
Rewriting Graph-DB Queries to Enforce
Attribute-Based Access Control

Daniel Hofer1,2(B) , Aya Mohamed1,2 , Dagmar Auer1,2 ,
Stefan Nadschläger1, and Josef Küng1,2

1 Institute for Application-oriented Knowledge Processing (FAW),
Johannes Kepler University (JKU) Linz, Linz, Austria

{daniel.hofer,aya.mohamed,dagmar.auer,
stefan.nadschlaeger,josef.kueng}@jku.at

2 LIT Secure and Correct Systems Lab, Linz Institute of Technology (LIT),
Johannes Kepler University (JKU) Linz, Linz, Austria

Abstract. To provide Attribute-Based Access Control (ABAC) in a
data-store, we can either rely on built-in features or, especially if they
are not present, implement access control as a service (ACaaS) on top of
the database. We address the latter, in particular for graph databases,
by rewriting queries which are violating access control conditions. We
intercept the insecure queries right before sending them to the database
to add additional filters. Thus, the database returns only authorized
data and implicitly enforces ABAC beyond its own access control fea-
tures. Our contributions are an authorization policy model influenced by
XACML and a query rewriting algorithm for enforcing the defined autho-
rizations with respect to this model. Our concept is application- and
database-independent and operates on simple freely formulated queries,
i.e. the queries do not have to follow a predefined structure. A proof-of-
concept prototype has been implemented for Neo4j and its query lan-
guage Cypher.

Keywords: query rewriting · attribute-based access control (ABAC) ·
graph databases · database security · Cypher

1 Introduction

To enforce access control on a database with limited or even no access control
features, like the community version of Neo4j, we have various options. The
approach we chose is rewriting insecure queries before they are handed over to
the database as secure queries [1], including authorization-specific filters. Our
approach even supports attribute-based access control (ABAC) [9] by operating
on data stored in the database. We already motivated this approach in our
previous work [6]. However, our current work does not rely on a predefined
query structure, but can handle freely formulated queries.

Authorization requirements are expressed in terms of rules in the authoriza-
tion policy, referencing filter templates to be used in the query rewriting. A filter
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C. Strauss et al. (Eds.): DEXA 2023, LNCS 14146, pp. 431–436, 2023.
https://doi.org/10.1007/978-3-031-39847-6_34

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-39847-6_34&domain=pdf
http://orcid.org/0000-0003-0310-1942
http://orcid.org/0000-0001-8972-6251
http://orcid.org/0000-0001-5094-2248
http://orcid.org/0000-0002-9858-837X
https://doi.org/10.1007/978-3-031-39847-6_34


432 D. Hofer et al.

template defines authorization-specific constraints to be added to the insecure
query. Graph database query languages like Cypher distinguish between nodes
and relationships. For this work, we refer to both using the term element. To
rewrite the insecure query applying authorization-specific constraints, we con-
sider the following research questions:

RQ1 Which elements of a query influence the result?
RQ2 What information must be provided in the authorization policy?
RQ3 How can we find mappings between a policy and a query?
RQ4 How do we apply access control filter templates on queries?

Our contributions are (1) identifying the influencing elements and how they
impact the query result in Sect. 3, (2) a policy model influenced by XACML as
a policy having a set of rules with conditions and references to filter templates
in Sect. 4, (3) a query rewriting approach to extend the insecure query with
filters encoding authorization requirements in Sect. 5, and (4) a proof-of-concept
prototype1 using Cypher and a preliminary evaluation in Sect. 6. Related works
and a summary including an outlook on future work are provided in Sects. 2
and 7 respectively.

2 Related Work

The idea of protecting data by query rewriting is influenced by Browder et. al.
and their work about per-user views in Oracle databases [3]. Another influence
comes from Bogaerts et. al. [2] as they propose entity-based access control, taking
not only attributes but also the relations between entities into account. While
their focus is on relational databases, we primarily consider graph databases and
thus attributes on nodes and edges. The dynamic rewriting approach was already
proposed by Jarman et. al. [7], however, on relational databases and role-based
access control. Our policy model is highly influenced by XACML (Ramli et. al.
[10]), although we reduced the features to a subset suitable for our requirements.
Colombo et. al. proposed an approach similar to ours in [4], as they generate
authorized views to replace the original collection in the query. However, their
focus is on document-oriented stores with focus on IoT data analysis. Access
control by query rewriting for RDF and SPARQL was also proposed by Kirrane
in [8]. A slightly different approach is presented by Shay et. al. [11] which checks
queries against a policy and blocks them altogether if necessary. The current
work is also based on our previous work, especially [5] for query parsing and
modification and [9] for XACML policies for graphs.

3 Relevant Information in the Insecure Query

To answer RQ1, we start with checking the elements of the query pattern and
identify the relevant elements influencing the query result. The pattern for exam-
ple in the Cypher query “MATCH (a:L1)-[c]->(b:L2) WHERE a.id=8 RETURN

1 https://github.com/jku-lit-scsl/CypherRewritingCore.

https://github.com/jku-lit-scsl/CypherRewritingCore


Rewriting Graph-DB Queries to Enforce Attribute-Based Access Control 433

b” is “(a:L1)-[c]->(b:L2)”. While a confidential node in the RETURN clause
of a query clearly reveals information, other cases are less obvious. For example,
we have a graph database with information about students and their grades. A
node stores all student data and links to a node with the student’s grade for a
certain exam. To protect grades, we block returning the grade-nodes. However,
a malicious user could return a student’s node and include a WHERE clause
filtering only for a name (which is not confidential) and a specific grade. By only
returning the data-node, no access violation is detected, but it implicitly con-
firms the guessed grade. Therefore, an element which has a filter applied might
still lead to information leaks although it is not directly returned. On the other
hand aggregating functions (e.g. average) prevent access to individual elements
(e.g., a student’s grade). Thus, we check the combination of filter and return
status for each element (see example in Table 1). The filter status is (1) filtered
or (2) unfiltered and the return status is (1) aggregated, (2) direct value or (3)
not included in the return clause.

Table 1. Influencing factors in MATCH (a:L1)-[c]->(b:L2) WHERE a.id=8 RETURN b.

Element in pattern Filter Return Influencing

a yes no yes

b no yes (direct value) yes

c no no no

4 Policy Model

The purpose of the policy is to specify all authorization-relevant information. A
policy P describes a pattern of elements E (i.e., nodes and relationships) and a
set of rules R. The function Φ(epolicy, equery) → {true, false} decides whether
an element of the policy pattern (epolicy) can be mapped to an element of the
insecure query pattern (equery). Let one policy be:

P =(E,R,Φ)
E =〈e1, e2, ..., en〉
R =(e, C, f)
C ={c1, c2, ..., cn}

Each rule r ∈ R references a single element of the policy pattern (e ∈ E) and
specifies one or more boolean combined conditions C on the pattern elements
and references a filter template f to be applied to e. A condition c ∈ C checks
whether filter and return properties (cp. Sect. 3) are satisfied by any element of
the policy pattern e′ ∈ E.



434 D. Hofer et al.

Filter templates F are used to exclude unauthorized results in the secure
query. They define authorization-relevant constraints to be added to the inse-
cure query. We define a filter template f with placeholders for runtime-specific
information as follows:

F ={f1, f2, ..., fn}
f =(t, A)
A =〈a1, a2, ..., an〉

Every filter template f ∈ F includes a query fragment t containing placeholders.
For each placeholder in t, its kind a (e.g., ruleElement or username) is given in
A. The kind ruleElement indicates that the placeholder stands for the element
in the rule which references this filter template.

5 Query Processing

For a policy and its rules to be applicable, each element defined in the policy
epolicy is mapped to an equivalent one in the query equery based on its labels and
pattern structure. To find a mapping (cp. RQ3), we define a function getPaths
returning a set of paths from the pattern. Each path consists of a start node,
a relationship and an end node (estart, erelationship, eend). The relationship and
end node can be empty if the start node is isolated.

getPaths(E) → E�

E� = {(estart, erelationship, eend), ...}

This step converts the patterns of policy and query into a common and compara-
ble structure. We search for mappings using the function map(epolicy) → equery:

map(epolicy) → equery ⇔ ∀ (a, b, c) ∈ E�
policy ∃ (x, y, z) ∈ E�

query :

Φ(a, x) ∧ Φ(b, y) ∧ Φ(c, z) ∧ (a = epolicy ∧ x = equery) ∧
((b = ∅ ∧ c = ∅) ∨ (b = epolicy ∧ y = equery ∧ c = epolicy ∧ z = equery))

The overall mapping is valid if (1) the path elements of the policy and the
insecure query are successfully mapped using the function Φ (e.g., Φ(a, x)), (2)
the start nodes are matched, and (3) the relationships and end nodes are either
empty or matched. Accordingly, we evaluate all conditions C in all rules R for a
policy P . We generate a set S of 2-tuples (ei, fi) denoting an element from the
query ei and a filter template fi to be applied on the insecure query q.

S = {(ei, fi) | ∃(E,R,Φ) ∈ P, (e, C, f) ∈ R, ei ∈ q, fi ∈ F ∀c ∈ C :
Γ(q, c) ∧ map(e) = ei ∧ fi = f) }



Rewriting Graph-DB Queries to Enforce Attribute-Based Access Control 435

The function Γ(q, c) → {true, false} checks whether a condition c in the rule’s
conditions C is satisfied by the insecure query q. Further, the element from the
rule e must map to the element in the insecure query ei and the applied filter
template fi is the same as the one f in the rule. To apply the filters of the
matched rules on the insecure query (RQ4), we use the following function:

Ξ(q, S) → q′

It takes an insecure query q and for each assignment (ei, fi) ∈ S, it instantiates
fi → fiq according to Section 4. This fiq can then be added to ei or it extends
existing filters using boolean AND. With all filters in place, we have rewritten
an insecure query q to a secure version q′.

6 Evaluation

We evaluate our query rewriting approach by implementing a proof-of-concept
prototype2 using Cypher, ANTLR, Spring Boot and Kotlin. We rewrite the
insecure Cypher query based on the specified policy. The secure query and infor-
mation about the applied rules are returned. In our prototypical implementation,
we only support reading queries with one MATCH clause. In experiments with a
set of queries, we tested all currently supported features and visually confirmed
that the filters were applied correctly. However, in our prototype we did not
consider potential vulnerabilities or attack vectors not addressed by ABAC.

When measuring the performance of the query rewriting (no database access),
we noticed the standard deviation to be higher than the average rewriting time
(≈ 0.2 ms on a HP ELITEBOOK 850 G6 with 32 GB, CPU i7-8665U). There-
fore, we assume the performance overhead to be negligible.

7 Conclusion

In this paper, we proposed a runtime rewriting approach for freely formulated
graph-DB queries to enforce ABAC independent of the underlying database and
application. First, we defined how various elements of a query contribute to its
result (RQ1). We introduced the strategy of categorizing the elements based on
whether they have a filter applied and how they are used for returning data.
Next, we introduced a policy model encoding our authorization requirements.
Then, we formally defined a policy model including a filter template. The policy
consists of a pattern and rules to decide if access control constraints apply to
an element of the insecure query and which filter template to use (RQ2). The
policy pattern is a sequence of elements, which is used in the query processing.

The policy and the insecure query are processed by first splitting their pat-
terns into tuples representing either paths or isolated nodes. Accordingly, we
mapped the policy elements with their respective ones in the insecure query

2 https://github.com/jku-lit-scsl/CypherRewritingCore.

https://github.com/jku-lit-scsl/CypherRewritingCore


436 D. Hofer et al.

(RQ3). A mapping is valid if each path tuple of the insecure query matches one
of the policy. In this case, if all conditions of a rule are successfully evaluated, its
filter template is instantiated replacing its placeholders with runtime values from
the insecure query and/or user information. The last step of query processing is
enhancing the insecure query with these access control filters (RQ4).

As we only consider one policy, we plan to support policy sets according
to the XACML policy language model in the future. This further demands for
combining algorithms. Additionally, we currently support reading queries only
with one MATCH clause. Thus, we not only need to increase the supported number
of MATCH clauses, but also the types of supported queries. This could be added
using additional conditions or dedicated rules for reading and writing access.
Above all, intensive evaluation is needed especially with complex authorization
policies and large graph models. Finally, we need to identify possible potential
security vulnerabilities.

Acknowledgements. This research has been partly supported by the LIT Secure
and Correct Systems Lab funded by the State of Upper Austria and by the COMET-
K2 Center of the Linz Center of Mechatronics (LCM) funded by the Austrian federal
government and the federal state of Upper Austria.

References

1. Bao, H.N.P., Clavel, M.: A model-driven approach for enforcing fine-grained access
control for SQL queries. SN Comput. Sci. 2(5), 370 (2021)

2. Bogaerts, J., Decat, M., Lagaisse, B., Joosen, W.: Entity-based access control:
supporting more expressive access control policies. In: Proceedings of the 31st
Annual Computer Security Applications Conference, pp. 291–300 (2015)

3. Browder, K., Davidson, M.A.: The virtual private database in oracle9ir2. Oracle
Tech. White Paper, Oracle Corporat. 500(280) (2002)

4. Colombo, P., Ferrari, E.: Fine-grained access control within NoSQL document-
oriented datastores. Data Sci. Eng. 1(3), 127–138 (2016)

5. Hofer, D., Mohamed, A., Nadschläger, S., Auer, D.: An intermediate representation
for rewriting cypher queries. In: Submitted to Workshop (2023)

6. Hofer, D., Nadschläger, S., Mohamed, A., Küng, J.: Extending authorization capa-
bilities of object relational/graph mappers by request manipulation. In: Database
and Expert Systems Applications: 33rd International Conference, DEXA 2022,
Vienna, Austria, 22–24 August 2022, Proceedings, Part II, vol. 13427, pp. 71–83.
Springer, Cham (2022). https://doi.org/10.1007/978-3-031-12426-6 6

7. Jarman, J., McCart, J.A., Berndt, D., Ligatti, J., et al.: A dynamic query-rewriting
mechanism for role-based access control in databases (2008)

8. Kirrane, S.: Linked data with access control. Diss. National University of Ireland,
Galway (2015)

9. Mohamed, A., Auer, D., Hofer, D., Küng, J.: Extended authorization policy for
graph-structured data. SN Comput. Sci. 2(5), 351 (2021)

10. Ramli, C.D.P.K., Nielson, H.R., Nielson, F.: The logic of XACML. Sci. Comput.
Program. 83, 80–105 (2014)

11. Shay, R., Blumenthal, U., Gadepally, V., Hamlin, A., Mitchell, J.D., Cunning-
ham, R.K.: Don’t even ask: database access control through query control. ACM
SIGMOD Rec. 47(3), 17–22 (2019)

https://doi.org/10.1007/978-3-031-12426-6_6

	Rewriting Graph-DB Queries to Enforce Attribute-Based Access Control
	1 Introduction
	2 Related Work
	3 Relevant Information in the Insecure Query
	4 Policy Model
	5 Query Processing
	6 Evaluation
	7 Conclusion
	References


