
Managing Semantic Evolutions
in Semi-Structured Data

Pedro Ivo Siqueira Nepomuceno(B) and Kelly Rosa Braghetto

Department of Computer Science, University of Sao Paulo, Sao Paulo, Brazil
{pedro.siqueira,kellyrb}@ime.usp.br

Abstract. This paper introduces a model to store semi-structured data
while documenting its semantic changes over time. The paper also
presents algorithms for querying semantic evolved data, which concili-
ate the multiple versions the data may have. An implementation of the
model and algorithms, MellowDB, was developed, and its performance
was analyzed, showing the proposed algorithms and model are feasible.

Keywords: Databases · Semantic heterogeneity · Query Rewriting

1 Introduction

Several works have addressed database evolution in structured [3] and semi-
structured databases [6]. Most, however, focus on schema evolution. Our work,
on the other hand, focuses on operations over the attributes’ values (semantic
evolution), which change the data semantics over time. The Brazilian county of
“Moji Mirim” for example, was renamed to “Mogi Mirim” in 2016 [5]. Official
statistical data before 2016 refers to “Moji Mirim”, while from 2016 and beyond,
“Mogi Mirim” is referred to. In another example, “Laguna” was ungrouped in
2013 into “Laguna” and “Pescaria Brava”. After ungrouping, numbers inform
the population estimates for each new county. However, it is possible to group
new estimates to make a grouped analysis using all previous registers.

Even when subtle, semantic heterogeneity can make old and new data incom-
patible so that they cannot be judiciously grouped or compared [9]. This paper
presents a model to represent the semantic evolution of semi-structured data
collections and algorithms for easily querying them. Both model and algorithms
were implemented as a middle layer over MongoDB, and its performance was
evaluated through extensive experiments.

This research is part of the INCT of the Future Internet for Smart Cities funded
by CNPq proc. 465446/2014-0, Coordenação de Aperfeiçoamento de Pessoal de Nı́vel
Superior - Brasil (CAPES) - Finance Code 001, FAPESP proc. 14/50937-1, and
FAPESP proc. 15/24485-9.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C. Strauss et al. (Eds.): DEXA 2023, LNCS 14146, pp. 179–185, 2023.
https://doi.org/10.1007/978-3-031-39847-6_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-39847-6_12&domain=pdf
https://doi.org/10.1007/978-3-031-39847-6_12

180 P. I. S. Nepomuceno and K. R. Braghetto

2 Related Work

Temporal Data Models (TDMs) preserve the complete history of data
changes. This way, it is possible to retrieve current values and query states in spe-
cific moments of past time [8]. Most TDMs have been proposed or implemented
using relational database management systems (RDBMS), although there are
some implementations in semi-structured data, such as in JSON files [1].

TDMs do not directly tackle semantic evolution. Mainly because in semantic
evolution, changes are generated following declared rules (the SEOs). But they do
present a deep framework to deal with time, including timestamping, modeling,
and querying techniques useful for dealing with semantic evolution.

Database Evolution demands special care to enable easy querying. The
main strategy to support good querying interfaces for databases that suffered
evolution is query rewriting. Moon et al. [7] and Möller et al. [6] developed
systems capable of dealing with different schema versions using query rewriting
as long as the evolution history is known. Another related technique (delta code
generation) automatically generates views to mimic tables before and after the
evolution. Herrmann et al. [4] presented a tool for generating delta code between
schema versions.

It is important to notice that all the above-cited works deal with schema
evolution. Semantic evolution, which is the main target of this paper,
is not dealt with. In fact, semantic evolution is a less explored area in scien-
tific literature. Ventrone [9] defined some types of semantic heterogeneity and
evolution forms which result in operations similar to the ones considered in this
work. However, no algorithms or models to deal with them were presented.

3 Framework to Handle Semantic Evolution Operations

This section formalizes a semantic evolution operation, the translation, to illus-
trate how to deal with semantic evolution in semi-structured collections. Other
operations such as grouping and ungrouping can be defined similarly.

Definition 1. A document d = (t, V) contains a timestamp t and a set V of
attribute-value pairs. The notation V [a] will represent “the value of attribute a”.
In other words, V = {(a, v)|V [a] = v}.

According to these definitions, documents may contain only simple values.
The extension to consider complex values in nested structures is future work.

Definition 2. The translation operation(Tth,a,q,r(d)) transforms the value of
attribute a of a document d from q to r starting at time th. This is defined
as:

Tth,a,q,r(d) =

{
(t, V \ {(a, q)} ∪ {(a, r)}), if t ≤ th and V [a] = q

d, otherwise
(1)

Managing Semantic Evolutions in Semi-Structured Data 181

Fig. 1. (a) Versions collection Cs and (b) documents in the processed collection Cp.
The first two of (b) are different semantic versions of the same document.

The example cited in Sect. 1 is a translation with q = Moji-Mirim, r =
Mogi-Mirim and th = 2016. The translation operation is reversible; it can be
formalized similarly.

Definition 3. A semantic evolution compatible collection C is composed of
tuples (d, s), where d is a document and s is the semantic version of the docu-
ment.

When a semantic evolution operation (SEO) takes place over a collection,
first, a new semantic version is created. Then a new version of every document
in the collection is created and associated with the new semantic version.

Every version of a document is a copy of the original document after all
changes from previous semantic operations are applied. Each tuple (d1, si) is a
version of the original document d1. A semantic version si is as a subset of
the semantic compatible collection, where all its associated documents have the
same semantic interpretation for their attribute-value pairs.

4 Storage Model and Algorithms

The proposed model contains three collections. The raw collection stores the orig-
inal documents. The semantic versions collection keeps metadata of the semantic
versions. The processed collection stores documents in all semantic versions.

The Raw Collection (Cr) contains the original document attribute-value
pairs (dr.V) as well as its valid time (dr.time) and the original version number
(dr.s) which is the version in effect using dr.time as reference.

Each document (ds) of the Semantic Versions Collection (Cs) contains:
the version number (ds.s); the valid time (ds.time) of the version and the next
and previous version operation and arguments (ds.next/ds.prev) with the argu-
ments of the SEO that needs to be applied to map the version into the next
and the previous one (depending if it is a reversible operation or not). These
two fields resemble a doubly linked list. Any arguments needed, such as the
translation th, q, and r, are also included in these attributes. Figure 1a shows an
example of two documents of Cs.

182 P. I. S. Nepomuceno and K. R. Braghetto

In the Processed Collection (Cp), storing one version of each document for
each semantic version is impractical. A better approach is to associate documents
with an interval of versions. Then, when there are no changes in a document, the
version can only be extended. Each document dp, besides the original attribute-
value pairs set (dp.V) edited to fit its semantic version, includes the following
metadata attribute-value pairs: the original document (dp.o), a reference to the
original document in the raw collection; the minimum (dp.smin) and maximum
(dp.smax) version number that define the limits of version range in which the
copy of the document is valid; and the evolution list (dp.evolved), indicating
every SEO that affected that document. Figure 1b shows an example of the
processed collection for a document affected by a semantic evolution and one
that has not. For documents that have not been affected, the full interval of
semantic versions can be synthesized in only one processed document.

4.1 Semantic Operation Processing

The first semantic version document ds1 is also created when the collection is
created. Valid time of this version (ds1 .time) is set to zero (ds1 .t = 0).

When a SEO is executed, a new semantic version is created with a new version
number. If the operation happened before another previously informed one, this
number might be fractional to “fit” between two other pre-existing versions. The
prev and next of neighboring versions must be reconnected correspondingly.

The next step is to process documents into the processed collection accord-
ingly. For unaffected documents, limits of pre-existing processed documents are
just extended. For each affected document, it is necessary to create another copy
to represent it from that point in time. Figure 1b show an example of how docu-
ments stay when affected by a semantic operation (the Moji/Mogi Mirim case)
and when not affected (the Rio de Janeiro case).

After all affected processed documents are copied or have their value
extended, the SEO may occur. This step depends on the operation and will
happen as stated in Definition 2 over the documents associated with the new
semantic version sj . Then, all posterior operations must be reapplied over these
documents because their results might be different than before.

When new documents are inserted into the database, they must also be
processed consistently, checking if it has been affected by any SEO.

4.2 Query Transformation Algorithm

When querying, it is necessary to consider semantic changes affecting queried
attributes. This way, users may query an attribute by its old or new value seam-
lessly. To make an attribute:value filter query the procedure is:

1. Query the semantic versions collection (Cs) for any semantic “next” opera-
tion where the attribute:value combination has been transformed into another
value (attribute:new value). If there are any, add the attribute:new value
:semantic version number of these semantic versions to a queue P .

Managing Semantic Evolutions in Semi-Structured Data 183

While P is not empty, pop the first attribute:value:semantic version tuple
and make the same query again in Cs, to check if this attribute has been
transformed into still another value. If it has, push the new attribute:value
:semantic version to P . If not, add to another list, L2. This is to detect “new
names” that could represent the queried value in the most recent version.

2. All of L2 values will be used to compose the final query, using an OR operator
in the selection criteria while filtering the semantic version in the evolved
attribute. The original attribute:value is also added.
As an example, consider the collections shown in Figs. 1a to 1b and the query
“County”:“Moji Mirim”. The final version of the query (Q) will be:

Q ={“County”:“Moji Mirim”}
or ({“county”:“Mogi Mirim”} and {“evolved contains”:“1”}) (2)

The final query should be executed in Cp, but only in the last semantic
version subset. It considers both counties that were called “Moji Mirim” and
were renamed to “Mogi Mirim” and counties that are still named “Moji Mirim”
in order to consider homonyms also if they exist.

5 Implementation and Performance Analysis

To validate and evaluate the model and algorithms introduced in Sect. 4, we
implemented MellowDB, a middle-layer library developed in Python to deal with
semantic evolution in MongoDB. For now, it implements operations for inser-
tion and querying. The developed code and all experiments scripts are publicly
available on https://github.com/pisn/semantic heterogeneous database.

For the experiments, databases with 500K documents containing 20 fields,
each with a domain of 20 possible values, were randomly generated. Five different
scenarios were simulated in this phase: Read-Only (only queries), Heavy Read
(95% of queries and 5% insertions), Write Only (only insertions), Heavy Write
(95% insertions and 5% queries) and 50/50 (50% insertions and 50% queries).
These scenarios were inspired by YCSB Framework workload scenarios [2]. Every
experiment was repeated 5 times. Repetitions were executed over a newly created
database in an environment with Debian 5.4.19-1 OS, Intel(R) Core(TM) i7-
6700K CPU @ 4.00 GHz, and 30 GB RAM.

Figure 2a shows that queries suffer less overhead than inserts because doc-
uments are already pre-processed in Cp to be queried, while documents being
inserted must pass through the evolution process. Figure 2b shows that the het-
erogeneity level of the database affects the insert operations, but not the queries,
also because documents are already pre-processed to be queried.

MellowDB obviously added some overhead over the operations. However,
querying without its aid would demand from users not only much more effort
and time but also a deep knowledge of the database domain. Nevertheless, for
the insertion of 500 documents, the worst average time was roughly 5 s.

https://github.com/pisn/semantic_heterogeneous_database

184 P. I. S. Nepomuceno and K. R. Braghetto

Fig. 2. Execution times (95% confidence interval) for all scenarios with different (a)
quantities of select/insert operations and (b) levels of semantic heterogeneity.

6 Concluding Remarks

This work advances the state-of-art techniques in managing semi-structured data
heterogeneity caused by database evolution. The formalization of the evolution
operations and the storage model and algorithms to deal with them presented
here are original contributions, there is no similar approach in the related work.

The theoretical framework, models, and algorithms provide tools to deal
with semantic heterogeneity in semi-structured data. As long as the operations
history is registered, users may query the database without being aware of details
on the values’ changes. Results show that the use of the proposed models is
feasible, achieving desired results much faster and more conveniently than if the
operations were manually treated.

References

1. Brahmia, S., Brahmia, Z., Grandi, F., Bouaziz, R.: τJSchema: a framework for
managing temporal JSON-based NoSQL databases. In: Hartmann, S., Ma, H. (eds.)
DEXA 2016. LNCS, vol. 9828, pp. 167–181. Springer, Cham (2016). https://doi.org/
10.1007/978-3-319-44406-2 13

2. Cooper, B.F., Silberstein, A., Tam, E., Ramakrishnan, R., Sears, R.: Benchmarking
cloud serving systems with YCSB. In: Proceedings of the 1st ACM symposium on
Cloud computing, pp. 143–154 (2010)

3. Curino, C., Moon, H.J., Deutsch, A., Zaniolo, C.: Automating the database schema
evolution process. VLDB J. 22(1), 73–98 (2013)

4. Herrmann, K., Voigt, H., Behrend, A., Rausch, J., Lehner, W.: Living in parallel
realities: co-existing schema versions with a bidirectional database evolution lan-
guage. In: Proceedings of the 2017 ACM International Conference on Management
of Data, pp. 1101–1116. SIGMOD/PODS 2017 (2017)

5. Instituto Brasileiro de Geografia e Estat́ıstica - IBGE: Alterações topomı́nicas
(2022). https://www.ibge.gov.br/geociencias/organizacao-do-territorio/estrutura-
territorial/27336-alteracoes-toponimicas-municipais.html

6. Möller, M.L., Klettke, M., Hillenbrand, A., Störl, U.: Query rewriting for continu-
ously evolving NoSQL databases. In: International Conference on Conceptual Mod-
eling, pp. 213–221. ER 2019 (2019)

https://doi.org/10.1007/978-3-319-44406-2_13
https://doi.org/10.1007/978-3-319-44406-2_13
https://www.ibge.gov.br/geociencias/organizacao-do-territorio/estrutura-territorial/27336-alteracoes-toponimicas-municipais.html
https://www.ibge.gov.br/geociencias/organizacao-do-territorio/estrutura-territorial/27336-alteracoes-toponimicas-municipais.html

Managing Semantic Evolutions in Semi-Structured Data 185

7. Moon, H.J., Curino, C.A., Deutsch, A., Hou, C.Y., Zaniolo, C.: Managing and query-
ing transaction-time databases under schema evolution. Proc. VLDB Endowment
1(1), 882–895 (2008)

8. Tansel, A.U., Clifford, J., Gadia, S., Jajodia, S., Segev, A., Snodgrass, R.: Tempo-
ral databases: theory, design, and implementation. Benjamin-Cummings Publishing
Co., Inc. (1993)

9. Ventrone, V.: Semantic heterogeneity as a result of domain evolution. ACM SIG-
MOD Rec. 20(4), 16–20 (1991)

	Managing Semantic Evolutions in Semi-Structured Data
	1 Introduction
	2 Related Work
	3 Framework to Handle Semantic Evolution Operations
	4 Storage Model and Algorithms
	4.1 Semantic Operation Processing
	4.2 Query Transformation Algorithm

	5 Implementation and Performance Analysis
	6 Concluding Remarks
	References

