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Preface 

Geometric analysis lies in the interplay between geometry and partial differ-
ential equations and has applications to several branches of mathematics such 
as Riemannian geometry, topology, calculus of variations, potential theory and 
complex variables, as well as to general relativity, crystallography, material science, 
architecture, and other fields. 

In this sense, function theory on manifolds equipped with a metric structure and 
its relation with potential theory and the theory of PDEs have been revealed as a 
sharpen analysis instrument of the geometric structure of the manifold. This analysis 
takes as a starting point the study of the analytic properties of some distinguished 
functions defined on a manifold, namely, the solution of partial differential equations 
formulated using differential operators deeply related with the given metric structure 
(such as, for instance, the Laplace operator in the case of Riemannian manifolds), 
and deals with the connection among these functional properties and the geometric 
properties of the manifold. 

Among many other achievements, the solutions of the positive mass conjecture 
in general relativity, the Poincaré conjecture in topology, the Lawson, Willmore and 
Yau conjectures in differential geometry, or the Kobayashi conjecture in complex 
geometry are some highlights which show the current relevance and usefulness of 
geometric analysis in pure mathematics. 

As suggested by the title, the aim of this book is to provide an overview of some 
of the progress made by the Spanish Network of Geometric Analysis (REAG, by 
its Spanish acronym). REAG was created in 2007 with the objective of enabling the 
interchange of ideas and the knowledge transfer between several Spanish groups 
having Geometric Analysis as a common research line. This currently includes nine 
groups at Universidad Autónoma de Barcelona, Universidad Autónoma de Madrid, 
Universidad de Granada, Universidad Jaume I de Castellón, Universidad de Murcia, 
Universidad de Santiago de Compostela, and Universidad de Valencia. The success 
of REAG has been substantiated with regular meetings and the publication of 
research papers obtained in collaboration between the members of different nodes. 

REAG is a Research Network that has been supported by the successive Spanish 
Research Programs via the following grants. 

v 
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• MTM2006-27480-E, Ministerio de Ciencia e Innovación. 
Coordinated by Olga Gil-Medrano (Valencia), May 2007–April 2008.

• MTM2008-01013-E, Ministerio de Ciencia e Innovación. 
Coordinated by José A. Gálvez (Granada), October 2008–September 2009.

• MTM2009-06054-E/MTM, Ministerio de Ciencia e Innovación. 
Coordinated by Joan Porti (Barcelona), October 2009–September 2010.

• MTM2010-09693-E/MTM, Ministerio de Ciencia e Innovación. 
Coordinated by Luis Guijarro (Madrid), January 2011–June 2012.

• MTM2011-15848-E/MTM, Ministerio de Economía y Competitividad. 
Coordinated by Manuel Ritoré (Granada), October 2012–October 2013.

• MTM2014-57309-REDT, Ministerio de Economía y Competitividad. 
Coordinated by José A. Gálvez (Granada), January 2015–December 2016.

• MTM2016-81938-REDT, Ministerio de Economía y Competitividad 
Coordinated by Luis J. Alías (Murcia), July 2017–June 2019.

• RED2018-102361-T, Ministerio de Ciencia, Innovación y Universidades. 
Coordinated by Antonio Alarcón (Granada), January 2020–April 2022. 

On the occasion of the 15th anniversary of REAG, this book aims to collect some 
old and new contributions of this network to geometric analysis. The book consists 
of 13 independent chapters, all of them authored by current members of REAG. 
The topics under study cover geometric flows, constant mean curvature surfaces in 
Riemannian and sub-Riemannian spaces, integral geometry, potential theory, and 
Riemannian geometry, among others. Some of these chapters have been written in 
collaboration between members of different nodes of the network, and show the 
fruitfulness of the common research atmosphere provided by REAG. The rest of the 
chapters survey a research line or present recent progresses within a group of those 
forming REAG. 

We would like to conclude this preface by warmly thanking the authors of 
the chapters for submitting their valuable works. Likewise, we wish to take this 
opportunity to express our gratitude to all colleagues who in one or the other way 
have contributed with their effort to the development and success of REAG during 
this 15 years. 

Granada, Spain Antonio Alarcón 
Castellón, Spain Vicente Palmer 
Granada, Spain César Rosales 
November 2021 
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Snapshots of Non-local Constrained 
Mean Curvature-Type Flows 

Esther Cabezas-Rivas 

Abstract The mean curvature flow is the most natural way to deform a hyper-
surface according to its curvature, since it evolves the parametrization by means 
of the heat equation. In 1987, G. Huisken (J. Reine Angew. Math. 382:35–48 
(1987)) introduced a variant that keeps the enclosed volume constant while the 
area decreases. For this modification, a global term is added to the speed of the 
original flow, which makes the usual methods in geometric flows (e.g. maximum 
principles) either fail or become more intricate. Moreover, the resulting evolution 
is not equivalent to the unconstrained flow because, for instance, an initially 
embedded curve may develop self-intersections (cf. Mayer and Simonett, Differ. 
Integr. Equ. 13(7–9):1189–1199 (2000)). Accordingly, constrained mean curvature-
type flows are more challenging; indeed, there was no extension of Huisken’s result 
to a non-Euclidean ambient space until 2007 (Cabezas-Rivas and Miquel, Indiana 
Univ. Math. J. 56(5):2061–2086 (2007)). Here, we will give a sketchy portrait of 
the development of the theory from the early stages to the recent applications, 
including the proof of several geometric inequalities (Andrews et al., J. Eur. Math. 
Soc. (JEMS) 23(7):2467–2509 (2021)) and new classification results for solitons 
(Cabezas-Rivas and Scheuer, The quermassintegral preserving mean curvature flow 
in the sphere. Preprint arxiv.org/abs/2211.17040 (2022)). 

Keywords Volume-preserving · Mean curvature flow · Area-preserving · Curve 
shortening flow 
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1 Non-local Versus Unconstrained Mean Curvature Flow 

1.1 The Classical Mean Curvature Flow 

Consider .Mn ⊂ R
n+1 a closed hypersurface (i.e. compact and without boundary), 

which is smooth and embedded. The idea is to move each point .x ∈ M in the normal 
direction and with velocity proportional to the way that the hypersurface is curved 
within the ambient space. More precisely, 

Definition 1 Let .F0 : Mn → R
n+1 be a smooth immersion. The evolution of 

.M0 = F0(M) by the mean curvature flow is a one-parameter family of immersions 

.F(·, t) : M → R
n+1 satisfying 

.∂tF (p, t) = HF(p,t) = −(Hν)(p, t) (1) 

for all .p ∈ M and .t ≥ 0, with initial condition .F(·, 0) = F0. 

Here, .H = κ1 + · · · + κn is the mean curvature, .κ1 ≤ · · · ≤ κn are the principal 
curvatures, and . ν denotes the outward unit normal of the evolving hypersurface 
.Mt = F(M, t). The sign conventions are taken so that convex hypersurfaces (i.e. 
with .κ1 ≥ 0) move inwards. 

The first instances of this evolution equation appeared in materials science 
(cf. [50, 63]) to model the growth of cell, grain and bubble structures. Brakke [9] 
gave an early mathematical treatment from the viewpoint of geometric measure 
theory. The approach by means of differential geometry and classical PDE comes 
from Huisken in [31] for .n ≥ 2 and Gage [25] for .n = 1 (the version of (1) for 
curves in the plane is known as curve shortening flow). 

Between all the possible ways to deform a hypersurface according to its 
curvature, (1) is unquestionably the most natural motion, as it turns out to be the 
heat equation for the parametrization: 

. ∂tF = �Mt F.

Unfortunately, because the non-linear terms hidden within the time dependence 
of the Laplacian, we actually have a reaction-diffusion equation, and hence there 
is a competition between two opposed effects. In fact, (1) tends to regularize the 
curvature and make it constant (as in the classical heat diffusion, understanding 
the curvature as a sort of geometric temperature) and simultaneously pushes the 
curvature to blow up in finite time. 

Indeed, the diffusion term cannot prevent the formation of a singularity, but it 
is strong enough to keep embeddedness of the evolving shapes and produce a very 
symmetric singularity, as shown by the following: 

Theorem 1 (Gage and Hamilton [27] for  .n = 1, Huisken [31] for  .n ≥ 2) If 
.M0 ⊂ R

n+1 is a closed convex and embedded hypersurface, then the solution . Mt

of (1) starting at . M0 exists on a finite time interval .[0, T ); stays smooth, embedded
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and convex; and converges as .t → T to a round point. This means that if . ˜Mt

is obtained by rescaling . Mt so that the area is constant in t , then . ˜Mt converges 
smoothly and exponentially fast to a round sphere as .t → ∞. 

In the one-dimensional case, we can even drop the convexity assumption: 

Theorem 2 (Grayson [28]) Under the curve shortening flow, a general embedded 
curve becomes convex and thus by Theorem 1 eventually shrinks to a round point. 

1.2 The Volume-Preserving Version of the Flow 

The aim now is to look for an ad hoc evolution process to find solutions of the 
isoperimetric problem. Accordingly, the new flow should keep the enclosed volume 
constant while decreasing the area. As (1) turns out to be the gradient flow of the 
area functional, it is already the most efficient way to reduce the area. Therefore, the 
idea is to modify the flow velocity adding an extra term as follows: 

. ∂tF = (h(t) − H)ν,

and then define the global function .h(t) so that the volume of the domain . �t

enclosed by . Mt is constant along the flow. 
As the changes of area .|Mt | and enclosed volume .|�t | under an extrinsic 

evolution are well-known [55], we get that 

. 
d

dt
|�t | =

∫

M

(h − H) dμt = 0 implies h(t) = 1

|Mt |
∫

M

H dμt = H(t),

where .dμt denotes the volume element on . Mt . Next, we can check that by choosing 
the global term as the averaged mean curvature . H , the area is actually decreasing 
under the flow: 

. 
d

dt
|Mt | =

∫

Mt

(H −H)H =
∫

Mt

(H −H)H −
∫

Mt

(H −H)H = −
∫

Mt

(H −H)2 ≤ 0.

This leads to the definition of the volume-preserving mean curvature flow introduced 
by Huisken in [33]: 

.∂tF = (H − H)ν. (2) 

Physically, this can be regarded as the deformation of a super elastic rubber 
membrane that surrounds an incompressible fluid. 

From the mathematical viewpoint, the resultant evolution problem is particularly 
appealing, since it is specially well suited for applications to the isoperimetric 
problem, and challenging, because the presence of a non-local term . H in all the
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relevant evolution equations causes a plethora of extra complications; e.g. a basic 
principle for (1) (disjoint surfaces remain disjoint, and embedded curves remain 
embedded) fails in general for (2). 

Indeed, Gage [26] gave an early sketch of an initially embedded curve that 
may develop self-intersections. This was confirmed by Mayer [47] using numerical 
simulations, until a rigorous treatment extending the example to higher dimensions 
was done by Mayer and Simonett in [48]. 

To study the behaviour of singularities is still the major open problem in the work 
with (2). Certainly, this task is really harder than the corresponding one for (1), since 
there is no hope to apply in this setting the methods by Huisken and Sinestrari (see 
[36, 37]) for hypersurfaces of positive mean curvature under (1). The reasons are the 
counterexamples to the preservation of mean convexity (.H > 0) under (2) found by 
Miquel and the author in [13]. Here, we also confirm that the next natural curvature 
condition (i.e. positive scalar curvature) is neither invariant under (2). 

In short, the knowledge of this flow is considerably poorer than that of the 
unconstrained version, as the presence of global terms in the evolution equations 
makes difficult to reach a priori estimates, unless we have extra hypotheses that 
guarantee some control on . H , for instance, that it has a sign or is uniformly bounded. 
As these properties are granted for the area-preserving evolution of curves, we will 
use the one-dimensional situation as a model case to discuss the main features and 
obstacles of constrained flows. 

2 The Area-Preserving Curve Shortening Flow 

It was introduced by Gage in [26]: let .γ : S1 × [0, T ) → R
2 be a time-dependent 

family of plane curves which is a solution of 

.∂tγ = (κ̄ − κ)ν = ∂2
s κ + κ̄ν, (3) 

where 

. ̄κ = 1

Lt

∫

S1
κ ds.

Here, .s = s(t) denotes the arc-length parameter of the evolving curve . �t =
γ (S1, t), whose length is .Lt = L(t). Notice that (3) can be regarded as a non-linear 
heat equation with a non-local forcing term.
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If the evolving curves remain embedded, the flow has three basic features: 

1. . ̄κ(t) = 2π

Lt

> 0.

2. The flow is area-preserving and length-decreasing. More precisely, if . A = A(t)

is the area of the domain . �t enclosed by . �t , we have  

.A′(t) = 0 and L′(t) = −
∫

κ2 ds + 4π2

Lt

≤ 0, (4) 

where the latter follows by Cauchy-Schwarz inequality. 

3. The global term is non-decreasing and uniformly bounded. In particular, by item 
2 above, we have 

.0 < κ̄(0) = 2π

L0
≤ 2π

Lt

= κ̄(t) ≤
√

π

A0
, (5) 

where we have applied the classical isoperimetric inequality 

.L2 ≥ 4πA. (6) 

Notice that equality in (5) holds for round circles. 

Hereafter, we will usually drop the explicit time dependence of quantities like . Lt

unless it is unclear from the context. 

2.1 Evolution of Convex Curves 

In this case, the flow works exactly as expected from the corresponding 
unconstrained results in [27]: 

Theorem 3 (Gage [26]) Let . �0 be a closed embedded and convex curve in . R2. 
Then the solution . �t of (3) starting at . �0 exists for all times .t > 0; stays smooth, 
embedded and convex; and converges smoothly and exponentially fast as .t → ∞ to 
a round circle of radius .

√
A0/π . 

The convex one-dimensional case of the flow takes advantage of the availability 
of isoperimetric inequalities that are stronger than (6): 

Lemma 1 Let . � be a closed convex and embedded curve in the plane of length L 
that encloses an area A.

• Gage’s isoperimetric inequality [24]: 

.

∫

κ2ds ≥ πL

A
. (7)
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• Bonnesen inequality [51]: 

.
L2

A
− 4π ≥ π2

A
(rout − rin)

2, (8) 

where .rout and . rin represent the inradius and outradius, respectively, of the domain 
. � enclosed by . �. 

Remark 1 

(a) Cauchy-Schwarz for simple curves leads to .
∫

κ2 ds ≥ 4π2

L
. Notice that (6) 

implies that Gage’s inequality (7) is stronger than Cauchy-Schwarz in this 
setting. Moreover, equality holds in (7) if and only if . � is a round circle (cf. 
[52]). 

(b) An example of Jacobowitz (see [24]) suggests that (7) fails for non-convex 
curves. The idea is to construct a dumbbell-formed curve by means of straight 
segments and circle arcs of radius r , with the neck long enough so that A and L 
of the ends are negligible. Then it holds 

. 

∫

κ2 ds ≈
∫

1

r2
ds ∝ 2π

r
.

But on the other hand we also have .L
A

≈ L
2εL/2 = 1

ε
, and hence we can take . ε

small enough so that (7) breaks down. 

The following four key observations suggest that Theorem 3 should be true, 
modulo technicalities: 

1. A convex solution becomes instantaneously strictly convex under (3). 
This follows by inspection of the evolution equation 

. ∂tκ = ∂2
s κ + (κ − κ̄)κ2.

In fact, if one can find .(p, τ ) ∈ S
1 × (0, T ) with .κ(p, τ) = 0, then the strong 

maximum principle implies that .κ ≡ 0 on .S1 × [0, τ ], which is impossible since 
. �t is a compact curve. 

In the ordinary curve shortening flow (where it holds .(∂t − ∂2
s )κ = κ3), notice 

that the cubic term pushes the curvature to blow up in finite time. For the current 
case, this effect becomes softened for convex curves but gets worse if we have 
points of negative curvature. 

2. If . �0 is embedded and convex, then . �t is embedded for each t . 
The statement comes from a delicate two-point maximum principle argument 
applied to the evolution of the Euclidean distance 

. d : S1 × S
1 × [0, T ) −→ R, d(p, q, t) = ‖γ (p, t) − γ (q, t)‖2

between any two points in the evolving curve (see [27, Theorem 3.2.1]).
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3. The isoperimetric deficit is decreasing with time: 

.ω(t) := L2

A
− 4π ≤ Ce−2πt/A0 . (9) 

This is established by integration of the inequality 

. ω′(t) =
(4) 

− 
2 

A

(

L

∫

κ2 ds − π 
L2 

A 
+ πω

)

≤
(7) 

−2π 
A0 

ω. 

4. If .T = ∞, then . �t approaches a round circle in the Hausdorff distance. 

This claim holds by taking limits as .t → ∞ in 

. Ce−2πt/A0 ≥
(9) 

ω(t) ≥
(8) 

(rout − rin)
2. 

The preservation of convexity can be exported to higher dimensions (see [33, 
Theorem 1.3]) by means of a version of the maximum principle for symmetric two 
tensors. But let us stress that the last two proofs are very specific for the convex 
curve case, due to the application of the strong inequalities from Theorem 1. 

2.2 Basic Features for the Flow of Embedded Curves 

Let .γ (·, t) be a solution of (3) defined on a maximal time interval . [0, T ), for  
which we use the notation .|κ|max(t) = maxS1 |κ(·, t)|. To strengthen the type 
of convergence, that is, to jump from Hausdorff to .C∞, we need the following 
properties of the flow that hold for non-necessarily convex curves, provided that 
embeddedness is preserved under the flow: 

1. If the curvature is bounded, then all its space and time derivatives are also 
controlled: 

.|κ| ≤ C0 on S
1 × [0, T ) ⇒ |∂m

t ∂n
s κ| ≤ Cn,m on S

1 × [0, T ). (10) 

This is established arguing by induction and applying maximum principles to the 
corresponding evolution equations. 

2. The only reason for singularities is curvature blow-up, that is, 

.T < ∞ ⇒ lim
t↗T

|κ|max = ∞.
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The idea for the proof is a contradiction argument: suppose that .|κ|max ≤ C0 for 
some constant. Then we can take a sequence of times .ti ∈ [0, T ) with .ti ↗ T as 
.i → ∞ so that 

. ‖γ (·, tj )− γ (·, ti )‖ ≤
∫ tj

ti

‖∂tγ ‖ dt =
(3)

∫ tj 

ti

‖κ̄ − κ‖ dt ≤ 2C0(tj − ti ). (11) 

In particular, the same computation, but integrating between 0 and T , shows  
that . �t stays in a bounded region of . R2. Accordingly, .{γ (·, ti)}i∈N is a bounded 
uniform Cauchy sequence of smooth functions on . S1 and hence by standard 
arguments admits a continuous limit .γT : S1 → R

2. 
By redoing the computation (11) with derivatives of . γ and using the bounds 

in (10), one can argue that the limit is a smooth embedded curve, which by short 
time existence allows to extend the solution beyond T . The contradiction to the 
maximality of T settles the statement. 

3. Lower blow-up rate for the curvature: 

. T < ∞ ⇒ 2 |κ|max ≥ 1/
√

T − t .

The proof is a straightforward adaptation of [34, Lemma 1.2]. This property 
allows to distinguish between type I singularities, if there is also an upper bound 
.2 |κ|max

√
T − t ≤ C, and type II otherwise. 

Let us highlight that all the above properties have their corresponding versions 
for higher dimensions, but we have chosen the curve case for simplicity of the 
exposition. Notice that, to guarantee long time existence (.T = ∞), the only 
remaining task is to ensure that .|κ|max is uniformly bounded. 

2.3 Towards a Grayson-Type Theorem 

Expanding curve flows like .∂tγ = − 1
κ
ν already had to face the difficulty of non-

preservation of embeddedness for general non-convex curves. To overcome this, 
Chow, Liou and Tsai [18] considered a class of curves satisfying an extra condition 
for the turning angle: 

.θmin(0) := min
p,q∈S1

� (Tp, Tq) =
∫ q

p

κ ds ≥ −π, (12) 

where . Tp denotes the unit tangent vector of .γ (p, 0). Notice that this condition is 
weaker than star-shapedness. 

In the setting of the flow (3), it turns out that this condition is sharp, in the sense 
that for any initial embedded curve with .θmin(0) < −π the evolving . �t develops
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self-intersections (see [20]). The key fact is that the angle between tangent vectors at 
any two points of the curve (modulo the local winding number), that is, the function 

. θ : S1 × S
1 × [0, T ) −→ R given by θ(p, q, t) =

∫ q

p

κ(·, t) ds,

satisfies a heat-type equation .∂t θ = ��t θ , and hence condition (12) is preserved 
under the flow. This allows to adapt the ideas from [35] with a good control of the 
extra terms that arise in the evolution equations due to the presence of . ̄κ . Therefore, 
the following Grayson-type theorem holds: 

Theorem 4 (Dittberner [20]) Let . �0 be a closed embedded curve in . R2 that 
satisfies (12). Then the solution . �t of (3) starting at . �0 exists for all times .t > 0, 
stays smooth and embedded and converges smoothly and exponentially fast as 
.t → ∞ to a round circle of radius .

√
A0/π . 

2.4 Further Results 

The flow (3) can be generalized in many different directions, for instance, one can 
allow self-intersections. Indeed, for closed immersed curves, there is a notion of 
signed area which is preserved under (3) with global term 

. ̄κ(t) = 2πm

Lt

,

where .m ∈ Z is the winding number. Here are the known results for the evolution 
of non-simple, locally convex, closed curves:

• If .A0 < 0 or .L2
0 < 4πmA0, then a singularity forms in .T < ∞ [22].

• One can find a class of highly symmetric curves and a family of Abresh-Langer-
type curves (both with . A0 > 0) for which . �t converges smoothly as .t → ∞ to 
an m-fold circle [64].

• Assume .T = ∞. Then we have convergence to an m-fold circle if .A0 > 0 and 
shrinkage to a point if .A0 = 0 [65]. 

As Bonnesen inequalities may fail for general non-simple curves, the above 
results use an energy method which amounts to bound under the flow the quantity 
.E(t) = ∫

(κ − κ̄)2 ds. These statements were further generalized in [59] to area-
preserving flows of the type .∂tγ = (κ̄ − κα)ν for any .α > 0, where the global term 
is defined ad hoc so that the area is kept constant. 

On the other hand, there are related Neumann free boundary-type problems: 
take a convex support curve . � and an initial . �0 embedded and strictly convex, 
whose interior points are contained in the outer domain of . � and the endpoints 
meet . � perpendicularly. Then evolve . �0 by (3) under the additional request that the 
endpoints of . �t also touch . � orthogonally.



10 E. Cabezas-Rivas

In this framework, Mäder-Baumdicker [45] found an upper bound for the length 
of . �0 depending on . A0 and .|κ|max(0), which guarantees smooth convergence of . �t

to an arc of a round circle as .t → ∞. Moreover, [46] gives suitable conditions on 
. �0 ensuring that a singularity happens in finite time, and it should be of type II. 

Finally, there is a wide literature of global flows for various choices of . ̄κ:

• If .κ̄ = 1
2π

∫

κ2 ds, then (3) is length-preserving and area-decreasing. The 
results corresponding Theorem 3 and Theorem 4 are obtained in [44] and [20], 
respectively.

• For .κ̄ = L
2A

, the flow becomes area-increasing and length-decreasing; in fact, 

this is the gradient flow of the isoperimetric ratio . L2

4πA
[39].

• For expanding flows .∂tγ = ( 1
κ

− κ̄)ν, the choices .κ̄ = 1
L

∫ 1
κ

ds in [43] and . ̄κ =
− L

2π
in [53] give area- and length-preserving flows, respectively. For .κ̄ = −2A

L
, 

the flow is both area- and length-increasing (see [54]). 

3 Volume-Preserving Mean Curvature-Type Flows 

3.1 Convex Evolution and Stability Results 

The higher-dimensional version of Theorem 3 works as expected: 

Theorem 5 (Huisken [33]) If . M0 is a closed embedded and convex hypersurface 
in .R

n+1, then the solution . Mt of (2) starting at . M0 exists for all .t > 0, stays smooth, 
embedded and convex; and converges smoothly and exponentially fast as .t → ∞ to 
a round sphere enclosing the same volume as . M0. 

Li [42] replaces the convexity assumption by requiring .H(0) > 0 and that the 
traceless second fundamental form is small enough in an integral sense. By means 
of viscosity solutions, Kim and Kwon [40] prove the corresponding result for initial 
hypersurfaces that satisfy a stronger version of star-shapedness. 

Huisken even gave an intuitive counterexample stressing how hard it would be 
to export Theorem 5 to a non-flat ambient space. In fact, unlike (1) (where such 
an extension [32] was done 2 years after the Euclidean version [31]), this remained 
an open question for (2) from 1987 to 2007, when Miquel and the author found a 
Riemannian manifold with a suitable notion of convexity invariant under (2). More  
precisely, 

Theorem 6 ([10]) Let .M0 be a closed, embedded hypersurface in the hyperbolic 
space .H

n+1: 

(1) If . M0 is h-convex (i.e. .κ1 ≥ 1), then under (2) (a) the evolving hypersurfaces 
. Mt remain h-convex, (b) the flow exists for all positive time, and (c) the solution 
converges exponentially (in the . Ck topology, for each .k ∈ N) to a geodesic 
sphere in .H

n+1.
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(2) If . M0 is not h-convex but close enough (in a .C1+α-Hölder sense) to a geodesic 
sphere of .Hn+1, then (b) and (c) remain true. 

The proofs combine methods from geometric flows but applied in a more 
sophisticated way due to the non-local nature of (2): the geometric properties of 
h-convexity in .H

n+1 [8] and a technique based on the maximal regularity theory for 
certain PDEs (see [23] for the earlier Euclidean version of (2)). 

The condition of h-convexity has been recently relaxed to positive intrinsic 
sectional curvature (.κ1κ2 > 0) in [2] for a wider class of velocities and constrained 
flows that preserve the quermassintegrals, which are given by 

. Wk(�) = (n + 1 − k) ωk−1 · · ·ω0

(n + 1) ωn−1 · · · ωn−k

∫

Lk

χ(Lk ∩ �) dLk, k = 1, . . . , n.

Here, . χ is the characteristic function of .Lk ∩ �, .Lk represents the space of k-
dimensional totally geodesic subspaces .Lk in a space form .Mn+1

K of constant 
sectional curvature K , and . ωn is the area of a unit sphere .Sn ⊂ R

n+1. This notion 
includes the area of the hypersurface .|M| = (n+1)W1(�) and the enclosed volume 
.W0(�) = |�|. Thus, a flow .∂tF = (h − H)ν that preserves .W0(�t ) coincides 
with (2). 

In .R
n+1, the quermassintegrals coincide, up to a constant factor, with the 

curvature integrals or mixed volumes, defined as follows: 

. Vn−�(�) =
∫

M

H� dμ, for � = 1, . . . , n,

where 

.H� =
(

n

�

)−1
∑

1≤i1<···<i�≤n

κi1 · · · κin . (13) 

Indeed, mixed volumes and quermassintegrals are related [61, Proposition 7] in a 
space of constant curvature .Mn+1

K by means of 

.
1

n + 1
Vn−�(�) = W�+1(�) − K

�

n + 2 − �
W�−1(�), � = 1, . . . , n, (14) 

Vn(�) = (n + 1)W1(�) = |M|. 

The study of constrained flows that preserve the mixed volumes in .R
n+1 was started 

by McCoy [49]. 
While .Hn+1 is the model space with constant negative sectional curvature, the 

positive counterpart is the sphere .Sn+1. However, Huisken [33] gave convincing 
reasons that convexity of hypersurfaces in .Sn+1 is not preserved under the flow (2) 
in general. If r denotes the radial distance to a fixed origin . O in .Sn+1, Scheuer and
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the author introduce the first example of a non-local mean curvature flow which 
preserves convexity in the sphere. 

Theorem 7 ([15]) Let .n ≥ 2 and . M0 be a smooth, embedded and strictly convex 
hypersurface of .Sn+1. Then there exists a finite system of origins .(Oi )0≤i≤m and 
numbers .0 = t0 < t1 < · · · < tm < tm+1 = ∞, such that the curvature flow defined 
by 

. 

⎧

⎪

⎨

⎪

⎩

∂tF = (hi(t) cos(ri) − H)ν,

F (M, 0) = M0

F(M, ti) = lim
t↗ti

Mt , 1 ≤ i ≤ m,
with hi(t) =

∫

M
HH� dμt

∫

M
cos(ri)H� dμt

,

(15) 

where . ri is the distance to . Oi , preserves the quermassintegral .W�(�t) and has a 
solution .F : M × [0,∞) → S

n+1 with strictly convex evolving hypersurfaces. 
Furthermore, the restriction .F : M × [tm,∞) → S

n+1 is smooth and converges 
for .t → ∞ in .C∞ to a geodesic sphere around .Om with radius determined by 
.W�(Br) = W�(�0). 

3.2 Free Boundary Problems with Rotational Symmetry 

To replace convexity, a natural geometric condition, invariant under (2) and which 
still softens the problems caused by the global term, is to take the initial .M0 to 
be a revolution hypersurface generated by the graph of a function. In an ambient 
space with rotational symmetry around an axis . A, Miquel and the author study the 
evolution by (2) of such .M0 whose boundary intersects orthogonally two totally 
geodesic hypersurfaces .πtg orthogonal to . A. 

Theorem 8 ([11]) Asking that the evolving hypersurface . Mt meets .πtg orthogo-
nally at each time and under suitable hypotheses on the negativity of some ambient 
sectional curvatures, it holds the following: 

(1) While . Mt does not touch . A, (a) the flow exists, (b) the generating curve is a 
graph over . A, and (c) the global term is bounded above and below by positive 
constants. 

(2) Under a hypothesis relating the enclosed volume to the area of . M0, we achieve  
(a) long time existence and (b) convergence to a revolution hypersurface of 
constant mean curvature. 

(3) The singularity set (if not empty) is discrete along . A. 

This completes some results from [4, 5] for .R
n and extends them to a broader 

class of ambient manifolds. In such ambients, unlike . Rn, the hypersurfaces . πtg

are not at constant distance from each other. Hence, in [12], we address the same 
problem but considering regions limited by equidistant hypersurfaces . πeq ; as a by-
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product, we also cover a new situation in . Rn: the case where .πeq are spheres instead 
of hyperplanes. Moreover, the claims analogous to (1a), (1b) and (2) allow (for the 
first time in the literature on (2)) positive ambient curvatures and .Mt with non-
necessarily positive global term. Notice that the situation in [12] is much harder, 
since the geometry does not allow to repeat .Mt periodically, so each step has the 
further complication of analysing what happens at the boundary. 

In the same spirit, [30] replaces the rotational symmetry by asking that . M0 ⊂
R

n+1 is close enough (in a suitable little Hölder space) to a cylinder of sufficiently 
large radius, which ensures that an immortal solution exists and converges exponen-
tially fast to a cylinder. 

Finally, [6] studies axially symmetric hypersurfaces in .Rn+1 under the assump-
tion that they do not develop singularities along . A during the flow. In this 
framework, . Mt converges to a hemisphere when .M0 has a free boundary and meets 
. A orthogonally, and to a sphere if .M0 is closed. 

3.3 Evolution with Speeds Different from the Mean Curvature 

The constrained evolution of convex hypersurfaces was studied for a large class of 
speeds of homogeneous degree one in the principal curvatures (cf. [49]). For higher 
degree, the analysis was restricted to local flows either in dimension two (e.g. [57]) 
or for specific choices of the speed, requiring also a pinching condition stronger than 
convexity (cf. [17, 58]). 

In the same line, Sinestrari and the author [14] initiated the use of volume-
preserving-type flows to analyse the evolution of closed hypersurfaces in .Rn+1 by 
means of velocities with degree of homogeneity .> 1. 

Theorem 9 ([14]) Let .M0 be a hypersurface of .Rn+1 satisfying the following 
relation between the Gauss and the mean curvature: there is a universal constant 
.c > 0 such that 

.K(p) > cHn(p) > 0, for all p ∈ M0. (16) 

Then deform . M0 under the flow 

. ∂tF = (h(t) − Hk
m)ν, for any k ≥ 1/n,

where the global term h is chosen so that the flow is volume-preserving and .Hm is 
the .mth mean curvature (13). In this setting, (16) is preserved, the solution exists for 
all times, and we get exponential and smooth convergence to a round sphere. 

Here, the speeds are (i) not concave/convex in the second derivatives (hence, 
the standard regularity theory [41] for fully non-linear parabolic PDEs cannot be 
applied), and (ii) not uniformly elliptic, so the equation may a priori degenerate 
at infinite time. To overcome (i), we prove (inspired by [62]) space regularity at a
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fixed time by using a result for elliptic equations [16]. We attacked (ii) by getting 
just sufficient control on how fast the curvature can decay to ensure that the limit (if 
exists) is totally umbilic; secondly, we rewrote the evolution of .Hm as a divergence 
porous medium equation, which admits Hölder interior estimates for degenerate 
parabolic PDEs [19]. 

Theorem 9 was extended to the hyperbolic space later in [29]. Back to the 
Euclidean setting, one can exploit that the flow improves the isoperimetric ratio 
to remove the pinching condition (16) and prove the corresponding version of (9) 
for strictly convex hypersurfaces (see [60] for .m = 1 and [3, 7] for the general case). 

The latter is a remarkable example where constrained flows work nicer than their 
non-local counterparts, thanks to the monotonicity of the isoperimetric quotient. 
This was already observed earlier by Andrews [1] in his anisotropic version of (2). 

3.4 Applications 

Despite the technical difficulties and the poorer development compared with the 
local unconstrained situation, the flow (2) and its relatives already provided powerful 
applications in different contexts. Indeed, they are used as a tool to

• Construct spacelike hypersurfaces of prescribed mean curvature in cosmological 
spacetimes [21].

• Produce a stable constant mean curvature foliation in the exterior region of an 
asymptotically flat manifold of positive mass [38]. This foliation is used to define 
the centre of mass for an observer located infinitely far.

• Build up a foliation of the end of an asymptotically hyperbolic three-manifold 
of positive Bondi mass by constant mean curvature surfaces, provided that the 
metric approaches the hyperbolic metric fast enough [56].

• Get an alternative proof of the Minkowski inequalities for smooth convex 
domains in .Rn+1 using a mixed volume-preserving flow [49].

• Obtain novel Alexandrov-Fenchel-type inequalities for h-convex hypersurfaces 
in .Hn+1: 

. Wk(�) ≥ fk ◦ f −1
�

(

W�(�)
)

for any .0 ≤ � < k ≤ n with equality for geodesic balls. Here, . fk(r) = Wk(Br)

is the quermassintegral of a geodesic ball of radius r . This relies on the definition 
of a curvature flow under which one quermassintegral is preserved while others 
change monotonically (see [66]). An improved version of these inequalities 
can be found in [2] by using some modified quermassintegrals and an ad hoc 
preserving flow. Moreover, for .� = 0 and any .k = 1, . . . n, the  h-convexity 
assumption can be weakened to positive sectional curvature [2].
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• Deduce new classification results for some constant curvature-type equations in 
.S

n+1, as well as for convex solitons both in the sphere and De Sitter space (see 
[15]). 
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1 Introduction 

The plane curves are uniquely determined up to rigid motion by its intrinsic equation 
giving its curvature . κ as a function of its arc length. However, such curves are 
impossible to find explicitly in practice in most cases, due to the difficulty in solving 
the three quadratures appearing in the integration process. In [16], David A. Singer 
considered a different sort of problem: Can a plane curve be determined if its 
curvature is given in terms of its position? 

Probably, the most interesting solved problem in this setting corresponds to 
the Euler elastic curves, whose curvature is proportional to one of the coordinate 
functions, e.g., .κ(x, y) = c y. Motivated by the above question and by the classical 
elasticae, the authors studied in [7] the plane curves whose curvature depends on the 
distance to a line (say the x-axis, and so .κ = κ(y)) and in [8] the plane curves whose 
curvature depends on the distance from a point (say the origin, and so .κ = κ(r), 
.r = √

x2 + y2) requiring in both cases the computation of three quadratures too. 
But the simple case .κ(r) = r , where elliptic integrals appear, illustrated that the 
fact that the corresponding differential equation is integrable by quadratures does 
not mean that it is easy to perform the integrations. In [16], only the very pleasant 
special case of the classical Bernoulli lemniscate, .r2 = 3 cos 2θ in polar coordinates, 
was solved explicitly, where the corresponding elliptic integral becomes elementary. 

In this paper, we pay our attention to the Singer’s problem version for curves 
lying in a sphere: 

Can a spherical curve be determined when its curvature is given in terms of its position? 

The geodesic curvature . κ of a spherical curve . ξ given as a function of its arc 
length s determines the curve (up to isometries of the sphere) by integration of its 
Frenet equations. However, it is expectable that if the curvature . κ of . ξ = (x, y, z)

is given by a function of its position, i.e., .κ = κ(x, y, z), the situation becomes 
quite complicated since the general form of this problem is equivalent to solving the 
nonlinear differential equation 

. 

∣∣∣∣∣∣

x(s) y(s) z(s)

ẋ(s) ẏ(s) ż(s)

ẍ(s) ÿ(s) z̈(s)

∣∣∣∣∣∣
= κ(x(s), y(s), z(s))

with the constraints 

. x(s)2 + y(s)2 + z(s)2 = 1 and ẋ(s)2 + ẏ(s)2 + ż(s)2 = 1.

The purpose of this article is to study the aforementioned cases of the classical 
Singer’s problem in the setting of spherical curves, considering geodesics in the 
role of lines. Concretely, we consider a curve .ξ = (x, y, z) lying in the unit sphere 
. S2 centered at the origin and write .z = sin ϕ (. ϕ being the latitude of . ξ ); we aim 
to control those curves . ξ whose geodesic curvature . κ satisfies the condition .κ =
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κ(ϕ) ⇔ κ = κ(z). We point out that this condition includes both types of problems 
involving curvature and distance, since . ϕ is the distance to the equator (the great 
circle .ϕ = 0 ⇔ z = 0) and the colatitude .π/2 − ϕ is the distance to the North pole 
(the point (0,0,1)). 

As in the Euclidean case, it will be necessary again the computation of three 
quadratures when .κ(z) is a continuous function (see Theorem 1), and the key tool 
will be the notion of spherical angular momentum, which completely determines 
a spherical curve (up to a family of distinguished isometries) in relation with its 
relative position with respect to a fixed geodesic. 

In this way, we find out several interesting new families of spherical curves 
whose intrinsic equations can be expressed in terms of elementary or Jacobi elliptic 
functions. We also provide new characterizations of some well-known curves, 
like elastic-type spherical curves, spherical catenaries, loxodromic-type spherical 
curves, Viviani’s curve, and spherical Archimedean spiral curves. In addition, 
we show that they may be obtained as critical points of some energy curvature 
functionals. 

2 Spherical Curves such that κ = κ(z)  and the Spherical 
Angular Momentum 

We introduce a smooth function associated with any spherical curve, which 
completely determines it (up to a family of distinguished isometries) in relation 
with its relative position with respect to a fixed geodesic. 

Indeed, let .ξ = ξ(s) : I ⊆ R → S
2 be an immersed curve parametrized by 

the arc length, i.e., .|ξ(s)| = |ξ̇ (s)| = 1, for any .s ∈ I , where I is some interval 
in . R. Along the paper, . ̇ will denote derivative with respect to s and .〈·, ·〉 and . ×
the Euclidean inner product and the cross product in . R3, respectively. Let . T = ξ̇

be the unit tangent vector and .N = ξ × ξ̇ the unit normal vector of . ξ . If . ∇ is 
the connection in . S2, the oriented geodesic curvature . κ of . ξ is given by the Frenet 
equation .∇T T = κN , which implies 

.ξ̈ = −ξ + κN, Ṅ = −κ ξ̇ (1) 

and so .κ = det(ξ, ξ̇ , ξ̈ ). 
We are interested in the geometric condition that the curvature of . ξ depends on 

the distance to a geodesic of . S2. If .e ∈ R
3 is a unit length vector, then .〈ξ, e〉 is 

the signed distance to the orthogonal plane to . e passing through the origin. Without 
restriction, we consider .e := (0, 0, 1) and write .ξ = (x, y, z) with .x2 +y2 +z2 = 1. 
So we can pay our attention to study the condition .κ = κ(z) since . z = 〈ξ, e〉
represents the signed distance to the great circle .S2 ∩ {z = 0}. Concretely, we use 
geographical coordinates in . S2 and write 

.ξ = (cos ϕ cos λ, cos ϕ sin λ, sin ϕ), −π/2 ≤ ϕ ≤ π/2, −π < λ ≤ π.
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Then it is interesting to notice that the latitude . ϕ is the signed distance to the equator 
.S

2 ∩ {z = 0} ≡ ϕ = 0 and, in addition, the colatitude .π/2 − ϕ gives the distance to 
the North pole .(0, 0, 1). 

At a given point .ξ(s) on the curve, we introduce the spherical angular momentum 
(with respect to the z-axis) .K(s) as the (signed) volume of the parallelepiped 
spanned by the position .ξ(s), the unit tangent .T (s), and the vector .e := (0, 0, 1). 
Concretely, we define 

.K(s) := − det(ξ(s), T (s), e) = −〈N(s), e〉 = ẋ(s)y(s) − x(s)ẏ(s). (2) 

In physical terms, as a consequence of Noether’s theorem (cf. [1]), . K may be 
described as the angular momentum of a particle of unit mass with unit-speed and 
spherical trajectory .ξ(s). We point out that . K assumes values in .[−1, 1] and it is 
well defined, up to the sign, depending on the orientation of the normal to . ξ . In  
geographical coordinates, . K is given by 

.K = −λ̇ cos2 ϕ. (3) 

The unit-speed condition on . ξ implies that .ϕ̇2 + λ̇2 cos2 ϕ = 1, and assuming . ϕ
is nonconstant and using (3), we deduce that 

.ds = dϕ
√

1 − λ̇2 cos2 ϕ
= cos ϕ dϕ

√
cos2 ϕ −K2

= dz
√

1 − z2 −K2
(4) 

and 

.dλ = − Kds

cos2 ϕ
= Kds

z2 − 1
. (5) 

Hence, given .K = K(z) as an explicit function, looking at (4) and (5), one may 
attempt to compute .z(s) (and so .ϕ(s)) and .λ(s) in three steps: integrate (4) to get 
.s = s(z), invert to get .z = z(s), and integrate (5) to get .λ = λ(s). We remark that 
the integration constants appearing in (4) and (5) simply mean a translation of the 
arc parameter and a rotation around the z-axis, respectively. 

In addition, using (1) and (2), we have that .K̇ = −〈Ṅ, e〉 = κ〈ξ̇ , e〉 = κż, and 
if we take into account the assumption .κ = κ(z) (being z nonconstant), we finally 
arrive at 

.dK = κ(z)dz, (6) 

that is, .K(z) can be interpreted as an antiderivative of .κ(z). 
As a summary, we can determine by quadratures in a constructive explicit way 

the spherical curves such that .κ = κ(z) in the spirit of [16, Theorem 3.1].
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Theorem 1 Let .κ = κ(z) be a continuous function. Then the problem of deter-
mining locally a spherical curve whose curvature is .κ(z)—z representing the 
(nonconstant) signed distance to the great circle .z = 0—with spherical angular 
momentum .K(z) satisfying (6) is solvable by quadratures considering the unit-
speed curve .ξ(s) = (x(s), y(s), z(s)), with . x(s) = cos ϕ(s) cos λ(s), y(s) =
cos ϕ(s) sin λ(s), z(s) = sin ϕ(s), where .ϕ(s) and .λ(s) are obtained through (4) 
and (5) after inverting .s = s(z). Such a curve is uniquely determined by .K(z) up to 
a rotation around the z-axis (and a translation of the arc parameter s). 

In other words, any spherical curve .ξ = (x, y, z) : I ⊆ R → S
2, with z 

nonconstant, is uniquely determined by its spherical angular momentum . K as a 
function of its coordinate z, that is, by .K = K(z). The uniqueness is modulo 
rotations around the z-axis. Moreover, the curvature of . ξ is given by .κ(z) = K′(z). 

Remark 2 If we prescribe a continuous function .κ = κ(z) as curvature, the proof 
of Theorem 1 clearly implies the computation of three quadratures, following the 
sequence: 

(i) A one-parameter family of antiderivatives of .κ(z): 

. 

∫
κ(z)dz = K(z).

(ii) Arc length parameter s of .ξ = (x, y, z) in terms of z, defined—up to 
translations of the parameter—by the integral 

. s = s(z) =
∫

dz
√

1 − z2 −K(z)2
,

where .−√
1 − z2 < K(z) <

√
1 − z2, and inverting .s = s(z) to get . z = z(s)

and so the latitude of . ξ is .ϕ(s) = arcsin z(s). 
(iii) Longitude of .ξ = (cos ϕ cos λ, cos ϕ sin λ, sin ϕ) in terms of s, defined—up to 

a rotation around the z-axis—by the integral 

. λ(s) =
∫ K(z(s))

z(s)2 − 1
ds,

where .|z(s)| < 1. 

We note that we get a one-parameter family of spherical curves satisfying . κ =
κ(z) according to the spherical angular momentum .K(z) chosen in (i) and verifying 
.K(z)2 + z2 < 1. It will distinguish geometrically the curves inside a same family 
by their relative position with respect to the equator (or the z-axis). 

We now show two illustrative examples applying steps (i)–(iii) of the algorithm 
described in Remark 2:
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Fig. 1 Great circles 
.S2 ∩ {√1 − c2 y + c z = 0}: 
. K ≡ c ∈ (−1, 1)

Example 3 (.κ ≡ 0) Then .K ≡ c ∈ R, and .s = ∫
dz√

1−c2−z2
= arcsin z√

1−c2
, with 

.|c| < 1. Therefore, .z(s) = √
1 − c2 sin s. This gives that . λ(s) = − arctan(c tan s)

and finally .ξ(s) = (cos s,−c sin s,
√

1 − c2 sin s). It corresponds to the great circle 
.S

2 ∩{√1 − c2 y +c z = 0}. Up to rotations around the z-axis, they provide arbitrary 
great circles in . S2, except the equator. As a consequence of Theorem 1, we deduce 
that the great circle .S2 ∩ {√1 − c2 y + c z = 0} is the only spherical curve (up to 
rotations around the z-axis) with constant spherical angular momentum .K ≡ c (see 
Fig. 1). 

For example, taking .c = 0, we get the meridian .S2 ∩ {y = 0}, and hence the 
meridians are the only spherical curves with null spherical angular momentum. We 
notice that the limiting cases .c = ±1 lead to the equator .S2 ∩ {z = 0}. 
Example 4 (.κ ≡ k0 > 0) Now, .K(z) = k0z + c, .c ∈ R. In this case, it is not 
difficult to get that 

. z(s) = 1

1 + k2
0

(√
1 − c2 + k2

0 sin

(√
1 + k2

0 s

)
− c k0

)

with .|c| <

√
1 + k2

0. But the expression of . λ is far from trivial and depends on the 
values of c. After a long computation, we deduce the following:

• If .|c| �= k0: . λ(s) = arctan

(√
1−c2+k2

0+(1−ck0+k2
0) tan( 1

2

√
1+k2

0s)

(k0−c)

√
1+k2

0

)

+

.+ arctan

(√
1−c2+k2

0+(1+ck0+k2
0) tan( 1

2

√
1+k2

0s)

(k0+c)

√
1+k2

0

)

.

• If .c = k0: .λ(s) = arctan

(
1−(1+2k2

0) tan( 1
2

√
1+k2

0s)

2k0

√
1+k2

0

)

.

• If .c = −k0: . λ(s) = arctan

(
1+(1+2k2

0) tan( 1
2

√
1+k2

0s)

2k0

√
1+k2

0

)

.

Of course, up to rotations around the z-axis, we get all the nonparallel small circles 
of . S2. The parameter c distinguishes the position of the circle with respect to the 
equator. If .0 ≤ |c| < 1, the circles intersect the equator transversely; in particular, 
when .c = 0, we obtain the orthogonal circles to the equator. If .c = ±1, the circles
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Fig. 2 Small circles: .K(z) = k0 z + c, k0 > 0; 

.0 ≤ |c| < 1 (left), .c = ±1 (center), .1 < |c| <

√
1 + k2

0 (right) 

are tangent to the equator. Finally, if .1 < |c| <

√
1 + k2

0, the circles do not intersect 
the equator (see Fig. 2). 

For example, if .c = 0, we arrive (up to rotations around the z-axis) at . λ(s) =
arctan

(
cos(

√
1 + k2

0 s)/k0

)
and finally 

. ξ(s) = 1
√

1 + k2
0

(
k0, cos

(√
1 + k2

0 s

)
, sin

(√
1 + k2

0 s

))
,

that corresponds to the small circle .S
2∩{x = k0/

√
1 + k2

0}. This is the only spherical 
curve, up to rotations around the z-axis, with spherical angular momentum . K(z) =
k0z (see Fig. 2). 

Remark 5 The main difficulties one can find carrying on the strategy described 
in Remark 2 (or in Theorem 1) to determine a spherical curve whose curvature is 
.κ = κ(z) are the following: 

(1) The integration of .s = s(z): Even in the case that .K(z) was polynomial, the 
corresponding integral is not necessarily elementary. For example, when . K(z)

is a quadratic polynomial, it can be solved using Jacobian elliptic functions (see, 
for example, [6]). This is equivalent to .κ(z) be linear, i.e., .κ(z) = 2az + b, 
.a, b ∈ R. We will study such spherical curves in Sect. 3. 

(2) The previous integration gives us .s = s(z); it is not always possible to obtain 
explicitly .z = z(s), what is necessary to determine the curve. 

(3) Even knowing explicitly .z = z(s), the integration to get . λ(s) may be impossible  
to perform using elementary or known functions. 

Nevertheless, along the paper, we will study different families where we are 
successful with the procedure described in Remark 2, and we will recover some 
known curves and find out new spherical curves characterized by their spherical 
angular momentum.
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3 Elastic-Type Curves on the Sphere 

3.1 A New Characterization and a Generalization of Elastic 
Curves 

A unit-speed spherical curve . ξ is said to be an elastica under tension . σ (see [14]) if 
its curvature . κ satisfies the differential equation 

.2κ̈ + κ3 + (2 − σ)κ = 0 (7) 

for some .σ ∈ R. They are the critical points of the elastic energy functional 

. 

∫

ξ

(κ2 + σ)ds

acting on spherical curves with suitable boundary conditions. If .σ = 0, then the 
constraint on arc length is removed and . ξ is called a free elastica. 

A possible generalization of free elasticae was considered in [4], where the 
authors studied the elastic curves in . S2 which are circular at rest. They are called 
.λ-elastic curves. These curves are critical points of the functional 

. 

∫

ξ

(κ + λ)2ds, λ ∈ R

and are characterized by the Euler-Lagrange equation 

.2κ̈ + κ3 + (2 − λ2)κ + 2λ = 0. (8) 

It is obvious that the 0-elastic curves are the free elasticae. The main result of this 
section deals with the spherical curves which are the critical points of the bending 
energy for variations with constant length (including both previous types of elastic 
curves) relating them with the case commented in part (1) of Remark 5. 

Theorem 6 Let . ξ be a spherical curve whose curvature . κ satisfies 

.κ = 2a〈ξ, e〉 + b, a �= 0, b ∈ R, (9) 

for some .e ∈ R
3, |e| = 1. Then 

(i) The spherical angular momentum . K of . ξ is given by 

. K = a〈ξ, e〉2 + b〈ξ, e〉 + c,

for some .c ∈ R.
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(ii) . ξ is a critical point of the functional 

. 

∫

ξ

(κ2 − 2bκ + b2 − 4ac) ds

and so . κ satisfies the corresponding Euler-Lagrange equation 

.2κ̈ + κ3 +
(

2 − (b2 − 4ac)
)

κ − 2b = 0. (10) 

If .b = 0, . ξ is an elastica under tension .σ = −4ac, and if .c = 0, . ξ is a .λ-elastic 
curve with .λ = −b. 

Conversely, if . ξ is a critical point of the functional 

. Fλ
σ (ξ) :=

∫

ξ

(
(κ + λ)2 + σ

)
ds, λ, σ ∈ R,

then the curvature of . ξ can be written as in (9). 

Remark 7 It is remarkable the similitude of condition (9) characterizing the 
generalized elasticae considered in Theorem 6 with the geometric property satisfied 
by the classical Euler elastic curves in the plane: their curvature is proportional 
to one of the coordinate functions, say .κ(x, y) = 2λy + μ, .λ �= 0, μ ∈ R (see 
Section 3 in [7] and Section 1 in [16]). Even something similar happens to spacelike 
and timelike elastic curves in Lorentz-Minkowski plane (see [9] and [10]). 

Proof of Theorem 6 From (2), (1), and (9), we get that 

. 
d

ds

(
−K+ a〈ξ, e〉2 + b〈ξ, e〉

)
= 0.

This proves part (i). 
We also have from (9), (1), and (2), that .κ̇ = 2a〈ξ̇ , e〉 and . ̈κ = 2a(−〈ξ, e〉 −

κK). Now, we can easily check that . κ given by (9) satisfies (10) since, after a 
straightforward computation using (i) and putting .〈ξ, e〉 = (κ − b)/2a, we arrive  
at (10). We observe that if .b = 0, then . ξ satisfies (7) with .σ = −4ac and if 
.c = 0, then . ξ satisfies (8) with .λ = −b. Moreover, in [2], it is shown that for a 
given differentiable function .P(κ), the critical points of the functional . 

∫
ξ
P (κ)ds

are characterized by the Euler-Lagrange equation 

.(κ2 + 1)P ′(κ) + d2(P ′(κ))

ds2
= κP (κ). (11) 

It is an exercise to check that putting .P(κ) = κ2 − 2bκ + b2 − 4ac in (11) we 
obtain (10). This finishes the proof of part (ii).
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Multiplying (10) by . ̇k, we obtain a first integral 

. ̇κ2 + κ4/4 +
(

1 − (b2 − 4ac)/2
)

κ2 − 2bκ = E,

where E is a real constant. After a long computation involving (9), and part (i), (2) 
and using that .〈ξ̇ , e〉2 = 1 − 〈ξ, e〉2 − 〈N, e〉2, since .{ξ, ξ̇ , N} is an orthonormal 
basis in . R3, we get that 

.E = 4a2 − b2 − (b2 − 4ac)2/4. (12) 

On the other hand, suppose now that . ξ is a critical point of . Fλ
σ . Taking into 

account (11), we deduce that . κ verifies the differential equation 

.2κ̈ + κ3 + (2 − λ2 − σ)κ + 2λ = 0. (13) 

Multiplying (13) by . ̇κ and integration allow us to deduce the energy .E ∈ R of . ξ : 

.E := κ̇2 + κ4

4
+

(
1 − λ2 + σ

2

)
κ2 + 2λκ. (14) 

We want to prove that . κ has an expression like in (9). For this purpose, we first 
observe that if .λ = 0, then .κ ≡ 0 is a trivial solution to (13). For example, we 
can take .e ∈ R

3, |e| = 1 the unit normal vector orthogonal to the vectorial plane 
containing the corresponding great circle in . S2. Now, we must look for .a �= 0 and 
.b ∈ R satisfying (9). Comparing (10) and (13), we take .b = −λ and observe 
that . σ must satisfy .σ = −4ac, with .a �= 0, . c ∈ R. Using  (14), we have that 

.4E + 4λ2 + (λ2 + σ)2 = 4κ̇2 + 4(κ + λ)2 + (
κ2 − (λ2 + σ)

)2
> 0. 

But looking at (12), E must satisfy .E = 4a2−b2−(b2−4ac)2/4, and eliminating 
c, we finally arrive at .0 < 4E + 4λ2 + (λ2 + σ)2 = 16a2, which allows us to obtain 
the searched value for a. 

The study of (free) elastic curves on the sphere has been considered under different 
approaches (see, for example, [2, 5, 13, 14], or [17]), paying special attention to 
the closed ones. The closed .λ-elastic spherical curves were studied in [4]. All the 
mentioned articles are based on the study of the differential equation for the geodesic 
curvature of the spherical curve, being sometimes integrated directly in terms of 
Jacobi elliptic functions. 

In our approach of Theorem 6, we can choose .e = (0, 0, 1) without loss of 
generality and so .〈ξ, e〉 = z. In this way, we arrive at the conditions 

.κ(z) = 2az + b, K(z) = az2 + bz + c, a �= 0, b, c ∈ R, (15)
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in the notation of Theorem 1. Thus, using suitable coordinates in the sphere, we can 
conclude the following uniqueness result for the spherical elastic curves considered 
in literature: 

Corollary 8 

(a) The elasticae under tension . σ are the only spherical curves (up to rotations 
around z-axis) with spherical angular momentum . K(z) = az2 + c, a �= 0, c ∈
R, with .σ = −4ac. In particular, the free elasticae are characterized by the 
spherical angular momentum .K(z) = az2, a �= 0. 

(b) The .λ-elastic curves are the only spherical curves (up to rotations around z-
axis) with spherical angular momentum .K(z) = az2 + bz, a �= 0, b ∈ R, with 
.λ = −b. 

Remark 9 Inspired by Langer and Singer’s work on the Kirchhoff elastic rod [15], 
in [3], it is obtained by geometrical means the first integrals of the Euler-Lagrange 
equations of curvature energy functionals .

∫
ξ
P (κ)ds, where P is a smooth function 

and . κ denotes the curvature of the spherical curve . ξ in . S3. Assuming that . P ′′(κ) �=
0, the critical points of the functional .

∫
ξ
P (κ)ds are characterized by a couple of 

differential equations naturally related to a system of cylindrical coordinates in the 
three-sphere adapted to the curve . ξ . 

In the case that the curve . ξ lies in . S2, from Section 3 of [3], using concretely 
equation (33) with .θ = 0 (.b = 0), then we have that .cos2 ψ = P ′(k)2/a2, .a �= 0, 
where .ψ = π/2 − ϕ is the colatitude of . ξ . 

As a consequence, if a spherical curve . ξ is a critical point of .
∫
ξ
P (κ)ds, then 

there exist geographical coordinates .(ϕ, λ) adapted to . ξ such that 

. sin ϕ = δ P ′(κ), δ �= 0.

This result is consistent with Theorem 6, since if .P(κ) = (κ + λ)2 + σ , then 
.sin ϕ = z = κ−b

2a
= δ P ′(κ), taking .δ = 1

4a
and .λ = −b. 

If one follows the strategy described in Remark 2 to determine the generalized 
elasticae satisfying (15), it is necessary to perform the integral 

.s = s(z) =
∫

dz√
P(z)

, P (z) = 1 − z2 − (az2 + bz + c)2. (16) 

Since .P(z) is a fourth-order polynomial, (16) can be solved in terms of Jacobi ellip-
tic functions once the nature and multiplicity of the roots of .P(z) are determined. 
After inverting .s = s(z) to get .z = z(s), we would arrive at the expressions of 
.κ = κ(s) = 2az(s) + b compatible with the ones given in [2, 5, 13, 14] or [17], 
and [4], at least when .b = 0 or .c = 0. Besides helices and circles, the borderline, 
orbitlike, and wavelike elasticae appear as well as a more general case according to 
the expressions of the geodesic curvature in terms of the arc parameter (see [17]).
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In order to get the explicit expression of the generalized elasticae, we also have to 
compute 

.λ(s) =
∫

az(s)2 + bz(s) + c

z(s)2 − 1
ds, (17) 

which, in general, leads to complicated elliptic integrals. In the next two sections, 
we are going to illustrate the aforementioned computations in two interesting and 
attractive cases. 

3.2 Seiffert’s Spherical Spirals 

The Seiffert’s spirals are defined as those spherical curves obtained when one moves 
along the surface of a sphere with constant speed while maintaining a constant 
angular velocity with respect to a fixed diameter (cf. [11]). These curves are given 
in cylindrical coordinates .(r, θ, z), .r2 + z2 = 1, by the parametric equations 

.r = sn(s, p), θ = p s, z = cn(s, p), (p > 0), (18) 

where p is a positive constant and . sn and . cn are the elementary Jacobi elliptic 
functions (cf. [6], for instance). Erdös provided in [11] a derivation of the equations 
of this curve, as well as an analysis of its properties, including conditions for 
obtaining periodic orbits. When .p > 1, the spiral is located entirely in the northern 
hemisphere. 

Now, we prove that these curves are elastic curves with positive tension 
corresponding to the conditions .κ(z) = 2az, .K(z) = az2 − a, i.e., .b = 0, . a + c = 0
in (15). Then .σ = 4a2 > 0, and there is no restriction if we consider . a > 0. So (16) 
can be written as 

. 

(
dz

ds

)2

= (1 − z2)
(

1 − a2 + a2z2
)

,
a2 − 1

a2 < z2 < 1,

which implies that .z(s) = cn(s, a) (cf. [6], for instance) and thus .r(s) = sn(s, a). 
Using that .a+c = 0 in (17), we get that .λ(s) = a s, and so we arrive at the Seiffert’s 
spirals (see Fig. 3). As a summary 

Corollary 10 The Seiffert’s spirals (18) are the only spherical curves (up to 
rotations around z-axis) with spherical angular momentum .K(z) = pz2−p, p > 0.
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Fig. 3 Seiffert’s spirals 
(.p ≈ 0, .0 < p < 1, .p ≈ 1, 
.p > 1): .K(z) = pz2 − p, 
. p > 0

3.3 Borderline Spherical Elastic Curves 

We study in this section elastic curves with null energy producing elasticae under 
positive tension .σ > 0. This corresponds to the conditions .κ(z) = 2az, . K(z) =
az2 − 1, i.e., .b = 0, .c = −1 in (15). Then .E = 0 according to (12), and we can take 
.a > 0 in order to .σ = 4a > 0. Now,  (16) leads to 

. s = s(z) =
∫

dz

z
√

2a − 1 − a2z2
, 2a − 1 − a2z2 > 0,

which implies that .a > 1/2. The above integral becomes elementary, and after 
inverting .s = s(z) and up to a translation on the parameter s, we get 

.z(s) = 2a − 1

a
sech(

√
2a − 1 s). (19) 

Looking at (17), we get that if .a = 1 then .λ(s) = s (and .z(s) = sech s), and when 
.a > 1/2 with .a �= 1, we obtain 

.λ(s) = s + arctan

(√
2a − 1

1 − a
tanh(

√
2a − 1s)

)

. (20) 

This family corresponds to the “borderline elasticae” described in [17] which are 
asymptotic to the equator. We show some pictures of them in Fig. 4. In conclusion, 
we deduce the following uniqueness result: 

Corollary 11 The borderline elasticae given by (19) and (20) are the only spherical 
curves (up to rotations around z-axis) with spherical angular momentum . K(z) =
az2 − 1, a > 1/2.
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Fig. 4 Borderline elastic 
curves: 
. K(z) = az2 − 1, a > 1/2
(left, .1/2 < a ≤ 1; right, 
.a ≥ 1) 

We remark that when .a = 1, we recover the Seiffert’s spiral corresponding to .p = 1, 
since .cn(s, 1) = sech s (see [6]). 

4 Loxodromic-Type Curves on the Sphere 

In this section, we are interested in critical points of the functional 

. Fμ(ξ) :=
∫

ξ

√
κ2 + μ2 ds, μ > 0.

This functional was considered in Section 6 of [2] acting on the space of immersed 
closed curves in . S2, motivated by total . R3 curvature-type functionals. We aim to 
connect the critical points of .Fμ with the classical loxodrome curves in . S2 and 
others spherical curves with similar characteristics. 

Taking into account Remark 9, we are devoted to study the spherical curves with 
curvature 

.κ(z) = μz√
δ2 − z2

, μ > 0, δ �= 0. (21) 

We will distinguish cases according to .0 < μ < 1, .μ = 1, and .μ > 1. 

4.1 Case 0 < μ <  1: Spherical Loxodromes 

The loxodromes are interesting curves in the sphere studied, among others, by Pedro 
Nunes in 1537, Simon Stevin in 1608, or Maupertuis in 1744. They are also known 
as rhumb lines because they make a constant angle .α ∈ (0, π/2) with the meridians 
(cf. [12]). Analytically, using geographical coordinates .(ϕ, λ), they are defined by 
equation 

.dλ = cot α
dϕ

cos ϕ
. (22)
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The aim of this section is the study of the spherical curves satisfying 

.κ(ϕ) = a tan ϕ, 0 < a < 1, (23) 

or, equivalently, 

.κ(z) = az√
1 − z2

, 0 < a < 1. (24) 

So they correspond in (21) to the election .μ = a ∈ (0, 1) and .δ = 1. 
The trivial solution of (24) is given by the equator .z = 0. We follow the method 

described in Theorem 1 and Remark 2, considering the spherical angular momentum 

. K(z) = −a
√

1 − z2, 0 < a < 1.

Then, we have 

. s =
∫

dz
√

1 − z2 − (−a
√

1 − z2)2
=

∫
dz

√
(1 − a2)(1 − z2)

= 1√
1 − a2

arcsin z,

and so .z(s) = sin(
√

1 − a2 s) and therefore 

.ϕ(s) =
√

1 − a2 s. (25) 

On the other hand, from (25), we get 

.λ(s) =
∫

a ds

cos ϕ(s)
= a√

1 − a2
log

(
sec(

√
1 − a2 s) + tan(

√
1 − a2 s)

)
, (26) 

where .|s| <
π

2
√

1 − a2
. 

We deduce from (25) and (26) that 

. dλ = a√
1 − a2

dϕ

cos ϕ

and, taking into account (22) and that .K(ϕ) = −a cos ϕ, we conclude the following 
characterization of the loxodromes: 

Corollary 12 The loxodromes given by .dλ = cot α dϕ/ cos ϕ are the only spherical 
curves (up to rotations around z-axis) with spherical angular momentum . K(ϕ) =
− cos α cos ϕ, .α ∈ (0, π/2).
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Fig. 5 Loxodromes: 
.K(ϕ) = − cos α cos ϕ, 
. α ∈ (0, π/2)

From (23) and (25), we arrive at the intrinsic equation of the loxodromes (see Fig. 5), 
given by 

. κ(s) = cos α tan(sin α s), α ∈ (0, π/2).

4.2 Case μ = 1 

We now want to determine the spherical curves whose curvature is given by 

.κ(z) = z√
a − z2

, 0 < a < 1. (27) 

Looking at (21), we are now considering .μ = 1 and .δ = √
a. 

The trivial solution is given by the equator .z = 0. We follow the method 
described in Theorem 1 or Remark 2 for the nontrivial case, considering the 
spherical angular momentum 

. K(z) = −
√

a − z2.

In this way, we get 

. s = s(z) =
∫

dz
√

1 − z2 − (−√
a − z2)2

=
∫

dz√
1 − a

= z√
1 − a

,

and thus .z(s) = √
1 − a s. 

We write .a = sin2 α , .0 < α < π/2, and abbreviate .cα = cos α, sα = sin α. 
Hence, we have 

.λ(s) =
∫ √

s2
α − c2

αs2

1 − c2
αs2

ds,
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Fig. 6 Spherical curve with 
.K(z) = −√

a − z2, 
. 0 < a < 1

which gives 

. 

λ(s) = 1

cα

arctan

(
cαs

√
s2
α − c2

αs2

)

−1

2
arctan

(
cαs + s2

α

cα

√
s2
α − c2

αs2

)

− 1

2
arctan

(
cαs − s2

α

cα

√
s2
α − c2

αs2

)

,

where .|s| < tan α. 
We observe that .|z(s)| < sin α. Using  (27) and .z(s) = cαs, we get the intrinsic 

equation 

. κ(s) = cαs
√

s2
α − c2

αs2
, |s| < tan α,

of this family of spherical curves of loxodromic-type (see Fig. 6) characterized by 

the geometric angular momentum .K(z) = −
√

sin2 α − z2, .0 < α < π/2. 

4.3 Case μ >  1 

Finally, we wish to study the spherical curves whose curvature is given by 

.κ(z) = az√
1 − az2

, a > 1. (28) 

We observe that corresponds in (21) with the elections .μ = √
a and .δ = 1/

√
a. The  

trivial solution is given by the equator .z = 0. Otherwise, we make use of the method 
proposed in Theorem 1 or Remark 2, considering the spherical angular momentum 

.K(z) = −
√

1 − az2.
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Fig. 7 Spherical curve with 
.K(z) = −√

1 − az2, . a > 1

In this way, we obtain 

. s = s(z) =
∫

dz
√

1 − z2 − (−√
1 − az2)2

=
∫

dz√
a − 1 |z| = log |z|√

a − 1
,

and so .|z(s)| = e
√

a−1 s > 0. 
If we write .a = cosh2 δ, .δ > 0, then .z(s) = ±esinh δ s and 

. 

λ(s) = ∫ √
1−cosh2 δ e2 sinh δ s

1−e2 sinh δ s ds =

= −
arctanh

(√
1 − cosh2 δ e2 sinh δ s

)

sinh δ
+ arctan

(√
1 − cosh2 δ e2 sinh δ s

sinh δ

)

,

where .s < − log cosh δ/ sinh δ. 
Using (28), we get the intrinsic equation 

. |κ(s)| = cosh2 δ esinh δ s

√
1 − cosh2 δ e2 sinh δ s

, s < − log cosh δ/ sinh δ,

of this family of spherical curves of loxodromic-type (see Fig. 7) characterized by 

the geometric angular momentum .K(z) = −
√

1 − cosh2 δz2. 

5 Spherical Catenaries 

In this section, we are interested in critical points of the functional 

. F(ξ) :=
∫

ξ

√
κ ds.

The above functional .
∫
ξ
κ1/2 ds was considered in Section 5 of [2] acting on the 

space of convex (.κ > 0) closed curves in . S2, motivated by the study of (.r = 1/2)-
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Fig. 8 Closed spherical catenaries 

generalized elastic curves in . S2. We aim to connect the critical points of . F with the 
classical catenary curves in . S2. 

Taking into account Remark 9, we are devoted to study the spherical curves with 
curvature 

.κ(z) = δ2

4z2 , δ �= 0. (29) 

The spherical catenaries are the equilibrium lines of an inelastic flexible homo-
geneous infinitely thin massive wire included in a sphere, placed in a uniform 
gravitational field. Like any catenaries, their centers of gravity have the minimal 
altitude among all the curves with given length passing by two given points. They 
were studied by Bobillier in 1829 and by Gudermann in 1846 (cf. [12]). See Fig. 8. 

Using cylindrical coordinates .(r, θ, z) in . R3, they can be described analytically 
by the following first integral of the corresponding ordinary differential equation: 

.(z − z0) r2 dθ

ds
= constant. (30) 

We study in this section spherical curves satisfying the condition 

.κ(z) = a/z2, a > 0. (31) 

So they correspond in (29) to the election .δ = 2
√

a. For any . a > 0, it is easy to  
prove that there exists a unique angle .ϕ0 ∈ (0, π/2) such that .a = tan ϕ0 sin2 ϕ0. 
Thus, the parallel .z = sin ϕ0 is a constant solution to (31). 

We now apply Theorem 1 and Remark 2 considering (31) and 

. K(z) = −a

z
, a > 0.

Then, we have 

.s = s(z) =
∫

z dz
√

z2(1 − z2) − a2
,
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which implies that .a < 1/2 and .1 −√
1 − 4a2 < 2z2 < 1 +√

1 − 4a2, and it is not 
difficult to get 

.z(s) =
√

1 + √
1 − 4a2 sin 2s

2
. (32) 

In addition, we have that 

.dλ = a

z(1 − z2)
ds (33) 

Looking at (30), taking into account that .r2 + z2 = 1 and .θ = λ, we deduce 
from (33) that we get a spherical catenary (with .z0 = 0 and constant .a ∈ (0, 1/2)). 
However, the explicit computation of . λ in terms of the arc parameter s requires 
elliptic integrals of the first and third kind. As a summary, we have proved the 
following uniqueness result: 

Corollary 13 The spherical catenaries (33) are the only spherical curves (up to 
rotations around the z-axis) with spherical angular momentum .K(z) = −a/z (and 
curvature .κ(z) = a/z2), .0 < a < 1/2. 

Combining (31) and (32), we have that the intrinsic equation of the spherical 
catenaries is given by 

. κ(s) = 2a

1 + √
1 − 4a2 sin 2s

, 0 < a < 1/2.

6 New and Classical Spherical Curves 

The purpose of this section is to find out new curves .ξ = (x, y, z) in . S2, expressed 
in terms of elementary functions or in terms of Jacobi elliptic functions, prescribing 
their curvature as a function of the distance from the equator in such a way we can 
avoid the difficulties described in Remark 5. In addition, we provide uniqueness 
results for some well-known spherical curves in terms of the spherical angular 
momentum introduced in Sect. 2. 

6.1 Spherical Curves Such That 
κ(ϕ)  = p cos 2ϕ/ cos ϕ, 0 < p  <  1 

The purpose of this section is to find out new curves in . S2 expressed in terms of 
Jacobi elliptic functions prescribing in a suitable way their curvature in terms of
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their latitude. Concretely, we aim to study the spherical curves whose curvature is 
given by 

.κ(ϕ) = p cos 2ϕ

cos ϕ
, 0 < p < 1. (34) 

Recalling that .z = sin ϕ, (34) is equivalent to 

.κ(z) = p(1 − 2z2)√
1 − z2

, 0 < p < 1. (35) 

We follow the strategy proposed by Theorem 1 or Remark 2, considering the 
spherical angular momentum 

. K(z) = p z
√

1 − z2.

Then, we get 

. s =
∫

dz
√

(1 − z2)(1 − p2z2)
=

∫
dϕ

√
1 − p2 sin2 ϕ

= F(ϕ, p) = F(arcsin z, p),

where .F(·, p) denotes the elliptic integral of first class of modulus p (see, for 
example, [6]). Hence, .ϕ(s) = am(s, p) and .z(s) = sn(s, p), where .am(·, p) is 
the Jacobi amplitude and .sn(·, p) is the Jacobi sine amplitude of modulus p (see, 
for example, [6]). In addition, 

. λ(s) = −p

∫
sn(s, p)

cn(s, p)
ds

where .cn(·, p) is the Jacobi cosine amplitude of modulus p. Using formula 316.01 
of [6], we finally arrive at the following expression for the longitude: 

. λ(s) = − p

2p′ log

(
dn(s, p) + p′

dn(s, p) − p′

)
,

where .dn(·, p) is the Jacobi delta amplitude of modulus p and .p′ = √
1 − p2 is the 

complementary modulus. 
Using (35) and that .z(s) = sn(s, p), joint to formula 124.02 of [6], we get the 

intrinsic equation 

. κ(s) = p (2 cn(s, p) − 1/ cn(s, p)) , 0 < p < 1,

of the only spherical curves (up to rotations around z-axis) with spherical angular 
momentum .K(z) = p z

√
1 − z2 or, equivalently, .K(ϕ) = (p/2) sin 2ϕ, .0 < p < 1.
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Fig. 9 Spherical curves with 
.K(z) = p z

√
1 − z2, 

. 0 < p < 1

These curves are embedded and closed since .ξ(s + 4K(p)) = ξ(s), where . K(p)

is the complete elliptic integral of first class of modulus p (see Fig. 9). 

6.2 Viviani’s Curve and Spherical Archimedean Spirals 

The Viviani’s curve is the intersection between a sphere of radius R and a cylinder of 
revolution with diameter R such that a generatrix passes by the center of the sphere; 
so this curve is at the same time spherical and cylindrical. We can obtain a Viviani’s 
curve by sticking the tip of a compass inside a cylinder of revolution and tracing on 
this cylinder a “circle” with radius equal to the cylinder diameter. It was studied by 
Vincenzo Viviani in 1692 (cf. [12]). In geographical coordinates of . S2, the Viviani’s 
curve can be simply described as .ϕ = λ (see Fig. 10). 

We study in this section spherical curves satisfying the condition 

.κ(z) = z(3 − z2)

(2 − z2)3/2 , (36) 

applying Theorem 1 and Remark 2, considering the spherical angular momentum 

. K(z) = z2 − 1√
2 − z2

.

Then, we have 

.s = s(z) =
∫ √

2 − z2

1 − z2 dz = E(arcsin z, 1/2) (37)
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Fig. 10 Viviani’s curve 

Fig. 11 Spherical Archimedean spiral curves: .ϕ = nλ, .n = 1/3, and . n = 3

which involves an elliptic integral E of second kind (see, for example, [6]). In 
addition, we get 

.dλ = ds√
2 − z2

(38) 

Using that .z = sin ϕ, (37), and (38), we get easily that .dλ = dϕ. Hence, we have 
proved the following characterization of the Viviani’s curve: 

Corollary 14 The Viviani’s curve .ϕ = λ is the only spherical curve (up 
to rotations around the z-axis) with spherical angular momentum . K(ϕ) =
− cos2 ϕ/

√
1 + cos2 ϕ. 

The spherical Archimedean spiral curves are natural generalizations of the 
Viviani’s curve, since they are described in geographical coordinates by .ϕ = nλ, 
.n > 0. A spherical Archimedean spiral is algebraic if and only if . n ∈ Q. They  
were studied by Guido Grandi in 1728, also called clelias. They are the loci of a 
point P on a meridian of a sphere rotating at constant speed . ω around the polar axis, 
the point P also moving at constant speed .nω along this meridian (see Fig. 11). 
Therefore, physically, we obtain a clelia when peeling an orange or when rewinding 
regularly a spherical wool ball. 

A similar argument used in the preceding section, considering now 

.κ(z) = z(2n2 + 1 − z2)

(n2 + 1 − z2)3/2
, (39) 

gives us the following uniqueness result, whose proof we will omit.
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Corollary 15 The spherical spiral curves .ϕ = nλ, .n > 0, are the only spherical 
curves (up to rotations around the z-axis) with spherical angular momentum 
.K(ϕ) = − cos2 ϕ/

√
n2 + cos2 ϕ. 
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Conjugate Plateau Constructions in 
Product Spaces 

Jesús Castro-Infantes, José M. Manzano, and Francisco Torralbo 

Abstract This survey paper investigates, from a purely geometric point of view, 
Daniel’s isometric conjugation between minimal and constant mean curvature 
surfaces immersed in homogeneous Riemannian three-manifolds with isometry 
group of dimension four. On the one hand, we collect the results and strategies in 
the literature that have been developed so far to deal with the analysis of conjugate 
surfaces and their embeddedness. On the other hand, we revisit some constructions 
of constant mean curvature surfaces in the homogeneous product spaces .S2 × R, 
.H

2 ×R, and . R3 having different topologies and geometric properties depending on 
the value of the mean curvature. Finally, we also provide some numerical pictures 
using Surface Evolver. 

Keywords Constant mean curvature · Compact surfaces · Homogeneous 
three-manifolds · Product spaces · Conjugate constructions 

1 Introduction 

The study of minimal and constant mean curvature surfaces (H -surfaces in the 
sequel) represents a central topic in surface theory with a long trajectory dating back 
to works of Euler and Lagrange. Minimal surfaces were popularized by Plateau’s 
experiments on soap films, which gave rise to the so-called Plateau problem of 
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finding the least-area surface spanning a given contour. Likewise, H -surfaces with 
.H > 0 were first investigated in connection with the isoperimetric problem of 
finding the least-area surface enclosing a given volume. A geometrically appealing 
question that has caught the attention of many geometers during the last century is 
to produce nontrivial examples of H -surfaces with a high number of symmetries. 
This is well exemplified by the vast number of triply periodic minimal surfaces in 
Euclidean space . R3 that appear in the literature, e.g., see Schoen’s report [101] and 
Weber’s Minimal Surface Archive [107]. 

However, in the case .H > 0, very few examples of H -surfaces were known 
prior to Lawson’s discovery [58] of an isometric duality or conjugation for H -
surfaces in space forms .M3(c) of constant sectional curvature .c ∈ R. It allowed 
him to produce the first examples of doubly periodic embedded 1-surfaces in 
.R

3 = M
3(0) by means of minimal surfaces in the round sphere .S3 = M

3(1). 
The minimal surfaces he employed were indeed solutions to appropriate Plateau 
problems over certain spherical geodesic polygons whose sides become planar lines 
of curvature in the conjugate 1-surface. Furthermore, he noticed that an extension 
of the minimal surface by axial symmetries about the boundary components agrees 
with an extension of the conjugate one-surface by mirror symmetry about the 
planes containing the conjugate boundary. This technique is known as the conjugate 
Plateau construction and has been used to obtain many examples of complete 1-
surfaces in .R3 as we explain below. It is important to say that Lawson’s result 
actually yields a two-parameter isometric deformation in which we can change not 
only the ambient curvature but also a phase parameter which rotates the second 
fundamental form. In particular, Lawson’s correspondence generalizes the classical 
notion of associate Bonnet family of minimal surfaces in .R3 (see also [56]). 
However, when we speak of conjugation, we are prescribing the phase angle equal 
to . π2 , which gives a more precise control of the corresponding surfaces, as we will 
explain throughout this work. 

As for the conjugation from minimal surfaces in . S3 to 1-surfaces in . R3, Lawson’s 
constructions were resumed by Karcher [51], who realized that many of Schoen’s 
triply periodic minimal surfaces in [101] admit many planes of mirror symmetry and 
their fundamental pieces can be obtained as conjugate Plateau constructions. This 
allowed him to deform Schoen’s minimal examples into H -surfaces by considering 
geodesic polygons in the . S3 similar to those needed in . R3. In his paper, Karcher 
also improved some of Lawson’s ideas about conjugate curves and developed their 
connection with the different Hopf fibrations in . S3, making it clear that the conjugate 
technique had the capability to produce beautiful highly symmetric H -surfaces (see 
also [53]). Große-Brauckmann [28] took it one step further and produced many 
interesting examples of 1-surfaces in . R3, including k-unduloids, whose . k ≥ 2
ends are asymptotic to the classical Delaunay unduloids. In fact, triunduloids (with 
.k = 3) were later proved to be properly embedded 1-surfaces in .R3 by Große-
Brauckmann, Kusner, and Sullivan [30]. Große-Brauckmann and Wohlgemuth [32] 
also used the conjugation to prove that the triply periodic minimal surface known 
as gyroid is embedded and can be deformed into an H -surface (see also [29] for  
numerical experiments). The conjugation has also been used in different ambient
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spaces, e.g., Karcher, Pinkall, and Sterling [55] constructed minimal surfaces in . S3

by conjugating minimal surfaces in . S3; Karcher [52] and Rossman [97] obtained 
1-surfaces in hyperbolic space .H3 = M

3(−1) from minimal surfaces in . R3; and 
Karcher and Polthier [56] also used related techniques to revisit conjugate minimal 
surfaces in . R3. 

There have been other approaches to produce H -surfaces in space forms, three 
of which will be highlighted here concerning compact examples: First, using 
implicit methods, Karcher, Pinkall, and Sterling [55] obtained compact embedded 
minimal surfaces in . S3 with arbitrary genus, and Kapouleas [46, 47] found compact 
immersed H -surfaces in .R3 with arbitrary genus. The second technique is often 
referred to as the Dorfmeister-Pedit-Wu (DPW) method [21], which uses integrable 
systems and can be thought of as a global version of the Weierstraß representation. 
The DPW method was pioneered by Pinkall and Sterling [88] and Hitchin [41] 
to study H -tori. Heller, Heller, and Traizet [39] (see also [5] for numerically 
constructed surfaces) have recently shown the existence, for large genus g, of  
a complete and smooth family of compact H -surfaces in the round 3-sphere 
deforming the Lawson surface .ξ1,g (see [58, §6]) into a doubly covered geodesic 
2-sphere. Third and last, we have gluing methods, which can be illustrated by 
Kapouleas’ constructions of compact minimal surfaces in . S3 by connecting two 
parallel Clifford tori [49] or equatorial 2-spheres [48] by means of catenoidal 
bridges. 

Back to the conjugate techniques, they have been extended recently to the case of 
simply connected homogeneous three-manifolds with isometry group of dimension 
4, which are the most symmetric spaces after the space forms. These spaces form 
a two-parameter family .E(κ, τ ), .κ �= 4τ 2, containing the product spaces . M2(κ) ×
R = E(κ, 0) as well as the Lie groups .˜SL2(R), .SU(2), and .Nil3 with some left-
invariant metrics (see Table 2). Their geometry will be discussed in Sect. 2. The  
cornerstone of this extension is the work of Daniel [14], who found a Lawson-type 
correspondence within this family that connects, for a phase angle of . π2 , minimal 
surfaces in .E(4H 2 + κ,H) with H -surfaces in .M2(κ) × R for all .κ,H ∈ R (see 
Table 3). Hauswirth, Sa Earp, and Toubiana [38] also found this correspondence as 
a particular case of the associate family for .H = 0 and arbitrary . κ ∈ R. We also  
remark that Daniel’s correspondence contains other cases with phase angle . π2 , but  
mirror symmetries only exist in the case of product spaces, which makes this case 
the most tractable one (see Lemmas 2 and 3). Observe that in the case . κ = 0, we  
have that .E(4H 2,H) = M

3(H 2) and Daniel’s conjugation reduces to the classical 
Lawson’s conjugation between minimal surfaces in .S3(H 2) and H -surfaces in . R3. 

The starting tools in a conjugate construction, i.e., the Plateau problem (and its 
improper version known as the Jenkins-Serrin problem) in .E(κ, τ ) have been solved 
under quite general conditions [13, 76, 79, 81, 84, 108] (see Sect. 4.1 and Sect. 4.2). 
They provide us with plenty of surfaces with boundary a geodesic polygon (with 
possibly some components at infinity in the Jenkins-Serrin case) that are at our 
disposal to act as initial minimal surfaces in the conjugate construction. Also, the 
extension by axial and mirror symmetries and the absence of singularities rely on 
general results that also apply (see Proposition 3).
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It is necessary to point out that the family .E(κ, τ ) has fewer isometries than space 
forms, which forces us to consider only initial polygons consisting of horizontal and 
vertical geodesics (with respect to the Killing submersion .π : E(κ, τ ) → M

2(κ), 
see Sect. 2). This reduces both the number of possible configurations and the 
directions in which we are able to control the involved surfaces. 

In Sect. 3, we will collect and present different features of Daniel’s correspon-
dence that are essential in the conjugate constructions, specially a detailed study 
of conjugate curves, some of them in more generality than those in the literature. 
We will pay special attention in Sect. 3.2 to some classes of surfaces in which 
the correspondence is well understood, such as equivariant surfaces, ideal Scherk 
graphs, or ruled minimal surfaces. In this respect, it is worth mentioning that 
Daniel’s correspondence has been a formidable tool to analyze surfaces satisfying 
preserved geometric conditions and has played a key role in their classification, 
e.g., H -surfaces with zero Abresch-Rosenberg quadratic differential [1, 19, 23], 
H -surfaces with certain bounds on the intrinsic or extrinsic area growth [67], or 
H -surfaces with constant Gauss curvature [15]. 

We will now give a brief overview of constructions of H -surfaces in .E(κ, τ )-
spaces that use conjugation, and we will begin with the minimal case. Morabito and 
Rodríguez [83] used a conjugate Jenkins-Serrin construction to obtain minimal k-
noids in .H2 × R with genus 0 and k-ends asymptotic to vertical planes, as well as 
minimal saddle towers in .H2 × R similar to those in . R3 obtained by Karcher [50]. 
Pyo [92] also found the minimal k-noids independently assuming additionally 
that the vertical planes are disposed symmetrically. Rodríguez [94] extended this 
construction to give minimal examples in .H2 × R with infinitely many ends and an 
arbitrary (finite or countable) number of limit ends. Martín and Rodríguez [74] have  
also used a conjugate Jenkins-Serrin construction to produce minimal embeddings 
of any non-simply connected planar domain in .H2 × R. Mazet, Rodríguez, and 
Rosenberg [77] used a conjugate Jenkins-Serrin construction to produce examples 
for their classification of doubly periodic embedded minimal surfaces in .H2 × R. 
The first two authors [10] have obtained minimal k-noids in .H2 × R with genus 
1 and .k ≥ 3 ends by another conjugate Jenkins-Serrin construction, inspired by 
a construction of Plehnert [89] of similar surfaces for .H = 1

2 . Plehnert and the 
second and third authors [68] have also obtained embedded minimal surfaces of 
type Schwarz P in .S2 × R by a conjugate Plateau construction. 

In the non-minimal case, the study of conjugate constructions was initiated 
independently by Plehnert [90] (to obtain k-noids with genus 0 in .H2 × R and 
.0 < H ≤ 1

2 ) and by the second and third authors [70] (to obtain horizontal unduloid-
type H -surfaces in .H

2×R and .S
2×R). The latter was subsequently improved in [72] 

to obtain horizontal nodoid-type H -surfaces in .H
2 ×R and .S

2 ×R and to determine 
which of these examples are embedded. The second and third authors have also 
provided compact orientable embedded H -surfaces in .S2 × R with arbitrary genus 
by means of a different conjugate Plateau construction. In the case of .H2 × R and 
.0 < H ≤ 1

2 , Rodríguez and the first and second authors [11] have produced k-noids 
and saddle towers that extend Plehnert’s, plus another family of H -surfaces, called
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k-nodoids, with genus 0 and .k ≥ 2 ends that approach the asymptotic vertical planes 
from the convex side (unlike the k-noids, which lie in their concave side). 

We will illustrate how the technique works by sketching five of the above 
constructions (see Table 1). A deeper motivation for each of them will be given 
in the corresponding sections, but we will say here that we have chosen them 
because we would like to cover all ranges of the mean curvature in both .S

2 ×R and 
.H

2×R in order to visualize the dissimilarities between the critical, supercritical, and 
subcritical cases (see Sect. 2.5). These constructions are also part of some ongoing 
open research lines to which the authors have contributed:

• On the one hand, we are interested in the classification of compact embedded 
H -surfaces in .S2 × R attending to their genus. The only non-equivariant known 
examples are the families of H -tori given by Theorem 8 with .H > 1

2 and the 
arbitrary genus H -surfaces given by Theorem 9 with .H < 1

2 . We expect that 
the former are the only embedded H -tori. Since they are not equivariant, their 
characterization should be more involved than in the case of H -tori in . S3 (see 
Andrews and Li [3]).

• On the other hand, we are also interested in H -surfaces with finite total curvature 
in .H

2 ×R displaying different topologies and asymptotic behaviors. In Sect. 6.2, 
we discuss and collect some properties of this class of surfaces in the minimal 
case, which is probably the most studied class of minimal surfaces in .H2 × R. It  
is widely believed that H -surfaces in .H2 × R with .0 < H < 1

2 should behave 
similarly, but this is still an unexplored area of research. In particular, we expect 
that the .(H, k)-noids and .(H, k)-nodoids given by Theorem 11 have finite total 
curvature when the mean curvature is not critical. 

In conjugate constructions, one easily reaches the central but tough question 
of embeddedness, which probably has not been well understood yet. We will 
treat it carefully throughout the constructions in this survey by emphasizing the 
different approaches to answer this question. In the case of horizontal Delaunay H -
surfaces, embeddedness follows from spotting a geometric function in the common 
stability operator of the conjugate immersions and finding one-parameter groups 
of isometries that induce this function (see Sect. 5.1.5). In the case of arbitrary 
genus H -surfaces, we rely on the estimates on the curvature of the boundary 
of an H -bigraph given by the second author in [62]. In the case of minimal 
Schwarz P-surfaces, convexity of some boundary curves come in handy along with 
some isoperimetric inequalities. In the case of .(H, k)-noids and .(H, k)-nodoids, 
we are able to find some embedded limits, and then we can ensure that some 
of the examples are embedded (and some of them are not) by continuity (see 
Proposition 2). Finally, in the case of the minimal k-noids of genus 1, we use 
the Krust-type property given by Hauswirth, Sa Earp, and Toubiana [38] (see 
Proposition 5) to also show that the surfaces are embedded provided that the 
parameters are controlled. The Krust property is an essential tool that facilitates 
the conjugation of minimal surfaces in .H

2 ×R, but it is not true in general for other 
values of H (see Sect. 6.1.3).
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Numerical methods are an invaluable tool in the visualization of H -surfaces 
and prove useful to forecast theoretical results. We will highlight three different 
approaches in this respect: First, Weierstraß representation along with numerical 
solutions of the period problems has been used to represent many families of 
minimal surfaces in . R3 (see the Mathematica notebooks given by Weber in [107] 
for details). Second, the use of the DPW method along with a numerical adjustment 
of parameters has been developed to get high genus H -surfaces in . S3 by Bobenko, 
Heller, and Schmitt [5, 40], where the figures in the first paper were done with the 
software XLAB developed by Schmitt). This approach presents the drawback that 
particular Weierstraß data might be difficult to derive in more complicated examples. 
A last and more variational approach was developed by Brakke in his software 
Surface Evolver [7] by minimizing energies (e.g., area functional) of triangulated 
surfaces under certain constraints (e.g., volume and boundary constrains, a.k.a. free 
boundary problem) to get H -surfaces, although the method may display some issues 
when approximating the solution since fundamental domains might not be stable 
minima. In Sect. 7, we present some numerical experiments using Surface Evolver 
in order to visualize the minimal examples in .S2(κ) × R constructed in Sect. 5.3. 
We also remark that to overcome some of the issues in the above methods, Pinkall 
and Polthier [87] used discrete differential techniques to implement the conjugation 
directly. The philosophy of this procedure is that the Plateau solution is usually 
stable and easier to obtain by minimization than the free boundary solution which 
is more likely unstable. Examples of surfaces produced with this technique can be 
found in [31, 87], where the software GRAPE [91] is used. We would like to say that, 
unfortunately and as far as we know, neither XLAB nor GRAPE is publicly available. 

As a final comment, in the present work, we have made an effort to keep the 
notation homogeneous by writing: a tilde for the elements of the initial minimal 
surface in .E(4H 2 + κ,H), no tilde for the corresponding elements of the conjugate 
target H -surface in .M2(κ) × R, and an asterisk . ∗ to indicate the completion of 
the surface after successive reflections about its boundary components. Also, we 
have indicated as subscripts the parameters that are part of the construction (e.g., 
.�a,b) and in functional notation those which are auxiliary and will likely disappear 
after a continuity argument (e.g., .�(a, b)). Regarding the figures, we have colored 
the boundary curves in red and blue for the horizontal and vertical components of 
the initial polygon, respectively. We hope this will help the reader to easily follow 
some of the geometric discussions in the document. Finally, we have deliberately 
not normalized the spaces by homotheties, so that we will do our constructions in 
.H

2(κ) × R and .S2(κ) × R. This is because the limit case .κ = 0 always gives some 
insight by comparing with the Euclidean counterparts. 

2 The Geometry of E(κ, τ)-spaces 

Simply connected oriented homogeneous Riemannian three-manifolds with four-
dimensional isometry group can be arranged in a two-parameter family .E(κ, τ ), 
where .κ, τ ∈ R and .κ − 4τ 2 �= 0. These parameters are geometrically characterized
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by the existence of a Riemannian submersion .π : E(κ, τ ) → M
2(κ) whose fibers 

are the integral curves of a unit Killing vector field . ξ (also called Killing submersion) 
and such that the bundle curvature is constant and equal to . τ , that is, 

.∇Xξ = τX × ξ (1) 

holds true for all vector fields .X ∈ X(E(κ, τ )) (see [14, 64]). The cross product . ×
reflects the orientation of the ambient space, being .{u, v, u×v} a positively oriented 
basis for all linearly independent tangent vectors u and v. As a matter of fact, . E(κ, τ )

and .E(κ,−τ) are the same space for all . κ and . τ , but opposite orientations have been 
chosen. More generally, .E(a2κ, aτ) is homothetic to .E(κ, τ ) with a conformal factor 
. a2 for any constant .a �= 0. 

In the case .κ = 4τ 2, the above description is also valid, though the space . E(κ, τ )

has constant sectional curvature (it is isometric to the space form .M3(τ 2)), whence 
its isometry group is six-dimensional. We remark that hyperbolic spaces .H3(c) are 
not .E(κ, τ )-spaces for any sectional curvature .c < 0 because they do not admit 
Killing fields of constant length. 

All .E(κ, τ )-spaces are isometric to Lie groups endowed with left-invariant 
metrics, except for .E(κ, 0) with .κ > 0 (see [78, Thm. 2.4]). Indeed, the condition 
.τ = 0 indicates that the distribution orthogonal to . ξ is integrable, so .E(κ, 0) is better 
thought of as the Riemannian product space .M

2(κ)×R (observe that there is no Lie 
group with underlying manifold .S2 × R). As shown in Table 2, in the case .τ �= 0, 
we encounter the universal cover of the special linear group .˜SL2(R), the Heisenberg 
group .Nil3, and the special unitary group .SU(2), endowed with left-invariant metrics 
in which . ξ is a biinvariant vector field and hence Killing. In the case of .SU(2), these 
spaces are known as Berger spheres and will be denoted by .S3

B(κ, τ ) in the sequel. 
Observe that the Lie groups .SU(2) and .˜SL2(R) also admit left-invariant metrics with 
three-dimensional isometry groups that will not be considered here. 

As Killing submersions, the .E(κ, τ )-spaces admit natural notions of vertical 
and horizontal directions, defined as those tangent and orthogonal to the unit 
Killing vector field . ξ , respectively. Also, the isometries spanned by . ξ , called 
vertical translations, form a one-parameter group of isometries .{�t }t∈R that plays 
a fundamental role in the geometry of these spaces. 

Table 2 Different 
geometries in .E(κ, τ )-spaces 

.κ > 0 .κ = 0 . κ < 0

.τ = 0 .S2 × R .R3 . H2 × R

.τ �= 0 .SU(2) .Nil3 .˜SL2(R)
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2.1 Geodesics 

There are two distinguished types of geodesics in .E(κ, τ ), namely, the vertical 
ones (fibers of the submersion over .M2(κ)) and horizontal ones (horizontal lifts of 
geodesics of .M2(κ)). More generally, if .τ �= 0, then any non-vertical geodesic . γ of 
.E(κ, τ ) with unit speed projects onto a curve .π ◦ γ of .M2(κ) of constant curvature, 
say c, and meets the Killing direction with constant angle . 〈γ ′, ξ 〉 = c√

4τ 2+c2

(see [64, Prop. 3.6] and Fig. 1). In the case .τ = 0, any non-vertical geodesic of 
.E(κ, τ ) = M

2(κ)×R factors as the product of geodesics of each factor, so it always 
projects onto a geodesic of .M2(κ). 

Horizontal and vertical geodesics have infinite length if .κ ≤ 0. However, if . κ > 0
and .τ �= 0, the length of all vertical geodesics is . 8τπ

κ
, whereas the length of all 

horizontal geodesics is . 4π√
κ

. Note that this is twice the length of a great circle of 

.S
2(κ) because horizontal geodesics in Berger spheres project two-to-one onto great 

circles. This contrasts the case .κ > 0 and .τ = 0 because horizontal geodesics of 
.S

2(κ) × R project one-to-one onto great circles of .S2(κ). 
Explicit parametrizations of all geodesics of .E(κ, τ ), . κ ≤ 0, as well as some  

discussion of their minimization properties can be found in [67, §2]. The case . κ > 0
and .τ �= 0 were studied by Rakotoniaina in [93]. A discussion of Jacobi fields along 
any geodesic of any .E(κ, τ ) can be found in [19, §4]. 

2.2 Isometries 

An isometry .f ∈ Iso(E(κ, τ )) induces another isometry .h ∈ Iso(M2(κ)) such that 
.π ◦f = h◦π . Conversely, given .h ∈ Iso(M2(κ)), there is an orientation-preserving 

Fig. 1 A vertical geodesic in blue, four horizontal geodesics in red, and an oblique geodesic in 
green. They are represented in .Nil3 (left) and in .H2 ×R (right) in the Cartan model (see Sect. 2.3)



52 J. Castro-Infantes et al.

isometry .f+ ∈ Iso(E(κ, τ )) such that .π ◦ f+ = h ◦ π . If .τ = 0, then there is also 
an orientation-reversing isometry .f− ∈ Iso(E(κ, τ )) such that .π ◦f− = h◦π . Both  
. f+ and . f− are unique up to composition with vertical translations. Moreover, all the 
isometries of .E(κ, τ ) are of these types provided that .κ − 4τ 2 �= 0; in particular, 
there are no orientation-reversing isometries in .E(κ, τ ) if .κ − 4τ 2 �= 0 and .τ �= 0. 
We refer to [64, Thm. 2.8] for a classification of the isometries that preserve the 
Killing direction in a general Killing submersion. 

In .E(κ, τ ), there are rotations of any angle about vertical geodesics, which are 
recovered as orientation-preserving lifts of rotations in .M2(κ) with center the point 
onto which the vertical geodesic projects. In the case of horizontal geodesics, there 
are axial symmetries (i.e., rotations of angle . π ) about them, recovered as orientation-
preserving lifts of axial symmetries with respect to their projections, but there are no 
rotations of arbitrary angle if .κ −4τ 2 �= 0. These are the only orientation-preserving 
isometries that keep all points of a certain geodesic fixed. 

Lemma 1 Given a non-vertical geodesic .γ : R → E(κ, τ ), there is a unique one-
parameter group .{Tt }t∈R of isometries of .E(κ, τ ) such that . Tt (γ (s)) = Tt+s(γ (0))

for all .t, s ∈ R. 

Proof Since .π◦γ is a curve of constant curvature parametrized with constant speed, 
we can consider a one-parameter group .{ht }t∈R of isometries of .M2(κ) such that 
.ht (π(γ (0)) = π(γ (t)). Therefore, we can find a unique orientation-preserving lift 
.Tt ∈ Iso(E(κ, τ )) of . ht such that .Tt (γ (0)) = γ (t). By the uniqueness of the lift and 
the uniqueness of a geodesic given initial conditions, it easily follows that . {Tt }t∈R
is a group satisfying the desired condition. 

The elements of .{Tt }t∈R will be called translations along . γ ; if . γ is vertical, 
then such a group is not unique, but translations along . γ are defined as the 
vertical translations. In general, a one-parameter group .{ft }t∈R of isometries is not 
necessarily the group of translations along a geodesic, but translations will allow us 
to interpret the rest of them as their screw motions (i.e., a composition with vertical 
translations):

• If .τ �= 0 and the induced group .{ht }t∈R of isometries of .M2(κ) has a fixed point 
p, then .{ft }t∈R is a group of rotations about the vertical geodesic .π−1(p) or 
their screw motions. If .{ht }t∈R has no fixed points, then .κ ≤ 0, and we have two 
possibilities: 

– If .{ht }t∈R consists of translations along a geodesic . α of .R2 or .H2(κ), then 
.{ft }t∈R is a group of (hyperbolic) translations along a horizontal geodesic of 
.E(κ, τ ) projecting to . α or their screw motions. 

– The second possibility only occurs if .κ < 0 and .{ht }t∈R are parabolic 
translations. In this case, we can choose an oblique geodesic . γ projecting 
to an orbit of .{ht }t∈R, which is a horocycle of .H

2(κ). Then, .{ft }t∈R is a group 
of (parabolic) translations along . γ or their screw motions.

• If .τ = 0, then one-parameter groups of isometries of .E(κ, τ ) factor as the 
product of one-parameter groups of isometries of .M2(κ) and . R. This makes it
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easier to classify such a one-parameter group as rotations, translations, parabolic 
translations, or hyperbolic translations (when they leave the factor . R fixed) and 
their screw motions (otherwise). 

If .τ = 0, then there are also mirror symmetries with respect to vertical planes 
(i.e., preimages of geodesics of .M2(κ) under . π ) or with respect to horizontal slices 
(i.e., surfaces of the form .M2(κ) × {t0} for some .t0 ∈ R). These symmetries 
are orientation-reversing lifts of axial symmetries and of the identity in .M2(κ), 
respectively. In particular, vertical planes and horizontal slices are totally geodesic 
surfaces in .E(κ, 0), yet there are no totally umbilical surfaces in .E(κ, τ ) if .τ �= 0, 
as shown by Souam and Toubiana [102]. 

2.3 Working in Coordinates 

The following common framework for all .E(κ, τ )-spaces was originally introduced 
by Cartan [8, §296]. We consider 

. 
κ = {(x, y) ∈ R
2 : λκ(x, y) > 0}, where λκ(x, y) = 1

1 + κ
4 (x2 + y2)

.

Therefore, .
κ is a disk of radius . 2√−κ
if .κ < 0 or the whole . R2 if .κ ≥ 0. Then, we 

define .M(κ, τ) as .
κ × R ⊆ R
3 endowed with the Riemannian metric 

. ds2 = λ2
κ(dx2 + dy2) + (dz + λκτ(ydx − xdy))2.

Moreover, the orientation is chosen such that 

. E1 = 1
λκ

∂x − τy ∂z, E2 = 1
λκ

∂y + τx ∂z, E3 = ∂z (2) 

is a global positively oriented orthonormal frame. It easily follows that . π(x, y, z) =
(x, y) is a Killing submersion from .M(κ, τ) to .(
κ, ds2

κ ) with constant bundle 
curvature . τ and unit Killing vector field .ξ = E3, where the Riemannian metric 
.ds2

κ = λ2
κ(dx2 + dy2) has constant curvature . κ . Therefore, .M(κ, τ) is a global 

model of .E(κ, τ ) if .κ ≤ 0 but fails to be complete otherwise. More precisely, if 
.κ > 0, then .M(κ, τ) is isometric to the universal cover of .E(κ, τ ) minus a vertical 
fiber, as we will discuss shortly. 

In the frame (2), the Levi-Civita connection . ∇ of .E(κ, τ ) reads 

. 

∇E1E1 = κy
2 E2, ∇E1E2 = − κy

2 E1 + τE3, ∇E1E3 = −τE2,

∇E2E1 = − κx
2 E2 − τE3, ∇E2E2 = κx

2 E1, ∇E2E3 = τE1,

∇E3E1 = −τE2, ∇E3E2 = τE1, ∇E3E3 = 0.

(3)
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By evaluating at the frame, it is not difficult to check that the Riemann curvature 
tensor . R of .E(κ, τ ) is given by 

. 
R(X, Y,Z,W) = 〈∇X∇Y Z − ∇X∇Y Z − ∇[X,Y ]Z,W 〉

= −τ 2〈X × Y,Z × W 〉 − (κ − 4τ 2)〈X × Y, ξ 〉〈Z × W, ξ 〉.
(4) 

Note that our sign convention for . R is the opposite to Daniel’s in [14, Prop. 2.1]. 
Equation (4) implies that the sectional curvature in .E(κ, τ ) equals . τ 2 for vertical 
planes and .κ − 3τ 2 for horizontal planes. It follows that the sectional curvature is 
constant if and only if .κ − 4τ 2 = 0 as already discussed. On the other hand, it also 
follows that .E(κ, τ ) has constant scalar curvature .2(κ − τ 2). 

Remark 1 Using the model .M(κ, τ), we can understand why the geometry of 
.E(κ, τ ) twists in the presence of bundle curvature, which leads to a very different 
behavior with respect to product spaces (.τ = 0). Assume that .α : [0, 
] → 
κ is a 
piecewise-. C1 Jordan curve enclosing a relatively compact region U with the interior 
of U to the left when traveling on . α. Let .α : [0, 
] → M(κ, τ) be a horizontal lift 
of . α (i.e., .π ◦ α = α and . α is everywhere orthogonal to . ξ ), which is unique up 
to vertical translations. The signed vertical distance from .α(0) to .α(
) is given by 
.2τArea(U) (see [18, Prop. 1.6.2] and [64, Prop. 3.3]). 

2.3.1 A Global Model for Berger Spheres 

If .κ > 0 and .τ �= 0, then .E(κ, τ ) or .S
3
B(κ, τ ) is a Berger sphere modeled in complex 

coordinates as the usual 3-sphere .S3 = {(z, w) ∈ C
2 : |z|2 + |w|2 = 1} equipped 

with the Riemannian metric 

. ds2(X, Y ) = 4
κ

[

〈X, Y 〉 + 16τ 2

κ2

( 4τ 2

κ
− 1

)〈X, ξ 〉 〈Y, ξ 〉
]

,

being .〈·, ·〉 the usual inner product in .C2 ≡ R
4. The vector field . ξ is defined by 

.ξ(z,w) = κ
4τ

(iz, iw), and the Killing submersion is the Hopf fibration: 

. π : S3
B(κ, τ ) → S

2(κ) ⊂ C × R ≡ R
3, π(z,w) = 2√

κ

(

zw̄, 1
2 (|z|2 − |w|2)),

(see [105, §2]). A local isometry between .S3
B(κ, τ ) and .M(κ, τ) is given by the 

Riemannian covering map .� : M(κ, τ) → S
3
B(κ, τ ) − {(eiθ , 0) : θ ∈ R}, where 

.
�(x, y, z) = 1

√

1 + κ
4 (x2 + y2))

(√
κ

2 (y + ix) exp(i κ
4τ

z), exp(i κ
4τ

z)
)

. (5)



Conjugate Plateau Constructions in Product Spaces 55

2.3.2 The Half-Space Model 

In the case .κ < 0, another model of .E(κ, τ ) is the half-space model given by 
.{(x, y, z) ∈ R

2 : y > 0} endowed with the metric 

.
dx2 + dy2

−κy2
+

(

dz + 2τ

κy
dx

)2

. (6) 

Notice that the conformal factor . 1
y
√−κ

defines a metric of constant curvature . κ in 
the upper half-plane and the orientation is chosen such that 

. E1 = y
√−κ ∂x + 2τ√−κ

∂z, E2 = y
√−κ ∂y, E3 = ∂z, (7) 

is a positively oriented orthonormal frame. The Killing submersion is again 
.π(x, y, z) = (x, z) with unit Killing vector field .ξ = E3. A global isometry from 
.M(κ, τ) to the half-space model is given by 

. �(x, y, z) =
⎛

⎝

4√−κ
y

(

2√−κ
+x

)2+y2
,

− 4
κ
−x2−y2

(

2√−κ
+x

)2+y2
, z + 4τ

κ
arccos

⎛

⎝

y
√

(

2√−κ
+x

)2+y2

⎞

⎠

⎞

⎠ .

The following expression for the Levi-Civita connection in the global frame (7) can 
be deduced directly from [64, Eq. (5–1)] for .λ = 1

y
√−κ

: 

.

∇E1E1 = √−κE2, ∇E1E2 = −√−κE1 + τE3, ∇E1E3 = −τE2,

∇E2E1 = −τE3, ∇E2E2 = 0, ∇E2E3 = τE1,

∇E3E1 = −τE2, ∇E3E2 = τE1, ∇E3E3 = 0.

(8) 

2.4 Fundamental Data 

Let .φ : � → E(κ, τ ) be an isometric immersion of an orientable Riemannian 
surface . � with global smooth unit normal N . The shape operator of . φ with respect 
to N can be seen as a symmetric .(1, 1)-tensor A identified with the smooth field of 
self-adjoint linear operators: 

. Ap : Tp� → Tp�, Ap(v) = −∇dφp(v)Np, for all v ∈ Tp�.

We can also consider the angle function .ν ∈ C∞(�) and the tangent part of the 
Killing field .T ∈ X(�) defined by .ν(p) = 〈ξφ(p), Np〉 and . dφp(Tp) = ξφ(p) −
ν(p)Np, respectively, for all .p ∈ �. The orientation in .E(κ, τ ) and the choice of
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N induce an orientation in . � expressed in terms of a .π2 -rotation J in the tangent 
bundle (i.e., J is a smooth field of linear operators such that .J 2 = −id) defined by 
assuming that .{dφp(u), dφp(Ju),Np} is positively oriented or equivalently 

.dφp(Ju) = Np × dφp(u), (9) 

for all nonzero .u ∈ Tp� and .p ∈ �. 
Daniel [14] showed that the quadruplet .(A, T , J, ν), also called the fundamental 

data of the immersion, satisfies the following equations for all .X, Y ∈ X(�): 

(i) .K = det(A) + τ 2 + (κ − 4τ 2)ν2, 
(ii) .∇XAY − ∇Y AX − A[X, Y ] = (κ − 4τ 2)(〈Y, T 〉X − 〈X, T 〉Y )ν, 

(iii) . ∇XT = (AX − τJX)ν

(iv) .∇ν = −AT − τJT , 
(v) .‖T ‖2 + ν2 = 1, 

where K is the Gauß curvature of . � and . ∇ is its Levi-Civita connection. The 
identities (i) and (ii) are nothing but the Gauß and Codazzi equations. Observe that 
we have considered J as a fundamental datum to state explicitly that the orientation 
plays a key role; equivalently, Daniel assumes that . � is oriented. 

Conversely, any simply connected Riemannian surface . � carrying a quadruplet 
.(A, T , J, ν) that satisfies the above conditions (i)–(v) can be isometrically immersed 
in .E(κ, τ ) with shape operator A, tangent part of the Killing T , and angle function 
. ν, being A and . ν defined with respect to the normal N compatible with J , in the  
sense that (9) holds true. Such an immersion is determined up orientation-preserving 
isometries that also preserve the orientation of vertical fibers (see [14, Thm. 4.3]). A  
similar discussion of the fundamental equations in terms of a conformal parameter 
on . � is given in [24]. 

Remark 2 To understand the uniqueness, it is important to mention how other 
geometric transformations affect the fundamental data:

• A change of the sign of N results in .(A, T , J, ν) �→ (−A, T ,−J,−ν).
• A composition with an orientation-preserving isometry that reverses the orienta-

tion of the fibers gives .(A, T , J, ν) �→ (A,−T , J,−ν).
• If .τ = 0, a composition with an orientation-reversing isometry that preserves the 

orientation of the fibers gives .(A, T , J, ν) �→ (A, T ,−J, ν). 

These transformations are also discussed in [14, Rmk. 4.12] and [27, Rmk. 3.4].  

2.5 Cylinders and Multigraphs 

A vertical cylinder in .E(κ, τ ) is a surface . � invariant under vertical translations, 
so it is foliated by vertical geodesics, and its angle function vanishes identically. 
This amounts to say that . � is the preimage .π−1(β) of a curve .β ⊂ M

2(κ), from



Conjugate Plateau Constructions in Product Spaces 57

where it easily follows that the mean curvature of . � is half of the curvature of . β as 
a curve of .M2(κ). In particular, we define the H -cylinders as the preimages under 
. π of complete curves of constant curvature 2H in .M2(κ). This implies a different 
behavior if they project onto circles (.4H 2 + κ > 0), straight lines (.H = κ = 0), 
horocycles (.4H 2 + κ = 0 and .κ < 0), or curves of .H2(κ) equidistant to a geodesic 
(.4H 2 + κ < 0). 

On the opposite side of vertical cylinders, another distinguished class of surfaces 
in .E(κ, τ ) are the so-called vertical multigraphs, which are surfaces everywhere 
transverse to . ξ . The angle function of a multigraph . � never vanishes, whence the 
projection .π|� is a local diffeomorphism. If .π|� is also one-to-one, the surface is 
called a vertical graph over the domain .π(�) ⊆ M

2(κ). Such a graph is said to be 
entire if .π|� is a global diffeomorphism onto .M2(κ). 

Smooth graphs over .
 ⊆ M
2(κ) can be parametrized by smooth functions . u ∈

C∞(
) as .Fu : 
 → E(κ, τ ) given by .Fu(q) = �u(q)F0(q) for all .q ∈ 
, where 
.F0 : 
 → E(κ, τ ) is a zero section and .{�t }t∈R is the group of vertical translations. 
If .τ = 0, then .M2(κ) × {0} is the natural zero section, but it is important to remark 
that there is no natural zero section whenever .τ �= 0. Working in the model .M(κ, τ), 
it is common to consider .F0(x, y) = (x, y, 0) as zero section and then parametrize 
any graph over .
 ⊆ 
κ as .Fu(x, y) = (x, y, u(x, y)). The mean curvature of this 
parametrization is given in divergence form as 

.H = 1

2
div

(

Gu
√

1 + ‖Gu‖2

)

, (10) 

where the divergence and norm are computed in the geometry of .M
2(κ). The vector 

field .Gu ∈ X(
), given by .Gu = ( ux

λκ
+ τy) ∂x

λκ
+ (

uy

λκ
− τx)

∂y

λκ
, is also known as the 

generalized gradient of u. It does not depend on the choice of the zero section, and 
.

√

1 + ‖Gu‖2 is the area element of the surface (see [60, §3]). 
Any complete H -multigraph in .E(κ, τ ) is either a horizontal slice in . S2(κ) × R

(with .H = 0) or a graph (with .4H 2 + κ ≤ 0) over a simply connected domain of 
.M

2(κ) bounded by curves of constant curvature .±2H where the function defining 
the graph tends to .±∞ (see [69]). Such a complete H -graph must be entire if 
.κ + 4H 2 = 0 (see [18, Cor. 4.6.3] and the references therein). Note that by 
the Fernández and Mira’s solution to the Bernstein problem [25] (see also [65]), 
there are plenty of entire graphs with critical mean curvature, generically a two-
parameter family of them for each choice of a holomorphic quadratic differential on 
the complex plane . C (not identically zero) or on the unit disk .D ⊆ C. 

If .κ + 4H 2 ≤ 0, by a standard application of the maximum principle for 
H -surfaces, the existence of entire H -graphs prevents the existence of compact 
immersed H -surfaces. However, if .κ + 4H 2 > 0, then there do exist compact 
H -surfaces in .E(κ, τ ), e.g., the rotationally invariant H -spheres. As a matter of 
fact, Abresch and Rosenberg [1] solved the Hopf problem in .E(κ, τ ) by showing 
that these are the only immersed H -spheres in .E(κ, τ ). Note that some of these 
H -spheres are non-embedded [104, Thm. 1]. We will show in Sect. 5 that there are
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plenty of compact embedded H -surfaces in .S2(κ) × R which are not equivariant. 
It is important to remark that the classical Alexandrov problem concerning the 
classification of compact embedded H -surfaces has not been hitherto settled in 
.E(κ, τ )-spaces other than .H

2(κ)×R (see [43]) and . R3, where Alexandrov’s moving 
plane technique applies. In .S2(κ) ×R and .S3

B(κ, τ ), there do exist nonspherical H -
surfaces, e.g., the rotational embedded H -tori (see [86, 104] or the non-equivariant 
examples in Sect. 5.1 and Sect. 5.2). 

All the above discussions reveal that the value of H , if any, such that . 4H 2+κ = 0
is geometrically relevant, and it is called the critical mean curvature in .E(κ, τ ). 
Accordingly, H -surfaces with .4H 2 + κ > 0 and .4H 2 + κ < 0 will be said to have 
supercritical and subcritical mean curvature, respectively. 

3 The Conjugate Construction 

Let .κ, τ,H, κ̃, τ̃ , ˜H ∈ R be constants such that .κ − 4τ 2 = κ̃ − 4τ̃ 2 and . τ + iH =
eiθ (̃τ + i ˜H) for some .θ ∈ [0, 2π). Given a simply connected Riemannian surface 
. �, there is an isometric correspondence between .˜H -immersions . ˜φ : � → E(̃κ, τ̃ )

and H -immersions .φ : � → E(κ, τ ) by means of the following transformation of 
fundamental data: 

.(A, T , J, ν) = (

Rotθ ◦ (˜A − ˜H id) + H id, Rotθ (˜T ), ˜J , ν̃
)

, (11) 

where .Rotθ = cos(θ)id+sin(θ)J is a rotation of angle . θ in the tangent bundle of . �. 
The immersions . ˜φ and . φ are called sister immersions and determine each other up 
to orientation-preserving isometries that also preserve the orientation of the fibers 
(see [14, Prop. 4.1]). We would like to remark that the simple connectedness of 
. � is not an essential assumption here, for the correspondence can be applied after 
considering the Riemannian universal cover of . �. 

Remark 3 (Lawson Correspondence) If .κ − 4τ 2 = 0, then Daniel corre-
spondence reduces to a correspondence between .˜H -immersions in .M3(̃τ 2) and 
H -immersions in .M3(τ 2) such that .˜H 2 + τ̃ 2 = H 2 + τ 2 in which the shape 
operator is rotated by an angle . θ . This is a particular case of the two-parameter 
correspondence given by Lawson [58, Thm. 8] (see also [28, 51] for a more 
geometric description). If .̃κ = τ̃ = ˜H = 0, then .κ = τ = H = 0, and Daniel 
correspondence reduces to the classical Bonnet associate family of minimal surfaces 
in . R3. 

Using the uniqueness, we can prove a result similar to [58, Prop. 2.12]: 

Proposition 1 Let .˜φ : � → E(̃κ, τ̃ ) and .φ : � → E(κ, τ ) be sister immersions. 
Then . φ is equivariant if and only if . ˜φ is equivariant.
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Proof Assume that .{St }t∈R is a one-parameter group of isometries of .E(κ, τ ) under 
which . φ is invariant. Since this is a continuous group, it must preserve both the 
orientation and the orientation of the fibers and induces a one-parameter group 
.{Rt }t∈R of isometries of . � such that .St ◦ φ = φ ◦ Rt . The fundamental data of 
the immersions .φ ◦ Rt : � → E(κ, τ ) do not depend on t , whence their sister 
immersions have the same fundamental data as .˜φ ◦ Rt : � → E(̃κ, τ̃ ) (which does 
not depend on t either) in view of (11). By the uniqueness of the correspondence, 
we can find isometries . ˜St of .E(̃κ, τ̃ ) preserving the orientation and the orientation 
of the fibers such that .˜St ◦ ˜φ = ˜St ◦ ˜φ ◦ R0 = ˜φ ◦ Rt for all .t ∈ R. It follows that 

. ˜Ss+t ◦ ˜φ = ˜φ ◦ Rs+t = ˜φ ◦ Rs ◦ Rt = ˜Ss ◦ ˜φ ◦ Rt = ˜Ss ◦˜St ◦ ˜φ.

This implies that .˜Ss+t = ˜Ss ◦ ˜St unless . ˜φ is part of vertical cylinder or a horizontal 
slice. However, were it the case, then .ν ≡ 0 or .ν ≡ ±1, and it follows that . φ is also 
part of a vertical cylinder or a horizontal slice, so the statement holds true. 

The continuity of the sister correspondence also follows from its uniqueness. The 
proof is a direct generalization of the particular case in [11, Prop. 2.3]. 

Proposition 2 (Continuity) Let . � be a smooth surface, and let . ˜φn : (�, ds2
n) →

E(̃κ, τ̃ ) be a sequence of isometric .˜H -immersions that converge on the .Cm-topology 
on compact subsets (for all .m ≥ 0) to an isometric .˜H -immersion . ˜φ∞ : (�, ds2∞) →
E(̃κ, τ̃ ). Given .θ ∈ R not depending on n, the sister H -immersions . φn (up to 
suitable isometries of .E(κ, τ )) converge in the same mode to the sister H -immersion 
. φ∞. 

Observe that .E(κ, τ ) has bounded geometry in view of (4). If a sequence 
of H -surfaces in .E(κ, τ ) has uniformly bounded second fundamental form in a 
neighborhood (of uniform intrinsic radius) around an accumulation point, then there 
is a subsequence that converges in the topology . Cm for all m to some H -surface. The 
condition on the accumulation point amounts to translate the surfaces appropriately 
using the homogeneity, whereas the uniform bound of the second fundamental form 
usually follows from stability, as shown by Rosenberg, Souam, and Toubiana [96]. 
If the surfaces in the sequence are complete and stable, then their limit is also 
complete. 

Remark 4 (Rescaling) Consider homotheties .ρ̃μ : E(̃κ, τ̃ ) → E(μ2κ̃, μτ̃ ) and 
.ρμ : E(κ, τ ) → E(μ2κ, μτ) that multiply lengths by a constant factor . μ−1. In the  
Cartan model, these transformations are nothing but .(x, y, z) �→ ( x

μ
,

y
μ
, z

μ2 ). 

Given an isometric .˜H -immersion .˜φ : (�, ds2
�) → E(̃κ, τ̃ ) with fundamental 

data .(˜A, ˜T , J, ν), we have that .ρ̃μ ◦ ˜φ : (�,μ−2ds2
�) → E(μ2κ̃, μτ̃ ) is an 

isometric .(μ˜H)-immersion with fundamental data .(μ˜A,μ˜T , J, ν). Given a sister 
H -immersion .φ : � → E(κ, τ ) for some phase angle .θ ∈ [0, 2π) and reasoning 
likewise, the fundamental data of .ρμ ◦ φ is .(μA,μT , J, ν). By looking at (11), we  
deduce that .ρ̃μ ◦ ˜φ is the sister of .ρμ ◦ φ for the same value of . θ , that is, the sister 
correspondence commutes with rescaling the metrics.
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Other geometric objects in the theory of H -surfaces in .E(κ, τ ) also behave 
nicely with respect to the correspondence. For instance, at the conformal level, 
the Abresch-Rosenberg holomorphic quadratic differentials [1] of sister immersions 
are related by .˜Q = e−2iθQ. Also, the harmonic Gauß maps into hyperbolic space 
spanning these differentials in the case of multigraphs of critical mean curvature are 
associate for sister immersions (see [16, Prop. 5.6]). We also point out that sister 
immersions define the same stability operator given by 

.L = � − 2K + 4H 2 + κ + (κ − 4τ 2)ν2, (12) 

where . � stands for the Laplacian on . � (see [14, Prop. 5.11]). 
As for the construction of H -surfaces, we will focus on the case .θ = π

2 and 
.˜H = 0, which gives .̃κ = 4H 2+κ and .̃τ = H , i.e., we can associate an H -immersion 
.φ : � → M

2(κ) × R to any minimal immersion .˜φ : � → E(4H 2 + κ,H). Under 
these assumptions, we will call . φ and . ˜φ conjugate immersions in the sequel. They 
fulfill some additional properties that will allow us to control the geometry of . φ
in terms of the geometry of . ˜φ and will be discussed in Sect. 3.1. Recall that we 
will use the tilde notation for the minimal surface (the minimal surface we will 
begin with), because . φ (without tilde) will stand for our target surface in a product 
space. Conjugation is characterized in terms of the fundamental data . (A, T , J, ν) =
(J ◦ ˜A + H id, J˜T , J, ν̃), plus the orientations satisfy the compatibility relations 
.dφp(Ju) = N × dφp(u) = N∗ × dφ∗

p(u) for all .u ∈ Tp�. 
Table 3 shows the different possible configurations and explains why H -surfaces 

with critical, supercritical, and subcritical mean curvature in .M2(κ) × R display 
qualitatively different behaviors, as discussed in Sect. 2.5. Their minimal isometric 
conjugate surfaces lie in Berger spheres (supercritical case), in the Heisenberg group 
(critical case), in .˜SL2(R) (subcritical case), or in .H2 × R and .S2 × R (minimal 
case). In this last case, there is a notion of associate family of minimal immersions, 
discovered by Hauswirth, Sa Earp, and Toubiana [38, Cor. 10]. They found that 
conjugate surfaces come from conjugate harmonic maps as in the aforesaid case of 
critical mean curvature. This justifies the use of the term conjugation in the general 
context. 

Table 3 Possible configurations for conjugate surfaces in product spaces 

Produces an H -surface in 
A minimal surface in .S2(κ) × R .H2(κ) × R . R3

.S3
B(4H 2 + κ,H) .H > 0 .H >

√−κ/2 . H > 0

.Nil3 – .H = √−κ/2 – 

.˜SL2(R)(4H 2 + κ,H) – .0 < H <
√−κ/2 – 

.H2(κ) × R – .H = 0 – 

.S2(κ) × R .H = 0 – – 

.R3 – – .H = 0
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Remark 5 We could also have chosen .θ = −π
2 , but it would lead to an isometric 

surface in .E(κ,−τ). Note that composition with an isometry from .E(κ, τ ) to 
.E(κ,−τ) that preserves the orientation of the fibers produces the change of fun-
damental data .(A, T , J, ν) �→ (−A,−T , J, ν) and also the change of parameters 
.(κ, τ,H) �→ (κ,−τ,−H). This is equivalent to adding .±π to . θ in (11). 

3.1 Conjugate Curves 

Let .˜φ : � → E(4H 2 +κ,H) be a minimal immersion, and let . φ : � → M
2(κ)×R

be its conjugate H -immersion. We recall that the shape operators A and . ˜A of . φ and 
. ˜φ are related by .A = J ˜A + H id (see (11)). 

3.1.1 Vertical and Horizontal Geodesics 

Given .α : [0, 
] → � a unit-speed regular curve, we shall investigate the relation 
between conjugate curves .γ̃ = ˜φ ◦α and .γ = φ ◦α. More precisely, we will collect 
some results to understand the geometry of . γ whenever . ̃γ is a vertical or a horizontal 
geodesic. The proof of the following two lemmas, sometimes in particular cases, is 
scattered across the references [10, 11, 66, 68, 70, 90, 105]: 

Lemma 2 (Horizontal Geodesics) If . ̃γ is a horizontal geodesic segment, then . γ
lies in a totally geodesic vertical plane P that the immersion . φ meets orthogo-
nally: 

(a) If .γ = (β, z) ∈ M
2(κ) × R is decomposed component-wise, then . |z′| =√

1 − ν2 and .‖β ′‖ = |ν|. In particular, z and . β might fail to be locally one-
to-one only around points where .ν = ±1 and .ν = 0, respectively (see Fig. 2). 

(b) Write .˜Nγ(t) = cos(θ(t))X(t) + sin(θ(t))˜ξγ̃ (t) for some .θ ∈ C∞([0, 
]), where 
.{γ̃ ′,˜ξ,X} is a positively oriented orthonormal frame along . ̃γ . The curve . γ has 
geodesic curvature .κP

g = θ ′ as a curve of P with respect to N as conormal. 

Proof We will provide the proof of item (b), which is not in the literature. Since 
.∇ γ̃ ′˜ξ = Hγ̃ ′ ×˜ξ = HX and .∇ γ̃ ′X = ∇ γ̃ ′(γ̃ ′ ×˜ξ) = −H˜ξ (see (1)), we easily 
compute .∇ γ̃ ′ ˜N = (θ ′ − H)˜N × γ̃ ′. This implies that 

. θ ′ − H = 〈∇ γ̃ ′ ˜N, ˜N × γ̃ ′〉 = −〈˜Aα′, Jα′〉 = 〈JAα′ − HJα′, Jα′〉
= 〈Aα′, α′〉 − H = −〈∇γ ′N, γ ′〉 − H = 〈∇γ ′γ ′, N〉 − H = κP

g − H.

Lemma 3 (Vertical Geodesics) If . ̃γ is a vertical segment, then . γ is contained in a 
totally geodesic horizontal slice .P = M

2(κ) × {t0} that . φ meets orthogonally.
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Fig. 2 Conjugate surfaces .˜φ(�) and .φ(�) in a neighborhood of a horizontal geodesic. The 
quantities .

∫

γ̃
|ν| and .

∫

γ̃

√
1 − ν2 indicate the lengths of the projections of . γ to the factors . M2(κ)

and . R, respectively (with multiplicity) 

Assume that .γ̃ ′ = ˜ξ , and write .˜Nγ̃ (t) = cos(θ(t))X1(t) + sin(θ(t))X2(t) for 
some .θ ∈ C∞([0, 
]), where .{X1, X2,˜ξ} is a positively oriented orthonormal frame 
along . ̃γ such that . X1 and . X2 project to constant tangent vectors of .M2(4H 2 +κ): 

(a) The conjugate curve . γ has geodesic curvature .κP
g = 2H − θ ′ as a curve of P 

with respect to N as normal. 
(b) Assume that .α ⊂ ∂R for some region .R ⊆ � on which .ν > 0, and let . ˜
 ⊂

M
2(4H 2 + κ) and .
 ⊂ M

2(κ) be the (possibly non-embedded) domains over 
which .˜φ(R) and .φ(R) are multigraphs, respectively:

• If .θ ′ > 0, then .J γ̃ ′ (resp. .Jγ ′ = ξ ) is a unit outer conormal to . ˜φ (resp. . φ) 
along . ̃γ (resp. . γ ), N points to the interior of . 
 along . γ , and .φ(R) lies in 
.M

2(κ) × (−∞, t0] locally around . γ (see Fig. 3, top).
• If .θ ′ < 0, then .J γ̃ ′ (resp. .Jγ ′ = ξ ) is a unit inner conormal to . ∂˜φ (resp. . φ) 

along . ̃γ (resp. . γ ), N points to the exterior of . 
 along . γ , and .φ(R) lies in 
.M

2(κ) × [t0,+∞) locally around . γ (see Fig. 3, bottom). 

The function .θ ∈ C∞([0, 
]) in Lemmas 2 and 3 will be called the angle of 
rotation of . ˜N along . ̃γ . In general, it is impossible to obtain . θ explicitly, but . θ(
) −
θ(0) = ∫ 


0 θ ′(t)dt gives useful information because it is related to .
∫

γ
κP
g , the total 

geodesic curvature of . γ by means of the formulas in the above statements. It is also 
important to remark that if P is a vertical plane (Lemma 2), then P is flat, and . 

∫

γ
κP
g

is the total rotation of the normal of . γ as a curve of P . However, if P is a horizontal 
slice (Lemma 3), then P has constant curvature . κ , and there is no clear geometric 
interpretation of .

∫

γ
κP
g if .κ �= 0. Gauß-Bonnet theorem offers some information, as 

we will discuss in the constructions. 

Remark 6 If . ̃γ is vertical, the curvature . κP
g can be related to the rotation angle of . γ

with respect to foliations of .M
2(κ) by curves. This idea was devised by Plehnert [89, 

Lem. 4.7] for a foliation of . H2 by horocycles, but alike formulas show up for other 
foliations of .M2(κ) by curves of constant curvature.
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Fig. 3 Orientation of conjugate surfaces .˜φ(�) and .φ(�) according to the direction of rotation of 
. ˜N along a vertical geodesic . ̃γ such that .γ̃ ′ =˜ξ . Recall that this is true on the boundary of a region 
where .ν > 0, but we can obtain a similar picture if .ν < 0 after changing some signs 

In the halfspace model of .H2(κ) × R, we can use the frame .{E1, E2, E3} given 
by (7) to express 

.γ ′(t) = cos(ψ(t))E1 + sin(ψ(t))E2, (13) 

where we call .ψ ∈ C∞([0, 
]) the angle of rotation of . γ with respect to a foliation 
by horocycles (these horocycles are the integral curves of . E1). Using (8) and taking 
derivatives in (13), we get .∇γ ′γ ′ = (ψ ′ +√−κ cos(ψ))(− sin(ψ)E1 + cos(ψ)E2). 
On the other hand, as the surface meets P orthogonally, we infer that . N = γ ′ ×
Jγ ′ = γ ′ × E3 = sin(ψ)E1 − cos(ψ)E2, so we reach the desired formula 

. κP
g = 〈∇γ ′γ ′, N〉 = −ψ ′ − √−κ cos(ψ).

This also makes sense in the limit case .κ = 0, in which . ψ becomes the angle rotation 
of the normal of . γ as a plane curve, whose derivative is well known to agree with 
the curvature of . γ . 

3.1.2 The Control of the Angle Function 

Lemma 2 exposes the convenience of knowing at which points the angle function 
takes values 0 or .±1 in order to obtain geometric information about the conjugate
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curves. We collect here some ideas that prove useful when dealing with this type 
of analysis in different constructions. They are complementary to the maximum 
principles (in the interior or in the boundary) for minimal surfaces. To simplify the 
notation, we will denote by . ˜� and . � the (immersed) conjugate surfaces:

• Strategy 1 (points where .ν = 0). If .p ∈ ˜� is an interior point with .ν(p) = 0, 
then compare with the vertical cylinder . Tp tangent to . � at p. 

The intersection of minimal surfaces consists of a set of regular curves 
meeting transversally at some isolated points, with at least four rays emanating 
from tangency points. More generally, there are .2n + 2 rays emanating from 
a point with order of contact n, i.e., where all derivatives of both surfaces (as 
graphs over their tangent planes) coincide up to order n (see [79, Lem. 2]). 
Therefore, this strategy consists in reaching a contradiction if there are too many 
rays emanating from p and ending in .∂˜�∩Tp, which generically consists of very 
few points. However, we must ensure that they cannot enclose regions either of 
. ˜� or in . Tp by some maximum principle at the interior or at infinity. Let us also 
comment about two variants of this strategy: 

– Comparing with .Tp also gives information if .p ∈ ∂˜� by applying the 
boundary maximum principle or by considering p as an interior point after 
extending the surface across that boundary. 

– In the case there are two or more curves where .ν = 0 meeting at p, then 
.∇ν(p) = 0, and there are at least six rays in .˜�∩Tp emanating from p (see [72, 
Lem. 3.5]). Note that . ν lies in the kernel of the stability operator given by (12), 
which is a second-order linear elliptic operator, and hence its zeros also form 
set of regular curves intersecting transversally at some isolated points (see [4] 
and the references therein).

• Strategy 2 (points where .ν = ±1). The is pretty similar to Strategy 1, but we 
compare with the umbrella .Up centered at an interior or boundary point . p ∈ ˜�

where .ν(p) = ±1 (see Example 3). Since .Up is tangent to . ˜�, at least four rays 
in .Up ∩ ˜� arise from p, and we have to figure out where they end. 

If p belongs to a horizontal boundary component .˜h ⊂ ∂˜�, then it is often 
useful to compare with the invariant surface . I

˜h defined in Example 4, whose 
angle is constant 1 along . ˜h. In particular, some interior arc in .I

˜h ∩ ˜� emanates 
from each point of . ˜h where .ν = ±1.

• Strategy 3 (comparison along the boundary). Sometimes, it is possible to find a 
minimal surface B (also called a barrier) that contains a horizontal component 
.˜h ⊂ ∂˜� and stays (locally around . ˜h) at one side of . ˜�. The boundary maximum 
principle imposes a restriction on the normal . ˜N of . ˜� along . ˜h. If we are able to 
control the points where .ν = 0 or .ν = ±1, the existence of such a barrier often 
translates into estimates for the angle function . ν. 
This might become a bit subtle. For instance, if we know that . ˜� and B are 
multigraphs with angle functions .ν > 0 and .νB > 0, respectively, and . � stays 
above B along . ˜h, then this does not necessarily imply that .νB < ν or .ν < νB . 
However, if we know additionally that the invariant surface . I

˜h stays below B 
(resp. above . ˜�), then it follows that .0 < ν < νB (resp. .νB < ν < 1).
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Note that this strategy also applies to vertical geodesics, in which case we 
obtain an estimate for the angle of rotation of the normal (instead of the angle 
function), which is bounded by the angle of rotation of the barrier. 

3.1.3 Completion and Embeddedness 

A minimal surface in .E(κ, τ ) containing a horizontal or a vertical geodesic segment 
in the interior must be axially symmetric with respect to that segment, which 
follows from the work of Leung [61]. Sa Earp and Toubiana [99] have also proved 
that a minimal surface which has a vertical or horizontal geodesic segment in the 
boundary and is of class . C1 up to that boundary can be analytically extended by 
axial symmetry. By comparing the fundamental data of axially symmetric surfaces 
and mirror symmetric surfaces (see Remark 2), it is not difficult to show that a 
minimal surface in .E(4H 2 + κ,H) axially symmetric with respect to a geodesic 
segment . γ has a conjugate H -surface in .M2(κ) × R mirror symmetric with respect 
to the totally geodesic surface P containing the conjugate curve . γ . Also, if two 
boundary components of .∂� meet in a vertex with angle . π

k
for some .k ≥ 2, then 

we can apply successive reflections, and the possible singularity at the vertex can be 
removed by means of a result of Choi and Schoen [12, Prop. 1]. All in all, we can 
state the following result: 

Proposition 3 Let .˜φ : � → E(4H 2+κ,H) be a minimal immersion with boundary 
a geodesic polygon consisting of vertical and horizontal geodesic arcs (of finite or 
infinite length). Assume that . ˜φ is of class . C1 up to the interior of each boundary 
component and the interior angle at each vertex is an integer divisor of . π : 

(a) The immersion . ˜φ can be extended to a complete minimal immersion . ˜φ∗ by 
successive axial symmetries about the boundary components. 

(b) The conjugate immersion .φ : � → M
2(κ) × R can be extended to a 

complete H -immersion . φ∗ by successive mirror symmetries about the boundary 
components. 

Once a complete surface is obtained by successive mirror symmetries, it is 
natural to investigate whether it is embedded or not. This is one of the toughest 
problems in conjugate constructions, because it must be solved just in terms of the 
prescribed geodesic polygon, since none of the immersions . ˜φ and . φ are explicitly 
known. It is often convenient to relax this assumption and consider Alexandrov 
embeddedness instead, which means that the immersed surface can be recovered as 
the boundary of a three-manifold immersed (but possibly non-embedded) in .E(κ, τ ). 
To simplify future discussions, we will distinguish the two possible situations where 
non-embeddedness occurs in conjugate constructions:

• Type I self-intersections: The immersion . φ is not an embedding, i.e., the 
fundamental piece has self-intersections.

• Type II self-intersections: The immersion . φ is an embedding, but the comple-
tion . φ∗ has self-intersections (see Figs. 10 and 19).
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On the one hand, self-intersections of type I can be prevented if the boundary of 
. φ projects one-to-one to .M

2(κ) by a standard application of the maximum principle 
(see also Proposition 6). Convexity has also something to say in this respect; e.g., 
the following result for multigraphs follows from the maximum principle and from 
Gauß-Bonnet theorem and assumes that the angle at one vertex is convex to prove 
that the conjugate vertical geodesic is embedded. 

Proposition 4 ([11, Lem. 2.1])  Let .˜φ : � → E(4H 2 + κ,H) and . φ : � →
H

2(κ) × R be conjugate multigraphs, where .κ < 0 and .4H 2 + κ ≤ 0. Assume that 
.ν > 0 and . ̃γ is a vertical geodesic such that .γ̃ ′ = ξ . If  .θ ′ > 0 and .

∫

γ̃
θ ′ ≤ π , then 

. γ is embedded. 

In the case .H = 0, Hauswirth, Sa Earp, and Toubiana [38, Thm. 14] extended a 
theorem of Krust in . R3 (unpublished, see [54, Thm. 2.4.1]) exploiting the convexity 
of the domain. Notice that a similar property does not hold true in general if .H > 0, 
as we shall discuss in Sect. 6.1. 

Proposition 5 (Krust Property) Let .˜φ : � → M
2(κ)×R and . φ : � → M

2(κ)×
R be sister minimal immersions. If .κ ≤ 0 and . ˜φ is a graph over some convex domain 
.
 ⊂ M

2(κ), then . φ is a graph (and hence embedded). 

On the other hand, self-intersections of type II are usually treated by an a priori 
subdivision of the target space .M2(κ) × R in disjoint congruent regions bounded 
by horizontal and vertical planes, so that the fundamental piece fits in one of those 
regions with its boundary lying in the boundary planes. If the desired symmetries 
and the tessellation can be chosen properly, then there will be one copy of the 
fundamental piece on each region, so that no self-intersections will be produced 
by reflection. The constructions in Sect. 5 and Sect. 6 follow this philosophy. 

3.2 Some Classes of Surfaces Preserved by the Sister 
Correspondence 

Daniel correspondence behaves really well with respect to many geometric con-
ditions, which enables the translation of some problems for H -surfaces in some 
.E(κ, τ ) to the same problem in another space. The equivariance (see Prop. 1) and 
the stability (see (12)) are good examples of this. Note that any condition that is 
purely intrinsic to the H -surface is also preserved because the correspondence is 
isometric, e.g., the total curvature or the area growth of intrinsic balls. 

3.2.1 Cylinders and Multigraphs 

Vertical H -cylinders and vertical H -multigraphs are characterized by the conditions 
.ν ≡ 0 and .ν �= 0, respectively. Since . ν is preserved by the sister correspondence, 
then so are these families of H -surfaces.
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Complete multigraphs in .E(κ, τ ) are indeed graphs [69, Thm. 1], so in particular 
complete graphs also form a preserved class. However, it is not true in general that 
a sister surface of a graph is a graph, as we will discuss later in Sect. 6.1. It is worth  
highlighting that any sister surface of an entire graph with critical mean curvature 
is again an entire graph [18, Cor. 4.6.4], though this is not true in general in the 
subcritical case, as the following example shows: 

Example 1 Let .0 ≤ H < 1
2 and consider the half-space model for . H2 × R. The  

surface . P0 given by .x2 + y2 = 1 is a vertical plane that can be parametrized 
isometrically as .(r, h) �→ (tanh(r), sech(r), h), where r is the hyperbolic distance 
to .(1, 0) in .H2 and h is the projection onto the factor . R. Consider the surface . �
parametrized by .(t, r) �→ (

et tanh(r), et sech(r), h(r)
)

, where 

. h(r) = 1√
1 − 4H 2

arcsinh

(√
1 − 4H 2 − 2H sinh(r)

2H + √
1 − 4H 2 sinh(r)

)

+ 2Hr√
1 − 4H 2

for .t ∈ R and .r > −2 arctanh(2H). This surface is invariant by the hyperbolic 
translations .(x, y, z) �→ (etx, ety, z) and has constant mean curvature H . If .H > 0, 
then .h(r) tends to .+∞ as .r → −2 arctanh(2H) or .r → +∞, so . � is a complete 
graph over the subset of . H2 of points on the concave side of a complete curve . α of 
constant curvature 2H . If .H = 0, then . � is the graph over a half-plane discovered 
by Sa Earp [98, Eqn. (32)], in which case .h(r) → 0 as .r → +∞. Either way, . �
is mirror symmetric about the vertical planes . Pt of equation .x2 + y2 = e2t for all 
.t ∈ R, whence . � is foliated by the congruent curves .γt = Pt ∩ �. 

The conjugate minimal surface . ˜� in .E(4H 2 − 1,H) is therefore foliated by 
the horizontal geodesics . ̃γt . Note that two curves . γt and . γs lie at bounded distance 
from each other and this distance is realized asymptotically at their endpoints in 
.α × {+∞}. Thus, the one-parameter group of hyperbolic translations that leave 
. � invariant corresponds to a one-parameter group of parabolic screw motions that 
leave . ˜� invariant. In particular, we deduce that . ˜� is the entire minimal graph 
associated with the function .u(x, y) = lx for some .l ∈ R, also called a tilted plane 
(see [9, §3]). 

We remark that if .H > 0, then changing H to .−H also gives a noncongruent H -
graph on the convex side of the equidistant curve . α. Up to ambient isometries, there 
are only three tilted planes according to .l ∈ {−1, 0, 1}. The complete H -graphs 
that project onto the concave and convex sides of . α should correspond to the cases 
.l = ±1, because the tilted plane with .l = 0 is the parabolic helicoid .P0,4H 2+κ,H so 
its conjugate H -surface in .H2 × R is the entire graph .PH,−1,0. These last examples 
will be discussed in Sect. 3.2.2. 

Given an immersion .φ : � → E(κ, τ ), the Jacobian determinant of the 
projection .π |� : � → M

2(κ) satisfies .|Jac(π |�)| = |ν|. By a simple change 
of variable, if .ν ∈ L1(�), this implies that .

∫

�
|ν| is the area of .π(�) taking 

into account its possible multiplicity. In particular, this area is preserved by the 
correspondence.
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Example 2 ([67, §4.3]) Assume that .κ + 4H 2 < 0. An ideal Scherk graph in 
.E(κ, τ ) is an H -graph defined over an ideal polygon .
 ⊂ H

2(κ) whose boundary 
consists of 2n curves (with common ideal endpoints) and constant curvature 
alternatively equals to 2H and .−2H with respect to the inward-pointing normal to 
. ∂
. Some additional Jenkins-Serrin conditions on . 
 are needed to ensure that such 
a graph exists, but this is not our point here. Ideal Scherk graphs can be characterized 
as the only complete H -multigraphs whose projection has finite area [67, Prop. 3], in 
which case we have .Area(
) = 2(n−1)π

−κ−4H 2 . Therefore, the class of ideal Scherk graphs 
is preserved by the sister correspondence, and so is the number 2n of boundary 
components. 

3.2.2 Surfaces with Zero Abresch-Rosenberg Differential 

If . � is topologically a sphere, then it is simply connected, and the correspondence 
applies globally [14, Ex. 5.16]. This means that H -spheres in .E(κ, τ ), all of which 
are equivariant [1], form a preserved class of surfaces. More generally, a surface 
. � in .E(κ, τ ) has zero Abresch-Rosenberg differential if and only if the following 
function .q ∈ C∞(�) identically vanishes (see [23, Lem. 2.2]):  

. 
q

κ − 4τ 2 = 1

4

(

4H 2 + κ

κ − 4τ 2 − ν2
)

(

4H 2 + κ + 3(κ − 4τ 2)ν2 − 4K
)

− ‖∇ν‖2,

(14) 

whence q is trivially preserved by the correspondence. In [1, 23, 59], it is shown 
that surfaces with .q ≡ 0 are equivariant, and in [19, Prop. 2.4], the sister 
correspondence was employed to prove that, except for vertical cylinders with 
critical mean curvature, they belong to one of the following three families:

• The rotationally invariant surfaces .SH,κ,τ , locally given in .M(κ, τ) by 

.X(u, v) =
(

v cos(u), v sin(u),

∫ v

0

−4Hs
√

1 + τ 2s2 ds

(4 + κs2)
√

1 − H 2s2

)

. (15) 

This is half of an H -sphere if .4H 2 + κ > 0 or an entire H -graph otherwise.
• The screw-motion invariant surfaces .CH,κ,τ in the case .4H 2 + κ < 0. They are  

complete H -surfaces globally parametrized in the model .M(κ, τ) by 

. X(u, v)=
(

v cos(u), v sin(u),
4τ

κ
u±

∫ v

4H
|κ|

16H
√

16τ 2 + κ2s2 ds

κs(4 + κs2)
√

κ2s2 − 16H 2

)

,

(16) 

The family .CH,κ,τ contains helicoids (.H = 0) and rotational catenoids (.τ = 0).
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• The parabolic helicoids .PH,κ,τ in the case .4H 2 + κ < 0. They are the entire 
H -graphs given in the halfspace model of .E(κ, τ ) by the global parametrization 

.X(u, v) = (u, v, a log(v)) , with a = 2H
√−κ + 4τ 2

−κ
√−4H 2 − κ

. (17) 

Each of the families .SH,κ,τ , .CH,κ,τ , and .PH,κ,τ is preserved by the correspondence 
(see [19, Rmk. 2.5]). On the other hand, the parabolic helicoids .PH,κ,τ along with 
vertical planes and horizontal slices are the only elements of the following classes:

• Isoparametric H -surfaces
• H -surfaces with constant principal curvatures
• H -surfaces which are homogeneous by ambient isometries
• H -surfaces with constant angle function (see [23, Thm.2.2]) 

Therefore, each of these geometric conditions is preserved by the correspondence. 
We remark that the family of H -surfaces with constant Gauß curvature is also 
preserved (the Gauß curvature is intrinsic), but it contains a few inhomogeneous 
examples (see [15, Thm. 3.3 and 4.6]). 

3.2.3 Ruled Minimal Surfaces 

Given a minimal immersion .˜φ : � → E(4H 2+κ,H) ruled by horizontal geodesics, 
Lemma 2 implies that the conjugate H -immersion .φ : � → M

2(κ) × R is foliated 
by lines of mirror symmetry lying in vertical planes. It easily follows that . φ and . ˜φ are 
equivariant, which establishes an isometric conjugation between minimal surfaces 
ruled by horizontal geodesics and H -surfaces in product spaces invariant by one-
parameter groups of isometries acting in the horizontal direction (i.e., such that they 
fix the factor . R). Here, we will focus on a few examples that will play the role 
of barriers in our constructions and that illustrate how conjugation works. Ruled 
minimal surfaces in any .E(κ, τ )-space have been classified by Kim et al. in [57]. 

Example 3 (The Umbrella . Up) Given .p ∈ E(̃κ, τ̃ ), the umbrella .Up is the 
union of all horizontal geodesics through p. It follows that .Up coincides with the 
rotationally invariant surface .S0,̃κ ,̃τ defined in Sect. 3.2.2, whence it is an entire 
minimal graph if .̃κ ≤ 0 and a minimal sphere if .̃κ > 0. Note that .Up is everywhere 
horizontal if . ̃τ = 0. If .̃τ �= 0, it is horizontal only at its center p if .̃κ ≤ 0 and at 
p and its antipodal point if .̃κ > 0. In the model .M(̃κ, τ̃ ), the umbrella centered at 
.p = (0, 0, 0) contains the graph of the function .u(x, y) = 0, though this is not the 
complete umbrella if .̃κ > 0. 

From Sect. 3.2.2, we deduce that the conjugate H -surface of an umbrella in 
.E(4H 2 + κ,H) is the rotationally invariant surface .SH,κ,0 in .M2(κ) × R, which 
is an H -sphere if .4H 2 + κ > 0 or an entire H -graph otherwise.
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Example 4 (The Invariant Surface . Iγ̃ ) Given a horizontal geodesic . ̃γ in .E(̃κ, τ̃ ), 
let . Iγ̃ be the surface formed by all horizontal geodesics orthogonal to . ̃γ . It follows 
that .Iγ̃ is an entire minimal graph if .̃κ ≤ 0 or .̃τ = 0; otherwise, it is a minimal 
embedded torus that will be described as a spherical helicoid in Example 5. The  
surface . Iγ̃ is invariant by translations along . ̃γ , as in Lemma 1. If . ̃γ is the x-axis in 
the model .M(̃κ, τ̃ ) and .̃κ ≤ 0, then . Iγ̃ is the entire graph of the function 

. u(x, y) =
⎧

⎨

⎩

τ̃ xy if κ̃ = 0,

2τ̃
κ̃

arctan 2xy
4
κ̃
+x2−y2 if κ̃ < 0.

If we consider the surface .Iγ̃ in .E(4H 2 + κ,H), then the horizontal geodesic . ̃γ
becomes a curve . γ in a vertical plane of symmetry of the conjugate H -surface in 
.M

2(κ)×R. Since the angle function is 1 along . ̃γ , it follows that . γ is also a horizontal 
geodesic, whence the H -surface is invariant by translations along . γ . It is an  H -
cylinder or H -torus if .4H 2 + κ > 0 (explicit parametrizations can be found in [62, 
§2]) or an entire H -graph otherwise. 

Example 5 (Spherical Helicoids [70, §4]) Lawson [58, Prop. 7.2] defined the 
spherical helicoid of pitch .c ∈ R in the round 3-sphere . S3 as the immersion 

. 

˜φc : R2 → S
3 ⊂ C

2

(u, v) �→ (

cos(u)eicv, sin(u)eiv
)

.

These immersions are characterized by being minimal if we substitute . S3 with 
.S

3
B(̃κ, τ̃ ) for any .̃κ > 0 and .̃τ �= 0 (see [105]). They are also equivariant by 

screw motions and ruled by horizontal geodesics in all Berger metrics. The surface 
parametrized by . ˜φc is topologically a torus or a Klein bottle if .c ∈ Q − {0} (these 
are Lawson’s examples . τm,n; see [58, §7]), a sphere if .c = 0, and a dense cylinder 
otherwise; however, . ˜φc is embedded if and only if .c ∈ {−1, 0, 1}. Note that . ˜φ1 and 
.˜φ−1 are congruent Clifford tori in the round metric . S3 but they are not quite alike 
in the Berger case: the torus . ˜φ1 is flat and everywhere vertical (i.e., the preimage 
by . π of a great circle of .S2(̃κ)), yet .˜φ−1 is not flat, and it is vertical just along 
a couple of horizontal geodesics. As a matter of fact, .˜φ−1 is congruent to the 
invariant surface . Iγ̃ we discussed in Example 4 in the case of Berger spheres, where 
.γ̃ (t) = 1√

2
(e−it , eit ). We also remark that . ˜φc and .˜φ1/c are congruent surfaces for 

all .c �= 0, so we can assume that .c ∈ [−1, 1] not losing any generality. 
The spherical helicoids . ˜φc in .S3

B(4H 2 + κ,H), where .4H 2 + κ > 0, have the  
rotational Delaunay H -surfaces as conjugate H -immersions . φc in .M

2(κ) ×R. This  
was proved in [28, Thm. 2.1] for .κ = 0 (Lawson correspondence) and in [70, §4] 
in the general case. By comparing the rotation of the normal along the rulings of . ˜φc

with the curvature of the curve that generates the Delaunay surfaces by means of 
Lemma 2, we obtain the following list of conjugate surfaces:
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(a) . φ1 is the vertical H -cylinder over a curve of .M2(κ) of curvature 2H . 
(b) . φc is a rotationally invariant H -unduloid if .0 < c < 1. 
(c) . φ0 is the rotationally invariant H -sphere. 
(d) . φc is a rotationally invariant H -nodoid if .−1 < c < 0. 
(e) .φ−1 is an H -torus (. κ > 0) or an H -cylinder (.κ ≤ 0) invariant by translations 

along a horizontal geodesic. 

We refer to [86, Lem 1.3] and [62, §2] for a more specific description of Delaunay 
H -surfaces. It is worth emphasizing that different directions of rotation of the 
normal along the axis of . ˜φc output very different surfaces, as already discussed 
in Lemma 3. This will be further explored in Sect. 6.1. 

4 Dirichlet Problems for H -Surfaces in E(κ, τ) 

The initial minimal surfaces in our conjugate constructions will be solutions of a 
Plateau or a Jenkins-Serrin problem in .E(4H 2+κ,H), both of which will be thought 
of as Dirichlet problems for the minimal surface equation. Needless to say that not 
all geodesic polygons span graphical surfaces; if that is not the case, additional work 
will be required to find the desired minimal surface. 

4.1 The Plateau Problem 

We will solve a Plateau problem in the more general scenario of arbitrary Killing 
submersions in the sense of [60]. This is motivated by the fact that some of our 
minimal surfaces will be graphs in .E(4H 2 + κ,H) with respect to other (non-
unitary) Killing directions. In the sequel, we will assume that .π : E → M is 
a Riemannian submersion whose fibers have infinite length and coincide with the 
integral curves of a nowhere vanishing Killing field . ξ . We refer to [20] for a more 
detailed discussion. 

Definition 1 A Nitsche contour in . E is a pair .(
, �), where .
 ⊂ M is a 
precompact open domain and .� ⊂ E is a Jordan curve admitting a piecewise-regular 
parametrization .γ : [a, b] → � satisfying the following conditions: 

(a) There is a partition .a = t1 < s1 ≤ t2 < . . . ≤ tr < sr ≤ tr+1 = b such that 
.γ (a) = γ (b), and for any .j ∈ {1, . . . , r}, the component .γ |[tj ,sj ] is a nowhere 
vertical curve and .γ |[sj ,tj+1] a vertical segment. 

(b) The projection .π ◦ γ parametrizes .∂
 injectively except at vertical segments. 

This means that .∂
 is a regular curve except possibly at the points .π(ti), which will 
be called the vertexes of . 
.
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Graphical surfaces with prescribed mean curvature and boundary a Nitsche 
contour .(
, �) satisfy a maximum principle which has been proved in the case 
of unitary Killing submersions [63, Prop. 3.8] but also holds in the general case. 
This relies on the fact that the mean curvature of Killing graphs can be written 
in divergence form similar to (10) (see [60, §3]). We remark that in this case, the 
Killing graph of a function .u ∈ C∞(
) is defined in the usual way with respect to 
a global section .F0 : M → E as .Fu(p) = φu(p)(F0(p)). Note that a global section 
exists by the assumption on the infinite length of the fibers [103, Thm. 12.2]. 

Proposition 6 Let .(
, �) and .(
, �′) be Nitsche contours in . E over the same 
domain . 
 with the same set of vertexes .V ⊂ ∂
. Assume that . u, v ∈ C∞(
)

verify the following: 

(a) The graphs . Fu and . Fv have the same mean curvature over . 
. 
(b) u and v extend continuously to .
 − V giving rise to surfaces with boundaries 

. � and . �′, respectively. 

If .u ≤ v in .∂
 − V , then .u ≤ v in . 
. 

In particular, given a Nitsche contour .(
, �), there is at most one minimal graph 
over . 
 with boundary . �. Although uniqueness holds in general, we will consider 
some additional conditions that ensure that .π−1(
) ⊂ E is a three-dimensional 
mean-convex body in the sense of Meeks and Yau [80], so there exists at least one 
minimal surface with boundary . �. It follows from a standard application of the 
maximum principle and from uniqueness that the solution is a graph, using the same 
argument as in [63, Thm. 3.11] (see also [70, Prop. 2]). All in all, we have the 
following result: 

Proposition 7 Let .(
, �) be a Nitsche contour such that . 
 is simply connected, 
.π−1(π(α)) is a minimal surface for each non-vertical component .α ⊂ �, and the 
interior angle at each vertex of . 
 is at most . π . There is a unique minimal surface 
.� ⊂ π−1(
) with boundary . �, and the interior of . � is a Killing graph over . 
. 

Observe that the solution . � must be invariant by any ambient isometry that 
preserves both the Killing submersion and the Nitsche contour .(
, �) because of the 
uniqueness. We also observe that Meeks and Yau’s solution to the Plateau problem 
is of class . C1 up to the boundary (see [99, Rmk. 3.4]), which enables analytic 
continuation of the surface across vertical and horizontal geodesics in . � by axial 
symmetry in the sense of Proposition 3. 

4.2 The Jenkins-Serrin Problem 

The nonparametric Plateau problem we have discussed in Proposition 7 amounts to 
obtaining a function u whose graph is minimal over . 
 and extends continuously to 
.
−V , being V the set of vertexes of . 
 with the prescribed values on .∂
−V induced 
by . �. The Jenkins-Serrin problem also allows .±∞ values along the components of
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.∂
 and has been studied in .E(κ, τ )-spaces with .κ < 0 respect to the usual Killing 
direction by also allowing the domain .
 ⊂ H

2(κ) to be unbounded. 
We will first deal with the case .κ < 0 and .τ = 0, in which the solution has been 

proved under very general assumptions by Mazet, Rodríguez, and Rosenberg [76]. 
We will suppose that .∂
 is piecewise regular and contains finitely many components 
of three distinct types: .A1, . . . , An1 ⊂ H

2(κ), where the value .+∞ is prescribed; 
.B1, . . . , Bn2 ⊂ H

2(κ), where the value .−∞ is prescribed; and . C1, . . . , Cn3 ⊂
H

2(κ), where continuous finite boundary values are prescribed. We will also assume 
that .∂∞
 consists of finitely many ideal segments . D1, . . . , Dn4 ⊂ ∂∞H

2(κ)

where continuous finite boundary values are also prescribed. The endpoints of 
the segments . Ai , . Bi , . Ci , and . Di will be called the vertexes of . 
. There are two 
necessary conditions for the existence of solution: on the one hand, each component 
. Ai or . Bi must be a geodesic segment; on the other hand, there cannot be two 
consecutive components of type . Ai meeting at an interior angle less than . π and 
likewise for those of type . Bi . Additionally, it is assumed that the arcs . Ci are convex 
with respect to the inner conormal to . 
 along . Ci . Under these conditions, we will 
say that . 
 is a general Jenkins-Serrin domain. 

A polygonal domain . P in .H2(κ) is a domain whose boundary .∂P consists of 
finitely many geodesic segments. We will say that it is inscribed in a general Jenkins-
Serrin domain . 
 if .P ⊂ 
 and all vertexes of . P are vertexes of . 
. Assume that the 
ideal vertexes of . 
 are .p1, . . . , pm ∈ ∂∞H

2(κ), and for each .i ∈ {1, . . . , m}, let  
.Hi ⊂ H

2(κ) be a domain with boundary a horocycle asymptotic to . pi , small enough 
so that it only intersects the components of .∂
 with endpoint at . pi and . Hi ∩Hj = ∅
for all .j �= i. Under these assumptions, the following finite lengths characterize the 
existence of solution: 

. α(P) =
n1
∑

i=1

Length(∪n1
i=1(Ai ∩ ∂P) − ∪m

j=1Hj),

β(P) =
n2
∑

i=1

Length(∪n2
i=1(Bi ∩ ∂P) − ∪m

j=1Hj),

γ (P) = Length(∂P− ∪m
j=1Hj).

Theorem 6 ([76, Thm. 4.9 and 4.12]) Let .
 ⊂ H
2(κ) be a general Jenkins-Serrin 

domain on which we consider the above Dirichlet problem: 

(a) If .n3 = n4 = 0, then the problem has a solution if and only if . α(
) = β(
)

and .max{α(P), β(P)} < 1
2γ (P) for all polygonal domains .P �= 
 inscribed in 

. 
. 
(b) Otherwise, the problem has a solution if and only if . max{α(P), β(P)} < 1

2γ (P)

for all polygonal domains . P inscribed in . 
. 

Nelli and Rosenberg [84] proved this result for convex relatively compact 
domains, and Collin and Rosenberg [13] extended it for unbounded convex domains
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all of whose vertexes are ideal and with .n4 = 0. It is worth mentioning that 
convexity at the vertexes is a condition that ensures that the surface is of class . C1 up 
to the boundary and enables the completion of the surface given by Proposition 3, 
as proved by Sa Earp and Toubiana [100]. This also implies that solutions to 
Jenkins-Serrin problems over convex domains have finite radial limits on the corners 
(see [10, Lem. 4]). In the non-convex case, the solution given by Theorem 6 is a 
smooth graph over the interior of . 
 but might fail to be of class . C1 at a vertical 
geodesic projecting to a non-convex vertex. This was noticed by Finn [26, Thm. 3]  
and Eclat and Lancaster [22] for minimal surfaces in . R3. 

A very general maximum principle for solutions of the Jenkins-Serrin problem in 
.H

2(κ)×R can be found in [76, Thm. 4.16]. However, we will consider the following 
earlier version of Collin and Rosenberg, which is enough when the prescribed 
boundary data comes from a geodesic polygon with vertical and horizontal (possibly 
ideal) components. It clearly implies that the solution given by Theorem 6 in that 
case is unique if there are nonideal horizontal geodesics (which are components of 
type . Ci). On the other hand, the solution can be shown to be unique up to vertical 
translations if there are no such horizontal geodesics [76, Thm. 4.12]. Note that there 
are no components of type . Di if the boundary is a geodesic polygon. 

Proposition 8 ([13]) Let .
 ⊂ H
2(κ) be a general Jenkins-Serrin domain with 

.n3 �= 0 and .n4 = 0 and such that any two components of . ∂
 meeting at a common 
ideal vertex are asymptotic to each other at that vertex (in hyperbolic distance). 

Assume that .u, v ∈ C∞(
) span minimal graphs over . 
 and extend continuously 
to .
 − V (where V is the set of vertexes of . 
) with possible infinite values along 
some of the . Ai or . Bi . If .u ≤ v on .∂
 − V , then .u ≤ v on . 
. 

Theorem 6 and Proposition 8 are believed to hold true also in the case . τ �= 0
(observe that both statements translate literally to this more general case and all 
the needed tools seem to be available in .˜SL2(R)). However, they have not hitherto 
been proved in this generality. The two results in this direction so far have been 
given by Younes [108], who has proved existence and uniqueness in the case of a 
bounded convex domain, and by Melo [81], who proves only existence over convex 
unbounded domains having only ideal vertexes and no arcs of type . Di . Note also  
that Younes and Melo’s surfaces can be used as barriers to give ad hoc solutions to 
more general Jenkins-Serrin problems as in [11, Lem. 3.2].  

As a final remark, it is worth noticing that the solution . � to any of the aforesaid 
Jenkins-Serrin problems can be obtained as the limit of a double sequence of 
minimal surfaces . �k

n. The surface .�k
n can be taken as the solution of a Plateau 

problem over a Nitsche contour .(
n, �
k
n), where the domains . 
n ⊂ H

2(κ)

are bounded and converge to . 
 and the curves .�k
n replace the target boundary 

components with prescribed values .±∞ with a sequence of horizontal geodesics 
that diverges in the desired direction. The surface .�k

n is a solution to a Plateau 
problem in the sense of Proposition 7 and converges to a minimal graph .�k over . 

as .n → ∞. The surfaces . �k in turn converge to the solution . � as .k → ∞. Since the 
convergence is of class .Cm on compact subsets for all m, we can use the description 
given by Lemmas 2 and 3 plus the continuity of the conjugation in Proposition 2 to
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analyze the ideal geodesics as limits of nonideal geodesics. In particular, we obtain 
the following result: 

Proposition 9 ([11, Cor. 2.4])  Assume that .4H 2 + κ < 0, and let . ˜� ⊂ E(4H 2 +
κ,H) be the solution of a Jenkins-Serrin problem with boundary a polygon 
consisting of vertical and horizontal (possibly ideal) geodesics. Let . � ⊂ H

2(κ)×R

be the conjugate (possibly non-embedded) H -multigraph: 

(a) Ideal vertical geodesics in .∂∞˜�, if any, become ideal horizontal curves in . ∂∞�

of constant curvature .±2H at height .±∞. 
(b) Ideal horizontal geodesics in .∂∞˜� become ideal vertical geodesics of .∂∞�. 

5 Compact H -Surfaces in S2(κ) × R 

Now, we will focus on constructions where the ideas we have discussed in the 
previous sections apply. The first group of examples we will deal with concern the 
construction of compact or periodic H -surfaces such that the fundamental piece 
is compact and comes from the solution of a Plateau problem. As pointed out in 
the introduction, we are interested in providing embedded examples with different 
topologies in .S2(κ) × R or in a quotient by a vertical translation. 

5.1 Horizontal Delaunay H -Surfaces 

This section is devoted to the construction of H -surfaces in .S
2(κ)×R and . H2(κ)×R

provided that .4H 2+κ > 0 and .H > 0 by conjugating minimal surfaces in . M(4H 2+
κ,H). The name horizontal Delaunay is motivated by the fact that these H -surfaces 
resemble classical Delaunay surfaces in Euclidean space. Although they are not 
equivariant if .κ �= 0 (in contrast with the vertical case discussed in Example 5), 
they are invariant under a discrete group of translations along a horizontal geodesic 
called the axis of the surface. Horizontal Delaunay surfaces comprise a deformation 
of the H -spheres into the H -cylinders by means of unduloid-type surfaces, and they 
also contain non-embedded surfaces of nodoid-type. The next result describes the 
moduli space of horizontal Delaunay H -surfaces: 

Theorem 7 ([70, 72]) Fix .κ ∈ R and a horizontal geodesic .� ⊂ M
2(κ) × {0}. 

There exists a family .�∗
λ,H , parametrized by .λ ≥ 0 and .H > 0 such that . 4H 2 +

κ > 0, of complete H -surfaces in .M2(κ) × R, invariant under a discrete group 
of translations along . � with respect to which they are cylindrically bounded. They 
are also symmetric about the totally geodesic surfaces .M2(κ) × {0} and .� × R. 
Moreover, as sketched in Fig. 4,
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Fig. 4 Schematic representation of the fundamental piece of horizontal Delaunay H -surfaces in 
.M2(κ) × R (see Theorem 7). From left to right: cylinder (torus if .κ > 0), unduloid, sphere, and 
nodoid 

Fig. 5 The darker region is the moduli space of .�∗
λ,H ⊂ S

2(κ) × R, .λ ∈ [0, π
2 ], in terms of . H√

κ

and m. Dotted horizontal segments represent the families .Tm of embedded tori. The vertical dashed 

line indicates that no such tori exist if . H >
√

κ

2

(i) .�∗
0,H is the H -cylinder (H -torus if .κ > 0) invariant under the continuous 

one-parameter group of translations along . �. 
(ii) .�∗

λ,H is an unduloid-type surface if .0 < λ < π
2 . 

(iii) .�∗
π
2 ,H

is a stack of tangent rotationally invariant H -spheres centered on . �. 

(iv) .�∗
λ,H is a nodoid-type surface if .λ > π

2 . 

In the case .κ > 0, we find (among the horizontal unduloids) many families 
of embedded H -tori which continuously deform stacks of tangent H -spheres 
evenly distributed along a horizontal geodesic . � into an equivariant H -torus. The 
embeddedness is shown by spotting a function in the kernel of the common stability 
operator of the conjugate surfaces that is induced simultaneously by two one-
parameter groups of isometric deformations: one in the initial space . M(4H 2+κ,H)

and the other one in the target space .M2(κ) ×R. We will see later that this function 
carries insightful geometric information that also implies that horizontal unduloids 
are properly embedded if .κ ≤ 0 (see [72, Prop. 4.4]). 

Theorem 8 ([72, Thm. 1.2])  Fix .κ > 0. For each integer .m ≥ 2, there is a family 
. Tm of embedded H -tori in .S

2(κ) × R (see Fig. 5) parametrized as 

.Tm =
{

�∗
λm(H),H : cot( π

2m
) < 2H√

κ
≤

√

m2 − 1
}

,
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where .H �→ λm(H) strictly decreases continuously from . π2 to 0: 

1. The family . Tm is a continuous deformation (in which H varies) from a stack of 
m tangent spheres evenly distributed along . � to an equivariant torus. 

2. The surfaces .�∗
λm(H),H , along with H -spheres .�∗

π/2,H and H -cylinders .�∗
0,H , 

are the only compact embedded H -surfaces among all .�∗
λ,H (for all .κ ∈ R). 

5.1.1 Construction of the Minimal Surface in M(4H 2 + κ, H) 

Assume that .H, κ ∈ R are fixed such that .H > 0 and .4H 2 + κ > 0 (we 
will omit the dependence on H in the sequel unless otherwise stated). To obtain 
an H -surface in .M2(κ) × R by means of the correspondence, we will begin by 
constructing a compact minimal surface . ˜�λ, .λ ∈ R, with boundary a polygon 
.˜�λ ⊂ M(4H 2 + κ,H) consisting of three horizontal geodesics . ˜h0, . ˜h1, and . ˜h2 and 
one vertical geodesic . ̃v, whose vertexes will be labeled as . ˜1, . ˜2, . ˜3, and . ˜4, as shown  
in Fig. 6. More precisely, 

• . ˜h0 is a quarter of a horizontal geodesic, which can be parametrized, up to an 

ambient isometry, by .˜h0(s) = 2√
4H 2+κ

(

0,
cos(2s)

1+sin(2s)
, 0

)

, for .s ∈ [

0, π
2

]

.

Fig. 6 A faithful representation of the polygon . ˜�λ for different values of . λ. The barriers T (vertical 
cylinder) and S (helicoid, in gray) demarcate the mean-convex solid . 
. Top row: polygons . ˜�λ for 
.λ ≤ π

2 whose conjugate surfaces are unduloids and limit cases .λ = 0 (left), which corresponds to 
the H -cylinder, and .λ = π

2 (right), which corresponds to the H -sphere. Bottom row: polygon . ˜�λ

for .λ > π
2 whose conjugate H -surfaces are nodoids. The dotted line in the central figure represents 

the curve . ˜δ of zeros of the angle function (see Proposition 10)
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• . ˜h1 and . ˜h2 are horizontal geodesics starting orthogonally at the endpoints of . ˜h0
with signed lengths . 1

2
√

4H 2+κ
(λ − π

2 ) and . 1

2
√

4H 2+κ
(λ + π

2 ) in the directions 

.˜h′
0(0) × ξ and .−˜h′

0(
π
2 ) × ξ , respectively. In particular, . ˜h1 goes in opposite 

directions according to the sign of this length.
• . ̃v is the vertical geodesic joining the endpoints of . ˜h1 and . ˜h2. 

Observe that . ˜�λ and .˜�−λ are congruent for all .λ > 0 by the isometry . (x, y, z) �→
(−x, y,−z), so we can assume that .λ ≥ 0 without loss of generality. 

Remark 7 The polygon .�(˜�λ), where . � : M(4H 2 + κ,H) → S
3
B(4H 2 + κ,H)

is the local isometry given by (5), has self-intersections if .λ ≥ 7π
2 , so the resulting 

Plateau problem is ill-posed in .S3
B(4H 2 + κ,H). This is the reason why the locally 

isometric Cartan model .M(4H 2 + κ,H) is used throughout this section. 

The polygon . ˜�λ was first consider in [70] for .0 ≤ λ ≤ π
2 and then extended 

for .λ ≥ π
2 in [72]. We remark that the mean-convex body used to solve the Plateau 

problem in [70] is no longer valid for .λ > π
2 and a different approach was developed 

to show the existence of . ˜�λ, which we present here. 
Consider the following two minimal surfaces in .M(4H 2 + κ,H): the vertical 

cylinder T of equation .x2 + y2 = 4
4H 2+κ

and the surface .S = I
˜h0

(see Example 4) 

of equation .x cos( 4H 2+κ
2H

z) + y sin( 4H 2+κ
2H

z) = 0. Observe that .�(T ) is congruent 
to the Clifford torus . ˜φ1 in Example 5 and .�(S) is congruent to .˜φ−1 in Example 5 
(see the shaded surface in Fig. 5), where . � is the local isometry defined in (5). 
The surface S divides the interior domain of the cylinder T in two connected 
components. The connected component W that contains . ̃v is a mean-convex solid 
in the sense of [80], so there exists an embedded minimal disk .˜�λ ⊂ W solution to 
the Plateau problem with boundary .∂˜�λ = ˜�λ ⊂ W . 

If .0 ≤ λ ≤ π
2 , then . ˜�λ is a Nitsche contour with respect to the usual Killing 

submersion, but this is not true in general. To overcome this issue, consider the 
Killing vector field . ˜X associated with the group of screw motions that leave the 
surface S invariant. Then . ˜X has no zeros and gives rise to a Killing submersion . π0 :
M(κ, τ) → (R2, ds2) in the sense of [60] (note that the metric .ds2 has not constant 
curvature, . ˜X has not constant length, and the bundle curvature is not constant). The 
curves . ˜h0 and . ̃v are transversal to the fibers of . π0, whereas . ˜h1 and . ˜h2 become vertical 
for . π0 (they are integral curves of . ˜X). Hence, . ˜�λ is a Nitsche contour with respect 
to . π0 in the sense of Definition 1 for all .λ ≥ 0. Proposition 7 implies that .˜�λ is 
a unique surface in W with boundary . ˜�λ, and it is everywhere transversal to . ˜X. 
Uniqueness in turn implies that . ˜�λ depends continuously on .λ ≥ 0 (and so does its 
sister surface . �λ thanks to Proposition 2). 

We highlight the following special cases, depicted in Fig. 6 (see left and right 
drawings in the top row):

• If .λ = 0, then .˜�0 is part of a spherical helicoid with axis . ̃v, that is, .�(˜�0) is 
congruent to part of the spherical helicoid .˜φ−1 of equation .Im(z2 +w2) = 0 (see 
Fig. 6 top left).
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• If .λ = π
2 , then .˜�π

2
is an open piece of a minimal sphere. More precisely, . �(˜�π

2
)

is part of the minimal sphere .Im(z − w) = 0 (see Fig. 6 top right). 

Remark 8 If .κ = 0, then .M(4H 2 + κ,H) is locally isometric to the 3-sphere 
.S

3(H 2) and the completion .˜�∗
λ is a spherical helicoid (see Example 5) for all 

.λ ≥ 0 (observe that . ̃v and . ˜h0 have the same length and .˜�λ is invariant under the 
composition of translations and suitable rotations about . ˜h2). This is a consequence 
of the isotropy of the 3-sphere .S3(H 2) that allows rotations around any geodesic. 
This argument obviously fails if .κ �= 0 (the segments . ̃v and . ˜h0 no longer have the 
same length and there is no screw-motion group with axis . ˜h2). 

5.1.2 Analysis of the Angle Function 

As pointed out in Sect. 3, the angle function .νλ : ˜�λ → [−1, 1] gives precious 
information about the shape of the boundary curves of the conjugate contour . �λ. 
We are mainly interested in the points where . νλ has values .±1 or 0, if any. We 
will also establish the monotonicity properties of . νλ as a function of . λ along the 
horizontal geodesic arcs of . ˜�λ in the common boundary of intersection .˜�λ1 ∩ ˜�λ2 , 
.λ1 �= λ2. In the sequel, we will choose the normal . ˜N to . ˜�λ such that .νλ(˜3) = −1. 

Proposition 10 ([70, Lem. 3] and [72, Prop. 3.3]) Let . νλ be the angle function of 
the compact minimal disk . ˜�λ spanning . ˜�λ such that .νλ(˜3) = −1: 

(a) The only points in which . νλ takes the values . ±1 are . ˜2 and . ˜3. More precisely, if 
.0 < λ < π

2 , then .νλ(˜2) = −1; if .λ > π
2 , then .νλ(˜2) = 1. 

(b) The set of points in which . νλ vanishes consists of . ̃v and, in the case .λ > π
2 , also  

of an interior regular curve .˜δ ⊂ ˜�λ with endpoints in . ̃v and . ˜h0 (see Fig. 6). 
(c) Given p in the horizontal boundary of . ˜�λ, the function .λ �→ νλ(p) is continuous 

in the interval where it is defined:

• It is strictly increasing (possibly changing sign) if .p ∈ ˜h0 for all .λ > 0.
• It is positive and strictly increasing if .p ∈ ˜h1 and .λ > π

2 . It is negative and 
strictly increasing if .p ∈ ˜h1 and .0 < λ < π

2 .
• It is negative and strictly increasing if .p ∈ ˜h2 for all .λ > 0. 

Although we will not provide a full proof of Proposition 10, it essentially relies 
on strategies 1, 2, and 3 discussed in Sect. 3.1.2. We will illustrate this by sketching 
the analysis of the interior zeros of . ν. To this end, we intersect .˜�λ and the tangent 
vertical cylinder . Tp at some interior point p with .ν(p) = 0. 

If .0 < λ < π
2 , then the (at least) four rays in .Tp ∩ ˜�λ emanating from p end up 

either in . ̃v or in .˜h0 ∪˜h1 ∪˜h2. If two of the rays reach . ̃v, they enclose a region of 
.˜�λ (along with a segment of . ̃v); otherwise, there are two of the rays that reach the 
same point of .˜h0 ∪˜h1 ∪˜h2, and they also enclose a region of . ˜�λ. Either way, such a 
region has boundary on the vertical cylinder . Tp, and we easily find a contradiction
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Fig. 7 Each figure indicates two connected components of .(Tp ∩ W) − S for a Clifford torus . Tp

inside the mean-convex solid W . From left to right: a general case, a case in which . Tp contains the 
z-axis, and a case in which . Tp contains . ̃v

with the maximum principle with respect to other vertical cylinders [72, Lem. 1.6].  
This means that there are no interior points with .ν = 0 if .0 < λ < π

2 . 
Assume now that .λ > π

2 and apply the same reasoning. However, since . �λ ⊂
W , the rays emanating from p lie in the connected component of . (Tp ∩ W) − S

containing p, which is a vertical quadrilateral with boundary in .S ∪ Tp: three of its 
sides lie in S if . T ′

p contains the z-axis (see Fig. 7 center); otherwise, only two of the 
sides lie in S (see Fig. 7 left and right). It is not difficult to realize that if more than 
four rays arise from p, then there will be enclosed regions in contradiction with the 
maximum principle as discussed above. This implies that there are no points with 
.ν(p) = ∇ν(p) = 0, whence the curves of .ν = 0 do not bifurcate. The argument 
can be further refined to prove that there is exactly one regular curve . ˜δ where .ν = 0, 
but we will not include the details here. 

As for item (c), we will also say some words about the application of the 
maximum principle in the boundary. Assume first that .0 < λ1 < λ2 < π

2 . This case 
is easier since .˜�λ1 is a barrier from above for .˜�λ2 along the common horizontal 
boundary, and this enables a direct comparison of the normals. It is important to 
mention that the surface . I

˜h0
, whose angle function is equal to .−1 along . ˜h0 (see 

Example 4), is nothing but . ˜�0 and acts as a barrier to .˜�λ2 from below. This sandwich 
between . ˜�0 and .˜�λ1 yields the sign and monotonicity stated in Proposition 10. In the  
case .π2 < λ1 < λ2, the discussion is similar, but we have to observe that .˜�λ1 acts 
as a barrier from below for .˜�λ2 as graphs in the direction of the helicoidal Killing 
vector field . ˜X along . ˜h1 and . ˜h2. 

5.1.3 The Conjugate H -Immersion 

Let .�λ ⊂ M
2(κ) ×R be the conjugate H -surface of . ˜�λ constructed in the previous 

section. By Lemmas 2 and 3, .�λ is a compact H -surface whose boundary . �λ

consists of three curves . h0, . h1, and . h2, contained in vertical planes . P23, . P12, and
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Fig. 8 Conjugate contour . �λ for .0 < λ < π
2 (left) and .λ > π

2 (right) 

. P34, respectively, and a curve v lying in a slice . P14, which will be assumed to be 

.M
2(κ) × {0} after a vertical translation. The vertexes of . �λ will be denoted by 1–4 

in correspondence with . ˜1–. ˜4 (see Fig. 8). All interior angles of . �λ are equal to . π2 , 
so Proposition 3 gives a complete H -surface . �∗

λ after successive mirror symmetries 
about the boundary components. 

Our analysis of the angle function . νλ indeed implies that Fig. 8 is a faithful 
depiction of . �λ, at least concerning the horizontal components. By decomposing 
.hi = (βi, zi) ∈ M

2(κ) × R component-wise for .i ∈ {0, 1, 2}, Lemma 2 and 
Proposition 10 reveal that . β1, . β2, . z0, . z1, and . z2 are one-to-one. If .0 ≤ λ ≤ π

2 , 
then . β0 is also one-to-one, while it consists of two one-to-one subcurves if . λ > π

2
(by splitting at the point where the angle function . νλ changes sign). 

To understand the dependence of .�λ on the parameter . λ, we shall also consider 
the following quantities that represent the (algebraic) lengths of . βi and . zi , respec-
tively, as shown in Fig. 8: 

.
i(λ) = −
∫

˜hi

νλ, μi(λ) =
∫

˜hi

√

1 − ν2
λ (18) 

Proposition 10 also reveals that the functions .λ �→ 
i(λ) satisfy the following 
monotonicity properties: 

(a) .λ �→ 
0(λ) is strictly decreasing and positive on . [0,+∞).

(b) .λ �→ 
1(λ) is strictly decreasing on .[0,+∞) with .
1(
π
2 ) = 0. 

(c) .λ �→ 
2(λ) is strictly increasing and positive on .[0,+∞). 

Remark 9 If .κ = 0, then Remark 8 ensures that .˜�λ is a spherical helicoid and 
hence .�∗

λ is a Delaunay surface (see Example 5). Due to the above geometric 
description, .�∗

λ stays at bounded distance from the straight line . � = P23 ∩ (R2 ×
{0}), and it is symmetric with respect to .P23 and .R2 × {0}, so in particular .�∗

λ is 
rotationally invariant about . �.
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Fig. 9 Fundamental annulus . Aλ constructed by extending the fundamental piece . �λ by means of 
mirror symmetries across .P23 and .M2(κ)×{0}. The horizontal geodesic . � = P23 ∩ (M2(κ)×{0})
is called the axis of . �∗

λ

5.1.4 Compactness 

Since the vertical planes .P12 and .P34 are orthogonal to . P23, it follows that . �∗
λ

is invariant under horizontal translations of length .2
0(λ) along the horizontal 
geodesic .� = P23 ∩ M

2(κ) × {0} (see Figs. 8 and 9). 
Assuming that .κ > 0, the surface .�∗

λ is compact if and only if .
0(λ) is a rational 
multiple of . 2π√

κ
, the length of a great circle of .S2(κ). Since .λ �→ 
0(λ) is a positive 

continuous strictly decreasing function (see [72, Cor. 3.7] for the details), it follows 
that there are many compact examples in the family .�∗

λ for .λ ≥ 0. Observe that the 
monotonicity of .λ �→ 
0(λ) evidences that .P12 and .P34 never coincide. Hence, if 
.κ ≤ 0, .�∗

λ is a proper non-compact H -surface for all .λ ≥ 0. 

Remark 10 The maximum height over the slice .M2(κ) × {0} of horizontal undu-
loids . �∗

λ , .0 ≤ λ ≤ π
2 , is given by .μ2(λ) and varies continuously from the height 

of the H -tori .�∗
0 to the height of the sphere .�∗

π
2

(see [72, Prop. 4.5]). Notice that 

.�∗
λ is singly periodic in a horizontal direction, and the monotonicity properties of 

Proposition 10 show that the maximum height occurs at the vertex 3 (see Fig. 8). 
Now, given .λ1 < λ2, a comparison between .�λ2 and a .(λ2 − λ1)-translated copy of 
.�λ1 using the flow of the helicoidal Killing vector field . ˜X (see Sect. 5.1.1) enables 
a comparison of the angle functions of both surfaces along their common boundary. 
Then, formula (18) ensures that .λ �→ μ2(λ) is strictly increasing. 

Aledo, Espinar, and Gálvez [2] proved that a H -graph, with .4H 2 + κ > 0, over 
a compact open domain whose boundary lies in the slice .M2(κ) × {0} can reach at 
most the height of the H -sphere and equality holds if and only if the surface is a 
rotationally invariant hemisphere. Horizontal unduloids provide the first H -graphs 
with height in between those of the cylinder and the sphere.
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5.1.5 Embeddedness 

We will finish our sketch of the proof of Theorems 7 and 8 by saying which horizon-
tal Delaunay surfaces are embedded. Observe first that our previous description of 
. �λ implies that horizontal nodoids (.λ > π

2 ) are not even Alexandrov-embedded, so 
we can focus on unduloids with .0 < λ < π

2 . To this end, consider the fundamental 
annulus . Aλ defined as the H -annulus in .M2(κ) × R that consists of four copies of 
. �λ obtained by mirror symmetries about .P23 and .M2(κ) × {0} (see Fig. 9). 

To capture some global properties of . Aλ, throughout this section, we will leave 
the model .M(4H 2 + κ,H) aside and assume that .˜�λ is immersed in . S3

B(4H 2 +
κ,H) ⊂ C

2 via the local isometry . � given by (5). Under this assumption, the 
interior of .˜�λ ⊂ S

3
B(4H 2 + κ,H) is transversal to the Killing field . ˜X(z,w) =

i
2 (−z,w) that defines a global Killing submersion . π0 we have used in the solution 
of the Plateau problem (in the Berger model, this submersion is topologically the 
Hopf fibration in another non-vertical direction). Therefore, the smooth function 
.̃u = 〈˜X, ˜N〉 lies in the kernel of the stability operator L of . ˜�∗

λ . 
The function . ̃u is positive in the interior of .˜�λ and vanishes along . ˜h1 and . ˜h2

(recall that .˜�λ is a Killing graph in the direction of . ˜X and both . ˜h1 and . ˜h2 are 
integral curves of . ˜X). Furthermore, . ̃u is preserved by the axial symmetries about 
. ̃v and . ˜h0 and changes sign by those about . ˜h1 and . ˜h2. This follows from a careful 
analysis of the relation between the axial symmetries about the boundary curves of 
. ˜�λ and the screw-motion group associated with . ˜X (see [72, Prop. 1.6]). Since these 
axial symmetries correspond to mirror symmetries of . Aλ in .M2(κ) × R, it follows 
that .̃u > 0 in the interior of .Aλ and vanishes identically along .∂Aλ. Hence, by 
classical elliptic theory, the first eigenvalue of the stability operator is . λ1(Aλ) = 0
and .λ1(D) < 0 for any open domain .D ⊂ �∗

λ containing . Aλ. In other words, the 
annulus . Aλ is a maximal stable domain of .�∗

λ (for all .λ > 0). 
On the other hand, we can consider the function .u = 〈X,N〉, where X is now 

the Killing field in .M2(κ) × R associated with the group of translations along the 
axis .� = P23 ∩ (M2(κ) × {0}). Since .Lu = 0 and u vanishes at .∂Aλ, we infer 
that u belongs to the eigenspace associated with .λ1(Aλ) = 0. This eigenspace is 
one-dimensional, so there exists .aλ ∈ R such that .u = aλũ. Notice that u is only 
identically zero if .λ = 0 because it is the only case where . �∗

λ is equivariant. Hence, 
for .λ > 0, we have that u does not vanish on the interior of . Aλ, that is, the interior 
of . Aλ is transversal to X, in particular . h0 and v are also transversal to X since they 
lie in the interior of . Aλ: 

1. The fundamental annulus . Aλ is an H -graph in the direction of X (i.e., it intersects 
each integral curve of X at most once), and hence embedded, provided that . κ ≤ 0

or .κ > 0 and .H ≥
√

κ

2 (see [72, §4.3]). 
Notice that embeddedness finds an essential obstruction whenever .�λ runs over 
any of the poles defined by the great circle . � (see Fig. 10). This situation is 
prevented by assuming that .2H >

√
κ thanks to the monotonicity properties in 

Sect. 5.1.4 because .�π/2 is the H -sphere whose radius .
2(
π
2 ) is at most a quarter 

of the length of a great circle of .S2(κ) if .2H ≥ √
κ .



84 J. Castro-Infantes et al.

Fig. 10 Different possible projections of .�λ to .S2(κ) × {0}. In the first case, the completion . �∗
λ , 

.0 ≤ λ ≤ π
2 , is embedded. The second case is not possible if . H >

√
κ

2

2. It remains to analyze the possible type II self-intersections (after completing the 
fundamental annulus by further reflections); observe that they actually happen for 
nodoids with . λ > π

2 . If .0 ≤ λ ≤ π
2 , the geodesic curvature .κP

g of v (computed 

as a curve of the slice .P = M
2(κ) × {0} with respect to its normal vector field 

N pointing inside the domain of the multigraph) admits the upper bound . κP
g ≤

(4H 2 −κ)/4H (i.e., it is bounded by the geodesic curvature of the equator of the 
H -sphere; see [62, Thm. 3.3]). This implies that . Aλ lies in the wedge bounded 
by .P12 and . P34: if  v escaped this region, then its length should be larger than it 
actually is to be able to meet .P12 and .P34 orthogonally from inside the wedge 
(see [70, p. 714]).  

The argument sketched here yields the embeddedness of the unduloids if . κ ≤ 0
(see [72, Prop. 4.4]). However, if .κ > 0, then we need to guarantee that .
0(λ) is 
not only a rational multiple of . 2π√

κ
(so .�∗

λ is compact; see Sect. 5.1.4) but also that 

.
0(λ) = π
m

√
κ

for some .m ∈ N, i.e., .�∗
λ consists of 2m copies of .Aλ and closes 

its period in one turn around . �. The monotonicity properties in Sect. 5.1.4 and the 
well-known behavior of the cases .λ = 0 and .λ = π

2 (see Sect. 5.1.1) give the  
estimate 

.
2√
κ

arctan
√

κ

2H
= 
0(

π
2 ) < 
0(λ) < 
0(0) = π√

4H 2+κ
. (19) 

This easily implies that .H >
√

κ

2 (see Fig. 5). For a fixed integer . m ≥ 2, the  

inequality (19) holds true if and only if . 2H√
κ

∈ (cot( π
2m

),
√

m2 − 1), in which case 

there is a unique .λ = λm(H) such that .
0(λm(H)) = π
m

√
κ

because .λ �→ 
0(λ) is 

continuous and strictly decreasing. This gives rise to the family .Tm in the statement 
of Theorem 8, with the following limit cases:

• If . 2H√
κ

= cot( π
2m

), then .m = π

2 arctan(
√

κ
2H

)
, and hence .
0(

π
2 ) = 
0(λ). This means 

that .λ = π
2 and the surface reduces to a stack of m tangent H -spheres.

• Likewise, if . 2H√
κ

= √
m2 − 1, then .λ = 0, and the surface is an H -torus.
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5.2 Compact H -Surfaces of Arbitrary Genus in S2(κ) × R 

The second conjugate construction we present in this survey concerns compact 
embedded H -surfaces with arbitrary genus .g ≥ 0 in .S2(κ) ×R and mean curvature 

.H <
√

κ

2 . The idea is to produce a compact fundamental piece .�H,g whose 
projection fits in a fundamental triangle of a regular tessellation of .S2(κ) by regular 
polygons (see Sect. 5.2.1). The complete H -surface .�∗

H,g after reflection about its 

symmetry planes inherits all the symmetries of the tessellation of .S2(κ), whence it 
is compact. In the case of genus 0 or 1, we already have the rotationally invariant H -
spheres and H -tori, so our result is relevant for .g ≥ 2. Observe that the horizontal 

Delaunay tori given by Theorem (8) satisfy the opposite inequality .H >
√

κ

2 . 

Therefore, it is worth saying something about the assumption .H <
√

κ

2 , which 
initially showed up in the continuity argument used to adjust .�H,g to the shape of a 

fundamental triangle but then proved to be a natural constraint. The value . H =
√

κ

2
is geometrically relevant in .S2(κ) × R because it is the value of H for which H -
spheres are bigraphs over a hemisphere, and hence two of them are tangent along 
a whole equator. As a matter of fact, we can think of the map .H �→ �∗

H,g , for a  

fixed .g ≥ 2, as a desingularization of two such tangent spheres as .H → 1
2

√
κ . This  

number is also natural in the proof of embeddedness, which uses the convexity of 
the boundary components in [62, Cor. 3.5]. Recall that in the proof of embeddedness 

in Theorem (8), the opposite condition .H >
√

κ

2 has also appeared as a natural 
constraint that prevents the surfaces to surpass the north pole and ensures that the 
H -tori close one of their periods. 

The main result of this section is the following theorem: 

Theorem 9 Let .0 < H <
√

κ

2 and an integer .g ≥ 0. There exists a compact 
embedded H -surface .�∗

H,g of genus g in .S
2(κ)×R that is a bigraph over a slice and 

inherits all the symmetries of a .(2, g+1)-tessellation (see Sect. 5.2.1). Furthermore, 
if .g ≥ 2,

• The limit of .�∗
H,g as .H →

√
κ

2 is a pair of .
√

κ

2 -spheres tangent along an equator.

• The limit of .�∗
H,g as .H → 0 is a double cover of .S2(κ) × {0} with singularities 

at .g + 1 points evenly distributed along an equator. 

Remark 11 It is possible to obtain a similar result for the rest of tessellations 
of the sphere associated with regular polyhedra. However, just a few genera can 
be recovered in this way, plus different restrictions for the mean curvature appear 
depending on the tessellation (see Table 4 and [71, Thm. 1.1]).  

The same construction can be carried out for H -surfaces in .M2(κ) × R with 
.κ ≤ 0 and an arbitrary regular tessellation of .M2(κ) × R by regular polygons [71, 
Thm. 1.1]. In the case .κ = 0, our construction reduces to Lawson’s doubly periodic 
1-surfaces in Euclidean space . R3 [58, Thm. 9] (see also [28, §3]). In the case .κ < 0,
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we obtain new properly immersed surfaces of subcritical, critical, and supercritical 
constant mean curvature in a slab of .H2(κ) × R, though we have not been able to 
analyze their embeddedness. 

5.2.1 Regular Tessellations 

Given integers .m, k ≥ 2, a regular .(m, k)-tessellation is a tiling of .M
2(κ) by regular 

m-gons such that k of them meet at each vertex (see Fig. 11 for an example of a 
.(2, 3)-tessellation of the sphere). The centers and vertexes of the m-gons will be 
called the centers and vertexes of the tessellation. A straightforward application of 
the Gauß-Bonnet formula to one of the m-gons reveals that the sign of . 1

k
+ 1

m
− 1

2
agrees with the sign of . κ , in which case the .(m, k)-tessellation of .M2(κ) actually 
exists. 

In the case of .S2(κ), the inequality . 1
k

+ 1
m

> 1
2 is quite restrictive, for it 

only allows the tessellations associated with the Platonic solids and also two 
infinite families: the beach ball tessellations (with .m = 2 and arbitrary k) and the 
degenerated case for .k = 2 and arbitrary m). The possible configurations are shown 
in Table 4. Notice that the .(m, k) and the .(k,m)-tessellation are dual by swapping 
centers and vertexes and hence they have the same isometry group. 

In a .(m, k)-tessellation of .S2(κ), each m-gon can be decomposed into 2m 
congruent triangles by joining the center with the vertexes and the midpoints of 
the sides. Each of these triangles has angles . π

k
, . π

m
, and . π2 and will be called a 

fundamental triangle because the whole tessellation can be recovered by symmetries 
about its sides. The idea is to construct an H -bigraph in .S2(κ) × R symmetric with 
respect to .S

2(κ)×{0} and with a curve at height zero around each of the centers (see 
Fig. 11). This gives a surface of genus the number of polygons of the tessellation 
minus one (see the last column of Table 4), so we will focus on the .(2, g + 1)-
tessellation of .S2(κ) for .g ≥ 2, which leads to the proof of Theorem 9 that will be 
sketched throughout this section. 

Fig. 11 From left to right for .k = 3: .(2, k)-tessellation of the sphere (see Sect. 5.2.1), view of 
the .(2, k)-tessellation from the north pole and a sketch of .�H,g (.g = 2) in the conformal model 
.R3 \ {0} of .S2(κ)×R (right). The shaded area in the first two figures is the projection of .�H,g over 
its slice of symmetry .S2(κ) × {0}
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Table 4 For each .(m, k)-tessellation, [71, Thm. 1.1] gives compact orientable H -surfaces in 

.S2(κ) × R provided that .0 < 4H 2

κ
< α(m, k) (see also Remark 11). Theorem 9 corresponds 

to the case of a beach ball tessellation 

Initial tessellation .(m, k) .α(m, k) Genus of . �

Beach ball .(2, g + 1) 1 g 
Degenerated .(g + 1, 2) .cot2( π

2+2g
) 1 

Tetrahedron .(3, 3) .2 + √
3 3 

Hexahedron .(4, 3) .5 + 2
√

6 5 

Octahedron .(3, 4) .3 + 2
√

2 7 

Dodecahedron .(5, 3) .8 + 4
√

3 + 3
√

5 + 2
√

15 11 

Icosahedron .(3, 5) .4 + √
5 + 2

√

5 + 2
√

5 19 

5.2.2 Construction of the Minimal Surface in S3 
B(4H 2 + κ, H) 

We will fix positive real numbers H and . κ , and the target genus .g ≥ 2 in what 
follows so we will omit the dependence on these data. Instead, we will take a 
parameter .0 < ρ ≤ π√

4H 2+κ
that will provide one degree of freedom to be used 

later in a continuity argument. The dependence on . ρ will be written in functional 
notation to make it clear that it represents an auxiliary parameter. 

Consider a convex spherical triangle .˜�(ρ) ⊂ S
2(4H 2 + κ) with two angles . π

g+1
and . π2 adjacent to a side of length . ρ. This triangle defines a geodesic quadrilateral 
.˜�(ρ) ⊂ S

3
B(4H 2 +κ,H) with three horizontal sides . ˜h1, . ˜h2, and . ˜h3 projecting to the 

sides of .˜�(ρ) (being . ρ the length of . ˜h2) and a vertical segment . ̃v joining the ends 
of . ˜h1, and . ˜h3. The vertexes of .˜�(ρ) will be denoted by . ˜1, . ˜2, . ˜3, and . ˜4, as shown in  
Fig. 12 (top left). 

The pair .(˜�(ρ),˜�(ρ)) is a Nitsche graph (see Definition 1) such that . W(ρ) =
π−1(˜�(ρ)) is a mean-convex set, so Proposition 7 ensures the existence and 
uniqueness of a minimal disk .˜�(ρ) ⊂ W(ρ) with boundary .˜�(ρ) for any . 0 <

ρ ≤ π√
4H 2+κ

, which is also a graph over the interior of .˜�(ρ). We will assume 

without loss of generality that the angle function . νρ of .˜�(ρ) is negative over the 
interior of .˜�(ρ). We can analyze . νρ by means of the boundary maximum principle 
with respect to .∂W and by Strategy 2, discussed in Sect. 3.1.2. 

Proposition 11 ([71, §3.1]) Let .νρ ≤ 0 be the angle function of the compact 
minimal disk .˜�(ρ) spanning .˜�(ρ): 

(a) The only points at which . νρ vanishes are those in the curve . ̃v. 
(b) The only points at which . νρ takes the value . −1 are . ˜2 and . ˜3.
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Fig. 12 Geodesic polygon .˜�(ρ) (top left), its sister contour .�(ρ) (top right) in the target case 
.
(ρ0) = π

2
√

κ
(see Sect. 5.2.3), and their projections to .S2(4H 2 + κ) via the Hopf fibration (bottom 

left) and to .S2(κ) (bottom right) 

5.2.3 The Conjugate H -Immersion 

Thanks to Lemmas 2 and 3, the conjugate H -surface .�(ρ) in .S
2(κ)×R is bounded 

by a contour .�(ρ) formed by the curves . h1, . h2, and . h3 (corresponding to . ˜h1, . ˜h2, 
. ˜h3) contained in vertical planes and v (corresponding to . ̃v) contained in a horizontal 
slice, which will be assumed to be .S

2(κ)×{0} after a vertical translation (see Fig. 12 
top right). Their endpoints will be denoted by 1–4, in correspondence with . ˜1–. ˜4. 

Write .hi = (βi, zi) ∈ S
2(κ) × R for .i ∈ {1, 2, 3} as in Lemma 2. From the  

properties of . νρ in Proposition 11, it follows that the curves . βi are one-to-one, and 
the height components . zi are strictly monotonic. On the one hand, it is easy to show 
that . β1, . β2, and . β3 are part of the geodesics containing the sides of a spherical 
triangle .�(ρ) ⊂ S

2(κ) with two angles equal to . π
g+1 and . π2 , which coincide with 

the angles made by . h1 and . h2 and by . h2 and . h3, respectively (see Fig. 12 bottom 
right). On the other hand, v is strictly convex as a curve of .S2(κ) × {0} with respect 
to .−N as a conormal along v by Lemma 3. As a consequence, the curve .π ◦ v is 
embedded and contained in .�(ρ). Were it not the case, .π ◦ v would intersect itself 
or other points of some . βi producing a convex loop in .π(�(ρ)). However, . π(�(ρ))

must Alexandrov-embedded as a domain of .S2(κ) since . π restricted to .�(ρ) is
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an immersion (its Jacobian is the angle function . νρ , which does not vanish in the 
interior). In Sect. 5.2.4, we will prove that .�(ρ) is a graph and confirm that Fig. 12 
is a faithful picture of .�(ρ). 

Proposition 3 allows us to produce a complete H -surface .�∗(ρ) by successive 
mirror symmetries about the totally geodesic surfaces containing . h1, . h2, . h3, and v. 
The symmetry group of .�∗(ρ) depends on the shape of the triangle .�(ρ), which is 
determined by the distance .
(ρ) from .π(2) to .π(3) given by 

.
(ρ) = −
∫

h2

νρ = −
∫

˜h2

νρ, (20) 

since the angle function . νρ has been chosen negative. Observe that .˜�(ρ) depends 
continuously on . ρ, so the uniqueness in the Plateau problem (solved by .˜�(ρ)) 
and Proposition 2 yields that .ρ �→ 
(ρ) is a continuous function. This enables 
a continuity argument to prove that there always exists a value of . ρ0 such that 
.
(ρ0) = π

2
√

κ
(see Fig. 12 bottom right), in which case .�∗(ρ0) is compact since 

it has the symmetries of the .(2, g + 1)-tessellation. Let us analyze the limit cases:

• As .ρ → 0, the length of . ˜h2 converges to zero, so .
(ρ) gets arbitrarily close to 
zero by Equation (20).

• As .ρ → π√
4H 2+κ

, the surface .˜�(ρ) converges to . 1
4(g+1)

of the horizontal 

umbrella centered at . ˜3, whence .�(ρ) is a sector of angle .
π

g+1 of the upper half of 

an H -sphere .SH,κ,0 in .S2(κ) × R (see Example 3). This means that . 
( π√
4H 2+κ

)

is the radius of the spherical circle of .S2(κ) over which .SH,κ,0 is a bigraph, that 

is, .
( π√
4H 2+κ

) = 2√
κ

arctan
√

κ

2H
, cp. Equation (19). 

By the intermediate value theorem, .
(ρ) takes all values in .(0, 2√
κ

arctan
√

κ

2H
), 

though it might take each value more than once. We finish the argument by realizing 

that this interval contains the target value . π
2
√

κ
if and only if .H <

√
κ

2 . Observe that 

we can discuss the topology of the complete surface .�∗(ρ0) analytically by means 
of Gauß-Bonnet formula if .
(ρ0) = π

2
√

κ
: since .8(g+1) copies of .�(ρ0) are needed 

to get a compact surface and the total curvature of each piece is .
∫

�(ρ0)
K = π

g+1 − π
2 , 

we easily deduce that the genus of .�∗(ρ0) is g. 

If .H →
√

κ

2 , then . 2√
κ

arctan
√

κ

2H
→ π

2
√

κ
, which forces .ρ0 → π√

4H 2+κ
, 

and the constructed surface .�(ρ0) converges to a subset of an .
√

κ

2 -sphere, so 

.�∗(ρ0) becomes a pair of tangent .
√

κ

2 -spheres. If .H → 0, then we will immerse 
.˜�ρ0 immersed in the local model .M(4H 2 + κ,H) via the isometry in (5). As  
the bundle curvature of .M(4H 2 + κ,H) tends to zero, so does . Length(̃v) =
2HArea(˜�(ρ)) (see the discussion about the geometric meaning of the bundle 
curvature in Sect. 2.3). The maximum principle and the stability of the piece . ˜�(ρ0)

imply that its angle function .νρ0 converges uniformly to . −1, so the conjugate
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piece .�(ρ0) becomes in the limit a slice (with singularities at the vertexes of the 
tessellation). We remark that we have used the model .M(4H 2 + κ,H) instead of 
the Berger sphere .S

3
B(4H 2 +κ,H) to study the limit due to the fact that, as .H → 0, 

the Berger sphere collapses onto .S2(κ) while the Cartan model smoothly converges 
to .S2(κ) × R. 

5.2.4 Embeddedness 

Finally, we will show that the constructed fundamental piece .�(ρ0) is actually a 
graph over some domain of .S2(κ) (so there are no self-intersections of type I (see 
Sect. 3.1.3)) and lies in the prism .�(ρ0) × R (so there are no self-intersections of 
type II (see Sect. 3.1.3)), where .�(ρ0) is the desired triangle with angles . π

g+1 , . π2
and . π2 . This clearly implies that the completion .�∗(ρ0) is embedded (see Fig. 12 
right). To this end, a standard application of the maximum principle reveals that it 
suffices to show that .�(ρ0) is a graph and lies in .�(ρ0) × R. After our discussion 
in Sect. 5.2.2, it will be enough to prove that .π(1) and .π(4) lie in .�(ρ0), i.e., the 
geodesics . β1 and . β3 do not reach the point . p0 shown in Fig. 12. 

In the case of .π(1), this is a consequence of the fact that the distance from . π(2)

to . p0 is . π
(g+1)

√
κ

, whereas the length of . β1 can be estimated as 

. Length(β1) = −
∫

˜h1

ν ≤ Length(˜h1) ≤ π

(g + 1)
√

4H 2 + κ
<

π

(g + 1)
√

κ
.

(21) 

The last inequality in (21) follows from the fact that . ˜h1 has maximum length when 
. ˜h2 is a quarter of a great circle of .S2(4H 2 + κ). As for .π(4), since varying . ρ in the 
construction produces a foliation of a region of the Berger sphere .S

3
B(4H 2 +κ, 4H), 

this implies that . νρ along . β3 depends monotonically on . ρ. The maximum value of 
.Length(β3) = − ∫

˜h3
ν is thus attained when .ρ = π√

4H 2+κ
, since for this value we 

integrate the largest function on the largest interval. In particular, .Length(β3) is less 

than . π
2
√

κ
, the radius of the disk over which the .

√
κ

2 -sphere is a bigraph. This means 

that .π(4) also lies in the boundary of .�(ρ0). 

5.3 Compact Minimal Surfaces in S2(κ) × S1(η) 

This construction concerns periodic minimal surfaces in .S
2(κ) × R that are 

compact in the quotient by a vertical translation of a certain length 2h, i.e., in the 
homogeneous three-manifold .S2(κ) × S

1(η), where .S1(η) is a circle of curvature 
.η = π

h
.
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Fig. 13 A sketch of the fundamental piece of the minimal surface .�g,η of Theorem 10 represented 
in the conformal model .R3 − {(0, 0, 0)} of .S2(κ) × R. See also the numerical approximations in 
Fig. 25 

Hoffman, Traizet, and White [42, Thm. 1] obtained a class of properly embedded 
minimal surfaces in .S

2(κ) × R called periodic genus g helicoids as well as 
infinitely many noncongruent compact orientable embedded minimal surfaces in 
.S

2(κ) × S
1(η) with arbitrary genus .g ≥ 2 and arbitrary .η > 0 [42, Thm. 2]. Note  

that as we are dealing with minimal surfaces, non-orientable examples might also 
exist. Rosenberg [95, §4] constructed non-orientable compact minimal surfaces in 
.S

2(κ) × S
1(η), for all .η > 0, with even Euler characteristic, and in [68] it is proved  

that there cannot be examples with odd Euler characteristic. 
We will obtain other compact minimal surfaces of arbitrary genus .g ≥ 3 that 

can be thought of as Schwarz P-surfaces in .S2(κ) × S
1(η) (see Fig. 13). As in 

the constructions in Sect. 5.1 and Sect. 5.2, we will produce a fundamental piece 
fitting a tile of a tessellation of .S2(κ) ×R giving the desired genus (in the quotient) 
after extending it by symmetries about its boundary components. The conjugate 
technique starts with another minimal surface in .S

2(κ)×R and involves a continuity 
argument that only allows us to get the result for . η large enough (see Sect. 5.3.3). 
Moreover, in principle, this family might fail to be continuous as in Sect. 5.1. 

The main result is the following theorem (see also Fig. 13): 

Theorem 10 ([68, Prop. 3]) For any integer .g ≥ 3 and .η > 2
√

κ big enough 
depending on g and . κ , there exists a compact embedded orientable minimal surface 
.�g,η with genus g in .S2(κ) × S

1(η) that is a bigraph over a slice and inherits all 
the symmetries of a .(2, g − 1)-tessellation of .S2(κ) (see Sect. 5.2.1). 

Remark 12 In the cases .g = 0 and .g = 1, there is no such a Schwarz P-surface, 
but in these cases we can easily produce a compact minimal surface of genus
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g by considering the .S2(κ) × {0} or a vertical torus. The case .g = 2 is more 
subtle, since the arguments in the proof of Theorem 10 fail, and we believe that 
no such Schwarz P-surface with these prescribed symmetries will exist. Recall that 
Hofmann, Traizet, and White have provided compact embedded examples of all 
genera. We also presented a similar but more symmetric construction in [68, §3.2] to 
produce compact minimal surfaces in .S

2(κ)×S
1(η) with arbitrary odd genus . 2k−1

for .k ≥ 2 and . η large enough, which inherit the symmetries of a .(2, k)-tessellation, 
but they are not congruent those in Theorem 10. Besides, a genus 7 compact minimal 
example in .S2(κ) × S

1(η) with the symmetries of the .(4, 3)-tessellation (i.e., the 
hexahedron; see Table 4) is also constructed. 

On the other hand, the strange condition .η > 2
√

κ shows up in the spherical 
geometry when one tries to produce the initial geodesic polygon, so there cannot be 
a Schwarz P-surface in .S2(κ) × S

1(η) with .η ≤ 2
√

κ enjoying the symmetries we 
have prescribed. 

5.3.1 Construction of the Minimal Surface in S2(κ) × R 

We will fix .η > 0 and the genus .g ≥ 3 in the sequel, not writing the dependence 
on these variables. Consider three real parameters .0 ≤ ã,˜b ≤ π

2
√

κ
and .ρ > 0, 

and define the geodesic triangle .˜�(̃a,˜b) ⊂ S
2(κ) × {0} with two sides of lengths 

. ̃a and . ˜b meeting at an angle of . π2 . The opposite angles will be denoted by . ̃α and 

. ˜β. We can produce a geodesic polygon .˜�(̃a,˜b, ρ) by adding two vertical geodesic 
segments of length . ρ at the vertexes . ̃α and . ˜β. Therefore, .˜�(̃a,˜b, ρ) is a closed curve 
in .S

2(κ)×R whose vertexes will be denoted by . ˜1, . ˜2, . ˜3, . ˜4, and . ˜5 as shown in Fig. 14 

Fig. 14 The polygon .˜�(̃a,˜b, ρ) (left) and its conjugate .�(̃a,˜b, ρ) (right) that lies inside the prism 
demarcated by the symmetry planes. Note that by construction .h ≤ 
(23) = 
(˜23) ≤ π

2
√

κ
so we 

get the restriction .η = π
h

≥ 2
√

κ in Theorem 10. The restriction .ρ ≤ π
2
√

κ
is unrelated to this and 

will be used to prove embeddedness. Moreover, .α = area(Vα) + α̃ and .β = area(Vβ) + ˜β
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left. Notice that .˜�(̃a,˜b, ρ) is still well defined for .0 ≤ ã,˜b ≤ π√
κ

not both equal to 

.
π√
κ

(a half of the length of a great circle of .S2(κ)), though imposing the restriction 

.0 ≤ ã,˜b ≤ π
2
√

κ
is essential for some of the arguments in our construction (observe 

that this restriction on . ̃a and . ˜b implies that the angles . ̃α and . ˜β are at most . π2 ). 

Remark 13 One can also consider the boundary curve .˜�(̃a,˜b, ρ) constructed 
likewise using horizontal and vertical geodesics in . R3. This leads, by conjugation, 
to the classical Schwarz P-surface, whose name is motivated by the fact that it 
is invariant under a primitive cubic lattice C, when choosing .̃a = ˜b = ρ and 
.̃α = ˜β = π

4 (e.g., see [51, §1.6.2]). The quotient of the conjugate surface under 
the lattice C has genus 3 and consists of 16 copies of the fundamental piece with 
.α = β = π

4 and .a = b (cp. Fig. 14 right). Here, the actual lengths of . ̃a and a are 
not relevant, since we can change them by homotheties of . R3. Note also that this 
construction in . R3 can be seen as a limit of our construction as .κ → 0. 

By construction, the triangle .˜�(̃a,˜b) and the polygon .˜�(̃a,˜b, ρ) form a Nitsche 
contour, so Proposition 7 ensures the existence and uniqueness of a minimal disk 
.˜�(̃a,˜b, ρ) ⊂ ˜�(̃a,˜b) × R with boundary .˜�(̃a,˜b, ρ), whose interior is a graph 
over .˜�(̃a,˜b, ρ). We will assume that its angle function .νã,˜b,ρ is positive in the 
interior without loss of generality. By the Strategy 2 in Sect. 3.1.2 and the boundary 
maximum principle, we deduce that the angle function only vanishes along the 
vertical segments . ˜12 and . ˜34, whereas it only takes the value 1 at the vertex . ˜5. 

5.3.2 The Conjugate Minimal Surface 

Let .�(̃a,˜b, ρ) be the conjugate minimal surface in .S2(κ) × R whose boundary 
.�(̃a,˜b, ρ) consists of curves contained in vertical or horizontal totally geodesic 
surfaces that . � meets orthogonally (see Lemmas 2 and 3). We will denote by 1, 
2, 3, 4, and 5 the corresponding vertexes of .�(̃a,˜b, ρ) and by .Pij the vertical plane 
or horizontal slice containing i and j . Up to a vertical translation, we will assume 
that .P34 = S

2(κ) × {0}. 
We will sketch the proof that .�(̃a,˜b, ρ) is embedded and contained in a 

triangular prism of .S2(κ) × R (see [68, Lem. 3] for further details). To prove this, 
we will additionally assume that .ρ ≤ π

2
√

κ
. 

Observe that .P45 and .P51 are different since they form an angle of . π2 . Moreover, 
.P12 and .P34 do not coincide (so they are at a certain distance .h > 0), and the 
height of the point 5 is between 0 and h; otherwise, we would find a contradiction 
with the maximum principle when comparing with slices .S2(κ) × {t}. Due to the 
behavior of the angle function, the curves . 23, . 45, and . 51 project one-to-one to 
.S

2(κ) × {0}. The normal to .˜�(̃a,˜b, ρ) has different directions of rotation along . ˜12
and . ˜34, so the curves . 12 and 34 are convex arcs that .�(̃a,˜b,˜h) meets from above 
and below, respectively, by Lemma 3. This easily leads to the fact that . P45, . P23, and 
.P15 demarcate a spherical triangle .�(̃a,˜b, ρ) in the projection to .S2(κ), such that
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.�(̃a,˜b, ρ) ⊂ �(̃a,˜b, ρ) × R. We will call . α and . β the angles of this triangle, as 
indicated in Fig. 14. 

It remains to prove that . 12 and . 34 are embedded and . P23, . P15, and .P45 are 
pairwise distinct. We will explain the argument for . 12, being the case . 34 analogous. 
The total curvature of . 12 is .

∫

12 κg = −α̃, i.e., minus the total rotation of the 
normal along . ˜12 (note that . κg is computed with respect to the normal N such 
that .ν > 0 in the interior). If . 12 were not embedded, then, by convexity, it 
would contain a loop enclosing a domain D, where Gauß-Bonnet formula yields 
.κ Area(D) ≥ π − α̃ ≥ π

2 . On the other hand, . Length(∂D) ≤ ρ ≤ π
2
√

κ

by assumption, which contradicts the isoperimetric inequality in .S2(κ) that reads 
.4π Area(D) − κ Area(D)2 ≤ Length(∂D)2. 

Once we know that both curves . 12 and . 34 are embedded, they must enclose some 
domains . Vα and . Vβ as in Fig. 14, demarcated by the horizontal geodesics orthogonal 
at their endpoints. Gauß-Bonnet formula applied to these domains . Vα and . Vβ gives 
the relations .α = area(Vα)+ α̃ and .β = area(Vβ)+˜β. The same argument as above 
shows that the angles . α and . β do not exceed . π whenever .ρ ≤ π

2
√

κ
, so the planes 

. P23, . P45, and .P51 are pairwise different. 

5.3.3 Compactness 

As we have mentioned in the introduction, our plan to prove Theorem 10 is to fit 
.�(̃a,˜b, ρ) in the prism with base half of a 2-gon in the .(2, g − 1)-tessellation of the 
sphere .S2(κ) × {0} (see Fig. 13). This amounts to saying that .α = π

g−1 and . β = π
2

(see Fig. 14 right). To prove that these conditions are satisfied, we will use a degree 
argument inspired by the work of Karcher, Pinkall, and Sterling [55]. 

We will assume that .0 < ρ < π
2
√

κ
is fixed, so the conjugate minimal surface 

.�(̃a,˜b, ρ) continuously depends on . ̃a and . ˜b (see Proposition 2), whence there exists 
a continuous function .fρ : (0, π

2
√

κ
] × (0, π

2
√

κ
] → R

2 such that .fρ(̃a,˜b) = (α, β). 
Let .c1, c2, c3, and . c4 be four straight segments parametrized by 

. c1(t) = 1√
κ
(t, π

2 ), t ∈ [ 1
2(g−1)

, π
g−1 ], c2(t) = 1√

κ
( π
g−1 , t), t ∈ [ 1

2 , π
2 ],

c3(t) = 1√
κ
(t, 1

2 ), t ∈ [ 1
2(g−1)

, π
g−1 ], c4(t) = 1√

κ
( 1

2(g−1)
, t), t ∈ [ 1

2 , π
2 ],

which form a closed rectangle .R ⊂ (0, π
2
√

κ
] × (0, π

2
√

κ
]. We claim that there exists 

.ρ > 0 such that the image of .fρ(R) is a closed curve around .( π
g−1 , π

2 ). 

By spherical trigonometry, it is easy to obtain that .˜β = π
2 along . c1, . ̃α > π

g−1

along . c2, .˜β < π
2 along . c3, and .̃α < π

g−1 along . c4. Also, we know that .α > α̃ and 

.β > ˜β (see Sect. 5.3.2), so the image of .fρ ◦ c1 is above the horizontal line at height 

. π2 and the image of .fρ ◦ c2 is to the right of the vertical line at . π
g−1 . Finally, since 

.α → α̃ and .β → ˜β for .ρ → 0, we deduce that there exists . ρ0 small enough so
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that the image of .fρ0 ◦ c3 is below the horizontal line at height . π2 and the image of 
.fρ0 ◦ c4 is to the left of the vertical line at . π

k
, and the claim is verified. Observe that 

this argument holds true for any .ρ ≤ ρ0. 
By continuity, for any .ρ ≤ ρ0, there exists . ̃a and . ˜b (that depend on . ρ) such that 

.fρ(̃a,˜b) = ( π
g−1 , π

2 ) so the polygon .�(̃a,˜b, ρ) fits in the .(2, g − 1)-tessellation. 

Then, the complete surface .�∗(̃a,˜b, ρ) obtained by successive reflections of . �
inherits the desired symmetries; in particular, it is compact in the quotient. Finally, 
a similar computation using the Gauß-Bonnet theorem as in Sect. 5.2.3 ensures that 
quotient minimal surface in .S2(κ) × S

1( h
π
) has genus precisely g, . g ≥ 3. By the  

continuous dependence of h on the parameters and taking into account that both 
.˜�(̃a,˜b, ρ) and .�(̃a,˜b, ρ) converge to a horizontal slice as .ρ → 0, the desired 
compact surfaces exist for all h small enough, i.e., for . η large enough. 

6 Complete H -Surfaces in H2(κ) × R 

In this section, we will obtain minimal and constant mean curvature k-noids and 
k-nodoids in .H2 × R by conjugating the solution of a Jenkins-Serrin problem. The 
main difference with respect to the above constructions in Sect. 5 is that additionally 
we have to deal with the asymptotic behavior of the surface via the analysis of ideal 
horizontal and vertical geodesics in the initial minimal surface (see Proposition 9). 

6.1 Genus Zero (H, k)-noids and (H, k)-nodoids in H2(κ)× R 

The first construction concerns H -surfaces in .H
2(κ)×R of genus 0 with an arbitrary 

number of ends .k ≥ 3 asymptotic to vertical H -cylinders and .4H 2 + κ ≤ 0. Before 
stating the main theorem, it is worth saying that these surfaces, in the minimal 
case, reduce to the minimal k-noids and saddle towers constructed by Morabito 
and Rodríguez [83] and also by Pyo [92] independently, whose names are inspired 
by their counterparts in . R3 given by Jorge and Meeks [45] and Karcher [50]. The 
.(H, k)-noids in Theorem 11 were constructed first by Plehnert in [90] and by Daniel 
and Hauswirth [17] for .k = 2. However, the main contribution of our theorem is the 
new family of .(H, k)-nodoids, with a similar behavior at infinity but approaching the 
asymptotic H -cylinders from the convex side. Some of them have self-intersections 
and give rise to counterexamples to the Krust property for subcritical H -surfaces. 

We will use the term H -catenodoid to refer to .(H, 2)-nodoids, inspired by the 
fact that the H -nodoids we have constructed in Sect. 5.1 seem to converge to a H -
catenodoid of critical mean curvature as .4H 2 + κ → 0. In this limit, we choose . ˜2
(see Fig. 6) as accumulation point, and the parameter .λ > π

2 should also be chosen 
appropriately along the sequence. Likewise, the limit of the H -unduloids as . 4H 2 +
κ → 0 seems to be a catenoid of critical mean curvature. The situation is similar if
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we look at rotationally invariant H -surfaces with subcritical and supercritical mean 
curvature (see [82, Fig. A and B], noticing that Montaldo and Onnis choose . κ = −2
and the mean curvature as the sum of the principal curvatures, not their average). 

Theorem 11 ([11, Thm. 1.2])  Assume that .4H 2 + κ ≤ 0. For each integer .k ≥ 2, 
there is a continuous two-parameter family of proper Alexandrov-embedded H -
surfaces .�∗

a,b ⊂ H
2(κ) ×R, .a, b ∈ (0,∞] not both equal to . ∞. These surfaces are 

invariant by mirror symmetries about a horizontal plane and k equiangular vertical 
planes: 

(a) If .a, b < ∞, then .�∗
a,b are called saddle towers. They are singly periodic, 

having genus 0 and 2k ends in the quotient of .H2(κ) × R by a vertical 
translation, and each end is asymptotic in the quotient to a half of a H -cylinder. 

(b) If .a = ∞ and .b < ∞, then .�∗∞,b are called .(H, k)-noids (or H -catenoids 

if .k = 2). They have genus 0 and k ends. If .4H 2 + κ < 0, then each end 
is embedded and contained in the concave side of an H -cylinder to which it is 
asymptotic. If .4H 2+κ = 0, then each end is tangent to the asymptotic boundary 
.∂∞H

2(κ) × R along a vertical ideal geodesic. 
(c) If .a < ∞ and .b = ∞, then .�∗

a,∞ are called .(H, k)-nodoids (or H -catenodoids 
if .k = 2). They have genus 0 and k ends. If .4H 2 + κ < 0, then each end 
is embedded and contained in the convex side of a H -cylinder to which it is 
asymptotic. If .4H 2 + κ = 0, then such H -cylinders disappear at infinity. 

In the case . H = 0, the .(H, k)-nodoids are congruent to the .(H, k)-nodoids, 
but the subtle difference between these two families in the case .H > 0 will be 
transparent via conjugation. It relies on the key role of the orientation in . E(4H 2 +
κ,H), whose bundle curvature is nonzero. 

6.1.1 The Construction of the Minimal Surface in E(4H 2 + κ, H) 

We will fix . κ and H such that .4H 2+κ ≤ 0, as well as the integer .k ≥ 2 in the sequel, 
so we will omit the dependence on these parameters as in previous constructions. 
Also, we will work on the global Cartan model .M(4H 2 + κ,H) given in Sect. 2.3. 

Given .a, b > 0, let .˜Ta,b ⊂ M
2(4H 2 + κ) be a geodesic triangle of vertexes 

.p̃0 = (0, 0), . ̃p1 and . ̃p2 labeled counterclockwise such that the angle at . p0 is equal 
to . π

k
and the geodesic segments .p̃0p̃1 and .p̃0p̃2 have lengths a and b, respectively. 

After an orientation-preserving isometry, we will assume that . ̃p1 lies on the x-axis. 
We call . 
 the length of the side .p̃1p̃2. We can extend this triangle to the case . a = ∞
or .b = ∞ by setting .˜T∞,b = cl(∪a>0˜Ta,b) and .˜Ta,∞ = cl(∪b>0˜Ta,b), respectively, 
where .cl(G) denotes the topological closure of some subset .G ⊂ M

2(4H 2 + κ). 
Note that . ̃p1 or . ̃p2 becomes ideal if .4H 2 + κ < 0 or just disappears if . 4H 2 + κ =
0 since .Nil3 has not a notion of ideal boundary, and the triangle just becomes a 
truncated strip. Either way, we can lift the vertexes of .˜Ta,b by means of the zero 
section as .̃qi = F0(p̃i) = (p̃i , 0) ∈ E(4H 2 + κ,H) for .i ∈ {0, 1, 2}, and we denote 
by .̃q0q̃i the horizontal geodesic in .E(4H 2 + κ,H) joining . ̃q0 and . ̃qi .
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Fig. 15 The shaded triangle .˜Ta,b, .a, b < ∞, and the Jenkins-Serrin boundary values in the 
subcritical case (left) and the critical case (center) for .k = 3. Sketch of the solution .˜Ra,b and 
the rotation of the normal along . ̃v1 and . ̃v2 (right) 

Our minimal fundamental piece is the vertical minimal graph .˜Ra,b that solves 
the Jenkins-Serrin problem with prescribed boundary values 0 over .p̃0p̃1 and . ̃p0p̃2
and .+∞ over .p̃1p̃2 (see Fig. 15). We call .˜�a,b the vertical minimal graph obtained 
after successive reflections about the horizontal geodesics .̃q0q̃1 and .̃q0q̃2, which are 
contained in .˜Ra,b. We call .˜
a,b the domain of .M2(4H 2 + κ) onto which . ˜�a,b

projects, and we denote by . ̃pi , for .i ∈ {1, . . . 2k} the vertexes of .˜
a,b labeled 
counterclockwise. Observe that the vertexes .p̃2i−1 (resp. . ̃p2i) are ideal if . a = ∞
(resp. .b = ∞) when .4H 2 + κ < 0 or disappear if .4H 2 + κ = 0. The existence of 
the solution .˜�a,b is guaranteed by [11, Lem. 3.2 and 3.6] (see also Sect. 4.2). 

Remark 14 If .4H 2 + κ = 0, the uniqueness of solution for the Jenkins-Serrin 
problem in the cases .a = ∞ or .b = ∞ is not clear. In that case, we take the graphs 
.˜�∞,b and .˜�a,∞ as limit of the graphs .˜�a,b making the family continuous. The 
case .k = 2 is specially relevant, since the solutions .˜�a,∞ and .˜�∞,b are explicit. 
They belong to a broader family .Hμ of minimal surfaces that are foliated by non-

geodesic straight lines in .Nil3(
√−κ

2 ) orthogonal to a horizontal geodesic, having 
different directions of rotation if .μ < −1

2 or .μ > 1
2 (see Fig. 16). These surfaces are 

described in [11, Lem. 3.3] and resemble horizontal helicoids with arbitrary distance 
between two consecutive vertical geodesics, so they can be used as barrier to solve 
the Jenkins-Serrin problem in a limit of a double sequence of minimal surfaces for 
.k > 3. The surfaces .Hμ with .μ < − 1

2 solve the case .a = ∞ and have been 
previously found by Daniel and Hauswirth [17, §7] by other methods. 

We will now analyze the angle function .νa,b of .˜�a,b. To this end, we can restrict 
to the fundamental piece .˜Ra,b, in whose interior .νa,b will be assumed positive. We 
will only consider the case .a, b < ∞ because if .a = ∞ or .b = ∞, the surface 
.˜�a,b can be analyzed as a limit of the finite case. However, the following lemma is 
also expected to hold true in the cases .a = ∞ or .b = ∞. It is important to remark 
that the finite boundary of .˜Ra,b consists of the vertical geodesics .̃vi = π−1(p̃i) for 
.i ∈ {1, . . . , 2k}, which are the only points where .νa,b vanishes.
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Fig. 16 The surfaces .˜�∞,b (left) and .˜�a,∞ (right) in the case .4H 2 + κ = 0 and .k = 2 are 

horizontal helicoids in .Nil3(
√−κ

2 ) foliated by straight lines orthogonal to . �

Proposition 12 ([11, Lem. 4.4])  Let .a, b ∈ (0,∞) and .H > 0, and define . νa,b

as the angle function of .˜Ra,b ⊂ E(4H 2 + κ,H) that is positive in the interior of 
.˜Ra,b: 

(a) If .k = 2, then .νa,b takes the value 1 only at . ̃q0. 
(b) If .k ≥ 3, then .νa,b only takes the value 1 at . ̃q0 and at other some point .̂q1 ∈ q̃0q̃1. 

6.1.2 The Conjugate H -Immersion 

Let .�a,b be the conjugate H -surface in .H2(κ) × R, which is a multigraph over 
a (possibly non-embedded; see Fig. 19 right) domain .
a,b ⊂ H

2(κ). Since . ˜�a,b

is invariant by axial symmetries about the geodesics .̃qi q̃k+i for .i ∈ {1, . . . , k}, 
Lemma 2 says that .�a,b has mirror symmetry with respect to k vertical planes meet-
ing at a common vertical line, say the z-axis, arranged symmetrically. Moreover, 
Lemma 3 and Proposition 9 show that the boundary components of .�a,b are the 2k 
complete (possibly ideal) horizontal curves .v1, . . . , v2k along with 2k ideal vertical 
geodesics joining the endpoints of . vi and .vi+1 for .i ∈ {1, . . . , 2k}. We will assume 
hereafter that .v2 ⊂ H

2(κ) × {0} (resp. .v1 ⊂ H
2(κ) × {0}) if .a = ∞ (resp. .b = ∞) 

(see Figs. 17 and 18): 

1. If . ̃pi is not ideal, then let . θi be the angle of rotation of . ˜N along the vertical 
geodesic . ̃vi . It satisfies .θ ′

i < 0 (resp. . θ ′
i > 0) if  i is odd (resp. even) (see 

Figs. 15, 17, and 18). Lemma 3 implies that .κg > 2H (resp. .κg < 2H ), being . κg

the geodesic curvature of . vi as a curve in a horizontal plane with respect to the 
unit normal N of .�a,b. Lemma 3 also shows that the projection of N points to 
the exterior (resp. interior) of .
a,b ⊂ H

2(κ) if i is odd (resp. even). 
2. If . ̃pi is ideal (only possible in the case .4H 2+κ < 0), then we can reason similarly 

for a sequence of graphs over finite triangles .˜Tan,b or .˜Ta,bn , with .an, bn < ∞, 
converging to .Ta,b. Since . θ ′

i converges uniformly to zero as .n → ∞, Lemma 3
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Fig. 17 The fundamental piece .˜R∞,b and its conjugate .R∞,b of a .(H, k)-noid for .k = 3 and . 4H 2+
κ < 0 and their projections to .H2(κ). Observe that the asymptotic H -cylinders are approached 
from the concave side. Dotted lines are geodesics 

reveals that the geodesic curvature of . vi is 2H with respect to N . As a limit of 
curves in the assumption of item (1), we infer that the projection of N points to 
the exterior (resp. interior) of the domain .
a,b along . vi if i is odd (resp. even). 
Hence, the geodesic curvature of . vi with respect to an inner conormal to .
a,b is 
.−2H (resp. 2H ) if  i is odd (resp. even). This confirms that .(H, k)-noids (resp. 
.(H, k)-nodoids) are asymptotic to the H -cylinders from the concave side (resp. 
convex side) (see Figs. 17 and 18). 

The complete surfaces .�∗
a,b are obtained after reflecting .�a,b about the hor-

izontal plane of symmetry. From the properties sketched so far, we deduce the 
description of the surfaces given by Theorem 11. 

Remark 15 Proposition 12 shows that .�a,b behaves differently when .H = 0 and 
.H > 0. In the former case, the angle function .νa,b only takes the value 1 at . ̃q0 for all 
.k ≥ 2. However, in the later case, the height function of the conjugate surface (i.e., 
the projection to the factor . R) has a local minimum at the conjugate of . ̃q0 and saddle 
points at the conjugate point of . ̂q1 and its symmetric points for all .k ≥ 3. So, the 
shape of .�a,b is somewhat different in the cases .H = 0 and .H > 0. For instance, 
this situation leads to type II self-intersections for certain values .a, b < ∞ (i.e., in
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Fig. 18 The fundamental piece .˜Ra,∞ and its conjugate .Ra,∞ of a .(H, k)-nodoid for . k = 3
and .4H 2 + κ < 0 and their projections to .H2(κ). Observe that the asymptotic H -cylinders are 
approached from the convex side. Dotted lines are geodesics 

the case of saddle towers) and .H > 0 because the fundamental piece escapes the 
slab where the boundary is contained (see [11, Prop. 4.6]). 

Remark 16 To see the differences between the cases .4H 2 +κ < 0 and . 4H 2 +κ =
0, we define the function .ρ = ρ(a, b) (resp. .d = d(a, b)) as the distance in . H2(κ)

from the center .π(q0) of .
a,b, where . q0 is the conjugate point of . ̃q0, to the curves 
.π(v1) (resp. .π(v2)) in the projection of the (possibly asymptotic) boundary of .�a,b. 
In [11, Lem. 4.1], it is shown that for .4H 2 + κ < 0 the functions . a �→ d(a,∞)

and .b �→ d(∞, b) are strictly increasing and range from 0 to a finite number . d∞. 
If .4H 2 + κ = 0, then .d(a,∞) = ρ(∞, b) = ∞ for all .a, b ∈ (0,∞), so the H -
cylinders asymptotic to .�a,∞ and .�∞,b disappear at infinity when .4H 2 + κ = 0. 

We also remark that if such horocylinders did not disappear, then we would have 
encountered a contradiction to the halfspace theorem for surfaces of critical mean 
curvature given by Hauswirth, Rosenberg, and Spruck [37].
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6.1.3 Embeddedness 

We begin by observing that the embeddedness of .�∗
a,b in case .H = 0 easily follows 

from the Krust property (see Proposition 5), so we will restrict to the case .H > 0. 
We have already pointed out that type II self-intersections may occur even if .�a,b is 
embedded (see Remark 15). Using Proposition 12 and the maximum principle with 
respect to horizontal planes, it is not difficult to see that this behavior is not possible 
for .k = 2 (see [11, Prop. 4.6] for the details). Said this, we cannot discard type 
I self-intersections either, because the counterexamples to the Krust property will 
actually come from this type of self-intersections. We will analyze the cases . a = ∞
and .b = ∞ separately: 

1. The embeddedness of .(H, k)-noids: As the geodesics .̃v2i−1 are ideal and the 
angle of rotation of the normal along .̃v2i satisfies .θ ′

2i > 0 for .i ∈ {1, . . . , k}, 
Lemma 3 and the maximum principle with respect to horizontal planes give the 
inclusion .�a,b ⊂ H

2(κ) × (−∞, 0], where the symmetry curves of .�a,b are 
contained in .H2(κ) × {0}. By Proposition 4, if .

∫

ṽ2i
θ ′

2i ≤ π , then the conjugate 
curves .v2i are embedded, and by the symmetries of the surface, the same 
happens to .�a,b. Therefore, the embeddedness of the .(H, k)-noids is proved 
when .

∫

ṽ2i
θ ′

2i ≤ π , i.e., when .˜
a,b is a convex domain of .M2(4H 2 + κ). This  
condition is always satisfied for . k = 2, so all  H -catenoids are embedded. 

2. The embeddedness of .(H, k)-nodoids: If .k ≥ 3, we do not have in general the 
inclusion .�a,b ⊂ H

2(κ)×[0,+∞) if we assume that . v1 lies in .H
2(κ)×{0}. The  

maximum principle with respect to horizontal slices does not apply. However, 
for .4H 2 + κ < 0 and a large enough that inclusion can be proved using the 
continuity of the conjugation (Proposition 2). Notice that .�a,∞ converges to a 
Scherk H -graph .�∞,∞ as .a → ∞ after appropriate vertical translations (see 
Fig. 19) and the geodesic curvatures of .v2i−1 in the horizontal plane of symmetry 
converge to 2H with respect to the exterior conormal. In other words, .�a,∞ is 
embedded for a large enough. 

On the other hand, the hyperbolic distance from .π(v2) to the origin . π(q0)

ranges from 0 to .d∞ as a runs from 0 to . ∞ (see Remark 16). Since .�a,∞ lies 
in the convex side of the cylinders over . v2i , there exists .a1 > 0, depending on 
k and H , such that the asymptotic equidistant curves . v2 and . v4 in .�a1,∞ share 
at least one endpoint at infinity. This implies that the endpoints of the curve . v3
coincide when .a = a1 and there are type I self-intersections if and only if . a < a1
(see Fig. 19). By symmetry, the same happens for any . v2i−1, so .�a,∞ (and hence 
.�∗

a,∞) is not embedded in that case. If .4H 2 + κ = 0, the curves .v2i ⊂ �∗
a,b get 

close to horocycles at the same time that they diverge to infinity (see Remark 16). 
As .�∗

a,∞ lies locally in the convex side of the horocylinders, the curves . v2i−1
cannot be embedded. 

All in all, if .4H 2 +κ < 0, then .�a,∞ is not embedded if . a < a1; if .4H 2 +κ = 0, 
then .�a,∞ is never embedded. In the case .k = 2, this non-embeddedness yields the 
counterexamples to the Krust property with .4H 2 + κ ≤ 0, since the surface . ˜�a,b

is a vertical graph over a convex quadrilateral. In the case .4H 2 + κ > 0, there are
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Fig. 19 The fundamental piece .Ra,∞ of an H -catenodoid and its projection to . H2(κ). From left to  
right: .a < a1 (non-embedded), .a = a1 (vertical planes touching at infinity), .a > a1 (embedded), 
.a = ∞ (limit Scherk H -graph after suitable vertical translations) 

also counterexamples to the Krust property constructed by similar methods (see [11, 
§5]). 

Remark 17 It is expected that .(H, k)-noids and .(H, k)-nodois have finite total 
curvature as in the minimal case. By the properties of conjugation, this problem 
is equivalent that the solutions of the Jenkins-Serrin problem .˜R∞,b and .˜Ra,∞ have 
finite total curvature in .˜SL2(R). However, this problem is much more involved than 
in .H2(κ) × R because the Gauss curvature of minimal surfaces in .˜SL2(R) may 
change sign (see the Gauss equation in Sect. 2.4). 

6.2 Genus One Minimal k-noids in H2(κ) × R 

The last application we present in this survey is a construction of minimal surfaces 
in .H2(κ) × R with finite total curvature by means of conjugating a solution to a 
Jenkins-Serrin problem in .H2(κ) × R. They are analogous to the genus 1 minimal 
k-noids in . R3 obtained by Mazet [75], and their construction is inspired by the work 
of Plehnert [89], who got similar surfaces in .H

2(κ)×R with critical mean curvature. 
In the minimal case, we take advantage of the Krust property (see Proposi-

tion 5) as well as of the fact that our surfaces have finite total curvature, which 
enables a finer control of the asymptotic behavior. Hauswirth, Nelli, Sa Earp, and 
Toubiana [35] and Hauswirth, Menezes, and Rodríguez [34] proved that a complete
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minimal surface immersed in .H2(κ) × R has finite total curvature if and only 
if it is proper and has finite topology and each of its ends is asymptotic to an 
admissible polygon consisting of finitely many complete vertical and horizontal 
ideal geodesics, in which case the total curvature must be a negative multiple of 
.2π (see [36, Thm. 3.1]). Such a polygon is particularly well controlled when we 
want to obtain the surface by conjugation in view of Proposition 9. Also, [34, Thm.  
6] says that we have to prescribe a symmetry with respect to a horizontal slice if we 
want our surfaces to have finite total curvature and embedded ends. 

It is worth pointing out that the literature does not contain many examples of 
minimal surfaces with finite total curvature in .H2(κ) × R, and the surfaces given 
here are the first examples with genus 1 and an arbitrary number of ends .k ≥ 3. 
There are two important remarks to this claim. On the one hand, our result cannot 
be extended to the case .k = 2 since it would contradict the uniqueness of the 
horizontal catenoids given by Hauswirth, Nelli, Sa Earp, and Toubiana [35] (as  
usual, the condition .k ≥ 3 will appear as a natural restriction in the conjugate 
construction). On the other hand, Martín, Mazzeo, and Rodríguez [73], by means 
of gluing methods, obtained properly embedded minimal surfaces with finite total 
curvature in .H2(κ) × R of genus g and k ends asymptotic to vertical planes, for 
arbitrary genus .g ≥ 0. Nonetheless, in their result, k is not arbitrary in principle but 
sufficiently large depending on g and . κ . 

Theorem 12 ([10, Thm. 1])  For each .k ≥ 3, there exists a one-parameter family 
. �∗

ϕ , with .
π
k

≤ ϕ ≤ π
2 , of properly Alexandrov-embedded minimal surfaces in 

.H
2(κ) ×R with genus 1 and k ends. They are invariant by mirror symmetries about 

a horizontal plane and about k equiangular vertical planes and have finite total 
curvature .−4kπ . Moreover, each of their ends is embedded and asymptotic to a 
vertical plane. 

This construction can be adapted to produce minimal surfaces in . H2(κ) × R

invariant by an arbitrary vertical translation, with genus 1 and finite total curvature 
in the quotient of .H2(κ) × R by the vertical translation (see [10, Thm. 2]). These 
are the genus one counterparts of Morabito and Rodríguez’ saddle towers [83]. 

6.2.1 The Minimal Surface in H2(κ) × R 

Given .a > 0 and .0 < ϕ < π
2 , consider the triangle .˜�(a, ϕ) ⊂ H

2(κ) with one 
ideal vertex . ̃p1 and two interior vertexes . ̃p2 and . ̃p3, such that the finite edge . ̃p2p̃3
has length a and the angle in the vertex .p̃2 = (0, 0) is equal to . ϕ (see Fig. 20 
bottom left). We will work in the global Cartan model given in Sect. 2.3 assuming 
that .p̃2 = (0, 0) and .p̃1 = ( 2√−κ

, 0). 

Our initial minimal piece is the unique minimal vertical graph .˜�(a, ϕ, b) in 
.H

2(κ) × R that solves the Jenkins-Serrin problem over .˜�(a, ϕ) with boundary 
data b over .p̃2p̃3, .+∞ over .p̃1p̃3 and 0 over .p̃1p̃2. The existence and uniqueness 
of solution are guaranteed by Theorem 6 and Proposition 9. The finite boundary
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Fig. 20 The conjugate surfaces .˜�(a, ϕ, b) and .�(a, ϕ, b) and their projections to . H2(κ). The  
arrows represent the normal . ˜N at the endpoints of . ̃v2 and . ̃v3. The period . P1 is zero when . v2 and 
. v3 are at the same height; the period . P2 is the cosine of . δ, if such an angle exists 

of .˜�(a, ϕ, b) consists of the vertical segment . ̃v2 of length b projecting to . ̃p2, 
the vertical half-line . ̃v3 projecting to . ̃p3, and the horizontal geodesics . ˜h1 and . ˜h3
contained in .H

2(κ)×{b} and .H
2(κ)×{0} that project to .p̃2p̃3 and .p̃1p̃2, respectively. 

Moreover, the asymptotic boundary of .˜�(a, ϕ, b) consists of a vertical half-line 
. ̃v1 projecting to . ̃p1 and the horizontal geodesic . ˜h2 contained in . H2(κ) × {+∞}
that projects to .p̃1p̃3 (see Fig. 20). The interior of .˜�(a, ϕ, b) is a graph, where we 
will assume that the angle function is positive. Next, we analyze the horizontal and 
vertical points as in the previous constructions (again, this analysis follows from the 
boundary maximum principle together with Strategy 2 in Sect. 3.1.2). 

Proposition 13 ([10, Lem. 2])  Let .νa,ϕ,b be the angle function of the minimal 
surface .˜�(a, ϕ, b), which will be assumed positive in the interior: 

(a) The points with .νa,ϕ,b = 0 are precisely those at .̃v2 ∪ ṽ3. 
(b) There is exactly one point with .νa,ϕ,b = 1 and it belongs to . ˜h1. 

We also remark here that if .b > 0, the angles of rotation of . θ2 and . θ3 of the 
normal . ˜N along . ̃v2 and . ̃v3 satisfy .θ ′

2 > 0 and .θ ′
3 > 0, respectively (see Fig. 20).
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6.2.2 The Conjugate Minimal Surface 

Since .˜�(a, ϕ) is convex, the Krust property (Proposition 5) implies that the 
conjugate surface .�(a, ϕ, b) is also a vertical minimal graph in .H

2(κ)×R over some 
domain .�(a, ϕ, b) ⊂ H

2(κ). By Lemma 3, the curves . v2 and . v3 in . ∂�(a, ϕ, b)

are contained in horizontal slices, being their projections convex with respect to 
the inner-pointing conormal to .�(a, ϕ, b) along its boundary. Moreover, . �(a, ϕ, b)

lies locally above the horizontal planes containing . v2 and . v3. By Lemma 2, the  
conjugate curves . h1 and . h3 lie in vertical planes, and it can be shown that the 
component of . h1 in the factor . R has a minimum at the unique point where .ν = 1. 
The asymptotic boundary of .�(a, ϕ, b) is composed of the half horizontal geodesics 
. v1 in .H2(κ) × {−∞} and of the ideal vertical half-line . h2 (see Fig. 20). 

We aim at showing that appropriate parameters give rise to a complete minimal 
surface .�∗(a, ϕ, b) of genus 1 in .H2(κ) × R after extending .�(a, ϕ, b) by mirror 
symmetries over the horizontal and vertical planes. We will sketch the proof that 
for each .π

k
< ϕ < π

2 , there exist . aϕ and . bϕ such that .�∗
ϕ = �∗(aϕ, ϕ, bϕ) has 

the desired properties. This will be accomplished if the following two periods are 
closed, inspired by [89, §6.3]: 

1. First period problem. We call .P1(a, ϕ, b) the difference of heights of the 
endpoints of . h1, which must be zero so each end of .�(a, ϕ, b) is an annulus. 
Parametrizing .h1 : [0, a] → H

2(κ) × R with endpoints .h1(0) ∈ v2, . h1(a) ∈ v3
and unit speed, the properties of the conjugation yield 

.P1(a, ϕ, b) =
∫

h1

〈h′
1, ξ 〉 =

∫

˜h1

〈η, ξ 〉, (22) 

where .η = −J˜h′
1 is the unit inward conormal vector to .˜�(a, ϕ, b) along . ˜h1. 

2. Second period problem. Assume that the vertical planes containing the symme-
try curves . h1 and . h3 intersect each other at a non-oriented angle . δ, and call . P2
the cosine of the angle . δ. To give an analytic expression for . P2, we will consider 
the half-space model (see Sect. 2.3.2). 
Parametrize .v2(t) = (x(t), y(t), 0) for .t ∈ [0, b], and assume, up to an ambient 
isometry, that . h3 and . v2 lie in the vertical plane .{x = 0} and the horizontal plane 
.{z = 0}, respectively, and also .x(0) = 0, .y(0) = 1, and .x(t) < 0 when t is close 
to 0 (see Fig. 21). Let .ψ ∈ C∞[0, b] be the angle of rotation of . v2 with respect 
to the horocycle foliation in the sense of Remark 6, where we choose the initial 
angle .ψ(0) = π . The second period is given by 

.P2(a, ϕ, b) = cos(δ) = x(b) sin(ψ(b))

y(b)
− cos(ψ(b)). (23) 

Incidentally, the right-hand side of (23) is well defined even when the vertical 
planes containing the symmetry curves . h1 and . h3 do not intersect. However, 
provided that the first period is solved, it can be shown that the vertical planes 
containing the symmetry curves . h1 and . h3 intersect each other with an angle . δ if 
and only if .P2(a, ϕ, b) = cos(δ) (see [10, Lem. 6]).
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Fig. 21 The angle .ψ(b) of rotation of . v2 with respect to the horocycle foliation at . v2(b), where  
we identify .H2 × {0} ≡ H

2. The surface .�(a, ϕ, b) projects onto the shaded region . �(a, ϕ, b)

with boundary. The complete geodesic containing the projection of . h1 appears in dotted line in the 
case it intersects the y-axis with (non-oriented) angle . δ

6.2.3 Solving the Period Problems 

We will start by discussing the first period. We will assume that b is any nonnegative 
real number and we have the restrictions .0 < ϕ < π

2 and . 0 < a < amax(ϕ) =
2 arctanh (cos(ϕ)). By hyperbolic trigonometry, this means that the angle of . ˜�(a, ϕ)

at . ̃p3 is strictly less than . ϕ. This assumption is natural since a simple comparison 
argument shows that the first period problem cannot be solved if . a > amax(ϕ)

(see [10, Rmk. 1]). The following result guarantees that both period problems can 
be solved simultaneously: 

Lemma 4 ([10, Lem. 5 and 6]) Let . 
 = {

(a, ϕ) ∈ R
2 : 0 < ϕ < π

2 , 0 < a <

amax(ϕ)}: 
(a) There exists a unique function .f : 
 → R+ such that . P1(a, ϕ, f (a, ϕ)) = 0

for all .(a, ϕ) ∈ 
, which is continuous. For a fixed .ϕ0 ∈ (0, π
2 ), it has limits 

. lim
a→amax(ϕ0)

f (a, ϕ0) = +∞, lim
(a,ϕ)→(0,ϕ0)

f (a, ϕ) = 0.

(b) If .ϕ0 ∈ (0, π
2 ) and .b = f (a, ϕ0), then the inequalities .x(t) < 0 and . π <

ψ(t) < 2π hold true for all .t ∈ (0, b] (i.e., along the curve . v2; see Sect. 6.2.2). 
We have the limits 

. lim
a→0
P2(a, ϕ0, f (a, ϕ0)) = cos(ϕ0), lim

a→amax(ϕ0)
P2(a, ϕ0, f (a, ϕ0)) = +∞.
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We will highlight some ideas in the proof but we refer to [10] for further details. 
In the proof of item (a), the existence of the function f is based on a comparison 
along the boundary using Strategy 3 in Sect. 3.1.2. We show that the first period 
function . P1 is strictly decreasing with respect to the third argument since we can 
compare .˜�(a, ϕ, b1) and .˜�(a, ϕ, b2) for .0 < b1 < b2 and their conormals along 
the horizontal geodesic . ˜h1 by the boundary maximum principle. Moreover, we show 
that .P1(a, ϕ, 0) > 0 and .P1(a, ϕ, b) < 0 for .b > 0 large enough. The monotonicity 
of . P1 implies that there is a unique .b0 > 0 such that .P1(a, ϕ, b0) = 0, and this 
uniqueness implies in turn the uniqueness and continuity of f . 

The computation of the limits in (a) is also based on the same comparison idea 
with the limit surfaces. For instance, in the limit as .a → 0, we use Proposition 2 
and Remark 4 to rescale the space while keeping a constant. The limit surface lies 
in Euclidean space . R3 and is a minimal graph over a truncated strip to which we can 
also apply a similar comparison argument. 

As for item (b), the result is based on a careful use of the formula . θ ′ = −κP
g =

ψ ′ + √−κ cos(ψ) given by Lemma 3 and Remark 6, where . θ is the angle of 
rotation of the normal . ˜N along . ̃v2 and . ψ is the angle of rotation of . v2 with respect 
to the horocycle foliation. On the one hand, we can integrate .θ ′ = −κP

g to get 

.
∫ b

0 κg(t)dt = − ∫ b

0 θ ′(t)dt = −ϕ. This gives estimates for the total geodesic 
curvature of subsets of . v2, which can be used to prove the inequalities . x(t) < 0
and .π < ψ(t) < 2π via the Gauß-Bonnet formula (applied to appropriate domains; 
see [10, Fig. 5]). On the other hand, we can integrate .θ ′ = ψ ′ + √−κ cos(ψ) to 
obtain .ϕ = ψ(b) − π + √−κ

∫ b

0 cos(ψ(t))dt . In particular, .ψ(b) → ϕ + π and 
.(x(b), y(b)) → (0, 1) as .b → 0. Using this and the limits in item (a), the first limit 
in item (b) can be easily deduced. We will skip the proof of the second one, which 
is more technical and involves the limit of surfaces. 

In view of Lemma 4, it is not difficult to see how to finish the proof of 
Theorem 12. Given .k ≥ 3, for each .

π
k

< ϕ < π
2 , we choose .b = f (a, ϕ) to solve the 

first period problem. Observe that .P2(a, ϕ, f (a, ϕ)) tends to .cos(ϕ) when . a → 0
and tends to .+∞ when .a → amax(ϕ); since .cos(ϕ) < cos(π

k
) and . P2 is continuous, 

there exists some .aϕ ∈ (0, amax(ϕ)) such that .P2(a, ϕ, f (aϕ, ϕ)) = cos(π
k
), 

though it might not be unique. Therefore, we choose .bϕ = f (aϕ, ϕ) so that 
.�∗

ϕ = �∗(aϕ, ϕ, bϕ) solves both period problems. By a similar argument to that of 
Collin and Rosenberg in [13, Rmk. 7] using Fatou’s Lemma, it follows that .�∗

ϕ has 
finite total curvature. This is also a consequence of the characterization of minimal 
surfaces with finite total curvature of Hauswirth, Menezes, and Rodríguez in [34], 
since .�∗

ϕ is proper and has finite topology and each of its end is asymptotic to a 
vertical plane; in particular, .�∗

ϕ is asymptotic to an admissible polygon at infinity. 
Either way, the fact that .�∗

ϕ has finite total curvature enables a better understanding 
of the asymptotic behavior. For instance, it follows from [34] that if an end of .�∗

ϕ is 
embedded, then it is a horizontal graph in the sense of [34, Def. 7 and 8].
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6.2.4 Embeddedness 

The analysis of the second period function does not allow us to prove the uniqueness 
of . aϕ since we have not been able to control the dependence of the second problem 
with respect to the parameter a. Nevertheless, we expect that there do exist values 
of . ϕ for which the complete surface .�∗

ϕ will be embedded. Observe that the 
fundamental piece .�(aϕ, ϕ, bϕ) is a vertical graph contained in the half-space 
.H

2(κ) × (−∞, 0], but we can find self-intersections of type II after reflecting it 
about the vertical planes of symmetry, even if all periods are closed. This actually 
happens if .ϕ → π

k
because it implies that .aϕ → 0, and the surfaces .�∗

ϕ converge, 
after rescaling, to a genus 1 minimal k-noid in . R3, which is not globally embedded. 

We can ensure that .�∗
ϕ is embedded if the value . aϕ that solves both period 

problem is bigger than the quantity .aemb(ϕ) = arcsinh(cot(ϕ)). By a simple  
application of hyperbolic trigonometry, the inequality .aϕ ≥ aemb(ϕ) amounts to 
saying that the angle of .˜�(aϕ, ϕ) at . ̃p3 is at most . π2 , so that the fundamental piece 
is still a vertical graph over a convex domain after extending it by axial symmetry 
about . ˜h1. Although we are not able to prove that there are values of . aϕ that satisfy 
this inequality, we expect that the surface .�∗

ϕ is embedded if . ϕ is close to . π2 . 
The fact that the ends of .�∗

ϕ are embedded is a consequence of the fact that each 
of them is contained in four copies of the fundamental piece that form a symmetric 
embedded bigraph. This claim follows from the fact that two of these four pieces 
come from the fundamental piece extended by axial symmetric about . ˜h2 and the 
extended surface projects to a convex quadrilateral of .H2(κ). The Krust property 
guarantees that the conjugate surface is graph, and the other two copies needed to 
produce the aforesaid bigraph are their symmetric ones with respect to the slice 
.H

2(κ) × {0} containing . ̃v2 and . ̃v3. 

Remark 18 If .P2(a, ϕ, f (a, ϕ)) ≥ 1, then the completion .�∗(a, ϕ, f (a, ϕ)) is 
a surface invariant by a discrete group of parabolic or hyperbolic translations 
(depending on whether .P2 = 1 or .P2 > 1, respectively), instead of a discrete group 
of rotations. We call these examples parabolic and hyperbolic .∞-noids, respectively 
(see Fig. 22). The former are obtained when the vertical planes of symmetry of 

Fig. 22 The fundamental domains of a three-noid (left), a parabolic .∞-noid (center), and a 
hyperbolic .∞-noid (right)
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.�(a, ϕ0, f (a, ϕ0)) are asymptotic, whereas in the latter these planes lie at positive 
distance. Parabolic and hyperbolic .∞-noids have genus 0 and infinitely many ends, 
each of them asymptotic to a vertical plane and having finite total curvature. We 
also remark that these surfaces induce surfaces with finite total curvature in some 
quotients of .H2(κ) × R in which minimal surfaces of finite total curvature have 
been described by Hauswirth and Menezes [33]. In the case of hyperbolic .∞-noids, 
we can always find values of the parameters such that .a > aemb(ϕ), so that family 
always contains embedded examples. 

7 Numerical Examples of Minimal Surfaces in Product 
Spaces 

The aim of this last section is to present some numerical experiments that help 
us to visualize the minimal surfaces constructed in Sect. 5.3. To this end, we 
will use Kenneth Brakke’s Surface Evolver [7] (version 2.70), which is publicly 
available in https://facstaff.susqu.edu/brakke/evolver/evolver.html. This software 
has been successfully used to approximate both minimal and nonzero constant mean 
curvature surfaces in the Euclidean space (see, for example, [29, 44] and Brakke’s 
gallery of triply periodic minimal surfaces [6]). Surface Evolver is also able to 
perform the computation of the adjoint1 of a minimal surface in . R3 as well as the 
conjugate2 discrete constant mean curvature surface in . R3 of a minimal surface in 
. S3. The scripts are implemented following the algorithm developed by Pinkall and 
Polthier [87] and Oberknapp and Polthier [85]. These procedures are based on the 
computation of the discrete conjugate harmonic map, which is possible in space 
forms thanks to the close relation between harmonic maps and minimal surfaces. 
However, this approach is not available in .E(κ, τ )-spaces. 

Surface Evolver is an interactive software to minimize energies of triangulated 
surfaces subject to constraints and boundary conditions. The default energy is 
the surface tension or the area functional, but Surface Evolver is able to operate 
with many other quantities like gravitation or even user-defined ones. A surface 
is implemented as a triangulation, initially defined by the user in an input datafile 
by prescribing the vertexes and the incidence relations between edges and faces of 
the triangulation. The program evolves the initial surface by minimizing the energy 
towards a possible local minimum close to the initial configuration by a gradient 
descent method. However, the numerical algorithm can also find critical saddle 
points. 

To avoid problems with the triangulation in the evolution process, Surface 
Evolver provides commands for vertex averaging (V) and equitriangulation (u) as  
well as commands to modify the triangulation by eliminating elongated triangles

1 See http://facstaff.susqu.edu/brakke/evolver/html/scripts.htm#adjoint.cmd. 
2 See http://facstaff.susqu.edu/brakke/evolver/html/scripts.htm#cmccousin.cmd. 
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(K), small edges (l and t), or faces (w). The usual evolution consists in iterating 
by gradient descent with the g command, refining the triangulation when necessary 
with the r command, and using the previous commands to keep the triangulation 
in good shape throughout the process. In general, after a reasonable amount of 
iterations, the energy stalls and the resulting surface are usually near a critical point 
of the energy. However, some subtleties might be in place (see, for example, the 
evolution of the unstable catenoid in the Surface Evolver manual). 

For our purposes, a key feature of Surface Evolver is its ability to operate with 
any Riemannian metric in three coordinates. However, according to its manual3 “the 
metric is used solely to calculate lengths and areas.” For instance, it is not used for 
computing the enclosed volume so in order to get a volume constraint the user needs 
to define his own named quantity (see Sect. 7.3 for further details). 

We consider in the punctured space .R3∗ = R
3 − {(0, 0, 0)} the conformal metric 

.g = 1
x2+y2+z2 g0, where . g0 denotes the usual flat metric and .(x, y, z) are the standard 

coordinates. It follows that .S2×R is isometric to .(R3∗, g) via the map .F(p, t) = etp, 
i.e., .S2 × R is conformally flat. We use this identification from now on:

• Horizontal slices .S2 × {t0}, .t0 ∈ R, are in correspondence with spheres S of 
radius . et0 centered at the origin. Moreover, the reflection about the slice . S2 ×{t0}
corresponds to an inversion in . R3 with respect to the sphere S.

• Vertical cylinders .γ ×R, where . γ is a geodesic of . S2, correspond to affine planes 
.P ⊂ R

3 through the origin. Moreover, the reflection about .γ ×R corresponds to 
the Euclidean reflection about P .

• Vertical geodesics .{p} × R ⊂ S
2 × R correspond to straight lines through the 

origin, and rotations about them correspond to rotations in the Euclidean space. 

We present in the following sections two numerical experiments: The first one, 
concerning the minimal sphere .S2 × {t0} ⊂ S

2 × R, is a toy example that helps us 
to understand better how Surface Evolver operates with the new metric and to know 
its limitations. The aim of the second one is to get an approximation of a singly 
periodic minimal surface that produces the compact genus .g ≥ 3 minimal surface 
.�g,η in the quotient .S2 × S

1(η) for certain . η (see Sect. 5.2 and Theorem 10). 
The Surface Evolver datafiles used in both experiments are publicly available at 

https://arxiv.org/src/2203.13162/anc. 

7.1 Evolution to the Minimal Sphere 

Our first goal is to evolve an initial parallelepiped to a sphere centered at the origin 
that corresponds, via the isometry F , with a slice .S

2×{t0}. As we will see, the choice 
of initial parallelepiped will determine the slice (i.e., the radius of the sphere) in the

3 See http://facstaff.susqu.edu/brakke/evolver/html/model.htm. 
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Fig. 23 Initial triangulation (left) where vertexes are marked in circled numbers while edges in 
squared ones (faces have a plus or minus sign depending on its orientation). Triangulation after 
refining (center) using r, u, and  V commands. Final state of the evolution (right) after 100 steps 
with the g command 

final evolution. The slices .S2 × {t0}, .t0 ∈ R, are stable minimal surfaces [106] so  
Surface Evolver is expected to approximate properly such a surface. 

We start loading a datafile into Surface Evolver with a parallelepiped inscribed 
in the sphere of radius 1 centered at the origin, where we specify the command 
conformal_metric 1/(x^2 + y^2 + z^2) at the beginning of the file to 
set the aforesaid conformal metric. We first refine the rough initial triangulation 
(see Fig. 23 left) three times and then use the V and u commands (see Fig. 23 
center). Finally, we evolve the surface 100 times (see Fig. 23) using the  g command. 
After that, each step in the gradient descent method only decreases the area by 
approximately .10−4, giving a value about .12.6557. This approximates the expected 
value .4π ≈ 12.5664 within an error of order .10−2. 

Surface Evolver can show the Euclidean volume enclosed by the surface. In the 
final step of evolution, such enclosed volume is approximately .1.225 so the surface 
approaches a sphere of radius .0.66. If we start with the same parallelepiped but 
inscribed in a sphere of radius 2, the same evolution yields a sphere of approximately 
the same area .12.6557 (which is the expected behavior) but of Euclidean volume 
approximately .9.796, i.e., the radius of the sphere is approximately .1.327. Finally, 
Surface Evolver is able to compute the Euclidean discrete mean curvature of the 
triangulated surface giving an average of .1.517 and .0.758 in the first and second 
cases which approximately agrees with the computed radii. 

7.2 Singly Periodic Minimal Surfaces in S2 × R 

Now, we are interested in getting an approximation of the compact minimal surfaces 
in .S2 × S

1(η) with arbitrary genus .g ≥ 3 obtained in Sect. 5. We recall that 
.η ≥ 2

√
κ has to be large enough to guarantee the existence of the surface (see
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Fig. 24 Initial triangulation (left) for genus .g = 3: the edges . 49 and . 17 are, respectively, 
constrained to the slice .S2 × {0} (sphere of radius 1) and the slice .S2 × {h} (sphere of radius 
. eh, .h ≈ 0.7 in the figure); the edges . 13, . 34, and . 79 are constrained to the vertical planes of 
symmetry (planes .y = 0, . z = 0, and .−x sin( π

g−1 ) + y cos( π
g−1 ) = 0, respectively). Triangulation 

after refining using r, u, and V commands (center). Final state of evolution after 150 steps using 
the g commands and taking care of the triangulation each 50 steps (right). The symmetry planes 
are drawn to help visualization 

Theorem 10). Those surfaces are obtained as the quotient of singly periodic (by a 
vertical translation) minimal surfaces in .S2 × R. We will use Surface Evolver to 
approximate the latter (see Figs. 24 and 25). 

The triangulation defined in the datafile used to generate Figs. 24 and 25 depends 
on several parameters that provide an easy way to test the evolution process for 
different initial configurations. It is possible to change the genus, which actually 
controls the angle between the symmetry planes drawn in Fig. 24, as well as the  
height h of the fundamental piece (i.e., half the length of the vertical translation that 
leaves the surface invariant; see Figs. 13 and 14 right). After loading the datafile in 
Surface Evolver, we first improve the initial triangulation (with u and V commands), 
and then we evolve the surface 150 steps (with g command) taking care of the 
triangulation each 50 steps. At this stage, we observe that the area only decreases 
by .0.01 each step. Further iteration with the g commands just decreases the area 
slightly, which insinuates that the surface might be in a critical saddle point. We 
also notice that the scale factor (a real number that controls the size of the motion 
at each step of the iteration) becomes small due to the fact that the area of some 
faces approaches zero as the triangulation accumulates around the boundary . 49 (see 
Fig. 24), which is constrained to the sphere of radius one. This suggests that there 
is an obstacle to the evolution.4 However, trying to overcome this issue either by 
activating the conjugate gradient method (with U command) or by removing the 
small faces (with w command), as suggested in Surface Evolver manual, and then 
evolving the surface (with g command) produce a collapse near the boundary . 49.

4 The same behavior is observed in the free boundary example free_bdry.fe (see http:// 
facstaff.susqu.edu/brakke/evolver/workshop/html/day2.htm) where the scale factor converges to 
zero as we iterate with the g command. 

http://facstaff.susqu.edu/brakke/evolver/workshop/html/day2.htm
http://facstaff.susqu.edu/brakke/evolver/workshop/html/day2.htm
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http://facstaff.susqu.edu/brakke/evolver/workshop/html/day2.htm
http://facstaff.susqu.edu/brakke/evolver/workshop/html/day2.htm
http://facstaff.susqu.edu/brakke/evolver/workshop/html/day2.htm
http://facstaff.susqu.edu/brakke/evolver/workshop/html/day2.htm
http://facstaff.susqu.edu/brakke/evolver/workshop/html/day2.htm
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3 

Fig. 25 From left to right: visual approximation in .(R3∗, g) of three singly periodic minimal 
surfaces of .S2 × R. These surfaces, from left to right, produce compact minimal examples of 
genus 3, 5, and 9 in the quotient .S2 ×S

1( π
h
) (.h ≈ 0.7 in the figure). The green and yellow parts are 

congruent in .S2 ×R, i.e., they are congruent in the figure by an inversion of the sphere of radius 1 

7.3 Final Remarks and Future Work 

The experiments of the previous section have produced surfaces that resemble the 
theoretical ones (see the detailed description in Sect. 5.3.2, and compare Figs. 14 
and 24). However, due to the change of metric, the program exhibits some 
limitations in order to check the precision of the approximation. On the one hand, 
even after prescribing the metric, Surface Evolver computes the discrete mean 
curvature at each vertex of the triangulation with respect to the Euclidean metric, 
as shown in Sect. 7.1. As a consequence, we cannot check the precision of the 
approximation by computing the deviation of the discrete mean curvature from zero. 
On the other hand, the change of metric does not affect other quantities like the 
volume (see next paragraph) or the implementation of the Willmore functional,5 

both of which computed in the Euclidean metric. The latter could have been used 
to easily check if the evolution is near a minimal surface. Other problem we have 
found (see Sect. 7.2) is that the scale factor approaches zero as we iterate using the 
command g so the conducted experiments invariably lead to a collapse near one of 
the necks of the surface. This could indicate some instability in the discrete free 
boundary problem. 

However, Surface Evolver is flexible enough to allow the user to define his 
own quantities. In this sense and as a future work, it will be interesting to extend 
Surface Evolver’s functionality to overcome the mentioned issues. For instance, 
an implementation of the enclosed volume with respect to the new metric will be

5 star_perp_sq_mean_curvature, see  http://facstaff.susqu.edu/brakke/evolver/workshop/ 
doc/quants.htm#star_perp_sq_mean_curvature. 
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extremely useful to get approximations of the H -surfaces constructed in Sect. 5.2 
decreasing the area functional with a constrain on the volume. Another quite 
interesting solution is to look for an algorithm able to compute the discrete conjugate 
of a minimal surface in .E(κ, τ ). We also propose a final approach, motivated by the 
fact that the initial minimal surface seems to be more tractable (Surface Evolver 
finds satisfactorily the unique solution to a Plateau problem given by Proposition 7). 
Therefore, it should be possible to get good approximations of the angle function 
(resp. rotation of the normal) along the horizontal (resp. vertical) geodesics of 
the boundary, so the different period problems that we have encountered in our 
constructions can be potentially solved numerically a priori. This would provide 
us with precious information to be plugged into the initial configuration of the 
conjugate surface. 
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Integral Geometry of Pairs of Lines 
and Planes 

Julià Cufí, Eduardo Gallego, and Agustí Reventós 

Abstract In this paper, we present some results obtained previously in Cufí et 
al. (J. Math. Anal. Appl. 458(1):436–451 (2018); Mathematika 65(4):874–896 
(2019); Rend. Circ. Mat. Palermo (2) 69(3):1115–1130 (2020); Arch. Math. (Basel) 
117(5):579–591 (2021)) related to convex sets in the plane and in the space. 

In the plane, we deal with Hurwitz’s inequality, which provides an upper bound 
of the isoperimetric deficit of a convex set K in terms of the area of the evolute of the 
boundary of K. We improve this inequality finding strictly positive lower bounds for 
the Hurwitz’s deficit, these bounds involving the visual angle of the boundary of K. 
In a different look, we provide a unified approach that encompasses some integral 
formulas for functions of the visual angle of a compact convex set due to Crofton, 
Hurwitz, and Masotti. Also, we interpret these formulas from the point of view of 
Integral Geometry of pairs of lines. 

In the space, we deal with integrals of invariant measures of pairs of planes, 
expressing some of these integrals in terms of functions of the visual dihedral angle 
of the convex set. As a consequence of our results, we evaluate the deficit in a 
Crofton-type inequality due to Blaschke. 

Keywords Convex set · Visual angle · Invariant measure · Constant width · 
Dihedral visual angle 

MSC Classification: 52A10, 52A15, 53C65 

1 Introduction 

Here, we present some results obtained previously in [3–6] related to convex sets 
in the plane and in the space. For the case of the plane, our contribution is strongly 
related to the celebrated work by Hurwitz [10] in which he introduced the use of 

J. Cufí · E. Gallego (�) · A. Reventós 
Departament de Matemàtiques, Universitat Autònoma de Barcelona, Barcelona, Catalonia 
e-mail: Julia.Cufi@uab.cat; Eduardo.Gallego@uab.cat; Agusti.Reventos@uab.cat 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 
A. Alarcón et al. (eds.), New Trends in Geometric Analysis, 
RSME Springer Series 10, https://doi.org/10.1007/978-3-031-39916-9_4

119

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-39916-9protect T1	extunderscore 4&domain=pdf

 885 56845 a 885 56845 a
 
mailto:Julia.Cufi@uab.cat
mailto:Julia.Cufi@uab.cat
mailto:Julia.Cufi@uab.cat

 8536 56845 a 8536 56845
a
 
mailto:Eduardo.Gallego@uab.cat
mailto:Eduardo.Gallego@uab.cat
mailto:Eduardo.Gallego@uab.cat

 18940 56845 a 18940 56845
a
 
mailto:Agusti.Reventos@uab.cat
mailto:Agusti.Reventos@uab.cat
mailto:Agusti.Reventos@uab.cat
https://doi.org/10.1007/978-3-031-39916-9_4
https://doi.org/10.1007/978-3-031-39916-9_4
https://doi.org/10.1007/978-3-031-39916-9_4
https://doi.org/10.1007/978-3-031-39916-9_4
https://doi.org/10.1007/978-3-031-39916-9_4
https://doi.org/10.1007/978-3-031-39916-9_4
https://doi.org/10.1007/978-3-031-39916-9_4
https://doi.org/10.1007/978-3-031-39916-9_4
https://doi.org/10.1007/978-3-031-39916-9_4
https://doi.org/10.1007/978-3-031-39916-9_4
https://doi.org/10.1007/978-3-031-39916-9_4


120 J. Cufí et al.

Fourier series to deal with geometrical problems, some of them related to the visual 
angle of a convex set. In the case of the space, Fourier series must be substituted by 
spherical harmonics and the visual angle by the dihedral visual angle. In both cases, 
we adopt the point of view of Integral Geometry according to Santaló [12]. 

The results in Sect. 3 are related to the classical isoperimetric inequality 

. � = L2 − 4πF ≥ 0,

where L is the length of a simple closed plane curve . � enclosing a region of area F . 
In the case that . � bounds a convex set K , Hurwitz [10] established a kind of reverse 
isoperimetric inequality, namely, 

.L2 − 4πF ≤ π |Fe|, (1) 

where . Fe is the algebraic area (.Fe ≤ 0) enclosed by the evolute of . �. Moreover, 
equality holds in (1) if and only if . � is a circle or a curve parallel to an astroid. 

We improve Hurwitz’s inequality (1) finding strictly positive lower bounds for 
Hurwitz’s deficit .π |Fe| − �. These bounds involve the visual angle of K from a 
point P , which is the angle between the two tangents from P to the boundary of K 
(see Theorem 1). In the constant width case, we prove, in Theorem 2, the inequality 
. L2 − 4πF ≤ 4

9π |Fe|.
Before addressing what we do in Sect. 4, let us remember that in 1868 Crofton 

showed [2] the well-known formula 

.

∫
P �∈K

(ω − sin ω) dP = L2

2
− πF, (2) 

where .ω = ω(P ) is the visual angle of K from the point P . 
Later on, Hurwitz in 1902 [10] considered again the integral of some functions 

of the visual angle. In particular, he gave a new proof of Crofton’s formula using the 
Fourier series of the radius of curvature . ρ of the boundary . ∂K . He also established 
the equality 

.

∫
P �∈K

sin3 ω dP = 3

4
L2 + 1

4
π2γ 2

2 (3) 

with .γ 2
k = α2

k + β2
k , where . αk and . βk are the Fourier coefficients of . ρ. 

In 1955, Masotti [11] considered a Crofton-type formula computing 

.

∫
P �∈K

(ω2 − sin2 ω) dP
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in terms of the area of K , the length of . ∂K , and the Fourier coefficients of the radius 
of curvature of . ∂K . Santaló in 1976 [12, I.4.5] gave lower and upper bounds for the 
above integral. 

In Sect. 4.1, we provide a unified approach that encompasses the previous results 
and allows us to obtain new integral formulas for functions of the visual angle. 
The basic tool is the integral formula given in Theorem 3. Using this theorem, we 
obtain integral formulas for any power of .sin ω (Theorem 5) and for the function 
.ωm − sinm ω (see Eq. 19). 

In Sect. 4.2, we deal with a general type of integral formulas of the visual angle 
including those we have just commented above, from the point of view of Integral 
Geometry according to Crofton and Santaló [12]. The purpose is twofold: to provide 
an interpretation of these formulas in terms of integrals of functions with respect to 
the canonical measure in the space of pairs of lines and to give new simpler proofs 
of them (see Propositions 7, 8, and 9). 

The main goal of Sect. 5 is to study integrals of invariant measures with respect 
to Euclidean motions in the Euclidean space . E3, extended to the set of pairs of 
planes meeting a compact convex set. To carry out this objective, we express these 
integrals in terms of functions of the dihedral visual angle of the convex set from 
a line and integrate them with respect to an invariant measure in the space of lines. 
The main tool we use is spherical harmonics. In this sense, Theorem 8 plays an 
important role. Then, we assign to any invariant measure on the space of pairs of 
planes an appropriate function of the dihedral visual angle of a given convex set. 
The integral of this function with respect to the measure on the space of lines gives 
the integral of the above measure extended to those planes meeting the convex set 
(see Theorem 9). In Sect. 5.2, we relate this last result to Blaschke’s work [1, p. 75] 
in Theorem 10. 

We thank the people in charge of the REAG network (Red Española de Análisis 
Geométrico) for the opportunity to present our recent work here. 

2 Preliminaries 

2.1 Support Function 

A set .K ⊂ R
n is convex if it contains the complete segment joining every two points 

in the set. We shall consider nonempty compact convex sets. The support function 
of K is defined as 

. pK(u) := sup{〈x, u〉 : x ∈ K} for u ∈ R
n.

For a vector u in the unit sphere .Sn−1, the number .pK(u) is the signed distance 
of the support hyperplane to K with outer normal vector u from the origin. The
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distance is negative if and only if u points into the open half-space containing the 
origin (cf. [13]). 

In the case of the plane, we shall denote by .p(ϕ) the .2π -periodic function 
obtained by evaluating .pK(u) on .u = (cos ϕ, sin ϕ). Note that .∂K is the envelope 
of the one parametric family of lines given by .x cos ϕ +y sin ϕ = p(ϕ). When p is 
a . C2 function the radius of curvature .ρ(ϕ) of .∂K is given by .p(ϕ) + p′′(ϕ). Then, 
convexity is equivalent to .p(ϕ) + p′′(ϕ) ≥ 0. We say that a . C2 support function p 
defines a strictly convex set if .p(ϕ) + p′′(ϕ) > 0 for every value of . ϕ. 

It can be seen that the length L of .∂K and the area F of K are given by 

. L =
∫ 2π

0
p dϕ, F = 1

2

∫ 2π

0
p(p + p′′)dϕ.

In general, a one parameter family of lines .x cos t + y sin t = f (t), where f is a 
differentiable function, defines a curve in the plane. In this setting, the curve is not 
necessarily closed nor convex. When a curve .γ (t), .a ≤ t ≤ b, is defined as the 
envelope of a family of lines of this type, for a function f of class . C2, we say that 
.f (t) is the generalized support function of the curve. The area with multiplicities 
swept by the radius vector of the curve is given by 

.F = 1

2

∫ b

a

f (f + f ′′)dt, (4) 

as a simple computation shows. 
Let .p(ϕ) be the support function of a strictly convex set K . Then, . pr(ϕ) =

p(ϕ)+ r defines for each real r a parallel curve to . ∂K . If the origin is in the interior 
of K , then p is a strictly positive function. If .r > 0, the function . pr corresponds 
to the outer parallel set at distance r . When .r < 0, the curve given by . pr is not 
necessarily convex (this is the case when .|r| > min(ρ), . ρ being the radius of 
curvature of . ∂K). 

A special type of convex sets are those of constant width, which is those convex 
sets whose orthogonal projection on any direction has the same length w. In terms  
of the support function p of K , constant width means that .p(ϕ) + p(ϕ + π) = w. 
Expanding p in Fourier series 

.p(ϕ) = a0 +
∞∑

n=1

an cos(nϕ) + bn sin(nϕ), (5) 

one obtains that K has constant width if and only if .an = bn = 0 for all even .n > 0. 
The Steiner point of K is defined by the vector-valued integral 

.s(K) = 1

π

∫ 2π

0
p(ϕ)N(ϕ) dϕ,
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where .N(ϕ) = (cos ϕ, sin ϕ) denotes the normal vector to . ∂K . The Steiner point is 
rigid motion equivariant; this means that .s(gK) = gs(K) for every rigid motion g. 
It is known that .s(K) lies in the interior of K (cf. [8, p. 56]). In terms of the Fourier 
coefficients of .p(ϕ) given in (5), the Steiner point is .s(K) = (a1, b1). Hence, taking 
the Steiner point as a new origin, one has 

. p(ϕ) = a0 +
∑
n≥2

(an cos nϕ + bn sin nϕ) .

2.2 Measure of Lines in the Plane 

We denote by .A2,1 the set of straight lines in the plane. For each straight line . G ∈
A2,1 that does not pass through the origin, let P be the point of G at a minimum 
distance from the origin. We take as coordinates for G the polar coordinates . (p, ϕ)

of the point P , with .p > 0 and .0 ≤ ϕ < 2π . Notice that p and . ϕ can also be seen as 
functions in this space of lines, and we shall write .p(G), ϕ(G) for the corresponding 
coordinates of the straight line G. 

The invariant measure in the set of lines of the plane not containing the origin is 
given by a constant multiple of 

.dG = dp ∧ dϕ. (6) 

In fact this measure is, except for a constant factor, the only one invariant under 
Euclidean motions (see [12], Section I.3.1). In the space of ordered pairs of lines 
.A2,1 × A2,1, we consider the canonical measure .dG1 ∧ dG2. For every function 
.f̃ (G1,G2), we can consider the measure .f̃ (G1,G2) dG1 ∧ dG2. We prove in 
Proposition 5 that this measure is invariant under Euclidean motions if and only 
if .f̃ (G1,G2) = f (ϕ(G2) − ϕ(G1)) with f an even .π -periodic function on . R. 

2.3 Spherical Harmonics 

Let us recall that a spherical harmonic of degree n on the unit sphere . S2 is the 
restriction to . S2 of an harmonic homogeneous polynomial of degree n. It is known 
that every continuous function on . S2 can be uniformly approximated by finite sums 
of spherical harmonics (see, for instance, [8]). 

More precisely, the function .p(u) can be written in terms of spherical harmonics 
as 

.p(u) =
∞∑

n=0

πn(p)(u), (7)
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where .πn(p) is the projection of the support function p on the vector space of 
spherical harmonics of degree n. An orthogonal basis of this space is given in terms 
of the longitude . θ and the colatitude . ϕ in . S2 by 

. {cos(jθ)(sin ϕ)j P
(j)
n (cos ϕ), sin(jθ)(sin ϕ)j P

(j)
n (cos ϕ) : 0 ≤ j ≤ n}

where .P (j)
n denotes the j th derivative of the nth Legendre polynomial . Pn (cf. [8]). 

It can be seen that .π0(p) = W/2 = M/(4π) where . W = 1/(4π)
∫
S2 w(u) du

is the mean width of K and M is the mean curvature of K . Moreover, . π1(p) =
〈s(K), ·〉 where .s(K) denotes the Steiner point of K (cf. [8, p. 182]). It is clear that 
.π0(p) is invariant under Euclidean motions and that .π1(p) is not. It is known that 
.πn(p) is invariant under translations for every .n �= 1 (cf. [13, p. 5]). One can easily 
check that K has constant width if and only if .πn(p) = 0 for .n �= 0 even. 

3 Lower Bounds for the Hurwitz’s Deficit 

In order to study the Hurwitz’s deficit .π |Fe| − � of a convex set K , we introduce 
Wirtinger’s deficit .Wq of a . C1 function .q(ϕ) of period . 2π , 

. Wq =
∫ 2π

0
(q ′2 − q2) dϕ.

Note that by (4), .Wq = −2F where F is the area with multiplicities enclosed by the 
curve defined by the generalized support function q. 

Recall that Wirtinger’s inequality (see [8]) states that if .
∫ 2π

0 q(ϕ)dϕ = 0, then 
.Wq ≥ 0. In particular, we always have .Wq ′ ≥ 0. In [3], we give a relationship 
between Wirtinger and Hurwitz’s deficits: 

Proposition 1 Let K be a compact strictly convex set of area F bounded by a curve 
.� = ∂K of class . C2 and length L. Let p be the support function of K and let . Fe be 
the area with multiplicities enclosed by the evolute of . �. Then 

. π |Fe| − � = π

2
(Wq ′ − 4Wq)

where .q(ϕ) = p(ϕ) − L
2π

and .� = L2 − 4πF . 

Remark 1 Let F be the area enclosed by the curve with generalized support 
function the .2π -periodic function q, and let . Fe be the area enclosed by the evolute 
of this curve, both areas counted with multiplicities. The equalities . Wq ′ = −2Fe

and .Wq = −2F give 

.
1

2
(Wq ′ − Wq) = F − Fe.
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Thus, for closed curves with positive curvature, we have 

.F − Fe = 1

2

∫ 2π

0
(q + q ′′)2 dϕ = 1

2

∫ L

0
ρ ds (8) 

where .ρ = q + q ′′ is the radius of curvature and L the length of the curve. We have 
used the relation .ds = ρ dϕ. Equality (8) for the case of simple closed curves that 
bound a strictly convex domain was proved in [10]. 

The next lemma compares Wirtinger’s deficit of a given function with that of 
its derivative. The proof follows the standard pattern of the proof of Wirtinger’s 
inequality using Fourier series. 

Lemma 1 Let .q = q(ϕ) a .2π -periodic . C2 function. Then, 

. Wq ′ ≥ 4Wq + 2

π

(∫ 2π

0
q dϕ

)2

≥ 0.

Moreover, the first inequality is an equality if and only if 

. q(ϕ) = a0 + a1 cos ϕ + b1 sin ϕ + a2 cos 2ϕ + b2 sin 2ϕ,

for some constants .a0, a1, b1, a2, b2 ∈ R. 

Remark that the first inequality in Lemma 1 improves Wirtinger’s inequality for the 
derivative of .2π -periodic functions. 

As a consequence of Proposition 1, one obtains the well-known Hurwitz’s 
inequality (1). 

We proceed now to find a lower bound for the Hurwitz’s deficit .π |Fe| − � so 
improving (1). If  

. p(ϕ) = a0 +
∑
n≥1

an cos nϕ + bn sin nϕ

is the Fourier series of the support function of K , it is known that the quantities 
.c2

n = a2
n + b2

n, for .n ≥ 2, are invariant under the group of plane motions. 
Consider . ω the visual angle of .∂K from P and let dP be the area measure. 

Writing 

.In =
∫

P /∈K

(
−2 sin(ω) + n + 1

n − 1
sin(n − 1)ω − n − 1

n + 1
sin(n + 1)ω

)
dP,
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it is proved in [10]1 that 

.In = L2 + (−1)nπ2(n2 − 1)c2
n, n ≥ 2 (9) 

L being the length of the boundary of K . For instance, if .n = 2 one gets 

.
4

3

∫
P �∈K

sin3 ω dP = L2 + 3π2c2
2. (10) 

Moreover, this visual angle satisfies the Crofton’s formula (see [10]) 

.

∫
P �∈K

(ω − sin ω)dP = L2

2
− π F. (11) 

We can prove now the following result involving (9) and (11): 

Theorem 1 ([3]) Let K be a compact strictly convex set of area F bounded by a 
curve .� = ∂K of class . C2 and length L. Let . Fe be the area with multiplicities 
enclosed by the evolute of . � and let . � be the isoperimetric deficit. Then 

.π |Fe| − � ≥ 5

4
L2 + 5

∫
P /∈K

(ω − sin ω − 2

3
sin3 ω)dP. (12) 

The right-hand side of this inequality is a strictly positive quantity except when 
.π |Fe| − � = 0 in which case it also vanishes. 

Proof It can be seen that 

. π |Fe| − � = π

2
(Wq ′ − 4Wq) = π

2

(
4
∫ 2π

0
q2dϕ − 5

∫ 2π

0
q ′2dϕ +

∫ 2π

0
q ′′2dϕ

)
,

where .q(ϕ) = p(ϕ) − L/2π and .p(ϕ) is the support function of K with respect to 
the Steiner point. 

In terms of the Fourier coefficients of p, 

. π |Fe| − � = π2

2

∑
n≥3

(n4 − 5n2 + 4)c2
n.

1 There is a misprint with the sign in Hurwitz’s paper. Moreover, the . cn coefficients appearing in 
(9) are different from those in Hurwitz’s paper because the latter correspond to the Fourier series 
of the curvature radius function.



Integral Geometry of Pairs of Lines and Planes 127

Observe now that for . n ≥ 3, we have .n4 − 5n2 + 4 ≥ 5(n2 − 1), with equality only 
for .n = 3. Therefore, 

. π |Fe| − � ≥ 5π2

2

∑
n≥3

(n2 − 1)c2
n = 5π2

2

⎛
⎝∑

n≥2

(n2 − 1)c2
n − 3c2

2

⎞
⎠

= 5

4
L2 − 5πF − 15π2

2
c2

2 = 15

4
L2 − 5πF − 10

3

∫
P /∈K

sin3 ω dP.

(13) 

Using Crofton’s formula (11), the last expression can be written as 

. 
5

4
L2 + 5

∫
P �∈K

(ω − sin ω − 2

3
sin3 ω)dP

and the inequality in the theorem is proved. Moreover, the sum .
∑

n≥3(n
2 − 1)c2

n in 
(13) vanishes if and only if .cn = 0 for .n ≥ 3 as well as . π |Fe| − �. �

The equality in Theorem 1 is considered in the following result: 

Proposition 2 Equality in (12) holds if and only if for the compact strictly convex 
set K one of the following assertions holds: 

a) K is a disk or it is bounded by a curve parallel to an astroid. 
b) K is bounded by a curve parallel to a Steiner curve (deltoid). 
c) K is parallel to the Minkowski sum of compact sets of the above types. 

Although Hurwitz’s inequality (1) cannot be improved for general convex 
domains, it is possible to obtain a stronger inequality for convex sets of constant 
width. In fact, we have 

Theorem 2 ([3]) Let K be a compact strictly convex set of constant width and area 
F bounded by a curve .� = ∂K of class . C2 and length L. Let . Fe be the area with 
multiplicities of the evolute of . �. Then 

.L2 − 4πF ≤ 4

9
π |Fe|. (14) 

Equality holds if and only if . � is a circle or a curve parallel to a Steiner curve at 
distance .L/2π . 

We also obtain an inequality better than (14) in terms of the visual angle (see [3, 
Theorem 5.3]).



128 J. Cufí et al.

4 Integral Formulas for the Visual Angle 

As seen in the previous section, the view of a convex set from an exterior point gives 
interesting geometric information about this set. Now, we study some aspects of the 
visual angle of a convex set. 

4.1 On Crofton and Hurwitz’s Formulas 

In this subsection, we provide a unified approach for some integral formulas for 
functions of the visual angle of a convex set due to Crofton, Hurwitz, and Massoti 
obtaining also new integral formulas for this kind of functions. The basic tool is the 
integral formula given in 

Theorem 3 ([4]) Let K be a compact convex set with boundary of class . C2, and 
let L be the length of . ∂K . Let .c2

k = a2
k + b2

k where . ak and . bk are the Fourier 
coefficients of the support function of K . Then, for every continuous function of the 
visual angle .f (ω) on .[0, π ] such that .f (ω) = O(ω3), as . ω tends to zero, one has 

. 

∫
P /∈K

f (ω) dP

=
(∫ π

0

f (ω)(1 + cos ω)2

sin3 ω
dω

)
L2

2π
+ π

∑
k≥2

(∫ π

0

f (ω)hk(ω)

sin3 ω
dω

)
c2
k,

where . hk , for .k ≥ 2, are the universal functions given in (15). 

Proof For each point . P /∈ K , let . ϕ be the angle at the origin formed by the normal 
to one of the tangents from P to .∂K with the x axis and . ω the visual angle from P ; 
the pair .(ϕ, ω) can be considered as a system of coordinates in .R2 \ K . 

We shall denote by A, . A1 the contact points of the tangents from P to .∂K and 
by .p = p(ϕ) the support function of K with respect to an origin O inside K (see 
Figure (1)). Let us write .T = PA and . T1 = PA1.

The area element dP of .R2 \ K is given by 

. dP = T T1

sin ω
dϕ ∧ dω.

This expression of the area element, introduced by Crofton in [2], appears also 
in [12, I.2.2]. 

Hence, the integral on .R2 \ K of a suitable function of the visual angle .f (ω) is 
given by 

.

∫
P /∈K

f (ω) dP =
∫ π

0

∫ 2π

0

f (ω)

sin ω
T T1 dϕ dω =

∫ π

0

f (ω)

sin ω

(∫ 2π

0
T T1 dϕ

)
dω.
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Fig. 1 The visual angle . ω

Now, we will write the product .T T1 in terms of the Fourier coefficients of . p(ϕ)

given in (5) and the Fourier coefficients of .p1(ϕ) := p(π + ϕ − ω) given by 

. p1(ϕ) = a0 +
∑
k>0

(Ak cos kϕ + Bk sin kϕ)

which are related to the coefficients of .p(ϕ) by 

. Ak = (−1)k+1(−ak cos kω + bk sin kω),

Bk = (−1)k+1(−ak sin kω − bk cos kω).

Substituting these Fourier series in the expressions of T and . T1, a straightforward 
but long calculation gives 

. 

∫ 2π

0
T T1 dϕ = 1

sin2 ω

(
L2

2π
(1 + cos ω)2 + π

∑
k>0

c2
khk(ω)

)
,

where .c2
k = a2

k + b2
k and 

.

hk(ω) = 2 cos ω + (−1)k+1( − cos kω(1 + cos2 ω)

− 2k sin kω sin ω cos ω + k2 cos kω sin2 ω
)
.

(15) 

This ends the proof. �
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If we consider the area .F(ω) enclosed by the locus .Cω of the points from which 
the convex set K is viewed under the same angle . ω and introduced the functions 

. gk(ω) = 1 + (−1)k

2
((k + 1) cos(k − 1)ω − (k − 1) cos(k + 1)ω) ,

the previous Theorem can be stated as 

Proposition 3 With the same hypothesis of Theorem 3, we have 

. 

∫
P /∈K

f (ω) dP = − [f (ω)F (ω)]π−
0+ + L2

2π
M(f ) + π

∑
k≥2

βk(f )c2
k,

where 

.M(f ) =
∫ π

0

f ′(ω)

1 − cos ω
dω and βk(f ) =

∫ π

0

f ′(ω)gk(ω)

sin2 ω
dω. (16) 

As an application of Proposition 3, we can easily prove Crofton’s formula 

.

∫
P /∈K

(ω − sin ω) dP = −πF + L2

2
. (17) 

Indeed, .M(ω − sin ω) = π and .βk(ω − sin ω) = ∫ π

0 gk(x)/(1 + cos(x)) dx = 0, as  
can be easily seen integrating by parts and using elementary trigonometric identities. 
Since 

. − lim
ω→π

f (ω)F (ω) + lim
ω→0

f (ω)F (ω) = −πF,

the formula follows. 
Also, from Proposition 3, we obtain a new proof (see [4]) of the classical equality 

of Hurwitz given in (9). 
In [11], Masotti gives without proof a Crofton-type formula evaluating 

.
∫
P /∈K

(ω2 − sin2 ω) dP . We derive here Masotti’s formula from Proposition 3. 
To this end, consider the function .f (ω) = ω2 − sin2 ω which clearly satisfies the 
hypothesis of Theorem 3, and let us compute .[f (ω)F (ω)]π0 , .M(f ) and the integrals 
.
∫ π

0 f ′(ω) cos(jω) dω, for  j integer. We have 

. lim
ω→π

f (ω)F (ω) = π2F

and 

. lim
ω→0

f (ω)F (ω) = lim
ω→0

ω2 − sin2 ω

sin2 ω

⎛
⎝L2

2π
(1 + cos ω) + π

∑
k≥2

c2
kgk(ω)

⎞
⎠ = 0,
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since the term inside the parentheses is bounded. Hence, . [f (ω)F (ω)]π0 = π2F.

On the other hand, 

. M(f ) =
∫ π

0

f ′(ω)

1 − cos ω
dω =

∫ π

0

2ω − sin(2ω)

1 − cos ω
dω

=
[
sin2(ω/2) − 3 cos2(ω/2) − 2ω cot(ω/2)

]π

0
= 8.

Moreover, for .j �= 2, 

. 

∫ π

0
f ′(ω) cos(jω) dω =

∫ π

0
(2ω − sin(2ω)) cos(jω) dω

=
[

2

j2 (cos(jω) + jω sin(jω)) − cos((j − 2)ω)

2(j − 2)
+ cos((j + 2)ω)

2(j + 2)

]π

0

=8(1 − (−1)j )

j2(j2 − 4)
,

and 

. 

∫ π

0
(2ω − sin(2ω)) cos(2ω) dω = 0.

It follows that 

. 

k−1∑
j=1, odd

∫ π

0
f ′(ω) cos(jω) dω =

∑
j=1, odd

16

j (j2 − 4)
= 4k2

1 − k2 .

Summing up, we obtain 

Theorem 4 (Masotti, [11]) Let K be a compact convex set of area F with 
boundary of class .C2 and length L. Let .c2

k = a2
k + b2

k where . ak and . bk are the 
Fourier coefficients of the support function of K . Then 

.

∫
P /∈K

(ω2 − sin2 ω) dP = −π2F + 4L2

π
+ 8π

∑
k≥2, even

(
1

1 − k2

)
c2
k . (18) 

Moreover, the equality 

. 

∫
P /∈K

(ω2 − sin2 ω) dP = −π2F + 4L2

π

holds if and only if the compact convex set K has constant width.
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Now, we compute the integral of .sinm(ω) for integer values of m greater than 3. The 
case .m = 3, due to Hurwitz, was given in (10). We have the following theorem: 

Theorem 5 ([4]) Let K be a compact convex set with boundary of class .C2 and 
length L. Write .c2

k = a2
k + b2

k where . ak and . bk are the Fourier coefficients of the 
support function of K . Then, for .m ≥ 3, 

. 

∫
P /∈K

sinm ω dP=M(sinm ω)
L2

2π
+ m!π2

2m−1(m−2)

∑
k≥2, even

(−1)
k
2 +1(k2 − 1)

�(m+1+k
2 )�(m+1−k

2 )
c2
k,

where .M(sinm(ω)) comes from (16). For  m odd, the index k in the sum runs only 
from 2 to .m − 1. 

In the special case of convex sets of constant width, we get 

Proposition 4 Let K be a compact convex of constant width with boundary of class 
. C2 and length L. Then, for .m ≥ 3, 

. 

∫
P /∈K

sinm ω dP = π m!
2m−1(m − 2)�(m+1

2 )2

L2

2π
.

We also consider the integral 

. 

∫
P /∈K

(ωm − sinm ω) dP.

For .m = 1 and .m = 2, these are the integrals appearing in Crofton’s formula (17) 
and in the Masotti’s integral formula (18), respectively. For the general case, we 
obtain from Proposition 3 

.

∫
P /∈K

(ωm − sinm ω) dP = −πmF + Mm

L2

2π
+ π

∑
k≥2

βkc
2
k, (19) 

where .Mm = M(ωm − sinm ω) and .βk = βk(ω
m − sinm ω) are given in (16). 

We are able to prove that .βk ≤ 0 for .k ≥ 2. So we get the following inequality: 

Theorem 6 ([4]) Let K be a compact convex set with boundary of class . C2, area  F , 
and length of the boundary L, and let .ω = ω(P ) be the visual angle from the 
point P . Then 

. 

∫
P /∈K

(ωm − sinm ω) dP ≤ −πmF + Mm

L2

2π
, m ≥ 1,

where .Mm =
∫ π

0

(ωm − sinm ω)′

1 − cos ω
dω. Equality holds only for circles.
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4.2 Measure of Pairs of Lines in the Plane 

The classical proof of Crofton’s formula (2) comes from the study of the measure 
of pairs of lines intersecting a convex set. In order to obtain new formulas involving 
the visual angle, we consider the measures .f̃ (G1,G2)dG1 ∧dG2 for every function 
.f̃ (G1,G2) defined on the space of ordered pair of lines .A2,1 ×A2,1. We want now 
to characterize when these measures are invariant under Euclidean motions. Using 
the polar coordinate .ϕ(G) introduced in (6), we have  

Proposition 5 The measure .f̃ (G1,G2)dG1 ∧ dG2 is invariant under the group of 
Euclidean motions if and only if .f̃ (G1,G2) = f (ϕ(G2) − ϕ(G1)) with f an even 
.π -periodic function on . R. 

Proof Let .(pi, ϕi) be the coordinates of . Gi , and define the function g by 
.g(p1, ϕ1, p2, ϕ2) = f̃ (G1,G2). The invariance of the measure is equivalent to 
the equality .g(p1, ϕ1, p2, ϕ2) = g(p′

1, ϕ
′
1, p

′
2, ϕ

′
2) for each Euclidean motion 

sending the pair of lines with coordinates .(p1, ϕ1, p2, ϕ2) to the pair of lines with 
coordinates .(p′

1, ϕ
′
1, p

′
2, ϕ

′
2). First of all, let us show that g does not depend on 

.p1, p2. In fact, for every straight line .G = G(p, ϕ) and an arbitrary .a > 0, 
there is a parallel line to G with coordinates .(a, ϕ). Given two straight lines 
.G1 = G(p1, ϕ1),G2 = G(p2, ϕ2) and two numbers .a1, a2 > 0, let .G′

1 and . G′
2

be the corresponding parallel lines with coordinates .(a1, ϕ1), (a2, ϕ2). Performing 
the translation that sends the point .G1 ∩ G2 to the point .G′

1 ∩ G′
2, we have that 

.g(p1, ϕ1, p2, ϕ2) = g(a1, ϕ1, a2, ϕ2), and so g does not depend on . p1 and . p2.

Given now the line .G(p, ϕ) if we perform, for instance, the translation given by 
the vector .−(p + ε)(cos ϕ, sin ϕ), .ε > 0, the translated line has coordinates . (ε, ϕ +
π). Therefore, the function g must be .π -periodic with respect to the arguments 
.ϕ1, ϕ2. Due to the invariance under rotations, it follows that . g(p1, ϕ1, p2, ϕ2) =
g(p1, 0, p2, ϕ2 −ϕ1) and so . g(p1, ϕ1, p2, ϕ2) = f (ϕ2 −ϕ1) = f (ϕ(G2)−ϕ(G1))

with f a .π -periodic function. Finally, the invariance under symmetries implies that 
f is an even function. 

Conversely, it is clear that if f is an even .π -periodic function, then the measure 
.f (ϕ(G2) − ϕ(G1))dG1 ∧ dG2 is invariant under Euclidean motions. �


Our goal is now to integrate measures, not necessarily invariant under Euclidean 
motions, over the set of pairs of lines meeting a compact convex set K . We shall 
consider measures of the form . f̃ (G1,G2)dG1 ∧ dG2 = f (ϕ(G2) − ϕ(G1))dG1 ∧
dG2 with f a continuous .2π -periodic function. Notice that .ϕ(G2) − ϕ(G1) gives 
one of the two angles between lines . G1 and . G2. In Theorem 7, we give a formula to 
compute the integral of the above measures in terms of both the Fourier coefficients 
of f and of the support function of K . 

Theorem 7 ([5]) Let K be a compact convex set with . C1 boundary of length L. Let 
f be a .2π -periodic continuous function on . R with Fourier expansion 

.f (ϕ) =
∑
n≥0

An cos(nϕ) + Bn sin(nϕ).
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Then 

. 

∫
Gi∩K �=∅

f (ϕ(G2) − ϕ(G1)) dG1dG2 = A0L
2 + π2

∑
n≥1

Anc
2
n,

with .c2
n = a2

n+b2
n where .anandbn are the Fourier coefficients of the support function 

p of K . 

The original proof of Crofton’s formula, via Integral Geometry, involves a measure 
on the space of pairs of lines. The aim now is to interpret the formulas of Masotti, 
powers of sine, and Hurwitz in [4] in terms of integrals of measures in the space of 
pairs of lines. 

The classical proof of Crofton’s formula is based on the change of variables in 
the space of ordered pairs of lines given by 

. (p1, ϕ1, p2, ϕ2) −→ (P, α1, α2)

where P is the intersection point of the two straight lines and .αi ∈ [0, π ] are the 
angles which determine the directions of the lines. With these new coordinates, 
proceeding as in [12, I.4.3], one has 

. dG1 ∧ dG2 = | sin(α2 − α1)| dα1 ∧ dα2 ∧ dP.

Using this change of variables, we have 

Proposition 6 Let f be an even .π -periodic continuous function on . R, and let H be 
the . C2 function on .[0, π ] satisfying the conditions .H ′′(x) = f (x)·sin(x), . x ∈ [0, π ]
and .H(0) = H ′(0) = 0. Then, one has 

.

∫
Gi∩K �=∅

f (ϕ(G2) − ϕ(G1)) dG1dG2 = 2H(π)F + 2
∫

P /∈K

H(ω) dP. (20) 

Using this Proposition, we give the announced interpretation of the following 
formulas: 

4.2.1 Crofton’s Formula 

Taking .H(x) = x−sin(x), it follows that .f = 1 in Proposition 6 and since . H(π) =
π using (20), we get 

Proposition 7 The following equality holds: 

.

∫
Gi∩K �=∅

dG1dG2 = 2πF + 2
∫

P /∈K

(ω − sin ω) dP.
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4.2.2 Masotti’s Formula 

Taking .H(x) = x2 − sin2(x), one gets .H ′′(x)/ sin(x) = 4 sin(x). So the function 
.f (x) = 4| sin(x)|, .x ∈ R, satisfies the hypothesis of Proposition 6, and Eq. (20) 
gives 

Proposition 8 The following equality holds 

. 2
∫

Gi∩K �=∅
| sin(ϕ(G2) − ϕ(G1))|dG1dG2 = π2F +

∫
P /∈K

(ω2 − sin2 ω) dP.

4.2.3 Powers of Sine Formula 

Finally, in an analogous way, we can interpret the integral of any power of the sine 
of the visual angle. Effectively for .H(x) = sinm(x), it follows that 

. H ′′(x)/ sin(x) = m(m − 1) sinm−3(x) − m2 sinm−1(x).

So taking .f (x) = m(m − 1)| sinn−3(x)| − m2| sinm−1(x)|, the hypotheses of 
Proposition 6 are satisfied, and by (20), we have  

Proposition 9 The following equality holds: 

. 2
∫

P /∈K

sinm(ω) dP =

=
∫

Gi∩K �=∅

(
m(m−1)| sinm−3(ϕ(G2) − ϕ(G1))| − m2| sinm−1(ϕ(G2) − ϕ(G1))|

)

dG1dG2.

An interesting consequence of our results is that when f is a .π -periodic function, 
according to Proposition 6, the integral .

∫
Gi∩K �=∅ f (ϕ(G2) − ϕ(G1)) dG1dG2 is a 

linear combination of integrals extended outside K of the functions of the visual 
angle .Hk(ω), where 

. Hk(x) = 1

2(k2 − 1)
(fk(x) + 2(sin x − x)) , k ≥ 2,

and .H1(x) = (1/8)(2x − sin(2x)), .fk(ω) being the functions of Hurwitz given by 

.fk(ω) = −2 sin ω + k + 1

k − 1
sin((k − 1)ω) − k − 1

k + 1
sin((k + 1)ω), k ≥ 2.
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Summarizing, it appears that the functions of Crofton and Hurwitz are some kind 
of basis for the integral of any .π -periodic function with respect to the measure 
.dG1 ∧ dG2 over the set of pairs of lines meeting a given compact convex set. 

5 Integral Formulas for the Dihedral Angle 

So far, we have been working with pairs of lines in the plane. From now on, we will 
consider pairs of planes in the space. The aim of this section is to write the integral 
of an isometry-invariant measure over the pairs of planes meeting a convex set K as 
an integral of an appropriate function of the dihedral visual angle. 

5.1 Invariant Measures in the Set of Ordered Pairs of Planes in 
the Space 

We consider measures in the space .A3,2 × A3,2 of pairs of planes in . E3 of the 
form .m

f̃
:= f̃ (E1, E2)dE1 ∧ dE2 with .dEi the normalized isometry-invariant 

measures in .A3,2 as considered in [12]. We want to study which functions . f̃ give an 
isometry-invariant measure, that is, a measure .m

f̃
satisfying .m

f̃
(B) = m

f̃
(gB) for 

every Euclidean motion . g. For instance, it is known that for a given compact convex 
set K , one has .

∫
E∩K �=∅ dE = M . So when .f̃ (E1, E2) = 1, we have  

.

∫
K∩Ei �=∅

dE1dE2 = M2 = 4π2W2, (21) 

where M and . W are the mean curvature and the mean width of K , respectively. A 
first result in this direction is 

Proposition 10 The measure given by .f̃ (E1, E2)dE1 ∧ dE2 in .A3,2 × A3,2 is 
invariant under isometries of . E3 if and only if .f̃ (E1, E2) = f (〈u1, u2〉) where 
.π(Ei)

⊥ = span{ui}, .i = 1, 2 and .f : [−1, 1] → R is an even measurable function. 

Let K be a compact convex set in the Euclidean space . E3. According to equality 
(21), it is a natural question to evaluate 

. 

∫
Ei∩K �=∅

f̃ (E1, E2)dE1dE2,

where .f̃ (E1, E2)dE1 ∧ dE2 is an isometry-invariant measure on .A3,2 ×A3,2. This  
can be done in terms of the coefficients of the expansion of the support function of K 
in spherical harmonics and the coefficients of the Legendre series of the measurable 
even function .f : [−1, 1] → R such that .f̃ (E1, E2) = f (〈u1, u2〉).
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The following result is a special case, with a different notation, of Theorem 5 in 
[9], whose proof is based on the Funk-Hecke Theorem [8, p. 98]. 

Theorem 8 Let K be a compact convex set with support function p given in terms 
of spherical harmonics by (7). Let .f̃ (E1, E2)dE1 dE2 be an isometry-invariant 
measure on .A3,2 ×A3,2 and .f : [−1, 1] → R an even measurable function such 
that .f̃ (E1, E2) = f (〈u1, u2〉) where .π(Ei)

⊥ = span{ui}, .i = 1, 2. Then 

.

∫
Ei∩K �=∅

f̃ (E1, E2)dE1 dE2 = λ0

4π
M2 +

∞∑
n=1

λ2n‖π2n(p)‖2, (22) 

where .λ2n = 2π
∫ 1
−1 f (t)P2n(t) dt with .P2n the Legendre polynomial of degree 2n. 

Recall that when K is a convex set of constant width . W, one has .πn(p) = 0 for 
.n �= 0 even. Therefore, in this case, 

. 

∫
Ei∩K �=∅

f (〈u1, u2〉) dE1 dE2 = λ0

4π
M2 = λ0πW2.

The measure .dE1 dE2 in the space of pairs of planes in .E3 can be written 
according to Santaló (cf. [12], section II.12.6) as 

.dE1 ∧ dE2 = sin2(α2 − α1) dα1 dα2 dG, (23) 

where . αi are the angles of . Ei about G. 
Introducing the visual dihedral angle of a convex set K from a line G not meeting 

K as the angle .ω = ω(G), .0 ≤ ω ≤ π , between the half-planes through G tangent 
to K and using (23), we can prove the following: 

Theorem 9 ([6]) Let K be a compact convex set, and let .f : [−1, 1] −→ R be an 
even continuous function. Let H be the . C2 function on .[−π, π ] satisfying 

. H ′′(x) = f (cos(x)) sin2(x), −π ≤ x ≤ π, H(0) = H ′(0) = 0.

Then, 

.

∫
Ei∩K �=∅

f (〈u1, u2〉) dE1 dE2 = πH(π)F + 2
∫

G∩K=∅
H(ω) dG, (24) 

where . ui are unit normal vectors to the planes . Ei , .ω = ω(G) is the dihedral visual 
angle from the line G, and F is the area of the boundary of K .
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5.2 Crofton’s Formula in the Space 

In Blaschke’s work [1, p. 75], the following Crofton-Herglotz formula is given 

.

∫
G∩K=∅

(ω2 − sin2 ω) dG = 2M2 − π3F

2
. (25) 

We can easily recover (25) from Theorem 9. In fact, considering .f (t) = 1, one 
gets .H(x) = (x2 − sin2 x)/4, and equality (24) gives 

. M2 =
∫

Ei∩K �=∅
dE1 dE2 = 1

4
π3F + 1

2

∫
G∩K=∅

(ω2 − sin2 ω) dG.

Formula (25) reveals the significance of the function of the dihedral visual angle 
.ω2 − sin2 ω. One can ask what role the function .ω− sin ω does it play; this function, 
interpreting . ω as the visual angle in the plane, is significant thanks to Crofton’s 
formula (2). 

In [1, p. 85], Blaschke shows that 

.

∫
G∩K=∅

(ω − sin ω)dG = 1

4

∫
u∈S2

L2
udu − π2

2
F, (26) 

where . Lu is the length of the boundary of the projection of K on .span{u}⊥. 
It can be easily seen that .

∫
u∈S2 Ludu = 2πM , and from this equality, applying 

Schwarz’s inequality, one gets 

.

∫
u∈S2

L2
udu ≥ πM2. (27) 

Introducing (27) into (26), one obtains 

.

∫
G∩K=∅

(ω − sin ω)dG ≥ π

4
(M2 − 2πF), (28) 

an inequality given by Blaschke. 
As a consequence of Theorem 9, we can now evaluate the deficit in both 

inequalities (27) and (28). 

Theorem 10 ([6]) Let K be a compact convex set with support function p, area of  
its boundary F , and mean curvature M . Let . Lu be the length of the boundary of the 
projection of K on .span{u}⊥, and let .ω = ω(G) be the dihedral visual angle of K 
from the line G. Then, 

1. .
∫

u∈S2
L2

udu = πM2 + 4π

∞∑
n=1

�(n + 1/2)2

�(n + 1)2 ‖π2n(p)‖2,



Integral Geometry of Pairs of Lines and Planes 139

2. . 
∫

G∩K=∅
(ω − sin ω)dG = π

4
(M2 − 2πF) + π

∞∑
n=1

�(n + 1/2)2

�(n + 1)2
‖π2n(p)‖2,

with .π2n(p) the projection of the support function p of K on the vector space of 
spherical harmonics of degree 2n. 

Moreover, equality holds in both (27) and (28) if and only if K is of constant 
width. 

Proof We consider .f (t) = 1/
√

1 − t2. For this function, the corresponding H in 
Theorem 9 is .H(x) = |x| − | sin x|. Applying equality (24) and Theorem 8 with the 
corresponding .λ2n’s given by 

. λ2n = 2π

∫ 1

−1
f (t)P2n(t)dt = 2π

�(n + 1/2)2

�(n + 1)2

(cf. [7], 7.226), item 2 follows. Equality in item 1 is a consequence of item 2 and 
(26). 

The statement about equality in (27) and (28) is a consequence of the fact that K 
is of constant width if and only if .π2n(p) = 0 for . n �= 0. �


In [6, Proposition 6.2], we decompose the integral of an invariant measure of 
pairs of planes as 

. 

∫
Ei∩K �=∅

f (〈u1, u2〉) dE1 dE2 = a0M
2 +

∞∑
m=2

a2m

∫
G∩K=∅

sin2m ω dG,

where . ui are normal vectors to the planes . Ei , . ω the dihedral visual angle from the 
line G, and F denotes the area of the boundary of K and certain coefficients . a2n

depending on f . From this (cf. [6, Proposition 6.3]), one sees that 

. 

∫
Ei∩K �=∅

f (〈u1, u2〉) dE1 dE2 = a0M
2+

∞∑
m=2

a2m

∫
Ei∩K �=∅

hm(〈u1, u2〉) dE1 dE2,

where 

. hm(t) = m(2mt2 − 1)(1 − t2)m−2, m > 1.

So we have exhibited a simple family of polynomial functions that are in some 
sense a basis for the integrals in Theorem 8. In fact, every invariant integral can be 
written as an infinite linear combination of the integrals of the invariant measures 
given by the polynomials . hm. 

Funding The authors were partially supported by grants 2021SGR01015 (Generalitat de 
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Homogeneous Hypersurfaces 
in Symmetric Spaces 

José Carlos Díaz-Ramos, Miguel Domínguez-Vázquez, and Tomás Otero 

Abstract A hypersurface of a Riemannian manifold is called homogeneous if it 
is an orbit of an isometric action on the ambient manifold. Homogeneous hyper-
surfaces have remarkable geometric properties, providing the simplest examples 
of hypersurfaces with constant mean curvature. Thus, they are crucial for the 
investigation of more general types of submanifolds in ambient spaces with large 
isometry groups. 

In this survey article, we present an introduction to some of the basic geometric, 
topological, and algebraic features of homogeneous hypersurfaces, describing what 
is known about their classification problem in symmetric spaces and explaining the 
main tools needed for their study in the context of symmetric spaces of noncompact 
type. 

Keywords Symmetric space · Noncompact type · Homogeneous submanifold · 
Isometric action · Cohomogeneity one action · Isoparametric hypersurface · 
Minimal submanifold · Constant principal curvatures · Projective space · 
Hyperbolic space · Parabolic subgroup 

1 Introduction 

Minimal, and more generally, constant mean curvature hypersurfaces play a fun-
damental role in Riemannian submanifold geometry. As solutions to variational 
problems involving areas and volumes, they arise naturally in various contexts 
such as physics, biology, or optimal design. Their mathematical investigation has 
a long history and constitutes one of the most important trends in current research 
in geometric analysis. Some fundamental techniques in their study, such as the use 
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of barriers, the maximum principle, or the bifurcation results, are based on the good 
knowledge that we have of certain examples of hypersurfaces with constant mean 
curvature and with a high degree of symmetry (hyperplanes, spheres, cylinders, 
catenoids, horospheres, etc.). Thus, one of the first natural steps in the investigation 
of submanifolds of a given Riemannian space is to determine some classes of 
constant mean curvature hypersurfaces that are invariant under a large group of 
isometries of the ambient space. When such group is large enough to act transitively 
on the hypersurface, the latter is called a homogeneous hypersurface, and the 
isometric action on the ambient space is said to be of cohomogeneity one. This is the 
case of hyperplanes, spheres, and cylinders in the Euclidean space or of horospheres 
in the hyperbolic space, among other examples. 

By definition, the investigation of homogeneous hypersurfaces only makes sense 
in spaces with a large isometry group. Therefore, homogeneous spaces constitute 
the natural context for this investigation. Indeed, apart from spaces of constant 
curvature, the theory of surfaces with constant mean curvature in homogeneous 3-
manifolds has undergone important advances (see, for example, [71]). 

For arbitrary dimensions, a particularly elegant class of homogeneous manifolds 
is that of symmetric spaces. Locally, symmetric spaces are characterized by the 
property that curvature is invariant under parallel transport. Globally, the defining 
property of symmetric spaces is the existence of isometric central inversions around 
any point, which readily imply the existence of a transitive group of isometries. 
Symmetric spaces were classified by Élie Cartan [21] into several infinite families, 
some exceptional examples, and their products. Of course, this includes the space 
forms but also the isotropic (or two-point homogeneous) Riemannian manifolds, 
various (compact and noncompact) Grassmannians, compact Lie groups with bi-
invariant metrics, and different moduli spaces of algebraic structures: real structures 
of a complex vector space, complex structures on a real vector space, positive 
definite symmetric matrices, etc. Symmetric spaces constitute a distinguished class 
in Berger’s classification of holonomy groups [17] but also an appropriate setting 
for several problems of geometric analysis [54]. Their study also arises naturally in 
other areas such as number theory and algebraic geometry [58, 86, 101]. 

In view of the crucial role played by homogeneous hypersurfaces in the 
classical submanifold theory of space forms, we believe that the investigation of 
homogeneous hypersurfaces in symmetric spaces constitutes one of the first steps in 
the long-term program of developing a submanifold theory of symmetric spaces. The  
centrality of these spaces in Mathematics, along with their fascinating geometric, 
algebraic, and analytic properties, gives us a glimpse of a field yet to be explored. 

The aim of this text is to provide a survey on homogeneous hypersurfaces, their 
generalizations, and their classification problem in symmetric spaces, with a focus 
on the noncompact setting. Thus, we will start by discussing the definition, general 
properties, and important topological and geometric properties of homogeneous 
hypersurfaces in Sect. 2. In Sect. 3, we will review the notion and fundamental 
geometric and algebraic aspects of symmetric spaces (Sects. 3.1–3.2), mainly 
of those of noncompact type (Sect. 3.3), and the algebraic theory of parabolic 
subalgebras (Sect. 3.4). Section 4 will be devoted to report on the classification



Homogeneous Hypersurfaces in Symmetric Spaces 143

problem of homogeneous hypersurfaces in symmetric spaces of compact type. Here, 
we will provide an introductory discussion to the problem in spheres through various 
interesting examples (Sect. 4.1), and then we will describe the classification on 
the other compact symmetric spaces, focusing on the rank one case (Sect. 4.2). 
In Sect. 5, we will review the classification problem in symmetric spaces of 
noncompact type of rank one (the hyperbolic spaces over the normed division 
algebras), whereas in Sect. 6 we will present what is known in the higher rank case. 
Finally, in Sect. 7, we provide a list of open problems. 

2 Homogeneous Hypersurfaces 

Let M be a Riemannian manifold and .Isom(M) its isometry group, which is known 
to be a Lie group. A connected, injectively immersed submanifold P of M is called 
(extrinsically) homogeneous if for any .p, q ∈ P there exists an isometry . ϕ of M 
such that .ϕ(p) = q and .ϕ(P ) = P . Note that if .P = M , we recover the standard 
notion of (intrinsic) homogeneity of a Riemannian manifold. By considering the 
subgroup of isometries of M that leave the submanifold P invariant, one easily sees 
that P is homogeneous if and only if P is an orbit of an isometric action on M , that 
is, there exists a subgroup H of .Isom(M) such that .P = H ·p, for some (and hence, 
for any) .p ∈ P . Hereafter, by .H ·p, we denote the orbit of an action .H ×M → M of 
a group H through a point p of M , and by .Hp = {h ∈ H : h ·p = 0}, we denote the 
isotropy group (or stabilizer) at p. Of course, .H · p ∼= H/Hp is a bijection, which 
is indeed a diffeomorphism if the H -action on M is smooth, when endowing the 
set of left cosets .H/Hp = {hHp : h ∈ H } with a natural differentiable structure. 
Moreover, P is properly embedded (equivalently, closed and embedded) in M if 
and only if .H = {ϕ ∈ Isom(M) : ϕ(P ) = P } is closed in .Isom(M) (in particular, 
an embedded Lie subgroup of .Isom(M)); this in turn means that P is an orbit of a 
proper isometric smooth action on M . See [65, Chapter 21], [69], and [72, §6] for 
further information on smooth, proper, and isometric actions. 

The family of orbits of a smooth isometric action of a connected Lie group H 
on a Riemannian manifold M determines what is called a singular Riemannian 
foliation of M . This is a decomposition of M into connected, injectively immersed 
submanifolds (leaves) that are locally equidistant to each other and such that 
there is a collection of smooth vector fields on M spanning all tangent spaces 
to all leaves. In the case of a smooth isometric H -action on M , the collection 
.{X∗ : X ∈ h} of Killing fundamental vector fields on M , induced by elements 
X in the Lie algebra . h of H , span all tangent spaces to all orbits. Here, . X∗
is given by .X∗

p = d
dt

|t=0 Exp(tX) · p, where .Exp : h → H denotes the Lie 
group exponential map. Moreover, if . γ is a geodesic in M that is orthogonal at 
.γ (0) to one orbit, .H · γ (0), then for any fundamental vector field . X∗, we have  
.
d
dt

〈γ̇ , X∗〉 = 〈γ̇ ,∇γ̇ X∗〉 = 0, since .∇X∗ is skew-adjoint as . X∗ is Killing. Hence, 
.〈γ̇ , X∗〉 = 0, and thus, any geodesic orthogonal to one orbit remains orthogonal to 
any other orbit that it meets. This means that the orbits are locally equidistant to each



144 J. C. Díaz-Ramos et al.

other. Orbit foliations, that is, singular Riemannian foliations induced by isometric 
actions, are also called homogeneous foliations. See [1] for more information on 
these concepts and properties. 

Although Lie group theory plays a fundamental role in the analysis of homo-
geneous submanifolds and isometric actions, from a geometric perspective, we are 
ultimately interested in the orbit foliations of smooth isometric actions, and not so 
much in the (possibly multiple) groups that give rise to the same orbit foliation. 
Thus, when discussing isometric actions, we will usually consider actions to be 
equivalent if they have the same orbits. More precisely, we will say that two 
isometric actions of groups . H1 and . H2 on M are orbit equivalent if there is an 
isometry . ϕ of M such that .ϕ(H1 · p) = H2 · ϕ(p) for all .p ∈ M , that is, . ϕ maps the 
.H1-orbits to the .H2-orbits. Thus, two smooth isometric actions are orbit equivalent 
if and only if their orbit foliations are congruent in M . 

From now on, unless otherwise stated, isometric actions will be assumed to be 
smooth and proper, and homogeneous submanifolds will be closed and embedded. 

The cohomogeneity of an isometric action is the lowest codimension of its orbits. 
Thus, a (proper) action has cohomogeneity zero precisely when it is transitive. An 
orbit of an isometric action is called regular if its codimension agrees with the 
cohomogeneity and is called singular otherwise. 

Remark 1 Among regular orbits, we can distinguish two types: principal orbits 
and exceptional orbits. Given an isometric H -action on M , the  H -orbit through p is 
principal if the isotropy group at p, .Hp = {h ∈ H : h · p = p}, is contained in any 
other isotropy group . Hq , .q ∈ M , up to conjugation in H . A nonprincipal regular 
orbit is called exceptional. The union of all principal orbits constitutes an open dense 
subset of M . If  M is simply connected and complete and H is connected, then there 
are no exceptional orbits. See [1, Chapter 3 and Corollary 5.35] for further details. 

2.1 Homogeneous Hypersurfaces and Cohomogeneity One 
Actions 

A homogeneous hypersurface of M is a regular orbit of a cohomogeneity one action 
on M . It is known that a cohomogeneity one action on a complete connected 
Riemannian manifold has exactly zero, one, or two singular orbits. Indeed, the 
space of orbits .M/H = {H · p : p ∈ M} of a cohomogeneity one H -action is 
homeomorphic to . R, . S1, .[0,∞) or .[0, 1], and nonprincipal orbits correspond to 
the boundary of such spaces [3]. Depending on the geometry and topology of the 
ambient manifold M , some of these possibilities may be excluded (see Remark 2). 

Example 1 The following items provide very simple examples of cohomogeneity 
one actions with orbit spaces homeomorphic to . R, . S1, .[0,∞), and .[0, 1], respec-
tively:
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(a) The action of .(Rn−1,+) on . Rn by translations: .h · p = p + (h, 0), where 
.h ∈ R

n−1, .p ∈ R
n. All orbits are regular (parallel hyperplanes). 

(b) The action of .SO2 on a torus of revolution around the z-axis in . R3, given by 
.A · p = (A(p1, p2), p3), where .A ∈ SO2 and .p = (p1, p2, p3) ∈ R

3. All  
orbits are regular (circles). 

(c) The standard action of .SOn on . Rn by rotations around the origin. The origin is 
precisely the only singular orbit, whereas the concentric spheres about it are the 
regular orbits. 

(d) The action of .SOn on the unit sphere . Sn of .Rn+1: .A·p=(A(p1, . . . , pn), pn+1), 
where .A ∈ SOn and .p = (p1, . . . , pn+1). The north and south poles of . Sn are 
the two singular orbits, and the parallels are the regular orbits. 

None of these actions has exceptional orbits (and hence the boundary points of 
their orbit spaces correspond to singular orbits). Here, we have three actions with 
exceptional orbits: 

(e) The action (d) above descends to a cohomogeneity one action of .SOn on the 
real projective space .RPn. This action has the same orbit space, namely, .[0, 1], 
but only one singular orbit (the image of the poles under the projection map 
.π : Sn → RPn) and one exceptional orbit (the projection of the equator). 

(f) The action of . U1 on the infinite Möbius band .R2/{(x, y) ∼ (−x, y + 2π)}, 
given by .eiθ · [(x, y)] = [(x, y + 2θ)], has orbit space .[0,∞) and exceptional 
orbit .U1 · [(0, 0)]. 

(g) The action in (f) descends to a .U1-action on the Klein bottle . R2/{(x, y) ∼
(−x, y + 2π) ∼ (x + 2π, y)} with orbit space .[0, 1], two exceptional orbits 
.U1 · [(0, 0)] and .U1 · [(π, 0)], and no singular orbit. 
As exemplified by the previous actions, the singular Riemannian foliation 

induced by a cohomogeneity one action on a complete connected manifold M is of 
a very particular type. It is a decomposition of M into mutually equidistant, properly 
embedded leaves, all of them of codimension one (the regular orbits/leaves), except 
at most two (the singular orbits/leaves). Each regular orbit is a tube around any of 
the singular orbits. Here, by tube of radius r around a submanifold P of M , we  
mean the subset of M given by 

. P r = {exp(rξ) : ξ ∈ νP, |ξ | = 1},

where .exp is the Riemannian exponential map of M and . νP is the normal bundle 
of P . If  P is a hypersurface, each connected component of . P r is called a parallel 
or equidistant hypersurface to P . Locally and for small enough r , a tube . P r of 
radius r around P is a hypersurface. If Q is a hypersurface of M , . ξ is a smooth 
unit normal vector field along Q, and .Qr

ξ = {exp(rξp) : p ∈ Q} is a submanifold 
of codimension higher than one in M , then . Qr

ξ is said to be a focal submanifold 
of Q. Thus, if P is a submanifold of codimension greater than one, then P is a 
focal submanifold of any of its codimension one, immersed tubes . P r . Observe that
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a codimension one, immersed tube around a submanifold P of codimension k in M 
is diffeomorphic to .P × S

k−1. 

Remark 2 The existence of a cohomogeneity one H -action on a complete con-
nected Riemannian manifold M imposes some topological restrictions on M; we  
refer to [1, §6.3], [20, Chapter IV, Theorems 8.1–8.2], and [6, §2.9.3] for more 
information. If .M/H is . R or . S1, then all orbits are mutually diffeomorphic and 
principal, and M is a fiber bundle over .M/H (which is trivial if .M/H ∼= R) and 
with fiber a principal orbit. In particular, if M is simply connected, .M/H cannot 
be . S1; indeed, if M is a Hadamard manifold, the only possibilities for .M/H are 
. R and .[0,∞) (see [5, p. 212]). If .M/H ∼= [0,∞), then M is diffeomorphic to 
a tubular neighborhood of the only nonprincipal H -orbit, say .H · p, and hence 
.M ∼= (H ·p)×Hp V is a Euclidean space bundle over such nonprincipal orbit .H ·p. 
If .M/H ∼= [0, 1], then there are two nonprincipal orbits, say .H · p+ and .H · p−, 
and M admits a decomposition as a union of two disk bundles 

. M ∼= (H ×Hp+ D−) ∪H/K (H ×Hp− D+),

where .Hp± are the isotropy groups at . p±; K is the isotropy at a point of a principal 
orbit .H/K; . D± are two disks centered at the origin of the normal spaces to . H · p±
at . p±, respectively; and the union of the disk bundles is made along the principal 
orbit .H/K . This decomposition into two disk bundles is fundamental for various 
constructions and classifications (see, for instance, [47, 50, 80]). 

2.2 Geometric Properties of Homogeneous Hypersurfaces 

Homogeneous hypersurfaces and, in general, orbits of cohomogeneity one actions 
have some nice geometric properties. Since the shape operators (at different points) 
of a homogeneous hypersurface P of M are conjugate by the differentials of 
isometries of M , their eigenvalues are independent of the point, that is, P has 
constant principal curvatures. As the orbits of an isometric action are locally 
equidistant and nearby orbits to a regular one are regular, the nearby (locally 
defined) equidistant hypersurfaces to a homogeneous hypersurface are also (open 
subsets of) homogeneous hypersurfaces and therefore also with constant principal 
curvatures. This implies that a homogeneous hypersurface P is isoparametric: the  
locally defined, nearby parallel hypersurfaces to P have constant mean curvature. 
Isoparametric hypersurfaces have a long history arising from a problem in geometric 
optics, with contributions by Levi-Civita, Segre, and Cartan in the 1930s, and 
with many beautiful results obtained over the last five decades. We refer to 
[26, 27, 34, 90, 98, 99] and the references therein for more information on this topic. 

Actually, the classification of homogeneous hypersurfaces in Euclidean and 
real hyperbolic spaces follows from the respective Segre’s [87] and Cartan’s [22] 
classifications of isoparametric hypersurfaces in such spaces. For Euclidean spaces
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. Rn, this classification states that isoparametric hypersurfaces are open subsets 
of affine hyperplanes .Rn−1, spheres .Sn−1, or cylinders .Sk × R

n−k−1, . k =
1, . . . , n − 2. Since homogeneous hypersurfaces are always isoparametric and the 
previous complete hypersurfaces of . Rn are homogeneous, they also exhaust all 
homogeneous hypersurfaces in Euclidean spaces. Thus, up to orbit equivalence, the 
cohomogeneity one actions on a Euclidean space . Rn are the standard actions of 
.R

n−1 (Example 1 (a)), of .SOn (Example 1 (c)), and of .SOk+1 × R
n−k−1. Cartan’s 

classification for hyperbolic spaces will be reviewed in Sect. 5. 
We remark that whereas in spaces of constant curvature a hypersurface is isopara-

metric if and only if it has constant principal curvatures, this is not true in general. 
Examples of isoparametric hypersurfaces with nonconstant principal curvatures 
(and hence inhomogeneous hypersurfaces) have been found in several symmetric 
spaces, such as complex and quaternionic projective spaces [36, 39], and many 
symmetric spaces of noncompact type [29, 30, 35, 41]; see also Remarks 4, 5, 6, 7, 
and 8. Conversely, we do not know of any nonisoparametric hypersurface with 
constant principal curvatures in symmetric spaces, although there do exist examples 
for some particular conformally flat metrics [81]. There are also important spaces 
where isoparametric hypersurfaces are known to be homogeneous, such as the 
homogeneous 3-manifolds with 4-dimensional isometry group or the product of two 
round 2-spheres [40, 100], besides Euclidean and real hyperbolic spaces. 

There is, however, an important characterization of isoparametric hypersurfaces 
that holds in any Riemannian manifold. Specifically, a hypersurface P of M is 
isoparametric if and only if P is (maybe only locally) a regular level set of an 
isoparametric function on (an open subset of) M . Here, a smooth function . f : M →
R is called isoparametric if f is not constant on any open subset of M and it satisfies 
the system of partial differential equations 

.|∇f |2 = a ◦ f, �f = b ◦ f, (1) 

for some real functions a, b of real variable, with a smooth and b continuous. In 
other words, the norm of the gradient and the Laplacian of f are constant along the 
level sets of f . The collection of level sets of an isoparametric function is called an 
isoparametric family of hypersurfaces. We refer the reader to [1, §5.5], [6, §2.9.2], 
and [48] for more information on isoparametric functions. 

We would like to emphasize that as homogeneous hypersurfaces are isopara-
metric, they are also given as level sets of isoparametric functions. This result, 
which would be only local in principle, is indeed global. More precisely, given 
a cohomogeneity one action on a complete and simply connected Riemannian 
manifold M , its orbit foliation is recovered as the collection of level sets of an 
isoparametric function on M , as follows from [1, Theorem 5.68]. Of course, the 
converse is not true due to the existence of inhomogeneous isoparametric families 
of hypersurfaces. If M is compact, any isoparametric family of hypersurfaces on M 
has at least a minimal hypersurface in the family, which is unique if M has positive 
Ricci curvature [49]. In particular, any cohomogeneity one action on a compact 
Riemannian manifold M has a minimal regular orbit.
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The fact that homogeneous hypersurfaces (or, more generally, isoparametric 
hypersurfaces) arise as regular level sets of solutions to the equations (1) makes 
that these geometric objects appear naturally in relation to certain overdetermined 
problems of partial differential equations; see [59] for a survey. These include 
parabolic equations, as in the study of the heat flow [83–85] or of stationary 
isothermic surfaces [70, 82], and elliptic equations, as in some problems in 
mathematical physics [77] and in various overdetermined boundary value problems 
(including generalizations of the outstanding Schiffer conjecture [89]). Indeed, the 
homogeneity (respectively, isoparametricity) of geodesic spheres plays a crucial 
role in a partial symmetry result proved in [37] for overdetermined boundary 
value problems for semilinear elliptic equations on small domains of two-point 
homogeneous spaces (resp. harmonic spaces). Here, by symmetry result, we mean 
a Serrin-type theorem [88] showing that bounded solution domains to certain 
overdetermined problems must be balls (in the case of [37], such domains are 
assumed to be small perturbations of small geodesic balls). 

Finally, we mention that not only homogeneous hypersurfaces have interesting 
geometric properties but also their focal submanifolds (i.e., the singular orbits of the 
corresponding cohomogeneity one actions). It was stated by Wang [102] and proved 
by Ge and Tang [49] that the focal submanifolds of an isoparametric family of 
hypersurfaces are minimal. However, if the hypersurfaces of such an isoparametric 
family have, in addition, constant principal curvatures, each one of their focal 
submanifolds has a stronger geometric property: their shape operators for all unit 
normal vectors are isospectral, i.e., they have the same principal curvatures and 
corresponding multiplicities [49]. This geometric property was called CPC (which 
stands for “constant principal curvatures”) in [11]. In particular, focal submanifolds 
of homogeneous hypersurfaces are CPC. Notice that any CPC submanifold is 
austere, that is, their principal curvatures counted with multiplicities are invariant 
under change of sign. The notion of austere submanifold was introduced by Harvey 
and Lawson [52, Definition 3.15]. Clearly, austere submanifolds are minimal. In 
spaces of constant sectional curvature, CPC submanifolds of codimension higher 
than one are precisely the focal submanifolds of isoparametric hypersurfaces 
(equivalently, of hypersurfaces with constant principal curvatures). This is not true 
in general as, in many spaces (e.g., nonflat complex space forms), tubes around 
certain totally geodesic (and hence CPC) submanifolds are not isoparametric and 
have nonconstant principal curvatures (cf. Sect. 5.3 and Remark 5). Recently, it 
was proved that focal submanifolds of isoparametric hypersurfaces need not be 
austere [41]. 

3 Symmetric Spaces 

In this section, we provide a short introduction to Riemannian symmetric spaces, 
with special focus on those of noncompact type. There are several references for 
the reader interested in obtaining further information on this topic. Two classical
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references are Helgason’s book [53] and Loos’ books [67, 68]. As introductory texts, 
we refer to Eschenburg’s survey [45] and Ziller’s notes [105]. Some nice chapters 
on symmetric spaces can be found in the books by Berndt, Console, and Olmos [6], 
Besse [17], O’Neill [76], and Wolf [103]. 

3.1 Definition and Fundamental Properties 

Let M be a connected Riemannian manifold. Given a point .p ∈ M , we can consider 
the geodesic ball .Bp(r) centered at p of radius r , for  .r > 0 small enough. On such 
ball, we can define the smooth map .σp : Bp(r) → Bp(r) that sends . q = expp(v)

to .σp(q) = expp(−v), where .v ∈ TpM , .|v| < r . This map . σp is nothing but a 
geodesic reflection about p. It is clearly an involution, i.e., .σ 2

p = id. 
A Riemannian symmetric space is a connected Riemannian manifold M such 

that, for any .p ∈ M , the geodesic reflection . σp at p is defined globally on M and 
is an isometry of M . Thus, symmetric spaces are characterized by the existence 
of central symmetries around any point. From this definition, one can easily see 
that symmetric spaces are complete (geodesics can be extended by using geodesic 
reflections) and homogeneous (given . p1, .p2 ∈ M , by completeness, there is a 
geodesic segment joining them, and if q is its midpoint, then .σq(p1) = p2). 

We fix from now on an arbitrary point .o ∈ M , which is sometimes called the 
origin or the base point of M . The homogeneity and the connectedness of M imply 
that the Lie group .G = Isom(M)0, the connected component of the identity of the 
isometry group .Isom(M) of M , acts transitively on M . Let . K = {g ∈ G : g(o) = o}
be the isotropy group at the origin o, which can be shown to be a compact Lie group. 
Hence, M is diffeomorphic to the set of left cosets .G/K = {gK : g ∈ G} endowed 
with some natural differentiable structure. Note that under the diffeomorphism . M ∼=
G/K , the origin o corresponds to the coset eK , where e is the identity of G. See [65, 
Chapter 21] for more information on homogeneous spaces. 

The map .s : G → G, .s(g) = σogσo, is a well-defined involutive Lie group 
automorphism of G. It satisfies .G0

s ⊂ K ⊂ Gs , where . Gs = {g ∈ G :
s(g) = g} and . G0

s denotes its connected component of the identity. Its differential 
.θ = s∗ : g → g is an involutive Lie algebra automorphism, the so-called Cartan 
involution associated with the symmetric space (of course, . θ depends on the choice 
of o). The Lie algebra . k of the isotropy group K is precisely the .(+1)-eigenspace 
of . θ . If we denote by . p the .(−1)-eigenspace of . θ , then .g = k ⊕ p is the 
eigenspace decomposition of . θ , called the Cartan decomposition of . g. Since . θ is 
an automorphism, it is easy to check that .[k, k] ⊂ k, .[k, p] ⊂ p, and .[p, p] ⊂ k. 

Consider the smooth map .φ : G → M , .φ(g) = g(o). Its differential .φ∗e at the 
identity element e induces a vector space isomorphism .p ∼= ToM . Moreover, the 
linearization of the isotropy action .K × M → M , .k · p = k(p), at  o turns out to 
be an isometric linear action .K × ToM → ToM , .k · v = k∗ov. This is called the 
isotropy representation of .M ∼= G/K at o. The isotropy representation turns out to
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be equivalent to the adjoint representation of K on . p, namely, the action . K ×p → p

given by .k · X = Ad(k)X. We will also call this action the isotropy representation 
of M . 

The curvature tensor R of a symmetric space M at the base point o admits a 
simple description as 

.R(X, Y )Z = −[[X, Y ], Z], X, Y,Z ∈ p ∼= ToM. (2) 

It turns out that the curvature tensor of a symmetric space is parallel with respect 
to the Levi-Civita connection, .∇R = 0. Riemannian manifolds with this property 
are called locally symmetric, and the complete ones turn out to be quotients of 
symmetric spaces by discrete group actions. 

Formula (2) leads to a very simple characterization of the totally geodesic 
submanifolds of symmetric spaces: they are (up to congruence in M) of the form 
.S = expo s, where . s is a subspace of .p ∼= ToM such that .[[s, s], s] ⊂ s. Such a 
subspace . s of . p is called a Lie triple system. However, determining such Lie triple 
systems is a very difficult problem, and indeed the classification of totally geodesic 
submanifolds is still an outstanding problem; see [9, 10], and [64] for important 
recent contributions. In the particular case when . s is abelian, then the associated 
totally geodesic submanifold is flat by (2). Among all the abelian subspaces of 
. p, the maximal ones have the same dimension. The associated totally geodesic 
submanifolds are called maximal flats of the symmetric space. The common 
dimension of such maximal flats is called the rank of the symmetric space. 

Remark 3 It is rather common to express symmetric spaces as quotient man-
ifolds .G/K where G is not necessarily exactly .Isom(M)0. For instance, the 
complex hyperbolic space .CHn is usually presented as .SU1,n/S(U1Un) instead of 
.(SU1,n/Zn+1)/(S(U1Un)/Zn+1). The common practice is to present a symmetric 
space in terms of a so-called symmetric pair .(G,K), where K is compact, there 
is an involutive automorphism s of G such that .G0

s ⊂ K ⊂ Gs , and G acts 
almost effectively on .M = G/K (i.e., there is at most a discrete subgroup of 
elements of G that act trivially on .G/K). Of course, if M is a symmetric space, 
then .(Isom(M)0, Isom(M)0o) is a symmetric pair. These subtleties will not play an 
important role in this article. 

3.2 Types of Symmetric Spaces 

A symmetric space .M ∼= G/K is called (isotropy) irreducible if the restriction 
of its isotropy representation to the connected component of the identity of K is 
irreducible. This is equivalent to the property that the Riemannian universal cover 
. ˜M of M (which is again a symmetric space) is not a nontrivial product of symmetric 
spaces, unless . ˜M = R

n is a Euclidean space.
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Recall that the Killing form of a Lie algebra . g is the symmetric bilinear form 
.B : g × g → R given by .B(X, Y ) = tr(ad(X) ◦ ad(Y )), where .ad(X) = [X, ·]. It  
is not difficult to check that . k and . p are orthogonal subspaces with respect to . B. A  
symmetric space .M ∼= G/K is said to be of compact type, of  noncompact type, or  
of Euclidean type if .B|p×p is negative definite, positive definite, or identically zero, 
respectively. If M is irreducible, Schur’s lemma implies that .B|p×p is proportional 
to the inner product on .p ∼= ToM induced by the symmetric metric of M . According 
to the sign of the proportionality constant, M falls into one of the three possible 
types. If M is not irreducible, there is no guarantee that it is of one of the three 
types. 

If M is of compact type, then G is a compact semisimple Lie group, and M is 
compact and has nonnegative sectional curvature. If M is of noncompact type, then 
it turns out that G is a noncompact real semisimple Lie group (with no compact 
factors), and M is a Hadamard manifold (it is diffeomorphic to a Euclidean space 
and has nonpositive sectional curvature). If M is of Euclidean type, its Riemannian 
universal cover is a Euclidean space . Rn. In general, the Riemannian universal cover 
of a symmetric space M splits as a Riemannian product of symmetric spaces . ˜M =
M+ ×M− ×M0, where .M+ is of compact type, .M− is of noncompact type, and . M0
is a Euclidean space. 

There is a notion of duality between the classes of symmetric spaces of compact 
type and of noncompact type. Specifically, there is a one-to-one correspondence 
between symmetric spaces of noncompact type and simply connected symmetric 
spaces of compact type. This duality can be made explicit in terms of the Lie 
algebras and groups involved, although here we will not enter into details. Dual 
symmetric spaces have the same rank and equivalent isotropy representations, and 
hence, duality preserves irreducibility. However, it is important to remark that 
both types of symmetric spaces have very different topological and geometrical 
properties. 

Example 2 We illustrate the notion of duality through some examples: 

(a) The real hyperbolic space .RHn ∼= SO0
1,n/SOn is of noncompact type and has 

two dual symmetric spaces of compact type: the sphere .S
n ∼= SOn+1/SOn and 

the real projective space .RPn ∼= SOn+1/On. These spaces have rank one. 
(b) The other rank one (nonflat) symmetric spaces are the projective and the 

hyperbolic spaces over the division algebras of the complex numbers . C, 
the quaternions . H, and the octonions . O. Thus, the complex spaces . CPn =
SUn+1/S(U1Un) and .CHn = SU1,n/S(U1Un), the quaternionic spaces . HPn =
Spn+1/Sp1Spn and .HHn = Sp1,n/Sp1Spn, and the Cayley planes . OP2 =
F4/Spin9 and .OH2 = F−20

4 /Spin9 constitute three pairs of dual symmetric 
spaces of rank one. 

(c) Any compact Lie group K endowed with a bi-invariant metric is a symmetric 
space of compact type. An associated symmetric pair is .(K × K,�K), where 
.�K = {(k, k) : k ∈ K}. Its dual symmetric space of noncompact type is of the 
form .KC/K , where .KC denotes the complexification of K . For example, .SOn
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(and also its universal cover .Spinn) and .SOn(C)/SOn are dual to each other, 
.n ≥ 3. 

(d) The compact space .SUn/SOn of special Lagrangian subspaces of . Cn is dual to 
the noncompact space .SLn(R)/SOn of all positive definite symmetric matrices 
of determinant 1 and order n. 

For the complete list of irreducible symmetric spaces (up to coverings), we refer 
to [53, pp. 516, 518]. See [103] for a discussion of locally symmetric spaces of 
compact type. 

3.3 Symmetric Spaces of Noncompact Type: Root Space and 
Iwasawa Decompositions 

Symmetric spaces of noncompact type constitute a rich family of Hadamard 
manifolds that generalize the hyperbolic spaces. We refer to [4, 34], [44, Chapter 2], 
[53, Chapter VI], and [60, Chapter VI, §4-5] for more information on different 
aspects of these spaces. 

Let .M ∼= G/K be a (not necessarily irreducible) symmetric space of noncompact 
type. Let .g = k ⊕ p be the Cartan decomposition of the Lie algebra . g of G 
determined by the choice of a base point .o ∈ M . The Killing form . B of . g makes . k
and . p orthogonal, restricts to a positive definite inner product on . p by definition of 
noncompact type, and turns out to be negative definite when restricted to . k. Thus, 
by changing its sign on . k, we get a positive definite inner product on . g. This inner 
product . Bθ can alternatively be defined by .Bθ (X, Y ) = −B(θX, Y ), for each X, 
.Y ∈ g, where . θ is the Cartan involution. 

Let . a be an arbitrary maximal abelian subspace of . p. Recall that .dim a is the 
rank of M . The endomorphisms .ad(H) = [H, ·] of . g, where .H ∈ a, turn out to 
be self-adjoint with respect to . Bθ , and they commute with each other (since . ad
is a Lie algebra homomorphism and . a is abelian). Thus, such endomorphisms of 
. g diagonalize simultaneously. Their common eigenspaces are called the restricted 
root spaces, and their nonzero eigenvalues (which are linear in .H ∈ a) are called 
the restricted roots of . g. More precisely, for each linear functional .λ ∈ a∗, consider 
the subspace of . g given by 

. gλ = {X ∈ g : [H,X] = λ(H)X for all H ∈ a}.

Then, any .gλ �= 0 is a restricted root space, and any .λ �= 0 with .gλ �= 0 is a restricted 
root. Note that .0 �= a ⊂ g0. Let us denote by 

.� = {λ ∈ a∗ : λ �= 0, gλ �= 0}
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the set of restricted roots of . g. Hence, we can write the .Bθ -orthogonal direct sum 
decomposition 

. g = g0 ⊕
(

⊕

λ∈�

gλ

)

,

known as the restricted root space decomposition of . g. The multiplicity . mλ of a 
restricted root . λ is the dimension of its root space, .mλ = dim gλ. In what follows, 
we will omit the word “restricted”. 

Roots and root space decompositions enjoy several nice properties, such as the 
following: 

(a) .[gλ, gμ] ⊂ gλ+μ, for any . λ, .μ ∈ � ∪ {0}. 
(b) .θgλ = g−λ, for any .λ ∈ � ∪ {0}. Hence, .λ ∈ � if and only if .−λ ∈ �. 
(c) .g0 = k0 ⊕ a, where .k0 = g0 ∩ k = Nk(a) = Zk(a) is both the normalizer and 

the centralizer of . a in . k. 

Moreover, the finite subset . � of . a∗ formed by the roots has various symmetry 
properties. Firstly, we can endow . a∗ with an inner product given by . 〈λ,μ〉 =
Bθ (Hλ,Hμ), for any . λ, .μ ∈ a∗, and where .Hλ ∈ a is defined by the relation 
.Bθ (Hλ,H) = λ(H) for all .H ∈ a. With this inner product, one can show that . �
is an abstract root system on the Euclidean space .(a∗, 〈·, ·〉). This means (see [60, 
§II.5]): 

(a) .a∗ = span�. 
(b) The number .aαβ = 2〈α, β〉/〈α, α〉 is an integer for any .α, β ∈ �. 
(c) .β − aαβ α ∈ �, for any .α, β ∈ �. 

This system is called nonreduced if there is .λ ∈ � such that .2λ ∈ �. In this case, 
. 2λ is called a nonreduced root. Root systems can be classified, and this is indeed the 
basis for the classification of real semisimple Lie algebras and of symmetric spaces. 

The information of a root system can be codified in a smaller set of roots. By 
considering an open halfspace of . a∗ containing exactly half of the roots in . � (recall 
that . � is invariant under the reflection about the origin), we can declare as positive 
those roots lying in such halfspace. If we denote by .�+ this set of positive roots, 
we then have .� = �+ � (−�+). Among the elements of . �+, there are some 
that cannot be expressed as sum of exactly two positive roots. These are called the 
simple roots, and we denote by . � its collection. It turns out that . � is a basis for . a∗, 
and hence, its cardinality . |�| is precisely the rank of M . Any root . λ in . � turns out 
to be a linear combination of elements of . � with integer coefficients, all of them 
nonnegative (when .λ ∈ �+) or all of them nonpositive (when .λ ∈ −�+). 

The set . � of simple roots allows to construct the Dynkin diagram of . � (and, 
ultimately, of the symmetric space M). This is a graph consisting in as many 
nodes as elements in . �. Two nodes are joined by a simple (respectively, double 
or triple) edge whenever the angle between the corresponding simple roots is . 2π/3
(respectively, .3π/4 or .5π/6). Finally, if the system is nonreduced, any simple root
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whose double is also a root is represented by a double node (two concentric circles). 
We refer to [6, pp. 336-340] for a list of all possible connected Dynkin diagrams, 
together with the multiplicities of the simple (and nonreduced) roots and with the 
associated irreducible symmetric spaces of noncompact type. There is also a theory 
of roots for symmetric spaces of compact type, and both theories behave well under 
duality, cf. [68, pp. 119, 146]. 

The sum of the root spaces associated with positive roots, 

. n =
⊕

λ∈�+
gλ,

is a nilpotent Lie subalgebra of . g, by the properties of the root space decomposition. 
Since . a normalizes . n, we have that .a ⊕ n is a solvable Lie subalgebra of . g. The  
Iwasawa decomposition theorem for Lie algebras ensures that 

. g = k ⊕ a ⊕ n

is a vector space direct sum (but it is not orthogonal, and none of the addends is an 
ideal of . g). Let A and N denote the connected subgroups of G with Lie algebras . a
and . n, respectively. Then AN is the connected subgroup of G with Lie algebra .a⊕n. 
The Iwasawa decomposition at the Lie group level states that the multiplication map 

. K × A × N → G, (k, a, n) �→ kan,

is a diffeomorphism and the Lie groups A, N , and AN are diffeomorphic to 
Euclidean spaces. 

Recall the smooth map .φ : G → M , .φ(g) = g(o), from Sect. 3.1. By the  
Iwasawa decomposition, its restriction to AN is a diffeomorphism . φ|AN : AN →
M . Let us denote by . g the symmetric Riemannian metric of M , and consider its 
pullback metric .(φ|AN)∗g on AN . This metric, which will be denoted by .〈·, ·〉 in 
what follows, happens to be left-invariant on the Lie group AN . Therefore, we have 
that any symmetric space of noncompact type M is isometric to a certain solvable 
Lie group AN endowed with a particular left-invariant metric. This in particular 
implies, as we had already advanced, that a symmetric space of noncompact type 
M is diffeomorphic to a Euclidean space. By formula (2), one can actually show 
that such an M is nonpositively curved and hence it is a Hadamard manifold. This 
enables us to regard any of these spaces as an open ball endowed with certain metric, 
similarly as with the ball model of the real hyperbolic space. 

For certain problems, it can be useful to regard a symmetric space of noncompact 
type M as an open dense subset of a larger compact topological space . M � M(∞)

that is homeomorphic to a closed ball. The ideal boundary .M(∞) of M is defined 
to be the set of points at infinity of M , namely, the equivalence classes of complete, 
unit-speed geodesics of M under the relation .γ1 ∼ γ2 if . {d(γ1(t), γ2(t)) : t ≥ 0}
is bounded. One can endow .M � M(∞) with the so-called cone topology, so that 
.M � M(∞) becomes homeomorphic to a closed ball whose interior corresponds
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to M and whose boundary is .M(∞). Two geodesics are called asymptotic if they 
converge to the same point at infinity, i.e., if they belong to the same equivalence 
class. If .M = G/K , the action of G on M can be naturally extended to .M(∞) by 
taking .g · [γ ] := [g · γ ]. 

Symmetric spaces of noncompact type, as particular instances of Hadamard 
manifolds, admit certain codimension one foliations by the so-called horospheres. 
Specifically, given any complete, unit-speed geodesic . γ in M , one can consider the 
Busemann function .fγ : M → R given by .fγ (p) = limt→+∞

(

d(p, γ (t)) − t
)

. 
The horosphere foliation determined by . γ is the regular Riemannian foliation 
of M given by the collection of level sets of the Busemann function . fγ . It is  
known that any horosphere foliation of a symmetric space of noncompact type M 
is homogeneous: it is the orbit foliation of the cohomogeneity one action on M 
given by the codimension one subgroup of AN with Lie algebra .(a � �) ⊕ n, for  
some specific one-dimensional subspaces . � of . a; see  [42, Remark 5.4] for more 
information. 

By making use of the solvable model of a symmetric space of noncompact type, 
one can provide an explicit formula for the Levi-Civita connection on .AN ∼= M and 
also relate the left-invariant metric .〈·, ·〉 = (φ|AN)∗g on AN to the inner product 
. Bθ . These tools, along with a careful analysis of root space decompositions, are 
very useful in the investigation of submanifold geometry of symmetric spaces of 
noncompact type. We refer to [34] for further details. 

3.4 Parabolic Subgroups and Subalgebras, and Boundary 
Components 

The investigation of cohomogeneity one actions on symmetric spaces of non-
compact type that we will review in Sect. 6 depends on a number of concepts 
and notation related to the theory of the so-called parabolic subalgebras of real 
semisimple Lie algebras. Here, we present a quick introduction to this topic. We 
refer to [6, §13.2], [18, §I.1],  [44, §2.17], and [60, §VII.7] for more information. 

Geometrically speaking, we say that a Lie subgroup Q of G is parabolic if . Q =
G or Q is the stabilizer . Gx of a point at infinity .x ∈ M(∞). From the algebraic 
viewpoint, it can be proved that a Lie subalgebra . q of . g is the Lie algebra of a 
parabolic subgroup Q of G precisely if it contains a subalgebra of . g conjugate to 
.k0 ⊕ a ⊕ n (recall that .k0 = Nk(a)). In this case, we say that . q is a parabolic 
subalgebra of . g. 

Our interest in parabolic subalgebras arises from their explicit description in 
terms of roots and root spaces, which we explain now. Up to conjugacy in G, a  
parabolic subalgebra of . g can be constructed from the choice of a subset .� ⊂ � of 
simple roots of . g. Let .�� = � ∩ span� be the root subsystem generated by . �, and
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consider the positivity notion on . �� induced by that of . �, that is, .�+
� = �+ ∩ ��. 

Define the following subalgebras of . g: 

. l� = g0 ⊕
(

⊕

λ∈��

gλ

)

, a� =
⋂

α∈�

kerα, n� =
⊕

λ∈�+\�+
�

gλ,

which are reductive (in the sense of it being invariant with respect to a Cartan 
involution of . g, cf.  [62]), abelian, and nilpotent, respectively. The subalgebra . l� is 
the centralizer and the normalizer of . a� in . g and normalizes . n�. Thus, . q� = l�⊕n�

is a subalgebra of . g containing .k0⊕a⊕n. We say that . q� is the parabolic subalgebra 
of . g associated with the subset .� ⊂ �. The decomposition .q� = l� ⊕ n� is known 
as the Chevalley decomposition of . q�. The subalgebra .m� = l� � a� (hereafter, 
. � denotes orthogonal complement with respect to the inner product . Bθ ) is a  
reductive subalgebra of . g that normalizes .a�⊕n�. Hence, we have a decomposition 
.q� = m� ⊕ a� ⊕ n�, which is known as the Chevalley decomposition of . q�. By  
a result of Borel and Tits [19], any parabolic subalgebra of a real semisimple Lie 
algebra . g is conjugate to one of the subalgebras . q�, for  some .� ⊂ �. 

The orthogonal projection .k� = πk(m�) of . m� onto . k turns out to be a maximal 
compact subalgebra of . m�. It can be written as 

. k� = q� ∩ k = l� ∩ k = m� ∩ k = k0 ⊕
⎛

⎜

⎝

⊕

λ∈�+
�

kλ

⎞

⎟

⎠
,

where .kλ = πk(mλ) = k∩ (gλ ⊕ g−λ). Similarly, the projection .b� = πp(m�) of . m

onto . p is a Lie triple system, which is also given by 

. b� = m� ∩ p = a� ⊕
⎛

⎜

⎝

⊕

λ∈�+
�

pλ

⎞

⎟

⎠
,

where .a� = a�a� = ⊕

α∈� RHα and .pλ = πp(mλ) = p∩ (gλ ⊕g−λ). Associated 
with . b�, one can consider the semisimple Lie algebra .s� = [b�, b�] ⊕ b�. The  
previous decomposition is a Cartan decomposition for . s�, and . a� is a maximal 
abelian subspace of . b�. The root subsystem . �� can be identified with a set of roots 
for . s� by restricting the roots of .�� to . a�. The corresponding root spaces of . s�

coincide with those of . g. More precisely, we have the root space decomposition 

.s� = (s� ∩ k0) ⊕ a� ⊕
⎛

⎝

⊕

λ∈��

gλ

⎞

⎠ .
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It is possible to give results analogous to the previous Lie algebra decompositions 
for the group G and the symmetric space M . For this, consider the connected Lie 
subgroups . A�, . N�, and . S� of G with Lie algebras . a�, . n�, and . s�, respectively. If 
we define .L� = ZG(a�) as the centralizer of . a� in G, then . L� is a Lie subgroup 
of G that normalizes . N�. The subgroup .Q� = NG(q�) = L�N� is the parabolic 
subgroup of G associated with . �. The decomposition .Q� = L�N� is known as 
the Chevalley decomposition of . Q�. 

Define .K� = ZK(a�), which is a Lie subgroup of G with Lie algebra . k�. 
It is a maximal compact subgroup of .L� which normalizes . S�. The subgroup 
.M� = K�S� is a reductive subgroup of G with Lie algebra . m�. Moreover, the 
multiplication map .A� × N� × M� → Q� is a diffeomorphism, known as the 
Langlands decomposition of the parabolic subgroup . Q�. 

Consider now the orbit . B� of the isometric action of .M� through o. Since . b� is 
a Lie triple system, 

. B� = M� · o = S� · o ∼= M�/K�
∼= S�/(K� ∩ S�)

is a totally geodesic submanifold of M , called the boundary component of M 
associated with the subset of simple roots . �. Intrinsically, .B� turns out to be 
a symmetric space of noncompact type and rank . |�|. In fact, since .S� is a 
connected semisimple Lie group and .K� ∩ S� a maximal compact subgroup of 
. S�, .(S�,K� ∩ S�) is a symmetric pair for . B�. The Langlands decomposition of 
.Q� induces a diffeomorphism at the manifold level, given by 

. A� × N� × B� → M, (a, n,m · o) �→ (anm) · o.

This diffeomorphism is known as the horospherical decomposition of the symmetric 
space M corresponding to the subset .� ⊂ � of simple roots. 

The horospherical decomposition can be restated in terms of an isometric action 
on M with some interesting geometric properties. The connected solvable Lie group 
.A�N� acts freely and isometrically on M , and its orbits are mutually congruent 
minimally embedded submanifolds of M . Moreover, the totally geodesic submani-
fold . B� of M intersects each .A�N�-orbit exactly once and perpendicularly. These 
properties are fundamental in a geometric extension procedure of submanifolds 
from . B� to M called canonical extension (see [35]). Its application to the extension 
of cohomogeneity one actions will be discussed in Sect. 6. 

4 Homogeneous Hypersurfaces in Compact Symmetric 
Spaces 

In this section, we give an overview of the classification problem of homogeneous 
hypersurfaces in compact symmetric spaces. We will mostly focus on the spherical
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case (Sect. 4.1), since it admits a more elementary approach and showcases very 
interesting geometric properties. Then, in Sect. 4.2, we will consider the case of the 
other compact symmetric spaces, with special focus on the rank one setting. 

4.1 Homogeneous Hypersurfaces of Round Spheres 

The classification of homogeneous hypersurfaces in round spheres had to wait more 
than 30 years after Segre’s and Cartan’s works on Euclidean and real hyperbolic 
spaces. The classification in round spheres was achieved by Hsiang and Lawson [55] 
and revisited by Takagi and Takahashi [95], who calculated the principal curvatures 
of such homogeneous hypersurfaces. Their works provide a very interesting family 
of examples, which surprisingly turns out to be characterized by a subclass of 
symmetric spaces, as we will comment on below. But before explaining their results, 
let us consider some examples. 

Recall that a homogeneous hypersurface is isoparametric with constant principal 
curvatures, and hence, the multiplicities of such principal curvatures are constant. 
We will denote by g the number of distinct constant principal curvatures. Notice 
also that cohomogeneity one actions on . Sn, .n ≥ 2, must have orbit space of type 
.[0, 1], in view of Remark 2. The simplest example of cohomogeneity one action on 
spheres was given in Example 1 (d) as the standard action of .SOn on the unit sphere 
. Sn. Note that its regular orbits (the parallels) are totally umbilical (.g = 1) and there 
are exactly two singular orbits (the poles). Observe that a geodesic of . Sn normal to 
one orbit (and hence to all orbits) intersects the singular orbits at points separated 
by distance . π . Let us see how this generalizes to more interesting examples. 

Example 3 Consider the action of .H = U1 × U1 on .C2 ∼= R
4 given by 

.(eiθ1 , eiθ2) · (z1, z2) = (eiθ1z1, e
iθ2z2). Since it is an isometric action for the 

Euclidean metric on . R4, it leaves the unit sphere of . R4 invariant, so it induces an 
isometric action on the unit sphere . S3. It is easy to calculate that the isotropy groups 
at points of the form .(z1, 0) or .(0, z2) are isomorphic to . U1, whereas the stabilizers 
at any other point are trivial. Thus, there are exactly two singular orbits, . H · (1, 0)
and .H · (0, 1), which are totally geodesic circles in . S3, and the remaining orbits are 
principal and diffeomorphic to tori .S1 × S

1. Among these tori, exactly one turns 
out to be minimal, namely, .H · ( 1√

2
, 1√

2

)

: the Clifford torus. The principal orbits 
have .g = 2 distinct principal curvatures. Any normal geodesic to the orbit foliation 
(e.g., .γ (t) = (cos t, sin t) ∈ C

2) intersects the singular orbits at four equidistributed 
points (.(±1, 0) and .(0,±1)). This action of .U1 × U1 ∼= SO2 × SO2 on . S3 can 
easily be generalized to a cohomogeneity one action of .SOk+1 × SOn−k on . Sn, 
.k = 1, . . . , n − 2, with totally geodesic singular orbits . Sk and .S

n−k−1 and principal 
orbits .S

k × S
n−k−1 with .g = 2. 

Example 4 Let .Herm0
3(R) denote the vector space of real symmetric matrices of 

order 3 and trace 0, endowed with the standard inner product .〈X, Y 〉 = trXY .
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Hence, .Herm0
3(R) is a Euclidean space . R5. The smooth action of . H = SO3

on .Herm0
3(R) by conjugation, .A · X = AXAt , is clearly isometric. We consider 

its induced isometric action on the unit sphere . S4 of .Herm0
3(R) ∼= R

5. The  
subset .� = {X ∈ S

4 : X is diagonal} is the trace of a geodesic in . S4 that 
intersects all H -orbits in . S4 by the spectral theorem. One can easily compute 
the stabilizers at the points of . �. These stabilizers are larger when .X ∈ � has 
two equal entries in the diagonal, which happens when X has diagonal entries 
.
1√
6
, 1√

6
,− 2√

6
or .− 1√

6
,− 1√

6
, 2√

6
(reordered in any way). Notice that these six points 

are equidistributed along the great circle . �. For these six points X in . �, we have  
.HX

∼= S(O2 × O1) ∼= O2. The other points X in . � have finite isotropy group. 
Therefore, the regular orbits have dimension .dimSO3 = 3, and hence, we have a 
cohomogeneity one action on . S4. There are two singular orbits (one passing through 
the diagonal matrices with diagonal entries . 1√

6
, 1√

6
,− 2√

6
and the other passing 

through the diagonal matrices with the opposite entries). These are diffeomorphic to 
real projective planes, .H/HX

∼= SO3/O3 ∼= RP2, which are minimally embedded 
in . S4. One can show that the principal orbits of this action have .g = 3 principal 
curvatures. 

Example 5 The previous action in Example 4 is the simplest one of a collection of 
four cohomogeneity one actions on the unit spheres . S4, . S7, . S13, and . S25 of the space 
.Herm0

3(F) of trace-free Hermitian matrices of order three with coefficients in some 
normed division algebra .F ∈ {R,C,H,O}, with inner product .〈X, Y 〉 = Re(trXY). 
The respective groups acting upon are .SO3, .SU3, . Sp3, and . F4. These actions 
produce homogeneous hypersurfaces with .g = 3 principal curvatures (all of them 
with the same multiplicity .m ∈ {1, 2, 4, 8}) which are tubes around certain minimal 
embeddings of the projective planes .RP2, .CP2, .HP2, and .OP2, respectively. Of 
particular interest is the octonionic case, as it provides one of the simplest models of 
the exceptional Lie group . F4, as well as of the Cayley projective plane .OP2. Indeed, 
. F4 can be defined as the automorphism group of the Jordan algebra . Herm3(O)

with multiplication .X ◦ Y = 1
2 (XY + YX). Similarly as in Example 4, the  

minimally embedded Cayley projective planes are obtained as the orbits through 
.diag( 1√

6
, 1√

6
,− 2√

6
) and .diag(− 1√

6
,− 1√

6
, 2√

6
) ∈ Herm0

3(O) of the action of the 

automorphism group . F4 on the unit sphere . S25 of .Herm0
3(O). For more information 

on these actions, we refer the reader to the discussion in [78, §3.3.3], which is based 
on [2, §3], [6, p. 86], and [51, pp. 289–292]. 

The homogeneous hypersurfaces described in the examples above were charac-
terized by Cartan [23] as the only (complete) isoparametric hypersurfaces in round 
spheres with up to .g = 3 distinct principal curvatures. Whereas the examples with 
.g ∈ {1, 2} arise in spheres . Sn of any dimension (.n ≥ 3 if .g = 2), examples with 
.g = 3 are restricted to four possible dimensions .n ∈ {4, 7, 13, 25}. Cartan [24] 
also initiated the study of isoparametric hypersurfaces with .g = 4 and was able 
to produce two examples in . S5 and . S9. These are recovered in the following two 
constructions:
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Example 6 Let .M2×k(F) denote the vector space of .2 × k matrices with entries in 
.F ∈ {R,C,H}, endowed with the standard inner product .〈X, Y 〉 = trXY ∗, where 
.(·)∗ denotes conjugate transpose. In order to settle ideas, assume .F = R. Consider 
the isometric action of .H = SO2 × SOk on .M2×k(R) by .(A,B) · X = AXB∗ and 
then its restriction to the unit sphere .S2k−1 of .M2×k(R) ∼= R

2k . The geodesic of 
.S
2k−1 given by 

. γ (t) =
(

cos t 0 0 . . . 0
0 sin t 0 . . . 0

)

intersects all H -orbits in .S2k−1 and always perpendicularly (again, it suffices to 
check this at one point, say for .t = 0). One can compute the stabilizers of the 
points in this geodesic, obtaining that for any .t /∈ {�π

4 : � ∈ Z}, .γ (t) belongs to 
a principal orbit of codimension one in .S2k−1. Moreover, for any .� ∈ Z, . γ

(

�π
2

)

belongs to a singular orbit of dimension k, and .γ
(

π
4 + �π

2

)

belongs to a singular 
orbit of dimension .2k−3. Again, the singular points along the normal geodesic . γ are 
equidistributed. The homogeneous hypersurfaces arising from this action turn out to 
have .g = 4 principal curvatures with multiplicities 1, 1, .k − 2, and .k − 2. Cartan’s 
example with .g = 4 in . S5 corresponds to .k = 3. The discussion for . F ∈ {C,H}
is analogous by considering the actions of .U2 × Uk on the unit sphere .S4k−1 of 
.M2×k(C) and of .Sp2 × Spk on the unit sphere .S8k−1 of .M2×k(H). In these cases, 
the distribution of singular points along a normal geodesic is the same as in the real 
case, but now the .g = 4 principal curvatures of the homogeneous hypersurfaces 
have multiplicities 2, 2, .2k − 3, .2k − 3 for the complex case and 4, 4, .4k − 5, . 4k − 5
for the quaternionic case. 

Example 7 Consider the action by conjugation of .SO5 on its Lie algebra .so5 of 
skew-symmetric matrices, namely, .A · X = AXAt . When . so5 is endowed with the 
standard inner product .〈X, Y 〉 = − trXY , this action is isometric and hence induces 
an isometric action on the unit sphere . S9 of . so5. The geodesic of . S9 given by the 
block diagonal matrices 

. γ (t) = 1√
2
diag

((

0 cos t

− cos t 0

)

,

(

0 sin t

− sin t 0

)

, 0

)

intersects all orbits and always perpendicularly. Similarly as in Example 6, . γ meets 
the two singular orbits at .t ∈ {�π

4 : � ∈ Z}, and these singular orbits have 
dimension 6. The principal orbits are homogeneous hypersurfaces of . S9 with . g = 4
principal curvatures, all of them with multiplicity 2. 

All the actions above fit into a general construction: they are induced by isotropy 
representations of symmetric spaces of rank 2. This is, roughly speaking, what 
Hsiang and Lawson proved in [55] for arbitrary cohomogeneity one actions on round 
spheres.
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Let us recall from Sect. 3 that if .M ∼= G/K is a symmetric space, where K is the 
isotropy in G of some point .o ∈ M , then K acts on the tangent space .ToM by the 
differential of the isometries in K . That is, we have a smooth action . K × ToM →
ToM given by .k · v = k∗ov. This action is equivalent to the adjoint representation 
of K on . p, that is, .K × p → p, .k · X = Ad(k)X. Each one of these actions is called 
the isotropy representation of M . 

Since K is made of isometries of M , the isotropy representation is an isometric 
action on .ToM ∼= p. Hence, it restricts to an isometric action on the unit sphere 
.S
dimM−1 of .ToM ∼= p. Any maximal abelian subspace . a of . p turns out to intersect 

all the orbits of the isotropy representation and always perpendicularly (see [6, 
§2.3.2] for a proof). Hence, .a ∩ S

dimM−1 is a totally geodesic submanifold of 
.S
dimM−1 that intersects all the orbits of the restricted action to the unit sphere of 

.ToM ∼= p perpendicularly. By dimension reasons, if we want this restricted action 
on .S

dimM−1 to be of cohomogeneity one, we just need to impose that . a ∩ S
dimM−1

has dimension 1 or, equivalently, that .dim a = 2. But .dim a is, by definition, the rank 
of the symmetric space M . Hence, we are led to the conclusion that the restriction 
of the isotropy representation of a symmetric space M to the unit sphere of the 
tangent space is of cohomogeneity one precisely when M has rank two. Up to orbit 
equivalence, these actions exhaust all cohomogeneity one actions on spheres, by 
Hsiang and Lawson’s theorem. 

Theorem 1 (Homogeneous Hypersurfaces in Round Spheres) Any homoge-
neous hypersurface of a round sphere is congruent to a principal orbit of the 
action obtained by restriction to the unit sphere of the isotropy representation of 
a symmetric space of rank two. 

For the whole list of symmetric spaces, see [53, pp. 516, 518], or [38, Table 2] for 
the list of the rank 2 symmetric spaces of compact type. 

Example 8 The compact symmetric spaces whose isotropy representations induce 
the examples considered above in this section are the following: 

(1) Example 1 (d): .M = S
n×S

1 ∼= (SOn+1/SOn)×S
1, since in this case . K = SOn

and .ToM = TvS
n × R. 

(2) Example 3: .M = S
k+2 × S

n−k+1. 
(3) Example 4: .M = SU3/SO3. 
(4) Example 5: M is .SO6/SU3, .SU6/Sp3, or the exceptional space .E6/F4. 
(5) Example 6: M is .SO2+k/SO2SOk , namely, the Grassmannian of oriented 2-

planes of .R2+k or .U2+k/U2Uk
∼= SU2+k/S(U2Uk) or .Sp2+k/Sp2Spk , that 

is, the Grassmannians of complex or quaternionic 2-planes of .C2+k or .H2+k , 
respectively. 

(6) Example 7: M is the compact Lie group .SO5 with a bi-invariant metric. 

In each of the previous cases, we have indicated a compact symmetric space, but 
there is also a noncompact symmetric space with equivalent isotropy representation, 
by duality. For instance, in item (3), M could be taken as .SL3(R)/SO3. In this case, 
its Cartan decomposition .g = k⊕ p is nothing but the decomposition of .g = sl3(R)
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into the sum of the subspace of skew-symmetric matrices .k = so3 and the subspace 
.p = Herm0

3(R) of trace-free symmetric matrices, and the isotropy representation 
.K × p → p agrees directly with the .SO3-action by conjugation on . Herm0

3(R)

described in Example 4. 

In the examples discussed in this section, we could see the following remarkable 
fact: a normal geodesic to the orbit foliation intersects the singular orbits in exactly 
2g equidistributed points, where g agrees with the number of distinct principal 
curvatures of each one of the principal orbits. This is something that holds for 
any cohomogeneity one action on a round sphere (and more generally, for any 
isoparametric family, by Münzner’s seminal work [74]). 

The number g of principal curvatures of homogeneous hypersurfaces in spheres, 
their multiplicities, and their actual values were calculated by Takagi and Taka-
hashi [95]. Their description can be done in terms of the restricted root system 
. � associated with the symmetric space M of noncompact type whose isotropy 
representation induces the action. Let .X ∈ a ∩ S

dimM−1 be a point in a geodesic of 
.S
dimM−1 that is orthogonal to the orbits of the isotropy representation .K × p → p. 

Assume that X lies in a principal orbit. Let . ξ be a unit normal vector to the 
hypersurface .K ·X, i.e., . ξ spans .TX(a∩S

dimM−1). Then, the principal curvatures of 
.K · X are of the form .μα = −α(ξ)/α(X), for each positive root .α ∈ �+. Note that 
if .α, 2α ∈ �+, then both roots have the same associated principal curvature, . μα =
μ2α . Thus, the number g of principal curvatures of a homogeneous hypersurface is 
precisely the cardinality of the set of reduced positive roots. It is a standard fact of 
root systems that those of rank 2 have exactly 2, 3, 4 or 6 reduced roots (see [60, 
Figure 2.2 in p. 151]). This immediately gives that .g ∈ {1, 2, 3, 4, 6}; the case 
.g = 1 arises since the symmetric space can have a flat factor (see Example 8 (1)), 
and then the associated root system is of rank 1. The multiplicities correspond to 
the multiplicities of the positive roots. Specifically, the multiplicity of the principal 
curvature . μα associated with the reduced positive root . α is .mα = dim gα ⊕ g2α . 
We refer to [6, §2.3.2 and §2.7] for more details and to [74, §2, Satz 1] or [78, 
Teorema 3.8] for an alternative description in the general setting of isoparametric 
hypersurfaces. 

4.2 Homogeneous Hypersurfaces in the Other Compact 
Symmetric Spaces 

In this subsection, we will review the classification problem of homogeneous 
hypersurfaces in compact symmetric spaces of nonconstant curvature. We will 
mainly focus on the rank one setting. 

The simply connected Riemannian symmetric spaces of compact type and rank 
one are the sphere . Sn and the projective spaces .CPn, .HPn, and .OP2 (.n ≥ 2). They 
can be described by a symmetric pair .(G,K) as specified in Table 1.
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Table 1 Data for the sphere and the projective spaces 

.Sn .CPn .HPn . OP2

G .SOn+1 .SUn+1 .Spn+1 . F4

K .SOn .S(U1Un) .Sp1Spn . Spin9

The classification problem for the complex projective space was solved by 
Takagi [96]. 

Theorem 2 (Homogeneous Hypersurfaces in Complex Projective Spaces) A 
homogeneous hypersurface in a complex projective space .CPn is congruent to one 
of the following: 

(1) A geodesic sphere 
(2) A tube around a totally geodesic .CPk in .CPn, . k ∈ {1, . . . , n − 1}
(3) A tube around a totally geodesic .RPn in . CPn

(4) A tube around the Segre embedding of .CP1 × CPk into .CPn with . n = 2k + 1
odd, . k ≥ 1

(5) A tube around the Plücker embedding of the complex Grassmannian . G2(C
5)

into . CP9

(6) A tube around the half spin embedding of .SO10/U5 into . CP15

A remarkable observation, similar to the discussion above in spheres and which 
follows from the work of Takagi [96] and later by Podestà and Thorbergsson [79], is 
that a homogeneous hypersurface in the complex projective space .CPn is congruent 
to the quotient of a principal orbit of the isotropy representation of a Hermitian 
symmetric space of rank two. We will develop this idea a bit further before 
commenting on the different items of the classification given by Theorem 2. 

Let .M ∼= G/K be a Hermitian symmetric space of rank two. Being Hermitian 
means that M has a complex structure that is invariant under each geodesic 
symmetry. Then, M has even dimension, and we write .dimM = 2n + 2. Consider 
the base point .o ∼= eK . The isotropy representation of M is the action . K × ToM →
ToM , .(k, v) �→ k∗ev. Since .ToM ∼= R

2n+2 ∼= C
n+1 and the elements of K act 

as linear holomorphic isometries of .Cn+1, this action can be restricted to an action 
on the unit sphere .S2n+1 ⊂ C

n+1. As discussed in the previous subsection, this 
action on the unit sphere is of cohomogeneity one. Moreover, the action on . Cn+1

is polar and with totally real section, that is, there exists a totally real plane in 
.C

n+1 that intersects all the orbits of the isotropy representation, and, at the points of 
intersection, the plane and the orbits are orthogonal. Since this action maps complex 
lines of .C

n+1 to complex lines of .C
n+1, it descends to a cohomogeneity one action 

on the projectivization .P(Cn+1) ∼= CPn. 
In order to obtain the classification in Theorem 2, it is therefore enough to 

consider the classification of (possibly reducible) Hermitian symmetric spaces of 
rank two and calculate their induced isotropy representations on the corresponding 
projectivization of the tangent space at the point where the isotropy is considered. 
See [53, X.6], taking into account the possible coincidences between different 
classes.
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Tubes around totally geodesic .CPk , .k ∈ {0, . . . , n − 1}, are principal orbits of 
the action of .Uk+1 × Un−k . This action comes from the isotropy representation of 
the reducible symmetric space . CPk+1 × CPn−k = (SUk+2 × SUn−k+1)/(S(U1 ×
Uk+1) × S(U1 × Un−k)). If .k = 0, we recover geodesic spheres. 

The real oriented two-plane Grassmannian . G+
2 (Rn+3) = SOn+3/SO2 ×SOn+1

induces an action of .SOn+1 on .CPn with two singular orbits: a totally geodesic 
real projective space .RPn and the complex quadric . Qn−1 = {[z] ∈ CPn :
z20 + · · · + z2n = 0}. 

Similarly, the complex two-plane Grassmannian . G2(C
k+3) = SUk+3/S(U2Uk+1)

induces an action on .CP2k+1, one of whose singular orbits is the Segre embedding of 
.CP1 ×CPk in .CP2k+1. This is an embedding of a product of projective spaces onto 
another projective space of suitable dimension, where homogeneous coordinates 
are multiplied out. In our case, this embedding is given by the map . CP1 × CPk →
CP2k+1, .([z0 : z1], [w0 : · · · : wk]) �→ [z0w0 : · · · : z0wk : z1w0 : · · · : z1wk]. 

The Plücker embedding is another classical embedding into a complex projective 
space. In this case, we embed a Grassmannian of k-planes into the projectivization of 
the space of k-forms. For .G2(C

5) into .P(�2
C
5) ∼= CP9, this embedding is defined 

by .span{v1, v2} �→ [v1 ∧ v2]. Tubes around this submanifold are homogeneous and 
correspond to the principal orbits of the cohomogeneity one action induced by the 
isotropy representation of the Hermitian symmetric space .SO10/U5. 

Finally, the Hermitian symmetric space .E6/U1Spin10 induces a cohomogeneity 
one action on .CP15. One of the singular orbits of this action is the half spin 
embedding of the symmetric space .SO10/U5. We refer to [25, §7.5] for further 
details on this embedding. 

The classification problem in quaternionic projective space is attributed to 
D’Atri [28] and Iwata [56]. 

Theorem 3 (Homogeneous Hypersurfaces in Quaternionic Projective Spaces) 
A homogeneous hypersurface in a quaternionic projective space .HPn is congru-
ent to one of the following: 

(1) A geodesic sphere 
(2) A tube around a totally geodesic .HPk in .HPn, . k ∈ {1, . . . , n − 1}
(3) A tube around a totally geodesic .CPn in . HPn

The action of .Spk+1×Spn−k on .HHk is of cohomogeneity one, and its principal 
orbits are tubes around totally geodesic quaternionic projective spaces .HPk , . k ∈
{0, . . . , n − 1}. If  .k = 0, we retrieve geodesic spheres. The principal orbits of the 
action of .Un+1 on .HPn are tubes around a totally geodesic .CPn. 

It can be shown [79] that a cohomogeneity one action on a quaternionic projective 
space is induced by the isotropy representation of a product of two quaternionic 
Kähler symmetric spaces of rank one or of an irreducible quaternionic Kähler 
symmetric space of rank two. Thus, an alternative way of getting the list of 
Theorem 3 is to look at the corresponding list of these spaces, which turns out to be 
.HPk+1 × HPn−k and .SUn+3/S(U2 × Un+1).
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We finish our review of homogeneous hypersurfaces in rank one symmetric 
spaces of compact type recalling the classification result for the Cayley projective 
plane given by Iwata [57]. 

Theorem 4 (Homogeneous Hypersurfaces in the Cayley Projective Plane) A 
homogeneous hypersurface in the Cayley projective plane .OP2 is congruent to one 
of the following: 

(1) A geodesic sphere 
(2) A tube around a totally geodesic .HP2 in . OP2

A geodesic sphere can be seen as a principal orbit of the isotropy action of . Spin9
on .OP2. This action has two singular orbits: a fixed point and a totally geodesic 
.S
8 = OP1. The second example in this classification is congruent to a principal 

orbit of the action of .Sp3Sp1, which has two singular orbits: a totally geodesic . HP2

and a minimal .S11 = Sp3Sp1/Sp2Sp1. As pointed out by Iwata, there are two 
more groups, up to conjugation, with the same orbits as .Sp3Sp1. These are . Sp3U1
and . Sp3. Unlike the results presented here, Iwata’s classification was obtained up to 
conjugation by an element of . F4, not up to orbit equivalence. 

Remark 4 We would like to point out that there is a classification of isoparametric 
families of hypersurfaces in complex projective spaces .CPn, .n �= 15 [36], and in 
quaternionic projective spaces .HPn, .n �= 7 [39]. It follows from these classifications 
that there are inhomogeneous examples of isoparametric hypersurfaces in complex 
and quaternionic projective spaces. However, the classification problem of isopara-
metric hypersurfaces in the Cayley projective plane is still open [99]. 

All these results were generalized by Kollross [61], who classified cohomo-
geneity one actions on irreducible symmetric spaces of compact type up to orbit 
equivalence. Thus, homogeneous hypersurfaces in an irreducible symmetric space 
of compact type can be obtained via a case-by-case study of all these actions in each 
corresponding space. 

Theorem 5 (Cohomogeneity One Actions on Irreducible Symmetric Spaces of 
Compact Type) A cohomogeneity one action on an irreducible symmetric space 
of compact type is locally orbit equivalent to one of the following: 

(1) A Hermann action of cohomogeneity one 
(2) The action of .{(g, ḡ) : g ∈ SU3} on . SU3
(3) An action induced by the isotropy representation of a symmetric space of rank 

two 
(4) One of the seven exceptions corresponding to the action of .H × K on G or of 

the action of H on .G/K , where .(H,K,G) is a triple of Table 2 

Let H and K be compact Lie subgroups of G. In Theorem 5 and in the discussion 
below, the isometric action of a product group .H × K on a compact Lie group G 
with bi-invariant metric is given by 

.(h, k) · g = hgk−1, h ∈ H, k ∈ K, g ∈ G.
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Table 2 Seven exceptional cohomogeneity one actions on symmetric spaces of compact type 

H .G2 .G2 .U3 .Spin9 .Sp1Spn .SU3 . SU3

K .SO3 × SO4 .G2 .G2 .SO2 × SO14 .SO2 × SO4n−2 .SO4 . SU3

G .SO7 .SO7 .SO7 .SO16 .SO4n .G2 . G2

The action of a subgroup H of G on a compact symmetric space .G/K is given by 
.h · gK = hgK . 

Let G be a compact semisimple Lie group. A subgroup K of G is called a 
symmetric subgroup of G if its Lie algebra is a fixed point set of an involutive 
automorphism of the Lie algebra of G. Then .(G,K) is a symmetric pair and . G/K

a symmetric space of compact type if equipped with a suitable metric. 
A Hermann action is the action of .H × K on G defined above, where H and 

K are symmetric subgroups of G. The natural action of H on .G/K is also called a 
Hermann action, and it turns out that the action of .H ×K on G is of cohomogeneity 
one if and only if so is the action of H on .G/K (or the action of K on .G/H ). 
Thus, classifying cohomogeneity one Hermann H -actions on .G/K and classifying 
cohomogeneity one Hermann .H ×K-actions on G are equivalent problems. Indeed, 
there is a correspondence between Hermann actions on symmetric spaces of type 
II (or group type), that is, compact simple Lie groups, and Hermann actions 
on symmetric spaces of type III, that is, compact symmetric spaces with simple 
isometry group, and this correspondence preserves the cohomogeneity. 

Not any Hermann action is of cohomogeneity one, but it is possible to determine 
explicitly which ones are by looking at the classification of symmetric spaces of 
compact type. Obvious examples that fall into this category are isotropy actions of 
symmetric spaces .G/K of rank one and the corresponding .K × K actions on G. 
However, there are a few more examples as shown in [61, Theorem B]. 

In Theorem 5 (2), the action of .{(g, ḡ) : g ∈ SU3} on .SU3 is given by . (g, ḡ)·g′ =
gg′ḡ−1. Here, . ḡ denotes the complex conjugation of a matrix g, which induces an 
outer Lie group automorphism of .SU3. 

Finally, we describe the actions in Theorem 5 (3). Let .̂G/̂K be a simply  
connected symmetric space of rank 2. Then, the isotropy representation of . ̂G/̂K

can be regarded as a Lie group homomorphism .ρ = Ad |
̂K : ̂K → SO(̂p) ∼= SOn, 

where .̂p ∼= Tô
̂G/̂K and .n = dim ̂G/̂K . If  .̂G/̂K is Hermitian, then .̂K ∼= Kh · U1, 

for some compact Lie group . Kh, and we can regard the restriction of . ρ to . Kh

as a homomorphism .ρ|Kh
: Kh → SUn, where .n = dimC

̂G/̂K . If  .̂G/̂K is 
quaternionic Kähler, then .̂K = Kq · Sp1, for some compact Lie group . Kq , and 
we can regard the restriction of . ρ to . Kq as a homomorphism .ρ|Kq : Kq → Spn, 
where .n = dimH

̂G/̂K . Then, the actions in item (3) of Theorem 5 correspond to 
the action of .H ×K on G and to the action of H on .G/K , where .(H,K,G) is given 
in Table 3 and .̂G/̂K is a rank two symmetric space.
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Table 3 Actions induced by isotropy representations of symmetric spaces of rank two 

.̂G/̂K arbitrary .̂G/̂K Hermitian .̂G/̂K quaternionic Kähler 

H .ρ(̂K) .ρ(Kh) . ρ(Kq)

K .SOn−1 .S(U1 × Un−1) . Sp1 × Spn−1

G .SOn .SUn . Spn

5 Homogeneous Hypersurfaces in Hyperbolic Spaces 

In this section, we review the classification results of homogeneous hypersurfaces in 
rank one symmetric spaces of noncompact type. These are precisely the hyperbolic 
spaces over the normed real division algebras, namely, .RHn, .CHn, .HHn, and . OH2

(.n ≥ 2). 

5.1 Homogeneous Hypersurfaces in Real Hyperbolic Spaces 

The classification of homogeneous hypersurfaces in real hyperbolic spaces was 
solved in a classical paper by Cartan [22]. Actually, Cartan’s aim was to classify 
isoparametric hypersurfaces in Riemannian manifolds of constant curvature. He 
succeeded to get such classification in .RHn, but not in spheres, where the problem 
remained open for nearly a century. It follows from this classification that an 
isoparametric hypersurface in .RHn is an open part of a homogeneous hypersurface. 
This implies the classification of homogeneous hypersurfaces in .RHn: 

Theorem 6 (Homogeneous Hypersurfaces in Real Hyperbolic Spaces) A 
homogeneous hypersurface in .RHn is congruent to one of the following: 

(1) A geodesic sphere 
(2) A tube around a totally geodesic .RHk , .k ∈ {1, . . . , n − 2}, in . RHn

(3) A totally geodesic .RHn−1 or one of its equidistant hypersurfaces 
(4) A horosphere 

Recall that the connected component of the identity of the isometry group of the 
real hyperbolic space .RHn is .SO0

1,n. A geodesic sphere is congruent to a principal 
orbit of the action of .SOn on .RHn. Similarly, a tube around a totally geodesic . RHk

in .RHn is congruent to a principal orbit of the action of .SO0
1,k × SOn−k , . k ∈

{1, . . . , n − 2}. If  .k = 0, we recover the geodesic spheres, and if .k = n − 1, then 
.SO0

1,n−1 acts with cohomogeneity one, but in this case, all orbits are principal; in 
particular, a totally geodesic .RHn−1 is also a homogeneous hypersurface. Finally, 
the horospheres are the orbits of the nilpotent part N of the Iwasawa decomposition 
of .SO0

1,n (see Sect. 3.3). It is remarkable that the horospheres are Euclidean spaces
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.R
n−1 embedded in .RHn in a totally umbilical way [93, p. 14]; all horospheres of 

.RHn are congruent to each other. 

5.2 General Approach to Homogeneous Hypersurfaces in 
Hyperbolic Spaces 

In the rest of this section, we address the classification problem for the remaining 
symmetric spaces of noncompact type and rank one. In this subsection, we review 
the algebraic structure theory of these spaces and explain the general approach for 
the classification of homogeneous hypersurfaces in this setting. In the subsequent 
subsections, we will describe the classification results separately for each family of 
spaces. We will use the notation introduced in Sect. 3.3. 

Let .(G,K) be a symmetric pair representing the symmetric space .FHn, . F ∈
{R,C,H,O} (.n = 2 if .F = O). Then, the root space decomposition of . g, the  Lie  
algebra of G, reads 

. g = g−2α ⊕ g−α ⊕ g0 ⊕ gα ⊕ g2α,

where .g2α = g−2α = 0 in the case of the real hyperbolic space .RHn; the associated 
root system is otherwise nonreduced. Recall that .g0 = k0 ⊕ a, where . a is one-
dimensional. We denote by . K0 the connected subgroup of K whose Lie algebra is 
. k0. Then, the possibilities for G, K , and . K0 are summarized in Table 4. 

In this case, the nilpotent part of the Iwasawa decomposition of . g is simply . n =
gα ⊕ g2α . If  .gα = 0, then . n is abelian. Otherwise, if .gα �= 0, it turns out that . g2α
is the center of . n and the derived subalgebra of the nilpotent Lie algebra . n, that is, 
.[n, n] = g2α . We have .dim g2α = dimR F − 1. In fact, . g2α can be interpreted as the 
imaginary part of . F; following this idea, there is a Clifford algebra representation 
.J : Cl(g2α) → End(gα) which turns . gα into a Clifford module. The restriction of J 
to . g2α gives rise to endomorphisms . JZ of . gα that are defined by the relation 

. 〈[U,V ], Z〉 = 〈JZU, V 〉, U, V ∈ gα, Z ∈ g2α.

Table 4 Data for each hyperbolic space 

.RHn .CHn .HHn . OH2

G .SO0
1,n .SU1,n .Sp1,n . F−20

4

K .SOn .S(U1Un) .Sp1Spn . Spin9
.K0 .SOn−1 .S(U1Un−1) .Sp1Spn−1 . Spin7
.gα .Rn−1 .Cn−1 .Hn−1 . O

.g2α 0 .R .R3 .R7
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See [16] for further details. Moreover, .gα
∼= F

n−1, and the action of . K0 on . gα is 
equivalent to the standard action. 

We will now describe the possible types of cohomogeneity one actions that may 
arise on a rank one symmetric space of noncompact type and nonconstant curvature. 
The fact that the following types exhaust all actions follows from the various works 
of Berndt, Brück, and Tamaru [5, 12, 14]. In Sect. 6, we will describe a more general 
approach that holds for arbitrary rank. 

(1) If a cohomogeneity one action on .FHn induces a regular foliation, then there 
are two options up to orbit equivalence [12]: 

(a) The horosphere foliation, whose leaves are the orbits of the action of the 
nilpotent part of the Iwasawa decomposition of G, namely, the connected 
subgroup N with Lie algebra . n

(b) The solvable foliation, whose leaves are the orbits of the subgroup S whose 
Lie algebra is .s = a ⊕ w ⊕ g2α , where . w is a real hyperplane of . gα

(2) In order to determine the cohomogeneity one actions on .FHn that have a 
totally geodesic singular orbit, it is enough to determine which totally geodesic 
submanifolds of .FHn have homogeneous tubes. Totally geodesic submanifolds 
of hyperbolic spaces have been classified. By calculating the stabilizer of each 
one of these submanifolds, as well as its slice representation (i.e., the linearized 
action on the normal space to the totally geodesic submanifold), one can 
conclude which ones give rise to cohomogeneity one actions [5]. 

(3) Finally, it remains to study cohomogeneity one actions on .FHn with a non-
totally geodesic singular orbit. Berndt and Tamaru devised in [14] a procedure 
to address this case. In symmetric spaces of higher rank, this method is 
called the nilpotent construction, cf. Sect. 6.4. In brief, the classification of 
cohomogeneity one actions on .FHn with a non-totally geodesic singular orbit 
reduces to the classification of the subspaces . w of . gα such that .NK0(w), the  
normalizer of . w in . K0, acts transitively on the unit sphere of .w⊥ = gα � w, 
the orthogonal complement of . w in . gα , up to congruence by an element of 
. K0. In this case, the connected subgroup of .K0AN ⊂ G whose Lie algebra is 
.NK0(w) ⊕ a ⊕ w ⊕ g2α acts on .FHn with cohomogeneity one. The subspaces 
.w ⊂ gα satisfying this condition have been classified in [14] for  . F ∈ {C,O}
and in [32] for .F = H. 

5.3 Homogeneous Hypersurfaces in Complex Hyperbolic 
Spaces 

The classification of homogeneous hypersurfaces in the complex case was obtained 
by Berndt and Tamaru in [14]. It can be stated as follows:
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Theorem 7 (Homogeneous Hypersurfaces in Complex Hyperbolic Spaces) A 
homogeneous hypersurface in .CHn is congruent to one of the following: 

(1) A geodesic sphere 
(2) A tube around a totally geodesic .CHk in .CHn, . k ∈ {1, . . . , n − 1} 
(3) A tube around a totally geodesic .RHn in . CHn 

(4) A horosphere 
(5) A ruled homogeneous minimal Lohnherr hypersurface .W 2n−1 

π/2 or one of its 
equidistant hypersurfaces 

(6) A tube around a ruled homogeneous minimal Berndt–Brück submanifold 
.W 2n−k 

ϕ , for .k ∈ {2, . . . , n  − 1}, .ϕ ∈ (0, π/2], where k is even if . ϕ �= π/2 

Tubes around totally geodesic complex hyperbolic spaces .CHk , . k ∈ {0, . . . , n − 
1}, are congruent to the principal orbits of the action of .S(U1,k × Un−k). The  
particular case of .k = 0 corresponds to geodesic spheres. The principal orbits of 
the group .SO0 

1,n produce tubes around a totally geodesic real hyperbolic space 
.RHn. Note that tubes around a totally geodesic .RHk , .k ∈ {1, . . . , n  − 1}, are not 
homogeneous because the normal space of .RHk is a direct sum of a nontrivial totally 
real and a nontrivial complex subspace of a complex vector space and isometries 
of .CHn are holomorphic. The group N gives rise to a horosphere foliation, whose 
orbits are isometric to generalized Heisenberg groups. All of the orbits of this action 
are principal and congruent to each other. 

Item (5) in Theorem 7 corresponds to the solvable foliation, whereas example (6) 
corresponds to a nilpotent construction. We review them in more detail here. Let 
. w be a real subspace of .gα ∼= Cn−1. We denote by J the complex structure of 
.gα ∼= Cn−1. The Kähler angle of a nonzero .v ∈ w⊥ is the angle between Jv  and 
. w⊥. We say that .w⊥ has constant Kähler angle .ϕ ∈ [0, π/2] if the Kähler angle of 
any nonzero vector of .w⊥ is . ϕ. Examples of subspaces with constant Kähler angle 
are totally real subspaces, that is, .〈Jw⊥,w⊥〉 =  0, whose Kähler angle is . π/2, 
and complex subspaces, that is, .Jw⊥ = w⊥, whose Kähler angle is 0. Any angle 
.ϕ ∈ (0, π/2) can be achieved, and in this case, .dimw⊥ = k is an even number. 
Two subspaces of . gα with the same dimension and Kähler angle are congruent by 
an isometry of . K0, and a basis of such a subspace can be written as 

. {e1, cos(ϕ)J e1 + sin(ϕ)J e2, . . . , e2k−1, cos(ϕ)J e2k−1 + sin(ϕ)J e2k}, 

where .{e1, . . . , e2k} is a .C-orthonormal subset in .gα ∼= Cn−1. 
It turns out that if . w⊥ has constant Kähler angle . ϕ, then .NK0(w) acts transitively 

on the unit sphere of . w⊥. Berndt and Tamaru [14] showed that the connected 
subgroup of .SU1,n whose Lie algebra is .NK0(w) ⊕ a ⊕ w ⊕ g2α acts on .CHn with 
cohomogeneity one. We denote by .W 2n−k 

ϕ the orbit through the origin . o ∼= eK 
of this group, where k is its codimension. If . w is a hyperplane, then .w⊥ is 
one-dimensional and, thus, totally real. The corresponding action has exactly one 
minimal orbit, known as the Lohnherr hypersurface, and the rest of the orbits are 
equidistant hypersurfaces to it. If . w has codimension .k >  1, then there is exactly 
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one singular orbit, known as a Berndt-Brück submanifold, and the rest of the orbits 
are tubes around it. Any Kähler angle is possible if .n ≥ 3. However, if .ϕ = 0, this  
construction reproduces the tubes around a totally geodesic .CHk , .k ∈ {1, . . . , n}, so  
it is removed from item (6) of Theorem 7 to avoid duplication. 

Remark 5 Isoparametric hypersurfaces in .CHn have been classified in [33]. It 
follows from this classification that a hypersurface in .CHn is isoparametric if and 
only if it is an open part of a homogeneous hypersurface or of a tube around the 
orbit through the origin of the subgroup of .AN ⊂ SU1,n whose Lie algebra is 
.a ⊕ w ⊕ g2α , where .w⊥ is a subspace of . gα with nonconstant Kähler angle. As a 
consequence, any isoparametric hypersurface in .CH2 is homogeneous, but there are 
infinitely many inhomogeneous examples in .CHn, .n ≥ 3. 

5.4 Homogeneous Hypersurfaces in Quaternionic Hyperbolic 
Spaces 

The classification of cohomogeneity one actions on quaternionic hyperbolic spaces 
.HHn has recently been obtained in [32] by the first two authors and Rodríguez-
Vázquez. The corresponding classification of homogeneous hypersurfaces can be 
read from there. 

Theorem 8 (Homogeneous Hypersurfaces in Quaternionic Hyperbolic Spaces) 
A homogeneous hypersurface in .HHn is congruent to one of the following: 

(1) A geodesic sphere 
(2) A tube around a totally geodesic .HHk in .HHn, . k ∈ {1, . . . , n − 1} 
(3) A tube around a totally geodesic .CHn in . HHn 

(4) A horosphere 
(5) A homogeneous minimal hypersurface . P1 or one of its equidistant hypersur-

faces 
(6) A tube around a homogeneous minimal submanifold . Pw in .HHn, where .w⊥ is 

a protohomogeneous subspace of . gα 

Similar to the complex case, tubes around a totally geodesic quaternionic 
hyperbolic space .HHk , .k ∈ {0, . . . , n  − 1}, are homogeneous and are congruent to 
the principal orbits of the action of .Sp1,k ×Spn−k on .HHn. If .k = 0, we again  have  
geodesic spheres. Tubes around totally geodesic complex hyperbolic spaces .CHn in 
.HHn are also homogeneous and correspond to the principal orbits of the action of 
.SU1,n. Although there are more totally geodesic submanifolds of .HHn, their tubes 
fail to be homogeneous. The action of N gives rise to a horosphere foliation, all 
whose orbits are congruent to each other. Examples (5) correspond to the leaves of 
the solvable foliation. This is constructed, as usual, as the action of the subgroup of 
.AN ⊂ Sp1,n whose Lie algebra is .a⊕w⊕g2α , where . w is a hyperplane in . gα . This  
foliation has exactly one minimal leaf, which we have denoted by . P1. 
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For the rest of the examples, we need to determine all subspaces . w of . gα ∼= Hn−1 

such that .NK0(w) acts transitively on the unit sphere of . w⊥ up to congruence by an 
element of .K0 ∼= Sp1Sp1,n−1. As we explained before, the subgroup of . K0AN ⊂ 
Sp1,n whose Lie algebra is .NK0(w)⊕a⊕w⊕g2α acts on .HHn with cohomogeneity 
one. We will call the subspaces . w of . gα satisfying this condition protohomogeneous. 
In the particular case that . w is a hyperplane, we recover the solvable foliation, which 
corresponds to item (5) of Theorem 8. 

The space .gα ∼= Hn−1 is a right quaternionic vector space. It can be endowed 
with a quaternionic structure . J, that is, a vector subspace of .EndR(Hn−1) admitting 
a so-called canonical basis .{J1, J2, J3} satisfying 

. J 2 
i = − Id, JiJi+1 = Ji+2 = −Ji+1Ji (indices modulo 3). 

For a given subspace .w⊥ ⊂ gα , each complex structure .J ∈ J determines a Kähler 
angle of a nonzero vector .v ∈ w⊥ in the sense we have considered for the complex 
case. We define the quaternionic Kähler angle of a nonzero .v ∈ w⊥ to be the triple 
.(ϕ1(v), ϕ2(v), ϕ3(v)) satisfying that there exists a canonical basis .{J1, J2, J3} such 
that: 

(i) .ϕ1(v) ≤ ϕ2(v) ≤ ϕ3(v). 
(ii) .ϕi(v) is the Kähler angle of v with respect to . Ji , .i ∈ {1, 2, 3}. 
(iii) .〈πw⊥Jiv, πw⊥Jjv〉 =  0 if .i �= j and where .πw⊥ : gα → w⊥ denotes the 

orthogonal projection onto . w⊥. 
(iv) .ϕ1(v) is minimum, and .ϕ3(v) is maximum among the Kähler angles of v with 

respect to the complex structures .J ∈ J. 

A probably more telling way of defining the quaternionic Kähler angle is the 
following. We consider the symmetric bilinear form: 

. Lv : J × J → R, (J,  J ′) �→ 〈πw⊥Jv,  πw⊥J ′v〉. 

Then, the Kähler angle of a nonzero .v ∈ w⊥ is the ordered triple . (ϕ1(v), ϕ2(v), 
ϕ3(v)) satisfying that the eigenvalues of . Lv are precisely .cos2(ϕi(v))〈v, v〉. The  
canonical basis .{J1, J2, J3} used above to define the quaternionic Kähler angle is 
precisely a basis that diagonalizes . Lv . 

If .w⊥ is protohomogeneous, then .w⊥ has constant quaternionic Kähler angle. 
Protohomogeneous subspaces of . Hn have been classified in [32] up to congruence 
by an element of .Sp1Spn by making extensive use of the concept of quaternionic 
Kähler angle. The moduli space .Mk,n of nonzero protohomogeneous subspaces of 
dimension k in . Hn, up to congruence in .Sp1Spn, is described in Table 5. 

This classification includes well-known examples such as totally real subspaces 
(precisely those with quaternionic Kähler angle .(π/2, π/2, π/2)), totally complex 
subspaces (with quaternionic Kähler angle .(0, π/2, π/2)), quaternionic subspaces 
(with quaternionic Kähler angle .(0, 0, 0)), subspaces of constant Kähler angle 
.ϕ ∈ (0, π/2) inside a totally complex vector subspace (with quaternionic Kähler 
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Table 5 Moduli space of protohomogeneous subspaces of dimension k in . Hn 

.Mk,n .k ≤ n .n < k  ≤ 4n 
3 . 4n 

3 < k  ≤ 2n . k >  2n 

.k ≡ 0 (mod 4) .(R+ 
4 \ R− 

4 ) � (R− 
4 × Z2) .S .{(0, ϕ, ϕ)}ϕ∈[0, π 

2 ] . {(0, 0, 0)} 
.k ≡ 2 (mod 4) .{(ϕ, π 

2 , 
π 
2 )}ϕ∈[0, π 

2 ] .{(0, π 
2 , 

π 
2 )} .{(0, π 

2 , 
π 
2 )} . ∅ 

.k �= 3 odd .{( π 
2 , 

π 
2 , 

π 
2 )} .∅ .∅ . ∅ 

.k = 3 .(R+ 
3 \ R− 

3 ) � (R− 
3 × Z2) .∅ .{(ϕ, ϕ, π 

2 )}ϕ∈{0, π 
3 } . {(0, 0, π 

2 )} 

. 

� = {(ϕ1, ϕ2, ϕ3) ∈ [0, π/2]3 : ϕ1 ≤ ϕ2 ≤ ϕ3}, 
R

+ 
3 = {(ϕ, ϕ, π/2) ∈ � : ϕ ∈ [0, π/2]}, 

R
− 
3 = {(ϕ, ϕ, π/2) ∈ � : ϕ ∈ [π/3, π/2)}, 

R
+ 
4 = {(ϕ1, ϕ2, ϕ3) ∈ � : cos(ϕ1) + cos(ϕ2) − cos(ϕ3) ≤ 1}, 

R
− 
4 = {(ϕ1, ϕ2, ϕ3) ∈ � : cos(ϕ1) + cos(ϕ2) + cos(ϕ3) ≤ 1, ϕ3 �= π/2}, 
S = {(ϕ1, ϕ2, ϕ3) ∈ � : cos(ϕ1) + cos(ϕ2) + ε cos(ϕ3) = 1, for ε = 1 or  ε = −1}. 

angle .(ϕ, π/2, π/2)), complexifications of subspaces of constant Kähler angle . ϕ ∈ 
(0, π/2) in a totally complex subspace (with quaternionic Kähler angle .(0, ϕ, ϕ)), 
and subspaces of the form . Jv, .v ∈ Hn, .v �= 0 (with quaternionic Kähler angle 
.(0, 0, π/2)). 

However, there are some other nonclassical examples. See [32] for an explicit 
construction of these subspaces. While two subspaces with different quaternionic 
Kähler angles cannot be congruent to each other, a remarkable consequence of this 
classification implies the existence of noncongruent subspaces of . Hn with the same 
quaternionic Kähler angles. These correspond precisely to the intersections . R+ 

3 ∩ 
R

− 
3 = R− 

3 and .R
+ 
4 ∩ R− 

4 = R− 
4 . 

All the examples in Theorem 8 (6) are obtained as tubes around the orbit through 
the origin .o ∼= eK of the connected subgroup of .AN ⊂ G = Sp1,n whose Lie 
algebra is .a ⊕ w ⊕ g2α and where .w⊥ is protohomogeneous in .gα ∼= Hn−1. The  
moduli space .Mk,n−1 determines the congruence classes of the singular orbits of 
the corresponding cohomogeneity one actions, which in turn determines the orbit 
equivalence classes of cohomogeneity one actions on .HHn. 

In order to get a proper classification, we still need to exclude a few classes that 
intersect with previous items of Theorem 8. If  .w⊥ has quaternionic Kähler angle 
.(0, 0, 0), then .w⊥ and also . w are quaternionic vector subspaces of .gα ∼= Hn−1. In  
this case, we recover tubes around totally geodesic quaternionic hyperbolic spaces 
.HHk , .k ∈ {1, . . . , n − 1}. As we explained before, we also have to exclude when . w 
is a hyperplane, as this gives the solvable foliation. 

Remark 6 Consider the connected subgroup of .Sp1,n with Lie algebra 
.a ⊕ w ⊕ g2α , where . w is an arbitrary proper subspace of . gα . It follows from [30] 
that tubes around the orbit through the origin of that group are always isoparametric. 
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These have constant principal curvatures if and only if . w⊥ has constant quaternionic 
Kähler angle. If follows from [32] that by taking direct sums of spaces in both . R+

4
and . R

−
4 with the same constant quaternionic Kähler angles, we obtain subspaces . w⊥

that still have constant quaternionic Kähler angle but are not protohomogeneous. 
This yields examples of isoparametric hypersurfaces with constant principal 
curvatures in .HHn, .n ≥ 8, that are not homogeneous. 

5.5 Homogeneous Hypersurfaces in the Cayley Hyperbolic 
Plane 

Finally, we deal with the Cayley hyperbolic plane .OH2. 

Theorem 9 (Homogeneous Hypersurfaces in the Cayley Hyperbolic Plane) A 
homogeneous hypersurface in .OH2 is congruent to one of the following: 

(1) A geodesic sphere 
(2) A tube around a totally geodesic . OH1

(3) A tube around a totally geodesic . HH2

(4) A horosphere 
(5) A minimal homogeneous hypersurface . F1 or one of its equidistant hypersur-

faces 
(6) A tube around the minimal submanifold . Fk of codimension . k ∈ {2, 3, 6, 7}
(7) A tube around the minimal submanifold .F4,ϕ of codimension 4 for some . ϕ ∈

[0, 1]
Geodesic spheres are principal orbits of the isotropy action of .Spin9 on .OH2. 

Tubes around a totally geodesic .OH1 on .OH2 are congruent to the principal orbits of 
the action of .Spin01,8 ⊂ F−20

4 , and tubes around a totally geodesic .HH2 are principal 

orbits of the action of .Sp1,2Sp1 ⊂ F−20
4 . The group N , which is the nilpotent part of 

the Iwasawa decomposition of .F−20
4 , gives rise to the horosphere foliation in .OH2, 

whose leaves are congruent to each other. Example (5) of Theorem 9 corresponds 
to the solvable foliation, which is obtained by the action of the subgroup of . F−20

4
whose Lie algebra is .a⊕w⊕ g2α , where . w is a hyperplane in . gα . This action has a 
unique minimal orbit which is denoted by . F1. 

Examples (6) and (7) correspond to the nilpotent construction. Berndt and Br̈uck 
classified in [5] all subspaces . w of .gα

∼= O such that .NK0(w) acts transitively 
on the unit sphere of . w⊥. It turns out that any proper subspace . w of . gα with 
.dimw �= 3 satisfies this condition. Hyperplanes of . gα are ones of such spaces, 
but they correspond to item (5) and produce a foliation. The group .K0 ∼= Spin7 acts 
on .O ∼= R

8 by its irreducible 8-dimensional spin representation. This action induces 
an action on the Grassmannians .Gk(R

8) of k-planes in . R8. If  .k �= 4, this action is 
transitive, and if .k = 4, this action is of cohomogeneity one (see the discussion 
for .OH2 in [14] and the references therein). This implies that any pair of subspaces
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of . gα of dimension .k �= 4 are congruent by an isometry of .Spin7. The singular 
orbit of the action on .OH2 of the connected subgroup of .F−20

4 with Lie algebra 
.NK0(w) ⊕ a ⊕ w ⊕ g2α is denoted by . Fk , where .k = dimw⊥ = 8 − dimw. The  
moduli space of .Spin7-congruence classes of subspaces of . gα of dimension 4 is 
in one-to-one correspondence with the orbit space .G4(R

8)/Spin7 ∼= [0, 1]. The  
congruence class corresponding to some .ϕ ∈ [0, 1] produces a cohomogeneity one 
action on .OH2 whose singular orbit is denoted by .F4,ϕ . 

Remark 7 As in the previous hyperbolic spaces, any tube around the orbit through 
the origin of the subgroup . Sw of .AN ⊂ F−20

4 with Lie algebra .a ⊕ w ⊕ g2α is 
isoparametric. Moreover, in this case, it follows from [30] that each one of these 
tubes has constant principal curvatures. Thus, for .dimw⊥ = 5, the corresponding 
tubes around .Sw · o are inhomogeneous isoparametric hypersurfaces with constant 
principal curvatures. If .dimw⊥ = 4, the constant principal curvatures of the 
homogeneous tubes around .F4,ϕ are independent of . ϕ. Thus, there is an infinite 
family of noncongruent homogeneous isoparametric hypersurfaces with the same 
constant principal curvatures counted with multiplicities. 

6 Homogeneous Hypersurfaces in Symmetric Spaces 
of Noncompact Type and Arbitrary Rank 

The aim of this section is to provide an overview of the methods of construction and 
classification of cohomogeneity one actions on symmetric spaces of noncompact 
type and arbitrary rank. As we commented in the previous section, the classification 
in rank one is nowadays complete. Although this is not the case for higher rank, 
there have been recent advances that give us not only some classifications in certain 
spaces but also, importantly, a panoramic view of the possible types of actions that 
may arise in any symmetric space of noncompact type. 

We will start by explaining four construction techniques that can be regarded as 
building blocks for the classification problem. These techniques are the construction 
of codimension one subgroups of the solvable part AN of the Iwasawa decom-
position (explained in Sect. 6.1), the actions with a totally geodesic singular orbit 
(Sect. 6.2), the canonical extension of actions from lower rank symmetric spaces 
(Sect. 6.3), and the nilpotent construction (Sect. 6.4). Then, in Sect. 6.5, we will 
report on a structural result that asserts that these four building blocks are enough 
to construct any cohomogeneity one action on any (not necessarily irreducible) 
symmetric space of noncompact type.
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6.1 Homogeneous Codimension One Foliations 

Since any symmetric space of noncompact type M is a Hadamard manifold, any 
cohomogeneity one action on M has at most one singular orbit. We will explain 
in this subsection that the case of actions without singular orbit is nowadays well 
understood. 

It follows from the Iwasawa decomposition that the connected solvable subgroup 
AN of G with Lie algebra .a⊕n acts freely and transitively on M . Thus, codimension 
one subgroups of AN give rise to homogeneous codimension one regular foliations 
on M . Berndt and Tamaru used this in [12] to propose two general methods 
for constructing cohomogeneity one actions with no singular orbits on a given 
symmetric space of noncompact type. 

The first method produces a regular Riemannian foliation . F� for each one-
dimensional subspace . � in . a. Define . h� to be the orthogonal complement of . � in 
.a ⊕ n, .h� = (a � �) ⊕ n. This is a codimension one subalgebra of .a ⊕ n, so the  
corresponding connected subgroup . H� of G acts on M with cohomogeneity one 
and no singular orbits. It turns out that the orbits of this action are congruent to each 
other. Foliations of M by horospheres (i.e., by the level sets of a Busemann function 
on M) are a particular type of such a construction [42, Remark 5.4], so we will refer 
to the . F� as foliations of horospherical type. 

The second method gives us a foliation . Fi for each simple root . αi ∈ � =
{α1, . . . , αr }. Let  . � be a one-dimensional subspace of a simple root space . gαi

. It  
follows from the properties of root spaces that .hi = a ⊕ (n � �) is a codimension 
one subalgebra of .a⊕n, and so, its corresponding connected subgroup . Hi of G acts 
with cohomogeneity one on M . Actions arising in this way have a unique minimal 
orbit (namely, the orbit through o). We will refer to these . Fi as foliations of solvable 
type. 

It was shown in [12] for irreducible M and in [7] for the general case that 
every cohomogeneity one action on a symmetric space of noncompact type with 
no singular orbits is orbit equivalent to the action of some . H� or . Hi as constructed 
before. Furthermore, the moduli space of such actions has been studied in [12] and 
[92]. Two actions of horospherical type . F� and .F�′ are isometrically congruent 
precisely whenever there exists an isometry of M that induces a symmetry of the 
Dynkin diagram of . g taking . � to . �′. Something similar happens for the foliations of 
solvable type: . Fi and . Fj are isometrically congruent if and only if there exists an 
isometry of M that induces a symmetry of the Dynkin diagram of . g taking . αi to . αj . 
In particular, if . � and . �′ are contained in the same root space, they yield congruent 
foliations. Thus, the moduli space of homogeneous codimension one foliations on 
a symmetric space of noncompact type up to orbit equivalence is isomorphic to 
.(RPr � {1, . . . , r})/Aut(DDM), where .r = rank (M) and .Aut(DDM) denotes the 
subgroup of symmetries of the Dynkin diagram of . gwhich are induced by isometries 
of M .
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6.2 Cohomogeneity One Actions with a Totally Geodesic 
Singular Orbit 

Among the cohomogeneity one actions that have a singular orbit, it is natural to 
first determine those actions whose singular orbit is totally geodesic. Recall that if a 
cohomogeneity one action on a Euclidean or a real hyperbolic space has a singular 
orbit, this must be totally geodesic, although this is no longer the case for other 
hyperbolic spaces, as explained in Sect. 5. 

In the article [13], Berndt and Tamaru derived the classification of the totally 
geodesic submanifolds F of any irreducible symmetric space of noncompact type 
M that arise as singular orbits of cohomogeneity one actions on M , i.e., the 
totally geodesic submanifolds F such that the tubes around them are homogeneous 
hypersurfaces. This is basically the only case where the use of duality of symmetric 
spaces can be applied. However, we recall that one cannot simply analyze case-
by-case all possible totally geodesic submanifolds of M , since even nowadays 
there is no such a classification. Berndt and Tamaru appeal to the use of duality, 
along with Kollross’ classification [61] in the compact setting, as well as Leung’s 
classification [66] of a certain very particular type of totally geodesic submanifolds, 
called reflective submanifolds. A reflective submanifold F of a symmetric space 
M is a totally geodesic submanifold of M such that the exponential of its normal 
space at some (and hence all) point, .F⊥ = exp(νpF ), is also totally geodesic in 
M . Recall that, as totally geodesic submanifolds, both F and .F⊥ are themselves 
symmetric spaces. 

Berndt and Tamaru proved that F is a totally geodesic singular orbit of a 
cohomogeneity one action on an irreducible M if and only if one of the following 
possibilities holds: 

(i) F is a reflective submanifold such that .F⊥ is a symmetric space of rank one 
(see [13, Theorem 3.3] for an explicit list). 

(ii) F is one of the five possible nonreflective totally geodesic submanifolds related 
to the exceptional Lie group . G2 appearing in Table 6. 

It is important to mention that the lists provided in [13] are  given up to  
congruence in M by isometries of the full isometry group .Isom(M), cf. Problem 3 
in Sect. 7. 

Let us now assume that M is reducible. Put .M = M1 × · · · × Ms for its de 
Rham decomposition into irreducible symmetric spaces (of noncompact type). For 
each .i ∈ {1, . . . , s}, we write .Mi

∼= Gi/Ki , and hence, .g = g1 ⊕ · · · ⊕ gs is the 
decomposition of the semisimple Lie algebra . g into its simple ideals. A fundamental 

Table 6 Nonreflective totally geodesic submanifolds related to . G2

M .SO3,7/SO3 × SO7 .SO7(C)/SO7 .G2
2/SO4 . GC

2 /G2

F .G2
2/SO4 .GC

2 /G2 .CH2, .SL3(R)/SO3 .SL3(C)/SU3
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observation made in the recent work [31] is that if a cohomogeneity one action on 
M with a totally geodesic singular orbit does not split nicely with respect to the 
previous decompositions (i.e., if it is not orbit equivalent to a product action), then 
there must exist two homothetic factors . Mj and . Mk of M of rank one, and the action 
is orbit equivalent to that of the connected subgroup of G whose Lie algebra is 

.gj,k,τ ⊕
(

⊕

i=1
i �=j,k

gi

)

, with gj,k,τ = {X + τX : X ∈ gj }, (3) 

where .τ : gj → gk is a Lie algebra isomorphism. In this case, the singular orbit 
is also homothetic to .Mj and . Mk . This result ultimately follows from a classical 
theorem of Dynkin [43, Theorem 15.1, p. 235] which states that a maximal proper 
subalgebra of either . g splits nicely with respect to the decomposition of . g into simple 
ideals or it is of the form (3). 

All in all, any cohomogeneity one action with a totally geodesic singular orbit on 
M is determined by one of the actions on an irreducible factor of M listed by Berndt 
and Tamaru in [13] or by a diagonal action on the product of two homothetic rank 
one factors of M , as in  (3). 

6.3 Canonical Extension of Actions on Boundary Components 

Consider a subset .� ⊂ � of simple roots and its associated boundary component 
. B�. Since . S� is (up to a covering) the identity component of .Isom(B�), any  
isometric action on . B� has the same orbits as some connected Lie subgroup . H�

of . S�. Consider the subgroup 

. H�
� = H�A�N�

of G. Then, .H�
� acts on M with the same cohomogeneity of the action of . H� on . B�. 

Indeed, each .H�
� -orbit on M , say .H�

� ·p, is nothing but the union of all .A�N�-orbits 
through the points of .H� ·p. Recall from Sect. 3.4 that all the .A�N�-orbits have the 
same dimension. We say that .H�

� is the group obtained by canonical extension of 
.H� from the boundary component .B� to M . Furthermore, it was proved in [15, 
Proposition 4.2] that if the actions of two connected subgroups of . S� are orbit 
equivalent on . B� by an isometry in . S� (equivalently, by an isometry of .Isom(B�)0), 
then their canonical extensions are orbit equivalent on M by an element of G. 

As boundary components of M are symmetric spaces of noncompact type, it 
makes sense to study what happens if one applies this procedure twice. Consider the 
boundary component . B� associated with a subset of simple roots .� ⊂ �. Recall 
that we can naturally identify . � with a set of simple roots for . s�. Thus, a boundary 
component of .B� is determined by a subset .� ⊂ � ⊂ � and in fact coincides 
with the boundary component .B� of M associated with . �. One gets an inclusion
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of totally geodesic submanifolds .B� ⊂ B� ⊂ M . Let  .H� be a connected closed 
subgroup of . S� acting isometrically on . B� . Then, its canonical extension .H�

� is a 
connected closed subgroup of . S� acting isometrically on . B�, so we can consider 
its canonical extension to M , which we denote by .(H�

� )�. This construction turns 
out to be the same as directly extending the action of .H� from . B� to the whole M , 
that is, .(H�

� )� = H�
� (cf. [31, Lemma 4.2]). Roughly speaking, the composition of 

canonical extensions is a canonical extension. 

Remark 8 The canonical extension method described above admits an interesting 
version that allows to enlarge submanifolds from boundary components to the whole 
symmetric space. This procedure preserves important geometric properties such as 
the constancy of the mean curvature or isoparametricity, as was shown in [35]. More 
recently, another remarkable extension method of submanifolds and actions in the 
context of symmetric spaces of noncompact type has been discovered [41]. In this 
case, the extension does not apply to boundary components, but to certain totally 
geodesic and flat submanifolds. As a by-product of this method, the first examples of 
inhomogeneous isoparametric hypersurfaces in any symmetric space of noncompact 
type and rank higher than two were obtained. 

6.4 The Nilpotent Construction Method 

Apart from the canonical extension, Berndt and Tamaru proposed in [15] another 
method for constructing cohomogeneity one actions from the parabolic subgroups 
of G. Although this procedure was originally formulated for an arbitrary subset of 
simple roots .� ⊂ �, it will be enough to consider subsets of cardinality . |�| =
|�| − 1, that is, those giving rise to maximal proper parabolic subgroups of G. 

Let .� = � \ {αj }, for some .αj ∈ �, and consider the dual vector .Hj ∈ a of . αj , 
defined by .αi(H

j ) = δij . The subalgebra . n� admits a natural gradation .
⊕

ν≥1 n
ν
�, 

where .nν
� = ⊕

λ(Hj )=ν gλ. Note that .λ(Hj ) = ν if and only if . λ has coefficient . ν in 

. αj when expressed as a sum of simple roots. Suppose that . v is a subspace of . n1� of 
dimension .dim v ≥ 2. Then, .n�,v = n� � v is a subalgebra of . n�. Denote by . N�,v

the corresponding connected Lie subgroup of . N�. Assume the following conditions 
hold: 

(NC1) .NM�(n�,v) acts transitively on .B� = M� · o. 
(NC2) .NK�(n�,v) = NK�(v) acts transitively on the unit sphere of . v. 

Then, the group 

. H�,v = N0
L�

(n�,v)N�,v = N0
M�

(n�,v)A�N�,v

acts on M with cohomogeneity one and a singular orbit .H�,v·o. Here, .N0(·) denotes 
the connected component of the identity of a normalizer. In this case, we say that the 
action of .H�,v on M has been obtained by nilpotent construction from the choices
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of . � and . v. Moreover, it was proved in [15] that if two subspaces . v1, v2 ⊂ n1�
giving rise to actions by nilpotent construction are conjugate by an element in . K�, 
the actions of the corresponding groups .H�,v1 ,H�,v2 on M are orbit equivalent (via 
the same element). 

Remark 9 Conditions (NC1)–(NC2) have geometric meaning. Condition (NC1) 
implies that the orbit .H�,v · o contains the boundary component . B�, and hence 
its normal space can be identified with . v, i.e., .νo(H�,v · o) ∼= v. Then, condition 
(NC2) means that the slice representation of .H�,v (i.e., the action of the group of 
differentials of the isometries in .H�,v on .νo(H�,v · o) ∼= v) is of cohomogeneity 
one on the Euclidean space .νo(H�,v · o) ∼= v, with orbits given by the origin and 
concentric spheres. Since an isometric action has the same cohomogeneity as its 
slice representation, we see that both conditions (NC1)–(NC2) imply that .H�,v acts 
on M with cohomogeneity one, as claimed above. 

Remark 10 Subspaces of . n1� satisfying condition (NC1) (respectively, (NC2)) 
have been called admissible (resp. protohomogeneous) in [32] and [91]. We observe 
that if M has rank one, then any proper subset . � of .� = {α1} is necessarily 
the empty set, and hence, any proper boundary component is a point. Therefore, 
the admissibility condition (NC1) is trivially satisfied. Thus, for rank one spaces, 
the nilpotent construction amounts to the determination of protohomogeneous 
subspaces. For these spaces, .K0

� = K0
∅ = K0, fromwhere one can see that condition 

(NC2) is equivalent to the definition of protohomogenous subspace given in Sect. 5. 

The complete determination of all possible subspaces . v satisfying conditions 
(NC1)–(NC2) for a specific symmetric space is usually a very difficult task. Indeed, 
as commented in Sect. 5, this was even hard in the case of the quaternionic 
hyperbolic spaces, where condition (NC1) did not play any role. 

As before, it is important to determine what happens when one considers an 
action on a boundary component . B� obtained by nilpotent construction, and then 
one extends it to M . This turns out to be equivalent to an action obtained via 
nilpotent construction on M . More precisely, let .αj ∈ � ⊂ �. Let . H� be a subgroup 
of . S� obtained by the nilpotent construction method applied to the symmetric 
space . B�. Then the subgroup .H�

� of G obtained by canonical extension of the 
.H�-action to M acts on M with the same orbits as the Lie group . H�\{αj },v =
N0

L�\{αj }(n�\{αj },v)N�\{αj },v obtained by nilpotent construction applied to M , for  

certain subspace . v of .n1�\{αj } of .dim v ≥ 2. For further details and a proof, see [31, 
Lemma 4.3]. 

6.5 The Classification of Cohomogeneity One Actions 

A general procedure to classify cohomogeneity one actions on a given symmetric 
space of noncompact type .M ∼= G/K (not necessarily irreducible) goes as
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follows. Assume we have a connected Lie subgroup H of G acting on M with 
cohomogeneity one. If the H -action produces a regular foliation, then the H -action 
is orbit equivalent to one of the actions described in Sect. 6.1, as explained in that 
subsection. Thus, let us suppose that the action of H has a singular orbit. The Lie 
algebra . h of H is contained in some maximal proper subalgebra . q of . g. By a result 
of Mostow [73], there are two possibilities for . q: it is either a maximal proper 
reductive subalgebra or a maximal proper parabolic subalgebra of . g. Denote by Q 
the connected subgroup of G with Lie algebra . q. Then: 

(a) If . q is a maximal proper reductive subalgebra of . g, then Q acts with coho-
mogeneity one and the same orbits as the H -action, one of them being totally 
geodesic (which is the singular one if M is irreducible and .M �= RHn), as 
shown in [15, Theorem 3.2]. 

(b) If . q is a maximal proper parabolic subalgebra of . g, then the H -action is 
orbit equivalent to an action obtained by canonical extension or by nilpotent 
construction, as proved by Berndt and Tamaru in [15, Theorem 5.8]. 

Using this approach, along with a careful analysis of the nilpotent construction, 
allowed for the classification of the cohomogeneity one actions on several symmet-
ric spaces of noncompact type and rank 2, namely, on 

.

SL3(R)/SO3, SL3(C)/SU3, SL3(H)/Sp3, SO5(C)/SO5,

G2
2/SO4, GC

2 /G2, SO0
2,n/SO2SOn, SU2,n/S(U2Un).

(4) 

These classifications were obtained in the series of papers [8, 15, 91]. 
When trying to implement this approach in spaces of rank greater than 2, it 

turns out that one can apply a rank reduction procedure. Roughly speaking, if 
the H -action is orbit equivalent to the canonical extension of some action on a 
boundary component, we can apply the same procedure as before recursively until 
we get to an action that can no longer be retrieved by canonical extension. Thus, 
every cohomogeneity one action with a singular orbit can ultimately be obtained 
by nilpotent construction or by extending an action of cohomogeneity one with a 
totally geodesic singular orbit on a boundary component of M . In the latter case, as 
follows from the discussion in Sect. 6.2, the action being extended is of one of the 
following two types: 

(i) A cohomogeneity one action with a totally geodesic singular orbit on an 
irreducible boundary component .B� of M and hence orbit equivalent to one 
of the actions classified in [13] in terms of certain reflective submanifolds and 
some exceptions related to . G2. 

(ii) A cohomogeneity one action with a diagonal totally geodesic submanifold on a 
reducible boundary component .B{αj ,αk} ∼= B{αj } × B{αk} ∼= FHn × FHn, given  
by a connected Lie group with Lie algebra .sj,k,τ = {X + τX : X ∈ s{αj }}, 
where .τ : s{αj } → s{αk} is a Lie algebra isomorphism between the isometry Lie 
algebras of both factors of .B{αj ,αk}.
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As a consequence of all the facts sketched above in this section, we have recently 
obtained the following structural result in [31, Theorem A]. 

Theorem 10 (Cohomogeneity One Actions on Symmetric Spaces of Noncom-
pact Type) Let .M ∼= G/K be a symmetric space of noncompact type, and let H 
be a connected closed subgroup of G. Then, H acts on M with cohomogeneity one 
if and only if the H -action is orbit equivalent to one of the following: 

(FH) An action inducing a regular codimension one foliation of horospherical 
type 

(FS) An action inducing a regular codimension one foliation of solvable type 
(CEI) The canonical extension of a cohomogeneity one action with a totally 

geodesic singular orbit on an irreducible boundary component 
(CER) The canonical extension of a cohomogeneity one diagonal action on a 

reducible boundary component of rank two with two homothetic factors 
(NC) An action obtained by nilpotent construction 

Remark 11 Cases (CEI) and (NC) in the previous theorem may overlap. Indeed, 
the nilpotent construction method often produces actions that can be obtained by 
canonical extension. So far, the only spaces where the nilpotent construction is 
known to produce actions that cannot be obtained by any other methods are the 
hyperbolic spaces of nonconstant curvature, .G2

2/SO4 and .GC

2 /G2. 

Remark 12 Although the moduli space of cohomogeneity one actions producing 
regular foliations has been completely determined (see Sect. 6.1), the study of the 
moduli space of actions with a singular orbit is much more involved. Note that in 
Sect. 6.3 we have only stated sufficient conditions for two canonical extensions to be 
orbit equivalent on M . Despite two actions not being orbit equivalent on a boundary 
component, it could happen that their canonical extensions could be orbit equivalent. 
It may also happen that two orbit equivalent actions could produce canonical 
extensions which are not orbit equivalent in M (if the equivalence in the boundary 
component .B� had been obtained by an isometry in .Isom(B�) \ Isom(B�)0). 
Thus, determining the orbit equivalence classes involves additional difficulties (see 
Problem 3 in Sect. 7). 

As an application of Theorem 10, we derived in [31] the classification of 
cohomogeneity one actions on the family of spaces .SLn+1(R)/SOn+1. We recall 
that .SLn+1(R)/SOn+1 has rank n. The associated root space decomposition of 
.g = sln+1(R) satisfies .g0 = a and .dim gλ = 1, for any root .λ ∈ �. 

Theorem 11 (Cohomogeneity One Actions on .SLn+1(R)/SOn+1) Let . M ∼=
SLn+1(R)/SOn+1, .n ≥ 1, and let .� = {α1, . . . , αn} be a set of simple roots for 
.sln+1(R) whose Dynkin diagram is
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Table 7 Actions on .SLn+1(R)/SOn+1 obtained by canonical extension 

.h� .� .B� .codim(H�
� · o) Comments 

.k{αj } ∼= so2 .{αj } .RH2 2 . 1 ≤ j ≤ n

.slk−j+1(R) ⊕ R .{αj , . . . , αk} .SLk−j+2(R)/SOk−j+2 .k − j + 1 . 1 ≤ j < k ≤ n

.sp2(R) .{αj , αj+1, αj+2} .SL4(R)/SO4 3 . 1 ≤ j ≤ n − 2

.sj,k,τ
∼= sl2(R) .{αj , αk} .RH2 × RH2 2 . |k − j | > 1

Any cohomogeneity one action on M is orbit equivalent to one of the following: 

(FH) The action of the connected subgroup of .SLn+1(R) with Lie algebra . (a��)⊕
n, for some line . � of . a. 

(FS) The action of the connected subgroup of .SLn+1(R) with Lie algebra . a⊕ (n�
gαj

), for some simple root .αj ∈ �. 
(CE) The canonical extension .H�

� of the action of the connected subgroup .H� of 
.SLn+1(R) on a boundary component . B�, for one of the cases in Table 7. 

Theorem 10 can also be used to address the classification problem on reducible 
symmetric spaces by allowing us to restrict our analysis to the classification problem 
on each irreducible factor. It turns out that actions of the types (FS), (CEI), and, 
importantly, (NC) split well with respect to the de Rham decomposition of a 
reducible symmetric space, so they are product actions. We emphasize that a result 
analogous to Theorem 12 below is not yet known for compact symmetric spaces 
(see Problem 5 in Sect. 7). 

Theorem 12 (Cohomogeneity One Actions on Reducible Symmetric Spaces of 
Noncompact Type) Let M be a symmetric space of noncompact type with de Rham 
decomposition .M = M1 × · · · × Ms , where .Mi = Gi/Ki , .i = 1, . . . , s, and let 
.G = ∏s

i=1 Gi . Then, a cohomogeneity one action on M is orbit equivalent to one 
of the following: 

(Prod) The product action of a subgroup .Hj × ∏s
i=1
i �=j

Gi of G, where .Hj is 

a connected Lie subgroup of .Gj that acts with cohomogeneity one on the 
irreducible factor . Mj . 

(FH) The action of the connected subgroup of G with Lie algebra .h = (a��)⊕n, 
for some line . � of . a. 

(CER) The canonical extension of a cohomogeneity one diagonal action on a 
reducible boundary component of M of rank two with two homothetic factors. 

Theorem 12 can be applied to derive explicit classifications on any product of 
symmetric spaces of noncompact type for which we already have the complete list of 
cohomogeneity one actions (namely, all rank one spaces studied in Sect. 5, the rank 
two spaces in (4), and the spaces .SLn+1(R)/SOn+1). As a very particular instance 
of these possible applications, we state the following classification of homogeneous 
hypersurfaces on any finite product of real hyperbolic spaces:
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Theorem 13 (Homogeneous Hypersurfaces in Products of Real Hyperbolic 
Spaces) A homogeneous hypersurface of .M = RHn1 × · · · ×RHnr is congruent to 
one of the following: 

(FH) A leaf of a regular codimension one foliation of horospherical type 
(FS) An extrinsic product .RHnj −1 × ∏

i �=j RH
ni , where .RHnj −1 is totally 

geodesic in .RHnj , or one of its equidistant hypersurfaces 
(CEI) A tube around the extrinsic product .RHk × ∏

i �=j RH
ni , where .RHk is 

totally geodesic in .RHnj , for  some . k ∈ {0, . . . , nj − 2}
(CER) A tube around the extrinsic product .�RHnj × ∏

i �=j,k RH
ni , where 

. �RHnj = {(p, ϕ(p)) : p ∈ RHnj }

is a totally geodesic real hyperbolic space diagonally embedded in .RHnj ×RHnk , 
for two indices j , k with .nj = nk and where . ϕ is a homothety between .RHnj and 
. RHnk

Note that even in the simplest case of a product of two hyperbolic planes, 
.M = RH2 × RH2, the classification of homogeneous hypersurfaces did not seem 
to be previously known (see [46] for a recent alternative approach via isoparametric 
hypersurfaces). In this particular case, there are uncountably many cohomogeneity 
one actions up to orbit equivalence, due to the existence of actions of horospherical 
type, which are determined by the choice of a line . � in the 2-dimensional space 
. a. Apart from these, there are exactly other three cohomogeneity one actions (up 
to orbit equivalence) if both factors of M are isometric and exactly five actions 
otherwise: 

(FS) Two of them producing foliations with the totally geodesic codimension one 
leaf .RH1 ×RH2 or .RH2 ×RH1, respectively (being both orbit equivalent if and 
only if both factors of M are isometric) 

(CEI) Other two with the totally geodesic singular orbits .{o1} × RH2 or . RH2 ×
{o2}, respectively (again, both orbit equivalent when both factors are isometric) 

(CER) The diagonal action of .SO0
1,2

∼= SL2(R) on M , which has a diagonal 
totally geodesic .RH2 as singular orbit 

It is interesting to compare this result with the situation in the compact dual 
of M , namely, the product of two round spheres .S2 × S

2. Here, by a result of 
Urbano [100] (who actually classified isoparametric hypersurfaces in this space), 
the only homogeneous hypersurfaces are dual analogs to the examples (CEI) and 
(CER) above. Again, it is important to recall that the generalization of Urbano’s 
classification of homogeneous hypersurfaces for products of several spheres of 
higher dimensions (i.e., the compact analog of Theorem 13) is still outstanding.
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7 Open Problems 

We include a list of open problems and questions related to the investigation of 
homogeneous hypersurfaces in symmetric spaces: 

(1) Analyze the nilpotent construction for each symmetric space of noncompact 
type. This, along with the structural result in Theorem 10, would allow to 
complete the classification of cohomogeneity one actions in this setting. Due 
to the difficulty of this problem, we can distinguish two main cases: 

(a) For spaces whose isometry group is a split semisimple Lie group, we 
expect that the nilpotent construction leads to various linear algebraic 
problems (each one depending on a certain class of representations) whose 
solution may be achieved following the lines of the analogous problem for 
.SLn(R)/SOn. 

(b) For the remaining spaces, the linear algebraic problems involved are more 
complicated, but we expect that the combination of Solonenko’s ideas in [91] 
with the ones used for .SLn(R)/SOn in [31] may eventually lead to a 
complete classification. 

(2) Is there any cohomogeneity one action on a symmetric space of noncompact 
type, rank at least 2, and of non-(. G2)-type that can be obtained by nilpotent 
construction but not as a canonical extension? 

(3) Investigate the congruence problem of homogeneous hypersurfaces, or, equiv-
alently, determine when two cohomogeneity one actions are orbit equivalent. 
Whereas for actions of foliation type this problem has already been solved 
in [92], an eventual positive answer to Question (2) would need a specific (but 
probably easy) investigation. However, the analysis of the other types of actions 
seems more difficult. In particular, one would need to address the following 
issues: 

(a) Given a rank two reducible boundary component .B�
∼= FHn × FHn of M , 

determine when two different isomorphisms . τ1 and . τ2 between the isometry 
Lie algebras of the two homothetic factors .FHn give rise to orbit equivalent 
canonical extensions of type (CER). 

(b) Can two orbit equivalent cohomogeneity one actions with totally geodesic 
singular orbits on an irreducible boundary component produce non-orbit 
equivalent canonical extensions of type (CEI)? If the answer is affirmative, 
one would probably have to revisit Berndt and Tamaru’s classification of 
cohomogeneity one actions with totally geodesic singular orbits [13] in order 
to determine the moduli space of actions up to strong orbit equivalence (i.e., 
up to orbit equivalence by isometries in the connected component of the 
identity of the isometry group). This may entail an analysis of a strong con-
gruence problem of Leung’s classification of reflective submanifolds [66].
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(4) Determine the extrinsic geometry of homogeneous hypersurfaces of symmetric 
spaces of noncompact type. As an application, one may obtain the classification 
of homogeneous minimal hypersurfaces. 

(5) Leaving aside the noncompact setting, classify cohomogeneity one actions on 
reducible symmetric spaces of compact type. See [63] for information on this 
problem. 

(6) Initiate the study of homogeneous hypersurfaces of locally symmetric spaces, 
both of compact and noncompact types. 

(7) Derive structure results for cohomogeneity one actions on symmetric spaces 
of mixed type, including noncompact spaces with Euclidean factors (e.g., 
.GL+ 

n (R)/SOn). 
(8) Obtain characterizations of (certain families of) homogeneous hypersurfaces 

by (both extrinsic and intrinsic) geometric properties, such as isoparametricity, 
constancy of principal curvatures, curvature adaptedness, or having an Einstein 
or Ricci soliton induced metric, cf. [42, 75]. Also, obtaining characterizations of 
the inhomogeneous isoparametric examples known in most symmetric spaces 
would be very interesting, in that this would probably entail the introduction 
of new techniques in submanifold geometry of symmetric spaces. Specifically, 
although isoparametric hypersurfaces of a product of two real hyperbolic 
planes turn out to be (open subsets of) homogeneous hypersurfaces [46], for 
a product of three hyperbolic planes, we know the existence of inhomogeneous 
examples [41]. 

(9) In this survey, we assumed actions to be proper and homogeneous submanifolds 
to be closed and embedded. Under which circumstances and for which ambient 
spaces can one guarantee that nonproper cohomogeneity one actions have the 
same orbits as proper cohomogeneity one actions? Can one prove that on a 
simply connected ambient space there do not exist nonembedded or nonclosed 
homogeneous hypersurfaces? 
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First Dirichlet Eigenvalue and Exit Time 
Moments: A Survey 

Vicent Gimeno and Ana Hurtado 

Abstract In this paper we summarize recent results concerning the connection 
between the .L1-moment spectrum associated with a domain D in a Riemannian 
manifold and its Dirichlet spectrum. In particular, we will expose how to obtain 
estimations of the first Dirichlet eigenvalue of D in a Riemannian manifold with 
controlled geometry (or in a submanifold of it) via the study of the so-called moment 
spectrum. 

Keywords First Dirichlet eigenvalue · Exit time moment spectrum · Laplace 
operator · Geodesic ball 

1 Introduction 

In Riemannian geometry, the study of partial differential equations and differential 
operators on Riemannian manifolds plays a central role. One of the most celebrated 
differential operator, used to build up partial differential equations, is the Laplacian. 
Given a complete Riemannian manifold .(M, g), the Laplacian of a .C2-function . f :
M → R is given in local coordinates .(x1, · · · , xn) as 

. �f = 1√
det g

n∑

i,j=1

∂

∂xi

(√
det g gij ∂f

∂xj

)
.
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With the Laplacian, the classical heat equation, for instance, can be formulated 
in a complete Riemannian manifold. In particular it can be studied the problem of 
finding a heat diffusion function .v : [0, T ) × M → R solution to the following 
problem: 

.

{
∂v
∂t

= �v,

v(0, x) = v0(x),
(1) 

where . v0 is a given real function defined on M . It is well-known (see [19]) that when 
. v0 is a bounded positive continuous function, Eq. (1) has a solution given by 

. v(x, t) =
∫

M

pt(x, y)v0(y)dV (y),

where .pt (x, y) is the heat kernel of M . Similarly, the heat problem with Dirichlet 
boundary condition in a precompact domain .D ⊂ M with smooth boundary has 
solution 

. v(x, t) =
∫

D

pD
t (x, y)v0(y)dV (y),

where .pD
t (x, y) is the Dirichlet heat kernel of D and is given by (see [8], for 

instance) 

. pD
t (x, y) =

∞∑

i=1

e−iλi (D)tφi(x)φi(y).

Here .{φi} is a complete orthonormal basis of .L2(D) made up of eigenfunctions 
for .−� with Dirichlet boundary condition on D and .{λi(D)} are the corresponding 
eigenvalues. 

Recall that given an open precompact domain D with smooth boundary . ∂D, if  
there exists a .C∞ function f on D, not identically zero, solution of the Dirichlet 
boundary value problem 

.

�f + λf = 0 on D

f |∂D = 0,
(2) 

for a real number . λ, then . λ is called an eigenvalue of .−� with respect to 
the Dirichlet boundary condition and f an eigenfunction. In this problem, the 
eigenvalues are positive with finite multiplicity, and we obtain a discrete increasing 
sequence of eigenvalues .{λi(D)} satisfying 

.0 < λ1(D) < λ2(D) ≤ · · · with λi → ∞ when i → ∞,
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with each distinct eigenvalue repeated according with its multiplicity. Then we can 
construct a complete orthonormal basis of .L2(D) consisting on eigenfunctions . {φi}
with corresponding eigenvalues .{λi(D)}. 

The lowest eigenvalue .λ1(D) is called, unsurprisingly, the first eigenvalue of 
D, and it has a positive associated eigenfunction .φ1 : D → R. The influence of 
geometric properties, such as curvature bounds and isoperimetric inequalities, on 
the first eigenvalue, the spectrum of the Laplacian, or the heat kernel, has been 
widely studied along the last century. See [8, 18, 19] for a detailed discussion. 

On the other hand, with the heat kernel, a (sub)Markov process . Xt on M , 
called Brownnian motion, can be constructed with the transition density . pt . The  
influence of geometric properties on the behavior of the Brownian motion including 
recurrence, transience, and stochastic completeness has also been largely studied. 
We refer to [18] for a comprehensive survey on the topic. Furthermore, let . Px , 
.x ∈ M , be the associated family of probability measures weighting those Brownian 
paths beginning at x. The first exit time . τD of a bounded domain .D ⊂ M for . Xt is 

. τD = inf{t ≥ 0 : Xt /∈ D}.

Hence, by using the expectation operator . Ex with respect to . Px , the  moment 
spectrum of D can be defined as the .L1-norm of the k-th moment of . τD (see [24]) 

. mspec(D) = {Ak(D)}k∈N = {‖Ex[τ k
D]‖L1}k∈N,

with 

. ‖Ex[τ k
D]‖L1 =

∫

D

E
x[τ k

D]dV.

In this survey we discuss the relation between the moment spectrum of D and 
the first eigenvalue .λ1(D) of .−� with Dirichlet boundary. 

In Sect. 3 it is shown that the moment spectrum determines the first eigenvalue of 
the Laplacian, in the sense that the knowledge of .mspec(D) implies the knowledge 
of .λ1(D). More precisely, in Theorem 1, Theorem 4, and Eq. (18), explicit formulae 
are provided for the expression of .λ1(D) in terms of .mspec(D). 

We must remark here that in some cases, it is harder to solve the eigenvalue 
problem and determine the first eigenvalue than to obtain the whole moment 
spectrum. For instance, there is no analytic formula for the first eigenvalue of 
a geodesic ball even in the hyperbolic space of constant sectional curvature of 
dimension 2. 

The problem of finding the moment spectrum can be drastically simplified in the 
presence of a large group of isometries. In Sect. 2.3, it is shown how to compute the 
moment spectrum of a geodesic ball in a rotationally symmetric manifold. Hence, 
the first eigenvalue of a rotationally symmetric geodesic ball can be computed 
(see Theorem 4 and Eq. (18) again). This computation is used to obtain in Sect. 3 
Theorem 7, where several upper bounds for the first eigenvalue of a geodesic ball
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are obtained in terms only of the area functions of the geodesic spheres in the line of 
[16]. Finally, in Sect. 4, we explain how to use this bridge between moment spectrum 
and first eigenvalue to obtain upper and lower bounds for the first eigenvalue from 
geometric comparisons. These comparisons can be either intrinsic or extrinsic. In 
the intrinsic case, the first eigenvalue of a domain in a manifold with bounded 
sectional (or Ricci) curvatures is estimated by the first eigenvalue of a geodesic 
ball in a suitable model space. In the extrinsic one, we consider domains in a 
submanifold with controlled mean curvature immersed in an ambient manifold with 
bounded curvatures. 

2 Preliminaries: Poisson Hierarchy, Green Operator, 
Moment Spectrum, and Model Spaces 

2.1 Poisson Hierarchy 

Classically, from mathematical physics, given a precompact domain .D ⊂ R
2 with 

smooth boundary, the torsional rigidity .A1(D) of D is the torque required per unit 
angle of twist and per unit length when twisting an elastic beam of uniform cross 
section D; see  [1, 31]. The torsional rigidity of D can be calculated as the .L1-norm 
of the expectation of the first exit time function 

. A1(D) = ‖Ex[τD]‖1 =
∫

D

E
x[τD]dV.

Given a precompact domain .D ⊂ M with smooth boundary, the mean exit time 
function 

. E : D → R, x 
→ E
x[τD],

is characterized (see [15]), as the solution of the following second-order PDE, with 
Dirichlet boundary data 

.

�E + 1 = 0, in D,

E|∂D = 0.
(3) 

This characterization of the first moment of the exit time can be extended to any 
k-th moment. There exists a sequence .{uk} of smooth functions such that 

.Ak(D) = ‖Ex[τ k
D]‖1 =

∫

D

uk(x)dV (x).
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This sequence .{uk} is the so-called (see [14]) Poisson hierarchy for D. The  
functions .{uk} of the Poisson hierarchy can be obtained inductively as the solution 
of the following boundary value problems on D. First we let 

. u0(x) = 1, for all x ∈ D,

and then for .k ≥ 1, 

.

�uk + kuk−1 = 0, on D,

uk|∂D
= 0.

(4) 

We are going to focus our study in .{Ak(D)}∞k=1 which is the .L1-moment 
spectrum of D. But in some parts of this survey, we will also consider the .Lp-
moment spectrum of D, which can be defined as the following sequence of integrals: 

. Ap,k(D) :=
( ∫

D

(uk(x))pdV

) 1
p

, k = 1, 2, . . . ,∞.

2.2 Green Operator 

Let D be a bounded open subset with smooth boundary .∂D �= ∅ of a Riemannian 
manifold .(M, g). The Green operator .GD : L2(D) → L2(D) is given  by  

. GD(f )(x) =
∫ ∞

0

∫

D

pD
t (x, y) f (y)dV dt =

∫

D

gD(x, y) f (y)dV,

where .pD
t (x, y) is the heat kernel of the operator .−� and 

. gD(x, y) =
∫ ∞

0
pD

t (x, y)dt

is the Green function of D. The Green operator is a bounded self-adjoint operator 
in .L2(D), and it is the inverse of . −�. Thus for any .f ∈ L2(D), there is a unique 
solution .u = GD(f ) to the equation .−�u = f . Applying .GD to the equation 

. �u + λi(D)u = 0,

the eigenvalue .λi(D) of D is given by .λi(D) = u/GD(u). This kind of quotients 
for a suitable function u can be used to obtain estimations of the eigenvalue . λ1(D)

as we will see in Sect. 3.
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In the sequel, we will omit the superscript D in the notation of the Green operator 
.GD by simplicity in the notation. 

2.3 Radial Green Operator and Poisson Hierarchy for 
Geodesic Balls of Model Spaces 

The problem of finding .{uk} and .{Ap,k(D)} for a given smoothly bounded 
precompact domain .D ⊂ M is, in general, hard to solve. This problem can be 
simplified when certain symmetries are assumed. In particular, the problem can 
be completely and explicitly solved when the metric tensor of M is rotationally 
symmetric around a point .p ∈ M . We will say that the metric tensor of M is 
rotationally symmetric around p if the metric spheres . SR of radius R centered 
at p have maximal dimension of the isometry group and, hence, in the case of 
being simply connected are isometric to some .n− 1-dimensional sphere of constant 
sectional curvature. Rotationally symmetric metrics can be constructed by using 
warping products as follows: 

Definition 1 (See [17, 18, 30]) A . w−model .Mm
w is a product manifold 

. [ 0, �)×S
m−1
1 / ∼, (t1, θ1) ∼ (t2, θ2) if (t1, θ1) = (t2, θ2) or t1 = t2 = 0,

endowed with the warping product metric 

. dr ⊗ dr + w2(r)dθ ⊗ dθ,

where .dθ ⊗ dθ is the standard metric of constant sectional curvature 1 in the sphere 
.S

m−1
1 and w is the warping function .w : [ 0, �) → R+ ∪ {0} with .w(0) = 0, 

.w′(0) = 1, .w(k)(0) = 0 for all even derivation orders k and .w(r) > 0 for all 

. r > 0 . The point .ow = π−1(0), where . π denotes the projection onto .[ 0, �), is  
called the center point of the model space. The value . � is called the radius of the 
model space. 

The conditions on w and its derivatives at 0 in the above definition are required to 
ensure a smooth metric tensor on . ow. Observe that the metric of a model space is 
rotationally symmetric around the center point . ow, and moreover, if the model space 
has radius .� = ∞, then the center point . ow is a pole of . Mm

w . 

Remark 1 The simply connected space forms .Km(b) of constant curvature b can 
be constructed as . w−models with warping functions 

.w(r) = wb(r) =

⎧
⎪⎪⎨

⎪⎪⎩

1√
b
sin(

√
b r) if b > 0

r if b = 0
1√−b

sinh(
√−b r) if b < 0,

(5)
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and radius .� = ∞ for .b ≤ 0 and .� = π/
√

b for .b ≥ 0. Note that for .b > 0 the 
warping function . wb induces a smooth metric tensor on 

. 

[
0, π/

√
b
]

× S
m−1
1 / ∼,

where .(t1, θ1) ∼ (t2, θ2) if .(t1, θ1) = (t2, θ2), or  .t1 = t2 = 0, or  .t1 = t2 = π/
√

b. 
For . b ≤ 0 any center point is a pole. 

A complete description of these model spaces can be found in [17, 18, 22, 23, 28]. 
The sectional curvatures in the radial directions from the center point are determined 
by the radial function .−w′′

w
(r(p)) for any .p ∈ Mm

w . Moreover, the mean curvature 
of the distance sphere of radius R from the center point is a radial function given by 

.ηw(R) = w′(R)

w(R)
= ln′(w(R)). (6) 

The solution to the boundary value problem (4) defined on the geodesic R-ball 
. Bw

R of radius R centered at .ow ∈ Mm
w is computed in [20], and the functions . uk are 

given by 

.uk(r) = k

∫ R

r

∫ t

0 wm−1(s) uk−1(s) ds

wm−1(t)
dt. (7) 

Moreover, by applying the Divergence theorem 

.Ak(B
w
R ) = − 1

k + 1
u′

k+1(R)Vol(Sw
R ), (8) 

where . Sw
R is the geodesic R-sphere in . Mm

w . Hence, the Poisson hierarchy .{uk} and 
the moment spectrum .{Ak(B

w
R )} can be always explicitly computed, and it depends 

only on the warping function w. Observe moreover that the Poisson hierarchy . {uk}
consists of radial functions for geodesic balls of a model space. This is in fact a 
particular case of a broader phenomenon: given an isometry .φ : M → M such that 
for a some precompact domain .D ⊂ M with smooth boundary 

. φ(D) = D, φ(∂D) = ∂D,

any function .uk : D → R satisfying (4) must be invariant under the action of . φ, i.e., 

.uk = uk ◦ φ. (9) 

The above equality can be deduced because since . φ is an isometry, . �(uk ◦ φ) =
(�uk) ◦ φ and therefore .uk ◦ φ satisfies (4) as well. Finally the uniqueness of the 
solution of (4) implies equality (9).
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In a model space . Mm
w , the Green operator for radial functions on . Bw

R is given by 

.G(u)(r) =
∫ R

r

∫ t

0 wm−1(s) u(s)ds

wm−1(t)
dt, (10) 

and the moment functions . uk can be written recursively via the Green operator as 
.uk(r) = kG(uk−1)(r). Indeed, in [4] it is proved that for any bounded open subset 
D with smooth boundary .∂D �= ∅ in a Riemannian manifold, the sequence of the 
Poisson hierarchy for D can be written as 

. uk = k!Gk(1),

where G is the Green operator on D and .Gk = G ◦ · · · ◦ G k-times. 
In this context the Green operator has been used to obtain bounds of .λ1(Bw

R ) as 
can be seen in [2–4, 21, 32]. 

3 First Eigenvalue and Moment Spectrum 

In this section we collect some results that show how to obtain estimations of the 
first Dirichlet eigenvalue of a domain D in terms of its moment spectrum. The 
relationship between the moment spectrum and the Dirichlet spectrum is given by 
the equality (see [26] and see [4] for the weighted version) 

.Ak(D) = k!
∞∑

i=1

a2i

λk
i

, (11) 

where .ai = ∫
D

φi dV and .{φi} is a complete orthonormal basis in .L2(D) of 
eigenfunctions of .−� with associated eigenvalues .{λi} . In fact, using this formula, 
in [26] it is proved that:  

Theorem 1 The first Dirichlet eigenvalue .λ1(D) of any smoothly bounded precom-
pact domain .D ⊆ M can be directly extracted from the corresponding exit time 
moment spectrum .{Ak(D)}∞k=k0

as follows: 

. λ1(D) = sup

{
η ≥ 0 : lim

k→∞ sup
(η

2

)k Ak(D)

�(n + 1)
< ∞

}
.

In [21], Markvorsen, Palmer, and the second author study the problem of 
determining the first eigenvalue of a geodesic ball .Bw

R in a model space .Mm
w with 

pole . ow. For the radial functions .uk(r) defined on .D = Bw
R and given by (7),
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they proved that, since .uk(r) = kG(uk−1(r)) for the Green operator G in (10), 
the functions .

k uk−1
uk

(r) are increasing. Then, applying Barta’s inequality 

.
k uk−1

uk

(ow) ≤ λ1(B
w
R ) ≤ kAk−1(B

w
R )

Ak(B
w
R )

. (12) 

For k even the upper bound was generalized in [14] for a bounded open domain 
D with smooth boundary in a complete Riemannian manifold. When .k = 1, the  
above inequalities reads 

.
1

∫ R

0 qw(t) dt
≤ λ1(B

w
R ) ≤ vol(Bw

R )

A1(B
w
R )

, (13) 

where .qw(t) is the isoperimetric quotient defined by 

.qw(t) :=
∫ t

0 wm−1(s) ds

wm−1(t)
. (14) 

The lower bound was obtained in [7] for geodesic balls in the n-dimensional 
sphere .Sn(1), and later it was generalized for an arbitrary .Mm

w in [3]. Since, in this 
case, 

. 

∫ R

0
qw(t) dt = max

x∈Bw
R

u1(x),

this bound is also related with the following result of Del Grosso-Marchetti proved 
in [13]; see also [8]: 

Proposition 1 Let .D ⊂ M be a smoothly bounded precompact domain. Then 

. λ1(D) ≥ 1

max
x∈D

u1(x)
.

By using the specific expression of the Green function, it is proved in [4] that in the 
particular case of geodesic balls in rotationally symmetric manifolds, it can state the 
following: 

Theorem 2 Let . Bw
R be the geodesic ball of radius R in . Mm

w . Then, 

. max
x∈Bw

R

u1(x) =
∞∑

i=1

1

λradi (Bw
R )

where .
{
λradi (Bw

R )
}∞
i=1 is the set of eigenvalues associated with radial eigenfunctions.
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The upper bound in (12) gives a relation between the first Dirichlet eigenvalue 
and the torsional rigidity of a geodesic ball in a rotationally symmetric space. For 
domains in Euclidean space, this is the classical inequality of Pólya’s (see [31]; 
see [33, 34] for further developments), and it was generalized in [14] for a general 
bounded open domain D in a complete Riemannian manifold. Indeed, they prove 
that: 

Theorem 3 ([14]) Let .D ⊆ M be a bounded open domain with smooth boundary 
in a complete Riemannian manifold M . Then for every k, 

. λ1(D) ≤ (k!)2
(2k − 1)!

A2k−1(D)

A2
k(D)

Vol(D).

Relating the quotient before with the variance of the random variable . τ k
D given by 

the k-power of the first exit time from D, they also obtain that: 

Corollary 1 ([14]) Let D as before. For .k ∈ N, let  .Vark(D) be the .L1-norm of the 
variance of . τ k

D: 

.Vark(D) =
∫

D

(u2k − uk) dV . (15) 

Then, 

. λ1(D) ≤ (2k)! − (k!)2
(2k − 1)!

A2k−1(D)

Vark(D)
.

It is also established in [14] a lower bound for the first Dirichlet eigenvalue using 
the quantity . a21 appearing in (11) and the .L1-moment spectrum of a bounded open 
domain D with smooth boundary. Indeed, for all .k ≤ 1, 

.

(
k!a21
Ak(D)

)1/k

≤ λ1(D). (16) 

In the previous results, the value of the first eigenvalue of a domain is bounded 
from above or from below by geometric quantities involving the isoperimetric 
quotient, the torsional rigidity or the .L1-moment spectrum of the domain D. But  
the exact value of .λ1(D) can be obtained as a limit of some of these estimations. 
Indeed, the bounds in (12) improves as k increases, and we can obtain better and 
better estimates of .λ1(B

w
R ) since the functions . uk can be explicitly computed in this 

case (see, for instance, [3, 4, 7, 21, 32] for approximations in this line). Moreover, 
the exact value of .λ1(B

w
R ) is obtained in the limit:



First Dirichlet Eigenvalue and Exit Time Moments: A Survey 201

Theorem 4 ([21]) Let . Bw
R be the geodesic ball of radius R and center the pole . ow

in . Mm
w . Then, 

. λ1(B
w
R ) = lim

k→∞
k uk−1(0)

uk(0)
= lim

k→∞
kAk−1(B

w
R )

Ak(B
w
R )

,

where . uk are the functions defined by (7) and .{Ak(B
w
R )} is the .L1-moment 

spectrum of . Bw
R . Moreover, the radial .C2-function .g∞(r) := limk→∞ uk(r)

uk(0)
is an 

eigenfunction of the first eigenvalue. 

This result has been generalized in [4] for a bounded open domain D with smooth 
boundary in a (weighted) Riemannian manifold using the relation (11), and it is also 
generalized in [12]. By using the expression of the Green operator . G : L2(D) →
L2(D) in an orthonormal basis in .L2(D) of eigenfunctions of . −�, and studying 

the convergence of the sequence .k 
→ ‖Gk(f )‖
L2

‖Gk+1(f )‖
L2
, in [4] Bessa, Jorge, and the first 

author proved the following relation between the Green operator and the spectrum 
of the Laplacian: 

Theorem 5 Let D be a bounded open subset with smooth boundary .∂D �= ∅ in a 
Riemannian manifold .(Mm, g). Let G be the Green operator. Then, for any positive 
.f ∈ L2(D), 

.λ1(D) = lim
k→∞

‖Gk(f )‖L2

‖Gk+1(f )‖L2
. (17) 

Indeed, the previous theorem is stated in [4] in the boarder setting of weighted 
manifolds. Observe, moreover, that using .f = 1 in the above theorem, we can 
state that .L2-norm of the Poisson hierarchy is related with the first eigenvalue. In 
fact, 

.

λ1(D) = lim
k→∞(k + 1)

‖uk‖L2

‖uk+1‖L2
= lim

k→∞(k + 1)
A2,k(D)

A2,k−1(D)

= lim
k→∞

kA2,k−1(D)

A2,k(D)
.

(18) 

More recently Sarrion-Pedralva and the first author used in [16] the above 
techniques to obtain an upper bound for the first eigenvalue of a geodesic ball . BR

centered at a point p of a Riemmanian m-dimensional manifold. The main idea is 
to build up a model space .Mm

w with geodesic spheres of the same volume than the 
geodesic spheres included in . BR . Then using the first eigenfunction of .Bw

R in this 
model space and the Rayleigh quotient they show that: 

Theorem 6 ([16]) Let .(M, g) be a Riemannian manifold, let .p ∈ M with injectivity 
radius .inj(p), let . BR be the geodesic ball of radius R centered at p, and let .A(t) :=
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vol(St ) be the area function of the geodesic spheres centered at p. If  .R < inj(p), 
then the model space .Mm

w with warping function 

.w(t) =
(

vol(St )

vol(Sm−1
1 )

) 1
m−1

(19) 

has smooth metric tensor in . Bw
R and 

.λ1(BR) ≤ λ1(B
w
R ). (20) 

Furthermore, equality (20) is attained if and only if, for any .t ∈ (0, R), the mean 
curvature pointed inward .HSt of the geodesic sphere . St of radius t centered at p 
is a radial function. Namely, equality (20) is attained, if and only if, there exists a 
smooth function .h(t) such that 

. HSt = h(t) for any 0 < t < R.

Since the warping function given in (19) of the model space in the above theorem 
depends only on the area function of the geodesic spheres, we can rewrite the 
expression of the radial Green operator in (10) and the Poisson hierarchy of . Bw

R

in (7) in terms of this area function as follows: 

. G(u)(r) :=
∫ R

r

∫ t

0 A(s)u(s)ds

A(t)
dt, uk(r) = k

∫ R

r

∫ t

0 A(s) uk−1(s) ds

A(t)
dt.

(21) 

This allows us to provide the following theorem which makes use of almost every 
result listed in this survey for the comparison of the first eigenvalue and the Poisson 
hierarchy for geodesic balls in rotationally symmetric model spaces. 

Theorem 7 Let .(M, g) be a Riemannian manifold, let .p ∈ M with injectivity radius 
.inj(p), and let . BR be the geodesic ball of radius R centered at p. Let us denote by 
.{A1,k}∞k=0, .{A2,k}∞k=0 and .{Vk}∞k=0 the following sequences constructed recursively 
from the area function: 

. 

A1,k := ∫ R

0 uk(t)A(t)dt,

A2,k :=
(∫ R

0 u2k(t)A(t)dt
)1/2

,

Vk := ∫ R

0 (u2k(t) − uk(t)) A(t)dt,

with 

.uk(r) = k

∫ R

r

∫ t

0 A(s) uk−1(s) ds

A(t)
dt, u0 = 1.
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If .R < inj(p), then, for any .k ≥ 1, 

. λ1(BR) ≤ kA1,k−1

A1,k
, . (22) 

λ1(BR) ≤ (k!)2 
(2k−1)! 

A1,2k−1 

A2 
1,k 
A1,0, . (23) 

λ1(BR) ≤ (2k)!−(k!)2 
(2k−1)! 

A1,2k−1 

Vk 
. (24) 

Moreover, 

.

λ1(BR(p)) ≤ lim
k→∞

kA2,k−1

A2,k
,

λ1(BR(p)) ≤ lim
k→∞

kA1,k−1

A1,k
,

(25) 

where equality (25) is attained in if and only if, for any .t ∈ (0, R), the mean 
curvature pointed inward .HSt of the geodesic sphere . St of radius t centered at p is 
a radial function. 

Remark 2 Unless in this survey we focus our attention in the first Dirichlet 
eigenvalue, estimates of the following eigenvalues in terms of the moment spectrum 
can also be obtained; see [4, 12, 14]. 

4 Comparison Results for the First Eigenvalue 

An important problem in Riemannian geometry is to find good upper and lower 
estimates of the first Dirichlet eigenvalue of a domain in a Riemannian manifold 
M . A way to obtain such estimations, in contrast with the techniques used in the 
above section, is to establish comparison results. If we assume that M has controlled 
geometry, in the sense that some of its curvatures (or another interesting geometric 
quantity) are bounded from above or from below by the curvatures of a model space, 
one can obtain inequalities for the Laplacian of distinguished functions that provide 
estimations not only for the first Dirichlet eigenvalue but also for other geometric 
objects which are related with the Laplacian operator. These estimations are usually 
given in terms of the corresponding quantity for a geodesic ball in the model space 
that we are using to establish the comparison. Classical results in this direction are 
Cheng’s comparison theorems for the first eigenvalue of a geodesic ball . BR in a 
manifold with sectional curvatures (respectively, Ricci curvatures) bounded from 
above (respectively, from below) by a given constant [9, 10]. In this case, .λ1(BR) is 
bounded by the first eigenvalue of a geodesic ball in a simply connected real space 
form of constant sectional curvature.
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There is a vast literature in this subject; in this section we do not aim to give an 
exhaustive list of comparison results for the first eigenvalue of the Laplacian, but 
just to focus our attention in those which are most related to the ones in the previous 
section. 

Let us consider a complete Riemannian manifold .(Mm, g) and fix .p ∈ M . For  
any .x ∈ M − {p}, the sectional curvature of the two-planes .σx ∈ TxM that contain 
the tangent vector to a minimal geodesic from p to x is called the p-radial sectional 
curvature of M . In a model space . Mm

w , the  .ow-radial curvatures are determined 
by the radial function .−w′′(r)/w(r). In [21] it is established a generalization of 
Cheng’s eigenvalue comparison theorem for Riemannian manifolds with radial 
sectional curvatures bounded by the curvatures of . Mm

w . If  . g∞ is the eigenfunction 
of .λ1(Bw

R ) given in Theorem 4, then we can obtain a radial function on M by 
composing .g∞ with the distance function from the point p: .g(r) := g∞ ◦ r . 
Comparing the Laplacian in M of the function g with the Laplacian in .Mm

w of . g∞ it 
can prove the following: 

Theorem 8 ([21]) Let . BR be a geodesic ball of a complete Riemannian manifold 
.Mm with a pole p and suppose that the p-radial sectional curvatures of . Mm

are bounded from below (respectively, from above) by the .ow-radial sectional 
curvatures of a w-model space . Mm

w . Then 

.λ1(BR) ≤ (≥)λ1(B
w
R ) = lim

k →∞
kAk−1(B

w
R )

Ak(B
w
R )

, (26) 

where . Bw
R is the .ow-centered geodesic ball in . Mm

w . 

An alternative proof of this theorem can be done using the description of 
.λ1(D) given by McDonald and Meyers in Theorem 1 and the isoperimetric type 
inequalities for the exit time moment spectrum established in [20] that asserts that 
under the hypothesis of Theorem 8 

.
Ak (BR)

vol (SR)
≥ (≤)

Ak

(
Bω

R

)

vol
(
Sω

R

) , for all k ≥ 0. (27) 

Using this second strategy, if the model manifold .Mm
w is strictly balanced in the 

sense that .qw(r)ηw(r) > 1/m for all radius r , then equality in (26) for some fixed 
radius . R0 implies that .BR0 and .Bw

R0
are isometric. 

In a similar direction, it is shown in [25] that if a complete Riemannian manifold 
.Mm satisfies the moment comparison condition with constant curvature space form 
.K

m(b), .Ak(D) ≤ Ak(B) for all smoothly bounded domain .D ⊂ M with compact 
closure and all .k ∈ N, where B is the geodesic ball in .K

m(b) with the same volume 
of D, then 

.λ1(B) ≤ λ1(D).
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We point out that in [21], the comparison result in Theorem 8 is formulated in 
a more general context. The authors consider an unbounded complete and closed 
submanifold . P n with controlled mean curvature in a Riemannian manifold . Nm

with radial sectional curvatures bounded by a radial function. In this context, an 
estimation of the first Dirichlet eigenvalue of a extrinsic ball . DR , namely, the 
intersection of a geodesic ball of the ambient manifold with the submanifold P , 
is obtained in terms of the first eigenvalue of a geodesic ball in a suitable model 
space. However the construction of this model space of comparison in terms of the 
assumptions over P and M is very technical, so for clarity of exposition, we have 
only stated the corresponding intrinsic version. The details of the general statement 
can be seen in [21]. As a particular case of these more general statements for a 
Cartan-Hadamard manifold, applying the techniques in [11] (see also [5]), we have 
that: 

Theorem 9 ([21]) Let .Mm be a Cartan-Hadamard manifold, with sectional curva-
tures bounded from above by a constant .KM ≤ b ≤ 0. Let .p ∈ M be a pole in M 
and r the distance function from p. Let .P n ⊆ Mm be a complete and non-compact 
properly immersed submanifold with 

. − 〈∇r(x),HP (x)〉 ≤ h(r(x)),

for all .x ∈ P n, where .HP is the mean curvature of . P n and .h(r) is a radial smooth 
function. Suppose that 

.(n − 1) · √−b coth(R
√−b) ≥ n · sup

r∈[0,R]
h(r), (28) 

where we read .
√−b coth(R

√−b) to be .1/R when .b = 0. For any given extrinsic 
ball .DR(p) in . P n, we then have the following inequality: 

.λ1(DR) ≥ 1

4

(
(n − 1) · √−b coth(R

√−b) − n · sup
r∈[0,R]

h(r)

)2

. (29) 

Notice that when P is a minimal submanifold, we can take as bounding function 
.h(r(x)) = 0. In the intrinsic setting, when .P n = Nm, .HP = 0, and . DR =
BR , the classical result of McKean [27] for the fundamental tone of a Cartan-
Hadamard manifold is recovered. Moreover, Bessa and Montenegro observe in [5] 
an improvement of the bound (29) in the intrinsic setting as follows: 

Theorem 10 Under the intrinsic conditions with .Mm having sectional curvatures 
bounded from above by . b ≤ 0

.λ1(BR) ≥ 1

4

(
max

(m

R
, (m − 1) · √−b coth(R

√−b)
))2

. (30)
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Comparison results for the first eigenvalue of a domain can be also formulated 
assuming bounds for the mean curvature of the geodesic spheres of the manifold 
M instead of bounding the sectional or Ricci curvatures. Given a point .p ∈ M , 
for .R < inj(p), we denote by .HSR

the pointed inward mean curvatures of the R-
geodesic spheres centered at p in M . Notice that in a model space . Mm

w , . HSw
R

=
ηw(R) = w′(R)/w(R). With this weaker hypothesis, in [6] the first eigenvalue of 
a geodesic ball is compared with the first eigenvalue of a geodesic ball in a model 
space, and recently, it is shown in [29] the following: 

Theorem 11 Let .Mm be a complete manifold, and let .p ∈ M such that . inj(p) ≤
inj(ow) for . ow the center point of a rotationally symmetric space . Mm

w . Assume that 
for .R < inj(p), the mean curvature of the geodesic spheres in M satisfies that 

.HSt ≥ (≤)HSw
t

= w′(t)
w(t)

, (31) 

for all .0 < t ≤ R. Then, 

.λ1(BR) ≥ (≤)λ1(B
w
R ). (32) 

Equality in (32) implies that 

.HSt = HSw
t
, (33) 

for all .0 < t ≤ R, and then we have the following equalities: 

1. .uk = uw
k ◦rp on . BR for all .k ≥ 1, where . rp is the distance function from the point 

p in M and .{uk} and .{uw
k } are the Poisson hierarchy for . BR and . Bw

R , respectively. 
Hence, .uk = uw

k ◦ rp on . Bt for all .k ≥ 1 and for all .0 < t ≤ R. 
2. .vol (Bt ) = vol

(
Bw

t

)
and .vol (St ) = vol

(
Sw

t

)
for all .0 < t ≤ R. 

3. .Ak (Bt ) = Ak

(
Bw

t

)
, for all .k ≥ 1 and for all .0 < t ≤ R. 

The proof follows the lines of the proof of Theorem 8, so the authors previously 
shown that inequality (27) for the exit time moment spectrum is still valid under 
this weaker hypothesis on the mean curvature of geodesic spheres. In this setting, 
the equality between the first eigenvalues of the geodesic spheres of the manifold 
M and the model space .Mm

w gives the equality between the mean curvatures of 
the corresponding geodesic spheres instead of the isometry of the geodesic balls as 
happens in Theorem 8 where the radial sectional curvatures of M are bounded for 
the radial sectional curvatures of . Mm

w . Observe that this is coherent since bounds 
on the sectional curvatures of the manifold implies bounds on the mean curvature 
of its geodesic spheres, but the reciprocal is not true. Indeed, in [6] the authors 
construct a family of complete smooth metrics on . Rm non-isometric to the constant 
sectional curvatures b metrics of the simply connected space forms .Km(b) such 
that the geodesic balls . BR and .B

wb

R have the same first eigenvalue and the geodesic
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spheres . St and .S
wb
t for .0 < t ≤ R have the same mean curvatures (see also the 

examples in [4] and [29]). 
Finally, as a consequence of the comparison results obtained in [29] and the study 

of the equality case in the comparison, it is shown that: 

Corollary 2 ([29]) Under the assumptions of Theorem 11, the following equalities 
are equivalent: 

1. .λ1(BR) = λ1(B
w
R ). 

2. .Ak(BR) = Ak(B
w
R ), for all .k ≥ 1. 

3. .uk = uw
k ◦rp on . BR for all .k ≥ 1, where . rp is the distance function from the point 

p in M and .{uk} and .{uw
k } are the Poisson hierarchy for . BR and . Bw

R , respectively. 

Moreover, equality .HSt = HSw
t
for all .0 < t ≤ R implies any (and hence all) of 

the equalities . (1), . (2), and . (3). 
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Area-Minimizing Horizontal Graphs 
with Low Regularity in the Sub-Finsler 
Heisenberg Group . H1

Gianmarco Giovannardi, Julián Pozuelo, and Manuel Ritoré 

Abstract In the Heisenberg group . H1, equipped with a left-invariant and not 
necessarily symmetric norm in the horizontal distribution, we provide examples of 
entire area-minimizing horizontal graphs which are locally Lipschitz in Euclidean 
sense. A large number of them fail to have further regularity properties. The 
examples are obtained by prescribing as singular set a horizontal line or a finite 
union of horizontal half-lines extending from a given point. We also provide 
examples of families of area-minimizing cones. 

Keywords Sub-Finsler geometry · Perimeter-minimizing sets · Area-minimizing 
cones · Heisenberg group 

1 Introduction 

The regularity of perimeter-minimizing sets in sub-Finsler geometry is currently one 
of the most challenging problems in calculus of variations. A sub-Finsler structure 
in a Carnot-Carathéodory manifold with a completely non-integrable distribution . H
is defined by a smooth norm on . H. The case of a Euclidean norm is that of sub-
Riemannian geometry. The notion of sub-Riemannian perimeter was introduced 
by Garofalo and Nhieu [17], while sub-Finsler boundary measures in the first 
Heisenberg group . H1 were considered by Sánchez [30] and sub-Finsler perimeters 
in . H1 by Pozuelo and Ritoré [26] and Franceschi et al. [10]. 

Fine properties of sets of finite perimeter in the Heisenberg groups . Hn were 
obtained by Franchi et al. [11]. Among others, they obtained a structure result for 
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the reduced boundary of a set of finite perimeter: except for a set of small spherical 
Hausdorff dimension, it is the union of .H-regular hypersurfaces (i.e., level sets of 
continuous functions with continuous first derivatives in the horizontal directions); 
see the Main Theorem in page 486 of [11]. 

The regularity of sub-Riemannian perimeter-minimizing sets has been investiga-
ted by a large number of researchers [1, 3, 5–9, 12, 13, 21, 23, 27–29]. The 
boundaries of the conjectured solutions to the isoperimetric problem are of class 
. C2 (see [2]), although there exist examples of area-minimizing horizontal graphs 
which are merely Euclidean Lipschitz; see [6, 22, 27]. The sub-Riemannian Plateau 
problem was first considered by Pauls [24]. Afterward, under given Dirichlet 
conditions on p-convex domains, Cheng et al. [6] proved existence and uniqueness 
of t-graphs (horizontal graphs of the form .t = u(x, y)) which are Lipschitz 
continuous weak solutions of the minimal surface equation in . H1. Later, Pinamonti 
et al. [25] obtained existence and uniqueness of t-graphs on domains with boundary 
data satisfying a bounded slope condition, thus showing that Lipschitz regularity 
is optimal at least in the first Heisenberg group . H1. Capogna et al. [3] established 
that the intrinsic graph of a Lipschitz continuous function, which is, in addition, a 
viscosity solution of the sub-Riemannian minimal surface equation in . H1, is of class  
.C1,α , with higher regularity in the case of . Hn, .n > 1; see  [4]. It was shown in [7] that 
the regular part of a t-graph of class . C1 with continuous prescribed sub-Riemannian 
mean curvature in . H1 is foliated by . C2 characteristic curves. Furthermore, in [16] 
the authors generalized the previous result when the boundary S is a general . C1

surface in a three-dimensional contact sub-Riemannian manifold. Later, Galli in [14] 
improved the result in [16] only assuming that the boundary S is Euclidean Lipschitz 
and .H-regular. Recently, in [18] the first and third authors extended the result in [14] 
to the sub-Finsler Heisenberg groups. Up to now, determining the optimal regularity 
of perimeter-minimizing .H-regular hypersurfaces in the Heisenberg group remains 
an open problem. 

Bernstein-type problems for surfaces in . H1 have also received a special attention. 
The nature of the sub-Riemannian Bernstein problem in the Heisenberg group is 
completely different from the Euclidean one even for graphs. On the one hand 
the area functional for t-graphs is convex as in the Euclidean setting. Therefore 
the critical points of the area are automatically minimizers for the area functional. 
However, since t-graphs admit singular points where the horizontal gradient 
vanishes, their classification is not an easy task. Thanks to a deep study of the 
singular set for . C2 surfaces in . H1, Cheng et al. [5] showed that minimal t-graphs of 
class . C2 are congruent to a family of surfaces including the hyperbolic paraboloid 
.u(x, y) = xy and the Euclidean planes. Under the hypothesis that the surface is 
area-stationary, Ritoré and Rosales proved in [28] that the surface must be congruent 
to a hyperbolic paraboloid or to a Euclidean plane. If we consider the class of 
Euclidean Lipschitz t-graphs, the previous classification does not hold since there 
are several examples of area-minimizing surfaces of low regularity; see [27]. The 
complete classification for . C2 surfaces was established by Hurtado et al. in [21], 
by showing that a complete, orientable, connected, stable area-stationary surface is 
congruent either to the hyperbolic paraboloid .u(x, y) = xy or to a Euclidean plane.
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As in the Euclidean setting, the stability condition is crucial in order to discard some 
minimal surfaces such as helicoids and catenoids. 

On the other hand, the study of the regularity of intrinsic graphs (i.e., Riemannian 
graphs over vertical planes) is a completely different problem since the area 
functional for such graphs is not convex. Indeed, Danielli et al. in [8] discovered 
that the family of graphs 

. uα(x, t) = αxt

1 + 2αx2
, α > 0,

are area-stationary but unstable. In [22], Monti et al. provided an example of an 
area-minimizing intrinsic graph of regularity .C1/2(R2) that is an intrinsic cone. 
Therefore the Euclidean threshold of dimension .n = 8 fails in the sub-Riemannian 
setting. In [1], Barone et al. classified complete . C2 area-stationary intrinsic graphs. 
Later Danielli et al. in [9] showed that a . C2 complete stable embedded minimal 
surface in . H1 with empty characteristic set must be a plane. In [15] Galli and Ritoré 
proved that a complete, oriented, and stable area-stationary . C1 surface without 
singular points is a vertical plane. Later, Nicolussi Golo and Serra Cassano [23] 
showed that Euclidean Lipschitz stable area-stationary intrinsic graphs are vertical 
planes. Recently, Giovannardi and Ritoré [19] showed that in the Heisenberg group 
. H1 with a sub-Finsler structure, a complete, stable, Euclidean Lipschitz surface 
without singular points is a vertical plane and Young [32] proved that a ruled area-
minimizing entire intrinsic graph in . H1 is a vertical plane by introducing a family 
of deformations of graphical strips based on variations of a vertical curve. 

In this note, we provide examples of entire perimeter-minimizing t-graphs for 
a fixed but arbitrary left-invariant sub-Finsler structure in the first Heisenberg 
group . H1. Our examples are inspired by the corresponding sub-Riemannian ones in 
[27]. Of particular interest are the conical examples, invariant by the non-isotropic 
dilations of . H1. In the sub-Riemannian case, these examples were investigated in 
[20] and [27]. 

The paper is organized in the following way. In Sect. 2 we include some 
preliminaries. In Theorem 3.1 of Sect. 3 we obtain a necessary and sufficient 
condition, inspired by Theorem 3.1 in [26], for a surface to be a critical point of 
the sub-Finsler area. We assume that the surface is piecewise . C2 and composed 
of pieces meeting in a . C1 way along . C1 curves. This condition will allow us to 
construct area-minimizing examples in Proposition 4.3 of Sect. 4 and examples with 
low regularity in Proposition 4.4. The same construction, keeping fixed the angle at 
one side (and hence at the other one) of the singular line, provides examples of area-
minimizing cones; see Corollary 4.5. Finally, in Sect. 5 we exhibit some examples 
of area-minimizing cones in the spirit of [20]. These examples are obtained in 
Theorem 5.2 from circular sectors of the area-minimizing cones with one singular 
half-line obtained in Corollary 4.5.
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2 Preliminaries 

2.1 The Heisenberg Group 

We denote by . H1 the first Heisenberg group: the three-dimensional Euclidean space 
. R3 with coordinates .(x, y, t), endowed with the product . ∗ defined by 

. (x, y, t) ∗ (x̄, ȳ, t̄ ) = (x + x̄, y + ȳ, t + t̄ + x̄y − xȳ).

A frame of left-invariant vector fields is given by 

. X = ∂

∂x
+ y

∂

∂t
, Y = ∂

∂y
− x

∂

∂t
, T = ∂

∂t
.

For .p ∈ H
1, the left-translation by p is the diffeomorphism .Lp(q) = p ∗ q. The  

horizontal distribution . H is the planar non-integrable one generated by X and Y , 
which coincides with the kernel of the contact one-form .ω = dt − ydx + xdy. 

We shall consider on . H1 the left-invariant Riemannian metric .g = 〈·, ·〉, so that 
.{X, Y, T } is a global orthonormal frame, and let D be the Levi-Civita connection 
associated with the Riemannian metric g. Setting .J (U) = DUT for any vector field 
U in . H1, we get .J (X) = Y , .J (Y ) = −X and .J (T ) = 0. Therefore .−J 2 coincides 
with the identity when restricted to the horizontal distribution. The Riemannian 
volume of a set E is, up to a constant, the Haar measure of the group and is denoted 
by . |E|. The integral of a function f with respect to the Riemannian measure is 
denoted by .

∫
f dH1. 

2.2 Sub-Finsler Norms and Perimeter 

Given a convex set .K ⊂ R
2 with .0 ∈ int(K) and associated asymmetric norm . || · ||

in . R2, we define on . H1 a left-invariant norm .|| · ||K on the horizontal distribution by 
means of the equality 

. ||f X + gY ||K(p) = ||(f (p), g(p))||,

for any .p ∈ H
1. Its dual norm is denoted by .|| · ||K,∗. 

If the boundary of K is of class . C�, for .� � 2, and the geodesic curvature of . ∂K

is strictly positive, we say that K is of class . C�+. When K is of class . C2+, the outer 
Gauss map .NK : ∂K → S

1 is a diffeomorphism and the map 

.πK(f X + gY ) = N−1
K

(
(f, g)

√
f 2 + g2

)

,



Area-Minimizing Graphs in the Sub-Finsler Heisenberg Group .H1 213

defined for non-vanishing horizontal vector fields .U = f X + gY , satisfies 

. ||U ||K,∗ = 〈U,πK(U)〉,

where .|| · ||K,∗ is the dual norm of .|| · ||K . See §2.3 in [26]. 

Definition 2.1 Given a convex body .K ⊂ R
2 containing 0 in its interior, and a 

measurable set .E ⊂ H
1, its horizontal K-perimeter in an open set .� ⊂ H

1 is 

. PK(E,�) = sup

{∫

E

div(U) dH1, U ∈ H1
0(�), ||U ||K,∞ � 1

}

,

Here .||U ||K,∞ = supp∈H1 ||Up||K0 and .H1
0(�) is the space of . C1 horizontal vector 

fields with compact support in . �. If .� = H
1 we write .PK(E) instead of .PK(E,H1). 

When .PK(E,�) is finite, we say that E has finite horizontal K-perimeter in . �. 

Remark 2.2 If E has . C1 boundary . ∂E, then its perimeter .PK(E) is equal to the 
sub-Finsler area .AK of its boundary, defined by 

. AK(∂E) =
∫

∂E

||Nh||K,∗dσ.

where . Nh is the projection on the horizontal distribution . H of the Riemannian 
normal N with respect to the metric g and . dσ is the Riemannian measure of . ∂E. 
For more details, see §2.4 in [26]. 

We will often omit the subscript K to simplify the notation. 

3 The First Variation Formula and a Stationary Condition 

In this section we present some consequences of the first variation formula. We 
assume that the Heisenberg group . H1 is endowed with the sub-Finsler structure 
associated with a convex set K of class . C2+ with .0 ∈ int(K). Recall that, given a 
surface .S ⊂ H

1 of class . C1, its singular set . S0 is composed of those points of S 
where the tangent plane is horizontal. The regular part of S is .S � S0. 

Theorem 3.1 (Theorem 3.1 in [26]) Let S be an oriented surface of class . C1 such 
that the regular part .S�S0 is of class . C2. Consider a . C2 vector field U with compact 
support on S, normal component .u = 〈U,N〉, and associated flow .{ϕs}s∈R. Let 
.η = π(νh), where . νh is the horizontal unit normal to S. Then we have 

.
d

ds

∣
∣
∣
∣
s=0

AK(ϕs(S)) =
∫

S\S0
HKudS −

∫

S\S0
divS(uη	) dS, (3.1)
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where .divS is the Riemannian divergence on S and the superscript . 	 indicates the 
projection over the tangent plane to S. The quantity .HK = 〈∇Zπ(νh), Z〉, for  . Z =
−J (νh), is the  K-mean curvature of S. 

Using Theorem 3.1, we can prove the following necessary and sufficient condi-
tion for a surface S to be .AK -stationary. When a surface S of class . C1 is divided 
into two parts .S+, S− by a singular curve . S0 so that .S+, S− are of class . C2 up to 
the boundary, the tangent vectors .Z+, Z− can be chosen so that they parameterize 
the characteristic curves (i.e., horizontal curves en the regular part of S) as curves 
leaving from . S0; see Corollary 3.6 in [5]. In this case .η+ = π(νh) = π(J (Z+)) and 
.η− = π(J (Z−)). 

Corollary 3.2 Let S be an oriented surface of class . C1 such that the singular set 
. S0 is a . C1 curve. Assume that .S � S0 is the union of two surfaces .S+, S− of class 
. C2 meeting along . S0. Let .η+, η− the restrictions of . η to . S+ and . S−, respectively. 
Then S is area-stationary if and only if 

1. .HK = 0, and 
2. .η+ − η− is tangent to . S0. 

In particular, condition .HK = 0 implies that .S�S0 is foliated by horizontal straight 
lines. 

Proof We may apply the divergence theorem to the second term in (3.1) to get 

. 
d

ds

∣
∣
∣
∣
s=0

AK(ϕs(S)) =
∫

S\S0
HKudS −

∫

S0

u 〈ξ, (η+ − η−)	〉 dS,

where . ξ is the outer unit normal to . S+ along . S0. Hence the stationary condition 
is equivalent to .H = 0 on .S � S0 and .〈ξ, η+ − η−〉 = 0. The latter condition is 
equivalent to that .η+ − η− be tangent to . S0. 

That .HK = 0 implies that .S � S0 is foliated by horizontal straight lines was 
proven in Theorem 3.14 in [26]. ��

Since .ν+ = J (Z+), ν− = J (Z−), where .Z+ and .Z− are the extensions of 
the horizontal tangent vectors in .S+, S−, we have that the second condition in 
Corollary 3.2 is equivalent to 

.π(J (Z+)) − π(J (Z−)) is tangent to S0. (3.2) 

So a natural question is, given a . C2+ convex body K containing 0 in its interior, and 
a unit vector .v ∈ S

1, can we find a pair of unit vectors .Z+, Z− such that (3.2) is 
satisfied? If such vectors exist, how many pairs can we get? The answer follows 
from the next result. 

Lemma 3.3 Let K be a convex body of class .C2+ such that .0 ∈ int(K). Given 
.v ∈ R

2
� {0}, let .L ⊂ R

2 be the vector line generated by v. Then, for any .u ∈ ∂K , 
we have the following possibilities:
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Fig. 1 Geometric construction to obtain .w = η+ from .u = η− so that the stationary condition is 
satisfied. The case .ν+ = ν− cannot hold 

1. The only .w ∈ ∂K such that .w − u ∈ L is .w = u, or  
2. There is only one .w ∈ ∂K , .w 
= u such that .w − u ∈ L. 

The first case happens if and only if L is parallel to the support line of K at u. 

Proof Let T be the translation in . R2 of vector u. Then .T (L) is a line that meets . ∂K

at u. The line .T (L) intersects . ∂K only once when L is the supporting line of . T (K)

at 0; otherwise L intersects . ∂K just at another point .w 
= u so that .w − u ∈ L. ��
Remark 3.4 We use Lemma 3.3 to understand the behavior of characteristic curves 
meeting at a singular point .p ∈ S0. Let  .Z+, Z− be the tangent vectors to the 
characteristic lines starting from p. Let .ν+, ν− be the vectors .J (Z+), J (Z−), and L 
the line generated by the tangent vector to . S0 at p. The condition that S is stationary 
implies that .η+ − η− ∈ L. If  .w = η+ and .u = η− are equal, then . ν+ = ν−
are orthogonal to L, which implies that .Z+, Z− lie in L. This is not possible since 
characteristic lines meet tranversaly the singular line, again by Corollary 3.6 in [5]. 

Hence .η+ 
= η− and . η+ is uniquely determined from . η− by Lemma 3.3. 
Obviously the roles of . η+ and . η− are interchangeable (Fig. 1). 

4 Examples of Entire K-Perimeter-Minimizing Horizontal 
Graphs with One Singular Line 

Remark 3.4 implies that .Z− can be uniquely determined from .Z+ when S is a 
stationary surface. Let us see that this result can be refined to provide a smooth 
dependence of the oriented angle .
 (v, Z−) in terms of .
 (v, Z+). We use complex 
notation for horizontal vectors assuming that the horizontal distribution is positively 
oriented by .v, J (v) for any .v ∈ H� {0}.
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Lemma 4.1 Let K be a convex body of class . C2+ with .0 ∈ int(K). Consider a unit 
vector .v ∈ R

2 and let .L ⊂ R
2 be the vector line generated by v. Then, for any 

.α ∈ (0, π), there exists a unique .β ∈ (π, 2π) such that if .Z+ = veiα , .Z− = veiβ , 
then .π(J (Z+)) − π(J (Z+)) belongs to L. 

Moreover the function .β : (0, π) → (π, 2π) is of class . C1 with negative 
derivative. 

Proof We change coordinates so that L is the line .y = 0. We observe that . Z+ =
veiα implies that .J (Z+) = vei(α+π/2). We define .(x, y) : S1 → ∂K by 

. (x(α), y(α)) = N−1
K (vei(α+π/2)),

where .NK : ∂K → S
1 is the (outer) Gauss map of . ∂K . The functions .x, y are . C1

since . NK is . C1. The point .(x(α), y(α)) is the only one in . ∂K such that the clockwise 
oriented tangent vector to .∂K makes an angle . α with the positive direction of the 
line L. A line parallel to L meets .∂K at a single point only when . α + π/2 = π/2
or .α + π/2 = 3π/2. Hence, for .α ∈ (0, π), there is a unique .β ∈ (π, 2π) such that 

. (x(β), y(β)) − (x(α), y(α)) ∈ L.

Observe that, for .α ∈ (0, π), we have  .dy/dα > 0, and, for .β ∈ (π, 2π), we get 
.dy/dβ < 0. We can use the implicit function theorem (applied to .y(β) − y(α)) to  
conclude that . β is a . C1 function of . α. Moreover 

. 
dβ

dα
= dy/dα

dy/dβ
< 0,

as desired. ��
Now we give the main construction in this section. 
We fix a vector .v ∈ R

2
� {0} and the line .Lv = {λv : λ ∈ R}. For every 

.λ ∈ R, we consider two half-lines, .r+
λ , r−

λ ⊂ R
2, extending from the point . p =

λv ∈ Lv with angles .α(λ) and .β(λ), respectively. Here .α : R → (0, π) is a non-
increasing function, and .β(λ) is the composition of .α(λ) with the function obtained 
in Lemma 4.1. Hence .β(λ) is a non-decreasing function. The line . Lv can be lifted to 
the horizontal straight line .Rv = Lv ×{0} ⊂ H

1 passing through the point .(0, 0, 0), 
and the half-lines . r±

λ can be lifted to horizontal half-lines . R±
λ starting from the point 

.(λv, 0) in the line . Rv . 
The surface obtained as the union of the half-lines .R+

λ and . R−
λ , for  .λ ∈ R, is  

denoted by .�v,α . Since any . R
±
λ is a graph over . r±

λ and .
⋃

λ∈R(r+
λ ∪ r−

λ ) covers the 
xy-plane, we can write the surface .�v,α as the graph of a continuous function . uα :
R
2 → R. Writing .v = eiα0 , the surface .�v,α can be parametrized by . � : R2 → R

3

as follows: 

.�(λ,μ) =
{(

λeiα0 + μei(α0+α(λ)),−μλ sinα(λ)
)
, μ � 0,

(
λeiα0 + |μ|ei(α0+β(λ)),−|μ|λ sinβ(λ)

)
, μ � 0.

(4.1)
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Example 4.2 A special example to be considered is the sub-Riemannian cone . �α , 
where .α ∈ (0, π). The projection of . �α to the horizontal plane .t = 0 is composed 
of the line .y = 0 and the half-lines starting from points in .y = 0 with angles . α and 
. −α. This cone can be parametrized, for .s ∈ R, t � 0, by  

. (u, v) �→ (u + v cosα, v sinα,−uv sinα)

when .y � 0, and by 

. (u + v cosα,−v sinα, uv sinα)

when .y � 0. A straightforward computation implies that . �α is the t-graph of the 
function 

.uα(x, y) = −xy + cotα y|y|. (4.2) 

Observe that 

. lim
α→0

uα(x, y) =

⎧
⎪⎪⎨

⎪⎪⎩

+∞, y > 0,

0, y = 0,

−∞, y < 0,

(4.3) 

so that the subgraph of . �α converges pointwise locally when .α → 0 to a vertical 
half-space. 

The following result provides some properties of . uα when .α(λ) is a smooth func-
tion of . λ (Fig. 2). 

Fig. 2 The planar configuration to obtain the surface .�v,α . Here  . α is a constant function and K 
is the unit disk D. Such surfaces were called herringbone surfaces by Young [31] as they are the  
union of horizontal rays that branch out of a horizontal line
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Proposition 4.3 Let .α ∈ Ck(R), .k � 2, be a non-decreasing function. Then 

(i) . uα is a . Ck function in .R
2 \ Lv , 

(ii) . uα is merely .C1,1 near . Lv when .β 
= α + π . 
(iii) . uα is .C∞ in any open set I of values of . λ when .β = α + π on I . 
(iv) .�v,α is K-perimeter-minimizing when .β = β(α). 
(v) The projection of the singular set of .�v,α to the xy-plane is . Lv . 

Proof (i), (ii), (iii), and (v) are proven in Lemma 3.1 in [27]. 
We prove (iv) by a calibration argument. We shall drop the subscript . α to 

simplify the notation. Let E be the subgraph of u and .F ⊆ H
1 such that . F = E

outside a Euclidean ball centered at the origin. Let .P = {(z, t) : 〈z, v〉 = 0}, 
.P 1 = {(z, t) : 〈z, v〉 > 0} and .P 2 = {(z, t) : 〈z, v〉 < 0}. We define two 
vector fields . U1, . U2 on . P 1, . P 2, respectively, by vertical translations of the vectors 
.π(νE)|P 1 = η+ and .π(νE)|P 2 = η−. They are  . C2 in the interior of the half-spaces 
and extend continuously to the boundary plane P . As  .div(Uj )(z,t) coincides with 
the sub-Finsler mean curvature of the translation of .�v,α passing through .(z, t) as 
defined in [26], and these surfaces are foliated by horizontal straight lines in the 
interior of the half-spaces, by Theorem 3.14 in [26], we get 

. divUj = 0 j = 1, 2.

Here .divU is the Riemannian divergence of the vector field U . We apply the 
divergence theorem (Theorem 2.1 in [27]) to get 

. 0 =
∫

F∩P j ∩B

divUj =
∫

F

〈Uj , νP j ∩B〉|∂(P j ∩ B)| +
∫

P j ∩B

〈Uj , νF 〉|∂F |.

Let .C = P ∩B̄. Then, for every .p ∈ C, we have .νP 1∩B = J (v) is a normal vector to 
the plane P and .νP 2∩B = −J (v), .U1 = η+ and .U2 = η−. Hence, by Lemma 4.1, 
we get 

. 〈U1, νP 1∩B〉 + 〈U2, νP 2∩B〉 = 〈η+ − η−, J (v)〉 = 0 p ∈ C.

Adding the above integrals, we obtain 

.0 =
∑

j=1,2

∫

F

〈Uj , νB〉d|∂B| +
∫

B∩int(Hj )

〈Uj , νF 〉d|∂F |. (4.4) 

From the Cauchy-Schwarz inequality and the fact that .|∂F | is a positive measure, 
we get that 

.

∑

j=1,2

∫

B∩P j

〈Uj , νF 〉d|∂F | � PK(F,B). (4.5)
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In particular, if we apply the same reasoning to E, equality holds and 

.0 =
∑

j=1,2

∫

E

〈Uj , νB〉d|∂B| + PK(E,B). (4.6) 

From (4.4), (4.5), (4.6), and the fact that .F = E in the boundary of B, we get 

. PK(E,B) � PK(F,B),

as desired. ��
The general properties of .�v,α when . α is only continuous are given in the 

following result. 

Proposition 4.4 Let .α : R → R be a continuous and non-decreasing function. 
Then 

(i) . uα is locally Lipschitz in Euclidean sense, 
(ii) . Eα is a set of locally finite perimeter in . H1, and 
(iii) .�v,α is K-perimeter-minimizing in . H1. 

Proof (i) and (ii) are proven in [27], Proposition 3.2. Let 

. αε(x) =
∫

R

α(y)δε(x − y)dy

the usual convolution, where . δ is a Dirac function and .δε = δ(x/ε)
ε

. Then . αε is a . C∞
non-decreasing function, and . αε converges uniformly to . α on compact sets of . R. By  
Lemma 4.1, .βε = β(αε) is a . C1 non-decreasing function. Since . β is . C1 with respect 
to . α, it follows the uniform convergence on compact sets of . βε to a function . β̄. 

Take .F ⊂ H
1 so that .F = E outside a Euclidean ball centered at the origin. We 

follow the arguments of the proof of iv) in Proposition 4.3 and define vector fields 
.div(Uj

ε ) by translating vertically .π(νEε ), where . Eε is the subgraph of . �αε , to obtain 
by the divergence theorem 

. 
∑

j=1,2

∫

B∩int(P i )

〈Uj
ε , νEε 〉|∂Eε| =

∑

j=1,2

∫

B∩int(P i )

〈Uj
ε , νF 〉|∂F |.

The left-hand side is the K-perimeter of . Eε, while the right-hand side is trivially 
bounded by the K-perimeter of F . Therefore 

. PK(Eε, B) � PK(F,B).

Since . Eε converges uniformly in compact sets to E, we obtain the result. ��
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We study now with some detail the case when .�v,α is a .C∞ surface. 

Corollary 4.5 When . α is constant, the surface .�v,α is a K-perimeter-minimizing 
cone in . H1 of class .C1,1. The singular set is a horizontal straight line, and the 
regular part of .�v,α is a .C∞ surface. 

The following extends the already known result that in the sub-Riemannian 
setting, the surfaces .�v,π/2 are . C∞. 

Lemma 4.6 Let .v ∈ R
2
� {0} and .α ∈ (0, π) be fixed. If K is centrally symmetric 

with respect to .O = 1
2η

+ + 1
2η

− then .β(α) = α + π , where .η+ = π(J (veiα)) and 
.η− = π(J (veiβ)). 

Proof Let K be centrally symmetric with respect to O. Then . η− is the symmetric 
point of . η+. On the other hand, the convex body .K − O is symmetric with respect 
to the origin. Then the dual norm is even and, in particular, . πK−O(−ν+) =
−πK−O(ν+). Now, since a translation takes symmetric points of .K−O with respect 
to the origin to symmetric points of K with respect to O, we get .ν− = −ν+. This  
implies that .β(α) = α + π . ��

The existence of a convex body K of class . C2+ such that .0 ∈ int(K) for which 
.�v,α is .C∞ is studied in Corollary 4.7 and Proposition 4.8. 

Corollary 4.7 Let .v ∈ R
2
� {0} and .α ∈ (0, π) be fixed. Then there exists a convex 

body K of class . C2+ with .0 ∈ int(K) such that .�v,α is . C∞. 

Proof To construct the convex body K , fix a point . p ∈ {(x, y) : 〈(x, y), veiα〉 > 0}
and .O ∈ J (L) + p ∩ L, where L is the vector line generated by v. Then any K 
of class . C2+ centrally symmetric with respect to O containing the origin such that 
.p ∈ ∂K and .veiα⊥Tp∂K satisfies the hypothesis of Lemma 4.6, where .η+ = p and 
. η− is the symmetric of . η+ with respect to O. Thus, by .(iii) in Proposition 4.3 we 
get that .�v,α is . C∞. ��
Proposition 4.8 Given a convex body K of class . C2+ with .0 ∈ int(K), there exists 
.v ∈ R

2 such that .�v,π/2 is . C∞. 

Proof Let p and q be points in K at maximal distance. Then the lines through p 
and q orthogonal to .q − p are support lines to K . Taking .v = q − p and setting 
.p = η+, we have  .q = η−, while the vectors . ν+ and . ν− are over the line .L(v), that 
is, .Z+ Z− make angles .π/2 and .3π/2 with .L(v). ��

For fixed .v ∈ R
2, we define the surface .�+

v,α as the one composed of all the 
horizontal half-lines .R+

λ and .R−
λ ⊆ R

2 extending from the lifting of the point 
.p = λv ∈ Lv , .λ � 0, to  . H1. The surface .�+

v,α has a boundary composed of two 
horizontal lines and its singular set is the ray .L+

v = {λv : λ > 0}. We present some 
pictures of such surfaces (Figs. 3, 4 and 5).
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Fig. 3 The surface . �+
π/3,π/6

associated with the norm 
.|| · ||D , where  D is the unit 
disk. The singular set 
corresponds to the purple ray 
of angle . eiπ/3

Fig. 4 The surface . �+
π/3,π/6

associated with the p-norm 
with .p = 1.5. The left part of 
the figure coincides with the 
left part of Fig. 3, while  the  
angle . β is bigger. Notice that 
also the height has increased 

5 Area-Minimizing Cones in H1 

We proceed now to construct examples of K-perimeter-minimizing cones in . H1

with an arbitrary finite number of horizontal half-lines meeting at the origin. The 
building blocks for this construction are liftings of circular sectors of the cones 
considered in Corollary 4.5. 

We first prove the following result.
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Fig. 5 The surface . �+
π/3,π/6

with .β = α + π . The  
existence of K is granted by 
Corollary 4.7 

Lemma 5.1 Let K be a convex body of class .C2+ such that .0 ∈ int(K). Let 
.u,w ∈ S

1, .θ = 
 (u,w) > 0. Then there exists .v ∈ S
1 such that the vector 

line . Lv generated by v splits the sector determined by u and w into two sectors 
of oriented angles . α and . β such that .α + β = θ . Moreover, the stationary condition 
.π(J (u)) − πK(J (w)) ∈ Lv is satisfied. 

Proof Let .νu = J (u), .νw = J (w) and .ηu = π(νu), .ηw = π(νw), .ηu 
= ηw since 
. π is a . C1 diffeomorphism. Thus there exists a unique line . L̃ passing through . ηu

and . ηw and .L = L̃ − ηu is a straight line passing though the origin. Notice that . L̃
splits .∂K in two connect open components .∂K1 and .∂K2. There exist two points 
.η1 ∈ ∂K1 and .η2 ∈ ∂K2 such that .L + η1 (resp. .L + η2) is the support line at . η1
(resp. . η2). Setting .v1 = N∂K(η1) and .v2 = N∂K(η2), we gain that . vi for . i = 1, 2
is perpendicular to L. Without loss of generality, we set that .−J (v1) belongs to the 
portion of plane identified by the . θ , and .−J (v2) belongs to the portion of plane 
identified by the .2π − θ . Then we set .v = −J (v1). Notice that v splits . θ in two 
angles .β = 
 (u, v), .α = 
 (v,w) with .θ = α + β and .L = Lv . ��

Now we proceed with the construction inspired by the sub-Riemannian construc-
tion in [20]. For .k � 3 consider a fixed angle . θ0 and family of positive oriented 
angles .θ1, . . . , θk such that .θ1 + · · · + θk = 2π . Consider the planar vectors 
.u0 = (cos(θ0), sin(θ0)) and 

.ui = (cos(θ0 + θ1 + · · · + θi), sin(θ0 + θ1 + · · · + θi)), i = 1, . . . , k.
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Observe that .uk = u0. For every .i ∈ {1, . . . , k} consider the vectors .ui−1, ui and 
apply Lemma 5.1 to obtain a family of k vectors . vi in . S1 between .ui−1 and . ui . We  
lift the half-lines .Li = {λvi : λ � 0} to horizontal straight lines passing through 
.(0, 0, 0) ∈ H

1, and we also lift the half-lines 

. λvi + {ρui−1 : ρ � 0}, λvi + {ρui : ρ � 0},
to horizontal straight lines starting from .(λvi, 0). This way we obtain a surface 

. CK(θ0, θ1, . . . , θk)

with the following properties. 

Theorem 5.2 The surface .CK(θ0, θ1, . . . , θk) is K-perimeter-minimizing cone 
which is the graph of a . C1 function. 

Proof .CK(θ0, θ1, . . . , θk) is a cone by construction. It is an entire graph since it 
is composed of horizontal lifting of straight half-lines in the xy-plane that covered 
the whole plane without intersecting themselves transversally. The K-perimeter-
minimizing property follows in a similar way to from Proposition 2.4 in [20]. That 
it is the graph of a . C1 function is proven like in Proposition 3.2(4) in [20]. ��

A particular example of area-minimizing cones are those who uses the sub-
Riemannian cones . Cα restricted to the circular sector with .θ ∈ (−α, α) as model 
piece of the cone. Taking .K = D, .k � 3, and the angle .α = π/k, we define 

. C(k) = CD

(π

k
,
2π

k
, . . . ,

2π

k

)
.

Let us denote by . uk the functions in . R2 whose graph is .C(k). The behavior when k 
tends to infinity of . uk in a disk is analyzed in the following result. 

Proposition 5.3 The sequence . uk converge to 0 uniformly on compact subsets 
of . R2. Moreover, the sub-Riemannian area of . uk converges locally to the sub-
Riemannian area of the plane .t = 0. Moreover the sub-Riemannian area of . uk

converges to the one of the plane .t = 0. 

Proof Since . uk is obtained by collating some rotated copies of . uα , where . α =
π/k, we can estimate the height of . uk by the height of . uα . By  (4.2), using polar 
coordinates .(r, θ), where .θ ∈ [−α, α] and .r < r0, we get 

. |uα| � 2r20 | sin(π/k)|
on .D(r0) = B(0, r0). The claim follows since .limk→∞ sin(π/k) = 0. 

The sub-Riemannian area of the graph of . uk over .D(r0) is given by 

.AD(uk, r0) =
∫

D(r0)

‖∇uk + (−y, x)‖dxdy.
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Since the sub-Riemannian perimeter is rotationally invariant, we can decompose 
the above integral as k times the area of the cone . Cα in the circular sector with 
.θ ∈ (−α, α) and .r < r0. By  (4.2), it is immediate that 

. ‖∇uk(x, y) + (−y, x)‖ = 2|y| sin−1(α).

A direct computation shows that 

. AD(uk, r0) = 4πr30

3

1 − cosπ/k

(π/k) sinπ/k
.

Then .AD(uk, r0) tends to .
2πr30
3 as .k → +∞ (Figs. 6 and 7). ��

Fig. 6 The cone .C(4). The singular set is composed of the red rays of angle .0, π/2, π, (3π)/2, 
while the rays of angles .π/4, (3π)/4, (5π)/4), (7π)/4, where two pieces of the construction meet, 
are depicted in cyan 

Fig. 7 The cones .C(8) and .C(16). They are depicted at the same in this Figure and the previous 
one. As the number of angles increases, the cone produces more oscillations of smaller height
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On the Double Soul Conjecture 

David González-Álvaro and Luis Guijarro 

Abstract A conjecture proposed by Karsten Grove (Geometry of, and via, sym-
metries. In: Conformal, Riemannian and Lagrangian Geometry (Knoxville, TN, 
2000). University Lecture Series, vol. 27, pp. 31–53. American Mathematical 
Society, Providence, 2002) asks whether every closed simply connected Riemannian 
manifold with nonnegative sectional curvature can be written as the union of two 
disk bundles along their boundaries. If true, the conjecture would give a description 
of nonnegative curvature and would allow to attack several of the other main 
conjectures in the area. In this note, we discuss the context of this conjecture, 
provide some of the reasons for its possible validity, and discuss several related 
results. 

Keywords Nonnegative sectional curvature · Soul theorem 

1 Introduction 

The geometrical and topological structure of open (non-compact complete without 
boundary) Riemannian manifolds of nonnegative sectional curvature is considerably 
well understood, thanks to the soul theorem of Cheeger and Gromoll in 1972 [7]. 
They showed that such a space X contains a totally convex and totally geodesic 
closed (compact without boundary) submanifold S (called the soul) for which the 
total space of its normal bundle in X is diffeomorphic to X. 

As a consequence of the soul theorem, the classification of all open manifolds of 
nonnegative curvature reduces to the following two tasks: 
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• Classify all closed Riemannian manifolds of nonnegative sectional curvature,
• Classify which vector bundles over each of the spaces in the previous item admit 

a metric of nonnegative curvature. 

Unfortunately, little is known about either of the items above. Regarding the first 
item, and in contrast to the non-compact case, both the geometrical and topological 
structure of closed nonnegatively curved manifolds are poorly understood; see 
Sect. 2 for a brief review of the current knowledge. In this survey we discuss a 
conjecture which asks about their geometrical structure. For convenience we use the 
following definition, which does not involve any Riemannian metric nor curvature 
condition. 

Definition 
A closed manifold is said to admit a double disk bundle decomposition if it 
can be written as the union .D(E1) ∪ D(E2) of two disk bundles . D(Ei) →
Si glued together along their common boundary .∂D(E1) = ∂D(E2) by a 
diffeomorphism. 

Double disk bundle decompositions arise in several geometrical situations; see 
Sect. 3 for some background. In particular, disk bundles and double disk bundle 
decompositions play an important role in the context of nonnegative curvature, as 
we next explain. 

On the one hand, the arguments of Cheeger and Gromoll in the proof of the soul 
theorem can be adapted to the situation where the manifold X is compact with non-
empty totally geodesic boundary [6, Remark in p. 626]. In this case, X similarly 
contains a totally convex and totally geodesic closed submanifold S (the soul) such 
that X is diffeomorphic to the total space of the disk bundle associated with the 
normal bundle of .S ⊂ X. 

On the other hand, many closed manifolds of nonnegative curvature have been 
constructed as the gluing of two disk bundles. Karsten Grove conjectured in [21] that 
all closed manifolds of nonnegative curvature should carry such a decomposition. 

Double Soul Conjecture (Karsten Grove) 
A closed simply connected Riemannian manifold with nonnegative sectional 
curvature carries a double disk bundle decomposition. 

Despite the fact that the number of existing methods to construct nonnegatively 
curved manifolds is very small, it is already unknown whether all the resulting 
spaces satisfy the conjecture. More precisely, it is an open question whether an 
arbitrary biquotient carries a double disk bundle decomposition. This indicates how 
challenging would be to tackle the conjecture in the general case.
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Moreover, if the conjecture were true, it is not clear how the double disk bundle 
decomposition would be necessarily related to the metric. Some evidence for this is 
that the base space of each disk bundle would not be a totally geodesic submanifold; 
see Sect. 4. This is in contrast to the soul theorem, where the soul is a totally geodesic 
submanifold of the ambient space. 

After a first version of this survey was finished, Jason DeVito made available a 
preprint [13] where he studies a generalized version of the double soul conjecture 
in which there is no restriction for the fundamental group of the manifolds. In that 
paper, DeVito shows that there exist non-simply connected nonnegatively curved 
closed manifolds which admit no double disk bundle decomposition. 

Organization of the Paper In Sects. 2 and 3 we give some background on nonneg-
atively curved manifolds and on double disk bundle decompositions, respectively. 
In Sect. 4 we discuss the most obvious difficulties for a potential proof in the general 
case. Section 5 reviews previous constructions of nonnegatively curved manifolds 
as double disk bundles. Section 6 examines some of the metric features, under ideal 
conditions, of a nonnegatively curved metric obtained by gluing of two disc bundles. 
In Sect. 7 we compare existing results on double disk bundles and on nonnegatively 
curved manifolds. In Sect. 8 we study which biquotients satisfy the conjecture. 
Section 9 discusses the relation between the double soul conjecture and the Bott-
Grove-Halperin conjecture. 

2 Context of Nonnegatively Curved Manifolds 

In this section, we briefly review the state of the art for manifolds of nonnegative 
curvature. For further information, we refer to the surveys [22, 41, 42], which 
contain references to all the results that we mention here. 

Manifolds of nonnegative curvature lie within the broader context of spaces 
with lower curvature bounds. These include manifolds with other constraints on 
the sectional, Ricci, or scalar curvature, but also singular spaces like Alexandrov 
spaces or RCD spaces [4, 17]. Lower curvature bounds arise in natural geometrical 
situations like taking Gromov-Hausdorff limits or isometric quotients. 

Probably the most classical curvature bound is positive sectional curvature. Its 
investigation has seen important advances since the last century, including various 
sphere theorems, the classification of homogeneous positively curved manifolds, the 
construction of new inhomogeneous examples, or structural results under additional 
(often symmetry) assumptions. However, many questions remain unanswered, and 
weaker curvature conditions have been investigated, one of them being precisely 
nonnegative sectional curvature. One particularly interesting question is whether a 
nonnegatively curved metric can be deformed to a positively curved metric. This is 
known to be false in general by Synge’s theorem, but the question remains open in 
the simply connected case. 

The study of nonnegatively curved manifolds became very active in the 1970s 
with seminal works like the soul theorem of Cheeger and Gromoll, the construction
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by Gromoll and Meyer of the first nonnegatively curved metric on an exotic sphere, 
or Cheeger’s construction of nonnegatively curved metrics on the connected sum of 
two compact rank one symmetric spaces. 

Unfortunately, not much is yet known about the class of manifolds admitting a 
metric of nonnegative curvature. Both the number of existing methods to construct 
such manifolds and the number of known topological obstructions to admit such a 
metric are small. Let us review them. 

The existing examples of closed manifolds with nonnegative sectional curvature 
have been constructed in one of the two following ways:

• as the gluing of two adequate disk bundles along their boundary, or
• as biquotients. 

The spaces in the first item evidently satisfy the double soul conjecture, and the 
concrete constructions shall be outlined in Sect. 5. As for biquotients, their definition 
as well as a discussion on whether they satisfy the conjecture is contained in Sect. 8. 

The power of these two methods may be illustrated by the following facts:

• every dimension . ≥6 is known to support infinitely many closed simply connected 
nonnegatively curved manifolds of pairwise distinct homotopy type,

• the only dimensions where some rational (non-standard) sphere is known to carry 
a nonnegatively curved metric are 5 and .4n − 3 with .n ≥ 2,

• while in dimension 7 all exotic spheres are known to carry a nonnegatively curved 
metric (thanks to the work of Gromoll and Meyer in 1974, Grove and Ziller in 
2000 [25], and Goette, Kerin and Shankar in 2020 [18]), it is unknown whether 
any other exotic sphere of dimension .�=7 admits such a metric. 

Moving to topological obstructions, essentially the only one specific to closed 
simply connected nonnegatively curved manifolds M is Gromov’s Betti Number 
Theorem. It states that, for any field of coefficients F , the total Betti number 
.
∑

i rank Hi(M,F) of any n-dimensional manifold M is bounded above by a 
constant depending only on n. 

Gromov’s theorem can be used to rule out the existence of nonnegatively curved 
metrics on many simply connected manifolds. For example, for any nonnegatively 
curved manifold M not being a homotopy sphere, there is some integer k such that 
the connected sum .M� . . . �M of k copies of M does not admit a nonnegatively 
curved metric. This implies that surgery constructions will not preserve nonnegative 
curvature, in general. 

3 Context of Double Disk Bundles 

In this section we review some classical situations and results where double disk 
bundles appear. More recent and specific results will appear in the following 
sections. 

The most visual double disk bundle decomposition is that of a sphere . Sn as the 
union of two disks .Dn∪Dn (hemispheres) glued along their boundary (the equator).
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In Milnor’s discovery of several seven exotic spheres, he described them as 
double disk bundles in two ways [35, Chapter 30, p. 377]: as . (S3×D4)∪φ1 (S

3×D4)

and as .D7 ∪φ2 D7, for certain self-diffeomorphisms . φ1 and . φ2 of . S3 and . S6, 
respectively. 

The construction of gluings of the form .(Sn−1 × Dn) ∪φ (Sn−1 × Dn) for self-
diffeomorphisms . φ of .Sn−1 × Sn−1 is studied in [3, I.7]. Depending on . φ, the  
resulting manifolds may have the homology of .S2n−1 or .Sn−1 × Sn. 

We remark that each of the disk bundles can be different, and, moreover, the 
corresponding fiber (i.e., the disk) can be of different dimension. For example, the 
sphere . Sn can be written as .(Sp × Dq+1) ∪ (Dp+1 × Sq); see the Introduction of 
[14]. 

Besides the explicit constructions above, double disk bundles arise in quite a 
variety of geometrical situations. It is the case of a subclass of cohomogeneity one 
manifolds, i.e., manifolds M endowed with a Lie group action G such that the orbit 
space .M/G is 1-dimensional. When .M/G is an interval .[−1, 1] (or equivalently 
when M is closed and its fundamental group is finite), the space M automatically 
carries a very concrete double disk bundle decomposition in terms of the isotropy 
groups of the action; see [25, Section 1] for details. This gives an abundant source of 
manifolds carrying double disk bundles decompositions, e.g. all compact rank one 
symmetric spaces. 

We remark that the class of closed manifolds admitting a double disk bundle 
decomposition is strictly larger than that of closed cohomogeneity one manifolds. 
In the simply connected case, the example of lowest dimension is the connected sum 
.CP 2�CP 2. This space is a double disk bundle (see, e.g., [6]) but is known to admit 
no cohomogeneity one action (see [28]). 

Double disk bundle decompositions arise in other contexts of Riemannian 
Geometry such as Dupin hypersurfaces, isoparametric hypersurfaces, or certain 
singular Riemannian foliations. We refer to the introduction of [14] for a discussion 
of these situations and for the corresponding references. 

For later convenience, we recall the following terminology for some simple cases 
of double disk bundles:

• The double of a disk bundle .D(E) → S is the gluing .D(E) ∪ D(E) via the 
identity map on the boundary .∂D(E).

• A twisted double of a disk bundle .D(E) → S is the gluing .D(E) ∪φ D(E) via a 
self-diffeomorphism . φ of the boundary. 

These notions can be generalized to the situation where the disk bundle . D(E)

is replaced by any compact manifold W with non-empty boundary . ∂W ; see [35, 
Chapter 30, p. 377]. In this more general context, a remarkable theorem of Barden 
and Smale states that every closed odd-dimensional manifold M is a twisted 
double .M = W ∪φ W ; see [35, Chapter 30, p. 377]. In contrast, it has been 
proved in [14, Corollary C] that, among all (infinitely many) simply connected 
closed 5-dimensional manifolds, only four of them (. S5, .S3 × S2, the Wu-manifold 
.SU(3)/SO(3) and the non-trivial bundle .S3×̂S2) admit a double disk bundle 
decomposition.
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4 Difficulties for a Proof: Absence of Totally Geodesic 
Hypersurfaces and Souls 

As already anticipated in the introduction, an important difficulty toward a proof for 
the double soul conjecture is that a potential double disk bundle decomposition of a 
closed nonnegatively curved manifold does not seem to be related to the metric in 
any obvious way. Here we review some basic observations in this direction. 

The natural strategy to prove the conjecture for a closed manifold would be to 
find an adequate hypersurface diving the manifold in two halves and then to apply 
an adapted version of the soul theorem to each half. This would yield the desired 
double disk bundle decomposition. 

A special situation where this strategy can be applied is when the manifold 
contains a totally geodesic hypersurface with trivial normal bundle. In this case, 
the proof of Cheeger and Gromoll applies in a straightforward way to each half, as 
observed by Cheeger in [6, Remark in p. 626]. 

However, it is quite uncommon for a nonnegatively curved manifold to possess 
a totally geodesic hypersurface. Already among spaces with a large isometry group, 
which naturally tend to have totally geodesic submanifolds, one can find many 
examples with no totally geodesic hypersurfaces. For example, round spheres 
are the only irreducible simply connected compact symmetric spaces admitting 
totally geodesic hypersurfaces [8] (we refer to [34] for a complete classification of 
homogeneous spaces admitting totally geodesic hypersurfaces and for references to 
previous works). Thus, if a nonnegatively curved manifold has a double disk bundle 
decomposition, the properties of the hypersurface along which the disk bundles are 
glued are unclear. 

In any case, and coming back to a potential strategy for a proof of the conjecture, 
suppose you have overcome the difficulty of finding an adequate hypersurface 
separating the manifold into two halves. Then, it is not obvious how the soul theorem 
should be applied to each half. More precisely, the soul theorem in its standard 
form would yield the existence of totally geodesic submanifolds in M: one in each 
half (namely, its soul), each of which would be the base of a disk bundle whose 
gluing would recover the diffeomorphism type of M . Unfortunately, nonnegatively 
curved manifolds do not have two totally geodesic “souls” in general. Let us be 
more precise. 

Take any of the known examples with (not only nonnegative but) positive 
curvature and slightly perturb the metric. Then, on the one hand, one retains positive 
curvature (since it is an open condition) and, in particular, nonnegative curvature. On 
the other hand, such a perturbed metric will have no totally geodesic submanifolds 
of dimension .≥2 in general; see [33]. This implies that if the manifold admitted 
a double disk bundle decomposition with the base . Si of each disk bundle being 
totally geodesic for the perturbed metric, then .dim Si would be .≤ 1. However, not 
all the known positively curved examples carry such a decomposition. As we have 
been informed by Jason DeVito, the methods from the article [14] can be used to 
show that the Wallach homogeneous space .SU(3)/T 2 does not admit a double disk
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bundle decomposition with base spaces of dimension . ≤1. Thus, a potential proof 
for the double soul conjecture should deal with two submanifolds playing the role 
of the soul of each half, but being not necessarily totally geodesic. 

5 Construction of Examples as Double Disk Bundles 

An obvious indication that the conjecture might hold is that many of the known 
examples of closed manifolds of nonnegative curvature have been constructed as 
the gluing of two adequate disk bundles along their boundary, as already mentioned 
in Sect. 2. Such constructions are known to be doable only in some rather special 
situations. And even when such a construction is possible, it is often a very hard 
task to determine the diffeomorphism type of the resulting manifold out of the 
geometric information of each disk bundle. We next review the history of the known 
constructions. 

The first gluing in this context was due to Cheeger [6]. He considered compact 
rank one symmetric spaces .KP n with a disk D of the same dimension removed, 
where . K is any of . R, . C, . H, or . Ca. He used the description of .KP n \D as the normal 
disk bundle of the natural inclusion .KP n−1 ⊂ KP n to construct a nonnegatively 
curved metric which on the boundary is isometric to the round metric on the sphere. 
As a consequence, he obtained metrics of nonnegative curvature on the connected 
sum of any two compact rank one symmetric spaces of the same dimension. 

Cheeger already observed in [6, Remark in p. 626] that some of his gluings, 
namely, .CP 2�CP 2 and .CP 2� − CP 2, are not diffeomorphic to any homogeneous 
space. In 2002, Totaro [39] determined which of the Cheeger manifolds were 
diffeomorphic to biquotients. It turned out that most of them were, except for a 
few cases which are not even homotopy equivalent to any biquotient. 

In 1998 [26], the second author of the present survey showed that any nonneg-
atively curved metric g on an open manifold X with soul S can be deformed to a 
nonnegatively curved metric . ḡ which splits as a metric product .N × [a,∞) outside 
some tubular neighborhood of S, where N is diffeomorphic to the unit normal 
bundle of S in X. 

This metric deformation has an immediate consequence for the construction of 
closed nonnegatively curved manifolds. If .D(S) denotes the normal disc bundle of 
S in X, then there is a nonnegatively curved metric on the double .D(S) ∪Id D(S) of 
.D(S). The same construction works more generally for the twisted doubles . D(S)∪φ

D(S) glued along any isometry . φ of the boundary of .D(S). In order to apply this 
method, two tasks need to be done:

• construct nonnegatively curved metrics on open manifolds (which by the soul 
theorem must be total spaces of vector bundles over closed nonnegatively curved 
manifolds), and

• determine the diffeomorphism type of the (twisted) doubles induced by the 
spaces of the previous item.
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The first item has been investigated for vector bundles over homogeneous spaces, 
biquotients, and cohomogeneity one manifolds; see [20] and the references therein. 
The second item seems too hard to treat in certain generality, but it could produce 
interesting manifolds in some particular cases. 

The next construction came in the year 2000. Grove and Ziller [25] showed  
that any cohomogeneity one G-manifold M with singular orbits of codimension 
2 admits a G-invariant metric of nonnegative curvature. By the O’Neill Formula for 
Riemannian submersions, the quotient .M/L by any subgroup .L < G acting freely 
on M also carries a nonnegatively curved metric (see also [41, Theorem 2.8]). While 
M is foliated by homogeneous spaces, .M/L is foliated by biquotients. 

Again, it seems unmanageable to determine all diffeomorphism types of the 
manifolds belonging to these classes. However, Grove and Ziller discovered very 
interesting manifolds within them and hence carrying nonnegatively curved metrics: 
all of the ten Milnor 7-spheres and more generally all .S3-bundles over . S4, all  
principal .S3×S3-bundles over . S4, or all of the four homotopy .RP 5’s. Only recently, 
Goette, Kerin, and Shankar discovered in [18] larger families of ten manifolds and 
seven manifolds, generalizing those of Grove and Ziller. The 7-dimensional family 
is specially interesting as it realizes all exotic seven spheres, as well as infinitely 
many spaces with the cohomology ring of some .S3-bundle over . S4 but of different 
homotopy type [19]. 

We finally mention other works dealing with gluings and nonnegative curvature. 
Schwachhöfer and Tapp studied in [36] generalizations of the metric construction 
of Grove and Ziller. Torres constructed nonnegatively curved metrics on various 
non-simply connected manifolds in dimension 4 [38]. This last construction has 
been extended to other dimensions by Torres and the second author in [27] to  
produce nonnegatively curved non-simply connected manifolds in all dimensions 
. ≥4, including examples in dimensions 4 (resp. 5) that are not even homotopy 
equivalent (resp. homeomorphic) to any biquotient or cohomogeneity one manifold. 

6 The Perfect Nonnegatively Curved Glued Metric and Some 
of Its Properties 

In [26], there is a procedure to change the metric of an open nonnegatively curved 
Riemannian manifold X to another with a cylindrical end. Thus, the double of 
X carries a nonnegatively curved metric, although more interesting gluings are 
possible. This has been extended in [27] to a procedure that allows, in certain cases, 
to construct nonnegatively curved metrics in the gluing of two possibly different disc 
bundles . D1 and . D2. Specifically, it is enough to have nonnegatively curved metrics 
on each side, with isometric boundaries and with the normal exponential map of the 
soul in each side being a diffeomorphism for the disc bundle of the right radius. This 
gives some motivation to consider the metric structure of such gluings. Since it falls 
far from the reach of this survey, we just make a few simple observations here.
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We start with two disc bundles with metrics of nonnegative sectional curvature 

. Dk1 → N1 → B1, Dk2 → N2 → B2,

such that, for .i = 1, 2, 

1. .∂Ni are convex hypersurfaces of . Ni and isometric for the induced metrics; 
2. . Ni has soul isometric to . Bi ; 
3. . Ni is a tubular neighborhood of . Bi of some radius . ri ; 
4. .exp : νri (Bi) → Ni is a diffeomorphism. 

Then we can use the construction in [26] (see specific details in [27]) to modify 
the metric on each . Ni so that together to all the above properties we also have that, 
outside of a tubular neighborhood of radius .ri/2, . Ni is isometric to a metric product 
.∂Ni ×[ri/2, ri]. Since we assumed from the beginning that .∂N1 	 ∂N2, we can use 
any isometry .f : ∂N1 → ∂N2 to construct a metric g in the gluing 

. M := N1 ∪f N2.

We call g a perfect glued metric and examine now some of its properties.

• . B1 and . B2 are metric dual sets; by this we mean that, if 

.r1 + r2 > max{diam B1, diam B2}, (1) 

then 

. B2 = max distB1 , B1 = max distB2

Observe that the construction of the perfect glued metric allows us to increase 
the values of . r1 and . r2 arbitrarily so that the above restriction (1) is satisfied.

• We have that 

. exp1 : νr1+r2(B1) → M \ B2

is a diffeomorphism, with a similar statement for . B2.
• . B1 is the cut locus of . B2 and vice versa.
• Let .p ∈ M \ (B1 ∪ B2), and let 

.v = exp−1
1 (p)

‖ exp−1
1 (p)‖ ∈ ν1(B1), w = exp−1

2 (p)

‖ exp−1
2 (p)‖ ∈ ν1(B2). (2) 

Then the geodesics with initial conditions v and w satisfy 

.γv(t) = γw(r1 + r2 − t). (3)
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• The set at distance .r0 := r1+r2
2 from either . B1 or . B2 is a closed totally geodesic 

hypersurface that we denote by H .
• There are Riemannian submersions .πi : H → Bi such that, if we denote by . Sr0

the normal sphere bundle of radius . r0, 

. πi ◦ expi : Sr0(Bi) → Bi

is the bundle projection map.
• Associated with the submersions . πi , there are vector bundle decompositions into 

horizontal and vertical vectors 

. T H = H1 ⊕V1 = H2 ⊕V2,

that extend trivially (after adding the line bundle generated by minimal geodesics 
connecting . B1 to . B2) to the whole of .M \ { B1, B2 }.

• For each direction .v ∈ H1,p ∩ H2,p, there is a totally geodesic immersed flat 
.φ : R×[0, r1 +r2] → M . This follows from Perelman’s rigidity theorem applied 
to each half of M , namely, each direction in .H1 provides a half flat in .N1 and 
similarly with . H2, . N2. The condition .v ∈ H1,p ∩H2,p and the uniqueness of a 
geodesic from its initial conditions implies that these flats match smoothly at the 
glued part.

• There is a fixed point free involution .a : H → H : for any .p ∈ H , consider the 
minimal geodesic normal to . B1 passing through p, and follow it until it hits H 
again. More precisely, since H lies at distance . r0 from both . B1 and . B2, we define 

. a : H → H, a(p) = exp1(3 exp−1
1 (p)).

If .a(p) = p for some .p ∈ H , then for v, w as in (2), we would get 

. q = exp2(r0 · w) = exp2(−r0 · w),

contradicting that .exp2 is a diffeomorphism in .νr1+r2(B2). 
The map a does not need to preserve orientation or be homotopic to the 

identity; this can be seen easily by considering the gluing of two copies of . B×D�

by the identity map. a will then agree with the product of the identity in B and 
the antipodal map in .∂D�.

• The construction of .a : H → H can be used to show that there is an extension 

. a : M \ { B1, B2 } → M \ { B1, B2 }
that is still a diffeomorphism and interchanges the two halves separated by H .

• By changing the number 3 in the definition of the map a by some other odd 
integer, we get a family of involutions 

.ak : H → H, ak(p) = exp1((2k + 1) exp−1
1 (p)).



On the Double Soul Conjecture 237

It is clear from the construction that 

. ak ◦ a� = ak−�, for all k, � ∈ Z,

It would be interesting to examine the topological dynamics of this collection of 
maps.

• Let .p ∈ H , and denote by .F1(p), .F2(p) the fibers through p of . π1 and . π2
respectively. Then 

.ak(F1(p) ∩ F2(p)) = F1(ak(p)) ∩ F2(ak(p)), for all k ∈ Z.

• .V1 ∩V2 is the tangent space to .F1(p) ∩ F2(p). 

If we allow taking . r1 and . r2, sufficiently large, we can obtain nonnegatively curved 
metrics on M with some special properties. Without loss of generality, we will 
assume that .r1 = r2 = r .

• There are metrics . gr in M with .λ1(M) → 0 as .r → ∞, where .λ1(M) is the first 
eigenvalue of the Laplacian. To see this, observe that the Cheeger constant of M 
(defined as 

. h(M) = inf
E

A(E)

min V (A), V (B)
,

where E is a smooth hypersurface dividing M into two pieces A and B), will 
tend to zero when .r1 = r2 = r → ∞, since in that case, for .E = H , 

. A(H) = constant, V (A), V (B) 	 C · r

for some constant .C > 0. Then Buser’s inequality [5] provides . λ1(M) ≤
10h(M)2 → 0.

• By rescaling the metric . gr by . 1/r , we obtain metrics . gr in M collapsing to the 
interval .[0, 1] in the Gromov-Hausdorff distance as .r → ∞. 

7 Intertwining Results from Double Disk Bundles and 
Nonnegative Curvature 

In this section we discuss a question which is actually more general than the conjec-
ture: which smooth manifolds (i.e., not necessarily endowed with any Riemannian 
metric) admit a double disk bundle decomposition? 

While this question seems unmanageable in general, there exist very interesting 
results in some particular cases. Even more interesting to us, they are very related 
to other existing results in the context of nonnegative curvature. 

The first results to review deal with low dimensions. There exist complete 
classifications of closed simply connected manifolds which admit a double disk
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bundle decomposition in dimensions 4 and 5, due to Ge and Radeschi [16] and to 
DeVito et al. [14], respectively. The lists consist of . S4, .CP 2, .S2 × S2, and both 
.CP 2� ± CP 2 and of . S5, .S2 × S3, .SU(3)/SO(2) and .S2×̂S3 (the non-trivial .S3-
bundle over . S2), respectively. It is remarkable that these lists coincide, respectively, 
in each dimension, with those of the known simply connected closed nonnegatively 
curved manifolds, which in turn coincide with the classification [9] of closed simply  
connected biquotients. 

DeVito et al. [14] moreover obtained a partial classification in dimension 6. They 
showed that the only 6-dimensional manifolds with vanishing second Betti number 
.b2 = 0 which admit a double disk bundle decomposition are . S6 and .S3 × S3. 
Again, the only known examples of nonnegatively curved closed simply connected 
manifolds with .b2 = 0 are . S6 and .S3 × S3. 

In arbitrary dimensions, it seems hard to determine whether an arbitrary manifold 
admits a double disk bundle decomposition. There are, however, certain situations 
where one can ensure such a decomposition. 

One such situation has been studied in the recent thesis [32] by Andrew 
Lutz, supervised by Jason DeVito and Krishnan Shankar. Its Theorem 0.0.1 states 
that a manifold .M = (Sn1 × · · · × Snr )/T k constructed as the quotient of a 
product of spheres under a torus linear action carries a (very specific) double disk 
bundle decomposition. All of these spaces carry nonnegatively curved submersion 
metrics from the product of round metrics on the total space. Hence Lutz’s result, 
combined with the topological results from [40] (see Proposition 2.1 therein and 
the first paragraph in page 231), yields examples of double disk bundles carrying 
nonnegatively curved metrics in infinitely many homotopy types in each odd 
dimension .≥7 and in each even dimension .≥14. 

Instead of imposing conditions on the diffeomorphism type of the manifold, one 
can do so on the metric. Spindeler investigated fixed point homogeneous metrics, 
i.e., such that the action of the isometry group G on the corresponding manifold 
M has nonempty fixed point set .MG and the equality . dim M/G − dim MG = 1
holds, where .dim M/G denotes the dimension of the regular part of orbit space 
.M/G. One of the consequences of Spindeler’s work is that fixed point homogeneous 
nonnegatively curved manifolds carry double disk bundle decompositions [37, 
Theorem 4.1]. 

DeVito, Galaz-García, and Kerin derived further sufficient conditions for a closed 
(not necessarily Riemannian) manifold M to admit a double disk bundle decom-
position; see [14, Proposition 3.1]. These conditions cover in particular all known 
examples of manifolds with positive sectional curvature; see [14, Theorem 3.3]. 
They also cover some (but not all) biquotients, as explained in Sect. 8. 

One of the observations in [14, Proposition 3.1] is that the total space of a fiber 
bundle over a double disk bundle is itself a double disk bundle. This method can be 
iterated to produce many examples. In particular, and when allowing for an infinite 
fundamental group, it can be used to construct examples of double disk bundles that 
admit no metric of nonnegative curvature, as follows. Since any infranilmanifold 
is itself an iterated principal circle bundle [1], we immediately obtain that every 
nilmanifold is a double disk bundle. However, a metric of nonnegative sectional
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curvature on a nilmanifold needs to be flat, since its universal cover would need to 
be the Euclidean space (see Theorem 9.1 in [7]). Therefore, most nilmanifolds are 
double disc bundles, but will never admit a nonnegatively curved metric. 

We finally mention the recent preprint of DeVito [12], where he studies the 
question of which rational spheres admit linear double disk bundle decompositions 
(i.e., each disk bundle extends to a vector bundle). He proves that a rational 
sphere M of even dimension .≥6 admits a linear double disk bundle decomposition 
if and only if M is a homotopy sphere. For .n = 4, the result of Ge and 
Radeschi above implies that the only rational sphere admitting a double disk bundle 
decomposition is actually . S4. Parallelly, as mentioned in Sect. 2, there is no example 
of an even-dimensional rational sphere (other than the standard sphere . S2n) with a 
nonnegatively curved metric. 

DeVito’s result should be compared to the situation in dimensions 5 and . 4n −
1 with .n ≥ 2, where there are rational spheres which are not homotopy spheres 
but still admit a (linear) double disk bundle decomposition. Examples are given 
by the Wu manifold .SU(3) or the unit tangent bundle .T 1S2n, .n ≥ 2. Moreover, 
these spaces are homogeneous and hence carry nonnegatively curved metrics (and 
hence provide the examples mentioned in Sect. 2). As far as we know, there are no 
analogous results in dimensions of the form .4n + 1 with .n ≥ 2. 

8 Proof for Biquotients 

As mentioned in Sect. 2, biquotients constitute one of the two known sources for the 
construction of nonnegatively curved manifolds. Here we recall their definition, and 
afterward we discuss their relation to the conjecture. 

A (closed) biquotient is defined as the quotient of a (closed) homogeneous space 
.G/H (with G compact) under the free (isometric) action of a subgroup .K < G. The  
corresponding biquotient is commonly denoted by .K\G/H . Evidently, the class 
of biquotients contains that of homogeneous spaces and, in particular, that of Lie 
groups. Moreover, these inclusions are strict. For the first one, the Gromoll-Meyer 
exotic sphere is by construction a biquotient, while the only homotopy spheres that 
admit homogeneous structures are the standard ones. For the second inclusion, recall 
that the only sphere diffeomorphic to a Lie group is . S3. 

All biquotients carry a metric of nonnegative curvature inherited from a bi-
invariant metric on G. Coming back to the double soul conjecture, it is currently an 
open question whether it holds for all biquotients. Rather surprisingly, it is already 
unknown for the subclass of Lie groups: none of the sufficient conditions explained 
in Sects. 3 or 7 for a manifold to admit a double disk bundle decomposition seem to 
apply to the exceptional Lie groups . E7 or . E8. In particular, Kollross [31] showed  
that . E7 and . E8 are the only simple Lie groups which do not admit cohomogeneity 
one isometric actions with respect to a bi-invariant metric. 

On the positive side, using Kollross’ result, it is observed in [14, Proposition 3.2] 
that any compact, connected Lie group G which is not isomorphic to a finite
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quotient of a product .
∏

Gi with all . Gi being . E7 or . E8 admits a double disk bundle 
decomposition. 

Further positive results can be derived in low dimensions, due to the existing 
classifications of homogeneous spaces and biquotients. Lutz proved in his thesis 
[32, Theorem 0.0.2] that all known closed simply connected nonnegatively curved 
manifolds of dimension .≤6 carry a (very specific) double disk bundle decomposi-
tion. This result hence covers all biquotients up to dimension 6 (see also [15] for  
dimensions 4 and 5). In this survey, we extend this particular case and make the 
following observation. 

Proposition 1 All closed simply connected biquotients of dimension . ≤7 satisfy the 
double soul conjecture. 

For homogeneous spaces, we can improve the conclusion further. 

Proposition 2 All closed simply connected homogeneous spaces of dimension . ≤10
satisfy the double soul conjecture. 

Proof of Propositions 1 and 2 The statements above follow from combining the 
existing classifications of the manifolds under consideration with the known 
sufficient conditions from [14, Proposition 3.1(d)] for a manifold to admit a double 
disk bundle decomposition. 

Closed simply connected homogeneous spaces of dimension .≤9 were classified 
in Klaus’ thesis [30], and those of dimension 10 can be extracted from the work of 
Böhm and Kerr [2]. The list consists of the following diffeomorphism types:

• compact rank one symmetric spaces;
• the following single examples in each dimension: 

– the Wu-manifold .SU(3)/SO(3), 
– the Grassmannian .SO(5)/(SO(3)SO(2)) and the Wallach space .SU(3)/T 2, 
– the Berger space .B7 = SO(5)/SO(3) and the unit tangent bundle . T 1S4 =

SO(5)/SO(3) (obviously, the inclusions .SO(3) < SO(5) are different), 
– the group .SU(3), the Grassmannian .SU(4)/S(U(2)U(2)), the Wolf space 

.G2/SO(4) and the flag .Sp(2)/T 2, 
– the Grassmannian .SU(4)/SO(4), 
– the group .Sp(2), the Grassmannian .SO(7)/(SO(5)SO(2)), the projectivized 

tangent bundle .PCTCP 6 = SU(4)/S(U(1)U(1)U(2)) and .G2/U(2) (which 
is a rational .CP 5 [29]);

• products of spaces in the previous two items;
• circle bundles over spaces in the previous three items. 

It can be easily checked in the literature that all the spaces in the first two items admit 
either cohomogeneity one actions or fibrations over cohomogeneity one spaces; 
hence, all carry double disk bundle decompositions. These can be lifted to produce 
double disk bundle decompositions on the spaces in the last two items. 

The classification of closed simply connected biquotients of dimension .≤7 was 
obtained by DeVito in [10]. We will not review those of dimension .≤6 since they
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have been covered in Lutz’s thesis [32]. We thus focus in dimension 7. Apart from 
the homogeneous spaces listed above, the following diffeomorphism types arise in 
the biquotient case:

• quotients .M = (Sn1 × · · ·× Snr )/T k of a product of spheres under a torus linear 
action;

• (not necessarily positively curved) Eschenburg spaces, i.e., circle quotients of 
.SU(3);

• quotients of .(SU(3)/SO(3)) × SU(2) by a circle action. 

The spaces in the first item are covered in [32, Theorem 0.0.1]. Regarding 
Eschenburg spaces, it is not known whether all of them carry cohomogeneity one 
actions or fiber over any other manifold. However, as observed in the proof of 
[14, Theorem 3.3], each of the free circle actions on .SU(3) is equivalent to some 
subaction of a cohomogeneity one action on .SU(3); hence the quotient carries a 
double disk bundle decomposition by DeVito et al. [14, Proposition 3.1(c)]. For 
the spaces in the third item, observe that the product action by .SU(3) × T 2 on 
.(SU(3)/SO(3)) × SU(2) is of cohomogeneity one. Since .SO(3) is maximal in 
.SU(3), the possible circle actions on .(SU(3)/SO(3))×SU(2) are, up to conjugacy, 
subactions of .SU(3) × T 2. Again, the corresponding quotients carry a double disk 
bundle decomposition by DeVito et al. [14, Proposition 3.1(c)]. ��

We remark that a potential proof to extend Proposition 2 to dimension 11, 
if true, would not be as straightforward. One reason is that none of the known 
sufficient conditions for a manifold to admit a double disk bundle decomposition 
seem to apply to the space .G2/SO(3). Here .SO(3) is a maximal subgroup of 
. G2, and hence there are no homogeneous fibrations associated with intermediate 
subgroups. Moreover, .G2/SO(3) (which is a rational 11-sphere, see [29]) does not 
admit any cohomogeneity one action, as follows from the recent classification of 
cohomogeneity one actions on rational spheres by DeVito [11]. 

9 Relation to the Bott-Grove-Halperin Conjecture 

The most prominent conjecture in the field of nonnegative curvature is the Bott-
Grove-Halperin conjecture. It suggests, in its simpler form, that a closed simply 
connected nonnegatively curved should be rationally elliptic. This is a topological 
condition which can be characterized as follows: a closed simply connected 
manifold M is rationally elliptic if only a finite number of its homotopy groups 
have infinite order; otherwise it is called rationally hyperbolic. This conjecture 
was discussed in the literature for the first time by Grove and Halperin [23, 
Conjecture 1.5], where they attribute it to Bott. This conjecture, nowadays called the 
Bott-Grove-Halperin conjecture, if true, would vastly improve our understanding of 
nonnegatively curved manifolds.
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Rationally elliptic manifolds have been studied from the point of view of rational 
homotopy theory, and they are topologically very rigid. For example, their Euler 
characteristic is nonnegative. Moreover, the total Betti number . 

∑
i rank Hi(M,Q)

of a rationally elliptic n-dimensional manifold M is bounded above by . 2n. This  
should be compared to Gromov’s Betti number Theorem stated in Sect. 2, which 
also gives un upper bound for .

∑
i rank Hi(M,Q). However, Gromov’s bound is 

vastly greater than . 2n. 
In contrast to the situation for the double soul conjecture, the Bott-Grove-

Halperin conjecture is known to hold for all existing examples of nonnegatively 
curved manifolds. In the case of biquotients .K\G/H , it follows from the long exact 
homotopy sequence associated with the fibration .(K × H) → G → K\G/H , 
since Lie groups are known to be rationally elliptic. In the case of the nonnegatively 
curved examples constructed as the gluing of two disk bundles, rational ellipticity 
can be proven by using the methods of Grove and Halperin from [24]. 

In view of the Bott-Grove-Halperin conjecture and the double soul conjecture, 
it is natural to compare the class of rationally elliptic manifolds and the class of 
manifolds admitting a double disk bundle decomposition. This has been done in 
detail in [14], and they obtained structural results in low dimensions. We highlight 
the following results, which illustrate the fact that the two classes do not coincide:

• In each dimension 5 and 6, there are infinitely many rationally elliptic manifolds 
which admit no double disk bundle decomposition.

• In each dimension .n ≥ 6, there are manifolds admitting a double disk 
bundle composition which are rationally hyperbolic. Examples are . Sn ×
(CP 2� . . . �CP 2) for any .n ≥ 2 and .≥ 3 copies of . CP 2, as well as  
.Sn × ((S2 × S4)�(S2 × S4)) for any .n ≥ 2. The latter is specially interesting 
as it has the same Betti numbers as a rationally elliptic manifold, namely, 
.Sn × S2 × CP 2. 
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Consequences and Extensions 
of the Brunn-Minkowski Theorem 

María A. Hernández Cifre, Eduardo Lucas, Francisco Marín Sola, 
and Jesús Yepes Nicolás 

Abstract In this work we study some extensions and consequences of the funda-
mental Brunn-Minkowski inequality, using two different approaches: on one hand 
we deal with the so-called Grünbaum inequality, a beautiful consequence of the 
Brunn-Minkowski theorem which asserts, roughly speaking, that any hyperplane 
passing through the centroid divides any compact convex set into two not too 
small parts; on the other hand we study discrete versions of the Brunn-Minkowski 
inequality for the lattice point enumerator, that is, the functional counting how many 
points with integer coordinates are contained in a bounded set. 

Keywords Brunn-Minkowski inequality · Lattice point enumerator · Grünbaum 
inequality 

1 Introduction 

As usual, we write .Rn to represent the n-dimensional Euclidean space, endowed 
with the (Euclidean) inner product .〈·, ·〉. One of the cornerstones of convex 
geometry is the Brunn-Minkowski inequality, which, in its classical form, provides 
a relation between the notions of Minkowski addition (of compact sets) and volume. 

Theorem 1 Let .K,L ⊂ R
n be non-empty compact sets. Then, for all .λ ∈ (0, 1), 

.vol
(
(1 − λ)K + λL

)1/n ≥ (1 − λ)vol(K)1/n + λvol(L)1/n, (1) 

with equality for some .λ ∈ (0, 1), when .vol(K)vol(L) > 0, if and only if K and L 
are homothetic compact convex sets. 
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Here .vol(·) denotes the n-dimensional Lebesgue measure, and . + is used for the 
Minkowski addition, i.e., .A + B = {a + b : a ∈ A, b ∈ B} for any non-empty sets 
.A,B ⊂ R

n. Moreover, .λA represents the set .{λa : a ∈ A}, for .λ ≥ 0. 
Despite its apparent simplicity, the Brunn-Minkowski inequality is one of the 

most powerful results in convex geometry and beyond: for instance, its equivalent 
analytic version (the Prékopa-Leindler inequality; see, e.g., [12, Theorem 8.14]) 
and the fact that the compactness assumption can be weakened to Lebesgue 
measurability (see [20]) have allowed it to move to much wider fields. It implies 
very important inequalities such as the isoperimetric and Urysohn inequalities (see, 
e.g., [31, page 382]), and it has been the starting point for new developments 
like the .Lp-Brunn-Minkowski theory (see, e.g., [21, 22]) or a reverse Brunn-
Minkowski inequality (see, e.g., [27]), among many others. It would not be possible 
to collect here all references regarding equivalent versions, applications, and/or 
generalizations of the Brunn-Minkowski inequality. For extensive and beautiful 
surveys on them, we refer to [2, 7]. 

The classical Brunn concavity principle (see, e.g., [25, Theorem 12.2.1]) is one 
of the abovementioned equivalent versions of the Brunn-Minkowski inequality. It 
asserts that, for any non-empty compact and convex set .K ⊂ R

n and a hyperplane 
H , the cross-sectional volume function .f : H⊥ −→ R≥0 defined by 

. f (x) = voln−1
(
K ∩ (x + H)

)1/(n−1)

is concave; here .H⊥ represents the orthogonal complement of H . Moreover, in the 
following, we will denote by .M|H the orthogonal projection of a subset . M ⊂ R

n

onto H . 
This result is the key fact in the classical proof of a celebrated theorem by 

Grünbaum [13]. In order to state it, we need further notation: for any compact set 
.K ⊂ R

n with non-empty interior, we write .g(K) to represent its centroid, i.e., the 
affine-covariant point 

. g(K) := 1

vol(K)

∫

K

x dx.

Moreover, given .u ∈ S
n−1, we write .Hu := {

x ∈ R
n : 〈x, u〉 = 0

}
and . H−

u :={
x ∈ R

n : 〈x, u〉 ≤ 0
}

to denote the (vector) hyperplane orthogonal to u and the 
corresponding closed halfspace with u as outer normal unit vector. Finally, we will 
say that K is a cone in the direction u if K is the convex hull of .{x}∪(

K∩(y+Hu)
)
, 

for some .x, y ∈ R
n. 

Theorem 2 (Grünbaum) Let .K ⊂ R
n be a compact convex set, with non-empty 

interior, having its centroid at the origin. Then 

.
vol(K ∩ H−

u )

vol(K)
≥

(
n

n + 1

)n

(2)
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for all .u ∈ S
n−1. Equality holds, for some .u ∈ S

n−1, if and only if K is a cone in 
the direction u. 

In the last years Grünbaum’s result has been extended to the case of sections 
[6, 28] and projections [33] of compact convex sets and has been even generalized 
to the analytic setting of log-concave functions [26] and p-concave functions for 
.p > 0 [28] (we refer the reader to [7] for more information on log-concave and 
p-concave functions). Moreover, it has been also extended to the case of compact 
sets with a p-concave cross-sectional volume function [23], for .p ≥ 0. 

The original proof of Theorem 2 relies on exploiting the Brunn concavity 
principle to compare both the volume of the compact convex set K and of . K ∩ H−

u

with those of a suitable cone C in the direction .u ∈ S
n−1 and .C ∩ H−

u , respectively. 
In this paper we show, on the one hand, how one can derive Grünbaum’s result as 
a direct application of the Brunn-Minkowski theorem (Theorem 1). Furthermore, 
the characterization of the equality given in Theorem 2 now will follow from the 
equality case of Theorem 1. 

On the other hand, we devote this work to exploring discrete versions of the 
Brunn-Minkowski inequality. Nowadays there is a growing interest for studying 
discrete analogues of classical (continuous) results, which can be carried out from 
two points of view: either considering finite subsets .A,B ⊂ Z

n of integer points and 
measuring with the cardinality .| · | or working with compact sets .K,L ⊂ R

n and 
using the so-called lattice point enumerator as measure, that is, .Gn(K) = |K ∩Z

n|. 
Regarding the cardinality, and besides the simple and classical inequality 

.|A + B| ≥ |A| + |B| − 1 (3) 

for finite .A,B ⊂ Z
n, Gardner and Gronchi obtained in [8] a beautiful and powerful 

discrete Brunn-Minkowski inequality: they proved that if .A,B are finite subsets of 
the integer lattice . Zn, with dimension .dim B = n, then 

. |A + B| ≥ ∣∣DB|A| + DB|B|
∣∣.

Here, for any .m ∈ N, .DB
m is a B-initial segment, i.e., the set of the first m points 

of .Zn
≥0 = {

x ∈ Z
n : xi ≥ 0

}
in the so-called B-order, which is a particular 

order defined on .Zn
≥0 depending only on the cardinality of B. They also derive 

some inequalities that improve previous results obtained by Ruzsa in [29, 30]. For a 
proper definition and a deep study of it, we refer the reader to [8]. 

Recently [9, 16, 19], different discrete analogues of the Brunn-Minkowski 
inequality have been obtained for the cardinality, including the case of its classical 
form (1): in [16] it is shown that if .A,B ⊂ Z

n are non-empty finite sets, then 

. 
∣∣Ā + B

∣∣1/n ≥ |A|1/n + |B|1/n,

where . Ā is a suitably defined extension of A not depending on B.
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In this paper we will focus on investigating discrete Brunn-Minkowski type 
inequalities for the lattice point enumerator and will present the more recent 
advances in this respect. 

2 Deriving Grünbaum’s Inequality as a Consequence 
of the Brunn-Minkowski Theorem 

Before showing Theorem 2, we need to introduce some notation. Given a compact 
convex set .K ⊂ R

n with non-empty interior, and a vector .u ∈ S
n−1, we denote by 

.Ku(t) = K∩(tu+Hu) and by .K−
u (t) = K∩(tu+H−

u ), for any .t ∈ R. Furthermore, 
we observe that if K has centroid at the origin, then, using Fubini’s theorem, we get 

.0 =
∫

K

〈x, u〉 dx =
∫ b

a

tvoln−1
(
Ku(t)

)
dt, (4) 

where .a, b ∈ R are such that .K|H⊥
u = [au, bu] (here, as usual, by .[x, y] we denote 

the segment with endpoints .x, y ∈ R
n). 

Now we are in a position to prove Theorem 2. We will follow here the approach 
used in [24] to derive the functional version of Grünbaum’s inequality. 

Proof (of Theorem 2) Let .u ∈ S
n−1 be fixed and assume that . K|H⊥

u = [au, bu]
for some .a, b ∈ R with .a < b. First we observe that since K is a compact convex 
set with interior points, we have that .voln−1

(
Ku(t)

)
> 0 for all .t ∈ (a, b) and so the 

condition (4) yields .a < 0 < b. In particular we have .voln−1
(
Ku(0)

)
> 0. 

On the one hand, from the convexity of K , we get 

. K−
u

(
(1 − λ)t1 + λt2

) ⊃ (1 − λ)K−
u (t1) + λK−

u (t2)

for all .t1, t2 ∈ [a, b] and all .λ ∈ [0, 1]. Then the Brunn-Minkowski inequality (1) 
applied to the equation above implies that .vol

(
K−

u (·))1/n is a concave function on 
.[a, b], and further we have .vol

(
K−

u (t)
) = 0 for all .t ≤ a and . vol

(
K−

u (t)
) = vol(K)

for all .t ≥ b. 
On the other hand, since .voln−1

(
Ku(·)

)
is continuous in .(a, b) (due to the 

fact that every concave function is continuous in the interior of its domain and 

.voln−1
(
Ku(·)

)1/(n−1) is so), from the fundamental theorem of calculus and Fubini’s 
theorem, we have that 

.
d

dt
vol

(
K−

u (t)
) = voln−1

(
Ku(t)

)
(5)
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for all .t ∈ (a, b). Thus .vol
(
K−

u (·))1/n is concave and differentiable on .(a, b), and 
then its tangent at .t = 0, which is given by the function .h : R −→ R defined by 

. h(t) = 1

n
vol

(
K−

u (0)
)1/n

(mt + n)

for 

. m = voln−1
(
Ku(0)

)

vol
(
K−

u (0)
) > 0,

lies above its graph. Then .0 ≤ vol
(
K−

u (t)
)1/n ≤ h(t) for all .t ∈ [a, b], and 

further, taking into account that h is negative on .(−∞,−n/m) and . vol
(
K−

u (t)
)1/n

is constant for all . t ≥ b, we have  

.vol
(
K−

u (t)
)1/n ≤ h(t) for all t ∈

[
− n

m
,∞

)
. (6) 

Moreover, applying integration by parts (jointly with (5)) and using (4), we get 

.

∫ b

a

vol
(
K−

u (t)
)

dt = b vol(K) −
∫ b

a

t voln−1
(
Ku(t)

)
dt = b vol(K). (7) 

Hence, noticing on one hand that .vol
(
K−

u (·)) is strictly increasing on .[a, b] and 
that .vol

(
K−

u (t)
) = vol(K) for all .t ≥ b on the other hand, by (7) and (6), we have  

. 

b vol(K) =
∫ b

a

vol
(
K−

u (t)
)

dt =
∫ b

−n/m

vol
(
K−

u (t)
)

dt

=
∫ 1/m

−n/m

vol
(
K−

u (t)
)

dt +
∫ b

1/m

vol
(
K−

u (t)
)

dt

≤
∫ 1/m

−n/m

h(t)n dt +
(

b − 1

m

)
vol(K)

= vol
(
K−

u (0)
)

m

(
n + 1

n

)n

+
(

b − 1

m

)
vol(K).

Therefore 

.vol
(
K ∩ H−

u

) = vol
(
K−

u (0)
) ≥

(
n

n + 1

)n

vol(K),
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and so (2) follows. Furthermore, equality holds, for such a fixed vector .u ∈ S
n−1, if  

and only if 

.vol
(
K−

u (t)
) = h(t)n (8) 

for all .t ∈ [a, b], with .a = −n/m and .b = 1/m. 
First, we assume that the above conditions hold (for such .u ∈ S

n−1 fixed). 
Hence .vol

(
K−

u (·))1/n is affine on .[a, b], which implies, from the equality case 
of the Brunn-Minkowski theorem (see Theorem 1), that .K−

u (t1) and .K−
u (t2) are 

homothetic for all .t1, t2 ∈ [a, b]. Then, for every .t ∈ [a, b], we have . K−
u (t) =

r(t)K−
u (b)+ yt = r(t)K + yt for some .r(t) ≥ 0 and some .yt ∈ R

n, from where we 
further get 

.Ku(t) = r(t)Ku(b) + yt (9) 

for all .t ∈ [a, b]. Moreover, for the suitable constants .A,B > 0, we have  

. 
vol(K)r(t)n = vol

(
r(t)K + yt

) = vol
(
K−

u (t)
) = h(t)n = A(mt + n)n

= B(t − a)n,

where in the last equality, we have used that .a = −n/m. Thus, .r(t) = C(t − a) for 
some .C > 0 and since .r(b) = 1, we get 

.r(t) = t − a

b − a
(10) 

for all .t ∈ [a, b]. Now, for every fixed .t ∈ [a, b], if we set . λ = (b − t)/(b − a) ∈
[0, 1] then .t = (1 − λ)b + λa and so, from the convexity of K , we have  

.Ku(t) ⊃
(

t − a

b − a

)
Ku(b) +

(
b − t

b − a

)
Ku(a). (11) 

Since .Ku(a) = r(a)Ku(b) + ya = ya , taking volumes in (11) and using (9) and 
(10), we obtain that 

. 

voln−1
(
Ku(t)

) ≥ voln−1

[(
t − a

b − a

)
Ku(b) +

(
b − t

b − a

)
Ku(a)

]

=
(

t − a

b − a

)n−1

voln−1
(
Ku(b)

) = voln−1
(
r(t)Ku(b)

)

= voln−1
(
Ku(t)

)
,

and thus (11) holds with equality, for all .t ∈ [a, b]. We conclude that K is the convex 
hull of .Ku(b) and the point .Ku(a), that is, K is a cone in the direction u.
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Finally, if K is a cone in a direction .u ∈ S
n−1, then . Ku(t) = r(t)Ku(b) + yt

(cf. (11)), where r is given by (10) and . yt is the point .(1− r(t))Ku(a). So, using the 
well-known formula for the volume of a cone, we get 

.
vol(K ∩ H−

u )

vol(K)
= −avoln−1

(
Ku(0)

)

(b − a)voln−1
(
Ku(b)

) =
( −a

b − a

)n

, (12) 

where in the last equality, we have used that 

. voln−1
(
Ku(0)

) = r(0)n−1voln−1
(
Ku(b)

) =
( −a

b − a

)n−1

voln−1
(
Ku(b)

)
.

Now, (4) implies that 

. 0 =
∫ b

a

t r(t)n−1 dt = (b − a)
nb + a

n(n + 1)
,

which is equivalent to .nb = −a. Replacing the latter in (12), we conclude that (2) 
indeed holds with equality when K is a cone in the direction u. This finishes the 
proof. 

Given a non-negative measurable function with finite positive integral, its 
centroid is the point defined by 

. g(f ) := 1
∫
Rn f (x) dx

∫

Rn

xf (x) dx.

In [24] (see also the references therein), it is shown that one can obtain the functional 
analogue of Grünbaum’s inequality (2) by exploiting the functional counterpart 
of the Brunn-Minkowski inequality, the so-called Borell-Brascamp-Lieb inequality 
(see [3] and [4]). More precisely, given a p-concave function . f : R

n −→ R≥0
for some .p ∈ [0,∞] with compact support and centroid at the origin, and any 
hyperplane H , one has 

.

∫

H−
f (x) dx ≥

(
np + 1

(n + 1)p + 1

)(np+1)/p ∫

Rn

f (x) dx. (13) 

As usual, if .p = 0 or .p = ∞, the constant appearing in the right-hand side of the 
above inequality is the value that is obtained “by continuity,” that is, the limit as 
.p → 0+ or .p → ∞, respectively. We notice that Grünbaum’s inequality (2) is then 
recovered from (13) by taking f the characteristic function of the n-dimensional 
compact convex set K with centroid at the origin, which is .∞-concave.
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3 Discrete Brunn-Minkowski Type Inequalities 
for the Lattice Point Enumerator 

We note that the known discrete Brunn-Minkowski inequalities for the cardinality in 
its classical form involve the Minkowski addition of two finite subsets .A,B ⊂ Z

n, 
but not its convex combination. Indeed, if one aims to get a discrete analog of (1), 
one should observe the following: for any pair of non-empty finite sets .A,B ⊂ R

n, 
using (3) and the convexity of the function .t �→ tn for .t ≥ 0, one gets 

. 

∣∣(1 − λ)A + λB
∣∣ ≥ ∣∣(1 − λ)A

∣∣ + |λB| − 1 = |A| + |B| − 1

= (1 − λ)|A| + λ|B| + λ|A| + (1 − λ)|B| − 1

≥ (1 − λ)|A| + λ|B| ≥
(
(1 − λ)|A|1/n + λ|B|1/n

)n;

this inequality is however meaningless from a geometric point of view, because 
while the quantities .|A|, |B| on the right-hand side are reduced by the factors . 1 − λ

and . λ, the sets .(1 − λ)A and .λB on the left-hand side have the same cardinality as 
A and B, respectively. 

So, one needs to involve a way of “counting points” for which dilations affect, 
and a perfect candidate for this is the lattice point enumerator .Gn (for compact 
subsets of . Rn). However, and as in the case of the cardinality, one cannot expect to 
obtain a discrete Brunn-Minkowski inequality in the classical form for the lattice 
point enumerator, namely, the relation 

. Gn

(
(1 − λ)K + λL

)1/n ≥ (1 − λ)Gn(K)1/n + λGn(L)1/n

is in general not true. In fact, just taking .K = {0} and the cube .L = [0,m]n with 
.m ∈ N odd, then it is 

. Gn

(
1

2
K + 1

2
L

)1/n

= m + 1

2
<

m + 2

2
= 1

2
Gn(K)1/n + 1

2
Gn(L)1/n.

So, the question arises what is the “best” way to define a set M , for given compact 
sets .K,L ⊂ R

n, such that .(1 − λ)K + λL ⊂ M and 

. Gn(M)1/n ≥ (1 − λ)Gn(K)1/n + λGn(L)1/n

holds for all .λ ∈ (0, 1). 
In [19] the authors answered this question by proving that if .K,L ⊂ R

n are 
non-empty bounded sets and .λ ∈ (0, 1), then 

.Gn

(
(1 − λ)K + λL + (−1, 1)n

)1/n ≥ (1 − λ)Gn(K)1/n + λGn(L)1/n,
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the inequality being sharp. Furthermore, the cube cannot be reduced in the latter 
inequality, and it implies the classical Brunn-Minkowski inequality (1) for bounded 
convex sets. 

The latter inequality was obtained as a direct consequence of a (more general) 
functional discrete inequality: indeed, the authors proved a discrete version of 
the Borell-Brascamp-Lieb inequality. Furthermore, they showed that their discrete 
Borell-Brascamp-Lieb type inequality implies the classical functional one (under 
mild assumptions on the functions there involved), which makes it a powerful result 
in the field. 

Here we provide a new proof of the above Brunn-Minkowski type inequality for 
the lattice point enumerator, using a completely geometrical approach, and we show 
that it implies the continuous version in the more general case of Jordan measurable 
sets. More precisely, we show the following result. 

Theorem 3 Let .K,L ⊂ R
n be non-empty bounded sets and let .λ ∈ (0, 1). Then 

.Gn

(
(1 − λ)K + λL + (−1, 1)n

)1/n ≥ (1 − λ)Gn(K)1/n + λGn(L)1/n. (14) 

Moreover, it implies the Brunn-Minkowski inequality (1) for bounded Jordan 
measurable sets. 

Before showing this result, we need some additional notation and an auxiliary 
property: we will represent by . B0 the n-dimensional Euclidean open unit ball, and 
we denote by .cl M the closure of a set .M ⊂ R

n. 
The proof of the theorem relies on the following relations between the volume 

and the lattice point enumerator of a non-empty bounded measurable set .A ⊂ R
n: 

.

Gn(A) ≤ vol
(
A +

(
− 1

2 , 1
2

)n)
,

vol(A) ≤ Gn

(
A +

(
− 1

2 , 1
2

)n)
.

(15) 

The first inequality can be found in [10, (3.3)], whereas the second one is gathered 
in [11, p. 877] (see also [1]). 

Moreover, if A is further Jordan measurable, it is a well-known fact that, roughly 
speaking, the volume and the lattice point enumerator are equivalent when A is large 
enough, i.e., 

. lim
r→∞

Gn(rA)

rn
= vol(A) (16) 

(see, e.g., [12, Formula (3), p.120]). Furthermore, the following property holds.
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Lemma 1 Let .A ⊂ R
n be a non-empty bounded Jordan measurable set and let 

.M ⊂ R
n be a non-empty bounded set containing the origin. Then 

. lim
r→∞

Gn(rA + M)

rn
= vol(A). (17) 

Proof Given . m ∈ N, it follows that for any .r > 0 large enough one has . (1/r)M ⊂
(1/m)B0 and thus 

.

vol(A)= lim
r→∞

Gn(rA)

rn
≤ lim inf

r→∞
Gn(rA + M)

rn
≤ lim sup

r→∞
Gn(rA + M)

rn

≤ lim sup
r→∞

Gn

(
r
(

cl A + 1
m

B0
))

rn
≤ lim

r→∞
Gn

(
r
(
Fm + 2

m
B0

))

rn
,

(18) 

where . Fm is some finite subset of .cl A such that .cl A ⊂ Fm+(1/m)B0 (which exists 
from the compactness of .cl A). Now, since .Fm + (2/m)B0 is a finite union of open 
balls and so it is Jordan measurable, we have, by (16), that 

. lim
r→∞

Gn

(
r
(
Fm + 2

m
B0

))

rn
= vol

(
Fm + 2

m
B0

)
≤ vol

(
cl A + 2

m
B0

)
. (19) 

Moreover, since .cl A is compact, a standard straightforward computation shows that 

. cl A =
∞⋂

m=1

(
cl A + 2

m
B0

)
.

Since the boundary of A has null Lebesgue measure (because A is Jordan measur-
able), the latter identity together with the fact that 

. vol

( ∞⋂

m=1

(
cl A + 2

m
B0

))

= lim
m→∞ vol

(
cl A + 2

m
B0

)
,

which holds because .cl A + (2/m)B0 is a decreasing sequence (see, e.g., [5, 
Proposition 1.2.5 (b)]) allows us to deduce that 

. vol(A) = vol(cl A) = lim
m→∞ vol

(
cl A + 2

m
Bn

)
.

Therefore, since m was arbitrary in (18) and (19), (17) holds.
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Now we are in a position to prove Theorem 3. 

Proof (of Theorem 3) Noticing that .M + (−1/2, 1/2)n is open (and thus measur-
able) for any non-empty subset .M ⊂ R

n, from  (1) and (15), we get 

. 

Gn

(
(1 − λ)K + λL + (−1, 1)n

)1/n ≥ vol

(
(1 − λ)K + λL +

(
− 1

2 , 1
2

)n
)1/n

= vol

(
(1 − λ)

[
K +

(
− 1

2 , 1
2

)n] + λ
[
L +

(
− 1

2 , 1
2

)n])1/n

≥ (1 − λ)vol

(
K +

(
− 1

2 , 1
2

)n
)1/n

+ λvol

(
L +

(
− 1

2 , 1
2

)n
)1/n

≥ (1 − λ)Gn(K)1/n + λGn(L)1/n.

In order to conclude the proof, we show that (14) implies (1) when K and L are 
non-empty bounded Jordan measurable sets. Then, using (14), (16), and Lemma 1, 
we get 

. 

(1 − λ)vol(K)1/n + λvol(L)1/n

= (1 − λ)

(
lim

r→∞
Gn(rK)

rn

)1/n

+ λ

(
lim

r→∞
Gn(rL)

rn

)1/n

= lim
r→∞

(1 − λ)Gn(rK)1/n + λGn(rL)1/n

r

≤ lim
r→∞

Gn

(
(1 − λ)(rK) + λ(rL) + (−1, 1)n

)1/n

r

=
⎛

⎝ lim
r→∞

Gn

(
r
(
(1 − λ)K + λL

) + (−1, 1)n
)

rn

⎞

⎠

1/n

= vol
(
(1 − λ)K + λL

)1/n
,

as desired. 

Other discrete analogues of the Brunn-Minkowski inequality for the lattice point 
enumerator can be found in [14, 18, 19, 32]. We conclude by highlighting the 
following nice result obtained by Halikias, Klartag, and Slomka in [14]: for non-
empty bounded sets .K,L ⊂ R

n, one has 

.Gn

(
K + L

2
+ (−1, 0]n

)
Gn

(
K + L

2
+ [0, 1)n

)
≥ Gn(K)Gn(L),
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which yields the discrete multiplicative Brunn-Minkowski type inequality 

. Gn

(
K + L

2
+ [0, 1]n

)
≥ √

Gn(K)Gn(L).

In this line, in [19] it is also shown that 

.Gn

(
K + L

2
+ [0, 1]n

)1/n

≥ Gn(K)1/n + Gn(L)1/n

2
, (20) 

provided that .K,L contain some integer point. More recently, some other discrete 
Brunn-Minkowski type inequalities have been considered. We emphasize some 
extensions of (14) to the . Lp setting, both in the case of .p ≥ 1 [17] and for . p ∈ [0, 1)

[15]. 
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An Account on Links Between Finsler 
and Lorentz Geometries for Riemannian 
Geometers 

Miguel Ángel Javaloyes, Enrique Pendás-Recondo, and Miguel Sánchez 

Abstract Some links between Lorentz and Finsler geometries have been developed 
in the last years, with applications even to the Riemannian case. Our purpose is 
to give a brief description of them, which may serve as an introduction to recent 
references. As a motivating example, we start with Zermelo navigation problem, 
where its known Finslerian description permits a Lorentzian picture which allows 
for a full geometric understanding of the original problem. Then, we develop 
some issues including (a) the accurate description of the Lorentzian causality using 
Finsler elements, (b) the non-singular description of some Finsler elements (such 
as Kropina metrics or complete extensions of Randers ones with constant flag 
curvature), (c) the natural relation between the Lorentzian causal boundary and the 
Gromov and Busemann ones in the Finsler setting, and (d) practical applications to 
the propagation of waves and firefronts. 

Keywords Zermelo navigation · Randers and Kropina metrics · Wind Finsler 
metrics · Stationary and SSTK spacetimes · Causality · Gromov and Busemann 
compactifications · Causal boundary · Lorentz-Finsler metrics · Huygens 
principle · Wildfire models 

1 Introduction 

Lorentz and Finsler geometries are two quite different extensions of the Riemannian 
one, which may serve as an arena to test and, eventually, to extend powerful 
Riemannian methods. Typically, Finsler and Lorentz metrics appear when either 
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the anisotropies of the space or the relativistic inclusion of time lead to replace the 
(Riemannian) infinitesimal Euclidean scalar products by the infinitesimal models 
of those geometries (i.e., possibly non-reversible norms or Lorentzian scalar prod-
ucts, respectively). The unification of both extensions in a single Lorentz-Finsler 
geometry has been considered by researchers interested in certain generalizations of 
general relativity, which have received a strong impulse recently [33, 70]. However, 
at a less speculative level, some links between the Finsler and Lorentz settings 
appear naturally, as well as their unification in a Lorentz-Finsler one, enhancing the 
techniques and results in both geometries and multiplying their applications even 
at a “real world” level [50, 51]. The purpose of the present article is to give a non-
technical survey about some links between both geometries. The style is adapted 
to readers with a background in Riemannian geometry and interest in geometric 
analysis, and it may motivate the study of long references such as [23, 40]. 

In a nutshell, (conformal) Lorentzian geometry can be applied at a non-
relativistic level in order to describe an object or wave that propagates at a finite 
maximum velocity . vmax. This velocity will resemble the speed of light in relativity, 
as it allows one to construct lightcones by using the velocities of objects moving at 
maximum speed. Then, the (conformally invariant) relativistic stuff about lightlike 
directions and causality can be reinterpreted for the description. The possible 
variation of . vmax with the point and time can be directly incorporated in this picture. 
When the maximum velocity varies not only with these elements but also with the 
direction, then Finsler geometry comes into play, and the most general description 
leads to Lorentz-Finsler metrics (which are endowed with anisotropic lightcones). 

However, there are relevant cases where a direction-dependent function . vmax

matches with a classical Lorentz metric. Noticeably, this happens for the Zermelo 
navigation problem of, say, a zeppelin whose velocity is affected by the wind. 
Indeed, the anisotropy of .vmax with respect to observers on Earth is due to the 
direction of the wind; thus, it will disappear for observers comoving with it. 

As will be stressed in Sects. 3–5, this stimulates the development of notions 
relative to geodesics, distances, and boundaries in each one of the three settings, 
Riemannian, Finslerian, and Lorentzian, taking into account possible applications 
in the last two. Moreover, Lorentz-Finsler methods become applicable to practical 
purposes, such as the monitoring of the front of a wave in an anisotropic medium or 
a wildfire, which is emphasized in Sect. 6. 

Here, we begin by considering the aforementioned Zermelo navigation problem 
in Sect. 2, which will serve as a motivation for the remainder. This shows a first 
relation between three variational problems: (a) Zermelo minimization of the arrival 
time for trajectories between two points, (b) minimization of a (non-symmetric) 
distance by geodesics in the class of Finsler metrics of Randers type, and (c) 
the relativistic Fermat principle for light rays in the class of standard stationary 
spacetimes. We emphasize that the spacetime viewpoint allows one to remove two 
usual constraints in the Finslerian approach of Zermelo problem: (1) mild wind, 
overcome here by using wind Finsler structures and SSTK spacetimes in Sect. 2.2.2, 
and (2) time-independence, overcome by using non-stationary Lorentz metrics.
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In Sect. 3, geometric applications for relativistic spacetimes are obtained. First, 
we give a brief explanation about the role of Cauchy hypersurfaces for Einstein 
equations in Sect. 3.2 and the meaning of causality conditions for spacetimes in 
Sect. 3.3. Then, these elements are characterized in terms of Finslerian ones, namely, 
a Randers metric in the case of a standard stationary spacetime in Sect. 3.4 and 
a wind Riemannian structure for SSTK ones in Sect. 3.5. Notice that the former 
spacetimes are an extension of the latter, allowing a description of settled black 
holes beyond their (Killing) horizons. 

In Sect. 4, we will explore the Finslerian applications of Lorentzian geometry. In 
some cases, the stationary spacetime viewpoint has suggested some results related 
to geodesics that turn out to hold for arbitrary Finsler metrics. But it is especially 
interesting the case of singular Finsler metrics such as Kropina or, more generally, 
the wind Riemannian ones. The viewpoint of Lorentzian geometry desingularizes 
the problem allowing for a better understanding of these geometries. Moreover, 
the wind Riemannian structures provide the natural full setting to understand the 
classification of Randers metrics of constant flag curvature, thus revisiting the 
landmark obtained in [5]. 

In Sect. 5 we deepen in the geometric applications by considering boundaries. It 
is worth pointing out that, in the Riemannian setting, the Gromov and Busemann 
compactification have been widely studied since the 1970s, the latter in cases such 
as Hadamard manifolds or CAT(0) spaces. However, their systematic development 
for (possibly incomplete, non-reversible) Finslerian metrics had to wait until a 
specific motivation came from Lorentz geometry. In relativity, the causal boundary 
introduced by Geroch, Kronheimer, and Penrose had been computed in a limited 
number of cases. The above links between Finsler and Lorentz metrics prove that, 
for stationary spacetimes, the causal boundary corresponds to a general type of 
Busemann boundaries of a non-reversible Finsler metric which include the (forward 
and backward) Cauchy ones. These boundaries, as well as their relation with the 
Gromov one, are now well understood and explained here. 

In Sect. 6, we go further both in the generality of the setting and the practical 
applications. Focusing on the propagation of a wave whose velocities depend on 
the time and direction, we show that the Lorentz-Finsler setting provides a neat 
geometrical picture of the evolution of the wavefront. In fact, the computations 
reduce to solving the ODE system given by the geodesic equations of a specific 
Lorentz-Finsler metric. Moreover, this approach can be applied in real-world 
models to obtain the evolution of any physical phenomenon that satisfies Huygens’ 
principle, wildfires being the paradigmatic example. 

2 A Motivating Example: Zermelo Navigation Problem 

The classical Zermelo navigation problem was proposed by the German mathemati-
cian Ernst Zermelo in his 1931 paper [82] as follows:
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In an unbounded plane where the wind distribution is given by a vector field as a function of 
position and time, a ship moves with constant velocity relative to the surrounding air mass. 
How must the ship be steered in order to come from a starting point to a given goal in the 
shortest time? 

E. Zermelo himself solved the problem using calculus of variations, reducing the 
problem to solve the so-called Zermelo’s equation 

. 
dθ

dt
= sin2(θ)

∂W

∂x1 + sin(θ) cos(θ)

(
∂W

∂x1 − ∂W

∂x2

)
− cos2(θ)

∂W

∂x2 ,

where .x1, x2 are the coordinates of . R2, . θ is the angle of the trajectory of the ship 
with the .x1-axis, and W is the variable wind which depends on time and position 
(see [26, Eq. 459.8]). In the 1930s, this problem received the attention of some 
very well-known mathematicians such as Levi-Civita, Von Mises, and Manià [59, 
60, 77] and became one of the classical problems in the calculus of variations (see 
[26]). Zermelo problem can also be solved using optimal control theory (see the 
classical book [16] or [12, 14, 15, 73] for recent developments), but our interest will 
focus on more geometrical methods, namely, the use of Finsler geometry to solve 
the problem. This will be possible whenever the wind is time-independent and its 
contribution to the velocity does not exceed that provided by the engine. 

2.1 The Case of Mild Time-Independent Wind 

2.1.1 Basic Finsler Setup 

Recall that a Finsler metric in a manifold M is defined as a non-negative function . F :
T M → [0,+∞), being T M  the tangent bundle of M , which is smooth away from 
the zero section, positive homogeneous of degree one, namely, .F(μv) = μF(v) for 
all .v ∈ T M and .μ > 0, and such that for every .v ∈ T M \ 0, the symmetric bilinear 
form .gv : Tπ(v)M × Tπ(v)M → R is positive definite, where .π : T M → M is the 
canonical projection and . gv is defined as 

.gv(u,w) = 1

2

∂2

∂t∂s
F (v + su + tw)2|t=s=0, (1) 

for all .u,w ∈ Tπ(v)M . A very important element of a Finsler metric is its indicatrix 
.� = {v ∈ T M : F(v) = 1}. Indeed, the indicatrix determines completely 
the Finsler metric, and the positive definiteness of . gv is equivalent to having an 
indicatrix with a positive definite second fundamental form in .Tπ(v)M , thus, of 
positive sectional curvature, with respect to any Euclidean scalar product in .Tπ(v)M . 
So, at each tangent space .Tπ(v)M , the indicatrix yields the hypersurface .�∩Tπ(v)M , 
which is a positively curved smooth sphere enclosing the zero vector in its (bounded) 
interior region; see, for example, [52, Theorem 2.14]. Any hypersurface with these
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properties can be regarded as the unit sphere of a (non-necessarily symmetric) norm. 
Indeed, given . �, the Finsler metric is determined as follows: for every .v ∈ T M \ 0, 
there exists a unique .μ(v) > 0 such that .μ(v)v ∈ �. Then the Finsler metric is 
obtained as .F(v) = 1/μ(v). Given a Finsler manifold .(M,F ), it is possible to  
define the length of any piecewise smooth curve .c : [a, b] → M as 

. �F (c) =
∫ b

a

F (ċ(s))ds.

Observe that this length is independent of positive reparametrizations of the curve, 
but when one changes the orientation of . c, the length could change. This length 
leads to a non-necessarily symmetric distance .dF : M × M → [0,+∞) defined as 
the infimum 

.dF (x0, y0) = inf
c∈Cx0,y0 (M)

�F (c), (2) 

where .Cx0,y0(M) is the subset of piecewise smooth curves between . x0 and . y0. Then, 
pregeodesics are defined as the curves that locally minimize the length functional, 
namely, a small enough piece of a pregeodesic has length equal to the distance 
between the endpoints of that piece. Moreover, a pregeodesic will be said a geodesic 
if in addition it is an affine reparametrization of an arc-parametrized pregeodesic; 
we will assume that the domain of each geodesic is an inextendible interval . I ⊂
R, except if otherwise specified. A Finsler manifold is forward (resp. backward) 
complete if the domain of its geodesics is always unbounded from above (resp. 
below). It is possible to define two types of balls for every .r > 0 and .x0 ∈ M: 

.B+
F (x0, r) = {y ∈ M : dF (x0, y) < r}, forward ball, . (3) 

B− 
F (x0, r)  = {y ∈ M : dF (y, x0) < r}, backward ball. (4) 

2.1.2 Classical Finslerian Solution to Zermelo Problem 

Let M be a manifold, .x0, y0 ∈ M , and let us try to minimize the arrival time for 
a moving object from . x0 to . y0 in the following situation, which is more general 
than Zermelo’s. Assume that its velocity is prescribed at every oriented direction 
(such a velocity can also be interpreted as the maximum permitted velocity for the 
object). More precisely, for each .u ∈ T M \ {0}, its oriented direction is . [u] = {λu :
λ > 0} and the prescribed velocity .v0([u]) = μu for some .μ > 0. Formally, . v0
becomes a section of the bundle .T M → SM , where SM is the sphere bundle of all 
the oriented directions. Further assume that at every .x ∈ M , the set of prescribed 
velocities therein .{v0([u]) : π(u) = x} is a positively curved smooth hypersurface 
of .TxM , diffeomorphic to a sphere and enclosing the zero vector. Observe that, as 
explained above, this hypersurface . � is the indicatrix of a Finsler metric Z and, by



264 M. Á. Javaloyes et al.

construction, .Z ◦ v0 ≡ 1. As we will see later, this is what happens in Zermelo 
problem when the wind is mild. 

Assume that .[a, b] 	 s 
→ c(s) ∈ M is any smooth curve from . x0 to . y0 with 
non-vanishing velocity. When the moving object follows the trajectory determined 
by c at the prescribed velocity, then one has a time reparametrization . [0, T ] 	 t 
→
t (s) ∈ [a, b] such that 

.v0([ċ(s)]) = d(c ◦ s)

dt
(t (s)) = ṡ(t (s))ċ(s) = 1

ṫ (s)
ċ(s) (5) 

and, as a consequence, .ṫ (s) = Z(ċ(s)) (as .Z(v0([ċ(s)])) = 1). The elapsed time by 
the object is then 

. T = t (b) − t (a) =
∫ b

a

ṫ(s)ds =
∫ b

a

Z(ċ(s))ds,

that is, it is the length of . c computed with the Finsler metric Z. Therefore, in order 
to find the trajectories that minimize the elapsed time, we will have to find the 
minimizing geodesics of Z from . x0 to . y0, so that the time T in the previous formula 
is equal to .dZ(x0, y0) for . dZ as in (2). 

Observe that the time-independent Zermelo problem with mild wind is a partic-
ular case of this situation. In such case, the subset of velocities is the translation 
of a sphere with the wind W , and this translated sphere still encloses the 0 vector. 
Let us denote by . gR the Riemannian metric having as a unit sphere the velocities 
without wind and assume that the wind is never stronger than this velocity, namely, 
.gR(W,W) < 1. The pair .(gR,W) is usually called the navigation data of Zermelo 
problem. Then the translated sphere is determined by those .v ∈ T M \ {0} such that 

. gR

(
v

Z(v)
− W,

v

Z(v)
− W

)
= 1.

Solving an equation of second order, we finally deduce that 

. Z(v) =
√
1

λ
gR(v, v) + 1

λ2
gR(W, v)2 − 1

λ
gR(W, v), where λ=1−gR(W,W).

(6) 

This is a metric of Randers type, namely, of the form 

.F(v) =
√

h̃(v, v) + ω̃(v), (7) 

where . h̃ is a Riemannian metric and . ω̃ is a one-form on M such that . ‖ω̃‖
h̃

< 1
everywhere. The condition on . ω̃ guarantees that F is positive away from the zero 
section. Moreover, it turns out that it also implies that the fundamental tensor (1)
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is positive definite (see [4, Sect. 11.1] or [52, Corollary 4.17]). It was shown in [5] 
that the family of Randers metrics is the same as Zermelo metrics in (6), namely, all 
the metrics as in (7) admit an expression as in (6) for some navigation data . (gR,W)

which is unique. Observe that the original Zermelo problem was formulated for a 
Euclidean metric . gR , whereas in [5] it was generalized to Riemannian manifolds. A 
further generalization to Finsler metrics can be found in [74, Sect. 3] (see also [56] 
for Zermelo problem in pseudo-Riemannian and pseudo-Finsler metrics). 

2.1.3 Solution Using a Stationary Spacetime: Fermat Principle 

Here, we anticipate the use of some simple notions on spacetimes and causality; the 
unfamiliarized reader can look at Sect. 3.1 first. A standard stationary spacetime is 
a Lorentzian manifold .(R × M,g) such that 

.g((τ, v), (τ, v)) = −
τ 2 + 2ω(v)τ + g0(v, v), (8) 

where .(τ, v) ∈ R× Tx0M ≡ T(t0,x0)(R× M), with .(t0, x0) ∈ R× M , . 
 : M → R

smooth and positive, . ω a one-form and . g0 a Riemannian metric, both on M . Observe 
that . ∂t is a Killing field of g which is timelike, and we will assume that . (R× M,g)

is time-oriented by . ∂t . 
In this setting, consider the problem of “traveling” from a point (“event”) . (0, x0)

to a vertical line .R 	 s → (s, y0) (“stationary observer at . y0”), so that the increase 
in the t coordinate is minimum. In order to model the meaning of traveling, one 
considers (future-directed) timelike or lightlike curves departing from the event 
but, as the latter curves will “move faster” (at the prescribed “speed of light”), 
we will restrict ourselves to the space of (smooth, future-directed) lightlike curves 
from the event to the stationary observer. Lightlike pregeodesics present known 
extremization properties which imply that light rays are the unique local minimizers 
of the coordinate t . 

Remark 1 This underlies the relativistic Fermat principle, namely, the lightlike 
geodesics joining the event and the observer are the critical points for the arrival time 
functional in the aforementioned space of lightlike curves. This Fermat principle has 
been present in general relativity from the very beginning. The first version is due 
to Hermann Weyl [79] for static spacetimes shortly after the irruption of Einstein 
field equations. In the following, we will use the extended version for stationary 
spacetimes developed by Levi-Civita [58]. One of the key points of this version is 
that the isometries of the Killing field allow for a reduction of the problem to a 
hypersurface which is not necessarily orthogonal to the stationary observers, and 
therefore, it is not its natural restspace. As a consequence, the velocity of the light 
rays measured using this hypersurface is not isotropic and provides the indicatrix of 
a Finsler metric. 

As a lightlike curve .γ = (t, x) : [a, b] → R × M satisfies that 

. − 
ṫ2 + 2ω(ẋ)ṫ + g0(ẋ, ẋ) = 0,
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it turns out that 

. t (b) =
∫ b

a

(
1



ω(ẋ) +

√
1


2ω(ẋ)2 + 1



g0(ẋ, ẋ)

)
ds,

namely, the arrival time coincides with the length of the Finsler metric of Randers 
type 

.F(v) = 1



ω(v) +

√
1


2
ω(v)2 + 1



g0(v, v). (9) 

Thus, using the relativistic Fermat principle, one obtains the following characteri-
zation of lightlike geodesics (see, for example, [21, Proposition 4.1]). 

Proposition 1 A lightlike curve .(t, x) : [a, b] → R×M is a geodesic of . (R×M,g)

if and only if x is a geodesic of .(M,F ) up to parametrization. Moreover, in this case, 
if .(t, x) is parametrized with the time-coordinate, then x is an F -unit geodesic. 

The Fermat metric (9) is very similar to the Zermelo metric (6). Indeed, both 
families provide the same class of metrics. 

Proposition 2 The Fermat metric (9) associated with a standard stationary space-
time as in (8) is the Zermelo metric with navigation data .(gR,W) determined by 

.ω = −g0(W, ·), gR = 1


 + ‖ω‖20
g0. (10) 

Conversely, a Zermelo metric with navigation data .(gR,W) on M is the Fermat 
metric of a standard stationary spacetime .(R × M,g) as in (8) determined by 

.g0 = gR, ω = −g0(W, ·) and 
 = 1 − gR(W,W). (11) 

Moreover, this correspondence between standard stationary spacetimes and Zer-
melo data is one-to-one if we assume that .
 + ‖ω‖20 = 1, which fixes an element in 
the conformal class of .(R × M,g). 

To give an idea of the proof, observe that (10) implies 

. 1 − gR(W,W) = 1 − 1


 + ‖ω‖20
g0(W,W) = 1 − ‖ω‖20


 + ‖ω‖20
= 



 + ‖ω‖20
,

(12) 

and putting all this together, one gets straightforwardly that the Zermelo metric with 
data given in (10) is just the Fermat metric in (9) (see [13, Proposition 3.1] and 
[43] for the equivalence between Fermat and Zermelo metrics). Observe also that 
the Fermat metric is conformally invariant, namely, if we multiply g by a positive
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function . φ on M , then the associated Fermat metric is preserved. Using this fact, 
it is possible to choose an element of the conformal class of g normalized in some 
sense. Indeed, given .(R × M, g̃ = φg) with .φ = 1/(
 + ‖ω‖20), its Fermat metric 
satisfies that .
̃ + ‖ω̃‖20 = 1, where . 
̃, . ω̃, and . g̃0 are the data of . g̃ and the norm is 
computed with . g̃0. In this case, it follows from (12) that .
̃ := φ
 = 1−gR(W,W). 

Remark 2 Proposition 2 makes apparent the following non-relativistic interpre-
tation of the Fermat metric. The indicatrix of the Fermat metric is the subset of 
the velocities of light rays measured by the stationary observers in the tangent 
space to the slices .{t0} × M , which is the translation of a Riemannian sphere. 
Clearly, this interpretation is not relativistic (all relativistic observers measure the 
same speed of light!). Indeed, a relativistic observer would use their space at rest, 
which is orthogonal to their timelike direction. This space is infinitesimal and can 
be identified with the tangent space to the slices only when .ω = 0. 

It is worth pointing out that the stationary spacetime associated with a Zermelo 
metric can be interpreted as a sort of analogue gravity (see [6, Sect. 2] and [35]). 

2.2 The Case of Arbitrary Time-Independent Wind 

2.2.1 Emergence of Wind Riemannian Structures 

Let us assume now that in the navigation data .(gR,W), the wind W is arbitrary, 
namely, let us remove the constraint .gR(W,W) < 1. This means that we will 
translate the spheres of . gR with a vector which is possibly not contained in the 
sphere. The set of all the translated spheres will form a smooth hypersurface 
.� ⊂ T M which generalizes the indicatrix of a Finsler metric and is called a wind 
Riemannian structure. 

So, each translated sphere .�x plays the role of an indicatrix at .x ∈ M , 
which might not enclose the zero in its interior region; thus the regions with 
.gR(W,W) > 1, .gR(W,W) = 1 or .gR(W,W) < 1 are called of strong, critical, 
or mild wind, respectively. In particular, when the wind is strong, one has some 
admissible directions at each .x ∈ M , defined as the oriented directions . [u] which 
intersect the indicatrix; they form a closed solid cone in .TxM . Those . [u] in the 
interior of the cone intersect twice the indicatrix and, so, provide naturally two 
velocities .v+([u]), v−([u]) (the latter contained in the segment between the origin 
and the former); both velocities merge in a single one for the admissible directions 
in the boundary (see Fig. 1). 

In the region of strong wind, Zermelo problem for .x0, y0 ∈ M splits into several 
ones. First, determine whether there exists an admissible curve from . x0 to . y0. If this  
is the case, prescribe either . v+ or . v− for the moving object and find extremal curves 
for the arrival time. In the case of . v+, it is natural to wonder for a (local or global) 
minimizer of the arrival time, and one properly has the previous Zermelo problem. 
Indeed, such a problem makes sense for curves which may cross regions of strong,
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Fig. 1 In the presence of a 
strong wind W with 
.gR(W,W) > 1, the only 
directions allowed for the 
moving object are those 
which intersect the red sphere 

critical, and mild wind, and . v+ will match smoothly with . v0 on the whole M . In  
the case of prescribing . v−, the natural problem would be to find maximizers of the 
arrival time entirely contained in the region of strong wind. This case would occur 
when the object tries to delay the arrival at . y0 as much as possible by making its 
engine power go against the direction of the wind. Technically, this makes sense 
because the portion of the indicatrix corresponding to . v− is concave (as happens for 
the unit timelike directions of a Lorentz metric). 

These problems were first studied in [23]. Formally, previous ideas of the mild 
case work similarly to obtain a Finsler metric which measures the elapsed time along 
an admissible trajectory. In the strong wind case, we obtain two metrics: 

.Z(v) =1

λ
(

√
λgR(v, v) + gR(W, v)2 − gR(W, v)), . (13) 

Zl(v) =1 

λ 
(−

√
λgR(v, v) + gR(W, v)2 − gR(W, v)), (14) 

being defined both of them in 

. Al = {v ∈ T M : λ < 0, λgR(v, v) + gR(W, v)2 > 0, −gR(W, v) < 0}.

Observe that if we want to compute the minimizing solutions of Zermelo problem, 
then we have to consider Z, which corresponds to . v+ above. The above expressions 
do not hold in the critical case .gR(W,W) = 1, but it is possible to obtain expressions 
valid for arbitrary winds multiplying by the conjugate in (13), (14), i.e., 

.Z(v) = gR(v, v)√
λgR(v, v) + gR(W, v)2 + gR(W, v)

, . (15) 

Zl(v) = −gR(v, v)√
λgR(v, v) + gR(W, v)2 − gR(W, v) 

. (16) 

Observe that now Z is defined for an arbitrary W in the domain 

.A = {v ∈ T M \ 0 : λ > 0 or λgR(v, v) + gR(W, v)2 > 0, gR(W, v) > 0}
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and, in the case of critical wind, the metric Z is of Kropina type, namely, the quotient 
of a Riemannian metric by a one-form:1 

. Z(v) = gR(v, v)

2gR(W, v)
.

In particular, the domain A coincides with .T M \ 0 when .λ > 0 (the region of mild 
wind), it is the half-space .gR(W, v) > 0 in the tangent bundle of the region 

. Mcrit = {x ∈ M : λ = 0}

(the region of critical wind) and a conic region in 

. Ml = {x ∈ M : λ < 0}

(the region of strong wind). On . Ml , the domain A coincides with the timelike vectors 
of the Lorentzian metric . −h on . Ml ,2 where 

.h(v, v) = λgR(v, v) + gR(W, v)2 (17) 

in the half-space .h(W, v) < 0. Moreover, the domain of . Zl is .Al = A ∩ T Ml . It  
turns out that in the region .Mcrit ∪ Ml , the metric Z is conic, namely, at every 
.x ∈ Mcrit ∪ Ml , it is not defined in the whole T M  but in the conic region 
.Ax = A ∩ TxM . Moreover, it is positive homogeneous of degree one, and its 
fundamental tensor (1) is positive definite. The metric Z can be extended to the 
boundary of . Ax , but this extension is not smooth, and its fundamental tensor cannot 
be extended to the boundary. However, Z is a classical Finsler metric in the region 
.M \ {Mcrit ∪ Ml}. On the other hand, the metric . Zl is always conic,3 and its 
fundamental tensor has index .n − 1. Moreover, it can be extended to the boundary 
of . Ax , this extension coincides with that of Z, but again its fundamental tensor does 
not admit such extension (see [23, Sects. 3.3 to 3.5]). 

Summing up, Zermelo problem is modeled in terms of a wind Riemannian 
structure, whose Finslerian description retains some elements of the mild wind 
case. However, it also includes new ingredients (Kropina metric, . Fl with concave 
indicatrix) which become complicated and apparently singular. Next, the spacetime 
viewpoint will simplify the picture giving an elegant solution. 

1 These metrics are well-known in the Finsler literature since the original article [57]. 
2 Notice that, whenever .λ < 0, h has signature .(+,−, . . . ,−). Anyway,  h is well defined as a 
signature changing metric on the whole M , so that it can be used to determine the admissible 
curves between any two points .x0, y0 ∈ M . Comparing with . ̃h in (7) (which was defined for 
.λ > 0), one has .h̃ = h/λ2.
3 See [52] for a full development of this condition. 
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2.2.2 Solution Using an SSTK Spacetime 

The process to solve Zermelo problem for mild wind using a spacetime developed in 
Sect. 2.1.3 can be extended for a general wind just by considering Lorentzian metrics 
as in (9) with an arbitrary . 
 (not necessarily positive) satisfying .
+‖ω‖20 > 0; this  
condition must be imposed because it is equivalent to the Lorentzian character of (8). 
Following [23], this class of spacetimes is called SSTK (standard with a space-
transverse Killing vector field) spacetimes. Observe that the points .x ∈ M with 
.
(x) < 0 correspond to vertical lines .s → (s, x) ∈ R × M which are spacelike in 
.(R×M,g), and then . ∂t is not timelike therein. It is still consistent though to consider 
the time-orientation determined by .dt > 0, namely, a timelike vector .(τ, v) is future-
directed if and only if .τ > 0. It is worth pointing out that the usual relativistic Fermat 
principle does not apply to such a vertical line, as it is not necessarily timelike; 
however, as shown in [23, Theorem 7.4], this principle can be extended for arrival 
curves of arbitrary causal character. Thus, the solution of Zermelo problem in this 
setting can be described as follows: 

Given .x0, y0 ∈ M,x0 
= y0 and the Zermelo data .(gR,W), construct an SSTK spacetime 
with .g0, ω and . 
 given as in (11). An admissible curve .c : [0, T ] → M from . x0 to . y0 with 
prescribed velocity in the wind Riemannian structure . � is a critical trajectory for the arrival 
time T if and only if the future-directed lightlike curve .[0, T ] 	 t 
→ (t, c(t)) ∈ R× M is 
a lightlike pregeodesic of the spacetime. 

In this case, the arrival time T of c is globally minimizing (resp. maximizing) if and only 
if .(T , y0) ∈ R × M is the first (resp. last) t of the observer .{(t, y0), t ∈ R} at . y0 reached 
by future-directed causal curves starting at .(0, x0). 

We can also recover c as a unit speed geodesic for F or . Fl (depending whether it is 
locally minimizing or maximizing) by repeating the process of Sect. 2.1.3. Indeed, it 
follows that a lightlike curve .γ = (t, x) : [a, b] → R×M is a lightlike pregeodesic 
if and only if its projection x is either a pregeodesic of one of the conic metrics 

.F(v) = g0(v, v)

−ω(v) + √
ω(v)2 + 
g0(v, v)

, . (18) 

Fl(v) = −g0(v, v) 
ω(v) + √

ω(v)2 + 
g0(v, v) 
, (19) 

or it is a suitable curve with velocity in the closure of the conic domain constructed 
from the lightlike pregeodesics of h [23, Theorem 5.5]. 

As in the previous subsection, now the Fermat metric (9) splits into two, and 
one has to multiply by the conjugate to obtain the metrics (18) (defined on the 
whole M) and (19) (only on . Ml); compare with those in (13)–(16). This splitting 
is naturally interpreted now, because there are two future-directed lightlike vectors 
which project onto each .v ∈ T Ml (see Fig. 2). Extending Proposition 2, these two 
metrics can be identified, respectively, with those in (15) and (16).
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Fig. 2 We show how to obtain the wind Riemannian structure associated with the SSTK spacetime 
by intersecting the lightlicone with the slice .t = 1 in the three different cases: .
 = 0 (critical 
wind), .
 > 0 (mild wind), and .
 < 0 (strong wind). Observe that in the first two cases, . vp is the 
projection of a unique lightlike vector, while in the last one there are exactly two lightlike vectors 
projecting and pointing out in the same direction as . vp

Summing up, the spacetime viewpoint yields a full solution of Zermelo problem 
which permits a unified description of the solutions and allows one to recover the 
(apparently singular) Finslerian description in the spacelike part. In particular, the 
lightlike geodesics in the spacetime, which solve the problem, can be characterized 
as follows [23, Theorem 5.5]. 

Theorem 1 A lightlike curve .(t, x) : [a, b] → R× M is a geodesic of . (R× M,g)

if and only if it lies in one of the following three cases: (a) . ẋ is entirely contained in 

.A = {v ∈ T M \ 0 : either 
 > 0 or 
g0(v, v) + ω(v)2 > 0, ω(v) < 0} (20) 

and, in this case, x is a pregeodesic of either F or . Fl , (b)  x is constantly equal to 
some . x0 with .d
(x0) = 0, or (c)  x is a suitable curve with . ẋ in the closure of A.4 

4 It is worth emphasizing that this last case appears in the same footing as the others from the 
spacetime viewpoint. However, in the Finslerian description, it corresponds with the limit of the 
geodesics of F and . Fl (indeed, as a limit, .F(ẋ) = Fl(ẋ) ≡ 1). Moreover, x might start at the 
region of . Ml , arrive at the region of critical wind .Mcrit , and come back to . Ml . On . Ml , x becomes a 
pregeodesic of .
g0 + ω ⊗ ω consistent with (17) (see the case (iii) (b) in the aforementioned [23, 
Theorem 5.5]).
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Fig. 3 The cone structure . Cp

is intersected with an affine 
hyperplane . 
 in a strongly 
convex hypersurface . � of . 


2.3 The Time-Dependent Case 

The Zermelo problem in a manifold M with a time-dependent wind can be handled 
by using time-dependent Finsler metrics. This was done by Manià [60] as well as by  
Markvorsen using frozen metrics [62]. Here, we will develop a spacetime picture as 
a natural extension of our framework. Indeed, we will consider again a more general 
problem, namely, we will assume that the velocity is prescribed at every direction, 
but, now, this prescription may have a dependence on time. Thus, one has a smooth 
hypersurface .�(t0,x0) of .Tx0M diffeomorphic to a sphere and positively curved at 
each .t0 ∈ R, and all these hypersurfaces vary smoothly with .(t0, x0), providing a 
smooth submanifold5 of .T (R × M) with codimension 2. 

Observe that in the non-relativistic spacetime .R × M , being the coordinate . R
the (absolute) time, a curve .s → (t (s), x(s)) corresponds to a curve with velocity 
.v(s) = ẋ(s)

ṫ(s)
∈ Tx(s)M at the instant s (recall (5)). This means that if the velocities 

at each time . t0 are prescribed by the hypersurface .�t0 = ∪x0∈M�(t0,x0) ⊂ T M , 
then the vectors .(τ, v) ∈ T(t0,x0)(R× M) tangent to the allowed curves (traveling at 
the prescribed velocities) must satisfy that .v/τ ∈ �t0 (with .τ > 0). It turns out that 
these allowed tangent vectors determine a cone structure . C (see [55, Definition 2.7]), 
namely, the smooth embedded hypersurface .C ⊂ T (R × M) \ 0 given by 

. C(t0,x0) = {τ(1, v) ∈ T(t0,x0)(R × M) : τ > 0, v ∈ �(t0,x0)},

where .C(t0,x0) = C∩T(t0,x0)(R×M) for every .(t0, x0) ∈ R×M . The requirements on 
each .�(t0,x0) become equivalent to the strong convexity of . C [55, Proposition 2.26], 
that is, when .C(t0,x0) is intersected by an affine hyperplane of . H ⊂ T(t0,x0)(R × M)

which is not tangent to .C(t0,x0), then .H ∩ C(t0,x0) is a strongly convex hypersurface 
in the hyperplane (in fact, a positively curved sphere); see Fig. 3. 

When the natural vector field . ∂t is timelike for . C (i.e., it lies in the interior of 
the solid cone bounded by . C at each point), the easiest way to describe . C is using 
a Lorentz-Finsler metric G in .R × M constructed as follows. Let . Ft0 be the Finsler

5 See [23, Definition 2.8 and Example 2.16] for a subtlety about smoothness applicable here. 
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metric in M whose indicatrix coincides with . �t0 , that is, 

. �t0 = {v ∈ T M : Ft0(v) = 1}.

Then, define G at every point .(t0, x0) as 

.G(τ, v) = τ 2 − Ft0(v)2, ∀(τ, v) ∈ T(t0,x0)(R × M). (21) 

Observe that G is a Lorentz-Finsler metric6 with fundamental tensor of Lorentzian 
type (replace . F 2 with G in (1)). It turns out that the cone structure . C is  given by the  
lightlike vectors of G (with .τ > 0). Indeed, .G(τ, v) = 0 if and only if .τ 2 = Ft0(v)2, 
which is equivalent to .v/τ ∈ �t0 , whenever .τ > 0. 

Once G is obtained, the admissible trajectories between an event .(0, x0) and an 
“observer” .R 	 t → (t, y0) at a different point .y0 ∈ M are lightlike curves of 
.(R×M,G). The Fermat principle can also be extended to the Finslerian relativistic 
case (see, [69]). Then, it follows that the solutions of the time-dependent case are 
provided by the projections x on M of the lightlike pregeodesics .(t, x) of . (R ×
M,G) going from the event to the observer, with .ṫ > 0. 

Finally, the case when . ∂t is not timelike can be handled by using an auxiliary 
timelike vector field X which would represent comoving observers; see [50, 
Remark 6.1]. 

3 Relativistic Applications 

3.1 Basic Lorentz Setup 

Recall first some basic notions related to relativistic spacetimes following [8, 67], 
which are standard for readers with background in Riemannian geometry. Let g be 
a Lorentz metric on an (.n + 1) manifold . M with signature .(−,+, . . . ,+), which 
implies that each connected component of . M will be either non-compact or of zero 
Euler characteristic. A non-zero tangent vector .v ∈ TM is called timelike, lightlike, 
or spacelike if .g(v, v) < 0, g(v, v) = 0 or .g(v, v) > 0, respectively; causal 
vectors are the timelike or lightlike ones and null vectors the lightlike or zero ones.7 

It is obvious that any conformal Lorentz metric .g∗ = �g (for some function . �) 
will have the same cones as g and, remarkably, the converse is true, that is, the 
lightlike vectors determine the conformal class of the metric (see, for example, [8, 
Lemma 2.1]).

6 In the sense of [55, Sect. 3.2] (thus, positive and two-homogeneous) up to the fact that it may be 
non-smooth on . ∂t . This is not relevant here, because we are only interested in the directions of . C
(anyway, G can be smoothen on . ∂t ; see  [55, Theorem 5.6].) 
7 The convention for the zero vector depends on the reference, we follow [65]. 
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.(M, g) is called a spacetime when . M is connected, and one assumes that a 
time-orientation has been chosen. The latter is a continuous choice of one of the 
two cones determined by the causal vectors at each tangent space .TpM, p ∈ M; 
each chosen cone will be called future, while the non-chosen one will be past. 
The properties of time-orientations are similar to those of usual orientations on . M
(including the existence of a time-orientable double covering), but both notions are 
independent. In spacetimes, the names of future or past-directed are applied directly 
to causal vectors; moreover, all the related names (timelike, future- or past-directed, 
etc.) are transferred directly to (smooth) curves taking into account the character of 
the velocity. Submanifolds are called spacelike, timelike, or lightlike depending on 
whether the induced metric has index 0, 1 or it is degenerate, respectively. 

A major topic of research in mathematical relativity with interest in geometric 
analysis is the initial value problem for Einstein equations, which is posed on 
Cauchy hypersurfaces; See, for example, [29, 31, 66, 72]. Next, we will describe 
briefly the setting and, then, some applications of the aforementioned geometric 
links with Finsler manifolds. 

3.2 The Initial Value Problem and Cauchy Hypersurfaces 

The Einstein equation for a spacetime .(M, g), .n + 1 > 2, is  

.Ric + 1

2
Scal g + 
cg = T , (22) 

where Ric and Scal denote, respectively, the Ricci tensor and scalar curvature of 
g, .
c ∈ R is the cosmological constant, and T is the stress-energy tensor up to 
a constant (which depends on units and provides the suitable coupling between 
matter and geometry). Roughly speaking, the initial value problem will consist 
in specifying initial data .(h,A) on some 3-manifold S and finding a spacetime 
.(M, g) satisfying (22), where S is embedded as a spacelike hypersurface with 
metric h and second fundamental form . A. In particular, the initial data must satisfy 
the constraints associated with the Gauss and Codazzi equations, which turn out 
essential for the analysis of solutions. In general, one should also specify initial data 
on S for T as well as additional equations to be satisfied for the specific type of 
matter modeled by T (so that (22) remains as a hyperbolic system of equations in g 
and T ). However, the latter are not required for the vacuum case .T = 0 (which may 
be a good approximation for modeling the empty space outside a star). It is worth 
pointing out that, when .T = 0, (semi-)Riemannian Schur’s lemma reduces (22) to 
the equation of Einstein manifolds Ric .= ag, a ∈ R and, in the case of .
c = 0, to  
the Ricci flat case Ric . = 0. 

Global existence and uniqueness of solutions for the vacuum case and other T ’s 
have been proved, starting at the classical results by Choquet-Bruhat and Geroch 
[28, 30, 41]. A posteriori, the initial data manifold .S ⊂ M will be a (smooth,
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spacelike) Cauchy hypersurface of the solution .(M, g), i.e., S is crossed exactly 
once by any inextendible causal curve.8 The uniqueness of the crossing point is 
related to the existence of solutions (otherwise, data on a point of S might influence 
on data on points of S reached by a future-directed causal curve), and the existence 
of the crossing point is related to the uniqueness of the solutions. Indeed, the 
existence of a unique maximal solution is ensured assuming that S remains Cauchy, 
but different extensions might exist if this assumption is dropped (such a possibility 
is related to the so-called strong cosmic censorship hypothesis; see, for example, 
[78, Sect. 12.1]). 

Summing up, a posteriori, the solution .(M, g) to the initial value problem of the 
Einstein equation will admit a Cauchy hypersurface S, and .(M, g) can be regarded 
as the domain of dependence of the data on S. Thus, it arises the natural question 
of determining the class of spacetimes admitting such a hypersurface as well as to 
determine when a given spacelike hypersurface is Cauchy, which will be adressed 
in the next two subsections. 

3.3 Global Hyperbolicity and Causality of Spacetimes 

Recall first the following basic elements of causality for a spacetime .(M, g) (see 
[65] for a complete study). For .p, q ∈ M, we say that p lies in the chronological 
(resp. strict causal) past of q if there exists a future-directed timelike (resp. causal) 
curve from p to q; in this case, we write .p � q (resp. .p < q). The chronological 
(resp. causal) future of p is defined as 

.I+(p) = {q ∈M : p � q} (resp. J+(p) = {q ∈M : p < q} ∪ {p}), (23) 

then, one defines analogously the chronological and causal pasts .I−(p), J−(p). 
Following [11], a spacetime is called globally hyperbolic when 

.p 
< p and J+(p) ∩ J−(q) is compact (24) 

for all .p, q ∈ M. The first condition means that the spacetime does not contain 
any causal loop, that is, .(M, g) is causal, and the second one that no observer can 
see the sudden appearance or disappearance of a particle from the spacetime, i.e., 
.(M, g) does not contain naked singularities. Taking into account Geroch’s [41] and 
the further developments in [9, 10], the following characterization holds. 

Theorem 2 A spacetime is globally hyperbolic if and only if it admits a (smooth, 
spacelike) Cauchy hypersurface. In this case, there exists some onto smooth map

8 Sometimes Cauchy hypersurfaces and the initial value problem are allowed to be more general 
so that non-smooth data or data on degenerate hypersurfaces are permitted, but we will not go into 
these issues. 
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.τ :M→ R such that the spacetime splits as an orthogonal product 

. M ∼= R × M, g = −
dτ 2 + gt ,

where .
 > 0 is a function on . M, . gt is a Riemannian metric on each slice . {t} × M

varying smoothly with t , and each slice becomes a Cauchy hypersurface in . M.9 

Such a . τ is called a Cauchy temporal function. Moreover, any Cauchy hypersurface 
S can be regarded as a level of some Cauchy temporal function, obtaining then an 
orthogonal splitting as above such that .S ∼= {0} × M . 

A generalization of globally hyperbolic spacetimes are the causally simple ones, 
where the second hypothesis in (24) is weakened into the condition: . J+(p), J−(p)

are closed for all .p, q. For these spacetimes, no splitting as in Theorem 2 can be 
ensured; however, they are stably causal, that is, they admit a temporal function 
. τ . This means that .τ : M → R is onto with grad. (τ ) timelike and past-directed 
(thus, . τ grows strictly on any future-directed causal curve and the slices . τ =
constant are spacelike). A simple example of these properties is the following (see 
[8, Theorem 3.67] and Theorem 4). 

Proposition 3 Let .(M, gR) be a Riemannian manifold and consider the natural 
product spacetime .(M = R× M,g = −dτ 2 + gR). Then, the canonical projection 
.τ : R × M → R is a temporal function and 
(A) .(M, g) is causally simple if and only if . gR is convex (i.e., each .p, q ∈ M can be 
joined by a minimizing geodesic). 

(B) The following properties are equivalent: 

(B1) .(M, g) is globally hyperbolic. 
(B2) The slices .{t}×M are Cauchy hypersurfaces (i.e., . τ is Cauchy temporal). 
(B3) . gR is complete. 

Remark 3 Taking into account the conformal invariance of causal properties, this 
simple result is applicable to some interesting classes of spacetimes which can be 
written as warped products. 

In particular, the standard static spacetimes are written as . M = R × M,g =
−
dτ 2 + g0 where . g0 is Riemannian and .
 > 0 depends only on the M part (this 
is a subclass of the standard stationary spacetimes already introduced, which will be 
developed next). Clearly g is conformal to a product with .gR = g0/
. 

Another conformal class are the so-called Generalized Robertson Walker (GRW) 
spacetimes [2], .M = I × M,g = −dt2 + f 2gR , where .I ⊂ R is an interval and 
.f > 0 depends only on the I part. Putting .dτ = dt/f , the metric g is conformal to 
a product spacetime on .J × M , where .J ⊂ R is another interval computable from 
.
∫

dt/f (t). It is easy to check that the causal properties in Proposition 3 remain valid

9 The natural time-orientation chosen here and in the remainder is the one such that the timelike 
vector . ∂τ becomes future-pointing. 
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if .R × M is replaced by .J × M , in contrast with the properties of the boundaries 
(see Sect. 5). 

3.4 Finsler Applications to Stationary Spacetimes 

Next, our aim is to obtain a result which extends Proposition 3 to the standard 
stationary spacetimes .(M = R × M,g) introduced in (8). 

3.4.1 Background on the (Non-symmetric) Finslerian Distance dF 

In order to state our main results, let us summarize first some metric properties 
valid for any Finsler metric F following [22]. Recall from (2) that F provides 
a (non-necessarily symmetric) distance . dF as well as the corresponding forward 
and backward balls .B±

F (p, r) in (3) and (4). These distances yield a natural notion 
of forward and backward Cauchy sequences and, then, of forward and backward 
completeness. Such notions are nicely interpreted taking into account the reversed 
Finsler metric, .F̃ (v) := F(−v) for all .v ∈ T M . Indeed, the latter clearly satisfies 
.B+

F̃
(p, r) = B−

F (p, r). Moreover, if . γ is a geodesic for F , then its reversed 

parametrization (i.e., .γ̃ (s) := γ (−s) for all s) becomes a geodesic for . F̃ , and 
so, one speaks of forward (resp. backward) geodesic completeness when all the 
inextendible geodesics have an upper (resp. lower) unbounded domain. A version 
of Hopf-Rinow theorem and some further computations show the following. 

Theorem 3 Let F be any Finsler metric on M . 

(A) The following conditions are equivalent (see, for example, [4, Theorem 6.6.1]): 

(A1) forward (resp. backward) completeness of . dF , 
(A2) compactness of all its closed forward (resp. backward) balls, 
(A3) forward (resp. backward) geodesic completeness of F . 

(B) Let .ds
F (p, q) := (dF (p, q)+dF (q, p))/2 for all .p, q ∈ M , then . ds

F is a (usual) 
distance on M , called the symmetrized distance, and the following conditions 
are equivalent (see [22, Proposition 2.2, Theorem 5.2]): 

(B1) compactness of all the closed balls for the symmetrized distance . ds
F , 

(B2) precompactness of all the intersections .B+
F (p, r) ∩ B−

F (q, r ′), .p, q ∈ M , 
.r, r ′ > 0, 

(B3) the last property putting .p = q, r = r ′. 

In this case, . ds
F is complete, and F (and so . F̃ ) is convex (i.e., every two points are 

connected by a minimizing geodesic). Moreover, the above properties hold if either 
. dF or . d

F̃
is complete.
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Remark 4 

(1) The symmetrized distance . ds
F is not associated with any length space, in 

general. This underlies the fact that the converse of the last assertion in the 
proposition does not hold, that is, there are even Randers examples with . ds

F

complete but non-compact closed balls (see [22, Example 2.3]). 
(2) It is easy to check that the forward completeness of F does not imply the 

backward one. In the particular case of a Fermat metric (9), the forward or 
backward completeness of F implies the completeness of .− 1



g̃ = 1


2 ω
2+ 1



g0, 

but the converse does not hold (see [22, Proposition 5.2, Example 2.3]). 

3.4.2 Finslerian Description of Causality 

It is not difficult to realize that the chronological and causal futures and pasts in a 
standard stationary spacetime, .I±(p0), J

±(p0), p0 = (t0, x0) ∈ R × M , can be 
described in terms of the balls for the distance . dF associated with the Fermat metric 
F defined in (9) as follows (see [22, Proposition 4.2]): 

. I+(t0, x0) = ∪s>0{(t0 + s) × B+
F (x0, r)}.

Remark 5 This can be seen as a consequence of a further interpretation of the 
Zermelo problem described in Sect. 2 (see especially Remark 2). We can consider 
that the prescribed velocities are the top speeds that a moving object can reach. 
Accordingly, the trajectories in the spacetime will be causal curves, being lightlike 
when a certain path is traveled at the top speed. Moreover, by the causal properties, 
a curve is a solution of Zermelo problem if and only if it remains in . J+(t0, x0) \
I+(t0, x0), which implies that it is a lightlike pregeodesic and its projection is 
a minimizing pregeodesic of F of length .t1 − t0 (recall Proposition 1). As in 
Riemannian geometry, the geodesics of F are always locally minimizing, and the 
lightlike geodesics departing from p lie initially in .J+(p) \ I+(p). 

These are the keys for the description of causality using the Fermat metric F in (9), 
allowing one to prove the following result (see [22, Theorems 4.3 and 4.4]). 

Theorem 4 For any standard stationary spacetime .(M, g) with associated Fermat 
metric F (as in (8), (9) above), the canonical projection .t : R × M → R is a 
temporal function and 

(A) The following properties are equivalent: 

(A1) .(M, g) is causally simple. 
(A2) F is convex (i.e., each .p, q ∈ M can be joined by a minimizing F -

geodesic). 

(B) The following properties are equivalent: 

(B1) .(M, g) is globally hyperbolic.



An Account on Links Between Finsler and Lorentz Geometries 279

(B2) the intersections .B+
F (p, r) ∩ B−

F (q, r ′), p, q ∈ M, r, r ′ > 0 are 
precompact. 

(C) The following properties are equivalent: 

(C1) The slices .{t0}×M are Cauchy hypersurfaces (so, t is Cauchy temporal). 
(C2) The Fermat metric F is forward and backward complete. 

The comparison between Proposition 3 and Theorem 4 shows that the case of 
standard stationary spacetimes is much subtler than the case of product spacetimes. 
Much of this subtlety comes from the following fact. Both cases are presented with a 
natural slicing by spacelike hypersurfaces which are invariant by the timelike Killing 
vector field . ∂t . In the product case, this slicing is priviledged, as it corresponds with 
the integral hypersurfaces of the distribution . ∂⊥

t , orthogonal to . ∂t . In the standard 
stationary spacetime, however, the slices are not especially priviledged, and one can 
always express the spacetime as a standard stationary one in many different ways, 
as emphasized next. 

Any function .f : M → R which yields a spacelike graph . Sf = {(f (x), x), x ∈
M} ⊂M generates a new splitting of the spacetime .(M, g) as a standard stationary 
one such that .M ∼= R × Sf (just moving . Sf with the flow of . ∂t ). The Fermat 
metric associated with this new splitting is .Ff := F − df (see [22, Proposition 
5.9]). The characterization of the causality conditions in Theorem 4 together with 
the last observation about the relation between Fermat metrics associated with 
different slices of the standard stationary spacetime has some striking consequences 
for Randers metrics. 

Corollary 1 Let .(M,F ) be a Randers manifold (recall (7)) and assume that the 
intersections .B+

F (p, r) ∩ B−(p, r) are precompact for all .p ∈ M and .r > 0. Then 
F is convex, and there exists a function .f : M → R such that .Ff = F − df is a 
complete Randers metric on M . 

Both properties follow from well-known causal properties. Indeed, as stated in 
Theorem 4, the precompactness of the intersection of the balls of the Fermat metric 
is equivalent to the global hyperbolicity of the spacetime, which implies the causal 
simplicity, and then again, by Theorem 4, the convexity of the Fermat metric. 
Moreover, as stated in Theorem 2, if  .(R × M,g) is globally hyperbolic, then it 
admits a smooth spacelike Cauchy hypersurface, and the Fermat metric associated 
with this slice can be expressed as .Ff = F − df for a certain .f : M → R, and it 
is complete (see [22, Theorem 5.10]). 

Remark 6 The previous corollary holds for any Finsler metric. This can be proved 
either directly, as it was done by Matveev in [63], or generalizing Theorem 4 to 
stationary Finsler spacetimes as in [18, 19] (and, then, using the generalization of 
the existence of a smooth Cauchy spacelike hypersurface for cone structures, firstly 
obtained by Fathi and Siconolfi in [37]).



280 M. Á. Javaloyes et al.

Remark 7 Theorem 4 can be used to get some different types of results for standard 
stationary spacetimes: 

(i) As a first consequence, one can obtain some multiplicity results for lightlike 
geodesics (periodic or between two fixed points) of globally hyperbolic 
stationary spacetimes with arbitrary big arrival times. This follows using 
multiplicity results for Finsler metrics (see [13, 20, 21]). Moreover, using the 
auxiliary product spacetime .((R × M) × R, g + dr2), one can also obtain 
multiplicity results for timelike geodesics with prescribed proper time between 
a point and a vertical line of .(R×M,g). Finally, using some results on convex 
boundaries for Finsler metrics in [7], it follows the existence of lightlike or 
timelike geodesics with prescribed proper time for stationary spacetimes with 
suitable boundaries (see [24]). 

(ii) Theorem 4 can also be generalized to pre-Randers metrics, namely, Randers 
metrics as in (7) with arbitrary . ω, this time with some subtleties as the slices 
.{t0} × M do not have to be necessarily spacelike (see [47, Sect. 3.2]). This 
more general case has applications to the study of magnetic geodesics and also 
to strengthen results about the existence of t-periodic lightlike geodesics of 
stationary-complete spacetimes (see [47, Corollary 5.12]). 

(iii) Observe that the Finsler metric . Ff in Corollary 1 has the same pregeodesics as 
F . Moreover, their distances are straightly related having the same triangular 
function .T (x, y, z) = d(x, y) + d(y, z) − d(x, z). As a further interplay 
between Lorentz and Finsler geometries, the maps which preserve this trian-
gular function are called almost isometries, and they can be identified with 
conformal maps of the spacetime that preserve . ∂t (see [48, Proposition 4.7] for 
details). Moreover, the almost isometries have been characterized in terms of 
the semi-Lipschitz functions of .(M,F ) (see [17, 32]). 

3.5 Application to General SSTK Spacetimes 

The previous setting can be extended to any SSTK spacetime, as proven in [23]. 
This is more technical, and only the main ingredients will be sketched. For the basic 
notions on SSTK spacetimes, recall Sect. 2.2.2. 

Remark 8 In relativity, SSTK spacetimes are applicable to describe stationary 
black holes.10 Indeed, the so-called Killing horizons can be written as degenerate 
hypersurfaces of an SSTK spacetime determined by .
 = 0 (see Fig. 4). Typically, 
this notion appears under assumptions on asymptotic flatness (so that one can think 
of Lorentz-Minkowski observers at infinity), and . 
 becomes positive asymptoti-
cally. Thus, the open subset .
 > 0 is expected to have a connected part which

10 See [78] for background, especially Chap. 12 and Sects. 12.3, 12.5. 
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Fig. 4 Killing horizon 
determined by the region 
.
 = 0 in a slice .{t0} × M . 
The blue arrows correspond 
to the wind . W in the critical 
region for Zermelo data as in 
Sect. 2.2.1 

includes the asymptotic region. This would be the region outside the Killing horizon, 
and (each connected component of) its boundary would be a Killing horizon. 

In Kerr spacetime, the so-called ergosphere is its natural Killing horizon. In 
the case of Schwarzschild spacetime, such a horizon is equal to its event horizon, 
informally, the hypersurface that, once crossed by an observer coming from infinity, 
cannot be crossed again (a spacetime is expected to be globally hyperbolic outside 
its event horizon). Indeed, Schwarzschild spacetime admits a Killing vector field K 
which is timelike outside this horizon and makes it a static spacetime there (thus, 
this Killing K becomes priviledged because its orthogonal distribution is integrable; 
recall Remark 3). The static description fails in the horizon, but Schwarzschild 
spacetime can be described as an SSTK therein (being written the region outside 
the horizon as a stationary spacetime). 

3.5.1 The Particular Case � ≥ 0 

Observe that when .
 ≥ 0, the metric F in (18) is always of Randers type as 
in (7) (when .
 > 0) or of Kropina type .F(v) = −g0(v, v)/(2ω(v)) (when 
.
 = 0). Accordingly, we will say that F is a Randers-Kropina metric in this case. A 
noticeable subtlety is that the domain of F (and, so, the velocities of the admissible 
curves joining two points) is restricted in the Kropina case to the half space . ω < 0
(recall (20)). So, the F -separation . dF , defined formally as a Finslerian distance, will 
yield .dF (x, y) = ∞ if there is no admissible curve from x to y. Even though not 
all the statements in Hopf-Rinow theorem hold now, . dF is fairly well-behaved.11 

Indeed, regarding . dF as the F -separation, one can ensure (see [23, Theorem 4.9]): 

The characterizations of causality and Cauchy hypersurfaces of a standard stationary 
spacetime in Theorem 4 remain valid for any SSTK spacetime with .
 ≥ 0.

11 In particular, it is continuous outside the diagonal [23, Theorem 4.5] (this property does not hold 
for any conic Finsler metric [52, Proposition 3.9]). 
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3.5.2 The General Case 

Recall that when .
 < 0, there are two pseudo-Finsler12 metrics F and . Fl (see (18) 
and (19)) both defined in the conic subset 

. Al = {v ∈ T M : 
 < 0, ω(v)2 + 
g0(v, v) > 0, −ω(v) > 0},

and all the lightlike geodesics of .(R × M,g) project into pregeodesics of F or 
. Fl or into lightlike pregeodesics of .ω2 + 
g0 (which matches (17) up to a sign; see 
Theorem 1). Then a precise description of the causality and Cauchy hypersurfaces of 
SSTK spacetimes in terms of its associated wind Riemannian structure is available; 
see [23, Theorem 5.9]. Even though it is subtler than the previous cases,13 to 
determine when the slices . t = constant are Cauchy hypersurfaces is simple. Indeed, 
only the conic metric F (which is defined on the whole spacetime) becomes relevant. 
Therefore, as emphasized in [53], the extension . F̄ of F to all the projections 
of future-directed causal vectors is continuous and permits an extension . dF̄ of 
the F -separation on the whole M working as in Sect. 3.5.1 (see [53, Sects. 3.1.1 
and 3.2.1]). Then the Cauchy completeness of . dF̄ becomes naturally equivalent to 
the completeness of the wind Riemannian structure of the SSTK spacetime [53, 
Theorem 3.23] and, as a consequence [53, Corollary 4.1]: 

For any SSTK spacetime, the slices .t = constant are Cauchy if and only if the extended 
distance . dF̄ is (forward and backward) complete. 

4 Finsler Applications 

Next, some applications of the Lorentz-Finsler approach to the Finslerian setting 
will be gathered. We have already pointed out some of them. Indeed, one of 
the first consequences was to highlight the importance of the compactness of the 
symmetrized closed balls, or equivalently, the precompactness of the intersection of 
forward and backward balls. This condition is equivalent to the global hyperbolicity 
of the stationary spacetime associated with a Randers metric. Moreover, it also 
implies the geodesic connectedness of .(M,F ) (recall Theorem 3) and the existence 
of a complete Finsler metric .Ff = F − df for a certain function .f : M → R with 
the same pregeodesics as F (recall Corollary 1 and Remark 6). 

12 Here pseudo-Finsler means that the fundamental tensor (1) is non-degenerate, and the domain 
is conic, not necessarily the whole T M; in particular, so are the Finsler metric F and the Lorentz-
Finsler one . Fl .
13 Among the subtleties appearing here, it is worth mentioning the step causal continuity (i.e., the 
spacetime is causal and the causal future and past vary continuously with the point) in the ladder 
of spacetimes. This is more restrictive than stable causality, and it is satisfied by all the standard 
stationary ones, as well as whenever .
 ≥ 0; however, it is not satisfied by all the SSTK spacetimes. 
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The subtlety of this property was stressed in [53, Example 2.11] by exhibiting 
a Randers manifold .(M,R) satisfying as follows: .(M,R) does not have compact 
closed symmetrized balls but its universal covering .(M̂, R̂) does. This follows by 
applying Theorem 4 to a globally hyperbolic stationary spacetime previously con-
structed by Harris [46, Example 3.4(b)], which admitted a non-globally hyperbolic 
quotient by isometries preserving the timelike Killing field. 

A further application of stationary spacetimes to Randers metrics is a result about 
the smoothness of the distance to (or from) a closed subset. As it was shown in [22, 
Theorem 5.12 and Corollary 5.13], the subset of points where this distance is not 
smooth must have negligible n-Hausdorff measure. 

4.1 Randers-Kropina Metrics 

The applications of spacetimes to Finsler geometry can be even more powerful 
when one considers Randers-Kropina metrics or, more generally, wind Riemannian 
structures. This is because these metrics have certain type of singularities in the 
boundary of the domain, which disappear from the spacetime viewpoint. First, we 
have a direct extension to some properties for Finsler metrics stated above (see [23, 
Proposition 6.6 and Corollary 6.11]): 

Theorem 5 Let .(M,F ) be a Randers-Kropina manifold (recall Sect. 3.5.1) such  
that all the intersections of its backward and forward balls are precompact. Then 

(i) If .dF (p, q) < +∞, (or equivalently, there exists an admissible curve between 
p and q), then there is a minimizing geodesic joining them. 

(ii) There exists a smooth function .f : M → R such that .F − df is a geodesically 
complete Randers-Kropina metric. 

For arbitrary wind Riemannian structures, it is possible to give a version of part . (i)
of the last theorem with a more technical definition of forward and backward balls 
(see [23, Definition 2.26] and [23, Proposition 6.6]). The extension of part (ii) is 
not straightforward. Again, the precompacteness of the intersections of the forward 
and backward balls imply global hyperbolicity and, thus, the existence of a Cauchy 
hypersurface S. However, as the integral curves of the Killing field .K = ∂t may be 
spacelike, they can cross S more than once or not at all (thus, an SSTK splitting on 
S would not be obtained). 

In [27, Theorem 1.5 (B)] the authors prove geodesic connectivity for the Kropina 
manifold .(M, g/ω) with M compact and .ω ∧ dω 
= 0. This follows from part . (i)
above by observing that .ω ∧ dω 
= 0 implies that every two points are connected by 
an admissible curve. Moreover, stationary spacetimes have also been used to obtain 
multiplicity results for Kropina geodesics between two points in a compact manifold 
(see [25]).
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4.2 Classification of Randers and Wind Riemannian 
Spaceforms 

Let us recall that flag curvature is a fundamental invariant of a Finsler manifold 
which measures how geodesics with initial velocity in a certain plane spread apart. 
Flag curvature is the generalization of sectional curvature to Finsler geometry, and 
the problem of classifying the constant flag curvature Finsler manifolds remains 
as one of the biggest challenges. This classification has only been achieved for 
some families of Finsler metrics such as Randers and Kropina [5, 80]. Let us recall 
that Zermelo problem was essential to obtain the final classification of Randers 
spaceforms in the celebrated paper [5]. Indeed, it turns out that a Randers manifold 
has constant flag curvature if and only if its Zermelo data .(gR,W) is given by a 
Riemannian metric . gR with constant sectional curvature and a homothety W of . gR . 
Differently from the Riemannian counterpart, many of these Randers spaceforms 
are not geodesically complete. This anomaly disappears when one drops the Randers 
restriction .gR(W,W) < 1 and, thus, considers the wider family of wind Riemannian 
structures. Recall that there is a natural notion of geodesic intrinsic to such a 
structure . � [23, Definition 2.35] and, then, of geodesic completeness, the latter 
implying the geodesic completeness of both its conic Finsler metric F and the 
Lorentz Finsler one . Fl [23, Corollary 5.6 and Fig. 10]. Moreover, as the fundamental 
tensors of F and . Fl are computable and non-degenerate away from the boundary of 
. Al , their flag curvatures are well-defined; so, . � is called of constant flag curvature 
when the flag curvatures of both F and . Fl are equal to the same constant. Then, 
the techniques used to prove the Randers classification can be extended to these 
structures to obtain the following (see [54, Theorem 3.12]). 

Theorem 6 The complete simply connected wind Riemannian structures with 
constant flag curvature lie in one of the following two exclusive cases, determined 
by the Zermelo data .(gR,W): 

(i) .(M, gR) is a model space of constant curvature and W is any of its Killing 
vector fields. 

(ii) .(M, gR) is isometric to . Rn and W is a properly homothetic (non-Killing) vector 
field. 

Moreover, the inextensible simply connected Randers (resp. Kropina) manifolds 
with constant flag curvature are the maximal simply connected open subsets of the 
previous wind Riemannian structures where the wind is mild (resp. critical). 

Notice how, in the last assertion, the assumption of completeness must be replaced 
by the inextensibility of the Randers or Kropina metric as a manifold of this same 
type. We can go further and give a characterization in terms only of the conic metric 
F defined on the whole M . Indeed, it is natural to rename it as the Zermelo metric 
Z for the data .(gR,W) (given explicitly in (15)). At the end of Sect. 3.5.2, we saw  
that such a Z determines univocally an extended distance . dZ̄ . Moreover, the Cauchy
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completeness of the latter is equivalent to the completeness of the wind Riemannian 
structure (see [53, Theorem 3.23]), thus yielding the following. 

Corollary 2 A Zermelo metric Z with complete extended distance . dZ̄ on a simple 
connected manifold M has constant flag curvature .k ∈ R if and only if its Zermelo 
data .(gR,W) satisfies either (i) or (ii) in Theorem 6. 

5 Interplay Finsler/Lorentz for Boundaries 

Let .(M, gR) be a Riemannian manifold. Its elementary Cauchy boundary . ∂CM

provides a completion . MC , and, when . gR is complete, its Gromov boundary . ∂GM

(see [44]) provides a compactification . MG. In the case of Hadamard manifolds, this 
compactification agrees with the previous one by Eberlein and O’Neill (see [36]), 
which was introduced in a very different way by using Busemann functions asso-
ciated with rays.14 Being the main properties of these boundaries well established 
since the beginning of the 1980s, natural questions about the relation among them, 
as well as its extension to (possibly non-reversible) Finslerian metrics, had remained 
dormant. However, an additional motivation for their study came from the links with 
the Lorentzian setting. 

Roughly, the link with the Riemannian case appears when one computes the 
causal boundary of a product .R × M,g = −dt2 + gR . In a natural way, the 
computation of this boundary leads to consider a sequential compactification .MB of 
.(M, gR) in terms of Busemann-type functions, thus extending Eberlein and O’Neill 
compactification. This compactification includes the Cauchy completion .MC in a 
natural but subtle sense, and it is also related to Gromov’s . MG. 

Amazingly, .MB and .MG are equivalent except in some rather pathological cases, 
which also correspond with known pathologies of the causal boundary. All this can 
be extended to the Finslerian setting by providing a natural link with the causal 
boundary of standard stationary spacetimes (eventually extendible to Finslerian 
spacetimes). However, the possible non-reversibility of the Finslerian metric intro-
duces subtleties even at the level of the Cauchy boundary. The systematic analysis 
of all these issues was carried out in [40], to be followed next.

14 Hadamard manifolds (which are complete, simply connected and with non-positive sectional 
curvature) become diffeomorphic to .Rn by Cartan-Hadamard theorem. Eberlein and O’Neill’s 
boundary becomes a topological sphere .Sn−1 located at infinity. Indeed, the Busemann functions 
yield a quotient in the space of rays so that each function can be regarded as a direction at infinity; 
then, the set of all these directions can be regarded as the sphere .Sn−1. 
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5.1 Gromov Compactification for Incomplete Finslerian 
Manifolds 

Let us start considering a metric space .(M, d) associated with a connected Rieman-
nian manifold .(M, gR), or, with more generality, M can satisfy just to be connected, 
locally compact and second countable, while the distance d is just derived from a 
length space.15 In particular, the metric space associated with any reversible Finsler 
manifold is included now and, later, we will refer to the Finsler case when taking 
into account non-reversibility. 

5.1.1 The Symmetric d Case 

The Cauchy completion .MC of such a space is standard, and we emphasize that . MC

may be non-locally compact (thus, it will not lie under the general hypothesis for 
.(M, d) above). Indeed, it is not difficult to construct a bidimensional Riemannian 
example starting at a variation of the comb space 

. M = ((0,∞) × {0}) ∪ (K × (0, 1)) ⊂ R2, where K = {1/m : m ∈ N}.
(25) 

Here, .(0, 0) is identifiable to a point of .∂CM which does not have any compact 
neighborhood in . MC . 

Let us construct the Gromov compactification of .(M, d) without the usual 
assumption on completeness for d . Consider the space of all the 1-Lipschitz 
functions .L1(M, d). For each .x ∈ M , the function . M 	 y 
→ dx(y) := d(x, y)

belongs to .L1(M, d). Moreover, . dx as well as any function .dx + C, where C is a 
constant, determines univocally x. Thus, M can be identified with a subset of the 
quotient space .L1(M, d)/R under the relation of equivalence: 

.f ∼ f ′ ⇔ f − f ′ = C ∈ R, where f, f ′ ∈ L1(M, d). (26) 

Definition 1 The Gromov completion .MG of .(M, d) is the closure of M in 
.L1(M, g)/R (with, say, the uniform convergence on compact sets topology). 

It is not difficult to check that .L1(M, g)/R is compact and, moreover (see [40, 
Theorem 4.12 and Corollary 4.13]): 

Proposition 4 .MG is a compact metrizable space and .MC is naturally included in 
it. The inclusion .MC ↪→ MG is continuous, and it is an embedding if and only if 
.MC is locally compact; moreover, .M ↪→ MG is a dense embedding.

15 Notice that, for a smooth curve c in such a space, the role of its Riemannian norm . gR(ċ(s), ċ(s))

at each s is played by the local dilatation there; moreover, notions such as geodesic or cut point 
have a natural sense (see [45, Chap. 1] for background). 
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To check that the inclusion of .MC in the example (25) is not an embedding, notice 
that the sequence .{(1/n, 1/2)}n converges to .(0, 0) in . MG, but it is not convergent 
in . MC . This suggests some subtleties for this boundary. Indeed, Gromov’s boundary 
.∂GM := MG \ M is divided into a Cauchy-Gromov boundary .∂CGM , whose points 
are the limits of bounded sequences in M , and a proper Gromov boundary . ∂GM

containing limits of unbounded sequences. Clearly, .∂CGM contains the Cauchy 
boundary .∂CM; however it may contain more points if .MC is not locally compact. 

Example 1 Modify the space in (25) by adding an upper half line: 

. M = ((0,∞) × {0, 1}) ∪ (K × (0, 1)) ⊂ R2, where K = {1/m : m ∈ N}.

Now, for each .y ∈ (0, 1) the sequence .{(1/n, y)}n converges to a distinct limit, 
so that .{0} × [0, 1] can be regarded as a subset of .∂CGM . We emphasize that no 
boundary point .(0, y), y ∈ (0, 1), can be an endpoint of a curve starting at M . 

5.1.2 The Non-symmetric d Case 

When considering the Finsler case, d will mean the non-necessarily symmetric 
distance defined in (2), and the following subtleties must be taken into account. 
Following [81], a map .d : M × M → R is called a generalized distance when 
it satisfies, for all .x, y, z ∈ M: (a1) .d(x, y) ≥ 0, (a2) . d(x, y) = d(y, x) = 0
if and only if .x = y, (a3) .d(x, z) ≤ d(x, y) + d(y, z), and (a4) given a 
sequence .{xm}m ⊂ M and .x ∈ M , then .limm→∞ d(xm, x) = 0 if and only if 
.limm→∞ d(x, xm) = 0; when the hypothesis (a4) is dropped, then d is called a 
quasidistance. A generalized distance d gives two notions of Cauchy sequences 
(forward and backward) and, then, forward and backward Cauchy completions 
.M+

C ,M−
C , respectively.16 Moreover, the distance . ds obtained by symmetrizing d 

provides another completion . Ms , and the corresponding boundaries satisfy . ∂s
CM =

∂+
C M∩∂−

C M in a natural way. The continuous extension of d to such a completion is 
only a quasidistance; indeed, the topologies generated by the forward and backward 
balls are not equivalent and .M+

C is only a . T0 space. Notice that, in our previous 
study of Finsler metrics, we considered a non-symmetric distance which is, indeed, 
a generalized distance, and all the assertions above apply [40, Chap. 3]. 

In order to consider the Gromov completion for a Finsler manifold, notice that 
there are two non-symmetric notions of 1-Lipschitzian: 

.
L+
1 (M, d) = {f smooth : f (y) − f (x) ≤ d(x, y)},
L−
1 (M, d) = {f smooth : f (x) − f (y) ≤ d(x, y)}.

16 There is a non-equivalent way to define forward (and backward) Cauchy sequences; however, it 
would yield the same forward Cauchy completion (see [40, Sect. 3.2.2]). 
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Accordingly, there are two Gromov compactifications . M±
G ,17 namely, .M+

G is the 
closure of M in .L+

1 (M, d)/R. 

Remark 9 The inclusion .M+
C ↪→ M+

G is subtler than in Proposition 4, as it satisfies 
now (see [40, Corollary 5.25]): 

(A) it is continuous if and only if the backward balls generate a finer topology on 
.M+

C than the forward balls, 
(B) it is an embedding when (B1) .M+

C is locally compact (as in the Riemannian 
case) and (B2) the extension of d to .M+

C is a generalized distance. 

5.2 The Causal Boundary of a Spacetime 

For spacetimes, there are two conformally invariant boundaries which are applied 
to general relevant classes of spacetimes. The first one is the so-called conformal 
boundary, introduced by Penrose in [68], which underlies notions such as asymp-
totic flatness, and it is widely used in relativity. Essentially, the idea is to find a 
suitable open conformal embedding of the spacetime in a bigger one and, then, to 
regard its topological boundary as the conformal one. The second one is the causal 
boundary, firstly introduced by Geroch, Kronheimer and Penrose [42], but later 
redefined several times (we will refer to the last one, [39]). This boundary . ∂cM
is defined in an intrinsic way for any spacetime under the weak condition of being 
strongly causal.18 There are general conditions which ensure that these boundaries 
agree (as well as counterexamples otherwise), see [39, Sect. 4 and Appendix].19 

Here, we are interested in the causal boundary .∂cM, which will be described 
very briefly now, and we refer to [39] for exhaustive details and references. To 
construct it, one starts defining a terminal indecomposable past (resp. future) set 
P , or  TIP (resp. F , TIF) for short, as the chronological past (resp. future) of any 
inextendible future-directed (resp. past-directed) timelike curve . γ , i.e., . P = I−(γ )

(resp. .F = I+(γ )). The set of all the TIPs (resp TIFs) is the future (resp. past) 
causal boundary .∂+

c M (resp. .∂−
c M). To construct .∂cM one has to take into account 

that a TIP and a TIF might represent intuitively the same boundary point (see Fig. 5). 
So, one introduces the Szabados relation: .P ∼ F iff, on the one hand, P is included 
in the common past of F (i.e., (.∩x∈F I−(x) ⊃ P ) and P is maximal among the 
TIPs satisfying this property, and on the other hand, the dual property holds for F . 
Then .∂cM is composed of .∂+

c M ∪ ∂−
c M up to the pairings introduced by . ∼. Even

17 Its consistency relies on a non-symmetric version of Arzela theorem [40, Theorem 5.12]. 
18 Intuitively, it does not admit “almost closed” causal curves. A formalization of this property is 
that each point .p ∈ M has a neighborhood U such that any inextendible causal curve starting at U 
will leave U at some point so that it will not return to U . 
19 Noticeably, they agree in the class of globally hyperbolic spacetimes-with-timelike-boundary, 
see [1]. 



An Account on Links Between Finsler and Lorentz Geometries 289

Fig. 5 Let .M = (0, 1) × (−1, 1) (in Lorentz-Minkowski spacetime). Green P (resp. orange F ) 
corresponds with a TIP (resp. TIF) which represents a point in the causal boundary; intuitively, this 
point is identifiable with a boundary point in the line .t = 1 (resp. .t = 0). Red .P ′, F ′ are a TIP and 
a TIF that intuitively represent the same boundary point at .x = 1. They are paired by Szabados 
relation, yielding a single point of . ∂cM

Fig. 6 Modify the example in Fig. 5 by removing a segment in the t axis, . M′ :=M \ {(t, 0) : t ≤
1/2}. The  TIF .F = I+(γ ), with .γ : (0, 1/2) 	 t 
→ (1 − t, 0) is Szabados related with each one 
of the TIPs .P1, P2, where .Pi = I−(γi), with .γi : (0, 1/2) 	 t 
→ (t, (−1)i ((1/4) − t/2)). Then, 
.P1 ∼ F and .P2 ∼ F . Therefore, .(P1, F ) and .(P2, F ) are two distinct points of .∂cM (they are not 
Hausdorff separated by the chronological topology) 

though this is a neat definition, examples such as Fig. 6 show that the pairings may 
be non-trivial. In what follows, all the elements of .∂cM will be regarded as a pair 
.(P, F ) with the convention that .F = ∅ (resp. .P = ∅) when P (resp. F ) is unpaired. 

Remark 10 

(1) Globally hyperbolic spacetimes are characterized as the strongly causal ones 
whose .∂cM is composed only of unrelated pairs .(P,∅), (∅, F ), see  [39, 
Theorem 3.29]. 

(2) The chronological relation . � in . M (introduced around (23)) admits a natural 
extension . � to .∂cM , namely, .(P, F )�(P ′, F ′) whenever .F ∩ P ′ 
= ∅.
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The most natural topology for .∂cM is the so-called chronological topology. We  
will not go into the details of this topology, but just point out the following two 
important features, in relation to the general Busemann completion .MB of any 
Finslerian manifold M to be described below: 

1. The topology of .MB is inspired by the chronological topology of the causal 
completion of a standard stationary spacetime .M = R × M . In particular, . ∂cM
will be described directly from the Busemann boundary .∂BM . 

2. When this topology is Hausdorff, .MB is identifiable to . MG. Otherwise, the 
non-Hausdorff property of .MB will be related to the appearance of somewhat 
pathological properties of . MG, as the one emphasized in Example 1 (see 
Theorem 7 below). 

This second item supports the relevance of the Busemann completion even in a 
purely Riemannian setting, and the first one supports the previously defined causal 
boundary. 

5.3 A New Busemann Boundary 

Next, we will construct a general Busemann boundary which generalizes Eberlein 
and O’Neill’s, following [40, Sects. 4.2 and 5.2]. We will start at the symmetric case 
with a length metric space .(M, d) as in the case of Gromov’s, but one can consider 
a connected Riemannian manifold .(M, gR) to be more specific. 

In the standard approach, one assumes the completeness of d, considers a ray 
c (a half unit geodesic with no cut locus), and defines its Busemann function . bc

as .bc(x0) := limt→∞(t − d(x0, c(t))) for all .x0 ∈ M . However, we will drop 
completeness and admit (generalized) Busemann functions for more general curves, 
namely, 

.bc(x0) = lim
t→�

(t − d(x0, c(t))) for any c : [0,�) → M with F(ċ) ≤ 1. (27) 

Easily, if . bc is . ∞ at some .x0 ∈ M , then .bc ≡ ∞, and .B(M) will denote the set of all 
the finite Busemann functions on M . .B(M) will be regarded as a topological space 
with the chronological topology defined by means of a limit operator L. Specifically, 
given .{fm}m ⊂ B(M), the subset .L({fm}m) ⊂ B(M) is defined by 

. f ∈ L({fm}m) ⇔
{

(a) f ≤ lim infm fm and
(b) ∀g ∈ B(M) with f ≤ g ≤ lim supm fm, it is g = f.

Then, the topology is defined by declaring that a subset .C ⊂ B(M) is closed if and 
only if .L(σ) ⊂ C for any sequence .σ = {fm}m ⊂ C.
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Definition 2 As a pointset, the Busemann completion .MB of .(M, d) is . MB :=
B(M)/R (this is the quotient by an additive constant as in (26)), endowed with the 
quotient of the chronological topology on .B(M). 

Notice that .B(M) ⊂ L1(M, g) and, thus, naturally .MB ⊂ MG. However, the 
inclusion may be non-continuous (indeed, the topology of .MB is always coarser 
than that of . MG). Observe also that one can consider .MC ⊂ MB , as the points in the 
Cauchy completion correspond to two Busemann functions for curves with .� < ∞. 
Indeed, one has the disjoint union .MB = M ∪ ∂CM ∪ ∂BM , where .∂BM contains 
the classes of Busemann functions with .� = ∞. 

Theorem 7 [40, Sect. 5.2] The following properties hold: 

(A) .MB is sequentially compact. 
(B) .MB is a . T1 topological space (and points in the boundary may be non-. T2

related). 
(C) .MC ↪→ MB ↪→ MG but the topology of .MB is coarser than the others. 
(D) They are equivalent: 

(D1) .MB = MG as pointsets. 
(D2) .MB is Hausdorff. 
(D3) No sequence contained in M converges to two distinct points in .∂BM . 
(D4) .MB ↪→ MG is an embedding. 
(D5) .MB ↪→ MG is a homeomorphism. 

Recall that, from (D), .MG contains “extra points” when .MB and .MG are not 
naturally equivalent (recall Example 1 and see also [40, Theorem 5.39 and Remark 
5.41]). 

In the Finslerian case, take into account that, now, each curve c yields two 
Busemann functions, depending on the ordering of the arguments of d in (27). So, 
as in the case of Gromov’s, we have two Busemann completions .M±

B depending 
on that ordering. Then, as in the Riemannian case, one has canonical inclusions 
.M±

C ↪→ M±
B ↪→ M±

G , and Theorem 7 is extended naturally to this case, [40, 
Theorem 5.39]. In particular, the topology of .M+

B is coarser than those of . M+
C

and . M+
G , .M+

B is identifiable to .M+
G if and only if .M+

B is Hausdorff, and the 
Hausdorffness of .M+

B is independent of that of . M−
B . Moreover, one also has the 

disjoint unions: 

. M+
B = M ∪ ∂+

C M ∪ ∂+
BM, M−

B = M ∪ ∂−
C M ∪ ∂−

BM.

5.4 The Causal Boundary of Stationary Spacetimes 

Let us describe .∂cM for a standard stationary spacetime .M = R × M as in (8) 
by using the Busemann completions .M±

B of the Finsler manifold .(M,F ), where F 
is the Fermat metric in (9). The generalized distance d associated with F will be
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denoted here . d+ (as it will be related to the future causal boundary .∂cM+) and its 
reversed one . d−. Observe that the interpretation of the Fermat metric provides the 
following characterization of the chronological relation . � (recall (23)): 

. (t0, x0) � (t1, x1) ⇔ d+(x0, x1) < t1 − t0.

Let us see how Busemann functions appear when one computes the TIPs for 
.∂+M. Let  . γ be any future-directed timelike curve, and let .P = I−(γ ). If  . γ is 
future inextendible, then it yields a TIP. If . γ is continuously extendible to a point 
.p ∈ M, then P is equal to .I−(p), and it is called a PIP, proper indecomposable 
past set. PIPs (and analogously PIF’s) permit to identify . M in the future causal 
completion .M+

c =M∪∂+
c M and, then, in the causal completion .Mc =M∪∂cM. 

Parametrizing . γ with the t coordinate of .R × M , we have  

. γ (t) = (t, c(t)), t ∈ [α,�), F (ċ) < 1,

and, then, 

. 

P = {(t0, x0) ∈M : (t0, x0) � γ (t) for some t ∈ [α,�)}
= {(t0, x0) ∈M : t0 < t − d+(x0, c(t)) for some t ∈ [α,�)}
= {(t0, x0) ∈M : t0 < limt→�(t − d+(x0, c(t)))}
= {(t0, x0) ∈ V : t0 < b+

c (x0)},

where .b+
c (x0) = limt→�(t − d+(x0, c(t))) is the forward Busemann function of c 

in .(M, d+). So, the set of Busemann functions .B+(M) for .(M, d+) satisfies20 

. M+
c (= {TIPs and PIPs onM}) ≡ B+(M) ∪ {bc ≡ ∞},

where the PIPs correspond to converging c (thus, necessarily, .� < ∞) and the TIPs 
to non-converging c, including the case .bc ≡ ∞ (this can be obtained with a curve 
of type .γ (t) = (t, x0), t ≥ 0, for any .x0 ∈ M). Notice that in the construction 
of .M+

c , no quotient in the set of Busemann functions is carried out. Next, let us 
describe briefly .∂cM. We will restrict to its pointset and chronological structures 
and refer to [40, Chap. 5] for the topological structure and full details. 

5.4.1 The Static Case 

Recall that in the static case, . M can be regarded as a product .R × M with F equal 
to a Riemannian metric by using conformal invariance. Essentially, .∂cM becomes

20 A subtlety is that the Busemann functions which can be constructed with the restriction . F(ċ) ≤ 1
coincide with those constructed with .F(ċ) < 1. 
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Fig. 7 The causal boundary 
of a static spacetime. The red 
lines joining . i− and . i+
correspond to points in . ∂CM

+ 

− 

+ 

− 

Future cone 

B 

B 

Past cone 

a double cone with some lines connecting its apexes, constructed as follows (see 
Fig. 7): 

1. Two points .i+ = (M,∅), i− = (∅,M) (which correspond to .bc ≡ ∞). They are 
the apexes of a symmetric double cone (invariant by .t 
→ −t) on .∂BM . 

2. Two horismotic lines (i.e., locally horismotic with no cut points) for each point 
of .∂BM , one of them . l+ ending at . i+ and the other . l− starting at . i−. This means 
that the line . l+ is composed of boundary points of type .(P,∅) such that (a) . l+ is 
totally ordered by the relation of inclusion for the first factor (i.e., . l+ is locally 
horismotic) ending at .P = M, and (b) no two points in . l+ are related by the 
extended chronological relation . � defined in Remark 10 (2) (i.e., . l+ has no cut 
points). 

3. A timelike line connecting .i−, i+ for each point of the Cauchy boundary .∂CM . 
Such a line is a continuous curve in .Mc totally ordered by the extended 
chronological relation . �. These are the only points in .∂cM with non-trivial 
pairings .(P, F ). 

Consistently with Remark 10 (1), the spacetime is globally hyperbolic if the timelike 
lines do not exist, that is, if .∂CM = ∅. 

5.4.2 The General Stationary Case 

For the sake of simplicity, we will assume that the causal completion .Mc is simple 
as a pointset, that is, each TIP P and each TIF F determines unambiguously a point
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of .∂cM (thus, the situation in Fig. 6 cannot occur); simple sufficient hypotheses to 
ensure this property are, for example, .M±

B being Hausdorff or . d+ being extendible 
to the Cauchy boundary .∂+

C M as a generalized distance; see [40, Fig. 6.2]. 
Then, the three elements in the static picture must be modified allowing more 

generality, and a fourth ingredient appears, namely, now: 

1. .i+ = (M,∅), i− = (∅,M) are regarded as apexes for two (non-symmetric) 
cones on .∂+

B M, ∂−
B M , respectively. 

2. Each horismotic line . l+ (resp. . l−) appears for a point in .∂+
BM (resp. .∂−

BM). 

3. The timelike lines connecting . i+ and . i− appear for each point in the Cauchy 
boundary for the symmetrized distance, .∂s

CM . 
4. The points in .∂±

C M\∂s
CM determine locally horismotic lines (eventually starting 

at . i−, ending at . i+, or both). 

Recall that the subtle last possibility cannot occur when .∂±
C M = ∂s

CM , in particular, 
when . d+ extends to .∂+

C M as a generalized distance [40, Proposition 3.28]. 

6 Lorentz-Finsler Metrics and Practical Applications 

In this section we will take a look at some real-world situations where the interplay 
between Lorentz and Finsler geometries appears naturally. Specifically, we will 
focus on the wave propagation: Lorentz metrics and the spacetime viewpoint are 
essential when considering rheonomic (i.e., time-dependent) waves, whereas Finsler 
metrics effectively model the anisotropic (i.e., direction-dependent) case. The 
combination of both cases leads naturally to Lorentz-Finsler metrics. Interestingly, 
the applications can be generalized to any physical phenomenon that satisfies 
Huygens’ principle, such as wildfires or seismic waves. 

6.1 Anisotropic Wave Propagation and Huygens’ Principle 

Recall from Sect. 2.3 that the (time and direction-dependent) velocities of a moving 
object can be effectively described by the indicatrix . �t of a time-dependent Finsler 
metric . Ft on .{t} × M . Then the trajectories of the object are given in the (globally 
hyperbolic21 ) spacetime .M = R× M by the lightlike curves of the Lorentz-Finsler 
metric .G = dt2−F 2

t introduced in (21),22 since (considering .t-parametrized curves) 

.γ (t) = (t, x(t)) lightlike ⇔ G(γ̇ (t)) = 0 ⇔ x(t) Ft -unit ⇔ ẋ(t) ∈ �t .

21 This is not a restriction in any realistic situation (see [50, Remark 3.2]). 
22 Note that all the usual concepts about causality can be directly translated from the Lorentzian 
case to the Lorentz-Finsler metrics and the more general setting of cone structures (see, for 
example, [55, 64]). However, due to the non-reversibility of the Finsler metrics, usually only future 
directions are considered. 
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Consider now the following variation of Zermelo problem: instead of finding the 
fastest trajectory for a moving object between two prescribed points, we seek to 
determine the evolution of an anisotropic wave starting from .S ⊂ M with velocities 
given by . �t . We will restrict ourselves to the “mild wind” case, i.e., . �t encloses the 
zero section,23 so that the wave propagates over . M in all directions. 

Among all the possible trajectories of the wave (i.e., lightlike curves departing 
from . S), we are interested in those that generate the wavefront. If .S = {p}, namely, 
the wave starts from a single point .p ∈ M , then all the spacetime points that can 
be reached by the wave are given by the causal future .J+(p); accordingly, all the 
spatial points the wave passes through are the projection of .J+(p) on . M . Following 
this reasoning, .∂J+(p) provides the outermost points reached by the wave, and 
therefore, .∂J+(p) ∩ ({t0} × M) is the wavefront at each time .t0 > 0. Observe that 
.J+(p) will be closed due to the global hyperbolicity of . G. In the more general case 
where . S is a compact hypersurface of . M ,24 playing the role of the initial wavefront, 
we can apply Huygens’ principle: each point of the front behaves as an independent 
source of the wave, and thus 

. Front(t1) = ∂
(∪p∈Front(t0)J+(p)

) ∩ ({t1} × M) = ∂J+(Front(t0)) ∩ ({t1} × M),

for any .t1 > t0 ≥ 0. In particular, if we put .t0 = 0, then the wavefront at any 
time .t1 > 0 is given by .∂J+(S) ∩ ({t1} × M). So, the next step is to determine the 
trajectories that make up .∂J+(S) (see Fig. 8). 

6.2 Solution in Terms of Lorentz-Finsler Geodesics 

So far, we know that a wave trajectory remaining in the wavefront must satisfy two 
conditions: it must be lightlike, and it must be entirely contained in .∂J+(S). The  
next result states some crucial properties of this type of curves (see [50, Sect. 4] and 
[49, Sect. 5]). 

Proposition 5 Let .γ : [0, t0] → M be a (.t-parametrized) causal curve entirely 
contained in .∂J+(S). Then: 

(i) . γ is a lightlike pregeodesic of .(M,G) departing .G-orthogonally from . S, i.e., 
.gG

γ̇ (0)(γ̇ (0), v) = 0 for all .v ∈ Tγ (0)S, being . gG the fundamental tensor of . G. 

In fact, .∂J+(S) admits a unique foliation by such pregeodesics. 
(ii) . γ is time-minimizing: for any .p0 = (t0, x0) ∈ Im(γ ), . γ is the first causal curve 

from . S to arrive at the vertical line .t 
→ (t, x0).

23 Alternatively and more generally, we can consider . ∂t as an observer’s vector field co-moving 
with the medium in which the wave propagates, as suggested at the end of Sect. 2. 
24 For simplicity, . S will be assumed to be a hypersurface of . M , although the results we present 
here can be generalized to any submanifold (see [50]). 
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Fig. 8 A simple representation of the wave evolution in dimension .n + 1 = 3. The indicatrix 
. �p determines the velocity of the wave for each direction and the causal future .J+(p) shows the 
region in the spacetime that can be reached by the wave starting at . p. The envelope of all these 
chronological futures, .∂(∪p∈SJ+(p)) = ∂J+(S), is generated by the first-arriving trajectories 
of the wave, so that the intersection with .{t0} × M is the wavefront at any .t0 > 0 (when . S is a 
hypersurface of . M there are always two wavefronts). A wave trajectory such as . γ is a lightlike 
pregeodesic .G-orthogonal to . S and minimizes the propagation time from . S to . q

Essentially, the wavefront is made up of lightlike pregeodesics that are time-
minimizing in the sense that no other causal curve from . S arrives earlier at each of 
their points. In other words, these trajectories solve Zermelo problem from . S to any 
of their points. 

Observe that at each point of . S there are exactly two lightlike .G-orthogonal 
directions: one points to the exterior of . S and the other to the interior. Therefore, 
there are two wavefronts: one heading outward and the other inward (see Fig. 8). 
From now on we will focus on the one going outward, since it is usually the most 
interesting from a practical viewpoint.25 Consider then the wavemap, defined as 

. 
f : [0,∞) × S −→M

(t, s) 
−→ f (t, s) = (t, x(t, s)),

where, for each .s ∈ S, .t 
→ f (t, s) is the .t-parametrized pregeodesic of . G
whose initial velocity is the unique lightlike vector .G-orthogonal to . S and pointing 
outward. The curve .t 
→ f (t, s0) represents the spacetime trajectory of the wave 
from .s0 ∈ S, being its projection .t 
→ x(t, s) the corresponding spatial trajectory.

25 Nevertheless, the results we present here directly apply to the other wavefront simply by 
replacing “outward” with “inward.” 
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Working in coordinates .{x0 := t, x1, . . . , xn}, the following result character-
izes the wavemap in terms of the ODE system for the .t-parametrized lightlike 
pregeodesics of . G (see [50, Theorem 4.11]). 

Theorem 8 For each .s0 ∈ S, the wavemap . f (t, s0) = (t, x1(t, s0), . . . , x
n(t, s0))

is given by the following ODE system: 

.ẍk =
n∑

i,j=0

(
−γ k

ij (ḟ )ẋi ẋj + γ 0
ij (ḟ )ẋi ẋj ẋk

)
, k = 1, . . . , n, (28) 

along with the initial conditions: 

• .f (0, s0) = s0 ∈ S, and 
• .ḟ (0, s0) is lightlike, .G-orthogonal to . S and pointing outward, 

where .ḟ = ḟ (t, s0) = (1, ẋ1(t, s0), . . . , ẋ
n(t, s0)) denotes the velocity (tangent 

vector) of the curve .t 
→ f (t, s0) and .γ k
ij are the formal Christoffel symbols of . G, 

defined as 

. γ k
ij (v) := 1

2

n∑
r=0

gkr (v)

(
∂grj

∂xi
(v) + ∂gri

∂xj
(v) − ∂gij

∂xr
(v)

)
, i, j, k = 0, . . . , n,

with .gij (v) := gG
v (∂xi , ∂xj ), for any lightlike .v ∈ TM. 

Remark 11 In the time-independent anisotropic case (namely, .Ft = F is time-
independent), .t-parametrized lightlike pregeodesics of . G project onto unit speed 
geodesics of . F (recall Proposition 1 for the Randers case). Namely, the spatial tra-
jectories of the wave are .F -geodesics .F -orthogonal to . S. Moreover, the propagation 
time is given by the .F -length: if .γ : [0, t0] → M is a spatial trajectory of the wave, 
then . t0 coincides with the length of . γ computed with . F . 

6.3 Cut Points and Determination of the Wavefront 

As long as a spacetime trajectory remains in .∂J+(S), it keeps providing a point in 
the wavefront. However, this may not be the case for all . t . We define the (null) cut 
function as 

.
cut : S −→ [0,∞]

s 
−→ cut(s) := Max{t : f (t, s) ∈ ∂J+(S)},
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which also relates to the property of being time-minimizing. Specifically: 

• If .t ≤ cut(s0), then .f (t, s0) ∈ ∂J+(S) is a point of the wavefront and the 
corresponding spacetime trajectory is time-minimizing. 

• If .t > cut(s0), then .f (t, s0) ∈ I+(S) is not in the wavefront, so there exists 
another lightlike pregeodesic .G-orthogonal to . S and contained in .∂J+(S) that 
arrives earlier at the same spatial point .x(t, s0) ∈ M (recall that .J+(S) is closed). 

We call .cut(s) and .(cut(s), f (cut(s), s)) the cut instant and cut point of the 
corresponding trajectory, respectively. Cut points are interesting from a practical 
viewpoint because they mark regions where different wave trajectories converge. 
More precisely (see [51, Proposition A.1]): 

Proposition 6 Let .(t0, p0) ∈M be the cut point of .γ : t 
→ f (t, s0). Then, at least 
one of the following properties holds: (a) .(t0, p0) is the first intersection point of . γ
with another spacetime trajectory of the wave, or (b) .(t0, p0) is the first focal point 
of . S along . γ (it is possible for both conditions to hold simultaneously). 

In some situations, the detection of these points becomes crucial. In the case of 
wildfires, for example, cut points determine possible crossovers of the fire, which 
can become extremely dangerous both because of the increased heat intensity and 
because they may leave behind regions completely surrounded by the fire (see [51, 
Sect. 4.2]). 

Focusing now on the determination of the wavefront, observe that if . t0 < cut(s)
for all .s ∈ S, then the curve .s 
→ f (t0, s) exactly coincides with the wavefront at 
.t = t0, i.e., .Im(f (t0, s)) = ∂J+(S) ∩ ({t0} × M). This can be guaranteed at least 
for a small time, since there always exists some .ε > 0 such that .cut(s) > ε for all 
.s ∈ S (see [50, Theorem 4.8]). In general though, the wavefront will be given by all 
the trajectories which have not arrived yet at their cut points: 

. ∂J+(S) = {f (t, s) : t ≤ cut(s), s ∈ S}.

So, in order to obtain the wavefront, we have to compute the wavemap through 
the ODE system (28), but anytime a spacetime trajectory reaches its cut point, it 
should be discarded, as subsequent points no longer lie on the wavefront. This is not 
demanding from a computational viewpoint, since each trajectory is independent 
from the others and those located beyond their cut points can be removed (or simply 
ignored) with no harm to the overall computation. 

6.4 The Case of Wildfires 

The theoretical setting we have presented in this section can be applied to model the 
propagation of any physical phenomena that behaves as a wave, i.e., that satisfies 
Huygens’ principle. One of the most interesting examples is the case of wildfires
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(see [50, 51, 61, 62]). Consider a wildfire that spreads over a surface .M̂ ⊂ R3. We  
can select a (global) coordinate chart .(M, ẑ−1), where . ̂z is the graph 

. 
ẑ : M ⊂ R2 −→ M̂ ⊂ R3

(x, y) 
−→ ẑ(x, y) := (x, y, z(x, y)),

and consider, as above, the spacetime .(M,G = dt2 − F 2
t ), where the indicatrix of 

. Ft at each .p = (t, x) ∈M provides the velocity of the fire for every direction. The 
Finslerian nature of the model in this specific case is absolutely essential, as several 
physical effects (mainly the slope and the wind) cause the propagation of the fire to 
be anisotropic. 

If we know . Ft , i.e., we know the velocity of the fire at each point, time, and 
direction, then solving (28) we obtain the evolution of the fire over time. The aim of 
a wildifire model is therefore to provide such . Ft . 

In the isotropic case (without slope and wind), the indicatrix . �t is a sphere 
whose radius depends on the fuel and metereological conditions and may vary 
from one point to another (and over time) due to the change of vegetation, soil, 
moisture, etc. In order to include the isotropy caused by the wind, the most 
straightforward approximation is to consider that the wind displaces and deforms the 
sphere to an ellipse with a certain eccentricity depending on the wind strength. This 
approximation has been widely used since the experimental results by Anderson [3] 
and the subsequent PDE system developed by Richards [71] for the wavefront of a 
wildfire with an elliptical growth.26 Richards’ equations are still used nowadays by 
fire growth simulators such as FARSITE [38] and Prometheus [76], which even 
extend the elliptical approximation to the isotropy caused by the slope, i.e., the 
wildfire becomes a displaced ellipse in the upward direction (since the fire moves 
faster upward than downward). 

From a Finslerian viewpoint, the elliptical model translates into the metric . Ft

being of Randers type. Markvorsen was the first to propose the use of these metrics 
for wildfire modeling, transforming Richards’ PDE into an ODE (the geodesic 
equations of the Randers metric; see [61]) and even developing a rheonomic 
Lagrangian viewpoint to include the time dependence (see [62]). For further 
developments using Randers metrics, see [34]. Our work including Lorentz-Finsler 
metrics completes this theoretical framework and provides a full geometrical picture 
of the evolution of the wildfire in the most general situation. Specifically, there are 
mainly two important advantages of working with the Lorentz-Finsler setting over 
the classical elliptical one: 

• Flexibility: the infinitesimal growth of the wildfire is not restricted to be elliptical 
and can adopt any other (strongly convex) pattern. In particular, the effect of 
the wind and the slope can be qualitatively different. For example, in [51] we  

26 Richards’ equations are equivalent to the ODE system (28) when . �t is an ellipse (see [50, 
Sect. 5.2]).
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have developed a specific model where the wind induces a sort of double semi-
elliptical growth, which had already been pointed out by Anderson as the best 
experimental fitting in [3], while the slope generates the indicatrix of a reverse 
Matsumoto metric.27 

• Efficiency: computationally speaking, solving an ODE is in general more efficient 
than solving a PDE. In addition, cut points represent a problem from the PDE 
viewpoint, since the firefront computed at an instant of time depends on the 
previously obtained, and therefore they must be corrected every time there is 
a crossover. This process has to be implemented through algorithms that are 
usually expensive in time and computing power (see, for example, [38] and 
references therein). In comparison, this problem is greatly simplified in the ODE 
case, where we only need to remove the trajectories that reach their cut points, 
without even affecting the computation of the firefront (see [51]). 
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Geometric and Architectural Aspects of 
the Singular Minimal Surface Equation 

Rafael López 

Abstract A singular minimal surface is the mathematical model of a dome 
suspended by its own weight. We review the main properties of these surfaces when 
the geometry is cylindrical and rotational, showing its relation with the constructions 
of the Spanish architect Antonio Gaudí. 

Keywords Singular minimal surface · Center of gravity · Construction of 
domes · Stability 

1 Physical Motivation and the Variational Problem 

If is well-known that if the shape of a hanging flexible chain suspended from its 
endpoints is the catenary, it is not the way how to describe the shape of a bounded 
piece . � of homogeneous flexible cloth (a two-dimensional surface) hanging from its 
boundary curve and suspended by its weight. In a position of static equilibrium, the 
tension forces exerted on the surface . � only have tangential components. Therefore, 
if we turn . � upside down, these forces become only internal compressive forces. In 
consequence these surfaces are models of domes and cupolas, resulting in reduced 
collapse. For this reason, these surfaces are the two-dimensional analogues of the 
catenary. 

The catenary, as a mathematical model of an arch, is the curve 

.y(x) = 1

c
cosh(cx + d), c, d ∈ R, c > 0. (1) 

The Spanish architect Antonio Gaudí (1852–1926) used catenary arches in the 
construction of vaults in halls and corridors (Fig. 1, left). To be precise, Gaudí 
repeated the inverted shape of a catenary along the direction of the corridor. 
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Fig. 1 Left: Corridor in the Colegio Teresiano, Barcelona [59]. Right: Funicular models of the 
church of Colonia Güell, Barcelona [60] 

From the geometric viewpoint, the corridor is a cylindrical surface generated by 
a catenary. 

We point out that Gaudí suspected that the ideal shape of a dome suspended by 
its weight was not “trivial” as the catenaries for arches. For that reason, Gaudí opted 
to use funicular models [55] of skeletons made by threads and put small sand bags 
hanging from them as shown in Fig. 1, right. Moving the vertices of the skeleton 
and with different weights, he obtained models of domes that were employed later 
in some of his constructions, as, for example, in the Sagrada Familia (Barcelona). 

Coming back to the two-dimensional analogue of the catenary, the problem of 
the shape of a dome had attracted the interest of mathematicians such as Beltrami, 
Germain, Lagrange, and Jellet [4, 22, 24, 27, 33, 58]. Using techniques of calculus of 
variations, Poisson finally derived the equation that governs the shape of a hanged 
surface [52, p. 185]. We give these arguments. Let .(x, y, z) denote the canonical 
coordinates of Euclidean space .(R3, 〈, 〉), where z indicates the opposite direction 
of the gravity acceleration and .〈, 〉 stands for the Euclidean metric of . R3. First, we  
need to precise the initial data of the problem. In the one-dimensional case, we 
have a chain of given length and suspended from its endpoints, and in the two-
dimensional case we prescribe a value for the area of the surface and the boundary 
curve of the surface. 

Let . � be a compact surface made of a flexible, homogeneous material of density 
. σ per unit area. Suppose that the area of . � is .A0 > 0 and its boundary is a closed 
curve .� ⊂ R

3. Let .{�t : t ∈ (−ε, ε)} be a uniparametric smooth family of compact 
surfaces with boundary . � and area .A0 and viewed as a variation of . �, that is,
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.�0 = �. The energy acting to all these surfaces is the weight, and we ask when . �
has the least energy. The gravity is measured with respect to a fix horizontal plane, 
for instance, the plane of equation .z = 0. It is equivalent to say that . � has minimum 
energy to have the lowest position of the center of gravity among all surfaces . �t . 
As it is usual in the calculus of variations, we will ask for something less than the 
minimum of the energy, and we only require that the energy has a critical point at 
. �0. On the other hand, since our problem is local, we can assume that all . �t are 
graphs over a bounded domain .� ⊂ R

2 of the xy-coordinate plane. 
Let . � be a graph .z = u(x, y) defined on . �, where .u|∂� : ∂� → R parametrizes 

the curve . �. The height of the center of gravity of . � is 

. 
1

A0

∫
�

σ u

√
1 + u2

x + u2
y dxdy = σ

A0

∫
�

u

√
1 + |Du|2 dxdy.

To simplify the arguments, we will assume that .A0 = 1 and .σ = 1. The surfaces . �t

are now represented by .u(x, y) + th(x, y), where .h : � → R is a smooth function 
with .h|∂� = 0. Using Lagrange multipliers, the energy is the functional 

.J [u] =
∫

�

u

√
1 + |Du|2 dxdy + λ

∫
�

√
1 + |Du|2 dxdy, (2) 

where . λ ∈ R. An extremal  u of J satisfies 

. 
d

dt

∣∣∣
t=0

J [u + th] = 0

for all smooth function .h : � → R with .h = 0 on . ∂�. The Lagrangian is 

. L(x, y, u, p, q) = (u + λ)

√
1 + p2 + q2.

Using the divergence theorem, the boundary condition .h = 0 on . ∂�, and the 
Fundamental Lemma of calculus of variations, u is an extrema if and only if 

. 
∂L

∂u
−

(
∂L

∂p

)
x

−
(

∂L

∂q

)
y

= 0.

A straightforward computation leads to the Euler-Lagrange equation 

. 

(
ux√

1 + |Du|2
)

x

+
(

uy√
1 + |Du|2

)

y

= 1

(u + λ)
√

1 + |Du|2 .

By moving . � vertically, we can assume that .λ = 0, hence 

.div
Du√

1 + |Du|2 = 1

u
√

1 + |Du|2 . (3)
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It gives the following geometric interpretation. The left-hand side is the twice of the 
mean curvature H of the surface .z = u(x, y). Regarding the right-hand side, if . �
is parametrized by .X(x, y) = (x, y, u(x, y)), then the unit normal vector field N of 
. � is 

. N = 1√
1 + |Du|2 (−ux,−uy, 1).

Thus, if .v = (0, 0, 1) is the unit vertical vector on the z-axis, then .u = 〈X, v〉 and 
.1/

√
1 + |Du|2 = 〈N, v〉 which are the terms that appear in (3). Without further ado, 

we give the following definition. 

Definition 1 Let .v ∈ R
3 be a unit vector. A surface .� ⊂ R

3 is said to be a singular 
minimal surface with respect to . v if it satisfies 

.2H(p) = 〈N(p), v〉
〈p, v〉 , p ∈ �. (4) 

With this definition, a singular minimal surface is the ideal model of a dome 
where the only force acting on the surface is the gravity. For this reason, we can 
borrow the words of the German architect Frei Otto asserting that a singular minimal 
surface is the model of a “perfect roof” [48]. The name of singular minimal surface 
was coined by Dierkes in [14] because Eq. (3) degenerates at .u = 0. See also [5, 8, 
12]. 

Remark 1 The previous arguments of calculus of variations are still valid in the 
one-dimensional case. If .γ (x) = (x, u(x)) is a planar curve, then (3) is  

. 

(
u′

√
1 + u′2

)′
= 1

u
√

1 + u′2 , u′ = du

dx
.

Simplifying, 

.
u′′

1 + u′2 = 1

u
, (5) 

whose solution is the catenary (1). 

We are assuming in Definition 1 that the surface does not intersect the vector 
plane orthogonal to . v, and, without loss of generality, we will suppose in this paper 
that . � is included in the halfspace .〈p, v〉 > 0. Once we have the mathematical 
model of a dome, the next step is to find examples of singular minimal surfaces. The 
abundance or not of examples will show us the richness or not of the theory we are 
developing. A simple, and at the same time interesting, way is considering surfaces 
constructed by rigid motions of curves. To be precise, a Darboux surface is a surface 
parametrized by .Ψ (s, t) = A(t) · γ (s)+β(t), where . γ and . β are two spatial curves 
of .R3 and .A(t) is an orthogonal matrix [11, Livre I]. In this paper, we focus on 
two particular cases of Darboux surfaces: cylindrical surfaces (.A(t) is the identity
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Γ 

CR 

Γ Γ

CR CR 

Fig. 2 An example of a uniparametric family of surfaces .{SR : R ∈ (0, 1]}, all with the same area 
and boundary curve, but the height of the centers of gravity of . SR go to .−∞ as . R → 0

and .γ (s) is a straight line) and rotational surfaces (.A(t) is a uniparametric group 
of rotations and . β is constant). See [37] for other examples of singular minimal 
surfaces, such as translation surfaces and helicoidal surfaces. 

We finish this section with two observations. First, the Euler-Lagrange equation 
(3) (or (4)) is the only approach until the first order to the problem of minimization 
of the energy (2). If we are finding minimizers, it is natural to impose that the 
second derivative of the energy is non-negative. This, in mathematical language, 
is equivalent to ask for stable surfaces. This problem will be discussed in Sect. 6 for 
a particular geometry of the surface. The second observation is that, in general, the 
problem of finding minimizers for given data (area and boundary) is open in all its 
generality. The next example, motivated by Nitsche, shows surfaces with prescribed 
boundary and area whose centers of gravity can be as lower as one desires [45]. 
In the plane P of equation .z = 0, we prescribe a circle . � of radius 1 and an area 
.A0 = 2π . For each .0 < R ≤ 1, we construct the surface .SR = �R ∪ CR , where 
.�R ⊂ P is the annulus .R2 ≤ x2 +y2 ≤ 1 and .CR is the cone . u(r) = −h(R − r)/R

in polar coordinates, .0 ≤ r ≤ R, where .h = √
2 + 1/R2: see Fig. 2. With this 

choice of h, all surfaces . SR share the same area . A0 and the same boundary . �. Since 
the center of gravity of a cone (in our case, . CR) lies on one third of its boundary 
plane, the height . hs of the center of gravity of . SR is 

. hs = −1 + R2

6R

√
1 + 2R2,

which goes to .−∞ as .R → 0. 
This paper is organized as follows. In Sect. 2 we classify all cylindrical singular 

minimal surfaces. In Sect. 3 we prove that the singular minimal surfaces are minimal 
surfaces of .R3 when the space .R3 is endowed with a metric conformal to the 
Euclidean one. Section 4 is devoted to the classification of rotational singular 
minimal surfaces with special attention to surfaces intersecting orthogonally the 
rotation axis. These surfaces, called rotational tectums, are the models of rotational 
domes. In architecture, the literature on the shape of domes is great, see for example 
[19, 26, 46, 50, 53, 57]. Hence, in Sect. 5 we will compare the center of gravity
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of rotational tectums with catenary rotation surfaces and paraboloids, showing that 
although these last two surfaces are not singular minimal surfaces, the positions of 
their centers of gravity are very close to the ideal model. In Sect. 6 we give a Plateau-
Rayleigh result of instability, proving that long cylindrical singular minimal surfaces 
are not stable. Finally, in Sect. 7, we show that the geometry of a compact singular 
minimal surface is partially determined by its boundary curve, which imposes 
restrictions to the existence and the shape of the surface that spans. 

2 Cylindrical Singular Minimal Surfaces 

It is natural to ask if the corridors constructed by Gaudí using catenary vaults are 
examples of singular minimal surfaces. From the mathematical viewpoint, we are 
asking which are the singular minimal surfaces of cylindrical type. 

Theorem 1 The cylindrical singular minimal surfaces are planes parallel to . v, or  
the rulings are orthogonal to . v and the generating curve is a catenary. 

Proof Let . � be a cylindrical surface parametrized by .X(s, t) = γ (s) + tw, .t ∈ R, 
where .γ = γ (s), .s ∈ I ⊂ R, is a curve parametrized by arc-length included 
in a plane orthogonal to . w. Then .2H = κ , where . κ is the curvature of . γ . Since 
.N = γ ′ × w, then (4) is  

. κ(s) = 〈γ ′(s) × w, v〉
〈γ (s), v〉 + t〈w, v〉 .

This equation can be written as a polynomial on the variable t , . P0(s) + P1(s)t = 0
for all .s ∈ I , where 

. 
P0 = κ(s)〈γ (s), v〉 − 〈γ ′(s) × w, v〉,
P1 = κ(s)〈w, v〉 = 0.

If . κ is constantly 0, then . γ is a straight line, . � is a plane, and from .P0 = 0, we have  
.〈N, v〉 = 0. This implies that . � is a plane parallel to . v. If . γ is not a straight line, then 
.P1 = 0 implies that . w is orthogonal to . v, proving that the rulings are orthogonal to 
. v. After a rigid motion of . R3, we assume that .v = (0, 0, 1), .w = (0, 1, 0), and that 
the curve . γ is contained in the xz-coordinate plane. If . γ is the graph of .z = z(x), 
then .P0 = 0 is 

. κ = 1

z
√

1 + z′2 .

Writing . κ in terms of .z(x), we conclude that 

. 
z′′

(1 + z′2)3/2 = 1

z
√

1 + z′2 ,

which coincides with (5). This shows that . γ is a catenary, proving the result. �
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As a consequence of this theorem, the corridors built by Gaudí using catenary 
arches are, actually, singular minimal surfaces, and its construction of corridors fol-
low the ideal model of the Definition 1. With historical perspectives, it surprisingly 
means that Gaudí used singular minimal surfaces without knowing them. Although 
one can suspect that if the catenary is the model of the shape of an arch (and 
Gaudí knew that), then a corridor should be constructed by repeated catenaries; this 
evidence is now supported by Theorem 1. 

For future discussions, we need to generalize the concept of singular minimal 
surfaces as follows. By replacing the energy functional (2) by  

. Jα[u] =
∫

�

uα

√
1 + |Du|2 dxdy + λ

∫
�

√
1 + |Du|2 dxdy,

where .α ∈ R is a constant, and following the same arguments, the Euler-Lagrange 
associated to this energy is 

. div
Du√

1 + |Du|2 = α

u
√

1 + |Du|2 .

A surface .� ⊂ R
3 is called an .α-singular minimal surface if 

. 2H(p) = α
〈N(p), v〉

〈p, v〉 , p ∈ �.

If .α = 0, we obtain a minimal surface (.H = 0). Another interesting case is . α = −2
because . � is a minimal surface in three-dimensional hyperbolic space when this 
space is viewed in the upper halfspace model. If we now restrict our attention on .α-
singular minimal surfaces of cylindrical type, then Theorem 1 follows being valid, 
and the generating curve .u = u(x) satisfies 

.
u′′

1 + u′2 = α

u
. (6) 

Planar curves .u = u(x) satisfying (6) will be called .α-catenaries. Multiplying by . u′
and integrating, there exists a constant .c > 0 such that 

.u′ = ±
√

c2u2α − 1. (7) 

Explicit solutions are obtained for some values of . α. For example, if .α = 1, then u 
is a catenary; if .α = −1, then u is a half-circle; and if .α = 1/2, then u is a parabola. 
The next proposition shows the main properties of the .α-catenaries [37]: see Fig. 3. 

Proposition 1 Let u be a solution of (6). Then u has a unique critical point, which 
we can assume at .x = 0. Moreover, u is symmetric about the y-axis. Let . I = (−a, a)

be the maximal domain of u.
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Fig. 3 Examples of .α-catenaries. Case .α = −2 (left), .α = 0.5 (middle), and .α = 2 (right), where 
the curve is asymptotic to the vertical lines of equation .x = ±R, . R ≈ 1.311

1. Case .α > 0. The function u is convex, and the function u has a minimum at 
.x = 0. The domain of u is . R if .α ∈ (0, 1], and it is a bounded interval if .α > 1. 
In both cases, .limx→±a u(x) = ∞. In particular, if .α > 1, u is asymptotic to the 
vertical lines .x = ±a. 

2. Case .α < 0. The function u is concave, and the function u has a maximum at 
.x = 0. The domain of u is a bounded interval and .limx→±a u(x) = 0. 

3 Singular Minimal Surfaces as Minimal Surfaces in a 
Conformal Space 

We prove that singular minimal surfaces are minimal surfaces in a certain Rieman-
nian manifold. Without loss of generality, we assume .e3 = (0, 0, 1) as the vector . v
in (4). In the halfspace . R3+, define the conformal metric .̃g = z〈, 〉. 
Theorem 2 If . � is a surface of . R3+, then . � is a singular minimal surface if and 
only if . � is a minimal surface of .(R3+, g̃). 

Proof Let . ̃∇ and . ∇ be the Levi-Civita connections for . ̃g and . 〈, 〉, respectively. The 
relation between both connections is 

.∇̃UV = ∇UV + 1

2z

(
U(z)V + V (z)U − 〈U,V 〉∇z

)
(8) 

for tangent vector fields U and V [6]. There is also a relation between the mean 
curvatures H and . H̃ of . � with the induced metric from the Euclidean one and from 
. ̃g, respectively. If A and . ̃A are the corresponding second fundamental forms, then 

.Ã(U, V ) = z1/2
(

A(U, V ) − 1

2z
〈∇z,N〉〈U,V 〉

)
.



Geometric Aspects of the Singular Minimal Surface Equation 313

Hence 

.H̃ = z−1/2
(

H − 1

2z
〈∇z,N〉

)
= z−1/2

(
H − 〈N, e3〉

2z

)
. (9) 

Thus .H̃ = 0 if and only . � is a singular minimal surface. �

The result of Theorem 2 has similarities in the context of weighted manifolds 

of Gromov [25]. If .ψ ∈ C∞(R3), consider a density function . eψ to measure the 
weighted area and volume. If dA and dV are the elements of area and volume of . R3

with the Euclidean metric . 〈, 〉, the weighted area and volume elements are defined 
by 

. dAψ = eψ dA, dVψ = eψ dV .

This is not equivalent to multiply the metric by the factor . eψ because if it were, the 
area and the volume change by different powers of . eψ . The formulas of the first 
variation of weighted area and volume of a compact surface . � in . R3 are 

.A′
ψ(0) = −

∫
�

u
(
2H − 〈∇ψ,N〉) dAψ, V′

ψ(0) =
∫

�

u dAψ, (10) 

where u is the normal component of the variational vector field. We refer to [3, 9] 
for details. The function 

. Hψ = H − 1

2
〈∇ψ,N〉

is called the weighted mean curvature of . �. In particular, from (10), . � is a critical 
point of the weighted area functional .Aψ for any variation preserving the boundary 
of . � if and only if .Hψ = 0. Now we rediscover the concept of singular minimal 
surface. Let . � be a surface of .R3+ and consider the particular function 

. ψ(x, y, z) = log z.

Since .∇ψ = e3/z, we have .Hψ = H −〈N, e3〉/(2z). Notice that the weighted mean 
curvature .Hψ does not coincide with the mean curvature . H̃ given in (9). However, 
we have the following equivalences. 

Theorem 3 Let . � be a surface of . R3+. Then the following statements are all 
equivalent: 

1. . � is a singular minimal surface. 
2. .Hψ = 0 for the density .eψ = z. 
3. .H̃ = 0, that is, . � is a minimal surface of .(R3+, g̃).
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Not only the singular minimal surfaces are minimal surfaces in .(R3+, g̃), but the  
geodesics of this space also have an interpretation in terms of singular minimal 
surfaces, more exactly, with the concept of .α-catenaries defined in the previous 
section. First we calculate the geodesics of . (R3+, g̃). Let . γ (s) = (x(s), y(s), z(s))

be a curve parametrized by arc-length with respect to the metric . ̃g. In particular, 

.1 = z(s)
(
x′(s)2 + y′(s)2 + z′(s)2

)
. (11) 

Then . γ is a geodesic in .(R3+, g̃) if and only if .∇̃γ ′γ ′ = 0. From (8), this is equivalent 
to 

. ∇γ ′γ ′ = − 1

2z

(
2〈γ ′, e3〉γ ′ − |γ ′|2e3

)
.

This leads to the ordinary differential equations 

.

x′′(s) = −z′(s)
z(s)

x′(s),

y′′(s) = −z′(s)
z(s)

y′(s),

z′′(s) = − 1

2z(s)

(
z′(s)2 − x′(s)2 − y′(s)2

)
(12) 

If .x(s) and .y(s) are both constant functions, then the third equation of (12) implies 
that . γ is a vertical straight line. Assume now that both functions are not constant. 
Integrating the first two equations of (12) gives  

.x′(s) = a1

z(s)
, y′(s) = a2

z(s)
, (13) 

for some nonzero real numbers .a1, a2 �= 0. Substituting into (11), 

.1 = a2
1 + a2

2

z(s)
+ z(s)z′(s)2. (14) 

Let .m = a2
1 + a2

2 . Due to the third equation of (12), the function .z = z(s) cannot be 
constant. Thus 

.z′ = ±
√

z − m

z
. (15) 

The third equation of (12) is now  

.z′′ = 2m − z

2z3 . (16) 

which is equivalent to (14). A first consequence is that the geodesics are planar 
curves.
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Proposition 2 The geodesics of .(R3+, g̃) are contained in vertical planes. 

Proof The result is true if the geodesic is a vertical straight line. Otherwise, and 
from (13), the tangent vector .γ ′(s) is 

. γ ′(s) = 1

z(s)
(a1, a2, 0) + z′(s)e3.

This implies that .γ ′(s) is contained in the plane determined by the vectors . (a1, a2, 0)

and . e3 for all .s ∈ I . In particular, this plane is vertical, proving the result. �

Theorem 4 The geodesics of .(R3+, g̃) are .1/2-catenaries and vice versa. 

Proof It is immediate that vertical geodesics are generating curves of singular 
minimal surfaces of cylindrical type for any . α and vice versa. 

Let . γ be a geodesic of .(R3+, g̃) and suppose that . γ is not a vertical straight line. 
We calculate the curvature . κγ of . γ . After a rotation about . e3, if necessary, let write 
.γ (s) = (x(s), 0, z(s)), or simply .γ (s) = (x(s), z(s)) viewed . γ as a planar curve. 
Then 

. κγ (s) = x′(s)z′′(s) − z′(s)x′′(s)
|γ ′(s)|3 .

From (13), .γ ′ = (a1z
−1, z′), .a1 �= 0, and .γ ′′ = (−a1z

−2z′, z′′). We know that 
.|γ ′|3 = z−3/2. Because .m = a2

1 , using (15) and (16), we obtain 

.κγ (s) = a1

2z(s)3/2 . (17) 

On the other hand, we calculate the curvature of the solution .u1/2 of (6) for .α = 1/2: 

. κu1/2(t) = u′′
1/2(t)

(1 + u′
1/2(t)

2)3/2 .

Using the expression of .u′′
1/2(t) in (6) together that of .u′

1/2(t) in (7), 

. κu1/2(t) = 1

2
√

c u1/2(t)3/2
.

Comparing this identity with (17), we deduce that, up to a constant, . κγ coincides 
with .κu1/2 . Using the classical theorem of the local theory of planar curves, we 
conclude that . γ and the graph of .u1/2 coincide up to a dilation of .R3+ from the 
origin and a horizontal translation of . R3+, which proves the theorem. �


This result extends as follows. If . ̃gα is the conformal metric .̃gα = zα〈, 〉, then the 
geodesics of .(R3, g̃α) are .α/2-catenaries and vice versa [17].
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4 Rotational Singular Minimal Surfaces 

We classify all surfaces of revolution that are singular minimal surfaces. First we 
point out an observation about the construction of rotational domes. The reader can 
think that if the catenary is the one-dimensional solution of the suspended surface, 
it is enough to rotate a vertical catenary with respect to its rotation axis to obtain 
a model of a rotational dome. However, this surface, which we will call a catenary 
rotation surface, is not a singular minimal surface. It is more interesting to point 
out that Gaudí never thought that catenary rotation surfaces were models of domes, 
despite Gaudí used catenary arches in roofs of corridors, hence the efforts of Gaudí 
to find these shapes of domes from his funicular models. We will revisit the catenary 
rotation surfaces in the next section, but it should be noted that these surfaces have 
other interesting mathematical properties [29, 30]. 

Suppose that . � is a singular minimal surface which it is also a surface of 
revolution about an axis L. A first question is the relation between L and the vector 
. v of (4). Initially, there is not a priori condition between them. However, it is natural 
to think that L is parallel to the direction of the force of the gravity that motivated 
the definition of singular minimal surfaces. If, in addition, we are thinking in the 
construction of rotational domes, one is inclined to think that the rotation axis must 
be vertical, that is, parallel to the direction of the gravity. However, we have a 
surprising result. 

Theorem 5 Let . � be a surface of revolution whose rotation axis is L. If . � satisfies 
(4), then L is parallel to . v, or  L is contained in the orthogonal vector plane to . v. 

Proof After a rigid motion of . R3, we can assume that L is the z-axis. If the 
generating curve is parametrized by .r �→ (r, 0, u(r)), where .u = u(r) is a smooth 
function and .r ∈ I ⊂ R

+, then . � parametrizes as 

. X(r, θ) = (r cos θ, r sin θ, u(r)).

If .v = (v1, v2, v3), then (4) is  

.
u′′

1 + u′2 + u′

r
= 1

v1r cos θ + v2r sin θ + v3u
(18) 

because 

.N = Xr × Xθ

|Xr × Xθ | = 1√
1 + u′2 (−u′ cos θ,−u′ sin θ, 1).
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Equation (18) can be written as .A(r) cos θ + B(r) sin θ + C(r) = 0, where 

.

A(r) = v1r
(
u′(1 + u′2) + ru′′ + u′(1 + u′2)

)

B(r) = v2r
(
u′(1 + u′2) + ru′′ + u′(1 + u′2)

)

C(r) = v3

(
u(u′(1 + u′2) + ru′′) − r(1 + u′2)

)
.

(19) 

Since the functions .{1, cos θ, sin θ} are linearly independent, all functions A, B, and 
C must vanish. From .A = 0 and .B = 0, we discuss two cases. First, if .v1 = v2 = 0, 
then necessarily .v3 �= 0 proving that .v = (0, 0, v3) is parallel to the z-axis, and this 
is the first part of the theorem. In case that . v1 or . v2 is not 0, from .A = 0 or .B = 0, 
we deduce 

.u′(1 + u′2) + ru′′ + u′(1 + u′2) = 0. (20) 

Using now .C = 0, we have two possibilities: 

1. Case .v3 = 0. Then L is contained in the vector plane orthogonal to . v =
(v1, v2, 0), and this proves the second part of the theorem. 

2. Case .v3 �= 0. Then the last equation of (19) is .u(u′(1+u′2)+ru′′)−r(1+u′2) = 0. 
Combining with (20), we get .uu′ = −r , obtaining .u(r) = √

r2 + c, for some  
constant c. However, this function does not satisfy (20), proving that this case is 
not possible. 

�

In consequence, Theorem 5 provides two types of rotational singular minimal 

surfaces. We analyze the second type of rotational surfaces. In order to follow with 
our intuition that the direction of the gravity is the z-axis, we rename the coordinates 
in the proof of the above theorem. Thus we assume that .v = e3 = (0, 0, 1) and that 
the rotation axis L is the x-axis. Then the generating curve is .r �→ (r, 0, u(r)) and 
the parametrization of the surface is .X(r, θ) = (r,−u(r) sin θ, u(r) cos θ). Now  
(20) is  

. 
u′′

1 + u′2 = 2

u
.

Notice that this equation is just the equation of the 2-catenary; see (6). This result is 
not a coincidence but an example of another more general that we now bring in and 
whose proof is similar to that of Theorem 5 [37]. 

Corollary 1 Let . � be a surface of revolution about the axis .(1, 0, 0). Then . � is an 
.α-singular minimal surface with respect to .v = (0, 0, 1) if and only if its generating 
curve is an .(α + 1)-catenary.
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Fig. 4 Left: rotational singular minimal surfaces of the second type of Theorem 5. Right: the same 
surface once reversed to be the model of a rotational dome 

If .α = 0, then . � is a rotational minimal surface (.H = 0) generated by a 1-
catenary, but this curve is just the catenary. Indeed, if we place a catenary in the 
xz-plane and we rotate with respect to x-axis, we obtain a catenoid, which is the 
only rotational minimal surface. In view of Corollary 1, authors as Leon Simon 
prefer to name the singular minimal surfaces as symmetric minimal surfaces [21]. 

Although the rotational surfaces of the second type have the rotation axis 
orthogonal to the direction of the gravity, they follow being models of ideal roofs. If 
we construct domes using these surfaces, now the circles of the surface of revolution 
are vertical half-circles whose endpoints are situated in the plane .z = 0. See Fig. 4. 
The study of this kind of domes appears in [41]. 

In the rest of this section, we focus on the first type of surfaces of Theorem 5. 

Definition 2 A rotational tectum is a rotational singular minimal surface whose 
rotation axis is parallel to . v. 

Without loss of generality, we will assume that .v = e3 = (0, 0, 1). By the proof 
of Theorem 5, the generating curve .r �→ (r, 0, u(r)) satisfies the third equation of 
(19), that is, 

.
u′′

1 + u′2 + u′

r
= 1

u
. (21) 

A first observation is that there are solutions of (21) that arrive until the plane . z = 0
at the limit: notice that (21) is degenerated at .u = 0. This particular solution is 
.u(r) = r defined in .(0,∞) whose surface is a rotational cone whose vertex is the 
origin. Following with the idea of a roof, this solution, once reversed its position, is 
a teepee tent of the Native Americans. 

The existence of solutions of (21) is assured by standard results once we give 
initial data at .r0 > 0. However, and motivated by the construction of rotational 
domes, we want that the profile curve of the surface meets orthogonally the rotation
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axis. This requires that u is defined at .r = 0 and that .u′(0) = 0. But just at . r =
0, Eq. (21) is degenerated. Therefore the existence of solutions of (21) with initial 
conditions 

.u(0) = u0 > 0, u′(0) = 0 (22) 

is a problem that we need to solve. 

Proposition 3 If .u0 > 0, then there is a solution .u ∈ C2([0, R]) of (21)–(22) for 
some .R > 0. 

Proof We write (21) as  

. 
u′′

(1 + u′2)3/2 + u′

r
√

1 + u′2 = 1

u
√

1 + u′2 .

If we multiply by r , then 

.

(
ru′(r)√

1 + u′(r)2

)′
= r

u(r)
√

1 + u′(r)2
. (23) 

Define the functions 

. g : R+
0 × R → R, g(x, y) = 1

x
√

1 + y2
,

. ϕ : R → R, ϕ(y) = y√
1 + y2

.

A solution of (23) is just a function .u ∈ C2([0, R]) such that . (rϕ(u′))′ = rg(u, u′)
and .u(0) = u0, .u′(0) = 0. The inverse function .ϕ−1 : R → (−1, 1) is . ϕ−1(x) =
x/

√
1 − x2. Fix .R > 0 that will be determined later and define the operator . T :

C1([0, R]) → C1([0, R]) by 

. (Tu)(r) = u0 +
∫ r

0
ϕ−1

(∫ s

0

t

s
g(u, u′)dt

)
ds.

It is clear that a fixed point of the operator . T is a solution of the initial value 
problem (22)–(23). First, we prove that . T is well defined in a closed ball . B(u0, ε)

of .C1([0, R]) for some .ε > 0, where the space .C1([0, R]) is endowed the usual 
sup-norm .‖u‖ = ‖u‖∞ + ‖u′‖∞. For this, let .ε > 0 such that .ε < u0 and 
.R ≤ min{u0 − ε,

√
3ε/2, 2(u0 − ε)ε/

√
4 + ε2}. We have  

.

∫ r

0

t

r
g(u, u′) dt ≤

∫ r

0

t

s

1

u0 − ε
dt ≤ R

2(u0 − ε)
≤ 1

2
,
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hence we can use .ϕ−1. We use the Banach fixed point theorem . T : B(u0, ε) →
B(u0, ε). The proof consists of two steps. 

1. The map . T satisfies .T(B(u0, ε)) ⊂ B(u0, ε). If .u ∈ B(u0, ε), and using that . ϕ−1

is increasing, 

. 

|(Tu)(r) − u0| ≤
∫ r

0
ϕ−1

(∫ s

0

t

s(u0 − ε)
dt

)
ds

≤ ϕ−1
(

R

2(u0 − ε)

)
R < ϕ−1

(
1

2

)
R = R√

3
≤ ε

2
.

. 

|(Tu)′(r)| ≤ ϕ−1
(∫ s

0

t

s(u0 − ε)
dt

)
≤ ϕ−1

(
R

2(u0 − ε)

)

= R√
4(u0 − ε)2 − R2

≤ ε

2
,

where we have used that .R ≤ 2(u0 − ε)ε/
√

4 + ε2. As a conclusion, .‖Tu‖ ≤ ε. 
2. The map . T is a contraction. The functions g and .ϕ−1 are Lipschitz continuous 

in .[u0 − ε, u0 + ε] × [−ε, ε] and in .[−ε, ε], respectively, provided . 0 < ε <

min{u0, 1}. Let .L = min{Lg,Lϕ−1}, where .Lg and .Lϕ−1 are the Lipschitz 
constants of g and .ϕ−1, respectively. For all functions .u, v in the closed ball 
.B(u0, ε) and for all .r ∈ [0, R], 

. 

|(Tu)(r) − (Tv)(r)| ≤ L

∫ r

0

1

s

∫ s

0
t
∣∣g(u, u′) − g(v, v′)

∣∣ dt ds

≤ L2
∫ r

0

1

s

∫ s

0
t
(‖u − v‖∞ + ‖u′ − v′‖∞

)
dt ds

= L2‖u − v‖
∫ r

0

s

2
ds = r2L2

4
‖u − v‖.

Analogously, 

. |(Tu)′(r) − (Tv)′(r)| ≤ rL2

2
.

Therefore 

. ‖Tu − Tv‖ ≤ min{R
2L2

4
,
RL2

2
}‖u − v‖.

Hence choosing .R > 0 small enough, we conclude that . T is a contraction.
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The solution obtained by the Banach fixed point theorem lies in . C1([0, R]) ∩
C2((0, R]). Finally, we prove that the solution u extends with .C2-regularity at 
.r = 0. This is proved directly with the L’Hôpital rule because from (21), 

. 
1

u0
= lim

r→0
u′′(r) + lim

r→0

u′(r)
r

= 2 lim
r→0

u′′(r),

obtaining 

. lim
r→0

u′′(r) = 1

2u0
. (24) 

�

There are two types of rotational tectums. 

1. The existence of surfaces that intersect the rotation axis has been established in 
Proposition 3. See Fig. 5, left.  

2. When surfaces do not intersect with the rotation axis, see Fig. 5, right. The 
generating curves go back and forth without touching the z-axis and correspond 
with solutions of (21) with initial conditions .u′(r0) = 0, .r0 > 0. Indeed, if u 
attains the rotation axis and by the symmetry of the surface, then .u′(0) = 0, so  u 
has two critical points. By inspecting (21) together with (24), every critical point 
. ̄r of u is a minimum because .u′′(r̄) > 0, obtaining a contradiction. This property 
is a particular result of other more general cases proving that the solutions of the 
Dirichlet problem of (3) defined in a convex domain have exactly one critical 
point [20]. 

More properties of the rotational tectums were established in the unpublished 
paper [28]; see also [15]. Focusing on those solutions of the first type, we have the 
following result.
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Fig. 5 Left: rotational solutions of (21), where .u′(0) = 0 for different values of .u(0): . 0.5, 1, and  
. 1.5. Right: a rotational solution of (21), where .u(2) = 1 and .u′(2) = 0
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Theorem 6 Let u be a solution of  (21)–(22). Then the domain of u is .[0,∞). 
Moreover, u has only one critical point at .r = 0, which it is a global minimum. 
The function u is asymptotic to .v(r) = r . 

5 Comparison of Rotational Tectums with Catenary 
Rotation Surfaces and Paraboloids 

We know that singular minimal surfaces are ideal models of domes. If we have in 
mind a rotational dome whose rotation axis is parallel to the direction of the gravity, 
its model is a rotational tectum. However, it is natural to think in two surfaces 
which, not being singular minimal surfaces, could be good “approximations” to 
the model of a rotational dome. The first surface is the catenary rotation surface that 
appeared in Sect. 4, and the reason is that its generating curve is the catenary, the 
model of a hanging chain. The second candidate is the paraboloid, the rotational 
surface obtained by rotating a vertical parabola with respect to its symmetric axis. 
The motivation has its origin in the well-known dispute between parabolas and 
catenaries in the construction of arches (see [47]). Furthermore, the paraboloid has 
a clear advantage from the architectural viewpoint because this surface is defined 
with polynomials, in contrast to the catenary that uses exponential functions. If we 
come back to the work of Gaudí, it is clear that he did not think in the catenary 
rotation surfaces neither in paraboloids as models for an ideal dome. 

In this section, we ask if there is a “relevant” difference among the heights of the 
centers of gravity of rotational tectums, catenary rotation surfaces, and paraboloids; 
all of them have the same area and the same boundary as prescribed data. 

The boundary curve that we prescribed is a horizontal circle of radius . R > 0
centered at the rotation axis, and, in consequence, the rotational tectum intersects 
the rotation axis (Theorem 6). Let .u = u(x) be a solution of (21)–(22) defined in 
the interval .[0, R]. The boundary curve is the horizontal circle 

.�R = {(x, y, u(R)) : x2 + y2 = R2}, (25) 

where .u(R) > 0 is the height of . �R . The area . A0 of . � is 

.A0 = 2π

∫ R

0
x
√

1 + u′(x)2 dx, (26) 

and the height . hT of its center of gravity is 

.hT = 2π

A0

∫ R

0
xu(x)

√
1 + u′(x)2 dx. (27)
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Let now the catenary rotation surface have the same boundary curve and area. The 
generating catenary is 

.zc,m(x) = 1

c
cosh(cx) + m, x ∈ [0, R], (28) 

where .c,m ∈ R and . c > 0. Let .Cc,m denote the corresponding rotational catenary 
obtained once we rotate .zc,m with respect to the z-axis. We will choose the values c 
and m in (28), so the area of .Cc,m is . A0, and its boundary is . �R . The last condition 
implies 

.
1

c
cosh(cR) + m = u(R). (29) 

The area of .Cc,m is obtained by quadratures 

.A = 2π

∫ R

0
x

√
1 + z′

c,m(x)2 dx = 2π(cR sinh(cR) − cosh(cR) + 1)

c2
. (30) 

Finally, the height . hc of the center of gravity of .Cc,m is 

.

hc = 2π

A0

∫ R

0
xzc,m(x)

√
1 + z′

c,m(x)2 dx

= π
(
2c2R2 + 2cR sinh(2cR) − cosh(2cR) + 1

)
4c3A0

+ m.

(31) 

We use Mathematica [61] to compute the area (26) and the center of gravity (27) 
of the rotational tectum. The steps are as follows: 

1. Fix .u0 > 0 in (22), the lowest point of . �, and by numerical methods, we solve 
(21)–(22). We know that the domain of the solution is .[0,∞) by Theorem 6. 

2. Fix .R > 0 and let .[0, R] be the domain of u which determines the (compact) 
rotational tectum . �. With this value for R, we prescribe . �R , the boundary curve 
of . �, which is a data in the problem. 

3. Compute the area . A0 using (26). 
4. Calculate the parameters c and m of .Cc,m in order that its area is .A0 and its 

boundary is . �R . Here we use  (29) and (30). 
5. Using (27) and (31), compute the values of the heights . hT and . hc of the centers 

of gravity of . � and .Cc,m, respectively. 

Since the solutions of (21) (or (4)) are invariant by dilations, we will assume that 
the value of the lowest point of the rotational tectum is .u0 = 1, which will be used 
as initial condition (22). In Table 1, we show the comparison of the value . hT and . hc

for values R between .R = 2 and .R = 20. In order to obtain a relation of . hT and . hc, 
we show the percentage between the difference .hc −hT with the height . u(R)−u(0)

of the rotational tectum.
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Table 1 Comparison of . hT , . hc, and . hp when the lowest height of . � is . u0 = 1

R .u(R) .A0 .hT .hc .% hc−hs
u(R)−u0

.hp . % hc−hp
(u(R)−u0)

2 1.8854 14.63 1.4773 1.4782 0.0969 1.4778 0.0482 

4 3.7295 66.22 2.5786 2.58811 0.3488 2.5843 0.2119 

6 5.7681 155.99 3.8651 3.8887 0.4942 3.8805 0.3232 

8 7.8292 282.30 5.1997 5.2377 0.5573 5.2253 0.3753 

10 9.8837 444.43 6.5477 6.5994 0.5819 6.5830 0.3975 

12 11.9278 642.08 7.8989 7.9632 0.5891 7.9430 0.4046 

14 13.9628 875.13 9.2498 9.3261 0.5887 9.3023 0.4057 

16 15.9903 1143.55 10.5993 10.6870 0.5849 10.6598 0.4033 

18 18.0120 1447.30 11.9471 12.0458 0.5798 12.0152 0.4002 

20 20.0290 1786.39 13.2932 13.4025 0.5744 13.3686 0.3962 

Table 2 Comparison of . wc, . wp , and the lowest height .u0 = 1 of . �

R .u(R) .A0 .wc .% wc−u0
u(R)−u0

.wp . % wp−u0
u(R)−u0

2 1.8854 14.63 1.0452 5.1079 1.0318 3.5900 

4 3.7295 66.22 1.3236 11.8550 1.2565 9.3987 

6 5.7681 155.99 1.7781 16.3190 1.6501 13.6348 

8 7.8292 282.30 2.3128 19.2236 2.1270 16.5027 

10 9.8837 444.43 2.8847 21.2156 2.6442 18.5085 

12 11.9278 642.08 3.4751 22.6495 3.1822 19.9690 

14 13.9628 875.13 4.0751 23.7228 3.7313 21.0701 

16 15.9903 1143.55 4.6803 24.5515 4.2866 21.9246 

18 18.0120 1447.30 5.2883 25.2075 4.8453 22.6035 

20 20.0290 1786.39 5.8976 25.7377 5.4059 23.1536
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Fig. 6 Comparison between rotational tectums (thick) and catenary rotation surfaces (dashed). 
Left: .R = 5 where .hT = 3.2115, .hc = 3.2278 and .wc = 1.5364. Right: .R = 10, . hT = 6.5477
and .hc = 6.5994. Here . wc = 2.8847

Another useful information is the height of the rotational tectums and of the 
catenary rotation surfaces which are given by the lowest points denoted by .wT and 
. wc, respectively. Here .wT = 1 in all cases because .u0 = 1 in (22). From the  
architectural viewpoint, this height is that of the dome once reversed the position of 
the surface. The heights are .u(R) − wT and .u(R) − wc, respectively. For . Cc,m, the  
value of . wc is .1/c + m. We show again this deviation in relation to the height of the 
rotational tectum is .(wc − wT )/(u(R) − 1). This is done in Table 2. In Fig. 6, we  
show some examples of rotational tectums and catenary rotation surfaces with the 
same initial data.
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In the case of paraboloids, the methodology is the same. Consider the parabola 

. pc,m(x) = cx2 + m, x ∈ [0, R],
where .c,m ∈ R, .c > 0, and situated in the coordinate xz-plane. Let .Pc,m be the 
paraboloid obtained by rotating .pc,m about the z-axis. Let . hp be the height of the 
center of gravity. Since the boundary is . �R , we have the condition 

. cR2 + m = u(R).

The area of .Pc,m is 

. A0 = 2π

∫ R

0
x

√
1 + p′

c,m(x)2 dx =
π

((
4c2R2 + 1

)3/2 − 1
)

6c2

and the height . hp of its center of gravity is 

. 

hp = 2π

A0

∫ R

0
xpc,m(x)

√
1 + p′

c,m(x)2 dx

=
π

((
6c2R2 − 1

) (
4c2R2 + 1

)3/2 + 1
)

60c3A0
+ m.

As it is expectable, all expressions for the paraboloid are polynomial in the variables 
c and R which, from the computational and architectural viewpoint, is much 
manageable. We show the values of . hp in Table 1 and the values .wp of the lowest 
point of the paraboloid in Table 2. The value .wp coincides with the parameter m. In  
Fig. 7 we show some pictures of rotational tectums and paraboloids with the same 
boundary and area. 

We now summarize the conclusions [43].

1. As it is expectable, the heights . hc and .hp are higher than . hT . However the 
differences .hc − hT and .hp − hT are very small. In terms of percentages in 
relation with the total height of the rotational tectum . �, the deviation is less than
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Fig. 7 Comparison between rotational tectums (thick) and paraboloids (dashed). Left: . R = 5
where .hT = 3.2115, .hp = 3.2219 and .wp = 1.4387. Right: .R = 10, .hT = 6.5477 and . hp =
6.5994. Here . wp = 2.6442
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.0.60% for all values of R in the first case and less than .0.41% in the case of 
paraboloids. 

2. Both deviation percentages attain a maximum at .R ≈ 12 and next decreases. 
3. The approximation of the paraboloid to the rotational tectum is better than the 

catenary rotation surface because .hp < hc for all values of R. This is surprising 
and contrasts with the reverse property between the centers of gravity of the 
catenary and the parabola. 

4. We have .wT < wc and .wT < wp. This is expectable although there is no a 
priori relation between the centers of gravity and the lowest points. Moreover, 
.wp < wc, showing again that paraboloids adjust better to the rotational tectums 
than the catenary rotation surfaces. 

5. The deviations .wc − wT and .wp − wT increase as .R → ∞ and are significant. 
This contrasts with the differences .hc − hT and .hp − hT . Thus the top of the 
(inverted) catenary rotation surface or the paraboloid are clearly below that of 
the rotational tectum. 

As far as the author knows, catenary rotation surfaces and paraboloids have not 
been tested in relation with the centers of gravity nor in comparison with the ideal 
model of the rotational tectum. It is known that the paraboloid is considered as 
an example of a quadric employed in architecture, but its usefulness, other than 
being more tractable in the computational processing of designs in construction, 
has not been clearly stated: see, for example, [2, 7, 18, 31, 32, 56] where topics 
concerning to the stress, equilibrium conditions, elasticity, and stress-strain state 
have been investigated. From our conclusions, we give the following corollary in 
plain language and easy to understand. 

Corollary 2 Catenary rotation surfaces and paraboloids are surfaces that “adjust 
extremely well” to the ideal model of a rotational dome, being the paraboloid better 
than the catenary rotation surface. 

After our results, we can put again in context the work of Gaudí. In the 
construction of domes, Gaudí used the funicular models explained in Sect. 1 without 
following mathematical model. Frei Otto reproduced these models in the Institute 
for Lightweight Structures at the University of Stuttgart [49]. This is the case 
of the dome of the Palau Güell’s Central Hall whose design brings a debate 
and discussion between architects and engineers as to whether it is actually a 
paraboloid or not (see [10] and references therein). As a conclusion of our results, 
we provide mathematical arguments proving that paraboloids can be employed as 
good approximations of the ideal model of the rotational tectum. 

6 Stability Results of Plateau-Rayleigh Type 

We study the stability of cylindrical pieces of singular minimal surfaces. We are 
motivated by the phenomenon of the Plateau-Rayleigh instability of surfaces with 
constant mean curvature that proves that the length L of stable circular cylinders
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of radius r must be less than .2πr [51, 54]. This shows intuitively the known 
phenomenon that a long circular column of water breaks in droplets after some 
distance from the source. A singular minimal surface is said to be stable if the 
second derivative of the energy functional (2) is non-negative. In terms of the density 
.eψ of Sect. 3, . � is stable if .A′′

ψ(0) ≥ 0 for any compactly supported normal 
variation of . �. We point out that the stability has received little attention in the 
literature [13]. The expression of .A′′

ψ(0) is 

. A′′
ψ(0) = −

∫
�

u
(
�u + 〈∇ψ,∇u〉 + (|A|2 − ∇2

ψ(N,N)
)
u
)

dAψ,

where .u ∈ C∞
0 (�). Here .|A|2 = 4H 2 − 2K is the norm of the second fundamental 

form A, . ∇ and . � are the gradient and the Laplacian computed on . � with the induced 

Euclidean metric, and . ∇2
is the Hessian operator in . R3. The term  

. �ψu = divψ∇u = �u + 〈∇u,∇ψ〉

is called the .ψ-Laplacian of a function u and the Jacobi operator is the parenthesis 
in .A′′

ψ(0), namely, 

. L[u] = �ψu + (|A|2 − ∇2
ψ(N,N)

)
u,

acting on the space . C∞
0 (�). Both .�ψ and L are not self-adjoint with respect to 

the .L2-inner product, but they are self-adjoint with respect to the weighted inner 
product .

∫
�

uv dAψ . This allows to define the quadratic form 

.Q[u] = A′′
ψ(0) = −

∫
�

u · L[u] dAψ, u ∈ C∞
0 (�). (32) 

Coming back to the choice .ψ = log(z), and since 

. ∇2
ψ(N,N) = −N2

3

z2 ,

we obtain 

. L[u] = �u + 1

z
〈∇u, e3〉 +

(
|A|2 + N2

3

z2

)
u.

Once we have the expression of .A′′
ψ(0), we focus on the case that . � is a bounded 

piece of a symmetric cylindrical singular minimal surface. Let 

.�(a,L) = {X(s, t) : −a ≤ s ≤ a, 0 ≤ t ≤ L}, X(s, t) = (s, t, h(s)),
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where .h = h(s) is the catenary (Theorem 1). After a horizontal translation and a 
dilation from the origin, we assume that .h(0) = 1 and .h′(0) = 0, that is, . h(s) =
cosh(s). We call a the amplitude and L the length of .�(a,L). Motivated by the 
Plateau-Rayleigh instability in the classical setting, we ask if for a given amplitude 
.a > 0, there is a length .L0 > 0 such that the surface .�(a,L) is unstable if .L > L0. 
Since we only need to find unstability of the surface, we must find a test function 
.u ∈ C∞

0 (�(a, L)) such that, once placed in (32), we have .Q[u] < 0. The idea is to 
choose functions u by separation of variables. Similar techniques have been used in 
the context of surfaces with constant mean curvature [34, 35, 44]. 

We compute all terms of .L[u]. Since the coefficients of the first fundamental 
form are .E = 1 + h′2 = h2, .G = 1 and .F = 0, the Laplacian . � of a function u is 

. �u = 1

E
uss + 1√

E

(
1√
E

)
s

us + utt .

For the computation of .〈∇u,∇ψ〉, notice that .ψ = log h does not depend on the 
variable t , hence 

. 〈∇u,∇ψ〉 = 1

E
〈∇u, ∂sX〉〈∇ψ, ∂sX〉 = ψs

E
us = h′

h3
us.

Since the Gaussian curvature on a cylindrical surface is 0, and by (4), 

. |A|2 = 4H 2 = (2H)2 = N2
3

z2 = 1

h4 .

Definitively, the expression of the Jacobi operator is 

. L[u] = 1

E
uss +

(
1√
E

(
1√
E

)
s

+ h′

h3

)
us + utt + 2

h4 u,

and using that .h(s) = cosh(s), 

.L[u] = 1

h2
uss + utt + 2

h4
u. (33) 

Consider now separation of variables for the function u, that is, . u(s, t) = f (s)g(t)

for functions f and g, .s ∈ (−a, a), .t ∈ [0, L]. We can continue with the 
computation of (33), obtaining 

. L[u] = 1

h2
f ′′g + fg′′ + 2

h4
fg.

On the other hand, the area element is 

.dAψ = eψdA = h2 dsdt.
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Since .u(s, t) = f (s)g(t) vanishes on the boundary of .[−a, a] × [0, L], then 
.f (±a) = 0 and .g(0) = g(L) = 0. For the function g, we choose .g(t) = sin(πt/L): 
notice that .g′′ = −π2

L2 g. Integrating by parts (32), 

. 

Q[u] = −
∫ L

0
g(t)2 dt

∫ a

−a

{
ff ′′

h2 +
(

2

h4 − π2

L2

)
f 2

}
h2 ds

= −
∫ L

0
g(t)2 dt

∫ a

−a

{(
2

h2
− π2

L2
h2

)
f 2 − f ′2

}
ds.

If we are looking for lengths L where the surface is unstable, we need that 

.I (a, L) =
∫ a

−a

{(
2

h2 − π2

L2 h2
)

f 2 − f ′2
}

ds (34) 

is positive. Because we are imposing the condition .f (±a) = 0, consider 

. f (s) = h(s) − h(a).

Now (34) is  

. I (a, L) =
∫ a

−a

{(
2

cosh(s)2 − π2 cosh(s)2

L2

)
(cosh(s) − cosh(a))2 − sinh(s)2

}
ds.

(35) 

We are in conditions to prove the following Plateau-Rayleigh instability criterion 
[42]. 

Theorem 7 There is a value .a0 > 0, .a0 ≈ 1.2391, such that for all .a > a0, there is 
a critical length .L0 > 0, depending only on the amplitude a, such that the singular 
minimal surfaces .�(a,L) are unstable for all .L > L0. 

Proof The integral (35) can be solved explicitly, obtaining 

. I (a, L) = I1(a) + I2(a, L),

where 

. 

I1(a) = 5a + cosh(a)
(

3 sinh(a) − 16 tan−1
(

tanh
(a

2

)))
,

I2(a, L) = − π2

48L2 (60a − 44 sinh(2a) + sinh(4a) + 24 a cosh(2a)).

The function .I1(a) is plotted in Fig. 8, left. In particular, there is a unique number 
. a0 such that .I1(a) < 0 if .a < a0, .I1(a0) = 0, and .I1(a) > 0 if . a > a0. The value . a0
can be computed with Mathematica, obtaining .a0 ≈ 1.2391. On the other hand, the
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Fig. 8 Left: the function .I1(a). Right: the function .L �→ I2(a, L) (here .a = 1) 

parenthesis in the expression of .I2(a, L) is always positive. If we see .I2(a, L) as a 
function on the variable L fixing a, then 

. lim
L→0+ I2(a, L) = −∞, lim

L→∞ I2(a, L) = 0 (36) 

and the function .L �→ I2(a, L) is strictly increasing on L. See Fig. 8, right. 
It is clear that if .a < a0, then .I (a, L) < 0 for all values of L because is the sum 

of two negative functions. Let now .a > a0, where we know that .I1(a) > 0. Letting 
.L → ∞, from (36) and the monotonicity of .L �→ I2(a, L), we deduce that there is 
a unique value . L0 depending on a such that .I (a, L0) = 0 and .I (a, L) > 0 for all 
.L > L0. This proves the result. The value . L0 depends on the amplitude a and it is 
obtained by solving the equation .I1(a) + I2(a, L) = 0: 

.L0 = π
√

60a − 44 sinh(2a) + sinh(4a) + 24a cosh(2a)

4
√

15a + 9 cosh(a)
(
sinh(a) − 6 tan−1

(
tanh

(
a
2

))) . (37) 

�

Motivated by the scenario of circular cylinders where, fixed radius r , the  

instability appears when the length L satisfies .L > 2πr , one expects that increasing 
the amplitude a, one needs large lengths L to ensure the instability. However, the 
function .L0 = L0(a) in (37) is not increasing: there is a value . a1, with .a1 ≈ 1.7964, 
such that .L0(a) is decreasing in the interval .[a0, a1], and then increases for .a > a1; 
see Fig. 9. It is after the amplitude . a1, where if a increases, the critical value . L0
increases as well. 

Again, we finish this section with an observation about the works of Gaudí. 
Recall that his corridors were constructed by repeating inverted catenaries. Theo-
rem 7 establishes that long corridors are unstable. The concepts of mathematical 
stability and architectural stability are different. In architecture, it is related with the 
capacity to preserve the design and geometry of the structure under compression 
or loads. Instability appears after long deformations due to the material used in the 
construction or a failure in its design. However, Theorem 7 reflects the intuitive idea 
that corridors with large lengths should collapse with small perturbation.
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Fig. 9 The function .L0 = L0(a) given in (37) 

7 Compact Singular Minimal Surfaces with Boundary 

Coming back to the initial problem of this paper, it is difficult to find general results 
of existence of singular minimal surfaces for prescribed boundary curve and area. 
In a similar context, the solvability of the Dirichlet problem associated with (3) is 
equally difficult, and only partial answers have been obtained [16, 38, 39]. A first 
question is about the existence of closed singular minimal surfaces, that is, compact 
surfaces without boundary. Notice that there are not closed examples in the class of 
surfaces of revolution [15, 28, 37]. In fact, the result holds in general. 

Proposition 4 ([37]) There do not exist closed singular minimal surfaces. 

Proof Let . � be a closed singular minimal surface and take the height function 
.h(p) = 〈p, v〉, .p ∈ �. Then h satisfies 

. �h = 2H 〈N, v〉,

where . � is the Laplace operator on . �. This equation holds for any surface without 
any condition on H . Using now (4), 

.�h = 〈N, v〉2

〈p, v〉 . (38) 

Integrating on . �, using the divergence theorem and the fact that . � is closed, we 
have 

.0 =
∫

�

〈N, v〉2

〈p, v〉 d�,
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obtaining that .〈N, v〉 = 0 on . �. This implies that . � is an open set of a plane, in 
which it is a contradiction. �


Consequently any compact singular minimal surface has a non-empty boundary, 
which we denote by . ∂�. In order to give the precise terminology, if .� ⊂ R

3+ is a 
closed curve, we say that a compact surface . � has . � as its boundary if the restriction 
of the immersion of . � to its boundary .∂� is one-to-one with . �. 

If . � is a closed curve that spans a surface of minimum area . Ā, then a necessary 
condition for the existence of singular minimal surfaces spanning . � is that the 
prescribed value for the area . A0 must satisfy .A0 > Ā. Thus it is expectable that the 
geometry of . � imposes restrictions to the existence of singular minimal surfaces. 
For example, given a closed curve . � invariant by a symmetry .Φ : R3 → R

3, it is  
natural to ask if this symmetry . Φ inherits to a singular minimal surface . � spanning 
. �, that is, if .Φ(�) = �. The typical case is when . � is a circle where one expects 
that the surface that spans is a surface of revolution. Along this section, and after a 
change of coordinates, we will suppose .v = e3 = (0, 0, 1). 

We can follow with the same idea of Proposition 4, obtaining a necessary 
condition to the existence of singular minimal surfaces. 

Proposition 5 Let .� ⊂ R
3+ be a closed curve. If 

.� = sup{z(p) : p ∈ ∂�}, (39) 

then the area .A(�) of any compact singular minimal surface . � spanning . � satisfies 

. A(�) ≤ � L(�),

where .L(�) is the length of . �. 

Proof We now compute .�h2. The gradient of h is .∇h(p) = eT
3 , where . eT

3 is the 
tangent part on . �. Then .|∇h|2 = 1 − 〈N, e3〉2. From  (38), 

. �h2 = 2h�h + 2|∇h|2 = 2.

The divergence theorem implies 

. 

∫
�

1 d� = A(�) =
∫

∂�

〈p, e3〉〈ν, e3〉ds,

where . ν is the exterior unit conormal vector along . ∂�. By estimating the right-hand 
side of the above equation, 

. 

∣∣∣∣
∫

∂�

〈p, e3〉〈ν, e3〉ds

∣∣∣∣ ≤ sup{z(p) : p ∈ ∂�}
∫

∂�

|〈ν, e3〉| ds

≤ �

∫
∂�

1 ds = � L(�),

obtaining the result. �
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Corollary 3 Let . � be a Jordan curve contained in the horizontal plane of equation 
.z = c > 0 and let . � be the domain bounded by . �. Then a necessary condition for 
the existence of a compact singular minimal surface with boundary . � is 

. A(�) ≤ c L(�).

In particular, if . � is a round disc of radius r , then .r ≤ 2c. 

Notice that the value . � in (39) measures the height of the highest point of the 
boundary curve . � which is a prescribed data. Proposition 5 and its corollary assert 
that once we prescribe the boundary curve . �, the value . A0 of the area is not arbitrary 
as initial data and depends on the geometry of . �. 

We finish this section answering to the question of how the symmetries of the 
boundary curve are inherited to the whole surface that spans. This will be carried 
out thanks to the maximum principle, following the same techniques of the theory 
of the surfaces with constant mean curvature [36]. By ellipticity, Eq. (3) satisfies a 
comparison principle as well as a maximum principle [23, Th. 10.1]. This is also a 
consequence that singular minimal surfaces are minimal surfaces in a space with a 
conformal metric to the Euclidean or surfaces with zero weighted mean curvature 
(Theorem 3). The maximum principle establishes that if a singular minimal surface 
lies in one side of other one around a common tangent point p, then both surfaces 
coincide in a neighborhood of p. This also holds if p is a boundary point and the 
tangent lines at p coincide. A first consequence is the following result. 

Proposition 6 If . � is a compact singular minimal surface, then the height function 
with respect to a vertical plane does not attain a local maximum at some interior 
point of . �. 

Proof Let . w be a horizontal direction (orthogonal to . e3). If .p0 ∈ � is an interior 
point where the function .p �→ 〈p, w〉 attains a local maximum, the tangent plane 
P at . p0 is also a singular minimal surface, but . � lies in one side of P which is a 
contradiction. �


This result implies that a compact singular minimal surface is contained in the 
vertical solid cylinder .c(�)×R, where .c(�) is the convex hull of the planar domain 
determined by the orthogonal projection of . � on the plane .z = 0. With a different 
argument, we have as follows. 

Proposition 7 Let . � be a compact singular minimal surface with boundary . �. 
Then the height function of . � attains its maximum at a boundary point. In particular, 
if . � is contained in a horizontal plane . Π , then . � lies below . Π . 

Proof It is enough to observe that thanks to (38), the function . h(p) = 〈p, e3〉
satisfies .�h > 0. �


Finally we answer to the question if the symmetries of . � are inherited to the 
whole surface [40].
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Theorem 8 If . � is an embedded compact singular minimal surface spanning a 
horizontal circle, then . � is a rotational tectum. 

Proof The proof follows the standard arguments of the reflection principle of 
Alexandrov [1]. We only indicate why this technique works in our situation. First, 
by the above proposition, the surface . � lies below the boundary plane . Π , .� ⊂ Π . 
Next, and using that . � is embedded, we have determined a bounded 3-domain by 
.� ∪ �, where .� ⊂ Π is the disc bounded by the circle . �. Now the Alexandrov 
method works thanks to the maximum principle, proving that for each horizontal 
direction .w ∈ R

3, there exists a plane .Pw orthogonal to . w such that . � is invariant 
by symmetries about . Pw. By the compactness of . �, we finish showing that . � is 
axially symmetric about a vertical line. �
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Geometry of .[ϕ, e3]-Minimal Surfaces in 
. R

3

Antonio Martínez and A. L. Martínez-Triviño 

Abstract In this survey we report a general and systematic approach to study 
.[ϕ, e3]-minimal surfaces in .R3 from a geometric viewpoint and show some fun-
damental results obtained in the recent development of this theory. 

Keywords .[ϕ, e3]-minimal surface · Weighted area functional · Weierstrass 
representation · Cauchy problem · Calabi’s correspondence · spacelike 
.[ϕ, e3]-maximal surface 

1 Introduction 

In this survey, we would like to report some recent results about critical points of 
the weighted area functional 

.Aϕ(�) =
∫

�

eϕ d�, (1) 

on surfaces . � in a domain .D3 ⊂ R
3 when . ϕ is the restriction on . � of a smooth 

function depending only on the last coordinate of .D3 and where .d� denotes the 
volume element induced by the Euclidean metric .〈·, ·〉 in . R3. 

The Euler-Lagrange equation of (1) is given in terms of the mean curvature vector 
. H of . � as follows: 

.H = (∇ϕ)⊥ = ϕ̇ e ⊥
3 , (2) 

where . ⊥ denotes the projection on the normal bundle, . ∇ stands the usual gradient 
operator in . R3, and . (˙) denotes derivate with respect to the third coordinate. Ilmanen 
in [21] proved that (2) means also that . � is a minimal immersion in the so-called 
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Ilmanen’s space, .(D3, gϕ), that is, .D3 endowed with the conformally Euclidean 
changed metric 

.gϕ := eϕ〈·, ·〉. (3) 

From a physical point of view (see [42, pp. 173–187]), Eq. (2) gives the 
equilibrium condition of a flexible inextensible surface in the absence of intrinsic 
forces under the gravitational force field 

. F := ∇eϕ = (0, 0, ϕ̇ eϕ).

Any surface satisfying .(2) will be called .[ϕ, e3]-minimal and if . � is the vertical 
graph of a function .u : � ⊆ R

2 −→ R, we also refer to  u as .[ϕ, e3]-minimal. 
Hence, u is .[ϕ, e3]-minimal if and only if it solves the so-called .[ϕ, e3]-minimal 
equation, 

.(1 + u2
x)uyy + (1 + u2

y)uxx − 2uyuxuxy = ϕ̇(u)W 2, (x, y) ∈ �, (4) 

where .W =
√

1 + u2
x + u2

y . If . � is simply connected then, the Poincare’s Lemma 

gives that Eq. (4) is equivalent to integrability of the following differential system: 

.φxx = eϕ(u) 1 + u2
x

W
, φxy = eϕ(u) uxuy

W
, φyy = eϕ(u)

1 + u2
y

W
, (5) 

for a convex function .φ : � → R unique, up to linear polynomials. 
This kind of surfaces has been widely studied specially from the viewpoint of 

calculus of variations. Classical results about the Euler equation and the existence 
and regularity for the solutions of the Plateau problem for (1) can be found in [4, 15– 
17, 48]. But contributions from a more geometric viewpoint only have been given 
for some particular functions . ϕ, namely,

• for translating solitons: if . ϕ is just the height function, .ϕ(z) = z, that is, surfaces 
such that 

. t → � + te3

is a mean curvature flow, i.e., the normal component of the velocity at each point 
is equal to the mean curvature at that point. Recent advances in the understanding 
of their local and global geometry can be found in [8, 18–20, 32, 33, 47, 50]

• for singular .α-minimal surfaces: if .ϕ(z) = α log z, .z > 0, . α=const. (when . α =
−2, . � is a minimal surface in the Poincaré upper half hyperbolic space model 
and when .α = 1, . � describes the shape of a “hanging roof,” i.e., a heavy surface 
in a gravitational field that, according to the architect F. Otto [40, p. 290], are of 
importance for the construction of perfect domes). We refer to [4, 11, 12, 14, 28– 
31, 34, 39] for some progress in this family.
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The aim of this paper is to develop a systematic and general approach to the study of 
.[ϕ, e3]-minimal surfaces from a geometric point of view. Since this class of surfaces 
is too large, actually, we could find almost any geometric asymptotic behavior; it 
will be necessary to give some conditions on the function . ϕ. Here, as a general 
assumption, we will always consider . ϕ strictly monotone, that is, 

.ϕ :]a, b[⊆ R → R is a strictly increasing (or decreasing) function (6) 

and � ⊂ D3 = R
2 × ]a, b[. 

2 The Most Symmetric Examples 

The first section consists in the description of the examples of .[ϕ, e3]-minimal 
surfaces which are invariant by either horizontal translations or vertical rotations. 

2.1 The One-dimensional Variational Problem 

Let us consider the one-dimensional variational integral 

.Iϕ(u) =
∫

I

eϕ
√

1 + u′(x)2dx, (7) 

with .u : I ⊆ R →]a, b[ a differentiable function. It is easy to check that extremals 
for . Iϕ must be solutions of the following ODE: 

.u′′(x) = ϕ̇(u)(1 + u′(x)2). (8) 

Looking for complete examples, we will assume that .ϕ :]a,+∞[→ R, . a ∈ R ∪
{−∞} is strictly monotone. Then, taking .z = ϕ(u) and .u′ = tan(v), we get that (8) 
is equivalent to 

.
v′ = λ(z),

z′ = λ(z) tan(v)

}
(9) 

where . λ is the function defined by .λ(z) = ϕ̇(ϕ−1(z)) on .ϕ(]a,+∞[). 
Thus, .ezcos(v) is constant along the solutions of (9) and from the Phase portrait 

of (9) (see Fig. 1); for any maximal solution u of (8), there exists a unique . x0 ∈ I

such that .v(x0) = 0. It is not a restriction to consider .x0 = 0 and u satisfying 

.u(0) = u0, u′(0) = 0. (10)
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Fig. 1 Phase portrait of (9) 

In this case, the solution to (8)–(10) is given by 

.u(x) = (X ◦ ϕ)−1(x), with X(z) =
∫ z

z0

dτ

|h(τ)|√e2(τ−z0) − 1
, (11) 

where .z0 = ϕ(u0). Thus, we obtain that u is even, and it is defined in the interval 
.] − 	u0 ,	u0 [, where 

.	u0 = lim
u→+∞

∫ ϕ(u)

ϕ(u0)

dτ

|h(τ)|√e2(τ−z0) − 1
. (12) 

Theorem 2.1 ([34, Theorem 3.2 and Theorem 3.3]) Let .ϕ : ]a,+∞[ → ]b, c[, 
.a, b ∈ R∪ {−∞}, .c ∈ R∪ {+∞} be a strictly increasing diffeomorphism. Then the 
solution u of (8)–(10) is defined in .] − 	u0 ,	u0 [, .	u0 ∈ R

+ ∪ {+∞}; it is convex 
and symmetric about the y-axis and has a minimum at .x = 0. Moreover,

• if .c < +∞, then .	u0 = +∞ and, .

{
limx→±∞ u(x) = +∞,

limx→±∞ u′(x) = ±√
e2(c−ϕ(u0)) − 1.
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• if .c = +∞, . limx→±	u0
u(x) = +∞, limx→±	u0

u′(x) = ±∞.

In particular, if .	u0 < +∞, the graph of u is asymptotic to two vertical lines. 
Moreover,

• .	u0 < +∞ if and only if .e−ϕ ∈ L1(]u0,+∞[),.
(
i.e.,

∫ ∞
u0

e−ϕ(τ)dτ < ∞
)

.

• If .	τ < +∞ and . ϕ̇ is increasing (respectively, decreasing), then .	τ is 
decreasing (respectively, increasing) in . τ . 

Theorem 2.2 ([34, Theorem 3.4]) Let .ϕ : ]a,+∞[ −→ ]b, c[, .a, b ∈ {R,−∞}, 
.c ∈ {R,+∞} be a strictly decreasing diffeomorphism, then the solution u of (8)– 
(10) is defined in .] − 	u0 ,	u0 [, .	u0 ∈ R

+ ∪ {+∞}, it is concave, symmetric about 
the y-axis and has a maximum at .x = 0. Moreover,

• if .c < +∞, then .	u0 < +∞ and, .

{
limx→±	u0

u(x) = a,

limx→±	u0
u′(x) = ±√

e2(c−ϕ(u0)) − 1.

• if .c = +∞, then .	u0 < +∞ if and only if .
∫ u0
a

e−ϕ(τ)dτ < ∞, and, 

. lim
x→±	u0

u(x) = a, lim
x→±	u0

u′(x) = ±∞.

Motivated by their physical interpretation, for each solution u of (8)–(10), we will 
refer .Gu0 := {(x, y, u(x)) | (x, y) ∈ I × R} as a .[ϕ, e3]-catenary cylinder surface 
(see Fig. 2 (left)). 

Remark 1 I would like to conclude this section mentioning a special example only 
for translating solitons. If we rotate a grim reaper cylinder translating soliton an 
angle .θ ∈]0, π/2[ about the x-axis and dilate with factor .1/ cos θ , the resulting 
surface is again a translating soliton and is called tilted grim reaper cylinder (see 
Fig. 2 (right)). 

Fig. 2 The grim reaper cylinder and its corresponding tilted grim reaper cylinder, respectively
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2.2 Rotationally Symmetric Solutions 

In the rotationally symmetric case, Eq. (4) for .[ϕ, e3]-minimal graphs .u = u(r) with 
.r = √

x2 + y2 reduces to the following ODE: 

.u�(r) = (1 + u�(r)2)

(
ϕ̇(u) − u�(r)

r

)
, (13) 

where . (�) denotes the derivative with respect to r . Notice that (13) is degenerated, 
and then, the existence and uniqueness of solution around .r = 0 is not guaranteed 
by standard theory of ordinary differential equations. Moreover, by applying [46, 
Theorem 2], solutions of (4) do not have isolated singularities. Consequently, it is 
not a restriction to look for solutions of (13) with the following initial data: 

.u(0) = u0 , u�(0) = 0. (14) 

In this case, we can assert (see [34, Proposition 4.1]) that the Initial Value Problem 
(13)–(14) has a unique solution .u ∈ C2([0, R]) for some .R > 0, which depends 
continuously on the initial data. 

Now, once the existence of solution is guaranteed, we want to describe .[ϕ, e3]-
minimal surfaces that are invariant under the one-parameter group of rotations 
that fix the . e3 direction. A such surface with generating curve the arc-length 
parametrized curve 

. γ (s) = (x(s), 0, z(s)), s ∈ I ⊂ R

is given by 

.ψ(s, t) = (x(s) cos(t), x(s) sin(t), z(s)) , (s, t) ∈ I × R. (15) 

The inner normal of . ψ writes as 

.N(s, t) = (−z′(s) cos(t),−z′(s) sin(t), x′(s)
)
, (16) 

and the coefficients of the first and second fundamental form are given by 

.

〈ψs,ψs〉 = 1, 〈ψs,Ns〉 = −κ,

〈ψt , ψt 〉 = x2, 〈ψt ,Nt 〉 = −x z′,
〈ψs,ψt 〉 = 0, 〈ψs,Nt 〉 = 0,

(17)
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where . κ is the curvature of . γ and by . ′ we denote derivative respect to s. 
Consequently, from (2), (15), (16), and (17), the surface . ψ is a .[ϕ, e3]-minimal 
surface if and only if 

.

⎧⎨
⎩

x′ = cos(θ)

z′ = sin(θ),

θ ′ = ϕ̇(z)cos(θ) − sin(θ)
x

,

(18) 

where 

. θ(s) =
∫ s

0
κ(t)dt.

Along this section, we will consider that .ϕ : ]a,+∞[ → R is a strictly increasing 
and convex function, that is, 

.ϕ̇ > 0, ϕ̈ ≥ 0, on ]a,+∞[. (19) 

2.3 Globally Convex Examples 

Let us consider the solutions of (18) with the following initial conditions: 

.x(0) = 0, z(0) = z0 ∈]a, ∞[, θ(0) = 0. (20) 

Then, the surface . ψ intersects orthogonally the rotation axis and it is globally 
convex. In fact, by application of L’Hôpital’s rule, we have that . 2θ ′(0) = ϕ̇(z0) > 0
and . γ is a strictly locally convex planar curve around .s = 0. We assert that . θ ′(s) > 0
for .s ≥ 0; otherwise from (20), there exists a first value .s0 > 0 such that . θ ′(s0) = 0
and .θ ′′(s0) ≤ 0. As .θ ′ > 0 on . [0, s0[, from (18), we have that .0 < 2θ(s0) < π , and 
by differentiation of (18), we get 

. θ ′′(s0) = sin(2θ(s0))

2

(
ϕ̈(z(s0)) + 1

x(s0)2

)
> 0,

getting to contradiction. 

Theorem 2.3 ([34, Theorem 4.5]) Under the conditions (20), the curve . γ is the 
graph of a strictly convex symmetric function .u(x) defined on a maximal interval 
.] − ω+, ω+[ which has a minimum at 0 and 

. lim
x→±ω+

u(x) = +∞.
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Fig. 3 .[ϕ, e3]-minimal bowls for .ϕ̇(u) = e−1/u and .ϕ̇(u) = u2, respectively 

If . γ is a graph as in Theorem 2.3, we are going to say that the revolution 
surface with generating curve . γ is a .[ϕ, e3]-minimal bowl (or a .[ϕ, e3]-bowl in short) 
(Fig. 3). 

2.4 Non-convex Examples 

Now, we consider the solutions of (18) with the following initial conditions: 

.x(0) = x0 > 0, z(0) = z0 ∈]a,+∞[, θ(0) = 0. (21) 

From standard theory, the existence and uniqueness of solution to the problem 
(18)–(21) are guaranteed. Let .] − s−, s+[ be the maximal interval of existence, and 
consider .γ + := γ

∣∣[0,s+[ the right branch of . γ . As in Theorem 2.3, .γ + is the graph 
of a convex function .u = u(x) defined on a maximal interval .]x0, ω+[, such that 

. lim
x→ω+

u(x) = +∞.

For studying the left branch of . γ , we are going to consider .γ −(s) = γ (−s) for 
.s ∈ [0, s−[. Then, by taking .x(s) = x(−s), .z(s) = z(−s) and . θ(s) = θ(−s) + π

for .s ∈ [0, s−[, we have that .{x, z, θ} is a solution of (18) on .[0, s−[ satisfying 

. x(0) = x0 > 0, z(0) = z0 ∈]a,+∞[, θ(0) = π.

Then, we have as follows.
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Fig. 4 .[ϕ, e3]-minimal catenoid with . ϕ̇(u) = e−1/u

Lemma 1 ([34, Section 4.2.2]) The following statements hold:

• There exists .s0 ∈]0, s−[ such that .2θ(s0) = π.

• If .s ∈]s0, s−[, then .0 < 2θ(s) < π .
• . θ has a minimum at a point .s1 ∈]s0, s−[ and .θ

′
> 0 on .]s1, s−[.

• The profile curve . γ is embedded. 

Theorem 2.4 ([34, Theorem 4.11]) For every .x0 > 0, there exists a complete 
embedded rotational .[ϕ, e3]-minimal surface; see Fig. 4 (right) with the annulus 
topology whose distance to axis of revolution is . x0, and whose generating curve . γ
is of winglike type, see Fig. 4 (left). These examples will be called .[ϕ, e3]-minimal 
catenoids. 

2.5 The Asymptotic Behavior 

One of the questions that we ask ourselves is to know if the rotationally symmetric 
examples are cylindrically asymptotic or not. 

Indeed, we may prove the following. 

Lemma 2 ([34, Proposition 4.12]) Depending on the asymptotic behavior of . ϕ, we  
have:

• If . ϕ̇ has at most a linear growth, then .ω+ = +∞ and .x− = +∞.
• If . ϕ̇ growths as . uα for some .α > 1, then .ω+, x− < +∞.
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Motivated by the previous result, we get to control the asymptotic behavior of the 
rotationally symmetric solutions when . ϕ has at most quadratic growth. Hence, we 
are going to assume that .ϕ :]a,+∞[→ R is a smooth function satisfying (19) and 
with the following expansion at infinity: 

.ϕ̇(u) = 	u + β +
∞∑

n=1

an

un
, an ∈ R, (22) 

where either .	 > 0 and the first non-vanishing . ak is positive or .	 = 0, .β > 0 and 
the first non-vanishing . ak is negative. 

In this case, we can give explicit formulas for the asymptotic behavior of a 
rotationally symmetric solutions of (13) that generalize the result of J. Clutterbuck, 
O. Schnüre, and F. Schulze in [8] for translating solitons. 

Theorem 2.5 ([34, Theorem A]) If . ϕ̇ satisfies (22), then any rotationally symmet-
ric solution u of (4) has the following asymptotic behavior:

• If .	 > 0, 

.ϕ(u)(r) = C eα r2 + O(r2), C > 0, (23)

• If .	 = 0 and up to a constant, we have: 

.G(u)(r) = r2

2
− 1

β2 log(r) + O(r−2), (24) 

where . G is the strictly increasing function given by .G(u) = ∫ u

u0

dξ
ϕ̇(ξ)

. 

3 Flat [ϕ, e3]-Minimal Surfaces 

Bearing in mind the .[ϕ, e3]-catenary cylinders that we have already described, we 
mention the following classification of complete flat .[ϕ, e3]-minimal surfaces. 

Let .� = γ × Π⊥ be a complete ruled surface where . γ is a complete regular 
curve in a plane .Π ⊂ R

3. Then, . � can be parametrized by .ψ(s, t) = γ (s)+ tv with 
. v a unit vector orthogonal to . Π . We may assume that .(s, t) ∈ R

2 and .|γ ′| = 1; then, 
the Gauss map N of . ψ and its mean curvature H are given by 

. N(s, t) = γ ′(s) ∧ v , H(s, t) = κγ (s),

where . κγ if the curvature of . γ . Hence, . � is .[ϕ, e3]-minimal if and only if 

.κγ (s) = −ϕ̇(〈γ (s) + tv, e3〉)〈γ ′(s) ∧ v, e3〉.
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Differentiating with respect to t in the above expression, we have the following 
classification result. 

Theorem 3.6 ([34, Theorem 3.7]) Let .ϕ : R → R be an increasing diffeomor-
phism and . � be a complete flat .[ϕ, e3]-minimal surface in . R3. Then, one of the 
following statements holds:

• . � is a vertical plane.
• . � is a grim reaper cylinder (maybe tilted).
• . � is a .[ϕ, e3]-catenary cylinder. 

Remark 2 An analogous classification was proved for translating solitons by F. 
Martín, A. Savas-Halilas, and K. Smoczyk in [33] and for singular .α-minimal 
surfaces by R. López in [28]. 

4 Mean Convex [ϕ, e3]-Minimal Surfaces 

In this section, we show several results concerning area and curvature estimates for 
properly embedded .[ϕ, e3]-minimal surfaces with mean curvature .H ≤ 0 together 
with a convexity result for the same. 

Previously, in 1983, R. Schoen [45] obtained an estimate for the length of the 
second fundamental form . S of a stable minimal surface . � in a 3-manifold. In 
particular, in . R3, he proved the existence of a constant C such that 

. |S(p)| ≤ C

d�(p, ∂�)
, p ∈ �,

where . d� stands for the intrinsic distance of . �. Later, in 2010, H. Rosenberg, R. 
Souam, and E. Toubiana [44] obtained an estimate for the length of the second 
fundamental form, depending on the distance to the boundary, for any stable H -
surface . � in a complete Riemannian 3-manifold of bounded sectional curvature 
.|K| ≤ β < +∞. They proved the existence of a constant .C > 0 such that 

. |S(p)| ≤ C

min{d�(p, ∂�), π/2
√

β} , p ∈ �.

More recently, in 2016, B. White [51] obtained an estimate for the length of the 
second fundamental form for minimal surfaces with finite total absolute curvature 
less than .4π in 3-manifolds, depending on the distance to the boundary, on the 
sectional curvature, and on the gradient of the sectional curvature of the ambient 
space, and following C. H. Colding and W. P. Minicozzi method, [9, 10], J. Spruck 
and L. Xiao [47] have also obtained area and curvature bounds for complete 
mean convex translating solitons in . R3. As application and using the Omori-Yau 
maximum principle (see, for example, [2]), they have proved one of the fundamental 
results in the recent development of translating solitons theory conjectured by X. 
Wang in [49].
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Theorem 4.7 ([47, Theorem 1.1]) Let .� ⊂ R
3 be a complete immersed two-sided 

translating soliton with non-negative mean curvature. Then . � is convex. 

In a very recent study, we have extended the results of [47] to mean convex 
.[ϕ, e3]-minimal surfaces. In our case, by mean convex surfaces, we will refer to 
those surfaces with .H ≤ 0 everywhere. More precisely, we will consider mean 
convex .[ϕ, e3]-minimal oriented surfaces . � with empty boundary in . R3

α = {p ∈
R

3 | 〈p, e3〉 > α}, where .ϕ : R −→ R is a smooth function satisfying 

.ϕ̇ > 0, ϕ̈ ≥ 0 on ]α,+∞[. (25) 

In order to describe our results, let us consider . Ft the normal variation associated 
with a compactly supported variational vector field on the normal bundle of . �. Then, 
see [6, Appendix], the second variation of .Aϕ is given by 

. 
d2

dt2

∣∣∣∣
t=0
Aϕ(Ft (�)) = −

∫
�

�Lϕ(�) d� for any � ∈ C∞
0 (�),

where .Lϕ is a gradient Schrödinger’s type operator defined on .C2(�) and given by 

. Lϕ(·) = �ϕ(·) + (|S|2 − ϕ̈η2
3)(·)

where .�ϕ(·) = �(·) + 〈∇ϕ,∇(·)〉 and .η3 = 〈N, e3〉. 
As usual, we will say that . � is stable if and only if for any compactly supported 

smooth function . �, it holds that 

. −
∫

�

�Lϕ(�)eϕ d� ≥ 0. (26) 

It is interesting to mention the following fact. 

Proposition 1 ([38, Proposition 4.4]) Let .ϕ :]α,+∞[ → R be a regular function 
satisfying (25) and . � be an oriented .[ϕ, e3]-minimal immersion in . R3 with .H ≤ 0. 
Then, . � is stable. 

Remark 3 The existence of stable surfaces is not guaranteed for any function . ϕ. X.  
Cheng, T. Mejia, and D. Zhou [6] proved that if the Ilmanen’s space is complete and 
.ϕ̈ ≤ −ε < 0, for some .ε > 0, then there are not stable surfaces without boundary 
and with finite weighted area. 

From Proposition 1 and following the same method as in [47], we get the following 
area estimate.
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Theorem 4.8 ([38, Proposition 4.10]) Let . � be a .[ϕ, e3]-minimal immersion in 
. R3

α with .H ≤ 0 and . ϕ satisfying (25) and 

.Γ := sup
]α,+∞[

(2ϕ̈ − ϕ̇2) < +∞.. (27) 

If .2ρ ϕ̇(ρ + μ(p)) < log(2) and .
√|Γ | ρ < 1, then the geodesic disk .Dρ(p) of 

radius . ρ centered at p is disjoint from the cut locus of p and 

.A(Dρ(p)) < 4πρ2, (28) 

where .A(·) is the intrinsic area of . � in . R3. 

But, for obtaining curvature bounds, we need a better control at infinity of the 
function . ϕ . To be more precise, we are going to consider that .z �→ ϕ̇(z)

z
is analytic 

at .+∞; i.e., . ϕ̇ has the following series expansion at .+∞: 

.ϕ̇(u) = 	u + β +
∞∑
i=1

ci

ui
, u large enough, (29) 

with .	 ≥ 0 and .β > 0 if .	 = 0. 

Remark 4 It is worth to note that condition (29) implies (27). Besides a natural 
extension of the best known examples, conditions (25) and (29) are interesting 
because under these assumptions, it is possible to know explicitly the asymptotic 
behavior of rotational and translational invariant examples (see §2). 

Bearing in mind Proposition 1, Theorem 4.8 and the compactness Theorem 2.1 of 
B. White [52] for minimal surfaces together with the classification of all complete 
translating soliton graphs in .R3 (see [19]), we can prove the following Blow-up 
result. 

Theorem 4.9 ([38, Theorem 4.13]) Let . � be a properly embedded .[ϕ, e3]-minimal 
surface in .R3

α with .H ≤ 0, locally bounded genus and . ϕ satisfying (25) and (29). 
Consider any sequence .{λn} → +∞ and suppose that there exists a sequence . {pn}
in . � such that .{ϕ̇(μ(pn))/λn} → C for some constant .C ≥ 0 . Then, after passing 
to a subsequence, .�n = λn(� − pn) converge smoothly to 

1. a plane when .C = 0, 
2. one of the following translating solitons when .C > 0:

• vertical plane,
• grim reaper surface,
• titled grim reaper surface,
• bowl soliton,
• .�-Wing translating soliton.
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From Theorem 4.9 and by combining the methods of H. Rosenberg, R. Souam, and 
E. Toubiana [44] and J. Spruck and L. Xiao [47], we have the following curvature 
estimates. 

Theorem 4.10 ([38, Theorem A]) Let . � be a properly embedded .[ϕ, e3]-minimal 
surface in .R3

α with non-positive mean curvature, locally bounded genus and . ϕ :
R → R satisfying (25) and (29). Then .|S|/ϕ̇ is bounded on . �. In particular, if 
.	 = 0, . |S| is bounded, and if .	 �= 0, . |S| may go to infinity but with at most a linear 
growth in height. 

As we have already mentioned, J. Spruck and L. Xiao [47] proved that any 
complete translating soliton in .R3 with .H ≤ 0 is convex. Later, D. Hoffman, T. 
Ilmanen, F. Martín, and B. White in [20], by using the Omori-Yau’s maximum 
principle for the Laplacian . � [2, Theorem 3.2], have obtained a more simplified 
proof of it. 

As an extension of this result, we have the following. 

Theorem 4.11 ([38, Theorem B]) Let . � be a properly embedded .[ϕ, e3]-minimal 
surface in .R3

a with non-positive mean curvature, locally bounded genus, and . ϕ :
R → R satisfying (25), (29), and .

...
ϕ ≤ 0 on .]a,+∞[. Then . � is convex if and only 

if the function .	K is bounded from below, where K is the Gauss curvature. 

Remark 5 The main tool in the proof of Theorem 4.11 is the Omori-Yau’s 
maximum principle for the drift Laplacian .�ϕ [2, Theorem 3.2], and it is remarkable 
that the condition (29) on . ϕ is essential for proving that this maximum principle can 
be applied (see [38, Theorem 5.1]). 

5 Uniqueness of Dirichlet’s Problems at Infinity 

Despite this large family of surfaces and the very general conditions on . ϕ, it is  
possible to prove uniqueness of bowls and .[ϕ, e3]-catenary cylinders from their 
asymptotic behavior. 

5.1 Uniqueness of [ϕ, e3]-Bowls 

Let .ϕ :]a,+∞[→ R , .a ∈ R ∪ {−∞} be a strictly increasing convex smooth 
function satisfying (22) and let . � be a complete connected properly embedded 
.[ϕ, e3]-minimal surface and .D3 = R

2×]a,+∞[. From Theorem 2.5, it is natural to 
say that an end of . � is smoothly asymptotic to a rotational-type example if . � can 
be expressed outside a Euclidean ball as a vertical graph of a function . u� so that 

.ϕ(u�)(x) = C e	 |x|2 + O
(
|x|2

)
, if 	 > 0, (30)
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where C is a positive constant and, up to a constant, 

.G(u�)(x) = |x|2
2

− 1

β2 log(|x|) + O
(
|x|−2

)
, if 	 = 0 and β > 0. (31) 

where . G is the strictly increasing function given by .G(u) = ∫ u

u0

dξ
ϕ̇(ξ)

. 
Under these conditions, the following result holds. 

Theorem 5.12 ([34, Theorem B]) Let .ϕ :]a,+∞[→ R , .a ∈ R ∪ {−∞} be a 
strictly increasing convex smooth function satisfying (22) and . � be a complete 
properly embedded .[ϕ, e3]-minimal surface in . R3 with a single end that is smoothly 
asymptotic to a .[ϕ, e3]-minimal bowl. Then the surface . � is a .[ϕ, e3]-minimal bowl. 

Remark 6 The proof of Theorem 5.12 is based on the use of the Alexandrov 
reflection principle (see [1]) to prove that the surface is symmetric with respect to 
any vertical plane through the origin. Although this principle is applied in a standard 
way, it is crucial in the proof (see [34, Lemmas 6.3 and 6.4]) to show that it is 
possible to start the reflection with respect to any vertical plane far enough from the 
origin. 

Remark 7 In the particular case of translating solitons, Theorem 5.12 was proved 
in [33, Theorem A]. 

5.2 Uniqueness of [ϕ, e3]-Catenary Cylinders 

Let .ϕ :]a,+∞[→]b, c[ .a, b ∈ R ∪ {−∞} , .c ∈ R ∪ {+∞} be a strictly 
increasing diffeomorphism such that .e−ϕ ∈ L1(]a,+∞[) and let us consider .Gu0 , 
.u0 ∈]a, +∞[ one of the .[ϕ, e3]-catenary cylinders described in . §2. 

If . � is a complete connected .[ϕ, e3]-minimal graph and .Π(0) is the vertical 
plane through the origin orthogonal to . e1, we will say that a smooth surface . � is 
.Ck-asymptotic to the right part 

. Gu0+ (0) = {p ∈ � : 〈p, e1〉 ≥ 0}

of .Gu0 if for any .ε > 0, there exists .δ > 0 such that . � can parametrized as a graph 
over .Gu0 as follows: 

.F̃ : T +
δ,u0

⊂ R
2 → R

3 F̃ = F + u NF , (32)
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where .T +
δ,u0

:=]	u0 − δ,	u0 [×R, .F(x1, x2) = (x1, x2, u(x1)) parametrizes . Gu0

on .T +
δ,u0

, u is a solution of (8) with .u(0) = u0, .u : T +
δ,u0

→ R is a function in 

.Ck(Tδ,u0(+)) such that 

. sup
T +

δ,u0

|u| < ε , sup
T +

δ,u0

|Dju| < ε, for any j ∈ {1, · · · , k}. (33) 

and .NF is the downwards unit normal of .Gu0 . 
Analogously, we will say that a smooth surface . � is .Ck-asymptotic to left left 

part 

. Gu0− (0) = {p ∈ � : 〈p, e1〉 ≤ 0}

of .Gu0 if for any .ε > 0 there exists .δ > 0 such that . � can parametrized as a graph 
over .Gu0 as follows 

.F̃ : T −
δ,u0

⊂ R
2 → R

3 F̃ = F + u NF , (34) 

where .T −
δ,u0

:=] − 	u0 ,−	u0 + δ[×R, .F(x1, x2) = (x1, x2, u(x1)) parametrizes 

.Gu0 on .T −
δ,u0

, u is a solution of (8) with .u(0) = u0, .u : T −
δ,u0

→ R is a function in 

.Ck(T −
δ,u0

) such that 

. sup
T −

δ,u0

|u| < ε , sup
T −

δ,u0

|Dju| < ε, for any j ∈ {1, · · · , k}. (35) 

In particular, we say that . � is .Ck-asymptotic to .Gu0 if and only if . � is .Ck-
asymptotic to the both branches .Gu0+ (0) and .Gu0− (0). Moreover, a smooth surface . �
is called .Ck-asymptotic to .Gu0 , outside a cylinder, if there exists a solid cylinder . c
whose axis is .Gu0 ∩ Π(0) and the set .� − c consists of two connected components 
. �1 and . �2 which are .Ck-asymptotic to .Gu0+ (0) and .Gu0− (0), respectively. 

As a consequence of the compactness result [37, Theorem 3.4] and [37, Lemma 
4.3], we have the following. 

Proposition 2 ([37, Proposition 4.5]) Let .ϕ :]a,+∞[→]b, c[ , .a, b ∈ R∪ {−∞}, 
.c ∈ R ∪ {+∞} be a convex strictly increasing diffeomorphism with . e−ϕ ∈
L1(]a,+∞[) and . � be a connected .[ϕ, e3]-minimal immersion .C∞-asymptotic to 
.[ϕ, e3]-catenary cylinder . Gh, outside a cylinder, for some .h ∈]a,+∞[. For any 
sequence of points .{(p1,n, p2,n, p3,n)} of . � such that .{p2,n} diverges and . {p3,n}
is bounded, the sequence .{�n = � − (0, p2,n, 0)}n∈N converges smoothly, after 
subsequence, to some .[ϕ, e3]-catenary cylinder with the same asymptotic behavior 
that . Gh.
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From Proposition 2, there exists . n0 large enough such that for any .n ≥ n0, each . �n

can be parametrized as a graph over some .Gu′
0 in .T +

δ,u0,n
(respectively, . T −

δ,u0,n
) by  

.F̃n : T +
δ,u0,n

→ R
3 F̃n = F + unNF , (36) 

where .T +
δ,u0,n

=] − 	u′
0
+ δ,	u′

0
− δ[×]m1,n,m2,n[→ R (respectively,. T −

δ,u0,n
=

] − 	u′
0
+ δ,	u′

0
− δ[×] − m2,n,−m1,n[) with .	u′

0
= 	u0 due to the asymptotic 

behavior, .δ > 0 only depends on n, .{m1,n}n∈N, {m2,n}n∈N are strictly monotonous 
sequences with .m1,n < m2,n, and each .un : T +

δ,u0,n
→ R (respectively, . un :

T −
δ,u0,n

→ R) is a smooth function satisfying the following inequalities: 

.supT +
δ,u0,n

|un| < ε, supT +
δ,u0,n

|Djun| < ε, for any j ∈ N. (37) 

By using the above inequalities, it is possible to prove that the function 

. 
η2

η3
:= 〈N, e2〉

〈N, e3〉
goes to zero at infinity, and then, there exists an interior point where the function 
.η2/η3 attains either a local minimum in .{p ∈ � : η2(p) < 0} or a local maximum in 
.{p ∈ � : η2(p) > 0}. But then, it is possible to deduce that . η2 vanishes everywhere 
and so . � is invariant under translations in the direction . e2 which gives the following. 

Theorem 5.13 ([37, Theorem 1.4]) Let .ϕ :]a,+∞[→]b, c[, . a, b ∈ R ∪ {−∞}
and .c ∈ R ∪ {+∞} be a strictly increasing convex diffeomorphism such that 
.e−ϕ ∈ L1(]a,+∞[) and bounded quotient . ϕ̈/ϕ̇. If . � is a complete connected 
.[ϕ, e3]-minimal graph .C∞-asymptotic to .[ϕ, e3]-catenary cylinder .Gu0 , outside 
a cylinder, for some .h ∈]a, +∞[, then . � coincides with some .[ϕ, e3]-catenary 
cylinder with the same behavior that .Gu0 . 

Remark 8 F. Martín, J. Pérez-García, A. Savas-Halilaj, and K. Smoczyk [32] 
proved that, if . � is a properly embedded translating soliton with locally bounded 
genus and .C∞-topology to two vertical planes outside a cylinder, then . � must 
coincide with some grim reaper translating soliton. 

6 Weierstrass’ Type Representation 

Thanks to the property of to being “minimal” in the Ilmanen’s space, we obtain a 
Weierstrass’s type formula for translating soliton and singular minimal surfaces in 
. R3 from its normal Gauss map. 

Let .ϕ : I → R be a smooth function on a real open interval .I ⊆ R and . ψ :
� → D3 = R

2 × I ⊆ R
3 be an immersion. Consider a local conformal parameter
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.ζ = u+ iv of . � on an open simply connected domain .U ⊂ C such that the induced 
metric .ds2 writes 

.ds2 := λ2(du2 + dv2) = λ2|dζ |2 (38) 

and set, as usual, the Wirtinger’s operators by 

. ∂ζ = 1

2
(∂u − i∂v) , ∂ζ = 1

2
(∂u + i∂v) .

If .ψζ = e
1
2 ϕ(f, g, h) then, the conformality conditions write 

. λ2 = 2|ψζ |2 = 2 eϕ
(|f |2 + |g|2 + |h|2) . (39) 

f 2 + g2 + h2 = 0, (40) 

and by an straightforward computation, we obtain that . ψ is a .[ϕ, e3]-minimal 
immersion if and only if 

.e
1
2 ϕhζ = 1

2
ϕ̇

(
|f |2 + |g|2

)
, e

1
2 ϕfζ = −1

2
ϕ̇f h, e

1
2 ϕgζ = −1

2
ϕ̇gh (41) 

Now, if we introduce the complex functions 

.F = f − i g and G = h

F
, (42) 

from (39) and (40), we have that G is a smooth map into the Riemann sphere and if 
G is not constant 

.h = FG , f = 1

2
F(1 − G2) , g = i

2
F(1 + G2). (43) 

Moreover, the Gauss map N of . ψ in the Euclidean space . R3 is given in terms of G 
as 

. N :=
(

2G

1 + |G|2 ,
1 − |G|2
1 + |G|2

)
.

We are going to say also that G is the Gauss map of . ψ . 
By using (39) and (40), we obtain that (41) is equivalent to 

. 2e
1
2 ϕFζ = ϕ̇ |F |2|G|2G,

4e
1
2 ϕGζ = ϕ̇ F (1 − |G|4) (44)

e
1
2 ϕ〈ψ, e3〉ζ = FG.
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Remark 9 Observe that from (44), G is holomorphic if and only if .|G| ≡ 1, and, 
in this case, it is clear that G must be constant and .ψ(�) lies on a vertical plane in 
. R3. 

Let us consider . ψk a .[ϕk, e3]- minimal surface where 

. ϕk(z) = z, z ∈ R, if k = 1, . (45) 

ϕk(z) = 
2 

k − 1 
log(z) z > 0, if k �= 1 (46) 

Then, from (39), (40), (44), (45), and (46), the Gauss map G of .ψk satisfies the 
following complex equation: 

.Gζζ + 2
|G|2

1 − |G|4 GGζ Gζ + 2k
|Gζ |2

1 − |G|4 G = 0. (47) 

and 

. 
Gζ

1 − |G|4 ,
GGζ

1 − |G|4 ,
G

2
Gζ

1 − |G|4
are smooth functions on . �. In this case, Eq. (47) gives the integrability conditions 
of the system (44), and we have as follows. 

Theorem 6.14 ([36, Theorem 3.2]) Let G be a not holomorphic solution of (47) 
defined on a simply connected domain .U ⊂ C. Then the map .ψ1 : U→ R

3 given 
by 

. ψ1 = 4 �
(∫ ζ

ζ0

Gζ (1 − G2)

1 − |G|4 dζ,

∫ ζ

ζ0

i
Gζ (1 + G2)

1 − |G|4 dζ, 2
∫ ζ

ζ0

Gζ G

1 − |G|4 dζ

)

(48) 

is a conformal translating soliton in .R3 with Gauss map G. Conversely, any 
translating soliton which is not on a vertical plane can be locally represented in 
this way. 

Theorem 6.15 ([36, Theorem 3.3]) Let G be a not holomorphic solution of (47) 
defined on a simply connected domain .U ⊂ C. Then for any .k �= 0, 1, the map  
.ψk : U→ R

3 given by 

. ψk =
(

4k�
∫ ζ

ζ0

Gζ (1 − G2)

1 − |G|4 Γ dζ, 4k�
∫ ζ

ζ0

i
Gζ (1 + G2)

1 − |G|4 Γ dζ,
2k

k − 1
Γ

)
,

(49) 

where 

.Γ = e
4(k − 1)�

∫ ζ

ζ0

Gζ G

1 − |G|4 dζ
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is a conformal .
2

k − 1
-singular minimal surface in .R3+ with Gauss map G. Con-

versely, any singular minimal surface in .R3+ which is not on a vertical plane can be 
locally represented in this way. 

Remark 10 We would like to point out that it came to our knowledge that 
Theorem 6.14 was also proved in [25, Theorem 4]. 

The case .k = 0 (i.e., of minimal surfaces in Hyperbolic space) has been studied 
in [22]. 

7 The Cauchy Problem 

The Weierstrass representation described in the above Section can be applied to 
solve the following general Cauchy problem: 

Let .β = (β1, β2, β3) : I → R
3 be a regular analytic curve and let .V : I → S

2 be an 
analytic vector field along . β such that .〈β ′, V 〉 = 0, .|Π ◦ V | < 1, and .β3 > 0 if .k �= 1, 
where . Π denotes the stereographic projection from the south pole. Find .[ϕk, e3]-minimal 
surfaces containing . β with unit normal in . R3 along . β given by V . 

This problem has been inspired by the classical Björling problem for minimal 
surfaces in . R3, proposed by E. G. Björling in 1844 and solved by H.A. Schwarz in 
1890. Any pair . β, V in the conditions of that problem a pair of Björling data. 

Theorem 7.16 ([36, Theorem 4.3]) For any .k ∈ R, .k �= 0, there exists a unique 
.[ϕk, e3]-minimal which is a solution to the Cauchy problem with Björling data . β =
(β1, β2, β3), .V = (V1, V2, V3). This solution 

. ψ : U = I×] − ε, ε[⊆ C −→ R
3,

can be constructed in a neighborhood of . β as follows: let .G : U→ C be the unique 
solution to the following system of Cauchy-Kowalewski’s type, [43]: 

.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Gζζ + 2
|G|2Gζ Gζ

1 − |G|4 G + 2k
|Gζ |2

1 − |G|4 G = 0,

G(s, 0) = φ3(s)

φ1(s) − iφ2(s)
= −φ1(s) + iφ2(s)

φ3(s)
,

Gζ (s, 0) =

⎧⎪⎪⎨
⎪⎪⎩

1 − |G(s, 0)|4
4

(
φ1(s) + iφ2(s)

)
, if k = 1,

1 − |G(s, 0)|4
2(k − 1)β3

(
φ1(s) + iφ2(s)

)
, if k �= 1,

(50)
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where 

.φ(s) = (φ1(s), φ2(s), φ3(s)) = 1

2
(β ′(s) − iβ ′(s) ∧ V (s)), u ∈ I. (51) 

Then . ψ is given, up to an appropriate translation, by (48) if .k = 1 and by (49) if 
.k �= 1, and G is its Gauss map. 

8 A Calabi’s Type of Correspondence 

In this last section, we establish a bijection between .[ϕ, e3]-minimal surfaces in . R3

and its corresponding spacelike .[ϕ, e3]-maximal surfaces in the Lorentz-Minkowski 
space . L3 and show how their geometric properties are related. 

Let us consider . L3 the Minkowski space . R3 with the Lorentz metric

〈〈·, ·〉〉 = dx2 + dy2 − dz2, (52) 

A surface in .L3 is called spacelike if the induced metric on the surface is a 
positive definite Riemannian metric. This kind of surfaces has played a major role 
in Lorentzian geometry; for a survey of some results, we refer to [3]. 

Let .ϕ : I → R be a smooth function on a real open interval .I ⊆ R. A spacelike 
surface . ̃� in .D3 = R

2 × I ⊆ L
3 is called .[ϕ, e3]-maximal if its mean curvature 

vector . ̃H satisfies 

.H̃ =
(

∇L
3

ϕ

)⊥
= −ϕ̇ e3, (53) 

where .∇L
3

denotes the gradient operator in . L3. 
As in the Euclidean case, a .[ϕ, e3]-maximal spacelike surface can be also viewed 

either a critical point of the weighted volume functional 

.Ṽϕ(�̃) :=
∫

�̃

eϕ dA�̃, (54) 

or a maximal (zero mean curvature) spacelike surface in the conformally changed 
metric

g̃ϕ := eϕ〈〈·, ·〉〉. (55) 

Well-known examples of spacelike .[ϕ, e3]-maximal are the spacelike maximal 
surfaces and the spacelike translating solitons, whose study is an exciting and 
already classical mathematical research field; see [7, 13] for some results. As in the
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Euclidean case, a spacelike .[ϕ, e3]-maximal with ϕ(p) = α log |〈〈p, e3〉〉| , .α ∈ R, 
.α �= 0 will be called singular .α-maximal surface. 

If . ̃� is a simply connected planar domain, the vertical graph in . L3 of a function 
.ũ : �̃ → R is a .[ϕ, e3]-maximal spacelike if and only if . ̃u is a solution of the 
following elliptic partial differential equation: 

.(1 − ũ2
x̃ )ũỹỹ + (1 − ũ2

ỹ )ũx̃x̃ + 2ũx̃ ũỹ ũx̃ỹ + ϕ̇(ũ)W̃ 2 = 0, (x̃, ỹ) ∈ �̃, (56) 

where .W̃ =
√

1 − ũ2
x̃

− ũ2
ỹ
. 

Equation (56) is equivalent to the integrability of the following differential 
system: 

.φ̃x̃x̃ = 1 − ũ2
x̃

W̃
eϕ(ũ), φ̃x̃ỹ = − ũx̃ ũỹ

W̃
eϕ(ũ), φ̃ỹỹ =

1 − ũ2
ỹ

W̃
eϕ(ũ) (57) 

for a convex function .φ̃ : �̃ −→ R (unique, modulo linear polynomials). 
In [5], E. Calabi observed that there is a natural (local) connection between 

Euclidean minimal graphs and Lorentzian spacelike maximal graphs which is useful 
for describing examples and for applying similar methods to the study of their 
geometrical and topological properties. Recent advances of this correspondence in 
other ambient spaces could be found in [23, 24, 26, 27, 41]. 

Now, we show how Calabi’s correspondence can be extended to one between 
the family of .[ϕ, e3]-minimal surfaces in .R3 and the family of spacelike .[ϕ, e3]-
maximal surfaces in . L3. 

Theorem 8.17 ([35, Theorem 4.1]) Let . � be a simply connected planar domain, 
.ψ : � → R

3, .ψ(x, y) = (x, y, u) be a vertical .[ϕ, e3]-minimal graph in . R3, . φ be 
a solution to the system (5) and . ϑ be a primitive function of . eϕ (that is, .ϑ̇ = eϕ). 
Then .ψ̃ : �1 → L

3 given by 

.ψ̃ := (φx, φy, ϑ(u)), (58) 

is a .[−ϕ ◦ϑ−1, e3]-maximal spacelike graph in the Lorentz-Minkowski space whose 
Gauss map . ̃N writes 

.Ñ = (ux, uy,W), (59) 

The induced metrics g and . ̃g of . ψ and . ̃ψ , respectively, are conformal, and the mean 
curvature H (. H̃ ) and Gauss curvature K (. K̃ ) of . ψ (. ̃ψ) satisfy 

. H̃ + W 2e−ϕ(u)H = 0, . (60)

K̃ + W 4e−2ϕ(u) K = 0. (61)
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Remark 11 Observe that on a simply connected .[ϕ, e3]-minimal immersion . ψ in 
. R3 the correspondence (58) writes as follows: 

.ψ̃ =
∫

eϕ(ψ3)(e3 ∧ (dψ ∧ N) + 〈dψ, e3〉e3), (62) 

where . ∧ denotes the cross product in . R3. Moreover, the singularities of . ̃ψ hold 
where the angle function .〈e3, N〉 vanishes. 

Theorem 8.18 ([35, Theorem 4.4]) Let . ̃� be a simply connected planar domain, 
.ψ̃ : �̃ → L

3, .ψ̃(x̃, ỹ) = (x̃, ỹ, ũ) be a vertical .[ϕ, e3]-maximal graph in . L3 , . ̃φ be 
a solution to the system (57), and . ϑ̃ be a primitive of . eϕ . Then the immersion given 
by 

.ψ := (φ̃x̃ , φ̃ỹ , ϑ̃(ũ)), (63) 

is a .[−ϕ ◦ ϑ−1, e3]-minimal graph in . R3 whose induce metric, mean curvature H , 
and Gauss curvature K satisfy 

. g := e2ϕ(ũ)

W̃ 2 g̃, . (64) 

H + e−ϕ(ũ) W̃ 2 H̃ = 0, . (65) 

K + e−2ϕ(ũ) W̃ 4 K̃ = 0, (66) 

where . ̃g, . H̃ , and . K̃ are the induced metric, the mean curvature, and the Gauss 
curvature of the spacelike graph of . ̃u. 

Remark 12 The correspondence (63) also writes as follows: 

ψ =
∫

eϕ(ψ̃3)
(
e3 ∧L3 (dψ̃ ∧L3 Ñ) + 〈〈dψ̃, e3〉〉e3

)
, (67) 

where .∧L3 denotes the cross product in . L3 and . ̃N is the Gauss map of . ̃ψ . The  
singular points of . ψ hold where the angle function 〈〈e3, Ñ〉〉 vanishes.

8.1 Some Consequences and Applications 

Using the above correspondence, we can prove the following statements; see [35, 
Section 5].

• If . ψ is a translating soliton in . R3, then . ̃ψ is a singular .(−1)-maximal spacelike 
surface in . L3; see Fig. 5.

• If . ̃ψ is a translating soliton in . L3 then . ψ is a singular .(−1)-minimal surface in 
. R3; see Fig. 6.
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Fig. 5 Soliton in . R3 and its corresponding spacelike singular (-1)-maximal surface in . L3

Fig. 6 Singular 1-minimal surface in . R3 and its corresponding translating soliton in . L3

Fig. 7 Translating soliton and singular .(−2)-maximal bowl of elliptic type in .L3

• Be a revolution surface with vertical rotational axis is a preserving property.
• There exists a rotationally symmetric, entire, smooth, strictly convex spacelike 

translating soliton (unique up to translation) and of linear growth, Fig. 7 left.
• For any .α < −1, there exists a rotationally symmetric, entire, smooth, strictly 

convex spacelike singular .α-maximal graph (unique up to homothety) and with a 
linear growth, Fig. 7 right.

• For any .α < −1, there exist, up to an homothety (translation), two entire 
spacelike singular .α-maximal graphs (spacelike translating solitons) in . L3 with 
linear growth and with an isolated singularity at the origin which are asymptotic 
to the light cone. This kind of examples are called either winglike solitons or 
winglike singular .α-maximal surfaces, respectively; see Fig. 8.
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Fig. 8 Winglike soliton and singular .(−3)-maximal winglike in . L3
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Uniqueness of Constant Mean Curvature 
Spheres 

Pablo Mira and Joaquín Pérez 

Abstract We survey on the problem of finding all constant mean curvature two-
spheres inside a given ambient Riemannian three-manifold. While this task is 
seemingly hopeless in such generality, the authors recently solved (with Meeks and 
Ros) this classification problem when the ambient metric is homogeneous. This 
classification implies, in particular, that two compact surfaces of genus zero with 
the same constant mean curvature in a Riemannian homogeneous three-manifold 
must coincide, up to ambient isometry. The result generalizes, among others, two 
fundamental uniqueness theorems by Hopf and Abresch-Rosenberg. The proof of 
our uniqueness theorem is extremely long and technical. In these notes we present a 
detailed sketch of our proof of the classification of constant mean curvature spheres 
in Riemannian three-manifolds and discuss some relevant open problems of the 
theory. 

Keywords Constant mean curvature · Hopf theorem · Minimal spheres · 
Homogeneous three-manifolds 

1 Introduction 

The simplest examples of compact, constant mean curvature (CMC) surfaces are 
the round, totally umbilic spheres in the Euclidean three-space . R3. In 1951, H. 
Hopf [21] proved the following remarkable uniqueness theorem for them: any 
compact CMC surface of genus zero immersed in . R3 is a round sphere. The proof 
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by Hopf introduced a holomorphic quadratic differential for CMC surfaces in . R3, 
the so-called Hopf differential, which has been a key ingredient in the subsequent 
development of CMC surface theory. The proof by Hopf was later on extended to 
the remaining three-dimensional space forms . S3 and . H3; see  [1, 7]. However, for a 
long time, the extension of these classification results of immersed CMC spheres to 
other Riemannian ambient three-manifolds remained elusive. 

This situation only changed less than 20 years ago. In 2004, Abresch and Rosen-
berg [3] discovered that CMC surfaces in the homogeneous Riemannian product 
spaces .S

2×R and .H
2×R also admit a holomorphic quadratic differential. They used 

this differential to extend Hopf theorem to these spaces, by proving that any compact 
CMC surface of genus zero immersed in .S

2 ×R or .H
2 ×R is a sphere of revolution. 

In [4], Abresch and Rosenberg extended their holomorphic differential as well as 
their classification of CMC spheres to any rotationally invariant, simply connected 
Riemannian homogeneous three-manifold. Again, immersed CMC spheres in these 
spaces turned out to be rotational spheres. These results were the starting point of a 
great development of CMC surface theory in homogeneous three-manifolds in the 
following decade; see the expository works [11, 17] for an account of the beginnings 
of the theory. 

The results by Abresch and Rosenberg raised the following fundamental ques-
tion: can one classify all immersed CMC spheres in any Riemannian homogeneous 
three-manifold? One of the substantial difficulties in this problem was that the 
approach by Abresch and Rosenberg did not work in this more general, non-
rotational setting. 

In 2013, Daniel and Mira [12] introduced a new method for studying constant 
mean curvature spheres in the homogeneous Thurston three-dimensional manifold 
.Sol3. Using this method, they classified constant mean curvature spheres in . Sol3
for values H of the mean curvature greater than . 1√

3
and reduced the general 

classification problem to the obtention of area estimates for the family of spheres 
of constant mean curvature greater than any given positive number. These crucial 
area estimates were subsequently proved by Meeks [25]. This completed the 
classification of constant mean curvature spheres in .Sol3: for any .H > 0 there 
is a unique1 constant mean curvature sphere . SH in .Sol3 with mean curvature H ; 
moreover, . SH is maximally symmetric and embedded [12, 25]. 

The method by Daniel and Mira could be used in principle in any Riemannian 
homogeneous three-manifold, to obtain a classification of CMC spheres for large 
enough values of the mean curvature H . However, in order to obtain a full 
classification of CMC spheres in any homogeneous three-manifold, it is necessary 
to understand the limits of the moduli space of such CMC spheres, and this turned 
out to be a very delicate issue. 

Following this path, in the works [28, 29], the authors were able to obtain, jointly 
with Meeks and Ros, a classification of all immersed CMC spheres in arbitrary 
Riemannian homogeneous three-manifolds. For instance, they showed that if two

1 Uniqueness is meant up to ambient isometries of .Sol3. 
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immersed spheres in a simply connected homogeneous three-manifold have the 
same constant mean curvature H , then they differ by an ambient isometry. They also 
obtained the exact values of the mean curvature H for which such spheres exist, 
and they described their basic geometry regarding stability index, embeddedness, 
maximal symmetry, and moduli space parametrization. 

When the ambient homogeneous manifold M is diffeomorphic to . S3, the argu-
ments of the proof are not too lengthy; see [28]. However, when M is diffeomorphic 
to . R3, the proof is extremely technical. For instance, it needs to take into account 
that these homogeneous manifolds M can have very different geometric properties, 
and it relies on a case-by-case study depending on the ambient manifold, in order to 
prove a crucial area estimate for the family of spheres of constant mean curvature 
greater than a geometrically relevant number, namely, the critical mean curvature of 
M . 

However, except for the proof of this area estimate, the basic argument for the 
classification of CMC spheres in any homogeneous three-manifold can be explained 
in a quite intuitive, non-technical way. Our objective in this work is to explain 
the strategy behind the proof of the classification in [28, 29] and to place it into 
a more general context of the uniqueness of immersed spheres in Riemannian three-
manifolds, homogeneous or not, by means of topological index arguments. 

We next explain the organization of the work. In Sect. 2 we describe the classifi-
cation of simply connected Riemannian homogeneous three-manifolds, following 
the notes [30] by Meeks and Pérez. In Sect. 3 we present the proofs by Hopf 
and Abresch-Rosenberg of the classification of CMC spheres in space forms and 
rotationally symmetric homogeneous three-manifolds, respectively. Both rely on the 
existence of a holomorphic quadratic differential, an object not available in general 
homogeneous three-manifolds. 

In Sect. 4 we will depart from the argumentative path followed in [28, 29] and, 
instead, review the Gálvez-Mira uniqueness theory for immersed spheres in three-
manifolds in terms of elliptic equations and index theory, [18]. Their result ensures, 
in particular, uniqueness of immersed CMC spheres provided one can foliate the 
unit tangent bundle of the ambient Riemannian three-manifold by Legendrian lifts 
of CMC surfaces. 

In Sect. 5 we discuss the problem of classifying minimal two-spheres in Rie-
mannian three-spheres. We review the classification of minimal two-spheres in 
homogeneous three-spheres by Meeks, Ros, and the authors [28], and we view it 
in the light of the Gálvez-Mira theory and some recent existence and uniqueness 
theorems for minimal two-spheres by Ambrozio, Marques, and Neves [2]. 

In Sect. 6 we go back to the classification of CMC spheres in homogeneous three-
manifolds, by reviewing some basic properties regarding the stability operator of 
such CMC spheres. In Sect. 7 we state the classification theorems in [28, 29] that 
describe all CMC spheres in an arbitrary homogeneous three-manifold and discuss 
the scope, limits, and sharpness of the result. In Sect. 8 we give a brief outline of 
the proof of this classification. We conclude the paper by presenting some open 
problems on the uniqueness of CMC spheres in Sect. 9.
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2 Homogeneous Three-Manifolds 

The space of simply connected Riemannian homogeneous three-manifolds M can 
be classified from several viewpoints; a detailed presentation of this fact can be 
found in the notes [30] by Meeks and Pérez. In this section we will discuss briefly 
this classification. 

Let M be a simply connected homogeneous three-manifold. First, from a 
topological viewpoint, M is homeomorphic to either . R3, . S3, or  .S2 × R. Moreover, 
if M has the topology of .S2 × R, then it is actually (isometric to) a Riemannian 
product space .S

2(c) × R, where .c > 0 is the Gaussian curvature of .S
2(c). 

The simplest examples of homogeneous three-manifolds are the Riemannian 
space forms, that is, the Euclidean space . R3, the sphere .S

3(c) of constant curvature 
.c > 0, and the hyperbolic three-space .H3(c) of constant negative curvature .c < 0. 
We denote such spaces by .Q3(c). Their isometry group has dimension 6. Very 
simple examples of homogeneous three-manifolds are also the product spaces 
.H

2(c) × R and .S
2(c) × R. Their isometry group is four-dimensional. 

In addition to these examples, there is a natural way of creating a homogeneous 
three-manifold, as follows. Let X be a simply connected three-dimensional Lie 
group, and fix . 〈, 〉 an inner product on its Lie algebra .TeX. Then, . 〈, 〉 can be extended 
by left translations of X to define a global, left-invariant Riemannian metric g on X. 
We say in these conditions that .X ≡ (X, g) is a metric Lie group. Generically (but 
not always), a metric Lie group has a three-dimensional isometry group. 

The most relevant example of homogeneous three-manifold with a three-
dimensional isometry group is the Thurston geometry .Sol3. It can be seen as the 
Riemannian manifold .(R3, gSol), with 

. gSol = e2x3 x2
1 + e−2x3 x2

2 + x2
3 ,

where .(x1, x2, x3) are canonical coordinates of . R3. The space .Sol3 has a Lie group 
structure with respect to which the above metric is left-invariant, given by 

. (x1, x2, x3) · (y1, y2, y3) = (x1 + e−x3 y1, x2 + ex3 y2, x3 + y3).

The isometry group of .Sol3 is of dimension 3, and the connected component of 
the identity is generated by the left translations with respect to the previous group 
product. 

By construction, any metric Lie group is a simply connected homogeneous three-
manifold. Conversely we have: 

Fact Any simply connected homogeneous three-manifold that is not isometric to 
.S
2(c) × R for some .c > 0 is isometric to a metric Lie group X. 

This fact essentially reduces the classification of homogeneous three-manifolds 
to the algebraic classification of metric Lie groups. It is worth mentioning that
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a simply connected homogeneous three-manifold could be isometric to two non-
isomorphic metric Lie groups. 

The following basic fact is a consequence of the left invariance of the metric: 

Fact On any metric Lie group X, there exist three linearly independent Killing 
vector fields .F1, F2, F3, which are right-invariant for the group product of X. 

Let n denote the dimension of the isometry group of the homogeneous three-
manifold M . Then, .n = 6, 4, or 3. If  .n = 6, then M is a Riemannian space form 
.Q

3(c). We explain next the geometric properties of M when .n = 4 or .n = 3. 

2.1 Four-Dimensional Isometry Group: E(κ, τ)-Spaces 

Let M be a simply connected homogeneous three-manifold with .dim(Iso(M)) = 4. 
Then, M admits a specially nice structure: it is an .E(κ, τ )-space for some . (κ, τ ) ∈
R
2 with .κ �= 4τ 2 (see [9]); we next make a quick review of some standard aspects 

of these geometries. 
Every .E(κ, τ )-space admits a canonical Riemannian fibration . π : E(κ, τ ) →

M
2(κ) over the simply connected two-dimensional surface .M2(κ) of constant 

curvature . κ . After choosing orientations, we can define the vertical unit field . ξ
associated with this fibration, which is a Killing field on .E(κ, τ ) (since vertical 
translations along the fibers are isometries of .E(κ, τ )). The number .τ ∈ R is 
determined by the equation 

. ∇Xξ = τX × ξ,

for any vector field on .E(κ, τ ), where . × stands for the vector product with respect 
to the chosen orientation. 

If .τ = 0 we get the Riemannian product spaces .H
2(κ)×R and .S

2(κ)×R. When 
.τ �= 0, we obtain the Riemannian Heisenberg space .Nil3 for .κ = 0, the so-called 
Berger spheres for .κ > 0, and a rotationally symmetric left-invariant metric on the 
universal cover of .PSL(2,R) if .κ < 0. 

When .κ > 0, the space .E(κ, τ ) is homeomorphic to . S3 if .τ �= 0 and to . S2 × R

if .τ = 0. When .κ ≤ 0, .E(κ, τ ) is homeomorphic to . R3. All spaces .E(κ, τ ) are 
rotationally invariant, i.e., for each .p ∈ E(κ, τ ), there is a continuous .S1-family 
of orientation-preserving isometries of .E(κ, τ ) leaving pointwise fixed the fiber 
.π−1(π(p)). 

There is a useful coordinate model .R3(κ, τ ) for .E(κ, τ ). Specifically, let . R3(κ, τ )

be . R3 if .κ ≥ 0, or .D
(
2/

√−κ
) × R, if .κ < 0, where . D(ρ) = {(x1, x2) ∈ R

2 ; x2
1 +

x2
2 < ρ2}, endowed in any case with the Riemannian metric 

. ds2 = λ2(dx2
1 + dx2

2) + (
τλ(x2dx1 − x1dx2) + dx3

)2
, λ = 1

1 + κ
4 (x2

1 + x2
2)

.

(1)
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When .κ ≤ 0, .(R3(κ, τ ), ds2) is globally isometric to .E(κ, τ ). When .κ > 0, 
.(R3(κ, τ ), ds2) is isometric to .(S2(κ) \ {p}) × R if .τ = 0 and to the Riemannian 
universal cover of the Berger sphere .E(κ, τ ) minus one fiber if .τ �= 0. 

In the coordinate model .R3(κ, τ ), the vertical unit Killing field . ξ of .E(κ, τ ) and 
the projection .π : E(κ, τ ) → M

2(κ) are represented by . ∂
∂x3

and . (x1, x2, x3) �→
(x1, x2), respectively. 

2.2 Metric Lie Groups 

As explained previously, the case of a three-dimensional isometry group corre-
sponds to the situation in which M is a metric Lie group X, with the property that 
the set of isometries of X that fix the identity element .e ∈ X is a finite group. This 
is the generic situation and in general the hardest to deal with. An important fact in 
this situation is that the metric on X determines the algebraic Lie group structure, 
i.e., two isometric homogeneous three-manifolds with a three-dimensional isometry 
group always have isomorphic underlying Lie group structures. This is not true for 
isometry groups of dimension . ≥4. 

In general, one can divide metric Lie groups into three different classes. 

2.2.1 X Is Isomorphic to SU(2) 

The Lie group .SU(2) is diffeomorphic to the three-sphere . S3. Thus, by considering 
an inner product on the Lie algebra of .SU(2) and extending it to a left-invariant 
Riemannian metric on .SU(2) by left translations, we obtain a homogeneous three-
sphere. Conversely, any homogeneous three-sphere can be seen as .SU(2) endowed 
with a left-invariant metric. This is true in particular for spheres of constant 
curvature .S

3(c) and Berger three-spheres .E(κ, τ ), with .κ > 0 and .τ �= 0. 
The Lie group .SU(2) is unimodular. This property and the previous discussion 

implies that if .X = (SU(2), 〈, 〉) is a homogeneous three-sphere; then there exists 
an orthonormal left-invariant frame .{E1, E2, E3} on X such that 

.[E2, E3] = c1E1, [E3, E1] = c2E2, [E1, E2] = c3E3, (2) 

for certain positive constants .c1, c2, c3 > 0. The Ricci tensor of X diagonalizes in 
the basis .{E1, E2, E3} with eigenvalues 

. Ric(E1) = 2μ2μ3, Ric(E2) = 2μ1μ3, Ric(E3) = 2μ1μ2,

where 

.μ1 = 1

2
(−c1 + c2 + c3), μ2 = 1

2
(c1 − c2 + c3), μ3 = 1

2
(c1 + c2 − c3).
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The space of homogeneous three-spheres is parametrized by the structure 
constants .(c1, c2, c3). If the three constants . ci coincide (resp. two or none coincide), 
then X is a round sphere (resp. a Berger sphere or X has a three-dimensional 
isometry group). 

2.2.2 X Is Isomorphic to a Semidirect Product 

Given a matrix .A ∈ M2(R), the semidirect product .R2
�A R is the Lie group 

.(R3 ≡ R
2 × R, ∗) endowed with the group operation 

.(p1, z1) ∗ (p2, z2) = (p1 + ez1A p2, z1 + z2); (3) 

here . eB is the usual exponential of .B ∈M2(R). Let  

.A =
(

a b

c d

)
, ezA =

(
a11(z) a12(z)

a21(z) a22(z)

)
, (4) 

for each .z ∈ R. Then, a left-invariant frame .{E1, E2, E3} of .X = R
2
�A R is given 

by 

. E1(x, y, z) = a11(z)∂x + a21(z)∂y, E2(x, y, z) = a12(z)∂x + a22(z)∂y, E3 = ∂z.

(5) 

Observe that .{E1, E2, E3} is the left-invariant extension with respect to the group 
structure (3) of the canonical basis .(∂x)e, .(∂y)e, .(∂z)e of the tangent space .TeX at 
the identity element .e = (0, 0, 0). The right-invariant extensions on X of the same 
vectors of .TeX define the frame .{F1, F2, F3} where 

.F1 = ∂x, F2 = ∂y, F3(x, y, z) = (ax + by)∂x + (cx + dy)∂y + ∂z. (6) 

Definition 1 We define the canonical left-invariant metric . 〈, 〉 on .R2
�A R to be 

that one for which the left-invariant frame .{E1, E2, E3} given by (5) is orthonormal. 

Some basic properties of the canonical left invariant metric . 〈, 〉 on .R
2
�AR are: 

1. The right-invariant vector fields .F1, F2, F3 are Killing. 
2. The mean curvature of each leaf of the foliation .F = {R2

�A {z} | z ∈ R} with 
respect to the unit normal vector field . E3 is the constant .H = trace(A)/2. 

3. The expression of . 〈, 〉 in the .x, y, z coordinates of X is 

. 
〈, 〉 = [

a11(−z)2 + a21(−z)2
]
dx2 + [

a12(−z)2 + a22(−z)2
]
dy2 + dz2

+ [a11(−z)a12(−z) + a21(−z)a22(−z)] (dx ⊗ dy + dy ⊗ dx) .

(7)
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Different choices of the matrix A give rise then to different metric Lie groups, 
non-isomorphic in general. We remark that if A is a singular matrix, then . R2

�A R

with its canonical metric has an isometry group of dimension .≥ 4. Thus, for the 
case where X has a three-dimensional isometry group, the matrix A is non-singular. 

2.2.3 X Is Isomorphic to ˜SL(2, R) 

The Lie group .S̃L(2,R) is the universal cover of the special linear group . SL(2,R) =
{A ∈M2(R) | det A = 1} and of the projective special linear group . PSL(2,R) =
SL(2,R)/{±I2}. The Lie algebra of any of the groups .S̃L(2,R), .SL(2,R), and 
.PSL(2,R) is .sl(2,R) = {B ∈ M2(R) | trace(B) = 0}. It is worth recall-
ing that .PSL(2,R) has several isomorphic models: for instance, the group of 
orientation-preserving isometries of the hyperbolic plane or the group of conformal 
automorphisms of the unit disk. 

The matrices in the Lie algebra .sl(2,R) given by 

.(E1)e =
(
1 0
0 −1

)
, (E2)e =

(
0 1
1 0

)
, (E3)e =

(
0 −1
1 0

)
(8) 

define a left-invariant frame .{E1, E2, E3} on .S̃L(2,R) with the property that 

. [E1, E2] = −2E3, [E2, E3] = 2E1, [E3, E1] = 2E2.

Every left-invariant metric in .S̃L(2,R) can be obtained by choosing numbers 
.λ1, λ2, λ3 > 0 and declaring the length of the left-invariant vector field . Ei to 
be . λi , .1, 2, 3 while keeping them orthogonal. For instance, by declaring the left-
invariant frame .{E1, E2, E3} to be orthonormal, we obtain a left-invariant metric 
. 〈, 〉 on .S̃L(2,R) such that the metric Lie group .(S̃L(2,R), 〈, 〉) is isometric to the 
.E(κ, τ )-space with base curvature .κ = −4 and bundle curvature .τ 2 = 1. 

3 Holomorphic Quadratic Differentials and CMC Spheres 

3.1 CMC Spheres in Space Forms Q3(c) 

Constant mean curvature spheres in . R3 were classified by Hopf; see [21, 22]. 
Specifically, he proved that any CMC sphere in . R3 must be a round, totally umbilic 
sphere. The proof by Hopf also works for the case where the ambient manifold is the 
sphere .S3(c) or the hyperbolic space .H3(c), a theorem commonly associated with 
the names of Chern [7] and Almgren [1]. Thus: 

Theorem 3 Any CMC sphere in .Q
3(c) is a round totally umbilic sphere.
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The proof by Hopf introduced an object that has played a fundamental role in the 
development of CMC surface theory: a holomorphic quadratic differential for any 
CMC surface in . R3. We give a brief sketch of the proof. 

Let .ψ : 
 � Q
3(c) be a conformally immersed surface in .Q3(c), and let z 

denote a local conformal parameter for . 
. Let  .λ,H,Q denote, respectively, the 
conformal factor of the metric of . ψ , the mean curvature function of . ψ , and the 
quadratic differential 

. Qdz2 := −〈ψz, ηz〉dz2,

where .η : 
 → T U(Q3(c)) is the unit normal of . ψ . Observe that the zeros of Q 
agree with the umbilic points of . 
. The data .(λ,H,Q) determine the surface up to 
rigid motions in .Q

3(c) and satisfy the Codazzi equation 

. 2Qz̄ = λHz.

In particular, if H is constant, .Qdz2 is a holomorphic quadratic differential on . 
. 
Now, assume that . 
 is homeomorphic to . S2. By uniformization, .Qdz2 defines a 

holomorphic quadratic differential on the Riemann sphere . C, and so .Q ≡ 0 on . 
. 
Therefore, . 
 is a totally umbilic sphere, hence round. 

Remark 1 In . R3, round CMC spheres exist for all non-zero values of the mean 
curvature H . In . S3, they exist for all values of H ; for instance, when .H = 0, such a 
sphere is a totally geodesic equatorial sphere of . S3. In  .H3(c), round CMC spheres 
exist only for the values .|H | >

√−c. 

One should note that the value .
√−c appearing in Remark 1 is the mean curvature 

of horospheres in .H
3(c). An easy application of the maximum principle with respect 

to these horospheres implies that there are no compact surfaces in .H
3(c) with . |H | ≤√−c at every point. 

3.2 CMC Spheres in Homogeneous E(κ, τ)-Spaces 

The extension of Theorem 3 to other Riemannian ambient three-manifolds . (M3, g)

of non-constant sectional curvature remained unanswered for a long time, until 
Abresch and Rosenberg [3, 4] proved the striking fact that, on any homogeneous 
.E(κ, τ )-space, there exists a holomorphic quadratic differential for CMC surfaces. 
This allowed them to classify all CMC spheres in .E(κ, τ )-spaces. We next explain 
their theorem. For a more detailed approach, see [11, 17]. 

Let .ψ : 
 → E(κ, τ ) be a conformal immersion with unit normal map N , and 
consider on . 
 a local conformal parameter .z = s + it . Recall that . ξ denotes the 
vertical Killing field of .E(κ, τ ).
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In these conditions, we will call the fundamental data of . ψ to 

. (λ|dz|2, ν,H, p dz2, A dz),

where .λ,H,Q are defined as in .Q
3(c), while .ν = 〈N, ξ 〉 is the angle function of . 


and . A := 〈ξ, ψz〉.
Once here, a set of necessary and sufficient conditions for the integrability of 

CMC surfaces in .E(κ, τ ) can be written in terms of these fundamental data. This is 
a key influential result by B. Daniel [9]. The Daniel integrability conditions can be 
rewritten in terms of a conformal parameter z as follows (see Fernández-Mira [15]): 

.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(C.1) Qz̄ = λ

2
(Hz + νA(κ − 4τ 2)).

(C.2) Az̄ = νλ

2
(H + iτ ).

(C.3) νz = −(H − iτ )A − 2Q

λ
Ā.

(C.4)
4|A|2

λ
= 1 − ν2.

(9) 

The fundamental data .(λ|dz|2, ν,H, p dz2, A dz) satisfying (9) determine the 
immersion . ψ uniquely up to ambient isometries preserving the orientations of base 
and fiber of .E(κ, τ ). We note that (C.1) is the Codazzi equation, while the rest of 
equations express the geometry of the surface with respect to the special Killing 
vertical direction . ξ . 

A simple computation from the integrability conditions proves: 

Theorem 4 ([3, 4]) The quadratic differential 

. QAR dz2 :=
(
2(H + iτ )Q − (κ − 4τ 2)A2

)
dz2

is holomorphic for any CMC surface in .E(κ, τ ). 

As a consequence, one can classify CMC spheres in .E(κ, τ ), as follows: 

Theorem 5 (Abresch-Rosenberg) Any CMC sphere in .E(κ, τ ) is a rotational 
sphere. 

Proof Arguing as in Hopf’s proof for . R3, we have from Theorem 4 that . QAR ≡ 0
on any CMC sphere in .E(κ, τ ). So, we just need to show that CMC spheres with 
.QAR ≡ 0 are rotational. 

On any CMC surface . 
 in .E(κ, τ ), the equation .QAR = 0 together with the 
integrability conditions (9) implies that .w := arctanh(ν) is a harmonic function 
on . 
 (here . ν is the angle function of the surface). Define . ζ as a local conformal 
parameter on . 
 with .Re ζ = w. Using this parameter and .QAR = 0 in (9), one can 
show that all fundamental data of the surface depend only on w (and not on .Im ζ ).
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This implies that the surface is a local piece of some CMC surface invariant by a 
continuous 1-parameter subgroup of ambient isometries of .E(κ, τ ). 

If the surface is diffeomorphic to . S2, this 1-parameter subgroup can only be the 
group of rotations around a vertical fiber of .E(κ, τ ). Hence, CMC spheres in . E(κ, τ )

are rotational. ��
Remark 2 For each .H ∈ R there is at most one rotational CMC sphere in . E(κ, τ )

with mean curvature H , up to ambient isometry. The values of the mean curvature 
H for which there exist rotational CMC spheres in .E(κ, τ ) are: 

1. If .κ > 0, there exist CMC spheres for every .H ∈ R. When .H = 0 in .S
2(c) × R, 

these are the totally geodesic slices .S
2(c) × {t0}. 

2. If .κ ≤ 0, then there exist CMC spheres only if .|H | >
√−κ
2 . 

As  a matter of fact, if  .κ ≤ 0, there exist entire graphs in .E(κ, τ ) of constant mean 

curvature .H =
√−κ
2 . Following [17], we call this value the critical mean curvature 

of .E(κ, τ ). By the maximum principle, there are no compact CMC surfaces in 

.E(κ, τ ) with .|H | ≤
√−κ
2 . The class of entire graphs of critical constant mean 

curvature in .E(κ, τ ) was classified in the works [10, 14, 16, 20]; see [11, 17]. 

Remark 3 

1. There exist some rotational CMC spheres in some Berger spheres .E(κ, τ ) that 
are not embedded, i.e., they have self-intersections. These examples were found 
and classified by Torralbo in [33]. 

2. The space of minimal spheres inside a Berger sphere .E(κ, τ ) agrees with the 
space of minimal spheres in the unit sphere . S3, i.e., with the space of equators 
of . S3, when both .E(κ, τ ),S3 are seen as the Lie group .SU(2) with two different 
Riemannian metrics. This was observed by Torralbo in [34]. See Sect. 5 for more 
details. 

Motivated by the Abresch-Rosenberg holomorphic differential, the existence of 
a holomorphic quadratic differential for CMC surfaces has also been intensively 
sought in the case that the ambient manifold is a homogeneous three-manifold 
with a three-dimensional isometry group. This holomorphic differential does not 
seem to exist; however, there is a particular situation in which it does. In [12], 
Daniel and Mira found a holomorphic quadratic differential defined on any minimal 
surface in the Thurston geometry .Sol3. Their construction does not work in other 
homogeneous manifolds or for non-zero values of the mean curvature in .Sol3. The  
existence of this holomorphic differential is yet to be exploited. 

4 General Uniqueness of Immersed Spheres 

In this section we present a theory due to Gálvez and Mira [18] that allows to 
prove uniqueness results for immersed spheres in three-manifolds without having 
a holomorphic quadratic differential. It is based on elliptic PDE theory and the
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Poincaré-Hopf index theorem, and we will use it in the classification of CMC 
spheres of homogeneous three-manifolds. 

Let .M = (M3, g) be an oriented Riemannian three-manifold, and let . T U(M) =
{(p, v) : p ∈ M, v ∈ TpM, |v| = 1} be its unit tangent bundle. Consider a general 
Weingarten equation for immersed oriented surfaces . 
 in M , of the  form  

.W(κ1, κ2, x, η) = 0, (10) 

where W is smooth on .R2 × T U(M), symmetric in .(κ1, κ2), and satisfies the 
ellipticity condition 

.
∂W

∂κ1

∂W

∂κ2
> 0 in W−1(0). (11) 

Here, .κ1, κ2, x, η are, respectively, the principal curvatures, the position vector, 
and the unit normal of . 
. Of course, the CMC condition .H = constant is a very 
particular example of (10). In the sequel, we will call H -surface to any surface in 
M with constant mean curvature .H ∈ R. 

Definition 2 We say that a family . F of immersed surfaces in M foliates . T U(M)

if: 

1. For each .S ∈ F, the  map .q ∈ S �→ (q, η(q)) ∈ T U(M) is one-to-one. 
2. For every .(p, v) ∈ T U(M) there exists a unique .S ∈ F with .p ∈ S and . v =

η(p). 
3. The family . F depends smoothly on the initial conditions .(p, v) ∈ T U(M). 

Theorem 6 shows that one can classify the immersed spheres in M that satisfy 
(10) as long as there exists a family of surfaces in M satisfying (10) that foliates the 
unit tangent bundle of M: 

Theorem 6 ([18]) Assume that, on a Riemannian three-manifold M , there exists 
a family of surfaces . F that foliates .T U(M) and whose elements satisfy an elliptic 
Weingarten equation (10). 

Then, any immersed sphere in M that satisfies (10) is an element of the family . F. 

As an example, given .H > 0, the family of round spheres in . R3 of radius . 1/H
foliates .T U(R3). Since all such spheres have constant mean curvature H , we can 
deduce Hopf theorem from Theorem 6: any immersed H -sphere in . R3 is a round 
sphere of radius .1/H . 

More generally, one can check by ODE analysis that if . SH is a rotational H -
sphere in a homogeneous space .E(κ, τ ), then the family of all surfaces of the form 
.Φ(SH ), where . Φ is an orientation-preserving isometry of .E(κ, τ ), actually foliates 
the unit tangent bundle of .E(κ, τ ). As a consequence, we recover the Abresch-
Rosenberg Theorem 5 without using the existence of a holomorphic quadratic 
differential. 

We next explain the idea of the proof of Theorem 6. Let . 
 be an immersed sphere 
in M that satisfies (10). For any .q ∈ 
, let  . Sq denote the element of the family .F
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that passes through .(q, η(q)). We define the smooth quadratic form . � on . 
 given 
for any .q ∈ 
 by 

.�(q) := σ(q) − σSq (q), (12) 

where .σ, σSq denote, respectively, the second fundamental forms of . 
 and of . Sq . 
Thus, . � compares the second fundamental forms of a fixed surface . 
 with a moving 
surface . Sq that depends on q. The quadratic form . � vanishes on . 
 if and only if . 


is an element of the family . F. 
Consider local coordinates .(x, y, z) on M around q, so that .q ≡ (0, 0, 0) and . 


(resp. . Sq ) is a local graph .z = u(x, y) (resp. .z = u0(x, y)) in these coordinates. 
Note that .u = u0 and .Du = Du0 at the origin. Since both .u, u0 satisfy the same 
elliptic equation, coming from (10), one can show that .h := u − u0 has at the origin 
a zero of finite order, and the nodal structure of h around the origin is, up to affine 
transformation, the one of a harmonic function. 

On the other hand, if one rewrites (12) for any .p ∈ 
 close to q as 

. �(p) = σ(p) − σSq (p) + σSq (p) − σSp(p)

and uses the above properties of the function h, a computation shows that, in the 
.(x, y, z) coordinates, we have .� = D2h + · · · (here, the dots mean higher order 
terms which vanish at q). By our previous control on h, we can then deduce that, if 
. � is not identically zero on . 
, then: 

1. The zeros of . � are isolated. 
2. . � is a Lorentzian metric on . 
 away from these zeros. 
3. Around any zero of . �, the null line fields .L1, L2 of the Lorentzian metric . � have 

negative (Poincaré-Hopf) index. 

On the other hand, since . 
 has genus zero, the Poincaré-Hopf theorem implies 
that the sum of all indices of a continuous line field with isolated singularities 
in . 
 (in particular, both .L1, L2 are in these conditions) is equal to 2. This is a 
contradiction. Thus .� ≡ 0 on . 
, i.e., . 
 is an element of . F. This proves Theorem 6. 

Remark 4 Note that Theorem 6 reduces the uniqueness of immersed elliptic 
Weingarten spheres in a given .(M3, g) to the existence of a family . F of such surfaces 
foliating .T U(M). 

5 Minimal Spheres in Riemannian Three-Spheres 

If we consider the three-sphere . S3 endowed with some Riemannian metric g, it is  
an important open problem to understand the space of minimal spheres in .(S3, g). 
There is a very general existence theorem, due to Simon and Smith [32], showing 
that this space is always non-empty:
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Theorem 7 (Simon-Smith) On any Riemannian three-sphere .(S3, g), there exists 
at least one embedded minimal sphere. 

As a matter of fact, it is widely believed that any Riemannian three-sphere 
.(S3, g) should admit at least four embedded minimal spheres. This statement is a 
natural analogous of the Lusternik-Schnirelmann theorem, according to which any 
Riemannian two-sphere .(S2, g) admits at least three closed embedded geodesics. 
The number four cannot be sharpened, since B. White [37] has proved that there 
exist some Riemannian three-spheres .(S3, g) that contain exactly four embedded 
minimal two-spheres. White’s Riemannian metrics are suitable small perturbations 
of the round metric .gcan on . S3. For some contributions to this problem, see 
[6, 13, 19, 23, 36, 37]. 

Besides existence, another important question is uniqueness. As we already 
explained in Sect. 3.1, by a theorem of Almgren [1], any immersed minimal sphere 
in the round unit sphere .S3 ⊂ R

4 is an equatorial totally geodesic sphere, i.e., the 
intersection of . S3 with a hyperplane of . R4 containing the origin. See Theorem 3. 

The notion of equatorial sphere has a natural meaning if we consider a 
homogeneous three-sphere, i.e. .(S3, gh), where . gh is a Riemannian homogeneous 
metric. In that situation, by classification, .(S3, gh) can be seen as the Lie group 
.SU(2) endowed with a left-invariant metric. Now, we can view the Lie group 
structure .SU(2) as the group of unit quaternions with its natural product operation. 
Specifically, identify . R4 with the space of quaternions .H := span{1, i, j, k} in the 
usual way. Then, the quaternionic product acts naturally on the unit quaternions 
.S
3 ⊂ H, defining a Lie group structure isomorphic to .SU(2). The space of unit 

quaternions with zero real part is then an equatorial sphere . S of . S3, and any other 
equatorial sphere can be seen as a left translation of . S. This allows for a definition 
of equatorial sphere only in terms of the Lie group structure on . S3, independent 
of the chosen Riemannian metric. Note, in any case, that two equatorial spheres in 
a homogeneous three-sphere .(S3, gh) are always congruent, since they differ by a 
left translation of their underlying Lie group structure, and these translations are 
isometries of the ambient space. 

In general, equatorial spheres . S are not totally geodesic in the homogeneous 
three-sphere .(S3, gh). However, we have: 

Lemma 1 ([2, 33]) Any equatorial sphere . S in a homogeneous three-sphere 
.(S3, gh) is minimal. 

This statement was proved by Torralbo [34] when .(S3, gh) is a Berger three-
sphere, i.e., when . gh is rotationally invariant. For the general case of an arbitrary 
homogeneous metric . gh on . S3, the result was recently proved by Ambrozio, 
Marques, and Neves [2]. 

The class of immersed minimal spheres in a homogeneous three-sphere . (S3, gh)

was classified by Meeks, Ros, and the authors in [28]. Specifically, it was shown 
in [28] that on any homogeneous three-sphere .(S3, gh), there exists an embedded 
minimal two-sphere . S0 and that any other immersed minimal sphere in .(S3, gh) is a 
left translation of . S0 with respect to the underlying Lie group structure of .(S3, gh). In  
particular, up to ambient isometry, there exists a unique minimal sphere in .(S3, gh).
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Now, using Lemma 1 and Theorem 6, we can make this uniqueness statement 
more explicit: 

Theorem 8 Any (immersed) minimal sphere in a homogeneous three-sphere 
.(S3, gh) is an equatorial sphere . S. 

To see this, it suffices to make the trivial observation that the family . F of equators 
in . S3 foliates the unit tangent bundle of . S3; see Definition 2. 

Outside the realm of homogeneous three-spheres, the only known classification 
theorem for immersed minimal spheres in Riemannian three-spheres .(S3, g) has 
been very recently obtained by Ambrozio, Marques, and Neves in [2]. In that work, 
they constructed Riemannian metrics g on . S3 with the following property: 

There exists a smooth family .F = {
σ }σ∈RP3 of embedded minimal two-spheres in .(S3, g), 
with the property that for each .x ∈ S

3 and each two-dimensional plane .Π ⊂ TxS
3, there  

is a unique element .σ ∈ RP
3 such that .Tx
σ = Π . Ambrozio, Marques, and Neves called 

such .F = {
σ }σ a Zoll family of minimal spheres. 

Besides the clear independent interest of the existence of these Riemannian three-
spheres with Zoll families, the result is specially interesting from the viewpoint 
of uniqueness of minimal spheres. Indeed, it is immediate that the conditions 
imposed on the definition of a Zoll family . F automatically imply that . F foliates 
the unit tangent bundle of . S3, following Definition 2. In particular, the Gálvez-Mira 
uniqueness Theorem 6 applies in this context and allows to prove a full classification 
of immersed minimal two-spheres in any Riemannian three-sphere with a Zoll 
family . F. 

For example, we can extract from [2] the following existence and uniqueness 
theorem for minimal spheres in Riemannian three-spheres. We should note that 
the results in [2] are actually more general; for instance, they hold for arbitrary 
dimension and for more general perturbations of the canonical metric .gcan in . S3 that 
the one given in the theorem below. 

Theorem 9 ([2]) Let . ρ̇ denote a smooth odd function on . S3. Then, there exists a 
smooth 1-parameter family of smooth functions .ρ(t) in . S3, with .t ∈ (−δ, δ), . ρ(0) =
0 and .ρ′(0) = ρ̇, such that .(S3, e2ρ(t)gcan) admits a Zoll family . F of embedded 
minimal two-spheres. 

Thus, by Theorem 6, any immersed minimal two-sphere in any such Riemannian 
three-sphere .(S3, e2ρ(t)gcan) is one of the embedded minimal spheres of the family 
. F. 

As explained above, any homogeneous three-sphere .(S3, gh) has the property that 
all equatorial spheres are minimal. In [2], Ambrozio, Marques, and Neves showed 
that there also exist non-homogeneous, antipodally symmetric Riemannian three-
spheres .(S3, g) with this property. Then, by the Gálvez-Mira uniqueness theorem, 
equators are the only minimal spheres in any such .(S3, g): 

Theorem 10 ([2]) There exist Riemannian metrics g on . S3 such that .(S3, g) has a 
discrete isometry group, and any equatorial sphere of . S3 is minimal in .(S3, g).
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By Theorem 6, any immersed minimal two-sphere in any such .(S3, g) is an 
equatorial sphere. 

6 Uniqueness of Index-One CMC Spheres in Metric Lie 
Groups 

6.1 Basic Stability Properties 

We start with some basic definitions regarding stability and index of CMC surfaces. 
We refer the reader to the handbook [31] by Meeks, Pérez, and Ros for a more 
detailed approach to this topic. 

Let M be a Riemannian manifold and let . 
 be a immersed, two-sided2 

hypersurface in M . Then, the Jacobi operator (stability operator) of . 
 is defined as 

.L = � + |σ |2 + Ric(N). (13) 

Here, . � is the Laplacian on . 
, .|σ |2 denotes the square of the norm of the second 
fundamental form of . 
, and N is the unit normal of . 
. A smooth function on . 
 is 
called a Jacobi function if it lies in the kernel of . L, i.e., .Lu = 0. 

A domain .� ⊂ 
 with compact closure is stable if .− ∫



uLu ≥ 0 for all 
compactly supported smooth functions .u ∈ C∞

0 (�). The  index of a domain . � ⊂ 


with compact closure is the number of negative eigenvalues of .−L on . �; thus, . � is 
stable if and only if its index is zero. Since the index of stability is non-decreasing 
with the respect to the inclusion of subdomains of . 
 with compact closure, one can 
define the index of stability of . 
 as the supremum of the indices over any increasing 
sequence of subdomains .�i ⊂ 
 with compact closure and .∪i�i = 
. . 
 is called 
stable if its index is zero. 

Assume next that the ambient manifold M is a metric Lie group X and . 
 = SH

is an H -sphere in X. Then, the index of . SH is at least 1. This is due to the fact 
that on X, there exist three linearly independent, right-invariant Killing vector fields 
.F1, F2, F3 (see Fact 2) and that the functions .ui := 〈Fi,N〉, .i = 1, 2, 3 are Jacobi 
functions on . SH . Since right-invariant vector fields on X are either non-vanishing or 
identically zero, and tangent vector fields on spheres always vanish somewhere, we 
deduce that the functions .ui = 〈Fi,N〉, .i = 1, 2, 3, are linearly independent, i.e., 
.Ker(L) has dimension . ≥ 3. Thus, 0 cannot be the first eigenvalue of . −L, and so the 
index of . SH is at least one. 

On the other hand, it follows from Theorem 3.4 in Cheng [8] that if . SH is an 
index-one H -sphere, then .Ker(L) always has dimension at most three. We can 
deduce then that .Ker(L) is actually three-dimensional, and it is spanned by the

2 . 
 is two-sided if there exists a globally defined unit normal vector field N to . 
. 
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geometric Jacobi functions . ui defined above. We say then that the index-one H -
sphere . SH has nullity three. 

The index-one condition is related to (weak) stability of CMC surfaces. Here, we 
say that a compact surface S is weakly stable if .− ∫

S
uLu ≥ 0 for any . u ∈ C∞(S)

satisfying .
∫
S

u = 0. Solutions to the isoperimetric problem are compact, embedded, 
weakly stable CMC surfaces. Also, weakly stable surfaces have index 0 or 1. In 
particular, when X is a metric Lie group, any compact, weakly stable CMC surface 
(in particular, any solution of the isoperimetric problem) has index one. This follows 
from the more general fact that there are no compact CMC surfaces of index 0 in X. 
Indeed, if . 
 was such a surface, .Ker(L) would be one-dimensional. In particular, 
there would exist two linearly independent right invariant vector fields .F1, F2 on X 
for which .〈Fi,N〉 = 0, .i = 1, 2. By left translating . 
 so that it contains the identity 
element e of X, this means that . 
 would be a compact two-dimensional subgroup 
of X. But such subgroups do not exist. 

The geometric properties of index-one H -spheres in a metric Lie group X will be 
of crucial importance for classifying all H -spheres in X. We actually seek to prove 
that any H -sphere in X has index one. However, the approach to prove this result is 
indirect. We will first show a uniqueness property for index-one H -spheres via their 
Gauss map. 

6.2 Gauss Map and Uniqueness of Index-One Spheres 

An important tool for the study of CMC surfaces in metric Lie groups is the left-
invariant Gauss map that we define below. When X is . R3 with its usual abelian Lie 
group structure, this definition coincides with the usual Gauss map for surfaces in 
. R3. 

Definition 3 Let . 
 be an immersed oriented surface in a metric Lie group X. The  
left-invariant Gauss map of . 
 is the map .g : 
 → S

2 taking values in the unit 
sphere of the tangent space .TeX at the identity element .e ∈ X, obtained by left-
translating the unit normal of . 
 at each .p ∈ 
 to .TeX. 

A connected oriented surface3 in a metric Lie group has constant left-invariant 
Gauss map if and only if it is a left coset of some two-dimensional subgroup; see 
Lemma  3.9 in [30]. 

Contrary to what happens in Euclidean three-space, this left-invariant Gauss map 
.g : 
 → S

2 is not a harmonic map for CMC surfaces in a general metric Lie group 
X. Still, it satisfies a nice complex PDE, of the form 

.gzz̄ = A(g, ḡ)gzgz̄ + B(g, ḡ)|gz|2. (14)

3 This property holds true for connected oriented hypersurfaces in an .(n + 1)-dimensional metric 
Lie group. 
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Here, g is viewed as a map .g : 
 → C ∪ {∞} after stereographic projection 
on .TeX with respect to an adequately chosen orthonormal basis .{E1, E2, E3} of 
.TeX. The functions .A,B are rational functions on . g, g, that depend on the algebraic 
structure constants of the metric Lie group X and on the constant value H of the 
mean curvature; see [28] for the specific form of these coefficients. For the case 
where .X = Sol3, this equation was obtained by Daniel and Mira [12]. 

One also has a converse to this result, in the form of a representation theorem. 
This result roughly says that any solution g to (14) on a simply connected Riemann 
surface . 
 is the left-invariant Gauss map of an H -surface in the metric Lie group 
X. See [28, Theorem 3.7]. 

The next result is key for the classification of CMC spheres in metric Lie groups: 

Theorem 11 ([28]) If . SH is an index-one H -sphere in a metric Lie group X, then 
the left-invariant Gauss map of . SH is an orientation preserving diffeomorphism onto 
. S2. 

We give a sketch of the proof. Assume that the left-invariant Gauss map g of 
the index-one H -sphere . SH has a point . z0 where dg has rank . ≤ 1. Then, g has a 
first-order contact at . z0 with another solution . ̂g to (14) that depends only on one 
variable. Using the representation theorem, . ̂g generates an H -surface . 
0 in . 
 that 
has at . z0 a second-order contact with . SH and which is invariant by a 1-parameter 
group of left translations of X (since . ̂g only depends on one variable). In particular, 
there exists a right-invariant Killing vector field F in X that is everywhere tangent 
to . 
0. Therefore, F is tangent to . SH at . z0. This implies that the Jacobi function 
.u := 〈F,N〉 on . SH satisfies .u(z0) = (∇u)z0 = 0. In particular, the nodal set . u−1(0)
of u around . z0 consists of an equiangular system of .n ≥ 2 arcs intersecting at . z0. 
On the other hand, as a consequence of Courant’s nodal domain theorem, a second 
eigenfunction of .−L on a two-sphere must have a regular, embedded curve as a 
nodal set; see Corollary 3.5 in [8]. Since . SH has index one, 0 is a second eigenvalue 
of . −L, and so the above behavior for the Jacobi function u is not possible. This 
contradiction proves that .g : SH → S

2 is a local diffeomorphism, from where 
Theorem 11 follows. 

Theorem 11 implies that if we consider the family . F of all possible left 
translations in X of the index-one H -sphere . SH , then . F foliates the unit tangent 
bundle of X, as in Definition 2. In particular, we have directly from Theorem 6 and 
Theorem 11: 

Corollary 1 ([28]) If . SH is an index-one sphere in a metric Lie group X for some 
value .H ∈ R, then any other immersed H -sphere . 
 in X is a left-translate of . SH . 

We remark that Theorem 11 and Corollary 1 were proved by Daniel-Mira [12] in  
the case that X is the Thurston geometry .Sol3.
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7 Classification of CMC Spheres in Homogeneous 
Three-Manifolds 

In this section, we will state the results that classify all immersed CMC spheres 
in any simply connected homogeneous three-manifold M . As explained in Sect. 2, 
M must be homeomorphic to either . S3, . R3, or  .S2 × R. We discuss each of these 
topological cases separately. 

First of all, recall that if M is homeomorphic to .S2 × R, then M is actually 
isometric to a Riemannian product .S2(c) × R. The classification of CMC spheres 
in .S2(c) × R was obtained by Abresch-Rosenberg [3]: for any .H ∈ R there exists 
a unique immersed H -sphere . SH in .S2(c) × R. This sphere is actually embedded 
and rotationally symmetric. If .H �= 0, . SH has index-one. The minimal spheres in 
.S
2(c) × R are the totally geodesic equators .S

2(c) × {t0}, whose index is zero. 
In the next two sections, we describe the classification for the cases that M is 

diffeomorphic to . S3 and to . R3, respectively. One should observe that, by Fact 2, any  
such homogeneous manifold M can be seen as a metric Lie group X. 

7.1 CMC Spheres in Homogeneous Three-Spheres 

In Theorem 12, X denotes a homogeneous three-sphere, i.e., .X = (S3, g) where g 
is a homogeneous metric on . S3. By classification, X can be seen as the Lie group 
.SU(2) endowed with a left-invariant metric. 

Theorem 12 ([28]) Let .X = (S3, g) be a homogeneous three-sphere. Then: 

1. For every .H ∈ R, there exists an H -sphere . SH in X. 
2. Up to ambient isometry, . SH is the unique H -sphere in X. 
3. There exist two points in X, called the centers of symmetry of . SH , such that the 

isometries of X that fix any of these points also leave . SH invariant. 
4. . SH is Alexandrov embedded, i.e., the immersion .f : SH � X of . SH in X can be 

extended to an isometric immersion .F : B → X of a Riemannian three-ball such 
that .∂B = SH is mean convex. 

5. . SH has index one and nullity three for the Jacobi operator. 

Moreover, let .MX be the set of oriented immersed spheres of constant mean 
curvature in X whose center of symmetry is a given point .e ∈ X. Then, .MX is 
an analytic family .{S(t)}t∈R parameterized by the mean curvature value t of .S(t). 

Let us make some comments regarding this theorem. 

1. Clearly, allowing the values of the mean curvature H to move in .[0,∞) is just a 
matter of choosing an orientation on the H -surfaces; after doing this, the center 
of symmetry is also well-defined if we choose it in the mean convex side. 

2. The uniqueness of each . SH among H -spheres is not only up to ambient isometry 
of X, but up to left translation of X. That is, any H -sphere of X is a left
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translation of . SH . This is the key aspect in proving the existence of the center 
of symmetry of . SH . The fact that . SH is invariant by all isometries of X that fix 
its center of symmetry imply that . SH is round if X is the standard round sphere 
(Theorem 3) and that . SH is rotational if X is a Berger three-sphere .E(κ, τ ), for  
.κ > 0, τ �= 0 (Theorem 5). 

3. One cannot claim that . SH is embedded in general. As explained in Sect. 3.2, 
Torralbo found examples of non-embedded CMC spheres in Berger three-
spheres. 

4. Recall from Sect. 6.1 that any compact, weakly stable H -surface in a metric 
Lie group X has index one. The H -spheres . SH of Theorem 12 have index one. 
However, Torralbo and Urbano [35] found some examples of such H -spheres . SH

in Berger three-spheres that are not weakly stable. In other words, the Alexandrov 
embeddedness and index-properties of . SH in Theorem 12 cannot be improved to 
embeddedness or weak stability. 

5. Recall from Sect. 5 that there exists a unique minimal sphere . S0 in .X = (S3, g). 
This sphere . S0 is embedded, and it is actually explicit, as it is an equatorial sphere 
of . S3. 

6. By Theorem 11, the left-invariant Gauss map of . SH is a diffeomorphism. 

7.2 CMC Spheres in Metric Lie Groups Diffeomorphic to R3 

In Theorem 13, X denotes a homogeneous three-manifold diffeomorphic to . R3. 
By Fact 2, X can be seen as a metric Lie group. In this situation, there are 
no compact minimal surfaces in X; this follows by a simple application of the 
maximum principle and the fact that there exist entire graphs in X with constant 
mean curvature. In particular, the existence part of Theorem 12 does not hold in this 
non-compact context, and in order to classify CMC spheres, one needs to determine 
the values of the mean curvature H for which such spheres exist. This will be done 
in terms of the Cheeger constant of X. 

The Cheeger constant Ch.(Y ) of a Riemannian manifold Y with infinite volume 
is defined as the infimum of the quotients 

. 
Area(∂D)

Volume(D)

where D is any smooth compact domain in Y . If .Y = X is a homogeneous manifold 
diffeomorphic to . R3, the  value of Ch.(X) is explicitly known, except when X is 
isometric to the universal cover of the special linear group .S̃L(2,R) endowed with 
a left-invariant metric with a three-dimensional isometry group. For such a space 
.X = (S̃L(2,R), 〈, 〉), it is still known that Ch.(X) is positive; see [27]. In general, 
for any homogeneous manifold X diffeomorphic to . R3, the  value Ch.(X)/2 agrees 
with the so-called critical mean curvature .H(X) of the space X, defined by 

.H(X) := inf{max
 |H
 | : 
 ∈ A},
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where . A is the space of all compact orientable surfaces immersed in X and . H


denotes the mean curvature function of any .
 ∈ A. See Theorem 1.4 in [27]. 
For instance, .H(X) = 0 = Ch(X)/2 if X is the Euclidean three-space, and 

.H(X) = 1 = Ch(X)/2 if X is the hyperbolic three-space . H3. For a metric 
semidirect product .X = R

2
�A R, it holds .2H(X) = Ch(X) = trace(A). 

Theorem 13 ([29]) Let X be a homogeneous manifold diffeomorphic to . R3, and 
let .Ch(X) denote the Cheeger constant of X. Then: 

1. For any .H ∈ R with .|H | > Ch(X)/2, there exists an H -sphere .SH in X. 
Conversely, if .|H | ≤ Ch(X)/2, there are no compact H -surfaces in X. 

2. Up to ambient isometry, . SH is the unique H -sphere in X. 
3. There exists a well-defined point in X called the center of symmetry of . SH such 

that the isometries of X that fix this point also leave . SH invariant. 
4. . SH is Alexandrov embedded. 
5. . SH has index one and nullity three for the Jacobi operator. 

Moreover, if .MX(p) denotes the space of spheres of positive constant mean 
curvature in X that have a base point .p ∈ M as a center of symmetry, then 
the map .SH ∈ MX(p) �→ H ∈ (Ch(X)/2,∞) that assigns to each sphere 
. SH its mean curvature H is a real analytic homeomorphism between .MX(p) and 
.(Ch(X)/2,∞). 

As we already discussed in connection with Theorem 12, .SH is actually 
unique up to left translations in X, and the left-invariant Gauss map of . SH is a 
diffeomorphism. Also, the invariance of . SH by isometries of X fixing its center of 
symmetry implies that . SH is as symmetric as the space X allows. That is, . SH is 
round if X has constant curvature, it is rotationally symmetric if X is an .E(κ, τ )-
space, and it inherits all symmetries of the (discrete) isotopy group of X if the 
isometry group of X is three-dimensional. 

We do not know if all the spheres . SH are embedded. In relation with this, it is an 
open problem to determine if every sphere . SH of X bounds an isoperimetric region 
of X; see Sect. 9. 

8 A Sketch of Proof of the Classification 

Let X denote a metric Lie group. The first observation is that, in X, one can solve 
the isoperimetric problem for any small enough volume .V > 0 (in fact, we can 
solve this problem for any .V > 0, since the quotient of X by its isometry group is 
compact). These small isoperimetric regions of X are bounded by embedded, almost 
round, H -spheres . SH with .H > 0 very large. By our discussion in Sect. 6.1, these 
isoperimetric spheres . SH have index one, and the kernel of their Jacobi operator . L
satisfies 

.Ker(L) = Span{u1, u2, u3} (15)



386 P. Mira and J. Pérez

for the Jacobi functions .ui := 〈N,Fi〉, where .{F1, F2, F3} is a basis of right-
invariant Killing vector fields of X. 

Because of this control on the kernel of . L, one can use the implicit function 
theorem to deform analytically any index-one H -sphere . SH of X into a 1-parameter 
family of CMC spheres .{SH ′ }H ′ , with .H ′ ∈ (H − ε,H + ε) (here .ε > 0 is a small 
number depending on H ). Moreover, all these spheres .SH ′ also have index one and 
nullity three, by continuity of eigenvalues in the deformation and (15). Therefore, 
the set of values .H ≥ 0 for which there exists an index-one H -sphere in X is open 
in .[0,∞), and it contains some interval of the form .(a,∞). Let  .J ⊂ [0,∞) be 
the largest such interval. Then, either .J = [0,∞) or .J = (h0(X),∞), for  some  
.h0(X) ≥ 0. 

One should observe here that the properties of H -spheres in X stated in 
Theorems 12 and 13 hold for every value .H ∈ J. Indeed, for any .H ∈ J, there 
exists an index-one H -sphere . SH , which by uniqueness (Corollary 1) comes from 
the above deformation from an isoperimetric sphere. . SH is the unique immersed 
H -sphere in X (again by Corollary 1), and it is Alexandrov embedded since that 
property is preserved in the deformation process. The fact that . SH is unique not 
only up to ambient isometry, but up to left translation, can be used to show the 
existence of a center of symmetry for . SH (see Section 6 in [28]). 

Thus, in order to prove Theorems 12 and 13, we only need to show existence of 
index-one H -spheres for the expected range of mean curvatures, that is, 

(i) If X is a homogeneous three-sphere, then .J = [0,∞), and 
(ii) if X is diffeomorphic to . R3, then .J = (H(X),∞), where . H(X) = Ch(X)/2

is the critical mean curvature of X. 

We will discuss these two cases separately. We note however that some of the 
arguments in the case that X is a three-sphere are also used when X is diffeomorphic 
to . R3. 

8.1 The Case Where X Is a Homogeneous Three-Sphere 

Let X be a homogeneous three-sphere. Arguing by contradiction, assume that . J �=
[0,∞), i.e., it is of the form .J = (h0(X),∞) for some .h0(X) ≥ 0. Thus, for 
any .H > h0(X) there exists an index-one H -sphere . SH , which is unique up to left 
translation in X due to Corollary 1, and there are no index-one spheres of constant 
mean curvature .h0(X) in X. By elliptic theory and openness, this means that for 
any sequence of values .(Hn)n ∈ J decreasing to .h0(X), one of the following two 
obstructions must appear: 

1. The norms of the second fundamental forms of the spheres .SHn are not bounded. 
2. The areas of the spheres .SHn are not bounded. 

The first problem can be ruled out by a blow-up analysis. Roughly, if there is 
a sequence of index-one spheres .SHn whose maxima of their norms of the second
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fundamental form diverge, then after a sequence of left translations, a standard blow-
up, and passing to a subsequence, they converge to a complete minimal surface 
.
∞ immersed in . R3 with a non-planar point at the origin. Thus, the Gauss map of 
.
∞ is a local diffeomorphism around the origin which locally reverses orientation. 
However, the left-invariant Gauss maps of the spheres .SHn are orientation preserving 
diffeomorphisms, by Theorem 11. This gives a contradiction, which proves a 
uniform curvature estimate for index-one spheres . SH , when H varies in a bounded 
interval of . J. 

Thus, we only need to rule out the second possible obstruction, i.e., we need to 
obtain an area estimate for the spheres . SH in . J. 

Arguing by contradiction, assume that .(Sn)n is a sequence of index-one spheres 
with mean curvatures .Hn ∈ J converging to .h0(X). We assume up to left translation 
that all of them pass through the identity element e of X and have the same unit 
normal vector at e. Moreover, assume that .Area(Sn) → ∞. Since we have proved 
that the norms of the second fundamental forms of the spheres . Sn is uniformly 
bounded, we can use elliptic theory to show that, up to subsequence, the . Sn

converge uniformly on compact sets to a complete, non-compact limit immersion 
.
 ⊂ X of constant mean curvature .h0(X) that passes through e. Take now  a  
divergent sequence .(qn)n ∈ 
, and let .(
n)n be the surfaces obtained from . 
 by 
left translation, .
n := (qn)

−1
. By the previous argument, these surfaces . (
n)n
converge again (up to extracting a subsequence) to a complete surface .
∞ immersed 
in X of constant mean curvature .h0(X) that passes through the origin. Moreover, 
.
∞ has the following fundamental properties: 

(a) The left-invariant Gauss map of .
∞ is singular at every point, i.e., there exists 
a right-invariant vector field .F ∈ X(X) everywhere tangent to . 
∞. Indeed, 
assume that there is some point of .
∞ around which the Gauss map of . 
∞
is a local diffeomorphism. Then, there exists a sequence of disjoint compact 
domains .�n ⊂ 
 whose spherical Gauss map areas are bounded from below by 
some constant .ε > 0. Thus, the spherical areas of the .(Sn)n should be infinite, 
what is impossible, as all these spherical areas are actually . 4π , since the Gauss 
map of . Sn is a diffeomorphism. 

(b) .
∞ is stable. Indeed, if .
∞ had a strictly unstable compact domain, there 
would exist a sequence of disjoint strictly unstable compact domains in . 
. This  
contradicts that all the .(Sn)n have index one. 

We finally prove that such a surface .
∞ cannot exist. First, since X is isomorphic 
to .SU(2), the fact that .
∞ is everywhere tangent to a right-invariant . F ∈ X(M)

implies that .
∞ is actually a Hopf cylinder, i.e., the lift via the Hopf fibration . π :
S
3 → S

2 of a complete curve in . S2. Thus, .
∞ is topologically either a torus or a 
cylinder. 

The case that .
∞ is a torus can be easily ruled out as follows. If V denotes 
a right-invariant Killing field in X linearly independent from F that is tangent 
to .
∞ at e, then the Jacobi function .u := 〈V,N〉 vanishes at e. If  .u ≡ 0 on 
. 
, then both .F, V are everywhere tangent to . 
, and so, the Lie Bracket . [F, V ]
is everywhere tangent to . 
; this is impossible, since .F, V, [F, V ] are linearly
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independent everywhere in X (because .SU(2) has no two-dimensional subgroups). 
Therefore, u must change sign on the torus . 
∞; this contradicts stability. 

Assume next that .
∞ is a cylinder. Then, one can show that .
∞ has at most 
linear area growth. This follows from two facts: firstly, that for every .R0 > 0, there 
exists a constant .C = C(R0) > 0 such that every intrinsic ball in .
∞ of radius . R0
has area less than C (this follows from Bishop’s second theorem, since the Gaussian 
curvature of .
∞ is bounded from below), and secondly, that the fibers .π−1(p) that 
foliate .
∞ are embedded closed curves in X of uniformly bounded length. The at 
most linear area growth property implies that .
∞ is conformally parabolic. Also, by 
the arguments in the previous paragraph, we can create a bounded Jacobi function 
on .
∞ that changes sign; this contradicts stability in this parabolic setting by a 
theorem of Manzano, Pérez, and Rodríguez [24]. This final contradiction proves 
Theorem 12. 

8.2 The Case Where X Is Diffeomorphic to R3 

We now let X be a metric Lie group diffeomorphic to . R3. Take  .J = (h0(X),∞), 
and let .(Sn)n be a sequence of index-one spheres with mean curvatures . Hn ∈ J
converging to .h0(X). Following the discussion in Sect. 8.1, there exists a complete, 
stable limit immersion .f : 
∞ � X of constant mean curvature .h0(X) of adequate 
left translations of the H -spheres . Sn, such that .e ∈ f (
∞). Moreover, there exists 
a right-invariant Killing vector field .F ∈ X(X) everywhere tangent to .f (
∞). 
Besides, .
∞ can be proven to have, at most, quadratic area growth (see Corollary 
6.7 in [29]). 

We want to show that .h0(X) = H(X), the critical mean curvature of X. For that, 
it suffices to prove: 

Theorem 14 The limit surface .f (
∞) can be chosen to be an entire Killing graph 
in X. 

Here, we say that a surface .S ⊂ X is an entire Killing graph if there exists a right-
invariant vector field .V ∈ X(X) such that every orbit of V intersects S exactly once, 
transversally. Note that if .S ⊂ X is an entire Killing H -graph, then .H ≤ H(X); 
this follows by the mean curvature comparison principle, the definition of .H(X), 
and the fact that X is diffeomorphic to . R3. In particular, Theorem 14 indeed implies 
that .h0(X) = H(X), and this would complete the proof of Theorem 13. 

We now explain some of the main ideas involved in the proof of Theorem 14. 
First, since the Gauss map of .f : 
∞ � X is singular, it is either constant (in 
which case .f (
∞) is a two-dimensional subgroup of X as mentioned in Sect. 6.2, 
and thus, Theorem 14 holds), or its Gauss map image .γ := g(
∞) into . S2 ⊂ TeX

is a complete regular curve. In the sequel, we will assume this last case holds. One 
of the key steps for proving Theorem 14 is:
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Claim The limit immersion .f : 
∞ � X can be chosen so that its Gauss map 
image . γ is a closed, regular embedded curve in . S2. 

To prove Claim 8.2, one first ensures that . γ is embedded. Indeed, . γ cannot have 
tangential self-intersections by ODE uniqueness and the Gauss map equation (14). 
Besides, if . γ had a non-tangential self-intersection, we would contradict the fact that 
.f : 
∞ � X is a limit of the spheres .(Sn)n, all of which satisfy that their Gauss 
maps are diffeomorphisms. In addition, by the curvature estimate for the spheres . Sn

proved in Sect. 8.1, the curve . γ has bounded geodesic curvature in . S2. 
These properties imply that the closure . γ has the structure of a one-dimensional 

lamination of . S2, and it can be proven that the leaves of this lamination are precisely 
the Gauss map images of limits of subsequences of the spheres .(Sn)n (Lemma 5.10 
in [29]). This indicates that there are two possibilities: either . γ is a closed curve (as 
we want to prove), or, by taking a sublamination of . γ with no proper sublaminations 
and applying Zorn’s lemma, . γ must be quasiperiodic, in the sense that given any 
compact arc .σ ⊂ γ there must exist a sequence of disjoint compact arcs . σn ⊂ γ

with .(σn)n → σ . 
The argument to rule out this second case is quite involved and will not be 

described here. In it, one needs to distinguish different cases depending on the 
algebraic structure of the metric Lie group X and the right-invariant vector field 
F on X that is everywhere tangent to .f (
∞). 

Once Claim 8.2 is proved, it follows that there are three possibilities for the 
complete, stable, .h0(X)-immersion .f : 
∞ � X: 

(L1) .
∞ is diffeomorphic to an annulus, and it has linear area growth. 
(L2) .
∞ is simply connected, .f (
∞) is an immersed annulus in X, and .
∞ has 

quadratic area growth. 
(L3) .
∞ is simply connected and there exists .a ∈ X − Γ such that the left 

translation by a in X leaves .f (
∞) invariant. Here, . Γ is the 1-parameter 
subgroup of X that generates the right-invariant vector field F . 

Once here, we again need to split the proof of Theorem 14 into separate cases. 
We give a very brief outline of the argument. 

First, assume that .X = R
2
�A R. If case (L3) above holds, then we showed in 

[29, Theorem 7.2] that the right-invariant Killing field F is horizontal, i.e., it is a 
linear combination of the vector fields .F1, F2 in (6). Once we know this, we showed 
in [29, Lemma 7.3] that .f (
∞) is an entire graph with respect to any horizontal 
Killing field V linearly independent from F . Therefore, Theorem 14 holds in case 
(L.3) above. So, it remains to rule out cases (L1) and (L2) above. The argument to 
rule out (L2) is based on the construction of a sequence of geodesic balls of a certain 
fixed radius .R∗ > 0 in the abstract Riemannian three-balls . Bn that the Alexandrov-
embedded index-one spheres . Sn bound and whose volumes tend to infinity as . n →
∞. This unbounded volume result eventually provides a contradiction with Bishop’s 
theorem; see Section 7.3 in [29]. Finally, the argument to rule out (L1) is based on 
the construction of an abstract three-dimensional Riemannian cylinder bounded by 
.
∞ that submerses isometrically into X with boundary the cylinder .f (
∞) and
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then proving that a certain CMC flux of .
∞ in this abstract cylinder is different 
from zero. This gives a contradiction with the homological invariance of the CMC 
flux and the fact that .f (
∞) is a limit of the (homologically trivial) Alexandrov-
embedded constant mean curvature spheres . Sn; see Section 7.4 in [29]. 

The argument and basic strategy of the proof of Theorem 14 when X is 
isomorphic to .S̃L(2,R) follow closely those from the case .X = R

2
�AR. However, 

several of these arguments are by necessity different, as many geometric properties 
of metric semidirect products do not have analogous counterparts in .S̃L(2,R). The  
details are quite technical, so they will not be discussed here; the interested reader 
can find them in Section 8 of [29]. 

9 Open Problems 

We start by considering the case of constant mean curvature spheres in homoge-
neous three-manifolds. The most ambitious theorem here would probably be to 
prove the following conjecture by Meeks, Ros, and the authors. 

Conjecture 1 ([29]) Let M be a homogeneous manifold diffeomorphic to . R3. Then, 
any isoperimetric region of M is bounded by a CMC sphere, and conversely, any 
CMC sphere of M bounds an isoperimetric region. 

One should recall here that any isoperimetric region of a homogeneous three-
manifold is bounded by a compact, embedded, weakly stable CMC surface. 

The conjecture is known to hold only in the Euclidean plane . R3, the hyperbolic 
space .H3(c), and the product space .H2(c) × R. It is interesting to comment what 
is known about it in other spaces, since some partial results toward Conjecture 1 
would also be of great interest. 

To start, consider the Heisenberg space .Nil3. By the Abresch-Rosenberg theorem, 
all CMC spheres in .Nil3 are rotational. They are also weakly stable, a necessary 
condition for them bounding isoperimetric regions. However, it is not known 
if isoperimetric regions in .Nil3 are topological balls. The problem here is that 
.Nil3 does not admit reflections, i.e., all its isometries are orientation preserving. 
In particular, one cannot apply the Alexandrov reflection technique (see [5]) (or 
other methods) to deduce that isoperimetric regions are simply connected. In this 
respect, the following well-known conjecture would actually prove Conjecture 1 for 
.X = Nil3. 

Conjecture 2 Any compact, embedded CMC surface in .Nil3 is a CMC sphere. 

We now consider the case .M = Sol3. This time, .Sol3 admits two linearly 
independent families of planes of reflective symmetry. By applying the Alexandrov 
reflection technique with respect to them, Rosenberg proved that any compact 
embedded CMC surface in .Sol3 is, topologically, a sphere; see [12]. In particular, 
isoperimetric regions of .Sol3 are bounded by CMC spheres . SH , and these spheres 
were classified by Daniel-Mira and Meeks in [12, 25]. All these spheres are
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embedded and have index one. However, it is not known if they are weakly stable. 
In this respect, the following conjecture was proposed by Daniel and Mira: 

Conjecture 3 ([12]) Any CMC sphere in .Sol3 is weakly stable. 

A positive answer to this problem can be used to prove that all CMC spheres in . Sol3
bound isoperimetric regions. 

For the general case of homogeneous three-manifolds, the following result is 
expected: 

Conjecture 4 Let M be a homogeneous manifold diffeomorphic to . R3. Then, any 
CMC sphere in M is embedded. 

Conjecture 4 is obviously a particular case of Conjecture 1. By Theorem 13, H -
spheres in such a homogeneous manifold M are embedded for large values of H , 
and they constitute a real analytic family as H decreases. A possible way to prove 
embeddedness would then be to consider the first value .H0 > 0 where .SH0 fails to 
be embedded and look for a contradiction. 

The are some cases where Conjecture 4 has been proved. For the case where the 
homogeneous manifold M admits an algebraic open book structure, Meeks and the 
authors showed that CMC spheres in M are embedded; see [26]. For the case where 
M is .Sol3, the embeddedness of CMC spheres was proved by Daniel and Mira [12]. 

We close the survey with a uniqueness problem regarding the results on minimal 
spheres in Riemannian three-spheres .(S3, g) described in Sect. 5. Let  .E ⊂ R

4 be a 
three-dimensional ellipsoid 

. E = {x = (x1, . . . , x4) ∈ R
4 :

∑
a2i x

2
i = c2},

for some .a1, . . . , a4, c > 0. The intersection of .Si := E ∩ {xi = 0} with each of the 
coordinate hyperplanes .xi = 0, .i ∈ {1, . . . , 4}, is an embedded minimal two-sphere 
in E. Yau asked in 1987 if these four equatorial spheres . Si are the only embedded 
minimal two-spheres in E. 

In [19], Haslhofer and Ketover gave a negative answer to Yau’s question, in 
the case of ellipsoids which are very elongated in one direction. In [6], Bettiol 
and Piccione constructed embedded minimal two-spheres in sufficiently elongated 
ellipsoids of revolution. These minimal spheres are rotationally invariant. An 
interesting problem related to Yau’s question is to understand whether any immersed 
minimal two-sphere in an ellipsoid of revolution is either a rotational sphere or one 
of the equatorial spheres of the ellipsoid. 
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