ≥ t.

We can view the set {B ∈ C(rx,EC) | μrx(B) ≥ t} as the union of the sets
A = {B ∈ C(rx,EC)| t ≤ μrx(B) ≤ μrx(A)} and B = {B ∈ C(rx,EC) | μrx(B) >
μrx(A)}.

Let B ∈ A, then t > a(x,yC) and μrx(B) ≤ t imply that μrx(B) > a(x,yC). By
(4), a(x,yC) = μrx(B̃), where B̃ is the biggest fuzzy set in L(x,yC). Consequently,
B /∈ L(x,yC). Moreover, μrx(B) ≤ μrx(A) because we have supposed that B ∈ A.
Then, the last two sentences together with Definition 6 imply that the inequality
S1(B,EC) ≤ S1(A,EC) holds.

Let B ∈ B, then μrx(B) > μrx(A). Hence, Biν(μrx(B)) > Biν(μrx(A))
because Biν is an increasing function. Let us show that S1(A,EC) < S1(B,EC)
leads to a contradiction. To do this, we need to recall that the following property
holds in the standard �Lukasiewicz MV-algebra: “if a < c and b < d then a ∧ b <
c ∧ d”. Hence, Biν(μrx(A)) < Biν(μrx(B)) and S1(A,EC) < S1(B,EC) imply
that S1(A,EC) ∧ Biν(μrx(A)) < S1(B,EC) ∧ Biν(μrx(B)). Since S1(A,EC) ∧
Biν(μrx(A)) = S1(A,EC), we have S1(A,EC) < S1(B,EC) ∧ Biν(μrx(B)),
which contradicts the assumption IBiν

(x, yC) = S1(A,EC). Finally, we can con-
clude that S1(B,EC) ≤ S1(A,EC).

Example 5. Let (x, yC) ∈ X × YJ given by Example 3. By Lemma 1,
IBiVe(x, yC) = IΔt

(x, yC) for each t ∈ (0.5, 0.75]. For instance, choosing the
values 0.4, 0.6, and 0.9, we respectively obtain I0.4(x, yC) = S1(rx, EC) ∨
S1(A,EC) ∨ S1(B,EC) = 0 ∨ 0.1 ∨ 0.2 = 0.2 
= IBiVe(x, yC), I0.6(x, yC) =
S1(rx, EC) ∨ S1(A,EC) = 0.1 = IBiVe(x, yC), and I0.9(x, yC) = S1(rx, EC) =
0 
= IBiVe(x, yC).

Theorem 2. Let Biν ∈ E such that for each (x, yC) ∈ X × YJ there exists A ∈
C(rx,EC) with IBiν

(x, yC) = S1(A,EC). Then, IBiν
= IΔt

if and only if t ∈⋂
(x,yC)∈X×YJ

Int(x,yC).

Proof. (⇐). This implication follows from Lemma 1.
(⇒). Suppose that t /∈ ∩(x,yC)∈X×YC

Int(x,yC). Then, there exists (x∗, yC∗)
such that t /∈ Int(x∗,yC∗ ). Thus, if L(x∗,yC∗ ) = 0 then t > b(x∗,yC∗ ). Hence, by
(5), t > μrx∗ (B) for each B ∈ C(rx∗ ,EC∗ ) such that S1(A,EC∗) = S1(B,EC∗).
Consequently, IΔt

(x∗, yC∗) = a1 ∨ . . . ∨ al with a1, . . . , al 
= S1(A,EC∗). Then,
IΔt

(x∗, y∗
C) 
= S1(A,EC∗), which implies that IΔt


= IBiν
. If L(x∗,yC∗ ) 
= 0

then t > b(x∗,yC∗ ) or t ≤ a(x∗,yC∗ ). The last inequality means that there exists
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B ∈ L(x∗,yC∗ ) such that t ≤ μrx(B). Then, S1(B,EC) > S1(A,EC). Finally,
IΔt


= IBiν
.

Example 6. Let us focus on the FRCF given by Example IV.6 in [6], where the
fuzzy relation r : X × Z → [0, 1] and the fuzzy concepts of (Z,W, J) are defined
by Table 2.

Table 2. Fuzzy relation r : X × Z → [0, 1] and fuzzy concepts of (Z,W, J).

We also consider �L4 = {0, 0.25, 0.5, 0.75, 1} and BiVe given by (3). Applying
Theorem 1 (a), we can check that the hypothesis of Theorem 2 is satisfied,
namely “IBiVe(xi, yCj

) = S1(rxi , ECj
) for each (i, j) ∈ {1, 2, 3} × {1, . . . , 7}′′.

In order to find the vales assumed by IBiVe , we use Tables 3, 4, and 5, which
respectively list

– the cuts related to C(M,N) for each (M,N) ∈ {rx1 , rx2 , rx3} × {C1, . . . , C7},
where we put A = {0.5/z1, 0.5/z2, z4}, B = {0.5/z1, 0.5/z2}, D = {0.75/z1},
E = {z1, 0.75/z4}, and F = {0.75/z4};

– the values of S1(M,N) for each (M,N) ∈ {rx1 , rx2 , rx3} × {C1, . . . , C7}.
– the sizes of the cuts A,B,D,E, F , and and their evaluation employing BiVe.

For example, we get SBiVe(r
xi , ECj

) ∧ BiVe(μrxi (rxi)) = S1(rxi , ECj
) for

(i, j) = (1, 1) and (i, j) ∈ {2, 3} × {1, 2, 3}, IBiVe(x, yCj
) = (S1(A,ECi

)∧ BiVe
(μrx1 (A)))∨(S1(rx1 , ECi

)∧BiVe(μrx1 (rx1))) = S1(rx1 , ECj
) for j ∈ ×{2, 3, 5, 6},

and so on. Moreover, according to Definition 6, L(x,yC) = C(rx,EC)\{rx} for each
x ∈ {x1, x2, x3} and C ∈ {C1, . . . , C7}. By Definition 7, b(x,yC) = 1 because rx1

has size 1. Furthermore, a(xi,yCj
) = 0 for (i, j) = (1, 1), (i, j) ∈ {2, 3} × {1, 2, 3},

and (i, j) ∈ {(2, 5), (2, 7)}; a(xi,yCj
) = 0.67 for (i, j) ∈ {1} × {2, . . . , 7},

a(xi,yCj
) = 0.75 for (i, j) ∈ {(2, 4), (2, 6)}; a(xi,yCj

) = 0.33 for (i, j) = (3, 5);
a(xi,yCj

) = 0.78 for (i, j) ∈ {(3, 4), (3, 6), (3, 7)}. Finally, we can conclude that
IBiVe = IΔt

for each t ∈ [0, 1]∩ (0.67, 1]∩ (0.75, 1]∩ (0.78, 1]∩ (0.33, 1] = (0.78, 1].
For example, as shown by Table 6, since 0.8 ∈ (0.78, 1], IΔ0.8 coincides with IBiVe .
Moreover, we can view that IΔ0.5 
= IBiVe because 0.5 ∈ (0.78, 1].

Remark 4. It is possible that the hypothesis of Theorem 2 is verified by IBiVe

but it is not possible to generate the context (X,YJ , IBiVe) by using a t-scaling
quantifier. This occurs when the intersection of the intervals Int(x,yC) with x ∈ X
and yC ∈ YJ is empty.
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Table 3. Cuts of rx1 , rx2 , and rx3 according to Definition 5

Table 4. The values of S1(M,N)

S1(M,N) C1 C2 C3 C4 C5 C6 C7

rx1 1 0.75 0.5 0 0 0 0

A 1 1 0.75 1 1 0.75

B 0.5 0.5

rx2 0.75 0.75 0.75 0.5 0.5 0.5 0.5

∅ 1 1

D 0.75 0.75

rx3 1 1 1 0.5 0.5 0.5 0.5

E 1 0.75

F 0.75 0.75 0.75

Table 5. Evaluation of the size of cuts using BiVe

Table 6. a(x,yC) for each x ∈ {x1, x2, x2} and C ∈ {C1, . . . , C7}.
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4 Future Directions

As a future project, we intend to continue in this direction by solving the
following problem. Let Biν ∈ E such that IBiν

is different from the rela-
tion generated by any t-scaling quantifiers; we can consider t∗ ∈ [0, 1] so
the IΔt∗ is the closest relation to IBiν

(we could find t∗ by using the least
squares method : t∗ is the threshold satisfying

∑
(x,yC)(IBiν

(x, y)−IΔt∗ (x, y))2 =
min{∑(x,y)(IBiν

(x, y) − IΔt
(x, y))2 | t ∈ [0, 1]}). So, it could be interesting to

understand if and how the lattices B(X,Y ∪ YJ , IBiν
) and B(X,Y ∪ YJ , IΔt∗ )

diverge, for example with respect to their size, especially when the cardinality
of Y ∪ YJ increases. Note that the set E of linguistic expressions only considers
modification through a hedge of the adjective big, since in this case we have
a generalization of quantifiers used in [4]. Other linguistic expressions can be
considered instead of Biν , adapting the formula of FRCA quantifiers.
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Abstract. In this paper, we recall the dimensionality reduction tech-
nique of Laplacian eigenmaps. Its result (lower-dimensional embedding,
e.g. a single real vector) depends on the initial setting of weights describ-
ing closeness on the set of all data points. Then, a weighted graph nat-
urally emerges. We propose to split these weights in two parts: the out-
ward closeness describes the closeness of any point to all the other points,
whereas the inward closeness is given by the evaluation of all self-loops.
In this contribution, we are interested in the inverse problem to the
dimensionality reduction which consists in finding the weights leading to
a given result. We show that under certain conditions, the outward close-
ness is almost arbitrary, i.e. only the inward closeness must be computed
to fit the result of the Laplacian eigenmaps to the given vector.

Keywords: Laplacian eigenmaps · Closeness · Inverse problem

1 Introduction

Our long-term research, e.g. [2], is focused on dimensionality reduction (DR)
based on analysis of the Laplacian matrix of a weighted graph. The DR tech-
nique of Laplacian eigenmaps (LE) was introduced in [1] and serves as the basis
for this contribution. We recall that the Laplacian matrix describes the geometric
structure of the data and is fully determined by the weighted adjacency matrix
that characterizes the space we work with in terms of local closeness (each edge
weight is a value of closeness between two data points represented by the graph
vertices) – that is why we also call it the closeness matrix. The generalized eigen-
vectors that correspond to the smallest generalized eigenvalues of the Laplacian
matrix give the result of LE as they minimize its criterion (points that are close
in the input, higher-dimensional space, should be mapped close to each other).

For the purpose of this paper, we establish a new terminology: recall that
closeness is any non-negative symmetric function on the set of all pairs of objects
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(in our case, data points); we split its domain and create the notions of the
outward and inward closeness. The outward closeness is defined on all pairs that
consist of different objects (and hence, it describes how much close is any data
point to all other points). Complementarily, the inward closeness is defined on
all pairs consisting of the same object (therefore, it describes closeness of any
point to itself). This self-closeness must by properly understood. As opposed to
a metric space where two objects are equal if and only if their distance is zero
(we emphasize that 0 is the common reference value for all pairs of objects in
the metric space but there is no common reference value in the general closeness
space), closeness is a local expression of alikeness, not fully comparable with other
closeness values – its definition lacks the triangular inequality, and therefore, each
object is considered independently when evaluating its closeness to all objects
including itself. Moreover, as the geometric meaning of the inward closeness value
is weaker than that of the outward closeness value, the inward closeness value
can be easily changed without breaking the data structure.

The motivation of this paper is to analyse the inverse problem to the Lapla-
cian DR (how to set all weights to initiate LE, s.t. the images of the given inputs
fit the given outputs), namely to set conditions under which the result of LE
is not influenced by the outward closeness weights. It would demonstrate that
setting these weights needs not be too complicated, and hence by choosing a
simple method, a potential mistake can be avoided. (For example, if the input
data space is endowed by a metric, it can always be transformed into closeness
and then used in the outward closeness setting.) Moreover, it would suggest that
the inward closeness is more important than one might have thought (requir-
ing the reflexivity of the overall closeness is indeed too restrictive and generally
unsupported as shown in [3] where the preimage problem established in the fuzzy
partitioned closeness space is discussed, as well as the relationship of closeness,
metric and similarity). Such results would extend our research in the area of
inverse problems and make it more settled.

Another motivation of this paper is the possible application of the inverse
problem to DR in image fusion, e.g. in medical multi-modal registration. Con-
sider a set of 3-D measurements of a certain object (e.g. a bone) made by different
techniques or different devices. If we can force them to be mapped in an aligned
way to 1-D or 2-D (consider a fixed part of the object, then the corresponding
input points that are originally not comparable because, e.g., their coordinates
are not all Euclidean, or each device produces different scaling in various direc-
tions, are mapped in all cases on the same lower-dimensional vectors), we can
than combine (fuse) the reduced representations with no spatial transformation.

2 Laplacian Dimensionality Reduction

In this section, we recall the dimensionality reduction (DR) technique of Lapla-
cian eigenmaps (LE) introduced in [1]. Let us have a fixed set of n objects
(n ∈ N):

X = {xi | i = 1, . . . , n} ,
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indexed by the set
I = {1, . . . , n} .

These objects are generally of any kind (possibly specified by a large number of
attributes), or they can be simply high-dimensional vectors xi ∈ R

h. The aim of
DR is to find a mapping f : X → R

m where m < h (∀i ∈ I : xi �→ yi ∈ R
m), s.t.

a certain criterion is optimised. The criterion for LE is stated at the end of this
section.

Definition 1 (Closeness). Let X = {xi | i = 1, . . . , n} be a set, n ∈ N. Then,
closeness on X is any non-negative, symmetric function

w : X2 → R

where X2 = X × X is the Cartesian product of the set X with itself. The pair
(X,w) is called a closeness space.

Closeness between any two objects xi and xj in X is given by the value w(xi, xj)
and specifies a certain alikeness between them. Closer objects have larger close-
ness value than the less close ones. As explained in the Introduction, this value
cannot be taken absolutely as closeness is a relative, local concept that takes into
account only its arguments and hence, closeness value w(xi1 , xi2) is incomparable
with w(xi3 , xi4) whereas it is comparable with w(xi1 , xi3).

Above, we described closeness as a general notion. From now on, we assume
that the set X is connected1 w.r.t. a given closeness w which is necessary for the
usage of LE.

Let us introduce a weighted graph G(V,E,W ) where

V = X, E = V 2

and where the adjacency matrix W ∈ R
n×n is given by

wij = w(xi, xj) for i, j ∈ I ,

containing the weights of the edges (xi, xj), where w(xi, xj) is closeness between
xi and xj . Therefore, we call W the closeness matrix. The matrix W determines a
connected graph2. Then, G(V,E,W ) describes not only the geometric structure
of X but also the closeness space (X,w).

Following [1], we derive a diagonal matrix D ∈ R
n×n with diagonal entries

given by

dii =
n∑

j=1

wij .

1 Connectedness of X w.r.t. w means that for all pairs of objects x, y ∈ X, there
exists a number n ∈ N and objects x1, . . . , xn ∈ X, s.t. all closeness values
w(x0, x1), w(x1, x2), . . . , w(xn−1, xn) are positive where x = x0 and y = xn. In the
other words, the considered closeness does not isolate any object, nor any proper
subset of X, from all the other objects.

2 This follows our assumption that X is connected w.r.t. w and it means that in the
graph G(V,E,W ), we can find a path with positive weights between any two vertices.
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As the matrix D describes degrees of all vertices, we call it the degree matrix.
Following the connectedness of X, all degrees dii are positive.

Definition 2 (Laplacian matrix). Laplacian matrix L ∈ R
n×n of the graph

G(V,E,W ) is given by
L = D − W .

Note that both the degree matrix D as well as the closeness matrix W are
symmetric, and hence the Laplacian matrix L is also symmetric. Moreover, it is
positive semi-definite as for any vector y ∈ R

n, it holds that

y�Ly =
1
2

n∑

i,j=1

(yi − yj)2wij ≥ 0 ,

where y =

⎡

⎢⎣
y1
...

yn

⎤

⎥⎦.

The pairs of generalized eigenvectors y ∈ R
n and the corresponding general-

ized eigenvalues λ ∈ R
+
0 are the solutions to the generalized eigenvalue problem

Ly = λDy . (1)

For m < n, the m-dimensional representation of X given by LE (the result
of DR) is determined by the generalized eigenvectors of the Laplacian matrix L
corresponding to the second up to the (m+1)-th smallest generalized eigenvalues.
From now on, we assume m = 1, i.e. X is mapped on a single real vector
(f : X �→ y ∈ R

n). On condition y�D1 = 0, the generalized eigenvector y
corresponding to the second smallest generalized eigenvalue satisfy

y =
[
y1, . . . , yn

]� = argmin
n∑

i,j=1

|yi − yj |2wij ,

and therefore, it forms the non-trivial solution to DR problem provided by LE
as above, there is the optimization criterion of this technique that ensures a
certain locality preservation, namely w.r.t. the given closeness.

Further on, we will refer to the denotation of the set X, closeness w, matrices
W , D, L and the graph G(V,E,W ) as they were introduced above.

3 Laplacian Decomposition

In this section, we split X2 – the domain of closeness – to define two comple-
mentary notions, outward and inward closeness. After that, we decompose the
Laplacian matrix using only the values derived from the outward closeness.

Definition 3 (Outward Closeness). Let X = {xi | i = 1, . . . , n} be a set,
n ∈ N, then the outward closeness on X is any non-negative, symmetric function
w∗ : X2 \ {(xi, xi) | i = 1, . . . , n} → R.
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Definition 4 (Inward Closeness). Let X = {xi | i = 1, . . . , n} be a set, n ∈ N,
then the inward closeness on X is any non-negative function w∗∗ : {(xi, xi) | i =
1, . . . , n} → R.

Obviously, the function w : X2 → R defined using both aforementioned notions,

w(xi, xj) =

{
w∗(xi, xj) i �= j

w∗∗(xi, xj) i = j ,

is closeness on X.
Recall that the weighted graph G(V,E,W ) has n2 edges as V = X, E = X2

and W is the matrix of closeness on X that describes adjacency of all vertices.
Assume that the edges E = {ei | i = 1, . . . , n2} are indexed as follows: e1 =
(x1, x1), e2 = (x1, x2), . . . , en = (x1, xn), en+1 = (x2, x1), . . . , en2 = (xn, xn).
From now on, we will use two functions (p and q given below) encoding the
indices of all edges in G(V,E,W ):

Definition 5 (Edge Index Functions). Let i = 1, . . . , n2 be an edge index
of G(V,E,W ), then p : {1, . . . , n2} → {0, . . . , n − 1} and q : {1, . . . , n2} →
{1, . . . , n} given by

q(i) ≡ i mod n ,

p(i) =
i − q(i)

n
,

are edge index functions of G(V,E,W ).

Obviously, each edge index i is then expressed in the following unique way:

i = p(i)n + q(i) .

Now, we can use the edge index functions to define the ordinary weighted inci-
dence matrix (OWIM)3 B ∈ R

n2×n of the weighted graph G(V,E,W ). The
matrix B is given by ∀i = 1, . . . , n2, j = 1, . . . , n:

bij =

⎧
⎪⎨

⎪⎩

−√
wp(i)+1,q(i) j = p(i) + 1& p(i) + 1 �= q(i)

√
wp(i)+1,q(i) j = q(i)& q(i) �= p(i) + 1

0 otherwise
. (2)

The i-th row of the matrix B encodes the i-th edge of G(V,E,W ) that is assigned
the weight wp(i)+1,q(i). If we split closeness on X (weights stored in the matrix

3 Ordinary weighted incidence matrix ignores self-loops but indicates all other oriented
edges. Initial and ending point of each edge are denoted by non-zero entries that differ
in sign that encodes the edge orientation. We follow the convention that an edge with
no orientation is identified with a pair of oppositely oriented edges. If 0 denotes a
self-loop, it can be seen as a sum of the two differently signed values – in fact, the
beginning and ending point of any self-loop is the same vertex. In this paper, we
consider this matrix to be transposed in comparison with the standard case of the
graph incidence matrix.
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W ) in outward and inward closeness, we see that all non-zero entries of OWIM
correspond to values of the outward closeness. In the other words, 0 denotes
no incidence of the edge i with the vertex xj , or a self-loop in G(V,E,W ).
Then, obviously, OWIM contains no information about the values of the inward
closeness.

Theorem 1. The Laplacian matrix L = D − W ∈ R
n×n of G(V,E,W ) can be

expressed as L = 1
2B�B where the matrix B is given by (2).

The above agrees with the fact that L is independent on the values of inward
closeness wii which are purposefully neglected in our definition of B.

4 Inverse Problem

In this section, we present the idea that setting the outward closeness in the
inverse problem to the Laplacian DR is almost arbitrary. As closeness is a local
expression of alikeness, we assume that for all i, j = 1, . . . , n, it holds that
i �= j ⇒ xi �= xj , i.e. we want to avoid a meaning-violating conflict in closeness.

Moreover, we assume that the given vector y of 1-D images of X satisfies the
following condition:

∀i = 1, . . . , n : yi �= 0 . (3)

Definition 6 (Inverse Problem to the Laplacian Dimensionality
Reduction). Let X = {xi | i = 1, . . . , n} be a set, n ∈ N, and y ∈ R

n be a
real vector, then the inverse problem to the Laplacian dimensionality reduction
is to find closeness w : X2 → R on X, s.t. the non-trivial solution to DR problem
provided by LE coincides with y.

Based on (1), the non-trivial (y�D1 = 0) solution to DR problem provided by
LE satisfies

D−1Ly = λ1y ,

where λ1 is the second smallest generalized eigenvalue of the Laplacian matrix
L and, based on our assumption on graph connectedness, is positive. Hence,

λ1 =
y�D−1Ly

y�y
.

Therefore, we can define a real function f :

f(λ,y,D, L) =
1
λ

· y
�D−1Ly

y�y
.

If λ and y are the generalized eigenvalue and the corresponding eigenvector of the
Laplacian matrix L derived from the closeness matrix W and the corresponding
degree matrix D, we have

f(λ,y,D, L) = 1 .
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The above can be substantially simplified: for a fixed graph (represented by a
fixed closeness matrix W ), the second smallest generalized eigenvalue of L is
unique – let us denote the corresponding function as λ1, λ1 : W �→ λ1(W ) ∈ R

+.
The matrices D and L are also fixed and fully determined by the closeness
matrix W – let us denote the corresponding matrix-valued functions as D and
L, respectively, D : W �→ D(W ) ∈ R

n×n, L : W �→ L(W ) = D(W )−W ∈ R
n×n.

Therefore, we can write

1 =
1
λ1

· y
�D−1Ly

y�y
= f(λ1(W ),y,D(W ), L(W )) ,

From the above where (W ) was added to all right-hand sides to emphasize the
dependence (determination) on W , it is clear that the simplification can be
performed in the following way:

1 = f(W,y) , (4)

the vector y is dependent on λ1(W ) but it is not fully determined by it (any non-
zero multiple of an eigenvector is the same eigenvector but a different vector).

Based on (4), we denote
fy = f(·,y) ,

and then, we can formulate the requirement of the inverse problem to the Lapla-
cian dimensionality reduction as follows:

W ∈ f−1
y (1)[1] ,

i.e. the matrix W we are looking for is the first argument that belongs to the
inverse relation given by the value of 1 where the second argument of the direct
mapping fy is given by y.

From the above, it is clear that there are multiple matrices solving this prob-
lem. That is why we propose to set conditions that restrict the number of pos-
sibilities how to set weights entered in W and moreover, in this step, we must
specify the connection between the initial data X and the weights, otherwise no
connection between X and y would be taken into account.

Let us now derive some necessary properties of the solution. Following (1),
for every i = 1, . . . , n, we have

(Ly)i = (λDy)i ,
n∑

j=1

lijyj = λdiiyi , (5)

yi =

n∑
j=1
j �=i

lijyj

λdii − lii
. (6)

Equation (6) expresses each lower-dimensional image as a certain linear com-
bination of all other images. To incorporate this property, such combination must
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be possible, hence the denominator must be non-zero for any generalized eigen-
value, including λ1:

∀i = 1, . . . , n : λ1 �= 1 − wii

dii
. (7)

Secondly, following (5), for every i = 1, . . . , n, we have Liy
yi

= λ1dii > 0 as
both λ1 and dii are positive. Note that the left-hand side does not depend on the
inward closeness which motivates the following notation. Let w∗ be the outward
closeness on X derived from the closeness w, then the matrix L∗ ∈ R

n×n given
by

i, j = 1, . . . , n : l∗ij =

⎧
⎪⎨

⎪⎩

−w∗(xi, xj) i �= j
n∑

j=1
j �=i

w∗(xi, xj) i = j , (8)

coincides with the Laplacian matrix L given by w. Therefore, the solution must
satisfy the condition

∀i = 1, . . . , n :
L∗iy
yi

> 0 , (9)

where L∗i denotes the i-th row of the matrix L∗.
To avoid too many solutions to the inverse problem, we assume that there is

an expert who suggest the values of the outward closeness and show that such
approach is correct. For simplicity, we assume that X ⊂ R

h, h ≥ 2, i.e. the initial
objects are high-dimensional real vectors. To prevent the expert to violate the
local characterization of closeness, we restrict his choice by the condition that
w∗ is non-increasing w.r.t. the (Euclidean) norm, which means

∀i, j, k = 1, . . . , n : ‖xi − xj‖ < ‖xi − xk‖ ⇒ w∗(xi, xj) ≥ w∗(xi, xk) . (10)

4.1 Arbitrariness of Outward Closeness

To solve the inverse problem to the Laplacian DR given X and y, we need to
determine W , and hence to compute n2 variables {wij | i, j = 1, . . . , n}.

Let us define a vector z ∈ R
n2

given by

∀i = 1, . . . , n2 : zi =

{√
w∗p(i)+1,q(i)(yq(i) − yp(i)+1) p(i) + 1 �= q(i)

0 otherwise
.

The matrix equation By = z contains n2 − n variables (all wij for i �= j) in
n2 equations, n of which are in the form 0 = 0. Note that wij = w∗

ij for i �= j
is always a solution. This is the solution in the form of the outward closeness
provided by en expert, s.t. it satisfies conditions (9) and (10).

To prove the correctness of this (almost arbitrary) choice, it is sufficient to
show that after fixing the outward closeness, the remaining variables, namely all
values of the inward closeness, can be computed.

Recall that D is the unknown degree matrix, determining it is equivalent
with determining closeness. Let us solve the matrix equation Ly = V y where
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V = λ1D ∈ R
n×n is an auxiliary diagonal matrix containing n variables: v1 =

λ1d11, . . . , vn = λ1dnn > 0. All of them are positive and the solution always
exists, both following (9). We get the system of n equations with n variables.
We see that we can always find a small value of λ1 > 0, s.t.

∀i = 1, . . . , n : dii ≥
n∑

j=1
j �=i

wij ,

and satisfying (7). Then, we can compute the remaining values of (inward) close-
ness:

∀i = 1, . . . , n : wii = dii −
n∑

j=1
j �=i

wij .

This demonstrates that the solution to the inverse problem to the Laplacian DR
satisfying (3) always exists and that we can start with almost arbitrary outward
closeness, following (7), (9) and (10).

5 Conclusions

In this paper, we showed that setting of outward closeness when solving the
inverse problem to the Laplacian dimensionality reduction is almost arbitrary, i.e.
under certain condition, for any outward closeness we can always find an inward
closeness to get the same lower-dimensional representation (as given) provided
by the Laplacian eigenmaps. Moreover, it demonstrates that the outward part
(of closeness) itself is not essential.

The future work includes investigating how to extend the solution to the
inverse problem (the found closeness) on a superset of the original set of objects
considering that it was a suitable set of samples that were mapped to a lower
dimension with a proper care (or high cost).
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Abstract. Pattern recognition systems implemented using deep neural networks
achieve better results than linear models. However, their drawback is the black
box property. This property means that one with no experience utilising nonlinear
systems may need help understanding the outcome of the decision. Such a solu-
tion is unacceptable to the user responsible for the final decision. He must not
only believe in the decision but also understand it. Therefore, recognisers must
have an architecture that allows interpreters to interpret the findings. The idea of
post-hoc explainable classifiers is to design an interpretable classifier parallel to
the black box classifier, giving the same decisions as the black box classifier. This
paper shows that the explainable classifier completes matching classification deci-
sions with the black box classifier on the MNIST and FashionMNIST databases
if Zadeh’s fuzzy logic function forms the classifier and DeconvNet importance
gives the truth values. Since the other tested significance measures achieved lower
performance than DeconvNet, it is the optimal transformation of the feature val-
ues to their true values as inputs to the fuzzy logic function for the databases and
recogniser architecture used.

Keywords: Explainable classification · Deep neural networks · Fuzzy logic
functions · Features importance · Post-hoc explanation

1 Introduction

Nonlinear pattern recognition systems implemented by Deep Neural Networks (DNN)
reached superior performance compared to optimal linear systems [1]. Humans have
experience in small, low-speed changes that we can easily approximate by linear
behaviour. Therefore, we can explain the behaviour of systems under these conditions.
Due tomissing superposition properties,we cannot give accurate forecasts, even omitting
other nonlinear systems properties like chaotic behaviour, many attractors or sensitivity
to initial conditions [2]. This nonlinearity inside the black box does not allow us to
explain how the classifier has reached its decision. Suppose the final responsibility for
the consequences of the decision lies with the user of the neural network. In that case,
the missing explanation will prevent the user from blindly using the reached decision.
Therefore, decision explainability is essential in DNN research [3]. In this paper, we
focus on the explainability of the classifier. We let the feature extractor find the best
features to obtain more accurate recognition without dealing with their explanation.
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There are two approaches to getting an explainable classification. Firstly (explain-
ability by design) – restrict the classifier to self-explaining systems (e.g., fuzzy logical
function). Secondly (post-hoc explanation) – leave the nonlinear classifier as a black
box. Nevertheless, we have put together an explanation classifier to explain the decision
of the black box classifier. We use this method in the paper to maintain a high recogni-
tion accuracy, and we utilize a fuzzy logic function as a post-hoc explainable classifier.
The fuzzy logic function assumes the truth values of the logic variables at the input and
generates the truth value of the logic function at the output. The primary purpose of this
paper is to investigate the explainability of a black box classifier when we apply the
significance of the features instead of feature values as the truth values.

Mining the importance of internal DNN variables (e.g. inputs or features) is nowa-
days the primary tool for explaining the decision taken [4]. However, we only consider
these input variables that need support with a logical expression that will generate the
same conclusion as given by the black box classifier to maintain its accuracy. More
specifically, these measures of local importance are fed into a model that explains the
trained classifier, which is formed by the neural network. After normalising the impor-
tancemeasure, we can interpret this as ameasure of the statement’s truth that the feature’s
occurrence is necessary for the resulting decision (a negated statement is that the feature
must not occur for a given decision). We must avoid the influence of features that are
indifferent to the outcome of the decision (a truth value of about one-half). We label
such features irrelevant and do not use them as input to an explainable classifier. The
problem addressed in this paper is finding the measures of the feature importance that
will be the best inputs to a fuzzy logic function in the post-hoc explainable classifier role.
A similar problem is addressed in the paper [5]. L1 regularised logistic regression, and
Gini importance computes the feature importance measure. Random forest and LIME
represent explainable classifiers.

The remainder of the text is organised as follows: Sect. 2 provides the background for
the proposed solution. Section 2.1 describes analysedmeasures of the feature importance,
and Sect. 2.2 explains the functionality of the fuzzy logic function in the role of a post-hoc
explanator. Section 3 presents the obtained results, and Sect. 4 concludes the paper.

2 Background

Figure 1 gives the principal block diagram of the post-hoc explanator. At the input of the
DNN, we will attach a pattern from which we will extract the features. The nonlinear
classifier recognises the class of the sample. During the training, we optimise the weights
of the DNN to reachmaximum precision according to the available classes in the training
dataset.

Methods described in Sect. 2.1mine the feature importancemeasures andmove them
to the explainable classifier input. The fuzzy logic function will generate truth values
for the pattern membership of each class. From these, to explain the decision of the
black box classifier, we select the same one as determined by the nonlinear classifier.
Consequently, we have a logic function that generates a decision and truth values for the
input features and the resulting decision. The role of the post-hoc explainer is tomimic as
closely as possible the decision-making of the black box classifier. Therefore, the paper
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Fig. 1. The principal block diagram of the post-hoc explanator

evaluates different feature importance measures according to matching the recognised
classes regardless of whether determining the categories is correct.

2.1 Feature Importance Measures

The input data must pass through the whole architecture with learned weights and,
through nonlinear activation, functions to make predictions with neural networks. A sin-
gle prediction involves millions of operations. Thus, humans cannot follow an accurate
mapping of the input information through the network. For such a process, we would
have to consider millions of complex parameters that interact with the data. For this
reason, specific explanatory methods must interpret model behaviour [6].

In general, they can be broadly divided into two different types:

– Occlusion-based or Perturbation-based - methods such as LIME manipulate parts of
the image to generate explanations (model-agnostic approach)

– Gradient-based - methods compute a gradient of prediction concerning input
attributes.

The standard model-agnostic methods are possible to use, but methods developed
explicitly for DNNs have some advantages, such as:

– DNNs learn features and concepts in their hidden layers, and hence unique methods
for their interpretation are needed.

– The gradient could be used in the implementation of explainable methods, thus
making the computation more efficient than model-agnostic methods.

The most important for our purpose is Gradient-based methods because they carry
the information about howmuch a slight change in image pixel would affect the model’s
prediction. Explainable gradient-based methods are, therefore, a specific case of feature
assignment, or more precisely, in this case, pixel assignment, since pixels, words, or
tabular data can represent the features. These methods explain individual model predic-
tions by assigning each input feature to how much it affected the prediction (negative or
positive).
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These approaches usually produce an output explanation that’s the same size as the
input image. Each pixel is assigned a value that represents how important it is for the
final prediction or classification. This property can be extended into any feature vector
produced by the DNN. Thus, we can create the vector containing the relevance measures
that we can use later as the input to the post-hoc fuzzy explanator.

Saliency Map is the first and most straightforward method for feature importance
measures [7]. This method computes the gradient of the selected neuron we want to
explain concerning the individual pixels of the input image, or in general, concerning
features we want to interpret:

∂S

∂f

∣
∣
∣
∣
f =a

, (1)

where S is the selected neuron, f is the features we want to interpret, and a is the
feature vector given by DNN for the given pattern. Note this method does not modify
the derivation of the nonlinear ReLU function, i.e.:

φ′(·) =
{

0, f ≤ 0
Rl+1, f > 0,

(2)

where f is the feature vector, the ReLU is applied to, Rl+1 It is the backpropagated
signal from the next deeper layer. Note that backpropagated signal is controlled just by
the vector f .

The following considered method DeconvNet [8], slightly modifies the previous
method. The authors originally proposed this method to create the “Deconvolutional
network”, which backpropagates the signal in reversed order - from the selected neuron
back to the input space. This backpropagation allows only positive signals to back-
propagate, showing which pixels positively influence the activation of the selected neu-
ron. The deconvolutional network is thus built-in reverse order. Convolutional layers
use transposed weights, and max-pooling layers store the locations of maxims (called
“Switches”), indicating where the signal should be placed in the backpropagation pro-
cess. Finally, the nonlinear ReLU function is used to discard any negative signal after
using these switches. After a detailed investigation, all these steps converge to the sim-
ple and effective implementation solution when the derivation of the nonlinear ReLU
function at layer l is expressed as:

φ′(·) =
{

Rl+1, Rl+1 > 0
0, Rl+1 ≤ 0,

(3)

where Rl+1 is the backpropagated signal.
The thirdmethod, Guided backpropagation [9], combines the abovementionedmeth-

ods into a single one. The derivation rule for the nonlinear ReLU function is defined
as:

φ′(·) =
{

Rl+1, Rl+1 > 0 ∧ f > 0
0, Rl+1 ≤ 0 ∧ f ≤ 0.

(4)
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The signal from deeper layers (closer to the selected neuron) is backpropagated
through ReLU only if it is positive and values in the feature vector f obtained in the
inference phase are also positive. This approach can be viewed as a strict filtering rule
that keeps only the most essential signal parts.

The last considered method for feature importance measures is called Layer-Wise
Relevance Propagation (LRP) [10, 11], which is a method for interpreting the decisions
made byDNNby assigning relevance scores to the input features. Themethod propagates
the relevance scores from the output layer back through the network, layer by layer, using
a set of propagation rules. These rules ensure that the relevance scores are conserved,
meaning that the total relevance at the output of a layer is equal to the total relevance at
its input. Mathematically, relevance scores R can be defined as:

Rl
i =

∑Bl+1

k=1
Rl,l+1
i←k =

∑Bl+1

k=1

aliw
l,l+1
i,k

ε + ∑Bl
j=1 a

l
iw

l,l+1
j,k

Rl+1
k , (5)

where i ∈ {1, . . . ,Bl}, l ∈ {1, . . . ,L − 1}, L is the total number of layers and B is the
number of neurons in the l-th layer. This view allows the user to understand which input
features were most important in determining the network’s output. Several different
propagation rules can be used in LRP, and the choice of which one to use depends on
the specific network architecture and task. Standard propagation rules include:

– Z+ rule: The relevance at the output of a neuron is divided proportionally among its
input neurons based on their positive activation values.

– Z− rule: The relevance at the output of a neuron is divided proportionally among its
input neurons based on their negative activation values.

– ε rule: A small positive constant epsilon is added to all the activation values before
dividing the relevance. This trick is used to avoid dividing by zero.

– α − β rule: A combination of the Z+ and Z− rules, where the relevance is divided
proportionally among the input neurons based on a combination of their positive and
negative activation values.

2.2 Post-hoc Fuzzy Explanator

The paper [12] assigns a code vector to each feature vector. The first step is min-max
linear normalisation.

ỹi = yi − ymin
ymax − ymin

, ymin = min{y1, . . . , yM }, ymax = max{y1, . . . , yM },

where yi ∈ R, i ∈ {1, . . . ,M } are the features importance measures, and ỹi ∈ [0, 1],
i ∈ {1, . . . ,M } are the features of truth values. The second step is mapping importance
into relevance categories: c = 0 is a negative relevance, c = 1 is a positive relevance,
and c = X is an irrelevant feature. Rounding

ci =
⎧

⎨

⎩

1,
X ,

0,

ỹi > 1
2 + �

1
2 − � ≤ ỹi ≤ 1

2 + �, i ∈ {1, . . .M },
ỹi < 1

2 − �

(7)
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(where � gives an irrelevance range), assigns the relevance codewords from the set

Cfull =
{

cj =
(

cj1, . . . , c
j
M

)

∈ {0,X , 1}M
}

, j = 1, . . . , 3M

to each truth vector ỹ = (ỹ1, . . . , ỹM ) ∈ [0, 1]M . After filtering irrelevant features,
we calculate a truth value of the statement that the feature is relevant (negatively or
positively)

t(ỹi = ci) =
{

1 − ỹi, ci = 0
ỹi, ci = 1

, ci �= X , i ∈ {1, . . . ,M }, (8)

and how relevant the codeword is

t
(

c̃ = cj
)

= min
i = 1, . . . ,M

cji �= X

t
(

c̃i = cji

)

, j = 1, . . . , 3M . (9)

As one can see, we apply the Zadeh fuzzy logic. Figure 2 shows the block diagram
of an explainable classifier based on the fuzzy logic function.

Fig. 2. The fuzzy logical explanator

The result of training is the set of codewords CT = {CT1 , . . . , CTN
} ⊂ Cfull that

occurred during the training, where the codeword c ∈ CT1 belongs to the class i ∈
{1, . . . ,N }. Let the black box forecast m̃ ∈ {1, . . . ,N } as a winning class and the
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winning class from the explainable classifier is the class ˜̃m ∈ {1, . . . ,N } associated with
the codeword

c̃ = argmax
j:cj∈CT

min
i = 1, . . . ,M

cji �= X

t
(

c̃i = cji

)

. (10)

We can look at the explainable and the black box classifiers as competing systems
and ask which one has higher classification accuracy. However, the main task of the
explainable classifier is to explain the decisions of the black box classifier. Therefore,
we will consider it a success if its classification joins the black box classifier, and the
success rate is

p =
∑n

i=1 δ
(

˜̃mi = m̃i

)

n
, (11)

where δ
(

˜̃mi = m̃i

)

=
{

1, ˜̃mi = m̃i

0, ˜̃mi �= m̃i
And n is the number of tested samples.We evaluate

in Sect. 3 several measures of the feature importance according to this measure.
To explain the decision of the black box classifier, we identify the codeword with

the highest truth value within the codewords belonging to the same class CMT
˜

within the
explainer

c̃ = argmax
j:cj∈CT

m̃

min
i = 1, . . . ,M

cji �= X

t
(

c̃i = cji

)

. (12)

We can display this relevance codeword c̃ = (c̃1, c̃M ), c̃i ∈ {0,X , 1}, its truth value
t(c̃) = min

i = 1, . . . ,M
c̃i �= X

t(c̃i) and truth values of the codeword components t(c̃i), c̃i �= X .

Available are also features values, their importance measures yi ∈ R or normalised
importance measures ỹi ∈ [0, 1].

3 Results

For designed experiments, we used two different datasets on the same architecture. By
doing so, we can compare other feature extraction methods and their effectiveness. The
first dataset is the well-known MNIST [13] which contains Handwritten Digits images.
The second one – Fashion MNIST [14], is a slightly challenging version of the Base
MNIST. The images are still grey scaled, with exact resolution and quantity. However,
this data consists of different clothing with more complex shapes. We trained LeNet-
5 [13] architecture on these datasets, but we performed some enhancements to reach
state-of-the-art accuracy on this model. The convolution part of the net was expanded,
aiming at more complex features, while the classification head was denser and deeper
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to accommodate increased network parameters. The hyperparameters and regularisation
were also included and tweaked for the best performance. Optimisations significantly
helped push the accuracy of the model over 99%. Everything was assembled in the
TensorFlow framework. Table 1 gives results obtained for MNIST and FashionMNIST
datasets. The reported values represent the success rate according to (11). We have
trained ten models with different starting seeds to get more accurate results. So, the
reported values are averaged over these individual runs of training. The average black
box’s accuracy for MNIST and FashionMNIST is 99.61% and 92.46%, respectively.

Table 1. Rate of matching between explainable and black box classifier

Feature importance method MNIST FashionMNIST

Raw features 99.20% 91.83%

Saliency maps 99.47% 98.33%

DeconvNet 100.00% 100.00%

Guided Backpropagation 99.79% 99.59%

LRP 98.35% 93.38%

We compute the feature interpretation methods from chapter 2.1 and the respective
metrics to compare these methods (11). Also, to conclude if the post-hoc explanatory
model can match our nonlinear classifier in terms of accuracy, thus explain it. The
gradient-basedmethods provide highly accurate results, while DeconvNet outperformed
themwith perfect compliancewith the classifier. TheLRPmethodwith the ε rule seems to
give the worst feature information but is still relevant with high accuracy. Unexpectedly,
the raw normalised feature vector after feature extraction from the LeNet-5 classifier is
sufficient to feed the fuzzy explanatory with the appropriate input information.

Looking at Figs. 3, 4, 5 and 6 below can achieve better intuition behind our proposed
approach. Figures 3 and 4 depict the example of accurate classification of the handwrit-
ten image of 8 (shown in Fig. 3). Figures 5 and 6 depicted the example of inaccurate
classification when the handwritten image of 8 was classified as the number 6. One
can see that the number of Positive relevance features is relatively low compared to the
number of Negative relevance features. Note that the features which do not appear in
the figure have a truth value equal to zero. This value means that the test pattern must
indeed not contain these features. In the presented case, we used a uniform distribution of
truth values over the unit interval among positively relevant, irrelevant, and negatively
relevant features: ci = X , 1

2 − � ≤ ỹi ≤ 1
2 + �, � = 1

6 (truth value above 66%).
This margin can be experimented with and increasing it would reduce the number of
negatively relevant features and make the decision easier to interpret. Truth values of
critical features are circled in Figs. 3 a) and 5 a). Unlike interpreting image pixels, when
explaining a pattern, the user loses the connection between the image and the result of
its recognition. Therefore, we underline that the explanation of the classification result
is only a partial result that must coexist with the explanation of the relevant features.
This task can be set aside for a separate study and is not part of the paper.
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Fig. 3. a) Normalized features vector from LeNet-5 layer after feature extraction on accurate
classification, b) Computed features by DeconvNet method with Positive/Negative and Irrelevant
contributions

Fig. 4. Confidence score in case of accurate classification given by LeNet-5 classifier (on the
right) and truth value given by Fuzzy post-hoc explanator (on the left) for the input image from
Fig. 1.
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Fig. 5. a) Normalized features vector from LeNet-5 layer after feature extraction on data image
with wrong classification, b) Computed features by DeconvNet method with Positive/Negative
and Irrelevant contributions

Fig. 6. Confidence score in the case of wrong classification given by LeNet-5 classifier (on the
right) and truth value given by Fuzzy post-hoc explanator (on the left) for the input image from
Fig. 1.
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4 Conclusions

Pattern recognition systems implemented using deep neural networks achieve better
results than linear models. However, their drawback is the black box property. This
property means that one with no experience utilising nonlinear systems may need help
understanding the outcome of the decision. Such a solution is unacceptable to the user
responsible for the final decision. He must not only believe in the decision but also
understand it. Therefore, recognisers must have an architecture that allows interpreters
to interpret the findings. European culture has a two-thousand-year history of using Aris-
totle’s logic. Consequently, we assume that a decision expressed as a logical statement
will be meaningful to the user. This paper focuses on the explainability of a classifica-
tion subsystem that generates a decision from the extracted features. To respect the data
uncertainty, we apply Zadeh’s fuzzy logic. The question is how adding an explainability
condition will worsen the recognition success rate. Hence, it is not desirable to replace
the black box classifier with an explainable classifier but to require the explainable clas-
sifier to explain the decision of the black box classifier. Therefore, when designing a post
hoc classifier, we need it to replicate the findings of the black box classifier as closely
as possible.

The inputs to the fuzzy logic function are the truth values of the features. This
demand does not mean these are the feature values normalised to a unit interval, just
as pixels saturation does not express their significance. Today, a palette of measures of
pixel importance in an image is available, which can also be used to measure features’
extent (truth value). We selected the four most widely used relevance measures for
comparison with flag values: Saliency Maps, DeconvNet, Guided Backpropagation and
Layer-Wise Relevance Propagation. The MNIST and FashionMNIST databases show
that importance levels can be worse or better than the directly unit-interval-normalised
feature values.Using theDeconvNet as the feature truth value on the fuzzy logic classifier
inputs emerges as the clearwinner of the above tests. In this case, the explainable classifier
ultimately achieves the decisions of the black box classifier. In all instances of the test set,
the best explainable decisions are those by the black box classifier. DeconvNet provides
the best measure of feature importance from a scrubbing perspective. If this result is
confirmed on multiple databases and recognition systems, it will imply that DeconvNet
is the optimal feature importance measure.
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12. Klimo, M., Lukáč, P., Tarábek, P.: Deep neural networks classification via binary error-
detecting output codes. Appl. Sci. 11 (2021). https://doi.org/10.3390/app11083563

13. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document
recognition. Proc. IEEE (1998). https://doi.org/10.1109/5.726791

14. Han, X., Kashif, R., Vollgraf, R.: Fashion-MNIST: a Novel Image Dataset for Benchmarking
Machine Learning Algorithms. https://arxiv.org/pdf/1708.07747.pdf. Accessed 15 Sept 2017

https://doi.org/10.1007/S42452-021-04148-9/TABLES/4
https://doi.org/10.48550/arxiv.1312.6034
https://doi.org/10.1007/978-3-319-10590-1_53
https://doi.org/10.48550/arxiv.1412.6806
https://doi.org/10.1109/IJCNN48605.2020.9206975
https://doi.org/10.1007/978-3-319-44781-0_8
https://doi.org/10.3390/app11083563
https://doi.org/10.1109/5.726791
https://arxiv.org/pdf/1708.07747.pdf


A Bayesian Interpretation of Fuzzy
C-Means

Corrado Mencar(B) and Ciro Castiello

Department of Computer Science, University of Bari Aldo Moro, Bari, Italy
{corrado.mencar,ciro.castiello}@uniba.it

Abstract. In Explainable Artificial Intelligence, the interpretation of
the decisions provided by a model is of primary importance. In this
context, we consider Fuzzy C-Means (FCM), which is a clustering algo-
rithm that induces a model from data by assigning, to each data-point,
a degree of membership to each cluster such that the sum of member-
ships is one. A fuzzification parameter is also used to tune the degree
of fuzziness of clusters. The distribution of membership degrees suggests
an interpretation of membership degrees within the Probability Theory.
This paper shows that the membership degrees resulting from FCM can
be interpreted as posterior probabilities derived from a Bayesian model,
which assumes that data are generated through a specific probability
density function. The results give a clear interpretation of the member-
ship degrees of FCM, as well as its fuzzification parameter, within a
sound theoretical framework, and shed light on possible extensions of
the algorithm.

Keywords: Fuzzy C-Means · Bayesian Model · Explainable Artificial
Intelligence · Probability Theory

1 Introduction

In the realm of Explainable Artificial Intelligence (XAI), the emphasis is on
the ability of intelligent systems in providing human-oriented explanations for
their decisions [10,13]. This goal translates into a plethora of methods, which
are aimed at designing a number of different models, commonly distinguished as
ante-hoc (or transparent) models, post-hoc explanatory models, or hybrid models
[1,3,5,9,16].

Within XAI, fuzzy logic plays a special role, because it enables the represen-
tation and processing of imprecise and gradual information. Indeed, imprecision
and graduality are key aspects of human-centric information processing; how-
ever, the mere adoption of fuzzy logic does not imply the guarantee of providing
human-oriented explanations, as past research on interpretable fuzzy modeling
put in evidence [2,12].

In this study, we focus on fuzzy clustering, and Fuzzy C-Means (FCM) [6,7]
in particular. By clustering, we intend a broad category of unsupervised meth-
ods that are able to group data into clusters representing some kind of struc-
ture in data, thus enabling further analysis and pattern discovery. The informal
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assumption is that data points in the same clusters are similar, while data points
in different clusters are dissimilar. That is the basic idea which contributes to
provide meaning to the clustering process.

In most hard clustering methods, each data point belongs to one cluster only,
so that different clusters partition a dataset and form a granular structure of the
data domain. Possibly, these methods endow uncertainty on cluster assignment
by defining a probability distribution of clusters conditioned to observed data
points. Eventually, data points are assigned to the most probable cluster, or to
a cluster that minimizes some loss function.

The added value of fuzzy clustering lies in a partial membership that can
be assigned to data points when they are related to different clusters. Yet, this
form of graduality is not understood as probability, rather it is a degree of mem-
bership which can be interpreted as a degree of similarity of a data point with
respect to a cluster prototype. It is noteworthy that in classical Machine Learn-
ing the meaning of membership degrees is less relevant as long as the clustering
results satisfy some measurable criteria, whereas in XAI the interpretation of
membership degrees is instrumental to provide meaningful explanations.

FCM is a very popular fuzzy clustering method. Its popularity is due to its
efficient algorithm, its robustness (especially when compared to its hard counter-
part, i.e. k-means), as well as the requirement of few hyperparameters (namely,
the number of clusters and a “fuzzification” parameter) [17]. Furthermore, FCM
has been extended far and wide, with a huge corpus of literature that is beyond
the scope of this paper [4,14].

Fuzzy clusters resulting from FCM form a Ruspini partition [15] because the
sum of membership degrees of any data point to all clusters is equal to one.
This poses an interpretation problem, because the resulting clusters have a non-
convex shape; therefore, the membership degrees can be hardly interpreted in
terms of similarity with respect to a prototype. In fact, membership degrees
derived by FCM have also been interpreted as “degrees of sharing” [8], thus
putting forward a concept that requires a contextualization in an appropriate
theory to claim a clear meaning.

In this study, the membership degrees resulting from FCM are provided with
an interpretation in the realm of Probability Theory. More specifically, we show
that a membership degree can be interpreted as a posterior probability of a data
point belonging to a cluster, given some assumptions that are made explicit and
formalized.

The probabilistic interpretation has a number of advantages. First, the con-
cept of “degree of sharing” is made clear because it is contextualized in a sound
theory: the degree of sharing is the probability that a data point belongs to a
cluster, given the assumptions. Therefore, in coherence with the Bayesian analy-
sis, the membership degree of a data point to a cluster represents the belief that
the data point belongs to the cluster, the latter being a crisp—yet unknown—
subset of data.

As an additional advantage, the “fuzzification” parameter can be interpreted
in probabilistic terms, since it is related to the expected value of the likelihood
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function, i.e., the probability that a data-point falls at a given distance from a
cluster prototype. Finally, by weakening the reported assumptions, it may be
possible to design extended versions of FCM by preserving the interpretation of
the membership degrees.

The rest of the paper is organized as follows. The next section is devoted to
the formalization of FCM. In Sect. 3 the probabilistic interpretation of the mem-
bership degrees is presented and demonstrated. Section 4 concludes the paper
with a discussion and some hints for further investigation.

2 Fuzzy C-Means

Let X be a finite collection of N data points xj in R
n, to be mapped to c

clusters. The objective of FCM is to derive a collection V of c prototypes vi,
and a partition matrix U such that uji is the membership degree of data point
xj to cluster i. To this pursuit, the following objective function is minimized:

J (U,V) =
c∑

i=1

N∑

j=1

um
ji ||xj − vi||22 (1)

subject to the constraints:

∀xj :
c∑

i=1

uji = 1 (2)

∀i : 0 <
N∑

j=1

uji < N (3)

where m > 1 is the “fuzzification” hyperparameter.
The objective function (1) is minimized through an iterative process; at each

step, the membership degrees and prototypes are derived as:

uji =
1

∑
k

( ||xj−vi||2
||xj−vk||2

) 2
m−1

(4)

and

vi =

∑
j um

jixj∑
j um

ji

(5)

In the case that xj = vi, then uji = 1; if xj = vk, with k �= i, then uji = 0.
The iterative process stops when there is a negligible reduction of J or when

a maximum number of iterations is reached.
For the sake of our discussion, we can rewrite (4) as a function of xj , i.e.:

ui(xj) =
1

∑
k

(
di

dk

) 2
m−1

(6)
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Fig. 1. Example of clustering 10 random one-dimensional data-points in two clusters
with prototypes v1 = 0.3 and v2 = 0.5.

where di = di(xj) = ||xj −vi||2 for i = 1, 2, . . . , c. The functional form (6) allows
the computation of the membership degree of any data point in R

n once the
optimization process is completed.

Figure 1 depicts the membership degrees of two one-dimensional clusters
computed on 10 random data points and on the whole interval [0, 1]. Such a
configuration is consistent with the results deriving from an application of the
FCM algorithm. Each membership function ui does not form a convex fuzzy
set because it is not monotonically decreasing as the distance of a data point
to the cluster prototype increases. This makes the interpretation of membership
degrees as similarity degrees hard to accept: for example, v2 = 0.5 stands as
the prototype of the green cluster, but the membership degree of a data point
located at x = 0.1 is higher than the membership degree of a data point located
at x = 0.35 even if the latter is closer to the prototype than the former.

For such a reason, the membership degrees resulting from FCM are inter-
preted as “degrees of sharing”, often leaving the meaning of this term to intu-
ition. However, this interpretation might be unsatisfactory where the meaning
of the outputs of a model must be clear (this is the case of the XAI context).
As an example, the concept of “sharing” may be interpreted in terms of the
requirement that a data point is decomposable into parts, with parts assigned
to clusters in an exclusive way; yet, decomposability depends on the nature of
the problem, while FCM can be always applied provided that data points have
a numerical representation.

In our opinion, the quest for a general interpretation—where the sum of mem-
bership degrees finds a suitable meaning—represents a relevant research topic
that may be of interest to scholars in this field. In the next Section, this inter-
pretation is formalized within Probability Theory thanks to Bayesian analysis.
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3 Bayesian Interpretation

Let X be a random data point1 in a domain X ⊂ R
n. It is assumed that X occurs

with a probability distribution represented by a mixture model of c clusters:

fX(x|θ) =
c∑

i=1

Pr(C = i)fX|C(x|i, θ) (7)

being θ the array of parameters of the model, C the random cluster, and f
denoting the probability density functions (pdf) of (possibly conditioned) con-
tinuous random variables. (This approach is similar to defining a Gaussian Mix-
ture Model, but we are not assuming a Gaussian distribution for fX|C .) In the
following, we are going to evaluate the pdf (7) on the basis of a number of
assumptions.

First, we consider all the clusters to be equiprobable, i.e.,

Pr(C = i) =
1
c

(8)

It is further assumed that each cluster i corresponds to a prototype vi ∈ X ,
where vi is a member of θ.

Given a cluster C = i, the random data point X can be represented in
spherical coordinates, as a random pair (A,D) in which A is a (n−1)-dimensional
vector of angular coordinates A = (A1, A2, . . . , An−1) where A1, . . . , An−2 ∈
[0, π] and An−1 ∈ [0, 2π), while D is the random radial coordinate defined as the
Euclidean distance D = ||X −vi||2. In Fig. 2 we refer to an exemplifying scenario
where n = 3 and a cluster v are considered: an instance x of the random data
point X can be represented in terms of α = (α1, α2) and d as instances of the
random pair (A,D).

Based on the spherical representation of X, the conditional pdf fX|C involved
in (7) can be expressed as:

fX|C(x|i, θ) = fA,D|C(α, d|i, θ)

=
fA,D,C(α, d, i|θ)

fC(i|θ)
=

fA|D,C(α|d, i, θ) · fD,C(d, i|θ)
fC(i|θ)

=
fA|D,C(α|d, i, θ) · fD|C(d|i, θ) · fC(i|θ)

fC(i|θ)
= fA|D,C(α|d, i, θ) · fD|C(d|i, θ)

(9)

In the following, we are going to derive a suitable expression for fA|D,C and
fD|C , i.e. the pdfs involved in (9).

1 Throughout the paper, we will denote random variables with uppercase letters, and
their instances with lowercase letters, e.g. X/x, A/α, D/d, etc.
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Fig. 2. A random point instance x represented in spherical coordinates inside a three-
dimensional scenario.

Concerning fA|D,C , it is assumed that all the angles A can be independently
observed with the same probability evaluated inside their own range of values,
irrespective of the data point’s distance from the prototype, i.e., fA|D,C = fA|C .
By recalling that An−1 ∈ [0, 2π) and Ap ∈ [0, π] for p = 1, 2, . . . , n − 2, we
obtain:2

fA|D,C(α|d, i, θ) =
n−1∏

p=1

fAp|C(αp|i, θ)

= fAn−1|C(αn−1|i, θ) ·
n−2∏

p=1

fAp|C(αp|i, θ)

=
1
2π

·
n−2∏

p=1

1
π

=
1
2π

·
(

1
π

)n−2

=
1

2πn−1

(10)

Concerning fD|C , some further assumptions are made. X is in a neighbour-
hood of vi admitting both a lower and an upper bound. To avoid collapsing on
the prototype, we assume there exists a threshold a > 0 such that D ≥ a (in
practice, a can be assumed to be related to a very small value, such as 10−3). The
data point’s distance from the prototype is also limited by an upper bound l > a
such that D ≤ l (for example, l = 1 can be assumed in case of L2 normalized
data).

2 In the case n = 1, A can be either 0 or π with probability 1/2.
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Fig. 3. Plots of the pdf fD|C evaluated for different values of β by setting a = 10−3,
l = 1: β = 2 (green line) and β = 0.5 (red line). (Color figure online)

Based on these assumptions, we define the pdf fD|C as:

fD|C(d|i, θ) =
1
K

· d−β (11)

where β > 0. Being fD|C a pdf, its analytical expression must be such that its
integral evaluated on the interval [a, l] is equal to one. Therefore, we write:

case I (β = 1) :
∫ l

a

1
K

1
d′ dd′ =

1
K

log |d′|
∣∣∣
l

a
=

1
K

(
log(l) − log(a)

)

case II (β �= 1) :
∫ l

a

1
K

d′−β dd′ =
1
K

d′1−β

1 − β

∣∣∣
l

a
=

1
K

( a1−β

β − 1
− l1−β

β − 1

) (12)

By doing so, we are able to express the value of the normalization coefficient K:

K =

⎧
⎪⎪⎨

⎪⎪⎩

log (l) − log (a) if β = 1

a1−β − l1−β

β − 1
if β �= 1

(13)

To provide an illustrative example, in Fig. 3 we plot the pdf fD|C for some
chosen values of β, leaving the other parameters a, l fixed. Observing the shape
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Fig. 4. Expected value of D|C for l = 1 and a = 10−3. The expected value for β = 2
is highlighted. Notice that a and l denote the lower and upper bounds of the expected
value.

of the function, we notice that the green line is highly flattened. This means that,
under certain assumptions (corresponding to the value β = 2) the probability
to find data points at a greater distance from the considered prototype quickly
decreases, which in turn implies that we are facing a scenario where all the data
is expected to be concentrated very close to the prototype. On the other hand,
if a different value of β is considered, the scenario changes accordingly. The red
line in the figure (corresponding to the value β = 0.5) indicates an increased
variance in the data location, with a greater probability to find points scattered
far from the prototype.

As a further exploration in this direction, we can consider the expected value
E[D|C] (whose analytical form is rather complex and it is not reported here).
A graph of E[D|C] is illustrated in Fig. 4 for l = 1 and a = 10−3, by varying β
from 10−1 to 10 (the expected value for β = 2 is highlighted). Interestingly, for
β � 1 the expected value is close to a, which presupposes that data are almost
totally concentrated toward the prototype. On the other hand, for β 	 1, the
expected value becomes close to l, thus meaning that data are expected to be
more scattered across the domain.

The pdf fX|C reported in (9), expressed as the combination of fA|D,C and
fD|C is related to the probability of finding a data point given a particular
cluster and its prototype, under the specified assumptions. We can exploit such
a result to evaluate the probability of identifying a cluster (all of them have
been initially assumed equiprobable) given a particular data point, under the
same specified assumptions. Noticeably, this can be intended as the probability
Pr(C = i|X = x, θ) that a data point x belongs to a cluster i. It is possible to
derive this probability by applying the Bayes’ theorem to the previous results:
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Pr (C = i|X = x, θ) =
fX|C (x|i, θ) · Pr (C = i)

fX (x|θ)
=

fA,D|C (α, d|i, θ) · Pr (C = i)∑
k fA,D|C (α, d|k, θ)fC(k)

=
1

2πn−1 · 1
K · d−β

i · 1
c∑

k

(
1

2πn−1 · 1
K · d−β

k · 1
c

)

=
d−β

i∑
k d−β

k

(14)

It is now possible to relate (14) with (6), thus giving an interpretation to the
membership degrees of FCM. Let

m = 1 +
2
β

where it is possible to notice that m > 1. Then:

− 2
m − 1

= −β (15)

therefore:

Pr (C = i|X = x, β) =
d

− 2
m−1

i
∑c

k=1 d
− 2

m−1
k

=

1

d
2

m−1
i∑c

k=1
1

d
2

m−1
k

=
1

d
2

m−1
i

∑c
k=1

1

d
2

m−1
k

1
∑c

k=1

(
di

dk

) 2
m−1

(16)

By recalling (6), we can observe that the expression of Pr(C = i|X = x, θ)
is analogous to the one adopted to describe the membership degrees evaluated
by FCM while assigning a data point x to a cluster i. In this way, the FCM
algorithm gets its own interpretation in the realm of the Probability Theory, and
the “degrees of sharing” can be actually intended as probability values (under
the assumptions discussed in this section).

4 Conclusive Remarks and Hints for Further
Investigation

The Fuzzy C-Means algorithm is a popular clustering method whose effectiveness
has been demonstrated in a wide range of applications. It has also been variously
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adopted in several contexts and adapted in a number of variations by scholars in
the field of fuzzy modelling. However, FCM embeds a constraint which escapes
a clear explanation within the framework of fuzzy logic, i.e. the sum-to-one
of all the membership degrees evaluated for each data point when all clusters
are considered. This constraint in turn implies some interpretation problems,
since the clusters are characterized by membership degrees that can hardly be
interpreted in terms of prototype similarity. Thus, despite the success of FCM,
when it comes to applying it in contexts where explainability is a major concern,
the aforementioned issues undermine its feasibility.

Based on the above considerations, we engaged a deeper investigation of
the FCM algorithm with the aim of framing its machinery in the Probability
Theory. This paper formally demonstrates that the membership degrees can be
intended (under certain assumptions) as probability values, thus providing a
sound interpretation of the “degrees of sharing” commonly invoked to describe
the FCM results. More properly, we should talk about a-posterior probabilities of
points belonging to clusters, as long as the specified assumptions stay effective.
The probabilistic interpretation of membership degrees as posterior probabilities
is in full compliance with Ruspini’s work and provides a convincing meaning to
otherwise elusive concepts.

Also, our results attribute a more precise role to one of the parameters
involved in the FCM algorithm. We have pointed out that the fuzzification
parameter is related to one of the terms at the basis of the pdf which describes
the distribution of the data points around the prototypes associated to each
cluster. In this sense, we have shown how the setting of the fuzzification param-
eter in FCM (a common a-priori choice made by practitioners) actually implies
another (unverified) assumption concerning the dense or scattered concentration
of points in the neighbourhood of the prototypes. This specific remark paves the
way for further analysis. In fact, it makes sense to propose that the fuzzifica-
tion parameter, rather than being chosen blindly a priori, should be derived
through an investigation that appropriately takes into account the dispersion of
data around the prototypes. Even, an analysis may be designed to determine
several degrees of dispersion, possibly different for each cluster. Of course, there
should also be room for estimating the associated costs in terms of additional
computational burden.

Finally, we propose a quick comparison between the FCM and another clus-
tering algorithm allowing for each data point a soft degree of assignment to
each cluster, that is the soft counterpart to the classical (hard) K-means algo-
rithm, i.e. the Soft K-means (SKM) [11]. In Fig. 5 we illustrate a one-dimensional
clustering scenario involving two prototypes: v1 = −0.5 and v2 = 0.5. The mem-
bership functions depicted by solid lines refer to the results of the FCM, while
the dashed lines represent the responsibility functions derived by the SKM algo-
rithm. In both cases, the blue and the green clusters refer to the prototypes
v1 and v2 respectively, and the degrees of assignment satisfy the sum-to-one
requirement. Some differences can be easily observed from the analysis of the
figure:
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Fig. 5. A one-dimensional clustering scenario, based on two prototypes v1, v2, where
both FCM and SKM are involved. Blue and green clusters refers to v1 and v2, respec-
tively. Solid and dashed lines refer to FCM and SKM, respectively.

– the FCM algorithm organises the membership functions in such a way that
the maximum probability that a data point belongs to a cluster corresponds to
the prototype; instead, in the SKM case, the probability value corresponding
to the prototype is less than one;

– when we consider the outermost regions of the domain (i.e. the left/right sides
of the graph towards infinity, where the points furthest from the prototypes
are located), we notice that SKM asymptotically tends to an extreme proba-
bility value (0 or 1); instead, FCM associates these regions to the maximum
degree of uncertainty, since the membership functions asymptotically tend to
the value 0.5 (or 1/c in the general case).

Both SKM and FCM share the same theoretical framework based on the
computation of the posterior cluster probability (SKM differs from FCM only in
the definition of the likelihood pfd fX|C , which is Gaussian). As a consequence,
all enhancements and methodological approaches to SKM (e.g., a Bayesian anal-
ysis of the parameters) can be, in principle, applied to FCM, thus opening the
door to further extensions of the algorithm and novel theoretical insights.
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Abstract. In this work, we have introduced a new way of speculative
reasoning for intelligent systems. In addition, we have illustrated the
utility of this way of reasoning in the context of a use case on art genre
classification, where explainability and trustworthiness are a matter of
major concern. Speculative reasoning is natural for humans and it turns
up as a powerful tool, especially in the case of intelligent systems dealing
with incomplete, vague, and imprecise information.

Keywords: Explainable AI · Logical Commonsense Reasoning · Horn
Clauses · T-norm based Propositional Fuzzy Logic

1 Introduction

The research agenda in the field of Explainable and Trustworthy Artificial Intel-
ligence (AI) addresses the challenges of adequate treatment of privacy, reliability,
transparency, and interpretability of models and results associated with intelli-
gent systems which are pervading many aspects of our Society [1].

In the context of Explainable AI, contrary-to-factual (or just counterfac-
tual) explanation may be of crucial importance to go beyond summarizing avail-
able information about the reasoning behind the system’s output and offer an
insight into how alternative outcomes could be reached and appreciated by
humans [13,14]. Being contrastive by nature, counterfactual explanations are
claimed to increase users’ trust only if they are in agreement with commonsense
reasoning [12]. Accordingly, commonsense reasoning constitutes a cornerstone
for counterfactual thinking [2]. In addition, abductive reasoning, complementary
to the usual deductive and inductive reasoning, has already been successfully
applied to time series interpretation [16].

It is worth noting that Trillas and De Soto [17] proved how combining gener-
alized versions of the well-known Modus Ponens and Modus Tollens, it is possible
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to verify or refute conjectures, what constitutes a way of advance abductive rea-
soning. More precisely, they first formalized the concept of conjecture in lattices.
Then, they defined speculations as a specific type of conjecture in a pre-ordered
set. Later, they defined a taxonomy of conjectures which includes consequences,
hypotheses, and speculations.

In this work, we present an advanced speculative reasoning approach that is
built on top of the logical reasoning approach previously proposed by [17] and
briefly introduced in Sect. 2. A use case on art genre classification is described in
Sect. 3, which also includes some illustrative examples of speculative reasoning.
The manuscript ends with concluding remarks in Sect. 4.

2 Preliminaries

In Sect. 2.1, we recall the basics of the mathematical model developed by Tril-
las et al. for reasoning with speculations, to be used later in Sect. 3. Then, in
Sect. 2.2, we define the five art genres to be taken into account later in the
illustrative examples that are presented in Sect. 3.

2.1 A Formal Framework For Handling Speculations

Human reasoning, including commonsense reasoning, goes beyond deduction and
abduction (understood as the seeking of consequences and hypothesis, respec-
tively) and especially involves guessing, conjecturing, or inducing [15,20,22]. In
a series of publications, Trillas et al. [18–21], developed a mathematical model,
the so-called skeleton, to study this kind of reasoning. In this subsection, we
revisit some of the main definitions and properties of this skeleton.

According to that model, a first and crucial step towards mathematical study-
ing this kind of reasoning is the formalization of the so-called inferential rela-
tion, denoted by <. The binary < relation recognizes an intellectual movement
between linguistic terms, concepts, or statements. In this way, the expression
p < q abbreviates “If p, then q” (from now on, let us denote any linguistic
statement using the letters p, q, r, . . .). But this linguistic relation has no fixed
interpretation in the language: for instance, in quantum physics, it would be
¬p ∨ (p ∧ q) or q ∨ (¬p ∧ ¬q); in mathematics, ¬p ∨ q; and often p ∧ q in the
ordinal language (observe that ordinal language does not always interpret the
conjunction as the classical one). For this reason, this model conceives the infer-
ential relation as a primitive relation, and when using <, its interpretation must
be explicit, i.e., < must be rendered in terms of connectives. Furthermore, for
any p, q, the inference relation < must hold the five general laws of commonsense
reasoning (which can be considered as the reasoning principles which does not
accept the contradiction):

1. Reflexivity: p < p.
2. If p < q, then ¬q < ¬p.
3. p ∧ q < p, and p ∧ q < q.
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4. p < p ∨ q, and q < p ∨ q.
5. Modus Ponens: p ∧ (p < q) < q.

In addition, it is worth noting that due to its linguistic character, < cannot
always be assumed to be transitive (i.e., transitivity does not hold for any triplet
of statements; local transitivity, however, is allowed).

The expression p �< q indicates that it does not hold p < q. Furthermore,
whenever p �< q and q �< p, we say that p and q are orthogonal, and this is
represented by p � q. Regarding the conclusions of one reasoning, provided that
p �< ¬p, the following basic definitions are considered:

– q is a consequence of p if p < q;
– h is a hypothesis of p whenever h < p, h �< ¬h (i.e., h is not self-contradictory)

and p �< h;
– if p < ¬r, we say r is a refutation of p;
– c is a conjecture from p if p �< ¬c.

Regarding the negation, four types are considered:

1. Weak negation: p < ¬¬p.
2. Intuitionistic negation: ¬¬p < p.
3. Strong negation: ¬ is weak and intuitionistic.
4. Wild negation: ¬ is neither weak nor intuitionistic (i.e., p � ¬¬p).

Whenever q is a conjecture from p (i.e., p �< ¬q), we say that q is a speculation
from p if p�q. In this way, since provided p �< ¬q, it can be either p < q, or q < p,
or p � q, conjectures can be classified into consequences, hypotheses, and specu-
lations. Accordingly, reasoning in the skeleton introduced above can be defined
as the process to reach conjectures and refutations [17]. Again, transitivity is
crucial to make effective and efficient reasoning. In this context, valid admis-
sible premises are those statements that can be inferred and conjectured from
themselves, no conjecture being a consequence of a premise is self-contradictory
(under transitivity). Speculations can be categorized into two main types:

1. Weak speculation: ¬q < p. Notice that, the negation of a weak speculation is
a hypothesis.

2. Strong speculation: p � ¬q.

Finally, handling speculations implies combining properly deduction and
abduction. On the one hand, deduction or forwards inference means that given
p, we look for q such that p < q (consequences are attained by chains of deduc-
tions). On the other hand, abduction or backward inference means that given p,
the search is for some q such that q < p (hypotheses are obtained by chains of
abductions). Observe that reasoning from p means conjecturing from p to find
out and validate a consequence/hypotheses/speculation q, or refuting p.
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2.2 Art Genres

Genres are types of painting, i.e., categories of painting compositions character-
ized by a particular style, form, or content. A genre system divides paintings
according to depicted themes and objects. The first genre system, which we use
in this paper, was established in the 17th century by the French Academy, and it
considers five genres: history painting, portrait, genre painting, landscape, and
still life. History paintings provide a message set in a historical, religious, allegor-
ical, or mythological context1. Portraits are paintings whose theme is the face.
Another art genre is the genre painting, which includes those paintings concern-
ing scenes from everyday life, presented in a generally realistic manner [4]. The
landscape is the genre of paintings whose principal theme is the representation
of a scenic view as rivers, mountains, or seascapes2. Still life paintings mostly
depict an arrangement of inanimate objects as their subject3. These objects are
typically flowers, vases, food, glasses, or books, among others. Figure 1 shows
some illustrative examples of the art genres enumerated above.

Fig. 1. Examples of paintings from the QArt-Dataset classified by art genre. All rights
under c© creative commons, public license.

In this paper, we classify and reason with paintings from the QArt-Dataset [9,
10]. This dataset contains 90 images by Diego Velázquez, Johannes Vermeer,
Pierre-Auguste Renoir, Claude Monet, Vincent van Gogh, and Paul Gauguin.
All the paintings in the figures of this paper belong to this dataset.

3 Logical Deduction and Speculation Regarding Art
Genres

In this section, we categorize the five main art genres briefly introduced in
previous Sect. 2.2 and present the design of an explainable art genre classifier
(see Sect. 3.1). Then, we use the model of speculations previously introduced
(in Sect. 2.1) to derive speculations on the genre of a painting (see Sect. 3.2).
Finally, we use these categorizations to evaluate the worthiness of weak specu-
lations when reasoning on two illustrative examples with imprecise information
(see Sect. 3.3).
1 http://www.visual-arts-cork.com/genres/history-painting.htm.
2 http://www.visual-arts-cork.com/genres/landscape-painting.htm.
3 https://mymodernmet.com/what-is-still-life-painting-definition/.

http://www.visual-arts-cork.com/genres/history-painting.htm
http://www.visual-arts-cork.com/genres/landscape-painting.htm
https://mymodernmet.com/what-is-still-life-painting-definition/
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3.1 Logical Deduction for Classifying Art Genres

For categorizing the five art genres under consideration, we use the evaluated
syntax of the Horn fragment of continuous t-norm based propositional fuzzy
logic, which we recall next. We consider a set of propositional variables V ar, the
binary connectives & and →, and the truth-constants are k so that k is a rational
number and k ∈ [0, 1], where [0, 1] ⊆ R and R denotes the set of real numbers.
An atomic evaluated formula (ϕ, k) is defined as k → ϕ, where ϕ is an atomic
formula without truth constants apart from 0 and 1. An evaluated Horn clause
[6] has the form (ϕ1, k1)& . . . &(ϕn, kn) → (ϕ, s), where (ϕ1, k1), . . . , (ϕn, kn)
and (ϕ, s) are atomic evaluated formulas.

Concerning semantics, we recall that a [0, 1]-evaluation e is a mapping e :
V ar → [0, 1] and, let ∗ be a continuous t-norm, an evaluation e extends uniquely
to an evaluation e∗ of the set of well-formed formulas as usual (as common, for
the sake of simplicity, no distinction between e and e∗ is made and the notation
is simplified to e in both cases). We say that a propositional variable q is Boolean
if for any evaluation e, e(q) ∈ {0, 1}.

To start with the categorizations, we propose 7 Boolean propositional vari-
ables (see Table 1) and 2 non-Boolean propositional variables (see Table 2). These
variables are selected based on art experts’ definitions of the genres presented in
Sect. 2.2. Notice that, for any digital painting dp in the QArt-Dataset, we can
consider an evaluation edp whose truth values are obtained from dp by answering
the questions in Tables 1 and 2. For instance, let us consider the painting The
Surrender of Breda by Velázquez (v3 in the QArt-Dataset and the first picture
from the left in Fig. 1):

ev3(weapons) = ev3(flowers) = 1, ev3(person) = ev3(table) = 0,
ev3(glasses) = ev3(jewelry) = ev3(buildings) = 0, and
ev3(people) = ev3(trees) = 1.

Table 1. Boolean variables corresponding to 7 distinctive features of art genres.

Variable yes/no question to determine the value of the variable

weapons is there any weapon (a spear, sword, rifle, etc.) in the image?

flowers is there any flower (or plant) in the image?

person is there exactly one person in the image?

table is there any table in the image?

glasses is there any glass (or vase or basket) in the image?

jewelry is there any jewelry in the image?

buildings is there any building (house, hut, skyscraper, etc.) in the image?

Art genres, as explained in Sect. 2.2, are categories of paintings used since
the 17th century. However, as it commonly occurs with art definitions, non-
unambiguous categorizations (and exceptions) are very frequent. Genres are
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Table 2. Non-boolean variables corresponding to 2 distinctive features of art genres.

Variable Criteria to determine the truth value of the variable

people no person appearing in the image (0), 1–2 people (0.33),

3–4 people (0.66), more than 4 people (1)

trees no tree appearing in the image (0), 1–5 trees (0.5),

more than 5 trees (1)

especially difficult to classify since they are related to cultural and social inter-
pretations of the scenes. For instance, a painting showing an everyday scene, in
principle, should be classified as a genre painting; however, if the scene belongs to
a mythological myth, then the painting should be classified as a history painting.
Ultimately, some classifications need additional data apart from that included
in the painting for disambiguation. Thus, the proposals from art experts, even
if often enough to classify paintings into art genres, cannot serve as a very accu-
rate classification. Considering this, we next propose five evaluated Horn clauses,
understood as expert rules, which characterize the five art genres under consid-
eration. Let ψ1 be an evaluated Horn clause, as follows:

ψ1 = (weapons, 0.5)&(flowers, 0.8)&(people, 0.9) → (history painting, 1)

We propose the formula ψ1 as an expert rule for characterizing the genre of
history painting. ψ1 expresses that the appearances of weapons, flowers, and
plants, and the presence of a group of people (at least four people) indicate that
the given painting might be classified as a history painting.

Analogously, we propose the evaluated Horn clauses ψ2, ψ3, ψ4, ψ5 corre-
sponding to the portrait, genre painting, landscape, and still life, respectively:

ψ2 = (person, 1)&(flowers, 0.35) → (portrait, 1)
ψ3 = (table, 0.5)&(glasses, 0.5)&(jewelry, 0.25)&(people, 0.65) → (genre
painting, 1)
ψ4 = (flowers, 0.8)&(trees, 0.75)&(buildings, 0.8) → (landscape, 1)
ψ5 = (table, 0.5)&(glasses, 1)&(flowers, 1) → (still life, 1)

Let us note that the parameters in the antecedents of the evaluated Horn clauses
ψ1, . . . , ψ5 have been obtained empirically from the QArt-Dataset.

To classify paintings into art genres, we obtain the membership degrees to
the five genres in the following way. For a painting dp, its membership degree of
each genre is defined as the minimum value4 of all truth values for computing edp
from ψ1, ψ2, . . . , ψ5. Therefore, the computed value depends on the semantics of
the selected logic. In this paper, we have set the Rational Pavelka Logic. For
instance, the membership degree of v3 to the history painting genre is:

4 The interested reader can see further details about how to compute membership
degrees associated with evaluated Horn Clauses in [8].
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ev3((history painting, 1)) = ev3((weapons, 0.5)&(flowers, 0.8)&(people,
0.9)) =
max{0, ev3((weapons, 0.5)) + ev3((flowers, 0.8)) + ev3((people, 0.9)) − 2} =
max{0,min{1 − 0.5 + ev3(weapons), 1} + min{1 − 0.8 + ev3(flowers), 1} +
min{1 − 0.9 + ev3(people), 1} − 2} =
max{0,min{1.5, 1} + min{1.2, 1} + min{1.1, 1} − 2} =
max{0, 1 + 1 + 1 − 2} = max{0, 1} = 1.

The remaining membership degrees are obtained analogously, using ψ2, ψ3, ψ4

and ψ5. Finally, the paintings are classified into an art genre according to the
higher membership. Following with v3, the painting is classified as a history
painting since the membership degree corresponding to this genre obtains the
highest value.

We have tested this classifier with all paintings in the QArt-Dataset and it
achieved a classification rate of 61.1%. In addition, similarly to other explainable
classifiers (e.g., those classifiers published by Costa et al. [5,7,8]), this logic-
based approach provides users not only with a classification but also with a
meaningful explanation regarding the influence of each propositional variable on
the identified genre (see an example in Fig. 2).

v3 is a history painting.
The presence of weapons, flowers, and plants
is an evidence for this genre.
The fact that more than four people appear
in the painting reinforces the evidence in favor
of this genre.

Fig. 2. Classification (and related explanation) for the painting The Surrender of Breda
by Velázquez (v3 in the QArt-Dataset). All rights under c© creative commons, public
license.

3.2 Speculating on Features Related to Art Genres

In this section, we use the formal framework presented in Sect. 2.1 to reason
on the art genre of the painting Bal du moulin de la Galette by Pierre-Auguste
Renoir (rn2 in the QArt-Dataset - see Fig. 3). First, in Example 1, we propose
an interpretation of the inference relation <, commonly used in the related lit-
erature, and show how to deal with consequences and hypotheses related to the
painting. Then, to improve the results obtained, we propose another interpreta-
tion of < and analyze the changes (Example 2).
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Fig. 3. Bal du moulin de la Galette by Pierre-Auguste Renoir. All rights under c©
creative commons, public license.

We will begin with establishing definitions and assumptions for both exam-
ples. We define the universe of discourse as the set {v1, v2, . . . , gg15} (i.e., the
paintings from the QArt-Dataset), assume transitivity, and use the proposi-
tional variables presented in Sect. 3.1. Furthermore, to make the reasoning about
each painting even richer and more natural, we add three statements, Baroque,
Impressionism, and Postimpressionism, which express a painting’s belonging to
the corresponding art style. The evaluation of these three statements is done (for
each painting selected from the QArt-Dataset) regarding the values computed
by the classifier �-SHERPL presented in [8], in terms of intensity of colors present
in the image. Notice that, in the rest of the manuscript, such evaluations take
values in [0, 1].

Example 1. Let us interpret the inference relation < as the linear order on the
real line. It is easy to check that < holds the laws of commonsense reasoning
recalled in Sect. 2.1), and the negation ¬ as a strong negation (i.e., ¬p = 1 − p).
The premise of this example is Impressionism, whose value is 0.891. Observe
that this value is obtained from the classifier �-SHERPL [8], from which we also
get that Baroque is 0.855, and Postimpressionism is 0.463. Furthermore, from
the data in the painting, we obtain that flowers = table = glasses = jewelry =
people = trees = 1, and 0 for the rest of the statements.

It is worth noting that ¬Impressionism = 1 − 0.891 = 0.109. Accordingly,
Impressionism �< ¬Impressionism. Therefore, Impressionism is an admissible
premise because it is not self-contradictory. It is easy to check that, in this exam-
ple, the set of non-self-contradictory statements includes Baroque, Impression-
ism, flowers, table, glasses, jewelry, people, and trees. Regarding Postimpression-
ism, we recall that it is a self-contradictory statement (Postimpressionism <
¬Postimpressionism because ¬Postimpressionism = 0.537).

Concerning the refutations of Impressionism, they are those r such that
Impressionism < ¬r. Therefore, considering the interpretation of ¬ and <, we
find that those statements such as r ≤ 0.109 are self-contradictory and they can
be deemed as refutations. In addition, consequences of Impressionism are flow-
ers, table, glasses, jewelry, people, and trees. For instance, Impressionism =
0.891 �< ¬people = 1 and Impressionism = 0.891 < people = 1.
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Regarding hypotheses, we discover that Baroque is the only hypothesis
for Impressionism because Impressionism �< ¬Baroque and Baroque <
Impressionism.

Finally, we identified some statements which are orthogonal to Impres-
sionism: history painting, portraits, genre painting, landscape, and still life
(because all of these variables satisfy V ar�Impressionism).

The hypothesis obtained in Example 1 does not seem reasonable. Indeed, it
is hard to imagine how belonging to the Baroque style could be a hypothesis for
belonging to Impressionism. In other words, this kind of reasoning would not be
informative when explained to an end user. So, having reached these statements,
we could state that the linear order, frequently used in related literature, seems
more appropriate to reason on ordering real numbers than on art categorizations
like genre or style. Let us, thus, propose another interpretation of <.

Example 2. Let us now interpret the inferential relation as the classical condi-
tional (i.e., p < q is ¬p∨q, where ∨ is interpreted using the maximum function).
Again, we consider the strong negation and the same values for the evaluation
of statements Baroque Impressionism, and Postimpressionism.

The non-self-contradictory statements are those whose value is different
from 0, that is, those in the set {flowers, table, glasses, jewelry, people, trees,
Baroque, Impressionism, Postimpressionism}. In addition, since Impressionism
�= 0, the refutations are now weapons, person, and buildings, and any non-self-
contradictory statement is a conjecture. Moreover, the consequences are flowers,
table, glasses, jewelry, people, and trees.

Notice that, there is not any hypothesis of Impressionism: since Impression-
ism �= 1, a hypothesis h of Impressionism needs to have value 0, but then h < ¬h.
Finally, since the values of history painting, portrait, genre painting, landscape,
and still life are unknown, we can conclude that the speculations from Impres-
sionism are those non-self-contradictory statements concerning the genres.

The results obtained in Example 2 suggest this interpretation of the inferen-
tial relation < is more suitable for reasoning on paintings’ traits related to the art
genre. However, the speculations reached did not seem to be very informative.
Notice that, in the two previous examples, all the traits related to genres were
known, and we hypothesize that this affects the reaching of speculations. Moti-
vated by this observation, we next propose two additional illustrative examples
where speculative reasoning is more effective.

3.3 Examples of Speculative Reasoning with Imprecise Information

This section presents two illustrative examples of blurred paintings, i.e., artworks
in which some data is missing (see Fig. 4). In both cases, we propose to use,
together with the speculations reached, the genre categorizations presented in
Sect. 3.1 to guess the genre of the painting.

The first illustrative example is a version of the painting rn2 (see the picture
on the left of Fig. 4 versus Fig. 3), where we can only visualize at least 3 people in
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Fig. 4. Two blurred paintings from the QArt-Dataset.

the image, and we know that Impressionism is 0.891, but nothing else. In such a
scenario, the expert system presented in Sect. 3.1, based on deductive reasoning,
cannot yield a satisfactory result because it gets the value 0 for all the related
membership degrees.

Let us see whether reasoning with speculations, consequently, is more suit-
able in this case. So, let us try to reach a speculation from Impressionism. The
interpretation of < and ¬ are the same as in Example 2. On the one hand,
by forwards inference from Impressionism we get Impressionism < Impression-
ism ∨ people; and, by abduction, Impressionism ∨ people > people. That is,
Impressionism < Impressionism ∨ people > people (analogously, Impression-
ism > Impressionism ∧ people < people). Then, Impressionism � people. On
the other hand, since at least 3 people appear in the painting, impressionism
�< ¬ people (at most, ¬ people is 0.34). Therefore, people is a speculation from
Impressionism. And similarly, Impressionism is orthogonal with the five state-
ments regarding genres. However, having reached the speculation people, we can
use the genre categorizations proposed in this paper and guess that the painting
belongs to genre painting or history painting.

The second illustrative example is the painting on the right in Fig. 4 (i.e.,
Tulip Fields at Sassenheim, Near Leiden by Monet, m8 in the QArt-Dataset).
Here, we start with the premise Impressionism = 0.961, which is a valid premise
because Impressionism �< ¬Impressionism. In addition, by observing the image,
we know that flowers, plants, and at least one tree appear in the painting. Hence,
trees is, at least, 0.5, and flowers = 1. In this way, flowers is not a speculation
from the premise (no matter whether the inferential relation is interpreted as the
classical conditional or the linear order). However, trees is a weak speculation
when interpreting < as the linear order, and orthogonal with Impressionism
whether < is interpreted as the classical conditional. Taking into consideration
the weak speculation and the genre categorizations, we could guess that the more
probable genre for this painting would be the landscape. The fully explained
classification of m8 is shown in Fig. 5. It is worth noting that the explanation
includes the speculation reached, that is, the presence of trees.
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m8 is a landscape.
The presence of flowers, plants, and buildings
evidences this genre. The fact that more than
five trees appear in the painting is
another evidence in favor of this genre.

Fig. 5. Classification and explanation of the painting Tulip Fields at Sassenheim, Near
Leiden by Claude Monet (m8 in the QArt-Dataset). All rights under c© creative com-
mons, public license.

4 Concluding Remarks and Future Work

In this work, we have presented two logic-based approaches to reason on art
genres and related features. First, we proposed an expert system for classifying
genres based on deduction. Then, we discussed and highlighted some challenges
when dealing with speculations in our application domain. Finally, we analyzed
some illustrative examples, where we highlighted the strengths and weaknesses
of each approach, and suggested a hybrid procedure that provides users with
useful, trustworthy, and richer explanations.

As future work, we intend to improve the faithfulness and naturalness of
automated explanations. We will test the classifier with a larger dataset (e.g.,
the dataset introduced in [3]). We will also make a comparison of the presented
approach with other classification methods. In addition, it is worth noting that
current attributes are manually defined as a proof of concept, but an automatic
feature extraction stage, such as the usage of an object detector, is to be taken
into account for the sake of scalability and generality of results. Furthermore, we
will compare the produced explanations with those provided by other explain-
able classifiers, analyzing their rationality level [11]. In addition, we plan to
enhance the implementation of the formalism described in Sect. 3.2, similarly to
[15], to automatize the reach of speculations and refutations in our application
domain. Finally, the main open challenge is running a human study for carefully
evaluating the worthiness of speculations and guessing art genres.
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Abstract. In this paper, we propose a basis for discussing the role of
fuzzy sets theory in the context of explainable artificial intelligence. We
advocate that combining several frameworks in artificial intelligence,
including fuzzy sets theory, adopting a hybrid point of view both for
knowledge and data representation and for reasoning, offers opportuni-
ties towards explainability. This idea is instantiated on the example of
image understanding, expressed as a spatial reasoning problem.

Keywords: Fuzzy Sets · Hybrid Artificial Intelligence · Explainable
Artificial Intelligence (XAI) · Image Understanding · Spatial Reasoning

1 Introduction

The role and usefulness of fuzzy sets to represent imprecision at various levels
of information (pertaining to both data and knowledge) and to reason on such
imprecise information have been recognized for many years. This applies, among
others, to the domain of image and computer vision, for various tasks ranging
from low level image processing, to analysis and higher level image understand-
ing [10,17].

As part of artificial intelligence (AI), fuzzy sets theory has a key position in
the landscape of hybrid AI, with important features for explainable AI (XAI),
see e.g. [19] and the references therein. While symbolic methods and statistical
machine learning methods for AI have been developed rather independently for
decades, with alternated predominance of one or the other along time, a trend is
to merge both types of approaches. Examples include neuro-symbolic approaches
(see e.g. [26,34,35,41,43]), among others. However, in this paper hybrid AI is
intended in a broader sense, as the combination of several AI methods, whatever
their type. These methods may belong to the domains of abstract knowledge
representation and formal reasoning, based on logics, structural representations
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(such as graphs and hypergraphs, ontologies, concept lattices...), machine learn-
ing, etc. In particular, fuzzy sets can be considered as a stand-alone framework,
but can also be successfully associated with several of these methods.

Such combinations of approaches take inspiration from cognitive functions.
Roughly speaking, according to Kahneman [40] who distinguished two systems
for thinking, named system 1 and system 2, we may consider, from a (strongly
simplified) AI point of view, modeling system 1 by deep learning and system 2
by symbolic reasoning. Developing neuro-symbolic approaches is a new trend
to combine the two systems (see e.g. [41]). But again, more theories will be
committed in our view of hybrid AI, in particular for image understanding.

This paper is a position paper, and its aim is not to propose new methods
for hybrid AI, but rather to highlight how this way of thinking and designing AI
systems offers opportunities towards explainability, in the field of XAI, and as a
mean to maintain the link between knowledge and data, based on previous work
by the author and her co-authors. In that domain too, the two main branches
are developed quite independently, with early work (e.g. Peirce at the end of the
19th century) focusing on logical reasoning based on abduction on the one hand,
versus recent methods focusing on features or data most involved in a decision
on the other hand (to name but a few). In the first paradigm, knowledge is
represented by symbols, in a given logic, and the reasoning power of this logic
plays then a major role. Reasoning is based on axioms, theories and inference
rules, leading to provable, non-refutable conclusions. In the second paradigm,
where data and experience play the major role, statistical guarantees can be
achieved, but conclusions are potentially refutable. Fuzzy sets can cope with
both approaches, and establish links between them.

As an example, these ideas are illustrated in the field of image understanding,
formulated as a spatial reasoning problem (Sect. 2). Examples of combinations
of different AI methods are given both for knowledge and data representation in
Sect. 3, and for reasoning in Sect. 4. These methods find concrete applications in
several domains, such as medical imaging (only briefly mentioned in this paper).
The question of explanations is addressed in Sect. 5. Finally a short discussion
on open research directions concludes the paper (Sect. 6).

This paper is an extension of [13], and focuses on the role of fuzzy sets, and
on the explainability aspects. It does not contain technical details, but those can
be found in the mentioned references.

2 Image Understanding and Spatial Reasoning

Image understanding refers, at the simplest level, to the problem of recognizing
an object or structure, or several objects in an image, either real, as an observa-
tion of a part of the real world, or synthetic. But this may not be sufficient, and,
more generally, relations between these objects should be considered, towards a
global recognition of the scene and a higher level interpretation, beyond indi-
vidual objects. Furthermore, the recognition of an individual object can benefit
from the recognition of others.
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The question of semantics is central since it is not directly in the image,
but should be inferred based on visual features. We advocate that knowledge
should be involved in this process. Indeed, while purely data driven approaches
have proved powerful in image and computer vision problems, with sometimes
impressive results, they still require a good accessibility to numerous and anno-
tated data, where annotations bring the semantic information. This is not always
possible and induces high costs (in terms of both human interactions and com-
putation). For instance in pediatric medical imaging, data may be scarce and
present a high variability, while anatomical and medical knowledge is important,
and was gathered over centuries. Knowledge and models have then an impor-
tant role to play. Image understanding is then formulated as a spatial reasoning
problem, combining representations of data and knowledge, pertaining to both
objects and relations between objects (in particular spatial relations), and rea-
soning on them.

Spatial reasoning has been largely developed in symbolic AI, based mostly
on logics and benefitting from the reasoning apparatus of these logics [1]. It
has been much less developed for image understanding, where purely symbolic
approaches are limited to account for numerical information. This again votes for
hybrid approaches. Spatial reasoning evolved from purely qualitative and sym-
bolic approaches to more and more hybrid methods, involving methods from
mathematical morphology, fuzzy sets, graphs, machine learning, etc. to gain in
expressivity (sometimes at the price of increased complexity). As an example,
let us mention region connection calculus (RCC) that was first proposed in log-
ical frameworks (first order, modal), and then augmented with fuzzy sets to
handle imprecision, with mathematical morphology, with lattice-based reason-
ing, etc. [1,3,12,42,50,52,53]. The main ingredients in spatial reasoning include
knowledge representation, imprecision representation and management, fusion of
heterogeneous information (whether knowledge or data), reasoning and decision
making. Approaches for spatial reasoning take a lot of inspiration from work
in philosophy, linguistics, human perception, cognition, neuro-imaging, art, etc.
(see e.g. a related discussion for the case of spatial distances in [8]).

Models for image understanding are particularly useful to represent, in a for-
mal way, knowledge (about the domain, the scene content and in particular its
structure), image information (type of acquisition, geometry, characteristics of
signal and noise...), the potential imperfections of knowledge and data (impre-
cision, uncertainty, incompleteness...), as well as the combination of knowledge
and image information. These models are then included in algorithms to guide
image understanding in concrete applications. Conversely, models can be built
from data, to infer knowledge, or to provide a digital twin of a patient as a 3D
model, useful to plan a surgery or a therapy, as well as to explain the plan.

An important issue is the semantic gap [54], with the following question: how
to link visual percepts from the images to symbolic descriptions? In AI, this is
close to the notions known as the anchoring or symbol grounding problem [23,38].
Solving the semantic gap issue has bidirectional consequences: on the one hand,
it allows moving from a concept to its instantiation in the image (or feature)
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space, as a guide during spatial reasoning. On the other hand, it is part of the
explainability, since it links results inferred from the image to concepts related
to prior knowledge. For instance, anatomical knowledge says that the heart is
between the lungs. Since the heart might be difficult to recognize directly in a
medical image (e.g. a non-enhanced computed tomography (CT) image), we may
rely on its relative position with respect to the lungs (which are easier to detect
in such images) to perform the task. This is an example where the recognition
of an object benefits from the recognition of other objects, as mentioned at the
beginning of this section. Conversely, we can explain the recognition of an image
region as the heart because it is between the lungs (see Sect. 5).

3 Information and Knowledge Representation

Representations of spatial entities can take various forms, either in the spatial
domain (region, key points, bounding box...), or abstractly, as in RCC, as for-
mulas in a given logic. Semi-quantitative (or semi-qualitative) representations as
fuzzy sets (in either domain) constitute a good midway and can accommodate
both numerical and symbolic representations [59]. Representations as numbers,
imprecise numbers, intervals, distributions, linguistic values can all find a unify-
ing framework with fuzzy sets. In this framework, different types of imperfections
can be easily modeled, such as imprecision on the boundaries of an object, on its
location, shape or appearance, ambiguity, partial lack of information, etc. These
imperfections can have varied sources, starting with the observed phenomenon,
the sensors and the associated image reconstruction algorithms, and can also
result from image processing steps such as filtering, registration, segmentation.

Spatial reasoning involves models of spatial entities, but also spatial relations
between these entities. Here the advantages of fuzzy representations becomes
even more significant. This was already stated in the 1970’s [33], but formal
mathematical models were developed only later. The objective is to account
for the intrinsic imprecision of concepts such as “close to”, “to the left of”,
“between”, that are nevertheless perfectly understandable by humans in a given
context, and to account for the imprecision of the objects (even for a concep-
tually well-defined relation). In our previous work, we designed mathematical
models of several relations (set theoretical, topological, distances, directional
relations, more complex relations such as between, along, parallel...) by combin-
ing formalisms from mathematical morphology and fuzzy sets. They are detailed
in [17], Chapter 6, and in the references cited therein.

From a mathematical point of view, the common underlying structure is the
one of complete lattices, that allows instantiating the definitions, with the very
same formalism, in different frameworks: sets, fuzzy sets, graphs and hyper-
graphs, formal concept lattices, conceptual graphs, ontologies..., that can all be
endowed with a lattice structure with appropriate partial orders. This becomes
particularly useful when defining spatial relations based on mathematical mor-
phology, a theory where deterministic operators are usually defined in a lattice.
Our main idea was to design structuring elements, defined as fuzzy sets in the
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spatial domain, that provide the semantics of the spatial relation. Then apply-
ing a fuzzy morphological dilation of a reference object (whether fuzzy or not)
using this structuring element provides the region of space where the considered
relation is satisfied. The membership value of a point to the resulting fuzzy set is
then interpreted as the degree to which the relation of this point to the reference
object is satisfied. This approach applies for several classes of spatial relations:
topological, distances, relative direction, and more complex ones such as along,
parallel, between... (see e.g. [11,17] and the references therein). It applies to
objects defined as sets or fuzzy sets in the spatial domain, but also defined more
abstractly as logical formulas, vertices of a (hyper-)graph, concepts, etc.

Note that most of the frameworks mentioned above carry structural informa-
tion, useful for instance to represent the spatial arrangement of objects in a scene
and in an image. To take a simple example, a graph can represent this struc-
ture, where vertices correspond to objects (e.g. anatomical structures in medical
images) and edges correspond to relations between objects (e.g. contrast between
two structures in a given imaging modality, relative position between objects...),
this graph being enhanced with the fuzzy representations of objects and their
properties, and of relations. For instance, the representation of a spatial relation
can be abstract, as extracted from an ontology for example, or linked to the con-
crete domain of an image (degree of satisfaction of the relation, region of space
where the relation to some object is satisfied...), using linguistic variables, as
explained next. Other structured representations of knowledge (including spa-
tial knowledge) may rely on grammars, decision trees, relational algebras on
temporal or spatial configurations, or graphical models. They can also benefit
from a fuzzy modeling layer, to cope with imprecision.

The relevance of fuzzy sets for knowledge representation relies in their capa-
bility to capture linguistic as well as quantitative knowledge and information.
A useful notion is the one of linguistic variable [60], where symbolic values,
defined at an ontological level, have semantics defined by membership func-
tions on a concrete domain, at the image or features level. The membership
functions and their parameters can be handcrafted, according to some expert
knowledge on the application domain. They can also be learned, for instance
from annotated data [6]. The advantage of such representations is that linguistic
characterizations may be less specific than numerical ones (and therefore need
less information). Their two levels (syntactic and semantic) allow on the one
hand for approximate modeling of vague concepts and reasoning on them, and
on the other hand constitute an efficient way to solve the semantic gap issue (see
Sect. 2) by providing semantics in concrete domains, according to each specific
context. Linguistic variables, maintaining the consistency between concepts and
data, play therefore an important role for explainability. Similarly the goals of an
image understanding problem can be expressed in an imprecise way, and again
translating vague concepts into useful representations and algorithms benefits
from fuzzy modeling, in particular using linguistic variables.
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4 Reasoning

Based on the previous representations, the reasoning part takes various forms,
separately or in combination, again in the spirit of hybrid AI. Let us mention a
few, mostly from our previous work, which led to applications in medical imaging,
in particular for brain structure recognition1: matching between a model and an
image based on graph representations [4,20,31,48]; sequential spatial reasoning
mimicking the usual cognitive process where one may focus on an object that is
easy to detect and to recognize, and then move progressively to more and more
difficult objects by exploring the space based on the spatial relations with respect
to previously recognized objects [15,22,27,32]; exploration of the whole space
and reducing progressively the potential region for each object, again mimicking
a type of cognitive process, for instance by expressing the task as a constraint
satisfaction problem [29,47]; logical reasoning based on abduction, to find the
best explanations to the observations according to the available knowledge [58];
logical reasoning driven by an ontology [39].

In all these methods, an important feature is the combination of several
approaches within the framework of hybrid AI, with the aim of explainability.
Abstract knowledge representation and formal reasoning (typically using logics)
allow building a knowledge base representing prior information (on anatomy
for the considered examples), and to reason on it. Structural representations
(graphs and hypergraphs, ontologies, conceptual graphs, concept lattices...) are
frameworks to convert expert knowledge on the spatial organization of objects
(e.g. organs in medical imaging) into operational computational models. As men-
tioned in Sect. 3, converting knowledge into meaningful representations and algo-
rithms highly benefits from fuzzy modeling, in particular using linguistic vari-
ables to fill the semantic gap. This is indeed key to explainability. These models
are then associated with structural representations to enrich them. For instance
fuzzy models of object features (shape, appearance) and of spatial relations can
be attributes of vertices or edges of graphs, can provide the semantics of con-
cepts in ontologies or conceptual graphs, can be considered as properties in fuzzy
extensions of concept lattices, or can provide semantics of logical formulas.

Usually several pieces of knowledge are involved together in the reasoning
process. The advantages of fuzzy sets rely in the variety of combination oper-
ators, offering a lot of flexibility in their choice, that can be adapted to any
situation at hand, and which may deal with heterogeneous information [30,57].
A classification of these operators was proposed in [7], with respect to their
behavior (in terms of conjunctive, disjunctive, compromise [30]), the possible
control of this behavior, their properties and their decisiveness.

Now, considering the huge recent developments in machine learning, and
in particular deep learning, a recent trend is to combine such approaches with
knowledge driven methods. This can be done at several levels (see e.g. [56]): to
enhance the input (e.g. by including in the input of a neural network a result

1 These are only examples and similar approaches have been developed in other appli-
cation domains, such as satellite imaging, video, music representations, etc.
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of some image processing method as in [25]); as regularization terms in the loss
function (e.g. to force the satisfaction of some relations) or to focus attention
on specific patches based on geometric or topological information (e.g. vessel
tree [55]); or as post-processing to improve results (e.g. [21]). Conversely, in some
situations the neural networks can use implicitly spatial relations to solve a task,
such as object segmentation and recognition, as soon as the concerned objects
are within the receptive field [51]. Again one of the advantages of such hybrid
approaches is to improve interpretability and explainability. This is particularly
important in medical imaging to increase the confidence the user may have in
an approach based on deep learning, and therefore to increase the adoption of
such techniques.

Finally, the result of an image understanding system can be expressed in
various forms (sets of (fuzzy) objects, classes, properties of objects and their
relations, linguistic descriptions...), again finding in fuzzy sets a unifying repre-
sentation framework. The next step is to provide explanations to these results.

5 Explanations

A first way to provide explanations is to rely on abductive reasoning. Mathe-
matical morphology is a useful theory for abductive reasoning in various log-
ics [2,9,16]. An example is the use of erosion or derived operators to provide
explanations to observations according to a knowledge base by applying these
operators to the set of models of logical formulas or to a concept lattice. For
instance, from a knowledge base on anatomy, expressed in some logics, and from
segmentation and recognition results, higher level interpretations of an image
can be derived using such a method for abductive reasoning [5,58]. Then the
image understanding problem itself is formulated as an explanatory process.
The logic is endowed with a fuzzy semantics, to cope with imprecise statements
in the knowledge base, such as “the lateral ventricles are dark in T1 weighted
magnetic resonance images, the caudate nuclei are external to the lateral ven-
tricles and close to them”. The observation is the image and results of some
segmentation and recognition procedure. Therefore there is an interpretation at
two levels: at the object level first, using the approaches presented in the pre-
vious sections, involving fuzzy representations and structural models, and then
globally at the scene level. The advantage of abstract formulation in a logic is
that this second, higher level, interpretation can take intelligible forms, such as
“this image present an enhanced tumor, which is subcortical and has a small
deforming impact on the other structures”.

The language in which the knowledge is expressed should be defined accord-
ing to the granularity level expected for the interpretation and to whom the
description is dedicated (the explainee). For instance the description of the con-
tent of a pathological brain image will depend on whether the explainee is anyone
(without assuming any particular expertise), the patient, or a medical expert who
wants to make a decision guided by this description and to interact with other
experts.
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To go further, another level of explanation is to identify which part of the
knowledge base has actually be involved in the reasoning process or is relevant
in the object or scene description. We mentioned above an implicit method to
do so, via neural networks [51]. More explicit methods are also very relevant to
provide meaningful explanations to a user. Fuzzy sets are then useful to establish
a link between the results derived from the image and concepts expressed in the
knowledge base, as mentioned at the end of Sect. 2. A simple example is to assess
to which degree a spatial relation is satisfied between the resulting objects. Then
explanations such as “this object is the left caudate nucleus because it is close
to the left ventricle and to the left of it” are easy to derive. For instance, a given
spatial relation between to identified objects can be computed, as a number or as
a distribution, and then compared with the fuzzy model of this relation [14]. An
approach based on fuzzy frequent itemset mining has also been proposed in [49].
Considering the example of structure recognition based on spatial reasoning,
explanations become natural by identifying the spatial relations that actually
play a role in the recognition. Furthermore, we can make use of hedges and
quantifiers to know whether “most” of the relations in a given set are indeed
satisfied by a result, or involved in the image understanding process.

In all what precede, fuzzy sets are at the core of:

– knowledge representation (object properties and relations between objects),
– attribute definition for graphs, hypergraphs or other computational models

representing the structure (in the sense of spatial organization) of a scene,
– semantics of logics,
– semantic gap solving,
– spatial reasoning for image understanding,
– computing similarities between a model and a result,
– providing descriptions of an image in a given language,
– providing cues for explainability.

They are the main medium to travel from knowledge to data, and conversely
explain results obtained from the data according to the available knowledge.

6 Discussion

To go further in the field of hybrid AI and XAI for image understanding, princi-
ples expressed and discussed more generally in AI could be instantiated in this
particular domain of application, and pave the way for new research directions.

This starts with the definition of interpretability and explainability. While
many definitions have been proposed, an interesting distinction is made in [28],
where interpretability is defined via the composition of elements that are mean-
ingful for humans, while explanation is strongly related to causality, and under-
standing is linked to unifying diversity under a commun principle (this is maybe
somewhat different when interpreting an individual image as in medical imag-
ing). In the works summarized in this paper, fuzzy sets are used to make explicit
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the components of knowledge and image information that are involved in a rea-
soning process. This is done in a semi-qualitative way, close to human under-
standing, and therefore directly useful to provide explanations.

Seeing explanations as causality has been widely addressed, in particular by
Halpern and Pearl [36,37], and by Miller [44,45], where structural models play
a major role. Links with argumentation frameworks [46] and extensions of con-
trastive explanations to fuzzy sets [18] have recently been proposed. Notions
such as contrast and relevance are put to the fore, and would be also important
to consider in image understanding. For instance, explaining why a decision was
proposed by an algorithm and not another decision is a way to make explana-
tions more convincing. A simple way to do so, based on the methods presented
here, would be to compare resulting image descriptions with different models or
decisions, and to identify which components in the knowledge or in the reason-
ing was responsible for a particular decision proposal. This would be particularly
interesting in medical imaging where explanations are mostly required when the
result provided by an algorithm differs from the expected one. This would deserve
further investigation. The level of explanation should depend on the explainee,
as mentioned before, and a deeper study of this aspect could take inspiration
from the work on intelligibility in [24] (for instance based on projections on a
given vocabulary). This goes with the idea of human-centered evaluation of AI
systems.

It has been advocated in [43] that new research should aim at developing a
hybrid, knowledge driven, reasoning based approach, centered around cognitive
models, that could provide the substrate for a richer, more robust AI than is
currently possible. This is exactly what research in image understanding based
on hybrid AI is trying to do, but still at a modest level.

Finally it would be interesting to investigate more deeply to which extent
hybrid AI and XAI could help answering questions related to ethics, in particular
in radiology.
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Abstract. Finding suitable mechanisms whereby rationale behind sup-
port vector machine (SVM) predictions can be known and understood
without substantial difficulties is an ongoing challenge. Aiming to find
such a mechanism, we look into the contextualization of SVM models.
Hence, we propose a novel explainable SVM classifier that makes use of
a parallel arrangement of contextualized SVM models for offering pre-
dictions that depend on a particular event, situation or idea. The pro-
posed classifier allows decision makers to state in a clear manner the
context of the predictions they would like to be offered. This aspect is
deemed to be important since decision makers can take advantage of the
improvement in the interpretability of such contextualized predictions for
making more informed decisions. The improvement in interpretability is
illustrated through an example in which digitized handwritten vowels
are contextually identified. Another example where hand gestures are
recognized by means of electromyography (EMG) signals shows how the
proposed classifier can also improve the accuracy of the resulting models.

Keywords: Explainable SVM · Contextual machine learning ·
Augmented appraisal degrees · Augmented fuzzy sets

1 Introduction

The lack of transparency in predictions made by an artificial intelligence (AI)
system can suppress its use in decision making processes where decision makers
are required to justify their actions or resolutions [11]. Such opacity is usually
related to the complexity of the knowledge model that is part of an AI system.
Because of this, AI systems containing models that result from the original
formulation of support vector machines (SVMs) [25] are deemed to be difficult
for decision makers to understand [3,10].

To change that and, thus, foster the usability of SVM in decision making,
several approaches have been proposed in the literature. One of them is the
extraction of rules that make the predictions resulting from SVM models more
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intelligible [2,21,27]. Therein, the set of extracted rules constituted a twin model
that is expected to be less complex than the original SVM model. Another app-
roach is the construction of simplified local models in the immediate vicinity to
the evaluated object [10,24]. In this case, multiple synthetic objects are evalu-
ated to build an interpretable model that resembles the behavior of the original
SVM model in that vicinity. An alternative approach makes use of augmented
appraisal degrees (AADs) [14] to put SVM predictions in context [16,17]. Such
AADs are used during the evaluation process for recording aspects that have
high influence on the results. Those aspects are then used for explaining the
reasons behind one or more predictions.

Aiming to make AI systems based on SVM models easier to understand, in
this paper we explore the contextualization of SVM models and propose a novel
explainable SVM classifier that uses a parallel arrangement of contextualized
SVM models. A general view of this classifier, named XSVM@ctx, is shown in
Fig. 1. Notice that, while the learning process makes use of contextualized data
sets to produce contextualized SVM models, the evaluation process makes use of
those contextualized models to produce contextualized predictions. Notice also
that decision makers can make use of a context selector to specify the context
of the resulting predictions. This is an important aspect of XSVM@ctx since it
allows decision makers to state the context of the predictions they would like
to be offered by the system. For instance, a biologist can request XSVM@ctx
to take into account a particular geographical area while trying to identify a
disease in specimens collected in that area. In this aspect, XSVM@ctx differed
from works like [4,5,8,23] where context is approximated considering (synthetic)
contextual data located around the objects under evaluation.

Parallel
Learning
Process

Parallel
Evaluation
Process

Context
Selection

K@ctx1

contextualized
predictions

K@ctxi

K@ctxM

task

D@ctxM

D@ctx1

D@ctxi

Fig. 1. A general view of an explainable SVM classifier that uses a parallel arrangement
of contextualized SVM models.

Another important aspect of XSVM@ctx is that it lends itself to parallel
processing. Thus, the computational costs of processing large data sets can be
distributed and the size of the SVM models can be reduced. In this aspect the
learning process of XSVM@ctx is more or less similar to the learning process of
the boosting algorithm described in [7] where a training data set is partitioned
into reduced subsets to train moderately rough classifiers. The main difference is
that while in that work the training set is randomly partitioned, in our work the
training set is partitioned in a way that is related to the context of the concepts
under study.
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As noticed, we assume that the data set can be clearly partitioned into a
given number of contextual subsets that can be independently processed. This
assumption can be seen as a drawback due to the potential loss of generalization
in the resulting contextualized SVM models. However, we consider that a clear
characterization of the context and its inclusion in the selection criteria are
two decisive aspects of XSVM@ctx in the trade-off between interpretability and
loss of generalization. In addition, this assumption can help us to answer the
question: can the contextualization of knowledge models yield better explainable
classifiers? which is a strong motivation for this work.

To present XSVM@ctx the paper has been structured as follows. In
Sect. 2, concepts related to explainable SVM classification are presented. In
Sect. 3, XSVM@ctx is described. Two illustrative examples showing the use of
XSVM@ctx are presented in Sect. 4. Related work is presented in Sect. 5. The
paper is concluded in Sect. 6.

2 Preliminaries

A classifier is usually understood as a person (or system) that evaluates one or
more objects to determine (or predict) the classes those objects should belong to.
While evaluations performed by a plain classifier are expected to be convenient
for making predictions without any explanation, (contextualized) evaluations
carried out by an explainable classifier are expected to be useful for explaining
the reasons behind its predictions.

Evaluations made by plain classifiers can be represented as membership
grades in the framework of fuzzy set theory [26]. For instance, given an object x
and a class A, the level to which x is member of A can be denoted by a mem-
bership grade μA(x), which is a number in the unit interval [0, 1] where 0 and 1
correspond to the lowest and the highest membership levels respectively. When
such an evaluation also includes the level to which the object does not belong
to the class, it can be denoted by an intuitionistic fuzzy set (IFS) element in
the IFS framework [1]. For example, the evaluation above can be denoted by
an IFS element 〈μA(x), νA(x)〉, where the nonmembership grade νA(x) is also
a number in [0, 1] but, in this case, 0 and 1 correspond to the lowest and the
highest nonmembership levels respectively.

Even though evaluations made by an explainable classifier could be repre-
sented as membership grades or IFS elements, such contextualized evaluations
are better represented as AADs [14]. An AAD is a generalization of a membership
(or nonmembership) grade by which not only the level but also the aspects that
are relevant during an evaluation can be recorded. For instance, a contextualized
evaluation of the level to which x is member of A according to the knowledge
K can be denoted by a membership AAD μ̂A@K(x) = 〈μA@K(x), FμA@K

(x)〉,
where FμA@K

(x) represents a collection of the aspects of x that explain the mem-
bership level μA@K(x). Analogous to plain evaluations, when a contextualized
evaluation includes the level to which the object does not belong to the class,
it can be denoted by an augmented IFS element [14]. For instance, the previous
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evaluation can be denoted by an augmented IFS element 〈μ̂A@K(x), ν̂A@K(x)〉
where in addition to the membership AAD μ̂A@K(x), the nonmembership AAD
ν̂A@K(x) = 〈νA@K(x), FνA@K

(x)〉 is included. In this case, FνA@K
(x) denotes a

collection of the aspects of x that explain the nonmembership level νA@K(x).
An explainable SVM classifier that represents its contextualized evaluations

with AADs has been presented in [17]. That classifier makes use of the most
influential support vectors (MISVs) for putting the evaluations in context. From
a semantical standpoint, a positive MISV is the most similar to the vector char-
acterizing the evaluated object that favors the membership of the object in a
particular class. Likewise, a negative MISV is the most similar vector to the vec-
tor characterizing the evaluated object that is against the membership of this
object in a given class. Figure 2 shows an example of a prediction produced by
XSVMC-Lib [19] where positive and negative MISVs have been used for putting
the underlying evaluations in context.

Fig. 2. Example of a contextualized prediction using MISVs.

The aforementioned explainable SVM classifier put the evaluations in context
using contextless SVM models. We consider that the interpretability of the pre-
dictions made by that classifier might be benefited from the contextualization of
the underlying SVM models. Hence, in the next section we present XSVM@ctx,
which is an explainable SVM classifier that uses a parallel arrangement of con-
textualized SVM models for making predictions.

3 XSVM@ctx

As was mentioning in the introduction, we aim to foster the usability of AI
systems based on SVM in decision making through the contextualization of
SVM models. Such contextualization can be achieved by solving the following
problem.

Let D = {(x1, y1), · · · , (xN , yN )} be a set of N tuples (xi, yi) where xi is an
object associated with a label yi ∈ {+1,−1} denoting whether or not xi belongs
to a category A. Assume that D can be partitioned in T non-empty pairwise
disjoint contextual subsets D@ctx1 , · · · ,D@ctxT

such that D@ctx1 ∪· · ·∪D@ctxT
=

D. Let KA@ctx be a contextual knowledge model denoting the knowledge about A
acquired in context ctx. Let h(x, ctx) be a function by which the label that should
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be assigned to object x in context ctx is predicted. Find KA@ctx1 , · · · ,KA@ctxT

such that for each (x, y) in D@ctxt
the number of times h(x, ctxt) agrees with y

is maximized.
As was done in [17], to solve this problem we use the feature-influence rep-

resentational model proposed in [15] for characterizing all the objects and the
knowledge models in a m-dimensional feature space M. In M, an object x is
represented as a vector x =

∑m
j=1 βj f̂j where f̂j is a unit vector denoting the

dimension related to a feature fj and βj is a value denoting the overall influence
of fj in x. The knowledge about A acquired in context ctx is represented as a
line in M described by a pair 〈ûA@ctx, tA@ctx〉. In this pair, ûA@ctx is a unit
vector that points to a location where the membership in A is favored, and tA is
a point in the line where the membership in A is neither favored nor disfavored.
The specific influence of the x’s features on the appraisal of its membership in
A (in context ctx) is given by

xA@ctx =
m∑

j=1

βjA ûA@ctx = (x · ûA@ctx)ûA@ctx. (1)

To determine whether that specific influence favors or disfavors the membership
of x in A, a vector lA@ctx defined by

lA@ctx = xA@ctx − tA@ctxûA@ctx = (x · ûA@ctx − tA@ctx)ûA@ctx (2)

is computed: if both lA@ctx and ûA@ctx point to the same direction, the member-
ship in A is favored, otherwise is disfavored. The level to which that membership
is favored or disfavored is given by the magnitude of lA@ctx, i.e.,

||lA@ctx|| = x · ûA@ctx − tA@ctx. (3)

The problem of finding the optimal KA@ctx = 〈ûA@ctx, tA@ctx〉 in context
ctx can be related to the problem of finding an optimal separating hyperplane
HA@ctx : wA@ctx ·x+ bA@ctx = 0 in the original definition of SVM [25] by means
of the equations [17]

ûA@ctx =
wA@ctx

||wA@ctx|| (4)

and
tA@ctx = − bA@ctx

||wA@ctx|| . (5)

To compute the values wA@ctx and bA@ctx, the Euclidean distance between
the hyperplanes H+

A@ctx : wA@ctx · x + bA@ctx = +1 and H−
A@ctx : wA@ctx · x +

bA@ctx = −1 given by d(H+
A@ctx,H−

A@ctx) = 2/||wA@ctx|| should be maximized
subject to |wA@ctx · x + bA@ctx| ≥ 1 [6]. The results are given by

wA@ctx =
n∑

i=1

λiyixi (6)
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and
bA@ctx = yi − (wA@ctx · xi), (7)

where n is the number of support vectors, xi is one of those support vectors,
yi is the label associated with object xi represented by xi, λi is the Lagrange
multiplier associated with xi, C is a regularization parameter and 0 < λi < C –
the interested reader is referred to [17] for a detailed explanation of these results.

After finding KA@ctxt
= 〈ûA@ctxt

, tA@ctxt
〉 for each ctxt ∈ {ctx1, · · · , ctxT },

we can define h(x, ctx) as follows – recall that h(x, ctx) is a function that predicts
the label of x in context ctx. Let v(x) be a utility function that returns a vector
x representing a given object x in the aforementioned m-dimensional feature
space M. Let s(ctx) be another utility function that returns the most similar
context to ctx in {ctx1, · · · , ctxT }. Under these considerations and using (3), we
define h(x, ctx) as

h(x, ctx) = sign
(
v(x) · ûA@s(ctx) − tA@s(ctx)

)
. (8)

We can replace ûA@ctx and tA@ctx in (8) by (4) and (5) respectively to obtain

h(x, ctx) = sign
(

v(x) · wA@s(ctx) + bA@s(ctx)

||wA@s(ctx)||
)

. (9)

Then, we can replace wA@ctx by (6) and, for the sake of readability, suppress the
unnecessary denominator for the sign function to obtain the following expression
based on the collection of support vectors SA@s(ctx) = {xi|i = 1, · · · , n}

h(x, ctx) = sign

(

bA@s(ctx) +
n∑

i=1

λiyiv(x) · xi

)

. (10)

Finally, we can use the kernel trick [6] and replace v(x) ·xi by a kernel function
K(v(x),xi) in (10) to obtain

h(x, ctx) = sign

(

bA@s(ctx) +
n∑

i=1

λiyiK(v(x),xi)

)

, (11)

which is required for predicting the label of x in non-linear classification. For
instance, a polynomial kernel of degree d given by K(x,xi) = (x · xi)d can be
used.

In analogy to what was done in [17], a contextualized evalua-
tion of the level to which x is member of A in context ctx can
be denoted by an augmented IFS element 〈μ̂A@ctx(x), ν̂A@ctx(x)〉 =
〈〈μA@ctx(x), FμA@ctx

(x)〉, 〈νA@ctx(x), FνA@ctx
(x)〉〉 (see Sect. 2). Given x = v(x)

and the collection of support vectors SA@s(ctx) = {xi|i = 1, · · · , n}, the compo-
nents μA@ctx(x) and νA@ctx(x) can be obtained by:

μA@ctx(x) = μ̌A@ctx(x)/ηA@ctx(x) (12)
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and
νA@ctx(x) = ν̌A@ctx(x)/ηA@ctx(x), (13)

where
ηA@ctx(x) = max(1, μ̌A@ctx(x) + ν̌A@ctx(x)), (14)

μ̌A@ctx(x) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∑n
i=1 λiyiK(x,xi)+b

||x|||| ∑n
i=1 λiyixi|| iff(xi ∈ SA@s(ctx))

∧(λiyiK(x,xi) > 0) ∧ (b > 0);
∑n

i=1 λiyiK(x,xi)

||x|||| ∑n
i=1 λiyixi|| iff(xi ∈ SA@s(ctx))

∧(λiyiK(x,xi) > 0) ∧ (b ≤ 0);
0 otherwise;

(15)

and

ν̌A@ctx(x) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∑n
i=1 |λiyiK(x,xi)|+|b|
||x|||| ∑n

i=1 λiyixi|| iff(xi ∈ SA@s(ctx))

∧(λiyiK(x,xi) < 0) ∧ (b < 0);
∑n

i=1 |λiyiK(x,xi)|
||x|||| ∑n

i=1 λiyixi|| iff(xi ∈ SA@s(ctx))

∧(λiyiK(x,xi) > 0) ∧ (b ≥ 0);
0 otherwise.

(16)

The collections FμA@ctx
(x) and FνA@ctx

(x) can be obtained by means of the
positive MISV v+

A@ctx and the negative MISV v−
A@ctx, which are given by

v+
A@ctx = argmaxxi

{λiyiK(x,xi) : (λiyiK(x,xi) > 0) ∧ (xi ∈ SA@s(ctx))} (17)

and

v−
A@ctx = argmaxxi

{|λiyiK(x,xi)| : (λiyiK(x,xi) < 0) ∧ (xi ∈ SA@ctx)} (18)

respectively, where i = 1, · · · , n.
Since an augmented IFS is constituted by several augmented IFS elements,

the contextualized evaluations of the level to which several objects in a collection
X are member of A in context ctx can be denoted by an augmented IFS Â@ctx =
{〈μ̂A@ctx(x), ν̂A@ctx(x)〉|x ∈ X}. In this regard, we can follow a technique similar
to the presented in [18] for identifying the most similar contextual models linked
to A by means of contextualized evaluations. For instance, we can compute the
level of similarity between Â@ctx1 and Â@ctx2, as well as the similarity between
Â@ctx1 and Â@ctx3 to determine whether KA@ctx1 is more similar to KA@ctx2 or
more similar to KA@ctx3.

In the next section we illustrate how the interpretability of the predictions
about a topic, say A, might be benefited from the contextualization of the under-
lying SVM model KA@ctx = 〈ûA@ctx, tA@ctx〉 computed by (4) and (5).

4 Illustrative Examples

Since SVM classification can be effective in situations where the dimension of
the feature space M is greater than the number of samples [25], we shall use
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the data set depicted in Fig. 3 to explain how the interpretability of predictions
can be boosted by XSVM@ctx. This data set consists of two contextualized
subsets (D@ctx1 and D@ctx2) of 50 digitized handwritten vowels each. Every
digitized vowel is made up of 784 pixels, each associated with a value repre-
senting the strength of the trace resulting after writing the vowel. Similar to
the characterization of handwritten numbers made in [19], each vowel has been
represented by a vector in 784-dimensional feature space, where the constituent
pixels correspond to the features in that space. We use the first 5 columns of each
contextualized subset as training samples to obtain a contextualized knowledge
model Kvowel@ctxi

for each vowel and each context. In this training process, a
polynomial kernel of degree 5 with regularization parameter C = 0.001 was used.

Fig. 3. Contextualized datasets.

The last 5 columns of D@ctx1 in Fig. 3a were used as test samples to predict
the categories (‘a’, ‘e’, ‘i’, ‘o’ and ‘u’) those digitized handwritten vowels should
belong to. The predictions are depicted in Fig. 4: while data@ctx1 represents
the test samples, pred@ctx1 and pred@ctx2 represent the predictions made by
the contextualized models built for ctx1 and ctx2 respectively. In such predic-
tions, the positive MISVs have been used for the contextualization. Such MISVs
(located below the predicted vowels) represent the handwritten vowels that are
most similar to the test samples and, in addition, favor the membership of these
samples in the predicted vowels. The shaded part in the handwritten vowels
denotes disagreement with the categories in the test set.

Fig. 4. Contextualized predictions.

Notice that the MISVs of the predictions made in the same context of the
test samples (i.e., the MISVs in pred@ctx1) represent in an appropriate way
what have been important to the classifier while predicting the categories of the
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handwritten vowels. In contrast, the MISVs of the predictions in pred@ctx2,
which are made in a different context, struggle while trying to find the features
in the test samples that justify those predictions. Although the simplicity of
this case, it illustrates how the predictions of the categories can be benefited
from the contextualization of the SVM models. Notice also that while most of
the predictions in pred@ctx1 are in agreement with the categories related to
digitized vowels in the test set, more than a half of the predictions in pred@ctx2
are in disagreement.

To further explore such potential improvement in accuracy due to the con-
textualization of the SVM models, we probe XSVM@ctx with a data set of
EMG signals that are used for recognizing hand gestures [13]. This data set
contains 4, 237, 907 records with EMG data from 36 subjects that performed
7 hand gestures: ‘hand at rest’, ‘hand clenched in a fist’, ‘wrist flexion’, ‘wrist
extension’, ‘radial deviations’, ‘ulnar deviations’ and ‘extended palm’. Records
having unmarked gestures were removed during the preprocessing step. The 8
EMG channels of the remaining 1, 512, 750 records were normalized using the
L2 norm. Considering that the values of the 8 EMG channels depend on each
of the 36 subjects, we partitioned the data set in 36 contextual subsets – reduc-
ing the number of contextual subsets is subject to further study. Half of the
records in each contextual subset were randomly chosen to be part of the train-
ing set while the remaining records were used for testing. A polynomial kernel
of 10 degree with a regularization parameter of 100 was used during the parallel
training process of XSVM@ctx to obtain a contextualized model for each hand
gesture and each context. An accuracy of 0.974 was computed after performing
the evaluation process of XSVM@ctx with the test set.

Fig. 5. Hand gestures recognition - confusion matrices.

To have an idea of the improvement of the accuracy, we also train the cas-
cade formulation of SVM [9] with the aforementioned kernel configuration. The
computed accuracy in this case was 0.639. Such improvement is also reflected
through the corresponding confusion matrices depicted in Fig. 5. Notice the pos-
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itive effect of the contextualization in the unbalanced class 7 (‘extended palm’
gesture) – this effect on unbalanced classes is also subject to further study.

5 Related Work

A systematic literature review presented in [12] covers indexed journals in the
period between 1992 and 2020 where several applications of SVM models are
mentioned. For instance, image classification SVM models are applied in geo-
sciences, biomedical imaging, molecular biology, among others. Although this lit-
erature review does not mention contextualization or explainability in a explicit
form is it important to recall that the contextualization of knowledge models for
a better classification are our contribution within this work.

An interesting article presented in [20] shows the importance of contextual-
based predictions and their potential to improve the performance of computer
vision algorithms. This article follows the line of imitating the human visual
system based on a convolutional neural network (CNN) and the use of a pre-
trained SVM classification model. Moreover this article discusses the fact that
a human observer might apply different (priming and) searching strategies for a
given task. Thus, when a visual input is ambiguous, predictions may help in the
decision process and in maintaining a coherent interpretation of the environment.
As an example, it presents the recognition of two identical objects shown in two
different places (contexts).

Regarding the computational costs of processing large data sets the following
approaches are available in the literature. One in which the training set is ran-
domly partitioned [8] was mentioned in Sect. 1, but it differs with our proposal
where the partitions are context based. The use of different contextual dimen-
sions that are relevant to be analyzed for partitioning the data, e.g., temporal or
spatial information, has been proposed in [22]. This proposal produces partitions
that also consider the data distribution of each contextual dimension, but it has
not been used with SVM models.

6 Conclusions

In this paper, we have proposed a novel explainable SVM classifier, named
XSVM@ctx, that makes use of a parallel arrangement of contextualized SVM
models for offering contextual predictions. XSVM@ctx uses contextualized data
sets as input for building such contextualized SVM models during the training
process. The resulting models are then used as inputs for making contextualized
predictions during the evaluation process.

An important characteristic of XSVM@ctx is its context selector, which
allows decision makers to specify the context of the predictions they would like to
be offered. During the evaluation process, XSVM@ctx makes use of the model(s)
having the context that is the most similar to the specified context(s) for making
the predictions.
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An example in which handwritten vowels are contextually identified has
illustrated how the interpretability of the predictions can be improved by
XSVM@ctx. An improvement in the accuracy of the resulting models has been
also illustrated in an example where hand gestures are recognized through EMG
signals.
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17. Loor, M., De Tré, G.: Contextualizing support vector machine predictions. Int.
J. Comput. Intell. Syst. 13, 1483–1497 (2020). https://doi.org/10.2991/ijcis.d.
200910.002
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Abstract. We investigate the recently introduced two-sorted variety of
equational states. We show that, similarly to MV-algebras, in equational
states ideals are in bijection with two-sorted congruences. Differently
from MV-algebras, not every equational state is the subdirect product
of linearly ordered ones. We finally show that the variety of equational
states is not generated by the linearly ordered ones.
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1 Introduction

An Abelian lattice-ordered group is an Abelian group endowed with a lattice
order that is invariant under translations, i.e., x ≤ y implies z + x ≤ z + y.
A lattice-ordered group G is called unital if it possesses an element u such
that for any g ∈ G there exists n ∈ N for which u exceeds the n-fold sum
g + · · · + g. A state on a unital Abelian lattice-ordered group is a normalised,
positive, group homomorphism into R, see e.g., [5]. It has longly been recognised
that unital Abelian lattice-ordered groups and their states provide an abstraction
of bounded real random variables and of expected-value operators, respectively.

An important result of D. Mundici establishes an equivalence between the
category of unital lattice-ordered groups (with unit-preserving lattice-group
homomorphisms as morphisms) and the category of MV-algebras with their
homomorphisms. Through this equivalence, states of lattice-ordered groups cor-
respond to certain [0, 1]-valued functions on MV-algebras, which again go under
the name of states [7].

Both states on lattice-ordered groups and MV-algebras can be easily gen-
eralised to take values in any unital Abelian lattice-ordered group or any MV-
algebra, respectively. Therefore, one can consider the category of Abelian lattice-
ordered groups with states as morphisms between them and the category of MV-
algebras with their states as morphisms. In [6] the authors extend Mundici’s
equivalence to these two latter categories. Furthermore, the authors introduce a
class of two-sorted algebras, called equational states and prove that it is categor-
ically equivalent to the category of states between unital Abelian lattice-ordered
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Massanet et al. (Eds.): EUSFLAT 2023/AGOP 2023, LNCS 14069, pp. 495–504, 2023.
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groups. As a consequence of these results, one can think of equational states
as a two-sorted equational theory of states between lattice-ordered groups. This
opens the way to a purely algebraic study of states, e.g., in [6] the authors prove
the existence of universal states.

In this paper we continue the purely algebraic study of states by investigating
properties of the two-sorted variety of equational states. In particular, in Corol-
lary 1 we show that ideals of equational states are in bijection with two-sorted
congruences. In Lemma 2 we characterise ideals generated by a (two-sorted)
subset of an equational state. Furthermore, we provide examples showing that
not every equational state is a subdirect product of linearly ordered equational
states (see Remark 1) and that the variety of equational states is not generated
by it linearly ordered members (see Example 2). We conclude the paper with a
characterisation of simple and semisimple equational states (Propositions 2 and
3).

2 Preliminaries

We start by recalling some basic facts in the theory of MV-algebras. For further
details we refer the reader to [1]. An MV-algebra is an algebra A := (A,⊕,¬, 0)
such that (A,⊕, 0) is a commutative monoid; ¬ is an involution —i.e., ¬¬a = a
for all a ∈ A— and, for any x, y ∈ A, ¬(¬x ⊕ y) ⊕ y = ¬(¬y ⊕ x) ⊕ x. New
operations can be derived from ⊕ and ¬, in particular we use the following ones:

x � y := ¬(¬x ⊕ ¬y), x � y := x � ¬y, x ⇒ y := ¬x ⊕ y, 1 := ¬0.

Any MV-algebra has a natural lattice structure, where the order is defined by
setting x ≤ y if and only if x ⇒ y = 1. The meet and join with respect to this
order can also be defined as

x ∧ y := x � (x ⇒ y) and x ∨ y := ¬(¬x ⊕ y) ⊕ y.

For any a ∈ A and n ∈ N, we write na as an abbreviation for the n-fold sum
a ⊕ . . . ⊕ a.

Let A be an MV-algebra. An ideal J of A is a non-empty subset of A that
is downward closed and closed under ⊕. An ideal J is prime if for each x, y ∈ A
x � y ∈ J or y � x ∈ J . If T ⊆ A, we call the intersection of all ideals containing
T the ideal generated by T , and we denote it by JT . A more explicit description
of JT is given by

JT = {a ∈ A | ∃n ∈ N, ∃t1, . . . , tn ∈ T a ≤ t1 ⊕ · · · ⊕ tn}. (1)

It is well known that the lattice of all ideals of any MV-algebra is isomorphic
to the lattice of congruences, via the correspondence that associates to any ideal
J the congruence ≡J defined by a ≡J b if and only if a�b ∈ J and b�a ∈ J and
to any congruence ≡ the ideal J := {x | x ≡ 0}. In view of this isomorphism, we
simply write A/J for A/ ≡J . The quotient algebra A/J is an MV-chain (i.e., a
totally ordered MV-algebra) if and only if J is a prime ideal. MV-algebras have
“enough” prime ideals, in the precise sense of next lemma.
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Lemma 1. Let A be an MV-algebra. For any non-zero a ∈ A there exists a
prime ideal Ja such that a 
∈ Ja. As a consequence, the intersection of all prime
ideals of A is {0}.
It follows that every non-trivial MV-algebra is a subdirect product of MV-chains
and thus an equation is valid in all MV-algebras if and only if it is valid in all
MV-chains.

We now recall some basic fact on many-sorted algebras. For further details
see e.g. [8, Section 2.1 and 2.2].

Definition 1. Let S be a set. An S-sorted set is a family of sets X := {Xs | s ∈
S}. The elements of S are called sorts. If X := {Xs | s ∈ S} and Y := {Ys | s ∈
S} are S-sorted sets, an S-sorted function from X into Y is a family of functions
{fs : Xs → Ys | s ∈ S}.

If X := {Xs | s ∈ S} is an S-sorted set, we write x ∈ X as a shorthand for
x ∈ Xs for some s ∈ S. Standard constructions like subsets, unions, intersec-
tions, Cartesian products, equivalence relations, and quotients straightforwardly
generalise to S-sorted sets.

Definition 2. A many-sorted signature is a triad Σ = (S,Ω, a), where:

– S is a set (called the set of sorts of Σ);
– Ω is a set (called the set of functions symbols of Σ)
– a is a function a : Ω → S∗ × S, where S∗ is the set of all finite sequences of

elements of S.

Given a many-sorted signature Σ = (S,Ω, a), a Σ-algebra A consists of an S-
sorted set A and, for any f ∈ Ω with a(f) = (s1, . . . , sn, s), an S-sorted function
fA : As1 × · · · × Asn

→ As.

We fix Σ := (S,Ω, a) where S := {1, 2}, Ω := {⊕1,¬1, 01,⊕2,¬2, 02, s} and a
can be easily deduced from the following definition.

Definition 3 ([6, Definition 3.1]). An equational state is a Σ-algebra

A = 〈(A1, A2),⊕A
1 ,¬A

1 , 0A
1 ,⊕A

2 ,¬A
2 , 0A

2 , sA〉

such that:

1. (A1,⊕A
1 ,¬A

1 , 0A
1 ) is an MV-algebra;

2. (A2,⊕A
2 ,¬A

2 , 0A
2 ) is an MV-algebra;

3. sA : A1 → A2 is a unary operation, called state-operation, such that, for each
a, b ∈ A1:

(S1) sA(0A
1 ) = 0A

2 ;
(S2) sA(¬A

1 a) = ¬A
2 sA(a);

(S3) sA(a ⊕A
1 b) = sA(a) ⊕A

2 sA(b ∧A
1 (¬A

1 a)).
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It will be convenient to indicate an equational state like the one in Definition
3 by A = (A1,A2) and drop the superscripts for the MV-algebraic operations,
when the context suffices to disambiguate. When the operations s of two equa-
tional states A := (A1,A2) and B := (B1,B2) need to be distinguished we
write sA and sB. An equational state (A1,A2) is called linearly ordered (or an
equational state-chain) if both A1 and A2 are MV-chains. Notice that, by [6,
Proposition 3.1], the unary operation s is order-preserving.

The following definitions are adaptations of the definitions in [8, Section 2.2]
to the particular case of equational states.

Definition 4 Let A := (A1,A2) and B := (B1,B2) be two equational states.
An S-sorted function h := (h1, h2) : A → B is said to be a homomorphism of
equational states (or Σ-homomorphism) if h1 : A1 → B1 and h2 : A2 → B2 are
homomorphisms of MV-algebras, and h2 ◦ sA = sB ◦ h1.

Definition 5 A Σ-congruence (≡1,≡2) is an S-equivalence relation that is com-
patible with the operations of MV-algebras and the state-operation, i.e., if x ≡1 y
then s(x) ≡2 s(y).

Definition 6 Let A := (A1,A2) be an equational state and ≡ := (≡1,≡2) a Σ-
congruence. Then the quotient algebra over ≡ , Q := (Q1,Q2) is the equational
state defined by:

– Qi := Ai/ ≡i for i ∈ {1, 2};
– if a, b ∈ Ai, then [a]≡i

⊕ [b]≡i
:= [a ⊕ b]≡i

and ¬[a]≡i
:= [¬a]≡i

;
– if a ∈ A1, then s([a]≡1) := [s(a)]≡2 .

Let X := (X1,X2) be a fixed but arbitrary S-sorted set of variables. We
denote by TΣ(X)1 the set of MV-terms over the variables in X1 and by TΣ(X)2
the set of terms of the form τ(t1, . . . , tn), where τ is an MV-term and each ti is
either an MV-term in the variables in X2 or one of the form s(t) for t ∈ TΣ(X)1.
The S-sorted set of Σ-terms in X is given by TΣ(X) := (TΣ(X)1, TΣ(X)2).

Definition 7 A Σ-equation is a pair of terms t, t′ either both belonging to
TΣ(X)1 or to TΣ(X)2, together with an S-sorted set of variables Y . We write
∀Y.t = t′ to indicate a Σ-equation. A Y -valuation in an equational state A is
simply an S-function from Y into A. Any Y -valuation v extends, in a unique
way, to an S-homomorphism, which we still indicate with v, from TΣ(Y ) to A.
An equational state A verifies a Σ-equation ∀Y.t = t′ if for any Y -valuation
v : Y → A the equality v(t) = v(t′) holds in A. An equation ∀Y.t = t′ is called
finitary if Y is finite.

Because the class of equational states has a finite set of sorts and it is definable
by a set of finitary equations, by (the many-sorted version of) Birkhoff’s Variety
Theorem [8, Corollary 3.14] the class of equational states is a variety of many-
sorted algebras.
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3 Ideals of Equational States

Definition 8 Let A := (A1,A2) be an equational state. A Σ-ideal is an S-
sorted subset J := (J1, J2) of A such that, for i ∈ {1, 2}, Ji is an MV-ideal of Ai

and s(J1) ⊆ J2.

A Σ-ideal J = (J1, J2) is called proper if J 
= A and it is called prime if for
i ∈ {1, 2} and any x, y ∈ Ai, x � y ∈ Ji or y � x ∈ Ji. Notice that J is prime
if and only if J1 and J2 are both prime as ideals of MV-algebras. A routine
argument shows that for any family {Ji}i∈I of Σ-ideals of a given equational
state, the intersection

⋂
i∈I Ji is a Σ-ideal.

Definition 9 Let (T1, T2) be an S-subset of an equational state A. The Σ-ideal
generated by (T1, T2), denoted by J(T1,T2), is the smallest Σ-ideal containing
(T1, T2).

Lemma 2 Let (T1, T2) be an S-subset of an equational state A = (A1,A2). The
Σ-ideal generated by (T1, T2) is (JT1 , Js(JT1 )∪T2).

Proof Let us temporarily denote the S-sorted set (JT1 , Js(JT1 )∪T2) by J∗. Since J∗

is obviously a Σ-ideal and (T1, T2) is contained in J∗, one has that J(T1,T2) ⊆ J∗.
For the converse inclusion, let a be an element of J∗. If a ∈ JT1 , it is obviously

an element in J(T1,T2). Suppose that a ∈ Js(JT1 )∪T2 . Then, using (1),

a ≤
(

t⊕

i=1

nis(xi)

)

⊕
⎛

⎝
t′

⊕

j=1

mjyj

⎞

⎠

for x1, . . . , xt ∈ JT1 , y1, . . . , yt′ ∈ T2 and n1, . . . , nt,m1, . . . ,mt′ ∈ N. Notice
that, for any 1 ≤ i ≤ t, s(xi) belongs to J(T1,T2) by the definition of Σ-ideals.
Additionally, since yj ∈ T2, for any 1 ≤ j ≤ t′, also yj ∈ J(T1,T2). Thus, by
Definition 8, we have that

(
t⊕

i=1

nis(xi)

)

⊕
⎛

⎝
t′

⊕

j=1

mjyj

⎞

⎠ ∈ J(T1,T2).

Hence a ∈ J(T1,T2) and J∗ ⊆ J(T1,T2) as required.

Definition 10 Let J = (J1, J2) be a Σ-ideal of an equational state S. We define
the relation ≡J as follows: for any x, y ∈ Ai and i ∈ {1, 2},

x ≡J y if and only if x � y ∈ Ji and y � x ∈ Ji.

Lemma 3 For any equational state S and any Σ-ideal J = (J1, J2), the relation
≡J is a Σ-congruence.
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Proof Symmetry, reflexivity and transitivity of ≡J, as well as compatibility with
the MV-operations are immediate consequences of the fact that J1 and J2 are
both ideals. It remains to be shown that if a ≡J1 b then s(a) ≡J2 s(b), the latter
condition being equivalent to s(a)�s(b) ∈ J2 and s(b)�s(a) ∈ J2. We prove the
first condition, the proof of the second condition is similar. Since J is a Σ-ideal,
if a � b ∈ J1 then s(a � b) ∈ J2. Moreover, for all x, y ∈ A1

s(x ⇒ y) = s(¬x ⊕ y) by definition of ⇒
= s(¬x) ⊕ s(y ∧ x) by (S3)
≤ ¬s(x) ⊕ s(y) by (S2) and monotonicity of s (2)
= s(x) ⇒ s(y) by definition of ⇒ .

An easy calculation shows that a � b = ¬(¬b ⇒ ¬a). Therefore:

s(a � b) = s(¬(¬b ⇒ ¬a))
= ¬s(¬b ⇒ ¬a) by (S2)
≥ ¬(¬s(b) ⇒ ¬s(a)) by (2) and the involutivity of¬
= s(a) � s(b).

Therefore, s(a)� s(b) ≤ s(a� b). Since s(a� b) ∈ J2 and J2 is downward closed,
we conclude that s(a) � s(b) ∈ J2.

Lemma 4 Let A := (A1,A2) be an equational state and ≡ := (≡1,≡2) be a
Σ-congruence of A. The S-sorted set J := (J1, J2), where Ji := {x | x ≡i 0} is a
Σ-ideal of A.

Proof It is clear that J1 and J2 are ideals of the MV-algebras A1 and A2 respec-
tively. So, it is sufficient to show that s(J1) ⊆ J2. Let a ∈ A1 be such that a ∈ J1.
Hence a ≡1 0A1 and consequently s(a) ≡2 0A2 , because ≡ is a Σ-congruence. It
follows that s(a) ∈ J2.

The inclusion relation between S-sets induces a lattice order on both the set of
Σ-ideals and Σ-congruences.

Corollary 1 The correspondence that associates to any Σ-ideal J the congru-
ence ≡J and to any Σ-congruence ≡ the Σ-ideal J = (J1, J2) with Ji := {x |
x ≡i 0} is an isomorphism between the lattice of Σ-congruences of any equational
states and its lattice of Σ-ideals.

Proof It is a consequence of Lemmas 3 and 4, and the correspondence between
congruences and ideals in MV-algebras.

Henceforth, we write A/J for A/ ≡J.

Theorem 1 The quotient equational state A/J is an equational state-chain if
and only if J is a prime Σ-ideal.
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Proof Let A := (A1,A2) be an equational state and J := (J1, J2) a Σ-ideal.
Notice that A/J = (A1/J1,A2/J2). So A/J is an equational state-chain if and
only if A1/J1 and A2/J2 are both MV-chains. This latter condition is equivalent
to saying that J1 and J2 are both prime ideals, which in turn is true if and only
if J is a prime Σ-ideal.

Theorem 2 Let A := (A1,A2) be an equational state, where A1 is an MV-
chain. Then for any non-zero x ∈ A there exists a prime Σ-ideal J such that
x 
∈ J.

Proof If x ∈ A1, then by Lemma 1 there exists a prime ideal Jx such that
x 
∈ Jx. The S-sorted set J = (Jx,A2) is a prime Σ-ideal, and x 
∈ J. Now,
suppose x ∈ A2. Again by Lemma 1, there exists an ideal Jx in A2 such that
x 
∈ Jx. We define the following set:

J1 := ←−s (Jx) = {x | s(x) ∈ Jx}.

Notice that J1 is an ideal for A1. Indeed, if a, b ∈ J1 then s(a) ⊕ s(b) ∈ Jx. By
the monotonicity of s and axiom (S3), one obtains s(a⊕ b) ≤ s(a)⊕ s(b), and so
s(a⊕ b) ∈ Jx. Thus a⊕ b ∈ J1. Furthermore, let a ∈ J1 and b ≤ a. From the last
inequality we obtain s(b) ≤ s(a). Therefore, s(b) ∈ Jx and b ∈ J1. The fact that
J1 is a prime ideal follows from the fact that A1 is an MV-chain and any ideal
is prime in MV-chains. Moreover, s(J1) = s(←−s (Jx)) ⊆ Jx. Thus, J = (J1, J

x) is
the wanted prime Σ-ideal.

It is strictly necessary that the first sort is an MV-chain, as the following
example shows.

Example 1 Let �Ln be the n-element MV-chain on { i
n−1 | i ∈ N and i ≤ n − 1}.

Consider the equational state S = (�L3
2, �L5), where s is defined as follows:

s(0, 0) := 0 s(1/2, 0) := s(0, 1/2) = 1/4
s(1, 0) := s(0, 1) = s(1/2, 1/2) = 1/2 s(1, 1/2) := s(1/2, 1) = 3/4
s(1, 1) := 1.

The prime ideals of �L3
2 are �L3

2 itself, P1 := {(x, 0) | x ∈ {0, 1/2, 1}} and
P2 := {(0, x) | x ∈ {0, 1/2, 1}}. Since �L5 is simple, its prime ideals are {0}
and �L5 itself. Since a Σ-ideal J = (J1, J2) must have the property s(J1) ⊆ J2,
the prime Σ-ideals of S are (�L3

2, �L5), (P1, �L5), and (P2, �L5). Hence, all prime
Σ-ideals contain the elements 1

4 , 1
2 , 3

4 and 1 of �L5.

Recall that if f : A → B is a homomorphism of MV-algebras, then ker f is
defined as the set of elements of A that are sent into 0B by f . Similarly,
if h = (h1, h2) : A → B is a homomorphism of equational states, we define
Ker h := (ker h1, ker h2), where the latter are the kernels of the respective MV-
homomorphisms. It is easy to prove that Ker h is a Σ-ideal.



502 S. Lapenta et al.

Lemma 5 Let h : A → B a Σ-homomorphism. If h is surjective then A/Ker h is
isomorphic to B. Moreover, for any Σ-ideal J there exists a Σ-homomorphism
h′ such that Ker h′ = J.

Proof The first part of the claim is a consequence of the more general results in
[8, Subsection 2.3]. For the second part, let J be any Σ-ideal and consider the
homomorphism qJ : S → S/J that assigns to each a the equivalence class [a]J. It
is easy to see that Ker qJ = J.

The proof of the following lemma is a straightforward consequence of its equiv-
alent in the context of MV-algebras.

Lemma 6 A Σ-homomorphism h is injective if and only if Ker h = ({0}, {0}).

Corollary 2 Let S be an equational state and {Ji | i ∈ I} a family of Σ-ideals
of S; call qi the canonical homomorphism from S into S/Ji. The homomorphism
q =

(∏
i∈I qi

)
: S → ∏

i∈I S/Ji, is injective if and only if
⋂

i∈I Ji = ({0}, {0}).

Proof It is straightforward to prove that Ker q =
⋂

i∈I Ker qi =
⋂

i∈I Ji. Hence,
an application of Lemma 6 concludes the proof.

Remark 1 In contrast with the case of MV-algebras, not every equational state
is subdirect product of equational state-chains. (The notion of subdirect product
of many-sorted algebras is a straightforward generalisation of the same notion
for one-sorted algebras.) Indeed, consider the equational state in the Example
1 and suppose that there exists a family {Si}i∈I of equational state-chains such
that S is subalgebra of

∏
i∈I Si. Using Lemma 5, one can replace each Si with

S/Ji, where Ji is a Σ-ideal and i ∈ I. The ideals Ji are prime, because S/Ji

are equational state-chains, and the homomorphism q of Corollary 2 is injective.
Hence

⋂
i∈I Ji = ({(0, 0)}, {0}). But this contradicts the fact that prime Σ-ideals

of S have the form (P, �L5) with P a prime ideal of �L3
2.

The subdirect representation by equational state-chains holds if we add a
new hypothesis.

Lemma 7 Any equational state A = (A1,A2), where A1 is an MV-chain, is a
subdirect product of equational state-chains.

Proof Let J denote the class of all prime Σ-ideals of A. Using Theorem 2,⋂
J∈J J = ({0A}, {0B}). Therefore, the function q defined in Corollary 2 is injec-

tive. Finally, A/J are all equational state-chain because all J’s are prime.

Example 2 In addition to Remark 1, it should be noted that the variety of equa-
tional states is not generated by its linearly ordered members. Indeed, there are
equations that fail in some equational state but are valid in all linearly ordered
ones, an example is

s(x ∧ y) = s(x) ∧ s(y). (3)
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It is readily seen that (3) fails in the equational state of Example 1. Let now
A = (A1,A2) be an equational state in which A1 is linearly ordered and consider
any pair a, b ∈ A1. Without loss of generality assume that a ≤ b. It follows that
s(a ∧ b) = s(a) and s(a) ∧ s(b) = s(a) because s preserves the order. Thus A
satisfies (3) and the claim is proved.

We conclude the paper with some observations on simple and semisimple
equational states.

Definition 11 A proper Σ-ideal is maximal if does not exist another proper
Σ-ideal J′ such that J ⊂ J′.

Proposition 1 Let J be a Σ-ideal of an equational state (A1,A2). Then J is
maximal if and only if J = (Jm, A2), where Jm is a maximal ideal of A1.

Proof Clearly, any Σ-ideal of the form J = (Jm, A2), with Jm a maximal ideal
of A1, is maximal. For the other direction, suppose that J = (J1, J2) is maximal.
Notice that J1 
= A1, otherwise s(1) = 1 ∈ J2 and hence J2 = A2, against the
fact that J is proper. Also, J1 is maximal in A1, otherwise J1 would be properly
contained in a proper ideal M and J ⊂ (M,J2). Finally, J2 = A2, otherwise
(J1, J2) would be strictly contained in (J1, A2), again against the maximality of
J.

Definition 12 A nontrivial equational state is called:

– simple if the only Σ-ideals are ({0}, {0}) and itself.
– semisimple if the intersection of all its maximal Σ-ideals is ({0}, {0}).

Proposition 2 An equational state is simple if and only if it is of the form
(A, {0}), where A is a simple MV-algebra.

Proof If (A1, {0}) is an equational state with A1 simple, then it is clear that its
only Σ-ideals are ({0}, {0}) and (A1, {0}), thus it is simple.

Vice versa, suppose A = (A1,A2) is a simple equational state. Since (J,A2)
is a Σ-ideal for any ideal J , the algebra in the second sort must be the trivial.
Moreover, the algebra in the first sort must have only {0A} and itself as ideals.
Thus A1 is a simple MV-algebra.

Proposition 3 An equational state is semisimple if and only if it is of the form
(A, {0}), where A is a semisimple MV-algebra.

Proof The direction from right to left is straightforward. Suppose that S :=
(A,B) is semisimple. By Proposition 1 every maximal Σ-ideal is in the form
(J,B). So the intersection of all maximal ideals of S is equal to be B in the
second sort. Therefore, the second algebra must be the trivial one. Moreover,
the first algebra is such that the intersection of its maximal ideals is {0}. So, A
is semisimple.
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As a consequence of Propositions 2 and 3, simple and semisimple equational
states have a trivial state operation, i.e. the function s sends the whole domain
into 0. This is in contrast with the case of SMV-algebras, introduced in [4] and
further studied in [2,3]. Indeed, there are examples of simple SMV-algebras with
a non-trivial internal state.
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Abstract. Product logic is one of the main fuzzy logics arising from a
continuous t-norm, and its equivalent algebraic semantics is the variety of
product algebras. In this contribution, we study maximal filters of prod-
uct algebras, and their relation with product hoops. The latter constitute
the variety of 0-free subreducts of product algebras. Given any product
hoop, we construct a product algebra of which the product hoop is (iso-
morphic to) a maximal filter. This entails that product hoops coincide
exactly with the maximal filters of product algebras, seen as residuated
lattices. In this sense, we characterize the equational theory of maximal
filters of product algebras.

Keywords: Product logic · Maximal filters · product hoops ·
cancellative hoops

1 Introduction

Whenever a logic L has a variety V as its equivalent algebraic semantics à la Blok-
Pigozzi [6], the theories of the logic L correspond to the congruence filters of the
free algebras of V. In the same flavor, maximally consistent theories correspond
to maximal congruence filters of free algebras. This contribution is about the
equational theory of the maximal filters in varieties of algebras related to fuzzy
logics. More precisely, we are interested in one of the most relevant axiomatic
extensions of Hájek Basic Logic BL [14], product logic. The latter has been
introduced in [15], and it is the fuzzy logic associated to the product t-norm
(the binary operation of product among real numbers in the real unit interval
[0, 1]). Basic Logic is the logic of continuous t-norms [10], and product logic is,
together with �Lukasiewicz logic and Gödel logic, one of the fundamental fuzzy
logics in Hájek’s framework. Indeed, Mostert-Shields’ Theorem [16] shows that
a t-norm is continuous if and only if it can be built from �Lukasiewicz, Gödel and
product t-norms by the construction of ordinal sum.

Basic Logic and its extensions are all algebraizable, and their equivalent alge-
braic semantics are varieties of BL-algebras. The latter can be seen as particular
bounded commutative residuated lattices, in the signature (·,→,∧,∨, 0, 1). Con-
gruence filters of BL-algebras (called just filters in what follows) are subsets of
the domain of the algebras, closed under product and upwards (with respect to
the lattice order).
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In this work, we will characterize the equational theory of the maximal fil-
ters of product algebras, seen as residuated lattices. It is indeed easy to see that
congruence filters are actually substructures in the 0-free signature of commuta-
tive residuated lattices (·,→,∧,∨, 1). As a consequence, all filters (and thus in
particular maximal filters) of any variety V of BL-algebras belong, in this sense,
to the variety V0 of 0-free subreducts of algebras in V.

It is then natural to ask whether the converse is true, that is, is any alge-
bra in V0 isomorphic to a maximal filter of some algebra in V? Notice that in
general, a 0-free subreduct of a bounded commutative residuated lattice A is
not necessarily closed upwards, thus it might not be a filter of A. However, the
question can be answered positively if V is the variety of MV-algebras, the equiv-
alent algebraic semantics of infinite-valued �Lukasiewicz logic. In [1], the authors
indeed start from a Wajsberg hoop (i.e., a 0-free subreduct of some MV-algebra),
and construct an MV-algebra of which the Wajsberg hoop is a maximal filter.
The same is true if V is the variety of Gödel algebras, the equivalent algebraic
semantics of Gödel logic. Subreducts of Gödel algebras are called Gödel hoops,
and if one adds a bottom element to any Gödel hoop G (extending all operations
in the obvious way), this generates a Gödel algebra of which the Gödel hoop is
the only maximal filter, as we will see in detail in the Preliminaries section.

We will show the analogous result for the third most relevant fuzzy logic
belonging to Hájek’s framework, i.e., product logic. In particular, taken any
product hoop S (that is, a 0-free subreduct of a product algebra), we construct
a product algebra of which S is (isomorphic to) a maximal filter.

2 Preliminaries

In this section we introduce the algebraic structures that will be object of our
study. For all the unexplained notions of universal algebra we refer to [9], and
for the theory of residuated lattices to [13]. A bounded commutative integral
residuated lattice (or BCIRL) is an algebra A = (A, ·,→,∧,∨, 0, 1) of type
(2, 2, 2, 2, 0, 0) such that:

1. (A, ·, 1) is a commutative monoid;
2. (A,∧,∨, 0, 1) is a bounded lattice with 0 ≤ x ≤ 1 for all x ∈ A;
3. the residuation law holds: x · y ≤ z iff y ≤ x → z.

We will often write xy for x · y, and xn for x · . . . ·x (n times). Moreover, we will
consider a negation operator defined as ¬x = x → 0.
A BL-algebra is a BCIRL that further satisfies divisibility:

x ∧ y = x(x → y) (div)

and prelinearity:
(x → y) ∨ (y → x) = 1. (prel)

Satisfying the divisibility equation is equivalent to saying that the order ≤
induced by the lattice operations is the inverse divisibility ordering, that is,
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x ≤ y if and only if there exists z such that x = yz. The prelinearity equa-
tion instead characterizes BCIRLs generated by chains, that is, totally ordered
algebras (see [13]).

In BL-algebras, the lattice operations can actually be rewritten in terms of
the monoidal operation and the implication, as:

x ∧ y = x(x → y),
x ∨ y = ((x → y) → y) ∧ ((y → x) → x).

Thus we may consider BL-algebras in the language of bounded hoops (see [2,7]
for the theory of hoops), that is, as algebras in the signature (·,→, 0, 1).

MV-algebras, the equivalent algebraic semantics of infinite-
valued �Lukasiewicz logic, are BL-algebras satisfying involutivity:

¬¬x = x; (1)

Gödel algebras, the equivalent algebraic semantics of Gödel logic, are BL-algebras
satisfying idempotency:

x2 = x; (2)

product algebras, the equivalent algebraic semantics of product logic, are BL-
algebras satisfying the following identity:

¬x ∨ ((x → (x · y)) → y) = 1. (3)

Given a variety of BL-algebras, the class of its 0-free subreducts is a variety of
basic hoops [2]. 0-free subreducts of MV-algebras, Gödel algebras, and product
algebras constitute, respectively, the varieties of Wajsberg, Gödel, and product
hoops.

With respect to their structure theory, all these algebras are very well behaved.
In particular, congruences are totally determined by their 1-blocks (i.e., the set of
elements in relation with 1). If A is a BL-algebra (or a basic hoop), the 1-block of
a congruence of A is called a congruence filter (or filter for short). Filters corre-
sponds to the deductive filters induced by the corresponding logic, which, in the
algebra on formulas, are exactly deductively closed theories. It can be shown that
a filter ofA is a nonempty subset ofA closed under multiplication and upwards. It
is then easy to prove that a filter F of a BL-algebra (or a basic hoop) A, endowed
with the inherited operations of A, is itself a basic hoop F.

Filters form an algebraic lattice isomorphic with the congruence lattice of A
and if X ⊆ A then the filter generated by X is

FilA(X) = {a ∈ A : x1 · . . . · xn ≤ a, for some n ∈ N and x1, . . . , xn ∈ X}.

The isomorphism between the filter lattice and the congruence lattice is given
by the maps:

θ �−→ 1/θ

F �−→ θF = {(a, b) : a → b, b → a ∈ F},

where θ is a congruence and F a filter.
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We call a filter F maximal if it is not contained in any proper filter. More-
over, we call radical of an algebra A the intersection of its maximal filters, and
we denote it as Rad(A). Finally, given a BL-algebra A, another subset of its
domain that will be relevant in what follows is the Boolean skeleton of A, B(A).
B(A) is the largest Boolean subalgebra of A, and its domain is the set of its
complemented elements, i.e., elements x ∈ A such that x ∧ ¬x = 0, x ∨ ¬x = 1.

2.1 Product Algebras and Product Triples

Product algebras are a variety generated by chains, since they satisfy the prelin-
earity equation. Product chains can be easily constructed starting with totally
ordered cancellative hoops. The latter are the variety of basic hoops where the
monoidal operation is cancellative in the usual sense. Product chains can be
obtained by cancellative hoops with the following construction.

Consider a CIRL A, that is, the 0-free subreduct of some BCIRL. We define
its lifting to be the algebra 2 ⊕ A, with domain A ∪ {0}, and the operations
extending the ones of A in the obvious way: for x ∈ A, x0 = 0x = 0, x → 0 =
0, 0 → x = 1. See Fig. 1 for a pictorial intuition.

Fig. 1. The algebra 2 ⊕ A, given any CIRL A.

Then, product chains are all the algebras of the form 2 ⊕ C, for C a totally
ordered cancellative hoop [11]. Product chains are exactly the finitely subdirectly
irreducible product algebras. Subdirectly irreducible product algebras are then
the totally ordered algebras of the kind 2 ⊕ C with C a subdirectly irreducible
cancellative hoop.

This decomposition yields a decomposition of the elements of a product alge-
bra in a Boolean and a cancellative component, as shown in [17] (and in higher
generality in [5]).

Lemma 1 [5,17]. Let P be a product algebra. Then every element x ∈ P can be
written as x = ¬¬x · (x ∨ ¬x), where ¬¬x ∈ B(P) and x ∨ ¬x ∈ Rad(P).
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Interestingly, both elements ¬¬x and x∨¬x can be written in the 0-free language.

Lemma 2. Let P be a product algebra. Then ¬¬x = (x → x2) → x and x∨¬x =
x → x2.

Proof. The two identities can be easily shown to hold in chains. Indeed, let
x ∈ 2 ⊕ C, with C totally ordered. Suppose first x ∈ C. Thus ¬¬x = 1, and
(x → x2) → x = x → x = 1. Similarly, x ∨ ¬x = x = x → x2. Suppose now
x = 0, then ¬¬0 = 0 = (0 → 02) → 0 and 0 ∨ ¬0 = 1 = 0 → 02.

Now, if an equation holds in all the subdirectly irreducible algebras, it holds
in every algebra of the variety, thus the claim follows. �

Given the previous lemma, for any product algebra P we define for each x ∈ P :

b(x) = (x → x2) → x, c(x) = x → x2. (4)

Therefore:

Proposition 1. Let P be a product algebra. For each x ∈ P, x = b(x) · c(x), or
equivalently x = b(x) ∧ c(x).

The representation of the elements seems to suggest that a product algebra is
identified by its Boolean skeleton and the set of its cancellative elements, but
it turns out that they are not enough to identify a unique product algebra (see
[17]). The algebraic category of product algebras has been indeed shown in [17]
to be equivalent to a category whose objects are triples of the kind (B,C,∨e),
such that B is a Boolean algebra, C is a cancellative hoop such that B∩C = {1},
and ∨e is a binary operation ∨e : B × C → C intuitively representing the join
operation between Boolean and cancellative elements. More precisely, for b ∈ B
and c ∈ C, let

hb(x) = b ∨e x; kc(x) = x ∨e c. (5)

Then we have the following definition.

Definition 1. A map ∨e : B × C → C is an external join between B and C if
it satisfies the following:

(V1) For fixed b ∈ B and c ∈ C, hb is an endomorphism of C and kc is a lattice
homomorphism from (the lattice reduct of) B into (the lattice reduct of) C.

(V2) h0 is the identity on C, and h1 is constantly equal to 1.
(V3) For all b, b′ ∈ B and for all c, c′ ∈ C, hb(c) ∨ hb′(c′) = hb∨b′(c ∨ c′) =

hb(hb′(c ∨ c′)).
(V4) For all b ∈ B and for all c, c′ ∈ C, (b ∨e c) · c′ = (¬b ∨e c′) ∧ (b ∨e (c · c′)).

Given any such a triple (B,C,∨e), following [17], one can obtain a product
algebra of which B is a Boolean skeleton, and C is the radical. First, consider
the direct product B × C, and the following equivalence relation ∼ on B × C:
given (b, c), (b′, c′) ∈ B × C, let

(b, c) ∼ (b′, c′) if and only if b = b′ and ¬b ∨e c = ¬b ∨e c′. (6)
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Let us denote the elements of an equivalence class (b, c)/∼ by [b, c]. Then B⊗∨e
C

is the product algebra with domain (B × C/ ∼), and operations denoted by
(⊗,⇒,�,�, [0, 1], [1, 1]) and defined as follows:

[b, c] ⊗ [b′, c′] = [b ∧ b′, c · c′]
[b, c] � [b′, c′] = [b ∧ b′, c ∧ c′]
[b, c] � [b′, c′] = [b ∨ b′, ((¬b ∨ ¬b′) ∨e (c ∨ c′) ∧ ((b ∨ ¬b′) ∨e c′) ∧ ((¬b ∨ b′) ∨e c)]
[b, c] ⇒ [b′, c′] = [b → b′,¬b ∨e (c → c′)].

In [17] it is shown in particular that every product algebra A is isomorphic to
the one obtained by the triple (B(A),Rad(A),∨), where ∨ is the join of A.

We observe that, given any Boolean algebra B, and any cancellative hoop C,
it is always possible to define an external join between them. Let indeed M be
a maximal filter of B, we define ∨M : B × C → C as follows:

b ∨M c =
{

1 if b ∈ M,
c otherwise.

Lemma 3. Let B be a Boolean algebra, C a cancellative hoop, with B∩C = {1}.
Then ∨M : B × C → C defined above is an external join, and (B,C,∨M ) is a
product triple.

Proof. Given b ∈ B, c ∈ C, let hb(x) = b ∨M x and kc(x) = x ∨M c. We only
need to show the properties (V 1)–(V 4) in Definition 1.

For (V 1), fix an element b ∈ B, then it is easy to see that hb is an endomor-
phism of C. Indeed, either b ∈ M , and then hb is the map constantly equal to
1, or b /∈ M , and then hb is the identity map. Let us now fix some c ∈ C, we
need to prove that kc is a lattice homomorphism from the lattice reduct of B to
the lattice reduct of C. That is, we need to show that kc(x ∧ y) = kc(x) ∧ kc(y)
and kc(x ∨ y) = kc(x) ∨ kc(y). We show the case of ∧. If both x, y are in M ,
then x ∧ y ∈ M as well, thus kc(x ∧ y) = 1 = kc(x) ∧ kc(y). Otherwise, if at
least one element among x and y is not in M , x ∧ y is not in M (since filters
are closed upwards). Thus kc(x ∧ y) = c = kc(x) ∧ kc(y). The case of ∨ can be
shown analogously.

For (V2), it follows from the definition that h0 is exactly the identity on C,
and h1 is constantly equal to 1.

We now show (V3), that is, for all b, b′ ∈ B and c, c′ ∈ C:

hb(c) ∨ hb′(c′) = hb∨b′(c ∨ c′) = hb(hb′(c ∨ c′)).

If one among b, b′ is in M , then clearly hb(c)∨hb′(c′) = hb∨b′(c∨ c′) = hb(hb′(c∨
c′)) = 1. If instead both b, b′ �∈ M , then the three terms are all c ∨ c′, since the
complement of a maximal Boolean filter is closed under join.

We are left to prove (V4), that is, for all b ∈ B and c, c′ ∈ C,

(b ∨M c) · c′ = (¬b ∨M c′) ∧ (b ∨M (c · c′)).
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If b ∈ M , then (b∨M c)·c′ = 1·c′ and (¬b∨M c′)∧(b∨M (c·c′)) = c′∧1 = c′, and the
equality holds. If b /∈ M , then (b∨M c) ·c′ = c ·c′ and (¬b∨M c′)∧ (b∨M (c ·c′)) =
1 ∧ c · c′ = c · c′. This completes the proof. �

2.2 Maximal Filters of Boolean, MV, and Gödel Algebras

We observe that, in general, a 0-free subreduct A of a BCIRL B is not necessarily
closed upwards, thus it might not be a filter of A. Even more, A is not necessarily
a filter of the subalgebra SA of B generated by A. Indeed, for instance, given
any element x ∈ A, its double negation will be in SA and in any filter containing
x, since x ≤ ¬¬x, but ¬¬x does not have to belong to A (see [3, Example 2.6]
for a specific example).

In this section we will see some known constructions that start from a sub-
reduct A of an algebra B in a variety V of BCIRLs, and obtain a new algebra C
in V of which A is isomorphic to a maximal filter. In particular, we will see this
for V being the variety of MV, Boolean, and Gödel algebras. It will also become
apparent that these constructions cannot be used to show the analogous result
for the case of product algebras.

Let us start from MV-algebras. In [1], the authors show that, given any
Wajsberg hoop A, one can construct an MV-algebra of which A is (isomorphic
to) a maximal filter. We recall the construction since we will use it in what
follows. Let A be a Wajsberg hoop, then its MV-closure is the algebra

MV(A) = (A × {0, 1}, ·mv,→mv, 0mv, 1mv)

where

0mv = (1, 0), 1mv = (1, 1)

and, letting a ⊕ b = (a → ab) → b for a, b ∈ A,

(a, i) ·mv (b, j)

⎧⎪⎪⎨
⎪⎪⎩

(a · b, 1) if i = j = 1
(a → b, 0) if i = 1 and j = 0
(b → a, 0) if i = 0 and j = 1
(a ⊕ b, 0) if i = j = 0

(a, i) →mv (b, j)

⎧⎪⎪⎨
⎪⎪⎩

(a → b, 1) if i = j = 1
(a · b, 0) if i = 1 and j = 0
(a ⊕ b, 1) if i = 0 and j = 1
(b → a, 1) if i = j = 0.

Negation is then defined as: ¬mv(x, i) = (x, 1 − i). We notice that MV(A) is
the disjoint union of the sets {(a, 1) : a ∈ A} and {¬mv(a, 1) : a ∈ A}.

We observe that the MV-closure construction is also (independently) used in
[4] in order to obtain a free MV-algebra from a free Wajsberg hoop.

Now, Boolean algebras can be seen as particular MV-algebras such that
x ∨ ¬x = 1 holds. Their 0-free subreducts constitute the variety of general-
ized Boolean algebras, and they have been studied in [12]. Generalized Boolean
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algebras can be characterized as idempotent Wajsberg hoops, and every gen-
eralized Boolean algebra G is a maximal filter of some Boolean algebra B. In
particular, let us show that to construct such a Boolean algebra, one can use the
MV-closure construction.

Proposition 2. Let A be a generalized Boolean algebra, then its MV-closure
MV(A) is a Boolean algebra.

Proof. Let A be a generalized Boolean algebra, that is, an idempotent Wajsberg
hoop. We can then apply the MV-closure construction recalled above and obtain
an MV-algebra. Since Boolean algebras can be characterized as idempotent MV-
algebras, it suffices to check that ·mv is idempotent. By definition,

(x, 1) · (x, 1) = (x2, 1) = (x, 1),

and
(x, 0) · (x, 0) = ((x → x2) → x, 0) = ((x → x) → x, 0) = (x, 0).

Therefore, MV(A) is a Boolean algebra. �

We observe that the MV-closure construction cannot be used (as is) in order to
construct a product algebra from a product hoop, nor a Gödel algebra from a
Gödel hoop, since it generates an involutive structure, and the only involutive
Gödel and product algebras are Boolean algebras.

However, given a Gödel hoop G, the lifting 2⊕G is a Gödel algebra of which
G is the unique maximal filter, and actually every directly indecomposable Gödel
algebra has this shape (see for instance [5]).

Finally, we observe that the lifting construction cannot be used for product
algebras and MV-algebras. Indeed, in general, given H a product hoop (or a
Wajsberg hoop), 2⊕H is not necessarily a product algebra (or an MV-algebra).
Indeed, we have the following easy counterexample.

Example 1. Consider 20 to be the 0-free reduct of the 2 element Boolean algebra.
Then 20 is a generalized Boolean algebra that is both a product hoop and a
Wajsberg hoop. Now, 2 ⊕ 20 is the three-element Gödel chain, that is not a
product algebra nor an MV-algebra.

3 Constructing a Product Algebra from a Product Hoop

In this section, given a product hoop S, we construct a product algebra P(S)
such that S is (isomorphic to) a maximal filter of P(S).

Notice that, given a product hoop S, we have that S is the 0-free subreduct
of some product algebra A. Thus, the elements in S can be represented as in
Proposition 1, x = b(x) ∧ c(x). We therefore consider the following sets:

C(S) = {c(x) : x ∈ S}, G(S) = {b(x) : x ∈ S}. (7)
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Lemma 4. Let S be a product hoop, and consider C(S) and G(S) defined as
above. Then C(S) is a cancellative hoop and G(S) is a generalized Boolean
algebra.

Proof. We assume that S is a subreduct of a product algebra A.
First we show that C(S) is a cancellative hoop. Given any x ∈ S, since

c(x) = x → x2 and S is closed under the hoop operations, we get that c(x) is
itself an element of S. It follows that C(S) is closed under all the hoop operations
as well. Since C(S) is a subset of the radical of A, which is a cancellative hoop,
it follows that C(S) is a cancellative hoop itself.

We now consider G(S), and proceed with the analogous reasoning as above.
Given any x ∈ S, b(x) = (x → x2) → x ∈ S, thus G(S) is closed under
the hoop operations and is a subset of the Boolean skeleton of A, that is a
Boolean algebra. Therefore, G(S) is the subreduct of a Boolean algebra, that is,
a generalized Boolean algebra. �

Given a product hoop S, let then B(S) = MV(G(S)), the MV-closure of G(S).
By Proposition 2, B(S) is a Boolean algebra of which G(S) is (isomorphic to) a
maximal filter. We can then define a binary operation ∨S : B(S)×C(S) → C(S)
as follows:

b ∨S c =
{

1 if b ∈ G(S),
c otherwise.

By Lemma 3, we obtain the following.

Proposition 3. Let S be a product hoop, and B(S), C(S), ∨S be defined as
above. Then (B(S),C(S),∨S) is a product triple.

Thus, we can consider the product algebra associated to the product triple
(B(S),C(S),∨S), and define:

P(S) = B(S) ⊗∨S
C(S). (8)

We are now ready to show that, given a product hoop S, we can construct a
product algebra of which S is a maximal filter.

Theorem 1. Let S be a product hoop. Then S is isomorphic to a maximal filter
of P(S).

Proof. Let x ∈ S, then x = b(x) ∧ c(x). Let f : S → P(S) be defined by f(x) =
[b(x), c(x)]. It can be directly checked that f is a hoop isomorphism from S to
the subset of P(S) given by the elements S(S) = {[b, c] : b ∈ G(S), c ∈ C(S)}.
For the reader interested in the details, since we can see S as a subreduct of a
product algebra A, the fact that f is a hoop homomorphism is a consequence of
[17, Theorem 6.1]. In particular from the part (b) of the proof of [17, Theorem
6.1], we get exactly that f is a hoop isomorphism from S to the elements in
S(S).
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We now show that S(S) is a filter of P(S). Since S(S) is a product hoop
(because S is), it is closed under product and it contains [1, 1]. Suppose now
[b(x), c(x)] ∈ S(S) and [b(x), c(x)] ≤ [b(y), c(y)], or equivalently,

[b(x), c(x)] ⇒ [b(y), c(y)] = [1, 1].

We want to show that [b(y), c(y)] ∈ S(S). By definition of the operations,

[b(x), c(x)] ⇒ [b(y), c(y)] = [b(x) → b(y),¬b(x) ∨S (c(x) → c(y))].

Thus, by the definition of the equivalence relation ∼ in (6), b(x) → b(y) = 1, or
equivalently, b(x) ≤ b(y). Since G(S) is a filter of B(S), b(y) ∈ G(S). Moreover,
again by the definition of ∼, we get that:

¬b(x) ∨S (c(x) → c(y)) = 1,

and since ¬b(x) is not in G(S) (given that b(x) is), we get that c(x) → c(y) = 1,
or equivalently c(x) ≤ c(y). Since C(S) is the radical of P(S), it is a filter, and
thus c(y) ∈ C(S). Therefore, [b(y), c(y)] ∈ S(S), and S(S) is a filter of P(S).

Now it is left to show that S(S) is a maximal filter, that is, it is not contained
in any proper filter. Suppose that [b(x), c(x)] ∈ P(S), [b(x), c(x)] /∈ S(S). Then
necessarily b(x) �∈ G(S), meaning that ¬b(x) ∈ G(S). Thus if we consider a filter
F of P(S) which includes both S(S) and [b(x), c(x)], the following product is
also in F :

[b(x), c(x)] · [¬b(x), c(x)] = [b(x) ∧ ¬b(x), (c(x))2] = [0, (c(x))2] = [0, 1].

That is, F is not proper since [0, 1] is the bottom element. We conclude that
S(S) is a maximal filter of P(S), and the proof is complete. �

Therefore:

Corollary 1. Product hoops coincide with the class of maximal filters of product
algebras, seen as residuated lattices with the restricted operations.

Let us show the following particular instance of our construction.

Example 2. Let S be a cancellative hoop. Then P(S) ∼= 2 ⊕ S. Indeed, if S
is a cancellative hoop, G(S) = {1}. As a consequence, B(S) ∼= 2. Moreover,
C(S) = S. Then, we can see the elements of P(S) as either of the form [1, c] or
[0, c], for c ∈ S. By the equivalence relation ∼ in (6), all of the elements of the
form (0, c) belong to the same equivalence class, while (1, c) ∼ (1, c′) if and only
if c = c′. Thus, we can see the domain of P(S) as {[1, s] : s ∈ S} ∪ {[0, 1]}. It
follows from the definition of the operations that P(S) is isomorphic to 2 ⊕ S.

Example 3. Let S be the 0-free reduct of a product algebra P = 2⊕C, where C
is a cancellative hoop. Then, P(S) ∼= 2×(2⊕C). Indeed, G(S) = 2, which means
that B(S) ∼= 4, the Boolean algebra with 4 elements. Moreover, C(S) = C. As
a result, the elements of P(S) are of the form [1, c], [0, c], [¬0, c] or [¬1, c], for
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c ∈ C. By the equivalence relation ∼ in (6), all the elements of the form (¬0, c)
belong to the same equivalence class, as well as the ones of the form (¬1, c). On
the other hand, (1, c) ∼ (1, c′) if and only if c = c′, and (0, c) ∼ (0, c′) if and
only if c = c′. Thus, the domain of P(S) is given by: {[1, c] : c ∈ C}∪{[0, c] : c ∈
C}∪{[¬0, 1]}∪{[¬1, 1]}. It can then be directly checked that P(S) is isomorphic
2 × (2 ⊕ C). If C is a chain, the Hasse diagram of P(S) is as in Fig. 2.

Fig. 2. On the left, 2⊕C, given a cancellative hoop chain C. On the right, P(2⊕C).

Remark 1. An interesting observation stems from the last example. Given any
BCIRL A in a variety V, the direct product 2×A is in V. Moreover, the 0-free
reduct of A is isomorphic to the maximal filter of 2 × A given by the elements
{(1, a) : a ∈ A}. Thus, for any variety of BCIRLs V, and A ∈ V, the 0-free
reduct of A belongs to the class of maximal filters. Notice that this does not
mean that any 0-free subreduct of A does.

4 Conclusions

We have shown that, given a product hoop S, we can construct a product algebra
P such that S is isomorphic to a maximal filter of P. Since every maximal filter
can be seen as a product hoop, in this sense, we have characterized the equational
theory of maximal filters of product algebras.

At present, we do not know if this property is shared by bounded residuated
lattices in general. That is, given a variety V of BL-algebras (or, more in general,
BCIRLs), does the variety V0 of 0-free subreducts of algebras in V coincide with
the class of maximal filters of algebras in V, seen as residuated lattices? We have
seen that this holds for the equivalent algebraic semantics of the three most
relevant extensions of Hájek Basic Logic.

In future work we plan to extend and generalize our approach to a larger class
of residuated structures. In particular, we observe that the triple construction in
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[17], that we have used in this work, has been extended and generalized in [5] and
[8] to encompass a large class of residuated structures. In particular, this class
includes several important varieties related to fuzzy logics and other nonclassical
logics, among which: the variety generated by perfect MV-algebras, nilpotent
minimum algebras, Stonean Heyting algebras, regular Nelson residuated lattices.
We plan to study to what extent our construction can be extended to this wider
setting.

Moreover, the representation of the elements of product algebras naturally
gives a representation of the elements of product hoops, hinting at a triple-like
representation for such algebras as well. We believe this to be another interesting
line of research which we will investigate in future work.
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Abstract. In this contribution we are interested in the 0-free fragment
of product logic, the fuzzy logic arising from the product t-norm. This
logic has the variety of product hoops as its equivalent algebraic seman-
tics. Our main result shows a functional representation of free finitely
generated product hoops, which characterizes the Lindenbaum-Tarski
algebra of formulas of the corresponding logic over a finite number of
variables.
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1 Introduction

Product logic has been introduced by Hájek, Godo, and Esteva in [15], and,
together with �Lukasiewicz and Gödel logic, is one of the main propositional
fuzzy logics arising from a continuous t-norm. Indeed, Mostert-Shields’ theo-
rem [16] shows that a t-norm is continuous if and only if it can be built from
�Lukasiewicz, Gödel and product t-norms by the construction of ordinal sum.
These three operations determine the corresponding three algebraizable propo-
sitional logics (bringing the same names as their associated t-norms), whose
equivalent algebraic semantics are the varieties of MV, Gödel and product alge-
bras respectively. In particular, each one of these varieties is generated by the
algebra on the real unit interval [0, 1] endowed with the operations (·,→, 0, 1),
where · is one of the t-norms and → is its residuum (see [14]). This algebra is
usually called the standard model of the corresponding logic.

Product logic has been deeply studied in recent years. Relevant results have
been obtained with respect to: categorical representation of its algebras [17] and
duality [12], SMT-solvers [19], modal extensions [20], structural completeness
[10]. In particular, the representations of its free finitely generated algebras in
[9] and [8] have shown to be particulary fruitful. They have indeed been used,
for instance, to study: unification problems [2]; the probability theory of events
seen as product logic formulas [11]; invertible substitutions [3].

In this contribution we are interested in a fragment of product logic: the pos-
itive (i.e., 0-free) fragment. We show that the standard model for the fragment
is the real unit interval [0, 1], with operations (·,→, 1), where · is the product
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t-norm and → is its residuum. Algebraically, its equivalent algebraic seman-
tics is given by product hoops, i.e., the variety of 0-free subreducts of product
algebras. Our main result provides a functional representation for the finitely
generated free product hoops, which we obtain as a particular subreduct of the
corresponding free product algebra. The key idea is to identify those functions in
the representation of free product algebras in [9] that correspond to 0-free terms
of product logic. We point out that free n-generated algebras in an algebraizable
logic correspond to the Lindenbaum-Tarski algebras of formulas with n variables
of the logic, thus our findings are relevant from both the algebraic and logical
point of view.

2 Preliminaries

We now introduce the algebras that are object of our study. For all the unex-
plained notions of universal algebra we refer to [5]. A bounded commutative
integral residuated lattice (or BCIRL) is an algebra A = (A, ·,→,∧,∨, 0, 1), of
type (2, 2, 2, 2, 0, 0), such that:

1. (A, ·, 1) is a commutative monoid;
2. (A,∧,∨, 0, 1) is a bounded lattice with 0 ≤ x ≤ 1 for all x ∈ A;
3. the residuation law holds: x · y ≤ z iff y ≤ x → z.

BCIRLs form a variety, often called FLew since they are the equivalent algebraic
semantics of the Full Lambek Calculus with exchange and weakening (see [13]).
A commutative integral residuated lattice (or CIRL) is a 0-free subreduct of a
BCIRL. A BL-algebra is a BCIRL that further satisfies divisibility:

x ∧ y = x · (x → y) (div)

and prelinearity:
(x → y) ∨ (y → x) = 1. (prel)

A product algebra is a BL-algebra that satisfies the following identity:

¬x ∨ ((x → (x · y)) → y) = 1. (1)

Product algebras then form a variety which we denote by P. We will often write
xy for x · y, and xn for x · . . . ·x (n times). Moreover, we will consider a negation
operator defined as ¬x = x → 0.

The double negation operator in particular plays an interesting role in prod-
uct algebras. Indeed, given a product algebra P, the set of elements {¬¬x :
x ∈ P} is the so-called Boolean skeleton of P, B(P). The Boolean skeleton
of a bounded residuated lattice is its maximum Boolean subalgebra, and its
domain coincides with the set of complemented elements, i.e., elements x such
that x ∧ ¬x = 0, x ∨ ¬x = 1.

We point out that in product algebras (and more generally in BL-algebras),
the lattice operations can actually be rewritten in terms of the monoidal opera-
tion and the implication, as:

x ∧ y = x(x → y),
x ∨ y = ((x → y) → y) ∧ ((y → x) → x).
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Thus we may consider BL-algebras in the language of bounded hoops (see [1,4] for
the theory of hoops), that is, as algebras in the signature (·,→, 0, 1). Henceforth,
we will use this reduced language.

In what follows, given a variety V, we write FV(X) for the free algebra over
X in V. Given any variety V and any set of variables X = {x1, . . . , xn}, an
assignment of X into an algebra A ∈ V is a function h mapping each variable
xi to an element of A, say h(xi) = ai ∈ A, for i = 1, . . . , n. Then h extends to a
homomorphism (that we also call h) from the free algebra FV(X) to A. Given
this notation, considering a term t over the variables X, we write tA(x1, . . . , xn)
for the element h(t). Moreover, given terms t(x1, . . . , xn), u(x1, . . . , xn) over the
language of V, we write |=A t ≈ u if for any assignment h of the variables
x1, . . . , xn to elements of A, h(t(x1, . . . , xn)) = h(u(x1, . . . , xn)) in A. Equiv-
alently, if tA(a1, . . . , an) = uA(a1, . . . , an) for all a1, . . . , an ∈ A. We write
|=V t ≈ u if |=A t ≈ u for all A ∈ V.

2.1 Free Product Algebras

The variety of product algebras P is generated by the standard algebra:

[0, 1]P = ([0, 1], ·,→, 0, 1),

where x · y is the product of real numbers and → is Goguen’s implication: if
x ≤ y then x → y = 1; otherwise if x > y then x → y = y/x. By standard
universal algebraic arguments, this implies that the free n-generated product
algebra is (isomorphic to) the subalgebra of the algebra of real-valued functions
from [0, 1]n to [0, 1], generated by the projection functions, and with operations
defined pointwise by the ones of the standard algebra. From now on, we identify
the free n-generated product algebra with this algebra of functions, which we
denote by FP(n). In [9], the authors give a description of FP(n), for all n ∈ N,
that we now recall. Let us call any function belonging to a free product algebra
a product function.

Remark 1. Any n-ary term of product logic p(x1, . . . , xn) is associated to a prod-
uct function p : [0, 1]n → [0, 1] such that, for each (a1, . . . , an) ∈ [0, 1]n:

p(a1, . . . , an) = p[0,1]P(a1, . . . , an). (2)

This relation is not one-one: in fact, to each product function of FP(n) corre-
sponds a class of n-ary terms of product logic that are logically equivalent. That
is, given n-ary terms p and q, p = q (as functions over [0, 1]n) if and only if
|=P p ≈ q. We will use this key fact in the rest of the paper.

The key idea of the representation is that the domain of product functions can
be partitioned in subsets over which product functions are either constantly equal
to 0, or they are piecewise monomial functions (see [9] for details). Moreover,
this partition can be obtained by considering the atoms of the Boolean skeleton
of the free product algebra, and considering the areas where the atoms have
value either 0 or 1.
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Now, let us consider the free n-generated product algebra, FP(n), and let us
call its generators {x1, . . . , xn}. Its Boolean skeleton B(FP(n)) is (isomorphic
to) the free Boolean algebra over the generators {¬¬x1, . . . ,¬¬xn} [8]. As it
is well-known, the atoms of a free Boolean algebra can be written as all the
possible meets of the generators and their negations. Thus, in order to list all
the possible atoms, it suffices to pick, for each generator xi, either its negation
¬xi or its double negation ¬¬xi. To each one of these choices, it corresponds
both an atom, and an area of the domain [0, 1]n where the said atom has value
1. That is, the area corresponding to the indexes i where we picked the double
negation ¬¬xi. Let us now encode this idea.

Definition 1. Let n ∈ N. Given ε = (ε1, . . . , εn) ∈ {1, 2}n, we define |ε| = |{i ∈
{1, 2}n : εi = 2}|, and Gε = {x = (x1, . . . , xn) ∈ [0, 1]n : xi > 0 iff εi = 2}.

The Gε’s give a partition of [0, 1]n. We have the following result.

Theorem 1 ([9]). The free product algebra on n generators FP(n) is isomorphic
to the algebra of functions f : [0, 1]n → [0, 1] such that for all ε ∈ {1, 2}n, with
|ε| = k, the restriction of f in Gε is either equal to the constant function 0, or
it is equal to a piecewise monomial function in k variables.

Let us call aε the Boolean atom corresponding to a Gε, i.e., such that the
product function aε is 1 over Gε and 0 outside. Letting ¬1 = ¬ and ¬2 = ¬¬, it
is:

aε =
n∧

i=1

¬εixi. (3)

Given that the Gε’s give us a partition of [0, 1]n, given an n-ary term q, we use
the Boolean atoms to see each q as a join of functions qε that coincide with q on
Gε. Formally, we have:

Lemma 1. Let q be a n-ary term. If for each ε ∈ {1, 2}n, qε is a term such that
q(x) = qε(x) for all x ∈ Gε, then |=P q ≈ ∨

(qε ∧ aε).

Proof. Let x ∈ Gε′ . Then aε(x) = 0 if ε �= ε′, and aε(x) = 1 if ε = ε′, thus
qε(x) ∧ aε(x) = qε(x) if ε = ε′, otherwise qε(x) ∧ aε(x) = 0 if ε �= ε′.

Then for each ε′ and x ∈ Gε′ :
∨

(qε(x) ∧ aε(x)) = qε′(x) ∧ aε′(x) = qε′(x) = q(x)

and given that the Gε’s are a partition of [0, 1]n, we have (by the observation in
Remark 1) that |=P

∨
(qε ∧ aε) ≈ q. �

An example of the previous lemma can be given by considering the one-variable
term x → x2, whose function is 1 at 0 and coincides with x elsewhere; given
a1 = ¬x and a2 = ¬¬x, we can rewrite x → x2 as (a1 ∧ 1) ∨ (a2 ∧ x) (see
Example 1 for a picture).
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3 Standard Product Hoop

Basic hoops are the variety of CIRLs satisfying divisibility and prelinearity, and
they are the 0-free subreducts of BL-algebras. The 0-free subreducts of product
algebras are called product hoops, and they are a variety of basic hoops by [1,
Proposition 1.10]. In the same paper, product hoops have been axiomatized as
basic hoops further satisfying:

(y → z) ∨ ((y → xy) → x) = 1. (PH)

We denote the variety of product hoops by PH. We will now see that PH is
generated by the 0-free subreduct of the standard product algebra, and that this
fact is an instance of a more general observation.

Theorem 2. Let V be a variety of algebras over a language L. Let L− be a
sublanguage of L such that the class of subreducts of algebras in V over the
language L− is a variety, call it V−. Then if V is generated by an algebra A ∈ V,
V− is generated by the reduct of A over the language L−.

Proof. Let us call A− the reduct of A in the language L−. Since A− ∈ V−,
A− satisfies all the equations that are valid in V−. Vice versa, suppose that
an equation t ≈ u in the language L− over variables in a set X is not valid in
V−. That is, there exists B ∈ V− and an assignment of the variables in X to
B that do not validate t ≈ u. Since B is a subreduct of an algebra B+ ∈ V,
the same assignment shows that also B+ �|= t ≈ u. Therefore, since A generates
V, A �|= t ≈ u. Since t ≈ u is an equation in the language L−, we get that
A− �|= t ≈ u. Thus, A− and V− have the same equational theory, which means
that the variety generated by A− is exactly V−. �
As a result:

Corollary 1. The 0-free reduct of the standard product algebra generates PH.

We will henceforth refer to the 0-free reduct of the standard product algebra
as the standard product hoop, [0, 1]PH. Thus, it follows that the free n-generated
product hoop is an algebra of real-valued functions from [0, 1]n to [0, 1], generated
by the projection functions and with operations defined pointwise by [0, 1]PH. In
order to give a description of the free n-generated product hoop we will make use
of the following result. The proof uses standard universal algebraic arguments
(for details see [18], where the result is shown in general for varieties of bounded
commutative residuated lattices).

Theorem 3. Let X be any set, then the free product hoop FPH(X) is isomorphic
to the subalgebra of the 0-free reduct of the free product algebra FP(X) generated
by X.

That is, in order to describe the free n-generated product hoop, it suffices
to identify the product functions corresponding to (equivalence classes of) 0-free
terms. More precisely, in reference to the notation introduced in Remark 1:

Definition 2. We call a product function f ∈ FP(n) positive if there is a 0-free
term p of product logic in n variables such that p = f .
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4 Positive Product Functions

In this section we characterize positive product functions. First, an easy obser-
vation.

Proposition 1. Let p be a 0-free n-ary term, then p(x) > 0 for all x ∈ (0, 1]n.

Proof. The claim can be shown by induction on the construction of the term p.
Let p be a positive term of complexity 1, then p is either equal to 1 (the function
constantly equal to 1) or to a projection, thus p(x) > 0 for all x ∈ (0, 1]n.

Now, suppose that the claim holds for terms p of complexity less than m,
and let p be a positive term with complexity m. Then p is either of the form s · q
or s → q for positive terms s, q. By inductive hypothesis, s(x) > 0 and q(x) > 0
for all x ∈ (0, 1]n. It follows that p(x) > 0 for all x ∈ (0, 1]n. �

The previous proposition identifies a necessary condition for a product function
to be positive. In the rest of the section we will see that this condition is also
sufficient. The key idea is to use Lemma 1 to rewrite those terms p whose cor-
responding product function is positive over (0, 1]n by means of positive terms
only. In particular, we will use suitable positive terms pε, in such a way that∨

(pε ∧ aε), which is equivalent to p by Lemma 1, is shown to be equivalent to a
positive term. First, a preliminary result.

Proposition 2. Let p be a n-ary term such that p(x) = 1 for all x ∈ (0, 1]n.
Then for each ε ∈ {1, 2}n there exists a positive n-ary term pε such that p(x) =
pε(x) for all x ∈ Gε.

Proof. Let p(x1, . . . , xn) be a n-ary term. If ε = (2, . . . , 2), then Gε = (0, 1]n,
thus by construction pε = 1. Now consider ε = (ε1, . . . , εn) such that εi = 1 for
some i = 1, . . . , n; if p is a positive term take pε = p. If p is not a positive term,
take pε constructed from p by substituting each occurrence of 0 with xi. Such
pε is a positive term, and if x ∈ Gε then p(x) = pε(x), since xi(x) = 0 holds for
x ∈ Gε. �

We now have two technical lemmas.

Lemma 2. Let p, q be n-ary terms, then the following hold:

(1) |=P ¬¬p ≈ (p → p2) → p.
(2) |=P ¬p → q ≈ ¬¬p ∨ q.

Proof. We use again that, as pointed out in Remark 1, |=P p ≈ q iff p(x) = q(x)
for all x ∈ [0, 1]n. We show (1). For x ∈ [0, 1]n we distinguish the following cases:

(i) if p(x) = 0 then ¬¬p(x) = 0 and (0 → 02) → 0 = 0;
(ii) if p(x) = 1 then ¬¬p(x) = 1 and (1 → 1) → 1 = 1;
(iii) if p(x) = y ∈ (0, 1) then ¬¬p(x) = 1 and (y → y2) → y = y → y = 1.

This proves that |=P ¬¬p ≈ (p → p2) → p. (2) can be shown with the same
technique, and follows by easy computations. �
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Observe that by point (1) of the previous lemma, if p is a positive term, its
double negation ¬¬p is equivalent to a positive term. Thus:

Proposition 3. Let ε̄ = (2, . . . , 2). Then aε̄ is equivalent to a positive term.

However, for all the other ε this does not hold, as aε contains at least a negation;
nonetheless, we notice that aε̄ ∨ aε is always equivalent to a positive term, in
fact:

Lemma 3. Let ε̄ = (2, . . . , 2), then aε̄ ∨ aε is equivalent to a positive term for
all ε ∈ {1, 2}n.

Proof. By definition aε̄ =
∧n

j=1 ¬¬xj and aε =
∧n

i=1 ¬εixi. Now

aε̄ ∨ aε =

⎛

⎝
n∧

j=1

¬¬xj

⎞

⎠ ∨
(

n∧

i=1

¬εixi

)
=

n∧

i=1

n∧

j=1

(¬εixi ∨ ¬¬xj).

If εi = 2, by Lemma 2 ¬¬xi ∨ ¬¬xj is equivalent to a positive term. If εi = 1,
again by Lemma 2, we get ¬xi ∨ ¬¬xj = ¬¬¬xi ∨ ¬¬xj = ¬¬xi → ¬¬xj , and
¬¬xi → ¬¬xj is equivalent to a positive term. Hence, aε̄ ∨ aε is a composition
of terms equivalent to positive terms and thus is equivalent to a positive term.�

We are now ready to characterize positive product functions.

Proposition 4. A product function f in FP(n) is positive if and only if f(x) > 0
for all x ∈ (0, 1]n.

Proof. Let f ∈ FP(n) be positive, that is, such that f = p for some positive
term p. Then by Proposition 1, if x ∈ (0, 1]n, f(x) > 0.

For the other direction, suppose f ∈ FP(n) is such that f(x) > 0 for all
x ∈ (0, 1]n, and consider a term p associated with f , i.e., such that p = f . We
show that p is equivalent to a positive term, by induction on the complexity of
p. If p is a constant or a variable, p is not 0 since 0(x) = 0 for all x ∈ (0, 1]n,
while 1 and all variables are 0-free terms.

For the inductive step, we assume that every term q, of complexity smaller
than m, and such that q(x) > 0 for all x ∈ (0, 1]n, is equivalent to a positive
term. We now consider p to be of complexity m, then p is either of the form s · q
or s → q for some terms s, q of complexity less than m. Suppose first p = s · q.
Since p(x) > 0 for all x ∈ (0, 1]n by hypothesis, necessarily also s and q are not
0 over (0, 1]n. By inductive hypothesis, s and q are equivalent to positive terms,
and thus the same holds for p.

Assume now that p = s → q. Observe that it cannot be that s(x) > 0 and
q(x) = 0 for all x ∈ (0, 1]n, otherwise p would be 0 over (0, 1]n, a contradiction.
While if s(x) and q(x) are not 0 over (0, 1]n, by inductive hypothesis, s and q are
equivalent to some positive terms and then so is p. It is left to check the following
case: s(x) = 0 for all x ∈ (0, 1]n. Then for all x ∈ (0, 1]n, s(x) → q(x) = 1. By
Proposition 2, we have that for each ε ∈ {1, 2}n, there exists a positive n-ary
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term pε such that p coincides with pε on Gε. By Lemma 1, p is equivalent to∨
(pε ∧ aε). Let aε̄ =

∧n
i=1 ¬¬xi. Given that p(x) = 1 for all x ∈ (0, 1]n, we have

p = p ∨ aε̄ = (
∨

(pε ∧ aε)) ∨ aε̄ =
∨

((pε ∧ aε) ∨ aε̄) =
∨

(pε ∨ aε̄) ∧ (aε ∨ aε̄)).

Hence, by Lemmas 2 and 3, p is equivalent to a positive term, and the proof is
complete. �

5 Functional Representation of Free Product Hoops

Combining Proposition 4 and Theorem 1 we get our main result.

Theorem 4. The free n-generated product hoop FPH(n) is isomorphic to the
0-free subreduct of the free product algebra FP(n) given by the functions f in
FP(n) such that f(x) > 0 for all x ∈ (0, 1]n.

The following lemma will yield alternative characterizations for free finitely gen-
erated product hoops. We remind the reader that ε̄ = {2, . . . , 2}.

Lemma 4. Let p be an n-ary term of product logic. Then the following are
equivalent:

(1) p(x) > 0 for all x ∈ (0, 1]n,
(2) ¬¬p(x) = 1 for all x ∈ (0, 1]n,
(3) aε̄ ≤ ¬¬p,
(4) p �≤ ¬aε.

Proof. (1) ⇒ (2). If p does not have value 0 over (0, 1]n, then ¬p is 0 over (0, 1]n,
and consequently ¬¬p(x) = 1 for all x ∈ (0, 1]n.
(2) ⇒ (3). If ¬¬p(x) = 1 for all x ∈ (0, 1]n, then aε̄(x) = 1 ≤ ¬¬p(x) for all
x ∈ (0, 1]n. Moreover, if x /∈ (0, 1]n, we have aε̄(x) = 0, hence aε̄(x) ≤ ¬¬p(x).
Thus, aε̄ ≤ ¬¬p.
(3) ⇒ (4). If aε̄ ≤ ¬¬p, then ¬p ≤ ¬aε. Thus, for x ∈ Gε, ¬p(x) ≤ ¬aε̄(x) = 0
and p(x) > 0. Thus p �≤ ¬aε̄.
(4) ⇒ (1). We prove the last implication by contraposition. Notice that ¬aε(x)
is equal to 0 if x ∈ (0, 1]n, and it is equal to 1 otherwise. Recall that product
functions are either 0 or strictly greater than 0 over any Gε. Thus, if p(x) = 0
for all x ∈ (0, 1]n, p(x) ≤ ¬aε(x) for all x ∈ [0, 1]n. Hence, p ≤ ¬aε, and the
proof is complete. �

Notice that the last point characterizes those functions that do not correspond
to positive terms. The characterization theorem can be rewritten as follows:

Theorem 5. The free n-generated product hoop FPH(n) is isomorphic to the
algebra of functions f in FP(n) such that one of the following equivalent condi-
tions holds:

1. f(x) > 0 for all x ∈ (0, 1]n;
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2. ¬¬f(x) = 1 for all x ∈ (0, 1]n;
3. aε̄ ≤ ¬¬f ;
4. f �≤ ¬aε.

Let us show an example of how we can use our characterization to analyze free
product hoops.

Example 1. Let us obtain the free 1-generated product hoop FPH(x) from the
free 1-generated product algebra FP(x). The latter has the elements shown in
Fig. 1; from the next graphs one can see how to represent them as one-variable
functions.
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By Theorem 4 it is then easy to see that the free 1-generated product hoop
only lacks the functions associated to ¬x and 0. We represent the Hasse diagram
of both free algebras in Fig. 1.

Fig. 1. On the left FP(x), on the right FPH(x).

6 Alternative Representation

We now consider the representation of free product algebras in [6]. Let CH be the
variety of cancellative hoops, that is, basic hoops whose monoidal operation is
cancellative in the usual sense. Cancellative hoops are generated by the algebra
((0, 1], ·,→, 1) where ·,→ are the product t-norm and its residuum. Free can-
cellative hoops have a functional representation in terms of piecewise monomial
functions (see [7]). Moreover, given any CIRL A, let 2 ⊕ A be the algebra with
domain A ∪ {0}, and operations extending the ones of A in the obvious way:
x0 = 0x = 0, x → 0 = 0, 0 → x = 1 for all x ∈ A.

Theorem 6 ([6]). The free product algebra on n generators FP(n) is isomorphic
to ∏

ε∈{1,2}n

[0, aε] ∼=
∏

ε∈{1,2}n

2 ⊕ FCH(|ε|).

In particular, with reference to the functional representation in [9] we have
used in the previous section, the isomorphism can be defined in the following
way. Given any product function f ∈ FP(n), and any ε ∈ {1, 2}n, let fε be the
restriction of f to Gε. Then fε is either 0, or it is a piecewise monomial function
that belongs to the free cancellative hoop with |ε| = {i ∈ {1, 2}n : i = 2}
generators.
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Then, combining the description in [9] with Theorem 6, the isomorphism
associates a product function f ∈ FP(n) to

(fε1 , . . . , fε2n ) ∈
∏

ε∈{1,2}n

2 ⊕ FCH(|ε|).

Using Theorem 4, we can show a similar result for free product hoops.

Corollary 2. FPH(n) ∼= ( ∏

ε�=ε

(2 ⊕ FCH(|ε|))) × FCH(n).

Proof. By Theorem 4, FPH(n) is the hoop of product functions whose restriction
to Gε is strictly greater than 0. Thus, a product function f belongs to FPH(n)
if and only if fε is strictly greater than 0, or equivalently, if it is a piecewise
monomial function in FCH(|ε̄|) = FCH(n). The claim follows. �
In conclusion, we show an interesting fact. For any n ∈ N, the 0-free reduct of the
free product algebra FP(n), F0

P(n), is isomorphic to a subalgebra of FPH(n + 1).
Notice that any ξ ∈ {1, 2}n+1 can be written as either ε × {1} or ε × {2} for
some ε ∈ {1, 2}n.

Theorem 7. FPH(n + 1) ∼= F0
P(n) ×

∏

ε×{2}
ε�=ε

(2 ⊕ FCH(|ε| + 1)) × FCH(n + 1).

Proof. Let ξ ∈ {1, 2}n+1, then by Corollary 2 we get

FPH(n + 1) ∼=
∏

ξ �=ξ

(2 ⊕ FCH(|ξ|)) × FCH(n + 1).

Then we can rewrite every ξ as (ε×{1}) or (ε×{2}) for some ε ∈ {1, 2}n; notice
that |ε × {1}| = |ε| and |ε × {2}| = |ε| + 1. Thus we get:

FPH(n + 1) ∼=
∏

ε×{1}
(2 ⊕ FCH(|ε|)) ×

∏

ε×{2}
ε�=ε

(2 ⊕ FCH(|ε| + 1)) × FCH(n + 1).

Since, by Theorem 6, FP(n) ∼= ∏
ε 2⊕FCH(|ε|), it follows that F0

P(n) is isomorphic
to

∏
(ε×{1}) 2 ⊕ FCH(|ε|). The claim follows. �

7 Conclusions

We have shown a functional representation of free finitely generated product
hoops. In future work, we expect to use an analogous approach in order to
describe free algebras in the variety of 0-free subreducts of the variety generated
by perfect MV-algebras. Moreover, we expect to use the methods developed in [2]
to study projective algebras and the unification type of the mentioned varieties
of hoops.

Funding. Ugolini acknowledges support from the Ramón y Cajal programme

(RyC2021-032670-I), and partial support from the MOSAIC project (H2020- MSCA-

RISE-2020 Project 101007627).



Free Product Hoops 529

References
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Abstract. In this paper we provide a sound and complete logic to for-
malise and reason about f -indices of inclusion. The logic is based on
finite-valued �Lukasiewicz logic �Ln and its S5-like modal extension S5(�Ln)
with additional unary operators.

1 Introduction

Inclusion is one of the most fundamental relations between sets. In previous
work [10], it was shown how the degree of inclusion between two L-fuzzy sets
can be represented in terms of a function that specifically determines the minimal
modifications required in one L-fuzzy set to be included (in Zadeh’s sense) in
another.

The key idea was the notion of f -inclusion, which defines a family of crisp
binary relations between L-fuzzy sets that are used as indexes of inclusion and,
subsequently, we define the f -index of inclusion as the most suitable f -inclusion
under certain criteria. In addition, it was shown that the f -index of inclusion
satisfies versions of many common axioms usually required for measures of inclu-
sion in the literature, namely the axiomatic approaches of Kitainik [8] and Sinha-
Dougherty [14].

In [11], the f -index was shown to be definable by means of a fuzzy conjunction
which is part of an adjoint pair. Moreover, it is also proven in [11] that when
the undelying structure in the modus ponens inference rule is given by adjoint
pairs, the f -index provides the maximum possible truth-value in the conclusion
obtained by fuzzy modus ponens using any other possible adjoint pair.

In this paper, we continue the study of the logical properties of the f -index
of inclusion. Specifically, we provide a first step towards a logical account of the
notion of f -index of inclusion for fuzzy sets in the frame of an S5-like modal logic
over the n-valued �Lukasiewicz logic with truth-constants �Lc

n. We take advantage
of the good logical and expressive properties of this logical setting to define the
logic I�Ln to reason about f -indexes of inclusion between n-valued propositions.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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The paper is structured as follows. After this introduction, we first provide
the necessary background on finite-valued �Lukasiewicz logic and its S5-like modal
extension S5(�Lc

n), and on the f -index of inclusion of fuzzy sets. Then in Sect. 3 we
define a logic I�Ln based on S5(�Lc

n) with additional unary operators to formalise
and reason about f -indices of inclusion. We finish with some prospects for future
work.

2 Preliminaries

2.1 The Finite-Valued �Lukasiewicz Logic

Consider the propositional language L whose set of formulas FmL is built from
a finite set of propositional variables V ar, the connective → (implication) and
truth constants r for each r ∈ V�Ln = {0, 1

n−1 , . . . , n−2
n−1 , 1} for some fixed natural

n ≥ 2. Further connectives are defined as follows:

¬φ := φ → 0 φ ∧ ψ := φ ⊗ (φ → ψ)
φ ⊗ ψ := ¬(φ → ¬ψ) φ ⊕ ψ := ¬(¬φ ⊗ ¬ψ)
φ ∨ ψ := ((φ → ψ) → ψ) φ ≡ ψ := (φ → ψ) ⊗ (ψ → φ)

with φ and ψ being arbitrary formulas.1

A propositional evaluation is a mapping e : V ar → V�Ln that is extended to
formulas as follows: if φ and ψ are formulas and r ∈ V�Ln, then

e(φ → ψ) = e(φ) ⇒ e(ψ) and e(r) = r,

where x ⇒ y = min(1, 1 − x + y) for x, y ∈ �Ln. Note that x ⇒ y = 1 iff x ≤ y.
The set of all such evaluations will be denoted by Ωn. Notice that, in particular,
for every formula φ and ψ and for every e ∈ Ωn, we have:

e(¬φ) = 1 − e(φ) e(φ ∧ ψ) = min(e(φ), e(ψ))
e(φ ⊗ ψ) = max(e(φ) + e(ψ) − 1, 0) e(φ ⊕ ψ) = min(1, e(φ) + e(ψ))
e(φ ∨ ψ) = max(e(φ), e(ψ)) e(φ ≡ ψ) = 1 − |e(φ) − e(ψ)|.

A formula φ is said to be satisfiable if there exists an e ∈ Ωn such that
e(φ) = 1. In such a case we say that e is a model of φ and e is a model of a set
of formulas T if e is a model of every formula in T . A tautology is a formula φ
such that e(φ) = 1 for each e ∈ Ωn. A formula φ is a semantic consequence of a
set of formulas Γ , written as Γ |= φ, if it holds that every model of Γ is also a
model of φ.

This logic based on the language L, which we will denote by �Lc
n, has a sound

and a strongly complete axiomatization, see e.g. [4] for details. In particular, the
axioms of �Lc

n are
1 For the sake of simplicity, along this paper we will use the same symbol to denote

both a logical language L and its corresponding set of formulas FmL built in the
usual way. This will be done with no danger of confusion.
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(�L1) ϕ → (ψ → ϕ),
(�L2) (ϕ → ψ) → ((ψ → χ) → (ϕ → χ)),
(�L3) ((ϕ → 0) → (ψ → 0)) → (ψ → ϕ),
(�L4) ((ϕ → ψ) → ψ) → ((ψ → ϕ) → ϕ),
(�L5) (n − 1)ϕ ≡ nϕ,
(�L6) (kϕk−1)n ≡ nϕk, for each k ∈ {2, . . . , n − 2} not dividing n − 1,
(Q1) (r1 → r2) ≡ min{1, 1 − r1 + r2}, for each r1, r2 ∈ V�Ln,

and the only deduction rule is modus ponens (from φ and φ → ψ infer ψ).
Axioms (�L1)-(�L4) form an axiomatization for �Lukasiewicz logic, and in axioms
(�L5) and (�L6), kϕ is an abbreviation for ϕ⊕ k. . . ⊕ϕ (k repetitions) and ϕk

for ϕ⊗ k. . . ⊗ϕ (k repetitions). Axiom (Q1) is a bookkeeping axiom for truth-
constants. It is needed to derive how truth-constants are combined with the
different connectives.

�Lc
n is strongly complete in the following sense: if � denotes the notion of

proof defined from the set of axioms of �Lc
n and modus ponens, then we have that

for any countable (possibly infinite) set of formulas T ∪{ψ}, it holds that T � ψ
iff T |= ψ. A formula ψ that can be proven from the axioms of �Lc

n and modus
ponens is called a theorem; in this case we will write � ψ.

For each formula φ we will denote by Δφ the formula φn. Since we only have
n truth values this formula is Boolean. Indeed, it is easy to check that

e(Δφ) =
{

1, if e(φ) = 1
0, if e(φ) < 1

Note that Δ corresponds to the well-known Baaz-Monteiro projection operator
[1,13].

Remark 1. For every formula ϕ of �Lc
n and for every nonempty subset S of Ωn

we can associate a fuzzy subset fϕ of S. Precisely, fϕ : S → �Ln is defined by the
stipulation

fϕ : w ∈ S �→ w(ϕ) ∈ V�Ln.

Conversely, given S and a fuzzy set f : S → V�Ln, we can define a formula ϕf of
�Lc

n such that f = fϕf
. Precisely, let

ϕf :=
∧

w∈S

(1w → f(w))

where 1w :=
∧

p∈V ar Δ(p ≡ w(p)) is such that f1w
is the characteristic function

of w in S.
This description of formulas as fuzzy sets will allow us to describe mathe-

matical properties of fuzzy sets in the logical framework. In the present paper,
we will deal with a logical treatment of the f -index of inclusion between fuzzy
sets that we will recall in Subsect. 2.2.

Now, we recall the logic S5(�Lc
n) from [2], an S5-like modal extension of the

logic �Lc
n. To this end, let L�

n be the expansion of the language Ln of the logic �Lc
n
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by a unary modal operator �. An S5(�Lc
n)-interpretation for formulas in L�

n is a
mapping σ determined by a pair (w,S),2 where w ∈ Ωn is a �Ln-evaluation and
S ⊆ Ωn is a set of �Ln-evaluations such that w ∈ S. Formally, each pair (w,S)
determines the map σ : L�

n → V�Ln by the following stipulations:

– if ϕ ∈ Ln, σ(ϕ) = w(ϕ)
– σ(�ψ) = inf{(w′, S)(ψ) | w′ ∈ S}; (in particular, if ψ ∈ Ln, σ(�ψ) =

inf{w′(ψ) | w′ ∈ S})
– σ(ϕ 	 ψ) = σ(ϕ) 	 σ(ψ), for 	 being a connective of �Lukasiewicz logic

We will denote by Σ the set of S5(�Lc
n)-interpretations, i.e. Σ = {σ = (w,S) ∈

Ωn × 2Ωn | w ∈ S}. We say that σ ∈ Σ is a model of a formula ϕ, written
σ |= ϕ, when σ(ϕ) = 1.

Now, let us recall from [2] the definition of the logic S5(�Lc
n) as the modal

logic over �Lc
n whose axioms and rules are:

(�Ln) Axioms of �Lc
n

(M1) �(ϕ ∧ ψ) → (�ϕ ∧ �ψ)
(M2) �(r → ϕ) ≡ (r → �ϕ)
(M3) �(ϕ ⊕ ϕ) ≡ (�ϕ ⊕ �ϕ)
(K) �(ϕ → ψ) → (�ϕ → �ψ)
(T) �ϕ → ϕ
(4) �ϕ → � � ϕ
(5) ¬�ϕ → �¬�ϕ

Rules: modus ponens and necessitation for �

The logic S5(�Lc
n) is proved in [2, Theorem 2, Proposition 2] to be strongly

complete with respect to the class of structures Σ defined above.

Theorem 1. Let T ∪ {ϕ} be a countable set of formulas in L�
n . Then Γ � ϕ iff

for all σ ∈ Σ such that σ |= γ for all γ ∈ Γ , then σ |= ϕ.

2.2 The f-Index of Inclusion

The f -index of inclusion represents the inclusion between fuzzy sets by means
of mappings from [0, 1] to [0, 1]. This feature is an important difference from
the standard approaches [6,8,14,16], where the inclusion of one fuzzy set into
another is given, in general, by a value in the unit interval [0, 1]. Not any mapping
from [0, 1] to [0, 1] can be used to represent the f -index of inclusion: the set of
possible assignable mappings is introduced below, together with the basic notion
of f -inclusion.

Definition 1 (cf. [12]).

– The set of indexes of inclusion, denoted by F , consists of every monotonically
increasing mapping f : [0, 1] → [0, 1] such that f(x) ≤ x for all x ∈ [0, 1].

2 Actually, we will henceforth identify both notations σ and (w, S) to indicate this
map, and we can even write σ = (w, S).
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– Let A and B be two fuzzy sets over the same universe U , and consider f ∈ F .
We say that A is f -included in B (denoted by A ⊆f B) if and only if the
inequality f(A(u)) ≤ B(u) holds for all u ∈ U .

The suitability of the set F as a proper set of indexes to represent the inclu-
sion is explained in [9,10,12]. In order to choose a convenient index among all in
F to represent a specific inclusion between two fuzzy sets, in [12], we introduced
the following definition.

Definition 2 (f-index of inclusion [12]). Let A and B be two fuzzy sets over
a same domain. The f -index of inclusion of A in B, denoted by Inc(A,B), is
defined as

Inc(A,B) = max{f ∈ F | A ⊆f B}
The previous definition is correct, in the sense that it can be proved that

the set {f ∈ F | A ⊆f B} has always a maximum for every pair of fuzzy sets
A and B. An interesting interpretation of the f -index of inclusion is given by
considering mappings f ∈ F as modifiers of membership degrees. Accordingly,
the lesser pointwisely the mapping f ∈ F is, the greater the modification is.
Therefore, taking the maximum f ∈ F such that A ⊆f B is equivalent to
consider the minimal modifications of membership degrees in A to include it
into B in the Zadeh’s sense. This interpretation brings the f -index of inclusion
closer to the notion of truth stressers in fuzzy logic [3,5,7,15], since they modify
truth degrees. This relation is used in the next section to define a unary operator
in V�Ln.

Lastly, we recall two interesting results of the f -index of inclusion that will
be used in the next section. The first one determines an analytical structure of
the f -index of inclusion.

Theorem 2 (cf. [10]). Let A and B be two fuzzy sets over U , then

Inc(A,B)(x) =
∧

u∈U
{B(u) ∧ x | x ≤ A(u)},

for all x ∈ [0, 1].

The second result provides some properties that support the use of the f -
index of inclusion as a representation of the inclusion between fuzzy sets.

Theorem 3 (cf. [10]). Let A,B and C be fuzzy sets over U . The following
properties hold:

1. (Full inclusion) Inc(A,B) = id if and only if A(u) ≤ B(u) for all u ∈ U .
2. (Null inclusion) Inc(A,B) = ⊥ if and only if there is a set of elements in the

universe {ui}i∈I ⊆ U such that A(ui) = 1 for all i ∈ I and
∧

i∈I B(ui) = 0.
3. (Pseudo transitivity) Inc(B,C) ◦ Inc(A,B) ≤ Inc(A,C).
4. (Monotonicity) If B(u) ≤ C(u) for all u ∈ U then, Inc(C,A) ≤ Inc(B,A).
5. (Monotonicity) If B(u) ≤ C(u) for all u ∈ U then, Inc(A,B) ≤ Inc(A,C).
6. (Transformation Invariance) Let T : U → U be a bijection on U , then

Inc(A,B) = Inc(A ◦ T,B ◦ T ).
7. (Relationship with intersection) Inc(A,B ∩ C) = Inc(A,B) ∧ Inc(A,C).
8. (Relationship with union) Inc(A ∪ B,C) = Inc(A,C) ∧ Inc(B,C).
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3 A Logic to Reason About the f-Index of Inclusions
over �Lc

n

In this section we introduce an axiomatic extension of the finite-valued fuzzy
modal logic S5(�Lc

n) with new unary operators �ϕ,ψ, one for every pair of formulas
ϕ,ψ from Lc

n, that will provide us with a logical formalisation of the f -index
of inclusion between fuzzy concepts represented as propositions in �Lc

n. Recall
the representation of formulas as fuzzy sets from Remark 1. In this section, by
truth-stresser we will mean a non-decreasing function τ : V�Ln → V�Ln such that
τ(x) ≤ x for all x ∈ V�Ln.

We start by defining the syntax and semantics of our logic, and later we
axiomatise it.

3.1 Syntax and Semantics

Let IL, where I stands for inclusion, be the expansion of the modal language
L�

n by adding to its signature a unary operator �ϕ,ψ for every pair of formulas
ϕ,ψ from Ln.

The semantics for IL is still given by pairs σ = (w,S) ∈ Σ, which now
further interpret the new operators �ϕ,ψ.

– If ϕ ∈ L�
n , then σ(ϕ) is defined as in S5(�Lc

n) (see Sect. 2.1). Moreover, for
each ϕ ∈ L�

n we denote by ϕσ its corresponding fuzzy set on S defined as:
ϕσ(w′) = σ′(ϕ), where σ′ = (w′, S). Note that if ϕ ∈ Ln then σ′(ϕ) = w′(ϕ)
and hence the fuzzy set associated to ϕ is defined as in Remark 1.

– σ interprets operators �ϕ,ψ as one-place functions σ(�ϕ,ψ) : V�Ln → V�Ln

defined as

σ(�ϕ,ψ) = max{τ : V�Ln → V�Ln truth-stresser | τ(ϕσ) ≤ ψσ}.

– Finally, as customary, the interpretation by σ of a formula (�ϕ,ψχ) is defined
as follows: σ(�ϕ,ψχ) = σ(�ϕ,ψ)(σ(χ)). In particular, if χ ∈ Ln, then
σ(�ϕ,ψχ) = σ(�ϕ,ψ)(w(χ)).

Obviously, we can give a similar meaning to �ϕ,ψ than the one given to the
f -index of inclusion in the previous section. Firstly, note that the inequality
τ(ϕσ) ≤ ψσ holds if, and only if, σ validates the implication ϕτ → ψ, where ϕτ

is the formula defined as

ϕτ :=
∨

s∈V�Ln

Δ(ϕ ≡ s) ∧ τ(s),

and, as it can be easily checked, it is such that (ϕτ )σ = τ(ϕσ).3 Secondly, the
larger the truth stresser (as a mapping), the smaller the degree of truth stress
3 Indeed, if w(ϕ) = r0, then w(ψ) = maxr min(w(Δ(ϕ ≡ r), τ(r)) =

= max(maxr �=r0 w(Δ(ϕ ≡ r)∧ τ(r)), w(Δ(ϕ ≡ r0)∧ τ(r0)) = max(0, min(1, τ(r0)) =
= 0 ∨ τ(r0) = τ(w(ϕ)).
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(semantically). For example, the identity mapping imposes no truth stress, while
the mapping ⊥ (which always takes the value 0) imposes a drastic truth stress
that makes false even true statements. Therefore, �ϕ,ψ determines the minimal
amount of truth stress in ϕ we need to make the formula ϕ → ψ valid. In other
words, we can rewrite the definition of the semantics of �ϕ,ψ as

σ(�ϕ,ψ) = max{τ : V�Ln → V�Ln truth-stresser | σ |= ϕτ → ψ}.

We will use the notation ΣI to refer to the set of interpretations (w,S) ∈ Σ
when applied to the expanded language IL as prescribed above.

Two remarks are in order here:

(i) As in the case of modal formulas �ϕ, the interpretation of formulas of the
type �ϕ,ψ by a pair σ = (w,S) does not actually depend on the particular
world w but only on the set S.

(ii) By Theorem 2, we have that σ(�ϕ,ψϕ) = min{w′(ψ) | w′ ∈ S,w(ϕ) ≤
w′(ϕ)} ∧ w(ϕ) = min{ψσ(w′) | w′ ∈ S, ϕσ(w) ≤ ϕσ(w′)} ∧ ϕσ(w).

3.2 The Logic I�Ln : Axiomatic System, Soundness and Completeness

Based on the properties of the f -index of inclusion recalled in Sect. 2.2, we
axiomatically define the logic I�Ln as an axiomatic expansion of S5(�Lc

n) as fol-
lows, where we make use of the intended semantics of the modal S5 operator �
as a sort of universal quantifier over the set of interpretations.

Definition 3. Axioms and rules of I�Ln are those of S5(�Lc
n) plus:

(A1) �(�ϕ,ψχ → χ)
(A2) �(�ϕ,ψϕ → ψ)
(A3) Δ � (�γ,δϕ → ψ) → �(�γ,δχ → �ϕ,ψχ)
(A4) �(Δ(γ → δ) → (�ϕ,ψγ → �ϕ,ψδ))
(A5)

∨
s∈V�Ln

�(�ϕ,ψr ≡ s), for any r ∈ V�Ln

(A6) �(Δ(ϕ ≡ r) → (τ(r) → �ϕ,ϕτ
ϕ)), for any truth-stresser τ

The above mentioned fact that the modal S5 operator � behaves as a uni-
versal quantifier over the set of evaluations, shows that the above axioms force
a behavior of �ϕ,ψ that reflects that of the f -indexes of inclusion functions. In
particular:

– Axiom (A1) states that for all evaluations the value of �ϕ,ψ in χ takes a
lower value than χ itself. This hence reflects the property that every index of
inclusion function f satisfies f(x) ≤ x.

– Axiom (A2), encodes the fact the result of applying the index of inclusion of
ϕ in ψ to the fuzzy set given by ϕ is indeed included into the fuzzy set given
by ψ.
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– Axiom (A3) captures the maximality property of the index of inclusion; that
is the function associated to �ϕ,ψ is the maximal one among those that,
applied to ϕ, give a fuzzy set included into ψ.

– Axiom (A4) is monotonicity, while axiom (A5) states that the index of inclu-
sion of a constant function is constant as well. These two axioms are needed
to prove that �ϕ,ψ is indeed interpreted as a function.

– Axiom (A6) expresses a technical property of the functions like �ϕ,ψ that
will be used below to prove that the truth-stressers defined in this way are
sufficiently many to ensure that the maximal stresser is attained within the
set of functions �ϕ,ψ.

All these intuitive semantic interpretations of the axioms are supported by
the semantics of the operators �ϕ,ψ given above, which faithfully reflect in turn
the properties of the f -indices of inclusion described in Sect. 2.2. Then, it is not
difficult to show that the above axioms are indeed sound.

Proposition 1. I�Ln is sound with respect to the class of structures ΣI .

Since I�Ln is an axiomatic expansion of S5(�Lc
n), one can reduce proofs in

I�Ln to proofs in S5(�Lc
n) taking the axioms (A1)-(A6) as additional premises. In

the following, Ax(I �Ln) will stand for all the instances of the additional axioms
(A1)-(A6).

Lemma 1. For any set of I�Ln-formulas T ∪ {φ}, it holds that T �I �Ln
φ iff

T ∪ {Ax(I �Ln)} �S5(�Lc
n) φ, where �S5(�Lc

n) stands for proof in pure S5(�Lc
n).

Finally, we can prove that I�Ln is (sound and) complete with respect to the
semantics previously defined.

Theorem 4. For any set of I�Ln-formulas, T ∪ {φ} we have that, T �I �Ln
φ iff

T |=I �Ln
φ.

Proof. (Sketch). Assume T ��I �Ln
φ. By the above Lemma 1, this means that

T∪{Ax(I �Ln)} ��S5(�Lc
n) φ, and by completeness of S5(�Lc

n), T∪{Ax(I �Ln)} �|=S5(�Lc
n)

φ. Therefore, there exists an S5(�Lc
n)-interpretation σ = (w,S) ∈ Σ such that

σ(T ) = σ(Ax(I �Ln)) = 1 and σ(φ) < 1. It remains to prove that in fact σ belongs
to ΣI , that is, that σ correctly interprets formulas of the kind �ϕ,ψχ as specified
in Sect. 3.1.

If ϕ,ψ ∈ L are propositional, the fact that σ evaluates to 1 all the axioms
(A1)-(A6) implies a set of conditions on the evaluation by σ = (w,S) of formulas
of the kind �ϕ,ψχ. In particular, axioms (A4) and (A5) allow us to interpret each
operator �ϕ,ψ as a unique unary function on V�Ln, and the rest of the axioms
allows one to prove that such a function is indeed the f -inclusion index of ϕ into
ψ, once they are interpreted as fuzzy sets on S. This shows that σ ∈ ΣI , hence
T �|=I �Ln

φ, and the proof is completed.
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4 Conclusions and Future Work

In this paper we have provided a first step towards a logical account of the
notion of f -index of inclusion for fuzzy sets in the frame of an S5-like modal
logic over the n-valued �Lukasiewicz logic with truth-constants. We have taken
advantage of the good logical and expressive properties of this logical setting
to define the logic I�Ln to reason about f -indexes of inclusion between n-valued
propositions. Actually, our goal has been to syntactically link a particular truth-
stresser, corresponding to the modality �ϕ,ψ, to each pair of formulas ϕ and
ψ in order to represent ‘ ‘the minimal amount of truth stress in ϕ we need to
make the formula ϕ → ψ valid”, not just to consider different and arbitrary
truth-stressers in a logic. The question whether we can do all this without this
syntactical link between pairs of formulas ϕ,ψ and modalities �ϕ,ψ is left for
further work, although we think it can be a difficult task.

Note that equivalence classes of formulas determine the same truth-stresser
by the modalities (i.e., ϕ ≡ ϕ′, ψ ≡ ψ′ �I �Ln

�ϕ,ψχ ≡ �ϕ′,ψ′χ), thus in fact there
are only finitely-many distinct modalities, but that fact does not invalidate the
use of both modalities �ϕ,ψ and �ϕ′,ψ′ in the language of the logic I�Ln.

As for future work, we plan the study in depth the connection of modali-
ties with the deduction theorem of �Lukasiewicz logic or the existence of truth
stressers, if any, that cannot be represented as a modality of the type �ϕ,ψ.
We also plan to consider a more general many-valued logical setting, lifting the
assumption of dealing with finitely-many truth-degrees.
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Abstract. We introduce a minimal determinization procedure for fuzzy
finite automata (FfAs) with membership values in a complete residu-
ated lattice (CRL). The method is based on the well-known determiniza-
tion method via factorization of fuzzy states. However, different to other
determinization methods, we do not assume that the CRL is zero divisors
free. This fact requires modifying the functions that define the factor-
ization to avoid the zero divisor values when creating the fuzzy states in
the determinization procedure. After generating a right-irreducible fuzzy
deterministic finite automaton (FDfA) equivalent to the original FfA by
determinization via factorization, we construct the so-called reduction
graph of this fuzzy automaton, where each arc represents the notion
that a fuzzy state is left-reducible by another fuzzy state. By making
these left-reductions, we obtain the equivalent minimal FDfA. It is worth
mentioning that an empty fuzzy state is always reducible by a nonempty
fuzzy state. This behavior, specific for a CRL with zero divisors, has also
to be taken into account when the state reduction is carried out.
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1 Introduction
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finite automata (NFAs). However, converting an NFA into its equivalent DFA
comes at an exponential computation cost (cf. [5]). This shortcoming can be
compensated if this conversion outputs a minimal deterministic finite automaton.
Brzozowski’s double reversal determinization algorithm is one of the best-known
minimal determinization procedures [4]. In fuzzy automata theory, designing a
minimal determinization procedure is particularly challenging, mainly for two
reasons. First, there are many definitions of a deterministic fuzzy automaton.
Namely, the concepts of the (crisp) deterministic fuzzy automaton (cDFA, for
short) and the fuzzy deterministic automaton (FDA, for short) have emerged in
the recent literature, with cDFA being a particular case of the FDA. And second,
the determinization for fuzzy finite automata (FfAs) is not always feasible for a
given model of a deterministic fuzzy automaton.

Two minimal determinization procedures for fuzzy finite automata were
developed in [13,14]. In particular, Jančić and Ćirić [13] adapted Brzozowski’s
method to FfAs with membership values in a complete residuated lattice (CRL).
Moreover, Micić et al. [14] have proposed the method based on the degree of lan-
guage inclusion for the same type of FfAs. Both methods output a minimal cDFA
for a given FfA. However, note that the size of a minimal FDA is always less or
equal to the size of any cDFA equivalent to it, because a cDFA is a particular
case of an FDA [6].

Afterward, various determinization methods that output an FDA have been
developed in [9,17] for FfAs over a divisible CRL. These methods use the concept
of factorizations of fuzzy states. Consequently, some variants of Brzozowski’s
method have been developed to get minimal determinization procedures for
FfAs. In particular, in [7], the author has studied the necessary and sufficient
conditions to get a minimal FDA using Brzozowski’s method and maximal fac-
torizations. Furthermore, in [8], the authors have proposed a minimal deter-
minization procedure for FfAs over the Godel structure that does not admit a
maximal factorization; and more recently, in [10], the authors have generalized
the method in [8] to obtain a minimal determinization procedure for FfAs over
a totally ordered, divisible and zero divisor free CRL. Such CRLs include the
product and the Gödel structure, but not the �Lukasiewicz structure. In order to
develop a minimal determinization procedure for FfAs over a CRL that includes
the �Lukasiewicz structure, the zero-divisor-free condition must be lifted up.

This paper introduces a minimal determinization procedure for FfAs with
membership values in totally ordered and divisible CRL (without the condition
zero divisor free on the lattice). The method outputs a minimal FDfA equivalent
to the input FfA and it is based on determinization via factorization of fuzzy
states. However, it is necessary to modify the definition of the functions which
form the factorization in order to cope with the fact that the underlying CRL
may have zero divisors elements (Sect. 3). The modification basically consists on
assure that no zero divisor is created in a factorized fuzzy state when a zero
value is in the original fuzzy state. This modification seems simple, but many
properties have to be revised as a consequence of it. The proposed method uses
the notion of the Reduction Graph to get the minimal FDfA, but in this graph
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the fuzzy state 0 (if it appears in the determinization) must be also reducible if
the lattice admits zero divisors (Sect. 5). In Sect. 6, we illustrate the minimization
procedure by an example using the standard �Lukasiewicz structure.

2 Preliminaries

In this paper, we use a complete residuated lattice as a structure of membership
values [2,3], which can be regarded as a tuple L = (L,∨,∧,⊗,→, 0, 1) satisfying:
(L1) (L,∨,∧, 0, 1) is a complete lattice; (L2) (L,⊗, 1) is a commutative monoid;
and (L3) for all x, y, z ∈ L: x ⊗ y ≤ z ⇔ x ≤ y → z. Operations ⊗ and → form
an adjoint pair (L3) which represent the conjunction and implication of the
corresponding logical calculus. In addition, for any x, y, z, w ∈ L: (L4) x⊗y ≤ x
and x ≤ y → x; (L5) x → x = 1 and 1 → x = x; (L6) (x → y) ⊗ (z → w) ≤
(x ⊗ z) → (y ⊗ w); (L7) x ⊗ (x → y) = y if and only if (∃z)x ⊗ z = y; (L8)
(x⊗y) → z = x → (y → z) = y → (x → z); and (L9) x⊗∨

i∈K yi =
∨

i∈K x⊗yi,
for any {yi}i∈K ⊆ L.

In this paper, we assume that L satisfies the conditions: (C1) L is a totally
ordered set w.r.t ≤; and (C2) L is divisible, i.e., for every x, y ∈ L with x ≥ y
there exists z ∈ L such that x ⊗ z = y.

The application of fuzzy sets and fuzzy relations over L in the Theory of
Fuzzy Languages and Automata is well established in the literature [12–16]. Let
Q be a finite set of states. Any mapping S : Q → L, S ∈ LQ, is called a fuzzy
state of Q. In this paper, 0 denotes the fuzzy state in which all states have value
0. For any x ∈ L and S ∈ LQ, x ⊗ S is the fuzzy state (x ⊗ S)(q) = x ⊗ S(q)
for every q ∈ Q. Any mapping T : Q × Q → L, T ∈ LQ×Q, is called a fuzzy
transition relation on Q. The equality relation EQ, is defined as EQ(p, p) = 1 for
any p ∈ Q and 0 otherwise. We use the common standard composition ◦ (

∨ −⊗)
for fuzzy transitions and fuzzy states.

A fuzzy finite automaton (FfA) (over L) is a tuple A = (Q,Σ, I, T, F )
where Q is a finite set of states, Σ is an alphabet, I ∈ LQ is the initial fuzzy state,
F ∈ LQ is the final fuzzy state, and T : Σ → LQ×Q defines a fuzzy transition on
Q for each symbol in the alphabet. In the following, ε denotes the empty word in
Σ∗. The extension of T to T ∗ : Σ∗ → LQ×Q is defined as: (i) T ∗(ε) = EQ; and
(ii) T ∗(ασ) = T ∗(α) ◦ T (σ) for any α ∈ Σ∗, σ ∈ Σ. To simplify notation, T ∗ is
also denoted by T . By associativity, T (αβ) = T (α) ◦ T (β) for any two words α,
β. The fuzzy language recognized by A, [A] : Σ∗ → L, is defined by

[A](α) = I ◦ T (α) ◦ F =
∨

p,q∈Q

I(p) ⊗ T (α)(p, q) ⊗ F (q) (1)

for any word α. The size of a FfA A, denoted by |A| is the cardinal of its set of
states. In addition, two FAs A and A′ are equivalent if they recognize the same
fuzzy language, i.e., [A] = [A′].

A fuzzy deterministic finite automaton (FDfA), D = (Qd, Σ, Id, T d, F d),
is a FfA such that it has a singleton initial fuzzy state Id = {u/Id(u)} and
each fuzzy transition T d(σ) is complete and deterministic. In this case, pσ =
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q ⇔ T d(σ)(p, q) > 0 determines the function Qd × Σ → Qd, and its extension
Qd × Σ∗ → Qd is defined as habitual: (i) pε = p; and (ii) pασ = (pα)σ for any
α ∈ Σ∗, σ ∈ Σ. The state pα represents the unique reachable state from p via the
word α. Thus, a state q ∈ Qd is accessible if there is a word α such that q = uα.
By using this notation, values of transitions between states are calculated as
follows

T d(ε)(p, pε) = 1; T d(ασ)(p, pασ) = T d(α)(p, pα) ⊗ T d(σ)(pα, pασ); and
T d(α)(p, q) = 0 otherwise (2)

with α ∈ Σ∗, σ ∈ Σ. By (2) and (1), the fuzzy language recognized by a FDfA
D is

[D](α) = Id(u) ⊗ T d(α)(u, uα) ⊗ F d(uα) (3)

for any word α. Given an accessible state uα, [Duα
] is the fuzzy language defined

by [Duα
](β) = T d(β)(uα, uαβ) ⊗ F d(uαβ) for any word β. Thus, it is simple to

prove that, for any word α,

α−1[D] = wd(α) ⊗ [Duα
] with wd(α) = Id(u) ⊗ T d(α)(u, uα) (4)

A FDfA D is accessible if Qd = {uα|α ∈ Σ∗}. If a FDfA D satisfies Id(u) = 1
and T d(σ) is a crisp relation on Q, for every σ ∈ Σ, then, Eq. (3) becomes simply
[D](α) = F d(uα). In this case, D is called crisp-deterministic fuzzy finite
automaton (cDFfA) in the literature [1]. Let us observe that a cDFfA is just a
particular case of a FDfA.

Definition 1. A FDfA D (over L) is a minimal FDfA if |D| ≤ |D′| for any
FDfA D′ equivalent to D.

As a non-accessible FDfA can not be a minimal FDfA, then in the following
definitions we will consider accessible FDfAs.

Definition 2. An accessible FDfA D is right-reducible if there are two states
p, q ∈ Qd, with p 
= q, such that [Dp] = [Dq]. In this case, we say that q and p
are right-reducible.

For the next definition, we introduce the notion of the maximum value for all
words that reach an accessible state p ∈ Qd:

wd
∨(p) =

∨

{α∈Σ∗ | p=uα}
wd(α) (5)

The value wd
∨(p) is well-defined because (a) L is totally ordered; (b) ⊗ is mono-

tone; and (c) D is a finite automaton.

Definition 3. An accessible FDfA D is left-reducible if there are two states p,
q ∈ Qd, with [Dp] 
= [Dq], such that wd

∨(q) ⊗ [Dp] = wd
∨(q) ⊗ [Dq]. In this case,

we say that p left-reduces q.
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It is simple to prove that a right or left-reducible accessible FDfA is not a minimal
FDfA. It is also possible that a right and left-irreducible accessible FDfA is not
a minimal FDfA. For example, let us consider that an accessible cDFfA is right-
irreducible; then it is trivially left-irreducible since wd

∨(p) = 1 for every state.
This fact does not prevent that there exists an equivalent FDfA whose size is
lesser than the size of the irreducible cDFfA. The question of when an irreducible
FDfA is a minimal FDfA is discussed in Sect. 5.

A FfA C = (Qc, Σ, Ic, T c, F c) is a crisp co-accessible co-deterministic
FfA (CFfA) if and only if its reverse automaton r(C) is a cDFfA. In this case,
C has a (singleton) final fuzzy state F c = {e/1}. If two states p and p′ satisfy
that T c(β)(p, e) = 1 and T c(β)(p′, e) = 1 for the same word β then p = p′. This
is because C is co-deterministic. Since C is complete and co-deterministic, the
composition T c(β) ◦ F c = T c(β) ◦ {e/1} outputs a singleton crisp state {p/1}
where p is the unique state such that T c(β)(p, e) = 1. This state is denoted by
eβ . In fact, the set of states Qc is the finite set {eβ |β ∈ Σ∗} because C is co-
accessible. This analysis allows us to calculate the next expression for any fuzzy
state S ∈ LQc

and word β:

S ◦ T c(β) ◦ {e/1} = S(eβ) (6)

Thus, the fuzzy language [C] fulfills [C](β) = Ic ◦ T c(β) ◦ {e/1} = Ic(eβ) for
any word β. Let us observe that the set {Ic

α|α ∈ Σ∗}, where Ic
α = Ic ◦ T c(α),

is a finite set since T c(α) is a crisp relation for any word α. In addition, [C] is
the same fuzzy language for any CRL L⊗ defined over the same support set L.
The same fact happens to the fuzzy states Ic

α. In this sense, we can say that a
CFfA C is independent of the CRL that is applied to compute its behavior, i.e.,
it only depends on the set L. The construction of a CFfA equivalent to a FfA
has been discussed in [8,13,14]. We omit it here by brevity.

3 Factorization in Divisible Complete Residuated
Lattices

In this section, we present factorization of fuzzy states in divisible and totally
ordered complete residuated lattices L (dCRL in short). Different to the papers
[7–10,17], we do not consider the zero divisor free condition on the lattices. As
L is divisible, then, by (L7), x ⊗ (x → y) = y for x, y ∈ L with x ≥ y.

Definition 4. Let L be a dCRL and let Q be a non-empty finite set of states.
Functions g : LQ → L and f : LQ → LQ are defined for any S ∈ LQ, q ∈ Q as

g(S) =
∨

q∈Q

S(q) with S 
= 0; and g(0) = 1 (7)

f(S)(q) = g(S) → S(q) if S(q) 
= 0, and f(S)(q) = 0 otherwise (8)
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The pair of functions (f, g), provided in Definition 4, satisfies the following
properties for any S ∈ LQ, q ∈ Q and x ∈ L:

(F1) g(S) ≥ S(q); (F2) g(S) > 0; (F3) f(S) ≥ S;
(F4) f(S)(q) = 0 ⇔ S(q) = 0; (F5) g(S) ⊗ f(S) = S;
(F6) g(x ⊗ S) = x ⊗ g(S) with ∀q : S(q) 
= 0 ⇒ x ⊗ S(q) 
= 0;
(F7) f(S) ≤ f(x ⊗ S) with ∀q : S(q) 
= 0 ⇒ x ⊗ S(q) 
= 0;
(F8) f(S) = f(f(S)); and (F9) S 
= 0 ⇒ ∃q ∈ Q : f(S)(q) = 1.

We do not provide the proofs, as they are similar to the ones conducted
in [9,10,17] for analogous properties. By the property (F5), the pair (f, g) is a
factorization of LQ in the sense given in [9]. The proposed factorization does not
explicitly provide zero divisors (if any in L) due to the second condition in (8).

4 Determinization of a CFfA

The common method for determinization of a FfA A over a CRL is via the con-
struction of the Nerode automaton N(A) of A. Recall that N(A) is a cDFfA
equivalent to A whose finite set of states is QN(A) = {Iα|α ∈ Σ∗} where
Iα = I ◦ T (α) for any word α (see [12] for more details). A generalization of
this construction, based on the notion of factorization of fuzzy states, was pro-
vided in [9] for FfAs over a zero divisor free CRL. However, this method of
determinization can be easily extended for any dCRL.

Definition 5. For a FfA A = (Q,Σ, I, T, F ) over a dCRL L, the fuzzy automa-
ton DfA = (QfA, Σ, IfA, T fA, F fA) obtained by the determinization of A via a
factorization (f, g) of LQ is defined as follows: (i) the initial fuzzy state is the
singleton set IfA = {f(I)/g(I)}; (ii) the set of states QfA are computed by
the recurrence Rασ = f(Rα ◦ T (σ)) for any word α and symbol σ, where ini-
tially Rε = f(I); (iii) for each symbol σ, the fuzzy transition T fA(σ) satisfies
T fA(σ)(Rα, Rασ) = g(Rα ◦ T (σ)) for any word α, and 0 otherwise; and (iv) the
final fuzzy state F fA is defined by F fA(Rα) = Rα ◦ F for any word α.

The fuzzy automaton DfA provided in Definition 5 is an accessible fuzzy
complete deterministic automaton equivalent to A (see further details in [9,17]).
Each state Rα ∈ QfA is a fuzzy state of Q which represents the accessible state
from the initial state Rε by the word α. The following properties are derived by
Definition 5 and by induction. For any α, β ∈ Σ∗ and σ ∈ Σ:

(D1) Rα ◦ T (σ) = T fA(σ)(Rα, Rασ) ⊗ Rασ; (D2) Iα = wfA(α) ⊗ Rα

(D3) [A] = [DfA] (equivalence); and (D4) [(DfA)Rα
](β) = Rα ◦ T (β) ◦ F

Lemma 1. Let C = (Qc, Σ, Ic, T c, {e/1}) be a CFfA with membership values
in L. Given any dCRL L and a factorization (f, g) of LQc

then, for any fuzzy
state S ∈ LQc

and σ ∈ Σ:

f(f(S) ◦ T c(σ)) = f(S ◦ T c(σ)) (9)
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Proof. For any σ ∈ Σ, the fuzzy transition relation T c(σ) satisfies the con-
ditions: (i) it is a crisp transition; (ii) it is complete backward; and (iii) it is
co-deterministic. Thus, for each q ∈ Q there exists a unique state qσ ∈ Q such
that T c(σ)(qσ, q) = 1 and equal 0 for the rest of states. Thus, (f(S)◦T c(σ))(q) =
f(S)(qσ) and (S ◦ T (σ))(q) = S(qσ) for any S ∈ LQ and q ∈ Q.

(1) First, we prove that ∀q : (f(S)◦T c(σ))(q) 
= 0 ⇒ g(S)⊗(f(S)◦T c(σ))(q) 
= 0.
∀q : f(S)(qσ) 
= 0 ⇒ S(qσ) 
= 0, this is true by (F4). As by (F5) g(S)⊗f(S)(qσ) =
S(qσ), then, ∀q : f(S)(qσ) 
= 0 ⇒ g(S) ⊗ f(S)(qσ) 
= 0.
By (F6), and the proven condition, the next holds:
g(S) ⊗ g(f(S) ◦ T c(σ)) = g(g(S) ⊗ (f(S) ◦ T c(σ)) =
g((g(S) ⊗ f(S)) ◦ T c(σ)) = g(S ◦ T c(σ)) **

(2) For any q ∈ Q, and by definition (8) of f(.): by (F4), f(f(S) ◦T c(σ))(q) = 0
if (f(S) ◦ T c(σ))(q) = f(S)(qσ) = 0, by (F4), S(qσ) = 0 and (S ◦ T c(σ))(q) = 0.
Then, by (8), f(S ◦ T c(σ))(q) = 0. In conclusion,
f(f(S) ◦ T c(σ))(q) = f(S ◦ T c(σ))(q) = 0 holds.

(3) Let us consider now that f(f(S) ◦ T c(σ))(q) 
= 0, then, f(S)(qσ) 
= 0, and
by (F4), S(qσ) 
= 0. By definition (8) f(f(S) ◦ T c(σ))(q) = g(f(S) ◦ T c(σ)) →
(f(S) ◦ T c(σ))(q) = g(f(S) ◦ T c(σ)) → f(S)(qσ) =, by (8)
g(f(S) ◦ T c(σ)) → (g(S) → S(qσ)) =, by (L8)
g(S) ⊗ g(f(S) ◦ T c(σ)) → S(qσ) =, by the proof above ** and (8),
g(S ◦ T c(σ)) → (S ◦ T c(σ))(q) = f(S ◦ T c(σ))(q). In conclusion,
f(f(S) ◦ T c(σ))(q) = f(S ◦ T c(σ))(q) 
= 0 holds.

Lemma 2. Let C = (Qc, Σ, Ic, T c, {e/1}) be a CFfA with membership values
in L. Given any dCRL L, then the fuzzy automaton DfC , obtained by the deter-
minization of C via factorization (g, f) of LQc

, satisfies, for any word α ∈ Σ∗:

(a) f(Ic
α) = Rα; and (b) f(wfC(α) ⊗ Rα) = Rα; (10)

(c) Ic
α 
= 0 ⇒ g(Ic

α) = wfC(α); and (d) Ic
α = 0 ⇒ wfC(α) > 0. (11)

Proof. The proof of (10)(a) is by induction, Definition 5 and (9); (10)(b) is
derived from (10)(a) and (D2). (11)(c) is obtained by induction, Definition 5
and (F6); and (11)(d) is derived from (11)(c), Definition 5(iii) and (7).

Theorem 1. Let C = (Qc, Σ, Ic, T c, {e/1}) be a CFfA with membership values
in L. Given any dCRL L then, the determinization of C via factorization (g, f)
of LQc

, the automaton DfC , is an accessible right-irreducible FDfA equivalent
to C.

Proof. The automaton DfC is an accessible fuzzy complete deterministic
automaton equivalent to C [9,17]. In addition, DfC is a finite automaton because
the set {Ic

α|α ∈ Σ∗} is finite (see the ending text in Sect. 2), and by (10)(a),
then the set QfC = {Rα|α ∈ Σ∗} is also finite. Finally, by (D4) and (6), if
[(DfC)Rα

] = [(DfA)Rβ
] then Rα = Rβ . This fact concludes that DfC is right-

irreducible.
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5 Minimality via the Reduction Graph

Let C = (Qc, Σ, Ic, T c, {e/1}) be a CFfA with membership values in L, and let
L be any dCRL. As by Theorem 1, DfC is right-irreducible then, it is possible
that two states P , S ∈ QfC may satisfy P left-reduces S. In this case, DfC is
not a minimal FDfA. In this section, we study how to obtain a minimal FDfA
equivalent to C by using DfC and the notion of Reduction Graph of DfC . In
this section, to simplify notation, we use D instead of DfC when it is clear in
the context of discussion.

What does ‘P left-reduces S’ mean in D? We recall that P and S are fuzzy
subsets of Qc. By Definition 3, [DP ] 
= [DS ] is equivalent to P 
= S because
D is right-irreducible (by Theorem 1). As P and S are accessible states in D,
P = f(Ic

αP∨
) and S = f(Ic

βS∨
) (by Lemma 2, (10)(a)) where αP

∨ 
= βS
∨ . The

condition wD
∨ (S) ⊗ [DS ] = wD

∨ (S) ⊗ [DP ] in Definition 3 is equivalent to

wD
∨ (S) ⊗ S = wD

∨ (S) ⊗ P (12)

(by (D4) and (6)). Let us observe that if P = 0 in (12) implies wD
∨ (S) ⊗ S = 0

and then, (by (10)(b) in Lemma 2 and (F4)) S = 0. A contradiction with the
fact that P 
= S. Assume that S = 0 and P 
= 0 in (12). As wD

∨ (S) > 0 (by
Lemma 2, (11)(d)) and P 
= 0 is the factorization f(Ic

αP∨
), then, by (F4) and (F9),

wD
∨ (S) ⊗ P 
= 0. A contradiction with the hypothesis. Thus, P 
= S, P 
= 0, and

S 
= 0 is fulfilled.
Let us consider now that wD

∨ (S) = wD
∨ (P ) holds. Then, in (12), f(wD

∨ (S) ⊗
S) = f(wD

∨ (P ) ⊗ P ). By Lemma 2, (10)(b), we obtain S = P which is a
contradiction with P 
= S. If we consider now that wD

∨ (S) > wD
∨ (P ), then,

as L is divisible, wD
∨ (P ) ⊗ S = wD

∨ (P ) ⊗ P also holds. By (10)(b), we have
S = f(wD

∨ (S) ⊗ P ) and P = f(wD
∨ (P ) ⊗ S). It is simple to prove by defini-

tion of f(.) (8) that S(q) = 0 if and only if P (q) = 0 for any q ∈ Qc, i.e.,
Supp(S)=Supp(P ). In addition, by (F9) and definition of g() (7), for any q ∈ Qc:

S(q) = wD
∨ (S) → wD

∨ (S) ⊗ P (q) and P (q) = wD
∨ (P ) → wD

∨ (P ) ⊗ S(q)

with P (q) 
= 0 (S(q) 
= 0). By (L6) and (L5), S(q) ≥ P (q) and P (q) ≥ S(q).
This derives in the contradiction P = S. Therefore, wD

∨ (P ) > wD
∨ (S) holds.

In conclusion, for two states P , S ∈ QfC , ‘P left-reduces S’ in D is equivalent
to

P 
= 0, S 
= 0, wD
∨ (P ) > wD

∨ (S), and wD
∨ (S) ⊗ S = wD

∨ (S) ⊗ P (13)

The intuition behind P left-reduces S lies in the observation (see (12)) that every
word that reaches S could alternative reach P without modifying the language
recognized by D. In other words, it is possible to build a new accessible FDfA
D′ with lesser size than D by moving every arc ending in S in D to P in the
new automaton D′. By this reduction process, S becomes an inaccessible state
in D′ and it can be safely removed.

The particular case of the empty state 0 ∈ QfC is of interest when L has zero
divisors. In this particular case, for any state P ∈ QfC with P 
= 0 the following
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trivial relation holds: wD
∨ (0) ⊗ 0 = (wD

∨ (0) ⊗ zP ) ⊗ 0 = wD
∨ (0) ⊗ (zP ⊗ P )

where zp is a zero divisor for all the values in the image of P . This also means
that 0 is left-reducible by any other nonempty state without changing the fuzzy
language. In the following, we introduce a relation between the states of D in
order to define the Reduction Graph of D.

Definition 6. Let C = (Qc, Σ, Ic, T c, {e/1}) be a CFfA with membership values
in L, and let L be any dCRL. Given the automaton DfC whose set of states is
QfC ; then, two sates P , S ∈ QfC satisfy the relation P � S if and only if

(a) P left-reduces S (13); or (b)S = 0, P 
= 0 and ∃zp > 0 : zP ⊗P = 0 (14)

It is not difficult to prove that (QfC ,�) is a strict partial ordered set, i.e.,
� is irreflexive, asymmetric and transitive. Therefore, the Reduction Graph of
the automaton DfC is basically a directed graph whose nodes are the states in
QfC and the arcs represent the relation � between two states. We say that the
Reduction Graph is empty when no arc is in the graph.

Theorem 2. Let C = (Qc, Σ, Ic, T c, {e/1}) be a CFfA with membership values
in L, and let L be any dCRL. The determinization of C via factorization (f, g)
of LQc

, the automaton DfC , is a minimal FDfA if and only if the Reduction
Graph of DfC is empty.

This Theorem can be proven by the same technique used in [10], taken into
account that L may have zero divisors. We omit the proof by lack of space.

6 Example

In this section, we present a simple example in order to show how the minimal
determinization procedure based on the reduction graph is able to produce a
minimal FDfA which recognizes a given fuzzy language. In this example, we
compare the results using the Gödel structure and the �Lukasiewicz structure.

Let us consider the fuzzy language K = {a/0.8, aa/0.6, aaa/0.4, aaaa/0.2}
defined over the alphabet Σ = {a} with membership values in [0, 1]. For brevity,
we start with the CFfA C with membership values in [0, 1] which recognizes the
fuzzy language K. This automaton is graphically represented in Fig. 1.

Fig. 1. The CFfA C which recognizes the fuzzy language K.

As we indicated at the end of Sect. 2, the CFfA C can be determinizable by
using different divisible CRLs that share the same support set, in this example



552 A. G. de Mend́ıvil Grau et al.

the closed interval [0, 1]. In particular, we shall construct the determinization
of C via factorization (g, f) of [0, 1]Q

c

over the Gödel structure which is a zero
divisor free structure. Let us recall that in the Gödel structure: x⊗y = min{x, y}
and x → y = y if x > y and 1 otherwise. By Definition 5, we obtain the following
states and transitions:
Rε = f(Ic) = f((0, 0.2, 0.4, 0.6, 0.8, 0)) = (0, 0.2, 0.4, 0.6, 1, 0); g(Ic) = 0.8,
Ra = f(Rε ◦T c

a) = f((0, 0, 0.2, 0.4, 0.6, 1)) = (0, 0, 0.2, 0.4, 0.6, 1); g(Rε ◦T c
a) = 1,

Raa = f(Ra ◦ T c
a) = f((0, 0, 0, 0.2, 0.4, 0, 6)) = (0, 0, 0, 0.2, 0.4, 1); g(Ra ◦ T c

a) =
0.6,
Raaa = f(Raa◦T c

a) = f((0, 0, 0, 0, 0.2, 0.4)) = (0, 0, 0, 0, 0.2, 1); g(Raa◦T c
a) = 0.4,

Raaaa = f(Raaa ◦T c
a) = f((0, 0, 0, 0, 0, 0.2)) = (0, 0, 0, 0, 0, 1); g(Raaa ◦T c

a) = 0.2,
0 = f(Raaaa ◦ T c

a) = f((0, 0, 0, 0, 0, 0)) = (0, 0, 0, 0, 0, 0); g(Raaaa ◦ T c
a) = 1.

The automaton DfC equivalent to C is shown in Fig. 2. This automaton also
includes the values for each final state. It is simple to prove that the Reduction
Graph of DfC is empty, what indicates, by Theorem 2, that DfC is the minimal
FDfA over the Gödel structure which recognizes the fuzzy language K.

Fig. 2. The FDfA DfC over the Gödel structure equivalent to C.

Now, we construct the determinization of C via factorization (g, f) of [0, 1]Q
c

over the �Lukasiewicz structure which has zero divisor elements. Let us recall that
x ⊗ y = max{0, x + y − 1} and x → y = 1 − x + y if x > y and 1 otherwise. By
Definition 5, we obtain the following states and transitions:

Rε = f(Ic) = f((0, 0.2, 0.4, 0.6, 0.8, 0)) = (0, 0.4, 0.6, 0.8, 1, 0); g(Ic) = 0.8,
Ra = f(Rε ◦T c

a) = f((0, 0, 0.4, 0.6, 0.8, 1)) = (0, 0, 0.4, 0.6, 0.8, 1); g(Rε ◦T c
a) = 1,

Raa = f(Ra ◦ T c
a) = f((0, 0, 0, 0.4, 0.6, 0, 8)) = (0, 0, 0, 0.6, 0.8, 1); g(Ra ◦ T c

a) =
0.8,
Raaa = f(Raa◦T c

a) = f((0, 0, 0, 0, 0.6, 0.8)) = (0, 0, 0, 0, 0.8, 1); g(Raa◦T c
a) = 0.8,

Raaaa = f(RLkw
aaa ◦T c

a) = f((0, 0, 0, 0, 0, 0.8)) = (0, 0, 0, 0, 0, 1); g(Raaa◦T c
a) = 0.8,

0 = f(Raaaa ◦ T c
a) = f((0, 0, 0, 0, 0, 0)) = (0, 0, 0, 0, 0, 0); g(Raaaa ◦ T c

a) = 1.

The FDfA DfC over the �Lukasiewicz structure equivalent to C is shown in
Fig. 3. It is simple to prove that the reduction Graph of DfC is not empty (see
the table below the Fig. 3), what indicates, by Theorem 2, that DfC is not a
minimal FDfA over this structure.

The reduction Graph of DfC is shown in the following table. The construction
is done by using Definition 6 and Eq. (14) (P left-reduces S).
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Fig. 3. The FDfA DfC over the �Lukasiewicz structure equivalent to C.

P fuzzy state w∨(P ) S Rε Ra Raa Raaa Raaaa 0

Rε (0, 0.4, 0.6, 0.8, 1, 0) 0.8 �
Ra (0, 0, 0.4, 0.6, 0.8, 1) 0.8 � � � �
Raa (0, 0, 0, 0.6, 0.8, 1) 0.6 � � �
Raaa (0, 0, 0, 0, 0.8, 1) 0.4 � �
Raaaa (0, 0, 0, 0, 0, 1) 0.2 �
0 (0, 0, 0, 0, 0, 0) 0.2

Let us observe that the state Ra left-reduces any state in {Raa, Raaa,
Raaaa,0}. Each arc ending in any of these states is moved through Ra. In this
case, it is not necessary to compute zp (see Definition 6) since 0 will be not
accessible in the resulting automaton. After this simple left-reduction process,
all inaccessible states are removed. The final minimal FDfA is shown in Fig. 4.

Fig. 4. Minimal FDfA over the �Lukasiewicz structure equivalent to C.

7 Conclusion

In [10], the authors have introduced a minimal determinization procedure for
FfAs over totally ordered, divisible, and zero divisor free CRLs. This paper
generalizes this result and aims at introducing the minimal determinization pro-
cedure for the same FfAs, but without the restriction on the CRL to be zero
divisor free. As the proposed method employs the concept of factorization of
fuzzy states, this weakening of the conditions on the CRL requires a change
in the definition of this concept. Although it sounds simple, this modification
requires the revision of many properties that are covered in this paper. We pro-
vided a simple example in which the proposed method outputs the minimal
FDfA, while other determinization methods fail to do so. In future work, we will
explore the minimization of FfAs over a partially ordered divisible CRL.
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Abstract. The Nerode’s automaton of a given fuzzy automaton A is
a crisp-deterministic fuzzy automaton obtained by determinization of
A using the well-known accessible fuzzy subset construction. This cele-
brated construction of a crisp-deterministic fuzzy automaton has served
as a basis for various determinization procedures for fuzzy automata.
However, the drawback of this construction is that it may not be fea-
sible when the underlying structure for fuzzy automata is the product
algebra because it is not locally finite. This paper provides an alter-
native way to construct a Nerode-like fuzzy automaton when the input
fuzzy automaton is defined over the product algebra. This construction is
always finite, since the fuzzy language recognized by this fuzzy automa-
ton has a finite domain. However, this new construction does not accept
the same fuzzy language as the initial fuzzy automaton. Nonetheless, it
differs only in words accepted to some very small degree, which we treat
as irrelevant. Therefore, our construction is an excellent finite approxi-
mation of Nerode’s automaton.

Keywords: fuzzy automata · determinization · Nerode’s automaton ·
product algebra

1 Introduction

One of the main reasons for introducing the concept of fuzzy automata and fuzzy
languages is the attempt to overcome the discrepancy between the vagueness and
ambiguity of natural languages on the one hand, and the precision and exact-
ness of formal languages on the other [14,15]. Moreover, fuzzy automata and
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fuzzy languages have a variety of applications, such as learning systems, con-
trol systems, pattern recognition, neural networks, artificial intelligence, lexical
analysis, string matching, and many others (cf. [13]).

Many researchers have focused on studying various methods for determiniza-
tion of fuzzy automata [1–3,7,11,12]. The well-known accessible fuzzy subset
construction [5] is one of the most influential determinization methods for fuzzy
automata, as it serves as the basis for many other such methods [4,8,9,16].
This method constructs a crisp-deterministic fuzzy automaton, called the Nerode
automaton [6], which is equivalent to a given fuzzy automaton. However, if the
underlying structure of truth values is not locally finite, which is the case for
the product algebra, the Nerode automaton is not necessarily finite (see [5,6] for
more details).

In this paper, we propose a new procedure for constructing a crisp-
deterministic fuzzy automaton whose primary goal is to overcome the above
mentioned problem. Starting from a fuzzy automaton over the product algebra,
this algorithm always generates a finite crisp-deterministic fuzzy automaton.
Although this procedure has a termination property and results in an algorithm,
the drawback is that the output fuzzy automaton does not recognize the same
fuzzy language as the input fuzzy automaton. Nevertheless, the fuzzy language
it recognizes is what we call here the truncating fuzzy language of the fuzzy
language that the original fuzzy automaton recognizes. Consequently, these two
fuzzy languages differ only in those words whose degree of acceptance by the orig-
inal fuzzy language was very low. In other words, these two fuzzy languages are
equivalent in all the words whose acceptance degree by the original automaton
was greater than a certain value. The truncating language is an approximation to
the original fuzzy language, and is defined for a certain value ε > 0. The smaller
the value ε, the smaller the difference between the fuzzy languages. Different
kind of approximation of fuzzy languages was proposed by Yang and Li in [17].
They defined fuzzy ε-approximate regular languages and minimal deterministic
fuzzy automaton ε-accepting them. The main advantage of our approach is that
original fuzzy language and truncating fuzzy language differ only for those words
whose degree of acceptance by the given automaton is smaller than some pre-
defined value, contrary to ε-approximate regular languages which are different
form original fuzzy languages in every word.

The structure of the paper is as follows. Section 2 recalls basic definitions
and properties regarding fuzzy sets, fuzzy relations and fuzzy automata over
the product algebra. Section 3 introduces the notion of a truncating fuzzy lan-
guage that provides an image-finite fuzzy language of any fuzzy automaton.
Section 4 focuses on the Nerode-like construction of a crisp-deterministic fuzzy
finite automaton that recognizes the image-finite truncating fuzzy language for
a given fuzzy automaton. In the same section, we present an algorithm for
constructing this crisp-deterministic fuzzy finite automaton and an illustrative
example. Section 5 contains some concluding remarks.
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2 Preliminaries

As a structure of truth values, we use the product algebra, which is the typle
(P,∨, ·) consisting of the support set P = [0, 1] equipped with meet and operation
· (ordinary product operation for real numbers). Recall that the operation ·, as
it is a t-norm on [0, 1], satisfies the laws of commutativity, associativity and
monotonicity, and has 1 as the neutral element.

For a nonempty set A, a function f : A → P is called a fuzzy subset of A,
while a function f : A × A → P is called a fuzzy relation on A. The set of
all fuzzy subsets of A is denoted by PA, while the set of all fuzzy relations on
A is denoted by PA×A. The equality and the inclusion for fuzzy subsets (resp.
fuzzy relations) are defined in the same way as the equality and the inclusion
between mappings. The join (∨) of the family of fuzzy subsets is defined to be
coordinate-wise.

The compositions between fuzzy subsets and fuzzy relations, as well as
between a fuzzy subset and a fuzzy relation, are defined in the following way:
Let A,B and C be nonempty sets, ϕ : A × B → P , φ : B × C → P be fuzzy
relations and f, g : A → P and h : B → P be fuzzy subsets, then ϕ ◦ φ is a
fuzzy relation between A and C, f ◦ ϕ and ϕ ◦ h are fuzzy subsets of B and A
respectively, and f ◦ g is a value from P defined by:

(ϕ ◦ φ)(a, c) =
∨

b∈B

ϕ(a, b) · φ(b, c),

(f ◦ ϕ)(b) =
∨

a∈A

f(a) · ϕ(a, b),

(ϕ ◦ h)(a) =
∨

b∈B

ϕ(a, b) · g(b),

f ◦ g =
∨

d∈A

f(d) · g(d)

for every a ∈ A, b ∈ B, and c ∈ C. The fact that the composition between fuzzy
subsets and fuzzy relations (resp. between a fuzzy subset and a fuzzy relation)
is associative is easy to prove.

With X we denote a finite nonempty set called the alphabet, with X∗ we
denote the free monoid over the alphabet X, and with e we denote the empty
word in X∗. A fuzzy automaton over X and P is a tuple A = (A, σ, δ, τ) such
that: A is a nonempty set; σ is a fuzzy subset of A also known as the fuzzy set of
initial states; δ is a fuzzy subset of A × X × A over P called the fuzzy transition
function, while τ is a fuzzy subset of A named the fuzzy set of terminal states.

Fuzzy transition relations are defined for every nonempty word u ∈ X∗\{e}
by:

δu = δx1 ◦ · · · ◦ δxn
,

where u = x1 · · · xn and for every i ∈ {1, ..., n} δxi
: A × A → P determined by

δxi
(a, b) = δ(a, xi, b), (a, b) ∈ A × A. Furthermore, δe is also a fuzzy relation on
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A given by:

δe(a, b) =

{
1, a = b

0, otherwise
, a, b ∈ A.

Additionally, for every word u ∈ X∗, σu is defined to be a fuzzy subset of A by:

σu = σ ◦ δu.

A fuzzy language recognized by the automaton A over X and P , denoted as
[[A]], is a fuzzy subset of X∗ defined by:

[[A]](u) =
∨

a,b∈A

σ(a) · δu(a, b) · τ(b) = σ ◦ δu ◦ τ,

where u ∈ X∗ is an arbitrary word.
If a fuzzy automaton A = (A, σ, δ, τ) satisfies the following two conditions:

(1) For every x ∈ X and a ∈ A, there exists b ∈ A such that δx(a, b) = 1 and
δx(a, c) = 0, for every c ∈ A\{b}, and (2) There exists a0 ∈ A such that σ(a0) = 1
and σ(a) = 0 for every a ∈ A\{a0}, then A is called a crisp-deterministic fuzzy
automaton, and when in addition A is finite, then A is called a crisp-deterministic
fuzzy finite automaton (cDFfA, for short).

A fuzzy language recognized by a cDFfA A is given by:

[[A]](u) = τ(δ∗(a0, u)),

for every u ∈ X∗, where δ∗(a0, u) is the unique state reachable from a0 given
the word u. More precisely, the range of a fuzzy language [[A]], with A being
a cDFfA, is contained in the range of τ , which is finite because A is finite.
Therefore, cDFfAs recognize fuzzy languages of finite range (cf. [4,5,10]).

3 Truncating Fuzzy Languages

If a fuzzy language accepts a certain word only to a very low degree, it can
be assumed that this fuzzy language does not accept this word. That is, if the
degree of acceptance of a particular word by a fuzzy language is very low, then
the concrete value of that degree is irrelevant. Consequently, it is reasonable to
observe a fuzzy language that accepts words with a degree higher than a specific
value ε. It is natural to assume that the value ε is very small. In a particular
case where we observe a language [[A]] of a fuzzy automaton A = (A, σ, δ, τ), it is
reasonable to assume that the value ε is smaller than all non-zero values taken
by the functions δ, σ and τ .

Let A = (A, σ, δ, τ) be a fuzzy automaton over X and P , and let ε ∈ P be a
given threshold. Then we define an ε-truncating fuzzy language of A as a fuzzy
language [[A]]ε : X∗ → L in the following way:

[[A]]ε(u) =
{

[[A]](u), if [[A]](u) > ε,
0, otherwise.
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The importance of considering the truncating fuzzy language of a fuzzy lan-
guage recognized by a fuzzy automaton is that the majority of words are accepted
with a very small degree due to the many multiplications for words going through
a cycle in the given fuzzy automaton.

In general, a fuzzy language recognized by a fuzzy automaton over the prod-
uct structure has an infinite range. In contrast, the ε-truncating fuzzy language
of the fuzzy automaton always has a finite range, for any chosen threshold ε �= 0.
Although this result was provided by Li [10], we provide a slightly different and
detailed proof with the following theorem.

Theorem 1. The fuzzy language [[A]]ε is image finite, for every fuzzy automaton
A = (A, σ, δ, τ) and ε > 0.

Proof. We conduct the proof by estimating the upper bound for the number
of different elements of the set Im([[A]]ε)\{1}. Let A = (A, σ, δ, τ) be a fuzzy
automaton and ε > 0. Consider an arbitrary word u = x1x2..xk ∈ X∗ of length
k ∈ N. Then the degree to which A accepts this word is equal to:

[[A]](u) =
∨

a1,a2,...an+1∈A

σ(a1) ·δx1(a1, a2) ·δx2(a2, a3) · . . . ·δxk
(ak, ak+1) ·τ(ak+1).

(1)
Since the underlying structure of truth values is the product structure P , there
exists a path in the graph of A that goes through some states ã1, ã2, . . . , ãk+1 ∈ A
in which the maximum value in (1) is reached. That means:

[[A]](u) = σ(ã1) · δx1(ã1, ã2) · δx2(ã2, ã3) · . . . · δxk
(ãk, ãk+1) · τ(ãk+1). (2)

Among k + 2 values σ(ã1), δx1(ã1, ã2), . . . , δxk
(ãk, ãk+1) and τ(ãk+1) from (2),

some of them may be equal to 1. However, these values do not influence the
calculation of the value of [[A]](u), because 1 is the neutral for the multiplication.
Assume that there are n values (n � k) among the values σ(ã1), δx1(ã1, ã2),
. . ., δxk

(ãk, ãk+1) and τ(ãk+1) that are different from 1, and denote them by
c1, c2, . . . , cn (among these values, there may be the values that are the same,
but they are all different from 1). Assume that the word u is accepted by the
ε-truncating fuzzy language of A. Then (2) becomes:

ε < [[A]](u) = c1 · c2 · . . . · cn � Mn,

where M is the maximum value of the set S = Im{σ∪δ∪τ}\{1} consisting of all
values different from 1 that functions σ, δ and τ take. Note that this maximum
value M exists in the product structure and M < 1. Because both M and ε are
values smaller than 1, the properties of the logarithmic function yield:

ε < Mn if and only if n < logM ε.

By denoting n0 = �logM ε	 + 1, we conclude that 1 > [[A]](u) > ε if and only
if the number of values different from 1 in (2) is at most n0. In other words, in
order for an arbitrary word u ∈ X∗ of a length k ∈ N to be accepted by [[A]]ε, it
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must have at most n0 values in (2) different from 1.
Assume that some word u ∈ X∗ is accepted by [[A]]ε and has p values in (2)
different from 1. Denote these values with c1, c2, . . . , cp. Each of these p values
can take one value (not necessarily all different) from the set S. In order to
estimate the upper bound for the cardinality of the set Im([[A]]ε)\{1}, we need
to estimate all different values that the expression c1 · c2 · . . . · cp can take. This
problem boils down to calculating how many ways we can obtain different values
for the expression c1·c2·. . .·cp. Because multiplication is commutative, this comes
down to calculating all combinations of size p with repetition (in the notation
C(S)), where each element from the combination is an element from the set S. If
we denote with m = |S|, then the number of such combinations with repetition
is equal to

(
p+m−1

p

)
. In the end, since p can be any natural number not greater

than n0, we come to the upper bound for |Im([[A]]ε)\{1}|, which is equal to:

|Im([[A]]ε)\{1}| �
n0∑

p=1

(
p + m − 1

p

)
, (3)

where n0 = �logM ε	 + 1 and M = max{Im{σ ∪ δ ∪ τ}\{1}}. In other words,
the value |Im([[A]]ε)| is some number less than or equal to the number on the
right-hand side of the sign � in (3) plus one, i.e. it is finite.

4 Crisp-Deterministic Fuzzy Finite Automata Accepting
Truncating Fuzzy Languages

According to Theorem 1, the fuzzy language [[A]]ε has a finite image, for every
fuzzy automaton A and a threshold ε �= 0. However, the same theorem does
not indicate whether there exists a (deterministic) fuzzy finite automaton that
recognizes [[A]]ε. Recall again that a cDFfA recognizes a fuzzy language of finite
image. Because [[A]]ε is of a finite image, we prove in this section that [[A]]ε is
cDFfA-recognizable, and give a way to construct such cDFfA.

Let A = (A, σ, δ, τ) be a fuzzy finite automaton and let ε �= 0 be a chosen
threshold. As shown in Theorem 1, the set Im([[A]]ε) is finite. Denote with G =
C(S) ∪ {0, 1}, where C(S) has the same meaning as in the proof of Theorem 1.
Then, define a family of fuzzy sets Aε = {σε

u|u ∈ X∗}, where σε
u : A → G for

every u ∈ X∗, inductively by:

σε
e(a) =

{
σ(a), σ(a) > ε

0, otherwise
, (4)

σε
ux(a) =

{
(σε

u ◦ δx)(a), (σε
u ◦ δx)(a) > ε

0, otherwise
, for every u ∈ X∗ and x ∈ X.

for every a ∈ A. Given this family, define a fuzzy automaton Aε = (Aε, σε, δε, τε),
where we define functions σε : A → G, δε : AG × X → AG and τε : AG → G in
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the following way:

σε = σε
e ,

δε(σε
u, x) = σε

ux,

τε(σε
u) =

{
σε

u ◦ τ, if σε
u ◦ τ > ε,

0, otherwise.

Then we have the following result.

Lemma 1. For every fuzzy finite automaton A = (A, σ, δ, τ), the fuzzy automa-
ton Aε = (Aε, σε, δε, τε) is a well-defined cDFfA.

Proof. The set of all fuzzy sets over A and G is finite, since A is a finite set by the
assumption and G is a finite set by Theorem 1. Therefore, the set Aε is clearly
finite, as it is a subset of a finite set GA. This means that Aε is a finite fuzzy
automaton. We prove that Aε is well-defined and crisp-deterministic directly by
following its definition.

Note that the elements of the set Aε are constructed in the iterative manner.
With the following result, we give an alternative way to construct these elements.
Namely, we claim that each σε

u can be constructed directly from σu, for every
u ∈ X∗.

Lemma 2. For every u ∈ X∗ and ε �= 0, the following holds:

σε
u(a) =

{
σu(a), σu(a) > ε

0, otherwise
, for every a ∈ A. (5)

Proof. We prove the theorem by means of the mathematical induction. For u = e,
the assertion follows directly from the definition. Assume that (5) holds for any
u ∈ X∗. Then for every x ∈ X we have:

σε
ux(a) =

{
(σε

u ◦ δx)(a), (σε
u ◦ δx)(a) > ε

0, otherwise

=

{∨
b∈A σε

u(b) · δx(b, a),
∨

b∈A σε
u(b) · δx(b, a) > ε

0, otherwise

Denote with c ∈ A an element such that
∨

b∈A σε
u(b) · δx(b, a) = σε

u(c) · δx(c, a).
Assume that σε

u(c) · δx(c, a) > ε. This further yields σε
u(c) > ε and δx(c, a) > ε.

According to the induction hypothesis, we have that σu(c) = σε
u(c), which means

that σε
ux(a) = σu(c) · δx(c, a).

Denote with d ∈ A an element such that
∨

b∈A σu(b) · δx(b, a) = σu(d) · δx(d, a),
and such that d �= c. This means that

σu(d) · δx(d, a) > σu(c) · δx(c, a) = σε
ux(a). (6)
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According to the initial assumption, σε
ux(a) > ε. This means σu(d) · δx(d, a) > ε.

But in that case, we have σu(d) > ε and δx(d, a) > ε. But according to the
induction hypothesis, σu(d) = σε

u(d). Putting this into (6), from the way we
have chosen the element c ∈ A, we get:

σε
u(d) · δx(d, a) > σε

u(c) · δx(c, a) =
∨

b∈A

σε
u(b) · δx(b, a).

But since by the assumption d �= c, we conclude that d is the element reaching
the value greater than the maximum value achieved in the element c, which is a
contradiction. Finally, we conclude that in this case:

σε
ux(a) =

∨

b∈A

σε
u(b) · δx(b, a) =

∨

b∈A

σu(b) · δx(b, a) = σux(a).

In conclusion, we obtain that:

σε
ux(a) =

{
σux(a), σux(a) > ε

0, otherwise

which was to be proved.

Theorem 2. Let A = (A, σ, δ, τ) be a fuzzy automaton and let ε �= 0 be a chosen
threshold. Then the fuzzy language [[A]]ε is cDFfA-recognizable.

Proof. Lemma 1 verifies that Aε is a cDFfA. It remains to prove that Aε recog-
nizes the fuzzy language [[A]]ε. By definition, the fuzzy language recognized by
Aε is equal to:

[[Aε]](u) = τε(δε(σε, u)) = τε(σε
u), u ∈ X∗.

According to the definition of τε and Lemma 2, for every u ∈ X∗ we have:

[[Aε]](u) =
{

σε
u ◦ τ, if σε

u ◦ τ > ε
0, otherwise

According to the previous theorem, we have that σu(a) = σε
u(a), for every a ∈ A

such that σε
u(a) �= 0. That means that, for some b ∈ A for such that the value

σε
u ◦ τ > ε reaches its maximum value, it also means that for the same b ∈ A

the value σu ◦ τ > ε reaches its maximum value. In other words, it is impossible
to reach a maximum value in both expressions σu ◦ τ > ε and σε

u ◦ τ > ε in
some state c ∈ A such that σε

u(c) = 0. Thus, we conclude that σε
u ◦ τ > ε implies

σu ◦ τ > ε. This allows us to obtain:

[[Aε]](u) =
{

σu ◦ τ, if σu ◦ τ > ε
0, otherwise = [[A]]ε(u).

which was to be proved.



Finite Nerode Construction for Fuzzy Automata over the Product Algebra 563

Algorithm 1: Construction of Aε = (Aε, σε, δε, τε)
input : A fuzzy automaton A = (A, σ, δ, τ), a degree ε > 0
output: cDFfA Aε = (Aε, σε, δε, τε)

1 Initialize an empty set Aε and an empty queue Aε∗

2 σε
e(a) ←

{
σ(a), σ(a) > ε

0, otherwise
, a ∈ A

3 Aε ← Aε ∪ {σε}
4 Enqueue(Aε∗, σε)
5 while Aε∗ �= ∅ do
6 μ ← Dequeue(Aε∗)
7 τε(μ) = μ ◦ τ
8 foreach x ∈ X do

9 μx(a) ←
{

(μ ◦ δx)(a), (μ ◦ δx)(a) > ε

0, otherwise
, a ∈ A

10 δε(μ, x) = μx

11 if μx �∈ Aε then
12 Aε ← Aε ∪ {μx}
13 Enqueue(Aε∗, μx)

14 end

15 end

16 end

As a consequence, we get the following corollary, which can be regarded as a
variant of Theorem 3.4 [11].

Corollary 1. Let L : X∗ → P be an FfA-recognizable fuzzy language, and ε > 0
be an arbitrary value. Then the fuzzy language Lε is cDFfA-recognizable.

In the following, we present an algorithm for computing the cDFfA Aε =
(Aε, σε, δε, τε) for a given fuzzy automaton A and a given ε ∈ P . The algorithm
is based on the following principle: in each step of the algorithm, we take a
state that has not been processed yet. For each letter x in X, we generate its
successor and add a transition marked x from the state to its successor. If a
follower represents a newly generated state (i.e., it is not equal to a previously
generated state), then we add that state to the set of states of Aε and the queue
of unprocessed states (Aε∗). After we have created all successors of a given state,
we mark this state as processed, i.e., we remove it from the queue. Initially, the
queue of unprocessed states and the set of states of Aε contains only one state,
and this state is σε defined by (4). At the same time, for each state of μ ∈ Aε, we
compute τε(μ). The algorithm is finished when there are no more unprocessed
states, i.e., when the queue Aε∗ is empty.

The following example illustrates the importance of Algorithm 1. To be spe-
cific, it demonstrates the case where the Nerode automaton recognizing a given
fuzzy language is infinite, whereas the fuzzy automaton Aε that recognizes the
truncating fuzzy language is finite.
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Fig. 1. A graphical representation of the fuzzy automaton from Example 1

Example 1. Consider the fuzzy automaton A = (A, σ, δ, τ) over the product
structure, where A = {a1, a2, a3}, X = {x, y}, graphically represented in Fig. 1.

In other words, we have that σ =
[
1 1 0

]
, τ =

[
1 0 0

]T, and transition
functions are given by:

δx =

⎡

⎣
0 0 0
1 0.3 0
0 0 0.1

⎤

⎦ , δy =

⎡

⎣
0 0 1
1 0 0
0 0 0

⎤

⎦ .

The minimal crisp deterministic automaton equivalent to a given fuzzy
automaton is infinite, because the fuzzy language [[A]] has infinite range. How-
ever, according to Theorem 2, there exists a finite cdfa recognizing ε-truncating
fuzzy language for every ε. First let us compute σu, u ∈ X∗:

σe =
[
1 1 0

]
, σy =

[
1 0 1

]
σyy =

[
0 0 1

]
,

σxn =
[
0.3n−1 0.3n 0

]
, σxny =

[
0.3n 0 0.3n−1

]
, n ∈ N,

σxny2 =
[
0 0 0.3n

]
, n ∈ N,

σxnyxk =
[
0 0 0.3n−10.1k

]
, σxny2xk =

[
0 0 0.3n0.1k

]
, n ∈ N, k ∈ N,

σyxn = σy2xn =
[
0 0 0.1n

]
, n ∈ N,

σu =
[
0 0 0

]
, u ∈ X∗\{e, y, y2, xn, xnyxk, xny2xk, yxn, y2xn}, n ∈ N, k ∈ N0.

Then, given ε = 0.01 we obtain:

σε
e =

[
1 1 0

]
, σε

y =
[
1 0 1

]
σε

yy =
[
0 0 1

]

σε
xn =

[
0.3n−1 0.3n 0

]
, σε

xny =
[
0.3n 0 0.3n−1

]
, n ∈ {1, 2, 3},

σε
xny2 =

[
0 0 0.3n

]
, n ∈ {1, 2, 3},

σε
x4 =

[
0.33 0 0

]
, σε

x4y =
[
0 0 0.33

]
, σε

xy2x =
[
0 0 0.03

]
,

σε
yx = σε

y2x =
[
0 0 0.1

]
, σε

xnyx =
[
0 0 0.3n−10.1

]
, n ∈ {1, 2},

σε
u =

[
0 0 0

]
,

(u ∈ X∗\{e, y, y2, x, x2, x3, x4, xy, x2y, x3y, x4y, xy2x, yx, y2x, xyx, x2yx}).

In other words, the fuzzy automaton Aε recognizing 0.01-truncating fuzzy lan-
guage has 20 states.
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5 Conclusion

In this paper, we propose a finite Nerode-like construction for fuzzy automata
over the product algebra. The importance of the Nerode automaton is well known
in the literature [4–6], and this paper provides a solution to the problem that
may arise in the product algebra, namely that the Nerode automaton need not
be finite. That is, our construction always leads to a finite crisp-deterministic
fuzzy automaton. However, it need not recognize the same fuzzy language as the
original fuzzy automaton. Nevertheless, the difference between these two fuzzy
languages is only in words accepted with a very low degree, which we consider
irrelevant. We would like to note that the concepts of truncating fuzzy languages
and approximate construction of a crisp deterministic fuzzy automaton are new
and different from the similar concepts studied in [10,17].

In this work, we used the specific properties of the product algebra. We leave
the generalization of the results for fuzzy automata defined over other nonlocally
finite structures to future work.
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1 Introduction

The notion of bisimulation has an important place in the fuzzy automata liter-
ature. Intuitively, it allows us to model the equivalence of two fuzzy automata
by the way they match each other’s moves. In other words, bisimulation allows
us to model the indistinguishability of the states of fuzzy automata. Various
approaches have been taken in the study of bisimulation for fuzzy automata
(see [3,4,7,12,13,15] for more details). Afterward, various fast algorithms for
computing the greatest (fuzzy or crisp) bisimulation between fuzzy automata
and more generalized fuzzy structures have been developed [9–11,16].

Various generalizations of bisimulations for fuzzy automata have been pro-
posed. The so-called approximate bisimulations have appeared in a number of
recent publications [8,14,17–19]. Their main disadvantage is that the multipli-
cation operation from the underlying set of truth values must be idempotent.
Another generalization has been proposed by the concept of weak bisimulation [5].
Namely, weak bisimulations are defined for fuzzy automata with membership val-
ues over any complete residuated lattice. However, they are defined as fuzzy rela-
tions that are solutions to certain systems of fuzzy relation inequalities. Such sys-
tems may have infinitely many inequalities if the underlying complete residuated
lattice is not locally finite. This means that they cannot be computed in all cases
when the underlying lattice is not locally finite. For example, weak bisimulations
are not always computable for (∨, ·)-fuzzy automata, where ∨ denotes the maxi-
mum operation and · is the product t-norm on the real unit interval [0, 1].

This paper proposes a generalization of weak bisimulations for (∨, ·)-fuzzy
automata. We call them ε-weak bisimulations, where ε can be any small value close
to zero. These ε-weak bisimulations can be computed for any (∨, ·)-fuzzy automata
and any ε > 0. However, they do not establish strict language equivalence between
the observed fuzzy automata. More precisely, we prove that if there is a ε-weak
bisimulation between two (∨, ·)-fuzzy automata, they are ε-equivalent, in the sense
that they are equivalent w.r.t. words accepted up to a degree greater than ε. How-
ever, since we choose ε to be arbitrarily small, we treat words accepted in a degree
not greater than ε as irrelevant, which means that ε-weak bisimulations provide a
good approximation of language equivalence between fuzzy automata. Note that
the concept of ε-equivalence of fuzzy languages is new and different from other
concepts of language approximation, for example, that in [6], where the degree of
equivalence for every word has to be greater than ε.

This paper is structured as follows. Section 2 recalls basic notions on fuzzy
subsets, fuzzy relations, fuzzy languages and fuzzy automata defined over the
real-unit interval equipped with the product t-norm and the meet and join oper-
ations. Section 3 provides a finite construction of a set of fuzzy terminal states for
a given fuzzy automaton. This construction is needed to define ε-weak bisimu-
lations afterward. Section 4 explores the concepts of ε-inclusive and ε-equivalent
fuzzy languages, for any ε > 0. In the end, Sect. 5 introduces ε-weak bisim-
ulations, explores their properties and provides a way to compute them. An
illustrative example is also given in Sect. 5. Some concluding remarks close the
paper.
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2 Preliminaries

2.1 Fuzzy Subsets and Fuzzy Relations

As a structure of truth values, we use the real-unit interval I = [0, 1] equipped
with (not necessarily countable) infimum ∧ and supremum ∨, as well as the
product t-norm · : I × I → I defined as the multiplication of the reals in the
usual way. The product operation · admits the residuum operation defined as:

x → y =
{

1 if x � y,
y/x otherwise.

for every x, y ∈ I. The biresiduum operation is naturally defined as (x ↔ y) =
(x → y) ∧ (y → x), for every x, y ∈ I.

For a nonempty set A, a function f : A → I is called a fuzzy subset of A. The
set of all fuzzy subsets of A is denoted by IA, with the equality and the inclusion
(ordering) of fuzzy sets being defined coordinate-wise. For a family {fj}j∈J of
fuzzy subsets of A, the join (union)

∨
j∈J fj and the meet (intersection)

∧
j∈J fj

of this family is also defined coordinate-wisely (see [1,2] for more details).
For two nonempty sets A and B, a fuzzy relation between A and B is any

mapping from A×B to I, i.e., any fuzzy subset of A×B. The equality, inclusion
and the join of fuzzy relations are defined as for fuzzy sets.

Let A, B and C be nonempty sets. For fuzzy relations ϕ ∈ IA×B, θ ∈ IB×C

and fuzzy sets α ∈ IA, β ∈ HB , we define compositions ϕ◦θ ∈ IA×C , α◦ϕ ∈ IB

and ϕ ◦ β ∈ IA with

(ϕ ◦ θ)(a, c) =
∨
b∈B

ϕ(a, b) · θ(b, c),

(α ◦ ϕ)(b) =
∨
a∈A

α(a) · ϕ(a, b),

(ϕ ◦ β)(a) =
∨
b∈B

ϕ(a, b) · β(b),

for every a ∈ A, b ∈ B and c ∈ C. All these compositions are associative fuzzy
relations.

For given fuzzy sets ϕ ∈ IA and ψ ∈ IB, the right residual ϕ\ψ ∈ IA×B

of ψ by ϕ and the left residual ψ/ϕ ∈ IA×B of ψ by ϕ, respectively, are fuzzy
relations defined as follows:

(ϕ\ψ)(a, b) = (ϕ(a) → ψ(b)), for a ∈ A and b ∈ B;
(ψ/ϕ)(a, b) = (ψ(b) → ϕ(a)), for a ∈ A and b ∈ B.

For given fuzzy sets ϕ ∈ IA and ψ ∈ IB, the meet of the left residual of ψ by ϕ
and the right residual of ψ by ϕ is denoted by ϕ|ψ and we have:

(ϕ|ψ)(a, b) = (ϕ(a) ↔ ψ(b)), for a ∈ A and b ∈ B.
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It can be shown that the right and left residuals satisfy the following two
adjunction properties:

ϕ ◦ χ � ψ iff χ � ϕ\ψ, (1)
χ ◦ ψ � ϕ iff χ � ψ/ϕ, (2)

where χ ∈ IA×B is a fuzzy relation between A and B.

2.2 Fuzzy Languages and Fuzzy Automata

With X we denote a finite nonempty set called the alphabet, with X∗ we denote
the free monoid over the alphabet X, and with e we denote the empty word in
X∗. A (∨, ·)-fuzzy finite automaton, or just a fuzzy finite automaton (FFA) in
what follows, is a quadruple A = (A, σA, δA, τA) such that A is a finite non-
empty set, called the set of states, σA : A → I is a fuzzy subset of A called the
fuzzy set of initial states, δA : A×X×A → I is a fuzzy subset of A×X×A called
the fuzzy transition function, and τA : A → I is a fuzzy subset of A called the
fuzzy set of terminal states. The fuzzy transition function δA : A × X × A → I
inductively induces a family {δA

u }u∈X∗ of fuzzy relations, where δA
u : A × A → I

for each u ∈ X∗ is defined in the following way: for every a, b ∈ A we set
δA
e (a, a) = 1 and δA

e (a, b) = 0 for a �= b, δA
x (a, b) = δA(a, x, b), for every a, b ∈ A

and x ∈ X, and for every u ∈ X∗ and x ∈ X

δA
ux = δA

u ◦ δA
x .

By associativity, for any two words u, v ∈ X∗ we have δA
uv = δA

u ◦ δA
v . Also,

if u = x1x2 . . . xn we have δA
u = δA

x1
◦ δA

x2
◦ . . . ◦ δA

xn
. We call {δA

u }u∈X∗ the
family of fuzzy transition relations of A. Similarly, we define a family of fuzzy
initial sets {σA

u }u∈X∗ , as well as a family of fuzzy terminal sets {τA
u }u∈X∗ , where

σA
u : A → I and τA

u : A → I are fuzzy subsets of A defined by

σA
u = σA ◦ δA

u , τA
u = δA

u ◦ τA,

for each u ∈ X∗.
The fuzzy language recognized by a fuzzy automaton A = (A, σA, δA, τA) is

a mapping [[A]] : X∗ → I defined by

[[A]](u) =
∨

a0,...,an∈A

σA(a0) · δA
x1

(a0, a1) · . . . · δA
xn

(an−1, an) · τA(an), (3)

for any u = x1x2 . . . xn ∈ X∗ and n ∈ N0. Note that (3) can be equivalently
written as [[A]](u) = σA ◦ δA

u ◦ τA, for every u ∈ X∗.

2.3 Weak Bisimulations for Fuzzy Automata

Weak simulations and weak bisimulations for fuzzy automata were introduced
in [5] as a generalization of simulations and bisimulations introduced by Ćirić [3],
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respectively. In this subsection, we recall the definitions needed for the rest of
the paper.

Let A = (A, σA, δA, τA) and B = (B, σB , δB , τB) be two fuzzy automata, and
let ϕ ∈ IA×B be a fuzzy relation between the sets of states of fuzzy automata.
Then ϕ is a weak forward simulation between A and B if it satisfies the following
fuzzy relation inequalities:

σA � σB ◦ ϕ−1, (4)

ϕ−1 ◦ τA
u � τB

u , for every u ∈ X∗. (5)

Furthermore, if ϕ is a weak forward simulation between A and B, and ϕ−1 is
a weak forward simulation between B and A, meaning that ϕ satisfies (4)–(5)
and:

σB � σA ◦ ϕ, (6)

ϕ ◦ τB
u � τA

u , for every u ∈ X∗, (7)

then ϕ is a weak forward bisimulation between A and B. Dually, one can define
weak backward (bi)simulations between A and B using the family {σA

u }u∈X∗

(cf. [5] for more details). In what follows, we drop the word “between A and B”
when fuzzy automata under consideration are clear from the context. We also
call weak forward (bi)simulations simply just weak (bi)simulations.

As noted above, weak (bi)simulations [5] are a generalization of the (bi)simu-
lations defined by Ćirić [3]. The main advantage of weak (bi)simulations (when
just observing their definitions) is that weak (bi)simulations are defined as solu-
tions to specific linear systems of fuzzy relation equations (see (4)–(7)). Conse-
quently, they can be computed using the well-known formulae for solving linear
systems (when they are solvable). On the other hand, bisimulations, as given
in [3], are defined as solutions to the so-called weakly linear systems, which
can be computed by the iterative procedure that may not have a termination
condition.

However, a significant drawback of weak bisimulations is that any of the
families {τA

u }u∈X∗ and {τB
u }u∈X∗ may be infinite. Although this is not a problem

from the mathematical aspect, it means that there are situations when weak
(bi)simulations cannot even be computed, as the systems (4)–(7) may consist
of the infinite number of inequalities. Through the rest of the paper, we aim
to provide a solution to this problem. We do this by introducing new types of
weak bisimulations for fuzzy automata, which can be used in such situations.
We continue exploring the properties of such bisimulations.
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3 Finite Construction of Fuzzy Terminal States

Let A = (A, σA, δA, τA) be a fuzzy automaton. As noted in Subsect. 2.3, the
family of fuzzy terminal states {τA

u }u∈X∗ can consist of infinitely many fuzzy
subsets of A, meaning that a weak forward simulation between A and some
other fuzzy automaton cannot be computed. In this section we show that, for an
arbitrary small threshold ε > 0, we can construct a finite family {(τA

u )ε}u∈X∗ ,
which is defined below. We explore the connection between τA

u and (τA
u )ε, for

every u ∈ X∗, and their connection with the fuzzy language accepted by A.
For a fuzzy automaton A = (A, σA, δA, τA) and ε > 0, by {(τA

u )ε | u ∈ X∗}
we denote the family of fuzzy subsets of A where each of them is inductively
defined for every a ∈ A as follows:

(τA
e )ε(a) =

{
τA(a) if τA(a) > ε,

0 otherwise;
(8)

(τA
xu)ε(a) =

{(
δx ◦ (τA

u )ε
)
(a) if

(
δx ◦ (τA

u )ε
)
(a) > ε,

0 otherwise.
(9)

The previous definition gives an inductive way to construct all elements of
the family {(τA

u )ε|u ∈ X∗}, for every fuzzy automaton A and ε > 0. With the
following result, we give an alternative way to construct these elements. Namely,
we claim that each (τA

u )ε can be constructed directly from τA
u , for every u ∈ X∗.

Lemma 1. Let A = (A, σA, δA, τA) be a fuzzy automaton and let ε > 0. For
every u ∈ X∗ and a ∈ A, the following holds:

(τA
u )ε(a) =

{
τA
u (a) if τA

u (a) > ε,

0 otherwise.
(10)

Proof. We prove the statement of the lemma by induction on the length of the
word u ∈ X∗. The base case |u| = 0 (i.e., when u = e) holds by the definition (8).
For the induction step, assume that (10) holds for any word u ∈ X∗ such that
|u| � k, where k ∈ N. Consider a word u′ = xu, where u′ ∈ X∗, |u| = k and
x ∈ X, and an arbitrary a ∈ A. We need to show that

(τA
xu)ε(a) =

{
τA
xu(a) if τA

xu(a) > ε,

0 otherwise.

Consider the case where (δx ◦ (τA
u )ε)(a) > ε. Denote with c ∈ A the state

from A in which the maximum value

δA
x (a, c) · (τA

u )ε(c) =
∨
b∈A

δA
x (a, b) · (τA

u )ε(b) = (δA
x ◦ (τA

u )ε)(a)

is reached. Since δA
x (a, c) · (τA

u )ε(c) > ε, it follows that (τA
u )ε(c) > ε. Therefore,

according to the induction assumption, (τA
u )ε(c) = τA

u (c). Consequently,

(δA
x ◦ (τA

u )ε)(a) = δA
x (a, c) · τA

u (c) � (δA
x ◦ τA

u )(a) = τA
xu(a). (11)
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Assume that τA
xu(a) = δA

x ◦ τA
u =

∨
b∈A δA

x (a, b) · τA
u (b) is reached in d ∈ A. Then,

according to (11) we have

δA
x (a, d) · τA

u (d) = τA
xu(a) � δA

x ◦ (τA
u )ε(a) > ε,

which implies τA
u (d) > ε. By the induction assumption, it follows that τA

u (d) =
(τA

u )ε(d), which means:
(
δA
x ◦ (τA

u )ε
)
(a) � δA

x (a, d) · (τA
u )ε(d) = δA

x (a, d) · τA
u (d) = τA

xu(a). (12)

From (11) and (12) we obtain
(
δA
x ◦ (τA

u )ε
)
(a) = τA

xu(a). Therefore, τA
xu(a) > ε

and (τA
xu)ε(a) = τA

xu(a).
Consider the case where (δx ◦ (τA

u )ε)(a) � ε.
We need to show that τA

xu(a) � ε. For a contradiction, assume that τA
xu(a) >

ε. But then there exists d ∈ A such that

τA
xu(a) =

∨
b∈A

δA
x (a, b) · τA

u (b) = δA
x (a, d) · τA

u (d),

which implies τA
u (d) > ε, and by the induction assumption, it follows that

τA
u (d) = (τA

u )ε(d). So,

ε < δA
x (a, d) · τA

u (d) = δA
x (a, d) · (τA

u )ε(d) �
(
δA
x ◦ (τA

u )ε
)
(a),

which contradicts the fact that
(
δA
x ◦ (τA

u )ε
)
(a) � ε. This completes the proof.

�

As 0 is the smallest element of I, the following result is a direct consequence
of Lemma 1.

Corollary 1. For a fuzzy automaton A = (A, σA, δA, τA) and ε > 0 we have:

(τA
u )ε � τA

u , for every u ∈ X∗. (13)

The following lemma is needed to prove the results of the rest of the paper.

Lemma 2. Let A = (A, σA, δA, τA) be a fuzzy automaton and let ε > 0. Then
the following holds:

[[A]](u) = σA ◦ (τA
u )ε, for every u ∈ X∗ such that [[A]](u) > ε. (14)

Proof. Choose an arbitrary u ∈ X∗ such that [[A]](u) > ε. Assume that the
maximum value of

[[A]](u) =
∨
a∈A

σA(a) · τA
u (a) = σA(b) · τA

u (b)

is reached in the state b ∈ A. Since [[A]](u) > ε by the assumption, we have that
τA
u (b) > ε. According to Lemma 1, we have (τA

u )ε(b) = τA
u (b). So,

σA ◦ (τA
u )ε � σA(b) · (τA

u )ε(b) =
∨
a∈A

σA(a) · τA
u (a) = [[A]](u).
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Note that the other inequality follows from (13), since

σA ◦ (τA
u )ε � σA ◦ τA

u = [[A]](u),

which completes the proof. �

Lemma 3. Let A = (A, σA, δA, τA) be a fuzzy automaton. Then the set
{(τA

u )ε | u ∈ X∗} is finite, for every ε > 0.

Proof. Note that the product t-norm is Archimedean and continuous t-norm
satisfying a ·a < a, for every a ∈ (0, 1). As proved in [6, Lemma 2.2], that means
that the subalgebra G generated by all the values of τ and δ that are greater
than ε is finite. But, note that every fuzzy subset (τA

u )ε (u ∈ X∗) is a mapping
A → G. Since G is a finite set, there can be a finite number of such mappings. �

4 ε-Inclusive and ε-Equivalent Fuzzy Languages

Let A = (A, σA, δA, τA) be a fuzzy automaton. As we use the product t-norm,
note that the value [[A]](u), calculated by (3), does not increase as we increase
the length of the word u. Moreover, the structure (I, ·) is not locally finite,
meaning that the value [[A]](u) may be different from all the values [[A]](v),
where |v| � |u|. In other words, very long words may be accepted by A with a
very small acceptance degree.

If we choose a very small degree ε > 0, it can be naturally assumed that
the words accepted by a fuzzy automaton A below the chosen threshold ε are
irrelevant or insignificant. Therefore, we can treat such words as not accepted
by A (or accepted in the degree 0 instead of some degree below ε). Naturally,
the value ε is chosen to be smaller than all non-zero values that functions δA, σA

and τA take. With this in mind, we give the following three definitions.

Definition 1. Let A = (A, σA, δA, τA) be a fuzzy automaton and ε > 0. Then
the ε-fuzzy language accepted by A, in the notation [[A]]ε, is defined by:

[[A]]ε(u) =

{
[[A]](u) if [[A]](u) > ε,

0 otherwise.

Definition 2. Let A = (A, σA, δA, τA) and B = (B, σB , δB , τB) be fuzzy
automata and ε > 0. Then:

– the fuzzy language [[A]] is ε-included in the fuzzy language [[B]] if:

[[A]]ε � [[B]]ε; (15)

– the fuzzy language [[A]] is ε-equivalent to the fuzzy language [[B]] if:

[[A]]ε = [[B]]ε; (16)

– fuzzy automata A and B are ε-equivalent if [[A]] is ε-equivalent to [[B]].
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5 ε-Weak Bisimulations for Fuzzy Automata

Let A = (A, σA, δA, τA) and B = (B, σB , δB , τB) be fuzzy automata and let
ε > 0. A fuzzy relation ϕ ∈ IA×B is an ε-weak forward simulation between A
and B if the following inequalities are satisfied:

σA � σB ◦ ϕ−1, (17)

ϕ−1 ◦ (τA
u )ε � (τB

u )ε, for all u ∈ X∗. (18)

Furthermore, if ϕ is an ε-weak forward simulation between A and B and ϕ−1 is
an ε-weak forward simulation between B and A, or in other words, if ϕ satisfies
(17), (18) and:

σB � σA ◦ ϕ, (19)

ϕ ◦ (τB
u )ε � (τA

u )ε, for all u ∈ X∗, (20)

then ϕ is an ε-weak forward bisimulation between A and B. In what follows,
we drop the expression “between A and B” when fuzzy automata A and B are
clear from the context. Moreover, we call ε-weak forward (bi)simulations simply
just ε-weak (bi)simulations. It is important to emphasize that, by the properties
proved in Sect. 3, there are finitely many inequalities in (18) and (20). So, in the
contrast to the case of classical weak (bi)simulations, here we can always check
the existence of ε-weak (bi)simulations.

The following theorem provides a fundamental property of ε-weak simulations
and ε-weak bisimulations.

Theorem 1. Let A = (A, σA, δA, τA) and B = (B, σB , δB , τB) be fuzzy
automata and let ε > 0. Then:

a) if there exists an ε-weak simulation between A and B, then [[A]] is ε-included
in [[B]], i.e., (15) holds;

b) if there exists an ε-weak bisimulation between A and B, then [[A]] is ε-
equivalent to [[B]], i.e., (16) holds.

Proof. a) Let ϕ be an ε-weak forward bisimulation between A and B, for some
ε > 0. Choose an arbitrary word u ∈ X∗. Consider separately the following two
cases:
Case 1): Assume that [[A]](u) > ε. Then, according to Lemma 2, we have that
σA ◦ τA

u = σA ◦ (τA
u )ε. By using the fact that ϕ is an ε-weak forward simulation,

as well as (13), we get:

[[A]](u) = σA ◦ τA
u = σA ◦ (τA

u )ε � σB ◦ ϕ−1 ◦ (τA
u )ε � σB ◦ (τB

u )ε

� σB ◦ τB
u = [[B]](u).

In conclusion, we obtained that ε < [[A]](u) � [[B]](u). Thus, [[A]]ε(u) � [[B]]ε(u).
Case 2): Assume that [[A]](u) � ε. Then [[A]]ε(u) = 0 � [[B]]ε(u). This completes
the proof for part a).
b) The assertion follows immediately from the assertion a). �
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As we can see from the definition and the previous theorem, ε-weak
(bi)simulations are very important from the two points. First, in the contrast
to the case of weak (bi)simulations, it is always possible to check the existence
of ε-weak (bi)simulations. Second, ε-weak (bi)simulations preserve the language
(equivalence) inclusion for all the words which are accepted by one automaton
with reasonable degree (since we chose the value ε to be extremely small, we can
assume that words are not accepted by some automaton if they are accepted
with values smaller than that given value).

Example 1. Let A = (A, σA, δA, τA) and B = (B, σB , δB , τB) be fuzzy automata
over the product structure and the alphabet X = {x}, where:

σA =
[
1 1 0

]
, δA

x =

⎡
⎣1 1 0

1 1 0
0 0 1

2

⎤
⎦ , τA =

⎡
⎣ 1

1
1
2

⎤
⎦ ,

σB =
[
1 1

]
, δB

x =
[

1 0
0 1

2

]
, τB =

[
1
4
5

]
.

The system of fuzzy relation inequalities for checking whether a given fuzzy
relation ϕ ∈ IA×B is a weak forward bisimulation between A and B is equal to:

[
1 1 0

]
�

[
1 1

] ◦ ϕ−1,

ϕ−1 ◦
⎡
⎣ 1

1
1

2n+1

⎤
⎦ �

[
1
1
2n

4
5

]
,

[
1 1

]
�

[
1 1 0

] ◦ ϕ,

ϕ ◦
[

1
1
2n

4
5

]
�

⎡
⎣ 1

1
1

2n+1

⎤
⎦ , for n ∈ N.

Note that the system consists of infinitely many inequalities. On the other hand,
in the case when ε = 0.01, the system for determining if a fuzzy relation is an
ε-weak forward bisimulation is finite, and for the case n � 6 previous system of
inequalities transforms to:

ϕ−1 ◦
⎡
⎣1

1
0

⎤
⎦ �

[
1
1
26

4
5

]
,

ϕ−1 ◦
⎡
⎣1

1
0

⎤
⎦ �

[
1
0

]
,

ϕ ◦
[

1
1
26

4
5

]
�

⎡
⎣1

1
0

⎤
⎦ ,

ϕ ◦
[

1
0

]
�

⎡
⎣1

1
0

⎤
⎦ .

The following theorem provides a way to determine the greatest ε-weak for-
ward (bi)simulation.

Theorem 2. Let A = (A, σA, δA, τA) and B = (B, σB , δB , τB) be fuzzy
automata, and let ε > 0. Then:

a) if a fuzzy relation ϕ =
∧

u∈X∗(τA
u )ε\(τB

u )ε satisfies the condition (17), then
it is the greatest ε-weak forward simulation between A and B;

b) if a fuzzy relation ϕ =
∧

u∈X∗(τA
u )ε|(τB

u )ε satisfies the conditions (17) and
(19), then it is the greatest ε-weak forward bisimulation between A and B.
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Proof. We prove only the part a). A fuzzy relation ϕ ∈ IA×B is an ε-weak
forward simulation between A and B if it satisfies the conditions (17) and (18).
Using the adjunction property, it can be proven that (18) is equivalent to:

ϕ �
∧

u∈X∗
(τA

u )ε\(τB
u )ε.

Therefore, if
∧

u∈X∗(τA
u )ε\(τB

u )ε satisfies (17), then it is the greatest ε-weak
forward simulation between A and B. �

Example 2. Consider the fuzzy automata from the previous example. Using The-
orem 2, we compute the greatest ε-weak forward bisimulation, which is equivalent
to:

ϕ =

⎡
⎣1 0

1 0
0 5

8

⎤
⎦ .

6 Conclusion

This paper introduces ε-weak bisimulations for fuzzy automata defined over the
real-unit interval and the product t-norm, where ε > 0 is a very small value. We
demonstrated that such ε-weak bisimulations are always computable, in contrast
to their counterpart weak bisimulations introduced in [5]. The main result is
that, if there exists an ε-weak bisimulation between two fuzzy automata, then
they are ε-equivalent, in a sense that they accept each word in degrees that are
either equal or both less than or equal to ε. We would like to note that this
approximation of fuzzy languages is new and different from the similar concept
studied in [6].

In this work, we used the specific properties of the product t-norm. We leave
the generalization of the results for fuzzy automata defined over other nonlocally
finite structures to future work.
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2. Bělohlávek, R., Vychodil, V.: Fuzzy Equational Logic. Studies in Fuzziness and
Soft Computing, Springer, Heidelberg (2005). https://doi.org/10.1007/b105121
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some extent. This paper provides further advancement regarding approx-
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1 Introduction
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Recently, scholars have focused on the so-called approximate bisimulations for
various fuzzy systems. These approximate bisimulations generalize the notion of
the bisimulation so that it can connect systems that are “more or less” equivalent,
or equivalent to some degree. In other words, approximate bisimulations do not
consider the equivalence of the observed systems as the crisp phenomenon (we
do not say that the two systems are equivalent or not) but rather as the fuzzy
phenomenon (we say that they are equivalent to some extent).

The most recent advances in the study of approximate bisimulations have
been established in the setting of fuzzy automata, where they have been defined
as crisp [24–26] and fuzzy relations [11,21]. In addition, the latter approach has
been applied in the positional analysis of fuzzy social networks [12]. As it turns
out, approximate bisimulations are not just a generalization of the concept of
bisimulations. That is, not only that we can compute them in cases when there
are no bisimulations between the observed fuzzy systems, but there are many
properties that are characteristic only for them (see the above-referenced papers,
as well as [22] for a more general setting).

This paper aims to bring further insights into approximate bisimulations and
their properties, mainly concerning their approximation degrees. Our contribu-
tions are the following. First, we define approximate bisimulations (Definition 1)
over the so-called fuzzy graphs, a general structure recently introduced in [17,19]
capable of wrapping the definitions of commonly occurred fuzzy graph-based
structures, including fuzzy automata, fuzzy labeled transition systems, fuzzy
Kripke models, fuzzy social networks and fuzzy interpretations in description
logic. Although similar, our definition of approximate bisimulations is new and
different from the definition of approximate bisimulations given in other fuzzy
settings (see references above). Then, we prove the conditions for the existence
of the greatest approximate bisimulation in a degree at least λ in Theorem 1. In
the end, three results exploring the connections between approximate bisimula-
tions and their approximation degrees are given by Theorems 2, 3 and 4. The
visual depictions of these results are provided in Figs. 1, 2 and 3.

2 Preliminaries

In this paper, we use a Heyting algebra as the underlying structure of truth val-
ues, which is an algebraic structure H = (H,∧,∨,→, 0, 1) such that (H,∧,∨, 0, 1)
is a bounded lattice such that for all u, v ∈ H there is the greatest element x ∈ H
such that u ∧ x ≤ v. This element is the relative pseudo-complement of u with
respect to v, and is denoted by u → v (see [6]). A complete Heyting algebra is
a Heyting algebra that is a complete lattice. It can be proved (see [6, Proposi-
tion 1.5.4]) that a complete lattice (H,∧,∨) is a Heyting algebra if and only if
the infinite distributive law holds in H, i.e. for an arbitrary index set I, u ∈ H
and {vi}i∈I ⊆ H:

u ∧
(∨

i∈I

vi

)
=

∨
i∈I

(u ∧ vi).
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Every Heyting algebra admits the biimplication, the operation on H (labeled ↔)
defined with u ↔ v = (u → v) ∧ (v → u).

One of the most prominent example of a Heyting algebra is the Gödel algebra,
in which H = [0, 1], ∧ = min, ∨ = max and u → v = 1 if u ≤ v and u →
v = v otherwise. Other prominent examples include the Boolean algebra, the
Lindenbaum algebra of propositional intuitionistic logic, and �Lukasiewicz-Moisil
algebras (LMn, for every n ∈ N). Moreover, every complete residuated lattice
with the idempotent multiplication is a Heyting algebra (see [1,2,22] for more
details).

In what follows, let H be a complete Heyting algebra. A fuzzy subset of a set
U over H, or simply a fuzzy subset of U , is any mapping from U into H, with the
equality and the inclusion (ordering) of fuzzy sets being defined coordinate-wise
(cf. [1,2]). With HU we denote the collection of all fuzzy subsets of U .

A fuzzy relation between two sets U and V is any mapping from U × V to
H, i.e., any fuzzy subset of U × V . Consequently, the equality and the inclusion
(ordering) of fuzzy relations are defined as for fuzzy sets. The set of all fuzzy
relations between U and V is denoted by HU×V . For a fuzzy relation A ∈ HU×V ,
the fuzzy relation A−1 ∈ HV ×U is the inverse of A, and is given by A−1(v, u) =
A(u, v), for every u ∈ U and v ∈ V .

Let U , V and W be nonempty sets. For fuzzy relations A ∈ HU×V , B ∈
HV ×W and fuzzy sets f ∈ HU , g ∈ HV , we define compositions A◦B ∈ HU×W ,
f ◦ A ∈ HV and A ◦ g ∈ HU with

(A ◦ B)(u,w) =
∨

v∈V

A(u, v) ∧ B(v, w),

(f ◦ A)(v) =
∨

u∈U

f(u) ∧ A(u, v),

(A ◦ g)(u) =
∨

v∈V

A(u, v) ∧ g(v),

for every u ∈ U , v ∈ V and w ∈ W , as well as the composition f1 ◦ f2 ∈ H, for
fuzzy sets f1, f2 ∈ HU with

f1 ◦ f2 =
∨

u∈U

f1(u) ∧ f2(u).

It can be easily verified that ◦ is an associative operation, regardless of the types
of fuzzy sets or the fuzzy relations that take part in the composition, as long
as the composition is possible. In addition, it is monotonic in both parameters.
Moreover, the following properties can also be proved:(∨

i∈I

Ai

)
◦ B =

∨
i∈I

(Ai ◦ B) ,

(∨
i∈I

Ai

)−1

=
∨
i∈I

A−1
i . (1)

For two fuzzy sets f, g ∈ HU , we define their degree of subsethood f � g ∈ H as

f � g =
∧

u∈U

f(u) → g(u).
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Similarly, we define their degree of similarity f ≈ g ∈ H as

f ≈ g =
∧

u∈U

f(u) ↔ g(u).

Intuitively, f � g measures the degree of subsethood (or the inclusion degree)
of the fuzzy set f in the fuzzy set g. Similarly, f ≈ g measures the degree of
equality of fuzzy sets f and g, i.e., the degree to which f and g are similar.
These notations are easily extended for fuzzy relations. The following properties
that hold for every A,B,C,D ∈ HU are used through the rest of the paper (see
[1] for more details):

(A � A) = 1, (A ≈ A) = 1, (2)
(A ≈ B) = (B ≈ A), (3)
(A ≈ B) = ((A � B) ∧ (B � A)), (4)
(A � B) = 1 iff A ≤ B, (5)
((A � B) ∧ (B � C)) ≤ (A � C), (6)
((A ≈ B) ∧ (B � C) ∧ (C ≈ D)) ≤ (A � D). (7)

Moreover, for every Ai, B ∈ HU , where i ∈ I, we have:((∨
i∈I

Ai

)
� B

)
=

(∧
i∈I

(Ai � B)

)
. (8)

Additionally, for fuzzy relations R1, R2 ∈ HU×V and P1, P2 ∈ HV ×W , we have
(see also [1]):

((R1 ≈ R2) ∧ (P1 ≈ P2)) ≤ ((R1 ◦ P1) ≈ (R2 ◦ P2)). (9)

3 Approximate Bisimulations for Fuzzy Graphs

In the sequel, let H be a complete Heyting algebra. A fuzzy labeled graph, or
simply just a fuzzy graph, is a tuple G = (V,E,L,ΣV , ΣE), where:

– V is a nonempty set of vertices,
– ΣV is a set of vertex labels,
– ΣE is a set of edge labels,
– E : V × ΣE × V → H is the fuzzy set of labeled edges,
– L : V → (ΣV → H) is called the labeling function of vertices.

For every vertex label p ∈ ΣV we define the fuzzy subset Lp : V → H as
Lp(x) = L(p)(x), for every x ∈ V . Similarly, for every edge label r ∈ ΣE we
define the fuzzy relation Er : V × V → H as Er(x, y) = E(x, r, y), for every
x, y ∈ V . Intuitively, Lp(x) represents the degree to which a node x has a label
p, while Er(x, y) represents the degree to which there is a directed edge from
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x to y labeled by r. Because the underlying structure of the truth values is a
complete Heyting algebra, we allow the sets V , ΣV and ΣE to be infinite.

The notion of a fuzzy graph was introduced in [17,19], and includes as par-
ticular cases other well-known fuzzy graph-based notions. For example, fuzzy
automata are fuzzy graphs with the set ΣV = {i, f}, where Li is called the
fuzzy set of initial states, while Lf is called the fuzzy set of final states of a
fuzzy automaton. Note that fuzzy automata are fuzzy graphs that can accept
sequences of symbols (i.e., words) to a certain degree.

Definition 1. Let G = (V,E,L,ΣV , ΣE) and G′ = (V ′, E′, L′, ΣV , ΣE) be
fuzzy graphs over the same signature (ΣV , ΣE), and let λ ∈ H be a scalar from
the Heyting algebra H. A fuzzy relation R ∈ HV ×V ′

is called a λ-approximate
bisimulation between G and G′ if:

λ =
∧

p∈ΣV

(
(R−1 ◦ Lp � L′

p) ∧ (R ◦ L′
p � Lp)

)
∧

∧
r∈ΣE

(
(R−1 ◦ Er � E′

r ◦ R−1) ∧ (R ◦ E′
r � Er ◦ R)

)
. (10)

When λ = 1, then approximate bisimulations, as given by Definition 1, come
down to bisimulations given in [7,13,16]. Following the approach given in [11,21],
one can aim to define two types of approximate simulations and four types of
approximate bisimulations, where each type of approximate (bi)simulation can
be defined by the specific combination of elements in (10), and to have ≈ instead
of � in some places. As the full difference between these types of approximate
(bi)simulations is already explained in [11], and it is irrelevant for the current
study, as all the results in this paper for one type of approximate (bi)simulation
can be easily extended to other types using (4), we do not find it relevant to
study all types separately. Rather, we focus on the one type of approximate
bisimulation given by Definition 1. Recall again that, in the setting of fuzzy
automata, approximate simulations preserve the language subsethood to the
certain degree, while approximate bisimulations preserve the language similarity
to the certain degree between fuzzy automata (cf. [11,21]).

It should be emphasized that, if a fuzzy relation R ∈ HV ×V ′
is

a λ-approximate bisimulation between G = (V,E,L,ΣV , ΣE) and G′ =
(V ′, E′, L′, ΣV , ΣE), then the following holds:

λ ≤ (R−1 ◦ Lp � L′
p), for every p ∈ ΣV , (11)

λ ≤ (R ◦ L′
p � Lp), for every p ∈ ΣV , (12)

λ ≤ (R−1 ◦ Er � E′
r ◦ R−1), for every r ∈ ΣE , (13)

λ ≤ (R ◦ E′
r � Er ◦ R), for every r ∈ ΣE . (14)

Note that a fuzzy relation is either a bisimulation between two fuzzy graphs
or not. On the other hand, every fuzzy relation is an approximate bisimulation
between two fuzzy graphs to a certain degree. The following result concerns when
there exists the greatest approximate bisimulation between two fuzzy graphs for
a chosen approximation degree.
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Theorem 1. Let G = (V,E,L,ΣV , ΣE) and G′ = (V ′, E′, L′, ΣV , ΣE) be fuzzy
graphs over the same signature (ΣV , ΣE) such that they admit at least one
approximate bisimulation in a degree at least λ, for some λ ∈ H. Then there
exists the greatest approximate bisimulation between G and G′ in a degree at
least λ.

Proof. As a consequence of the assumptions of the Theorem, we get that the
family {Rj}j∈J of all fuzzy relations between V and V ′ that satisfy (11)–(14)
is nonempty. As we work with complete Heyting algebras, then there exists the
join of all elements from this family, which we denote by R. Then we need to
prove that R also satisfies (11)–(14). In order to prove that R satisfies (11), we
use (8) and (1) to obtain that for every p ∈ ΣV :

λ ≤
∧
j∈J

(
R−1 ◦ Lp � L′

p

)
=

⎛
⎝∨

j∈J

(
R−1

j ◦ Lp

)
� L′

p

⎞
⎠

=

⎛
⎜⎝

⎛
⎜⎝

⎛
⎝∨

j∈J

Rj

⎞
⎠

−1

◦ Lp

⎞
⎟⎠ � L′

p

⎞
⎟⎠ =

((
R−1 ◦ Lp

)
� L′

p

)
.

We can prove that R satisfies (12) analogously. We now prove that R satis-
fies (13). By the construction of R, we have that Rj ≤ R, for every j ∈ J , which
means that R−1

j ≤ R−1, and further E′
r ◦ R−1

j ≤ E′
r ◦ R−1, for every j ∈ J and

r ∈ ΣE . According to (5), we have that 1 = (E′
r ◦ R−1

j � E′
r ◦ R−1), for every

j ∈ J and r ∈ ΣE , which by (6) further yields:

(R−1
j ◦ Er � E′

r ◦ R−1
j ) = (R−1

j ◦ Er � E′
r ◦ R−1

j ) ∧ (E′
r ◦ R−1

j � E′
r ◦ R−1)

≤ (R−1
j ◦ Er � E′

r ◦ R−1)

As (13) holds for every Rj (in the place of R), by using the previous inequality,
we get that for every r ∈ ΣE :

λ ≤
⎛
⎝∧

j∈J

(R−1
j ◦ Er � E′

r ◦ R−1
j )

⎞
⎠ ≤

⎛
⎝∧

j∈J

(R−1
j ◦ Er � E′

r ◦ R−1)

⎞
⎠ .

Now we can apply (8) and (1) to obtain that, for every r ∈ ΣE ,

λ ≤
⎛
⎝

⎛
⎝∨

j∈J

(R−1
j ◦ Er)

⎞
⎠ � E′

r ◦ R−1

⎞
⎠ =

(
R−1 ◦ Er � E′

r ◦ R−1
)
,

which means that R satisfies (13). We can prove that R satisfies (14) analogously.
�

As every fuzzy relation between the sets of nodes of two fuzzy graphs is an
approximate bisimulation between these two fuzzy graphs to some degree, it
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comes naturally to ask what is the connection between different fuzzy relations
and their approximation degrees. The following theorem aims at providing the
answer.

Theorem 2. Let G = (V,E,L,ΣV , ΣE) and G′ = (V ′, E′, L′, ΣV , ΣE) be fuzzy
graphs over the same signature (ΣV , ΣE). Furthermore, let R,P ∈ HV ×V ′

be
two fuzzy relations such that R is a λ-approximate bisimulation and P is a μ-
approximate bisimulation between G and G′. Then:

(R ≈ P ) ≤ (λ ↔ μ).

Proof. As R ∈ HV ×V ′
is a λ-approximate bisimulation between G and G′, it

satisfies (11)–(14). Let P ∈ HV ×V ′
be an arbitrary fuzzy relation. We first focus

on (13). Starting from this inequality, we obtain:

λ ∧ (R ≈ P ) ≤
( ∧

r∈ΣE

(R−1 ◦ Er � E′
r ◦ R−1)

)
∧ (R ≈ P )

=
∧

r∈ΣE

(
(R−1 ◦ Er � E′

r ◦ R−1) ∧ (R−1 ≈ P−1)
)
.

Given (2) and the fact that (R−1 ≈ P−1) = (R−1 ≈ P−1) ∧ (R−1 ≈ P−1), we
further obtain:

λ ∧ (R ≈ P ) ≤
∧

r∈ΣE

(
(R−1 ◦ Er � E′

r ◦ R−1) ∧ (R−1 ≈ P−1) ∧ (Er ≈ Er)

∧ (E′
r ≈ E′

r) ∧ (R−1 ≈ P−1)

)
.

But (9) further yields:

λ ∧ (R ≈ P ) ≤
∧

r∈ΣE

(
(R−1 ◦ Er � E′

r ◦ R−1) ∧ (R−1 ◦ Er ≈ P−1 ◦ Er)

∧ (E′
r ◦ R−1 ≈ E′

r ◦ P−1)

)
.

By (3) and (7), it follows that:

λ ∧ (R ≈ P ) ≤
∧

r∈ΣE

(P−1 ◦ Er � E′
r ◦ P−1).

Thus, we have proved that P satisfies (13) for the threshold λ ∧ (R ≈ P ). We
can prove that P satisfies (11), (12) and (14) for the same threshold completely
analogously. This further yields:

λ ∧ (R ≈ P ) ≤
∧

p∈ΣV

(
(P−1 ◦ Lp � L′

p) ∧ (P ◦ L′
p � Lp)

)
∧

∧
r∈ΣE

(
(P−1 ◦ Er � E′

r ◦ P−1) ∧ (P ◦ E′
r � Er ◦ P )

)
= μ.
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In this way, we have proved that (R ≈ P ) ≤ λ → μ. Completely analogously, we
prove that (P ≈ R) ≤ μ → λ. But, since (3) holds, the proof follows. �

Theorem 2 is visually represented in Fig. 1, and can be verbally interpreted
as follows: If a fuzzy relation R is a λ-approximate bisimulation between fuzzy
graphs G and G′, and a fuzzy relation P is μ-approximate bisimulation between
G and G′, then the degree of equality of fuzzy relations R and P is not greater
than the degree of equality of degrees λ and μ.

Fig. 1. A visual depiction of Theorem 2.

Theorem 2 has the following application potential. Let G and G′ be two fuzzy
systems that can be modelled by fuzzy graphs, and let R be some fuzzy relation
between G and G′, and say that it is an approximate bisimulation in a degree λ.
Then, if we want to choose another fuzzy relation P as an approximate bisimu-
lation, then it also has its approximation degree μ. But according to Theorem 2,
if the chosen fuzzy relations R and P are equal to a very high degree, then their
approximation degrees will also be equal.

If we interpret Theorem 2 for fuzzy graphs defined over a linearly ordered
Heyting algebra, we get the following result.

Corollary 1. Let G = (V,E,L,ΣV , ΣE) and G′ = (V ′, E′, L′, ΣV , ΣE) be fuzzy
graphs over the same signature (ΣV , ΣE) defined over a linearly ordered Heyting
algebra H. Furthermore, let R ∈ HV ×V ′

be a λ-approximate bisimulation between
G and G′, and let P ∈ HV ×V ′

be a μ-approximate bisimulation between G and
G′. Then, either λ = μ or (R ≈ P ) ≤ min{λ, μ}.

This corollary follows immediately from Theorem 2. The reason is that, when
the underlying Heyting algebra is linearly ordered, (λ ↔ μ) is equal to 1 when
λ = μ and equal to min{λ, μ} when λ �= μ.

In what follows, we measure the similarity degree of two fuzzy graphs, and
find its connection with the approximation degrees of approximate bisimulations.
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Definition 2. Let G = (V,E,L,ΣV , ΣE) and G′ = (V ′, E′, L′, ΣV , ΣE) be
fuzzy graphs over the same signature (ΣV , ΣE). Then the degree of equality
of fuzzy graphs G and G′ is defined by:

(G ≈ G′) =

( ∧
r∈ΣE

Er ≈ E′
r

)
∧

⎛
⎝ ∧

p∈ΣV

Lp ≈ L′
p

⎞
⎠ . (15)

Theorem 3. Let G1 = (V,E1, L1, ΣV , ΣE) and G′
1 = (V ′, E′

1, L
′
1, ΣV , ΣE) be

fuzzy graphs over the same signature (ΣV , ΣE) such that R ∈ HV ×V ′
is a λ-

approximate bisimulation between G1 and G′
1. Furthermore, let G2 = (V,E2, L2,

ΣV , ΣE) and G′
2 = (V ′, E′

2, L
′
2, ΣV , ΣE) be fuzzy graphs over the same signature

(ΣV , ΣE) such that G1 and G2 (resp. G′
1 and G′

2) share the same set of nodes.1

In addition, let R be a μ-approximate bisimulation between G2 and G′
2. Then:

(G1 ≈ G2) ∧ (G′
1 ≈ G′

2) ≤ (λ ↔ μ).

Proof. Again, we firstly focus on (13). We use the fact that, for any two fuzzy
graphs, their degree of equality is less than or equal to any of the two values
given on the right-hand side of (15). This further gives:

λ ∧ (G1 ≈ G2) ∧ (G′
1 ≈ G′

2)

≤ λ ∧
( ∧

r∈ΣE

(E1)r ≈ (E2)r

)
∧

( ∧
r∈ΣE

(E′
1)r ≈ (E′

2)r

)

≤
( ∧

r∈ΣE

(R−1 ◦ (E1)r � (E′
1)r ◦ R−1)

)
∧

( ∧
r∈ΣE

(E1)r ≈ (E2)r

)

∧
( ∧

r∈ΣE

(E′
1)r ≈ (E′

2)r

)
.

Using the same reasoning as in the proof of Theorem 2, we further obtain:

λ ∧ (G1 ≈ G2) ∧ (G′
1 ≈ G′

2)

≤
∧

r∈ΣE

[
(R−1 ≈ R−1) ∧ ((E1)r ≈ (E2)r) ∧ (R−1 ◦ (E1)r � (E′

1)r ◦ R−1)

∧((E′
1)r ≈ (E′

2)r) ∧ (R−1 ≈ R−1)
]

≤
∧

r∈ΣE

[
(R−1 ◦ (E1)r ≈ R−1 ◦ (E2)r) ∧ (R−1 ◦ (E1)r � (E′

1)r ◦ R−1)

∧((E′
1)r ◦ R−1 ≈ (E′

2)r ◦ R−1)
]

≤
∧

r∈ΣE

(R−1 ◦ (E2)r � (E′
2)r ◦ R−1).

1 Theoretically speaking, it is enough to assume that there is a bijection between the
sets of nodes of fuzzy graphs G1 and G2, as well as there is also a bijection between
the set of nodes of fuzzy graphs G′

1 and G′
2.
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Analogously, we prove that the conditions (11), (12) and (14) hold for the degree
λ∧(G1 ≈ G2)∧(G′

1 ≈ G′
2) and the fuzzy relation R. Thus, λ∧(G1 ≈ G2)∧(G′

1 ≈
G′

2) ≤ μ. By symmetry, we have μ∧(G1 ≈ G2)∧(G′
1 ≈ G′

2) ≤ λ, which completes
the proof. �

Theorem 3 is visually represented in Fig. 2, and can be verbally interpreted as
follows: Assume that a fuzzy relation R is a λ-approximate bisimulation between
fuzzy graphs G1 and G′

1, and there exist fuzzy graphs G2 and G′
2 such that G1

and G2, as well as G′
1 and G′

2 have the same sets of nodes. Then, if R is a
μ-approximate bisimulation between G2 and G′

2, then the meet of the degree of
equality of G1 and G2 and the degree of equality of G′

1 and G′
2 does not exceed

the degree of equality of λ and μ).

Fig. 2. A visual depiction of Theorem 3.

To sum up, we can combine Theorem 2 and Theorem 3 into a single one.

Theorem 4. Let G1 = (V,E1, L1, ΣV , ΣE) and G′
1 = (V ′, E′

1, L
′
1, ΣV , ΣE) be

fuzzy graphs over the same signature (ΣV , ΣE) such that R ∈ HV ×V ′
is a λ-

approximate bisimulation between G1 and G′
1. Furthermore, let G2 = (V,E2, L2,

ΣV , ΣE) and G′
2 = (V ′, E′

2, L
′
2, ΣV , ΣE) be fuzzy graphs over the same signature

(ΣV , ΣE) such that G1 and G2 (resp. G′
1 and G′

2) share the same set of nodes.
Then, any fuzzy relation P ∈ HV ×V ′

is a μ-approximate bisimulation between
G2 and G′

2 with

(R ≈ P ) ∧ (G1 ≈ G2) ∧ (G′
1 ≈ G′

2) ≤ (λ ↔ μ).

Similar corollaries for Theorems 3 and 4 can be derived as we did for Theo-
rem 2.
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Fig. 3. A visual depiction of Theorem 4.

4 Conclusions

Approximate bisimulations between various fuzzy systems have recently emerged
as an important tool that allows us to fuzzify the equivalence between the
observed systems. In this paper, we have introduced the concept of approxi-
mate bisimulation between two fuzzy graphs. Note that a fuzzy graph is a gen-
eral structure that includes fuzzy automata, fuzzy labeled transition systems,
fuzzy Kripke models, fuzzy social networks and fuzzy interpretations in descrip-
tion logic as particular cases. That means that our definition is applicable in
various fuzzy settings. We provide several theorems that establish the connec-
tions between the similarity degrees of fuzzy graphs, approximate bisimulations
between them, and their approximation degrees. We leave for future work defin-
ing approximate bisimulations for fuzzy graphs in other ways (cf. [18] for more
details) and developing algorithms for their computation.
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Abstract. Current research on the advantages and trade-offs of using
characters, instead of tokenized text, as input for deep learning mod-
els, has evolved substantially. New token-free models remove the tradi-
tional tokenization step; however, their efficiency remains unclear. More-
over, the effect of tokenization is relatively unexplored in sequence tag-
ging tasks. To this end, we investigate the impact of tokenization when
extracting information from documents and present a comparative study
and analysis of subword-based and character-based models. Specifically,
we study Information Extraction (IE) from biomedical texts. The main
outcome is twofold: tokenization patterns can introduce inductive bias
that results in state-of-the-art performance, and the character-based
models produce promising results; thus, transitioning to token-free IE
models is feasible.

Keywords: Information Extraction · Tokenization · Inductive Bias

1 Introduction

Currently, neural network models are replacing traditional Natural Language
Processing (NLP) pipelines, as their ability to learn abstract and meaningful
representations improves the performance. Hence, the complex and error-prone
handcrafted feature engineering has been substantially reduced. However, the
word-level or subword-level tokenization step remains, being carried over from
the traditional era of NLP systems. Designing a custom tokenizer based on lin-
guistic characteristics is time-consuming, expensive, and language specific and
requires feature engineering and linguistic-related expertise. To alleviate these
issues, data-driven approaches, such as WordPiece [35], Byte Pair Encoding [27],
and SentencePiece [15], tokenize the text by splitting the strings based on fre-
quent words and subwords (word pieces) given a corpus. Nonetheless, these algo-
rithms struggle to handle special linguistic morphologies [5] and their impact in
sequence tagging tasks, such as Named Entity Recognition (NER), is relatively
unexplored. The open research discussion on the tokenization step motivates the
first research question of the study:
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Massanet et al. (Eds.): EUSFLAT 2023/AGOP 2023, LNCS 14069, pp. 593–606, 2023.
https://doi.org/10.1007/978-3-031-39965-7_49

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-39965-7_49&domain=pdf
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594 C. Theodoropoulos and M.-F. Moens

– How does the tokenization step affect the performance in the IE task? (RQ1)

In this paper, we conduct a tokenization analysis and inductive bias study
to explore the existence of potential patterns, related to the tokenization step,
by solving the IE task in the biomedical domain using subword-based models.
We refer to the general definition of inductive bias in AI models, as the set of
assumptions that the learner uses to predict outputs of given inputs that it has
not encountered [20]. We base our study on Partition Filter Network (PFN) [37],
which solves the NER [10,21] and Relation Extraction (RE) [23,28] tasks jointly
by modeling the interaction between the tasks and learning independent and
shared representations. We choose this model because it leverages the Language
Model (LM) representations by design. Hence, we can experiment with different
LMs and explore their effectiveness. The main outcome of the analysis is that
the tokenization patterns introduce inductive bias in the IE task. Additionally,
the similarity analysis of the learned entity representations probes the existence
of inductive bias. Following this key finding, we explore the capabilities of a
tokenization bias-free model and answer the second research question:

– Can a transition to character-level models be carried out without significant
performance degradation? (RQ2)

Recently, new character-based models [6,9,30,36] that directly process
sequences of characters have been released, and transitioning to this kind
of model by replacing subword-based models without losing performance has
become a focus of research. Hence, we conduct a comparative study for the
IE task, including subword-based and character-based models. Additionally, we
present a hyphenation analysis to detect possible linguistic characteristics, by
exploring patterns of subwords with a length of 4 characters, and probe the
hypothesis that character-based models are more capable of capturing special
text morphology.

In summary, the key contributions are as follows:

– We present an extensive analysis to investigate the effect of tokenization in
the IE task for the biomedical domain and raise awareness.

– We identify the existence of inductive bias when specific tokenization patterns
are detected, which leads to new state-of-the-art (SOTA) performance in the
ADE dataset [11].

– We present a comparative study, including subword-based and character-
based models, and draw insights supported by the hyphenation analysis.

2 Related Work

Ács et al. (2021) [1] explore the effect of subword pooling on three tasks: mor-
phological probing, POS, and NER tagging. Zhang and Tan (2021) [38] present
a comparison of different textual representations for cross-lingual information
retrieval. Traditional token [26], subword [32] and character-level representations
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are compared for the German, French and Japanese languages. The main out-
come is that leveraging the traditional token representations results in the best
performance, and combining subword representations can be beneficial in some
cases. In our study, we compare the pretrained representations of subword-based
and character-based LMs in the IE task. In addition, we explore the performance
of the different models in an end-to-end training setup.

Itzhak and Levy (2021) [12] discuss models that implicitly learn at the char-
acter level even when they are trained on the subword level. More precisely,
they explore the capabilities of RoBERTa-base and Large [19], GPT2-medium
[24], and AraBERT-large [3] in word spelling. The main results indicate that
the embedding layer of the subword-level LMs contains considerable informa-
tion about the character composition of the tokens. The study does not include
character-based LMs (e.g. CharacterBERT) by design. In contrast, we compare
subword-based and character-based LMs in the IE task and implicitly explore the
capabilities of the models on capturing special linguistic morphology (biomedical
text) by presenting a hyphenation analysis.

To the best of our knowledge, there is no related work for the first research
question of our paper and the revealing of inductive bias in the IE task when
tokenization patterns are present.

3 Tokenization Analysis - Datasets

In this section, we conduct a tokenization analysis for the dataset used in the
study. We choose the biomedical (ADE) dataset to explore the effect of tok-
enization in a special domain. The ADE dataset contains entities of Drugs and
Adverse Effects (AE) and has labels for the relations between them. The tok-
enizer of cased BERT [7] and bioclinical BERT (b-BERT) [2] is based on the
WordPiece algorithm, while ALBERT [16] adopts the SentencePiece algorithm.

In Table 2, we present the effect of tokenization on the average sentence
length, in terms of word pieces (subwords), for each dataset. The sentence length
increases by approximately 12 tokens, up to 58%, after the tokenization in the
biomedical domain. To further explore the number of word pieces per entity
type, we isolate the unique entities1. Then, we find the unique words that are
part of each entity type and tokenize the unique entities and words using the
different tokenizers to notice the difference in the length and the addition of the
word pieces. In Table 1 the last column represents the average tokenized word
length per entity type, and the Out type describes the words that are not part of
an entity of interest. In the ADE dataset, the length of the drug and AE entities
increases substantially, and the drug entities are split into more word pieces.
Particularly, a word that is part of a drug entity is split into approximately 4
word pieces, on average, when using the tokenizer of cased BERT and b-BERT.
The tokenizer of ALBERT tends to split the entities of interest into fewer pieces.

1 We note that the set of unique entities for the case and uncased text processing is
different, which is why the initial average entity length might be different.
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Table 1. Average Entity Length - ADE
dataset

Tokenizer Type Entity Tokenized Entitya Word

cased BERT Drug 1.37 4.78 (+248.9%) 3.92

b-BERT 1.37 4.79 (+249.6%) 3.93

ALBERT 1.42 4.37 (+207.7%) 3.38

cased BERT AE 2.66 6 (+125.6%) 2.81

b-BERT 2.66 5.9 (+121.8%) 2.77

ALBERT 2.72 5.29 (+94.5%) 2.38

cased BERT Out – – 2.11

b-BERT – – 2.06

ALBERT – – 2.09
a (+ × %): percentage increase

Table 2. Average Sentence Length

Tokenizer Dataset Sentence Tokenized Sentencea

cased BERT ADE 21.23 33.56 (+58.1%)

b-BERT 33.1 (+55.9%)

ALBERT 33.25 (+56.6%)
a (+ × %): percentage increase

4 Inductive Bias

In this section, we answer the first research question (RQ1). Following the obser-
vations of the tokenization analysis, we conduct a study to investigate whether
tokenization patterns introduce inductive bias in the IE task.

4.1 Experimental Setup

The overall model architecture of this paper is presented in Fig. 1. The sen-
tence is processed by an LM, followed by an aggregation step that constructs
the word-level embeddings by calculating the summed and averaged representa-
tions. When the aggregation step is not used, the model operates in the subword
level as the PFN module directly processes the output of the LM. The PFN mod-
ule models a two-way interaction between the NER and RE tasks, as it leverages
the representations of the LM and segments the neurons into two task partitions
(independent representations) and one shared partition (inter-task interaction).
PFN consists of a partition filter encoder, a NER unit, and a RE unit [37].
The partition filter encoder is a recurrent feature encoder that stores informa-
tion in intermediate memories. In each step, the neurons of the encoder are
divided into three partitions: the relation, entity, and shared partitions. Then
the encoder combines these partitions for task-specific feature generation and
filters out irrelevant, for each task, information [37]. The NER-specific and RE-
specific features are the input of the NER and RE units respectively. In this
section, we focus on the subword-based LMs (cased BERT, b-BERT, ALBERT
XLL) and run experiments with and without the aggregation step to explore
differences in performance. The models are trained end-to-end.

We train the PFN module2 (Fig. 1) using the hyperparameters that are
selected in the official paper of the model [37] to solve the joint IE task. The
training epochs are set to 100, the batch size is 20, and the learning rate is 2e-
5. We use ADAM [14] as the optimizer and keep the best model based on the

2 All the experiments are executed using a GeForce RTX 3090 24GB GPU.
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performance in the development set in each run. For the ADE dataset, 10-fold
cross-validation3 is applied [4,8,18], and 15%4 of the training set is used as the
development set. We use strict evaluation of the IE task [4,29]. An entity is pre-
dicted correctly if the boundaries and the type are detected. A relation is correct
if the type and the two involved entities are predicted correctly. We conduct a
statistical t-test (p-value ≤ 0.05) of the evaluation results to draw conclusions
in a more robust manner5. The results of the statistical t-test are available in
the Appendix section. We highlight that the inductive bias study is based on
the intra-model comparison, as we focus on the effect of the aggregation step.

Fig. 1. Model Architecture: The input sentence passes through the language model
and then the embeddings are aggregated if needed. Finally, the representations are
the input of the PFN module and the final predictions for the NER and RE task are
extracted.

4.2 Results - Discussion

For every model, the aggregation is beneficial as it improves the performance
in both NER and RE tasks (Table 3). More precisely, the addition of summed
aggregation improves the performance by 0.7%, 0.9% (NER task), and 0.3%,
0.8% (RE task) for the cased BERT-based and b-BERT-based models respec-
tively, compared to the aggregation-free models. For the ALBERT-based model
the averaged aggregation boosts the performance by 0.7% in both tasks. Cou-
pling this finding with the tokenization analysis (Table 2), the pattern of word-
piece splitting for words of interest (Drugs and AE) acts as inductive bias when
aggregation is used. The intra-model comparison reveals the existence of induc-
tive bias since the only difference lies in the addition of the aggregation step.
Even if the aggregation layer (simple summation and averaging) is not trainable,
the incoming gradient (backpropagation, [25]) from the PFN module appears to
be more informative for the IE task.
3 We use the same split as [8].
4 Random split with the same seed for a fair comparison.
5 The code and trained models are publicly available in the repository of the paper

for reproducibility and to facilitate further research. https://github.com/christos42/
inductive bias IE.

https://github.com/christos42/inductive_
https://github.com/christos42/inductive_
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Table 3. End-to-end training - Results

Language Model Aggregation NER RE

cased BERT – 89.2 ±1.3 80.2 ±2.6

Average 89.7 ±1.1 80.5 ±2.3

Summation 89.9 ±1.1 80.5 ±2

ALBERT XXL – 90.8 ±0.9 83.2 ±2.1

Average 91.5 ±0.8 83.9 ±1.6

Summation 91.2 ±0.8 83 ±1.3

b-BERT – 89.6 ±1 81.1 ±2.2

Average 90.1 ±1.1 81.3 ±2.1

Summation 90.5 ±0.9 81.9 ±2.1

CharacterBERT – 91.2 ±1 83.2 ±1.8

4.3 Similarity Analysis

An entity can consist of multiple words, and the entity boundaries should be
detected correctly by the model. Hence, the initial and the end words of the entity
are important. An entity can be split into multiple word pieces. For example,
the drug sodium polystyrene sulfonate (3 words) is split into sodium p-oly-sty-
rene su-lf-ona-te (9 word pieces) when the tokenizer of BERT is used. When the
aggregation step is not used, the model should detect the initial word (sodium)
and the end token (su) of the entity. In the inference step, the correctly detected
entity can be reconstructed with detokenization.

To more deeply investigate the inductive bias phenomenon, we conduct a
cosine similarity analysis for the different entities. The hypothesis is that the
detected inductive bias in the biomedical text can increase the similarity and
robustness of the entity representations. We use the trained LM of each run of
the inductive bias study, with and without aggregation, and extract the represen-
tations of the test set. Then, we separate the words of the entities based on the
entity type and the ordering of the words (start/end words). Hence, we have two
groups per entity. One contains the start words, and another contains the end
words. The Joint group consists of both the start and end words. The average
similarity of each group is calculated. As we run the experiments using 10-fold
cross-validation for the ADE dataset, we average the averaged similarity scores
across the different splits. The results discussion is based on the intra-model
comparison.

In the ADE dataset (Table 4), generally, the averaged entity similarity is
increased when aggregation is used. Hence, the detected inductive bias, which
is correlated with the tokenization patterns, results in more similar entity rep-
resentations. In particular, the summed representations of cased BERT and b-
BERT are more or almost equally similar compared to the averaged and the
aggregation-free representations for both entity types. Especially, for the Drug
entity, the similarity increment is up to 10.5%, 3%, and 14.5% for the Start-word,
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End-word, and Joint groups respectively, when aggregation is used. Accordingly,
for the Adverse-Effect entity, the similarity increase is up to 11.5%, 4%, and
13.5%. For the ALBERT XXL language model, where the tokenization patterns
are less profound (Table 2), the similarity slightly increases, when aggregation
is used, in most cases. However, the increment is significantly lower than that
detected with the representations of cased BERT and b-BERT.

Table 4. Similarity Analysis: Average cosine similarity scores per entity group. The
total average scores across the different experimental runs are presented.

Language Model Aggregation Drugs Adverse Effects

Start End Joint Start End Joint

cased BERT – 67.43 82.65 56.84 51.43 78.24 40.44

Average 68.3 85.73 61.15 56.78 82.5 49.75

Summation 78.02 84.5 71.11 61.54 81.18 50.89

b-BERT – 67.76 84.51 57.06 53.86 79.92 41

Average 68.91 86.01 63.3 60.84 83.07 53.85

Summation 78.12 85.52 70.87 65.23 81.55 54.63

ALBERT XXL – 65.41 82.06 57.23 55.46 77.79 44.62

Average 65.89 81.03 57.88 55.18 78.46 46.11

Summation 67.53 77.06 59.93 53.44 73.42 43.68

5 Comparative Study

The existence of inductive bias that is related to the initial tokenization of the
text motivates the second research question (RQ2) of the paper. When tokeniza-
tion patterns are present and the likelihood of splitting a word of interest (part
of an entity) into multiple word pieces is higher, the addition of an aggregation
step increases the performance and the robustness of the entity representations.
Since the improved performance is correlated with this kind of inductive bias, a
comparison with character-based models that do not include a tokenization step
is important.

5.1 Baseline Setup: Frozen Embeddings

As we want to explore how feasible the transition to tokenizer-free models is, we
categorize the LMs into two categories based on the way they handle the input
text: subword-based and character-based models. In the comparative study, we
use bioclinical BERT for the ADE dataset6 to represent the subword-based set

6 We use the Transformers library [34].
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of models and we select CharacterBERT [9] as character-based representative.
CharacterBERT processes the initial text at the character level and removes
the tokenization step by incorporating the character-CNN module [22] to learn
representations at the word level. Since we intend to evaluate the significance
of tokenization, we include CharacterBERT and BERT models in the study, as
their main architecture is identical and their difference lies in the tokenization
step.

In the baseline setup, we want to directly evaluate the quality of the “off-the-
shelf” representations of different LMs when solving the IE task. As we directly
evaluate the pretrained representations, it is important to mention the corpus
that was used for pretraining the different LMs. Bioclinical BERT was initialized
with BioBERT (pretrained on PubMed abstracts and PMC OA7 [17] parameters
and pretrained on MIMIC III notes [13]. The medical version of CharacterBERT
was retrained on MIMIC III notes and PMC OA biomedical article abstracts.
Hence, the medical version of CharacterBERT and b-BERT were pretrained with
almost identical data and a comparison between these groups of LMs is safe.

First, we extract the word representations of each LM of the study offline. We
aggregate the subword-level embeddings (b-BERT) and construct the word-level
embeddings by calculating the averaged and summed representations. Charac-
terBERT extracts word-level representations by design. The overall experimental
setup (hyperparameter) is the same as the inductive bias study setting. The only
difference is that the LM is frozen (Fig. 1).

Table 5. Baseline Setup - Results

Language Model Aggregation NER RE

b-BERT Average 85.6 ± 0.7 75.7 ± 1.7

Summation 85.7 ± 0.7 75.1 ± 1.7

CharacterBERT – 87.5 ± 0.8 77.9 ± 1.5

The model that leverages the representations of medical CharacterBERT
performs significantly better, as it outperforms the model that uses the b-BERT
representations by around 2% in both RE and NER tasks (Table 5). This finding
illustrates that medical CharacterBERT is more capable of exploring and learn-
ing the special linguistic characteristics of biomedical text, as it produces more
meaningful representations than b-BERT. For the subword-based LM, the two
aggregation strategies result in similar performance.

5.2 Advanced Setup: End-to-End Training

In the advanced setup, we conduct experiments with end-to-end training to
also fine-tune the LMs and make comparisons on the final performance. To
7 PubMed Central Open Access: https://www.ncbi.nlm.nih.gov/pmc/tools/

openftlist/).

https://www.ncbi.nlm.nih.gov/pmc/tools/openftlist/
https://www.ncbi.nlm.nih.gov/pmc/tools/openftlist/
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this end, we extend the setup of the inductive bias study and incorporate the
character-based model of the comparative study. The CharacterBERT-based
model achieves very competitive results and outperforms the b-BERT-based
models in the advanced setup. The performance improvement is 0.7% (NER task)
and 1.3% (RE task) (Table 3). This is an additional indication that Character-
BERT is more capable of detecting special linguistic characteristics of medical-
related text, despite the suggestion that the subword-based LMs can indepen-
dently learn the essential character compositions [12].

5.3 Hyphenation Analysis

The comparative study reveals that the model that leverages CharacterBERT
is very competitive in the biomedical text. Following this main observation, we
conduct a hyphenation analysis to explore possible special linguistic characteris-
tics in the biomedical domain. The hypothesis is that the CharacterBERT-based
model performs very well because there is domain-specific linguistic morphology
in the biomedical text. We find the unique words for each entity type and then
we extract all subwords with a length of 4 characters and calculate the frequency
of each subword per entity type.

Figures 2 and 3 present the 25 most frequent subwords, excluding those that
are in the 50 most frequent subwords of the out-of-entity words8, for the Drug
and Adverse-Effect entities respectively. A special morphology is noticeable for
both entity types. Specifically, the words that are part of the Drug and the
Adverse-Effect entity have 11 (e.g. amin, mine, mide, etc.) and 19 (itis, osis,
emia, etc.) subwords accordingly, with frequencies higher than 20. These findings
confirm the initial hypothesis of the hyphenation analysis.

Fig. 2. Drug entity: 25 most frequent subwords with a length of 4 characters

8 The unique words that are not a part of any entity type of the dataset.
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Fig. 3. Adverse-Effect entity: 25 most frequent subwords with a length of 4 characters

Table 6 presents the number of entity subwords with frequencies equal to
or higher than a set of thresholds. Noticeable patterns can be detected in the
biomedical domain where all of the 25 most frequent subwords for both entities
(Drug and Adverse-Effect) have a higher than 10 frequency.

Table 6. Number of entity subwords with frequency higher than a specific threshold,
subword length: 4 characters

Entity type Threshold

≥40 ≥30 ≥20 ≥10

Drug 0 3 11 25

Adverse-Effect 5 8 19 25

6 Comparison with SOTA Models

For comparison, we choose models that are trained on the same dataset with-
out extra external data. In the ADE dataset, we outperform the SOTA mod-
els. More precisely, the ALBERT XLL-based model with average aggregation
improves the performance by 0.7% and 0.2% in the RE and NER task respec-
tively (Table 7). The inductive bias that is introduced by the tokenization pat-
terns and is exploited with the aggregation layer boosts the performance.
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Table 7. Comparative Results - SOTA

Dataset Model NER RE

ADE Eberts and Ulges (2020) [8] 89.3 79.2

Theodoropoulos et al. (2021) [31] 88.3 80.0

Wang and Lu (2020) [33] 89.7 80.1

Zhao et al. [39] 89.4 81.1

Yan et al. [37] 91.3 83.2

ALBERT XXL (Avg. Aggr.), PFN 91.5 83.9

7 Conclusion

This paper identifies the existence of inductive bias in the IE task that is cor-
related with tokenization patterns, where the words of interest are more likely
to be split into subwords. We highlight the introduction of inductive bias in the
biomedical domain, supported by a similarity analysis based on entity represen-
tations. Additionally, we conduct a comparative study, including subword-based
and character-based models, pointing out that the transition to token-free IE
models is achievable. In future work, we intend to explore the effect of tokeniza-
tion in other sequence tagging problems.

Limitations

A limitation of the paper is that the dataset is relatively small. Nevertheless,
this is a common problem in the IE field, and in our case, it is beneficial in
the sense that we can experiment quickly and run multiple experiments to draw
conclusions. If the dataset is large, the computational power needed for the study
will increase by a considerable factor. Potentially, additional language models can
be incorporated into the comparative study [6,36] but retraining with identical
data is needed to alleviate the influence of the different pretraining corpora.
Isolating and exploring the effect of tokenization in a comparative inter-model
setup is challenging because other factors, such as the different architecture of
the language models, can affect the performance. We highlight that, for this
reason, we incorporate BERT and CharacterBERT in the comparative study
as these models have the same architecture and their only difference lies in the
tokenization step.
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Abstract. Parkinson’s disease (PD) affects over 10 million people
worldwide. Tremors, stiffness, voice changes, delayed movement, and dif-
ficulty walking are typical symptoms of the condition. In the early stage
of the disease, these symptoms are difficult to identify and therefore
it becomes increasingly important and necessary to be able to predict
Parkinson’s and diagnose it as soon as possible. In particular, more stud-
ies have focused on the differences found in the electroencephalogram
(EEG) of patients with PD. The EEG is used to measure the electrical
activity of the brain. The detection of unusual signals is indicative of a
pathological condition such as Parkinson’s. This work proposes a new
way of researching the diagnosis and surveillance of PD. The results are
satisfactory and better when compared with those of other studies con-
ducted on the same data. This indicates that the proposed method can
effectively improve early Parkinson’s diagnosis by reducing the time and
effort required.

Keywords: Parkinson’s Disease · EEG traces · Diagnosis · Health
informatics · Machine Learning

1 Introduction

Parkinson’s disease is a neurodegenerative disease affecting the central nervous
system, characterized by a slow and progressive evolution and mainly related
to the degeneration of nerve cells located in a deep area of the brain, which
produce dopamine, a neurotransmitter responsible for the activation of circuits
that control movements and balance. It is considered a’Movement Disorder’ as
it is characterized by the appearance of motor symptoms such as bradykinesia,
rigidity, and tremor, associated with postural instability. In addition to these
typical common symptoms, the condition could also cause specific symptoms in
each individual. In any case, the first symptoms of the disease are evident when
60%–80% of these dopamine-producing cells are damaged. The diagnosis of the
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disease is not easy and is mainly clinical because it is based on the presence of
the typical symptoms (confused language, laboured writing, tremor) detectable
during a thorough neurological examination. Therefore, early identification of the
disease can lead to better therapy and better results in treating the condition,
improving patients’ quality of life.

In recent years, the combination of Artificial Intelligence and Machine Learn-
ing (ML) techniques has proved to be of great help in predicting the diagnosis of
multiple pathologies such as heart disease, thyroids, cancer, and not least PD,
based both on motor problems and on particular biological conditions [3,6]. The
clinical outline is assessed using international rating scales such as the Unified
Parkinson’s Disease Rating Scale (UPDRS) [12], which analyzes and assigns a
score from 0 to 4 to mental state, physical capacity, daily activities, life, and
potential motor complications. The sum of the values obtained indicates the
current state of the disease. Early-stage disease is often one-sided, maintaining a
side prevalence with disease progression, so any asymmetry in symptoms needs
to be carefully examined.

Diagnostic tests, such as Electroencephalograms, particularly in the early
stages of the disease, can help the doctor make the diagnosis. Therefore, this
study focuses on EEG trace analysis to distinguish PD patients from healthy
patients. Specifically, the context of the analysis exploits a data-set of traces
in which the weak electrical charges generated by the activation of neurons are
detected by the electrodes placed on the skull in different strategic positions.
These electrical pulses at the micro-volt level are amplified and then recorded
by the appropriate equipment.

The main contributions of our work are:

– Our approach allows us to use a few synthetic indices, easy and fast to cal-
culate, able to take into account the entire history of the EEG signal rather
than using a long series of measurements ((1;4) vs (60000;140000)).

– Our experiments show that cross-validation is preferable to the hold-out
method even in the presence of a small sample.

– Our research highlights the need to find the best hyper-parameters for the
algorithms because they return better results. To this end, the use of a func-
tion able to find the best set of parameters is the best way because it is
extremely easy to use and takes little time to find the best set of parameters.

The document is structured as follows: Sect. 2 offers an overview of the state
of the art, while Sect. 3 introduces the ML algorithms chosen for the analysis and
briefly describes statistical indices used to summarize the EEG signals. Section 4
describes the data, and the approach employed, while Sect. 5 highlights all the
experimental results. Finally, the conclusions and new research possibilities sug-
gested by the approach are illustrated in Sects. 6.

2 Related Work

Several studies have been conducted on the use of ML for the diagnosis of Parkin-
son’s, based on the conditions of motor and non-motor problems but also on
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clinical and biological conditions [3,5,7,8]. PD affects nearly 3% of people over
the age of 65 and age, gender and ethnicity are some intrinsic characteristics that
influence the incidence of the disease. It has emerged that before age 50, PD is
rare, but between the sixth and ninth decade of life, the frequency increases by
five to ten times [15,16]. Several instrumental procedures can be used to diagnose
PD, including high-field nuclear magnetic resonance, SPECT DAT-scan, brain-
PET, and cardiac scintigraphy. Among these, EEG is one of the most used tests
to support clinical diagnosis. In particular, this test can be used to accurately
and cost-effectively discover and analyze bio-markers for the severity of non-
motor symptoms. Milan Koch et al. use the EEG time series with deep brain
stimulation of 40 candidates [13]. EEG has been performed through the use of 21
electrodes which produced 21 different time series. Data have been recorded with
a sampling rate of 500 Hz, a 16-bit analogue-to-digital converter, and a band fil-
ter of 0.16–70.0 Hz. During the recording, patients were lying down and staring
closed in a state of wakefulness. Five epochs of 8, 192 seconds in total have been
selected by the EEG by visual inspection, to ensure that all time series were free
of noises caused by movements such as involuntary muscle contractions, blink-
ing, and small movements that affect the EEG by altering it in some places.
After that, the TsFresh algorithm has been used with its default settings for
the feature extraction phase, extracting a total of 16674 features. In addition
to the characteristics extracted from the TsFresh algorithm, the spectral char-
acteristics of the Fast Fourier Transformation (FFT) from the time series have
also been taken into consideration For the selection of the characteristics, the
Boruta algorithm has been used which builds a model of random forests on real
characteristics and the so-called shadow functions that are created by randomly
mixing the values of each real characteristic. A real feature is considered for selec-
tion if its importance is greater than the maximum importance of all shadow
features. Finally, the selected features have been used to train an optimized Ran-
dom Forest (RF) classifier using the Bayesian Global Efficient Parallel-to-Integer
Optimization (MIP-EGO) algorithm. The best performance has been obtained
using a space of initial characteristics with self-extracting characteristics and 10
clinical characteristics (Accuracy of 84%), thus concluding also on the basis of
the other tests that the addition of unselected clinical characteristics reduces
the accuracy of the classifier. M. Isabel Venegas et al. classify PD and monitors
patients by analyzing EEG spectra and demonstrate that EEG spectra during
visual stimulation improve the accuracy of the classification [17]. The analysis
of the EEG revealed substantial differences in the spectral power of the EEG
between healthy subjects and patients with PD, more precisely in the theta,
alpha, and beta frequencies of the EEG recorded by the electrodes in the central
parietal regions. As a first step, they use machine learning to model and identify
the most relevant factors from EEG spectra above the visual stimulation range.
Using EEG, visually evoked responses during steady state (ssVEP) are measured
in a visual suppression paradigm setting, simultaneously recording the control
gain and temporal aspects of the optical response. Three learning models were
then tested: logistic regression, decision tree, and extra tree. To evaluate the per-
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formance of the various classifications, they choose the AUC metric. Finally, the
extra tree algorithm shows the best performance. For the treatment of symptoms
of both post-encephalitic and symptomatic Parkinsonism, the drug Levodopa is
used. It is a precursor to the neurotransmitter dopamine which works by cross-
ing the blood-brain barrier to enter dopaminergic neurons, where it is rapidly
converted into dopamine. When EEG is performed during the period of drug
administration, it has been shown to reduce that cortical oscillatory synchro-
nization in patients with PD, masking the differences between PD and healthy
patients [14].

In our study, we have decided not to take into account the possible influ-
ences of the drug Levodopa on the results of patient classification. Specifically,
the classification has been performed by combining all EEG of patients with
PD to test the classifiers independently of dopaminergic drugs. This aspect is
fundamental for the generalizability of the results obtained from the study.

Fig. 1. Outline of the followed approach

3 Background

ML refers to many processes capable of creating systems that learn or improve
performance over time based on data use. The characteristics of the data have a
significant impact on the performance of ML algorithms because different repre-
sentations can more or less trap and hide the various explanatory elements of the
variation that underlie the data. In recent years, ML algorithms have proved to
be particularly effective in the early prediction of multiple pathologies [1,2,4].
In particular, in this study, we have used several iterative algorithms based
on self-learning (Random Forest and Extra trees), able to progressively adapt
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the composition of the training set in order to focus attention on incorrectly
classified records (Boosting Methods). In particular, we have considered the fol-
lowing algorithms: Decision Trees (DT), Random Forests (RF) and Extra Trees
(ET),eXtreme Gradient Boosting Classifier (XGBC), Ada Boost (AB), Gradient
Boosting (GB) and CatBoost (CB). The high explainability of the approaches
based on trees, a vital trait for clinical data and analysis, led to the selection of
these specific ML algorithms.

3.1 Statistical Synthetic Index

A synthetic index expresses the synthesis of observations relating to a phe-
nomenon’s characteristics or the relationship between several phenomena. These
indices have statistical origins and each index takes on a specific denomination
about what it represents; in fact, they are divided into position and variability
indices. The position indices indicate the order of magnitude of the data in our
possession, while the variability indices help understand the “trend” of the data,
i.e. they measure the “difference” help understand a representative centre, giving
information about the attitude of a phenomenon to take more or less different
measures. In particular, in this work, we use:

– MEAN: or arithmetic average, is a single numerical value that succinctly
describes a set of data. It is the best-known position index and is calculated
by adding all the available values xi and dividing the result by the total
number of data:

m = 1/n
n∑

i=1

xi. (1)

– VARIANCE: is the mean of the square of the deviations from the mean. It
is always major of 0 and grows as the differences in value between the data
increase:

var =
∑n

i=1(xi − x̄)2

n
. (2)

In addition to these two indices, we also calculate the MINIMUM and
MAXIMUM i.e. the minimum and maximum value of the distribution of the
signal.

4 Approach

The presented method proposes a binary classification of patients, identifying
those without PD from those with PD. The model was trained using synthetic
indices of the patients’ EEGs described in Subsect. 3.1.

The details of the approach are shown in Fig. 1 where the following steps are
illustrated: the preliminary study of the data to read the raw data and verify
the presence of possible inconsistencies; the methodology used to select EEG
channels, calculate synthetic indexes and balance data; the machine learning
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phase to classify the data processed using the algorithms illustrated in Sect. 3;
and the evaluation of all results to highlight the best classifiers for the PD.

In particular, this Section is structured as follows: in Subsect. 4.2 the classi-
fication methodology and the optimization process of the hyper-parameters and
all the metrics used for the evaluation of classifiers are reported, and Subsect.
4.1 deals with data processing and description.

4.1 Data Description

This research has used the open-source data-set1 that has been made accessible in
the University of Iowa archive. The data collection used for the EEG recording
includes 27 PD patients and 27 control patients from the University of New
Mexico. Specifically, control participants were demographically matched for age
and sex to PD patients. In addition, for the 27 patients with PD, the EEG
was performed once during regular Levodopa administration, and a second EEG
recording was instead performed after stopping the drug for at least 12 hours to
prevent the drug. influence of dopaminergic drugs on the EEG traces.

EEG sessions were recorded with both eyes open and closed, as per standard
clinical EEG protocol. A 64-channel Brain-Vision system was used to record
EEG from Ag/AgCl electrodes tuned to 0.1-100Hz at a sampling rate of 500 Hz,
so we have 64 different time series for each patient. EEG recordings were made
during the patients’ resting phase and tracking disturbances such as blinks were
identified and removed using independent component analysis.

The raw data is then composed of 1728 different EEG traces for each patient
group: 1728 control patients, 1728 traces for PD patients under the influence of
the drug Levodopa, and 1728 traces for PD patients after stopping Levodopa for
12 hours, for a total of 5184 different tracks.

Since routine clinical EEG requires 62 channels, only the most commonly
used in clinical EEG were selected from the raw data, also to ensure compa-
rability of the study. After selecting the channel, all traces were summarized
using 4 different synthetic indices: the arithmetic means, variance, minimum
and maximum.

Therefore, our final data-set is composed of 250 features divided as follows:
62 features take into account the average over a single channel, 62 features
report the variance of the channel, 62 features declare the minimum value of
the spectral density of the channel, and 62 features give information on the
maximum value of the spectral density of the channel. Finally, the last two
features are the ’Levodopa’ feature which takes into account drug administration
in patients with PD (0 if the administration is interrupted for 12 h, 1 if the drug
is administered), and the target variable which is a dichotomous variable which
concerns the patient’s status, 0 for healthy people and 1 for PD patients.

1 https://narayanan.lab.uiowa.edu.

https://narayanan.lab.uiowa.edu
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4.2 Experiment Setting

Table 1. Considered optimization hyper-parameters and relative ranges.

APPROACH HYPERPARAMETERS DESCRIPTION VALUES

TREE-based max depth The maximum depth of the

tree

[1, 5, 10, 15, 20,

25, 30, 35]

random state It controls the randomness

of the estimator

[1, 0]

max features It is the number of

characteristics to consider to

obtain the best subdivision

[1, 2, 5]

criterion It is the function to measure

the quality of a split

[‘gini’, ‘entropy’]

BOOSTING number of estimators The number of boosting

stages to perform

[10, 50, 100, 500]

learning rate The weight applied to each

classifier at each boosting

iteration

[0.0001, 0.001,

0.01, 0.1, 0.5, 1.0]

random state Controls the random

permutation of the features

at each split

[1, 0]

The model has been evaluated with two different methods: Hold-out and Cross-
Validation. For the Hold-Out method, the 70/30 split ratio has been used, so
the model has first been trained on the training set (70% of the data) and
subsequently tested on the test set (30% of the data). On the other hand, the
cross-validation method has been used considering 10 folds. Finally, all the results
obtained have been used to provide both the evaluation of the performance of
each classifier and to compare the results of the two methods.

The features model is composed of 250 characteristics: 248 of them report
the values of the calculated indices, a feature representing the possible adminis-
tration of Levodopa, and finally, the variable to be predicted.

Table 2. Results of classification with all synthetic indices

CLASSIFICATION ON ALL SYNTHETIC INDICES

CLASSIFIER BASELINE ALGORITHM BEST hyper-parameters

Hold Out 10k fold Cross Validation Hold Out 10k fold Cross Validation

A P R F A P R F A P R F A P R F

DT 0,750 0,775 0,750 0,744 0,724 0,806 0,723 0,716 0,600 0,604 0,600 0,596 0,749 0,771 0,742 0,740

RF 0,750 0,775 0,750 0,755 0,790 0,859 0,755 0,753 0,750 0,775 0,750 0,744 0,760 0,778 0,745 0,722

ET 0,700 0,708 0,700 0,697 0,771 0,833 0,795 0,732 0,550 0,567 0,550 0,520 0,753 0,784 0,740 0,731

XGBC 0,800 0,800 0,800 0,800 0,768 0,836 0,755 0,743 0,850 0,854 0,850 0,849 0,743 0,713 0,727 0,696

AB 0,650 0,652 0,650 0,649 0,758 0,778 0,742 0,719 0,750 0,753 0,750 0,749 0,776 0,850 0,762 0,744

GB 0,800 0,813 0,800 0,798 0,713 0,804 0,718 0,710 0,800 0,800 0,800 0,800 0,714 0,766 0,700 0,688

CB 0,700 0,708 0,700 0,697 0,760 0,787 0,743 0,715 0,750 0,753 0,750 0,749 0,713 0,776 0,700 0,685
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Table 3. Results of classification with mean index

CLASSIFICATION ON MEAN INDEX

CLASSIFIER BASELINE ALGORITHM BEST hyper-parameters

Hold Out 10k fold Cross Validation Hold Out 10k fold Cross Validation

A P R F A P R F A P R F A P R F

DT 0,550 0,555 0,550 0,540 0,665 0,771 0,695 0,648 0,600 0,642 0,600 0,596 0,650 0,650 0,648 0,640

RF 0,700 0,700 0,700 0,700 0,825 0,828 0,798 0,754 0,700 0,708 0,700 0,697 0,789 0,818 0,780 0,778

ET 0,750 0,753 0,750 0,749 0,815 0,864 0,755 0,781 0,700 0,738 0,700 0,688 0,835 0,864 0,827 0,826

XGBC 0,750 0,753 0,750 0,749 0,794 0,845 0,783 0,769 0,750 0,753 0,750 0,749 0,720 0,808 0,703 0,672

AB 0,750 0,753 0,750 0,749 0,776 0,841 0,765 0,751 0,700 0,708 0,700 0,697 0,737 0,768 0,722 0,693

GB 0,700 0,708 0,700 0,697 0,776 0,824 0,755 0,753 0,700 0,708 0,700 0,697 0,750 0,808 0,738 0,726

CB 0,700 0,700 0,700 0,700 0,794 0,876 0,780 0,758 0,700 0,700 0,700 0,700 0,708 0,705 0,697 0,657

Table 4. Results of classification with variance index

CLASSIFICATION ON VARIANCE INDEX

CLASSIFIER BASELINE ALGORITHM BEST hyper-parameters

Hold Out 10k fold Cross Validation Hold Out 10k fold Cross Validation

A P R F A P R F A P R F A P R F

DT 0,900 0,900 0,900 0,900 0,720 0,781 0,712 0,780 0,650 0,652 0,650 0,649 0,705 0,740 0,692 0,678

RF 0,800 0,813 0,800 0,798 0,741 0,773 0,777 0,732 0,650 0,700 0,650 0,627 0,724 0,714 0,710 0,684

ET 0,550 0,598 0,550 0,487 0,756 0,752 0,690 0,673 0,500 0,500 0,500 0,451 0,692 0,684 0,678 0,638

XGBC 0,600 0,619 0,600 0,583 0,722 0,756 0,710 0,688 0,800 0,813 0,800 0,798 0,747 0,716 0,737 0,704

AB 0,700 0,700 0,700 0,700 0,747 0,824 0,738 0,714 0,750 0,753 0,750 0,749 0,785 0,865 0,770 0,753

GB 0,850 0,885 0,850 0,847 0,786 0,788 0,762 0,721 0,850 0,854 0,850 0,849 0,720 0,734 0,710 0,685

CB 0,850 0,854 0,850 0,850 0,755 0,708 0,742 0,688 0,700 0,708 0,700 0,697 0,759 0,786 0,745 0,715

Table 5. Results of classification with minimum and maximum indices

CLASSIFICATION ON MINIMUM AND MAXIMUM INDICES

CLASSIFIER BASELINE ALGORITHM BEST hyper-parameters

Hold Out 10k fold Cross Validation Hold Out 10k fold Cross Validation

A P R F A P R F A P R F A P R F

DT 0,600 0,619 0,600 0,583 0,775 0,782 0,773 0,737 0,700 0,700 0,700 0,700 0,718 0,767 0,708 0,694

RF 0,750 0,753 0,750 0,749 0,806 0,831 0,793 0,795 0,750 0,753 0,750 0,749 0,787 0,818 0,780 0,779

ET 0,800 0,813 0,800 0,798 0,795 0,846 0,835 0,782 0,800 0,857 0,800 0,792 0,797 0,837 0,788 0,785

XGBC 0,750 0,753 0,750 0,749 0,804 0,850 0,795 0,787 0,750 0,753 0,750 0,749 0,728 0,757 0,715 0,695

AB 0,650 0,665 0,650 0,642 0,797 0,841 0,777 0,763 0,700 0,708 0,700 0,697 0,757 0,782 0,747 0,732

GB 0,750 0,775 0,750 0,744 0,814 0,863 0,815 0,830 0,750 0,753 0,750 0,749 0,746 0,770 0,742 0,735

CB 0,750 0,753 0,750 0,749 0,794 0,870 0,782 0,759 0,700 0,700 0,700 0,700 0,748 0,785 0,737 0,708

Table 6. Best hyper-parameters configuration for classification with all synthetic
indices

CLASSIFIER criterion max
depth

max
features

random
state

learning
rate

number of
estimator

DT Gini 10 7 1 – –

RF Gini 10 2 1 – –

ET Entropy 5 10 1 – –

XGBC – – – 1 1.0 10

AB – – – 1 1.0 20

GB – – – 1 0.5 15

CB – – – 0 0.01 15
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Table 7. Best hyper-parameters configuration for classification with mean index

CLASSIFIER criterion max
depth

max
features

random
state

learning
rate

number of
estimator

DT Entropy 5 7 1 – –

RF Gini 10 5 1 – –

ET Entropy 15 2 0 – –

XGBC – – – 1 0.5 20

AB – – – 1 0.5 15

GB – – – 0 0.5 15

CB – – – 1 0.1 15

Table 8. Best hyper-parameters configuration for classification with variance index

CLASSIFIER criterion max
depth

max
features

random
state

learning
rate

number of
estimator

DT Entropy 10 10 1 – –

RF Gini 10 7 1 – –

ET Entropy 10 10 1 – –

XGBC – – – 1 0.5 20

AB – – – 1 0.5 15

GB – – – 1 0.5 15

CB – – – 1 0.5 10

Table 9. Best hyper-parameters configuration for classification with minimum and
maximum indices

CLASSIFIER criterion max
depth

max
features

random
state

learning
rate

number of
estimator

DT Gini 5 auto 0 – –

RF Gini 5 auto 0 – –

ET Gini 10 5 0 – –

XGBC – – – 1 0.5 20

AB – – – 1 1 20

GB – – – 1 0.1 20

CB – – – 0 0.1 20

The classifiers have been subjected to hyperparameter optimization to find
the configurations that led to the best results. In particular, the GridSearch func-
tion of the Scikit-learn Python toolkit has been used to find the best configura-
tion. GridSearch uses a combination of the supplied hyper-parameters and their
values, calculates the performance for each combination, and chooses the optimal
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value for the hyper-parameters [9]. Then the classifiers have been trained first in
their baseline version and then with the use of GridSearch, thus obtaining the
comparison between the baseline and the best combination of hyper-parameters
of the algorithm. Specifically, Table 1 shows the parameters evaluated for the
enhancement techniques and those based on the decision tree, respectively. The
second column shows the name of the hyperparameter, the third a brief descrip-
tion, and the corresponding ranges of evaluated values in the last column.

In addition, the SMOTE function of the Imbalanced Learn Python library
has been used to balance the data in the training and test set. This technique
randomly oversamples the minority class via [11] replication.

Considering that the traces were summarized using 4 different synthetic
indices: the arithmetic means, the variance, the minimum, and the maximum,
various analyzes were performed for each index calculated. In detail, the first
classification is performed taking into account all the indices together, the sub-
sequent ones taking into account only the average, only the variance, and finally
the minimum and maximum jointly to obtain the evaluation on the entire range
of EEG variation.

Based on the results of the classification, the confusion matrix is created to
validate the proposed models; in fact, from it is possible to calculate several
metrics, such as: Accuracy (A), Precision (P), Recall (R) and F1-Score (F).

5 Discussion of Results

This Section contains a discussion of our study’s findings. In Tables 2, 3, 4, 5
we report the results of the evaluation metrics for all the classification methods
used with the methodologies described in Subsect. 4.2.

In particular, Table 2 shows the results of the classification with the use of all
the synthetic indexes calculated on the EEG channels, Table 3 shows the results
of the classification based on the mean index, Table 4 those of the classification
with variance index, and Table 5 the results of the classification with the use of
minimum and maximum indexes.

Each table shows the classifier, the results of the classification based on the
default configuration of the algorithm (baseline), and the results of the best
configuration obtained with the optimization of the hyper-parameters. More in
detail, both for the baseline and the best configuration are reported both the
results, in terms of Accuracy, Precision, Recall, and F-score obtained with the
holdout method and those obtained with the cross-validation method

Furthermore, in Tables 6, 7, 8, 9 details of the best configurations for all
classifiers and each methodology are shown. classification used. The first column
shows the classifier and the following columns show respectively the function
used to measure the quality of the division (criterion), the maximum depth of
the trees, the number of features to be considered in each split max features, the
parameter that controls the randomness of the permuted features in each split
random state, the learning rate used at each iteration and the number of trees
used for the boosting number of estimators.
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Overall, the results show that using cross-validation versus hold-out leads to
improved prediction. In 75% of the classifications carried out, cross-validation
improved the metrics by at least 5%. Furthermore, the best results, highlighted
in bold, are obtained through boosting methods (accuracy, precision, recall, and
f1 ≥ 75% score). The search for the best hyper-parameters shows local improve-
ments, particularly when introducing all indices into the classification. Hence,
the results show that this technique brings significant improvements as function-
ality increases.

Comparing our study with other studies that used the same data, our app-
roach is more efficient, obtaining better results. More specifically, Chaturvedi et
al. [10] and Vanneste et al. [18] have reached an accuracy of 72.2%, and Yuvaraj
et al. [19] have obtained an accuracy of 59.3%. Instead, our model has achieved
an accuracy ranging between 75% and 90%.

6 Conclusion and Future Work

Parkinson’s disease is a chronic progressive neurodegenerative disease (death of
nerve cells). The main features of the disease are problems with the mobility
of the body, which manifest themselves in the form of a slowing of movements,
muscle stiffness, and possibly tremors. Very frequently, non-motor symptoms are
also observed. EGG is one of the most used methods for diagnosing PD.

Therefore, our approach proposes an overview of the adoption of ML classi-
fiers for early Parkinson’s prediction based on EEG traces. This study demon-
strates how the use of ML algorithms can predict the onset of Parkinson’s disease
in an effective and timely manner, in particular through synthetic indices, such
as the arithmetic means, variance, minimum and maximum. able to synthesize
the size of the EEG without loss of information. Our study shows:

– focusing on classification methodologies, it has been shown that cross-
validation improves prediction compared to the hold-out method;

– in most classifications, empowerment methods reveal much more satisfactory
results than a weaker student such as decision tree, random forest, and extra
trees; a big plus because these algorithms are easier to implement;

– boosting approach does well by diversifying the indices to be classified,
demonstrating the strong generalizability of our approach;

– the results indicate that as functionality increases, it is advisable to classify
the data using the best hyper-parameters, easily and promptly searchable
through the GridSearch function of the Scikit-learn Python toolkit.

In future work, we want to explore new features and increase the exist-
ing data-set. We also aim to broaden the data-set to examine more complex
approaches such as Deep Learning algorithms.
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Universitat Politècnica de València, Camı́ de Vera s/n, 46022 Valencia, Spain

Abstract. This paper introduces a novel, affordable companion robot
that has been designed for rehabilitation purposes among the elderly
population. The robot is equipped with a camera that records exercises,
and an animation screen that delivers clear and easy-to-follow instruc-
tions and feedback. To evaluate the device, a machine learning algorithm
was used on a dataset of therapy exercises. The results indicate that
the robot effectively recognizes gestures and accurately identifies the
exercises being performed. This study presents a groundbreaking and
cost-effective solution for elderly rehabilitation and has the potential to
revolutionize the industry with its cutting-edge technology.

Keywords: EDGE AI · Assistant Robot · Artificial Vision · Elderly
people · Rehabilitation

1 Introduction

Edge computing is a type of approach where devices are located in the user’s
physical location. Enterprises can take advantage of the flexibility of hybrid
cloud computing by allowing the users to get faster and more reliable services.
With edge computing, users can use and distribute a standard set of resources
across many locations. Size reduction and not needing to be continuously con-
nected has advantages for users, being the cornerstone that faster and more
stable services can be obtained at a lower cost. They reflected on users as they
got a faster and more consistent experience. At the same time, this closeness of
the computer systems translates into low latency and high availability applica-
tions with permanent monitoring. Many robotics applications are migrating to
edge computing technology, most of which are directly related to the industry.
Since industrial robots mainly need to perform different tasks under time con-
straints, they cannot afford latency when receiving the next command from a
central server. To execute a welding task, manipulate an object or classify objects
using machine vision, etc., industrial robots need to be able to perform different
tasks under time constraints. This is why Edge-Computing technology is vital
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Massanet et al. (Eds.): EUSFLAT 2023/AGOP 2023, LNCS 14069, pp. 620–629, 2023.
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in robotics. Edge-Computing technology is also widely used in cognitive assis-
tants and wearable device applications. The embedded systems used for these
applications are computational units capable of executing tasks such as machine
vision [1], machine learning [2], speech recognition [3], navigation [4], etc. The
increase in life expectancy and population’s ageing are devastatingly affecting
public administrations that look after the welfare of this population, mainly due
to the lack of healthcare personnel. One of the applications of particular interest,
both at the research and commercial level, are cognitive assistants in the shape
of companion robots. These companion robots, capable of assisting older adults
in their daily tasks [5], keeping them company [6], organising their activities [7]
and monitoring their medication [7], and cognitive activities [8], are being widely
marketed to individuals or senior centres. However, one of the disadvantages of
these robots is their price, which makes them not very accessible to people. How-
ever, with the advent of new, smaller, cheaper and more powerful devices, it has
been possible to adopt a new type of low-cost assistive robots. These robots can
execute object recognition models, analyse signals, recognise people, etc. Thus,
the aim of this work is to present a cognitive assistant, specifically a companion
robot, in charge of classifying rehabilitation exercises for people with arthritis.
The idea is that the robot identifies the exercises indicated by a caregiver to the
patient so that it can monitor the execution of the exercises and persuasively
encourage the patient to perform the exercises. Two of the main aspects of this
robot is its low cost compared to other existing approaches and, on the other
hand, the possibility of working in off-line mode without the need to be connected
to the Internet to perform the classification processes. The rest of the paper is
structured as follows: next section describes different related approaches; then
the description of the system is presented both from the point of view of the
hardware and the necessary software; Finally, some conclusions are presented.

2 Related Work

Several studies have demonstrated the applicability of assistive robots for elderly
care. It is possible to find robot assistants for almost all tasks associated with
caregiving. In different studies, robot assistants have played a significant role
and obtained good results. An example of the latter is the research in which
we can highlight the study, G. Perugia [9] presents a new tool to measure the
engagement of people with dementia in playing board games and interacting
with the social robot Pleo [10]. At the same time, they are conducting a second
study to investigate how people with dementia express their engagement in cog-
nitive games and interactions with social robots. The study by S. Šabanović [11]
evaluates the PARO robot seal in a multisensory

behavioural therapy context with older adults. The participants in the study
were older adults with different levels of dementia. The study showed that PARO
provides indirect benefits to users by increasing their activity in specific modal-
ities of social interaction, including visual, verbal and physical. Many of these
robots are used as companion robots; MARIO [12] is an example of a social
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robot developed with and for people with dementia. MARIO promotes social
connectivity and reduces loneliness and isolation by providing access to various
applications with which they can interact via voice commands and the touch
screen. Another possible application for these robot assistants is assisted ther-
apy. Using artificial vision and ML modelling, they can determine whether the
user is performing the exercise or not. The research presented by Michelle J. et
al. [13] shows that a stimulus-response model may capture some observed rela-
tionships between the patient and the therapist in various tasks of daily life and
offers a reasonable model of the interactions between the robot and the patient
that can approximate real therapy. As can be seen, there are different robot
proposals that try to improve interaction with humans, mainly from the point of
view of enhancing the quality of life of the elderly. However, many of these works
are either very expensive commercial robots or are not commercially available.
In the following section, we present our proposal for a companion robot from
a low-cost perspective oriented to facilitate the rehabilitation of elderly people
with hand arthritis problems.

3 System Description

This section describes the operation of the companion robot, detailing the dif-
ferent software and hardware tools used to create the assistant. The proposed
approach is shown in Fig. 1.

Fig. 1. Architecture of the proposed system.
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if the user performs correctly the activity suggested by the caregiver. For the
performance of these tasks, the cognitive assistant requires specific hardware and
software. This will be described in detail below.

3.1 Hardware Description

The main component of the assistant presented in this paper is the Wio Ter-
minal, a development system from Seeed Studio. The Wio Terminal is based
on a SAMD51 microcontroller, and its processing speed is between 120 Mhz and
200 Mhz. The Wio Terminal is equipped with a 2.4” LCD screen, an inertial mea-
surement system (IMU), and a microphone and supports Bluetooth and WiFi
(Fig. 2).

Fig. 2. Wio Terminal.

To capture the images, the assistant integrates a camera to capture the
respective images. These images will be analysed by the Wio Terminal using
the model trained. The model is stored in SD memory to reduce memory usage
when integrating firmware. This approach presents two significant advantages;
one is that it will not take up segments in the Flash memory, and the second
is the ability to update the models for more exercises or other recognised thera-
pies. An eye animation was included to be presented on the screen to make the
cognitive assistant more user-friendly. This is intended to reduce frustration or
repulsion towards the assistant. The assistant has five different looks that help
it interact with the user. Figure 3 shows the cognitive assistant prototype, where
it can be seen the camera and the Wio Terminal.

Once the images have been captured, the next step is to check that our device
captures the images correctly. To do this, we visualise the image captured by
the camera (Fig. 4).
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Fig. 3. Prototype Assistance.

Fig. 4. Using the system.

3.2 Software Description

This section will describe the software tools used to train learning models and
assistant programming. It was decided to classify four-hand exercises used for
rehabilitating people with arthritis, as can be seen in Fig. 5.

3.3 Image Acquisition

To perform the exercise classification, it is necessary to have a set of images rep-
resenting the exercises. These images have to be captured from different angles
and poses, all this to give the model a better representation of the data to be
classified.

We are working with small devices with limited RAM resources and compu-
tational capacity. It is necessary to make some small transformations to these
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Fig. 5. Hand gesture for basics therapy.

images. Typically, if we use a smartphone camera, the images are huge and with
a high resolution, making difficult for the Edge device to analyse them, so they
must be resized. After several attempts, it was determined that the optimal
image sizes to perform a correct classification on the device used in this project
are 32× 32 pixels.

There were captured approx. 500 images, 100 per each class of selected exer-
cises, and a class for no activity. These images had an original size of 160× 120
and were resized to 32× 32 to facilitate their classification.

The model training was performed using the Edge Impulse platform, a pow-
erful tool for creating DL models for Edge devices. On the Edge Impulse web-
site, all the documentation necessary to perform the first training can be found.
Figure 6 shows the images resized to 32× 32.

Fig. 6. The structure of the model.
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3.4 Model Training

The training process of the proposed model has been designed to be a straight-
forward, visual task. It offers an optimized model for the target device with a
quick turnaround time.

A dataset comprised of 258 images per class was created, resulting in a total of
1032 images. This dataset was divided into three subsets, with 80% of the images
used for training, 10% for testing, and the remaining 10% for validation. The
network architecture utilized for training the model was a Mobilenet V1, with
hyperparameters including an Alpha value of 0.5, a Dropout Rate of 0.01, AVG
Pooling, weight decay, and a learning rate of 0.001. The model’s hyperparameters
are presented in Table 1.

Table 1. Model Used in the edge device.

Hyperparameters Values

No input layers 27.648 features

2D Conv / Pool Layer 32 filters, 3 kernel sisze, 1 layer

2D Conv / Pool Layer 16 filters, 3 kernel sisze, 1 layer

Flatten Layer

Dropout rate 0.25

Output Layert 4

It is beyond the scope of this paper to provide an in-depth analysis of the
training process or the steps involved in creating a project and uploading images.
Information on these topics can be readily obtained from various online resources,
including the Edge Impulse website and Google.

Once the model has been validated using a single image, the ability of the
model to discriminate between different classes has been demonstrated. The
next step in the evaluation process is to test the model using the entire test set
of images. The results of this testing, in the form of a Confusion Matrix and
F1 Score, provide crucial information for validating the model. However, it is
important to note that these results do not necessarily reflect the model’s ability
to classify data that it has not been trained on.

To further assess the robustness of the model, a validation set of images
captured under various environmental conditions, such as variations in light
intensity and shadow, can be used. This experiment will provide insight into the
model’s ability to generalize to new, unseen data.

The confusion matrix is a widely used evaluation tool in the field of machine
learning, particularly in the analysis of supervised learning algorithms. The
matrix provides a clear and concise representation of the algorithm’s perfor-
mance, highlighting the ability of the model to correctly classify instances into
their corresponding classes. Each column of the matrix represents the number
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of predictions made by the algorithm for each class, while each row corresponds
to the actual class of the instances. This visual representation makes it easy
to identify any confusion between classes and to determine areas in which the
algorithm may need improvement. The confusion matrix obtained during the
classification process is presented in Fig. 7.

Fig. 7. Confusion Matrix.

The F1-Score, on the other hand, is a measure of the accuracy of the test
results. It is calculated as the harmonic mean of precision and recall. Precision
is defined as the number of true positive results divided by the total number of
positive results identified, including those that were incorrectly identified. Recall,
on the other hand, is defined as the number of true positive results divided by
the total number of samples that should have been identified as positive. The F1-
Score provides a single score that summarizes the precision and recall of the test,
making it a useful tool for comparing the performance of different algorithms.

The results of the confusion matrix and F1-Score analysis can be visualized in
Fig. 9, which presents the results of the exercise classification experiments. This
figure provides a clear representation of the algorithm’s performance, allowing
for easy comparison of the results with other algorithms or with previous results
obtained using the same algorithm. The combination of the confusion matrix and
F1-Score provides a comprehensive overview of the accuracy of the algorithm,
which is essential in the assessment of the effectiveness of the algorithm for the
given task.
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Table 2 presents the confusion matrix generated from the classification pro-
cess, along with the corresponding F1 score. The F1 score provides an estimation
of the accuracy of each test, and as can be seen from the results, the performance
of the algorithm is quite promising.

Table 2. F1-Score per class

Arrow Claw Fist Nothing Table-Rop

F1-Score 0.88 0.89 0.97 1.0 0.91

4 Conclusion

In conclusion, the results of this study provide valuable insights into the perfor-
mance of the low-cost companion robot for rehabilitation tasks with elder peo-
ple. The use of a camera for capturing the prescribed exercises and an animation
screen for guidance and feedback has proven to be effective in the recognition of
gestures using a trained network. The use of a confusion matrix and F1 score as
evaluation metrics allowed for a comprehensive assessment of the model’s accu-
racy in classifying the images in the test set. The promising results of this study
highlight the potential for further development and optimization of the model.

Future developments of the device will include an increase in the number
of therapy exercises and the addition of other sensors to enhance the feedback
provided to the user. These improvements are expected to further increase the
device’s effectiveness in aiding in the rehabilitation of elder people. The findings
of this study demonstrate the importance of utilizing appropriate evaluation
metrics in the assessment of machine learning algorithms and the potential of
low-cost companion robots in the rehabilitation field.
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de la Paz López, F., Adeli, H. (eds.) IWINAC 2022. LNCS, vol. 13259, pp. 13–43.
Springer, Cham (2022). https://doi.org/10.1007/978-3-031-06527-9 2

9. Perugia, G., Doladeras, M.D., Mallofré, A.C., Rauterberg, M., Barakova, E.:
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Abstract. Machine learning algorithms are useful in assisting medi-
cal judgments, but the resulting models are frequently challenging for
doctors to comprehend. Conversely, IF-THEN rules articulated in nat-
ural language are successful at describing interpretable models that are
returned by Fuzzy Inference Systems. However, the construction of the
fuzzy rule basis in conventional fuzzy systems requires human expertise.
Neuro-fuzzy systems can infer fuzzy rule-based models from data, saving
time by doing away with the need to manually build the rules. Using
neuro-fuzzy systems to develop prediction models from data in the form
of fuzzy rules that are suitable to enhance decision-making for stress
assessment is what we propose in this paper. Our results highlight how
well neuro-fuzzy models perform in providing precise predictions while
maintaining interpretability.

Keywords: Stress Prediction · Fuzzy Logic · Fuzzy Inference
Systems · Neuro-Fuzzy systems · Interpretability

1 Introduction

Stress is a physical and mental condition affecting everyone as a reaction to
adverse situations1. There are two kinds of stress, namely positive and negative.
When negative stress lasts for a long time, that could affect overall well-being
[25]. Monitoring stress levels could prevent the onset of more severe patholo-
gies, such as hypertension, stroke, obesity, and diabetes [22]. In the last years,
there has been a growing interest in contactless and wearable devices, capable of
continuously monitoring vital parameters [11,12,21,27]. The real-time collection
of stress data could be used for further automatic analyses to support clinical
diagnoses and allow early interventions [29].

Biological signals are commonly used to identify stress levels. Particularly,
Photoplethysmographic (PPG) signals, representing fluctuations in blood vol-
ume, have been recently proven to be good markers to identify stress levels [26].
Moreover, since PPG is based on light reflectance, it is easy to implement on

1 World Health Organization (WHO) - stress: https://www.who.int/news-room/
questions-and-answers/item/stress (last access: February 14, 2023).
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smart objects equipped with a light source or a camera (for remote-PGG). Sev-
eral contactless and wearable devices have been proposed in the literature [24].

Data gathered by these devices need automatic analyses to derive useful
insights. To this aim, different machine learning techniques have been used to
predict stress levels, such as Support Vector Machine (SVN) [8,13], Random
Forest (RF) [1], ensemble methods [23], or Deep Neural Network approaches
[28]. However, these algorithms are considered black-box, i.e. they are not able
to explain the outcome prediction. Explaining the result is especially impor-
tant in the medical field because both the clinician and the patient have the
right to know the reasons behind a diagnosis when it is provided by an algo-
rithm [14,31]. To make the users easily understand the decision made by a
predictive model [5,6,17] XAI (Explainable Artificial Intelligence) algorithms
are preferred. Among them, those based on fuzzy logic have proven to be suit-
able tools for explanations [4]. Particularly, Fuzzy Inference Systems (FISs) can
represent uncertain and vague concepts, proper of the medical knowledge, and
reason through fuzzy sets, and IF-THEN rules, easy to be interpreted by final
stakeholders. However, these algorithms require the time-consuming and diffi-
cult task of manually defining the knowledge base. In order to avoid this limit,
when enough data are available, neuro-fuzzy systems (NFSs) could be used, that
combine the interpretability of FISs with the parameter optimization given by
the learning of neural networks [19].

One of the limits of NFSs is that their complexity, and thus the number of
rules, exponentially grows with the number of fuzzy variables, making their use
impractical because too expensive other than no more explainable. In order to
overcome this limit, in [10] we proposed a pruning mechanism for NFSs with
triangular fuzzy sets, by removing inactive rules from the model. Comparable
results, in terms of classification performance, were obtained by NFS models
with and without pruning, whilst a high reduction of the number of rules was
observed, resulting in models easier to understand. In this paper, we extend our
previous work by proposing a first attempt to optimize the number of rules and
thus the explainability, other than the computational complexity, of NFS models
with Gaussian fuzzy sets.

To evaluate the proposed approach, we consider data acquired through wear-
able sensors during a pilot study aimed at predicting stress levels [15]. Data refer
to 34 subjects, experiencing stressful conditions in a controlled environment. To
the best of our knowledge, this is the first time these data are analysed through
Machine Learning (ML) and fuzzy methods for stress prediction.

The main findings of this paper are as follows:

1. a quantitative comparison of the NFS model with different ML models on the
Stress Predict dataset;

2. a pruning mechanism to reduce the number of rules in NFSs models with
Gaussian fuzzy sets;

3. an analysis of the NFS model in terms of explainability.

The article is structured as follows: the Stress Predict dataset is described
in Sect. 2.1. The adopted learning models, together with the proposed pruning
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mechanism, are described in Sect. 2.2. Quantitative and qualitative evaluation
of the results are discussed in Sect. 3. Section 4 draws possible future works.

2 Materials and Methods

2.1 Data

The Stress Predict Dataset2 has been collected during a pilot study to predict
the stress level of the subjects involved in [15]. The physiological parameters of
each subject were measured through PPG technology embedded in the Empatica
E4 watch3. The dataset is composed of the physiological signals measured in 34
healthy subjects. The volunteers were instructed to do a series of tasks meant
to cause stress for a total of 60 min. In detail, pulsed blood volume (BVP),
intervals between beats, and Heart Rate (HR) were recorded using the smart
device while Respiratory Rate (RR) was derived from the BVP signal. A total
of about 3, 500 measurements per patient were collected. Raw data representing
the signals are publicly available, together with pre-processed data of the HR and
RR measurements, of each subject, acquired during the in-vivo experiment. Two
classes are reported, namely stress and no stress. Data are highly imbalanced.
In fact, there are 36, 815 measures that correspond to the stress state, while
75, 701 measurements fall under the no stress category.

Fig. 1. Box-plots representing data distributions of HR and RR values for each subject.

It is worth noting that stress levels can vary from one patient to another, as
stated by the World Health Organization (WHO). Moreover, Fig. 1 shows the
data distribution of each subject, considering HR and RR parameters. A high
variability, for the two parameters, can be observed in both data belonging to a
single subject and within different subjects.
2 Data are publicly available at the following link: https://github.com/italha-d/Stress-

Predict-Dataset (last access February 16, 2023).
3 Empatica E4 watch technical specifications: https://support.empatica.com/hc/en-

us/articles/202581999-E4-wristband-technical-specifications (last access February
14, 2023.).

https://github.com/italha-d/Stress-Predict-Dataset
https://github.com/italha-d/Stress-Predict-Dataset
https://support.empatica.com/hc/en-us/articles/202581999-E4-wristband-technical-specifications
https://support.empatica.com/hc/en-us/articles/202581999-E4-wristband-technical-specifications
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2.2 Neuro-Fuzzy System

The objective of this study is to test how effective neuro-fuzzy systems are in
the field of medical diagnosis. While accuracy is important in this field, hav-
ing easily understandable models could lead to greater acceptance from non-
technical stakeholders. To achieve this, this study compares neuro-fuzzy models
to machine learning models that are not easily explainable. Additionally, a prun-
ing method is applied to remove useless rules and simplify the explanations of
the neuro-fuzzy model.

A neuro-fuzzy system has been utilized to create a model for predicting the
stress of subjects. This system includes a neural network that incorporates a
series of fuzzy rules in an IF-THEN format. Specifically, the study utilizes zero-
order Takagi-Sugeno rules, which represent the antecedent using fuzzy sets, and
the consequent using fuzzy singletons.

The fuzzy model produces degrees of certainty for each output class through
its inference mechanism. The knowledge base contains a set of K rules that are
of the type:

IF (x1 is Ak1) AND . . . (xn is Akn) THEN (y1 is bk1) AND . . . (ym is bkm)
where Aki are fuzzy sets defined over the input variables xi(i = 1, ..., n) and bkj
are fuzzy singletons expressing the certainty degree that the output belongs to
one of the m classes yj , j = 1...m.

Fuzzy sets are defined by Gaussian membership functions:

uki = μki(xi) = exp

(
(xi − cki)2

σ2
ki

)
(1)

where cki and σki are the centers and the widths of the Gaussian function,
respectively. The study utilizes a neuro-fuzzy network that is based on the ANFIS
(Adaptive-Network-Based Fuzzy Inference System) architecture [16] to learn the
parameters of the fuzzy sets and consequents. The four feed-forward levels of the
ANFIS architecture are depicted in Fig. 2. Membership degrees of input values
to Fuzzy sets are calculated at layer 1, the activation strength of each fuzzy rule
is calculated at layer 2, the normalized activation strengths are calculated at
layer 3, and the certainty level for output classes is calculated at layer 4. The
backpropagation method, which is based on gradient descent optimization, is

Fig. 2. Architecture of the neuro-fuzzy network.
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Algorithm 1. Pruning algorithm
Require: TS, Rules, θ

while Rules �= ∅ do
Avgµj ← 0
while TS �= ∅ do

μj(xi) ← ∏n
i=1 uji

Avgµj ← Avgµj + μj(xi)
end while
Avgµj ← Avgµj

|TS|
if Avgµj < θ then Rules ← Rules − Rj

end while

used to train this network. Certainty degrees values are obtained for each fuzzy
term in the consequents, and the class having the highest value is returned.

The complexity of NFS models grows exponentially as the number of input
variables increases. Specifically, if n is the number of linguistic variables and m
is the number of fuzzy terms for each variable, the total number of rules is mn.
In order to reduce this number, we observe that, because of the Gaussian shape
of the membership functions, some fuzzy rules may be fired with a very low, but
still not zero, activation value. Thus, we propose the use of a pruning mechanism
that cuts off rules whose activation value is below a threshold θ. This removal of
useless rules represents a first attempt to improve the explainability of the fuzzy
model learned by ANFIS. The steps of the pruning strategy are summarized
in Algorithm 1, where TS is the Test Set, xi is a sample in TS, μj(xi) is the
activation strength of rule Rj for a given sample xi, which is computed by means
of a t-norm applied to input membership values uji, and Avgµj

is the average
activation value of rule Rj , over the samples in TS. Despite the simplicity of this
method, it is general and can be used to reduce the computational costs required
to create the model when many variables are involved. Moreover, it should be
noted that this pruning criterium is effective when data is uniformly distributed,
as in the Stress Predict Dataset, where data belonging to the two classes, for
each subject, has low variance.

3 Results and Discussion

Experiments have the two-fold aim to quantitatively compare the classification
performance of the NFS model with black-box models, and to perform an anal-
ysis of the explainability of the NFS model. We compared the NFS system
with four Machine Learning algorithms, namely Random Forest (RF), Multi-
layer Perceptron (MLP, Support Vector Machine (SVC), and XGBoost (XGB).
These techniques were implemented using the Python Scikit-learn module, and
default parameters were utilized4. We applied the hold-out method to split the
dataset into training (80%) and test (20%) sets. Also, to make the experimen-
tation more robust, we applied the methods of stratification and shuffling in the
4 Scikit-learn library:http://scikit-learn.org/stable/.

http://scikit-learn.org/stable/
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dataset splitting phase. In addition, we set the following hyperparameters for
the neuro-fuzzy model: batch size = 16, number of epochs = 100 and learning
rate = 1e − 2. Standard classification measures, such as accuracy, precision,
recall, and F1-score, were used to quantitatively evaluate the performance of the
algorithms.

Table 1 compares the classification performance of the models on the whole
data. We can observe that the best results were returned by XGB and RF,
with an accuracy of 0.74 each. However, these are ensemble methods, thus while
returning more accurate models, they lose in explainability, since they are quite
complex due to a combination of different classifiers. In contrast, the NFS model
achieved an accuracy of 0.68, which is slightly lower than those of the other
models, but it can produce an interpretable model expressed in terms of fuzzy
rules, as shown in Table 2.

As previously discussed, different subjects could present different symptoms.
Due to the high variability in data, creating a single model for each subject

Table 1. Quantitative evaluation of the NFS model and the black-box models on all
the subjects.

Accuracy Precision Recall F1-score

NFS 0.68 0.64 0.52 0.46

RF 0.74 0.71 0.68 0.69

SVM 0.69 0.68 0.55 0.52

XGB 0.74 0.72 0.66 0.67

MLP 0.67 0.34 0.50 0.40

Table 2. Fuzzy rules of the neuro-fuzzy model created from all the data of the subjects,
before and after pruning.

Before pruning After pruning

Premise (IF) Consequent
(THEN)

Premise (IF) Consequent
(THEN)

HR is Low and RR is Low Stress

HR is Low and RR is Medium No Stress HR is Low and RR

is Medium
No Stress

HR is Low and RR is High No Stress

HR is Medium and RR is Low No Stress

HR is Medium and RR is Medium Stress HR is Medium and
RR is Medium

Stress

HR is Medium and RR is High Stress

HR is High and BR is Low Stress

HR is High and RR is Medium Stress HR is High and RR

is Medium
Stress

HR is High and RR is High No Stress
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Fig. 3. Example of membership functions for input variables generated by the NFS,
for a single subject.

may result more reliable for stress prediction. Thus, individual models have
been created utilizing the considered methods for each of the 34 patients. As an
example, Fig. 3 shows an example of the membership functions generated by the
NFS model for the fuzzy variables HR and RR, for subject #2. It can be seen
that even if the fuzzy sets cover the entire input domain, overlapping in the HR
plot confirms the fact that the unbalanced and noisy nature of the data affected
the data-driven model. However, these results are not quantitatively comparable
because they are generated from different data, so violin plot representation
has been used to summarize the classification performance of the considered
algorithms over the 34 subjects (Fig. 4). These graphs are an extension of
the boxplots, representing both the data distribution (medians and interquartile
ranges) and the probability of a given value (the wider the section, the higher the
probability). Results on individual models confirm that ensemble methods return
the best performance. The median values are close to the maximum value of 1
for all the measures (accuracy, precision, recall, and F1-score). On the contrary,
the other methods show higher variability in the results, indicating that they
are more dependent on the specific data. MLP gives the worst results, especially
in terms of precision and recall, making it unreliable. NFS shows classification
performance lower than the ensemble methods, but still good (around 0.8). The
variability observed could be justified by the fact that these are data-driven
models, and thus, they strictly depend on the data used to train them. But,
as shown in Fig. 1, data distribution over subjects is very different, and several
outliers have been identified, that could have affected the results of the NFS
models.

To increase the readability of the NFS models, we applied the rule pruning
phase both on the model generated from the whole data and on individual models
generated from data of each subject. We applied a threshold value θ = 0.02
(empirically defined) to delete rules with low strength values. Table 2 shows
the fuzzy rules generated from all data, before and after applying the pruning
mechanism. As an example of individual models, Table 3 shows an example of
fuzzy rules generated from data of subject #2, before and after applying the
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Fig. 4. Violin plot graphs summarizing the classification performance of the NFS and
the ML models, for all the subjects, in terms of accuracy (a), F1-score (b), precision
(c), and recall (d).

pruning mechanism. In these models, the accuracy was kept almost unchanged
after pruning, while improving readability. The values in the consequent parts
represent the classes with the highest cetainty degree, for the given rule.

From Table 2 it can be seen that after the pruning phase, only three fuzzy
rules are retained out of nine, thus improving the readability of the model while
leaving almost unchanged the accuracy of the model that deteriorates of only
5%. From Table 3 it can be seen that after the pruning phase, five fuzzy rules
are retained out of nine. We can observe that the rules removed by the pruning
phase are in most cases “inconsistent” fuzzy rules. For example, the ninth rule
of the model obtained before pruning suggests that a subject with high values
of both HR and RR is not stressed. This rule is judged to be inconsistent from
a medical point of view. The pruning removed this rule both from the general
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Table 3. Fuzzy rules of the neuro-fuzzy model generated from data of subject#2,
before and after pruning.

Before pruning After pruning

Premise (IF) Consequent
(THEN)

Premise (IF) Consequent
(THEN)

HR is Low and RR is Low No Stress

HR is Low and RR is Medium No Stress HR is Low and RR

is Medium
No Stress

HR is Low and RR is High No Stress HR is Low and RR

is High
No Stress

HR is Medium and RR is Low Stress

HR is Medium and RR is Medium No Stress HR is Medium and
RR is Medium

No Stress

HR is Medium and RR is High No Stress

HR is High and BR is Low Stress HR is High and RR

is Low
Stress

HR is High and RR is Medium Stress HR is High and RR

is Medium
Stress

HR is High and RR is High No Stress

model and from the individual model, thus providing knowledge bases that are
more consistent with reality. Likewise, the pruning also removed the fourth rule
which, in case of individual model of subject #2 is inconsistent because it indi-
cates that the patient is stressed despite having Low values of HR and RR, which
is quite far from reality. In contrast, we note that the first rule was also removed
even though it is perfectly consistent with reality. This was probably caused by
the lack of data samples having low HR and RR values, thus the corresponding
rule has a low firing value, leading to its removal. Overall, these preliminary
experiments highlight that applying pruning after learning a NFS model can
improve the fuzzy rule base by achieving a good balance between simplicity and
accuracy. Applying the pruning mechanism, we obtained an average of 5 rules
for each examined model. Please note that the pruning mechanism reduces the
number of rules, but the number of parameters involved in the model are not
changed (e.g. number of fuzzy terms).

4 Conclusions

In this work, we propose the use of Neuro-Fuzzy Systems to support the diag-
nosis of stress in individuals. These data-driven algorithms are able to learn a
fuzzy knowledge base in form of “IF-THEN” rules, whose parameters are opti-
mized through a neural network, thus being interpretable without needing the
manual definition of the rules. However, the knowledge base exponentially grows
as the number of input variables and fuzzy sets increases, leading to models
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that are hardly to interpret other than computationally expensive. In this work,
we proposed a first attempt to improve the computational complexity and the
explainability of these models, through a pruning phase aimed at reducing the
number of rules in the fuzzy knowledge base. The Stress Predict Dataset, col-
lecting continuous measurements of vital parameters through a smart watch,
has been analysed. This is the first time this dataset is analyzed with machine
learning algorithms, thus we compared the NFS model with standard black-
box models. Results returned by a quantitative analysis showed that ensemble
methods had the best performances despite being not explainable. Whilst, with
a negligible reduction in classification performance, NFS returned quite good
results other than explanable models. The effectiveness of the pruning phase has
been assessed by a semantic analysis of the rules returned by the NFS models.
Overall, NFS systems have been proven to be effective for stress assessment,
providing a good balance between accuracy and interpretability, two critical
requirements in medical applications. Future work will be devoted to improving
the pruning mechanism by considering different criteria that do not require the
uniform distribution assumption on data. Different datasets will be considered
to verify the generality of the proposed method. Also, different types of fuzzy
models, such as probabilistic fuzzy models will be considered [7,20]. Moreover,
due to the evolving nature of the considered data, evolving and adaptive neuro-
fuzzy systems would be suitable for their analysis [9,30]. In addition, we want to
investigate the interpretability of the examined models by applying quantitative
measures, such as those proposed in [3]. Finally, model explainability will be
enhanced through different methodologies [2,18].

Acknowledgment. Gabriella Casalino acknowledges funding from the European
Union PON project Ricerca e Innovazione 2014–2020, DM 1062/2021. Gianluca Zaza
and Giovanna Castellano acknowledge the support of the PNRR project FAIR - Future
AI Research (PE00000013), Spoke 6 - Symbiotic AI (CUP H97G22000210007) under
the NRRP MUR program funded by the NextGenerationEU. All authors are members
of the INdAM GNCS research group.

References

1. Abouelenien, M., Burzo, M., Mihalcea, R.: Human acute stress detection via inte-
gration of physiological signals and thermal imaging. In: Proceedings of the 9th
ACM International Conference on PErvasive Technologies Related to Assistive
Environments, PETRA 2016. Association for Computing Machinery (2016)

2. Aghaeipoor, F., Sabokrou, M., Fernández, A.: Fuzzy rule-based explainer systems
for deep neural networks: From local explainability to global understanding. IEEE
Trans. Fuzzy Syst., 1–12 (2023)

3. Alonso, J.M., Castiello, C., Mencar, C.: Interpretability of fuzzy systems: cur-
rent research trends and prospects. In: Kacprzyk, J., Pedrycz, W. (eds.) Springer
Handbook of Computational Intelligence, pp. 219–237. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-43505-2 14

4. Alonso Moral, J.M., Castiello, C., Magdalena, L., Mencar, C.: Toward explain-
able artificial intelligence through fuzzy systems. In: Explainable Fuzzy Systems.

https://doi.org/10.1007/978-3-662-43505-2_14


640 G. Casalino et al.

SCI, vol. 970, pp. 1–23. Springer, Cham (2021). https://doi.org/10.1007/978-3-
030-71098-9 1

5. Angelov, P.P., Soares, E.A., Jiang, R., Arnold, N.I., Atkinson, P.M.: Explainable
artificial intelligence: an analytical review. Wiley Interdisc. Rev.: Data Min. Knowl.
Discov. 11(5), e1424 (2021)

6. Arrieta, A.B., et al.: Explainable artificial intelligence (XAI): concepts, taxonomies,
opportunities and challenges toward responsible AI. Inf. Fusion 58, 82–115 (2020)

7. van den Berg, J., Kaymak, U., Almeida, R.J.: Conditional density estimation using
probabilistic fuzzy systems. IEEE Trans. Fuzzy Syst. 21(5), 869–882 (2012)

8. Betti, S., et al.: Evaluation of an integrated system of wearable physiological sensors
for stress monitoring in working environments by using biological markers. IEEE
Trans. Biomed. Eng. 65, 1748–1758 (2018)

9. de Campos Souza, P.V., Lughofer, E.: An evolving neuro-fuzzy system based on
uni-nullneurons with advanced interpretability capabilities. Neurocomputing 451,
231–251 (2021)

10. Casalino, G., Castellano, G., Kaymak, U., Zaza, G.: Balancing accuracy and inter-
pretability through neuro-fuzzy models for cardiovascular risk assessment. In: 2021
IEEE Symposium Series on Computational Intelligence (SSCI), pp. 1–8. IEEE
(2021)

11. Casalino, G., Castellano, G., Nisio, A., Pasquadibisceglie, V., Zaza, G.: A mobile
app for contactless measurement of vital signs through remote photoplethysmog-
raphy. In: 2022 IEEE International Conference on Systems, Man, and Cybernetics
(SMC), pp. 2675–2680. IEEE (2022)

12. Coviello, G., Florio, A., Avitabile, G., Talarico, C., Wang-Roveda, J.M.: Dis-
tributed full synchronized system for global health monitoring based on FLSA.
IEEE Trans. Biomed. Circuits Syst. 16(4), 600–608 (2022)

13. Ghaderi, A., Frounchi, J., Farnam, A.: Machine learning-based signal processing
using physiological signals for stress detection. In: 2015 22nd Iranian Conference
on Biomedical Engineering (ICBME) pp. 93–98 (2015)

14. Goodman, B., Flaxman, S.: Eu regulations on algorithmic decision-making and a
“right to explanation” (2016). arXiv preprint arXiv:1606.08813 (2016)

15. Iqbal, T., et al.: Stress monitoring using wearable sensors: a pilot study and stress-
predict dataset. Sensors 22(21), 8135 (2022)

16. Jang, J.S., Sun, C.T.: Neuro-fuzzy modeling and control. Proc. IEEE 83(3), 378–
406 (1995)

17. Kaczmarek-Majer, K., et al.: PLENARY: explaining black-box models in natural
language through fuzzy linguistic summaries. Inf. Sci. 614, 374–399 (2022)

18. Kaczmarek-Majer, K., Casalino, G., Castellano, G., Hryniewicz, O., Dominiak, M.:
Explaining smartphone-based acoustic data in bipolar disorder: semi-supervised
fuzzy clustering and relative linguistic summaries. Inf. Sci. 588, 174–195 (2022)

19. Karaboga, D., Kaya, E.: Adaptive network based fuzzy inference system (ANFIS)
training approaches: a comprehensive survey. Artif. Intell. Rev. 52, 2263–2293
(2019)

20. Kaymak, U., Van Den Bergh, W.M., van den Berg, J.: A fuzzy additive reasoning
scheme for probabilistic Mamdani fuzzy systems. In: 2003 The 12th IEEE Inter-
national Conference on Fuzzy Systems. FUZZ 2003, vol. 1, pp. 331–336. IEEE
(2003)
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Abstract. Research on identification methods for the Coronavirus Dis-
ease 2019 (COVID-19) has increased in the last years and the need for
automated detection methods has surged as well. Computed Tomog-
raphy scan images have demonstrated to contain useful and sufficient
information to detect COVID-19 by using machine learning and compu-
tational intelligence techniques. However, in order to expand their adop-
tion in medical clinics, COVID-19 detection approaches need to drive the
experts in the overall comprehension of the classification, to check the
validity and meaningfulness of the prediction results. Herein, we propose
a deep learning approach based on an ensemble of convolutional neural
networks with the aim of detecting, very accurately and in an explain-
able way, COVID-19 patients by leveraging CT scan images. We also
take advantage of transfer learning and apply the aforementioned deep
ensemble to a large publicly available dataset, by clustering the images
per lung lobe. Our results show good classification performance, good
generalization potentials, as well as quite interpretable outcomes.

Keywords: Deep Learning · Coronavirus · CT scans · COVID-19 ·
Explainable AI

1 Introduction

After COVID-19 spreading worldwide and becoming a devastating pandemic,
several methods tried to automate its detection using different Artificial Intelli-
gence (AI) techniques. Even if more than three years have passed since its first
surge, COVID-19 is still the focus of several research challenges from both a
medical and a technological point of view. Both points of views aim at develop-
ing effective and accurate diagnostic and treatment methods [30], exploiting the
great quantity of data and information collected during these last three years.
Despite the many improvements in the quick identification of COVID-19, the
still open challenges regard the necessity to ensure high effectiveness in disease
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detection and good capability to drive the experts in the comprehension and
checking of the prediction’s reasons. Therefore, the usage of AI-based techniques
is positively regarded for both the gathering of multiple data types as well as
the identification of anomaly patterns caused by COVID-19 [24].

Computed Tomography (CT) scan images are one of the most used diag-
nosis method, employed also for other diseases [20], because their usage has
some relevant advantages [9]. In this context, Deep Learning (DL), especially
Convolutional Neural Networks (CNNs), demonstrated to be a valid methodol-
ogy to identify COVID-19 patients. CT scans provide an internal 3D view of
organs, which is exploited by DL models to analyze the effects of the illness
on some parts of the lungs. Indeed, some recent researches [2,19] have shown
that the sensitivity of CT scans for COVID-19 is greater than that of Reverse
Transcriptase-Polymerase Chain Reaction (RT-PCR).

However, a limitation of these studies is the lack of interpretability, which
decreases the possibility of using such approaches in real-world practical cases
[1,29]. Explainability, interpretability, and causability [17] are very important
concepts bound to the implementation of transparency and traceability of sta-
tistical black-box machine learning methods, particularly DL. The more the
transparency, the more the decisions taken by DL models can be explained,
understood, and accepted by doctors in the real daily practice.

In this paper, we propose a deep ensemble, based on different types of con-
volutional neural networks, capable to identify automatically and accurately
COVID-19 by leveraging CT scan images. Three pre-trained convolutional neu-
ral networks, whose hyper-parameters have been opportunely optimized, are used
to build the deep ensemble classifier. They analyze three different sets of images
obtained after the clustering of CT scans, one cluster per lung lobe, a proce-
dure often used in the application of pattern recognition techniques to medical
images [6].

To validate this approach, the performed analyses consider a publicly avail-
able balanced dataset, made of the integration of other published ones. The
dataset is made of the Extensive COVID-19 X-Ray and CT Chest Images
Dataset1 and the Coronavirus (COVID-19) CC-19 dataset2. The proposed app-
roach includes a Grad-CAM [25] technique to help transparency and possible
human interpretation of the classification results.

The rest of the document has the following structure. Section 2 summa-
rizes the considered convolutional neural networks and the Grad-Cam approach,
Sect. 3 discusses some recent related work, making comparisons with respect
to the approaches used in this paper, which are described in Sect. 4. Section 5
details the carried out experiments, Sect. 6 reports some discussion thereof, while
Section 7 summarizes what has been described in the article and outlines future
research directions.

1 https://doi.org/10.17632/8h65ywD2jr.3.
2 https://github.com/abdkhanstd/COVID-19.

https://doi.org/10.17632/8h65ywD2jr.3
https://github.com/abdkhanstd/COVID-19
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2 Background

In this section, we briefly summarize the considered convolutional neural net-
works and the used explainable technique, i.e., Grad-CAM.

2.1 Considered Convolutional Neural Networks

VGG-19 [28], i.e., Visual Geometry Group with 16 convolutional layers and 3
fully connected layers, was designed by the University of Oxford for a challenge
regarding visual recognition in 2014. In this particular convolutional neural net-
work, the fixed-size RGB image input (224 × 224 pixels), passes into various
convolutional layers with 3 × 3 filters and 1-pixel step size. Each of the first two
fully connected layers has 4, 096 channels, while the third one is endowed with
1, 000 channels. The output layer exploits a softmax activation function, whereas
the hidden layers take advantage of the RELU function.

ResNet-50 [16] is a residual network, endowed with 50 layers, exploiting the
“skip connection” technique to avoid the diminishing gradient issue. This type of
convolutional neural network skips some of the stacked levels in the first phases of
the training, with the re-use of activation functions of previous levels. This initial
procedure compresses the network, making the learning procedure faster. In the
following re-training, all the layers are expanded and the remainders investigate
better the input image and its feature space.

Xception [7] is a convolutional neural network leveraging on i) “Depth-wise
Separable Convolution” and ii) “Shortcuts between Convolutional blocks”. Its
structure, encompassing both traditional convolutional layers and depth-wise
separable convolutional layers, is made of three main parts: Entry Flow, Middle
Flow, and Exit Flow. This type of convolutional neural network exploits the
“Inception” rationale in an extreme way, i.e., it maps the spatial correlations for
each output channel separately and, subsequently, a 1×1 depth-wise convolution
is performed to catch possible cross-channel correlations.

MobileNet [18] is the first mobile computer vision model based on Tensor-
Flow3 and open-sourced by Google. This model of neural networks is lightweight
because it exploits, in order to decrease the number of parameters, depth-wise
separable convolutions. Moreover, its speed of training and its power consump-
tion are related to the number of multiply-accumulates, a measure of fused mul-
tiplication and addition operations. Thus, this model is capable to get very accu-
rate results also in applications embedded into resource-constrained devices.

2.2 Grad-CAM Technique

Grad-CAM is an evolution of the Class Activation Mapping (CAM) [32], able
to generate a class-discriminative localization map for a variety of CNNs. This
technique exploits the gradients of the score obtained by the classification model,
with respect to the feature maps produced by the final convolutional layer, to

3 https://www.tensorflow.org/.

https://www.tensorflow.org/
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identify the areas of an input image that most influenced the classification itself.
A detailed description and a formalization of Grad-CAM can be found in [25],
but we summarize it briefly in the following.

Focusing on the aim of obtaining a localization map Lc
Grad−CAM ∈ R

u×v of
width u and height v for any class c, various steps are performed.

First, given a class c, the gradient of the score yc (before the softmax) is
computed with respect to the activations of the characteristic map Ak of a
convolutional layer ( δyc

δAk ). Then, the neuron significance weights αc
k are computed

as follows:
αc

k =
1
Z

∑

i

∑

j

δyc

δAk
ij

, (1)

where i and j are the indices of width and height on which the back propagated
gradients are global-average-pooled. αc

k encapsulates the relevance of feature map
k for a target class c and can be seen as a partial linearization of the network
downstream from A.

Finally, when the score for c is calculated, the class-discriminative localiza-
tion map can be generated. It is obtained as a weighted combination of forward
activation maps sent to a ReLU by focusing attention only on the features that
positively influence the interest class. The formalization is reported in the fol-
lowing:

Lc
Grad−CAM = ReLU

(
∑

k

αc
kAk

)
(2)

3 Related Work

Since 2020, several researches have applied DL for the early detection and diag-
nosis of COVID-19 [23], initially with no focus on the explainability, but only
on the classification performance.

The authors of the contribution in [19] proposed a deep learning framework to
automatically identify and classify, in a weakly supervised manner, the infected
regions of the lungs of the patients. The proposed solution used retrospective CT
images, coming from different sources, and achieved good performance in dis-
criminating various cases of pneumonia and COVID-19. COVNet, a 3D deep
learning model, was also proposed in [22], reaching an AUC value equal to
96% for discriminating between ill and healthy patients. In [14], LSTM neu-
ral networks and Q-deformed entropy handcrafted features were used to distin-
guish COVID-19, pneumonia, and healthy cases by using CT scans of the lungs.
The best performance topped an accuracy equal to 99.68%. In [3], ten convo-
lutional neural networks were tested, on a specifically built dataset, to identify
COVID-19 patients from non-COVID19 ones. The considered neural networks
were MobileNet-V2, AlexNet, VGG-19, VGG-16, SqueezeNet, GoogleNet, Xcep-
tion, ResNet-50, ResNet-101, and ResNet-18. ResNet-101 resulted to be the best
one with an AUC equal to 99.40%.
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The main drawback of these researches is the small amount of publicly avail-
able datasets characterized by high-quality images. As a consequence, in [27] the
authors created an integrated dataset of lung CT scans to work on more actual
cases, with images coming from various places. However, they also applied data
augmentation methods to extend the usable instances.

In the current literature, we can also find ensembles of DL techniques to
identify COVID-19 patients from CT scans, solutions that usually have better
performance than the single classifiers [33]. An ensemble of LSTM networks is,
for example, analyzed in [26], while in [12], an ensemble is employed to decrease
the inter-observer variability in the identification of COVID-19 patients.

As regards explainability, it has been tackled only more recently. For example,
in [5] the authors apply deep learning and XAI to detect COVID-19, Tuberculo-
sis, and Pneumonia. In this paper, lightweight CNNs were used for the classifica-
tion, while the explanatory part was in charge of Grad-CAM, SHAP, and LIME.
Differently from our study, the considered dataset was composed of CXR images.
Zou et al. [34] proposed an XAI ensemble based on SHAP and Grad-CAM++
to detect both Pneumonia and COVID-19, but on a private dataset of CXR
images and using Xception and a fully-connected neural network. Differently, the
authors of the contribution in [8] apply XAI to predict oxygen requirements and
detect 20 abnormal radiographic features by using always CXR images and Grad-
CAM in conjunction with deep convolutional neural networks (DenseNet-121).
In [11] the authors apply different types of convolutional neural networks, i.e.,
VGG16, VGG19, EfficientNetB0, ResNet50, and ResNet101, to CT scan images,
creating then two ensembles of the best performing networks endowed also with
XAI. However, it is no clear which explainable technique has been applied to the
considered ensembles. In [15], the authors apply two types of deep convolutional
neural networks, namely VGG11 and VGG16, and three explainable techniques,
namely Composite Layer-wise Propagation, Single Taylor Decomposition, and
Deep Taylor Decomposition, to shed light on the outcomes of the black-box neu-
ral network models classifying viral pneumonia, COVID-19, as well as healthy
subjects from X-ray images. Finally, in [31], the authors try to apply XAI to CT
scans to detect, in an interpretable way, COVID-19 patients. They use, together
with a U-Net, an explainable module based on CAM, LIME, and SHAP before
the final global average pooling layer, reaching an overall accuracy on the binary
classification equal to 89.23%, training on a private Chinese dataset and testing
on a publicly available one. However, they do not use an ensemble of neural
networks nor the lobes clustering of the lung images.

Differently from the reviewed related papers, we herein apply an ensemble of
convolutional neural networks to a novel dataset created through the integration
of other publicly available datasets, with no need of data augmentation or syn-
thetic data. This choice allows the improvement of the generalization capabilities
of the considered approach, which, moreover, is based on lobe clustering of the
CT scan images. This subdivision permits the specialization on a certain lobe
because it captures the local distribution of some specific patterns of damages
[10]. Moreover, the clustering allows for a better application of XAI and the
interpretation of its outcomes on the part of clinicians.
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4 Approach

The explainable COVID-19 detection approach proposed in this paper is detailed
in Fig. 1. It consists of: i) an ensemble classifier using majority voting, to identify
patients suffering from COVID-19 by leveraging CT scan images and ii) a Grad-
CAM interpreter, able to identify the areas of the CT scan images more relevant
for the prediction.

Fig. 1. Considered explainable ensemble of multiple classifiers.

The figure shows, in the upper part, the training process. The initial dataset
D was processed using as clustering procedure K-means and as distance metric a
variant of the Structural Similarity Index Metric. The suitable number of clusters
(i.e., 3) for K-means was found through a silhouette coefficient-based method
[4]. As a consequence, three training and validation datasets were generated,
perfectly matching the three different segments of a lung (superior lobe, medium
lobe, and inferior lobe). According to this, the obtained datasets were named:
DS , DM , DI . Consequently, the training process exploited three single neural
network classifiers (one for each lobe): CS , CM , CI . In this work, several pre-
trained transfer-learning-based CNN classifiers have been tested for the binary
classification of CT scan images into two classes, namely Covid and Non-Covid.
Overall, the splitting of training, validation, test sets is performed across the
images of different patients, not between patients.

The lower part of Fig. 1 describes the ensemble structure when used for the
inference of novel, never seen, images. The ensemble is obtained as a combi-
nation of CS , CM , CI and uses a majority voting strategy for each instance
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of CT scan to be classified. The single classifiers produce predictions that are
the input of the majority voter component. This component takes all the single
classifiers’ results and produces the classification report according to the major-
ity of outcomes of the single classifiers. Our approach could be also extended
to a multi-classification task (healthy patients and different types or degrees of
COVID-19 patients). In this case, when the majority voter cannot find a unique
majority, our solution could be easily extended by applying weighted methods,
i.e., weighted majority voting.

Finally, for each instance of CT scans, the prediction of every single clas-
sifier, within their classification model, is sent to a corresponding Grad-CAM
component (superior lobe Grad-CAM, medium lobe Grad-CAM, and inferior
lobe Grad-CAM). Each Grad-CAM component generates, for each input image,
the map of the areas that better influence the obtained classification result. The
Grad-CAM algorithm is applied one time for each lobe classifier, in order to
investigate where the ensemble has focused the most attention to output the
final diagnosis. The output of Grad-CAM blocks, one per lobe, is collected, and
the corresponding heat maps are generated.

5 Experiment Description

The carried out experiments are useful to assess the performance and explain-
ability of the considered deep ensemble of convolutional neural networks. The
dataset considered in this study, freely available4, is the one described in [4],
obtained as an integration of the Extensive COVID-19 X-Ray and CT Chest
Images Dataset and the CC-19 dataset. The overall dataset (D) contains 23, 398
images, 9, 324 labeled as Non-COVID19 and 14, 074 labeled as COVID19, respec-
tively. As a consequence, the considered dataset is quite imbalanced in favor of
COVID19 class according to a ratio of about 60:40.

We evaluated the performance of the proposed approach by considering dif-
ferent pre-trained network models, i.e., VGG, Xception, ResNet, and MobileNet,
and various mixes of the following parameters:

– no. of fully connected layers: the final fully connected block has a number of
fully connected (FC) layers ranging in the [2, 6] interval;

– scheme of the neurons: the number of neurons per FC layer varies in the [1,
256] range;

– dropout probability layout : varying in the [0.10, 0.25] interval;
– optimizer : we have considered SGD with Nesterov’s accelerated gradient [13],

Nadam, and RMSProp optimization algorithms.

The single deep neural network classifiers have been trained by varying the
number of layers and the number of epochs and using the binary cross-entropy
as a loss function. The single neural network classifiers and the deep ensemble
have been implemented in Python by leveraging Keras5 on top of Tensorflow.
4 https://bit.ly/34QJUSd.
5 https://keras.io/.

https://bit.ly/34QJUSd
https://keras.io/
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Accuracy and Loss have been used to validate the training performance. They
are inversely proportional: when one is increasing, the other one is decreasing,
and vice versa. Moreover, the classification results were evaluated, in the testing
phase, by considering the following metrics:

Accuracy =
tp + tn

tp + tn + fp + fn
,

Precision (P) =
tp

tp + fp
,

Recall (R) =
tp

tp + fn
,

F1 − score = 2 × Precision × Recall

Precision + Recall
,

where tp are true positives, fp are false positives, fn are false negatives, and tn are
true negatives. We have also considered the ROC Area (Area Under the Curve
- AUC), expressing the probability that a randomly selected relevant instance is
classified above a not relevant one.

Finally, the carried out experiments also allowed the evaluation of the capa-
bility of the deep ensemble to give correct interpretations of the obtained pre-
dictions. This evaluation was performed by manually evaluating the correctness
of the masks generated by the explainability component with the support of an
expert radiologist.

All experiments were carried out by exploiting a machine endowed with an
Intel Core i9 7920X (18 cores), with 2 GPUs (NVIDIA RTX 3090 24 GB of
RAM) and 64 GB of RAM.

6 Results and Discussion

In this section, we show the main results of the carried out experiments, both in
terms of performance and of interpretability.

Table 1 shows, in the first three rows, the best classifier architectures obtained
for each lobe (clustered datasets), as well as the relative performance. The last
row of the table also reports the overall ensemble performance.

We observe that the best results are obtained by the ensemble and the
medium classifiers, which achieve almost the same outcomes in the considered
metrics. This suggests that the most interesting images, for the COVID-19 detec-
tion goal, are those of the medium lung lobe and are collected in Dm.

In the best cases, highlighted in bold in Table 1, the F1-score, which takes
into account the imbalance of the dataset, is equal to 96.9%, so rather high.
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Table 1. Best classifiers per lobe, their hyper-parameters, and the final scores of the
considered metrics.

Lobe Base Model FC Layers FC Neurons Scheme FC Dropouts Scheme Optimizer P R F1

Inferior VGG19 6
216 -137-124 -

64 - 48 -16

0.15 - 0.15 - 0.15 -

0.10 - 0.12 -0.10
SGD 94.7% 95.1% 94.9%

Medium RESNET50 5
104 -104 -

50 - 50 - 20

0.25 - 0.10 -

0.14 - 0.13 - N
NADAM 96.7% 97.1% 96.9%

Superior VGG19 4
122 - 118 -

64 - 24

0.18 - N -

0.12 -0.10
RMSProp 94.8% 95.1% 95.0%

Ensemble - - - - - 96.8% 97.0% 96.9%

Fig. 2. Examples of the Grad-CAM heatmaps for the inferior lobe (a), the medium
lobe (b) and the superior lobe (c) for a sick (left) and a healthy (right) patient.

Considering the point of view of the explainability of the proposed approach,
Fig. 2 shows examples of heatmaps generated by using the Grad-CAM compo-
nents and MobileNet. Indeed, all the neural networks, tested in the classification
phase, have been evaluated in terms of explainability, but we chose to show the
results of MobileNET since it is a lighter neural network and, by providing com-
parable explanations, it is much more suitable for being integrated in the context
of ready-to-use outpatients and portable devices.

Each row of the figure refers to a specific section of the lung (inferior, medium,
and superior). The left side of the figure concerns heatmaps constructed for a
COVID-19 patient, while the right part concerns Grad-CAM heatmaps con-
structed on a healthy control subject.
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For each considered patient, we can see a pair of images for each lobe. In
particular, the leftmost one is the considered scan of a COVID-19 patient or
a healthy control patient, depending on the case, while the rightmost one is
the overlapping of the heatmap generated by the Grad-CAM component for the
specific scan, superimposed to the scan itself.

Looking at the figures, we observed that the most interesting results are
obtained by considering the medium lobe, confirming the previous observation
of medium lobe clustering images as the most discriminant ones in terms of
performance.

Looking at the medium lobe (b), in the figure, we can observe that in the case
of a COVID-19 patient, the heatmap highlights (yellow colored areas) a part of
the scan image corresponding to an actual alveolar damage. Indeed, according
to the medical literature [21], the highlighted areas can be heavily affected by
COVID-19.

Conversely, looking at the healthy patient heatmap for the medium lobe,
we observe that in this case, the highlighted yellow area is quite extended and
with lower intensity, showing that, when the pathology is missing, the most
discriminant classification zones are far less concentrated.

Finally, looking at the other lobes, i.e., superior and inferior, no clear dis-
criminant zones are found in the heatmaps. Only in the case of the superior lobe
a tiny yellow area can be detected in the case of COVID-19 patients.

7 Conclusions

In this article, we have applied an explainable deep ensemble approach to iden-
tify COVID-19 patients by leveraging CT scan images clustered per lung lobe.
Computerized tomography images have been clustered according to the three
main parts of a lung (superior, medium, and inferior lobe) and employed to
train both single convolutional neural networks and an ensemble of multiple
classifiers composed of them. The approach also includes the optimization of
the single classifiers and the majority strategy for the final voting procedure
in the multiple ensemble classifier. Finally, Grad-CAM components have been
included allowing us to obtain the heatmaps that highlight the areas of the CT
scan images which influence the most the classifier decision (COVID-19 patient
or healthy subject).

The obtained results show good performance of the proposed ensemble clas-
sifier in COVID-19 detection (96.9% of F1-score in the best case). While the best
result are obtained using the majority voting among all classifiers, the medium
lobe seems to be the most discriminating one. This is also confirmed looking at
the Grad-CAM heatmaps, which show the best ability to identify widespread
alveolar damage exactly in the case of medium lobe.

The main drawback of this study is the limited validation of the proposed
approach with respect to its ability to give useful insights to the medical staff.
According to this, in our future work, a larger study about the explainable results
will be carried out with a larger set of experiments and the participation of a
team of medical experts.
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Abstract. Recently, monometrics have attracted interest for their appli-
cations in fields such as decision making, penalty-based aggregation, and
binary classification. In this work, we investigate various distance func-
tions defined in the literature using fuzzy logic connectives and examine
if and when they are monometrics on the unit interval. Further, taking a
cue from the construction of distance functions using fuzzy implications,
we offer a way to construct distance functions from monotonic fuzzy
logic connectives using fuzzy negation and examine the conditions under
which they yield a metric and a monometric on a partially ordered set.

Keywords: Fuzzy Logic Connectives · Fuzzy Implication · Distance
Function · Monometric

1 Introduction

In the literature, there have been a few works that have dealt with the construc-
tion of metrics from fuzzy logic connectives that are commutative, associative, or
monotonic on the unit interval [0,1], for instance, t-norms, t-conorms, copulas or
quasi-copulas [1–4,7]. Recently [6], Nanavati et al. have proposed a construction
of a distance function from a fuzzy logic connective that does not satisfy any
of the above properties, i.e., from fuzzy implications. Further, the authors have
shown the condition under which it is a metric with the help of a transitivity-
type functional inequality. Interestingly, this distance function always yields a
monometric on the underlying partially ordered set(poset) (X ,�).

1.1 Motivation for and Contributions of This Work

In the recent past, monometrics on a poset, have garnered a lot of attention
for their important role in decision-making, penalty-based data aggregation,
and binary classification [5,8–10]. One of the major challenges herein is that
of obtaining monometrics on a given poset. Our first contribution in this work
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is to show if and when the already proposed distance functions from fuzzy logic
connectives yield monometric on [0,1].

Further, taking a cue from the work of Nanavati et al. [6], we see that the
property required for a distance function obtained from a fuzzy implication I to
be a monometric on [0,1] is essentially the mixed monotonicity of I. Our second
contribution is in defining a distance function from any monotonic fuzzy logic
connective defined on the unit interval [0,1] using fuzzy negation and showing if
and when it is a metric and a monometric on [0,1]. Towards this end, we also
show that the monometrics obtained from fuzzy logic connectives, defined on
[0,1], can be generalised to a poset (X ,�) through an order-preserving map.

In the quest for defining a distance function using any monotonic fuzzy logic
connective, we have also proposed a new class of fuzzy implication using a t-norm
T and a fuzzy negation N and have studied its properties in this work.

1.2 Outline of This Work

Firstly, in Sect. 2, we discuss the distance functions that have already been pro-
posed in the literature using various fuzzy logic connectives and show the condi-
tions under which they yield monometrics on [0,1]. Next, in Sect. 3, we show that
a distance function defined on [0,1] can be easily lifted to a non-empty set X . In
Sect. 4, we propose a construction of a distance function using monotone fuzzy
logic connectives on [0,1] and show the conditions under which it is a metric. We
also show if and when it yields a monometric on [0,1]. This leads us to propose
a new family of fuzzy implications on [0,1], see Sect. 4.1.

2 Distances from FLCs: A Literature Survey

In the literature, several constructions of distance functions from fuzzy logic
connectives have been proposed and the conditions under which they yield a
metric have been investigated [2,4,6,7]. In this section, we study these distance
functions and see if and when these distance functions yield a monometric on
[0,1]. We begin by recalling the definition of distance functions and monometrics
on the unit interval.

Definition 1. A symmetric function d : X ×X → [0,+∞) is called a distance
function on X if it satisfies the following property for any x, y ∈ X :

x = y =⇒ d(x, y) = 0. (P1)

Further, it is called a metric if the converse of (P1) holds, and it also satisfies
the triangle inequality, i.e., for any x, y, z ∈ X ,

d(x, z) ≤ d(x, y) + d(y, z). (P2)

Definition 2. A function d : [0,1]2 → [0,+∞) is called a monometric on
[0,1] if, for every x, y, z ∈ [0,1], (P1) and its converse holds, and the following
mono-compatibility property is satisfied:

x ≤ y ≤ z =⇒ max(d(x, y), d(y, z)) ≤ d(x, z). (MC)
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Below, we examine the existing distances in the literature and investigate
when they yield a monometric on [0,1].

2.1 From T-Norms

We begin by discussing the first construction of a distance function using fuzzy
logic connectives as proposed by Alsina in [4].

Definition 3 (cf. [4]). Given a t-norm T , dT : [0,1]2 → [0,1] is defined as:

dT (x, y) =

{
0, if x = y,

1 − T (1 − x, 1 − y) − T (x, y), otherwise.
(1)

Theorem 1 (cf. [4]). If T is a t-norm and a copula, then dT is a metric on
[0,1].

However, the converse of the above theorem need not be true, i.e., t-norms
that are not copulas can give rise to a metric, for instance, continuous non-strict
Archimedean t-norms or nilpotent t-norms (see [7]).

Below, we present examples of t-norms T for which the dT defined in (1) is
a/not a monometric on [0,1].

Example 1 Consider T (x, y) = min(x, y). Then dT (x, y) = |x− y| is a monomet-
ric on [0,1].

Example 2 Consider T (x, y) = xy. Then dT (x, y) = x + y − 2xy is not a mono-
metric on [0,1], since

0.2 ≤ 0.3 ≤ 0.4 but 0.46 = dT (0.3, 0.4) > dT (0.2, 0.4) = 0.44.

Below, we characterise t-norms that ensure dT yields a monometric on [0,1].

Theorem 2 Let T be a t-norm. dT is a monometric on [0,1], if and only if for
every x ≤ y ≤ z, T (1 − x, 1 − z) + T (x, z) ≤ T (y, z) + T (1 − y, 1 − z).

2.2 From T-Norms and T-Conorms

In [2], the authors construct metrics for the more general case of any t-norm and
t-conorm, and a characterization of t-norms that define metric is given in case
the t-norms have the same zero region as the �Lukasiewicz t-norm. We study this
distance function in this section.

Definition 4 (cf. [2]). Given a t-norm T , and a t-conorm S, dT,S : [0,1]2 →
[0,1] is defined as:

dT,S(x, y) =

{
0, if x = y,

S(x, y) − T (x, y), otherwise.
(2)
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Definition 5. A function F : [0,1]2 → [0,1] satisfies the Lipschitz condition with
constant 1 if

|F (x, y) − F (x′, y′)| ≤ |x − x′| + |y − y′|
for all x, x′, y, y′ ∈ [0,1].

Theorem 3 (cf. [4]). Let T be a t-norm and S be a t-conorm. If T and S
satisfy the Lipschitz condition with constant 1, then dT,S is a metric on [0,1].

Note that in Sect. 3 of [3], Alsina proposed the same distance function for
Quasi-copulas, instead of t-norms, and their dual, not necessarily of the same
quasi-copula, for t-conorms, and showed that it always yields a metric. Now, we
shall see examples for which dT,S defined in (2) is a/not a monometric on [0,1].

Example 3 Consider S(x, y) = max(x, y), and T (x, y) = xy. Then dT,S(x, y) =
max(x, y)(1 − min(x, y)) is a monometric on [0,1].

Example 4 Consider SLK(x, y) = min(x+y, 1), and T (x, y) = max(x+y −1, 0).
Then

dT,S(x, y) =

{
x + y, if x + y < 1,

2 − (x + y), otherwise.

is not a monometric on [0,1] since

0.4 ≤ 0.7 ≤ 0.8 but 0.9 = dT,S(0.4, 0.7) > dT,S(0.4, 0.8) = 0.8.

Note that since T (x, y) = max(x+y−1, 0) is a quasi-copula, the distance function
given in Sect. 3, [3], also does not always yield a monometric on the unit interval.

Below, we present the conditions that ensure dT,S yields a monometric on
[0,1].

Theorem 4 Let T be a t-norm and S be a t-conorm. dT,S is a monometric on
[0,1], if and only if for every x ≤ y ≤ z, S(x, z) + T (y, z) ≥ S(y, z) + T (x, z) ≥
S(x, z) + T (x, y) ≥ S(x, y) + T (x, z) .

2.3 From Quasi-Copulas

In [3], Alsina constructs a distance function using quasi-copulas as defined below
and shows that it is always a metric.

Definition 6 (cf. Section 4, [3]). Given two commutative quasi-copulas Q1

and Q2, dQ1,Q2 : [0,1]2 → [0,1] is defined as:

dQ1,Q2(x, y) =

{
0, if x = y,

x + y − Q1(x, y) − Q2(x, y), otherwise.
(3)

Theorem 5 (cf. Section 4, [3]). Let Q1 and Q2 be quasi-copulas. dQ1,Q2 is
always a metric in [0,1].
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Now, we shall see an example for which dQ1,Q2 defined in (3) is a monometric
on [0,1].

Example 5. If Q1(x, y) = min(x, y), an Q2(x, y) = xy, then dQ1,Q2(x, y) = |y −
x|, and it is always a monometric on [0,1].

However, dQ1,Q2 need not always yield a monometric.

Example 6. Consider Q1(x, y) = Q2(x, y) = xy. Then dQ1,Q2(x, y) = dT (x, y) in
Example 2, which is not a monometric on [0,1].

Below, we present the conditions that ensure dQ1,Q2 yields a monometric on
[0,1].

Theorem 6. Let Q1 and Q2 be quasi-copulas. dQ1,Q2 is a monometric on [0,1],
if and only if for every x ≤ y ≤ z, the following properties hold:

1. (Q1(x, z) − Q1(x, y)) + (Q2(x, z) − Q2(x, y)) ≤ z − y .
2. (Q1(x, z) − Q1(y, z)) + (Q2(x, z) − Q2(y, z)) ≤ x − y .

2.4 From Symmetric Differences

In [1], the authors offer a complete characterization of the triple (T, S,N) of t-
norm, t-conorm, and fuzzy negation that define symmetric difference functions,
which are metrics.

Definition 7. A symmetric function 	 : [0,1]2 → [0,1] is called a symmetric
difference function if for all a ∈ [0,1],

	(a, a) = 0, 	(a, 0) = a, 	(a, 1) = N(a),

where N is a strong negation.

Definition 8 (cf. [1]). Given a t-norm T , t-conorm S, and a strong negation
N , dT,S,N : [0,1]2 → [0,1] is defined as:

dT,S,N (x, y) = S(T (x,N(y)), T (N(x), y)). (4)

Theorem 7 (cf. [1]). Let T be a t-norm, S a t-conorm, and N a strong fuzzy
negation. dT,S,N is a symmetric difference function if and only if T (a,N(a)) = 0
for all a ∈ [0,1] .

Theorem 8 (cf. [1]). Given a triplet (T, S,N), the function dT,S,N defined in
(4) is a metric if, and only if, the following conditions hold:

(i) T (a, b) = 0 if, and only if, b ≤ N(a).
(ii) For all x ∈ [0,1] and any ε, δ ∈ R such that 0 ≤ ε ≤ 1−x, 0 ≤ δ ≤ 1−N(x),

the following inequality holds:

T (x + ε,N(x) + δ) ≤ T (x,N(x) + δ) + T (x + ε,N(x)). (5)
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Note that dT,S,N need not be always a monometric on the unit interval. Below
we present a condition under which it is a monometric on [0,1].

Theorem 9. Let T be a t-norm, S a t-conorm, and N a strong fuzzy negation.
Then the following are equivalent:

(i) T (a, b) = 0 if and only if b ≤ N(a), for all a, b ∈ [0,1].
(ii) dT,S,N is a monometric on [0,1].

Example 7 (cf. [1]). Let T be a nilpotent minimum t-norm and N(x) = 1 − x.
Then

dT,S,N (a, b) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 if a = b,

b if a < b, a + b ≤ 1,

1 − a if a < b, a + b ≥ 1,

a if a > b, a + b ≤ 1,

1 − b if a > b, a + b ≥ 1.

is a monometric on [0,1].

2.5 From Fuzzy Implications

In [6], the authors propose a construction of distance functions from fuzzy impli-
cations on [0,1] and show that it is a metric if it satisfies a transitive-type func-
tional equation. They also show that it is always a monometric on [0,1]. Note
that throughout the paper, we will only consider fuzzy implications that satisfy
the following condition:

I(x, y) > 0,whenever x ≤ y, x, y ∈ [0,1].

Definition 9 (cf. [6]). Given a fuzzy implication I, dI : [0,1]2 → [0,1] is defined
as:

dI(x, y) =

⎧⎪⎨
⎪⎩

0, if x = y,

I(x, y), if x < y,

I(y, x), if y < x.

(6)

Definition 10. A function F : [0,1]2 → [0,1] is said to satisfy SLK−transitivity
if

SLK(F (x, y), F (y, z)) ≥ F (x, z) for all x, y, z ∈ [0,1]. (SFT)

Theorem 10 (cf. [6]). If I satisfies (SFT), then dI is a metric on [0,1].

Theorem 11 (cf. [6]). dI is always a monometric on [0,1].
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3 Lifting the Distance

We see that the distance functions studied above have all been defined on the
unit interval. However, one can easily lift the distance functions d defined on the
unit interval to a non-empty set X as follows.

Remark 1. Let f : X → [0,1]. Define d∗
f : X × X → [0,1] as follows: for any

x, y ∈ X ,

d∗
f (x, y) = d(f(x), f(y)).

Note that d∗
f is a metric on X if d is a metric on the unit interval.

Further, in order to define a monometric on a partially ordered set (X ,�),
we need an order-preserving map from (X ,�) to the unit interval. In [6], the
authors showed that there always exists an order-preserving map from a partially
ordered set to the ordered set of the unit interval.

Theorem 12 (cf. Theorem 5, [6]). Let (X ,�) be a partially ordered set.
Then there always exists a non-constant order-preserving map f : X → [0,1],
i.e., x � y implies f(x) ≤ f(y).

Using the result given above, one can easily show that given an order-
preserving f : X → [0,1], d∗

f is a monometric on (X ,�) if d is a monometric on
the unit interval.

4 Construction of Monometrics from FLCs

In the previous section, we saw that most of the distance functions defined in
the literature using fuzzy logic connectives do not always yield a monometric on
[0,1]. However, the distance function dI , obtained using fuzzy implication, always
yields a monometric on [0,1]. The reason for that is the hybrid monotonicity of
fuzzy implications. In this section, taking cue from the construction of dI , we
offer a construction of distance functions using other fuzzy logic connectives. We
then explore the conditions under which they yield metrics and monometrics on
the unit interval.

Definition 11. Let F be a monotonic fuzzy logic connective and N be a fuzzy
negation. Define FN : [0,1]2 → [0,1] as FN (x, y) = F (N(x), y). We define dFN

:
[0,1]2 → [0,1] as:

dFN
(x, y) =

⎧⎪⎨
⎪⎩

0, if x = y,

FN (x, y), if x < y,

FN (y, x), if y < x.

(7)

Theorem 13. dFN
yields a metric on [0,1] if and only if the following properties

are satisfied:
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(i) FN (x, y) > 0 whenever x < y.
(ii) FN satisfies (SFT).

Theorem 14. dFN
yields a monometric on [0,1] if and only if FN (x, y) > 0

whenever x < y.

Remark 2. (i) Notice that if F is a fuzzy disjunction, then FN is a fuzzy impli-
cation. Hence, the obtained dFN

would be dI for a suitable I = FN .
(ii) If F is a positive t-norm, overlap function, or a copula, then dFN

would
always yield a monometric for any positive negation N . Further, if FN sat-
isfies (SFT), dFN

yields a metric.
(iii) When dT,S,N given in Definition 8 is a symmetric difference function, it is

of the form dTN
.

The following representation theorem highlights the importance of dFN
.

Theorem 15. The following statements are equivalent:

1. d is a symmetric monometric on ([0,1],≤).
2. There exists a monotonic F : [0,1]2 → [0,1] and a strong negation N such

that dFN
= d.

4.1 Yet Another Class of Fuzzy Implications

We observe that to ensure (MC), we create a function that is decreasing in the
first variable by using a fuzzy negation and increasing in the second variable. Our
distance function thus satisfies the hybrid monotonicity that a fuzzy implication
possesses. If we demand the required boundary conditions, we can construct
a fuzzy implication from monotone functions. In the following definition, we
propose such a construction.

Definition 12. Let F be a monotonic fuzzy logic connective and N be a fuzzy
negation. Define FN : [0,1]2 → [0,1] as FN (x, y) = F (N(x), y). We define IF,N :
[0,1]2 → [0,1] as:

IFN
(x, y) =

{
1, if x = 0 or y = 1,

FN (x, y), otherwise.
(8)

For all monotonic fuzzy logic connectives F : [0,1]2 → [0,1], satisfying F (0, 0) =
0, we have the following theorem.

Theorem 16. IFN
is a fuzzy implication.

Remark 3. 1. If F is a t-conorm, we obtain the well-known family of (S,N)-
implication.

2. IFN
satisfies the neutrality property if and only if 0 is the left identity of F .

Thus for fuzzy logic connectives where 0 is not the left identity, IFN
does

not satisfy the neutrality property and is different from the major families
of fuzzy implications like (S,N)-, R, and Yager’s.
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3. If F is a t-norm, we get

ITN
(x, y) =

{
1, if x = 0 or y = 1,

TN (x, y), otherwise.
(9)

Notice that ITN
does not satisfy the neutrality property, ordering property,

or the identity principle. However, it does satisfy the exchange principle.

5 Concluding Remarks

In this work, we considered the different distance functions that have been
defined in the literature using fuzzy logic connectives and explored if and when
they yield a monometric on [0,1]. Further, we made use of the construction of
distance function from fuzzy implications to offer alternative distance functions
using monotonic fuzzy logic connectives. We have also presented the conditions
under which they yield a metric and a monometric on [0,1]. Our work, thus
expands our armoury of practical distance functions using monotonic fuzzy logic
connectives. Finally, we construct a family of fuzzy implications from our dis-
tance function, and study its properties. Our work clearly shows that behind
every symmetric monometric lurks a fuzzy logic connective.
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in this submission.
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2. Aguiló, I., Mart́ın, J., Mayor, G., Suñer, J.: On distances derived from t-norms.
Fuzzy Sets Syst. 278, 40–47 (2015)

3. Alsina, C.: On quasi-copulas and metrics. In: Cuadras, C.M., Fortiana, J.,
Rodriguez-Lallena, J.A. (eds.) Distributions With Given Marginals and Statistical
Modelling, pp. 1–8. Springer, Dordrecht (2002). https://doi.org/10.1007/978-94-
017-0061-0 1

4. Alsina, C.: On some metrics induced by copulas. In: Walter, W. (ed.) Gen-
eral Inequalities 4. International Series of Numerical Mathematics, pp. 397–397.
Springer, Basel (1984). https://doi.org/10.1007/978-3-0348-6259-2 38

5. Gupta, M., Jayaram, B.: On the role of monometrics in nearest neighbor classifi-
cation. (Manuscript under preparation)

6. Nanavati, K., Gupta, M., Jayaram, B.: Pseudo-monometrics from fuzzy implica-
tions. Fuzzy Sets Syst. (2022). https://doi.org/10.1016/j.fss.2022.11.001

7. Ouyang, Y.: A note on metrics induced by copulas. Fuzzy Sets Syst. 191, 122–125
(2012)

https://doi.org/10.1007/978-94-017-0061-0_1
https://doi.org/10.1007/978-94-017-0061-0_1
https://doi.org/10.1007/978-3-0348-6259-2_38
https://doi.org/10.1016/j.fss.2022.11.001


666 K. Nanavati et al.
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Abstract. In the recent past, monometrics w.r.t. a ternary relation
defined on a set, called the betweenness relation, have garnered a lot of
attention for their important role in decision making, penalty-based data
aggregation, and binary classification. One of the major challenges herein
is that of obtaining monometrics on a given betweenness set (X , B). In
this work, we propose a couple of constructions of monometrics on lattice
betweenness, the latter using fuzzy implications. Our work seems to sug-
gest that fuzzy implications are rather a natural choice for constructing
monometrics on lattice betweenness. It also justifies the exploration of
fuzzy logic connectives on general posets, primarily bounded lattices.

Keywords: Fuzzy Implication · Betweenness Relation · Lattice
Betweenness · Monometric

1 Introduction

Betweenness relations were introduced to capture the notion of betweenness
amongst a triplet of elements that are either related geometrically or through
an order.

The notion of a betweenness relation can be traced back to works done more
than a century ago to that of Pasch [15] and Huntington and Kline [11]. It was
further studied by Huntington [10], Pitcher and Smiley [21], and Transue [25].
In these works, various types of transitivities of betweenness were proposed and
explored. Betweenness relations have traditionally been studied largely theoreti-
cally. They have also been explored towards characterizing lattices [3,4,9,22,24],
thereby showing their utility in lattice theory.

1.1 Motivation for and Contributions of This Work

Recently, these relations have also been shown to be of use in practical applica-
tions, especially in decision-making, penalty-based data aggregation, please see

Supported by SERB under the project MTR/2020/000506.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Massanet et al. (Eds.): EUSFLAT 2023/AGOP 2023, LNCS 14069, pp. 667–678, 2023.
https://doi.org/10.1007/978-3-031-39965-7_55

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-39965-7_55&domain=pdf
http://orcid.org/0000-0002-7446-9253
http://orcid.org/0000-0003-2347-1019
http://orcid.org/0000-0001-7370-3821
https://doi.org/10.1007/978-3-031-39965-7_55


668 M. Gupta et al.

the works of De Baets and his group [16–20], and binary classification [8]. How-
ever, one of the major challenges is to define a distance function that captures
the underlying betweenness relation(monometric) on a set X . This forms the
motivation to carry out our study.

In this work, we show that the distance function defined in [5] is a monomet-
ric on the given lattice betweenness relation. Further, we construct a distance
function dI , using a fuzzy implication I, on a given lattice L, and show when
it is a monometric on the given lattice betweenness relation, proffering another
application of fuzzy implications. Lastly, we examine if and when these distance
functions are also metrics.

1.2 Outline of This Work

In the sequel, in Sect. 2, we begin by introducing the betweenness relations and
defining one of the three important generalizations of the betweenness relation
on a line, namely, lattice betweenness. We then introduce the distance functions
compatible over a betweenness relation, known as monometrics, and discuss their
existence on lattice betweenness. In Sect. 3, we show a construction of monomet-
rics on the lattice betweenness relation and show the sufficient conditions under
which they would be metrics. Finally, we discuss an alternate construction of
monometrics on the lattice betweenness relation using fuzzy implications defined
on a bounded lattice, highlighting the utility of studying fuzzy logic connectives
on bounded lattices.

2 Monometrics on Betweenness Relations

Monometrics play an integral role in applications such as rationalisation of rank-
ing rules, penalty-based aggregation, and binary classification.

In the problem of aggregation of rankings, given a profile of rankings, the
aim is to obtain a single ranking that best represents the nature of this given
profile. The aggregated rankings can be characterised as minimizing the distance
from a consensus state using a distance function. In [20], it was proposed that
the distance function should be replaced by a monometric, which essentially
preserves the betweenness relation under consideration.

The study of penalty-based aggregation has been mainly confined to the
domain of real numbers. In [17], the definition of penalty-based function was
extended to accommodate more general structures and expand its scope beyond
real numbers by demanding compatibility with a betweenness relation. It was
shown that penalty-based functions could be constructed using monometrics on
the given betweenness relation.

A distance function appears in almost every Data Analysis or Machine Learn-
ing algorithm, either explicitly as a metric or a norm, or implicitly as its dual,
similarity measure, for instance, in the form of an inner product. That the gen-
eral purpose distances may not be appropriate for all situations is well-known,
see, for instance, an excellent articulation of the same in [26]. In [8], authors
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have claimed that the distance functions compatible with the relational struc-
ture(monometrics) present in the data are the most appropriate in the problem
of binary classification, especially in nearest-neighbor classification.

In this section, we recall the definitions of betweenness relation, lattices, and
monometric. We shall employ the definition of the betweenness relation given
by Pitcher and Smiley in [21], without demanding the additional conditions
concerning transitivity.

Definition 1. Let B be a ternary relation on an X �= ∅. Then B is said to be a
betweenness relation if B satisfies the following for any x, y, z ∈ X :

(x, y, z) ∈ B ⇐⇒ (z, y, x) ∈ B, (BS)

(x, y, z) ∧ (x, z, y) ∈ B ⇐⇒ y = z. (BU)

Remark 1. (i) (X ,B) is known as a Betweenness set or a beset. Also, (x, y, z) ∈ B
is read as ’y is in between x and z’.

(ii) The minimal betweenneess relation B0 on X is defined as follows:

B0 = {(x, y, z) ∈ X 3 | x = y ∨ y = z}.

(iii) A betweenness relation B is said to be transitive if for any o, x, y, z ∈ X :

(o, x, y) ∈ B ∧ (o, y, z) ∈ B =⇒ (o, x, z) ∈ B. (BT)

Definition 2. A lattice is an algebraic structure (L,∨,∧), consisting of a set L
and two binary, commutative and associative operations ∨ and ∧ on L satisfying
the following axiomatic identities for all elements a, b ∈ L (sometimes called
absorption laws):

a ∨ (a ∧ b) = a

a ∧ (a ∨ b) = a

Definition 3. A lattice (L,∨,∧) is said to be bounded below by e ∈ L, if
a ∨ e = a and a ∧ e = e for every a ∈ L.

Definition 4. A lattice (L,∨,∧) is said to be a modular lattice if for any
a, b ∈ L such that a ∨ b = b and a ∧ b = a, modular law is satisfied for every
x ∈ L, i.e.,

a ∨ (x ∧ b) = (a ∨ x) ∧ b.

Definition 5 ([23]). The Lattice Betweenness Relation - Let (L,∧,∨) be
a lattice. Then

BL := {(a, b, c) ∈ L3 | (a ∧ b) ∨ (b ∧ c) = b = (a ∨ b) ∧ (b ∨ c)}. (1)
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Definition 6. A symmetric function d : X × X → R≥0 is called a metric on
X if it satisfies the following properties for any x, y, z ∈ X :

x = y ⇐⇒ d(x, y) = 0. (P1)

and

d(x, z) ≤ d(x, y) + d(y, z). (P2)

Definition 7. Consider a betweenness set (X ,B). A function d : X ×X → R≥0

is said to satisfy mono-compatibility (MC) if for every (x, y, z) ∈ B, it holds
that:

max(d(x, y), d(y, z)) ≤ d(x, z). (MC)

Definition 8 (cf. [17]). Consider a betweenness set (X ,B). A function d : X ×
X → R≥0 satisfying (P1) and (MC) is called a monometric(w.r.t. B).

In the next section, we present a construction of monometrics on lattice
betweenness and show the employability of fuzzy implications for the same.

3 Monometrics on Lattice Betweenness

In [14], the authors define a mono-compatible distance, w.r.t. the betweenness
relation B� obtained from a partially ordered set1 (X ,�) which is defined as
follows:

B� = B0 ∨ {(x, y, z) ∈ X 3 | x � y � z ∨ z � y � x}. (2)

While any lattice (L,�) is a partially ordered set, B� is not equivalent to BL,
see Example 1. Hence, the problem that we are dealing with - that of obtaining a
monometric on a lattice betweenness relation BL - is different from the problem
that has been dealt with in [13,14]. Below we present an example and some
results that not only show that B� is not equivalent to BL but also show the
relation between them.

Example 1. Consider the lattice (L = {0, a, b, 1},�) whose Hasse diagram is
given in Fig. 1. Note that (a, 0, b) ∈ BL but (a, 0, b) /∈ B�. Hence, BL �= B�.

In the following, we show the relation between the two types of betweenness
relations and give the necessary and sufficient conditions for them to coincide.

Lemma 1. Given a lattice (L,�), B� ⊆ BL.

Corollary 1. If d is a monometric on (L,BL), it is a monometric on (L,B�).

The following result shows that they actually coincide only when the lattice is
of a special type.

Theorem 1. Let (L,�) be a lattice. B� = BL if and only if L is a chain.

1 A set equipped with a reflexive, anti-symmetric, and transitive binary relation.
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1

a b

0

Fig. 1. Hasse diagram of (L, �) given in Example 1.

We now present a couple of constructions of monometrics on lattice between-
ness relations and also discuss if and when they will be metrics on the underlying
set.

3.1 Monometric on Lattice Betweenness

The construction of metrics on a lattice dates back to 1936 when Glivenko con-
nected the structure of lattice and a metric, see [5,6]. Therein, the author defined
a binary function on a lattice and studied when it would yield a metric. In this
work, we study the conditions under which Glivenko’s distance function yields
a monometric with respect to the lattice betweenness relation.

Definition 9 ([5]). Let (L,�) be a lattice. Define dM : L × L → R≥0 as

dM (x, y) = f(x ∨ y) − f(x ∧ y) ,

where f : (L,�) → (R,≤) is an order-preserving function.

Theorem 2. The function dM defined on a lattice L as in Definition 9, is a
monometric on the beset (L,BL) if and only if for any x, y ∈ L,

f(x ∨ y) = f(x ∧ y) ⇐⇒ x = y.

Example 2. Consider the lattice given in Example 1. Let us define f : L → R as
given in Table 1(a). Clearly, dM , given in Table 1(b), is a monometric on (L,BL).

Table 1. (a) The mapping f . (b) The pairwise distance matrix on L under dM .

L 0 x y 1

f 0 1 1 2

dM 0 x y 1

0 0 1 1 2

x 1 0 2 1

y 1 2 0 1

1 2 1 1 0
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3.2 Monometric Using Fuzzy Implications

In this section, we utilise fuzzy implications to define a distance function on a
given lattice L and show their applicability in obtaining a monometric on the
lattice betweenness set (L,BL). We begin by defining fuzzy implications and
providing some examples of the same. We employ the standard definitions of the
other fuzzy logic connectives (FLCs) and certain families of fuzzy implications
discussed in this work and hence refer the readers to well-known sources in the
literature for these definitions [1,12].

Definition 10. A function I : [0, 1]2 → [0, 1] is said to be a fuzzy implication
if it is decreasing in the first variable, increasing in the second variable and
satisfies I(0, 0) = 1, I(1, 1) = 1 and I(1, 0) = 0.

We shall denote the set of all fuzzy implications by FI. Table 2 lists a few
examples of fuzzy implications. For more examples, see [1].

Table 2. Some examples of fuzzy implications

Name Formula

Reichenbach IRC = 1 − x + xy

Weber IWB(x, y) =

{
1, if x < 1,

y, otherwise.

Definition 11. Let I ∈ FI and (L,�) be a lattice. Define dI : L×L → [0, 1] as

dI(x, y) =

{
0, if x = y,

I(f(x ∧ y), f(x ∨ y)), otherwise.

where f : (L,�) → ([0, 1],≤) is an order-preserving function.

Note that different fuzzy implications can lead to the same distance function.
For instance, every R-implication yields a discrete metric.

Theorem 3. The function dI defined on a lattice L as in Definition 11, is a
monometric on the betweenness set (L,BL) if and only if I satisfies the following:

I(x, y) > 0,whenever x ≤ y. (3)

We shall denote the set of fuzzy implications satisfying the condition (3) by FI
+.

Example 3. Consider the lattice given in Example 1. Let us define f : L → R

as given in Table 3(a). Consider I = IRC, then dI , given in Table 3(b), is a
monometric on (L,BL).
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Table 3. (a) The mapping f . (b) The pairwise distance matrix on L under dI .

L 0 x y 1

f 0.25 0.75 0.75 1

dI 0 x y 1

0 0 0.9375 0.9375 1

x 0.9375 0 1 1

y 0.9375 1 0 1

1 1 1 1 0

Remark 2. Since, an order-preserving map f : (L,�) → ([0, 1],≤) always exists
(see [14], Theorem 5), for every I satisfying the condition in Theorem 3, we
can obtain a monometric on (L,�). Thus, fuzzy implications are both a natural
choice and a rich source for the construction of monometrics because of their
mixed monotonicity.

3.3 Metrics Using Fuzzy Implications

In this section, we study certain conditions on f or I or both, which will ensure
that dI yields a metric.

Theorem 4. The distance function dI defined on a lattice L as in Definition 11,
is a metric on L if I ∈ FI

+ and for each x, y ∈ L,

I(f(x), f(x)) + I(f(y), f(y)) ≥ I(f(x ∧ y), f(x ∨ y)) . (4)

The above result makes it convenient to construct examples of metrics from
fuzzy implications, for instance, by allowing us to pick suitable fuzzy implica-
tions based on their behaviour on the diagonal. We now show some sufficient
conditions on I and f that ensure the satisfaction of (4), and hence lead dI to
become a metric.

Remark 3. (i) A fuzzy implication I satisfying the identity principle, i.e.,
I(x, x) = 1, satisfies (4), and dI is a discrete metric.

(ii) If I(x, x) ≥ 0.5 for all x ∈ [0, 1], then it satisfies (4). Note that IRC(x, x) ≥
0.5, and dI is a non-discrete metric in Example 3.

(iii) Note that not every monometric is a metric. Consider, for instance, the I
in Example 2 in [14]. Given the lattice ([0, 1],≤), where ≤ represents the
usual order, with f as the identity map, the same dI would be obtained.
While it is a monometric on ([0, 1],B≤), it is not a metric.

Now, we discuss the sufficient conditions under which some families of fuzzy
implications yield metrics.

Corollary 2. If I is an R-implication then dI is a discrete metric.
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Theorem 5. If I is an (S,N)-implication where the pair (S,N) satisfies the
law of excluded middle, i.e., S(N(x), x) = 1, then dI is a metric.

Theorem 6. If I is an (S,N)-implication where S ≤ SLK then dI is a metric
if any one of the following is true for every x, y ∈ L:

(i) N(f(x)) + f(y) ≥ N(f(x ∧ y)) + f(x ∨ y),
(ii) N(f(x)) + N(f(y)) ≥ N(f(x ∧ y)) + f(x ∨ y),
(iii) f(x) + N(f(y)) ≥ N(f(x ∧ y)) + f(x ∨ y),
(iv) f(x) + f(y) ≥ N(f(x ∧ y)) + f(x ∨ y).

4 Betweenness Sets Obtained from a Lattice:
A Characterisation

While Theorem 3 depicts the existence of monometrics on betweenness sets
obtained from lattices, the existence of a monometric on an arbitrary beset
is not clear.

In the following results, by providing a characterisation of betweenness sets
obtained from a bounded below modular lattice, we illustrate the scope and
applicability of Theorem 3.

Let (X ,B) be a betweenness set such that B satisfies (BT). The relation

x ≤e y ⇐⇒ (e, x, y) ∈ B , (5)

always yields a partially ordered set. In the result below, we present the condition
that ensures that the obtained relation gives a lattice.

Theorem 7. Let X �= ∅ and B be a betweenness relation on X satisfying (BT).
Let e ∈ X be arbitrary but fixed and define the relation x ≤e y as in (5). (X ,≤e)
is a lattice if and only if the following condition is satisfied for any x, y ∈ X such
that (e, x, y), (e, y, x) /∈ B:

1. There exists l such that {(e, l, x), (e, l, y)} ⊂ B and if there exist n such that
{(e, n, x), (e, n, y)} ⊂ B then (e, n, l) ∈ B.

2. There exists m such that {(e, x,m), (e, y,m)} ⊂ B and if there exist n such
that {(e, x, n), (e, y, n)} ⊂ B then (e,m, n) ∈ B.

The above result imposes a condition on the betweenness set B, in relation to
the chosen element e, to ensure that the order relation leads not only to a poset
but a lattice. In the following theorem, we give the conditions under which we
can ascertain if the given betweenness relation is indeed induced from a bounded
below modular lattice.
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Theorem 8. Let (X ,B) be a betweenness set satisfying (BT) and (X ,�e) is a
lattice such that B satisfies the following property with the special element e ∈ X :
Whenever x �= y �= z ∈ X ,

(x, y, z) ∈ B ⇐⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{(e, x, y), (e, y, z)} ⊂ B

or {(e, y, x), (e, z, y)} ⊂ B

or {(e, y, x), (e, y, z)} ⊂ B such that

∃ no � ∈ X \ {x, y, z} such that

{(e, �, x), (e, �, z), (x, �, z)} ⊂ B

or {(e, x, y), (e, z, y)} ⊂ B such that

∃ no � ∈ X \ {x, y, z} such that

{(e, x, �), (e, z, �), (x, �, z)} ⊂ B

or (e, x, y) ∈ B, {(e, y, z), (e, x, z)} �⊂ B such that

∃ unique l such that

{(e, l, y), (e, l, z), (x, y, l), (y, l, z)} ∈ B

or (e, y, x) ∈ B, {(e, y, z), (e, x, z)} �⊂ B such that

∃ unique l such that

{(e, y, l), (e, z, l), (y, l, z), (l, y, x)} ∈ B

or (e, z, y) ∈ B, {(e, y, z), (e, z, x)} �⊂ B such that

∃ unique l such that

{(e, l, y), (e, l, x), (z, y, l), (y, l, x)} ∈ B

or (e, y, z) ∈ B, {(e, y, x), (e, z, x)} �⊂ B such that

∃ unique l such that

{(e, y, l), (e, x, l), (y, l, x), (l, y, z)} ∈ B

or ∃ unique l, m, n, o ∈ X \ {e} such that

{(e, l, x), (e, l, y), (x, l, y), (e, x, m), (e, y, m), (x, m, y),

(e, n, y), (e, n, z), (y, n, z), (e, y, o), (e, z, o), (y, o, z)} ∈ B .

(6)

Then the following are true:

(i) Le = (X ,�e) is a modular lattice bounded below by e.
(ii) BLe

obtained from Le coincides with B, i.e., B = BLe
.

In the following theorem, we characterise the betweenness relations obtained
from a bounded below modular lattice.

Theorem 9. Let (X ,B) be a betweenness set satisfying (BT). Then the follow-
ing are equivalent:

(i) L = (X ,�) is a bounded below modular lattice and B = BL.
(ii) There exists an e ∈ X such that Le = (X ,�e) is a lattice, B satisfies (6)

with e and B = BLe
.

Corollary 3. Let (X ,B) be a betweenness set satisfying (BT) and (X ,�e) is a
lattice such that B satisfies (6) with the special element e ∈ X . Then there exists
a monometric on (X ,B).
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An Alternate Construction: An extension of fuzzy logic, which general-
izes the ones considered up to the present, was proposed by Joseph Goguen in
1967, see [7]. In this extension, the membership values are drawn from arbi-
trary bounded lattices. Since then, various fuzzy logic connectives, including
fuzzy implications, see for instance [2], have been extended to the setting of
bounded lattices. However, applications of such constructions have not been
clearly espoused. Note that if we have an implication defined on a bounded lat-
tice, one can obtain a monometric w.r.t. the lattice betweenness relation by the
construction given in the following definition.

Definition 12. Let I ∈ FI and define dL : L × L → [0, 1] as

dL(x, y) =

{
0, if x = y,

f(I(x ∧ y, x ∨ y)), otherwise.

where f : (L,�) → ([0, 1],≤) is an increasing function.

Theorem 10. The function dL defined on a lattice L as in Definition 12, is a
monometric on the betweenness set (L,BL) if and only if

f(x) = 0 ⇐⇒ x = 0,

where 0 is the bottom element of L.

From the above theorem, one can easily construct a monometric on the lattice
betweenness set through dL that highlights the importance of studying fuzzy
implications on bounded lattices.

5 Concluding Remarks

In this work, we consider the problem of finding a monometric on a given lattice
betweenness relation. We provide two constructions for monometrics. The second
construction method utilizes a fuzzy implication, highlighting the applicational
value of the fuzzy logic connective. We also examined if and when the distance
functions give rise to metrics.

Finally, we emphasize the benefits of studying fuzzy implications on general
structures, such as bounded lattices, by providing an alternate construction for
monometrics on lattice betweenness. We can then examine if and when dL leads
to a metric, and how properties of dL vary with the choice of family of fuzzy
implications. We intend to undertake such studies in our future works.
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9. Hedĺıková, J., Katriňák, T.: On a characterization of lattices by the betweenness

relation—on a problem of M. Kolibiar. Algebra Univ. 28, 389–400 (1991)
10. Huntington, E.V.: A new set of postulates for betweenness, with proof of complete

independence. Trans. Am. Math. Soc. 26(2), 257–282 (1924)
11. Huntington, E.V., Kline, J.R.: Sets of independent postulates for betweenness.

Trans. Am. Math. Soc. 18(3), 301–325 (1917)
12. Klement, E.P., Mesiar, R., Pap, E.: Triangular Norms, Trends in Logic, vol. 8.

Kluwer Academic Publishers, Dordrecht (2000)
13. Nanavati, K., Gupta, M., Jayaram, B.: Monodistances from fuzzy implications. In:

Ciucci, D., et al. (eds.) IPMU 2022. CCIS, vol. 1601, pp. 169–181. Springer, Cham
(2022). https://doi.org/10.1007/978-3-031-08971-8 15

14. Nanavati, K., Gupta, M., Jayaram, B.: Pseudo-monometrics from fuzzy implica-
tions. Fuzzy Sets Syst. 466, 108429 (2022)

15. Pasch, M.: Vorlesungen über neuere Geometrie, vol. 23. Teubner, Leipzig, Berlin
(1882)
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Abstract. Bandler-Kohout subproduct is one of the well-known com-
positions of fuzzy relations. Recently, it has been shown that this can be
used for constructing fuzzy implications. In this contribution, we further
investigate this method by composing different fuzzy logic connectives
such as conjunctions, t-norms, and t-conorms. We focus on the essential
properties of these obtained fuzzy implications and analyse if they fulfill
examined properties.

Keywords: Fuzzy Implication · T-norms · T-conorms ·
Bandler-Kohout subproduct

1 Introduction

In recent years, many different construction methods of fuzzy implications (FIs)
have been investigated. This includes various compositions of two fuzzy logic
connectives. The most known one is the sup −T composition, which was intro-
duced in [10], and in general, can be given in the following way [13]:

(I
T◦ J)(x, y) = sup

z∈[0,1]

T (I(x, z), J(z, y)), x, y ∈ [0, 1], (1)

where I, J are FIs and T is a t-norm. Another one is:

(I � J)(x, y) = I(x, J(x, y)), x, y ∈ [0, 1],

where I, J are given FIs (see [9]). Note that I
T◦ J is a fuzzy implication if and

only if (I
T◦ J)(1, 0) = 0 (see [1, Theorem 6.4.4]). However, (I � J) is always

a fuzzy implication. Recently, another composition was considered to construct
fuzzy implications, called the Bandler-Kohout subproduct(BKS) [2], given by:

(F1
I
� F2)(x, y) = inf

z∈[0,1]
I(F1(x, z), F2(z, y)), x, y ∈ [0, 1], (2)
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where I is an FI but F1, F2 can be some other fuzzy logic connectives. F1
I
� F2

is an FI, if F1, F2 are semicopulas or aggregation functions with neutral element
0, and I satisifes the property of the identity principle (see [7]).

In this contribution, we investigate the last mentioned construction type of
FIs, focusing on the properties of received FIs. The paper is organised as follows.
In Sect. 2, we give some definitions and properties of fuzzy logic connectives
used in the sequel. In Sect. 3, we investigate properties of obtained FIs when
F1, and F2 are t-norms. Section 4 involves the construction of FI when F1 is a
conjunction, and F2 is an FI. In Sect. 5, we study if and when we obtain FIs
using t-conorms. Finally, we give some conclusions and plans for future work.

2 Preliminaries

In this section, we begin by recalling the related definitions that will be useful
in the sequel. For basic definitions and examples of fuzzy logic connectives such
as t-norm, and t-conorm, we refer the readers to see [1,5,11].

Definition 1. A function C : [0, 1]2 → [0, 1] is called a conjunction if it sat-
isfies the following conditions:

(i) C(0, 1) = C(1, 0) = 0 and C(1, 1) = 1,
(ii) C is non-decreasing with respect to each variable.

Definition 2 ([3]). A function C : [0, 1]2 → [0, 1] is called a semicopula if it
satisfies the following conditions:

(i) C(x, 1) = C(1, x) = x, x ∈ [0, 1],
(ii) C is non-decreasing with respect to each variable.

Definition 3 ([1]). A function I : [0, 1]2 → [0, 1] is called a fuzzy implication
if it satisfies the following conditions:

(I1) I is non-increasing with respect to the first variable,
(I2) I is non-decreasing with respect to the second variable,
(I3) I(0, 0) = I(1, 1) = 1 and I(1, 0) = 0.

The family of fuzzy implications will be denoted by FI.
Definition 4 (see [1]). We say that a fuzzy implication I satisfies

(i) the identity principle, if

I(x, x) = 1, x ∈ [0, 1], (IP)

(ii) the left neutrality property, if

I(1, y) = y, y ∈ [0, 1], (NP)
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(iii) the exchange principle, if

I(x, I(y, z)) = I(y, I(x, z)), x, y, z ∈ [0, 1], (EP)

(iv) the ordering property, if

I(x, y) = 1 ⇐⇒ x ≤ y, x, y ∈ [0, 1]. (OP)

Definition 5 ([1, Definition 2.5.1]). A function I : [0, 1]2 → [0, 1] is called an
R-implication if there exists a t-norm T such that

I(x, y) = sup{t ∈ [0, 1] : T (x, t) ≤ y}, x, y ∈ [0, 1]. (3)

If I is generated from a t-norm T , then it will be denoted by IT .

Note that it is possible to generate an R-implication from just a fuzzy con-
junction with specific properties (see [6]). Moreover, we will use the following
result for a particular subclass of R-implications.

Theorem 1 ([1, Proposition 2.5.2]). Let T be a t-norm. Then the following
statements are equivalent:

(i) T is left-continuous.
(ii) A pair (T, IT ) satisfies the residual principle

T (x, z) ≤ y ⇐⇒ IT (x, y) ≥ z, x, y, z ∈ [0, 1]. (RP)

(iii) The supremum in (3) is the maximum, i.e.,

IT (x, y) = max{t ∈ [0, 1] | T (x, t) ≤ y}, x, y ∈ [0, 1].

Definition 6 ([1, Definition 1.4.15]). Let I ∈ FI. The function NI : [0, 1] →
[0, 1] defined as

NI(x) = I(x, 0), x ∈ [0, 1],

is called the natural negation of I.

3 Implications Using T-Norms

In [7], the author studied the construction of fuzzy implications using BKS com-
position of two t-norms. Therein, she observed that if I satisfies (IP) then the
BKS composition of any two t-norms(or conjunctions) yields a fuzzy implication.
She also studied if and when the obtained fuzzy implications satisfy (NP) and
(IP) when I is an R-implication.

In this section, we study the other important properties such as (EP) and
(OP) that are satisfied by the fuzzy implications obtained from some specific
BKS composition of t-norms.
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Proposition 1. Let T1, T2 be t-norms such that T1 ≤ T2 and I ∈ FI satisfy

(OP). Then T1
I
� T2 satisfies (OP).

Proof. Let J = T1
I
�T2 and x, y ∈ [0, 1] such that x ≤ y. Then, we have T1(x, z) ≤

T2(x, z) ≤ T2(y, z) for every z ∈ [0, 1]. Thus

J(x, y) = inf
z∈[0,1]

I(T1(x, z), T2(z, y)) = 1 .

Now, let us assume that J(x, y) = 1, then I(T1(x, z), T2(z, y)) = 1 for every
z ∈ [0, 1]. Since, I satisfies (OP), for all z ∈ [0, 1], we have T1(x, z) ≤ T2(z, y).
Hence, T1(x, 1) ≤ T2(1, y) =⇒ x ≤ y.

Note that the converse of the above result is also true. In fact, a weaker
condition (IP) is sufficient to prove it.

Proposition 2. Let T1, T2 be t-norms and I ∈ FI satisfy (OP). If T1
I
� T2

satisfies (IP), then T1 ≤ T2.

Proof. Since T1
I
� T2 satisfies (IP), for all x ∈ [0, 1], we have

inf
z∈[0,1]

I(T1(x, z), T2(z, x)) = 1 =⇒ I(T1(x, z), T2(z, x)) = 1 for all z ∈ [0, 1],

which implies for all z ∈ [0, 1], T1(x, z) ≤ T2(z, x), since I satisfies (OP) and
hence T1 ≤ T2.

In [7], various properties of F = T1

ITi
� T2, i = 1, 2, were studied and the next

result was shown for the case of T1 ≤ T2. But it can be easily proved without
this additional condition as shown below.

Proposition 3. Let T1, T2 be t-norms such that T2 is left-continuous, then

T1

IT2
� T2 satisfies (NP).

Proof. Consider

(T1

IT2
� T2)(1, y) = inf

z∈[0,1]
IT2(T1(1, z), T2(z, y)) = inf

z∈[0,1]
IT2(z, T2(z, y)) .

Since T2 is left-continuous, we have T2(z, y) ≤ T2(z, y) ⇐⇒ IT2(z, T2(z, y)) ≥ y.
Hence, inf

z∈[0,1]
IT2(z, T2(z, y)) ≥ y.

Now, for z = 1, we have

IT2(1, T2(1, y)) = IT2(1, y) = y ,

which implies inf
z∈[0,1]

IT2(z, T2(z, y)) = y. Hence, T1

IT2
� T2(1, y) = y.
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In the following results, we show the conditions under which the operator

F = Ti

ITm
� Tj , i, j = 1, 2,m ∈ {i, j}, satisfies (EP), and (OP).

The results follow from the fact that these operators lead to R-implications
IT1 or IT2 as shown in [7, Propositions 3,4] and since R-implications obtained
from left-continuous t-norms satisfy (EP), and (OP), the following corollaries
hold.

Corollary 1. Let T1, T2 be t-norms such that T1 ≤ T2, and T1 is left-continuous.
Then the following statements hold:

(i) T1

IT1
� T2 satisifes (EP), and (OP).

(ii) T2

IT1
� T1 satisifes (EP), and (OP).

4 Implications Using a Conjunction and an Implication

We know that the BKS composition of two t-norms yields a fuzzy implication. In
this section, we see that if C is a conjunction and J is a fuzzy implication, then

C
I
� J ∈ FI, i.e., the BKS composition of a conjunction and fuzzy implication

also yields a fuzzy implication.

Proposition 4. Let C be a conjunction and I, J ∈ FI, then C
I
� J ∈ FI.

Proof. Let us first verify the boundary conditions.

(C
I
� J)(1, 0) = inf

z∈[0,1]
I(C(1, z), J(z, 0))

≤ I(C(1, 1), J(1, 0)) = 0

Thus (C
I
� J)(1, 0) = 0 . Similarly,

(C
I
� J)(0, 0) = inf

z∈[0,1]
I(C(0, z), J(z, 0))

= inf
z∈[0,1]

I(0, J(z, 0)) = 1

Similarly,

(C
I
� J)(1, 1) = inf

z∈[0,1]
I(C(1, z), J(z, 1))

= inf
z∈[0,1]

I(C(1, z), 1) = 1

We now need to check if C
I
� J satisfies mixed monotonicity.

x1 ≤ x2 =⇒ C(x1, z) ≤ C(x2, z)
=⇒ I(C(x2, z), J(z, y)) ≤ I(C(x1, z), J(z, y))
=⇒ inf

z∈[0,1]
I(C(x2, z), J(z, y)) ≤ inf

z∈[0,1]
I(C(x1, z), J(z, y))
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Thus, C
I
� J is non-increasing in the first variable. Similarly,

y1 ≤ y2 =⇒ J(z, y1) ≤ J(z, y2)
=⇒ I(C(x, z), J(z, y1)) ≤ I(C(x, z), J(z, y2))
=⇒ inf

z∈[0,1]
I(C(x, z), J(z, y1)) ≤ inf

z∈[0,1]
I(C(x, z), J(z, y2))

Thus, C
I
� J is non-decreasing in the second variable, and C

I
� J is a fuzzy impli-

cation.

Note that, unlike the case of BKS composition of two t-norms(or conjunctions)
where the corresponding fuzzy implication has to satisfy (IP), in the above the-
orem, the fuzzy implication I need not satisfy any further properties to ensure

that C
I
� J yields a fuzzy implication.

Since C
I
� J is a fuzzy implication, we can define a finite sequence of the

I
�

composition, leading to multiple examples of fuzzy implications.

Proposition 5. Let n ∈ N, C1, . . . , Cn be conjunctions and let I1, . . . In−1, In, J
∈ FI. Then

C1
I1
� (C2

I2
� (. . . (Cn

In
� J))) ∈ FI. (4)

In the following theorem, we investigate the construction of the fuzzy impli-
cation when the conjunction is a semi-copula.

Proposition 6. If C is a semi-copula and I, J ∈ FI, then (C
I
� J)(x, y) =

I(x, J(1, y)).

Proof. For all z ∈ [0, 1], we have C(x, z) ≤ C(x, 1) = x, and J(z, y) ≥ J(1, y) .
Thus, by mixed-monotonicity of I, we have

(C
I
� J)(x, y) = inf

z∈[0,1]
I(C(x, z), J(z, y))

= I(C(x, 1), J(1, y))
= I(x, J(1, y))

Corollary 2. If C is a semi-copula and I, J ∈ FI such that J satisfies (NP),

then C
I
� J = I.

Remark 1. (i) From Proposition 6 and its proof, we note that if C is a

conjunction which is not a semicopula, we get (C
I
� J)(x, y) = I(C(x, 1),

J(1, y)).
(ii) If J does not satisfy (NP), we do not recover I. Consider for instance the

T -power based implications given in [12]. Any such implication J satisfies
J(1, y) = 0 for all y ∈ [0, 1). Thus,

(C
I
� J)(x, y) = I(x, J(1, y)) =

{
NI(x), if y < 1,

1, otherwise.
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(iii) Note that if J is a fuzzy implication satisfying (NP) and C is a semicopula,

then J
I
� C is a conjunction if I satisfies (IP).

(iv) In the above, J
I
� C need not yield the same conjunction C, unlike the case

of BKS composition C
J
� I (see Corollary 2). For instance, consider

IGD(x, y) =

{
1, x ≤ y,

y, x > y.
, J(x, y) = 1 − x + xy, and C(x, y) = xy .

Then, we obtain the least conjunction, i.e., (J
IGD
� C)(x, y) =

{
1, x = y = 1,

0, otherwise.

5 Implications Using T-Conorms

In [7], it was shown that one can use aggregation functions with the neutral
element 0 to obtain a fuzzy implication from the BKS composition. The following
theorem examines the condition under which this composition yields a fuzzy
implication.

Proposition 7 (cf. [8, Remark 3.3, Proposition 3.4], [7, Proposition 1]).
Let C1, C2 be semicopulas (or aggregation functions with neutral element 0) and
I ∈ FI, then the following statements are equivalent:

(i) I satisfies (IP).

(ii) C1
I
� C2 ∈ FI.

In this section, we shall consider a particular family of fuzzy logic connectives
with 0 as the neutral element, t-conorms. Let us start with the basic properties
of such a composition.

Proposition 8. Let S1, S2 be t-conorms and I ∈ FI satisfy (IP). If S1 ≤ S2,

then S1
I
� S2 satisfies (IP).

Proof. Let us assume S1 ≤ S2, then we have for x, z ∈ [0, 1],

I(S1(x, z), S2(z, x)) ≥ I(S2(x, z), S2(z, x)) = 1.

Hence, inf
z∈[0,1]

I(S1(x, z), S2(z, x)) = 1, so S1
I
� S2 satisfies (IP).

Note that the converse of the above result need not be always true. The
following result shows the condition under which it will hold. Also, the proof is
similar to the proof of Proposition 1.

Proposition 9. Let S1, S2 be t-conorms such that S1 ≤ S2 and I ∈ FI satisfy

(OP). Then S1
I
� S2 satisfies (OP).
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The proof of the following result is similar to the proof of Proposition 2. In
fact, a weaker condition (IP) is sufficient to prove it.

Proposition 10. Let S1, S2 be t-conorms and I ∈ FI satisfy (OP). If S1
I
� S2

satisfies (IP), then S1 ≤ S2.

Proposition 11. Let S1, S2 be t-conorms and I ∈ FI be such that S1
I
�S2 ∈ FI.

Then the following statements are equivalent:

(i) I satisfies (NP).

(ii) S1
I
� S2 satisfies (NP).

Proof. Let y ∈ [0, 1]. Then

(S1
I
� S2)(1, y) = inf

z∈[0,1]
I(S1(1, z), S2(z, y)) = inf

z∈[0,1]
I(1, S2(z, y))

= I(1, y).

Therefore, (S1
I
� S2)(1, y) = y ⇐⇒ I satisfies (NP).

Now, let us mention Example 5 in [7], where the following fuzzy implication
was obtained.

(SP
IGG
� SM)(x, y) =

{
1, x = 0,

y
x+y−xy , x > 0.

=

{
1, x = 0,

IGG(SP(x, y), SM(y, y)), x > 0.

Motivated by this example, we define an operator in a similar way.

Definition 7. Let I ∈ FI and S1, S2 be t-conorms such that S1 ≥ S2. Then,
an (S1, S2)-operator is a function IS1,S2 : [0, 1]2 → [0, 1] given by

IS1,S2(x, y) =

{
1, x = 0 ,

I(S1(x, y), S2(y, y)), x > 0 .
(5)

Remark 2. It is easy to see that the operator given by (5) satisifes (I1) and (I3)
from Definition 3. However, (I2) does not have to be satisfied.

Example 1. Let I be the Fodor implication given by

IFD(x, y) =

{
1, x ≤ y,

max{1 − x, y}, x > y.

Also, let us take S1 = SP and S2 = SM. Then

IS1,S2(x, y) =

{
1, x ≤ y,

max{1 − x − y + xy, y}, x > y.
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For x = 0.5, y1 = 0.1, and y2 = 0.15, we have

IS1,S2(0.5, 0.1) = 0.45 > 0.425 = IS1,S2(0.5, 0.15).

Thus, in this example, the condition (I2) from Definition 3 is not satisfied.

Therefore, it is important to find necessary and sufficient conditions for
(S1, S2)-operator to be a fuzzy implication. One of the sufficient conditions is
given below. First, let us recall the notion of special implications.

Definition 8 ([4, Definition 1.1]). A fuzzy implication I is called special if

∀x,y∈[0,1] ∀ε>0 (x + ε, y + ε) ∈ [0, 1] ⇒ I(x, y) ≤ I(x + ε, y + ε)). (SP)

Proposition 12. Let I ∈ FI satisfy (SP) and S1, S2 be t-conorms such that
S1 ≥ S2. If

S1(x, y2) − S1(x, y1) ≤ S2(y2, y2) − S2(y1, y1)

for x, y1, y2 ∈ [0, 1] such that y1 ≤ y2, then IS1,S2 ∈ FI.
Proof. Let I ∈ FI satisfy (SP), and x, y1, y2 ∈ [0, 1] be such that y1 ≤ y2. Now,
let us take ε = S1(x, y2) − S1(x, y1) ≥ 0. Then, we have

I(S1(x, y1), S2(y1, y1)) ≤ I(S1(x, y1) + S1(x, y2) − S1(x, y1),
S2(y1, y1) + S1(x, y2) − S1(x, y1))

= I(S1(x, y2), S2(y1, y1) + S1(x, y2) − S1(x, y1))
≤ I(S1(x, y2), S2(y2, y2)).

Therefore, the condition (I2) from Definition 3 is satisfied.

Remark 3. Note that for an I that satisfies (NP), IS1,S2 satisfies (NP) if and only
if S2(x, y) = max(x, y). Since most of the major families of fuzzy implications
satisfy (NP), IS1,S2 potentially yields a new family of fuzzy implications.

6 Conclusions

In this paper, we have considered three different cases of constructing fuzzy
implications from BKS composition. We have investigated some crucial proper-
ties of such FIs. Moreover, we have proposed the definition of (S1, S2)-operators.
In our future work, we would like to characterize them and investigate when
they are FIs. Moreover, we intend to answer whether they must be the opera-
tors obtained from the BKS composition. Also, we want to look deeper into the
other properties of FIs obtained from BKS composition.
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8. Mís, K., Baczyński, M.: Different forms of generalized hypothetical syllogism with
regard to R-implications. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz,
W., Tadeusiewicz, R., Zurada, J. (eds.) ICAISC 2019. Lecture Notes in Computer
Science, vol. 11508. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
20912-4 29

9. Vemuri, N.R., Jayaram, B.: The -composition of fuzzy implications: closures with
respect to properties, powers and families. Fuzzy Sets Syst. 275, 58–87 (2015)

10. Zadeh, L.A.: Outline of a new approach to the analysis of complex systems and
decision processes. IEEE Trans. Syst. Man Cyber. 3, 28–44 (1973)

11. Klir, G.J., Yuan, B.: Fuzzy Sets and Fuzzy Logic: Theory and Applications.
Prentice-Hall Inc, USA (1995)

12. Massanet, S., Recasens, J., Torrens, J.: Some characterizations of T-power based
implications. Fuzzy Sets Syst. 359, 42–62 (2019)

13. Wangming, W.: Fuzzy reasoning and fuzzy relational equations. Fuzzy Sets Syst.
20, 67–78 (1986)

https://doi.org/10.1007/978-3-540-69082-5
https://doi.org/10.1007/978-3-540-69082-5
https://doi.org/10.1007/978-1-4684-3848-2_26
https://doi.org/10.1007/978-1-4684-3848-2_26
https://doi.org/10.1007/978-3-031-08971-8_19
https://doi.org/10.1007/978-3-030-20912-4_29
https://doi.org/10.1007/978-3-030-20912-4_29


The Form of Fuzzy Implication Functions
Satisfying a Multiplicative Sincov’s

Equation
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Abstract. The analysis of the additional properties of fuzzy implica-
tion functions often leads to studying some functional equations. Among
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and the corrected result is presented, describing all fuzzy implication
functions that satisfy the equation. Finally, we illustrate the result with
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1 Introduction

In the last decades, one of the leading research lines on the topic of fuzzy impli-
cation functions is the study of the additional properties that these operators
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cation functions. First of all, the not-so-demanding axioms of their definition
allow the existence of a plethora of families of these operators, each of these
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functional equation is solved, finding all those fuzzy implication functions fulfill-
ing the property. As important examples, we can highlight the law of importation
[9], the distributivity properties [5] or the invariance property [6], among many
others.

One of the functional equations which has been studied recently is a multi-
plicative version of Sincov’s functional equation given by

I(x, y) · I(y, z) = I(x, z), 1 > x > y > z > 0, (1)

where I is a fuzzy implication function. The importance of this functional equa-
tion is twofold. Namely, it is used in [8] to characterize the family of power based
implications, and moreover, the fulfilment of Eq. (1) in the domain x ≤ y ≤ z is
a necessary and sufficient condition for being a unidimensional T ′-preorder, with
T ′ the product t-norm (see [4]). In [3], a generalization of this functional equa-
tion by understanding the internal product as the product t-norm and changing
it to a general arbitrary continuous Archimedean t-norm was deeply analysed.
Focusing on the original Eq. (1), due to its importance, in [1], a characterization
result of all fuzzy implication functions satisfying Eq. (1) was presented. Unfor-
tunately, as it will be proved later in this paper, that characterization result is
not entirely correct, and a revision is needed. This constitutes the main contri-
bution of this paper. First, we will present an example of a fuzzy implication
function satisfying Eq. (1) but not being a solution provided by the characteriza-
tion theorem. After that, a new characterization result that provides the solution
to our problem will be proved jointly with several examples that illustrate the
result.

The structure of the paper is as follows. After the preliminaries, in Sect. 3, the
characterization result given in [1] is recalled, and the counterexample proving
that the result needs revision is presented. Then, in Sect. 4, the corrected result
is proved along with some illustrative examples. Finally, the paper ends with
some concluding remarks.

2 Preliminaries

In this section, we will recall the basic definitions and concepts of fuzzy impli-
cation functions that will be used throughout the paper. First, the definition of
a fuzzy implication function is provided.

Definition 1 ([2, Definition 1.1.1.]). A binary operation I : [0, 1]2 → [0, 1] is
said to be a fuzzy implication function if it satisfies, for all x, y, z ∈ [0, 1]:

(I1) I(x, z) ≥ I(y, z), when x ≤ y,
(I2) I(x, y) ≤ I(x, z), when y ≤ z,
(I3) I(0, 0) = I(1, 1) = 1, and I(1, 0) = 0.

From the definition it is clear that I(0, x) = I(x, 1) = 1 for all x ∈ [0, 1].
However, neither I(x, 0) nor I(1, x) are determined for all x ∈ (0, 1). This flex-
ibility allows the potential fulfilment of many additional properties from which
we recall next to the ordering property, which will be used later.
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Definition 2 ([2, Definition 1.3.1.]). We say that a fuzzy implication function
I satisfies the ordering property, if:

x ≤ y ⇐⇒ I(x, y) = 1, x, y ∈ [0, 1]. (OP)

On the other hand, the monotonicities of the fuzzy implication function imply
the following straightforward result.

Lemma 1. Let I : [0, 1]2 → [0, 1] be a fuzzy implication function. Define

QI := {(x, y) ∈ [0, 1]2 : x > y and I(x, y) = 1}.

Then it holds that I(u, v) = 1 for each (u, v) ∈ RI , where

RI :=
⋃

{[0, x] × [y, 1] : (x, y) ∈ QI}. (2)

3 Previous Characterization Result and Counterexample

In [1], the characterization result that was presented for the fuzzy implication
functions satisfying Eq. (1) stated as follows.

Theorem 1 ([1, Theorem 14]). Let I be a fuzzy implication function. If
I solves Eq. (1), then there exist y0 ∈ [0, 1] and a non-increasing function
f : (y0, 1) → (0,+∞) such that I is given by:

I(x, y) =

{
f(x)
f(y) , if y ∈ (y0, 1), x ∈ (y, 1),

0, if y ∈ [0, y0), x ∈ (y, 1).
(3)

Conversely, for every point y0 ∈ [0, 1] and for every function f : (y0, 1) →
(0,+∞), every mapping I : [0, 1]2 → R which on the set

{(x, y) ∈ [0, 1] | y ∈ (y0, 1), x ∈ (y, 1) or y ∈ [0, y0), x ∈ (y, 1)}
is given by Eq. (3) is a solution to Eq. (1) postulated for all x, y, z ∈ [0, 1] such
that 1 > x > y > z > y0.

As it has been already aforementioned, this theorem contains an error and
not every solution can be described in such way. Indeed, let us define an example
of a fuzzy implication function which satisfies Eq. (1) but it is not of the form
given by Eq. (3):

Example 1. Let us define the following operator I : [0, 1]2 → [0, 1] given by:

I(x, y) =

{
1, if (x ≤ y) or (x < 1

2 ) or (y > 1
2 ),

0, otherwise.
(4)

Figure 1 gives the structure of I. It is easy to check that such a function is a fuzzy
implication function. Now, on the one hand, by a simple computation, it can be
proved that this implication fulfils Sincov’s equation (1). However, it is clear
that this implication cannot be written in the form of Eq. (3). Consequently,
this results in a counterexample of Theorem 1, which needs a deep revision.
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Fig. 1. Plot of the fuzzy implication function used in Example 1.

This example can be easily generalized. Indeed, there is nothing special about
point 1

2 used in the construction, and we can take any y0 ∈ (0, 1). Moreover, the
fuzzy implication function does not need to be constant on the two triangles
with vertices:

– (0, 0), (y0, y0), (y0, 0),
– (y0, y0), (1, y0), (1, 1).

Example 2. Let us consider y0 ∈ (0, 1) and the non-increasing functions
f : (y0, 1) → (0,+∞) and g : (0, y0) → (0,+∞). Then the binary operator
I : [0, 1]2 → [0, 1] given by

I(x, y) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1, if x ≤ y,
f(x)
f(y) , if y ∈ (y0, 1), x ∈ (y, 1),
g(x)
g(y) , if x ∈ (0, y0), y ∈ (0, x),

0, otherwise,

is a fuzzy implication function which is a solution of Eq. (1). In Fig. 2 the struc-
ture of I is depicted. However, again it is easy to check that it cannot be written
in the form of Eq. (3).

4 New Characterization Result

The main goal of this section is to present a new characterization result that
fixes Theorem 1.
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Fig. 2. Plot of the fuzzy implication function used in Example 2.

Assume that J is a nontrivial interval and denote ΔJ := {(s, t) ∈ J2 : s ≤ t}.
Gergely Kiss and Jens Schwaiger in [7] proved the following result.

Theorem 2 (see [7, Theorem 3.11]). Let f : ΔJ → R be a solution of

f(s, t) · f(t, u) = f(s, u), (s, t), (t, u) ∈ ΔJ . (5)

Then there exists a countable (possibly empty) family S of pairwise disjoint non-
trivial intervals I ⊆ J and a function d :

⋃
I∈S I → R\{0} such that

f(x, y) =
d(y)
d(x)

, x, y ∈ I, I ∈ S, x ≤ y. (6)

Moreover, fixed I ∈ S, x ∈ I and y, z ∈ (J\I) such that z < x < y, then

f(x, y) = f(z, x) = 0.

Further,

f(x, x) =
{

1, if x ∈ ⋃
I∈S I,

1 or 0, otherwise.

Moreover, as it was observed in the last sentence of the proof of this theorem, it
holds also that f(x, y) = 0 if x, y /∈ ⋃

I∈S I and x < y.
We will apply the above theorem to obtain a new characterization of the fam-

ily of fuzzy implication functions fulfiling Eq. (1) amending the gap in Theorem
1, our earlier result.
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Corollary 1. Let I : [0, 1]2 → [0, 1] be a fuzzy implication which satisfies Eq. (1).
Then, there exists a countable (possibly empty) family S of pairwise disjoint non-
trivial intervals I ⊆ [0, 1] and a non-increasing function d :

⋃
I∈S I → [0,+∞)

such that:

(a) if x, y ∈ I with I ∈ S and x > y, then I(x, y) = d(x)/d(y),
(b) if x > y and x, y do not belong to the same member of S (or one or both of

them are outside the set
⋃ S), then I(x, y) = 0,

(c) if x < y and x ∈ int
⋃

I∈S I, then I(x, y) = 1.

Conversely, for every countable family S of pairwise disjoint nontrivial inter-
vals I ⊆ [0, 1] and every non-increasing function d :

⋃
I∈S I → [0,+∞), the map

I : [0, 1]2 → [0, 1] described by (a), (b), (c) satisfies Eq. (1). Moreover, if I is
mixed monotone (in the sense of Definition 1) on the (possibly empty) set that
is not covered by (a), (b), (c), then it is a fuzzy implication function.

Proof. Assume that I is a fuzzy implication function that satisfies Eq. (1). We
will follow the idea of [7, Remark 3.15]. Define f : Δ[0,1] → [0, 1] as f(x, y) =
I(y, x) when x < y and f(x, x) = 1 for x ∈ [0, 1]. One can see that f is a
solution of Eq. (5) on Δ[0,1]. By Theorem 2 there exists a family S of disjoint
nontrivial intervals I ⊆ J = [0, 1] and a function d :

⋃
I∈S I → R\{0} such that

Eq. (6) holds. Further, by the same theorem, I(x, y) = f(y, x) = 0 for x > y
in the following two cases: (x, y /∈ ⋃

I∈S I) or (x ∈ I with I ∈ S and y /∈ I).
Therefore, (b) holds. Since I attains only non-negative values, we can assume
that d :

⋃
I∈S I → (0,+∞). We thus have

I(x, y) =
d(x)
d(y)

, x, y ∈ I, I ∈ S, x > y. (7)

It is important to remember that I(x, x) needs not to be equal to f(x, x), thus
we have excluded in Eq. (7) the possibility x = y. Thus, (a) holds. Moreover,
without loss of generality, thanks to (I3), we may assume that d(0) = 1.

At this point, since map d is monotone, has at most countably many points
of discontinuity. Moreover, d is bounded on every closed subinterval contained in⋃

I∈S I. Therefore, the value I(x, y) is arbitrarily close to 1 when x, y ∈ [x0, y0] ⊆
I are such that x > y and x approaches to y. Consequently, using Lemma 1, for
every x, y ∈ [0, 1] such that x < y and x ∈ int

⋃
I∈S I we have I(x, y) = 1, thus

(c) holds. Further, since I is non-decreasing with respect to the second variable,
then the map d is non-increasing on each interval from the family S.

Conversely, any function I : [0, 1]2 → [0, 1] described by (a), (b), (c), for any
countable family S of pairwise disjoint nontrivial intervals I ⊆ [0, 1] and any
non-increasing function d :

⋃
I∈S I → [0,+∞), it is easy to check that Eq. (1)

holds. We cannot ensure that
⋃

I∈S I ⊇ [0, 1] as it can be seen in Fig. 3. Thus
we have to assume monotonicity for points x, y /∈ ⋃

I∈S I, for I to be a fuzzy
implication function. ��

Note that each fuzzy implication function, continuous or not, such that
I(x, y) = 0 for x > y trivially solves Eq. (1). In this case the family S is empty.
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Fig. 3. In the above example S = {(x1, x2)}, and d is strictly monotone on (x1, x2).
The set QI is empty, I is discontinuous and not determined everywhere on [0, 1]2 and
(OP) may hold or not.

We can see exemplary application of Corollary 1 in Fig. 4. Such fuzzy implication
function can be constant and equal to 1 on some intervals for x > y.

Next, we will deal with the continuous case.

Corollary 2. Assume that I : [0, 1]2 → [0, 1] is a continuous fuzzy implication
function that satisfies Eq. (1). Then there exists a continuous and non-increasing
function d : [0, 1] → [0, 1] such that d(1) = 0, d(0) = 1 and d(x) > 0 for x < 1
and

I(x, y) =
d(x)
d(y)

, x, y ∈ [0, 1], x > y (8)

with the convention 0/0 = 1. Moreover, in this case I satisfies (OP) if and only
if d is decreasing.

Conversely, for every continuous and non-increasing function d : [0, 1] →
[0, 1] such that d(1) = 0, d(0) = 1 and d(x) > 0 for x < 1, the map
I : [0, 1]2 → [0, 1] defined by (8) and I(x, y) = 1 for x ≤ y satisfies Eq. (1)
and is a fuzzy implication function. Moreover, it satisfies (OP) if and only if d
is decreasing.

Proof. Let us assume that I is a continuous fuzzy implication function that
satisfies (1). From Corollary 1, we know that there exist a family S and a non-
increasing function d such that (a), (b) and (c) hold. Continuity of d follows from
continuity of I. Moreover, the continuity of I implies that either

⋃
I∈S I = ∅ or⋃

I∈S I ⊇ (0, 1) since otherwise I would have a 1 − 0 discontinuity at each point
(x0, x0) ∈ [0, 1]2 such that x0 ∈ (0, 1)\ ⋃

I∈S I.
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Fig. 4. In the above example S = {(0, x1), (x2, x3), (x4, 1)}, d(x) = 1 on (0, x1) ∪
(x4, 1) and d is arbitrary monotone on (x2, x3) and constant on (v, x3). Moreover, I is
discontinuous and not determined everywhere on [0, 1]2 and (OP) does not hold.

However, the case
⋃

I∈S I = ∅ also leads to a contradiction with continuity.
Using (b) we can see that I(x, y) = 0 for x > y, but from (I3) we also know
that I(1, 1) = 1. So if we take an arbitrary non-decreasing sequence (xn)N, such
that xn ∈ [0, 1] and limn→+∞ xn = 1, then limn→+∞ I(1, xn) = 0 
= 1 = I(1, 1).
Thus such solutions do not exist.

Therefore, the only viable case is when
⋃

I∈S I ⊇ (0, 1). In that case, function
d has finite limits at 0 and 1, and thus it can be continuously extended to [0, 1].
From the proof of Corollary 1, we know that without loss of generality, d(0) = 1.
Note that the last part of the condition (I3) implies that [0, 1] /∈ S. Therefore,
if we want to extend the map d in such a way that it is defined at 1, then
necessarily d(1) = 0. This, in turn, implies that because of the second part of
(I3), one needs to adopt a convention that 0/0 = 1. After this agreement, Eq.
(7) covers the cases I(1, 1) and I(1, 0) as well. As a consequence, Eq. (7) holds
for all x, y ∈ [0, 1] such that x > y.

Conversely, if we consider map I : [0, 1]2 → [0, 1] defined by Eq. (8) and
I(x, y) = 1 for x ≤ y, where d : [0, 1] → [0, 1] is an arbitrary continuous and non-
increasing function such that d(1) = 0, d(0) = 1 and d(x) > 0 for x < 1, then it
is easy to check that I satisfies Eq. (1) and is a fuzzy implication function.

Regarding (OP), we know that if
⋃

I∈S I ⊇ (0, 1), then I(x, x) = 1 for all
x ∈ [0, 1]. From this, it also follows that I(x, y) = 1 for all x, y ∈ [0, 1], such
that x ≤ y. If d is constant on a nontrivial subinterval [v, u] ⊆ ⋃

I∈S I, then by
Eq. (7) we get I(u, v) = 1. Conversely, if I(u, v) = 1 for some u > v, then d is
constant on [v, u]. Thus, I satisfies (OP) if and only if d is decreasing.
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5 Conclusions

In this paper, we obtained a description of fuzzy implication functions that
satisfy the multiplicative Sincov’s functional equation described in Eq. (1). With
this contribution, we corrected a gap in our earlier work [1], and we supplemented
the research with some illustrative examples. The new characterization result is
based on a new result of Kiss and Schwaiger, published in [7], that deals with
the Sincov’s equation. From these papers, this equation shows its importance in
information science and economy. We believe further studies on the topic will
bring new interesting results and further applications of the equation.
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Abstract. The DE-MC algorithm joins two approaches: the differential
evolution and the theory of the Markov chains. This population MCMC
method aims to improve the numerical effectiveness and the convergence
speed of the Metropolis-Hastings algorithm. In this paper, we equip this
standard approach with different unsupervised and automated meth-
ods for outlier detection and replacement. As our numerical experiments
suggest, the obtained DE-MC-out algorithm convergences faster and pro-
duces output samples that are closer to the desired target density than
the DE-MC method without the increased timing.

Keywords: Statistical simulations · Markov chain · Outliers ·
Unsupervised learning · Non-parametric model

1 Introduction

The Monte Carlo (MC) and Markov Chain Monte Carlo (MCMC) methods
are important simulation tools that are widely used in statistical inference and
other real-life applications (see, e.g., [16]). Generation of random variables is
also crucial in simulations and resampling of fuzzy numbers (see, e.g., [6–8,17–
19]). To generate a sample from the complex, multidimensional distribution, the
Metropolis-Hastings (abbreviated further as MH) algorithm equipped with the
simple and all-purpose instrumental density can be used. Usually, the normal
distribution is applied as such a density. However, its specific form (like its
covariance matrix) can have a great impact on the numerical effectiveness of the
whole algorithm and its convergence speed.

Therefore, the DE-MC algorithm was proposed in [3] to increase the effec-
tiveness of the MCMC procedures. This approach links the differential evolution
(DE) method with the theory of the Markov chains (MC). As it was shown, the
DE-MC algorithm significantly improves the quality of the MH method. Further
modifications of the standard DE-MC approach were also proposed, e.g. to weak
some of its assumptions (see [2]) or to introduce a more complex formula for
jumps between the chain states (see [23,24]).
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In this paper, we propose another extension of the standard DE-MC algo-
rithm: the DE-MC-out method. Contrary to the above-mentioned approaches,
instead of a more complicated and possibly not so numerically efficient algorithm,
we combined the DE-MC method with another important statistical tool: the
detection and replacement of the outliers (see, e.g., [14]).

Outliers are values that differ significantly from other observations in the
same sample. They can be outcomes of some errors (e.g., during the collection of a
sample) as well as some important phenomenon (e.g., a heavy-tailed distribution
used in the simulations). Therefore, the outlier detection may be also profitable
for the DE-MC algorithm.

Our aim is to equip the DE-MC with a method to detect and replace the
existing outliers to improve the overall quality of the algorithm without decreas-
ing its numerical effectiveness, keeping in mind its non-parametric approach.
Then, three different detection methods, which are based on the unsupervised
learning, together with two very intuitive replacing approaches are applied for
this purpose. The obtained simulation results for the DE-MC-out algorithm are
then compared with the outputs for the standard DE-MC approach. It seems
that the proposed method improves the quality of the obtained final sample
without increasing the mean timing of the conducted simulations.

The paper is organized as follows. In Sect. 2, some basic facts concerning
the DE-MC algorithm are recalled. In Sect. 3, the applied methods for outlier
detection and replacing are summarized. The proposed DE-MC-out algorithm
is described in Sect. 4, together with the analysis of the numerical simulations.
Then, some final remarks are presented in Sect. 5.

2 DE-MC Algorithm

The Markov Chain Monte Carlo (MCMC) methods are widely applied to gen-
erate a statistical sample from some (usually a difficult one) target density f(x)
using a simpler instrumental density (see, e.g., [16]). However, a selection of this
instrumental density, which is used to jump from one state to another state
of the Markov chain, may be crucial, e.g., in the MH algorithm to improve its
numerical efficiency. A common example of such a density is the multivariate
normal random distribution. Then its covariance matrix should be adequately
specified so that the chain visits all states often enough.

In [3], an interesting approach was proposed to solve the above-mentioned
problem. The Differential Evolution Markov Chain (DE-MC) method is a con-
nection of the differential evolution (DE) algorithm with the Markov chain (MC)
theory. The differential evolution is a genetic algorithm used to optimize a tar-
get function in real parameters space (see, e.g., [12,13]). In the DE-MC method,
n chains are simulated in parallel. A state of the i-th chain is given by a d-
dimensional vector xi. These vectors are members of a population X and they
form an n × d matrix (i.e. the members are given as its rows), where n > d.

Firstly, the primary population is independently drawn from some initial d-
dimensional distribution. Then, for each chain, its new state yi is proposed using



Improved DE-MC Algorithm with Automated Outliers Detection 703

the following formula
yi = xi + F (xr1 − xr2) + ε, (1)

where ε is drawn from a symmetric distribution with a small variance and
unbounded support (e.g., the d-dimensional normal distribution with zeros as
the expected value and some small variance b, i.e., N(0, b · 1d)), and xr1 ,xr2 are
randomly selected without replacement from a whole population devoid of xi.
The aim of (1) is to construct the Markov chain for which the whole state space
can be reached (contrary to the classical DE scheme, see, e.g., [3]). Then, yi is
accepted as a new state x∗

i with the probability

p(xi,yi) =

{
min

{
f(yi)
f(xi)

, 1
}

if f(xi) > 0

1 if f(xi) = 0
. (2)

It leads to the DE-MC version of the classical MH algorithm (see Algorithm 1).

Algorithm 1. DE-MC standard algorithm
Generate initial population X = {x1,x2, . . . ,xn}
while stop condition is not fulfilled do

for all i ∈ {1, 2, . . . , n} do
Select randomly xr1 ,xr2 from X without xi

Generate ε ∼ N(0, b · 1d)
yi = xi + F (xr1 − xr2) + ε

Set x∗
i =

{
yi with probability p(xi,yi)

xi with probability 1 − p(xi,yi)
,

end for
Set X = {x∗

1,x
∗
2, . . . ,x

∗
n}

end while
return X

The following important theorem was proved in [3] to establish the correct-
ness of the DE-MC algorithm:

Theorem 1. The DE-MC algorithm yields a Markov chain, with the unique
stationary distribution given by πn(x).

Then, the DE-MC method is also the population MCMC approach, and the indi-
vidual chains are independent when they are independent of their initial state.
In this case, the R̂ Gelman-Rubin statistic (see, e.g., [5,22]) can be directly
applied to monitor the convergence of the obtained Markov chains. This diag-
nostic compares the between- and within-variance of the chains and when its
value is below some level (usually 1.1 or 1.2, as indicated in the literature), the
overall convergence can be stated.
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3 Methods for Outliers Detection and Replacement

Outliers in statistics are values that differ significantly (in some sense) from
other observations. Detection of the outliers is very important because they can
potentially lead to errors in further statistical analysis, uncover such errors made
during previous steps, or indicate some important (“positive” or “negative” for
us) outcomes. The same applies to simulations, where these “strange values”
can be related, e.g., to problems with the numerical convergence of the MCMC
estimator or necessary outcomes for a heavy-tailed distribution (see, e.g., [16]).
Therefore, the detection of the outliers may be also profitable for the DE-MC
algorithm.

Many methods to identify outliers are known in the literature. In our DE-MC-
out algorithm, we applied three of them: Local Outlier Factor (abbreviated as
LOF, see [4]), Connectivity-Based Outlier Factor (COF, see [21]), and Isolation
Forest (iF, see [9]).

In the first method, the measure of “being outlier” is just known as the local
outlier factor (LOF) and it is related to the k-distance of the given point to its
nearest neighbors. The value of LOF higher than one indicates that such a point
can be potentially an outlier. In the second method, the respective connectivity-
based outlier factor is calculated using the so-called set-based nearest path. The
higher value of COF can be also associated with a possible outlier. And the
last algorithm is the unsupervised learning method related to the decision trees.
Therefore, it is based on a completely different approach that tries to isolate
possible outliers using the so-called anomaly score instead of profiling single
points.

When the outliers are identified, they can be either removed or replaced
using other values. The first way may be inadvisable, as it decreases the number
of observations. Therefore, using some method to replace the outliers can be
more useful. In the proposed DE-MC-out algorithm, two such approaches were
applied, i.e. the min-max, and weighted quantiles methods.

The first one is a very intuitive idea. The outlier of a low value is replaced
with the minimum from X(-outliers), i.e., the whole sample devoid of the outliers,
and the high-value outlier – with the respective maximum, otherwise – the mean
is used. In the second case, the special replacement density

frep(x) =
f(x)

f(q0.25) + f(q0.5) + f(q0.75)
(3)

is calculated, where f(.) is our target density in the DE-MC algorithm, and
q0.25, q0.5, q0.75 are the respective quantiles (the first, second, and third one) from
the whole sample X. Then, the new replacing values, which are equal to these
three quantiles, are generated using their respective probabilities frep(q0.25),
frep(q0.5), frep(q0.75).
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4 Modification of the DE-MC Method

As it was previously mentioned, detection and replacement of the outliers are
important ideas in statistics. Therefore, we improved the standard DE-MC app-
roach using the methods described in Sect. 3 to obtain the new DE-MC-out
algorithm (see Sect. 4.1). Other methods for detecting and replacing the outliers
can be also used in this setting. Two numerical examples concerning the compar-
ison between the DE-MC and DE-MC-out algorithms are provided in Sect. 4.2.
Other simulation results are available upon request.

4.1 Modified Approach

The proposed DE-MC-out algorithm (see Algorithm 2) has the following modi-
fications if it is compared with the standard approach (see Algorithm 1):

1. The initial population is drawn from the density with either the compact or
the unbound support (e.g., n × d iid samples are generated from the uniform
density U([0, 1]) or N(0, 1)). As our numerical experiments suggested, the
improper selection of this density (e.g., using the one with the infinity support,
when it is bounded for f(.)) leads to serious problems during the simulations.

2. When the number of the step j is divisible by the input parameter mout, the
outliers in the respective population X are detected using the LOF, COF,
or iF method. Two first methods are implemented using DDoutlier package
(see [10]), and the third one – solitude package (see [20]). If the outliers exist,
then they are replaced using either the min-max or the weighted quantiles
method (see Sect. 3). This procedure is implemented only during the selected
steps to increase the numerical effectiveness of the whole algorithm and to
ensure convergence of the obtained Markov chain (see [16] for the respective
theoretical reasoning in similar situations). Because of the same reasons, after
mmod iterations, the DE-MC-out reverts to the DE-MC algorithm.

3. As the stop condition, R̂ statistic is used. Its value is calculated only if j
is divisible by the input parameter mR to increase the speed of the whole
algorithm. For the one-dimensional R̂ statistic, the respective function from
asbio package is applied (see [1]), and for its multi-dimensional version, our
implementation or coda package (see [15]) can be used.

4.2 Numerical Analysis

During our numerical analysis, we focused on X, i.e. the output population of
the chains, and compared the results for the DE-MC algorithm (denoted further
by X0) and the DE-MC-out method (Xident rep, respectively). In this second
case, ident stands for the identification method (LOF, COF or iF), and rep
denotes the replacing algorithm (m – the min-max, q – the weighted quantiles
method, respectively). In the following graphs, the theoretical target density was
drawn with a black, solid line, and the estimated density based on the simulations
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Algorithm 2. DE-MC-out (modified) algorithm
Generate initial population X = {x1,x2, . . . ,xn}
j = 0
while stop condition is not fulfilled do

j = j + 1
for all i ∈ {1, 2, . . . , n} do

Select randomly xr1 ,xr2 from X without xi

Generate ε ∼ N(0, b · 1d)
yi = xi + F (xr1 − xr2) + ε

Set x∗
i =

{
yi with probability p(xi,yi)

xi with probability 1 − p(xi,yi)
,

end for
Set X = {x∗

1,x
∗
2, . . . ,x

∗
n}

if j is divisible by mout and j < mmod then
find outliers in X using the selected method
if there are outliers in X then

replace the outliers using the selected method
end if

end if
if j is divisible by mR then

calculate the R̂ statistic and update the stop condition
end if

end while
return X

– with a gray, dashed line. To improve readability, we focused on one-dimensional
outcomes. The burn-in period was set to 10% of the beginning iterations and
n = 500 chains were initialized in our experiments.

The heavy-tailed Weibull distribution W(λ, k) with the scale parameter λ = 1
and the shape parameter k = 1.5 was our first target density. When the DE-
MC algorithm was used, it converged after 960 iterations for the stop condition
R̂ = 1.05. However, there were outliers in the last population X0 (see Fig. 1a).
They even sometimes did not belong to the target density support, i.e. [0,∞).
Therefore, the standard algorithm did not work correctly. Moreover, it seems
that the obtained histogram was not “close enough” to the expected result (see
Fig. 1b). The mean calculated for the subsequent iterations behaved sometimes in
an unpredictable manner and the obvious problems with its convergence existed
(see Fig. 2a).

The DE-MC-out algorithm worked much better. It converged after 220 (for
the pairs of methods LOF q, COF q, iF q, iF m), 280 (for LOF m) or 320 itera-
tions (for COF m, respectively) when the same value R̂ = 1.05 was set. Based on
histograms (see Fig. 3 for some examples), the best results were obtained for the
LOF and COF coupled with the weighted quantiles method. The mean was close
to its true value even after 50 iterations (see Fig. 2a), especially fast in the case of
the Isolation Forest. The detailed comparison of the sample means together with
their absolute distances related to the expected value of the Weibull distribution
(for the same number of iterations as in Fig. 2) can be found in Table 1.
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Fig. 1. Histograms for the DE-MC algorithm and the target density W(1, 1.5).

Fig. 2. Convergence of the means for the target density W(1, 1.5).

Fig. 3. Histograms for the DE-MC-out algorithm and the target density W(1, 1.5).
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Table 1. Comparison of the sample means and their distances related to the expected
value for the target density W(1, 1.5).

Iteration X0 XLOF m XCOF m XiF m XLOF q XCOF q XiF q

65 −31.0765 1.8813 2.0333 0.9129 0.8845 0.9134 0.8779

3542.45% 108.40 % 125.24 % 1.12 % 2.02 % 1.19 % 2.75%

220 1818918.8285 0.9060 0.8868 0.9489 0.8859 0.9224 0.8600

201487389.63% 0.36% 1.77% 5.11% 1.86% 2.17% 4.74%

Table 2. Comparison of the timings for the target density W(1, 1.5) and the stop
condition R̂ = 1.05

Time X0 XLOF m XCOF m XiF m XLOF q XCOF q XiF q

min 7.197741 5.122742 5.051063 6.569676 5.136206 5.368514 6.617399

mean 20.750838 7.479085 5.592550 7.063164 5.639146 6.222402 6.875949

median 17.167058 5.554406 5.526236 6.791383 5.208733 6.136694 6.933876

max 53.070627 16.071382 6.356860 8.915157 8.057195 7.699364 7.083551

Table 3. Comparison of the timings for the target density W(1, 1.5) and j = 1000
iterations.

Time X0 XLOF m XCOF m XiF m XLOF q XCOF q XiF q

min 22.17918 22.84838 23.26643 24.46614 23.45126 23.38978 24.38424

mean 34.51912 30.49203 39.29660 41.46607 38.22036 38.40010 33.54266

median 40.19291 24.66288 42.43190 45.17979 43.03493 43.76344 24.95335

max 46.37724 50.34671 46.23601 58.76814 52.84967 48.68084 58.67952

Then, all approaches were also compared taking into account their numerical
effectiveness using microbenchmark package (see [11]). When the stop condition
was used, the mean timing of the DE-MC-out was even equal to about 25%
of the mean time for the DE-MC (see Table 2). And if the constant number of
iterations were set to j = 1000, the mean timing for the pair LOF m was lower
than for the DE-MC, and for the worst DE-MC-out case (i.e., iF m) it was
bigger about 14% than for the standard algorithm (see Table 3). To improve the
readability of the respective tables, the best results are marked in boldface.

As our second example, we analyzed a mixture distribution, given by

0.5 · Γ (20, 0.1) + 0.3 · W(4, 0.8) + 0.2 · LN(1.2, 0.08), (4)

where Γ (k, θ) denotes the gamma distribution with the shape parameter k and
the scale parameter θ, and LN(μ, σ) – the lognormal distribution. The target
density (abbreviated further as GWLN ) clearly did not remind the initial density
(i.e. N(0, 1), see Fig. 4).

The DE-MC algorithm required 400 iterations for the stop condition R̂ =
1.05, while the DE-MC-out converged after 220 steps, regardless of the methods
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Fig. 4. Comparison of the initial N(0, 1) and target density GWLN.

applied for the outliers detection/replacement. Moreover, in the case of the DE-
MC, many outliers were visible (see Fig. 5a) and the obtained histogram was
sometimes “far” from the target density (see Fig. 5b). For the DE-MC-out, there
were no outliers and the simulated results resembled the GWLN to a greater
extent, especially for the pair m iF (see Fig. 6 for some examples).

Fig. 5. Histograms for the DE-MC algorithm and the target density GWLN.

Because of the existing outliers, the mean for the DE-MC exhibited problems
with its behavior and it even moved away from the true theoretical value (see
Fig. 7a and Table 4). Meanwhile, the mean for the DE-MC-out converged even
after 40 iterations in the case of the weighted quantiles method (see Fig. 7b) and
after 75 steps for the min-max approach.
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Fig. 6. Histograms for the DE-MC-out algorithm and the target density GWLN.

Fig. 7. Convergence of the means for the target density GWLN.

Table 4. Comparison of the sample means and their distances related to the expected
value for the target density GWLN.

Iteration X0 XLOF m XCOF m XiF m XLOF q XCOF q XiF q

50 −56.521525 1.863561 −2.547404 1.891953 1.882735 1.872665 1.845434

1968.01% 38.41% 184.19% 37.47% 37.78% 38.11% 39.01%

220 −9280625.2049 1.8844 1.8210 1.8940 1.9135 1.8859 1.8357

306721036% 37.72% 39.82% 37.40% 36.76% 37.67% 39.33%
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5 Conclusions

Generation of random variables is very important in simulations and resampling
of random fuzzy numbers. We extended the standard version of the DE-MC
algorithm using three automated unsupervised methods for the detection of the
outliers and two intuitive approaches for their replacement. As our preliminary
results suggest, the proposed DE-MC-out algorithm converges faster and gen-
erates output samples that are closer to the target density than the standard
approach. Moreover, its timing is sometimes better than for the DE-MC. Of
course, further experiments are necessary, e.g., using other methods for the out-
lier detection and replacement. Moreover, the application of other useful and
important statistical tools, e.g., aimed at modes detection, may be also fruitful.
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Abstract. To certify good data partitioning, it is necessary to use an
evaluation measure. This measure must take into account the specificity
of the modeled partition. For centroid-based fuzzy partitioning, different
measures exist. However, none of them takes into account the adaptive
distance that some clustering models use. In our study, we extend the
Xie-Beni measure, using both the Mahalanobis distance and the Wasser-
stein distance. The numerical results show the relevance of our new index.

Keywords: Clustering · Internal measure · Mahalanobis distance ·
Xie-Beni index

1 Introduction

Clustering is an unsupervised learning method that does not require prior class
labels to implement observational learning. Clustering is employed to group col-
lections of physical or abstract objects into multiple classes of similar objects.
There are various clustering algorithms such as partition-based clustering, hier-
archical clustering, density-based clustering, grid-based clustering, and model-
based clustering. These clustering algorithms can also be split following the
type of partition generated: a hard partition or a soft partition. A hard parti-
tion assigns with total certainty an object to a cluster, whereas a soft partition
allows to produce doubt regarding the class membership of an object. Among
soft partitions, the probabilistic partition is the most famous one.

Various clustering methods can be applied for a data analysis. Thus, it is
important to choose among the algorithms the partition that best fits the data.
For this, validity indexes have been proposed. Such indexes attempt to measure
the correspondence between a partition and the underlying structure of the data.

The validity indexes can be divided into internal and external indexes.
An external index, such as the Normalized Mutual Information (NMI) or the
Adjusted Rand Index (ARI) [14], allows to compare two partitions. It is gener-
ally used to measure the accuracy of a clustering partition by comparing it with
the partition derived from the ground truth. Inversely, an internal index seeks

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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to describe the intrinsic structure of the data without any prior information. It
employs the notion of compactness within clusters and/or the notion of separa-
bility between clusters. The compactness quantifies how much the members of
each cluster are close to each other. The separability, on the other hand, mea-
sures the distance between the different clusters. Cluster validity research is a
difficult task and lacks a strict theoretical background [2].

In the case of a fuzzy partition-based clustering algorithm, such as Fuzzy C-
Means (FCM) [4], there exists some specific and well-known internal indexes: the
Partition Coefficient PC, the Partition Entropy PE [5], and the Fuzzy Hyper
Volume index FHV [10] are the indexes that measure only compactness. The
Fuzzy Silhouette FS [9], the Xie-Beni XB [21], and the Partition Coefficient
And Exponential Separation PCAES [20] are measures combining compactness
and separability.

However, with the exception of Fuzzy Hyper Volume index [10], they are all
based on the Euclidean distance. If a clustering algorithm uses Mahalanobis dis-
tances, as it is the case for FCM-GK [12] and its extensions [1], these indexes will
not take this information into account and it can lead to incorrect quantification
of the compactness and separability of the partition. Plus, although the Fuzzy
Hyper Volume index [10] handles Mahalanobis distances, it only measures the
compactness of the partition. It is therefore necessary to describe a new mea-
sure adapted to the compactness and separability for clustering algorithms using
Mahalanobis distances.

This study aims to propose an extension of the Xie-Beni index to deal with
partitions obtained with Mahalanobis distances. The paper is organized as fol-
lows: Sect. 2 details the necessary knowledge to introduce the Xie-Beni index
in Sect. 3 and its extension in Sect. 4. Numerical experiments are presented in
Sect. 5 and a conclusion and perspectives are given in the last section.

2 Background

2.1 The Fuzzy C-Means Algorithm

Let X = (x1 . . . xn) be a data set with n objects xi ∈ R
p and p be the number

of attributes describing the objects. The objective is to obtain a partition that
groups objects into c clusters 2 ≤ c < n. A fuzzy partition U = (uij) is a matrix
of membership degrees (n × c) such that uij ∈ [0, 1] is the probability that
the object xi belongs to the cluster j. The FCM clustering algorithm and its
variants are centroid-based methods, i.e. each cluster is identified by its centroid
V = {v1, . . . ,vc}, vj ∈ R

p. The notion of similarity between an object and a
group is then the calculation of the distance d2

ij between the object i and the
center of gravity j:

– Euclidean distance in the FCM model [4,7]

d2
ij = (xi − vj)�(xi − vj). (2.1)
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– Mahalanobis distance in the FCM-GK model [12]

d2
ij = (xi − vj)�Sj(xi − vj), (2.2)

In FCM-GK, there exists a specific Mahalanobis distance for each cluster. These
Mahalanobis distances are characterized by symmetric positive definite matrices
S = {S1, . . . ,Sc} also referred to as variance covariance matrices. Remark that
if the variance covariance matrix Sj defined for the cluster j corresponds to the
identity, it represents a Euclidean distance.

In FCM-GK, the unknown variables (U ,V ,S) are determined by optimizing
the following problem:

min
(U ,V,S)

J(U ,V ,S) =
n∑

i=1

c∑

j=1

um
ij d2

ij , (2.3)

with the constraints

uij ≥ 0, ∀i, j ∈ [1, n] × [1, c] (2.4)
c∑

j=1

uij = 1, ∀i ∈ [1, n] (2.5)

n∑

i=1

uij > 0, ∀j ∈ [1, c] (2.6)

det(Sj) = ρj , ∀j ∈ [1, c] (2.7)

The volume constraint (2.7) has been added in order to avoid trivial minimization
where all Sj matrices are set to zero.

The method used to resolve this constrained problem is the alternating opti-
mization method (AO) [4,7,12]. The resulting minimization steps are described
in Algorithm 1. The FCM algorithm is similar except that the co-variance matri-
ces of the set S are not updated and remain identity matrices.

2.2 The Wasserstein Distance

Originating from work on the optimal transport problem, this distance mod-
els the difficulty of changing one amount of earth to another, hence its other
name Earth Mover’s Distance (EMD) [15,19]. Mathematically, it is defined
as the measure of the difference between two probability distributions. Let
g1 = N1(μ1, Σ1) and g2 = N2(μ2, Σ2) be two multivariate Gaussians distri-
bution. The 2-Wasserstein distance between the two Gaussians is:

W2(g1, g2)2 =‖ μ1 − μ2 ‖22 +tr

(
Σ1 + Σ2 − 2

√
Σ

1/2
2 Σ1Σ

1/2
2

)
, (2.8)

where ‖ . ‖2 is the Euclidian norm, and tr(.) the trace function. In computer
science, this distance is widely used for image comparison, especially in content-
based image search [18] and pattern recognition [3].
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Algorithm 1. FCM-GK
1: Intput : X the data set, c the number of cluster
2: err = 0, k = 0,
3: U 0 random initialization.
4: while err > 10−3 do
5: k ← k + 1

6: compute Vk: vk+1
j =

∑n
i=1 uk+1

ij xi
∑n

i=1 uk+1
ij

,

7: compute Sk:
Σj =

n∑

i=1

uk+1
ij (xi − vk+1

j )(xi − vk+1
j )�

Sk+1
j = det(Σj)

1
p (Σj)

−1

8: compute U k: uk+1
ij =

[∑c
�=1

(xi−v k+1
j )�S k

j (xi−v k+1
j )

(xi−v k+1
�

)�S k
�
(xi−v k+1

�
)

]−1

9: err ←‖ U k − U k−1 ‖
10: end while
11: Output: U k,Vk,Sk

3 A Valitidy Measure: The Xie-Beni Index

Xie and Beni proposed a validity measure for fuzzy clustering to evaluate the
quality of Fuzzy c-Means (FCM) cluster partitions [21]. This measure takes
into account both compactness (intra-cluster gaps) and separability (distances
between cluster centers) by computing a ratio between the mean quadratic error
and the minimum of the squared distances between the centroids. It is widely
used to compare two clustering methods [11,13,16].

3.1 Compactness

The compactness formulation is an extension of the “Partition Coefficient” [6]
which measures the degree of overlap between fuzzy clusters. It is a weighted
center-based distance, with the use of a Euclidean distance and the fuzzy parti-
tion as weights:

compactness =
1
n

c∑

j=1

n∑

i=1

u2
ij(xi − vj)�(xi − vj). (3.1)

Remark that this formulation is very close to the FCM cost-to-minimize function
(2.3).

3.2 Separability

In the Xie-Beni index, the separability is defined as the minimum Euclidean
distance between two centroids:

separability = min
j,k∈[1,c],j �=k

‖ vj − vk ‖22 . (3.2)
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3.3 XB Index

The Xie-Beni index (noted VXB) is the ratio between compactness and separa-
bility. A good partitioning must have high compactness and high separability,
so XB is an index to be minimized.

(↓)VXB =
compactness

separability
=

c∑

j=1

n∑

i=1

u2
ij(xi − vj)�(xi − vj)

nminj,k∈[1,c],j �=k ‖ vj − vk ‖22
. (3.3)

4 Improvement of VXB

The Xie-Beni index is not appropriate for partitions obtained with clustering
algorithms using a specific distance for each cluster, as FCM-GK. The two fol-
lowing examples presents the limits of the Xie-Beni measure and the way to
extend the formulas to obtain XBMW, a new Xie-Beni index taking in account
Mahalanobis distances.

4.1 Improvement of the Compactness Measure

Let us considerate a 2-dimensional data set with two well-separated classes as
shown in the Fig. 1. The first class has a spherical structure whereas the second
class is characterized by an ellipsoidal shape. The FCM and FCM-GK algorithms
have been applied on the data set and the obtained co-variances matrices are
presented Fig. 1. Note that FCM is represented by identity covariance matrices.

For the first cluster ω1, both methods detect the same structure. Thus, the
compactness is the same. For the second cluster ω2, the FCM-GK method better
detects the real shape of the cluster and should have a better compactness than
the FCM algorithm. However, since the compactness measured by the Xie-Beni
index uses the Euclidean distance, the values are similar.

-4 -3 -2 -1 0 1 2 3 4
-2

-1

0

1

2

1 2

Fig. 1. Data set with two classes. The co-variance matrices obtained by FCM-GK are
in dotted lines and in lines for FCM
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Therefore, we propose to modify the Euclidean distance by the Mahalanobis
distance:

compactnessm =
1
n

c∑

j=1

n∑

i=1

u2
ij(xi − vj)�Sj(xi − vj). (4.1)

When Sj = I for all j ∈ [1, c] then the new compactness measure is similar to
the compactness measure of the Xie-Beni index.

4.2 Improvement of the Separability Measure

In the VXB index, separability is the minimum Euclidean distance between two
centroids. Such distance does not take into account the possible difference of
importance between attributes that can exists with ellipsoidal shapes. Let us
consider an example of three clusters where the second and third cluster have
the same centroids but different variance co-variance matrices (cf. Fig. 2). The
Euclidean distance d(ω1, ω2) between the cluster (ω1 : v1,S1) and the cluster
(ω2 : v2,S2) is the same as the Euclidean distance d(ω1, ω3) between the cluster
(ω1 : v1,S1) and the cluster (ω3 : v2,S3).

It can be noticed in this example that cluster 3 gives much more importance
to the attributes carried by the ordinate axis, unlike the two other clusters. We
propose to use the Wasserstein distance to measure the difference between two
clusters, considering that a cluster can be approximated as a distribution char-
acterized by the mean being the centroid (μ = v) and the variance-covariance
matrix being the inverse of the distance matrix (Σ = S−1). The distance between
the two clusters is then:

W2(ωj , ωk)2 =‖ vj − vk ‖22 +tr

(
S−1

j + S−1
k − 2

√
S

−1/2
k S−1

j S
−1/2
k

)
. (4.2)

-5 0 5
-3

-2

-1

0

1

2

3

Fig. 2. Figure of two clusters with different shapes
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The separability with the Wasserstein distance is

separabilityw = min
j,k∈[1,c],j �=k

W2(ωj , ωk)2. (4.3)

When the distance matrices are all equal as in FCM where Sj = I,∀j ∈ [1, c],
then the Wasserstein distance is equal to the Euclidean distance.

4.3 XBMW: A New Xie-Beni Index

Our new index, referred to as VXBMW , is an extension of VXB using the Maha-
lanobis distance for the compactness and the Wasserstein distance for the sepa-
rability:

(↓)VXBMW =
compactnessm

separabilityw
=

∑c
j=1

∑n
i=1 u2

ij(xi − vj)�Sj(xi − vj)
nminj,k∈[1,c],j �=k W2(ωj , ωk)2

. (4.4)

5 Numerical Experimentation

5.1 Methodology

In this section, we evaluate the performance of our index. The idea is to show
that there exists a better correlation between an external measure and our inter-
nal measure than between the same external measure and the Xie-Benie index.
The clustering methods used for the experiments are FCM and FCM-GK. Each
algorithm is run 10 times with different centroids initializations and only the
partition minimizing the cost function (2.3) is kept.

5.2 Datasets

We used 19 datasets, 6 toys datasets, and 9 from the UCI library1: Algerian
forest (Af), Drybean (Db), Glass, Iris, classes I, J, and L from Letters (IJL) [8],
Seeds, WDBC, Wifi, Wine. We also used two synthetic datasets: Asymetric and
Skewed [17]. Table 1 references their characteristics, i.e. the number of classes
c, the number of objects n, and the number of attributes p. All datasets are
normalized, i.e. centered (mean) and reduced (std) for each attribute.

We also have created six toy datasets using a combination of cluster ω. Each
cluster corresponds to a specific Gaussian for which 100 points have been gen-
erated. The characteristics of each Gaussian is given in the Table 2: mean value
v, axis lengths a, b and rotation angle θ. We note −ω, the cluster whose mean is
the opposite −v. The data set T1 is composed of (ω1, ω2,−ω1), T2: (ω1, ω2, ω3),
T3: (ω4, ω5), T4: (ω4, ω5, ω6,−ω6, ω7,−ω7), T5: (ω1, ω8, ω9, ω10, ω11), and T2:
(ω12, ω13,−ω1). Figure 3 shows the obtained datasets.

1 https://archive.ics.uci.edu/ml/datasets.php.

https://archive.ics.uci.edu/ml/datasets.php
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Fig. 3. Toys datasets
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Table 1. Characteristics of datasets.

Af Db Glass Iris IJL Seeds WDBC Wifi Wine Asymetric Skewed

c 2 7 2 3 3 3 2 4 3 5 6

n 243 13611 214 150 2263 210 569 2000 178 1000 1000

p 10 16 9 4 16 7 30 7 13 2 2

Table 2. Characteristics of Gaussians (i.e. clusters)

ω1 ω2 ω3 ω4 ω5 ω6 ω7 ω8 ω9 ω10 ω11 ω12 ω13

v

(
3
5

0

) (
0

0

) ( −2
5

0

) (
0

0

) (
0

0

) (
−3

3

) (
3

3

) (
1.2

0

) ( −1
2

−1
3

) ( −9
10
−1
3

) (
0

−1
6

) (
3
5

0

) (
0

0

)

a 1
6

1
6

1
2 2 2 1 2 1

6
1
12

1
12

1
6

1
6

1
6

b 1
18

1
18

1
18

1
10

1
10 1 1

4
1
18

1
12

1
12

1
12

1
18

1
18

θ 30 30 0 0 90 0 45 −30 0 0 45 −30 0

5.3 External Evaluation Measure

We used the Ajusted Rand Index [14], which compares two hard partitions. Since
FCM and FCM-GK generates fuzzy partitions, these partitions are transformed
into hard partitions by assigning to each object the class with the highest mem-
bership. Let π1 and π2 be two partitions, a be the number of pairs of objects
which are in the same group in π1 and π2, b be the number of pairs of objects
which are in different groups in π1 and π2, c be the number of pairs that are in
the same group in π1 but not in π2 and d be the number of pairs that are in the
same group in π2 but not in π1. The ARI is then defined as follows:

ARI(π1, π2) =
2(ab − cd)

(a + d)(d + b) + (a + c)(c + b)

If two partitions are identical then the ARI score is one. The better partitioning
will have a higher ARI score and a lower index value.

5.4 Results

A better partitioning is a larger ARI and a smaller index. We use a simple
matching coefficient (SMC), between the difference in the ARI score for FCM
and GK, and the difference in the index. When ARI increases and the index
decreases it is a true positive (TP), but if the index increases then it is a false
negative (FN). If ARI decreases and the index decreases it is a false positive
(FP) but if the index increases it is a true negative (TN).

SMC =
TP + TN

TP + TN + FP + FN
(5.1)

As it can be observed Table 3, there exists a better matching for our new
index. Details are given in the Tables 4, 5, and 6. This is especially the case for
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Table 3. Matching between XB, XBMW and ARI

TP TN FP FN SMC

VXB 2 4 1 10 0.35

VXBMW 11 2 3 1 0.76

Table 4. ARI, XB, XBMW for toys datasets

(a) T1

FCM GK

ARI 0.42 1

VXB 0.18 0.61 FN

VXBMW 0.18 0.21 FN

(b) T2

FCM GK

ARI 0.79 0.97

VXB 0.18 0.28 FN

VXBMW 0.18 0.13 TP

(c) T3

FCM GK

ARI 0.26 0.86

VXB 0.72 33.3 FN

VXBMW 0.72 0.005 TP

(d) T4

FCM GK

ARI 0.61 0.91

VXB 0.33 13.5 FN

VXBMW 0.33 0.01 TP

(e) T5

FCM GK

ARI 0.41 0.93

VXB 0.33 0.68 FN

VXBMW 0.33 0.31 TP

(f) T6

FCM GK

ARI 0.27 0.96

VXB 0.20 0.53 FN

VXBMW 0.20 0.14 TP

Table 5. ARI, XB, XBMW for Synthetic datasets

(a) Asymetric

FCM GK

ARI 0.89 0.96

VXB 0.09 0.12 FN

VXBMW 0.09 0.06 TP

(b)Skewed

FCM GK

ARI 0.65 0.99

VXB 0.24 0.66 FN

VXBMW 0.24 0.06 TP

Table 6. ARI, XB, XBMW for UCI datasets

(a) Algerian forest

FCM GK

ARI 0.34 0.54

VXB 0.35 0.38 FN

VXBMW 0.35 0.01 TP

(b)Dry bean

FCM GK

ARI 0.68 0.70

VXB 16.55 0.64 TP

VXBMW 16.55 6.10−6 TP

(c)Glass

FCM GK

ARI 0.55 0.41

VXB 1.45 0.84 TN

VXBMW 1.45 2.10−3 FP

(d)Iris

FCM GK

ARI 0.63 0.74

VXB 0.22 0.79 FN

VXBMW 0.22 0.16 TP

(e)IJL

FCM GK

ARI 0.04 0.26

VXB 7.06 1.15 FN

VXBMW 7.06 0.10 TP

(f)Seed

FCM GK

ARI 0.77 0.72

VXB 0.21 0.22 TN

VXBMW 0.21 0.01 FP

(g)WDBC

FCM GK

ARI 0.68 0.41

VXB 0.48 2.16 TN

VXBMW 0.48 0.02 FP

(h)Wifi

FCM GK

ARI 0.82 0.41

VXB 0.34 6.104 TN

VXBMW 0.34 1.104 TN

(i)Wine

FCM GK

ARI 0.90 0.33

VXB 0.47 70.0 TN

VXBMW 0.47 4.19 TN
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the toy sets, which allow us to highlight our index. We observe that for case T1,
the limit of the Wasserstein distance is because if the clusters have the same
shape then it will be equal to the Euclidean distance. Our new index favors
GK (chosen 14 times out of 17) contrary to Xie Beni’s index which favors FCM
(chosen 14 times out of 6).

Let us also remark that our new index is more sensitive to a high number of
attributes, especially for the WDBC dataset.

6 Conclusion

In this study, the interest was to take into account the adaptability of the metrics
to measure the quality of the partitioning methods. Indeed, for the internal
criteria, it is important to evaluate the compactness and separability according
to the particular distances of each cluster. This is why we have extended the
Xie-Beni measure with the Mahalanobis distance for the compactness and the
Wasserstein distance for the separability. We compared two methods, one based
on Euclidean distance (FCM) and its variant based on adaptive distances (FCM-
GK). The results are satisfactory as the index allows us to analyze a good fit
with an external measure.

This study is encouraging and offers some perspectives. First of all, it would
be interesting to compare two clustering methods that are both using Maha-
lanobis distances. We can also consider selecting another metric for separability.
Finally, we focused our study on the Xie-Beni index, but it could be interesting
to adapt other internal validation measures to the Mahalanobis distances, in
particular to find an optimal number of clusters.
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Abstract. Semi-Supervised Fuzzy C-Means (SSFCMeans) model
enables inclusion of additional knowledge about the true class of a part
of the training data. With this partial supervision, there comes a new
possibility to use this model as a classifier. The main goal should be thus
to minimize the classification error, just as in the fully supervised set-
ting. However, the typical problems with minimizing the training error,
test error, and avoiding the phenomenon of overfitting must be carefully
considered with respect to the characteristics of the SSFCMeans model.
In this work, we fill the identified research gap and analyze the way
of handling partial supervision in Semi-Supervised Fuzzy C-Means and
its impact on the aforementioned issues. We investigate this relation-
ship experimentally using artificially simulated data. We show that the
training error for the training phase is directly related to the scaling fac-
tor α and is deterministically assured to be equal to 0 in some cases. We
further illustrate our main findings for real-life partially labeled data col-
lected from smartphones of patients with bipolar disorder in a problem
of predicting the phase of the disease.

Keywords: Semi-Supervised Learning · Fuzzy Clustering ·
Semi-Supervised Fuzzy C-Means · Classification · Bipolar Disorder ·
Mental Health Monitoring

1 Introduction

Semi-supervised fuzzy clustering (SSFC) is a class of fuzzy clustering models
that incorporate additional knowledge which is called partial supervision since
it provides labels y ∈ {y(1), . . . , y(c)} only for a part of M observations out of
all N available observations, M < N . Other forms of supervision are possible as
well (e.g. pairwise constraints), but in this paper, we focus on labels.

SSFC is a multidisciplinary approach involving elements from unsupervised
learning, fuzzy set theory, and supervised learning. Clearly, we are dealing with
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the task of clustering, i.e. grouping observations xj into c clusters so that obser-
vations in the same cluster are similar to each other while being dissimilar to the
observations from other clusters. The methods we consider in this paper measure
the similarity using a chosen metric. The fuzzy character of SSFC relies on the
idea of a soft assignment of each observation to each cluster to some degree of
membership that has its roots in fuzzy set theory. Such an approach differs from
crisp clustering which treats an observation as belonging unambiguously to a
single cluster only.

Last but not least, SSFC is categorized into the Semi-Supervised Learning
(SSL) setting. Note that SSL is often described as a setting “in the middle”,
between (completely) unsupervised and (completely) supervised learning (see
e.g. [16]), but its goal is the same as in the fully supervised problem. [8, p. 16], the
authors of a thorough overview of SSL, clearly state that “The semi-supervised
learning problem belongs to the supervised category since the goal is to minimize
the classification error (...)”. Classifying observations in SSFC relies on a cluster
assumption: “If points are in the same cluster, they are likely to be of the same
class” [8, p. 5]. By arbitrarily establishing a one-to-one mapping between clusters
and classes, we introduce partial information into the clustering and push the
memberships of supervised observations towards the clusters associated with
respective classes during the learning process.

Many works investigate extensions of SSFCMeans and perform simulations
or experiments that evaluate clustering quality or classification quality and apply
them in various application scenarios [1,4–7,10,11,14,15]. In this paper, we fur-
ther extend research in this line and investigate the relationship between the key
mechanism of handling partial supervision in SSFCMeans and the classification
error. Specifically, we focus on the relationship between the training error and
the test error and the issue of overfitting. Inducing the classifier π̂ : xj �→ yj from
the training data D one may possibly find π̂ that achieves great performance on
D by fitting too much to the local characteristics of D. The generalization capa-
bility of the classifier, associated with its test error (classification performance on
independent data T that did not take part in the learning process), is decreasing
in such case.

The main novelty of this paper is showing that a way of handling partial
supervision in SSFCMeans based on the hyperparameter α (called a scaling
factor) may result in a deterministically over-optimistic training error. In con-
sequence, one cannot analyze overfitting for Semi-Supervised Fuzzy C-Means in
the context of its typical meaning described above. We support our findings with
simulation results.

The rest of this paper is structured as follows. Section 2 recalls basic def-
initions and the SSFCMeans algorithm. Section 3 discusses the impact of the
scaling factor α on the training error in classification. Section 4 presents the
simulation results on artificial datasets. Next, Sect. 5 explains the experimen-
tal setup and gathers numerical results for real-life data collected from bipolar
disorder patients. Finally, Sect. 6 concludes the paper and outlines the future
directions of our research.
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2 Semi-Supervised Fuzzy C-Means

Semi-Supervised Fuzzy C-Means model proposed in [16] can be categorized as a
distance-based model [15] that incorporates the partial knowledge to modify the
distances between jth observation and kth cluster. Having chosen a metric d, the
distance d2jk is calculated between a vector xj ∈ Rp representing jth observation
and vector vk ∈ Rp representing kth cluster (called a prototype).

An objective function for SSFCMeans based on [16] is

JSSFCM(U, V ) =
N∑

j=1

c∑

k=1

u2
jkd2jk

︸ ︷︷ ︸
Q(U,V ;X)

+α

N∑

j=1

c∑

k=1

bj(ujk − fjk)2d2jk

︸ ︷︷ ︸
Q′ (U,V ;X,F )

. (1)

Note that it consists of two components: unsupervised Q and supervised Q′.
U = [ujk] is a membership matrix, V = [vk] is a prototypes matrix, and d2jk

denotes a Euclidean distance between jth observation and kth prototype. The
supervised component Q′ introduces matrix F = [fjk] that encodes the one-
to-one mapping between clusters and classes. It contains a priori information
fjk ∈ {0, 1} such that fjk = 1 iff jth observation is known to belong to kth class.
Scalar bj is a binary indicator stating whether jth observation is supervised or
not. Finally, the hyperparameter α ≥ 0 that is called a scaling factor is used
to “maintain a balance between the supervised and unsupervised component
within the optimization mechanism” [16, p. 789]. The bigger the α, the stronger
the influence of the supervised observations on the outcomes of the algorithm.

The task of Semi-Supervised Fuzzy C-Means is formalized as a minimization
problem of the JSSFCM function from (1). One wants to find

arg min
U,V

JSSFCM(U, V ;X,F, α)

s.t.
c∑

k=1

ujk = 1, 0 <
N∑

j=1

ujk < N, ujk ∈ [0, 1].
(2)

A commonly used optimization algorithm described in [3] is based on the
observation that problem (2) is NP-hard, but there exist analytical solutions to
minimizing JSSFCM(U) and JSSFCM(V ) separately. One thus holds V fixed and
finds optimal Û , and then the analogous process is performed to find V̂ .

The optimal membership ûjk is found to be

ûjk =
1 + α ·

(
1 − bj ·

∑c
s=1 fjs

)

1 + α
· 1∑c

s=1

(
d2jk/d2js

) +
α

1 + α

(
fjk · bj

)
. (3)

Extensions of the classical SSFCMeans were proposed over the years. For
example, [7] and [6] adapted it to handle streaming data, as the original model
works with batch data only. In the remainder of this paper, we focus on the
core SSFCMeans algorithm and investigate in detail the relationship between
the scaling factor α, and the training and test classification errors.
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3 The Scaling Factor α and Its Relationship
with the Training Error

To consider any classification error of the observation - either the training one
or the test one - we need to know two components: the true class y and the
predicted class ŷ. Since partial supervision provides labels only for M out of
all N available observations, we will use the index i = 1, . . . , M to denote the
supervised observations that constitute the training set D, on which we will
calculate the training error. Recall that in SSFCMeans, the true class yi of ith
supervised observation is associated with one of the columns in matrix F . We
will use a function s(i) ∈ {1, . . . , c} to select the correct column associated with
yi, i.e. s(i) is such that fi,s(i) = 1.

The outcome of the SSFCMeans model for ith observation is a tuple
〈ûi1, . . . , ûic〉. Therefore, to obtain a second component: a predicted class, one
needs to perform a defuzzification. A simple idea is to predict the class associ-
ated with the cluster to which the membership was the highest. A corresponding
decision rule π can be formulated as

π : i �→ k = arg max
k

uik. (4)

Let us now consider a test set T and a boundary β ∈ (0, 1). If any given
membership ûik0 exceeds β0.5 = 0.5, then it is guaranteed that k0 is the argument
maximum because of the constraint

∑c
k=1 ujk = 1 in (2). The reverse does not

hold. For example, in a 3-class problem, a possible outcome of the SSFCMeans
model may be 〈0.33, 0.3, 0.37〉 and the argument maximum ûi3 does not exceed
β0.5.

The situation is more complex for the training error since there exists a
special relationship between the β boundary and the scaling factor α. By (3),
the optimal membership ûi,s(i) is expressed as

ûi,s(i) =
1

1 + α
· 1∑c

s=1

(
d2ik/d2is

) +
α

1 + α
. (5)

Note that we are guaranteed

ûi,s(i) ≥ α

1 + α
. (6)

We call the quantity α
1+α the Absolute Lower Bound to stress its meaning.

For any value of α ≥ 1, we are guaranteed that the cluster indexed by s(i) will
be the argument maximum since the associated membership ûi,s(i) ≥ β0.5. This
leads to a 0% training error regardless of the performance metric used to measure
the classification error (e.g. precision, recall, or F1 score). Such situations may
disturb the classical overfitting analysis, as the classifier is not even fitting too
much to the local characteristics of the training data D, but is deterministically
assured to achieve artificially great performance regardless of the data evidence.

We thus suggest considering a margin of making the training error ε ∈ [0, β0.5]
in a process of selecting the optimal value α with regard to the training and



Classification Error in Semi-Supervised Fuzzy C-Means 729

test classification performance. In terms of the scaling factor α, we postulate to
consider α such that

α

1 + α
= β0.5 − ε. (7)

Note that applying the margin of making the training error ε may still result
in 0% training error, but in such a case a classical overfitting analysis can be
meaningful because the performance would not be deterministic. It would be
rather the high data evidence or excessive adjusting of the SSFCMeans to the
characteristics of the training dataset D.

In this paper, we use F1 score (a harmonic mean of precision and recall) to
measure both the training and test classification errors. Note that the better the
F1 score, the lower the classification error.

4 Experiments on Simulated Data

We perform a simulation experiment to show the potential problems with study-
ing overfitting described in Sect. 3. Two datasets are created: separable and
unseparable. In each case, we simulate 200 observations from two classes y(1)

and y(2), having 400 observations in total. We then split the data so that 85%
observations from each class go to the training dataset D, and the remaining 15%
goes to the test dataset T . Next, to mimic the partial supervision, we randomly
select 15% observations from D that will remain supervised (sustaining the class
balance), artificially treating the rest of the data from D as unsupervised.

In the next step, we fit SSFCMeans models for a grid of ε values. Specifically,
we consider 11 values of ε: εg = g ·0.05, g = 0, 1, . . . , 10. For each SSFCMeans(εg)
model, we calculate the F1 score both on the training set D and test set T . We
use the argument maximum decision rule from (4) when predicting a class of the
observation. Table 1 presents a grid of ε values used in the experiments, together
with corresponding α and Absolute Lower Bound α

1+α . Note that ε = 0.5 results
in excluding partial supervision effect (since the corresponding scaling factor α
is equal to 0).

The experimental setting consists of simulating a dataset 15 times, and then
randomly selecting the observations that will remain supervised 15 times for each
dataset. In total, we have 15 ·15 = 225 simulation runs. We calculate the median
F1 score for both training and test sets on the results of all the simulation runs,
and present the overall statistics in Fig. 1c and Fig. 1d. For test F1 score we
additionally display the interquartile range IQR by highlighting the respective
areas of the plot in grey.

The unseparable dataset was created by sampling observations from each
class y from the same N2(μ,Σ) distribution, where μ = (5, 5) and Σ = diag(0.5,
0.5). An example of a single dataset is presented in Fig. 1b. The corresponding
simulation results in Fig. 1d prove that even in the case of completely unseparable
data, the training error goes to 0% for ε = 0. A corresponding test error remains
around the level of 0.5, which corresponds to a random prediction of a class: the



730 K. Kmita et al.

Fig. 1. Results for 225 simulation runs on training and test sets. Red dots represent
corresponding median F1 scores for each ε on the test set, and green squares represent
median F1 scores on the training set. Areas highlighted in grey represent IQR for test
F1 score. (Color figure online)

Table 1. Values of ε and the corresponding α values.

g 0 1 2 3 4 5 6 7 8 9 10

ε 0.0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

α 1.0 0.82 0.67 0.54 0.43 0.33 0.25 0.18 0.11 0.05 0.0
α

1+α
0.5 0.45 0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05 0.0

only true possible performance in such a case. This example shows a problem
with training error being deterministically too optimistic even in extreme cases.

A different situation is examined in separable dataset. The data for class
y(1) are simulated from N2

(
μ = (5, 5), Σ = diag(1, 1)

)
, but for class y(2) we

simulate data from N2

(
μ = (3, 6), Σ = diag(1, 1)

)
and stretch it by multiplying
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the resulting features matrix by matrix diag(3, 1). An example of such a dataset
is presented in Fig. 1a. This way of simulating allows for partial separation of
the classes with a clearly distinguishable area of overlapping.

The simulation results presented in Fig. 1c seemingly present a typical exam-
ple of overfitting. Starting from ε = 0.5, the training and test F1 scores increase.
Note the high variability in the test F1 score depicted by wide IQR for ε ≥ 0.3
and the impact of introducing partial supervision. With no partial supervision
(ε = 0.5), both F1 scores remain low, as compared to lower values of ε that
represent a stronger impact of partial supervision. For ε < 0.3, as ε → 0, the
dynamics change. The training F1 score further increases, but the test F1 score
remains roughly the same: around the value of 0.8 with a narrow IQR. We do not
observe the phenomenon of overfitting, i.e. that increasing classification results
on training dataset D finally result in decreasing performance on the test set
T . The reason for that may be that the true training error is higher, but the
deterministic relationship of the values α ≥ 1 and the predictions based on (4)
artificially increase the F1 score. This observation, however, is specific to our
simulations and requires further study.

5 Experiments on Real-Life Data

5.1 Application Example in the Smartphone-Based Classification
of Bipolar Disorder Patients

Bipolar disorder is a serious mental illness characterized by fluctuations in the
mood phases from depressive to manic. Passive observation of the patient by ana-
lyzing objectively collected sensor data (e.g. data from patients’ smartphones)
has the potential to revolutionize the detection of phase changes due to its objec-
tivity and early alert capabilities. Various machine learning algorithms have been
proposed in recent years for resolving this health status monitoring problem
[2]. However, in the majority of the state-of-the-art solutions, low accuracy is
reported due to various forms of uncertainties related to this particularly sensi-
tive mental health application scenario and its related data collection process,
such as e.g., the vague nature of data collected from sensors, the subjectivity of
data collected from psychiatrists about labels, etc.

In the majority of the state-of-the-art, the episode prediction problem is
stated as a supervised learning task. Supervised techniques require a substantial
amount of labeled data (results of the psychiatric assessment in this context),
and providing these data on a day-to-day basis is almost infeasible in the bipo-
lar disorder monitoring context. On the other hand, unsupervised learning tech-
niques such as clustering algorithms or statistical process control, see e.g., [12],
overcome these limitations since they try to find the structure information in
unlabeled data to construct a classifier or a control chart. However, due to the
absence of labels, purely unsupervised clustering methods may give highly incon-
sistent data partitions that include instances from different classes. Hopefully,
semi-supervised learning algorithms have the potential to improve classification
performance by using a combination of both labeled and unlabeled data. To
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Table 2. Total number of supervised calls in the bipolar dataset by class correspond-
ing to the mental state of the patient.

class depression mixed euthymia dysfunction total

# supervised calls 58 55 85 63 261

# unsupervised calls – 1034

alleviate the problems of uncertainty about patients’ state and limited data,
[13] showed that an advanced approach to handling uncertainty about psychi-
atric assessments and feature engineering enables to increase the accuracy of
episode prediction. In our previous works, we also applied dynamic incremen-
tal fuzzy semi-supervised clustering, see [6,10]. The semi-supervised approach
is very promising but it is also observed that the results depend on the ran-
domly selected chunks [11]. Thus, the robustness of the Semi-Supervised Fuzzy
C-Means algorithm needs to be further studied.

5.2 About Dataset Used for Experiments

Data for this work were collected from patients diagnosed with bipolar disor-
der within a prospective observational study1 carried out by the Institute for
Psychiatry and Neurology and Systems Research Institute, Polish Academy of
Sciences in Warsaw, Poland in years 2017–2018. For the protocol of this study,
we refer the reader to [9]. A dedicated application using an open-source soft-
ware library opensmile2 was installed on patients’ smartphones that transformed
patients’ speech into a set of acoustic features which are physical descriptors,
such as e.g., loudness. Next, the collected frames of each call were preprocessed
and summarized with basic statistics, and we applied the feature selection to
reduce the dimensionality of this dataset. As a result, five voice characteristics
that describe different types of jitter, shimmer, and the spectrum of the sig-
nal (spectral flux and spectral centroid) were selected. In addition, psychiatric
assessments of patients’ health status were collected on a regular basis. Doc-
tors were classifying the mental state into one of the four phases: depression,
dysfunction, euthymia, and the mixed state.

In this paper, we use the data from a single patient for the purpose of the
experiments. The partial supervision is an effect of the so-called ground truth
labeling process: data from phone calls falling into the time window starting
from 7 days before the assessment to 2 days after the assessment are treated as
supervised, and the rest remains unsupervised. See [14] for the detailed discus-
sion about the ground-truth period approach. Table 2 presents the main char-
acteristics of the bipolar dataset used for experiments in the remainder of this
Section.

1 The study obtained the consent of the Bioethical Commission at the District Medical
Chamber in Warsaw (agreement no. KB/1094/17).

2 https://www.audeering.com/research/opensmile/.

https://www.audeering.com/research/opensmile/
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5.3 Numerical Results

The main purpose of the experiments was to verify how the selection of the
margin of making the training error ε impacts on the classification performance.
We consider the same experimental settings as in the Sect. 4: ε values range from
Table 1 and F1 score as a performance measure. Since we distinguish four phases
of bipolar disorder, we are working with a multi-class prediction problem. We
calculate F1 score for each class separately.

Figure 2 presents results from simulations for the bipolar dataset. We con-
sider 3 training-test splits: 90/10, 50/50, and 10/90. The first part of each split
refers to the percentage of M supervised observations that are included in the
training dataset D, and the second part refers to the percentage of M obser-
vations that go to the test set T . For each of the 3 above partial supervision
scenarios, 30 repetitions of the random training-test split are performed sustain-
ing the class balance in the test set. Each dot on the plots represents the median
F1 score for a specific class y calculated on all 30 simulation results.

As observed in Fig. 2, when ε is 0, the performance measured with F1 for
the training datasets is equal to 1 regardless of the partial supervision scenario.
For all classes, the F1 score decreases when ε increases. We observe that the
dynamic of this decrease slightly differs between partial supervision scenarios.
For example, for the observations coming from the mixed state (which is very
difficult to classify according to clinical practice), the drop in the F1 score in
training sets is more sudden for the scenarios with a lower percentage of partial
supervision. In particular, we observe in Fig. 2a that F1 drops below 0.4 for ε of
0.3. At the same time, in Fig. 2c and Fig. 2e we see that F1 is below 0.4 for ε of
0.2. A similar tendency is observed for other classes.

For the test sets, similarly as for the training sets, we clearly see that the
results depend on the rate of labeled observations included in the training, and
as could have been expected the absolute results are the highest for the highest
percentage of training percentage of supervised observations. Nonetheless, the
results are unsatisfactory in terms of the considered performance metric. Also,
the decrease of F1 with the increase of ε is not so evident for the test sets. These
results confirm that especially for the situations when the number of labeled
observations is sufficient to train a well-performing model, the selection of ε
(which translates to the selection of α) influences both the training and test
performances.
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Fig. 2. Results for 30 simulations on bipolar dataset. Each a/b train-test split denotes
a situation where a% supervised observations where included in the training set D, and
the remaining b% supervised observations were left out for the test set T . Each dot
represent a corresponding median F1 score for a specific class y.
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6 Conclusion and Future Work

In this work, we considered the important problem of adequate handling of par-
tial supervision in the Semi-Supervised Fuzzy C-Means algorithm in relation to
the training and test classification errors measured by F1 score. We showed with
simulations on both artificially generated and real-life data about the medical
use case that the SSFCMeans model is highly dependent on its hyperparame-
ter α that needs to be provided prior to the modeling. Last but not least, we
established a relationship between α and a deterministically assured 0% training
error that may bias the overfitting analysis of the SSFCMeans.

The results presented in this paper can be further extended and shall be
generalized to the broader Semi-Supervised Fuzzy Clustering context. Further-
more, we plan to investigate the importance of α in the dynamic environment
based on the recently proposed Dynamic Incremental Semi-Supervised Fuzzy
C-Means (DISSFCM) [6] which is claimed to handle the evolving structure of
data using special splitting mechanisms. Moreover, in certain practical prob-
lems, uncertainty may arise if the labels are equally valid. In [14], SSFCMeans
is used to build a wrapping Confidence Path Regularization (CPR) algorithm
that estimates a so-called adjusted confidence factor which reflects the degree of
label validity in a data-driven manner. In further work, we plan to validate the
findings presented in this paper with the CPR algorithm.
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Abstract. The two-sample location problem is one of the most impor-
tant issues in statistics. Unfortunately, its extension for imprecise data
encounters considerable difficulties to generalize classical tests into the
fuzzy environment in a simple way. However, combining the credibility
index with some kind of randomization, we propose a promising gener-
alization of the two-sample Mann-Whitney test for fuzzy data.

Keywords: Fuzzy data · the Mann-Whitney test · Random fuzzy
numbers · Credibility

1 Introduction

Two-sample tests for the difference in location belong to the most often used
statistical procedures having many applications in various fields. For instance,
before a new drug is allowed to be used, a random group of patients suffering
from a particular disease is taken and divided into two independent samples: one
who will be treated with a new drug (called the treatment group) and the other
who will receive a placebo (called the control group). Based on these samples
we wish to investigate the presence of a treatment effect. Usually, we verify
the null hypothesis of no effect against the alternative hypothesis asserting that
measurements from the treatment population tend to be larger (or smaller) than
from the control population. Under strict assumptions including the normality of
both samples, the well-known t-test can be used there. However, usually, it does
not hold so we have to use one of the nonparametric tests like the Wilcoxon
rank-sum test [21] or the Mann-Whitney test [17] (which is equivalent to the
first one). However, if the available data are also imprecise none of these tests
can be used because imprecise measurements are not generally linearly ordered.
Furthermore, additional obstacles to the statistical analysis of imprecise data
are the absence of suitable models and limit results for the distribution of fuzzy
random variables used for describing imprecise data.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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In this paper, we have used the credibility index [13,15] to measure the extent
of the degree of the dominance relationship for each pair of random variables.
In addition, using permutation tests which allow omitting the determination of
the exact distribution of the test statistic we have been able to generalize the
Mann-Whitney test for fuzzy data.

2 Fuzzy Data

When dealing with imprecise outcomes of experiments fuzzy numbers can be
viewed as counterparts of typical results in the form of real numbers. A fuzzy
number is a mapping ˜A : R → [0, 1], called a membership function, such that
its α-cut (α-level sets) defined by

˜Aα =

{

{x ∈ R : ˜A(x) � α} if α ∈ (0, 1],
cl{x ∈ R : ˜A(x) > 0} if α = 0,

(1)

is a nonempty compact interval for each α ∈ [0, 1], where cl in (1) stands for the
closure. The value of the membership function at x indicates to what extent this
point belongs to ˜A. On the other hand, the α-cut ˜Aα is the set of all points x ∈ R

that belong to A with a degree of at least α. Therefore, each fuzzy number is fully
characterized both by its membership function ˜A(x) and by a family { ˜Aα}α∈[0,1]

of all its α-cuts. Further on, a family of all fuzzy numbers will be denoted by
F(R). Two α-cuts play a crucial role in this modeling: ˜A1 = core( ˜A), called the
core, which contains all x ∈ R fully compatible with the concept described by
the fuzzy number ˜A, and ˜A0 = supp( ˜A), i.e. the support, of those x ∈ R which
are compatible to some extent with the concept corresponding to ˜A.

Membership functions can take an infinite number of different forms. There-
fore, we are most willing to consider such subfamilies of F(R) that abound in
curves of various shapes, and at the same time can be easily parameterized. An
example of such a family of fuzzy numbers is the family of so-called LR-fuzzy
numbers defined as follows

˜A(x) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

L
(

x−lA
cA−LA

)

if lA � x � cA,

R
(

rA−x
rA−cA

)

if cA < x � rA,

0 if x ∈ R \ [lA, rA],

(2)

where L,R : [0, 1] → [0, 1] are continuous and strictly increasing function such
that L(0) = R(0) = 0 and L(1) = R(1) = 1, and lA, cA, rA ∈ R such that
lA � cA � rA. The most often used subfamily of the LR-fuzzy numbers are
the so-called triangular fuzzy numbers with L(x) = R(x) = 1 − x for all
x ∈ [0, 1]. If ˜A is a triangular fuzzy number, its membership function is simply
given by

˜A(x) =

⎧

⎪

⎨

⎪

⎩

x−lA
cA−LA

if lA � x � cA,
rA−x

rA−cA
if cA < x � rA,

0 if x ∈ R \ [lA, rA],
(3)
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which means that it is completely described by the triple (lA, cA, rA) and hence
is often denoted as ˜A(x) = (lA, cA, rA)T .

Another subfamily of LR-fuzzy numbers, suitable in an approximation of
more complex fuzzy numbers, are the k-knot piecewise linear fuzzy numbers
[2], with L and R functions that are polygons consisting of k ∈ N segments.

α-cuts turn out to be extremely useful for defining basic arithmetic operations
on fuzzy numbers. Indeed, the sum of ˜A ∈ F(R) and ˜B ∈ F(R) is given by the
Minkowski addition of the corresponding α-cuts, i.e. we have

( ˜A + ˜B)α =
[

inf ˜Aα + inf ˜Bα, sup ˜Aα + sup ˜Bα

]

, for all α ∈ [0, 1],

while the product of a fuzzy number ˜A ∈ F(R) by a scalar λ ∈ R is defined by
the Minkowski scalar product for intervals

(λ · ˜A)α =
[

min{λ inf ˜Aα, λ sup ˜Aα},max{λ inf ˜Aα, λ sup ˜Aα}]

, for all α ∈ [0, 1].

Although fuzzy arithmetic seems simple, unfortunately,
(

F(R),+, ·) has not
linear but a semilinear structure, because in general ˜A + (−1 · ˜A) �= 1{0}. Con-
sequently, the Minkowski-based difference does not satisfy, in general, the addi-
tion/subtraction property, i.e. ( ˜A + (−1 · ˜B)) + ˜B �= ˜A. The so-called Hukuhara
difference [14] has been proposed to overcome this problem t but the Hukuhara
difference does not always exist. And this makes it necessary to develop some
special alternative approaches to avoid subtraction problems in statistical rea-
soning with fuzzy observations, e.g. based on distances (see, [1]).

Although various metrics are defined in F(R), the most often used in statis-
tical context is is perhaps the distance proposed by Gil et al. [5] and Trutschnig
et al. [22], defined for any ˜A, ˜B ∈ F(R) as follows

Dν
θ ( ˜A, ˜B) =

(

∫ 1

0

[

(mid ˜Aα − mid ˜Bα)2 + θ ·(spr ˜Aα − spr ˜Bα)2
]

dν(α)
)1/2

, (4)

where mid ˜Aα = 1
2 (inf ˜Aα +sup ˜Aα) and spr ˜Aα = 1

2 (sup ˜Aα − inf ˜Aα) denote the
mid-point and the radius of the α-cut ˜Aα, respectively. Moreover, ν stands for
a normalized measure associated with a continuous distribution on [0, 1] which
allows weighting of the α-cut’s influence, while θ is a positive constant used to
weight the impact of the distance between spreads of the α-cuts and the distance
between their mid-points. Usually ν is the Lebesgue measure on [0, 1], while the
most common choice value of the weight is θ = 1 or θ = 1

3 .
Statistical inference based on imprecise data requires a model which allows

grasping two kinds of uncertainty present in such data: just imprecision and
randomness. To handle imprecise data Puri and Ralescu [19] introduced the
notion of a fuzzy random variable, also known as a random fuzzy number.
It combines fuzzy set theory used to describe imprecision and probability theory
which, as we know, is a proper tool for describing randomness.

Definition 1. Let (Ω,A, P ) be a probability space. A mapping ˜X : Ω → F(R)
is a random fuzzy number if for all α ∈ [0, 1] the α-level function is a compact
random interval.
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It is not currently our goal to develop the theory of random fuzzy num-
bers. We just want to mention that it is not easy to transfer well-known facts
from classical statistics to a fuzzy environment. Besides problems with subtrac-
tion and division of fuzzy numbers mentioned above, fuzzy numbers are not
linearly ordered, which makes it impossible to use the rank methods popular
in nonparametric statistics. Another difficulty, certainly even more fraught with
consequences and limitations in statistical reasoning is the absence of suitable
models for the distribution of random fuzzy numbers. And last but not least,
it seems that there are not yet satisfying Central Limit Theorems for random
fuzzy numbers that can be applied directly in practical applications. It all means
that statistical inference and decision-making with fuzzy data requires usually
ingenuity and new innovative solutions. For instance, previous experience shows
that the use of the bootstrap (cf. [6,16,18]) or permutation tests (cf. [8–12])
might be the recommended solution in hypothesis testing. The latter approach
will be used in this contribution.

3 The Two-Sample Location Problem

Suppose, our data consist of two random samples: X = (X1, . . . , Xn) and Y =
(Y1, . . . , Ym) from two populations. We assume that the X’s, as well as the Y ’s,
are independent and identically distributed. Moreover, X’s and Y ’s are mutually
independent. One can think of it as a sample from the treatment population
and a sample coming from the control population, where X’s and Y ’s stand
for observations or measurements of a certain feature that characterizes the
treatment under study. Our goal is to investigate the presence of a treatment
effect that results in a shift in the location.

More formally, let F and G denote distribution functions of the considered
feature in the first and the second population, respectively. We assume that both
distributions are continuous but at least one of them is unknown. Hence, we wish
to verify the null hypothesis of no treatment effect

H0 : F (t) = G(t), for every t ∈ R, (5)

against the one-sided alternative that X is stochastically larger than Y (or X is

stochastically smaller than Y ), i.e. H1 : X
st
> Y , (or H1 : X

st
< Y ). Here, X

st
> Y

means that P(X > t) � P(Y > t) for all t ∈ R and P(X > t) > P(Y > t) for
some t ∈ R or, equivalently, that F (t) � G(t) for all t ∈ R and F (t) < G(t)
for some t ∈ R. We may also consider a general two-sided alternative that some
effect exists, i.e. H1 : F (t) �= G(t), for some t ∈ R.

Many nonparametric tests have been proposed to solve the aforementioned
testing problems. However, the most popular and appreciated are the Wilcoxon
rank-sum test [21] and the Mann-Whitney test [17]. It can be shown that
although the first one is based on ranks of observations in the combined sample
while the second utilizes pairwise comparisons of observations, both tests are sta-
tistically equivalent which reflects in the terminology by calling both tests with
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a single name: the Mann-Whitney-Wilcoxon test. Further on we will discuss our
testing problem using the Mann-Whitney settings.

Therefore, to verify the null hypothesis (5) we use a test statistic denoted
traditionally by U and defined as the number of times when the X’s are greater
than the Y ’s in the sequence of N = n + m observations from the combined
samples arranged together in increasing order, i.e.

U(X,Y) =
n

∑

i=1

m
∑

j=1

1(Xi > Yj), (6)

where 1(.) stands for the indicator function. Situations when most of the X’s
are greater than most of the Y ’s discredit the null hypothesis of identical dis-
tributions. Hence, if U is large enough, we reject H0 in favor of the alternative
hypothesis that X is stochastically larger than Y . Critical values for some small
and moderate sample sizes are given in [17]. If sample sizes n,m → ∞, the null
distribution of the standardized Mann-Whitney statistic

T (X,Y) =
U(X,Y) − 1

2mn
√

1
12mn(N + 1)

, (7)

approaches the standard normal distribution, which eases decision-making.

4 The Generalized Mann-Whitney Test

A direct generalization of the Mann-Whitney test for fuzzy data is not obvious
because, as has been stated above, its test statistic counts the number of pairs
(Xi, Yj), with Xi ∈ X and Yj ∈ Y, such that Xi > Yj , while this majority
relation for fuzzy numbers is not clearly defined since fuzzy numbers are not
linearly ordered. In the literature, one can find several attempts to generalize
the aforementioned test to the fuzzy domain (see, e.g., [7]) but none of them was
satisfactory enough, because in fact, they amounted to a form of defuzzification
that allowed unambiguous ranking.

To take a step toward obtaining the desired generalization of the Mann-
Whitney test for fuzzy data, we have to start by agreeing on how to compare
any two fuzzy numbers. It seems that a promising solution is to look at the
problem of ordering from the perspective of possibility theory. There we find
well-established possibility and necessity measures [3] for ranking fuzzy numbers
˜A and ˜B, defined as follows

Pos( ˜A � ˜B) = sup
x>y

min{ ˜A(x), ˜B(y)}, (8)

Nes( ˜A � ˜B) = 1 − Pos( ˜A � ˜B)

= 1 − sup
x�y

min{ ˜A(x), ˜B(y)}. (9)
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Obviously, Nes( ˜A � ˜B) > 0 implies that Pos( ˜A � ˜B) = 1.
By taking into account the whole shapes of fuzzy numbers, each of the above

indices characterizes a different aspect of the dominance relation. Following the
solution proposed by Liu [15] in his credibility theory, we can aggregate both
indices by the mapping Cr : F(R) × F(R) → [0, 1], defined as follows

Cr( ˜A � ˜B) =
Pos( ˜A � ˜B) + Nes( ˜A � ˜B)

2
, (10)

to obtain the credibility degree that ˜A is larger than ˜B.
If ˜A and ˜B are triangular fuzzy numbers, i.e. ˜A = (lA, cA, rA) and ˜B =

(lB , cB , rB), it can be shown that (10) takes the following explicit form

Cr( ˜A � ˜B) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

0, if cA < cB and rA ≤ lB ,
h(rA,lB)−rA

2(cA−rA) , if cA < cB and rA > lB ,
1
2 , if cA = cB ,

1 − h(lA,rB)−lA
2(cA−lA) , if cA > cB and lA < rB ,

1, if cA > cB and rB ≤ lA,

(11)

where

h(rA, lB) =
rAcB − lBcA

cB − lB − (cA − rA)
, (12)

h(lA, rB) =
lAcB − rBcA

cB − rB − (cA − lA)
(13)

denote the abscissa of the intersection between the right arm of ˜A with the left
arm of ˜B and between the left arm of ˜A with the right arm of ˜B, respectively.

Now, suppose, we observe two independent fuzzy samples ˜X = ( ˜X1, . . . , ˜Xn)
and ˜Y = (˜Y1, . . . , ˜Ym), each consisting of independent and identically distributed
imprecise observations modeled by triangular random fuzzy numbers.

Applying the credibility index (11) we can determine the credibility degree
that ˜Xi is larger than ˜Yj for any pair of observations belonging to the samples
˜X and ˜Y, respectively. Consequently, to evaluate how much ˜X’s dominate ˜Y ’s,
we may compute the following statistic

UCR(˜X, ˜Y) =
n

∑

i=1

m
∑

j=1

Cr( ˜Xi � ˜Yj). (14)

It is clear that (14) is a natural generalization of the test statistic (6), since
if all observations in both samples are no longer fuzzy but crisp, UCR reduces
to U .

It is also worth noticing that UCR coincides with the original Mann-Whitney
test statistic in the presence of ties. Indeed, keeping in mind the middle case in
(11), we obtain one-half which corresponds to the standard treatment of the tied
crisp observations when computing U .
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Unfortunately, since our data are random samples of fuzzy numbers, we can-
not apply the same rejection rule as for the crisp test statistic (6), because we
know nothing about the actual distribution function of its generalized version
(14) which is our current test statistic of the extended Mann-Whitney test. This
problem is crucial, especially for small or moderate sample sizes, when any con-
siderations of using asymptotic distributions are not justified. Fortunately, to
determine a rejection rule for our new test we can use a specially adapted ran-
domization technique, as we have done with some permutation tests for fuzzy
data discussed in [8–12]. Below we show how to create a permutation test for
fuzzy data based on statistic (14).

Let x̃ = (x̃1, . . . , x̃n) and ỹ = (ỹ1, . . . , ỹm) denote the experimental real-
isations of independent random fuzzy samples ˜X = ( ˜X1, . . . , ˜Xn) and ˜Y =
(˜Y1, . . . , ˜Ym), respectively. Firstly, we have to compute a value of our test statistic
(14) for given experimental data, i.e.

u0 = UCR(x̃, ỹ) =
n

∑

i=1

m
∑

j=1

Cr(x̃i � ỹj). (15)

Now, starting from the initial dataset we will design a specific permutation
procedure. Let w̃ = x̃ 	 ỹ, where 	 stands for vector concatenation pooling the
two samples into one, i.e. w̃i = x̃i if 1 � i � n and w̃i = ỹi−n if n + 1 � i � N .

Let w̃∗ denote a permutation of the initial dataset w̃. Suppose, we take the
first n elements of w̃∗ and assign them to sample x̃∗, while the remaining m
elements create the second sample ỹ∗. Thus, it works like a random assignment
of N = n + m elements into two samples of the size n and m, respectively.
Then, for such constructed samples x̃∗ = (x̃∗

1, . . . , x̃
∗
n) and ỹ∗ = (ỹ1,∗ . . . , ỹ∗

m)
we calculate the corresponding value of the test statistic (14), i.e.

UCR(x̃∗, ỹ∗) =
n

∑

i=1

m
∑

j=1

Cr(x̃∗
i � ỹ∗

j ). (16)

We can repeat the whole procedure by considering successive permutations
of observations w̃∗, dividing them into two samples x̃∗ and ỹ∗, and computing
test statistic (16) values. Moreover, if the null hypothesis holds, i.e. all observa-
tions are independent and identically distributed, no matter what sample they
come from, then all permutations are equally likely and the probability of each
randomly selected w̃∗ under H0 is PH0

(

w̃∗ = (w̃∗
1 , . . . , w̃

∗
N )

)

= n!m!
N ! . This for-

mula might be used for the exact p-value of our test. However, in practice, this
can only be computed efficiently for small N . Therefore, according to the com-
mon practice for permutation tests, we consider not all but a large number B of
permutations (where B about 1000 is a typical number of repetitions).

This way we obtain B test statistic values UCR(x̃∗
b , ỹ

∗
b ), where b = 1, . . . , B,

which we will use to determine the approximate p-value of our test given as
follows

p-value =
1
B

B
∑

b=1

1
(

UCR(x̃∗
b , ỹ

∗
b ) � u0

)

, (17)
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where u0 stands for the test statistic value (15) obtained for the original fuzzy
sample. The whole procedure could be succinctly written in Algorithm 1.

Algorithm 1: The generalized Mann-Whitney test for fuzzy data
Data: Fuzzy samples x̃ = (x̃1, . . . , x̃n) and ỹ = (ỹ1, . . . , ỹm)
Result: Test p-value

u0 ←−
n
∑

i=1

m
∑

j=1

Cr(x̃i � ỹj) ;

Pool the data w̃ = x̃ � ỹ ;
k ←− 0;
for b = 1 to B do

Take a permutation w̃∗ = (w̃∗
1 , . . . , w̃

∗
N ) of the pooled data w̃ ;

x̃∗ = (x̃∗
1, . . . , x̃

∗
n) ←− (w̃∗

1 , . . . , w̃
∗
n) ;

ỹ∗ = (ỹ1,
∗ . . . , ỹ∗

m) ←− (w̃∗
n+1, . . . , w̃

∗
N ) ;

UCR ←−
n
∑

i=1

m
∑

j=1

Cr(x̃∗
i � ỹ∗

j ) ;

if UCR � u0 then
k := k + 1

end

end
p-value ←− k/B

Finally, if we consider the null hypothesis against the one-sided alternative
that X is stochastically larger than Y , we reject the null hypothesis H0 at
significance level δ if p-value � δ.

It should be stressed that the proposed generalized Mann-Whitney test
for fuzzy data, as other permutation tests, requires very limited assumptions.
Indeed, the only requirement is the so-called exchangeability (i.e., under the
null hypothesis we can exchange the labels on the observations without affect-
ing the results). If the observations in a sample are independent and identically
distributed – as it is in our case – then they are exchangeable.

5 Simulation Study

To examine some properties of the proposed generalized Mann-Whitney test we
conducted a simulation study. Although the test itself was designed for arbitrary
random fuzzy numbers, in our simulations we will limit ourselves to fuzzy samples
whose experimental realizations are triangular fuzzy numbers described by (2).
Following the accepted notation each triangular fuzzy number ˜A can be denoted
as a triple ˜A = (lA, cA, rA)T . Consequently, a random fuzzy number ˜X can be
characterized by the following triple ˜X = 〈ξX , ηX , ζX〉, where ξX , ηX , ζX are
all independent real-valued random variables. We assume that ξX and ζX are
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nonnegative. Then, given the particular realization of ξX , ηX , ζX we obtain the
desired realization of a triangular random fuzzy number x̃ = (lX , cX , rX)T where

lX = ηX − ξX , cX = ηX , rX = ηX + ζX . (18)

Thus, the considered fuzzy samples x̃ = (x̃1, . . . , x̃n) and ỹ = (ỹ1, . . . , ỹm) are
constructed by simulating three independent real-valued random variables for
each x̃i = 〈ξXi, ηXi, ζXi〉 and three for each ỹj = 〈ξY j , ηY j , ζY j〉, respectively,
with the first and the last random variables in each triple being nonnegative.
In particular, we generated random fuzzy numbers using the following real-
valued random variables: ηXi, ηY j from the standard normal distribution and
ξXi, ξY j , ζXi, ζY j from the uniform distribution. Then, following (18), we obtain
x̃i = (lXi, cXi, rXi)T , for i = 1, . . . , n, and ỹj = (lY j , cY j , rY j)T , for j = 1, . . . , m.

Figure 1 shows a histogram illustrating the null distribution of the stan-
dardized version of the test statistic (15) obtained for fuzzy samples of size
n = m = 10 generated by independent random variables ηX and ηY from the
standard normal distribution N(0, 1) and ξX , ξY and ζX , ζY from the uniform
distribution U(0, 0.5). In the considered situation we have obtained 0.1697 as a
value of the standardized version of our test statistic, marked on the graph by
the vertical red line. The p-value = 0.448 corresponds to the area of the his-
togram right to the red line. In our case leads the suggested decision is: do not
reject H0. On the other hand, in Fig. 2 we have a histogram made for the test
statistic distribution obtained for two fuzzy samples of identical size n = m = 10
but which differ in location. Namely, ηX was generated from the standard nor-
mal distribution N(2, 1), but ηY from N(0, 1), while ξX , ξY and ζX , ζY were,
as before, uniformly distributed from U(0.0.5). In this case, we have obtained
3.5815, illustrated by a vertical red line, and p-value = 0.0000. Here it is easily
seen that the area of the histogram right to the red line is almost zero, hence
the immediate decision is: to reject H0.

Fig. 1. Empirical null distribution of
the new test under H0.

Fig. 2. Empirical null distribution of
the new test under H1.

The aforementioned figures show that our new test works correctly, i.e.
behave in an expected and predictable way, in obvious situations. But to be
able to somehow assess the quality of this test, we need to examine the sta-
bility of its size and its power. Firstly, we examined the proposed generalized
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Mann-Whitney test concerning its size (i.e. the supremum of the probability of
making a type I error). Thus, 1000 repetitions of the test at 5% significance
level performed under H0 were considered. In each test, B = 1000 permutations
were drawn. Samples were simulated as in the first experiment considered above.
Then empirical percentages of rejections under H0 were determined. The results
both for equal and nonequal sample sizes are gathered in Table 1. It shows that
the size of our test is stable at the desired level.

Table 1. Empirical size of the test for various sample sizes.

n m empirical size

5 5 0.053

10 10 0.059

20 20 0.06

10 15 0.044

10 20 0.049

Next, we conducted a power study to compare our new test with the
goodness-of-fit test introduced by Grzegorzewski in [8] based on the distance
between sample averages, i.e.

TG(˜X, ˜Y) = Dν
θ

(

˜X, ˜Y
)

and the goodness-of-fit test based on the energy distance between X and Y, given
by (cf. [4,20])

EN (X,Y) =
nm

n + m

[

2
nm

n
∑

i=1

m
∑

j=1

Dν
θ (Xi, Yj)

− 1
n2

n
∑

i=1

n
∑

j=1

Dν
θ (Xi,Xj) − 1

m2

m
∑

i=1

m
∑

j=1

Dν
θ (Yi, Yj)

]

.

Since the proposed generalized Mann-Whitney test is dedicated to detect
a shift in location, we considered both samples from the normal distribution,
generated as in the size study, but with different means. The power curves for
increasing difference in means between ˜X’s and ˜Y ’s and three tests based on
fuzzy samples of the sizes n = m = 10 performed at 5% significance level are
shown in Fig. 3.

It is seen that our new generalized Mann-Whitney test dominates both the
test by Grzegorzewski [8] and the goodness-of-fit test based on the energy dis-
tance, manifesting quite similar power.



A New Two-Sample Location Test for Fuzzy Data 747

Fig. 3. Power comparison for the increasing difference in location.

6 Conclusions

Hypothesis testing with imprecise data usually cannot be generalized straight-
forwardly from their original crisp prototypes into a fuzzy environment. This is
due to many difficulties that we encounter in statistical reasoning with fuzzy
data, such as the lack of linear ordering of fuzzy numbers or the absence of suit-
able probabilistic models and limit results for the distribution of random fuzzy
numbers. By using the credibility measure applied to the dominance relation
and combining it with the methodology of permutation tests we have succeeded
in generalizing the classical two-sample Mann-Whitney test for location. It is
completely distribution-free and the preliminary results of its properties, like
the power, are quite promising.
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