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Abstract A hypersurface of a Riemannian manifold is called homogeneous if it 
is an orbit of an isometric action on the ambient manifold. Homogeneous hyper-
surfaces have remarkable geometric properties, providing the simplest examples 
of hypersurfaces with constant mean curvature. Thus, they are crucial for the 
investigation of more general types of submanifolds in ambient spaces with large 
isometry groups. 

In this survey article, we present an introduction to some of the basic geometric, 
topological, and algebraic features of homogeneous hypersurfaces, describing what 
is known about their classification problem in symmetric spaces and explaining the 
main tools needed for their study in the context of symmetric spaces of noncompact 
type. 
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1 Introduction 

Minimal, and more generally, constant mean curvature hypersurfaces play a fun-
damental role in Riemannian submanifold geometry. As solutions to variational 
problems involving areas and volumes, they arise naturally in various contexts 
such as physics, biology, or optimal design. Their mathematical investigation has 
a long history and constitutes one of the most important trends in current research 
in geometric analysis. Some fundamental techniques in their study, such as the use 
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of barriers, the maximum principle, or the bifurcation results, are based on the good 
knowledge that we have of certain examples of hypersurfaces with constant mean 
curvature and with a high degree of symmetry (hyperplanes, spheres, cylinders, 
catenoids, horospheres, etc.). Thus, one of the first natural steps in the investigation 
of submanifolds of a given Riemannian space is to determine some classes of 
constant mean curvature hypersurfaces that are invariant under a large group of 
isometries of the ambient space. When such group is large enough to act transitively 
on the hypersurface, the latter is called a homogeneous hypersurface, and the 
isometric action on the ambient space is said to be of cohomogeneity one. This is the 
case of hyperplanes, spheres, and cylinders in the Euclidean space or of horospheres 
in the hyperbolic space, among other examples. 

By definition, the investigation of homogeneous hypersurfaces only makes sense 
in spaces with a large isometry group. Therefore, homogeneous spaces constitute 
the natural context for this investigation. Indeed, apart from spaces of constant 
curvature, the theory of surfaces with constant mean curvature in homogeneous 3-
manifolds has undergone important advances (see, for example, [71]). 

For arbitrary dimensions, a particularly elegant class of homogeneous manifolds 
is that of symmetric spaces. Locally, symmetric spaces are characterized by the 
property that curvature is invariant under parallel transport. Globally, the defining 
property of symmetric spaces is the existence of isometric central inversions around 
any point, which readily imply the existence of a transitive group of isometries. 
Symmetric spaces were classified by Élie Cartan [21] into several infinite families, 
some exceptional examples, and their products. Of course, this includes the space 
forms but also the isotropic (or two-point homogeneous) Riemannian manifolds, 
various (compact and noncompact) Grassmannians, compact Lie groups with bi-
invariant metrics, and different moduli spaces of algebraic structures: real structures 
of a complex vector space, complex structures on a real vector space, positive 
definite symmetric matrices, etc. Symmetric spaces constitute a distinguished class 
in Berger’s classification of holonomy groups [17] but also an appropriate setting 
for several problems of geometric analysis [54]. Their study also arises naturally in 
other areas such as number theory and algebraic geometry [58, 86, 101]. 

In view of the crucial role played by homogeneous hypersurfaces in the 
classical submanifold theory of space forms, we believe that the investigation of 
homogeneous hypersurfaces in symmetric spaces constitutes one of the first steps in 
the long-term program of developing a submanifold theory of symmetric spaces. The  
centrality of these spaces in Mathematics, along with their fascinating geometric, 
algebraic, and analytic properties, gives us a glimpse of a field yet to be explored. 

The aim of this text is to provide a survey on homogeneous hypersurfaces, their 
generalizations, and their classification problem in symmetric spaces, with a focus 
on the noncompact setting. Thus, we will start by discussing the definition, general 
properties, and important topological and geometric properties of homogeneous 
hypersurfaces in Sect. 2. In Sect. 3, we will review the notion and fundamental 
geometric and algebraic aspects of symmetric spaces (Sects. 3.1–3.2), mainly 
of those of noncompact type (Sect. 3.3), and the algebraic theory of parabolic 
subalgebras (Sect. 3.4). Section 4 will be devoted to report on the classification



Homogeneous Hypersurfaces in Symmetric Spaces 143

problem of homogeneous hypersurfaces in symmetric spaces of compact type. Here, 
we will provide an introductory discussion to the problem in spheres through various 
interesting examples (Sect. 4.1), and then we will describe the classification on 
the other compact symmetric spaces, focusing on the rank one case (Sect. 4.2). 
In Sect. 5, we will review the classification problem in symmetric spaces of 
noncompact type of rank one (the hyperbolic spaces over the normed division 
algebras), whereas in Sect. 6 we will present what is known in the higher rank case. 
Finally, in Sect. 7, we provide a list of open problems. 

2 Homogeneous Hypersurfaces 

Let M be a Riemannian manifold and .Isom(M) its isometry group, which is known 
to be a Lie group. A connected, injectively immersed submanifold P of M is called 
(extrinsically) homogeneous if for any .p, q ∈ P there exists an isometry . ϕ of M 
such that .ϕ(p) = q and .ϕ(P ) = P . Note that if .P = M , we recover the standard 
notion of (intrinsic) homogeneity of a Riemannian manifold. By considering the 
subgroup of isometries of M that leave the submanifold P invariant, one easily sees 
that P is homogeneous if and only if P is an orbit of an isometric action on M , that 
is, there exists a subgroup H of .Isom(M) such that .P = H ·p, for some (and hence, 
for any) .p ∈ P . Hereafter, by .H ·p, we denote the orbit of an action .H ×M → M of 
a group H through a point p of M , and by .Hp = {h ∈ H : h ·p = 0}, we denote the 
isotropy group (or stabilizer) at p. Of course, .H · p ∼= H/Hp is a bijection, which 
is indeed a diffeomorphism if the H -action on M is smooth, when endowing the 
set of left cosets .H/Hp = {hHp : h ∈ H } with a natural differentiable structure. 
Moreover, P is properly embedded (equivalently, closed and embedded) in M if 
and only if .H = {ϕ ∈ Isom(M) : ϕ(P ) = P } is closed in .Isom(M) (in particular, 
an embedded Lie subgroup of .Isom(M)); this in turn means that P is an orbit of a 
proper isometric smooth action on M . See [65, Chapter 21], [69], and [72, §6] for 
further information on smooth, proper, and isometric actions. 

The family of orbits of a smooth isometric action of a connected Lie group H 
on a Riemannian manifold M determines what is called a singular Riemannian 
foliation of M . This is a decomposition of M into connected, injectively immersed 
submanifolds (leaves) that are locally equidistant to each other and such that 
there is a collection of smooth vector fields on M spanning all tangent spaces 
to all leaves. In the case of a smooth isometric H -action on M , the collection 
.{X∗ : X ∈ h} of Killing fundamental vector fields on M , induced by elements 
X in the Lie algebra . h of H , span all tangent spaces to all orbits. Here, . X∗
is given by .X∗

p = d
dt

|t=0 Exp(tX) · p, where .Exp : h → H denotes the Lie 
group exponential map. Moreover, if . γ is a geodesic in M that is orthogonal at 
.γ (0) to one orbit, .H · γ (0), then for any fundamental vector field . X∗, we have  
.
d
dt

〈γ̇ , X∗〉 = 〈γ̇ ,∇γ̇ X∗〉 = 0, since .∇X∗ is skew-adjoint as . X∗ is Killing. Hence, 
.〈γ̇ , X∗〉 = 0, and thus, any geodesic orthogonal to one orbit remains orthogonal to 
any other orbit that it meets. This means that the orbits are locally equidistant to each
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other. Orbit foliations, that is, singular Riemannian foliations induced by isometric 
actions, are also called homogeneous foliations. See [1] for more information on 
these concepts and properties. 

Although Lie group theory plays a fundamental role in the analysis of homo-
geneous submanifolds and isometric actions, from a geometric perspective, we are 
ultimately interested in the orbit foliations of smooth isometric actions, and not so 
much in the (possibly multiple) groups that give rise to the same orbit foliation. 
Thus, when discussing isometric actions, we will usually consider actions to be 
equivalent if they have the same orbits. More precisely, we will say that two 
isometric actions of groups . H1 and . H2 on M are orbit equivalent if there is an 
isometry . ϕ of M such that .ϕ(H1 · p) = H2 · ϕ(p) for all .p ∈ M , that is, . ϕ maps the 
.H1-orbits to the .H2-orbits. Thus, two smooth isometric actions are orbit equivalent 
if and only if their orbit foliations are congruent in M . 

From now on, unless otherwise stated, isometric actions will be assumed to be 
smooth and proper, and homogeneous submanifolds will be closed and embedded. 

The cohomogeneity of an isometric action is the lowest codimension of its orbits. 
Thus, a (proper) action has cohomogeneity zero precisely when it is transitive. An 
orbit of an isometric action is called regular if its codimension agrees with the 
cohomogeneity and is called singular otherwise. 

Remark 1 Among regular orbits, we can distinguish two types: principal orbits 
and exceptional orbits. Given an isometric H -action on M , the  H -orbit through p is 
principal if the isotropy group at p, .Hp = {h ∈ H : h · p = p}, is contained in any 
other isotropy group . Hq , .q ∈ M , up to conjugation in H . A nonprincipal regular 
orbit is called exceptional. The union of all principal orbits constitutes an open dense 
subset of M . If  M is simply connected and complete and H is connected, then there 
are no exceptional orbits. See [1, Chapter 3 and Corollary 5.35] for further details. 

2.1 Homogeneous Hypersurfaces and Cohomogeneity One 
Actions 

A homogeneous hypersurface of M is a regular orbit of a cohomogeneity one action 
on M . It is known that a cohomogeneity one action on a complete connected 
Riemannian manifold has exactly zero, one, or two singular orbits. Indeed, the 
space of orbits .M/H = {H · p : p ∈ M} of a cohomogeneity one H -action is 
homeomorphic to . R, . S1, .[0,∞) or .[0, 1], and nonprincipal orbits correspond to 
the boundary of such spaces [3]. Depending on the geometry and topology of the 
ambient manifold M , some of these possibilities may be excluded (see Remark 2). 

Example 1 The following items provide very simple examples of cohomogeneity 
one actions with orbit spaces homeomorphic to . R, . S1, .[0,∞), and .[0, 1], respec-
tively:
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(a) The action of .(Rn−1,+) on . Rn by translations: .h · p = p + (h, 0), where 
.h ∈ R

n−1, .p ∈ R
n. All orbits are regular (parallel hyperplanes). 

(b) The action of .SO2 on a torus of revolution around the z-axis in . R3, given by 
.A · p = (A(p1, p2), p3), where .A ∈ SO2 and .p = (p1, p2, p3) ∈ R

3. All  
orbits are regular (circles). 

(c) The standard action of .SOn on . Rn by rotations around the origin. The origin is 
precisely the only singular orbit, whereas the concentric spheres about it are the 
regular orbits. 

(d) The action of .SOn on the unit sphere . Sn of .Rn+1: .A·p=(A(p1, . . . , pn), pn+1), 
where .A ∈ SOn and .p = (p1, . . . , pn+1). The north and south poles of . Sn are 
the two singular orbits, and the parallels are the regular orbits. 

None of these actions has exceptional orbits (and hence the boundary points of 
their orbit spaces correspond to singular orbits). Here, we have three actions with 
exceptional orbits: 

(e) The action (d) above descends to a cohomogeneity one action of .SOn on the 
real projective space .RPn. This action has the same orbit space, namely, .[0, 1], 
but only one singular orbit (the image of the poles under the projection map 
.π : Sn → RPn) and one exceptional orbit (the projection of the equator). 

(f) The action of . U1 on the infinite Möbius band .R2/{(x, y) ∼ (−x, y + 2π)}, 
given by .eiθ · [(x, y)] = [(x, y + 2θ)], has orbit space .[0,∞) and exceptional 
orbit .U1 · [(0, 0)]. 

(g) The action in (f) descends to a .U1-action on the Klein bottle . R2/{(x, y) ∼
(−x, y + 2π) ∼ (x + 2π, y)} with orbit space .[0, 1], two exceptional orbits 
.U1 · [(0, 0)] and .U1 · [(π, 0)], and no singular orbit. 
As exemplified by the previous actions, the singular Riemannian foliation 

induced by a cohomogeneity one action on a complete connected manifold M is of 
a very particular type. It is a decomposition of M into mutually equidistant, properly 
embedded leaves, all of them of codimension one (the regular orbits/leaves), except 
at most two (the singular orbits/leaves). Each regular orbit is a tube around any of 
the singular orbits. Here, by tube of radius r around a submanifold P of M , we  
mean the subset of M given by 

. P r = {exp(rξ) : ξ ∈ νP, |ξ | = 1},

where .exp is the Riemannian exponential map of M and . νP is the normal bundle 
of P . If  P is a hypersurface, each connected component of . P r is called a parallel 
or equidistant hypersurface to P . Locally and for small enough r , a tube . P r of 
radius r around P is a hypersurface. If Q is a hypersurface of M , . ξ is a smooth 
unit normal vector field along Q, and .Qr

ξ = {exp(rξp) : p ∈ Q} is a submanifold 
of codimension higher than one in M , then . Qr

ξ is said to be a focal submanifold 
of Q. Thus, if P is a submanifold of codimension greater than one, then P is a 
focal submanifold of any of its codimension one, immersed tubes . P r . Observe that



146 J. C. Díaz-Ramos et al.

a codimension one, immersed tube around a submanifold P of codimension k in M 
is diffeomorphic to .P × S

k−1. 

Remark 2 The existence of a cohomogeneity one H -action on a complete con-
nected Riemannian manifold M imposes some topological restrictions on M; we  
refer to [1, §6.3], [20, Chapter IV, Theorems 8.1–8.2], and [6, §2.9.3] for more 
information. If .M/H is . R or . S1, then all orbits are mutually diffeomorphic and 
principal, and M is a fiber bundle over .M/H (which is trivial if .M/H ∼= R) and 
with fiber a principal orbit. In particular, if M is simply connected, .M/H cannot 
be . S1; indeed, if M is a Hadamard manifold, the only possibilities for .M/H are 
. R and .[0,∞) (see [5, p. 212]). If .M/H ∼= [0,∞), then M is diffeomorphic to 
a tubular neighborhood of the only nonprincipal H -orbit, say .H · p, and hence 
.M ∼= (H ·p)×Hp V is a Euclidean space bundle over such nonprincipal orbit .H ·p. 
If .M/H ∼= [0, 1], then there are two nonprincipal orbits, say .H · p+ and .H · p−, 
and M admits a decomposition as a union of two disk bundles 

. M ∼= (H ×Hp+ D−) ∪H/K (H ×Hp− D+),

where .Hp± are the isotropy groups at . p±; K is the isotropy at a point of a principal 
orbit .H/K; . D± are two disks centered at the origin of the normal spaces to . H · p±
at . p±, respectively; and the union of the disk bundles is made along the principal 
orbit .H/K . This decomposition into two disk bundles is fundamental for various 
constructions and classifications (see, for instance, [47, 50, 80]). 

2.2 Geometric Properties of Homogeneous Hypersurfaces 

Homogeneous hypersurfaces and, in general, orbits of cohomogeneity one actions 
have some nice geometric properties. Since the shape operators (at different points) 
of a homogeneous hypersurface P of M are conjugate by the differentials of 
isometries of M , their eigenvalues are independent of the point, that is, P has 
constant principal curvatures. As the orbits of an isometric action are locally 
equidistant and nearby orbits to a regular one are regular, the nearby (locally 
defined) equidistant hypersurfaces to a homogeneous hypersurface are also (open 
subsets of) homogeneous hypersurfaces and therefore also with constant principal 
curvatures. This implies that a homogeneous hypersurface P is isoparametric: the  
locally defined, nearby parallel hypersurfaces to P have constant mean curvature. 
Isoparametric hypersurfaces have a long history arising from a problem in geometric 
optics, with contributions by Levi-Civita, Segre, and Cartan in the 1930s, and 
with many beautiful results obtained over the last five decades. We refer to 
[26, 27, 34, 90, 98, 99] and the references therein for more information on this topic. 

Actually, the classification of homogeneous hypersurfaces in Euclidean and 
real hyperbolic spaces follows from the respective Segre’s [87] and Cartan’s [22] 
classifications of isoparametric hypersurfaces in such spaces. For Euclidean spaces
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. Rn, this classification states that isoparametric hypersurfaces are open subsets 
of affine hyperplanes .Rn−1, spheres .Sn−1, or cylinders .Sk × R

n−k−1, . k =
1, . . . , n − 2. Since homogeneous hypersurfaces are always isoparametric and the 
previous complete hypersurfaces of . Rn are homogeneous, they also exhaust all 
homogeneous hypersurfaces in Euclidean spaces. Thus, up to orbit equivalence, the 
cohomogeneity one actions on a Euclidean space . Rn are the standard actions of 
.R

n−1 (Example 1 (a)), of .SOn (Example 1 (c)), and of .SOk+1 × R
n−k−1. Cartan’s 

classification for hyperbolic spaces will be reviewed in Sect. 5. 
We remark that whereas in spaces of constant curvature a hypersurface is isopara-

metric if and only if it has constant principal curvatures, this is not true in general. 
Examples of isoparametric hypersurfaces with nonconstant principal curvatures 
(and hence inhomogeneous hypersurfaces) have been found in several symmetric 
spaces, such as complex and quaternionic projective spaces [36, 39], and many 
symmetric spaces of noncompact type [29, 30, 35, 41]; see also Remarks 4, 5, 6, 7, 
and 8. Conversely, we do not know of any nonisoparametric hypersurface with 
constant principal curvatures in symmetric spaces, although there do exist examples 
for some particular conformally flat metrics [81]. There are also important spaces 
where isoparametric hypersurfaces are known to be homogeneous, such as the 
homogeneous 3-manifolds with 4-dimensional isometry group or the product of two 
round 2-spheres [40, 100], besides Euclidean and real hyperbolic spaces. 

There is, however, an important characterization of isoparametric hypersurfaces 
that holds in any Riemannian manifold. Specifically, a hypersurface P of M is 
isoparametric if and only if P is (maybe only locally) a regular level set of an 
isoparametric function on (an open subset of) M . Here, a smooth function . f : M →
R is called isoparametric if f is not constant on any open subset of M and it satisfies 
the system of partial differential equations 

.|∇f |2 = a ◦ f, �f = b ◦ f, (1) 

for some real functions a, b of real variable, with a smooth and b continuous. In 
other words, the norm of the gradient and the Laplacian of f are constant along the 
level sets of f . The collection of level sets of an isoparametric function is called an 
isoparametric family of hypersurfaces. We refer the reader to [1, §5.5], [6, §2.9.2], 
and [48] for more information on isoparametric functions. 

We would like to emphasize that as homogeneous hypersurfaces are isopara-
metric, they are also given as level sets of isoparametric functions. This result, 
which would be only local in principle, is indeed global. More precisely, given 
a cohomogeneity one action on a complete and simply connected Riemannian 
manifold M , its orbit foliation is recovered as the collection of level sets of an 
isoparametric function on M , as follows from [1, Theorem 5.68]. Of course, the 
converse is not true due to the existence of inhomogeneous isoparametric families 
of hypersurfaces. If M is compact, any isoparametric family of hypersurfaces on M 
has at least a minimal hypersurface in the family, which is unique if M has positive 
Ricci curvature [49]. In particular, any cohomogeneity one action on a compact 
Riemannian manifold M has a minimal regular orbit.



148 J. C. Díaz-Ramos et al.

The fact that homogeneous hypersurfaces (or, more generally, isoparametric 
hypersurfaces) arise as regular level sets of solutions to the equations (1) makes 
that these geometric objects appear naturally in relation to certain overdetermined 
problems of partial differential equations; see [59] for a survey. These include 
parabolic equations, as in the study of the heat flow [83–85] or of stationary 
isothermic surfaces [70, 82], and elliptic equations, as in some problems in 
mathematical physics [77] and in various overdetermined boundary value problems 
(including generalizations of the outstanding Schiffer conjecture [89]). Indeed, the 
homogeneity (respectively, isoparametricity) of geodesic spheres plays a crucial 
role in a partial symmetry result proved in [37] for overdetermined boundary 
value problems for semilinear elliptic equations on small domains of two-point 
homogeneous spaces (resp. harmonic spaces). Here, by symmetry result, we mean 
a Serrin-type theorem [88] showing that bounded solution domains to certain 
overdetermined problems must be balls (in the case of [37], such domains are 
assumed to be small perturbations of small geodesic balls). 

Finally, we mention that not only homogeneous hypersurfaces have interesting 
geometric properties but also their focal submanifolds (i.e., the singular orbits of the 
corresponding cohomogeneity one actions). It was stated by Wang [102] and proved 
by Ge and Tang [49] that the focal submanifolds of an isoparametric family of 
hypersurfaces are minimal. However, if the hypersurfaces of such an isoparametric 
family have, in addition, constant principal curvatures, each one of their focal 
submanifolds has a stronger geometric property: their shape operators for all unit 
normal vectors are isospectral, i.e., they have the same principal curvatures and 
corresponding multiplicities [49]. This geometric property was called CPC (which 
stands for “constant principal curvatures”) in [11]. In particular, focal submanifolds 
of homogeneous hypersurfaces are CPC. Notice that any CPC submanifold is 
austere, that is, their principal curvatures counted with multiplicities are invariant 
under change of sign. The notion of austere submanifold was introduced by Harvey 
and Lawson [52, Definition 3.15]. Clearly, austere submanifolds are minimal. In 
spaces of constant sectional curvature, CPC submanifolds of codimension higher 
than one are precisely the focal submanifolds of isoparametric hypersurfaces 
(equivalently, of hypersurfaces with constant principal curvatures). This is not true 
in general as, in many spaces (e.g., nonflat complex space forms), tubes around 
certain totally geodesic (and hence CPC) submanifolds are not isoparametric and 
have nonconstant principal curvatures (cf. Sect. 5.3 and Remark 5). Recently, it 
was proved that focal submanifolds of isoparametric hypersurfaces need not be 
austere [41]. 

3 Symmetric Spaces 

In this section, we provide a short introduction to Riemannian symmetric spaces, 
with special focus on those of noncompact type. There are several references for 
the reader interested in obtaining further information on this topic. Two classical
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references are Helgason’s book [53] and Loos’ books [67, 68]. As introductory texts, 
we refer to Eschenburg’s survey [45] and Ziller’s notes [105]. Some nice chapters 
on symmetric spaces can be found in the books by Berndt, Console, and Olmos [6], 
Besse [17], O’Neill [76], and Wolf [103]. 

3.1 Definition and Fundamental Properties 

Let M be a connected Riemannian manifold. Given a point .p ∈ M , we can consider 
the geodesic ball .Bp(r) centered at p of radius r , for  .r > 0 small enough. On such 
ball, we can define the smooth map .σp : Bp(r) → Bp(r) that sends . q = expp(v)

to .σp(q) = expp(−v), where .v ∈ TpM , .|v| < r . This map . σp is nothing but a 
geodesic reflection about p. It is clearly an involution, i.e., .σ 2

p = id. 
A Riemannian symmetric space is a connected Riemannian manifold M such 

that, for any .p ∈ M , the geodesic reflection . σp at p is defined globally on M and 
is an isometry of M . Thus, symmetric spaces are characterized by the existence 
of central symmetries around any point. From this definition, one can easily see 
that symmetric spaces are complete (geodesics can be extended by using geodesic 
reflections) and homogeneous (given . p1, .p2 ∈ M , by completeness, there is a 
geodesic segment joining them, and if q is its midpoint, then .σq(p1) = p2). 

We fix from now on an arbitrary point .o ∈ M , which is sometimes called the 
origin or the base point of M . The homogeneity and the connectedness of M imply 
that the Lie group .G = Isom(M)0, the connected component of the identity of the 
isometry group .Isom(M) of M , acts transitively on M . Let . K = {g ∈ G : g(o) = o}
be the isotropy group at the origin o, which can be shown to be a compact Lie group. 
Hence, M is diffeomorphic to the set of left cosets .G/K = {gK : g ∈ G} endowed 
with some natural differentiable structure. Note that under the diffeomorphism . M ∼=
G/K , the origin o corresponds to the coset eK , where e is the identity of G. See [65, 
Chapter 21] for more information on homogeneous spaces. 

The map .s : G → G, .s(g) = σogσo, is a well-defined involutive Lie group 
automorphism of G. It satisfies .G0

s ⊂ K ⊂ Gs , where . Gs = {g ∈ G :
s(g) = g} and . G0

s denotes its connected component of the identity. Its differential 
.θ = s∗ : g → g is an involutive Lie algebra automorphism, the so-called Cartan 
involution associated with the symmetric space (of course, . θ depends on the choice 
of o). The Lie algebra . k of the isotropy group K is precisely the .(+1)-eigenspace 
of . θ . If we denote by . p the .(−1)-eigenspace of . θ , then .g = k ⊕ p is the 
eigenspace decomposition of . θ , called the Cartan decomposition of . g. Since . θ is 
an automorphism, it is easy to check that .[k, k] ⊂ k, .[k, p] ⊂ p, and .[p, p] ⊂ k. 

Consider the smooth map .φ : G → M , .φ(g) = g(o). Its differential .φ∗e at the 
identity element e induces a vector space isomorphism .p ∼= ToM . Moreover, the 
linearization of the isotropy action .K × M → M , .k · p = k(p), at  o turns out to 
be an isometric linear action .K × ToM → ToM , .k · v = k∗ov. This is called the 
isotropy representation of .M ∼= G/K at o. The isotropy representation turns out to
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be equivalent to the adjoint representation of K on . p, namely, the action . K ×p → p

given by .k · X = Ad(k)X. We will also call this action the isotropy representation 
of M . 

The curvature tensor R of a symmetric space M at the base point o admits a 
simple description as 

.R(X, Y )Z = −[[X, Y ], Z], X, Y,Z ∈ p ∼= ToM. (2) 

It turns out that the curvature tensor of a symmetric space is parallel with respect 
to the Levi-Civita connection, .∇R = 0. Riemannian manifolds with this property 
are called locally symmetric, and the complete ones turn out to be quotients of 
symmetric spaces by discrete group actions. 

Formula (2) leads to a very simple characterization of the totally geodesic 
submanifolds of symmetric spaces: they are (up to congruence in M) of the form 
.S = expo s, where . s is a subspace of .p ∼= ToM such that .[[s, s], s] ⊂ s. Such a 
subspace . s of . p is called a Lie triple system. However, determining such Lie triple 
systems is a very difficult problem, and indeed the classification of totally geodesic 
submanifolds is still an outstanding problem; see [9, 10], and [64] for important 
recent contributions. In the particular case when . s is abelian, then the associated 
totally geodesic submanifold is flat by (2). Among all the abelian subspaces of 
. p, the maximal ones have the same dimension. The associated totally geodesic 
submanifolds are called maximal flats of the symmetric space. The common 
dimension of such maximal flats is called the rank of the symmetric space. 

Remark 3 It is rather common to express symmetric spaces as quotient man-
ifolds .G/K where G is not necessarily exactly .Isom(M)0. For instance, the 
complex hyperbolic space .CHn is usually presented as .SU1,n/S(U1Un) instead of 
.(SU1,n/Zn+1)/(S(U1Un)/Zn+1). The common practice is to present a symmetric 
space in terms of a so-called symmetric pair .(G,K), where K is compact, there 
is an involutive automorphism s of G such that .G0

s ⊂ K ⊂ Gs , and G acts 
almost effectively on .M = G/K (i.e., there is at most a discrete subgroup of 
elements of G that act trivially on .G/K). Of course, if M is a symmetric space, 
then .(Isom(M)0, Isom(M)0o) is a symmetric pair. These subtleties will not play an 
important role in this article. 

3.2 Types of Symmetric Spaces 

A symmetric space .M ∼= G/K is called (isotropy) irreducible if the restriction 
of its isotropy representation to the connected component of the identity of K is 
irreducible. This is equivalent to the property that the Riemannian universal cover 
. ˜M of M (which is again a symmetric space) is not a nontrivial product of symmetric 
spaces, unless . ˜M = R

n is a Euclidean space.
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Recall that the Killing form of a Lie algebra . g is the symmetric bilinear form 
.B : g × g → R given by .B(X, Y ) = tr(ad(X) ◦ ad(Y )), where .ad(X) = [X, ·]. It  
is not difficult to check that . k and . p are orthogonal subspaces with respect to . B. A  
symmetric space .M ∼= G/K is said to be of compact type, of  noncompact type, or  
of Euclidean type if .B|p×p is negative definite, positive definite, or identically zero, 
respectively. If M is irreducible, Schur’s lemma implies that .B|p×p is proportional 
to the inner product on .p ∼= ToM induced by the symmetric metric of M . According 
to the sign of the proportionality constant, M falls into one of the three possible 
types. If M is not irreducible, there is no guarantee that it is of one of the three 
types. 

If M is of compact type, then G is a compact semisimple Lie group, and M is 
compact and has nonnegative sectional curvature. If M is of noncompact type, then 
it turns out that G is a noncompact real semisimple Lie group (with no compact 
factors), and M is a Hadamard manifold (it is diffeomorphic to a Euclidean space 
and has nonpositive sectional curvature). If M is of Euclidean type, its Riemannian 
universal cover is a Euclidean space . Rn. In general, the Riemannian universal cover 
of a symmetric space M splits as a Riemannian product of symmetric spaces . ˜M =
M+ ×M− ×M0, where .M+ is of compact type, .M− is of noncompact type, and . M0
is a Euclidean space. 

There is a notion of duality between the classes of symmetric spaces of compact 
type and of noncompact type. Specifically, there is a one-to-one correspondence 
between symmetric spaces of noncompact type and simply connected symmetric 
spaces of compact type. This duality can be made explicit in terms of the Lie 
algebras and groups involved, although here we will not enter into details. Dual 
symmetric spaces have the same rank and equivalent isotropy representations, and 
hence, duality preserves irreducibility. However, it is important to remark that 
both types of symmetric spaces have very different topological and geometrical 
properties. 

Example 2 We illustrate the notion of duality through some examples: 

(a) The real hyperbolic space .RHn ∼= SO0
1,n/SOn is of noncompact type and has 

two dual symmetric spaces of compact type: the sphere .S
n ∼= SOn+1/SOn and 

the real projective space .RPn ∼= SOn+1/On. These spaces have rank one. 
(b) The other rank one (nonflat) symmetric spaces are the projective and the 

hyperbolic spaces over the division algebras of the complex numbers . C, 
the quaternions . H, and the octonions . O. Thus, the complex spaces . CPn =
SUn+1/S(U1Un) and .CHn = SU1,n/S(U1Un), the quaternionic spaces . HPn =
Spn+1/Sp1Spn and .HHn = Sp1,n/Sp1Spn, and the Cayley planes . OP2 =
F4/Spin9 and .OH2 = F−20

4 /Spin9 constitute three pairs of dual symmetric 
spaces of rank one. 

(c) Any compact Lie group K endowed with a bi-invariant metric is a symmetric 
space of compact type. An associated symmetric pair is .(K × K,�K), where 
.�K = {(k, k) : k ∈ K}. Its dual symmetric space of noncompact type is of the 
form .KC/K , where .KC denotes the complexification of K . For example, .SOn
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(and also its universal cover .Spinn) and .SOn(C)/SOn are dual to each other, 
.n ≥ 3. 

(d) The compact space .SUn/SOn of special Lagrangian subspaces of . Cn is dual to 
the noncompact space .SLn(R)/SOn of all positive definite symmetric matrices 
of determinant 1 and order n. 

For the complete list of irreducible symmetric spaces (up to coverings), we refer 
to [53, pp. 516, 518]. See [103] for a discussion of locally symmetric spaces of 
compact type. 

3.3 Symmetric Spaces of Noncompact Type: Root Space and 
Iwasawa Decompositions 

Symmetric spaces of noncompact type constitute a rich family of Hadamard 
manifolds that generalize the hyperbolic spaces. We refer to [4, 34], [44, Chapter 2], 
[53, Chapter VI], and [60, Chapter VI, §4-5] for more information on different 
aspects of these spaces. 

Let .M ∼= G/K be a (not necessarily irreducible) symmetric space of noncompact 
type. Let .g = k ⊕ p be the Cartan decomposition of the Lie algebra . g of G 
determined by the choice of a base point .o ∈ M . The Killing form . B of . g makes . k
and . p orthogonal, restricts to a positive definite inner product on . p by definition of 
noncompact type, and turns out to be negative definite when restricted to . k. Thus, 
by changing its sign on . k, we get a positive definite inner product on . g. This inner 
product . Bθ can alternatively be defined by .Bθ (X, Y ) = −B(θX, Y ), for each X, 
.Y ∈ g, where . θ is the Cartan involution. 

Let . a be an arbitrary maximal abelian subspace of . p. Recall that .dim a is the 
rank of M . The endomorphisms .ad(H) = [H, ·] of . g, where .H ∈ a, turn out to 
be self-adjoint with respect to . Bθ , and they commute with each other (since . ad
is a Lie algebra homomorphism and . a is abelian). Thus, such endomorphisms of 
. g diagonalize simultaneously. Their common eigenspaces are called the restricted 
root spaces, and their nonzero eigenvalues (which are linear in .H ∈ a) are called 
the restricted roots of . g. More precisely, for each linear functional .λ ∈ a∗, consider 
the subspace of . g given by 

. gλ = {X ∈ g : [H,X] = λ(H)X for all H ∈ a}.

Then, any .gλ �= 0 is a restricted root space, and any .λ �= 0 with .gλ �= 0 is a restricted 
root. Note that .0 �= a ⊂ g0. Let us denote by 

.� = {λ ∈ a∗ : λ �= 0, gλ �= 0}
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the set of restricted roots of . g. Hence, we can write the .Bθ -orthogonal direct sum 
decomposition 

. g = g0 ⊕
(

⊕

λ∈�

gλ

)

,

known as the restricted root space decomposition of . g. The multiplicity . mλ of a 
restricted root . λ is the dimension of its root space, .mλ = dim gλ. In what follows, 
we will omit the word “restricted”. 

Roots and root space decompositions enjoy several nice properties, such as the 
following: 

(a) .[gλ, gμ] ⊂ gλ+μ, for any . λ, .μ ∈ � ∪ {0}. 
(b) .θgλ = g−λ, for any .λ ∈ � ∪ {0}. Hence, .λ ∈ � if and only if .−λ ∈ �. 
(c) .g0 = k0 ⊕ a, where .k0 = g0 ∩ k = Nk(a) = Zk(a) is both the normalizer and 

the centralizer of . a in . k. 

Moreover, the finite subset . � of . a∗ formed by the roots has various symmetry 
properties. Firstly, we can endow . a∗ with an inner product given by . 〈λ,μ〉 =
Bθ (Hλ,Hμ), for any . λ, .μ ∈ a∗, and where .Hλ ∈ a is defined by the relation 
.Bθ (Hλ,H) = λ(H) for all .H ∈ a. With this inner product, one can show that . �
is an abstract root system on the Euclidean space .(a∗, 〈·, ·〉). This means (see [60, 
§II.5]): 

(a) .a∗ = span�. 
(b) The number .aαβ = 2〈α, β〉/〈α, α〉 is an integer for any .α, β ∈ �. 
(c) .β − aαβ α ∈ �, for any .α, β ∈ �. 

This system is called nonreduced if there is .λ ∈ � such that .2λ ∈ �. In this case, 
. 2λ is called a nonreduced root. Root systems can be classified, and this is indeed the 
basis for the classification of real semisimple Lie algebras and of symmetric spaces. 

The information of a root system can be codified in a smaller set of roots. By 
considering an open halfspace of . a∗ containing exactly half of the roots in . � (recall 
that . � is invariant under the reflection about the origin), we can declare as positive 
those roots lying in such halfspace. If we denote by .�+ this set of positive roots, 
we then have .� = �+ � (−�+). Among the elements of . �+, there are some 
that cannot be expressed as sum of exactly two positive roots. These are called the 
simple roots, and we denote by . � its collection. It turns out that . � is a basis for . a∗, 
and hence, its cardinality . |�| is precisely the rank of M . Any root . λ in . � turns out 
to be a linear combination of elements of . � with integer coefficients, all of them 
nonnegative (when .λ ∈ �+) or all of them nonpositive (when .λ ∈ −�+). 

The set . � of simple roots allows to construct the Dynkin diagram of . � (and, 
ultimately, of the symmetric space M). This is a graph consisting in as many 
nodes as elements in . �. Two nodes are joined by a simple (respectively, double 
or triple) edge whenever the angle between the corresponding simple roots is . 2π/3
(respectively, .3π/4 or .5π/6). Finally, if the system is nonreduced, any simple root
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whose double is also a root is represented by a double node (two concentric circles). 
We refer to [6, pp. 336-340] for a list of all possible connected Dynkin diagrams, 
together with the multiplicities of the simple (and nonreduced) roots and with the 
associated irreducible symmetric spaces of noncompact type. There is also a theory 
of roots for symmetric spaces of compact type, and both theories behave well under 
duality, cf. [68, pp. 119, 146]. 

The sum of the root spaces associated with positive roots, 

. n =
⊕

λ∈�+
gλ,

is a nilpotent Lie subalgebra of . g, by the properties of the root space decomposition. 
Since . a normalizes . n, we have that .a ⊕ n is a solvable Lie subalgebra of . g. The  
Iwasawa decomposition theorem for Lie algebras ensures that 

. g = k ⊕ a ⊕ n

is a vector space direct sum (but it is not orthogonal, and none of the addends is an 
ideal of . g). Let A and N denote the connected subgroups of G with Lie algebras . a
and . n, respectively. Then AN is the connected subgroup of G with Lie algebra .a⊕n. 
The Iwasawa decomposition at the Lie group level states that the multiplication map 

. K × A × N → G, (k, a, n) �→ kan,

is a diffeomorphism and the Lie groups A, N , and AN are diffeomorphic to 
Euclidean spaces. 

Recall the smooth map .φ : G → M , .φ(g) = g(o), from Sect. 3.1. By the  
Iwasawa decomposition, its restriction to AN is a diffeomorphism . φ|AN : AN →
M . Let us denote by . g the symmetric Riemannian metric of M , and consider its 
pullback metric .(φ|AN)∗g on AN . This metric, which will be denoted by .〈·, ·〉 in 
what follows, happens to be left-invariant on the Lie group AN . Therefore, we have 
that any symmetric space of noncompact type M is isometric to a certain solvable 
Lie group AN endowed with a particular left-invariant metric. This in particular 
implies, as we had already advanced, that a symmetric space of noncompact type 
M is diffeomorphic to a Euclidean space. By formula (2), one can actually show 
that such an M is nonpositively curved and hence it is a Hadamard manifold. This 
enables us to regard any of these spaces as an open ball endowed with certain metric, 
similarly as with the ball model of the real hyperbolic space. 

For certain problems, it can be useful to regard a symmetric space of noncompact 
type M as an open dense subset of a larger compact topological space . M � M(∞)

that is homeomorphic to a closed ball. The ideal boundary .M(∞) of M is defined 
to be the set of points at infinity of M , namely, the equivalence classes of complete, 
unit-speed geodesics of M under the relation .γ1 ∼ γ2 if . {d(γ1(t), γ2(t)) : t ≥ 0}
is bounded. One can endow .M � M(∞) with the so-called cone topology, so that 
.M � M(∞) becomes homeomorphic to a closed ball whose interior corresponds
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to M and whose boundary is .M(∞). Two geodesics are called asymptotic if they 
converge to the same point at infinity, i.e., if they belong to the same equivalence 
class. If .M = G/K , the action of G on M can be naturally extended to .M(∞) by 
taking .g · [γ ] := [g · γ ]. 

Symmetric spaces of noncompact type, as particular instances of Hadamard 
manifolds, admit certain codimension one foliations by the so-called horospheres. 
Specifically, given any complete, unit-speed geodesic . γ in M , one can consider the 
Busemann function .fγ : M → R given by .fγ (p) = limt→+∞

(

d(p, γ (t)) − t
)

. 
The horosphere foliation determined by . γ is the regular Riemannian foliation 
of M given by the collection of level sets of the Busemann function . fγ . It is  
known that any horosphere foliation of a symmetric space of noncompact type M 
is homogeneous: it is the orbit foliation of the cohomogeneity one action on M 
given by the codimension one subgroup of AN with Lie algebra .(a � �) ⊕ n, for  
some specific one-dimensional subspaces . � of . a; see  [42, Remark 5.4] for more 
information. 

By making use of the solvable model of a symmetric space of noncompact type, 
one can provide an explicit formula for the Levi-Civita connection on .AN ∼= M and 
also relate the left-invariant metric .〈·, ·〉 = (φ|AN)∗g on AN to the inner product 
. Bθ . These tools, along with a careful analysis of root space decompositions, are 
very useful in the investigation of submanifold geometry of symmetric spaces of 
noncompact type. We refer to [34] for further details. 

3.4 Parabolic Subgroups and Subalgebras, and Boundary 
Components 

The investigation of cohomogeneity one actions on symmetric spaces of non-
compact type that we will review in Sect. 6 depends on a number of concepts 
and notation related to the theory of the so-called parabolic subalgebras of real 
semisimple Lie algebras. Here, we present a quick introduction to this topic. We 
refer to [6, §13.2], [18, §I.1],  [44, §2.17], and [60, §VII.7] for more information. 

Geometrically speaking, we say that a Lie subgroup Q of G is parabolic if . Q =
G or Q is the stabilizer . Gx of a point at infinity .x ∈ M(∞). From the algebraic 
viewpoint, it can be proved that a Lie subalgebra . q of . g is the Lie algebra of a 
parabolic subgroup Q of G precisely if it contains a subalgebra of . g conjugate to 
.k0 ⊕ a ⊕ n (recall that .k0 = Nk(a)). In this case, we say that . q is a parabolic 
subalgebra of . g. 

Our interest in parabolic subalgebras arises from their explicit description in 
terms of roots and root spaces, which we explain now. Up to conjugacy in G, a  
parabolic subalgebra of . g can be constructed from the choice of a subset .� ⊂ � of 
simple roots of . g. Let .�� = � ∩ span� be the root subsystem generated by . �, and
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consider the positivity notion on . �� induced by that of . �, that is, .�+
� = �+ ∩ ��. 

Define the following subalgebras of . g: 

. l� = g0 ⊕
(

⊕

λ∈��

gλ

)

, a� =
⋂

α∈�

kerα, n� =
⊕

λ∈�+\�+
�

gλ,

which are reductive (in the sense of it being invariant with respect to a Cartan 
involution of . g, cf.  [62]), abelian, and nilpotent, respectively. The subalgebra . l� is 
the centralizer and the normalizer of . a� in . g and normalizes . n�. Thus, . q� = l�⊕n�

is a subalgebra of . g containing .k0⊕a⊕n. We say that . q� is the parabolic subalgebra 
of . g associated with the subset .� ⊂ �. The decomposition .q� = l� ⊕ n� is known 
as the Chevalley decomposition of . q�. The subalgebra .m� = l� � a� (hereafter, 
. � denotes orthogonal complement with respect to the inner product . Bθ ) is a  
reductive subalgebra of . g that normalizes .a�⊕n�. Hence, we have a decomposition 
.q� = m� ⊕ a� ⊕ n�, which is known as the Chevalley decomposition of . q�. By  
a result of Borel and Tits [19], any parabolic subalgebra of a real semisimple Lie 
algebra . g is conjugate to one of the subalgebras . q�, for  some .� ⊂ �. 

The orthogonal projection .k� = πk(m�) of . m� onto . k turns out to be a maximal 
compact subalgebra of . m�. It can be written as 

. k� = q� ∩ k = l� ∩ k = m� ∩ k = k0 ⊕
⎛

⎜

⎝

⊕

λ∈�+
�

kλ

⎞

⎟

⎠
,

where .kλ = πk(mλ) = k∩ (gλ ⊕ g−λ). Similarly, the projection .b� = πp(m�) of . m

onto . p is a Lie triple system, which is also given by 

. b� = m� ∩ p = a� ⊕
⎛

⎜

⎝

⊕

λ∈�+
�

pλ

⎞

⎟

⎠
,

where .a� = a�a� = ⊕

α∈� RHα and .pλ = πp(mλ) = p∩ (gλ ⊕g−λ). Associated 
with . b�, one can consider the semisimple Lie algebra .s� = [b�, b�] ⊕ b�. The  
previous decomposition is a Cartan decomposition for . s�, and . a� is a maximal 
abelian subspace of . b�. The root subsystem . �� can be identified with a set of roots 
for . s� by restricting the roots of .�� to . a�. The corresponding root spaces of . s�

coincide with those of . g. More precisely, we have the root space decomposition 

.s� = (s� ∩ k0) ⊕ a� ⊕
⎛

⎝

⊕

λ∈��

gλ

⎞

⎠ .
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It is possible to give results analogous to the previous Lie algebra decompositions 
for the group G and the symmetric space M . For this, consider the connected Lie 
subgroups . A�, . N�, and . S� of G with Lie algebras . a�, . n�, and . s�, respectively. If 
we define .L� = ZG(a�) as the centralizer of . a� in G, then . L� is a Lie subgroup 
of G that normalizes . N�. The subgroup .Q� = NG(q�) = L�N� is the parabolic 
subgroup of G associated with . �. The decomposition .Q� = L�N� is known as 
the Chevalley decomposition of . Q�. 

Define .K� = ZK(a�), which is a Lie subgroup of G with Lie algebra . k�. 
It is a maximal compact subgroup of .L� which normalizes . S�. The subgroup 
.M� = K�S� is a reductive subgroup of G with Lie algebra . m�. Moreover, the 
multiplication map .A� × N� × M� → Q� is a diffeomorphism, known as the 
Langlands decomposition of the parabolic subgroup . Q�. 

Consider now the orbit . B� of the isometric action of .M� through o. Since . b� is 
a Lie triple system, 

. B� = M� · o = S� · o ∼= M�/K�
∼= S�/(K� ∩ S�)

is a totally geodesic submanifold of M , called the boundary component of M 
associated with the subset of simple roots . �. Intrinsically, .B� turns out to be 
a symmetric space of noncompact type and rank . |�|. In fact, since .S� is a 
connected semisimple Lie group and .K� ∩ S� a maximal compact subgroup of 
. S�, .(S�,K� ∩ S�) is a symmetric pair for . B�. The Langlands decomposition of 
.Q� induces a diffeomorphism at the manifold level, given by 

. A� × N� × B� → M, (a, n,m · o) �→ (anm) · o.

This diffeomorphism is known as the horospherical decomposition of the symmetric 
space M corresponding to the subset .� ⊂ � of simple roots. 

The horospherical decomposition can be restated in terms of an isometric action 
on M with some interesting geometric properties. The connected solvable Lie group 
.A�N� acts freely and isometrically on M , and its orbits are mutually congruent 
minimally embedded submanifolds of M . Moreover, the totally geodesic submani-
fold . B� of M intersects each .A�N�-orbit exactly once and perpendicularly. These 
properties are fundamental in a geometric extension procedure of submanifolds 
from . B� to M called canonical extension (see [35]). Its application to the extension 
of cohomogeneity one actions will be discussed in Sect. 6. 

4 Homogeneous Hypersurfaces in Compact Symmetric 
Spaces 

In this section, we give an overview of the classification problem of homogeneous 
hypersurfaces in compact symmetric spaces. We will mostly focus on the spherical
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case (Sect. 4.1), since it admits a more elementary approach and showcases very 
interesting geometric properties. Then, in Sect. 4.2, we will consider the case of the 
other compact symmetric spaces, with special focus on the rank one setting. 

4.1 Homogeneous Hypersurfaces of Round Spheres 

The classification of homogeneous hypersurfaces in round spheres had to wait more 
than 30 years after Segre’s and Cartan’s works on Euclidean and real hyperbolic 
spaces. The classification in round spheres was achieved by Hsiang and Lawson [55] 
and revisited by Takagi and Takahashi [95], who calculated the principal curvatures 
of such homogeneous hypersurfaces. Their works provide a very interesting family 
of examples, which surprisingly turns out to be characterized by a subclass of 
symmetric spaces, as we will comment on below. But before explaining their results, 
let us consider some examples. 

Recall that a homogeneous hypersurface is isoparametric with constant principal 
curvatures, and hence, the multiplicities of such principal curvatures are constant. 
We will denote by g the number of distinct constant principal curvatures. Notice 
also that cohomogeneity one actions on . Sn, .n ≥ 2, must have orbit space of type 
.[0, 1], in view of Remark 2. The simplest example of cohomogeneity one action on 
spheres was given in Example 1 (d) as the standard action of .SOn on the unit sphere 
. Sn. Note that its regular orbits (the parallels) are totally umbilical (.g = 1) and there 
are exactly two singular orbits (the poles). Observe that a geodesic of . Sn normal to 
one orbit (and hence to all orbits) intersects the singular orbits at points separated 
by distance . π . Let us see how this generalizes to more interesting examples. 

Example 3 Consider the action of .H = U1 × U1 on .C2 ∼= R
4 given by 

.(eiθ1 , eiθ2) · (z1, z2) = (eiθ1z1, e
iθ2z2). Since it is an isometric action for the 

Euclidean metric on . R4, it leaves the unit sphere of . R4 invariant, so it induces an 
isometric action on the unit sphere . S3. It is easy to calculate that the isotropy groups 
at points of the form .(z1, 0) or .(0, z2) are isomorphic to . U1, whereas the stabilizers 
at any other point are trivial. Thus, there are exactly two singular orbits, . H · (1, 0)
and .H · (0, 1), which are totally geodesic circles in . S3, and the remaining orbits are 
principal and diffeomorphic to tori .S1 × S

1. Among these tori, exactly one turns 
out to be minimal, namely, .H · ( 1√

2
, 1√

2

)

: the Clifford torus. The principal orbits 
have .g = 2 distinct principal curvatures. Any normal geodesic to the orbit foliation 
(e.g., .γ (t) = (cos t, sin t) ∈ C

2) intersects the singular orbits at four equidistributed 
points (.(±1, 0) and .(0,±1)). This action of .U1 × U1 ∼= SO2 × SO2 on . S3 can 
easily be generalized to a cohomogeneity one action of .SOk+1 × SOn−k on . Sn, 
.k = 1, . . . , n − 2, with totally geodesic singular orbits . Sk and .S

n−k−1 and principal 
orbits .S

k × S
n−k−1 with .g = 2. 

Example 4 Let .Herm0
3(R) denote the vector space of real symmetric matrices of 

order 3 and trace 0, endowed with the standard inner product .〈X, Y 〉 = trXY .
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Hence, .Herm0
3(R) is a Euclidean space . R5. The smooth action of . H = SO3

on .Herm0
3(R) by conjugation, .A · X = AXAt , is clearly isometric. We consider 

its induced isometric action on the unit sphere . S4 of .Herm0
3(R) ∼= R

5. The  
subset .� = {X ∈ S

4 : X is diagonal} is the trace of a geodesic in . S4 that 
intersects all H -orbits in . S4 by the spectral theorem. One can easily compute 
the stabilizers at the points of . �. These stabilizers are larger when .X ∈ � has 
two equal entries in the diagonal, which happens when X has diagonal entries 
.
1√
6
, 1√

6
,− 2√

6
or .− 1√

6
,− 1√

6
, 2√

6
(reordered in any way). Notice that these six points 

are equidistributed along the great circle . �. For these six points X in . �, we have  
.HX

∼= S(O2 × O1) ∼= O2. The other points X in . � have finite isotropy group. 
Therefore, the regular orbits have dimension .dimSO3 = 3, and hence, we have a 
cohomogeneity one action on . S4. There are two singular orbits (one passing through 
the diagonal matrices with diagonal entries . 1√

6
, 1√

6
,− 2√

6
and the other passing 

through the diagonal matrices with the opposite entries). These are diffeomorphic to 
real projective planes, .H/HX

∼= SO3/O3 ∼= RP2, which are minimally embedded 
in . S4. One can show that the principal orbits of this action have .g = 3 principal 
curvatures. 

Example 5 The previous action in Example 4 is the simplest one of a collection of 
four cohomogeneity one actions on the unit spheres . S4, . S7, . S13, and . S25 of the space 
.Herm0

3(F) of trace-free Hermitian matrices of order three with coefficients in some 
normed division algebra .F ∈ {R,C,H,O}, with inner product .〈X, Y 〉 = Re(trXY). 
The respective groups acting upon are .SO3, .SU3, . Sp3, and . F4. These actions 
produce homogeneous hypersurfaces with .g = 3 principal curvatures (all of them 
with the same multiplicity .m ∈ {1, 2, 4, 8}) which are tubes around certain minimal 
embeddings of the projective planes .RP2, .CP2, .HP2, and .OP2, respectively. Of 
particular interest is the octonionic case, as it provides one of the simplest models of 
the exceptional Lie group . F4, as well as of the Cayley projective plane .OP2. Indeed, 
. F4 can be defined as the automorphism group of the Jordan algebra . Herm3(O)

with multiplication .X ◦ Y = 1
2 (XY + YX). Similarly as in Example 4, the  

minimally embedded Cayley projective planes are obtained as the orbits through 
.diag( 1√

6
, 1√

6
,− 2√

6
) and .diag(− 1√

6
,− 1√

6
, 2√

6
) ∈ Herm0

3(O) of the action of the 

automorphism group . F4 on the unit sphere . S25 of .Herm0
3(O). For more information 

on these actions, we refer the reader to the discussion in [78, §3.3.3], which is based 
on [2, §3], [6, p. 86], and [51, pp. 289–292]. 

The homogeneous hypersurfaces described in the examples above were charac-
terized by Cartan [23] as the only (complete) isoparametric hypersurfaces in round 
spheres with up to .g = 3 distinct principal curvatures. Whereas the examples with 
.g ∈ {1, 2} arise in spheres . Sn of any dimension (.n ≥ 3 if .g = 2), examples with 
.g = 3 are restricted to four possible dimensions .n ∈ {4, 7, 13, 25}. Cartan [24] 
also initiated the study of isoparametric hypersurfaces with .g = 4 and was able 
to produce two examples in . S5 and . S9. These are recovered in the following two 
constructions:
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Example 6 Let .M2×k(F) denote the vector space of .2 × k matrices with entries in 
.F ∈ {R,C,H}, endowed with the standard inner product .〈X, Y 〉 = trXY ∗, where 
.(·)∗ denotes conjugate transpose. In order to settle ideas, assume .F = R. Consider 
the isometric action of .H = SO2 × SOk on .M2×k(R) by .(A,B) · X = AXB∗ and 
then its restriction to the unit sphere .S2k−1 of .M2×k(R) ∼= R

2k . The geodesic of 
.S
2k−1 given by 

. γ (t) =
(

cos t 0 0 . . . 0
0 sin t 0 . . . 0

)

intersects all H -orbits in .S2k−1 and always perpendicularly (again, it suffices to 
check this at one point, say for .t = 0). One can compute the stabilizers of the 
points in this geodesic, obtaining that for any .t /∈ {�π

4 : � ∈ Z}, .γ (t) belongs to 
a principal orbit of codimension one in .S2k−1. Moreover, for any .� ∈ Z, . γ

(

�π
2

)

belongs to a singular orbit of dimension k, and .γ
(

π
4 + �π

2

)

belongs to a singular 
orbit of dimension .2k−3. Again, the singular points along the normal geodesic . γ are 
equidistributed. The homogeneous hypersurfaces arising from this action turn out to 
have .g = 4 principal curvatures with multiplicities 1, 1, .k − 2, and .k − 2. Cartan’s 
example with .g = 4 in . S5 corresponds to .k = 3. The discussion for . F ∈ {C,H}
is analogous by considering the actions of .U2 × Uk on the unit sphere .S4k−1 of 
.M2×k(C) and of .Sp2 × Spk on the unit sphere .S8k−1 of .M2×k(H). In these cases, 
the distribution of singular points along a normal geodesic is the same as in the real 
case, but now the .g = 4 principal curvatures of the homogeneous hypersurfaces 
have multiplicities 2, 2, .2k − 3, .2k − 3 for the complex case and 4, 4, .4k − 5, . 4k − 5
for the quaternionic case. 

Example 7 Consider the action by conjugation of .SO5 on its Lie algebra .so5 of 
skew-symmetric matrices, namely, .A · X = AXAt . When . so5 is endowed with the 
standard inner product .〈X, Y 〉 = − trXY , this action is isometric and hence induces 
an isometric action on the unit sphere . S9 of . so5. The geodesic of . S9 given by the 
block diagonal matrices 

. γ (t) = 1√
2
diag

((

0 cos t

− cos t 0

)

,

(

0 sin t

− sin t 0

)

, 0

)

intersects all orbits and always perpendicularly. Similarly as in Example 6, . γ meets 
the two singular orbits at .t ∈ {�π

4 : � ∈ Z}, and these singular orbits have 
dimension 6. The principal orbits are homogeneous hypersurfaces of . S9 with . g = 4
principal curvatures, all of them with multiplicity 2. 

All the actions above fit into a general construction: they are induced by isotropy 
representations of symmetric spaces of rank 2. This is, roughly speaking, what 
Hsiang and Lawson proved in [55] for arbitrary cohomogeneity one actions on round 
spheres.
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Let us recall from Sect. 3 that if .M ∼= G/K is a symmetric space, where K is the 
isotropy in G of some point .o ∈ M , then K acts on the tangent space .ToM by the 
differential of the isometries in K . That is, we have a smooth action . K × ToM →
ToM given by .k · v = k∗ov. This action is equivalent to the adjoint representation 
of K on . p, that is, .K × p → p, .k · X = Ad(k)X. Each one of these actions is called 
the isotropy representation of M . 

Since K is made of isometries of M , the isotropy representation is an isometric 
action on .ToM ∼= p. Hence, it restricts to an isometric action on the unit sphere 
.S
dimM−1 of .ToM ∼= p. Any maximal abelian subspace . a of . p turns out to intersect 

all the orbits of the isotropy representation and always perpendicularly (see [6, 
§2.3.2] for a proof). Hence, .a ∩ S

dimM−1 is a totally geodesic submanifold of 
.S
dimM−1 that intersects all the orbits of the restricted action to the unit sphere of 

.ToM ∼= p perpendicularly. By dimension reasons, if we want this restricted action 
on .S

dimM−1 to be of cohomogeneity one, we just need to impose that . a ∩ S
dimM−1

has dimension 1 or, equivalently, that .dim a = 2. But .dim a is, by definition, the rank 
of the symmetric space M . Hence, we are led to the conclusion that the restriction 
of the isotropy representation of a symmetric space M to the unit sphere of the 
tangent space is of cohomogeneity one precisely when M has rank two. Up to orbit 
equivalence, these actions exhaust all cohomogeneity one actions on spheres, by 
Hsiang and Lawson’s theorem. 

Theorem 1 (Homogeneous Hypersurfaces in Round Spheres) Any homoge-
neous hypersurface of a round sphere is congruent to a principal orbit of the 
action obtained by restriction to the unit sphere of the isotropy representation of 
a symmetric space of rank two. 

For the whole list of symmetric spaces, see [53, pp. 516, 518], or [38, Table 2] for 
the list of the rank 2 symmetric spaces of compact type. 

Example 8 The compact symmetric spaces whose isotropy representations induce 
the examples considered above in this section are the following: 

(1) Example 1 (d): .M = S
n×S

1 ∼= (SOn+1/SOn)×S
1, since in this case . K = SOn

and .ToM = TvS
n × R. 

(2) Example 3: .M = S
k+2 × S

n−k+1. 
(3) Example 4: .M = SU3/SO3. 
(4) Example 5: M is .SO6/SU3, .SU6/Sp3, or the exceptional space .E6/F4. 
(5) Example 6: M is .SO2+k/SO2SOk , namely, the Grassmannian of oriented 2-

planes of .R2+k or .U2+k/U2Uk
∼= SU2+k/S(U2Uk) or .Sp2+k/Sp2Spk , that 

is, the Grassmannians of complex or quaternionic 2-planes of .C2+k or .H2+k , 
respectively. 

(6) Example 7: M is the compact Lie group .SO5 with a bi-invariant metric. 

In each of the previous cases, we have indicated a compact symmetric space, but 
there is also a noncompact symmetric space with equivalent isotropy representation, 
by duality. For instance, in item (3), M could be taken as .SL3(R)/SO3. In this case, 
its Cartan decomposition .g = k⊕ p is nothing but the decomposition of .g = sl3(R)
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into the sum of the subspace of skew-symmetric matrices .k = so3 and the subspace 
.p = Herm0

3(R) of trace-free symmetric matrices, and the isotropy representation 
.K × p → p agrees directly with the .SO3-action by conjugation on . Herm0

3(R)

described in Example 4. 

In the examples discussed in this section, we could see the following remarkable 
fact: a normal geodesic to the orbit foliation intersects the singular orbits in exactly 
2g equidistributed points, where g agrees with the number of distinct principal 
curvatures of each one of the principal orbits. This is something that holds for 
any cohomogeneity one action on a round sphere (and more generally, for any 
isoparametric family, by Münzner’s seminal work [74]). 

The number g of principal curvatures of homogeneous hypersurfaces in spheres, 
their multiplicities, and their actual values were calculated by Takagi and Taka-
hashi [95]. Their description can be done in terms of the restricted root system 
. � associated with the symmetric space M of noncompact type whose isotropy 
representation induces the action. Let .X ∈ a ∩ S

dimM−1 be a point in a geodesic of 
.S
dimM−1 that is orthogonal to the orbits of the isotropy representation .K × p → p. 

Assume that X lies in a principal orbit. Let . ξ be a unit normal vector to the 
hypersurface .K ·X, i.e., . ξ spans .TX(a∩S

dimM−1). Then, the principal curvatures of 
.K · X are of the form .μα = −α(ξ)/α(X), for each positive root .α ∈ �+. Note that 
if .α, 2α ∈ �+, then both roots have the same associated principal curvature, . μα =
μ2α . Thus, the number g of principal curvatures of a homogeneous hypersurface is 
precisely the cardinality of the set of reduced positive roots. It is a standard fact of 
root systems that those of rank 2 have exactly 2, 3, 4 or 6 reduced roots (see [60, 
Figure 2.2 in p. 151]). This immediately gives that .g ∈ {1, 2, 3, 4, 6}; the case 
.g = 1 arises since the symmetric space can have a flat factor (see Example 8 (1)), 
and then the associated root system is of rank 1. The multiplicities correspond to 
the multiplicities of the positive roots. Specifically, the multiplicity of the principal 
curvature . μα associated with the reduced positive root . α is .mα = dim gα ⊕ g2α . 
We refer to [6, §2.3.2 and §2.7] for more details and to [74, §2, Satz 1] or [78, 
Teorema 3.8] for an alternative description in the general setting of isoparametric 
hypersurfaces. 

4.2 Homogeneous Hypersurfaces in the Other Compact 
Symmetric Spaces 

In this subsection, we will review the classification problem of homogeneous 
hypersurfaces in compact symmetric spaces of nonconstant curvature. We will 
mainly focus on the rank one setting. 

The simply connected Riemannian symmetric spaces of compact type and rank 
one are the sphere . Sn and the projective spaces .CPn, .HPn, and .OP2 (.n ≥ 2). They 
can be described by a symmetric pair .(G,K) as specified in Table 1.
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Table 1 Data for the sphere and the projective spaces 

.Sn .CPn .HPn . OP2

G .SOn+1 .SUn+1 .Spn+1 . F4

K .SOn .S(U1Un) .Sp1Spn . Spin9

The classification problem for the complex projective space was solved by 
Takagi [96]. 

Theorem 2 (Homogeneous Hypersurfaces in Complex Projective Spaces) A 
homogeneous hypersurface in a complex projective space .CPn is congruent to one 
of the following: 

(1) A geodesic sphere 
(2) A tube around a totally geodesic .CPk in .CPn, . k ∈ {1, . . . , n − 1}
(3) A tube around a totally geodesic .RPn in . CPn

(4) A tube around the Segre embedding of .CP1 × CPk into .CPn with . n = 2k + 1
odd, . k ≥ 1

(5) A tube around the Plücker embedding of the complex Grassmannian . G2(C
5)

into . CP9

(6) A tube around the half spin embedding of .SO10/U5 into . CP15

A remarkable observation, similar to the discussion above in spheres and which 
follows from the work of Takagi [96] and later by Podestà and Thorbergsson [79], is 
that a homogeneous hypersurface in the complex projective space .CPn is congruent 
to the quotient of a principal orbit of the isotropy representation of a Hermitian 
symmetric space of rank two. We will develop this idea a bit further before 
commenting on the different items of the classification given by Theorem 2. 

Let .M ∼= G/K be a Hermitian symmetric space of rank two. Being Hermitian 
means that M has a complex structure that is invariant under each geodesic 
symmetry. Then, M has even dimension, and we write .dimM = 2n + 2. Consider 
the base point .o ∼= eK . The isotropy representation of M is the action . K × ToM →
ToM , .(k, v) �→ k∗ev. Since .ToM ∼= R

2n+2 ∼= C
n+1 and the elements of K act 

as linear holomorphic isometries of .Cn+1, this action can be restricted to an action 
on the unit sphere .S2n+1 ⊂ C

n+1. As discussed in the previous subsection, this 
action on the unit sphere is of cohomogeneity one. Moreover, the action on . Cn+1

is polar and with totally real section, that is, there exists a totally real plane in 
.C

n+1 that intersects all the orbits of the isotropy representation, and, at the points of 
intersection, the plane and the orbits are orthogonal. Since this action maps complex 
lines of .C

n+1 to complex lines of .C
n+1, it descends to a cohomogeneity one action 

on the projectivization .P(Cn+1) ∼= CPn. 
In order to obtain the classification in Theorem 2, it is therefore enough to 

consider the classification of (possibly reducible) Hermitian symmetric spaces of 
rank two and calculate their induced isotropy representations on the corresponding 
projectivization of the tangent space at the point where the isotropy is considered. 
See [53, X.6], taking into account the possible coincidences between different 
classes.



164 J. C. Díaz-Ramos et al.

Tubes around totally geodesic .CPk , .k ∈ {0, . . . , n − 1}, are principal orbits of 
the action of .Uk+1 × Un−k . This action comes from the isotropy representation of 
the reducible symmetric space . CPk+1 × CPn−k = (SUk+2 × SUn−k+1)/(S(U1 ×
Uk+1) × S(U1 × Un−k)). If .k = 0, we recover geodesic spheres. 

The real oriented two-plane Grassmannian . G+
2 (Rn+3) = SOn+3/SO2 ×SOn+1

induces an action of .SOn+1 on .CPn with two singular orbits: a totally geodesic 
real projective space .RPn and the complex quadric . Qn−1 = {[z] ∈ CPn :
z20 + · · · + z2n = 0}. 

Similarly, the complex two-plane Grassmannian . G2(C
k+3) = SUk+3/S(U2Uk+1)

induces an action on .CP2k+1, one of whose singular orbits is the Segre embedding of 
.CP1 ×CPk in .CP2k+1. This is an embedding of a product of projective spaces onto 
another projective space of suitable dimension, where homogeneous coordinates 
are multiplied out. In our case, this embedding is given by the map . CP1 × CPk →
CP2k+1, .([z0 : z1], [w0 : · · · : wk]) �→ [z0w0 : · · · : z0wk : z1w0 : · · · : z1wk]. 

The Plücker embedding is another classical embedding into a complex projective 
space. In this case, we embed a Grassmannian of k-planes into the projectivization of 
the space of k-forms. For .G2(C

5) into .P(�2
C
5) ∼= CP9, this embedding is defined 

by .span{v1, v2} �→ [v1 ∧ v2]. Tubes around this submanifold are homogeneous and 
correspond to the principal orbits of the cohomogeneity one action induced by the 
isotropy representation of the Hermitian symmetric space .SO10/U5. 

Finally, the Hermitian symmetric space .E6/U1Spin10 induces a cohomogeneity 
one action on .CP15. One of the singular orbits of this action is the half spin 
embedding of the symmetric space .SO10/U5. We refer to [25, §7.5] for further 
details on this embedding. 

The classification problem in quaternionic projective space is attributed to 
D’Atri [28] and Iwata [56]. 

Theorem 3 (Homogeneous Hypersurfaces in Quaternionic Projective Spaces) 
A homogeneous hypersurface in a quaternionic projective space .HPn is congru-
ent to one of the following: 

(1) A geodesic sphere 
(2) A tube around a totally geodesic .HPk in .HPn, . k ∈ {1, . . . , n − 1}
(3) A tube around a totally geodesic .CPn in . HPn

The action of .Spk+1×Spn−k on .HHk is of cohomogeneity one, and its principal 
orbits are tubes around totally geodesic quaternionic projective spaces .HPk , . k ∈
{0, . . . , n − 1}. If  .k = 0, we retrieve geodesic spheres. The principal orbits of the 
action of .Un+1 on .HPn are tubes around a totally geodesic .CPn. 

It can be shown [79] that a cohomogeneity one action on a quaternionic projective 
space is induced by the isotropy representation of a product of two quaternionic 
Kähler symmetric spaces of rank one or of an irreducible quaternionic Kähler 
symmetric space of rank two. Thus, an alternative way of getting the list of 
Theorem 3 is to look at the corresponding list of these spaces, which turns out to be 
.HPk+1 × HPn−k and .SUn+3/S(U2 × Un+1).



Homogeneous Hypersurfaces in Symmetric Spaces 165

We finish our review of homogeneous hypersurfaces in rank one symmetric 
spaces of compact type recalling the classification result for the Cayley projective 
plane given by Iwata [57]. 

Theorem 4 (Homogeneous Hypersurfaces in the Cayley Projective Plane) A 
homogeneous hypersurface in the Cayley projective plane .OP2 is congruent to one 
of the following: 

(1) A geodesic sphere 
(2) A tube around a totally geodesic .HP2 in . OP2

A geodesic sphere can be seen as a principal orbit of the isotropy action of . Spin9
on .OP2. This action has two singular orbits: a fixed point and a totally geodesic 
.S
8 = OP1. The second example in this classification is congruent to a principal 

orbit of the action of .Sp3Sp1, which has two singular orbits: a totally geodesic . HP2

and a minimal .S11 = Sp3Sp1/Sp2Sp1. As pointed out by Iwata, there are two 
more groups, up to conjugation, with the same orbits as .Sp3Sp1. These are . Sp3U1
and . Sp3. Unlike the results presented here, Iwata’s classification was obtained up to 
conjugation by an element of . F4, not up to orbit equivalence. 

Remark 4 We would like to point out that there is a classification of isoparametric 
families of hypersurfaces in complex projective spaces .CPn, .n �= 15 [36], and in 
quaternionic projective spaces .HPn, .n �= 7 [39]. It follows from these classifications 
that there are inhomogeneous examples of isoparametric hypersurfaces in complex 
and quaternionic projective spaces. However, the classification problem of isopara-
metric hypersurfaces in the Cayley projective plane is still open [99]. 

All these results were generalized by Kollross [61], who classified cohomo-
geneity one actions on irreducible symmetric spaces of compact type up to orbit 
equivalence. Thus, homogeneous hypersurfaces in an irreducible symmetric space 
of compact type can be obtained via a case-by-case study of all these actions in each 
corresponding space. 

Theorem 5 (Cohomogeneity One Actions on Irreducible Symmetric Spaces of 
Compact Type) A cohomogeneity one action on an irreducible symmetric space 
of compact type is locally orbit equivalent to one of the following: 

(1) A Hermann action of cohomogeneity one 
(2) The action of .{(g, ḡ) : g ∈ SU3} on . SU3
(3) An action induced by the isotropy representation of a symmetric space of rank 

two 
(4) One of the seven exceptions corresponding to the action of .H × K on G or of 

the action of H on .G/K , where .(H,K,G) is a triple of Table 2 

Let H and K be compact Lie subgroups of G. In Theorem 5 and in the discussion 
below, the isometric action of a product group .H × K on a compact Lie group G 
with bi-invariant metric is given by 

.(h, k) · g = hgk−1, h ∈ H, k ∈ K, g ∈ G.
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Table 2 Seven exceptional cohomogeneity one actions on symmetric spaces of compact type 

H .G2 .G2 .U3 .Spin9 .Sp1Spn .SU3 . SU3

K .SO3 × SO4 .G2 .G2 .SO2 × SO14 .SO2 × SO4n−2 .SO4 . SU3

G .SO7 .SO7 .SO7 .SO16 .SO4n .G2 . G2

The action of a subgroup H of G on a compact symmetric space .G/K is given by 
.h · gK = hgK . 

Let G be a compact semisimple Lie group. A subgroup K of G is called a 
symmetric subgroup of G if its Lie algebra is a fixed point set of an involutive 
automorphism of the Lie algebra of G. Then .(G,K) is a symmetric pair and . G/K

a symmetric space of compact type if equipped with a suitable metric. 
A Hermann action is the action of .H × K on G defined above, where H and 

K are symmetric subgroups of G. The natural action of H on .G/K is also called a 
Hermann action, and it turns out that the action of .H ×K on G is of cohomogeneity 
one if and only if so is the action of H on .G/K (or the action of K on .G/H ). 
Thus, classifying cohomogeneity one Hermann H -actions on .G/K and classifying 
cohomogeneity one Hermann .H ×K-actions on G are equivalent problems. Indeed, 
there is a correspondence between Hermann actions on symmetric spaces of type 
II (or group type), that is, compact simple Lie groups, and Hermann actions 
on symmetric spaces of type III, that is, compact symmetric spaces with simple 
isometry group, and this correspondence preserves the cohomogeneity. 

Not any Hermann action is of cohomogeneity one, but it is possible to determine 
explicitly which ones are by looking at the classification of symmetric spaces of 
compact type. Obvious examples that fall into this category are isotropy actions of 
symmetric spaces .G/K of rank one and the corresponding .K × K actions on G. 
However, there are a few more examples as shown in [61, Theorem B]. 

In Theorem 5 (2), the action of .{(g, ḡ) : g ∈ SU3} on .SU3 is given by . (g, ḡ)·g′ =
gg′ḡ−1. Here, . ḡ denotes the complex conjugation of a matrix g, which induces an 
outer Lie group automorphism of .SU3. 

Finally, we describe the actions in Theorem 5 (3). Let .̂G/̂K be a simply  
connected symmetric space of rank 2. Then, the isotropy representation of . ̂G/̂K

can be regarded as a Lie group homomorphism .ρ = Ad |
̂K : ̂K → SO(̂p) ∼= SOn, 

where .̂p ∼= Tô
̂G/̂K and .n = dim ̂G/̂K . If  .̂G/̂K is Hermitian, then .̂K ∼= Kh · U1, 

for some compact Lie group . Kh, and we can regard the restriction of . ρ to . Kh

as a homomorphism .ρ|Kh
: Kh → SUn, where .n = dimC

̂G/̂K . If  .̂G/̂K is 
quaternionic Kähler, then .̂K = Kq · Sp1, for some compact Lie group . Kq , and 
we can regard the restriction of . ρ to . Kq as a homomorphism .ρ|Kq : Kq → Spn, 
where .n = dimH

̂G/̂K . Then, the actions in item (3) of Theorem 5 correspond to 
the action of .H ×K on G and to the action of H on .G/K , where .(H,K,G) is given 
in Table 3 and .̂G/̂K is a rank two symmetric space.
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Table 3 Actions induced by isotropy representations of symmetric spaces of rank two 

.̂G/̂K arbitrary .̂G/̂K Hermitian .̂G/̂K quaternionic Kähler 

H .ρ(̂K) .ρ(Kh) . ρ(Kq)

K .SOn−1 .S(U1 × Un−1) . Sp1 × Spn−1

G .SOn .SUn . Spn

5 Homogeneous Hypersurfaces in Hyperbolic Spaces 

In this section, we review the classification results of homogeneous hypersurfaces in 
rank one symmetric spaces of noncompact type. These are precisely the hyperbolic 
spaces over the normed real division algebras, namely, .RHn, .CHn, .HHn, and . OH2

(.n ≥ 2). 

5.1 Homogeneous Hypersurfaces in Real Hyperbolic Spaces 

The classification of homogeneous hypersurfaces in real hyperbolic spaces was 
solved in a classical paper by Cartan [22]. Actually, Cartan’s aim was to classify 
isoparametric hypersurfaces in Riemannian manifolds of constant curvature. He 
succeeded to get such classification in .RHn, but not in spheres, where the problem 
remained open for nearly a century. It follows from this classification that an 
isoparametric hypersurface in .RHn is an open part of a homogeneous hypersurface. 
This implies the classification of homogeneous hypersurfaces in .RHn: 

Theorem 6 (Homogeneous Hypersurfaces in Real Hyperbolic Spaces) A 
homogeneous hypersurface in .RHn is congruent to one of the following: 

(1) A geodesic sphere 
(2) A tube around a totally geodesic .RHk , .k ∈ {1, . . . , n − 2}, in . RHn

(3) A totally geodesic .RHn−1 or one of its equidistant hypersurfaces 
(4) A horosphere 

Recall that the connected component of the identity of the isometry group of the 
real hyperbolic space .RHn is .SO0

1,n. A geodesic sphere is congruent to a principal 
orbit of the action of .SOn on .RHn. Similarly, a tube around a totally geodesic . RHk

in .RHn is congruent to a principal orbit of the action of .SO0
1,k × SOn−k , . k ∈

{1, . . . , n − 2}. If  .k = 0, we recover the geodesic spheres, and if .k = n − 1, then 
.SO0

1,n−1 acts with cohomogeneity one, but in this case, all orbits are principal; in 
particular, a totally geodesic .RHn−1 is also a homogeneous hypersurface. Finally, 
the horospheres are the orbits of the nilpotent part N of the Iwasawa decomposition 
of .SO0

1,n (see Sect. 3.3). It is remarkable that the horospheres are Euclidean spaces



168 J. C. Díaz-Ramos et al.

.R
n−1 embedded in .RHn in a totally umbilical way [93, p. 14]; all horospheres of 

.RHn are congruent to each other. 

5.2 General Approach to Homogeneous Hypersurfaces in 
Hyperbolic Spaces 

In the rest of this section, we address the classification problem for the remaining 
symmetric spaces of noncompact type and rank one. In this subsection, we review 
the algebraic structure theory of these spaces and explain the general approach for 
the classification of homogeneous hypersurfaces in this setting. In the subsequent 
subsections, we will describe the classification results separately for each family of 
spaces. We will use the notation introduced in Sect. 3.3. 

Let .(G,K) be a symmetric pair representing the symmetric space .FHn, . F ∈
{R,C,H,O} (.n = 2 if .F = O). Then, the root space decomposition of . g, the  Lie  
algebra of G, reads 

. g = g−2α ⊕ g−α ⊕ g0 ⊕ gα ⊕ g2α,

where .g2α = g−2α = 0 in the case of the real hyperbolic space .RHn; the associated 
root system is otherwise nonreduced. Recall that .g0 = k0 ⊕ a, where . a is one-
dimensional. We denote by . K0 the connected subgroup of K whose Lie algebra is 
. k0. Then, the possibilities for G, K , and . K0 are summarized in Table 4. 

In this case, the nilpotent part of the Iwasawa decomposition of . g is simply . n =
gα ⊕ g2α . If  .gα = 0, then . n is abelian. Otherwise, if .gα �= 0, it turns out that . g2α
is the center of . n and the derived subalgebra of the nilpotent Lie algebra . n, that is, 
.[n, n] = g2α . We have .dim g2α = dimR F − 1. In fact, . g2α can be interpreted as the 
imaginary part of . F; following this idea, there is a Clifford algebra representation 
.J : Cl(g2α) → End(gα) which turns . gα into a Clifford module. The restriction of J 
to . g2α gives rise to endomorphisms . JZ of . gα that are defined by the relation 

. 〈[U,V ], Z〉 = 〈JZU, V 〉, U, V ∈ gα, Z ∈ g2α.

Table 4 Data for each hyperbolic space 

.RHn .CHn .HHn . OH2

G .SO0
1,n .SU1,n .Sp1,n . F−20

4

K .SOn .S(U1Un) .Sp1Spn . Spin9
.K0 .SOn−1 .S(U1Un−1) .Sp1Spn−1 . Spin7
.gα .Rn−1 .Cn−1 .Hn−1 . O

.g2α 0 .R .R3 .R7
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See [16] for further details. Moreover, .gα
∼= F

n−1, and the action of . K0 on . gα is 
equivalent to the standard action. 

We will now describe the possible types of cohomogeneity one actions that may 
arise on a rank one symmetric space of noncompact type and nonconstant curvature. 
The fact that the following types exhaust all actions follows from the various works 
of Berndt, Brück, and Tamaru [5, 12, 14]. In Sect. 6, we will describe a more general 
approach that holds for arbitrary rank. 

(1) If a cohomogeneity one action on .FHn induces a regular foliation, then there 
are two options up to orbit equivalence [12]: 

(a) The horosphere foliation, whose leaves are the orbits of the action of the 
nilpotent part of the Iwasawa decomposition of G, namely, the connected 
subgroup N with Lie algebra . n

(b) The solvable foliation, whose leaves are the orbits of the subgroup S whose 
Lie algebra is .s = a ⊕ w ⊕ g2α , where . w is a real hyperplane of . gα

(2) In order to determine the cohomogeneity one actions on .FHn that have a 
totally geodesic singular orbit, it is enough to determine which totally geodesic 
submanifolds of .FHn have homogeneous tubes. Totally geodesic submanifolds 
of hyperbolic spaces have been classified. By calculating the stabilizer of each 
one of these submanifolds, as well as its slice representation (i.e., the linearized 
action on the normal space to the totally geodesic submanifold), one can 
conclude which ones give rise to cohomogeneity one actions [5]. 

(3) Finally, it remains to study cohomogeneity one actions on .FHn with a non-
totally geodesic singular orbit. Berndt and Tamaru devised in [14] a procedure 
to address this case. In symmetric spaces of higher rank, this method is 
called the nilpotent construction, cf. Sect. 6.4. In brief, the classification of 
cohomogeneity one actions on .FHn with a non-totally geodesic singular orbit 
reduces to the classification of the subspaces . w of . gα such that .NK0(w), the  
normalizer of . w in . K0, acts transitively on the unit sphere of .w⊥ = gα � w, 
the orthogonal complement of . w in . gα , up to congruence by an element of 
. K0. In this case, the connected subgroup of .K0AN ⊂ G whose Lie algebra is 
.NK0(w) ⊕ a ⊕ w ⊕ g2α acts on .FHn with cohomogeneity one. The subspaces 
.w ⊂ gα satisfying this condition have been classified in [14] for  . F ∈ {C,O}
and in [32] for .F = H. 

5.3 Homogeneous Hypersurfaces in Complex Hyperbolic 
Spaces 

The classification of homogeneous hypersurfaces in the complex case was obtained 
by Berndt and Tamaru in [14]. It can be stated as follows:
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Theorem 7 (Homogeneous Hypersurfaces in Complex Hyperbolic Spaces) A 
homogeneous hypersurface in .CHn is congruent to one of the following: 

(1) A geodesic sphere 
(2) A tube around a totally geodesic .CHk in .CHn, . k ∈ {1, . . . , n − 1} 
(3) A tube around a totally geodesic .RHn in . CHn 

(4) A horosphere 
(5) A ruled homogeneous minimal Lohnherr hypersurface .W 2n−1 

π/2 or one of its 
equidistant hypersurfaces 

(6) A tube around a ruled homogeneous minimal Berndt–Brück submanifold 
.W 2n−k 

ϕ , for .k ∈ {2, . . . , n  − 1}, .ϕ ∈ (0, π/2], where k is even if . ϕ �= π/2 

Tubes around totally geodesic complex hyperbolic spaces .CHk , . k ∈ {0, . . . , n − 
1}, are congruent to the principal orbits of the action of .S(U1,k × Un−k). The  
particular case of .k = 0 corresponds to geodesic spheres. The principal orbits of 
the group .SO0 

1,n produce tubes around a totally geodesic real hyperbolic space 
.RHn. Note that tubes around a totally geodesic .RHk , .k ∈ {1, . . . , n  − 1}, are not 
homogeneous because the normal space of .RHk is a direct sum of a nontrivial totally 
real and a nontrivial complex subspace of a complex vector space and isometries 
of .CHn are holomorphic. The group N gives rise to a horosphere foliation, whose 
orbits are isometric to generalized Heisenberg groups. All of the orbits of this action 
are principal and congruent to each other. 

Item (5) in Theorem 7 corresponds to the solvable foliation, whereas example (6) 
corresponds to a nilpotent construction. We review them in more detail here. Let 
. w be a real subspace of .gα ∼= Cn−1. We denote by J the complex structure of 
.gα ∼= Cn−1. The Kähler angle of a nonzero .v ∈ w⊥ is the angle between Jv  and 
. w⊥. We say that .w⊥ has constant Kähler angle .ϕ ∈ [0, π/2] if the Kähler angle of 
any nonzero vector of .w⊥ is . ϕ. Examples of subspaces with constant Kähler angle 
are totally real subspaces, that is, .〈Jw⊥,w⊥〉 =  0, whose Kähler angle is . π/2, 
and complex subspaces, that is, .Jw⊥ = w⊥, whose Kähler angle is 0. Any angle 
.ϕ ∈ (0, π/2) can be achieved, and in this case, .dimw⊥ = k is an even number. 
Two subspaces of . gα with the same dimension and Kähler angle are congruent by 
an isometry of . K0, and a basis of such a subspace can be written as 

. {e1, cos(ϕ)J e1 + sin(ϕ)J e2, . . . , e2k−1, cos(ϕ)J e2k−1 + sin(ϕ)J e2k}, 

where .{e1, . . . , e2k} is a .C-orthonormal subset in .gα ∼= Cn−1. 
It turns out that if . w⊥ has constant Kähler angle . ϕ, then .NK0(w) acts transitively 

on the unit sphere of . w⊥. Berndt and Tamaru [14] showed that the connected 
subgroup of .SU1,n whose Lie algebra is .NK0(w) ⊕ a ⊕ w ⊕ g2α acts on .CHn with 
cohomogeneity one. We denote by .W 2n−k 

ϕ the orbit through the origin . o ∼= eK 
of this group, where k is its codimension. If . w is a hyperplane, then .w⊥ is 
one-dimensional and, thus, totally real. The corresponding action has exactly one 
minimal orbit, known as the Lohnherr hypersurface, and the rest of the orbits are 
equidistant hypersurfaces to it. If . w has codimension .k >  1, then there is exactly 
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one singular orbit, known as a Berndt-Brück submanifold, and the rest of the orbits 
are tubes around it. Any Kähler angle is possible if .n ≥ 3. However, if .ϕ = 0, this  
construction reproduces the tubes around a totally geodesic .CHk , .k ∈ {1, . . . , n}, so  
it is removed from item (6) of Theorem 7 to avoid duplication. 

Remark 5 Isoparametric hypersurfaces in .CHn have been classified in [33]. It 
follows from this classification that a hypersurface in .CHn is isoparametric if and 
only if it is an open part of a homogeneous hypersurface or of a tube around the 
orbit through the origin of the subgroup of .AN ⊂ SU1,n whose Lie algebra is 
.a ⊕ w ⊕ g2α , where .w⊥ is a subspace of . gα with nonconstant Kähler angle. As a 
consequence, any isoparametric hypersurface in .CH2 is homogeneous, but there are 
infinitely many inhomogeneous examples in .CHn, .n ≥ 3. 

5.4 Homogeneous Hypersurfaces in Quaternionic Hyperbolic 
Spaces 

The classification of cohomogeneity one actions on quaternionic hyperbolic spaces 
.HHn has recently been obtained in [32] by the first two authors and Rodríguez-
Vázquez. The corresponding classification of homogeneous hypersurfaces can be 
read from there. 

Theorem 8 (Homogeneous Hypersurfaces in Quaternionic Hyperbolic Spaces) 
A homogeneous hypersurface in .HHn is congruent to one of the following: 

(1) A geodesic sphere 
(2) A tube around a totally geodesic .HHk in .HHn, . k ∈ {1, . . . , n − 1} 
(3) A tube around a totally geodesic .CHn in . HHn 

(4) A horosphere 
(5) A homogeneous minimal hypersurface . P1 or one of its equidistant hypersur-

faces 
(6) A tube around a homogeneous minimal submanifold . Pw in .HHn, where .w⊥ is 

a protohomogeneous subspace of . gα 

Similar to the complex case, tubes around a totally geodesic quaternionic 
hyperbolic space .HHk , .k ∈ {0, . . . , n  − 1}, are homogeneous and are congruent to 
the principal orbits of the action of .Sp1,k ×Spn−k on .HHn. If .k = 0, we again  have  
geodesic spheres. Tubes around totally geodesic complex hyperbolic spaces .CHn in 
.HHn are also homogeneous and correspond to the principal orbits of the action of 
.SU1,n. Although there are more totally geodesic submanifolds of .HHn, their tubes 
fail to be homogeneous. The action of N gives rise to a horosphere foliation, all 
whose orbits are congruent to each other. Examples (5) correspond to the leaves of 
the solvable foliation. This is constructed, as usual, as the action of the subgroup of 
.AN ⊂ Sp1,n whose Lie algebra is .a⊕w⊕g2α , where . w is a hyperplane in . gα . This  
foliation has exactly one minimal leaf, which we have denoted by . P1. 
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For the rest of the examples, we need to determine all subspaces . w of . gα ∼= Hn−1 

such that .NK0(w) acts transitively on the unit sphere of . w⊥ up to congruence by an 
element of .K0 ∼= Sp1Sp1,n−1. As we explained before, the subgroup of . K0AN ⊂ 
Sp1,n whose Lie algebra is .NK0(w)⊕a⊕w⊕g2α acts on .HHn with cohomogeneity 
one. We will call the subspaces . w of . gα satisfying this condition protohomogeneous. 
In the particular case that . w is a hyperplane, we recover the solvable foliation, which 
corresponds to item (5) of Theorem 8. 

The space .gα ∼= Hn−1 is a right quaternionic vector space. It can be endowed 
with a quaternionic structure . J, that is, a vector subspace of .EndR(Hn−1) admitting 
a so-called canonical basis .{J1, J2, J3} satisfying 

. J 2 
i = − Id, JiJi+1 = Ji+2 = −Ji+1Ji (indices modulo 3). 

For a given subspace .w⊥ ⊂ gα , each complex structure .J ∈ J determines a Kähler 
angle of a nonzero vector .v ∈ w⊥ in the sense we have considered for the complex 
case. We define the quaternionic Kähler angle of a nonzero .v ∈ w⊥ to be the triple 
.(ϕ1(v), ϕ2(v), ϕ3(v)) satisfying that there exists a canonical basis .{J1, J2, J3} such 
that: 

(i) .ϕ1(v) ≤ ϕ2(v) ≤ ϕ3(v). 
(ii) .ϕi(v) is the Kähler angle of v with respect to . Ji , .i ∈ {1, 2, 3}. 
(iii) .〈πw⊥Jiv, πw⊥Jjv〉 =  0 if .i �= j and where .πw⊥ : gα → w⊥ denotes the 

orthogonal projection onto . w⊥. 
(iv) .ϕ1(v) is minimum, and .ϕ3(v) is maximum among the Kähler angles of v with 

respect to the complex structures .J ∈ J. 

A probably more telling way of defining the quaternionic Kähler angle is the 
following. We consider the symmetric bilinear form: 

. Lv : J × J → R, (J,  J ′) �→ 〈πw⊥Jv,  πw⊥J ′v〉. 

Then, the Kähler angle of a nonzero .v ∈ w⊥ is the ordered triple . (ϕ1(v), ϕ2(v), 
ϕ3(v)) satisfying that the eigenvalues of . Lv are precisely .cos2(ϕi(v))〈v, v〉. The  
canonical basis .{J1, J2, J3} used above to define the quaternionic Kähler angle is 
precisely a basis that diagonalizes . Lv . 

If .w⊥ is protohomogeneous, then .w⊥ has constant quaternionic Kähler angle. 
Protohomogeneous subspaces of . Hn have been classified in [32] up to congruence 
by an element of .Sp1Spn by making extensive use of the concept of quaternionic 
Kähler angle. The moduli space .Mk,n of nonzero protohomogeneous subspaces of 
dimension k in . Hn, up to congruence in .Sp1Spn, is described in Table 5. 

This classification includes well-known examples such as totally real subspaces 
(precisely those with quaternionic Kähler angle .(π/2, π/2, π/2)), totally complex 
subspaces (with quaternionic Kähler angle .(0, π/2, π/2)), quaternionic subspaces 
(with quaternionic Kähler angle .(0, 0, 0)), subspaces of constant Kähler angle 
.ϕ ∈ (0, π/2) inside a totally complex vector subspace (with quaternionic Kähler 
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Table 5 Moduli space of protohomogeneous subspaces of dimension k in . Hn 

.Mk,n .k ≤ n .n < k  ≤ 4n 
3 . 4n 

3 < k  ≤ 2n . k >  2n 

.k ≡ 0 (mod 4) .(R+ 
4 \ R− 

4 ) � (R− 
4 × Z2) .S .{(0, ϕ, ϕ)}ϕ∈[0, π 

2 ] . {(0, 0, 0)} 
.k ≡ 2 (mod 4) .{(ϕ, π 

2 , 
π 
2 )}ϕ∈[0, π 

2 ] .{(0, π 
2 , 

π 
2 )} .{(0, π 

2 , 
π 
2 )} . ∅ 

.k �= 3 odd .{( π 
2 , 

π 
2 , 

π 
2 )} .∅ .∅ . ∅ 

.k = 3 .(R+ 
3 \ R− 

3 ) � (R− 
3 × Z2) .∅ .{(ϕ, ϕ, π 

2 )}ϕ∈{0, π 
3 } . {(0, 0, π 

2 )} 

. 

� = {(ϕ1, ϕ2, ϕ3) ∈ [0, π/2]3 : ϕ1 ≤ ϕ2 ≤ ϕ3}, 
R

+ 
3 = {(ϕ, ϕ, π/2) ∈ � : ϕ ∈ [0, π/2]}, 

R
− 
3 = {(ϕ, ϕ, π/2) ∈ � : ϕ ∈ [π/3, π/2)}, 

R
+ 
4 = {(ϕ1, ϕ2, ϕ3) ∈ � : cos(ϕ1) + cos(ϕ2) − cos(ϕ3) ≤ 1}, 

R
− 
4 = {(ϕ1, ϕ2, ϕ3) ∈ � : cos(ϕ1) + cos(ϕ2) + cos(ϕ3) ≤ 1, ϕ3 �= π/2}, 
S = {(ϕ1, ϕ2, ϕ3) ∈ � : cos(ϕ1) + cos(ϕ2) + ε cos(ϕ3) = 1, for ε = 1 or  ε = −1}. 

angle .(ϕ, π/2, π/2)), complexifications of subspaces of constant Kähler angle . ϕ ∈ 
(0, π/2) in a totally complex subspace (with quaternionic Kähler angle .(0, ϕ, ϕ)), 
and subspaces of the form . Jv, .v ∈ Hn, .v �= 0 (with quaternionic Kähler angle 
.(0, 0, π/2)). 

However, there are some other nonclassical examples. See [32] for an explicit 
construction of these subspaces. While two subspaces with different quaternionic 
Kähler angles cannot be congruent to each other, a remarkable consequence of this 
classification implies the existence of noncongruent subspaces of . Hn with the same 
quaternionic Kähler angles. These correspond precisely to the intersections . R+ 

3 ∩ 
R

− 
3 = R− 

3 and .R
+ 
4 ∩ R− 

4 = R− 
4 . 

All the examples in Theorem 8 (6) are obtained as tubes around the orbit through 
the origin .o ∼= eK of the connected subgroup of .AN ⊂ G = Sp1,n whose Lie 
algebra is .a ⊕ w ⊕ g2α and where .w⊥ is protohomogeneous in .gα ∼= Hn−1. The  
moduli space .Mk,n−1 determines the congruence classes of the singular orbits of 
the corresponding cohomogeneity one actions, which in turn determines the orbit 
equivalence classes of cohomogeneity one actions on .HHn. 

In order to get a proper classification, we still need to exclude a few classes that 
intersect with previous items of Theorem 8. If  .w⊥ has quaternionic Kähler angle 
.(0, 0, 0), then .w⊥ and also . w are quaternionic vector subspaces of .gα ∼= Hn−1. In  
this case, we recover tubes around totally geodesic quaternionic hyperbolic spaces 
.HHk , .k ∈ {1, . . . , n − 1}. As we explained before, we also have to exclude when . w 
is a hyperplane, as this gives the solvable foliation. 

Remark 6 Consider the connected subgroup of .Sp1,n with Lie algebra 
.a ⊕ w ⊕ g2α , where . w is an arbitrary proper subspace of . gα . It follows from [30] 
that tubes around the orbit through the origin of that group are always isoparametric. 
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These have constant principal curvatures if and only if . w⊥ has constant quaternionic 
Kähler angle. If follows from [32] that by taking direct sums of spaces in both . R+

4
and . R

−
4 with the same constant quaternionic Kähler angles, we obtain subspaces . w⊥

that still have constant quaternionic Kähler angle but are not protohomogeneous. 
This yields examples of isoparametric hypersurfaces with constant principal 
curvatures in .HHn, .n ≥ 8, that are not homogeneous. 

5.5 Homogeneous Hypersurfaces in the Cayley Hyperbolic 
Plane 

Finally, we deal with the Cayley hyperbolic plane .OH2. 

Theorem 9 (Homogeneous Hypersurfaces in the Cayley Hyperbolic Plane) A 
homogeneous hypersurface in .OH2 is congruent to one of the following: 

(1) A geodesic sphere 
(2) A tube around a totally geodesic . OH1

(3) A tube around a totally geodesic . HH2

(4) A horosphere 
(5) A minimal homogeneous hypersurface . F1 or one of its equidistant hypersur-

faces 
(6) A tube around the minimal submanifold . Fk of codimension . k ∈ {2, 3, 6, 7}
(7) A tube around the minimal submanifold .F4,ϕ of codimension 4 for some . ϕ ∈

[0, 1]
Geodesic spheres are principal orbits of the isotropy action of .Spin9 on .OH2. 

Tubes around a totally geodesic .OH1 on .OH2 are congruent to the principal orbits of 
the action of .Spin01,8 ⊂ F−20

4 , and tubes around a totally geodesic .HH2 are principal 

orbits of the action of .Sp1,2Sp1 ⊂ F−20
4 . The group N , which is the nilpotent part of 

the Iwasawa decomposition of .F−20
4 , gives rise to the horosphere foliation in .OH2, 

whose leaves are congruent to each other. Example (5) of Theorem 9 corresponds 
to the solvable foliation, which is obtained by the action of the subgroup of . F−20

4
whose Lie algebra is .a⊕w⊕ g2α , where . w is a hyperplane in . gα . This action has a 
unique minimal orbit which is denoted by . F1. 

Examples (6) and (7) correspond to the nilpotent construction. Berndt and Br̈uck 
classified in [5] all subspaces . w of .gα

∼= O such that .NK0(w) acts transitively 
on the unit sphere of . w⊥. It turns out that any proper subspace . w of . gα with 
.dimw �= 3 satisfies this condition. Hyperplanes of . gα are ones of such spaces, 
but they correspond to item (5) and produce a foliation. The group .K0 ∼= Spin7 acts 
on .O ∼= R

8 by its irreducible 8-dimensional spin representation. This action induces 
an action on the Grassmannians .Gk(R

8) of k-planes in . R8. If  .k �= 4, this action is 
transitive, and if .k = 4, this action is of cohomogeneity one (see the discussion 
for .OH2 in [14] and the references therein). This implies that any pair of subspaces
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of . gα of dimension .k �= 4 are congruent by an isometry of .Spin7. The singular 
orbit of the action on .OH2 of the connected subgroup of .F−20

4 with Lie algebra 
.NK0(w) ⊕ a ⊕ w ⊕ g2α is denoted by . Fk , where .k = dimw⊥ = 8 − dimw. The  
moduli space of .Spin7-congruence classes of subspaces of . gα of dimension 4 is 
in one-to-one correspondence with the orbit space .G4(R

8)/Spin7 ∼= [0, 1]. The  
congruence class corresponding to some .ϕ ∈ [0, 1] produces a cohomogeneity one 
action on .OH2 whose singular orbit is denoted by .F4,ϕ . 

Remark 7 As in the previous hyperbolic spaces, any tube around the orbit through 
the origin of the subgroup . Sw of .AN ⊂ F−20

4 with Lie algebra .a ⊕ w ⊕ g2α is 
isoparametric. Moreover, in this case, it follows from [30] that each one of these 
tubes has constant principal curvatures. Thus, for .dimw⊥ = 5, the corresponding 
tubes around .Sw · o are inhomogeneous isoparametric hypersurfaces with constant 
principal curvatures. If .dimw⊥ = 4, the constant principal curvatures of the 
homogeneous tubes around .F4,ϕ are independent of . ϕ. Thus, there is an infinite 
family of noncongruent homogeneous isoparametric hypersurfaces with the same 
constant principal curvatures counted with multiplicities. 

6 Homogeneous Hypersurfaces in Symmetric Spaces 
of Noncompact Type and Arbitrary Rank 

The aim of this section is to provide an overview of the methods of construction and 
classification of cohomogeneity one actions on symmetric spaces of noncompact 
type and arbitrary rank. As we commented in the previous section, the classification 
in rank one is nowadays complete. Although this is not the case for higher rank, 
there have been recent advances that give us not only some classifications in certain 
spaces but also, importantly, a panoramic view of the possible types of actions that 
may arise in any symmetric space of noncompact type. 

We will start by explaining four construction techniques that can be regarded as 
building blocks for the classification problem. These techniques are the construction 
of codimension one subgroups of the solvable part AN of the Iwasawa decom-
position (explained in Sect. 6.1), the actions with a totally geodesic singular orbit 
(Sect. 6.2), the canonical extension of actions from lower rank symmetric spaces 
(Sect. 6.3), and the nilpotent construction (Sect. 6.4). Then, in Sect. 6.5, we will 
report on a structural result that asserts that these four building blocks are enough 
to construct any cohomogeneity one action on any (not necessarily irreducible) 
symmetric space of noncompact type.
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6.1 Homogeneous Codimension One Foliations 

Since any symmetric space of noncompact type M is a Hadamard manifold, any 
cohomogeneity one action on M has at most one singular orbit. We will explain 
in this subsection that the case of actions without singular orbit is nowadays well 
understood. 

It follows from the Iwasawa decomposition that the connected solvable subgroup 
AN of G with Lie algebra .a⊕n acts freely and transitively on M . Thus, codimension 
one subgroups of AN give rise to homogeneous codimension one regular foliations 
on M . Berndt and Tamaru used this in [12] to propose two general methods 
for constructing cohomogeneity one actions with no singular orbits on a given 
symmetric space of noncompact type. 

The first method produces a regular Riemannian foliation . F� for each one-
dimensional subspace . � in . a. Define . h� to be the orthogonal complement of . � in 
.a ⊕ n, .h� = (a � �) ⊕ n. This is a codimension one subalgebra of .a ⊕ n, so the  
corresponding connected subgroup . H� of G acts on M with cohomogeneity one 
and no singular orbits. It turns out that the orbits of this action are congruent to each 
other. Foliations of M by horospheres (i.e., by the level sets of a Busemann function 
on M) are a particular type of such a construction [42, Remark 5.4], so we will refer 
to the . F� as foliations of horospherical type. 

The second method gives us a foliation . Fi for each simple root . αi ∈ � =
{α1, . . . , αr }. Let  . � be a one-dimensional subspace of a simple root space . gαi

. It  
follows from the properties of root spaces that .hi = a ⊕ (n � �) is a codimension 
one subalgebra of .a⊕n, and so, its corresponding connected subgroup . Hi of G acts 
with cohomogeneity one on M . Actions arising in this way have a unique minimal 
orbit (namely, the orbit through o). We will refer to these . Fi as foliations of solvable 
type. 

It was shown in [12] for irreducible M and in [7] for the general case that 
every cohomogeneity one action on a symmetric space of noncompact type with 
no singular orbits is orbit equivalent to the action of some . H� or . Hi as constructed 
before. Furthermore, the moduli space of such actions has been studied in [12] and 
[92]. Two actions of horospherical type . F� and .F�′ are isometrically congruent 
precisely whenever there exists an isometry of M that induces a symmetry of the 
Dynkin diagram of . g taking . � to . �′. Something similar happens for the foliations of 
solvable type: . Fi and . Fj are isometrically congruent if and only if there exists an 
isometry of M that induces a symmetry of the Dynkin diagram of . g taking . αi to . αj . 
In particular, if . � and . �′ are contained in the same root space, they yield congruent 
foliations. Thus, the moduli space of homogeneous codimension one foliations on 
a symmetric space of noncompact type up to orbit equivalence is isomorphic to 
.(RPr � {1, . . . , r})/Aut(DDM), where .r = rank (M) and .Aut(DDM) denotes the 
subgroup of symmetries of the Dynkin diagram of . gwhich are induced by isometries 
of M .
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6.2 Cohomogeneity One Actions with a Totally Geodesic 
Singular Orbit 

Among the cohomogeneity one actions that have a singular orbit, it is natural to 
first determine those actions whose singular orbit is totally geodesic. Recall that if a 
cohomogeneity one action on a Euclidean or a real hyperbolic space has a singular 
orbit, this must be totally geodesic, although this is no longer the case for other 
hyperbolic spaces, as explained in Sect. 5. 

In the article [13], Berndt and Tamaru derived the classification of the totally 
geodesic submanifolds F of any irreducible symmetric space of noncompact type 
M that arise as singular orbits of cohomogeneity one actions on M , i.e., the 
totally geodesic submanifolds F such that the tubes around them are homogeneous 
hypersurfaces. This is basically the only case where the use of duality of symmetric 
spaces can be applied. However, we recall that one cannot simply analyze case-
by-case all possible totally geodesic submanifolds of M , since even nowadays 
there is no such a classification. Berndt and Tamaru appeal to the use of duality, 
along with Kollross’ classification [61] in the compact setting, as well as Leung’s 
classification [66] of a certain very particular type of totally geodesic submanifolds, 
called reflective submanifolds. A reflective submanifold F of a symmetric space 
M is a totally geodesic submanifold of M such that the exponential of its normal 
space at some (and hence all) point, .F⊥ = exp(νpF ), is also totally geodesic in 
M . Recall that, as totally geodesic submanifolds, both F and .F⊥ are themselves 
symmetric spaces. 

Berndt and Tamaru proved that F is a totally geodesic singular orbit of a 
cohomogeneity one action on an irreducible M if and only if one of the following 
possibilities holds: 

(i) F is a reflective submanifold such that .F⊥ is a symmetric space of rank one 
(see [13, Theorem 3.3] for an explicit list). 

(ii) F is one of the five possible nonreflective totally geodesic submanifolds related 
to the exceptional Lie group . G2 appearing in Table 6. 

It is important to mention that the lists provided in [13] are  given up to  
congruence in M by isometries of the full isometry group .Isom(M), cf. Problem 3 
in Sect. 7. 

Let us now assume that M is reducible. Put .M = M1 × · · · × Ms for its de 
Rham decomposition into irreducible symmetric spaces (of noncompact type). For 
each .i ∈ {1, . . . , s}, we write .Mi

∼= Gi/Ki , and hence, .g = g1 ⊕ · · · ⊕ gs is the 
decomposition of the semisimple Lie algebra . g into its simple ideals. A fundamental 

Table 6 Nonreflective totally geodesic submanifolds related to . G2

M .SO3,7/SO3 × SO7 .SO7(C)/SO7 .G2
2/SO4 . GC

2 /G2

F .G2
2/SO4 .GC

2 /G2 .CH2, .SL3(R)/SO3 .SL3(C)/SU3
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observation made in the recent work [31] is that if a cohomogeneity one action on 
M with a totally geodesic singular orbit does not split nicely with respect to the 
previous decompositions (i.e., if it is not orbit equivalent to a product action), then 
there must exist two homothetic factors . Mj and . Mk of M of rank one, and the action 
is orbit equivalent to that of the connected subgroup of G whose Lie algebra is 

.gj,k,τ ⊕
(

⊕

i=1
i �=j,k

gi

)

, with gj,k,τ = {X + τX : X ∈ gj }, (3) 

where .τ : gj → gk is a Lie algebra isomorphism. In this case, the singular orbit 
is also homothetic to .Mj and . Mk . This result ultimately follows from a classical 
theorem of Dynkin [43, Theorem 15.1, p. 235] which states that a maximal proper 
subalgebra of either . g splits nicely with respect to the decomposition of . g into simple 
ideals or it is of the form (3). 

All in all, any cohomogeneity one action with a totally geodesic singular orbit on 
M is determined by one of the actions on an irreducible factor of M listed by Berndt 
and Tamaru in [13] or by a diagonal action on the product of two homothetic rank 
one factors of M , as in  (3). 

6.3 Canonical Extension of Actions on Boundary Components 

Consider a subset .� ⊂ � of simple roots and its associated boundary component 
. B�. Since . S� is (up to a covering) the identity component of .Isom(B�), any  
isometric action on . B� has the same orbits as some connected Lie subgroup . H�

of . S�. Consider the subgroup 

. H�
� = H�A�N�

of G. Then, .H�
� acts on M with the same cohomogeneity of the action of . H� on . B�. 

Indeed, each .H�
� -orbit on M , say .H�

� ·p, is nothing but the union of all .A�N�-orbits 
through the points of .H� ·p. Recall from Sect. 3.4 that all the .A�N�-orbits have the 
same dimension. We say that .H�

� is the group obtained by canonical extension of 
.H� from the boundary component .B� to M . Furthermore, it was proved in [15, 
Proposition 4.2] that if the actions of two connected subgroups of . S� are orbit 
equivalent on . B� by an isometry in . S� (equivalently, by an isometry of .Isom(B�)0), 
then their canonical extensions are orbit equivalent on M by an element of G. 

As boundary components of M are symmetric spaces of noncompact type, it 
makes sense to study what happens if one applies this procedure twice. Consider the 
boundary component . B� associated with a subset of simple roots .� ⊂ �. Recall 
that we can naturally identify . � with a set of simple roots for . s�. Thus, a boundary 
component of .B� is determined by a subset .� ⊂ � ⊂ � and in fact coincides 
with the boundary component .B� of M associated with . �. One gets an inclusion
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of totally geodesic submanifolds .B� ⊂ B� ⊂ M . Let  .H� be a connected closed 
subgroup of . S� acting isometrically on . B� . Then, its canonical extension .H�

� is a 
connected closed subgroup of . S� acting isometrically on . B�, so we can consider 
its canonical extension to M , which we denote by .(H�

� )�. This construction turns 
out to be the same as directly extending the action of .H� from . B� to the whole M , 
that is, .(H�

� )� = H�
� (cf. [31, Lemma 4.2]). Roughly speaking, the composition of 

canonical extensions is a canonical extension. 

Remark 8 The canonical extension method described above admits an interesting 
version that allows to enlarge submanifolds from boundary components to the whole 
symmetric space. This procedure preserves important geometric properties such as 
the constancy of the mean curvature or isoparametricity, as was shown in [35]. More 
recently, another remarkable extension method of submanifolds and actions in the 
context of symmetric spaces of noncompact type has been discovered [41]. In this 
case, the extension does not apply to boundary components, but to certain totally 
geodesic and flat submanifolds. As a by-product of this method, the first examples of 
inhomogeneous isoparametric hypersurfaces in any symmetric space of noncompact 
type and rank higher than two were obtained. 

6.4 The Nilpotent Construction Method 

Apart from the canonical extension, Berndt and Tamaru proposed in [15] another 
method for constructing cohomogeneity one actions from the parabolic subgroups 
of G. Although this procedure was originally formulated for an arbitrary subset of 
simple roots .� ⊂ �, it will be enough to consider subsets of cardinality . |�| =
|�| − 1, that is, those giving rise to maximal proper parabolic subgroups of G. 

Let .� = � \ {αj }, for some .αj ∈ �, and consider the dual vector .Hj ∈ a of . αj , 
defined by .αi(H

j ) = δij . The subalgebra . n� admits a natural gradation .
⊕

ν≥1 n
ν
�, 

where .nν
� = ⊕

λ(Hj )=ν gλ. Note that .λ(Hj ) = ν if and only if . λ has coefficient . ν in 

. αj when expressed as a sum of simple roots. Suppose that . v is a subspace of . n1� of 
dimension .dim v ≥ 2. Then, .n�,v = n� � v is a subalgebra of . n�. Denote by . N�,v

the corresponding connected Lie subgroup of . N�. Assume the following conditions 
hold: 

(NC1) .NM�(n�,v) acts transitively on .B� = M� · o. 
(NC2) .NK�(n�,v) = NK�(v) acts transitively on the unit sphere of . v. 

Then, the group 

. H�,v = N0
L�

(n�,v)N�,v = N0
M�

(n�,v)A�N�,v

acts on M with cohomogeneity one and a singular orbit .H�,v·o. Here, .N0(·) denotes 
the connected component of the identity of a normalizer. In this case, we say that the 
action of .H�,v on M has been obtained by nilpotent construction from the choices
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of . � and . v. Moreover, it was proved in [15] that if two subspaces . v1, v2 ⊂ n1�
giving rise to actions by nilpotent construction are conjugate by an element in . K�, 
the actions of the corresponding groups .H�,v1 ,H�,v2 on M are orbit equivalent (via 
the same element). 

Remark 9 Conditions (NC1)–(NC2) have geometric meaning. Condition (NC1) 
implies that the orbit .H�,v · o contains the boundary component . B�, and hence 
its normal space can be identified with . v, i.e., .νo(H�,v · o) ∼= v. Then, condition 
(NC2) means that the slice representation of .H�,v (i.e., the action of the group of 
differentials of the isometries in .H�,v on .νo(H�,v · o) ∼= v) is of cohomogeneity 
one on the Euclidean space .νo(H�,v · o) ∼= v, with orbits given by the origin and 
concentric spheres. Since an isometric action has the same cohomogeneity as its 
slice representation, we see that both conditions (NC1)–(NC2) imply that .H�,v acts 
on M with cohomogeneity one, as claimed above. 

Remark 10 Subspaces of . n1� satisfying condition (NC1) (respectively, (NC2)) 
have been called admissible (resp. protohomogeneous) in [32] and [91]. We observe 
that if M has rank one, then any proper subset . � of .� = {α1} is necessarily 
the empty set, and hence, any proper boundary component is a point. Therefore, 
the admissibility condition (NC1) is trivially satisfied. Thus, for rank one spaces, 
the nilpotent construction amounts to the determination of protohomogeneous 
subspaces. For these spaces, .K0

� = K0
∅ = K0, fromwhere one can see that condition 

(NC2) is equivalent to the definition of protohomogenous subspace given in Sect. 5. 

The complete determination of all possible subspaces . v satisfying conditions 
(NC1)–(NC2) for a specific symmetric space is usually a very difficult task. Indeed, 
as commented in Sect. 5, this was even hard in the case of the quaternionic 
hyperbolic spaces, where condition (NC1) did not play any role. 

As before, it is important to determine what happens when one considers an 
action on a boundary component . B� obtained by nilpotent construction, and then 
one extends it to M . This turns out to be equivalent to an action obtained via 
nilpotent construction on M . More precisely, let .αj ∈ � ⊂ �. Let . H� be a subgroup 
of . S� obtained by the nilpotent construction method applied to the symmetric 
space . B�. Then the subgroup .H�

� of G obtained by canonical extension of the 
.H�-action to M acts on M with the same orbits as the Lie group . H�\{αj },v =
N0

L�\{αj }(n�\{αj },v)N�\{αj },v obtained by nilpotent construction applied to M , for  

certain subspace . v of .n1�\{αj } of .dim v ≥ 2. For further details and a proof, see [31, 
Lemma 4.3]. 

6.5 The Classification of Cohomogeneity One Actions 

A general procedure to classify cohomogeneity one actions on a given symmetric 
space of noncompact type .M ∼= G/K (not necessarily irreducible) goes as
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follows. Assume we have a connected Lie subgroup H of G acting on M with 
cohomogeneity one. If the H -action produces a regular foliation, then the H -action 
is orbit equivalent to one of the actions described in Sect. 6.1, as explained in that 
subsection. Thus, let us suppose that the action of H has a singular orbit. The Lie 
algebra . h of H is contained in some maximal proper subalgebra . q of . g. By a result 
of Mostow [73], there are two possibilities for . q: it is either a maximal proper 
reductive subalgebra or a maximal proper parabolic subalgebra of . g. Denote by Q 
the connected subgroup of G with Lie algebra . q. Then: 

(a) If . q is a maximal proper reductive subalgebra of . g, then Q acts with coho-
mogeneity one and the same orbits as the H -action, one of them being totally 
geodesic (which is the singular one if M is irreducible and .M �= RHn), as 
shown in [15, Theorem 3.2]. 

(b) If . q is a maximal proper parabolic subalgebra of . g, then the H -action is 
orbit equivalent to an action obtained by canonical extension or by nilpotent 
construction, as proved by Berndt and Tamaru in [15, Theorem 5.8]. 

Using this approach, along with a careful analysis of the nilpotent construction, 
allowed for the classification of the cohomogeneity one actions on several symmet-
ric spaces of noncompact type and rank 2, namely, on 

.

SL3(R)/SO3, SL3(C)/SU3, SL3(H)/Sp3, SO5(C)/SO5,

G2
2/SO4, GC

2 /G2, SO0
2,n/SO2SOn, SU2,n/S(U2Un).

(4) 

These classifications were obtained in the series of papers [8, 15, 91]. 
When trying to implement this approach in spaces of rank greater than 2, it 

turns out that one can apply a rank reduction procedure. Roughly speaking, if 
the H -action is orbit equivalent to the canonical extension of some action on a 
boundary component, we can apply the same procedure as before recursively until 
we get to an action that can no longer be retrieved by canonical extension. Thus, 
every cohomogeneity one action with a singular orbit can ultimately be obtained 
by nilpotent construction or by extending an action of cohomogeneity one with a 
totally geodesic singular orbit on a boundary component of M . In the latter case, as 
follows from the discussion in Sect. 6.2, the action being extended is of one of the 
following two types: 

(i) A cohomogeneity one action with a totally geodesic singular orbit on an 
irreducible boundary component .B� of M and hence orbit equivalent to one 
of the actions classified in [13] in terms of certain reflective submanifolds and 
some exceptions related to . G2. 

(ii) A cohomogeneity one action with a diagonal totally geodesic submanifold on a 
reducible boundary component .B{αj ,αk} ∼= B{αj } × B{αk} ∼= FHn × FHn, given  
by a connected Lie group with Lie algebra .sj,k,τ = {X + τX : X ∈ s{αj }}, 
where .τ : s{αj } → s{αk} is a Lie algebra isomorphism between the isometry Lie 
algebras of both factors of .B{αj ,αk}.
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As a consequence of all the facts sketched above in this section, we have recently 
obtained the following structural result in [31, Theorem A]. 

Theorem 10 (Cohomogeneity One Actions on Symmetric Spaces of Noncom-
pact Type) Let .M ∼= G/K be a symmetric space of noncompact type, and let H 
be a connected closed subgroup of G. Then, H acts on M with cohomogeneity one 
if and only if the H -action is orbit equivalent to one of the following: 

(FH) An action inducing a regular codimension one foliation of horospherical 
type 

(FS) An action inducing a regular codimension one foliation of solvable type 
(CEI) The canonical extension of a cohomogeneity one action with a totally 

geodesic singular orbit on an irreducible boundary component 
(CER) The canonical extension of a cohomogeneity one diagonal action on a 

reducible boundary component of rank two with two homothetic factors 
(NC) An action obtained by nilpotent construction 

Remark 11 Cases (CEI) and (NC) in the previous theorem may overlap. Indeed, 
the nilpotent construction method often produces actions that can be obtained by 
canonical extension. So far, the only spaces where the nilpotent construction is 
known to produce actions that cannot be obtained by any other methods are the 
hyperbolic spaces of nonconstant curvature, .G2

2/SO4 and .GC

2 /G2. 

Remark 12 Although the moduli space of cohomogeneity one actions producing 
regular foliations has been completely determined (see Sect. 6.1), the study of the 
moduli space of actions with a singular orbit is much more involved. Note that in 
Sect. 6.3 we have only stated sufficient conditions for two canonical extensions to be 
orbit equivalent on M . Despite two actions not being orbit equivalent on a boundary 
component, it could happen that their canonical extensions could be orbit equivalent. 
It may also happen that two orbit equivalent actions could produce canonical 
extensions which are not orbit equivalent in M (if the equivalence in the boundary 
component .B� had been obtained by an isometry in .Isom(B�) \ Isom(B�)0). 
Thus, determining the orbit equivalence classes involves additional difficulties (see 
Problem 3 in Sect. 7). 

As an application of Theorem 10, we derived in [31] the classification of 
cohomogeneity one actions on the family of spaces .SLn+1(R)/SOn+1. We recall 
that .SLn+1(R)/SOn+1 has rank n. The associated root space decomposition of 
.g = sln+1(R) satisfies .g0 = a and .dim gλ = 1, for any root .λ ∈ �. 

Theorem 11 (Cohomogeneity One Actions on .SLn+1(R)/SOn+1) Let . M ∼=
SLn+1(R)/SOn+1, .n ≥ 1, and let .� = {α1, . . . , αn} be a set of simple roots for 
.sln+1(R) whose Dynkin diagram is
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Table 7 Actions on .SLn+1(R)/SOn+1 obtained by canonical extension 

.h� .� .B� .codim(H�
� · o) Comments 

.k{αj } ∼= so2 .{αj } .RH2 2 . 1 ≤ j ≤ n

.slk−j+1(R) ⊕ R .{αj , . . . , αk} .SLk−j+2(R)/SOk−j+2 .k − j + 1 . 1 ≤ j < k ≤ n

.sp2(R) .{αj , αj+1, αj+2} .SL4(R)/SO4 3 . 1 ≤ j ≤ n − 2

.sj,k,τ
∼= sl2(R) .{αj , αk} .RH2 × RH2 2 . |k − j | > 1

Any cohomogeneity one action on M is orbit equivalent to one of the following: 

(FH) The action of the connected subgroup of .SLn+1(R) with Lie algebra . (a��)⊕
n, for some line . � of . a. 

(FS) The action of the connected subgroup of .SLn+1(R) with Lie algebra . a⊕ (n�
gαj

), for some simple root .αj ∈ �. 
(CE) The canonical extension .H�

� of the action of the connected subgroup .H� of 
.SLn+1(R) on a boundary component . B�, for one of the cases in Table 7. 

Theorem 10 can also be used to address the classification problem on reducible 
symmetric spaces by allowing us to restrict our analysis to the classification problem 
on each irreducible factor. It turns out that actions of the types (FS), (CEI), and, 
importantly, (NC) split well with respect to the de Rham decomposition of a 
reducible symmetric space, so they are product actions. We emphasize that a result 
analogous to Theorem 12 below is not yet known for compact symmetric spaces 
(see Problem 5 in Sect. 7). 

Theorem 12 (Cohomogeneity One Actions on Reducible Symmetric Spaces of 
Noncompact Type) Let M be a symmetric space of noncompact type with de Rham 
decomposition .M = M1 × · · · × Ms , where .Mi = Gi/Ki , .i = 1, . . . , s, and let 
.G = ∏s

i=1 Gi . Then, a cohomogeneity one action on M is orbit equivalent to one 
of the following: 

(Prod) The product action of a subgroup .Hj × ∏s
i=1
i �=j

Gi of G, where .Hj is 

a connected Lie subgroup of .Gj that acts with cohomogeneity one on the 
irreducible factor . Mj . 

(FH) The action of the connected subgroup of G with Lie algebra .h = (a��)⊕n, 
for some line . � of . a. 

(CER) The canonical extension of a cohomogeneity one diagonal action on a 
reducible boundary component of M of rank two with two homothetic factors. 

Theorem 12 can be applied to derive explicit classifications on any product of 
symmetric spaces of noncompact type for which we already have the complete list of 
cohomogeneity one actions (namely, all rank one spaces studied in Sect. 5, the rank 
two spaces in (4), and the spaces .SLn+1(R)/SOn+1). As a very particular instance 
of these possible applications, we state the following classification of homogeneous 
hypersurfaces on any finite product of real hyperbolic spaces:
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Theorem 13 (Homogeneous Hypersurfaces in Products of Real Hyperbolic 
Spaces) A homogeneous hypersurface of .M = RHn1 × · · · ×RHnr is congruent to 
one of the following: 

(FH) A leaf of a regular codimension one foliation of horospherical type 
(FS) An extrinsic product .RHnj −1 × ∏

i �=j RH
ni , where .RHnj −1 is totally 

geodesic in .RHnj , or one of its equidistant hypersurfaces 
(CEI) A tube around the extrinsic product .RHk × ∏

i �=j RH
ni , where .RHk is 

totally geodesic in .RHnj , for  some . k ∈ {0, . . . , nj − 2}
(CER) A tube around the extrinsic product .�RHnj × ∏

i �=j,k RH
ni , where 

. �RHnj = {(p, ϕ(p)) : p ∈ RHnj }

is a totally geodesic real hyperbolic space diagonally embedded in .RHnj ×RHnk , 
for two indices j , k with .nj = nk and where . ϕ is a homothety between .RHnj and 
. RHnk

Note that even in the simplest case of a product of two hyperbolic planes, 
.M = RH2 × RH2, the classification of homogeneous hypersurfaces did not seem 
to be previously known (see [46] for a recent alternative approach via isoparametric 
hypersurfaces). In this particular case, there are uncountably many cohomogeneity 
one actions up to orbit equivalence, due to the existence of actions of horospherical 
type, which are determined by the choice of a line . � in the 2-dimensional space 
. a. Apart from these, there are exactly other three cohomogeneity one actions (up 
to orbit equivalence) if both factors of M are isometric and exactly five actions 
otherwise: 

(FS) Two of them producing foliations with the totally geodesic codimension one 
leaf .RH1 ×RH2 or .RH2 ×RH1, respectively (being both orbit equivalent if and 
only if both factors of M are isometric) 

(CEI) Other two with the totally geodesic singular orbits .{o1} × RH2 or . RH2 ×
{o2}, respectively (again, both orbit equivalent when both factors are isometric) 

(CER) The diagonal action of .SO0
1,2

∼= SL2(R) on M , which has a diagonal 
totally geodesic .RH2 as singular orbit 

It is interesting to compare this result with the situation in the compact dual 
of M , namely, the product of two round spheres .S2 × S

2. Here, by a result of 
Urbano [100] (who actually classified isoparametric hypersurfaces in this space), 
the only homogeneous hypersurfaces are dual analogs to the examples (CEI) and 
(CER) above. Again, it is important to recall that the generalization of Urbano’s 
classification of homogeneous hypersurfaces for products of several spheres of 
higher dimensions (i.e., the compact analog of Theorem 13) is still outstanding.
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7 Open Problems 

We include a list of open problems and questions related to the investigation of 
homogeneous hypersurfaces in symmetric spaces: 

(1) Analyze the nilpotent construction for each symmetric space of noncompact 
type. This, along with the structural result in Theorem 10, would allow to 
complete the classification of cohomogeneity one actions in this setting. Due 
to the difficulty of this problem, we can distinguish two main cases: 

(a) For spaces whose isometry group is a split semisimple Lie group, we 
expect that the nilpotent construction leads to various linear algebraic 
problems (each one depending on a certain class of representations) whose 
solution may be achieved following the lines of the analogous problem for 
.SLn(R)/SOn. 

(b) For the remaining spaces, the linear algebraic problems involved are more 
complicated, but we expect that the combination of Solonenko’s ideas in [91] 
with the ones used for .SLn(R)/SOn in [31] may eventually lead to a 
complete classification. 

(2) Is there any cohomogeneity one action on a symmetric space of noncompact 
type, rank at least 2, and of non-(. G2)-type that can be obtained by nilpotent 
construction but not as a canonical extension? 

(3) Investigate the congruence problem of homogeneous hypersurfaces, or, equiv-
alently, determine when two cohomogeneity one actions are orbit equivalent. 
Whereas for actions of foliation type this problem has already been solved 
in [92], an eventual positive answer to Question (2) would need a specific (but 
probably easy) investigation. However, the analysis of the other types of actions 
seems more difficult. In particular, one would need to address the following 
issues: 

(a) Given a rank two reducible boundary component .B�
∼= FHn × FHn of M , 

determine when two different isomorphisms . τ1 and . τ2 between the isometry 
Lie algebras of the two homothetic factors .FHn give rise to orbit equivalent 
canonical extensions of type (CER). 

(b) Can two orbit equivalent cohomogeneity one actions with totally geodesic 
singular orbits on an irreducible boundary component produce non-orbit 
equivalent canonical extensions of type (CEI)? If the answer is affirmative, 
one would probably have to revisit Berndt and Tamaru’s classification of 
cohomogeneity one actions with totally geodesic singular orbits [13] in order 
to determine the moduli space of actions up to strong orbit equivalence (i.e., 
up to orbit equivalence by isometries in the connected component of the 
identity of the isometry group). This may entail an analysis of a strong con-
gruence problem of Leung’s classification of reflective submanifolds [66].
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(4) Determine the extrinsic geometry of homogeneous hypersurfaces of symmetric 
spaces of noncompact type. As an application, one may obtain the classification 
of homogeneous minimal hypersurfaces. 

(5) Leaving aside the noncompact setting, classify cohomogeneity one actions on 
reducible symmetric spaces of compact type. See [63] for information on this 
problem. 

(6) Initiate the study of homogeneous hypersurfaces of locally symmetric spaces, 
both of compact and noncompact types. 

(7) Derive structure results for cohomogeneity one actions on symmetric spaces 
of mixed type, including noncompact spaces with Euclidean factors (e.g., 
.GL+ 

n (R)/SOn). 
(8) Obtain characterizations of (certain families of) homogeneous hypersurfaces 

by (both extrinsic and intrinsic) geometric properties, such as isoparametricity, 
constancy of principal curvatures, curvature adaptedness, or having an Einstein 
or Ricci soliton induced metric, cf. [42, 75]. Also, obtaining characterizations of 
the inhomogeneous isoparametric examples known in most symmetric spaces 
would be very interesting, in that this would probably entail the introduction 
of new techniques in submanifold geometry of symmetric spaces. Specifically, 
although isoparametric hypersurfaces of a product of two real hyperbolic 
planes turn out to be (open subsets of) homogeneous hypersurfaces [46], for 
a product of three hyperbolic planes, we know the existence of inhomogeneous 
examples [41]. 

(9) In this survey, we assumed actions to be proper and homogeneous submanifolds 
to be closed and embedded. Under which circumstances and for which ambient 
spaces can one guarantee that nonproper cohomogeneity one actions have the 
same orbits as proper cohomogeneity one actions? Can one prove that on a 
simply connected ambient space there do not exist nonembedded or nonclosed 
homogeneous hypersurfaces? 
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