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Preface

Almost 24 years ago, the 1999 EUSFLAT-ESTYLF Joint Conference was held in Palma.
This conference, which took place from September 22 to 25, 1999, was organized by
the University of the Balearic Islands and the European Society for Fuzzy Logic and
Technology (EUSFLAT) and it was the first edition of the conferences of this society,
after its foundation that same year. After the success of the first edition, this conference
has been organized every two years in many European towns. Namely, Leicester (United
Kingdom), Zittau (Germany), Barcelona and Gijon (Spain), Ostrava and Prague (Czech
Republic), Lisbon (Portugal), Aix-Les-Bains (France), Milano (Italy), Warsaw (Poland)
and Bratislava (Slovak Republic) have been the venue for subsequent editions. Now, on
the eve of the 25th anniversary, it is time for the EUSFLAT conference to return to its
origins, back to its roots.

The world has changed a lot since 1999. However, some facts remain stable. The
aim of the conference, in line with the mission of the EUSFLAT Society, is to bring
together theoreticians and practitioners working on fuzzy logic, fuzzy systems, soft
computing, and related areas and to provide for them a platform for the exchange of ideas,
discussing newest trends and networking. During these years and due to the successful
development of fuzzy logic and the corresponding technology, interest in fuzzy logic
has been growing steadily, and the EUSFLAT conference has been the main European
conference in this scientific field. However, despite being a predominantly European
conference, many researchers from other continents attend the EUSFLAT conferences
edition after edition, recognizing that they constitute a reference point every two years
for important advances in the lines of research associated with this field. In the specific
case of the Balearic Islands, it should be noted that since the late 1980s intense research
in fuzzy logic has been developed within the framework of the research group led by
Gaspar Mayor and Joan Torrens, who are now happily retired. The new generation took
the baton and the responsibility of organizing this edition of the EUSFLAT conference.

This 2023 edition of the EUSFLAT conference was co-located for the second time
with two traditional events, namely with AGOP 2023 - International Summer School
on Aggregation Operators; and with FQAS 2023 - International Conference on Flexible
Query Answering Systems. We would like to express our thanks to the management
of these events for sharing the vision of the joint multiconference. Special mention
should be given to the AGOP summer school, with which these proceedings are shared.
The AGOP summer school is organized biannually by the AGOP working group of
EUSFLAT, reaching this year its 12th edition after its birth in 2001 in Oviedo (Spain).
This event focuses on aggregation functions, a family of operators which have numerous
applications, including, but not limited to, data fusion, statistics, image processing and
decision making.

Therefore, this volume constitutes the proceedings of the 13th Conference of the
European Society for Fuzzy Logic and Technology (EUSFLAT) and the 12th Interna-
tional Summer School on Aggregation Operators (AGOP). The papers included in the
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proceedings volume have been subject to a thorough review process by at least two
highly qualified peer reviewers, by using a single-blind process. The volume contains
very attractive and up-to-date topics in fuzzy logic and related fields, which will result
in significant interest of the international research communities active in the covered
areas. Special gratitude is due to the extremely relevant role of the organizers of the spe-
cial sessions. Thanks to their vision and hard work, we have been able to collect many
papers on focused topics which we are sure will result, during the conference, in very
interesting presentations and stimulating discussions at the sessions. It should be noted
that for EUSFLAT and AGOP 2023, 71 full papers and 90 abstracts (161 submissions
in total) were submitted from which 61 full papers have been accepted.

Finally, we would like to express our gratitude to all chairs and the organizing team
for making these conferences possible. We believe that we will experience an excellent
and unforgettable conference. We hope that you enjoyed it and that it brought home
many new fruitful ideas for your research, and also that you enjoyed this beautiful
island, Mallorca, the largest island in the Balearic Islands, set in the Mediterranean Sea,
with its great beaches, amazing atmosphere and cultural richness.

September 2023 Sebastia Massanet
Susana Montes

Daniel Ruiz-Aguilera

Manuel Gonzélez-Hidalgo
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Abstract. Fuzzy Logic, in its fuzzy control incarnation, can be as well
seen as an answer to the belated question on how can an algorithm take
in account the subtle variations in a complex system — be it the simple
and paradigmatic thermostat, the description of a traffic jam or the inner
workings of a spaceship. Contrary to the best whodunit, the answer is
given at the very start, and the history of the following years of fuzziness
is a long demonstration of how, thanks to its explanatory power, a simple
idea can be implemented in countless devices, and become the manifest
for a technological society in which the logic discourse is based more on
the human approach and on embracing the permanent state of flux and
uncertainty that is the human experience than on the futile search for
absolute truths and endless precision. If the control answer is somehow
a given, so many other answers that concern foundations of Fuzzy Logic
still beget proper questions. In this paper some of such foundational
questions pertaining vagueness, its role in the definition of fuzziness and
its many incarnations are set in their historical perspective, and some of
the dots outlining the path from a rigid search for truth typical of the
end of the nineteenth century to the more nuanced approach that has
swept the twentieth century are connected.

Keywords: Vagueness - Fuzzy Logic

1 Jean van Heijenoort and the Inevitability of Vagueness

The approach of Gottlob Frege to the ‘vagaries of vagueness’ [10], in the recount
of Jan van Heijenoort [13], has been already discussed in [9]: vagueness can
wreak havoc on logic, and has to be avoided at all costs. Frege is in good com-
pany, as Russell and Quine are apparently guilty as well of such reductionist
stance, despite Quine attributing a different ontological status to his universe
of discourse and Russell limiting the bivalent approach to an idealised image of
the world — the «imagined celestial world» in which a perfect logic should be
applicable. Both Russell and Quine seem in this view not that concerned with
real applications — embodied, realisable — but more interested in keeping the
score with a fast changing world. Frege’s position is somehow justified by the
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historical period in which he was active, an aftertaste of positivism and a hint of
constructivism [1] and a general attitude toward sharply delimited concepts and
final definitions. van Heijenoort summarises the evident connection between the
three approaches as follows [13]:

Russell’s artificial construction of a bivalent world by imagination is closer
to Quine’s free creation of an ontology-oriented language than to Frege’s
objective realism. But the three of them, Frege, Russell, Quine, agree on
one point, namely that ordinary language has to be supplanted by a biva-
lent regimented discourse if logic is to function properly.

This focal point, i.e. the necessity of a synthesis that eliminates (or at least
reduces at a minimum) vagueness from the linguistic discourse in order to obtain
once again, as in Aristoteles’ times, a logic that ‘works’, appears more manda-
tory for Frege: «Thus nowhere do we have firm ground under our feet. Without
final definitions, no final theorems. One would not come out of imperfection
and vacillation» [13]); something that is done by trade and automatically, but
without respect for the true nature of things for Russell: «none of the raw mate-
rial of the world has smooth logical properties, but whatever appears to have
such properties is constructed artificially in order to have them» [13]; and as a
mechanical construction of commonsense reasoning at the pure mercy of com-
munication from Quine: «Implicitly the learner of [a concept by ostension]| is
working inductively toward a general law of English verbal behavior, though a
law that he will never try to state; he is working up to where he can in general
judge when an English speaker would assent...» [12]. All three were able to see
how vagueness is pervasive in natural language, but at the same time they fail to
take this consideration a step further, and include the vagaries of vagueness into
the logical discourse (the very job that fuzziness and other non-classical logics
will be set to fulfill in the years to come), preferring instead to imagine that
in order to have a perfect logic in search of a perfect truth, logic and common
language can be divorced; it is of marginal importance if this is due to some
sort of what van Heijenoort calls objective realism (i.e. some truth that exists
beyond language and whose mirror in language is but a corruption of the origi-
nal, sharp idea), to the necessity of an ontological approach that is to be applied
only for some particular purposes, or to the construction of an imagined world
of perfectly bivalent concepts.

The closing of van Heijenoort can be read as a sort of testament (also due to
this essay being among the last he wrote) [13]:

Frege’s disregard of vagueness and other vagaries was, in a way, inevitable.
But his logical laws have been formulated more than hundred years ago,
and it is now perhaps time to look at the vagaries.

True to the time, in 1985 Fuzzy Logic and its applications to control have been
around for more than twenty years, and while the formalised idea of Computing
with Words [20] was still years in conceiving, the vagaries of language were
already one of the primary foci of investigation in fuzziness and beyond. In order



The Inevitability of Vagueness in Fuzzy Logic 5

to find something that can really be called a precursor of the idea of meddling
with vagaries, a step back in time has to be done: more precisely to the short
period between 1937 and 1939.

2 Max Black and the Ineluctability of Vagueness

Among all the precursors to Fuzzy Logic and the work of Lotfi A. Zadeh, a
special place is surely occupied by the analytical philosopher Max Black, and
his well known paper on vagueness [2]; the two shared a curious coincidences
in upbringing — both men born in Baku, and both moved to the States in the
forties, albeit Zadeh was educated mainly in Iran and Black in England. But the
strongest connection between the two, not explicitly mentioned in Zadeh’s work
but noted by historians of Fuzzy Logic (see e.g. [3,10]) has to do with the desire
to tackle a constructive approach to the problem of vagueness in science: Black
states [2, p.429] that:

[T]he purpose of the constructive part of the paper [is] to indicate in outline
an appropriate symbolism for vagueness by means of which deviations from
a standard can be absorbed by a re-interpretation of the same standards in
such a way that the laws of logic in their usual absolutistic interpretation
appear as a point of departure for more elaborate laws of which they now
appear as special or limiting cases. The method yields a process by which
deviations, when recognized as such, can be absorbed into the form. [...]
[W]ith the provision of an adequate symbolism the need is removed for
regarding vagueness as a defect.

There is a direct parallel with the proposal of Zadeh [16] regarding classes
that are not directly relatable to the strict mathematical definition, such as the
«class of all real numbers which are much greater than 1», «the class of beautiful
womeny or «the class of tall men»:

The purpose of this note is to explore in a preliminary way some of the
basic properties and implications of a concept which may be of use in
dealing with “classes” of the type cited above. [...] [This| notion provides a
convenient point of departure for the construction of a conceptual frame-
work which parallels in many respects the framework used in the case of
ordinary sets, but is more general than the latter and, potentially, may
prove to have a much wider scope of applicability.

The notion is that of a Fuzzy Set (in its first incarnation), and while the
two approaches come from a different background — Black more from a linguistic
point of view, Zadeh with control systems in mind, the essential problem of
vagueness is posed in a strikingly similar way.

2.1 Defining Vagueness

Zadeh starts with the general problem of attributing special object to general
classes, with a prudential admission that vagueness can sometimes creep in the
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standard definition of a class: «More often than not, the classes of objects encoun-
tered in the real physical world do not have precisely defined criteria of mem-
bership»; but then put the accent on the idea that vaguely defined classes are
especially so when containing attributes that render them vague (tall, beautiful,
much greater), which lends well to further the idea of a Fuzzy Set and its math-
ematical definition. Implicit in Zadeh’s approach is the idea of measurement of
class membership, and in his view of vagueness, Fuzzy sets «provide a natural
way of dealing with problems in which the source of imprecision is the absence of
sharply defined criteria of class membership rather than the presence of random
variablesy.

Black, due to his background as a philosopher of language as well as of science,
invests on the search of a symbolism for the «vagueness or lack of precision of a
language», while at the same time recognising that vagueness is a part (and not
a defective one) of each scientific endeavour. In pointing to the search of extreme
precision that is the staple of mathematics, Black focus on how this creates a sort
of translation problem in experimental sciences, where mathematical precision
is quite useful to describe and summarise a phenomenon, but at the same time
limits this description to an idealised model, that rarely if ever corresponds to
the true reality of human experience [2, p. 428]:

While the mathematician constructs a theory in terms of “perfect”
objects, the experimental scientist observes objects of which the properties
demanded by the theory are and can, in the very nature of measurement,
be only approximately true.

[...] There remains a gap between scientific theory and its application,
which ought to be, but is not, bridged.

As a contribution to the construction of this bridge, Black proposes the afore-
mentioned construction of the outline of an appropriate symbolism for vagueness,
which would dispel the myth that vagueness by itself is a defect to be eradicated,
and not part of the richness of human experience, in sciences and language alike:
«vagueness is a feature of scientific as of other discourse». In carrying out this
operation there is a non explicit but strong desire to free logic from the con-
straint of mathematics. The prevalent paradigm of the time was dictating that
logic is a sort of languagey version of mathematics, using the same devices and
appealing to the same devotion of precision, as van Heijenoort has observed in
Frege, Russell and Quine. In this context logic is condemned to follow mathe-
matics in being an abstraction of reality, something Black does not subscribe.
Logic should be instead regarded more as an applicative science, with uncer-
tainty built in and the realisation of objects and predicates a continuous process
prone to revision. This method should not abandon mathematics tout court: “at
every stage the mathematics we already employ will provide the material for the
increasing accuracy of the next stage”, but there is no fixed point to which this
process is anchored or targeted. This is another strong similarity with Zadeh’s
position, which was trying to escape from the research of an exasperate preci-
sion which was typical to the control science of the time, in this shaped by the



The Inevitability of Vagueness in Fuzzy Logic 7

advancements in computer science proper of the fifties and sixties — something
for which Zadeh himself had coined a specific term [11,21]:

In moving in the countertraditional direction, we are sacrificing precision
to achieve significant advantages down the line. This important feature of
fuzzy logic is referred to as “the fuzzy logic gambit”.

The gambit entices to trade off precision for a better power of representation
of vague concepts, and an actionable solution to the problem of control. To
“bridge the gap”, Black goes another way, offering the outline of something that
can be described as a pyramidal solution to the problem of tackling vagueness,
an idea quite advanced at the time, that would have been more at home with the
development of computer science in the eighties. Black has a clear view of the
fact that vagueness is a feature that has different levels of implementation, and
that while this is a specific trait, it is generally found in all instances, not only
in language. The non-linguistic example he makes is that of an «impressionist
painting of a London street in a fog» that while not vague when considered as
a visual impression (and, more subtly hinted but not directly expressed, when
compared to the avant-garde movements already established at the time), is
vague when compared to the exact measurements that could be used to represent
the scene in question as measured by what we call today a digital scanning.
Different levels of detail — by extending Black’s example — can be considered: a
cubist painting of the scene, an impressionist painting of a scene, a photograph,
a digital scanning using multispectral reflectografy, a complete description of
the physical system generating the scene in a 3D rendering, particle by particle.
Each of these provides different levels of detail (and as such of vagueness), and
by choosing one over the other a trade off, not that different from the Fuzzy
Logic gambit, is made: in increasing precision and decreasing vagueness, some
of the relationships between concepts, language and scientific reality are lost.
Black hopes to offer a model to take this into account, without sacrificing the
possibility to represent inherent vagueness but at the same time with no renounce
to precision when deemed necessary. In his words [2, p. 429-430] (Cursive added
by the author):

While the vague symbol has a part to play in language (and elsewhere)
which cannot be equally well performed by more accurate symbols from
another level, transition to levels of higher accuracy can always in principle
be made.

2.2 What Exactly Is Vagueness?

Another strong point of contact between Zadeh and Black is the search for
a less vague definition of what vagueness is — an ironic necessity pointed out
by both authors. After having discussed vagueness as a general concept that
intercepts both hard and soft sciences, Black concentrates his attention on the
meaning of vagueness when applied to linguistics. According to him, in that
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field, vagueness is strictly related with the use of symbols to describe objects,
and how the building of this relationship is not just an one-to-one affair. From
an object’s perspective, a symbol can often be applicable or not applicable to it
with certainty, but it is possible that such application is impossible to determine.
In this instance, Black chooses to term the set of objects for which an application
to the symbol (or its negation) is not certain as «the fringe». This is a choice of
words that resonates in what was then a yet to be defined fuzziness: a fringe is
a border, but of uncertain confines'.

Black understands quite well that this «crude» definition, while helping in
imbuing vagueness with more precision, still lacks the rigor that is necessary to
measure vagueness. In the more technical part of the paper, he aims at introduc-
ing a way to replace the vague concept of fringe with a «statistical analysis of
the frequency of deviation from strict uniformity by the “users” of a vague sym-
bol». Resorting to opinion gathering and statistics to model vague concepts will
have more than an echo in later Zadeh’s proposals, where in order to determine
linguistic quantifiers a recourse is made to collecting a body of evidence about
them [19].

But before the technicalities, comes the disambiguation: in order to build a
system that can describe vagueness in a measurable manner, using the concept
of the fringe, and extending it by subsequent frequentistic analysis using human
response as a data source, it is paramount to define exactly what vagueness is,
and even more important what it is not. Two concepts that are often mistaken for
vagueness, which is an intrinsic property of the world, are singled out: generality
and ambiguity. The distinction is defined accordingly [2, p. 430]:

[Generality] is constituted by the application of a symbol to a multiplicity
of objects in the field of reference, [ambiguity] by the association of a finite
number of alternative meanings having the same phonetic form. [...] vague-
ness is a feature of the boundary of its extension, and is not constituted
by the extension itself.

While the distinction between generality and ambiguity may seem quite
forced, this allows Black to explicitly counter Russell’s argument that [8]:

Vagueness in our knowledge is, I believe, merely a particular case of a gen-
eral law of physics, namely that law that what may be called the appear-
ances of a thing at different places are less and less differentiated as we get
further away from the thing. When I speak of “appearances” I am speak-
ing of something purely physical — the sort of thing, in fact, that, if it is
visual, can be photographed. From a close-up photograph it is possible to
infer a photograph of the same object at a distance, while the contrary
inference is much more precarious. That is to say, there is a one-many

1 As an example, the definition of a fringe of a city center is often just in the eyes of a
building’s owner: the author has been personally offered a rent in what was defined
“a fringe” of the center, and the fastest train to the “real” center was in the best
cases a 45 min trip.
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relation between distant and close-up appearances. Therefore the distance
appearance, regarded as a representation of the close-up appearance, is
vague according to our definition. I think all vagueness in language and
thought is essentially analogous to this vagueness which may exist in a
photograph.

At the same time, to go back to van Heijenoort’s examination, the same
vagueness is a one-to-many kind of relationship critique is also applicable to
Frege’s stance on vagueness, and at least partially, and in retrospect, to some of
the arguments that Quine will propose forty years later.

In [16], Zadeh is much less preoccupied with the definition or disambiguation
of vagueness. As his aim is to present an extension of Set Theory that can include
vagueness in working order, he singles out a definition of vagueness, without even
mentioning the word, in relationship with sets: «More often than not, the classes
of objects encountered in the real physical world do not have precisely defined
criteria of membership. [...] Yet, the fact remains that such imprecisely defined
“classes” play an important role in human thinking, particularly in the domains
of pattern recognition, communication of information, and abstraction». This
has a sharp counterpart in Black. He discusses the definition of the concept of a
chair?, its multiple realisations and the fact that [2, p. 432]:

«One can imagine an exhibition in some unlikely museum of applied logic
of a series of “chairs” differing in quality by least noticeable amounts. At
one end of a long line, containing perhaps thousands of exhibits, might be
a Chippendale chair: at the other, a small nondescript lump of wood. Any
“normal” observer inspecting the series finds extreme difficulty in drawing
the line between chair and not-chair. Indeed the demand to perform this
operation is felt to be inappropriate in principle: chair is not the kind of
word which admits of this sharp distinction.»

The concept of membership and its ill definition for some objects is expressed
in a strikingly similar way to Zadeh: «in speaking of the vagueness of the word
chair, attention is directed only to the fact that objects can be presented whose
membership of the class of chairs is incurably “uncertain” or “doubtful”», the
difference being in the choice of terms: “imprecise” and “ambiguous” for Zadeh,
“vague” and “uncertain” for Black.

Even the graphical idea of how to represent vagueness bears resemblances
between Black and Zadeh. And that despite the differences in how the graph is
constructed: the meaning of axes; the process employed to build the curve, that
in Black is by polling while in Zadeh is given as an example — Zadeh will turn
his attention on to how to build fuzzy sets later on (Fig. 1).

2.3 Vagueness and Human Intelligence

Soon after Zadeh will develop a keen interest in the application of Fuzzy Sets to
what he chose to call “humanistic problems”; in his three-parter for Information

2 There is a strange fixation with furniture in the history of fuzziness: probably the
most egregious example, with his chair-that-transforms-into-stairs, is Bart Kosko [5].
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Science [17,18,22], and especially in [14] (preceded by a memorandum dated
August 1971, but explicitly introduced as a the notes from a presentation at a
“Man and Computer” conference in Bordeaux, June 1970) and [15] (preceded
by a research note of the same title published internally in 1974), where the
term “imprecise” is used already in the title. If vagueness is (also) a problem of
language, language can be used to at least partially solve it.

Already in [14], just less than five years after the publication of [16], the
aim of Zadeh moves from a better control system to a much more ambitious
plan: tackling human reasoning using Fuzzy Logic. Zadeh introduces the con-
cept of Fuzzy Language, and describes its relevance to human intelligence, and
in another common thread with Black, to human language. Vagueness, once
again termed as uncertainty and imprecision by Zadeh, is a central feature of

the proclaimed superiority of Fuzziness in dealing with human reasoning and
language [14, p. 1]:
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It is suggested that the theory of fuzzy languages may have the potential
of providing better models for natural languages than is possible within
the framework of the classical theory of formal languages. [...] There is
indeed a very basic difference between human and machine intelligence
which may well prove to be a very difficult obstacle in the path of design-
ing machines that can outperform humans in the realm of cognitive pro-
cesses involving concept formation, abstraction, pattern recognition, and
decision-making under uncertainty. The difference in question lies in the
ability of the human brain — an ability which present day digital computers
do not possess — to think and reason in imprecise, non-quantitative, terms.

Zadeh ascribes this to the relationship between complexity and precision,
again remarking how the more the real world is the centre of discourse, the more
vagueness comes into play: «complexity and precision bear an inverse relation
to one another in the sense that, as the complexity of a problem increases, the
possibility of analyzing it in precise terms diminishes. Thus it is a truism that
the class of problems which are susceptible of exact solution is much smaller
than that which can be solved approximately.

Many of the examples presented in the paper (autonomous parking, sum-
marising of texts) are only been satisfactorily automatised in the present times,
and this just because a vast amount of information is now at our disposal. No real
advancement is currently been made on «the ability of a human brain, weighing
only a few hundred grams, to manipulate complicated fuzzy concepts and act
on multidimensional fuzzy sensory inputs endows it with a capability to solve
rather easily a wide variety of problems. [...] the capacity of a human brain to
manipulate fuzzy concepts and non-quantitative sensory inputs may well be one
of its most important assets». The main takeaway notions is the fact that many
problems can be solved efficiently only if a level of approximation in the result is
accepted, and the idea that human reasoning thrives on this is still valid today
as it was then. More than the successes of Al this explains its failures, and high-
lights the fact that without «syntax or semantics or both are fuzzy in naturey,
as in Zadeh’s proposal of a Fuzzy Language, an important part of the discourse
is missing.

3 Carl G. Hempel: The Gradation of Vagueness

The debate on vagueness, language and logic will continue in the following years,
mainly using the Philosophy of Science journal as its outlet®. Notable in this

3 In reality the debate will go on and on, and on, slowing only during the second
world war. Notable more recent examples with a direct reference to the work of
Black and Hempel are [6,7]. While interesting in their own right, most of the more
contemporary debate from the field of language seem to ignore the advancement
made by Fuzzy Logic (and other non classical logics) in the field of dealing with
vagueness. It is not known if this is due to a sort of bubble effect, to sheer lack of
knowledge or to any other, more esoteric explanation.
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sense is an article by Carl G. Hempel [4], a direct answer to [2] in which a number
of issues in Black’s method for measuring vagueness using the judgement from a
panel. While technicalities are out of scope in the present context, the conclusion
is anyway of interest here, as it is another of the forebears of fuzziness ideas of
later [4, pp. 179-180]:

Vagueness is a gradable relation of strictly semiotic character; it involves,
besides the vague term and its subject matter, also the users of the lan-
guage in question. Vagueness is ineradicably connected with all terms,
logical as well as descriptive, of any interpreted language. [...] The occur-
rence of symbols with a high degree vagueness may suggest a modification
in the logical structure of the conceptual apparatus of science, namely the
transition from non-gradable to gradable concepts; this procedure is in fact
frequently carried out, and it contributes very essentially to diminution of
vagueness in scientific language.

As Black does, Hempel recognises that vagueness is intrinsic in language,
and that no amount of Fregean strong will or Russelian resorting to an idealised
plane can leave it out from a logic of language. It is then time to find a perma-
nent solution to the problem of including vagueness in the discourse, and this
solution is gradation. It will just take another seventeen years to find a concrete,
applicable model that will admit vagueness to the realm of hard sciences.
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Abstract. Coronary artery disease (CAD) is the primary cause of death and
chronic disability among cardiovascular conditions worldwide. Its diagnosis is
challenging and cost-effective. In this research work, Fuzzy Cognitive Maps
with Particle Swarm Optimization (FCM-PSO) were used for CAD classifica-
tion (healthy and diseased). In particular, a new DeepFCM framework, which
integrates image and clinical data of the patients is proposed. In this context, we
employed the FCM-PSO method enhanced by experts’ knowledge, along with
an efficient attention Convolutional Neural Network, to improve diagnosis. The
proposed method is evaluated using 571 participants and achieved 77.95 £ 5.58%
accuracy, 0.22 £ 0.05 loss, 76.98 £+ 8.27% sensitivity, 77.39 £ 7.13% speci-
ficity, and 73.97 = 0.09% precision, implementing a 10-fold cross-validation pro-
cess. The results extracted from the proposed model demonstrate the model’s
efficiency and outperform traditional machine learning algorithms. An essential
asset of the proposed DeepFCM framework is the explainability, as it offers nuclear
physicians’ meaningful causal relationships between clinical factors regarding the
diagnosis.

Keywords: Fuzzy Cognitive Maps - Particle Swarm Optimization -
Classification - Coronary artery disease

1 Introduction

Obstructive Coronary Artery Disease (CAD) is the most frequent type of cardiovascular
disease [1-3], and it occurs when at least one of the coronary arteries is blocked, which
leads to the reduction of blood inserted into the myocardium, causing stenosis. CAD is a
life-threatening disease. It requires early appropriate diagnosis and treatment to improve
a patient’s condition and deflect death. Consequently, it is crucial to detect the existence
of stenosis and the danger of its advancement [4-7].
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With respect to the previous studies regarding Fuzzy Cognitive Map (FCM) imple-
mentation for medical data classification, the following research studies have been ana-
lyzed. Papageorgiou et al. [8] developed an FCM model for brain tumor characterization
utilizing the Activation Hebbian Algorithm. The proposed model defines the degree
of tumor abnormality, with only qualitative data and experts’ knowledge as input. The
model achieved 90.26% and 93.22% accuracy for brain tumors of low-grade and high-
grade, accordingly. Nasiriyan-Rad et al. [9] presented a new method for grading Celiac
disease (CD) with the combination of FCM and Support Vector Machine (SVM), with
Particle Swarm Optimization (PSO) for enhancing the results. The performance of the
proposed model was compared against the fuzzy rule-based Bayesian Networks (BN),
and the FCM-SVM model performed better with accuracy of 87%, 86%, and 84% for
each of the three possible CD grades. Papageorgiou et al. [10] introduced a new approach
for FCM learning, utilizing ensemble-based learning approaches, along with non-linear
Hebbian learning (NHL) for autism classification. The proposed model outperformed
with 89.41% accuracy, in contrast to FCM models that support their training proce-
dure only on Hebbian-based learning algorithms and extracted 79.62% accuracy. The
proposed model demonstrates remarkably improved performance with the utilization of
ensemble techniques. Papageorgiou et al. [11] presented FCMs for the diagnosis of thy-
roid, combining linguistic values acquired from experts, and fuzzy rules obtained from
historical data. The dataset consists of 215 samples. The developed model achieved
89.80% accuracy. Carvajal et al. [12] aimed to develop a General Type-2 (GT2) Fuzzy
Logic (FL) model for blood pressure level classification and optimize the general type-2
membership functions parameters with the usage of Ant Lion Optimizer, which is a
metaheuristic algorithm. The dataset included 4240 patients, and the holdout method is
applied. The GT2 FL classifier outperformed with an average of 99% accuracy for all
experiments, in contrast to interval-type-2 and type-1 fuzzy classifiers. Guzman et al. in
[13] aimed to develop a type-2 fuzzy system for the classification of blood pressure level
based on knowledge of an expert. The model attained 99.408% classification rate with a
type-2 fuzzy system utilizing triangular membership functions, whereas the type-1 clas-
sifier in previous study reached 98%. Miramontes et al. [ 14] aimed to modify Bird Swarm
algorithm (BSA), with utilizing dynamic parameter adaptation based on type-1 fuzzy
systems to obtain the nocturnal blood pressure profile. The model utilized both Gaussian
and trapezoidal membership functions and they performed remarkably. The proposed
model exceeded the original approach and achieved 97% classification accuracy. Hoyos
et al. [15] proposed a clinical decision-support system based on Fuzzy Cognitive Maps
architecture to classify patients that suffer from dengue. The developed model outper-
formed compared to other machine learning approaches, and attained 89.4% accuracy,
while providing analysis of factors and explainability of decision of results.

The contribution of this research is the development of a DeepFCM model utilizing
Particle Swarm as an optimization technique for the provision of an automatic classifi-
cation tool that diagnoses CAD non-invasively and is based on both image and clinical
risk factors. The classification problem is two-class, and it is devoted to the presence
of CAD. The added value of this research is the proposal of an explainable tool that
provides interpretability, which is an important factor in sensitive areas like healthcare,
compared to machine learning approaches, which are known as “black boxes”. The
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DeepFCM provides an analysis of relationships among features, where we can detect
signs of CAD before the clinical diagnosis and recommend precautionary treatment to
avoid complications and mortality [15]. The results demonstrate that our model offers
high consistency and robustness, denoting that it can be adjusted in the nuclear medicine
domain and assist in decision-making, as far as CAD diagnosis is concerned.

2 Material and Methods

2.1 CAD Dataset

The dataset of this study was obtained from the Clinical Sector of the Department of
Nuclear Medicine of the University Hospital of Patras from 16/2/2018 to 28/02/2022.
Dataset acquisition is authorized by the ethical committee of the University Hospital of
Patras. All patients were given authorization for their results to be obtained anonymously.
The performed methods agree with the Declaration of Helsinki.

The corresponding dataset consists of 571 instances, where 248 cases are classified
as CAD-diseased and 323 as normal. The dataset consists of 79.68% male participants
and 20.32% female. The age ranges from 32 to 90 years.

The participants underwent gated-SPECT-MPI (Single Photon Computed
Tomography- Myocardial Perfusion Imaging) and Invasive Coronary Angiography
(ICA) after 60 days of the MPI procedure. The result of this process shapes a patient’s
status regarding the CAD diagnosis and the result is utilized as ground truth in our study.

The available dataset contains information about the patient’s status. The features
used as input by the FCM classification model, after binary normalization are twenty-
two: (1) Sex, (2) Age, (3) BMI, (4) known CAD, (5) previous AMI, (6) previous PCI,
(7) previous CABG, (8) previous STROKE, (9) Diabetes, (10) Smoking, (11) Hyperten-
sion, (12) Dyslipidemia, (13) Peripheral Angiopathy, (14) Chronic Kidney Disease, (15)
Family History of CAD, (16) Asymptomatic, (17) Atypical Symptoms, (18) Angina-
like, (19) Dyspnea on Exertion, (20) Incident of precordial pain, (21) ECG, and (22)
Preliminary Expert Diagnosis.

Tomographic reconstruction of raw image data was carried out on a dedicated work-
station (Xeleris 3, GE Healthcare) by the OSEM (ordered subsets-expectation maximiza-
tion) algorithm, using two iterations and ten subsets. After reconstruction, a low-pass
filter (Butterworth, with power ten and a cut-off value of 0.40 for stress and 0.45 for
rest images) was applied. Apart from 3-plane tomographic slices (in short, vertically
long, and horizontal long axes), polar maps were created automatically by the software.
The polar map is an image that summarizes the results of the 3-D tomographic slices
into a single 2-D circular presentation. Polar maps were extracted from the worksta-
tion in DICOM (Digital Imaging and Communications in Medicine) format for further
processing.

2.2 Methodology of the Proposed Framework DeepFCM

Our proposed DeepFCM model consists of the combination of CNN (Convolutional
Neural Network) and FCM-PSO methodology. CNN is responsible for handling the
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image data and supplying the FCM-PSO model with its prediction. The DeepFCM model
integrates the clinical data and the CNN'’s output and facilitates the final diagnosis (see
Fig. 1). The fundamental concepts of the FCM are discussed in Sect. 2.2.1. The design
and learning of FCM-PSO are described in Sects. 2.2.2 and 2.2.3. The CNN predictions
are analyzed in Sect. 2.2.4 and the proposed DeepFCM model is discussed in Sect. 2.2.5.

2.2.1 Fuzzy Cognitive Maps

FCMs were introduced by Kosko [16] in 1986 and they are an advanced version of
cognitive maps. The FCM architecture is similar to an Artificial Neural Network, since
it mimics the human process of making decisions [7, 8]. FCM utilizes all the accessible
knowledge and translates it into the form of concepts and interconnections between
them. Concepts represent the characteristics/states of the examined system whereas
interconnections denote the weighted-directed cause-effect relationships of the concepts,
Interconnections values are in the spectrum of [—1, 1]. Whether an interconnection has
a positive or negative or zero value depends on the kind of connection [8, 9].

The construction of an FCM involves the definition of concepts and the equation of
calculating the future values of concepts according to historical data. The fundamental
equation for computing FCM concepts is Eq. (1). To normalize the predicted values of
concepts into a specific range, a transfer function is used. Generally, the sigmoid or the
trivalent function is preferred.

N
Az(K-H) =f<A§K) + Zijwi/AJ(K)) 1)

where, A§K+1) is the value of the concept iteration (k + 1) and A;K) is the concept at the
iteration (k) and f is the sigmoid function.

The strength of FCMs in general is that they consider the last state of each concept
to calculate the future value. Regarding FCM learning, it is based on the construction
of a weight matrix, which contains all the relationships between the concepts, utiliz-
ing unsupervised techniques with Hebbian adaptation, supervised with the inclusion of
evolutionary algorithms and gradient methods. Well-known methods of FCM learning
using historical data are RCGA and PSO.

2.2.2 Design of FCM Model Using Experts’ Knowledge

The FCM-PSO model consists of 22 concepts, which are clinical features, with one
output regarding CAD presence. All concepts have a value of 0 or 1, except for the age
and BMI, where their values are normalized and rescaled into the spectrum of [0,1].
The nuclear experts of the study assigned linguistic values (represented by fuzzy sets)
on the interconnections between inputs and output concepts. Table 1 gathers the fuzzy
relationships among some of the most influential concepts to the output. In particular, the
following fuzzy sets were defined: Very Weak (VW), Weak (W), Medium (M), Strong
(S), and Very Strong (VS). For each linguistic value, we assigned a specific range of
values as it is reported in the literature [17], to perform FCM learning considering the
respective ranges. For the fuzzy sets Very Weak (VW) and Weak (W) we determined the
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ranges to be [0-0.3] and [0.15-0.5] accordingly. Also, for Medium (M), for Strong (S)
and Very Strong (VS) we assigned the values to be randomly selected from the ranges
[0.35-0.65], [0.5-0.85] and [0.7—1] accordingly. Concerning the negative linguistic val-
ues, we adjusted the provided values according to the positive ones. For the rest of the
relationships, where no experts’ knowledge is provided, they take random values within
the range [—1, 1].

Table 1. Presentation of the suggested weights between meaningful input-input concepts and
input-output concepts obtained from nuclear experts.

Relationships Suggested Relationships Suggested
Weight Weight

Sex>>Output M Dyslipidemia> >Output M

AGE>>ECG W Angiopathy > >Output M

BMI>>Output w Chronic Kidney Disease>>Output | W

Known CAD>>Output | S Family History of CAD>>Output | W

Previous VW Asymptomatic>>Output -S

AMI> >Output

Previous PCI>>Output | W Atypical symptoms>=>ECG M

Previous w Atypical Symptoms>>Output VS

CABG>>Output

Previous M Angina Like>>Output S

Stroke>>Output

Diabetes>>Output S Dyspnea on exertion> >Output M

Smoking>>Output M Incident of precordial M

pain>>QOutput
Hypertension>>Output | M Expert_Diagnosis_Binary>>Output | VS

2.2.3 Learning FCM with Particle Swarm Optimization

The initialization of weight matrices is based on the linguistic values provided by experts,
which are in fuzzy format. Concerning the fuzziness contained in the suggested values,
the learning of FCM should be adjusted accordingly, since FCM’s performance is depen-
dent on the calculation of the weight matrix. Instead of taking the suggested weights for
granted, which would result in a static FCM, we considered assigning the FCM some
freedom to learn around the suggested values and fit to the data. For this reason, we
implemented FCM learning with the PSO approach.

Particle Swarm Optimization (PSO) [18] is an optimization methodology that was
introduced in 1995 [9] and has a similar approach to evolutionary algorithms. PSO is
a population-based methodology, and applies random initialization, among the interac-
tions of population members, and uses a small number of parameters [9, 14]. In general,
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PSO is utilized for the optimization of the objective function [14]. Regarding FCM
learning, PSO is applied for the adjustment and calculation of relationships among the
concepts. The estimation of the weight matrix, which consists of the relationships among
all concepts is a crucial step and determines FCM’s performance. The ideal conditions
of the produced weight matrix are to be in a steady state, representative of the corre-
sponding dataset and able to generate minimal error. Applying PSO to FCM learning
improves FCM’s performance and intensifies FCM’s ability to classify correctly.

2.2.4 Attention-Based VGG-19

To make use of the Polar Map images, we trained an attention-based VGG19 network
that facilitates CAD diagnosis based solely on Polar Maps.

Regarding the attention-based VGG-19 network, this modified version includes
attention blocks and branch-diverging (BD) paths to improve the feature extraction
capabilities of VGG-19. The attention blocks aim to focus on important image regions
during feature extraction by multiplying the features with a weight mask that highlights
regions of interest. This is achieved by creating a small CNN that takes the features as
input and outputs a mask that is then used to weigh the original features. The BD paths,
on the other hand, aim to capture more diverse features by creating multiple branches
that diverge from the main CNN path and then recombine the features later in the net-
work. This helps the model learn more complex patterns and improves its generalization
capabilities. Finally, the model is trained to classify images into different categories
using the categorical cross-entropy loss function and the Adam optimizer.

2.2.5 DeepFCM

The conception of a DeepFCM lies in the need to handle both clinical and image data, as
illustrated in Fig. 1. Initially, we developed the attention-based VGG-19 model to pro-
cess the Polar Maps and predict the class of each instance based solely on the images.
Secondly, we pre-processed the clinical data, performing normalization. Thirdly, we
developed an FCM for handling both the clinical data and the attention-based VGG-19
prediction. Nuclear experts have provided suggested linguistic values for most of the
interconnections of input-output concepts, where we utilized them for the initialization
of weight matrices. With the application of PSO methodology, the best weight matrix
includes variations, of the provided suggested linguistic values, that correlate to our
dataset, in order to globally minimize the error function, among the predicted and actual
values of concepts. Afterward, a 10-fold cross-validation approach is applied for the
assurance of stability and generability of DeepFCM results. With the predicted Deep-
FCM values from the final weight matrix, the metrics are calculated, which define the
model’s performance.

By combining both imaging and clinical data, the proposed model DeepFCM pro-
vides a comprehensive and integrated approach to diagnosis, potentially improving
accuracy and reducing the need for invasive tests.

DeepFCM is an explainable method providing interpretability, clarification, and
transparency of results to reduce the complexity and scalability of other methods.
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In Fig. 1, we demonstrate the total process of our proposed methodological frame-
work. The developed DeepFCM model is provided on GitHub [https://github.com/Ann
aFeleki/FCM-PSO-learning].

medical experts

l Attention-based VGG19 | DeepFCM PSO approach
Image Data » 1 2= Initialize weight matrices with
B ‘ suggested linguistic
' L ® interconnection weights from the
(Rt pyer

The weight matrix that produces
minimum errors with actual

training output is the winner
particle

Age | Gender

oxy Output
predictions

Ase o | w Wy wy wy

-~ i Predicted :
10-fold cross Calculation
LHC = W o Wi w | mp 5 =
validation DeepFCM of Metrics

CNNpredictons |~ Wi | Wy Wi o i values

Fig. 1. Proposed methodological framework of our proposed model DeepFCM.

3 Results

In the following section, we demonstrate the most representative results of the conducted
experiments where 10-fold cross-validation is applied.

The proposed model is executed on a desktop with AMD Ryzen 7 5800H with Radeon
Graphics with 16 GB RAM, and NVIDIA Ge-Force RTX 3060 GPU. As regards the
development of the model and the libraries, Python v3.9.13 was employed, along with
TensorFlow v2.9.3 and Keras v2.9.0.

To conclude the proposed architecture, various experiments were performed, and a
comparison has been applied with traditional machine learning algorithms to evaluate
each model’s metrics.

For model evaluation and performance testing, the metrics that were selected are
accuracy, loss, sensitivity, specificity, and precision. Accuracy refers to the ratio of total
number of instances classified correctly by the total number of instances [19]. Loss is the
calculated error of predicted and actual values. A small loss is desirable denoting a minor
deviation [5]. Sensitivity and specificity represent the percentage of true positives and
true negatives, respectively. Precision indicates the ratio of the number of true positives
to the total number of positive predictions [5].

We followed the inspection of the equilibrium point’s exact position, where the FCM
presents a steady state by experimenting with different epochs. The epochs tested are in


https://github.com/AnnaFeleki/FCM-PSO-learning

A Fuzzy Cognitive Map Learning Approach 21

the range of 15 to 120. The results regarding accuracy and loss for the examined number
of epochs are depicted in Fig. 2. It is observed that the best value for the epochs and the
equilibrium point for the proposed FCM is 35, which is achieved in the position of the
highest accuracy and the lowest loss.

(a) Accuracy (b) Loss

84

82

0.20
80

0.18

78

Accuracies
Losses

76 2‘0 ;0 (1.0 8’0 ]60 l;b
20 40 60 80 100 120 Epochs
Epochs

Fig. 2. Performance of proposed model with different epochs, regarding (a) Accuracy (b) Loss

The values of the performance metrics of the proposed DeepFCM model are illus-
trated in Table 2. The spectrum of the initial interconnections of concepts with the output
for DeepFCM was based on the suggested linguistic values provided by experts. It has
to be mentioned that for CNN predictions, that is utilized as added input in proposed
DeepFCM model, the nuclear experts assigned a Strong relationship with the output.
For comparison reasons, the previous experiment was repeated, with randomly produced
relationships between input and output concepts, within the range [—1, 1]. Furthermore,
we experimented with FCM-PSO with the suggested linguistic values and with random
values for the initialization of the weight matrix as well. Additionally, for a further in-
depth evaluation of the proposed model, a comparative analysis has been made with
robust machine learning algorithms such as Bayes, Random Forest, Decision Tree, and
Neural Network in their default specifications. Regarding Neural network architecture,
we experimented with different network configurations, for example, the number of
nodes, number of layers, optimization algorithms, and activation functions. The optimal
parameters of the final model were 3 three hidden layers with 16-32-64 nodes in each
layer, with 16 batch size, Adam optimizer, and sigmoid activation function. The reason
we developed machine learning algorithms for our dataset is to compare the metrics of
methodologies that have demonstrated efficient performance on structure data.

Comparing the results provided in Table 2, we conclude that the proposed DeepFCM
model utilizing the weights suggested by experts outperforms the DeepFCM with random
values and also the FCM-PSO approaches that did not contain the CNN predictions from
the VGG-19 model and the machine learning methodologies as well. In this case, the
proposed DeepFCM model exceeded in terms of efficiency when utilizing historical data
and additional knowledge from experts.
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Table 2. Comparison of results of DeepFCM model with FCM-PSO and with traditional machine

learning algorithms

Models Accuracy Loss Sensitivity Specificity Precision
Clinical Data

FCM-PSO with 729 +£639 |0.27 £0.06 64.89 +11.7 |80.11 £ 8.96 | 70.05 &+ 0.07
random weights

FCM-PSO with 7498 £595 1025 £0.06 | 74.96 £7.29 | 74.6 £ 15.34 | 75.01 £ 0.04
suggested weights

Clinical Data and polar map Images

DeepFCM with 77.95 £ 5.58 | 0.22 £+ 0.05 | 76.98 &+ 8.27 | 77.39 + 7.13 | 73.97 £ 0.09
suggested weights

DeepFCM with 6591 £4.42 | 0.36 £ 0.04 | 71.01 £ 5.96 | 68.36 & 9.97 | 65.63 £ 5.65
random weights

Bayes 7545 £5.57 1024 £0.05 | 81.26 £5.29 | 69.54 £ 8.28 | 78.51 £0.07
Random Forest 78.87 £3.42 1022 £0.03 | 74.26 £5.46 | 83.37 £5.48 |76.43 £ 0.05
Decision Tree 74.13 £4.23 |0.26 £0.04 | 72.34 £ 6.14 | 75.82 £ 6.14 | 73.43 £ 0.05
Neural Network | 78.57 £ 5.49 | 0.28 £ 0.02 | 78.08 £ 6.7 |79.28 £ 6.16 | 73.5 £ 0.09

In Table 3, we gather the range of values for every relationship between input and
output concepts, that were i) suggested by nuclear experts, ii) produced from the Deep-
FCM learning approach with suggested linguistic values by the experts. The first col-
umn demonstrates the suggested weights from experts for the connection of every input
concept with the output, except for some Nan values. Nan values demonstrate the inter-
connections’ values that were randomly selected from the spectrum [—1, 1]. The second
column presents the produced weights for the interconnection between input and output
concepts from the DeepFCM learning model, whose initial values are provided from the
suggested ranges displayed in the first column.

The weights produced from the DeepFCM model utilizing experts’ values of weights
are close to the values suggested by experts and do not present large deviations, in contrast
to those interconnections randomly initialized as Nan, in which large deviations were
observed.

4 Discussion

We proposed a DeepFCM model for CAD diagnosis. It achieves high accuracy and
also exceeds traditional machine learning algorithms. Moreover, it utilizes historical
data and experts’ opinions, with CNN predictions extracted from trained VGG-19. Con-
cerning the results, DeepFCM is a transparent and explainable tool, since it produces
interconnections between every input concept and the output CAD concept, which is a
great advantage, in comparison to Random Forest, Bayes, Decision Tree, and Neural
Networks that do not provide interpretability of conclusion of results [5].
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Table 3. Presentation of extracted ranges for the relationship between input concepts and output

produced from the DeepFCM model.

Suggested interconnections Weights from experts Produced weights by
DeepFCM

Sex> >Output [0.35-0.65] [0.49 + 0.09]
Age>>Output Nan [—0.35 £ 0.39]
BMI>>Output [0.15-0.5] [0.3 £0.11]
known CAD>>Output [0.5-0.85] [0.66 £ 0.07]
previous AMI>>Output [0-0.3] [0.16 4+ 0.08]
previous PCI> >Output [0.15-0.5] [0.32 + 0.12]
previous CABG> >Output [0.15-0.5] [0.29 £+ 0.09]
previous STROKE > >Output [0.35-0.65] [0.47 £0.1]
Diabetes>>Output [0.5-0.85] [0.69 + 0.11]
Smoking>>Output [0.35-0.65] [0.49 £ 0.07]
Hypertension>>Output [0.35-0.65] [0.48 £ 0.1]
Dyslipidemia> >Output [0.35-0.65] [0.51 £0.1]
Angiopathy > >Output [0.35-0.65] [0.48 £ 0.06]
Chronic Kidney Disease>>Output [0.15-0.5] [0.38 4+ 0.14]
Family History of CAD> > Output [0.15-0,5] [0.34 £ 0.06]
Asymptomatic>>Output [—0.85--0.5] [—0.66 £ 0.07]
Atypical symptoms>>Output [0.7-1] [0.83 + 0.08]
Angina like>>Output [0.5-0.85] [0.67 &+ 0.06]
Dyspnea on exertion>>Output [0.5-0.85] [0.6 £ 0.08]
Incident of precordial pain>>Output [0.35-0.65] [0.56 £ 0.8]
ECG>>Output Nan [—0.16 £ 0.57]
Expert_Diagnosis_Binary>>Output [0.7-1] [0.89 £ 0.07]
CNN predictions> >Output [0.5-0.85] [0.7 £ 0.15]

We experimented with different learning methods to determine the optimal for our
study that achieves generability as well. We developed DeepFCM with random values
and FCM-PSO with suggested values and with random values for the initial values of
interconnections. DeepFCM with suggested values from experts performed better results
among all the experiments. It is demonstrated that the doctor-in-the-loop approach yields
better results and makes the system more informative and explainable. In addition, the
integration of a CNN for offering an extra input to our system benefits the model, because
it leverages the feature extraction capabilities of the CNNs in CAD screening.
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The developed code can be implemented to produce results effortlessly providing
nuclear experts with an autonomous decision-making tool for patients’ health, regarding
CAD diagnosis.

5 Conclusions

In this research study, the DeepFCM model achieved remarkable results, providing an
integral tool that can assist decisions in nuclear medicine. In future work, the authors
intend to implement state equations for FCM learning and obtain nuclear experts’ opin-
ions that entail certain conditions regarding patient characteristics. Furthermore, we
plan to extend our work by improving FCM’s performance with random values for ini-
tial interconnections. Last but not least, we intend to insert into our proposed model
DeepFCM image data and perform image classification with the application of FCMs,
along with clinical data and CNN predictions and develop a robust hybrid method.
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Abstract. Uninorms on bounded lattices have recently become a signif-
icant area of study. In the present study, we describe two new approaches
for creating uninorms on bounded lattices, where some necessary and suf-
ficient conditions are required. These structures use a t-conorm and an
interior operator or a t-norm and a closure operator on a bounded lattice.
The newly introduced classes of uninorms and the differences between
them and already existing classes of uninorms are also illustrated on
several examples.

Keywords: Bounded lattice - Construction method * Closure
operator * Interior operator - Uninorm

1 Introduction

Triangular norms (t-norms, for short) and triangular conorms (t-conorms, for
short) were first developed in the context of probabilistic metric spaces by
Menger [30] in 1942 and Schweizer and Sklar [35] in 1961, respectively. In fuzzy
set theory and fuzzy logic, t-norms and t-conorms operate effectively as natural
extensions of logical connectives, i.e., conjunction and disjunction, respectively.
As a result, these operators have been widely applied in many fields of research,
including fuzzy set theory, fuzzy logic, fuzzy systems modeling, decision-making,
probabilistic metric spaces, approximate reasoning, and information aggregation
[3,20,25,28].

Yager and Rybalov [37] presented uninorms on the unit interval [0,1] as
aggregation functions concurrently generalizing t-norms and t-conorms in 1996,
and Fodor et al. [23] investigated them thoroughly in 1997. Since then, they have
been extensively involved in a wide range of research fields, including neural net-
works, fuzzy system modeling, decision-making, fuzzy mathematical morphology,
fuzzy logic, and others [4,31,36,38]. Uninorms enable their neutral element to
be anywhere in the unit interval rather than at point 1 (as in t-norms) or point
0 (as in t-conorms). There are various studies about uninorms (e.g., [15-17,19]).

Because bounded lattices are more general structures than the unit interval,
generalizing binary aggregation operators from the unit interval to bounded
lattices becomes an attractive issue. Karacal and Mesiar [27] in 2015 modified
the notion of uninorms from the real unit interval to bounded lattices. They also
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discovered the smallest and greatest uninorms on bounded lattices. Recently,
these operators on bounded lattices have received considerable interest, and
numerous building approaches have been provided in the literature. Bodjanova
and Kalina [6] introduced the structure of uninorms based on both t-norms
and t-conorms on bounded lattices. Subsequently, Cayli et al. [12] provided two
construction methods for internal and locally internal uninorms on bounded
lattices using only one of the t-norm and the t-conorm. Furthermore, Cayl [9]
investigated the classes of idempotent uninorms on bounded lattices. Dan et al.
[13], and Dan and Hu [14] presented further characterizations of uninorms on
bounded lattices. Other corresponding constructions of uninorms on bounded
lattices can also be found in (e.g., [1,2,7,8,10,24,26,33,39)]).

In a general topology, letting the set K # () and g (K) be the set of all
subsets of K, if a map int : p (K) — p (K) (resp. ¢l : p (K) — o (K)) is idempo-
tent, isotone and contractive (resp. expansive), then it is said to be an interior
(resp. closure) operator on g (K). Both these maps can be applied for generating
topologies on K [21]. In particular, from the set of all interior (closure) operators
on p (K) to one of all topologies on K, a one-to-one correspondence exists. That
is to say that the interior (closure) operator on g (K) can be generated by any
topology on K. Notably, interior (closure) operators on a lattice (p (K),C) can
be described when the set intersection and union are meet and join, respectively.
Thence, the interior (resp. closure) operator on o (K) to a lattice L was gen-
eralized by Everett [22], where the condition int (K) = K (resp. cl (0) = 0) is
removed.

Ouyang and Zhang [32] enhanced the generation methods for uninorms
employing closure and interior operators on bounded lattices. They include those
presented in [27] as a particular instance inside their constructions. In this situ-
ation, one may wonder if the interior and closure operators provide new classes
of uninorms on bounded lattices. This thought inspires us to characterize two
new classes of uninorms on bounded lattices in the present work using closure
and interior operators. Characterization investigations are crucial working areas
because they provide the uninorms on bounded lattices with the appropriate
structures. To be more precise, we first introduce a new technique to get uni-
norms on a bounded lattice L with the neutral element e € L\{0,1.}, via a
t-norm on [0r,€e]? and a closure operator defined on L. Then, by virtue of a
t-conorm on e, 1 L]2 and an interior operator defined on L, we describe a dual
construction of uninorms on L. In addition, we explore the relationship between
our constructions and those introduced in [8,11,39]. We also show that the con-
struction means in the present paper differ from the ones in [8,11,32,39].

The remainder of this paper is structured as follows: In Sect. 2, we present
some fundamental definitions and characteristics of uninorms on bounded lat-
tices. In Sect. 3, we enhance two generation ways for uninorms on a bounded
lattice L with the neutral element e € L\{0r, 11}, where some necessary and
sufficient conditions are required. These ways use an interior operator on L and
a t-conorm on [e,1.]? or a closure operator on L and a t-norm on [0, ¢]?
We also provide some illustrative examples to highlight the differences between
our approaches and those already in use. Some of our discussion findings are
mentioned in the concluding section.
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2 Preliminaries

In this section, we recall some basic concepts and results related to bounded
lattices (for more information, see, e.g., [5]) and uninorms on them.

A poset (L, <) is a nonempty set L equipped with an order relation < (i.e.,
a reflexive, antisymmetric and transitive binary relation). For a,b € L, the nota-
tion a < b means that a < b and a # b. The notation a || b implies that a and b
are incomparable, i.e., neither a < b nor b < a. I, denotes the set of all elements
incomparable with a, i.e., I, = {u € L : u|la}. An element a of a subset P of L
is called a smallest (resp. greatest) element of P if z > a (resp. z < a) for all
x € P. L is called bounded if it has a greatest (also known as top) element and
a smallest (also known as bottom) element.

A lattice (L, <) is a poset such that any two elements a and b have a greatest
lower bound (called meet or infimum), denoted by a A b, as well as a smallest
upper bound (called join or supremum), denoted by a V b. In this paper, unless
otherwise stated, L denotes a bounded lattice (L, <, A, V) with a top element 1y,
and a bottom element Oy,.

For a,b € L with a < b, the subinterval [a,b] of L is defined such that

[a,b] ={u € L:a<u<b}.

The subintervals [a,b[, ]a,b], and ]a,b[ of L can be defined similarly. ([a,b], <
,\, V) is a bounded lattice with the top element b and the bottom element a.

Definition 1 ([12,27]). A function U : L x L — L is said to be a uninorm if,
for any a,b,c € L, the following conditions are fulfilled:

(i) U(b,a) =U(a,b) (commutativity);
(i1) If b < a, then U(b,c) < U(a,c) (increasingness);
(ii) U(b,U(a,c)) =U(U(b,a),c) (associativity);
(iv) There is an element e € L, called a neutral element, such that U(b,e) = b.

In particular, a uninorm U is a t-norm 7T (resp. t-conorm S) if e = 1, (resp.
e =0p) (for more information about t-norms and t-conorms, see, e.g., [29,34]).

Example 1. (i) The largest t-norm is 7/ on [a,b]? defined such that T"(z,y) =
x Ay for all z,y € [a,b], while the smallest one T" on [a, b]? takes the value of
x Ay if b € {z,y} and a otherwise. Thus, we obtain that 7" < T < T” for any
t-norm T on [a, b]%.

(ii) The smallest t-conorm is SV on [a, b]? defined such that SV(x,y) =z Vy
for all z,y € [a, b], while the largest one SV on [a, b]? takes the value of z \V y if
a € {z,y} and b otherwise. Thus, we obtain that SV < S < S" for any t-conorm
S on [a,b)%.

Definition 2 ([18,22]). A function ¢l : L — L is said to be a closure operator
if, for any a,b € L, the following conditions are fulfilled:

(i) Expansion: b < cl(b).
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(ii) Preservation of join: cl(a Vv b) = cl(a) V cl(b).
(iii) Idempotence: ¢l (cl(b)) = cl(b).

By (i), the case (iii) equals to ¢l (cl(b)) < cl(b). Additionally, (ii) implies (ii)’ :
cl(a) < c(b) if a < b. Birkhoff [5] defines a closure operator by (i), (ii)’ and (iii).

Definition 3 ([18,22]). A function int : L — L is said to be an interior operator
if, for any a,b € L, the following conditions are fulfilled:

(i) Contraction: int(b) < b.
(ii) Preservation of meet: int(a A b) = int(a) A int(d).
(#i) Idempotence: int (int(b)) = int(b).

By (i), the case (iii) equals to int(b) < int (int(b)). Additionally, (ii) implies
(ii)’ : int(a) < int(b) if a < b. Birkhoff [5] defines an interior operator by (i), (ii)’
and (iii).

3 Construction Approaches for Uninorms

In this section, we introduce in Theorem 1 a novel method for getting the family
of uninorms Uy .y on a bounded lattice L with a neutral element e € L\{0z,11}.
The uninorm Uy ) is derived from a t-norm 7" on [0, e]? and a closure operator
cl on L. In addition, we propose in Theorem 2 a different method to obtain the
family of uninorms U(g nt) on L with a neutral element e € L\{0Oz,1.}. This
construction is based on the existence of a t-conorm S on [e, 11,]? and an interior
operator int on L.

Theorem 1. Lete € L\{Op,1.}, T : [0z, ¢]*> — [0, €] be a t-norm and cl : L —
L be a closure operator. The function Uiy : L X L — L, given by the formula
(1), is a uninorm on L with a neutral element e iff cl (x) Vel (y) € L. U{1L} and
x>z forallx,y€l., z€[0p,e

T (a,b) if (a,b) €[0r,€)?,

L@va®is (o et Jeo12)

c(a)vel(b)if (a,b) €le,1p] x I, Ul xle, 1] U1, X I,
Vi (00 =1 if (a.b) € (1 Ufe,1u]) % {e} W

b if (a,b) €{e} x (I.Ule,11]),

alb otherwise.

Remark 1. The uninorm Uiy : L X L — L in Theorem 1 can be also defined
by

T<a7b) Zf <a7b) [OLa ]25
11 if (a,b) €le,11]?,
if (a,b) [OL, [XIe U [OL,C[X [6,1L]
U(leUle,1]) x {e},
b if (a,b) € I, x [0, e[U[e, 1] x [0r, €]
U{e} x (I.Ule,11]),
c(a)Vel(b) if (a,b) € I.x]e,1)Ule, 1] x I, U I, X I,.

Utr,ay (a,b) = “
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b| \e a @) velb) | cla)vel(b) b| |e int(a) Aint(b) a int(a) Aint (b)
1 1y
a 1 cl(a) v el(b) b S(a,b) b
e e
T(a,b) b b 0, a int(a) Aint (b)
0r, e L dlle )3 e L dlle
Fig. 1. Uninorm U(p ) on L Fig. 2. Uninorm U(g ins) on L

Remark 2. The structure of the uninorm Uy o) : L x L — L is illustrated in
Fig. 1.

If we take in Theorem 1 the t-norm T : [0r,¢]*> — [0z, ¢] stated by T = T",
we define the corresponding uninorm as the following structure:

Corollary 1. Let e € L\{0p,1.} and ¢l : L — L be a closure operator. The
Junction Uy : L x L — L, given by the formula (2), is a uninorm on L with
a neutral element e iff cl () V cl(y) € I, U{1r} and = > z for all x,y € I,
z € [0, €.

1L Zf <a7b) E]e,lLP,

c(a)Vel()if (a,b)€le,1p] x I, Ul x]e, 1] U I, x I,
Uy (a,b) = 1 a if (a,b) € (IcUJe,11]) x {e}, (2)

b if (a,b) €{e} x (I.Ule,11]),

alNb otherwise.

If we allow in Theorem 1 the element e € L\{0,1.} to be an atom, we
define the corresponding uninorm as the following structure:

Corollary 2. Let e € L\{Or,1.} be an atom and cl : L — L be a closure
operator. The function U oy @ L X L — L, given by the formula (3), is a
uninorm on L with a neutral element e iff cl(x) Vel (y) € I. U {1} for all
z,y € I..

1L ’Lf (a,b) 6]6, 1L]2>

c(a)Vel()if (a,b)€le,1n] x I Ul x]e, 1] U I, x I,
Ute,ay (a,0) = ¢ a if (a,b) € (IcUle,11]) x {e}, (3)

b if (a,b) €{e} x (I Ule,1L]),

Or otherwise.

Remark 3. Let e € L\{0p,1.}, S : [e,1.]° — [e,11] be a t-conorm and ¢l :
L — L be a closure operator. We introduce in Theorem 1 a new construction
approach for uninorms on bounded lattices. To be more precise, (i) If (a,b) €
le,1112Ule, 1] x I UI, x]e, 11JUIZ2, the method in [8, Theorem 8] puts for U(a, b)



Discussing Uninorms on Bounded Lattices 31

the value of S (a V e,b V e) . On the other hand, in our construction Up oy (a,b) =
11, for (a,b) €le,11]* and Uiz o)(a,b) = cl(a) V cl (b) for (a,b) €]e,11] x I, U
I.x]e, 1] U I2. However, both constructions coincide in the remaining domains;
(ii) If (a,b) €]e, 11]?, the method in [11, Theorem 3.1] puts for U(a, b) the value
of cl (a) Vel (b) while our construction puts for Ui ;) (a, b) the value 1. However,
both constructions coincide in the remaining domains;
(iii) If (a,b) €]e,1.]? (vesp. (a,b) €le,11] x I, U I.X]e,11]), the method in [11,
Theorem 3.4] puts for U(a,b) the value of S (a,b) (resp. a V b) while our con-
struction puts for Uip ) (a,b) the value 17 (resp. cl(a) V cl (b)). However, both
constructions coincide in the remaining domains;

(iv) If (a,b) €]e, 1] x I.UI,x]e, 1], the method in [39, Proposition 3.5] puts
for U(a, b) the value 17, while our construction puts for Uiz ¢ (a, b) the value of
cl (a) V ¢l (b) . However, both constructions coincide in the remaining domains.

Remark 4. Let e € L\{0r,11}. Then we have the following statements:

(1) If the closure operator ¢l : L — L is defined by cl(x) = 1, for all z € L,
(1-i) the uninorm Uz ) in Theorem 1 coincides with the uninorms in [11,
Theorem 3.1] and [39, Proposition 3.5];

(1-ii) the uninorm Uy, ¢y in Theorem 1 coincides with the uninorm in [8, The-
orem 8|, where e is a coatom;

(1-iii) the uninorm Uy oy in Theorem 1 coincides with the uninorms in [8,
Theorem 8] and [39, Proposition 3.6], where the t-conorm S : [e,1.]? —
[e,11] is S = SW;

(1-iv) the uninorm Ui in Theorem 1 coincides with the uninorm in [11,
Theorem 3.4], where y || z for all y € [e,1.], z € I, and the t-conorm
S:le,11]? — [e,11] is S = SW.

(2) If the closure operator ¢l : L — L is defined by cl(x) = x for all x € L, the
uninorm U, oy in Theorem 1 coincides with the uninorm in [11, Theorem
3.4], where the t-conorm S : [e,11]? — [e,11] is S = SW.

(3) If e is a coatom, the uninorm Uy ;) in Theorem 1 coincides with the uni-
norms in [11, Theorems 3.1 and 3.4] and [39, Propositions 3.5 and 3.6].

We should point out that in [39, Proposition 3.6] it is enough to select SV as
a t-conorm on [e, 17]? and the construction in Theorem 1 is obtained. However,
the construction in Theorem 1 can be used also in the case when the condition
fllgforall fel, and g € [e, 1] is not satisfied.

Notice that the uninorm constructed by the method in Theorem 1 does not
have to coincide with those introduced in [8, Theorem 8], [11, Theorems 3.1 and
3.4], and [39, Propositions 3.5 and 3.6]. In the following examples, we demon-
strate this observation.

Example 2. Consider the lattice L; characterized by Hasse diagram in Fig. 3.
Identify the closure operator ¢l : Ly — Ly by ¢l(0r,) = 0p,, cl(e) =e, cl(n) =
c(m) =m, cl(p) = cl(q) = q and ¢l(1g,) = 1,. By virtue of the structure
determined in Theorem 1, the uninorm U(1T7 oy L1 x Ly — Ly is presented in
Table 1.
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Table 1. Uninorm U(IT,cl) on L Table 2. Uninorm U' on L,
U(IT,CZ) Or,je m m p |qg |1p, U0z, e n m |p |q 1z,
0z, 0z, |0z, |0z, |0z, |0, |0g, |OL, 0r,|0r, |0, |0r, |0, |0r, |0, 0L,
e 0L, e n |m |p q 11, e O, |e n |m |p q 1z,
n O, |n |m |m |1p, |1g, |1, n |0y |n |lpy |1z, |1r, |1r, |11,
m Or,|m 'm |m |1p, |1, |11, m |0py |m |1z, |1z, |1z, |11, |11,
p Or,|p |1ry|1pn, |11, (11, |12, p |0y |p |1, |1z, p g |lp,
q 0L, |q 1r, |1p, |11, (11, |12, q 0z, |q 1p, |14 |9 q 1n,
1z, Or, |10, |1z, |10, (10, |10, (12, 1, |0p, |1z, |1, |1p, |10, |11, 1L,

Table 3. Uninorm U? on L, Table 4. Uninorm U? on L,

U? O, e n |m |p q 1r, U3 Or, |e n |m |p q 1r,

0z, |0z, 0z,|0z, |0z, |0, |0z, |Or, 0r,|0, |0z, |0z, |0z, |0, |0z, |Op,

e Op, e n |m |p q 1r, e Op, |e n |m |p q 1r,

n Or, |n m |m |1, |1p, |11, n Or, |n m |m |1, |1p, |11,

m Op; ' m |m |m |1p, |1p, |1, m O, |/m |m |m |1p, |1p, |1,

p |0, |p |1z, |1z, P |g |1, p |0, p |1z, |1z,0q¢ |g |1,

q Op,q |1p,|1p,lq¢ |g |1, q Op,|lqg |1p,|1p,lq¢ |g¢ |1,

1,100, |10, |1, |10, | 1p, |12, |11, 1,100, |1z, |1, |10, (11, |12, |11,

If we utilize the construction means in [8, Theorem 8] and [39, Proposition
3.6], respectively, the uninorms U!, U? : Ly x L1 — L; are presented in Tables 2
and 3, respectively, where the t-conorm S : [e,1,]*> — [e,11,] is S = SY. By
virtue of the method in [11, Theorem 3.1], the uninorm U® : Ly x L; — Ly is
presented in Table 4. Then we have the following facts:

(i) the uninorm U(1T7cl) satisfies that U(lT,Cl) (n,m) = m and U(lT’Cl) (p,q) = 11,3
(ii) the uninorm U! satisfies that Ul (n,m) = 1z,;
(iii) the uninorms U? and U3 satisfy that U? (p,q) = U3 (p,q) = q.

Hence, U(IT o) differs from the uninorms U', U? and U3 on L.

Example 3. Consider the lattice Lo characterized by Hasse diagram in Fig. 4.
Identify the closure operator ¢l : Ly — Lo by ¢l(0g,) = 0p,, cl(e) = cl(m) =
cd(n) =c(n) =s,c(k) =kand c(l,) = 1r,. By virtue of the structure
determined in Theorem 1, the uninorm U(QT’CI) : Ly x Ly — Lo is presented in
Table 5.

If we utilize the construction means in [11, Theorem 3.4] and [39, Proposition
3.5], respectively, the uninorms U*, U® : Ly x Ly — Ly are presented in Tables 6
and 7, respectively, where the t-conorm S : [e,11,]? — [e, 1,] is S = SY. Then
we get the following facts:
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Table 5. Uninorm U(QT,cl) on Ly Table 6. Uninorm U* on Lo
U(QT,cl) Or,le |k |m |n |s |1, Ut [0r,le [k m |n |s |1,
Or, 0, |0ry |0ry [0ny 0Ly |OL, |OL, 0r,|0r5 |00y 0Ly |00y |0Ly |01, 0L,
e 0L, e k m |n s 1z, e O, |e k m |n s 11,
k O, |k |k |s |s |s |1g, k [0r, k |k |m s |lp,

Op, m |8 |1py 1p, 10, 1z, m_|Op,m |m |m s |1L
n O, n s 1o, |10y 10, | 1L, n |0, jn n |n |n s 1z,
s Op, s s 1o, 10y 10, 1L, s Op, |8 s s s s 1r,
1r, Oy [1ry |10y |10y (10, (10, (1L, 1ry |0ny |1y 10y |10o |10y |1, |11,

(i) the uninorm U(QT’CI) satisfies that U(QT,CZ) (k,n) = s;
(ii) the uninorms U* and U® satisfy that U* (k,n) = n and U® (k,n) = 1p,.

Hence, U(2T,cl) differs from the uninorms U* and U® on L.

17,

1p, s

N |

q m n

| |

p m

| AN

e n e k
e 7
0, 0z,

Fig. 3. The lattice L Fig. 4. The lattice Lo

Remark 5. The formula (1) in Theorem 1 clearly shows that the uninorm Uz, )
coincides with the t-conorm S" on [e, 1 L]2. If we change the construction method
in Theorem 1 in such a way that it will differ only on [e, 1 L]2 where we will take
some t-conorm S then this t-conorm cannot be arbitrary. In order to obtain the
associativity and increasingness of U(r ), this t-conorm satisfies the following
conditions:

(1) S(a,cl(bVve))=c(S(a,b)Ve)fora,bele1] and ¢ € I;
(ii) S(a,cl(bVe))=S8(cl(aVb),c)forbel, and a,c € [e,1];
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Table 7. Uninorm U on L Table 8. T-conorm S’ on [e, 11,]?
US |[Op,le |k |m |n |s |1, S le Im |n |s |1,
Oz, |0, |01y |01, |01, |01, (0L, (0L, e e |m |n |s |1f,

e |0p,e |k |m |n |s |1, m |m |n |n |1p,|1L,
k |0,k |k |10, |11, |10, |11, n |n |n |n |1p,|1r,
m [0y |m |1, |11, |10, |10, (1L, s s |lp, 1lp,|1p, (1L,
n |Opym [1py | 1oy |10y 1o, |1, 1rg 10y 10y |10, |10, |11,
s Op, |8 I G A A b
1L2 0L2 1L2 1L2 1L2 1L2 1L2 1L2

(iii) S (b,c) > cl(aVe) fora € I, and b, c € [e, 1] such that b > a.

To exemplify this assertion, for the lattice Ly in Fig. 4, the closure operator ¢l :
Ly — Ly is defined as in Example 3. Presume that the uninorm U ) | [e, 11,]7

is the t-conorm S’ : [e,11,]* — [e, 11,] represented in Table8 .
If we use the building technique in Theorem 1, then we get that

Ur,e) (U(T,cz) (n,m), k) = U, (S' (n,m) ,k) =Ur,ey (N, k) =cl(n) Vl(k) =s,
and

Uerey (n,Ucr,ery (m, k) = Ugrary (n, el (m) Vel (k) = Uy (n,5) = 8" (n,5) = 11,.
It contradicts the associativity property of Uiz .

We suggest in Theorem 2 a dual construction method for uninorms on
bounded lattices. Namely, based on a t-conorm S on [e,17]? and an interior
operator int on L, we define the family of uninorm U(g ;) on L with a neutral
element e € L\{0z,1.}.

Theorem 2. Let e € L\{0z,1.}, S : [e,11)> — [e, 1] be a t-conorm and int :
L — L be an interior operator. The function U(g iny) : L X L — L, given by the
formula (4), is a uninorm on L with a neutral element e iff int(x) Aint(y) €
I.U{0p} and x < z for all x,y € I, z €le, 11].

S (a,b) if (a,b) € [e,11]?,

0r, if (a,b) €[0r,€e[?,

int (a) Nint (b) if (a,b) € I. x [0p,e[U[0r, e[xI. Ul x I,
Uts,int) (a,b) = § if (a,b) € (I U [OLL,e]) ><L{e}, “)

b Zf (a, b) € {e} X (Ie U [OL’e]) ’

aVb otherwise.
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Remark 6. The uninorm U(g,ns) : L X L — L in Theorem 2 can be also defined
by

S (a,b) if (a,b) € le,11]%,

0, ] (a,b) S [OL, [ R

a if (a,b) €le,11] x I.Ule,11] x [0L, €]
U(S,int) ((I, b) = U (I U [OL,e {6}

1) x
b if (a,b) € I.x]e, lL}U[OL, e] xle, 1]
U{e} (I U [0z, €]),
int (a) Nint (b) if (a,b) € I, x [0, e[U [OL, [xI.UI. x I..

Remark 7. The structure of the uninorm Ug ns) : L X L — L is illustrated in
Fig. 2.

If we take in Theorem 2 the t-conorm S : [e,1.]° — [e, 11] given by S = SV,
we define the corresponding uninorm as the following structure:

Corollary 3. Let e € L\{Or,1.} and int : L — L be an interior operator. The
Junction Ugingy : L x L — L, given by the formula (5), is a uninorm on L with
a neutral element e iff int(x) ANint(y) € I, U{0L} and x < z for all z,y € I,
z €le,11].

0L if (a,b) €[0r,ef?,

int (a) Nint (b) if (a,b) € I, x [0r,e[U[0L, e[x T, U I, x I,
U(znt) (Cl, b) =3 a if (aﬂb) (I U [OLv ]) X {6} ’ (5)

b if (a,b)€e{e} x (I.U[0g,€]),

aVb otherwise.

If we allow in Theorem 2 the element e € L\{0z,1.} to be a coatom, we
define the corresponding uninorm as the following structure:

Corollary 4. Let e € L\{0L, 1.} be a coatom and int : L — L be an interior
operator. The function U iny) : L x L — L, given by the formula (6), is a
uninorm on L with a neutral element e iff int(z) A int(y) € I, U{0p} for all
z,y € L.

Or, if (a,b) [OLa [ )

int (a) Nint (b) if (a,b) € I, x [0p,e[U[0r,, e[xT. U I, X I,
Ule,int) (a,b) = ¢ a if (a,b) € (IeU[0,€]) x {e}, (6)

b if (a,b) € {e} x (I.U0z,¢€]),

1, otherwise.

Similarly to Examples 2 and 3, we can show that the uninorm obtained via
the approach in Theorem 2 does not have to coincide with the ones introduced
by [8, Theorem 11], [11, Theorems 3.10 and 3.12], and [39, Corollaries 4.2 and
4.4].

Remark 8. Let e € L\{0r, 1.}, ¢l : L — L be a closure operator, and int : L —
L be an interior operator. Uninorms obtained by the methods in Theorems 1
and 2 do not have to coincide with those introduced by [32, Theorems 4.1 and
5.1]. Namely, for any z € I,
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(i) the uninorm Uy, in Theorem 1 satisfies that Up,y (Or,1z) = 0r and
Uty (1n,2) = 115

(ii) the uninorm Ug,;ns) in Theorem 2 satisfies that Ug ing (0z,12) = 11 and
Us,int) (O, 2) = 0r;

(iii) the uninorm U in [32, Theorem 4.1] satisfies that U (0z,1;) = 1 and

U(Op,x) =x;
(iv) the uninorm U in [32, Theorem 5.1] satisfies that U (0p,1;) = 0z and
U(lp,z) =x.

Remark 9. The formula (4) in Theorem 2 clearly shows that the uninorm Ug ;)
coincides with the t-norm 7% on [0, ¢]*. If we change the construction method
in Theorem 2 in such a way that it will differ only on [0r,€]* where we will
take some t-norm 7T then this t-norm cannot be arbitrary. In order to obtain the
associativity and increasingness of Ug jns), this t-norm satisfies the following
conditions:

(i) T (a,int (bAc)) =int (T (a,b) Ac) for a,b € [0,€] and ¢ € I;
(ii) T (a,int (bAc)) =T (int(a Ab),c) for b € I, and a,c € [0,¢];
(i) T (a,c) <int(bAc) for b € I, and a,c € [0, €] such that a <b.

To exemplify this assertion, take into consideration the lattice L3 =
{0L,,p,¢,€,11,} being 0, < p < e < 1p,, p < ¢ < 1, ¢|le. Identify the
interior operator int : Ly — Lg by int(0r,) = int(p) = int(q) = Or,, int(e) =€
and int(1y,) = 1z,. Presume that the uninorm Ug ins) | [OLs, 6]2 is the t-norm
T : [0r,,€]* — [0r,,€]. If we apply the generation tool in Theorem 2, we get
that

Us,int) (0,0) = T" (p,p) = p > Or, = int(p) Nint(q) = Us,ine) (p5q) ,

for p < g. It contradicts the increasingness property of Ug,ins)-

4 Conclusion

This paper characterized two novel classes of uninorms on bounded lattices via
the closure and interior operators. We presented two techniques for getting uni-
norms on a bounded lattice L with a neutral element e € L\{0z,1.}, where
some necessary and sufficient conditions are required. It should be pointed out
. . 2
that our techniques exploit a t-norm on [0, e]” and a closure operator on L or a
t-conorm on [e, 1 L]2 and an interior operator on L. Furthermore, we added some
corresponding examples in order to show that our tools do not have to coincide

with the existing ones in [8,11,32,39].

References

1. Asici, E., Mesiar, R.: On the construction of uninorms on bounded lattices. Fuzzy
Sets Syst. 408, 65-85 (2021)



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.
22.

23.

24.

25.

Discussing Uninorms on Bounded Lattices 37

Agicl, E., Mesiar, R.: On generating uninorms on some special classes of bounded
lattices. Fuzzy Sets Syst. 439, 102-125 (2022)

Beliakov, G., Pradera, A., Calvo, T.: Aggregation Functions: A Guide for Practi-
tioners. Springer, Berlin (2007). https://doi.org/10.1007/978-3-540-73721-6
Benitez, J.M., Castro, J.L., Requena, I.: Are artificial neural networks black boxes?
IEEE Trans. Neural Netw. 8, 1156-1163 (1997)

Birkhoff, G.: Lattice Theory. American Mathematical Society Colloquium Publish-
ers, Providence (1967)

Bodjanova, S., Kalina, M.: Uninorms on bounded lattices — recent development.
In: Kacprzyk, J., Szmidt, E., Zadrozny, S., Atanassov, K.T., Krawczak, M. (eds.)
IWIFSGN/EUSFLAT -2017. AISC, vol. 641, pp. 224-234. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-66830-7_21

Bodjanova, S., Kalina, M.: Uninorms on bounded lattices with given underlying
operations. In: Hala3, R., et al. (eds.) AGOP 2019, AISC, vol. 981, pp. 183-194.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-19494-9_17

Cayli, G.D.: Alternative approaches for generating uninorms on bounded lattices.
Inf. Sci. 488, 111-139 (2019)

Cayli, G.D.: New methods to construct uninorms on bounded lattices. Int. J.
Approx. Reason. 115, 254-264 (2019)

Cayli, G.D.: Uninorms on bounded lattices with the underlying t-norms and t-
conorms. Fuzzy Sets Syst. 395, 107-129 (2020)

Cayli, G.D.: New construction approaches of uninorms on bounded lattices. Int. J.
Gen Syst 50, 139-158 (2021)

Cayli, G.D., Karagal, F., Mesiar, R.: On internal and locally internal uninorms on
bounded lattices. Int. J. Gen Syst 48, 235-259 (2019)

Dan, Y., Hu, B.Q., Qiao, J.: New constructions of uninorms on bounded lattices.
Int. J. Approx. Reason. 110, 185-209 (2019)

Dan, Y., Hu, B.Q.: A new structure for uninorms on bounded lattices. Fuzzy Sets
Syst. 386, 77-94 (2020)

De Baets, B.: Idempotent uninorms. Eur. J. Oper. Res. 118, 631-642 (1999)

De Baets, B., Fodor, J., Ruiz-Aguilera, D., Torrens, J.: Idempotent uninorms on
finite ordinal scales. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 17, 1-14
(2009)

Drewniak, J., Drygas, P.: On a class of uninorms. Int. J. Uncertain. Fuzziness
Knowl. Based Syst. 10, 5-10 (2002)

Drossos, C.A., Navara, M.: Generalized t-conorms and closure operators. In: Pro-
ceedings of the EUFIT 1996, Aachen, pp. 22-26 (1996)

Drygas, P., Rak, E.: Distributivity equation in the class of 2-uninorms. Fuzzy Sets
Syst. 291, 82-97 (2016)

Dubois, D., Prade, H.: Fundamentals of Fuzzy Sets. Kluwer Academic Publisher,
Boston (2000)

Engelking, R.: General Topology. Heldermann Verlag, Berlin (1989)

Everett, C.J.: Closure operators, Galois theory in lattices. Trans. Am. Math. Soc.
55, 514-525 (1944)

Fodor, J., Yager, R.R., Rybalov, A.: Structure of uninorms. Int. J. Uncertain.
Fuzziness Knowl. Based Syst. 5, 411-427 (1997)

He, P., Wang, X.P.: Constructing uninorms on bounded lattices by using additive
generators. Int. J. Approx. Reason. 136, 1-13 (2021)

Homenda, W., Jastrzebska, A., Pedrycz, W.: Multicriteria decision making inspired
by human cognitive processes. Appl. Math. Comput. 290, 392-411 (2016)


https://doi.org/10.1007/978-3-540-73721-6
https://doi.org/10.1007/978-3-319-66830-7_21
https://doi.org/10.1007/978-3-030-19494-9_17

38

26.

27.

28.

29.

30.
31.

32.

33.

34.

35.

36.

37.

38.

39.

G. D. Gayh

Hua, X.J., Ji, W.: Uninorms on bounded lattices constructed by t-norms and t-
subconorms. Fuzzy Sets Syst. 427, 109-131 (2022)

Karagal, F., Mesiar, R.: Uninorms on bounded lattices. Fuzzy Sets Syst. 261, 33—43
(2015)

Klement, E.P., Mesiar, R., Pap, E.: Triangular Norms. Kluwer Academic Publish-
ers, Dordrecht (2000)

Medina, J.: Characterizing when an ordinal sum of t-norms is a t-norm on bounded
lattices. Fuzzy Sets Syst. 202, 75-88 (2012)

Menger, K.: Statistical metrics. PNAS USA 8, 535-537 (1942)

Metcalfe, G., Montagna, F.: Substructural fuzzy logics. J. Symb. Log. 72, 834-864
(2007)

Ouyang, Y., Zhang, H.P.: Constructing uninorms via closure operators on a
bounded lattice. Fuzzy Sets Syst. 395, 93-106 (2020)

Sun, X.R., Liu, H-W.: Further characterization of uninorms on bounded lattices.
Fuzzy Sets Syst. 427, 96-108 (2022)

Saminger, S.: On ordinal sums of triangular norms on bounded lattices. Fuzzy Sets
Syts. 157, 1403-1416 (2006)

Schweizer, B., Sklar, A.: Probabilistic Metric Spaces. Elsevier North-Holland, New
York (1983)

Yager, R.R.: Aggregation operators and fuzzy systems modelling. Fuzzy Sets Syst.
67, 129-145 (1994)

Yager, R.R., Rybalov, A.: Uninorm aggregation operators. Fuzzy Sets Syst. 80,
111-120 (1996)

Yager, R.R.: Uninorms in fuzzy systems modelling. Fuzzy Sets Syst. 122, 167-175
(2001)

Zhao, B., Wu, T.: Some further results about uninorms on bounded lattices. Int.
J. Approx. Reason. 130, 22-49 (2021)



®

Check for
updates

Norms and Discrete Choquet Integrals
Induced by Submodular Fuzzy Measures:
A Discussion

Agnés Rico!®™) | Marie-Jeanne Lesot?, and Christophe Marsala?

! Univ. Lyon 1, Lyon, France
agnes.rico@univ-lyonl.fr
2 Sorbonne Université CNRS, LIP6, Paris, France
{Marie-Jeanne.Lesot,Christophe.Marsala}@lip6.fr

Abstract. The Choquet integral is a powerful tool in multi-criteria deci-
sion making and decision under uncertainty. This paper studies the use
of its discrete form for the definition of norms, in the general case beyond
the often considered case of Ordered Weighted Averages. It proposes a
discussion of the characterisation based on Metric Inducing Fuzzy Mea-
sures (MIFM) introduced by Bolton et al., 2008, questioning its results.
It then describes a characterisation for the discrete case that relates to
the notion of properties holding almost everywhere derived from the null
sets associated to a fuzzy measure. It discusses in particular the case of
Choquet integrals induced by possibility measures.

Keywords: Discrete Choquet integral + Distance - Norm -
Submodularity - Null sets - Possibility measures

1 Introduction

The Choquet integral is a powerful tool in multi-criteria decision making and
decision under uncertainty [5]: it has a high expressive power, through its param-
eter, namely the fuzzy measure it relies on. Depending on the definition of the
latter, it can model many different types of aggregation operators, among which
weighted sums and Ordered Weighted Averages (OWA) to name a few.

This paper proposes to study the use of its discrete form for the definition
of distances: when applied to data described by a set of features, distances can
be seen as the aggregation of the comparisons computed for each feature. For
instance the Minkowski distances are defined as, possibly weighted, power means,
where the individual feature comparison is defined as the absolute value of the
difference in case of numerical features.

This paper examines the possibility to use the generic aggregation operators
offered by the discrete Choquet integral. It studies conditions a fuzzy measure
must satisfy so that the Choquet integral it induces satisfies the required prop-
erties of a norm. As detailed in Sect.2, this question has mainly be studied
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for OWA or in the continuous case. This paper first proposes, in Sect. 3, a dis-
cussion of the characterisation proposed in [1] based on Metric Inducing Fuzzy
Measures (MIFM). Section 4 then describes a characterisation that expresses, in
the discrete case, conditions related to the notion of properties holding almost
everywhere derived from the null sets associated to a fuzzy measure [7]. Tt dis-
cusses in particular the case of Choquet integrals induced by possibility measures.
Section 5 concludes the paper and discusses directions for future works.

2 Background and Related Works

This section presents the background and formal definitions of the main concepts
used throughout the paper, norms, distances and Choquet integrals, before sum-
marizing some existing works studying connections between them.

2.1 Norms and Distances

Formally, for elements taken from a domain X', a norm is a function s : X — R
that satisfies the following properties for any z,y € X

— s(z) > 0 (non-negativity)

— s(z) = 0 if and only if © = 0 (separability)
(
(

|
V)

T
kx) = |k|s(z) for all k € R (homogeneity)
x

- s(x+y) < s(x) + s(y) (triangular inequality)

The non-negativity property can actually be deduced from the other ones, but
it is most often stated explicitly in the list of properties.

A norm s induces a distance d, defined by d(z,y) = s(x — y), which is non-
negative, separable, commutative and satisfies the triangular inequality.

This paper focuses on the classical case of numerical vectors of dimension n,
i.e. it considers X = R™.

2.2 Fuzzy Measures and Discrete Choquet Integrals

The discrete Choquet integral (see e.g. [5] for a survey of its definition, variants
and applications) is an aggregation function commonly used in multicriteria deci-
sion making. Given a finite set of n criteria A' = {1,--- ,n}, and an alternative
described by its evaluation over these criteria, x = (1, - ,x,), it calculates
a global evaluation aggregating all the x; values. The latter is a generalisation
of the weighted sum that allows to take into account interactions between the
criteria, through the use of a so-called fuzzy measure.

This section first reminds the formal definition of these fuzzy measures. It
then provides the two main, equivalent, definitions of the discrete Choquet inte-
grals and some specific cases of interest.
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Fuzzy Measures. The definition of a Choquet integral relies on the specifica-
tion of a fuzzy measure, also named capacity: this function associates, to any
group of criteria A C N, a numerical value that can be viewed as the weight or
the importance given to these criteria. Formally

Definition 1. A fuzzy measure (or capacity) is a set function pu: 2N — [0,1]
such that

= u(0) =0 and u(N) =1 (boundary conditions)
— if AC B then p(A) < u(B) (monotonicity)

Specific properties of interest for a fuzzy measure p include:

— additivity it VA, B C N, (AU B) + p(AN B) = u(A) + u(B)
— submodularity if VA,B C N, u(AUB) + u(AN B) < u(A) + u(B).
— subadditivity iff VA, B C N such that AN B =0, u(AU B) < u(A) + u(B)

Note that a submodular fuzzy measure is subadditive.

Another property of interest, used in examples in this paper, is the symmetry
one, that is satisfied when the capacity only depends on the cardinality of the
subsets it applies to: p is symmetric if VA, B C N, |A| = |B| = u(A) = u(B).

A specific case of fuzzy measure corresponds to possibility measures [3]: they
are defined as set functions IT : 2V — [0, 1] such that I1(§) = 0, IT(N) = 1 and
II(AUB) =max(II(A), II(B)).

Discrete Choquet Integrals. Given a fuzzy measure indicating the weight of
any subset of criteria and an alternative z, the Choquet integral [5] aggregates
the evaluation of the individual criteria in = as follows

Definition 2. The discrete Choquet integral of © = (z1,--- ,2,) € R™ with
respect to a fuzzy measure | s defined as

n

Culz) = Z (@) = zpio11) w(Apay) (1)

_me (Ariy) = m(Apisn)) (2)

where

° H is a permutation on N that sorts x in increasing order: xr) < STy

o Apy ={[il,---,[nl}
o xm] =0 and A"nJ’,l—I = @

The above definition is the usual presentation of the Choquet integral. An
equivalent definition based on sorting x in decreasing order can be considered
as well, as proposed in [1]. As this paper proposes, in Sect.3, a discussion of
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the results presented in the latter paper, we consider both notations: C,(x) can
equivalently be defined as

Z (i) (W(Blay) — p(Bi1))) (3)

where

e |.] is a decreasing permutation: x| > x| > -+ > |y

o By ={[1],---,[i]} and
* Bl =

It is useful to introduce the following notations: for any permutation o on N,
Vi e N,
Wo (i) = By (iy) — i(Bo(i-1)) (4)
with B, ;) = {0 (1), -+ ,0(i)} and B,y = (). Indeed, Eq. (3) can then be written
Culz) = Zz LT Wil

Special Cases. Depending on the properties of the chosen fuzzy measure p, spe-
cific cases of the Choquet integrals are induced, possibly with simplified expres-
sions. In particular, in the case where p is an additive measure, the Choquet
integral takes the simplified form of a weighted sum: C,(z) = 37" | u({i});.
This follows from the fact that both the Ap;; and the B|;| satisfy an inclusion
property: for any 4, A7 € Ay and Bjj) C Bliyq)-

A specific class of Choquet integrals implements the Ordered Weighted Aver-
age operator [8], defined as

Definition 3. Let (wq,- -+ ,wy) € [0,1]" such that Y, w; = 1. The Ordered

Weighted Average (OWA,,) is the aggregation operator defined by,
fOT any (‘/L‘h e 73;71) eR"

OWA,(z1,-++ ,2pn) = Zwixm (5)

The following relation holds between OWA and Choquet integral [4]:

Proposition 1 (from [4]). A discrete Choquet integral with respect to p is an
OWA if and only if p is symmetric, i.e. the fuzzy measure only depends on the
set cardinality.

More precisely, it is then the OWA,, whose weights are defined as w; =
w(Ap—iv1) — w(An—i) where A; denotes any subset with cardinality equal to i.

This weight definition is an instanciation of Eq. (4) for the considered par-
ticular case of fuzzy measures.

A specific case of interest among the OWA, as detailed in Sect. 3, are the
ones that satisfy an ordering constraints on the weights, called buoyancy [8]:

Definition 4. The OWA,, satisfies the buyoancy property iff

wy <o S wy (6)
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2.3 Related Works

Within the framework recalled in the previous sections, the question is then to
exploit a discrete Choquet integral to define a norm: given two data points a
and b described by n features, an alternative is defined by their individual feature
comparisons, Vi € {1,...,n}, ; = emp(a;, b;), e.g. for numerical features, x; =
la; — b;|. An alternative to be assessed is thus denoted x = (x1,--- ,z,) € RT".
Indeed, the individual comparison are assumed to be non-negative values. The
question is then to define a Choquet integral C), such that s(z) = Cy(z1,...,xy)
defines a norm, i.e. satisfies the properties recalled in Sect. 2.1.

This section summarises results that have been established in previous works
regarding this issue, except for [1], discussed in details in the next section.

Submodularity and Triangular Inequality. A first theorem establishes suf-
ficient conditions for a Choquet integral to satisfy the triangular inequality [2]:

Proposition 2 (from [2]). If the fuzzy measure p is submodular, then the
Choquet integral it induces satisfies the triangular inequality: for any x,y

Ou(m + y) S Ou(x) + Cu(y)

It is easy to check that this is a necessary and sufficient condition. Indeed, let
us consider a fuzzy measure p such that for any z,y, Cu(z +y) < Cu(z) +
C,(y) and two sets A, B C N. The characteristic functions 14up and 1anp are
comonotonic with a sum equals to 14 +1p. It then holds that (AU B) + u(AN
B) = C,(1auB + 1anp) since Choquet integral is comonotonic additive. Hence
W(AUB) + u(ANB) = Cu(La + 15) < Cy(1a) + Cu(ls) = p(A) + u(B) by
hypothesis.

Proposition 2 can be generalised to Holder inequalities, as shown in [7] for
continuous Choquet integrals.

Relations Between OWA and Norms. Most results about the relations
between Choquet integrals and norms consider the case of OWA. It has first
been established by Yager [9] that OWA possessing the buoyancy property are
norms:

Theorem 3 (from [9]). Given (wi,...,w,) € [0,1]", the function
s:RY" — R defined by s(x) = Y7 wix|; is a norm if and only if Vi,
Wi 2 Wit1-

Note that the w; ordering is here reversed as compared to Eq. (6) because the
OWA is written in [9] with the |.] ordering instead of the [.] one.

Due to the relationship between Choquet integrals and OWA, this theorem
allows us to deduce the following corollary:

Corollary 4. A discrete Choquet integral defined by a symmetric measure is a
norm if and only if for all i, p(Ap—it1) —(An—;) < p(An—;) —p(An—i—1) where
A; represents any set of cardinality i.
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Proof. Under the condition that u is symmetric, C,, induces an OWA according
to Proposition 1 whose weights satisfy the buoyancy property according to the
considered hypothesis. Theorem 3 then gives the result. O

The relation between OWA and norms is studied in more details by [9],
who examines the relations between the order of Minkowski distances and the
distribution of the OWA weights satisfying the buoyancy property.

General Case. Beyond the specific property of the triangular and Holder
inequalities and the specific case of OWA, studies have been conducted for con-
tinuous Choquet integrals [7], generalising the discrete sum definition (as given
in Eq. (2)). The conditions under which they define norms over measurable
functions are established, allowing the author to define distances for fuzzy sets
defined over compact subsets of R™. One of the established theorems states that
the Choquet integral induced by a submodular fuzzy measure that is continuous
from below defines a norm on the quotient of the set of measurable functions by
the equivalence relation ~ a.e., based on the notion of almost everywhere (see
the reminder of its definition in Sect. 4.3).

In this paper, in Sect. 4, we consider the case of discrete Choquet integrals,
which leads to a specific characterisation of the latter case, and we study its
expression in the particular case of possibility measures. Before, we discuss in
Sect. 3 the equivalence proposed in a similar framework in [1].

3 A Discussion on MIFM and Induced Choquet Integrals

This section proposes a discussion of the characterisation proposed by Bolton et
al. [1] of discrete Choquet integrals defining norms, which relies on the specific
class of capacities called MIFM. The definition of the latter are first reminded,
before presenting and questioning some results proposed in this paper.

3.1 Reminder: MIFM Induced Choquet Integrals

A specific class of specific Choquet integrals has been proposed in [1], based on
a generalisation of the OWA buoyancy property (see Definition 4) to fuzzy mea-
sures using the weight definition reminded in Eq. (4) and the notation introduced
in Sect. 2, where, for any permutation o on N, B,;) = {o(1),...,0(i)}:

Definition 5. A fuzzy measure u on N is a Metric Inducing Fuzzy Measure
(MIFM) if for any permutation o on N, for all j € N\ {n}, ws(jy > we(jt1)
where wq(;) s defined as in Eq. (4), i.e. Wo(j) = i(By(s)) — (Bo(j—1)) with the
convention B,y = ().

This property is equivalent to the buoyancy imposed on OWA (see Eq. 6), up to
the choice of the considered (increasing vs decreasing) ordering of the z values.

To make it friendlier, we propose to illustrate this definition, first for a uni-
verse of size 2, then for a universe of size 3.
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Fig. 1. (Left) Example of a MIFM for a universe containing two values, N' = {1, 2},

(right) level lines of Choquet integral it induces (see analytical expression in Exam-
ple 1).

Example 1. Let us consider N' = {1,2} and the capacity measure u represented
graphically on the left part of Fig. 1. This graph represents the lattice of the
universe subsets, gives for each of them their associated capacity value, as well
as the induced w values.

pis a MIFM: on N, only two permutations can be considered: (i) o equals
to the identity (o0(1) = 1, 0(2) = 2, that leads to Byy = 0, Boay = {1},
By = {1,2}), which corresponds to the left path in the graph shown on the
figure, and (i) T that corresponds to the right path on the graph (7(1) = 2,
7(2) = 1). On each path, the w indeed satisfy a non-increasing ordering property.

The right part of the graph shows the level lines of the Choquet integral
induced when applying the definition given in Eq. (3): analytically, C,(x) =
%(ml +x2) if x1 > x2, and C,(x) = %(91‘2 + 1) otherwise. This Choquet inte-
gral also illustrates the fact that it offers the possibility to define more expressive
aggregation operators than weighted (or ordered weighted) average, introducing
different behaviours on subregions of the domain.

The next example considers a more complex case, illustrating the richness of
the MIFM framework.

Example 2. Let us consider N = {1,2,3} and the symmetric fuzzy measure
graphically represented in Fig. 2 and analytically defined by

s if|Al=1
pA)=q Lif|Al=2
1if A={1,2,3}.

As it is symmetric, the capacity values are constant level-wise on the graph, where
each level is associated with a fized cardinality and, as pointed out in Proposi-
tion 1, the induced w values are also constant level-wise (i.e. are independent
of the permutation, and the path followed in the graph). In addition, for this
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Fig. 2. Graphical representation of the fuzzy measure introduced in Example 2.

example, w is deﬁnedasun:%ng:l—%:%2w3:1—1:0. It thus
satisfies the buoyancy property, or equivalently in terms of fuzzy measures, the
MIFM definition. u is submodular, and thus also subadditive, as can be shown
by exhaustive examination of subsets of N.

As a consequence, the induced Choquet integral has the following analytical
definition: C\(z) = xrywy + Troyw2 + Tr3 w3 = %xm + %xm.

3.2 Discussing the Relations Between MIFM and Norms

Based on the notion of MIFM, the following relation between the specific class
of Choquet integrals and norms is established in [1]

Proposition 5 (from [1]). The Choquet integral with respect to a measure p
is a norm if and only if p is a MIFM.

The proofs provided in [1] are complex and we argue a counterexample can be
proposed to the assertion that the MIFM is a necessary condition. Indeed, let us
consider the fuzzy measure IT* graphically defined in Fig. 3 on N = {1, 2, 3} that
possesses by construction the property of being a possibility measure: I7*(A) is
defined as max;c 4 m; for the possibility distribution 7 defined by the p values
associated to the singletons, i.e. at the first level of the graph. As such, it is a
norm, as can be proved applying Corollary 9 established in the next section.

Yet this capacity does not satisfy the properties of a MIFM, as shown for
instance when considering the permutation o such that o(1) = 3, 0(2) = 2,
o(3) =1, i.e. the B path 0, {3}, {2,3}, {1,2,3}: on this path, the w values do
not satisfy the required monotonicity constraint.
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Fig. 3. Graphical representation of the possibility measure IT* that is not a MIFM.

3.3 Discussing the Relations Between MIFM and Submodularity

In [1], it is mentioned that MIFM are mathematically equivalent to the class
of submodular fuzzy measures, although this claim is not proved. We question
this assertion as, by transitivity with Proposition 5 the same paper establishes,
it would imply Choquet integrals induced by submodular fuzzy measures are
norms.

Now this property does not hold: submodularity guarantees the triangular
inequality is satisfied (see Proposition 2), but it does not guarantee the separa-
bility property is, as can be shown by the following counter-example:

Example 3. Consider N = {1,2,3} and the possibility fuzzy measure I derived
from 1l =m > my = % > m3 = 0. It holds that Cp(x) = %;L’l + %1‘2. As a
consequence, Cr(x) = 0 iff x1 = xo = 0. Therefore, C7((0,0,1)) = 0, which
violates the separability property: Cp is not a norm.

However, as any possibility measure, IT is submodular (see e.g. proof of Corol-
lary 9 in Sect. 4.1).

4 Discrete Choquet Integrals and Norms: A Discussion

This section discusses a necessary and sufficient characterisation that can be
established in the discrete case and the characterisation it induces in the case of
Choquet integrals induced by possibility measures. However, in the general case,
the separability property does not hold in general and requires to consider the
notion of “almost everywhere” related to that of null sets.
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4.1 Characterization of the Discrete Case

Three of the properties defining a norm are obviously satisfied for a Choquet
integral derived from a submodular capacity and restricted to domain R*:

Proposition 6. Gien a submodular pu fuzzy measure, C,, : R™™ — R satisfies
the properties of non-negativity, homogeneity and triangular inequality.

Proof. Restricting C,, to R™ allows to prove it is non-negative and homogeneous.
The triangular inequality follows from p submodularity and Proposition 2. O

The restriction to RT is not a limitation: as discussed previously, when used
to define a norm, the Choquet integral aggregates the individual comparisons
computed for each feature individually, that are positive numbers.

In order to guarantee the separability property, we propose to use the fol-
lowing characterisation, using the notation as in Definition 2:

Proposition 7. Given p a fuzzy measure and x € R™™, C,(z) = 0 if and only
if {ilerny # 0} C {ilu(Ariy) = w(Ariyn)}-

Proof. From the Choquet integral definition written as in Eq. (2), C,(z) =
S xrlu(Ar) — p(Agiga)], it follows that when € RT", C),(x) = 0 if and
only if, for all i, xr;7 (A7) — p(Apig17)] =0

i.e. either xr;) =0 or u(Ary) — (Arig17) = 0. This condition is equivalent to
{ilwpy # 0} S {ilu(Ary) = w(Afiga)) - O

Note that, according to the proof presented above, if for all o, pu(A, ) >
1(Ag (i) then {ilu(Asi)) = p(Asir1))} = 0 and Cp(x) = 0 if and only if
z =0.

4.2 Case of Possibility Measure Induced Choquet Integral

In the case where the considered capacity is a possibility measure, the charac-
terisation established in the previous section takes a simple form:

Proposition 8. If IT is a possibility measure such that, for all i, m({i}) # 0
then Crr(x) =0 if and only if x = 0.

Proof. The Choquet integral with respect to a possibility measure possesses an
expression depending only on the permutation corresponding to order on the
values of 7. Let us denote m; = w({i}) and o the permutation on N that sorts
the m; in decreasing order, i.e. such that 1 =751y > -+ > Ty(n) > To(ne1) = 0.
The Choquet integral of = with respect to IT can be computed as Cp(z) =
2im1 (To(i) = To(i41)) MAX]_) To ).

Under the considered hypothesis, m; # 0 for all i € N, To(n) = To(ntl) =
To(n) # 050 Crz(z) = 0 implies max}_; z,(;y = 0, i.e., for z € RT, 2 =0. O
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Example 4. Let us consider the possibility measure presented in Fig. 3. We
have 1 = m > mp = w3 = % and for all x, Cip(x) = (m — m2)xy + (w2 —
m3) max(z1, x2) + (w3 — m4) max(21, 2, x3) = 321 + 3 max(zy, T2, T3).

So Cr(x) =0 if and only if z = 0.

Corollary 9. If IT is a possibility measure such that w({i}) # 0 for all i, then
Cr is a norm on RT™,

Proof. Let us first prove that IT is a submodular fuzzy measure. Let A, B C .
IT monotonicity implies IT(AN B) < II(A) and II(AN B) < II(B) and thus
II(AN B) < min(lI(A),n(B)). In addition, as it is a possibility measure,
II(AUB) = max(II(A),n(B)). As a consequence, IT(AU B) + II(AN B) <
max(IT1(A), I[I(B)) + min(I1(A), I[I(B)) = I[I(A) + II(B).

Proposition 6 can thus be applied and implies that the Choquet integral
induced by IT satisfies the properties of non-negativity, homogeneity and trian-
gular inequality. Separability follows from Proposition 8. O

4.3 General Case

In the general case, beyond possibility measures, the separability property does
not hold in general (see Sect.3.3) and requires to consider the notion of null
sets, as also shown for the continuous case in [7]. This section first reminds the
definition of null sets and properties holding almost everywhere.

Reminder on Null Sets. Given a universe N and a fuzzy measure p, null
sets [6] are subsets of N that act as neutral elements with respect to u:

Definition 6. A null set with respect to a fuzzy measure u is a set N C N such
that VAC N, n(AUN) = p(A).

It is easy to check that the empty set is a null set, so there always exists at
least one null set with respect to any fuzzy measure pu.

As established in [6], if 1 is subadditive, then a set N is a null set with respect
to p if and only if p(N) = 0. Note that if u is submodular then p is subadditive
and the same result holds. As a consequence, in the following, to prove that a
candidate set is a null set, we show that its measure is equal to 0.

The notion of null sets is used to define the concept of “almost everywhere”,
with abbreviation a.e [2,6]: a logical proposition P(z) is said to hold “almost
everywhere” if it holds everywhere except on subsets with measure 0. Formally,
P(z) a.e holds if there exists a null set N such that P(z) is true for all x € N°¢
where N°¢ is the complement of N. Note that a true proposition P(x) is also true
a.e. since the empty set is a null set.

Use for the Separability Property. Using the notion of null sets, the sepa-
rability property can be established almost everywhere:
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Proposition 10. Given p a submodular fuzzy measure and z € R™, C\,(x) =0
if and only if xt =0 a.e.

Proof. Let x be such that C,(x) = 0. To show that z = 0 a.e, let us show
that the candidate set N = {i|z; # 0} is a null set with respect to p, i.e.
p({ilz; # 0}) = 0 (indeed, = 0 holds on N€). Then C,(z) = >0 | [2,) —
Ty(i—1)]1(As(;)) = 0 is equivalent to the fact that, for all 4, it holds that [z, ;) —
To(i—1)|1(Asi)) = 0. Let us denote the first coordinate different from 0 by
To(p), T = (0,---,0,%5(p), " * , To(ny). We must have x4y u(Ayp)) = 0 where
Ao (p) = {ilz; # 0}. Thus p({ilz; # 0}) = 0.

Reciprocally, if = 0 a.e, without loss of generality, x = (0,...,0,z4,...25)
and {q,...,n} and its subsets are null sets. Then C,(x) = 0, as all terms in the
sum are 0, either because of the x,(; difference or because of p(Ay;)) =0. O

In the above proposition, {i|z; # 0} may be a null set different from the
empty set, as illustrated in Example 3. However, the latter can now be analysed
in terms of null sets:

Example 5. Consider again Fxample 3, where II is the possibility measure
induced by 1 = m > mg = % > 73 =0 and Cr(z) = %xl + éxg.

Cr(x) =0 iff x1 = 9 = 0. However, w3 = 0 and II is a submodular measure
so {3} ={1,2}° is a null set. Cpz is a norm a.e.

5 Conclusion

In the context of establishing relations between discrete Choquet integrals and
norms, this paper proposed a discussion questioning the properties of the Metric
Inducing Fuzzy Measure, illustrating by a specific possibility measure that the
separability property is not guaranteed by the generalisation of the buoyancy
property. In the special case of possibility measures, it proposes a necessary
and sufficient condition under which the induced Choquet integral is a norm.
In the general case, the characterisation leads to a separability property that
holds almost everywhere, but not in general. As a direction for future works,
establishing the properties allowing to achieve a general result still remains an
open question.
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Abstract. In this paper, we investigate sufficient conditions for the exis-
tence of a solution for a dynamical system based on a metric structure
(G, un). Moreover, a slight variation in the assumptions allows to apply
it for fuzzy functions. So, we study the existence of the solution to fuzzy
differential equations under the concept of metric differentiability.

Keywords: Fuzzy differential equations - Metric dynamical systems -
Metric derivative

1 Introduction

The study of fuzzy differential equations forms an appropriate context for the
mathematical modeling of real world subjects in which uncertainty or vague-
ness pervades. There are several different approaches to studying fuzzy differ-
ential equations [3,6,7,9]. However, the meaning of a fuzzy differential equation
powerfully depends on picking the concept of fuzzy derivative [2]. Therefore,
there are some popular approaches to define the derivative of fuzzy functions
and to examine fuzzy differential equations, for instance, Hukuhara derivative,
gH-derivative, etc., see [1,4,5]. In most of the mentioned derivatives for fuzzy
functions, we need to guarantee the existence of the corresponding differences.
To overcome this shortcoming, a derivative is proposed for fuzzy functions that
is based on the Hausdorff distance between the fuzzy numbers called metric
derivative. Metric differentiability has its origins in [9] and has been extended
and studied, for instance, in [8,10].

Dynamical systems from the metric perspective have their origin in the work
by Panasyuk [12] who considered approximation or quasi-differential equations
in the framework of a locally compact metric space. Later, Panasyuk expanded
the Euler polygonal method to show the existence of solution for the equations

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Massanet et al. (Eds.): EUSFLAT 2023/AGOP 2023, LNCS 14069, pp. 52-60, 2023.
https://doi.org/10.1007/978-3-031-39965-7_5


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-39965-7_5&domain=pdf
http://orcid.org/0000-0001-8185-403X
http://orcid.org/0000-0001-5852-9845
http://orcid.org/0000-0001-6719-678X
https://doi.org/10.1007/978-3-031-39965-7_5

Some Existence Results for Fuzzy Differential Equations 53

of approximation, but the results attained were restricted to the locally com-
pact metric space. Also, in [13], the existence of solution to ordinary differential
equations with function f continuous is analyzed. However, for arbitrary spaces
which are not locally compact, further results were needed. To overcome the
above mentioned shortcomings, Nieto and Rodriguez-Lépez renamed the frame-
work presented by Panasyuk as Metric Dynamical Systems (MDS, for short) and
proved several results considering the properties of the solution to MDS. In par-
ticular, in [11], they developed Euler Polygonal Method to prove the existence of
solution for general MDS including equations with a nonlinear differential. From
this approach, the existence of solution to fuzzy differential equations under ()-
D-derivative can be derived. Regarding the ideas presented in [11], we consider
a slightly different notion of MDS (G, uy) which is a kind of backward opera-
tor, and we prove the uniqueness and existence of solution under appropriate
hypotheses. This result allows to derive, as a consequence, some results for fuzzy
differential equations under a type (i¢) metric derivative.

The paper is organized as follows. In Sect. 2, we recall some basic concepts and
results that will be used in the rest of the paper. In Sect. 3, we study the metric
dynamical system. In particular, we examined the existence of the solution of
fuzzy differential equations under the concept of metric derivative.

2 Preliminaries

In this section, we recall some definitions and present the notation which will be
used throughout the paper, see for example [1,5]. A fuzzy subset of R™ is a map
v : R™ — [0, 1], where v(t) is the degree of membership of ¢ € R™ to the fuzzy
set v. For each « € (0, 1], the a-cut is defined by [v], = {t € R"|v(t) > a}. The
support of v, denoted by [v]o, is the closure of the union of all its a-cuts with
a € (0,1]. The set of normal, fuzzy convex, upper semicontinuous and compact
support fuzzy sets is called the space of fuzzy numbers and it is marked by R'%.
The addition in R’ is given levelwise by

[0+ wo = Vo + [Wa, a€]0,1], v,weRY,
and, for ¢ € R, the scalar multiplication is given by
[cv]o = v]a, vER%.

The distance between elements of R’ is defined by the supremum of the Haus-
dorff distance between the cuts as

D(w,w) = sup dy([v]a,[w]a) v,w e RYE.
a€l0,1]

It is worth mentioning that the metric space (R’%, D) is complete.
Theorem 1. [5] Let u,v,w,z € R% and A\, u € R, we have

1. D(v+ z,w+ z) = D(v,w),
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2. D(pv, pw) = |p[D(v, w),
3. D(u+v,w+z) < D(u,w) + D(v,2),
4. D()\U},,U/U}) = ‘)‘ - M|D(w70)v>‘u >0,as0= X{0}-

Theorem 2. [1]

(i) For any p, A € R with u,A > 0 or p,A < 0 and any v € R, we get
(+ ANv = pv+ . For general u, A € R, the mentioned property does not
hold.

(it) For any X € R and any v, w € R, we have A\(v + w) = Av + Aw.

(iii) For any A\, € R and any v € R, we have A(pv) = (Ap)v.

Definition 1. [8] Letv:I C R — RY% be named (ii)-D-differentiable at t € I
if there is v'(t) € R% such that

. 1 / N 1 ! —
hllrg_ ED(U(t)’ v(t —h) + hv'(t)) = hli,%l— hD(v(t + h),v(t) + hv'(t)) = 0.

3 Existence of a Solution in [0, ¢y]

To clarify the concept of this type of MDS, we consider the differential equation
in R below: (t.0(0) : |
t,v(t te|0,t
/t _ g\t, ) s UN | 1

v = {5, ! 1)
where g : [0,tn] X R — R and vy € R.
Definition 2. Let v : [0,tn] — R be a solution to problem (1) if v(tny) = vy
and, for every t € [0,tn],

lim v(t —h) —v(t)

e e R (RT0)}

This implies that

I%Hléﬁf v(t —h) — U(I;L) + hg(t,v(¢)) _0.te 0]
It is equivalent to
tm inf %d(v(t —h), Gt b)) = 0, € [0, ], 2)
when d(a,b) = |a — b| and
G(t, h,v) = v — hg(t,v). (3)

Definition 3. Let (Y,d) be a metric space and G : [0,tny] x [0,00) XY — Y. A
function v : [0,tn] = Y is a solution to the M DS given by G with the final data
vy €Y, if v(tn) = v, and condition (2) holds in [0,tN].
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In the sequel, for this type of MDS, we achieve solutions satisfying (2) changing
the liminf by the lim.

Ezample 1. For the differential equation (1) and considering G given by (3), we
have that, if v is a solution to (1), then v is a solution for the MDS given by G
with the final condition vy .

Example 2. Consider the fuzzy differential equation below

Ul(t) _ {g(t,v(t)), te [O,tN},

’U(tN) =ouN € R?,

where g : [0,tn5] X R% — R%, and v : [0,¢n5] — R% is differentiable in the sense
of Definition 1. Therefore, the function G is considered as follows:

G(t7 h,’U) =v - hg(ta ’U),
for h > 0.

Analogously to the results in [11] for the concept of Metric Dynamical Systems
considered in Definition 1.1 [11], we search for sufficient conditions for the exis-
tence of a unique solution in the interval I = [0,tn].

Let G : I x[0,e0] x Y — Y such that the following properties hold:

— Condition 1. G(t,0,y) =y, for every t € I,y € Y. )
— Condition 2. (t — h,h,G(t,h,y)) € U for (t,h,y) € U,h > 0,t — h < ty.
Condition 3. There is a constant L > 0 so that

d(G(t, h,y), G(t,h, z)) < e d(y, 2),
for any (¢, h,y), (t,h,z) € U.
— Condition 4. There exists B : Rt — R* non-decreasing with hlim+ B(h) =0
—0
such that

d(G(t — h,h,G(t,h,y)),G(t, h + h,y)) < B(h)(e*" —1).
Let P be a partition of I, with step |P|. For a partition P, we define

G(thtN_TayN)v Pﬂ(TvtN) :(Z)v

(XP)iyyn = {G(al,az =7 (XP)ixyn), @ =minP N (7, ty), W

for yv € Uy, and 7 € I. Therefore, functions Xp are a development of the
switching quasi-flows for equations in metric spaces.
Lemma 1. Let P be a partition of [to,tn], then we have

i (Xp)i, (Xp)ilyn = (Xp)] uN-

i d(Xp)7 yn, (Xp)T in) < eX"Dd(yn,in), Vyn.in € Uy, 7 € L.
11 d((Xp)tTNyN,G(tN,tN—T, yN)) < B(tN—T)(eL(tN—T)—]_), Yyn € UtN,T el.
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w d((Xp)i,2n, G(tn, tn —7,yn)) < d(yn, 2N )N =T) L Bty — 1) (eltN—T)
1)5 VUN,ZN € UtN7T el

Proof. The proof of (i) is an immediate consequence of (4). To prove (ii), let P
be a partition by the set {cg,c1,...,¢, =tn}. If 7 =1y, then we have

d(Xp)Nyn, (Xp)iNgn) = "N d(yn, gn).
Let 7 < tn. PN (7,tn) =0, then 7 € [¢,—1, tn] and

d((X'P)Z—Ny]\U (XP)INQN) = d(G(th tN -7, yN)ﬂ G(tN7 tN - T, gN))
< "IN d(yw, ).

By induction, we assume that (i7) is valid in [cg41, tn]. If 7 € [ck, ck11), then we
get

d((XP) iy yn: (XP)I, UN)

= d(G(ch1, cnr1 — 7, (XP)i  yn), Glersrs eren — 7, (Xp)i3 " N ))

B s T)d((Xp)”‘“yN, (XP)CHIQN)

< elltn—crt1) oLlcktr— T)d(yN,yN)

S eL(tN_T)d(yN7 gN)v

which is desired result. To prove (i), regarding the same partition as (¢i) and
T € [en—1,1n], We get

d((X'P)ZNyNaG(tN7tN -7, yN)) = d(G(tN7tN -7, yN)aG(tNatN - T, yN)) = 0.

Let 7 € [¢n—2,¢n—1], by Condition 4, we have

d((Xp)iyyn,G(tn,tN — T, yN))

= d(G(qu, Cno1 — T, G(tNntN — Cno1,YnN)), G(tn, tN — T, YN))
B(ty — cp1)(elle177) — 1)
(t )( L(tn—7) _ 1)-

By induction, we assume that (7i¢) is valid in [exy1,tn]. Let T € [k, ck41), then
by Conditions 3,4 and the triangle inequality, we get

d((Xp){yyn,G(tn,tN — T, yN))

= d(G(Chg1; 1 — 7, (Xp) 5 yn), Gltn, tn — T, yn))

< d(G(Cpit1, chgr — 7 (Xp) it yn),

G(cks1,chp1 — T, G(tN, N — g1, G(EN, N — Cry1,UN)))

+ d(G(ckt1; k41 — 7, G(EN, EN — ki1, G(EN, EN — k1, YN)), GEn, EN — ToyN))
< B(tn — cpyr) (€T — 1)

< Bty —7)(eXt=7) 1),
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To prove (iv), by (ii) and (iii), we have

d((Xp)i 2N, G(tn,tN — T,yN))
< d(Xp)iy 2N, (Xp)iyyn) +d(Xp)i yn, G(tn, tn — T,yn))
< d(yn,zn)e" T £ Bty — 1) (et T — 1),

Lemma 2. Let the partitions be comparable, that is, P < 75, then we have
d((Xp)iyuns (Xp)Tyyn) < B(P)(e™ "7 — 1), Vyy € Upy, 7€ 1. (5)

Proof. We suppose that P is given by the points {cg,c1,...,¢c, =tn}. If 7 €
[¢n—1,tn], then we have

d(Xp)iyyn, (Xp)iyyn) = d(G(tn,ty — 7,yn), G(tn, tn — T,2N)) = 0.

If 7 € [en—2,cn—1], Wwe proceed in two steps:
Stepla. Let ¢,—1 € P. In this case, we obtain that

d(Xp)iyyn, (X5)iyUn)
= d(G(Cnfla Cn—1—T, (Xp)fzilyN)v G(Cnfla Cn—1—T, (Xﬁ);’:;lyN))
=d(G(cn—1,6n-1 — 7, G(tN,tN — Ccn1,UN)), G(cn1,cn1 — T, G(tN, tN — Cn1,7N)))
=0.
Step2a. Let ¢,—1 ¢ P. Therefore, by Lemma 1, we have

d(Xp)iyun, (Xp)iyun) = d(G(tn,tn — T, yn), (X5)[ YN)
< Bty — ) (el 1)
< B(IPI) () — 1),
where B is nondecreasing, the relation ty — 7 < ty — ¢,—1 < |P|. Besides, we
assume that (5) is correct for 7 € [cr41,tn] and we prove that (5) is valid for

T € (¢, Ckt1)- Again, we proceed in two steps:
Steplb. If PN (7,ty) = 0, then by Lemma 1, we have

d(Xp)iyun, (Xp)iyun) = d(G(in,tn =T yn), (Xp)i un)
< Bty —7)(eXt¥=7) 1)
< B[Pt~ —1).
Step2b. Let min P N (7,tn) = ¢; such that 7 —¢; < |P|. Hence, we obtain that

d((XP)tTNyM(Xﬁ)tTNyN) = (G(ijcj =T, (XP);:’;V?/N%(Xﬁ)Efv (Xﬁ)zij)
< d((Xp)ikyn, (Xp)iyn)e @7

+B(cj —7)(eHeT) — 1)

< B(IP) ("7 —1).
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Lemma 3. Let P and P be the non comparable partitions, then

d((Xp)i yn: (Xp)Tun) < (B(P|) + B(P|)(e = —1)

<(
< 2B(max{[P|, [P|}) (¥~ —1).
Proof. Tt is an immediate consequence of Lemma 2 regarding PUP as a partition.

Theorem 3. Let the metric space Y be complete. Suppose that G satisfies Con-
ditions 1—4 and is continuous in the second variable h. Then, there is a solution
o(t) = fi .y~ of the Metric Dynamical System (G,ty,yn) on I and

d((Xp)i yn, fiyyn) < BP0 —1). (6)

Proof. By Lemma 3 and the Cauchy Criterion, the function (Xp)} yn converges
uniformly on I to a function ¢(t) = ff yn as [P| — 0. Moreover, taking the limit
as |P| — 0 in (5) with ¢ instead of 7 gives (6). Now, we need to show that ¢ is
a solution of the final value problem metric dynamical system (G, ¢y, zn). The
function ¢ satisfies the last condition. Indeed, (Xp)ig ynv = G(tn, tn—tN,yYN) =
yn and, passing the limit as |P| — 0, we deduce ¢(tn) = yn-

Let t,t —h € I be given and let P be a partition that includes the points ¢t,t —h
and satisfies P N (¢t — h,t) = 0 as well as |P| = h. Then, by (6), respectively
yn,t, ty instead of ¢,t — h,t, we obtain

(ot —h), G(t, b, 6(1))) et —1
h - h

as h — 07, we deduce that ¢ is a solution of the MDS (G, ¢y, yn) on I.

Corollary 1. Let vy € R%: and N (v, ) = {u € R% : D(u,vy,) < r}. Also, let
g: I x N(vy,r)— R% be continuous, L-lipschitzian in the second variable and
such that D(G(t,v),0) < M. Then, the MDS (G, tn,vN) given by G(t, h,v) =
v — hg(t,v) has a solution ¢ such that p(ty) = vn.

Proof. Tt is easy to find the set U satisfying Condition 2, so we just show that
the remaining Conditions hold. Indeed, we have

Condition 1. G(t,0,v) = v, for any t € I,v € R%.

Condition 3. By Theorem 1, we gain

D(G(t, h,u), G(t, h,v))

D(u — hg(t,u),v — hg(t,v))
D(u,v) + hD(g(t,u), g(t,v))
D(u,v) + LhD(u,v)

Eh D (u,v).

INIA
o
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Condition 4. According to Theorems 1, 2, we have

D(G(t — h,h,G(t, h,u)),G(t,h + h,u))

= D(G(t, h,u) — hg(t — h, G(t, h,u)),u — (h + h)g(t,u))

= D(u— hg(t,u(t)) — hg(t — h,G(t, h,u)),u — hg(t,z) — hg(t,u))
= hD(g(t — h, G(t, h,u)), g(t, u))
S@(((ﬁ—hGwhm»y@—MuD+D@@—hm%muwn
< h(LhM + p(h))

=Lh <hM + (Lh))

< B(h)(e"" — 1),

where p(h) = sup{D(g(l,z),g(l,z)) : 1,l € I, |l—1| < h}. Therefore, by Theorem
3, the requested result is obtained.

Corollary 2. Let g : I x R — R be continuous, L-lipschitzian in the second
variable and D(g(t,v),0) < M. The fuzzy differential equation

’U/(t) =9 (tv U(t)) 7v(tN) = UN,

has a solution when the derivative v’ is considered in the sense of (ii)-D-
differentiability.

Proof. 1t is a direct consequence of Theorem 3 and Corollary 1.
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Abstract. Semiring-valued fuzzy sets represent fuzzy objects with new
value set structures, which make it possible to unify part of new and
frequently used fuzzy structures. The theory of semiring-valued fuzzy
sets uses some basic tools of category theory and can be applied directly
to these new fuzzy structures. For this reason, the development of this
theory appears to be useful not only for the theory of semiring-valued
fuzzy sets but also for the theory of new fuzzy structures. In this paper,
we will therefore develop another part of this theory, namely, we define
two basic types of relational power set theory for these structures and
examine the basic relationships between these theories.

Keywords: power set theory * dual pair of semirings + monads -
monadic relations * new fuzzy sets

1 Introduction

Semiring-valued fuzzy sets [11,12] represent fuzzy structures with specific sets
of values. This structure is represented by a pair (R, R*) of dual commutative
idempotent semirings defined on the same underlying set, with an involutive
isomorphism between them. This construction makes it possible to use a single
set of formulas to define most of the dual concepts that occur in classical fuzzy
set theory, such as upper and lower approximations using fuzzy relations, upper
and lower F-transformations of fuzzy sets, extensional and dual extensional fuzzy
sets, closure and interior operators for fuzzy sets, and many others.

From the point of view of ordered structures, this value structure represents
an intermediate stage between complete residuated lattices on the one hand and
complete MV-algebras on the other. The primary motivation for the introduc-
tion of this structure was the effort to unify the theory of some new MV -valued
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fuzzy structures, such as intuitionistic fuzzy sets [2, 3], fuzzy soft sets [1,9] or neu-
trosophic fuzzy sets [8,18] and their mutual combinations such as intuitionistic
fuzzy soft sets [14]. Although these new structures in a set X are traditionally
called L-fuzzy sets, where L is a given M V-algebra, they are not, in fact, the
classical mapping X — L. A typical example is L-fuzzy soft set with the set of
criteria K in a set X, which are mappings X — M (L, K), where M (L, K) is the
new value structure. All these structures can be transformed to (R, R*)-valued
fuzzy sets for specific dual pair of semirings [12].

In previous papers [11,12], we dealt with the construction of some parts of
the theory of (R, R*)-fuzzy sets, such as F-transform theory or rough theory for
(R, R*)-fuzzy sets. In this paper, we continue to build an analogy of classical
fuzzy sets theory for (R, R*)-fuzzy sets. We will focus on another frequently
used area of fuzzy sets, namely the theory of power set structures with relational
morphism. The power set structures for L-fuzzy sets represent one of the most
frequently used constructions in the theory of fuzzy sets. The foundations of
this theory were published by Zadeh [17], who first defined the extension of a
mapping between two sets to a mapping between the respective power sets. This
procedure, called Zadeh’s extension principle, is still used in various variants in
a wide range of applications and theories of fuzzy sets. Since then, a number of
works have been published dealing with this issue and its generalization, such
as [4-6,13,15,16].

For (R, R*)-fuzzy sets (as well as for classic fuzzy sets), there are two basic
types of power set structure, namely the classical set of all (R, R*)-fuzzy sets
defined in sets and the set of all (R, R*)-fuzzy sets defined in sets with (R, R*)-
valued similarity relations. Moreover, due to the existence of two dual monads
defined by the pair (R,R*), each of these power set structures exists in two
variants. In this contribution, we describe the basic definitions and properties of
these variants of power set structures.

2 Preliminaries

In this section, we repeat several basic definitions and facts that are important
for the reader to understand the next parts of the paper.

Definition 1 ([12]). Let R = (R, +,%,0,1) and R* = (R, +*,x*,0%,1%) be com-
plete idempotent commutative semirings with the same underlying set R, where
0,1,0*,1* are also elements of R. The pair (R,R*) is called the dual pair of
semirings if there exists a mapping —: R — R and the following axioms hold:

1. =: R —>R* is the involutive isomorphism of the semirings,

2. VaeR,SCR ax*(Dpesh) =D wes(ax*b),

3. YaeR,SCR a+ (D i.gb)=D i gla+b), where Y.* is the complete operation
+* in R*,

4. Ya,be R, a+b=a<a+*b=0b.

From this definition, the following simple lemma follows directly.
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Lemma 1 ( [12]). Let (R,R*) be a dual pair of semirings and let the relations
< and <* be defined by

r,yeR, z<yeoz+y=y, z<yeor+iy=y.

Then R and R* are isomorphic complete lattice-ordered semirings, where, for
arbitrary SCR, sup 8= yes, inf S:Z;ES:C in (R, <), sup S:Z;esﬂ% inf S=> es
in (R,<Y).

For an arbitrarily dual pair of semirings (R, R*) we can introduce the notion of
(R, R*)-fuzzy sets.

Definition 2 ( [12]). Let (R, R*) be a dual pair of semirings.

1. A mapping s: X - R is called a (R, R*)-fuzzy set in a set X.
2. Operations with (R, R*)-fuzzy sets are defined by
(a) The intersection st is defined by (s nt)(x) =s(x) +* t(z), ze X,
(b) The union sut is defined by (sut)(z) =s(x) +t(x), ze X,
(¢) Complement —s is defined by (—s)(x) = -(s(x)),
(d) The external multiplication * by elements of R is defined by
(axs)(z)=axs(x),
(e) The order relation < between s,t is defined by s<t < (Vo e X)s(z) <t(x)
where < is the order relation defined in Lemma 1.

It is clear that, for these operations, we can define their dual versions. For exam-
ple, we can set =(s1* t) = =s N =t, =(a** s) = ~a x -s.

For our purposes, we use basic properties of monads in the category Set of
sets and mapping. For more properties of monads, see [7].

Definition 3. The structure T = (T, ,n) is a monad in the category Set, if

~

. T :Set — Set is mapping of objects,

. 1 48 a system of mappings {nx : X - T(X)|X € Set},

3. For each pair of mappings f: X ->T(Y), g:Y =>T(Z), there exists a composition
(called a Kleisli composition) g ¢ f: X — T(Z), which is associative,

For every mapping f: X >T(Y), ny O f=f and f O nx = f hold,

O is compatible with the composition of mappings, that is, for mappings f :
X-Y,9:Y->T(Z), we have g O (ny.f)=g.f,

IS}

Silha

For arbitrary dual pairs of semirings (R, R*) we can define a pair of basic
monads describing the basis of the dual power set structures of all (R, R*)-fuzzy
sets.

Proposition 1 [12]. Let R be a complete commutative idempotent semiring and
let the structure T = (Tr, $,n) be defined by

1. The mapping T(=Tr) : Set — Set of objects is defined by T(X) = RX,
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2. For the mappings f:X—>T(Y) and g:Y ->T(Z) their composition g¢ f: X ->T(Z)
is defined for x e X,z € Z by

(90 N)(@)(2) = Lyey F(2)(y) x 9(y)(2)-
3. mx is the mapping X - T(X) defined by

nx (2)(y) = {IR’ vy

ORa T+Y, .
Then Tx is the monad in category Set.

Remark 1. For arbitrary complete commutative idempotent semiring R, by ¢
we denote the composition operation of Proposition 1.

It is clear that for a dual pair of semirings, there exist two monads Tx
and Tr+, respectively, namely the monads (T, ¢,n) and (T, ¢*,n*), defined by
operations from R and R*, respectively.

We need the notion of a monadic relation, which was introduced by Manes
[10]. This notion generalizes the notion of a classical fuzzy relation, including
the composition of monadic relations, and generalizes the classical composition
of fuzzy relations.

Definition 4. Let R be a complete commutative idempotent semiring and X,Y
be sets. A (monadic) R-relation Q from X toY (denoted Q:X Y ) is a mapping
Q:X-TY). IfQ: XY and S:Y » Z are R-relations, their composition is
the R-relation S ¢ Q: X » Z. A R-relation Q: X » X is called a R-similarity
relation if

1. It is reflexive, that is, nx < Q,
2. it is transitive, that is, Q ¢ Q < Q,
3. it is symmetric, that is, Q(z)(y) = Q(y)(x), for arbitrary x,y e X.

Remark 2. From this definition it follows that for a dual pair of semirings
(R,R*) we can consider two types of relations, namely R-relation and R*-
relation. These two types are, in fact, identical, as follows from their definitions.
Therefore, we can use the common name (R, R*)-relations for both types of rela-
tion, or only relations, if the dual pair (R, R*) is obvious. On the other hand, if
we consider the compositions of these relations, we need to distinguish between
the types of composition, that is, ¢ and ¢*, respectively. Therefore, we also need
to distinguish between R-similarity relations and R*-similarity relations.

If (R, R*) is a dual pair of semirings, we can construct two relational versions
of the classical category Set, where instead of mappings as morphisms, the R
or R*-relations are used, respectively, with the compositions of these morphisms
defined by ¢ or ¢, respectively. These categories will be denoted Setr and
Setr~, respectively, and called the Kleisli categories of monads T and Tx«,
respectively.
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3 Relational Power Set Theories in Kleisli Categories
Setr and Setg-

The notion of a power set theory in the category Set of sets was introduced by
Rodabaugh [15]. In the following definition we introduce a generalized version
of this notion, called relational power set theory, where instead of the category
Set we use the Kleisli categories Seti and Setr+, respectively.

Definition 5. Let R be a complete commutative idempotent semiring and let
CSLAT be the category of complete \/-semilattices with homomorphisms of
semilattices as morphisms. The structure (P,—,u) is called a R-relational
power set theory in the Kleisli category Setr if

1. P:Setr - CSLAT is a mapping of objects.

2. For each morphism f: X »Y in the category Setr there exists a morphism
f7:P(X)->P() in CSLAT,

3. For each object X € Setr, pux is a mapping px : X - P(X) in the category
Set,

4. For each morphism f: X »Y in Setg,

[7oux =py O f, (1)
holds.

An important example of R-relational power set theory in Setx is described
by the following proposition.

Proposition 2. Let R be a complete commutative idempotent semiring, and
let Tr = (Tr, 0,n) be the corresponding monad of Proposition 1. The structure
(Tr,—,n) is the R-relational power set theory in category Setg, where for arbi-
trary R-relation f: X «» Y, the mapping fz : RX = RY is defined by

fR=101grx.
Moreover, T : Setg — Set is a functor such that for f: X » Y, Tr(f) = fz.

Proof. The proof is only a simple verification that identity (1) holds for both
structures. It follows directly from the properties of the compositions ¢ and ¢*.
|

It is obvious that for dual pairs of semirings (R, R*) we can also define the
notion of the R*-relational power set theory (Tg+,<,n*) in Setr+, where we
use the composition ¢* instead of ¢. Because objects of the Kleisli categories
Setr and Setr+ are identical, the mappings Tz and Tr» are identical.

To compare different theory of relational power sets, we introduce the notion
of a morphism between theory of relational power sets in the Kleisli category
SetR.
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Definition 6. Let R and S be complete commutative idempotent semirings and
let (P,—,p) and (V, <, p), respectively, be R and S-relational power set theories
in Setg. Then a: (P,—,u) — (V,«,p) is a morphism of these relational power
set theories, if

1. a={ax: X €Set}, where ax is a morphism P(X) - V(X) in the category
CSLAT.
2. For an arbitrary morphism f:X =Y in Setg the following diagrams commudte.

X P(X) P(Y)
\ﬁ. 0+ ax ay
P(X) ox - V(X) vix) I vy,

The basic example of a morphism between relational power set theories in
Kleisli categories is presented below. We use the following notation. If $: R - S
is a semiring homomorphism, for an arbitrary set X the mapping ax : RX — S¥
is defined by (ax(s))(z) = ®(s(z)), where s € RX |z e X.

Proposition 3. Let R and S be complete commutative idempotent semirings
and let (Tr, Or,nr) and (Ts,Os,n) be the corresponding monads, respectively.
If ®: R - S is a semiring epimorphism, then

Q= {aX 1 X € Set} : (TR7 _)777R) - (T57 (_77’5)5
18 a morphism of these relational power set theories.

Proof. We show that for arbitrary X € Set, ns x = ax.nr, x. In fact, since « is
a semiring homomorphism, for arbitrary z,z’ € X we obtain

anr,x (@) (@) = {(l]j ’ ZZf( Eggi ég = s, x (@) (2').

Further, we prove that for arbitrary R-relation f: X » Y, the identity ay.f~ =
(ax.f)".ax holds. We have

ay.f7 =ay.(f Or 1rx) = (ay.f) 0s (ax.1gx) = (ay.f) O0s (1sx.ax)=
(ay.f <>5 1sx).OéX = (Ozy.f)e.ax.
Therefore, o is a morphism of relational power set theories. |
Corollary 1. Let (R, R*) be a dual pair of semirings.

1. The relational power set theories (Tr,—,n) and (Tr+,<,n*), respectively,
presented in Proposition 2 for semirings R and R*, respectively, are isomor-
phic.
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2. The following diagram of functors commutes, where the functor A is such
that A(X) = X, A(f) =-f, where —f is defined point-wise.

SetR - > SetR*

Y

4

Set

Proof. Because - : R - R* is a semiring isomorphism, the first part follows
directly from Proposition 3. In that case, for an arbitrarily f: XY the following
equality holds.

fre=(=r=(=f) 0" 1grx. (2)

|

For a dual pair of semirings, we show some relationships between operators

— and <. According to Remark 1, instead of R or R*-relations, we can speak
of (R, R*)-relations.

Lemma 2. Let (R,R*) be the dual pair of semirings and let f: X »Y be a
(R,R*)-relation. Let a € R and s,t,s; € RX, iel.

7 (Uiersi) =Uier f~ (si), £~ (Miersi) = Mier f~(s4),
fTlaxs)=ax*f7(s), fTlax*s)=ax* f(s),

s<te f7(s) < f(), () < £ (1),

f(s)==f7 (=), [7(s)==f"(=s).

If f: X » X is reflezive, f<(s)<s< f7(s).

Let g: X »Y and f:Y » Z be (R, R*)-relations. We have

f797 =097, fTy9m=(f09)".

S G Lo do =

4 Relational Power Set Theorie in Categories Set(R)
and Set(R*)

As we mentioned in the Introduction, the other objects for which we can define
the theory of R-relational power sets are sets with R-relations. In order to build
such a theory, instead of the Kleisli category Setr, we need another category
with these objects, where the morphisms should be suitable R-relations.

Definition 7. Let R be a complete commutative idempotent semiring. The cat-
egory Set(R) of sets with R-similarity relations is defined by

1. The objects are pairs (X, Q), where X is a set and Q:X » X is a R-similarity
relation.
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2. Morphisms f:(X,Q) (Y, S) are R-relations f: X »Y such that f ¢ Q= f,
Sof=1r1.

3. The composition of the morphisms f:(X,Q) ~» (Y,5) and g: (Y, 5) » (Z,V)
is defined by g ¢ f.

4. For arbitrary object (X,Q), 1(x,0)=Q:(X,Q)~ (X,Q).

If (R,R*) is a dual pair of semirings, we can also define the category Set(R*)
of sets with R*-similarity relations, where instead of ¢ we use ¢*.

Analogously, as we introduced the R-relational power set theory in the Kleisli
category Setg, we can introduce the R-relational power set theory in the cate-
gory Set(R).

Definition 8. Let R be a complete commutative idempotent semiring. Structure
(F,1,7) is called a R-relational power set theory in the category Set(R) if

1. F:Set(R)—> CSLAT is a mapping of objects.

2. For each morphism f:(X,Q) ~» (Y, S) in the category Set(R) there exists a
morphism f!: F(X,Q) - F(Y,S) in CSLAT,

3. For each object (X,Q) € Set(R), 7(x,q) is a mapping X - F(X,Q) in the
category Set,

4. For each morphism f:(X,Q) (Y,S) in Set(R),

flrxo) =Trvs) O f

An example of R-relational power set theory in Set(R) is described by the
following proposition.

Proposition 4. Let R be a complete commutative idempotent semiring. The
structure (Fr,{,0) is the R-relational power set theory in the category Set(R),
where

1. For an arbitrary object (X, Q) € Set(R),
Fr(X,Q)={se R* :Qg(s) = (Q 0 1px)(s) < 5},
2. For arbitrary morphism f: (X, Q) (Y,S) in the category Set(R), the mor-
phism f7ﬂ2 (Fr(X,Q) - Fr(Y,S) in the category CSLAT is defined by
f=50F01px(=f 0 1px).

3. For arbitrary object (X, Q), the mapping 0:X - Fr (X, Q) is defined by o(x 0)=
Q.

Moreover, Fr : Set(R) — Set is the functor such that Fr(f) = f7ﬂ2

Proof (sketch). First, we show that for arbitrarily s € Fr(X,Q) we have
Fr(f)(s) e Fr(Y,S). In fact, we have
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(SO 1ry)(Fr(f)(5)) = (S O 1py)(S 0 f 0 1px)(s) =S 0 1pv.(S 0 f 0 1rx)(s)=
(5050 f01rx)(s)<(S0f01rx)(s)=Fr(f)(s),

Furthermore, we have

Fr@)=Q0Q01px =Q 0 1px, s<(Q0 1zx)(s)<s,

and it follows that (Q ¢ 1gx)(s)=s. Therefore, Fr(1(x,))=(Q01rx)=1p, (x,0Q)-
Finally, let f:(X,Q)~ (Y,S) and g: (Y, S) «» (Z,W) be morphisms in Set(R).
Therefore, f 0 Q=f=5¢0 fand g 0 S=g=W ¢ g and we obtain the following.

Fr(g).Fr(f)=(W 0 g01py).(SOfO1lrx)=W g0 SO fOlgx=
Wogofolpx =Fr(g0f),

as follows from identity rule W ¢ W =W and composition rules for ¢. Therefore,
Fr is the functor. |

If (R,R*) is a dual pair of semirings, we can also define the R*-relational
power set theory in the category Set(R).

Proposition 5. Let (R,R*) be a dual pair of semirings and let the structure
(Fr+,l,0%) be defined formally in the same way as the structure (Fr,1,0), where
O* is used instead of ¢. Then (Fr,|, o) is the R*-relational power set theory in
Set(R*) and Fr :Set(R*) - Set is a functor such that Fr«(f) = fV.

The proof can be done analogously to Proposition 4 and will be omitted. W
For R-relational power set theories in the category Set(R) we can also define
the notion of a morphism between these theories.

Definition 9. Let R and S be complete commutative idempotent semirings and
let (P, 1) and (V,f,p), respectively, be R and S-relational power set theories
in the category Set(R). Then a: (P, 1, 1) = (V, 1, p) is a morphism of relational
power set theories in Set(R), if

1. a={a(x,q):(X,Q)eSet(R)}, where a(x q): P(X, Q) =V (X, Q) is a morphism
in the category CSLAT.

2. For arbitrary morphism f: (X, Q) (Y,.5) in Set(R), the following diagrams
commute.

px.Q) — "

P(Y,S)

X(X,Q) (Y, S)

PX,Q) — 09 L yix,q)  v(x,Q) el vy s)

The basic example of a morphism between relational power set theories in the
category Set(R) is presented below. We use the same notation @,ax as in
previous Section.
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Proposition 6. Let R and S be complete commutative idempotent semirings
and let (Fr,\r,or) and (Fs,ls,0s), respectively, be the corresponding rela-
tional power set theorie in the category Set(R), defined in Proposition 4. If
®:R > S is a semiring epimorphism, then

a={ax: X eSet}: (Fr,fir,or) > (Fs, s, 05),
18 a morphism of these relational power set theories.

Corollary 2. Let (R, R*) be a dual pair of semirings.

1. The relational power set theories (Fr,f,0) and (Fr+,|,0%), respectively, pre-
sented in Proposition 5 are isomorphic.

2. There exists the natural isomorphism ¥ : Fr — Fr+.(2, where the functor
2:Set(R) - Set(R*) is such that 2(X,Q) = (X,-Q), 2(f) =-f.

Proof (Sketch). For arbitrary (X, Q) € Set(R) the mapping
Vix,Q) : Fr(X,Q) > Fr.2(X, Q) = Fr« (X, -Q)

is defined by ¥(x )(s) = —s, where s € Fr(X, Q). For illustration only, we prove
that ¥ is a natural transformation. That is, for an arbitrary morphism f:(X, Q)
(Y, S) in Set(R), the following diagram commutes.

Fr(X,Q) 252 pr. 2(X,Q)

Jis QN

Fr(Y,8) 285 Fa. (Y, S).

Using Propositions 4 and 5, for an arbitrary s € Fr (X, Q) we obtain

(20 Px,0)(5) = (<) igu (=8) = (=f 0* Lpx ) (=8) = (=f 0% ~1x)(s)=
~(f 0 1gx)(s) = = fh(5) = Wy ). fR (5).

Therefore, ¥ is a natural transformation. |

5 Example

As we mentioned in Introduction, semirings-valued fuzzy sets can be universal
value sets for many new fuzzy structures. In this section, as an illustrative exam-
ple, we recall how intuitionistic fuzzy sets can be transformed into (R, R*)-fuzzy
sets and how the methods presented in the paper can be applied to intuitionistic
fuzzy sets.

Let (L,v,A,®,®,-,0r,11) be a complete MV-algebra. In [11] we showed
that L-intuitionistic fuzzy sets can be transformed into (R, R*)-fuzzy sets, where
R={(a,B) € L?:~a > B}, and
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L. (o, ) + (a1, 1) i =(a v ar, B A Br),

2. (o, B) x (a1, B1) :=(a® a1, B & B1),

3. OR:(O,]-) 1g= (1 O)a

4. (o, ) +* (a1, 1) :=(a A, BV Br),

5. (a, ) x (ahﬁl) =(a® a1, p1),

6. 0y = (1 0), 1% =(0,1),

7. -R—->Ris deﬁned by =(a, 8) = (8, @).

8. From the definition of ordering in R it follows that («, 8)<(</, §')<=(agd/, 5 >

g
Then the algebraic structure of L-intuitionistic fuzzy sets is isomorphic to the
algebraic structure of (R, R*)-fuzzy sets. We present an example of the (R, R*)-
similarity relation @ : X v X and show what elements of R-relational power set
Fr(X,Q) (that is, intuitionistic fuzzy sets extensional with respect to Q) from
Proposition 4 look like.

Ezample 1. Let ¢1, ¢o be arbitrary (standard) L-valued fuzzy relations X x X —
L, such that

1. ¢; is a L-valued similarity relation in X,
2. ¢o = =1, where v is a L-valued similarity relation in X,
3. =¢1(z,y) < da2(x,y), for arbitrary z,y € X.

Let the example of the R-relation @ : X ~» X be defined by

rye X, Qx)(y) = (91(x,y), p2(,y)) € R.

Then, @ is the R-similarity relation, that is, Q ¢ @ < @, @ is symmetric and
@ > nx. In fact, we have

QOQ ZQ )(y): Z(¢1(m7t)a¢2(x7t) X <¢1(t7y)7¢2(t’y)):

teX teX

Z (1(2,t) ® P1(t,y), p2(x,t) ® Pa(t,y))=

teX

<V¢1ﬂ?t ® ¢1(t,y), /\¢2$t €9¢2(ty))

teX

Since ¢; is a L-similarity relation, we have \/tex¢1(x,t) ® ¢1(t,y) < é1(z,y). In
addition, we have the following.

/\¢2$t€9¢2ty /\ (=p2(z,t) ® =02(t,y))=

teX

=V w(x,t) @ y(t,y) = ~¥(z,y) = ¢a2(z,y).

teX

Therefore, @ ¢ @ < Q is true. Because ¢1, ¢y are symmetric and reflexive L-
fuzzy relations, @) also symmetric and @ > nx. Therefore, @ is the R-similarity
relation.
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Now, let s: X — R be an intuitionistic fuzzy set (that is, (R, R*)-fuzzy set),
where s(z) = (s1(z), s2(z)) € R. Then s is extensional to Q if s € Fr(X, @), that
is, (Q ¢ 1zrx)(s) <s and we should have

(Q 0 1rx)(s) = 2. s(t) x Q(t)(2)=

teX

<v a1t ® Gt ), A s2(t) @ ¢2<t7x>) < (s1(a), 35().

teX teX

Therefore, s =(s1,2) is an element of the power set Fr (X, Q) if and only if s;
is extensional with respect to ¢; and —ss is extensional with respect to ¥ = —¢s.

6 Conclusions

In the paper, we dealt with the issue of building another part of the theory
of semiring-valued fuzzy sets and its applications to new fuzzy sets. We focus
on theories of power set structures in two basic categories whose objects are
semiring-valued fuzzy sets. The first category Setr was an analogy of the clas-
sical category of sets, but with R-relations as morphisms. The other category
Set(R) was a generalization of the category Setr, where objects are pairs of sets
with R-similarity relations. The advantage of using semiring-valued fuzzy sets
is, among other things, that this value structure enables the direct use of monad
theory methods for the construction of pairs of concepts that are interconnected.
In this way, for example, for semiring-valued fuzzy sets, two variants of power set
structures describing two variants of extensional fuzzy sets can be defined and
the relationships between these variants can be examined. In further research,
we will focus on the application of the obtained theoretical results in new fuzzy
structures, such as neutrosophic, fuzzy soft sets or their mutual combinations.
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Abstract. The article focuses on a problem that naturally comes to an
interest by joining two classical topics, namely the solvability of systems
of fuzzy relational equations, and the partiality as a tool for modeling
undefined values. As the first topic basically formally investigates the cor-
rectness of fuzzy rule-based systems by the investigation of the preserva-
tion of modus ponens, the other one allows dealing in an elegant algebraic
way with distinct undefined values, in the particular case of the Dragon-
fly algebra, the focus is on missing values, their connection is straight-
forward. Indeed, dealing with missing values is rather omnipresent, and
distinct expert rule-based systems are not immune to it so, such an inves-
tigation is highly desirable. What is not so straightforward are the results
ensuring the solvability of such systems, i.e., the existence of safe models
of the rules. Some previous results have been published and they relied
on restrictions on the algebraic level. This article brings a new insight
and investigates, what happens if we refuse to accept such a restriction.
The answer is interesting as restricting the choice of the algebra does not
seem to be critical but it imposes some restrictions on the sides of the
consequents. Luckily, these restrictions are not so critical and restrictive
from the application point of view.

Keywords: Fuzzy relational equations - Partial Fuzzy Set Theory -
Dragonfly Algebra

1 Introduction and Preliminaries

1.1 Introduction

Systems of fuzzy relational equations [15,16,25] can be viewed as a mathemat-
ical formalization of the preservation of the modus ponens property by a fuzzy
inference system. Let the antecedent and consequent fuzzy sets be given. If the
derived system is not solvable, i.e., if there is no fuzzy relation that would solve
the given system, the incorrectness is inherent in the antecedents and conse-
quents and there is no way how to build a fuzzy relation modeling the given
fuzzy rule base that would not harm the preservation of modus ponens.
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This rather clear and fundamental area is widely explored by numerous
researchers and referring to all the relevant sources is by far beyond the extent
of the single article, however, whenever we move to the area of partial fuzzy
set theory [3,4] the situation significantly changes. Partial fuzzy set theory, as a
counterpart of partial fuzzy logic [20], allows considering elements of universes
that do not have defined membership degrees to partial fuzzy set. Partial fuzzy
logic is technically only an appropriate multiple-valued extension of partial 3-
valued logics [13] that belong to classical topics being under investigation already
since 1920. And indeed, if we consider partial fuzzy sets entering the investigation
of the preservation of the modus ponens, the situation gets more complicated
and much less investigated. Anyhow, even here we may point the interest of
readers to the first results, namely to [8,10,11].

This particular contribution stems mainly from [9] and continues in the direc-
tions that were set up there. The object of the investigation is again a direct
system of partial fuzzy relational equations and its solvability. The chosen alge-
bra of the operations for the considered partial fuzzy set theory is the Dragonfly
algebra [27]. The mainly studied model also stems from implicative fuzzy rules
and also uses the external assertion operation. The investigated question is, what
happens if we drop the assumption on the underlying algebra with the multipli-
cation that has no zero divisors, which was essential for the results provided in

[9]-

1.2 System of Fuzzy Relational Equations

Recall the standard form of the system of fuzzy relational equations
AioR=DB;,i=1,....m (1)

which considers the direct products (also sup-T composition) denoted by o.
Fuzzy sets A; € F(X) and B; € F(Y) are respectively given antecedent and
consequent fuzzy sets, and fuzzy relation R € F(X x Y) is unknown.

In other words, antecedents A;, consequents B;, and consequently a fuzzy rule
base are given, while a fuzzy relation R € F(X x Y') that solves the above-given
system is a safe model [21] of the given fuzzy rule base. The use of the words
comes from the fact that it is safe w.r.t. the preservation of modus ponens and
we know that it guarantees that the inference, i.e., the mechanism of reasoning,
is not harming basic logical prerequisites of correct functioning.

Let us recall the widely known fact that system (1) is solvable if and only if the
implicative model R(x,y) = AL (Ai(z) — By(y)) is its solution. Consequently,
fuzzy relation R is the primary choice for modeling the fuzzy rule bases whenever
we consider the composition rule of inference modeled by o, if R does not work,
nothing works.
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2 Dragonfly Operations and Properties

2.1 Dragonfly Algebra

As mentioned in the Introduction, partial fuzzy sets allow not only membership
degrees from the unit interval [0, 1] but some elements of the universe may have
undefined membership degrees. In its logical counterpart, it means we may con-
sider propositions that are not only evaluated by truth degrees, but for some
propositions, we may have undefined truth degrees. The need for such an exten-
sion stem from natural cases of distinct nature and we only refer to relevant
sources [1,7,13,14].

As most of the algebras, let us mention, e.g., Bochvar, Sobocriski, McCarthy,
or Kleene, referred rather to other motivations for undefinedness than model-
ing missing or unknown values, the authors of [27] designed specific Dragonfly
algebra that was designed in order to deal with the missing or unknown values.
One could easily object that there are other natural approaches for modeling the
unknown values, e.g., the possibility theory, and it is needed to state that this is
true, however, the curse of dimensionality makes some of them hardly usable for
a bit more complicated problems and so, the algebraic approach may be viewed
as an approximation that is, nevertheless, easy to use and leads to meaningful
results. Let us note that all the algebraic operations are implemented in the Ifi
R-package [5,6] which makes their use very straightforward.

Let us start from an underlying residuated lattice ([0, 1], A, V, ®, —,0,1) that
provides operations for “standard” (fully defined, non-partial) fuzzy sets. As in
all previous studies, let us use the x as a denotation of the undefined value and
let [0,1]* = [0, 1] U {x}. Then the operations of the Dragonfly algebra operating
on the support [0, 1]* are recalled in Table 1 and of course, if both values a,b €
[0, 1], the Dragonfly operations comply with the operations from the underlying
residuated lattice, i.e., a ®p b = a ® b, for instance. It is important to mention
that the new structure of the Dragonfly algebra ([0, 1]*, Ap, Vp, ®p, —p,0,1) is
no more a residuated lattice [12].

Table 1. Dragonfly algebra operations for a,b € (0, 1].

(®p, Ap) (Vp) (—b)

a * * a *|a a * |*
* b * * b|b * b b
* * * * x|x * * |1
* 0 0 * 0| % 0 % |1
0 * 0 0 % | % * 0 | %

Note, that the Dragonfly operations employ the so-called lower bound strat-
egy, i.e., they lead to a value that can be “at least” guaranteed even without
knowing what is the real value that is currently not known to us and modeled by
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*. Indeed, a Ap x = * as we cannot guarantee anything about the conjunction of
a and an unknown value. On the other hand a Vp * = a because no matter how
small the value would replace x later on, we can be sure that the result would
be still greater or equal to a.

This principle leads to two ordering relations on [0, 1]*. The first one that
is default and identical to, e.g., ordering on the Kleene algebra, considers x to
be incomparable to any value a € (0,1) and allows to compare x only with
values 0 and 1 as follows: 0 < x < 1. From the “lattice-like” operations Ap and
Vp, however, we can define a lattice-like ordering (denoted by <,) as follows:
0 <¢ * <y a for any a € (0,1]. This ordering naturally stems from the following
facts: a Apx = * and aVp* = a. As stated above, both relations < as well
as <y are partial orders and so, the pairs of facts a < b and a > b as well as
a <y band a >, b lead to the same conclusion that a = b. Note, that for values
a,b € [0,1], both orderings coincide. Technically, this puts Dragonfly algebra
in a comfortable position among other partial algebras and allows us to prove
required equalities using an alternative ordering whenever one of them does not
lead to the positive end.

Finally, let us also recall the external operation of assertion [7,18,24] that
can enrich any algebra for partial fuzzy set theory and that has been shown
useful in [9]. It is worth mentioning that this assertion is also included in the
investigation [2]. In particular, one may find that it meets the conditions defined
for the so-called intensifying hedge, one of the unary functions used to extend the
solvability results of standard fuzzy relational equations. The achieved results
were developed for the complete residuated lattices as the structure of truth
degrees [2].

Definition 1. The operation |: [0,1]* — [0,1]* that is defined by |a = 0 if
a =% and |a = a otherwise is called assertion.
2.2 Auxiliary Properties
First, we present several auxiliary properties that will be needed later on.
Lemma 1. [11] For any a,b,c € [0,1]*:

aNpb<pa, aApb<pb.
Lemma 2. For any a,b € [0,1] and ¢ € [0,1]*:

a<b = a®pc<,b®pec, (2)
a<b = c—pa<,c—pb. (3)

Sketch of the Proof: Property (2) is taken from [11]. Consider the case of ¢ = *.
Then x —p a <; x—p b holds trivially for any a < b in [0, 1] which proves (3). O

Lemma 3. For any a,b € [0,1]* and c € [0,1]:

a®@pb<p;c = b<,(la)—ec (4)
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Sketch of the Proof: The proof is done by checking all combinatorial possibilities
of the replacement of a,b by * in the left inequality of (4). O

Lemma 4. [9,11] For any a,b,c € [0, 1]*:

a<sb,a<;c & a<;bApec, (5)
a<sc, b<pc & aVpb<,ec. (6)

Lemma 5. For any a,c € [0,1]* and b € [0, 1]:
a<¢b = (lc)—=pa<y (lc)—pb.

Sketch of the Proof: The case of ¢ = % is trivial. Let a = x and b > 0. Then
* <y b is preserved and (| ¢) —p a = * on the left-hand side, which is smaller or
equal to (] ¢) —pb. O

Lemma 6. For any a,b € [0,1]*:
b <y (l, a) ~>D(a®D b)

Sketch of the Proof: The case of a € {0,*} trivially leads to the preservation of
the inequality as the right-hand side is equal to 1. Let a ¢ {0,x} and let b = «.
Then we get x <y a —p(a®p*) = a—p* = *. |

3 System with the Direct Product

Let F*(U) = {A| A: U — [0,1]*} denote the set of all partially defined fuzzy
sets on a universe U. In this section, we consider the following system of partial
fuzzy relational equations employing the partial Dragonfly operations and using
the direct product o:

AZ‘ODRZBZ', i:l,...,m (7)

where partially defined A; € F*(X) and fully defined B; € F(Y) be given, and
R € F*(X x Y) is an unknown partial fuzzy relation we seek.

This particular setting differs from the very general setting investigated in
[11] by imposing the consequents to be fully defined. Though at the first sight,
it might be viewed as restrictive, however, it mimics a rather natural situation
when the outputs (decisions, states, classes, control actions) are always known,
however, on the input, we can meet undefined (mostly missing, unobserved) val-
ues. For example, in the expert classification of dragonfly species, which was the
motivating application for the development of the Dragonfly algebras [27], one
can often miss whether the flying dragonfly had some red dots on its body or not.
Thus, such a feature xj, is missing in the input vector z = (z1,..., %, ..., TK)
and we have an undefined value A(xzy) = x that leads to the input fuzzy set

A(z) = (A(z1),. .., %, ..., Alzg)).
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3.1 Solvability Issues

Mimicking the default solution R for the standard systems of fuzzy relational

equations led the authors of [9] to deal with R} € F*(X x Y) given by

R (z,y) = /\D' . (1 Ai(z) —=p B;(y)) as the candidate for the solution to the
i

system of partial fuzzy relational equations. As the problem that we study
assumes the consequents to be fully defined, we may replace operation —p by
— and operation Ap by A, and we get R| € F(X x Y) given by:

m

Ry(z,y) = N\ (I Ai(x) — Bi(y)). (8)

i=1

The searched solution or its candidate for the studied systems is naturally
the implicative model in which, we simply replace missing values with values 0
as the previous study [9] showed us that this strategy may lead to satisfactory
results.

As the lattice-like ordering will play an essential role in the latter parts of our
investigation, we also introduce the following lattice-like inclusion denotation:

A; CpAs  if Aj(u) <p As(u), forallu e U.
Theorem 1. Let B;(y) > 0 for any y € Y. Then for each i € {1,...,m}:
Ai op Rl Qe Bl (9)

Proof. Taking into account the unlimited support of B; due to which x </ B;(y),
and the fact that R(z,y) # *, it suffices to use Lemma 1, Lemma 2, and the
property a ® (a — b) < b valid for a,b € [0, 1], as follows

(Aiop Ry)(y) = \/D A;(z) ®p /\ (1 4;(z) = B;(y))

reX

<¢ \, Ai(2) @p (1 Ai() — Bi(y))

zeX

<V (A@e (A - By)

z€X:A;(x)=0
Vb \/D (Ai(z) ®@p (I Ai(z) — Bi(y)))

z€X:A;(x)=*

wo VA e A — Bw)
z€X:A;(z)¢{0,x}

=0Vp*Vp \/ (Ai(r) @ (Ai(z) — Bi(y)))
z€X:A;(z)¢{0,x}
< Bi(y).

As < and < coincide for the fully defined fuzzy sets, and as y € Y has been
chosen arbitrarily, we get the proof of (9). O
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Theorem 2. Let system (7) be solvable, and let B;(y) > 0 for anyy € Y. Then,
for eachi e {1,...,m}:

Ai op Rl 2@ Bi. (10)

Proof. Let R € F*(X x Y) be a solution of system (7). Notice that if there
was an z such that B;(y) <; A;(z) ® R(z,y) then by the definition of Vp we
would get B;(y) <¢ (A;op R)(y). Therefore, A;(z) ®p R(x,y) <¢ B;(y) for all
z € X, and with help of Lemma 3 and Lemma 4, the following sequence of the
inequalities can be derived

Al(x) ®DR($7y) <e¢ Bl(y)7 izla"'vmv er

R(I‘,y) < /\(l AZ('I)_)Bl(y)): yEY

=1

and hence, R Cy Rl- Furthermore, as R is a solution of the system, i.e.,

\/, (Ai(z) @p R(z,y)) = Bi(y) > 0,

zeX
there has to exist an 2’ € X such that A;(2’) # x and R(z',y) # %, and
for which A4;(z') ® R(z',y) > 0. And because R(z,y) <, Rl (x,y) holds for
any pair (z,y), it has to hold also for the above-given value z’ and we get
Ai(2') ® R(z',y) <¢ Ai(z') @ Ry(«',y) and A;(z') @ R (2',y) > 0. Using the
definition of operation Vp, this fact leads to the following inequality

\, (4i@) @b Rz, ) <¢ \/ (Ai(e) @b Ri(z.9)) .

zeX rzeX
which means that A; op R Cy A; op Ri' Thus, B; = A;op R Cy A; op ]:21. O

Theorem 3. Let Bi(y) >0 for anyy € Y. System (7) is solvable if and only if
R, is its solution. Moreover, R| is the greatest solution of the system w.r.t. to
ordering <p.

Sketch of the Proof: A direct consequence of Theorem 1 and Theorem 2. a

For the sake of achieving the inclusion (10) and consequently the solvability
criterion formulated in Theorem 3, we restricted our focus to consequents B;
that have unlimited supports, i.e., B;(y) > 0 for all y € Y. Such a restriction
might be viewed as a too high price for dropping the restriction imposed on the
underlying algebra however if we do dare to step out of conservative settings often
mirrored in triangles, we learn that it does not limit us from the application point
of view. Indeed, e.g. the Gaussian-shaped fuzzy sets were often experimentally
confirmed as useful. And also on a theoretical level, such or any other fuzzy
sets with unlimited supports were proved to ensure distinct desirable properties,
e.g. the preservation of the continuity of the resulting function produced by a
fuzzy rule-based system [26]. They have been also discussed in [11] as meaningful
consequents with a positive impact.
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3.2 Beyond the Solvability — Approximate Solutions

For the cases of the non-existence of a solution to a given system of fuzzy rela-
tional equations, distinct authors proposed so-called approximate solutions, see
[22,23]. This direction has been followed also for the partial fuzzy relational
equations in [9] and we again adopt the approach as it has been confirmed as
inspiring and beneficial.

So, let us assume that there exists no solution of system (7). Model Ri is
formulated in a form that mimics the implicative model R. Moreover, it has
been proven [17,22] that when system (1) is not solvable then R is its greatest
approximate solution in a suitable space of approximate solutions called “space of
lower approximate solutions”. Such a space contains fuzzy relation R € F(X x
Y) such that 4; o R C B;. The question is whether an analogous result is
preserved for the case of partial fuzzy relational equations, i.e., when system
(7) is not solvable. So, we concentrate on the question of whether Rl is an
approximate solution and whether it is the biggest one among the others. Under
some additional assumptions, we get the positive answer. Due to the positive
impact of consequents with unlimited supports on the results in the previous
section, we keep this assumption also in this section.

First of all, let us refer to relevant previous works [19,22,28] and introduce
the definition of an approximate solution of system (7).

Definition 2. A partial fuzzy relation R’ € F*(X xY) is called an approximate
solution of system (7) if it satisfies for ¢ = 1,...,m the following:

(i) the inferred output B, = A;op R is fully defined (B, € F(Y)), it meets
B! C; B;, and it has an unlimited support (Bi(y) > 0, Yy € Y);

(ii) the inferred output is mazimal, i.e., for any R” € F*(X x Y) and for any
B! € F(Y) such that B = A;op R” and B} C, B! Cy B, it holds that
B! = B!

Definition 2 states that R’ is an approximate solution of system (7) if it
generates an output B; that is the maximal lower approximation of the required
output B; and it has no limited support similarly as B;. Model R’ can be also
viewed as an exact solution to the modified system of partial fuzzy relational
equations with A; and B]. As the system associated with A; and B, may have
several solutions, system (7) may have several approximate solutions as well.

Theorem 4. Assume that system (7) is not solvable and moreover, assume that
(Ajop R))(y) ¢ {0,%} for any y € Y. Then R, is an approzimate solution of
system (7), and it is the biggest one compared to the other approximate solutions
of the system, with respect to ordering <y.

Sketch of the Proof: Let B, = A;op Rl~ Based on the assumption that
(Ajop R)(y) ¢ {0,%} for all y € Y, B, € F(Y) and Bi(y) > 0 Vy € Y.
Theorem 1 shows that A; op Rl Cy B; and so, B; Cy B;. Thus, condition (i) in
Definition 2 is satisfied. Now, let there exist R and B}’ such that A; op R" = BY
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and Bj C; B Cy B;. Clearly, B € F(Y) and B/ (y) > 0 for any y € Y, and
R" Cy R", where

m

f%’l'(x,y) = /\ (1 Ai(z) — Bl (y))-

i=1
By Lemma 5 and by B} C; B C; B;, we get for any x and y

(1 Ai)(z) —p Bi(y) <¢ (I Ai)(x) —p B} (y) <¢ (I Ai)(x) —p Bi(y),

which leads to

m

A (L Ai(2) —p Bi(y)) <¢ R (z,y) <0 Ry(x,y). (11)

i=1
With help of Lemma 5 and then Lemma 6, we obtain:

(L Ai(z) —p Bi(y)) = /\ <l Ai(z) —p (,\/D Ay(@") op R\ (2, y)))

reX

i=1
> N\ (l Ai(r) —p (Ai('r) ®p Rl(a:,y)))
i=1
2[ Rl (J?, y)
Thus, the inequalities in (11) turn to equalities. Then,
B}'(y) = (Aiop R)(y) = (Aiop R))(y) = Bi(y).

Hence, condition (ii) from Definition 2 is met and Rl is an approximate
solution of system (7). ) )
Let R be another approximate solution of the system, iLe., B; = A;op R is

another maximal lower approximation of B;, that is B; Cy B;. Then necessarily
R C; R where

Ry(z,y) = N\ (I Ai(x) = Bi(y)).

1=

[

And as for any pair (z,y) € X x Y the following inequality
L Ai(x) — Bi(y) <¢l Ai(z) — Bi(y)
holds, we obtain RC, Rl Cy RL~ O

In order to estimate the quality or accuracy of the approximate solution, the
so-called approximation index was defined in [9].



Partial Fuzzy Relational Equations and the Dragonfly Operations 83

Definition 3. [9] Let R’ be an approximate solution of system (7). The approz-
imation index of R’ denoted by ¢(R) is defined as follows

/\ A, (Aiop R') () =p Bi(y)). (12)

zlyEY

Definition 4. R’ is said to be the optimal approximate solution of system (7)
if for any approximate solution R” it holds that ¢(R") <, p(R’).

Lemma 7 below conveys the information that the greatest approximate solu-
tion R is also the optimal approximate solution.

Lemma 7. Let system (7) be not solvable and let (A; op R))(y) ¢ {0,%} for any
y €Y. Then ]:21 is the optimal approzimate solution of system (7).

Sketch of the Proof: For an approximate solution R’ of system (7) it holds that
R Cy Ry. As (Aiop R')(y) ¢ {0,%}, we can verify that A;op R' Cy A;op R
and so, we get p(R') <; o(R)).

O

The condition (4;op R|)(y) ¢ {0,%} assumed in Theorem 4 for any y € Y
guarantees the existence of an approximate solution whenever the exact solution
does not exist. The following theorem shows, that without such an assumption,
there does not exist any approximate solution.

Theorem 5. Let system (7) be not solvable. Moreover, let there exists an y ey
and i € {1,...,m} such that (Ay op R))(y') € {0,x}. Then there exists no
approzimate solution of system (7).

Sketch of the Proof: Let R € F*(X xY) be such that A; op R C¢ B;. Following
the proof of Theorem 2, we get R C; R|. The fact that (4 op R|)(y/) € {0, %}
implies that Ay (z)®p R (x,y') € {0,x} for all z € X, and consequently also
Ay (z)®p R(z,y") € {0,x} for all z € X. Hence, (A; op R)(y') € {0,%}. Conse-
quently, R cannot be a solution of any system A, op R’ = B} in which B, C; B;
and Bi(y) ¢ {0,x} for any y € Y and condition (i) in Definition 2 is not satisfied.

O

Theorems 4 and 5 directly lead to Corollary 1 formulated below.

Corollary 1. Let system (7) be not solvable. Then system (7) has an approxi-
mate solution if and only if for any y € Y and for any i € {1,...,m} we have

(4;0p By)(y) ¢ {04}
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4 Conclusion

We have revisited the problem of systems of partial fuzzy relational equations,
which was firstly addressed for the Dragonfly algebras in [9] and then elabo-
rated in the general setting in [11]. This contribution also addresses the case
of the Dragonfly algebra and compared to [9] tries to answer the question of
what happens if the essential assumption on the underlying algebra without zero
divisors is dropped. The answer is positive and interesting, it leads to another
setting that relaxes this algebraic condition but to assuming fully defined con-
sequents, moreover, with unlimited supports. As long as the first assumption
changes the semantics of the studied problem (which does not mean it makes
it less interesting), the second is purely technical (yet still acceptable for most
of the applications). Apart from the exact solvability, we have addressed also
the approximate solution for the systems that are not solvable. Interestingly, the
implicative model R | that is the primary candidate for the exact solution is also
the optimal approximate solution whenever an exact solution is not feasible. It
only confirms its importance.
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Abstract. A serious obstacle for the use of fuzzy concept analysis in
practical issues is the problem of matching between sets of objects and
properties in fuzzy environment. To overcome this problem several mod-
ified versions of fuzzy concept analysis were developed. In this paper
we combine Bélohlavek’s crisply generated fuzzy concept approach and
gradation of fuzzy preconcepts initiated in our previous papers and lay
the basics of the theory of graded crisply generated oriented fuzzy pre-
concepts. We illustrate our ideas by two practical examples related to
zoology and astronomy.

Keywords: Formal fuzzy concept analysis - crisply generated fuzzy
concept - object oriented fuzzy concept - gradation of fuzzy preconcept
lattice

1 Introduction

Formal concept analysis initiated by R. Wille and B. Ganter [6,21] in 80-ties
of the previous century at present is one of fast developing areas of theoretical
mathematics, having numerous applications in different areas of applied sciences.
At present one can distinguish three branches of what could be united under the
name of a formal concept analysis: the first is the “classical” formal concept
analysis whose fundamentals were laid by R. Wille and B. Ganter, the second
is so called property-oriented concept analysis introduced by I. Diintch and G.
Gediga [5] in the process of carrying out the research in the field of model logic,
and the last one, the object-oriented concept analysis introduced by Y.Y. Yao
[22], as the dual one to the property-oriented approach. The starting framework
for all of them is a formal context, that is a triple (X,Y, R) where X is a set,
whose elements are interpreted as some abstract objects, Y is a set, whose ele-
ments are interpreted as some abstract properties and R C X x Y is a relation
where the entry xRy is interpreted as “an element x has property y”. The goal of
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each version of concept analysis is to distinguish pairs (A, B) where sets A C X
of objects and sets B C Y of properties are mutually connected by the relation
R. The difference between them is the interpretation of what does the statement
“are mutually connected by the relation R” actually mean.

All three branches of concept analysis started their “life” in crisp frame-
work. However, later on mathematicians as well as specialists working in appli-
cations showed interest in possible fuzzification of concept analysis. Specifically,
to develop the counterpart of each one of the three versions of concept analysis
for the case of a formal fuzzy context, that is a triple (X, Y, R) where X and Y are
still sets of objects and properties respectively, R : X XY — L is a fuzzy relation
and A: X — L, B:Y — L are fuzzy sets of objects and attributes respectively.
The goal of the formal fuzzy analysis is again to distinguish pairs (A, B) of
fuzzy objects and properties that are mutually connected by the fuzzy relation
R. Indeed, theoretically very sound fuzzy versions of context analysis were soon
created: the “classical” fuzzy formal analysis (i.e. in the spirits of Wille-Ganter)
was introduced by R. Bélohldvek [2], fuzzy versions of property-oriented and
object-oriented fuzzy analysis, as far as we know, first appeared in the paper [4].
However, as different from crisp concept analysis which has numerous applica-
tions in various areas of applied science, the direct practical use of fuzzy versions
of concept analysis ir rather problematic. Actually we know examples of only
fragmentary applications of fuzzy concept analysis in practice. The reason for
this is that the precise matching between sets of objects and sets of properties
in fuzzy environment is nearly impossible. Specifically, even if the set of objects
A C X and the set of properties B C Y are crisp and only R: X xY — L is
fuzzy, then the pair (A, B) cannot make a concept in any of the concept analysis
versions except of some trivial cases. To overcome this problem different modi-
fications of concept analysis were proposed. For example, multi-adjoint concept
lattices [11], interval pattern structures [7], proto-fuzzy concepts [10], crisply
generated fuzzy concepts [3,15] were introduced on the lines of Wille-Ganter
fuzzy concepts, multi-adjoint concept lattices on the lines of object-oriented and
property-oriented fuzzy concepts were considered in [13,14]. In [1] the authors
attract the use of a structural element in the spirit of mathematical morphology
in the process of applying property-oriented concept lattices in signal process-
ing. In our papers [18,20] we introduced the so called graded approach to fuzzy
concept analysis where, instead of fuzzy concept lattices, more flexible, graded
fuzzy preconcept lattices were laid in the basis of the research.

Our preliminary goal when writing this paper was to propose crisply-
generated object- and property-oriented versions of fuzzy concept analysis, bas-
ing on the ideas developed in [3] for the case of Wille-Ganter fuzzy concept
analysis. However soon it became clear that such a direct transform of the ideas,
which work well in Wille-Ganter’s case, are not appropriate in other two versions
of fuzzy concept analysis. As a successful possible way around this problem we
suggested the combination of the two ideas: to start with the idea of crisply
generated fuzzy concept, but afterwards to “soften” its expected solution by
assigning to it the degree, i.e. some value in the lattice L estimating the “con-
ceptual quality” of the obtained concept.
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The paper is structured as follows. In the next, second section we recall
basic notions used in this work. A short Sect. 3 is devoted to what we call the
fuzzy preconcept lattice of a formal fuzzy context. Fuzzy preconcept lattices
implicitly appear in all works in the area of fuzzy concept analysis, but in our
paper they will play the framework of the study on the whole. The fourth section
is the central in the paper. Here we introduce the notion of a crisply generated
(object) oriented fuzzy preconcept and study its basic properties. (The restricted
conditions on the scope of this work forced us to limit ourselves to one of the
“oriented” approaches.) In the fifth section two examples of applications of our
theory are presented, one of them concerns classification of zoological species
and the second deals with the analysis of solar activity. In the last, Conclusion
section we sketch some directions where we foresee the prospects for further work
on the basis of this article.

2 Preliminaries

Lattices, Quantales and Residuated Lattices. In our paper L = (L, <, A, V)
denotes a complete lattice, that is a lattice in which joins \/ M and meets A M
of all subsets M C L exist. In particular 0 € L and 1 € L are the bottom and the
top elements of L respectively. A complete lattice L is called join-distributive if
a(Verbi) = Vier(aAb;) for every a € L and every {b; | i € I} C L. Dually,
a complete lattice L is called meet-distributive if aV (A;c;0i) = A;jer(aVbi). A
complete lattice is called bi-distributive if it is join- and meet-distributive. Let
L be a complete lattice and * : L x L — L be a binary associative monotone
operation. The tuple (L, <,A,V, %) is called a quantale [17] if % distributes over
arbitrary joins: a * (V,c;bi) = Vier(ax i), (V;erbi) xa = V(b xa) Va €
L, {b;]i € I} C L. A quantale is integral if the top element acts as the unit, i.e.
1% a = a. A quantale is commutative, if a * b = b* a for all a,b € L. In what
follows by a quantale we mean a commutative integral quantale.

In a quantale a further binary operation +—: L x L — L, the residuum, can
be introduced as associated with operation * of the quantale (L, <, A,V, ) via
the Galois connection, that isaxb < c<=a <b— ¢ forall a,b,c€ L.

Fuzzy Sets and Fuzzy Relations. The concept of a fuzzy set was introduced
by L.A. Zadeh [23] and then extended to a more general concept of an L-fuzzy
set by J.A. Goguen [9] where L is a complete lattice, in particular a quantale.
Given a set X its L-fuzzy subset is a mapping A : X — L. The lattice and
the quantale structure of L is extended point-wise to the L-exponent of X, that
is to the set LX of all L-fuzzy subsets of X. An L-fuzzy relation between two
sets X and Y is an L-fuzzy subset of the product X x Y, that is a mapping
R: X xY — L, see, e.g. [24]. An L-fuzzy relation R is called left connected
if Ayey Viex B(z,y) = 1. An L-fuzzy relation R is called right connected if
Neex Vyey R(z,y) = 1. An L-fuzzy relation R : X xY — L is called connected
if it is both left and right connected. Since in the paper L is a fixed lattice or
quantale, we omit the prefix L and speak just of fuzzy sets and fuzzy relations.



Conceptuality Degree of Oriented Crisply Generated Fuzzy Preconcepts 89

Measure of Inclusion of L-Fuzzy Sets. The gradation of a preconcept lattice
presented below is based on the fuzzy inclusion between fuzzy sets.

Definition 1. By setting A — B = \,cx(A(z) — B(z)) for all A,B € L,
we obtain a mapping —: LX x LX — L. We call A — B by the measure of
inclusion of a fuzzy set A into the fuzzy set B. Let A «— B =4,y B — A. We
denote A= B =g.5 (A — B)A (B — A) and view it as the degree of equality of
fuzzy sets A and B.

Proposition 1. Properties of the mapping <—: LX x LX — L, see, e.g. [8]:

(1) (V;A;)) = B=N\, (4 — B) forall{A; |i €I} C L* and for all B € LX;
(2) A= (\;Bi) = \i(A— B;) forall A€ L*, and for all {B; | i € I} C L¥;
(3) A— B =1 whenever A < B;

(4) 1x — A=\, A(z) for all A € L;

(5) (A— B)* (B — C) < (A= C) forall A,B,C € L%;

3 Fuzzy Preconcepts and Fuzzy Preconcept Lattices

Let L be a complete lattice (in particular, a quantale). Further, let X,Y be sets
and R : X XY — L be a fuzzy relation. Following terminology accepted in
the theory of (fuzzy) concept lattices, see, e.g. [2,21,22] we refer to the tuple
(X,Y, R) as a fuzzy context.

Definition 2. Given a fuzzy context (X,Y,R), a pair P = (A,B) € LX x LY
1s called a fuzzy preconcept.

On the set P = LX x LY of all fuzzy preconcepts a partial order < is introduced
as follows. Given P; = (41, B1) and P, = (A3, Bs), we set P; < P, if and only if
Ay < Ay and By > Bs. Let (P, <) be the set LX x LY endowed with this partial
order. Further, given a family of fuzzy preconcepts {P; = (A;,B;) : i € I} C
LX x LY, we define its join (supremum) by Vic;P; = (\,c; Ais N\ie; Bi) and its
meet (infimum) as Aier P = (A;c; Ais Vier Bi)-

Theorem 1. (see, e.g. [19]) P is a complete lattice. Besides, if L is a infinitely
bi-distributive lattice, then (P, =, A,Y) is also a infinitely bi-distributive lattice.

Let Py denotes the subset of P formed by crisp pairs of sets (4, B) € 2% x 2Y.
It is easy to see that Py is a complete sublattice of P and in case L is infinitely
bi-distributive the same is lattice Py.

4 Operators R : L* — LY,R* : LY — LX and Crisply
Generated *“-Preconcept Join Semilattice
4.1 Operators RY : LX — LY and R*: LY — LX

Let R: X XY — L be a fuzzy relation. Interpreting the set X as the domain
and the set Y as the codomain of the fuzzy relation R gives rise to the induced
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forward and backward powerset operators. However, as different from the case of
a function f : X — Y where there is only one categorically justified version for
the image f~— : 2% — 2Y and the preimage f— : 2¥ — 2% powerset operators
(see, e.g. [16]), in case of a fuzzy relation R there are two “natural” definitions for
image and preimage powerset operators which we call upper and lower forward
and backward powerset operators. Such operators can be found in the works of
different authors under various names. Since our goal is to use them as the base
of concept analysis, we introduce them in a form appropriate for this framework.

Definition 3. Let (XY, R) be a formal fuzzy context.

(F) RE denotes the lower forward operator R= : LX — LY. That is, given
AELX andye Y, let RO(A)(y) =aer A(y) = Ayex (R(z,9) — A()).

(*) R* denotes the upper backward operator R~ : LY — LX. That is, given
Be LY andz € X, let R*(B)(z) =4ey B*(z) = Vyey (B(z,y) * B(y)).

The proof of the following two propositions is easy and can be found in, e.g.
[22] (in the crisp case) and in [19](in fuzzy case):

Proposition 2. Let X, Y be sets and R: X XY — L a fuzzy relation. Then

(1) A, Ay € LX, A} < Ay :A? < A?;
(2) Bl,B2€LY,31§32 :>Bl SBQ

Proposition 3. Let {A; |i€ I} C LX and {B;|i€ I} C LY. Then:
O ¢

(1) (/\iel Ai) = Nier A7 (2) (\/z‘el Bi) = Vier Bi"

Proposition 4. (see, e.g. [19])

(1) RP(1x) =1y If R is left connected, then RP(ax) = ay for every a € L.
(2) R*(1y) = 1x If R is right connected, then R*(by) = by for every b € L.

Theorem 2. (see, e.g. [4]). Operators R*: LY — LY and RP: LX — LY form
an isotone Galois connection (i.e. form an adjoint pair (R*, RP)), that is B® <
A<= B< AP forany Ac LX,Be L.

4.2 Crisply Generated *Y-Preconcept Join Semilattice

Let (X,Y, R) be a formal fuzzy context. For each (A, B) € Py let (A, B)*" =,.;
(B*, AD). Obviously (A, B)*" is a fuzzy preconcept. We say that (A, B)*™ is the
ob-oriented fuzzy preconcepts induced by the crisp preconcept (A, B). Further,
let P*Y = {(A,B)*7 : (A, B) € Py} be the family of all ob-oriented fuzzy
preconcept induced by crisp preconcepts (A, B). Thus we obtain an operator
0 . P, — P*Y assigning to a crisp preconcept (A, B) the fuzzy preconcept
(A, B)*Y. Since operators R* : LY — LX and RY : LX — LY are isotone, we
conclude that operator £4 : Py — P*H is isotone, too.

Proposition 5. Operator £45 : Py — P*Y is isotone: (A,B) < (C,D) =
(A, B)* < (C,D)* for all (A, B),(C,D) € Py.
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Theorem 3. P*U is a complete join semilattice of fuzzy preconcept lattice P.

Proof Let {(4;,B;) : @« € I} C Py be a family of crisp preconcepts and
{(A;, B;)* i € I} C P*H C P. We have to prove that \/ieI(Ai,Bi)’D C P,
Referring to Proposition 3 and Theorem 1 we prove this as follows:

Vier(A, B)*Y = Ve (BYAT) = (Vi BY A AY) =
(\/z‘eIBi)Oa (/\ieIAi>D)~

We complete the proof noticing that (A;c;4:), (V;c;Bi)) € Po and that
o0
((AserAa), (VierBi)" ™ = Yier(Ai, Bi)*".

4.3 Degree of Conceptuality of *“-Preconcepts

In the previous subsection we constructed an embedding of the lattice Py into the
lattice P obtaining in the result a join subsemilattice P*H. In this way we assigned
to each crisp preconcept (A, B) a fuzzy preconcept (A, B)*9. In this section
we evaluate how well this procedure reflects the conceptuality for each specific
original crisp preconcept (A, B). Namely, we measure the degree of coordinance
between (A, B) and its image (A, B)*Y by setting Doy, : (A, B) = (A = B*) A
(B = AY). Varying pairs (A, B) over Py we obtain operator D, : Py — P*J C P,
Recalling that (A = B%) = (A — B*) A (A « B*) and (A” = B) = (A" —
B) A (AY <> B*) we consider separately operators D, (A,B) = AY — B,
D%(A,B) = AF «> B, D3,(A,B) = A — B*% D! (A, B) = A « B*. Obviously,
Dob(Av B) = ,Déb(Av B) A ng(A7 B) A ,ng(A’ B) N Dib(A7 B)

4.4 Operators D!, ,D? ,D3,, D4 : Py — L

In this section we characterize operators 'Déb, ng, 'ng7 Déb : Py — L separately.

Let a formal fuzzy context (X,Y, R) be given and let (A, B) € P(X,Y, R). Since
we start with a crisp preconcept (A, B) for the description of these operators it
will be convenient to use notations A = X \ A and B¢ =Y \ B. Unfortunately
strict limitations on the scope of this submission did not allow us to give the
proofs of the corresponding statements.

Proposition 6. D}, (A, B) = Nyepe Vieac(B(z,y) — 0) — 0).

Notice that if L is a Girard monoid, then (¢ — 0) — 0 = a for any a € L,
i.e. implication — satisfies the double negation law. Hence from the previous
Proposition we get:

Corollary 1. If L is a Girard-monoid, in particular, an MV-algebra, then
’D;b(Av B) = /\yeBC \/xeAC R(‘% y)

Theorem 4. Properties of operator D}, : P(X,Y,R) — L.

1. Operator D})b :P(X,Y,R,) — L is upper semicontinuous, that is
DYy (Nier(Ais Bi)) > Nie Dy (A, Bi) Y{(Ai, Bi) : i€ I} CP(X,Y,R).
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2. DL (A, 1y) =1 for every A C X. If R is left connected, then D, (0x,B) =1
for every BCY.

Proposition 7. D2, (A, B) = \,cp Npeac(R(z,y) = 0).
Theorem 5. Properties of operator D2, : P(X,Y,R) — L.

1. Operator D?, : P(X,Y, R) — L is lower semi-continuous, that is
D2y (Vier(Ai Bi)) = Niey Doy (Ai Bi) Y{(Ai, B) « i € I} CP(X, Y, R).
2. D% (A,0y) =1 for every A C X and D% (1x,B) =1 for every BCY.

Proposition 8. D3 (A,B) = A\, 4. Ve (B(z,9)).
Theorem 6. Properties of operator D3, : P(X,Y, R) — L.

1. Operator D3, : P(X,Y, R) — L is upper semi-continuous, that is
D3, (Aies(Ai B)) > Ao/ Do(Ais B) W(Ai, By) : € I} CB(X, Y, R,).

2. D3,(0x,B) =1 for every B C Y. If R is right connected, then D3,(A,1y) =1
for every A C X.

Proposition 9. D2 (A,B) = A\,c4 (\/yeB(R(x,y) — 0)) .

Theorem 7. Properties of operator D : P(X,Y,R) — L.

1. Operator ng :P(X,Y,R) — L is lower semi-continuous, that is
ng (ViEI(Aiv Bl)) > /\ieIDib(Aiv Bi) v{(AZa Bl) S I} c P(Xv Yv R7 L)'
2. DY (A,0y) =1 for every AC X and D} (1x,B) =1 for every BCY.

Remark 1. The simplest case to study the properties of a preconcept (A, B)’D
on the lines of our work, is the case when the set of objects A coincides with
the domain X and the set of properties B coincides with the codomain Y of
the fuzzy relation R. In this case the formulas for calculation operators D!,
D?, D? and D* obtained above formulas can be essentially simplified. Namely,
notice first that in this case AY = B (in particular, this means that A9 is a
crisp set) and B*(z) = V,ep B(z,y). Therefore DY (A,B) = A® — B =1,
D?*(A,B) = A¥ < B =1and D*(4,B) = B* — A = 1. In turn D3(A,B) =
1=V, cayep B(@,y). Therefore: D(A, B) =1+ V 4 ,ep B(,y). In particu-
lar, D(A, B) = V¢4 yep B(x,y) for product and Lukasiewiucz t-norms and for
the Kleene-Dines implicator.

5 Examples

In this section we explain the meaning of the values expressed by operators
Di(A, B) on specific examples. In the first subsection these examples relate to
classification of zoological species, in the second subsection the analysis of solar
activity will be touched.
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5.1 Examples Related to Zoology

Let the set of objects X = {x1,z2, 23, 24,25, s, X7, T8, T, T10, 11} consist of
animals: z1 is an albatross, x5 is a swift, x3 is a sparrow x4 is an owl, x5 is a
flying fox, x¢ is a pelican, z7 is an penguin, g is an ostrich xg is a kiwi bird, x1¢ is
a fox x1; is a bear. The set of properties Y = {y1,y2}: y1 an animal has wings, y»
the animal has fur. The relation R : X x Y — L where L = ([0,1], <, A, V, %,+—)
is defined and interpreted as follows:

R(z1,y1) = 1. Wings allow albatross to fly long distances over the oceans.
R(z2,y1) = 0.9. Wings allow swift to fly for hours, but usually it does not fly
for far distances.

R(x3,y1) = 0.7. Wings allow sparrow to fly constantly for short distances.
R(z4,y1) = 0.6. Wings allow owl to fly short distance (e.g. hunting for food).
R(zs5,y1) = 0.6. Wings allow flying fox to fly for short distance (e.g. hunting

for food).

R(zg,y1) = 0.5. Wings are used by pelican to create a lift, to steer and

navigate in the air and fly very short distances.

R(z7,y1) = 0.3. Penguin does not use wings for flying, but it is important for

penguin, for example, to paddle through the water like a boat.

R(zs,y1) = 0.2. Ostrich does not use wings for flying, but it use them to

balance when running, especially when suddenly changing direction.

R(z9,y1) = 0.1. Kiwi has very short wings covered by feathers. It does not

use them, at least in the process of moving.

R(z10,91) = 0, R(x11,y1) = 0. Foxes and bears do not have wings R(z;, y2) =

0 for i =1,2,3,6,7. Animals do not have neither fur nor even dense feather

cover. R(z;,y2) = 0.3 for i = 4,8,9. Animals have dense feather cover looking

like a fur. R(x;,y2) = 0.8 for ¢ = 5,10. Animals have rather dense fur cover.

R(x;,y2) = 1 for i = 11. Animals have very dense fur cover.

Remark 2. The above information is based on materials found in the popular
literature and in Internet, see, e.g. https://faunafacts.com. The specific values
assigned to each relation are ours and just chosen for interpretation. Of course,
professional zoologist will argue about our choice. However, we hope that this
interpretation will help to illustrate the ideas and results presented in this paper.

5.1.1 The Basic Example

As the basic example we consider the case X = A, B=Y and R: X xY — L
defined as above. In this case we can use formulas obtained in Remark 1. Hence
D'(A,B) = D*(A,B) = D*(A,B) = 1, D3(A, B) = \,c4(A(z) — B*(x)) and
D(A, B) = D3(A, B). We calculate it as follows: B*(z) = Vyen B(2,y) * B(y):
B¥(z1) = 1, B¥(25) = 0.9, B%(x3) = 0.7, B¥(24) = 0.6, B*(x5) = 0.8,
B*(z6) = 0.5, B¥(27) = 0.3, B*(zs) = 0.3, B¥(x9) = 0.3, B*(x19) = 0.8,
B*(z11) = 1. In the result we have D3(A,B) = A — B* = \.(1 — B%(z;)) =
1— A, B*(z;) = 1~ 0.3. In particular, in case when * is Lukasiewicz t-norm
or the product t-norm D*(A, B) = A\, B*(z;) = 0.3. Hence also D(4, B) = 0.3.
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5.1.2 Comments and Variation of the Example

Such rather high value 0,3 of contentment may seem to be unexpected for
a group of so different animals. However, this is obtained because we based
the evaluation of the group taking into account very different properties: say
wings (wonderful for the albatross and for the swift) and fur (perfect suiting
for the bear and for the fox).

On the other hand if we will change orientation in the parameter o, namely
to assign higher value for animals WITHOUT thick fur and lower for animals
with a fur, then the estimation D(A, B) will look differently: for the case of
the Lukasiwicz and the Product t-norm we will get D3(A, B) = 0 (thank that
the fluffy bear cub has no wings!) and this seems much better corresponding
to our intuition.

Now we extend the first example by including one more parameter y3 =
EGGS in B with the following interpretation: R(z;,y3) = 1 if an animal z;
lays eggs and R(z;,y3) = 0 otherwise. Then our table will drastically change
giving

B*(x;) = 1 fori = 1,2,3,4,5,7,8,9 and leaving the same B*(xs) = 0.5,
B’(fﬂlo) = 08, and B’(xll) = 1.

In this case for the Lukasiewicz t-norm and for the product ¢-norm we get
D3(A, B) = 0.5. And this result possibly in the best way corresponds to our
intuition looking at the animals x € A as some group of animals “centered”
around the group BIRDS.

We modify basic example by taking A = {xa, 23, x4, T5, T, T7, s, Tg, T10} C
X that is we exclude from the sample A the most “outstanding”animals:
albatross with “best wings” and bear with “best fur.” Since we did not change
B the set B* does not depend on A, we get D*(A, B) = 1 and D3(A, B) = 0.7
in case of the Lukasiewicz and product t-norm. In turn

AD(yl) = /\i<R(xiay1) — A(x;)) = \/i?ﬂ’11 R(z;,y1) =0.9;
A%(ye) = N\, (R(wi,y2) = Awi)) =/ R(wiyr) =08,

i#£1,11

In the result we have D'(A4, B) = A, A (y;) — B(y:) =1 and D*(4, B) =
A, (Byi) — A7) = 1=V 3 R(i, 1) =1 0.9V 0.8 =1~ 0.9 and

hence in case of Lukasiewicz or product t-norm D?(A, B) = 0.9. Hence in the
result D(A4, B) = 0.9.

5.2 Example of the Assessment of Solar Activity

For the purposes of practical application of fuzzy preconcepts we also propose an
example with analysis of solar activity with focus on sunspots as the most evident
and also spectacular structures providing visible information about changes in
the solar activity. While sunspots are neither something rare nor unique and
can be observed even during the solar minimum (more details regarding solar
activity and sunspots can be found on, e.g. www.swpc.noaa.gov/phenomena/
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sunspotssolar-cycle), we will focus on larger sunspots with more sophisticated
magnetic fields capable to produce weaker or stronger and geoeffective solar
flares.

We assume that the set of objects X contains all sunspots visible on the sun
on a given date. We consider the subset A = {x1, 22,23, 24,25} C X containing
five sunspots with more sophisticated magnetic fields and capable to produce
significant solar flares. We define the set of properties Y = {y1,y2} as follows:
91 the sunspot has more or less sophisticated magnetic field, yo the sunspot can
produce the solar flare. Relation R: X x Y — [0, 1].

R(z1,y1) = 0.9 means that the 1st sunspot has very sophisticated magnetic
field.

R(z2,y1) = 0.7 means that the 2nd sunspot has sophisticated magnetic field.
R(x3,y1) = 0.5 means that the 3rd sunspot has rather sophisticated magnetic
field.

R(z4,y1) = 0.4 means that the 4th sunspot has less sophisticated magnetic
field.

R(z5,y1) = 0.2 means that the 5th sunspot has rather simple magnetic field.
R(x1,y2) = 0.6 means that the 1st sunspot is rather capable to produce the
solar flares.

R(x2,y2) = 0.8 means that the 2nd sunspot is very capable to produce the
solar flares.

R(z3,y2) = 0.5 means that the 3rd sunspot is capable to produce the solar
flares.

R(x4,y2) = 0.3 means that the 4th sunspot is less capable to produce the
solar flares.

R(z5,y2) = 0.6 means that the 5th sunspot is rather capable to produce the
solar flares.

Based on the formulas obtained in Remark 1 D!(A, B) = D? (
D*(A,B) =1 and D3(4,B) = /\zeA(A< r) — B*¥(z)) and D(A, B) =
We calculate the following values of B*(z) = Vyen B(z,y) * B( ):
B*(z1) = 0.9, B¥(x5) = 0.8, B*(x3) = 0.5, B*¥(x4) = 0.4, B¥(x5) = 0.6. We
obtain that D3(4,B) = A — B = \,(1+— B*(x;)) =1+~ A\,B*=;) =1+~
0.4. In particular, in case * is Lukasiewicz t-norm or product t-norm D3(A, B) =
A; B*(z;) = 0.4. Hence also D(4, B) = 0.4.

Such result means that the possibility of not producing geoeffective flares
by any of these five sunspots is 0.4 which is a kind of medium possibility with
slightly higher chance (0.6) that such flares can be produced.

Now we extend the example adding parameter y3 in B containing the addi-
tional condition which is very important for triggering the Northern Lights in
case of any geoeffective solar flares: R(z1,ys3), R(x5,y3) = 1 meaning that the 1st
and the 5th sunspots directly face the Earth, R(xs,ys), R(z4,y3) = 0.5 meaning
that the 3rd and the 4th sunspot partly face the Earth and R(xs,y3) = 0.1
meaning that the 2nd sunspot does not face the Earth and is visible close to
the sun’s limb. Taking into account this condition we obtain that D!(A, B) =
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D*(A,B) = D*(A,B) = 1 and D3(A,B) = A — B* = \,(1 — B%;)) =
1— A,B*;) =1 0.1. In case * is Lukasiewicz t-norm or product t-norm
D3(A, B) = A\, B*(z;) = 0.1. Hence also D(A, B) = 0.1.

It means that the possibility of not producing geoeffective flares by any of
these five sunspots has decreased to 0.1 which is low possibility, and it means
that there is a very high chance (0.9) of geoeffective flares.

At the end we should admit that sunspots are often changing. This includes
further increase or decrease in sophistication of magnetic fields, their stability
and position on the solar disk. Therefore this example could be further enhanced
taking into account all these dynamic changes and comparing the data for dif-
ferent dates.

6 Conclusion

In the paper we proposed an alternative approach to the study of some issues
of formal fuzzy concept analysis. Of the three known to us versions of con-
cept analysis: “classical”, object-oriented and property-oriented, we stick here to
the framework of the object oriented version. Having as the original motivation
Beélohldvek’s crisply based fuzzy concept analysis (on the lines of Wille-Ganter
concept analysis) and noticing that the direct transform of Bélohldvek’s ideas to
object-oriented context does not make sense we decided to combine Bélohlavek’s
ideas with our graded approach to fuzzy concept analysis. In the result we intro-
duced the conceptuality degree of a crisp (object-oriented) preconcept, developed
the basics of the corresponding theory and illustrated the possible applications
of our theory by examples related to zoology and astronomy.

Concerning our future plans for the work initiated in this paper, as the first
and the most challenging one we foresee its applications in different practical
problems. As the most appropriate for the use of tools presented here we assume
problems of classification, specifically classification of biological issues, classifi-
cation of languages, and in the study of matters related to astronomy, some of
which could be of high practical value. Of course such kind of applications can
be developed only in tight cooperation with specialists in the related areas of
science.

On the other hand, we have perspectives for the work in this directions for
us, as mathematicians. Namely, we have important challenges for the study of
crisply generates fuzzy concepts in case of a more general lattice L (instead of
[0, 1]) as for the codomain of the fuzzy relation. Note that for the applications of
our theory in real world problems the assumption that all values are numbers in
the interval is absolutely inadequate. In this paper for animal classification we
used the assumption that their properties used for classification are comparable.
Such an assumption served well for us to illustrate the idea of application of our
method for classification, but of course it is not viable in any practical scientific
research. Thus we view a deeper investigation of crisply generated ob-oriented
fuzzy preconcepts in case of general quantales as the most important theoretical
problem to be studied in order to attract to our research scientists beyond pure
mathematics.
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Abstract. In this paper, we present a novel aggregation method for
intuitionistic fuzzy sets (IFS) based on interpolative Boolean algebra
(IBA) and logical aggregation (LA). The approach is founded on IFS-
IBA calculus, an approach that maintains intuitionistic presumptions
when dealing with IFS. The main contribution of IFS-IBA approach
is the explicit inclusion of attribute correlation and automated choice
of aggregation operator. That is accomplished by introducing paramet-
ric Frank t-norm in IFS-IBA calculus and by defining a clear relation
between correlation and Frank t-norm parameter. Frank t-norm is chosen
since it has the same mathematical properties as a generalized product in
IFS-IBA framework. Furthermore, the proposed IFS-IBA LA approach
incorporates guidelines for factor normalization, I-fuzzification, logical
expression modeling and aggregation. The main applicative benefits of
the proposed IFS-IBA LA approach are illustrated in the example of
ranking gifted students.

Keywords: IFS-IBA - aggregation - intuitionistic fuzzy sets -
interpolative Boolean algebra - Frank t-norm

1 Introduction

Modeling and decision making in situations with plenty of vague, incomplete and
imprecise information is a very challenging problem. Still, many fuzzy logic-based
tools and approaches may facilitate that process. Many of them are based on
intuitionistic fuzzy sets (IFS) [1], the theory that takes into account information
about set membership, non-membership and uncertainty as separate variable.

On the other hand, attribute aggregation since it is the core of various ranking
or decision algorithms. The recent effort of many scholars, regarding the aggrega-
tion of IFS information initiated a new area of IF'S theory [27]. Some aggregation
operators, e.g. triangular IF weighted averaging operator (TIFWA) [12] and IF
order weighted operator (IFOWA) [31], have significant theoretical and applica-
tive importance. Still, work on various aggregations of IFS is in progress.
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In this paper, we introduce a novel approach to the aggregation of IF val-
ues based on interpolative Boolean algebra (IBA) [23] and logical aggregation
(LA) [24]. In fact, we aim to transfer all benefits of LA for dealing with IFS via
IFS-IBA approach [21]. In that way, the aggregation procedure of IFS is trans-
parent, easy to implement and based on assumptions of intuitionism. The pro-
posed IFS-IBA LA approach is a complete aggregation procedure that contains
guidelines for factor normalization, I-fuzzification, automated operator selection,
logical expression modeling and finally aggregation of factors. From the technical
point of view, the main contributions of this paper are introducing Frank t-norm
as a parametric realization of IFS-IBA operations and relying on correlation for
operator selection. Frank t-norm is chosen as an adequate operator since it pro-
duces values in the same interval and has the same mathematical properties as a
generalized product operator in IFS-IBA framework. The aggregation procedure
is illustrated in the example regarding gifted student ranking.

This paper is organized as follows. In Sect. 2, a brief overview of IFS, IBA,
and IFS-IBA is presented. Section 3 reflects on the correlation measuring between
IFS. In Sect. 4, we provide a brief theoretical overview of parametric t-norms.
Special attention is devoted to Frank t-norm and its usage for dealing with gen-
eralized fuzzy sets. The background and main steps of the proposed IFS-IBA
logical aggregation approach are elaborated in Sect.5. An illustrative example
regarding gifted students ranking is provided in Sect. 6. Finally, the main con-
clusions and potential directions of future work are listed in Sect. 7.

2 IFS-IBA Approach

In this section we first reflect on the essentials of IFS and IBA, and further we
give a brief overview of IFS-IBA approach.

2.1 Intuitionistic Fuzzy Sets

Intuitionistic fuzzy set theory is introduced by Atanassov in [1]. Unlike tradi-
tional fuzzy sets, IFS consider non-membership degree beside standard mem-
bership degree. Therefore, IFSs are able to include more information in the
modeling process and to handle a certain level of uncertainty in the data. As
a generalization of the traditional fuzzy sets, IFS A infinite set X is defined as
follows [1]:

A= {{z,pa(@),va(@))e € X} 1)

where pa(z) : X — [0,1] and va(z) : X — [0,1] are membership and non-
membership degrees with condition 0 < pa(z) +va(z) <1 for every z € X.

Only in the case when v4(x) = 1 — pa(x), IFS become a traditional fuzzy
set. Otherwise, IFS implies the hesitancy degree which shows the existence of a
certain level of uncertainty of the element x to IFS A [1]:

ma(@) = 1= (na(z) +va(z)) (2)
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Basic operations and relations over two IFSs A and B are originally defined
by Atanassov [1]:

ANB = (min(ua, up), max(va,vp)) (3)
AU B = (max(pa, up), min(va,vg)) (4)
N(A) = (va, pa) (5)

From Egs. (3)—(5), it can be concluded that dual fuzzy operations, t-norm
and s-norm are applied over membership and non-membership degrees simulta-
neously when it comes to IF intersection and union. Besides standard IFS oper-
ations corresponding to minimum/maximum, many operators are introduced in
the literature, e.g. operations - and + modeled on algebraic product and prob-
abilistic sum, IFS t-norm [5], order relations, modal operations of necessity and
possibility [1], and many others [28] etc.

2.2 Interpolative Boolean Algebra

Interpolative Boolean algebra represents a consistent real-valued realization of a
finite Boolean algebra [23]. It is “interpolative” as a consequence of its semantics
based on a generalized Boolean polynomial (GBP). Its “consistency” comes from
the fact that all the laws of Boolean algebra are preserved. It is “real-valued”
realization because the elements can take any value from the unit interval [0,1],
so it can be applied to fuzzy logic and sets [23], as well as fuzzy relations [25].

IBA is a multi-valued logic that preserves all Boolean laws, including the
laws of contradiction and excluded middle [23]. This is achieved by introducing
two levels: symbolic and value level, i.e. by separating the value of an attribute
from its structure.

On the symbolic level, a logical expression is transformed into a cor-
responding generalized Boolean polynomial (GBP) according to the following
transformation rules [24]:

(ﬂ(alvu';an)/\V(ala"'aan)) ﬂ(alw-'van)®7(a13"'7an) (6)

®:
(Blat,...,an)Vy(ar,...,a,))® = Blas,...,a,) +7(ay,...,an)
—B(ar,...,an) (a1, ... ,an)

(_‘ﬂ(alv"'ﬂan))g):17ﬂ(a17---7an) (8)
where 3(aq,...,a,) and y(aq,...,a,) are complex elements of Boolean algebra,
i.e. all logical functions over attributes a;,i =1,...,n.

For the primary attributes aq,...,a, the following applies:
a; @ a;,t ]
(ai/\aj)‘g’{lg) n 7 9)
ai, 1t =]

(a; Va;)® = a;i + a; — a; ® a; (10)
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(—\ai)@’ =1- a; (11)

The generalized Boolean polynomial (GBP) is a polynomial whose variables
are elements of the Boolean algebra and the operators are standard +, stan-
dard -, and generalized product ® (GP) [24]. GP can be any function that is
a subclass of the conventional t-norm satisfying the non-negativity axiom. The
choice of the appropriate t-norm for GP depends on the nature of the primary
attributes and/or on their correlation. Standard minimum, algebraic product,
and Lukasiewicz t-norm are the most common choices.

Only once the final structure of a logical function is determined, we can move
to the value level and introduce the values of the primary attributes. Each
element of Boolean algebra is valued using a generalized Boolean polynomial.

One of the most important applications of IBA is logical aggregation [24], a
consistent and transparent procedure for aggregating factors. LA consists of two
steps: data normalization and aggregation of attributes into a resulting value.

2.3 Essentials of IFS-IBA

IBA-based calculus for IFS is presented in [21], and further developed in [18,20].
The resulting IFS-IBA approach employs IFS in the original form and IBA-
based logical operations with several adaptations. This approach is developed
as a potential answers to the terminological debate regarding the name of IFS
theory [6]. In other words, the main idea behind IFS-IBA was to develop an
approach that is in line with the intuitionistic nature of IFS, i.e. the law of
contradiction and the double negation rule are valid in this approach. That is
accomplished by introducing IBA-based operations of conjunction and disjunc-
tion and choosing an appropriate existing IFS negation [2].

(AAB)® = (ua @ pp,va+ve —va @vp)) (12)
(AVB)® = (ua+ pp — p1a ® pip,va @ vp)) (13)
(=A)® = (va,1 —va) (14)

Logical expressions with IFSs are structurally transformed into GBP using
the IBA transformation rules given in Egs. (6)—(11) and an additional rule,
specific to IFS:

pa®uva =0 (15)

Therefore, in IFS-IBA, IFS holds the idea of intuition and IBA provides
suitable algebra. Also, the conventional IF calculus is obtained as the special
case of IFS-IBA approach, when the minimum is used as GP.

This approach was a basis for proposing IFS-IBA similarity/dissimilarity
measure [20], later employed as a part of pattern recognition, clustering, and
classification algorithms. Also, on the path of IFS-IBA, LBIFS-IBA is proposed,
as an approach that is focused on Boolean properties [18]. However, there have
been no attempts to use IFS-IBA for factor aggregation, ranking or decision
making so far.
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3 Correlation of IFS

Correlation is an important measure that expresses the linear relationship
between elements of two sets. Since comparing fuzzy sets is an essential task, the
idea of the correlation coefficient of the IFSs in finite space is first introduced
in [8]. A standard/traditional correlation between the intuitionistic fuzzy set A
and B is defined as:

n

C(A,B) = [ma(w:) - pp(ws) + va(ws) - vp(z;)] (16)

i=1
and the correlation coefficient of A and B as:
C(A, B)
(C(A,A)Y2-(C(B, B))Y/?

Based on the paper [8], Yu proposed concept of the correlation of the IFSs
in the infinite space where C'(A, B) was given as [32]:

p(A, B) =

(17)

b

C(A,B) = (1a(@) - (@) + va(e) - vp(e))de (18)

b—a

In [10], it has proposed another correlation coefficient of IFSs based on Hung’s
statistical point of view [9]. The main idea was to find out whether the sets are
negatively or positively related; hence this method calculates the correlation
coefficient of IFSs A and B by means of centroid.

Xu considers the situation in which the correlation coefficient of any two IFSs
equal 1 if and only if these two are the same [30]. Based on that, a new method
for calculating the correlation coefficient of IFSs A and B is developed.

The majority of correlation coefficients are based on membership and non-
membership degrees of IFS. Yet, Zeng and Li extended further these methods
by including the third parameter, the hesitancy degree [33]:

=2 Z pa(@i) - pp(x:) +vale:) -ve(e) + male:) - wp(z:)]  (19)

3

Liu and others [17] gave another correlation coefficient in which they extend
the interval of value of the correlation coefficient into [—1,1] and treat the
membership degree and non-membership degree separately. Also, they aimed
to include deviations of IF values in the calculation.

4 Parametric t-norms

The notion of t-norms was first introduced in the context of probabilistic metric
spaces, but they found wide application in fuzzy set theory. A fuzzy t-norm is
a binary operation on the unit interval that must fulfill at least conditions of
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monotonicity, commutativity and associativity. Furthermore, if it satisfies the
conditions of continuity, subidempotency and strict monotonicity we can say
that t-norm is the strict Archimedean t-norm. More information and formal
definitions of t-norms can be found in [13].

In order to construct Archimedean t-norms we need to define properties
of unary functions i.e. generators. A decreasing generator is a continuous and
strictly decreasing function f from [0,1] to R such that f(1) = 0 [15]. The pseudo-
inverse of a decreasing generator f, denoted by f(-1 is a function from R to
[0,1] given by [15]:

1,for a € (—o0,0)
F9(a) = fD(a), for a € [0, £(0)] (20)
0,for a € (f(0),0)

A decreasing generator f and its pseudo-inverse f(=1) satisfy f(=V(f(a)) = a
for any a € [0,1] [15]:

0,for a € (—00,0)
FEV(f(a)) =S a,for a € [0, £(0)] (21)
f£(0),for a € (f(0), 0)

One of the possible extensions of classical t-norms is parameterized t-norms,
e.g. Hamacher’s t-norm, Yager’s t-norm, Weber-Sugeno t-norm, Schweizer-Sklar
t-norm, etc. Each of them uses aggregation operators that include parameters
so the aggregation process is more flexible.

4.1 Frank t-norm

Franks t-norm is based on the class of decreasing generators

a_

s
fs(a)=—1n -

1
T for s >0,s #1 (22)
Deduced from the equation above, it can be established

Tin(a,b),if s=0
Tprod(a,b),if s =1
Truk(a,b),if s = +o0
log, (14 &~ _1)(8 _1)) otherwise

fFrank(aa b) — (23)

Operators based on (parametric) t-norms are extended to the conventional
fuzzy logic in order to make the reasoning and decision-making process more
flexible. In [14], authors explore different approaches to fuzzy logic based on
Frank t-norms. In [4], authors investigate some classes of t-norms that provide
natural extensions of Lukasiewicz, product, Frank, Schweizer-Sklar and Yager t-
norms which can be generated. Also, Frank t-norm has been already introduced
in IBA [16].
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Many research aims to improve further generalization of the concept of fuzzy
sets. In [26], authors have developed operators based on Frank t-norm for picture
fuzzy sets and proposed a series of new aggregation operators. In [29], authors
have studied potential applications of Archimedean t-conorm and t-norm under
IF environment and proposed some other operations on IFS, while [11] proposed
IF similarity measures based on Frank t-norms family.

5 IFS-IBA Logical Aggregation

In this section, we introduce logical aggregation for dealing with IFSs based
on IFS-IBA approach. IFS-IBA LA can be used for the aggregation of IFSs
based on requirements formulated as logical conditions. Further, logical relations
are treated according to IFS-IBA transformation rules, i.e. they are mapped to
GBPs. Further, GP is automatically selected based on the correlation between
attributes, and expression is easily calculated.

Formally, IFS-IBA LA is based on IBA frame with Frank t-norm as a real-
ization of GP. This operator is considered as an appropriate choice since Frank
t-norm can model cases between Lukasiewicz t-norm and minimum t-norm, the
same as GP. By choosing parametric t-norm instead of some non-parametric
norms that can model several borderline cases properly, we have tried to facilitate
and automate aggregation process and enhance the generality of the approach.
In this procedure, we rely on the correlation of IFS explicitly in the aggregation
process in order to automate the selection of GP. In more detail, we aim to esti-
mate the value of parameter p of Frank t-norm based on correlations of IFSs to
be aggregated.

IFS-IBA LA procedure consists of these 6 steps:

I-fuzzification: Most problems are not intuitionistic by nature. Therefore, it is
usual to transform the initial set of attributes w = {a1,as,...,a,} into an IFS
attribute set I = {A;, Ag,..., A, }. This procedure may be conducted using a
chosen function 4; = f/=9(a;), e.g. intuitionistic fuzzy generator [3], which can
transform every element of w into a corresponding element of I, i.e. n = m. On
the other hand, I-fuzzification may be realized using several standard aggregation
operators A; = f/=%(a,,... a;), if some elements of w are of same/similar
nature, i.e. n > m. The example regarding I-fuzzification using aggregation
operators is given in Sect. 6. The prerequisite for both I-fuzzification procedures
is that attributes w = {aj, as, ..., a,} are normalized.

IFS Correlation: In cases when a dataset consists of more than a few instances,
it is possible to determine correlation between attributes. Any IFS correlation
coefficient rg; = p(Ag, A;) that produces values on [—1,1] interval is appropriate
in the context of IFS-IBA LA approach. For the sake of simplicity, the coefficient
given in Eqgs. (16) and (17) will be used further in this research.

Frank t-norm Parameter Estimation: Since the Frank t-norm is a paramet-
ric one, it is necessary to assess the value of its parameter p for each pair of
attributes. In this approach, we aim to map values of p based on values of IFS
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correlation. This can be performed using a suitable function pg; = fP=¢5(r4l)
that maps values from [—1,1] to [0,00]. In fact, any function fP~¢5¢ that satisfies
the following conditions can be used for this purpose:

— fP~¢8! is monotonically decreasing function, i.e. for 75 < 7y, it stands that
P (rg) > [P (rmn);

~ If 7y = 0 then fP=¢5(0) = 1;

~ If rpy € [—1,0] then P~ (ry) = pg € [1,00];

— If riy € [0,1] then fP=°*(ry) = pj € [0, 1].

IFS-IBA Symbolic Level-Structural Transformation: Before the struc-
tural transformation, in some cases, it is necessary to translate verbal
model/request to logical expression. After the expression is obtained, the struc-
tural transformation based on IFS-IBA rules is conducted, i.e. the logical expres-
sion is mapped into the corresponding GPB based on Egs. (6)—(11), and (15).

IFS-IBA Valued Level Expression Calculation: Finally, on IFS-IBA valued
level, GP is realized using Frank t-norms with estimated values of parameter p,
and the expression value is calculated similarly as in classical LA.

I-defuzzification/IF Comparison Method: Finally, the resulting IF value
may be transformed to a crisp value in order to ease comparison and interpre-
tation. Although the simplest I-defuzzification considers using only membership
part of IF value, there are various methods in the literature [22]. On the other
hand, IF values may be compared using IF order relation [7].

The final result highly depends on the choice of functions for I-fuzzification,
IFS correlation, Frank t-norm parameter estimation and I-defuzzification/IF
comparison method. This makes the proposed approach to be a universal one
and easily adapted for a specific purpose. In other words, this allows a decision
maker certain freedom and the possibility to implement his expert knowledge in
the decision-making process. However, the predefined, default functions, suitable
for not-so-experienced users are given in Sect. 6.

The main advantage of the IFS-IBA LA approach compared with stan-
dard/simple aggregation operators, e.g. mean, max/min, weighted sum, is the
fact that it enables the inclusion of logical relations between attributes and thus
the possibility of compensability of one attribute to others. Also, the statistical
dependencies are also comprised in the aggregation process through the values of
parameter p. Finally, it is common to combine the LA approach with weighted
sum in order to create pseudo-LA functions. This is also possible for IFS-IBA
LA, as presented in Sect. 6. The main limitation of this approach is complexity,
especially when dealing with a large number of input attributes.

6 Application to Gifted Student Ranking

In this section, we aim to employ the proposed IFS-IBA LA approach for
gifted student ranking. In fact, we will consider one simple demonstrative exam-
ple of ranking 10 gifted elementary school students. The ranking should be
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performed based on the assessment made by three independent evaluators: a
teacher, a student’s parent, and a student’s peer. Each evaluator assesses 9 skills
of a student: logical-mathematical, linguistic/verbal, spatial, musical, bodily-
kinesthetic, intrapersonal, interpersonal, naturalistic and philosophical /spiritual.
The ranking criterion is that the grades given by a teacher are equally important
as the aggregated grade of a parent and a peer.

I-fuzzification: First, all attributes are normalized using min-max normaliza-
tion. Further, an aggregation operator is used for I-fuzzification, since a vast
number of input attributes, i.e. 3 evaluators e!, e?, e® assess 9 skills al, ..., ad,i =
1,2, 3 of a student. Namely, after I-fuzzification each student will be represented

with 3 IF values, one for each evaluator using following functions:
At = <:uia Vi>7 Ni = min(aZL cees af))a V= max(aia SRR aé) (24)

IFS Correlation: The next step in IFS-IBA LA approach is a calculation of
IF correlation coefficients. In this case, coefficients for each pair of attributes are
very high, suggesting a strong positive correlation among attributes.

Frank t-norm Parameter Estimation: In this case, we have used piece-wise
linear function to estimate values of parameter p:

OO,if Tkl = -1
1 —q 7y, if rig = (=1,0)
= 25
Pt 1,if Tl = 0 ( )

1-— T’kl,if Tkl — (0, 1}

The value of coefficient q should be estimated by an expert from the interval
[1,00). In this particular case, the value is set to ¢ = 100.

In other words, Frank t-norm-based realization of GP between attributes k
and [ is depending on the correlation coefficient in the following manner:

Truk(ag, a),if g = —1
1081 gupy ) = (1 4 L=l DO an) 2= yif oy, = (—1,0)

Qi = § Tproalax, ar),if rer =0 (26)
10g(1 ) = (14 W2 D@en) 2 =big gy, = (0,1)

Tonin(ak, ar),if rig =1

This is in line with GP definition in IBA-framework, as well as practical
guidelines for choosing the appropriate norm for GP given in [19].

IFS-IBA Symbolic Level-Structural Transformation: The verbal model
for gifted student ranking is formulated as following: “The student is considered
as a successful in two cases: if a student is graded well by both parents and
peers; if a student is graded well by the teacher. These expressions have the
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same importance. Thus, the final pseudo-logical expression for aggregation is
following:
aggIFS—IBA—LA =0.5- (IFparent A IFpeer) +0.5- IFteacher (27)
After IFS-IBA transformation, we can obtain the following GBP.

aggIstlBAfLA —05- (IFparent ® IFpeer) +0.5- IFteacher (28)

IFS-IBA Valued Level-Expression Calculation: According to calculated
IF corre-lation coefficient, a suitable realization of Frank t-norm is chosen, and
IF aggregation scores for each student are calculated.

I-defuzzification /IF Comparison Method: For the sake of simplicity, mem-
bership of the final IF scores is used as a base for final student ranking.

Final scores and ranking obtained using the IFS-IBA approach is given in
Table 1. Also, students are ranked with different IFS aggregation operator, e.g.
simple weighted sum, with the same I-fuzzification and I-defuzzification methods:

agg"'® =0.25 - [FPUe™ 4025 - [FP*" 0.5 - [Freecher (29)

Table 1. Ranking results of gifted students.

Student Score Rank Score Rank
(IFS-IBA LA) | (IFS-IBA LA) | (weighted sum) | (weighted sum)

S1 0.375 6 0.470 7

S2 0.367 7 0.473 6

S3 0.298 10 0.400 10
S4 0.312 9 0.423 9

S5 0.406 4 0.517 5

S6 0.317 8 0.447 8

S7 0.564 1 0.680 1

S8 0.509 2 0.623 2

S9 0.393 5 0.523 4
S10 0.463 3 0.577 3

The final results suggest that the same three students (S7, S8 and S10) are
ranked as the best ones by both methods. However, the ranking of the next four
students differs since the usage of A operator. In other words, the IFS-IBA LA
function punishes students with poor assessments given by a peer or a parent.
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7 Conclusion

The aggregation of IF'S values is still a hot topic for both researchers and practi-
tioners. It is mandatory that novel methods in this field include logical and sta-
tistical dependencies of input attributes as well as possible compensation effects.
The proposed IFS-IBA LA procedure is in line with current trends i.e. we have
introduced all benefits of standard LA into aggregation of IF values. Technically,
this is accomplished by introducing parametric Frank t-norm as a realization of
GP in IFS-IBA frame. Frank t-norm parameter estimation is performed based on
input correlation allowing automated operator selection. Finally, the procedure
is formalized as a list of consecutive steps with a suggestion of default param-
eter settings. Still, the end-user has the option to include domain knowledge
and possible affinities in the aggregation process by altering normalization, I-
fuzzification and parameter estimation functions, as well as a criterion function
formalized as a logical expression. The proposed approach is illustrated on the
problem of ranking gifted students. However, the example is limited in terms of
the number of instances and deeper understanding of a problem. Thus, one of
the routes of future research will be collecting a larger dataset and introducing
more expert knowledge in the ranking process.
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Abstract. We are developing an approach that is an alternative to the
Zimmermann approach to solving a multiple objective linear program-
ming problem. We use fuzzy equivalence relations to solve the problem,
where fuzzy sets are used in the Zimmermann approach. We will prove
the effectiveness of the new approach, illustrate and compare the use of
different approaches with illustrative examples.
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1 Introduction

Since the definition of fuzzy sets by L. A. Zadeh in 1965 [6], the interest of many
researchers has been focused on the study of classical mathematical concepts and
theories in the context of fuzzy sets. At the same time, fuzzy sets and related
structures began to be used to solve some real-world problems and to be involved
in related mathematical algorithms.

In this paper we propose to use fuzzy relations for solving multiple objective
linear programming (MOLP) problems. Multiple objective linear programming
problems algorithms are important tools for solving real-life optimization prob-
lems such as production planning, logistics, environment management, finance
risk planning etc. Multiple objective linear programming problem is a problem
when we solve linear programming problem with several or many objective func-
tions which should be optimized at the same time. Thus the fuzzy approach here
helps to overcome the conflict of multiple objective functions which have their
optimal solutions in different points.
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The idea for our investigation came from the fuzzy approach proposed by
Zimmermann in ([7]) where the membership functions (or fuzzy sets) are involved
to prescribe how far the concrete point from the feasible solution set is from the
solution of an individual problem for each function which should be optimized.
Thus for each function, which should be optimized, the membership function
value for a concrete point is the belongness degree to the set which contains
the individual solution/solutions. Then these fuzzy sets are aggregated by using
an aggregation function and the obtained fuzzy set is optimized in the initial
feasible region. We should remark, that in Zimmermann approach all the fuzzy
sets are linear functions (or partially linear).

In our paper we propose to use fuzzy relations ([1,5]) instead of the mem-
bership functions used by Zimmermann and further developed by other authors.
The idea of using fuzzy relations is motivated by the fact that we want to find
a solution which is equal to all individual solutions. It is clear that generally it
is impossible to find equivalence relation to solve this problem but fuzzy equiv-
alence relation can help us. Here, the transitivity of fuzzy equivalence relation
helps us obtain a Pareto optimal solution, which, in fact, distinguishes our app-
roach from Zimmermann’s. Fuzzy equivalence approach (FEA) provides a more
general framework for handling multiple objectives. Specifically, when using the
Lukasiewicz t-norm, FEA generalizes the Zimmermann approach. Additionally,
we demonstrate that working with fuzzy equivalence relations enables us to
defuzzify the solution approach and work with crisp metrics, which simplifies
calculations.

The paper is structured in the following way: Sect.2 contains some known
facts about t-norms and fuzzy equivalence relations important for the further
understanding of the material; we propose the Zimmermann approach with illus-
trative examples in Sect. 3; we propose the solution approach with fuzzy equiv-
alence relations and observe the numerical example in Sect. 4; and we conclude
our paper by Sect. 5.

2 Preliminaries

2.1 Triangular Norms

We start with the definition of a t-norm which plays the crucial role for the
definition of tramnsitivity for fuzzy relations:

Definition 1. [2] A triangular norm (t-norm for short) is a binary operation
T on the unit interval [0,1], i.e. a function T : [0,1]?> — [0,1] such that for all
a,b,c € 10,1] the following four azioms are satisfied:

~ T(a,b) =T(b,a) (commutativity);

- T(a,T(b,c)) =T(T(a,b),c) (associativity);

- T(a,b) < T(a,c) whenever b < ¢ (monotonicity);
- T(a,1) = a (a boundary condition,).
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Some of often used t-norms are mentioned below:

— Tr(a,b) = min(a,b) the minimum t-norm;
— Tp(a,b) = a- b the product t-norm;
— Tr(a,b) = max(a + b —1,0) the Lukasiewicz t-norm;

a-b : 2 2
TH(a;b){W lfa +b #O

. the Hamacher t-norm.
otherwise

Definition 2. [2] A t-norm T is called Archimedean if and only if, for all pairs
(a,b) € (0,1)2, there is n € N such that T(a,a, ...,a) < b.
n times

Product and Lukasiewicz t-norms are Archimedean while minimum t-norm
is not.

We proceed recalling an important tool for the construction and study of t-
norms involving only one-argument real function (additive generator) and addi-
tion. Later we use the same tool for constructing fuzzy equivalence.

Definition 3. [2] An additive generator g : [0,1] — [0,00] of a t-norm T is a
strictly decreasing function which is also right-semicontinuous at 0 and satisfies
g(1) = 0 such that for all (a,b) € [0,1]* we have

g(a) + g(b) € Ran(g) U [g(0), oc],

T(a,b) = ¢V (g(a) + (b))
where Ran(g) is the range of g.

Note that, if a t-norm T has an additive generator g, then it is uniquely
determined up to a non-zero positive constant. Each t-norm with an additive
generator is Archimedean.

2.2 Fuzzy Equivalence Relations

We continue with an overview of basic definitions and results on fuzzy equiva-
lence relations. Definition of a fuzzy equivalence relation was first introduced by
L.A. Zadeh in 1971 ([5]) under the name of fuzzy similarity relation.

Definition 4. (see e.g. [1]) A fuzzy binary relation E on a set S is called a
fuzzy equivalence relation with respect to a t-norm T (or T-equivalence), if and
only if the following three axioms are fulfilled for all a,b,c € S :

1. E(a,a) = 1 reflexivity;
2. E(a,b) = E(b,a) symmetry;
3. T(E(a,b), E(b,c)) < E(a,c) T-transitivity.

The following result establishes principles of construction of fuzzy equivalence
relations using pseudo-metrics.
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Theorem 1. [1] Let T be a continuous Archimedean t-norm with an additive
generator g. For any pseudo-metric d, the mapping

Eq(a,b) = gV (min(d(a, b), 9(0)))
18 a T-equivalence.

Example 1. Let us consider the set of real numbers S = R and the metric
d(a,b) = |a — b| on it. Taking into account that g (z) = 1 — z is an additive
generator of T, (Lukasiewicz t-norm) and gp(x) = —In(z) is an additive
generator of Tp (product t-norm), we obtain fuzzy equivalence relations:
Er(a,b) = max(1 — |a — b|,0);

Ep(a,b) = e~ 1o,

To fuse the information about the all objective functions we will use aggre-
gation functions:
Definition 5. [3] An aggregation function is a mapping A : [0,1]* — [0,1]
which fulfills the following properties:

— Az, . 2%) < Ayl ., yF) whenever zt <y for all i € {1,...,k} (mono-
tonicity);
- A(0,...,0) =0 and A(1,...,1) = 1 (boundary conditions).

Namely, we need to fuse equivalence relations that is why we need the fol-
lowing theorem and example. Since in our approach we are constructing fuzzy
equivalence relations from pseudo-metrics (which is quite natural) we focus only
in Archimedean t-norms.

Theorem 2. [/] Let A : [0,1]F — [0,1] be an aggregation function, T be a
continuous Archimedean t-norm with an additive generator g : [0,1] — [0, ¢] such
that g(0) = ¢ and ¢ € (0,00], and E; for all i € {1,...,k} are fuzzy equivalence
relations (with respect to the t-norm T ). Then

E(I,y) = A(El(xvy)a SR Ek(xvy))

is also a T-equivalence relation if and only if H : [0,c]* — [0, c] constructed as

H(ay,...,ar) =g (A(gil(al), o ,gil(ak))) .
is a subadditive function on [0,c|, where a; € [0,¢],i € {1,...,k}.
k
Ezample 2. Consider some weights pi,...,pr € [0,1] such that > p;, = 1. If
i=1

k
H(a,...,ar) = min <c, > pl-ai), which is a subadditive function, then
i=1

k
Aas, ... ar) = g (min(g(o), Zpi '9(%)))

i=1

preserves T-equivalences. We will use this construction to aggregate fuzzy equiv-
alences in the further examples.
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3 Zimmermann Approach for MOLP Problem

A mathematical model of multiple objective linear programming (MOLP) prob-
lem can be represented as follows:
Maximize Z = (z1(x), ..., zi(x))
subj . i i 1= (L)
ject to Za”x] <b,i=1,..,m,
j=1

n
where € R, Z is a vector of objectives or objective functions z; = ) ¢ z;
i=1

(linear functions) where [ = 1,..,k. That is we must find a vector x°P* =
(29", ..., 29P*) which maximizes k objective functions of n variables, and with m

constraints. Let D denote a feasible region of the problem (1), which is the set of

n
all possible points = that satisfy the conditions > a;;xz; < b;, @ = 1,...,m. For
j=1
the sake of brevity further we denote vectors (1, ...,2,) as = (x = (21, ..., Ty)).

When solving problem (1), if trivial cases are not taken into account, all
objective functions cannot reach their optimums at the same points under given
constraints, since objective functions usually conflict with each other. Thus, the
Pareto optimal solution (or efficient solution) and the optimal compromise solu-
tion will be introduced to explain what solutions we are going to obtain by
solving problem (1):

Definition 6. [7] Point xP° from the feasible region D is called Pareto optimal
solution for the problem (1) if and only if there does not exist another x € D
such that z;(2P°) < z(x) for alll =1, ...,k and z;(xP°) # z;(x) for at least one
J-

That is, if 2P° is a Pareto optimal solution, then it is impossible to find such

x for which at least for one objective the value is greater than for 2P° and for
all other objectives the values are not less than for x.

Definition 7. [7] The optimal compromise solution to the multiple objective
linear programming problem is the solution © € D, which the decision maker
prefers to all other solutions, taking into account all the criteria. The optimal
compromise solution will simply be referred to as the optimal solution.

It is generally accepted that the optimal solution must be Pareto optimal. In
what follows, the decision maker choice between all Pareto optimal solution,
taking into account the criteria, proceeds from the original real problem to be
solved using the MOLP algorithm. On the other hand, the choice of algorithm
affects the choice of optimal solutions from all Pareto optimal ones.

The fuzzy approach to solving the MOLP problem proposed by Zimmermann
[7] provided an efficient way to measure the degree of satisfaction of maximiza-
tion of all objectives for points from the feasible region. The idea is to identify
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the membership functions prescribing the fuzzy goals (solutions of individual
problem) for the objective functions z;, i = 1,..,k. The following linear func-
tion is an example of a membership function, which is commonly used by other
authors in MOLP and will be used in our work:

0, if 2;(x) < zmin
zi(x) — zmin ,
1) =4 ey A S #i(2) S 2
K2 K2
1, zi(x) > zner
where 2]"** is the solution of individual problem

n
Maximize z;, s.t. Y a;jz; < b, i =1,...,m
Jj=1

min js the solution of individual problem

i

and z
n
Minimize z;, s.t. Y a;jx; < b, i =1,...,m.
j=1

Usually the membership functions p; are linear functions and it is argued by
the “facilitation computation for obtaining solutions”. Further in the “classical”
fuzzy approach membership functions p; are aggregated. The main subject which
is discussed in the large part of papers is the choice of an aggregation function.
Thus the problem (1) reduces to the following problem:

Maximize A(u(x), ..., px(x))
. - , (2)
subject to Zaijxj <b,i=1,....,m,
j=1

where A is an aggregation function.

Theorem 3. If x is unique solution for problem (2) then it is a Pareto optimal
solution for problem (1).

Proof. Proof from the opposite. It is assumed that there exists a point y € D
such that,

zj(x) < z;(y)

z2i(z) < z(y) Vi=1,.., k.

It follows that p;(x) < p;(y) and w(z) < w(y) vl = 1,..., k; this follows from
the definition of membership functions g;. Then, from the monotonicity of an
aggregation function it follows that

Apr (), o () < A(pa(y), -0 11 (Y))-

However, given that z is the solution of the problem (2), which means that

A(pr (), oo (1)) = A(pa (y), - 1 (Y))-

Now a contradiction arises with the unity of the solution of the problem (2). By
this the theorem is proven.
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Fig. 1. Feasible region for the problem (3); dotted lines indicate level lines for individual
solutions

(c) Arithmetic mean

Fig. 2. A(pi(z),..., ux(z)), where in a) A = Tas; b) A = Tp; ¢) A is the arithmetic
mean.

2

Fig. 3. Feasible region for the problem (4); dotted lines indicate level lines for individual
solutions
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‘\M\H\NW 4

(c) Tr, (d) Arithmetic mean

Fig. 4. A(pi(x), ..., pr(z)), where in a) A = Thr; b) A =Tp; c) A =Tr; d) Ais the
arithmetic mean.

We illustrate all approaches with two example:
1. Triangular example:

Maximize Z = (z1(x), 2z2(x)),
where z1 = 1, 20 = T2
subject to x1 + z2 < 1,
x1,x2 20
For this problem we visualize the feasible region D in Fig. 1.
The Fig. 2 demonstrates the function A(uq(x),..., ux(z)) for different aggre-
gation functions.
Table 1 shows optimal solutions for the triangular example using different

aggregation functions:
2. Zimmermann example

Maximize Z = (z1(x), 22(7)),

where z1(x) = —x1 + 229, 22(x) = 221 + 29
subject to — x1 + 32 < 21
x1 + 3z <27 4)
4xq1 + 322 < 45
3x1 + 22 <30

1,72 >0
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Table 1. Solutions for triangular example using different aggregation functions.

A Opt. solution
Tp (0.5 ; 0.5)
Ty (0.5; 0.5)

Arithmetic mean |line 21 + 22 =1

Ty, No solution

Table 2. Solutions for the Zimmermann’s example using different aggregation func-
tions.

A Opt. solution
T (4.96 ; 7.35)
Tp (5.7 ; 7.01)
Arithmetic mean | (6 ; 7)

TL 6;7)

For this problem we visualize the feasible region D in Fig. 2. The Fig. 4 demon-
strates the function A(uq(x),...,ux(x)) for different aggregation functions.
Table 2 shows optimal solutions for the Zimmermann example using different
aggregation functions.

Triangular example is a quite simple example, but seems important to us
since we would like to see how different approaches will work with the example
where the affect of each of two objective functions is identical and the feasible
region is symmetrical about individual solutions.

Zimmermann example was involved in [7] and since then many authors use it to
compare results.

4 Fuzzy Equivalence Relations Approach

In this section we realize the approach of using fuzzy equivalence relations to
show the degree of equivalence of the point from the feasible region and individual
solution. First we build the following pseudo-metrics on the set D:

iey) = Zpar i -

Thus defined d; are indeed pseudo-metrics and applying the Theorem 1 we can
build a T-equivalence relation:

() = o min( ZD WL o)) 6

where g is an additive generator of a continuous Archimedean t-norm 7.
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Hence we should first choose a t-norm which plays a role of a generalized
conjunction and further construct T-equivalences using a correspondent additive
generator g.

|2i(x) — zi(y)|
Bi(z,y)=1- o —— o

z] — 2

are fuzzy Tp-equivalence relations.

_lz@ =z @)l
El(x’ y) — e z'irnamizgnln

are fuzzy Tp-equivalence relations.
Then we aggregate the equivalence relations and solve the following problem:

Maximize A(Eq(z7**",y), ..., Ex (21", y)).

The approach for different t-norms we illustrate for

Triangular example (Fig. 5):

In the both cases the solutions are points of the line xy + zo = 1 where
Zimmermann example (Fig. 6):

In the both cases the solution is z = (6,7).

Theorem 4. If there exists a unique solution to problem:
Mazimize A(E1 (27", y), ..., Bx (21", y))

then it is a Pareto optimal MOLP problem’s solution for the problem (1).

ol 55 ~
i '”““”\”\W i
T L : b \ \ \“ H i

il B mm\m wu\mmw»mw e

BNy
) \\\\\\\\\\M\\l\\”

E il HWM“‘

il H~ LN\ i

(b) Ep

Fig. 6. A(E1(x7%,y), ..., Ex(x(*%,y)) for different fuzzy equivalence relations
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Proof. Let y be the unique solution to problem:
Maximize A(FE (21", y), ..., Ex (", y)).

Let denote A(Eq (27", y), ..., Ex (2", y)) by A(z™",y). Let prove the theorem
by contradiction: suppose there is another point x, that is Pareto optimal. That

means, Vi = 1,...,kz(y) < z;(z) and there exists at least one j such that
zj(y) < z(x).
Now lets look at fuzzy equivalences: E; (2% y) =
- . maz - : zi(2"") — z(y)
= g( 2 (mln (9(0),d1($1 7y)>> = g( 2 <m1n (g(o 7 | Lmax _ Zmin ’)>
Because of z;(y) < zj(z) and z;(y) < z(x )Vifl ., k we have d; (z}]"**, y) >

dy(x72%, x) and dy(ae,y) > dy(2on,2) ¥ k. Thus Ey(zitor,y) <
E;(z**, x), which means A(;zcm‘””7 ) (;vm‘” ) Wthh is a contradiction to

y being a unique solution.

It is easy to see from the prove of the above theorem that the following
theorem fulfill for non-unique solutions.

Theorem 5. The solution to the problem:
Mazimize A(E1(x7',y), ..., Ex (217", y))

is Pareto optimal MOLP problem’s solution for the problem (1) if z;(y) <
zj(x) = Ey(x]*",y) < E;(x]"**,x) and A is strictly monotone aggregation
function.

The next theorem shows that if we chose the base for the aggregation function
an arithmetic mean, then for any class of T-equivalences we will have the same
result (solution), which illustrate the above examples.

Theorem 6. If the aggregation function is defined as

Alay,...ap) = fC <min (f(o), ipif(ai)))

where f is an additive-generator of some t-norm T and a; = E;(™*®,y) are
T'-equivalences constructed for pseudo-metric d; such that d;(x™** y) < f(0)

n k
forally € D and > p; =1 then maxA(xm”,y) = min Y p;d; (™ y).
Y Y oi=1

i=1

max

The last theorem shows that in some (but typical) cases the solution of MOLP
problem with fuzzy approach reduces to the crisp approach using pseudo-metrics.
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5 Conclusion

In the paper we proposed a solution approach for multiple objective linear pro-
gramming problem where we have used fuzzy equivalence relations prescribing
the degree of equivalence of a point from the feasible region and individual solu-
tions. Fuzzy equivalence relations were aggregated to get the degree to which a
point from the feasible region is equal to all individual solutions.

We see the potential for the future research in generalizing approach to fuzzy

order relations since it will help to overcome the non-uniqueness for the solutions
which compensate one another. For example we believe that with fuzzy order
relations we will overcome the non-uniqueness for the triangular example.
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Abstract. The complexity of democratic public decision-making has augmented
with the surge of volumes of information. One response is using digital tools in
decision-making processes to enable more flexibility than the conventional yes
or no responses. We proposed a solution for a large-scale democratic decision-
making process using soft computing and fuzzy logic, based on systemic consensus
and action design research. Our integrative fuzzy decision-making process was
designed to allow the consideration of all the arguments, the deliberation of all the
alternatives, and the assessment of each alternative using comparative linguistic
expressions. The method was used to resolve a conflict-generating traffic problem
in Geuensee, a municipality in the Swiss canton of Luzern. The citizens voted on
two dimensions of resistance and support about each of the proposed alternatives.
The results were computed using fuzzy membership functions and a fuzzy logic
table, evaluated with different computational variants. The output was a ranking of
the best options, as assessed by the decision-makers. We found that this method for
smart participation of citizens was accepted and generated involvement, leading
to an effective outcome for the decision-makers. In the last section, we discuss
evaluation and ethical considerations.

Keywords: participative decision making - fuzzy voting - fuzzy logic -
comparative linguistic expressions - smart governance - cognitive cities

1 Introduction

Democracies rely on the majority rule, a system of decision-making where the largest
group decides the outcome, while as the less numerous groups must succumb to the
majority’s decision. This generates the inevitable winners - losers paradigm, which
impacts all levels of our democratic mentality. Thus, whenever a controversial matter
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arises, most effort is allocated to gathering the majority by convincing as many people
as possible of one point of view or the other. The resulting power struggles utilize a lot of
resources and often shift the conversation from the main concern. [10, 25] To prevent the
manipulation of decision-makers with emotional or rhetorical methods, evidence-based
decision-making has been increasingly promoted in formal settings, in which a set of
objective criteria is used and weighed, based on impact or relevance. In some decision-
making methods, the focus is on maximizing consensus by discussing and voting in
successive rounds. [1, 7].

Also, citizens want and are expected to participate more than ever in thinking, decid-
ing, and implementing decisions in societies. Finger and Portmann [5] have argued that
the smart city — performing city-relevant duties by using ICT — must not only focus on
resource management and sustainability as it is often expected, but also on the needs of
the individual, which are often overlooked [19, 20]. The same applies to regions, where
value can be created by bringing citizens into the decision-making process. [14].

In the following, we will present our framework and case study of Unterdorf St.
in the canton of Luzern, Switzerland, where a real-life community traffic problem was
resolved, and subsequent conflict was mediated, by using systemic consensus principles.
We developed and applied a transdisciplinary [22] framework for large scale group
decision-making (LS-GDM) using fuzzy methods, to perform comparative linguistic
expressions on two scales of resistance and support about the 13 alternatives, resulting
into a ranking of to be pursued in descending order of priority.

Section 2 briefly reviews the concepts of decision-making, large scale group decision-
making (LS-GDM), systemic consensus, fuzzy decision-making, and comparative lin-
guistic expressions (CLEs). Section 3 presents our framework for LS-GDM, using sys-
temic consensus, CLEs and fuzzy logic. Section 4 introduces the case study of Under-
dorfstrasse, a real LS-GDM, to demonstrate the functionality of the proposed process.
In Sect. 5, conclusions, ethical considerations, and reflections are presented.

2 Preliminary Definitions

2.1 Literature Review

Large-scale group decision-making [11] using fuzzy methods [26] has been researched
extensively, [11] by using CLEs, trapezoidal membership functions, [7, 9] and computing
with words. [13] Some of these studies also present consensus reaching processes, related
to LS-GDM, often involving multi-criteria decision-making. [1, 7, 8] Public decisions
are a special case of LS-GDM, for which Torres van Grinsven, Hudec, Portmann and
D’Onofrio [21] proposed a paradigm of flexible voting using fuzzy sets to enable more
participation [19, 20] and human-computer interaction. [2].

Most of the literature on decision-making processes using fuzzy sets [1] involves
experts and focuses on arguments, criteria, weighting [7, 12] and the study of hesitance
[27] while as in our case study we chose the approach of including all the affected
individuals in the decision-making process and deciding only about the alternatives in
a single round of voting, without any other formal criteria than the self-evaluated levels
of resistance and support. [6, 22].
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The main difference from other fuzzy models such as fuzzy TOPSIS or AHP is that
the decision reflects the support and resistance of the citizens about the alternatives, and
not their assessment of criteria, as no objective criteria are used. [7, 8, 12] The decision-
makers learned all the information and the arguments collected in favor and against,
discussed about them, considered all the alternatives, and voted using fuzzy sliders over
the course of one single in-person event. We chose to use ordinary fuzzy sets although
recent extensions of them exist, in order to make the process of decision-making very
simple, explainable, and understandable by all people, since the model was used for a
public, democratic decision.

Thus, the framework proposed herein is built using a 7-step decision-making process
(Table 4, Appendix), ethical system design [4, 16], and action design research (ADR)
[18, 24]. The latter is a computer science research paradigm, known as “knowledge
through making” [10, 19, 24] Despite being criticized on its rigor and relevance, we
considered it most suitable for our participative fuzzy voting case, and we relied on
continuous evaluation [3] and feedback collection to ensure its validity. [15] Lastly,
in choosing to include transdisciplinarity, we strived for a “generative processes of
harvesting, capitalizing, and leveraging multiple expertise” [6, p. 116] by including all
the stakeholders and considering their life experience as “expertise”.

2.2 Group Decision-Making Methods

When a group of individuals are presented with a choice of one or more alternatives to
a problem, or of means to reach a desired goal, there is a case of group decision-making
(GDM). The main difference between GDM and LS-GDM, is the size of the group. [7,
11].

Consensus Reaching Process

In consensus reaching processes (CRP), the decision is the most optimal proposal that the
participants support unanimously. CRP is usually characterized by the following steps:
(1) gathering preferences, (2) computing agreement level, (3) consensus control, and (4)
feedback generation [7], repeated as many times as necessary, until the maximum level
of consensus is reached. Between repetitions, experts or representatives have guided
discussions, with the goal of maximising consensus [1]. When consensus or the highest
level of agreement is reached, the CRP ends.

Systemic Consensus
One alternative to classic consensus is the Systemic Consensus Principle (SCP). It does
not require full consensus, but only to strive to obtain the minimum dissensus, by assess-
ing resistance to all possible alternatives and prioritizing those with the lowest levels.
The result indicates where the highest union of interests lies, in relation to each of the
possibilities. [10, 25].

2.3 Fuzzy Decision-Making

In 1965 Lotfi Zadeh introduced a human computational decision-making approach that
allows for more flexibility than crisp voting and enables consensus-driven processes.
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[26] In contrast with 1 and O crisp calculation, the assignment of intermediate values
represents human reasoning more precisely, because inherent hesitancy, uncertainty, and
irrationality of human thinking processes can be integrated [19].

Comparative Linguistic Expressions (CLEs) and Membership Functions
Comparative linguistic expressions (CLEs) are used in fuzzy systems to implement fuzzy
membership functions along a rating scale. Any two consecutive CLEs may overlap in
their membership level. They enable fuzzy decision-making by using words and statuses
to express the opinion about an alternative.

I do not agree I tend to disagree I tend to agree T agree

g 1 P

45

Fig. 1. Trapezoidal membership functions for agreement

Figure 1 shows all possible memberships by using four CLEs from “I do not agree” to
“I agree”. At any point, a maximum of two of the CLE statuses will have a membership-
value above 0.

On the x-axis of Fig. 1, the chosen rating scale value 0.45 leads to a membership of
the CLE “I tend to disagree” with a value of 0.6 and a membership of the CLE “I tend
to agree” with a value of 0.4. The other two CLEs have a membership-value of 0.

Fuzzy Logic
Fuzzy logic is a concept in fuzzy decision-making which refers to the fact that states are
linked logically and not exclusively mathematically to each other [20]. This approach
opens various possibilities for dynamic decision-making. All possible combinations are
to be listed in a logic table and a final state for each combination is to be defined. The
logical operators AND, OR, as well as others can be used. Fuzzy logic allows for making
logical connections and enables statements and weightings.

In this chapter we briefly introduced the concepts of LS-GSM, CRP, SCP, fuzzy
voting, CLEs, and fuzzy logic. In the next chapter, our framework for integrative fuzzy
decision-making will be introduced.

3 Framework of an Integrative Fuzzy Decision-Making Process
(I-FDM)

3.1 I-FDM Framework of the Decision-Making Process

Based on the concepts in the preliminary part, we developed a fuzzy decision-making
process, which integrates all affected individuals as equal impact decision-makers D =
{dy, ... dy}, regardless of their specific expertise or lack thereof. The I-FDM process
follows the following steps of decision-making (Fig. 2):
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(2) assessing

(3) two-

(4) computing the

(1) gathering support (SUP); dimensional fuzzy -
alternatives resistance (RES) logic table to r;:ll:(el:;i [(;‘f/;fsne
levels using CLEs pursue or not
alternative 1 ] — support 1 | alternative z
: yeres \ / . >
alternative 2 » \/ SUPPQ«?/ e / » E [ IEE 2 | alternative v
/’< RESISTANCE CLEs >\ pursue 8 ﬁ_i
- i / \ / not pursue 12 e —
alternative n ' = B (14 b 16 ln | alternativet |

Fig. 2. The I-FDM process

After gathering the alternatives, we assess support and resistance levels by using
CLE-sliders computed with membership functions. Then, we create a matrix of fuzzy
logic rules, of how the CLE membership-values are computed to output statuses, indi-
cating whether an alternative should be pursued or not. In the last step, through applying
the fuzzy logic rules, a ranking of the alternatives by output statuses is generated.

3.2 Comparative Linguistic Expressions (CLEs)

In our framework, S = {s1, s2, s3, s4} is the set of CLEs of support and R = {r{, rp, 13,
r4} is the set of CLEs for resistance. They are both represented through four statuses,
as seen in Fig. 3. The following CLEs were considered the most suitable for the public
decision-making process, and used for the two-slider assessment:

SUP: SUP: SUP: SUP:
I do not support at all Taccept this option but I support this option 1 fully support this
this option only support it for the most part option
partially

RES:
1am against it and
actively resist

RES: RES:
1 think it is not the best 1am not resisting at all

option

Tam critical against
this option

Fig. 3. Fuzzy membership function of §

The fuzzy envelopes, envF(S) and envF(R) are defined as a trapezoidal fuzzy
membership function of support S(a, b, c,d) and resistance R(e,f, g,h) where
(a,b,...h) — [0, 1] and representing CLEs membership-degrees such that:

envF (S) = S(a, b, c,d) €))

envF(R) = R(e,f, g, h) 2)

Since the single CLEs are not sharply divided, a trapezoidal membership-function of
each CLE is used. Thus, we enabled a wide range on each CLE of a membership-degree
of 1.00, as also shown in similar applications [1].
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Computing Fuzzy Envelopes
Every decision-maker d; assesses all alternatives ALT; = {aj, ay... a,}, evaluating
each of them by using the two sliders. These assessments T; = {#/5,¢/R} per ALT; are
modelled by their fuzzy envelope (1) S = envF(S) and (2) iR = envF(R); where i is
the unique number of the decision-maker and j represents the unique number of each
alternative to be assessed.

The arithmetic average of all ALT/R and ALT’S were computed. In the cases where A;
was very widely distributed, we considered the value to be not as significant as needed
for a resilient result.

3.3 Two-Dimensional Fuzzy Logic Table

When all decision-makers (D) have committed their opinion for each alternative through
the two sliders, a two-dimensional assessment dataset T = {Tj,... Ty, } results. This dataset
is used for the defuzzification and fuzzy logic evaluation [1].

Table 1 shows the fuzzy logic rules in a matrix of how the assessments of support
and resistance (T) are calculated into output statuses (O) by a logical conjunction. The
output statuses are the CLEs O = (01, 02, 03) —

{rather not pursue; pursue critical; pursue clearly}. All 16 rules are shown in the 4 x
4 matrix in Table 1.

E.g., If tjs is s; AND tJR is rq, then result = o; (rather not pursue). 3

Through this logic table, individually weighing the statuses is possible. The weighing
rules were agreed upon at the beginning of the decision-making process.

The AND operation based on the rule table is computed as a MIN function (O =
(S N R)). Each output status (o1, 02, 03) is computed by a logical disjunction function
(olTOTAL = 0‘? U 0113 u.-.-u 011\7 ), OR operator or MAX function.

3.4 The Ranking of the Alternatives

The output of the I-FDM is a list of alternatives, compiled by using the disjunction
value per output status. These alternatives are to be examined in detail, and, if possible,
implemented. If the implementation is not possible, the next highest-ranking alternative
will be checked.

The comparative order of the CLE sets, the formation of the alternatives, and the
highest output membership-values, define the subordination. For example, the alternative
ALT; with the highest value of 0 = {pursue clearly} will be at the top of the ranking.

In this chapter, the I-FDM framework was introduced, comprising of four steps: (1)
gathering alternatives, (2) computing SUP and RES using CLEs and fuzzy envelopes,
(4) using a fuzzy logic table to compute outputs based on SUP and RES, and (4) the final
output, as a ranking of alternatives. In the following chapter, the case study of Unterdorf
St. will be introduced.
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Table 1. Two-dimensional fuzzy logic rule in a matrix

Support CLEs S (s1, 2, $3, S4)
I do not I accept this I support this | I fully support
support at all | alternative but | alternative for | this alternative
this only support it | the most part
alternative partially
Resistance I am against | rather not rather not rather not pursue,
CLEs (r1, rp, |itand resist | pursue pursue pursue critical
3, 14) active
I am critical | rather not rather not pursue, pursue,
against this | pursue pursue critical critical
alternative
Ithink itis | rather not rather not pursue, pursue,
not the best | pursue pursue critical critical
alternative
T am not pursue, pursue clearly | pursue clearly | pursue clearly
resisting at | critical
all

4 Case Study

We applied the I-FDM framework to solve a long withstanding conflict around Unter-
dorf St. in Geuensee, Luzern, Switzerland, where between March 2022 and December
2022 we implemented a participative process combining crowdsourcing alternatives and
arguments, voting workshops, and UX-designed digital tools for fuzzy voting, to decide
which of the alternative solutions should be pursued further.

4.1 Methodology

Based on the action design research methodology, we have developed a process of fuzzy
decision-making, striving for systemic consensus with the use of two dimensions of
resistance and support, which were then computed using a two-dimensional matrix for
obtaining a ranking of the top options favored by the decision-makers (Fig. 4).

An important part of the methodology was the continuous evaluation, by means of
collecting feedbacks in each production cycle: by assessing process steps, artifacts and
the app through the decision-makers and other people. The collection and processing of
arguments and alternatives was also reflected upon, optimized, and jointly decided by
those involved in the process.

Problem Formulation

The community of around 2000 people living in Geuensee, in the canton of Luzern,
Switzerland, was dissatisfied with the traffic to and from an industrial area, passing
through the residential street Unterdorf St., causing noise and safety risks. Previously
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Problem Formulation: practical and theoretical research
e N [ ~N
o ilding and Interventi
sunentomies || Building and Intervention
problem using human
participation
using ICT tool to . .
— llect alternati d 1 d ﬂ
—— | |ememnend) [ Hyaluation and Reflection
set up a human-
computer decision- . use: responses and [f outcome: a ranking || feedback from the feedback from
'making process that fuzzy voting using SUP votes submitted via || of alternatives to users on the decision-makers on
will lead to a list of and RES sliders the ICT tools pursue artifacts and app the process
the best alternatives to (CLEs)
pursue .
\\ J \ / j

Fig. 4. Applied action design research in the process of decision-making

proposed solutions have further escalated the conflict. The decision-making process
started with 9 alternatives, to which 4 others were added during the process [17].

Building and Intervention

UX experts were involved for developing a dedicated, digital web-based platform, com-
plying with all the values and requirements of the I-FDM process. In November 2022,
two voting workshops have been organized, at which the decision-makers were informed
about the problem, presented with the final 13 proposed alternatives as well as with the
arguments collected in earlier stages. Finally, the decision-makers D = {dy, ..., dsg}
voted on the alternatives ALT; = {aj, a2, ..., a13} using two CLE sliders of resistance
and support.

CLE Sliders

Figure 5 shows the display screen for one of the alternatives to be assessed. There is
a slider, where the CLEs describe resistance-levels. They use text-feedback only, with
different transparency levels, highlighted with a blue line on the upper slider, representing
the membership level to the CLEs. In Fig. 5 the CLE “T am critical against this alternative”
is chosen by a membership-degree of 80%, whereas the CLE “I think it is not the best
alternative” is chosen by 20%. No numerical values of the assessment were shown on
the screen.

CLE Sliders

| am critical against this alternative

7~
( @) )
N
| am against it and re- | am critical against this I think it is not the | am not resisting at
sist active alternative best alternative all

Fig. 5. Fuzzy sliders with membership functions, using transparency feedback of CLEs

4.2 Data Processing of CLE Membership-Values

A number of 2288 data entries were submitted on the 13 alternatives (ALT) by 88
decision-makers (D), during the two voting workshops. For each alternative, the average



132 B. Emmenegger et al.

value per slider and the membership-degree to the CLEs s; to s4 and r; to r4 were
calculated (Table 5, Appendix). Since the average values were the input variable in the
fuzzy logic calculation, wherever the single assessments were very widely distributed,
the values were classified as not sufficiently significant. Thus, we used the histograms
to analyze the resilience of each of membership-degrees. (Fig. 6 and Fig. 7, Appendix).

4.3 Application of the Two-Dimensional Fuzzy Logic Table

The output statuses per alternative were calculated by the fuzzy logic rules from Table 1
using conjunction and disjunction. In Table 2 the computed membership-values of the
output statuses are shown (Table 6, Appendix).

Table 2. Membership-degrees of output statuses of first 7 alternatives (only values > 0)

Alternative Output statuses as CLEs Rank
Pursue clearly Pursue critical Rather not pursue
3 Towards Sursee 0.167 0.833 1
8 Relocation 1.000 2
13 Repurposing 0.833 0.167 3
10 Combination time 0.750 0.250 4
7 Slow traffic 0.500 0.500 5
1 Schiracher St 0.500 0.500 6
9 No action 0.167 0.750 7

Only one alternative “3 Towards Sursee” reaches the output status “pursue clearly”,
with a membership-degree of 0.167. This option will therefore be the top priority on the
ranking, followed by a descending list of the membership-degrees in the second CLE
output status “pursue critical”. The second priority will be “8 Relocation”, followed by
“13 Repurposing”, and so on, and so forth. Only the alternatives that are above option 9
“No action”, are to be checked in detail (Table 2).

In the first part of the section, we have presented the case study of Unterdorf St., a
real-world application of the framework presented in Sect. 2. The output was a ranking
of 6 alternatives to be analysed for implementation by the decision-makers. Next, we
will present the evaluation of our ADR method, conclusions, and reflections.

4.4 Evaluation

Dujmovic [3] defines evaluation as a process of assessing whether an object meets the
requirements of the users and/or stakeholders. Considering this perspective, we have
used the following evaluation guidelines (Table 3).
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Table 3. Outcome of the evaluation of the I-FDM

Use of Tools and Artifacts We received a total of around 500 arguments
on the 13 alternatives. Also, a total of 2288
CLE assessments were submitted by the 88

participants
Outcome: Through the I-FDM process, we have
The Ranking generated and delivered a 6-item ranking of

the most favored alternatives to be pursued by
the decision-makers

Feedback from Users on the Tools: Surveying | A quantitative survey was applied to the voters
the Decision-makers about the digital platform built for the
occasion. The feedback was positive: 97%
answered that the decision-making tool was
helpful for the assessment

User Experience An interesting UX observation potentially
indicating that decision-making participants
liked and deliberatively made use of the
possibility to choose in-between
membership-degrees (Fig. 5), was that almost
all of decision-makers (93%) chose one or
more answers where two CLEs were shown at
the same time, adding up to 32% of the 2288
assessments

Feedback on the Process The result was accepted by the representatives
of the decision-makers and used for further
verification. We employed qualitative methods
of directly speaking with them, as well as the
quantitative method of the survey. The result
was that 88% of the participants said that they
would use this method again

5 Conclusion

In this paper an integrative fuzzy decision-making framework has been presented, as it
was applied with good results in the real-life case study of Unterdorf St. Being integra-
tive and transdisciplinary, the model included all concerned parties as decision-makers,
rather than only experts. The method combined measuring support, which is conven-
tionally assessed in consensus-reaching processes (CRPs), with measuring resistance,
thus striving for systemic consensus. The voting cycles were not repeated.

The results were computed with trapezoidal functions into fuzzy envelopes. A rank-
ing was generated by applying fuzzy logic rules, allowing to weight the resistance as
considered in the SCP. The 6-item list was handed to the decision-makers, for further
verification and implementation, in descending order of priority.

In the evaluation section, we showed that the voting platform used the UX element
of transparency-opacity of the status description, i.e., the transition from one CLE status
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to the other, to communicate to the user the ability to choose concomitant status mem-
berships on each one of the CLE sliders. This feature was used by most of the users, for
around a third of the assessments.

The feedback collected through surveys and qualitative assessments was overall
positive, in terms of using the digital tools and other artifacts, of the result relative to the
initial goal, and of using this decision-making method again.

Ethical System and Process Design

Our application of the I-FDM framework and consequent tools and artifacts produced,
follows the paradigm of value-based IT design and ethical system design [16] by actively
involving the stakeholders in all the phases of the system design. We wanted to make sure
that the values of confidentiality, integrity, availability of data, authenticity, accuracy,
are embedded into our integrative FDM framework.

Some examples are that the decision makers had access to the entire process and to
intermediary results and were informed about how the data will be handled. Also, the
problem statement was made clear, known to all, as well as the decisions that were taken
and assumptions that were made in the beginning. The stage of gathering the alternatives
was handled with particular care and transparency.

Our transdisciplinary integrative approach allowed all the stakeholders to participate,
according to their own knowledge and competencies, and obtained a democratically legit-
imate result. Sufficient time was given for each step, allowing participants to understand
and to find time to attend. Lastly, we tried to set the right expectations for the result.
We also recommended that in deciding about the implementation, short-term as well as
long-term perspectives would be carefully considered.

Reflection

The results of this process can be extrapolated in two main directions. Firstly, the [-FDM
is suitable and effective in real-life case studies of urban planning, community conflict
resolution, and others. The people that contributed throughout and participated in the
voting, validated this method by giving their attendance and positive feedback. For the
design science method, a key future takeaway is continuing the evaluation from multiple
perspectives, as well as maintaining constant contact with real-world cases. The lack of
excessive theorization of the research method helped to design a lean process, that put the
users at its core. More analysis can be done of the data, by using different computational
methods.
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Abstract. In the field of machine learning, a crucial task is understand-
ing the relative importance of the different input features in a predictive
model. There is an approach in the literature whose aim is to analyze
the predictive capacity of some features with respect to others. Can we
explain a feature of the input space with others? Can we quantify this
capacity? We propose a practical approach for analyzing the importance
of features in a model and the explanatory capacity of some features over
others. It is based on the adaptation of existing definitions from the liter-
ature that use the Shapley value and fuzzy measures. Our new approach
aims to facilitate the understanding and application of these concepts by
starting from a simple idea and considering well known methods. The
main objective of this work is to provide a useful and practical approach
for analyzing feature importance in real world cases.

Keywords: Fuzzy Measures - Machine Learning - Features
Importance -+ Explainable Artificial Intelligence

1 Introduction

The goal of this work is inspired by the idea that the interpretability of a machine
learning model is closely related to the knowledge about the predictive capacity
of the features involved [1]. In [8] it was introduced a new methodology to anal-
yse and consider the whole available information of the known features. Based
on fuzzy measures, it avoids the problem of overfitting caused by continuous
features. Its goal is to predict the value of an unidentified feature knowing a set
of them. That method was inspired by those of Strumbelj et al. [11-13], who
used the Shapley value [9] of a cooperative game to analyze the measurement
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of the importance of the features in a machine learning model. This solution
concept is used in the field of eXplainable Artificial Intelligence (XAI) to assess
the importance of features in a machine learning model and to measure the pre-
dictive ability of some features over others [3]. It has gained popularity due to
their flexibility and appealing axiomatization of fairness [7].

In this field, two extreme approaches are specially interesting. The method
in [11] assigns a random value to the unknown feature. On the opposite, [13],
fixed a specific instance to be predicted, only considers instances in which the
value of the unknown feature matches with the fixed. The method in [8] is an
intermediate solution between [11] and [13], which mixes random values with the
consideration of exact values. That mix is supported by the use of fuzzy mea-
sures [10], monotonic set functions useful to make decisions, find good methods
and logical operators for connectives and implications, represent and analyze
vagueness [2].

Our goal now is a practical application of [8]. With that method as starting
point, in this paper we develop an step by step methodology which details how to
proceed in any case to calculate the predictive capacity measure which quantifies
the predictive capacity of some features over others, apart from the predictions
obtained in any scenario. To do so, and in order to establish a realistic and
easy-to-implement proposal, we base on the idea of generating simple predictive
models. We include a illustrative example to explain the process in detail, and
a comparison with other measures in the literature.

The paper is organized as follows. The foundational concepts necessary for
a comprehensive understanding of this paper are established in Sect.2. Sect. 3
explains step by step the characterization of the new explanation method and
the relative predictive fuzzy measure. Section 4 is about an application of the
model and its interpretation. We finish in Sect. 5 with some final remarks.

2 Preliminaries

In this work we suggest a real approach to the measurement of the predictive
ability of the features of a machine learning model. Now we introduce the theoret-
ical models which set the starting point of the proposed application. Specifically,
we show the methods [8,11,13], used to measure the importance of features in a
machine learning model using the Shapley value in a cooperative game [9] with
characteristic function w, Sh;(w). This solution concept has been adapted to
the field of fuzzy measures [10], on whose basis we develop this paper.

On the following it is assumed that the set of players or individuals, N, refers
to the input features in a machine learning model, N = {vy,...,v,}. A denote
the set of instances, and for S C N, the Cartesian product of singles instances in
Sis Ag = A} x Ay x ... A}, being A, = {v;}, if i € S, and A} = {¢} otherwise,
being € a pre-defined value that represents a missing data [12].

Finally, we present three importance measures. Given a database D and a
specific instance z, to measure the predictive ability of the unknown features, (!
[11] assigns them a random value; p? [13] only considers the instances in which
unknown features exactly match with z, and ¢3 [8] is an intermediate solution.
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Definition 1 (Explanation method for an instance o' [11]). Let D denote
a database with n features N = {v1,...,v,} and a set A of m instances, being
z = (x1,...,2,) € A. Let f denote a predictive model. The importance of the
feature v; in the instance x is defined as the Shapley value for a characteristic
function AL(S), defined VS C N.

dw= > oy -ae) )

SCN\{v;}

where s = |S|; AY(S) =

1
> Sy S) - e Y )

|A \S| yEAN\s yEAN
- . )z ifv,e S
T(z,y,S) = (21,22,...,2n), being zp = {W if v, ¢ S

Definition 2 (Explanation method for an instance ¢? [13]). Let D denote
a database with n features N = {v1,...,v,} and a set A of m instances, being
x = (x1,...,2,) € A. Let f denote a predictive model. The importance of the
feature v; in the instance x is defined as the Shapley value for a characteristic
function A%(S), defined VS C N.

FEREDY %(ﬂ%su{m) as) @

SCEN\{v;}

where s = |S|; A%(S | Z fly Byl Zf

yEBy

being Bg={y € D :xy=yp, Vv, €S}
Finally, to define 3, it is needed the concept of predictive fuzzy measure.

Definition 3 (Predictive fuzzy measure [8]). Let D denote a database with
n features N = {v1,...,v,} and a set A of m instances. Givenv; € N, VS C N,
w;(S) is defined as the predictive ability in D, regardless randomness, of the
features in S over v;.

Error;(0) — Error;(S)
Error;(0)

w5 (S) = 3)
where Error;(0) and Error;(S) denote a measure of the error obtained when v;
is predicted randomly or with the features in S, respectively.

Definition 4 (Explanation method for an instance using fuzzy mea-
sures ¢3[8]). Let D denote a database with n features N = {vy,...,v,} and a
set A of m instances. For every v; € N and for every p;(S) predictive fuzzy
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measure of the features in S C N over feature vj, being f a predictive model and
z = (1,...,%n) € A, the importance of the feature v; in the instance x is defined
as the Shapley value for a characteristic function A3(S), defined ¥S C N.

dw= Y "oy -ats) @

where s = |S|;  A*(S,z)

oty 9) - Zf (z,y',0))

‘AN\Sl yeEAN N\S yE.AN

, B . e ifv, €8
m(z,y',5) = (21,...,2n), being Ze_{yz if ve ¢ S

being y, an estimation of the { —th feature, vy, when knowing the features in
S, with which an explainability percentage of 1;(S) is guaranteed.

3 Mathematical Model

Our goal is the proposal of a specific characterization of u; and @?, which allows
the calculation in real problems. To do so, we have to specify the mathematical
models for which the prediction errors are calculated for every type of feature
v; € N (i.e. we have to specify the calculation of the predictive fuzzy measure
;), and the way to obtain 3’ in order to guarantee the conditions of ;.

3.1 On the Calculation of the Predictive Fuzzy Measure

Our proposal considers simple mathematical models of prediction. Otherwise,
the calculation of p; would be really complex. Specifically, given a database D
with a set N of n input features and a set A of m instances, and being y the
variable to be predicted, our methodology to calculate p; is:

(1) Organize the input features into a set of categorical features N¢; ordinal
features IN°, and numeric features N™, where N = N¢U N° U N™, and
N*NNI =0, Vi # 5 € {n,o,c}.

(2) Preprocessing of the features depending on their nature.

(2a) Each categorical feature ¢ € N€ is decomposed into dummy variables, d°.
Common methods can be used, as long as the representativeness among
other criteria are guaranteed; i.e., the number of instances in which each
category is observed should not be negligible, otherwise the feature has
to be debugged beforehand. For example, given the categorical feature
¢ = {F,M}, the dummy related with the category F has the values
d°F=1if c=F; d°.F = 0, otherwise.

(2b) Each ordinal feature o € N° is decomposed into cumulative dummy
variables, d°, but not with common methods: for each specific category
of the ordinal feature, the corresponding dummy variable has the value
1 for each value below or equal to the analyzed category, and the value
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0 otherwise. Obviously, a dummy is not needed for the last or higher
category, it would trivially have all values as 1. For example, given the
ordinal feature o = (Low, Medium, High), the dummy related with
the category Medium has the values d°.Medium = 1, if o = Low or
Medium; and d°.Medium = 0, if o = High.
(2¢) No preprocessing is needed for numeric features.
(3) For every categorical feature ¢ € N¢:

(3a) For every subset S C N\{c} of feasible features to predict ¢, we have to
calculate the best logistic model (logit) to predict d¢ [4].

(3b) We aggregate the predictions made by each predictive model, obtained
in (3a), into a single prediction for the original categorical feature. This
aggregation is done, in each instance, taking into account the propor-
tionality obtained in the predictions of the different models. To calculate
MSE. (mean square deviation to measure the average of the squares of
the errors), we consider the probability of not hitting the real value of the
analyzed feature ¢ when knowing S:

MSE(S) = =3 (1= P (@ = o) ®)
k=1

where P (¢, = ¢i) is the probability of the estimated value of the ana-
lyzed feature c¢ in the instance k, ¢, fixes the real value of o in k, cj.
Regarding ¢ = {F, M}, if the best logistic model about d°.F provides
the probability 0.55, and the best logistic model about d°.M provides
the probability 0.65 in a specific instance k, the aggregation is done in

0.55 0.65 _ (055 0.65 _
k as (0.55%.65, 0'55+0'65) = ( 5 1o ) If ¢, = F, the summand of

MSE.(S) related to instance k is (1 — %)2.

(3¢) For these variables, the calculation of p.(S) is done considering the
percent error in classification when the available information is the subset
S C N\{c} or when it is the (). Then, the predictive fuzzy measure p, for

a categorical feature ¢ and a subset of features S is calculated as:

_ MSE(:(@) _ MSEC<S) (6
N MSE,.(0) )

pe(S)

(4) For every ordinal feature o € N°:

(4a) For every subset S C N\{o} of feasible features to predict o, we have to
calculate the best logistic model (logit) to predict d° [4].

(4b) We aggregate the predictions made by each predictive model, obtained
in (4a), into a single prediction for the original ordinal feature. This aggre-
gation is done, in each instance, by taking into account the proportional-
ity obtained in the predictions of the different models and by combining
some dummy variables based on their definitions, which were obtained
from ordinal features. To calculate M SE,, we consider the probability of
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not hitting the real value of o when knowing S:

MSE,(S) = i (1—P (0r = o))" (7)

1

™=
where P (0, = o) is the probability of the estimated value of the analyzed
feature o in the instance k, 0y, fixes the real value of o in k, og. Regarding
o = (Low, Medium, High), if the best logistic model about d°.Low
provides probability 0.5 and the best logistic model about d°.Medium
provides probability 0.7 in a specific instance k, the aggregation is done
in k as (0.5, 0.7—0.5, 1 —0.7) = (0.5,0.2,0.3). If o = Medium, the
element of MSE,(S) regarding instance k is (1 —0.2)°.

(4¢) For these variables, the calculation of p,(S) is done considering the
percent error in classification when the available information is the subset
S C N\{o} or it is the (). Then, the predictive fuzzy measure p, for an
ordinal feature o and a subset of features S is calculated as:

_ MSE,(0) — MSE,(S)
/’LO(S) - MSEO((Z))

(8)

(5) For every numeric feature n € N™:
(5a)For every subset S C N\{n} of feasible features to predict n, we have to
calculate the best generalized linear model (GLM) to predict n [6].
(5b) We calculate the means squared error (MSE) for every model obtained
in (5a) to predict n when knowing S.

m

MSE,(S) = % > (k= m)? 9)

k=1
being N, and ny the estimated and the real value of n in the instance k.
(5¢) We define the 1, (S) of those features as

_ MSE,(0) - MSE(S)

(10)
(6) We have to recalculate p to make it meet the condition of superadditivity.

i(9) = (R 11

15 (S) = max 15 (R) (11)

Let us note that this readjustment is not common, as, in general, models do
not get worse when the number of variables increases.

3.2 On the Calculation of the Estimation y’

To specific a particular application of the measure , we also have to explain the
calculation of y’. As mentioned in Definition 4, given a set of features S C N,
the value ¥, is an estimation of the £ —th feature, v;, when knowing the features
of a subset S. Our proposal is as follows:
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If v, is categorical, the value assigned to y; is a draw between the different
categories of the features, by considering the probabilities defined in (3b).

If v, is ordinal, the value assigned to y; is a draw between the different tidy
categories of the features, considering the probabilities defined in (4b).

If vy is numeric, the value assigned to yj is the prediction given by the best
GLM obtained in the point (5a) of previous section

An Application and Interpretation of the Method

4.1 Definition of the Problem

We have to explicitly characterize the database and the predictive model.
* Definition of the database:

S D={NA

— N = {vy,v9,v3}, where v; is categorical, vy is ordinal, and vz is numeric:

v1 = {c!,c?}; vy = {o!,0%,0%}; vs is generated as a random variable 3(z,y)

whose parameters depends on the combination of the values of v1 and vy (see
Fig.1). The possible combinations of v; and vy are {c!' — o'; ¢! — 0?; ¢t —
0% c? —ol; ¢ —0?% ¢ —03}. On the following we consider this order, and we
state ¢! — o' as Case 1; ¢! — 0% as Case 2, and so on.

The output variable, y, is dichotomous. We establish a relation of y with the
explainable variables: we calculate an auxiliary value, auz = 0.2 * v;.c? +
0.15 % v9.0% + 0.3 % v2.0° + v3 + 1.5 % U(0,1), and then y = 1, if auz > 1.5;
y = 0 otherwise. This relation is showed in red color in Fig. 1.

Each one of the 6 cases is generated 25 times, so |A| = 625 = 150 instances.

8(1,6) B8(2,5) B8(3,4) B8(4,3) 8(5,2) 6(6,1)

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

auz = 0.2 x v1.¢2 + 0.15 % v9.0% + 0.3 * v5.0° + v3 + 1.5 U(0,1)

{l. if aux > 1.5
Y=

0, otherwise

Fig. 1. Generation of the 150 instances of D and y.
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* Predictive model definition: considering the auxiliary value auz2 = 0.2%v;.c2 +
0.15 * v2.0% + 0.3 * v3.0% + v, the mode used to predict y is:

1, if aux2>1.5

f= 0, ifauzr2<0
aﬁ§27 otherwise

4.2 Comparison of ¢? with Other Methods

We finish this section with the interpretation of the model and its comparison
with other proposals, particularly, ¢! and ¢? [11,13]. In Table 1 we show all the
calculations and elements mentioned in the enumeration proposed in Sect. 3.1,
needed to calculate 3 for the case detailed in Sect.4.1. The coefficients 3; in
the columns refer to the parameters of each predictive model (logit or GLM);
specifically, By refers to intercept. To show a simple view outline we finish the
table with the calculation of the M SFE; we do not explicitly show the value of
the predictive fuzzy measure as it is trivial with the available information.

Note that the M SE is defined for the features and not for a specific category
of them. Nevertheless, in Table1l we show a value of MSE for every feature
just to have a cohesive presentation of the content. For this reason, the error of
predicting d''.c! by knowing vz matches with the error of predicting d**.ct by
knowing vs, and it actually refers to MSE,, ({vs}).

Table 1. Summary of the steps (3a), (4a), (5a), (3b), (4b), (5b).

id | var. indep | S method | By B1 (vi.ch)| B2 (v1.c?)|Bs (v2.0")|Ba (v2.0?)|Bs (v3)| MSE
1 |dv1.ct 0 logit |0 0.25
2 |dv1.ct {va2} logit |0 0 0 0.25
3 |dvt.c! {vs} logit  |4.8 —9.8  |0.099
4 |dUr.ct {va,vs} logit |9.94 —5.44 —2.67 —14.6 |0.058
5 |d¥l.c? 0 logit |0 0.25
6 |d"1.c? {v2} logit |0 0 0 0.25
7 |dU1.c? {vs} logit | —4.8 9.8 0.099
8 |dU1.c? {va,v3} logit |—9.94 5.44 2.67 14.6  |0.058
9 |dv2.0t 0 logit —0.69 0.44
10|d¥2.0t {v1} logit —0.690 0 0.44
11|d"2.0' {vs} logit  |0.59 —2.8 |0.39
12]dv2.0! {vi,vs} logit [5.1 |—3.96 0 -8.2 (0.31
13|d¥2.0? 0 logit  |0.69 0.44
14|d"2.0? {v1} logit [0.69 |0 0 0.44
15|d¥2.0? {vs} logit  |2.07 —2.56 [0.39
16|dv2.0? {vi,vs} logit [7.94 |—4.52 0 —9.05 [0.31
17| v3 0 GLM 0.5 0.093
18| v3 {v1} GLM |0.27 |0 0.047 0.038
19| v3 {v2} GLM |0.65 —0.3 —0.14 0.078
20 | v3 {vi,v2} | GLM [0.42 |0 0.047 —0.3 —0.14 0.023
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Table 2. Instances analyzed: Min., Max., Median of vs for each case.

vi.c! [ v1.¢% | va.0' | v2.0% | v2.0° | v3
Min.(v3) Case 1|1 0 1 0 0 0.00259
Case 2|1 0 0 1 0 0.06073
Case 3|1 0 0 0 1 0.12488
Case 4|0 1 1 0 0 0.16851
Case 5|0 1 0 1 0 0.35727
Case 60 1 0 0 1 0.77265
Max.(vs) Case 1|1 0 1 0 0 0.60353
Case 2|1 0 0 1 0 0.61575
Case 3|1 0 0 0 1 0.57236
Case 4|0 1 1 0 0 0.87779
Case 5|0 1 0 1 0 0.97143
Case 6|0 1 0 0 1 0.99753
Median.(vs) | Case 1|1 0 1 0 0 0.09972
Case 2|1 0 0 1 0 0.27631
Case 3|1 0 0 0 1 0.36674
Case 4|0 1 1 0 0 0.57562
Case 5|0 1 0 1 0 0.75059
Case 60 1 0 0 1 0.92766

Let us not that there is a Shapley value for each instance (125) and for
each measure, (p!, p2, ¢3). Then, instead of comparing every value, we consider
some representative scenarios. Specifically, we compare the values of the three
measures o', p? and @3 for the minimum, maximum and median value of vs,
for every scenario Case 1 - Case 6, i.e. for 18 different instances (see Table2).

A good method based on the Shapley value should have internal consistency,
that is, if different information is known in different scenarios, the value obtained
in each scenario should also be different (unless the additional information is
absolutely irrelevant or redundant). This idea is fulfilled with ¢! and ¢3, but
not with ¢?: in Tables3, 4, 5 it can be seen that A%({v3}) = A%2({vy,v3}) =
A2%({vg,v3}), i.e., it does not affect at all to know vy or vy if v3 is already known.
This problem is not casual; it will always happen when a numerical variable is
known, as already shown in [8].

Comparing ¢! and 3, either one is applied depending on which of the two
provides values that are most similar to the real values. Clearly, ¢! approximates
reality less than ® by not taking into account the correlation between features
v1 and vy with vs. For example, when we know that v; = ¢! and vy = 0%, it is
very unlikely for the prediction to be 1, given that this will only happen when the
sum of a random number from a $(1,6) plus a random number from a uniform
multiplied by 1.5 exceeds the value 1.5 (if we do the calculations, that probability
is approximately 0.001; as the estimation in the absence of information is 0.5
due to symmetry, the ‘good’ value of A'({vy,v2}) and A!({vy,ve}) should be
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0.001 — 0.5 = —0.499), which is very far from the value —0.16667 obtained with
A' and much closer to the value —0.42703 obtained with A3 (it is the same for
the minimum, the maximum or the median of v3). Other example is when v; = ¢2
and vy = 0%; the ‘good’ value of A! and A? should be 0.85809 — 0.5 = 0.35809,
being A!({v1,v2}) = 0.16667 and A®({v1,v2}) = 0.42145.

Therefore, we can affirm that the method proposed, 3, presents obvious
advantages over the proposals ¢! and 3 [11,13] and it is desirable to carry out
a thorough comparison to decide in which situations each of them are better or
if one of them prevails over the others in most situations.

Table 3. Calculation of Al, A? and A%. Minimum of vs.

Min. v3 | Case | {v1} {va} {vs} {vi,v2} | {v1,vs} |{v2,03} |{v1,v2,03}|Shy, Sha, Shayg

Al Case 1| —0.06667 | —0.1 —0.33173 | —0.16667 | —0.39839 | —0.43173 | —0.49839 | —0.06667 | —0.1 —0.33173
Case 2 | —0.06667 | 0 —0.29297 | —0.06667 | —0.35964 | —0.29297 | —0.35964 | —0.06667 |0 —0.29297
Case 3 | —0.06667 | 0.1 —0.25020 0.03333 | —0.31686 | —0.15020 | —0.21686 | —0.06667 | 0.1 —0.25020
Case 4 |0.06667 | —0.1 —0.22112| —0.03333 | —0.15445 | —0.32112 | —0.25445 |0.06667 |—0.1 —0.22112
Case 5| 0.06667 |0 —0.09527 | 0.06667 | —0.02861 | —0.09527 | —0.02861 |0.06667 |0 —0.09527
Case 6 |0.06667 | 0.1 0.18164 | 0.16667 |0.24831 |0.28164 | 0.34831 0.06667 | 0.1 0.18164

A? Case 1| —0.22330 | —0.20373 | —0.49839 | —0.41091 | —0.49839 | —0.49839 | —0.49839 | —0.10896 | —0.09918 | —0.29025

Case 2 | —0.22330 | 0.00558 | —0.35964 | —0.21038 | —0.35964 | —0.35964 | —0.35964 | —0.11043|0.00401 | —0.25323
Case 3| —0.22330 | 0.19815 | —0.21686 | —0.04861 | —0.21686 | —0.21686 | —0.21686 | —0.11556 | 0.09516 | —0.19647
Case 4/0.22330 | —0.20373 | —0.25445 | 0.00344 | —0.25445 | —0.25445 | —0.25445 |0.10896 | —0.10455 | —0.25886
Case 5/0.22330 | 0.00558 | —0.02861 |0.22154 | —0.02861 | —0.02861 | —0.02861 |0.11043 |0.00157 |—0.14060
Case 60.22330 | 0.19815 |0.34831 |0.44491 |0.34831 |0.34831 |0.34831 0.11556 | 0.10298 |0.12977
A% Case 1| —0.22330 | —0.20373 | —0.45012 | —0.42703 | —0.47055 | —0.49688 | —0.49839 | —0.11556 | —0.11894 | —0.26389
Case 2 | —0.22330 | 0.00558 | —0.40512 | —0.21771 | —0.41982 | —0.35941 | —0.35964 | —0.11417{0.03047 | —0.27594
Case 3| —0.22330 | 0.19815 | —0.35436 | —0.02515 | —0.36059 | —0.21682 | —0.21686 | —0.11270{0.16990 | —0.27407
Case 4|0.22330 | —0.20373 | —0.31893 | 0.01957 | —0.25191 | —0.37250 | —0.25445 |0.16217 | —0.11164 | —0.30498
Case 5/0.22330 | 0.00558 | —0.14925 | 0.22888 | —0.11746 | —0.14676 | —0.02861 |0.15633 |0.03282 |—0.21776
Case 60.22330 | 0.19815 |0.27100 |0.42145 |0.25381 |0.32062 |0.34831 0.11801 | 0.13885 |0.09145

Table 4. Calculation of A*, A% and A3. Maximum of vs.

Max. vs | Case |{v1} {v2} {vs} {vi,v2} |[{vi,vs} |{v2,vs} |{v1,v2,v3}|Sh, Shu, Shu,

Al Case 1|—0.06667 | —0.1 0.06890 | —0.16667 | 0.00223 | —0.03110 | —0.09777 | —0.06667 | —0.1 0.06890
Case 2| —0.06667 | 0 0.07705 | —0.06667 | 0.01038 |0.07705 |0.01038 —0.06667 | 0 0.07705
Case 3| —0.06667 | 0.1 0.04812 |0.03333 | —0.018550.14812 |0.08145 —0.06667 | 0.1 0.04812
Case 4{0.06667 | —0.1 0.25174 | —0.03333 | 0.31840 |0.15174 |0.21840 0.06667 | —0.1 0.25174
Case 5{0.06667 |0 0.31416 | 0.06667 | 0.38083 |0.31416 |0.38083 0.06667 |0 0.31416
Case 6{0.06667 | 0.1 0.33157 | 0.16667 | 0.39823 |0.43157 |0.49823 0.06667 | 0.1 0.33157

A? Case 1|—0.22330 | —0.20373 | —0.09777 | —0.41091 | —0.09777 | —0.09777 | —0.09777 | —0.10896 | —0.09918 | 0.11037
Case 2| —0.22330 | 0.00558 |0.01038 | —0.21038|0.01038 |0.01038 |0.01038 —0.11043 | 0.00401 | 0.11679
Case 3|—0.22330 | 0.19815 |0.08145 | —0.04861|0.08145 |0.08145 |0.08145 —0.11556 | 0.09516 | 0.10185

Case 40.22330 | —0.20373 | 0.21840 |0.00344 | 0.21840 |0.21840 |0.21840 0.10896 | —0.10455 | 0.21400
Case 5/0.22330 |0.00558 |0.38083 |0.22154 |0.38083 |0.38083 |0.38083 0.11043 | 0.00157 |0.26884
Case 60.22330 |0.19815 |0.49823 | 0.44491 |0.49823 |0.49823 |0.49823 0.11556 | 0.10298 | 0.27969

A3 Case 1| —0.22330 | —0.20373 | 0.11484 | —0.42703 | 0.08859 |0.03380 | —0.09777 | —0.15988 | —0.17749 | 0.23960
Case 2| —0.22330 | 0.00558 | 0.12724 | —0.217710.09801 | 0.12350 |0.01038 —0.15423 | —0.02704 | 0.19165
Case 3| —0.223300.19815 | 0.08240 |—0.025150.06400 | 0.10412 |0.08145 —0.12227 | 0.10851 | 0.09521

Case 4/0.22330 | —0.20373 | 0.35653 | 0.01957 | 0.35766 |0.21837 |0.21840 0.11185 | —0.17131|0.27787
Case 5|0.22330 | 0.00558 | 0.42930 |0.22888 | 0.44561 | 0.38070 |0.38083 0.11441 | —0.02690 | 0.29332
Case 60.22330 | 0.19815 |0.44923 |0.42145 | 0.46870 | 0.49694 |0.49823 0.11533 | 0.11687 |0.26604
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Table 5. Calculation of Al, A2 and A3. Median of vs.

Median vz | Case | {v1} {v2} {vs} {vi,v2} | {vi,vs} |{v2,v3} |{v1,v2,v3} Sho, Shey, Sh,

Al Case 1| —0.06667 | —0.1 —0.26698 | —0.16667 | —0.33364 | —0.36698 | —0.43364 | —0.06667 | —0.1 —0.26698
Case 2| —0.06667 | 0 —0.14925 | —0.06667 | —0.21591 | —0.14925 | —0.21591 | —0.06667 | 0 —0.14925
Case 3| —0.06667 | 0.1 —0.08896 | 0.03333 | —0.15562 | 0.01104 | —0.05562 | —0.06667 0.1 —0.08896
Case 4|0.06667 | —0.1 0.05029 | —0.03333 | 0.11696 | —0.04971 | 0.01696 0.06667 | —0.1 0.05029
Case 5|0.06667 |0 0.16694 | 0.06667 | 0.23360 |0.16694 |0.23360 0.06667 |0 0.16694
Case 6|0.06667 | 0.1 0.28499 | 0.16667 | 0.35166 |0.38499 |0.45166 0.06667 | 0.1 0.28499

A? Case 1|—0.22330 | —0.20373 | —0.43364 | —0.41091 | —0.43364 | —0.43364 | —0.43364 | —0.10896 | —0.09918 | —0.22550

Case 2| —0.22330 | 0.00558 | —0.21591 | —0.21038 | —0.21591 | —0.21591 | —0.21591 | —0.11043 | 0.00401 | —0.10950
Case 3| —0.22330 | 0.19815 | —0.05562 | —0.04861 | —0.05562 | —0.05562 | —0.05562 | —0.11556 | 0.09516 | —0.03523
Case 4{0.22330 | —0.20373 | 0.01696 | 0.00344 |0.01696 |0.01696 |0.01696 0.10896 | —0.10455 | 0.01255
Case 5{0.22330 |0.00558 |0.23360 |0.22154 |0.23360 |0.23360 |0.23360 0.11043 |0.00157 |0.12161
Case 6{0.22330 | 0.19815 | 0.45166 |0.44491 |0.45166 |0.45166 |0.45166 0.11556 | 0.10298 |0.23311
A% Case 1|—0.22330 | —0.20373 | —0.37444 | —0.42703 | —0.38419 | —0.42761 | —0.43364 | —0.11529 | —0.12721 | —0.19115
Case 2| —0.22330 | 0.00558 | —0.22626 | —0.21771 | —0.21190 | —0.21086 | —0.21591 | —0.11094 | 0.00402 | —0.10899
Case 3| —0.22330 | 0.19815 | —0.13972 | —0.02515 | —0.12152 | —0.05428 | —0.05562 | —0.10906 | 0.13528 | —0.08184
Case 4{0.22330 | —0.20373 | 0.08585 | 0.01957 |0.06372 |0.01431 |0.01696 0.10884 | —0.12938 | 0.03749
Case 5{0.22330 |0.00558 |0.25223 |0.22888 |0.23195 |0.23036 |0.23360 0.10935 | —0.00030 | 0.12456
Case 6{0.22330 |0.19815 |0.39557 |0.42145 |0.40539 |0.44812 |0.45166 0.11446 |0.12325 |0.21394

5 Conclusions and Further Research

In the field of machine learning, it is important to analyze the importance of
features in a model. There are several approaches to this problem in the liter-
ature, including the analysis of the predictive capacity of some features about
others [11-13]. In previous works, authors adapted existing definitions of feature
importance based on the Shapley value [9] to a fuzzy measure context, which
allows the consideration of the concepts of vagueness and capacity [5,8]. Our
goal now is to propose a practical application of these measures that is useful
for real-world cases, rather than being limited to a theoretical perspective. Our
method is based on a simple idea and is designed to be easy to understand and
apply, using well-known methods as a foundation.

The starting point of this paper is the proposal in [8] about the measurement
of the predictive ability of features in a machine learning model. Inspired by
previous works that used the Shapley value of a cooperative game to evaluate
the predictive ability of a set of features over an unknown one, the authors
proposed a solution based on the use of fuzzy measures, which allow them to
represent the power of the elements of a machine learning model in a realistic
way. They theoretically defined an intermediate solution that combines elements
from two previous works and mixes the consideration of random values with the
specification of exact values.

In this paper, we build upon a previously defined theoretical idea and focus
on developing a realistic and practical application of it. We provide detailed
implementation and execution instructions for applying the idea in a real-world
setting. Our idea is based on the calculation of simple predictive models after a
proper preprocessing of the features itself. We also include an illustrative example
to explain step by step how to apply our methodology. As it can be seen in Sect. 4,
a simple idea and process converge to a very interesting and helpful result.



148 I. Gutiérrez et al.

Although it is a preliminary application, an evaluation based on benchmark
is our next step, with the obtained results we can say that ¢ improves in some
aspects over other models from the literature. This new measure considers the
interaction between any type of variables, something that the other definitions
did not take into account. We are currently working in the development of a
general model, able to consider any database with any set of features (in terms
of type and amount). From our humble opinion, we think this methodology will
be an added value step when analyzing complex machine learning models.
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Abstract. A recommender system is a software tool designed to sup-
port users to filter out useless options within a multitude of choices
and provide them with the best possible ones. Group recommender sys-
tems have emerged as an important trend in recommendation since they
recommend social items that are enjoyed by more than one individual,
such as TV programs and travel packages, that are typically consumed
in groups. Although algorithm selection in recommender systems is a
research problem covered to some extent by the research community in
which individuals’ information is aggregated, this contribution is focused
on the automatic selection of the most appropriate aggregation function
in group recommendation. Specifically, a general framework that identi-
fies group characteristics to be matched with the most appropriate aggre-
gation function is presented. This approach is implemented by using a
fuzzy decision tree classifier, in a content-based group recommendation
approach. The development of an experimental protocol illustrates the
advantage of the new proposal in relation to its corresponding baselines.

Keywords: group recommendation * fuzzy decision tree - preference
aggregation

1 Introduction

The use of Recommender systems (RSs) is essential in online environments
that concentrate on suggesting to users the items that most closely align with
their preferences and requirements, given the overload of possible options in the
product search space. Due to their functional principles, RSs have been exten-
sively applied across a wide range of domains, including electronic commerce,
e-learning, e-health, and e-tourism [14,20].

RSs have traditionally been employed to suggest items to individual users.
Nonetheless, in recent times, different types of items, known as social items, that
are often consumed by groups have emerged within recommendation contexts.
Examples of such items include movies and tourist routes [7]. Recommending
this kind of item entails an additional effort compared to individual recommen-
dations, as preferences must be managed at both the individual and group level.
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This necessity has sparked the growth of Group Recommender Systems (GRSs)
[7] as a separate research branch in the field of RSs.

Primarily, GRSs concentrate on processing the data linked to the members of
a group. Such processing can be achieved by utilizing recommendation aggrega-
tion [8], where individual recommendations are initially calculated for each group
member, and then combined via a recommendation aggregation method. Alter-
natively, a preference aggregation approach can also be employed [8], wherein
a pseudo-user is generated that globally represents the group’s preferences, and
this pseudo-user profile is employed to compute the group recommendation. In
both paradigms, aggregation is crucial in the recommendation process. Several
authors such as De Pessemier et al. [8] have then incorporated different aggre-
gation schemes such as Average (Avg), Least Misery (LM) or Most Pleasure
(MP).

The current contribution concerns the automatic selection of the aggregation
methods in group recommendation. The automatic selection of the most appro-
priate recommendation algorithm considering the nature of the data has been
explored with some extent by the research community [6,17]. However, unlike
to these research works focused on algorithm selection, our current contribu-
tion is focused on the selection of a suitable aggregator for the recommendation
method. In addition, in contrast to the previous approaches centered on individ-
uals, it is focused on group recommendation. Finally, we explore the use of fuzzy
classification trees for managing the uncertainty associated to this scenario [21].

In this way, the current contribution aims at providing the following novelties:

— Developing a global methodology for performing an automatic selection of
the aggregation function in group recommendation, based on the nature of
the underlying group.

— The development of a working scenario for the application of the global
methodology in a content-based group recommendation scenario.

— The execution of a experimental protocol for evaluating the impact of the
proposed methodology in the working scenario.

The paper is structured as follows. Section 2 presents a background with an
overview of the knowledge related to the proposal presentation, including group
recommender systems, and automatic algorithm selection in recommender sys-
tems. Section 3 presents a general framework for automatic selection of aggre-
gation functions in GRS. Section 4 illustrates a specific implementation of such
framework, considering a fuzzy decision tree classifier and a content-based group
recommendation approach. Section 5 evaluates such implementation, comparing
it with associated baselines. Section 6 concludes the paper.

2 Preliminaries

The necessary background is provided here for the proposal discussion, focused
on group recommendation and algorithm selection in RS.
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2.1 Group Recommender Systems

RSs are Al-based systems used to provide users with the information that best fit
their preferences and needs in overloaded search spaces [1]. The more spread tax-
onomy for identifying recommender systems, groups them into three main cat-
egories: 1) content-based recommender systems, 2) collaborative filtering-based
recommender systems, and 3) hybrid recommender systems.

Herein, GRSs [8] have appeared as an emerging paradigm for scenarios in
which recommended items are usually enjoyed by groups of users. Movies, touris-
tic routes, or TV programs, are key examples of such kind of scenarios [14].

To perform item recommendations in such contexts by the content-based [16]
or the collaborative filtering paradigm [8], the literature has identified two main
recommendation techniques:

— Rating aggregation: The rating aggregation approach is based on the creation

of a pseudo-user profile that represents the group’s preferences [7,8]. This
profile then receives the recommendation, using individual recommendation
algorithms, as if it were a typical individual profile.
To construct pseudo-user profiles, several aggregation strategies are com-
monly used, as described in [8]. Three of the most frequently used strategies
include: 1) Average, which involves building the pseudo-user profile based on
the average rating given by each member of the group for the corresponding
item; 2) Least Misery, which involves building the pseudo-user profile based
on the lowest rating given by any member of the group for the corresponding
item; and 3) Most Pleasure, which involves building the pseudo-user profile
based on the highest rating given by any member of the group for the corre-
sponding item. These aggregation strategies are used to combine the ratings
provided by individual members of the group to form a single profile that
represents the group’s preferences.

— Recommendation aggregation: This approach aggregates individual recom-

mendations of each member of the group, to obtain the group’s recommen-
dation [8].
In this scenario, the final stage of aggregation is based on the individual pre-
dictions made for each member of the group. There are three commonly used
aggregation schemes for this purpose, as described in [8]. The first scheme is
the Average approach, which involves calculating the group’s prediction for a
particular item as the average of the predicted ratings made by each individ-
ual user in the group for the same item. The second scheme is Least Misery,
which determines the group’s rating as the minimum of the predicted rat-
ings made by each individual user. The third scheme is Most Pleasure, which
determines the group’s rating as the maximum of the predicted ratings made
by each individual user. It is important to note that while these aggregation
schemes are similar to the rating aggregation scheme, they have a different
meaning in this context.

The current research work is focused on proposing a framework for facil-
itating the automatic selection of the aggregation measures, taking as base
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the content-based group recommender system approach (CB-GRS) [16]. In this
way, while the previous works focused on content-based group recommendation
[13,16] incorporate the aggregation approaches based on a pre-defined viewpoint,
the aim of our proposal is the automatic identification of the most appropriate
aggregation approach tailored to the current group features.

2.2 Automatic Algorithm Selection in Recommender Systems

The automatic selection of the most suitable recommendation algorithm, based
on the nature of the data, has been explored by the research community to some
extent.

In an initial study, the problem of selecting the most appropriate Collaborative
Filtering (CF') algorithm was explored by representing the data as a graph rather
than a rating matrix [12]. The study derived metafeatures that are dependent
on the graph to choose among nearest neighbor (NN) algorithms. Additionally,
the selection process utilized a rules-based model that leveraged domain-specific
knowledge.

Subsequent studies investigated the rating matrix by utilizing statistical
and/or information-theoretical metafeatures to choose between nearest neigh-
bor (NN) and matrix factorization (MF) algorithms [2]. In these studies, the
task was approached as a regression problem, with the objective of improving
the Root Mean Square Error (RMSE) performance.

A different technique, which involved a decision tree regression model, was
later proposed to address the problem [9]. This method examined the connection
between user ratings and neighborhood data, as well as the anticipated error in
the recommendations provided by a nearest neighbor (NN) algorithm. Unlike
previous approaches, this method concentrated on characterizing metafeatures
for individual users instead of the entire dataset.

Furthermore, Cunha et al. [6] conducted an empirical study on algorithm
selection for collaborative filtering, considering statistical features of the RS
dataset and their impact on the performance of different CF approaches. More
recently, Polatidis et al. [17] proposed a methodology for recommender system
algorithm selection using a machine learning classifier, which indicated that tree-
based approaches such as Decision Tree and Random Forest perform well and
provide accurate and precise results.

Unlike previous works, our proposal focuses on selecting a specific aggrega-
tion operator of the recommendation method, rather than the algorithm as a
whole. Moreover, it is focused on group recommendation, rather than individual
recommendation as in previous studies.

3 A General Framework for Automatic Selection
of the Aggregation Measure

A methodology for performing the automatic selection of the aggregation func-
tions in group recommendation is presented here. Figure 1 depicts this method-
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Fig. 1. General methodology for automatic selection of the aggregation function in

GRS.

ology, which is composed of offline and online stages, and comprises the following

steps:

1. Group’s features characterization: It is focused on exploring groups’ pref-

erences values for extracting features that could be relevant for characterizing
groups. Such features could be directly obtained from such values (e.g. rat-
ing averages, amount of ratings, the higher rating value), or depending of
intermediate calculation such as the groups’ member correlation values.

. Performance evaluation of the GRS aggregation functions: It explores
the performance of a selected GRS method, for each specific group and con-
sidering different aggregation functions. Here, the goal is to identify for each
mentioned group, the aggregation function that performs best. As mentioned
in Sect. 2, some of the aggregation measures usually considered in GRS are
Average, Least Misery, and Most pleasure [8]. Here it is important to point
out that in the next future it will be explored further power means and OWA
operators at this stage [5]; however it is necessary to characterize better their
behavior in the GRS context, before their use a part of an automatic selection
strategy.

. Supervised classifier training: It trains a supervised classifier for linking
the features identified at Step 1, with the best aggregation functions identified
at Step 2. This approach assummes the hypothesis that the performance of
each aggregation function depends on the value of some group’s features.
Even though, these three stages have a low computational cost, they can be
also executed in an offline phase, previously to the real-time recommendation
generation process.

. Identification of the most appropriate aggregation function: This
step represents the online phase of the procedure. It is focused on the use
of the classifier trained in the previous step, for identifying the most appro-
priate aggregation function that will be used for the active group, in the
recommendation generation process.

The presented methodology can be implemented in different GRS and super-

vised classifiers scenarios, exploiting the benefits at each specific case. The fol-
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lowing section will explore it, considering a content-based group recommendation
approach and a fuzzy decision tree-based classifier.

4 Automatic Selection of the Aggregation Function
in Content-Based Group Recommendation

This section illustrates the implementation of the methodology presented in the
previous section, in a content-based group recommendation scenarios [16]

Group’s Features Characterization: This step characterizes groups by using
features with a clear semantic meaning, to facilitate the understanding of the
classification procedure that will be used in the following steps.

The following group features are used:

— The minimum Pearson’s correlation coefficient value between any pair of
group members (M) (Eq.1).

M(G) = min corr(u,v), Yu,v € G (1)

— The amount of ratings linked to the group (A) (Eq.2). |R,| is the number of
preferences of user u.

AG) =) |Ru| (2)

ueG

— The amount of items that have been co-evaluated by all the current group
users (C) (Eq.3).

C(G) = |I.|, where I. = {i : Yuegruwi € R} (3)

The rating average of the group (AV), formalized through Egs. 4-5.

Zr, ) Tui
AV(G) = Tﬁf (4)
R= UuGGRu (5)

The selection of these features is based on previous work that raises the
relevance of such information in the GRS context [4,8].

In the next step of the procedure, it will be assumed that the features are
normalized into the interval [0, 1].

Performance Evaluation of the GRS Aggregation Functions: This step
will use the hybrid CB-GRS approach recently presented by Pérez-Almaguer et
al. [16], and that comprises the following components, not detailed here due to
space reasons:

1. A content-based item and user profiling stage, facilitating the use of the app-
roach in cold-start scenarios.
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2. The use of a weighting scheme for calculating the user-item matching values.

3. The addition of a virtual user profile to the group for boosting clear tendencies
across the member’s preferences.

4. The possibility of using the average or minimum aggregation, for aggregating
the individual predicted preferences into the group preferences.

This method is executed over the groups considered across the whole process,
using both the average and minimum aggregation approaches (Step 4). Taking
into account a performance metric (in this case Precision [10]), the aggregation
approach that performed best is stored for each group, using it as the class in
the next supervised classifier building.

Supervised Classifier Training. Here we introduce the procedure to build
the fuzzy decision tree, using the group features identified before.

Here the group G is represented by a membership value to the fuzzy set
D, which is initially 1 for all the groups. In this context, G is identified
through the corresponding values of the four attributes considered previously
(A; € {M,A,C,AV}), as well as the value of the corresponding class (Cj €
{Average, Minimum}). D% is a fuzzy subset of D, being jpe, (G) = up(Q)
whether G class is Cy, and ppc, (G) = 0 in other case. |[D*| is the cardinality
of the fuzzy set D*. [19].

For sake of simplicity, the numerical attribute A; is featured by using three
triangular fuzzy sets low, medium, and high (Fig.2). Table1 illustrates the
group profiling process according to this viewpoint.

Table 1. Group profiling using the fuzzy sets low, medium, and high.

91 (s 10w (91) s medium (91) 40, high (91) A Low (G1) s 1A, medium (91) 104, nigh (G1),
Hesiow (91) 100 medium (G1) 146, high (91) s 1AV, 10w (G1) , AV, medium (91) AV, high (91))
(92)
(92)

g2 (IJ/J\/I,low(92)7,U/M,medium(gZ)aMM,high(g2)aNA,low(92)1NA,medium g2 7,U/A,h7,'gh(92)7
,LLC,low(92)7M0,medium(92)7,U'C',high(92)7,uAV,low(92)7“Av,medium g2 7,UfAV,high(92))

The approach for the fuzzy decision tree induction comprises then the sub-
sequent steps:

1. Construct a root node, as a fuzzy set D having the groups with 1 as mem-
bership value.

2. If a candidate node t with a fuzzy set of data D verifies that “‘j;rl > 0,., being
Cy € {Average, Minimum}; or |D| < 6,; or that all the features have been
already analyzed, then the current node is a leaf, and its weight for each CY
is |[DY|. 6, and 6,, are thresholds which values are empirically determined.

3. Otherwise, the new decision node is constructed as follows, by selecting the
attribute that maximizes the information gain G(A4;, D). Therefore, for each
attribute A; € {M, A, C, AV } not considered before, calculate the information
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gain G(A;, D) (Egs. 6-9) and select the attribute A,,q, that maximizes it:
G(A;, D) = I(D) — E(A;, D) where,

n

I(D) = - Z(pk * logapy,) (6)

E(Ai, D) = Z (pij * I(Da, 5)) (7)

D%
Pk = | D] | (8)

pij = |DA1,J|

i

Here I(D) at Eq. (6) is the total entropy of certain dataset D, while E(A;, D)

at Eq. (7) is the fuzzy classification entropy of the attribute A;. py is the rela-

tive frequency of the class C}, in the dataset, and p;; is the relative frequency

of all objects within the branch associated to the corresponding linguistic

label j and attribute A;, into each class. Dy, ; is the fuzzy subset which

membership is represented by the linguistic term j € {low, medium, high}
linked to the group attribute A; € {M, A, C, AV}.

4. Once A4, is chosen, the current D is divided into three fuzzy subsets
Dy Dy and Da,,,. ..., each subset for each linguistic label
that characterizes such attribute. The membership value of each group g to
Da,,...; (7 € {low,medium, high}), is then the product of the membership
value of g to D, and the value p14,,,, ;(g) associated to Ay,qq in D.

5. Generate new nodes ty,t2,t3 for fuzzy subsets Da,... .. ,D4
and Da,,,, ..., labelling with each corresponding linguistic term j €
{low, medium, high}, to each edge that connect them with D.

6. For each fuzzy subset Da,,.. ..., Da Dy repeat recursively
this algorithm from step 2.

max,low? maz,medium ?

max,medium ?

maz,medium? maz,high?

This induced fuzzy decision tree is used in the online phase of the proposal,
for identifying the best aggregation function associated to a specific group.
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Identification of the Most Appropriate Aggregation Function: The
induced fuzzy decision tree is used for building classification rules, associated
to each branch, with the format:

Rule R= 1If Ai1isjland ... and If A, is jn then Class = Cy, with weight W,
(10)

Here A;; € {M,A,C AV}, j1 € {low,medium,high}, and Cj; €
{Average, Minimum}. The rule weight W}, is the sum of the membership of
all objects of class k, at the associated leaf.

For a group g, the classification is performed as:

1. Matching degree: The following equation obtains the activation degree of the
left part of the rule, for the current group:

ﬂR(g) = T(/"LAil,jl(g)7/'l‘Ai2,j2 (g)v oy HA G n (g)) (11)

where 14, ;(g) is the membership degree of the value of the A; €
{M,A,C, AV} attribute for group g with the fuzzy set associated to the
same attribute A; and the linguistic term j € {low, medium, high}. T is a
T-norm [15].

2. Association degree: The association degree of g with each rule R, considering
the class k is calculated as:

bre(9) = T(1r(9), W) (12)

T is a T-norm [15].

3. Confidence degree: At last, the confidence degree of each class, for a specific
group g, is reached through the aggregation of the association degrees linked
to all the analyzed rules. This final calculation is used through the use of a
T-conorm T [15]:.

confr(g) = T*(bir(g), bar(9), b3x(9), -, brr(9)) (13)

The classification process assigns then to the group g, the class k that obtains
the higher association degree.

5 Experiments

This section is focused on the evaluation of the approach discussed previously.

5.1 Experimental Protocol

This evaluation will use the following databases, previously employed in related
works [16]:

— Movielens 100K, with 943 users, 1682 movies, and 100000 preferences in
the interval [1,5] [11].
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— HetRec, containing heterogeneous information, with 2213 users, 10197
movies, and 855K+ ratings. The ratings are also in the range [1,5] [3].

This evaluation process will be guided by the Precision metric (Eq. 14), fre-
quently used in the RS evaluation [13]. For sake of space other evaluation criteria
were not included here, but will be considered in the future research.

|recommended items N pre ferred items|

Precision = (14)

|recommended items|
Here it is used a preference threshold r,; > 4, that is a usual criteria for this
parameter [18].
We use the subsequent stages for performing the evaluation [4,10]:

1. Train and test sets are created following the random procedure commonly
used in previous works [4,10].

2. We build user groups of different sizes, and the groups creation process is
executed considering users with common preferences.

3. The method presented across the current paper is developed, for choosing the
suitable aggregation scheme for each group.

4. For each group, we apply the CB-GRS approach proposed by Pérez-Almaguer
et al. [16], using the selected aggregation function in each case.

5. The top n recommendation performance is measured with the Precision, by
matching the recommendation output with the preferences in the test set. At
last, the average precision is calculated for all the groups.

5.2 Results

Using the previous protocol, the proposal is evaluated with 6, = 0.9 and 6,, =
0.01 as parameters. This means that the fuzzy decision tree induction is stopped
if the relative frequency of a certain class exceeds 0.9, or if the current node
cardinality is less than 0.01. The used group size were 4 (Movielens) and 3
(HetRec), and several sizes of the recommendation sets were considered (see
Table 2).

This evaluation considers as baseline the hybrid proposal presented at [16],
considering both Average and the Minimum approaches (avg and min, in
Table 2), which are the state-of-art existing approaches that will be compared
with the current proposal. In the context of the experimental steps presented
in the previous section, Step 3 is omitted for the baseline evaluation. This step
introduces the execution of the procedure discussed across this paper (dyn, in
Table 2).

The results demonstrate that for both datasets, the proposal effectively iden-
tifies the optimal aggregation scheme to be used in a hybrid CB-GRS. This is
evidenced by its significant outperformance of two baselines that consistently
employ average and minimum aggregation.



Automatic Selection of Aggregation Function in Group Recommendation 159

Table 2. Performance of the proposal, in relation to previous works. Precision metric.

Dataset |top N 1 2 3 4 5 10
Movielens | avg (baseline) | 0.5787 | 0.5844 | 0.5788 |0.5684 |0.5740 |0.5681
Movielens | min (baseline) | 0.5813 |0.5725 |0.5829 |0.5841 |0.5845 |0.5754
Movielens | dyn 0.6025 | 0.5806 |0.5879 | 0.5844 |0.5855 | 0.5760
HetRec | avg (baseline) | 0.5050 | 0.5075 | 0.5039 |0.5000 |0.5013 |0.4957
HetRec min (baseline) | 0.5700 |0.5483 | 0.5417 |0.5358 |0.5297 |0.5080
HetRec dyn 0.5817 | 0.5483 | 0.5422 | 0.5363 | 0.5299 | 0.5083

6 Conclusions

The automatic selection of the aggregation functions in GRS presented in this
contribution has been initially implemented over the content-based group rec-
ommendation context, but it can also be applied to other group recommender
systems. It aims to provide an automatic building of the recommendation system,
which can lead to an improvement in recommendation accuracy. It is worthy to
mention that most of the proposed approach can be executed offline, facilitating
its deployment in recommender context with a high volume of information.

Our future work includes the exploration of new features as well as feature
extraction algorithms to enrich the group profiling process. In addition, other
classifiers such as deep learning-based, will be studied for the selection of the
suitable aggregation approach.
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Abstract. This paper considers the problem of building monotone fuzzy
decision trees when the attributes and the labeling function are in the
form of partitions (in Ruspini’s sense) of totally ordered labels. We define
a fuzzy version of Shannon and Gini rank discrimination measures, based
on a definition of fuzzy dominance, to be used in the splitting phase of
a fuzzy decision tree inductive construction algorithm. These extensions
generalize the rank discrimination measures introduced in previous work.
Afterwards, we introduce a new algorithm to build a fuzzy decision tree
enforcing monotonicity and we present an experimental analysis on an
artificial data set.

Keywords: Monotone fuzzy decision tree - Fuzzy rank discrimination
measure * Totally ordered fuzzy partitions

1 Introduction

Starting from the seminal paper [1], monotone classification has attracted
increasing attention (see, e.g., [2,3,7,18]) due to its capacity of modeling seman-
tic concepts like preference, priority and importance. In turn, the possibility of
incorporating linguistic or vague information, has naturally led to fuzzy mono-
tone classification (see, e.g., [19,22,23]).

In this paper, we focus on fuzzy decision trees [11,17,24] in which we aim
at enforcing monotonicity, relying on a set of training examples. We consider
a learning problem where the data set consists of a finite number of objects
described by m attributes a;’s, each referring to a totally ordered set of fuzzy
labels (X, <), together with a labeling function A that refers to a totally ordered
set of fuzzy classes (C, <). We further assume that each attribute and the labeling
function are fuzzy partitions in Ruspini’s sense [20]. Then, our goal is to build a
fuzzy decision tree 7 which encodes a labeling function X' : X3 x --- x X, — C,
that maps every m-tuple of attribute fuzzy labels to a fuzzy class and further
satisfies monotonicity, that is

(1, ) < (Wi Ym) = N (21, ) SN (Wi, Ym), (1)
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where (z1,...,2m) < (Y1,--.,Ym) stands for z; <y;, for j=1,...,m.

In general, enforcing global monotonicity requires a pre-processing of the
input data sets, so as to remove possible inconsistencies. Here, we face the prob-
lem by adopting a greedy approach: at each step of the building process we
choose the attribute a; “enforcing the most” a local form of monotonicity. This
approach has been already exploited in previous work [12] in case of crisp data
and relies on the introduction of rank discrimination measures (see also [8,9])
that are inspired by classical Shannon and Gini measures. In this paper, we
introduce fuzzy versions of measures introduced in [12], by relaying on a suit-
able additive fuzzy preference structure without incomparability [4,5,21], used
to model fuzzy dominant sets. We also propose an algorithm to build a mono-
tone fuzzy decision tree by relying on the introduced fuzzy rank discrimination
measures and we perform its analysis on an artificial data set.

The paper is structured as follows. In Sect. 2, we define Shannon and Gini
fuzzy rank discrimination measures. Section3 presents a greedy construction
algorithm parameterized by the introduced fuzzy rank discrimination measures
and shows an experimental analysis on an artificial data set. Finally, Sect.4
gathers conclusions and future perspectives.

2 Fuzzy Rank Discrimination Measures

In this section, after a recall on the background, fuzzy rank discrimination mea-
sures are presented. First of all, let us introduce the following notations:

- 2 ={wi,...,wy}, a finite set of objects;

- A={a1,...,am}, a finite set of fuzzy attributes with totally ordered
range of fuzzy labels, where a; refers to the set of labels X; =
{xj,,... 7$jtj} and (X, <x;,) is totally ordered,;

— ), a fuzzy labelling function referring to the set of fuzzy classes C =
{c1,...,cx} with (C, <¢) totally ordered.

To avoid cumbersome notation, in what follows we suppress the subscript X;
and C' from the total orders <x, and <¢, relying on the context to clarify which
relation we are referring to.

The case of crisp a; and A has been considered in [12]: in this case, a; and A
correspond to (crisp) partitions of £2:

aj ={{a; =z, } ={wn € 2 : aj(wn) =2, } | z;, € X;}
= {X{a;=z,,} : 2 = {0,1} | z;, € X},
A={{A=c}={wn €2 : Nwp)=cq} | ¢g€C}
= {X{r=c} 1 2= {0,1} [ ¢ € C},

thus, they induce a (crisp) total preorder on {2 due to (X;, <) and (C, <):

Lif a;(w;) < a;(wn),
0 otherwise.

1if Mw;) < Awp),
0 otherwise.

Rq; (wiswn) = { Rx(wi,wn) = {
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The dominant sets of w; generated by a; or A have characteristic functions
X[%Ej () - Raj (wi7 ) X[‘-’-’i];(.) - RA(wi’ )

Therefore, A U {A} can be regarded as a collection of (crisp) partitions. More-
over, R,; and Ry form the preference structures (Py;, Io;, Rq;) and (P, Iy, Ry),
where P, Py are strict preference relations, I,,, I\ are indifference relations,
and R,;, Ry are weak preference relations.

In this paper, for the fuzzy case, we assume that both a; and A\ are fuzzy
partitions (in the Ruspini’s sense [20]) of £2:

aj = Ma;j=z;,} - 12 = [0,1] | z;, € Xj, Z l“{aj:fjs}(wi) =Lw e,

zj, €X;

A= Up=c,y 2= [0,1] | ¢q € C, Z Pir=c,}(wi) = 1,w; € 2
cq€C

Therefore, in the fuzzy case, AU{\} can be regarded as a collection of Ruspini’s
fuzzy partitions.

Ezample 1. Let 2 = {w1,wa, w3} be three cars evaluated according to the fuzzy
attributes and labeling function below, where orders express preferences:

— a1 = comfort with X; = {low,medium, high} ordered as low < medium <
high,

— ag = price with Xy = {cheap, expensive} ordered as expensive < cheap,

— A = appreciation with C' = {low,high} ordered as low < high.

comfort price appreciation

{2 |low medium high | cheap expensive|low high

w1 0.3 0.1 0.6 0.6 0.4 0.7 0.3
w2 0.8 0.1 0.1 |03 0.7 0.1 09
w3 0.2 0.2 0.6 |0.7 0.3 0.2 0.8

¢

The totally ordered sets (X, <) and (C, <) induce a total order on the fuzzy
labels {a; = z;,} and {\ = ¢,} that we wish to “transport” somehow to (2: the
best would be to obtain a fuzzy total T-preorder on {2, where T is a t-norm [10].
In other terms, we search for a fuzzy counterpart of the relations R,, and Ry
defined in the non-fuzzy (crisp) case. At this aim we recall the definition of fuzzy
total T-preorder given in [6].

Definition 1. A function R: 2 x 2 — [0,1] is a fuzzy total T-preorder for
a t-norm T if it satisfies:

(1) (strong completeness) max{R(w;,wp), R(wh,w;)} =1, for all w;,wy, € 2;
(2) (T-transitivity) R(w;,wp) > T(R(w;,w;), R(wi,wp)), for all w;,wy, wp, € £2.
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A fuzzy preference structure is generally a weaker notion than a fuzzy total
T-preorder. To have “common properties” analogous to the crisp case, a -
transformation of the Lukasiewicz t-norm 77, (whose dual t-conorm is S7,) must
be used. Below we report the definition of additive fuzzy preference structure
with no incomparability [5] (see also [4,21]), where Ny, and Uy, refer to T, and
S'1,, the superscript ¢ denotes the transpose relation and co the complement.

Definition 2. A triple (P, I, R) of functions on §2 ranging in [0, 1] are an addi-

tive fuzzy preference structure with no incomparability if:

(1) P is irreflexive and I is reflexive;

(2) P is Ty-asymmetric and I is symmetric;

(3) PnpI=0;

(4) co(PUp I) = Pt;

(5) R =P Ur I7 i'ev R(W%Wh) = SL(P(Wi,Wh),I(wl‘,Wh)) = P(wi7wh) +
Hwi,wp).

Inspired to fuzzy preference structures built in the comparison of indepen-
dent random variables (see [13-15]), we can provide the following probabilistic
interpretation of our setup. For a fixed a; € A, for each w; € {2, we set

p‘z,s :M{aj:xjs}(wi), s = 17,1,']

then we have

a](wz)‘xh ij e Tt

J
J
pi,s

PiiPio - Py, S 1.

The evaluation a;(w;) can be interpreted as a discrete random variable with
assigned probability distribution.

Assumption 1. Since objects in {2 are assumed not to influence each other,
then {a;(w1),...,a;j(wn)} can be considered as stochastically independent ran-
dom wvariables.

The above probabilistic interpretation allows us to refer to a fuzzy stochastic
preference [5]:

Fuzzy strict stochastic preference relation:

Py, (wi,wn) = max{Prob(a;(w;) < a;j(wp)) — Prob(a;(w;) > a;(wn)), 0},

Fuzzy stochastic indifference relation:

Io;(wi,wn) = 1 — |Prob(a;(w;) < a;(wp)) — Prob(a;(w;) > aj(ws))l,

Fuzzy weak stochastic preference relation:

Raj (wivwh) = SL(]S(Z]‘ (Wi,Wh),Ia]. (wi7wh)) = Paj (w’iawh) + Ia]‘ (wiawh)7
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where

JoJ
Pi,sPhyq t 7 Dy
Prob(a;(w;) < aj(ws)) = s;q s
0 i=h,
DOF ANy
Prob(a;(w;) > aj(wp)) = {S>q s
0 1 =h.

We now consider the properties of (paj,faj,ﬁiaj). The triple (Paj,faj,éaj)
is an additive fuzzy preference structure with no incomparability sat-
isfying the following properties

- (generalizatioNn) if a; is a crisp partition then RGJ = Ry,

— (reflexivity) R, (wi,w;) = 1, for all w; € £2,

~ (strong completeness) max{R,;(wi,wn), Rq,(wn,w;)} = 1 for all
wi,wp, € £2.

Therefore, we can define the fuzzy dominant set generated by a; as

p—= () = Ra;(wi,-)- (2)

[wil3;

A natural question concerns the T-transitivity of Raj. The following example

shows that generally R,; is not guaranteed to be T-transitive for a t-norm T,
even though it may be the case.

Ezample 2. Take A = {a1,as} with X; = X5 = {1, 2,3} with the natural order
of numbers, and 2 = {w1, wa, w3, w4}

‘{al =1} {ay =2} {a1 = 3} ‘Ral W] W W3 Wy ‘
wi| 0.3 0.5 0.2 ‘w1 1 1 061
wa| 0.2 0.4 0.4 wy [0.78 1 0.820.46]
w3 0.1 0.8 0.1 w3 0911 1 0.46
ws 0.7 0.2 0.1 wg 111 1

It follows that Ral is not T, -transitive and so it is not T-transitive for any Frank
t-norm T (see [10]):

0.46 = Ra1 (W3, w4) < Ty (Ra1 (UJ3, wl), Ral (wl,w4))
= max{0.91 + 0.61 — 1,0} = 0.52.

‘{ag =1} {ag =2} {ax = 3} R, w1 wy w3 wy
w03 03 04 w1 1 0.870.87
wel 0.3 0.3 0.4 wo |1 1 0.870.87
w3 04 0.3 0.3 w31l 1 1 1
wy 04 0.3 0.3 w1 1 1 1
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On the other hand, we get that Raz is Ths-transitive and so it is T-transitive for
any t-norm 7. ¢

Analogously, we can define the fuzzy dominant set generated by )\ as

(1) = Ra(wi, ). (3)

I

[wilX

The previous discussion allows us to fuzzify the rank discrimination measures
H§ and H{ introduced in [12] (see also [8,9]). To this purpose:

— we fix the Lukasiewicz De Morgan triple (Tr,Sr,1 — «) for uniformity, to
compute fuzzy set-theoretic operations;
— we use the sigma-count to compute fuzzy cardinalities.

Definition 3. Given a; and A we define

Fuzzy rank Shannon discrimination measure:

—_~—

[£2] < <
|[wi]x N [wia; |
)‘|0’J Z - A/\/ )

i=1 |[wz}§7|

Fuzzy rank Gini discrimination measure:

—

|£2] < <
|[wily Nr [wila; |
HG )\‘aj Z |Q‘ _ A a;

<
al

|lwi]a;
The following example shows the computation of measures fl; and H &

Ezample 3. Let A = {a;} with X; = {1,2,3} and C = {1,2} with the usual
order of numbers and consider the following evaluations

{ar =1} {ar =2} {ay =3} {A =1} {A =2}

w| 0.7 0.3 0 | 05 05
wa| 0.5 0.1 04 | 02 0.8
ws| 0.8 0.1 0.1 0.1 0.9
wga| 0.6 0.3 0.1 1 0
Ra1 W1 W2 W3 W4 R)\ W1 W2 W3 Wy
wi| 1 1093 1 wi;1l 1 105
wy 10.68 1 0.670.79 wy |07 1 1 0.2
wg| 1 1 1 1 w3(0.609 1 0.1
wyg 087 1 082 1 wg 1 1 1 1

Both Ral and ]:2,\ are T'r-transitive and it holds that

Hi(Ma1) = 0.3582  HE(Map) = 0.2060.
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3 Enforcing Monotonicity in Decision Tree Construction

In order to evaluate the introduced fuzzy rank discrimination measures, we pro-
pose the following algorithm for building a fuzzy decision tree, in which mono-
tonicity between attributes and class labels is enforced in a greedy way. The
algorithm is parameterized by the choice of H* e {f[ S H &} Since we deal with
a recursive algorithm, we keep notation simple by referring to {2 and A as those
available at the current stage of recursion.

Starting from the original {2 and A, that are assumed not to be empty, the
algorithm proceeds recursively, until a leaf is created with a label in C. If we are
in a stage of the recursion with set of objects {2 and set of attributes A, we first
check if a leaf can be created. The creation of a leaf is justified when a sufficient
degree of uniformity on the class label is observed in the current (2. To choose
the label in C, we compute the local threshold for class labels

—{?ggz m‘ﬂ{x cat (@), (4)

which corresponds to the highest average membership value to a class label, of
objects in the current (2.
Next, for each ¢, € C, we compute the percentage of objects in (2 whose

membership is greater than or equal to a® as

c Hwe 2 ppecy(w) > a“}|
= . )

We avoid over-fitting by creating a leaf in case there is at least one class label ¢,
such that f¢ > p, where p is a fixed hyper-parameter chosen from the beginning
of the procedure. We choose the class label ¢, with maximum percentage f¢.
Possible ties are broken by choosing the greatest class label, according to the
total order of C. If no leaf is created in the current stage, then we need to split
the current {2 by choosing an element of the current A. For that, we proceed by
computing H*(A|a), for all a € A, and by solving

* = in H*(\ 6
a” = argmin (Aa), (6)
where ties are broken choosing randomly. Once the splitting attribute a* has

been chosen, a branch is created for every element of the corresponding set of
labels X*. Moreover, the following splitting threshold is computed

= max Z |Q|u{a =z} (W), (7)

which, again, corresponds to the highest average membership value to an
attribute label, of objects in the current 2.
Next, for every x € X*, we form the set

={we R : ppgamy(w) > "}, (8)
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and repeat the procedure recursively on 2% and A\{a*}. We point out that for
different z, 2’ € X* it may happen 2% N 2% # 0.

We notice that the overlapping of splitting sets can affect labeling when
|A] = 1 and the creation of a leaf at current stage is not optimal. Indeed, in
this case the only choice for the splitting attribute is the unique element a*
of A, so, the computation of (6) can be skipped. Therefore, a leaf is directly
created for each value of X* and labeling is carried out, again maximizing the
fc’s. Nevertheless, this could lead to some non-monotonicities due to objects
appearing in more than one splitting set. Hence, once the labeling of leaves is
over, a possible relabeling is applied to enforce monotonicity in the generated
leaves, by changing those leaves with lower value of f¢ first. If the generated
sub-tree has leaves with all equal labels, then it is replaced by a single leaf with
the same label.

Algorithm 1 reports the pseudo-code of the procedure described above.

Algorithm 1. Construction of a fuzzy decision tree enforcing monotonicity
> input: A, A, 2, data set
> input: p, over-fitting hyper-parameter
> output: T, tree of fuzzy labels

Compute the threshold a© as in (4)
Compute f° as in (5), for all ¢, € C
if there is ¢, € C such that f°? > p then
Create a leaf in 7 choosing ¢, € C' with maximum f°?, possibly breaking ties
else if |A| =1 then
for x in X* do
Create a leaf in 7 for the branch x
Compute 2% as in (8)
Choose ¢q € C with maximum f°¢ in 2%, possibly breaking ties
end for
if there are non-monotone leaves then relabel those with lower f°e first
if all leaves have the same label then replace the sub-tree with a single leaf
else
Determine the splitting attribute a™ as in (6), possibly breaking ties
for x in X* do
Compute 2% as in (8)
Call Algorithm 1 on A\{a"}, A, 2%, and p
end for
end if

We test Algorithm 1 by considering an artificial data set described by
attributes in the set A = {a1,a2,a3} and a labeling function . We assume
that the a;’s and X range in the interval [0, 10] and each is fuzzyfied using the
set of ordered labels X; = C' = {low,medium, high} that correspond to the fuzzy
partition (in Ruspini’s sense) reported in Fig. 1.
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Fuzzy partition

=
=)

o
®

o
o

— low
—— medium
—— high

Membership
I
'S

o
N}

0.0 1

Fig. 1. Fuzzy partition {low, medium, high}.

We derive the description of n = 1000 objects by generating three indepen-

dent random variables A; ~ Unif([0, 10]) and setting A = max {Al, ‘f—g, % }, S0
as to range in [0, 10] as well. Next, the realizations of each A; and A are fuzzyfied
according to the fuzzy partition reported in Fig. 1, so each object w; € {2 gives
rise to a collection of probability distributions on the label set X; = C. Table 1
shows the fuzzy partitions (2 decimal rounding) of {2 for the first 3 objects. We

further fix the over-fitting parameter to p = 70%.

Table 1. Fuzzy partitions for the first three objects.

ai az as A

{2 | low medium high | low medium high | low | medium | high | low medium | high

w1 |0 0.82 0.18 10.65|0.35 0 1 |0 0 0 10.82 0.18
wy |1 |0 0 0 0 1 0 |0 1 0 10.69 0.31
w3z |0 097 0.03 |0 0.35 0.65 |0 |1 0 0 1097 0.03

Below, we show the explicit execution of Algorithm 1 on the generated data
set. To keep track of the evolution in the recursion, we add a subscript index
starting at 0 to all quantities, related to the current level in the tree.

Therefore, we initially set 29 := 2 and Ay := A, where |{2y| = 1000. The
terminal condition is not met since f3° = 0.1600, fzediv — 0.4660, f3'&" =
0.4310. Moreover, being |Ag| > 1, since H§(A|a1) = 0.2475, H{(A|az) = 0.4547,
HE(Maz) = 0.6274, and H (Maq) = 0.1427, Hi(Nag) = 0.2419, HE(Mas) =
0.3131, both measures agree in selecting a; for splitting. Now, the set of objects
) is split in three subsets corresponding to labels in X;. The sets (2}°¥, (nedivm
and 278" are not disjoint since [2}°F N 2nedivm| — 42 | QlovnQIER| — () |Quediumn
Q| = 42,
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We focus on 21°% with A1°¥ := {ag, a3}, where [£2{°"| = 322. The terminal
condition is not met since fI°¥ = 0.4814, fredivm — (04006, f;€ = 0.1615.
Moreover, being |A1°%| > 1, since Hj(Maz) = 0.3001, HE(Mag) = 0.7780, and
HE(Mag) = 0.1691, HE(Mas) = 0.3194, both measures agree in selecting as for
splitting. Now, the set of objects £21°" is split in three subsets corresponding to
labels in X5. The sets 2,71 (20" and (22°M8 are not disjoint since
|Q;ow,lowmgéow,mediM| _ 107 |Qéow,lowm();ow,high| _ O, |Q;.ow,mediummgéow,high| —19.

We focus on 274" with A7*4™™® := {ay, a3}, where [2]°%""| = 440. The
terminal condition is not met since fio% = 0, frediv — (05955 f1HE = 0.1227.
Moreover, being |A7e4™®| > 1, since H§(Aaz) = 0.2505, H5(Maz) = 0.4605, and
HE(Mag) = 0.1432, HE(Mag) = 0.2092, both measures agree in selecting as for
splitting. Now, the set of objects {2541 jg gplit, in three subsets corresponding to

: di 1 dium,medi di high o« o s
labels in X5. The sets (25°@ 0% (QOeHUMIEENE and (5% "8 are not disjoint as
|Qmediu.m,low N Qr2nedium,mediu.1u| _ 147 ‘Qgedium,low N Q;ledium,high| _ 07 ‘Qgedium,medium N

Qm%dim,high| =18
2 =1o. . :

We focus on 278" with A}'®" := {as, a3}, where |2]"®"| = 322. The terminal
condition is met since fIo¥ =0, fredive — () fME — (7546, Thus, since fi & >
p, a leaf with label A = high is created.

We focus on 2,°%'" with A5**°" := {a3}, where [£2;°"*°°| = 93. The ter-

minal condition is met since f3°% = 0.7097, fiedium — ( (28" — (. Thus, since
f2°" > p, a leaf with label A = low is created. '
We focus on £2;°""H™ with A;°""°M™ .= {g3}, where [2,°7"°%™| = 140.

The terminal condition is not met since f3°% = 0.5071, faedium — () 4285, fi'8" =
0. The splitting is made on az and the sets (2;°%medtumion  powmediummediun
(ommediumbigh oive rise to three leaves labelled, respectively, as A = medium,
A = low, A = medium. Thus, we relabel leaves by setting, respectively, A\ = low,
A = low, A = medium: the first label is indeed that with lower value of f¢.

We focus on £2,°"™8" with A5°"" 8" .= {a3}, where |2;°""*8"| = 111. The ter-
minal condition is not met since f3°% = 0, fEedium — () 5405, f2'€" = (.4595. The
splitting is made on a3 and the sets 2;°%M81F  (rowhighmediun | OLowhighhigh oiye
rise to three leaves labelled, respectively, as A = high, A\ = medium, A = medium.
Thus, we relabel leaves by setting, respectively, A = medium, A = medium,
A = medium: the first label is indeed that with lower value of f¢. Therefore,
we replace the built sub-tree with a single leaf labelled as A = medium.

We focus on 25°H"™ % with AR™¥ .— (g3} where [25°7"™1°"| = 138.
The terminal condition is not met since f3% = 0, fIediwm — (6087, f3&" =
0. The splitting is made on a3 and the sets (25eHHumiontow  puediumlow.mediun
QEediumlonhiel give rise to three leaves all labeled as A = medium. Therefore,
we replace the built sub-tree with a single leaf labelled as A\ = medium.

We focus on Qgedlu.m,medlu.m with Ar;edlu.m,medlum — {ag}, where |Qr2ned1um,med1‘u.m‘ _
186. The terminal condition is not met since 1% = 0, fpedive — (6290, f5'&" =
0. The splitting is made on az and the sets (250 umnediumion - pnediunnediun nediun
Qfediummediuniigh oive rise to three leaves all labeled as A = medium. Therefore,
we replace the built sub-tree with a single leaf labelled as A = medium.

i

)

)
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We focus on 25548 with AZSHURER . — [0 where |25 M8 = 148,
The terminal condition is not met since f3¥ = 0, fEediwn — (4595 f&" —
0.4865. The splitting is made on a3 and the sets (25°0W™Pigh 10w | nediunhighnediun
QEedium Mg Mg oy rise to three leaves labeled, respectively, as A = medium,
A =high, A = high.

Figure2 shows the monotone fuzzy decision tree 7 obtained by applying
Algorithm 1, where low, medium, and high, are abbreviated as 1, m, and h,

respectively. A direct inspection shows that the A" encoded in 7 satisfies (1).

Fig. 2. Monotone fuzzy decision tree.

4 Conclusion

In this paper we consider the problem of building a fuzzy decision tree by enforc-
ing monotonicity of the class label with respect to attributes labels, both assumed
to range in totally ordered sets of labels. We propose two fuzzy versions of rank
discrimination measures that generalize those proposed in [12], together with
an associated construction algorithm. Due to space limitations we provided an
experimental analysis on an artificial data set. A first line of future research
consists in developing a hierarchical construction model of a general fuzzy rank
discrimination measure in analogy with [12], and a systematic analysis of their
analytical properties. Finally, we also plan to perform a deeper experimental
analysis on real data: at this aim we point out the necessity of a suitable fuzzy
non-monotonicity index, obtained, for instance, generalizing that in [16].

Acknowledgements. Davide Petturiti is member of the GNAMPA-INdAM research
group. This research was carried out during Davide Petturiti’s research stay at LIPG6,
Sorbonne Université.
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Abstract. Production line calibration is a critical industrial task that requires
thoroughly planned actions. Even tiny deviations from the optimal settings can
cause dramatic deficiencies. Automated Root Cause Analysis can be employed
to suggest the actions that result in faulty states, and therefore, to resolve situa-
tions and prevent recurrence. This work presents a methodology for Root Cause
Analysis focused on the calibration process of a valve block in an elevator system.
The causalities (weighted interconnections) between oil flow control (actions) and
system velocity (output) are estimated using Pearson Correlation. The produced
weight matrix is evaluated by exploiting expert knowledge. An FCM model for
Root Cause Analysis is developed to study the system behavior and explore the
root causes of deficiencies. The proposed approach eliminates the need for labeled
root causes. Results support the efficiency of the proposed FCM model for cor-
recting the sub-optimal configurations; the proposed approach seems to work even
when the calibration actions are unknown.

Keywords: Root Cause Analysis - Fuzzy Cognitive Maps - Correlation
Coefficient - Elevator Industry

1 Introduction

The customization of products in manufacturing requires frequent adjustments in the pro-
duction line. This process is usually performed manually and, therefore, prone to errors.
Optimal configurations are mostly obtained on a try-and-error basis, which consumes
valuable production time. Defects and operational deficiencies are usually associated
with possible causes of a sub-optimal calibration phase and therefore corrective actions
are pursued to eliminate defective products.

In the hydraulic elevator industry [1] the hydraulic power unit is a highly customized
product and one of the most critical components for smooth operation. The elements
of the hydraulic unit such as the pump, the valve systems, the control systems, etc.,
need to be modified based on the needs of the elevator installation. Several studies have
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emerged regarding the control systems of the pump operation [2—4], that address cabin
speed control. Moreover, anomaly detection methods have been proposed to identify
deficiencies in the operation [5]. However, less attention has been given to the valve
block configuration. Ineffective valve block configurations lead to inefficient oil flow
control and therefore to operational deficiencies. The velocity of the elevator is affected
by the corresponding oil flow adjusting bolts on the valve block. These valve bolts directly
affect the velocity profile, including acceleration/deceleration phase, cruising velocity
and breaking speed. Optimal velocity profiles have been determined by manufacturers to
maximize passenger safety and convenience, as well as gear protection. Deviations from
the optimal velocity profile are considered as operational deficiencies. An example of an
optimal and a sub-optimal velocity profile is shown in Fig. 1. These curves represent the
journey of an elevator cabin between two floors. Considering a normal lifting operation
(Fig. 1a), the elevator initially accelerates until it reaches a predefined cruising velocity
(0.4 m/s); before it reaches the desired floor, it decelerates to alower speed, and eventually
stops smoothly. In a deficient configuration (Fig. 1b), the velocity profile is quite different
in terms of duration for the acceleration, cruising and deceleration/braking phases.

= Optimal Velocity = Sub-optimal Velocity

0.4

Acceleration
Deceleration

Breaking speed
-
\ Breaking duration
i /
\ \, /
y —
0.0 Se—er

0.0 25 50 75 100 125 15.0 17.5 20.0 0.0 25 5.0 75 10.0 125 15.0 17.5 20.0
Time (s) Time (s)

(a) (b)
Fig. 1. Comparison between the velocity profiles for a calibrated (left) and deficient (right)

elevator system. Dotted lines designate the characteristics of the velocity profile (acceleration,
deceleration, breaking).

1
[}
1
i

[}

Speed (m/s)
°

Identifying the causes of calibration deficiencies is a rather complex task that
involves manual adjustments on the valve block, based on try-and-error procedures,
which requires significant production time. Thus, the accurate and fast identification
of the causes that result in the sub-optimal calibration of the valve block is of major
importance for quality products and efficient production. This procedure is also known
as Root Cause Analysis (RCA).

RCA is widely used in various industrial sectors including information technology,
healthcare and manufacturing [6-8]. In essence, it aims to answer the question of why
something is happening, or what is the cause of an observable effect. Several manually
performed frameworks exist for RCA based on expert knowledge [9, 10]. However, these
procedures pose limitations regarding the availability of knowledge, the required time
for thorough analysis, and the under-exploitation of the available data from production
processes. Artificial Intelligence (Al)-based RCA methods were engaged to tackle such
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limitations [11]. Al-based methods employ large databases to perform automated data-
driven RCA. Nevertheless, new challenges have arisen with the machine learning and
deep learning methods. So far, several works have addressed the data-driven RCA as
a classification problem [12-14] and the most applicable classifier for their task was
identified. However, these methods require massive data, as well as labeled root causes
for supervised learning, which are hard to obtain in a real industrial environment. In
this direction, it has been proposed to combine expert knowledge with data-driven tools
towards the development of enhanced RCA techniques [15].

Fuzzy Cognitive Maps (FCMs) [16] are able to represent expert knowledge and cope
with data learning, showing promising results in various domains [17]. Concentrating on
FCM capabilities, an exploitation of their application in hydraulic elevator industry and
the hidden causes of uncalibrated valve blocks is performed herein. FCMs are recruited
in this work to mitigate the data-driven problems of the RCA as a transparent model,
to address the complexity and provide decisions in a way similar to human thinking.
The proposed methodology exploits FCM abilities to perform RCA in the valve block
calibration where the root causes are unlabeled and unknown.

The main contribution of this research is the design of an efficient FCM model
to apply RCA on valve block calibration in the elevator industry. To the best of the
authors’ knowledge, there is no previous research work on the investigation of FCMs
for addressing the problem of determining root causes in elevator industry. The novelty
of this work is oriented toward the design and development of a new FCM model capable
of identifying the hidden causes of deficiencies in the velocity profiles.

2 Main Aspects of Fuzzy Cognitive Maps

Being a soft computing, powerful technique that combines the advantageous character-
istics of both fuzzy logic and neural networks, FCM is particularly useful and suitable
for modeling and decision-making for complex systems [18]. It is considered as an
extension to Cognitive Maps (CM), introduced by Axelrod in 1976 to graphically repre-
sent the cognitive state of a system in the decision-making process. Proposed by Kosko
[16], FCMs introduced fuzziness to Cognitive Maps applying fuzzy descriptions (fuzzy
binaries) to the connections in order to demonstrate causal influences on the relations
between concepts. From a structural point of view, FCMs can be graphically represented
as a fuzzy digraph, which has the ability to explain the behavior of complex systems
by integrating causal reasoning derived from the perception of expert knowledge. The
system is defined as a collection of concepts, interconnected to each other with connec-
tions in the form of directed edges, reflecting the cause-effect relationships between the
concepts [18].

Essentially, FCMs consist of two main components: the nodes and the edges. A node,
which is commonly termed as a concept, defines a variable, a factor, a state or an attribute
of the examined system; an edge reflects the causal relationship between two concepts.
An FCM is comprised by a set of nodes C = {C; :i = 1,2, ..., N} where N denotes
the number of variables of this network. The overall state of the FCM can be described
by the state vectorA = {A; : i = 1,2, ..., N} where the component A;. is the degree of
presence (termed as activation level) of the concept C; in the system at a particular time.
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Similarly, the degree of causal relationship (association) between two concepts C;, Cj
can be expressed with a weight w; ; € [—1, 1]. Equation (1) displays the computation
formula [21] for the activation level A; of each concept C; at time ¢ + 1 in terms of
the respective values at the previous timestep ¢ and the weighted interconnection wy; for
concept Cj towards C;. An activation function f is employed to keep the activation levels
within the desired interval; the hyperbolic tangent is employed to constrain A; in [—1, 1],
while other implementations prefer the sigmoid function to constrain A; in [0, 1].

N

Ait+ D) =fl A0+ D A - w; (1
j=1
j#i

3 Methodology

3.1 Dataset Acquisition

Experiments were performed to study the influence of each individual bolt adjustment on
the velocity profile; combinations of bolt adjustments were also considered. For a system
with M bolts and S possible states for each bolt, the total number of combinations to be
tested is M. In the system under investigation, three bolts were considered and termed
as {M6, M9, M8} following the manufacturer’s notation. Three different states were
considered for each bolt: ‘Left’ indicates counter-clockwise rotation by 180°, ‘Right’
indicates clockwise rotation by 180°, and ‘Null’ implies no rotation. Thus, M S =33 =
27 configurations were investigated.

The system was first calibrated by an expert. This defined the initial state of the
system as well as the ‘Null’ rotation for each bolt. Then, the valve block configuration
was systematically distorted by applying rotations {Left, Right, Null} to individual
bolts, as well as combinations of them. For each distorted configuration, the elevator
was allowed to travel a predefined route. Each velocity profile was then evaluated by
an expert. Six profiles indicated deficient operation, whereas the remaining twenty-one
were considered as optimal (within acceptable limits). Figure 2 presents some indicative
velocity profiles as acquired from the experimental testing. The velocity profiles are
presented as pairs (blue/cyan curves), indicating opposite bolt rotations, to assess how
the direction of the rotation affected the operation. For instance, the bottom left graph
in Fig. 2 depicts the effect of Left/Right rotation of bolt M6 while M9 and M8 remain at
Null position. Individual experiments were designated by a unique identifier in the form
180xx, as shown in the graphs.

3.2 Processing

As illustrated in Fig. 2, the distortions on bolt configuration strongly affected the accel-
eration duration, the deceleration duration, the breaking speed (velocity tail) and the
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breaking duration. These characteristics were extracted and further exploited for the
proposed FCM methodology. For the feature extraction, the time instants at which the
slope of the velocity changes direction were pursued. The curves were denoised prior
to the derivative calculation using a simple moving average filter with zero-padding.
In addition, a future time step was acquired in the line slope calculation instead of a
consecutive one, to avoid noisy estimations from sudden fluctuations in velocity. Then,
the estimated times were used to isolate and extract the changes in velocity and their
duration. Finally, the extracted features of each experiment were associated with the
corresponding bolt rotations to produce the dataset. For the sake of consistency with the
rotations of opposite directions, the derived dataset was normalized in [—1, 1].
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Fig. 2. Indicative velocity profiles as acquired from experimental testing. The black dashed curve
is the response of the system, as calibrated by an expert. The effect of bolt rotations are depicted
by blue/cyan curves. (Color figure online)

3.3 Pearson Correlation and Fuzzy Cognitive Maps

The widely used descriptive statistic Pearson Correlation Coefficient was employed to
discover linear correlations between the actions performed on the bolts and the velocity
characteristics. Pearson Correlation describes the strength and direction of the linear
relationship between two quantitative variables in the range of [—1, 1]. However, it poses
limitations and requires a systematic examination of data [19] for statistical analysis. In
this work, the feature extraction procedure, that was focused on the time domain and the
average speed values, ensured that the correlation was calculated in noise-free data.
The calculated linear correlation matrix between actions and velocity characteristics
was fuzzified to be further evaluated by the limited available expert knowledge and by
studying curves, like the ones presented in Fig. 2. In other words, the crisp values of the
correlation matrix were transformed into fuzzy linguistic variables that were interpreted
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during the experiments to verify the causality of the output of Pearson Correlation; thus,
not focusing on the accuracy but on the consideration of what proportion of the variability
in the independent variable (velocity characteristic) can be justified by the dependent
(bolt rotation) variable. An example of such a matrix is depicted in Fig. 3.

M6
M6

M9

M8
M8

medium

-0.25

-0.50

-0.75

brk_duration dec_duration acc_duration brk_speed
brk_duration dec_duration acc_duration brk_speed

brk_speed
acc_duration -
dec_duration
brk_duration -
brk_speed
acc_duration -
dec_duration
brk_duration -

Fig. 3. The Pearson Correlation matrix and the corresponding fuzzified correlation matrix, to
express correlation between the rotational actions (M6, M9, M8) and the velocity characteristics
(breaking speed, acceleration duration, deceleration duration, breaking duration).

Based on these matrices, the strong influence of the actions on the velocity was
verified. However, there are more complex cases where indirect influence was discov-
ered. An example is illustrated in Fig. 4. In the first pair of curves, the Right rotation of
M6 (cyan curve) increased the acceleration duration; in the second pair of curves, M8
adjustments had no effect on the acceleration duration; in the third pair of curves, the
combination of the Right rotation for M6 and the Left for the M8 (cyan curve) resulted
in dramatic increase for the duration of the acceleration phase.

This concludes that the rotation of M6 had indeed a considerable influence on the
acceleration duration; however, when it was combined with a rotation of M8, this influ-
ence was further enhanced. The matrix in Fig. 3 shows that linear correlation of M8
with the acceleration duration is —0.11, which doesn’t indicate a Root Cause for the sub-
optimal operation. This is confirmed in Fig. 4b, where rotation of M8 has no significant
impact. In Sect. 4, Case 18023 demonstrates that rotation of M8 may affect the break-
ing duration and the breaking speed under certain conditions, and a more sophisticated
way is needed for studying such a system. Thus, the Pearson matrix was exploited with
Fuzzy Cognitive Maps (FCMs) as a weight matrix to study the non-linear behavior of
the system [20].
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Fig. 4. Demonstration of the effects of M6, M8 rotation on the velocity profile. (a) Only M6 is
rotated. (b) Only M8 is rotated. (c) Both bolts are rotated resulting in significant increase for the
duration of the acceleration phase. (Color figure online)

The FCM model consists of seven concepts: the three rotations for bolts M6, M9, M8,
and the four extracted velocity characteristics, namely the breaking speed, the accelera-
tion duration, the deceleration duration, and the breaking duration. The interconnections
among these concepts are initially assigned using Pearson Correlation.

The concept values correspond to the extracted velocity characteristics and the
applied bolt rotations of each experiment. The inference process was performed uti-
lizing Eq. (1) and the Hyperbolic Tangent activation function, so the state vector values
lie within [—1, 1]. The concepts of interest for root cause identification were the cali-
bration actions, i.e., rotations of bolts M6, M9 and M8. As annotated root causes were
unavailable, the state differences for these concepts between the FCM state convergence
for optimal and sub-optimal calibrations were further studied to identify causalities. In
simple terms, the FCM was expected to arrive in a fixed-point state, in which the acti-
vation level for the concepts M6, M9 and M8 would differ as compared to the initial
concept values for optimal and sub-optimal calibrations. According to Eq. (2), in case
an activation state Mi, i € {6, 8, 9} lies in a different area than the activation state of the
optimal calibration, then this activation state is considered as a root cause:

—1, AMi <0

2
1, Ay =0 2)

optimal suboptimal .

Ay (T) # Ay (T, with Ay = {
where T the time of the fixed-point state (equilibrium point). To further verify the root
cause identification, a “what-if”” scenario was pursued in which the alteration of values in
the M diverged concepts, and the effects on the velocity profiles were examined. These
are presented in the following.

4 Results and Discussion

The FCM models were developed with TensorFlow in Python 3.10 to benefit from GPU-
accelerated operations. The RCA experiments were conducted assuming two scenarios:
1) with bolt rotations (M6, M9, M8 € [—1, 1]), and 2) without any bolt rotation, i.e.,
all assumed Null. These scenarios exploit the identification of FCM causal relationships
and further verify the ability of the proposed FCM model to discover the root-cause.
Initially, to acquire the desired activation state of Eq. (2), the FCM convergence response
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was assessed for a specific target curve (Case 18002) which was calibrated by an expert.
The inference process of this curve is shown in Fig. 5. It merges so that when the FCM
considers the optimal velocity characteristics as inputs, all bolt rotations convergence to
—1.

18002 (Target)

mé(dg)
m9(dg)

m8(dg)
brk_speed
acc_duration
dec_duration
break_duration

—0.251

—0.50 1

—0.75 4

—1.00 4

[ 2 4 6 8
Iterations

Fig. 5. Theinference process of the target curve. The concepts of interest (M6, M9, M8) converged
in values close to —1.

Subsequently, the values of the sub-optimal bolt configurations were considered to
study the convergence of the FCM. The deficient velocity profile of Case 18008 was
examined and presented as an example (Fig. 6). In this Case, only M8 was rotated,
and resulted in breaking failure. Since only one distortion was enforced, the root cause
was easy to identify. The FCM inference results for both scenarios of rotations (with
rotation and without rotation of M8) are presented in Fig. 6. It is observed that the M8
rotation converged in an activation state (Aysg3 = 1) different than the optimal one in both
scenarios. Thus, compared to the velocity profile of the calibrated elevator, in which all
concepts converged to —1, the new FCM response can provide a decision concerning
the state of the valve block system with respect to the M8 rotation, and suggest that M8
is the root cause of the deficient system. Then, by rotating M8 Left, M8 was returned to
the Null position, the system got re-calibrated (black dashed curve).

A more complex example was studied in Case 18032. In this Case, the combined
bolt rotations completely distorted the velocity profile, and the root cause was harder to
identify. Working in the same manner, the FCM inference process for the two scenarios
(with rotations and without rotations) is presented in Fig. 7. As concluded by the FCM
inference, the model had M6 and M9 states activated in high values (Ayr6 = Apyo = 1)
which is different than the expected value for a calibrated system (Ayr6 = Ay = —1).
Therefore, the FCM suggested that the distortion of this system was caused by the high
rotation values for M6 and M9, whereas the M8 rotation had practically no effect. As
a result, the Left rotation of M6 and M9 (i.e., bringing them back to the Null position)
would produce optimal performance.

To further support this, Case 18005 was also examined (Fig. 7). In this Case, Null
rotation was set for M6 and M9, and Left rotation for M8. The velocity profile suggests
that the Left rotation of M8 had no significant effect on the velocity profile and was
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characterized as optimal by the expert. Therefore, it can be stated that the FCM correctly
identified the root cause of deficiency, i.e., the combination of M6 and M9 rotations

distorted the velocity profile in Case 18032.
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Fig. 6. Left: RCA for Case 18008 (red color). Top right: The FCM inference equilibrium point is
shown when the M8 rotation is known (M8 starts at 1). Bottom right: The inference equilibrium
point for unknown rotations (all Mi start at 0). (Color figure online)
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Fig. 7. RCA of the sub-optimal Case 18032 (red color). Compared to the target curve (black
dashed curve), this curve had both M6 and M9 rotated Right by 180°, and M8 Left by 45°. Both
scenarios accomplished through FCM inference (known rotations bottom left, unknown rotations
bottom right) resulted in different activation states for the M6, and M9 values. If M6 and M9 had
been rotated Left by 180° in the 18032 experiment, the optimal curve with ID 18005 (green curve)

would have been produced.
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The same RCA process was applied to the remaining deficient operations of the
dataset, as well as to additional simulated experiments, so as to assess the potential of
the methodology and further understand the causalities of the system. The FCM exhib-
ited strong capabilities in identifying the root causes based on the underlying causalities.
Interestingly, it was observed that for the investigated valve block, M6 and M9 tended
to activate together, while M8 was acted as an individual root cause. Regarding the
required inference steps, the FCM inference process in the examined hardware config-
uration required less than 10 ms for an average number of 10 FCM iterations, which is
a promising performance of the FCM inference.

S Summary

In this work, a data-driven Root Cause Analysis methodology is proposed, employing
Fuzzy Cognitive Maps to capture the causality between actions and resulting deficient
performance of an elevator valve block system. The weights of the FCM were estimated
with Pearson Correlation and further validated with the limited existing expert knowl-
edge. The novelty of this approach is that it does not require supervised learning with
annotated root causes which can be hard to acquire. The proposed methodology can be
used in a semi-unsupervised way to capture causes of sub-optimal performance based
only on inputs of optimal calibration. The dataset employed for the development the
methodology, was produced in a real industrial environment by manually distorting the
bolt configuration of a valve block system.

Although promising, the proposed methodology exhibits a couple of limitations.
These are related to 1) data scarcity and 2) the weight matrix, and open the way for
further development. Data scarcity directs that the methodology should be applied in
more deficient operations and additional datasets to further assess the performance of the
proposed methodology. The weight matrix should be further examined with the inclu-
sion of more samples; this practically comes from limitations of Pearson Correlation.
Taking from these limitations, future work will focus on 1) the application of a more
comprehensive dataset, which could address the limitations of Pearson Correlation, and
2) the exploration of additional techniques for causality calculation. Furthermore, the
methodology will be extended to not only estimate the root cause, but also suggest
corrective actions.
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Abstract. Group Decision-Making is a process in which experts have
to choose one or more options from a finite set of alternatives. Group
Decision-Making methods were developed to assist in this type of event,
but often information is lost in the alternatives analysis since not all the
alternatives fulfil criteria in the same way. Moreover, in these methods,
once the debate is over, it is not usually possible to reopen the decision
process. Finally, the third problem that can occur in this type of method
is that the experts are forced to provide preferences even though they
know nothing about them, which makes the provided information incor-
rect. To solve these problems, we develop a novel Multi-Criteria Group
Decision-Making method that allows experts to modify the reciprocal
preference relation ratings whenever they wish and gives them the option
of not providing a preference value if they do not know anything about
it, that is, it works with incomplete reciprocal preference relations. Fur-
thermore, the weight of each criterion is self-adjusted according to the
assessments that have been made at that moment, which means that
each criterion will have a different weight, thus obtaining a more ver-
satile Group Decision-Making method that is adaptable to the different

situations that may arise during a decision process.

Keywords: Multi-criteria Group Decision-Making - Changeable
Scenarios - Reciprocal Preference Relations - Self-Adjustment

1 Introduction

®

Check for
updates

Group Decision-Making (GDM) is a process that occurs when a set of experts
need to rank a finite set of alternatives [6,11]. GDM methods have evolved and
nowadays it is a standard line of research [4,23]. These methods have different
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ways of representing information, such as the representation of linguistic labels
[1] or numerical sets [18,20]. Nevertheless, they force the experts to evaluate the
alternatives by taking into account all their characteristics at once, preventing
them from evaluating each alternative in detail. Moreover, they cannot modify
their opinions when the process has started and must provide preferences for all
the alternatives. These three problems, together with the fact that the weights
of the criteria are usually equal, differentiating the experts, make it necessary
to look for a method that solves these problems, making these methods more
realistic and adaptable to the needs of the experts.

In this paper, we propose a novel GDM method that solves the problems
mentioned above. This system implements a Multi-Criteria GDM framework
with open debate allowing the experts to evaluate the criteria of the alternatives.
Furthermore, they can modify their opinions whenever they wish, without having
to state all their preferences at the end of the debate. Moreover, they have the
possibility that if they consider not providing a specific preference value, they
can skip it, as this method allows the use of incomplete reciprocal preference
relations. Finally, this method, using the number of ratings, creates the weights
for each criterion self-adjusting in such a way that, although the weight of the
experts is the same, the weight of each criterion is modified at each moment.

This article containing the novel method is organized as follows. In Sect. 2,
you can see the basic concepts related to Group Decision-Making problems. In
Sect. 3, our method is explained in detail. In Sect.4, an illustrative example
is shown, to have a better understanding of the model explained in the previ-
ous section. In Sect. 5, we proceed to discuss the advantages of this model and
compare it with other methods in the current literature. At last, in Sect. 6, the
conclusions of the model are obtained.

2 Preliminaries

In this section, we are going to develop the basic concepts related to the GDM
method. The main objective of these problems is to help a finite group of experts
choose between a set of alternatives based on the information they generate
[12,21]. To be able to state these methods, initially, two necessary sets have to
be defined, the set of experts and the set of alternatives, £ = {e1,...,e;} and
X ={x1,...,x} respectively, where k € N refers to the number of experts and
L € N to the number of alternatives [3,14].

Once the two sets have been defined, it is necessary to define how the experts
will propose their preferences. However, there are different ways of presenting
the information, such as assessing each alternative separately [2]. In this article,
we have opted for the use of reciprocal preference relations, through the use
of numerical sets [7]. This option has been chosen because by using reciprocal
preference relations it is possible to visualise the comparison of one alternative
over another. Consequently, it is possible to define the reciprocal preference
relations as matrices of dimension L x L that have the main diagonal empty and,
in addition, as in this article the experts can choose which comparisons to make,
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there may be elements of the matrix other than the diagonal that is also empty
[25]. These matrices, denoted as vfz =1...,k;t =1,...,m, where m € N is the
number of criteria, is defined as 7 = (ﬂfx%x_ ;s #i=1,...,L), where 6EXS‘X‘ is
the comparison between choice x5 over choice xz;. Each element of the matrix is
created by using the operator ps : X x X — [0, 1]. Consequently, each element of
the reciprocal preference relation is equal to szxg,xi =pi(Xs, Xi); X5, X; € X
[24].

With the definition of the basic concepts, it is possible to define the parts of
a GDM method:

— Providing the preferences and opinions: in this first part, the experts show
their opinions and ideas by talking to each other and discussing. Then, once
this first part is finished, using the numerical set provided, they add to the
system, thus obtaining the reciprocal preference relations of each expert.

— Consensus Analysis: in this part, we are going to verify if the information of
the experts, who use the method to choose the alternative, is similar enough
to affirm that there is a consensus among them. For this purpose, a consensus
threshold is defined, denoted as a € [0,1], which must be exceeded by the
consensus value cns € [0, 1] [13]. If this does not occur, a feedback process is
carried out, so that the experts seek to reach an agreement. To prevent this
process from being cyclical, a maximum number of rounds, w € N, is set at
the beginning of the process [10].

— Aggregation of information: when the consensus threshold has been exceeded,
it is necessary to aggregate the information to have only one reciprocal prefer-
ence relation, this reciprocal preference relation is called the collective recip-
rocal preference relation. To build the matrix, which has the same dimension
as the experts’ reciprocal preference relations, it is possible to use aggregation
operators such as the ordered weighted average (OWA) operator [16] or the
weighted average (WA) operator [8], the latter being the one chosen for our
method.

— Getting the ranking of alternatives: in this last part, a ranking of alternatives
is performed, which allows the experts to know their favourite alternatives. To
obtain such a ranking, it is necessary to use the collective reciprocal preference
relation and apply an operator. There is a wide variety of operators, such
as the Quantifier-Guided Degree of Dominance (QGDD) operator [5] or the
VlseKriterijumska Optimizacija I Kompromisno Resenje (VIKOR) operator
[22]. For this article, we have opted to use the former.

The number of methods that can currently be seen to solve a GDM problem
has increased. In [9], a method is found that uses a fuzzy dithered environment
for the solution of a specific problem. In [3], a Multi-Granular GDM method is
developed that seeks to increase consensus among experts through recommen-
dations. Finally, in [19], a Multi-Granular GDM method is created that seeks to
adapt to different situations to be more generalist.
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3 MCGDM Method in Changeable Scenarios Based
on Self-adjustment of Weight

In this section, the GDM method is developed which consists of the following
parts (see Fig. 1):

— Debate and provide the preferences: in this first part, the experts dis-
cuss the options. For this purpose, they discuss and contribute their ideas
and opinions. Once the debate is over, they give the preferences they want.
Nevertheless, they can change them at any time.

Debate and provide
the preferences

Expert 1's preference expert k's preference

relation of criterion 1 relation of criterion m

Verification of the
consensus by
analysis

/C”SZG\

Calculation of the Calculation of the
weighting of criterion 1|« v v v e v v v v e v weighting of criterion m

~__

Aggregation of criteria

—

\L\
Obtaining the ranking
of alternatives

Fig. 1. Scheme of the proposed method
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— Verification of the consensus by analysis: in this second part, it is veri-
fied that the relationship preferences of each expert are sufficiently similar to
affirm that the decision taken by the experts is consensual. For this purpose,
a consensus threshold is set that must be exceeded. In case this threshold is
not exceeded, a feedback process takes place.

— Computation of the weights of the criteria: once the consensus among
the experts for each criterion has been overcome, the reciprocal preference
relations of each expert are aggregated to obtain a single reciprocal preference
relation for each criterion and the weight of each criterion relative to the
others is calculated.

— Aggregation of criteria: with the weights calculated and the criteria of
all the experts aggregated, obtaining single reciprocal preference relation per
criterion, are aggregated to obtain a single reciprocal preference relation,
called the collective reciprocal preference relation.

— Obtaining the ranking of alternatives: With the collective reciprocal
preference relation, the ranking of alternatives is computed, which determines
which alternative(s) are preferred by the experts.

3.1 Debate and Provide the Preferences

In this first part, the experts will discuss the alternatives, presenting their ideas
and preferences. Once the discussion is finished, the experts can state their pref-
erences for each criterion, which will require the use of the definitions in Sect. 2.
Once the experts have stated their preferences, they can modify them and dis-
cuss them at any other point in the process. Consequently, what you get is what
is known as an open debate. Moreover, the experts can make any comparisons
they want on any of the criteria.

3.2 Verification of the Consensus by Analysis

With the reciprocal preference relations obtained, this optional part, the consen-
sus analysis, is carried out. The main objective of this part is to verify that the
differences between the experts are not so significant as to carry out a feedback
process. To be able to affirm that there is a consensus among the experts, a con-
sensus threshold is established, denoted as « € [0, 1]. This value together with a
limited number of rounds that aims to prevent the feedback process from cycling
denoted as w € N and that for this process will have a value of w = 5, is set
at the beginning of the process. In this case, being a Multi-Criteria model, the
consensus value to be exceeded by the threshold, denoted as cns € [0, 1], is com-
puted as the arithmetic mean of the consensus values of each critter. Initially,
the consensus value for each criterion, denoted as cns; € [0,1]; t =1,...,m is
computed as follows:
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:1—
cnsy =1k

If one of the valuations does not exist, then the valuation is not performed and
the value of L in this equation would be one less than its original value. Once
the consensus has been calculated for each criterion, the arithmetic mean is
calculated to obtain the consensus value.

m
E consy
t=1

m

cns =

3.3 Computation of the Weights of the Criteria

Once the consensus value is higher than its respective consensus, it is necessary
to aggregate the results for each criterion. For this purpose, two factors have
to be taken into account: the first is that all experts have the same weight and
the second is that the ratings of each criterion have to be calculated separately
because the experts are free to decide which options they want to evaluate and
which they do not. Consequently, on the one hand, the number of ratings of a
criterion for two specific alternatives is defined as values;y . . On the other
hand, we define the reciprocal preference relation of a criterion as v, = (05%; s #
i;8,i=1,...,L); t =1,...,m. Where the element of this matrix is defined as

follows:
k

z
Z 5tXS=Xi

z:l;ﬁfxs <. 79
X5

Qsi —_
¢ values; . .
Having obtained the reciprocal preference relations for each criterion, we
proceed to calculate the weight associated with each criterion, denoted as wy; t =
1,...,m as follows:

With the weights calculated and the reciprocal preference relations for each
criterion unified, the collective reciprocal preference relation is computed.
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3.4 Aggregation of Criteria

Once we have a reciprocal preference relation for each criterion and its associated
weight, we proceed to aggregate the criteria to obtain a single reciprocal pref-
erence relation, called the collective reciprocal preference relation and defined
as I' = (6%%; s #i =1,...,L). This matrix has the same characteristics as the
reciprocal preference relations of each expert, it has dimension L x L and the
main diagonal is empty. To aggregate the criteria, an aggregation operator has
to be used, in this case, the WA operator has been chosen because the weights
of each criterion and its reciprocal preference relations have been calculated.
Consequently, each element of the matrix is defined as:

m

5% =07« wy
t=1
With this matrix, it is possible to calculate the ranking of alternatives for
the next section.

3.5 Obtaining the Ranking of Alternatives

In this last part of the method, the collective reciprocal preference relation, I,
is used to determine the ranking of alternatives and therefore determine the
experts’ favourite option(s). For this purpose, the Quantifier-Guided Degree of
Dominance (QGDD) operator is used. This operator allows us to know the degree
of dominance that an alternative X,;s=1,..., L has over the rest. The QGDD
operator is obtained as follows:

L
>
i=1;i#s

QGDD, = =%

In the case that a §°" does not exist the value of L will be one minus the
original one. Once the values have been obtained using the average operator, as
the collective reciprocal preference relation is an additive matrix it is obtained
that Trillo’s theorem [17] can be applied to verify that the process carried out
does not have any problems. Once the theorem is verified, we proceed to obtain
the maximum of the values provided by the QGDD operator, as follows:

Xoapp ={Xs € X | QGDD; = max. QGDD;}

This maximum determines the experts’ favourite option, thus obtaining a
ranking of alternatives ordered in decreasing order according to the values pro-
vided by the QGDD operator.
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4 Illustrative Example

In this section, we are going to develop an illustrative example that allows us to
observe the usefulness of the method developed in Sect. 3. In this example, a set
of experts, denoted as F = {e1,es,e3} want to invest money to improve their
constructions. For this, they have two criteria, the efficiency and the cost of the
investment, and a set of improvements denoted as X = { X1, X5, X3, X4}, where
X1 is to install solar panels, X5 is to improve the insulation of the windows, X3
is to install cold insulating floors and X, is the investment in electric boilers.
The experts begin to discuss and when they have decided that they can state
their preferences, they state the preferences of the first criterion.

~ 0.80.70.8 — 0.70.90.7 ~ 0.70.70.7
. lo2—- —o05| , |03-0605| 5 [03—0506
M=103 - —06|"™ 70104 —04]" 7 [0305 - —
020504 — 0.30.50.6 — 0304 — —

Once they have stated their preferences for the first criterion, they state their
preferences for the second criterion:

~ 0.80.70.6 ~ 0.80.60.8 ~ 0.60.60.6
o2 —o0707) , [02-0705]| 5 04— 0505
2710303 — 057710403 — 0372710405 — 05
040305 — 0.20.50.7 — 040505 —

At this point, the expert es decides that he wants to change his preferences
of the first criterion because he does not consider that the values provided are
the correct ones. Consequently, the following reciprocal preference relation is

obtained:
— 0.7090.7

, |03 - 06—
M= 10104 — 04
0.3 — 0.6 —

With this new reciprocal preference relationship, the consensus among experts
is verified. For this purpose, a threshold of consensus is set at « = 0.9. As the
consensus value, cns = 0.9551 then it can be stated that there is a consensus
among the experts and the reciprocal preference relations of each criterion and
their associated weights can be obtained. The reciprocal preference relations of
each criterion are:

— 0.730.770.73 — 0.730.63 0.67
1027 — 0.550.55 1027 — 0.630.57
M= 1023045 — 050|727 (037037 — 043
0.270.450.50 — 0.330.43 0.57 —

Before the modification of the expert es the weight of each criterion was w; =
0.4706 and we = 0.5294. Nonetheless, with the modification of the expert, the
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weights are self-adjusted obtaining that the weights are w; = 0.4545 and wo =
0.5455. Consequently, the collective reciprocal preference relation is equal to the:

— 0.730.69 0.70
0.27 — 0.60 0.56
0.310.40 — 047
0.300.44 0.54 —

I =

The QGDD is applied to this matrix, which will provide the values for the
ranking of alternatives (see Table 1):

Table 1. QGDD values

X1 X2 X3 X4
QGDD | 0.7080 | 0.4737 | 0.3914 | 0.4268

With the collective reciprocal preference relation and Table 1, we can apply
Trillo’s theorem [17] to verify that the whole procedure is correct. As the theorem
is verified, it can be stated that the procedure is correct and by obtaining the
maximum of Table1 it can be seen that the preferred option by the experts is
the alternative X7 which is the placement of solar panels.

5 Discussion

This section will show the advantages of this method at a general level and
compare it with other processes in the current literature. This Multi-Criteria
GDM method enhances the knowledge of the experts in one criterion against
other criteria they do not know about. Moreover, it allows the experts not to
have the obligation to compare all the alternatives with each other, if they do not
know them, obtaining the valuations in which the experts have more knowledge.
Furthermore, this new system has other advantages to be discussed:

— Modification of reciprocal preference relations when the experts desired: this
method has an open debate, which means that when the debate is finished
the experts do not have to give their preferences at that moment or they can
give and modify them whenever they wish before the end of the process. This
is an advantage because in case there is an error by an expert or if there is a
simple change of opinion, he/she can make it if he/she wishes.

— Experts can answer as they wish: experts do not have to know how to make
all comparisons, e.g. an expert does not have to know that one alternative is
more expensive than the other. Nonetheless, in this method, they are given
the option of not being able to answer if they do not want to or do not know
the answer. In this way, the comments made by experts are because they can
make the comparison as they have the necessary knowledge to do so.
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This method has advantages when compared to other GDM methods. In [19], the
criteria have no associated weight and it is up to the experts to decide between
them who is more important. Nevertheless, in our method, the weights of each
criterion are associated according to the experts’ assessments. Moreover, while
in [19] the experts have to make all the comparisons even if they do not know
them, in this method they can make the comparisons they want. Additionally,
in [15], a GDM method is presented that seeks to reach a consensus among
experts. Nonetheless, in our method, apart from seeking consensus among the
experts, they can assess the alternatives in detail, unlike [15] which are assessed
in a general way. Furthermore, our method gives the option of modifying the
preferences when the experts wish to do so without the need to have limited
space to provide their information.

6 Conclusions

In this paper, a Multi-Criteria GDM method with open debate has been created
that allows experts not to compare all the options if they do not want to perform
the comparison. Moreover, with the number of ratings made by the experts, it
is possible to adjust each criterion’s weight, obtaining a higher weight for that
criterion with a higher number of ratings. Nevertheless, in case the experts’
comments are modified, the system self-adjusts their weights.

The developed system is a GDM method that makes the number of experts
limited, as future work we can see the possibility of creating an LSGDM system
that allows an application in a social network, making it adaptable to more
realistic situations.

Lastly, this new system gives importance to the number of ratings that are
made of a criterion and therefore, more weight is given to the criteria that the
experts are most familiar with. Therefore, the assessments made by the experts
on the criteria they know are more important than the criteria where they cannot
or do not want to decide.
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Abstract. There is a vast number of contributions in the literature
dealing with problems for which they explicitly consider the imprecision
in the inputs while keeping the output in crisp terms. Moreover, as the
complexity in the representation of imprecision increases (for example,
from triangular fuzzy numbers to type-2 fuzzy sets), a higher effort is
required from the user to determine the input information. This situation
is quite clear in the context of multicriteria decision making problems.
Here we focus on these problems under three premises: 1) the input
information is known to be of a fuzzy (imprecise) type but such fuzziness
is not represented explicitly, 2) the relative importance of the criteria is
given as ranked weights and 3) there exist an infinite number of potential
weights (under the ranked weights conditions) definitions thus leading
to an infinite number of potential scores that an alternative can achieve.
Under these premises, it has perfect sense to assign the alternatives an
imprecise score. The aim of this contribution is to propose how to model
and calculate such imprecise scores as intervals first, and as triangular
fuzzy numbers secondly. Using an illustrative example, the outputs are
displayed and compared. Several discussions regarding the usefulness of
more complex proposals are raised.

Keywords: multi-criteria decision making - fuzzy scores - fuzzy
numbers - intervals - imprecision * ranking

1 Introduction

Multi-criteria decision making (MCDM) [15] is becoming increasingly relevant
in today’s complex and dynamic decision-making environment. With the rise of
big data, the availability of multiple and conflicting information sources, and the
need to make decisions considering multiple aspects, MCDM provides a struc-
tured approach for considering various criteria and making informed choices.
MCDM techniques are used in various fields such as finance, engineering, health
care, environmental science and others to support decisions under uncertainty
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and ambiguity. Its use is growing as organizations strive to make decisions that
are not only technically sound but also socially, economically, and environmen-
tally responsible.

Our interest here is in MCDM problems containing a set of m alternatives
together with their overall performance on a set of n criteria. We assume that a
decision maker (DM) provides:

— Input 1: An evaluation matrix E,,x, = {e;;}, where e;; is the evaluation
provided to alternative ¢ at criterion j.

— Input 2: A preference order of criteria C' = {¢y, ..., ¢, }, from which a rank for
the corresponding weights is derived: wy(1) > Wr(2)--+ = Wr(n), where 7 : N —
N is an index permutation function. Additionally, weights are constrained to
wi+...Fw,=land w; >0 (Vj=1,...,n).

Let’s assume the global score of each alternative ¢ is computed using a
weighted sum model:
zi(w) = wle; (1)

where z; : R” — R is the scoring function for alternative i at a given realization
of the vector of weights w = (wy, ..., wy).

Under these basic premises, two critical aspects arise.

The first one is the representation of the e;;. The simplest approach is to
assume e;; € R. But, if we consider that such values are given as “around e;;”,
then fuzzy numbers [5] would be suitable tools to model such kind of imprecision,
thus leading to fuzzy multi-criteria decision making problems [7,11]. The body
of literature on potential representations of imprecision is huge. A good example
is the review in [14] where adaptations of the TOPSIS method are considered
for different types of imprecisions.

In the last years, a wide number of extensions of fuzzy sets have been pro-
posed (rough, hesitant, Pythagorean, Fermatean, etc.). However, in the context
of MCDM problems those extensions lead to a paradoxical situation: the DM
must provide an increasing number of precise values to define a single imprecise
e;; value.

The second critical aspect is the weights determination, which is far from
trivial. One alternative is to resort to specific formulae to calculate “ranked
weights” as in [1]. Another alternative is to derive the weights from an AHP
process and then, some MCDM method, (like TOPSIS), is applied to rank the
alternatives [8].

In the MCDM setting we describe, it should be noted that there exist an
infinite number of realizations of weights’ vectors satisfying the conditions indi-
cated previously and, therefore, it makes perfect sense to assume that the score
of an alternative cannot be defined as a single value. In fact, there is a set of
potential scores that an alternative can achieve (one element for each vector w
satisfying the three constraints defined in Input 2).

The representation of the imprecision in the input has been extensively
explored in the past. But, as far as we know, the way an imprecise score can be
computed has been little studied.
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In turn, we consider that the output obtained after manipulation of imprecise
information of fuzzy type (either considering it implicitly or explicitly) should be
also imprecise. Consequently, we should not expect to provide a score like “3.234”
for an alternative. It would make more sense to say something like “the score
is in the interval [a, b]” or simply, “the solution score is high”. While the first
approach would involve approaching the problem from an interval perspective
[3], the second would do so from a linguistic labeling perspective [4,9]. In the
present paper we will focus on the first approach.

Considering the above motivations, the objectives of this contribution are:
1) to propose a model for such imprecise scores in two forms: as intervals and
as triangular fuzzy numbers; 2) to provide efficient ways to compute their corre-
sponding parameters. Both ideas are illustrated by means of a simple example.

The remainder of this paper is organized as follows. In Sect. 2 we establish
some definitions that we will use in our proposals, which are presented in Sect.
3. An illustrative example is developed in Sect. 4, while Sect. 5 is devoted to the
discussion and conclusions of the results obtained.

2 Preliminaries

In this section we recall some basic concepts that will be used later. The emphasis
is on weight approximation methods, which will help us to calculate the core of
the fuzzy numbers we use for defining the alternative scores.

2.1 Approximate Weighting Methods

There are several approaches in the literature to deal with the uncertainty of
decision scenarios where weights are not explicitly defined [10]. In the following,
we will consider the ones we use in our proposal; the interested reader is referred
to [2] for further information.

One of the most widespread weight approximation approaches in the context
of ranked weights is the rank-order centroid (ROC) [1]. According to this method,
each weight w; is obtained as:

Vi=1,...,n (2)

wj:

x| =

n
k=j

Other two common methods are the rank-sum (RS) weights and rank recipro-
cal (RR) weights, which were proposed in [6] and [16], respectively. Specifically,
the RS weights w; are computed as follows:

S

n+1—j5 2(n+1-—j)

= Vi=1,... 3
wJ ZZZl k TL(TL + 1) .] ) , ( )
In the case of RR, weights are obtained as:
1/
wj:¢ Vi=1,...,n (4)

k=1 1/k
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3 Towards Imprecise Scores

From now on we consider that the input values have a fuzzy type (not proba-
bilistic, nor linguistic...) but we will not model such fuzziness in an explicit way.
So, initially e;; € R, thus reducing the effort required from the DM to define the
matrix of alternatives. The score of each alternative 7 is calculated as shown in
Eq. 1 and the ranked weights are given. Now we describe below our proposal for
modelling imprecise scores.

3.1 Imprecise Scores as Intervals

As we previously stated, there exist an infinite number of realizations of the w
vector, thus leading to an infinite number of potential scores that an alternative
can achieve. Two specific scores values are relevant: the minimum and the max-
imum. If we can calculate such values, then an interval for the alternative can
be readily obtained.

Following [17] and the references therein, it is possible to calculate such
bounds solving the two following linear programming problems for every alter-
native. Formally, let P, be the region of admissible weights induced by the con-
straints defined in Input 2 (Sect. 1) and I; = [l;, u;] the interval of scores for the
solution 7. Then [; (respectively u;) is obtained by minimizing (resp. maximizing)
for w the following linear programming problem: {z; = w’e; : w € P, }.

Due to some properties of this model, obtaining the solution is simple. The
constraints over the weights (Input 2) induce a convex region of admissible
weights in the form of a n — 1 dimensional polyhedron P, of n vertices [12].
As is well known, both the minimum and maximum of a linear problem (if they
exist) occur at a vertex of the feasible region. Here, every vertex is a particular
configuration of the weights, so we just need to evaluate the alternative i in every
vertex and keep the max/min scores found.

As shown in [12], those vertices (weights configurations) can be arranged in
a n X n matrix V with the following structure:

100...0
11
550...0
= (5)
1111
nnmn'"""n

where each row v; is a vertex (extreme point) of P,. As the reader may notice,
the first row indicate that all the weight is given to the more important criteria.
The second row divides the weight between the two more relevant criteria and
so on. The last row assigns the same weight to all the criteria.

So, using this strategy we can calculate an alternative’s imprecise score as
an interval containing the range of the potential scores that can be achieved.
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Table 1. Variants to obtain the core (b) of the fuzzy number corresponding to the
score of the solutions.

Variant | Core value b is defined as

IC the midpoint of the interval

EW the score calculated with equals weights
ROC the score calculated with weights as in Eq. 2
RS the score calculated with weights as in Eq. 3

RR the score calculated with weights as in Eq. 4

MWS | the mean of the scores calculated from the
previous weights

3.2 Imprecise Scores as Triangular Fuzzy Numbers

Let’s call Z; the fuzzy score of an alternative i. For the sake of simplicity and as
a first approach, we represent z; as a triangular fuzzy number, which just require
three values (a, b, ¢) for its definition.

Given an alternative i, the results of the previous section allowed to obtain
an interval I; = [l;, u;] so we propose to define the support of Z; as Sz, = {z :
I < z<w}

Now, the problem is how to calculate the core value b. One approach that
immediately arise is to take b as the value corresponding to the center of the
interval, thus leading to a symmetrical triangular fuzzy number. However, such
approach completely ignores the inner distribution of the scores for a given set
of weights. Additionally, the score corresponding to this center of the interval
would not necessarily have the same weight associated with it for each solution
of the problem.

So, as an initial approach we propose to calculate the value of b from a set of
relevant scores. By relevant we mean those scores that are obtained from weights
that are representative within the set of admissible weights, that is, according to
the set of constraints for weights defined in Input 2 (Sect.1). Here we would be
including those from the extreme points of matrix in Eq. 5, and those computed
from methods defined in Sect. 2.1. Although each weight configuration would
give us a specific value of b, it is also possible to obtain b from an aggregation
of these individual scores.

Table 1 summarizes a set of variants to calculate the b parameter. When
EW, ROC, RS, RR are stated, the meaning is that those weights are used to
calculate the corresponding scores. For sake of comparison, we have also included
the variant based on the center of the interval (IC).

4 An Illustrative Example

Now, we present an example to illustrate our proposal and promote further
analyses. We consider a decision problem with ten solutions and five criteria.
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Without loss of generality, we will assume that the weights associated with these
criteria have the following order: wy > we > w3z > wy > ws. Besides, the entries
in the evaluation matrix are defined on a scale from 0 to 10. Consequently, the
score of each solution is also be defined in that range.

Firstly, the results using intervals for scores are presented. Secondly, those
related with fuzzy scores.

4.1 Scores as Intervals

Figure 1-a) shows the intervals of scores obtained for each solution. Some useful
information can be easily obtained. Consider solutions 53, S4. As their corre-
sponding intervals do not overlap, then it is impossible that S4 obtains a higher
crisp score than S3 under the given order of the weights.

For solution 59, there is a specific set of weights that allows to achieve the
highest score over all the solutions. It is also interesting to note the variability
in the lengths of the intervals. While (depending on the specific weights) S1 can
obtain a score between 0.0 to 5.7, or S9 between 5.0 to 10, the range of potential
scores for S4 is quite short.

In order to gain some insights in the inner distribution of the potential scores
within the intervals, Fig. 1-b) displays the scores associated with the extreme
weights. In this case, it can be seen how the corresponding scores do not show
any clear pattern.

In fact, the lower and upper bounds of each interval are obtained from dif-
ferent extreme weight vectors. For example, consider solution S, in which its
lower bound is due to the score obtained in the weights (1,0,0,0,0). In con-
trast, solutions such as S4 or S8, S9, owe their lower bound to the vector of
weights (0.2,0.2,0.2,0.2,0.2), corresponding to the case where all criteria have
the same importance. Notice that this particular configuration, called Equal
Weights (EW) allowed to obtain the maximum score for S3.

Similarly, Fig. 1-c) shows the distribution of scores associated with other
weight vectors: those obtained by applying the approximation methods defined
in Sect. 2. We include EW again in this plot for comparison purposes. Note that
the approximate weights ROC, RS and RR are distributed to inner zones of the
intervals. Again, no clear pattern arises. Looking at solution S1 we observe a
quite wide interval. However, most of the calculated scores are between 3.0 and
6.0 (considering both plots). For solution S7, a similar situation appears: most
of the scores are grouped closer to the upper than to the lower bound. For S9
the situation is exactly the opposite.

4.2 Scores as Fuzzy Numbers

Now, we will further elaborate on the proposal to model the score intervals as
triangular fuzzy numbers. As mentioned above, the main question here lies in
how to define the core of this number (parameter b). We explore here the options
described in Table 1.
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a) Score intervals
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Fig. 1. Distribution of extreme weights (a) and approximated weights (b) along the
solution score interval.

Figure 2 displays the fuzzy scores of every alternative for the different ways of
assigning the b value. At first sight, the option in Fig. 2-a), where the core is the
centre of the interval, looks more “interpretable” than the other approaches, i.e.,
in the sense of a fuzzy number representing the concept of around the value x.

Among the other approaches, most of the differences appeared when com-
pared with the equal weights approach (Fig.2-b)), where the core is closer to
the bounds of the support.

Differences among ROC, RR, RS, and MWS are hard to detect so one may
ask if having more complex ways to assign the b parameter provides any benefit.
One way to answer such question is the following: sort the alternatives and check
how similar the corresponding rankings are. In turn, this implies defining a way
to compare fuzzy numbers and here, the literature is enormous (see [18,19]).



204 P. Novoa-Hernandez et al.
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Fig. 2. Fuzzy scores for every alternative under different definitions of the core value.

Nevertheless, we set the question as follows: given the current dataset, and
the Yager’s Y2 index [18] for comparison of fuzzy numbers, how similar the
different rankings of the alternatives (one for each plot in Fig.2) are?

To quantify this level of coincidence we relied on two measures: the Kendall’s
tau correlation coefficient and the matching rate of the top 5 solutions. Figure 3
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a) Correlation b) Matching rate for the top 5 solutions
MWS MWS
RS  0.956 RS 08
1.0 1.00
RR 0956 1 05 RR 08 1 0.95
.0.0 0.90
ROC 0.956 0.911 0.956 ROC 1 0.8 1
-0.5 0.85
-1.0 0.80
EW 0778 0.822 0.867 0.822 EW 08 08 1 0.8
IC 0733 0956 0.911 0.867 0.911 IC 08 1 1 0.8 1

Fig. 3. Kendall’s correlation coefficient (a) and matching rate for the top 5 solution

(b).

displays the results. Overall, there is indeed a strong correlation between the
variants (Fig. 3a). The rankings derived from RR and MWS are the same. The
more dissimilar rankings are those produced by IC and EW. It is interesting to
note here that the correlation between MWS and IC is very high. Regarding the
matching rate, it can be seen from Fig. 3b) that the variants exhibit high levels
of agreement in the top 5 alternatives.

5 Discussion and Conclusion

In this work, we focused in MCDM problems with three features: 1) we know
that the input information has a fuzzy (imprecise) type but we do not represent
such fuzziness explicitly, 2) the relative importance of the criteria is given as
ranked weights and 3) there exist an infinite number of potential weights (under
the ranked weights condition) thus leading to an infinite number of potential
scores that an alternative can achieve.

Under these assumptions, it makes a lot of sense to assign the alternatives
an imprecise score. We proposed first to model such scores as intervals, and
secondly, as triangular fuzzy numbers.

In general, there are a vast number of contributions in the literature that
ezxplicitly considers the imprecision in the inputs while keeping the output in
crisp terms (crisp scores). This proposal explores a different way to deal with
imprecise information.

Although generalizations should be taken with caution due to the small
experimentation performed, some preliminary conclusions can be outlined.

Firstly, the use of intervals to model imprecise scores is simple to understand
and easy to calculate. However, it provides no information regarding the inner
distribution of the scores within the intervals.
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Secondly, when considering the imprecise scores as triangular fuzzy numbers,
the main problem is the determination of the kernel of the set, since the support
would be given by the interval of possible scores. In this sense, several proposals
were explored, including the trivial one (e.g., the core as the center of the interval)
leading to symmetric triangular fuzzy numbers.

Since each decision-maker may propose a different way of defining the core, we
suggest that to get some ideas about the advantages of the different proposals,
the alternatives should be ranked using any comparison index, and then the
rankings obtained should be analyzed.

In our case, and in the third place, the main conclusion of such analysis is that
the ranking produced when the core of the fuzzy number is calculated using the
basic approach (IC') shows a high level of agreement with the one provided using
the MWS approach (which considers, at least partially, the inner distribution of
the scores within the interval).

In our opinion, this is unexpected. Even in the simple example we showed,
it was rather clear that the scores are not evenly distributed along the intervals.
Of course, other distributions can be observed if different sets of weights are
sampled, but this is a topic that deserves further research.

Also, and as future research, we plan to replicate these results over a wide
set of multi-criteria decision making problems to further understand the role of
considering imprecision scores.

In any case and following the line against the artificial complexification of
the problems being solved posed in [13], we discourage further exploration of
other (more complex) representations of fuzzy scores or exploring different ways
of sorting fuzzy numbers.
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I

Abstract. Deep learning techniques provide a powerful and versatile
tool in different areas, such as object segmentation in medical images.
In this paper, we propose a network based on the U-Net architecture to
perform the segmentation of wounds and staples in abdominal surgery
images. Moreover, since both tasks are highly interdependent, we propose
a multitask architecture that allows to simultaneously obtain, in the same
network evaluation, the masks with the staples and wound location of the
image. When performing this multitasking, it is necessary to formulate a
global loss function that linearly combines the losses of both partial tasks.
This is why the study also involves the GradNorm algorithm to determine
which weight is associated to each loss function during each training step.
The main conclusion of the study is that multitask segmentation offers
superior performance compared to segmenting by separate tasks.

Keywords: Medical images - Abdominal surgery images - Deep
learning - Multitask learning - Segmentation

Introduction

Postoperative follow-ups are essential in ensuring the successful recovery of a
patient after a surgery and preventing potential complications. While the impor-
tance of these revisions cannot be overstated, advancements in telemedicine and
eHealth have made it possible for some of these evaluations to be conducted
remotely. This offers numerous benefits, including reducing the need for physical
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travel, which enhances the patient’s quality of life, and overcoming geographical
barriers. It is in this context that many studies on telemedicine and eHealth have
appeared, for instance [2,10,11,15,20]. In turn, the emergence of telemedicine
and eHealth has spurred the development of advanced techniques in the auto-
matic analysis of medical images in different areas. For example, using non-deep
learning techniques, in [8] the authors proposed the use of a 3D reconstruction
algorithm to determine the area of wounds of various types from an image. Fur-
thermore, in [5,6] the authors described a method for detecting complications
in images of abdominal surgery using staples as suture method through the
application of mathematical morphology based on fuzzy sets. With the location
of the staples, which are typically situated near the wound, the method classi-
fies the pixels based on chromatic information. This allows the identification of
regions classified as red, as redness is commonly considered a sign of infection.
On the other side of the coin, using deep learning techniques, studies such as
[18] have been conducted for dermal lesion segmentation, [4,9,19] for pressure
ulcer tracking, and [16] for corneal ulcer segmentation. Further advancements
have been made through the use of multitasking techniques in the deep learning
approaches, which not only perform segmentation, but also classify the complica-
tion into several categories. Examples of such studies are [1,17] in dermatology,
and [12,13] for segmentation, severity classification, and time tracking of ulcers.

Having established the context of our work, this paper builds upon the previ-
ous studies about automatic analysis of images of abdominal surgery conducted
in [5,6], without losing sight of the progress already made by the research com-
munity in other fields of medical image analysis. Our objective is to address
the wound and staples segmentation through the application of deep learning
methods. Furthermore, as well as other studies present in the literature, we aim
to examine the interdependence of these two tasks by proposing a multitask
approach that can perform simultaneous wound and staples segmentation on
postoperative wound images. Namely, we propose a deep learning multitasking
approach that leverages the widely recognised U-Net architecture, which was
originally designed for biomedical image segmentation. Our approach involves
a modification of the U-Net architecture by incorporating a second decoding
branch, as depicted in Fig.1. This modification provides a common feature
extractor for two tasks: wound segmentation and staples segmentation, taking
advantage of the idea that many of the features that are beneficial for one task
are also useful for the other, while maintaining the independence of the two seg-
mentations. To accommodate the change in the architecture, the network loss
function must consist of two terms, which we balanced using the GradNorm
algorithm.

The paper is organized as follows. In Sect. 2, we present the methodology in
our study, including the description of the dataset, the neural network architec-
ture of our approach, and the metrics used in the evaluation process. In Sect. 3,
we outline the experimental framework used. Then, in Sect.4, we present and
analyse the results obtained in our study. Finally, in Sect. 5, the paper concludes
with a summary of the findings and proposals for future work.
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Fig. 1. Simplified diagram of the proposed network.
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2 Methodology

In this section, we outline the methodology and the experimental framework for
the study. First, in Sect. 2.1, we describe the dataset that will feed the experi-
mentation. Then, in Sect. 2.2, we explain the metrics that will be used to evaluate
performance. In Sects. 2.3, and 2.4, we delve into the neural network architec-
tures that will be considered and the weight balancing algorithm, respectively.

2.1 Dataset

The image dataset we utilized in this investigation was provided by the physi-
cians of the Department of Surgery at the University Hospital Son Espases
(HUSE) situated in Palma, Spain. In total, 394 images were acquired using
the cameras of patients’ smartphones, without any control of the lighting or
environmental conditions. The objective of that study was to assess the pres-
ence of any complications in post-surgical wounds through an automatic analysis
integrated within the Redscar mobile application. All the images in the dataset
depict post-operative wounds closed using staples as suture method.

To perform this study, we generated binary masks to accurately highlight
the location of the wounds and staples. These masks were created by marking
in white the pixels that correspond to the objects of interest, and also they
underwent validation by medical specialists to ensure their precision and accu-
racy. Furthermore, to enhance visualisation, the masks were superimposed on
the original images, allowing for a quick and clear assessment of the segmen-
tation results. Figure 2 shows a sample image from the dataset, along with the
two binary masks that depict the position of the staples and the wound, and
two colour masks that highlight the location of the objects of interest within the
image.
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Fig. 2. Example of an image from the dataset and the two ground truth masks we
used to perform the wound and staples segmentation tasks.

Finally, to ensure consistency across all experiments, the original images of
the dataset, which varied in size, were resized to a size of 512 x 512. We also
divided the dataset into training and test sets, which comprised 275 and 119
images, respectively. These sets remained constant throughout the study.

2.2 Metrics

To assess the efficacy of our method on the Redscar dataset and allow for future
comparisons, we adopted a set of evaluation metrics that are specific to the task
at hand. These metrics are based on the confusion matrix, which comprises the
following basic statistics: true positive (TP), true negative (TN), false positive
(FP), and false negative (FN). In the context of deep learning, the output is
typically continuous. Therefore, it is necessary to define positive and negative
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samples. In our case, we define a pixel as positive if its value is greater than 0.5
and negative otherwise.

For both, the wound and staples segmentation tasks, we employed the Inter-
section over Union (IoU) metric, also known as Jaccard’s index. This metric
calculates the extent of overlap between the predicted and ground-truth segmen-
tations and is widely used in the evaluation of image segmentation techniques.
It is calculated from the confusion matrix as follows:

TP

oU=— ~—
°U= TP 1 FP 1 FN

(1)

2.3 Neural Network

The U-Net architecture, introduced by Ronnenberger et al. [14], is a Fully Con-
volutional Network (FCN) tailored for the purpose of segmenting biomedical
images. In this instance, we based our solution using the conventional version
of the network, with the integration of a batch normalization layer following
every convolution in the contracting section. Batch normalization standardizes
the inputs to a layer for each mini-batch, having the effect of stabilizing the
learning process and reducing the number of training epochs required to train
deep networks.

Dealing with a problem that involves multiple tasks requires a specialized
strategy. Initially, we attempted to solve the problem by adding more channels
at the network output, but this approach did not lead to successful segmentation
of two disjoint classes. Recognizing the need for a different approach, we decided
to modify the traditional U-Net architecture. We then attempted to solve the
problem using a two-step algorithm, involving two consecutive segmentations
with U-Net. Unfortunately, the results were not satisfactory. Finally, we pro-
posed to solve this problem by using two reconstruction branches, since we are
dealing with a problem that is solved by two distinct tasks that we assume share
characteristics. In this way, we can have a part of the network that is specific to
each task. In Fig. 3 we can see the details of the network architecture.

Loss Function. We defined our training loss function as

L=oc- Lwound + A Lstap1687 (2)

where Lyound and Lgtaples are the conventional Dice loss, and o and A are two
weighting coefficients that were initially set to 1. The Dice loss is defined as
D(p,q) = 1 — Dioss(P, q), where Dioss(p, @) is defined as

o 2Zz,y(pzay ) Qr,y)
Zz,y p{%,’[[ + Zm,y q%,y

In this expression, p, , and g, , refer to the value of pixel located at (z,y)
in the predicted soft mask p and the ground truth mask q. The soft mask range
for p is between 0 and 1, while g is a binary mask that can only take on the
values of 0 or 1. Despite this difference between the two masks, there is no issue

Dloss (pa Q) (3)
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Fig. 3. The proposed network has a Coder-Decoder shape with two decoding branches,
one for each of the two tasks. The encoder extracts high-level features from the input
data, which are then used by the two independent decoders to produce their respective
outputs. The network diagram shows the layers and connections involved in the process,
with shared and unique layers for each task in the decoding branches.

since the loss function utilized can handle both discrete and continuous values
in the same expression.

2.4 Adaptive Balancing Tasks: GradNorm

Multitask networks pose a significant challenge in training due to the need to
balance different objectives. This arises from the requirement to converge to a
shared solution that accounts for all tasks, rather than optimizing only one of
them. The difficulty can be addressed by using the weights of the loss function
to balance the tasks.

In multitask networks, loss functions are typically defined as the linear com-
bination of individual task-specific loss functions. In our approach, as discussed
previously, we have defined the loss functions as a weighted sum, see Eq. (2). This
composite loss function involves two weights, o and A, which were initially set to
the same value to indicate equal importance. However, as each task complexity
can vary, one of the tasks (in our case, segmenting the wound) can dominate the
training process, leading to unbalanced results.

To tackle the issue at hand, we propose leveraging the GradNorm algorithm
introduced by Chen et al. [3]. This adaptive method addresses the loss rate imbal-
ance problem by adjusting the weights of the neural network at each training
step. Specifically, the algorithm introduces an additional set of learnable param-
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eters, one for each task, which act as weights in the loss function. These weights
are optimized using the same learning algorithm as the network, incurring only
a negligible overhead. The method requires only one hyperparameter, denoted
as «, which determines the strength of the restoring force that pulls the tasks
back to a common training rate.

One notable advantage of GradNorm is that it ensures a convex combination
of the loss functions of the subtasks, thereby guaranteeing optimal training of
each task. This feature is critical for multi-task learning scenarios where the
tasks have different complexity, thereby also have different loss functions.

3 Experimental Setting

In this section, we explain the experiments we performed on the dataset described
above. To evaluate the impact of learning both tasks, we performed an ablation
study that consist on training the network with three different loss functions (see
Eq.2): L, Lyound and Lggaples to evaluate the influence of each task into the other.
Finally, we evaluated the use of the well-known training technique, GradNorm,
to balance the importance of each task. The aim of the experiments is to assess
the feasibility and effectiveness of extracting shared features to perform the two
tasks or, alternatively, to determine if different learning approaches are more
effective.

3.1 Training Details

We experimented with two main configurations for our training: one utilising
GradNorm and one without. We want to minimise the differences between the
two configurations as much as possible to make a fair comparison between them.

To train our network, on the one hand we utilised 120 epochs. The config-
uration without GradNorm utilized Adam optimizer [7] with a learning rate of
1-1072 and a weight decay of 1-10~%. Our training mini-batch was constructed
using a total of 10 images. On the other hand, the configuration with GradNorm
used the Adam optimizer for both the network and layer weights, with a learning
rate of 1-1072 and 5 - 1073, respectively. We used 2 images per mini-batch due
to the increase in parameters produced by the GradNorm algorithm, and the
limitations of our hardware. We set a to 0.006.

4 Results and Discussion

In this section, we present the results of our experiments, including an analysis
of the mean Intersection over Union (IoU) and standard deviation (STD) for
the wound and staple segmentation tasks across all images, which are gathered
in Table 1. In addition, we provide visual results of the segmentation output for
the image presented in Fig. 2. Finally, we conclude the section with a discussion
of the main findings and their implications.
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Table 1. Experimentation results: In the first column, the experiment performed is
indicated. In the second and third columns, the average loU and standard deviation for
performing wound segmentation and the staples segmentation tasks among all images,
respectively, are given.

Experiment ToU of wound segm. | IoU of staples segm.
Wound 0.670 £ 0.185 -

Staples - 0.459 £ 0.184
Wound and staples 0.714 +0.186 0.474+0.174
GradNorm (Wound and staples) 0.711 £ 0.206 0.488 £0.171

From the results shown in Table 1, we can see that in terms of the IoU mea-
sure, performing one single task, which is indicated in the first and second rows,
provides worse performance than the multitasking approach, which is indicated
in the third and fourth rows. Therefore, we can conclude that the two tasks are
complementary and also that these two tasks share some features, as we obtain
better IoU.

Figure4 illustrates the outcomes obtained using the GradNorm algorithm
and both tasks. Figure4c displays the contrast between the ground truth and
the predicted mask for the staple positions. False positives (FP) are depicted by
the white regions, false negatives (FN) by the black regions, and true positives
(TP) by the gray regions. The proposed methods demonstrate a tendency to
over-segment the objects, leading to an increase in size in comparison to the
ground truth.

These visual results are compatible with the metrics shown in Table 1. The
low IoU values obtained for all methods in the tasks of segmenting the staples
can be attributed to the generation of coarse segmentation. Due to the small
size of the object to be segmented, even minor differences can have a significant
impact on the final result. In Fig.5 we can see a challenging configuration in
our dataset, since most wounds are found to be vertically oriented. Correctly
segmenting this type of images shows us the generalisation capability of our
network. In Fig.6 we can observe how the two tasks are closely related: in the
area where the network has not been able to correctly segment the wound, it
has not been able to find any staples.
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Fig. 4. Example of the results obtained with the proposed model using GradNorm on
the original image depicted in Fig. 2.
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Fig. 5. Example of the results obtained with the proposed model using GradNorm on
an image with an horizontal wound.
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Fig. 6. Example of the results obtained with the proposed model using GradNorm on
a difficult image. In this sample, we can see how the two tasks are closely related, in

the area where the network has not been able to correctly segment the wound, it has
not been able to find any staples.
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5 Conclusions and Future Work

The application of deep learning techniques in medical image processing has
emerged as a potent tool to improve healthcare professionals’ decision-making.
In this study, we undertook a novel investigation into the potential of deep
learning algorithms for wound and staple segmentation in abdominal surgery
images. Specifically, we proposed a multitask deep learning approach to segment
wounds and staples from medical images, and modified the well-known U-Net
network architecture by incorporating a second decoding branch. This modifica-
tion provided a common feature extractor for both tasks while maintaining the
independence of the two segmentations. To accommodate the change in architec-
ture, the loss function of the network was constructed using a linear combination
of the loss of each partial task, whose weights we balanced using the GradNorm
algorithm. To enable future work and for scientific progress, we published in
a GitHub repository the weights obtained after training the models and the
code definition of the two models we used in this research (https://github.com/
miquelmn/multitask-wounds).

Based on the results obtained from our experimental setup, we can conclude
that the multitask approach outperforms the single task approach. This suggests
that the two segmentation tasks share common features, and that they can
mutually benefit from each other.

As future work, we have identified two key areas for improvement. Firstly,
we need to address the size diversity within our dataset, which presents objects
of varying sizes. Convolutional networks, by definition, are not size invariant,
which can lead to suboptimal results as observed in our provided images. We
plan to incorporate to the model a pyramid of features maps, used extensively
in the literature, to overcome this challenge. Secondly, our dataset includes a
third task, which involves classifying wounds into two categories: infected or
non-infected. In our future work, we aim to integrate this additional task into
our neural network to enhance its overall performance.
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Abstract. Image noise can be viewed as unwanted disturbances in a
digital image that should be removed or reduced before further process-
ing and analysis. Impulsive noise, also known as impulse noise, is a very
disruptive type of noise, characterized by abrupt variations in bright-
ness in a subset of the image pixels. Impulsive noise commonly occurs
during image acquisition and transmission. To mitigate its effects, vari-
ous impulsive noise reduction methods have been proposed by the image
processing community. In contrast to classical filters such as the median
filter, most current impulsive noise reduction techniques implement a
two-step approach that consists of a noise detection phase to identify
noisy pixels and a filtering phase to reduce the amount of noise in the
presumably corrupted pixels.

The approach presented in this paper is also along this line. To be
more precise, we draw on the principles of two state-of-the-art impul-
sive noise reduction methods, namely the adaptive fuzzy transform based
image filter (ATIF) and the improved fuzzy mathematical morphology
open-close filter (i-FMMOCS), in order to propose a new method for
general impulsive noise reduction.

Keywords: Image noise - Impulsive noise + Fuzzy image processing -
Noise detector + Fuzzy image filter

1 Introduction

There are a number of different ways in which fuzzy logic can be applied to
digital image processing. One possible option is to represent a grayscale digital
image as a function from a universe X to (a finite subset of) the unit interval,
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identifying these images with fuzzy sets. This way, one may use operators of
fuzzy logic such as (discrete) t-norms and implications as a tool for processing
grayscale images. Another option is to use fuzzy sets as a model for coping with
vagueness, imprecision, ambiguity, and uncertainty that frequently arise in image
processing, analysis, and understanding. In both scenarios, one may additionally
resort to fuzzy logic in order to extract valuable information regarding features
of an image [1]. Fuzzy logic may for instance be used to determine if a given pixel
should be considered corrupted or not. To this end, one often takes information
regarding the pixels with neighboring locations into account. This strategy was
in particular applied in the impulse noise detection phases of Schulte et al.’s
fuzzy impulse noise detection and reduction method (FIDRM) [2], Schuster’s
and Sussner’s adaptive image filter based on the fuzzy transform (ATIF) [3],
and Yueksel’s and Bastuerk’s type-2 fuzzy logic filtering to reduce noise in color
images [4]. Many other impulse noise reduction methods such as weighted couple
sparse representation of Chen et al. [5], unified impulse noise removal using a
reference sequence-to-sequence similarity detector [6], and the adaptive window-
based filter for high-density impulse noise suppression [7] also execute a noise
detection phase before proceeding with the filtering phase. This comment applies
in particular to the improved fuzzy mathematical morphology open-close filter
(i-FMMOCS) of Gonzalez-Hidalgo et al. [8] that was specifically designed to first
detect and then remove salt-and-pepper noise in grayscale images.

Interestingly, the ATIF and i-FMMOCS methods share a common framework
in image algebra [9]. To be more precise, their filtering phases can be described in
terms of (compositions of direct and inverse) linear and lattice fuzzy transforms
[10,11]. The latter can be viewed as special cases of image-template products
in the mathematical theory of image algebra [12]. A number of comparative
experimental results in applications of the ATTF and i-FMMOCS methods [3,§]
to salt-and-pepper noise reduction indicate a superior performance of the ATIF
for low and medium and the i-FMMOCS for high noise levels [9].

Unfortunately, similar comparative experiments cannot be performed for the
purpose of impulse noise reduction because, due to its noise detection phase that
is only concerned with salt-and-pepper noise, the current version of i-FMMOCS
filter is not suitable for general impulse noise. However, its filtering phase is, in
principle, applicable to any type of impulsive noise and should entail excellent
results. Therefore, we propose to combine the noise detector phase of the ATIF,
which is essentially identical to the one of Schulte et al.’s fuzzy impulse noise
detection and reduction method (FIDRM) [2], with the filtering phase of the i-
FMMOCS so as to obtain a new filter, called fuzzy impulse noise detection based
open-close filter (FIDOC). Our paper is organized as follows:

In Sects.2 and 3, we briefly review the ATIF of the i-FMMOCS models
including the necessary mathematical backgrounds. In Sect. 4, we introduce our
proposed combination of the noise detector phase of the ATIF with the filtering
phase of the i-FMMOCS. The next section presents some simulations in which we
compare the performance of the ATIF and the combination of the ATTF /FIDRM
noise detector and the i-FMMOCS filtering stage, using both flat and non-flat
structuring elements. We finish the paper with some concluding remarks.
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2 A Brief Review of the Adaptive Image Filter Based
on the Fuzzy Transform (ATIF)

The focus of this paper is on impulsive noise reduction for grayscale images.
Recall that a grayscale digital image is given by a function G from an M x N
array X to a finite value set such as {0,1,...,255}. For the purposes of this
paper, the values of G are normalized so as to reside in the interval [0, 1]. This
way, G can be identified with a fuzzy set over the universe X. A pixel is given
by its location (4,5) and its value G(i,j), where i and j range respectively from
1 to M and 1 to N. Let us recall the well-known random-valued impulse noise
(RVIN) model. Using the symbols G(i, j) and O(i, j) to denote, respectively, the
brightness values of the noisy and the original gray-scale images, we have

(1)

(i, ) O(i,7) with probability 1 — p,
/Z" = . . . e
J n(i, ) with probability p,

where (i, j) is an uniformly generated brightness value and p € [0, 1] a proba-
bility of occurrence of impulsive noise. Figure 1 depicts a grayscale image that is
corrupted by 50% impulse noise. As mentioned above, the ATIF model consists
of two stages, namely a noise detection followed by a filtering stage.

5

Fig. 1. Left: Original image; Center: Corrupted image containing 50% impulse noise;
Right: Locations of detected noisy pixels in white.

2.1 The Noise Detection Stage

Given any pixel ((i,7),G(3,J)), where (¢,5) € {1,..., M} x {1,..., N}, the goal
of the noise detection stage is to decide whether this pixel should be considered
corrupted or not. To this end, the ATIF noise detector takes eight directional
gradients into account. The eight directions in question are determined by the
Moore neighborhood of the pixel location (i, 7), visualized in Fig. 1. It goes almost
without saying that the acronyms NW, N,..., SFE stand for northwest, north,
..., and southeast, respectively.
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Fig. 2. Moore neighborhood of the pixel location (4, 7).

According to Schulte et al. [2], the directional gradient value at (i,7) in
direction D € {NW, N,...,SE}, denoted VpG(i,j), is given by a difference
G(i,j) —G(i+k,j+1) for some k,l € {—1,0,1}. For example, (k,[) equals (0,1)
for D = FE as the reader can easily check by taking a brief glance at Fig. 2.

Note that a high absolute value of VpG(i,j) may indicate either a cor-
ruption by impulsive noise or an edge. To distinguish between corrupted and
edge pixels, the ATIF noise detector also considers the so called related gra-
dient values of VpG(3,j), denoted V,G(4,j) and V,G(i,7), for each loca-
tion (i,7). If VpG(i,j) = GG + k,j + 1) — G(4,j) for k,l € {—1,0,1}, then
VG, 7) = VpG(i+ k,j — 1) and VL,G(i,j) = VpG(i — k,j +1). Based on
this information, the ATIF noise detector evaluates the possibility that the pixel
at location (4, 7) is an “impulse noise pixel in direction D” (cf. Schulte et al.) in
terms of the degree of truth of a fuzzy proposition IM Pp. The latter involves
fuzzy sets “big positive” (BIG _POS), “big negative” (BIG_NEG), SMALL, and
LARGE (for simplicity, we write A(z) instead of 4 (z) for any A € F(X), where
F(X) stands for the class of fuzzy sets over the universe X).

Considering an arbitrary but fixed location (7,j) and modeling the logical
connectives AND and OR respectively using the minimum t-norm and maximum
t-conorm, denoted A and V, respectively, IM Pp (i, j) is given by

[LARGE(|Vp|) A SMALL(|V’|] V [LARGE(]V p|) A SMALL(|V’]]
V[BIG_POS(|Vp|) ABIG_NEG(|V|) A BIG NEG(|V’]]
V[BIG NEG(|Vp|) ABIG_POS(|V)|) ABIG_POS(|V]].

The final decision depends on the outcome of the following decision rule: If
most of the eight values IM Pp(i,j), where D € {NW,N,...,SE}, are large,
i.e.,, > 0, then the pixel at (4, 7) is flagged as noisy.

Apart from the parameter § € [0,1], the ATIF noise detector depends on
the specification of a’,a € [—1,0] and b,V/,¢,¢’ € [0,1] used to design trape-
zoidal fuzzy sets BIG_NEG, BIG_POS, SMALL, and LARGE. In this paper,
we adopted the same parameters as in [3]. On the right-hand side of Fig. 1, the
locations of the detected noisy pixels are depicted in white.
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2.2 The Filtering Stage

The filtering stage of the ATIF relies heavily on the linear fuzzy transform (FT)
introduced by Perfilieva [10]. Like classical transforms such as the Fourier and
wavelet transforms [12], the FT consists of a direct and an inverse transform,
denoted respectively F and f in this paper.

Given a corrupted grayscale image G, the noise detection stage results in a
set of locations of detected noisy pixels that we denote using the symbol D. Then
the ATIF executes the following steps in its filtering stage:

1. Application of a so called variably sized median filter, denoted u, to every

(i,7) € D, that is:

(a) Compute the median of the values in the 3 x 3 window centered at (3, j).
The symbol p3(7,j) stands for the resulting median value.

(b) If ps(,5) = G(p',q¢')) for some (p',¢') in the 3 x 3 window centered at
(i,7) such that (p/,¢") & D, then p(G)(7,7) = ps(4, 5). Otherwise, increase
the window size until a median value is found which equals the value of
a presumably noiseless pixel in the current window.

2. Application of a coarse-grained direct fuzzy transform F [10] to g given by

c o _ [ G(i,g), i (i,5) €D
9(i,j) = {#(G)(‘;j), othjerwise. ’ @

@

Application of the inverse fuzzy transform f to F(g);
4. Substitution of the pixels marked as noisy with the ones produced by the
fuzzy transform, yielding an image R such that

[ GG €D
R(Z’]) - {(f o _'F)(g)(z,]), otherwise. ’ (3)

Generally speaking, the ATIF method was shown to produce excellent results
in terms of the peak-signal-to-noise ratio (PSNR) and the structural similarity
index in comparison with other competitive impulse noise reduction methods
[3,5].

3 The Filtering Stage of the I-FMMOCS

Let us briefly review the improved fuzzy mathematical morphology open-close
filter (i-FMMOCS) [8]. This filter employs operators of fuzzy mathematical mor-
phology [13,14] that are defined in terms of fuzzy connectives such as t-norms
and implications [15,16]. In the following, T' denotes a t-norm, and I a fuzzy
implication.

The improved fuzzy mathematical morphology open-close filter (i-FMMOCS)
is based on the so called “uncorrupted” fuzzy dilation and erosion operators.
Consider an arbitrary image G : X — [0,1]. Let D C X be the set of locations
of pixels that, according to some noise detection method, are deemed to be
corrupted. Thus, U = X\ D consists of the locations of pixels that are considered
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uncorrupted. Let S be a fuzzy structuring element (SE) which is nothing else
than an image from a subset Xg of X to [0,1]. If Xg is an N x N array centered
at (0,0), then S is said to be of size N x N.

Definition 1 ([8]). For everyy = (iy, jy) € X, the values of the uncorrupted
fuzzy dilation DX.(G,S) and the uncorrupted fuzzy erosion Ej(G,S) of G by S
at'y are respectively given by

D7(G,S)(y) = sup T(S(x—y),G(x)),

xEUy
Fi(G.8)(y) = nf T(S(x—),66x) W

where Uy =UN{x e X |x -y € Xg}.

Definition 1 gives rise to the uncorrupted fuzzy opening and closing of a
grayscale image G' by an SE S whose reflection S : —Xg — [0,1] is defined by
S(x) = S(—x). Here, —Xg = {(—i,—J)|(i,7) € Xs}.

Definition 2 ([8]). For everyy = (iy, jy) € X, the values of the uncorrupted
fuzzy closing C7. ;(G, S) and the uncorrupted fuzzy opening O% ;(G,S) of the
image G by the SE S at'y are given by

Cr.1(G,8)(y) = Er(D7(G, S), 9)(y), 5)
;",I(G’ S)(y) = DT(E}{(GWS’)’S)(Y)

Let us list the steps of the filtering stage of the improved fuzzy mathematical
morphology filter for each pixel (i,7) of the corrupted image G. Given set D
pixel locations that correspond to corrupted pixels according to a noise detection
method, the following steps are executed:

1. Determine the minimum value N € {3,5,...} for which there exists an ele-
ment of = X \ D in an N x N window centered at position (3, j).

2. Following Definition 2, compute the arithmetic mean of the uncorrupted fuzzy
closing and the uncorrupted fuzzy opening using a structuring element of size
N x N, i.e., compute

C1.1(G,8)(i,4) + 01 (G, 5) (i 5)
2 )

Fl(i’j) =

3. Return the filtered pixel F(¢,7) given by

Fii. i) = G(i,j), if (i,5) €U,
VTN F G ), i () € D.



226 P. Sussner and M. Gonzalez-Hidalgo

4 Reduction of General Impulsive Noise Using a New
Combination of Noise Detection and Impulse Noise
Filtering

Just like general impulsive noise, salt-and-pepper noise is also characterized by
Eq. 1. However, 7(i, j) is not uniformly distributed in the value set but equal to
its minimum or maximum value. Thus, for grayscale images whose values are
normalized in the range [0, 1], we have n(7,5) € {0,1}.

Both the ATIF and the i-FMMOCS are suited to remove salt-and-pepper
noise from images while preserving image details. Figure 3 taken from [9] presents
a visual comparison of the results. A visual inspection shows that the i-FMMOCS
yields a better result than the ATTF in Fig. 3. More generally, Sussner and Schus-
ter observed in a number of simulations that the ATIF outperformed the i-
FMMOCS in applications to images corrupted by 30 and 50% salt-and-pepper
noise. The contrary occurred for images corrupted by 80% salt-and-pepper noise.

Fig. 3. From left to right, top to bottom, detailed views of the original 'boats’ image, a
corrupted version containing 70% salt and pepper noise, and reconstructions generated
by the AFT-IF, and by the i-FMMOCS.

Note that the i-FMMOCS was designed for salt-and-pepper noise reduction
and is unsuited for removing general impulsive noise but this fact is only due
to its noise detection phase. Therefore, our proposal for high-density impulsive
noise reduction consists of the following two phases:

1. ATIF/FIDRM noise detection;
2. i-FMMOCS filtering.
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As mentioned before, we refer to this combined method as the fuzzy impulse
noise detection based open-close filter (FIDOC). Of course, it is questionable if
this combination outperforms - as expected - the ATIF when it comes to high-
density impulsive noise reduction. The following section presents some experi-
mental results.

Table 1. PSNR, SSIM and NMSE for the three filters considered for the ‘peppers’
image at different noise densities.

Noise | PSNR SSIM NMSE
FIDOC-fl | FIDOC-nfl | ATIF FIDOC-fl | FIDOC-nfl | ATIF FIDOC-fl | FIDOC-nfl | ATIF

10 33.8395 33.8402 834.5464 | 0.9212 0.9173 0.9251 | 0.0095 0.0095 0.0181
20 32.0821 32.0146 31.8850 | 0.9057 0.9052 0.9087 | 0.0179 0.0180 0.0288
30 31.2367 31.3100 81.83128 | 0.8922 0.8920 0.8950 | 0.0205 0.0192 0.0299
40 30.4018 80.4213 30.3259 | 0.8768 0.8766 0.8741 | 0.0197 0.0197 0.0312
50 29.4635 29.5033 29.3979 | 0.8552 0.8554 0.8418 | 0.0181 0.0180 0.0292
60 28.1919 28.2233 28.0495 | 0.8264 0.8264 0.7984 | 0.0191 0.0197 0.0331
70 26.3920 26.4668 26.1541 | 0.7704 0.7719 0.72183 | 0.0257 0.0250 0.0381
80 24.4972 24.6157 24.4490 | 0.6932 0.6973 0.6458 | 0.0333 0.0829 0.0476
90 22.1173 22.2556 22.4982 | 0.5765 0.5887 0.5516 | 0.0497 0.0494 0.0631

5 Experimental Results

In this section, we evaluate the performances of the proposed FIDOC method and
the ATIF in the task of filtering images that are corrupted by impulsive noise.
To this end, we performed simulations using four well know images, namely
‘Barbara’, ‘boats’, ‘Lena’, and ‘peppers’, with the probability of impulsive noise
varying from 10% to 90% with increments of 10%. In addition to a visual com-
parison of the filtered images obtained by the algorithms, the restoration perfor-
mances are quantitatively measured in terms of three widely used performance
measures, namely peak signal-to-noise ratio (PSNR), structural similarity index
(SSIM), and normalized mean square error (NMSE).

The definition of the i-FMMOCS filter depends on the following parameters:
A t-norm and its residual implication, as well as the structuring elements for
Step 2 of the i-FMMOCS filter. In this work, we employed the minimum t-norm
Twv and its residual implication Igp, i.e., the same operators that were previ-
ously used in [8]. With regards to the structuring elements, we only considered
isotropic shapes. The sizes of the structuring elements are determined by Step 2
of the algorithm anyway. Motivated by the work of Gonzalez-Hidalgo et al., we
took flat structuring elements into account but in this paper we also conducted
experiments using normalized isotropic structuring elements with a Gaussian
decay from the origin, and a value of 1 at the center. In previous simulations
[8], the i-FMMOCS filter exhibited a better performance when used in conjunc-
tion with flat structuring elements. The FIDOC using flat and non-flat SEs are
respectively referred to using the acronyms “FIDOC-fI” and “FIDOC-nfl”.
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Fig.4. SSIM and NMSE values produced by the ATIF, the FIDOC-nfl, and the
FIDOC-l in applications to images that contain 10 to 90% impulsive noise.

Table 1 presents the PSNR, SSIM, and NMSE values resulting from appli-
cations of the FIDOC-fl, FIDOC-nfl, and ATTF methods to the ‘peppers’ image
corrupted by impulsive noise with densities ranging from 10 to 90%. Generally
speaking, the FIDOC-nfl method slightly outperformed both the FIDOC-fl and
the ATIF. This fact is especially noticeable for noise densities over 50%. Similar
observations can be made with respect to the other three images under consid-
eration. Figure4 displays the evolution of the SSIM and NMSE values obtained
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(b) Image with 30% (c) ATIF restored (d) FIDOC-nfl re-
ipulsive noise stored
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Fig. 5. Top row from left to right: Detailed views of the original ‘peppers’ image, a
corrupted version containing 30% impulsive noise, and the ATIF and FIDOC-nfl filtered
images; Bottom row from left to right: A corrupted version containing 80% impulsive
noise, and the ATIF and FIDOC-nfl filtered images.
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(a) Original image (b) Image with 30% (c) ATIF restored (d) FIDOC-nfl re-
impulse noise stqred
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impulse noise stored

Fig.6. Top row from left to right: Detailed views of the original ‘boats’ image, a
corrupted version containing 30% impulsive noise, and the ATIF and FIDOC-nfl filtered
images; Bottom row from left to right: A corrupted version containing 70% impulsive
noise, and the ATIF and FIDOC-nfl filtered images.
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for the restored images of the corrupted versions of ‘Barbara’, ‘boats’, ‘Lena’,
and ‘peppers’. Since the PSNR curves for the three methods under consideration
are almost indistinguishable, we decided to omit them.

Figures5 and 6 show the restoration results for corrupted versions of the
‘peppers’ and ‘boats’ images, respectively. A visual inspection reveals that the
FIDOC-nfl method suppresses most of the impulsive noise while preserving
details and edges. The benefits of the FIDOC-nfl in comparison to the ATIF
are especially noticeable for the relatively high noise densities of 70 and 80%.

6 Concluding Remarks

It is of utmost importance to drastically reduce the amount of impulsive noise
while preserving image details before executing higher level image processing,
image analysis, or computer vision tasks. Therefore, impulse noise removal con-
tinues to be a very active area of research as indicated by the high number of
recent publications [17-19] and websites on this topic.

In this paper, we introduced the FIDOC method, a new approach for remov-
ing high-density impulsive noise in grayscale images. Our method combines the
ATIF /FIDRM noise detection stage with the i-FMMOCS filtering stage. The
motivation for this approach lies in the fact that — unlike the i-FMMOCS fil-
tering stage — the noise detector of the i-FMMOCS, that was designed as a
salt-and-pepper image noise reduction method, is not meant to be applied to
images corrupted by general impulsive noise.

Recall that the ATIF and the i-FMMOCS have exhibited excellent perfor-
mances [8,11] in comparison to a number of highly competitive filtering methods
in the tasks of random impulse and salt-and-pepper noise reduction, respectively.
The preliminary experimental results presented in this paper (due to limita-
tions in the number of pages, additional experiments including comparisons with
other state-of-the-art algorithms have to be postponed) indicate that the new
algorithm slightly outperforms its predecessors — both visually and in terms of
PSNR, SSIM and NMSE values — in applications to images corrupted by high
density impulsive noise, meaning that we have a very promising filtering method
at our disposal. Remarkably, the non-flat version of the FIDOC method achieved
the best performance in our simulations which may be due to the fact that the
values of the pixels corrupted by impulsive noise are uniformly distributed in
[0, 1]. However, further research is necessary in order to confirm this hypothesis.
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Abstract. Large pre-trained models like BERT and RoBERTa have
gained massive popularity as they have surpassed previous state-of-the-
art models in various Natural Language Processing (NLP) tasks. Never-
theless, interpreting their behavior is still an ongoing challenge as these
models are composed of millions of parameters. The introduction of the
Fuzzy Fingerprint (FFP) framework provided a straightforward classi-
fication technique able to deliver result interpretations, however, this
method was outperformed by these large pre-trained models. In this
work, we introduce a novel method that combines the simplicity of the
FFPs with the ability to detect complex patterns of large pre-trained
models, in order to build a more interpretable classification framework.
Furthermore, we show that it is feasible to obtain unique FFPs for each
label that enable the examination of incorrect classifications. We evalu-
ate our new method on four text classification benchmark datasets and
show that it is possible to gain interpretability without any noticeable
loss in performance.

Keywords: Fuzzy Fingerprints + Pre-Trained Language Models - Text
Classification

1 Introduction

The emergence of large pre-trained language models has contributed to major
advances in various NLP tasks. Particularly, in text classification tasks such
as sentiment analysis, topic classification, and emotion classification, these new
models have achieved state-of-the-art results by fine-tuning with a few samples
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from the target dataset [10,12,13]. However, interpreting the prediction out-
puts is notoriously difficult as they contain millions of parameters with complex
internal patterns.

Homem and Carvalho (2011) [2,3] introduced the Fuzzy Fingerprint (FFP)
framework® for identifying users based on a minimal set of features that describe
their behaviors. These features are obtained from the idiosyncratic habits of the
users, for instance, the most frequent words utilized, the frequency someone calls
their contacts, the most accessed web pages, etc. Furthermore, the frequency of
the gathered features can be measured in order to construct individual finger-
prints, which can then be exploited for identifying and distinguishing between a
set of possible candidate users.

The principle of FFPs has been adapted to the classification setting [2,3,7].
The authors obtained the FFP of the test sample and compared it to the FFPs
from each label of the dataset using fuzzy-inspired similarity functions. Although
achieving competing results against other classification methods, especially when
the number of classes increased considerably, this method was later outperformed
by large pre-trained language models such as BERT [4] and RoBERTa [6]. Nev-
ertheless, FFPs have the advantage of being simpler and more interpretable than
these models, as it is possible to diagnose the classification errors by comparing
the FFP obtained against the FFPs from the classes.

In this paper, we propose to merge large deep learning models with the Fuzzy
Fingerprint framework and combine the robustness of pre-trained models and
the interpretability of FFPs. Moreover, we introduce a method that exploits
the hidden representations learned from large pre-trained models such as BERT
or RoBERTa to build compact fingerprints that uniquely identify each label
from the datasets. In the first stage, we follow the common procedure and fine-
tune a large pre-trained model in the target datasets; after that, we obtain the
fingerprint for each class using the samples from the training data; finally, to
classify, we compare the fingerprint from the test sample with the fingerprint
of each label using a fuzzy similarity function. We evaluate our models in the
sentiment analysis, topic classification, and ontology classification tasks, where
the results obtained demonstrate a promising research direction of the proposed
framework.

2 Background and Related Work

2.1 Pre-trained Models

Since the introduction of the Transformers framework [11], a deep neural net-
work encoder-decoder architecture, most of the previous state-of-the-art models
were surpassed in various NLP tasks. A very popular large pre-trained model
is BERT [4], a multi-layer bidirectional Transformer encoder trained to per-
form language modeling and next-sentence prediction. This model was trained
on English Wikipedia and the BooksCorpus during a computationally expensive

! FFP should not be confused with the identically named work by Stein et al. [9].
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process, where it learns deep contextual embeddings, i.e., vectors representing
the semantics of each word or sequence of words. In a lesser expensive operation,
BERT can be fine-tuned to fulfill other tasks using a much smaller data size.
Currently, most NLP works resort to these pre-trained language models [1,5,8].
For instance, to fine-tune BERT for a downstream text classification task, a clas-
sification module, usually a fully connected Neural Network (NN), is attached to
the last layer of the language model. Due to the bidirectional setting of BERT, a
typical approach is to add a special classification token ([CLS]) at the beginning
of the input sequence and use the final hidden state of the [CLS] token as the
contextual representation of the whole input. This vector is then passed through
the classification module to output a probability for each label in the dataset.

RoBERTa [6], a successor to BERT, contains the same architecture as BERT
but leverages a different pre-training scheme. Furthermore, it is pre-trained with
more data and for a longer period of time than BERT. It also uses larger mini-
batches and a larger learning rate and discards BERT’s task of next-sentence
prediction. RoOBERTa has outperformed BERT in various tasks using the same
amount of data.

In this work, we use fine-tuned BERT and RoBERTa as the basis for our
classification model: sentences are fed as inputs to the language model and we
use the final hidden state of the [CLS] classification token to create the FFPs.

2.2 Fuzzy Fingerprints

Fingerprint identification is a well-known and widely documented technique in
forensic sciences. In computer science, a fingerprint is a procedure that maps an
arbitrarily large data item (such as a computer file, or author set of texts) to
a much more compact information block (a fingerprint) that uniquely identifies
the original data for all practical purposes, just as human fingerprints uniquely
identify people for practical purposes.

In order to serve classification, a fingerprint must be able to capture the
identity of a given class. In other words, the probability of a collision, i.e., two
classes yielding the same fingerprint, must be small. Typically, FFPs are built
based on feature frequency. For example, for text classification purposes, we
consider a set of texts associated with a given class to build the class fingerprint
and can use the frequency of each word in each text to build the fingerprint for
that class.

The set of Fuzzy Fingerprints of all classes is known as the fingerprint library.
Given a fingerprint library and an instance to be classified, for example, a text,
we obtain the text fingerprint using a process similar to the one used to create
the fingerprint of each class, and then find the class that has the most similar
fingerprint.

Fuzzy Fingerprint Creation and Fuzzy Fingerprint Libraries. The train-
ing set is divided by the different classes and is processed to compute the top-k
feature list for each class. Consider F; as the set of events of class j (simplistic
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example: the set of all words for all texts belonging to class j). The result consists
of a list of k pairs {v;,n;}, 1 < i <k, where v; is the i-th most frequent feature
and n; the corresponding count (simplistic example: an ordered k-sized list con-
taining the most frequent distinct words). The next step consists in fuzzifying
each top-k list in order to obtain the class fingerprint: a membership value is
assigned to each feature in the set based only on the order in the list (the rank).
For instance, when the features are the word frequencies, the rank is considered
instead of the frequency due to empirical experiments that show that the order
of the frequency seems more relevant than the actual frequency value [2]. The
more frequent features will have a higher membership value.

The fingerprint (@), which is based on the top-k list, consists of a size-k fuzzy
vector where each position ¢ contains an element v; and a membership value p;
representing the fuzzified value of v;’s rank (the membership of the rank). A class
j will be represented by its fingerprint ¢; = $(Fj;). Formally, the fingerprint
@j = {(vjivuji) | 1 = ].kj} has length kj, with Sj = {'Uji ‘ 1= ].k]}
representing the set of v’s in @;. The set of all class fingerprints will constitute
the fingerprint library.

Fuzzy Fingerprint Detection. In order to find the class of an unknown
instance, for example, a text T, we start by computing the size-k fingerprint
of T', @r. Then we compare the fingerprint of 7" with the fingerprints @; of all
classes present in the fingerprint library. The unknown text is classified as j if it
has the most similar fingerprint to ;. The fingerprint comparison, sim(@7, ®;),
is calculated using
min b D
T e (1)

UESTUSJ'

where p,(®;) is the membership value associated with the rank of element v in
fingerprint . This function is based on the fuzzy AND. We use the minimum
or Godel t-norm in accordance with [2], but other t-norms could also be used.

3 Fuzzy Fingerprinting Large Pre-trained Models

3.1 Fine-Tuning BERT and RoBERTa

In the first stage, we need to obtain a model capable of outputting represen-
tations for the target dataset. For that, we adopt the common procedure for
fine-tuning a large pre-trained encoder (M) such as BERT or RoBERTa in the
text classification datasets.

Consider one sentence x = { [CLS], wy, ..., wy } composed of n words and the
[CLS] token. First, we utilize the encoder MF to obtain a hidden representation
h with size N from the input sentence x. Then, we include a softmax classifier on
top of MP¥ to obtain the probability distribution over the set of possible classes.
Formally, we obtain the probability of label y with:

h=ME(z), p(y|lz) = softmax(Wh), (2)
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where W is the learnable parameter matrix from the classification layer. We
fine-tune M¥ and learn W parameters by maximizing the log probability of the
correct label.

3.2 Fuzzy Fingerprint Creation from Pre-trained Models

Since the output from the model (the final hidden state of the [CLS] classification
token) is a real-valued vector with size N, where each element’s value does not
have a known meaning, it is simply not possible to create an FFP based on
feature frequencies (as described in Sect. 2.2). In order to address this issue, we
propose to use the intensity of the activation of each element from M¥F output
as a proxy for feature frequency.

The process to create a class fingerprint can be therefore succinctly described
as “ranking the activation of the M¥ outputs through the training set (of that
class)”. After fine-tuning M for the task and considering an output size of N
from M¥ | the procedure is described as follows:

1. The training data is used to create Fuzzy Fingerprints for each class;

2. The fingerprint for each class begins as a N-sized vector of pairs, where each
pair in the vector is composed of an index (corresponding to a hidden unit
from M¥ out of the possible N units) and a value initialized to 0;

3. The fine-tuned M¥ is fed with all the training examples of a given class (one
by one);

4. For each example, the hidden vector h from Eq. 2 is added to the fingerprint
of the corresponding class. Hence, after all the training examples (of a given
class) are fed into M¥, the fingerprint of the class consists of a vector where
each position contains an index of a hidden unit and the accumulated value
of the MPF for that hidden unit;

5. Order the fingerprint vector by the accumulated value (in descending order);

6. Remove the element containing the accumulated values from the pairs (only
the rank matters). As a result, we have, for each class, a vector of dimension
N, containing the indexes of the most activated M¥ hidden outputs for that
class, i.e., the MF outputs are ranked by activation on the training set;

7. The final FFP is obtained by fuzzifying the top-k sized vector according to a
function inspired by the Pareto Rule, where roughly 80% of the membership
value is assigned to the first 20% positions of the ranking:

1— %8 < 0.2k
Hi = 0.2%i . ’ (3)
— 555 T 0.25, 02k <i<k

in which ¢ is the position of an element in the sorted vector and k is the
fingerprint size;

8. Instead of the whole N outputs, the fingerprint only considers the top-k MF
outputs for classification purposes, i.e., only the top-k elements will have a
membership value higher than zero, and exactly zero for the remaining. For
simplicity, we refer to this representation as a fingerprint of size k.



In sum, the FFP of a pre-trained language model is a Fuzzy Set in the
discrete universe of the N outputs from M¥, where each one has associated a
membership value, and only the top-k elements have a membership greater than
zero. For practical purposes, the set is ordered by the membership function of

Fuzzy Fingerprinting Large Pre-trained Models

its elements (in descending order).

3.3 Classification Using Fuzzy Fingerprints

After obtaining the fingerprints for all classes (the Fingerprint Library), the
classification of a sample can be performed. Given an instance I to be classified:

1. Pass I thro

2. Create the fingerprint of I using the same procedure used to create the finger-
print of a class (i.e. rank the activation of the output vector, select the top-k
elements and fuzzify the resulting vector (calculate the membership values
with Eq. 3);

3. Check the similarity of the fingerprint of I against the fingerprint of each
class using the Fuzzy similarity function from Eq. 1, and select the class with

the highest

In Fig. 1, we provide an illustration of the complete structure of the frame-
work. For simplification purposes, we omit the membership values and only

ugh MFP;

similarity.

present the hidden units ranked by activation.

1

Fuzzify 348 10 - 231

(ordered by acuvauon)

Pre-Trained Encoder

L

Predicted: Tech

T

Fuzzy Similarity Function

23 145 348
444 348 10
512 4;4 679

Sports Business Tech
* Fingerprint Library

Fig. 1. Illustration of the classification using FFPs.



238 R. Ribeiro et al.

4 Experiments

4.1 Datasets
We evaluate our models on four text classification benchmark datasets [14]:

— AG News: a topic classification dataset composed of a collection of news
articles that have been gathered from more than 2000 news sources by Come-
ToMyHead in more than 1year of activity. ComeToMyHead is an academic
news search engine that has been running since July 2004.

— DBPedia: an ontology classification dataset composed of 14 non-overlapping
classes from DBpedia 2014, a project that focuses on the extraction of struc-
tured content from the Wikipedia project.

— Yelp-2 and Yelp-5: two sentiment classification datasets extracted from the
Yelp platform, from the Yelp Dataset Challenge 2015 data. The Yelp-5 con-
tains five sentiment labels ranging from 1 (Very Bad) to 5 (Very Good) while
Yelp-2 considers only two classes (positive or negative).

Table 1. Statistics of the text classification datasets.

AG News | DBPedia | Yelp-2 Yelp-5
Classification Task | Topic Ontology | Sentiment | Sentiment
Num. Classes 4 14 2 5
Train Samples 120k 560k 560k 650k
Test Samples 7.6k 70k 38k 50k

In Tablel, we provide several statistics for the classification datasets
described. All datasets are balanced for each class, thus we select accuracy as
the evaluation metric of the models.

4.2 Experimental Details

We train BERT and RoBERTa models on 1 NVIDIA GeForce RTX 3080 using
a batch size of 16 for both bert-base-uncased (12 layers, 768 of hidden size, 12
attention heads, 110M parameters) and roberta-base (12 layers, 768 of hidden
size, 12 attention heads, 125M parameters). Models are trained to minimize the
cross entropy usi