
Discovering Top-K Partial Periodic
Patterns in Big Temporal Databases

Palla Likhitha(B) and Rage Uday Kiran

The University of Aizu, Fukushima, Japan

likhithapalla7@gmail.com, udayrage@u-aizu.ac.jp

Abstract. Partial periodic pattern mining involves discovering all the
patterns in a temporal database that satisfy the specified minimum peri-
odic support (minPS) and period (per) constraints. The minPS controls
the minimum times a pattern must occur periodically in a database. The
per controls the maximum inter-arrival time within which a pattern must
reappear to consider its reoccurrence to be periodic in a database. Setting
appropriate minPS and per values for any database is an open research
problem. This paper addresses this open problem by proposing a solu-
tion to discover top-k partial periodic patterns in temporal databases.
Top-k partial periodic patterns represent a total of k number of partial
periodic patterns having the highest minPS value in a database. An effi-
cient depth-first search algorithm, called top-k Partial Periodic Pattern
Miner (k-3PMiner), which takes k, and per thresholds as an input was
presented to find all desired patterns in a database. Experimental results
on synthetic and real-world databases demonstrate that our algorithm is
memory and runtime efficient and highly scalable.

Keywords: Data mining · Pattern mining · Periodic · Temporal
Database

1 Introduction

Partial periodic pattern mining is an important knowledge discovery technique
to find all patterns exhibiting partial periodic behavior in a temporal database.
The basic model of partial periodic pattern mining is as follows [4]: Let I =
{i1, i2, ..., in} be the set of n items appearing in a database. A set of items
X ⊆ I is called an itemset. An itemset containing m items is called a m-itemset.
The length of this itemset is m. A transaction t consists of timestamp, and an
itemset. That is t = (ts, Y), where ts represents the transaction time and Y is
an itemset. A temporal database TDB is an ordered collection of transactions,
i.e. TDB = {t1, t2, · · ·, tk}, where k = |TDB| represents the total number of
transactions. Let tsmin and tsmax be the minimum and maximum timestamps of
all the transactions in TDB, respectively. For a transaction t = (ts, Y), such that
X ⊆ Y , it is said that X occurs in t and such a timestamp is denoted as tsX . The
total number of transactions containing X in TDB is defined as the frequency
of X and denoted as freq(X). That is, freq(X) = |TSX |. Let tsXj , tsXk ∈ TSX ,
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C. Strauss et al. (Eds.): DEXA 2023, LNCS 14146, pp. 352–357, 2023.
https://doi.org/10.1007/978-3-031-39847-6_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-39847-6_28&domain=pdf
http://orcid.org/0000-0003-3032-9061
http://orcid.org/0000-0002-5417-0289
https://doi.org/10.1007/978-3-031-39847-6_28

Discovering Top-K Partial Periodic Patterns in Big Temporal Databases 353

1 ≤ j < k ≤ m, denote any two consecutive timestamps in TSX . An inter-
arrival time of X denoted as iatX = (tsXk − tsXj). Let IATX = {iatX1 , iatX2 ,-
· · · , iatXk }, k = sup(X) − 1, be the list of all inter-arrival times of X in TDB.
An inter-arrival time of X is said to be periodic (or interesting) if it is no more
than the user-specified period (per). A iatXi ∈ IATX is said to be periodic
if iatXi ≤ per. Let ̂IATX be the set of all inter-arrival times in IATX with
iatX ≤ per. That is, ̂IATX ⊆ IATX such that if ∃iatXk ∈ IATX : iatXk ≤ per,
then iatXk ∈ ̂IATX . The period-support of X, denoted as PS(X)=| ̂IATX |.
Given a temporal database (TDB), period (per), and minimum period-support
(minPS), the problem of partial periodic pattern mining is to find all patterns
in TDB that have periodic-support no less than minPS.

Uday et al. [4] described a pattern-growth algorithm to find desired patterns
in a temporal database. Ravi et al. [6] extend this model to discover the par-
tial periodic patterns in columnar temporal databases. However, this model’s
widespread adoption and successful industrial application were hindered by this
obstacle: “minPS and per are two key constraints that make partial periodic
pattern mining practicable in real-world applications. They are used to prune
the search space and limit the number of patterns generated. Unfortunately, set-
ting these two constraints for an application is an open research problem and
may require a profound knowledge of the application’s background.” With this
motivation, this paper proposes a solution of finding top-k partial periodically
occurring patterns in a temporal database.

The contribution of this paper is as follows. First, we propose an extended
model of finding top-k partial periodic patterns in a temporal database. Two
constraints, namely k and per, were employed to find the interesting top-k par-
tial periodic patterns having the highest minPS value in the database. A novel
concept known as dynamic minimum periodic support was introduced to reduce
the search space and computational cost-effectively. We also introduce an effi-
cient algorithm, called top-k Partial Periodic Pattern Miner (k-3PMiner), to
find all the desired patterns. Experimental results on synthetic and real-world
databases demonstrate that our algorithm is memory and runtime efficient.

The rest of the paper is organized as follows. Section 2 presents the extended
model of top-k partial periodic patterns and the proposed algorithm. Section 3
reports the experimental results. Finally, Sect. 4 concludes the paper with
research directions.

2 Proposed Algorithm

2.1 Basic Idea: Dynamic Minimum Periodic-Support

Reducing the enormous search space is challenging as our model does not employ
any constraint to reduce the search space. Finding candidate items (or 1-items)
play a crucial role in discovering complete set of top-k partial periodic patterns.
Algorithm 1 describes finding all candidate items that exist in a database to
construct c3PList. Algorithm 2 descibes the procedure of finding all the top-k
partial periodic patterns in a database.

354 P. Likhitha and R. U. Kiran

Algorithm 1. PartialPeriodicItems(Temporal Database (TDB), K (k), period
(per):
1: Let’s say that the c3PList=(Y, TS-list(Y)) is a dictionary that keeps track of tem-

poral information about a pattern that occurs in a TDB. First, let’s create a
temporary list called TSl and use it to keep track of the timestamp of the last
time an item appeared in the database. Let PS be a temporary list to record the
periodic support of an item in the database. Let topkPatterns be a list to record
the top items with highest periodic support value. Let dMinPS be a variable to
store the dynamic minimum periodic support dMinPS among topkPatterns.

2: for each transaction t ∈ TDB do
3: if tscur is i’s first occurrence then
4: Insert i and its timestamp into the c3P-list.
5: Set TSl[i] = tscur and PSi = 0.
6: else
7: Add i’s timestamp in the c3P-list.
8: if (tscur − TSl[i]) ≤ per then
9: Set PSi + +.

10: Set TSl[i] = tscur.
11: Sort the items in the c3P-list in ascending order of their periodic support.
12: for each item i in c3P-list do
13: if length(topkPatterns) < K: then
14: Store the item into topkPatterns
15: dMinPS = min(periodic support of all items in topkPatterns)
16: Call k-3PMiner(c3P-List).

Algorithm 2. k-3PMiner(c3P-List)
1: for each item i in c3P-List do
2: Set tp = ∅ and X = i;
3: for each item j that comes after i in the c3P-list do
4: Set Y = X ∪ j and TSY = TSX ∩ TSj ;
5: Calculate minPS of Y ;
6: if PS(TSY) ≥ dMinPS then
7: Add Y to tp and Y is considered as candidate top-k partial periodic itemset;
8: Check(Y, TSY)

(to check if pattern can make in to top-k partial periodic pattern)
9: k-PFPMiner(tp)

Algorithm 3. Check(X, TS-List)
if minPS(TS − List) > dMinPS then

Pop the Last pattern and insert X in topkPatterns.
dMinPS = min(periodic support of all items in topkPatterns)

Discovering Top-K Partial Periodic Patterns in Big Temporal Databases 355

3 Experimental Results

Since there exists no algorithm to find Top-k partial periodic patterns in tem-
poral databases using k constraint, we evaluated our algorithm k-3PMiner with
näıve algorithm, The näıve algorithm involves the following two steps: (i) finding
all partial periodic patterns in a temporal database using 3P-Growth algorithm
[5] and (ii) generating top-k partial periodic patterns from all partial periodic
patterns by performing another sorting.

3.1 Experimental Setup

Our k-3PMiner algorithm was developed in Python 3.7 and executed on a Giga-
byte R282-z94 rack server machine containing two AMD EPIC 7542 CPUs and
600 GB RAM. The operating system of this machine is Ubuntu Server OS 20.04.
The experiments have been conducted on both synthetic (T10I4D100K) and
BMS-WebView-1 and real-world Pollution databases.

The T10I4D100K is a sparse synthetic database generated using the proce-
dure described in [2]. This database contains 870 items and 100,000 transactions.
The minimum, average, and maximum transaction lengths of this database are
1, 10, and 29 respectively. The BMS-WebView-1 is a sparse database contain-
ing 59,602 transactions and 497 items. The minimum, average, and maximum
transaction lengths of this database are 1, 10, and 76 respectively.

The Pollution database is a high dimensional real-world database provided
by Japanese Ministry of the Environment developed the Atmospheric Envi-
ronmental Regional Observation System (AEROS) [3] to tackle air pollution
problems. Each transaction contained the following information: timestamp in
hours, station identifiers that have recorded PM2.5 values no less than 16 µg/m3.
The resulting database, Pollution, contained 1600 items and 720 transactions.
The minimum, average, and maximum transaction lengths are 11, 460, and 971,
respectively. The k3P-miner code and the databases were provided at [1] of our
experiments.

3.2 Evaluation of both the Algorithms by Varying only k

Figures 1a, 1b, 1c shows the top-k partial periodic patterns discovered on dif-
ferent T10I10D100K, BMS-WebView-1 and Pollution databases by varying k
value, respectively. The per values are set at 2000, 1000 and 250 (in count)
respectively. For Näıve algorithm the minPS values are set at 100, 30, 250 (in
count) respectively. As k increases, the number of top-k patterns also increases.

Figures 2a, 2b, and 2c show the time consumed at a different number of k
values in T10I10D100K, BMS-WebView-1 and Pollution databases, respectively.
It can be observed that an increase in k increases the runtime to find all top-k
partial periodic patterns being generated at different k values. As k increases,
the number of patterns to be mined increases, resulting in time consumption.

Figures 3a, 3b, and 3c show the memory consumed at a different number of k
values in T10I10D200K, BMS-WebView-1 and Pollution databases, respectively.

356 P. Likhitha and R. U. Kiran

It can be observed that an increase in k increases the memory to find all top-k
partial periodic patterns being generated at different k values.

3.3 Scalability Test

In this experiment, we have used the Kosarak database, which is a huge database
having 9,90,000 transactions (in count). We have divided this database into
five segments, each consisting of 200,000 transactions. We have evaluated the
performance of k-3PMiner by adding each successive segment to the ones that
came before it. The runtime requirements and memory consumption k-3PMiner
for each segment of the Kosarak database are shown in Fig. 4a and 4b, when k =
200. The following are some noteworthy findings that can be derived from these
figures: (i) runtime requirements of k-3PMiner increases almost proportionally
as database size grows. (ii) memory requirements of k-3PMiner where we can
observe same as 4a.

Fig. 1. top-k patterns on various databases by varying k

Fig. 2. Runtime evaluation on various databases by varying k

Fig. 3. Memory evaluation on various databases by varying k

Discovering Top-K Partial Periodic Patterns in Big Temporal Databases 357

Fig. 4. Scalability of k-3PMiner

4 Conclusions and Future Work

In this paper, we have proposed an efficient depth-first search algorithm, called
top-k Partial Periodic Pattern Miner (k-3PMiner), to find all desired patterns
in big temporal databases. We have solved the open research problem of setting
minPS and per constraints by introducing a novel upper-bound measure named
dynamic minimum periodic support. An in-depth examination of the proposed
k-3PMiner approach on four synthetic and real-world databases revealed that its
memory consumption and runtime are efficient and highly scalable. As for future
work, we will work on discovering top-k partial periodic patterns in uncertain
databases.

References

1. k3pminer and datasets to verify repetability. https://github.com/udayRage/
codeData/DEXA 2023

2. Agrawal, R., Imieliński, T., Swami, A.: Mining association rules between sets of
items in large databases. In: SIGMOD, pp. 207–216 (1993)

3. Ministry of Environment, J.: Atmospheric environmental regional observation sys-
tem (2021). http://soramame.taiki.go.jp/ Accessed 1 June 2021

4. Kiran, R.U., Shang, H., Toyoda, M., Kitsuregawa, M.: Discovering partial periodic
itemsets in temporal databases. In: International Conference on Scientific and Sta-
tistical Database Management, pp. 30:1–30:6 (2017)

5. Kiran, R.U., Venkatesh, J., Toyoda, M., Kitsuregawa, M., Reddy, P.K.: Discovering
partial periodic-frequent patterns in a transactional database. J. Syst. Softw. 125,
170–182 (2017)

6. Kiran, R.U., et al.: Efficient discovery of partial periodic patterns in large
temporal databases. Electronics 11(10), 1523 (2022). https://doi.org/10.3390/
electronics11101523,https://www.mdpi.com/2079-9292/11/10/1523

https://github.com/udayRage/codeData/DEXA_2023
https://github.com/udayRage/codeData/DEXA_2023
http://soramame.taiki.go.jp/
https://doi.org/10.3390/electronics11101523
https://doi.org/10.3390/electronics11101523
https://www.mdpi.com/2079-9292/11/10/1523

	Discovering Top-K Partial Periodic Patterns in Big Temporal Databases
	1 Introduction
	2 Proposed Algorithm
	2.1 Basic Idea: Dynamic Minimum Periodic-Support

	3 Experimental Results
	3.1 Experimental Setup
	3.2 Evaluation of both the Algorithms by Varying only k
	3.3 Scalability Test

	4 Conclusions and Future Work
	References

