
Risk Analysis in Practice and Theory 

Christos P. Kitsos 

Abstract In this paper we discuss the Risk Analysis problem as it has been 
developed, offering a solution to crucial problems and offering food for thought 
for statistical generalisations. We try to explain why we need to keep the balance 
between Theory and Practice. 
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1 Introduction 

At the early stage risk was involving to political or military games for a decision 
making with the minimum risk. The pioneering work of Quincy Wright [40] on the  
study of war was devoted to this line of thought. The Mathematics and Statistics 
involved, could be considered in our day as low-level, he applied eventually the 
differential equation theory with a successful application. 

In principle Risk is defined as an exposure to the chance of injury or loss—it 
is a hazard or dangerous chance for an event under consideration. Therefore the 
probability of a damage, for the considered phenomenon (in Politics, Economy, 
Epidemiology, Food Science, Industry etc.) caused by external or internal factors has 
to be evaluated, especially the essential ones influence the Risk. That is why we refer 
eventually to Relative Risk (RR), as each factor influences the Risk in a different 
way. In principle the relative risk (RR) is the ratio of the probability of an outcome 
in an exposed group to the probability of an outcome in an unexposed group. That 
is why a value of RR = 1 means that the exposure does not affect the outcome and a 
“risk factor” is assigned when RR. >1, i.e. when the risk of the outcome is increased 
by the exposure. 
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This is clear in Epidemiological studies where in principle it is needed to identify 
and quantitatively assess the susceptibility of a partition of the population to specify 
risk factors, so we refer to RR. For a nice introduction to statistical terminology for 
RR see Everitt [13, Chapter 12]. 

Such an early attempt was by John Graunt (1620–1674), founder of Demography, 
trying to evaluate “bills of Mortality” as he explained in his work “Observations”, 
while almost at the same time his friend Sir William Petty (1623–1687), economist 
and Philosopher, published the “Political Anatomy of Ireland”. So there was an early 
attempt to evaluate Social and Political Risk. 

Still there is a line of thought loyal to the idea that Risk Analysis is only related 
to political problems through the Decision Theory; William Playfair (1759–1823) 
was among the first working with empirical data in 1796 publishing “For the Use 
of the Enemies of England: A Real Statement of the Finances and Resources of 
Great Britain”. Quincy Wright (1890–1970) in his excellent book “A study of War” 
offers a development of simple indexes, evaluating Risk successfully, as it has been 
pointed out for such an important problem as war. 

The statistical work of Florence Nightingale (1820–1910) is essential as with her 
“Notes on Matters effecting the Health, Efficiency and Hospital Administration of 
the British Army” opened the problem of analysing Epidemiological Data, adopting 
the Statistical methods of that time. 

It is really Armitage and Doll [2] who introduced the recent Statistical framework 
to the Cancer Problem. Latter Crump et al. [11] can be referred for their work on 
carcinogenic process, while [14] provided a global work for the Bioassays, and 
Megill [34] worked on Risk Analysis (RA) for Economical Data. It was emphasising 
that, at the early stages, the fundamental in RA was to isolate the involved variables. 
Still the Statistical background was not too high. But the adoption of the triangle 
distribution was essentially useful. The triangle distribution has been faced under 
a different statistical background recently, but still the triangle obtained from the 
mode, the minimum value its high and the maximum value of the data can be proved 
very useful, as a special case of trapezoidal distributions, see also Appendix 1. For 
a compact new presentation, while a more general framework was developed by 
Ngunen and McLachian [35]. The main characteristic of the triangular distribution 
is its simplicity and can be easily adopted in practice. There are excellent examples 
with no particular mathematical difficulty in Megill [34]. 

In Food Science the Risk Assessment problem is easier to be understood by those 
who are not familiar to RA. In the next section we discuss the existing Practical 
Background, which is not that easy to be developed, despite the characterisation as 
“practical”. Most of the ideas presented are from the area of Food Science where 
RA is very clear under a chemical analysis orientation. 

In Sect. 3 the existing theoretical insight is discussed briefly and therefore the 
Discussion in Sect. 4 is based on Sects. 2 and 3.
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2 Practical Background 

Risk factors can be increased during the food processing and food can be con-
taminated due to filtering and cleaning agents or during packaging and storage. 
Therefore, in principle, chemical hazards can be divided in two primary cate-
gories: 

(i) Naturally occurring chemical hazards (mycotoxins, pyrrolizidine, alkaloids, 
polychlorinated biphenyls etc.) 

(ii) Added chemical hazards (pesticides, antibiotics, hormones, heavy metals etc.) 

The effect of each chemical as a Risk factor has been studied and we refer briefly to 
mycotoxins as dairy products belong to the most susceptible foodstuffs (one possible 
reason humidity, among others) to be contaminated by them and might result to, 
Kitsos and Tsaknis [28] among others. 

1. Direct contamination 
2. Indirect contamination 

Example 1 (Indirect Contamination) Recall that due to decontamination bacteria 
become resistant and therefore interhospital various can appear. Moreover a number 
of countries have introduced or proposed regulations for the control and analysis of 
aflatoxins in food. 

As far as milk is concerned, EU requires the maximum level of aflatoxin . M1, 
.max M1 say, .max M1 = 0.5 mg/kg. The maximum tolerated level for aflatoxin . M1, 
in dairy products, it is not the same all over the world and therefore it is regulated in 
some countries. 

The problem of mixtures has been discussed from a statistical point of view, for 
the cancer problem, in Kitsos and Elder [23]. In practice the highly carcinogenic 
polychlorinated biophenyls (PCBs) are mixtures of chlorinated biphenyls with 
varying percentages of chlorine/weight. It has been noticed, Biuthgen et al. [3], 
that PCBs led to a worldwide contamination of the environment due to their 
physical/chemical properties. Moreover PCBs have been classified as probable 
human carcinogens, while no Tolerance Daily Intake (TDI), the main safety 
standards, have been established for them. Eventually the production of PCBs was 
banned in USA in 1979 and internationally in 2001. 

Example 2 Dioxins occur as complex mixtures, Kitsos and Edler [23], and mix-
tures act through a common mechanism but vary in their toxic potency. As an exam-
ple Tetrachlorodibenzo-p-dioxin (TCCD) has been classified as a human carcino-
gen, as there are epidemiological studies on exposure to 2,3,7,8- tetrachlorodizen-p-
dioxin and cancer risk. It might not be responsible for producing substantial chronic 
disability in humans but there are experimental evidence for its carcinogenicity, 
McConnell et al. [33]. 

The TDI for dioxins is 1–4 pg TEQ/kg body-weight/day, which is exceeded in 
industrialised countries. Recall that Toxic Equivalence Quotient (TEQ) is the USA 
Environmental Protection Agency (EPA),with TEQ being the, threshold for safe
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dioxin exposure at Toxicity Equivalence of .0.7 picograms per kilogram of body 
weight per day. 

The Lethal Dose is an index of the percentage P of the lethal toxicity LD. P of 
a given toxic substance or different type radiation. LD. 0.5 is the amount of given 
material at once that causes the death of 50% in the group of animals (usually rats 
and mice) under investigation. Furthermore the median lethal dose LD. 0.5 is widely 
used as a measure of the same effect in toxic studies. Not only the lethal dose but 
also the low percentiles need special consideration, see Kitsos [18], who suggested 
a sequential approach to face the problem. 

Now if we assume that two components . C1 and . C2 are identical, except that . C1
is thinned by a factor .T < 1, then we can replace the same dose as . d1 of . C1 by an 
appropriate dose of . C2, so that to have the same effect as dose . d1. In such a case the 
effect of a combination of doses . d1 and . d2, for the components under consideration, 
. C1 and . C2 are: .T d1 + d2 of . C2, .d1 + (1/T )d2 of . C1 respectively. The factor T is 
known as relative potency of . C1 to . C2 and .λ = 1/T is called as relative potency of 
. C2 to . C1. Such simple but practical rules are appreciated by experimenters. Another 
practical problem in RA appears with the study of the involved covariates. The role 
of covariates, in this context, is of great interest and has been discussed by Kitsos 
[17]. 

Therefore, in principle, to cover as many as possible sources of risk as possible, 
we can say that the target in human risk assessment is the estimation of the 
probability of an adverse effect to human being, and the identification of such a 
source. 

3 Theoretical Inside 

In Biostatistics and in particular in Risk Analysis for the Cancer problem, the evolu-
tion of the Statistical applications can be considered in the over 1000 references in 
Edler and Kitsos [12]. The development of methods and the application of particular 
probabilistic models, Kopp-Schneider et al. [30] and statistical analyses appear 
on extended development after 1980. Recently, Stochastic Carcinogenesis Models, 
Dose Response Models on Modeling Lung Cancer Screening are medical ideas with 
a strong statistical insight which have been adopted by the scientific community, 
Kitsos [21]. 

The variance-covariance matrix is related to Fisher’s information matrix and it 
is the basis for evaluating optimal designs in chemical kinetics, Kitsos and Kolovos 
[24], while for a recent review of the Mathematical models, facing breast cancer 
see Mashekova et al. [32]. The Fisher’s information measure appears either in a 
parametric form, or in an entropy type. The former plays an important role to a 
number of Statistical applications, such as the optimal experimental design, the 
calibration problem, the variance estimation of the parameters in Logit model in 
RA, Cox [9, 10], etc. The latter is fundamental to the Information Theory. Both 
have been extended by Kitsos an Tavoularis [26].
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Indeed: With the use of an extra parameter, which influences the “shape” of the 
distribution, the generalised Normal distribution was introduced. This is useful in 
cases where “fat tails” exist, i.e. the Normal distribution devotes 0.05 probability in 
details but there are cases where the distribution provides in “tails” more than 0.05 
probability. Such cases are covered under the generalised Normal distribution. 

The .γ -ordered Normal Distribution emerged from the Logarithm Sobolev 
Inequality and it is a generalisation of the multivariable Normal distribution, with 
an extra parameter . γ in the following, see also Appendix 2. It can be useful to RA 
to adopt the general cumulative hazard function, see (2), (3) below. Therefore a 
strong mathematical background exists, which is certainly difficult to be followed 
by toxicologists, medical doctors, etc who mainly work on RA. Still it has not been 
developed an appropriate software for it. 

The Normal distribution has been extended by Kitsos and Tavoularis [26], with 
a rather complicated form, quite the opposite of the easy to handle the triangular 
distribution, see Appendix 1. 

Let, as usual, .�(a) be the gamma function and .�(x, a) the upper incom-
plete gamma function. Then the cumulative distribution function (cdf) of the 
.GN(μ, σ 2; γ ), say,  

.�G(x) = 1 − �(γ0, γ0z
1
γ0 )

2�(γ0)
, γ0 = γ − 1

γ
, γ ∈ R − [0, 1], z = x − μ

σ
(1) 

with . μ the position parameter, . σ the scale parameter and . γ an extra, shape 
parameter. In this line of thought Kitsos and Toulias [25] as well as Toulias and 
Kitsos [37] worked on the Generalised Normal Distribution .GN(μ, σ 2; γ ) with 
.γ ∈ R − [0, 1] being an extra shape parameter. This extra parameter . γ makes the 
difference: when .γ = 2 the usual Normal is obtained, with .γ > 0 it is still normal 
with “heavy tails”. 

Under this foundation the cumulative hazard function, .H(·) say, of a random 
variable .X ∼ GN(μ, σ 2; γ ) can be proved equal to 

.H(x) = − log A(γ0, z) , x > μ (2) 

while 

.H(x) = − log(1 − A(γ0, |z|)) , x ≤ μ (3) 

with 

. z = x − μ

σ
, A(γ0, z) = �(γ0, γ0z

1
γ0 )

2�(γ0)
.

with .�(a) being the gamma function and .�(x, a) the upper incomplete gamma 
function.
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Example 3 As .γ → ±∞ the Generalised Normal Distribution tends to Laplace, 
.L(μ, σ). Then it can be proved that: 

.H(x) = log(2 + x − μ

σ
) , x > μ (4) 

while 

.H(x) = log(1 − 1

2
e

x−μ
σ ) , x ≤ μ . (5) 

See Toulias and Kitsos [37] for more examples. 
Let X be the rv denoting the time of death. Recall that the future lifetime of a 

given time . x0 is the remaining time .X−x0 until death. Therefore the expected value, 
.E(X), of the future life time can be evaluated . In principle it has to be a function of 
the involved survival function, Breslow and Day [5]. This idea can be extended with 
the .γ -order Generalised Normal. Moreover for the future lifetime rv .X0 at point 
. x0, .X ∼ GN(μ, σ 2; γ ) the density function (df), the cdf can be evaluated and the 
corresponding expected future lifetime is 

.E(X) = 2(μ − x0)

A(γ0, z0)
, z0 = x0 − μ

σ
. (6) 

The above mentioned results, among others, provide evidence to discuss, that the 
theoretical inside is moving faster than the applications are needed such results. 
These comments need special consideration and further analysis. We try in Sect. 4. 

4 Discussion 

To emphasise how difficult the evaluation of Risk might be, we recall the Simpson’s 
paradox, Blyth [4], when three events .A,B,C are considered. Then if we assume 

.

P(A|BC) ≥ P(A|B̄C) ,

P(A|BC̄) ≥ P(A|B̄C̄) ,
(7) 

we might have 

.P(A|B) ≤ P(A|B̄) . (8) 

Therefore there is a prior, a scepticism of how “sure” a procedure might be. 
In Epidemiological studies it is needed to identify and quantitatively assess the 
susceptibility of a portion of the population to specific Risk factors. It is assumed 
that they have been exposed to the same possible hazardous factors. The difference
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that at the early stage of the study, is only on a particular factor which acts as a 
susceptibility factor. In such cases Statistics provides the evaluation of the RR. That 
is why J. Grant was mentioned in Sect. 1. 

Concerning the .2 × 2 setup, for correlated binary response, the backbone 
of medical doctors research, a very practical line of thought, with a theoretical 
background was faced by Mandal et al. [31] and is exactly the spirit we would 
like to encourage, following Cox believes, Kitsos [22] of how Statistics can support 
other Sciences, especially medicine. They provide the appropriate proportions and 
their variances in a .2 × 2 setup, so that 95% confidence interval can be constructed. 
The Binary Response problem has been early discussed by Cox [9] while for a  
theoretical approach for Ca problems see Kitsos [20]. 

The area of interest of RA is wide; it covers a number of fields, with completely 
different backgrounds sometimes, such as Politics and food Science. But Food 
Science is related to Cancer problems as we briefly discussed. 

Excellent Economical studies with “elementary” statistical work are covered by 
Megill [34] who provides useful results as Wright [40] did earlier. Therefore we 
oscillate between Practice and Theory. We have theoretical results, waiting to be 
applied as in the 60s we had Cancer problems waiting for statistical considerations. 

The cancer problem was eventually the problem under consideration and Sir 
David Cox provided a number of examples working on this, Cox [8–10], and 
offers ideas of how we can proceed on medical data analysis, Kitsos [22], trying 
to keep it simple. In contrast Tan [36], offers a completely theoretical approach, 
understanding perhaps from mathematicians, Kopp-Schneider [29] reviews the 
theoretical stochastic models and in lesser extent Kitsos [19, 21], Kitsos and Toulias 
[25] the appropriate modeling, which are difficult to be followed by medical doctors 
and not only. 

A compromise between theory and practice has been attended in Edler and Kitsos 
[12],where different approaches facing cancer are discussed, while Cogliano et al. 
[7] discuss more toxicological oriented cases. The logit method took some time to 
be appreciated, but provides a nice tool for estimating Relative Risk, Kitsos [20], 
among others. The role of covariates in such studies, and not only for cancer it is 
of great interest and we believe is needed to be investigated, Kitsos [17]. In this 
paper we provided food for thought for a comparison of an easy to understand work 
with the triangular distribution and the rather complicated Generalised Normal, see 
Appendix 2. It is not only a matter of choice. It depends heavily on the structure of 
data—we would say graph your data and then proceed your analysis. 

The logit methods can be applied on different applied areas. Certain qualities 
have been adopted for different areas from international organisations, see IARC 
[16], WHO [39], US EPA [38] among others. As it is mentioned in Sect. 2, as  
far as Food Risk Assessment concerns, Fisher et al. [15], Kitsos and Tsaknis [28], 
Binthgen et al. [3] among others, there are more chemical results and guidance for 
the involved risk, while Amaral-Mendes and Pluyger [1] offer an extensive list of 
Biomarkers for Cancer Risk Assessment in humans. 

In Cancer problems, and not only, the hazard function identification is crucial 
and only Statistical Analysis can be adopted, Armitage and Doll [2], Crump et al.
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[11], Cogliano et al. [7], Kitsos [17, 18]. The extended work, based on generalised 
Normal distribution, mentioned in Sect. 2 in a global form, generalising the hazard 
function, needs certainly not only an appropriate software cover but also to bridge 
the differences between statistical line of thought and applications. 

Meanwhile recent methods can be applied to face cancer, Carayanni and Kitsos 
[6], where the existent software offers a great support. More geometrical knowledge 
is needed, or even fractals, to describe a tumour. But the communication with 
Medicine might be difficult. 

We need to keep the balance of how “Statistics in Action” has to behave offering 
solutions to crucial problems of Risk Analysis, see Mandal et al. [31], while the 
theoretical work of Tan [36] adds a strong background but not useful to practical 
problems. Since the time that Cox [10] provided a general solution for hazard 
functions, there is an extensive development of Statistical Theory for Risk problems. 

It might be eventually helpful to offer results, but now we believe it is also very 
crucial to offer solutions, to the corresponding fields, working in Risk Analysis. 
That is the practical background is needed, we believe, to be widely known, as it 
is easier to be absorbed from practician and the theoretical framework is needed to 
be supported from the appropriate software so that to bridge the gap with practical 
applications. 

Acknowledgments I would like to thank the referees for their comments which improved the 
final version of this paper. The discussions with Associate Professor S. Fatouros are very much 
appreciated. 

Appendix 1 

Let .X1, X2, ..., Xn be a set of n independent, identically distributed, random 
variables with 

. m = min{Xi}, M0 = mode{Xi}, M = max{Xi}, i = 1, 2, ...n

with these three points .m, M0, M we can define a plane triangle with height 
.h = 2

M−m
and the points .m, M0, M on the basis of the triangle. Notice that for 

a continuous random variable the mode is not the value of X most likely to occur, 
as it is the case for discrete random variables. It is worth it to notice that the mode 
of a continuous random variable corresponds to that x value/values at which the 
probability density function (pdf) .f (·) reaches a local maximum, or a peak, i.e. is 
the solution of the equation . df (x)

dx
= 0 See Megill [34], for the definitions and a 

Euclidean Geometry development.
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Fig. 1 The triangle distribution 

The probability density function of the triangle distribution is defined as 

.ft (x) =

⎧
⎪⎨

⎪⎩

h 1
d1

(x − m) x ∈ [m,M0)

h 1
d2

(M − x) x ∈ (M0,M]
(9) 

with .d1 = M0 − m, d2 = M − M0. 
If we let .v = (m,M0,M) and .u = (M,m,M0), .1 = (1, 1, 1), then 

.

E(X) = m+M0+M
3 = 1

31v
T

V (X) = 1
18 [vvT − vuT ] = 1

18 [‖v‖2− < v, u >]
(10) 

with .‖ · ‖ the Euclidean norm and .< ·, · > the inner product of two vectors (Fig. 1, 
see also Megiil [34]). 

It is helpful that in triangle distribution the mode lies within the range .R 	 6σ , 
. σ being the standard deviation. 

See also Nguyen and McLachlan [35] for a more general analysis for the triangle 
distribution. 

Appendix 2 

Let p be the number of parameters involved in the multivariate normal distribution. 
The induced from the Logarithm Sobolev Inequality (LSI), .γ -ordered Normal dis-
tribution .GNp(γ ;μ,�) behaves as a generalized multivariate normal distribution, 
with an extra parameter, with .γ ∈ R and it is assumed that .γ1 = γ

γ−1 > 0.
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The density function of the .γ -ordered Normal is defined as 

.f (x) = C(p, γ )| det �|−1/2 exp

{

−γ − 1

γ
Q(x)

γ
2(γ−1)

}

, x ∈ Rp (11) 

where 

. Q(x) = (x − μ)�−1(x − μ)T

and the normalizing factor equals to .C(p, γ ) equals to 

.C(p, γ ) = π−p/2 �(
p
2 + 1)

�(p
γ−1
γ

+ 1)

(
γ − 1

γ

)p
γ−1
γ

. (12) 

Notice that, from the definition in (2) the second-ordered Normal is the known 
normal distribution, i.e. .GNp(2;μ,�) = N(μ,�). In the spherically contoured 
case, i.e. when .� = σ 2Ip, the density . fγ is reduced to the form 

. f (x) =
�

(p
2 + 1

) (
γ−1
γ

)p
γ−1
γ

�
(
p

γ−1
γ

+ 1
)

πp/2σp
exp

[

−γ − 1

γ

( |x − μ|
σ

) γ
γ−1

]

, x ∈ R
p .

(13) 

For a random variable X following .GNp(γ, μ, σ 2Ip) we can evaluate its 
mode, .Mode(X), which is achieved due to the symmetry as in classical Normal 
distribution, for .x = μ , i.e. 

.Mode(X) =
(

γ−1
γ

)p
γ−1
γ

πp/2σp

�
(p

2 + 1
)

�
(
p

γ−1
γ

+ 1
) . (14) 

which can be easily verified for the classical normal with .γ = 2 and .p = 1 (single 
variable), recall also the symmetry, see Kitsos and Toulias [27] for details. 

Theorem 1 (Kitsos and Toulias [27]) The spherically contoured .γ -order Gener-
alised Normal distribution, coincides with the p-variate normal distribution when 
.γ = 2, with the p -variate uniform distribution when .γ = 1 , and with the p-variate 
Laplace distribution when .γ = ±∞.
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