
Christine Strauss · Toshiyuki Amagasa ·
Gabriele Kotsis · A Min Tjoa ·
Ismail Khalil (Eds.)

LN
CS

 1
41

46

34th International Conference, DEXA 2023
Penang, Malaysia, August 28–30, 2023
Proceedings, Part I

Database and Expert
Systems Applications

Lecture Notes in Computer Science 14146
Founding Editors
Gerhard Goos
Juris Hartmanis

Editorial Board Members
Elisa Bertino, Purdue University, West Lafayette, IN, USA
Wen Gao, Peking University, Beijing, China
Bernhard Steffen , TU Dortmund University, Dortmund, Germany
Moti Yung , Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873

The series Lecture Notes in Computer Science (LNCS), including its subseries Lecture
Notes in Artificial Intelligence (LNAI) and Lecture Notes in Bioinformatics (LNBI),
has established itself as a medium for the publication of new developments in computer
science and information technology research, teaching, and education.

LNCS enjoys close cooperation with the computer science R & D community, the
series countsmany renowned academics among its volume editors and paper authors, and
collaborates with prestigious societies. Its mission is to serve this international commu-
nity by providing an invaluable service, mainly focused on the publication of conference
andworkshop proceedings and postproceedings. LNCScommenced publication in 1973.

Christine Strauss · Toshiyuki Amagasa ·
Gabriele Kotsis · A Min Tjoa · Ismail Khalil
Editors

Database and Expert
Systems Applications
34th International Conference, DEXA 2023
Penang, Malaysia, August 28–30, 2023
Proceedings, Part I

Editors
Christine Strauss
University of Vienna
Vienna, Austria

Gabriele Kotsis
Johannes Kepler University Linz
Linz, Austria

Ismail Khalil
Johannes Kepler University Linz
Linz, Austria

Toshiyuki Amagasa
University of Tsukuba
Ibaraki, Japan

A Min Tjoa
Vienna University of Technology
Vienna, Austria

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-031-39846-9 ISBN 978-3-031-39847-6 (eBook)
https://doi.org/10.1007/978-3-031-39847-6

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2023

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors
or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-8295-9252
https://doi.org/10.1007/978-3-031-39847-6

Preface

Welcome to the proceedings of the 34th International Conference on Database and
Expert Systems Applications (DEXA 2023). This gathering of brilliant minds from
around the world serves as a testament to the tremendous progress made in the fields of
data management, intelligent systems, and advanced algorithms. It is our great pleasure
to present this compilation of papers, capturing the essence of groundbreaking research
and innovative ideas that were shared during the conference.

The rapid advancements in technology have ushered in an era where data has become
an invaluable asset, and its effective management and analysis have become critical
for organizations across various domains. The integration of expert systems, artificial
intelligence, and machine learning techniques has revolutionized the way we approach
data, enabling us to extract insights, make informed decisions, and create intelligent
systems that can adapt and learn from the vast amounts of information available.

This conference has provided a platform for researchers, academics, industry experts,
and practitioners to come together and exchange their knowledge, experiences, and ideas.
The proceedings reflect the diverse range of topics covered during the event, including
but not limited to data modeling, database design, query optimization, knowledge rep-
resentation, rule-based systems, natural language processing, deep learning, and neural
networks.

The papers included in this volume represent the collective efforts of the authors who
have dedicated their time and expertise to advancing the frontiers of database systems,
expert systems, artificial intelligence, and machine learning. Each paper has undergone
a rigorous review process by a panel of experts in the respective fields, ensuring the
highest standards of quality and relevance.

As you delve into the pages of these proceedings, you will witness the fascinat-
ing discoveries, novel methodologies, and practical applications that are shaping the
future of data-driven decision making. From the development of efficient algorithms for
data processing to the creation of intelligent systems capable of autonomous reason-
ing and decision making, the papers within this volume illuminate the vast potential of
interdisciplinary research.

We are proud to report that authors from more than 37 different countries submitted
papers toDEXA this year. Our program committees have conducted close to five hundred
single-blind reviews, with each submission receiving three reviews, on average. From
155 submitted papers the program committee decided to accept 49 full papers, 35 short
papers with an acceptance rate of 31%, a rate lower than previous DEXA conferences.

We would like to express our heartfelt gratitude to the authors for their contributions
and the dedication they have shown in presenting their work. We also extend our sincere
appreciation to the members of the program committee, whose rigorous evaluation and
insightful feedback have played a crucial role in shaping this collection.

Finally, we would like to thank the conference organizers, keynote speakers, and
attendees for their invaluable support in making this event a resounding success. Their

vi Preface

commitment to advancing the frontiers of knowledge and fostering collaboration has
been instrumental in creating an environment conducive to intellectual growth and
innovation.

It is our hope that these proceedings serve as a source of inspiration and knowledge
for researchers, students, and professionals alike, as they embark on their own journeys
to unravel the mysteries of data, expert systems, artificial intelligence, and machine
learning.

August 2023 Christine Strauss
Toshiyuki Amagasa

Gabriele Kotsis
A Min Tjoa

Ismail Khalil

Organization

Program Committee Chairs

Christine Strauss University of Vienna, Austria
Toshiyuki Amagasa University of Tsukuba, Japan

Steering Committee

Gabriele Kotsis Johannes Kepler University Linz, Austria
A Min Tjoa Vienna University of Technology, Austria
Robert Wille Software Competence Center Hagenberg, Austria
Bernhard Moser Software Competence Center Hagenberg, Austria
Ismail Khalil Johannes Kepler University Linz, Austria

Program Committee Members

Seth Adjei Northern Kentucky University, USA
Riccardo Albertoni CNR-IMATI, Italy
Sabri Allani University of Tunis El Manar, Tunisia
Idir Amine Amarouche USTHB, Algeria
Nidhi Arora Amazon, India
Mustafa Atay Winston-Salem State University, USA
Radim Bača VSB - Technical University of Ostrava, Czech

Republic
Ladjel Bellatreche LIAS/ENSMA, France
Nadia Bennani INSA de Lyon, France
Djamal Benslimane Lyon 1 University, France
Karim Benouaret Université Claude Bernard Lyon 1, France
Vasudha Bhatnagar University of Delhi, India
Athman Bouguettaya University of Sydney, Australia
Omar Boussaid Université Lumière Lyon 2, France
Stephane Bressan National University of Singapore, Singapore
Barbara Catania University of Genoa, Italy
Brice Chardin ENSMA, France
Asma Cherif King Abdulaziz University, Saudi Arabia
Ruzanna Chitchyan University of Bristol, UK
Soon Chun City University of New York, USA

viii Organization

Camelia Constantin Sorbonne University, France
Deborah Dahl Conversational Technologies, USA
Matthew Damigos Ionian University, Greece
Jérôme Darmont Université Lyon 2, France
Soumyava Das Teradata Labs, USA
José Gaviria de la Puerta Universidad de Deusto, Spain
Vincenzo Deufemia University of Salerno, Italy
Sabrina De Capitani Di Vimercati Università degli Studi di Milano, Italy
Ivanna Dronyuk Lviv Polytechnic National University, Ukraine
Cedric du Mouza CNAM, France
Joyce El Haddad Université Paris Dauphine - PSL, France
Markus Endres University of Applied Sciences Munich, Germany
Nora Faci Université Lyon 1, France
Bettina Fazzinga University of Calabria, Italy
Jan Fell Vienna University of Economics and Business,

Austria
Flavio Ferrarotti Software Competence Centre Hagenberg, Austria
Lukas Fischer Software Competence Center Hagenberg, Austria
Flavius Frasincar Erasmus University Rotterdam, The Netherlands
Bernhard Freudenthaler Software Competence Center Hagenberg, Austria
Bouchra Frikh Sidi Mohamed Ben Abdellah University, Morocco
Steven Furnell University of Nottingham, UK
Pablo García Bringas University of Deusto, Spain
Zoltan Geller University of Novi Sad, Serbia
Manolis Gergatsoulis Ionian University, Greece
Joseph Giovanelli University of Bologna, Italy
Anna Gorawska Silesian University of Technology, Poland
Sven Groppe University of Lübeck, Germany
Wilfried Grossmann University of Vienna, Austria
Giovanna Guerrini University of Genoa, Italy
Allel Hadjali ENSMA, France
Sana Hamdi University of Tunis El Manar, Tunisia
Abdelkader Hameurlain Paul Sabatier University, France
Hieu Hanh Le Ochanomizu University, Japan
Sven Hartmann Clausthal University of Technology, Germany
Manfred Hauswirth TU Berlin, Germany
Ionut Iacob Georgia Southern University, USA
Hamidah Ibrahim Universiti Putra Malaysia, Malaysia
Sergio Ilarri University of Zaragoza, Spain
Abdessamad Imine Loria, France
Ivan Izonin Lviv Polytechnic National University, Ukraine
Stéphane Jean ISAE-ENSMA and University of Poitiers, France

Organization ix

Peiquan Jin University of Science and Technology of China,
China

Eleftherios Kalogeros Ionian University, Greece
Anne Kayem Hasso Plattner Institute, Germany
Carsten Kleiner Hochschule Hannover - University of Applied

Science and Arts, Germany
Michal Kratky VSB-Technical University of Ostrava, Czech

Republic
Petr Křemen Czech Technical University in Prague and

Cognizone, Czech Republic
Josef Küng Johannes Kepler University Linz, Austria
Lynda Said Lhadj Ecole nationale Supérieure d’Informatique,

Algeria
Lenka Lhotska Czech Technical University in Prague, Czech

Republic
Jorge Lloret University of Zaragoza, Spain
Qiang Ma Kyoto University, Japan
Hui Ma Victoria University of Wellington, New Zealand
Elio Masciari Federico II University, Italy
Massimo Mecella Sapienza Università di Roma, Italy
Sajib Mistry Curtin University, Australia
Jun Miyazaki Tokyo Institute of Technology, Japan
Lars Moench University of Hagen, Germany
Riad Mokadem Paul Sabatier University, France
Yang-Sae Moon Kangwon National University, South Korea
Franck Morvan IRIT and Université Paul Sabatier, France
Amira Mouakher University of Perpignan, France
Philippe Mulhem LIG-CNRS, France
Emir Muñoz Genesys Telecommunications, Ireland
Francesc D. Muñoz-Escoí Universitat Politècnica de València, Spain
Ismael Navas-Delgado University of Málaga, Spain
Javier Nieves Azterlan, Spain
Makoto Onizuka Osaka University, Japan
Brahim Ouhbi ENSAM, Morocco
Marcin Paprzycki Systems Research Institute, Polish Academy of

Sciences, Poland
Chihyun Park Kangwon National University, South Korea
Louise Parkin LIAS, France
Dhaval Patel IBM, USA
Nikolai Podlesny Hasso Plattner Institute and University of

Potsdam, Germany
Simone Raponi NATO STO CMRE, Italy
Tarmo Robal Tallinn University of Technology, Estonia

x Organization

Claudia Roncancio Ensimag, France
Massimo Ruffolo ICAR-CNR, Italy
Marinette Savonnet University of Burgundy, France
Rakhi Saxena University of Delhi, India
Florence Sedes IRIT and University of Toulouse III Paul Sabatier,

France
Michael Sheng Macquarie University, Australia
Patrick Siarry Université Paris-Est Creteil, France
Gheorghe Cosmin Silaghi Babes-Bolyai University, Romania
Jiefu Song IRIT, France
Srinath Srinivasa Int. Institute of Information Technology,

Bangalore, India
Bala Srinivasan Monash University, Australia
Christian Stummer Bielefeld University, Germany
Panagiotis Tampakis University of Southern Denmark, Denmark
Olivier Teste IRIT, France
A Min Tjoa Vienna University of Technology, Austria
Hiroyuki Toda Yokohama City University, Japan
Vicenc Torra Umeå University, Sweden
Nicolas Travers Pôle Universitaire Léonard de Vinci, France
Traian Marius Truta Northern Kentucky University, USA
Borja Sanz Urquijo Universidad de Deusto, Spain
Zheni Utici Georgia Southern University, USA
Yousuke Watanabe Nagoya University, Japan
Piotr Wisniewski Nicolaus Copernicus University, Poland
Vitaliy Yakovyna Lviv Polytechnic National University, Ukraine
Ming Hour Yang Chung Yuan Christian University, Taiwan
El Moukhtar Zemmouri Moulay Ismail University, Morocco
Qiang Zhu University of Michigan - Dearborn, USA
Yan Zhu Southwest Jiaotong University, China
Ester Zumpano University of Calabria, Italy

External Reviewers

Anys Bacha University of Michigan - Dearborn, USA
Zhengyan Bai JAIST, Japan
Wissal Benjira Pôle Universitaire Léonard de Vinci, France
Bernardo Breve University of Salerno, Italy
Simone Cammarasana IMATI-CNR, Italy
Renukswamy Chikkamath University of Applied Sciences Munich, Germany
Hsiu-Min Chuang Chung Yuan Christian University, Taiwan (R.O.C.)

Organization xi

Gaetano Cimino University of Salerno, Italy
Kaushik Das Sharma India
Chaitali Diwan International Institute of Information Technology,

Bangalore, India
Daniel Dorfmeister Software Competence Center Hagenberg GmbH,

Austria
Myeong-Seon Gil Kangwon National University, South Korea
Ramón Hermoso University of Zaragoza, Spain
A. K. M. Tauhidul Islam Informatica, USA
Andrii Kashliev Eastern Michigan University, USA
Khalid Kattan University of Michigan - Dearborn, USA
Yuntao Kong JAIST, Japan
Mohit Kumar Software Competence Center Hagenberg GmbH,

Austria
Yudi Li Southwest Jiaotong University, China
Junjie Liu Southwest Jiaotong University, China
Junhao Luo Southwest Jiaotong University, China
Jorge Martinez-Gil Software Competence Center Hagenberg GmbH,

Austria
Moulay Driss Mechaoui University of Abdelhamid-Ibn-Badis (UMAB),

Algeria
Sankita Patel Sardar Vallabhbhai National Institute of

Technology, India
Maxime Prieur CNAM & Airbus Defense and Space, France
Gang Qian University of Central Oklahoma, USA
María del Carmen

Rodríguez-Hernández
Technological Institute of Aragon, Spain

Hannes Sochor Software Competence Center Hagenberg GmbH,
Austria

Tung Son Tran University of Applied Sciences Munich, Germany
Óscar Urra Technological Institute of Aragon, Spain
Alexander Völz University of Vienna, Austria
Haihan Wang Southwest Jiaotong University, China
Yi-Hung Wu Chung Yuan Christian University, Taiwan

(R.O.C.)
Qin Yang Southwest Jiaotong University, China
Chengyang Ye Kyoto University, Japan
Kun Yi Kyoto University, Japan
Chih-Chang Yu Chung Yuan Christian University, Taiwan

(R.O.C.)
Foutse Yuehgoh Pôle Universitaire Léonard de Vinci, France
Shilong Zhu Southwest Jiaotong University, China

xii Organization

Organizers

Abstracts of Keynote Talks

Physics-Informed Machine Learning

Stéphane Bressan

National University of Singapore, Singapore

Abstract. In 1687, Isaac Newton published his groundbreaking work,
“Philosophiæ Naturalis Principia Mathematica”. Newton’s remarkable
discoveries unveiled the laws of motion and the law of universal gravita-
tion, propelling humanity’s understanding of the physical world to new
heights. In a letter to Robert Hooke in 1675, in response to an invitation
to collaborate, Newton humbly remarked, “If I have seen further, it is
by standing on the shoulders of giants.” This metaphor swiftly became
a powerful symbol of intellectual and scientific progress, signifying the
idea that knowledge is built upon foundations laid by brilliant minds that
came before us.

Fast-forwarding to the present, we find ourselves amidst a triumphant
statistical machine learning revolution. In 2016, Google’s AlphaGo, a
deep reinforcement learning algorithm, astounded the world by out-
performing a professional Go player. The following year, CheXNet, a
deep convolutional neural network developed at Stanford University, sur-
passed radiologists in accurately detecting pneumonia from chest X-ray
images. And in 2020, AlphaFold, a neural network model created by
DeepMind, revolutionised protein structure prediction, surpassing other
existing methods.

These advancements stand on the shoulders of giants. They owe their
existence to the work of logicians, mathematicians, physicists, neurobi-
ologists, computer scientists, and cyberneticists who have paved the way
for the birth of modern machine learning models and algorithms. They
also owe their existence to the work of material, electrical, electronics
and other engineers, whose ingenuity has birthed the computer hardware
and technology enabling such performance.

However, the remarkable ascent of machine learning is not solely
reliant on these contributions. It thrives on the vast amounts of data per-
meating the global information infrastructure, enabling the construction
of accurate representations of the world. What about knowledge?

In this context, we propose exploring and discussing how machine
learning can both leverage and contribute to scientific knowledge. We
explore how the training of a machine learning model can be informed by
the fundamental principles of the very systems it seeks to comprehend and
how it can create symbolic scientific knowledge.We explore applications

xvi S. Bressan

in classical mechanics, fluid mechanics, quantum many-body systems,
macroeconomics, chemistry, and astronomy.Along this journey, we cross
the paths of such great minds as William Rowan Hamilton, Ernst Ising,
Richard Feynman, and Johannes Kepler.

Data Integration Revitalized: from Data Warehouse
through Data Lake to Data Mesh

Robert Wrembel

Faculty of Computing and Telecommunications,
Poznan University of Technology Poland

Abstract. For years, data integration (DI) architectures evolved from
those supporting virtual integration (mediated, federated), through phys-
ical integration (data warehouse), to those supporting both virtual and
physical integration (data lake, lakehouse, polystore, data mesh/fabric).
Regardless of its type, all of the developed DI architectures include an
integration layer. This layer is implemented by a sophisticated software,
which runs the so-calledDI processes. The integration layer is responsible
for ingesting data from various sources (typically heterogeneous and dis-
tributed) and for homogenizing data into formats suitable for future pro-
cessing and analysis. Nowadays, in all business domains, large volumes
of highly heterogeneous data are produced, e.g., medical systems, smart
cities, precision/smart agriculture, which require further advancements
in the data integration technologies. In this paper, I present my subjec-
tive view on still-to-be developed data integration techniques, namely:
(1) novel agile/flexible integration techniques, (2) cost-based and ML-
based execution optimization of DI processes, and (3) quality assurance
techniques in complex multi-modal data systems.

Contents – Part I

Keynote Paper

Data Integration Revitalized: From Data Warehouse Through Data Lake
to Data Mesh . 3

Robert Wrembel

Data Modeling

Scalable Summarization for Knowledge Graphs with Controlled Utility
Loss . 21

Yi Wang, Ying Wang, and Qia Wang

Commonsense-Aware Attentive Modeling for Humor Recognition 37
Yuta Sasaki, Jianwei Zhang, and Yuhki Shiraishi

A Study on Vulnerability Code Labeling Method in Open-Source C
Programs . 52

Yaning Zheng, Dongxia Wang, Huayang Cao, Cheng Qian,
Xiaohui Kuang, and Honglin Zhuang

Adding Result Diversification to kNN-Based Joins in a Map-Reduce
Framework . 68

Vinícius Souza, Luiz Olmes Carvalho, Daniel de Oliveira,
Marcos Bedo, and Lúcio F. D. Santos

Effective and Efficient Heuristic Algorithms for Supporting Optimal
Location of Hubs over Networks with Demand Uncertainty 84

Alfredo Cuzzocrea, Luigi Canadè, Giulia Fornari, Vittorio Gatto,
and Abderraouf Hafsaoui

DMIS: Dual Model Index Structure for Enhanced Performance
on Complexly Distributed Datasets . 99

Lanzhong Liu, Xujian Zhao, and Yin Long

Streaming Data Analytics for Feature Importance Measures in Concept
Drift Detection and Adaptation . 114

Ali Alizadeh Mansouri, Abbas Javadtalab, and Nematollaah Shiri

An Approach for Efficient Processing of Machine Operational Data 129
Ben Lenard, Eric Pershey, Zachary Nault, and Alexander Rasin

xx Contents – Part I

PrivSketch: A Private Sketch-Based Frequency Estimation Protocol
for Data Streams . 147

Ying Li, Xiaodong Lee, Botao Peng, Themis Palpanas, and Jingan Xue

On Tuning the Sorted Neighborhood Method for Record Comparisons
in a Data Deduplication Pipeline: Industrial Experience Report 164

Paweł Boiński, Witold Andrzejewski, Bartosz Bębel, and Robert Wrembel

Managing Semantic Evolutions in Semi-Structured Data . 179
Pedro Ivo Siqueira Nepomuceno and Kelly Rosa Braghetto

Co-location Pattern Mining Under the Spatial Structure Constraint 186
Rodrigue Govan, Nazha Selmaoui-Folcher, Aristotelis Giannakos,
and Philippe Fournier-Viger

Database Design

Enhancing Online Index Tuning with a Learned Tuning Diagnostic 197
Haitian Hang and Jianling Sun

NoGar: A Non-cooperative Game for Thread Pinning in Array Databases 213
Simone Dominico, Marco A. Z. Alves, and Eduardo C. de Almeida

LHKV: AKey-Value Data CollectionMechanismUnder Local Differential
Privacy . 228

Weihao Xue, Yingpeng Sang, and Hui Tian

Investigating Lakehouse-Backbones for Vehicle Sensor Data 243
Christopher Vox, David Broneske, Jan Piewek, Janusz Feigel,
and Gunter Saake

Assessing the Effectiveness of Intrinsic Dimension Estimators
for Uncovering the Phase Space Dimensionality of Dynamical Systems
from State Observations: A Comparative Analysis . 259

Félix Chavelli, Khoo Zi-Yu, Jonathan Sze Choong Low,
and Stéphane Bressan

Towards a Workload Mapping Model for Tuning Backing Services
in Cloud Systems . 266

Gaurav Kumar, Kshira Sagar Sahoo, and Monowar Bhuyan

Compliance and Data Lifecycle Management in Databases and Backups 281
Nick Scope, Alexander Rasin, Ben Lenard, and James Wagner

Contents – Part I xxi

A Real-Time Parallel Information Processing Method for Signal Sorting 298
Xiaofang Liu, Chaoyang Wang, and Xing Fan

Learning Optimal Tree-Based Index Placement for Autonomous Database 304
Xiaoyue Feng, Tianzhe Jiao, Chaopeng Guo, and Song Jie

Social Links Enhanced Microblog Sentiment Analysis: Integrating Link
Prediction and Sentiment Connection Weights . 310

Xiaomei Zou, Taihao Li, and Jing Yang

Discovering Diverse Information Considering User Acceptability 326
Yuki Ito and Qiang Ma

Confidential Truth Finding with Multi-Party Computation 332
Angelo Saadeh, Pierre Senellart, and Stéphane Bressan

A Key-Value Based Approach to Scalable Graph Database 338
Zihao Zhao, Chuan Hu, Zhihong Shen, Along Mao, and Hao Ren

Bitwise Algorithms to Compute the Transitive Closure of Graphs in Python 345
Xiantian Zhou, Abir Farouzi, Ladjel Bellatreche, and Carlos Ordonez

Discovering Top-K Partial Periodic Patterns in Big Temporal Databases 352
Palla Likhitha and Rage Uday Kiran

Query Optimization

Dexteris: Data Exploration and Transformation with a Guided Query
Builder Approach . 361

Sébastien Ferré

A Neighborhood Encoding for Subgraph Queries in Graph Databases 377
Chems Eddine Nabti, Thamer Mecharnia, Salah Eddine Boukhetta,
Karima Amrouche, and Hamida Seba

MIRS: [MASK] Insertion Based Retrieval Stabilizer for Query Variations 392
Junping Liu, Mingkang Gong, Xinrong Hu, Jie Yang, and Yi Guo

Parallel Pattern Enumeration in Large Graphs . 408
Abir Farouzi, Xiantian Zhou, Ladjel Bellatreche, Mimoun Malki,
and Carlos Ordonez

S2CTrans: Building a Bridge from SPARQL to Cypher . 424
Zihao Zhao, Xiaodong Ge, Zhihong Shen, Chuan Hu, and Huajin Wang

xxii Contents – Part I

Rewriting Graph-DB Queries to Enforce Attribute-Based Access Control 431
Daniel Hofer, Aya Mohamed, Dagmar Auer, Stefan Nadschläger,
and Josef Küng

A Polystore Querying System Applied to Heterogeneous and Horizontally
Distributed Data . 437

Lea El Ahdab, Olivier Teste, Imen Megdiche, and Andre Peninou

Knowledge Representation

Semantically Constitutive Entities in Knowledge Graphs . 445
Chong Cher Chia, Maksim Tkachenko, and Hady W. Lauw

KBQA: Accelerate Fuzzy Path Query on Knowledge Graph 462
Li Zeng, Qiheng You, Jincheng Lu, Shizheng Liu, Weijian Sun,
Rongqian Zhao, and Xin Chen

Tour Route Generation Considering Spot Congestion . 478
Takeyuki Maekawa, Hidekazu Kasahara, and Qiang Ma

A Knowledge-Based Approach to Business Process Analysis: From
Informal to Formal . 493

Antonio De Nicola, Anna Formica, Ida Mele, Michele Missikoff,
and Francesco Taglino

Evaluating Prompt-Based Question Answering for Object Prediction
in the Open Research Knowledge Graph . 508

Jennifer D’Souza, Moussab Hrou, and Sören Auer

Variables are a Curse in Software Vulnerability Prediction 516
Jinghua Groppe, Sven Groppe, and Ralf Möller

Feature Selection for Aero-Engine Fault Detection . 522
Amadi Gabriel Udu, Andrea Lecchini-Visintini, and Hongbiao Dong

Tracking Clusters of Links in Dynamic Social Networks . 528
Erick Stattner

Mind in Action: Cognitive Assessment Using Action Recognition 534
Sayda Elmi, Sai Karthik Navuluru, and Morris Bell

Author Index . 541

Contents – Part II

Rule-Based Systems

RD-Classifier: Reduced Dimensionality Classifier for Alzheimer’s
Diagnosis Support System . 3

Soualihou Ngnamsie Njimbouom, Gelany Aly Abdelkader,
Candra Zonyfar, Hyun Lee, and Jeong-Dong Kim

User Interaction-Aware Knowledge Graphs for Recommender Systems 18
Ru Wang, Bingbing Dong, Tianyang Li, Meng Wu, Chenyang Bu,
and Xindong Wu

How Does the System Perceive Me? — A Transparent and Tunable
Recommender System . 33

Mingman Xu, Qiong Chang, and Jun Miyazaki

MERIHARI-Area Tour Planning by Considering Regional Characteristics 49
Sotaro Moritake, Hidekazu Kasahara, and Qiang Ma

Financial Argument Quality Assessment in Earnings Conference Calls 65
Alaa Alhamzeh

Explaining Decisions of Black-Box Models Using BARBE 82
Mohammad Motallebi, Md Tanvir Alam Anik, and Osmar R. Zaïane

Efficient Video Captioning with Frame Similarity-Based Filtering 98
Elyas Rashno and Farhana Zulkernine

Trace-Based Anomaly Detection with Contextual Sequential Invocations 113
Qingfeng Du, Liang Zhao, Fulong Tian, and Yongqi Han

Fusing Fine-Grained Information of Sequential News for Personalized
News Recommendation . 119

Jin-Cheng Zhang, Azlan Mohd Zain, Kai-Qing Zhou, Xi Chen,
and Ren-Min Zhang

A Finite-Domain Constraint-Based Approach on the Stockyard Planning
Problem . 126

Sven Löffler, Ilja Becker, and Petra Hofstedt

xxiv Contents – Part II

Data Analytics Framework for Smart Waste Management Optimisation:
A Key to Sustainable Future for Councils and Communities 134

Sabbir Ahmed, Sameera Mubarak, Santoso Wibowo, and Jia Tina Du

Natural Language Processing

Hierarchy-Aware Bilateral-Branch Network for Imbalanced Hierarchical
Text Classification . 143

Jiangjiang Zhao, Jiyi Li, and Fumiyo Fukumoto

Multi-Feature and Multi-Channel GCNs for Aspect Based Sentiment
Analysis . 158

Wenlong Xi, Xiaoxi Huang, Fumiyo Fukumoto, and Yoshimi Suzuki

Knowledge Injection for Aspect-Based Sentiment Classification 173
Romany Dekker, Danae Gielisse, Chaya Jaggan, Sander Meijers,
and Flavius Frasincar

Towards Ensemble-Based Imbalanced Text Classification Using Metric
Learning . 188

Takahiro Komamizu

Target and Precursor Named Entities Recognition from Scientific Texts
of High-Temperature Steel Using Deep Neural Network . 203

M. Saef Ullah Miah, Junaida Sulaiman, Talha Bin Sarwar,
Imam Ul Ferdous, Saima Sharleen Islam, and Md. Samiul Haque

Enabling PII Discovery in Textual Data via Outlier Detection 209
Md. Rakibul Islam, Anne V. D. M. Kayem, and Christoph Meinel

Deep Learning

An Efficient Embedding Framework for Uncertain Attribute Graph 219
Ting Jiang, Ting Yu, Xueting Qiao, and Ji Zhang

Double-Layer Attention for Long Sequence Time-Series Forecasting 230
Jiasheng Ma, Xiaoye Wang, and Yingyuan Xiao

Multi-core Adaptive Merging of the Secondary Index for LSM-Based
Stores . 245

Wojciech Macyna, Michal Kukowski, and Michal Zwarzko

CAGAIN: Column Attention Generative Adversarial Imputation Networks 258
Jun Kawagoshi, Yuyang Dong, Takuma Nozawa, and Chuan Xiao

Contents – Part II xxv

CF-SAFF: Collaborative Filtering Based on Self-attention Mechanism
and Feature Fusion . 274

Weixin Kong, Xiaoye Wang, and Yingyuan Xiao

Except-Condition Generative Adversarial Network for Generating
Trajectory Data . 289

Yeji Song, Jihwan Shin, Jinhyun Ahn, Taewhi Lee, and Dong-Hyuk Im

Next POIs Prediction for Group Recommendations: Influence-Based Deep
Learning Model . 295

Sayda Elmi and Kian-Lee Tan

Interpreting Deep Text Quantification Models . 310
YunQi Bang, Mohammed Khaleel, and Wallapak Tavanapong

NExtGCN: Modeling Node Importance of Graph Convolution Network
by Neighbor Excitation for Recommendation . 325

Jingxue Zhang, Ning Wu, and Changchun Yang

Dual Congestion-Aware Route Planning for Tourists by Multi-agent
Reinforcement Learning . 331

Kong Yuntao, Peng Chen, Nguyen Minh Le, and Ma Qiang

Subspace Clustering Technique Using Multi-objective Functions
for Multi-class Categorical Data . 337

Rahmah Brnawy and Nematollaah Shiri

Neural Networks

Multi-task Graph Neural Network for Optimizing the Structure Fairness 347
Jiahui Wang, Meng Li, Fangshu Chen, Xiankai Meng, and Chengcheng Yu

Few-Shot Multi-label Aspect Category Detection Utilizing Prototypical
Network with Sentence-Level Weighting and Label Augmentation 363

Zeyu Wang and Mizuho Iwaihara

Toward Healthy Aging: Temporal Regression for Disability Prediction
and Warning Decision-Making . 378

Jianfei Zhang, Lifei Chen, and Shengrui Wang

A Label Embedding Method via Conditional Covariance Maximization
for Multi-label Classification . 393

Dan Li, Yunqian Li, Jun Li, and Jianhua Xu

xxvi Contents – Part II

Integrally Private Model Selection for Deep Neural Networks 408
Ayush K. Varshney and Vicenç Torra

Gaussian Process Component Mining with the Apriori Algorithm 423
Jan David Hüwel and Christian Beecks

Learnable Filter Components for Social Recommendation 430
XianKun Zhang and WenJie Huang

Efficient Machine Learning-Based Prediction of CYP450 Inhibition 438
Gelany Aly Abdelkader, Soualihou Ngnamsie Njimbouom,
Prince Delator Gidiglo, Tae-Jin Oh, and Jeong-Dong Kim

AMachine-Learning Framework for Supporting Content Recommendation
via User Feedback Data and Content Profiles in Content Managements
Systems . 445

Debashish Roy, Chen Ding, Alfredo Cuzzocrea, and Islam Belmerabet

Fine-Tuning Pre-Trained Model for Consumer Fraud Detection
from Consumer Reviews . 451

Xingli Tang, Keqi Li, Liting Huang, Hui Zhou, and Chunyang Ye

Deep Multi-interaction Hidden Interest Evolution Network
for Click-Through Rate Prediction . 457

Zhongxing Zhang, Qingbo Hao, Yingyuan Xiao, and Wenguang Zheng

Temporal Semantic Attention Network for Aspect-Based Sentiment
Analysis . 463

Bin Yang, Xinyang Tong, Ying Xing, Qi Shen, Huiying Zhao,
and Zhipu Xie

Celestial Machine Learning: From Data to Mars and Beyond with AI
Feynman . 469

Zi-Yu Khoo, Abel Yang, Jonathan Sze Choong Low, and Stéphane Bressan

Author Index . 475

Keynote Paper

Data Integration Revitalized: From Data
Warehouse Through Data Lake to Data

Mesh

Robert Wrembel1,2(B)

1 Poznan University of Technology, Poznań, Poland
robert.wrembel@cs.put.poznan.pl

2 Artificial Intelligence and Cybersecurity Center, Poznań, Poland

Abstract. For years, data integration (DI) architectures evolved from
those supporting virtual integration, through physical integration, to
those supporting both virtual and physical integration. Regardless of its
type, all of the developed DI architectures include an integration layer.
This layer is implemented by a sophisticated software, which runs the
so-called DI processes. The integration layer is responsible for ingesting
data from various sources (typically heterogeneous and distributed) and
for homogenizing data into formats suitable for future processing and
analysis. Nowadays, in all business domains, large volumes of highly het-
erogeneous data are produced, e.g., medical systems, smart cities, smart
agriculture, which require further advancements in the data integration
technologies. In this keynote talk paper, I present my personal opinion
on still-to-be developed data integration techniques - potential research
directions, namely: (1) more flexible DI, (2) quality assurance in complex
multi-modal systems, (3) execution optimization of DI processes.

Keywords: data integration architecture · data quality · performance
optimization of integration process

1 Introduction

The data integration (DI) research area has been active for already six decades.
A common goal of DI is to make heterogeneous and typically distributed data
available for an end user in a unified format. Research and development resulted
in a few standard DI architectures, namely: (1) federated and mediated, (2) data
warehouse, (3) lambda, (4) data lake, (5) lake house, (6) polystore, and (7) data
mesh/fabric. Each of these architectures has its advantages and disadvantages
as well as different application fields.

In all of the aforementioned architectures data are moved from source sys-
tems into an integrated system by means of an integration layer. This layer is

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C. Strauss et al. (Eds.): DEXA 2023, LNCS 14146, pp. 3–18, 2023.
https://doi.org/10.1007/978-3-031-39847-6_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-39847-6_1&domain=pdf
http://orcid.org/0000-0001-6037-5718
https://doi.org/10.1007/978-3-031-39847-6_1

4 R. Wrembel

implemented by a sophisticated software, which runs the so-called DI processes
(a.k.a. ETL - in data warehouse architectures, data processing pipeline - in data
science, or data wrangling, or data processing workflows (DPW) [48,59]), each
of which runs a sequence of tasks (steps). These tasks allow ingesting data from
various sources and transforming data into formats suitable for analytical and
machine learning applications.

For years it has been observed the widespread of complex, data-driven sys-
tems, e.g., medical systems, smart agriculture, smart cities. These systems pro-
duce huge volumes of highly heterogeneous (a.k.a. multi-modal) data that need
to be integrated, to feed various descriptive analytics of prediction models. Thus,
DI architectures re-gained their popularity but facing new challenges.

In this paper, which accompanies my keynote talk, I will present my subjec-
tive point of view on data integration challenges, in the context of data-driven
systems. This point of view is based on my experience in being engaged in a
few projects on data integration in: the financial sector, medical sector, agricul-
ture, and software development. In this paper I will focus on the need for: (1)
novel more flexible DI techniques, (2) advanced quality assurance techniques in
complex systems, and (3) execution optimization of DI processes.

2 Data Integration Architectures: Overview

As mentioned in Sect. 1, a few data integration architectures have been developed
so far. Figure 1 shows a generalized DI architecture, where data sources (DSs)
are connected by a data integration layer, which exists in all the aforementioned
architectures. In general, this layer is responsible for: (1) ingesting data from
DSs, (2) transforming data into formats suitable for analytical and machine
learning applications, (3) cleaning and homogenizing values, deduplicating data,
and (4) making integrated data for applications. Integrated data delivered by
the DI layer can be made available either as virtual or as materialized. In the
first case, such integration (thus architectures) are called virtual. Integration
techniques (architectures) that persistently store integrated data in a repository
are called materialized.

Fig. 1. A generalized data integration architecture

Data Integration: From Data Warehouse to Data Mesh 5

Virtual DI architectures include federated databases [17,24,60] and medi-
ator-based systems [18,71]. In these architectures, data are integrated on
demand by a software that is responsible for: (1) transforming source data mod-
els into a common integration model (frequently the relational one), (2) decom-
posing user queries into sub-queries and routing them into appropriate DSs for
execution, (3) transforming the routed sub-queries into programs understandable
and executable in a given DS, (4) transforming and integrating results returned
by the queried DSs. The main difference between the federated and mediated
architecture is that the first one is used to integrate databases built on the same
data model (relational) and it uses one access interface (query language). The
mediated architecture is applied to integrate not only databases but also other
types of DSs.

Particular types of virtual DI architectures include [67]: polyglot, multi-store,
and polystore. Polyglot allows to access multiple DSs built on the same data
model by means of multiple access interfaces, e.g., SQL-like, procedural. Multi-
store allows to integrate DSs built on various data models and to access data
via a single interface, e.g., a query language. Polystore allows to integrate DSs
built on multiple data models by means of multiple access interfaces.

The first representative of a physical integration is a data warehouse (DW)
architecture [43,70], where the integration is implemented by means of the so-
called extract-transform-load (ETL) processes [63,68]. They are responsible for:
(1) ingesting data from data sources and often storing them in an intermediate
staging area, (2) transforming heterogeneous data into a common data model
and schema used by an end user, (3) cleaning (e.g., removing errors, inconsisten-
cies), normalizing, and eliminating duplicates, (4) loading data into a persistent
repository, which is a data warehouse. This architecture is unrivalled in applica-
tion domains like insurance, finances, trading, sales, which process large volumes
of simple data, e.g., strings, numbers, and dates.

The standard DW architecture extended with capabilities of collecting data
that arrive in data streams is called lambda [28,52]. It includes two data pro-
cessing lanes - the standard batch one and the real-time one. The architecture
was developed in order to be able to analyze batch-arriving data with stream-
arriving data in the same system. Both lanes are integrated using the serving
layer, which is typically implemented by means of virtual views (virtual integra-
tion) and/or materialized views (physical integration).

The proliferation of social media, IoT, robotics, and other industrial devices
imposed a need for physically integrating data of complex, heterogeneous struc-
tures. To this end, the so-called data lake was proposed. A data lake is a repos-
itory that stores heterogeneous data ingested from DSs in their original formats
[32,53]. Such data have to be further homogenized by DI processes, to produce
data available for applications, e.g., [44]. In a pure data lake architecture, data
are unified on-the-fly, like in a mediated system. This class of DI architectures
is hybrid, i.e., it combines physical with virtual integration.

In a data lakehouse [25,34,62,73] data coming from a data lake are first
unified by DI processes and then physically stored in one or more data ware-

6 R. Wrembel

houses, which are part of the whole architecture. Each data warehouse provides
data prepared for specific analytical applications.

Recently, a technological concept called data mesh has gained popularity in
DI. A data mesh defines a data architecture and data governance approach,
where data ownership is decentralized [9,22]. Each component in a mesh is a
DS having a dedicated owner. The owner is responsible for maintaining its data
clean and up-to-date. Such a DS is made available via a standardized interface
to other DS in the mesh. A data mesh architecture is implemented by a set of
technologies, which are called data fabric [66]. A data fabric includes among
others: data storage and data management systems (e.g., databases, distributed
file systems), DI architectures, queuing systems and message brokers, data secu-
rity and governance frameworks, as well as data analytics and visualization.

3 Data Integration Use-Cases

In this section three use-cases are outlined, which challenge DI processes.

3.1 Data Integration in Medicine

Medical systems are composed of multiple devices (e.g., imaging) and various
information systems. Structured patient records are managed by the so-called
Health Information System (HIS), whereas medical images are managed by the
so-called Picture Archiving and Communication System (PACS). Medical images
are transmitted via network and exchanged between systems by means of a
standardized format called DICOM [23]. Medical data include various formats,
like: (1) structured electronic patient medical record, (2) partially structured or
unstructured short and long texts (medical interviews), (3) multiple types of
medical images, e.g., X-ray, CT, MRI, PET, ultrasound.

Recent trends in medical data analytics tend to combine phenotype data
(i.e., observable characteristics of a living organism, like physical, physiological,
behavioral) with genotype data (encoded in DNA), in order to build a complex
model of a given patient. The goal of this model is to predict future illnesses and
to design a course of the most efficient treatment. Phenotype data combined
with genotype data requires integrating all multi-modal data collected in the
course of a patient history.

Since the volumes of data to be integrated and analyzed may be extremely
large (especially multi-modal images), the most promising DI architecture for
this domain would be a data lakehouse. In this architecture, all multi-modal
data would be ingested into a data lake and then based on this repository, a few
specialized data warehouses could be constructed, each for a given analytical
purpose.

3.2 Data Integration in Smart Agriculture

Smart agriculture (a.k.a. precision agriculture, smart farming, digital farming,
sustainable agronomy) refers to the application of advanced engineering tech-

Data Integration: From Data Warehouse to Data Mesh 7

nologies and sophisticated data analysis software to optimize agricultural prac-
tices. These technologies and software are used to monitor, analyze, and manage
various aspects of crop production, livestock management, and resource utiliza-
tion. Some key technologies used in smart agriculture include: (1) IoT sensors and
other devices to collect in real-time data on soil parameters, crop growth, meteo-
rological conditions, and livestock health, (2) imaging devices to collect images on
crop illnesses, vegetation progress, and field conditions, (3) autonomous airborne
and ground robots to perform field works (e.g., monitoring, planting, spraying,
watering, harvesting).

Smart agriculture is a data driven business. Machinery used there produces
highly heterogeneous and massive data. Running smart farming needs assistance
from IT technologies such as: IoT, big data, analytics, computer vision, cloud
computing, and artificial intelligence (AI) [2]. In this context, providing tech-
nologies for efficiently storing large volumes of multi-modal data, integrating,
and making them suitable for further analysis is again a great challenge.

The DI architecture that seems to be adequate for this type of application
scenario is again a data lakehouse - a data lake with all field data collected and a
few specialized data warehouses, each of which serving data for a specific analyt-
ical task, e.g., scheduling robots tasks and trajectories, crop disease correlation
with whether conditions, scheduling of field watering and spraying. On top of it,
fast arriving data, in a from of streams, need to be analyzed in a real time, to
handle unexpected events on robots, e.g., obstacles, equipment failures.

Assuring acceptable quality of field data may be difficult in smart farming.
The fact that agrirobots and IoT devices operate in a harsh environment make
the data error-prone, which result among others from: (1) areas without network
coverage, (2) malfunctioning of IoT devices, (3) bad weather conditions (e.g.,
snowing) and dirt, which may distort generated signals.

3.3 Data Integration in Smart Cities

The concept of a smart city has been researched and developed already for
years. This concept is supported by technologies, including among others: deci-
sion support and urban planning software, simulation sofware (digital twin),
networks (wired and wireless), IoT, robots (airborne and ground). Some of the
typical applications used within a smart city include: traffic management, energy
management, waste management, water management, environment monitoring,
public safety and security, urban planning, incident detection, predictive main-
tenance. All of these activities and applications are data-driven.

Similarly as in the two aforementioned use-cases, data produced within a
smart city are highly multi-modal, which again makes their integration and
analysis challenging. Some of data are made open, but they are not always well
described by metadata. Therefore, understanding the structure of a given data
set, how data were created and what observed phenomena do they represent,
may not always be possible. Another problem is to locate a data set of interest.
To this end, well organized open data sets are needed, augmented with rich

8 R. Wrembel

metadata. Moreover, without rich metadata one is probably not able to fully
assess the quality of such data.

In a smart city, data are produced and collected by many independent enti-
ties that make their data available via multiple separate services. For this reason,
its seems that a data mesh architecture could be suitable for making these data
repositories (and systems) interoperable. Moreover, recent explosion of AI algo-
rithms applications in smart cities [1] requires DI integration techniques that
support specific data pre-processing, suitable for AI algorithms.

4 Subjective View on Challenges in Data Integration

In the architectures outlined in Sect. 2, DI processes execute complex data tasks
on data and they move large volumes of data from DSs into a target system.
Therefore, their execution is typically time costly and reducing it (performance
optimization) is of high importance.

In my subjective opinion, I strongly believe that the medical domain, smart
farming, and smart cities generate the biggest challenges for DI. It is due to:
(1) multi-modal data that the domains produce, (2) high volumes of data to be
ingested and integrated, (3) fast changing data flows from machinery and IoT
devices.

Multi-modality of data needs advanced storage, fast data access methods,
data models/representations suitable for data analytics and AI. High data vol-
umes need powerful computers to ingest and process data, often in real time.
Fast changing data flows means that the throughput may change instantly from
low to very high and a DI system must be able to handle such throughput peaks.
In complex systems it is likely that new data producers appear frequently and
they need to be integrated into the system. Such an integration, ideally should
be automatic. This results in the need to develop new flexible or agile ways of
integrating new data producers. Standard, static, ETL-like architectures seem
not to be suitable for such applications.

In the following sections I outline challenges in DI that, in my opinion, are of
high importance to be able to build efficient applications in data-driven business
domains. These challenges include: (1) more flexible DI techniques, (2) quality
assurance techniques, and (3) performance optimization of DI processes.

5 Flexible Data Integration

Designing and implementing methods for DI processes, used so far, seem not to
be well suited for fast changing systems that feed with data an analytical system
(e.g., a data lake or a lakehouse). Static connections to DSs and static mapping
between DS schema objects and a destination schema objects are not sufficient.
In the aforementioned complex application domains, new machinery and IoT
devices may appear and disappear rapidly. Therefore, new means of connecting
such kind of DSs are recommendable.

Data Integration: From Data Warehouse to Data Mesh 9

The first technology that comes into play are DS connectors - pieces of soft-
ware that allow to access a given data source and ingest data from it. Typically,
a connector is available as a library that has to be installed in an integration sys-
tem. If multiple DS are to be connected, multiple separate dedicated connectors
have to be installed. Connectors used as libraries have multiple disadvantages,
e.g., difficult maintainability due to complex dependencies between versions of
software installed in the system, limited support for new DSs, non-optimal per-
formance, security leaks [14].

Nowadays, there exist a plethora of data management and data storage sys-
tems, which include also non-relational ones (e.g., NoSQL, graph, distributed file
systems of row or columnar organization). For example, the number of different
data sources reaches more than 350 [26]; IBM Cloud Pak for Data [40] includes
over 100 built-in connectors to different data sources.

For a flexible data integration, the library of connectors as a service (LCS)
may come into play [14]. Its basic idea is visualized in Fig. 2. Connectors to var-
ious DSs located under the library of connectors map native interfaces of DSs
into a common access interface. This interface is made available to applications
willing to access the DSs by means of the connection server. The dispatcher is
responsible for instantiating a connector to a given DS and forwarding request
to this connector, similarly as a mediator in the mediated DI architecture, see
Sect. 2. Notice that the advantage of the LCS architecture is in its integrated
additional services, available out of the box, for example: metadata manage-
ment, data governance, data vault/credentials management, data access policy
management, data access monitoring and collecting runtime statistics.

Fig. 2. The architecture of the library of connectors as a service

6 Data Quality

Data quality is challenging in traditional information systems, which store simple
relational data (strings, numbers, and dates), see for example [16,62]. For rela-

10 R. Wrembel

tional data, multiple cleaning and homogenizing solutions have been successfully
developed [20,21]. Assuring high data quality becomes more difficult in complex
systems, like the aforementioned medical, smart agriculture, and smart cities. In
such systems, there are basic sources of data errors, namely: (1) human factor,
when a user enters data into a system using devices like keyboards, OCRs, and
technologies like speech to text, (2) devices that may be malfunctioning, e.g.,
sensors, (3) a network that may be (periodically) malfunctioning or be unavail-
able, and (4) in some application areas - severe environmental conditions.

For checking and assuring the quality of multi-modal data, e.g., time series,
graphs, large texts, as well as images, sounds, video sequences of various formats,
dedicated quality metrics and dedicated data cleaning techniques are needed for
each specific data format. Intensive research in this direction has already started
- the https://dblp.org/ service lists over 6000 publications including keyword
‘data quality’ and the growth of publications on this topic in time is much faster
than linear. Moreover, assuring data quality should be deployed not only at an
integration layer, but primarily, if possible, at the devices (edge computing).
Furthermore, ubiquitous AI algorithms need data of high quality as erroneous
data used in the learning phase will produce erroneous models. Similarly, any
bias in training data will result in AI models reflecting this bias. Moreover,
the quality of ML models may depend on data pre-processing [8], therefore the
development of a DI system that would assist a user in designing a DI process
for a given application scenario is another topic to be researched - works in this
direction have already started [29].

7 Performance of DI Processes

Performance optimization of DI processes was research in the context of data
warehouse architectures and ETL processes, see [4,63] for an overview. Despite
some achievements in this area, there still exist a few interesting and difficult
problems to be solved.

7.1 DI Process Optimization

The most frequently used solutions to decrease the execution time of DI pro-
cesses comprises the following engineering solutions: hardware scaling, parallel
processing, and task orchestration.

Hardware scaling can be either vertical - increasing the number of CPUs,
the size of RAM, adding specialized hardware like FPGAs [50,54] or horizontal
- adding new processing nodes into a DI architecture. On such a hardware, DI
processes or parts of them can be run in parallel, with data parallelism and/or
task parallelism. In data parallelism, data are partitioned and the same task is
run concurrently on all partitions. In task parallelism different pieces of code
(tasks) are run concurrently on different CPUs (nodes).

Research still needs to be done to select those DI processes or particular tasks
within a given process that could profit from parallelization. The next issue is to

https://dblp.org/

Data Integration: From Data Warehouse to Data Mesh 11

decide what would be the most efficient parallelization schemes for them. Some
results in this direction have already been published [5,6], but they need an
in-depth analysis and improvements.

Task orchestration consists in reordering tasks in a DI process, such that
the final order is more efficient than the original one. This technique was orig-
inally researched for optimizing ETL processes in a relational data warehouse
architecture. Finding an optimal sequence of tasks in a DI process requires find-
ing and evaluating all possible valid orders of tasks. The evaluation is based on
execution costs of the evaluated task orders. As the full search space is too large
for real industrial DI processes, some search heuristics must be applied.

Pioneering works on this topic were presented in [64,65], which proposed
some search space heuristics, followed by other techniques, like: (1) schedul-
ing task execution [46] and (2) dividing complex task orders into linear orders
and optimizing the linear orders [49]. Those solutions provide sub-optimal task
sequences. In [33], the authors proposed a method for collecting execution statis-
tics of an DI process for the purpose of using them in the optimization process.
In [51], the idea from [49] was extended to apply parallel processing to each linear
order of tasks (sub-process). [56] discussed a solution for constructing DI pro-
cesses for data science problems, by modeling a DI process as a directed acyclic
graph and applying AutoML techniques for finding a (sub-)optimal task order.
[45] addressed the problem of integrating multiple DI processes to minimize the
execution cost of a new integrated process.

Based on the aforementioned solutions, we can draw the following conclu-
sions. First, defining the cost function for the whole DI process is difficult due to
the complexity of such a process w.r.t. the number of tasks and the structure of
the process, which may contain flow splits and conditional executions of tasks.
Second, data characteristics to be used by a cost-based process optimizer are
not known in advance (not like in databases), thus statistics on data must be
computed either on-line or the execution of the process must be delayed until
the statistics are computed. As a result, the optimization of such a process must
be run before every execution. Third, in complex integration systems, new DSs
to be plugged into the system appear and disappear frequently, thus, the struc-
ture of a DI process evolves, which results in execution cost evolution as well.
Finally, in the existing DI tools (commercial and open) the aforementioned types
of optimizations are not available.

Only two task orchestration techniques called push down and balanced opti-
mization, are available in commercial DI tools. The push down optimization
consists in moving some tasks into DSs to be executed there, to reduce a data
volume (I/O) as soon as possible [42]. IBM extended this technique into the bal-
anced optimization [41], where some tasks are pushed down into DSs, whereas
other tasks are pushed-up into a destination storage system, to be executed
there. Currently, these techniques work only on relational DSs. To the best of
our knowledge, the push-down/up techniques for DSs other than relational ones
have not been well researched yet, but some initial works in this direction has
started [11,12]. For this type of optimization, there are needed techniques for:

12 R. Wrembel

(1) deciding what to push-down/up and (2) finding the most efficient implemen-
tations of a pushed-down/up task in source/destination systems, taking into
account internals of these systems.

Another technique of reducing execution time of a DI process is to cache
intermediate data produced by some integration tasks [35], in order to use them
by other tasks within the same DI process or by different processes. A research
problem here is to find out which results to cache to maximize performance.
This problem is similar to the materialized view selection problem, researched
for decades, e.g., [31,47].

7.2 UDFs in DI Processes Make Life More Difficult

Integrating multi-modal data frequently requires a custom data integration code,
called a user defined function (UDF). Such a code may be implemented in any
programming language and it is called from a DI engine as an external program.
Such UDFs are frequently treated as black-boxes, since their internal logic and
performance characteristics are not known to a DI process designer. It must be
noted that even simple row data (text strings, dates, and numbers) in some cases
have to be processed by UDFs. Advanced data cleaning and data deduplication
in industrial projects may require non-standard algorithms, and such algorithms
are called as external modules from a DI engine, e.g., [7,15]. As a consequence,
optimization means for DI processes with UDFs are very limited, if not possible
at all.

The approaches outlined in Sect. 7.1 do not support DI processes with UDFs.
In order to optimize a DI processes with a black-box UDF, a DI engine must
know performance characteristics of the UDF and (if possible) its semantics, in
order to build its cost model.

Some approaches to learning such UDF characteristics have been proposed in
the research literature. The most frequently proposed, and probably the easiest
technique is to annotate a UDF with hints or rules that allow to figure out
automatically some of its characteristics [30,38,39,58]. The annotations instruct
DI engine how to re-order a workflow or instruct how to execute it in parallel.
An alternative technique was proposed in [10]. It compares input and output
attributes as well as input and output data, to figure out whether attribute
projection and/or data filtering is executed by the UDF.

Complementary research results on optimizing the execution of UDFs
(treated as white boxes) in databases were published in [57,61], where a UDF
is translated either into relational algebraic expressions [57] or compiled into a
low level executable code, merged with a compiled SQL code [61] for execution
in a DBMS. The solution proposed in [27] allows to parallelize UDFs in the
map-reduce framework, but UDFs must be implemented from scratch for this
environment. In [3] the authors describe the so-called parallelization skeletons,
which are code templates used for implementing UDFs for parallelized execution.

In recent years, a common trend is observed to support performance tun-
ing of systems and software pieces by machine learning (ML) algorithms, e.g.,

Data Integration: From Data Warehouse to Data Mesh 13

[19,36,37,55], see also [69] for a brief overview. To this end, performance char-
acteristics (typically, CPU, I/O, memory usage) must be collected, as part of
program testing and/or during its normal execution. Based on the characteris-
tics, various model building techniques are used, e.g., [72]. ML algorithms require
large volumes of test data to learn reliable performance models. Thus, easy to
configure and deploy architectures for running excessive experimental evalua-
tions are needed, for the purpose of collecting massive performance data [13].

In the process of discovering characteristics of black-box UDFs, ML tech-
niques may be profitable. Having collected large number of training performance
data, during known UDF testing, one could apply ML techniques to discover
patterns of resource usage of those known UDFs. They would serve as labeled
performance patterns stored in a repository. For unknown black-box UDFs, the
content of the repository could be used to find patterns that were the most sim-
ilar to the ones exposed by a black-box UDF at hand. This way, one could get
some insights (with a certain level of probability) on the semantics and perfor-
mance of the black-box UDF.

8 Summary

This paper outlined challenges in DI integration, which in my personal opinion,
are important to be investigated in the context of complex data-driven systems.
These challenges include:

– novel techniques for flexible data integration;
– novel techniques for data quality assessment and assurance;
– cost-based performance optimization of DI processes with the support of ML;
– enhancement to performance optimization of DI processes by means of paral-

lelization (methods for deciding which DI processes or particular tasks profit
from parallelization and what are their efficient parallelization schemes);

– methods for discovering semantics of black-box UDFs with the support of
ML;

– enhancement of the push-down/up techniques for non-relational DSs (meth-
ods for deciding which tasks profit from these techniques and how to efficiently
implement a pushed-down/up task in a source/destination system).

The research literature on DI processes, includes multiple, but separate
approaches to DI process design, implementation, and optimization. However,
an end-to-end approach to DI process design at a logical level, physical level,
optimization, and deployment (in the spirit of [59]) is still to be researched.
Finally, designing DI processes for preparing data for ML algorithms is another
topic to be researched.

14 R. Wrembel

References

1. Ahle, U., Hemetsberger, L., �Lakomski, M., Wrembel, R.: AI and data: how cities
of the future will use data in their development (2023)

2. Akkem, Y., Biswas, S.K., Varanasi, A.: Smart farming using artificial intelligence:
a review. Eng. Appl. Artif. Intell. 120, 105899 (2023)

3. Ali, S.M.F., Mey, J., Thiele, M.: Parallelizing user-defined functions in the ETL
workflow using orchestration style sheets. Int. J. Appl. Math. Comput. Sci. 29(1),
69–79 (2019)

4. Ali, S.M.F., Wrembel, R.: From conceptual design to performance optimization
of ETL workflows: current state of research and open problems. VLDB J. 26(6),
777–801 (2017). https://doi.org/10.1007/s00778-017-0477-2

5. Ali, S.M.F., Wrembel, R.: Towards a cost model to optimize user-defined functions
in an ETL workflow based on user-defined performance metrics. In: Welzer, T.,
Eder, J., Podgorelec, V., Kamǐsalić Latifić, A. (eds.) ADBIS 2019. LNCS, vol.
11695, pp. 441–456. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
28730-6 27

6. Ali, S.M.F., Wrembel, R.: Framework to optimize data processing pipelines using
performance metrics. In: Song, M., Song, I.-Y., Kotsis, G., Tjoa, A.M., Khalil,
I. (eds.) DaWaK 2020. LNCS, vol. 12393, pp. 131–140. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-59065-9 11

7. Andrzejewski, W., Bebel, B., Boiński, P., Sienkiewicz, M., Wrembel, R.: Text sim-
ilarity measures in a data deduplication pipeline for customers records. In: Inter-
national Workshop on Design, Optimization, Languages and Analytical Processing
of Big Data (DOLAP), volume 3369 of CEUR Workshop Proceedings, pp. 33–42.
CEUR-WS.org (2023)

8. Bilalli, B., Abelló, A., Aluja-Banet, T., Wrembel, R.: PRESISTANT: learning
based assistant for data pre-processing. Data Knowl. Eng. 123, 101727 (2019)

9. Bode, J., Kühl, N., Kreuzberger, D., Hirschl, S., Holtmann, C.: Data mesh: best
practices to avoid the data mess. CoRR, abs/2302.01713 (2023)

10. Bodziony, M., Krzyzanowski, H., Pieta, L., Wrembel, R.: On discovering semantics
of user-defined functions in data processing workflows. In: International Work-
shop on Big Data in Emergent Distributed Environments (BiDEDE) @ SIG-
MOD/PODS, pp. 7:1–7:6. ACM (2021)

11. Bodziony, M., Morawski, R., Wrembel, R.: Evaluating push-down on nosql data
sources: experiments and analysis paper. In: International Workshop on Big Data
in Emergent Distributed Environments (BiDEDE) @ SIGMOD/PODS, pp. 4:1–4:6
(2022)

12. Bodziony, M., Roszyk, S., Wrembel, R.: On evaluating performance of balanced
optimization of ETL processes for streaming data sources. In: International Work-
shop on Design, Optimization, Languages and Analytical Processing of Big Data
(DOLAP), volume 2572 of CEUR Workshop Proceedings, pp. 74–78 (2020)

13. Bodziony, M., Wrembel, R.: Reference architecture for running large scale data
integration experiments. In: Strauss, C., Kotsis, G., Tjoa, A.M., Khalil, I. (eds.)
DEXA 2021. LNCS, vol. 12923, pp. 3–9. Springer, Cham (2021). https://doi.org/
10.1007/978-3-030-86472-9 1

14. Bodziony, M., Wrembel, R.: Data source connectors layer as a service - design
patterns. In: International Workshop on Design, Optimization, Languages and
Analytical Processing of Big Data (DOLAP), volume 3369 of CEUR Workshop
Proceedings, pp. 76–80. CEUR-WS.org (2023)

https://doi.org/10.1007/s00778-017-0477-2
https://doi.org/10.1007/978-3-030-28730-6_27
https://doi.org/10.1007/978-3-030-28730-6_27
https://doi.org/10.1007/978-3-030-59065-9_11
https://doi.org/10.1007/978-3-030-86472-9_1
https://doi.org/10.1007/978-3-030-86472-9_1

Data Integration: From Data Warehouse to Data Mesh 15

15. Boiński, P., Andrzejewski, W., B ↪ebel, B., Wrembel, R.: On tuning the sorted
neighborhood method for record comparisons in a data deduplication pipeline. In:
International Conference on Database and Expert Systems Applications (DEXA).
Springer, Cham (2023). Volume to appear of LNCS

16. Boinski, P., Sienkiewicz, M., Bebel, B., Wrembel, R., Galezowski, D., Graniszewski,
W.: On customer data deduplication: lessons learned from a R&D project in the
financial sector. In Workshops of the EDBT/ICDT Joint Conference, volume 3135
of CEUR Workshop Proceedings (2022)

17. Bouguettaya, A., Benatallah, B., Elmargamid, A.: Interconnecting Heterogeneous
Information Systems. Kluwer Academic Publishers, Alphen aan den Rijn (1998).
ISBN: 0792382161

18. Brezany, P., Tjoa, A.M., Wanek, H., Wöhrer, A.: Mediators in the architecture
of grid information systems. In: Wyrzykowski, R., Dongarra, J., Paprzycki, M.,
Waśniewski, J. (eds.) PPAM 2003. LNCS, vol. 3019, pp. 788–795. Springer, Hei-
delberg (2004). https://doi.org/10.1007/978-3-540-24669-5 103

19. Chen, X., et al.: Leon: a new framework for ml-aided query optimization. VLDB
Endowment 16(9), 2261–2273 (2023)

20. Christophides, V., Efthymiou, V., Palpanas, T., Papadakis, G., Stefanidis, K.: An
overview of end-to-end entity resolution for big data. ACM Comput. Surv. 53(6),
127:1-127:42 (2021)

21. Chu, X., Ilyas, I.F., Krishnan, S., Wang, J.: Data cleaning: overview and emerging
challenges. In: International Conference on Management of Data (SIGMOD), pp.
2201–2206. ACM (2016)

22. Dehghani, Z.: Data Mesh: Delivering Data-Driven Value at Scale. O’Reilly, Newton
(2022). ISBN: 1492092398

23. DICOM. Dicom - digital imaging and communications in medicine. https://www.
dicomstandard.org/

24. Elmagarmid, A., Rusinkiewicz, M., Sheth, A.: Management of Heterogeneous and
Autonomous Database Systems. Morgan Kaufmann Publishers, Burlington (1999).
ISBN: 1-55860-216-X

25. Errami, S.A., Hajji, H., Kadi, K.A.E., Badir, H.: Spatial big data architecture: from
data warehouses and data lakes to the Lakehouse. J. Parallel Distrib. Comput. 176,
70–79 (2023)

26. Fivetrain. Connectors for every data source. Accessed June 2023
27. Friedman, E., Pawlowski, P., Cieslewicz, J.: SQL/MapReduce: a practical approach

to self-describing, polymorphic, and parallelizable user-defined functions. VLDB
Endowment 2(2), 1402–1413 (2009)

28. Gillet, A., Leclercq, É., Cullot, N.: Lambda+, the renewal of the lambda architec-
ture: category theory to the rescue. In: La Rosa, M., Sadiq, S., Teniente, E. (eds.)
CAiSE 2021. LNCS, vol. 12751, pp. 381–396. Springer, Cham (2021). https://doi.
org/10.1007/978-3-030-79382-1 23

29. Giovanelli, J., Bilalli, B., Abelló, A.: Data pre-processing pipeline generation for
AutoETL. Inf. Syst. 108, 101957 (2022)

30. Große, P., May, N., Lehner, W.: A study of partitioning and parallel UDF execu-
tion with the SAP HANA database. In; Conference on Scientific and Statistical
Database Management (SSDBM), p. 36 (2014)

31. Gupta, A., Mumick, I.S.: Materialized Views: Techniques, Implementations, and
Applications. The MIT Press, Cambridge (1999)

32. Hai, R., Koutras, C., Quix, C., Jarke, M.: Data lakes: a survey of functions and
systems (2023)

https://doi.org/10.1007/978-3-540-24669-5_103
https://www.dicomstandard.org/
https://www.dicomstandard.org/
https://doi.org/10.1007/978-3-030-79382-1_23
https://doi.org/10.1007/978-3-030-79382-1_23

16 R. Wrembel

33. Halasipuram, R., Deshpande, P.M., Padmanabhan, S.: Determining essential statis-
tics for cost based optimization of an ETL workflow. In: International Conference
on Extending Database Technology (EDBT), pp. 307–318 (2014)

34. Harby, A.A., Zulkernine, F.: From data warehouse to Lakehouse: a comparative
review. In: IEEE International Conference on Big Data, pp. 389–395 (2022)

35. Heidsieck, G., de Oliveira, D., Pacitti, E., Pradal, C., Tardieu, F., Valduriez, P.:
Distributed caching of scientific workflows in multisite cloud. In: Hartmann, S.,
Küng, J., Kotsis, G., Tjoa, A.M., Khalil, I. (eds.) DEXA 2020. LNCS, vol. 12392,
pp. 51–65. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59051-2 4

36. Hernández, Á.B., Pérez, M.S., Gupta, S., Muntés-Mulero, V.: Using machine learn-
ing to optimize parallelism in big data applications. Future Gener. Comput. Syst.
86, 1076–1092 (2018)

37. Herodotou, H., et al.: Starfish: a self-tuning system for big data analytics. In:
Conference on Innovative Data Systems Research CIDR, pp. 261–272 (2011)

38. Hueske, F., et al.: Peeking into the optimization of data flow programs with
mapreduce-style UDFs. In: International Conference on Data Engineering (ICDE),
pp. 1292–1295 (2013)

39. Hueske, F., et al.: Opening the black boxes in data flow optimization. VLDB
Endowment 5(11), 1256–1267 (2012)

40. IBM. IBM Cloud Pak for Data: Supported data sources. Accessed June 2023
41. IBM: Introduction to InfoSphere DataStage balanced optimization. Documenta-

tion. Accessed June 2023
42. Informatica: Pushdown optimization overview. Documentation. Accessed June

2023
43. Jarke, M., Lenzerini, M., Vassiliou, Y., Vassiliadis, P.: Fundamentals of Data Ware-

houses. Springer, Cham (2003). https://doi.org/10.1007/978-3-662-05153-5
44. Jemmali, R., Abdelhédi, F., Zurfluh, G.: Dltodw: transferring relational and

NoSQL databases from a data lake. SN Comput. Sci. 3(5), 381 (2022)
45. Jovanovic, P., Romero, O., Simitsis, A., Abelló, A.: Incremental consolidation of

data-intensive multi-flows. IEEE Trans. Knowl. Data Eng. 28(5), 1203–1216 (2016)
46. Karagiannis, A., Vassiliadis, P., Simitsis, A.: Scheduling strategies for efficient ETL

execution. Inf. Syst. 38(6), 927–945 (2013)
47. Kechar, M., Bellatreche, L.: Safeness: suffix arrays driven materialized view selec-

tion framework for large-scale workloads. In: Wrembel, R., Gamper, J., Kotsis, G.,
Tjoa, A.M., Khalil, I. (eds.) DaWaK 2022. Lecture Notes in Computer Science,
vol. 13428, pp. 74–86. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-
12670-3 7

48. Konstantinou, N., Paton, N.W.: Feedback driven improvement of data preparation
pipelines. Inf. Syst. 92, 101480 (2020)

49. Kumar, N., Kumar, P.S.: An efficient heuristic for logical optimization of ETL
workflows. In: Castellanos, M., Dayal, U., Markl, V. (eds.) BIRTE 2010. LNBIP,
vol. 84, pp. 68–83. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-22970-1 6

50. Lerner, A., Hussein, R., Ryser, A., Lee, S., Cudré-Mauroux, P.: Networking and
storage: the next computing elements in exascale systems? IEEE Data Eng. Bull.
43(1), 60–71 (2020)

51. Liu, X., Iftikhar, N.: An ETL optimization framework using partitioning and par-
allelization. In: ACM Symposium on Applied Computing, pp. 1015–1022 (2015)

52. Munshi, A.A., Mohamed, Y.A.I.: Data lake lambda architecture for smart grids
big data analytics. IEEE Access 6, 40463–40471 (2018)

https://doi.org/10.1007/978-3-030-59051-2_4
https://doi.org/10.1007/978-3-662-05153-5
https://doi.org/10.1007/978-3-031-12670-3_7
https://doi.org/10.1007/978-3-031-12670-3_7
https://doi.org/10.1007/978-3-642-22970-1_6
https://doi.org/10.1007/978-3-642-22970-1_6

Data Integration: From Data Warehouse to Data Mesh 17

53. Nargesian, F., Zhu, E., Miller, R.J., Pu, K.Q., Arocena, P.C.: Data lake manage-
ment: challenges and opportunities. VLDB Endowment 12(12), 1986–1989 (2019)

54. Owaida, M., Alonso, G., Fogliarini, L., Hock-Koon, A., Melet, P.: Lowering the
latency of data processing pipelines through FPGA based hardware acceleration.
VLDB Endowment 13(1), 71–85 (2019)

55. Popescu, A.D., Ercegovac, V., Balmin, A., Branco, M., Ailamaki, A.: Same queries,
different data: can we predict runtime performance? In: Workshops @ International
Conference on Data Engineering (ICDE), pp. 275–280. IEEE Computer Society
(2012)

56. Quemy, A.: Binary classification in unstructured space with hypergraph case-based
reasoning. Inf. Syst. 85, 92–113 (2019)

57. Ramachandra, K., Park, K., Emani, K.V., Halverson, A., Galindo-Legaria, C.A.,
Cunningham, C.: Froid: optimization of imperative programs in a relational
database. VLDB Endowment 11(4), 432–444 (2017)

58. Rheinländer, A., Heise, A., Hueske, F., Leser, U., Naumann, F.: SOFA: an exten-
sible logical optimizer for UDF-heavy data flows. Inf. Syst. 52, 96–125 (2015)

59. Romero, O., Wrembel, R.: Data engineering for data science: two sides of the same
coin. In: Song, M., Song, I.-Y., Kotsis, G., Tjoa, A.M., Khalil, I. (eds.) DaWaK
2020. LNCS, vol. 12393, pp. 157–166. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-59065-9 13

60. Rusinkiewicz, M., Czejdo, B., Embley, D.W.: An implementation model for mul-
didatabase queries. In: Karagiannis, D. (ed.) Database and Expert Systems Appli-
cations, pp. 309–314. Springer-Verlag, Vienna (1991). https://doi.org/10.1007/
978-3-7091-7555-2 52

61. Sichert, M., Neumann, T.: User-defined operators: efficiently integrating custom
algorithms into modern databases. VLDB Endowment 15(5), 1119–1131 (2022)

62. Sienkiewicz, M., Wrembel, R.: Managing data in a big financial institution: conclu-
sions from a R&D project. In: Workshops of the EDBT/ICDT Joint Conference,
vol. 2841 (2021)

63. Simitsis, A., Skiadopoulos, S., Vassiliadis, P.: The history, present, and future of
ETL technology (invited). In: International Workshop on Design, Optimization,
Languages and Analytical Processing of Big Data (DOLAP), volume 3369 of CEUR
Workshop Proceedings, pp. 3–12. CEUR-WS.org (2023)

64. Simitsis, A., Vassiliadis, P., Sellis, T.K.: Optimizing ETL processes in data ware-
houses. In: International Conference on Data Engineering (ICDE), pp. 564–575.
IEEE Computer Society (2005)

65. Simitsis, A., Vassiliadis, P., Sellis, T.K.: State-space optimization of ETL work-
flows. IEEE Trans. Knowl. Data Eng. 17(10), 1404–1419 (2005)

66. Strengholt, P.: Data Management at Scale: Modern Data Architecture with Data
Mesh and Data Fabric. O’Reilly, Newton (2023). ISBN: 1098138864

67. Tan, R., Chirkova, R., Gadepally, V., Mattson, T.G.: Enabling query processing
across heterogeneous data models: a survey. In: IEEE International Conference on
Big Data, pp. 3211–3220 (2017)

68. Thomsen, C.: ETL. In Encyclopedia of Big Data Technologies, Springer, Cham
(2019). https://doi.org/10.1007/978-3-319-77525-8

69. Tsesmelis, D., Simitsis, A.: Database optimizers in the era of learning. In: Inter-
national Conference on Data Engineering (ICDE), pp. 3213–3216 (2022)

70. Vaisman, A.A., Zimányi, E.: Data Warehouse Systems - Design and Implementa-
tion. Data-Centric Systems and Applications, 2nd edn. Springer (2022). https://
doi.org/10.1007/978-3-662-65167-4

https://doi.org/10.1007/978-3-030-59065-9_13
https://doi.org/10.1007/978-3-030-59065-9_13
https://doi.org/10.1007/978-3-7091-7555-2_52
https://doi.org/10.1007/978-3-7091-7555-2_52
https://doi.org/10.1007/978-3-319-77525-8
https://doi.org/10.1007/978-3-662-65167-4
https://doi.org/10.1007/978-3-662-65167-4

18 R. Wrembel

71. Wiederhold, G.: Mediators in the architecture of future information systems. Com-
puter 25(3), 38–49 (1992)

72. Witt, C., Bux, M., Gusew, W., Leser, U.: Predictive performance modeling for
distributed batch processing using black box monitoring and machine learning.
Inf. Syst. 82, 33–52 (2019)

73. Zaharia, M., Ghodsi, A., Xin, R., Armbrust, M.: Lakehouse: a new generation of
open platforms that unify data warehousing and advanced analytics. In: Conference
on Innovative Data Systems Research (CIDR) (2021)

Data Modeling

Scalable Summarization for Knowledge Graphs
with Controlled Utility Loss

Yi Wang(B) , Ying Wang, and Qia Wang

Southwest University, Chongqing 400715, China
echowang@swu.edu.cn

Abstract. Due to the explosive growth of semantic data over recent years, extract-
ing critical and representative information from knowledge graphs (KGs), i.e., KG
summarization is a challenging task under real-world resource constraints such
as memories and response time. We present scalable utility-driven algorithms for
summarizing large-scale KGs based on the features of entities. Specifically, we
propose the notion of utility for KG summaries and develop the SiFS algorithm for
efficient lossless KG summarization. Second, we present the highly scalable KG
summarization algorithm ScFS for generating lossy summaries by user defined
utility threshold. The experiments over real-world and synthetic datasets show that
SiFS achieves more compact summary sizes and significant reductions in execu-
tion time. Moreover, ScFS outperforms state-of–the–art summarization methods
significantly in summary size and is about two orders of magnitude better in terms
of speed. Third, we present a query evaluation algorithm over KGs based on SiFS
and ScFS. The experiments results show that the proposed summaries facilitate
efficient and high-quality KG queries.

Keywords: Knowledge Graph compression · utility-driven summarization ·
RDF Graph summary · graph summarization

1 Introduction

KnowledgeGraph (KG) summarization is a challenging task because not only the volume
of real-world KGs are growing explosively, but also KGs have complex structures and
lack of common schemas [1, 2]. The objective of KG summarization is to create a
compact and meaningful representation of the original KG called the summary in order
to solve problems such as exploration [2, 3], querying [4, 5] and error-detecting [6] of
large-scale KGs.

The problem of KG summarization has received a great deal of attention in recent
years. Graph structure-based summarization methods, which merge entities/nodes as
supernodes based on the structure of the directed graphs formed by RDF data, constitute
themost popular type of approaches [4, 5, 7, 8]. A typical structure-based summarization
method is proposed in [4], where equivalence relations between nodes reflecting the
similarity between nodes were defined. Nodes were merged by the equivalence relations
and thus quotient graphs were formed as the graph summary. Partial order relations are

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C. Strauss et al. (Eds.): DEXA 2023, LNCS 14146, pp. 21–36, 2023.
https://doi.org/10.1007/978-3-031-39847-6_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-39847-6_2&domain=pdf
http://orcid.org/0000-0003-3060-9522
https://doi.org/10.1007/978-3-031-39847-6_2

22 Y. Wang et al.

also used to create KG summaries. Differently, González and Hogan [8] presented a
lattice-based summary to dynamically model KGs. Entities having the same maximum
set of properties (called characteristic set) were grouped together. Then the partial order
relations between the sets of entities were identified based on the characteristic sets and
the corresponding lattice was created as the summary.

Structure-based summarization has the advantage of helping users understand the
KGs with a compact and meaningful summary graph, reflecting some kind of schema of
the original KG. Due to the massive volume of current KGs whichmay contain hundreds
of millions of triples, the overhead for calculating summaries is expensive. A major
problem with current summarization methods is that the scalability of algorithms needs
to be improved for very large KGs. For example, the time complexity for generating
the lattice-based summary in [8] is O(|P|·|C|2), where |P| is the cardinality of properties
and |C| is the number of characteristic sets with |C|≤2|P|. Moreover, real-world KGs are
usually changed over time. Therefore, the overhead for computing summaries for large
datasets is expensive.

Another major problem of the current KG summarization is the lack of utility control
for lossy summaries. Utility of a summary refers to the “useful information” contained
from the original KG [9]. For example, Song et al. [10] proposed a d-summary which
describes node linkingpatternswithind hopsbasedon frequent patternmining technique.
The d-summary includes top-k d-hop patterns, which is a lossy summary. However, how
much loss of utility for the summary is not under controlled during the summary creation.

To address the above issues, we present two KG summarization algorithms: the
losslessSimple nodeFeature based Summary (SiFS) and the lossyScalable node Feature
based Summary (ScFS) which can generate KG summaries efficiently with controlled
utility loss. To the best of our knowledge, this is the first work to develop utility–driven
KG summaries. Specifically, our contributions include:

• We propose SiFS for efficient lossless KG summarization. SiFS partitions nodes by
their features with a hash function and generates the Hasse Diagram (HD) as the
summary. By experiments over large KGs we show that SiFS outperforms similar
lossless KG summarization algorithms in execution time and achieve great reduction
in summary size.

• Wedefine the utility metric for KG summary and propose a utility-drivenKG summa-
rization algorithm ScFS for lossy summarization. ScFS achieves high scalability and
it outperforms state-of-the-art KG algorithms in both execution time and summary
size.

• We present a query evaluation algorithm over KGs based on SiFS and ScFS and
evaluated the algorithm over real-world and synthetic KGs. The results show that the
two summaries improve the execution of KG queries. Especially for ScFS, with 80%
of the utility requirements the coverage rate for entity search reaches 95% on average,
and greatly reduces the query execution time.

Scalable Summarization for Knowledge Graphs with Controlled Utility Loss 23

2 Preliminaries

A KG is defined as G = (V, P, R, LV , φ), where V is the set of nodes or entities, P is
a set of relation types, i.e., properties, R ⊆ V × P × V is a set of relations or triples
between nodes, and LV is a set of node labels or types, and φ: V → ℘(LV) is a function
that maps a node to the set of types.

Definition 1 (Node feature). Given G = (V, P, R, LV , φ), the feature of a node v ∈ V is
defined as a finite set of elements that characterizing v, denoted as F(v) = {f 1, f 2,.., f s}.

Definition 2 (Feature Pattern, FP). Given G = (V, P, R, LV , φ), a feature pattern (FP)
is defined as a tuple: c = (W, T), where W is a subset of V and T is a subset of P and
satisfies: (i) ∀v ∈ W, F(v) = T, and (ii) for any subset of V that includeW, i.e.,W ′ ⊆ V
and W ⊆ W ′, the condition (i) does not hold for every node inW ′.

Definition 2 describes that an FP is a maximum set of common features for a set of
nodes. T in an FP c is called the feature set.

Definition 3 (KG summary based on FP). GivenG = (V, P, R, LV , φ), let C be the set of
FPs formed by all the nodes of G, the summary of G is the Hasse Diagram (HD) formed
by (C, ⊆), where ⊆ is the subset relation between the feature sets in C. We denote the
summary ofG as L = (C,E), where E describes the cover relations between the elements
of C.

Fig. 1. An example KG and its summary

Example 1. Figure 1 (a) shows a KG, where V = {v1, v2, v3, v4, v5, v6, v7, v8, v9, v10,
v11, v12, v13, v14} and P = {p1, p2, p3, p4, p5}. We assume that the feature of each node
is described by its out-going properties. For example, F(v1)= {p1} and F(v7)= {p1, p3,
p4, p5}. Table 1 lists the node features and FPs. Figure 1 (b) is the KG summary based
on the node features. Each FP is at a certain layer, determined by the cardinality of its
feature set. For example, c1 is at layer 1 because its feature set has one property and c5

24 Y. Wang et al.

is at layer 4 because its feature set has four properties. We call the largest layer number
the Height of the summary.

Table 1. Node features and FPs

Node feature FP

F(v1) = {p1} c1 = ({v8, v9, v10, v11, v12, v13, v14}, ∅)
F(v2) = {p1} c2 = ({v1, v2}, {p1})

F(v3) = {p1, p3, p4} c3 = ({v3}, {p1, p3, p4})

F(v4) = {p1, p2, p3, p4} c4 = ({v5, v6}, {p1, p3, p5})

F(v5) = {p1, p3, p5} c5 = ({v4}, {p1, p2, p3, p4})

F(v6) = {p1, p3, p5} c6 = ({v7}, {p1, p3, p4, p5})

F(v7) = {p1, p3, p4, p5}

F(v8) = F(v9) = F(v10) = F(v11) = F(v12) =
F(v13) = F(v14) = ∅

Definition 4 (Base graph of an FP). Given G = (V, P, R, LV , φ), a summary L = (C,
E), and an FP c = (W, T) ∈ C, the base graph of c is a subgraph of G: gb = (Vb, Pb,
Rb, LbV , φb), where: (1) Vb = Vσ ∪VN , Vσ =⋃

W∈cW and VN includes all the one-hop
neighbor of the nodes in Vσ; (2) Rb = {(u, p, v)|u ∈ Vσ or v ∈ Vσ}; (3) Pb = {p| p ∈ P
and (u, p, v) ∈ Rb}; (4) LbV is a subset of LV which includes the node labels of Vb; and
(5) φb is a labeling function that maps each node in Vb to its types.

Definition 5 (Base graph of a summary). Given G = (V, P, R, LV , φ) and a summary L
= (C, E), the base graphGL = (Vs, Ps, Rs, LsV , φs) of L is the union of the base graphs of
all its FPs: (1) Vs = Vσ ∪VN , Vσ =⋃

W∈cW and VN includes all the one-hop neighbor
of the nodes in Vσ; (2) Ps =⋃

T∈cT ; ; (3) Rs = {(u, p, v)| u ∈ Vσ or v ∈ Vσ}; (4) LsV is a
subset of LV which includes the node labels of Vs; and (5) φs is a labeling function that
maps each node in Vs to its types.

Consider the KG in example 1, by the definition 4, the base graph of c6 is gb = (Vb,
Pb, Rb, LbV , φb) (c.f. Figure 1(a)), where Vb = { v2, v3, v6, v7, v12, v13, v14}, Pb = {p1,
p3, p4, p5}, and Rb includes the edges related to v7. By definition 5, the base graph of
the summary L in Fig. 2(b) is exactly the original KG.

Definition 6 (Utility of a summary). Let L = (C, E) be the summary for a given KG, the
utility of L is defined as utility(L) = ∑

(u,p,v)∈RbI(u, v), where I(u, v) is the importance
measure for the relation (u, p, v) in the based graph of the summary.

We normalize the utility of a summary by the maximum utility, i.e., the total utility
of G, denoting as u0:

u(L) =
∑

(u,p,v)∈Rb
I(u, v)/u0 (1)

Intuitively, the utility of a summary describes how much critical information is
summarized by the summary. The utility value u is normalized between 0 and 1 and a

Scalable Summarization for Knowledge Graphs with Controlled Utility Loss 25

greater value indicates a better summary [9]. Given a user-specified utility requirementτ ,
the objective of the KG summarization is to:

minimize |L| subject to u(L) ≥ T .

Table 2 lists the major notations used in this paper.

Table 2. Notations

Symbol Definition

FP feature pattern c = (W, T),W is the set of nodes, T is the feature set

L = (C, E) KG summary, C is the set of FPs, E is the links between FPs

GL , gb the base graph of the summary L, the base graph of an FP

u(L), u0, τ the normalized utility of the summary L, the total utility of the KG, the
threshold of utility

Height the largest layer of the HD-based summary

FSi the set of FPs at layer i

γ the ratio for selecting the top-k FPs in each layer

Cr(v), qv, kv the weighted centrality value of v, the importance of its features, and the
common node centrality metric

3 Lossless Simple Node Feature Based Summary (SiFS)

In this section, we present the algorithm: lossless Simple node Feature based Summary
(SiFS) for constructing the lossless KG summary (τ = 1).

Algorithm1 relies on the hash function h to compute the node feature. The dictionary
mapF stores the nodes having same the hash value with the hash value as the key.
This process efficiently retrieves the common feature sets. However, there may be false
positive, i.e., nodes having different features are hashed to a same value. Lines 5–11
of Algorithm 1 check the correctness of FPs and store the FPs by the length of node
feature set. In practice, we use a very simple hash function: to mod a node feature
by very large prime number and the no collision occurs. Algorithm 1 has O(|R|) time
complexity. Algorithm 2 SiFS calculates the lossless summary (τ = 1) for a given KG.
Line 2 of Algorithm 2 invokes Algorithm 1 to compute FPs and the height of the HD-
based summary. Lines 3–9 build the summary of G by checking the inclusion relation
of FPs at different layers. This task takes O(Height2·M) time complexity, where M is
the maximum number of FPs in each layer. Since Height·M ≤ |C| and Height ≤ |P|, the
time complexity for Algorithm 2 is O(|C|·|P|). Therefore, the total time complexity for
the lossless KG summary SiFS is O(|R|+|C|·|P|).

26 Y. Wang et al.

Algorithm 1 Compute node feature sets
Input G, h // h is the hash function to map node feature sets to numbers

1. FS←[], W←[], mapF←∅, Height←1 // FS is the set of FSi, storing FPs by layer

2. for v∈V do

3. hF←h(F(v)) // F(v) is the set of node features for v
4. mapF[hF] ← mapF[hF]∪{v}

5. for X in mapF do

6. while X≠∅ do

7. u←select-random-node(X)

8. W(u) ←{v∈X|F(u)=F(v)} //W(u) stores the nodes having same features
with u

9. FS[|F(u)|].append({u}∪F(u)) // |F(u)| is the cardinality of F(u)

10. Height←max{Height, |F(u)|}

11. X←X−W(u)

12. Return W, FS, Height

Algorithm 2 Finding the lossless KG summary (SiFS)
Input G, h

1. L←∅, FS←∅, S←∅
2. W, FS, Height←ComputeNodeFeatureSets(G, h)

3. for i=2 to Height do

3. for j=i−1 to 1 do

4. if j==i−1:

5. L←L∪DirectCover(W, FSi, FSj) //calculate relations between FPs at successive
layers

6. else if j<i−1:

7. L←L∪JumpLayerCover(W, FSi, FSj) // calculate relations between FPs not at suc-
cessive layers

8. j− −;

9. i++;

10. Return L

4 Lossy Scalable Node Feature Based Summary (ScFS)

Our strategy to build lossy Scalable node Feature based Summary (ScFS) for KGs is to
construct the summary in an incremental way with controlled utility loss. Specifically,
in each round of the utility computation, top-k FPs are selected to the summary. If the
utility does not reach the requirementτ , another round continues.

In order to select top-k FPs from each layer in a round and maximize the utility, we
need to rank the FPs. For each FP, we compute its score by Eq. (2).

Sr(c) = max
v∈WCr(v), c = (W ,T) ∈ C (2)

whereCr(v) is the centrality score of v. In this paperwe use aweighted centralitymeasure
(3) combining both common node centrality and the importance of its features [21]. In
Eq. (3), kv is the centrality score for v which can be common centrality metric, e.g.,

Scalable Summarization for Knowledge Graphs with Controlled Utility Loss 27

degree or page rank centrality, qv is the importance of its features (Eq. (4)), and α is a
tuning parameter between 0 and 1. When α = 0, Cr(v) is decided by kv, and when α =
1, Cr(v) is decided by qv. The function freq in Eq. (4) is the frequency of a given feature
and the formula is motivated by the similarity measure in graphs [22]. The intuition
behind this centrality metric is that the nodes having large node centrality,.e.g., degree,
and connected with low-frequency properties are important nodes. In fact, the function
freq can be replaced by other functions related to p that characterizing the required
importance of different properties.

Cr(v) = k1−α
v × qα

v (3)

qv =
{

1F(v) = ∅
∑

p∈F(v)
1

log(1+freq(p))F(v) �= ∅
(4)

As the value of k is related to the number of FPs in each layer, we use the ratio γ to
compute k as:

k = �avg|FS| · γ (5)

where avg|FS| = |C|
Height is the average number of FS in each layer.

Example 2 The base graph of the summary L for Fig. 1(a) is the original KG.
Thus, |R|=20, and suppose kv is the degree centrality of v, i.e., kv = dv/2|R|=dv/40. qv is
calculated by the frequency of its features, here, the out-going properties. For example,
v3 connects to p1, p3, p4, thus by Eq. (4) we have qv3=14.30. By Eq. (3) and with α =
0.5, we obtain Cr(v3)=1.34. Similarly, we have the weighted centrality scores for the
rest of the nodes and the most central node is v4 (2.64) and v1 (0.41) is least central. By
Eq. (2), we can calculate the scores for the six FPs and c5 (2.64) is ranked the highest.

Algorithm 3 Building Lossy Summary by Layers (ScFS)
Input G, FS, h, τ, γ, u0

1. FS←∅, S←∅, mapF←∅, mapI←∅, L←∅, utility←0

2. S, FS, Height←ComputeNodeFeatureSets(G, h)

3. Rank_FPs_by Layers(S, FS)

4. | |

5. while utility<τ do

6. ΔL←BuildConnection(T, FS, k) //Selecting top-k FPs in each layer and establish links

7. Δu←ComputeUtility(ΔL, mapI, gb, Cr, u0)

8. L←Merge(L, ΔL) //Combine L with ΔL
9. utility← utility +Δu
10. Return L

28 Y. Wang et al.

Algorithm 4 ComputingUtility
Input ΔL, mapI, gb, Cr, u0 //u0 is the total utility of G, GB is the set of base graphs of FPs

1. Δu ←0

2. for v in W do //W is the set of nodes summarized by ΔL
3. Rb←fetchEdge(v, gb) // fetchEdge retrieves relations related to v
4. for e in Rb do

5. if not hashedCheck(e, mapI) // checks if the utility is computed by the hashmap

6. I(e) ←Cr(v)/d(v)+ Cr(u)/d(u), u∈N(v)

7. Δu ←Δu +I(e)

8. Δu ←Δu/u0

9. Return utility

We present Algorithm 3 (ScFS) to create the lossy summary for a given KG by
incrementally increasing the utility of the summary. Line 2 of Algorithm 3 invokes
Algorithm 1 to compute node features and the height of the summary. Line 3 ranks
the FPs by the scores of FPs calculated by Eq. (2). Line 4 calculates the value of k
by the given ratio γ . Lines 5 − 9 check the inclusion relations between the selected
FPs in each layer and compute the utility of L incrementally by invoking Algorithm 4:
ComputingUtility, until utility reaches the thresholdτ .

Algorithm 4 computes the utility of a given summary in an incremental fashion. For
each node v in the summary, we fetch the related relations Rb from the corresponding
base graph gbi (Line 3). The function hashedCheck can hash the relation e and check if
the hash value exits in mapI (Line 5). If it exists, the function returns true. If the hash
value doesn’t exist, the function adds the hash value to mapI and return false. This step
is to avoid repeatedly computing utility of a relation. Line 6 of Algorithm 3 computes
the utility of the relation e by Eq. (6) and Line 8 normalizes the utility of the summary.
Algorithm 4 takes O(|C|) time complexity. Therefore, the total time complexity for the
lossy KG summary by layers is O(|R|+|C|). Since |C| is normally less than |R|, the time
complexity for the algorithm is O(|R|).

I(u, v) = Cr(u)

du
+ Cr(v)

dv
(6)

Theorem 1 (Non-decreasing Utility Theorem) Given a KG G, if Lt+1 and Lt are the
lossy summaries generated at the t + 1 round and t round by Algorithm 4, then u(Lt+1)
≥ u(Lt) (t ≥ 0).

Proof. Since Algorithm 4 (ScFS) selects top-k FPs from each layer j (1≤ j ≤Height) in
each round of iteration, Lt+1 contains at most Height·k (k ≥ 1) FPs than Lt . By Eqs.(1)
and (6), each FP c = (W, T) can contribute utility u(c) = 1

u0

∑
(u,p,v)∈Rb

Cr(u)
du

+ Cr(v)
dv

to the utility of the summary. The larger the score of the FP Sr(c) is, the more central
nodes it contains and thus contributes more utility to the summary. Therefore, u(Lt+1)
≥ u(Lt) and the top-k strategy ensured by the ranking measure of FPs fastens the speed
of u(L) of reaching the threshold τ .

Scalable Summarization for Knowledge Graphs with Controlled Utility Loss 29

5 KG Search with Summaries

SPARQL is the standard W3C query language for accessing KG. A SPARQL query
Q is a generalization of a KG, called Basic Graph Patterns (BGP), in which variables
may appear as subject, property and object of triples. These graph patterns are matched
against the KG and the matched graph is retrieved and manipulated according to the
conditions given in the query. Algorithm 5 shows the search scheme for the proposed
summaries SiFS and ScFS, which faciliate fast KG search under resource bounds. This
is desirable in large-scale KG search with limited computational resources.

Algorithm 5 SearchwithHDS
Input: Q={t1, t2, …, tq}, L, GB, N // GB is the set of base graphs of FPs, N is the bound of

query results

1. Select_FP←{}, QR←{}

2. for each ti:

3. select_FP←MatchFP(ti, L) //MatchFP find matching FPs from L
4. for each Xi in Select_FP:

5. QR←Eval_L(Xi, GB, N) // Fetch matching elements in the base graphs of FPs

6. Return QR

Algorithm 5 includes two major tasks: FP matching (Lines 1–3) and base graph
searching (Lines 4–5). In the FP matching step, the algorithm selects FPs from the
summary L which contains the potential answers of Q as much as possible. A query Q
is covered by a set of FPs if and only if the base graphs induced by the FPs:

⋃
FPi

QFPi

cover the query Q. The base graph searching step involves accessing the base graphs
(can be stored as materialized views) of the selected FPs and fetching bounded numbers
of elements as query results. The total complexity of the Algorithm 5 is O(|C|q), where
q is the number of triple patterns in the query.

6 Experiments

6.1 Goals and Datasets of the Experiments

Our goal is to validate the proposed approach: the two types of summaries: SiFS andScFS
for KG summarization. We evaluated the proposed methods from the two aspects: the
performance of the algorithms in terms of execution time and summary size compared to
similar summary methods and the query performance based on the proposed summaries.
We developed the summary applications using Python version 3.8.5 and Neo4j version
3.5.26 (configured with 16GB working memory).We ran the summary algorithms on a
machine with an Intel Core i7-3740QM CPU (2.70GHz, 4 Cores) and 32.0 GB mem-
ory. We carried out the experiments over the four datasets: YAGO1, LinkedGeoData2,

1 https://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/yago-
naga/yago/downloads. We used core datasets including yagoSimpleTypes, CORE including
yagoFacts and yagoDateFacts, and yagoWikipediaInfo_en.

2 http://linkedgeodata.org/.

https://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/yago-naga/yago/downloads
http://linkedgeodata.org/

30 Y. Wang et al.

Berlin SPARQL Benchmark3 (BSBM) [23] and the Open Data Service of University of
Southampton4 (ODUS) shown in Table 3.

Table 3. Datasets

Datasets Triples Nodes Properties Relations

YAGO 20,450,000 4,104,072 15 8,776,501

LinkedGeoData 3,689,990 1,384,181 2022 1,132,444

BSBM 21,198,599 3,119,001 39 8,100,521

ODUS 599,987 121,330 420 229,197

6.2 Performance of the Summary Algorithms

Execution Time and Summary Size. We compared the proposed algorithms: SiFS
and ScFS with the lattice-based summary (LS) of [8] and the quotient graph summary
(QS) proposed in [4]. LS summarizes KGs as lattices. The elements in an LS are CSCs
extracted from RDF triples. Differently, QS is a typical summarization method based on
equivalence relations between nodes in a KG.

Figure 2 shows the results of the execution time and summary sizes for the four types
of summaries over the datasets BSBM and LinkedGeoData. From Fig. 2 (a) we observe
that the lossy summaryScFS (τ =0.8 andγ =0.2) outperformed theother three summary
algorithms while LS took the longest time. Although the scale of LinkedGeoData is
smaller than that ofBSBM, the former contains 2022 properties, almost 52 times than that
of the latter. The large number of properties caused high computation cost for calculating
CSCs of LS and FSs of SiFS. The lossy summary ScFS has advantage in this situation
because only FSs with large scores were processed. Figure 2(b) and (c) show the sizes of
the summaries for BSBM and LinkedGeoData. The sizes of the ScFS and SiFS refer to
the numbers of FSs and the links between them. The size of LS refers to the numbers of
CSCs and links between them. For QS, the size of the summary denotes the numbers of
supernodes and superedges. It is obvious that the summaries generated by SiFS, ScFS,
and LS were more compact than QS. Furthermore, ScFS obtained the most compact
summary for the two datasets. QS, which is based on equivalence relations between
nodes, generated the largest summaries compared to other three summary methods.

Performance and Parameters for ScFS. We carried out experiments for ScFS to find
the impact of the parameter γ : the ratio of top elements selected in each layer, on the
convergence of the utility. Figure 3 shows the relations between γ and the utility u of
the summaries for the four datasets generated by ScFS. We observe that when γ was set
to 0.2, the ScFS iterated at most 2 rounds to reach 80% of the total utility for BSBM,
LinkedGeoData, and YAGO. ODUS took more rounds to reach the utility requirement.

3 http://wifo5-03.informatik.uni-mannheim.de/bizer/berlinsparqlbenchmark/.
4 http://data.southampton.ac.uk/.

http://wifo5-03.informatik.uni-mannheim.de/bizer/berlinsparqlbenchmark/
http://data.southampton.ac.uk/

Scalable Summarization for Knowledge Graphs with Controlled Utility Loss 31

Fig. 2. Execution time and summary sizes for SiFS, ScFS, LS, and QS

ODUS has 392 FPs. The maximum length of the feature sets is 85, i.e., the height of the
summary Height is 85. Thus, the average number of FPs in each layer avg|FS| is 4.6. If
γ was set to 0.2, then top-1 FP was selected at each layer and the utility reached 0.81
after 5 rounds. If γ was set to 0.4, then top-2 FPs were selected and the utility reached
0.84 after 2 rounds.

Therefore, the value of γ impacts the convergence rate of the algorithm. There is a
tradeoff between the computation cost and the convergence rate. Although we calculate
the utility incrementally in each round, iterating more times increase the overhead. On
the other hand, if γ is large, which means in each round a large portion of the FSs are
selected to generate the summary. The results of Fig. 3 suggest the value of γ between
0.2 and 0.4.

6.3 Querying Evaluation

We evaluate how the proposed summarization method facilitates fast and high quality
KG queries. Specifically, we compared the SearchwithHDS algorithm based on ScFS
and SiFS with direct query. We performed two types of KG query over the four datasets,
search-by-entity (s,?p,?o) and search-by-property (?s,p,?o). We randomly select 500
entities for search-by-entity and 20% of properties for search-by-property over each

32 Y. Wang et al.

Fig. 3. The impact of γ on the utility of a summary

dataset, and conducted 10 times for each type of query with a returned record for 100
triples. ScFS was set with parameters τ as 0.8 and γ as 0.2.

We define three metrics Eqs. (7)–(9) to evaluate the search results for the lossy
summary generated by ScFS. The coverage rate of entities is defined in (7) as a ratio
of the No. of entities in the base graph GL of the summary L to the No. of selected
entities in search by the search-by-entity queries. This ratio indicates how many entities
are summarized by ScFS.

cov_ent = No. of entities in the GL of L

No. of entities in search
(7)

Similarly, the coverage rate of properties is defined in (8) as a ratio of the No. of
properties in the based graph GL of the summary L to the No. of selected properties in
search by the search-by-property queries. This ratio indicates how many properties are
summarized by ScFS.

covpr = No. of properties in the GL of L

No. of properties in search
(8)

From the definition of base graphwe know that if an entity is summarized in the sum-
mary L by ScFS, its base graph covers the associated relations and one-hop neighbors.

Scalable Summarization for Knowledge Graphs with Controlled Utility Loss 33

Similarly, if a property is summarized in the summary L by ScFS, its base graph covers
the associated nodes. Therefore, the above definitions for coverage rates for entities and
properties reflect the coverage of search triple patterns.

The compression rate of the lossy summary by ScFS is defined in (9) as the No. of
FPs in the lossy summary L

∧

generated by ScFS to the No. of FPs in the lossless summary
L generated by SiFS. The metric comp_lossy reflects the ability of ScFS for retrieving
important of FPs while retaining the required utility.

comp_lossy = No. of FPs in L
∧

No. of FPs in L
(9)

Figure 4 (a) shows the results of the metrics cov-ent, cov_pr, and comp_lossy over
the four datasets. The coverage rates of entities were all above 90% for the four datasets
and the compression rates were at least 43.4% (ODUS) and at most 92.8% for Linked-
GeoData. This indicates that SiFS generates concise summaries and at the same time
retains key information about entities. The coverage rates for properties were at about
70% except 50% for LinkedGeoData. The result is reasonable because SiFS builds upon
the FPs formed by properties. The summary for LinkedGeoData contains only 406 FSs
compared to the lossless 5632 and half of the properties were filtered out. Figure 4(b)
shows the time for querying the KGs by ScFS, SiFS and direct search without summary.
As can be observed that ScFS performed best and remarkablly reduced the query time.
Query with ScFS is more efficiently than direct search.

Fig. 4. (a) Coverage rates and compression rates for ScFS (b) Time for entity search with ScFS,
SiFS, and direct search

7 Related Work

Statistic-Based Summarization. Statistic-based summarization usually defines met-
rics to rank resources in KGs and select the most relevant resources as summaries.
Pappas et al. [11] proposed six centrality metrics to select central nodes in KGs. Pires

34 Y. Wang et al.

et al. [12] proposed using the concepts of centrality and frequency to select the most
relevant resources as the summaries for ontologies. Similarly, Troullinou et al. [13] also
proposed a summary method, called RDF Digest, to extract the most relevant paths in
ontologies. The metrics such as relative cardinality of edge and relevance of node/edge
were defined for evaluating resources in ontologies. Safavi et al. [11] studied personal-
ized summaries of KGs. The personalized summarization was defined as a set of triples
that maximized a user’s defined metric over a given KG, subject to a user- and device-
specific constraint on the summary’s size. In [14], user preference was considered when
creating ontology summaries. Relevance metrics were used to rank and select ontology
resources as summaries. Presutti et al. [15] defined the concept knowledge pattern for
resources in KGs as the properties by which instances of this type related to other indi-
viduals and the types of such individuals for each property. Then the key knowledge
pattern paths were extracted based on the metrics of type betweenness and property
betweenness.

Structure-Based KG Summarization. Since KGs are directed graphs in nature, a
popular idea to solve the problem of KG summarization is from the aspect of graph
structure. The structure-based summarization merges graph nodes or edges as supern-
odes or edges based on the structure of the directed graph formed by RDF data [16].
The set of supernodes and edges are called the summary of a KG. A typical structure-
based summarization method is proposed in [4], where equivalence relations between
nodes reflecting the similarity between nodes were defined. Nodes were merged by the
equivalence relations and thus the quotient graphs were formed as the graph summary.
Riondato [7] proposed a summary called k-summary, which partitions graph nodes into
k sets (as supernodes) and superedges between supernodes with weights denoting num-
bers of original edges. Stefanoni et al. [5] presented a typed summary for KGs called
SumRDF by merging resources of the same type into a partition. Some works generated
partial order relations between elements as summaries for KGs. In [8], the authors pre-
sented a KG summary called, characteristic set lattice, to dynamically model KGs. First,
Characteristic Set Concepts (CSCs) were extracted from RDF triples. Each CSC is a
pair c = (T, S), where T is the set of properties, which is called characteristic set, and S
is the set of entities. Each CSC satisfies: all the entities in S have all the properties in T.
The lattice of the CSCs were calculated based on the characteristic sets and used as the
summary of the KG. Ferré [17] proposed an extended Formal Concept Analysis (FCA)
[18] model for KGs which enriched the description of formal concepts. The context is a
knowledge graph, concept intents are projected graph patterns, and concept extents are
object relations. Alam and Napoli [19] transformed RDF triples into pattern structures
and the resulting pattern lattice was the summary. In [20], pattern structure was used
to classy RDF triples. The pattern concept lattice was built for discovering significant
knowledge units from the of RDF triples.

8 Conclusion and Future Work

We presented an efficient utility-driven summarization method for large-scale KGs. Our
method can be categorized into the structure-based summarization which establishes
partial orders between node feature patterns. Specifically, we proposed utility-driven

Scalable Summarization for Knowledge Graphs with Controlled Utility Loss 35

summarization algorithms: SiFS and ScFSwhich can generate KG summaries efficiently
with controlled utility loss. We also developed the query evaluation algorithm based on
the KG summaries generated by SiFS and ScFS. The experimental results verified that
proposed summarization method can efficiently create compact summaries for KGs.
Our approach shows significantly improved performance and generates more concise
summaries. For the future work, we shall focus on: (i) Summarizing dynamic KGs incre-
mentally without computing the summary from scratch. Since real-world datasets are
usually updated periodically, developing algorithms that incrementally compute sum-
maries based on the past versions is necessary. (ii) Generating summaries for streaming
KGs. Compared to methods that calculate summaries based on the whole graphs, sum-
maries of streaming graphs need to be generated on the fly based on partial knowledge
of the graphs.

Acknowledgement. This research is sponsored by the Educational Reform Research Project
of Southwest University (2022JY085) and the Fundamental Research Funds for the Central
Universities-Doctoral Fund (SWU222001).

References

1. Čebirić, S., et al.: Summarizing semantic graphs: a survey. VLDB J. 28, 295–327 (2019).
https://doi.org/10.1007/s00778-018-0528-3

2. Liu, Q., Cheng, G., Gunaratna, K., Qu, Y.: Entity summarization: state of the art and future
challenges. J. Web Semant. 69, 100647 (2021)

3. Lissandrini, M., Pedersen, T.B., Hose, K., Mottin, D.: Knowledge graph exploration: where
are we and where are we going? Dl.Acm.Org. 1–8 (2020)

4. Čebirić, Š, Goasdoué, F., Manolescu, I.: Query-oriented summarization of RDF graphs. In:
Maneth, S. (ed.) BICOD 2015. LNCS, vol. 9147, pp. 87–91. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-20424-6_9

5. Stefanoni,G.,Motik,B.,Kostylev, E.V.: Estimating the cardinality of conjunctive queries over
RDF data using graph summarisation. In: Proceedings of the World Wide Web Conference,
WWW 2018, pp. 1043–1052 (2018)

6. Belth, C., Zheng, X., Vreeken, J., Koutra, D.: What is normal, what is strange, and what
is missing in a knowledge graph: unified characterization via inductive summarization. In:
Proceedings of the World Wide Web Conference, WWW 2020, pp. 1115–1126 (2020)

7. Riondato, M., Garcia-Soriano, D., Bonchi, F.: Graph summarization with quality guarantees.
In: Proceedings - IEEE International Conference on DataMining, ICDM, pp. 947–952 (2014)

8. González, L., Hogan, A.:Modelling dynamics in semanticweb knowledge graphswith formal
concept analysis. In: Proceedings of theWorldWideWebConference,WWW2018, pp. 1175–
1184 (2018)

9. Hajiabadi, M., Singh, J., Srinivasan, V., Thomo, A.: Graph summarization with controlled
utility loss. Association for Computing Machinery (2021)

10. Song,Q.,Wu,Y.,Dong,X.L.:Mining summaries for knowledge graph search. In: Proceedings
of IEEE International Conference on Data Mining, ICDM, pp. 1215–1220 (2017)

11. Safavi, T., Belth, C., Faber, L., Mottin, D., Muller, E., Koutra, D.: Personalized knowledge
graph summarization: From the cloud to your pocket. In: Proceedings of IEEE International
Conference on Data Mining, ICDM, pp. 528–537 (2019)

12. Pires, C.E., Sousa, P., Kedad, Z., Salgado, A.C.: Summarizing ontology-based schemas in
PDMS. In: Proceedings of International Conference onData Engineering, pp. 239–244 (2010)

https://doi.org/10.1007/s00778-018-0528-3
https://doi.org/10.1007/978-3-319-20424-6_9

36 Y. Wang et al.

13. Troullinou, G., Kondylakis, H., Daskalaki, E., Plexousakis, D.: Ontology understanding
without tears: the summarization approach. Semant. Web J. 8, 797–815 (2017)

14. Queiroz-Sousa, P.O., Salgado, A.C., Pires, C.E.: Amethod for building personalized ontology
summaries. J. Inf. Data Manag. 4, 236–250 (2013)

15. Presutti, V., Aroyo, L., Adamou, A., Schopman, B., Gangemi, A., Schreiber, G.: Extracting
core knowledge from linked data. In: CEUR Workshop (2011)

16. LeFevre, K., Terzi, E.: GraSS: graph structure summarization. In: Proceedings of the 10th
SIAM International Conference on Data Mining, SDM 2010, pp. 454–465 (2010)

17. Ferré, Sébastien.: A proposal for extending formal concept analysis to knowledge graphs. In:
Baixeries, J., Sacarea, C., Ojeda-Aciego, M. (eds.) ICFCA 2015. LNCS (LNAI), vol. 9113,
pp. 271–286. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19545-2_17

18. Wille, R.: Restructuring lattice theory: an approach based on hierarchies of concepts. In:
Ferré, S., Rudolph, S. (eds.) ICFCA 2009. LNCS (LNAI), vol. 5548, pp. 314–339. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-01815-2_23

19. Alam, M., Napoli, A.: An approach towards classifying and navigating RDF data based on
pattern structures. In: CEUR Workshop Proceedings, pp. 33–48 (2015)

20. Reynaud, J., Alam, M., Toussaint, Y., Napoli, A.: A proposal for classifying the content of the
web of data based on FCA and pattern structures. In: Kryszkiewicz, M., et al. (eds.) ISMIS
2017. LNCS (LNAI), vol. 10352, pp. 684–694. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-60438-1_67

21. Opsahl, T., Agneessens, F., Skvoretz, J.: Node centrality in weighted networks: generalizing
degree and shortest paths. Soc. Netw. 32, 245–251 (2010)

22. Rehyani Hamedani, M., Kim, S.W.: AdaSim: a recursive similarity measure in graphs.
In: International Conference on Information and Knowledge Management, Proceedings,
pp. 1528–1537 (2021)

23. Bizer, C., Schultz, A.: The Berlin SPARQL benchmark. Int. J. Semant. Web Inf. Syst. 5, 1–24
(2009)

https://doi.org/10.1007/978-3-319-19545-2_17
https://doi.org/10.1007/978-3-642-01815-2_23
https://doi.org/10.1007/978-3-319-60438-1_67

Commonsense-Aware Attentive Modeling
for Humor Recognition

Yuta Sasaki1, Jianwei Zhang1(B), and Yuhki Shiraishi2

1 Iwate University, Morioka, Iwate, Japan
zhang@iwate-u.ac.jp

2 Tsukuba University of Technology, Tsukuba, Ibaraki, Japan
yuhkis@a.tsukuba-tech.ac.jp

Abstract. Laughter has positive effects on health. Humor is an impor-
tant component of daily communication and usually causes laughter.
Hence, we can expect that the infusion of humor in a dialogue sys-
tem will improve the user’s physical and mental satisfaction. Since even
humans have difficulty comprehending humor, appropriate knowledge is
essential for humor understanding. In this paper, commonsense-aware
modules are extrapolated to Pre-trained Language Models (PLMs) to
provide external knowledge. We specifically extract keywords from a text
and use COMET to obtain embeddings that represent the commonsense
associated with the keywords. We attempt to detect humor that is not
detectable by PLM alone. Our approach enables the model to access com-
monsense knowledge. Compared to the baseline, the number of humor
detections increases, and recall is improved without a significant decrease
in precision. Our best model significantly improves recall by 4.4% for a
0.4% reduction in precision in the HaHackathon dataset and by 20.3%
for an 8.4% reduction in precision in the Humicroedit dataset compared
to the baseline. We also observe the changes in prediction and processing
speed so as to analyze the characteristics of the proposed method and
the issues for its social implementation.

Keywords: Humor recognition · Commonsense-aware attention ·
Knowledge-intensive NLP · Commonsense knowledge · Pre-trained
Language Model (PLM) · Keyword extraction

1 Introduction

Humor, which can usually cause laughter, is an important component of daily
communication. Tamada et al. [22] indicate that laughing with others reduces the
risk of functional disability in old age, and infer that humor that brings laughter
is important from a healthcare perspective. Yamagoe et al. [27] show that laugh-
ter reduces the stress response and improves cognitive function by watching a
Japanese comedy, which is called “manzai”. As we can see, many medical and

This work was supported by JSPS KAKENHI Grant Numbers 19K12230, 22K12271.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C. Strauss et al. (Eds.): DEXA 2023, LNCS 14146, pp. 37–51, 2023.
https://doi.org/10.1007/978-3-031-39847-6_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-39847-6_3&domain=pdf
https://doi.org/10.1007/978-3-031-39847-6_3

38 Y. Sasaki et al.

psychological studies have shown the positive effects of laughter. By automating
humor understanding and generation, not only the implementation of human-
interactive chatbots or AI assistants but also the social implementation of inter-
active robots as counselors or comedians can be expected. Conversations with
such systems may physically and psychologically satisfy the users. Therefore, we
focus on automatic humor recognition as the first step in introducing humor into
dialogue systems.

In order to integrate laughter and humor into a system, it is important to
understand humor automatically. In general, a joke, which is a kind of humor,
consists of two parts: a setup, which makes up a story, and a punchline, which
concludes the story. A joke includes the elements of wordplay, which hints at
stereotypes, misunderstandings, and irony. This provides funniness but also cre-
ates difficulties in the recognition of humor. Understanding humor is not an easy
task for humans as well as AIs. To understand the punchline that completes the
humor, it is necessary to understand the scene from the setup and to under-
stand the commonsense that the words indicate. A rhetorical structure can be a
trigger for humor understanding, but precise and deep commonsense and world
knowledge are necessary to reliably understand humor. Stewart [21] shows that
cultural differences can lead to misunderstandings of laughter through conver-
sations between Spanish speakers and English speakers. This shows that correct
knowledge is necessary to understand laughter and humor.

We illustrate the process of understanding humor with commonsense using
the following example sentence:

“How did the astronaut break up with his girlfriend?”
“I just need some space.”

The word “space” has multiple meanings including “distance” and “universe”.
If “space” is simply interpreted as “distance” between the astronaut and his
girlfriend, this example cannot be recognized as humor. However, if people have
commonsense that “space” associated with astronauts can also be interpreted as
the “universe” where astronauts work, this example may probably be perceived
as humor. Without sufficient knowledge to notice that “space” has a different
interpretation, the humorous part of the sentence cannot be understood. Deep
and sufficient knowledge is absolutely crucial to comprehend humor.

Various models for automatic humor recognition have been proposed [1,5,15].
However, few methods specifically focus on commonsense and world knowledge.
Badri et al. [16] use multi-modality to predict laughter tracks. They demonstrate
the error analysis of the predictions showing that humor, which requires an
appropriate knowledge base, is a typical case of an incorrect prediction. Thus, it
is conceivable that automatic humor recognition methods should have access to
an appropriate knowledge base as humans do.

To address the above problem, we propose a method for humor recogni-
tion by extrapolating a knowledge base to PLMs, focusing on commonsense. To
enable the model to consider commonsense, we use COMET [3], a GPT-based
[17] decoder trained to reconstruct commonsense from natural language. The
resulting representation is used as a knowledge base and integrated with the

Commonsense-Aware Attentive Modeling for Humor Recognition 39

representation of the text from the pre-trained Transformer-based [24] model
using Multi-Head Dot Product Attention (MHA). Thus, we attempt to improve
the performance of humor understanding by providing knowledge that cannot
be considered only in PLMs. Experiments show that the proposed method can
increase the number of humor detections and increase the humor sensitivity of
the model.

Our contribution is as follows:

1. We propose an architecture for humor recognition that considers various types
of commonsense by extrapolating COMET that reconstructs commonsense.
We softly integrate commonsense into the context of a text by treating the
output of COMET as knowledge embedding to perform humor recognition.

2. The experiments on two datasets show that commonsense increases the num-
ber of humor predictions while sharing many of the predictions made by
PLM alone. It is also shown that recall can be improved without a significant
decrease in precision.

2 Related Works

Mihalcea and Strapparava [15] use textual style features and content-based fea-
tures for humor recognition employing classical methods. Chen et al. [5] propose
a deep learning-based detection method by introducing CNN and Highway Net-
works. Weller and Seppi [25,26] contribute to the community by constructing
a large dataset for humor recognition from Reddit1. They perform the recogni-
tion task by fine-tuning pre-trained Transformer-based models on that dataset.
Annamoradnejad and Zoghi [1] notice that many jokes consist of setup and
punchline and propose ColBERT, which considers the relationship between sen-
tences by dividing the input text into sentences. In SemEval, competitions for
humor recognition tasks have also been conducted, in which various systems
have been proposed and many pre-trained Transformer-based models have been
employed [9,14].

Although many methods for humor recognition and generation have been pro-
posed, most of them use pre-trained Transformer-based models in recent years,
and not many of them explicitly deal with commonsense and world knowledge.
Zhang et al. [29] attempt to automatically generate a more consistent punch-
line by encoding the knowledge triplets of words extracted from Wikipedia as a
graph structure.

In other tasks, several studies attempt to improve performance by access-
ing commonsense. Li et al. [11] investigate the effect of commonsense on sar-
casm detection performance by extracting relevant commonsense from the input
text and comparing two different knowledge selection strategies. Chowdhury and
Chaturvedi [2] consider commonsense as a graph structure and apply GCN for
irony detection. Yang et al. [28] treat commonsense as mental state knowledge
and explicitly model the mental state of speakers. In other studies, commonsense
1 https://www.reddit.com/.

https://www.reddit.com/

40 Y. Sasaki et al.

Fig. 1. Our proposed model architecture. It mainly contains three parts: (1) context
encoder, (2) commonsense acquisition module, and (3) commonsense-aware humor clas-
sification module.

is also used in empathetic dialogue to attempt empathetic response generation
[18,23].

In this study, we attempt to augment the knowledge of the model for humor
recognition by using commonsense as external knowledge and softly integrating
it into the model.

3 Proposed Method

Our proposed model is illustrated in Fig. 1. Our model consists of three
main parts: (1) context encoder, (2) commonsense acquisition module, and (3)
commonsense-aware humor classification module.

3.1 Context Encoder

This encoder obtains the embedding that indicates the context of the input text.
In this study, Transformer-based PLM is used as the context encoder. Given the
input text I, the tokenizer of the PLM returns the token sequence X of I,

Commonsense-Aware Attentive Modeling for Humor Recognition 41

Fig. 2. Commonsense acquisition module.

prepending a special token [CLS] as x0 to it:

X = tokenizer(I)
= {x0, x1, ..., xL−1}

(1)

The PLM receives X and outputs the embeddings for each token. Especially, the
embedding marked as hCTX , corresponding to the first token x0 which is [CLS],
can represent the meaning of the entire input text:

HCTX = PLM(X) (2)

hCTX = HCTX [0] (3)

where HCTX ∈ R
L×d, hCTX ∈ R

d, L is the length of the input text and d is
the hidden size of the PLM output. Although various PLMs that can encode
the meaning of sentences have achieved great success in recent years [7,10,12],
in this experiment we used BERT [6], which is widely used in general and can
achieve high performance.

3.2 Commonsense Acquisition Module

The commonsense acquisition module, illustrated in Fig. 2, is composed of a
keyword extractor and a commonsense encoder.

42 Y. Sasaki et al.

Keyword Extractor. In order to capture the commonsense associated with an
input text, it is necessary to capture the concepts of the words and phrases that
constitute the text. To solve this problem, we have tried three types of input
to the subsequent commonsense encoder: the raw input text, the summary of
the input, and the keywords of the input. The commonsense encoder has a
limitation on the input to generate knowledge. The length of tokens of the input
to the encoder is short while fine-tuning. Since both the raw input text and the
summary of the input are long, they may be unsuitable for the input to the
encoder. Through the preliminary experiments, we find that the best method is
to use the keywords of the input. Therefore, this component extracts important
words and phrases from the input using a keyword extractor.

We use YAKE! as a keyword extractor [4]. With hyperparameters, it is possi-
ble to set the threshold of acceptable word duplicates and the maximum n−gram
of keywords, and thus the output of keywords can be easily adjusted. The key-
word extractor using YAKE! can be formulated as follows:

K = Y AKE!(I)
= {k1, k2, ..., km | m ≤ Mkwd}

(4)

where K is the resulting set of keywords or keyphrases and Mkwd is the maxi-
mum number of keywords to be input to the following commonsense encoder. m
depends on the input text. In this study, top−m keywords are extracted based
on the scores of candidate keywords that YAKE! outputs.

Commonsense Encoder. The commonsense encoder obtains embeddings rep-
resenting commonsense from the keywords extracted by the keyword extractor.
We use COMET as this encoder. COMET is a pre-trained GPT-based model
to generate commonsense in the form of natural language from input words
and phrases. COMET has two models, which are trained on each of the two
datasets, ConceptNet [20] and ATOMIC [19]. ConceptNet is a word-level com-
monsense knowledge base consisting of a graph structure of descriptions of word
concepts. The edges of the graph are represented by relations, and there are
34 relations such as “IsA” and “Causes”. ATOMIC is a large if-then knowl-
edge base about daily human interaction. In this experiment, we target concep-
tual commonsense about the extracted keywords and keyphrases using COMET
trained on ConceptNet. Concatenated texts of keywords and relations are input
to COMET. For example, if the keyword is “astronaut break” and the rela-
tion is “IsA”, “astronaut break IsA” is the input into COMET. Thus, the input
K ′ = {k1 ⊕ r1, k1 ⊕ r2, ..., k1 ⊕ rn, k2 ⊕ r1, ..., km ⊕ rn} to COMET is constructed
from the keyword set K and the relation set R = {r1, r2, ..., rn}. The relations
that compose R can be chosen arbitrarily from 34 relations according to the
task. ⊕ denotes the text concatenation operation. Instead of using COMET to
explicitly generate the commonsense as a sentence, we let COMET act as an
encoder by using the hidden state in the final layer corresponding to the last
token as the commonsense embedding. We expect this to improve the affinity
between the embedding obtained from the context encoder and the knowledge

Commonsense-Aware Attentive Modeling for Humor Recognition 43

generated from COMET by softly integrating the knowledge base into the model.
The commonsense encoder can be formulated as follows:

Hi
k⊕r = COMET (K ′[i]) (5)

hi
k⊕r = Hi

k⊕r[l − 1] (6)

HCS = [h0
k⊕r,h

1
k⊕r, ...,h

m·n−1
k⊕r] (7)

where Hi
k⊕r ∈ R

l×d is the output embeddings of COMET for one pair of a
keyword and a relation, hi

k⊕r ∈ R
d is the embedding corresponding to the last

token of the input, HCS ∈ R
(m·n)×d represents the keyword-based commonsense

embeddings, i ∈ {0, 1, ...,m · n − 1}, l are the maximum length of tokens that
can be fed into COMET, and d is the hidden size of COMET.

3.3 Commonsense-Aware Humor Classification Module

This module is further composed of three components: Context Refinement,
Commonsense-aware MHA & Add, and Humor Classifier.

Context Refinement. This module refines the context embedding hCTX

obtained in Eq. 3 for humor understanding and then outputs it as hCTX−ref .
This process is formulated as follows:

hCTX−ref = σ(WrefhCTX + bref) (8)

where hCTX-ref ∈ R
d, Wref ∈ R

d×d, bref ∈ R
d and σ is the hyperbolic tangent.

Commonsense-Aware MHA & Add. This component integrates hCTX , con-
text embedding, and HCS , commonsense embeddings. We expect the context to
be used as the basis for humor understanding, and the conceptual common-
sense of the keywords to be considered as background knowledge. Hence, we
employ Commonsense-Aware Multi-Head Attention (CA-MHA). The common-
sense representation associated with or required by the context is obtained and
added to the refined context embedding to realize the commonsense integration.
Formulating Multi-Head Attention as MHA(query, key, value), the module is
as follows:

hCA−MHA = MHA(hCTX ,HCS ,HCS) (9)
hCA−CTX = hCTX−ref + hCA−MHA (10)

where hCA−MHA ∈ R
d represents the commonsense information selected by

context and hCA−CTX ∈ R
d represents the commonsense-aware context.

Humor Classifier. The commonsense-aware context hCA−CTX enhanced by
commonsense-aware MHA & Add is input to the classifier for humor classifica-
tion.

P = softmax(WchCA−CTX + bc) (11)
where Wc ∈ R

2×d and bc ∈ R
2 are the weights and biases of the classifier,

respectively. P represents the probability for each label.

44 Y. Sasaki et al.

Table 1. Summary of the datasets. The training, validation, and test sets are publicly
provided.

Dataset Train Valid Test
Pos Neg Total Pos Neg Total Pos Neg Total

HaHackathon 4,932 3,068 8,000 632 368 1,000 615 385 1,000
Humicroedit 4,731 12,573 19,304 1,173 3,665 4,838 1,466 4,582 6,048

3.4 Objective Function

The cross-entropy loss is used as the objective function for P(y), which is the
probability corresponding to the label y, to optimize the model. This calculation
is as follows:

L = −(1 − y) logP(0) − y logP(1) (12)

where y ∈ {0, 1} is a discrete value and P(·) is a continuous value.

4 Experimental Setup

4.1 Datasets

In this study, two public datasets are used for training and evaluation. The
statistics of the datasets are shown in Table 1.

HaHackathon. This dataset is used in SemEval 2021 task 72. 80% of the data
comes from Twitter and the rest comes from Kaggle Short Jokes3. For humor
detection, the annotators answer the question, “Is the intention of this text to
be humor?” and thus each text is evaluated by 20 annotators. The humor label
of a text is determined based on the majority of its votes.

Humicroedit. This dataset is used in SemEval 2020 task 74. The dataset pub-
lished in this competition is derived from a previous study by Hossain et al. [8].
This dataset is constructed by a task that rewrites one word from news head-
lines collected from Reddit to create a humorous sentence. The text consists of
headings of 4–20 words. The degree of humor is rated by several annotators,
with integer values from 0 to 3, and the average value is labeled as the score of
the humor. Scores are set as follows:

0 - Not funny 1 - Slightly funny 2 - Moderately funny 3 - Funny

Since our task is binary classification, we set the data whose score is greater
than 1 as Humor, and all the others as Non-Humor.

2 https://competitions.codalab.org/competitions/27446.
3 https://www.kaggle.com/datasets/abhinavmoudgil95/short-jokes.
4 https://competitions.codalab.org/competitions/20970.

https://competitions.codalab.org/competitions/27446
https://www.kaggle.com/datasets/abhinavmoudgil95/short-jokes
https://competitions.codalab.org/competitions/20970

Commonsense-Aware Attentive Modeling for Humor Recognition 45

Notice the difference between the two datasets. Humicroedit contains data
where the majority of words are the same but only one word differs. As the
difference of this one word alone determines humor, it is even a difficult task
for humans to recognize the change in humor that accompanies a change in one
word. The classification on Humicroedit is a more difficult task than that on
HaHackathon. Moreover, the two datasets differ in data size. HaHackathon has
8,000 training data, while Humicroedit has 19,304 training data.

4.2 Experimental Configuration

We use BERT (110M parameters) without introducing commonsense as a base-
line, and bert-base-uncased5 published in HuggingFace6 as the initial values of
the weights. The proposed method employs the same weights for the context
encoder. We implement COMET (117M parameters) to generate commonsense
using comet-commonsense and adopted a pre-trained model trained on Concept-
Net7.

AdamW [13] is adopted as the optimizer, the learning rate of BERT is set to
2e-5 and the learning rate of other modules is set to 5e−5, while the weights of
COMET are fixed. The batch size is 32. We attempt two patterns of inputting
the relations to COMET. The first approach uses five relations, “IsA”, “HasA”,
“Causes”, “Desires” and “UsedFor”. We adopt these five relations for common-
sense acquisition because they are intuitively comprehensible. All 34 relations
are used in the second approach. As the hyperparameters of YAKE!, dedupLim
and n−gram are set to 0.3 and 3, respectively, and the maximum number of
keywords Mkwd is 6. Due to the small size of data in the HaHackathon dataset,
we set the dropout rate to 0.4 to prevent over-fitting. Since the Humicroedit
dataset has sufficient data, we set the dropout rate to the default value of 0.1 for
Humicroedit. The number of heads of CA-MHA is 8 or 12 in the experiments.

All experiments are performed on a CPU with 12 GB of memory and a Tesla
T4 with 16 GB of memory using Google Colaboratory.

5 Experimental Results

In this section, we evaluate the performance of our models on the two datasets.
Besides, to clarify the situation where our best model can perform well, we
compare the difference in the tendency of predictions between the baseline BERT
and our best model. Moreover, we discuss training and inference speeds since
our models need more computational complexity than the baseline.

5 https://huggingface.co/bert-base-uncased.
6 https://huggingface.co.
7 https://github.com/atcbosselut/comet-commonsense.

https://huggingface.co/bert-base-uncased
https://huggingface.co
https://github.com/atcbosselut/comet-commonsense

46 Y. Sasaki et al.

5.1 Model Performance

The results of our proposed method and the baseline are shown in Table 2. As
evaluation metrics, precision (Prec), recall (Rec), and f1-score (F1) are employed.
The proposed method is compared concerning the performance variation due
to the change in the number of heads in CA-MHA and the difference in the
relation used for commonsense acquisition. CA-MHA8- and CA-MHA12- denote
the models with 8 and 12 heads, respectively. -5rels indicates that the five selected
relations are used as input to the commonsense encoder, and -All indicates that
all the relations are used.

Table 2. Performance comparisons on HaHackathon and Humicroedit. The top-1 score
is highlighted in bold.

Model HaHackathon Humicroedit
Prec Rec F1 Prec Rec F1

BERT 0.928 0.908 0.918 0.620 0.475 0.538
CA-MHA8-5rels 0.924 0.952 0.938 0.536 0.678 0.599
CA-MHA8-All 0.895 0.923 0.909 0.642 0.242 0.352
CA-MHA12-5rels 0.918 0.910 0.914 0.627 0.392 0.483
CA-MHA12-All 0.911 0.900 0.905 0.591 0.536 0.562

From Table 2, we can see that using commonsense tends to increase recall.
The performance of CA-MHA8-5rels is the best in both HaHackathon and Humi-
croedit. Compared to the baseline BERT, the model improves Rec by 4.4% for a
0.4% reduction in Prec in HaHackathon and by 20.3% for an 8.4% reduction in
Prec in Humicroedit. These results show that our best model can significantly
improve Rec without a significant drop in Prec and recognize humor more sen-
sitively by enhancing knowledge through commonsense.

However, we observe that coarsely integrating as much commonsense as pos-
sible does not always lead to good performance. In HaHackathon, the -All model
reduces all the metrics in contrast with the respective -5rels model. In Humi-
croedit, CA-MHA8-All significantly decreases Rec and F1 against CA-MHA8-
5rels. This result indicates that it may be better to refinedly introduce knowledge
selection and the combination of relations.

Focusing on the number of heads in CA-MHA, the performance of CA-
MHA12-5rels is lower than that of CA-MHA8-5rels on both datasets. Compared
to CA-MHA8-5rels, CA-MHA12-5rels decreases F1 by 2.4% in HaHackathon
and by 11.6% in Humicroedit. This result indicates that the increased number
of heads of CA-MHA does not always yield better results.

5.2 Efficacy of Commonsense

In this section, we analyze the performance impact of commonsense infusion.
We compare the best model in this experiment, CA-MHA8-5rels, with the base-

Commonsense-Aware Attentive Modeling for Humor Recognition 47

line model BERT. We evaluate the overlap and changes in the predictions of
the baseline and the proposed model to clarify the efficacy of integrating com-
monsense. We also compare the training time and inference time between the
proposed method and the baseline, respectively, and clarify the issues for social
implementation.

Table 3. The overlap and changes in the predictions on the test set. The overlap
shows the ratio of data on which both our best model CA-MHA8-5rels and the baseline
BERT predict the same label. “ ŷBERT → ŷours : y” is a notation where ŷ denotes the
predicted label and y denotes the target label. The columns, where our best model
correctly predicts the label but the baseline does not, are bold.

Dataset Overlap 0 → 1 : 1 0 → 1 : 0 1 → 0 : 1 1 → 0 : 0

HaHackathon 95.2% 29 11 2 6
Humicroedit 86.7% 312 453 15 21

Table 4. The training and inference speeds of BERT and our best model CA-MHA8-
5rels. The speed unit is one second per step and the batch size on a step is set to 32.

Phase BERT CA-MHA8-5rels Relative speed

Training 0.829 s 2.255 s ×2.720
Inference 0.070 s 1.344 s ×19.200

Overlap and Changes in the Predictions. In Fig. 3 and Fig. 4, the numbers
of Humor predictions of the proposed model CA-MHA8-5rels, which are 634 on
HaHackathon and 1,852 on Humicroedit, are much larger than those of the base-
line BERT, which are 602 and 1,123 respectively on the two datasets. In Table 3,
however, the overlap between the predictions of BERT and CA-MHA8-5rels is
quite large. These figures and table show that the proposed model transforms the
prediction of PLM used as a context encoder by treating commonsense as back-
ground knowledge. The number of predictions where the proposed model con-
verts Non-Humor from the baseline to Humor is quite large, 40 for HaHackathon
and 765 for Humicroedit, but not many for the reverse. This indicates that the
model can be more sensitive to humor by utilizing commonsense. It is shown
that the simple architecture integrating COMET embeddings can improve the
model’s performance for humor detection. However, the proposed model incor-
rectly converts predictions from Non-Humor to Humor for 11 out of 40 cases
in HaHackathon and 453 out of 765 cases in Humicroedit. In an environment
where appropriate predictions are required for Non-Humor, some solutions, such
as filtering the predictions, should be further discussed.

48 Y. Sasaki et al.

Fig. 3. Confusion matrix of BERT and CA-MHA8-5rels on HaHackathon.

Fig. 4. Confusion matrix of BERT and CA-MHA8-5rels on Humicroedit.

Training and Inference Speeds. We compare the training and inference
speeds of the baseline and the proposed method. According to Table 4, BERT
is clearly faster in both training and inference speeds than our model. COMET
accounts for most parameters of the additional modules associated with the use of
commonsense. Even though the parameters of COMET are fixed while training,
it is computationally expensive and a bottleneck in the overall processing system.
In particular, a significant difference in speed is observed during inference, where
the speed of the proposed method is 19.2 times slower than that of the baseline
in one step, which takes 1.344 s. Although more humorous text can be detected

Commonsense-Aware Attentive Modeling for Humor Recognition 49

with our proposed model, there are still challenges in applying this method to
systems that require real-time processing, such as dialogue systems. In order to
adapt to real-time processing, a module that integrates commonsense in a fast
manner is crucial, which can be further future work.

6 Conclusion and Future Works

To improve the performance of humor recognition, we proposed a model that
integrates the commonsense embeddings obtained from COMET with the con-
text embedding of PLM by Commonsense-aware Multi-Head Attention. This
model enables humor recognition with commonsense, shows an increase in the
number of humor predictions compared to the number of humor predictions using
PLM alone, and enables an increase in recall without a significant decrease in
precision. Since the predictions from the proposed method share many of the
predictions from the PLM used as a context encoder, the proposed model can
make predictions in line with the knowledge without losing many of the PLM’s
prediction tendencies. We found that the use of keyword-based commonsense
enhances the humor-sensitivity of the model. However, the adaptation of the
proposed method to a PLM-only model results in a very large slowdown in both
training and inference speeds. In order to deal with real-time systems, a fast-
access method to commonsense is necessary to study.

In this study, BERT is used as a context encoder, and the proposed method
is designed to extrapolate modules without dependence on PLMs. Using other
PLMs, we will evaluate the generality of the proposed method and the trend
of its impact on PLMs. In some cases, when all the input relations are used
for COMET, the external knowledge becomes noise and the detection perfor-
mance is not improved, but rather degraded. Thus, to promote more appropri-
ate knowledge use, we will further study the module on knowledge selection and
the combination of relations. In addition, the development of datasets for the
humor recognition task is less sufficient than that for the other tasks. There-
fore, constructing humor datasets is also one of our future works to develop the
community of humor recognition.

References

1. Annamoradnejad, I., Zoghi, G.: ColBERT: using BERT sentence embedding for
humor detection. arXiv preprint arXiv:2004.12765 (2020)

2. Basu Roy Chowdhury, S., Chaturvedi, S.: Does commonsense help in detecting sar-
casm? In: Proceedings of the Second Workshop on Insights from Negative Results
in NLP (2021)

3. Bosselut, A., Rashkin, H., Sap, M., Malaviya, C., Celikyilmaz, A., Choi, Y.:
COMET: commonsense transformers for automatic knowledge graph construction.
In: Proceedings of the 57th Annual Meeting of the Association for Computational
Linguistics (2019)

http://arxiv.org/abs/2004.12765

50 Y. Sasaki et al.

4. Campos, R., Mangaravite, V., Pasquali, A., Jorge, A., Nunes, C., Jatowt, A.:
YAKE! keyword extraction from single documents using multiple local features.
Inf. Sci. 509, 257–289 (2020)

5. Chen, P.Y., Soo, V.W.: Humor recognition using deep learning. In: Proceedings
of the 2018 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies (2018)

6. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep
bidirectional transformers for language understanding. In: Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies (2019)

7. He, P., Liu, X., Gao, J., Chen, W.: DeBERTa: decoding-enhanced BERT with
disentangled attention. In: Proceedings of the Ninth International Conference on
Learning Representations (2021)

8. Hossain, N., Krumm, J., Gamon, M.: “President vows to cut <taxes> hair”: Dataset
and analysis of creative text editing for humorous headlines. In: Proceedings of the
2019 Conference of the North American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies (2019)

9. Hossain, N., Krumm, J., Gamon, M., Kautz, H.: SemEval-2020 task 7: assessing
humor in edited news headlines. In: Proceedings of the Fourteenth Workshop on
Semantic Evaluation (2020)

10. Lewis, M., et al.: BART: denoising sequence-to-sequence pre-training for natural
language generation, translation, and comprehension. In: Proceedings of the 58th
Annual Meeting of the Association for Computational Linguistics (2020)

11. Li, J., Pan, H., Lin, Z., Fu, P., Wang, W.: Sarcasm detection with commonsense
knowledge. IEEE/ACM Trans. Audio Speech Lang. Process. 29, 3192–3201 (2021)

12. Liu, Y., et al.: RoBERTa: a robustly optimized BERT pretraining approach. arXiv
preprint arXiv:1907.11692 (2019)

13. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: Proceedings
of the Seventh International Conference on Learning Representations (2019)

14. Meaney, J.A., Wilson, S., Chiruzzo, L., Lopez, A., Magdy, W.: SemEval 2021 task
7: HaHackathon, detecting and rating humor and offense. In: Proceedings of the
15th International Workshop on Semantic Evaluation (2021)

15. Mihalcea, R., Strapparava, C.: Making computers laugh: investigations in auto-
matic humor recognition. In: Proceedings of Human Language Technology Con-
ference and Conference on Empirical Methods in Natural Language Processing
(2005)

16. Patro, B.N., Lunayach, M., Srivastava, D., Sarvesh, S., Singh, H., Namboodiri,
V.P.: Multimodal humor dataset: Predicting laughter tracks for sitcoms. In: Pro-
ceedings of the 2021 IEEE Winter Conference on Applications of Computer Vision
(2021)

17. Radford, A., Narasimhan, K., Salimans, T., Sutskever, I., et al.: Improving lan-
guage understanding by generative pre-training (2018). https://cdn.openai.com/
research-covers/language-unsupervised/language_understanding_paper.pdf

18. Sabour, S., Zheng, C., Huang, M.: CEM: commonsense-aware empathetic response
generation. In: Proceedings of the 2022 AAAI Conference on Artificial Intelligence,
vol. 36 (2022)

19. Sap, M., et al.: ATOMIC: an atlas of machine commonsense for if-then reasoning.
In: Proceedings of the 2019 AAAI Conference on Artificial Intelligence (2019)

20. Speer, R., Chin, J., Havasi, C.: ConceptNet 5.5: an open multilingual graph of
general knowledge. In: Proceedings of the 2017 AAAI Conference on Artificial
Intelligence (2017)

http://arxiv.org/abs/1907.11692
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf

Commonsense-Aware Attentive Modeling for Humor Recognition 51

21. Stewart, S.: The many faces of conversational laughter. ERIC (1997)
22. Tamada, Y., et al.: Does laughing with others lower the risk of functional disability

among older Japanese adults? The JAGES prospective cohort study. Prevent. Med.
155, 106945 (2022)

23. Tu, Q., Li, Y., Cui, J., Wang, B., Wen, J.R., Yan, R.: MISC: a mixed strategy-aware
model integrating COMET for emotional support conversation. In: Proceedings of
the 60th Annual Meeting of the Association for Computational Linguistics (2022)

24. Vaswani, A., et al.: Attention is all you need. In: Proceedings of the 31st Conference
on Neural Information Processing Systems (2017)

25. Weller, O., Seppi, K.: Humor detection: a transformer gets the last laugh. In:
Proceedings of the 2019 Conference on Empirical Methods in Natural Language
Processing and the 9th International Joint Conference on Natural Language Pro-
cessing (2019)

26. Weller, O., Seppi, K.: The rJokes dataset: a large scale humor collection. In: Pro-
ceedings of the 12th Language Resources and Evaluation Conference (2020)

27. Yamakoshi, T., et al.: . In: Pro-
ceedings of the Annual convention of the Japanese Association of Health Psy-
chology (2021)

28. Yang, K., Zhang, T., Ananiadou, S.: A mental state knowledge-aware and con-
trastive network for early stress and depression detection on social media. Inf.
Process. Manage. 59, 102961 (2022)

29. Zhang, H., Liu, D., Lv, J., Luo, C.: Let’s be humorous: knowledge enhanced humor
generation. arXiv preprint arXiv:2004.13317 (2020)

http://arxiv.org/abs/2004.13317

A Study on Vulnerability Code Labeling
Method in Open-Source C Programs

Yaning Zheng , Dongxia Wang, Huayang Cao, Cheng Qian, Xiaohui Kuang,
and Honglin Zhuang(B)

National Key Laboratory of Science and Technology on Information System Security,
Beijing, China

qiancheng@nudt.edu.cn, zhlxsjl@163.com

Abstract. Various existing vulnerability databases and open-source
code platforms have accumulated a large amount of vulnerability infor-
mation, and extracting vulnerability code samples from this informa-
tion can help research the causes of vulnerabilities, develop vulnerability
detection technologies, and detect potential vulnerabilities. In this work,
we collected 13 vulnerability code datasets involving various applica-
tions and analyzed these datasets in seven aspects, such as data sources,
labeling methods, application scenarios, etc. We found several defects in
these datasets, including duplicated data, incomplete information, and
inaccurate labels. We also analyzed the extraction and labeling methods
of these datasets and proposed three labeling technology frameworks:
labeling based on text description, labeling based on patch analysis, and
labeling based on vulnerability scanning. The proposed frameworks can
be used to evaluate existing labeling methods and guide the future work
on labeling vulnerability code samples, which can help form a better
vulnerability code dataset.

Keywords: code label · patch analysis · vulnerability datasets

1 Introduction

Potential vulnerabilities rise rapidly as the number and complexity of software
and connected devices increases significantly, bringing serious challenges to infor-
mation system security. To better manage and study vulnerability information,
various vulnerability datasets have been constructed based on publicly available
vulnerabilities [1–7]. Some datasets [3–5] mainly store text description infor-
mation of vulnerabilities, which provide very limited support for vulnerability
research. In comparison, the vulnerability codes can provide direct support for
studying the causes of vulnerabilities, detecting potential vulnerabilities and
developing corresponding detection methods. In recent years, some work used
deep-learning models to mine vulnerability patterns, which also requires a large
number of high-quality vulnerability codes for training.

Studies [8,9] have shown that the lack of accurate and real-world datasets has
become an important obstacle in the field of vulnerability analysis. Jimenez [10]
further points out that unreliable code sample labeling information can greatly

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C. Strauss et al. (Eds.): DEXA 2023, LNCS 14146, pp. 52–67, 2023.
https://doi.org/10.1007/978-3-031-39847-6_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-39847-6_4&domain=pdf
http://orcid.org/0009-0001-1232-4489
https://doi.org/10.1007/978-3-031-39847-6_4

A Study on Vulnerability Code Labeling Method 53

mislead the experimental conclusions. The existing literature [11–15] mentions
some problems of the existing datasets, but no work systematically studies the
code sample labeling problem in datasets to the best of our knowledge.

In this paper, we review three kinds of vulnerability code labeling methods on
13 datasets consisted of C codes. We first evaluated and analyzed these datasets
from the aspects of data sources, application scenarios, etc. Then we studied the
corresponding code sample labeling methods, and obtain some findings that we
believe very helpful for the future work. The research in this paper attempts to
answer the following three questions.

RQ1-Where are the data sources for vulnerability datasets and what
are the application scenarios? By answering this research question, it will be
helpful to understand the current state of generation and application of existing
vulnerability datasets.
RQ2-What technologies are used to label the vulnerability samples?
By answering this research question, we comprehensively surveyed the labeling
methods of existing datasets.
RQ3-What is the defects of current vulnerability code labeling meth-
ods and how we may improve in the future work? By answering this
research question, we help to discover new research points for code labeling
methods.

The rest of the paper is organized as follows: Sect. 2 introduces the existing
vulnerability source datasets and motivation; Section 3 discusses the existing vul-
nerability sample labeling methods. Section 4 describes the findings and future
work. Section 5 concludes the paper.

2 Motivation

There are a very wide variety of source code vulnerability datasets available,
depending on different application scenarios. We collected papers of source code

Fig. 1. Grade distribution and citations of 13 selected papers

54 Y. Zheng et al.

vulnerability detection for the C language and the code datasets they use as
widely as possible within the last 5 years. We made a CCF grade distribution
and citations given by Google Scholar for these 13 papers, as shown in Fig. 1.

As shown in Table 1, We analyzed the datasets in these papers. NVD, syn-
thetic, GitHub denote the data source. The ‘open’ column indicates whether it
is open source. Most of the above datasets are generated from information of
CVE, NVD and GitHub.The ‘type’ column indicates whether the vulnerability
type is indicated.

Table 1. Real-world C vulnerability datasets

Dataset Application scenario Collection
method

NVD Synthetic GitHub Type Labeling Granularity Open

PatchDB [2] Identify
security-related patches

Automatic yes yes yes yes NVD Function yes

APIMU4C [6] API misuse detection Artificial no yes yes yes Artificial Function yes
Lin∗ [16] Evaluating the

performance of
different deep neural
networks on
vulnerability source
code detection

Automatic yes no yes no NVD+commit
diff

Function/File part

CDG [17] Deep learning based
fine-grained source
code vulnerability
detection

Automatic yes yes yes yes NVD+commit
diff

Slice yes

Draper [18] Deep learning based
source code
vulnerability detection

Automatic yes no yes no clang cppcheck
flawfinder

Function yes

Devign [1] Detecting source code
vulnerabilities using
graph neural networks

Automatic no no yes no Artificial+commit
diff

Function part

REVEAL [19] Detecting source code
vulnerabilities using
graph neural networks

Automatic no no yes no commit Function yes

Big-Vul [20] Vulnerability Detection Automatic yes no yes yes CVE+commit
diff

Function yes

D2A [21] Reducing false positives
in vulnerability
detection tools

Automatic no no yes yes infer Trace yes

SVCP4C [22] Generate buffer
overflow type
vulnerability dataset

Automatic no no yes yes SonarCloud File yes

Liu∗ [23] Study the distribution
of vulnerabilities inside
project

Automatic yes no yes no commit+patch Function yes

CrossVul [24] Generate vulnerability
datasets for follow-up
studies

Automatic yes no yes yes NVD+commit
diff

File yes

Harer∗ [25] Using machine learning
to detect vulnerabilities

Automatic no no yes no clang static
analyzer-SA

Function no

∗ The name of the dataset is not given in the representative article, we use the name
of the author instead.

Vulnerability code datasets can help people learn patterns or features, which
can help improve the capability of vulnerability detection. For example, deep
learning-based vulnerability detections generally use vulnerability code datasets
as training data to obtain a vulnerability discriminative model for vulnerability

A Study on Vulnerability Code Labeling Method 55

detection. Saikat [19] found that existing deep-learning vulnerability detection
models that using pre-trained models directly to detect real-world vulnerabilities
suffer an average performance degradation of about 73%. Even if these models
are retrained using real data, the performance degrades by about 54% compared
to the reported results in their papers.

By studying the above datasets, we summarize the reasons as follows.

(1) Existing datasets suffer from data loss or data duplication problems in vary-
ing degrees. For example, the CDG [17] dataset in Table 1 suffers from slicing
data duplication problem and the D2A [21] dataset suffers from commit ver-
sion duplication problem, etc. Grahn [13] explores seven C/C++ datasets
and evaluates their applicability to machine learning-assisted vulnerability
detection. That none of the datasets contained a complete C/C++ elements,
about 11% code elements missing.

(2) Many source code datasets are limited to the function-level and do not
capture some inter-procedural information which is critical to the complete
analysis of the code. Models trained on such datasets do not really capture
inter-procedural flows, resulting in a high rate of false positives.

(3) The inaccurate labeling results of the dataset lead the model to extract
features that are not relevant to the vulnerability and increase the model
noise.
Taking the dataset in [16] as an example, we selected the open-source
LibPNG dataset to check the data labels using the static analysis tools
cppcheck and flawfinder. The results are shown in the Table 2. We found
that: it is inaccurate for labeling the unpatched part as benign as. The code
that is not temporarily found to be vulnerable does not mean that there is no
vulnerability in it. For the functions marked as non-vulnerable in LibPNG,
we selected 10 samples among those detected as error by both cppcheck and
flawfinder for manual verification and found that there exists vulnerabilities.

Table 2. LibPNG label accuracy verification.

LibPNG Numsa cppcheck flawfinder Commonb

Non_vulnerable_function 577 286 83 50
vulnerable_ functions 45 Where are the data

sources for33
11 10

a ‘Nums’ represents the number of functions in the original folder.
b ‘Common’ represents the number of common functions detected by cppcheck and
flawfinder.

Based on our analysis of 13 high-level papers, it can be sure that there are still
many problems in the existing datasets. We found that this is closely related to
the labeling methods, and we implement a comprehensive review in the following
section, so we researched the labeling methods.

56 Y. Zheng et al.

3 Labeling Methods

Code labeling methods mark whether a code sample contains vulnerabilities or
not. Based on the investigation of the vulnerability datasets in Section II, we clas-
sify code labeling methods into the following three categories: labeling based on
text description, labeling based on patch analysis, and labeling based on vulner-
ability scanning. Labeling based on text description and labeling based on patch
analysis refer to the imprecise vulnerability information that has been published,
combined with various data and analysis to accurately identify the vulnerability.
Labeling based on vulnerability scanning is to label the detected vulnerabilities
by vulnerability scanning tools in unknown-source code. The labeling produced
by these methods is imprecise. For example, specific location information is miss-
ing from NVD. It’s impossible to judge if the commit on Github is functional or
security-related.

Following the classification of the three labeling methods, we analyzed the
vulnerability dataset in Table 1.

3.1 Labeling Based on Text Description

The labeling based on text description mainly starts from NVD, CVE, GitHub,
etc., and extracts the specifically needed patches and vulnerability source code
based on the provided text description information.

Gu [6] collected all the commit information, patch files, etc. and removed
the commits that did not change the .c source file. After that, the vulnerability-
related commits were filtered according to keywords. This method produces bet-
ter results of relevance. However, this method significantly reduces the number of
candidate functions we can flag and still requires a lot of manual checking, which
is not suitable for large datasets. Moreover, some of the keywords are ambiguity,
and may be just functional patches. The whole dataset labeling and construction
process are highly manual involved, and the accuracy relies on human knowledge.

Wang [2] constructed a semi-artificial and semi-real-world dataset PatchDB.
The patches given from the NVD hyperlinks are labeled as vulnerable. Out of all
the commits of the 313 GitHub projects, excluding the 4076 vulnerable patches
obtained from the NVD above, the remaining commits were marked as non-
vulnerable patches. However, the non-vulnerable patches obtained in this way
do not completely exclude vulnerable patches.

Lin [16] labels the samples based on the NVD and CVE page description.
If a fragment of vulnerable code is located within a function, the corresponding
version of the program source code will be downloaded and the source code
function will be marked as vulnerable code. For the vulnerability location not
explicitly given in NVD and CVE, the CVE-ID is searched in GitHub commit as a
keyword, and the vulnerability fragment is finally found according to the diff file.
To obtain the non-vulnerable functions, all functions from the non-vulnerable
files are collected and marked as non-vulnerable. This labeling method ignores
the contextual information and extracts only the functions where the fragment of
vulnerability is located, rather than the data flow or control flow context of the

A Study on Vulnerability Code Labeling Method 57

vulnerability fragment. And the patched vulnerability fragments are not always
the crash point of the function.

Devign [1] is a real-world vulnerability dataset. After filtering out non-
security related commits based on security-related keywords, security-related
commits are manually reviewed and security-related functions are labeled vul-
nerable. And the patched version of the function is labeled not-vulnerable. In the
Devign dataset, if a commit was deemed to fix a bug, then all functions patched
by that commit were labeled as vulnerable, which is incorrect in many cases.

REVEAL [19] is collected in a similar way to Devign [1]. For each vulner-
ability patch file, from k-1 to k versions, all modified functions in the file are
labeled vulnerable, and the corresponding function in the next version of the file
is labeled not-vulnerable, in addition, functions that have not been changed in
the file are also labeled not-vulnerable. This labeling method ignores the fact
that some of the code changes are functionally relevant.

Fan [20] collected the vulnerabilities descriptions from CVE, downloaded
the code based on the CVE information and its published links to the relevant
GitHub code, and extracted the patches related to the vulnerabilities. Based
on the patches extracted from the commit, vulnerabilities/non-vulnerabilities
are labeled after using the code change before and after. Unlike Devign and
REVEAL, Big-Vul is constructed by leveraging and linking the CVE, project
bug reports, and commits, which helps improve the accuracy of identifying vul-
nerability commits related to code changes compared to filtering commits by
security keywords.

Nikitopoulos [24] constructed a cross-language real-world dataset: CrossVul.
The authors corresponded the hyperlinks in the description information in the
NVD to GitHub, and after filtering invalid links, used the git-diff command to
identify the individual files modified in each commit, obtaining files that contain
security patches and files that do not. The labeling method is similar to [16].

The text description relies heavily on information provided by the NVD,
CVE, and GitHub. However the patch information for these disclosed vulnerabil-
ities is incomplete in many cases. There are two types of vulnerability repository
patch disclosures, one is attached to the reference link, and the other provides
identification patches or patch tag content. For example, the NVD reference link
is only a reference link and may not be completely correct, i.e. the diff pointed
to by the reference link may not be the patch for that CVE. [26] evaluated more
than 6,000 vulnerability patch disclosures and concluded, based on its links and
labels, that about 40% of CVEs in the NVD do not provide the corresponding
patch information, and part of the patch information is still wrong, especially
as the patch label identifies this category, which is less than 50% for the utility
dataset.

[1,6,19] used keyword filtering for security-related commissions. However, it
is not accurate by only using keyword filtering. By keyword filtering in open
source software openssl’s commit, we found that some keywords have two sides,
as shown in the following Table 3. Some experiments found that the false positive
rate and false negative rate of keyword-based methods are as high as 36% and
11% [27], respectively.

58 Y. Zheng et al.

Table 3. Disambiguation of keywords

Keyword Positive Negative

fix Fix memory leak fix broken tests, fix logger
printout, fix CS violation,
adds tests for fix

check Check memory leak, Add
missing check for
OPENSSL_strndup, check
the return value of
CRYPTO_strdup

Check format, test check
property, add check for

bug Fix bug in scrypt KDF
provider dup method

Log bug, test bug

error Error code, Fixed typo in,
inner_evp_generic_fetch,
error handling

Clear incorrectly, reported
errors in

Zafar [28] proposes a rule matching-based deep learning commit classifier.
The authors defined five bug-fixing-commit rules and 11 not-a-bug-fixing-commit
rules based on existing commits. The results show that the above method out-
performs the keyword-based filtering in terms of accuracy.

For the combined use of NVD information and GitHub commit information,
[29] proposed PatchScout, which extracts vulnerability information in NVD and
code change information in code repository, calculates the association features
in four dimensions. The results show that this method has significant improve-
ment over existing methods (search with CVE-ID, checking commit-like URLs,
checking patch-tagged URLs), up to 8 times.

3.2 Labeling Based on Patch Analysis

Security patches enhance the security of software by targeting specific secu-
rity vulnerabilities. Non-security patches include bug fix patches and functional
patches. Bug fix patches make the software run more robustly and reduce the
possibility of crashes by correcting software errors. Functional patches add new
features or updated existing features to the software. The purpose of patch anal-
ysis is to exclude modifications that are not related to the root cause of the
vulnerability, such as, functional modifications, namespace modifications, for-
matting modifications, etc.

Wang [30] proposes PatchRNN, a deep learning-based system to automati-
cally identify whether the patches in open-source software are security-relevant.
The system uses diff codes and commits to capture more comprehensive features.
PatchRNN represents the code, and text message token after serialization, such
labeling will lose the contextual semantic information. And the recognition based
on model learning is insensitive to small code changes.

A Study on Vulnerability Code Labeling Method 59

Disco [31] detects code security iterations by comparing historical changes
to code on the stack-overflow and determines whether code is secure by deter-
mining whether it has been patched or not. By comparing the features that
have been proposed to detect code security updates, the authors finally selected
three features to determine whether a code change is security-related, security-
related API changes, security-related keyword changes, and code control flow
changes. The changed part of the patch is matched with these 3 features, and
the matched parts are considered as the security-related patches. This method
lacks many features that do not belong to these three features, and does not
locate the line of vulnerability.

Li [32] constructed the slice-level vulnerability dataset CDG. The code exam-
ples include rich inter-process context, but the examples are a subset of program
slices and thus are not valid programs. Despite that this may eliminate noise,
it limits the ability of the model to learn naturally valid code structures. The
labeling method only considers the cases where the vulnerability patch file con-
tains minus lines, and directly labels slices containing the minus lines in the
vulnerability patch file as containing vulnerabilities and the matching lines as
vulnerable. Slices that do not contain the minus lines in the vulnerability patch
file are labeled as not vulnerable. It is not possible to handle the case where the
vulnerability patch file contains only the plus line. Since the dataset comes from
bugs already identified by NVD, the labeling quality may be good. However,
the number of such examples is still limited and may not be sufficient for model
training.

Tang [33] pointed out that the slice-level vulnerability dataset constructed in
[32] lacks path sensitivity, and thus the slices generated by vulnerable code frag-
ments and non-vulnerable code fragments will be consistent when slicing. There
are two main reasons for this: first, control dependencies are rough descriptions
of the relationships between two statements (i.e., the presence or absence of
dependencies) and do not specify the paths of statements (i.e., dependencies on
legitimate or illegitimate values); second, the process of reorganizing the order
of statements and brute force overlay may lead to the direct adjacency of state-
ments that are not in the same control range, thus generating path insensitivity.
Based on this, the paper proposes path-sensitive code gadget.

Liu [23] built a real-world vulnerability dataset. In this work, in addition to
the labeling of vulnerability functions by the same method as in the previous
work, more fine-grained labeling of vulnerability rows is added. For the vulner-
ability line labeling method, 2 cases are considered: if the vulnerability patch
only has the plus line, the place where the key variable is defined or referenced
in the plus line is designated as the line where the vulnerability is located; if the
vulnerability patch directly submits a new function, then the function is consid-
ered to be non-vulnerable. The labeling method does not consider the case of
minus lines.

60 Y. Zheng et al.

3.3 Labeling Based on Vulnerability Scanning

The labeling based on the vulnerability scanning is to label the test object after
the tools finish vulnerability scanning.

Russell [18] complements the SATE IV Juliet manual dataset with real vul-
nerability data, obtained by using three different static analysis vulnerability
detection tools on GitHub and Debian software. The results of each static ana-
lyzer were manually mapped to the corresponding CWEs, and it was determined
which CWEs could lead to potential security vulnerabilities. The three static
detection tools, Clang, Cppcheck, and Flawfinder, inherently have a high rate of
false positives and misses. This work does not further examine this vulnerability
dataset, but simply coarsely classifies the detection categories of the three static
detection tools manually. The use of inaccurate detection results to label the
sample functions directly affects the quality of the dataset.

Harer [25] built datasets from Debian packages and GitHub. After removing
duplicate data, the authors use Clang static analyzer (SA) to remove warnings
from Clang output that are not related to security vulnerabilities. Those without
warning messages are marked as Good and those with messages are marked
as Buggy. In this work, the authors use static analysis based labeling as the
only labeling method without validation. The accuracy of the static analyzer
affects the quality of the dataset. The samples were labeled by the static analysis
tool, which generates many false positives and thus requires subsequent manual
validation, but this can only be applied to small datasets.

Zheng [21] constructed a million samples real-world dataset, D2A. They pro-
poses an approach based on diff analysis applied to automate real large pro-
grams. Using the static analysis tool infer to label the dataset, it can produce
more information related to bugs, such as bug type, location, function path, etc.
The data in the article shows that the accuracy of using the static analysis tool
infer labeling is 53%.

Raducu [22] built the real-world dataset: SVCP4C, which focuses on buffer
overflow type vulnerabilities. The annotation method is processing code in an
open source project using the SonarCloud vulnerability detector. All files in the
dataset provided by the authors contain vulnerabilities and comments detailing
the vulnerable lines. SVCP4C has only 1,104 unique groups after deduplication,
a reduction of 90.29%.

4 Findings and Future Work

By sorting through the existing labeling efforts, we broadly classify them into
three categories: labeling based on text description, labeling based on patch
analysis, and labeling based on vulnerability scanning. We propose a framework
for each of labeling technology to summarize the current labeling methods com-
pletely, and list some defects along with possible future directions.

A Study on Vulnerability Code Labeling Method 61

4.1 Summary of Papers Distribution

By summarizing the statistics of the dataset labeling methods mentioned in 16
papers in the last 5 years, we get the distribution of the three labeling methods
as in Fig. 2.

Fig. 2. Distribution of papers in the three categories of labeling methods.

Labeling based on text description is most often used because it is based on
recognized vulnerability information, which is highly credible and easily acces-
sible. Labeling based on path analysis is deeper than labeling based on text
description. There are fewer labeling papers based on the results of vulnerability
scanning because the accuracy of the scanning tools can not be guaranteed.

4.2 The Framework of Labeling Based on Text Description

The framework based on text description information is shown in the Fig. 3.
One is to start from downloading the known vulnerability database NVD page
description information, then locate the hyperlinks marked patches using some
text mining technology. The other source is commits, some classification algo-
rithms are used to filter the security related ones. Sometimes it is necessary to
use a combination of these two sources to improve the accuracy. The code extrac-
tion stage (the following two frameworks are similar and will not be described
again) is to locate the security patches for project backtracking, slicing and
extracting by means of context analysis and path-sensitive analysis. This step
is trying to make the obtained code fragments enough to extract vulnerability
features. After that, the code fragments are de-duplicated and unified in format,
and finally stored as a dataset.

Two key elements should be focused on in the above framework: hyperlink
positioning and commit filtering.

Patching is the main means of blocking vulnerabilities and attacks, but the
vulnerability attacks are evolving fast and patch management is chaotic. Patch
intelligence is difficult to collect and patch effectiveness is difficult to evaluate.
Existing methods propose improvements in pinpointing hyperlinks and security

62 Y. Zheng et al.

Fig. 3. The framework of labeling based on text description.

commit, but both involve feature engineering and rule matching, and selecting
vulnerability-related effective features is a challenge, with inaccuracy problems
at fine granularity and difficulty in pinpointing at coarse granularity.

4.3 The Framework of Labeling Based on Patch Analysis

By observing the collected diff data, it is found that different CVEs may refer to
the same diff file. The accuracy of the diff files needs to be judged and labeled.
False positive may exist when labeling only based on text description if labeled
from text description information only. Some patches are of types not about
source files but are classified as patch fixes by the author. Some patches fix
configuration files, system builds, etc. Bugs not related to source code include
incorrect or incomplete documentation, incorrect test or test input data, and
incorrect build system configuration.

For the above problems, we propose a labeling framework based on patch
analysis. As shown in the Fig. 4, there are variable definition substitution, vari-
able assignment of initial value substitution or if/for, and other control state-
ment substitution in the vulnerability patch. The key variables of the patches
are found by different types of statement analysis based on + and − line compar-
ison; meanwhile, the source code before and after patched are analyzed and the
root cause of the vulnerability is found by using program analysis methods such
as AST, CFG, DFG, etc. The latter analysis is more in-depth and can explore
more information than the simple line of comparison.

Most of the patch databases are given in NVD hyperlinks, and the informa-
tion is not accurate. The current labeling analysis for patch analysis is relatively
shallow, and most of them stop at the comparison of + and − lines. The com-
parison based on + and − lines belongs to the text diff algorithm in source code
change studies, such as the famous GNU diff, which compares source code at the
plain text level. Text diff algorithms can detect inserted, deleted, and updated
text lines, but such algorithms are difficult to infer the root cause of vulnera-
bilities because vulnerability is not always determined by a particular line. It is

A Study on Vulnerability Code Labeling Method 63

Fig. 4. The framework of labeling based on patch analysis.

contextually linked, and it is difficult to infer syntactic semantic changes in the
cause of vulnerabilities without using the syntactic information contained in the
source code.

A deeper patch analysis should go back to the source code for program anal-
ysis. As AST can express the structural information of the code very well, some
AST analysis methods such as GumTree [34], MTDIFF [35], IJM [36] can be
used. All these three tools are for JAVA language, but there is applicability to
AST difference computation because the structure of AST is independent of
the grammar of the specific language, and AST uses the context-independent
method for syntax analysis of source code. RefactoringMiner [37], FixMiner [38],
and ChangeDistiller [39] can be used to mine code change information. In addi-
tion to this, the code refactoring detection tools Ref-Finder and Ref-diff can be
used.

4.4 The Framework of Labeling Based on Vulnerability Scanning

Based on the labeling of vulnerability scanning tool results, there is no restric-
tion on the detection object, any source code items can be. However, the existing
labeling results have a high false positive rate and are limited by the capability
of the vulnerability scanning tool itself, and the labeled results are grain-coarse.
Therefore, as shown in the Fig. 5, we propose a framework of labeling vulnera-
bility scanning. The framework input is an arbitrary project, and the output is
a dataset, and the main part is the vulnerability scanning tool labeling and code
extraction. The input dataset is first tested by a variety of vulnerability scanners,
here according to the vulnerability scanner capabilities, each focus, and infer can
be analyzed across functions, cppcheck and flawfinder can be analyzed for code
that can not be compiled. Each vulnerability scanner’s report is different, and
for each report, we add CVE verification on it to show that the label is valid.

64 Y. Zheng et al.

Fig. 5. The framework of labeling based on vulnerability scanning.

4.5 Summary

The choice of labeling method usually depends on the type of data source col-
lected. For labeling based on text description and labeling based on patch anal-
ysis, the data source is publicly available vulnerability information, but non-
vulnerability labeling is quite subjective because there is no relevant label source,
so it can bring impact on labeling accuracy. The labeling based on the results
of vulnerability scanning is heavily dependent on the accuracy of the scanning
tools. We summarize the three labeling methods in the Table 4.

Table 4. Summary of labeling technology

Labeling
method

Advantage Disadvantage Key
Technologies

Future work

Labeling
based on text
description

High
credibility

Incomplete
information
disclosure

Text mining
analysis
technology,
Crawler

Patch
information
mining
technology,
Commit
classification

Labeling
based on
patch analysis

Fine grained,
Locate to the
line of
vulnerability,
Analyze in
depth

High
computing
cost

Slicing
technology,
Program
analysis
technology

Patch program
analysis, Code
change
analysis, AST-
difference

Labeling
based on
vulnerability
scanning

Informative
labeling

High rate of
false positives

Vulnerability
scanning tools,
Slicing
technology

Vulnerability
scanning tools

A Study on Vulnerability Code Labeling Method 65

5 Conclusion

In this paper, we systematically investigated the literature related to dataset gen-
eration and labeling, and find that there is a lack of common, widely-accepted
vulnerability-related datasets. We also analyze 13 vulnerability code datasets
and their labeling methods, and propose frameworks for labeling different input
objects on the datasets. The research is analyzed and summarized for the intel-
ligent trends presented by these annotation techniques and the problems faced.

High-quality real-world datasets need to have trusted labels and rich context
associated with code examples. In future work, we plan to propose a new way of
labeling vulnerability samples and generating high quality datasets to be applied
to vulnerability detection. In addition, we plan to study the validation of dataset
labeling quality.

References

1. Zhou, Y., Liu, S., Siow, J., Du, X., Liu, Y.: Devign: effective vulnerability identi-
fication by learning comprehensive program semantics via graph neural networks
(2019)

2. Wang, X., Wang, S., Feng, P., Sun, K., Jajodia, S.: PatchDB: a large-scale secu-
rity patch dataset. In: 2021 51st Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), pp. 149–160 (2021)

3. Ghadhab, L., Jenhani, I., Mkaouer, M.W., Messaoud, M.B.: Augmenting commit
classification by using fine-grained source code changes and a pre-trained deep
neural language model. Inf. Softw. Technol. 135, 106566 (2021)

4. NVD. https://nvd.nist.gov/
5. CVE. https://cve.mitre.org/
6. Gu, Z., Wu, J., Liu, J., Zhou, M., Gu, M.: An empirical study on API-misuse bugs

in open-source C programs. In: 2019 IEEE 43rd Annual Computer Software and
Applications Conference (COMPSAC), vol. 1, pp. 11–20 (2019)

7. SARD. https://samate.nist.gov/SARD
8. Semasaba, A., Zheng, W., Wu, X., Agyemang, S.: Literature survey of deep

learning-based vulnerability analysis on source code. IET Softw. 14, 654–664 (2020)
9. Lin, G., Wen, S., Han, Q.-L., Zhang, J., Xiang, Y.: Software vulnerability detection

using deep neural networks: a survey. Proc. IEEE 108(10), 1825–1848 (2020)
10. Jimenez, M., Rwemalika, R., Papadakis, M., Sarro, F., Traon, Y.L., Harman, M.:

The importance of accounting for real-world labelling when predicting software
vulnerabilities. In: Proceedings of the 2019 27th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering, ESEC/FSE 2019, New York, NY, USA, pp. 695–705. Association for
Computing Machinery (2019)

11. Croft, R., Xie, Y., Babar, M.A.: Data preparation for software vulnerability pre-
diction: a systematic literature review. IEEE Trans. Softw. Eng. 1 (2022)

12. Croft, R., Ali Babar, M., Chen, H.: Noisy label learning for security defects (2022)
13. Grahn, D., Zhang, J.: An analysis of C/C++ datasets for machine learning-assisted

software vulnerability detection. In: Conference on Applied Machine Learning for
Information Security, Arlington, VA (2021)

https://nvd.nist.gov/
https://cve.mitre.org/
https://samate.nist.gov/SARD

66 Y. Zheng et al.

14. Lin, Y., et al.: Vulnerability dataset construction methods applied to vulnerability
detection: a survey. In Undefined (2022)

15. Liu, L., Li, Z., Wen, Y., Chen, P.: Investigating the impact of vulnerability datasets
on deep learning-based vulnerability detectors. PeerJ Comput. Sci. 8, e975 (2022)

16. Lin, G., Xiao, W., Zhang, J., Xiang, Y.: Deep learning-based vulnerable function
detection: a benchmark. In: Zhou, J., Luo, X., Shen, Q., Xu, Z. (eds.) ICICS 2019.
LNCS, vol. 11999, pp. 219–232. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-41579-2_13

17. Li, Z., Zou, D., Xu, S., Chen, Z., Zhu, Y., Jin, H.: VulDeeLocator: a deep learning-
based fine-grained vulnerability detector. IEEE Trans. Dependable Secure Comput.
1 (2021)

18. Russell, R.L., et al.: Automated vulnerability detection in source code using deep
representation learning. In: Automated Vulnerability Detection in Source Code
Using Deep Representation Learning, pp. 757–762 (2018)

19. Chakraborty, S., Krishna, R., Ding, Y., Ray, B.: Deep learning based vulnerability
detection: are we there yet? (2020)

20. Fan, J., Li, Y., Wang, S., Nguyen, T.N.: A C/C++ code vulnerability dataset with
code changes and CVE summaries. In: Proceedings of the 17th International Con-
ference on Mining Software Repositories, pp. 508–512. Association for Computing
Machinery, New York (2020)

21. Zheng, Y., et al.: D2A: a dataset built for AI-based vulnerability detection methods
using differential analysis. In: 2021 IEEE/ACM 43rd International Conference on
Software Engineering: Software Engineering in Practice (ICSE-SEIP), pp. 111–120
(2021)

22. Raducu, R., Esteban, G., Lera, F.J.R., Fernández, C.: Collecting vulnerable source
code from open-source repositories for dataset generation. Appl. Sci. 10(4), 1270
(2020)

23. Liu, B., et al.: A large-scale empirical study on vulnerability distribution within
projects and the lessons learned. In: 2020 IEEE/ACM 42nd International Confer-
ence on Software Engineering (ICSE), pp. 1547–1559 (2020)

24. Nikitopoulos, G., Dritsa, K., Louridas, P., Mitropoulos, D.: CrossVul: a cross-
language vulnerability dataset with commit data. In: Proceedings of the 29th ACM
Joint Meeting on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering, ESEC/FSE 2021, New York, NY, USA,
pp. 1565–1569. Association for Computing Machinery (2021)

25. Harer, J.A., et al.: Automated software vulnerability detection with machine learn-
ing (2018)

26. Min, Y.: 2022 Beijing cyber security conference (BCS). https://bcs.qianxin.com/
speaker/detail?id=63

27. Berger, E.D., Hollenbeck, C., Maj, P., Vitek, O., Vitek, J.: On the impact of pro-
gramming languages on code quality: a reproduction study. ACM Trans. Program.
Lang. Syst. 41(4), 21:1–21:24 (2019)

28. Zafar, S., Malik, M.Z., Walia, G.S.: Towards standardizing and improving clas-
sification of bug-fix commits. In: 2019 ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement (ESEM), pp. 1–6 (2019)

29. Tan, X., et al.: Locating the security patches for disclosed OSS vulnerabilities
with vulnerability-commit correlation ranking. In: Proceedings of the 2021 ACM
SIGSAC Conference on Computer and Communications Security, CCS 2021, New
York, NY, USA, pp. 3282–3299. Association for Computing Machinery (2021)

https://doi.org/10.1007/978-3-030-41579-2_13
https://doi.org/10.1007/978-3-030-41579-2_13
https://bcs.qianxin.com/speaker/detail?id=63
https://bcs.qianxin.com/speaker/detail?id=63

A Study on Vulnerability Code Labeling Method 67

30. Wang, X., et al.: PatchRNN: a deep learning-based system for security patch iden-
tification. In: MILCOM 2021–2021 IEEE Military Communications Conference
(MILCOM) (2021)

31. Hong, H., Woo, S., Lee, H.: Dicos: discovering insecure code snippets from stack
overflow posts by leveraging user discussions. In: Annual Computer Security Appli-
cations Conference, ACSAC, New York, NY, USA, pp. 194–206. Association for
Computing Machinery (2021)

32. Li, Z., et al.: VulDeePecker: a deep learning-based system for vulnerability detec-
tion. In: Proceedings 2018 Network and Distributed System Security Symposium
(2018)

33. SEVulDet: A Semantics-Enhanced Learnable Vulnerability Detector (2022)
34. Falleri, J.-R., Morandat, F., Blanc, X., Martinez, M., Monperrus, M.: Fine-grained

and accurate source code differencing. In: Proceedings of the 29th ACM/IEEE
International Conference on Automated Software Engineering, ASE 2014, New
York, NY, USA, pp. 313–324. Association for Computing Machinery (2014)

35. Dotzler, G., Philippsen, M.: Move-optimized source code tree differencing. In: Pro-
ceedings of the 31st IEEE/ACM International Conference on Automated Software
Engineering, ASE 2016, New York, NY, USA, pp. 660–671. Association for Com-
puting Machinery (2016)

36. Frick, V., Grassauer, T., Beck, F., Pinzger, M.: Generating accurate and compact
edit scripts using tree differencing. In: 2018 IEEE International Conference on
Software Maintenance and Evolution (ICSME), pp. 264–274 (2018)

37. Tsantalis, N., Mansouri, M., Eshkevari, L.M., Mazinanian, D., Dig, D.: Accurate
and efficient refactoring detection in commit history. In Proceedings of the 40th
International Conference on Software Engineering, ICSE 2018, New York, NY,
USA, pp. 483–494. Association for Computing Machinery (2018)

38. FixMiner: Mining relevant fix patterns for automated program repair. Empirical
Software Engineering

39. Fluri, B., Wuersch, M., Inzger, M.P., Gall, H.: Change distilling: tree differencing
for fine-grained source code change extraction. IEEE Trans. Softw. Eng. 33(11),
725–743 (2007)

Adding Result Diversification
to kNN-Based Joins in a Map-Reduce

Framework

Vinícius Souza1, Luiz Olmes Carvalho2, Daniel de Oliveira3, Marcos Bedo3(B),
and Lúcio F. D. Santos1

1 Federal Institute of North of Minas Gerais, IFNMG, Montes Claros, MG, Brazil
{vinicius,lucio.santos}@ifnmg.edu.br

2 Institute of Mathematics and Computing, UNIFEI, Itajubá, MG, Brazil
olmes@unifei.edu.br

3 Institute of Computing, UFF, Niterói, RJ, Brazil
{danielcmo,marcosbedo}@ic.uff.br

Abstract. While the k-Nearest Neighbors (kNN) join fetches the k clos-
est objects from a dataset for each element of a reference collection,
a kNN join with result diversification aims at retrieving the k nearest
objects to each reference entry that are dissimilar among themselves.
Under the Metric Space Model, the distance-based ternary relationship
between each search reference, the dataset, and the result set can be
explicitly used to define a coverage-based criterion, namely Influence,
that ensures diversification by dismissing nearby regions during the join
operation. However, adding result diversification to kNN joins by means
of Influence criteria in large-scale, big data frameworks is still an open
issue since existing algorithms do not consider shared-nothing environ-
ments. To fulfill this gap, we extend the nested Better Results with Influ-
ence Diversification algorithm (BRIDk) to a Map-Reduce framework. In
particular, this study introduces two new algorithms: the P-BRIDk and
the SP-BRIDk. The P-BRIDk method relies on partitioning the objects
by their proximity to a set of pivots so that the search space locality is
preserved throughout the mapped distance-based comparisons. The SP-
BRIDk method expands the P-BRIDk by using a data replication strat-
egy where a window of the search space is copied across the partitions
for enhancing the Influence-based pruning of the nearest objects. We
performed an extensive evaluation of both methods over low and high-
dimensional datasets on an Apache Hadoop cluster, and the results indi-
cate that (i) P-BRIDk has consistently outperformed the nested BRIDk

implementation, with gains up to 80% in terms of Recall (fraction of
points among true diversified neighbors), (ii) fine-tuned SP-BRIDk has
enhanced the P-BRIDk performance at a small overhead cost in data
replication, and (iii) the SP-BRIDk elapsed time has scaled smoothly
with the number of partitions, yielding high Recalls for kNN joins with
result diversification for a controlled overhead ratio.

This study was supported by CAPES, CNPq and FAPERJ (grant numbers SEI-
016517/2021 and E-26/202.806/2019).
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C. Strauss et al. (Eds.): DEXA 2023, LNCS 14146, pp. 68–83, 2023.
https://doi.org/10.1007/978-3-031-39847-6_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-39847-6_5&domain=pdf
https://doi.org/10.1007/978-3-031-39847-6_5

Adding Result Diversification to kNN-Based Joins 69

Keywords: Metric Spaces · kNN · Result Diversification · Big data

1 Introduction

The massive amount of data produced by daily applications (e.g., health mon-
itoring, and social media) offers unlimited possibilities for value creation and
societal changes. The analysis of such big data is typically carried out on paral-
lel computing frameworks (e.g., Hadoop and Spark), providing fast and scalable
performance [3,12,15,16]. Another important aspect to benefit from big data is
the underlying search model, which must deliver transparent answers and han-
dle huge data variety [1,6]. The Metric Space Model offers a solid alternative
for browsing through big data as its single requirement is pairing data with a
distance function that complies with metric properties, including non-negativity
and triangle inequality [8].

Under this paradigm, the higher the distance between two data objects, the
most dissimilar they are. Accordingly, a similarity search operator is a systematic
method for organizing the distances from dataset objects to any set of reference
elements so that only objects satisfying a distance-based criterion are retrieved.
A known similarity search operator is the k-Nearest Neighbors (kNN) join, which
fetches the k closest objects from a dataset for each element of a reference collec-
tion [2]. An example of use for the operator is as follows. Suppose a film director
running a remake of “Once Upon a Time in the West” wants to explore possi-
bilities for the cast by considering the original starring actors. While the kNN
join enables limiting the prospects for each role, it does not ensure each position
is assorted enough to skip redundant possibilities, such as actors with the same
lineaments and play style. The kNN join with result diversification enriches the
kNN join operator by enforcing that the retrieved neighbors are also dissimilar
according to distance coverage/optimization rules [7,13].

A number of approaches have discussed the implementation of kNN joins [3,
16]. For instance, the QuickJoin algorithm introduced in [9] was a seminal app-
roach to solve kNN joins in centralized environments [9], while the proposal
in [15] relies on a hyperplane-based window to devise a non-blocking strategy to
handle kNN joins in a shared-nothing framework by using a Map-reduce imple-
mentation. The strategy in [5] uses space-filling curve mappings to enhance load
balance and shows that good-quality pivot objects have an impact on the join
operation [5]. This finding is also corroborated in [17], with the authors suggest-
ing pivots chosen by approaches based on the dataset pairwise distance distri-
bution have superior performance to randomly selected pivots [18,19].

On the other hand, just a handful of studies have addressed adding result
diversification to the join operator to the best of our knowledge [7,13]. The study
of [13] was the first to address the implementation of a kNN join operator by
using incrementally-chosen coverage thresholds. They proposed a nested version
of the BRIDk algorithm [14], whose thresholds are obtained dynamically after
the ternary relationship among the search reference, the dataset, and the result
set (the so-called Influence criteria) [10]. A more challenging aspect of kNN

70 V. Souza et al.

joins with result diversification is they require synchronous sorting, i.e., greedily
discarding objects, as non-diversified in a mapping phase may change the overall
search outcome, which does not occur in kNN joins. Therefore, migrating the
nested BRIDk approach to efficiently and effectively execute Influence-based
kNN joins in big data frameworks remains an open problem.

In this study, we introduce two Map-Reduced-based extensions to BRIDk:
the P-BRIDk and SP-BRIDk. They exploit the partitioning of data objects by
their proximity to a set of pivot elements, chosen by the criterion of maximal
variance in the pairwise distance distribution [18,19]. The SP-BRIDk method
also capitalizes on a data expansion strategy in which a pivot-based window of
the search space is replicated across the partitions to enhance the Influence-
based pruning of nearest objects. In summary, our main contributions are:

– P-BRIDk, a pivot-based method extending kNN joins with Influence-based
result diversification to Map-Reduce frameworks,

– SP-BRIDk, a method that expands P-BRIDk by using data replication within
data partitions, and

– an extensive comparison of P-BRIDk and SP-BRIDk to nested BRIDk over
real-world datasets embedded in low and high-dimensional spaces, experimen-
tally showing the advantages of our proposal.

The remainder of this paper is organized as follows. Section 2 presents the
main concepts and summarizes related work. Section 3 introduces the P-BRIDk,
and SP-BRIDk methods, and Sect. 4 presents the experimental setup and eval-
uation. Section 5 discusses the conclusions and points to future directions.

2 Preliminaries

The Metric Space Model. A Metric Space is a pair M = 〈O, δ〉, where O is a
data domain and δ, δ : O×O → R+, is a distance function that complies with the
following properties [8] for distinct objects oh, oi, oj ∈ O: (i) δ(oi, oj) = δ(oj , oi)
(Symmetry); (ii) δ(oi, oj) > 0 (Positiveness); (iii) δ(oi, oi) = 0 (Identity); and
(iv) δ(oi, oj) ≤ δ(oi, oh) + δ(oh, oj) (Triangle inequality).

Well-known distance functions include the Euclidean distance (L2) and the
entire Minkowski family (Lp) for d-dimensional spaces [4].

kNN Query. A k-Nearest Neighbor Query (kNN) query retrieves the set of the
k closest elements from a dataset O ⊆ O to a reference object oq ∈ O. Formally,
an incremental kNN result set kNN (oq, δ, k,O) = {o1, o2, ..., ok} is as follows

o1 = oi ∈ O, ∀ oj ∈ O, δ(oi, oq) ≤ δ(oj , oq),

om=2,...,k = oi ∈ O \ ∪m−1
h=1 oh, ∀ oj ∈ O \ ∪m−1

h=1 oh, δ(oi, oq) ≤ δ(oj , oq)

kNN Join. A k-Nearest Neighbor join (kNN�) takes as input a reference col-
lection set Q ⊆ O and a dataset O ⊆ O, and retrieves a result set R with
size at most |R| = k × |Q|. The result set R is constructed by fetching every

Adding Result Diversification to kNN-Based Joins 71

pair R = {〈q, oi〉 | oi ∈ kNN(q, δ, k,O), ∀ q ∈ Q}. In the case of ties at the
kth position, any of the tied pairs can be arbitrarily chosen [8,10]. Figure 1(b)
exemplifies a kNN join for a collection with two reference objects.

Although kNN is widely employed to recover data by proximity, it may
(i) present non-determinism (with several elements qualifying for the kth posi-
tion) or (ii) retrieve objects similar among themselves in the exploration of
distance-dense datasets [10]. Result diversification extends kNN to recover
objects dissimilar to each other [7]. In particular, Influence measures can create
dynamic thresholds to prune the nearest candidates, ensuring diversification [13].

Influence Measures. Given two objects oi, oj ∈ O, oi
= oj , their mutual Influ-
ence (inverse dissimilarity) is calculated by I(oi, oj) = 1/δ(oi, oj). Given a query
reference oq ∈ O, a diversified (Influence-free) neighbor oi ∈ O, and a dataset
object oj ∈ O, then their Influence measures define a ternary relationship that
indicates oj is more influenced by oi than oq iff I(oi, oj) > I(oj , oq). Thus, oj

should not be considered for the result set as oi is already a diversified neighbor.

Influence Set. The Influence Set of a diversified neighbor oi regarding a query
reference oq ∈ O encompasses every entry oj ∈ O \ {oi ∪ oq} that are (i) farther
from oq than oi and (ii) more Influenced by oi than oq, i.e., Ïoi,oq

= {oj | oj ∈
O \ {oi, oq}, I(oi, oj) > I(oi, oq) ∧ I(oi, oj) > I(oj , oq) ∧ I(oi, oq)
= I(oj , oq)}.
This concept is exploited by the Better Results with Influence Diversification
algorithm (BRIDk) to define kNN queries with result diversification [10,14].

kdNN Query. A kNN query with result diversification (kdNN) fetches the k
non-Influenced and nearest elements in O ⊆ O to a reference object oq so that
kdNN (oq, δ, k,O) = R = {o1, o2, ..., ok} is constructed as follows.

o1 = oi ∈ O, ∀ oj ∈ O, δ(oi, oq) ≤ δ(oj , oq),

om=2,...,k = oi ∈ O, (∀ oj ∈ ∪m−1
h=1 oh ⇒ oi /∈ Ïoj ,oq

) ∧ (∀ og ∈ O \ ∪m−1
h=1 oh ⇒

(δ(oi, oq) ≤ δ(og, oq) ∨ ∃ oj ∈ ∪m−1
h=1 oh ⇒ og ∈ Ïoj ,oq

)).

kNN Join with Result Diversification. The result set R of a kNN join with
result diversification (kdNN�) is assembled from the input datasets Q ⊆ O and
O ⊆ O where the retrieved set of joined pairs are as follows R = {〈q, oi〉 | oi ∈
kdNN(q, k,O, δ), ∀ q ∈ Q}. Figure 1(c) exemplifies a kNN join with result diver-
sification for a collection with two reference objects.

Related Work. To optimize the join operation with MapReduce, the proposal
in [11] implements prefix filtering to reduce the number of distance comparisons,
while in [15], the authors use a hyperplane window to perform kNN joins in a
Hadoop implementation. In [5], the authors discuss space-filling curve mappings
to enhance load balance and show that the pivot choice for partitioned solutions
affects the join operation. Such observation is also highlighted in [17], where
authors suggest using the dataset pairwise distance distribution to find good
pivots. The main difference between those methods and our study is that we
focus on the challenge of including result diversification to kNN joins, which

72 V. Souza et al.

Fig. 1. (a) Example of a kNN� for two random reference objects (stars) in an Euclidean
space and k = 3 with (c) and without (b) result diversification. (Color figure online)

is usually carried by synchronous routines in centralized environments [10] (in
opposition to the solutions for asynchronous kNN joins). Next, we discuss the
nested kNN� solution proposed in [13] and introduce two MapReduce solutions
for the problem by considering pivot-based partitions in the search space.

3 Material and Methods

3.1 The Baseline Approach

The baseline strategy for executing an Influence-based kdNN� is the nested
BRIDk solution (N-BRIDk), summarized in Algorithm 1. Line 4 produces the
candidate list of nearest neighbors for each query reference, whereas Lines 5–
8 execute the inner kdNN routine that prunes non-diversified neighbors. The
object pairs are joined incrementally, and the Influence of each neighbor defines
a monotonically increasing region of exclusion to the next neighbors (Line 6). In
a centralized solution, the temporary list of pairs (Rtemp) is greedily constructed
for each query reference, dynamically creating the regions of exclusions. However,
every mapped data partition relies on its local, independent construction in a
shared-nothing distributed environment. Thus, merging the individual result sets
in the reduce phase implies that the result set includes only locally non-Influenced
objects, i.e., an element dismissed in a mapped partition may be globally not
Influenced because the Influence sets were constructed after the data partition
rather than the entire dataset. As a consequence, the N-BRIDk translation to
Map-Reduce produces locally diversified kNN joins, as follows.

Locally Diversified kNN Joins (k�dNN�). Let a set of disjoint partitions
P for the dataset O ⊆ O (noted P � O) be distributed across M workers
with |P| = M , then the kNN� with result diversification retrieves the k locally
non-Influenced neighbors in O to each entry in the reference set Q ⊆ O so

Adding Result Diversification to kNN-Based Joins 73

Nested BRIDk (Query set Q, dataset O, #neighbors k);

1 R ← ∅;
2 for q ∈ Q do
3 Rtemp ← ∅;
4 Rcandidates ← sortByDistance(O, q);
5 for oi ∈ Rcandidates ∧ |Rtemp| < k do
6 if oi /∈ ∪oj∈Rtemp Ïoj ,q then Rtemp ← Rtemp ∪ {oi}
7 R ← R ∪ (q × Rtemp);
8 return R;

Algorithm 1: N-BRIDk: the nested-loop BRIDk kNN join.

that k�dNN�(Q, δ, k,P � O) = R =

⎧
⎨

⎩

{〈q1, o1〉, . . . , 〈q1, ok〉},
. . .

{〈qn, o1〉, . . . , 〈qn, ok〉},

⎫
⎬

⎭
, where for each

reference query q ∈ Q we have a result pool RP = ∪M
i=1kdNN(q, δ, k,Pi) that

determines the pairs of joined elements {〈q, o1〉, . . . , 〈q, ok〉} as follows

o1 = oi ∈ RP , ∀ oj ∈ RP , δ(oi, oq) ≤ δ(oj , oq),

om=2,...,k = oi ∈ RP , (∀ oj ∈ ∪m−1
h=1 oh ⇒ oi /∈ Ïoj ,oq

) ∧ (∀ og ∈ RP \ ∪m−1
h=1 oh ⇒

(δ(oi, oq) ≤ δ(og, oq) ∨ ∃ oj ∈ ∪m−1
h=1 oh ⇒ og ∈ Ïoj ,oq

)).

3.2 The P-BRIDk Method: A Novel Pivot-Based Approach

In contrast with the N-BRIDk, we propose the P-BRIDk method by using pivot
objects to cluster and partition the search space in a two-phase strategy, sum-
marized in Fig. 2. We argue the adoption of good-quality pivots increases the
clusters’ cohesion and the possibilities for a k�dNN� to cover the first portion of
a kNN� result set. Since this first portion determines the growing pace for the
Influence sets, it increases the overall chance of k�dNN� resembling the global
kdNN� result set. The number of partitions determines the number of pivots,
and we choose the data objects with the maximal variance in their pairwise
distance distributions as pivots by using the sample-based heuristic in [18].

Map(Query set Q, dataset O, #neighbors k, #partitions M);

1 P ← maxVarPivots(O, M);/* M partitions with a pivot v each. */
2 for o ∈ O \ P do
3 Pj ← Pj ∪ {o} | Pj ∈ P, ∀ Ph ∈ P \ {Pj}, δ(Pj .v, o) ≤ δ(Ph.v, o);
4 return RP = ∪M

i=1N-BRIDk(Q, Pi, k);/* Distribute to M workers. */

Algorithm 2: Pivot-mapping phase of P-BRIDk.

74 V. Souza et al.

Fig. 2. P-BRIDk Map-Reduce implementation overview.

Reducer(Query set Q, results RP = ∪M
i=1RPi , #neighbors k);

1 R ← ∅;
2 for q ∈ Q do
3 R′

P ← RP ;
4 while |{〈q, o〉 ∈ R}| < k ∧ |R′

P | > 0 do
5 w ← 〈q, oi〉 ∈ R′

P , ∀ 〈q, oj〉 ∈ R′
P , δ(q, oi) ≤ δ(q, oj);

6 R ← R ∪ {w};/* Add next nearest and diversified pair */
7 R′

P ← R′
P \ {w} \ {〈q, oj〉 ∈ R′

P , oj ∈ ∪〈q,oh〉∈RÏoh,q}/* Pruning */
8 return R;

Algorithm 3: P-BRIDk refinement in the reduce phase.

P-BRIDk employs the pivots to create the data partitions in which every
object is assigned to its closest pivot (ties are broken at random). The parti-
tions are crossed against query objects and mapped to workers by the pivot,
which executes N-BRIDk to produce locally diversified sets. Next, the results
are merged/refined in a reducer whose input is composed of M ×k pairs1. Algo-
rithm 2 summarizes the P-BRIDk map phase, and Algorithm 3 the P-BRIDk

reducer. Those methods follow the one-pass premise, avoiding multiple data
read/write operations during the distance comparisons within each partition.

Figures 3(a–b) present two examples of P-BRIDk running for a single query
reference Q = {q}, k = 5, and two partitions P = {P1.v = v1, P2.v = v2}.
Trivially, if the partition covers the set of k globally diversified neighbors, then
the result of the k�dNN� is equivalent to that of a kdNN� – Fig. 3(a). A globally
diversified neighbor can also be retrieved even if it locates in a partition farther
than previous neighbors – See object o3 in P2 in Fig. 3(c). In this case, the merger
phase of P-BRIDk discards the local candidate o1 in P2 (see the Influence regions
in gray) because it is Influenced by o2 in P1, fetching the next candidate o3 in
P2, which is also a globally diversified neighbor.

1 If M×k exceeds the worker available memory, then the reduce task can be recursively
split into two workers (and one merger) with (M × k/2) space requirement.

Adding Result Diversification to kNN-Based Joins 75

Fig. 3. Two scenarios (a–b) and (c–d) for P-BRIDk joining a query reference q with
k = 5 neighbors in an Euclidean space partitioned by two pivots {v1, v2}. Query locality
determines the global coverage, i.e., |k�dNN� ∩ kdNN�|. (Color figure online)

However, the one-round processing may discard globally diversified neighbors
in favor of locally diversified candidates. In the example of Fig. 3(c), a global
neighbor (see the red arrow) is discarded because it is Influenced by o2 in P2

and never makes it to the reduction phase that would refine the answer. To soften
this greedy aspect of P-BRIDk and provide a second-chance for the merger to
refine the search, we extend P-BRIDk to consider the query locality context.

3.3 The SP-BRIDk : A Novel Context-Aware Approach

The proposed SP-BRIDk method generalizes the P-BRIDk proposal under the
premise that preserving the query spatial locality context has the potential to
increase the final number of globally diversified neighbors. Accordingly, we design
SP-BRIDk to replicate an ε-sized portion of border data (we call context window)
to partitions whose frontiers overlap in at most ε, as follows.

Context Window. Let a partition Pi ∈ P,P \ Pi
= ∅, with a pivot v be
constructed over the dataset O,P � O. The context window Ci,ε associated with
Pi for a given threshold ε ∈ R+ is defined as follows Ci,ε = {o ∈ O \ Pi | ∀ Pj ∈

76 V. Souza et al.

Fig. 4. SP-BRIDk joining a query reference q in an Euclidean space partitioned by
{v1, v2} and window size ε with k = 5. (a–b) Locally diversified results. (c) SP-BRIDk

result set after reduction. (d) Globally diversified neighbors. (Color figure online)

P \ Pi, δ(o, Pi.v) + ε ≤ δ(o, Pj .v)}. The set of context windows is C = ∪M
i=1Ci,ε,

and |C| is the total data storage overhead distributed across M partitions.
The map stage of SP-BRIDk collects the objects closer to the partition pivot

and its related context window (see Algorithm 4), while the SP-BRIDk reducer
for locally diversified neighbors is carried out by the P-BRIDk Algorithm 3. Thus,
P-BRIDk becomes a particular instance of SP-BRIDk for ε = 0.0. Figures 4(a–c)

Map(Query set Q, dataset O, #neighbors k, #partitions M , window size ε);

1 P ← maxVarPivots(O, M);/* M partitions with a pivot v each. */
2 for o ∈ O \ P do
3 Pj ← Pj ∪ {o} | Pj ∈ P, ∀ Ph ∈ P \ {Pj}, δ(Pj .v, o) ≤ δ(Ph.v, o);
4 for Pi ∈ P do
5 Pi ← Pi ∪ Ci,ε/* Add context window elements */
6 return RP = ∪M

i=1N-BRIDk(Q, Pi, k);/* Distribute to M workers. */

Algorithm 4: Pivot and context mapping of SP-BRIDk.

Adding Result Diversification to kNN-Based Joins 77

present a SP-BRIDk running for the same query scenario in Fig. 3(c). The par-
titions are augmented by the ε-based window, which enables sharing the query
context within the borders of two partitions. Unlike P-BRIDk (see Fig. 3(d)),
the local results in P1 are now preserved throughout P2, enabling the SP-BRIDk

reducer to find the k globally diversified neighbors.

4 Empirical Evaluation

For the experimental evaluation, we start describing the infrastructure, setup,
and employed datasets. Then, we compare the performance of P-BRIDk against
N-BRIDk by examining the joining quality via Recall values. Next, we discuss
the tuning of SP-BRIDk regarding context windows and evaluate the overhead
ratio associated with the window size. Finally, we assess the P-BRIDk and SP-
BRIDk horizontal scalability according to Recall, overhead ratio, and elapsed
time. For all tests, we selected a batch of 100 random objects as the query set,
i.e., |Q| = 100. Then, we removed the query sets from the original datasets before
the join. The L2 distance was employed to perform the similarity comparisons.

4.1 Experimental Setup

P-BRIDk and SP-BRIDk Implementation and Infrastructure2. We
implemented P-BRIDk, SP-BRIDk, and the baseline N-BRIDk in Apache
Hadoop 3.3.1 (JDK 8) by using a containerized cluster with 11 nodes (01 mas-
ter, 10 workers) running on top of a Linux-based QLustar server with 48 AMD
Opteron 2.2GhZ processors, 94 GB RAM, and 1 TB SATA disk. The nodes
were defined through docker containers with equally distributed resources (CPU,
memory, and disk). The map and reduce phases were implemented through the
Hadoop jobConf, which distributes the search execution parameters (e.g., P, k,
and ε) to every node. P-BRIDk, SP-BRIDk, and N-BRIDk reduction phase bene-
fits from the Hadoop Map-Reduce native secondary sort routine to orderly access
the list of local candidates according to their distance to the query references.
We overload the secondary sort, grouping, and partition Hadoop operations to
support distance-based ordering and object-based joining.

Datasets (see Footnote 2). We experiment on synthetic and real-world
datasets with varying cardinality (|O|), dimensionality (d), and intrinsic dimen-
sionality (ID)3. Table 1 summarizes the employed datasets and further separates
the datasets in low-dimensional (LDG) and high-dimensional (HDG) groups.
The execution of k�dNN joins in HDG sets is expected to be costlier than in
LDG datasets due to the distance concentration phenomenon [10], thus provid-
ing edge scenarios for the P-BRIDk and SP-BRIDk evaluation.

2 Source-code and datasets in https://github.com/rviniciussouza/BRIDkD.
3 ID = �μ2

O/2 · σ2
O, where μO and σO are the mean and standard deviation of the

pairwise distance distribution within O, respectively [4].

https://github.com/rviniciussouza/BRIDkD

78 V. Souza et al.

Table 1. List of evaluated datasets

Dataset |O| |d| ID Description Group

CITIES 25,375 2 2 Coordinates of US cities LDG
NASA 40,150 20 6 Low-level features from satellite images
GAUSS 2 · 106 2 2 Synthetic iid dimensions (Standard distribution)
UNIFORM 2 · 106 2 2 Synthetic iid dimensions (Uniform distribution)

MNIST 70,000 784 26 Handwritten digits HDG
ALOI 72,000 144 3 3D color model images
COLORS 112,682 111 12 Low-level features from color photos
SIFT 1 · 106 128 15 SIFT features from images

Performance Analysis. We juxtapose the performance of the proposed meth-
ods against the baseline approach N-BRIDk by using measures of Recall (fraction
of points among true diversified neighbors), data replication (overhead ratio),
and elapsed time. The overhead required by context windows is expressed as
percentile of the dataset cardinality. Finally, elapsed time is reported as an aver-
age of ten executions.

4.2 P-BRIDk Performance

Figure 5 presents the comparison between P-BRIDk and N-BRIDk. The average
Recall for an increasing neighborhood range k = {5, 8, 13, 15, 20}. N-BRIDk con-
siders the dataset randomly partitioned, while P-BRIDk uses the pivots selected
by the maximal variance criterion. The results indicate the N-BRIDk Recall
quickly degrades, while P-BRIDk maintained a high Recall ratio in all cases.

Fig. 5. P-BRIDk Recall in low (a–d) and high-dimensional (e–h) datasets.

Adding Result Diversification to kNN-Based Joins 79

LDG Datasets. P-BRIDk achieved an average Recall near 0.95 for the entire
LDG, surpassing N-BRIDk by up to 60% (NASA dataset (k = 20)) and 70%
(CITIES dataset (k = 20)). In synthetic datasets GAUSS and UNIFORM, P-BRIDk

average Recall was 1.0 (exact matches between k�dNN� and kdNN�) for all
examined k, while N-BRIDk Recall dropped with the range of neighbors. P-
BRIDk consistently outperformed N-BRIDk by significant margins (even for k =
5), and every N-BRIDk Recall (per query object) was tied or topped by P-
BRIDk.

HDG Datasets. The evaluation for the high-dimensional group shows the N-
BRIDk performance deteriorates abruptly in comparison to the LDG datasets.
The P-BRIDk quality, however, was preserved, even for greater neighborhoods.
In the cases of ALOI, COLORS, and SIFT datasets, P-BRIDk average Recall con-
stantly reached values above 0.87, and for the edge MNIST dataset, the P-BRIDk

Recall dropped only after k = 8, finishing with 0.67. The highest P-BRIDk

gain against N-BRIDk was above 80% (ALOI), and we observed N-BRIDk per-
formances per query object were always equal to or below P-BRIDk.

Such a P-BRIDk performance provides a lower bound for SP-BRIDk behavior
since P-BRIDk can be seen as a SP-BRIDk setup with no context window (ε = 0).
Thus, in the next experiment, we adjust the SP-BRIDk parameters to enhance
P-BRIDk while minimizing the context window overhead.

4.3 SP-BRIDk Tuning

We evaluated the impact of the context window size by setting ε as a percentage
of the maximal pairwise distance within each data partition. In particular, we
examined the range ε = {0%, 10%, 20%, 30%, 40%, 50%} aiming at not reaching a
total data overhead higher than the dataset cardinality itself. The overhead ratio
was expressed as the proportion of dataset size copied throughout the partitions
(the sum of context windows by data cardinality, i.e., |C|/|O|). We also selected
the fixed neighborhood size (k = 15) to evaluate as it showed to be an inflection
point in the previous experiments in which P-BRIDk achieved an average Recall
below 0.8 for the first time regarding datasets MNIST, COLORS, and CITIES, i.e., it
is the first entry point for enhancements in P-BRIDk.

Figure 6 presents the SP-BRIDk Recall and overhead ratio for LDG (a–b)
and HDG (c–d) datasets. The Recall increased with the context window size in
every dataset, reaching the maximum value for ε = 50% and exhibiting the same
P-BRIDk Recall for the window size ε = 0%. The “elbow” of Recall curves was
also observed with ε = 20%.

LDG Datasets. The Recall for datasets CITIES and NASA increased after the
adoption of a context window of 10%, reaching a close-to-top value for ε = 20%.
The results also reveal the Recall slowly increases (or peaked) after the ε = 20%
threshold, but the overall overhead ratio continues to grow linearly with the
window size, reaching up to 1.35 data duplication for ε = 50%. UNIFORM and
GAUSS datasets have required no context windows to reach a Recall of 1.0 for
k = 20.

80 V. Souza et al.

Fig. 6. SP-BRIDk performance for increasing context window sizes. (a) and (c) Recall.
(b) and (d) Data overhead.

HDG Datasets. Analogously to the LDG group, we observed the Recall
increased for a window size ε = 20% at a 1.6 replication cost, on average. The
highest Recall of 1.0 was achieved with this context window in the ALOI dataset,
whereas for the edge MNIST case, a value higher than 0.9 was obtained. A similar
outcome was observed for datasets COLORS and SIFT, which showed an average
Recall above 0.95 for the same context window size. The data replication in
HDG datasets was slightly sharper compared to LDG datasets, reaching up to
1.5 duplication for ε = 50% in the MNIST case.

Following those experimental findings for LDG and HDG datasets, we tune
SP-BRIDk by using a context window size ε = 20% in the next empirical evalu-
ation of SP-BRIDk scalability regarding Recall and processing performance.

4.4 Scalability

We examined the SP-BRIDk scalability using a growing number of partitions
|P| = {10, 13, . . . , 22}, each associated with a maximal variance pivot. In our
evaluation, we considered the ε = 20% and k = 15. Figures 7(a–f) present the
SP-BRIDk Recall, overhead ratio, and CPU-only elapsed time. Results indicate
Recall was above 0.8 for the range of partitions, whereas the average elapsed
time smoothly reduced in the interval. They also reveal the overhead ratio was
below data duplication (2 · |O|) even for the case with 22 partitions.

Adding Result Diversification to kNN-Based Joins 81

Fig. 7. SP-BRIDk Recall (a–d), average elapsed time (b–e), and overhead ratio (c–f)
for an increasing number of data partitions.

LDG Datasets. SP-BRIDk showed a stable Recall regarding datasets GAUSS and
UNIFORM for increasing partitions, with a Recall reduction (less than 10%) for 22
partitions in datasets CITIES and NASA. SP-BRIDk elapsed time reduced propor-
tionally with the partitions for all LDG datasets. Finally, the overall overhead
ratio for LDG datasets was below 1.65 in all examined cases.

HDG Datasets. SP-BRIDk has exhibited a higher Recall variance for HDG
datasets than LDG datasets. The SP-BRIDk Recall for MNIST was 0.8 with 22
partitions (the largest variation in the experiments), but the Recall differences for
SIFT, COLORS and ALOI were less than 9% (in the worst case COLORS). The average
elapsed time has decreased at a constant pace with the number of partitions,
whereas the overhead ratio increased linearly, having an average slope greater
than those of LDG datasets (nearly twice the replication).

Overall, SP-BRIDk processing performance scaled smoothly with the num-
ber of partitions, with a trade-off between overhead and average elapsed time.
Additionally, results suggest the number of partitions affects both the Recall and
overhead of SP-BRIDk in high-dimensional datasets.

5 Conclusion and Future Work

This study has introduced two Map-Reduce implementations for kdNN join (see
Footnote 2): P-BRIDk and SP-BRIDk. Evaluations showed P-BRIDk (and its
generalized version SP-BRIDk) consistently outperformed the baseline approach
N-BRIDk. We examined the SP-BRIDk fine-tuning and found the context win-
dow ε = 20% as a balanced setting for Recall and overhead. The tuned SP-BRIDk

82 V. Souza et al.

achieved a high Recall with controlled data replication and also showed to be
scalable with the number of partitions regarding elapsed time. Future works
include the (i) adaption of pivot-based indexes to SP-BRIDk, and (ii) the SP-
BRIDk implementation in a parallel shared-memory framework, e.g., Apache
Spark.

References

1. Armbrust, M., Das, T., et al.: Delta lake: high-performance ACID table storage
over cloud object stores. VLDB 13(12), 3411–3424 (2020)

2. Bohm, C., Krebs, F.: The k-nearest neighbour join: turbo charging the KDD pro-
cess. Knowl. Inf. Syst. 6(6), 728–749 (2004)

3. Čech, P., Maroušek, J., Lokoč, J., Silva, Y.N., Starks, J.: Comparing MapReduce-
based k-NN similarity joins on Hadoop for high-dimensional data. In: Cong, G.,
Peng, W.-C., Zhang, W.E., Li, C., Sun, A. (eds.) ADMA 2017. LNCS (LNAI),
vol. 10604, pp. 63–75. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
69179-4_5

4. Chávez, E., Navarro, G., Baeza-Yates, R., Marroquín, J.: Searching in metric
spaces. Comput. Surv. 33(3), 273–321 (2001)

5. Chen, G., Yang, K., Chen, L., Gao, Y., Zheng, B., Chen, C.: Metric similarity joins
using MapReduce. TKDE 29(3), 656–669 (2016)

6. Chen, L., et al.: Indexing metric spaces for exact similarity search. Comput. Surv.
55(6), 1–39 (2022)

7. Drosou, M., Jagadish, H., Pitoura, E., Stoyanovich, J.: Diversity in big data: a
review. Big Data 5, 73–84 (2017)

8. Hetland, M.L.: The basic principles of metric indexing. In: Coello, C.A.C., Dehuri,
S., Ghosh, S. (eds.) Swarm Intelligence for Multi-objective Problems in Data Min-
ing. SCI, vol. 242, pp. 199–232. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-03625-5_9

9. Jacox, E.H., Samet, H.: Metric space similarity joins. TODS 33(2), 1–38 (2008)
10. Jasbick, D., Santos, L., Marques, P., Traina, A., Oliveira, D., Bedo, M.: Pushing

diversity into higher dimensions: the LID effect on diversified similarity searching.
Inf. Syst. 114, 102–116 (2023)

11. Kim, C., Shim, K.: Supporting set-valued joins in NoSQL using MapReduce. Inf.
Syst. 49, 52–64 (2015)

12. Rong, C., Cheng, X., Chen, Z., Huo, N.: Similarity joins for high-dimensional data
using Spark. Concurr. Comput.: Pract. Experience 31(20), 1–17 (2019)

13. Santos, L.F.D., Carvalho, L.O., Oliveira, W.D., Traina, A.J.M., Traina, C.: Diver-
sity in similarity joins. In: Amato, G., Connor, R., Falchi, F., Gennaro, C. (eds.)
SISAP 2015. LNCS, vol. 9371, pp. 42–53. Springer, Cham (2015). https://doi.org/
10.1007/978-3-319-25087-8_4

14. Santos, L., Oliveira, W., Ferreira, M., Traina, A., Traina, C., Jr.: Parameter-free
and domain-independent similarity search with diversity. In: SSDBM (2013)

15. Silva, Y.N., Reed, J.M., Tsosie, L.M.: MapReduce-based similarity join for metric
spaces. In: WCI, pp. 1–8 (2012)

16. Ukey, N., Yang, Z., Li, B., Zhang, G., Hu, Y., Zhang, W.: Survey on exact kNN
queries over high-dimensional data space. Sensors 23(2), 629 (2023)

17. Wu, J., Zhang, Y., Wang, J., Lin, C., Fu, Y., Xing, C.: Scalable metric similarity
join using MapReduce. In: ICDE, pp. 1662–1665 (2019)

https://doi.org/10.1007/978-3-319-69179-4_5
https://doi.org/10.1007/978-3-319-69179-4_5
https://doi.org/10.1007/978-3-642-03625-5_9
https://doi.org/10.1007/978-3-642-03625-5_9
https://doi.org/10.1007/978-3-319-25087-8_4
https://doi.org/10.1007/978-3-319-25087-8_4

Adding Result Diversification to kNN-Based Joins 83

18. Yianilos, P.N.: Data structures and algorithms for nearest neighbor. In: ACM-
SIAM Symposium on Discrete Algorithms, vol. 66, p. 311 (1993)

19. Zhu, Y., Chen, L., Gao, Y., Jensen, C.S.: Pivot selection algorithms in metric
spaces: a survey and experimental study. VLDB J. 31(1), 23–47 (2021). https://
doi.org/10.1007/s00778-021-00691-4

https://doi.org/10.1007/s00778-021-00691-4
https://doi.org/10.1007/s00778-021-00691-4

Effective and Efficient Heuristic
Algorithms for Supporting Optimal

Location of Hubs over Networks
with Demand Uncertainty

Alfredo Cuzzocrea1,2(B), Luigi Canadè1, Giulia Fornari3, Vittorio Gatto3,
and Abderraouf Hafsaoui1

1 iDEA Lab, University of Calabria, Rende, Italy
alfredo.cuzzocrea@unical.it

2 Department of Computer Science, University of Paris City, Paris, France
3 ISIRES, Turin, Italy

{giulia.fornari,vittorio.gatto}@isires.org

Abstract. The problem faced in this paper concerns with finding the
optimal location for the hubs in a network, under demand uncertainty,
and where the allocation of the nodes is treated as a second stage deci-
sion. We proceed first with the definition of the mathematical model that
we carved to fit the operational needs of GUROBI Optimizer. Afterwards,
we propose a collection of heuristic algorithms able to solve the problem
in a faster way with sub-optimal solutions. The heuristic algorithms pro-
posed in our framework progressively reach a good approximation of the
solution. Experimental results confirm the benefits of our approach.

Keywords: Network Algorithms · Demand Uncertainty · Heuristics

1 Introduction

In every kind of networks, transportation costs always represent an important
issue, especially in large nets full of nodes and communication links and flows
(e.g., [15]). This is why most of the time it is necessary to resort to intermediate
nodes where it is possible to store the moving material or information, and to dis-
patch it to destination through the shortest route in terms of costs and/or time.
These special intermediate stations are often called hubs and are fundamental
in most of network engineering application fields, starting from telecommunica-
tions to postal and airlines services, and so forth. In most of the cases, hubs are
considered required steps to reach the destination, whether considering a sms of
a cellular network or a packet of a computer network. This is why the position
of hubs within the network is of such importance.

This research has been made in the context of the Excellence Chair in Big Data Man-
agement and Analytics at University of Paris City, Paris, France.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C. Strauss et al. (Eds.): DEXA 2023, LNCS 14146, pp. 84–98, 2023.
https://doi.org/10.1007/978-3-031-39847-6_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-39847-6_6&domain=pdf
https://doi.org/10.1007/978-3-031-39847-6_6

Optimal Hub Location with Demand Uncertainty 85

The hub location problem consists of the decision of the number of hubs to
use and in their location, as well as the assignment of other nodes to the hubs,
aiming at minimizing the total cost that is composed by fixed and variable costs.
Different constraints are possible here. Among these: (i) the number of selected
hubs, which can be predetermined or left as a decision variable; (ii) whether the
volume of traffic can concentrate in a hub, or single or multiple allocations of
non-hub nodes to the hub is allowed. However, in all the variants, the objective
is to find the location of the hub and the allocation of non-hub nodes so that
the total cost is minimized.

In our research, we consider the Stochastic Single-Allocation Hub Location
Problem (SAHLP) (e.g. [14]), which deals with the problem of positioning the
hubs in the most optimal way for the users (depending on the specific appli-
cation), by considering the allocation of the flows as a second stage decision.
In this so-delineated scenario, uncertainty in flow demand is considered to act
according to a stochastic behaviour, as the probability of having a greater num-
ber of requests for a hub towards specific directions rather than others is the
most general way to deal with the real requirements of the target problem.

Following these considerations, in this paper we propose three innovative
heuristic algorithms that solve the optimal hub location problem with demand
uncertainty, whose main benefit consists in achieving good approximate solutions
while keeping acceptable computational time. Our comprehensive experimental
comparison confirm the benefits of our solutions.

2 Dataset Generation

In hub location problems, researchers are used to generate instances of some
specific datasets that then exploited by the research community over the years,
by also improving them where necessary. In this Section, we focus the attention
on these classical datasets and their instances. In fact, the latter are used in our
experimental evaluation.

The first one is the CAB dataset. CAB has been used frequently in the
literature to test algorithms for solving P -hub problems and was introduced
by O’Kelly in [19]. It is based on airline passenger flow between 25 US cities
during 1970 and consists of 25 depots and 25 possible hub locations. Problems
of size n = 10, n = 15, n = 20, n = 25 are extracted from this dataset by
only considering a subset of nodes. Later, Abdinnour-Helm [1] adds fixed costs
to CAB, such that fixed costs are equal for each possible hub location. Four
different values for these costs are considered, namely 100, 150, 200 and 250.
The CAB dataset is only tested for the basic model, because the capacity of the
truck is set to 1. Therefore, the flow cannot be consolidated. The only reason
why not all locations are chosen to act as a hub is the occurrence of a fixed cost
for each established hub. This dataset was therefore unusable for our problem
since we are considering an extension of the original problem where collection,
transfer, and distribution costs are also taken into account.

The other dataset used in the hub location literature is the AP dataset. AP
is based on the mail flow of the Australian post and was introduced by Ernst

86 A. Cuzzocrea et al.

and Krishnamoorthy in [10]. It consists of 200 nodes, which represent postcode
districts, along with their coordinates, flow volumes (mailflow), as well as the
model parameters χ, α and δ (see Sect. 3 for a detailed description of these
parameters). Unlike the CAB dataset, which stops at a maximum of n = 25,
the AP dataset provides opportunities for researchers to tackle larger real-world
problems, since problems of size up to n = 200 can be generated and solved. It is
also possible to generate subset of the original dataset that still provide a good
approximation of the original larger data. A feature of this dataset is that, since
it is derived from a postal application, it contains non-uniform flows, particularly
to and from the Central Business District. Moreover, the flow matrix W is not
symmetrical, and, in addition to this, the diagonal elements Wii need not be
zero as a postcode district can send mail to itself. The AP dataset also includes
capacities and fixed costs on the nodes. We consider two types of fixed costs:
Tight, denoted as T, and Loose, denoted as L. Problems with fixed costs of type
T have higher fixed costs for nodes with large flows. This makes it difficult for
the model to nominate these high volume nodes as hubs (which would otherwise
be “natural” candidates). Hence, these problems are more difficult to solve. By
the contrary, problems with fixed costs of type L do not exhibit this trend.

Similarly to the work by Rostami et al. [21], we used the AP in our exper-
imental work, by introducing it in our instance generator program. The AP
dataset is available in the OR Library at [25]. In AP, we can find data useful
to generate instances for up to 200 nodes. The parameters associated to the
generation procedure are the following: (i) the number of nodes n; (ii) for each
node, the coordinates x and y; (iii) the matrix W that represents the flow from
a particular node to another node; (iv) the parameter p that represents the fixed
number of hub; (v) for each node, the collection cost Cc; (vi) for each node, the
transfer cost Ct; (vii) for each node, the distribution cost Cd; (viii) for each
node, the fixed cost Cf .

As related to the instance generation, since our problem is stochastic in
nature, we also consider different scenarios that characterize the generation of
the target instances. In order to take into consideration the stochasticity of the
problem, in the second stage we multiplied coefficient by ps (see Eq. (3)) where,
assuming ξ being a random parameter that follows a discrete distribution with
finite support Sw modeled as follows:

Sw = s1, . . . , sm (1)

the corresponding probabilities are as follows:

ps1 , . . . , psm (2)

where:

ps = P (ξ = s), s ∈ Sw (3)

In order to translate the stochasticity of the problem in the code, we adopt
a procedure similar to the classical Knapsack problem. Moreover, like in [21],

Optimal Hub Location with Demand Uncertainty 87

in order to generate different flow scenarios for each source-sink pair, we make
the assumption that the flow between two nodes can be modelled as a Poisson
distribution, which is finally used to model demand uncertainty. As suggested
in [21], then we multiply the items wij of the flow matrix W by a factor πi that
denotes the deviation from the base case. Further, we assume that πi is uniformly
distributed over the interval [0.5, 1.5]. Then, the demand value for a source-sink
pair (i,j) in a stochastic scenario is chosen from a Poisson distribution with event
rate as follows:

wijπiπj (4)

with πj also uniformly distributed between [0.5, 1.5].
As far as the number of scenarios is concerned, in our experiments we used

5 different scenarios. This choice is due to the fact that, even in the reference
paper [21], authors make use of 5 scenarios for their simulation, like also other
similar experiences (e.g., [3]).

3 Mathematical Foundations

As introduced in Sect. 1, our problem consists in a single allocation hub location
problem under demand uncertainty where the allocation of the spokes to the
hubs is optimized as second stage decision after the uncertainty in the demand
is addressed. This problem is different from fixed allocation case that is addressed
in the literature, where the spokes are allocated to the chosen hubs before the
uncertainty is addressed.

The stochastic SAHLP with variable allocation is formulated as a two-stage
stochastic program with recursion. Here, first-stage decisions are the location of
the hubs to be opened while second.stage decisions are the optimal allocation of
the spoke nodes to the hub nodes as well as the routing of the flows.

In the following, we describe the proposed mathematical model and the
related parameters. First of all, we consider a directed graph G = (N,A) where
N = 1, 2, ..., n as representing the set of nodes that model origin, destination
and possible hub location while A represents the set of arcs that report possi-
ble direct links between different nodes. The following ones are thus the useful
parameters:

– flow ws
ij : the amount of flow to be transported from node i to node j for each

scenario s ∈ Sw;
– distance dsij : the distance between node i and node j for each scenario s ∈ Sw;
– outgoing flow Os

i : the sum of all the flow leaving from node i for each scenario
s ∈ Sw Oi =

∑
j∈N ws

ji;
– incoming flow Ds

i : the sum of all the flow coming to node i for each scenario
s ∈ Sw Di =

∑
j∈N ws

ji;
– fixed cost fk: for each n ∈ N , fk, the fixed set-up cost for locating a hub at

node k;

88 A. Cuzzocrea et al.

– cost per unit of flow : for each path i − k − l − j from and origin node i to
a destination node j passing through hubs k and l, the cost per unit flow
is described as: χ dik + α dkl + δ dlj , where χ, α and δ are the no-negative
collection, transfer, and distribution costs, respectively, while dik, dkl and dlj
are the distances between the pair of nodes, respectively – in particular, χ, α
and δ are constant and their value is specified in the AP dataset as follows:
α = 0.75, χ = 3.0 and δ = 2.0.

In order to formulate the stochastic SHALP, the following allocation variables
are introduced:

xs
ik =

{
1 if a node i is allocated to a hub at node k, with s ∈ Sw

0 otherwise
(5)

and

zk =

{
1 if a hub is located at node k

0 otherwise
(6)

The problem is then formulated as reported in Eq. (7).

min
∑

k∈N fkzk +
∑

s∈Sw
ps

∑
i,k∈N
i�=k

csikx
s
ik+

∑
s∈Sw

ps
∑

i,j∈N αws
ij

(

dijzizj +
∑

l∈N
l �=j

dilzix
s
jl+

∑
k∈N
i�=k

dkjx
s
ikzj +

∑
k,l∈N
i�=k
j �=l

dklx
s
ikx

s
jl

) (7)

where:
csij = dik(χOs

i + δDs
i) (8)

subject to
∑

k∈N
i�=k

xs
ij = 1 − zi i ∈ N, s ∈ Sw (9)

xs
ik ≤ zk i, k ∈ N, i �= k, s ∈ Sw (10)

zi ∈ {0, 1} ∀i ∈ N (11)

zsik ∈ {0, 1} ∀i ∈ N, s ∈ Sw (12)

where, in Eq. (7), we try to minimize the total cost of the network which includes
the cost of setting up the hubs, the cost of collection and distribution of items
between the spoke nodes and the hubs and the cost of transfer between the hubs.
The fixed cost of setting up the hub is a first stage decision variable, meaning
that we choose at first the nodes that have lower fixed cost without considering

Optimal Hub Location with Demand Uncertainty 89

the demands. The other variables are instead second stage variables and they
take into account the uncertainty of the demand.

In more detail, the first constraint (Eq. (8)) specifies that each node should be
allocated to precisely one hub (i.e., single allocation), while the second constraint
(Eq. (9)) enforces that a node i is allocated to a node k only if k is selected as
a hub node.

Equation (10) and Eq. (11) are instead implicit constraints that impose a
binary choice.

As it can be seen from the objective function (Eq. (7)), our problem is
quadratic in nature, and it involves many variables and summations. Indeed,
for its computation the complexity reaches a maximum formalized as follows:

O(s ∗ n4) (13)

where s is the number of scenarios and n is the number of nodes.
This problem is considered NP-Hard from many other researchers, such as

Ernst [11] and Silva-Cunha [22], while we find some arguments in the paper of
Stanimirović [24] which considers the CSAHLP as a NP-Complete problem since
its sub-problem, the USAHLP, is proven to be NP-Hard.

4 Baseline Solution

In this Section, we introduce the results obtained via using an exact solver with
the AP dataset as input. In particular, we conducted our experiment using
GUROBI Optimizer 9.0 [13], and we implemented the mathematical model pro-
posed in Sect. 3 in Python 3.8. All the experiments were conducted using an Intel
Core i5-5300U CPU @ 2.30 GHz × 4, 8 GB RAM with OS Ubuntu 20.04.2,
with practical guidelines [12]. Then, in order to plot the results obtained we used
the Python package NetworkX [18].

In Fig. 1 and Fig. 2, we report the results obtained using the AP dataset with
10 nodes (10L) and 25 nodes (25L), respectively. Here, we plot the position of
the nodes (in respect to their x and y coordinates) while the size of the nodes
is proportional to the outgoing flow Oi. Nodes that are chosen as hubs are then
colored in yellow while the spokes nodes are colored in sky blue and each one of
them is allocated to one hub.

From Fig. 1 and Fig. 2, we can see clearly the variable allocation decision. For
example, in Fig. 1a, Fig. 1c and Fig. 1d the node number 4 is connected with hub
number 6 while, instead, in Fig. 1b and Fig. 1e a different choice is made and the
node 4 is connected with hub 2. Same thing happens in the case with 25 nodes
where in Fig. 2a node 13 is allocated to hub 7 while in Fig. 2b the same node is
connected to hub number 17.

In [21], i.e. the work that we use as reference, authors claimed that the usage
of variable allocation strategy provides better results with respect to fixed allo-
cation strategy. Indeed, variable allocation strategy results in an overall decrease
of 2.0% for the simulation with 40 nodes, and of 8.7% for the simulation with
50 nodes.

90 A. Cuzzocrea et al.

Fig. 1. Variable Allocation with 10 Nodes (10L)

5 Heuristic Algorithms

In the active literature, different kinds of heuristic approaches have been created
according to the formulation of the problem. In particular, given the nature of
the single allocation hub location problem, a large variety of heuristics have been
proposed over the years. Alumur and Kara in [2] present the state of the art of the
hub location problem and report on the different solution approaches used in the
literature. Authors also claim that the most effective heuristics is the Lagrangian
relaxation-based heuristics [20]. Here, authors make use of a previously proposed
tight linear programming formulation and introduce a sub-gradient optimiza-
tion based on the Lagrangian relaxation. However, to dramatically improve the
performance of this approach, they specify a sub-problem of the Lagrangian
relaxation model with a cut constraint.

According to [2], instead, the two best meta-heuristics are those proposed by
Skorin-Kapov and Skorin-Kapov [23] and Ernst and Krishnamoorthy [11]. The

Optimal Hub Location with Demand Uncertainty 91

Fig. 2. Variable Allocation with 25 Nodes (25L)

first one is a heuristic method based on Tabu Search (TS) [27], where the problem
of locating hub facilities and the problem of allocating the nodes to one and only
one hub are treated in the same manner. The second one, instead, is a heuristic
algorithm based on Simulated Annealing (SA) [26]. This approach, already used
in other optimization problems like the Traveling Salesman Problem, consists,
as translated to our case, in starting from a random solution, then defining a
neighbourhood and the transitions that take a particular solution to one in its
neighbourhood such that where only feasible solutions are considered. Ernst and
Krishnamoorthy [11] present in detail the step of the algorithm, and, moreover,
they use the previously-found upper bound to develop a Linear Programming
(LP)-based branch and bound solution method.

The above-mentioned heuristic algorithms, even if widely used and well per-
forming, do not work well in our case, since our main goal is to come up with a
heuristic solution that is easy to implement and capable of reaching good results.

92 A. Cuzzocrea et al.

5.1 Fundamental Theory of Proposed Heuristics

The three heuristic algorithms proposed in this paper are based on the initial
computation of a penalty factor pf , similar to a weight, that describes the pos-
sibility of a node to become a hub or not. Similar to the third starting point
presented by Silva and Cunha [22], our solution takes into account the penalty
factor pf based on the spatial location of the node i measured in terms of dis-
tances from all the other nodes in the network, defined as follows:

pfi =
∑

j

dij + dji (14)

Moreover, for each node i, we compute a decision factor pi that takes into
account all the variables that contribute to the definition of the problem and
the decision of the hubs, like, for instance: (i) the fixed cost fs

i for each node i,
(ii) the outgoing flow osi for each scenario s ∈ S and for each node i, (iii) the
incoming flow Si for each scenario s ∈ S and for each node i, (iv) the summation
of all the row elements of the cost matrix Cs

ik for each node i, (v) the penalty
factor pfi for each node i, as follows:

pi = fi + Os
i + Ds

i +
∑

i

∑

s

Cs
ij + pfi (15)

After computing these two factors, which, in our solution, act as a sort of
penalty function, for the goal of supporting the decision of the hub location,
our three different heuristic algorithms that best approximate the exact solution
found with GUROBI are considered. These are named as: (i) SimpleHeu, (ii)
HeuNew and (iii) HeuNew2. They are presented in the next Sections.

5.2 Algorithm SimpleHeu

The first heuristic algorithm SimpleHeu predicates that the decision of allocating
a hub is simply due to the value obtained from the weights pi. In more details, for
each node i, we evaluate the value pi and, if this value, is lower than the mean of
pi, denoted by Pavg, then the node is selected as a hub. Later, all the remaining
nodes that were not chosen as hubs are connected to the nearest hub, following
the O’Kelley nearest allocation heuristics [19]. As a result, it happens though
that some nodes that are selected as hubs are not connected with any spoke.
Therefore, as a final step, we check if there are hubs without links, and, if this
happens, these nodes are converted to a non-hub nodes and they are reallocated
to their nearest hub. SimpleHeu is reported by Algorithm 1.

5.3 Algorithm HeuNew

According to the main algorithmic framework, for the second heuristic algorithm,
HeuNew, our first step is evaluating the pi for each node i. Then, we choose as
hub the nodes with the lowest pi. The decision on the number of nodes that need

Optimal Hub Location with Demand Uncertainty 93

Algorithm 1. SimpleHeu
for (s in scenarios) do

for (i in nodes) do
generate penalty factors P [i]

end for
end for
compute the mean of the penalty factors Pavg

for (i in nodes) do
if (P [i] < Pavg) then

node i becomes a hub
end if

end for
for (s in scenarios) do

evaluation of link matrix X
for (i in nodes) do

select chosen hubs i
for (j in nodes) do

if (hub without links) then
cancel hub i

end if
end for

end for
recompute matrix X

end for

to be chosen as hubs is, in this case, the real unknown variable of the algorithm.
Our idea is thus to try different number of hubs and choose the best option, by
always considering the computational complexity of this decision step. For the
case of HeuNew, our choice is to try for a number of hubs between 1 and 4. This
is motivated by the results obtained with the exact solution, where we notice
that, for each dataset, the number of hubs chosen is usually 2 or 3. Therefore,
what is done in algorithm HeuNew is the evaluation of the objective function
when the 1, 2, 3 or 4 nodes with the lowest pi are chosen as hubs. Among these
4 objective functions, the lowest one is finally selected, and the solution is given
by the corresponding hub chosen for that number. Even in this case, like for
SimpleHeu, all the spokes are linked to the nearest hubs. HeuNew is reported by
Algorithm 2.

5.4 Algorithm HeuNew2

In algorithm HeuNew, the choice of the number of hubs is dictated by the fact
that the exact solution of the problem is known. This condition is of course
inadmissible in a heuristic approach where it is not supposed the exact solution
to be known. The main goal of the third heuristic algorithm HeuNew2 is therefore
to choose the right number of hubs without having some a-priori knowledge on
the exact solution.

94 A. Cuzzocrea et al.

Algorithm 2. HeuNew
for (s in scenarios) do

for (i in nodes) do
generate penalty factors P [i]

end for
end for
choose Hubs among nodes with lowest P
for (#Hubs = 1, 2, 3, 4) do

for (i in #Hubs) do
all nodes i become hubs

end for
for (s in scenarios) do

evaluation of link matrix X
end for
evaluation of obj function ofnew for given X and given hubs
if (ofnew < previously computed obj function ofold) then

ofold = ofnew

end if
end for

In HeuNew2, at first, as usual, we evaluate pi for each node i. Then, like in
HeuNew, we choose as hubs the nodes with the lowest pi. The only difference is
that, this time, we start with a number of hubs equal to the number of nodes.
Then, we evaluate the objective function for this number of hubs and, as a
subsequent step, the number of hubs chosen is halved and, for this new number,
we compute the objective function. These two so-obtained objective functions
are then compared, and the lowest one is chosen as partial solution. Then, the
number of hubs is halved again (remember that we choose always the nodes
with the lowest pi), and a new objective function is evaluated and compared
to the previous one. These steps are repeated until we end up with the best
solution (i.e., the newest solution is worst than the previous one), and the latter
is selected as final solution. HeuNew2 is reported by Algorithm 3.

6 Experimental Evaluation and Analysis

In this Section, we provide the experimental results retrieved for the three dif-
ferent heuristic algorithms SimpleHeu, HeuNew and HeuNew2, which are the main
result og our research. Particularly, in Table 1, Table 2 and Table 3, we report
the values obtained by SimpleHeu, HeuNew and HeuNew2, respectively. In par-
ticular, the last column Gap % reports the percentage difference between the
solution obtained with the actual heuristics and the exact solution obtained with
GUROBI. In more details, the gap g is computed as follows:

g =
(
1 − GUROBI objective function

heuristic objective function

)
∗ 100 (16)

Optimal Hub Location with Demand Uncertainty 95

Algorithm 3. HeuNew2
for (s in scenarios) do

for (i in nodes) do
generate penalty factors P [i]

end for
end for
choose Hubs among nodes with lowest P
#Hubs = #nodes
while (#Hubs > 0) do

for (i in #Hubs) do
all nodes i become hubs

end for
for (s in scenarios) do

evaluation of link matrix X
end for
evaluation of obj function ofnew for given X and given hubs
if (ofnew < previously computed obj function ofold) then

ofold = ofnew

end if
#Hubs divided by 2

end while

Table 1. Experimental Results with SimpleHeu

As we can see from the analysis of the experimental results, SimpleHeu
requires a very low computational time to solve the SAHLP, but it behaves badly
for network with a large number of nodes, so that obtaining a value of the objec-
tive function too different from the one computed with GUROBI. For HeuNew
and HeuNew2, instead, we are able to generate a solution that well approximate
the exact one, even for a large number of nodes. As far as the computational time
is concerned, HeuNew is slightly faster than HeuNew2. Moreover, at the bottom of

96 A. Cuzzocrea et al.

Table 2. Experimental Results with HeuNew

Table 3. Experimental Results with HeuNew2

each table, we add some more detailed information about the gap, in particular
the minimum and maximum gap obtained, and the average value of the gap over
the six target datasets.

7 Conclusions and Future Work

Starting from open research challenges of the research community, in this paper
we have proposed three innovative heuristic algorithms that solve the optimal
hub location problem with demand uncertainty, whose main benefit consists in
achieving good approximate solutions while keeping acceptable computational
time. In addition to this conceptual contribution, we have also performed a

Optimal Hub Location with Demand Uncertainty 97

comprehensive experimental evaluation and analysis, where we inspected the
variation of several experimental parameters. Derived results have confirmed
the benefits of our solutions. Future work is mainly oriented towards making our
algorithms compliant with emerging big data trends (e.g., [4–9,16,17,28]).

Acknowledgement. This research is supported by the ICSC National Research Cen-
tre for High Performance Computing, Big Data and Quantum Computing within the
NextGenerationEU program (Project Code: PNRR CN00000013).

References

1. Abdinnour-Helm, S.: A hybrid heuristic for the uncapacitated hub location prob-
lem. Eur. J. Oper. Res. 106(2–3), 489–499 (1998)

2. Alumur, S.A., Kara, B.Y.: Network hub location problems: the state of the art.
Eur. J. Oper. Res. 190(1), 1–21 (2008)

3. Alumur, S.A., Nickel, S., da Gama, F.S.: Hub location under uncertainty. Transp.
Res. Part B Methodol. 46(4), 529–543 (2012)

4. Bellatreche, L., Cuzzocrea, A., Benkrid, S.: F&A: a methodology for effectively and
efficiently designing parallel relational data warehouses on heterogenous database
clusters. In: Bach Pedersen, T., Mohania, M.K., Tjoa, A.M. (eds.) DaWaK 2010.
LNCS, vol. 6263, pp. 89–104. Springer, Heidelberg (2010). https://doi.org/10.1007/
978-3-642-15105-7 8

5. Campan, A., Cuzzocrea, A., Truta, T.M.: Fighting fake news spread in online social
networks: actual trends and future research directions. In: 2017 IEEE International
Conference on Big Data (IEEE BigData 2017), Boston, MA, USA, 11–14 December
2017, pp. 4453–4457. IEEE Computer Society (2017)

6. Coronato, A., Cuzzocrea, A.: An innovative risk assessment methodology for med-
ical information systems. IEEE Trans. Knowl. Data Eng. 34(7), 3095–3110 (2022)

7. Cuzzocrea, A.: Analytics over big data: exploring the convergence of dataware-
housing, OLAP and data-intensive cloud infrastructures. In: 37th Annual IEEE
Computer Software and Applications Conference, COMPSAC 2013, Kyoto, Japan,
22–26 July 2013, pp. 481–483. IEEE Computer Society (2013)

8. Cuzzocrea, A., Martinelli, F., Mercaldo, F., Vercelli, G.V.: Tor traffic analysis and
detection via machine learning techniques. In: 2017 IEEE International Conference
on Big Data (IEEE BigData 2017), Boston, MA, USA, 11–14 December 2017, pp.
4474–4480. IEEE Computer Society (2017)

9. Demchenko, Y., De Laat, C., Membrey, P.: Defining architecture components of
the big data ecosystem. In: 2014 International Conference on Collaboration Tech-
nologies and Systems (CTS), pp. 104–112 (2014)

10. Ernst, A.T., Krishnamoorthy, M.: Efficient algorithms for the uncapacitated single
allocation p-hub median problem. Locat. Sci. 4(3), 139–154 (1996)

11. Ernst, A.T., Krishnamoorthy, M.: Solution algorithms for the capacitated single
allocation hub location problem. Ann. Oper. Res. 86, 141–159 (1999)

12. Fadda, E., Manerba, D., Cabodi, G., Camurati, P.E., Tadei, R.: Comparative anal-
ysis of models and performance indicators for optimal service facility location.
Transp. Res. Part E Logist. Transp. Rev. 145, 102174 (2021)

13. Gurobi: Gurobi - the fastest solver (2021). http://www.gurobi.com/. Accessed 1
Dec 2021

https://doi.org/10.1007/978-3-642-15105-7_8
https://doi.org/10.1007/978-3-642-15105-7_8
http://www.gurobi.com/

98 A. Cuzzocrea et al.

14. Hu, Q.M., Hu, S., Wang, J., Li, X.: Stochastic single allocation hub location prob-
lems with balanced utilization of hub capacities. Transp. Res. Part B Methodol.
153, 204–227 (2021)

15. Klingman, D., Napier, A., Stutz, J.: NETGEN: a program for generating large scale
capacitated assignment, transportation, and minimum cost flow network problems.
Manag. Sci. 20(5), 814–21 (1974)

16. Leung, C.K., Cuzzocrea, A., Mai, J.J., Deng, D., Jiang, F.: Personalized Deepinf:
enhanced social influence prediction with deep learning and transfer learning. In:
2019 IEEE International Conference on Big Data (IEEE BigData), Los Angeles,
CA, USA, 9–12 December 2019, pp. 2871–2880. IEEE (2019)

17. Malek, Y.N., Najib, M., Bakhouya, M., Essaaidi, M.: Multivariate deep learning
approach for electric vehicle speed forecasting. Big Data Min. Anal. 4(1), 56–64
(2021)

18. NetworkX: Networkx - network analysis in python (2021). http://networkx.org/.
Accessed 1 Dec 2021

19. O’kelly, M.E.: A quadratic integer program for the location of interacting hub
facilities. Eur. J. Oper. Res. 32(3), 393–404 (1987)

20. Pirkul, H., Schilling, D.A.: An efficient procedure for designing single allocation
hub and spoke systems. Manag. Sci. 44(12), 235–242 (1998)

21. Rostami, B., Kämmerling, N., Naoum-Sawaya, J., Buchheim, C., Clausen, U.:
Stochastic single-allocation hub location. Eur. J. Oper. Res. 289(3), 1087–1106
(2021)

22. Silva, M.R., da Cunha, C.B.: New simple and efficient heuristics for the uncapac-
itated single allocation hub location problem. Comput. Oper. Res. 36(12), 3152–
3165 (2009)

23. Skorin-Kapov, D., Skorin-Kapov, J.: On tabu search for the location of interacting
hub facilities. Eur. J. Oper. Res. 73(3), 502–509 (1994)

24. Stanimirović, Z.: Solving the capacitated single allocation hub location problem
using genetic algorithm. In: Recent Advances in Stochastic Modeling and Data
Analysis, pp. 464–471. World Scientific (2007)

25. University, B.: Ap data set (2021). http://people.brunel.ac.uk/∼mastjjb/jeb/orlib/
files/phub1.txt. Accessed 1 Dec 2021

26. van Laarhoven, P.J.M., Aarts, E.H.L.: Simulated annealing. In: Simulated Anneal-
ing: Theory and Applications. Mathematics and Its Applications, vol. 37, pp. 7–15.
Springer, Dordrecht (1987). https://doi.org/10.1007/978-94-015-7744-1 2

27. de Werra, D., Hertz, A.: Tabu search techniques. Oper.-Res.-Spektrum 11(3), 131–
141 (1989)

28. White, L., Burger, K., Yearworth, M.: Big data and behavior in operational
research: towards a smart or. In: Behavioral Operational Research, pp. 177–193
(2016)

http://networkx.org/
http://people.brunel.ac.uk/~mastjjb/jeb/orlib/files/phub1.txt
http://people.brunel.ac.uk/~mastjjb/jeb/orlib/files/phub1.txt
https://doi.org/10.1007/978-94-015-7744-1_2

DMIS: Dual Model Index Structure
for Enhanced Performance on Complexly

Distributed Datasets

Lanzhong Liu, Xujian Zhao(B), and Yin Long

School of Computer Science and Technology,
Southwest University of Science and Technology, Mianyang, Sichuan, China

liulanzhong@mails.swust.edu.cn, jasonzhaoxj@gmail.com

Abstract. Recently learned index was proposed to improve index per-
formance, where error-driven methods are widely adopted. However,
when applied to datasets with complex data distributions, the method
may produce overdispersed models. Specifically, data sets with complex
distributions are highly irregular and difficult to describe using param-
eterized distribution laws, which ultimately affects the performance of
the learned index. Aiming to the issue, we propose a Dual Model Index
Structure (DMIS) that combines the learned index and traditional index
to better handle complex datasets. Meanwhile, we propose an evalu-
ation model that measures the compatibility of the data distribution
with the learned index and explore a classification method to categorize
datasets as either learning-friendly or non-learning-friendly. Our eval-
uation results demonstrate that the DMIS architecture improves per-
formance by about 1.6 times compared to the state-of-the-art learned
index and performs better under various workloads. The DMIS model
for partitioning learning-friendly data enhances the model’s universality,
efficiently improves the data index’s efficiency, and reduces the number of
bottom segments of the index. Our work effectively mitigates the impact
of dataset differences on learned indexes.

Keywords: Learned index · Database · Data Management

1 Introduction

Index technology is the key to achieving efficient data access in database sys-
tems. Both industry and academia have long been committed to researching
and developing various index technologies, and this field has always been a hot
topic in the database domain [1,5,9,18]. Recently learned indexes was proposed,
which have shown significant potential in improving index performance [12].
However, it may not perform well on datasets with complex data distributions.
Complex data distribution refers to datasets where data points are unevenly
and irregularly distributed, without clear statistical patterns or potentially fol-
lowing multiple different distributions. Describing this type of data distribution
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C. Strauss et al. (Eds.): DEXA 2023, LNCS 14146, pp. 99–113, 2023.
https://doi.org/10.1007/978-3-031-39847-6_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-39847-6_7&domain=pdf
https://doi.org/10.1007/978-3-031-39847-6_7

100 L. Liu et al.

using traditional parameterized distribution laws becomes challenging, which
may result in poor model fitting or overdispersed models. So as the complex-
ity of the data distribution increases, the number of models required to build
the learned index also increases. Retrieving information from a large number of
models can make the process more complex and time-consuming. Additionally,
ensuring the accuracy of the learned model results becomes more complex in
such scenarios. We refer to this as the over-fragmentation of the learned index,
which can also result in redundant space overhead.

In Table 1, we present the results of an experiment that demonstrates the
varying performance of the learned index under different error ranges. When the
error range is large, the learned index no longer provides a significant advantage.

Table 1. Performance evaluation of B+-tree and learned index under different error-
bounds.

Error-bound 5.87 15.71 19.52

B+tree 1.67 Mops 1.65 Mops 1.66 Mops

Learned index 3.43 Mops 1.44 Mops 1.32 Mops

In general, learned index can be divided into two categories: error-driven
linear segmentation model and count-driven model.Meanwhile, it is found that
complex datasets are more likely to affect the performance of error-driven learned
index [4,6,7,14,21]. This is because error-driven linear segmentation models typ-
ically linearly divide data segments by setting a parameter (error-bound ε) to
ensure that the error of all models is below this threshold. However, the count-
driven model that cuts data by calculating other metrics can not produce a
globally optimal model. Therefore, we exploit the error-driven linear partition-
ing model as the basis of the proposed hybrid index structure.

Error-driven design aims to use error-bound as the splitting criteria in model
building. Consequently, setting the error-bound is critical to the performance of
the learned index model. A lower error-bound design can facilitate faster range
lookup. However, it also results in more segments in the learned index, which
makes the retrieval more complex and time-consuming. At the same time, if the
index supports insertion, we need to provide a buffer for each fragment. Obvi-
ously, oversplit fragments require the model to provide more buffers to accommo-
date new inserts. During the retraining phase of executing the model, merging
consumes a lot of computational performance, which degrades the performance
of the learned index. In this paper, we propose a small-scale retraining mech-
anism to support insertion operation for the learned index, which reduces the
cost of retraining the learned index and improves index efficiency.

In general, this paper makes the following main contributions:

• We model the relationship between error-bound settings and the performance
of the data in an error-driven linear segmentation model. Using the perfor-
mance of traditional tree models as a comparison, we evaluated what type

Dual Model Index Structure 101

of data would provide superior performance in a linear segmentation model,
we call such data learning-friendly data. We build a detection model to auto-
matically classify learning-friendly data and non-learning-friendly data.

• We build a set of linear interpolation models to organize the learning-friendly
data, and we use the traditional models for the non-learning-friendly parts of
the data. These two models are organized in the superstructure, resulting in a
hybrid index structure. We follow the currently popular approach of creating
buffers after non-learning-friendly data segments to support insertion and we
devise a retraining method for it.

• We conducted experiments on four datasets and obtained excellent experi-
mental findings in space and time, confirming the validity of our work.

The rest of the paper is organized as follows: Sect. 2 describes the related
work; Sect. 3 gives the rules for learning-friendly data evaluation; Sect. 4 presents
the DMIS; Sect. 5 shows the evaluation results; Sect. 6 concludes this paper.

2 Related Work

Traditional index structures are mainly divided into the tree-based index, the
hash-based index, and the log-merge-tree structure [19]. The traditional index
structure normally used attempts to speed up data retrieval by continually nar-
rowing the scope of the data search. The main idea of the learned index is to
view the index structure as a model where the inputs are keys and the outputs
are positions. The current learned index structure aims to solve the problems of
insertion support and parallel control in the originally learned index.

Insertion support for the index is key to an index structure that can be used
for social production, and recent research has proposed two directions for pro-
viding insertions, using buffers and using the structure of the index itself. Xindex
[20] and Finedex [14] propose a design that adds buffers between data segments
to support the insertion of data. This approach requires two steps of merging
and retraining to complete the update operation of the model. This step-by-step
update is able to achieve concurrency control using optimistic locking and is
therefore considered to be an excellent solution for learned index. Learned index
using buffers typically uses an error-driven linear segmentation-based model as
the base model, with a smaller error-bound to provide better performance (ε = 0
means that the model is able to query the location of the data exactly once).
Using the index’s own structure to support insert requires more space to support
leaving spaces between data, and the structure will be changed more frequently.

There is also a newer view that the advantages of the learned index can be
used in conjunction with traditional index [6,17]. For example, Llaveshi et al.
[15] suggested using linear regression models to speed up the search for B+ trees
in conventional nodes, and Hadian et al. [11] propose a new index structure, the
IFB tree, which improves the performance of B+tree by combining interpolation
methods with B+ trees. However, this structure for speeding up the traditional
index still uses the B+tree as the base structure and does not take full advantage

102 L. Liu et al.

of the learned index. We use the learned index as the base structure to classify the
data into learning-friendly and non-learning-friendly data. A dual-model index
structure is proposed using the learned index combined with the underlying
structure of the B+tree index.

3 Learning-Friendly Data Evaluation Rules

The existing error-driven learned index method implicitly assumes that the local
distribution patterns of the dataset are consistent. Therefore, the same ε value
is set to partition the dataset. Setting ε lower can make local data distribution
more linear, which improves prediction accuracy. However, this also leads to a
decrease in the number of data points covered by each segment, as well as an
increase in the total number of segments, and a more complex index, thereby
increasing time and space costs. On the contrary, adjusting ε to a relatively
large value can reduce the difficulty of building the index and partitioning some
non-linear data into one segment. Therefore, increasing the value of ε in error-
driven method has spatial advantages but reduces prediction accuracy, which is
disadvantageous for the learned index. Obviously, the performance of a learned
index is closely related to the data distribution and the error-bound settings, and
we want to determine the relationship between the two through segmentation
rules.

Given a dataset as D = {(x1, y1), (x2, y2), (x3, y3), ..., (xn, yn)} with size n,
where xi ∈ X denotes the key and yi ∈ Y refers to the value. X can be
segmented under error-bound(ε), meanwhile the set of segments is denoted as
R = {[x1, x2, x3, ..., xi], [xi+1, ..., xj], ..., [..., xn−1, xn]}. Here we define each seg-
ment as Si = aix + bi, and the size of the S is m. We denote the learned index
total performance by the throughput as Flearn. Meanwhile, the time of single
calculation and disk read is donated by Tcal and Tread respectively.

The average error-bound of a segment is the condition that determines the
performance of a segment, and we can find data within the error-bound range
regardless of the amount of data within the segment. We use a metric to evaluate
whether the data is learning-friendly as Flearn = g(D, ε, Tcal, Tread). For the
same data set, in the same working environment, only ε is variable. In fact,
ε becomes the only variable affecting the metric’s variation Flearn. Moreover,
ε is both a parameter of segmentation and a metric that affects performance.
We take a segment Si and establish a mathematical relationship between ε and
Flearn.

Figure 1 shows how the base index model finds the position of a key. As shown
in Fig. 1(left), if we need to find the key in a queue of keys from a linear model,
the base model needs a single computation and a width of error-bound binary
search. The upper model also requires a similar operation to the base models.
By the way, the minimum key of each base model is also its identifier. While
using the same ε to build the upper and base models, we get the computation
time for both the upper and base models T = Tcal + (Tcal + Tread) ∗ log2 ε.

Dual Model Index Structure 103

Fig. 1. The working process of a base model in the learned index.

For the same Ri, we use a linear segmentation model that exhibits the
performance Flearn = 1

(Tcal+(Tcal+Tread)∗log2 ε)∗2 . Similarly, for the model con-
structed using the dichotomous model, the theoretical performance is Ftree =

1
(Tcal+Tread)∗logm n , m refers to the number of branches of the B+tree node.

We assume here that the data segment-friendly value function is V (ε), and
based on the known conditions above, we can have the following conclusion.

V (ε) =
1

(Tcal + (Tcal + Tread) ∗ log2 ε) ∗ 2
− 1

(Tcal + Tread) ∗ logm n
(1)

We define the performance of segment establishment using traditional index
Ftree. Flearn denotes the performance of an upper model constructed using the
learned index. Ftree = FlearnSi

is used as the performance threshold at which
ε for that segment affects the change in FlearnSi

. Thus, if we evaluate a data
segment formed by Ftree < Flearn, we refer to this segment as learning-friendly
data, and while Ftree > FlearnSi

, we refer to this segment as non-learning-
friendly data. This threshold does not always exist due to the computational
power Tcal, the i/o power Tread, and the initial data set D.

Table 2. The evaluation criteria.

Range Define

Vt > 0 Learning-friendly

Vt = 0 Balance

Vt < 0 Non-learning-friendly

To give a numerical indication of how good the data friendliness is, we provide
evaluation criteria, as shown in Table 2.

We can define an equilibrium point Vt above the equilibrium point, i.e.
in the positive range, indicating that the data is learning-friendly. A negative
range indicates that the data is non-learning-friendly. t is the average number of

104 L. Liu et al.

lookups for the segment. t = 0 represents the optimal case for the learned index,
where only one calculation is needed to arrive at the location, a situation similar
to the hash index method. In what follows, we describe our rules for running
the model based on the above definitions. Based on the existing evaluation rules

(Equation.1 and Table 2), we can also deduce that n < m
(

2∗Tcal
Tcal+Tread

+log2 ε), which
means that in some segments we can get better performance without building a
learned index model.

4 Hybrid Index Structure

We describe the index model in two parts: index building and index operations.
Figure 2 shows the framework of the index. The segmented data is initially orga-
nized into two models: the base linear model for the learning-friendly segments
and the base tree model for the non-learning-friendly ones. The base linear model
incorporates a linear model, along with a minimum key for identification pur-
poses and a maximum error-bound to ensure boundary identification. In the
base conventional tree model, a b+tree structure is utilized to store the data,
and both the minimum and maximum keys are stored as identifiers. The base
tree model offers a free partition to support data insertion, which we refer to as
DMIS. Figure 2 demonstrates the process of data retrieval in the different base
models, which will be explained in detail in Sect. 4.2.

Fig. 2. The framework of the Dual-Model Index Structure (DMIS).

The part of model building is the process of building the index structure
from the bottom to up on data segmented according to learning-friendly and
non-learning-friendly data.

Dual Model Index Structure 105

Index operations are required for persistence in order to keep the model
effectively available. Update and rebuilding are the two main operations that
change the structure of the model therefore they need to be optimized.

4.1 Index Building

Algorithm 1: Control Methods
input : A data stream D of size n
output: Segments sorted by control methods

1 s ← 0;
2 for i ← 0 to n − 1 do
3 j ← i ;
4 while j < n do
5 if Methods(D [i, j]) is false then
6 if j − i > minV olume then
7 Segment [s] ←NewSegment(D [i, j − 1] , LearningFriendly);

8 else
9 if Segment [s − 1] is unLearningFriendly then

10 s ← s − 1;

11 i ← i − Segment [s] .size();
12 Segment[s] ←NewSegment(D [i, j − 1] , unLearningFriendly) ;

13 s ← s + 1;
14 i ← j;
15 break ;

16 j ← j + 1 ;

17 if j = n then
18 if n − i > minV olume then
19 Segment [s] ← NewSegment(D [i, j − 1] , LearningFriendly);
20 break ;

21 else
22 if Segment [s − 1] is unLearningFriendly then
23 s ← s − 1;

24 i ← i − Segment [s] .size();
25 Segment[s] ← NewSegment(D [i, n − 1] , unLearningFriendly);
26 break ;

27 foreach element e of the line i do Methods(e)

In order to build the DMIS, it is necessary to segment the data for the base
model. Here it is possible to obtain a theoretically optimal classification result
based on the analysis in the previous section. However, reproducing the algo-
rithmic process can be difficult and overly complex, which can negatively impact

106 L. Liu et al.

the index cycle. Therefore, to achieve our goal of labeling learning-friendly data
at this stage, we have filtered out some of the more complex algorithms and
instead focused on simpler approaches. In the experimental section, we discuss
five methods in detail.

At the end of the previous section, we mentioned that the amount of data
is the criterion for evaluating whether the segments are conducive to learning.
And the average error-bound constraint on data segments is also a criterion for
evaluating which algorithm is better.

We divided the data segments into two parts, learning-friendly and non-
learning-friendly data. After that, we will describe how to organize the segmented
data in the models. Algorithm 1 shows the classification methods’ work process.

Fig. 3. Data classification and base level models construction process.

Figure 3 shows how we built the base model through segmentation. We use
algorithms to segment all data and assign data volume, error, and linear model
slope to each segment. We confirm whether the segment is learning-friendly by
evaluating the segment model. For learning-friendly segments, we build linear
models and assign parameters directly to the model. For non-learning-friendly
segments, a tree model is established.

The upper model is constructed entirely using the linear model, following the
idea of Recursive-Model Indexes (RMI) [12]. We collect the minimum identifiers
from the base model as a new set of linear models, so that we can find the data
location from the root node by looking twice through the upper and base models.

4.2 Index Operation

When the model has been initialized it will be depicted as the structure as shown
in Fig. 3. If a lookup is carried out directly, we will get to the segment where the
data is based on the linear prediction of the upper layer, where the previously
designed identifier (the min key in the segment) is used. The lookup result of
the upper model is a base model. For the upper model, we use a sliding window

Dual Model Index Structure 107

Algorithm 2: Insert and Rebuild
input : A data x need to insert
output: A series of new base models

1 posP tr ← Search(x);
2 if posP tr is null then // Not exist and insert
3 baseModel ← SearchTreeBase(x) ;
4 if Capacity(baseModel)> treeCapacity then // Need to rebuild
5 minModelptr ← SearchBase(baseModel.minKey) ;
6 BuildBase(minModelptr, baseModel);

7 UpperRebuild(minModelptr, baseModel);

method to control the error. For the tree model results, we use the existing
lookup methods in tree models.

The model needs to support data updates during the runtime. We divide the
running process of the model into two stages: insertion and retraining.

To keep new insert data available for storage, we use an insert space to store
the data. When there is data to be inserted, we first visit the location where this
data is located, if it is in one of the base models, it means that this data already
exists in our model and it is illegal to continue inserting. If the accessed data is
not found, the model will be sequentially traversed to the next base tree model
node. Then, the node will be placed in the insert space of that model. Finally,
the minimum key stored in the model for this data will be updated based on
this new insert data.

For the lookup after insertion, the base model already has data stored, so we
need to ensure that all the data is looked up. Hence we use a similar strategy to
Xindex. In addition, we continue to look up the next tree model’s insert space if
the key is not found, so we store a pointer to the adjacent partition in the base
linear model to achieve a fast jump.

For the retraining, we always check the inserted data in the base tree model
after insertion. If the amount of data is larger than the original amount of data in
the model, the process of retraining will be triggered. We specify all models from
the minimum key should be the linear model to the current tree model as the set
of models to be retrained. We provide a space for this segment of the model to
temporarily support the newly inserted data while building this segment of data
following the process of building the base model. Once constructed, if the last
few segments are base linear models, we link them to the inserted partitions in
the next base conventional model. And we let the data in the temporary space
continue to complete the insertion operation. The whole process is summarized
in Algorithm 2.

108 L. Liu et al.

5 Evaluation

5.1 Setup

In the paper, we implement DMIS in C++. Experiments are conducted with a
single thread on a 2.1 GHz Intel Xeon Linux machine with 64 GB memory. We
compare DMIS against four baselines: Masstree [16], Xindex [20], Learned index
[12], and Finedex [14].

5.2 Datasets

Four datasets were used for the performance evaluation. The longitudes dataset
consists of uses from Open Street Maps [2] for locations around the world.
The longlat dataset consists of composite keys that combine longitude and
latitude from Open Street Maps by applying the transformation k = 180 ·
floor(longitude)+latitude to each pair of longitude and latitude, and the result-
ing key k distribution is highly non-learning-friendly. The log-normal dataset is
generated from a log-normal distribution with μ = 0 and σ = 2, multiplied by
1e9 and rounded down to the nearest integer. The YCSB dataset is composed
of user IDs generated according to the YCSB benchmark [3].

In Fig. 4, we plot the distribution of these four datasets using the Cumulative
Distribution Function(CDF).

Fig. 4. The CDF of datasets.

5.3 Design

We need to classify the data into two categories, and theoretically, all binary clas-
sification algorithms can be selected. Based on the practicality and applicability,
we have selected the following five algorithms.

Top-Down (TD) [10]. This algorithm segments at the maximum error-bound
position and tests whether the error-bound of the sub-segments is below the
threshold. The algorithm will continue to recursively segment until the error-
bounds of all segments are below this threshold.

Dual Model Index Structure 109

Sliding Windows (SW) [8]. The left point is set at the first data point, and
data is continuously added as the right point. If the error exceeds the threshold,
the sub-segments between the two points are converted into a segment.

Piecewise Aggregate Approximation (PAA) [13]. This approach divides
data into R segments and calculates the window length L by dividing the amount
of data by the number of keys. Starting from the first point of the sequence, the
first segment is formed by selecting the first L − 1 points.

Manhattan Distance Control (MDC). The segmentation of the data is
based on the Manhattan distance formula, with a criterion of |yi+1−yi|−|xi+1−
xi| > k. Here, xi and yi are the horizontal and vertical coordinates, respectively,
of the i-th data point, and k is a threshold that controls the granularity of
segmentation. If the formula is not satisfied, a new segment will be created.

Error-based Evaluation (EE) [17]. In this method, if the slope change of the
data point is greater than forty percent, it will perform a new segmentation for
the subsequent data points.

Table 3. Evaluation of classification algorithms.

Dataset Method Time(s) Error-Bound Total Segment Non-learning-friendly

longitudes-100M PAA 2.21789 29.4989 100000 0

SW 62.4487 10.1354 698051 3545

MDC 4.19642 1605.92 109157 2133

EE 2.37225 1.46325e+07 4 1

TD 17.6693 12.4312 234205 38521

lognormal-100M PAA 2.21218 87.1038 100000 0

SW 47.4864 10.3322 1022403 12243

MDC 5.51938 12.2923 1953937 5652

EE 3.6885 8.68162e+06 9 2

TD 19.3573 11.3213 471614 8735

We used the five attractive algorithms above to perform segmentation on two
representative datasets. We evaluated the time cost of the algorithms, as well as
the segment average error, and the number of segments.

As shown in Table 3, the PAA algorithm has a low time overhead, but its clas-
sification results are heavily dependent on the dataset. Furthermore, the infor-
mation provided by the algorithm varies significantly across different datasets.
Additionally, this algorithm does not allow for defining a precise segment size
in advance. Therefore, it is not suitable for our classification needs. The SW
algorithm has good classification results but it is difficult to accept because of
its long running time and high complexity, especially on the second dataset due
to the complexity of the dataset itself, resulting in a large number of segments.
MDC is also not considered for the time being due to its unstable performance.

110 L. Liu et al.

Fig. 5. Throughput evaluation under different workloads.

Because the EE algorithm is too simple, the classification result is poor. The
TD algorithm shows stable results on different datasets while producing fewer
segments. Based on the evaluation, we can get that the TD algorithm is the
optimal algorithm to use as a learning-friendly data classification.

5.4 Result

As shown in Fig. 5, the dual-structure model can effectively improve the effi-
ciency of the learned index. At the same time, DMIS shows relatively balanced
performance on different datasets. Among them, the performance on the Read-
heavy workloads is lower than other learned models. After insertion, in order to
ensure the position of the key, the dual structure mode design is adopted, which
reduces some performance. But in other workloads, the dual-model structure
effectively improves the performance of the learned models, while ensuring that
all index structures have more suitable model combinations, thereby improving
the overall performance. Our structure also shows high performance under static
workloads and stable efficiency under heavy insertion workloads.

Because our model is simple and efficient enough, it also has a significant
advantage in construction time over complex structures, as shown in Table 4. To
build a linear model faster, we use the method of linear interpolation. Since we

Dual Model Index Structure 111

Table 4. Evaluation of index build time.

Index Methods DMIS Masstree Finedex Xindex

Build time(s) 27.12 32.41 39.76 60.33

limit the margin of error when segmenting, we ensure that the entire model is
valid.

We perform statistics on the average error-bound of the learned models built
on the longitude dataset. The training samples are the first 100 million pieces
of data. In Fig. 6, results show that the classification algorithm we introduced
leads to a significant reduction in the error-bound of the model, resulting in a
significant increase in search efficiency. It is proved that TD is a useful tool for
reducing model error-bound and improving index performance.

Fig. 6. Error-bounds under different sizes of segments.

6 Conclusion

We propose a novel index structure, namely DMIS, which combines traditional
and learned indexes for efficient query processing with high accuracy and low
error rates. To mitigate the performance degradation of learned indexes due to
changes in data distribution or query patterns, we introduce a small-scale retrain-
ing mechanism for DMIS. Our experimental results demonstrate our proposal

112 L. Liu et al.

improves the efficiency and scalability of index structures in database systems.
The retraining process ensures DMIS maintains long-term efficiency, resulting in
efficient query processing with high accuracy and low error rates.

References

1. Alexiou, K., Kossmann, D., Larson, P.Å.: Adaptive range filters for cold data:
avoiding trips to Siberia. Proc. VLDB Endow. 6(14), 1714–1725 (2013)

2. Bennett, J.: OpenStreetMap. Packt Publishing Ltd. (2010)
3. Cooper, B.F., et al.: Benchmarking cloud serving systems with YCSB. In: Pro-

ceedings of the 1st ACM Symposium on Cloud Computing, pp. 143–154 (2010)
4. Ding, J., et al.: ALEX: an updatable adaptive learned index. In: Proceedings of

the 2020 International Conference on Management of Data, SIGMOD Conference
2020, Online Conference, Portland, OR, USA, 14–19 June 2020, pp. 969–984. ACM
(2020). https://doi.org/10.1145/3318464.3389711

5. Fan, B., et al.: Cuckoo filter: practically better than bloom. In: Proceedings of the
10th ACM International on Conference on Emerging Networking Experiments and
Technologies, pp. 75–88 (2014)

6. Ferragina, P., Vinciguerra, G.: The PGM-index: a fully-dynamic compressed
learned index with provable worst-case bounds. Proc. VLDB Endow. 13(8), 1162–
1175 (2020). https://doi.org/10.14778/3389133.3389135, https://www.vldb.org/
pvldb/vol13/p1162-ferragina.pdf

7. Galakatos, A., et al.: Fiting-tree: a data-aware index structure. In: Proceedings of
the 2019 International Conference on Management of Data, pp. 1189–1206 (2019)

8. Graefe, G.: Query evaluation techniques for large databases. ACM Comput. Surv.
25(2), 73–169 (1993). https://doi.org/10.1145/152610.152611. ISSN 0360-0300

9. Graefe, G., Larson, P.-A.: B-tree indexes and CPU caches. In: Proceedings 17th
International Conference on Data Engineering, pp. 349–358. IEEE (2001)

10. Gray, J., et al.: Data cube: a relational aggregation operator generalizing group-
by, cross-tab, and sub-totals. In: Proceedings of the Twelfth International Con-
ference on Data Engineering, pp. 152–159 (1996). https://doi.org/10.1109/ICDE.
1996.492099

11. Hadian, A., Heinis, T.: Interpolation-friendly B-trees: bridging the gap between
algorithmic and learned indexes. In: Advances in Database Technology - 22nd
International Conference on Extending Database Technology, EDBT 2019, Lisbon,
Portugal, 26–29 March 2019, pp. 710–713. OpenProceedings.org (2019). https://
doi.org/10.5441/002/edbt.2019.93

12. Kraska, T., et al.: The case for learned index structures. In: Proceedings of the
2018 international conference on management of data, pp. 489–504 (2018)

13. Lambert, D., Pinheiro, J.C.: Mining a stream of transactions for customer pat-
terns. In: Proceedings of the Seventh ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD 2001, New York, NY, USA, pp.
305–310. Association for Computing Machinery (2001). https://doi.org/10.1145/
502512.502556. ISBN 158113391X

14. Li, P., et al.: FINEdex: a fine-grained learned index scheme for scalable and con-
current memory systems. Proc. VLDB Endow. 15(2), 321–334 (2021). https://doi.
org/10.14778/3489496.3489512, https://www.vldb.org/pvldb/vol15/p321-hua.pdf

15. Llaveshi, A., et al.: Accelerating B+ tree search by using simple machine learning
techniques. In: Proceedings of the 1st International Workshop on Applied AI for
Database Systems and Applications (2019)

https://doi.org/10.1145/3318464.3389711
https://doi.org/10.14778/3389133.3389135
https://www.vldb.org/pvldb/vol13/p1162-ferragina.pdf
https://www.vldb.org/pvldb/vol13/p1162-ferragina.pdf
https://doi.org/10.1145/152610.152611
https://doi.org/10.1109/ICDE.1996.492099
https://doi.org/10.1109/ICDE.1996.492099
https://doi.org/10.5441/002/edbt.2019.93
https://doi.org/10.5441/002/edbt.2019.93
https://doi.org/10.1145/502512.502556
https://doi.org/10.1145/502512.502556
https://doi.org/10.14778/3489496.3489512
https://doi.org/10.14778/3489496.3489512
https://www.vldb.org/pvldb/vol15/p321-hua.pdf

Dual Model Index Structure 113

16. Mao, Y., Kohler, E., Morris, R.T.: Cache craftiness for fast multicore key-value
storage. In: Proceedings of the 7th ACM European Conference on Computer Sys-
tems, pp. 183–196 (2012)

17. Qu, W., Wang, X., Li, J., Li, X.: Hybrid indexes by exploring traditional B-tree
and linear regression. In: Ni, W., Wang, X., Song, W., Li, Y. (eds.) WISA 2019.
LNCS, vol. 11817, pp. 601–613. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-30952-7 61

18. Richter, S., Alvarez, V., Dittrich, J.: A seven-dimensional analysis of hashing meth-
ods and its implications on query processing. PVLDB 9(3), 96–107 (2015)

19. Schraudolph, N.: Accelerated gradient descent by factor-centering decomposition.
Technical report/IDSIA, 98 (1998)

20. Tang, C., et al.: XIndex: a scalable learned index for multicore data storage. In:
Proceedings of the 25th ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming, pp. 308–320 (2020)

21. Wu, J., et al.: Updatable learned index with precise positions. arXiv preprint
arXiv:2104.05520 (2021)

https://doi.org/10.1007/978-3-030-30952-7_61
https://doi.org/10.1007/978-3-030-30952-7_61
http://arxiv.org/abs/2104.05520

Streaming Data Analytics for Feature
Importance Measures in Concept Drift

Detection and Adaptation

Ali Alizadeh Mansouri(B) , Abbas Javadtalab , and Nematollaah Shiri

Department of Computer Science and Software Engineering, Concordia University,
Montreal, Canada

{aa.mansouri,abbas.javadtalab,nemat.shiri}@concordia.ca

Abstract. Numerous applications require the ability to detect and
adapt to concept drifts in streaming data on the fly. This is challenged
by limited computational resources and access to archival storage. In
this paper, we study features that capture the evolving relationship
between raw data features and target labels, and techniques to extract
those features. In particular, we focus on the relationship between fea-
ture importance measures in streaming data and predictability perfor-
mance of the main classifier. For this, we consider two groups of feature
importance measures: impurity-based and permutation-based, both of
which are computed over an auxiliary online gradient boosted decision
trees ensemble that runs in parallel to the main classifier in processing
the same data stream. We found strong evidence that feature impor-
tance measures follow the long-term trend of the performance metrics
even if the data streams are non-stationary or deviate from the per-
formance metrics in short-term. Our study also shows that classifica-
tion models that process data with constant or monotonic rate of drift,
are robust in terms of stationary nature of feature importance measures
and learner’s predictability performance. Moreover, we found evidence
for more consistency and reliability of permutation feature importance
measurements over impurity-based ones if data exhibits periodic or non-
monotonic rates of drift, or if this knowledge is not known a priori. Our
study and results indicate that the feature importance measures con-
sidered are viable sources of information for concept drift detection and
adaptation problems. This has been established through a solution to
these problems we developed based on vector error-correction analysis.

Keywords: Concept drift detection · Data stream analysis · Vector
error-correction

1 Introduction

With continuous advances in computing technologies, mining techniques are
gaining increased popularity for discovering hidden patterns in unbounded data

This work was partially supported by Concordia University.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C. Strauss et al. (Eds.): DEXA 2023, LNCS 14146, pp. 114–128, 2023.
https://doi.org/10.1007/978-3-031-39847-6_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-39847-6_8&domain=pdf
http://orcid.org/0009-0006-3630-3021
http://orcid.org/0000-0001-7626-553X
https://doi.org/10.1007/978-3-031-39847-6_8

Feature Importance Measures in Concept Drift Detection and Adaptation 115

arriving at fast speeds for extended periods of time. Emerging streaming data
analytics must detect pattern changes in the distribution of one or more vari-
ables that may affect applications’ performance and adapt accordingly when
such changes occur. This is referred to as concept drift [13,22], which may result
in deterioration of the learner’s inference or prediction performance. Examples of
real-life applications showing this behavior include healthcare, industrial sensor
grids [30], environmental [7], smart cities and homes, [24], network infrastructure
monitoring [27], business, e-commerce and insurance [1], and finance [15].

A major challenge in tackling the concept drift detection (cdd) problem is
selection and analysis of the available detection information. There have chrono-
logically been three major categories of techniques based on the kind of infor-
mation used for cdd tasks. Early data feature change detection methods, such
as [8], analyzed only independent features in raw data disregarding target labels
y. These techniques are simple and light-weight to perform but are likely to
overlook the association between the predictor X and response y variables. Next
generation of cdd solutions, such as [25], have relied on the learner’s predictabil-
ity performance evaluation and feedback. They are more accurate than the raw
data-only detectors, but still do not consider possible correlations between the
features and response variables. Both of these categories of techniques suffer
from using the same learner for the main classification and the cdd tasks. This
potentially limits their effectiveness because the learner that gets adapted to
cdd might perform poorly on its main classification task, and vice versa.

More recent cdd techniques use auxiliary models that run in parallel to
the learner. These models have the advantages of being light-weight, decoupled,
designed for the cdd task, and satisfy the stream processing requirements. Fur-
thermore, they can analyze the evolving correlation of features and target labels
more prominently than previous techniques. For example, Yang et al. [34] use
an online sequential extreme learning machine (elm) model [21] for cdd. In [2],
we proposed Ensemble Learning Augmented Drift Detection (enlaudd), which
employs an ensemble of a collection of simple (cheap) classifiers to model concept
as a one-dimensional aggregation of changes in base classifiers. As noted in [31],
these techniques suffer from a major shortcoming of elm models, namely hav-
ing high variance in each elm model whose hidden layer does not reveal much
information beneficial to the cdd tasks.

To alleviate the situation, we raise the following two questions:

1. What would be a slightly more expensive but yet affordable model than
elm to decrease the variance?

2. Would such a model provide better detection information beneficial to concept
drift detection and adaptation?

The first question addresses data stream processing application’s require-
ments. For this, we consider gradient boosted decision trees (gbdt) as suitable
substituting models [11] than elm to lower the bias and achieve higher accuracy.

The second question is concerned about effectiveness of a viable solution to
the concept drift detection and adaptation (cdda) problem, for which we con-

116 A. Alizadeh Mansouri et al.

sider feature importance measures (fims). Considering an ensemble of classifica-
tion or regression trees trained on a stationary dataset, distribution of features
whose scores are calculated and selected as split nodes do not change over time.
However, few studies in the literature as well as our preliminary investigations
showed that the importance of features evolves over time as data undergoes
cd. Study of fims has been a subject of interest in offline machine learning,
but not investigated thoroughly in data stream processing applications, partic-
ularly those undergoing cd. Therefore, these fims are a worthwhile source of
information to learn, detect, or even predict cd in streaming data. Breiman
[4,5] formalized impurity-based feature importance measurements for random
forests. Impurity-based importance measurements are prone to high variance
as they are calculated on training data only, and miscalculate on continuous
and high-cardinality features. As a model-agnostic and more robust alternative,
we also consider permutation feature importance measurements. Permutation
importance measurement is the decrease in a model’s performance when a single
feature value is randomly shuffled [4].

Wang et al. [32] demonstrated the effectiveness of gbdt for concept drift
adaptation (cda). Barddal et al. [3] performed feature selection by training an
Ada boosting ensemble of Hoeffding (online) tree stumps, but its performance
can suffer from high bias. Cassidy and Deviney [6] concluded two online feature
scoring metrics they applied to an ensemble of online random forests follow
virtual cd. Gomes et al. [14] study cdd using two impurity-based feature scores
from an incremental random forest and an ensemble of Hoeffding adaptive trees.
However, both measures suffer due to the limitations of impurity-based scoring
technique [33].

In this paper, we consider the constraints and requirements of data stream
processing applications and study the relationship between fims analyzed from
streaming data that exhibit different characteristics of cd and the predictability
performance metric of the main classifier. The two groups of fims—impurity-
based importance measurements and permutation importance measurements—
are computed over an auxiliary gbdt ensemble model that runs in parallel to
the main classifier but processes and analyzes the same streaming data. As such,
the two models used are decoupled: the main classifier, whose remodeling can
be potentially costly, has the task of processing streaming data with the goal of
prediction on test instances. The auxiliary gbdt ensemble model is assigned the
task of processing the same streaming data with the goal of cdd and possibly
adaptation of the main classifier to changes in data. We specifically study the
correlation of detection information, i.e., the two types of fims extracted from the
auxiliary gbdt ensemble, with the performance of the main classifier. Therefore,
no detection or adaptation are performed so that changes in fims and the main
classifier in the face of cd can be monitored and analyzed with no intervention.

The main outcome of this study is providing evidence for strong correlation
between fims computed from a decoupled, cost-effective model with the perfor-
mance of a more accurate but costly model over time which acknowledges data

Feature Importance Measures in Concept Drift Detection and Adaptation 117

Fig. 1. Architecture of dsms, the proposed data stream processing, to study the rela-
tionship of the main classifier’s performance metrics with feature importance measures
computed from a gbdt used as an auxiliary model.

stream processing requirements and encounters different types and rates of cd.
Establishing the aforementioned correlation further provides:

– strong evidence to employ fims as a viable source of detection information for
cdda applications, that is, detection of and adaptation to changes reactively,

– better understanding of the behavior of cd in the underlying streaming data
and processes, and,

– a way to investigate prediction of cd, that is, detection of and adaptation to
changes proactively.

The rest of this paper is organized as follows. Technical background and
the proposed methodology and statistical analysis are provided in Sect. 2. In
Sect. 3, we present the results of our numerous experiments, results, followed by
observations and findings of the aforementioned statistical analysis. The final
section includes concluding remarks and directions for future work.

2 Methodology

We propose the following methodology to study the relationship between the
main classifier’s performance and the fims.

2.1 Variables

cd is defined as a change in the joint probability distribution of the dependent
variable y and feature vector x between two points in time, as expressed in Eq.
1 [13,19,22].

pti+1(yj ,x) �= pti(yj ,x) (1)

We deploy a data stream management system (dsms) where batches of streaming
data that might exhibiting cd, denoted as Bt = {< Xt

N×D, yt
N >}, for t ≥ 1,

are provided as test data to the initially trained main classifier and gbdt model
simultaneously, where D is the dimensionality of feature vector x ∈ X. The two
models are decoupled and do not interact with each other throughout the run of
the streams. Figure 1 presents the architecture of our proposed solution dsms for
data stream processing.

118 A. Alizadeh Mansouri et al.

The accuracy and F1 scores of the main classifier at each time step t are
collected as predictability performance metrics, and eventually modeled as two
univariate time series At and Bt, respectively. We compute and model impurity-
based feature importance measurements as Gd,t and permutation importance
measurements Hd,t for each dimension d ∈ D as univariate time series models.
We represent impurity-based importance measurements of feature vector x as a
multivariate time series Gt = {Gd,t}, for 1 ≤ d ≤ D. Likewise, we denote permu-
tation importance measurements as a multivariate time series Ht = {Hd,t}, for
1 ≤ d ≤ D. Lastly, we form four multivariate time series models out of the two
importance measurements types and the two predictability performance metrics,
as denoted in Eq. 2.

Pt = {Gt,At}
Qt = {Gt,Bt}

Rt = {Ht,At}
St = {Ht,Bt}

(2)

2.2 Hypotheses

Based on the research questions presented in Sect. 1, we hypothesize that there
exists meaningful relationship between fims computed from an auxiliary model
and a main classifier’s predictability performance as it deteriorates while under-
going cd. Specifically, we consider the following:

– an online, incremental gbdt as the auxiliary model
– a main classification model that is at least as costly as the auxiliary model in

terms of computational resources and data stream processing requirements,
– an impurity-based feature importance measurement Gd, which is the (nor-

malized) total least squares improvement contributed by xd, as introduced in
[11]

– a permutation-based feature importance measurement Hd, which is the
change in misclassification after noising feature xd of test samples by ran-
dom permutation [4,5]

– the main classifier’s accuracy and F1 score as the predictability performance
metrics, denoted as At and Bt, respectively.

The null and alternative hypotheses for each type of fims and prediction
performance metrics are stated in null hypotheses 1.–4. and hypotheses 1.–4..

Null Hypothesis (H0) 1. There is no relationship between impurity-based
importance measurements computed on an online, incremental gbdt model and
the main classifier’s accuracy over time while each model analyzes streaming
data exhibiting cd separately.

Hypothesis (H1) 1. There exists statistically significant relationship between
impurity-based importance measurements computed on an online, incremental
gbdt model and the main classifier’s accuracy over time while each model ana-
lyzes streaming data exhibiting cd separately.

Feature Importance Measures in Concept Drift Detection and Adaptation 119

Null Hypothesis (H0) 2. There is no relationship between permutation impor-
tance measurements computed an on online, incremental gbdt model and the
main classifier’s accuracy over time while each model analyzes streaming data
exhibiting cd separately.

Hypothesis (H1) 2. There exists statistically significant relationship between
permutation importance measurements computed on an online, incremental
gbdtmodel and the main classifier’s accuracy over time while each model ana-
lyzes streaming data exhibiting cd separately.

Null Hypothesis (H0) 3. There is no relationship between impurity-based
importance measurements computed on an online, incremental gbdt model and
the main classifier’s F1 score over time while each model analyzes streaming data
exhibiting cd separately.

Hypothesis (H1) 3. There exists statistically significant relationship between
impurity-based importance measurements computed on an online, incremental
gbdt model and the main classifier’s F1 score over time while each model ana-
lyzes streaming data exhibiting cd separately.

Null Hypothesis (H0) 4. There is no relationship between permutation impor-
tance measurements computed an on online, incremental gbdt model and the
main classifier’s F1 score over time while each model analyzes streaming data
exhibiting cd separately.

Hypothesis (H1) 4. There exists statistically significant relationship between
permutation importance measurements computed on an online, incremental
gbdtmodel and the main classifier’s F1 score over time while each model ana-
lyzes streaming data exhibiting cd separately.

2.3 Statistical Methods

The goal of this study in particular is to find out if the main classifier’s pre-
dictability performance metrics as time series models share a common long-term
stochastic drift with fims computed from a gbdt used as an auxiliary model
as individual time series models constructed over the course of the stream. To
this end, we have adopted multivariable regression analysis as the main statisti-
cal method in econometrics to establish relationships among the aforementioned
time series models. The motivation for this choice follows.

Standard correlation statistics such as Pearson correlation coefficient (r),
rank correlation coefficients such as Spearman’s ρ and Kendall’s τ , and Granger
causality test can mislead to spurious relationships when data is non-stationary
[17,23]. Moreover, if long-term information of the shared stochastic drift between
studied variables (fims and performance metrics) appears in the levels of
data, standard statistical practices such as vector autoregression (var) analysis
become invalid as the common long-term information gets lost when differenced
[26]. Engle and Granger [10] proposed to consider the presence of cointegration
when testing for relationships between time series variables that are integrated of

120 A. Alizadeh Mansouri et al.

Fig. 2. Steps of the proposed multivariable regression analysis.

at least order one I(1), which means non-stationary time series variables must
be differenced at least once to become stationary. If two or more time series
variables share a common stochastic trend and a linear combination of them is
a stationary time series or one with a lower common order of integration, they
are considered cointegrated. The cointegrating relationships among the variables
can thus be modeled as a vector error-correction (vec) model.

Since we deal with streaming data that exhibits cd, it is likely that any
time series information produced by analyzing non-stationary streaming data is
non-stationary per se as well. Therefore, we study the cointegration of the time
series variables described earlier to avoid incorrect acceptance of spurious results.
We adopt the Johansen method [18] for our study because it allows for multiple
simultaneously cointegrating variables, requires no pretesting, and provides error
correction features on the resulting vec model.

3 Experiments, Results, and Analyses

3.1 Experimental Setup

The steps of our procedure for multivariable regression analysis are illustrated in
Fig. 2. We perform this procedure on the four time series models of Eq. 2, using
data gathered by running streams of all datasets in Sect. 3.2 with no cdd tech-
nique applied in order to analyze the behavior of the main classifier in the face
of cd in the long run.

We start by testing each univariate time series model in Pt, Qt, Rt, and St

for stationarity using Augmented Dickey–Fuller (adf) tests. The null hypothesis
of the adf test is non-stationarity, and the alternative hypothesis is stationarity.

If we can reject the null, we can determine that all univariate variables in
each of the multivariate series are stationary. This in turn enables us to form
a var in levels from the fims and the performance metric of that multivariate
time series model.

Otherwise, we use the Johansen method [18] to test if all univariate variables
in each of the multivariate series are conintegrated. If the tests determine that the
impact matrix C of the resulting vec model has any rank r > 0, we conclude that
there is statistically significant cointegration between fims of that multivariate

Feature Importance Measures in Concept Drift Detection and Adaptation 121

series and the predictability metric with at least one cointegrating relation (a
stationary linear combination) between them. However, if the tests determine
that the impact matrix C of the resulting vec model has rank r = 0, the error-
correction term disappears, and we can form a var in differences out of the
fims and the performance metric of that multivariate time series model.

3.2 Datasets

In our experiments, We used several synthetic and real-world datasets for a more
thorough analysis and understanding of the relationship between fims and the
main classifier’s long-time performance using data with different characteristics.
We have conducted experiments on the following synthetic datasets:

– Rotating Checkerboard (RCB) [20]. We have used the parameters in [9], and
considered four rates of cd as constant (rcb-c), pulse (rcb-p), exponential
(rcb-e), and sinusoidal (rcb-s) each with a batch size of 400 instances for a
total of 1024 batches.

– Streaming Ensemble Algorithm (SEA) [28]. It has three continuous features,
two of which affect the decision boundary while the third one is noise. We used
the threshold values of θ considered in [9,28] for sea1 and sea2, and used
θ = 8.0, 9.0, 7.5, 9.0 for sea3. This threshold changes three times suddenly
throughout the dataset, resulting in three abrupt drifts. Each dataset consists
of 200 batches of streams of size 250 instances each.

We also performed regression analysis on the following two real-world datasets,
both of which exhibit gradual periodic drifts.

– Bellevue noaa weather dataset [29]. This dataset consists of eight features as
daily weather measurements, and two classes (“rain” and “no rain”). It has 605
batches, each batch containing 30 instances, with the first 36 batches used
for training.

– Electricity dataset (elec) [12,16]. This dataset consists of five features affect-
ing the change of electricity price and two classes (“up” and “down”). It con-
tains a total of 944 batches with a batch size of 48 with the first 56 batches
used for training.

3.3 Experimental Results

The results of the adf tests are displayed in Table 1. The feature importance is
extracted and tested for staionarity for each feature of synthetic and real-world
datasets. Since importance measurements series Gt and Ht are multivariate, we
rejected the null of adf test for these series only if it could be rejected for all
individual importance measurements series comprising Gt or Ht. The highest
significance level this could be achieved is noted in Table 1. Overall, the adf sta-
tionarity test results indicate the necessity to test for cointegration of multivari-
ate series Pt, Qt, Rt, and St on the next step except for the rcb-c dataset. We

122 A. Alizadeh Mansouri et al.

Table 1. adf stationarity test results.

Dataset Series adf Test Result Significance Conclusion

RCB-C At Stationary (I(0)) 99% Standard stationary var

Bt Stationary (I(0)) 99% Standard stationary var

Gt Stationary (I(0)) 95%
Ht Stationary (I(0)) 99%

RCB-P At Nonstationary – Test for cointegration
Bt Nonstationary – Test for cointegration
Gt Nonstationary –
Ht Stationary (I(0)) 95%

RCB-E At Stationary (I(0)) 99% Test for cointegration
Bt Stationary (I(0)) 99% Test for cointegration
Gt Stationary (I(0)) 95%
Ht Inconclusive –

RCB-S At Nonstationary – Test for cointegration
Bt Nonstationary – Test for cointegration
Gt Nonstationary –
Ht Stationary (I(0)) 99%

NOAA At Stationary (I(0)) 99% Test for cointegration
Bt Stationary (I(0)) 99% Test for cointegration
Gt Inconclusive –
Ht Stationary (I(0)) 90%

ELEC At Stationary (I(0)) 95% Test for cointegration
Bt Nonstationary – Test for cointegration
Gt Nonstationary –
Ht Inconclusive –

SEA-1 At Nonstationary – Test for cointegration
Bt Nonstationary – Test for cointegration
Gt Nonstationary –
Ht Inconclusive –

SEA-2 At Nonstationary – Test for cointegration
Bt Nonstationary – Test for cointegration
Gt Nonstationary –
Ht Inconclusive –

SEA-3 At Nonstationary – Test for cointegration
Bt Nonstationary – Test for cointegration
Gt Nonstationary –
Ht Inconclusive –

Feature Importance Measures in Concept Drift Detection and Adaptation 123

Table 2. The Johansen method test results for cointegration of feature importances
with accuracy. eig and trc refer to the eigenvalue statistic and trace statistic in the
test, respectively.

Dataset Series eig Sig. lvl. trc Sig. lvl. Conclusion

RCB-C Pt r(3)—full rank 99% r(3)—full rank 99% vec

Qt r(3)—full rank 99% r(3)—full rank 99% vec

RCB-P Pt r(1) 99% r(1) 99% vec

Qt r(3)—full rank 99% r(3)—full rank 99% vec

RCB-E Pt r(3)—full rank 99% r(3)—full rank 99% vec

Qt r(3)—full rank 99% r(3)—full rank 99% vec

RCB-S Pt r(1) 99% r(1) 99% vec

Qt r(3)—full rank 99% r(3)—full rank 99% vec

NOAA Pt r(2) 99% r(4) 99% vec

Qt r(9)—full rank 99% r(9)—full rank 99% vec

ELEC Pt r(3) 99% r(2) 99% vec

Qt r(7) 99% r(7) 99% vec

SEA-1 Pt r(0) – r(0) – var in diff
Qt r(2) 99% r(3) 99% vec

SEA-2 Pt r(1) 99% r(1) 90% vec

Qt r(4)—full rank 99% r(4)—full rank 99% vec

SEA-3 Pt r(0) – r(0) – var in diff
Qt r(2) 99% r(3) 99% vec

nonetheless tested this dataset’s series alongside the others in order to verify the
stationarity test results. Tables 2 and 3 demonstrate the results of the Johansen
method to test for cointegration of impurity-based and permutation importance
measurements with accuracy (Pt and Qt) and F1 score (Rt and St), respectively.

Gradual vs. Abrupt Drifts. As it can be seen in Table 1, among datasets
with gradual drifts (rcb-c, rcb-p, rcb-e, rcb-s, noaa, elec), we can accept
the alternative hypothesis of stationarity of all importance measurements and
predictability performance series tested on the rcb-c dataset. The reason seems
to be constant drift rate in this dataset. Therefore, Pt, Qt, Rt, and St can be
modeled using a standard stationary var or var in levels. However, this would
not be the case for the other rcb dataset variants where the drift rate is non-
constant.

On datasets with abrupt drifts (sea variants, for example), performance met-
rics were unanimously nonstationary, and impurity-based importance measure-
ments were stationary. Yet, permutation importance measurements were station-
ary only for a subset of features. It appears that the reason lies in the fact that
every abrupt change in these datasets is permanent until the next drift, hence
resulting in a lasting deviation from the long-term trend.

124 A. Alizadeh Mansouri et al.

Table 3. The Johansen method test results for cointegration of feature importances
with F1 score. eig and trc refer to the eigenvalue statistic and trace statistic in the
test, respectively.

Dataset Series eig Sig. lvl. trc Sig. lvl. Conclusion

RCB-C Rt r(3)—full rank 99% r(3)—full rank 99% vec

St r(3)—full rank 99% r(3)—full rank 99% vec

RCB-P Rt r(1) 99% r(1) 99% vec

St r(3)—full rank 99% r(3)—full rank 99% vec

RCB-E Rt r(1) 99% r(1) 99% vec

St r(3)—full rank 99% r(3)—full rank 99% vec

RCB-S Rt r(1) 99% r(1) 99% vec

St r(3)—full rank 99% r(3)—full rank 99% vec

NOAA Rt r(2) 99% r(4) 99% vec

St r(9)—full rank 99% r(9)—full rank 99% vec

ELEC Rt r(3) 99% r(2) 99% vec

St r(7) 99% r(7) 99% vec

SEA-1 Rt r(1) 99% r(1) 99% vec

St r(2) 99% r(2) 99% vec

SEA-2 Rt r(1) 99% r(0) – vec or var in diff
St r(4)—full rank 99% r(4)—full rank 99% vec

SEA-3 Rt r(1) 99% r(1) 99% vec

St r(3) 99% r(3) 99% vec

The conintegration results shown in Tables 2 and 3 show that in all datasets
exhibiting gradual drift, the cointegration rank of the impact matrix C based on
both eigenvalue and trace statistic is r > 0. The impact matrix C consolidates
the long-term dynamics of each multivariate series: deviation from the stationary
mean as error and adjustment speeds to correct or revert to the stationary mean
over time. That means, there is highly significant evidence that there exists at
least one cointegrating relation between any type of fims analyzed from the
simpler gbdt auxiliary model and both predictability performance metrics of
the main classifier in the face of cd.

Concerning our hypotheses stated in Sect. 2.2, we reject hypotheses 1.–4.,
and accept the alternative hypotheses 1.–4. with significant evidence provided
by the results on datasets that exhibit gradual drifts.

It can be concluded that these fims follow the long-term trend of the perfor-
mance metrics even if any of these series are non-stationary. Moreover, even if
the fims deviate from the performance metrics in short-term (error), they revert
(correct) to the long-term mean of the multivariate series.

The conintegration results shown in Tables 2 and 3 are consistent with the
stationarity results of Table 1 on abrupt drift datasets. On these datasets, we can
only reject hypotheses 2. and 4. and accept alternative hypotheses 2. and 4. for
permutation importance measurements. We fail to reject hypotheses 1. and 3.

Feature Importance Measures in Concept Drift Detection and Adaptation 125

on abrupt drift datasets. Since the abrupt changes are sudden and persisting,
we expect that the changes in importance measurements of features, except the
third noise feature on sea datasets, also persist for a longer time. That results
in fewer cointegrating relations between fims and performance metrics. Indeed,
in series with impurity-based importance measurements, that is Pt and Rt, the
experimental results confirm this expectation by showing hardly any meaningful
relationship between these importances with either accuracy or F1 score.

Stable vs. Unstable Drift Rates. The rate of drift in rcb-c and rcb-e is con-
stant and monotonic, respectively. All multivariate series are stationary in these
two datasets, except for permutation importance measurements (Ht) on rcb-e.
This is further supported by cointegration results where the impact matrix C
is full rank based on both eigenvalue and trace statistic for both importance
measurements types and accuracy.

On the other hand, the rate of drift is non-monotonic and periodic in rcb-
p and rcb-s, respectively. The stationarity test results show that all series tested
are non-stationary except permutation importance measurements. Conintegra-
tion tests results support this observation where C is restricted to reduced rank
for impurity-based multivariate series Pt and Rt.

Out of the two real-world datasets noaa and elec, noaa has a more consis-
tent periodic behavior, that is, close to constant drift rate, and does not deviate
drastically from its mean in long-term; therefore, it is not surprising that the
stationarity of its performance metrics accuracy (At) and F1 score (Bt) are signif-
icant. Non-stationarity of this dataset’s importance measurements is either failed
to be rejected, or is inconclusive. That means while there is significant evidence
for non-stationarity of some importance measurements, tests were insignificant
for the others. The elec dataset, however, experiences a drastic change where
data for two features become available part-way through the stream. The accu-
racy of the classifier in the face of these changes and possibly other phenomenon
inducing cd is less significantly stationary, and its F1 score is non-stationary.
Similar to noaa, importance measurements computed on elec are either non-
stationary or inconclusive.

Our cointegration results are also consistent here, as for noaa most series
tested are stationary with a significance level of 95%, whereas for elec only
accuracy is stationary with a significance of 95%. Moreover, cointegration tests
found more stationary linear combinations between fims and performance met-
rics for noaa than elec, implying fims follow the long-term stochastic trend of
performance metrics accuracy and F1 score more stably.

We can conclude that given data with constant or monotonic rate of drift,
classification models perform more stably in the long run in terms of station-
arity of both feature importance measurements analyzed from data, and their
predictability performance. In contrast, when provided with data exhibiting non-
monotonic or periodic rate of drift, both importance measurements and the pre-
dictability performance of classification models in long-term become nonstation-
ary and unstable in levels.

126 A. Alizadeh Mansouri et al.

Impurity-Based vs. Permutation Feature Importance Measurements.
We observe that the conintegration results indicate that permutation impor-
tance measurements are more stable in terms of following long-term trends of
performance metrics because the impact matrix C based on both eigenvalue and
trace statistic is full rank on all datasets with gradual drift except for elec. This
means we can form a stationary var in levels with an additional lag out of the
vec model and its error-correction term. Even for elec, permutation importance
measurements had a higher rank, that is, a larger number of cointegrating rela-
tions with the performance metrics. Impurity-based importance measurements
achieved this full rank of cointegrating relations on more stable datasets with
constant or monotonic rates of drift.

Impurity-based importance measurements have the advantage of being com-
puted as part of the auxiliary model construction; therefore, they are computa-
tionally less costly than permutation importance measurements. The former is
also more insightful as it abstracts impurity of predictor and response variables
according to some criterion. In our experiments, impurity-based importance mea-
surements had also much less short-term variance than permutation importance
measurements.

We can conclude that impurity-based importance measurements are a viable
source of detection information on datasets with constant or monotonic rates
of drift with the advantage of less computational overhead, more insight on the
behavior of data, and less micro-variation. The test results provide evidence
for more consistency and reliability of permutation importance measurements
over impurity-based importance measurements if data exhibits periodic or non-
monotonic rates of drift, or if this prior information about data is unknown.

4 Conclusion and Future Work

In this work, we studied the relationship between two types of fims as detection
information analyzed from streaming data exhibiting different characteristics of
cd and the predictability performance metric of the main classifier considering
data stream processing application constraints and requirements.

As the main outcome of this study we found evidence for strong correla-
tion between fims computed from a decoupled, cost-effective model with the
performance of a costly, though more accurate classification model.

A novel contribution of this study is a novel systematic approach on the
cdda problem-solving methodology. More specifically, we investigated the direct
correlation of detection information with the main classifier’s predictability per-
formance rather than treating the problem as a black box, only comparing the
performance metrics of the main classifier after incorporating a cdda technique.
This approach enabled us to analyze the long-term dynamics of the performance
of the classifier in the face of cd and its relationship to fims as a potential source
of detection information.

A major by-product of the cointegration analysis is the vec model of the
fims and performance metrics which consolidates the long-term dynamics of

Feature Importance Measures in Concept Drift Detection and Adaptation 127

the system. We are currently investigating application of this model to forecast
changes in the performance of the classifier in presence of concept drift.

References

1. Abdallah, A., Maarof, M.A., Zainal, A.: Fraud detection system: a survey. J. Netw.
Comput. Appl. 68, 90–113 (2016)

2. Alizadeh Mansouri, A., Javadtalab, A., Shiri, N.: An ensemble learning augmen-
tation method for concept drift detection over data streams. In: Advances in Data
Science and Information Engineering. Springer (2022)

3. Barddal, J.P., Enembreck, F., Gomes, H.M., Bifet, A., Pfahringer, B.: Boosting
decision stumps for dynamic feature selection on data streams. Inf. Syst. 83, 13–
29 (2019)

4. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
5. Breiman, L.: Manual on setting up, using, and understanding random forests v3.1.

Stat. Dept. Univ. Calif. Berkeley CA, USA 1(58), 3–42 (2002)
6. Cassidy, A.P., Deviney, F.A.: Calculating feature importance in data streams with

concept drift using online random forest. In: 2014 IEEE International Conference
on Big Data (Big Data), pp. 23–28 (2014)

7. Castro-Cabrera, P.A., Orozco-Alzate, M., Castellanos-Domínguez, C.G.,
Huenupán, F., Franco, L.E.: Supervised and unsupervised identification of
concept drifts in data streams of seismic-volcanic signals. In: Simari, G.R., Fermé,
E., Gutiérrez Segura, F., Rodríguez Melquiades, J.A. (eds.) IBERAMIA 2018.
LNCS (LNAI), vol. 11238, pp. 193–205. Springer, Cham (2018). https://doi.org/
10.1007/978-3-030-03928-8_16

8. Ditzler, G., Polikar, R.: Hellinger distance based drift detection for nonstation-
ary environments. In: 2011 IEEE Symposium on Computational Intelligence in
Dynamic and Uncertain Environments (CIDUE), pp. 41–48 (2011)

9. Elwell, R., Polikar, R.: Incremental learning of concept drift in nonstationary envi-
ronments. IEEE Trans. Neural Netw. 22(10), 1517–1531 (2011)

10. Engle, R.F., Granger, C.W.J.: Co-integration and error correction: representation,
estimation, and testing. Econometrica 55(2), 251–276 (1987)

11. Friedman, J.H.: Greedy function approximation: a gradient boosting machine. Ann.
Stat. 29(5), 1189–1232 (2001)

12. Gama, J., Medas, P., Castillo, G., Rodrigues, P.: Learning with drift detection. In:
Bazzan, A.L.C., Labidi, S. (eds.) SBIA 2004. LNCS (LNAI), vol. 3171, pp. 286–295.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28645-5_29

13. Gama, J., Žliobaitė, I., Bifet, A., Pechenizkiy, M., Bouchachia, A.: A survey on
concept drift adaptation. ACM Comput. Surv. (CSUR) 46(4), 44 (2014)

14. Gomes, H.M., de Mello, R.F., Pfahringer, B., Bifet, A.: Feature scoring using tree-
based ensembles for evolving data streams. In: 2019 IEEE International Conference
on Big Data (Big Data), pp. 761–769 (2019)

15. Hand, D.J., Adams, N.M.: Selection bias in credit scorecard evaluation. J. Oper.
Res. Soc. 65(3), 408–415 (2014)

16. Harries, M., Wales, N.S.: SPLICE-2 Comparative Evaluation: Electricity Pricing
(1999)

17. He, Z., Maekawa, K.: On spurious Granger causality. Econ. Lett. 73(3), 307–313
(2001)

https://doi.org/10.1007/978-3-030-03928-8_16
https://doi.org/10.1007/978-3-030-03928-8_16
https://doi.org/10.1007/978-3-540-28645-5_29

128 A. Alizadeh Mansouri et al.

18. Johansen, S.: Estimation and hypothesis testing of cointegration vectors in gaussian
vector autoregressive models. Econometrica 59(6), 1551–1580 (1991)

19. Khamassi, I., Sayed-Mouchaweh, M., Hammami, M., Ghédira, K.: Discussion and
review on evolving data streams and concept drift adapting. Evol. Syst. 9(1), 1–23
(2018)

20. Kuncheva, L.I.: Combining Pattern Classifiers: Methods and Algorithms, 2 edn.
John Wiley & Sons, Hoboken (2014)

21. Liang, N.y., Huang, G.b., Saratchandran, P., Sundararajan, N.: A fast and accurate
online sequential learning algorithm for feedforward networks. IEEE Trans. Neural
Netw. 17(6), 1411–1423 (2006)

22. Lu, J., Liu, A., Dong, F., Gu, F., Gama, J., Zhang, G.: Learning under concept
drift: a review. IEEE Trans. Knowl. Data Eng. 31(12), 2346–2363 (2019)

23. Maziarz, M.: A review of the Granger-causality fallacy. J. Philos. Econ. Reflect.
Econ. Soc. Issues VIII 2, 86–105 (2015)

24. Michaelides, M.P., Reppa, V., Panayiotou, C., Polycarpou, M.: Contaminant event
monitoring in intelligent buildings using a multi-zone formulation. IFAC Proc. Vol.
45(20), 492–497 (2012)

25. Sethi, T.S., Kantardzic, M.: On the reliable detection of concept drift from stream-
ing unlabeled data. Expert Syst. Appl. 82, 77–99 (2017)

26. Sims, C.A., Stock, J.H., Watson, M.W.: Inference in linear time series models with
some unit roots. Econometrica 58(1), 113–144 (1990)

27. Stolfo, S., Fan, W., Lee, W., Prodromidis, A., Chan, P.: Cost-based modeling
for fraud and intrusion detection: results from the JAM project. In: Proceedings
DARPA Information Survivability Conference and Exposition. DISCEX’00, vol. 2,
pp. 130–144 (2000)

28. Street, W.N., Kim, Y.: A streaming ensemble algorithm (SEA) for large-scale clas-
sification. In: Proceedings of the Seventh ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pp. 377–382. KDD ’01, Association for
Computing Machinery (2001)

29. Unknown: Global Surface Summary of the Day - GSOD
30. Vergara, A., Vembu, S., Ayhan, T., Ryan, M.A., Homer, M.L., Huerta, R.: Chem-

ical gas sensor drift compensation using classifier ensembles. Sens. Actuators B
Chem. 166–167, 320–329 (2012)

31. Wang, J., Lu, S., Wang, S.H., Zhang, Y.D.: A review on extreme learning machine.
Multimed. Tools Appl. 81(29), 41611–41660 (2022)

32. Wang, K., Lu, J., Liu, A., Zhang, G., Xiong, L.: Evolving gradient boost: a prun-
ing scheme based on loss improvement ratio for learning under concept drift.
IEEE Trans. Cybern. 53(4), 2110–2123 (2023). https://doi.org/10.1109/TCYB.
2021.3109796

33. White, A.P., Liu, W.Z.: Bias in information-based measures in decision tree induc-
tion. Mach. Learn. 15(3), 321–329 (1994)

34. Yang, Z., Al-Dahidi, S., Baraldi, P., Zio, E., Montelatici, L.: A novel concept drift
detection method for incremental learning in nonstationary environments. IEEE
Trans. Neural Netw. Learn. Syst. 31(1), 309–320 (2020)

https://doi.org/10.1109/TCYB.2021.3109796
https://doi.org/10.1109/TCYB.2021.3109796

An Approach for Efficient Processing
of Machine Operational Data

Ben Lenard1,2, Eric Pershey1, Zachary Nault1, and Alexander Rasin2(B)

1 Argonne National Laboratory, Lemont, IL, USA
{blenard,pershey,znault}@anl.gov

2 DePaul University, Chicago, IL, USA
blenard@depaul.edu, arasin@cdm.depaul.edu

Abstract. Supercomputers come in a variety of sizes and architectures
with thousands of interconnected nodes. Most organizations are required
to produce metrics for their funding sources to prove that these machines
are being utilized and meeting the availability requirements. While track-
ing the state of an individual server is trivial, measuring uptime of a
supercomputer with several thousand nodes spanning tens to hundreds
of cabinets and rows with one or more mounted file systems is a com-
plex task. Additionally, supercomputers have diverse architectures and
System Logic (which includes unique characteristics of the machine itself
such as networking topology, size, partitions, hardware layout, physical
configuration and component hierarchy). These constraints complicate
the computation of standardized metrics such as Mean Time To Failure
(MTTI), Mean Time to Failure (MTTF), availability, and utilization.

At the Argonne Leadership Computing Facility (ALCF), we devel-
oped a tool that standardizes the analyses of these machines so that
these metrics can be computed accurately and efficiently. We call this
tool Operational Data Processing System (ODPS), and use it to process
the data that Theta, a 4,392 node Cray XC40, generates. In addition
to the XC40, this tool also works with Mira, a 49,152 node IBM BG/Q
system that ALCF houses. This paper explores how ODPS processes the
data from Theta and Mira, including the storage design decisions and
architecture-independent approach to metric calculations. We quantita-
tively evaluate our approach, comparing it to alternative methods for
storing and processing supercomputer machine state in the database.

Keywords: Uptime metrics · High Performance Computing ·
Supercomputer availability · Supercomputer utilization

1 Introduction

Complex problems require extraordinary computational resources. A typical
supercomputer spans dozens of racks; it will contain compute nodes, memory
DIMMs, power supplies, copper and optical cables, sensors, network switches,
and much more. Additionally, these machines often mount large parallel filesys-
tems and other storage devices such as Storage Area Network. Computing racks
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C. Strauss et al. (Eds.): DEXA 2023, LNCS 14146, pp. 129–146, 2023.
https://doi.org/10.1007/978-3-031-39847-6_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-39847-6_9&domain=pdf
https://doi.org/10.1007/978-3-031-39847-6_9

130 B. Lenard et al.

span multiple power circuits and may require water cooling. As such, these sys-
tems have many inter-dependencies and components which can fail at any time;
failure scope can range from individual processors to whole machine sections.

In 2016, the ALCF acquired Theta [7], currently a 4,392-node, 24-rack Cray
XC40 system with a 10PB Lustre file system. Each Theta node is equipped
with a 64-core Intel Xeon Phi 7230 Knight’s Landing processors with 16 GB of
MCDRAM and 192 GB DDR4 RAM connected to a 10 PB Lustre filesystem.
The ALCF also had a 49,152 node, 48-rack IBM BlueGene/Q system, Mira [3],
accompanied by 26PB of GPFS file system. Mira has a 5D torus interconnect [3]
whereas Theta has an Aries interconnect with Dragonfly configuration [7].

The ALCF reports to the United States Department of Energy on scheduling
availability, overall availability, MTTI, MTTF, usage, and utilization for Mira
and Theta [2]. Reporting these metrics becomes a challenge across thousands
of compute nodes with complex networks, parallel filesystems, and hardware
component hierarchies connecting them. For example, a node might be rebooted
as part of a job; although it may appear unavailable, but as it was rebooted due
to a user action, we consider that part of the job. Another example of complexity
is a filesystem outage, when the reports may be showing that jobs are running –
but the jobs are most likely dead and stuck in IOWait. This type of event must be
detected and associated with an “unavailable” record, subtracting out jobs that
did work and marking down the machine where jobs were not working. This can
be a time intensive process that requires correlating data from many sources –
we refer to this process as Job Failure Analysis. Similar to cloud computing, if a
user process failed to execute, the user would request a refund due to a failure;
thus, a process is needed to determine if a refund request is valid.

The ALCF needs a standardized method for deriving the uptime, utiliza-
tion, and other metrics for the Operational Assessment Review Report [2,15,16].
While it is possible to create a unique set of tables for each machine’s physi-
cal limitations and hierarchy, this greatly increases the calculation complexity.
Instead, the ALCF abstracted the System Logic to compute standard metrics
uniformly across all machines. We embed the System Logic into the data rather
than tables, allowing us to track systems even as they change size over time.

In this paper, we describe ODPS, a standardized approach for converting the
operational data generated by supercomputers and tracking the supercomputer’s
operational state regardless of the physical changes in the computer over time.
We explore the database design and the efficiency of using a bitmask to track
machine events over time, comparing it to other physical database designs and
evaluating it with respect to the design objectives of this software. In sum, this
paper describes the following significant contributions:

– Computing the metrics of Availability, Usage, Utilization, and MTBF as
required by The United States Department of Energy

– Effectively finding target events and correlating them in time and space for
use in job and hardware failure analysis

– Providing an API to access the events and machine structure on which many
other tools can be built

An Approach for Efficient Processing of Machine Operational Data 131

2 Related Work

Related work for tracking the state of a supercomputer can be broken down into
two areas: 1) large scale log processing and 2) efficiencies of using a bitmask to
store and process data and how databases use them to index data.

Collecting and analyzing logs in a large-scale system is commonly used to
perform diagnosis; a variety of papers cover this topic on Cray and IBM sys-
tems. We collect and process logs similar to prior work but with a few different
caveats. Oliner and Stearly [17] focused on the log collection and log processing
for modeling system and trying to predict failures. Lenard et al. [14] developed
a system for generating and collecting large-scale distributed system events.

Bitmap indexes have been used for decades [5] to index and search large
amounts of data efficiently in a database. They are often used in relational
database management systems for scanning data quickly to retrieve rows or
values in columnar data. Oracle allows for the direct creation of bitmap indexes
instead of a B-Tree index [23], as bitmap index can be more efficient for scanning
the data from the index. In some databases, such as Db2 LUW, the optimizer will
automatically create and use bitmap indexes when multiple indexes on the same
table are used in the predicate [10]. Furthermore, IBM Db2 BLU, a proprietary
columnar store, utilizes bitmaps for processing SQL queries [22].

Bitmaps are also applied to other areas such as analyzing large data sets such
as autoignition data [12]. The paper demonstrates that the use of bitmaps can
facilitate efficient storage and processing speed of the dataset.

Sandia National Laboratories has developed an open-source tool tool called
Lightweight Distributed Metric Service (LDMS) to gather metrics (memory, cpu,
IO, etc.) about applications executing on supercomputers and stores them in a
database or a flat file [1]. While these metrics are useful for identifying perfor-
mance bottlenecks within the supercomputer, it does not correlate the data to
applications and jobs running on the computer, which we need to determine
utilization [4,6]. While LDMS can report on the the utilization of a node, we
define utilization in terms of nodes being associated with jobs. Despite being a
monitoring solution for supercomputers, LDMS provides data that is different
from what we need. Furthermore, LDMS requires an infrastructure dedicated to
monitoring, an excessive requirement for our reporting needs.

While processing the logs of a system is not a novel idea, and bitmaps have
been in the database world for a while, the marriage of the two ideas within an
application for the purposes of HPC metrics calculations and searching for faults
over time and space presents a novel approach.

3 Paper Definitions

Event: For the purposes of this paper, an event occurs when the control system
of the supercomputer changes the state of a given node. This state change can
be the result of a failure either with the given node or the infrastructure, such
as network, power, or cooling that supports the particular node.

132 B. Lenard et al.

RAS Events: Reliability, Availability, and Serviceability (RAS) event is when
a component failed on the hardware or software of the system. The IBM Blue
Gene [13] as well as the Cray XC [21] systems provide logging for capturing
instances when something has failed.

MTTI: Mean Time to Interrupt is defined as the average outage time (scheduled
or unscheduled). It is also known as Mean Time Between Interrupt:

TimePeriod−(ScheduledOutages+UnscheduledOutages)
CountScheduledOutages+CountUnscheduledOutages+1 (1)

MTTF. Mean Time to Failure is defined as the time, on average, to an unsched-
uled outage on the system:

TimeInPeriod−UnscheduledOutages
CountUnscheduledOoutages+1 (2)

Overall Availability: The overall availability is the percentage of time a system
is available to users without interrupt. Outage time reflects both scheduled and
unscheduled outages:

TimePeriod−UnavailableDueToOutages
T imePeriod ∗ 100 (3)

Scheduled Availability: Scheduled availability is the percentage of time a
designated level of resource is available to users, excluding scheduled downtime
for maintenance and upgrades:

TimePeriod−UnavailableDueToOutages
T imePeriod−UnavailableDueToScheduledOutages ∗ 100 (4)

Utilization: Utilization is the percentage of time the system was used out of
the total number of available hours:

Core hours used in period
Core hours available in period ∗ 100 (5)

System Logic: System Logic is used to define the physical limitations and con-
figuration of the supercomputer. These limitations were built into the machine
and do not change unless by modifying the hardware. For example, configura-
tion such as the memory mode of a node, or how the nodes are laid out and
fiber connections within the supercomputer. System Logic is related to Business
Logic and is generally applied before the Business Logic. These configurations
can be very complex and are site-specific. For instance, Mira has 49,152 nodes,
but we schedule resources in 512 node blocks because all the nodes in the block
share the same 4 Input Output Nodes (IONs). We could go down to 128 node
blocks, but they would share IONs for redundancy and one job could effect the
IO characteristics of another job. Other machines (e.g., Cetus or Vesta) have
different IONs to compute node ratios and we are able to run in smaller blocks
with IO isolation. The decision to isolate IO traffic is Business Logic, but the
way the ION are wired to provide IO isolation is System Logic.

An Approach for Efficient Processing of Machine Operational Data 133

Business Logic: Often overlooked, Business Logic includes site details such
as the logic to rounding a timestamp. (e.g., having timestamp rounded to the
nearest second or millisecond). For every second Mira runs, if we count all the
cores, the total core hours per second is equal to (49,152 * 16 cores)/3,600 =
218.453 core hours per second. ODPS was designed to strictly account for every
second of the machines use, per node/core. Similarly to timestamps, different
sites could have different formulas for calculating Availability or Utilization.

Bitmap and Bitmask: Using bitmasks allows us to use simple operations such
as ‘xor’, ‘and’, and ‘or’ when comparing two bitmasks against each other. The
bitmask itself shows which components are marked as a dependent of the event.
If two bitmasks are combined with an ‘and’ operation, and all bits are zero, there
is no intersection. The order in which the bits refer to underlying hardware is
encoded in the bitmap. It is beneficial to keep the index of the node close to the
network links, because the node and its corresponding network links are likely
to be used simultaneously. This idea enables us to compress the masks.

Location to Mask: Location to Mask (LTM) maps a node in the machine to the
bitmask that represents the machine. For example, 4 nodes can be represented
by the bitmask of ‘0000’ with a bit per node; the first(MSB) node => first
bit, second node => second bit, and so on. 1 means that the node is in use
by the bitmask event. For example, bitmask ‘1010’ represents an event that
involves node #0 and #2. The bit positions also map to the node names, such
as nid00000 and nid00002 being used in this event.

ETL: In data warehousing, Extract Transform and Load (ETL) commonly refers
to the process of extracting the target data, transforming the data in the struc-
ture required by the organization, and loading the data into the database. In
context of this paper, we parse the logs from the supercomputer control systems
looking for error events, transform the data, and load the data into our system.

Time and Space correlation: On a given system, a job can consume the
whole system or a partition of the machine. Time and space correlation help
the ALCF identify which jobs are impacted by an interrupt since an interrupt
can affect a portion of the machine. For example, if a key component which
interconnected several nodes failed and was replaced, this lets us show the impact
of that component during a given time frame.

Incarnation: We will use the term incarnation to refer to each instance of a
supercomputer changes size. We are borrowing this term from Oracle as when-
ever you restore an Oracle database and open it with RESETLOGS [20], you have
a new incarnation of the database and a list when the database changed incar-
nations. Similarly, whenever a supercomputer changes size, it is the same super-
computer but a different instance of it, and we track this in the LTM table.

4 ODPS

We developed ODPS to standardize different supercomputer systems, store the
system state, and compute the system’s metrics consistently. Within ODPS, we

134 B. Lenard et al.

implemented a method of tracking machine state by using a bitmask to track
the nodes, optimizing reporting calculations, as well as to correlate impacted
jobs on the system when something does fail. Bitmask representation allows us
to calculate the machines’ metrics efficiently using bitwise operations such as
‘xor’, ‘and’, and ‘or’. The bitmask also supports finding the intersection of a job
and a component failure using bitwise ‘and’ operation. The goal of this paper is
to illustrate efficiency of this approach to calculating supercomputer metrics in
terms of both storage space, and SQL query execution runtime. We compare our
proposed methods to storing the same data in a typical normalized row-based
database. It is important to note that this system was developed to analyze and
report historic metrics and is not designed for real-time monitoring.

ODPS is written in Python 3, allowing it to run on many platforms using a
persistent Relational Database Management System (RDBMS). ODPS has been
tested and used with Db2 and MySQL. ODPS provides an API via a REST
interface for consumers and a Low-Level API for administrators to access the
data without knowing the underlying data structures within the database.

4.1 Bitmask

The bitmasks are used in the database and within the ODPS API. The database
can be used to search all the events for a given bit by applying an offset(+64) to
the section that bit is set and executing database bitwise operations. Db2 and
MySQL both support 64 integer bitwise operations. Since querying a row loads
the entire database page and since we are doing the operation on a very small
slice of data, we do not have to move that data across the network. After loading
all the events, python code converts the bitmasks into Extended NumPy Arrays
with a dtype of an unsigned integer 8 with overflow protection. Since NumPy
Arrays [11] support incorporate bitwise operators, we leverage these operations
on the full bitmask to calculate the metrics (see Sect. 6.2).

4.2 Location to Mask

The core of ODPS at an abstraction layer is a python class Location to Map
(LTM). The LTM provides a common interface to process every machine’s oper-
ational data using the bitmask representation, even as the machine changes size
over time. The LTM layer consists of the Location To Mask Map (LTMM) and
the Location to Map Base (LTMB) tables. As the system changes size, we need
a mechanism to track it. The LTMB stores the metadata about the machine for
a given period of time, type of nodes and the smallest machine unit that will
be mapped to a bit in the mask. We store one LTMB per machine for a period
of time. The LTMB stores the metadata about the machine as a whole whereas
the LTMM stores information about each node as it relates to the LTMB.

For each LTMB record, or each time the machine changes size, the nodes for
the machine are added into the LTMM table. In essence, the LTMB provides a
context or incarnation of the machine. The LTMM stores metadata about each
node; for Theta we store the NID, NID Name, IP address, as well as component

An Approach for Efficient Processing of Machine Operational Data 135

name (CName). These are stored in machine independent structures with the
true name mapping of NID and such within the LTMB. The LTMB is refreshed
by updating the end timestamp every 2min by an ETL on Theta (no other fields
can be updated). LTMMs cannot be updated because we could lose history and
we cannot be sure that the component remains in the same location in the
bitmask. If something else changes, a new LTMB is created along with a new
set of LTMMs. It is possible to keep one live copy and store a journal of changes
to another table, but the system is meant for historic or range based queries,
supporting queries across the boundary of a machine changing size or structure.

4.3 ETL

ODPS uses the operational data and metadata of the machine. Thus, we consider
the ETL process for both of these areas. For example in Theta, the data is derived
from Cray hardware supervisory system database. On Cray XC40 system, the
Cray hardware supervisory system database is where the node inventory is kept
by the Cray management stack; on the IBM BG/Q system this is similar to
the control system. If the machine size has changed due to adding or removing
nodes, a new LTMB is created followed by adding the nodes to the LTMM with
the latest incarnation. Between Mira and Theta, the system control software is
different based on vendor and series; therefore, information is extracted from
different sources.

The operational data ETL is the second category of ETL for ODPS. The
ODPS ETL process translates lines of a log file that contain the nodes into rows
that contain the bitmask that represent the included nodes. These log sources,
for Theta, include:

– Cobalt (scheduler/resource manager) Logs (Usage1, Availability)
– ALPS (Usage, Availability3, MTTI3, MTTF3)
– SMW messages (MTTI, MTTF, Availability)

5 Methodology

We used two years of operational data from Mira and two years of operational data
from Theta in our experiments. We explore different methods to represent this
data and consider storage efficiency and query execution performance for calcu-
lating our target metrics. We compare storage space required, execution runtime,
and the complexity of deploying these tables. In the past, we have encountered
scalability issues with naive implementations for tracking node state.

5.1 Static Table Approach

One approach to storing the state of the numerous nodes of a supercomputer is
to deploy a single table for the entire supercomputer. If we took this approach,
1 Denotes the primary source of the data; all other data is supplemental.

136 B. Lenard et al.

Theta would have 4,392 columns in addition to the metadata the describes the
event such as timestamp, text about the event, duration (if known), and anything
else. In Mira, if we represented each 512-node block as a column, the Mira table
would have 100 columns plus the event’s metadata.

Assuming we used this approach, each node, or smallest unit in the system,
would be assigned to a column. The maximum number of columns for a table
in Db2 11.1 is 1,012 for tablespaces of 8k or more [9]. MySQL 8 has a column
limit of 4,096 with a max row size of 64k [19] and Oracle 18 has a limit of 1,000
columns per table [18]. That being said, a traditional table could encapsulate
Mira but for a system of Theta’s size, a single table would not be able to contain
enough columns for each node in the system. Furthermore, as we move toward
larger and larger systems as we head towards the exascale, and as processors are
not becoming faster, the node count on these systems will increase over time.
While MySQL might be able to have a column count of 4,096 columns, this
would not be enough to handle Theta, let alone future systems.

In addition to having too many columns for a single table, static table app-
roach is difficult to adjust with changing of the machine size. Supercomputers
can change their size due to deployment stages, upgrades, or downgrades. While
one could alter the table to add columns and account for upgrades, one would
need to modify the application code to handle these changes.

Given the limitation of RDMSes, a column per node of the supercomputer
is not a viable option since the size of the current supercomputer exceeds the
limitations of the databases discussed above.

5.2 Materialized Views and Views

In order to improve performance, we might create a materialized view (MV) or a
materialized query table (MQT). An MV is a pre-built query with data objects
stored so that queries will run faster. If we were to assign one node per column
and built the MV based on the rows in Sect. 5.3, the MV also has the limitation
of the number of columns that the underlying RDMS will support. For Oracle
18, a MV can have a maximum of 1,000 columns [18]; Db2 11.1 can have a max
of 1,012 columns in an MQT and 5,000 in a view [9]. Furthermore, we would
need some method to adapt to changes to the supercomputer size.

5.3 Row Per Event and Node

Another approach to storing the nodes that are impacted by a System, Job,
or Task Event is to have two tables for each event type. One table to describe
the event and the metadata surrounding the event, and another table would
contain the impacted nodes. For example, the System Event table would have
begin and end times, a description, and a generated identification number. This
identification number would be then inserted into the second table along with
the identification number of the corresponding impacted node; there would be
one row per node and event in the second table. MySQL supports up to a 64-
terabyte table, no known limit on row count limit, and Db2 can store 128× 10

An Approach for Efficient Processing of Machine Operational Data 137

to the 10 rows before partitioning, and Oracle does not have a row limit. This
approach is feasible for how we store the operational data within the data.

5.4 Bitmask

Another approach to storing the nodes that are impacted by a System, Job, or
Task Event is to have one row per event and encode the affected nodes within a
bitmask. Each bit within the bitmask would represent the machine and the nodes
impacted by a given event. For example, the System Event table store begin and
end times, a description, an identification number generated at creation time,
and a varchar to store the nodes description. We would still store the nodes in
a table that would contain the metadata about each node but we would encode
the effected nodes within the bitmask. For ODPS we use a bitmask of 28k and
use a tablespace of 32k so that one row will fit into a single tablespace page.

6 Comparative Analysis

6.1 Raw Storage

We will now examine the database and the SQL operations to extract the data
for our calculations. Regardless of how we store the supercomputer state, we
need to store the metadata about the nodes, and the changes to its size over
time. In our database, regardless of the method of storing state, we will be using
the same two tables which track the incarnations of the supercomputer’s over
time. These two tables are used to convert from the bitmask to the nodes. We
use LOCATION_TO_MASK_BASE and LOCATION_TO_MASK_MAP tables to track the
incarnations. LOCATION_TO_MASK_BASE provides the base map for the machine’s
layout and other meta information such as map id, parent map, start and end
timestamps, unit sizes and bits for the ODPS application. In the second table,
LOCATION_TO_MASK_MAP we store meta data about each node such as map id
and the corresponding LOCATION_TO_MASK_BASE id, and other attributes.

Whenever a supercomputer changes size, we generate a new base id as well as
new entries for each node for that incarnation of the supercomputer. While this
may seem excessive, it is important to historically determine the supercomputer’s
size and components at a given point in time. In order to make the mask easier
to read and store in a database, we store the bitmask as a hex mask.

For a Cray system we store the CName, NID, IP address, and node’s classi-
fication such as ‘compute.’ In terms of our IBM BG/Q, we also store each incar-
nation within LOCATION_TO_MASK_BASE table and then each midplane within the
LOCATION_TO_MASK_MAP. Mira has never changed sizes, but we have the capabil-
ity of storing the different incarnations. For the BG/Q’s, we store the ‘midplane’
within the LOCATION_TO_MASK_MAP table since the System Logic determines that
this is the smallest granularity that we can use for calculations.

Regardless of how we store the supercomputer’s state, these two tables will
remain the same for the comparisons since they provide functionality outside of
the state of the ‘compute’ or ‘midplane.’

138 B. Lenard et al.

Within the application two tables track the supercomputer state: SYSTEM_
EVENT and RESOURCE_MANAGER_EVENT. As their names suggest, SYSTEM_EVENT
stores system events about the supercomputer and RESOURCE_MANAGER_EVENT
stores information from our scheduler, resource manager and control system.

Table 1. SYSTEM_EVENT table as a single table with the bitmask

SYSTEM_EVENT:
Column_Name Data_Type Size Null Default

SYSTEM_EVENT_ID INT No
PARENT_SYSTEM_EVENT_ID INT No
PIT_START_ID INT No
PIT_END_ID INT No
EVENT_STATE_NAME VAR 16 No
TIME_START TS 6 No 1970-01-01-00.00.00.000000
DIM_DATE_HOUR_START_KEY INT Yes
TIME_END TS 6 No 1970-01-01-00.00.00.000001
DIM_DATE_HOUR_END_KEY INT Yes
HEXMASK VAR 28672 No
BIT_COUNT INT No
EVENT_TYPE_NAME VAR 256 No
MACHINE_NAME VAR 64 No
DETAIL_JSON VAR 256 Yes
LOCATION_TO_MASK_BASE_ID INT No
INSERTED_TIMESTAMP TS 6 No
UPDATED_TIMESTAMP TS 6 No
IS_DELETED INT No 0

SYSTEM_EVENT is a table that tracks the state of a node within the super-
computer; every time a state change is detected a new row is inserted into this
table. The bitmask formatted table is described in Table 1. Since we use a var-
char 28,672 for the bitmask, which is encoded as a hex mask, we can store a
mask large enough to represent 114,688 nodes. We used such a large field to
future proof ODPS. The maximum row size for this table is 29,340 therefore in
Db2 we used a 32k tablespace in order not to fragment the row. As of MySQL
5.7, support for 32k and 64k pages is available. Since Theta is only 4,392 nodes
and we convert the bitmask into hex, the row size for Theta is far less than the
29,340 maximum row size. If we were to transform SYSTEM_EVENT into two
tables, one that represents the event and another to represent the nodes, the
row size will be much smaller but there will be a number of node rows per event
Table 2 illustrates the schema that uses two tables.

An Approach for Efficient Processing of Machine Operational Data 139

Table 2. SYSTEM_EVENT as two tables without the bitmask

SYSTEM_EVENT:
Column_Name Data_Type Size Null Default

SYSTEM_EVENT_ID INT No
PARENT_SYSTEM_EVENT_ID INT No
PIT_START_ID INT No
PIT_END_ID INT No
EVENT_STATE_NAME VAR 16 No
TIME_START TS 6 No 1970-01-01-00.00.00.000000
DIM_DATE_HOUR_START_KEY INT Yes
TIME_END TS 6 No 1970-01-01-00.00.00.000001
DIM_DATE_HOUR_END_KEY INT Yes
EVENT_TYPE_NAME VAR 256 No
MACHINE_NAME VAR 64 No
DETAIL_JSON VAR 256 Yes
INSERTED_TS TS 6 No
UPDATED_TS TS 6 No
IS_DELETED INT No 0

SYSTEM_EVENT_NODE:
Column_Name Data_Type Size Null Default

SYSTEM_EVENT_ID INT No
NODE_ID INT No
INSERTED_TS TS 6 No
UPDATED_TS TS 6 No
IS_DELETED INT No 0

In our evaluation, we use data between 8/1/2016 and 11/1/2018, which con-
tains 3,076,656 events generated from Theta. These events are loaded into the
database by our ETL process that processes the Cray logs. While we hope that

Fig. 1. Db2 query plan comparison – single table versus two table design

140 B. Lenard et al.

the Cray software stack provides all of the events within the logs, we added the
logic to ensure that if events were missing from the logs, for whatever reason,
are software would handle such a condition. In other words, we validate the
logs against the content of the of the system’s databases. In a two-table ver-
sion schema of our database SYSTEM_EVENT table also has 3,076,656 events
but it also has 49,843,290 SYSTEM_EVENT_NODE table to describe all the
impacted nodes. In terms of size, the table that houses the bitmask is slightly
smaller then the table split into event and data, 3,390.01 GB and 3,474.66 GB
respectively. While the sizes are similar, the cost of querying this data is dra-
matically different. The explain plans were generated on Db2 and are measured
in timerons. A timeron is a unit of measure created by IBM for Db2 [8], and the
lower the number of timerons the more efficient. For the simple query to show
all the nodes that has system events between a time range, the SQL statement
would be as follows for the table containing the bitmask:

SELECT * FROM SYSTEM_EVENT WHERE TIME_START >=’2018-07-04’
AND TIME_START < ’2018-07-14’

The SQL statement results in a cost of 2,616.42 timerons (see Fig. 1a). Alter-
natively, the query for selecting the nodes with the same predicate clause would
be expressed as the following query. That SQL statement results in a cost of
138,967.00 timerons (see Fig. 1b).

SELECT * FROM SYSTEM_EVENT e, SYSTEM_EVENT_NODE n
WHERE e.SYSTEM_EVENT_ID = n.SYSTEM_EVENT_ID
AND TIME_START>=’2018-07-04’AND TIME_START<’2018-07-14’

Similarly to the SYSTEM_EVENT table, we use date range from 8/1/2016 to
11/1/2018 from Theta where 5,990,941 resource managers events are stored in
a table named RESOURCE_MANAGER_EVENT. Similar to the SYSTEM_EVENT table,
RESOURCE_MANAGER_EVENT is also populated through ETL processes that parse
the logs of our scheduler, resource manager, and control system. For compar-
ison, we also split this table into a two table version, one for the metadata
and another to store the nodes associated with the event. Table 3 shows the
schema using the bitmask and the two table version can be found in Table 4.
In the RESOURCE_MANAGER_EVENT tables, with and without the bitmask, there
are 5,990,941 rows and in the RESOURCE_MANAGER_EVENT_NODE (the second table
in the two-table schema version) table there are 155,657,751 rows that list the
nodes for a given event. While this may seem like a dramatic increase from the
SYSTEM_EVENT table, many system events only encompass a few nodes whereas
resource manager events seldom encompass a few nodes since most HPC jobs run
on many nodes. The space consumed by the table with the bitmask is 7,837.59
GB, while the total size of the two tables is 20,944.32 GB.

An Approach for Efficient Processing of Machine Operational Data 141

Table 3. RESOURCE_MANAGER_EVENT as a single table with the bitmask

RESOURCE_MANAGER_EVENT:
Column_Name Data_Type Size Null Default

RESOURCE_MANAGER_EVENT_ID INT No
PARENT_RESOURCE_MANAGER_EVENT_ID INT No
TIME_START TS 6 No 1970-01-01-00.00.00.000000
DIM_DATE_HOUR_START_KEY INT Yes
TIME_END TS 6 No 1970-01-01-00.00.00.000001
DIM_DATE_HOUR_END_KEY INT Yes
HEXMASK VAR 28672 No
BIT_COUNT INT No
EVENT_TYPE_NAME VAR 256 No
MACHINE_NAME VAR 64 No
DETAIL_JSON VAR 256 Yes
LOCATION_TO_MASK_BASE_ID INT No
INSERTED_TS TS 6 No
UPDATED_TS TS 6 No
SOURCE_NAME VAR 64 No ”
SOURCE_IDX VAR 32 No ”
SOURCE_KEY VAR 64 No ”
SOURCE_SUBKEY VAR 32 No ”
ORPHAN INT No 0
SOURCE_PATH VAR 512 Yes
SOURCE_FILENAME VAR 512 Yes
SOURCE_HOSTNAME VAR 128 Yes
SOURCE_FILE_READ_TS TS 6 Yes

Table 4. RESOURCE_MANAGER_EVENT as two tables without the bitmask

RESOURCE_MANAGER_EVENT:
Column_Name Data_Type Size Null Default

RESOURCE_MANAGER_EVENT_ID INT No
PARENT_RESOURCE_MANAGER_EVENT_ID INT No
TIME_START TS 6 No 1970-01-01-00.00.00.000000
DIM_DATE_HOUR_START_KEY INT Yes
TIME_END TS 6 No 1970-01-01-00.00.00.000001
DIM_DATE_HOUR_END_KEY INT Yes
EVENT_TYPE_NAME VAR 256 No
MACHINE_NAME VAR 64 No
DETAIL_JSON VAR 256 Yes
LOCATION_TO_MASK_BASE_ID INT No
INSERTED_TS TS 6 No
UPDATED_TS TS 6 No
SOURCE_NAME VAR 64 No ”
SOURCE_IDX VAR 32 No ”
SOURCE_KEY VAR 64 No ”
SOURCE_SUBKEY VAR 32 No ”
ORPHAN INT No 0
SOURCE_PATH VAR 512 Yes
SOURCE_FILENAME VAR 512 Yes
SOURCE_HOSTNAME VAR 128 Yes
SOURCE_FILE_READ_TS TS 6 Yes
RESOURCE_MANAGER_EVENT_NODE:
Column_Name Data_Type Size Null Default
RESOURCE_MANAGER_EVENT_ID INT No
NODE_ID INT No
INSERTED_TS TS 6 No
UPDATED_TS TS 6 No
IS_DELETED INT No 0

142 B. Lenard et al.

The following SQL statement is a simplified version of a SQL statement used
within ODPS with arbitrary values in the where clause containing the bitmask:

SELECT * FROM RESOURCE_MANAGER_EVENT RME
WHERE RME.machine_name = ’theta’ AND RME.time_end > ’2018-07-04’

AND RME.location_to_mask_base_id = 642

For the table with the bitmask, the Db2 cost of the query is 298,422.19
timerons, while the equivalent SQL statement spilt into two tables has a cost of
1,383,644.75 timerons.

6.2 Workflow of Calculated Availability

Calculating the overall availability is a critical metric used to gauge the effec-
tiveness of a computing resource and a primary metric used the ALCF. It is also
one of the more computationally heavy calculations as it takes into account a
years worth of events. Furthermore, we account for every second of a machine,
assuming nothing about its state without a record. This results in a large amount
of historical data that is cumbersome to store in any other way besides as event
with a bitmask describing effect nodes.

For this comparison we examined the bitmask method and the row per event
per node (Sect. 5.3) method. We assumed that for both methods the underlying
databases have been optimized for performance and any database queries will
contribute little to the run time of the calculation. We have opted for a com-
plexity analysis of the availability function within ODPS to show that a major
factor affecting completion time is the total number of rows that are processed.
It is important to note that this function can be easily parallelized to improve
computation time. However, such analysis is beyond the scope of this paper. An
algorithmic description of the availability calculation is detailed in Algorithm 1.

Algorithm 1. Availability algorithm
1: T imeInPeriod ← Total time within range
2: T imePossible ← TimeInPeriod * size of the Mask
3: EventList ← list of all events in database over time range
4: PITList ← list of all Points in Time
5: for each Row ∈ Database do � Section 6.2
6: EventList.update(row)

7: for each Event ∈ EventList do � Section 6.2
8: PIT ← EventToPIT (Event)
9: PITList.append(PIT)

10: T imeline ← GroupByT ime(PITList) � Section 6.2
11: T imelineSorted ← SortByT ime(T imeline) � Section 6.2
12: T imelineMask ← Normalize(T imelineSorted) � Section 6.2
13: T imelineMask ← Flatten(T imelineMask) � Section 6.2
14: T imelineMask ← Isolate(T imelineMask) � Section 6.2
15: T imelineMag ← T imelineMasktoMagnitude(T imelineMask) � Section 6.2
16: T imeConsumed ← calcArea(T imelineMag) � Section 6.2
17: Availability ← T imeConsumed/T imePossible ∗ 100 � Section 6.2

An Approach for Efficient Processing of Machine Operational Data 143

Request Events from DB: First, we must get all the events from the database.
For the bitmask approach this returns a row for every event over a given time
range with the bitmask that describes the nodes. For the row per event per node
method, this returns a row for every node that was involved in every event over
a given time range. We are assuming that this query is not impacting the final
time to completion and does not contribute to the complexity.

Points in Time (PIT): Each event is converted into two Points in Time (PIT):
one marking the start, another marking the end. A PIT keeps track of the node(s)
affected by the event, how the event has affected system state (up +1, down -
1, or neutral 0), and what direction the event is facing in the timeline: forward
(event start) or backward (event end). This operation has a complexity of O(N).

Group PIT by Time: Loop over all PITs and return a dictionary of PITs
grouped by time. This operation has a complexity of O(N).

Sort PIT by Time into Timeline: The PITs now need to be sorted into a
true timeline by organizing them by time. This operation uses an internal call
to Python’s sorted() which has a corresponding complexity of O(N log(N)).

Normalize Timeline: Walk through the timeline and normalize all PITs at
each time step by getting the mask sum. This combines masks of nodes affected
and (+1, 0 –1) into a single PIT by summing all the +1 and the –1 masks.
Any nodes affected in multiple ways are normalized to +1, 0, –1. For example,
if a node was marked up (+1) by one PIT and marked down (–1) by another,
the resulting state would be neutral (0). A node that is marked up (+1) in one
PIT and marked up again (+1) by another PIT would result in a state of +2.
However, this is normalized to +1. This operation has a complexity of O(N).

Flatten Timeline: Walk the timeline and reduce each PIT into a single number
representing the total system state. For example at some time T a 4 node system
with a normalized PIT may look like this: +1,+1,+1, 0. Meaning at that time T
the system as a magnitude of 3. These magnitudes are then integrated to generate
a step plot showing units available in time. This operation has a complexity of
O(N).

Isolate Timeline: Walk though the timeline and check that all events are within
the timeline range. If anything falls outside the range, truncate the event. This
operation has a complexity of O(N).

Mask to Magnitude Timeline: Walk though the timeline and sum each bit-
mask of ones. Then add edges by adding data to each change in size. If the
magnitude goes from 0 nodes (@T0) to 10 nodes (@T1), a graph would show a
slope up to 10, but those ten are not used until T1, so we add a magnitude of 0
at T1‘, taken from T0, right before T1, in the sorted list, to correctly form the
area. After all this is complete the integration can be done. O(N).

Calculate Area: Perform a second integration on the magnitude timeline and
find time consumed by events. This will give us the area used by the events. This
operation has a complexity of O(N)

144 B. Lenard et al.

Availability: Finally, knowing the total area(time*len(mask)) within the given
period with the area consumed by events, availability can be calculated.

Net Complexity: Combining all of the operation complexities, the cost of the
availability calculation is dominated by the timeline sort. This results in a net
complexity O(N log(N)) where N is twice the number of rows in the database.
Before performing this complexity analysis, we expected for this function to be
linear with the majority of speed-up coming from the bit operations.

Having an understanding of this function’s complexity highlights the impor-
tance of reducing the number of database rows that need to be processed. The
bitmask method achieves this by storing all node information with the event;
reducing the total number of rows returned. For example, for the search of events
generated from 8/1/2016 until 11/1/2018, 9.07 × 106 events (and therefore rows)
were logged into ODPS. If the same events were logged in the row per event per
node method there would be a total of 2.06 × 108 rows. Therefore, the avail-
ability calculation performed using the row per event per node method, it would
take approximately 27 times longer to complete versus the bitmask method.

7 Results and Discussion

In our comparisons, we have shown that the disk storage and database query
plan costs are significantly reduced by storing the data represented as a bitmask
rather than storing a row per node per event. Storing the bitmask is similar to a
materialized query within a column; when querying the event rows, the operation
becomes free. In correlating events and jobs that are executing, we shown that
it is also significantly faster to utilize the bitmask. ODPS with the bitmask
has allowed operation of the system calculate our metrics from 2016 for Theta
in seconds rather than hours using a naive method. This method is much more
efficient by converting the common structure, the bitmask, at database load. The
common structure has been used in every supercomputer we have, no matter the
complexity or hierarchy of nodes and allows for a common representation, code
reuse and deep performance tuning. Much of the time of generating usage or
availability is attributed to looking up nodes, resolving overlapping events and
setting states of nodes at a time while walking over all events, nodes and times.
For more complex machines, given a node, one will have to figure out a hierarchy
of what subset of nodes that node is contained within, referred to as blocks. This
translation is done one time from block to nodes to bitmask. The bitmask also
allows for parallel computation of availability or usage by breaking up in either
chunks of time or nodes or both. This is done to speed up the computation and
is embarrassingly parallel. Even further, if using a true bitmask structure of 1’s
and 0’s, we can leverage bitwise operations of the processor by breaking the
bitmask into 64bit integers.

8 Future Work

As machines grow in size, we are looking toward the future and exploring options
for when the node counts exceed current database limits for tablespace pages.

An Approach for Efficient Processing of Machine Operational Data 145

Db2, Oracle, and Postgres impose a page size limit of 32k which might not
be large enough for future systems. While RDBMSes do support extended or
chained rows, accessing a row that spans multiple pages can cause inefficien-
cies incurring multiple IOPS per retrieved row. For example, if a system had
1,048,576 nodes, the bitmask would be 256k, and that would consume roughly
8 32k tablespace pages (including the overhead within the page) per row. We
would need to modify the bitmask approach so it will scale to larger systems.

We are also looking at incorporating this method into our scheduler since the
it also tracks the machine’s state. Since ODPS is tracking the state of the system
just as the scheduler does, we could directly track the state of the system with
the resource manager and persist all changes to a data store. That data store
could be ODPS as it’s designed with the scale and complexities of our systems
in mind. This also would allow a realtime component as we would have direct
access to any state changes and we could leverage them to also remove the need
for ETLs.

Another area of future development and research is to encapsulate the loca-
tion to bitmask within the database itself with support for Db2, Postgres, and
possibly MySQL. This would eliminate the network transfer latency for search-
ing. Right now, we have Python code to convert the bitmask to the location,
whereas we would like to see this built into the database itself.

Since we utilize bitmasks for locations of the nodes and their corresponding
state, we also need to explore creating bitwise operations that are larger than 64
bits. Several database platforms support bitwise operations but only support a
small number of bits since they internally use a BIG Int. We also plan to open-
source ODPS following the Argonne National Laboratory process for publicly
releasing software.

Acknowledgement. This research used resources of the Argonne Leadership Com-
puting Facility, which is a DOE Office of Science User Facility supported under Con-
tract DE-AC02-06CH1135. The authors would also like to acknowledge the review and
editing help by Nick Scope.

References

1. https://www.sandia.gov/sandia-computing/high-performance-computing/
lightweight-distributed-metric-service-ldms/

2. ALCF: 2016 operational assessment report argonne leadership computing facility.
https://www.alcf.anl.gov/files/CY2016_OAR_ALCF_3_3_2017.pdf

3. ALCF: Mira. https://www.alcf.anl.gov/mira
4. Bhalachandra, S., Austin, B., Wright, N.J.: Understanding power variation and

its implications on performance optimization on the Cori supercomputer. In: 2021
International Workshop on Performance Modeling, Benchmarking and Simulation
of High Performance Computer Systems (PMBS), pp. 51–62 (2021). https://doi.
org/10.1109/PMBS54543.2021.00011

5. Chan, C.Y., Ioannidis, Y.E.: An efficient bitmap encoding scheme for selec-
tion queries. SIGMOD Rec. 28(2), 215–226 (1999). https://doi.acm.org/10.1145/
304181.304201

https://www.sandia.gov/sandia-computing/high-performance-computing/lightweight-distributed-metric-service-ldms/
https://www.sandia.gov/sandia-computing/high-performance-computing/lightweight-distributed-metric-service-ldms/
https://www.alcf.anl.gov/files/CY2016_OAR_ALCF_3_3_2017.pdf
https://www.alcf.anl.gov/mira
https://doi.org/10.1109/PMBS54543.2021.00011
https://doi.org/10.1109/PMBS54543.2021.00011
https://doi.acm.org/10.1145/304181.304201
https://doi.acm.org/10.1145/304181.304201

146 B. Lenard et al.

6. Feldman, S., Zhang, D., Dechev, D., Brandt, J.: Extending LDMS to enable
performance monitoring in multi-core applications. In: 2015 IEEE International
Conference on Cluster Computing, pp. 717–720 (2015). https://doi.org/10.1109/
CLUSTER.2015.125

7. Harms, K., et al.: Theta: rapid installation and acceptance of an XC40 KNL sys-
tem. Concurr. Comput. Pract. Exp. 30(1), e4336 (2018). e4336 cpe.4336, https://
onlinelibrary.wiley.com/doi/abs/10.1002/cpe.4336

8. IBM: Explain information for data operators. https://www.ibm.com/support/
knowledgecenter/en/SSEPGG_11.1.0/com.ibm.db2.luw.admin.perf.doc/doc/
c0005140.html

9. IBM: Sql and xml limits. https://www.ibm.com/support/knowledgecenter/
SSEPGG_11.1.0/com.ibm.db2.luw.sql.ref.doc/doc/r0001029.html

10. IBM: Types of index access. https://www.ibm.com/support/knowledgecenter/en/
SSEPGG_11.1.0/com.ibm.db2.luw.admin.perf.doc/doc/c0005301.html

11. Idris, I.: NumPy Beginner’s Guide. Packt Publishing Ltd., Birmingham (2013)
12. Koegler, W., Chen, J., Shoshani, A.: Using bitmap index for interactive exploration

of large datasets. In: 15th International Conference on Scientific and Statistical
Database Management, 2003, pp. 65–74, July 2003

13. Lakner, G., Knudson, B., et al.: IBM System Blue Gene solution: Blue Gene/Q
System Administration. IBM Redbooks, Indianapolis (2013)

14. Lenard, B., Wagner, J., Rasin, A., Grier, J.: SysGen: system state corpus generator.
In: Proceedings of the 15th International Conference on Availability, Reliability and
Security, pp. 1–6 (2020)

15. McNally, S.T., et al.: High performance computing facility operational assessment
2016-oak ridge leadership computing facility. Technical report, Oak Ridge National
Lab. (ORNL), Oak Ridge, TN (United States) (2017)

16. NERSC: Nersc operational assessment review highlights. https://www.nersc.gov/
assets/NUG-2016-business-day/3-OAR-Highlights-NUG-Mar-2016.pdf

17. Oliner, A., Stearley, J.: What supercomputers say: a study of five system logs.
In: 37th Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN’07), pp. 575–584, June 2007. https://doi.org/10.1109/DSN.2007.
103

18. Oracle: Logical database limits. https://docs.oracle.com/en/database/oracle/
oracle-database/18/refrn/logical-database-limits.html#GUID-685230CF-63F5-
4C5A-B8B0-037C566BDA76

19. Oracle: Mysql : Mysql 8.0 reference manual : C.10.4 limits on table column count
and row size. https://dev.mysql.com/doc/refman/8.0/en/column-count-limit.html

20. Oracle: Rman data repair concepts. https://docs.oracle.com/cd/E11882_01/
backup.112/e10642/rcmrvcon.htm#BRADV117

21. Pautsch, G., Roweth, D., Schroeder, S.: The cray R© xcTM supercomputer series:
energy-efficient computing. Technical report (2013)

22. Raman, V., et al.: Db2 with BLU acceleration: so much more than just a column
store. Proc. VLDB Endow. 6(11), 1080–1091 (2013)

23. Sharma, V.: Bitmap index vs. b-tree index: which and when? https://www.oracle.
com/technetwork/articles/sharma-indexes-093638.html

https://doi.org/10.1109/CLUSTER.2015.125
https://doi.org/10.1109/CLUSTER.2015.125
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.4336
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.4336
https://www.ibm.com/support/knowledgecenter/en/SSEPGG_11.1.0/com.ibm.db2.luw.admin.perf.doc/doc/c0005140.html
https://www.ibm.com/support/knowledgecenter/en/SSEPGG_11.1.0/com.ibm.db2.luw.admin.perf.doc/doc/c0005140.html
https://www.ibm.com/support/knowledgecenter/en/SSEPGG_11.1.0/com.ibm.db2.luw.admin.perf.doc/doc/c0005140.html
https://www.ibm.com/support/knowledgecenter/SSEPGG_11.1.0/com.ibm.db2.luw.sql.ref.doc/doc/r0001029.html
https://www.ibm.com/support/knowledgecenter/SSEPGG_11.1.0/com.ibm.db2.luw.sql.ref.doc/doc/r0001029.html
https://www.ibm.com/support/knowledgecenter/en/SSEPGG_11.1.0/com.ibm.db2.luw.admin.perf.doc/doc/c0005301.html
https://www.ibm.com/support/knowledgecenter/en/SSEPGG_11.1.0/com.ibm.db2.luw.admin.perf.doc/doc/c0005301.html
https://www.nersc.gov/assets/NUG-2016-business-day/3-OAR-Highlights-NUG-Mar-2016.pdf
https://www.nersc.gov/assets/NUG-2016-business-day/3-OAR-Highlights-NUG-Mar-2016.pdf
https://doi.org/10.1109/DSN.2007.103
https://doi.org/10.1109/DSN.2007.103
https://docs.oracle.com/en/database/oracle/oracle-database/18/refrn/logical-database-limits.html#GUID-685230CF-63F5-4C5A-B8B0-037C566BDA76
https://docs.oracle.com/en/database/oracle/oracle-database/18/refrn/logical-database-limits.html#GUID-685230CF-63F5-4C5A-B8B0-037C566BDA76
https://docs.oracle.com/en/database/oracle/oracle-database/18/refrn/logical-database-limits.html#GUID-685230CF-63F5-4C5A-B8B0-037C566BDA76
https://dev.mysql.com/doc/refman/8.0/en/column-count-limit.html
https://docs.oracle.com/cd/E11882_01/backup.112/e10642/rcmrvcon.htm#BRADV117
https://docs.oracle.com/cd/E11882_01/backup.112/e10642/rcmrvcon.htm#BRADV117
https://www.oracle.com/technetwork/articles/sharma-indexes-093638.html
https://www.oracle.com/technetwork/articles/sharma-indexes-093638.html

PrivSketch: A Private Sketch-Based
Frequency Estimation Protocol for Data

Streams

Ying Li1,2, Xiaodong Lee1,2(B), Botao Peng1(B), Themis Palpanas3,
and Jingan Xue4

1 Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
{XL,pengbotao}@ict.ac.cn

2 University of Chinese Academy of Sciences, Beijing, China
3 LIPADE, Université Paris Cité, French University Institute (IUF), Paris, France

4 Huawei Technologies, Shenzhen, China

Abstract. Local differential privacy (LDP) has recently become a pop-
ular privacy-preserving data collection technique protecting users’ pri-
vacy. The main problem of data stream collection under LDP is the
poor utility due to multi-item collection from a very large domain. This
paper proposes PrivSketch, a high-utility frequency estimation proto-
col taking advantage of sketches, suitable for private data stream collec-
tion. Combining the proposed background information and a decode-first
collection-side workflow, PrivSketch improves the utility by reducing the
errors introduced by the sketching algorithm and the privacy budget uti-
lization when collecting multiple items. We analytically prove the supe-
rior accuracy and privacy characteristics of PrivSketch, and also evaluate
them experimentally. Our evaluation, with several diverse synthetic and
real datasets, demonstrates that PrivSketch is 1–3 orders of magnitude
better than the competitors in terms of utility in both frequency estima-
tion and frequent item estimation , while being up to ∼100× faster.

1 Introduction

Motivation. Collecting user data, often in the form of a data stream, in order
to analyze them and provide some services has become a common practice.
However, data collection may expose user information, which is a major concern.
Local Differential Privacy (LDP) is popular to protect individual privacy during
data collection and has been widely used in technology companies (such as Apple,
Google, Microsoft). It perturbs data locally before sending them to the collector
and enables the collector to obtain approximate statistics on the perturbed data,
to avoid the risk of disclosing user privacy. A parameter ε is used to quantify the
amount of perturbation, which determines the degree of privacy protection and
the utility of the privacy-preserving algorithm.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C. Strauss et al. (Eds.): DEXA 2023, LNCS 14146, pp. 147–163, 2023.
https://doi.org/10.1007/978-3-031-39847-6_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-39847-6_10&domain=pdf
https://doi.org/10.1007/978-3-031-39847-6_10

148 Y. Li et al.

Utility Problem. Although several studies have focused on the frequency esti-
mation problem under LDP, they do not perform well when used in a data
stream context, due to following reasons. First, existing solutions consider a
unified size for the data items generated by different users (i.e., data length)
that is based on unrealistic assumptions (assume only one item in a collection
interval) [10,25], or a predefined/estimated unified size L for each collection
(padding and sampling) [19,22,23], in both cases hurting utility. Second, the
large domains of several data streams (e.g., URLs, and IP) lead to excessive
computation and communication costs, as well as significant perturbation errors
(some of the existing literature on frequency estimation [22,23] is only applicable
to small cardinality domains).

Sketching is widely used in streaming data processing for compressing sparse
data from a large domain (e.g., when a tiny percentage of webpages are accessed
by any individual user). The uniform size of sketches makes it possible to unify
the data length of different users without extra padding and sampling [19], and
leads to efficient storage. The sketching has been combined with LDP in the
Private Count-Mean Sketch (PCMS) algorithm [20] proposed by Apple. However,
it operates at the granularity of single items, which hurts performance. When
considering extending it to multi-item collections, the following problems emerge.
(i) The error introduced by sketching algorithms is not considered. Aggregating
sketches from users directly is equivalent to encoding all data into one sketch,
leading to increasing errors of collisions, i.e., data hashed in the same position.
(ii) To maintain user-level privacy, allocating the privacy budget for each counter
in the sketch is required, resulting in substantial inaccuracies and poor utility.

Our Solution. We propose PrivSketch, a high-utility privacy-preserving sketch-
based frequency estimation protocol that leads to lower errors when compared to
existing solutions. PrivSketch proposes an innovative LDP collector-side work-
flow that decodes the perturbed sketch before aggregating and calibrating it,
which avoids the error introduced by the collisions when aggregating all per-
turbed sketches in the traditional decode-after workflow. In addition, PrivSketch
utilizes the ordering matrix extracted from the original sketch, which enables the
collector to obtain the minimum index information, while ensuring the privacy
of each user’s sketch (cf. proof in Sect. 3.4). This effectively reduces the mini-
mum calculation error caused by disturbance and is the first attempt to improve
utility using background information. Furthermore, PrivSketch uses the sam-
pling technique to improve the utilization of the information encoded by the
sketch, transmitting relatively accurate information with a limited privacy bud-
get. Thus, it reduces the error caused by the uniform allocation of the privacy
budget when encoding multiple items.

Contributions. Our contributions are summarized below.

• We propose a novel LDP protocol, PrivSketch, that is suitable for frequency
estimation in data streams where multi-item encoding is needed. It is the first
sketch-based privacy-preserving protocol that considers the errors introduced
by the sketches with a novel decode-first workflow. It employs background

PrivSketch: A Private Sketch-Based Frequency Estimation Protocol 149

information to reduce the minimum value calculation errors of sketches and
utilizes a sampling technique to improve the privacy budget utilization.

• We prove (cf. Sect. 3.4) that the ordering matrix as background information
does not expose the original value of each counter in the sketch, which meets
the privacy needs of users. We introduce a new definition of the indistinguish-
able input set, where the collector cannot distinguish any two values. We
observe that the utility of LDP algorithms can be improved with appropriate
additional background information , but does not harm the users’ privacy.

• We evaluate our approach on both synthetic and real datasets. We compare it
with extensions and variants of existing algorithms, including the multi-item
encoding extension and its min-variant algorithm. The utility of the protocol
proposed in this paper is 1–3 orders of magnitude more accurate than existing
algorithms, and up to ∼100× faster.

2 Background and Preliminaries

Local Differential Privacy (LDP). Differential privacy (DP) [13] is a technol-
ogy with quantified privacy protection, but relies on a trustworthy third-party
collector. To remove the trust in the collector, LDP [11] was proposed where
original data are only accessible by users, and the collector only receives the
perturbed data. A mechanism M satisfying LDP can be defined as follows.

Definition 1 (ε-Local Differential Privacy [11]). A randomized algorithm
M satisfies ε-local differential privacy (ε > 0), if and only if for any two input
tuples x, x′ ∈ D and output y, then Pr[M(x)=y]

Pr[M(x′)=y] ≤ eε.

Thus, a smaller ε means large perturbation and more indistinguishable, but lower
utility. There is an important property of LDP:

Theorem 1 (Sequential Composition Mechanism [17]). Assume a ran-
domized algorithm M consists of a sequence of randomized algorithms Mi(1 ≤
i ≤ t). When for each i,Mi satisfies εi-LDP, M satisfies

∑t
i=1 εi-LDP.

Randomized Response Mechanism (RR) [15,28]. This fundamental LDP
mechanism achieves plausible deniability by allowing users not to give the orig-
inal value. Specifically, for binary values, users answer the original value with
probability p, and the opposite value with probability q = 1−p. To achieve ε-
LDP, the worst case is maxPr[M(x)=y]

minPr[M(x′)=y] = p
1−p = eε, therefore p = eε

1+eε . Denote
Pr[x = 1] the percentage of x = 1. For the collector, Pr[y = 1] = p Pr[x =
1] + (1 − p)(1 − Pr[x = 1]) and Pr[y = 0] = p(1 − Pr[x = 1]) + (1 − p) Pr[x = 1].
Pr[y = 1] and Pr[y = 0] represent the probability of the output y taking the
value of 1 and 0, respectively, which can used to obtain the unbiased estimation
of Pr[x = 1] and Pr[x = 0].

Count-Min Sketch (CMS). A common approach to compress data from
a large domain is the sketching algorithm. The Count-Min Sketch [9] is one

150 Y. Li et al.

of the most popular sketching algorithms due to its efficiency. The sketching
uses a matrix X consisting of K × M counters, bound to K hash functions
H1,H2, . . . , HK : {1, . . . , d} �→ {1, . . . , M}. It consists of two phases: (i) update,
where K hash functions are used to hash the updated item x, and then the
corresponding counters are updated, i.e. Xk,Hk(x) = Xk,Hk(x) + 1,∀1 ≤ k ≤ K;
(ii) query, where item x’s count c(x) is estimated, denoted by c̃(x), based on the
corresponding counters in the sketch, i.e. min1≤k≤K Xk,Hk(x) [9].

Private Count-Mean Sketch (PCMS-Mean) [20]. PCMS-Mean estimates
frequency under LDP, where the user perturbs data before sending them to the
collector. Specifically, for item x, each user chooses a hash function Hk and
updates Xk,Hk(x) = 1 (other positions keep as −1), then, perturbs Xk using RR
and sends the perturbed result X̂k to the collector. The collector constructs a
matrix of size K×M where each row is the sum of the perturbed rows indexed by
k, and estimates the frequency by averaging the sum of k counters corresponding
to K hash functions. The algorithm assumes that each user generates only one
item. Thus, for any two rows from different users Xk and X ′

k′ , at most two
positions can be different. To protect these two positions under privacy budget
ε, the parameter p in RR is set to eε/2

1+eε/2 (cf. Theorem 1).
When extending PCMS-Mean to encode multiple items, the number of dif-

ferent positions in any two rows from different users is up to M due to unlimited
items of each user. Thus, to protect the privacy of each position, the parameter
p is set to eε/M

1+eε/M . This naive solution works poorly when M is large. The irra-
tional allocation of ε is one of the reasons. In addition, the error introduced by
the sketching algorithm is also non-negligible. The estimation error of different
sketching algorithms varies. The error of the Count-Min Sketch is smaller than
that of the Count-Mean Sketch [8]; hence, we use the Count-Min Sketch.

Problem Definition. This paper studies the frequency estimation problem
under LDP for data streams, where data are generated from a very large
domain. There is an untrusted collector and a set of n users represented by
U = {U1, U2, . . . , Un}. Each user, Ui, has a set of items of length L(i)(L(i) ≥ 0),
which is denoted by S(i) = {S

(i)
1 , S

(i)
2 , . . .}, |S(i)| = L(i). Each item S

(i)
� (0 ≤ � ≤

L(i)) is discrete value and drawn from a large domain D of size |D| = d, that is,
S
(i)
� ∈ D. In this paper, we focus on estimating the frequency of each item from

D, that represents the proportion of users who possess the item. Formally, the

frequency for each value x ∈ D is defined as: f(x) = |{i|∃�,0≤�≤L(i),S
(i)
� =x}|

n .

3 PrivSketch Solution

PrivSketch is a LDP protocol based on CMS to solve the frequency estima-
tion problem in data stream collection. PrivSketch uses a novel collector-side
workflow (cf. Sect. 3.2) and the ordering matrix (cf. Sect. 3.2) to reduce errors
introduced by sketches. PrivSketch also uses a sampling technique to increase
the information utilization in sketches under a limited privacy budget.

PrivSketch: A Private Sketch-Based Frequency Estimation Protocol 151

Fig. 1. Overview of PrivSketch.

Algorithm 1: PrivSketch
Input: {S(1), S(2), . . . , S(n)}, ε, K, M, D ⊂ D

1 select a set of hash functions H = {H1, H2, . . . , HK};
2 for each i ∈ [1, n] do

3 X̂(i), O(i) ← PrivSketch-User (S(i), ε, n, K, M, H);

4 send X̂(i), O(i) to the collector;

5 for each x ∈ D do

6 set X̂ ← {X̂(1), X̂(2), . . . , X̂(n)};
7 set O ← {O(1), O(2), . . . , O(n)};
8 f̂(x) ← PrivSketch-Collector (x, ε, n, M, H, X̂ , O);

9 return {f̂(x)|x ∈ D}

Figure 1 provides a high-level overview of PrivSketch workflow. At the user
end, the encoder encodes items using CMS and the perturber perturbs a sampled
one counter in the sketch using RR. Then, the perturbed counter X̂

(i)
k,m is sent to

the collector with an ordering matrix O(i) which reflects the order of all counters
in the original sketch X(i). At the collector end, the decoder restores X̂

(i)
k,m to

the original domain D by calculating each item’s minimum index based on O(i)

and updating counts of items x whose minimum index equal to the sampled k
and Hk(x) = m. Then, the calibrator estimates items’ frequency by aggregating
restored counts from users and calibrating the perturbation error. The protocol
is shown in Algorithm 1. We elaborate on its novel designs and details next.

3.1 Decoding-First Collector-Side Workflow

An important characteristic of PrivSketch is the decoding-first feature on the
collector side, which is designed to reduce the collisions in the private sketching
algorithm. The naive protocol, PCMS-Min as traditional LDP protocols, consists
of three steps: Encode, Perturb, and Aggregate [24]. Collisions can occur in the
Encode and Aggregate procedure. During encoding, the collision is caused by
that different items are hashed into the same positions, which can be reduced by
a good choice of the sketching parameters. During aggregation, sketches from n

152 Y. Li et al.

users are integrated into one sketch, equivalent to encoding data from n users
using the same sketch. This leads to a high probability of collisions due to the
large number of users under LDP. We find that decoding the perturbed data
before aggregation can avoid this collision, where the Decode procedure has
been implemented by the collector after the Aggregate procedure but ignored
by LDP protocol designers. If the collector decodes the perturbed data before
aggregation, only the perturbed counts instead of the sketches are aggregated,
thus, no collisions. We present theoretical proof for how the decode-first workflow
reduces collision errors following. Note in our design, we use Calibration instead
of Aggregate to describe the procedure where aggregating and calibrating errors
caused by the perturbation.

Theorem 2. For estimating the frequency of a value x ∈ D using Count-Min
Sketch, mink

∑n
i=1 X

(i)
k,Hk(x)

represents the results of aggregating sketches before

decoding,
∑n

i=1 mink X
(i)
k,Hk(x)

represents the results of decoding sketches before
aggregating, the following formula holds:

min
k

n∑

i=1

X
(i)
k,Hk(x)

≥
n∑

i=1

min
k

X
(i)
k,Hk(x)

≥ nf(x) (1)

where f(x) represents the true frequency of x.

Proof. For each user Ui and any 1 ≤ k ≤ K, X
(i)
k,Hk(x)

reflects the occurrence of
both x and x′(x′ 	= x), which are hashed into the same position with x.

X
(i)
k,Hk(x)

= 1{x ∈ S(i)} ∨ 1{x′ ∈ S(i),Hk(x) = Hk(x′)}.

For the minimum index k where X
(i)
k,Hk(x)

is minimal, the equation above holds.
As a
result,

∑n
i=1 mink X

(i)
k,Hk(x)

= nf(x) +
∑n

i=1 1{x′ ∈ S(i), x /∈ S(i),Hmink
(x) =

Hmink
(x′)} ≥ nf(x). Moreover,

∑n
i=1 X

(i)
k,Hk(x)

≥ ∑n
i=1 mink X

(i)
k,Hk(x)

,
1 ≤ k ≤ K. Considering mink is one of the case that belongs to [1,K], we
can conclude that mink

∑n
i=1 X

(i)
k,Hk(x)

≥ ∑n
i=1 mink X

(i)
k,Hk(x)

.

Thus, when an unbiased estimation of the query result of the original Count-
Min Sketch is achieved, the decode-first collector-side workflow brings fewer
errors. Next, we introduce how to ensure an unbiased estimation in PrivSketch.

3.2 Ordering Matrix Generation

In PrivSketch, the minimum index of the perturbed count can be changed
by the randomized response mechanism which hinders an unbiased estima-
tion. As shown in Fig. 1, the collector queries the perturbed sketch X̂(i) and
estimates based on it. Assume the calibration for estimation of the frequency

PrivSketch: A Private Sketch-Based Frequency Estimation Protocol 153

f(x) in D, is based on sketches X̂(i) with a linear function h(x), i.e. f̂(x) =
h(

∑n
i=1 mink X̂

(i)
k,Hk(x)

). PrivSketch needs to satisfy the expectation of the vari-
able after perturbation is an unbiased estimation of the result from querying the
original sketch f̃(x) = 1

n

∑n
i=1 mink X

(i)
k,Hk(x)

. That is,

E[f̂(x)] = E[h(
n∑

i=1

min
k

X̂
(i)
k,Hk(x)

)] = f̃(x) =
1
n

n∑

i=1

min
k

X
(i)
k,Hk(x)

.

Assuming that the row indices of the minimum count for x in the perturbed
and original sketches are k′ and k, if k 	= k′,

E[X̂
(i)

k′,H′
k
(x)

] = pX
(i)

k′,H′
k
(x)

− qX
(i)

k′,H′
k
(x)

= (p − q)X
(i)

k′,H′
k
(x)

≥ (p − q)min
k

X
(i)

k,Hk(x),

where p and q represent the probability of keeping the original value and flipping
to the opposite value, respectively. Due to the randomization, the minimum
count in the perturbed sketch is not always in the same position as in the original
sketch, i.e., k 	= k′. However, because the gap between different counts in sketches
is diverse and related to the count of specific items, it is difficult to turn the above
inequality into an equation by constructing a h(x). To solve this problem, we
propose the ordering matrix.

The ordering matrix O(i) is the background information provided by users,
to assist the collector in getting the same row index of the minimum value
as the original matrix, which takes advantage of the insensitivity of LDP to
any background information to keep the privacy. The ordering matrix O(i) is
a K × M matrix, where each position represents the serial number of the cor-
responding position in the original sketch X(i) ordered by count. Firstly, each
counter X

(i)
k,m is distributed into different groups G

(i)
v according to its count v.

As a result, G
(i)
v includes a set of counters {(k,m)|X(i)

k,m = v} and its length is

denoted by |G(i)
v | = gv. Secondly, each group Gv is bound with its order range

R
(i)
v = [

∑
v′≤v gv′ ,

∑
v′≤v gv′ + gv]. Thirdly, we randomly sample an order with-

out replacement from R
(i)
v for each counter in G

(i)
v where the order selected for

each counter X
(i)
k,m is denoted as r

(i)
k,m. Finally, we update the ordering matrix

O
(i)
k,m = r

(i)
k,m. Thus, the collector can get the same minimum index by comparing

the order of counters in O(i): this has the same result as calculating the minimum
index on the original sketch X(i). An example is shown in Fig. 2.

In the following, we prove the estimation is unbiased in PrivSketch (Sect. 3.3),
and analyze the impact of the ordering matrix on privacy (Sect. 3.4).

3.3 Utility Proof and Improvements

We present the protocol details on the user- and collector-side. We prove that
the estimations are unbiased, and analyze the variances of errors, then employ
sampling to achieve high utility.

154 Y. Li et al.

Fig. 2. The process of generating the ordering matrix.

Algorithm 2: PrivSketch-User
Input: S(i), ε, n, K, M, H

1 initialize a sketch X(i) ← {0}K×M ;

2 for each � ∈ [1, L(i)],each k ∈ [1, K] do

3 X
(i)

k,Hk(s
(i)
�

)
= 1;

4 generate the ordering matrix O(i);
5 for each k ∈ [1, K], each m ∈ [1, M] do
6 sample r from [0, 1] uniformly;
7 if r < 1

eε/KM+1
then

8 X̂
(i)

k,Hk(s
(i)
�

)
= −2X

(i)

k,Hk(s
(i)
�

)
+ 1;

9 else

10 X̂
(i)

k,Hk(s
(i)
�

)
= 2X

(i)

k,Hk(s
(i)
�

)
− 1;

11 return X̂(i), O(i)

User-Side Protocol (Algorithm 2). It consists of an encoder (lines 1–4)
and a perturber (lines 5–10). In the encoder, each user records locally whether
x appears, because our objective is to obtain the frequency of any value x in
D (instead of counts). Consequently, an update in the encoder is a boolean
disjunction, not an integer addition. Each position Xk,m is initialized as False
(i.e., 0). When x is hashed to Xk,m, the update is Xk,m = Xk,m ∨ True =
True (line 3). After encoding, the ordering matrix is computed by the encoder.
The perturber uses the randomized response mechanism (as in PCMS-Mean) to
perturb each value to the opposite value with a probability of 1

eε/KM+1
due to

at most K × M different positions.

Collector-Side Protocol (Algorithm 3). First, the decoder estimates the
perturbed frequency of the value x using the perturbed minimum in X̂ . The
position of the minimum is provided by the background information O (line 4).
Next, the calibrator removes the perturbation error to obtain the final estimation
(line 6). The utility proof of the protocols follows.

PrivSketch: A Private Sketch-Based Frequency Estimation Protocol 155

Algorithm 3: PrivSketch-Collector

Input: x, ε, n, M, H, X̂ , O
1 select a set of hash functions H = {H1, H2, . . . , HK};
2 C(x) ← 0;
3 for each i ∈ [1, n] do

4 kmin ← arg min
k

O
(i)

k,Hk(x);

5 C(x) ← C(x) + X̂
(i)

kmin,Hkmin
(x);

6 f̂(x) ← 1
2
(eε/KM+1

eε/KM −1

C(x)
n

+ 1);

7 return f̂(x)

Theorem 3. Let C(x) denote the perturbed counters for each value in D. f̂(x) =
1
2 (eε/KM+1

eε/KM −1
C(x)

n + 1) is an unbiased estimation of f̃(x) = 1
n

∑n
i=1 mink X

(i)
k,Hk(x)

which is the frequency inferred from the original count-min sketch. Furthermore,
the variance of f̂(x) is eε/KM

n(eε/KM −1)2
.

Proof. For each user Ui, the counters for the item x in row k of perturbed
sketch X̂ is denoted by X̂

(i)
k,Hk(x)

, which value is determined by X
(i)
k,Hk(x)

(lines 6–10 in Algorithm 2). C(x), which represents the result by aggregating
the perturbed counters at the minimum position mink X̂

(i)
k,Hk(x)

(x), equal to
∑n

i=1 mink X̂
(i)
k,Hk(x)

(x), satisfies: E[C(x)] = 2(p−q)nf̃(x)+(2q−1)n, Var[C(x)] =

4n{(p + q − 1)(p − q)f̃(x) + q(1 − q)}, where nf̃(x) is the estimated number of
users with x in their sequences using the set of original sketch X . In our pro-
tocol, p = eε/KM

eε/KM+1
, q = 1

eε/KM+1
. Thus, the expectation of f̂(x), can be shown

to be equal to f̃(x) as follows, which means the estimation is unbiased. And its
variance of f̂(x) is satisfied:

E[f̂(x)] =
1
2
(
eε/KM + 1
eε/KM − 1

E[C(x)]
n

+ 1) = f̃(x) (2)

Var[f̂(x)] =
1

4n2

(eε/KM + 1)2

(eε/KM − 1)2
Var[C(x)] =

eε/KM

n(eε/KM − 1)2
. (3)

Sample the Sketches. Following the above design, larger K and M make the
perturbation probability closer to 1

2 as random. And the variance also increases
at the same time. The limited privacy budget ε/KM for each counter makes
the collector receive scarcely useful information from the perturbed sketches,
making it difficult to infer the true frequency. To solve the problem, the sampling
technique is a common solution, i.e., randomly sampling one from K ·M counters
on the user end. Thus, for each counter chosen, the privacy budget becomes ε.
The variance now is Var[f̂(x)] = KMeε

n(eε−1)2 , which is linearly related to K ·M due

156 Y. Li et al.

to the sampling error, thus increasing more slowly than the exponential relation
in Eq. (3). However, it is challenging to obtain the optimal sketching, because as
K and M increase, the collision error introduced by Count-Min Sketch decreases,
which is also related to the data domain size d and its distribution [9]. Though,
we experimentally evaluate the effect of K and M on frequency estimation in
Sect. 4.2. Besides, the utility of sampling in sketches is also verified by comparing
with traditional PSFO [26] in Sect. 4.1.

3.4 Privacy Analysis

When the user sends only the perturbed counter X̂
(i)
k,m to the collector with the

flipping probability 1
eε+1 , ε-LDP is satisfied. However in PrivSketch, the user

need also send the ordering matrix O(i) to the collector which may expose useful
messages and indirectly damage the privacy. In the following, we analyze the
influence of O(i) on privacy.

Fig. 3. Example of the effect of background information on indistinguishable input set.

The ordering matrix O(i) can be utilized to exclude some possible
inputs for the collector, but the collector still cannot distinguish some
inputs. As Fig. 3 shows, if O

(i)
k,m ≤ O

(i)
k′,m′ , X

(i)
k,m = 1 and X

(i)
k′,m′ = 0 will

not hold at the same time. Thus, the cases of the possible sketches of users
are reduced from 4 to 3 in the collector’s view. To quantify the effect of the
background information, we introduce indistinguishable input set to represent
the possible inputs in the collector’s view, denoted by T . According to the LDP
definition, any two inputs are indistinguishable regardless of any background
knowledge from the adversary. Therefore, we can deduce that any two inputs
in the indistinguishable set still satisfy the LDP definition, even though the
indistinguishable set becomes smaller than without the background information.

Theorem 4. Consider a mechanism M that satisfies ε-LDP, its indistinguish-
able input set T , and any two inputs x, x′. When the collector receives any output
y, along with the background information I, there exists an indistinguishable set
T ′ ⊆ T satisfying the following inequality: Pr[M(x)=y]

Pr[M(x′)=y] ≤ eε, x, x′ ∈ T ′.

PrivSketch: A Private Sketch-Based Frequency Estimation Protocol 157

Table 1. Datasets characteristics

Dataset n d max min P90 Dataset n d max min P90

Kosarak 990002 41270 2498 1 15 AOL 521693 1632788 61932 1 62

Dataset1 10000 100000 123 1 80 Dataset2 100000 100000 117 1 78

Dataset3 100000 20000 112 1 73 Dataset4 100000 40000 107 1 72

Dataset5 100000 60000 110 1 74 Dataset6 100000 80000 109 1 75

Proof. For any I, T can be divided into two parts, T+ and T−. The former rep-
resents the inputs that are consistent with the information I, i.e., the possible
inputs when I is true. The latter includes the inputs that contradict the informa-
tion I, that is, the impossible inputs when I is true. Based on I, the collector can
infer that the original input belongs to T+(⊆ T). For any two inputs x, x′ ∈ T+,
x, x′ is also in T . Therefore, following the definition of ε-LDP, Pr[M(x)=y]

Pr[M(x′)=y] ≤ eε

is satisfied and any two input x, x′ ∈ T ′ is distinguishable.

The indistinguishable input set T ′ computed by the ordering matrix
O is enough to protect the privacy of users in our problem. In PrivS-
ketch, what each user needs to protect is its original sketch matrix X(i). Thus,
the collector should not infer the value of any counter in X(i) is 1 or 0. In PrivS-
ketch, counters can be divided into two groups, G1 and G0, and g1 + g0 = KM .
Thus, when the collector receives O(i), the indistinguishable input set T ′ at most
includes KM + 1 possible sketches with different sizes of each group. There are
some constraints for sketches, e.g., it is impossible that g1 = 1, 2, 3, because
when there is an item occurred, for each k ∈ [1,K], ∃(k,m) ∈ G1,m ∈ [1,M].
Nevertheless, {0}KM , {1}KM ∈ T ′ always holds. Thus, there is no counter with
same value in different possible inputs, that is, its value is equal to 1 in some
inputs and equal to 0 in the other inputs. The collector still cannot determine
the value of each counter, which is sufficient to protect the privacy of users.

4 Experimental Evaluation

In this section, we evaluate the utility and running time of PrivSketch over
synthetic and real datasets, and analyze how the main parameters affect its
performance. For a comprehensive evaluation, we compare PrivSketch to the
state-of-the-art PCMS-Mean [20], and PSFO [26] based on OLH [24] (denoted
as PS-OLH in our experiments) for frequency estimation, and SVIM [26], a two-
phase heavy hitter discovery protocol for discovery of frequent items.

Environment. We implement all LDP protocols in Python and conduct exper-
iments on a server with 2 Intel Xeon 3206R Processors and 32G RAM running
Centos. We repeat each experiment 10 times and report the average results.

Datasets. We use 6 synthetic datasets and 2 real datasets (see Table 1).

• Synthetic Datasets: These datasets follow Zipf distribution that real data
stream often conforms to, with different number of users n and domain size
d.

158 Y. Li et al.

Fig. 4. Experimental results for frequency estimations.

Fig. 5. VAR and NCR when varying parameter k.

• Kosarak [4]: This dataset contains the clicked items that anonymized users
from a Hungarian online news portal, involving nearly 1M users and 40K
items.

• AOL [12]: This dataset contains search queries of users on AOL between
March 1 and May 31, 2016, with corresponding URLs clicked by them. The
dataset includes more than 500K users with 1.6 million distinct URLs.

Parameters. The number of hash functions K is set to 4, and each hash func-
tion’s hash domain size M is set to 128. The default privacy budget ε is 3, within
the acceptable range in many works [8,19,27].

Evaluation Measures. We use the following measures, including running time.

• Mean Squared Error (MSE). We evaluate the frequency estimation accu-
racy by MSE: 1

d

∑
x∈D(f̂(x) − f(x))2, where f(x) is x’s true frequency.

• Variance (Var). We measure the error of estimating the top-k frequency
terms using variance: 1

|Ce∩Ct|
∑

x∈Ce∩Ct
(nf̂(x) − nf(x))2.

• Normalized Cumulative Rank (NCR). To evaluate the estimation
of frequent items, NCR measures how many top-k items are identified
by the protocol with a quality function q(.). It is calculated as follows:∑

x∈Ce
q(x)/

∑
x′∈Ct

q(x′), where Ct and Ce represents the true top-k items
and the estimated top-k items respectively. For x ∈ Ct with a rank i,
q(x) = k + 1 − i. For x /∈ Ct, q(x) = 0.

4.1 Comparing to Advanced Protocols

Experiments for Frequency Estimation: We compare our protocol to two
advanced solutions: (i) a sketch-based solution, Multi-PCMS-Mean, which is an

PrivSketch: A Private Sketch-Based Frequency Estimation Protocol 159

Fig. 6. Comparison of running times.

Fig. 7. MSE when
varying ε, n = 104.

Fig. 8. MSE when varying parameters K, M , d.

extended version of PCMS-Mean [20] for multi-item collection, and (ii) a non-
sketch-based solution, PS-OLH, which is an advanced PSFO [26]. PSFO [26]
combines the padding and sampling technique with a basic frequency estimation
protocol to transform multiple-item into one-item problems. Because the optimal
local hash (OLH) [26] performs best when d ≥ 3eε + 2 (i.e., for large domains),
we choose the PSFO with OLH, i.e., PS-OLH, as our competitor. For a fair
comparison, we assume the distribution of user input length is known and set
the padding length l of PS-OLH to the 90th percentile of the user input [19]
(avoiding to use the privacy budget to estimate l).

We evaluate the MSE of frequency estimation under different privacy bud-
gets, varying from 0.5 to 16, on synthetic and real datasets. As shown in Fig. 4,
PrivSketch performs best, especially for small privacy budgets, which indicates
the high utility of PrivSketch and its strong privacy protection.

Experiments for Frequency Item Estimations: We also evaluate the per-
formance of PrivSketch in frequent item mining (i.e., heavy hitter discovery),
a popular application of frequency estimation. We compare it with the existing
advanced multi-phase protocol, SVIM [26], which is the improved work after
LDPMiner [19] and is also applicable in large domains. As shown in Fig. 5,
PrivSketch performs better than SVIM, especially in frequency estimation for
top-k items. It is expectable because PrivSketch has been designed for accurate
frequency estimation, not frequent item identification.

160 Y. Li et al.

Evaluation of Running Time. As shown in Fig. 6, Privsketch maintains a
user-side running time smaller than 0.01 s while performing the calculation of
the ordering matrix. Overall, PrivSketch is faster than PS-OLH and SVIM about
100 times, but slower than Multi-PCMS-Mean with much larger MSEs (in Fig. 4).
The long running time of PS-OLH, SVIM and PrivSketch is the sacrificed time
of reducing domain cardinality to gain high utility. Thus they need to restore
the estimated items to the original domain for each user on the collector side,
resulting in a complexity of O(nd). In PrivSketch, each user shares the same hash
functions instead of local hash functions used in PS-OLH and SVIM, resulting
in fewer hash function calculations on the collector side. We omit experimental
results for PS-OLH and SVIM over AOL, because they need more than 10 days
to compute, making them cumbersome to use in practice.

4.2 Experiments with Different Parameters

In this section, we compare PrivSketch with other sketch-based solutions to
present the effect of our design under different parameters. In addition to Multi-
PCMS-Mean, its min-estimation variant (denoted by Multi-PCMS-Min) and a
middle version of PrivSketch without sampling (denoted by PrivSketch-noSmp)
are also compared, to show the better utility of min estimation and the effect of
our decode-first and sampling design.

Utility with Small Number of Users. We evaluate the MSE on Dataset1
with 104 users under a privacy budget range [2, 128]. Note the unrealistic privacy
budget used here is to show the effect of our designs. In Fig. 7, PrivSketch always
performs best especially under a small ε. We observe similar results (omitted for
brevity) when n varies in [104,106]. The result verifies that decode-first workflow
with the ordering matrix effectively reduces the collision probability of sketches,
and the min estimation has better accuracy than the mean estimation.

Impact of the Size of the Domain. We conduct this experiment on a group of
synthetic datasets, which sets K,M and ε with default values, fixes n = 105, and
varies the domain size d. As shown in Fig. 8(c), the errors of the four protocols
only slightly increase with the increase of d. Theoretically, in a larger domain,
when the sketch size is fixed, the collision probability increases, leading to an
increase in error. However, since the items held by each user are sparse compared
to the domain space, and the distribution of the number of items held by each
user changes a little, the domain size change has a small impact. This confirms
that sketching is an effective domain reduction and encoding method for data
collection from a large domain.

Impact of the Parameters of the Sketch. In Fig. 8, we evaluate the effects of
different K and M of the sketching using the datasets with parameters n = 105,
d = 105 under ε = 3. In Fig. 8(a), we can see that the utility of the PrivSketch
is far better than the other three protocols under different M while fixing the
hash vector size K = 4. As expected, increasing the size of the hash vector
can reduce the estimation error. However, when M increases to a specific value,

PrivSketch: A Private Sketch-Based Frequency Estimation Protocol 161

the error does not decrease but increases. This is because M affects two types
of errors in these sketch-based LDP protocols. When M increases, the collision
probability decreases, but the perturbation probability or the sampling errors
increases. Varying the K brings a similar result to M , as shown in Fig. 8(b).
However, the effects of K on Multi-PCMS-Mean protocol is different. Changes
of K do not affect its MSE, because the effect of choosing one of the K hash
functions when encoding is eliminated by the sum of K counters corresponding
to K hash functions during the estimation process.

5 Related Work

Set-Valued Data Collection. The diverse set size is a challenge for set-value
data collection under LDP. Padding and Sampling [19] is a common way to unify
the set length, such as in PSFO [26], PrivSet [22]. Although Wang [23] proposes
the wheel mechanism to reduce the computational overhead, these works do not
aim at a large domain, where an efficient data structure is needed. Many works [3,
19,26,27], focus on frequent item mining, also known as heavy-hitters discovery
in a huge domain. They utilize a multi-phase strategy to reduce the large domain
size first, using a small part of the privacy budget to discover frequent candidates,
and using the remaining part to obtain an accurate estimation. Nevertheless, this
strategy is not suitable for estimating frequency.

Frequency Estimation with Hash-Encoding Technique. Under LDP set-
tings, to reduce the data domain, RAPPOR [15] adopts Bloom filters to encode
data, which requires expensive computations to use LASSO regression for the
estimation. OLH [24] utilizes local hash functions to encode the user data, which
requires a large number of hash calculations. With a simpler estimation solution,
Count-Mean Sketch [20] was proposed to compute the populated emoji in IOS.
[18,21] improve it by sending multiple sketches for each user, which also brings
extra communication costs. [3] uses Count-Median Sketch with the Hadamard
transform when computing the heavy hitters. [8] analyzes and compares LDP
protocols with different sketching algorithms, including the Count-Min Sketch.
However, these protocols, designed for the one-item collection, do not consider
the error introduced by the sketching algorithm. Recently, [30] utilized hash
functions to compute the frequency and the mean estimation of the k-sparse
vector, with an assumption on the number of items each user generates.

Variants of LDP. Lots of works focus on optimizing the variants of LDP to
improve its utility. Some works introduce extra trust in LDP, such as shuffling
anonymized reports from users [7,14], and combining the centralized DP with the
local version [2]. Some works introduce an extra parameter to relax the privacy
constraint, such as [1,16] that use the distance metric of two inputs to improve
the utility, which is inspired by the geo-indistinguishability concept [5]. Finally,
some studies propose discriminative LDP based on different aspects, such as
personalized privacy demand [6,29]. These works do not utilize the background
information to enhance utility as we do in this paper.

162 Y. Li et al.

6 Conclusions

This paper studies the frequency estimation problem under local differential
privacy. We propose a privacy-preserving data collection protocol, PrivSketch,
which does not expose the original value of any counter in the sketch. We exper-
imentally verify the effectiveness of PrivSketch: it outperforms existing LDP
protocols by 1–3 orders of magnitude and executes up to ∼100× faster.

Acknowledgments. We sincerely thank Dr. Zhenyu Liao for his insightful and con-
structive comments and suggestions on mathematical proof that help to improve the
quality. This work is funded by NSFC Grant No. 62202450, Huawei New IP open iden-
tification resolution system project No. TC20201119008 and Postdoctoral Exchange
Program No. YJ20210185.

References

1. Alvim, M.S., Chatzikokolakis, K., Palamidessi, C., Pazii, A.: Metric-based local
differential privacy for statistical applications. arXiv preprint (2018)

2. Avent, B., Korolova, A., Zeber, D., Hovden, T., Livshits, B.: BLENDER: enabling
local search with a hybrid differential privacy model. In: USENIX Security (2017)

3. Bassily, R., Nissim, K., Stemmer, U., Guha Thakurta, A.: Practical locally private
heavy hitters. In: NIPS, vol. 30 (2017)

4. Bodon, F.: A fast apriori implementation. In: FIMI, vol. 3, p. 63 (2003)
5. Chatzikokolakis, K., Andrés, M.E., Bordenabe, N.E., Palamidessi, C.: Broaden-

ing the scope of differential privacy using metrics. In: De Cristofaro, E., Wright,
M. (eds.) PETS 2013. LNCS, vol. 7981, pp. 82–102. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-39077-7 5

6. Chen, R., Li, H., Qin, A.K., Kasiviswanathan, S.P., Jin, H.: Private spatial data
aggregation in the local setting. In: ICDE (2016)

7. Cheu, A., Smith, A., Ullman, J., Zeber, D., Zhilyaev, M.: Distributed differential
privacy via shuffling. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS,
vol. 11476, pp. 375–403. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-17653-2 13

8. Cormode, G., Maddock, S., Maple, C.: Frequency estimation under local differential
privacy. PVLDB 14(11), 2046–2058 (2021)

9. Cormode, G., Muthukrishnan, S.: An improved data stream summary: the count-
min sketch and its applications. J. Algorithms 55(1), 58–75 (2005)

10. Ding, B., Kulkarni, J., Yekhanin, S.: Collecting telemetry data privately. In: NIPS,
vol. 30 (2017)

11. Duchi, J.C., Jordan, M.I., Wainwright, M.J.: Local privacy and statistical minimax
rates. In: FOCS, pp. 429–438 (2013)

12. Dudek, G.: Aol search log (2007). http://www.cim.mcgill.ca/∼dudek/206/Logs/
AOL/

13. Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in
private data analysis. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876,
pp. 265–284. Springer, Heidelberg (2006). https://doi.org/10.1007/11681878 14

14. Erlingsson, Ú., Feldman, V., Mironov, I., Raghunathan, A., Talwar, K., Thakurta,
A.: Amplification by shuffling: from local to central differential privacy via
anonymity. In: SODA (2019)

https://doi.org/10.1007/978-3-642-39077-7_5
https://doi.org/10.1007/978-3-030-17653-2_13
https://doi.org/10.1007/978-3-030-17653-2_13
http://www.cim.mcgill.ca/~dudek/206/Logs/AOL/
http://www.cim.mcgill.ca/~dudek/206/Logs/AOL/
https://doi.org/10.1007/11681878_14

PrivSketch: A Private Sketch-Based Frequency Estimation Protocol 163

15. Erlingsson, Ú., Pihur, V., Korolova, A.: RAPPOR: randomized aggregatable
privacy-preserving ordinal response. In: CCS (2014)

16. Gursoy, M.E., Tamersoy, A., Truex, S., Wei, W., Liu, L.: Secure and utility-aware
data collection with condensed local differential privacy. TDSC 18, 2365–2378
(2019)

17. McSherry, F.D.: Privacy integrated queries: an extensible platform for privacy-
preserving data analysis. In: SIGMOD, pp. 19–30 (2009)

18. Piao, C., Hao, Y., Yan, J., Jiang, X.: Privacy protection in government data shar-
ing: an improved LDP-based approach. SOCA 15, 309–322 (2021). https://doi.
org/10.1007/s11761-021-00315-3

19. Qin, Z., Yang, Y., Yu, T., Khalil, I., Xiao, X., Ren, K.: Heavy hitter estimation
over set-valued data with local differential privacy. In: CCS, pp. 192–203 (2016)

20. Team, D.P.: Learning with privacy at scale. Apple Mach. Learn. J. 1(8) (2017)
21. Vepakomma, P., Pushpita, S.N., Raskar, R.: DAMS: meta-estimation of private

sketch data structures for differentially private COVID-19 contact tracing. Tech-
nical report (2021)

22. Wang, S., Huang, L., Nie, Y., Wang, P., Xu, H., Yang, W.: PrivSet: set-valued data
analyses with locale differential privacy. In: INFOCOM, pp. 1088–1096 (2018)

23. Wang, S., Qian, Y., Du, J., Yang, W., Huang, L., Xuy, H.: Set-valued data pub-
lication with local privacy: tight error bounds and efficient mechanisms. PVLDB
13, 1234–1247 (2020)

24. Wang, T., Blocki, J., Li, N., Jha, S.: Locally differentially private protocols for
frequency estimation. In: USENIX Security Symposium, pp. 729–745 (2017)

25. Wang, T., et al.: Continuous release of data streams under both centralized and
local differential privacy. In: CCS (2021)

26. Wang, T., Li, N., Jha, S.: Locally differentially private frequent itemset mining.
In: S&P, pp. 127–143 (2018)

27. Wang, T., Li, N., Jha, S.: Locally differentially private heavy hitter identification.
TDSC 18(2), 982–993 (2019)

28. Warner, S.L.: Randomized response: a survey technique for eliminating evasive
answer bias. J. Am. Stat. Assoc. 60(309), 63–69 (1965)

29. Yiwen, N., Yang, W., Huang, L., Xie, X., Zhao, Z., Wang, S.: A utility-optimized
framework for personalized private histogram estimation. IEEE TKDE 31, 655–
669 (2018)

30. Zhou, M., Wang, T., Chan, T.H., Fanti, G., Shi, E.: Locally differentially private
sparse vector aggregation. In: S&P (2022)

https://doi.org/10.1007/s11761-021-00315-3
https://doi.org/10.1007/s11761-021-00315-3

On Tuning the Sorted Neighborhood
Method for Record Comparisons in a Data

Deduplication Pipeline
Industrial Experience Report

Paweł Boiński1 , Witold Andrzejewski1 , Bartosz Bębel1 ,
and Robert Wrembel1,2(B)

1 Poznan University of Technology, Poznań, Poland
{pawel.boinski,witold.andrzejewski,bartosz.bebel,

robert.wrembel}@put.poznan.pl
2 Artificial Intelligence and Cybersecurity Center, Poznań, Poland

Abstract. Assuring high quality of data stored in information systems
(ISs) is challenging and it is one of concerns of companies. Typically, data
stored in ISs are not free from errors, which include among others wrong
and missing values as well as duplicates. Data deduplication has received
a lot of attention from the research community. The research efforts have
resulted in a state-of-the-art data deduplication pipeline, supported by
software tools and algorithms. One of the tasks in the pipeline consists
in reducing the complexity of records comparisons. This task is known as
blocking. Multiple algorithms for blocking have been proposed and one
of them is the sorted neighborhood method. In this paper, we focus on
tuning and evaluating the method on a real data set composed of 5.5M
of customer records. To the best of our knowledge, this is the largest real
data set being used in research. The findings reported in this paper come
from a R&D project run for a big company in a financial sector.

Keywords: data deduplication pipeline · customers’ records
deduplication · sorted neighborhood · moving window size

1 Introduction

Institutions and enterprises worldwide use data governance strategies to manage
data collected by their day-to-day business applications. These strategies are
supported by the most advanced state-of-the-art data management and data
engineering solutions (typically commercial). Despite using these solutions, some
of the collected data include errors, like typos, wrong values, outdated values,
and duplicates. Faulty data mainly concern customers, both individuals and
institutions, since such data are typically entered manually into a system, are
imported from legacy systems, and change in time (e.g., last names, addresses).

A special case of faulty data are duplicated customer records. For example, in
a financial institution duplicates may be created as a result of: (1) acquisition of
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C. Strauss et al. (Eds.): DEXA 2023, LNCS 14146, pp. 164–178, 2023.
https://doi.org/10.1007/978-3-031-39847-6_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-39847-6_11&domain=pdf
http://orcid.org/0000-0003-4914-9394
http://orcid.org/0000-0001-9486-929X
http://orcid.org/0000-0002-6426-3809
http://orcid.org/0000-0001-6037-5718
https://doi.org/10.1007/978-3-031-39847-6_11

Tuning the Sorted Neighborhood Method 165

another institution, with its proper customer repositories, (2) financial products
that for each product require a separate customer record in a system, (3) the
imperfection of a software and processes used in data governance [5].

A remedy for the problem of duplicated data is a process of deduplication,
combined with data cleaning. In the research literature, a base-line data dedu-
plication (DD) pipeline has been proposed [12–14,17,20,21], cf. Sect. 2. It has
become a standard pipeline for multiple DD projects. A DD process needs to
compare pairs of records and compute their similarities. In an ideal case, com-
pared records were cleaned in advance, to correct typing errors and wrong val-
ues, substitute nulls with values as well as homogenize value formats (e.g., phone
numbers, dates), abbreviations, and names (e.g., street names). However, in real
DD projects it is impossible to fully clean all data [5,25].

A naive approach to discover duplicates is to compare records in pairs
between all records in a data set, which results in a quadratic computational
complexity. To reduce this complexity, multiple so-called blocking methods
(algorithms) have been developed and reported in the research literature, e.g.,
[3,4,8,11]. One of the algorithms is sorted neighborhood. This algorithm runs a
sliding window of a given size over a set of records.

The sorted neighborhood was proved to be adequate for efficient record com-
parison [27]. Moreover, it is intuitive and has lower computational complexity
than a naive blocking. Therefore, sorted neighborhood has gained a popularity
in various DD projects. It has been used to compare not only simple records but
also XML objects [23], RDF objects [15], and images [18]. A non-trivial task in
sorted neighborhood is to define an adequate size of the sliding window. A win-
dow that is too small prevents from discovering all potential duplicates, whereas
a too big window results in unnecessary comparisons of records, which are not
duplicates.

In this paper, we contribute our findings on tuning the size of the sliding
window in the sorted neighborhood method (see Sect. 4). The tuning was assessed
by a series of experiments, which were run on real customers data, within a
R&D project in the financial sector. The experiments reported in this paper
were run on a data set of over 5.5M records. To the best of our knowledge, it is
the largest real data set used in research on data deduplication techniques
and reported in the research literature.

2 Overview of Data Deduplication

In the simplest implementation of a duplicate discovery process, all records in
a given data set are pairwise compared with each other, at a quadratic com-
plexity. Such complexity is inadequate for large data sets. Therefore, in order
to facilitate duplicate discovery, the state-of-the-art data deduplication pipeline
was proposed. In this section we outline the pipeline and some aspects in the
pipeline that are pertinent to the topic of this paper.

166 P. Boiński et al.

2.1 Basic Data Deduplication Pipeline

The basic state-of-the-art data deduplication pipeline was used in multiple dedu-
plication projects, e.g., [12–14,17,20,21]. The DD pipeline includes four basic
tasks (see Fig. 1), namely:

– blocking (a.k.a. indexing) - it organizes records into groups (called block build-
ing), such that each group includes records that may include potential dupli-
cates; next, records in blocks are being pairwise compared;

– block processing (a.k.a. filtering) - its goal is to eliminate records that do not
need to be compared as they do not represent potential duplicates;

– entity matching (a.k.a. similarity computation) - it computes similarity values
between records compared in pairs, i.e., a value of each attribute in one record
is compared to a value of a corresponding attribute in the second record, in
the same pair;

– entity clustering - it aims at creating groups of similar records, from pairs of
records representing highly probable duplicates.

Fig. 1. The basic state-of-the-art data deduplication pipeline

Each of the four tasks in the DD pipeline is challenging and each task is
supported by dedicated algorithms, see [13] for a concise overview. In this paper,
we focus on a particular challenge within the blocking task. This challenge is in
optimizing record comparisons in groups.

2.2 Blocking

To reduce the quadratic complexity of record comparisons, the so-called blocking
method was developed [3,4,8,11]. The first step in blocking consists in clustering
similar records into a collection (called a block), such that similar records are
co-located in the same block. The goal of blocking is to: (1) maximize precision
and recall, and (2) reduce the number of unnecessary record comparisons [20].
Multiple blocking techniques (algorithms) have been developed and reported in
the research literature, see [20] for the most recent overview.

Once records are organized into blocks, block processing is run. It consists in
pairwise comparing records in a block. One of the algorithms used here is sorted
neighborhood, see Sect. 2.3.

Apart from the blocking algorithm that has to be carefully selected to serve
well a given problem at hand, another parameter of blocking is the so-called
blocking scheme [16,26]. It defines attributes that are used to organize records
into blocks. Notice that it is possible that only portions of attribute values (e.g.,

Tuning the Sorted Neighborhood Method 167

the year of a birthdate instead of the whole birthdate) can be used to organize
records into blocks.

The deduplication task, which is based on sorted neighborhood, is guided by
the following parameters: (1) a blocking scheme, (2) the size of a window in
which records are compared, and (3) similarity measures to compute similarities
between pairs of compared records. The values of these parameters impact pre-
cision, recall, and runtime of the task. Typically, their values are set by experts.

2.3 Sorted Neighborhood

As it has been already mentioned, the process of comparing records in pairs
is often implemented by the sorted neighborhood (SN) method. It consists in
comparing records with each other in a moving window of size w records. Thus,
within a given move of the window, only records that are enclosed by the window
are compared with each other. Next, the window moves one record further. This
record is then compared with all records that are enclosed by the window. This
process repeats until the last record in a data set is compared.

An example of three initial steps in the SN method is shown in Fig. 2, where
a data file includes M records (denoted as record1, record2, ..., recordM) and
the size of the moving window is equal to 3. In the first step, records 1, 2, and
3 are pairwise compared. In the second step, the window moves by 1 record to
include record4, which is compared with records in the window, i.e., 2 and 3.
This process repeats until reaching recordM.

In the simplest approach, the size of the window is fixed (further called a fixed-
size window). One challenge of the SN method is to define size of the moving
window, which would be adequate for a given problem at hand. A window of too
small size will prevent discovering all potential duplicates, since not all potential
duplicates will be enclosed by the window, thus will not be discovered. A window
of too big size will cause runtime deterioration, as in the same window there will
be compared records that are not duplicates, thus their comparisons will be
useless.

Fig. 2. Example steps in sorted neighborhood

168 P. Boiński et al.

A remedy for this problem is to use a window of a dynamic size [24,28].
The window will grow automatically until no potential duplicates are included
in the window. This technique is known as a dynamic or adaptive sorted neigh-
borhood. A few variants of the SN method with a dynamic window are possible.
They define the moment until which the window is extended. The three intuitive
approaches are the following:

– the window is extended until the values of selected compared attributes have
exactly the same values; this approach is used in our implementation of the
SN method;

– the window is extended until the similarity between the first and the last
record in the window is greater than a given threshold value; tuning this value
is nontrivial and it depends on the application domain and deduplication goals
(discussing this topic is out of the scope of this paper);

– the window is extended if needed but until it reaches a predefined maximum
size; this approach is also used in our implementation of the SN method.

2.4 Data Quality

In projects that process large amounts of data it is not possible to perfectly clean
all data delivered to the DD pipeline. First, because not all data can be cleaned
automatically - in such cases an expert knowledge and manual works are needed.
Second, the amount of data that needs to be cleaned by a human may be too
large to be done within a finite time and at reasonable monetary costs. Third,
some data like last names cannot be changed (corrected) without an explicit
permission of a customer, cf. [5,25]. As a consequence, data entering the DD
pipeline may not be 100% clean, which is the case of our project. Erroneous
data in our project include: transposed letters, missing letters, letters without
diacritical Polish signs, in some cases abbreviated names of streets and cities, in
some cases missing values of streets and/or cities.

For these reasons, data that are processed in the blocking task need to be
compared based on an overall similarity value of the compared records. Such a
similarity value, in turn, is computed based on similarities of values of attributes
being compared. Typically the overall similarity of two records is computed as
a weighted sum of similarities of individual attribute values. Multiple similarity
measures for text data have been proposed in the research literature, their cate-
gories are outlined in Sect. 2.5, and more information about them can be found
in [1,2,6,7,9,10,19].

2.5 Similarity Measures

Similarity measures represent one of the parameters to be set up in the sorted
neighborhood method. Multiple similarity measures have been proposed and
made available in various programming languages. The most popular similar-
ity measures for text data are typically categorized as [2,10,19]:

Tuning the Sorted Neighborhood Method 169

– edit distance - a distance between character strings s1 and s2 is measured by
the smallest number of edit operations that are required to convert s1 to s2,
e.g., Levenshtein, Damerau-Levenshtein, Smith-Waterman;

– n-grams - a distance between s1 and s2 is measured by the number of n-grams
common to both strings;

– set similarity - a distance between s1 and s2 is measured by the number of
characters common to both strings, e.g., Overlap, Jaccard, Sorensen-dice;

Selecting the right similarity measure for a given DD problem is not straight-
forward. Challenges and solutions to this issue were analyzed in [1,2,6,7,9].

2.6 Computing Overall Record Similarity

In order to decide whether two records in a pair represent duplicates, an overall
similarity of the whole records needs to be computed. To explain this, let us
introduce the following notations:

– Let R = {A1, A2, . . . , Ai} be the schema of all records being compared, where
Ai denotes an attribute.

– Let rm be a record of schema R: rm = {vm1 , vm2 , . . . , vmi }, where vmi is the
value of attribute Ai in record m.

– Let simF (vmi , vni) denote the similarity value between vmi and vni , which is
computed by means of similarity measure simF (see Sect. 2.5).

– Let wi denote the weight of attribute Ai.

Then, the similarity between rm and rn, denoted as simF (rm, rn), is computed
as a weighted sum of similarities of corresponding attribute values:

simF (rm, rn) =
n∑

i=1

wi ∗ simF (vmi , vni).

3 Experimental Setup

In our project, three classes of record pairs are distinguished, which represent:
(1) duplicates - denoted as T , (2) probable duplicates - P , and non-duplicates
- N . Class T includes pairs such that simF (rm, rn) ≥ 0.92, whereas class P
includes pairs such that 0.85 ≤ simF (rm, rn) < 0.92.

3.1 Experimental Environment

The following test environment was used to perform the experiments. Customer
data were stored in a relational database, and the deduplication process was
performed using both SQL language commands and a program implemented in
Python. The database served as the data source with sorting capability (nec-
essary for sorting neighborhood), while the Python program performed all the
computations for creating blocks and comparing records.

The experiments were run on a server with 64GB RAM and Intel(R) Xeon(R)
Gold 6226R CPU running at 2.9GHz.

170 P. Boiński et al.

3.2 Data Sets

The experiments were run on a real data set including records describing cus-
tomers of the financial institution. A customer record was composed of 23 typical
attributes describing a customer, all of them of text data types, which included
among others: (1) national ID, (2) first and last name, (3) living address, (4)
mailing address, and (5) contact numbers and emails. All these attributes were
used to compute similarities between record pairs. The total number of records
used in the experiments was equal to 5 557 224.

3.3 Blocking Scheme

In our DD pipeline, the sorted neighborhood algorithm was run on a customers
data set sorted by birthdate and last name. The sorting attributes had to fulfill
the following requirements: (1) sort records in such a way that potential dupli-
cates were collocated close to each other, (2) not include nulls, (3) include low
number of erroneous values. The sorting keys were selected based on: data pro-
filing, a statistical method that we developed for this purpose, and on expert
knowledge.

3.4 Computing Record Similarities

In our approach, the similarity between two records was computed as a weighted
sum of similarities of corresponding attribute values, as described in Sect. 2.6.
The similarity measure (simF) that we applied was Jaro-Winkler, available in
the textdistance Python package. The selection of the measure was based on
the evaluation of similarity measures reported in [2]. Weights wi of individual
attributes were found by means of: a mathematical programming algorithm [22],
experimental evaluation, manual tuning, and expert knowledge.

4 Results

The goal of the experimental evaluation was to find answers to the following
questions:

– How the number of discovered duplicates of classes T and P depends on the
size of a moving window, for the fixed-size and dynamic window methods?

– How the percentage of discovered duplicates of classes T and P depends on
the number of pair comparisons?

– How the percentage of discovered duplicates is impacted by a moving window
size?

Tuning the Sorted Neighborhood Method 171

4.1 Number of Discovered Duplicates w.r.t. Window Size

These experiments assessed how the percentage of discovered duplicates of class
T and class P depends on the size of a moving window, for the fixed-size and
dynamic window methods.

The fixed-size window (denoted as FW) ranged from: (1) 2 to 10 records,
increased by 1, (2) 10 to 100 records, increased by 10, and (3) 100 to 300 records
increased by 50. For the dynamic window (denoted as DW), it was assumed
that the minimum window size is analogous to that of a FW, but the maximum
window size was always constrained to 300. This means that for the DW of size
2 we allowed its size to increase from 2 up to 300 records. Note that for the DW
of maximum size 300, the content of generated blocks was exactly the same as
for the FW of size 300.

In each execution of the SN algorithm, the number of pairs that were verified
and the number of discovered duplicates T and probable duplicates P were
measured. Figures 3 and 4 show the number of duplicates of class T and P
discovered, respectively, depending on the type of a window used, i.e., fixed-size
or dynamic.

In Fig. 3 we can observe how the number of discovered duplicates T changes
depending on the type of a window and its size. For the smallest FW, i.e., the size
of 2, slightly over 240 000 duplicates were discovered, and this number increases
with the increasing size of the FW.

Fig. 3. The number of duplicates of class T discovered by the fixed-size and dynamic
window methods

Looking at the results obtained using the DW, we can observe that for the
smallest window, the number of discovered duplicates is already about 60 thou-
sand more than for the FW. Of course, increasing the minimum size of the DW
increases the number of discovered duplicates, but the growth rate decreases

172 P. Boiński et al.

slowly with the increase of the window size. For the window of size of 150
records, the results of the DW and FW are very similar and differ only by
595 pairs (0.19%).

Similar results for duplicates of class P are shown in Fig. 4. In this case, a
significant difference is observable only for the window with the smallest size,
i.e., for the FW, 120 964 pairs were discovered, whereas for the DW, 136 037
pairs were discovered (that is, 15 073 more). For the window of size 3, the values
are 134 788 (FW) and 137 554 (DW), respectively, i.e., the difference is equal to
2 766. Having performed a statistical test, it can be concluded that for windows
of sizes greater than 5 there is no statistically significant difference in the results
obtained by the FW and DW.

Fig. 4. The number of duplicates of class P discovered by the fixed-size and dynamic
window methods

It is also worth mentioning that for duplicates of class T , the results for the
DW were always at least as good as for the FW. For duplicates P we observed
situations in which very few duplicates P were detected using the FW, while they
were missing from the results obtained by the DW. The experiments revealed
that the total number of such pairs was equaled to only 7.

The differences in the results for duplicates P and T are due to the properties
of these different classes. Duplicates T usually are characterized by a significant
number of repeated or very similar elements. Hence, using a dynamic window,
neighbor groups of such similar values will be dynamically included in created
blocks. This has the effect of producing very good results even for a very small
window size. Duplicates P can be more diverse, including sorting key elements.
Thus, the chance that they will be dynamically added to created blocks are much
smaller.

Tuning the Sorted Neighborhood Method 173

4.2 Percentage of Discovered Duplicates w.r.t. Number of Pair
Comparisons

Figures 5 and 6 show the percentage of discovered duplicates w.r.t. the number
of compared pairs of records. The percentage is expressed in relation to the
maximum number of duplicates discovered in the experiment (notice that this
number was obtained for a window of size 300 records). Notice also that each
pair comparison has a constant time cost. Thus, the number of comparisons can
be directly translated into runtime.

The number of compared pairs depends on the window size, and for a FW it
can be easily calculated. For a DW, this number depends also on the character-
istics of the data being processed and it is limited by the maximum window size.
In Fig. 5 and 6 we show the results (i.e., the percentage of discovered duplicates)
w.r.t. the number of compared pairs (the minimum window size varied from 2
to 300).

Figure 5 shows the results for duplicates of class T . As we observe, the DW
allows to discover approx. 97% of duplicates T , cf. to approx. 77% of duplicates
P discovered by the FW (see the points close to value 0 on the X axis). By using
the DW, 5 548 234 pairs were compared, whereas by using the FW, 5 405 830
pairs were compared, i.e., the DW compared only 2.6% more pairs than the
FW, but it allowed to discover about 20% more pairs. The better performance
of the DW is also well visible at 1 ∗ 108 comparisons, where the DW allowed to
discover over 97.5% of duplicates, whereas the FW allowed to discover 92% of
duplicates (having run the same number of comparisons).

Further, we can observe that when the number of comparisons increases,
the percentage of discovered duplicates converges for the FW and the DW. At
approximately 1.1 ∗ 109 comparisons, both types of windows produce the same
number of discovered duplicates.

Figure 6 presents similar characteristics as the previous chart, but for discov-
ered duplicates of class P . In this case, the characteristics of the FW and DW
are very similar. The reason for such a behavior is that for duplicates of class P
it is more likely that they do not share the same sorting key with each other, as
compared to duplicates of class T . Thus, the possibility of discovering them is
more affected by the minimum size of the window than by its dynamic expansion
based on the common sorting key value. Consequently, the DW and FW allow
to discover similar numbers of pairs of type P .

4.3 Percentage Change of Discovered Duplicates w.r.t. Window
Size

Figures 7 and 8 show the changes in the number of duplicates discovered by
sorted neighborhood by applying the DW of minimum size ws, compared to the
discovered number of duplicates by using a previous window of minimum size,
i.e., ws − x. To visualize this dependency, we defined a discovery change ratio

174 P. Boiński et al.

Fig. 5. The percent of duplicates of class T discovered w.r.t. the number of compared
pairs

Fig. 6. The percent of duplicates of class P discovered w.r.t. the number of compared
pairs

dcr = (Nws − Nws−x)/Nws−x, where Nws and Nws−x denote the number of
duplicates discovered by using a window of size ws and ws − x, respectively; x
represents a window size increase. Notice that x ranges from 1 to 50 depending
on a window type (see Sect. 4.1). For example, value 0.5% on the Y axis means
that increasing the window size by 1, results in discovering 0.5% more duplicates.
Notice that in these figures a logarithmic scale is used.

Tuning the Sorted Neighborhood Method 175

The analysis of Fig. 7 reveals that when the minimum window size increases,
the number of discovered duplicates decreases sharply. dcr for duplicates T is
smaller than for duplicates P . This is due to the fact that for the dynamic
window, a great number of duplicates of type T have been already discovered
from the smallest window size (see Fig. 3).

Fig. 7. The relative percentage change of the number of discovered duplicates w.r.t.
the minimum size of a dynamic window

The possibility of discovering additional duplicates T when increasing the
minimum size of the DW is limited as compared to the number of discovered
duplicates of type P . Note that the increase of discovered duplicates T is about
3 times smaller than the increase of duplicates P . The smallest dcr=3.67 was
measured for the largest window size, i.e., 300.

Even more interesting are the results for the FW, shown in Fig. 8. What
primarily draws our attention is that the curves for the two types of duplicates
intersect. Notice that the results for duplicates P are almost the same as in
chart (Fig. 7). As we showed earlier (see Sects. 4.1 and 4.2), the number of
discovered duplicates P depends mainly on the minimum window size, whereas
the possibility of dynamically expanding the window does not significantly affect
the number of discovered duplicates P .

176 P. Boiński et al.

Fig. 8. The relative percentage change of the number of discovered duplicates w.r.t.
the fixed-size window

The processing characteristics for duplicates T are completely different. For
the smallest window size, the number of such duplicates discovered using the
FW is relatively small as compared to the DW. Thus, increasing the size of the
FW has a large effect on the number of discovered T duplicates. In the range of
window size from 5 to approx. 170, the increments are larger than for duplicates
P . The situation changes for larger window sizes.

One can notice that the results are resembling those obtained for the DW.
This suggests that the maximum size of the DW that brings the greatest benefit
from the use of dynamic window is approx. 170. Above this value, the values
of dcr for the FW begin to be much less noticeable. This, of course, applies to
processing where the minimum window size is less than 170.

5 Summary

In this paper we reported experimental evaluation of the sorted neighborhood
method w.r.t.: the moving window size, for a dynamic window and a fixed-size
window. The evaluation was performed on a real data set of over 5.5 million of
records.

The most important findings from the evaluation are summarized as follows.
First, for duplicates T and for the moving window of sizes < approx. 150 records,
the dynamic window method allows to discover more pairs of duplicates T . For
window sizes > approx. 150, the DW and FW methods allow to discover similar
numbers of pairs. For duplicates P , the DW allows to discover more pairs than
the FW only for window sizes < 4.

Second, the DW allows to discover more duplicates T than the FW, by run-
ning a lower number of pair comparisons. With limited computational resources,

Tuning the Sorted Neighborhood Method 177

by applying the DW we can discover a set of duplicates T , which would require
dozens of times more computations if using the FW. Both methods converge
their results after exceeding 1 ∗ 109 comparisons. For duplicates P the charac-
teristic of the DW is similar to the characteristics of the FW.

The findings from the experiments reported here were incorporated into the
DD pipeline for customers data that we implemented in the R&D project (for
details refer to [5]). The pipeline has already been deployed and run on over 20M
records in the financial institution.

Acknowledgements. The project is supported by the grant from the National Center
for Research and Development no. POIR.01.01.01-00-0287/19.

References

1. Alamuri, M., Surampudi, B.R., Negi, A.: A survey of distance/similarity mea-
sures for categorical data. In: International Joint Conference on Neural Networks
(IJCNN), pp. 1907–1914. IEEE (2014)

2. Andrzejewski, W., Bębel, B., Boiński, P., Sienkiewicz, M., Wrembel, R.: Text simi-
larity measures in a data deduplication pipeline for customers records. In: Interna-
tional Workshop on Design, Optimization, Languages and Analytical Processing of
Big Data DOLAP, co-located with EDBT/ICDT. CEUR Workshop Proceedings,
CEUR-WS.org (2023, to appear)

3. Baxter, R., Christen, P.: A comparison of fast blocking methods for record link-
age. In: ACM SIGKDD Workshop on Data Cleaning, Record Linkage, and Object
Consolidation (2003)

4. Bilenko, M., Kamath, B., Mooney, R.J.: Adaptive blocking: learning to scale up
record linkage. In: The IEEE International Conference on Data Mining (ICDM),
pp. 87–96. IEEE Computer Society (2006)

5. Boiński, P., Sienkiewicz, M., Bębel, B., Wrembel, R., Gałęzowski, D., Graniszewski,
W.: On customer data deduplication: lessons learned from a R&D project in the
financial sector. In: Workshops of the EDBT/ICDT 2022 Joint Conference. CEUR
Workshop Proceedings, vol. 3135. CEUR-WS.org (2022)

6. Boiński, P., Sienkiewicz, M., Wrembel, R., Bębel, B., Andrzejewski, W.: Text
similarity measures in a data deduplication pipeline for customers records. In:
ACM/SIGAPP Symposium on Applied Computing SAC. ACM (2023, to appear)

7. Boriah, S., Chandola, V., Kumar, V.: Similarity measures for categorical data:
a comparative evaluation. In: SIAM International Conference on Data Mining
(SDM), pp. 243–254. SIAM (2008)

8. Cao, Y., Chen, Z., Zhu, J., Yue, P., Lin, C., Yu, Y.: Leveraging unlabeled data to
scale blocking for record linkage. In: International Joint Conference on Artificial
Intelligence IJCAI, pp. 2211–2217 (2011)

9. Christen, P.: A comparison of personal name matching: techniques and practical
issues. In: International Conference on Data Mining (ICDM), pp. 290–294. IEEE
Computer Society (2006)

10. Christen, P.: Data Matching - Concepts and Techniques for Record Linkage, Entity
Resolution, and Duplicate Detection. DCSA, Springer (2012). https://doi.org/10.
1007/978-3-642-31164-2

11. Christen, P.: A survey of indexing techniques for scalable record linkage and dedu-
plication. IEEE Trans. Knowl. Data Eng. 24(9), 1537–1555 (2012)

https://doi.org/10.1007/978-3-642-31164-2
https://doi.org/10.1007/978-3-642-31164-2

178 P. Boiński et al.

12. Christophides, V., Efthymiou, V., Palpanas, T., Papadakis, G., Stefanidis, K.: An
overview of end-to-end entity resolution for big data. ACM Comput. Surv. 53(6),
127:1–127:42 (2021)

13. Colyer, A.: The morning paper on An overview of end-to-end entity resolution for
big data (2020). https://blog.acolyer.org/2020/12/14/entity-resolution/

14. Elmagarmid, A.K., Ipeirotis, P.G., Verykios, V.S.: Duplicate record detection: a
survey. IEEE Trans. Knowl. Data Eng. 19(1), 1–16 (2007)

15. Kejriwal, M.: Sorted neighborhood for the semantic web. In: AAAI Conference on
Artificial Intelligence, pp. 4174–4175. AAAI Press (2015)

16. Kejriwal, M., Miranker, D.P.: An unsupervised algorithm for learning blocking
schemes. In: IEEE International Conference on Data Mining, pp. 340–349. IEEE
Computer Society (2013)

17. Köpcke, H., Rahm, E.: Frameworks for entity matching: a comparison. Data Knowl.
Eng. 69(2), 197–210 (2010)

18. Li, G., Wu, Q., Tu, D., Sun, S.: A sorted neighborhood approach for detecting
duplicated regions in image forgeries based on DWT and SVD. In: IEEE Interna-
tional Conference on Multimedia and Expo ICME, pp. 1750–1753. IEEE Computer
Society (2007)

19. Naumann, F.: Similarity Measures. Hasso Plattner Institute (2013)
20. Papadakis, G., Skoutas, D., Thanos, E., Palpanas, T.: Blocking and filtering tech-

niques for entity resolution: a survey. ACM Comput. Surv. 53(2), 31:1–31:42 (2020)
21. Papadakis, G., Tsekouras, L., Thanos, E., Giannakopoulos, G., Palpanas, T.,

Koubarakis, M.: Domain- and structure-agnostic end-to-end entity resolution with
JedAI. SIGMOD Rec. 48(4), 30–36 (2019)

22. Powell, M.J.D.: An efficient method for finding the minimum of a function of several
variables without calculating derivatives. Comput. J. 7(2), 155–162 (1964)

23. Puhlmann, S., Weis, M., Naumann, F.: XML duplicate detection using sorted
neighborhoods. In: Ioannidis, Y., et al. (eds.) EDBT 2006. LNCS, vol. 3896, pp.
773–791. Springer, Heidelberg (2006). https://doi.org/10.1007/11687238_46

24. Ramadan, B., Christen, P., Liang, H., Gayler, R.W.: Dynamic sorted neighborhood
indexing for real-time entity resolution. ACM J. Data Inf. Qual. 6(4), 15:1–15:29
(2015)

25. Sienkiewicz, M., Wrembel, R.: Managing data in a big financial institution: con-
clusions from a R&D project. In: Workshops of the EDBT/ICDT 2021 Joint Con-
ference. CEUR Workshop Proceedings, vol. 2841. CEUR-WS.org (2021)

26. de Souza Silva, L., Murai, F., da Silva, A.P.C., Moro, M.M.: Automatic identifica-
tion of best attributes for indexing in data deduplication. In: Mendelzon, A. (ed.)
International Workshop on Foundations of Data Management. CEUR Workshop
Proceedings, vol. 2100. CEUR-WS.org (2018)

27. Vatsalan, D., Christen, P.: Sorted nearest neighborhood clustering for efficient pri-
vate blocking. In: Pei, J., Tseng, V.S., Cao, L., Motoda, H., Xu, G. (eds.) PAKDD
2013. LNCS (LNAI), vol. 7819, pp. 341–352. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-37456-2_29

28. Yan, S., Lee, D., Kan, M., Giles, C.L.: Adaptive sorted neighborhood methods
for efficient record linkage. In: ACM/IEEE Joint Conference on Digital Libraries
JCDL, pp. 185–194. ACM (2007)

https://blog.acolyer.org/2020/12/14/entity-resolution/
https://doi.org/10.1007/11687238_46
https://doi.org/10.1007/978-3-642-37456-2_29
https://doi.org/10.1007/978-3-642-37456-2_29

Managing Semantic Evolutions
in Semi-Structured Data

Pedro Ivo Siqueira Nepomuceno(B) and Kelly Rosa Braghetto

Department of Computer Science, University of Sao Paulo, Sao Paulo, Brazil
{pedro.siqueira,kellyrb}@ime.usp.br

Abstract. This paper introduces a model to store semi-structured data
while documenting its semantic changes over time. The paper also
presents algorithms for querying semantic evolved data, which concili-
ate the multiple versions the data may have. An implementation of the
model and algorithms, MellowDB, was developed, and its performance
was analyzed, showing the proposed algorithms and model are feasible.

Keywords: Databases · Semantic heterogeneity · Query Rewriting

1 Introduction

Several works have addressed database evolution in structured [3] and semi-
structured databases [6]. Most, however, focus on schema evolution. Our work,
on the other hand, focuses on operations over the attributes’ values (semantic
evolution), which change the data semantics over time. The Brazilian county of
“Moji Mirim” for example, was renamed to “Mogi Mirim” in 2016 [5]. Official
statistical data before 2016 refers to “Moji Mirim”, while from 2016 and beyond,
“Mogi Mirim” is referred to. In another example, “Laguna” was ungrouped in
2013 into “Laguna” and “Pescaria Brava”. After ungrouping, numbers inform
the population estimates for each new county. However, it is possible to group
new estimates to make a grouped analysis using all previous registers.

Even when subtle, semantic heterogeneity can make old and new data incom-
patible so that they cannot be judiciously grouped or compared [9]. This paper
presents a model to represent the semantic evolution of semi-structured data
collections and algorithms for easily querying them. Both model and algorithms
were implemented as a middle layer over MongoDB, and its performance was
evaluated through extensive experiments.

This research is part of the INCT of the Future Internet for Smart Cities funded
by CNPq proc. 465446/2014-0, Coordenação de Aperfeiçoamento de Pessoal de Nı́vel
Superior - Brasil (CAPES) - Finance Code 001, FAPESP proc. 14/50937-1, and
FAPESP proc. 15/24485-9.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C. Strauss et al. (Eds.): DEXA 2023, LNCS 14146, pp. 179–185, 2023.
https://doi.org/10.1007/978-3-031-39847-6_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-39847-6_12&domain=pdf
https://doi.org/10.1007/978-3-031-39847-6_12

180 P. I. S. Nepomuceno and K. R. Braghetto

2 Related Work

Temporal Data Models (TDMs) preserve the complete history of data
changes. This way, it is possible to retrieve current values and query states in spe-
cific moments of past time [8]. Most TDMs have been proposed or implemented
using relational database management systems (RDBMS), although there are
some implementations in semi-structured data, such as in JSON files [1].

TDMs do not directly tackle semantic evolution. Mainly because in semantic
evolution, changes are generated following declared rules (the SEOs). But they do
present a deep framework to deal with time, including timestamping, modeling,
and querying techniques useful for dealing with semantic evolution.

Database Evolution demands special care to enable easy querying. The
main strategy to support good querying interfaces for databases that suffered
evolution is query rewriting. Moon et al. [7] and Möller et al. [6] developed
systems capable of dealing with different schema versions using query rewriting
as long as the evolution history is known. Another related technique (delta code
generation) automatically generates views to mimic tables before and after the
evolution. Herrmann et al. [4] presented a tool for generating delta code between
schema versions.

It is important to notice that all the above-cited works deal with schema
evolution. Semantic evolution, which is the main target of this paper,
is not dealt with. In fact, semantic evolution is a less explored area in scien-
tific literature. Ventrone [9] defined some types of semantic heterogeneity and
evolution forms which result in operations similar to the ones considered in this
work. However, no algorithms or models to deal with them were presented.

3 Framework to Handle Semantic Evolution Operations

This section formalizes a semantic evolution operation, the translation, to illus-
trate how to deal with semantic evolution in semi-structured collections. Other
operations such as grouping and ungrouping can be defined similarly.

Definition 1. A document d = (t, V) contains a timestamp t and a set V of
attribute-value pairs. The notation V [a] will represent “the value of attribute a”.
In other words, V = {(a, v)|V [a] = v}.

According to these definitions, documents may contain only simple values.
The extension to consider complex values in nested structures is future work.

Definition 2. The translation operation(Tth,a,q,r(d)) transforms the value of
attribute a of a document d from q to r starting at time th. This is defined
as:

Tth,a,q,r(d) =

{
(t, V \ {(a, q)} ∪ {(a, r)}), if t ≤ th and V [a] = q

d, otherwise
(1)

Managing Semantic Evolutions in Semi-Structured Data 181

Fig. 1. (a) Versions collection Cs and (b) documents in the processed collection Cp.
The first two of (b) are different semantic versions of the same document.

The example cited in Sect. 1 is a translation with q = Moji-Mirim, r =
Mogi-Mirim and th = 2016. The translation operation is reversible; it can be
formalized similarly.

Definition 3. A semantic evolution compatible collection C is composed of
tuples (d, s), where d is a document and s is the semantic version of the docu-
ment.

When a semantic evolution operation (SEO) takes place over a collection,
first, a new semantic version is created. Then a new version of every document
in the collection is created and associated with the new semantic version.

Every version of a document is a copy of the original document after all
changes from previous semantic operations are applied. Each tuple (d1, si) is a
version of the original document d1. A semantic version si is as a subset of
the semantic compatible collection, where all its associated documents have the
same semantic interpretation for their attribute-value pairs.

4 Storage Model and Algorithms

The proposed model contains three collections. The raw collection stores the orig-
inal documents. The semantic versions collection keeps metadata of the semantic
versions. The processed collection stores documents in all semantic versions.

The Raw Collection (Cr) contains the original document attribute-value
pairs (dr.V) as well as its valid time (dr.time) and the original version number
(dr.s) which is the version in effect using dr.time as reference.

Each document (ds) of the Semantic Versions Collection (Cs) contains:
the version number (ds.s); the valid time (ds.time) of the version and the next
and previous version operation and arguments (ds.next/ds.prev) with the argu-
ments of the SEO that needs to be applied to map the version into the next
and the previous one (depending if it is a reversible operation or not). These
two fields resemble a doubly linked list. Any arguments needed, such as the
translation th, q, and r, are also included in these attributes. Figure 1a shows an
example of two documents of Cs.

182 P. I. S. Nepomuceno and K. R. Braghetto

In the Processed Collection (Cp), storing one version of each document for
each semantic version is impractical. A better approach is to associate documents
with an interval of versions. Then, when there are no changes in a document, the
version can only be extended. Each document dp, besides the original attribute-
value pairs set (dp.V) edited to fit its semantic version, includes the following
metadata attribute-value pairs: the original document (dp.o), a reference to the
original document in the raw collection; the minimum (dp.smin) and maximum
(dp.smax) version number that define the limits of version range in which the
copy of the document is valid; and the evolution list (dp.evolved), indicating
every SEO that affected that document. Figure 1b shows an example of the
processed collection for a document affected by a semantic evolution and one
that has not. For documents that have not been affected, the full interval of
semantic versions can be synthesized in only one processed document.

4.1 Semantic Operation Processing

The first semantic version document ds1 is also created when the collection is
created. Valid time of this version (ds1 .time) is set to zero (ds1 .t = 0).

When a SEO is executed, a new semantic version is created with a new version
number. If the operation happened before another previously informed one, this
number might be fractional to “fit” between two other pre-existing versions. The
prev and next of neighboring versions must be reconnected correspondingly.

The next step is to process documents into the processed collection accord-
ingly. For unaffected documents, limits of pre-existing processed documents are
just extended. For each affected document, it is necessary to create another copy
to represent it from that point in time. Figure 1b show an example of how docu-
ments stay when affected by a semantic operation (the Moji/Mogi Mirim case)
and when not affected (the Rio de Janeiro case).

After all affected processed documents are copied or have their value
extended, the SEO may occur. This step depends on the operation and will
happen as stated in Definition 2 over the documents associated with the new
semantic version sj . Then, all posterior operations must be reapplied over these
documents because their results might be different than before.

When new documents are inserted into the database, they must also be
processed consistently, checking if it has been affected by any SEO.

4.2 Query Transformation Algorithm

When querying, it is necessary to consider semantic changes affecting queried
attributes. This way, users may query an attribute by its old or new value seam-
lessly. To make an attribute:value filter query the procedure is:

1. Query the semantic versions collection (Cs) for any semantic “next” opera-
tion where the attribute:value combination has been transformed into another
value (attribute:new value). If there are any, add the attribute:new value
:semantic version number of these semantic versions to a queue P .

Managing Semantic Evolutions in Semi-Structured Data 183

While P is not empty, pop the first attribute:value:semantic version tuple
and make the same query again in Cs, to check if this attribute has been
transformed into still another value. If it has, push the new attribute:value
:semantic version to P . If not, add to another list, L2. This is to detect “new
names” that could represent the queried value in the most recent version.

2. All of L2 values will be used to compose the final query, using an OR operator
in the selection criteria while filtering the semantic version in the evolved
attribute. The original attribute:value is also added.
As an example, consider the collections shown in Figs. 1a to 1b and the query
“County”:“Moji Mirim”. The final version of the query (Q) will be:

Q ={“County”:“Moji Mirim”}
or ({“county”:“Mogi Mirim”} and {“evolved contains”:“1”}) (2)

The final query should be executed in Cp, but only in the last semantic
version subset. It considers both counties that were called “Moji Mirim” and
were renamed to “Mogi Mirim” and counties that are still named “Moji Mirim”
in order to consider homonyms also if they exist.

5 Implementation and Performance Analysis

To validate and evaluate the model and algorithms introduced in Sect. 4, we
implemented MellowDB, a middle-layer library developed in Python to deal with
semantic evolution in MongoDB. For now, it implements operations for inser-
tion and querying. The developed code and all experiments scripts are publicly
available on https://github.com/pisn/semantic heterogeneous database.

For the experiments, databases with 500K documents containing 20 fields,
each with a domain of 20 possible values, were randomly generated. Five different
scenarios were simulated in this phase: Read-Only (only queries), Heavy Read
(95% of queries and 5% insertions), Write Only (only insertions), Heavy Write
(95% insertions and 5% queries) and 50/50 (50% insertions and 50% queries).
These scenarios were inspired by YCSB Framework workload scenarios [2]. Every
experiment was repeated 5 times. Repetitions were executed over a newly created
database in an environment with Debian 5.4.19-1 OS, Intel(R) Core(TM) i7-
6700K CPU @ 4.00 GHz, and 30 GB RAM.

Figure 2a shows that queries suffer less overhead than inserts because doc-
uments are already pre-processed in Cp to be queried, while documents being
inserted must pass through the evolution process. Figure 2b shows that the het-
erogeneity level of the database affects the insert operations, but not the queries,
also because documents are already pre-processed to be queried.

MellowDB obviously added some overhead over the operations. However,
querying without its aid would demand from users not only much more effort
and time but also a deep knowledge of the database domain. Nevertheless, for
the insertion of 500 documents, the worst average time was roughly 5 s.

https://github.com/pisn/semantic_heterogeneous_database

184 P. I. S. Nepomuceno and K. R. Braghetto

Fig. 2. Execution times (95% confidence interval) for all scenarios with different (a)
quantities of select/insert operations and (b) levels of semantic heterogeneity.

6 Concluding Remarks

This work advances the state-of-art techniques in managing semi-structured data
heterogeneity caused by database evolution. The formalization of the evolution
operations and the storage model and algorithms to deal with them presented
here are original contributions, there is no similar approach in the related work.

The theoretical framework, models, and algorithms provide tools to deal
with semantic heterogeneity in semi-structured data. As long as the operations
history is registered, users may query the database without being aware of details
on the values’ changes. Results show that the use of the proposed models is
feasible, achieving desired results much faster and more conveniently than if the
operations were manually treated.

References

1. Brahmia, S., Brahmia, Z., Grandi, F., Bouaziz, R.: τJSchema: a framework for
managing temporal JSON-based NoSQL databases. In: Hartmann, S., Ma, H. (eds.)
DEXA 2016. LNCS, vol. 9828, pp. 167–181. Springer, Cham (2016). https://doi.org/
10.1007/978-3-319-44406-2 13

2. Cooper, B.F., Silberstein, A., Tam, E., Ramakrishnan, R., Sears, R.: Benchmarking
cloud serving systems with YCSB. In: Proceedings of the 1st ACM symposium on
Cloud computing, pp. 143–154 (2010)

3. Curino, C., Moon, H.J., Deutsch, A., Zaniolo, C.: Automating the database schema
evolution process. VLDB J. 22(1), 73–98 (2013)

4. Herrmann, K., Voigt, H., Behrend, A., Rausch, J., Lehner, W.: Living in parallel
realities: co-existing schema versions with a bidirectional database evolution lan-
guage. In: Proceedings of the 2017 ACM International Conference on Management
of Data, pp. 1101–1116. SIGMOD/PODS 2017 (2017)

5. Instituto Brasileiro de Geografia e Estat́ıstica - IBGE: Alterações topomı́nicas
(2022). https://www.ibge.gov.br/geociencias/organizacao-do-territorio/estrutura-
territorial/27336-alteracoes-toponimicas-municipais.html

6. Möller, M.L., Klettke, M., Hillenbrand, A., Störl, U.: Query rewriting for continu-
ously evolving NoSQL databases. In: International Conference on Conceptual Mod-
eling, pp. 213–221. ER 2019 (2019)

https://doi.org/10.1007/978-3-319-44406-2_13
https://doi.org/10.1007/978-3-319-44406-2_13
https://www.ibge.gov.br/geociencias/organizacao-do-territorio/estrutura-territorial/27336-alteracoes-toponimicas-municipais.html
https://www.ibge.gov.br/geociencias/organizacao-do-territorio/estrutura-territorial/27336-alteracoes-toponimicas-municipais.html

Managing Semantic Evolutions in Semi-Structured Data 185

7. Moon, H.J., Curino, C.A., Deutsch, A., Hou, C.Y., Zaniolo, C.: Managing and query-
ing transaction-time databases under schema evolution. Proc. VLDB Endowment
1(1), 882–895 (2008)

8. Tansel, A.U., Clifford, J., Gadia, S., Jajodia, S., Segev, A., Snodgrass, R.: Tempo-
ral databases: theory, design, and implementation. Benjamin-Cummings Publishing
Co., Inc. (1993)

9. Ventrone, V.: Semantic heterogeneity as a result of domain evolution. ACM SIG-
MOD Rec. 20(4), 16–20 (1991)

Co-location Pattern Mining Under
the Spatial Structure Constraint

Rodrigue Govan1(B) , Nazha Selmaoui-Folcher1 , Aristotelis Giannakos2,
and Philippe Fournier-Viger3

1 Institute of Exact and Applied Sciences, University of New Caledonia,
98851 Nouméa Cedex, France

{rodrigue.govan,nazha.selmaoui}@unc.nc
2 EPROAD, Université de Picardie Jules Verne, Amiens, France

3 Big Data Institute, College of Computer Science and Software Engineering,
Shenzhen University, Shenzhen, China

Abstract. Most methods to find spatial co-location patterns (subsets
of object features that are geographically close to one another) employ
standard proximity measures (e.g. Euclidean distance). But for some
applications, these measures do not work well since the spatial structure
is not considered. This article proposes CSS-Miner, a co-location pattern
mining approach under the spatial structure constraint. In this case, the
street network of a city is used as a constraint. CSS-Miner has been
applied to two real datasets with different points of interest.

Keywords: co-location · data mining · spatial data · spatial structure

1 Introduction

Discovering co-location patterns is a data mining task that aims at extracting
knowledge and insights that integrate the spatial dimension to help decision-
makers. A co-location (or co-location pattern) is a subset of spatial features that
are frequently located in the same region. Despite numerous studies [8,9,14],
most co-location pattern mining methods use standard distance functions (e.g.
the Euclidean distance) to assess the proximity of spatial objects. For applica-
tions such as demographic analysis via points of interest (POIs), the Euclidean
distance is not suitable since a path between two spatial objects can be signif-
icantly different from their Euclidean distance. Hence, other distance measures
should be used.

In this paper, we propose CSS-Miner (CSS stands for Co-location under
the Spatial Structure constraint), a co-location pattern mining approach for
identifying interesting co-locations under the constraint of the spatial structure
of a city’s street network. CSS-Miner first constructs a graph under the spatial
structure constraint using a shortest path algorithm, and then extracts maximal
cliques to obtain spatial patterns. For evaluation, the proposed approach was

This work was supported by the ANR Grant SpiRAL ANR-19-CE35-0006-02.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C. Strauss et al. (Eds.): DEXA 2023, LNCS 14146, pp. 186–193, 2023.
https://doi.org/10.1007/978-3-031-39847-6_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-39847-6_13&domain=pdf
http://orcid.org/0000-0002-4087-7056
http://orcid.org/0000-0003-1667-3819
http://orcid.org/0000-0002-7680-9899
https://doi.org/10.1007/978-3-031-39847-6_13

Co-location Pattern Mining Under the Spatial Structure Constraint 187

applied on two datasets from the cities of Paris and Chicago, which allowed
discovering relevant patterns.

The article is organized as follows. Section 2 reviews relevant work on spatial
pattern mining, focusing on the event-based approach. Section 3 describes the
proposed CSS-Miner approach to consider the spatial structure constraint. Then,
Sect. 4 presents the data used for evaluation and the discovered patterns. Finally,
a conclusion is drawn and perspectives are discussed.

2 Related Work

Huang et al. [6] described two main approaches for spatial pattern mining: the
sequence-based approach and the event-based approach used in this paper.

The event-based approach (or join-less approach) focuses on the location of
spatial objects and their proximity. Initially proposed by Shekhar et al. [9], this
approach extracts subsets of objects that are spatially close together, and are
called co-locations.

In this paper, we propose a method adopting the event-based approach to
leverage the spatial dimension of objects and their proximity. To apply the event-
based approach under the spatial structure constraint, maximal clique mining
is used to extract co-location patterns. Therefore, the next Subsects. 2.1 and 2.2
respectively give an overview of approaches for maximal clique mining and key
studies on co-location pattern mining and their interestingness measures.

2.1 Maximal Clique Mining

(Complete graph) Let G = (V,E) be a graph with V = {v1, v2, . . . , vn} the
set of vertices and E ⊆ {(vi, vj) ∈ V 2 | ∀i, j ∈ {1, . . . , n} and i < j} the set
of edges (in this setting, all graphs considered are undirected.) If (vi, vj) ∈ E,
then vi and vj are adjacent. A graph is complete if each pair of graph vertices
is connected by an edge (adjacent).

(Clique) Let G = (V,E) be a graph and g = (Vg, Eg) be a subgraph such that
Vg ⊆ V and Eg ⊆ {(vg,i, vg,j) ∈ E | vg,i ∈ Vg ∧ vg,j ∈ Vg and i �= j}. A clique of
G is a subgraph g ⊆ G such that g is complete.

(Maximal clique) Given G = (V,E) a graph and g ⊂ G a clique, the clique g is
said to be maximal if and only if there exists no clique g′ such that g ⊂ g′ ⊆ G.

Valiant [13] has shown that mining all maximal cliques is #P-complete. We
can particularly mention the algorithm proposed by Tomita et al. [10] for its
O(3n/3) worst-case complexity in an n-vertex graph which is optimal as a func-
tion of n but also Cazals et al. [3] who consider a recursive approach to improve
the mining performance.

Maximal clique mining methods are commonly used to mine co-location pat-
terns [1,11]. By defining a graph network where vertices represent spatial objects
and edges represent their neighborhood then by applying a maximal clique min-
ing method, we can obtain subsets of objects that are all neighbors to each other.
Therefore, in this paper, we will use the approach proposed by Tomita et al. [10]
for its speed given the size of our datasets detailed in the Sect. 4.1.

188 R. Govan et al.

2.2 Co-location Pattern Mining and Interestingness Measures

The event-based approach projects spatialized data with their coordinates and
defines the proximity between each spatial object to extract patterns. In this
section, we recall the co-location mining framework proposed in Shekhar and
Huang [9], Huang et al. [6] and Yoo and Shekhar [14]. Let F be a set of fea-
tures and O = {o1, o2, . . . , on} be a database of spatial objects. Each object
in O consists of a tuple <object_id, location, feature>, where feature
∈ F . For example, in Fig. 1b, F = {A,B,C}, O = {A1, B2, . . . , C3} with
A1 = <1, (x1, y1), A>, B2 = <2, (x2, y2), B>, etc. A co-location C is a subset of
features F associated to spatial objects O. These co-location patterns represent
pattern frequently located in neighbor objects. The neighborhood relationship
is defined as a binary relation R(o, o′) between two spatial objects o and o′. R
can be based on a distance threshold between two objects, or based on their
intersection. Several studies have been done in this vein [7,14]. Recently some
researchers used a proximity measure that is not the Euclidean distance. For
example, Yu [15] proposed the shortest path length as proximity measure. How-
ever, the author utilized a sequence-based approach with a limited number of
neighbors, which can miss out some relevant information.

In the join-less approach, to determine if two objects are spatially close,
the user sets a maximum distance threshold d. A graph is then constructed
with vertices representing the spatial objects. Two vertices are adjacent if the
associated spatial objects’ distance falls within a threshold d (i.e., the spatial
distance measure between these two vertices is less than d).

Interestingness measures have been developed to quantify interesting pat-
terns. To measure whether a co-location pattern is interesting or not, the par-
ticipation index (or prevalence), based on the participation ratio is used.

(Participation ratio) Let C be a co-location pattern. For an instance fi ∈ C,
the participation ratio is given by:

Pr(fi, C) = |{ instances of fi participating in C)}|
|{ instances of fi}| (1)

Given the example of Fig. 1, let C = {A,B} be a co-location candidate and
IC = {(A1, B1), (A1, B2), (A3, B4)} be the set of row-instances of C. With A and
B, two features having respectively, 3 and 4 instances, we have Pr(A, {A,B}) =

|{A1,A3}|
|{A1,A2,A3}| =

2
3 and Pr(B, {A,B}) = |{B1,B2,B4}|

|{B1,B2,B3,B4}| =
3
4 .

(Participation index) Let C be a co-location candidate, IC = {IC
1 , ..., I

C
k } be

the set of row-instances of C and F = {f1, . . . , fn} be the set of spatial features
from the database O. The participation index is defined by:

Pi(C) = min
fi∈C

Pr(fi, C) (2)

Using the previous example, we have as participation index:

Pi({A,B}) = minfi∈{A,B} Pr(fi, {A,B}) = min(
2
3
,
3
4
) =

2
3

Co-location Pattern Mining Under the Spatial Structure Constraint 189

Fig. 1. Example of co-location patterns based on a set of cliques from a spatial dataset.

In this paper, the prevalence measure will be used to determine whether
co-location patterns in Sect. 4 are relevant or not.

As mentioned before, methods based on the join-less approach mostly used
standard distance functions as proximity measure for spatial objects. By using
standard distance measures, we may lose the spatial structure. For this reason,
we will use the shortest path length as proximity measure.

2.3 Shortest Path Search

Over the last decades, the shortest path search has been a major problem in
graph theory. The speed of search depends entirely on the number of vertices
and edges in a graph. One of the first solutions was introduced by Dijkstra [4].

More recently, Varia and Kurasova [12] proposed an accelerated version of
Dijkstra’s algorithm, by adding two components: a bidirectional search and a
parallelized process. To find the shortest path between two vertices vi and vj ,
authors applied Dijkstra’s algorithm to find the shortest path from vi to vj and
from vj to vi. Since Dijkstra’s algorithm is based on a priority queue, parallel and
bidirectional components use two priority queues. With these components, the
two paths move forward simultaneously. According to their results, the improved
approach is at least twice as fast as the standard algorithm.

To leverage the spatial structure constraint and accelerate the process, the
parallel bidirectional Dijkstra’s algorithm will be used.

3 Methods

Let consider a set of spatial objects O with a set of features F . Let GS be a
graph representing the spatial structure as GS = (VS , ES) where VS a set of
vertices representing objects and ES a set of edges.

190 R. Govan et al.

3.1 Taking into Account the Spatial Structure Constraint

To analyze POIs, the spatial structure constraint is carried out in several steps:

1. For each spatial object oi ∈ O, we associate it in the spatial structure GS

with the closest object noted oS ∈ VS (through the Euclidean distance);
2. We apply Dijkstra’s algorithm for each object from VS to the other objects

located within a radius d according to the Euclidean distance;
3. If the shortest path length between two objects from VS is lower than the

threshold d, then they are considered as neighbors.

To avoid unnecessary shortest path searches, we only apply the shortest path
algorithm between two objects of VS if these two objects are respectively asso-
ciated to two objects of O. Here, the Euclidean distance is only used in order to
limit the number of shortest path search. Applying a distance radius threshold
with the Euclidean distance will prevent computing irrelevant shortest paths. By
triangular inequality, a spatial object located outside a distance radius d from
another spatial object has a shortest path length greater than or equal to d.

3.2 Graph Construction

To extract our spatial patterns (co-locations) which are the maximal cliques, we
chose to go on a graph construction G = (O, EO) (under the spatial structure
constraint) where EO = {(oi, oj) | ∃(oS,i, oS,j) ∈ ES ,Dsp(oS,i, oS,j) ≤ d,∀(i, j) ∈
�1, n�2, i �= j} with oS,i representing the object from the spatial structure asso-
ciated to the spatial object oi ∈ O and Dsp representing the distance obtained
by Dijkstra’s shortest path algorithm if it exists.

Fig. 2. Three possibilities of distance CSS-Miner can encounter

In the Fig. 2, Ai and Bi are objects from VS explained in the Sect. 3.1. With
d as the distance radius and the shortest path length threshold, we have:

– d2(A2, B3) > d so CSS-Miner will not compute Dsp(A2, B3);
– d2(A1, B2) ≤ d so CSS-Miner will compute Dsp and get Dsp(A1, B2) > d so

we will not consider A1 and B2 as neighbors;
– d2(A2, B1) ≤ d so CSS-Miner will compute Dsp and get Dsp(A2, B1) < d so

we will consider A2 and B1 as neighbors.

Co-location Pattern Mining Under the Spatial Structure Constraint 191

In our approach, CSS-Miner processes two graphs: The first one representing
the spatial structure and the second one representing the relationship of our
spatial dataset created with the first graph.

4 Experimental Results

We apply CSS-Miner on two real datasets. Both have been created by collect-
ing data from OpenData1. The first dataset is located in Paris city with High
Schools, Movie theaters, Bicycle stations, Parks and Subway station variables
having respectively 239, 85, 996, 722 and 326 spatial objects (2368 objects in
total). The second dataset is located in Chicago city with High Schools, Bus
station, Rail Lines station, Fast food chains, Bicycle stations and Parks vari-
ables having respectively 142, 5606, 124, 877, 1402 and 613 spatial objects (8764
objects in total). For each dataset, the entire process was carried out with a
AMD Ryzen 7 3700X 8-core processor with 64GB of RAM. It took respectively,
about 2 and 5 h to run the entire process on Paris and Chicago datasets.

Although we aim to analyze and understand the young population behavior,
CSS-Miner is applicable to other demographic analysis, for instance: What are
the daily habits of a manager compared to a student? Another POIs analysis can
also be useful to develop a decision support tool to help developing the tourism
of a city. Finally, the POIs analysis remain a very large subject to study.

4.1 Data Preprocessing

To integrate the spatial structure constraint, it is necessary to get access to that
information. In this case, we used the road network as spatial structure. Here, we
assume that the path is taken on foot because we wanted to integrate only data
from OpenData platforms where the traffic noise is not always available. To get
access to the road network of Paris and Chicago, we used OSMnx methods [2].
Once the street network is retrieved, it can be converted into a graph network
with roads as edges and road intersections as vertices. At the end, the graph
associated to Paris street network has 42,870 vertices and 241,016 edges and the
graph associated to Chicago has 184,476 vertices and 1,217,928 edges.

4.2 Results

The Table 1 shows us the possible activities near High Schools in Paris, in par-
ticular Parks and Movie theaters. Due to limited page number, the Table 1 only
displays few extracted patterns. We note through extracted co-location patterns,
the ubiquity of High Schools and Bicycle variables, which also show us that the
city of Paris helps young population to get around the city autonomously and
practice a physical activity. It would be interesting to apply CSS-Miner to other
french cities offering this service in order to confirm this trend.

1 opendata.paris.fr/, data.iledefrance.fr/, data.cityofchicago.org/.

https://opendata.paris.fr/
https://data.iledefrance.fr/
https://data.cityofchicago.org/

192 R. Govan et al.

Since CSS-Miner integrates the road network as spatial structure constraint,
we compared our co-location patterns with the ones without this constraint
i.e., using only the Euclidean distance. The results show us that by taking into
account the road network, co-location patterns not always have a prevalence
greater than prevalence with the Euclidean distance as proximity measure.

Indeed, the extracted co-location patterns without constraint used a distance
threshold equal to 500 (meters), just as CSS-Miner. By triangular inequality, a
walking distance between two spatial objects is greater than or equal to their
Euclidean distance. Therefore, without constraint, the co-location candidates
contain more spatial objects, increasing the probability to have a high num-
ber of feature instances per variable, which can reduce their prevalence. This
also explains why the {Parks, High Schools, Bicycle} co-location pattern has a
decreasing prevalence from 0.89 to 0.56 by adding the Movie theaters variable.

Table 1. Extracted co-location pattern prevalence (Pi from Eq. 2)

City Co-location pattern Pi under
constraint

Pi without
constraint

Paris {Parks, High Schools, Bicycle} 0.89 0.89
{Parks, High Schools, Movie theaters, Bicycle}
...

0.56 0.44

Chicago {Bus, Fast food chains, High Schools, Bicycle} 0.58 0.5
{Bus, Fast food chains, High Schools}
...

0.33 0.17

Moreover, without constraint, the algorithm extracted patterns CSS-Miner
did not extract: {High Schools, Subway} and {Parks, High Schools, Movie the-
aters, Subway} with a prevalence equal to 0.31 and 0.14 respectively without
the constraint. It shows that even if the spatial objects are close to one another
using the Euclidean distance, their shortest path length do not verify our prox-
imity criterion, so they cannot be considered as close. At the end, CSS-Miner
can extract more relevant patterns and filter not so relevant patterns.

The results show that most of High Schools in Chicago have a Fast food
chains around it, so young population in Chicago will be more tempted to go eat
in a Fast food at lunch or after school. The ubiquity of High Schools and Fast
food chains variables can also be a sign of malnutrition in the US, at least in
Chicago. To confirm this affirmation, it would be interesting to apply CSS-Miner
in other US cities and verify the relevancy on a national scale. It would also be
interesting to get a Fast food dataset in Paris (unavailable on the OpenData) to
reveal if Fast food chains in Paris target young population as in Chicago.

5 Conclusion and Perspectives

In this paper, we introduced CSS-Miner, a co-location pattern mining approach
integrating the spatial structure. We described how this constraint has been

Co-location Pattern Mining Under the Spatial Structure Constraint 193

defined and taken into account, particularly with a road network and a shortest
path search algorithm. To extract co-location patterns, we used the maximal
clique mining approach with a restricted search radius and editable depending
on the use case. Then, we applied the approach on two real datasets.

The next step of our work will be to integrate knowledge from experts [5],
such as urban planners and geographers to verify the relevancy of the extracted
patterns. Moreover, CSS-Miner will be applied on larger datasets to estimate the
performance. Finally, future work will consider the altitude as spatial structure.

References

1. Bao, X., Wang, L.: A clique-based approach for co-location pattern mining. Inf.
Sci. 490, 244–264 (2019)

2. Boeing, G.: OSMnx: new methods for acquiring, constructing, analyzing, and visu-
alizing complex street networks. Comput. Environ. Urban Syst. 65, 126–139 (2017)

3. Cazals, F., Karande, C.: A note on the problem of reporting maximal cliques.
Theor. Comput. Sci. 407(1–3), 564–568 (2008)

4. Dijkstra, E.W., et al.: A note on two problems in connexion with graphs. Numer.
Math. 1(1), 269–271 (1959)

5. Flouvat, F., Van Soc, J.F.N., Desmier, E., Selmaoui-Folcher, N.: Domain-driven co-
location mining: extraction, visualization and integration in a GIS. GeoInformatica
19, 147–183 (2015)

6. Huang, Y., Shekhar, S., Xiong, H.: Discovering colocation patterns from spatial
data sets: a general approach. IEEE Trans. Knowl. Data Eng. 16(12), 1472–1485
(2004)

7. Kim, S.K., Lee, J.H., Ryu, K.H., Kim, U.: A framework of spatial co-location
pattern mining for ubiquitous GIS. Multimed. Tools Appl. 71(1), 199–218 (2014)

8. Koperski, K., Han, J.: Discovery of spatial association rules in geographic infor-
mation databases. In: Egenhofer, M.J., Herring, J.R. (eds.) SSD 1995. LNCS, vol.
951, pp. 47–66. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-60159-
7_4

9. Shekhar, S., Huang, Y.: Discovering spatial co-location patterns: a summary of
results. In: Jensen, C.S., Schneider, M., Seeger, B., Tsotras, V.J. (eds.) SSTD
2001. LNCS, vol. 2121, pp. 236–256. Springer, Heidelberg (2001). https://doi.org/
10.1007/3-540-47724-1_13

10. Tomita, E., Tanaka, A., Takahashi, H.: The worst-case time complexity for gen-
erating all maximal cliques and computational experiments. Theor. Comput. Sci.
363, 28–42 (2006)

11. Tran, V., Wang, L., Chen, H., Xiao, Q.: MCHT: a maximal clique and hash table-
based maximal prevalent co-location pattern mining algorithm. Expert Syst. Appl.
175, 114830 (2021)

12. Vaira, G., Kurasova, O.: Parallel bidirectional Dijkstra’s shortest path algorithm.
Databases Inf. Syst. VI Front. Artif. Intell. Appl. 224, 422–435 (2011)

13. Valiant, L.: The complexity of enumeration and reliability problems. SIAM J. Com-
put. 8(3), 410–421 (1979)

14. Yoo, J.S., Shekhar, S.: A joinless approach for mining spatial colocation patterns.
IEEE Trans. Knowl. Data Eng. 18(10), 1323–1337 (2006)

15. Yu, W.: Spatial co-location pattern mining for location-based services in road net-
works. Expert Syst. Appl. 46, 324–335 (2016)

https://doi.org/10.1007/3-540-60159-7_4
https://doi.org/10.1007/3-540-60159-7_4
https://doi.org/10.1007/3-540-47724-1_13
https://doi.org/10.1007/3-540-47724-1_13

Database Design

Enhancing Online Index Tuning
with a Learned Tuning Diagnostic

Haitian Hang and Jianling Sun(B)

College of Computer Science and Technology, Zhejiang University, Hangzhou, China
{hanght,sunjl}@zju.edu.cn

Abstract. Indexes are vital for data retrieval performance. For online
scenarios with dynamic workloads, index tuning is challenging. A com-
monly used strategy is to launch tuning requests periodically, yet
resource-intensive tuning sessions can obstruct it, particularly when deal-
ing with frequently varying workloads.

To tackle this challenge, we propose a learned tuning diagnostic that
can be incorporated into the Monitor-Diagnose-Tune paradigm for online
index tuning. Rather than invoking a comprehensive tuning tool every
time a triggering condition occurs, the tuning diagnostic serves to deter-
mine whether a tuning session should be launched. By formulating the
determination of sub-optimal index configurations as a classification task
in machine learning, our approach can effectively identify whether the
current index configuration is sub-optimal. To circumvent the need for
costly data collection for each database instance, we propose a transfer-
able representation of queries and indexes that allows for cross-database
learning. Our comprehensive empirical results on the TPC-H and TPC-
DS benchmarks demonstrate that our approach can reduce the total
time by up to 13.3% and the number of optimizer what-if calls by up
to 36% compared to the baselines, and validate the effectiveness of our
transferable representation in cross-database learning.

Keywords: Index Tuning · Online Tuning · ML for DB

1 Introduction

Database management systems employ indexes to facilitate expedited data
retrieval. The index tuning problem, which involves selecting an appropriate set
of indexes, has been the subject of extensive research in recent decades [5,9–
11,19,27,31]. These approaches aim to identify a set of indexes that minimize the
estimated cost of a representative workload while complying with specific con-
straints, such as a limited storage budget. Although static analysis based on a rep-
resentative workload can facilitate effective physical design, this approach can be
computationally demanding and time-consuming, often requiring multiplewhat-if
calls to the query optimizer and running for several minutes to hours [8].

In the context of modern dynamic workloads, the need for evolving index
recommendations is essential, given that the present index configuration may
become sub-optimal as the workload pattern changes. This is in contrast to static
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C. Strauss et al. (Eds.): DEXA 2023, LNCS 14146, pp. 197–212, 2023.
https://doi.org/10.1007/978-3-031-39847-6_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-39847-6_14&domain=pdf
http://orcid.org/0000-0002-6020-6284
http://orcid.org/0000-0001-8799-6020
https://doi.org/10.1007/978-3-031-39847-6_14

198 H. Hang and J. Sun

Fig. 1. Monitor-Diagnose-Tune Paradigm

cases, where tuning is a one-time effort. A Monitor-Diagnose-Tune paradigm,
as illustrated in Fig. 1, is typically used to provide continuous recommendations.
The database management system (DBMS) internally tracks workloads and their
related information, which will later be utilized by the diagnostic. Upon the
detection of a trigger condition, such as performance regression, the diagnostic
conducts further analysis based on relevant information, such as index utiliza-
tion, to determine whether any updates to the current indexes are necessary. If an
update is required, a tuning tool is invoked to provide a fresh recommendation.

Motivation. While some online algorithms offer lightweight solutions for con-
tinuous tuning by identifying promising candidate configurations using statistics
gathered from query execution, the reliability of their recommendations is not
guaranteed [7,28]. In comparison, comprehensive analysis or modeling based on
the workload characteristics available through existing static tools offers a better
alternative in terms of recommendation quality. However, comprehensive analy-
sis is resource-intensive and time-consuming, which can negate its benefits, espe-
cially when it does not recommend a better configuration or the improvement
resulting from the recommended configuration is negligible. Even when com-
prehensive tuning is performed on a templated job with medium-sized memory
constraints, it can still take tens of minutes, let alone the more complex and
variable workloads in real-world scenarios. In some cases, commercial physical
design tools require several hours for a single invocation. Determining whether
there is a superior configuration requires executing a tuning session, which is
problematic. While recently proposed learning-based index selection algorithms
have demonstrated superior runtime performance, they still require extensive
training duration and repetitive training costs for every new database instance,
which limits their practical application [20,22,25,29,33–35].

Our Approach. To bridge the gap in the deployment of sophisticated static
tuning tools in online scenarios, we propose investigating whether a compre-
hensive tuning session would produce a configuration that is noticeably better
than the existing one. In this paper, we present a technique called learned tuning
diagnostic to achieve this goal. Specifically, the problem of determining whether
a tuning session would be worthwhile is formulated as a classification task in
machine learning. Given the target workload, the current index configuration,
the memory budget, and the expected improvement threshold, the learned tuning
diagnostic determines whether a comprehensive tuning session would recommend
a configuration that outperforms the previous one by more than the threshold.
Our learned tuning diagnostic can help to prevent pointless tuning requests in

Enhancing Online Index Tuning with a Learned Tuning Diagnostic 199

a dynamic environment where the configuration needs to be updated frequently
in response to workload changes.

Contribution. To summarize, we present the following contributions in this
paper:

• We formulate the problem of determining whether a tuning session is worth-
while as a classification task in machine learning and propose a learned tuning
diagnostic that fits into the Monitor-Diagnose-Tune paradigm for online index
tuning.

• We propose a transferable representation of queries and indexes that enables
cross-database learning and incremental training when the schema changes,
thereby avoiding costly data collection and repetitive training efforts for each
specific database instance.

• We implement a Monitor-Diagnose-Tune framework with our proposed
learned tuning diagnostic and evaluate it on PostgreSQL for two standard
benchmarks TPC-H and TPC-DS. The experimental results demonstrate the
superiority of the learned diagnostic and the effectiveness of the proposed
transferable representation of queries and indexes.

2 Preliminaries

2.1 Online Index Tuning

Let a workload W = {w1, w2, ..., wn} be a sequence of mini-workloads, where
wt is either a single query or a batch of queries at time interval t, and I be
the set of available indexes. For an index configuration s ⊆ I, we denote the
memory consumption to materialize s by Cstorage(s), and the set of index con-
figuration feasible within a memory budget b is ς = {s ⊆ I | Cstorage(s) ≤ b}.
The goal of online index tuning is to find a sequence of index configuration
S = {s0, s1, s2, ..., sn} with wt executed under the configuration st, which mini-
mizes the total cost of W . The total cost of W under a configuration sequence
S is defined as:

Cost (W,S) =
n∑

t=1

(ctune (t) , ctrans (st−1, st) , cexec (wt, st))

where ctune (t), ctrans (st−1, st) and cexec (wt, st) refer to the runtime of a tun-
ing request, the transition time from index configuration st−1 to st, and the
execution time of workload wt against the configuration st, respectively.

In the case where the entire workload sequence W is known or predictable
in advance, online index tuning can be viewed as a sequence tuning problem [4]
or an action planning problem [23]. These problems can be addressed using
either heuristic or learning-based techniques to determine the optimal time to
take action before executing the workload sequence. However, the uncertainty
associated with forecasting long-term workloads limits the applicability of these
algorithms in practice. Instead, other online tuning methods continuously mon-
itor, diagnose, and adjust the configuration [6,7,28]. Given the impracticality of

200 H. Hang and J. Sun

in-depth modeling or analysis in online scenarios, most of these methods identify
promising configuration changes based on statistics acquired from query execu-
tion. If high-quality configuration recommendations are desired, a static analy-
sis based on either the most recent workload {wi, w2, ..., wt−1} or the upcoming
workload wt using offline tools is a more suitable alternative. Nevertheless, such
comprehensive tuning requests come with high overhead, i.e., high ctune (t) at
each time interval t, which limits its benefit. Additionally, the repeated what-if
calls to the query optimizer cause significant CPU/memory resource consump-
tion, placing a heavy burden on the production server.

To tackle this issue, an additional component, named the Alerter, has been
introduced in the Monitor-Diagnose-Tune paradigm [6]. The Alerter analyzes
whether a tuning session is worthwhile by presenting lower and upper bounds
on the potential improvement that the tuning session could suggest. While
the Alerter offers low-overhead diagnostics to prevent tuning requests that are
unlikely to result in a significant improvement over the current configuration, it is
coupled with the relaxation-based tuning approach [5], and thus, its effectiveness
may not extend to other tuning algorithms.

While reinforcement learning-based approaches for offline tuning are faster in
terms of tuning time (e.g., several seconds) [19], they require a lengthy training
duration, which restricts their application. Furthermore, they are not suitable
for online scenarios where unseen workloads are present due to their inability to
generalize for unknown workloads. As a result, we have excluded them from the
scope of this paper.

2.2 Workload and Index Configuration Featurization

As AI-enhanced database technology continues to evolve, a new area of research
is emerging that aims to featurize queries or workloads. To enable data-driven
learning-based techniques, queries are transformed into vectorized representa-
tions based on their raw text or logical (or physical) plans [12–17,21,24,30,32].
In certain tasks where query execution details are necessary, such as learned cost
models [14,15,30], the operators in query plans are encoded along with other rel-
evant information, while query text is used as input in other scenarios, such as
SQL2Text [16]. Most workload-driven tasks, such as index tuning [25], knob
tuning [21], and cost estimation [30], encode the columns and tables referenced
in the query using one-hot representation. However, this representation, which
is tied to a specific schema, limits cross-database learning. As a result, training
data collection must be repeated, and a new model must be trained from scratch
for each new database instance or when the schema is altered (e.g., new tables
or columns are created). Additionally, NLP-based methods have been utilized
to generate the encoding of SQL text [16,32]. Nonetheless, the same problem
persists in the language model since database-specific vocabularies are used as
input. Furthermore, in machine learning-based approaches for index tuning, not
only the query but also the index configuration must be vectorized. One-hot
encoding is commonly used, which encodes whether an index is present or not
for each indexable attribute.

Enhancing Online Index Tuning with a Learned Tuning Diagnostic 201

Fig. 2. Overview of a Monitor-Diagnose-Tune framework for online tuning with learned
tuning diagnostic

In general, using one-hot encoding to featurize the workload and index con-
figuration in machine learning-based approaches restricts the ability of cross-
database learning and incremental updates when the schema is altered, impeding
the deployment of learning-based approaches in practice. For example, enabling
RL-based index recommendations for each database in a cloud platform is a
significant undertaking, as each instance must train an agent independently,
which typically takes several hours to several days. Although some transferable
representations that enable generalization across databases have been proposed
recently, they are based on query plans and are not applicable to our problem,
as the query plan varies with different index configurations [13,15].

3 Overview

Architecture. Figure 2 provides an overview of the Monitor-Diagnose-Tune
paradigm with our proposed learned tuning diagnostic. It consists of three major
components: (1) a monitoring module that continuously monitors system met-
rics during workload execution and triggers the next procedure when necessary;
(2) a diagnosis module that determines whether a tuning session would result in
a worthwhile improvement beyond a specific threshold; and (3) a tuning mod-
ule that invokes a resource-intensive tuning tool with a comprehensive analysis
and deploys the appropriate configuration. When a trigger event occurs, such as
performance regression, workload shift, or a fixed time interval, the diagnostic
guides the launch of a tuning session. If the diagnostic decides that a tuning
session is necessary, we run a comprehensive tuning tool based on the recent
past workload or the upcoming workload, which can be known in advance or
predicted depending on the situation. The focus of this work is the diagnosis
module, and we do not delve into the trigger mechanism or index selection tech-
nique. It is our view that frequent workload changes in online scenarios make
it impractical to launch sophisticated tuning sessions with long runtimes and

202 H. Hang and J. Sun

Fig. 3. Schema2Graph

multiple resource-intensive what-if calls every time a triggering event occurs.
Therefore, our proposed lightweight diagnostic enables the deployment of exist-
ing tuning tools that provide better recommendations through comprehensive
workload analysis, making them practical for use in online scenarios.

Workflow. The workflow of the learned tuning diagnostic is presented in the
Diagnosis module in Fig. 2. It consists of three stages: (1) schema2graph, which
converts the database schema to a directed graph; (2) representation layer, which
uses relational graph convolutional networks (RGCN) to embed the query and
index configuration into vectors based on the schema graph; and (3) predication
layer, a fully connected neural network that determines whether the current
configuration needs to be updated for the target workload. The first step is to
generate a schema graph with vertices representing columns/tables and edges
capturing the relationships between them. The representation layer uses fea-
tures that capture the necessary information of the query, such as column/table
references in different clauses, to encode the nodes in the graph. A graph convolu-
tional neural network is used to generate the graph embedding, which represents
the query embedding based on the schema graph with node features encoding
the query information. The current index configuration is featurized in a similar
vein. Finally, the graph embedding yields the vectorized representation of the
current index configuration and the target workload. To diagnose tuning, we feed
the representation of the workload and index configuration into a fully-connected
neural network along with other parameters, such as the memory budget and
the improvement threshold, to determine whether a tuning session is necessary
for the target workload.

4 Learned Tuning Diagnostic Model

4.1 Model Design

Schema2Graph. We begin by converting the database schema to a directed
graph, denoted by Gschema = (V, E ,R). Here, nodes (entities) are represented
by vi ∈ V, and labeled edges (relations) are represented by (vi, r, vj) ∈ E , where
r ∈ R is a relation type. Each table and column in the schema is represented as a
node in the graph. To capture how columns and tables relate to one another, we
introduce four types of edges with 11 different labels, which are listed in Table 1.
An example of the schema graph representation is illustrated in Fig. 3.

Enhancing Online Index Tuning with a Learned Tuning Diagnostic 203

Table 1. Description of edge types used in the schema graph(* additional edge labels
used in the index configuration representation).

Type of (vi, vj) Label of r Description

(Column, Column) FK(Foreign Key)-Left vi is a foreign key for vj

FK-Right vj is a foreign key for vi

Two-Column-Index* A two-column index (vi, vj) is built

(Column, Table) PK(Primary Key)-Left vi is a primary key of vj

Belongs-to-Left vi is a column of vj (not the primary key)

(Table, Column) PK-Right vj is a primary key of vi

Belongs-to-Right vj is a column of vi (not the primary key)

(Table, Table) FK-Table-Left Table vi has a foreign key column in vj

FK-Table-Right vj has a foreign key column in vi

FK-Table-Both vi and vj have foreign keys in both directions

Fig. 4. Workload Featurization

Workload Representation. We now illustrate how to featurize the workload
using our proposed graph-based representation (detailed in Fig. 4). Our method-
ology involves extracting relevant features from the query. This entails capturing
the various ways in which columns and tables are referenced in different function
calls and clauses, as well as taking into account the underlying data character-
istics. Table 2 provides a list of the different features we extract for tables and
columns. In addition to the semantic information, such as how columns are ref-
erenced in different clauses, we also incorporate some fundamental data features
from DBMS optimizer. For example, the percentage of rows filtered by table
condition, which enables us to account for the effective changes in data size and
distribution when learning across databases.

In our methodology, distinct features are considered for the table and column
nodes. However, we do not encode the node features in a node-wise manner.
Instead, we unify the encoding for the table and column nodes by padding.
For each column/table node, a node feature is defined, where each bit denotes
a feature listed in the table above (except that the data type feature adopts
one-hot encoding and the percentage rows filtered is a decimal between 0 and
1). For the features that do not belong to this node type, the corresponding
bit in the feature vector is set to 0. To illustrate, consider the column node
O ORDERDATE in Step 2© in Fig. 4. The first two bits that represent the

204 H. Hang and J. Sun

Table 2. Query Feature Extraction

Type Features Description

Table table reference is table referenced

percentage rows filtered the percentage of rows filtered by table conditions

Column data type data type

in select is column in a select clause

in functional call is column in a function call

in filter is column in a filter condition

in join is column in a join condition

in groupby is column in a groupby clause

in orderby is column in a orderby clause

data type and percentage rows filtered features are set to 0, as O ORDERDATE
is not a table node. The underlined one-hot encoding indicates the data type.

We apply a relational graph convolutional network (R-GCN) [26] to embed
each vertex into a vertex vector, given the schema graph Gq with node features
extracted from the query q. The propagation model for calculating the forward-
pass update of a vertex, denoted by vi, in the relational graph is formulated as
follows:

h
(l+1)
i = σ(

∑

r∈R

∑

j∈N r
i

1
ci,r

W (l)
r h

(l)
j + W

(l)
0 h

(l)
i)

Here, h
(l)
j is the hidden state of vertex vi in the i-th layer of the neural

network. N ir denotes the set of neighbor vertices of vi under relation r, and
1

ci,r is a problem-specific normalization constant that can either be learned or
chosen in advance (in our model, ci,r = |N r

i | is a normalized sum). Note that, in
addition to the edges defined in Table 1, a self-connection edge is added for each
vertex in the graph, so that the representation of a vertex at layer l + 1 can also
be informed by the corresponding representation at layer l.

During the propagation of the graph neural network, the message-passing
aggregates the information of both neighbor vertices and the vertex itself for
each vertex, due to the self-connection edge. However, the original information
of the vertex itself may still be diluted. To address this, we concatenate the
hidden state of the last layer with the node features extracted before applying
the graph neural network (i.e., h

(0)
i) to obtain the embedding of vertex vi:

evi
= concat(h(l)

i , h
(0)
i)

We represent query q with the embedding of Gq, denoted as eq. To compute
a feature vector of the entire graph, we utilize a rule-based readout phase. In this
phase, we collect all nodes whose corresponding columns/tables are referenced
in the query q. We then use sum pooling of these nodes to form the graph
representation, as follows:

eq = eGq
= sumpool ({evi

|})

Enhancing Online Index Tuning with a Learned Tuning Diagnostic 205

Fig. 5. Index Configuration Featurization.

Finally, we compute the embedding of the workload by calculating the
weighted average of the query composition associated with query weights, as
follows:

ew =
∑

qi∈w

eqi · fqi

Here, fq represents the query weight, which is the proportion of query q arriving
per time interval.

In comparison to one-hot encoding and language models, where input literals
such as column and table names are used, our graph-based representation not
only captures the schema definition but also the query details. Furthermore, our
featurization approach is transferable across databases since it encodes node fea-
tures without any literals. This makes cross-database learning feasible, allowing
for leveraging data from millions of databases on a cloud platform.

Index Configuration Representation. Similarly, we featurize the index con-
figuration based on the schema graph. The node features are constructed using
the underlying data characteristics of each column and the index’s build infor-
mation. The difference between the index and the query featurization is that
we do not extract any query-related features. As shown in Step 1© in Fig. 5, the
first bit of the node feature vector indicates that a single-column index is created
on the corresponding column. The remaining bits describe the underlying data
characteristics of that column, including the number of rows (reltuples) and the
average width in bytes of column entries (avg width).

In addition to the edge types introduced in workload representation, we add a
new type of edge to indicate the construction of a two-column index. Specifically,
when a two-column index Index (vc1, vc2) exists, we create an edge (vc1, vc2)
with the label Index-Left and an edge (vc2, vc1) with the label Index-Right. As
illustrated in Fig. 5, two directed edges, marked in red, are created to indicate
the existence of (O ORDERDATE,O ORDERPRICE).

It should be noted that we only consider indexes with widths of 1 and 2.
As reported by Kossmann et al. [18], wider indexes with a width greater than 2
do not significantly improve the investigated benchmarks for most index tuning
algorithms. Furthermore, the runtime of some algorithms would substantially
increase when considering large index combinations. Therefore, our index con-
figuration featurization is limited to a two-column index.

206 H. Hang and J. Sun

Predication Layer. After constructing the vectorized representation of the
workload and index configuration, it can be used as input for the prediction
layer. In our implementation, we use a two-layered fully-connected neural net-
work to predict whether tuning the current configuration for the target workload
is necessary. Specifically, it determines whether there is a better configuration
within the memory limit, such that the performance improvement of the target
workload under the configuration is greater than the threshold compared to that
under the original configuration. Therefore, we concatenate the representation
of the workload ew, the representation of the index configuration ei, the memory
budget b, and the improvement threshold θ as input.

4.2 Training Model

Training Data Generation. Due to limited availability of real data, we need
to generate training data by simulation. Specifically, considering n query tem-
plates from the selected benchmark, we randomly select m templates and assign
random frequencies using a uniform distribution to generate a workload at each
round. Next, we use an existing tuning tool to recommend an index configura-
tion based on the generated workload. In the subsequent round, a new workload
and corresponding configuration are generated in the same way. We then eval-
uate the performance of the new workload under the previous and new config-
urations, respectively. The label is assigned based on whether the performance
improvement brought by the new configuration exceeds the set threshold. For
example, at the beginning, we randomly generate a workload w0 as described
above and recommend an index configuration c0 for w0 using a tuning tool with
a set memory budget b. At time t1, a new workload w1 and configuration c1
for w1 are generated. The performance of workload w1 evaluated under con-
figuration c0 and c1 is denoted as cost(w0, c0) and cost(w1, c1), respectively.
If cost(w0,c0)−cost(w1,c1)

cost(w0,c0)
≥ θ, the label is set to to tune; otherwise, it is set to

not to tune. In this way, we can construct our data set using < wi, ci−1, b, θ >
with an assigned label.

End-to-End Training. As discussed in Sect. 4.1, our diagnostic model com-
prises a representation layer, which is composed of two independent graph neural
networks for featurizing the workload and index configuration, and a predication
layer. Unlike the conventional approach of training these layers separately, we
employ an end-to-end training strategy that involves joint training of the repre-
sentation and predication layers. This approach is enabled by the differentiability
of all steps in the training process.

5 Experimental Evaluation

5.1 Experimental Setup

Implementation and Environment. We have implemented a Monitor-
Diagnosis-Tune framework that incorporates our learned tuning diagnostic. As

Enhancing Online Index Tuning with a Learned Tuning Diagnostic 207

Table 3. Performance of learned tuning diagnostic.

Benchmark θ = 5% θ = 10% θ = 15%

Precision Recall F1 Precision Recall F1 Precision Recall F1

TPC-H 0.884 0.869 0.876 0.919 0.907 0.907 0.923 0.929 0.926

TPC-DS 0.799 0.811 0.805 0.830 0.837 0.833 0.838 0.821 0.829

Fig. 6. Ability of cross-database learning.

the core of the tuning module, we have utilized the state-of-the-art index selec-
tion algorithm Extend [27]. For cost estimation, we rely on HypoPG [1], a Post-
greSQL extension that allows the creation, deletion, and size estimation of hypo-
thetical indexes.

Datasets and Workload. For our evaluation, we have selected two bench-
marks: TPC-H [3] and TPC-DS [2]. We have excluded TPC-DS queries 4, 6, 9,
10, 11, 32, 35, 41, and 95, as well as TPC-H queries 2, 17, and 20, because their
estimated costs are orders of magnitude higher than those of the other queries.
This renders the index tuning problem less complex, as validated in [18]. We
have generated the training data as detailed in Sect. 4.2 to train a learned tuning
diagnostic for each benchmark. To simulate the online scenarios with dynamic
workloads, we have randomly selected 10 templates from all query templates and
generated 1000 queries for each time interval using the selected templates with
uniform weight distribution.

Experimental Parameters. The parameters varied in our experiments include
the storage space budget b and the improvement threshold θ. The space budget
is expressed as a multiple of the raw data size. For instance, with 10 GB of data,
a storage budget b of 0.5 represents 5 GB of storage space.

Evaluation Metrics. In our evaluation, we evaluate the performance of our
learned tuning diagnostic using Precision, Recall, and F1 score. On one hand, we
are interested in the ratio of true positives to total predicted positives, which is
reflected by precision. The higher the precision, the less time is wasted on unnec-
essary tuning requests. On the other hand, we aim to identify situations that
require tuning as much as possible. If all tuning opportunities are correctly iden-
tified, then the recall is 100%. Besides reporting the performance of the model,
we also evaluate the overall time for online index tuning and report the perfor-
mance of the Monitor-Diagnose-Tune framework with the learned diagnostic.

208 H. Hang and J. Sun

Fig. 7. Evaluation of total time

5.2 Performance of Learned Tuning Diagnostic

We first evaluate the classification quality of our learned tuning diagnostic by
generating a dataset of size 10000 for each benchmark. We vary the improve-
ment threshold θ in [5%, 10%, 15%]. We do not examine our method with a higher
threshold, such as 20%, as a new configuration is unlikely to bring an improve-
ment beyond this threshold for the two benchmarks evaluated. The results for
different improvement thresholds are presented in Table 3. Our proposed learned
tuning diagnostic achieves precision and recall values above 0.8 for both bench-
marks under most improvement threshold settings. These results demonstrate
that our proposed diagnostic can effectively reduce unnecessary tuning requests
while avoiding missing tuning opportunities. Note that we do not compare our
approach with other database-specific query and index representations in this
section. Such a comparison would be unfair as they do not consider the ability
of cross-database learning.

5.3 Ability of Cross-Database Learning

To assess the model’s ability to perform cross-database learning, we train it on
one benchmark’s complete dataset and a fraction of the dataset leaked from
another benchmark, then test it on the held-out benchmark. This held-out
setup simulates the scenario where there is insufficient training data to inde-
pendently train a model for a new database deployment. Figure 6 shows the F1
score obtained from applying cross-database learning. The x-axis represents the
volume of data leaked from the held-out database. For instance, Fig. 6(a) depicts
the TPC-DS benchmark as the held-out database. The TPC-DS line corresponds
to a model trained using only a fraction of the leaked data from the TPC-DS
benchmark, while the TPCH + TPC-DS line illustrates the F1 score of a model
trained using the entire training data from the TPC-H benchmark and the leaked
data from TPC-DS. Due to the small size of the leaked data, the model trained
using only the leaked data performs poorly. By combining the significant amount
of training data generated by existing databases, we can train a more effective
model.

Enhancing Online Index Tuning with a Learned Tuning Diagnostic 209

Table 4. Total time breakdown for the TPC-H benchmark with storage budget b =
50% and improvement threshold θ = 15%

Methods Runtime (1e5 sec)

Tuning requests Index Update Workload Execution Total

NoIndex 0 0 1.384 (100%) 1.384

NoDiagnostic 0.057 (5.1%) 0.073 (6.5%) 0.993 (88.4%) 1.123

Learned Diagnostic 0.031 (2.9%) 0.032 (2.9%) 1.024 (94.2%) 1.087

5.4 Online Index Tuning with Learned Diagnostic

Since the primary goal of online index tuning is to minimize the total time,
including runtime for the tuning session, we also evaluate the impact of our
learned tuning diagnostic integrated into the Monitor-Diagnose-Tune framework
on total runtime. We consider the online index tuning scenario described in
Sect. 2.1, where we set the number of time intervals to 100. We compare our app-
roach with two baselines: 1) NoIndex, a baseline without any secondary indices,
and 2) a Monitor-Tune cycle without diagnosis, denoted by NoDiagnostic.

Based on the experimental results presented in Sect. 5.2, our learned tuning
diagnostic model performs best when the improvement threshold is set to 15%.
We argue that 15% is a suitable threshold since a lower threshold would incur
unnecessary tuning costs that offset the benefits of a better configuration. To
further evaluate the Monitor-Diagnose-Tune framework with our learned diag-
nostic, we set the improvement threshold to 15%.

Figure 7 shows the total time for different benchmarks under various memory
budgets. Our method outperforms NoIndex and NoDiagnostic for both bench-
marks. A monitor-tune cycle does not consistently perform better than NoIndex
since the overhead of tuning sessions offsets the benefits of better configurations.
Our learned diagnostic avoids unnecessary and time-consuming tuning requests,
resulting in up to a 13.3% reduction in total time for processing the workload
sequence, significantly enhancing the Monitor-Diagnose-Tune framework.

Moreover, we present a detailed breakdown of the total time for both bench-
marks in Table 4 and Table 5. In comparison with NoDiagnostic, which tunes for
each interval, our method is not superior in workload execution time since it can-
not fully and accurately identify scenarios with better configurations. However,
by utilizing our learned diagnostic, the runtime for tuning requests is reduced by
up to 43%. Clearly, the benefits of such reduction outweigh the disadvantages in
workload execution time.

Besides evaluating the total time for online index tuning, we also assess the
benefits of the learned diagnostic in reducing resource consumption, specifically
in terms of the number of optimizer What-if calls. The number of what-if calls
directly impacts the burden on the database server. As illustrated in Fig. 8, our
approach significantly reduces the number of what-if calls by avoiding unneces-
sary tuning requests. For instance, for the TPC-DS benchmark, the number of
what-if calls is reduced by 37.4%, 34.5%, and 36.2% with the storage budgets of
b = 25%, 50%, and 75%, respectively.

210 H. Hang and J. Sun

Table 5. Total time breakdown for the TPC-DS benchmark with storage budget b =
50% and improvement threshold θ = 15%

Methods Runtime (1e5 sec)

Tuning requests Index Update Workload Execution Total

NoIndex 0 0 3.129 (100.0%) 3.129

NoDiagnostic 0.703 (23.3%) 0.077 (2.5%) 2.269 (75.2%) 3.016

Learned Diagnostic 0.401 (14.3%) 0.035(1.2%) 2.377 (84.5%) 2.813

Fig. 8. Evaluation of Optimizer What-if Calls

6 Conclusion

Although comprehensive index tuning algorithms are superior in terms of rec-
ommendation quality, they are time-consuming and resource-intensive, making
them unsuitable for frequent tuning requests in online scenarios. This paper
focuses on determining whether a sophisticated tuning session would result in a
new configuration that exceeds a given performance threshold, without executing
it. We introduce our key insight that this problem can be cast as a machine learn-
ing classification task, and propose a learned tuning diagnostic that enhances
the Monitor-Diagnose-Tune paradigm for online index tuning. To avoid costly
data collection and repeated training for each database instance, we propose a
transferable representation of queries and indexes for cross-database learning.
Our learned tuning diagnostic allows the Monitor-Diagnose-Tune framework to
accurately avoid unnecessary tuning requests that cannot significantly improve
performance.

References

1. HypoPG - Hypothetical Indexes for PostgreSQL. https://github.com/HypoPG/
hypopg

2. TPC-DS benchmark. www.tpc.org/tpcds
3. TPC-H benchmark. www.tpc.org/tpch
4. Agrawal, S., Chu, E., Narasayya, V.R.: Automatic physical design tuning: workload

as a sequence. In: Proceedings of the 2006 ACM SIGMOD International Conference
on Management of Data (2006)

https://github.com/HypoPG/hypopg
https://github.com/HypoPG/hypopg
www.tpc.org/tpcds
www.tpc.org/tpch

Enhancing Online Index Tuning with a Learned Tuning Diagnostic 211

5. Bruno, N., Chaudhuri, S.: Automatic physical database tuning: a relaxation-based
approach. In: ACM SIGMOD Conference (2005)

6. Bruno, N., Chaudhuri, S.: To tune or not to tune?: a lightweight physical design
alerter. In: Very Large Data Bases Conference (2006)

7. Bruno, N., Chaudhuri, S.: An online approach to physical design tuning. In: 2007
IEEE 23rd International Conference on Data Engineering, pp. 826–835 (2007)

8. Chaudhuri, S., Narasayya, V.: AutoAdmin “what-if” index analysis utility. ACM
SIGMOD Rec. 27(2), 367–378 (1998)

9. Chaudhuri, S., Narasayya, V.R.: An efficient cost-driven index selection tool for
Microsoft SQL server. In: Very Large Data Bases Conference (1997)

10. Choenni, S., Blanken, H.M., Chang, T.: Index selection in relational databases.
In: Proceedings of ICCI 1993: 5th International Conference on Computing and
Information, pp. 491–496 (1993)

11. Dash, D., Polyzotis, N., Ailamaki, A.: Cophy: a scalable, portable, and interactive
index advisor for large workloads. arXiv abs/1104.3214 (2011)

12. Deep, S., Gruenheid, A., Koutris, P., Naughton, J.F., Viglas, S.: Comprehensive
and efficient workload compression. arXiv abs/2011.05549 (2020)

13. Ding, B., Das, S., Marcus, R., Wu, W., Chaudhuri, S., Narasayya, V.R.: AI meets
AI: leveraging query executions to improve index recommendations. In: Proceed-
ings of the 2019 International Conference on Management of Data (2019)

14. Gao, J., Zhao, N., Wang, N., Hao, S., Wu, H.: Automatic index selection with
learned cost estimator. Inf. Sci. 612, 706–723 (2022)

15. Hilprecht, B., Binnig, C.: Zero-shot cost models for out-of-the-box learned cost
prediction. Proc. VLDB Endow. 15, 2361–2374 (2022)

16. Jain, S., Howe, B., Yan, J., Cruanes, T.: Query2vec: an evaluation of NLP tech-
niques for generalized workload analytics. arXiv, Databases (2018)

17. Kipf, A., Kipf, T., Radke, B., Leis, V., Boncz, P.A., Kemper, A.: Learned car-
dinalities: estimating correlated joins with deep learning. arXiv abs/1809.00677
(2018)

18. Kossmann, J., Halfpap, S., Jankrift, M., Schlosser, R.: Magic mirror in my hand,
which is the best in the land? Proc. VLDB Endow. 13, 2382–2395 (2020)

19. Kossmann, J., Kastius, A., Schlosser, R.: SWIRL: selection of workload-aware
indexes using reinforcement learning. In: International Conference on Extending
Database Technology (2022)

20. Lan, H., Bao, Z., Peng, Y.: An index advisor using deep reinforcement learning. In:
Proceedings of the 29th ACM International Conference on Information & Knowl-
edge Management (2020)

21. Li, G., Zhou, X., Li, S., Gao, B.: Qtune: a query-aware database tuning system
with deep reinforcement learning. Proc. VLDB Endow. 12, 2118–2130 (2019)

22. Licks, G.P., Couto, J.C., de Fátima Miehe, P., de Paris, R., Ruiz, D.D., Meneguzzi,
F.: SmartIX: a database indexing agent based on reinforcement learning. Appl.
Intell. 50, 2575–2588 (2020)

23. Ma, L., Aken, D.V., Hefny, A.S., Mezerhane, G., Pavlo, A., Gordon, G.J.: Query-
based workload forecasting for self-driving database management systems. In: Pro-
ceedings of the 2018 International Conference on Management of Data (2018)

24. Paul, D., Cao, J., Li, F., Srikumar, V.: Database workload characterization with
query plan encoders. Proc. VLDB Endow. 15, 923–935 (2021)

25. Sadri, Z., Gruenwald, L., Leal, E.: DRLindex: deep reinforcement learning index
advisor for a cluster database. In: Proceedings of the 24th Symposium on Interna-
tional Database Engineering & Applications (2020)

212 H. Hang and J. Sun

26. Schlichtkrull, M., Kipf, T., Bloem, P., van den Berg, R., Titov, I., Welling, M.:
Modeling relational data with graph convolutional networks. In: Extended Seman-
tic Web Conference (2017)

27. Schlosser, R., Kossmann, J., Boissier, M.: Efficient scalable multi-attribute index
selection using recursive strategies. In: 2019 IEEE 35th International Conference
on Data Engineering (ICDE), pp. 1238–1249 (2019)

28. Schnaitter, K., Abiteboul, S., Milo, T., Polyzotis, N.: On-line index selection for
shifting workloads. In: 2007 IEEE 23rd International Conference on Data Engi-
neering Workshop, pp. 459–468 (2007)

29. Sharma, A.K., Schuhknecht, F.M., Dittrich, J.: The case for automatic database
administration using deep reinforcement learning. arXiv abs/1801.05643 (2018)

30. Sun, J., Li, G.: An end-to-end learning-based cost estimator. arXiv abs/1906.02560
(2019)

31. Surajit, C., Narasayya, V.R.: Anytime algorithm of database tuning advisor for
Microsoft SQL server (2020)

32. Tang, X., Wu, S., Song, M., Ying, S., Li, F.Y., Chen, G.: PreQR: pre-training
representation for SQL understanding. In: Proceedings of the 2022 International
Conference on Management of Data (2022)

33. Valavala, M., Alhamdani, W.: Automatic database index tuning using machine
learning. In: 2021 6th International Conference on Inventive Computation Tech-
nologies (ICICT), pp. 523–530. IEEE (2021)

34. Wu, W., et al.: Budget-aware index tuning with reinforcement learning. In: Pro-
ceedings of the 2022 International Conference on Management of Data (2022)

35. Yan, Y., Yao, S., Wang, H., Gao, M.: Index selection for NoSQL database with
deep reinforcement learning. Inf. Sci. 561, 20–30 (2021)

NoGar: A Non-cooperative Game
for Thread Pinning in Array Databases

Simone Dominico(B), Marco A. Z. Alves, and Eduardo C. de Almeida

Federal University of Paraná, Curitiba, Brazil
{sdominico,mazalves,eduardo}@inf.ufpr.br

Abstract. An array database is a software that uses non-linear data
structures to store and process multidimensional data, including images
and time series. As multi-dimensional data applications are generally
data-intensive, array databases can benefit from multi-processing sys-
tems to improve performance. However, when dealing with Non-Uniform
Memory Access (NUMA) machines, the movement of massive amounts
of data across NUMA nodes may result in significant performance degra-
dation. This paper presents a mechanism for scheduling array database
threads based on data movement patterns and performance monitoring
information. Our scheduling mechanism uses non-cooperative game the-
ory to determine the optimal thread placement. Threads act as decision-
makers selecting the best NUMA node based on each node’s remote
memory access cost. We implemented and tested our mechanism on two
array databases (Savime and SciDB), demonstrating improved NUMA-
affinity. With Savime, we observed a maximum speedup of 1.64× and a
consistent reduction of up to 2.46× in remote data access during subar-
ray operations. With SciDB, we observed a speedup of up to 1.38× and
a reduction of 1.71× in remote data access.

Keywords: Array databases · Thread pinning · Nash equilibrium ·
Query processing

1 Introduction

An Array Database Management System (Array database) is a software specif-
ically designed for modeling, storing, and processing multidimensional arrays.
Array databases have become crucial components for many science and engi-
neering applications due to the significant increase in data volume and use of
multidimensional data. For instance, over the last decade, NASA1 has accu-
mulated almost 32 petabytes of scientific data, while ECMWF2 has stored 220
petabytes [1]. According to [2], the sheer volume of data generated by scientists
has driven the creation and adoption of Array databases. This overwhelming
1 National Aeronautics and Space Administration.
2 European Center for Medium-Range Weather Forecasts.

This work was supported by Serrapilheira Institute (grant number Serra-1709-16621).
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C. Strauss et al. (Eds.): DEXA 2023, LNCS 14146, pp. 213–227, 2023.
https://doi.org/10.1007/978-3-031-39847-6_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-39847-6_15&domain=pdf
https://doi.org/10.1007/978-3-031-39847-6_15

214 S. Dominico et al.

data volume has motivated researchers to develop tools like Array databases,
capable of processing vast amounts of data without resource constraints.

Array databases have similar performance requirements to traditional
Database Management System (RDBMS), supporting parallel processing and
concurrency control. However, they have the added advantage of supporting
various multidimensional operations, like geometric and linear algebra opera-
tions such as array slicing, transposition, addition, and subtraction. Compared to
NoSQL databases, Array databases offer better performance for complex math-
ematical operations and multidimensional data manipulation, making them a
strategic choice for applications requiring advanced and precise analyses.

The execution of multidimensional operations requires high-performance
multi-core processor systems like NUMA machines. These machines divide the
memory space among the processors into memory modules. Each processor has
access to its local memory module and the modules of other processors, referred
to as remote memory. Accessing remote memory involves using an cross-chip
interconnect with higher latencies than local memory accesses. Ideally, array
databases should provide linear speedup when utilizing all the resources from
NUMA systems. However, query threads may need to transfer large amounts
of data during data processing, resulting in significant performance degradation
when accessing remote memory. Hence, it is crucial to distribute query threads
and data carefully to avoid performance penalties and leverage the benefits of
NUMA.

The execution of query threads in array databases is similar to the ones
used by RDBMS relying on the Operating System (OS) to map query data and
worker threads to processor cores [3]. The OS uses load balance strategies to
spread the threads over the cores and does not take into consideration specific
memory access patterns from the interaction between operations running in the
database and the multi-core processor architecture. The result is a sub-optimal
performance with a sub-linear speedup impact on the overall execution time by
50% in subarray operations and more than 90% in aggregation and array join
operations in the Savime database.

In this paper, we detail the implementation of a thread scheduler mechanism
in two array databases, Savime and SciDB [4]. Our hypothesis is that mapping
query threads to specific CPU cores based on the memory access pattern of
each query operator can mitigate data movement across NUMA nodes and thus
improve performance. Our thread scheduler uses game theory and NUMA hard-
ware counters to analyze query memory access patterns, guiding thread pinning
strategy for optimal performance. Based on Nash Game Theory [5], each thread
is an independent, non-cooperative agent following a greedy strategy. Results
show increased performance, reduced remote data access, and energy savings
in both evaluated array databases. Our study is the first attempt to examine
the influence of NUMA architecture on multidimensional array databases, par-
ticularly emphasizing thread pinning. While earlier research has concentrated
on enhancing task placement, data partitioning, and load balancing in NUMA
architectures for query processing in RDBMS, our work takes a novel app-
roach by analyzing the implications specific to multidimensional array databases.

NoGar: A Non-cooperative Game for Thread Pinning in Array Databases 215

Results show performance speedup, consistent reduction in remote data access,
and energy savings in both Array databases evaluated. In summary, our main
contributions are the following:

– Thread allocation mechanism: we present a mechanism for allocating
threads on NUMA machines based on memory access patterns and hardware
counter metrics.

– Analysis of distinct array operations: we performed an extensive exper-
imental evaluation of the impact of the NUMA architecture on multidimen-
sional query operations.

– Performance improvements: our mechanism improves execution time,
reduces remote memory accesses, and lowers energy consumption in NUMA
architecture for two open-source array databases.

In Sect. 2, we discuss the memory access patterns and overview the NUMA
architecture. Section 3 covers the decision-making method for thread pinning
using game theory. In Sect. 4, we present our experimental setup and results.
Section 5 discusses related work, and we conclude in Sect. 6.

2 Background

In this section, we discuss array database access patterns, their characteristics,
and performance implications, followed by an explanation of the NUMA archi-
tecture.

2.1 Memory Access Patterns in Array Databases

The n-dimensional array data model is a crucial feature of array databases.
This model simplifies data access and analysis through different perspectives, as
each cell of the array holds attributes with the same data type. The array is
divided into equally-sized chunks for storage, where each is a physical represen-
tation of the array. In this paper, we concentrate on two open-source, full-stack
array databases, Savime and SciDB, as they implement the array model from
scratch without relying on the relational model, unlike other databases likes
RasdMan [6], ArrayStore [7] and SciQL [8].

The execution of a query in array data models involves extracting data from
arrays using nested function calls, and the resulting chunks are pipelined through
query operations. Similar to relational databases, the execution of each operation
presents one of the following memory access patterns [9]: i) operations with high
and low data reuse, ii) operations with non-coalescing memory access, and iii)
those with coalescing memory access patterns. We assume that each memory
access patterns exercise the memory architecture differently and may point out
the effects of our thread placement mechanism.

Subarray/subset operations slice n-dimensional data in a specific range. It is
classified as low data reuse with coalescing memory access in 2/3 of dimensions.
Unused projected values during subarray processing indicate low data reuse.

216 S. Dominico et al.

Fig. 1. Two examples of the subarray and aggregation operations. (Color figure online)

Fig. 2. Example of the join operation in an Array database. The operation joins the
values of array A and B. As a result, we have array C.

During the subarray processing, the projected values are no longer used dur-
ing the operation, characterizing low data reuse. Array databases implement
subarray/subset operators in different ways. Savime finds cells between the range
using the filter and, as a result, generates many chunks with different sizes. SciDB
decodes the compressed binary data into chunks and redistributes the data to
produce a new chunk configuration for the results in the interest range.

The subarray operation in the array data model is simple, but query selec-
tivity may require processing all chunks. Figure 1 shows two subarray examples,
selecting data from multidimensional array chunks in light colors. Blue represents
the subarray, projecting a portion of the entire array.

Another operation considered is an aggregation (Fig. 1). Savime scans the
chunks sequentially and saves the results in a buffer. After processing all the
chunks, Savime merges the temporary groups [10]. In SciDB, the aggregation
goes directly into the cell, which is evaluated independently of the chunk posi-
tion. The aggregation operation is categorized as high data reuse because of
the grouping computation and it is distinct from subarray because of its non-
coalescing memory access.

Figure 2 illustrates an example of the join operation based on the array
dimensions. Savime performs the join operation by iteratively combining nested
pairs of chunks, and uses a sort merge join to combine the chunks. SciDB’s join
operation combines all chunk dimensions by treating dimension IDs and values
as columns, resulting in a new array. By efficiently accessing and processing dif-
ferent cell IDs using a nested loop, the join operation is categorized as a high
data reuse operation in the smaller array with coalescing memory access pattern.

NoGar: A Non-cooperative Game for Thread Pinning in Array Databases 217

Fig. 3. Example of a NUMA architecture with 2 nodes inspired by Intel Xeon Silver
4114.

2.2 Overview of NUMA Architectures

NUMA is a computing architecture composed of several multi-core processors
split into logical nodes. Every node has an Integrated Memory Controller (IMC)
and its own designated memory banks. Hence, the main memory is divided
among these nodes. Each NUMA node can access all the memory space, yet
access time depends on the memory location relative to the processor. A pro-
cessor accesses its local memory faster than remote memory. The data transfer
occurs by interconnection links and may need to transfer through one or more
links to reach its destination node. Figure 3 presents a diagram of a NUMA archi-
tecture composed of two Intel Xeon Silver 4114 deca-cores processors with a set
of DDR-4 memory banks attached to each node. Each processor architecture
consists of multiple levels of cache memory, forming a complex memory hierar-
chy. Cache memories utilize a coherence protocol for a cache-coherent NUMA
(ccNUMA) system, ensuring a consistent shared address space view across all
nodes.

The most efficient memory access in NUMA architecture occurs when per-
forming local memory node accesses. However, the default data placement policy
in the Linux OS is known as the “first-touch”. This policy allocates the mem-
ory on the NUMA node where the thread is first executed. The OS policy of
load balancing between nodes may cause remote access due to thread migration
during execution, potentially resulting in increased remote memory access.

3 Nogar: A Non-cooperative Game to Array Database
Thread Pinning

We propose a dynamic mechanism based on game theory to optimize thread
placement for array databases executing on NUMA systems. Game theory is a
mathematical theory for decision-making. We used it to model each thread as a
decision-maker or agent in a non-cooperative game. A group of agents occupies
each node, and each node’s computing advantage varies over time depending on
hardware resource consumption.

Each agent has a sequence of independent decisions and analyzes the profit
at the start of each decision which depends on the number of other agents at its
current location and the cost level in each node.

218 S. Dominico et al.

3.1 Nash Equilibrium

The Nash equilibrium, introduced by John Forbes Nash in [5], is a solution for
several decision-makers to find equilibrium in a non-cooperative game. In a Nash
equilibrium, players make independent decisions knowing its influence on other
players. Each player chooses a strategy to achieve an outcome with the lowest
cost possible, and the equilibrium is reached when no player has incentives to
change strategy. The formal definition of a Nash equilibrium is:

Let (S, f) be a game with n players, where:

– S = S1 × S2 × . . . × Sn is the strategy set of a profile;
– Player i ∈ 1, . . . , n;
– f(x) = f1(x), . . . , fn(x) is the set of cost profiles;
– A cost function is evaluated at x ∈ S;
– xi is a strategy profile of player i and x−i is a strategy profile of all players

except player i;
– Each player i ∈ 1, ..., u chooses a strategy xi, resulting in a strategy profile

x = (xi, ..., xu), then player i with cost fi(x);
– A strategy profile x∗ ∈ S is at Nash equilibrium ∀i, xi ∈ Si, namely,

fi(x∗
i , x

∗
−i) ≥ fi(xi, x

∗
−i);

When the set of strategies reaches the Nash equilibrium, it is possible that
the game has found a solution. The game may have many Nash equilibriums.

3.2 The Thread Pinning Mechanism

To enhance throughput and performance, parallel query processing employs a
multi-threading processing approach. At the same time, the operating system
applies load-balancing strategies to distribute these threads among cores.

To reduce the negative impact of OS thread migration, our mechanism called
NoGar performs the thread pinning in NUMA nodes/cores using information
regarding the memory access pattern of the operations and the cache miss hard-
ware counter. NUMA cache miss is an important counter that indicates data
needs to be moved around nodes, resulting in remote memory access.

The allocation of threads is viewed as a game from a game theory perspective.
The threads act as players and use the memory access behavior to define the
strategies and determine the thread pinning position. Let ε = εi be the allocation
profile at each node, where an arbitrary thread i is linked to a specific node γnode

through the link εi ∈ γnode. The all profile set is denoted by δ.
The Nash Equilibrium in the thread allocation game can change depending

on the running workload. A Nash equilibrium refers to a possible allocation that
satisfies multiple threads and is considered the ideal allocation at a given moment
in the game. In this context, the threads seek to minimize the cache miss count
of all threads. The objective, which is to reduce cache misses, is expressed as:

min
ε∈δ

f(ε) =
n∑

i=1

mi(ε)/n (1)

NoGar: A Non-cooperative Game for Thread Pinning in Array Databases 219

Here, mi represents the cache misses for thread i under allocation ε ∈ δ,
where mi depends on the allocation profile ε. The details of mi(ε) are measured
using hardware counters, and cache miss measurements are only performed from
threads already in the game. Based on these values, the allocation game adjusts
to cache measurements and determines the best allocation. The game is repre-
sented by the tuple <T, δ,mii>. The game aims to achieve a pure Nash equi-
librium, denoted by δ∗, where no thread has the incentive to switch to a core of
a different NUMA node. Such an allocation is considered a Nash equilibrium if
mi(ε∗

i , ε
∗
−i)) ≥ mi(εi, ε

∗
−i) for all i and εi ∈ ε. This means that when all threads

are in the optimal allocation, the Nash equilibrium may change if a new thread
starts. The mechanism is designed to identify a set of Nash equilibriums that
minimize the total cache miss cost.

Fig. 4. Overview of the NoGar mechanism.

Figure 4 provides an overview of the NoGar mechanism based on Nash equi-
librium theory. When initiating a query, the engine identifies threads by their
thread identifier (TID) and instantiates players. The monitoring module then
searches the memory addresses associated with each thread used in the player’s
strategies. During this process, NoGar collects cache misses from each thread.
The analysis module then evaluates the costs of each NUMA node and assesses
the distribution of threads based on each query operation. The player strategy
is based on the cost function, positioning threads at the location with the lowest
cost. With different memory access and reuse patterns, it becomes necessary to
combine specific strategies, which means thread allocation depends on the oper-
ations underway. Operations with high data reuse and coalescent memory access
allocate threads on the NUMA node containing the required memory address.
Query operations with high data reuse and non-coalescent accesses mirror this
behavior. However, operations with low data reuse and non-coalescent access will
select the node with the lowest cost, irrespective of data location. This strategy
enables operations with conflicting data reuses to choose different nodes. Yet,

220 S. Dominico et al.

this might not always be feasible if the Array database executes multiple opera-
tions concurrently. Hence, threads primarily select the objective function (Eq. 1)
strategy, aiming for minimal cost allocation.

The mechanism is implemented in C language and requires information about
the running operation, TID, and accessed addresses. NoGar starts with the array
database and collects hardware topology information using the Portable Hard-
ware Locality library (hwloc) [11]. When a query starts, our mechanism starts
monitoring hardware counters. The following section presents an experimental
analysis of the NoGar mechanism.

4 Experimental Evaluation

The experimental analysis uses two Array databases: Savime version (v.1.0) and
SciDB version (v.19.11.5). The NUMA machine (here called NUMA-Skylake)
has two nodes, each node with an Intel Xeon Silver 4114 (with Skylake microar-
chitecture). Each Xeon socket has ten cores with a private L1 (I + D) cache
(32 KB each core), a private L2 cache (1 MB each core), and a shared L3 cache
(14 MB total per node). The two NUMA nodes are interconnected by a Quick
Path Interconnect (QPI) link [12] 4×, with a bandwidth of 21.5 GB/S. The
machine includes 128 GB of DDR-4 main memory and 14 TB of disk storage (at
15,000 rpm), running Ubuntu OS version 18.04.01 LTS for Savime and Ubuntu
version 14.04.6 LTS for SciDB. We use different OS versions considering the
indicated on each Array database documentation. We also evaluated the mech-
anism on NUMA-SandyBridge and NUMA-NehalemEX machines, but results
are not included due to space limitations. Overall, the results demonstrated that
the NoGar engine could perform well on different NUMA architectures. The
results showed a speedup of 1.43× and 1.28×, on the NUMA-Sandy-Bridge and
NUMA-Nehalem machines respectively.

We used the Performance Counter Monitor (PCM) [13] to measure the hard-
ware performance. The Intel PCM tool estimates the main memory and pro-
cessor cores’ total power consumption. In the experiments, we define the maxi-
mum number of available threads for each query execution corresponding to the
number of available physical cores. The workload has dense matrices based on
data from the seismic benchmark HPC4e BSC [14], used in previous work [15].
Finally, we present results considering the average of 10 executions to reduce the
variation inherent to OS decisions. The overhead of our mechanism is already
included in the presented time results.

4.1 Impact of the Number of Chunks

This section presents the results of the NoGar mechanism for different query
operators varying the number of chunks. Operations run simultaneously on a
1 GB database composed of two dense matrices for the join operation and a
single dense array for aggregation and subarray. We normalize the results to the
values obtained with 20 chunks using the OS scheduler.

NoGar: A Non-cooperative Game for Thread Pinning in Array Databases 221

Fig. 5. Subarray: low data reuse and coalescing memory access.

Figure 5 presents the result of the subarray operation. On Savime, NoGar
achieved a speedup of 1.64× when the number of chunks equals the number
of cores on the machine. A smaller number of chunks increases each chunk size;
therefore, threads do not have to change processed data several times. For NoGar,
this discovery made game coordination even more accessible. Furthermore, pin-
ning threads to a specific core reduces context switching between CPU cores,
which helps maintain cost balance for a longer time, reducing remote access
in 2.46× in Savime and 1.71× in SciDB. The results suggest that pinning the
thread to a given core improves the use of the NUMA architecture.

Figures 6a and 6b show the results obtained with operations with high data
reuse – aggregation and join – normalized by the number of chunks 20. These two
operations are positioned by NoGar exactly on the node with the requested data.
In Savime, the NoGar mechanism showed a maximum speedup of 1.38× on join
and 1.17× on aggregation. Also, the OS performed well with 20 chunks. These
two operations in Savime need to go through all the cells of the analyzed dimen-
sions. Considering many chunks, the NoGar had more difficulty maintaining the
thread balance among the cores. In SciDB, the join and aggregation obtained
the best result, with 500 chunks reaching 4.26× in the aggregation and 2.14×
in the join. The thread pinning reduced remote access due to the aggregation
implementation of SciDB.

4.2 Evaluating the Behavior of Database Operators

We considered that each operation has different memory access patterns, and the
amount of data or chunks processed can change in each operation. Reducing the
amount of data processed can further reduce access to remote memory if thread
placement is efficient. Therefore, this subsection evaluates each of the database
operators separately.

222 S. Dominico et al.

Fig. 6. Speedup and memory accesses comparing the OS scheduler with the NoGar
mechanism, varying the number of chunks. The top axis number is the speedup. Values
normalized to 20 chunks.

Evaluation of the Subarray Operation: In this experiment, we evaluated
the subarray operation with different selectivity. In addition, we varied in this
experiment the number of processed chunks, processing all chunks (M) and only
20% of chunks (F). The selectivity indicates the percentage of data that needs to
be filtered to materialize the subarray output. For example, high selectivity (H -
in this experiment 70%) means that more data is filtered and, as a result, mate-
rializes fewer data for output in DRAM. Low selectivity (L - in this experiment
20%) indicates the opposite.

Figure 7 shows the results of the subarray operation varying the data selec-
tivity. The graphs are normalized according to the results of the baseline, which
is the OS Linux scheduler (OS Sched.). The results indicate that the NoGar
mechanism, considering high selectivity, achieved a speedup of 2.49× in Savime

NoGar: A Non-cooperative Game for Thread Pinning in Array Databases 223

Fig. 7. Speedup and number of memory accesses comparing the OS scheduler with the
NoGar engine, varying the selectivity of the subarray operator. The number on the
top axis is the speedup. Values normalized for 20 chunks.

when pinning the thread to the node with the lowest cost. Remote access was
reduced by 7×, indicating efficient utilization of cache memory.

Another interesting point is that thread allocation affects the tested
databases differently. While Savime presents the best results with high selec-
tivity, SciDB presents the best results with low selectivity. A query with high
selectivity should be faster because it returns a smaller amount of data. How-
ever, Savime processes the chunk by selecting precisely the data in the specified
range. SciDB, on the other hand, needs to decompress the data and redistribute
it among the instances to process them. This behavior may have contributed
to NoGar taking a long time to find balance in SciDB and needing to be more
efficient than in Savime. The convergence time of our mechanism to find the
balance is already included in the achieved times in the results.

As a result, the pinning threads with high selectivity prove to be more effi-
cient in Savime by maximizing data locality and minimizing the extra latency of
remote accesses. On the other hand, in Savime, low selectivity selects more data.
As a result, the throughput is lower due to NoGar needing to perform more cal-
culations to find the optimal allocation. This happens because the balance can
change with the increase in cache misses.

The subarray operation in SciDB allows for selecting specific subsets of data
from a multidimensional array, and memory selectivity can affect the perfor-
mance of this operation. Thread pinning improves performance when dealing
with low selectivity by reusing data already loaded into the cache memory. The
reusing of data makes it easier for NoGar to find the balance quickly.

Evaluation of Aggregation Operation: The aggregation operation can per-
form in different dimensions. In this experiment, we compare aggregation perfor-
mance in the first and last dimensions. NoGar results were similar on both array

224 S. Dominico et al.

databases, achieving a speedup of 1.30× and a reduction of 1.50× in remote
access.

In Savime, the processing results of each chunk are stored in a buffer that is
then utilized to regroup the data and generate the final result. Assigning threads
to a specific core allows intermediate data to be stored in the memory of their
specific nodes, as the data chunks are relatively small.

In a SciDB multidimensional array, the first dimension has the most elements
and represents the outermost data layer. Aggregating on this dimension can
cause non-coalescent memory accesses, leading to memory fragmentation and
reduced processor cache use. However, aggregating on the last dimension results
in better memory access but lower speedup, as it involves high data reuse and
non-coalescent memory accesses.

Evaluation of the Join Operation: In Savime, the join operation involves
a nested loop to combine pairs of matrices, and the memory access is reduced
when the operation is performed in only one dimension. When compared to
the OS scheduler, NoGar performs better, achieving a speedup of 1.39×. Since
threads work together on a specific chunk in NoGar’s placement, unnecessary
migrations of threads are prevented and the utilization of cached data in mem-
ory is increased. Additionally, in our other work [16], we showed the impact of
different thread combinations that demonstrate a reduction in remote accesses,
which improves performance.

On the other hand, in the SciDB, all array dimensions are necessarily joined
during the join operation. Similarly, in SciDB, NoGar achieved a speedup of
1.38×. SciDB can combine pairs of cells efficiently as the arrays have the same
number of chunks and sizes. The thread placement strategy of NoGar reduces
remote access by allocating threads precisely on the node where the data is
located and taking advantage of contiguous memory accesses.

4.3 Energy Efficiency

The evaluation of energy consumption is based on the Energy-delay product
(EDP) metric, which measures the relationship between power and performance.
This metric is determined by the product of energy and execution time and is
an effective indicator of system efficiency, where a smaller value indicates a more
efficient system. We consider the processor and main memory power consumption
to calculate overall energy consumption.

The results, presented in Fig. 8, confirm the trends observed in the speedup
analysis. Specifically, Savime exhibits a better EDP (lower) when the number of
chunks is close to the number of cores, while SciDB shows the opposite trend.
Notably, the NoGar engine achieved lower EDP in all cases evaluated.

5 Related Work

The need for high-performance parallel computing has motivated several studies
to explore the benefits of NUMA architectures in relational query processing. In

NoGar: A Non-cooperative Game for Thread Pinning in Array Databases 225

Fig. 8. Power rating including total power (processing + main memory), using the
EDP metric.

query processing, Psaroudakis et al. [17] introduced task placement and data par-
titioning strategies for concurrent scans in NUMA, showing that load balancing
between nodes optimizes computational resource use. Similarly, the authors of
[18] show that topology awareness of the NUMA architecture improves query
processing performance. Gawade and Kersten [19] examine the execution of
query plans that are both NUMA architecture-aware and partitioned, taking into
account NUMA-awareness. Psaroudakis et al. [20] proposed a prototype adaptive
partitioning mechanism to minimize remote accesses and balance NUMA nodes,
using processing usage data to detect imbalances between nodes. Morsel lever-
ages data affinity and thread parallelism control in Hyper database [21], divid-
ing data into morsels processed by the same operator pipeline. Several studies
explored improving specific relational operators execution in NUMA architec-
ture [3,22–24]. Prior research has presented various approaches to mitigate the
impact of the NUMA architecture in a manner that is agnostic to specific applica-
tions. Some of these works [25–32] concentrate on thread placement techniques
that consider memory communication costs between nodes. These approaches
improve the performance of applications that do not share data among pro-
cesses.

In contrast to other studies, this paper examines the influence of the NUMA
architecture on Array databases with distinct storage and memory usage. Our
research benefits from the knowledge that the OS conducts first-touch mapping,
enabling us to determine the thread and data mapping simultaneously when
allocating threads. Unlike other related works that primarily concentrate on data
mapping, our study focuses on thread mapping, which has an indirect effect on
page mapping.

226 S. Dominico et al.

6 Conclusion

This work considered the NUMA effects on query processing in Array databases.
Modern array databases do not take advantage of the potential of the NUMA
architecture. Parallel query execution does not control the allocation of threads
and leaves this responsibility to the OS, which does not know the exact workload
placement of each execution thread.

In this paper, we presented a thread placement mechanism called NoGar that
analyzes query workloads to mitigate data movement during the query execution
between NUMA nodes. Considering that most query execution scenarios involve
multiple threads collaborating or competing to perform a task, we presented a
mechanism based on game theory that manages thread pinning. In this work,
thread allocation is a multi-agent decision-making game. Our mechanism deci-
sions are made based on information from the memory access pattern of queries
and cache misses at each NUMA node. The experimental evaluation showed
that the mechanism places threads efficiently most of the time, achieving a per-
formance gain of 48% and energy saving of 37% on average, taking over the
scheduling previously performed by the OS.

References

1. Baumann, P., Misev, D., Merticariu, V., Huu, B.P.: Array databases: concepts,
standards, implementations. J. Big Data 8(1), 1–61 (2021)

2. Stonebraker, M., Brown, P., Poliakov, A., Raman, S.: The architecture of SciDB.
In: Bayard Cushing, J., French, J., Bowers, S. (eds.) SSDBM 2011. LNCS, vol.
6809, pp. 1–16. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-
22351-8_1

3. Dominico, S., de Almeida, E.C., Meira, J.A., Alves, M.A.Z.: An elastic multi-core
allocation mechanism for database systems. In: ICDE, pp. 473–484 (2018)

4. Brown, P.G.: Overview of SciDB: large scale array storage, processing and analysis.
In: SIGMOD, pp. 963–968 (2010)

5. Nash, J.: Non-cooperative games. Ann. Math. 54, 286–295 (1951)
6. Baumann, P., Furtado, P., Ritsch, R., Widmann, N.: The RasDaMan approach to

multidimensional database management. In: SAC, pp. 166–173 (1997)
7. Soroush, E., Balazinska, M., Wang, D.: ArrayStore: a storage manager for complex

parallel array processing. In: SIGMOD, pp. 253–264 (2011)
8. Zhang, Y., Kersten, M., Manegold, S.: SciQL: array data processing inside an

RDBMS. In: SIGMOD, pp. 1049–1052 (2013)
9. Kepe, T.R., de Almeida, E.C., Alves, M.A.Z.: Database processing-in-memory: an

experimental study. PVLDB 13(3), 334–347 (2019)
10. Lustosa, H.L.S.: SAVIME: enabling declarative array processing in memory. Ph.D.

dissertation, LNCC, Petrópolis - Brasil, Fevereiro, p. 100 (2020)
11. Broquedis, F., et al.: hwloc: a generic framework for managing hardware affinities

in HPC applications. In: Euromicro, pp. 180–186 (2010)
12. Intel. Maximizing multicore processor performance (2019). https://www.

intel.com/content/www/us/en/io/quickpath-technology/quickpath-technology-
general.html

13. Willhalm, T., Dementiev, R., Fay, P.: Intel performance counter monitor (2012).
https://software.intel.com/en-us/articles/intel-performance-counter-monitor

https://doi.org/10.1007/978-3-642-22351-8_1
https://doi.org/10.1007/978-3-642-22351-8_1
https://www.intel.com/content/www/us/en/io/quickpath-technology/quickpath-technology-general.html
https://www.intel.com/content/www/us/en/io/quickpath-technology/quickpath-technology-general.html
https://www.intel.com/content/www/us/en/io/quickpath-technology/quickpath-technology-general.html
https://software.intel.com/en-us/articles/intel-performance-counter-monitor

NoGar: A Non-cooperative Game for Thread Pinning in Array Databases 227

14. B. S. Center. HPC4E seismic test suite (2016). https://www.bsc.es/news/
bsc-news/new-hpc4e-seismic-test-suite-increase-the-pace-development-new-
modelling-and-imaging-technologies

15. Lustosa, H., Porto, F.: SAVIME: a multidimensional system for the analysis and
visualization of simulation data. CoRR, vol. abs/1903.02949 (2019)

16. Dominico, S., Alves, M.A.Z., de Almeida, E.C.: On the performance limits of thread
placement for array databases in non-uniform memory architectures. Comput. J.
105, 1059–1075 (2022)

17. Psaroudakis, I., Scheuer, T., May, N., Sellami, A., Ailamaki, A.: Scaling up concur-
rent main-memory column-store scans: towards adaptive NUMA-aware data and
task placement. PVLDB 12 (2015)

18. Kiefer, T., Schlegel, B., Lehner, W.: Experimental evaluation of NUMA effects on
database management systems. In: BTW, pp. 185–204 (2013)

19. Gawade, M., Kersten, M.: NUMA obliviousness through memory mapping. In:
DAMON, pp. 1–7 (2015)

20. Psaroudakis, I., Scheuer, T., May, N., Sellami, A., Ailamaki, A.: Adaptive NUMA-
aware data placement and task scheduling for analytical workloads in main-memory
column-stores. PVLDB 2 (2016)

21. Leis, V., Boncz, P., Kemper, A., Neumann, T.: Morsel-driven parallelism: a NUMA-
aware query evaluation framework for the many-core age. In: SIGMOD, pp. 743–
754 (2014)

22. Albutiu, M.-C., Kemper, A., Neumann, T.: Massively parallel sort-merge joins in
main memory multi-core database systems. PVLDB 5 (2012)

23. Li, Y., Pandis, I., Mueller, R., Raman, V., Lohman, G.M.: NUMA-aware algo-
rithms: the case of data shuffling. In: CIDR (2013)

24. Balkesen, C., Alonso, G., Teubner, J., Özsu, M.T.: Multi-core, main-memory joins:
sort vs. hash revisited. Proc. VLDB Endow. 7(1), 85–96 (2013)

25. Diener, M., Cruz, E.H.M., Navaux, P.O.A.: Locality vs. balance: exploring data
mapping policies on NUMA systems. In: PDP, pp. 9–16 (2015)

26. Lepers, B., Quéma, V., Fedorova, A.: Thread and memory placement on NUMA
systems: asymmetry matters. In: USENIX, pp. 277–289 (2015)

27. Virouleau, P., Broquedis, F., Gautier, T., Rastello, F.: Using data dependencies to
improve task-based scheduling strategies on NUMA architectures. In: Dutot, P.-F.,
Trystram, D. (eds.) Euro-Par 2016. LNCS, vol. 9833, pp. 531–544. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-43659-3_39

28. Di Gennaro, I., Pellegrini, A., Quaglia, F.: OS-based NUMA optimization: tack-
ling the case of truly multi-thread applications with non-partitioned virtual page
accesses. In: 16th CCGrid, pp. 291–300 (2016)

29. Wang, W., Davidson, J.W., Soffa, M.L.: Predicting the memory bandwidth and
optimal core allocations for multi-threaded applications on large-scale NUMA
machines. In: IEEE HPCA, pp. 419–431 (2016)

30. Serpa, M.S., Krause, A.M., Cruz, E.H., Navaux, P.O.A., Pasin, M., Felber, P.:
Optimizing machine learning algorithms on multi-core and many-core architectures
using thread and data mapping. In: PDP, pp. 329–333. IEEE (2018)

31. Popov, M., Jimborean, A., Black-Schaffer, D.: Efficient thread/page/parallelism
autotuning for NUMA systems. In: International Conference on Supercomputing,
pp. 342–353 (2019)

32. Cruz, E.H., Diener, M., Pilla, L.L., Navaux, P.O.: Online thread and data mapping
using a sharing-aware memory management unit. ACM TOMPECS 5(4), 1–28
(2021)

https://www.bsc.es/news/bsc-news/new-hpc4e-seismic-test-suite-increase-the-pace-development-new-modelling-and-imaging-technologies
https://www.bsc.es/news/bsc-news/new-hpc4e-seismic-test-suite-increase-the-pace-development-new-modelling-and-imaging-technologies
https://www.bsc.es/news/bsc-news/new-hpc4e-seismic-test-suite-increase-the-pace-development-new-modelling-and-imaging-technologies
https://doi.org/10.1007/978-3-319-43659-3_39

LHKV: A Key-Value Data Collection
Mechanism Under Local Differential

Privacy

Weihao Xue1, Yingpeng Sang1(B) , and Hui Tian2

1 School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou,
China

xuewh5@mail2.sysu.edu.cn, sangyp@mail.sysu.edu.cn
2 School of Information and Communication Technology, Griffith University, Nathan,

Australia

hui.tian@griffith.edu.au

Abstract. Local differential privacy (LDP) is an emerging technology
used to protect privacy. Users are required to locally perturb their raw
data under the framework of LDP, before they are transmitted to the
server. This technology can be applied to various data types, includ-
ing key-value data. However, in existing LDP mechanisms for key-value
data, it is difficult to balance data utility and communication costs, par-
ticularly when the domain of keys is large. In this paper we propose
a local-hashing-based mechanism called LHKV for collecting key-value
data. LHKV can maintain high utility and keep the end-to-end com-
munication costs low. We provide theoretical proof that LHKV satisfies
ε-LDP and analyze the variances of frequency and mean estimations.
Moreover, we employ Fast Local Hashing to accelerate the aggregation
and estimation process, which significantly reduces computation costs.
We also conduct experiments to demonstrate that, in comparison with
the existing mechanisms, LHKV can effectively reduce communication
costs without sacrificing utility while ensuring the same LDP guaran-
tees.

Keywords: Local differential privacy · Key-value data · Local hashing

1 Introduction

As the era of information technology continues to flourish, the issue of personal
privacy has become increasingly important. The protection of sensitive informa-
tion from leakage is a primary concern. Differential privacy (DP) is an emerging
technology that can effectively safeguard sensitive information while facilitat-
ing data intercommunication. Attackers are unable to infer the raw data from
published information, thereby ensuring privacy protection. Differential privacy
technology consists of central differential privacy (CDP) and local differential
privacy (LDP). In CDP, users’ raw data is directly uploaded to the server, which
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C. Strauss et al. (Eds.): DEXA 2023, LNCS 14146, pp. 228–242, 2023.
https://doi.org/10.1007/978-3-031-39847-6_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-39847-6_16&domain=pdf
http://orcid.org/0000-0002-2085-4359
https://doi.org/10.1007/978-3-031-39847-6_16

LHKV: A Key-Value Data Collection Mechanism Under LDP 229

then uses the DP mechanism to add noise and publish perturbed data or statis-
tical analysis results. This method requires the server to be fully trusted since
it collects all users’ data. However, this is not always feasible. To address this
issue, the concept of LDP was proposed. Each user uses the LDP mechanism to
perturb the raw data before uploading it to the central server, preventing the
untrusted server from directly obtaining the real data.

LDP can be applied to many data types and statistical analysis tasks. As
technology advances, its applications have expanded from estimating frequencies
for categorical data and means for numerical data to more complex data types,
such as graph data and key-value data [13]. Key-value data is a common hetero-
geneous data type, which consists of two parts: the key belonging to categorical
data and the value belonging to numerical data. A correlation exists between the
key and value, with the value’s existence being dependent on the key. Key-value
data is prevalent on the Internet, such as movies with corresponding ratings on
rating websites, and products with corresponding prices on shopping websites.
If key-value data were sent directly to the central server, it could result in sen-
sitive information leakage. A common LDP-based movie rating system is shown
in Fig. 1. Each user has one or more key-value pairs, which are first perturbed
using LDP mechanisms and then sent to the server. The server aggregates the
perturbed data and performs statistical analysis tasks, typically frequency and
mean estimations. Importantly, the server cannot deduce the original pairs from
the perturbed data, which ensures the privacy of users throughout the process.

Fig. 1. A Movie Rating System under LDP

There are not many existing LDP mechanisms designed for key-value data.
Among them, PrivKVM in [14] and PCKV in [6] are two representatives. The
sampling method used in PrivKVM is essentially grouping users by keys, then in
each group key-value pairs are perturbed. However, the utility of PrivKVM is rel-
atively low when the domain of keys is large. Furthermore, the mean estimation
of PrivKVM requires multiple interactions to be unbiased, leading to an increase

230 W. Xue et al.

in communication costs. PCKV utilizes Generalized Randomized Response and
Unary Encoding [10] for the perturbation of key-value pairs. Thus there were
two mechanisms, PCKV-GRR and PCKV-UE. However, for collections of key-
value data, the size of the key domain is usually very large. In such cases, both
mechanisms suffer from certain limitations. PCKV-GRR’s utility is significantly
reduced when the domain is large, whereas PCKV-UE can improve this issue
but leads to a rise in communication costs.

To address the issues mentioned, we present a collection mechanism based
on Local Hashing for Key-Value (LHKV) data under LDP. Overall, the main
contributions of this paper can be summarized as follows:

1. Considering the shortcomings of existing mechanisms, we design a key-value
data collection mechanism called LHKV based on local hashing. Our mecha-
nism can maintain high utility and low communication costs, even when the
domain of keys is large. We prove that LHKV guarantees ε-LDP, and analyze
the variances of frequency and mean estimations.

2. To speed up the procedure of aggregation and estimation, we employ Fast
Local Hashing (FLH). Although some theoretical guarantees on accuracy are
sacrificed, we achieve computational gains on the server side. Practically, FLH
offers significant computational acceleration with minimal loss of utility.

3. We evaluate the proposed mechanism’s performance using several datasets.
The experimental outcomes indicate that, in comparisons with the existing
mechanisms, LHKV can effectively reduce end-to-end communication costs
without sacrificing utility under the same LDP guarantees.

2 Related Work

LDP is commonly utilized in various data types and statistical analysis tasks,
as it effectively prevents untrusted servers from accessing users’ actual data.
Currently, most methods in this field mainly focus on categorical and numerical
data, with the tasks primarily including the frequency and mean estimations.

For categorical data, Randomized Response is currently the most widely used
LDP mechanism due to its high scalability. Warner [12] first proposed Random-
ized Response for privacy surveys. The main idea behind Randomized Response
is to keep sensitive information unchanged with a higher probability and provide
a reasonable denial with a smaller probability. As a result, investigators cannot
deduce whether the information provided is true or not. Generalized Random-
ized Response (GRR) is an extension of Randomized Response for multi-value
data. In GRR, the raw data remains unchanged with a higher probability and is
perturbed to other values with a smaller probability. The basic RAPPOR mech-
anism, proposed by Erlingsson [5], encodes raw data into a binary vector of the
same size as the domain and then flips the 0 and 1 elements in the vector with
different probabilities. Wang [10] improved upon RAPPOR by proposing Opti-
mized Unary Encoding (OUE) to minimize approximate variance. In addition,
this paper suggested that local hashing can be used to compress the domain

LHKV: A Key-Value Data Collection Mechanism Under LDP 231

of data and thus proposed Binary Local Hashing (BLH) and Optimized Local
Hashing (OLH) mechanisms.

For numerical data, the Laplacian mechanism under CDP can be applied
in a distributed manner [4]. Mean estimation is a common statistical analysis
task for numerical data, and the current randomization methods used for mean
estimation can be divided into two categories: extreme values perturbation and
distribution perturbation [9]. The former aims to report either of the two extreme
values with a certain probability, as demonstrated in [3]. The latter maps the
output value to a continuous distribution, where the perturbed value is likely
to fall within an interval related to the raw value. An example of this type of
method is the Piecewise Mechanism proposed in [8].

Till now, there have not been many methods that apply LDP to the collection
of key-value data. Among them, the most representatives are PrivKVM [14]
and PCKV [6]. PrivKVM is the pioneering privacy protection mechanism that
employs LDP for key-value data. It operates by having each user randomly select
a key from the entire key domain, and then perturbing the selected key-value
pair based on whether the user holds the key or not. Through multiple rounds
of aggregation, it aims to achieve an unbiased estimation of the mean. However,
the sampling method of PrivKVM essentially groups users evenly, then each
group is used to estimate a specific key. If the domain size is too large, it may
lead to low statistical efficiency. Additionally, multiple rounds of interactions in
PrivKVM increase communication costs. PCKV introduced the Padding-and-
Sampling protocol [7,11] in the sampling phase, where each user adds fake key-
value pairs to reach a uniform length of key-value pairs. Then each user samples a
key-value pair and perturbs it using GRR and UE, resulting in two mechanisms,
PCKV-GRR and PCKV-UE. Notably, if the size of key domain is large, PCKV-
GRR may have lower utility, and PCKV-UE may be more effective despite the
fact that it incurs higher communication costs.

3 Preliminaries and Problem Definition

3.1 Local Differential Privacy

In contrast to LDP, users directly upload their raw data to the server in CDP.
An honest-but-curious server may normally conduct the required analysis tasks
over the raw data, but also leak the privacy to others for benefits. This issue
can be addressed by LDP, which requires raw data to be perturbed locally by
users before being uploaded to the server. This approach guarantees that the
raw data is not directly accessible from the untrusted server, thereby preventing
data leakage and enhancing the protection of privacy.

Definition 1 (Local Differential Privacy (LDP) [2]). A randomized mech-
anism M is said to satisfy ε-LDP for a given ε ∈ R

+ if and only if, for any two
inputs x and x′ in the domain and for any output y ∈ Range(M), the following
formula holds:

Pr[M(x) = y]
Pr[M(x′) = y]

≤ eε (1)

232 W. Xue et al.

Here, the parameter ε is known as the privacy budget, which reflects the
level of privacy protection provided by the mechanism. A smaller privacy budget
corresponds to stronger privacy protection, but it may also result in lower data
utility.

3.2 Problem Definition

Consider the model depicted in Fig. 1 and a set of N users U = {u1, u2, · · · , uN},
where ui holds a set of key-value pairs denoted by Si. Note that |Si| ∈ [1, d].
Each key-value pair consists of a key and its corresponding value, denoted as
〈k, v〉. The key k belongs to the domain of keys K = {1, 2, · · · , d}, and the value
v represents the corresponding value. The value v is normalized to the range
[−1, 1].

Before uploading data to the server, users apply an LDP mechanism to per-
turb their key-value pairs. The perturbed data is collected by the server and
aggregated to estimate the frequency and mean of each key, which are defined
as follows.

Frequency. The frequency of k is the proportion of users that own the key and
is denoted as fk. It is given by:

fk =

∑
ui∈U 1Si

(〈k, ·〉)
N

(2)

where 1Si
(〈k, ·〉) is an existence judgement function, which equals 1 if ui has the

key k, and 0 otherwise.

Mean. The mean of key k is the average value among the users who own it and
is denoted as mk. It is given by:

mk =

∑
ui∈U,〈k,v〉∈Si

v

Nfk
(3)

The server estimates f̂k and m̂k for all keys, which are estimators of fk and
mk, respectively. Our goal is to minimize the estimation error, so as to maximize
the utility of the estimated data.

4 LHKV

LHKV consists of three main steps: data preprocessing, perturbation, and server
aggregation and estimation. In Sect. 4.1, we will preprocess the raw data, which
involves sampling and discretization of the key-value pairs. In Sect. 4.2, we will
present our perturbation method, which ensures ε-LDP, and demonstrate how
the users perturb the sampled key-value pairs. In Sect. 4.3, we will explain how
the server aggregates the perturbed data received from the users and performs
frequency and mean estimations of the keys. We will also provide a theoretical
analysis of the estimators. Finally, in Sect. 4.4, we will introduce the use of fast
local hashing to accelerate the server aggregation and estimation process.

LHKV: A Key-Value Data Collection Mechanism Under LDP 233

4.1 Data Preprocessing

To perturb the key-value pairs, there are different approaches that can be taken.
Dividing the privacy budget equally among each pair is one approach, but this
could result in too much noise and low utility. Another is to randomly select one
pair and assign the entire privacy budget to it. Following the latter approach, the
Padding-and-Sampling protocol is a widely used sampling method that ensures
the number of items across all users is uniform before sampling [7,11]. This
protocol was first proposed for set-valued data under LDP and later extended
to key-value data [6]. In this paper, we use the Padding-and-Sampling protocol.

Under this protocol, if the number of pairs owned by a user is less than a
predefined size l, the user adds fake keys with corresponding values set to 0
and then samples one pair from the l pairs. If it is greater than l, the user just
randomly samples one from their local pairs. Figure 2 provides an example of
l = 4.

Fig. 2. The Padding-and-Sampling Protocol

After sampling, we need to discretize the sampled pair 〈k, v〉. We use a prob-
ability of 1+v

2 to map it to 〈k, 1〉, and a probability of 1−v
2 to map it to 〈k,−1〉.

This ensures that the raw key-value pair is discretized without bias.

4.2 Perturbation

PCKV in [6] employs two basic LDP mechanisms, GRR and UE, for pertur-
bation. As we have discussed, when the domain of keys is large, the utility of
PCKV-GRR is low. Though the utility of PCKV-UE is high, its communication
costs are high. For categorical data, OLH proposed in [10] uses local hashing
and can have high utility and low communication costs, particularly for large
domains, thus combine the advantages of GRR and UE. Therefore, in this paper
we utilize OLH to perturb pairs.

We define the set of all possible pairs after discretization as S = {〈k, v〉|k ∈
{1, · · · , d + l}, v ∈ {1,−1}}. For any two different key-value pairs 〈k, v〉 and

234 W. Xue et al.

〈k′, v′〉 belonging to the set S, let H = {H|H : 〈k, v〉 → [g], 〈k, v〉 ∈ S} be a
universal hash function family, where [g] represents the set of {0, 1, ..., g−1} and g
is the size of the output space of H. It holds that Pr[H(〈k, v〉) = H(〈k′, v′〉)] ≤ 1

g .
Each user randomly picks H from H to map the sampled pair 〈k, v〉 to x =
H(〈k, v〉) ∈ [g]. In practice, the input of a hash function can be set to k × v
or 3 × k + v, both of which can ensure that the input corresponding to each
key-value pair is unique. Thus, a tuple (H,x) comprising the hash function and
the hash value can represent each key-value pair. To protect privacy, we need
to perturb the tuple (H,x). Assuming that the perturbed tuple is (H, y), we
perturb (H,x) as follows:

Pr[y = i] =

{
p = eε

eε+g−1 , if x = i

q = 1
eε+g−1 , if x ∈ [g]\i

(4)

According to [10], the choice of g = eε + 1 can minimize the variance of the
estimators. In this case, p = 1

2 , q = 1
2eε .

Theorem 1. Our approach satisfies ε-LDP.

Proof. For any two discretized key-value pairs, 〈k1, v1〉, 〈k2, v2〉 and any output
(H, y), the following holds true:

Pr[(H, y)|〈k1, v1〉]
Pr[(H, y)|〈k2, v2〉] =

Pr[M(H(〈k1, v1〉)) = y]
Pr[M(H(〈k2, v2〉)) = y]

≤
eε

eε+g−1
1

eε+g−1

= eε (5)

According to Definition 1, our approach satisfies ε-LDP. �

4.3 Aggregation and Estimation

After completing the local perturbation, each user sends the tuple (H, y)
obtained from the perturbation to the server for aggregation and analysis. In
this paper, we aim to estimate the frequency and value mean of keys, so we need
to estimate the frequency of all possible pairs after discretization. To achieve
this, we first introduce a helper function B(·) which determines whether a per-
turbed hash value y and raw key-value pair 〈k, v〉 are related. The definition of
B(〈k, v〉, (H, y)) is as follows:

B(〈k, v〉, (H, y)) =

{
1, if H(〈k, v〉) = y

0, if H(〈k, v〉) �= y
(6)

When the output of the helper function is 1, 〈k, v〉 is considered supported.
In practice, the server uses the hash function of each user to calculate the hash
values of all key-value pairs, and then compares them with the hash value the
user sent. The server counts the number of times each (k, v) is supported and
makes an unbiased estimation on its frequency, i.e., fk,v. Finally the server makes
an unbiased estimation on the frequency of key k, i.e., fk. The following theorem
gives unbiased estimators for fk,v and fk.

LHKV: A Key-Value Data Collection Mechanism Under LDP 235

Theorem 2. If l ≥ |Si| for all ui ∈ U , then the unbiased estimators of fk,v and
fk, are given as f̂k,v in Eq. (7) and f̂k in Eq. (8), respectively.

f̂k,v =
g

∑
y∈[g] B(〈k, v〉, (H, y)) − N

N(pg − 1)
· l (7)

f̂k =
g

∑
v∈{1,−1}

∑
y∈[g] B(〈k, v〉, (H, y)) − 2N

N(pg − 1)
· l (8)

Proof. To prove that f̂k,v is an unbiased estimator of fk,v, that is, to prove
E[f̂k,v] = fk,v, we first calculate the expectation of

∑
y∈[g] B(〈k, v〉, (H, y)) as

follows:

E

⎡

⎣
∑

y∈[g]

B(〈k, v〉, (H, y))

⎤

⎦ = N
fk,v

l
p + N(1 − fk,v

l
)(

1
g
p +

g − 1
g

q)

= N
fk,v

l
(p − 1

g
) + N

1
g

(9)

Thus we have

E[f̂k,v] =
gE

[∑
y∈[g] B(〈k, v〉, (H, y))

]
− N

N(pg − 1)
· l

=
g

[
N

fk,v

l (p − 1
g) + N 1

g

]
− N

N(pg − 1)
· l

= fk,v

(10)

Therefore, f̂k,v is an unbiased estimator of fk,v. For the frequency fk of key k,
an estimator f̂k can be obtained by adding the estimators of 〈k, 1〉 and 〈k,−1〉,
as shown below:

f̂k = f̂k,1 + f̂k,−1

=
g

∑
v∈{1,−1}

∑
y∈[g] B(〈k, v〉, (H, y)) − 2N

N(pg − 1)
· l

(11)

Because f̂k,1 and f̂k,−1 are unbiased, f̂k is also an unbiased estimator of fk.
This concludes the proof. �

The following theorem gives the variance of the unbiased estimator f̂k.

Theorem 3. The variance of f̂k is

V ar[f̂k] =
2(g − 1)l2

N(pg − 1)2
+

fk(g − pg − 1)l
N(pg − 1)

(12)

236 W. Xue et al.

Proof. Let’s first calculate the variance of f̂k,1 and f̂k,−1, and the calculation
process is as follows:

V ar[f̂k,1] =
g2l2

N2(pg − 1)2
V ar

⎡

⎣
∑

y∈[g]

B(〈k, 1〉, (H, y))

⎤

⎦

=
g2l2

N2(pg − 1)2

[

N
fk,1

l
p(1 − p) + N(1 − fk,1

l
)
1
g
(1 − 1

g
)
]

=
(g − 1)l2

N(pg − 1)2
+

fk,1(g − pg − 1)l
N(pg − 1)

(13)

We can obtain V ar[f̂k,−1] = (g−1)l2

N(pg−1)2 + fk,−1(g−pg−1)l
N(pg−1) in a similar way. There-

fore, the variance of f̂k is given by:

V ar[f̂k] = V ar[f̂k,1] + V ar[f̂k,−1]

=
(g − 1)l2

N(pg − 1)2
+

fk,1(g − pg − 1)l
N(pg − 1)

+
(g − 1)l2

N(pg − 1)2
+

fk,−1(g − pg − 1)l
N(pg − 1)

=
2(g − 1)l2

N(pg − 1)2
+

fk(g − pg − 1)l
N(pg − 1)

(14)
This concludes the proof. �

As stated in [10], the frequency of most keys is usually very low in practice,
implying that fk is very small. Therefore, the variance can be approximated as:

V ar∗[f̂k] ≈ 2(g − 1)l2

N(pg − 1)2
(15)

If we set g = eε + 1, the approximated variance of f̂k is 8l2eε

N(eε−1)2 . Notably,
this variance is smaller than the corresponding variance of PCKV-UE, which is
8l2(eε+1)
N(eε−1)2 . This theoretical result shows that our proposed mechanism is superior
to PCKV-UE in terms of data utility.

The true mean mk of key k can be calculated as mk = fk,1−fk,−1
fk,1+fk,−1

. Therefore,

we can use the estimators f̂k,1 and f̂k,−1 to estimate mk. The estimator m̂k is
defined as follows:

m̂k =
f̂k,1 − f̂k,−1

f̂k,1 + f̂k,−1

=
B(〈k, 1〉, (H, y)) + B(〈k,−1〉, (H, y))

B(〈k, 1〉, (H, y)) + B(〈k,−1〉, (H, y)) − 2N
(16)

Below we analyze the expectation and variance of m̂k. For two random vari-
ables X and Y , we can use Taylor expansion to obtain E

[
X
Y

]
and V ar

[
X
Y

]
as

following:

LHKV: A Key-Value Data Collection Mechanism Under LDP 237

E

[
X

Y

]

≈ E [X]
E [Y]

− Cov (X,Y)
E [Y]2

+
E [X]
E [Y]3

V ar [Y] ,

V ar

[
X

Y

]

≈ V ar [X]
E [Y]2

− 2E [X] Cov (X,Y)
E [Y]3

+
E [X]2

E [Y]4
V ar [Y] .

For convenience, we define X = f̂k,1 − f̂k,−1 and Y = f̂k,1 + f̂k,−1. Then
we can calculate the expectation and variance of X and Y , as well as their
covariance, as following:

E[X] = fkmk, E[Y] = fk,

V ar[X] = V ar[Y] =
2(g − 1)l2

N(pg − 1)2
+

fk(g − pg − 1)l
N(pg − 1)

,

Cov[X,Y] = E[XY] − E[X]E[Y]

= E[f̂2
k,1 − f̂2

k,−1] −
(
E[f̂k,1]2 − E[f̂k,−1]2

)

= V ar[f̂k,1] − V ar[f̂k,−1]
= 0.

Therefore, we can obtain the following approximation for E[m̂k] and V ar[m̂k]:

E[m̂k] ≈ mk

[

1 +
2(g − 1)l2

f2
kN(pg − 1)2

+
(g − pg − 1)l
fkN(pg − 1)

]

, (17)

V ar[m̂k] ≈ (1 + m2
k)

[
2(g − 1)l2

f2
kN(pg − 1)2

+
(g − pg − 1)l
fkN(pg − 1)

]

. (18)

It is worth noting that the above analysis is purely theoretical. In practice, we
need to make adjustments to the estimated frequency and mean. As pointed out
in [6], if V ar[f̂k] is not very small, it is possible that the estimator f̂k is beyond
the range of [0,1] for very high or very low frequency fk, which is obviously not
reasonable. The same is true for m̂k. Therefore, it is necessary to adjust these
estimators so that the estimation error can be effectively reduced. Specifically,
we first adjust the estimated frequency f̂k to the range of [1

N , 1]. Then, we further

adjust the estimated frequencies of 〈k, 1〉 and 〈k,−1〉 to the range of [0, N f̂k

l] to
calculate m̂k, ensuring the estimated mean value falls within the range of [−1, 1].

4.4 Fast Local Hashing

When dealing with a large domain of keys, our mechanism can achieve high
utility and low end-to-end communication costs. However, the computational
complexity required for aggregation and estimation on the server side can be
O(Nd) due to the use of hash functions, leading to significant computation
costs. To address this issue, we introduce Fast Local Hashing (FLH) proposed

238 W. Xue et al.

in [1]. Notably, FLH was initially devised for categorical data, and is now being
employed on key-value pairs for the first time.

FLH uses a new parameter k′, which requires each user to randomly choose
one from a set of k′ hash functions instead of uniformly sampling a universal
hash family [1]. The server pre-computes two k′ ×d matrices, M1 and M2, where
M1[i][j] denotes the hash value of the key-value pair 〈j, 1〉 using the i-th hash
function, and M2[i][j] denotes the hash value of the key-value pair 〈j,−1〉 using
the i-th hash function. Consequently, the server can traverse the corresponding
row based on the users’ hash functions, reducing the number of hash function
calls from O(Nd) to O(k′d). However, this approach comes at the cost of sac-
rificing some theoretical accuracy guarantees. In order to gain computational
benefits, it is required that k′
 N . In the next section, we will demonstrate
that using FLH can significantly accelerate computation while still maintaining
high utility.

5 Experiments

5.1 Experimental Settings

We use one synthetic dataset and two real-world datasets to conduct experiments
to evaluate LHKV’s performance. Table 1 lists the parameters for each dataset.
The synthetic dataset, named GAUSS, consists of keys and values that follow a
Gaussian distribution. It includes N = 100000 users, with a key domain size of
d = 100, and values ranging from −1 to 1. The Coursera1 dataset and Clothing2

dataset were obtained from Kaggle, with their value ranges normalized to [−1, 1].

Table 1. Datasets for experimental evaluation

Datasets N d #Ratings

GAUSS 100000 100 100000

Coursera 140320 1835 140320

Clothing 105508 5850 192544

To evaluate the effectiveness of LHKV, we employ the Mean Square Error
(MSE) as a metric to measure the accuracy of frequency and mean estimations.
For k ∈ K = {1, · · · , d}, we use f̂k and fk to denote the estimated and true
frequency of key k, respectively, and m̂k and mk to represent the estimated and
true mean of key k, respectively. We calculate the MSE results for both keys and
associated values. Each reported result is an average of 10 times of experiments,
to ensure the reliability of our results.

1 https://www.kaggle.com/datasets/septa97/100k-courseras-course-reviews-dataset.
2 https://www.kaggle.com/rmisra/clothing-fit-dataset-for-size-recommendation.

https://www.kaggle.com/datasets/septa97/100k-courseras-course-reviews-dataset
https://www.kaggle.com/rmisra/clothing-fit-dataset-for-size-recommendation

LHKV: A Key-Value Data Collection Mechanism Under LDP 239

5.2 Experimental Results

We compare our method, LHKV, with several existing LDP mechanisms for key-
value data collection, including PrivKVM [14], PCKV-GRR [6] and PCKV-UE
[6]. To achieve an unbiased estimation of the mean, PrivKVM requires multiple
iterations, and the number of iterations is set to 6, as referred to in [14]. A
predefined padding length of l is required for LHKV, PCKV-GRR and PCKV-
UE. An appropriate l can be selected for these mechanisms according to the
dataset parameters. LHKV based on FLH is also compared. Considering the
size of the dataset, the number of hash functions is set to k′ = 1000 in FLH.
The LHKV without FLH can be considered as a special case of k′ = N . In our
experiments, for key-value pair 〈k, v〉, we take k × v as the input of the hash
functions to ensure that the input corresponding to each pair is unique.

Comparison of Accuracy. Figure 3 and Fig. 4 illustrate the accuracy of
the mechanisms for frequency and mean estimations, as the privacy budget ε
increases from ln 2 to ln 128. For the synthetic dataset, MSE is computed over
all keys, while for the real-world datasets, we follow the setting of [6] and select
the top 100 frequent keys to calculate MSE. The results reveal a decreasing
trend in the MSE of all mechanisms for frequency and mean estimations, with
the increase of privacy budget ε. Notably, our LHKV outperforms PrivKVM and
PCKV-GRR significantly, and shows a slightly better performance than PCKV-
UE. Particularly in frequency estimation, the theoretical variance of LHKV and
PCKV-UE differs by 8l2

N(eε+1)2 as we analyze in Sect. 4.3, which indicates a more
significant difference when ε is small. These results confirm the accuracy of the
theoretical error analysis of LHKV. Additionally, LHKV with FLH accelera-
tion (k′ = 1000) exhibits an MSE performance similar to that of LHKV without
FLH (k′ = N), suggesting the feasibility of using FLH to expedite the server-side
computation.

Fig. 3. MSE results of frequency estimation

240 W. Xue et al.

Fig. 4. MSE results of mean estimation

Comparison of Communication Costs. Table 2 compares the communica-
tion costs, measured in terms of the number of bits for end-to-end transmis-
sion in the evaluated mechanisms. While PrivKVM and PCKV-GRR exhibit
poor accuracy in estimation, their communication costs are relatively low. In
contrast, PCKV-UE requires high communication costs, particularly when the
domain of keys is large. LHKV demonstrates good accuracy in estimation and
can also maintain low communication costs. Furthermore, if FLH is employed to
accelerate computations on the server side, the communication costs of LHKV
can be further reduced. Notably, the number of bits transmitted by LHKV is
independent of the domain size of keys, implying that even for large domains,
its communication costs are much lower than PCKV-UE.

Table 2. Comparison on end-to-end communication costs (in bits)

Mechanisms GAUSS Coursera Clothing

PrivKVM 8 12 14

PCKV-GRR 8 12 14

PCKV-UE 202 3672 11704

LHKV(k′ = N, ε = ln 4) 20 21 20

LHKV(k′ = N, ε = ln 128) 25 26 25

LHKV(k′ = 1000, ε = ln 4) 13 13 13

LHKV(k′ = 1000, ε = ln 128) 18 18 18

Impact of the Number of Hash Functions. Figure 5 illustrates the impact
of the number of hash functions on the accuracy of frequency and mean estima-
tions, as well as the server-side computation time. In this experiment, we use only
the synthetic dataset GAUSS with N = 100000 users and set the privacy budget
to ε = ln 8. To facilitate a comprehensive comparison, we also include the corre-
sponding results of PCKV-UE and LHKV without FLH in the figure. According

LHKV: A Key-Value Data Collection Mechanism Under LDP 241

to the experimental results, as the number of hash functions k′ increases, the
MSEs of frequency and mean estimations gradually approach the corresponding
values of PCKV-UE and LHKV. However, an increase in the number of hash
functions also results in an increase in the computation time. Nevertheless, even
when we use a small k′, such as 1000, which is only 1% of the number of users,
the accuracy of frequency and mean estimations is still comparable to that of
PCKV-UE and LHKV without FLH. Furthermore, the time required for server
aggregation and estimation is significantly reduced compared to LHKV without
FLH, and is similar to that of PCKV-UE. These observations demonstrate the
feasibility of using FLH to accelerate the process of aggregation and estimation.

Fig. 5. Impact of varying k′ in LHKV using FLH (N = 100000, ε = ln 8)

6 Conclusion

In this paper, we propose a new mechanism called LHKV based on local hash-
ing for collecting key-value data under LDP. This mechanism is designed to
maintain low communication costs while ensuring high data utility. We theo-
retically prove that LHKV guarantees ε-LDP and analyze the expectation and
variance of the estimators. Additionally, we propose to use FLH to accelerate
the aggregation and estimation process, significantly reducing the computation
time on server. Our experiments demonstrate that LHKV can effectively reduce
end-to-end communication costs without sacrificing utility compared with the
existing mechanisms. In the future, we plan to investigate how local hashing can
be further used to enhance the accuracy of frequency and mean estimations.

Acknowledgement. This work was supported by the Key-Area Research and Devel-
opment Program of Guangdong Province (No. 2020B010164003), China. The corre-
sponding author is Yingpeng Sang.

242 W. Xue et al.

References

1. Cormode, G., Maddock, S., Maple, C.: Frequency estimation under local differential
privacy. Proc. VLDB Endowment 14(11), 2046–2058 (2021). https://doi.org/10.
14778/3476249.3476261

2. Duchi, J.C., Jordan, M.I., Wainwright, M.J.: Local privacy and statistical minimax
rates. In: 2013 IEEE 54th Annual Symposium on Foundations of Computer Science,
pp. 429–438. IEEE (2013). https://doi.org/10.1109/FOCS.2013.53

3. Duchi, J.C., Jordan, M.I., Wainwright, M.J.: Minimax optimal procedures for
locally private estimation. J. Am. Stat. Assoc. 113(521), 182–201 (2018). https://
doi.org/10.1080/01621459.2017.1389735

4. Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in
private data analysis. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876,
pp. 265–284. Springer, Heidelberg (2006). https://doi.org/10.1007/11681878 14

5. Erlingsson, Ú., Pihur, V., Korolova, A.: RAPPOR: randomized aggregatable
privacy-preserving ordinal response. In: Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security, pp. 1054–1067 (2014).
https://doi.org/10.1145/2660267.2660348

6. Gu, X., Li, M., Cheng, Y., Xiong, L., Cao, Y.: PCKV: locally differentially private
correlated key-value data collection with optimized utility. In: Proceedings of the
29th USENIX Conference on Security Symposium, pp. 967–984 (2020)

7. Qin, Z., Yang, Y., Yu, T., Khalil, I., Xiao, X., Ren, K.: Heavy hitter estimation
over set-valued data with local differential privacy. In: Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security, pp. 192–
203 (2016). https://doi.org/10.1145/2976749.2978409

8. Wang, N., et al.: Collecting and analyzing multidimensional data with local differ-
ential privacy. In: 2019 IEEE 35th International Conference on Data Engineering
(ICDE), pp. 638–649. IEEE (2019). https://doi.org/10.1109/ICDE.2019.00063

9. Wang, T., Zhang, X., Feng, J., Yang, X.: A comprehensive survey on local dif-
ferential privacy toward data statistics and analysis. Sensors 20(24), 7030 (2020).
https://doi.org/10.3390/s20247030

10. Wang, T., Blocki, J., Li, N., Jha, S.: Locally differentially private protocols for
frequency estimation. In: 26th USENIX Security Symposium (USENIX Security
17), pp. 729–745 (2017)

11. Wang, T., Li, N., Jha, S.: Locally differentially private frequent itemset mining. In:
2018 IEEE Symposium on Security and Privacy (SP), pp. 127–143. IEEE (2018).
https://doi.org/10.1109/SP.2018.00035

12. Warner, S.L.: Randomized response: a survey technique for eliminating evasive
answer bias. J. Am. Stat. Assoc. 60(309), 63–69 (1965). https://doi.org/10.1080/
01621459.1965.10480775

13. Xiong, X., Liu, S., Li, D., Cai, Z., Niu, X.: A comprehensive survey on local dif-
ferential privacy. Secur. Commun. Netw. 2020, 1–29 (2020). https://doi.org/10.
1155/2020/8829523

14. Ye, Q., Hu, H., Meng, X., Zheng, H.: PrivKV: key-value data collection with local
differential privacy. In: 2019 IEEE Symposium on Security and Privacy (SP), pp.
317–331. IEEE (2019). https://doi.org/10.1109/SP.2019.00018

https://doi.org/10.14778/3476249.3476261
https://doi.org/10.14778/3476249.3476261
https://doi.org/10.1109/FOCS.2013.53
https://doi.org/10.1080/01621459.2017.1389735
https://doi.org/10.1080/01621459.2017.1389735
https://doi.org/10.1007/11681878_14
https://doi.org/10.1145/2660267.2660348
https://doi.org/10.1145/2976749.2978409
https://doi.org/10.1109/ICDE.2019.00063
https://doi.org/10.3390/s20247030
https://doi.org/10.1109/SP.2018.00035
https://doi.org/10.1080/01621459.1965.10480775
https://doi.org/10.1080/01621459.1965.10480775
https://doi.org/10.1155/2020/8829523
https://doi.org/10.1155/2020/8829523
https://doi.org/10.1109/SP.2019.00018

Investigating Lakehouse-Backbones
for Vehicle Sensor Data

Christopher Vox1(B), David Broneske2, Jan Piewek1, Janusz Feigel3,
and Gunter Saake3

1 Volkswagen AG, Wolfsburg, Germany
christopher.vox1@volkswagen.de

2 German Centre for Higher Education Research and Science Studies, Hannover,
Germany

3 Otto-von-Guericke-Universität Magdeburg, Magdeburg, Germany

Abstract. Through the digitization and automation of vehicles, an
increasing amount of data is continuously generated, processed and ana-
lyzed. Especially, the storage of this data is of particular importance,
since historical vehicle data enables the analysis of driving behavior, the
optimization of vehicle functions and the generation of new business mod-
els to be able to provide costumers the best experience. However, differ-
ent communication protocols for inter and intra vehicle communication
yield highly complex sensor networks, whose sensor recordings are rarely
available synchronously in a central node. This heterogeneous nature of
vehicle data requires efficient processing and storage. As a consequence,
we benchmark different data structures and metadata concepts in com-
bination with various established databases and file-systems, in order to
identify an optimal system for storing vehicle sensor data. Our research
shows that the data structure which is embedded in the Lakehouse has
to be optimized to achieve the maximum performance for backbones
with heterogeneous sensor data. Therefore, we developed the timestamp
partitioned data structure named as Schema-2 which shows in combina-
tion with TimescaleDB and Druid optimal performance compared to the
state-of-the-art time series data structure.

Keywords: Time Series Database · File System · Vehicle Sensor Data
Storage · Multivariate Asynchronous Time Series Storage

1 Introduction

The increasing digitization and automation of vehicles is powered by sensors that
are integrated into vehicles. Some of these sensors are used for perception but
also to control and monitor vehicle components. The majority of sensors gener-
ate information, which is transmitted and processed within the vehicle but also
between vehicles. Besides the intra and inter vehicle usage of the information,
fleet data has a great value creation potential [8]. In order to exploit this poten-
tial, the data of vehicles need to be processed, stored and analyzed efficiently.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C. Strauss et al. (Eds.): DEXA 2023, LNCS 14146, pp. 243–258, 2023.
https://doi.org/10.1007/978-3-031-39847-6_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-39847-6_17&domain=pdf
https://doi.org/10.1007/978-3-031-39847-6_17

244 C. Vox et al.

Especially, the storage of vehicle data is of particular importance, since historical
data enables the analysis of driving obligations, the optimization of vehicle func-
tions and the generation of new business models to be able to provide costumers
the best experience.

Outgoing from the very first Database Management System (DBMS) for SQL
workloads, Data-Lakes and Warehouses have been designed to store and query
structured and unstructured data [1]. Armbrust et al. [1] formulated a disadvan-
tage of nowadays data management architectures, which produce transaction
overhead due to several systems running in parallel or sequential order. There-
fore, they designed a new architecture which they called Lakehouse to support
not only standard SQL workloads but also Data Science and Machine Learning
(ML) workloads, through a global metadata layer on top of a Data-Lake. Thus,
Lakehouse backbones can be used to access the data optimally.

The Data-Lake we investigate consist of vehicle sensor data, which can be
characterized as measurements over time, also named as time series. Within
literature, various publications have investigated concepts to store time series
data optimally. On the one hand, existing databases were extended and also
developed to realize optimal access to the stored time series data [15,16]. On the
other hand, the suitability of file-systems has been evaluated to store relational
data structures [12].

The choice of an optimal backbone is particularly demanding for vehicle
sensor data, as the sensor data can be asynchronous in its multivariate space.
Due to the fact that the majority of publications focused solely on the search for
the optimal system to store synchronous multivariate time series, the minority of
publications investigated time series schemata and the impact of the time series
schema to the query execution performance.

Hence, to setup the optimal long term storage for vehicle sensor data, we
evaluate different systems and schemata to store multivariate asynchronous time
series. In addition, we focus on the importance of low selective queries, because
Data Science workloads and the training of Deep Neural Networks (DNNs)
require large amounts of data.

Accordingly, our contribution is as follows:

– Development of multivariate asynchronous time series schemata with respect
to varying metadata over time.

– Investigation of the data ingest and the data retrieval performance for three
databases and three file-systems. The retrieval performance is evaluated for
unaggregated and aggregated time series materialization.

The remainder is structured as follows. In Sect. 2, we summarize the related work
in the fields of non time series and time series databases. In the methodology
section, we describe the properties of vehicle sensor data and we introduce rela-
tional schemata to store the sensor data (Sect. 3). Finally, we present the results
(Sect. 4).

Investigating Lakehouse-Backbones for Vehicle Sensor Data 245

2 Related Work

Time Series Data. Benchmarks for time series databases have been writ-
ten by [6,9,10]. Liu et al. [9] compared InfluxDB, OpenTSDB, KairosDB and
TimescaleDB (TsDB). They showed, that InfluxDB and TsDB are superior to
KairosDB and OpenTSDB for exact point queries, time range queries and fetch-
ing queries. For aggregation queries, TsDB and OpenTSDB perform similar
whereby InfluxDB is significantly faster than the competitors. Hao et al. [6]
compared the time series databases InfluxDB, TsDB, Druid and OpenTSDB for
workloads such as historical data access and batch based data loading. Their
results indicate that InfluxDB and TsDB have the highest ingestion through-
put. Based on the results of the six evaluated data analysis queries which fetch
data from the bigger dataset, the authors showed that InfluxDB (best system
on 3/6 queries) and Druid (best system on 3/6 queries) outperformed TsDB and
OpenTSDB. Mostafa et al. [10] evaluated time series databases for the Indus-
trial Internet of Things (IoT). The authors compared InfluxDB, TsDB and Click-
House. Based on their highly selective data fetching queries they showed that the
column-oriented ClickHouse store with the advanced index mechanism is supe-
rior to InfluxDB and TsDB. They showed that a columnar format with advanced
data partitioning improves ingest and query performance for time series data.
Praschl et al. [11] evaluated relational NoSQL and NewSQL DBMSs on time
series data. From the results it can be taken that InfluxDB surpasses MongoDB,
TsDB and LeanxcaleSQL in terms of ingest performance whereas MongoDB is
slightly faster than InfluxDB in full database materialization.

Non Time Series Data. Qin at al. [12] evaluated SQL engines on Hadoop.
They compared the data Warehouse engine Hive, which is based on MapRe-
duce, Impala, which bypasses the MapReduce to enable higher multiprocessing
capabilities and SparkSQL, which provides stronger query optimization in com-
parison to Hive. As file formats the authors chose ORC for Hive and Parquet
for Impala and SparkSQL, as these combinations were also found to be opti-
mal by [4,7]. In their experiments they showed that Impala outperformed Hive
and SparkSQL within the TPC-H benchmark, due to the in-memory process-
ing of Impala. Advanced Parquet based storage solutions and design paradigms
have been developed and investigated by [2,5]. The authors were able to show
that improved use-case based partitioning of files in combination with advanced
metadata layers can significantly improve query performance.

Ragab et al. [13] extended the research based on file-formats. The authors
evaluated the query performance of ORC, Parquet, AVRO and CSV based on
three relational schemata and three partitioning techniques in combination with
SparkSQL. Their results indicate that vertical partitioned tables are superior to
standard relational tables. They showed that the consideration of the relational
schemata strongly influences the system performance.

246 C. Vox et al.

Related Work Problem. Limited research has been conducted in the field of
asynchronous time series storage. One of the very few works on asynchronous
time series in databases has been conducted by [3]. Colosi et al. [3] evaluated
the impact of advanced bucketing in databases where one bucket holds data of
a specific sensor. They showed improved query performance compared to the
standard time series data schema. In contrast, the most of the introduced time
series benchmarks focused on multivariate synchronous time series. Interestingly,
when time series data has been evaluated in databases the relational data schema
(timestamp, sensor_id, value) was used.

3 Methodology

Different industrial areas search for the optimum database architecture for time
series data. Especially, automotive companies need to archive the recorded vehi-
cle information to enable the best user experience and to increase their potential
to add value. Hence, in Sect. 3.1 the vehicle sensor data is described in detail.
Thereafter, Sect. 3.2 presents the general purpose relational representation of
vehicle sensor data. In Sect. 3.3 different relational schemata are introduced and
in Sect. 3.4 the simulation conditions for the experiments are presented.

3.1 Vehicle Sensor Data

Vehicle sensors can be classified and separated by the numerical dimensional-
ity of the digitized sensor output. Within this investigation we analyze one-
dimensional vehicle sensor data, because the largest share of sensors produce
one-dimensional information, such as a single measurement value of the battery
temperature. Higher dimensional measurements such as images are considered
for future work. Furthermore, the information transmission within vehicles can

Fig. 1. Buffer based data upload of a digi-
tized vehicle. Each message frame repre-
sents a drive recording.

be event-based and priority-controlled
so that sensor information does not
necessarily converge at a defined time
in a central node [18]. In order to be
able to resolve the temporal charac-
teristic of each sensor without losses,
a timestamp is assigned to each mea-
surement value and together both val-
ues form a tuple. The consecutive
tuples can be interpreted as irregular
time series [14].

Multiple irregular time series cre-
ate a multivariate asynchronous time
series space. Asynchronicity can be
defined as a multivariate time series
state, where the measurements of time
series are not aligned equally on a

Investigating Lakehouse-Backbones for Vehicle Sensor Data 247

global time domain [17]. This property is illustrated in Fig. 1. Three different
sensors are visualized which are recorded irregularly, event-based and with dif-
ferent frequencies. The darker color within a tuple describes the timestamp,
whereas the lighter color describes the recorded measurement value. As it can
be seen, the measurements of the three sensors are not synchronized. Thereby,
the multivariate sensor space is asynchronous, multi-cardinal and irregular but
is referred to in simplified terms as asynchronous in the following [19].

Irregularity of vehicle sensor data makes analysis and storage of the data
challenging. Especially in literature, asynchronicity of multivariate time series
data has been insufficiently considered for databases. Hence, we show possibilities
how multivariate asynchronous time series can be prepared for databases in the
following.

3.2 Relational Representation of Vehicle Sensor Data

In relational databases data in the form of tuples is organized in relations, which
are also named as tables. Through this, relational operations, such as selec-
tions, projections and joins, can be applied to the data to enable general-purpose
queries such as range queries and aggregation queries.

With the help of primary, natural and foreign keys the relationship between
tables is defined and the tables can be linked and merged by DBMS operations
appropriately, e.g. when the database is normalized.

For sensor data and thus for time series data a table can be defined by
three attributes: The timestamp attribute (T), the value attribute (V) and the
sensor identity attribute (SID). Based on these attributes, records from different
sensors can be ingested as tuples into a database. The consecutive tuples of
multiple modalities are arranged vertically to construct a general purpose table,
cf. Schema-1 in Fig. 2. Thus, different optimization strategies such as indexing
and search trees for high selective queries can be applied to the general purpose
table to increase the DBMS performance.

The raw sensor measurements are mostly integers due to the Analog Digital
Conversion (ADC) within vehicles. Metadata is needed to be able to convert the
measurements into a unit-based (physical) representation. The conversion rule is
defined by the equation: yphysical = yraw ∗ Factor +Offset. The measurement
value y is manipulated by the Factor as well as by the Offset, which are sensor
specific variables.

A standard procedure of vehicle measurement database ingest can be split
into three stages. Firstly, the raw vehicle measurements are parsed. Secondly, the
conversion to a unit-based representation takes place. Lastly, the preprocessed
measurements are restructured to a table which can be ingested by the major-
ity of general purpose and time series databases, cf. Schema-1 in Fig. 2. The
described preprocessing stages are a standard procedure for vehicle sensor data.
However, we have to investigate whether the general purpose data structure is
suitable for archiving vehicle sensor data.

248 C. Vox et al.

3.3 Relational Schemata for Vehicle Sensor Data

Based on the idea of storing time series information vertically to enable time
queries via a time attribute, as shown in Fig. 2 by Schema-1, we have developed

Fig. 2. Relational schemata for vehi-
cle sensor data.

further concepts for suitable data structures.
The first competitor is named as Schema-2,
cf. Fig. 2. In Schema-2, we create one table
for each group of synchronously recorded
time series, which share one time axis. For
this concept, the linking between tables as
well as the access layer of query engines takes
place via a global lookup table. In Schema-2
each table consists of a time attribute T and
of at least one sensor attribute Sn. If several
sensor attributes are combined in a single
table, then the sensor attributes are char-
acterized over the same time axis (attribute
T) and form a multivariate time series. We
assume that Schema-2 will enable a more
efficient query of sensor subsets for small and
large time selectivities.

If we also take into account use-case
specific Data-Lake requirements, such as
the support of machine learning-relevant
queries, which are rather little selective, then
nested data structures could also be suitable
for multivariate asynchronous as well as multivariate synchronous time series.
For this we have developed Schema-3, cf. Fig. 2. Based on Schema-3, vehicle
data (e.g. a one-hour vehicle drive) is structured as table by the sensor identity
attribute SID, the measurement attribute V and the time identity attribute
TID. A row of Schema-3 describes a measurement period of one sensor entity.
Each sensor entity is uniquely described by the attribute value of SID. The mea-
surements of each sensor entity x1,...,n of a defined time range t1,...,n are stored
separate from the time information t as a series of measured values nested as
an attribute value of V in the respective row. Due to the time identity attribute
TID, the time entity, saved as attribute value of TID, clearly refers to the time
information of each sensor entity. Moreover, each timestamp series of a measure-
ment series is stored as a sensor entity. The timestamp values are stored in the
respective row of the time entity attribute value of SID as an attribute value
of V . Also, in Schema-3 several sensor entities can share a time entity. Through
this linking, the database memory requirement can be reduced.

In summary, three Schemata have been introduced, which define relational
structures for multivariate asynchronous time series. However, each sensor entity
possesses supplementary information, which also has to be archived appropri-
ately. Exemplary metadata of vehicle sensors are shown in Table 1.

Investigating Lakehouse-Backbones for Vehicle Sensor Data 249

Table 1. Supplementary information of in-vehicle sensors.

T SID Factor Offset Description Anomaly . . .

t1 S1 0.03 30 Temperature True
t1 S2 1 0 Light False
t3 S3 1 0 Control False

The table is defined by the attributes T , SID, Factor, Offset, Description and
Anomaly where each row represents a sensor specified by the attribute SID.
Attribute values which are not defined or detected are set to None to generate
a complete tuple for each sensor. The link between the metadata table and the
data table is created by two foreign keys, e.g. the SID and the T attributes. In
contrast to the creation of a second table, a flat architecture as single table would
cause an increase in database size (disk storage) due to redundant attribute
values. However, we do not know in advance whether a flat database architecture
or a normalized approach is the optimal vehicle data schema.

Two concepts have been developed for this purpose, which are named as
a) and b). The concept a) defines a database normalization strategy where data
and metadata are separated. The concept b) proposes a denormalization strategy
with data and metadata in one flat table.

3.4 Simulation Setup

Ingest. The ingest of vehicle sensor data is carried out based on log files of mea-
surement periods, e.g. test drives. The ingest takes place via two data pipelines,
depending on whether a file-system or a database is set up. In the case of a file-
system, the log files are converted into a file format suitable for the file-system
and are structured accordingly. In the case of databases, the log files are cached
in CSV tables structured accordingly and are inserted via a database import
routine.

Retrieval. In this paper, two important queries are examined, which are par-
ticularly relevant for Data Science workloads. The first query materializes unag-
gregated sensor data for different T and SID selectivities and can be described
schematically using the following SQL query.

� �

SELECT ’columns’
FROM ’vehicle_table’
WHERE (t BETWEEN ’start_time’ AND ’end_time’)
AND sid in ’sid_names’

� �

Listing 1.1. Schematic data query.

The value ’columns’ defines the relational attributes according to the three
schemata from Fig. 2. The value ’vehicle_table’ defines the implicit table

250 C. Vox et al.

assignment of vehicles. The value t describes the time values of the table and
the value sid describes the SID attribute values specified with ’sid_names’.
The metadata is materialized via the data query, when the metadata concept b)
is used, cf. Listing 1.1. In contrast, for concept a), for which the data and the
metadata are stored in separate tables, a second query is applied to materialize
the metadata.

Another important query for training machine learning algorithms is shown in
the use-case of [14]. The authors trained the aging of an engine component based
on vehicle sensor statistics calculated over time windows (sliding window). The
data aggregation via sliding windows is a relevant usage scenario of vehicle sensor
databases, whereby this specific query is also evaluated in this investigation.

For this purpose, 100 time intervals (buckets) are formed for each time selec-
tivity, which are aggregated by the investigated systems by calculating the mean
value of the sensor values in each time interval. Thus, the data materialization
query shown in Listing 1.1 is extended by a groupby operation based on buckets
and by an average operation applied to each bucket.

As main performance metric we select the query execution time measured
in seconds. Therefore, we measure the total time which includes the database
engine operation time as well as the subsequent time until the data is fully
materialized as pandas.DataFrame in Python.

4 Experiment

All experiments are conducted in the Azure cloud using an Intel Xeon Platinum
8272CL and 32GB RAM and mounted SSDs. The systems and the respective
implementation details as well as the data source are presented in the following.

4.1 Data Source

The data source used within this paper is defined by four prototype vehicles
whose sensor information are logged over a day. Each vehicle generates 4800 dif-
ferent information, such as real sensor information but also artificial information
generated by control units. All information which is recorded within a vehicle
is referred to in simplified terms as sensor information even though the infor-
mation was artificially generated. The sensor measurements are gathered in a
central unit, whereby multiple sensors create a multivariate asynchronous time
series space as it has been described in Sect. 3.1. Moreover, the four vehicles,
which we consider as data source, are described by data collected over the same
period of time.

Overall, the data source consists of 1.23 billion rows when we structure the
data according to Schema-1. The recorded vehicle data is logged and written
to a vehicle-specific, proprietary file format. In addition, the metadata, such as
the Factor, the Offset and the Unit, of each sensor is stored as supplementary
information within the file. Thus, the logged vehicle data must be parsed and
prepared for each system individually.

Investigating Lakehouse-Backbones for Vehicle Sensor Data 251

4.2 Implementation Details

In order to identify which system is suitable to store and query the different
schemata optimally, we implement three databases TsDB (v2.8.0), InfluxDB
(v2.4.0) and Druid (v24.0.0) and three systems from the Hadoop (v3.3.4) ecosys-
tem: SparkSQL (Spark) (v3.3.0), Hive (v3.1.3) and Impala (v4.1.0). Within all
systems, each vehicle receives a unique assignment to a data table or several data
tables. Conceptually, this procedure can be understood as an implicit lookup
table at vehicle level. We think that such an architecture can be scaled up to
larger fleets in the compared systems.

In all systems, tables are created according to the respective schemata shown
in Fig. 2. A special feature of Schema-2 is that, in addition to the displayed
table, a lookup table is created for each vehicle to enable the database to easily
navigate over the multiple tables. The lookup table links the vehicle based time
series to the respective tables according to Schema-2. For Schema-3, Tmin and
Tmax attributes are created for each individual SID attribute value to be able to
efficiently filter the table. Furthermore, a sensor_or_time attribute is defined
which simplifies the distinction between time and sensor value entities for the
database. All schemata are sorted according to the SID attribute. Each SID
section is again sorted in ascending order, cf. Schema-1.

All investigated systems have been setup in the default configuration. The
ingest for TsDB is carried out via CSV files, for Hive with ORC files and for the
other systems with Parquet files. Since the Druid version we use only supports
nested schemata experimentally, we use CSV files to ingest Schema-3 into Druid.
All files are structured with regard to the introduced schemata. The default time
series data ingest for TsDB, Druid and Influx requires the explicit submission
of the time channel attribute. Hence, the systems are able to react optimally on
time queries. However, the systems from the Hadoop ecosystem do not support
any kind of time indexing based on the default configuration. Lastly, we do not
implement Schema-3 for InfluxDB, due to the lacking support of nested data
types.

4.3 Data Ingest

In order to evaluate the query performance of the systems, the data source must
first be loaded. In the following, we investigate the average ingest performance
over all four vehicles.

The average ingest execution times for the six systems which we examine
are shown in Fig. 3. It can be seen that Druid, InfluxDB and also TsDB take
the longest time to ingest the data, whereby the ingest speed of Druid in com-
bination with Schema-2 is the slowest. Since Schema-3 is not implemented for
InfluxDB, the associated measurements are missing. The fastest ingest results
through Impala in combination with Schema-3.

In addition to the ingest time, the impact of the ingested data to the database
size is shown in the upper graphic of Fig. 3. It can be seen that Druid, Hive,
Impala and Spark in combination with Schema-2 cause the lowest increase in

252 C. Vox et al.

Fig. 3. Representation of the average duration of data ingest (lower graphic) and the
enlargement of the database caused by the inserted data (upper graphic) for one vehicle.

size. On the other hand, the size of the TsDB database in combination with
Schema-1 and Schema-2 is significantly larger compared to all other systems.
We can also see the effect of different schemata to the resulting database size,
which varies strongly. Through this, TsDB in combination with Schema-3 can
compete with Druid, Hive, Impala and Spark in combination with Schema-2 in
terms of efficient data storage.

4.4 Data Retrieval

In this section, we investigate the system behavior based on the data materi-
alization query of Sect. 3.4. We consider different selectivities, which we apply
to the T attribute and the SID attribute. We investigate two retrieval types,
which are relevant machine learning based use-cases. The first use-case extracts
the data without aggregation operations into the main memory. The second use-
case aggregates the data based on fixed simulation boundary conditions via mean
aggregation. The query performance for the data retrieval over four vehicles is
measured in seconds for both use-cases.

Unaggregated Data Retrieval. At first we investigate the system behavior
based on the variation of the SID selectivity and the T selectivity in isola-
tion. Consequently, when the T selectivity varies, the SID selectivity is set to
100%. The results of the experiment are shown in Table 2 and in Table 3. From
Table 2a it can be seen that TsDB, especially in combination with Schema-1 and
Schema-2, is advantageous. Schema-2 enables on average a superior query speed
performance, which enables TsDB to respond twice as fast when compared to the
combination of TsDB and Schema-1. Moreover, Schema-2 has a positive effect
on query speed in combination with Druid. However, the improvement through
Schema-2 is not recognizable for every system, which causes a tenfold increase
in execution speed for e.g. Hive, due to Schema-2.

The results for the high selective query are reflected in the results of the low
selective query shown in Table 2b. The results of the high selectivity value of 50%

Investigating Lakehouse-Backbones for Vehicle Sensor Data 253

Table 2. Visualization of the query execution speed for the time series query for
two selectivity values applied to the T attribute. The query execution is measured
in seconds. The fastest query execution is highlighted in bold. The second fastest is
underlined and the third fastest is dashed.

(a) Examination of a time query (T attribute) which
materializes 0.5% of the measurement period of each vehicle.

Schema Druid Hive Impala InfluxDB Spark TsDB

1 a) 252.61 786.36 144.45 207.59 207.64 78.77
1 b) 359.71 977.77 151.95 175.03 233.23 56.58
2 a) 88.70 10217.55 199.81 193.25 262.37 38.86
2 b) 204.90 9591.97 233.38 442.97 446.76 27.02
3 a) 3925.35 2335.38 901.08 - 631.19 539.12
3 b) 3766.25 2331.49 895.32 - 561.32 504.34

(b) Examination of a time query (T attribute) which
materializes 50% of the measurement period of each vehicle.

Schema Druid Hive Impala InfluxDB Spark TsDB

1 a) 1514.37 12181.30 8135.43 19417.91 28980.17 3172.70
1 b) 1486.88 21971.95 22338.64 43574.32 46320.58 3617.31
2 a) 4943.06 22567.38 1217.58 4787.50 727.99 832.18
2 b) 15673.23 17434.46 3672.56 23656.99 883.52 2408.92
3 a) 6029.71 3983.30 1700.76 - 3345.58 1089.74
3 b) 6149.03 3739.80 1670.42 - 3085.44 956.61

amplify the performance difference between the metadata structures. Within this
benchmark we can derive that Schema-1 is rather unsuitable to extract a large
amount of data. In particular, Spark responds sensitively to Schema-2, which
results in optimal query execution speed. Interestingly, Schema-2 significantly
improves the performance compared to Schema-1 for Impala, InfluxDB, Spark,
and TsDB.

The results of two SID selectivities are shown in Table 3. The execution
times for the high selective query are visualized in Table 3a. Based on the low
selectivity value we show that TsDB is the fastest system in combination with
Schema-2. Especially for the low selective query, Schema-3 in combination with
TsDB leads to optimal execution speeds, which is demonstrated in Table 3b.
Due to the different arrangement of the metadata, we can see that for Schema-1
and Schema-2, the separation of the data and the metadata into different tables
tends to result in improved query execution speed for high selectivity values. The
improvement is particularly significant for Druid and InfluxDB in combination
with Schema-2. Less pronounced for Impala and TsDB. In contrast, the tendency

254 C. Vox et al.

Table 3. Visualization of the query execution speed for the time series query for
two selectivity values applied to the SID attribute. The query execution is measured
in seconds. The fastest query execution is highlighted in bold. The second fastest is
underlined and the third fastest is dashed.

(a) Examination of a SID query which materializes 0.5% of the
sensors of each vehicle.

Schema Druid Hive Impala InfluxDB Spark TsDB

1 a) 219.98 729.15 232.83 107.80 358.63 2544.86
1 b) 312.19 931.53 256.22 134.54 416.28 3131.79
2 a) 106.26 2181.03 1816.07 108.82 163.56 16.10
2 b) 225.47 2071.91 1777.55 242.15 171.94 28.97
3 a) 4414.25 497.44 187.68 - 224.42 90.38
3 b) 4486.41 497.50 185.09 - 209.38 89.20

(b) Examination of a SID query which materializes 50% of the
sensors of each vehicle.

Schema Druid Hive Impala InfluxDB Spark TsDB

1 a) 1512.76 13657.73 6630.12 20030.87 28018.89 4907.87
1 b) 1484.87 23431.79 18785.34 45250.90 32773.65 13860.23
2 a) 5201.90 13757.18 837.17 5071.64 627.41 835.57
2 b) 16170.47 9092.56 3108.45 22499.68 837.03 2487.85
3 a) 6168.69 2184.70 894.41 - 1129.09 604.23
3 b) 6502.77 1893.64 871.18 - 978.63 497.21

found for Schema-2 is not reflected by Schema-3. Schema-3 tends to be rather
insensitive to the metadata normalization or denormalization strategy for the
majority of systems, which we evaluate. Only for Schema-3 b) in combination
with TsDB, Hive and Spark we can see a performance improvement, cf. Table 3b.
The query performance for various selectivity values is shown for metadata stor-
age strategy a) in Fig. 4. Interestingly, we see a rather constant behavior of
all databases for Schema-3 when the time selectivity is varied. In addition, the
illustration shows a lower increase of query execution time for Spark over the
increasing selectivity compared to TsDB. Furthermore, we can deduce from the
illustration that the state-of-the-art Schema-1 is rather unfavorable for TsDB.

Aggregated Data Retrieval. The aggregation query is of particular impor-
tance for training machine learning based algorithms, cf. Section 3.4. Conse-
quently, we investigate the query execution speed for different selectivity val-
ues applied to the SID Attribute over the whole measurement period of our
data source. The results of two selectivity values are shown for Schema-1 and

Investigating Lakehouse-Backbones for Vehicle Sensor Data 255

Fig. 4. Visualization of the query execution speed for unaggregated data retrieval. The
Time (T) Selectivity and the SID Selectivity are varied in isolation.

Table 4. Visualization of the execution performance of the aggregation query for
two selectivity values applied to the SID attribute. The query execution is measured
in seconds. The fastest query execution is highlighted in bold. The second fastest is
underlined and the third fastest is dashed.

(a) The query materializes the information
of 24 sensors (0.5%) for each vehicle.

Sc. Druid Hive Impala Influx Spark TsDB

1 a) 3.9 812.8 204.4 5.8 148.7 2504.9
1 b) 5.2 907.0 206.6 4.1 134.5 1968.6
2 a) 4.3 4400.2 35.1 24.4 161.1 5.9
2 b) 5.2 4136.4 38.7 25.8 186.5 8.2

(b) The query materializes the
information of 2400 sensors (50%) for
each vehicle.

Druid Hive Impala Influx Spark TsDB

45.7 1171.7 356.7 140.3 924.5 2243.5
64.3 1415.8 346.3 98.3 885.5 1937.2
38.8 18575.1 790.1 197.8 601.5 183.0
64.9 17254.9 1056.2 220.0 1070.9 554.7

Schema-2 in Table 4. We do no evaluate Schema-3 due to the lacking support of
the systems for aggregation operations applied to nested data types.

As it can be seen in Table 4a, Druid in combination with Schema-1 a) shows
the fastest database response. InfluxDB in combination with Schema-1 as well

256 C. Vox et al.

as TsDB with Schema-2 are the second and the third fastest architecture respec-
tively. Moreover, the results of the low selective query are shown in Table 4b.
Likewise, Druid is the fastest system whereby Schema-2 a) outperforms Schema-
1 a) for the selectivity value of 50%. For both selectivity values which we evalu-
ated in Table 4 the normalization strategy tends to be superior.

Data Retrieval Summary. Our research shows that for most of the systems
we study, Schema-2 allows a strong performance improvement for time series
extraction compared to the standard Schema-1. Especially for high selective
unaggregated data queries, the combination of TsDB and Schema-2 is optimal.
On the opposite, it can be seen from the results that Spark in combination with
Schema-2 and also Schema-3 in combination with TsDB is suitable for low selec-
tive queries. Besides the time series extraction, we also investigate aggregation
based queries. From the results we can deduce that Druid in combination with
Schema-2 seems to be the best system for the aggregation task, due to the faster
execution speed of Schema-2 for the low selective query.
If we further analyze the results of the two metadata storage strategies then
we can see that the majority of systems perform better with a normalization
strategy. However, for some systems a denormalization strategy seems to be
rather beneficial.

5 Conclusion

In this paper we elaborated a need for research for storing vehicle sensor data
in databases. We identified that the property of asynchronicity of time series
data was insufficiently investigated for databases. Therefore, we developed three
schemata and two metadata storage strategies, to identify the optimal relational
schema to store vehicle sensor data in databases. We evaluated the different data
and metadata concepts in combination with six suitable Lakehouse backbones.
We show that Schema-3 in combination with Impala achieves Pareto-optimal
results regarding ingestion speed and database enlargement. Furthermore,
Schema-2 enables optimal query performance for unaggregated and likewise,
however, less pronounced for aggregated data retrieval. However, if we consider
the rapid extraction of many sensors over very long periods of time, then Schema-
3 appears favorable. Consequently, we demonstrate that optimized relational
schemata enable a performance improvement for most backbones when com-
pared to the standard time series table performance. Based on these results,
the timestamp based partitioning of Schema-2 should further be investigated for
other datasets.

Disclaimer. The results, opinions, and conclusions expressed in this publication
are not necessarily those of Volkswagen Aktiengesellschaft.

Investigating Lakehouse-Backbones for Vehicle Sensor Data 257

References

1. Armbrust, M., Ghodsi, A., Xin, R., Zaharia, M.: Lakehouse: a new generation of
open platforms that unify data warehousing and advanced analytics. In: Confer-
ence on Innovative Data Systems Research, CIDAR 11 (2021). http://cidrdb.org/
cidr2021/papers/cidr2021_paper17.pdf

2. Chakraborty, J., Jimenez, I., Rodriguez, S.A., Uta, A., LeFevre, J., Maltzahn, C.:
Skyhook: towards an arrow-native storage system. In: International Symposium on
Cluster, Cloud and Internet Computing, CCGrid 22, pp. 81–88 (2022). https://
doi.org/10.1109/CCGrid54584.2022.00017

3. Colosi, M., Martella, F., Parrino, G., Celesti, A., Fazio, M., Villari, M.: Time
series data management optimized for smart city policy decision. In: International
Symposium on Cluster, Cloud and Internet Computing, CCGrid 22, pp. 585–594
(2022). https://doi.org/10.1109/CCGrid54584.2022.00068

4. Gupta, A., Saxena, M., Gill, R.: Performance analysis of RDBMS and Hadoop
components with their file formats for the development of recommender systems.
In: International Conference for Convergence in Technology; Annual Conference for
Convergence in Technology, IC2T, pp. 1–6 (2018). https://doi.org/10.1109/I2CT.
2018.8529480

5. Hansert, P., Michel, S.: Ameliorating data compression and query performance
through cracked parquet. Big Data in Emergent Distributed Environments, BiD-
EDE, pp. 1–7 (2022). https://doi.org/10.1145/3530050.3532923

6. Hao, Y., et al.: TS-benchmark: a benchmark for time series databases. In: IEEE
37th International Conference on Data Engineering (ICDE), pp. 588–599 (2021).
https://doi.org/10.1109/ICDE51399.2021.00057

7. Ivanov, T., Pergolesi, M.: The impact of columnar file formats on SQL-on-Hadoop
engine performance: a study on ORC and parquet. Concurrency Comput. Pract.
Exp. 32(5), e5523 (2019). https://doi.org/10.1002/cpe.5523

8. Kaiser, C., Festl, A., Pucher, G., Fellmann, M., Stocker, A.: The vehicle data value
chain as a lightweight model to describe digital vehicle services. In: Proceedings of
the 15th International Conference on Web Information Systems and Technologies,
SciTePress (2019). https://doi.org/10.5220/0008113200680079

9. Liu, R., Yuan, J.: Benchmarking time series databases with IoTDB-benchmark for
IoT scenarios. http://arxiv.org/pdf/1901.08304v3

10. Mostafa, J., Wehbi, S., Chilingaryan, S., Kopmann, A.: SciTS: a benchmark for
time-series databases in scientific experiments and industrial internet of things.
In: International Conference on Scientific and Statistical Database Management,
SSDBM vol. 34, pp. 1–11 (2022). https://doi.org/10.1145/3538712.3538723

11. Praschl, C., Pritz, S., Krauss, O., Harrer, M.: A comparison of relational, NoSQL
and NewSQL database management systems for the persistence of time series
data. In: International Conference on Electrical, Computer, Communications and
Mechatronics Engineering, ICECCME, pp. 1–6 (2022). https://doi.org/10.1109/
ICECCME55909.2022.9988333

12. Qin, X., Chen, Y., Chen, J., Li, S., Liu, J., Zhang, H.: The performance of SQL-on-
Hadoop systems - an experimental study. In: International Congress on Big Data,
BigData Congress, pp. 464–471 (2017). https://doi.org/10.1109/BigDataCongress.
2017.68

13. Ragab, M., Awaysheh, F.M., Tommasini, R.: Bench-ranking: a first step towards
prescriptive performance analyses for big data frameworks. In: International Con-
ference on Big Data, Big Data, pp. 241–251 (2021). https://doi.org/10.1109/
BigData52589.2021.9671277

http://cidrdb.org/cidr2021/papers/cidr2021_paper17.pdf
http://cidrdb.org/cidr2021/papers/cidr2021_paper17.pdf
https://doi.org/10.1109/CCGrid54584.2022.00017
https://doi.org/10.1109/CCGrid54584.2022.00017
https://doi.org/10.1109/CCGrid54584.2022.00068
https://doi.org/10.1109/I2CT.2018.8529480
https://doi.org/10.1109/I2CT.2018.8529480
https://doi.org/10.1145/3530050.3532923
https://doi.org/10.1109/ICDE51399.2021.00057
https://doi.org/10.1002/cpe.5523
https://doi.org/10.5220/0008113200680079
http://arxiv.org/pdf/1901.08304v3
https://doi.org/10.1145/3538712.3538723
https://doi.org/10.1109/ICECCME55909.2022.9988333
https://doi.org/10.1109/ICECCME55909.2022.9988333
https://doi.org/10.1109/BigDataCongress.2017.68
https://doi.org/10.1109/BigDataCongress.2017.68
https://doi.org/10.1109/BigData52589.2021.9671277
https://doi.org/10.1109/BigData52589.2021.9671277

258 C. Vox et al.

14. Sass, A.U., Esatbeyoglu, E., Iwwerks, T.: Data-driven powertrain component aging
prediction using in-vehicle signals. In: SOFSEM (2020)

15. Shahid, J.: InfluxDB documentation: release 5.3.1 (2022)
16. timescale: TimescaleDB: SQL made scalable for time-series data (2017)
17. Vox, C., Broneske, D., Shaikat, I., Saake, G.: Data streams: investigating

data structures for multivariate asynchronous time series prediction problems.
ICPRAM, pp. 686–696 (2023). https://doi.org/10.5220/0011737300003411

18. Woo, S., Moon, D., Youn, T.Y., Lee, Y., Kim, Y.: Can id shuffling technique
(CIST): moving target defense strategy for protecting in-vehicle can. IEEE Access
7, 15521–15536 (2019). https://doi.org/10.1109/ACCESS.2019.2892961

19. Wu, S., et al.: Modeling asynchronous event sequences with RNNs. J. Biomed.
Inform. 83, 167–177 (2018). https://doi.org/10.1016/j.jbi.2018.05.016

https://doi.org/10.5220/0011737300003411
https://doi.org/10.1109/ACCESS.2019.2892961
https://doi.org/10.1016/j.jbi.2018.05.016

Assessing the Effectiveness of Intrinsic
Dimension Estimators for Uncovering

the Phase Space Dimensionality
of Dynamical Systems from State

Observations
A Comparative Analysis

Félix Chavelli1,2(B), Khoo Zi-Yu1, Jonathan Sze Choong Low3,
and Stéphane Bressan1,2

1 National University of Singapore, 21 Lower Kent Ridge Rd,
Singapore 119077, Singapore

{chavelli,khoozy}@comp.nus.edu.sg, steph@nus.edu.sg
2 CNRS@CREATE LTD, 1 Create Way, Singapore 138602, Singapore

3 Singapore Institute of Manufacturing Technology (SIMTech), Agency for Science,
Technology and Research (A*STAR), Singapore 138634, Singapore

sclow@simtech.a-star.edu.sg

Abstract. Devising a model of a dynamical system from raw observa-
tions of its states and evolution requires characterising its phase space,
which includes identifying its dimension and state variables. Recently,
Boyuan Chen and his colleagues proposed a technique that uses intrinsic
dimension estimators to discover the hidden variables in experimental
data. The method uses estimators of the intrinsic dimension of the man-
ifold of observations. We present the results of a comparative empirical
performance evaluation of various candidate estimators. We expand the
repertoire of estimators proposed by Chen et al. and find that several
estimators not initially suggested by the authors outperforms the others.

1 Introduction

The study of dynamical systems is the modelling and analysis of systems that
change over time, as is often of interest in science and engineering. A dynamical
system is characterized by its degrees of freedom and corresponding state vari-
ables and by the rules that govern how its variables change value over time. A
dynamical system is typically modelled by a set of equations of its state variables
describing its time evolution in phase or state space [21]. The study of dynami-
cal systems involves devising and analysing models to understand the system’s
behaviour under different initial conditions and predict its evolution. One of the
first steps in this study, following the collection of raw observations of a system’s
states and evolution, is the determination of the dimension of the phase space.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C. Strauss et al. (Eds.): DEXA 2023, LNCS 14146, pp. 259–265, 2023.
https://doi.org/10.1007/978-3-031-39847-6_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-39847-6_18&domain=pdf
https://doi.org/10.1007/978-3-031-39847-6_18

260 F. Chavelli et al.

In 2021, Boyuan Chen et al. introduced a method for the automated dis-
covery of fundamental variables hidden in experimental data [7]. The authors
used a two-step approach to identify state variables of a dynamical system from
experimental observations. From video recordings of various dynamical systems,
Chen et al. estimated the minimum number of independent variables, or intrinsic
dimension of the state space, needed to describe the system without informa-
tion loss [6,20]. With such knowledge of the intrinsic dimension, the authors
found the state variables of the system that could accurately capture the over-
all system’s dynamics. To discover the intrinsic dimensions of the state space,
Chen et al. leveraged intrinsic dimension estimators [4] such as Elizaveta Levina
and Peter Bickel’s maximum likelihood-based estimator [18], Alessandro Rozza
et al.’s Minimum Neighbour Distance-Maximum Likelihood estimator [20] and
Matthias Hein’s U-statistic-based intrinsic dimension estimator [15]. We expand
the repertoire of intrinsic dimension estimators used to discover the intrinsic
dimensions of the state space and systematically and empirically compare their
performance for the discovery of the intrinsic dimension of a dynamical system
from high-dimensional experimental observations.

2 Background and Related Work

Intrinsic dimension estimation is commonly used to represent data in a more
compact yet still informative manner and reduce the effects of the ’curse of
dimensionality’ [3]. The three main classes of intrinsic dimension estimators are
projective estimators, graph-based estimators, and topological estimators [6].

Projective intrinsic dimension estimators process high-dimensional data and
find a lower-dimensional subspace to project data onto. The dimension of the
subspace is the intrinsic dimension estimate [6]. Seminal projective intrinsic
dimension estimators include Ian Jolliffe’s Principal Component Analysis [16],
which searches for the subspace that minimises projection error. The intrinsic
dimension estimate is the number of principal components [6]. Such estimators
rely on a specific estimated eigenstructure that may not exist in the data.

Graph-based intrinsic dimension estimators build a graph of data points. By
employing different distance functions, different graphs can be formed. When
the distance function is the Euclidean distance, a k-Nearest Neighbours graph
is created [10]. When the weights approximate Geodesic distances, a minimum
spanning tree is formed [9]. Various statistics are computed as functions of graph
properties, that can be used to approximate the intrinsic dimension of the data [5,
6,8]. However, graph-based intrinsic dimension estimators perform better when
manifolds of nonconstant curvature are processed.

Topological intrinsic dimension estimators consider a manifold embedded in
higher dimensional space through a proper smooth map and assume that the
given data comprises independent and identically distributed points drawn from
the manifold through a smooth probability density function. The manifold’s
topological dimension is the estimated intrinsic dimension. There are two sub-
classes of topological intrinsic dimension estimators [6].

Intrinsic Dimension Estimators for Dynamical Systems 261

The first subclass comprises fractal topological intrinsic dimension estima-
tors. They assume a manifold with fractal structure, where the volume of a d
dimensional ball of radius r scales with its size s = rd. The intrinsic dimension
estimate [6] is the power of the rate of growth, d. Peter Grassberger and Itamar
Procaccia’s Correlation Integral [13] estimated intrinsic dimensions using a frac-
tal dimension estimator sensitive to local structures, to characterise data from
high-dimensional systems. Matthias Hein and Jean-Yves Audibert’s U-statistic-
based estimator improve the Correlation Integral with a scale-independent ker-
nel function [15]. Amir Massoud Farahmand et al.’s Manifold-Adaptive Dimen-
sion estimation Algorithm [12] found a low-dimensional estimate of local high-
dimensional data. Combining local estimates produces global estimates.

The second subclass comprises nearest neighbour topological intrinsic dimen-
sion estimators. If the sum of angles between each point in the subspace spanned
by the k-nearest neighbours and the k + 1th-nearest neighbour is less than
a threshold parameter, then k is incremented. Otherwise, k is the estimated
intrinsic dimension [6]. Elizaveta Levina and Peter Bickel [18] and Gloria Haro
et al. [14] treat the neighbours of each point as events in a Poisson process
and the distance between the point and its jth nearest neighbour as the event’s
arrival time. They then estimate the intrinsic dimension by maximising the log-
likelihood of the observed process. Haro et al.’s estimator modifies Levina and
Bickel’s and simultaneously computes the maximum likelihood of a collection of
points as a Poisson mixture model instead of an individual point. This accounts
for both noise and different Poisson distributions [14].

Some maximum likelihood-based approaches underestimate intrinsic dimen-
sions when data dimensionality is high because nearest-neighbour distances
assume that the amount of data becomes unlimited. Therefore, Alessandro Rozza
et al. [20] proposed Minimum Neighbour Distance-Maximum Likelihood esti-
mators to estimate intrinsic dimensions with limited data. Furthermore, high-
dimensional manifolds are generally twisted and curved, with non-uniformed dis-
tributed points. Therefore, Elana Facco et al. [11] propose a topological nearest-
neighbour intrinsic dimension estimator that uses only the distance of each
point’s first and second nearest neighbours in the data. The extreme minimal-
ity of this Two Nearest Neighbour intrinsic dimension estimator enabled Facco
et al. to reduce the effects of curvature and distribution density variation [11].
Lastly, instead of using maximum likelihood-based approaches, Laurent Amsa-
leg et al. [1] estimate intrinsic dimensions using the method of moments, which
have faster initial convergence and perform well even with limited data.

3 Methodology

The raw observations consist of video recordings of the systems under study.
Following Chen et al., consecutive video frames from the video recording (shown
in Fig. 1) are encoded into a high-dimensional latent space. To ensure that no
information regarding the dynamical system is lost, Chen et al. use a decoder to
decode each encoding into a video frame at each time step [7]. They then apply

262 F. Chavelli et al.

Fig. 1. Sequences of video frames of several dynamical systems: from the top and in
each row, the reaction-diffusion system, single pendulum system, double pendulum
system, swing stick system and elastic pendulum system.

Levina and Bickel’s maximum likelihood-based intrinsic dimension estimator to
each encoding to discover the intrinsic dimension of the dynamical system.

We compare the following ten intrinsic dimension estimators: Jolliffe’s Prin-
cipal Component Analysis [16], Costa’s k-Nearest Neighbours estimator [10],
Grassberger and Procaccia’s Correlation Integral [13], Farahmand et al.’s
Manifold-Adaptive Dimension estimation Algorithm, Levina and Bickel’s [18]
and Haro et al.’s [14] maximum likelihood-based estimators, Rozza et al. [20]’s
Minimum Neighbour Distance-Maximum Likelihood estimators, Facco et al.’s
Two-Nearest Neighbour estimator [11], Amsaleg et al.’s method of moments
estimator [1] and Hein and Audibert’s U-statistic-based estimator [15].

We compute intrinsic dimensions for the five dynamical systems of Fig. 1. We
use the L1-norm between the estimated and the ground truth intrinsic dimension
as the estimation loss.1

4 Performance Evaluation

Each encoding of a video frame comprises approximately between 1,000 and
10,000 points. We utilise scikit-dimension2 implementations of Jolliffe’s Prin-
cipal Component Analysis, Costa’s k-Nearest Neighbours estimator, Grassberger
and Procaccia’s Correlation Integral, Farahmand et al.’s Manifold-Adaptive
Dimension estimation Algorithm, Haro et al.’s maximum likelihood-based esti-
mators, Rozza et al.’s Minimum Neighbour Distance-Maximum Likelihood esti-
mators, Facco et al.’s Two-Nearest Neighbour estimator and Amsaleg et al.’s

1 The code to reproduce the results presented in this paper is available at: https://
github.com/fchavelli/id estimation/tree/main.

2 The package is available at https://scikit-dimension.readthedocs.io.

https://github.com/fchavelli/id_estimation/tree/main
https://github.com/fchavelli/id_estimation/tree/main
https://scikit-dimension.readthedocs.io

Intrinsic Dimension Estimators for Dynamical Systems 263

Table 1. L1-norm for various intrinsic dimension estimators.

System Ground Truth Grassberger et
al. [13]

Farahmand et
al. [12]

Amsaleg et al.
[1]

Rozza et al. [20] Haro et al. [14] Facco et al. [11] Levina et al.
[18]

Hein et al. [15]

Reaction-
Diffusion

2 0.02
(±0.141)

0.06
(±0.041)

0.20
(±0.093)

0.22
(±0.024)

0.01
(±0.046)

0.99
(±0.745)

0.16
(±0.113)

1.33
(±1.247)

Single Pendulum 2 0.02
(±0.016)

0.18
(±0.017)

0.10
(±0.017)

0.04
(±0.003)

0.02
(±0.003)

0.11
(±0.013)

0.04
(±0.013)

0.00
(±0.00)

Double
Pendulum

4 0.33
(±0.182)

1.14
(±0.052)

0.80
(±0.018)

0.54
(±0.035)

0.23
(±0.032)

1.48
(±0.221)

0.66
(±0.028)

1.00 (±0.00)

Swing- stick 4 0.02 (±
0.121)

1.29
(±0.098)

0.92
(±0.344)

0.20
(±0.056)

0.07
(±0.071)

10.51
(±1.126)

0.91
(±0.354)

1.00 (±0.00)

Elastic
Pendulum

6 1.08 (±
0.234)

0.30
(±0.17)

0.45
(±0.203)

1.07
(±0.094)

1.29 (±
0.124)

1.12
(±0.072)

0.66
(±0.177)

2.00 (±0.00)

method of moments estimator [2]. We use the MATLAB implementation of Hein’s
U-statistic-based estimator [19]. We utilise Chen et al.’s implementation of Lev-
ina and Bickel’s maximum likelihood-based estimator.

We report the L1-norm values for various dynamical systems for each esti-
mator in Table 1. All experiments were repeated for 3 unique random seeds.
The intrinsic dimension estimator with the lowest L1-norm is presented in bold
fonts. We omit the poor results from Jolliffe’s Principal Component Analysis
and Costa’s k-Nearest Neighbours estimator. In general, Haro et al.’s max-
imum likelihood-based estimator performs best, followed by Grassberger and
Procaccia’s Correlation Integral, Farahmand et al.’s Manifold-Adaptive Dimen-
sion estimation Algorithm and Hein et al.’s U-statistic-based estimator. Levina
and Bickel’s maximum likelihood-based estimator is never the best-performing
estimator. Haro et al.’s estimator outperforms Levina and Bickel’s estimator for
all systems except the elastic pendulum system.

Rozza et al.’s Minimum Neighbour Distance-Maximum Likelihood estima-
tor and Facco et al.’s Two-Nearest Neighbour estimator perform poorly. They
simplify data from high-dimensional manifolds with many twists and curves.
However, the selected dynamical systems are Hamiltonian systems. The sin-
gle pendulum, double pendulum, swingstick and elastic pendulum systems are
mechanical systems with conserved total energy while the reaction-diffusion sys-
tem has a Hamiltonian formalism [17]. This may be because Hamiltonian con-
servation means that the high-dimensional symplectic manifold is closed, and
possibly has fewer twists and curves.

5 Conclusion

We compared various intrinsic dimension estimators for the discovery of the
dimension of the phase space of a dynamical system from raw observations of
its states and evolution. We find several estimators that outperform Levina and
Bickel’s maximum likelihood-based estimator initially selected by Chen et al..

We are now studying the interpretation of the latent variable in terms of
the known state variables. We first verify that they capture the actual system
dynamics and then study the candidate mappings, using symbolic regression,
among other tools, between the two sets of variables.

264 F. Chavelli et al.

Acknowledgements. This research is supported by Singapore Ministry of Education,
grant MOE-T2EP50120-0019, and by the National Research Foundation, Prime Min-
ister’s Office, Singapore, under its Campus for Research Excellence and Technological
Enterprise (CREATE) programme as part of the programme Descartes.

References

1. Amsaleg, L., et al.: Extreme-value-theoretic estimation of local intrinsic dimen-
sionality. Data Min. Knowl. Disc. 32(6), 1768–1805 (2018)

2. Bac, J., Mirkes, E.M., Gorban, A.N., Tyukin, I., Zinovyev, A.: Scikit-dimension: a
python package for intrinsic dimension estimation. Entropy 23(10), 1368 (2021)

3. Bellman, R.E.: Adaptive Control Processes. Princeton University Press, Princeton
(1961)

4. Bennett, R.S.: Representation and analysis of signals part xxi. the intrinsic dimen-
sionality of signal collections (1965)

5. Brito, M., Quiroz, A., Yukich, J.: Intrinsic dimension identification via graph-
theoretic methods. J. Multivar. Anal. 116, 263–277 (2013)

6. Campadelli, P., Casiraghi, E., Ceruti, C., Rozza, A.: Intrinsic dimension estimation:
relevant techniques and a benchmark framework. Math. Probl. Eng. 2015, 1–21
(2015)

7. Chen, B., Huang, K., Raghupathi, S., Chandratreya, I., Du, Q., Lipson, H.: Auto-
mated discovery of fundamental variables hidden in experimental data. Nat. Com-
put. Sci. 2, 433–442 (2022)

8. Costa, J., Girotra, A., Hero, A.: Estimating local intrinsic dimension with k-nearest
neighbor graphs. In: IEEE/SP 13th Workshop on Statistical Signal Processing,
2005, pp. 417–422 (2005)

9. Costa, J., Hero, A.: Geodesic entropic graphs for dimension and entropy estimation
in manifold learning. IEEE Trans. Signal Process. 52(8), 2210–2221 (2004)

10. Costa, J.A., Hero, A.O.: Determining Intrinsic Dimension and Entropy of High-
Dimensional Shape Spaces, pp. 231–252. Birkhäuser Boston, Boston, MA (2006)

11. Facco, E., d’Errico, M., Rodriguez, A., Laio, A.: Estimating the intrinsic dimension
of datasets by a minimal neighborhood information. Sci. Rep. 7(1), 12140 (2017)

12. Farahmand, A.M., Szepesvári, C., Audibert, J.Y.: Manifold-adaptive dimension
estimation. In: Proceedings of the 24th International Conference on Machine Learn-
ing, pp. 265–272. ICML 2007, Association for Computing Machinery, New York,
NY, USA (2007)

13. Grassberger, P., Procaccia, I.: Measuring the strangeness of strange attractors.
Physica D 9(1), 189–208 (1983)

14. Haro, G., Randall, G., Sapiro, G.: Translated poisson mixture model for stratifi-
cation learning. Int. J. Comput. Vis. 80, 358–374 (2008)

15. Hein, M., Audibert, J.Y.: Intrinsic dimensionality estimation of submanifolds in
Rd, pp. 289–296 (01 2005)

16. Jolliffe, I.T.: Principal component analysis and factor analysis. In: Principal Com-
ponent Analysis. Springer Series in Statistics, pp. 115–128. Springer, New York
(1986). https://doi.org/10.1007/978-1-4757-1904-8 7

17. Kuwamura, M.: The hamiltonian formalism in reaction-diffusion systems. Asymp-
totic Anal. Singularities-Elliptic Parabolic PDEs Relat. Prob. 47, 635–646 (2007)

18. Levina, E., Bickel, P.: Maximum likelihood estimation of intrinsic dimension. In:
Advances in Neural Information Processing Systems, vol. 17 (2004)

https://doi.org/10.1007/978-1-4757-1904-8_7

Intrinsic Dimension Estimators for Dynamical Systems 265

19. Lombardi, G.: Intrinsic dimensionality estimation techniques (2023). https://
www.mathworks.com/matlabcentral/fileexchange/40112-intrinsic-dimensionality-
estimation-techniques

20. Rozza, A., Lombardi, G., Ceruti, C., Casiraghi, E., Campadelli, P.: Novel high
intrinsic dimensionality estimators. Mach. Learn. 89(1), 37–65 (2012)

21. Stewart, D.E., Dewar, R.L.: Non-linear Dynamics, pp. 167–248. Cambridge Uni-
versity Press, Cambridge (2000)

https://www.mathworks.com/matlabcentral/fileexchange/40112-intrinsic-dimensionality-estimation-techniques
https://www.mathworks.com/matlabcentral/fileexchange/40112-intrinsic-dimensionality-estimation-techniques
https://www.mathworks.com/matlabcentral/fileexchange/40112-intrinsic-dimensionality-estimation-techniques

Towards a Workload Mapping Model
for Tuning Backing Services in Cloud

Systems

Gaurav Kumar1, Kshira Sagar Sahoo2, and Monowar Bhuyan2(B)

1 Department of Computer Science, GIET University, Gunupur 765022, India
2 Department of Computing Science, Ume̊a University, 901 87 Ume̊a, Sweden

{ksahoo,monowar}@cs.umu.se

Abstract. With the increasing advent of applications and services
adopting cloud-based technologies, generic automated tuning techniques
of database services are gaining much attraction. This work identifies and
proposes to overcome the potential challenges associated with deploying a
tuning service as part of Platform-as-a-Service (PaaS) offerings for tuning
of backing services. Offering an effective database tuning service requires
such tuners whose architecture can support tuning multiple databases
and numerous database versions deployed on various types of underlying
hardware configurations with varying VM plans. Tuners that offer such
capabilities usually attempt to leverage experiences gathered previously.
By taking advantage of relevant past experiences, tuners classify the cur-
rent workload to the most pertinent workload seen recently. In this work,
a five-layered, fully connected neural network with ReLU activation func-
tion is being employed as the classification model to classify data points
into relevant workload classes. The categorical cross-entropy function
is employed as the loss function and optimized using Adam optimizer.
The work handles the challenges related to the cold-start problem, issues
in mapping, and cascading errors. The proposed solution can overcome
these issues in a large-scale production environment. The results show
that the model has 93.3% accuracy in 93.8% F1-score as compared to
the previous model like Ottertune.

Keywords: Knobs · Central Tuner · ANN · Softmax probability ·
Metric Collector

1 Introduction

With the rising popularity of micro-services in Platform-as-a-Service (PaaS) and
Software-as-a-Service (SaaS) architectures in recent years, backing services have
become an integral part of a cloud. These architectures become quintessential for

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C. Strauss et al. (Eds.): DEXA 2023, LNCS 14146, pp. 266–280, 2023.
https://doi.org/10.1007/978-3-031-39847-6_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-39847-6_19&domain=pdf
https://doi.org/10.1007/978-3-031-39847-6_19

Towards a Workload Mapping Model for Tuning Backing Services 267

consumption by microservices to enable functionalities like data stores and mes-
saging systems [1,2]. Examples of such backing services can be datastores like
MySQL, PostgreSQL, Redis, CouchDB, etc., and messaging services like Rab-
bitMQ, Apache Kafka, etc. Platform customers do not have access to tune the
configuration knobs for such underlying backing service. The sheer magnitude
of the backing service deployments makes it impossible for the service providers
to hire a DBA/administrator for real-time tuning of databases. A diverse range
of backing service offerings from a platform also adds another layer of complex-
ity [3].

To deal with such situations, it is evident that a highly robust and scal-
able approach for auto-tuning backing services is required. One such solution is
Ottertune [4], which can tune multiple backing services irrespective of different
versions and vendors. Ottertune Style Tuners (OST) has been introduced as a
generic term used throughout the work to refer to all such tuners employing an
architecture similar to Ottertune. OST recommendation engines always have a
cost associated with each recommendation request executed for production sys-
tems. For service providers, the cost of provisioning a tuner deployment becomes
challenging, as a single OST tuner deployment can provide tuning service to
a limited number of service-instance. Also, the value of the recommendation
becomes important since a customer is charged for each generated recommenda-
tion. Thus, an ideal goal is to maximize the number of deployments associated
with a single tuning service deployment. These criteria must be maintained while
ensuring that the accuracy of the recommendation is not compromised and the
performance of the database instances subscribing to the service stays optimal.
These tuning-service architectures employ machine learning algorithms for two
essential operations: classification and recommendation. As per the model fol-
lowed by OST recommendation engines and other proprietary tuners, the fol-
lowing issues are observed in the case of real-time production-ready deployment.

– Cold-start problem: The accuracy of mapping a workload to the most sim-
ilar workloads (optimal mapping) increases only with the increasing size of
the source workload. This is evident from the fact that the predicted met-
rics are computed where the length of predicted metrics equals the total
knobs attempted in the source workload. The source workload is the work-
load set being executed on the database instance that is requested for tuning.
If the size of the source workload is less (the database has recently been reg-
istered to the tuning service), it has observed lesser data points, then the
OST recommendation engines suffer higher error percentages in mapping to
the target workload. Due to wrong mappings, the obtained recommendations
often lead to degradation in transactions per second (tps) on production sys-
tems. One such case is when a read-heavy/oriented workload gets mapped
to a write heavy/oriented workload, and the obtained recommendations are
always inclined to favour write optimal configurations and, in the end, even
degrading.

– Issues of deep mapping: OST recommendation engine maps an entire
source workload to a new target workload which requires a huge number of

268 G. Kumar et al.

data points to be already present in the database instance. The prerequisite
is that, the target workloads should have huge observational data points for
higher accuracy in mapping. Thus, the workloads seen in the past need to
observe all sorts of variations in knobs and metrics for a smoother implemen-
tation. This technique becomes not only tedious but also non-deterministic
since such training cannot always be guaranteed.

– Issues of self mapping: Another major flaw in the OST recommendation
engine is that the engine considers the source workload to be one of the
potential candidates for the target workload. Since the evaluation of the score
depends on the predicted metrics set and its Euclidean distance to the input
metric set. There are chances that the score could have come minimum for the
target workload, which is the same as the source workload. Such a mapping
is completely erroneous and leads to further degradation in the performance
of the tuning service for the database instance.

– Cascading errors: The impact of the limitations discussed above has a
drastic cascading effect. Let us visualize this with an example. Suppose the
OST recommendation engine performs an erroneous mapping because of the
above limitations and maps the source data point to a wrong target workload.
This not only affects the current recommendation request but also corrupts
the source workload.

Considering such challenges, in this work, a similar issue has been identified
in a real-time deployment employing Ottertune’s approach, where the chances
of missing SLAs became very high. OST uses previously gained experiences to
generate a new recommendation. In [4], authors use Euclidean Distance to map
the incoming workload (from any given production workload) to one of the most
similar workloads observed in the past. However, as the optimal recommenda-
tion generation solely depends upon mapping to such a similar workload, low
accuracy of mapping on production systems can even reduce the final through-
put drastically. Built upon such challenges, the proposed work identifies such
issues with the OST tuning approach deployed for large databases and proposes
solutions for the same. The major contributions of this paper are as follows:

– The proposed method maximizes the capability of the tuner by gathering
relevant and most recent experiences from the data aggregator.

– A Neural Network is employed as the classifier model to classify data points
into relevant workload classes. The classifier used a five-layered, fully con-
nected neural network with ReLU activation. The last layer is a Softmax
layer for classification into workload classes.

– The model is trained on the historical set of data for the workloads using
categorical cross entropy function as the loss function and optimized using
Adam optimizer.

– Further, the work has been compared with Ottertune and measured the F1-
score and accuracy.

Towards a Workload Mapping Model for Tuning Backing Services 269

2 Related Work

There exist multiple works which focus on tuning databases based on physical
or logical design [5], index tuning [6], or partitioning schemes [7,8]. Some works
focus on tuning a subset of performance-impacting knobs [9]. There are also
possible sets of tuners exist that are specific to certain commercial databases,
such as DB2’s Performance Wizard Tool [10], Oracle’s Database Monitoring
Tools [11], and Tuner for Microsoft SQL [12]. However, these tuners are limited
by specific vendor dependencies and lack a generic approach for tuning certain
knob parameters to achieve a specific objective. There are also some tuners that
are based on feedback-driven techniques [13,14] which tune certain knobs by
executing benchmarks and then observing performance details. Later, the same
performance details/statistics are used to recommend changes in the database
to make it perform better. Authors used an Ottertune-style knob tuner that
leverages large-scale machine-learning techniques to furnish optimal recommen-
dations for a database [15]. OST provide a common platform which can fetch
metrics from multiple types of databases based on various VM plans as given by
infrastructure providers like AWS, Alibaba Cloud, Azure, Google Cloud Plat-
form, etc. They can use large-scale machine-learning techniques to provide knob
recommendations. Keeping in mind the challenges faced by Platform-as-a-Service
offerings, this architecture seems to be a scalable solution which can be used for
tuning the backing service offerings. The Ottertune Style Tuners (OST) capture
the experience gathered from different production databases and then leverages
the experiences gained to give an optimal recommendation. Ottertune maps a
current workload to one of the closest seen workloads and then uses the experi-
ences (physical features) gained from the mapped workload to provide an optimal
recommendation.

There are a couple of other works which use arrival-rate history [16] and
query’s logical semantics [17] to perform similar clustering of workloads. How-
ever, there is a reasonable consensus that OST engines are the best fit for this
use case, as these features help in better clustering without understanding the
query meaning. Moreover, these features are more sensitive towards database
physical design and hardware. However, in [4], authors use Euclidean distance
to estimate the closest workload seen previously. Euclidean distance has certain
drawbacks to use in the production environment. In this work, we highlight such
challenges associated with the mapping of a workload and propose solutions for
the same. In [18] author explained how the cold-start could be a large problem in
the case of database systems as well as in the field of big data. Also, the authors
explained how the cascading error could be detected in the back-propagation
while training the model.

Keeping in mind the challenges faced by PaaS offerings, this work proposed
an architecture that tunes the backing services. The proposed method captures
the experience gathered from different production databases and then leverages
the experiences gained to give an optimal recommendation.

270 G. Kumar et al.

3 System Design

3.1 Problem Formulation

At any given time instant t, let’s assume D is the set of all database ser-
vice instances subscribing to the tuning-service deployment provisioned as part
of PaaS offerings. N denotes the total number of such instances, such that:
D = {D1,D2, ...,Dn, ...DN}. The set of database service instances denoted by
D bind to a single tuning-service deployment, and the tuning recommendations
need to be served for all such instances in real-time from the single tuner deploy-
ment only. Consequently, the experience gained by the tuning service for tuning
database instance, D1, is stored by the tuning service as workload, W1. Then,
WP can be defined as the set of all workloads, such that workload WP

n stores
experience obtained from database instance Dn. WP = {WP

1 ,WP
2 , ...,WP

N }. Fur-
thermore, each workload stores this experience in the form of multiple points,
each point is denoted by a duplet, {ki,mi}Wn

, where for each nth workload,
k denotes the knobs (physical settings configured), m denotes the metrics cap-
tured (statistics representing performance) for database Dn at time instant t.
Further, consider that WO denotes the set of workloads generated offline (non-
production system) by executing various SQL workload benchmarks like TPCC,
YCSB, Twitter, etc. These offline workloads often use multiple mixtures of a
certain benchmark to showcase enough variations, e.g., {Read%, Write%} mix-
ture of TPCC has variations like {50, 50}, {60, 40}, {80, 20}, {20, 80}. Any
such workload can be denoted as WO

k , and the set of all such workloads of total
size K can be represented by WO = {WO

1 ,WO
2 , ...,WO

k , ..,WO
K}. Let us assume

W source
n denotes the workload of a database making a recommendation request.

Each time an underlying database service instance sends a request for tuning to
the tuning service (at time instance t), the input parameters from the database
instance to the tuner service are denoted as {ki,mi}W source

n
. The tuning service,

then, needs to map the received data-point ki,miW source
n

to any given previously
observed workload Wk �=n. This mapping is essential because the data points
present in the mapped workload, Wk �=n, are used to train the Gaussian Process
Regression (GPR) engine in order to provide a recommendation to the requesting
database instance.

3.2 Mapping Workload

Here, the problem of mapping a source workload to an existing workload is for-
mulated. The section helps in understanding how the mapping of a workload
is tackled by an OST recommendation engine. Continuing from the previous
section, if for a time instant t, a tuning request is triggered by a database service
instance to the tuning service, and the tuning service receives a new data point,
{ki,mi}W source

n
. Now, the OST engine employs a ranking/purging methodology

to determine top-ranked knobs (characterized by knob ids) and metrics (char-
acterized by metric ids). The engine further filters the current data point, i.e.
{ki,mi}W source

n
and keeps the dimensions of knobs and metrics as per the newly

Towards a Workload Mapping Model for Tuning Backing Services 271

obtained knob-ids and metric-ids. The OST engine then proceeds with the pre-
processing tasks like binning, normalization, computing deciles, binning, etc.
Now, leveraging the workloads experienced by the tuning agent denoted by WP

and the workloads that are generated offline denoted by WO, the tuning engine
has a total of WP ∪ WO workloads. For each workload in (WP ∪ WO), the
algorithm trains a (Gaussian Process Regression) GPR and obtains a new pre-
dicted metrics set denoted by Mpred from the trained GPR for all knob set
(∀k ∈ W source

n) attempted in workload W source
n . Finally, as per the algorithm,

the Euclidean distance is calculated and averaged for corresponding metrics, i.e.,
Mpred and Moriginal where Moriginal is the set of all actual metrics observed in
workload W source

n . The Euclidean distance is calculated for all predicted met-
rics and actual metrics. Similarly, for each workload, the Euclidean distance is
calculated, and the workload with the least score wins.

3.3 Proposed Classification Approach

As discussed in the previous section, the Euclidean distance-based approach for
workload mapping in the OST engine has drawbacks and can cause Service Level
Agreement (SLA) violations for production scenarios. It requires a huge number
of data points in W source

n before the model converges to an optimum solution.
The time of convergence increases with an increase in the number of data points
as well. So, on the one hand, we require a large amount of data points before
the model can accurately predict the workload class for incoming data points.
Having a large number of data points leads to an increase in the time required to
predict relevant classes for new test data points. To solve all these shortcomings,
we have used a Neural Network as the classifier model to classify data points
into relevant workload classes. This significantly reduces the test time required
to optimally predict the workload class.

The used classifier is a five-layered, fully connected neural network with ReLU
activation. The last layer is a Softmax layer for classification into workload classes
(for example, in one of our test cases, into five workload classes). The structure
of the ANN model has shown in Fig. 1. The model is trained on the historical
set of data for the workloads using categorical cross entropy function as the
loss function and optimized using Adam optimizer. We have used accuracy as
the optimizing metric and time for one test run as the satisfying metric. The
classifier is trained with a total of n workloads (at any time instance t), which
create a total of n classes. Now with the proposed classification approach, any
new point {ki,mi}W source

n
, which comes from a W source

n , gets classified to one
of the classes using the trained model. As the classification approach classifies a
point instead of classifying the whole source workload, this seems to minimize the
highlighted mapping drawback. The dimensions of training data depend on the
globally ranked knobs and metrics. This ranking is done by the background tasks
such as factor analysis, clustering, and Lasso’s feature extraction algorithm.

Theoretically, there is also a high chance that with each trigger of a back-
ground task, the globally ranked knobs get changed, which changes the dimen-
sions of the data and ultimately leads to the retraining of the neural network.

272 G. Kumar et al.

The retraining is triggered only when a change is encountered in the set of
globally ranked metrics and knobs. However, in production environments, it is
observed that this change is seen only when a new database service instance gets
added up.

Fig. 1. Structure of ANN having softmax as activation function and CE as loss function

4 System Architecture

This section explains the architecture of the proposed Autonomous Database-as-
a-Service model (ADBaaS) when deployed by a PaaS service provider. Figure 2
represents ADBaaS in which the tuning service is modularized into various com-
ponents. It can be noted that the tuning service is completely de-coupled from
the platform architecture and functions like plugins to the database instances
subscribing to the service while ensuring minimum interference for any other
component.

4.1 Database Service Instances

In a Platform-as-a-service (PaaS) architecture deployed in the cloud, database
service instances indicate the physical resources (like VM, containers, etc.) in
which a database process, e.g., Postgresql, MySQL, MongoDB etc. runs [19,20].
These database instances are provisioned and managed by the platform service
provider, and the applications of the end user bind to these database processes
for leveraging the data-persistence features. As showcased in Fig. 2, there could
be multiple database instances, each having its own database process running
within. The primary roles of a database service agent are to ensure the database
process does not crash, ensure the high availability of a cluster, monitor the
health of the cluster, etc. Additionally, if the database service instances choose
to subscribe to the tuning service, the agent will read the metrics of the database
process and send it over to the tuning service as per the configured frequency.
The agent also communicates the current knob configuration of the database
process to the tuning service. The agent places a request to the tuning service
and then applies the recommendation (recommended knobs) received from the
tuning service to the database process.

Towards a Workload Mapping Model for Tuning Backing Services 273

Fig. 2. Proposed ADBaaS architecture

4.2 Data Management Module

The data-management module is the component solely responsible for any inter-
action between the tuning service and the database service instance. This mod-
ule contains Data Federation Agent, which further consists of various types of
adapters for each database type. Adapters are the components that facilitate
communication of any generic module with various database types, agnostic of
the specific nuances of the various database types. Since the tuning service is
a generic component that can cater to various types of databases, hence this
adapter becomes an essential component.

4.3 Tuning Service

The tuning service deployment is divided into two modules, primary tuner and
secondary tuner. There has been a conscious rationale behind segregating the
service deployment into two separate modules. One obvious reason is the segre-
gation of concerns, separating the execution of on-demand tasks on one system
and the execution of background tasks on another system. On-demand tasks
will include operations like obtaining recommendations from the GPR module,
whereas background tasks will include operations like retraining the models and
aggregating experiences gathered from other global installations of the tuning
service. Thus, both categories perform very cost-intensive operations. Isolating
the two operations in separate resources having identically computing capacity
seems justified and prevents unnecessary spikes in physical resource requirement.
Lastly, since operations like retraining can occur at any point and could reduce
the performance of the tuning service, separating the process into another system
ensures that the primary tuning service always performs at optimum levels, irre-
spective of the retraining tasks. The standard platform auto-scaler responsible
for scaling the (primary and secondary) VM’s based on load conditions.

274 G. Kumar et al.

– Primary Tuner This VM receives the on-demand recommendation requests,
i.e., <ki,mi> Wn, from a database. For each request, a task is created buffered
in the job queue, and executed serially. Now in the first step, the workload
mapping classifies the task to one of the most similar workloads seen and then
uses the data of the mapped workload to train a GPR. Upon training, the
GPR yields a set of optimal knob recommendations. The mapping workload
engine always uses the current model in the cache for classification. This VM
accesses all the workload data from the common SQL data store. This VM is
also featured by Monitoring Agents and Platform Orchestrator Agents, which
facilitate all the lifecycle operations and health monitoring.

– Secondary Tuner This VM is responsible for running background tasks such
as factor analysis, clustering, and feature extraction. These tasks help in
reducing data dimensions for increasing the overall efficacy of tasks triggered
from Primary tuners. This VM also has a re-tuner module that performs the
retraining of the proposed Neural Network and then transfers the learning
to the primary tuner VM in JSON formats. This VM has a job scheduler,
which periodically schedules the background tasks. The retraining module
reads the flags from common data stores and initiates retraining. This VM is
also featured by monitoring agents and platform Orchestrators.

4.4 Central Tuning Agent

Since the tuning service can be deployed in multiple landscapes and environ-
ments, it is expected that the service must be exposed to diverse learning expe-
riences in multiple environments. The idea here is to leverage the learning gained
by the tuning service in one landscape by all other deployments of the service.
This is the primary role of the Central Tuning agent. The agent is globally con-
nected to all the deployments of the tuning service in different environments.
The global deployment could be restricted to a certain platform provider, and
the discretion of learning can be decided by the platform service provider. The
central tuning agent collects the learning models and data points of the tun-
ing service across environments and stores this accumulated data in a central
data repository. This new data is fed to the secondary tuner for updating the
model with the new data points via a periodically triggered retraining module
execution.

5 Overcoming Training Challenges

It is important to figure out the optimal timestamps when re-training the neu-
ral network. From production-based scenarios, the following reasons could be
identified and attributed to why retraining is required.

– Add of new database instances : When a new database service instance, Dnew
n+1

subscribes to the tuning service, a new workload Wnew
n is created in the tuner

repository to store the experiences from Dnew
n+1. Now as the total workloads

stored have changed i.e., n to n + 1, the total number of classes for the ANN
also changes.

Towards a Workload Mapping Model for Tuning Backing Services 275

– Change of global ranked metrics and knobs: When the background task in the
secondary tuner-VM runs, it produces a new set of global ranked metrics and
knobs. This causes a change in data dimensions. Empirically, the change in
data dimensions also impacts the accuracy and error rate of the model.

– Classification error rate increases: Known data points are sent to the classi-
fier periodically, upon which the accuracy rate and error rate are compared
against thresholds. In this case, it is possible that retraining by considering
the points in a buffer may increase the accuracy rate or reduce the error rate.

– Evenly distribution of Softmax probabilities: The Softmax activation function
at the classification layer of the model returns probabilities for a data point
that belong to a class. In many cases, it is observed that the probabilities are
evenly distributed. One such example is, let’s consider, there are 3 classes,
and the softmax probabilities are {0.323, 0.30, 0.314}. Here the class with
a probability of 0.323 clearly wins the margin. However, the other classes
also have a very near chance of winning. In such a situation again, it is
assumed that retraining with all new possible points will make the probability
distribution uneven and avoid certain scenarios.

The background of pruning/ranking tasks responsible for changing global
ranked knobs and metrics run periodically. If the globally ranked knobs and
metrics change with the trigger of background pruning/ranking, then at the
same instance, retraining is also triggered. Apart from the dimension change
issues, a common unified solution to other identified problems can be measured
the probability distributions using entropy. Shannon entropy [21] of a discrete
random variable X can be defined as:

Hn(X) = −
n∑

i=1

p(xi)log(p(xi)) (1)

where, p(xi) is the probability of ith outcome of X. We define the similarity
index as a measure of the probability distribution, which returns the number
of elements (in % scale) having nearly similar probability. Figure 3 depicts the
variation of entropy based on a similarity index for a different set of classes. In
the production system, the threshold value for entropy is determined statically
by fixing the number of classes and similarity index.

During classification, each time entropy value for the probabilities is calcu-
lated and then compared against the threshold. If the entropy value is greater
than the threshold, the system retrains the model with the sole condition that at
least one of the workloads (Wn) has one new point apart from the source work-
load. The incoming data point <ki,mi> W source

n , for which the entropy value
has been violated, is statically mapped to the workload W target

n , that has maxi-
mum mapping frequency for workload W source

n . The maximum value of Shannon
entropy for X, with a total n possible outcomes, is log(n). This happens when
the probability of a data point in each class becomes equal. The value of η(X) is
ranging from 0 to 1, i.e., η(X) ∈ [0, 1]. This helps in determining the threshold
value of entropy.

276 G. Kumar et al.

Fig. 3. Entropy variations

6 Performance Evaluation

The experiments were conducted on the AWS landscape, where the infrastruc-
ture resources were provisioned by Cloud Foundry [22] managed by Bosh [23].
The tuner deployment consists of 12 tuner instances - m4.xlarge with 4vCPU
and 16 GB memory, 5 config-director instances - m4.xlarge. A total of 80 live-
database deployments (spawned through t2.small, t2.medium, m4.large, t2.large,
and m4.xlarge VM types) to the tuning have been considered. For evaluating the
experiments, PostgreSQL (v9.6) was used. All the tuner instances collected data
from one common data repository, which is shared by all tuner instances. This
instance also has an m4.xlarge configuration. The bare service replicas were
created, one for each plan and were used to test the recommendations. We con-
sidered 10 min observation time for YCSB and Wikipedia and 5 min observation
time for TPCC. Table 1 shows F1 scores and accuracy obtained under different
scenarios. Here W represents the number of workloads, and m is the data points
per workload. For instance, in 100 workloads and 500 data points/ workload sce-
narios, the F1-score is 93.8% and accuracy is 93.3% which is ≈8.0% improvement
over Ottertune (State-of-the-art model).

Table 1. Performance summary

Production Data Ottertune Proposed Model

F1-Score Accuracy F1-Score Accuracy

W = 100 m = 30
W = 100 m = 500

0.435
0.871

0.441
0.866

0.867
0.938

0.877
0.933

W = 200 m = 30
W = 200 m = 500

0.323
0.914

0.321
0.922

0.865
0.895

0.852
0.903

W = 300 m = 30
W = 300 m = 500

0.241
0.821

0.242
0.841

0.822
0.856

0.822
0.887

Towards a Workload Mapping Model for Tuning Backing Services 277

Figure 4 shows the frequency of re-training requests triggered when the tuner
deployment was hooked with a different set of production systems subjected to
varying entropy values. Here, it is observed that with lower values of entropy,
more re-training requests are getting triggered. This data can become extremely
helpful for an admin to make decisions for optimal values of entropy (based on
the similarity index) following the cost of each retraining w.r.t the provisioning
cost perspective. Thus, depending on the performance trade-off, the admin can
decide on the threshold. Figure 5 showcases another scenario. Here, the tuner had
already trained offline with a maximum of write-oriented workloads and signif-
icantly fewer read-oriented workloads (110 write workloads and 8 read-oriented
workloads). Thus, the setup remains the same as the previous experiment. How-
ever, the source workload is highly randomized with a non-uniform mixture of

Fig. 4. Retraining variations on production environment.

Fig. 5. Average throughput for different data point sets in source workload

278 G. Kumar et al.

read-write queries. OST engine, owing to its limitation of mapping the entire
source workload to the target, tries to match all the data points in the source
workload and, quite obviously, doesn’t find any suitable target workload. Thus,
owing to the other limitation of including the source workload as the target work-
load, it maps to the source workload. Thus, the throughput always remains the
same, which is average for all scenarios. The proposed work also suffers from the
same limitation and performs poorly initially due to incorrect mapping. How-
ever, the retraining module is triggered to ensure proper training of the model.
Thus, gradually the performance of the proposed work improves and can adjust
to different scenarios.

Figure 6 illustrates the general cold-start problem. Here, the tuner had
already seen a maximum of write-oriented workloads and very few read-oriented
workloads (110 write workloads and 8 read-oriented workloads). Here the work-
load is the execution of some preset load like read, write, or a combination of
both, which helps the tuner learn and give appropriate knob configuration in real
scenarios. In one case the source workload starts from no data points, where we
observed reduced throughput initially for the OST approach, as shown in Fig. 6a.
Due to the paucity of data, there are many wrong mappings. Hence non-optimal
recommendations are generated. With the OST approach, due to incorrect map-
pings, the throughput of the database decreases, and later all the experiences
in the source workload go with the cascading effect of sub-optimal experiences
ending at self-mapping. However, with the proposed approach, we see better
throughput as we minimize the cold start problem and restrict self-mapping.
However, when the data points increase in the source workload, the accuracy of
mapping increases, as shown in Fig. 6b. Hence, the GPR engine produces optimal
recommendations causing an expected increase in throughput.

Fig. 6. Average throughput for different data-point sets in source workload.

7 Concluding Remarks

This work presents a Neural Network based classification approach for optimally
mapping the production workloads to the closest resembling target workloads.

Towards a Workload Mapping Model for Tuning Backing Services 279

The challenges associated with the current OST’s workload mapping approach
are identified, and then a robust solution is proposed which can handle real-time
production scenarios. While introducing a classification approach, an additional
cost of retraining is encountered. The proposed approach is modified such that
the cost of retraining is minimized from the perspective of provisioning and scal-
ability challenges. Further, the solution is deployed on various cloud systems,
and the performance is evaluated and compared with the prior solutions. A sig-
nificant improvement in the accuracy of classification is achieved in the current
approach. The solution is considered to be feasible for large-scale deployment of
databases on a real-time system for keeping the database performance optimal
at all times. Although the proposed work optimizes the performance of the clas-
sification engine, improving the scalability of the tuner to accommodate more
database instances could be an interesting problem to tackle.

Acknowledgement. This work was supported by the Kempe fellowship via project
no. SMK21-0061, Sweden. Additional support was provided by the Wallenberg AI,
Autonomous Systems and Software Program (WASP) funded by Knut and Alice Wal-
lenberg Foundation and the European Commission through the Horizon Europe project
SovereignEdge.COGNIT (grant no. 101092711).

References

1. Backing services. https://12factor.net/backing-services. Accessed 01 Feb 2023
2. Babou, C.S.M., et al.: Hierarchical load balancing and clustering technique for

home edge computing. IEEE Access 8, 127593–127607 (2020)
3. Tiwary, M., Mishra, P., Jain, S., Sahoo, K.S.: AutoDBaaS: autonomous database

as a service for managing relational database services. In: EDBT, pp. 600–610
(2021)

4. Van Aken, D., Pavlo, A., Gordon, G.J., Zhang, B.: Automatic database manage-
ment system tuning through large-scale machine learning. In: Proceedings of the
2017 ACM International Conference on Management of Data, pp. 1009–1024 (2017)

5. Chaudhuri, S., Narasayya, V.: Self-tuning database systems: a decade of progress.
In: Proceedings of the 33rd International conference on Very Large Data Bases,
pp. 3–14 (2007)

6. Gupta, H., Harinarayan, V., Rajaraman, A., Ullman, J.D.: Index selection for
OLAP. In: Proceedings 13th International Conference on Data Engineering, pp.
208–219. IEEE (1997)

7. Agrawal, S., Narasayya, V., Yang, B.: Integrating vertical and horizontal partition-
ing into automated physical database design. In: Proceedings of the 2004 ACM
SIGMOD International Conference on Management of Data, pp. 359–370 (2004)

8. Pavlo, A., Jones, E.P.C., Zdonik, S.: On predictive modeling for optimizing trans-
action execution in parallel OLTP systems. arXiv preprint arXiv:1110.6647 (2011)

9. Sullivan, D.G., Seltzer, M.I., Pfeffer, A.: Using probabilistic reasoning to automate
software tuning. ACM SIGMETRICS Perform. Eval. Rev. 32(1), 404–405 (2004)

10. Kwan, E., Lightstone, S., Storm, A., Wu, L.: Automatic configuration for IBM
DB2 universal database. In: Proceedings of IBM Perf Technical report (2002)

11. Yagoub, K., Belknap, P., Dageville, B., Dias, K., Joshi, S., Yu, H.: Oracle’s SQL
performance analyzer. IEEE Data Eng. Bull. 31(1), 51–58 (2008)

https://12factor.net/backing-services
http://arxiv.org/abs/1110.6647

280 G. Kumar et al.

12. Narayanan, D., Thereska, E., Ailamaki, A.: Continuous resource monitoring for
self-predicting DBMS. In: Proceedings of the 13th IEEE MASCOTS 2005, pp.
239–248. IEEE (2005)

13. Brown, K.P., Carey, M.J., Livny, M.: Goal-oriented buffer management revisited.
ACM SIGMOD Rec. 25(2), 353–364 (1996)

14. Trummer, I.: Demonstrating DB-BERT: a database tuning tool that “reads” the
manual. ACM SIGMOD Rec. 2437–2440 (2022)

15. Wang, X., Nedjah, N., Zhang, P., Shi, H., Ye, F., Li, Y.: Parameters tuning of
multi-model database based on deep reinforcement learning. J. Intell. Inf. Syst.
(2022)

16. Ma, L., Van Aken, D., Hefny, A., Mezerhane, G., Pavlo, A., Gordon, G.J.: Query-
based workload forecasting for self-driving database management systems. In: Pro-
ceedings of the 2018 International Conference on Management of Data, pp. 631–645
(2018)

17. Pavlo, A., et al.: Self-driving database management systems. In: CIDR, vol. 4, p.
1 (2017)

18. Tey, F.J., Wu, T.-Y., Lin, C.-L., Chen, J.-L.: Accuracy improvements for cold-start
recommendation problem using indirect relations in social networks. J. Big Data
8(1), 1–18 (2021). https://doi.org/10.1186/s40537-021-00484-0

19. Amsterdamer, Y., Callen, Y.: Provenance-based SPARQL query formulation. In:
Strauss, C., Cuzzocrea, A., Kotsis, G., Tjoa, A.M., Khalil, I. (eds.) DEXA 2022.
LNCS, vol. 13426, pp. 116–129. Springer, Cham (2022). https://doi.org/10.1007/
978-3-031-12423-5 9

20. Lisa, et al.: Data integration, management, and quality: from basic research to
industrial application. In: Kotsis, G., et al. (eds.) DEXA 2022. CCIS, vol. 1633, pp.
167–178. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-14343-4 16

21. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27(3),
379–423 (1948)

22. Cloud-foundry. https://www.cloudfoundry.org/. Accessed 11 Jan 2023
23. Bosh. https://bosh.io/docs/. Accessed 18 Jan 2023

https://doi.org/10.1186/s40537-021-00484-0
https://doi.org/10.1007/978-3-031-12423-5_9
https://doi.org/10.1007/978-3-031-12423-5_9
https://doi.org/10.1007/978-3-031-14343-4_16
https://www.cloudfoundry.org/
https://bosh.io/docs/

Compliance and Data Lifecycle
Management in Databases and Backups

Nick Scope1, Alexander Rasin1(B), Ben Lenard1, and James Wagner2

1 DePaul University, Chicago, IL 60604, USA
nscope52884@gmail.com, arasin@cdm.depaul.edu, blenard@anl.gov

2 The University of New Orleans, New Orleans, LA 70148, USA

jwagner4@uno.edu

Abstract. From the United States’ Health Insurance Portability and
Accountability Act (HIPAA) to the European Union’s General Data Pro-
tection Regulation (GDPR), there has been an increased focus on indi-
vidual data privacy protection. Because multiple enforcement agencies
(such as legal entities and external governing bodies) have jurisdiction
over data governance, it is possible for the same data value to be subject
to multiple (and potentially conflicting) policies. As a result, managing
and enforcing all applicable legal requirements has become a complex
task. In this paper, we present a comprehensive overview of the steps
to integrating data retention and purging into a database management
system (DBMS). We describe the changes necessary at each step of the
data lifecycle management, the minimum functionality that any DBMS
(relational or NoSQL) must support, and the guarantees provided by
this system. Our proposed solution is 1) completely transparent from
the perspective of the DBMS user; 2) requires only a minimal amount
of tuning by the database administrator; 3) imposes a negligible perfor-
mance overhead and a modest storage overhead; and 4) automates the
enforcement of both retention and purging policies in the database.

Keywords: Databases · Privacy Compliance · Retention · Purging

1 Introduction

Organizations are subject to a variety of data management rules for how data
must be archived, preserved, or destroyed. As new legislation is passed, these
requirements are becoming more expansive and more strictly enforced. For exam-
ple, Europe’s General Data Protection Regulation (GDPR) privacy rules extend
to organizations with customers in Europe (even when the organization is based
outside of Europe). Organizations that fail to adhere to these policies risk their
customers’ privacy and are subject to potentially large fines. Thus, databases
must incorporate the features and functionality necessary to remain compliant.

For purposes of this paper, we define policy as the set of rules an organization
must follow with respect to data preservation and destruction. These policies can
be the result of internal requirements, other business partners, or government
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C. Strauss et al. (Eds.): DEXA 2023, LNCS 14146, pp. 281–297, 2023.
https://doi.org/10.1007/978-3-031-39847-6_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-39847-6_20&domain=pdf
https://doi.org/10.1007/978-3-031-39847-6_20

282 N. Scope et al.

agency mandates. Failure to comply with these policies could result in large
fines, a loss of customers, and an irrecoverable breach of customer data privacy.

Although current industry tools (see Sect. 2) offer some important data gov-
ernance capabilities, database management systems (DBMS) must be updated
to support compliance in data storage. DBMSes do not currently include native
retention or purging functionality that can be applied at record level. Google,
Amazon, Oracle, and IBM all offer various object-storage compliance function-
ality for their remote storage. These all use date-criteria for defining policies
timelines, but none of these offer tuple, cell, or value based policy enforcement in
a database. Instead, objects are placed into “buckets” and policies are applied at
the bucket-level. Because databases contain intermixed records which are subject
to different policies, applying the policy at the bucket level risks non-compliance
with one policy at the cost of another.

However, DBMS storage (relational or NoSQL) is much more complex and
fine-grain, representing the data at individual record and value level. Currently,
with respect to databases, organizations are forced to create ad-hoc solutions to
meet policy compliance requirements; these solutions are typically developed by
either re-purposing other existing tool functionality or manually performing the
steps to enforce compliance.

Governance policies depend on multiple factors and can be surprisingly com-
plex. The Office of the National Coordinator for Health Information Technol-
ogy provides a summary overview with examples for how many states in the
United States have their own requirements for retaining and destroying health-
care data [30]: Oregon requires hospitals to retain all records for 10 years after
the date of the last discharge; Hawaii requires the full medical record history to
be retained for 7 years after the last data entry. Adding to the complexity, the
data of minors and adults can be governed by different policies. For example, in
North Carolina, hospitals are required to retain adult patients data for 11 years
following discharge, while the data of patients who are minors (at the time of
record creation) must be retained until the patient’s 30th birthday. Thus, the
policy expiration must reference patient’s date of birth, with different rows or
columns of a database table governed by different requirements.

Adding to the complexity, database administrators must consider the possi-
ble conflict between multiple requirements (e.g., retention versus destruction of
the same data item). For example, GDPR’s Article 17 requires that an organiza-
tion purge personal data “the personal data are no longer necessary in relation
to the purposes for which they were collected [5]”, but if the same data item
was pertinent to an impending or an ongoing lawsuit, an organization must
retain the data until it is no longer required to be retained (i.e., the lawsuit has
been resolved). Therefore, any organization relying on manual solutions for their
compliance must consider the high labor cost of enforcing compliance.

1.1 System Overview

Ataulla et al. [9] first proposed the idea of defining data governance policies
through a SQL query (see Sect. 4.1) as a first step towards native DBMS pol-

Compliance and Data Lifecycle Management in Databases and Backups 283

Fig. 1. Data lifecycle workflow changes in a DBMS to support data purging policies.
Retention policies will use triggers and defined policies to retain data in an additional
customerArchive table

icy support. Scope et al. [27] proposed leveraging DBMS triggers (natively sup-
ported by all major database vendors) and revising the backup process to support
policy-based data purging. Scope et al. [26] also prototyped the same strategy
in the context of NoSQL (MongoDB) databases. In this paper, we present and
evaluate an end-to-end approach to offer a native support for data governance
(retention and purging) in relational and NoSQL DBMSes.

Figure 1 summarizes the integration of our data purging mechanism steps
into a DBMS (retention mechanism details are not pictured). Policies are defined
with database queries, SQL or NoSQL, such as “rows inserted into a customer
table must be retained for a duration of 5 years”. Each inserted (or updated)
row is checked by a trigger against applicable purging policies, if any. The values
covered by purging requirement are encrypted with a corresponding policy-based
key, and inserted into the customerShadow table (an encrypted counterpart copy
of the original customer table).

The customerShadow table is backed up instead of backing up the customer
table, to enable “remote” erasure by destroying the corresponding key upon pol-
icy expiration. In order to fully satisfy purging requirements, the database must
also securely delete encryption keys from backups [22]. Towards that end, the
encryption key table is backed up separately with an independent storage ser-
vice, to ensure that keys are expunged upon expiration. The encryption key table
is itself encrypted to minimize the impact of a potential data breach. However,
we note that the mechanisms described here are not designed to be a security
solution but are a governance compliance mechanism. Thus, if the encryption
keys were somehow compromised (or inadvertently copied), this framework can
re-create a new encryption key table (and underlying keys) and re-encrypt the
backups and shadow tables. This would not address the data theft, but once all
of the data is encrypted with new keys, it would restore data storage compliance.

Our corresponding retention mechanism (not pictured in Fig. 1) checks
deleted rows for values that are currently protected by retention policy. Such
values are stored in an archive table and purged through the same means (see
Sect. 4.1).

284 N. Scope et al.

In sum, the contributions in this paper are:

– Defining the current state of privacy compliance functionality in databases
– Outline an external encryption key management system that guarantees data

retention compliance in a DBMS
– Implementing the proposed framework for both relational and NoSQL JSON

databases and evaluating the performance for daily use, backups, and restores

2 Related Work

Kamara and Lauter [16] concluded that using cryptography can improve pri-
vacy protections when using remote storage. Furthermore, their research has
shown that erasing an encryption key can be a means to rendering remote data
irrecoverable. We leverage cryptographic erasure mechanism to remotely purge
database values to ensure data privacy purging compliance. Kamara and Lauter’s
work does not discuss how to manage encryption keys or to apply them at a fine-
grained level necessary for compliance.

Reardon et al. provided a extensive overview of secure deletion [22]. The
authors defined three user-level approaches to secure deletion: 1) execute a secure
delete feature on the physical medium 2) overwrite the data before unlinking
or 3) unlink the data to the OS and fill the empty capacity of the physical
device’s storage. Their methods require the ability to directly interact with the
physical storage device, which may not be possible for all database backups.
Offline backups (e.g., backup tapes in a warehouse) are still subject to purging
and retention policies. Thus, destroying (either physically or with a complete
deletion wipe) an entire backup to guarantee purging compliance, the destruction
would come with sacrificing retention compliance.

Scope et al. [27] presented a generalized data purging workflow which sup-
ports “remote” destruction of expired data (e.g., inaccessible records stored in a
backup) in a relational database via cryptographic erasure. Encryption keys are
chosen based on the purging duration and policy; values not subject to purging
are stored without encryption. When the purge criteria has been met, the cor-
responding encryption key is deleted, rendering all encrypted data permanently
irrecoverable (i.e., purged). Additionally, research was conducted on only purg-
ing compliance in NoSQL JSON databases [26]. Neither paper addressed how to
guarantee retention compliance while implementing purging functionality.

Scope et al. [25] later expanded the previous work to incorporate functional-
ity that simultaneously considered both retention and purging policies. Although
these papers did leverage encryption, they did not provide a framework to man-
age the encryption keys (i.e., how to store the encryption key backups). Addition-
ally, this paper focused exclusively on relational databases. This paper aims to
incorporate a compliant approach for managing the encryption keys (regardless
of the database logical layout, including both relational and NoSQL).

On the industry side, Amazon S3 offers an object life-cycle management
tool [8]. S3 is file-based and lacks the granularity to fully support retention and

Compliance and Data Lifecycle Management in Databases and Backups 285

purging at the individual tuple level. Furthermore, NoSQL stores (e.g., Mon-
goDB evaluated in this paper) also require a value-level granularity to implement
data governance policies.

Google Cloud Platform (GCP) offers a similar tool to Amazon S3 by sup-
porting file-level compliance [3]. GCP’s Bucket Lock offers a retention solution
which guarantees all files are protected until the retention lock has expired.
Conversely, GCP’s Object Lifecycle Management tool uses rules which trigger
an automated deletion of files. Overall, real-world retention and purging poli-
cies require fine-grain destruction and retention of data which is currently not
supported by current industry tools.

3 Data Governance and Compliance

Business Records are the units for organizational rules and requirements
for data management. United States federal law refers to a business record
broadly as any “memorandum, writing, entry, print, representation or combi-
nation thereof, of any act, transaction, occurrence, or event [that is] kept or
recorded [by any] business institution, member of a profession or calling, or any
department or agency of government [...] in the regular course of business or
activity” [31]. In other words, business records describe any interaction or trans-
action resulting in new data.

Policy is any formally established rule for organizations. Policies can orig-
inate from a variety of sources such as legislation or as a byproduct of a court
ruling. Companies may also establish their own internal data retention policies to
protect confidential data. In practice, database administrators work with domain
experts and sometimes with legal counsel to define business records and reten-
tion requirements based on the written policy. Policies can use a combination of
time and external events as the criteria for data retention and destruction.

Retention is the preservation of all data subject to a policy. Retention
requirements supersede the requirement to destroy data.

Purging is the permanent and irreversible destruction of data in a business
record [15]. A business record purge can be accomplished by physically destroy-
ing the device, fully erasing all data on the device, or encrypting and erasing
the decryption key (although the ciphertext still exists, destroying the decryp-
tion key makes it irrecoverable). If any part of a business record’s data remains
recoverable or accessible, then the data purge is not considered successful. If a
purging policy overlaps with a retention policy, the data must not be purged
until after all retention policies have expired.

Problem Statement: All encryption used by this framework is deployed with
the intention of facilitating compliance and not for security purposes. Thus, all
security considerations are beyond the scope of this paper. Additionally, data
processing compliance (i.e., only using customer data where consent has been
given for processing) is beyond the scope of this paper. Our goal is to implement
automated retention and purging policy enforcement procedures during database
transactions, backups, and restores, agnostic of DBMS logical layout.

286 N. Scope et al.

4 System Overview

In this section, we describe our system that offers a comprehensive support for
data governance policy compliance in DBMSes. We first describe the components
that were previously proposed and then discuss changes and new components
introduced as part of this paper. In this paper, we use the term table to refer to
both a relational database table and a collection in JSON NoSQL database.

4.1 Background

The policies are defined using SQL or NoSQL queries (the idea originally pio-
neered by Ataullah et al. [9]). Therefore, the database could return the rows and
columns that were subject to any particular policy by executing the correspond-
ing query. For example, the following SQL query expresses a policy to retain all
data from the tables customerPayment and orderShipping minimally 90 days
after the payment date.

SELECT * FROM customerPayment NATURAL JOIN orderShipping

WHERE DATEDIFF(day, orderShipping.paymentDate,

date_part(’day’, CURRENT_DATE)) < 90;

Each table containing data subject to retention rule has a corresponding
shadow archive table. The shadow archive table stores data which was deleted
(i.e., no longer needed by users) but that is protected by retention policy (for
some duration or indefinitely). Similarly, each table with data subject to a purg-
ing rule has a corresponding shadow table. For records subject to purging, the
record’s values are encrypted, before a copy of the record is placed into the
shadow tables; data not subject to purging is copied into shadow table in its
original form. The shadow tables replace the original tables in backup; they also
contain columns that provide a mapping to the corresponding encryption key.

For all defined policies, we store encryption keys and corresponding policies
in the policyOverview table; the DDL (using Postgres) for the policyOverview
table can be found below. The policyOverview table contains the date on
which each key will be purged. Purging the key would purge all correspond-
ing encrypted values across all of the shadow tables and shadow archive tables.

CREATE TABLE public.policyOverview (

policyid integer NOT NULL,

policy character varying(50),

expirationDate date,

encryptionkey character varying(50));

Whenever a user executes an INSERT, DELETE, or UPDATE, the framework deter-
mines if any of the data is subject to a retention or purging policy. Because
retention takes priority over purging, data which is subject to both must be
retained until the retention policy requirements have been met. During a restore,

Compliance and Data Lifecycle Management in Databases and Backups 287

the shadow tables are restored and then loaded into the user-facing tables
(e.g., customer is loaded from customerShadow). The data for which has not
been purged (i.e., encryption key is still available) is decrypted. If the encryption
key has been deleted due to a purging requirement, the values are restored as
a NULL. For relational databases, if the primary key of a tuple cannot be restored,
the entire tuple is deleted. With JSON NoSQL databases, when a key has been
purged, all associated values are not restored.

One of the major challenges to guaranteeing compliance is the problem of
handling encryption keys. Backing up the keys would interfere with being able
to purge data (because database backups cannot be edited to selectively remove
data). Scope et al. [27] proposed storing the encryption keys in a separate linked
database to reliably support purging. However, the question of how to manage
encryption keys was not considered in prior work.

4.2 Leveraging External or Third Party Servers

In order to successfully apply cryptographic erasure, we must guarantee that
the deleted encryption keys have been irrecoverably erased. Otherwise, deleted
encryption keys may be restored from a backup and decrypt purged data. Many
industry tools (e.g., AWS S3) provide the ability to automatically “expire”
objects at the file granularity, but any external storage which provides auto-
mated file-level time-based erasure would satisfy the requirements of this frame-
work. We propose using such a system for automatic deletion of files to purge
encryption keys (based on expiration date).

Because this framework depends on using external servers to backup the
encryption keys, there is a risk of a server outage. The ability to access encryption
keys is only needed during a restore of the policyOverview table (which would
only occur during a database restore). Therefore, if restores are not common,
the risk would be minimal and acceptable.

In instances where restores are common and must not be delayed or where
high availability of backups is required, leveraging multiple external servers can
be used for storing the encryption key backups in parallel. AWS, Google, and
IBM all offer file-level automatic deletion at a set time [3,4,8].

4.3 Encryption Keys During the Backup and Restore Process

During the creation of the standard database backups, our framework leverages
backup scripts to create the backup of the encryption keys and automatically
uploads them to the external server(s) designated (using whichever scheduler an
organization deploys, e.g., CRON job). These backup scripts must be revised to
first upload the encryption keys to the third-party servers before executing the
database backup procedure. Keys which have already been uploaded and have
their automatic deletion criteria set do not need to be re-uploaded again. In
our policyOverview table, we store the date at which an encryption key was
uploaded to prevent it from being redundantly re-uploaded during future back-
ups. Thus, only newly created keys would require being backed up in addition
to the standard database backup procedure.

288 N. Scope et al.

Because the policyOverview table is not backed up with the other tables,
this framework requires some capability to backup individual table/collection
spaces. In instances where an encryption key’s purged date has passed, we can
assume that the corresponding key has been automatically deleted (due to the
system automatically removing the file based to the expiration date). All remain-
ing encryption keys which have not been purged are downloaded from the remote
server and used to decrypt their associated business records (using the original
framework outlined by Scope et al. in [25]) during the restore process. Once
restored, our framework moves the records which are either not encrypted or for
which a decryption key is still available from the shadow tables into the active
tables.

4.4 NoSQL Process Considerations

Although the functionality in this framework remains consistent between a rela-
tional database and a NoSQL JSON database, there are some additional fac-
tors to consider. For purposes of this discussion, we use terminology and com-
mands from Postgres and MongoDB. When generating backups for a relational
database, using a pg dump command targeting the shadow tables guarantees that
neither the unencrypted data nor the encryption keys is placed into standard
backups (which would prohibit the keys from being purged). With MongoDB,
we leverage collections during backups to limit the backup to only the shadow
collections (using the command mongodump).

Any NoSQL JSON database which uses this framework must support trig-
gers. Only MongoDB Atlas (the cloud version) offers trigger functionality, while
the local (free) version of MongoDB does not currently support triggers.

With relational databases, during the restore, any tuple with a purged pri-
mary key is removed from the table. In NoSQL JSON databases this translates
into removing all values when a corresponding key has been purged. If a subset
of the values of a key have been purged, instead of NULLing out the keys, we
simply remove the value from the corresponding key-value.

Although in Postgres we leverage PGP SYM ENCRYPT (a default supported
module) to apply encryption, in MongoDB we utilize the ClientEncryption
functionality found within the Explicit Encryption framework. Our proposed
framework requires any database to support some level of encryption function-
ality which can be incorporated into a trigger.

5 Experiments

We implemented and evaluated a prototype of our framework with the active
tables in Fig. 2. This schema reflects only the tables needed for the policies that
we define and does not show all tables in the database schema. In practice,
we expect most policies to cover data in one or two tables/collections. Other
tables which do not directly apply to a policy will not impact policy-enforcing
performance. We demonstrate that our approach can be implemented without

Compliance and Data Lifecycle Management in Databases and Backups 289

Fig. 2. Tables used in our policy definitions and experimental evaluation

changing the original (user-facing) database schema and by extending backup
procedures using only natively available DBMS backup functionality.

5.1 Experimental Setup

Hardware: We used a server with dual Intel Xeon E5645, each with 6 physical
cores and Hyper Threading enabled, 64 GB of ram, and an SSD for storage. The
server was running CentOS 8 Stream x86 64 with Kernel Virtual Machine [17]
(KVM) as the hypervisor software. We used two Virtual Machines (VMs) to
carry out the experiments; since a majority of database interactions operate
in a client-server model, we deployed two independent VMs to represent client
and server. Both VMs were built with CentOS 8 Stream x86 64, Postgres 14.5,
MongoDB 4.1, 1 x vNIC and a 25 GB QEMU copy-on-write [6] (QCOW2) file
on an SSD. The client VM has 4 GB of RAM and 4 vCPUs and the server
VM was allocated 8 GB of RAM and 4 vCPUs. QCOW2 file was partitioned
into: 350 MB/boot, 2 GB swap space, with the remaining storage used for the /
partition, using standard partitioning and ext4 file system. Only these two VMs
were running on the hypervisor to minimize runtime fluctuations.

Policies and Keys: We created one retention and one purging policy; both
policies covered all columns in tables from Fig. 2. We then generated 30,000
business records which approximately equally fell under 1) neither policy, 2)
only the retention policy, 3) only the purging policy, or 4) both policies.

In Sect. 5.2, we evaluate framework performance overhead using a real-world
simulated query workload on a local database. We use synthetic data and the
additional generated encryption keys (total of 21 encryption keys) in our experi-
ments. In Sect. 5.3 we analyze the performance overhead of our framework during
the backup and restore of a relational and NoSQL database. Our experiments
confirmed the framework enforces retention and purging compliance.

5.2 Query Overhead Imposed by the Framework

Relational Databases: SELECTs do not incur any retention or purging overhead
in our framework. Because real-world data warehouse workloads are typically
90% SELECTs [14], in practice the compliance overhead would apply a relatively
small fraction of queries. To mirror data warehouse workloads reported by Hsu

290 N. Scope et al.

Fig. 3. Overhead of our framework during a simulated query workload

et al. [14], our query workload consisted of 9,000 (90%) SELECT queries, 700 (7%)
UPDATE queries, and 300 (3%) DELETE queries. Because our framework runs the
same process for UPDATEs and INSERTs, we use UPDATEs for performance evaluation.

In order to measure the runtime overhead, we ran an identical query workload
on two identical databases, one with our framework enabled and one without any
additions. Different types of queries were mixed in randomly in our workload;
we measured the elapsed time after each 1,000 query transactions. We manu-
ally verified that the the encryption keys and archival processes were correctly
applied to the data after running the simulated workload. The overall overhead
distribution can be seen in Fig. 3. On average, our proposed framework had a
2% overhead compared to the database without the compliance framework.

Our workload replicates the average expected query distribution observed by
Hsu et al. [14]. In practice, the overhead will depend on the policy sizes, the
frequency which queries trigger a policy action, and the types of queries run.
The evaluation of each of the such factors is beyond the scope of this paper.

The closest related research conducted by Ataullah et al. [9] uses triggers to
determine whether or not an UPDATE or DELETE would violate a retention policy.
In instances where a query would result in non-compliance, the query is blocked.
Thus, both our framework and the research by Ataullah et al. require a trigger
initiating and the code required to determine whether or not a query would
result in a compliance violation. We have a small overhead of archiving data
compared to their solution of blocking a query; this results in the trade-off of
not having to adjust queries at the cost of automatic archiving overheads.

NoSQL Databases: In this paper, we focus on evaluating local (non-cloud)
databases to minimize the number of factors outside of our control that may
affect performance. MongoDB only supports triggers in a cloud-based version;
thus we do not evaluate the query overhead performance in this paper. Scope et
al. [26] verified the functionality of using triggers and cryptographic erasure to
support purging in MongoDB Atlas (cloud-based version of MongoDB).

5.3 Backup and Restore Overhead Imposed by the Framework

In this experiment, we evaluate the cost of backing up and restoring the encryp-
tion keys for our framework. We discuss the overhead cost of backing up a single

Compliance and Data Lifecycle Management in Databases and Backups 291

Table 1. Backup and Restore File Sizes (in bytes)

File Relational NoSQL JSON

Full Database 64,011,916 149,151,434

Single Encryption Key File 2,810 3,437

Separate Encryption Key (21 Files) 72-73 165

key file (i.e., the policyOverview table) versus backing up each key indepen-
dently, in addition to executing a full backup/restore from a local file. We use
the encryption keys and data described in Sect. 5.2 (where 21 encryption keys
were generated). Table 1 summarizes the file sizes in this experiment.

This experiment evaluates the additional overhead cost of backing up the
encryption keys to an external server. To measure the upper-bound overhead of
our framework, we disabled key caching during the restore.

Relational Backup and Restore: We ran 10 backups with and without our
framework enabled to evaluate the overhead cost of backing up a single key
file (i.e., backing up the entire encryption key table as a single file) and all 21
encryption keys independently. The observed overheads of these backups are
shown in Figs. 4 and 5 (with the storage costs outlined in Table 1). For the single
key file backup, the performance overhead was 72%, and for backing up the
individual 21 keys the overhead was 100%.

We then evaluated the cost of restoring a relational database, introducing
the additional step of restoring of the encryption keys from an external server.
Figure 6 presents the overhead of restoring a single file, while Fig. 7 shows the
overhead of restoring all 21 keys. For a single key file, the average restore over-
head was approximately 105%. For the full restore of individual 21 keys, the
overhead was 92%.

NoSQL Backup and Restore: To verify our framework backup and restore
works with a NoSQL JSON logical layout, we performed the same evaluation

Fig. 4. Relational single-file backup
overhead

Fig. 5. Relational individual 21-file
backup overhead

292 N. Scope et al.

Fig. 6. Relational single-file restore over-
head

Fig. 7. Relational 21-file restore over-
head

(using the same data in NoSQL JSON collections) with a local MongoDB. Thus,
the shadow collections are backed up using standard MongoDB backup proce-
dures (mongodump) and our encryptionKeys collection is backed up to external
servers. As with the relational database, we evaluate the overhead for backing
up and restoring a single encryption key file as well as for separately backing up
and restoring all of the keys generated during our analysis of the overhead.

Figures 8 and 9 provide an overview of the overhead incurred by backing up
the encryption keys in MongoDB. The average overhead of a single key file was
105%, and for backing up all of the 21 keys separately was 115%.

Figures 10 and 11 summarize the overhead impact of the framework on the
restore process. Our framework adds a 107% overhead to restoring a single key
file from a remote server; when restoring each key independently, the overhead
is increased to 114%.

5.4 External Backup and Restore Performance Considerations

As the industry moves to the cloud environment, the backup and restore process
can be influenced by a number of factors, including the internet connection
speed, hypervisor load, or disk type. In our experiments, we used an external

Fig. 8. NoSQL 1-file backup overhead Fig. 9. NoSQL 21-file backup overhead

Compliance and Data Lifecycle Management in Databases and Backups 293

Fig. 10. NoSQL 1-file restore overhead Fig. 11. NoSQL 21-file restore overhead

server offsite from our university as described in Sect. 5.1. We also used a NAS
appliance that was located within the University, so the server and NAS are
roughly 60 miles apart. The network connection from the server to the Internet
is 1Gbps symmetrical and the NAS appliance also has a 1Gbps symmetrical
connection. However, due to the nature of the Internet the speed for which these
files were uploaded or downloaded can fluctuate based on Internet congestion.
Moreover, the number of files that are uploaded or downloaded can influence the
duration of the transfer as well as the load of the NAS device.

We use a simple server running KVM, but a cloud service would introduce
additional complexity. For example, AWS offers different tiers, some tiers share
the hypervisors resources while other tiers are dedicated. Larger organizations
with dedicated on-premise hardware running this framework may be able to
leverage their existing architecture resulting in a lower overhead percent. Fur-
thermore, a higher ratio of business records to encryption keys will result in a
smaller overhead during backup and restore.

Almost all modern file-transfer services require authentication (which is part
of AAA [7]), and our SFTP connection authentication incurred a time cost. In
other words, uploading the keys to a separate external server requires additional
time even if the volume of the data remains the same. Moreover, the authenti-
cation time for a connection could vary based on a multitude of factors ranging
from the load of the target server to the load and response time of the authen-
tication service. Thus, the performance of backup and restore processes can
fluctuate based on a multitude of factors outside of the control of our framework
and systems.

6 Discussion

6.1 Third Party Server Vendor Considerations

For cryptographic erasure to fully satisfy purging requirements, all pertinent
encryption keys must be rendered irreversibly irrecoverable. Many remote stor-
age options do not offer the ability to implement a Secure Deletion process on

294 N. Scope et al.

specific files. Amazon’s documentation [1,33] states, “When an object is deleted
from Amazon S3, removal of the mapping from the public name to the object
starts immediately [...] Once the mapping is removed, there is no external access
to the deleted object. That storage area is then made available only for write
operations and the data is overwritten by newly stored data [...] AWS Backup
randomizes its deletions within 8 h following recovery point expiration to main-
tain performance.”

GCP takes a similar approach [2,3], where the documentation states “[the]
Google backup cycle is designed to expire deleted data within data center back-
ups within six months of the deletion request. Deletion may occur sooner depend-
ing on the level of data replication and the timing of Google’s ongoing backup
cycles [...] After the data is marked for deletion, an internal recovery period of
up to 30 days may apply depending on the service or deletion request.”

Thus, the secure deletion guarantees provided would depend on the vendor.
If one were to use an “in-house” external server for encryption key storage, a
guaranteed secure deletion could be implemented. Organizations must balance
these considerations to decide between a vendor or an in-house service.

6.2 Managing the Size of the Archive Tables

Although this framework supports the restoration of all archived data, in prac-
tice, many organizations may choose to limit the amount of data in the archive
outside of backups. Because data in the archive is not expected to be used regu-
larly (otherwise it would not be in an archive), many organizations may not want
to use their high performance storage on data which is not frequently accessed.
Thus, this framework supports a parameter which limits the restore of data from
the archive backups during the restore process to a specified time range.

With larger databases, we would consider partitioning the archive tables to
enable more efficient deletions. For example, we could partition tables on a policy
date field and make a new partition every month. Before we drop the month that
has expired, we would export it to a non-proprietary format for easy retrieval
at a later date. When keeping records for 10+ years, it is simpler to recover
the data in a non-proprietary format since versions of software, hardware, and
operating systems change over the years. Many organizations use CSV, JSON,
XML, or even HDF5 file formats for long term software-independent storage.

6.3 Reclaiming Unused Storage Space

After marking the data for deletion, databases will flag the row for deletion with-
out actually purging the data from disk; in the case of an UPDATE, the database
operation will often mark the old row for deletion and insert a new (updated)
row. In that case, the row’s pre-update data will still exist in the underlying
database pages. This old data remains on disk until the RDBMS reuses the
tablespace space or a reorganization of the tablespace purges the old data from
database storage [18]. The challenge with management or purging such deleted
data are due to DBMSes not providing tools or mechanisms to monitor or modify
their internal storage.

Compliance and Data Lifecycle Management in Databases and Backups 295

6.4 Concerns with Forensically Recoverable Data

Deleted data that still remains on a storage medium but is no longer referenced
by a file system or a DBMS can still be reconstructed using a variety of forensic
methods (e.g., [10,24,34,35]). Although this paper addresses how to manage
encryption keys used for purging data across backups, we consider forensically
recoverable data to be beyond the scope of this paper. Lenard et al. [18] analyzed
how various types of databases and their defrag options are able to remove the
surviving deleted data from backups. We therefore recommend regularly running
a defrag on a database to expedite the process of clearing out deleted data from
database pages, particularly before these pages are placed in a backup.

There are data sanitization techniques that seek to destroy deleted data so
that it can no longer be forensically reconstructed. Although Lenard et al. [18,19]
investigated the data left forensically recoverable in different parts of database
system and Wagner et al. [36] developed the API to interact with low-level
database storage, there are currently no solutions available to sanitize database
storage. Most research and tools for data sanitization involve overwriting blocks
at the disk level (e.g., [11–13,23]) and cannot overwrite individual database
records. SQLite is the only DBMS that supports data sanitization with the
secure delete setting [28], which is disabled by default due to a negative impact
on performance. If enabled, secure delete explicitly overwrites deleted data
with zeros. Stahlberg et al. presented a similar method for MySQL [29].

Although the laws do not explicitly detail the technical steps of compre-
hensive data destruction, this level of data destruction is typically described by
individual organizations or government agencies (e.g., NSA [21], NIST [20], or
IRS [32]). Data sanitization is a problem that we consider to be outside the
scope for this paper; our encryption protects data covered by purging policies,
even from forensic recovery, but a more general data sanitization approach may
compliment the work in this paper.

7 Conclusion

Data management research must continue to address and refine the support for
database compliance functionality with respect to customer privacy. Although
some research has begun to address current shortcomings, an increasing pro-
liferation of new rules, requirements, and complexity will result in increased
compliance pressures. Current purging and retention compliance support is
limited to either coarse-grained (i.e., file-level) applications or does not con-
sider both retention and purging simultaneously when enforcing compliance
policies. Fine-grained compliance functionality must be researched and imple-
mented in database systems to automatically enforce compliance. This paper
outlines a comprehensive compliance support framework that implements reten-
tion and purging support throughout databases and their backups; our experi-
ments demonstrate that our framework can guarantee compliance requirements
with an acceptable performance overhead and with minimal additional infras-
tructure requirements.

296 N. Scope et al.

References

1. Amazon web services: Overview of security processes. https://d1.awsstatic.com/
whitepapers/aws-security-whitepaper.pdf

2. Data deletion on google cloud documentation. https://cloud.google.com/docs/
security

3. GCP object lifecycle management. https://cloud.google.com/storage/docs/
lifecycle

4. IBM cloud object storage - overview, https://www.ibm.com/cloud/object-storage
5. Regulation (eu) 2016/679 of the European parliament and of the council (2020).

Accessed June 2021. https://gdpr.eu/tag/gdpr/
6. Qcow (2022). https://en.wikipedia.org/wiki/Qcow
7. AAA (computer security) (2023). https://en.wikipedia.org/wiki/AAA (computer

security)
8. Amazon: Aws s3 (2020). Accessed Aug 2020. https://aws.amazon.com/s3/
9. Ataullah, A.A., Aboulnaga, A., Tompa, F.W.: Records retention in relational

database systems. In: Proceedings of the 17th ACM Conference on Information
and Knowledge Management, pp. 873–882 (2008)

10. Carrier, B.: The sleuth kit (2011). http://www.sleuthkit.org/sleuthkit/
11. Chow, J., Pfaff, B., Garfinkel, T., Rosenblum, M.: Shredding your garbage: Reduc-

ing data lifetime through secure deallocation. In: USENIX Security Symposium,
pp. 22–22 (2005)

12. Garfinkel, S.L., Shelat, A.: Remembrance of data passed: a study of disk sanitiza-
tion practices. IEEE Secur. Priv. 99(1), 17–27 (2003)

13. Gutmann, P.: Secure deletion of data from magnetic and solid-state memory. In:
Proceedings of the Sixth USENIX Security Symposium, vol. 14, pp. 77–89. San
Jose, CA (1996)

14. Hsu, W.W., Smith, A.J., Young, H.C.: Characteristics of production database
workloads and the TPC benchmarks. IBM Syst. J. 40(3), 781–802 (2001)

15. International Data Sanitization Consortium: Data sanitization terminology and
definitions (2017). Accessed Feb 2021. https://www.datasanitization.org/data-
sanitization-terminology/

16. Kamara, S., Lauter, K.: Cryptographic cloud storage. In: Sion, R., et al. (eds.) FC
2010. LNCS, vol. 6054, pp. 136–149. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-14992-4 13

17. KVM. https://www.linux-kvm.org/page/Main Page
18. Lenard, B., Rasin, A., Scope, N., Wagner, J.: What is lurking in your backups? In:

Jøsang, A., Futcher, L., Hagen, J. (eds.) SEC 2021. IAICT, vol. 625, pp. 401–415.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-78120-0 26

19. Lenard, B., Wagner, J., Rasin, A., Grier, J.: SysGen: system state corpus generator.
In: Proceedings of the 15th International Conference on Availability, Reliability and
Security, pp. 1–6 (2020)

20. National Institute of Standards and Technology: Guidelines for media sanitization
(2006)

21. National Security Agency Central Security Service: NSA/CSS storage sanitization
manual (2014)

22. Reardon, J., Basin, D., Capkun, S.: Sok: secure data deletion. In: 2013 IEEE Sym-
posium on Security And Privacy, pp. 301–315. IEEE (2013)

23. Reardon, J., Capkun, S., Basin, D.: Data node encrypted file system: efficient
secure deletion for flash memory. In: Proceedings of the 21st USENIX Conference
on Security symposium, pp. 17–17. USENIX Association (2012)

https://d1.awsstatic.com/whitepapers/aws-security-whitepaper.pdf
https://d1.awsstatic.com/whitepapers/aws-security-whitepaper.pdf
https://cloud.google.com/docs/security
https://cloud.google.com/docs/security
https://cloud.google.com/storage/docs/lifecycle
https://cloud.google.com/storage/docs/lifecycle
https://www.ibm.com/cloud/object-storage
https://gdpr.eu/tag/gdpr/
https://en.wikipedia.org/wiki/Qcow
https://en.wikipedia.org/wiki/AAA_(computer_security)
https://en.wikipedia.org/wiki/AAA_(computer_security)
https://aws.amazon.com/s3/
http://www.sleuthkit.org/sleuthkit/
https://www.datasanitization.org/data-sanitization-terminology/
https://www.datasanitization.org/data-sanitization-terminology/
https://doi.org/10.1007/978-3-642-14992-4_13
https://doi.org/10.1007/978-3-642-14992-4_13
https://www.linux-kvm.org/page/Main_Page
https://doi.org/10.1007/978-3-030-78120-0_26

Compliance and Data Lifecycle Management in Databases and Backups 297

24. Richard III, G.G., Roussev, V.: Scalpel: a frugal, high performance file carver. In:
DFRWS. Citeseer (2005)

25. Scope, N., Rasin, A., Lenard, B., Heart, K., Wagner, J.: Harmonizing privacy
regarding data retention and purging. In: Proceedings of the 34th International
Conference on Scientific and Statistical Database Management, pp. 1–12 (2022)

26. Scope, N., Rasin, A., Lenard, B., Wagner, J., Heart, K.: Purging compliance from
database backups by encryption. J. Data Intell. 3(1), 149–168 (2022)

27. Scope, N., Rasin, A., Wagner, J., Lenard, B., Heart, K.: Purging data from backups
by encryption. In: Strauss, C., Kotsis, G., Tjoa, A.M., Khalil, I. (eds.) DEXA 2021.
LNCS, vol. 12923, pp. 245–258. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-86472-9 23

28. SQLite: PRAGMA statements (2018). https://www.sqlite.org/pragma.html#
pragma secure delete

29. Stahlberg, P., Miklau, G., Levine, B.N.: Threats to privacy in the forensic analysis
of database systems. In: Proceedings of the 2007 ACM SIGMOD International
Conference on Management of Data, pp. 91–102. ACM, Citeseer (2007)

30. The Office of the National Coordinator for Health Information Technology: State
medical record laws: Minimum medical record retention periods for records held
by medical doctors and hospitals (2022)

31. United States Congress: 28 U.S. code §1732 (1948). https://www.law.cornell.edu/
uscode/text/28/1732

32. U.S. Internal Revenue Service: Media sanitization methods (2017). https://www.
irs.gov/privacy-disclosure/media-sanitization-methods

33. Vliet, J.V., Paganelli, F., Geurtsen, J.: (2012). https://docs.aws.amazon.com/aws-
backup/latest/devguide/deleting-backups.html

34. Wagner, J., Rasin, A., Grier, J.: Database forensic analysis through internal struc-
ture carving. Digit. Investig. 14, S106–S115 (2015)

35. Wagner, J., Rasin, A., Grier, J.: Database image content explorer: carving data
that does not officially exist. Digit. Investig. 18, S97–S107 (2016)

36. Wagner, J., Rasin, A., Heart, K., Malik, T., Grier, J.: Df-toolkit: interacting with
low-level database storage. Proc. VLDB Endowment 13(12) (2020)

https://doi.org/10.1007/978-3-030-86472-9_23
https://doi.org/10.1007/978-3-030-86472-9_23
https://www.sqlite.org/pragma.html#pragma_secure_delete
https://www.sqlite.org/pragma.html#pragma_secure_delete
https://www.law.cornell.edu/uscode/text/28/1732
https://www.law.cornell.edu/uscode/text/28/1732
https://www.irs.gov/privacy-disclosure/media-sanitization-methods
https://www.irs.gov/privacy-disclosure/media-sanitization-methods
https://docs.aws.amazon.com/aws-backup/latest/devguide/deleting-backups.html
https://docs.aws.amazon.com/aws-backup/latest/devguide/deleting-backups.html

A Real-Time Parallel Information
Processing Method for Signal Sorting

Xiaofang Liu, Chaoyang Wang(B), and Xing Fan

Wuhan Digital Engineering Institute, Wuhan, China

Abstract. With the increasing complexity of electronic countermea-
sures, the sorting and identification of radar signals have become an
important part of the information processing system. To meet the
requirements of shipborne information infrastructure, combined with the
research of maritime information systems, we propose a multi-computer
information processing architecture. Further, based on a timestamp-
based parallel processing scheduling strategy and task priority process-
ing method, we design a real-time parallel signal scheduling algorithm
for this architecture. When the single node of the shipboard information
processing platform is insufficient in computing resources, this algorithm
coordinates the idle resources from adjacent nodes, which can solve the
large-scale signal sorting synchronization problem. Experiment results
show the effectiveness of our method.

Keywords: electronic countermeasures · signal sorting · parallel
processing · task coordination · multi-computer architecture

1 Introduction

Radar pulse sorting refers to the process of separating various radar pulse trains
from randomly staggered pulse streams [6]. Nowadays, in the domain of informa-
tion processing system (IPS for short), the signal sorting ability has become one
of the fundamental signs of whether a reconnaissance system can adapt to the
modern electronic warfare signal environment. For the wide use of new system
radars, the radar, jamming signal styles, jamming, and anti-jamming measures
are becoming increasingly diverse.

Because of the complex electromagnetic environment, signal sorting faces the
following key problems: Firstly, the number of radiation sources and the intensity
of signals in the time, space and frequency range have increased sharply [3,5].
Secondly, the radar signal modulation is complex and the modulation parameter
conversion is flexible [8]. Thirdly, the signal recognition is required to be accu-
rate and real-time [1]. Combined with the research of maritime information sys-
tems, we propose a multi-computer information processing architecture (McIP
for short). Moreover, based on a timestamp-based parallel processing schedul-
ing strategy and task priority processing method, we design a real-time parallel
scheduling signal sorting algorithm (PS3 for short) for this architecture.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C. Strauss et al. (Eds.): DEXA 2023, LNCS 14146, pp. 298–303, 2023.
https://doi.org/10.1007/978-3-031-39847-6_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-39847-6_21&domain=pdf
https://doi.org/10.1007/978-3-031-39847-6_21

A Real-Time Parallel Information Processing Method for Signal Sorting 299

Fig. 1. (a) Architecture of McIPS; (b) Node State Transition of McIPS.

2 Multi-computer Information Processing Architecture

2.1 McIP Architecture Operation Mechanism

By utilizing the information infrastructure in the platform to support multipro-
cessors to complete information processing, the first problem is to determine
the architecture and working mechanism of the multi-computer system, that
is, to determine the functional allocation and relationship between modules on
different nodes, as well as the node interconnection mode and topology. The
architecture of the dynamically configurable and highly available multi-computer
information processing system designed in this paper is shown in Fig. 1(a).

On each node, the working state is divided into four types: primary man-
agement node state (PM), standby management node state (BM), computing
node state (C) and isolated node state (I). While the non-working state is the
fault node state (F). The working state of all the nodes is not fixed, and can be
dynamically migrated during operation. The node state transition in the above
high availability information processing system is shown in Fig. 1 (b). The transi-
tion of node state is a dynamic reconstruction process for the whole information
processing system.

2.2 McIP Architecture Design

Based on the above analysis, we design a dynamically configurable and highly
available multi-computer intelligence processing architecture that meets the
requirements of shipborne information infrastructure. Its architecture is shown
in Fig. 1(a) that mainly includes:

Management Nodes. They are used to divide the tasks to be processed into
multiple subtasks. Based on the processing data volume and priority of each
subtask, as well as the task stock, processing efficiency and subtask execution
time of each processing node, management nodes allocate each subtask to the
processing node that can meet the delay requirements for parallel processing.

Processing Nodes. They are used to detect the conflicts of the subtasks after
receiving the subtasks. The conflicting subtasks enter the blocking queue and

300 X. Liu et al.

wait for the preset time before entering the waiting queue, while the non-
conflicting subtasks enter the waiting queue for synchronous detection in the
order of priority. The subtasks that pass the synchronous detection are pro-
cessed, and the subtasks that fail are returned to the waiting queue.

Above management nodes and processing nodes can be reused, that is, a pro-
cessing node can be upgraded to a management node, which has both manage-
ment and scheduling functions while completing data processing. In the actual
project case, we use four servers, including one main management node (this
node has both management and processing node functions) and three processing
nodes. Moreover, McIP uses COTS (Commercial Off The Shelf [2]) components
to construct the highly available infrastructure.

3 Parallel Scheduling Signal Sorting Algorithm

3.1 PS3 Sorting and Scheduling Process

Some technical definitions and conventions to be followed for this algorithm
include: 1) The computing nodes of IPS in the server are connected through
a high-speed bus. 2) The computing nodes of the ship’s information processing
infrastructure can only run one task at the same time. After the task is submitted
to the computing node for operation, the demand of the task on the computing
node will not change within a computing cycle. 3) A task can only be started
when all its predecessor tasks have been completed and the required data has
arrived. Once the task starts, it cannot be interrupted.

Following the definitions and conventions, we propose a real-time parallel
scheduling signal sorting algorithm. This algorithm divides the task to be pro-
cessed into multiple subtasks. The processing node will detect the conflict of
the subtask, and the conflicting subtask will enter the blocking queue and wait
for the preset time before entering the waiting queue, while the non-conflicting
subtasks will enter the waiting queue for synchronous detection in the order of
priority. The subtasks that pass the synchronous detection are processed, and
the subtasks that fail are returned to the waiting queue. As shown in Fig. 2(a),
the system environment for this algorithm is composed of a management node
and several processing nodes, on which the task scheduler runs, the specific steps
of the PS3 algorithm are described as follows:

When the management node receives task A be processed, the first step is to
allocate the task. Firstly, the scheduler on the management node determines the
priority of task A. Secondly, divide task A into subtasks Ai, where A =

∑
Ai.

Finally, calculate the execution time TAim of the subtask Ai,

TAim = SAim × ω

nm

nm∑

qm=1

TAqm

SAqm

(1)

where TAim is the processing time of the subtask Ai on the processing node m,
SAim is the processing data amount of the subtask Ai on the processing node
m, nm is the number of subtasks successfully submitted on the processing node

A Real-Time Parallel Information Processing Method for Signal Sorting 301

Fig. 2. (a) Timestamp-based Real-time PS3; (b) Simulation Model.

m, TAqm is the execution time of the qm-th subtask on the processing node m,
SAqm is the processing data amount of the qm-th subtask on the processing node
m, and ω is the processing efficiency of the parallel processing of the processing
node.

The second step is to verify the task scheduling ability according to the
priority and processing time of the subtasks. Firstly, determine the priority of
the subtasks that have been successfully submitted to the processing node m
based on the priority of the task A. Set Uqm as the priority of subtask (Uqm =
1, 2, . . . , ρ), where Uqm = 1 and Uqm = ρ indicate the highest and the lowest
priority respectively. Then, calculate the processing waiting time Waim of the
subtask Ai,

WAim =

∑ρ
Uqm=1

(
γUqm σ2

m + γUqm

∑nm
qm=1 PqmTAqm

)

2
(
1 − ∑ρ−1

Uqm=1 γUqm

∑nm
qm=1 PqmTAqm

) (
1 − ∑ρ

Uqm=1 γUqm

∑nm
qm=1 PqmTAqm

)

(2)
where Waim is the processing waiting time of the subtask Ai on the processing
node m, γUqm

is the arrival interval of the subtask with priority Uqm on the
processing node m, δ is the variance of the average processing time of the subtask
on the processing node m, and Pqm is the execution probability corresponding to
the qm-th subtask on the processing node m (

∑nm

qm=1 Pqm
= 1). At the same time,

calculate the total processing delay FAim of the subtask Ai on the processing
node m,

FAim = Max (TAim + WAim) + TC (3)

where TC is the scheduling time of the task. In the actual system, according to
the statistical results, the scheduling time of the same scheduler is basically the
same when scheduling a large number of information tasks. Here we set TC as
a constant value. Finally, judge whether FAim ≤ TDAi − TBAi is true (TDAi
is the processing deadline of the subtask Ai, and TBAi is the arrival time of
the subtask Ai). If it is not, return to the previous step to redivide the task A.
Otherwise, assign the subtask Ai to the processing node m.

The last step is to send the subtask Ai to the processing node m to execute
the task. Firstly, the data conflict detection is performed on the subtask. The
new subtask Ai that arrives at the processing node m is denoted as Aim, while

302 X. Liu et al.

Am0 denotes the subtask that has entered the waiting queue. If the priority of
Am0 is lower than Aim and meets,

TRAim
⋂

WAm0 �= ∅ or WAim
⋂

TRAm0 �= ∅ or WAim
⋂

WAm0 �= ∅ (4)

Then the subtask Aim enters the blocking queue and assigns the value of Pam0

to Paim. If the priority of Am0 is higher than Aim and meets Eq. 4, then the
subtask Aim enters the blocking queue. Otherwise, the subtasks Aim will enter
the waiting queue and be sorted from the highest to the lowest priority. Where
TRAm0 is the estimated execution time of the subtask Am0 when there is no
conflict, WAm0 indicates the processing waiting time of the subtask Am0 on the
processing node m, Waim is the processing waiting time of the subtask Ai on
the processing node m, TRAim is the estimated execution time of the subtask
Aim when there is no conflict, PAm0 and PAim are priorities for Am0 and Aim
respectively. Then, perform synchronous detection on the subtasks Aim that is
wait for the queue head. If Aim meets,

TDAim − TBAim ≥ Max (TAim + WAim) + TC (5)

Then the subtask Aim enters the execution queue and completes data processing.
Otherwise, the subtask Aim returns to the waiting queue. Where Waim is the
processing waiting time of the subtask Ai on the processing node m, Taim
is the execution time of the subtask Ai on the processing node m, TC is the
scheduling time of the task, TDAim is the processing deadline of the subtask Ai
on the processing node m, TBAim is the arrival time of the subtask Ai on the
processing node m.

4 Simulation Experiments

In this section, we compare our algorithm with the classical scheduling algo-
rithms: the synchronous scheduling algorithm (Synchronous for short) [4] and
the adaptive highest priority first policy (AHPFP for short) algorithm [7]. For
simplified calculation, we assume that each node has the same processing capac-
ity in the test. Figure 2(b) shows the process model for processing the task queue
in the node model.

Based on this simulation model, we conducted sufficient experiments. As
shown in Fig. 3(a), when the system is at the normal load, i.e., task arrival ratio
is no more than 24 trans/sec, our algorithm and AHPFP algorithm perform
better. With the increase of system load, the miss ratio of AHPFP algorithm
begins to be higher than our algorithm. The performance degradation of AHPFP
algorithm may be due to the high system load resulting in the high ratio of task
conflicts and restarts. While our algorithm abandons the tasks that have a low
complication possibility in advance, which can avoid the waste of resources.

Figure 3(b) shows that these three algorithms all face performance degrada-
tion when the system exits a service data skew problem. This is because the

A Real-Time Parallel Information Processing Method for Signal Sorting 303

Fig. 3. (a) Processing Task "Arrival ratio-Miss ratio" (no data skew); (b) Processing
Task “Arrival ratio-Miss ratio” (20% data skew).

bottleneck of data skew restricts the improvement of the overall system. How-
ever, our algorithm adopts the coordination method of timestamp, which can
not only ensure the correct control of the concurrent execution of subtasks, but
also avoid increasing the communication cost, so its performance is still better
than the other two algorithms.

5 Conclusion

Based on a timestamp-based parallel processing scheduling strategy, and intro-
duces the processing method of task priority, we proposes a method for informa-
tion processing using a multi-computer system, which well solves the synchro-
nization and scalability problems of signal processing. In the future, machine
learning methods such as reinforcement learning can be used to judge the
expected execution results more accurately, and thus improve our method.

References

1. Ali, A., Yangyu, F.: Unsupervised feature learning and automatic modulation clas-
sification using deep learning model. Phys. Commun. 25, 75–84 (2017)

2. Brownsword, L., Carney, D., Oberndorf, T.: The opportunities and complexities of
applying commercial-off-the-shelf components. Crosstalk 11(4), 4–6 (1998)

3. Kishore, T.R., Rao, K.D.: Automatic intrapulse modulation classification of
advanced LPI radar waveforms. IEEE Trans. Aerosp. Electron. Syst. 53(2), 901–914
(2017)

4. Li, K., Ganesan, V., Sivakumar, A.: Synchronized scheduling of assembly and multi-
destination air-transportation in a consumer electronics supply chain. Int. J. Prod.
Res. 43(13), 2671–2685 (2005)

5. Li, X.: Research on radar emitter sorting and recognition technology based on
machine learning (in chinese) (2020)

6. Shakor, M.: Scheduling and synchronization algorithms in operating system: a sur-
vey. J. Stud. Sci. Eng. 1, 1–16 (2021)

7. Sonia, T., Dandamudi, S.: An adaptive scheduling policy for real-time parallel
database systems. In: International Conference on Massively Parallel Computing
Systems, pp. 8–19 (1998)

8. Wang, X.: Electronic radar signal recognition based on wavelet transform and con-
volution neural network. Alex. Eng. J. 61(5), 3559–3569 (2022)

Learning Optimal Tree-Based Index
Placement for Autonomous Database

Xiaoyue Feng, Tianzhe Jiao, Chaopeng Guo, and Song Jie(B)

Northeastern University, Shenyang, China
{neufengxiaoyue,jiaotianzhe}@stumail.neu.edu.cn,

guochaopeng@swc.neu.edu.cn, songjie@mail.neu.edu.cn

Abstract. The distributed tree-based index has been widely adopted to
process queries on large-scale data. For the same index, the placement of
the index determines the query performance. Current research on index
placement is based on predefined rules, such as user-supplied functions,
load balance, and data location. However, they cannot retain high per-
formance since they fail to adapt their policies to the user’s query habit.
In this paper, we propose a method to learn the optimal index place-
ment (LiP) for different workloads to solve the problem. Our method
improves the query efficiency by evaluating the locality but quantifying
the locality is challenging. Experiments prove that our approach reduces
the average query time by 6% compared to previous methods.

Keywords: Distributed index · Index placement · DRL · Locality ·
Autonomous database

1 Introduction

Nowadays, with the wide application of distributed database systems, the dis-
tributed tree-based index has been widely adopted to process queries for large-
scale data due to its good scalability, stable performance, and strong cache local-
ity [1,2]. For the same index, the placement of the index determines the query
performance. For instance, if the block of index and query data are on the same
server, it is local access; otherwise, it is remote access that needs more access
time. Index placement today is a hot research topic in distributed index man-
agement.

Current researches on the distributed tree-based index are to distribute the
tree nodes to different servers [3,4]. Most of them place the nodes according
to a predefined rule, such as user-supplied function [5], load balance [6,7], and
data location [8–10]. The first means that the customized function places the
tree nodes on servers. The second distributes tree nodes to data servers evenly.
The third ensures index and index attributes are on the same server. However,
they cannot retain high performance when the workload changes since they fail
to adapt their policies to the user’s query habit. The essence is that it cannot
consider the locality comprehensively. Locality refers to the distance between
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C. Strauss et al. (Eds.): DEXA 2023, LNCS 14146, pp. 304–309, 2023.
https://doi.org/10.1007/978-3-031-39847-6_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-39847-6_22&domain=pdf
https://doi.org/10.1007/978-3-031-39847-6_22

Learning Optimal Tree-Based Index Placement for Autonomous Database 305

the position of an index and corresponding data. Finding the optimal locality is
challenging since it relies on various queries-related factors, such as the target
attributes of queries, join tables of queries, condition attributes of queries, query
frequency, and so on.

To solve the problem, we propose a method to learn the optimal index place-
ment (LiP). We leverage deep reinforcement learning (DRL) [11] to address the
complexity and dynamics of queries. Designing the reward function that fits the
objective of the DRL problem is a challenge. In our method, we adopt the query
cost to reflect the effect of index placement. We use the What-if tool [12] to esti-
mate the query processing cost, which was used to design the reward function.
Our method has three contributions:

(1) We define the distributed tree-based index placement problem and solve it
based on DRL technology that improves query efficiency.

(2) We propose a machine learning-based index tuning method to improve the
query performance for autonomous databases.

(3) In this paper, we discuss the tree-based index placement and use the machine
learning-based method to solve the problem. It is a reference function for
future research on other index structures with machine learning methods.

2 Methodology

In this section, we will introduce our LiP method, which is a two-step method,
including the learning step and the placing step. In the learning step, We adopt
the DRL to select a response server to process every query request. In the placing
step, we construct the tree nodes in corresponding servers based on the result
of the learning step. The learning step is a core part of our LiP method, and we
will explain it in detail.

2.1 DRL Framework Overview

This section discusses the DRL framework in the learning step of LiP. As shown
in Fig. 1, our framework consists of several modules, including input, agent,
environment, and cost estimation. In our case, the query, attributes in a query,
data location, and server layout are inputs to the DRL framework. The data
location is that the data is placed on which servers. The server layout refers to
the number and location of servers.

The DRL agent takes the responsibility of selecting the response server for
processing every query request. It learns to find the optimal response server for
each query by interacting with the environment. Before training the DRL model,
the environment interacts with the cost estimation module and obtains the query
processing cost to compute the reward. This module receives the response server
for each query as input. Then, it estimates the query cost of each query using
the What-if optimizer tool, and we design the reward function according to the
result. Then, the environment calculates the reward by the reward function as
the average query cost of the workload in the training process. The output of
our DRL framework is the optimal response server for each query.

306 X. Feng et al.

Fig. 1. The DRL framework of LiP

2.2 DRL Components

Environment. The components of the environment include states, actions, and
a reward function.

• State Representation. Queries and their response servers represent the state.
We represent the state by a matrix of size r×m, where r is the number of
queries and m is the number of data servers. In the state matrix, an entry is
set to 1 if the optimal response server for query qi(i ∈ [1, r]) is sj(j ∈ [1,m]);
otherwise, it is set to 0. For instance, we have two queries q1, q2 and two
servers s1, s2, where s1 is the response server of q1 and s2 is the response
server of q2, then the state matrix will be the following:

StateMatrix =
(

1 0
0 1

)
(1)

• Set of actions. An action changes a response server for a query. The action is
represented by the query number and the server number. For example, if we
want to change the response server of q1 to s2, the action is represented by
[1, 2].

• Reward function. We design the reward function with two objectives: average
access cost and load balance. The reward function is described as follows:
first, we compute the average access cost of the workload using Eq. (2), where
Q is the set of queries, q is a query, n denotes the number of queries, AC is
the access cost of query q, and AAC is the average access cost of the workload
Q; second, the reward value is computed by Eq. (3), where r is the reward
value, var is the variance of the set of numbers which represents the number
of queries assigned to every data server.

AAC (Q,n) =

∑
q∈Q AC(q)

n
(2)

Learning Optimal Tree-Based Index Placement for Autonomous Database 307

r = 100 × tanh (10 × AAC(Q,n)) × tanh
(

10
avar(q,s)

)
(3)

Agent. The agent is responsible for learning the optimal response server for
each query in the query workload by maximizing the reward function. It follows
the off-policy deep Q-learning algorithm [13,14] to predict the next action a and
decides how to adjust the response data servers for each query according to the
reward. It chooses the action with the highest reward value in its current state
at 80% probability and chooses a random action at 20% probability. The agent
acts in a predefined number of episodes. An episode starts with an initial state
S0 where each query corresponds to a random data server, and the agent selects
an action at each time step. In our work, an episode ends when the provided
condition is achieved.

3 Experiment

3.1 Setup

We use the database schema and query workload from the standard TPC-H
benchmark [15]. The training workload consists of 500 queries. Also, we gen-
erated 100 queries to test the trained agent and 5000 queries to validate LiP.
Our experiments set four data servers and a master server. The database sys-
tem is PostgreSQL on each data server. LiP and PostgreSQL run on Ubuntu
Linux 18.04 LTS with 128 GB of DDR4 main memory, and two Intel Xeon Silver
4114 10-core CPUs. We compare the average query time of LiP with Baseline
and CG-index methods in our experiment. The Baseline is to distribute the tree
nodes to data servers randomly and evenly. CG-index ensures index and index
attributes are on the same server.

3.2 Results

Our experiment evaluates the performance of the recommended nodes placement
by LiP in comparison with baseline and CG-index. Our LiP method reduces the
average query time by 6% with a learning rate of 0.0005 compared to the baseline.
We calculate the average growth percentage across all the number of queries at
3G data volumes as the improvement percentage. In our experiment, we changed
the learning rate in DRL for a more detailed comparison. We set the learning
rate at 0.0001, 0.0005, and 0.001, respectively. We compare the average query
time for different data volumes and queries. As Fig. 2 shows, LiP with different
learning rates performs better than the baseline and CG-index for different data
volumes. And the performance is the best when the learning rate is 0.0005. For
the baseline method, the average query time increases slightly decreases with the
number of queries, because the load on the data server increases as the number
of queries increases. For the small number of queries, all approaches show similar
behavior. As the number of queries increases, LiP shows a significant improve-
ment over baseline and CG-index because the influence of locality becomes more
pronounced as the number of queries increases.

308 X. Feng et al.

Fig. 2. Average query time of the workload for three methods.

4 Conclusion

In this paper, we introduce a novel method to learn distributed index place-
ment through DRL, which improves query performance. The main idea is that
the DRL agent learns its decisions based on the experiences by monitoring the
rewards via trying different actions. We show that our approach can select the
well-performed distributed index placement via experiments. In the future, we
plan to extend the LiP method to solve other index-tuning issues.

References

1. Mol, R.D., Barranco, C.D., Tré, G.D.: Indexing possibilistic numerical data using
interval B+-trees. Fuzzy Sets Syst. 413, 138–154 (2020)

2. Zhang, W., Yan, Z., Lin, Y., et al.: A high throughput B+tree for SIMD architec-
tures. IEEE Trans. Parallel and Distrib. Syst. 31(3), 707–720 (2019)

3. Ziegler, T., Vani, S.T., Binnig, C., et al.: Designing distributed tree-based index
structures for fast RDMA-capable networks. In: Proceedings of the 2019 Interna-
tional Conference on Management of Data, pp. 741–758 (2019)

Learning Optimal Tree-Based Index Placement for Autonomous Database 309

4. Huang, B., Yuxing, P.: An efficient distributed B-tree index method in cloud com-
puting. Open Cybern. Syst. J. 8(1), 302–308 (2014)

5. Aguilera, M.K., Golab, W., Shah, M.A.: A practical scalable distributed B-tree.
Proc. VLDB Endowment 1(1), 598–609 (2008)

6. Sowell, B., Golab, W., Shah, M.A.: Minuet: a scalable distributed multiversion
B-tree. Proc. VLDB Endowment. 5(9), 884–895 (2012)

7. Bochmann, G.V., Asaduzzaman, S.: Distributed B-tree with weak consistency. In:
Gramoli, V., Guerraoui, R. (eds.) NETYS 2013. LNCS, vol. 7853, pp. 159–174.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40148-0 12

8. Wu, S., et al.: Efficient B-tree based indexing for cloud data processing. Proc.
VLDB Endowment 3(1–2), 1207–1218 (2010)

9. Zhou, W., et al.: SNB-index: a SkipNet and B plus tree based auxiliary Cloud
index. Cluster Comput. 17, 453–462 (2014)

10. Singh, H., Bawa, S., et al.: A MapReduce-based scalable discovery and indexing of
structured big data. Future Gener. Comput. Syst. 73, 32–43 (2017)

11. Du, W., Ding, S.: A survey on multi-agent deep reinforcement learning: from the
perspective of challenges and applications. Artif. Intell. Rev. 54, 1–24 (2020)

12. Chaudhuri, S., Narasayya, V.: AutoAdmin “what-if” index analysis utility. ACM
SIGMOD Rec. 27(2), 367–378 (1998)

13. Lin, J., Li, Y.Y., Song, H.B.: Semiconductor final testing scheduling using Q-
learning based hyper-heuristic. Expert Syst. Appl. 187, 115978 (2022)

14. Ahmed, F., Cho, H.S.: A time-slotted data gathering medium access control pro-
tocol using Q-learning for underwater acoustic sensor networks. IEEE Access. 9,
48742–48752 (2021)

15. TPC: TPC-H benchmark. http://www.tpc.org/tpch/

https://doi.org/10.1007/978-3-642-40148-0_12
http://www.tpc.org/tpch/

Social Links Enhanced Microblog
Sentiment Analysis: Integrating Link
Prediction and Sentiment Connection

Weights

Xiaomei Zou1, Taihao Li1(B), and Jing Yang2

1 Zhejiang Lab, Hangzhou, Zhejiang, China
{zouxiaomei,lith}@zhejianglab.edu.cn

2 School of Computer Science and Technology, Harbin Engineering University,
Harbin, Heilongjiang, China
yangjing@hrbeu.edu.cn

Abstract. The emerging microblogging service provides a new chan-
nel for people to share opinions and sentiment. As a result, microblog
sentiment analysis has become a cutting-edge and popular research
field, which has many important applications. Existing methods mostly
extract sophisticated features from microblog texts without consider-
ing that microblogs are networked data, which suffer from poor perfor-
mance. To address this issue, we propose a new model that assumes
microblogs are interconnected and that connected microblogs are more
likely to share the same sentiment. We leverage two types of informa-
tion to model the connections between microblogs: user information and
friend information. Our assumption is supported by two sociological
theories: sentiment consistency and emotional contagion. The connec-
tions between microblogs based on user and friend information are often
sparse and noisy, which can limit the effectiveness of sentiment analy-
sis. To mitigate this issue, we use link prediction to identify potential
connections between microblogs and introduce a sentiment connection
weights matrix to quantify the degree of sentiment difference between
connected microblogs. We then integrate potential social links and sen-
timent connection weights into our content-based sentiment model using
a Laplacian regularization term. To demonstrate the effectiveness, suffi-
cient experiments are conducted on two real datasets to show that explor-
ing potential links and introducing sentiment connection weights can
improve the performance of microblog sentiment analysis significantly.

Keywords: Microblog sentiment analysis · Social information · Link
prediction

1 Introduction

Microblogging platforms such as Sina Weibo and Twitter are increasingly popu-
lar as user-centered websites in the era of Web 2.0. In contrast to traditional blogs
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C. Strauss et al. (Eds.): DEXA 2023, LNCS 14146, pp. 310–325, 2023.
https://doi.org/10.1007/978-3-031-39847-6_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-39847-6_23&domain=pdf
https://doi.org/10.1007/978-3-031-39847-6_23

Social Links Enhanced Microblog Sentiment Analysis 311

or news platforms where users can only browse pre-edited content, microblog-
ging platforms encourage users to actively participate in content creation. This
has led to the posting of numerous texts related to users’ personal lives in a
fast and convenient way. Additionally, these platforms offer various interaction
mechanisms, including following, commenting, liking, and reposting, which fur-
ther enhances their popularity. Take the Chinese leading online social network
Sina Weibo as an example, Sina Weibo had an average of 252 million daily
active users in June 2022. As a result, microblogging websites have become a
huge resource bank. Microblog sentiment analysis has become a hotspot from
academia to industry in recent years as its great significance and wide range
of applications in recommendation systems [1], stock prediction [2], customer
relation management [3], crisis management [4] and so on.

Existing methods of microblog sentiment analysis can be divided into lexicon-
based methods and machine learning methods. In lexicon-based methods, sen-
timent lexicons such as SentiWordNet or SenticNet [5,6] are utilized to assign
sentiment scores to words. In machine learning methods, microblogs are rep-
resented as feature vectors, then machine learning methods such as Recurrent
Neural Networks are applied to classify microblogs. However, these two meth-
ods usually have low effectiveness as they exploit microblog content information
only. Microblogs are very noisy and short, they only contain one or two sentences.
Besides, people have various expression styles, abbreviations and repeated words
such as ‘lol’ and ‘cooooool’ usually occur in microblog content. These inherent
characteristics of microblogs hinder the extraction of effective features of content
for sentiment analysis, resulting in suboptimal performance.

Microblogs lie in the environment of online social networks. In this environ-
ment, users are influenced by others (Social Influence [7]), and they tend to follow
others who share similar interests or opinions (Homophily [8]). This phenomenon
means that microblogs posted by connected users tend to share similar sentiment
labels, and it is called emotional contagion [9]. The sentiment of a person about a
certain topic is usually consistent within a period. Reflecting this information on
users’ behavior, it means that microblogs posted by the same user also have con-
sistency in their sentiment labels. This phenomenon is called sentiment consis-
tency [10]. Motivated by these observations, some researchers study how to model
and incorporate these latent connections between microblogs with content infor-
mation for microblog sentiment analysis [11,15,16]. However, the social connec-
tions between microblogs in these methods are usually very sparse. Besides, they
fail to extract more precise social contexts. Therefore, they have limited improve-
ment in sentiment analysis results. To alleviate these problems, a novel approach
is proposed to expand and refine connections between microblogs in this paper.
Specifically, an original microblog graph is constructed on our two theoretical
bases mentioned above: sentiment consistency and emotional contagion. Then
the connections of the original microblog graph are extended by link prediction
methods which can predict the probability of a new link between unconnected
nodes. To better model the sentiment coherence in the microblog graph, this
paper also introduces the sentiment connection weights of microblogs. These

312 X. Zou et al.

approaches guarantee that we can get more accurate representations of social
contexts and extract the potential sentiment connections between microblogs
fully. At last, social contexts and microblog content information are integrated
into a unified sentiment analysis framework by a Laplacian regularization term.
The main contributions of this paper include:

1. A microblog graph is constructed based on the theory of sentiment consis-
tency and emotional contagion. Both statistical methods and mathematical
methods are used to verify these two theories in online social networks.

2. Link prediction methods are applied to alleviate the sparse problem of
microblog connections and sentiment connection weights between microblogs
are proposed to remove noises from social contexts.

3. Experiments are conducted on two public datasets and show that exploit-
ing link prediction and sentiment weights can lead to statistically significant
improvements in microblog sentiment analysis.

2 Related Work

Lexicon-based methods and machine learning methods are two commonly used
approaches in microblog sentiment analysis. Lexicon-based methods used lexi-
cons as knowledge to classify texts. Usually, they use a sentiment lexicon for
polarity prediction through matching words in the text and their associated
sentiment. Many scientists are working to build better lexicons to improve sen-
timent analysis performance. [17] proposed an unsupervised microblog senti-
ment analysis method by constructing a lexicon that was represented as a co-
occurrence graph. [18] exploited word emoticons relationships, word sentiment
relationships, and existing sentiment lexicons to get the new lexicon for Chinese
microblog sentiment analysis. Besides, an enhanced mutual information based
data-driven method was used to catch new words in microblogs. [19] built a novel
cognitive-inspired approach that explored the wrongly predicted texts for new
sentiment words detection and polarity score assignment. There are also many
machine learning methods. Text context information was exploited in [20]. They
used microblogs in the same conversation as external information. A hierarchi-
cal structure of the Long Short-Term Memory network and two attention layers
were used to model word-level vectors and microblog-level vectors. Some meth-
ods combined both. [21] represented the lexicon SenticNet into continuously
distributed vectors and used them as features for microblog sentiment analysis.
In [22], the authors proposed a convolutional neural network framework with
lexicon embeddings to analyze sentiment. However, all these methods focus on
how to extract delicate text content features from microblogs and ignore the
widely existing social contexts in microblogging platforms.

Social contexts are explored in many social network analysis tasks such as rec-
ommendation systems [12], information retrieval [13], and fake news detection
[14]. Recently, some researchers study the correlation between social contexts
and microblog sentiment and how to integrate social contexts with content-
based sentiment analysis methods. [15] exploited user-user relationships and

Social Links Enhanced Microblog Sentiment Analysis 313

user-microblog relationships to model the internal sentiment connection between
microblogs. [16] explored social contexts at the label prediction stage to regu-
larize and refine sentiment labels. [23] built a repost network between users
and microblogs, they studied the influence of sentiment diffusion on the pre-
dicted microblog sentiment labels. [24] explored user information and proposed
a personalized approach, which also considered friend information to make the
personalized model weights of connected users as close as possible. [25] build
an approval network between users based on homophily and constructuralism of
social networks, then they took both the text content and network information
into account for aspect-level sentiment analysis by an unsupervised probabilis-
tic model. [26] argued that both positive and negative user interactions could
contain useful signals for sentiment analysis and proposed an unsupervised app-
roach to incorporate textual information and network information. However,
these methods only consider direct relations between microblogs or users, which
are usually very sparse and noisy. They fail to extract internal sentiment con-
nections between microblogs fully and precisely.

3 Methodology

In this section, we propose our method of extending and refining social connec-
tions between microblogs on the basis of sentiment consistency and emotional
contagion. In particular, we construct a microblog graph by these two theories,
then link prediction methods are implemented on this graph to acquire potential
connections between microblogs and alleviate the sparse problem of connections.
Besides, we introduce a sentiment connection weights matrix to represent the
sentiment difference degree between connected microblogs. A bigger element
value indicates a lower sentiment difference and vice versa. The new microblog
network and sentiment connection weights matrix are integrated into microblog
sentiment analysis by Laplacian regularization.

3.1 Problem Statement

Since the sentiment labels of microblog texts in datasets are usually discrete, the
sentiment analysis problem can be formalized as a classification problem. Each
microblog and its corresponding label form a tuple (x,y). x ∈ R1×d is a row
vector and denotes the microblog content feature vector, where d represents the
dimension of the feature space. Vector y ∈ R1×c represents the sentiment label
vector, where c denotes the number of sentiment classes. As the classification
problem in this paper is polarity, c = 2. Then the entire training set can be
denoted by (X,Y), where the feature vectors of all microblogs constitute the
matrix X ∈ Rn×d, n is the number of microblogs. Similarly, Y ∈ Rn×c represents
the sentiment label matrix. The i-th row xi of the matrix X represents the feature
vector of the i-th microblog, and yi is its corresponding label vector.

314 X. Zou et al.

3.2 Modeling Text Information

In this subsection, we introduce how to model text information of microblogs. In
a sentiment prediction problem, pre-processing is the first step. We use the uni-
gram model with term presence and do not remove punctuation and stop words
as they carry sentiment information. Different from formal texts, emoticons are
a popular way for people to convey their nuanced meaning in online social net-
works. So emoticons are extracted as features by regular expressions. Usually,
the problem of microblog sentiment analysis is represented as a loss minimiza-
tion problem. A loss function f(W;xi,yi) is defined to quantify the difference
between the prediction label ŷi = hW(xi) of a sentiment analysis model and its
true sentiment label yi, where W ∈ Rd×c represents the feature weight parame-
ters, function hW(xi) represents the sentiment analysis model. The loss function
is also called the empirical risk. The optimal set of parameters W∗ is desired to
find such that:

W∗ = argmin
W

n∑

i=1

f(W;xi,yi)

= argmin
W

f(W;X,Y)
(1)

The loss function can be squared losses, cross entropy, or other losses. In this
paper, we choose the squared loss as an example, where f(W;X,Y) = ||hW(X)−
Y||2F . Besides, the classification model hW(X) can be other classifiers such as
convolutional neural networks or recurrent neural networks.

It usually leads to an overfitting problem by only minimizing the empirical
risk. Besides, not all features are helpful for microblog sentiment analysis, so it
is vital to select features that are beneficial to the task. To handle these two
problems, Lasso is introduced which has been successfully applied in many text
mining fields [27,28]. If two models produce similar empirical risks, the “simpler”
model should be selected. This characteristic can make for a more robust model
and improve model performance. As a sparse model, Lasso can automatically
select sentiment features and filter neutral ones. We also utilize the Lasso model
in this paper, it can be represented by:

W∗ = argmin
W

f(W;X,Y) + β||W||1, (2)

where β is a positive hyper-parameter which controls the contribution of the L1

norm. To analyze the sentiment of an unseen microblog, we can compute:

argmaxhW(X) = arg max
i∈P,N

xwi (3)

where wi represents the i-th column of W. As microblog sentiment analysis is
regarded as a binary classification problem, the ground truth label of a positive
microblog can be represented by y = [+1,−1]. For a negative microblog, its
corresponding label is y = [−1,+1]. Using Eq. 3 to classify new microblogs, we
provide a detailed description in this case:

Social Links Enhanced Microblog Sentiment Analysis 315

y =

⎧
⎪⎨

⎪⎩

+ 1 xw1 > xw2

− 1 xw1 < xw2

+ 1 or − 1 randomly xw1 = xw2

(4)

3.3 Modeling Social Relations

Social relations between microblogs are explored in this section. In the environ-
ment of social networks, the sentiment of microblogs is highly related to their
corresponding users. Besides, users are influenced by others, the influence brings
changes in users’ attitudes and sentiment. So in this paper, we take these two
pieces of information into consideration: user information and friend information.
To use user information for microblog sentiment analysis, we assume that the
sentiment of a certain user holds similar in a period. As a result, the sentiment
of their published texts is also similar in this period. This is supported by the
sentiment consistency theory [10]. We construct a microblog-microblog matrix
Asc ∈ Rn×n to extract user information from social networks. The Ascij entry of
the matrix represents whether there is a connection between the i-th microblog
and the j-th microblog. In other words, it represents whether two microblogs are
published by the same user. Given a set of users u = {u1, u2, . . . , um}, we can
get a user-microblog matrix U ∈ Rm×n in which rows represent different users,
columns represent different microblogs, and the entry Uij = 1 if and only if user
i posted microblog j. m denotes the number of users of the dataset. Then we
use U to compute Asc by Asc = UT × U.

Similarly, to integrate friend information with microblog sentiment analysis,
we assume that users tend to hold the same opinion as their friends through
the social influence process. This assumption can be supported by the theory
of emotional contagion [9]. This phenomenon is called “birds of a feather flock
together”. A microblog-microblog matrix Aec ∈ Rn×n is defined to extract this
information. Given the friendships between users represented by F ∈ Rm×m,
Aec can be constructed by Aec = UT × F × U. The entry Fij = 1 represents
user i and user j are friends. Therefore, if an element of matrix Aecij �= 0, the
microblog i and microblog j are posted by friends.

After modeling user information and friend information, we integrate them
by Adr = Asc + Aec and get a microblog graph G = (V, E) whose adjacency
matrix is Adr, where V is the node set, each node in V represents a microblog.
E represents the edge set. However, the adjacency matrix of this graph is usu-
ally very sparse. In addition, the sentiment correlation between microblogs is not
considered. To alleviate the sparse problem, we utilize link prediction to discover
the internal connections between microblogs. The structural or node properties
are usually exploited to compute the similarity score between a node pair. To
show the effectiveness of link prediction for microblog sentiment analysis, we
use three popular link prediction methods: Adamic Adar algorithm (AA), Pref-
erential Attachment algorithm (PA), Resource Allocation algorithm (RA). The
three methods predict the potential relations between nodes by their structural
information, which is very efficient.

316 X. Zou et al.

Adamic Adar algorithm [29] is a method for measuring intimacy based on
common neighbors between nodes. It considers the influence of each neighbor by
its corresponding degree. The influence of a node with a lower degree should be
greater than that of a node with a higher degree. Therefore, the weight values
of different nodes can be represented by:

Alpij =
∑

u∈N(i)∩N(j)

1
log |N(u)| , (5)

where |N(u)| represents the number of the neighbour set of node u. A higher
value of Alpij implies larger intimacy between two microblogs. When Alpij = 0,
it means that nodes x and y are not close.

The Preferential Attachment algorithm has been presented by [30] on a scale-
free network. Preferential Attachment is a metric used to calculate the tightness
of nodes based on their shared neighbors. This method assumes that the possi-
bility of a new edge is proportional to the degrees of its two corresponding nodes.
So the problem can be formulated as:

Alpij = |N(i)| ∗ |N(j)|, (6)

where |N(u)| represents the size of the neighbour set of node u. The same as in
the Adamic Adar algorithm, a higher Alpij value indicates that two nodes are
closer.

The Resource Allocation algorithm is proposed by [31]. This method regards
the common neighbors between two nodes as the medium of transmission. In
the beginning, each node has a unit of resources. Given a node pair a and b that
are unconnected, there are some resources needing to transmit from a to b and
the resource of each node is divided equally to its neighbors. Then the whole
resources of node b received from node a can be calculated by:

Alpij =
∑

u∈N(i)∩N(j)

1
|N(u)| , (7)

After link prediction, the final relationship matrix of microblogs can be cal-
culated by:

A = a1 ∗ Asc + a2 ∗ Aec + a2 ∗ Alp. (8)

where a1, a2, and a3 are the weights which controls the computation A. In this
paper, al the weights are set to 1.

Sentiment correlation between microblogs is not considered in the above
matrix A. Relations in matrix A may have some noises. To represent the senti-
ment relationship between microblogs and remove noises, a weight matrix C is
established in this paper. The element of matrix C can be computed by:

Cij =

⎧
⎨

⎩
1 − |yi

0 − yj
0|

2
, if i and j are connected,

0, if i and j are unconnected.

(9)

Social Links Enhanced Microblog Sentiment Analysis 317

where yi
0 represents the sentiment value of the i-th mciroblog. As what we are

concerned about is a polarity classification problem in this paper, if the sentiment
label of a microblog i is positive, yi = [1,−1] and vice versa. Therefore, the range
of |yi

0 − yj
0| is between [0, 2], and the value of Cij lies in [0, 1]. A high value of

Cij indicates a small difference between the sentiment of two microblogs. We
integrate the sentiment correlation matrix C and the enhanced microblog matrix
A by M = C◦A, then get the final microblog-microblog graph whose adjacency
matrix is M, where ◦ means the Hadamard product.

We model the relationships between social contexts and the sentiment of
microblogs by utilizing a Laplacian regularization term. The main idea of the
Laplacian regularization is to assign similar sentiment scores to two connected
microblogs as they may convey the same sentiment. In other words, we assume
that the constructed microblog graph is smooth in the view of graph signal
processing. So the following model is established:

min
1
2

n∑

i=1

n∑

j=1

Mij ||ŷi − ŷj ||2F

=min
1
2

n∑

i=1

n∑

j=1

c∑

k=1

Mij(ŷik − ŷjk)2

=min
n∑

i=1

n∑

j=1

c∑

k=1

Mij(ŷik)2 −
n∑

i=1

n∑

j=1

c∑

k=1

Mij ŷikŷjk

=min
c∑

k=1

Ŷ
T

∗k(D − M)Ŷ∗k

=minTr(Ŷ
T
LŶ)

(10)

where ŷ represents the predicted sentiment label, L = D−M denotes the Lapla-
cian matrix of the constructed microblog graph, D ∈ Rn×n denotes a diagonal
matrix whose entries represent the degree of corresponding microblogs. If the
graph is smooth, the value of this equation is small. In the extreme situation,
when the value is zero, the sentiment value of all microblogs is the same. There-
fore, the final microblog sentiment analysis model can be formulated as:

W ∗ = argmin
W

f(W;X,Y) + β||W||1 + α

2
Tr(Ŷ

T
LŶ), (11)

where α, β are non-negative coefficients which control the weights of social con-
texts and model parameters respectively.

4 Experiment

The microblog sentiment analysis performance in this paper is measured by
accuracy and the macro average F1-score as the datasets are unbalanced. The

318 X. Zou et al.

ratios of positive to negative microblogs are 1:2.705 and 1:1.697 in HCR and
OMD dataset respectively.

Two real public datasets (OMD and HCR) are used to verify the effectiveness
of our proposed method integrating link prediction methods and sentiment con-
nection weights into sentiment analysis. The sentiment labels of both datasets
are labeled manually. OMD dataset consists of tweets about the 2008 Obama
and McCain presidential debate, and the HCR dataset consists of tweets about
the health care reform of America. These two datasets also contain user infor-
mation about who posted the tweets. To get the user friend information, we use
the complete follower graph built by [33] in 2009.

4.1 Observations

Since the major motivation of this work is the intuition that exploiting social
information can promote the effectiveness of microblog sentiment analysis, we
first study the degree of the correlation between network structure and microblog
tags. Both statistical methods and mathematical methods are investigated to
verify our motivation.

The probabilities of whether two connected microblogs have the same sen-
timent in the final graph are computed on both datasets. Table 1 shows the
results. “AA”, “PA” and “RA” represent the graph built by the Adamic Adar
algorithm, the Preferential Attachment algorithm, and the Resource Allocation
algorithm correspondingly. From Table 1, we can see that the possibility of two
connected microblogs predicted by link prediction methods is much larger than
two randomly selected microblogs.

Table 1. The shared sentiment possibility (%) of different link prediction methods and
randomly selected microblogs

Method Dataset
HCR OMD

random 60.564 53.300
AA 77.536 54.752
RA 77.397 54.456
PA 77.593 54.368

The possibilities of connectedness between microblogs with the same senti-
ment and microblogs with the different sentiment in the final graph are also com-
puted to verify the correlation between network links and microblog sentiment.
Figure 1 show the results. “AA”, “PA” and “RA” represent different graphs built
by the Adamic Adar algorithm, the Preferential Attachment algorithm, and the
Resource Allocation algorithm correspondingly. “same” denotes the possibility of
connectedness between microblogs with same sentiment. “diff” denotes the pos-
sibility of connectedness between microblogs with different sentiment. Figure 1

Social Links Enhanced Microblog Sentiment Analysis 319

shows that microblogs with the same sentiment are more likely to connect each
other.

Fig. 1. Connectedness ratio conditioned on labels of different methods

Besides two statistical methods, we also use a mathematical method to ver-
ify our motivation. Follow [34], we compute the smoothness of different graphs
by smoothness = YTLY = 1

2

∑n
i=1

∑n
j=1 Mij ||Yi − Yj ||2F , where L is the

Laplacian matrix of M. If the smoothness values are small, it indicates that the
sentiment of two connected microblogs is more likely the same. From the view
of signal processing, a smaller value means there is a strong correlation between
the microblog graph and its label signal. We compare the smoothness between
the graphs we built and their corresponding random graphs. To be fair, the
two graphs have the same number of nodes and edges. A normalized difference
between the random graph and its corresponding graph is defined as follows:

ND = RS−GS
RS

(12)

where RS and GS represent the smoothness of random graphs and microblog
graphs built by link prediction methods respectively. A larger ND denotes that
there is a stronger sentiment correlation between two connected microblogs.
Table 2 and 3 show the results. “User” represents the microblog graph built by
user information. “Friend” represents the microblog graph built by friend infor-
mation. “User+Friend” represents the graph built by user and friend information
without link prediction enhancement. “User+Friend+AA”, “User+Friend+PA”
and “User+Friend+RA” represent the microblog graphs enhanced by the Adamic
Adar algorithm, the Preferential Attachment algorithm, and the Resource Allo-
cation algorithm respectively. From Table 2 and 3, we can see that the sentiment
signals of all microblog graphs are smoother than their corresponding random
graphs. This phenomenon validates our hypothesis of sentiment consistency and
emotional contagion in online social networks to some extent. Besides, exploit-
ing link prediction methods can make the graph smoother than other graphs on
both datasets as demonstrated in the fourth column, which is consistent with
our assumption.

320 X. Zou et al.

Table 2. The smoothness of different graphs on OMD

Method GS RS ND

User 6440 12448 0.48265
Friend 43220 86264 0.49898
User+Friend 43220 86564 0.50072
User+Friend+AA 121627 433028 0.71912
User+Friend+RA 103887 427548 0.75702
User+Friend+PA 95193 493480 0.80710

Table 3. The smoothness of different graphs on HCR

Method GS RS ND

User 2488 8648 0.71230
Friend 62148 225056 0.72386
User+Friend 62148 225096 0.72390
User+Friend+AA 127385 634656 0.79928
User+Friend+RA 119497 591092 0.79784
User+Friend+PA 131240 599928 0.78124

4.2 Model Effectiveness

To show the effectiveness of our intuition, we first conduct experiments without
text content information and only use relations between microblogs to analyze
microblog sentiment. The results are shown in Table 4. From this table, we can
see that using social relations between microblogs does help sentiment analysis.
The performance of all methods using social information is better than randomly
guessing. Besides, the accuracy of methods exploiting link prediction is higher
than the “original” microblog graph. This result indicates the effectiveness of
alleviating sparsity of microblog graphs.

Table 4. Microblog sentiment analysis accuracy (%) without text content information

Method Dataset
OMD HCR

User+Friend 61.486 73.291
User+Friend+AA 62.753 73.639
User+Friend+RA 62.585 74.120
User+Friend+PA 63.007 73.570

Social Links Enhanced Microblog Sentiment Analysis 321

4.3 Performance Evaluation

To further show the effectiveness of our proposed model, 5-fold cross-validation
is used to compare our proposed method with other state-of-art microblog sen-
timent analysis methods.

Five widely used classifiers: Least Squares (LS), Lasso, Logistic regression
(LR), Support Vector Machine (SVM), and Naive Bayes (NB) are used as base-
line methods [28,35]. Several deep learning methods CNN [37], LSTM [38] and
GNN [39] are also used for comparison. We also compare the performance of dif-
ferent methods which explore social contexts, such as SANT [15] and PMSA [24].
VADER, a social media sentiment analysis tool is also compared [36]. AASA,
RASA and PASA are our proposed method using graphs built by user, friend,
link prediction and sentiment correlation weights in Sect. 3. They exploit differ-
ent link prediction methods the Adamic Adar algorithm, the Resource Allocation
algorithm and the Preferential Attachment algorithm respectively.

Results are shown in Table 5. The following observations can be drawn from
this table:

1. Methods that explored social contexts have better results than traditional
methods. This result indicates that it is effective to integrate microblog con-
nections into microblog sentiment analysis. There is a correlation between
social contexts and microblog sentiment analysis.

2. Lasso outperforms the least squares method. These results show that not all
text features are helpful for microblog sentiment analysis. Lasso can filter out
many words without emotional tendency as word distribution is very sparse
on the microblogging platform.

3. The personalized method PMSA outperforms SANT on OMD, but it has a
lower result than SANT on HCR. This is mainly due to that the average
number of microblogs posted by users on OMD is larger than that on HCR.
It indicates that data sparsity limits the performance of PMSA.

4. Among all methods, our method has achieved the best performance. There
are three reasons: 1) our method utilizes l1 norm regularization which can
select emotional words automatically. 2) link prediction is applied in our
method, which can solve the sparse problem of microblog connections. 3) sen-
timent weights are proposed to make connections between microblogs more
precise. Three link prediction methods have achieved comparable results on
two datasets, which need deep analysis.

322 X. Zou et al.

Table 5. The sentiment analysis results of different methods

Method OMD HCR
Accu(%) F1(%) Accu(%) F1(%)

LS 69.504 67.455 65.205 59.318
LASSO 75.336 71.343 73.711 56.431
NB 77.363 73.614 74.474 67.231
SVM 75.760 74.067 74.132 66.476
LR 78.208 75.780 75.875 65.950
VADER 64.021 63.557 55.090 53.320
LSTM 78.390 75.962 74.476 66.582
CNN 75.424 72.901 76.923 61.786
GNN 78.294 76.355 76.780 68.454
SANT 78.545 75.893 76.156 69.749
PMSA 78.375 75.780 76.008 65.364
AASA 80.066 77.422 77.825 71.388
RASA 80.574 77.958 77.895 70.955
PASA 80.150 77.653 77.547 70.681

5 Conclusion

Based on two sociological theories, sentiment consistency and emotional conta-
gion, this paper assumes that microblogs published by the same user or connected
users have a high possibility to have similar sentiment in a period and build a
microblog graph by user information and friend information. However, the built
graph is usually very sparse. To alleviate this problem, we explore the potential
links between microblogs by link prediction methods. Both statistical methods
and mathematical methods are used to study the correlation between the links
extended by link prediction methods and microblog sentiment labels. Besides,
we also introduce sentiment connection weights to refine microblog connections.
After modeling the connections between microblogs, we integrate them with
microblog text information. Experiments on two real-world microblog sentiment
datasets show the effectiveness of exploring potential links between microblogs
other than user information and friend information. This work can suggest some
interesting directions for future work. For example, it would be promising to pre-
dict potential links by utilizing sentiment information of users about different
topics.

Acknowledgement. This paper is supported by 1) Zhejiang Provincial Natural Sci-
ence Foundation of China under Grant No. LQ23F020039, 2) National Science and
Technology Major Project of China under Grant No. 2021ZD0114303, 3) National
Natural Science Foundation of China under Grant No. 62176087.

Social Links Enhanced Microblog Sentiment Analysis 323

References

1. Yang, D., Zhang, D., Yu, Z., Wang, Z.: A sentiment-enhanced personalized loca-
tion recommendation system. In: Proceedings of the 24th ACM Conference on
Hypertext and Social Media, HT 2013, Paris, France, pp. 119–128 (2013)

2. Bollen, J., Mao, H., Zeng, X.: Twitter mood predicts the stock market. J. Comput.
Sci. 2(1), 1–8 (2011)

3. Cambria, E., Schuller, B., Xia, Y., White, B.: New avenues in knowledge bases for
natural language processing. Knowl.-Based Syst. 108, 1–4 (2016)

4. Wu, Y., Liu, S., Yan, K., Liu, M., Wu, F.: OpinionFlow: visual analysis of opinion
diffusion on social media. IEEE Trans. Vis. Comput. Graph. 20(12), 1763–1772
(2014)

5. Cambria, E., Liu, Q., Decherchi, S., Xing, F., Kwok, K.: SenticNet 7: a
commonsense-based neurosymbolic AI framework for explainable sentiment anal-
ysis. In: Proceedings of the Thirteenth Language Resources and Evaluation Con-
ference, pp. 3829–3839 (2022)

6. Baccianella, S., Esuli, A., Sebastiani, F.: SentiWordNet 3.0: an enhanced lexical
resource for sentiment analysis and opinion mining. In: Proceedings of the Seventh
International Conference on Language Resources and Evaluation (LREC 2010),
vol. 10, pp. 2200–2204 (2010)

7. McPherson, M., Smith-Lovin, L., Cook, J.M.: Birds of a feather: homophily in
social networks. Ann. Rev. Sociol. 27(1), 415–444 (2001)

8. Marsden, P.V., Friedkin, N.E.: Network studies of social influence. Sociol. Methods
Res. 22(1), 127–151 (1993)

9. Hatfield, E., Cacioppo, J.T., Rapson, R.L.: Emotional contagion. Curr. Dir. Psy-
chol. Sci. 2(3), 96–100 (1993)

10. Abelson, R.P.: Whatever became of consistency theory? Pers. Soc. Psychol. Bull.
9(1), 37–64 (1983)

11. Speriosu, M., Sudan, N., Upadhyay, S., Baldridge, J.: Twitter polarity classification
with label propagation over lexical links and the follower graph. In: Proceedings of
the First Workshop on Unsupervised Learning in NLP, EMNLP 2011, pp. 53–63
(2011)

12. Song, C., Wang, B., Jiang, Q., Zhang, Y., He, R., Hou, Y.: Social recommendation
with implicit social influence. In: Proceedings of the 44th International ACM SIGIR
Conference on Research and Development in Information Retrieval, pp. 1788–1792
(2021)

13. Khalifi, H., Dahir, S., El Qadi, A., Ghanou, Y.: Enhancing information retrieval
performance by using social analysis. Soc. Netw. Anal. Min. 10, 1–7 (2020)

14. Mehta, N., Pacheco, M.L., Goldwasser, D.: Tackling fake news detection by con-
tinually improving social context representations using graph neural networks. In:
Proceedings of the 60th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 1363–1380 (2022)

15. Hu, X., Tang, L., Tang, J., Liu, H.: Exploiting social relations for sentiment analysis
in microblogging. In: Proceedings of the 6th ACM International Conference on Web
Search and Data Mining, pp. 537–546 (2013)

16. Wu, F., Huang, Y., Song, Y.: Structured microblog sentiment classification via
social context regularization. Neurocomputing 175(PartA), 599–609 (2016)

17. Cui, A., Zhang, M., Liu, Y., Ma, S.: Emotion tokens: bridging the gap among multi-
lingual Twitter sentiment analysis. In: Salem, M.V.M., Shaalan, K., Oroumchian,
F., Shakery, A., Khelalfa, H. (eds.) AIRS 2011. LNCS, vol. 7097, pp. 238–249.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25631-8_22

https://doi.org/10.1007/978-3-642-25631-8_22

324 X. Zou et al.

18. Wu, F., Huang, Y., Song, Y., Liu, S.: Towards building a high-quality microblog-
specific Chinese sentiment lexicon. Decis. Support Syst. 87, 39–49 (2016)

19. Xing, F.Z., Pallucchini, F., Cambria, E.: Cognitive-inspired domain adaptation of
sentiment lexicons. Inf. Process. Manag. 56(3), 554–564 (2019)

20. Feng, S., Wang, Y., Liu, L., Wang, D., Yu, G.: Attention based hierarchical LSTM
network for context-aware microblog sentiment classification. World Wide Web
22(1), 59–81 (2019)

21. Ma, Y., Peng, H., Khan, T., Cambria, E., Hussain, A.: Sentic LSTM: a hybrid
network for targeted aspect-based sentiment analysis. Cogn. Comput. 10(4), 639–
650 (2018)

22. Shin, B., Lee, T., Choi, J.D.: Lexicon integrated CNN models with attention for
sentiment analysis, arXiv preprint arXiv:1610.06272 (2016)

23. Wang, L., Niu, J., Yu, S.: SentiDiff: combining textual information and sentiment
diffusion patterns for Twitter sentiment analysis. IEEE Trans. Knowl. Data Eng.
32(10), 2026–2039 (2019)

24. Wu, F., Huang, Y.: Personalized microblog sentiment classification via multi-task
learning. In: Proceedings of the Thirtieth AAAI Conference on Artificial Intelli-
gence, pp. 3059–3065 (2016)

25. Fersini, E., Pozzi, F., Messina, E.: Approval network: a novel approach for senti-
ment analysis in social networks. World Wide Web 20(4), 831–854 (2017)

26. Cheng, K., Li, J., Tang, J., Liu, H.: Unsupervised sentiment analysis with signed
social networks. In: 31st AAAI Conference on Artificial Intelligence, pp. 3429–3435
(2017)

27. Skianis, K., Rousseau, F., Vazirgiannis, M.: Regularizing text categorization with
clusters of words. In: Proceedings of the 2016 Conference on Empirical Methods
in Natural Language Processing, pp. 1827–1837 (2016)

28. Hastie, T., Tibshirani, R., Friedman, J.: The elements of statistical learning. J. R.
Stat. Soc. 167(1), 192 (2001)

29. Adamic, L.A., Adar, E.: Friends and neighbors on the web. Soc. Netw. 25(3),
211–230 (2003)

30. Barabási, A.-L., Albert, R.: Emergence of scaling in random networks. Science
286(5439), 509–512 (1999)

31. Zhou, T., Lü, L., Zhang, Y.-C.: Predicting missing links via local information. Eur.
Phys. J. B 71(4), 623–630 (2009)

32. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear
inverse problems. SIAM J. Imaging. Sci. 2(1), 183–202 (2009)

33. Kwak, H., Lee, C., Park, H., Moon, S.: What is Twitter, a social network or a news
media? In: Proceedings of the 19th International Conference on World Wide Web,
pp. 591–600 (2010)

34. Keramatfar, A., Amirkhani, H., Bidgoly, A.J.: Modeling tweet dependencies with
graph convolutional networks for sentiment analysis. Cogn. Comput. 14, 2234–2245
(2022)

35. Go, A., Bhayani, R., Huang, L.: Twitter sentiment classification using distant
supervision. Cs224n Project Report (2009)

36. Hutto, C., Gilbert, E.: VADER: a parsimonious rule-based model for sentiment
analysis of social media text. In: Proceedings of the International AAAI Conference
on Web and Social Media, vol. 8, pp. 216–225 (2014)

37. Kim, Y.: Convolutional neural networks for sentence classification. In: 2014 Confer-
ence on Empirical Methods in Natural Language Processing, EMNLP 2014, Doha,
Qatar, pp. 1746–1751 (2014)

http://arxiv.org/abs/1610.06272

Social Links Enhanced Microblog Sentiment Analysis 325

38. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997)

39. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. In: International Conference on Learning Representations, pp. 1–14
(2017)

Discovering Diverse Information
Considering User Acceptability

Yuki Ito1(B) and Qiang Ma2(B)

1 Kyoto University, Kyoto, Japan
ito.yuki.46m@st.kyoto-u.ac.jp

2 Kyoto Institute of Technology, Kyoto, Japan
qiang@kit.ac.jp

Abstract. Filter bubbles occur when search algorithms selectively show
users information that aligns with their preferences, leading to a limited
view of the world. Many studies aim to address this problem by seeking
diverse information, but they often overlook the aspect of acceptability.
We propose a method to discover documents (tweets, reviews, or so)
that provide diverse viewpoints while considering their acceptability. Our
method captures each opinion’s features such as its polarity, aspects, etc.,
and identifies documents encompassing both empathy and diversity by
analyzing the features. Evaluation results confirm the effectiveness of our
method in discovering acceptable and diverse opinions.

Keywords: Diversity · Filter Bubbles · Acceptability

1 Introduction

The filter bubble is a challenge, where the information provided to users is too
biased [12]. To solve this, current filter bubble reduction methods attempt to
offer various information and opinions to users [2,3,6,11]. However, some of
such opinions may conflict with users’ preferences [16]. Feeling uncomfortable
with these opinions may result in behaviors such as ignoring them, assuming
they lack credibility, or seeking opinions that match one’s thinking [1]. This may
hinder efforts to reduce the filter bubble. To address this issue, we propose a
method that focuses on acceptability (whether a text is easily accepted by the
user) in addition to diversity. From documents such as tweets and reviews, our
proposed method search for texts that express different opinions from users while
also showing empathy for their opinions. Our method first transforms documents
into a document representation model (DRM), which formally represents the
features of the opinion. Subsequently, it evaluates the acceptability (Is it easy
for users to accept?) and diversity (Is its opinion different from the user’s?) of
each text by the degree of empathy, objectivity, opposition, and diversity, which

This work was partly supported by JSPS KAKENHI (19H04116, 23H03404).
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C. Strauss et al. (Eds.): DEXA 2023, LNCS 14146, pp. 326–331, 2023.
https://doi.org/10.1007/978-3-031-39847-6_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-39847-6_24&domain=pdf
http://orcid.org/0000-0003-3430-9244
https://doi.org/10.1007/978-3-031-39847-6_24

Discovering Diverse Information Considering User Acceptability 327

Fig. 1. Overview of proposed method

are defined in Sect. 3. From these results, it classifies texts based on whether or
not they provide various viewpoints in acceptable ways and rank them.

Our contributions are as follows. (1) We propose a document representa-
tion model (Sect. 3.1). (2) We propose novel concepts of empathy, objectivity,
opposition, and diversity as criteria for acceptable opinions that offer different
viewpoints (Sect. 3.2). (3) The proposed method’s effectiveness is validated by
performance metrics on the dataset obtained from the user experiment (Sect. 4).

2 Related Work

Many algorithms aim to reduce filter bubbles by recommending diverse infor-
mation. For instance, [16] proposed a method that suggests contextually natu-
ral opposing opinions in a dialogue generation system. Approaches encouraging
behavior change have also been explored. [10] graphed relationships and evalua-
tions of stakeholders in news articles to reveal biases. Another effective approach
is making different opinions easily accessible, as demonstrated by the NewsSalad
app [6]. Metacognitive abilities, such as recognizing cognitive biases and seeking
diverse viewpoints, have also been studied [8]. While existing studies focus on
reducing filter bubbles, none of them consider acceptability. To the best of our
knowledge, such a method has not yet been developed.

3 Proposed Method

The overview of the proposed method is shown in Fig. 1. Our method uses a
query document (user’s preferred opinions) and a candidate set (N documents
on the same topic as the query document) as inputs, and outputs the ranking of
these candidates based on acceptability and diversity.

328 Y. Ito and Q. Ma

3.1 Document Representation Model Generator

DRM generator converts a document S to a document representation model MS .

MS = (PS , wps), OS , ((a1, p1, aps1), (a2, p2, aps2), . . . (am, pm, apsm)) (1)

PS represents the polarity of S, which is positive or negative. The polarity is
paired with wps, the confidence of PS . OS denotes the objectivity of S. Since
objective opinions tend to have fewer verbs, adjectives, and adverbs [9], we esti-
mate their percentage in the target document as OS . ai is an aspect appearing
in S and pi is its polarity. An aspect is a point of view often discussed in a topic.
In this paper, for simplicity, all nouns appearing in S are used as aspects. The
real number apsi indicates the confidence of pi.

PS and pi are determined by using a BERT-based sentiment analysis method
[15]. This method generates a two dimension vector for representing the polarity;
one for negative and the other for positive. The max value in the vector is denoted
as wps or apsi. PS is identified by inputting S to the method. When identifying
pi, we first separate S at the boundary of polarity into (S1, S2, . . . , Sm). The
boundary of polarity means the position where the polarity is likely to switch
(such as punctuation marks and conjunctions/conjunctive particles in inverse
clauses found by morphological analysis tool MeCab [7]). We consider the polar-
ity of Sj (� ai) as the polarity of ai.

3.2 Acceptability and Diversity Evaluator

The acceptability and Diversity evaluator judges “how acceptable a candidate
S′ is to users whose opinion is same as S (Acceptability)“ and “whether it offers
new perspectives to them (Diversity)”.

Acceptability is decided by the degree of empathy and objectivity. The degree
of empathy evaluates if S′ shows the attitude of understanding users’ opinions,
which makes it easier for users to accept the document even if its opinion differs
from their values [1,4,14]. The degree of empathy of S′ is scored based on whether
S′ satisfies the following three conditions. (1) S′ has the boundary of polarity.
(2) Before the boundary, S′ represents the same opinion as the user (Judged by
PS and PS′). (3) The part of S′ before the boundary shows similar polarities
for similar aspects as the query document (Judged by aspect-polarity sequences
in MS and MS′). The degree of objectivity OS′ is considered because objective
opinions tend to be more easily accepted than subjective ones.

Diversity is estimated by the degree of opposition and diversity. The degree of
opposition refers to the level of disagreement that S′ has with the user’s opinion,
which is calculated from (PS , wps) and (PS′ , wps′) This is considered because
showing opposing opinions are important to mitigate filter bubbles. The degree of
diversity refers to the various viewpoints in the document. By estimating this, we
aim to discover documents that provide users with diverse views in a time-saving
way. We defined the degree of diversity by an average of semantic similarity of
arbitrary combinations of aspects in S′. Semantic similarity is determined using
the cosine similarity of the embedding vectors obtained from the final layer
output of BERT in the sentiment analysis model.

Discovering Diverse Information Considering User Acceptability 329

3.3 SVM Classifier and Ranking

The candidates are classified by an SVM model (LinearSVC of scikit-learn [13]),
which takes the four scores obtained up to this point as inputs. Its output results
from a binary classification of whether or not the candidate S′ is an acceptable
and diverse opinion.

We rank candidate documents classified as acceptable and diverse documents
by the following procedure. (1) Choose S′ whose PS′ is different from PS . (2)
Sort the candidates in descending order based on the number of boundaries of
polarity. In case of a tie, prioritize the longer documents. (3) Choose S′ whose
PS′ is the same as PS and sort them as same as step 2. (4) Concatenate the
ranking results of step 3 to the end of the results of step 2.

4 Evaluation

4.1 Training

We implement the system proposed in Sect. 3 and conduct experiments to eval-
uate the proposed method’s classification and ranking performance. To train
the sentiment analysis method [15] in the DRM generator, we use the Twitter
Japanese reputation analysis dataset [17]. This dataset collects tweets by top-
ics and each tweet’s opinion as classified as follows: (1) Positive (2) Negative (3)
Both positive and negative (4) Neither positive nor negative. We use tweets with
labels of (1), (2), and (3) for training. Note that (3) were relabeled as positive or
negative according to what polarity their writers most wanted to assert in the
tweet. To reduce the training time, we selected about 1000 documents from this
dataset, ensuring that the ratio of negative and positive documents was 1:1.

Next, to train the SVM classifier, we selected query documents and candi-
dates from [17]. Using the proposed method, we calculated candidates’ degrees of
empathy, objectivity, opposition, and diversity. They are labeled correct (which
means that the document is acceptable and diverse to the query document) if
they are classified into both (1) and (2), or classified into (3), otherwise labeled
incorrect. We set the ratio of incorrect cases to correct ones to 1:1.

4.2 User Experiments

To evaluate the effectiveness of our method, we collected documents from Twit-
ter and the Amazon review corpus [5]. We collected documents on four topics
from Twitter and one topic from the review corpus, with 50 documents for each
topic. From each topic, We selected two query documents. One has a negative
polarity, and the other is positive. Then we obtain ground truths for classifi-
cation and the gain for ranking by user experiments. In the experiments, we
asked subjects to rate each candidate document on a five-point scale from the
viewpoints of “whether it is acceptable to users who share the same ideas as
the query document” and “whether it offers diverse perspectives to such users”
respectively. The documents with an average score of acceptability and diversity
greater than three were labeled as correct, following Sect. 4.1.

330 Y. Ito and Q. Ma

Table 1. Evaluation results of the classification and ranking performances

evaluation target Accuracy Precision Recall F1 nDCG

prop-emp 0.466 0.78 0.166 0.267 0.956
prop-obj 0.57 0.619 0.824 0.695 0.923
prop-opp 0.46 0.571 0.451 0.494 0.917
prop-div 0.618 0.784 0.534 0.618 0.939
proposed 0.644 0.715 0.698 0.695 0.927
neural net 0.532 0.737 0.361 0.478 0.930

4.3 Result

We conducted an ablation study of the proposed method by evaluating the fol-
lowing baselines. prop-emp (A method using only the degree of empathy), prop-
obj (using only the degree of objectivity), prop-opp (using only the degree of
opposition), prop-div (using only the degree of diversity). In addition, we pre-
pared a neural network-based method as a comparative method, reproducing
the proposed method’s processing flow.

In the evaluation process, we first input query and candidate documents
made in Sect. 4.2 to each target model and calculate the SVM classification
results’ precision, recall, and F1 score. Let Sc be the set of candidates classified
as acceptable and diverse opinions. We also calculate the rank and gain of the
documents in Sc and compute nDCG. Each ranked document’s gain is estimated
based on its polarity label and the number of the boundary of polarity. A gain
of 5 is assigned for documents with opposite polarity to the query and boundary
number > 3, and a gain of 4 is for documents with opposite polarity and bound-
ary number ≤ 3. A gain of 3 is assigned for documents with the same polarity as
the query document. The gain is defined between 3 and 5 because it aligns with
our definition in the user experiment (Sect. 4.2), where we define documents as
correct if their average scores exceed 3.

Table 1 shows the evaluation results.
Our proposed method has the highest F1 score and nDCG over 0.9, which

shows that the proposed method achieves high classification performance with-
out sacrificing ranking performance. It can also be said that using all four indi-
cators results in higher validity for classification and ranking than using only
some of them from their low evaluation result. The high nDCG value of the pro-
posed method shows that documents obtained by the method are accessible for
users to accept and can provide new perspectives. While the neural net method
achieves the highest nDCG value, it does not necessarily imply superiority over
the proposed method. Its low recall and F1 score suggest that it includes fewer
documents in its ranking compared to other methods. This limitation hinders
its effectiveness in countering the filter bubble, which requires encountering a
greater variety of opinions.

Discovering Diverse Information Considering User Acceptability 331

5 Conclusion

In this paper, we propose a method for discovering opinions that are easy for
users to accept and bring diverse perspectives to them. The experimental results
confirmed that the proposed method enables the discovery of acceptable and
diverse opinions. Moreover, the proposed method outperforms the comparative
method primarily in classification. Suppose the proposed method is applied to
display opinions that differ from the user’s preferences to reduce filter bubbles.
In that case, user-friendly documents are expected to be prioritized, and the
phenomenon of unconsciously excluding different opinions can be reduced.

References

1. Ecker, U.K., et al.: The psychological drivers of misinformation belief and its resis-
tance to correction. Nat. Rev. Psychol. 1(1), 13–29 (2022)

2. Gharahighehi, et al.: Making session-based news recommenders diversity-aware.
In: Proceedings of OHARS, pp. 60–66 (2020)

3. Grossetti, Q., et al.: Reducing the filter bubble effect on twitter by considering
communities for recommendations. IJWIS 17(6), 728–752 (2021)

4. Hyland-Wood, B., et al.: Toward effective government communication strategies in
the era of COVID-19. Humanit. Soc. Sci. Commun. 8(1), 30 (2021)

5. Keung, P., et al.: The multilingual amazon reviews corpus. arXiv:2010.02573 (2020)
6. Kiritoshi, K., et al.: Named entity oriented difference analysis of news articles and

its application. IEICE Trans. Inf. Syst. 99-D(4), 906–917 (2016)
7. Kudo, T., et al.: Applying conditional random fields to Japanese morphological

analysis. In: EMNLP 2004, pp. 230–237 (2004)
8. Liu, G.: Moving up the ladder of source assessment: expanding the CRAAP test

with critical thinking and metacognition. C RL News 82(2), 75 (2021)
9. Mingyong, Y., et al.: A subjective expressions extracting method for social opinion

mining. Discret. Dyn. Nat. Soc. 2020, 2784826 (2020)
10. Ogawa, T., et al.: News bias analysis based on stakeholder mining. IEICE Trans.

Inf. Syst. 94-D(3), 578–586 (2011)
11. Pardos, et al.: Combating the filter bubble: Designing for serendipity in a university

course recommendation system. arXiv:1907.01591 [cs.IR] (2019)
12. Pariser, E.: The Filter Bubble: How the New Personalized Web is Changing What

We Read and How We Think. Penguin, London (2011)
13. Pedregosa, F., et al.: Scikit-learn: machine learning in python. J. Mach. Learn.

Res. 12, 2825–2830 (2011)
14. Santos, L.A., et al.: Belief in the utility of cross-partisan empathy reduces partisan

animosity and facilitates political persuasion. Psychol. Sci. 33(9), 1557–1573 (2022)
15. Yang, H., Li, K.: A modularized framework for reproducible aspect-based sentiment

analysis. CoRR abs/2208.01368 (2022)
16. Yoshida, S., Ma, Q.: Generating dialogue sentences to promote critical thinking.

In: Hartmann, S., Küng, J., Kotsis, G., Tjoa, A.M., Khalil, I. (eds.) DEXA 2020.
LNCS, vol. 12391, pp. 354–368. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-59003-1_23

17. Yu, S.: Filtering method for twitter streaming data using human-in-the-loop
machine learning. J. Inf. Process. 27, 404–410 (2019)

http://arxiv.org/abs/2010.02573
http://arxiv.org/abs/1907.01591
https://doi.org/10.1007/978-3-030-59003-1_23
https://doi.org/10.1007/978-3-030-59003-1_23

Confidential Truth Finding
with Multi-Party Computation

Angelo Saadeh1,6, Pierre Senellart2,4,5,6,7(B), and Stéphane Bressan3,6,7

1 LTCI, Télécom Paris, IP Paris, Palaiseau, France
angelo.saadeh@telecom-paris.fr

2 DI ENS, ENS, PSL University, CNRS, Paris, France
pierre@senellart.com

3 National University of Singapore, Singapore, Singapore
steph@nus.edu.sg

4 Inria, Paris, France
5 Institut Universitaire de France, Paris, France
6 CNRS@CREATE LTD, Singapore , Singapore

7 IPAL, CNRS, Singapore , Singapore

Abstract. Federated knowledge discovery and data mining are chal-
lenged to assess the trustworthiness of data originating from autonomous
sources while protecting confidentiality and privacy. Truth-finding algo-
rithms help corroborate data from disagreeing sources. For each query it
receives, a truth-finding algorithm predicts a truth value of the answer,
possibly updating the trustworthiness factor of each source. Few works,
however, address the issues of confidentiality and privacy. We devise and
present a secure secret-sharing-based multi-party computation protocol
for pseudo-equality tests that are used in truth-finding algorithms to
compute additions depending on a condition. The protocol guarantees
confidentiality of the data and privacy of the sources. We also present a
variants of a truth-finding algorithm that would make the computation
faster when executed using secure multi-party computation. We empir-
ically evaluate the performance of the proposed protocol on a state-of-
the-art truth-finding algorithm, 3-Estimates, and compare it with that of
the baseline plain algorithm. The results confirm that the secret-sharing-
based secure multi-party algorithms are as accurate as the corresponding
baselines but for proposed numerical approximations that significantly
reduce the efficiency loss incurred.

Keywords: truth finding · secure multi-party computation ·
secret-sharing · uncertain data · privacy

1 Introduction

Truth-finding algorithms [6] help corroborate data from disagreeing sources. For
each query it receives, a truth-finding algorithm predicts a truth value of the
answer, possibly updating the trustworthiness factor of each source. Few works,
however, address the issues of confidentiality and privacy. We consider the design
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C. Strauss et al. (Eds.): DEXA 2023, LNCS 14146, pp. 332–337, 2023.
https://doi.org/10.1007/978-3-031-39847-6_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-39847-6_25&domain=pdf
https://doi.org/10.1007/978-3-031-39847-6_25

Confidential Truth Finding with Multi-Party Computation 333

and implementation of truth-finding algorithms that protect the confidentiality
of sources’ data, using secret-sharing-based secure multi-party computation [3],
or simply secure multi-party computation (MPC).

We devise and present a secure multi-party pseudo-equality protocol that
securely computes additions depending on a condition – we call them con-
ditioned additions – for truth-finding algorithms. In particular, we present a
secure equality test alternative that uses a polynomial evaluation to reduce the
number of communication; this is used for conditioned additions, an operation
that is an essential building block of many truth-finding algorithms. The pro-
tocol guarantees the confidentiality of the data. We also devise several variants
of privacy-preserving truth-finding algorithms; ones that implement the truth-
finding algorithms without changes, and others with modifications that aim to
make the computation more efficient.

The secure multi-party protocols are then implemented with two servers. We
empirically evaluate the performance of the proposed protocol on a state-of-the-
art truth-finding algorithm, 3-Estimates [4, Algorithm 4] (see also [2,5] for fur-
ther experiments on this algorithm), and compare it with that of the non-secure
baseline algorithms. The results confirm that the secure multi-party algorithm
is as accurate as the corresponding baseline except for proposed modifications
to reduce the efficiency loss incurred.

Set n ∈ N
∗, and let V be a set of n sources. The client would like to label k

queries (or facts) {f1, ..., fk}. A truth-finding algorithm outputs a truth value for
a query when different data sources (or sources) provide disagreeing information
on it. Concretely, the truth-finding algorithm takes v1, ..., vn as input with vi ∈
{−1, 0, 1}k, and outputs estimated truth values in [−1, 1]k ⊂ R

k or [0, 1]k ⊂ R
k

depending on the truth-finding algorithm.
Truth-finding (or truth discovery) algorithms [6] are usually run by the client

in order to know the truth value of a given query when the sources give disagree-
ing answers. That is, for each of the client’s queries, each source in V delivers
an answer vi such that an output of 1 corresponds to a positive answer, −1
to a negative one, and 0 if the source does not wish to classify the data point.
3-Estimates [4] is a truth-finding algorithms that given a number of queries k,
output a truth value in the range [−1, 1]k ⊂ R and a trust coefficient in each
of the sources, or sources. In addition, 3-Estimates computes an estimate of the
difficulty of each query.

The goal of this work is to execute truth-finding algorithms that protect
sources’ data using secure multi-party computation (MPC) [1,3]. More generally,
given a function F and a set of private inputs x1, ..., xm respectively owned by
P1, ..., Pm, MPC is a cryptographic approach that makes it possible to compute
the output of the function F (x1, .., xm) without resorting to a third party that
would compute the function F and would send the result back. MPC will be used
to implement the 3-Estimates algorithm without having any source disclose their
answer.

Because of lack of space, details are ommitted. An extended version is avail-
able as [8], which also covers another truth finding algorithm, Cosine, from [4].

334 A. Saadeh et al.

2 Proposed Approach

The first task we wish to achieve is private voting, i.e., the client sends queries to
each source, and the source classifies the query. In the case where the query is a
vector of features and the models are logistic regressions, existing MPC works [7]
can keep the query private. We suppose that the answers are already computed
and secret-shared on two servers P1 and P2 using a two-party additive secret
sharing. In other words, P1 holds vij

1 and P2 holds vij
2 such that vij = vij

1 + vij
2

is the ith source’s answer for the query f j and is equal to −1, 0, or 1.
The second step which is the aggregation of the data (the answers) is com-

puted on the two servers P1 and P2. The problem is now constructing a secure
two-party computation algorithm with additively shared data that implements
the truth-finding algorithms using their arithmetic circuits. Once the circuits
are evaluated, the two servers (P1 and P2) send their share of the output to the
client who reconstructs it by adding the received shares together.

Other than additions and multiplications, the truth-finding algorithm we
implement – 3-Estimates – uses existing real-number operations like division,
and square root, which are dealt with in standard ways [8]. We focus on com-
puting conditioned sums by replacing equality tests with degree-two polynomial
evaluations.

The truth-finding algorithms we use require conditioned additions. Given
two vectors of same size t = (t1, ..., tk) ∈ R

k, z = (z1, ..., zk) ∈ {−1, 0, 1}k, and
an element κ ∈ {−1, 0, 1}, we define the following operation: S :=

∑
i:zi=κ ti.

In other words, the ith element of t, ti, is added to the sum only if the ith
element of z, zi, is equal to κ. The difficulty is that even though κ is public, zi

is private. To achieve this in MPC we start by defining the following function,
for i ∈ {1, ..., r}:

E(zi, κ) =

{
1 if zi = κ

0 if not.

A naive way to compute the sum S is as follows: S =
∑

i E(zi, κ) · ti. This way
to compute S requires an equality test which is costly in MPC. To this end, we
propose an alternative that makes good use of the fact that zi, κ ∈ {−1, 0, 1}.
The goal is to express the function E as a polynomial so that it can be computed
using the smallest number of additions and multiplications possible. We define
and use the following expressions of E(zi, κ).

If κ = −1, we compute S as follows: S =
∑

i
1
2 ((zi)2 − zi) · ti. We have:

1
2
((zi)2 − zi) =

⎧
⎨

⎩

1 if zi = −1
0 if zi = 0
0 if zi = 1

Hence, by multiplying 1
2 ((zi)2−zi) by ti, the only elements considered in the sum

are the ones such that zi = −1. The function 1
2 ((zi)2−zi) is equal to E(zi,−1). If

κ = 0 we similarly compute S as: S =
∑

i(1−(zi)2) · ti. It is also straightforward
that the function 1−(zi)2 is equal to E(zi, 0) because it outputs 1 if zi = 0 and 0
otherwise. If z = 1, in the same way, S is computed as: S =

∑
i
1
2 ((zi)2 + zi) · ti.

Confidential Truth Finding with Multi-Party Computation 335

Lemma 1 (Conditioned additions). Denote by ΠE the MPC protocol imple-
menting the function E using the three previously defined degree-2 polynomials.
ΠE does not reveal information about the other’s player’s share.

Proof. The three conditioned sums defined in this section do not need compar-
isons and they are expressed using only additions and multiplications, so their
security level is the same as Πadd and Πmul. ��

See [8] for how this allows us to reformulate the truth finding algorithm for
3-Estimates with MPC.

Normalization in 3-Estimates. In the 3-Estimates algorithm, the truth value,
trust factor, and difficulty score need to be normalized at each step. This could
be done using a secure comparison protocol to securely compute the minimum
and the maximum of each value, and then normalize them as it is done in [4].
Secure comparisons however are very costly in MPC. To reduce the amount of
communication we replace the normalization based on finding the maximum and
minimum by a pre-computed linear transformation which forces the values to
stay between 0 and 1. Concretely we apply the function h(x) = 0.5x + 0.25
to all the values after each update. We evaluate the impact of this change in
the experiments. The chosen function, h, is not perfect. Indeed, if we have
information about the distribution of the parameters, we can pre-compute a
linear normalization for every iteration. Using any public pre-computed or pre-
defined normalizing function improves the efficiency of the algorithm because it
would translate to using multiplication and addition by public constants, which
is communication-free.

3 Experimental Results

We evaluate our protocol on two computing servers. We suppose that the sources
have already answered and secret-shared their answers. We use the ring Z260 with
20 bits of fixed precision. The two servers communicate via a local socket network
implemented in Python on an Intel Core i5-9400H CPU (2.50 GHz × 8) and a
RAM of 15.4 GiB. For the sake of the experiment, these communications are not
encrypted or authenticated.

We implement our solution using the dataset Hubdub from [4].1 This dataset
is constructed from 457 questions from a Web site where users had to bet on
future events. As the questions had multiple answers, they have been increased
to 830 questions to obtain binary questions with answers −1, 0 or 1. The client
sends the 830 queries to be classified by each source, and after the classification,
the sources secret-share them on two servers to evaluate using MPC the 3-
Estimates truth-finding algorithm. At the end of the evaluation, the results are
reconstructed by the client. The results include the truth value for each query

1 Datasets used, as well as the source code of our implementation, are available
at https://github.com/angelos25/tf-mpc/.

https://github.com/angelos25/tf-mpc/

336 A. Saadeh et al.

Fig. 1. Prediction errors between secure multi-party computation and the base model
results with 3-Estimates on Hubdub dataset.

Confidential Truth Finding with Multi-Party Computation 337

(the label), a difficulty score for each query, and a trustworthiness factor for each
of the 471 sources. In Fig. 1 we show the difference between the predictions from
the base model and the predictions from the MPC evaluation. The base model
corresponds to the 3-Estimates algorithm implemented without MPC on the
plain data. The MPC evaluation contains errors compared to the base model,
and these errors are mostly below 10−4. To evaluate the impact of the errors
induced by MPC, we look at label prediction. The MPC method labels all the
questions exactly the same way as the baseline method, so both methods made
the same number of errors, i.e., 269 (as shown in [4], this is less than majority
voting and some other methods). On average, the execution of each iteration
took 52.85 s wall-clock time, or 39.58 s CPU time. The MPC model is 2 000
times slower than the base model, this is due to the high number of comparisons
that should be made to normalize the three factors.

If we use the pre-computed linear function h presented at the end of Sect. 2
the outputs will be very different of course because of the aforementioned reasons,
but wall-clock time of each iteration is reduced to 0.58 s and the CPU time to
0.48 s making it almost 100 times faster. This normalization alternative increases
the number of queries labeled differently by the MPC to 5, however, it yields 266
errors in total. For this specific dataset, the pre-computed normalization used
happens to gives better results than the original baseline.

Acknowledgments. This research is part of the program DesCartes and is supported
by the National Research Foundation, Prime Minister’s Office, Singapore under its
Campus for Research Excellence and Technological Enterprise (CREATE) program.

References

1. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In: STOC (1988)

2. Berti-Équille, L.: Data veracity estimation with ensembling truth discovery meth-
ods. In: BigData (2015)

3. Cramer, R., Damg̊ard, I., Nielsen, J.B.: Secure Multiparty Computation and Secret
Sharing. Cambridge University Press (2015)

4. Galland, A., Abiteboul, S., Marian, A., Senellart, P.: Corroborating information
from disagreeing views. In: WSDM (2010)

5. Li, X., Dong, X.L., Lyons, K., Meng, W., Srivastava, D.: Truth finding on the deep
Web: Is the problem solved? PVLDB 6(2) (2013)

6. Li, Y., Gao, J., Meng, C., Li, Q., Su, L., Zhao, B., Fan, W., Han, J.: A survey on
truth discovery. SIGKDD Explorations (2016)

7. Mohassel, P., Rindal, P.: Aby3: A mixed protocol framework for machine learning.
In: CCS (2018)

8. Saadeh, A., Senellart, P., Bressan, S.: Confidential truth finding with multi-party
computation (extended version). CoRR abs/2305.14727 (2023)

A Key-Value Based Approach to Scalable
Graph Database

Zihao Zhao1,2, Chuan Hu1,2, Zhihong Shen1(B), Along Mao1,2, and Hao Ren1

1 Computer Network Information Center, Chinese Academy of Sciences,
Beijing, China

{zhaozihao,huchuan,bluejoe,almao,rh}@cnic.cn
2 University of Chinese Academy of Sciences,

Beijing, China

Abstract. An increasing number of applications are modeling data as
property graphs. In various scenarios, the scale of data can differ signifi-
cantly, ranging from thousands of nodes/relationships to tens of billions
of nodes/relationships. While distributed native graph databases can
cater to the management and query requirements of large-scale graph
data sets, they tend to be relatively cumbersome for small-scale data
sets. This motivates us to develop a lightweight, scalable graph database
capable of handling data across different scales. In this paper, we propose
a method for constructing a graph database based on key-value storage,
outlining the process of mapping graph data to key-value storage and
executing graph queries on the key-value storage. We implemented and
open-sourced a graph database based on RocksDB, namely KVGDB,
which can manage data in an embedded fashion and be easily scaled
to distributed environments. Experimental results demonstrate that
KVGDB can effectively meet the management and query requirements
of graph data sets, even at the scale of billions of nodes/relationships.

Keywords: Graph Database · Graph data · Key-Value Database

1 Introduction

Graph databases have emerged as a powerful tool for modeling and analyz-
ing complex relationships between data entities in various applications, such as
social networks [6] and knowledge graphs [2]. The data scale in these applica-
tions varies greatly, ranging from thousands of nodes/relationships to tens of
billions of nodes/relationships. Traditional distributed native graph databases,
such as TigerGraphDB [3] and ByteGraph, are based on distributed environ-
ments and can be cumbersome when dealing with small-scale datasets. Cloud
databases like Amazon NeptuneDB [1] cannot be deployed locally and are dif-
ficult to meet the requirements of embedded applications. We are motivated to

This work was supported by the National Key R&D Program of China(Grant
No.2021YFF0704200) and Informatization Plan of Chinese Academy of Sciences(Grant
No.CAS-WX2022GC-02).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C. Strauss et al. (Eds.): DEXA 2023, LNCS 14146, pp. 338–344, 2023.
https://doi.org/10.1007/978-3-031-39847-6_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-39847-6_26&domain=pdf
https://doi.org/10.1007/978-3-031-39847-6_26

A Key-Value Based Approach to Scalable Graph Database 339

develop a lightweight, scalable graph database capable of handling data across
different scales. Key-value databases store data in the form of key-value pairs,
boasting excellent scalability. They can be used in embedded environments as
well as expanded to distributed environments to address storage and query
requirements of large-scale datasets. Additionally, key-value databases exhibit
high performance, with the cost time of prefix search unaffected by the scale of
data.

This paper proposes a key-value based approach for building scalable graph
databases that can efficiently manage and query graph data of various scales.

2 Methodology

In key-value databases, both the key and the value are byte arrays. Taking
RocksDB as an example [4], it manages data based on Log-Structured Merge
Trees (LSM). Each write operation generates a memtable in memory, which,
upon reaching a certain size, is written to an SST file on disk. By default, the
key-value pairs in the SST file are sorted by their keys. This sorting scheme
enables key-value databases to achieve good performance in precise search and
prefix search operations. Typically, a prefix iterator is used for prefix search
with a time complexity of O(m+k), where m is the number of keys satisfying
the prefix condition, and k is the length of the longest key. Therefore, when
designing storage formats and retrieval methods for graph data on key-value
databases, it is crucial to fully exploit the inherent data order and the fast prefix
search capabilities of key-value databases.

2.1 Storage

Suppose a property graph could be simply represented as G =< N,R >,
where N is the set of nodes and R is the set of relationships (a.k.a. edges). The
key-value storage model (as illustrated in Fig. 1) of G could be represented as
KVG =< NS,NLS,RS,RTS,ORI, IRI, PID,PI >, where:

– NS: NodeStore, where the key is the combination of LabelID and NodeID,
and the value is a byte array containing all the property information of the
node. If a node has m labels (m >1), then in the NodeStore, the node is stored
as m key-value pairs, each corresponding to a label. Specifically, if a node has
no label, the storage engine will set its LabelID to an ID representing an
empty label.

– NLS: NodeLabelStore, it stores the label information of nodes, where the
key is the combination of NodeID and LabelID, and the value is blank.

– RS: It is the RelationshipStore, where the key is the RelationshipID (i.e.
RelID in Fig. 1), and the value is a byte array containing all the property
information of that relationship.

– RTS: RelationTypeStore, where the key is the combination of TypeID and
RelationshipID of a relationship, and the value is an empty byte array.

340 Z. Zhao et al.

Fig. 1. Mapping Graph Data to Key-Value Storage

– ORI: OutRelationIndex, it is the outgoing edge index, built for relationships
to accelerate graph query processing for a specific relationship direction. The
key consists of source node ID (SrcID), relationship type ID (TypeID) and
destination node ID (DstID) in order, and the value is the relationship IDs
for all the relationships correspond to the key.

– IRI: InRelationIndex, it is the incoming edge index, which modifies the order
of the key in the OutRelationIndex to destination node ID, relationship type
ID and source node ID, with the rest remaining unchanged.

– PID: PropertyIndexDic, it is the embedded property index dictionary, storing
IndexIDs of embedded property indexes. An index is uniquely identified by a
LabelID and a PropID (i.e., the ID of the property name). The query engine
can determine whether an index exists based on the LabelID and PropID
through the PropertyIndexDic; if it exists, further property filtering can be
performed in the PropertyIndex (i.e. PI).

– PI: PropertyIndex, it is the embedded property index, used for storing prop-
erty indexes. In PropertyIndex, the key is a combination of IndexID, Type-
Code, and Value, where IndexID refers to the property index ID described
in PropertyIndexDic, TypeCode refers to the type encoding of the property
value (such as integers, floating-point numbers, etc.) and Value refers to the
actual value of the property. The value contains the IDs of all nodes with
property values equal to Value under the constraints of the given LabelID
and PropID.

A Key-Value Based Approach to Scalable Graph Database 341

Fig. 2. Find Nodes based on label and ID on KVG

2.2 Query

Figures 2, 3 present three query operations on KVG, namely finding nodes by
label, finding nodes by ID, and finding nodes by property. The retrieval oper-
ations of relationships share the similar process. More generally, other graph
operations can be derived from the steps:

– Find all nodes labeled as Person. The process is shown in Fig. 2. First, obtain
the LabelID of Person (assumed to be 1) from the metadata. Then, in the
NodeStore, perform a prefix search to find the starting position with LabelID
= 1. Next, traverse the data downwards until the first node with a different
LabelID is encountered.

– Find a node with a specific ID (assumed to be 3). The process is shown in
Fig. 2. First, in the NodeLabelStore, perform a prefix search to find the first
key-value pair with NodeID = 3, and get the node’s LabelID(1). Then, based
on the LabelID(1) and NodeID(3), perform a precise search in the NodeStore
to find the corresponding data item and get the full node.

– Filter nodes by the property value, as shown in Fig. 3. Suppose the query
condition is to find all nodes labeled as Person with the age value of 31.
First, obtain the LabelID(1) and PropID(2) from the metadata. Then, in the
PropertyIndexDic, get the indexID(2). Finally, perform a prefix search on
the PropertyIndex based on the IndexID(2), TypeCode(2), and PValue(31)
to find the corresponding nodeIDs.

3 Implementation and Experiments

We implemented KVG based on RocksDB [4] and named it KVGDB. KVGDB
has been open-sourced and adopted as the storage engine of PandaDB1 [7].
1 https://github.com/grapheco/pandadb-v0.3.

https://github.com/grapheco/pandadb-v0.3

342 Z. Zhao et al.

Fig. 3. Filtering Nodes Based on Property on KVG

KVGDB adopts Cypher [5] as the query language. We evaluate the performance
of KVGDB on the LDBC-SNB dataset. LDBC-SNB [8] is currently the most
popular property graph benchmark, which includes a scalable social-network
dataset. The datasets used in this study are detailed in Table 1. The experiment
is carried out on a server with 38 4GB memory, 28 CPU-cores and 10 TB hard
disks.

Table 1. Details of Dataset

Dataset Num of nodes Num of edges Size on the disk

D1 83,298,515 507,720,806 38 GB

D2 2,523,446,454 17,016,067,035 1.24 TB

Table 2 lists the basic graph query operations tested in this experiment and
their execution times on different datasets. In the table, KVGDB on D1 and
KVGDB on D2 represent the cost times for KVGDB to execute operations on
datasets D1 and D2 (see Table 1), respectively. The Baseline represents the cost
time for Neo4j-community-3.5.6 (one of the most successful graph databases) to
execute the queries on dataset D1. We did not evaluate Neo4j on D2, because
Neo4j failed to load D2 within 12 h.

The experimental results show that KVGDB performs better than the base-
line, the execution time of most operations is within 10ms, and the execution time
of each operation on the two datasets are quite similar. This indicates that the
operation time does not increase significantly with the growth of data size, which
is consistent with the characteristics and design expectations of KV databases.

A Key-Value Based Approach to Scalable Graph Database 343

Notably, according to the data in the first row of the table, the execution time
for obtaining all nodes (getAllNodes) and all relationships (getAllRelationships)
is much higher than that for other operations. This is because the operation
to retrieve all nodes requires deserialization of all node data (and similarly for
relationships), making it a traversal operation. The execution time is already
close to the limit under existing hardware conditions.

Table 2. Cost Time of Graph Operation on the KVGDB

Operation Baseline
on D1

KVGDB
on D1

KVGDB
on D2

Operation Baseline
on D1

KVGDB
on D1

KVGDB
on D2

getAllNodes 396 s 36.8 s 1225 s getAllRelationships 1218 s 123 s 6972 s

allLabels 3 ms 12 ms 15 ms getRelationType 9 ms <1 ms <1 ms

addLabel 9 ms 4 ms 4 ms addRelationType 15 ms 4 ms 21 ms

allPropertyKeys 1 ms <1 ms <1 ms allPropertyKeys 1 ms <1 ms <1 ms

getPropertyKey 8 ms <1 ms <1 ms getPropertyKey 10 ms <1 ms <1 ms

addPropertyKey 11 ms <1 ms 2 ms addPropertyKey 7 ms <1 ms <1 ms

getNodeById 8 ms 6 ms 7 ms getRelationById 7 ms <1 ms 12 ms

hasLabels 15 ms <1 ms <1 m relSetProperty 7 ms 16 ms 88 ms

nodeAddLabel 12 ms 2 ms 6 ms relRemoveProperty 8 ms 3 ms 13 ms

nodeRemoveLabel 9 ms 6 ms 31 ms findToNodeId 7 ms <1 ms <1 ms

nodeSetProperty 11 ms 4 ms 7 ms findFromNodeId 7 ms <1 ms 8 ms

nodeRemoveProperty 9 ms 5 ms 8 ms addRelation 10 ms 8 ms 9 ms

addNode 34 ms <1 ms 2 ms deleteRelation 12 ms 3 ms 2 ms

deleteNode 16 ms <1 ms 2 ms findOutRelations 145 ms 3 ms 2 ms

findInRelations 901 ms 3 ms 5 ms

4 Conclusion

In this paper, we proposed a method for mapping graph data to key-value storage
and implemented a scalable graph database based on RocksDB, namely KVGDB.
It can manage data in an embedded fashion and be easily expanded to distributed
environments for large-scale datasets. In the future, we will study graph pattern
matching algorithms suitable for the features of KVGDB.

References

1. Bebee, B.R., et al.: Amazon neptune: graph data management in the cloud. In:
ISWC (P&D/Industry/BlueSky) (2018)

2. Bollacker, K., Evans, C., Paritosh, P., Sturge, T., Taylor, J.: Freebase: a collabo-
ratively created graph database for structuring human knowledge. In: Proceedings
of the 2008 ACM SIGMOD International Conference on Management of Data, pp.
1247–1250 (2008)

344 Z. Zhao et al.

3. Deutsch, A., Xu, Y., Wu, M., Lee, V.: Tigergraph: a native MPP graph database.
arXiv preprint arXiv:1901.08248 (2019)

4. Dong, S., Kryczka, A., Jin, Y., Stumm, M.: Rocksdb: evolution of development
priorities in a key-value store serving large-scale applications. ACM Trans. Storage
(TOS) 17(4), 1–32 (2021)

5. Francis, N., et al.: Cypher: an evolving query language for property graphs. In:
Proceedings of the 2018 International Conference on Management of Data, pp. 1433–
1445 (2018)

6. Myers, S.A., Sharma, A., Gupta, P., Lin, J.: Information network or social network?
the structure of the twitter follow graph. In: Proceedings of the 23rd International
Conference on World Wide Web, pp. 493–498 (2014)

7. Shen, Z., Zhao, Z., Wang, H., Liu, Z., Hu, C., Zhou, C.: PandaDB: intelligent man-
agement system for heterogeneous data. Int. J. Softw. Inform. 11(1), 69–90 (2021)

8. Szárnyas, G., et al.: The LDBC social network benchmark: Business intelligence
workload. Proc. VLDB Endowment 16(4), 877–890 (2022)

http://arxiv.org/abs/1901.08248

Bitwise Algorithms to Compute
the Transitive Closure of Graphs

in Python

Xiantian Zhou1(B), Abir Farouzi2, Ladjel Bellatreche2, and Carlos Ordonez1

1 University of Houston, Houston, USA
xiantianzhou@gmail.com

2 LIAS/ISAE-ENSMA, Chasseneuil-du-Poitou, France

Abstract. The transitive closure (TC) of a graph is a core problem in
graph analytics. There exist many High Performance Computing (HPC)
and database solutions to solve the TC problem for “big graphs”. However,
they generally require the graph to fit in main memory and they require
converting into specific binary file formats. To solve such limitations, this
paper presents a novel solution to solve TC within the Python library
ecosystem, combining HPC techniques and database system algorithms.
We introduce two complementary algorithms removing HPC memory lim-
itations: (1) an algorithm that efficiently converts edges into bit vectors
and (2) a database-oriented, bit-vector, highly parallel matrix algorithm,
which processes the graph in blocks. An experimental evaluation shows
our solution provides better performance than state-of-the-art Python
libraries.

1 Introduction

Transitive closure (TC) is one of the most computationally intensive tasks in data
science research, primarily due to the large size and complex structure of graphs. It
plays a crucial role in various graph problems. For instance, triangle enumeration
represents the initial two steps in TC [4]. Consequently, several solutions leverag-
ing HPC technologies have been proposed, including graph engine solutions, SQL-
based solutions, and Python libraries [5]. SQL-based solutions offer elegance and
memory limitations freedom, while Python is a popular language for data analysis,
offering numerous libraries and packages for graph analysis such as GraphBLAS,
Scikit-network, and NetworkX. These libraries provide state-of-the-art graph algo-
rithms [2,3]. However, Python may be slow when analyzing large graphs, partic-
ularly those that cannot fit in RAM. Moreover, significant research progress has
been made on efficient analytic algorithms for TC, some of which are based on rela-
tional algebra operations. For example, some algorithms employ hash-based frag-
mentation or fragmentation based on the semantic content of data. [7] explored a
double-hash data fragmentation scheme. Another class of parallel TC algorithms is
based on matrix manipulation. [1] presented parallel algorithms for computing the
transitive closure of a database relation, applicable on both shared-memory and
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C. Strauss et al. (Eds.): DEXA 2023, LNCS 14146, pp. 345–351, 2023.
https://doi.org/10.1007/978-3-031-39847-6_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-39847-6_27&domain=pdf
https://doi.org/10.1007/978-3-031-39847-6_27

346 X. Zhou et al.

message-passing architectures. Generally, these parallel transitive closure algo-
rithms operate directly on the adjacency list. However, parallel TC algorithms that
work on amatrix representation can bemore efficient. In fact, our experimentswith
different input graphs have shown that the TC graph density can exceed 70%, even
if the input graph density is below 10%.

In this paper, we introduce disk-based distributed TC solutions that operate
on the bit-matrix. We study how to develop TC algorithms within the Python
ecosystem while adhering to principles of database systems. Our ultimate aim
is to enable efficient processing of large graphs without memory limitations and
with acceptable response times. Our implementations are suitable for reachabil-
ity and path problems, and our experimental study shows the superiority of our
solutions over existing popular analysis systems, suggesting potential advance-
ments in bridging high-performance computing and Python.

2 Background

2.1 Graph

Let G = (V,E) be a directed graph with n = |V | vertices (V is the set of
vertices) and m = |E| edges (E is the set of edges). An edge in E links two
vertices in V , and has a direction. The adjacency matrix of G is a n× n matrix
where a 1 is stored in the entry (i, j) if there exists an edge from vertex i to
vertex j. Storing the adjacency matrix in this sparse form helps conserve space
and CPU resources. In our work, we do not use weight since we are solving TC
problem. Thus, the input graph is represented as an edge list E(i, j) and can be
sorted either by i (Ei) or j (Ej). Since only existing edges are stored, the space
complexity is O(m). In sparse matrices, we assume m = O(n).

The TC graph G∗ compute all vertices reachable from each vertex in G. It
is defined as: G∗ = (V,E∗), where E∗ = {(i, j) s.t. there is a path between i
and j}. TC graph is stored as an adjacency matrix, because TC graph is much
denser than the sparse input graph. The entries of TC matrix can be stored in
one bit. Our paper uses a 64-bits integer in C to store 64 edges.

2.2 Classical Algorithms in Main Memory

Warshall’s algorithm is recognized as the best algorithm for computing TC.
It performs perfectly with HPC in main memory. However, when dealing with
large graphs that cannot fit in main memory, it fetches random edges from disk
and reads the entire matrix into memory at least N times. To address this
issue, Warren proposed an improvement of Warshall’s algorithm that reduces
the number of I/O for large graphs by processing the matrix elements in a row
order in two passes [6]. So we think Warren is better for large graphs because it
has lower I/O: it requires loading block fewer times from disk into RAM. Thus,
it is chosen as the base algorithm for developing our solution.

Bitwise Algorithms to Compute the Transitive Closure of Graphs in Python 347

Input: E
Output: E∗

1 for i ← 2 to n do
2 for j ← 1 to i − 1 do
3 if E[i, j] = 1 then
4 set E[i, ∗] = E[i, ∗] ∨ E[j, ∗]
5 end

6 end

7 end
8 for i ← 1 to n − 1 do
9 for j ← i + 1 to n do

10 if E[i, j] = 1 then
11 set E[i, ∗] = E[i, ∗] ∨ E[j, ∗]
12 end

13 end

14 end
Algorithm 1: Warren’s Algorithm

3 TC Solved in Python with Database Algorithms

Inspired by database systems, our solutions process the input graph by blocks
instead of reading the entire graph into main memory.

3.1 Transforming the Edge Data Set into a Bit Matrix

Storing the TC graph in a matrix has many advantages such as using one bit
to store each edge, and doing a world-parallel “OR” instruction by storing the
matrix in packed row-major order. Therefore, our solution will pre-process the
input graph by transforming it into a bit-matrix.

For large graphs, we read and process the input graph by blocks in the main
memory. We summarize the conversion of a block into a bit-matrix block below.

1. Initialize a bit-matrix block to zero.
2. For each neighbor j of a source vertex i, find the position of j bit in row i.
3. Set the bit entry (i, j) to 1.

We call the vector of bits performing OR together as a bit-vector. A bitmask
will be used to extract or set a bit in the bit-vector. In our solution, each block
is read from disk, converted to a bit-matrix, and written back to disk. Figure 1
shows the workflow of converting the input data into a bit-matrix, whose size is
n/8 bytes instead of n ∗ 4 bytes (edges are stored with integer values).

3.2 Our Scalable Warren’s Algorithm

We choose Warren’s algorithm as the base algorithm to develop our solution
for parallel systems, and we use the Numpy library in Python to implement

348 X. Zhou et al.

Fig. 1. Converting the input graph into a bit-matrix.

Input: Eb, nv, jstart, jend

Output: E∗
b

1 while not end of bit-matrix do
2 read a block, blockend ← min(blockstart + blocksize, n)
3 for i ← blockstart to blockend do
4 bitmask ← 1
5 for j ← jstart to jend do
6 bitmask ← (bitmask shift left by 1) | (shift right by (nv − 1))

7 if Eb(i,
j

bsize
) & bitmask = 1 then

8 for k ← 1 to n
nv

do

9 Eb[i, k] = Eb[i, k] ∨Eb[j, k]
10 end

11 end

12 end

13 end
14 write the block to disk; blockstart ← blockend + 1

15 end
Algorithm 2: block tc algorithm.

this algorithm. The bit-matrix is stored on disk in a row-wise manner, allowing
for continuous access during bitwise OR operations, which promotes bit-level
parallelism. In our solution, we employ parallel processing to read a bit-vector,
thereby enhancing computational speed. The size of the vector is determined by
the processor’s word size, which is dictated by the CPU. The parallel processes
reduce the number of instructions that the system must execute.

Furthermore, we read and process a block once, since the entire input graph
can be too large to fit in main memory. A block that contains several continuous
rows is a plain array of bits. When one block finishes processing, a new one will
replace the old one. At anytime during execution, there are two blocks in main
memory, so the memory space needed is much smaller than O(n2). Algorithm 3
shows our improved TC algorithm. A variable bitmask which has the same bit
size as bitvector will be used and initialized as 1 (the leftmost bit is 1). Note
that TC will be dense for any connected graph, since each iteration makes the
partial result denser. That is why a pure sparse solution becomes slow. If we use
a dense matrix format from the beginning, the competing time for each loop is
related to the number of vertices which is a constant.

Bitwise Algorithms to Compute the Transitive Closure of Graphs in Python 349

Input: Eb, bitvector, blocksize
Output: E∗

b

1 n ← |V |, bitmask ← 1, nv ← |bitvector| , blockstart ← 2
2 bloc tc(Eb, nv, 1, i − 1)
3 blockstart ← 1,
4 bloc tc(Eb, nv, i + 1, n)

Algorithm 3: Our block-based TC system.

3.3 Time, Space and I/O Cost Analysis

Let us consider the limiting cases of a complete graph and a totally disconnected
graph. That means the bit-matrix is an all-one matrix and an all-zero matrix.
The time complexity of our solution is between O(n2/(nv)) and O(n3/(n2

v)),
where nv is the size of bit-vector. We can perform an ’or’ operation on vector size
(nv) bits at a time, which is the size of the bitvector. Then limiting cases can give
n2/nv to n3/n2

v number of ’Or’ operations. Our solution is easy to be paralleled
for the Numpy library in Python, the time complexity can be O(n2/(nv ∗ P))
to O(n3/(n2

v ∗ P)) for the limiting cases where p is the number of processors.
For large graphs, it will be processed by blocks. Note that the entire graph will
be read to main memory once, even our solution processes by blocks. Suppose a
block contains nb rows, the number of I/O is n/nb.

For space complexity, since TC computes whether a vertex i can reach
another vertex j (i, j ∈ V), each entry of the TC bit matrix is represented
by one bit. The size of the TC bit matrix is n2/8 byte since each bytes contains
8 bits. When processing by blocks, there are at most two blocks in main memory
at the same time. Thus, the space complexity of our solution is O(2 ∗ nb ∗ n/8).

4 Performance Evaluation

4.1 Experimental Setup

Software and Hardware. For the competing system, we choose Python Net-
workX; a popular graph analytics in Python. It is used for the creation, manipu-
lation, and study of the complex graphs. We execute each experiment five times
on a virtual machine which has 8 cores, 20 GB RAM, 1 TB disk. The size of
the bit-vector is 64 to match the number of bits of CPU registers (a 64 bit int)..
The computing time of our solutions includes I/O, transforming the input table
to a binary matrix, and computing TC.

Data Sets. The used data sets are summarized in Table 1, obtained from the
konect network data collection1. We chose graphs with different numbers of
vertices and edges. Moreover, we use the density to indicate the graph structure,
where graph density is m

n∗n . We choose graphs with different density to evaluate
our algorithm.
1 http://konect.cc/.

http://konect.cc/.

350 X. Zhou et al.

4.2 Comparing with Python NetworkX Graph Library

The NetworkX library in Python has a function transitive closure() that returns
TC of a directed graph. Table 1 shows the average time measures. Our solution
demonstrates significant performance advantages over NetworkX across various
types of graphs. Particularly for large graphs like Marvel and Gnutella, our
solution successfully completes the execution while NetworkX fails. Notably, our
solution exhibits efficiency not only for dense graphs but also for sparse graphs.
It is important to note that the running time is influenced by the density of the
graph, as observed during the analysis of WekiLinks and Marvel’s execution.

Table 1. Comparing with NetworkX, time in seconds.

Data set Competitor Our solution

n m density NetworkX block tc

Hamster 1859 12K < 0.36% 191 4

WekiLinks 6K 439K < 0.67% Stop 1200

Gnutella 10K 39K < 0.034% Stop 112

Marvel 19K 96K < 0.025% Fail 439

“Stop” when computation is more than 30 min.

5 Conclusions and Future Work

In this paper, we explore bitwise algorithms to study TC with Python libraries.
We believe Python language is more feasible, even other tools are efficient.
Inspired by the database processing and HPC, We presented a disk-based solu-
tion to compute the TC of graphs. Our experiments show that it consistently out-
performed popular analytic platforms, NetworkX library in Python. For future
work, we will explore the logarithmic algorithm, and exploit more HPC tech-
niques, such as multicore CPUs and GPUs to solve graph path problems.

References

1. Agrawal, R., Dar, S., Jagadish, H.V.: Direct transitive closure algorithms: design
and performance evaluation. ACM Trans. Database Syst. 15, 427–458 (1990)

2. Bonald, T., de Lara, N., Lutz, Q., Charpentier, B.: Scikit-network: graph analysis
in Python. J. Mach. Learn. Res. 21, 185:1–185:6 (2020)

3. Chamberlin, J., Zalewski, M., McMillan, S., Lumsdaine, A.: PyGB: GraphBLAS
DSL in Python with dynamic compilation into efficient C++. In: IPDPS (2018)

4. Farouzi, A., Bellatreche, L., Ordonez, C., Pandurangan, G., Malki, M.: A scalable
randomized algorithm for triangle enumeration on graphs based on SQL queries.
In: Song, M., Song, I.-Y., Kotsis, G., Tjoa, A.M., Khalil, I. (eds.) DaWaK 2020.
LNCS, vol. 12393, pp. 141–156. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-59065-9 12

https://doi.org/10.1007/978-3-030-59065-9_12
https://doi.org/10.1007/978-3-030-59065-9_12

Bitwise Algorithms to Compute the Transitive Closure of Graphs in Python 351

5. Ordonez, C.: Optimization of linear recursive queries in SQL. IEEE Trans. Knowl.
Data Eng. 22, 264–277 (2010)

6. Warren, H.S.: A modification of Warshall’s algorithm for the transitive closure of
binary relations. ACM Commun. 18, 218–220 (1975)

7. Zhou, X., Zhang, Y., Orlowska, M.E.: Parallel transitive closure computation in
relational databases. Inf. Sci. 92, 109–135 (1996)

Discovering Top-K Partial Periodic
Patterns in Big Temporal Databases

Palla Likhitha(B) and Rage Uday Kiran

The University of Aizu, Fukushima, Japan

likhithapalla7@gmail.com, udayrage@u-aizu.ac.jp

Abstract. Partial periodic pattern mining involves discovering all the
patterns in a temporal database that satisfy the specified minimum peri-
odic support (minPS) and period (per) constraints. The minPS controls
the minimum times a pattern must occur periodically in a database. The
per controls the maximum inter-arrival time within which a pattern must
reappear to consider its reoccurrence to be periodic in a database. Setting
appropriate minPS and per values for any database is an open research
problem. This paper addresses this open problem by proposing a solu-
tion to discover top-k partial periodic patterns in temporal databases.
Top-k partial periodic patterns represent a total of k number of partial
periodic patterns having the highest minPS value in a database. An effi-
cient depth-first search algorithm, called top-k Partial Periodic Pattern
Miner (k-3PMiner), which takes k, and per thresholds as an input was
presented to find all desired patterns in a database. Experimental results
on synthetic and real-world databases demonstrate that our algorithm is
memory and runtime efficient and highly scalable.

Keywords: Data mining · Pattern mining · Periodic · Temporal
Database

1 Introduction

Partial periodic pattern mining is an important knowledge discovery technique
to find all patterns exhibiting partial periodic behavior in a temporal database.
The basic model of partial periodic pattern mining is as follows [4]: Let I =
{i1, i2, ..., in} be the set of n items appearing in a database. A set of items
X ⊆ I is called an itemset. An itemset containing m items is called a m-itemset.
The length of this itemset is m. A transaction t consists of timestamp, and an
itemset. That is t = (ts, Y), where ts represents the transaction time and Y is
an itemset. A temporal database TDB is an ordered collection of transactions,
i.e. TDB = {t1, t2, · · ·, tk}, where k = |TDB| represents the total number of
transactions. Let tsmin and tsmax be the minimum and maximum timestamps of
all the transactions in TDB, respectively. For a transaction t = (ts, Y), such that
X ⊆ Y , it is said that X occurs in t and such a timestamp is denoted as tsX . The
total number of transactions containing X in TDB is defined as the frequency
of X and denoted as freq(X). That is, freq(X) = |TSX |. Let tsXj , tsXk ∈ TSX ,
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C. Strauss et al. (Eds.): DEXA 2023, LNCS 14146, pp. 352–357, 2023.
https://doi.org/10.1007/978-3-031-39847-6_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-39847-6_28&domain=pdf
http://orcid.org/0000-0003-3032-9061
http://orcid.org/0000-0002-5417-0289
https://doi.org/10.1007/978-3-031-39847-6_28

Discovering Top-K Partial Periodic Patterns in Big Temporal Databases 353

1 ≤ j < k ≤ m, denote any two consecutive timestamps in TSX . An inter-
arrival time of X denoted as iatX = (tsXk − tsXj). Let IATX = {iatX1 , iatX2 ,-
· · · , iatXk }, k = sup(X) − 1, be the list of all inter-arrival times of X in TDB.
An inter-arrival time of X is said to be periodic (or interesting) if it is no more
than the user-specified period (per). A iatXi ∈ IATX is said to be periodic
if iatXi ≤ per. Let ̂IATX be the set of all inter-arrival times in IATX with
iatX ≤ per. That is, ̂IATX ⊆ IATX such that if ∃iatXk ∈ IATX : iatXk ≤ per,
then iatXk ∈ ̂IATX . The period-support of X, denoted as PS(X)=| ̂IATX |.
Given a temporal database (TDB), period (per), and minimum period-support
(minPS), the problem of partial periodic pattern mining is to find all patterns
in TDB that have periodic-support no less than minPS.

Uday et al. [4] described a pattern-growth algorithm to find desired patterns
in a temporal database. Ravi et al. [6] extend this model to discover the par-
tial periodic patterns in columnar temporal databases. However, this model’s
widespread adoption and successful industrial application were hindered by this
obstacle: “minPS and per are two key constraints that make partial periodic
pattern mining practicable in real-world applications. They are used to prune
the search space and limit the number of patterns generated. Unfortunately, set-
ting these two constraints for an application is an open research problem and
may require a profound knowledge of the application’s background.” With this
motivation, this paper proposes a solution of finding top-k partial periodically
occurring patterns in a temporal database.

The contribution of this paper is as follows. First, we propose an extended
model of finding top-k partial periodic patterns in a temporal database. Two
constraints, namely k and per, were employed to find the interesting top-k par-
tial periodic patterns having the highest minPS value in the database. A novel
concept known as dynamic minimum periodic support was introduced to reduce
the search space and computational cost-effectively. We also introduce an effi-
cient algorithm, called top-k Partial Periodic Pattern Miner (k-3PMiner), to
find all the desired patterns. Experimental results on synthetic and real-world
databases demonstrate that our algorithm is memory and runtime efficient.

The rest of the paper is organized as follows. Section 2 presents the extended
model of top-k partial periodic patterns and the proposed algorithm. Section 3
reports the experimental results. Finally, Sect. 4 concludes the paper with
research directions.

2 Proposed Algorithm

2.1 Basic Idea: Dynamic Minimum Periodic-Support

Reducing the enormous search space is challenging as our model does not employ
any constraint to reduce the search space. Finding candidate items (or 1-items)
play a crucial role in discovering complete set of top-k partial periodic patterns.
Algorithm 1 describes finding all candidate items that exist in a database to
construct c3PList. Algorithm 2 descibes the procedure of finding all the top-k
partial periodic patterns in a database.

354 P. Likhitha and R. U. Kiran

Algorithm 1. PartialPeriodicItems(Temporal Database (TDB), K (k), period
(per):
1: Let’s say that the c3PList=(Y, TS-list(Y)) is a dictionary that keeps track of tem-

poral information about a pattern that occurs in a TDB. First, let’s create a
temporary list called TSl and use it to keep track of the timestamp of the last
time an item appeared in the database. Let PS be a temporary list to record the
periodic support of an item in the database. Let topkPatterns be a list to record
the top items with highest periodic support value. Let dMinPS be a variable to
store the dynamic minimum periodic support dMinPS among topkPatterns.

2: for each transaction t ∈ TDB do
3: if tscur is i’s first occurrence then
4: Insert i and its timestamp into the c3P-list.
5: Set TSl[i] = tscur and PSi = 0.
6: else
7: Add i’s timestamp in the c3P-list.
8: if (tscur − TSl[i]) ≤ per then
9: Set PSi + +.

10: Set TSl[i] = tscur.
11: Sort the items in the c3P-list in ascending order of their periodic support.
12: for each item i in c3P-list do
13: if length(topkPatterns) < K: then
14: Store the item into topkPatterns
15: dMinPS = min(periodic support of all items in topkPatterns)
16: Call k-3PMiner(c3P-List).

Algorithm 2. k-3PMiner(c3P-List)
1: for each item i in c3P-List do
2: Set tp = ∅ and X = i;
3: for each item j that comes after i in the c3P-list do
4: Set Y = X ∪ j and TSY = TSX ∩ TSj ;
5: Calculate minPS of Y ;
6: if PS(TSY) ≥ dMinPS then
7: Add Y to tp and Y is considered as candidate top-k partial periodic itemset;
8: Check(Y, TSY)

(to check if pattern can make in to top-k partial periodic pattern)
9: k-PFPMiner(tp)

Algorithm 3. Check(X, TS-List)
if minPS(TS − List) > dMinPS then

Pop the Last pattern and insert X in topkPatterns.
dMinPS = min(periodic support of all items in topkPatterns)

Discovering Top-K Partial Periodic Patterns in Big Temporal Databases 355

3 Experimental Results

Since there exists no algorithm to find Top-k partial periodic patterns in tem-
poral databases using k constraint, we evaluated our algorithm k-3PMiner with
näıve algorithm, The näıve algorithm involves the following two steps: (i) finding
all partial periodic patterns in a temporal database using 3P-Growth algorithm
[5] and (ii) generating top-k partial periodic patterns from all partial periodic
patterns by performing another sorting.

3.1 Experimental Setup

Our k-3PMiner algorithm was developed in Python 3.7 and executed on a Giga-
byte R282-z94 rack server machine containing two AMD EPIC 7542 CPUs and
600 GB RAM. The operating system of this machine is Ubuntu Server OS 20.04.
The experiments have been conducted on both synthetic (T10I4D100K) and
BMS-WebView-1 and real-world Pollution databases.

The T10I4D100K is a sparse synthetic database generated using the proce-
dure described in [2]. This database contains 870 items and 100,000 transactions.
The minimum, average, and maximum transaction lengths of this database are
1, 10, and 29 respectively. The BMS-WebView-1 is a sparse database contain-
ing 59,602 transactions and 497 items. The minimum, average, and maximum
transaction lengths of this database are 1, 10, and 76 respectively.

The Pollution database is a high dimensional real-world database provided
by Japanese Ministry of the Environment developed the Atmospheric Envi-
ronmental Regional Observation System (AEROS) [3] to tackle air pollution
problems. Each transaction contained the following information: timestamp in
hours, station identifiers that have recorded PM2.5 values no less than 16 µg/m3.
The resulting database, Pollution, contained 1600 items and 720 transactions.
The minimum, average, and maximum transaction lengths are 11, 460, and 971,
respectively. The k3P-miner code and the databases were provided at [1] of our
experiments.

3.2 Evaluation of both the Algorithms by Varying only k

Figures 1a, 1b, 1c shows the top-k partial periodic patterns discovered on dif-
ferent T10I10D100K, BMS-WebView-1 and Pollution databases by varying k
value, respectively. The per values are set at 2000, 1000 and 250 (in count)
respectively. For Näıve algorithm the minPS values are set at 100, 30, 250 (in
count) respectively. As k increases, the number of top-k patterns also increases.

Figures 2a, 2b, and 2c show the time consumed at a different number of k
values in T10I10D100K, BMS-WebView-1 and Pollution databases, respectively.
It can be observed that an increase in k increases the runtime to find all top-k
partial periodic patterns being generated at different k values. As k increases,
the number of patterns to be mined increases, resulting in time consumption.

Figures 3a, 3b, and 3c show the memory consumed at a different number of k
values in T10I10D200K, BMS-WebView-1 and Pollution databases, respectively.

356 P. Likhitha and R. U. Kiran

It can be observed that an increase in k increases the memory to find all top-k
partial periodic patterns being generated at different k values.

3.3 Scalability Test

In this experiment, we have used the Kosarak database, which is a huge database
having 9,90,000 transactions (in count). We have divided this database into
five segments, each consisting of 200,000 transactions. We have evaluated the
performance of k-3PMiner by adding each successive segment to the ones that
came before it. The runtime requirements and memory consumption k-3PMiner
for each segment of the Kosarak database are shown in Fig. 4a and 4b, when k =
200. The following are some noteworthy findings that can be derived from these
figures: (i) runtime requirements of k-3PMiner increases almost proportionally
as database size grows. (ii) memory requirements of k-3PMiner where we can
observe same as 4a.

Fig. 1. top-k patterns on various databases by varying k

Fig. 2. Runtime evaluation on various databases by varying k

Fig. 3. Memory evaluation on various databases by varying k

Discovering Top-K Partial Periodic Patterns in Big Temporal Databases 357

Fig. 4. Scalability of k-3PMiner

4 Conclusions and Future Work

In this paper, we have proposed an efficient depth-first search algorithm, called
top-k Partial Periodic Pattern Miner (k-3PMiner), to find all desired patterns
in big temporal databases. We have solved the open research problem of setting
minPS and per constraints by introducing a novel upper-bound measure named
dynamic minimum periodic support. An in-depth examination of the proposed
k-3PMiner approach on four synthetic and real-world databases revealed that its
memory consumption and runtime are efficient and highly scalable. As for future
work, we will work on discovering top-k partial periodic patterns in uncertain
databases.

References

1. k3pminer and datasets to verify repetability. https://github.com/udayRage/
codeData/DEXA 2023

2. Agrawal, R., Imieliński, T., Swami, A.: Mining association rules between sets of
items in large databases. In: SIGMOD, pp. 207–216 (1993)

3. Ministry of Environment, J.: Atmospheric environmental regional observation sys-
tem (2021). http://soramame.taiki.go.jp/ Accessed 1 June 2021

4. Kiran, R.U., Shang, H., Toyoda, M., Kitsuregawa, M.: Discovering partial periodic
itemsets in temporal databases. In: International Conference on Scientific and Sta-
tistical Database Management, pp. 30:1–30:6 (2017)

5. Kiran, R.U., Venkatesh, J., Toyoda, M., Kitsuregawa, M., Reddy, P.K.: Discovering
partial periodic-frequent patterns in a transactional database. J. Syst. Softw. 125,
170–182 (2017)

6. Kiran, R.U., et al.: Efficient discovery of partial periodic patterns in large
temporal databases. Electronics 11(10), 1523 (2022). https://doi.org/10.3390/
electronics11101523,https://www.mdpi.com/2079-9292/11/10/1523

https://github.com/udayRage/codeData/DEXA_2023
https://github.com/udayRage/codeData/DEXA_2023
http://soramame.taiki.go.jp/
https://doi.org/10.3390/electronics11101523
https://doi.org/10.3390/electronics11101523
https://www.mdpi.com/2079-9292/11/10/1523

Query Optimization

Dexteris: Data Exploration
and Transformation with a Guided Query

Builder Approach

Sébastien Ferré(B)

Univ Rennes, CNRS, Inria, IRISA, 35000 Rennes, France
ferre@irisa.fr

Abstract. Data exploration and transformation remain a challenging
prerequisite to the application of data analysis methods. The desired
transformations are often ad-hoc so that existing end-user tools may not
suffice, and plain programming may be necessary. We propose a guided
query builder approach to reconcile expressivity and usability, i.e. to sup-
port the exploration of data, and the design of ad-hoc transformations,
through data-user interaction only. This approach is available online as
a client-side web application, named Dexteris. Its strengths and weak-
nesses are evaluated on a representative use case, and compared to plain
programming and ChatGPT-assisted programming.

1 Introduction

In recent years, data has become ubiquitous and it is increasingly important for
stakeholders to derive value from them. To achieve this objective, data anal-
ysis methods have been developed to help stakeholders gain insight into their
data. However, it is almost always necessary to explore and transform data before
applying data analysis methods. Data exploration is crucial to help data analysts
understanding the data, and choosing the transformations to apply. Data trans-
formation refers to the process of converting data from one format, structure,
or type to another to meet the requirements of a particular use case or analy-
sis. Examples of data transformation operations include filtering, aggregating,
sorting, merging, pivoting, and applying mathematical or statistical functions
to the data. In this paper, we focus on fine-grained data transformations, like
converting between ad-hoc CSV and JSON files, and extracting or aggregating
information from such files.

When choosing a tool for data exploration and transformation, data stake-
holders are left with a trade-off between their expressive power and their usabil-
ity. Expressive power is the range of questions and transformations that can be
applied to the data. Usability is the degree of technical skills required to use it,
as well as the level of guidance provided by the tool. At one end of the spectrum
there is full-fledged programming, e.g. programming in the rich environment

This research is supported by the CominLabs project MiKroloG.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C. Strauss et al. (Eds.): DEXA 2023, LNCS 14146, pp. 361–376, 2023.
https://doi.org/10.1007/978-3-031-39847-6_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-39847-6_29&domain=pdf
https://doi.org/10.1007/978-3-031-39847-6_29

362 S. Ferré

of Python. This obviously offers the highest expressive power but this requires
advanced programming skills and offers little guidance. At the other end of the
spectrum there are end-user intuitive applications with a GUI (Graphical User
Interface). For instance, spreadsheets are obviously more usable, as testified by
their widespread usage. However, they are limited to tabular data, and computa-
tions are mostly cell-wise. In between there are ETL tools (Extract, Transform,
Load), e.g. Talend, Pentaho. They offer high-level features for common data for-
mats and common data transformations, e.g. merging data, removing duplicate
data. However, in many cases, they require to write SQL queries to extract data
from relational data tables, or JSON paths to extract data from JSON files, or
other kinds of code. They thus require advanced technical skills, although to a
lesser degree than full-fledged programming skills.

The N<A>F design pattern [4] has been shown to help reconciling expresivity
and usability. It does so by relying on a formal language, and by bridging the
gap between the end-user and the formal language with a guided query builder
approach. Complex queries are incrementally and interactively built with data
feedback and guidance at every building step. The design pattern has already
been applied to the querying of SPARQL endpoints [5], the authoring of RDF
descriptions and OWL ontologies [4], and data analytics on RDF graphs [6].

In this paper, we present the application of the N<A>F design pattern to
the task of data exploration and transformation. We choose JSONiq [7] – the
JSON query language – as the target formal language because it combines sev-
eral advantages. It is a high-level declarative query language and yet a Turing-
complete programming language; it lies on W3C standards; and although it uses
JSON as a pivot data format, it is interoperable with other data formats such
as text, CSV or XML. JSONiq is to JSON data what XQuery is to XML, and
what SQL is to relational data. As a declarative and expressive language, it is
a good fit for data exploration, data extraction, data transformation, and even
data generation. The contributions of this work are:

1. a guided query builder approach to data exploration and transformation,
based on the N<A>F design pattern, where arbitrary computations can be
achieved, and only primitive inputs are required from end-users;

2. an online prototype called Dexteris1, running as a client-side web application.

The paper is organized as follows. Section 2 motivates our approach with
a concrete example. Section 3 discusses related work, and describes the N<A>F
design pattern. Sections 4, 5, and 6 defines the three parts of N<A>F for data
exploration and transformation: the intermediate language, the machine side,
and the user interface. Section 7 evaluates the strengths and weaknesses of our
approach, comparing it with plain programming and ChatGPT-assisted pro-
gramming. Supplementary materials are available online2 for the motivating
example and evaluation use case (input and output files, Python programs and
JSONiq queries, chat logs, and a Dexteris screencast).

1 Freely available at http://www.irisa.fr/LIS/ferre/dexteris/.
2 http://www.irisa.fr/LIS/ferre/pub/dexa2023/.

http://www.irisa.fr/LIS/ferre/dexteris/
http://www.irisa.fr/LIS/ferre/pub/dexa2023/

Data Exploration and Transformation with Dexteris 363

2 Motivating Example

As a motivating example, let us consider a scenario where the available input
file is a CSV file describing projects by their ID, name, and members.

project id,project name,members
P1,Alpha,"Alice, Charlie"
P2,"Beta 2","Bob, Charlie"

The objective is to obtain a JSON file organized as a list of unique project
members, describing each member by the list of projects she takes part in, and
the number of such projects.

[{"member": "Alice",
"projects": [{"id": "P1", "name": "Alpha"}],
"project number": 1},

{"member": "Charlie",
"projects": [{"id": "P1", "name": "Alpha"},

{"id": "P2", "name": "Beta 2"}],
"project number": 2},

{"member": "Bob",
"projects": [{"id": "P2", "name": "Beta 2"}],
"project number": 1}]

Any system that works on tabular data only will have a hard time generating
the expected output data because the latter has a nested structure. Indeed, it
is a list of objects that have a field (“projects”) whose values are again lists of
objects. The transformation from the available input to the expected output
requires at least the following processing steps, in informal terms:

– reading the tabular data structure (CSV) in the input file;
– iterating over projects, i.e. over rows;
– splitting the lists of members, in the third column;
– grouping all (project, member) pairs by member;
– collecting all projects of each member;
– counting the number of projects per member;
– generating a JSON object for each member;
– collecting them and writing the whole in JSON format.

A concise Python program that performs the transformation is about 30 lines.
Using JSONiq, we can make the transformation shorter (12 lines) and higher-
level, in particular without assignments to mutable variables, hence without
having to reason about computation states [10]. It relies on a JSON view of a
CSV file, where each row is represented as a JSON object with CSV columns as
fields.

for $row in collection("input.csv")
let $project := {

"id" : $row."project id"

364 S. Ferré

"name" : $row."project name" }
for $member in split($row."members", ", ")

group by $member // $project is now a sequence of objects
return {

"member" : $member,
"projects" : [$project],
"project number" : count($project) }

Using the Dexteris tool that implements our approach, it is possible to build
the above JSONiq program by starting from the input file, and then by apply-
ing suggested elementary transformations one after another. The only required
inputs are elementary values: field names, new variable names, and the splitting
separator. The number of required steps is 25, which includes 25 selections and
8 short inputs. Any part of a built transformation can be edited a posteriori. For
instance, if one wants the JSON output to be in alphabetical order of members,
only 2 additional steps are needed.

3 Related Work and Background

To cope with the difficulty to write data transformations in general-purpose pro-
gramming languages, high-level data-oriented languages have been defined and
even standardized. Notable examples are XQuery for XML data [14], JSONiq for
JSON data [7] – which was strongly inspired by XQuery –, and formula languages
that back graphical tools, such as the M language in Power BI [2]. Graphical tools
like Power BI ambition to make all transformations doable in a graphical way but
they recognize that “there are some transformations that can’t be done in the best
way by using the graphical editor.” [9] The latter is also limited to tabular data,
although it can cope with varied formats. The closest work to ours is probably
the educative platform Scratch by MIT [12], which enables users to build arbi-
trarily complex programs in a purely graphical way, by assembling blocks with
syntax-based shapes. However, its programming language is not appropriate for
data transformations. Another related domain is program synthesis [8], which
ambitions to generate programs solely by providing examples of input-output
pairs. For instance, given strings like “Dr. Helen Smith (1999)”, it can learn to
output strings like “Smith H.” from a few examples. It is however yet too limited
in the size of the examples and in the complexity of generated programs to be
largely applicable to data transformations. Moreover, some transformations are
one-off and therefore producing an example implies producing the expected out-
put. It is also sometimes simpler to specify the transformation in an intentional
way rather than by providing examples.

The purpose of the N<A>F design pattern [4] is to bridge the gap between
an end user speaking a natural language (NL) and a machine understanding
a formal language (FL), as summarized in Fig. 1. The design pattern has for
instance been instantiated to the task of semantic search with SPARQL as the
formal language [5]. The central element of the bridge is made of the Abstract
Syntax Trees (AST) of an Intermediate Language (IL), which is designed to

Data Exploration and Transformation with Dexteris 365

Fig. 1. Principle of the N<A>F design pattern

make translations from ASTs to both NL (verbalization) and FL (formalization)
as simple as possible. IL may not have any proper concrete syntax, NL and FL
playing this role respectively for the user and for the machine.

N<A>F follows the query builder approach, where the structure that is incre-
mentally built is precisely an AST. Unlike other query builders, the generated
query (FL) and the displayed query (NL) may strongly differ in their structure
thanks to the mediation of IL. The AST is initially the simplest query, and
is incrementally built by applying transformations (not to be confused with the
data transformations this paper is about). A transformation may insert or delete
a query element at the focus. The focus is a distinguished node of the AST that
the user can freely move to control which parts of the query should be modified.
Results come from the evaluation of the formalized query, and are viewed by
the user. Transformations are suggested by the machine based on the formalized
query and actual data, and controlled by the user. Both results and transforma-
tions are verbalized in NL for display to the user. At each step, the user interface
shows: (a) the verbalization of the current query with the focus highlighted, (b)
the query results, and (c) the suggested transformations.

4 Intermediate Language and Transformations

Given that the target formal language (FL) JSONiq is already high-level and
declarative, we also use it as the Intermediate Language (IL). As shown in the
next section, this does not make the formalization step from IL to FL void,
and it therefore still makes sense to distinguish between IL and FL. Indeed, a
key feature of IL is the notion of focus that impacts both the results and the
suggested query transformations. In particular, the position of the focus modifies
the semantics of the query in order to show the internals of the computations
performed by the query at the focus point.

In this section, we first define the FL/IL as a large subset of JSONiq plus
a few extensions of our own. We then introduce the list of elementary query
transformations such that all queries can be built through finite sequences of
such transformations.

366 S. Ferré

Table 1. JSONiq constructs: expressions, FLWOR clauses, and syntactic sugar.

Expression constructs (expr) Semantics

var variable (prefixed by $)
json JSON value
{ expr : expr , . . . } object construction
{| expr |} object sequence to object (merge)
[expr] sequence to array
expr [] array to sequence
func (expr , . . .) function calls and operators
() the empty sequence
expr , expr sequence concatenation
expr . expr object lookup by field
expr [[expr]] array lookup by index
if expr then expr else expr conditional expression
flwor ←↩ . . . return expr expression nested in FLWOR clauses
FLWOR clauses (flwor) Semantics
let var := expr binding a new variable
def func (var , . . .) = expr defining a new function
for var in expr iterating on a sequence
where expr filtering an iteration
order by expr [asc | desc] , . . . ordering an iteration
group by var , . . . grouping and concatenating
count var variable for the position in iteration
Syntactic sugar
expr1 ! expr2 = for $$ in expr1 ←↩ return expr2
expr1 [expr2] = for $$ in expr1 ←↩ where expr2 ←↩ return $$

4.1 A Language Based on JSONiq

Table 1 lists the constructs of JSONiq that are used in our IL (symbol ←↩ rep-
resents a carriage return). They are presented in concrete syntax for readability
and for consistency with the standard JSONiq syntax. However, they are used
under abstract syntax only for IL, and verbalized in a slightly different way to
make them more intuitive to end users (see Sect. 6).

The table gives the semantics of each construct in an informal way. An origi-
nal aspect of JSONiq is that values are sequences of items, where items are JSON
values. For recall, JSON values are one of: strings delimited by double quotes,
numbers, Boolean values (true and false), arrays delimited by square brack-
ets, objects with named fields and delimited by curly braces, and the null value.

Data Exploration and Transformation with Dexteris 367

Array members and object field values can be arbitrarily nested JSON values.
Another original aspect of JSONiq expressions is the FLWOR clauses (pronounce
“flower”) that help working with sequences in a declarative way. They are inher-
ited from XQuery [14], and they are analogous to clauses found in SQL and
SPARQL. FLWOR is an acronym for the constructs: for, let, where, order
by, and return. The combination of for and where clauses can express joins
like in relational databases. The combination of for, group by, and aggrega-
tion functions – i.e. functions from sequences to items – can express analytical
queries, similar to OLAP cubes [3].

An important ingredient of the semantics and evaluation of JSONiq expres-
sions is the environment. It defines for each sub-expression the set of variables
that are in scope. Variables are added to the environment by the FLWOR clauses
let, for, and count, and are in the scope of the FLWOR clauses coming after,
until the expression after return. An environment maps each variable in scope
to its value, a sequence of JSON values.

Our language has a few differences with JSONiq. First, it currently misses
a few constructs, left for future work, namely: anonymous functions and partial
function application, switch and try-catch expressions, and type-related expres-
sions (e.g., instance-of). Second, it adds two convenient FLWOR clauses to
explode JSON objects in as many variable bindings are there are object fields:

– let * := expr assumes that the expression returns an object, and is then
equivalent to have a let-binding for each object field, making them directly
available as local variables;

– for * in expr is equivalent to for $$ in expr ←↩ let * := $$, thus com-
bining iteration on objects, and exploding them into let-bindings.

Here is the query that defines the expected data transformation in the moti-
vating example (Sect. 2), in our JSONiq-based language.

printJSON(
for * in parseCSV(file <example_input.csv>)

let $project := {
"id" : $(project id),
"name" : $(project name) }

for $member in split($members, ", ")
group by $member
return {

"member" : $member,
"projects" : [$project],
"project number" : count($project) })

The expression file <example_input.csv> evaluates to the raw contents of
the input file, a string. A query can use any number of files. Function parseCSV
turns this raw string into a JSON representation of the tabular data, i.e. a
sequence of JSON objects, each object representing a CSV row with column
headers as object fields. The for * clause iterates over the CSV rows, and bind
each column as a variable (e.g., $(project id)). After grouping by member,

368 S. Ferré

variable $project maps to a sequence of projects, all projects related to the
current member. This can be seen as a default aggregation, from which any
other aggregation can be computed. For instance, [$project] aggregates the
sequence of projects as a JSON array, and count($project) counts the number
of projects. Finally, function printJSON turns the JSON result, a sequence of
JSON objects, into a raw string in JSON format, ready for writing into a file.

4.2 Query Focus and Query Transformations

A query focus splits a query into the sub-expression at focus, and the context of
that sub-expression. For instance, in the expression split($row.members,",
"), if the focus is on the sub-expression $row.members then the context is
[split(•, ", ")], where • (called hole) locates the focus position. If the focus
is on $row then the context is [split(•.members, ", ")], which can be seen as
the nesting of two elementary contexts: [•.members] and [split(•, ", ")].

A query transformation modifies the expression around the focus or moves
the focus. The empty sequence () serves as the initial query, and also to fill in
new sub-expressions introduced along with constructs. A transformation belongs
to one of the following kinds, beside focus moves.

– An elementary expression that replaces the sub-expression at focus: a scalar
value (e.g. "id"), a variable (e.g. $member), etc.

– An elementary context that is inserted between the sub-expression at focus
and its context: e.g., [•, ()], [(), •], [for * in •]. The hole is located at one
sub-expression, and other sub-expressions are initialized to ().

– The addition of an element other than a sub-expression, for which there is
no focus: e.g., adding a field to an object, adding a variable to a group by
clause, adding a parameter to a defined function.

– The deletion of the sub-expression at focus, i.e. its replacement by (), or the
deletion of the elementary context at focus.

Some transformations have editable parts, which have to be filled in by the user.
This is the case for scalar values, for field names, and for the name of new
variables introduced by binding constructs. The query in the above section can
be built through the following sequence of transformations (25 steps separated
by /, up is for moving the focus up in the AST).

file <example_input.csv> / parseCSV(•) / for * in • /
{"id": ()} / $(project id) / "name": () / $(project name) /
up / let $project := • / $members / split(•, ()) / ", " / up /
for $member in • / group by $member / {"member": ()} / $member /
"projects": () / $project / [•] / "project number": () /
$project / count(•) / up6 / printJSON(•)
It can be proved by induction that all expressions can be built in a finite

number of steps, proportional to the syntactic size of the expression. The next
section explains how the user receives data feedback and guidance at every step,
so that what here seems like a purely syntactic process is actually a data-centered
and guided incremental process.

Data Exploration and Transformation with Dexteris 369

5 Formalization and Suggestions (Machine Side)

The formalization process determines the evaluation to be actually performed,
and hence the results to be displayed to the user. An important point is that
it depends on the focus position. To motivate and illustrate this dependency,
suppose we have the following expression

for $i in 1 to 3
return 1 to $i

where the operator a to b valuates to the sequence a, a + 1, . . ., b. The
result of the whole expression is the sequence of integers 1, 1, 2, 1, 2, 3.
Now, suppose that the focus is on the sub-expression after return, then the
expected result is the value of that sub-expression 1 to $i. However, this value
depends on variable $i, which is introduced in the focus context. Therefore, a
useful result is a mapping from each value of $i to the value at focus, bound to
an implicit variable $focus.

$i $focus
1 1
2 1, 2
3 1, 2, 3

Each row of such a table is actually an environment, i.e. a mapping from variables
in the focus scope to their values.

5.1 Formalization by Expression Rewriting

Formalization is performed by rewriting the query expression and focus position
into a new expression whose evaluation results in a sequence of environments.
Let the query be the expression e = C(f) = ck(. . . c1(f) . . .), where f is the
sub-expression at focus, C is the context of the focus. The context C can be
decomposed into a series of elementary contexts ci that need to be applied to
the sub-expression f bottom-up in order to get the whole expression e. In the
above example, f = [1 to $i], k = 2, c1 = [return •], and c2 = [for $i in 1
to 3 ←↩ •].

The rewriting process starts by initializing the rewritten expression e′ as

e′ := let $focus := f ←↩ return $env

where variable $focus is bound to the sub-expression at focus, and the environ-
ment is returned through a special variable $env. Then each elementary context
is processed bottom up, from c1 to ck.

– FLWOR clauses are applied unmodified, so that iterations, bindings, filter-
ing, grouping and ordering are kept in the focus-dependent evaluation. They
determine the rows of the table of results.

370 S. Ferré

– Conditional expressions with the hole in one of the branches are simplified by
replacing the other branch by the empty sequence. For instance, context [if
e1 then • else e3] applied to the rewritten expression leads to e′ := if e1
then e′ else ().

– All other contexts are ignored, and hence excluded from the rewritten expres-
sion. For instance, ignoring context func(e1,•) enables to focus on the second
argument of the function, temporarily ignoring the first argument and the
function application.

The rewritten expression is therefore a chain of FLWOR clauses (and con-
ditionals) ending with the return of an environment. The evaluation result is
therefore a sequence of environments. Given that the environments bind the
same set of variables, the result can be presented as tabular data, with one row
for each environment – each iteration step –, and a column for each variable.
The last column is the $focus variable, which plays a central role for computing
the suggested query transformations. Note that although the view on results
is tabular, the data can be arbitrarily nested JSON data. The table of results
contains JSON values, and its shape automatically adapts to the current query
and focus.

5.2 Computation of Suggestions

In the N<A>F design pattern, the set of suggestions is the subset of query trans-
formations that are well-defined and relevant given the current query, the current
focus, and the results of the query formalization. First, a static analysis of the
current query and focus is performed in order to identify variables and functions
in scope and to derive type constraints. The considered types are the JSON
types: numbers, strings, booleans, arrays, and objects. For instance, the focus
context [• . e2] calls for JSON objects, while the focus context [e1 . •] calls for
strings (field name). Also, if the focus sub-expression is a comparison, then its
type is boolean, which suggests to insert contexts such as [if • then () else
()] (conditional expression) or [where •] (filtering).

Second, a dynamic analysis of the results is performed in order to identify
which data types are available at focus. For instance, the presence of numbers
suggests to apply arithmetic operators; and the presence of arrays suggests to
apply a lookup-by-index operator, for instance. We also collect the fields defined
in objects, in order to suggest the lookup-by-field operator with pre-defined field
names. The dynamic analysis also looks at the number of rows, and at the
sequence lengths of focus values. The former conditions the insertion of FLWOR
clauses, which are only relevant when there are multiple rows, i.e. in the scope of
a for clause. The latter conditions the insertion of iterations and aggregations,
which are only relevant with non-singleton sequences.

For the sake of efficiency, dynamic analysis is only performed on a sample
evaluation of the results, bounding the number of rows, and bounding the number
of computed items per sequence. This relies on a lazy evaluation of expressions.

Data Exploration and Transformation with Dexteris 371

Fig. 2. Screenshot of Dexteris in the course of building the example query.

6 Verbalization and Control (User Interface)

Verbalization of the query and results, and control of the suggested transfor-
mations characterize the user interface, and hence the user experience. Figure 2
shows a screenshot of the Dexteris tool. The query and focus can be seen at
the top left. The results can be seen in the table at the bottom. The suggested
transformations can be seen in the three lists at the top right: functions and
operators (left), variables and JSON value constructors and accessors (middle),
FLWOR clauses (right).

The verbalization remains close to the original concrete syntax of JSONiq,
as given in Table 1, and hence it is less natural than in previous N<A>F appli-
cations. To justify this, note that verbalizing the expression e1 [[e2]] as
“the e2-th member of e1”, or the expression {"id" : $(project id), "name"
: $(project name) } as “an object whose id is the project id, and whose name
is the project name”, is closer to natural language but it does not make it easier
to read. By the way, JSONiq already uses explicit keywords like where or if, and
most special characters correspond to JSON notations (e.g., square brackets and
curly braces). We apply the following changes to the concrete syntax of JSONiq
in order to lift its more unnatural aspects.

– The dollar sign in front of variables and the double quotes surrounding strings
are removed. Colors are used to distinguish numbers (dark blue), strings
(dark green), booleans (green/red), variables (dark red), and function names
(purple). In particular, this avoids the need for escaping characters in strings.

– The implicit $$ variable in syntactic sugar is renamed as this.
– A mixfix syntax is used for some functions, which includes the usual infix

notation for arithmetic and logical functions: e.g., [e1 + e2], [not e1], [split

372 S. Ferré

e1 by e2]. This makes the role of the different function arguments more explicit
and readable.

– The semi-colon ; is used as the sequence separator to avoid confusion with
other usages of the comma (arrays, objects, function arguments).

Moreover, as queries are built by applying query transformations rather than
edited as text, there is no issue with operator priorities and other ambiguities
so that grouping brackets become useless. Those groupings are made visible
by indentation and through focus moves because the sub-expression at focus is
highlighted (in light green, see Fig. 2).

Suggestions are controlled simply by clicking them. When a suggestion has
input widgets, they may be filled beforehand. Those inputs are for primitive
values in the middle list, and for variable/function names in the right column.
The focus can be moved up with one of the suggestions, and in all directions with
key strokes (Ctrl+arrows). Any focus can also be selected directly by clicking on
it in the query area. For advanced users, the text input below the query provides
a command line interface for quickly inserting data values, and applying query
transformations. When a suggestion is clicked, its command is displayed in the
text input as hint in order to help the user learning them.

7 Evaluation

Because data transformation tasks are often ad-hoc and incompletely specified,
it is difficult to conduct a systematic evaluation similar to what is done for fully
automated approaches, e.g. supervised classification tasks. Moreover, we do not
know of tools comparable to Dexteris, tools that would support the design of
almost arbitrarily complex transformations without requiring the user to write
some code at some point. We therefore choose to report on a representative use
case that was encountered in a real setting. It involves two file formats (JSON
and CSV), and many features of the JSONiq language. It is relatively simple to
informally describe while being non-trivial to implement. We compare the user
experience and result with plain programming and using ChatGPT [11], which
is known for its capability to generate code from textual prompts in a versatile
and multi-turn way.

Task. The objective is to transform the JSON files of the Mintaka dataset [13]
by extracting some information and formatting it into CSV files. The end goal
was to prepare a training set for question answering [1]. A JSON file is a list of
questions, where each question is described by an ID, the question in English
and other languages, Wikidata entities, answers, and the complexity type of the
question (e.g., ordinal, count). Figure 3 shows an excerpt of a JSON file. It has up
to 5 levels of nested lists and objects. It also features some heterogeneity in the
representation of entities and answers, depending on their type (e.g., Wikidata
entities, numbers). The output CSV file should have 5 columns: ID, Type, Ques-
tion, Entities, and Answer. The three first columns directly correspond to fields
of the question objects. However, the last two columns are string aggregations

Data Exploration and Transformation with Dexteris 373

Fig. 3. Excerpt of the input file (top), a JSON list of Mintaka question descriptions
and of the expected output file (bottom), a CSV file with one row per question.

of respectively the list of entities, and the list of answers. Moreover, Wikidata
entities should be formatted so as to combine their name and their label, while
only the name should be used for literal values. Finally, the rows should be sorted
by question type. The task therefore involves nested iterations - on questions,
on question’s entities, and on question’s answers, navigation in JSON objects,
string building and aggregation, conditional expressions, and ordering.

Plain Programming. We described the task to four experienced Python program-
mers (students in our lab), provided two example questions, and asked them to
write a program for the desired transformation. Two of them overlooked missing
fields in some questions so that their program failed on the whole input file. How-
ever, they could quickly fix their program for those exceptional cases. The total
time they needed to complete the task was consistent, between 30 and 45min.
Their programs were between 36 and 68 lines of code. They declared that they
would need about 15min to rewrite their program from scratch.

Programming with ChatGPT. On a first attempt3, we gave it a representative
excerpt of the JSON file (2 questions of different types), and the expected output,
then we asked it to generate a Python program to do the translation. After 15min
and 3 turns, we stopped because it had a very shallow understanding of the task,
and when prompted to look better at the data, it started to hallucinate code
irrelevant to the task. On a second attempt, we precisely described in text the
structure of the input file, and the structure and contents of the output file.
On each turn, we tested the generated Python program, sometimes correcting
it for obvious small errors (e.g., field names). After 40min and 8 turns of rather
constructive chat, we obtained an almost correct program but then it started
to diverge on the last remaining bug related to the missing fields. It should be
noted that our successive prompts were strongly based on reading the generated

3 The chat logs can be found at http://www.irisa.fr/LIS/ferre/pub/dexa2023/.

http://www.irisa.fr/LIS/ferre/pub/dexa2023/

374 S. Ferré

code because that code could not be run, and so errors could not be reported in
terms of errors in the generated data.

Using Dexteris. After opening the input file and parsing it as JSON data, the
results in Dexteris shows a sequence of JSON objects. An obvious step is there-
fore to iterate over them, the suggestion for * is selected in order to expose
each object field as a result column. From there, a JSON object is created to
define a CSV row, with one field for each expected column. The three first
fields (columns) are simply defined by picking the right variable among the
exposed object fields (e.g. $id). For entities, the user starts from the value of
field questionEntity, iterates over them as this is a list, then builds a string by
concatenating two fields of each entity, with a colon in between. The aggregation
concat_with_separator can then be applied to the sequence of formatted enti-
ties in order to have one string value for the CSV column"Entities". A similar
process is applied to the answers, this time using the mapping construct !, and
a conditional depending on the answer type. Finally, the ordering construct is
inserted, and the function printCSV is applied to the whole in order to convert
the generated JSON objects into CSV rows. A screencast of the whole building
sequence is available on the supplementary material page.

The whole query can be built in 49 steps, including focus changes. When the
need for the transformation arose, it took us less than 30min to build the query
and output the transformed data, including the exploration of data, and thinking
about what to generate exactly in the output file. Indeed, in real situation, the
task is often incompletely specified, and gets refined when exposed to the actual
data and unexpected cases. Building again the query in a straight way, knowing
exactly what to do, takes 5min, hence a building speed of about 10 steps/min.
For recall, the Python programmers declared that they would need 15min to
recode their program from scratch.

Strengths and Weaknesses. Comparing the user experience between Dexteris,
plain programming, and ChatGPT reveals the strengths and weaknesses of our
approach. The main strengths of our approach are:

– safeness: the program (the JSONiq query) is valid at all time, there are no
issues with syntax errors or runtime errors;

– program introspection: every part of the program can be introspected (and
modified) by moving the focus around, like consulting values extracted from
the inputs, verifying some sub-computation, or unfolding an iteration;

– data-centric view: no need to go forth and back between the data and the
program, no need to switch between the programming language and textual
prompts, the data are right there and determine what program constructions
can be inserted, e.g. a JSON list suggests to insert an iteration, only the
variables that are in scope and of the right type are suggested;

– robustness: peculiar cases in the input data are smoothly handled whereas
they trigger runtime errors in Python programs, human- or machine-
generated, e.g. an empty sequence is generated in case of a missing field.

Data Exploration and Transformation with Dexteris 375

On the weakness side, our approach is not immediately usable, unlike ChatGPT,
although it provides more control and does not expose the user to a general pro-
gramming language. It is also less versatile and scalable than plain programming.

Efficiency. Dexteris is a prototype, and it runs entirely in the browser as a client-
side application. Its efficiency and scalability are therefore limited. However, the
Mintaka use case demonstrates that it is efficient enough to cope with many
practical use cases that data stakeholders encounter. The smallest Mintaka file
is 3.8M, and the 280 kB output is generated in about 1.5 s in Firefox 88.0.1 on
Fedora 32 with an Intel Core i7× 12 and 16 GB RAM. The largest file is 26.7
MB and the 1.9 MB output (a CSV with 14k rows) is generated in about 15 s.

8 Conclusion and Perspectives

We have defined and implemented Dexteris, a tool for data exploration and
transformation based on the N<A>F design pattern. It allows the end-user to
define complex data transformations in a data-centric way, without having to
write any piece of code. Compared to plain programming, or ChatGPT-assisted
programming, it features a safer and more robust process. In the future, Dexteris
will be improved by covering the missing JSONiq constructs, and extending the
set of functions and supported data formats.

References

1. Affolter, K., Stockinger, K., Bernstein, A.: A comparative survey of recent natural
language interfaces for databases. VLDB J. 28(5), 793–819 (2019). https://doi.
org/10.1007/s00778-019-00567-8

2. Becker, L.T., Gould, E.M.: Microsoft power bi: extending excel to manipulate,
analyze, and visualize diverse data. Ser. Rev. 45(3), 184–188 (2019)

3. Codd, E., Codd, S., Salley, C.: Providing OLAP (On-line Analytical Processing)
to User-Analysts: An IT Mandate. Codd & Date Inc, San Jose (1993)

4. Ferré, S.: Bridging the gap between formal languages and natural languages with
zippers. In: Sack, H., Blomqvist, E., d’Aquin, M., Ghidini, C., Ponzetto, S.P.,
Lange, C. (eds.) ESWC 2016. LNCS, vol. 9678, pp. 269–284. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-34129-3_17

5. Ferré, S.: Sparklis: an expressive query builder for SPARQL endpoints with guid-
ance in natural language. Semant. Web: Interoperability, Usability, Applicability
8(3), 405–418 (2017). http://www.irisa.fr/LIS/ferre/sparklis/

6. Ferré, S.: Analytical queries on vanilla RDF graphs with a guided query builder
approach. In: Andreasen, T., De Tré, G., Kacprzyk, J., Legind Larsen, H., Bor-
dogna, G., Zadrożny, S. (eds.) FQAS 2021. LNCS (LNAI), vol. 12871, pp. 41–53.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86967-0_4

7. Florescu, D., Fourny, G.: JSONiq: the history of a query language. IEEE Internet
Comput. 17(5), 86–90 (2013)

8. Gulwani, S.: Automating string processing in spreadsheets using input-output
examples. In: Symposium on Principles of Programming Languages, pp. 317–330.
ACM (2011)

https://doi.org/10.1007/s00778-019-00567-8
https://doi.org/10.1007/s00778-019-00567-8
https://doi.org/10.1007/978-3-319-34129-3_17
http://www.irisa.fr/LIS/ferre/sparklis/
https://doi.org/10.1007/978-3-030-86967-0_4

376 S. Ferré

9. Microsoft: PowerQuery. https://learn.microsoft.com/en-us/power-query/
10. Moseley, B., Marks, P.: Out of the tar pit. Software Practice Advancement (2006)
11. OpenAI: ChatGPT. http://chat.openai.com
12. Resnick, M., et al.: Scratch: programming for all. Commun. ACM 52(11), 60–67

(2009)
13. Sen, P., Aji, A.F., Saffari, A.: Mintaka: A complex, natural, and multilingual

dataset for end-to-end question answering. In: International Conference on Compu-
tational Linguistics, pp. 1604–1619. International Committee Computational Lin-
guistics (2022)

14. XQuery 3.0: An XML query language (2013). http://www.w3.org/TR/xquery-30/,
http://www.w3.org/TR/xquery-30/. W3C Proposed Recommendation

https://learn.microsoft.com/en-us/power-query/
http://chat.openai.com
http://www.w3.org/TR/xquery-30/
http://www.w3.org/TR/xquery-30/

A Neighborhood Encoding for Subgraph
Queries in Graph Databases

Chems Eddine Nabti1, Thamer Mecharnia2, Salah Eddine Boukhetta2,
Karima Amrouche2, and Hamida Seba1(B)

1 Univ Lyon, UCBL, CNRS, INSA Lyon, LIRIS, UMR5205,
69622 Villeurbanne, France
hamida.seba@univ-lyon1.fr

2 Ecole nationale Supérieure d’Informatique (ESI), Alger, Algeria

Abstract. Subgraph isomorphism search is a fundamental problem in
querying graph-like structured data. It consists to enumerate the sub-
graphs of a data graph that match a query graph. It is an NP-complete
problem that knows several investigations. Most of them extend Ull-
mann’s backtracking algorithm and rely on filtering and pruning mecha-
nisms to reduce the search space. Most of these solutions focus on how to
alleviate the searching step of the algorithm, identified as the most costly
part, with various techniques and data structures. However, little effort
is devoted to reduce the cost of the filtering step. In this paper, we take
a completely different approach that relies on a constant time pruning
mechanism while keeping Ullman’s backtracking subgraph search sub-
routine. The main idea is to aggregate the semantic and topological
information that surround a vertex into a simple integer. This simple
neighbourhood encoding reduces the time complexity of vertex filtering
from cubic to quadratic. We evaluate our approach on several real-word
datasets and compare it with the state of the art algorithms.

Keywords: subgraph queries · subgraph isomorphism search · graph
databases

1 Background and Motivation

Subgraph isomorphism search, also known as exact subgraph matching, is a
fundamental task on which are based search and querying algorithms on graph
data. It is the problem of enumerating all the occurrences of a query graph within
a larger graph called the data graph (see Fig. 1). Subgraph isomorphism search
is an NP-complete problem that knows extensive investigations. We can cite
without being exhaustive Ullmann’s algorithm [15], VF2 [5] and its extension
VF3 [4], QuickSI [13], GraphQL [8], GADDI [17], SPath [18], TurboISO [7] and
its extension CECI [1], and CFL-Match [2] and its extension DAF [6]. One can
find in [9–11,16] useful studies that survey and compare most of these methods
on several aspects of query processing.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C. Strauss et al. (Eds.): DEXA 2023, LNCS 14146, pp. 377–391, 2023.
https://doi.org/10.1007/978-3-031-39847-6_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-39847-6_30&domain=pdf
http://orcid.org/0000-0003-0670-815X
https://doi.org/10.1007/978-3-031-39847-6_30

378 C. E. Nabti et al.

Fig. 1. Running Example.

Existing algorithms for subgraph isomorphism search are built onto two basic
tasks: Filtering and Searching. Filtering is an important step and determines
the efficiency of the algorithm. The searching step is generally based on the
Ullmann’s backtracking subroutine [15] that searches in a depth-first manner for
matching between the query graph and the filtered data graph resulting from
the filtering step. So, the aim of the filtering step is to reduce the search space
on which the searching step operates. By construction of these algorithms, they
all base their correctness on Ullman’s.

Our analysis of the filtering and searching steps within existing algorithms
highlighted three weaknesses as follows:

Weakness 1: High filtering cost. The main pruning mechanism used by existing
methods is the features of the k−neighbourhood of query vertices. This is the
amount of information used when matching a query vertex with data vertices.
The more information is used, i.e., k is big, the more the pruning of the search
space can be important. However, representing compactly the k−neighbourhood
for practical comparisons is a challenging issue. In fact, the representation of this
information has a direct impact on its cost which increases with the value of k.
Besides filtering with the vertex label and the vertex degree, the lightest k-
neighbourhood filter is to consider the features of the one-hop neighbourhood,
i.e., k = 1. For this, approaches such as TurboISO [7] and CFL-Match [2] use
the Neighbourhood Label Frequency (NLF) filter [19]. NLF ensures that a data
vertex v is a candidate for a query vertex u only if the neighbourhood of v,
denoted N(v), includes the neighbourhood of u (see lines 5–9 of Algorithm 1).
This test concerns the set of labels of the neighbours of vertex v, denoted �(N(v)).

A Neighborhood Encoding for Subgraph Queries in Graph Databases 379

Algorithm 1: NLF and MND filters.
Data: A potential candidate vertex v for a query vertex u
Result: TRUE if v is candidate for u and FALSE otherwise

1 begin
2 if mndG(v) < mndQ(u) then
3 return (FALSE);
4 end
5 foreach label l ∈ �(N(u)) do
6 if |{w ∈ N(v)|�(w) = l}| < |{w ∈ N(u)|�(w) = l}| then
7 return (FALSE);
8 end

9 end
10 return (TRUE);

11 end

However, NLF is expensive: it is O(|V (Q)||V (G)||L(Q)|) where |V (Q)| is the
number of vertices in the query, |V (G)| is the number of vertices in the data graph
and L(Q) is the set of unique labels of the query graph. This means that NLF
is O(|V (Q)|3) in the worst case. So, to avoid applying NLF systematically on
each vertex, CFL-Match [2] proposes the Maximum Neighbours-Degree (MND)
filter, which can be verified in constant time for each candidate data vertex.
This means that the MND filter for all vertices is O(|V (Q)||V (G)|) and hence
O(|V (G)|2) in the worst case. The maximum neighbour-degree of a vertex u in
a graph G, denoted mndG(u), is the maximum degree of all its neighbours [2]. A
data vertex v is not a candidate for a query vertex u if mndG(v) < mndQ(u). As
MND is not as powerful as NLF, the idea is to apply it before applying NLF as
detailed in Algorithm 1 (see lines 2–3). However, MND is not always effective as
we can see in the example depicted in Fig. 2 where only 3 vertices (among the 13
prunable ones) are pruned with the MND filter and consequently NLF must be
applied for each of the remaining vertices. Furthermore, MND needs to compute
the degrees of all the vertices prior to its use. So, it is less scalable than NLF
that only requires the knowledge of the labels of the neighbours of each vertex.

Weakness 2: Global filtering vs local filtering. Our study of existing algorithms
shows that filtering mechanisms can be classified into two categories depending
on their scope: local or global. A local filtering mechanism prunes the set of
vertices that are candidates for a single vertex. A global pruning operates on the
whole search space. However, local pruning is predominant in existing solutions.
Some mechanisms allow global pruning but they require extra passes of the data
graph to be effective. The matching order is such a mechanism. However, it is
a very difficult problem to choose a robust matching order mainly because the
number of all possible matching orders is exponential in the number of vertices.
So, it is expensive to enumerate all of them. For example, TuorboISO relies
on vertex ordering for pruning. However, to compute this order, it needs to
compute for each query vertex a selectivity criteria based on the frequency of its
label in the data graph. However, this means extra passes on the data graph for
computing these frequencies.

Weakness 3: Late filtering. Our analysis of how filtering and searching are
undertaken with respect to each other in the state of the art algorithms revealed

380 C. E. Nabti et al.

Fig. 2. MND Filter on the running example. The vertices that do not match query
labels have been pruned beforehand).

that most algorithms apply their filtering mechanisms during subgraph search.
In fact, little filtering, reduced mainly to label or degree filtering, is undertaken
prior to subgraph search. This means that, the first cartesian products involved
in the subgraph search task are costly. To tackle this, CFL-Match [2] applies
the MND-NLF filter, locally, prior to subgraph search. However, as we can see
in Fig. 3, the amount of achieved pruning depends on the order within which
vertices are parsed. In our example, if v2 is processed before v16 the amount
of pruning is less than the one obtained with the reverse order. To get caught
up, existing solutions rely on additional mechanisms and data structures during
subgraph search such as NEC tree in TurboISO [7] and CPI in CFL-Match [2]
that both use path-based ordering during subgraph search. Modifications and

Fig. 3. NLF filtering with two different vertex parsing orders

A Neighborhood Encoding for Subgraph Queries in Graph Databases 381

extensions of these data structures are also proposed in CECI [1] and its DAF [6].
However, the underlying data structures are time and space exponential [2,16].

In this paper, we propose to address these limitations as follows:

– simplify the encoding of the k-neighborhood so as: (1) to reduce its cost for
filtering and (2) to be able to simply update it after each local pruning to
ensure a global pruning of the search space as early as possible without the
need of complex data structures. To do so, we rely on a new vertex encoding
method.

– achieve filtering prior to subgraph search. For this, we introduce the Iterative
Local Global Filtering mechanism (ILGF), a simple way to achieve global
punning relying on local pruning filters.

Our main contribution is a novel encoding of vertices, called Compact Neigh-
bourhood Encoding (CNE) that distills all the information around a vertex in
a single integer leading to a simple but extremely efficient filtering scheme for
processing subgraph isomorphism search. The whole filtering process is based
on integer comparisons. CNEs are also easily updatable during filtering. More-
over, this encoding can be twined with any subgraph matching algorithm and
aims to reduce as early as possible the search space by achieving global pruning.
We conduct extensive experiments using real datasets in different application
domains to attest the effectiveness and efficiency of the proposed scheme used
in combination with Ullmann’s algorithm.

The remainder of this paper is organised as follows: Sect. 2 first formalises the
problem of subgraph isomorphism search and defines the notation used through-
out the paper, then, it introduces our main contribution: the compact neighbour-
hood encoding and how it is used to solve subgraph isomorphism search. Section 3
presents a comprehensive experimental study on several datasets. Section 4 con-
cludes the paper.

2 Proposed Approach

2.1 Definitions and Notation

A data graph G is a 4-tuple G = (V (G), E(G), �, Σ), where V (G) is a set of
vertices (also called nodes), E(G) ⊆ V (G) × V (G) is a set of edges connecting
the vertices, � : V (G) ∪ E(G) → Σ is a labelling function on the vertices and
the edges where Σ is the set of labels that can appear on the vertices and/or
the edges. We use |V (G)| and |E(G)| to represent respectively the number of
vertices and the number of edges in G.

An undirected edge between vertices u and v is denoted indifferently by (u, v)
or (v, u). A neighbour of a vertex v is a vertex adjacent to v. The degree of a
vertex v, denoted deg(v), is the number of its neighbours. We also use degS(v)
to denote the number of neighbours of v that have a label in the set S. We use
N(v) to represent the neighbours of vertex v. �G(u) (or simply �(u) when there
is no ambiguity) represents the label of vertex u in G and �((u, v)) is the label
of the edge (u, v) in G.

382 C. E. Nabti et al.

A graph that is contained in another graph is called a subgraph and can be
defined as follows:

Definition 1. A graph G1 = (V (G1), E(G1), �1, Σ) is a subgraph of a graph
G2 = (V (G2), E(G2), �2, Σ) if V (G1) ⊆ V (G2), E(G1) ⊆ E(G2), �1(x) = �2(x)
∀x ∈ V (G1), and �1(e) = �2(e) ∀e ∈ E(G1).

Definition 2. A graph Q = (V (Q), E(Q), �, Σ) is subgraph isomorphic to a
graph G = (V (G), E(G), �, Σ) if and only if there exists an injective mapping h
from V (Q) to V (G) such that:

1. ∀x ∈ V (Q) : �(x) = �(h(x))
2. ∀(x, y) ∈ E(Q) : (h(x), h(y)) ∈ E(G)

For presentation convenience, we do not show edge labels in our examples
but these labels are considered in our algorithms and datasets.

2.2 Compact Neighbourhood Encoding (CNE)

In our method, the high-level idea is to put into a simple integer the neighbour-
hood information that characterise a vertex. Matching two vertices is then a
simple comparison between integers. Given a vertex u, the compact neighbour-
hood encoding of u, denoted cne(u), distils the whole structure that surrounds
the vertex into a single integer. It is the result of a bijective function that is
applied on the vertex’s neighbourhood information. This function ensures that
two given vertices u and v will never have the same compact neighbourhood
encoding if they have the same label and the same number of neighbours unless
they are isomorphic at one-hop. To compute CNEs, we use pairing functions. A
pairing function on a set A associates each pair of members from A with a single
member of A, so that any two distinct pairs are associated with two distinct
members [14]. It is a bijection and according to Fueter-Pólya theorem [14], the
only quadratic pairing function is the Cantor polynomial f : N × N → N defined
by f(k1, k2) = 1

2 (k1 + k2)(k1 + k2 + 1) + k2. It assigns consecutive numbers to
points along diagonals in the plane.

To pair more than two numbers, pairings of pairings can be used. For example
f(i, j, k) can be defined as f(i, f(j, k)) or f(f(i, j), k), but f(i, j, k, l) is defined as
f(f(i, j), f(k, l)) to minimise the size of the produced number. So, by composing
k − 1 times the bijection of N

2 on N, we obtains a bijection of N
k on N which is

a polynomial of degree k [14].
To use this bijection on vertices’ labels, we first assign a unique integer to

each vertex label. This assignment can be simply achieved by numbering labels
parting from 1 or by using an associative array to store the query labels. Let
ord(�(u)) be the subroutine used to retrieve the integer associated to the label
of vertex u. ord(�(u)) will return 0 if vertex u has a label that does not belong to
L(Q). This will systematically prune the neighbours that do not verify the label
filter and avoid to consider them in the computation of the CNE of a vertex.
In our case, the parameter k = |L(Q)|, i.e., the number of distinct labels in the
query.

A Neighborhood Encoding for Subgraph Queries in Graph Databases 383

So, the compact neighbourhood encoding of vertex u in G is given by:

cne(u) = �(1, x1) + �(2, x1 + x2) + · · · + �(k, x1 + x2 + x3 + · · · + xk).

cne(u) =
∑k

j=1
�(j, x1 + ... + xj) where �(p, s) =

(
s + p − 1

p

)
=

(s + p − 1)!
p!(s − 1)!

To compute �(j, x1 + ... + xj), j corresponds to a query label index, and xj

is the number of occurrences of label j in the direct neighbourhood of vertex u.
This provides CNEs with the same filtering capacity as the NLF filter.

Example: Figure 4(a) illustrates the CNEs of the query graph of our running
example. These CNEs are computed as follows:
For this query graph, the integers used to represent the labels are: 1, 2, 3, and
4, i.e., k = 4.
cne(u1) = �(1, 0)+�(2, 0+2)+�(3, 0+2+0)+�(4, 0+2+0+0) = 0+3+4+5 = 12.
In fact, we can see that labels 1, 3 and 4 do not appear in the neighbourhood of
of u1 and label 2 appears 2 times. The remaining CNEs are computed similarity:

cne(u2) = g4(1, 1, 0, 0) = �(1, 1) + �(2, 1 + 1) + �(3, 1 + 1 + 0) + �(4, 1 + 1 + 0 + 0) = 13.

cne(u3) = g4(1, 1, 1, 1) = �(1, 1) + �(2, 1 + 1) + �(3, 1 + 1 + 1) + �(4, 1 + 1 + 1 + 1) = 49.

cne(u4) = g4(0, 1, 0, 0) = �(1, 0) + �(2, 0 + 1) + �(3, 0 + 1 + 0) + �(4, 0 + 1 + 0 + 0) = 3.

cne(u5) = g4(0, 1, 0, 0) = �(1, 0) + �(2, 0 + 1) + �(3, 0 + 1 + 0) + �(4, 0 + 1 + 0 + 0) = 3.

A data vertex v is a candidate for a query vertex u if it verifies the label
filter, i.e., �(v) = �(u), the degree filter, i.e., degL(Q)(v) < degL(Q)(u) and the
CNE filter given by :

Lemma 1 (CNE filter). Given a query Q and a data graph G, a data vertex
v ∈ V (G) that verifies the label and degree filters is not a candidate of u ∈ V (Q)
if cne(v) < cne(u).

Proof. We prove the lemma by contradiction. Assume v is a candidate of
u with cne(v) < cne(u). That is, there is an embedding M that maps u
to v. This means that �(v) = �(u) and deg(v) ≥ deg(u) and �(N(u)) ⊆
�(N(v)). Let deg(u) = k and deg(v) = k + t, t ≥ 1. Let (l1, l2, · · · , lk) be
the labels of the neighbours of u according to the order given by function
ord(). Similarly, let (l1, l2, · · · , lk, lk+1, · · · , lk+t) be the labels of the neigh-
bours of v. By construction, we have cne(v) = gk+t(l1, l2, · · · , lk+t) = gk

(l1, l2, · · · , lk)+�(k + 1, l1 + ... + lk+1)+· · · +�(k + t, l1+ ... + lk+t). So, cne(v) =
cne(u)+�(k + 1, l1 + ... + lk+1)+· · · +�(k + t, l1 + ... + lk+t). As t > 0, we reach
a contradiction. Thus, the lemma holds.

Note that, verifying one candidate vertex v for a query vertex u takes O(1) time
versus O(|L(Q))| for NLF.

Theorem 1. The CNE filter is O(n2) in the worst case where n = |V (G)|.

384 C. E. Nabti et al.

Proof. As verifying one candidate vertex v for a query vertex u takes O(1), the
CNE filter on all the query vertices is O(|V (G)||V (Q)|). So, in the worst case,
it is O(|V (G)|2).

2.3 Iterative Local Global Filtering Algorithm (ILGF)

The aim of the Iterative Local Global Filtering Algorithm (ILGF) is to reduce
globally the search space using CNEs. It relies on the fact that cne(v) can be
easily updated after a local filtering giving rise to new filtering opportunities.
Algorithm 2 details this iterative filtering process. To verify the CNE filter on
a candidate data vertex, the algorithm uses the cneVerify() subroutine that
implements Lemma 1 and consequently allows to verify that a data vertex is a
candidate for a given query vertex according to the label, degree and CNE filters
defined above. The ILGF algorithm removes iteratively from G the vertices that
do not match a query vertex using the label, the degree and the CNE filters
(see lines 5–15 of the algorithm). Each time a vertex is removed by the filtering
process the degree and CNE of its neighbours are updated (lines 10–13) giving
rise to new filtering opportunities. However, it is important to note that filtering
iterations do not parse all the remaining vertices in the data graph. In fact,
the set nextFilter keep track of the neighbours of the vertices pruned during
the current iteration. The next iteration parses only the vertices contained in
nextFilter. Filtering stops when no further vertices are removed, i.e., nextFilter
is empty.

Example: Figure 4 illustrates the ILGF algorithm on our running example.
Figure 4 (b) shows the CNEs computed for the data vertices. During degree
and CNE computation, the label filter is applied and the vertices that do not
verify this filter are pruned and are not considered in the degree and CNE of
their neighbours. This is the case for vertices v7, v14 and v17. So, only the data
vertices that verify the label filter are considered when computing degrees and
CNEs. The first iteration, of the ILGF algorithm (see Fig. 4 (c)), finds out that
vertices v1, v3, v5, v13, v15, v16, v19, v20 and v21 cannot be mapped to any query
vertex because:

– v1, v13, v15, v16, v19, v20 and v21 do not pass the degree filter,
– v3 and v5 do not pass the CNE filter. We can clearly see that according to

the label and degree filters, v3 can be mapped to u1 and v5 can be mapped
to u2 however their CNEs do not mach these vertices: cne(v3) < cne(u1) and
cne(v5) < cne(u2)

After removing these vertices and updating the degree and CNE of their
neighbours a new filtering iteration is triggered (see Fig. 4(d)). We note here that
this second filtering iteration concerns only vertices v2, v8, v11, and v18 whose
degrees and CNEs have been modified consequently to the previous filtering
iteration. The second filtering iteration reveals that vertices v8 and v18 can also
be pruned. They do not pass the degree filter. The resulting filtered data graph
is depicted in Fig. 4(e) that also shows the new filtering opportunities triggered

A Neighborhood Encoding for Subgraph Queries in Graph Databases 385

by the second filtering iteration. A third filtering iteration is launched on the
vertices whose degrees and CNEs have been modified. Consequently, the third
filtering iteration verifies only vertex v4. v4 does not verify the CNE filter and
can be pruned leading to the graph depicted on Fig. 4(f). This figure shows also
that the degree and CNE of vertices v2 and v10 are updated. Consequently these
two vertices will be the target of the final filtering iteration that prunes vertex
v2 which no longer verifies the degree filter.

Algorithm 2: ILGF .
Data: A set of vertices S ⊆ V (G) candidate to be pruned in a graph G.
Result: A filtered version of G

1 begin
2 toFilter ← S;
3 nextFilter ← ∅;
4 repeat
5 foreach vertex v ∈ toF ilter do
6 if (∀u ∈ V (Q), !cneV erify(v, u)) then
7 affected ← N(v);
8 nextFilter ← nextFilter ∪N(v);
9 remove v from V (G) and the corresponding edges from E(G);

10 foreach x ∈ affected do
11 update deg(x);
12 update cne(x);

13 end

14 end

15 end
16 toFilter ← nextFilter;
17 nextFilter ← ∅;
18 until (toFilter=∅);
19 end

Algorithm 3: Function cneVerify(v,u).
Data: A data vertex v and a query vertex u.
Result: returns true if v is a candidate for u according to the label, degree and CNE filters.

1 begin
2 return (�(u) = �(v)

∧
degL(Q)(u) < degL(Q)(v)

∧
cne(u) < cne(v)) or

(�(u) = �(v)
∧

degL(Q)(u) = degL(Q)(v)
∧

cne(u) = cne(v)))

3 end

2.4 Subgraph Search

After filtering, the data graph contains only the vertices that are candidates
for query vertices, i.e., the vertices map at one-hop according to the CNE filter.
Subgraph search allows to verify the mapping at k-hops. Algorithm 4 implements
this step. It is a depth first search subroutine that parses the filtered data graph
and lists the subgraphs of the filtered data graph that are isomorphic to the query
by verifying the adjacency relationships. This step allows also to handle edge
labels by discarding those that do not match the query labels. The subroutine
neighborCheck() verifies that a mapping (v, u) is added to the current partial
embedding M only if v and u have neighbors that also map.

386 C. E. Nabti et al.

Fig. 4. Filtering iterations of our running example.

A Neighborhood Encoding for Subgraph Queries in Graph Databases 387

Algorithm 4: SubgraphSearch.
Data: a partial embedding M .
Result: All embeddings of Q in G.

1 begin
2 if |M | = |V (Q)| then
3 Report M ;
4 end
5 Choose a non matched vertex u from V (Q);
6 C(u) ← { non matched v ∈ V (G) such that cneVerify(v, u));
7 foreach v ∈ C(u) do
8 if neighborCheck(u,v, M) then
9 M ← M ∪ {(u, v)};

10 SubgraphSearch(M);
11 Remove (u, v) from M ;

12 end

13 end

14 end

Algorithm 5: Function neighborCheck(u, v,M).
Data: a partial embedding M , a query vertex u and a data vertex v.
Result: returns true if u and v have neighbours that match.

1 begin
2 return (∀(u′, v′) ∈ M, ((u, u′) ∈ E(Q) → (v, v′) ∈ E(G)

∧
�((u, u′)) = �((v, v′)))

3 end

Our subgraph isomorphism search algorithm, denoted by CNI-Match (for
Compact Neighbourhood encoding Isomorphism Search), is given by Algorithm
6. It first filter the data graph by invoking the ILGF algorithm on the set of
vertices of the data graph. Then it call the SubgraphSearch subroutine to find
the embeddings of the query graph.

Algorithm 6: CNI-Match.
Data: A data graph G and a query graph Q
Result: All the occurrences of Q in G

1 begin
2 ILGF(V (G), G);
3 foreach vertex u ∈ V (Q) do
4 C(u) ← {v ∈ V (G) such that cneV erify(v, u)};
5 if C(u) = ∅ then
6 return (∅);
7 end

8 end
9 M ← ∅;

10 SubgraphSearch(M);

11 end

3 Experiments

We evaluate the performance of our algorithm, CNI-Match (for Compact Neigh-
borhood encoding idex based Matching), over various types of graphs, sizes of

388 C. E. Nabti et al.

queries and number of labels. We also compare it with one of the most efficient
state of the art algorithm, CFL-Match [2]. Note that CFL-Match is compared to
the other existing solutions, such as TurboISO, QuickSI and SPath, and showed
to be more efficient in [2,7,12]. Our aim is to show that our encoding scheme is
effective and can be coupled with existing algorithms to enhance performance.
Using it with the basic approach of Ullmann’s algorithm allowed us to outper-
form a more sophisticated scheme, i.e., CFL-Match.

Table 1. Graph Dataset Characteristics.

Dataset |V | |E| |Σ| average degree

HUMAN 4,675 86,282 44 36.9

HPRD 9,460 37,081 307 7.8

YEAST 3,112 12,519 71 8.1

|Σ| is the number of distinct labels.

For a fair comparison, we implemented the two algorithms1 in the same
environment and framework using C++ and the SNAP library2 We also used
compiling option −O3. For CNI-Match, we used the GMP3 specialised library to
compute factorials and store them. All experiments are performed on an Intel i5
3.50 GHz, 64 bits computer with 8 GB of RAM running windows 7. The source
code of our approach is available in https://gitlab.liris.cnrs.fr/hseba/cne.

We first describe the datasets used in the experiments, then we present our
results.

3.1 Datasets

We use three main datasets which are known datasets used by almost all existing
methods in their evaluation process (cf. Table 1). So, we mainly use them as com-
parative datasets. The underlying graphs represent protein interaction networks
coming from three main organisms: human (HUMAN and HPRD datasets) and
yeast (YEAST dataset). The HUMAN dataset is available in the RI database of
biochemical data [3]. HPRD and YEAST come from the work of [11] and [2].

To query the HUMAN, HPRD and YEAST datasets, we constructed a set of
sparse and dense queries for each dataset. Each query is a connected subgraph
of the data graph obtained using a random walk on the data graph where the
next vertex is selected according to the sparsity of the query. For a sparse query,
the next vertex is selected among the neighbors that have the least number of
neighbors. For a dense query, the next vertex is selected among the neighbors
that have the greatest number of neighbors. For sparse queries, we provide 20

1 The source code of the two algorithms is available on Git and will be provided.
2 Stanford Network Analysis Platform. http://snap.stanford.edu/.
3 https://gmplib.org/.

https://gitlab.liris.cnrs.fr/hseba/cne
http://snap.stanford.edu/
https://gmplib.org/

A Neighborhood Encoding for Subgraph Queries in Graph Databases 389

Fig. 5. Time performance on sparse queries: varying |V (Q)|.

Fig. 6. Time performance on dense queries: varying |V (Q)| (Results are in log scale).

query sets for each dataset, each containing 100 query graphs of the same size.
For dense queries, we provide 10 query sets for each dataset, each containing 100
query graphs of the same size.

3.2 Results

In this subsection, we report and comment the results obtained by comparing
our algorithm with the state of the art algorithm CFL-Match [2]. Our main
metric is the time performance by varying |V (Q)|, i.e., the number of vertices
in the query, the density of the queries, and the amount of memory used by the
algorithms. We present the obtained results according to these metrics. We note
also that all the algorithms output the same sets of isomorphic subgraphs for
each query graph.

Figure 5 shows the average total processing time of the two algorithms on the
three datasets when processing sparse queries. On the y-axis, INF means that
the processing of the set of queries exceeded 12 h execution time and has been
aborted. According to this figure, CNI-Match is, compared to CFL-Match, on
average 12 times faster on the YEAST dataset and 17 times faster on the HPRD
dataset. For the dense and difficult dataset HUMAN, CNI-Match is 4 times faster

390 C. E. Nabti et al.

than CFL-Match only by considering the query sizes for which CFL-Match has
not reached the INF threshold.

Figure 6 shows the average total processing time of the two algorithms on
the three datasets when processing dense queries. This figure shows clearly that
CFL-Match is too slow for dense queries especially for the HUMAN dataset for
which it has not obtained less than 12 h even for the query size 2.

4 Conclusion

Subgraph isomorphism search is an NP-complete problem. This means a pro-
cessing time that grows with the size of the involved graphs. Pruning the search
space is the pillar of a scalable subgraph isomorphism search algorithm and
has been the main focus of proposed approaches since Ullmann’s first solution.
In this paper, we proposed CNI-Match, a simple subgraph isomorphism search
algorithm that relies on a compact representation of the neighbourhood, called
Compact Neighbourhood Encoding (CNE), to perform an early global pruning
of the search space. CNE aggregates the topological information of each ver-
tex into an integer. This vertex encoding is easily updatable and can be used
to prune globally the search space using an iterative algorithm. Our extensive
experiments validate the efficiency of our approach. In fact, our approach is 12
time faster than the state of the art method. Even if we have not included the
results of our experiments on memory consumption, for paper length constraints,
our approach also registers far better results than the state of the art. In the
proposed approach, the neighbourhood encoding scheme, CNE, is coupled with
Ullmann’s basic algorithm, but it is a general encoding method that can be used
with other algorithms for better performance. So, an interesting future extension
is to couple it with other sophisticated schemes and also compare it with other
frameworks.

Acknowledgements. This work is funded by the French National Research Agency
under grant ANR-20-CE23-0002 and INFO-Bourg department, IUT Lyon 1.

References

1. Bhattarai, B., Liu, H., Huang, H.H.: CECI: compact embedding cluster index for
scalable subgraph matching. In: Proceedings of the 2019 International Conference
on Management of Data, SIGMOD 2019, pp. 1447–1462. Association for Comput-
ing Machinery, New York (2019). https://doi.org/10.1145/3299869.3300086

2. Bi, F., Chang, L., Lin, X., Qin, L., Zhang, W.: Efficient subgraph matching by post-
poning cartesian products. In: Proceedings of the 2016 International Conference
on Management of Data, SIGMOD 2016, pp. 1199–1214 (2016)

3. Bonnici, V., Giugno, R., Pulvirenti, A., Shasha, D., Ferro, A.: A subgraph iso-
morphism algorithm and its application to biochemical data. BMC Bioinform.
14(Suppl 7), S13 (2013)

https://doi.org/10.1145/3299869.3300086

A Neighborhood Encoding for Subgraph Queries in Graph Databases 391

4. Carletti, V., Foggia, P., Saggese, A., Vento, M.: Challenging the time complex-
ity of exact subgraph isomorphism for huge and dense graphs with VF3. IEEE
Trans. Pattern Anal. Mach. Intell. 40(4), 804–818 (2018). https://doi.org/10.1109/
TPAMI.2017.2696940

5. Cordella, L.P., Foggia, P., Sansone, C., Vento, M.: A (sub)graph isomorphism algo-
rithm for matching large graphs. IEEE Trans. Pattern Anal. Mach. Intell. 26,
1367–1372 (2004)

6. Han, M., Kim, H., Gu, G., Park, K., Han, W.S.: Efficient subgraph matching: har-
monizing dynamic programming, adaptive matching order, and failing set together.
In: Proceedings of the 2019 International Conference on Management of Data,
SIGMOD 2019, pp. 1429–1446. Association for Computing Machinery, New York
(2019). https://doi.org/10.1145/3299869.3319880

7. Han, W.S., Lee, J., Lee, J.H.: Turboiso: towards ultrafast and robust subgraph
isomorphism search in large graph databases. In: ACM SIGMOD International
Conference on Management of Data, pp. 337–348. SIGMOD 2013 (2013)

8. He, H., Singh, A.K.: Graphs-at-a-time: query language and access methods for
graph databases. In: ACM SIGMOD International Conference on Management of
Data, SIGMOD 2008, pp. 405–418 (2008)

9. Katsarou, F., Ntarmoset, N., Triantafillou, P.: Subgraph querying with parallel use
of query rewritings and alternative algorithms. In: EDBT (2017)

10. Kim, H., Choi, Y., Park, K., Lin, X., Hong, S.H., Han, W.S.: Versatile equivalences:
speeding up subgraph query processing and subgraph matching. In: Proceedings
of the 2021 International Conference on Management of Data, SIGMOD 2021, pp.
925–937 (2021). https://doi.org/10.1145/3448016.3457265

11. Lee, J., Han, W.S., Kasperovics, R., Lee, J.H.: An in-depth comparison of subgraph
isomorphism algorithms in graph databases. In: 39th International Conference on
Very Large Data Bases, pp. 133–144 (2013)

12. Ren, X., Wang, J.: Exploiting vertex relationships in speeding up subgraph iso-
morphism over large graphs. Proc. VLDB Endow. 8(5), 617–628 (2015)

13. Shang, H., Zhang, Y., Lin, X., Yu, J.X.: Taming verification hardness: an efficient
algorithm for testing subgraph isomorphism. Proc. VLDB Endow. 1(1), 364–375
(2008)

14. Stein, S.K.: Mathematics: The Man-Made Universe. McGraw-Hill, New York
(1999). Dover Publications; 3rd Revised edn. (21 March 2013)

15. Ullmann, J.R.: An algorithm for subgraph isomorphism. J. ACM 23(1), 31–42
(1976)

16. Zeng, L., Jiang, Y., Lu, W., Zou, L.: Deep analysis on subgraph isomorphism (2021)
17. Zhang, S., Li, S., Yang, J.: GADDI: distance index based subgraph matching in

biological networks. In: EDBT 2009, pp. 192–203 (2009)
18. Zhao, P., Han, J.: On graph query optimization in large networks. PVLDB 3(1),

340–351 (2010)
19. Zhu, G., Lin, X., Zhu, K., Zhang, W., Yu, J.X.: TreeSpan efficiently computing

similarity all-matching. In: Proceedings of the 2012 ACM SIGMOD International
Conference on Management of Data, SIGMOD 2012, pp. 529–540 (2012)

https://doi.org/10.1109/TPAMI.2017.2696940
https://doi.org/10.1109/TPAMI.2017.2696940
https://doi.org/10.1145/3299869.3319880
https://doi.org/10.1145/3448016.3457265

MIRS: [MASK] Insertion Based Retrieval
Stabilizer for Query Variations

Junping Liu1, Mingkang Gong1, Xinrong Hu1, Jie Yang2(B), and Yi Guo3

1 School of Computer Science and Artificial Intelligence,
Wuhan Textile University, Wuhan, China
{jpliu,mkg,hxr}@wtu.edu.cn

2 School of Computing and Information Technology, University of Wollongong,
Wollongong, Australia
jiey@uow.edu.au

3 School of Computer, Data and Mathematical Sciences,
Western Sydney University, Penrith, Australia

y.guo@westernsydney.edu.au

Abstract. Pre-trained Language Models (PLMs) have greatly pushed the fron-
tier of document retrieval tasks. Recent studies, however, show that PLMs are
vulnerable to query variations, i.e., queries containing misspellings or word re-
ordering of original queries, and etc.. Despite the increasing interest to robus-
tify the retriever performance, the impact of the query variations is not fully
exploited. To effectively address this problem, this paper revisits the Masked-
Language Modeling (MLM) and proposes a robust fine-tuning algorithm, termed
[MASK] Insertion based Retrieval Stabilizer (MIRS). The proposed algorithm
differs from existing methods via the injection of [MASK] tokens into query
variations and further encouraging the representation similarity between the pair
of original queries and their variations. In comparison to MLM, the traditional
[MASK] substitution-then-prediction is less emphasized in MIRS. Additionally,
an in-depth analysis of our algorithm is also provided to reveal: (1) the latent
representation (or semantic) of the original query forms a convex hull, while the
impact of the query variation is then quantified as a “distortion” to this hull via
deviating the hull vertices; and (2) inserted [MASK] tokens play a significant
role in enlarging the intersection between the newly-formed hull (after variations)
and the original one, thereby preserving more semantic from original queries.
With the proposed [MASK] injection, MIRS exhibits a relative 1.8 MRR@10
absolute point enhancement on average in the retrieval accuracy, verified using 5
baselines across 3 public datasets with 4 types of query variations. We also pro-
vide intensive ablation studies to investigate the hyperparameter sensitiveness, to
breakdown the model into individual components to manifest their efficacy, and
further, to evaluate the out-of-domain model generalizability.

Keywords: Document Retrieval · Masked-Language Modeling · Model
Robustness · Query Variations · Query Representation

This work is partially supported by the Australian Research Council Discovery Project
(DP210101426) and the Australian Research Council Linkage Project (LP200201035).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C. Strauss et al. (Eds.): DEXA 2023, LNCS 14146, pp. 392–407, 2023.
https://doi.org/10.1007/978-3-031-39847-6_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-39847-6_31&domain=pdf
https://doi.org/10.1007/978-3-031-39847-6_31

MIRS: [MASK] Insertion Based Retrieval Stabilizer for Query Variations 393

1 Introduction

The task of document retrieval has gained significant popularity over the past few
years. Dense retriever systems [5,11,17], inherited from the Pre-trained Language
Models (PLMs), have achieved remarkable success compared to traditional (bag-
of-words) sparse retriever, such as BM25 [14]. However, PLM based retriever sys-
tems are also fragile to query variations [1,19]. That is, state-of-the-art models could
exhibit a surprisingly 35% performance reduction with the presence of even a single-
character misspelling within queries [12], showing their non-robust retrieval matching
between queries and documents/passages. A few work have successfully applied data-
augmentation training to the retrieval task [15,19,20], from which the key component
is to involve query variations (as augmentation) in the training process. In other words,
query variations are leveraged as the normal queries to fine-tune the retriever model,
learning informative representation to tolerate perturbed queries. More details are pro-
vided in Sect. 2.

Despite the increasing research effort in robustifying the retriever systems, the
impact of the query variation is still unclear, and more investigations are required to
improve the model generalizability and robustness. To take one step towards this goal,
we introduce MIRS, a [MASK] Insertion based Retrieval Stabilizer for enhancing the
sustainability and flexibility of retrieval systems (shown in Fig. 1). Similar to exist-
ing work, MIRS also includes query variations as augmented training samples for the
model fine-tuning. The proposed method, however, is characterized by the injection of
[MASK] tokens directly in the query variations. Additionally, a discrepancy loss is fur-
ther incorporated in the proposed method to ensure that masked query variations remain
semantically close to original ones. Theoretic analysis is provided to justify the bene-
fit of inserting [MASK] tokens as a performance stabilizer. We first quantify the latent
representation of the original query, from the geometry perspective, and observe that it
creates its own convex hull in the Euclidean space. We further argue that the query vari-
ation leads to a distortion to this original convex hull due to deviating or even removing
existing vertices. The proposed [MASK] injection, accordingly, enlarges the intersec-
tion between the original hull and that of the related variation, thereby preserving more
original representations and further robustifying the retrieval performance.

394 J. Liu et al.

Fig. 1. An illustration case of the proposed
[MASK] Insertion based Retrieval Stabilizer
(MIRS), where words (“are” and “warm”)
from the original query are perturbed as “ard”
and “wamr”, respectively. MRIS, accordingly,
injects [MASK] tokens to this query variation,
and pulls the pair of the original query and
masked variation together in the latent space.

Notably, the [MASK] token is tradi-
tionally applied in the Masked-Language
Modeling (MLM) for pre-training, i.e.,
predicting tokens that are replaced
by [MASK]. In the retrieval con-
text, ColBERT is reported in [6],
where [MASK] tokens are inserted
into query for input padding purposes.
In [18], query tokens are substituted
by [MASK] before recovering them to
create another “crafted” query. In the
proposed MIRS, by contrast, neither
padding nor substitution-then-prediction
task is emphasized. Instead, [MASK]
tokens are inserted directly into query
variations as the “wild cards” to cre-
ate the masked variation, for which
are trained simultaneously with original
ones.

The main contributions of the proposed work are summarized as follows: (i) A novel
[MASK] Insertion based Retrieval Stabilizer (termed MIRS) is introduced in this paper
to address the problem associated with the query variation. (ii) The proposed MIRS is
characterized by inserting additional [MASK] tokens to variations and maximizing the
representation similarity between the pair of original queries and their variations. (iii)
Theoretical analysis reveals that injected [MASK] creates a large convex hull overlap-
ping with that of the original query to increase the probability of persevering original
semantic. (iv) Empirically, our model outperforms existing approaches on three highly-
competitive retrieval datasets with four types of query variations, advancing the best
state-of-the-arts by 1.8 absolute MRR@10 points on average in accuracy.

2 Related Work

Document Retrieval. Recent decades have witnessed a significant research interest in
information retrieval systems to search for evidences (relevant documents/passages)
from a large-scale corpus matching a given query. The two-stage retriever-reader
paradigm has been extensively studied [8,11], where relevant evidences are first
recalled by the retriever from the whole corpus in a coarse manner, before applying
the reader to re-rank them more carefully.

As the upper bound of the subsequent-reader performance is determined by the
first-stage retriever [8], there has been a rich literature for investigating either sparse or
dense retriever models. The sparse retrievers typically leverage Term Frequency-Inverse
Document Frequency (TF-IDF) or BM25 [14] to encode candidate documents/passages
with sparse representations. Despite the lightweight, sparse methods rely on lexical
overlapping or exacting matching to identify candidates, thereby failing to perform

MIRS: [MASK] Insertion Based Retrieval Stabilizer for Query Variations 395

the retrieval in the semantic level. With the recent development of Pre-trained Lan-
guage Models (PLMs), dense retrieval models, compared to sparse ones, have signifi-
cantly advanced the frontier by retrieving semantically relevant but lexically different
evidences [5,17]. Typically, the dual-encoder architecture is adopted to encode input
queries and documents separately into low-dimensional (dense) vectors. The similarity
of produced vectors (or the pair of query-and-document embeddings) are then utilized
as the matching score. The flexibility of the dual-encoder architecture has spurred fur-
ther research to improve its efficiency, such as augmenting document representations
with interpolation and perturbation [4], exploiting document relations [13], and gener-
ating pseudo query embeddings for the low-resource training [16], etc..

Vulnerability and Robustness.On the other hand, abundant evidences [7,10] also indi-
cate that dense retrievers are vulnerable to noisy (perturbed) samples (i.e., the model
performance can be dramatically impacted by (even) small perturbations to the input
query). Note that those perturbations explicitly refer to those of syntax-changing but
not-semanticmodifications. The perturbed query is also known as the query variation
and is the focus of this paper.

Towards this end, Penha et al. [12] provide a systematical review on four varia-
tions (including Misspelling, Naturality, Order and Paraphrasing), and comprehensively
investigate their impacts on the downstream retrieval tasks. The finding reveals a vary-
ing extent of the model vulnerability towards to different variations. In particular, Mis-
spelling (or queries contain typos) empirically has the largest effect via degrading an
averaged 35% retrieval performance. Accordingly, multiple works have attempted to
robustify retrievers with the presence of query variations and have achieved demon-
strative results. Zhuang et al. particularly investigate the Misspelling variation [19].
They further introduce DRTA to employ variations (with a coin-flipping strategy) as
the data augmentation for the model training. Later, in [20], they provide a further anal-
ysis on queries with typos, and argue that the performance degrade is caused by the
token-distribution change during the process of the typo-word tokenization. They fur-
ther propose CBST to maximize the model score distribution obtained from the query
with/without typos. Concurrently, an improvement work of DRTA, termed DACL, is
found in [15]. In addition to leveraging variation samples for training, DACL also intro-
duces the concept of the contrastive learning, to enforce the latent representation of
query variations stays close to those of original queries and far apart from other distinct
queries. Another similar work can also be found in [7] based on the contrastive learning.
The difference is that the correct pairs of query-passage is grouped in the latent space,
instead of queries (only) in DACL. Additionally, Chen et al. propose RoDR [1] from
which a standard retrieval model (say DRO) is trained first to initialize another model
(say DRN). Then, query variations are further employed to train DRN and simultane-
ously maximize the score similarity of query-passage pairs obtained by the DRO and
DRN .

The proposed method is different from existing approaches in the sense that it
manipulates query variations via injecting [MASK] tokens as a placeholder, while oth-
ers remain variations unchanged. Importantly, those additional [MASK] tokens play
a critical role in increasing the chance of semantic-overlapping between the original
queries and their variations.

396 J. Liu et al.

3 Proposed Method

This section presents a simple yet effective algorithm to stabilize the retriever per-
formance w.r.t. query variations, termed [MASK] Insertion based Retrieval Stabilizer
(MIRS). Our method consists of three components, including the original retrieval,
masked augmentation, and semantic alignment.

3.1 MIRS

Original Retrieval. Let q and p+ represent the given clean query and its posi-
tive (relevant) passage, respectively. Given a set of n negative (irrelevant) passages
{p−

1 , · · · ,p−
n } and an encoder F (usually implemented using PLMs such as BERT),

the original retrieval component aims to rank p+ higher than p−
j (∀j ∈ [1, n]) via

optimizing the following Negative Log-Likelihood loss:

LOR � − log
esim(F(q),F(p+))

esim(F(q),F(p+)) +
∑n

j=1 esim(F(q),F(p−
j))

, (1)

where F(·) represents the extracted latent representation, and sim() is a similarity mea-
surement function (cosine in this paper).

Masked Augmentation. This component augments the model training using masked
variations. Specifically, let q′ represent the perturbed query (a variation to q). Existing
work [15,19,20] leverages the triple of {q′,p+,p−

j } (∀j ∈ [1, n]) as the augmented
data to fine-tune the model, with the same manner of {q,p+,p−

j } ; by contrast, we
further propose to inject [MASK] tokens to q′ before the augmented training. That is,
let bM be a pre-defined masking budget (or the fraction of masked tokens). Then, MIRS
injects M [MASK] tokens randomly within q′, following a uniform sampling until the
masking budget bM is met. The formed masked variation is labeled as q′

M , and M =
�|x| ∗ bM�. Then, similar to Eq. (1), the masked augmentation component enables the
retriever to identify positive passages given q′

M :

LMA � − log
esim(F(q ′

M),F(p+))

esim(F(q ′
M),F(p+)) +

∑n
j=1 esim(F(q ′

M),F(p−
j))

. (2)

Furthermore, to mitigate the impact of positional encoding, position IDs of inserted
[MASK] tokens are set to 0, while those of previous query tokens retains unchanged.

Semantic Alignment. This component is to suppress noisy signals conveyed in masked
variations, such that the semantic of the original query is preserved with the presence of
[MASK] tokens and other variations. Toward this end, the alignment comportment is to
explicitly encourage the encoder F producing semantic-similar representation between
the original query (F(q)) and that of masked variation (F(q′

M)). The similarity mea-
surement, (i.e., the cosine function as Eq. (1)), is employed for this purpose leading to
the following objective:

LSA � sim(F(q),F(q′
M)). (3)

MIRS: [MASK] Insertion Based Retrieval Stabilizer for Query Variations 397

Note that this alignment loss is different from that of the masked augmentation, in the
sense that it does not involve any supervision signal (i.e., the matching score with p+),
but to reduce the representation dissimilarity obtained by q and q′

M .

Overall Objective Function. To summarize, MIRS involves simultaneously training on
masked samples, which are query variations with injected [MASK] tokens, and original
queries. Additionally, the semantic alignment ensures masked samples remain seman-
tically close to original ones. The model is fine-tuned using the following joint loss:

L =
1
2
LOR +

1
2
LMA + LSA. (4)

During inference, the masked augmentation and semantic alignment components are
discarded; testing queries are inserted with same amount of [MASK] tokens (as train-
ing), and their latent representations are extracted by F before estimating the similarity
with candidate passages for ranking.

Mainstream approaches for robustifying the retrieval model, mentioned in Sect. 2,
include RoDR [1], DACL [15], DRTA [19], and CBST [20], while their connec-
tion and difference with our algorithm is discussed in the following: (i) all methods
employ query variations for the model training, which can be cast as a data augmen-
tation in addition to original queries; (ii) the majority existing work (except DACL)
focus on their score similarity (the matching results between queries and candidate
passages), instead of maximizing the representation similarity between clean and
perturbed queries. In other words, for other approaches, the model scores, obtained from
original/clean queries, provide the supervision signals to their perturbations; yet, ours
directly unifies their latent representations. On the other hand, DACL also encourages
clean-and-perturbed queries stay together in the latent space while being apart from
other distinct queries. It, however, involves the extra effort to identify those distinct
queries, as they could both be inquired from the same positive passages. By contrast,
the proposed MIRS only targets on grouping the pair of clean-and-perturbed queries;
(iii) more importantly, MIRS manipulates variations via inserting [MASK] tokens as
a “wild card”, while existing methods keep variations unchanged. The benefit of the
[MASK] injection is discussed in the next Analysis section.

398 J. Liu et al.

3.2 Analysis

Fig. 2. An illustration of the convex hulls inter-
sections in 2-D (best viewed in color). Blue cir-
cles are normal tokens, and black are perturbed
tokens, which are replaced later by tokens shown
as the red diamond (this process is indicated by
the dotted curve with an arrow). Gray squares
are inserted [MASK] tokens, showing two sit-
uations, Case1 and Case2, corresponding to
two geometric relations that may occur, denoted
as [MASK1] and [MASK2] respectively. Col-
ored polygons show the convex hulls. The dark
gray region indicates that, in Case1 we have
C(q)∩ C([q′∪[MASK1]]) which is also C(q)∩
C(q′). As for Case2, the red region with red
hatching lines is the extra intersected area from
C(q) ∩ C([q′∪[MASK2]]).

The impact of the query variation w.r.t.
the original query is under-explored from
existing methods, while this section pro-
vides the theoretical analysis from the
geometry perspective to bridge this gap.
We hypothesize that the latent repre-
sentations from both the original query
and its variation come from two sep-
arated convex hulls; yet the variation
with [MASK] increases the intersection
between its own hull with the original
one, thereby preserving more semantic
from the original query.

To begin with, given the orig-
inal query q, its latent representa-
tion F(q), estimated using self-attention
(from PLM encoders), is mapped from

Q̃ = softmax(QW1W�
2 Q

�)QW3,

where Q ∈ R
|q |×d is the initial embed-

ding for q, d is the hidden dimension, and
Wk (∀k ∈ [1, 3]) are projection matrices
with compatible dimensions. It is well
known that Q is the sum of three parts:
token (Et), segment (Es), and position
(Ep) embedding, orQ = Et +Es +Ep.
In the context of the query encoding, Es

is negligible due to the same query and no segmentation required (as a constant).
Similar to Ep, as we retain positional encoding for query tokens and set those of
inserted [MASK] to 0, so that Ep become input-independent as it only reflects the
absolute/relative positions of tokens. To this end, in following analysis, we simply take
Q ≈ Et. Furthermore, the property of softmax indicates that each row of Q̃ (say Q̃i) is
a convex construction of QW3, i.e., ∀i, Q̃i ∈ C(q) where C(q) stands for the convex
hull of q (see Fig. 2 for the gray area enclosed by black and blue circles). The same
process happens in multi-head/layer attention modules. They operate in different pro-
jected spaces but the observation of the convex construction still holds. In summary, the
convex hull C(q) is a subspace or more precisely the solution space that determines the
latent representation of q, and it is calculated based on the initial embedding Q with
self-attention.

With the variation(s) occurring, original tokens from q are modified, so as Q and
further C(q) (i.e., relevant vertices in C(q) deviate from their original positions or even
are completely removed). Furthermore, let C(q′) and C(q′

M) be the convex hull created
by q′ and q′

M , respectively. We hypothesize that, to preserve the semantic information
from q (for stabilizing the retrieval performance) is equivalent to enforcing the encoder

MIRS: [MASK] Insertion Based Retrieval Stabilizer for Query Variations 399

to produce invariant representation, i.e., F(q) ≈ F(q′). Since the latent representation
is mapped from the original convex hull C(q) as its solution space, the robustification
task is then reformulated as maximizing the intersection of the newly-formed convex
hull (either C(q′) or C(q′

M)) with the original convex hull (C(q)); furthermore, the
larger intersection results in a better semantic preservation with a higher probability.
That is, given that Vol(·) is a function to estimate the volume of a geometric object,
then the probability of the semantic preservation (P) w.r.t. q is determined by P ∝
Vol(C(q) ∩ C(q∗)), where C(q∗) (either C(q′) or C(q′

M)) is the newly-formed convex
hull. Notably, MIRS employs a simple [MASK] insertion without removing existing
(original and perturbed) tokens from q′, which leads to the fact that C(q′

M) always
contains C(q′) as guaranteed by the following lemma.

Lemma 1. Given a finite set X = {xi}ni=1 in the vector space, we have C(S) ⊆ C(X)
for any subset S ⊆ X. The equality holds when S = X trivially or otherwise S contains
all the anchor points of C(X), i.e., the convex hull vertices.

Proof. Let X be the index set for X and a subset S ⊆ X gives the indices for S. For
any point p ∈ C(S), p =

∑
i∈S λixi such that λi ≥ 0 and

∑
λi = 1, i.e., the convex

condition. Apparently p ∈ C(X) as well by setting λj = 0 for j ∈ X\S. For any
point xi ∈ X, it is either an anchor point or an internal point referring to C(X). If S
contains only anchor points, C(S) = C(X) as the internal points can be “absorbed”. To
see this, assume x1 is an internal point, then x1 =

∑
i>1 βixi and all βis for i > 1

satisfying convex condition. Then p =
∑

i=1 λixi =
∑

i>1(λi + λ1βi)xi. Therefore,
C(X) = C(X−1) where X−1 is the set of vectors after removing x1. After eliminating
internal points, the convex hull will still be the same.

The immediate result from above lemma is the following corollary stating the relations
between C(q′

M) and C(q′).

Corollary 1. Injected [MASK] tokens leads to C(q′) ⊆ C(q′
M) (a 2-D illustration of

the convex-hull intersection is also shown in Fig. 2).

Proof. Let Tq ′ and Tq ′
M

be the token set of q′ and q′
M . Clearly, Tq ′

M
=

{ Tq ′ ∪[MASK]} and Tq ′ ⊆ Tq ′
M
. Similarly, for their initial embeddings, we have

Q′ ⊆ Q′
M , where Q′ and Q′

M is related to q′ and q′
M , respectively. According to

Lemma 1, it is easy to induce that C(q′) ⊆ C(q′
M). Equality holds only when C(q′)

contains all anchor points set in C(q′
M).

Remark 1. We point out that C(q′) may contain subsets that are not part of C(q), for
example, the areas shaded in red with no hatching lines shown in Fig. 2. The semantic
alignment component is then to enforce the model to learn a stable representation that
is from C(q) ∩ C(q′

M). Again, a larger intersection of C(q′
M) with C(q) provides a

larger solution space for that purpose and hence leads to better performance.
Furthermore, the involvement of the original retrieval target LOR in the model

training is not essential as the backbone models such as BERT have been pre-trained
with [MASK] (or alike tokens), so that they can help recover the original convex hull
to some extent even under the query variation. Notably, this reflects the ColBERT

400 J. Liu et al.

model [6]. However, there will still be deviations from the original convex hull depend-
ing on the severity of the distortion caused by the query variation, which are responsible
for the performance degradation. Therefore, including q in the model provides a true
anchor for q′

M to pursuit and achieve robustness.

4 Experiments

4.1 Setup

Datasets. To make a fair comparison, we follow settings from [15,19,20]. Three
benchmarking datasets are employed, including TREC Deep Learning Track Passage
Retrieval Task 2019 (DL2019) and 2020 (DL2020) [2] andMSMARCO (dev/v1) [9].
Candidate passages are fromMSMARCO (passage/dev) (approximately 8.8 million).

Query Variation Generation. Four generation strategies are considered [12] to perturb
input queries, including:Misspelling for substituting existing characters with randomly
chosen ASCII ones; Naturality for removing all stop words; Order for randomly
exchanging positions of two words; and Paraphrasing for replacing non-stop words
with alternatives, according to the similarity of counter fitted-Glove word embeddings.

Implementation Details. All experiments are performed with random seeds. For each
run, the batch size is set to 18, the max query length is 32, and the max passage length
is 128. For training, the strategy of in-batch negative samples is applied, and seven hard
negatives (from the top 200 passages retrieved by BM25) with one positive passage
are adopted with each individual training query. Furthermore, the AdamW optimizer
with a 5e−6 learning rate is initialized with a linear learning rate scheduled for 200
thousand updates. At last, our model is trained with a single Tesla A100 40G GPU that
takes approximately 40 h to complete. To measure the retrieval performance, the official
metric, i.e., Mean Reciprocal Rank for the top 10 retrieved documents (MRR@10), is
employed to evaluate the model, and higher MRR means the better retrieval outcome.

4.2 Main Results

The following state-of-the-arts are employed to compare with MIRS, including
RoDR [1], DACL [15], DRTA [19], and CBST [20]. In addition, the vanilla DPR
model is also employed as the Base [5]. All models are trained using the BERT-Base
as the encoder. Results from contender methods are either directly from original papers
or re-implemented using their released codes (if results not available). Additionally, for
MIRS the masking budget bM (or the number of inserted [MAKS]) is set as 20%.

Table 1 shows averaged results across different methods over ten runs. To begin
with, MIRS achieves the competitive retrieval accuracy in terms of MRR@10, in com-
parison to existing contenders with three employed datasets and four query variations
on average. Notably, except the Naturality case with MSMARCO (ours scores the sec-
ond best), MIRS yields the best retrieval performance. On the other hand, the Mis-
spelling type (compared to others) leads to the worst performance across all four vari-
ations, which demonstrates the difficulty of querying with misspellings (or typos). Yet,

MIRS: [MASK] Insertion Based Retrieval Stabilizer for Query Variations 401

Table 1. Averaged retrieval performance (over ten runs) obtained by MIRS and current SOTAs
with four query variation generators. The number with bold represents the best result. Statistical
significance testing at p-value < 0.01 (using T-test) are marked with †.

Datasets Methods Misspelling Naturality Order Paraphrasing

DL2019

Base 42.7±5.6 66.7±3.1 62.3±2.2 57.4±4.6

RoDR 51.8±6.0 67.1±2.5 68.5±1.9 64.9±2.5

DACL 64.6±5.1 68.8±3.3 72.4±1.5 68.8±2.0

DRTA 58.2±6.6 68.1±2.9 72.3±1.1 67.5±2.3

CBST 61.5±4.6 67.8±2.3 71.1±1.1 68.0±1.7

MIRS 67.9±4.5† 69.2±2.3† 72.4±1.0† 71.2±2.0†

DL2020

Base 45.9±4.6 73.0±2.1 74.8±2.1 63.9±3.3

RoDR 51.3±6.5 80.3±3.1 75.1±1.8 65.5±2.9

DACL 63.1±3.1 80.8±2.9 77.1±1.4 69.6±2.0

DRTA 63.0±3.4 79.3±2.5 76.0±1.1 69.9±2.2

CBST 62.9±3.2 76.4±1.8 76.5±0.4 68.2±2.4

MIRS 64.4±3.2 † 83.8±2.0† 77.8±1.0 † 70.7±2.2†

MSMARCO

Base 15.5±0.5 29.0±0.2 30.9±0.1 22.0±0.1

RoDR 25.0±0.6 32.9±0.5 33.9±0.3 26.5±0.2

DACL 22.8±0.3 31.6±0.2 32.0±0.8 25.9±0.1

DRTA 21.5±0.4 30.8±0.3 31.5±0.1 24.5±0.3

CBST 22.8±0.2 31.6±0.3 32.1±0.1 27.1±0.1

MIRS 26.2±0.4 † 32.2±0.2† 34.5±0.1 † 29.0±0.1†

MIRS still achieves the marginal improvement (in comparison to the strongest base-
line DACL) with an averaged increase of 1.5, 1.5, and 2.4 absolute MRR@10 points
for DL2019, DL2020, and MSMARCO with four different variations, respectively. By
contrast, the Naturality and Order variations seemingly have less impact on the retrieval
performance, compared to the types of Misspelling and Paraphrasing. Note that Natu-
rality is to remove all stop words while Order is to swap two random words’ positions.
As such, these two variations mainly differs from the original query in terms of the
position embedding. The results clearly show that varying position embeddings (the
case of Naturality and Order) has limit distortion and even the Base model achieves
much better performance than those from Misspelling and Paraphrasing. This supports
the choice in our analysis, i.e. token embeddings have dominant influence on the latent
representation (and further the resultant convex hull) compared to position ones. On the
other hand, our analysis holds in the sense that adding [MASK] increases the chance of
the new formed convex hull (of Naturality and Order) overlapping with the original one.
Empirically, the proposed MIRS shows superior performance compared to state-of-the-
arts via achieving a considerable margin. We also implement the significance test for ten
runs via randomly selecting various seeds and performing the Student’s T-test on each

402 J. Liu et al.

dataset. The averaged p-values obtained from DL2019, DL2020, and MSMARCO are
2.41e−15, 3.78e−7, and 4.98e−5, respectively, which verifies the MIRS effectiveness.

4.3 Ablation Study

To better understand the effectiveness of the proposed method, a series of careful studies
are carried out. As the most-effective variation, the Misspelling is taken into account
hereafter. The following experiments are considered using the DL2019 as the dataset,
and results are again reported as the averaged accuracy (MRR@10) over ten runs.

Table 2.Model flexibility comparison of utilizing Charac-
terBERT as the backbone encoder, with different numbers
of misspelling characters.

Datasets Methods 1-typo 3-typo 5-typo

DL2019
CBST 70.6±4.6 53.5±3.8 45.1±2.6
MIRS 75.6±4.5 61.3±4.1 51.9±3.2

DL2020
CBST 72.2±3.3 55.6±3.9 42.6±4.6
MIRS 74.1±2.9 58.5±4.6 48.5±4.6

MSMARCO
CBST 26.3±0.2 20.2±0.2 15.3±0.5
MIRS 27.7±0.3 22.8±0.1 18.5±0.4

On the Backbone Encoder. To
evaluate the flexibility of the
proposed MIRS towards dif-
ferent encoders, the Character-
BERT(-base) [3] encoder is
employed in this experiment,
while all other configurations
remain the same. Note that
CBST [20] also adopts Charac-
terBERT to deal with the Mis-
spelling case. The Character-
BERT enhances the model tol-
erance (towards typos) via split-
ting one word into a sequence
of characters, before aggregat-
ing representations from individual characters to form one single vector representation
for each word directly. Following this setting, we also explicitly employ Character-
BERT as the backbone encoder. The comparison between ours and CBST, as a function
of the number of misspelling characters (ranging from [1, 3, 5]), is illustrated in Table 2.

First, compared to results from Table 1, models using BERT as the backbone
encoder clearly underperform those of CharacterBERT. This finding is consistent with
[20], as BERT’s (WordPiece) tokenizer could tokenize typos into a dramatically-
different token series (compared to original words), and further perturb the input embed-
dings. As such, simply replacing BERTwith CharacterBERT improves the retrieval per-
formance. Second, with the increasing numbers of misspelling characters, not surpris-
ingly, the accuracies of both models decrease. Yet, the performance degradation from
CBST is much worse than ours. On average, the performance of CBST drops 36.1%,
41.0%, and 41.8% in terms of MRR@10 on the DL2019, DL2020, and MSMARCO,
respectively, comparing to that of 31.3%, 34.5%, and 33.2% fromMIRS. Overall, MIRS
obtains consistently higher performance than CBST, regardless of the backbone encoder
and the number of misspelling characters. Hereafter, without explicitly mentioning, the
CharacterBERT (instead of BERT) is adopted as the backbone encoder, to minimize the
impact from the encoder side and focus on the model design.

MIRS: [MASK] Insertion Based Retrieval Stabilizer for Query Variations 403

Fig. 3. Comparison of the retrieval performance
from individual components of training with
masked variations (MA) and aligning original-
and-masked semantics (SA).

On the Breakdown. In the following,
we investigate individual components of
MIRS and the comparison is considered
with the following variants: BA repre-
sents the model trained by only pairs of
original queries and passages; MA only
employs masked query variations and
related passages for the model training;
and SA maximizes the semantic similar-
ity between the original-masked queries.

Figure 3 shows contributions from
individual components with bm = 20%.
To begin with, the worst performance is
observed by training with only masked
query variations (i.e., MA), statistically not significant though compared to that of BA.
This reflects Remark 1 in the Analysis: [MASK] tokens can only recover the convex
hull of the original query to some extent; the lack of the true anchor q for the masked
query variation q′

M is responsible for the performance degradation. Furthermore, results
also reveal that both the proposed masked augmentation and semantic alignment com-
ponents stably improve the performance of the base model (BA). For instance, BA+MA
achieves the 70.3 accuracy as a benefit of augmenting training data with additional
(masked) variation samples. For two proposed components, SA seemingly helps in a
larger performance boost, which is evidenced by the score of 73.8 from BA+SA com-
pared to 70.3 of BA+MA. Notably, the BA+SA model is trained without fine-tuning the
supervised loss of masked samples but encouraging the semantic alignment. The result
indicates that the key contributor to MIRS is to restrict the representation similarity of
original queries and their variations.

Table 3. Comparison of the retrieval performance as a
function of the masking budget (bM).

bM=0% bM=10% bM=20% bM=30%
68.6±4.9 75.4±6.0 75.6±4.5 75.7±4.0

On the Masking Budget. This
experiment is to evaluate the
impact of the masking budget
(bM) on the proposed method.
Obviously, with a higher value
of bM , more [MASK] tokens
will be inserted in the variation
and lead to more perturbed samples. Specifically, experiments are conduced by vary-
ing bM from the range of 0%, 10%, 20%, and 30%, with the random injection. Note
that, when bM=0%, there is no [MASK] involved, which is equivalent to the method
of DACL. On the other hand, with a 10% masking budget, approximately 1 [MASK]
is injected in the variation (given the length of the tokenized query). The compari-
son from Table 3 reflects a notable improvement in the retrieval performance with/out
[MASK] (approximately 6.8 absolute MRR@10 point), that demonstrates the advan-
tage of injecting [MASK] tokens to preserve the original query semantic with a high
probability. In addition, MIRS also observes a stable accuracy regardless varying mask-
ing budgets (with bM > 0) as their difference is relatively moderate (e.g., ±0.25 abso-
lute point). As such, the result clearly demonstrates the effectiveness and stability of

404 J. Liu et al.

the proposed method. This observational experiment once again confirms our inference
in the Analysis, that is, the span of the convex hull is utterly important rather than its
multiplicity (due to the injection location).

On the Out-of-Domain Generalizability. MIRS is then evaluated by the resultant
model generalizability. That is, the model is first trained with one query variation,
and then evaluated on other unseen variations without further fine-tuning. Figure 4
illustrates the generalizability comparison between ours and CBST, with the DL2019
dataset, and bm = 20%. In terms of the absolute MRR@10 point (results within the
bracket), MIRS outperforms CBST in all 16 cases. For the relative model adaptation
(%), only two cases (with Misspelling → Naturality and Naturality → Order) CBST is
observed with higher scores. The results clearly demonstrate the strong generalizability
of MIRS. Note that, during the model fine-tuning, CBST is trained with the same type of
query variation as that for inference, which makes it difficult to adopt another variation
type. By contrast, MIRS involves the additional [MASK] tokens as the “wild card”, that
increases the model flexibility and further improves the model transferability to unseen
variations. We also observe for MIRS, the higher retrieval accuracy is associated with
the transferred model of Paraphrasing→Misspelling and Order→Naturality. Note that
those variations share some common aspects, such as the modification of existing word
(Paraphrasing → Misspelling) or the swap of word position (Order → Naturality). The
results indicate the benefit of leveraging the relationship among different variations to
robustify the model, which we leave for the future study.

Fig. 4. Comparison of the model generalizability, where a pre-trained retriever (from one varia-
tion) is applied to other unseen variations without fine-tuning.

4.4 Discussion

In this section, we investigate different strategies of inserting [MASK] tokens, and fur-
ther seek for a reasonable explanation for the result. Again, following experiments are
conducted with the random injection, and bM=20%.

MIRS: [MASK] Insertion Based Retrieval Stabilizer for Query Variations 405

Table 4. Impact analysis of the [MASK] loca-
tion.

Original Variation Both
72.8±3.6 75.6±4.5 70.8±4.5

To begin with, we analyze the inser-
tion objects or where to add [MASK]
tokens. Notably, the [MASK] tokens
were inserted to q′ in all previous exper-
iments, whereas other options exist. That
is, to justify our choice, three variants are
tested, including the insertion of [MASK] tokens to: (1) the Original query q only,
(2) the query Variation q′ only, and (3) Both q and q′. All aforementioned variants
employ three proposed components in their cost functions with corresponding entities,
i.e., q and q′, replaced by the masked ones.

The comparison is shown in Table 4. The Both variant is observed with the worst
performance, while the Variation one, i.e. our primary option, stands out as the
best. This is a solid confirmation of our remark regarding to the anchor in the Anal-
ysis. The ideal retrieval should be based on the clean query q so that the semantics
between query and retrieved document can be maximally aligned. When q is masked
to be qM , its convex hull is altered (or “lifted” as a pictorial illustration) and the right
solution to the retrieval may be drawn from outside C(q) although still within C(qM).
This increases the robustness of the model when combined with semantic alignment as
the model has to accommodate the variation brought by this inserted “wild card” for
the retrieval (referring to the Original variant). However, our strategy in MIRS, i.e.
the Variation case where q provides the clear supervision information for qM , sta-
bilizes the representations of query and document tokens. When both are lifted, there
will be too much flexibility and hence the performance could be further reduced. Nev-
ertheless even the Both variant, the worst case in this batch, still produces the slightly
better performance than that of CBST (from Table 2).

Table 5. Comparison of the retrieval perfor-
mance in terms of different inserted tokens.

Misspelling Naturality
[MASK] 75.6 79.5
[HOLDER] 75.8 81.9

Order Paraphrasing
[MASK] 84.0 80.2
[HOLDER] 81.2 78.8

Additionally, we consider to inject
another token ([HOLDER] in this con-
text, instead of [MASK]) in MIRS.
That is, the entire process maintains the
explicitly same except a different token
to be injected (with the same setting
of and bM = 20%). The comparison is
shown in Table 5 and the [HOLDER]
injection achieves a similar performance
as that of [MASK]. The result highlights
that including [MASK] (or equivalent) in
the model fine-turning plays a role as a
placeholder or a “wild card”. Accordingly, the capacity of spanning the convex hull to
more likely intersect with original one is further enhanced, which leads to the robust
retrieval performance.

5 Conclusion

This paper presents the [MASK] Insertion based Retrieval Stabilizer (MIRS) to robus-
tify the retriever with the presence of query variations. Specifically, the proposed

406 J. Liu et al.

method randomly injects [MASK] tokens within variations, and further encourages the
representation similarity between the original query and masked variation. The theo-
retical analysis shows that the injection of [MASK] tokens helps in forming a convex
hull with a large overlapping with that of the original query, so to increase the prob-
ability of preserving its original semantics. Intensive experimental results demonstrate
the superiority of the proposed algorithm, in comparison to state-of-the-arts, using three
benchmark datasets with four types of query variations.

We need to point out that, our analysis is constructed on a crucial assumption assert-
ing that the probability of preserving semantic (or latent representation) is determined
by the volume intersection of two convex hulls. Although empirical results confirmed
this assumption repeatedly, we will still seek for direct dynamics of the convex hull with
regard to the input query for the future study. On the other hand, we will also consider
to improve the model robustness from the perspective of masking passages/documents.

References

1. Chen, X., Luo, J., He, B., Sun, L., Sun, Y.: Towards robust dense retrieval via local ranking
alignment. In: Raedt, L.D. (ed.) Proceedings of the Thirty-First International Joint Confer-
ence on Artificial Intelligence, IJCAI-22, pp. 1980–1986. International Joint Conferences on
Artificial Intelligence Organization (7 2022)

2. Craswell, N., Mitra, B., Yilmaz, E., Campos, D., Voorhees, E.M.: Overview of the TREC
2019 deep learning track. In: Proceedings of the Twenty-Ninth Text REtrieval Conference
(NIST Special Publication). National Institute of Standards and Technology (NIST) (2020)

3. El Boukkouri, H., Ferret, O., Lavergne, T., Noji, H., Zweigenbaum, P., Tsujii, J.: Character-
BERT: reconciling ELMo and BERT for word-level open-vocabulary representations from
characters. In: Proceedings of the 28th International Conference on Computational Linguis-
tics, pp. 6903–6915. Barcelona, Spain (Online) (2020)

4. Jeong, S., Baek, J., Cho, S., Hwang, S.J., Park, J.: Augmenting document representations
for dense retrieval with interpolation and perturbation. In: Proceedings of the 60th Annual
Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp.
442–452. Association for Computational Linguistics, Dublin, Ireland (2022)

5. Karpukhin, V., et al.: Dense passage retrieval for open-domain question answering. In: Pro-
ceedings of the 2020 Conference on Empirical Methods in Natural Language Processing
(EMNLP), pp. 6769–6781. Association for Computational Linguistics, Online (Nov 2020)

6. Khattab, O., Zaharia, M.: ColBERT: efficient and effective passage search via contextualized
late interaction over BERT, pp. 39–48. Association for Computing Machinery, New York,
NY, USA (2020)

7. Ma, X., Nogueira dos Santos, C., Arnold, A.O.: Contrastive fine-tuning improves robustness
for neural rankers. In: Findings of the Association for Computational Linguistics: ACL-
IJCNLP 2021, pp. 570–582. Association for Computational Linguistics, Online (Aug 2021)

8. Mao, Y., et al.: Generation-augmented retrieval for open-domain question answering. In:
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics
and the 11th International Joint Conference on Natural Language Processing (Volume 1:
Long Papers), pp. 4089–4100. Association for Computational Linguistics, Online (2021)

9. Nguyen, T., Rosenberg, M., Song, X., Gao, J., Tiwary, S., Majumder, R., Deng, L.: Ms
marco: A human generated machine reading comprehension dataset. In: Proceedings of the
Workshop on Cognitive Computation: Integrating neural and symbolic approaches 2016 co-
located with the 30th Annual Conference on Neural Information Processing Systems (CEUR
Workshop Proceedings, Vol. 1773). CEUR-WS.org (2016)

MIRS: [MASK] Insertion Based Retrieval Stabilizer for Query Variations 407

10. Nogueira, R., Cho, K.: Passage re-ranking with bert. arXiv preprint arXiv:1901.04085 (2019)
11. Parkin, L., Chardin, B., Jean, S., Hadjali, A., Baron, M.: Dealing with plethoric answers

of SPARQL queries. In: Strauss, C., Kotsis, G., Tjoa, A.M., Khalil, I. (eds.) Database and
Expert Systems Applications, pp. 292–304. Springer, Cham (2021)

12. Penha, G., Câmara, A., Hauff, C.: Evaluating the robustness of retrieval pipelines with query
variation generators. In: Hagen, M., et al. (eds.) ECIR 2022. LNCS, vol. 13185, pp. 397–412.
Springer, Cham (2022). https://doi.org/10.1007/978-3-030-99736-6 27

13. Raman, N., Shah, S., Veloso, M.: Structure and semantics preserving document representa-
tions. In: Proceedings of the 45th International ACM SIGIR Conference on Research and
Development in Information Retrieval, pp. 780–790. SIGIR 2022, Association for Comput-
ing Machinery, New York, NY, USA (2022)

14. Robertson, S.E., Walker, S.: Some simple effective approximations to the 2-poisson model
for probabilistic weighted retrieval. In: Croft, B.W., van Rijsbergen, C.J. (eds.) SIGIR 1994,
pp. 232–241. SIGIR ’94, Springer, London (1994). https://doi.org/10.1007/978-1-4471-
2099-5 24

15. Sidiropoulos, G., Kanoulas, E.: Analysing the robustness of dual encoders for dense retrieval
against misspellings. In: Proceedings of the 45th International ACM SIGIR Conference on
Research and Development in Information Retrieval, pp. 2132–2136. SIGIR 2022, Associa-
tion for Computing Machinery, New York, NY, USA (2022)

16. Tang, H., Sun, X., Jin, B., Wang, J., Zhang, F., Wu, W.: Improving document representations
by generating pseudo query embeddings for dense retrieval. In: Proceedings of the 59th
Annual Meeting of the Association for Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 5054–5064.
Association for Computational Linguistics (2021)

17. Xiong, L., et al.: Approximate nearest neighbor negative contrastive learning for dense text
retrieval. In: International Conference on Learning Representations (2021)

18. Zhu, X., Hao, T., Cheng, S., Wang, F.L., Liu, H.: A self-supervised joint training frame-
work for document reranking. In: Findings of the Association for Computational Linguistics:
NAACL 2022, pp. 1056–1065. Association for Computational Linguistics, Seattle, United
States (2022)

19. Zhuang, S., Zuccon, G.: Dealing with typos for BERT-based passage retrieval and ranking.
In: Proceedings of the 2021 Conference on Empirical Methods in Natural Language Pro-
cessing, pp. 2836–2842. Association for Computational Linguistics, Online and Punta Cana,
Dominican Republic (Nov 2021)

20. Zhuang, S., Zuccon, G.: Characterbert and self-teaching for improving the robustness of
dense retrievers on queries with typos. In: Proceedings of the 45th International ACM SIGIR
Conference on Research and Development in Information Retrieval, pp. 38–45. SIGIR ’22,
Association for Computing Machinery, New York, NY, USA (2022)

http://arxiv.org/abs/1901.04085
https://doi.org/10.1007/978-3-030-99736-6_27
https://doi.org/10.1007/978-1-4471-2099-5_24
https://doi.org/10.1007/978-1-4471-2099-5_24

Parallel Pattern Enumeration in Large
Graphs

Abir Farouzi1,3(B), Xiantian Zhou2, Ladjel Bellatreche1, Mimoun Malki3,
and Carlos Ordonez2

1 LIAS/ISAE-ENSMA, Chasseneuil-du-Poitou, France
2 University of Houston, Houston, USA

3 Ecole Nationale Supérieure en Informatique de Sidi Bel Abbès,
Sidi Bel Abbès, Algeria
a.farouzi@esi-sba.dz

Abstract. Graphlet enumeration is a fundamental problem to discover
interesting patterns hidden in graphs. It has many applications in sci-
ence including Biology and Chemistry. In this paper, we present a novel
approach to discover these patterns with queries, in a parallel database
system. Our solution is based on an efficient partitioning strategy based
on randomized vertex coloring, that guarantees perfect load balancing
and accurate graphlet enumeration (complete and consistent). To the
best of our knowledge, our work is the first to provide an abstract and
efficient database solution with queries to enumerate both 3-vertex and
4-vertex patterns on large graphs.

1 Introduction

In graph analytics, finding small structures is crucial to studying the relation-
ships between a set of individuals/objects. These structures are called graphlets
or patterns, which are defined as small induced subgraphs. The problem of
graphlet enumeration is involved in many fields. In Biology for example, [13]
studied the interaction and the function of proteins in the entire proteome, which
is based on protein-protein interaction (PPI) networks. For that, [13] developed a
graph-based technique that condenses a protein’s nearby topology within a PPI
network by using a vector of graphlet degrees known as the protein’s signature.
It then determines the similarity between the signatures of all pairs of proteins.
Another relevant example would be in Chemistry, where [6] studied the chemical
compounds classification by developing a method based on two steps: (1) sub-
structure discovery process which includes the graphlet enumeration, and (2) the
classification process allowing an intelligent chemical compounds classification
using the graphlets. Other applications can be found in [4,5].

On the other hand, it is well-known that the graphlets beyond three ver-
tices are complicated to enumerate since the number of instances can rapidly
grow with O(nα), where α is the order of the graphlet. Indeed, we enumerate
2 structures for the 3-vertex graphlets, 6 structures for the 4-vertex graphlets,
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C. Strauss et al. (Eds.): DEXA 2023, LNCS 14146, pp. 408–423, 2023.
https://doi.org/10.1007/978-3-031-39847-6_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-39847-6_32&domain=pdf
https://doi.org/10.1007/978-3-031-39847-6_32

Parallel Pattern Enumeration in Large Graphs 409

21 for 5-vertex graphlets, and so on. In practice, it is typical for both the list of
graphlets and the time required for their enumeration to increase quickly as the
size of the graph increases, resulting in a computationally expensive task [11].

In this context, we presented in a previous work [7] a distributed solution
with queries, to enumerate efficiently all the embedded triangles in large graphs.
The triangle constitutes a special case of graphlets, where α = 3. However, it
is not as hard as larger graphlets, particularly those of 4 vertices. Indeed, enu-
merating 4-vertex graphlets is more challenging, since it requires checking and
outputting 6 instances with different structures. Our focus in this work is to
present an efficient parallel solution to enumerate all the 4-vertex graphlets. Our
solution underlines an efficient partitioning strategy based on vertex-coloring and
inspired by our previous work [7] on triangles. Furthermore, 4-vertex graphlet
enumeration requires more join operations compared to the triangles. Thus, in
the present work, we developed a staged enumeration strategy, where the sim-
ple graphlets of 3 and 4 order are used to reveal larger or complex subgraphs
dynamically. This reduces memory usage and accelerates the running time.

Our contributions are:

(1) We provide a distributed algorithm for staged graphlet enumeration. Our
approach can be implemented on any parallel system including DBMS.

(2) We propose a vertex cut partitioning strategy based on coloring that guar-
antees a perfect load balancing, and a local enumeration.

(3) We present the computational model optimization for an efficient and opti-
mized execution of our solution.

(4) We study the partitioning strategy, the result correctness, and the isomor-
phism between the resulting graphlets.

(6) We finally present an experimental validation of our findings and compare
our results with a competing graphlet enumeration solution.

Our paper is organized as follows. Preliminaries are described in Sect. 2.
In Sect. 3, we explain our data partitioning strategy, the computational model
optimization, and our solution for graphlet enumeration. In Sect. 4, we study
the partitioning strategy, the graph isomorphism, and the load balancing. We
present an experimental validation in Sect. 5. Section 6 explains closely related
work and Sect. 7 concludes the paper with general remarks.

2 Preliminaries

2.1 Graph

Let G = (V,E) be an undirected unweighted graph with n = |V | (V is the set
of vertices) and m = |E| (E is the set of edges). For our algorithm, we read the
input graph G as an edge list E(u, v), where an edge goes from u to v. We define
H = (VH , EH) as a subgraph of G = (V,E) if VH ⊆ V and EH ⊆ E, and as an
induced subgraph of G = (V,E) if ∀u, v ∈ VH and (u, v) ∈ EH then (u, v) ∈ E.

410 A. Farouzi et al.

2.2 Graphlets (Patterns in Connected Subgraphs)

A graphlet H is a connected induced subgraph of G. We denote two types of 3-
vertex graphlets: (1) Wedges (W) that are paths of two edges, and (2) Triangles
(TR) which are cycles with three connected edges. Moreover, there are six types
of 4-vertex graphets: (3) 3-Path (P), (4) 3-Star (S), (5) Rectangle (R), (6) Tailed
Triangle (T), (7) Diamond (D), (8) 4-vertex Clique (C) (see Fig. 1).

Fig. 1. 3 and 4-vertex graphlets.

2.3 Computational Model

In order to run our algorithm, we use the k − machine model (a.k.a Big Data
model), introduced by [9]. It consists of a set of k ≥ 2 machines built on a shared-
nothing architecture. Each machine can communicate directly with the other
machines via message passing (no shared memory) while running an instance
of the distributed algorithm. Since there is no shared memory, an efficient data
partitioning strategy is mandatory. It aims to minimize the data communication
between machine during the distributed algorithm execution. Note that the data
communication is a time and space consuming task.

3 Our Approach for Pattern Enumeration

3.1 Data Partitioning

The key idea underlying our partitioning approach is to perform a vertex-cut
partitioning based on coloring, so that each vertex and its incident edges are sent
to the same machine (see Fig. 2). Our partitioning strategy aims to partition the
vertex set V into c subsets of O(n/c) vertex each, where c is the number of color
subsets (c ≥ 2). Then, each edge between two subsets of colors is sent to one
random machine from the k−machine model called the proxy machine. Finally,
each local machine collects its required edges according to its quadruplet of colors
(hard-coded in the algorithm) to perform locally the graphlet enumeration.

In practice, we create table V _s(u, u_color) to store each vertex color.
Indeed, each entry in the table V _s is a couple of a vertex and its color cho-
sen uniformly and independently at random from the c colors. Then, the table
E_s_proxy(u, v, u_color, v_color) is created to send edges to proxies. It holds
the end-vertices color of each edge. Finally, the small table quadruplet(machine,
c1, c2, c3, c4) is created and replicated on each machine of the k −machine. This
small table is used by each local machine to collect its required edges and stores

Parallel Pattern Enumeration in Large Graphs 411

them in the table E_s_local(machine, u, v, u_color, v_color). The edges stored
in E_s_local table depends on the type of graphlets to generate. Hence, we
need to recreate this table according to the required edges to form the graphlets.
Notice that each entry in the table quadruplet consists of one of the possible
permutation of the c colors. Suppose we have two colors: black (b) and white (w).
We can generate (b, b, b, b), (b, b, b, w), · · · etc. We can generate c4 quadruplets
using these c colors.

Fig. 2. Data partitioning for graphlet enumeration.

3.2 k − Machine Distributed Model Optimization

The ideal execution of our algorithm requires one machine for each color quadru-
plet. This means we need a k − machine model of size:

k = c4 (1)

However, with larger number of c, the size of the k − machine model can grow
rapidly. Hence, we propose k − machine model optimization without impacting
our algorithm functions. For that, we need to allow each machine to manage
more than one quadruplet. Generally, we can use the following equation:

k = cl where 1 ≤ l ≤ 4 (2)

Here, each machine needs to manage c4−l quadruplets of colors. For example,
with c = 2 and k = 8, each machine manages 2 color quadruplets.

3.3 Graphlet Enumeration

Enumerating graphlets of order O(nα) results in many instances. Suppose we
have a graph with n vertices, enumerating all its embedded graphlets requires

412 A. Farouzi et al.

studying and checking Cα
n = n!

α!∗(n−α)! possible combinations. Hence, we need
to generate 6 instances of 4-vertex graphlets. Moreover, each graphlet of order
4 outputs 4! = 24 permutations. These permutations represent repetitions, and
their elimination is a hard task in most cases. Thus, only some configurations
of the graphlets must be considered, and a redundancy elimination process need
to be integrated into our algorithm. Figure 4 summarizes the graphlets config-
uration to consider for each 4-vertex graphlet type. Note that each graphlet is
made of 4 vertices {u, v, w, z} where u < v < w < z.

In order to accelerate the graphlet enumeration, we allow an enumeration by
stage (see Fig. 3). Thus, we classify the 4-vertex graphlets into two categories:

(1) Intuitive graphlets: it consists of three graphlets: 3-Path, 3-Star, and rect-
angle; that we can reuse to generate the other graphlets.

(2) Derived graphlets: represented by the complex graphlets that can be derived
from the intuitive graphlets: tailed triangle, diamond, and clique.

Fig. 3. Graphlet enumeration by stage.

Wedge Enumeration. The main idea behind our approach is to enumerate
graphlets by stage. Thus, we enumerate wedges to output intuitive graphlets,
that will be used to list derived graphlets. Wedges are graphlets consisting
of 3 vertices and 2 edges. We compute them using one self join on the table
E_s_local. We enumerate four types of wedges according to color quadruplets.
Precisely, the wedges of type 1 (Wedge_T1) correspond to the first three colors
({c1, c2, c3}) in the table quadruplet. This wedge is involved in the enumeration
of all the intuitive graphlets. Then, we enumerate wedges of type 2 (Wedge_T2)
with ({c2, c3, c4}) colors to output paths, and wedges of type 3 (Wedge_T3)
with ({c1, c2, c4}) colors to list 3-stars. Finally, we output wedges of type 4
(Wedge_T4) with ({c1, c3, c4}) colors to enumerate rectangles. For example
and without loss of generality, on machine M1 with (c1, c2, c3, c4) as quadru-
plet of colors, we generate {Wedge_T1,Wedge_T2,Wedge_T3,Wedge_T4}

Parallel Pattern Enumeration in Large Graphs 413

Fig. 4. Graphlets configuration to output.

whose vertex colors are in {(c1, c2, c3), (c2, c3, c4), (c1, c2, c4), (c1, c3, c4)} respec-
tively. We create the following tables to store the generated wedges for each
machine.

Wedge_T1(machine, u, v, w, u_color, v_color, w_color)
Wedge_T2(machine, u, v, w, u_color, v_color, w_color)
Wedge_T3(machine, u, v, w, u_color, v_color, w_color)
Wedge_T4(machine, u, v, w, u_color, v_color, w_color)

Furthermore, triangles can easily be extracted using the wedges of type 1. Indeed,
triangles are a specific case of wedges with an edge connecting each couple of
vertices of the wedge (3-vertex clique). The triangle enumeration problem is
largely discussed in our previous paper [7].

Intuitive 4-Vertex Graphlet Enumeration. Wedges are the building blocks
of intuitive graphlets, wherein we generate the required wedges to enumerate
each variant of these graphlets. Subsequently, we carry out joins between them.
Figure 5 summarizes this process.

3-Path consist of two wedges (u, v, w) and (v, w, z). It mainly depends on its end-
vertices order, in such a way that u < z. Hence, we enumerate

(
4
2

)
= 12 permuta-

tions (by symmetry elimination). For that, we create table Path(machine, u, v,
w, z) that holds the 3-Paths resulting of a local join between the table Wedge_T1
and the table Wedges_T2. The query Q(P) summarizes this computation:

414 A. Farouzi et al.

Fig. 5. Intuitive 4-vertex graphlet enumeration process.

Q(P): INSERT INTO Path SELECT T1.machine as machine , T1.u as u, T1.v as v,
T1.w as w, T2.w as z

FROM Wedge_T1 T1 JOIN Wedge_T2 T2
ON T1.machine=T2.machine AND T1.v=T2.u AND T1.w=T2.v

WHERE T1.u<T2.w;

3-Star is formed by two wedges (u, v, w) and (u, v, z) connected with the common
edge (u, v) of the wedges. The generation of this graphlet depends on the outer
vertices of the star. Hence, we need to enumerate

(
4
3

)
= 4 permutations. To save

the results, we create table Star(machine, u, v, w, z). Then, we join the table
Wedge_T1 with table Wedge_T3 considering u < w < z to remove all the
repetitions. The query Q(S) bellow summarises the 3-Star graphlet enumeration:
Q(S): INSERT INTO Star SELECT T1.machine as machine , T1.u as u, T1.v as v,

T1.w as w, T3.w as z
FROM Wedge_T1 T1 Join Wedge_T3 T3

ON T1.machine=T3.machine AND T1.u=T3.u AND T1.v=T3.v
WHERE T1.u<T1.w AND T1.w<T3.w;

Rectangle is represented by two opposite wedges {(u, v, w), (u, z, w)} with v! = z.
For this graphlet, we can have 4 configurations for the cyclic symmetry and 2
configurations for each clockwise counter-clockwise symmetry. As a result, we
need to generate one configuration of each of them, so we generate 24

4×2 = 3
permutations. Hence, we create the table Rectangle(machine, u, v, w, z) and we
perform a local join between the table Wedge_T1 and the table Wedge_T4 for
each case (u < v < w < z, u < v < z < w and u < w < v < z) and we union
the results together, as presented in the query Q(R):
Q(R): INSERT INTO Rectangle SELECT T1.machine as machine , T1.u as u,

T1.v as v, T1.w as w, T4.v as z
FROM Wedge_T1 T1 join Wedge_T4 T4

ON T1.machine=T4.machine AND T1.u=T4.w AND T1.w=T4.u
WHERE T1.u<T1.v AND T1.v<T1.w AND T1.w<T4.v

Parallel Pattern Enumeration in Large Graphs 415

UNION SELECT T1.machine as machine , T1.u as u, T1.v as v, T1.w as w,
T4.v as z

FROM Wedge_T1 T1 join Wedge_T4 T4
ON T1.machine=T4.machine AND T1.u=T4.w AND T1.w=T4.u

WHERE T1.u<T1.v AND T1.v<T4.v AND T4.v<T1.w
UNION SELECT T1.machine as machine , T1.u as u, T1.v as v, T1.w as w,
T4.v as z

FROM Wedge_T1 T1 join Wedge_T4 T4
ON T1.machine=T4.machine AND T1.u=T4.w AND T1.w=T4.u

WHERE T1.u<T1.w AND T1.w<T1.v AND T1.v<T4.v;

Derived 4-Vertex Graphlet Enumeration. The graphlets of this class are
generated using the intuitive graphlets class.

Tailed Triangle can be seen as a 3-Star (u, v, w, z) with v at the center, and
an edge (u,w), (w, z) or (u, z) connecting two of its endpoints. Its enumera-
tion relies on the vertex at the center and the vertex at the end of its tail,
for that we consider

(
4
2

)
= 12 permutations. To list them, we create table

Tailed(type,machine, u, v, w, z), where type distinguish whether the connecting
edge is between {u,w}, {u, z} or {w, z}. Than we recreate table E_s_local to
have, on each machine all the edges that endpoints are of colors (c1, c3), (c1, c4),
or (c3, c4) of each color quadruplet. Finally, we perform a local join between the
table Star and the table E_s_local, as mentioned in the query Q(T):
/*1=T(u,v,w),2=T(u,v,z),3=T(v,w,z), T=Triangle */
Q(T): INSERT INTO Tailed SELECT 1, E1.machine as machine , E1.u as u,

E1.v as v, w, z
FROM Star E1 Join E_s_local E2

ON E1.machine=E2.machine AND E1.u=E2.u AND E1.w=E2.v
UNION SELECT 2, E1.machine as machine , E1.u as u, E1.v as v, w, z

FROM Star E1 Join E_s_local E2
ON E1.machine=E2.machine AND E1.u=E2.u AND E1.z=E2.v

UNION SELECT 3, E1.machine as machine , E1.u as u, E1.v as v, w, z
FROM Star E1 Join E_s_local E2

ON E1.machine=E2.machine AND E1.w=E2.u AND E1.z=E2.v;

Diamond can be recognized as a rectangle with an edge on one of its diag-
onals. Since only 3 configurations are needed for the rectangles, each rectan-
gle with one of it diagonal can be output as diamond. So, we need to out-
put 3 × 2 = 6 permutations for this graphlet. To enumerate them, we create
table Diamond(machine, u, v, w, z). Then, we recreate the table E_s_local to
have edges whose end-vertices are of colors (c1, c3) and (c2, c4) of each color
quadruplet. We finally join locally the table Rectangle with the table E_s_local
according to the query Q(D):
Q(D): INSERT INTO Diamond SELECT E1.machine as machine , E1.u as u,

E1.v as v, w, z
FROM Rectangle E1 Join E_s_local E2

ON E1.machine=E2.machine AND E1.u=E2.u AND E1.w=E2.v
UNION SELECT E1.machine as machine , E1.u as u, E1.v as v, w, z

FROM Rectangle E1 Join E_s_local E2
ON E1.machine=E2.machine AND E1.v=E2.u AND E1.z=E2.v;

416 A. Farouzi et al.

Clique is a complete subgraph of four vertices with an edge between each couple
of vertices, hence only one configuration should be output, which is made of the
lexicographical order between the vertices. This graphlet is a rectangle with its
both diagonals. Hence, we create table Clique(machine, u, v, w, z) to hold all the
4-vertex cliques. For that, we recreate the table E_s_local to have the edges
whose end-vertices are of colors (c1, c3) ans (c2, c4) of each color quadruplet.
Then, we join locally the table Rectangle with the table E_s_local twice, as
presented in the following query (Q(C)):
Q(C): INSERT INTO Clique SELECT E1.machine as machine , E1.u as u,

E1.v as v, w, z
FROM Rectangle E1 JOIN E_s_local E2

ON E1.machine=E2.machine AND E1.u=E2.u AND E1.w=E2.v
JOIN E_s_local E3

ON E1.machine=E3.machine AND E1.v=E3.u AND E1.z=E3.v
WHERE E1.u<E1.v AND E1.v<E1.w AND E1.w<E1.z;

4 Graphlet Enumeration Theoretical Analysis

4.1 Partitioning Strategy Effectiveness

Our partitioning strategy aims to send an induced subgraph to each machine of
the k − machine model. It performs a vertex-cut partitioning using a coloring
method. First, we partition the vertex set V into c color subsets. After that, each
machine receives c4−l quadruplets of colors, which is used to collect its required
edges to form an induced subgraph of size O(m/k).

Results Correctness. To study the correctness of our results, we define the
following lemmas:

Lemma 1. Consistency: all the graphlets are output once.

Proof. The enumeration of each of the 4-vertex graphlets is local without any
data communication between machines. Hence, we need to be sure that each
graphlet is enumerated once.

1. Wedges: wedges of type 1 are output once on the model following the Eq. 2
with l ≤ 3. Without loss of generality, suppose we have two quadruplet q1 =
{c1, c1, c1, c1} and q2 = {c1, c1, c1, c2} on machine M1. Notice that the first
color triplet in q1 and q2 is the same. This color triplet is used to output
the wedges of type 1 involved in all the intuitive graphlets. In our quadruplet
assignment, we ensure that each machine from the k−machine model acquires
the same first triplet of color, hence each machine will exclusively output the
wedges corresponding to its triplet of color.

2. Intuitive graphlets: Suppose on machine M , we have the quadruplet
(c1, c2, c3, c4). The wedges with colors (c1, c2, c3), (c2, c3, c4), (c1, c2, c4)
and (c1, c3, c4) are held by the tables Wedge_T1, Wedge_T2, Wedge_T3
and Wedge_T4 resp. on machine M without local repetitions. When

Parallel Pattern Enumeration in Large Graphs 417

we generate 3-Path (3-Star or rectangle) graphlets on M , we compute
Wedge_T1 �� T1.u = T2.v

&T1.w = T2.v
Wedge_T2 (Wedge_T1 �� T1.u = T3.v

&T1.w = T3.v
Wedge_T3

or Wedge_T1 �� T1.u = T4.v
&T1.w = T4.v

Wedge_T4). Each wedge is unique on M , thus

the generated paths (stars or rectangles) are unique on M because they con-
sist of unique wedges on M . Furthermore, depending on the cluster size, each
machine defines 4 − l quadruplet of colors that are uniquely and specifically
assigned to it. Hence, the order of the colors of each quadruplet is unique
on each machine (there is no repetition). As a result, the generated intuitive
graphlets are output once, since their enumeration depends on the colors and
the order of their corresponding quadruplet on each machine.

3. Derived graphlet: we proved above that each intuitive graphlet is output once,
and since the output of the derived graphlets is based on the intuitive ones,
then each derived graphlet is output once.

Lemma 2. Completeness: There is no missing graphlet in the output.

Proof. In our partitioning strategy, each vertex choose independently and uni-
formly a color from the c colors, in the same time, we create color quadruplets
consisting of the different permutations of the c colors. As a result, each edge with
its colored end-vertices involved in one or more 3-vertex or 4-vertex graphlets,
its end-vertices colors are in one or more color quadruplets. Without loss of
generality, suppose the vertex u chose color c1 and the vertex v chose the color
c2. The edge (u, v) will be sent to the machine M defining (c1, c2) in one of its
quadruplets. So, if the edge (u, v) is a part of a wedge or derived graphlet, it
will be on M and according to the quadruplets on M , the wedge defining the
intuitive graphlet or the derived graphlet involving (u, v) will be output. Finally,
there will be no missing wedges or graphlets.

Graph Isomorphism. We explained previously that we only consider some
permutations when outputting the graphlets. In fact, when we output P =
(u, v, w, z) as a 3-path graphlet, we need to eliminate the opposite direction
P ′ = (z, w, v, u), since P et P ′ are isomorphic. Hence, only the permutation
defining u < z is considered. In addition, we need to consider four permutations
for 3-star graphlets, depending on the vertex at the center. For S = (u, v, w, z)
with v at the center, we need to consider the graphlet where u < w < z. All the
other graphets with v at the center, are isomorphic to S. The rectangles R =
(u, v, w, z) are output in three permutations (u < v < w < z, u < v < z < w,
u < w < v < z). All the remaining configurations are isomorphic to R, since
the rectangle is a cycle of length 4. The tailed triangles T = (u, v, w, z) accept
twelve permutations. For each configuration of 3-star, we can generate three
tailed triangles, considering u < w < z. The other configurations are the same
as T . The diamonds D = (u, v, w, z) need six permutations to be considered.
We output two permutations for each rectangle. Hence, all the 18 remaining
graphlets are isomorphic to D. Finally, for the cliques C = (u, v, w, z) only one
permutation is needed. All the other configurations are isomorphic to C.

418 A. Farouzi et al.

4.2 Complexity and Load Balancing

Complexity. 4-vertex graphlet enumeration is more difficult than the trian-
gle enumeration. The complexity of triangle enumeration is O(n3), whereas it
is O(n4) for 4-vertex graphlets. Our algorithm is bounded by O(N2

∠) for the
intuitive graphlets, where N∠ is the wedge count. On the other hand, since the
derived graphlets depends on the intuitive graphlets, their complexity is bounded
by O(max{m×S,m×R}, with S(R) is the number of 3-star (rectangle) graphlets.

Load Balancing. We mentioned previously that the vertex set V is partitioned
into c subsets of O(n/c) vertex each. Each machine then receives an induced sub-
graph Gx = (Vx, Ex) of G. The number of edges among the sub-graphs Gx is
relatively balanced with high probability. Indeed, each vertex chose a color in
a uniform manner, so it has 1

c to choose one of the c colors. Then, the edge
between a couple of vertices has 1

c × 1
c = 1

c2 possibility. This balances the load
between the proxies. Each machine then collects the required edges to enumerate
the graphlets, so it holds (1c)

4 = 1
c4 of each type of graphlets. As a result,

each machine processes essentially the same number of graphlets, which leads to
balance the workload.

5 Experimental Study

5.1 Hardware and Software Setup, and Data Set

Hardware: Experiments are conducted on a cluster with 9 machines. Each
machine has 4 cores CPU running at 2.2Ghz on average, 4GB of main memory,
500GB of storage, 32KB L1 cache, 1MB L2 cache and Linux Ubuntu server
18.04 as operating system. The machines are connected on 1GB network cards
with 128MB/s as bandwidth. Each machine manages 2 or 3 quadruplets.

Software: We used the columnar DBMS Vertica to execute our queries (the
code is available at https://github.com/lias-laboratory/sqlgraphlet), since it is
10× faster than the row DBMSs for graph problems. However, any other par-
allel system that provides partitioning control can be used, including systems
like SparkSQL and TigerGraph. Moreover, we compared our algorithm against
D4GE [11]; a tool based on Spark for sub-graph enumeration.

Data Sets: We used four real data sets from Stanford data set collection
(https://snap.stanford.edu), summarized in Table 1.

5.2 Graphlet Enumeration

Our experiments are presented in two sets: (1) the first concerns the evaluation
of our approach results, including its load balancing and its speed-up, and (2) the
second set aims to compare our approach with D4GE [11] which is a distributed
graphlets enumeration solution based on Spark. Each experiment is repeated
three times and the average time measurement is reported.

https://github.com/lias-laboratory/sqlgraphlet
https://snap.stanford.edu

Parallel Pattern Enumeration in Large Graphs 419

Table 1. Data sets: order (n), size (m), triangle count (Δ) and maximum degree
(d_max).

Data sets n m Δ d_max

Facebook 4,039 88k 1,612k 1,045
Pennsylvania 1,088k 1,541k 67k 9
Amazon 334k 925k 75k 549
DBLP 317k 1,049k 13k 343

Graphlet Enumeration Evaluation

Graphlet Counting: Table 2 summarizes the wedges and the 4-vertex graphlets
counting for each graph data set. Our partitioning strategy ensures to have
each vertex with its incident edges on the same machine according to its color
quadruplet. Thus, each graphlet is enumerated once on one machine if it exists.

Table 2. Graphlet counting output.

Data sets P S R T D C

Facebook 1,055,326,189 727,318,426 144,023,053 703,783,680 138,773,046 30,004,668

Pennsylvania 7,384,597 1,707,904 157,802 318,190 5,795 21

Amazon 80,983,900 142,823,893 3,125,323 24,485,894 2,702,808 275,961

DBLP 675,637,762 431,568,151 55,107,655 316,232,255 54,904,261 16,713,192
P: 3-Path, S: 3-Star, R: Rectangle, T: Tailed Triangle, D: Diamond, C: Clique.

Our Solution Speed-Up: Figure 6 depicts the local execution time for each
graphlet algorithm on the graph data sets on a cluster of 4 machines, 8 machines
and 9 machines. Notice that the partitioning time is negligible and it happens
once at the beginning, so we didn’t include it. From Fig. 6, we deduce that the
most time consuming graphlet is the tailed triangle, because we classify this
graphlet in three categories depending on the position of the triangle (at the
beginning, in the middle or at the end), then we union the results together.
Moreover, we can notice that the execution time of the queries improves as the
size of the cluster increase. Hence, two conclusions can be drawn: (1) we can get
up to 2× speed-up with larger number of colors, and (2) we obtain better running
time on models having less quadruplets managed by each machine. Furthermore,
we notice that the derived graphlets require negligible execution time, since
they are based on the intuitive graphlets. This opens doors for our stepwise
enumeration strategy to list quickly larger graphlets based on smaller ones.

Balanced Workload: To evaluate the load balancing of our partitioning strat-
egy, we present Fig. 7, that presents line charts for the output of the graphlets on
each machine, using a cluster with 8 machines. The workload balancing ensured
by the partitioning strategy results in outputting almost the same count of

420 A. Farouzi et al.

Fig. 6. Local running time for graphlet enumeration (sec) with k = {4, 8, 9} and c =
{2, 2, 3} resp.

graphlets on each machine. The slight variation in counting is due to the ran-
domization in the vertex coloring step. Precisely, the 3-Star query produced a
variation between the machines because of the graph structure. Facebook and
amazon data sets are particularly skewed graphs, that’s why we can enumerate
more 3-Star on only some machines.

Fig. 7. Load balancing on a cluster with 8 machines (k = 8 and c = 2).

Comparison with D4GE. The distributed Spark solution D4GE [11] requires
compressed input graphs, hence the use of graph compression tool like webGraph
library [3] is mandatory. As a result, we compressed all the graph data sets using
webGraph library before performing the experiments. This compression time is
included in our evaluation as the pre-treatment time.

Table 3 provides a comparison between our approach and D4GE on a cluster
of 8 machines using 2 colors. Despite its use of compressed data, D4GE shows
more running time with sparse graphs as Pennsylvania. This data set is the
largest in our chosen data sets, but also the most sparse. On the other hand,
our solution showed less efficient with dense graphs compared to D4GE. Note
that unlike D4GE that only provide the graphlets count, we list the results. Our

Parallel Pattern Enumeration in Large Graphs 421

ultimate goal is to provide a tool that works by stage and save the results of each
step. This has two impacts: (1) speed-up the enumeration process with larger
graphlets, and (2) provide a base to develop a recursive strategy to enumerate
larger graph structure including the maximum cliques. To sum up, our solution
gives an acceptable running time. It scales well, it does not require any graph
compression or graph preparation beforehand, and it lists clearly and entirely
all the 4-vertex graphlets in the input graph.

Table 3. Comparison of our solution against D4GE (sec).

Data sets D4GE Our solution
Pre-treatment Enumeration Total Partitioning Enumeration Total

Facebook 8 20 28 1 250 251

Pennsylvania 25 18 43 4 10 14

Amazon 18 16 34 1 26 27

DBLP 16 28 44 2 177 179

6 Related Work

Graph Analytics is becoming a first-class challenge in database research [10].
Subgraph enumeration is among the fundamental problems that have received a
lot of attention recently. It is based on recursive queries and transitive closure;
two main graph problems that are largely and deeply studied in [8,14]. Triangle
enumeration and counting is the simplest sub-graph enumeration problem and
has been discussed in database perspective in many works such [1,2,7]. These
works presented different partitioning strategies to minimize data exchange and
to perform triangle enumeration locally. Moreover, many solutions for 4-vertex
graphlet enumeration have been developed outside DBMS. [11] is a distributed
solution based on Spark to enumerate all the triad and the 4-vertex graphlets
in large compressed graphs. [11] was inspired by [15], who presented an efficient
partitioning strategy based on coloring, that balances the workload to enumerate
subgraphs but with repetitions. Other works for the induced subgraph enumer-
ation, such as FanMod [16] and Rage [12] have emerged. However, they do not
perform well on million-scale graphs and are less efficient. On the other hand,
we are, to the best of our knowledge, the first to present an integrated solu-
tion to discover both 3-vertex and 4-vertex graphlets with queries, that can be
reprogrammed using a programming language such as Python and MPI.

7 Conclusion

We present a novel distributed approach to solve 3-vertex and 4-vertex graphlets
enumeration problem. Our current solution is programmed using SQL, but we
can implement it with a programming language as Python, or a parallel system

422 A. Farouzi et al.

like Spark. Moreover, we experimentally proved that our partitioning strategy
provides a perfect load balancing, and our solution scales well with the graph size.
This study is promising and it can be efficiently extended to larger graphlets.

In future work, we will study the impact of the number of colors on query
time. We will also study larger graphlet enumeration (of order α), compressing
the graph using triangles as super-vertices. We plan to extend our algorithms
to multicore CPUs and GPUs. As a longer term goal, we aim to solve clique
enumeration, a significantly harder problem.

References

1. Ahmed, A., Enns, K., Thomo, A.: Triangle enumeration for billion-scale graphs
in RDBMS. In: Barolli, L., Woungang, I., Enokido, T. (eds.) AINA 2021. LNNS,
vol. 226, pp. 160–173. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
75075-6_13

2. Al-Amin, S.T., Ordonez, C., Bellatreche, L.: Big data analytics: exploring graphs
with optimized SQL queries. In: Elloumi, M., et al. (eds.) DEXA 2018. CCIS,
vol. 903, pp. 88–100. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
99133-7_7

3. Boldi, P., Vigna, S.: The webgraph framework I: compression techniques. In: Pro-
ceedings of WWW (2004)

4. Bröcheler, M., Pugliese, A., Subrahmanian, V.: COSI: cloud oriented subgraph
identification in massive social networks. In: Proceedings of IEEE ASONAM (2010)

5. Charbey, R., Prieur, C.: Stars, holes, or paths across your Facebook friends: a
graphlet-based characterization of many networks. Netw. Sci. 7(4), 476–497 (2019)

6. Deshpande, M., Kuramochi, M., Wale, N., Karypis, G.: Frequent substructure-
based approaches for classifying chemical compounds. IEEE TKDE 17(8), 1036–
1050 (2005)

7. Farouzi, A., Bellatreche, L., Ordonez, C., Pandurangan, G., Malki, M.: A scalable
randomized algorithm for triangle enumeration on graphs based on SQL queries.
In: Song, M., Song, I.-Y., Kotsis, G., Tjoa, A.M., Khalil, I. (eds.) DaWaK 2020.
LNCS, vol. 12393, pp. 141–156. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-59065-9_12

8. Jachiet, L., Genevès, P., Gesbert, N., Layaida, N.: On the optimization of recursive
relational queries: application to graph queries. In: Proceedings of ACM SIGMOD
(2020)

9. Klauck, H., Nanongkai, D., Pandurangan, G., Robinson, P.: Distributed computa-
tion of large-scale graph problems. In: Proceedings of ACM-SIAM SODA (2015)

10. Lan, M., Wu, X., Theodoratos, D.: Answering graph pattern queries using compact
materialized views. In: Proceedings of DOLAP (2022)

11. Liu, X., Santoso, Y., Srinivasan, V., Thomo, A.: Distributed enumeration of four
node graphlets at quadrillion-scale. In: Proceedings of SSDBM (2021)

12. Marcus, D., Shavitt, Y.: Rage - a rapid graphlet enumerator for large networks.
Comput. Netw. 56(2), 810–819 (2012)

13. Milenković, T., Przulj, N.: Uncovering biological network function via graphlet
degree signatures. Cancer Inform. 6, CIN–S680 (2008)

https://doi.org/10.1007/978-3-030-75075-6_13
https://doi.org/10.1007/978-3-030-75075-6_13
https://doi.org/10.1007/978-3-319-99133-7_7
https://doi.org/10.1007/978-3-319-99133-7_7
https://doi.org/10.1007/978-3-030-59065-9_12
https://doi.org/10.1007/978-3-030-59065-9_12

Parallel Pattern Enumeration in Large Graphs 423

14. Ordonez, C., Cabrera, W., Gurram, A.: Comparing columnar, row and array
DBMSs to process recursive queries on graphs. Inf. Syst. 63, 66–79 (2017)

15. Park, H., Silvestri, F., Pagh, R., Chung, C., Myaeng, S., Kang, U.: Enumerating
trillion subgraphs on distributed systems. ACM TKDD 12(6), 71:1–71:30 (2018)

16. Wernicke, S., Rasche, F.: FANMOD: a tool for fast network motif detection. Bioin-
formatics 22(9), 1152–1153 (2006)

S2CTrans: Building a Bridge
from SPARQL to Cypher

Zihao Zhao1,2, Xiaodong Ge1,2, Zhihong Shen1(B), Chuan Hu1,2,
and Huajin Wang1

1 Computer Network Information Center, Chinese Academy of Sciences,
Beijing, China

{zhaozihao,gexiaodong,bluejoe,huchuan,wanghj}@cnic.cn
2 University of Chinese Academy of Sciences, Beijing, China

Abstract. In graph data applications, data is primarily maintained
using two models: RDF (Resource Description Framework) and property
graph. The property graph model is widely adopted by industry, leading
to property graph databases generally outperforming RDF databases in
graph traversal query performance. However, users often prefer SPARQL
as their query language, as it is the W3C’s recommended standard.
Consequently, exploring SPARQL-to-Property-Graph-Query-Language
translation is crucial for enhancing graph query language interoperability
and enabling effective querying of property graphs using SPARQL. This
paper demonstrates the feasibility of translating SPARQL to Cypher
for graph traversal queries using graph relational algebra. We present
the S2CTrans framework, which achieves SPARQL-to-Cypher transla-
tion while preserving the original semantics. Experimental results with
the Berlin SPARQL Benchmark (BSBM) datasets show that S2CTrans
successfully converts most SELECT queries in the SPARQL 1.1 specifi-
cation into type-safe Cypher statements, maintaining result consistency
and improving the efficiency of data querying using SPARQL.

Keywords: RDF · Property graph · SPARQL · Cypher

1 Introduction

Currently, knowledge graph storage primarily relies on two models: Resource
Description Framework (RDF) [5] and property graph [1]. RDF databases, such
as Jena, maintain the former, while property graph databases, like Neo4j, manage
the latter.

In general, property graph databases outperform RDF databases in graph
traversal and pattern matching tasks. However, users tend to favor SPARQL for

This work was supported by the National Key R&D Program of China(Grant
No.2021YFF0704200) and Informatization Plan of Chinese Academy of Sciences(Grant
No.CAS-WX2022GC-02)
Z. Zhao and X. Ge—Contributed equally to this paper.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C. Strauss et al. (Eds.): DEXA 2023, LNCS 14146, pp. 424–430, 2023.
https://doi.org/10.1007/978-3-031-39847-6_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-39847-6_33&domain=pdf
https://doi.org/10.1007/978-3-031-39847-6_33

S2CTrans: Building a Bridge from SPARQL to Cypher 425

data querying, as it is a long-standing W3C recommended standard language.
The 2019 W3C Workshop on Web Standardization for Graph Data [11] called for
bridging the gap between RDF and property graph query languages, allowing
systems to manage data using the property graph data model while enabling
users to query data with SPARQL.

Differences in semantic representation and processing logic exist between
SPARQL and the property graph query language, represented by Cypher [3],
making the standardization process challenging. There are three main challenges
of this translation: (a) Proving the semantic equivalence of SPARQL and Cypher
in graph traversal query. (b) Resolving the conflict between RDF model and
property graph model storage through schema mapping and data mapping. (c)
Designing the pattern matching mapping and solution modifier mapping method
to translate SPARQL into Cypher.

In this study, we establish a graph relational algebra-based semantics for
SPARQL and introduce S2CTrans, a provably semantics-preserving SPARQL-
to-Cypher translation method. We then evaluate S2CTrans using comprehen-
sive query features on public datasets. This paper introduces the S2CTrans
framework, which offers a mapping method for pattern matching and solution
modifiers, enabling the translation from SPARQL to Cypher. We perform a
comprehensive query test on large-scale datasets to evaluate the performance
improvement of Cypher in graph databases after translating SPARQL using the
S2CTrans framework.

Fig. 1. Overview of SPARQL-to-Cypher translation.

The diagram of our work is illustrated in Fig. 1. At the data level, we imple-
ment a syntactic and semantic transformation of RDF graph to property graph
using the neosemantincs plug-in [10] developed by Neo4j Labs. This involves stor-
ing RDF triples into property graphs as nodes, relationships, and properties. At

426 Z. Zhao et al.

the query level, the figure illustrates the first two contributions discussed above.
The dashed arrow ① represents the graph relational algebra of Cypher, while the
dashed arrow ② represents the mapping-based semantics of SPARQL defined in
[8]. Our contributions are represented by the dashed arrows ③, ④, and ⑤, which
define a graph relational algebra based semantics of SPARQL. Additionally, the
solid arrows represent our contributions to the definition of the SPARQL-to-
Cypher translation, which includes the pattern matching mapping (PMM) and
the solution modifier mapping (SMM).

2 S2CTrans

2.1 System Architecture

We design and implement S2CTrans, a framework which could equivalently
translate SPARQL into Cypher. S2CTrans has been open-sourced1. S2CTrans
takes SPARQL query as input, and generates Cypher statement with the orig-
inal semantics by using Jena ARQ [9] parse strategy, graph pattern matching
and solution modifiers transformation strategy and Cypher-DSL [7] construction
strategy. The S2CTrans works as a five-step execution pipeline:

– Step 1: The input SPARQL query is first parsed by the Jena ARQ module.
It can check for syntax errors, verify whether it is a valid SPARQL query and
generate an abstract syntax tree (AST) representation.

– Step 2: After obtaining the AST parsed by SPARQL, OpWalker is used
to access the graph pattern matching part and solution modifier part from
bottom up.

– Step 3: PMM maps the SPARQL graph pattern gps to the Cypher combin-
ing graph pattern cpc, and then SMM maps the SPARQL solution modifiers
Ms to Cypher clause keywords Kc.

– Step 4: Cypher-DSL generates the final conjunctive traversal and constructs
Cypher AST according to the pattern element type and operator priority.

– Step 5: Finally, the Cypher AST is rendered as a complete Cypher state-
ment by Renderer. This statement can be directly queried in Neo4j with the
neosemantics plug-in to get the result of property graph.

2.2 Pattern Matching Mapping

Graph pattern matching is the most basic and important query operation in
graph query languages [2]. Due to page constraints, the graph pattern mapping
algorithm is introduced in the appendix of S2CTrans-tech-report [12]. The map-
ping function PMM in the algorithm translates SPARQL graph pattern into
Cypher graph pattern elements.

1 https://github.com/MaseratiD/S2CTrans.

https://github.com/MaseratiD/S2CTrans

S2CTrans: Building a Bridge from SPARQL to Cypher 427

2.3 Solution Modifiers Mapping

After the graph pattern is obtained by PMM algorithm, conditions are usually
added to modify the solution of graph pattern matching. Based on the semantic
equivalence of SPARQL and Cypher in graph relational algebraic expressions,
SMM algorithm constructs a mapping table (as shown in Table 1) to implement
the mapping of SPARQL solution modifiers Ms to Cypher clause keywords Kc.
This table summarizes graph query modification operations and the correspond-
ing graph relational algebra, as well as the forms of SPARQL and Cypher clause
construction. The variables and expressions have been mapped to graph pattern
elements in PMM algorithm.

Table 1. A consolidated list of SPARQL solution modifiers and corresponding Cypher
clause keywords.

Operation Algebra SPARQL Solution Modifiers - Ms Cypher Clause Keywords - Kc

Selection σcondition(r) FILTER(Expr1 &&(||) Expr2) WHERE Expr1 and(or) Expr2

Projection πx1,x2,...(r) SELECT ?x1 ?x2 ... RETURN x1, x2, ...

De-duplication δx1,x2,...(r) SELECT DISTINCT ?x1 ?x2 ... RETURN DISTINCT x1, x2, ...

Restriction λl
s(r) LIMIT l SKIP s LIMIT l SKIP s

Sorting ς↑x1 ,↓x2 ,...(r) ORDER BY ASC(?x1) DESC(?x2) ORDER BY x1 ASC, x2 DESC

Through PMM algorithm and SMM algorithm, we get the Cypher graph
pattern and clause keywords. Cypher-DSL constructs Cypher AST according to
graph pattern elements and operator precedence. Finally, we use Renderer to
construct a complete Cypher statement.

3 Experiments

3.1 Evaluation Criteria

We execute SPARQL queries on several top-of-the-line RDF databases, and exe-
cute translated Cypher queries on graph database Neo4j. We evaluate S2CTrans
by the translation speed, query execution time and result consistency.

3.2 Experimental Setup

Dataset: This experiment uses the Berlin SPARQL Benchmark(BSBM) dataset
recommended by W3C, which consists of synthetic data describing e-commerce
use cases, involving categories such as products, producers, etc. We generated
10M triples respectively by BSBM-Tools, and the corresponding property graph
version is mapped using the neosemantics plug-in. The details of dataset are
introduced in the appendix of S2CTrans-tech-report [12].

428 Z. Zhao et al.

Query Statements: We created a total of 40 SPARQL queries, covering 30 dif-
ferent query features. These queries were selected after systematically studying
the semantics of SPARQL queries [8]. The queries are detailed in the appendix
of S2CTrans-tech-report [12].

System Setup: We execute the query statements on the following databases
to evaluate the performance improvement of S2CTrans: Property Graph
Database: Neo4j v4.2.3 RDF Databases: Virtuoso v7.2.5, Stardog v7.6.3,
RDF4J v3.6.3, Jena TDB v4.0.0 All experiments were performed on the fol-
lowing machine configurations: CPU: Intel Core Processor (Haswell) 2.1GHz;
RAM: 16 GB DDR4; HDD: 512 GB SSD; OS: CentOS 7. In order to ensure the
reproducibility of the experimental results, we provide the experimental script,
dataset and query statement2.

3.3 Result Evaluation

According to the evaluation criteria described above, we perform SPARQL query
on RDF databases and the translated Cypher query on property graph database
Neo4j on the dataset. Finally, we compare and analyze the query results, make
sure the consistency. Among them, each query runs an average of 10 times to
get the average value. Due to the limited space of the paper, the statements
translations and query results are shown in the appendix of S2C-tech-report [12].
The average translation time of S2CTrans of 40 queries on BSBM-10M is 23.7
ms. Compared with the query time, it accounts for a small proportion. We
meticulously conducted tests on datasets of various scales under both cold-start
and warm-start scenarios, and all tests yielded similar results. Figure 2 presents
the query execution time during the system’s cold-start phase. Among most
query statements, Neo4j performs better than the RDF databases. Moreover,
in the queries with multi-hop paths and long relationships, the performance of
Neo4j is 1 to 2 orders of magnitude higher than RDF database. The main reason
is that RDF databases spend a lot of time in executing join operations and
forming execution plans, while Neo4j uses index-free adjacency, which greatly
improves the query efficiency.

The experiment results prove that the proposed S2CTrans is successful in
equivalent translating and executing SPARQL queries. S2CTrans enables the
users to query property graph by SPARQL.

2 https://github.com/MaseratiD/S2CTrans.

https://github.com/MaseratiD/S2CTrans

S2CTrans: Building a Bridge from SPARQL to Cypher 429

Fig. 2. Property graph database V.S. RDF database - BSBM Dataset 10M

4 Conclusion

In this paper, we introduce S2CTrans, a novel approach that supports SPARQL-
to-Cypher translation. This method can convert most SPARQL statements into
type-safe Cypher statements. Moreover, we employ property graph databases
and RDF databases to conduct experimental evaluations on large-scale datasets,
validating the effectiveness and applicability of our approach. The evaluation
highlights the substantial performance gains achieved by translating SPARQL
queries to Cypher queries, particularly for multiple relationship and star-shaped
queries. Although S2CTrans currently has several limitations, it represents an
important step toward promoting the standardization of graph query languages
and enhancing the interoperability of data and queries between the Semantic
Web and graph database communities. In the future, we plan to further refine
S2CTrans to support more SPARQL translations and investigate the translation
from Cypher to SPARQL.

References

1. Angles, R.: The property graph database model. In: Proceedings of the 12th
Alberto Mendelzon International Workshop on Foundations of Data Management,
vol. 2100 (2018)

2. Angles, R., Arenas, M., Barceló, P., Hogan, A., Reutter, J., Vrgoc, D.: Foundations
of modern query languages for graph databases. ACM Comput. Surv. 50(5), 68:1-
68:40 (2017)

3. Francis, N., et al.: Cypher: an evolving query language for property graphs. In:
Proceedings of the 2018 International Conference on Management of Data (2018)

4. Hölsch, J., Grossniklaus, M.: An algebra and equivalences to transform graph pat-
terns in neo4j. In: Proceedings of the Workshops of the EDBT/ICDT 2016 Joint
Conference, EDBT/ICDT Workshops 2016, volume 1558 of CEUR Workshop Pro-
ceedings (2016)

5. Klyne, G., Carroll, J.J., McBride, B.: RDF 1.1 concepts and abstract syntax, W3C
Recommendation (2018)

6. Marton, J., Szárnyas, G., Varró, D.: Formalising openCypher graph queries in
relational algebra. In: Kirikova, M., Nørv̊ag, K., Papadopoulos, G.A. (eds.) ADBIS
2017. LNCS, vol. 10509, pp. 182–196. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-66917-5 13

https://doi.org/10.1007/978-3-319-66917-5_13
https://doi.org/10.1007/978-3-319-66917-5_13

430 Z. Zhao et al.

7. Meier,G., Simons, M.: The neo4j Cypher-dsl (2021). https://neo4j-contrib.github.
io/Cypher-dsl/current/

8. Pérez, J., Arenas, M., Gutiérrez, C.: Semantics and complexity of SPARQL. ACM
Trans. Database Syst. 34(3), 16:1-16:45 (2009)

9. Wilkinson, K.: Jena property table implementation. In: Smart, P.R., (ed.) Pro-
ceedings of the 2nd International Workshop on Scalable Semantic Web Knowledge
Base Systems, pp. 35–46 (2006)

10. Neo4j Labs: neosemantics (n10s): Neo4j RDF & Semantics toolkit (2021). https://
neo4j.com/labs/neosemantics/

11. Taelman, R., Vander Sande, M., Verborgh, R.: Bridges between GraphQL and
RDF. In: W3C Workshop on Web Standardization for Graph Data. W3C (2019)

12. Zhao, Z., Ge, X., Shen, Z.: S2CTrans: Building a Bridge from SPARQL to Cypher.
arxiv

https://neo4j-contrib.github.io/Cypher-dsl/current/
https://neo4j-contrib.github.io/Cypher-dsl/current/
https://neo4j.com/labs/neosemantics/
https://neo4j.com/labs/neosemantics/

Rewriting Graph-DB Queries to Enforce
Attribute-Based Access Control

Daniel Hofer1,2(B) , Aya Mohamed1,2 , Dagmar Auer1,2 ,
Stefan Nadschläger1, and Josef Küng1,2

1 Institute for Application-oriented Knowledge Processing (FAW),
Johannes Kepler University (JKU) Linz, Linz, Austria

{daniel.hofer,aya.mohamed,dagmar.auer,
stefan.nadschlaeger,josef.kueng}@jku.at

2 LIT Secure and Correct Systems Lab, Linz Institute of Technology (LIT),
Johannes Kepler University (JKU) Linz, Linz, Austria

Abstract. To provide Attribute-Based Access Control (ABAC) in a
data-store, we can either rely on built-in features or, especially if they
are not present, implement access control as a service (ACaaS) on top of
the database. We address the latter, in particular for graph databases,
by rewriting queries which are violating access control conditions. We
intercept the insecure queries right before sending them to the database
to add additional filters. Thus, the database returns only authorized
data and implicitly enforces ABAC beyond its own access control fea-
tures. Our contributions are an authorization policy model influenced by
XACML and a query rewriting algorithm for enforcing the defined autho-
rizations with respect to this model. Our concept is application- and
database-independent and operates on simple freely formulated queries,
i.e. the queries do not have to follow a predefined structure. A proof-of-
concept prototype has been implemented for Neo4j and its query lan-
guage Cypher.

Keywords: query rewriting · attribute-based access control (ABAC) ·
graph databases · database security · Cypher

1 Introduction

To enforce access control on a database with limited or even no access control
features, like the community version of Neo4j, we have various options. The
approach we chose is rewriting insecure queries before they are handed over to
the database as secure queries [1], including authorization-specific filters. Our
approach even supports attribute-based access control (ABAC) [9] by operating
on data stored in the database. We already motivated this approach in our
previous work [6]. However, our current work does not rely on a predefined
query structure, but can handle freely formulated queries.

Authorization requirements are expressed in terms of rules in the authoriza-
tion policy, referencing filter templates to be used in the query rewriting. A filter
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C. Strauss et al. (Eds.): DEXA 2023, LNCS 14146, pp. 431–436, 2023.
https://doi.org/10.1007/978-3-031-39847-6_34

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-39847-6_34&domain=pdf
http://orcid.org/0000-0003-0310-1942
http://orcid.org/0000-0001-8972-6251
http://orcid.org/0000-0001-5094-2248
http://orcid.org/0000-0002-9858-837X
https://doi.org/10.1007/978-3-031-39847-6_34

432 D. Hofer et al.

template defines authorization-specific constraints to be added to the insecure
query. Graph database query languages like Cypher distinguish between nodes
and relationships. For this work, we refer to both using the term element. To
rewrite the insecure query applying authorization-specific constraints, we con-
sider the following research questions:

RQ1 Which elements of a query influence the result?
RQ2 What information must be provided in the authorization policy?
RQ3 How can we find mappings between a policy and a query?
RQ4 How do we apply access control filter templates on queries?

Our contributions are (1) identifying the influencing elements and how they
impact the query result in Sect. 3, (2) a policy model influenced by XACML as
a policy having a set of rules with conditions and references to filter templates
in Sect. 4, (3) a query rewriting approach to extend the insecure query with
filters encoding authorization requirements in Sect. 5, and (4) a proof-of-concept
prototype1 using Cypher and a preliminary evaluation in Sect. 6. Related works
and a summary including an outlook on future work are provided in Sects. 2
and 7 respectively.

2 Related Work

The idea of protecting data by query rewriting is influenced by Browder et. al.
and their work about per-user views in Oracle databases [3]. Another influence
comes from Bogaerts et. al. [2] as they propose entity-based access control, taking
not only attributes but also the relations between entities into account. While
their focus is on relational databases, we primarily consider graph databases and
thus attributes on nodes and edges. The dynamic rewriting approach was already
proposed by Jarman et. al. [7], however, on relational databases and role-based
access control. Our policy model is highly influenced by XACML (Ramli et. al.
[10]), although we reduced the features to a subset suitable for our requirements.
Colombo et. al. proposed an approach similar to ours in [4], as they generate
authorized views to replace the original collection in the query. However, their
focus is on document-oriented stores with focus on IoT data analysis. Access
control by query rewriting for RDF and SPARQL was also proposed by Kirrane
in [8]. A slightly different approach is presented by Shay et. al. [11] which checks
queries against a policy and blocks them altogether if necessary. The current
work is also based on our previous work, especially [5] for query parsing and
modification and [9] for XACML policies for graphs.

3 Relevant Information in the Insecure Query

To answer RQ1, we start with checking the elements of the query pattern and
identify the relevant elements influencing the query result. The pattern for exam-
ple in the Cypher query “MATCH (a:L1)-[c]->(b:L2) WHERE a.id=8 RETURN

1 https://github.com/jku-lit-scsl/CypherRewritingCore.

https://github.com/jku-lit-scsl/CypherRewritingCore

Rewriting Graph-DB Queries to Enforce Attribute-Based Access Control 433

b” is “(a:L1)-[c]->(b:L2)”. While a confidential node in the RETURN clause
of a query clearly reveals information, other cases are less obvious. For example,
we have a graph database with information about students and their grades. A
node stores all student data and links to a node with the student’s grade for a
certain exam. To protect grades, we block returning the grade-nodes. However,
a malicious user could return a student’s node and include a WHERE clause
filtering only for a name (which is not confidential) and a specific grade. By only
returning the data-node, no access violation is detected, but it implicitly con-
firms the guessed grade. Therefore, an element which has a filter applied might
still lead to information leaks although it is not directly returned. On the other
hand aggregating functions (e.g. average) prevent access to individual elements
(e.g., a student’s grade). Thus, we check the combination of filter and return
status for each element (see example in Table 1). The filter status is (1) filtered
or (2) unfiltered and the return status is (1) aggregated, (2) direct value or (3)
not included in the return clause.

Table 1. Influencing factors in MATCH (a:L1)-[c]->(b:L2) WHERE a.id=8 RETURN b.

Element in pattern Filter Return Influencing

a yes no yes

b no yes (direct value) yes

c no no no

4 Policy Model

The purpose of the policy is to specify all authorization-relevant information. A
policy P describes a pattern of elements E (i.e., nodes and relationships) and a
set of rules R. The function Φ(epolicy, equery) → {true, false} decides whether
an element of the policy pattern (epolicy) can be mapped to an element of the
insecure query pattern (equery). Let one policy be:

P =(E,R,Φ)
E =〈e1, e2, ..., en〉
R =(e, C, f)
C ={c1, c2, ..., cn}

Each rule r ∈ R references a single element of the policy pattern (e ∈ E) and
specifies one or more boolean combined conditions C on the pattern elements
and references a filter template f to be applied to e. A condition c ∈ C checks
whether filter and return properties (cp. Sect. 3) are satisfied by any element of
the policy pattern e′ ∈ E.

434 D. Hofer et al.

Filter templates F are used to exclude unauthorized results in the secure
query. They define authorization-relevant constraints to be added to the inse-
cure query. We define a filter template f with placeholders for runtime-specific
information as follows:

F ={f1, f2, ..., fn}
f =(t, A)
A =〈a1, a2, ..., an〉

Every filter template f ∈ F includes a query fragment t containing placeholders.
For each placeholder in t, its kind a (e.g., ruleElement or username) is given in
A. The kind ruleElement indicates that the placeholder stands for the element
in the rule which references this filter template.

5 Query Processing

For a policy and its rules to be applicable, each element defined in the policy
epolicy is mapped to an equivalent one in the query equery based on its labels and
pattern structure. To find a mapping (cp. RQ3), we define a function getPaths
returning a set of paths from the pattern. Each path consists of a start node,
a relationship and an end node (estart, erelationship, eend). The relationship and
end node can be empty if the start node is isolated.

getPaths(E) → E�

E� = {(estart, erelationship, eend), ...}

This step converts the patterns of policy and query into a common and compara-
ble structure. We search for mappings using the function map(epolicy) → equery:

map(epolicy) → equery ⇔ ∀ (a, b, c) ∈ E�
policy ∃ (x, y, z) ∈ E�

query :

Φ(a, x) ∧ Φ(b, y) ∧ Φ(c, z) ∧ (a = epolicy ∧ x = equery) ∧
((b = ∅ ∧ c = ∅) ∨ (b = epolicy ∧ y = equery ∧ c = epolicy ∧ z = equery))

The overall mapping is valid if (1) the path elements of the policy and the
insecure query are successfully mapped using the function Φ (e.g., Φ(a, x)), (2)
the start nodes are matched, and (3) the relationships and end nodes are either
empty or matched. Accordingly, we evaluate all conditions C in all rules R for a
policy P . We generate a set S of 2-tuples (ei, fi) denoting an element from the
query ei and a filter template fi to be applied on the insecure query q.

S = {(ei, fi) | ∃(E,R,Φ) ∈ P, (e, C, f) ∈ R, ei ∈ q, fi ∈ F ∀c ∈ C :
Γ(q, c) ∧ map(e) = ei ∧ fi = f) }

Rewriting Graph-DB Queries to Enforce Attribute-Based Access Control 435

The function Γ(q, c) → {true, false} checks whether a condition c in the rule’s
conditions C is satisfied by the insecure query q. Further, the element from the
rule e must map to the element in the insecure query ei and the applied filter
template fi is the same as the one f in the rule. To apply the filters of the
matched rules on the insecure query (RQ4), we use the following function:

Ξ(q, S) → q′

It takes an insecure query q and for each assignment (ei, fi) ∈ S, it instantiates
fi → fiq according to Section 4. This fiq can then be added to ei or it extends
existing filters using boolean AND. With all filters in place, we have rewritten
an insecure query q to a secure version q′.

6 Evaluation

We evaluate our query rewriting approach by implementing a proof-of-concept
prototype2 using Cypher, ANTLR, Spring Boot and Kotlin. We rewrite the
insecure Cypher query based on the specified policy. The secure query and infor-
mation about the applied rules are returned. In our prototypical implementation,
we only support reading queries with one MATCH clause. In experiments with a
set of queries, we tested all currently supported features and visually confirmed
that the filters were applied correctly. However, in our prototype we did not
consider potential vulnerabilities or attack vectors not addressed by ABAC.

When measuring the performance of the query rewriting (no database access),
we noticed the standard deviation to be higher than the average rewriting time
(≈ 0.2 ms on a HP ELITEBOOK 850 G6 with 32 GB, CPU i7-8665U). There-
fore, we assume the performance overhead to be negligible.

7 Conclusion

In this paper, we proposed a runtime rewriting approach for freely formulated
graph-DB queries to enforce ABAC independent of the underlying database and
application. First, we defined how various elements of a query contribute to its
result (RQ1). We introduced the strategy of categorizing the elements based on
whether they have a filter applied and how they are used for returning data.
Next, we introduced a policy model encoding our authorization requirements.
Then, we formally defined a policy model including a filter template. The policy
consists of a pattern and rules to decide if access control constraints apply to
an element of the insecure query and which filter template to use (RQ2). The
policy pattern is a sequence of elements, which is used in the query processing.

The policy and the insecure query are processed by first splitting their pat-
terns into tuples representing either paths or isolated nodes. Accordingly, we
mapped the policy elements with their respective ones in the insecure query

2 https://github.com/jku-lit-scsl/CypherRewritingCore.

https://github.com/jku-lit-scsl/CypherRewritingCore

436 D. Hofer et al.

(RQ3). A mapping is valid if each path tuple of the insecure query matches one
of the policy. In this case, if all conditions of a rule are successfully evaluated, its
filter template is instantiated replacing its placeholders with runtime values from
the insecure query and/or user information. The last step of query processing is
enhancing the insecure query with these access control filters (RQ4).

As we only consider one policy, we plan to support policy sets according
to the XACML policy language model in the future. This further demands for
combining algorithms. Additionally, we currently support reading queries only
with one MATCH clause. Thus, we not only need to increase the supported number
of MATCH clauses, but also the types of supported queries. This could be added
using additional conditions or dedicated rules for reading and writing access.
Above all, intensive evaluation is needed especially with complex authorization
policies and large graph models. Finally, we need to identify possible potential
security vulnerabilities.

Acknowledgements. This research has been partly supported by the LIT Secure
and Correct Systems Lab funded by the State of Upper Austria and by the COMET-
K2 Center of the Linz Center of Mechatronics (LCM) funded by the Austrian federal
government and the federal state of Upper Austria.

References

1. Bao, H.N.P., Clavel, M.: A model-driven approach for enforcing fine-grained access
control for SQL queries. SN Comput. Sci. 2(5), 370 (2021)

2. Bogaerts, J., Decat, M., Lagaisse, B., Joosen, W.: Entity-based access control:
supporting more expressive access control policies. In: Proceedings of the 31st
Annual Computer Security Applications Conference, pp. 291–300 (2015)

3. Browder, K., Davidson, M.A.: The virtual private database in oracle9ir2. Oracle
Tech. White Paper, Oracle Corporat. 500(280) (2002)

4. Colombo, P., Ferrari, E.: Fine-grained access control within NoSQL document-
oriented datastores. Data Sci. Eng. 1(3), 127–138 (2016)

5. Hofer, D., Mohamed, A., Nadschläger, S., Auer, D.: An intermediate representation
for rewriting cypher queries. In: Submitted to Workshop (2023)

6. Hofer, D., Nadschläger, S., Mohamed, A., Küng, J.: Extending authorization capa-
bilities of object relational/graph mappers by request manipulation. In: Database
and Expert Systems Applications: 33rd International Conference, DEXA 2022,
Vienna, Austria, 22–24 August 2022, Proceedings, Part II, vol. 13427, pp. 71–83.
Springer, Cham (2022). https://doi.org/10.1007/978-3-031-12426-6 6

7. Jarman, J., McCart, J.A., Berndt, D., Ligatti, J., et al.: A dynamic query-rewriting
mechanism for role-based access control in databases (2008)

8. Kirrane, S.: Linked data with access control. Diss. National University of Ireland,
Galway (2015)

9. Mohamed, A., Auer, D., Hofer, D., Küng, J.: Extended authorization policy for
graph-structured data. SN Comput. Sci. 2(5), 351 (2021)

10. Ramli, C.D.P.K., Nielson, H.R., Nielson, F.: The logic of XACML. Sci. Comput.
Program. 83, 80–105 (2014)

11. Shay, R., Blumenthal, U., Gadepally, V., Hamlin, A., Mitchell, J.D., Cunning-
ham, R.K.: Don’t even ask: database access control through query control. ACM
SIGMOD Rec. 47(3), 17–22 (2019)

https://doi.org/10.1007/978-3-031-12426-6_6

A Polystore Querying System Applied
to Heterogeneous and Horizontally

Distributed Data

Lea El Ahdab(B), Olivier Teste, Imen Megdiche, and Andre Peninou

Université de Toulouse, IRIT, Toulouse, France
{lea.el-ahdab,olivier.teste,imen.megdiche,andre.peninou}@irit.fr

Abstract. Data storage in various systems such as SQL and NoSQL
leads to important problems when trying to unify data querying. Mul-
tiple storage systems conduct to heterogeneous data structures and to
multiple query languages. In the context of horizontally and disjointed
distributed data, this paper proposes a system that allows the user to
natively query a polystore system without taking care of data distri-
bution and heterogeneity. Our approach relies on two mechanisms: (i)
mapping dictionaries to define the navigation between systems, (ii) oper-
ator rewriting mechanisms from native query operators (selection, pro-
jection, aggregation and join) to execute queries on any polystore system.
Using a dataset from TPC-H benchmark and a horizontally distributed
between document and relational database management system, we con-
duct experiments showing that the rewriting process has a minimum
impact when compared to executing queries in both systems.

Keywords: Polystore · Heterogeneity · Data distribution

1 Introduction

Nowadays, data is more likely to be found distributed in classical (SQL) or multi-
ple heterogeneous and flexible data sources (NoSQL), which forms polystores [2].
It complexifies querying in multiple languages based on non-standardized data
modeling paradigms and data querying operators. New solutions are based on
new languages [7], operators [8,10], models [6], and sometimes flexible schemas
[3,4], which depend on data manipulation. This paper deals with horizontal data
distribution in which one entity class is stored in different datastores (relational
and document-oriented). We introduce a solution for querying polystore systems,
based on automatic rewriting and decomposition of queries, facilitating access
to horizontally distributed and heterogeneous data using a mapping dictionary
able: i) to link each attribute of any dataset to the corresponding attributes in
other datasets and, ii), to integrate possible heterogeneity of data inside any
dataset. Working on a TPC-H dataset, we experiment our solution with a query
rewriting process without impacting the initial query execution time on rela-
tional databases and document-oriented datastores. The remainder of the paper
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C. Strauss et al. (Eds.): DEXA 2023, LNCS 14146, pp. 437–442, 2023.
https://doi.org/10.1007/978-3-031-39847-6_35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-39847-6_35&domain=pdf
https://doi.org/10.1007/978-3-031-39847-6_35

438 L. El Ahdab et al.

is structured as follows. In Sect. 2, we discuss existing solutions and present
their limits. Section 3 defines our polystore data model. Section 4 presents and
illustrates the proposed rewriting process and the mapping dictionary with data
distribution. Section 5 shows our solution results on real data. Finally, in Sect. 6
we give some perspectives about future work.

2 Related Work

With the complexity of data storage systems in polystores (distribution and
heterogeneity), query and accessibility should stay as simple as it is in a mono
system type store. Some works focus on inferring schemas to access data: graph
representation [4,5] or a u-schema model [3] showing structural variations. Exist-
ing works mainly focus on vertical distribution where each entity class is found in
one database. Some systems [3,8] introduce an external function to manipulate
several entities for binary operators. The join operator is not always executed
inside DBMS which requires to have an external algorithm joining the sub results
[8,9]. However, horizontal data distribution is possible, where every entity class
is divided inside multiple databases: user query gets complex and should be
expressed by taking into account data location, query formulation according
to polystore systems languages. Another aspect is data heterogeneity: semantic
[2,9] or syntactic [4] issues. They use synonyms in mapping solutions to build
their queries [2,9]. Surprisingly, they do not deal with structural heterogene-
ity which is induced by the schema-less principle of NoSQL stores. A specific
query is translated and parsed into languages of the considered datastores [2,9].
To support our comparison with existing works, table 1 illustrates the differ-
ences we can find between our works and others working on query rewriting
and mapping. It shows their position about data distribution (H: horizontal, V:
vertical), the supported systems (Relational, Document, Column, Graphs) and
the query expression with operators. It also provides the query of relational and
document-oriented systems in their native languages using algebraic equivalences
and presents to the user results in their native form without transforming data.
Our solution consists in the rewriting of the combination of SPAJ operators
(selection, projection, aggregation and join).

3 Algebraic Definition of Polystores for Horizontally
Distributed Data

In SQL approaches, data is represented according to the relational model
[1], where data is structured according to relation schemas. NoSQL (docu-
ments) approaches are “schema-less” - each record has its own structure that
may be different from those of other records in the same dataset. A poly-
store system is defined as PL = {DB1 , ... , DBB} where each database is
DBi = {DS1 , ... , DSSi

}. ∀j ∈ [1 ... Si], DSj is a dataset. Our model gives
a universal representation of these different databases. Each dataset, DSj , is

A Polystore Querying System 439

Table 1. A comparison of existing solutions on polystores

Authors Data
Distrib

R D C G Heterogeneity Query σ π γ ��

El Ahdab et al. H Structural
Semantic
Syntactic

SQL
MongoDB

Barret et al. [4] V Syntactic SparkQL
Candel et al. [3] V SQL
Ben Hamadou et
al. [5]

V Structural
Semantic

SQL
MongoDB

Hai et al. [9] V Semantic SQL
JSONiq

Duggan et al. [2] V Semantic Declarative
Curino et al. [10] V Structural SQL

defined by an extension and an intention DSj = (Intj , Extj). An extension is
a set of instances ik = (χk, vk). χk is its key, internal identifier in database sys-
tems, and vk is the instance value which can be atomic or recursively an instance
value or an array of values. The intention inferred from the extension is the set
of all absolute paths deduced from all instance structures existing in the exten-
sion Int =

⋃Nj

k=1 Sk. We focus on polystores where ∀i1 ∈ [1...B], DSj1 ∈ DBi1 ,
∃i2 ∈ [1...B] such as DSj2 ∈ DBi2 and DSj1 , DSj2 contain different instances of
the same class of an entity. A horizontal distribution is strict when each attribute
of a dataset has at least one equivalent designation in all equivalent datasets.
A data distribution is disjointed when ∀ik1 ∈ Extj1 , �ik2 ∈ Extj2 , j1 �= j2 |
vk1 = vk2 where vk1 and vk2 are values corresponding to the same entity in the
real world. The mapping dictionary mapDSj

matches each path of a dataset
to all its corresponding paths (including itself) in all equivalent datasets dealing
with structural, syntactic and semantic heterogeneity. Due to space limitation,
we do not detail in this paper how the mapping dictionaries are built; they are
maintained with the definition and using data alignment and schema-matching
algorithms [4]. For example, a path A in DSi is mapped with every corresponding
paths in the equivalent dataset DSj as: {(A,DSj), (X.A,DSj), (A′.DSj)}.

4 Rewriting Process Definition

We introduce a closed set of operators to formalize a universal algebra: K =
{σ , π , γ , ��} where σ is a selection operator (restriction), π is a projection
operator, γ is an aggregate operator and �� is a binary operator used to join
two datasets. Their combination formulates a query Q = q1 ◦ ... ◦ qr where
∀k ∈ [1 ... r], qk is a simple operator or a composition of operators as a sub-query
itself. Each qk of Q is rewritten according to the mapping dictionaries of the
queried datasets mapDSin

. A list of mappings for one field fi is inferred from
the set identified in its respective dictionary.

440 L. El Ahdab et al.

Selection. σP (DSin) is rewritten as σPnew
(DSj) where DSj is a targeted

dataset during query rewriting process and the rewriting of P is Pnew =
∧(∨(∨ pkl

ωk vk)) where pkl
are the paths obtained from the rewriting dic-

tionary associated to DSj and that corresponds to fi.

Projection. πE(DSin) is rewritten as πEnew
(DSj) where DSj is a targeted

dataset and Enew is the rewriting of E = e1, ..., en. If ei = fi (projection): fi
is replaced by the combination of its corresponding absolute paths according to
the mapping dictionary: pk1 | . . . |pkm

∀pkl
for DSj . The “|” operator leads to the

projection of the existing path pkl
in any instance value of ExtDSj

. If ei = f ′
i : fi

(projection and renaming): fi is replaced by f ′
i : pk1 | . . . |pkm

for all DS identified.

Aggregation. GγF (DSin) is rewritten to a dataset DSj as GγF (πEnew
(DSj))

where Enew is a projection rewriting of fields of G ∪ {fi}. The projection on fi
of the function F is rewritten to fi : pk1 | . . . |pkm

∀pkl
∈ Δ

DSj

fi
. The same process

is applied to all fields of G.

Join. DSin1 ��J DSin2 is rewritten for a database DBj using the corresponding
datasets of DSin1 and DSin2 in DBj as: DSjin1 ��Jnew

DSjin2 . Jnew corresponds
to the join condition containing the mapped fields.

The user queries one dataset in one language and the query is translated
in its algebraic form. Query rewriting rules are used to produce B queries, one
for each DBi of PL. Rewritten queries are then translated into their specific
language (SQL or MongoDB) before being executed on DBi. The sub-results
are presented to the user in their original form (using JSON notations). In some
complex queries, they may represent only intermediate results and may need
more computation to give the target result; in case of aggregation using sum
function, some cases may require an additional aggregation to sum intermediate
results.

5 Experiments

TPC-H Benchmark. Considering TPC-H data (https://www.tpc.org/) and
queries, we have stored data in one SQL database (MySQL) and one Docu-
ment oriented database (MongoDB). Tables and collections were created in each
respective systems. We have considered two volumes of data v1 as 1 Mo (3600
tuples) and v2 as 10 Mo (30000 tuples).

Query Rewriting Evaluation. TPC-H queries are classified according to the
number of queried datasets and to their operators composition. Almost half of
them are an association of selection (σ), projection (π), aggregation (γ) and joins
(��). Our evaluation focuses on (1) analyzing query execution time over an equal
data distribution inside both system and when this distribution is unbalanced,
and (2) on the impact of operations on the query execution time in the same
context of data distribution. We considered a condition of fragmentation on
nation name and which respects a disjointed repartition of 50% of instances in

https://www.tpc.org/

A Polystore Querying System 441

Fig. 1. Evolution of average execution time for TPC-H queries according to data dis-
tribution inside polystore with different data volumes v1 (1Mo) and v2 (10Mo)

the relational database and 50% in the document-oriented one. We have evolved
this distribution to consider other situations (10%-90%, 20%-80%...).

As illustrated in Fig. 1, the relational system shows a lower execution time
than the document system. Focusing on the 50%-50% distribution, SPA opera-
tions have no impact on execution time but the join operation presents a higher
difference between systems: execution time is 80% times higher for multitable
queries than monotable queries (value A, value C of Fig. 1). When data is dis-
tributed 90% in documents, query rewriting time is maximize in comparison of
90% of data distribution inside relations. Since each query is executed in each
database, it results in a set of separate pieces of data, with possible different
structures presented to the user (tuples and documents).

6 Conclusion

In this paper we focus on polystore systems with relational and document-
oriented datasets, where data is distributed horizontally. A mapping dictio-
nary represents links between fields and their correspondences in every data
source and in their heterogeneous forms. A universal query algebra composed of
SPAJ operators is defined for querying both considered systems supporting query
rewriting rules and bringing transparency for users. Data remain in native form
and only dynamic rewriting of queries and the mapping dictionary are impacted
by eventually new data structures. Experiments on a TPC-H dataset show the
effectiveness of the proposed solution without significantly impacting the query
execution time on top of relational databases (MySQL) and document-oriented
databases (MongoDB). In the future, we will focus on the extension of the exist-

442 L. El Ahdab et al.

ing algebra to other systems (column, graph). Another direction is to consider
operators more specific to storage systems in order to find their rewriting forms.

Acknowledgements. This work was supported by the French Gov. through the Ter-
ritoire d’Innovation program, an action of the Grand Plan d’Investissement backed by
France 2030, Toulouse Métropole and the GIS neOCampus.

References

1. Codd, E.F.: Further normalization of the data base relational model. Data Base
Syst. 6, 33–64 (1972)

2. Duggan, J., Elmore, A.J., Stonebraker, M., et al.: The BigDAWG polystore system.
ACM Sigmod Record 44(2), 11–16 (2015)

3. Candel, C.J.F., Ruiz, D.S., García-Molina, J.J.: A unified metamodel for NoSQL
and relational databases. Inf. Syst. 104, 101898 (2022)

4. Barret, N., Manolescu, I., Upadhyay, P.: Toward generic abstractions for data of any
model. In: Proceedings of the 31st ACM International Conference on Information
& Knowledge Management, pp. 4803–4807 (2022)

5. Ben Hamadou, H., Gallinucci, E., Golfarelli, M.: Answering GPSJ queries in a
polystore: a dataspace-based approach. In: Laender, A.H.F., Pernici, B., Lim, E.-
P., de Oliveira, J.P.M. (eds.) ER 2019. LNCS, vol. 11788, pp. 189–203. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-33223-5_16

6. Daniel, G., Gómez, A., Cabot, J.:UMLto [No] SQL: mapping conceptual schemas
to heterogeneous datastores. In: 2019 13th International Conference on Research
Challenges in Information Science (RCIS), pp. 1–13. IEEE (2019)

7. Misargopoulos, A., Papavassiliou, G., Gizelis, C.A., Nikolopoulos-Gkamatsis, F.:
TYPHON: hybrid data lakes for real-time big data analytics – an evaluation frame-
work in the telecom industry. In: Maglogiannis, I., Macintyre, J., Iliadis, L. (eds.)
AIAI 2021. IAICT, vol. 628, pp. 128–137. Springer, Cham (2021). https://doi.org/
10.1007/978-3-030-79157-5_12

8. Kolev, B., Valduriez, P., Bondiombouy, C., Jiménez-Peris, R., Pau, R., Pereira,
J.: CloudMdsQL: querying heterogeneous cloud data stores with a common lan-
guage. Distributed and Parallel Databases 34(4), 463–503 (2015). https://doi.org/
10.1007/s10619-015-7185-y

9. Hai, R., Quix, C., Zhou, C.: Query rewriting for heterogeneous data lakes. In:
Benczúr, A., Thalheim, B., Horváth, T. (eds.) ADBIS 2018. LNCS, vol. 11019, pp.
35–49. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98398-1_3

10. Curino, C.A., Moon, H.J., Deutsch, A., Zaniolo, C.: Update rewriting and integrity
constraint maintenance in a schema evolution support system: PRISM++. Proc.
VLDB Endowment 4(2), 117–128 (2010)

https://doi.org/10.1007/978-3-030-33223-5_16
https://doi.org/10.1007/978-3-030-79157-5_12
https://doi.org/10.1007/978-3-030-79157-5_12
https://doi.org/10.1007/s10619-015-7185-y
https://doi.org/10.1007/s10619-015-7185-y
https://doi.org/10.1007/978-3-319-98398-1_3

Knowledge Representation

Semantically Constitutive Entities
in Knowledge Graphs

Chong Cher Chia(B) , Maksim Tkachenko , and Hady W. Lauw

School of Computing and Information Systems, Singapore Management University,
Singapore, Singapore

{ccchia.2018,hadywlauw}@smu.edu.sg, maksim.tkatchenko@gmail.com

Abstract. Knowledge graphs are repositories of facts about a world. In
this work, we seek to distill the set of entities or nodes in a knowledge
graph into a specified number of constitutive nodes, whose embeddings
would be retained. Intuitively, the remaining accessory nodes could have
their original embeddings “forgotten”, and yet reconstitutable from those
of the retained constitutive nodes. The constitutive nodes thus represent
the semantically constitutive entities, which retain the core semantics of
the knowledge graph. We propose a formulation as well as algorithmic
solutions to minimize the reconstitution errors. The derived constitu-
tive nodes are validated empirically both in quantitative and qualitative
means on three well-known publicly accessible knowledge graphs. Exper-
iments show that the selected semantically constitutive entities outper-
form those selected based on structural properties alone.

Keywords: semantically constitutive · knowledge graph · embeddings

1 Introduction

Graphs are predominantly used to represent real world data, including social
networks, citation network, hyperlink network, etc. One important analysis deals
with determining which vertices are the most ‘important’ in a graph. Because
the essential nature of graphs is the very connectivity among its vertices, this
notion of ‘importance’ is frequently formulated in terms of how well a vertex is
connected to others in the graph, giving rise to notions such as centrality [4] and
influence maximization [25] that would be further explored in related work.

In this work, we are interested in knowledge graphs, a machine-friendly way
of representing real world facts. These facts are extracted from various sources
such as encyclopedic Wikipedia [33], lexical WordNet [14], or even the open Web
[34]. The use of knowledge graphs have been extended to applications including
question answering [21], recommendations [52], fact-checking [8], etc.

Given its pertinence and myriad applicability, we explore notions of what
make a vertex ‘important’ in a knowledge graph. In addition to the graph-
theoretic sense of connectivity, another essential nature of a knowledge graph
is its semantics. Every triplet instance involving a head entity, relation, and tail
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C. Strauss et al. (Eds.): DEXA 2023, LNCS 14146, pp. 445–461, 2023.
https://doi.org/10.1007/978-3-031-39847-6_36

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-39847-6_36&domain=pdf
http://orcid.org/0000-0001-6053-4643
http://orcid.org/0000-0001-6687-0525
http://orcid.org/0000-0002-8245-8677
https://doi.org/10.1007/978-3-031-39847-6_36

446 C. C. Chia et al.

entity represents a fact, the totality of which collectively represents our semantic
understanding of an underlying ‘world’. Suppose we retain only a subset of the
entities; which subset best preserves our semantic understanding of the ‘world’?

For a concrete representation of semantics, we allude to knowledge graph
embeddings [51], which embeds entities and relations into continuous vector
spaces. The plausibility of facts (triplets) can then be assessed from the embed-
dings of the corresponding entities and relations. In this work, we assume that
such embeddings have been derived and specified as input to our problem.

As output, we seek to identify a relatively small subset of (“constitutive”)
entities, whose embeddings would be used to reconstitute the remaining (“acces-
sory”) entities. To remain true to the raison d’être of a knowledge graph, this
reconstitution is faithful to a known fact (triplet) within the graph.

Fig. 1. Subgraph Using 1 or 2 Constitutive Nodes

This concept is illustrated by the knowledge graph subset in Fig. 1, where
constitutive nodes (top) are connected to accessory nodes (bottom) by rela-
tional edges (in this case Genre). Embeddings of accessory nodes can potentially
be “forgotten”, and “reconstituted” by constitutive nodes. For example, we could
use a single constitutive node (Michael Jackson) to reconstitute all the accessory
nodes (solid edges only). While compact, it is not sufficient for distinguishing
different musical genres, and using two constitutive nodes produces more infor-
mative reconstitutions (John Mayer, Michael Jackson both produce Soul Music).

Contributions. In this work, we make several contributions.
– The problem of identifying semantically constitutive entities in a knowledge

graph is novel, and distinct from existing work solely focused on structural
connectivity. We propose a reconstitution function consistent with transla-
tional embeddings, and produces interpretable reconstitutions by virtue of
being supported by actual triplets within the knowledge graph.

– We propose a new algorithmic formulation to identify constitutive nodes,
as well as the selection of triplets for each reconstitution. While related to
matching or assignment problems, our formulation is novel in allowing up to
k constitutive nodes per accessory node. We describe algorithmic solutions
based on Integer Linear Programming (ILP), and propose heuristics that
speed up the computation particularly for larger graphs.

– We experiment on 3 well-established knowledge graphs, outperforming base-
lines both quantitatively (downstream tasks), and qualitatively (user study).

– We make our code publicly available1 for reproducibility.
1 https://github.com/PreferredAI/semantically-constitutive-entities.

https://github.com/PreferredAI/semantically-constitutive-entities

Semantically Constitutive Entities in Knowledge Graphs 447

2 Related Work

Node Centrality. Finding the “important” nodes in a graph had previously
been approached from structural connectivity. One class of techniques referred
to as point centrality looks at the quality of an individual node that makes it most
central. There are primarily three categories of point centrality measures: local
centrality, iterative centrality, or global centrality [48]. Local centrality measures
centrality by local network topology. A common metric is Degree Centrality,
which ranks each node based on the number of edges in the graph. For directed
graphs, the in-degrees or out-degrees of a node may be used. Another well-known
local centrality metric is h-index [19,26], where a node has index h if it has at
least h neighbouring nodes of h degree. Iterative centrality metrics measure a
node’s centrality through some (possibly fixed) number of iterative calculations.
One such metric is Eigenvector Centrality [1,2], which repeatedly updates the
centrality for each node based on the centrality of its neighbours. PageRank [40]
builds on Eigenvector Centrality by dampening the influence of further neigh-
bours on the centrality of a given node. Global centrality measures a node’s
centrality in the context of the entire network topology, such as Betweenness
Centrality [16], derived from the number of shortest paths passing through it.

In the experiments, we compare against representative point centrality met-
rics, such as degree centrality and PageRank. Such point centrality measures select
nodes based on its individual quality. In our problem, we seek to select a group of
constitutive nodes. Hence, we compare against the group version of these metrics
in the experiments. For example, compared to PageRank that selects nodes indi-
vidually, another formulation of influence maximization seeks to identify a group
of “influential” nodes based on their ability to affect other nodes within the graph,
in order to maximize social influence [25]. Although NP-hard, algorithms such as
SSA guarantee a (1 − 1/e − ε)-approximate solution [20,37,38].

Knowledge Graph. A core concept in our work is the representation of seman-
tic information within a knowledge graph. Such representations commonly take
the form of Knowledge Graph Embeddings, as discussed in [24]. One class of
Knowledge Graph Embeddings are linear/bilinear models, as exemplified by
TransE [3], which represents relations between two entities as the translation
of one point within the embedding space to another. Given a triplet (h, r, t)
representing the head entity, relationship, and tail entity respectively, TransE
minimizes the L1/L2 distance between h+ r and t. Other Translational Knowl-
edge Graph Embeddings have since been proposed, such as TransH [53] which
extends the translation operation onto a hyperplane, and TransD [23] which uses
separate mapping matrices for the head and tail entities, and each projection is
defined by both the entity and relation embeddings.

Other classes of embeddings include factorization models (e.g., RESCAL
[39], LFM [22]), neural network models (e.g., ConvE [12], ConKB [36]), and
transformer-based models (e.g., CoKE [50], KG-BERT [54]).

Inductive Knowledge Graph Completion [11,18,30,49] generates embeddings
for unseen entities. This is done from combining embeddings of known entities,
and is therefore not comparable with our work.

448 C. C. Chia et al.

Another widely studied aspect of knowledge graphs is the summarization of
such graphs, typically through the addition and/or removal of nodes (as discussed
in [31]). Summaries typically take the form of either a supergraph or a sparsi-
fied graph. Supergraphs refer to graphs where the (super)nodes and (super)edges
are a collection of nodes/edges from the original graph, and may be obtained by
grouping nodes [13,41,42,56] or identifying patterns within the original knowl-
edge graph [6,9,55]. Supergraphs do not retain the entities and edges of the origi-
nal graph, and are therefore not comparable with our work. Sparsified graphs are
subsets of the original knowledge graph, and reduce the number of nodes and/or
edges as compared to the original knowledge graph. This may be accomplished
by the introduction of “compressor nodes” [32] or “virtual nodes” [5] to the graph
for (edge) dedensification. Other techniques may require a query to base the sum-
mary, such as Ontovis [44] or Egocentric Abstraction [28].

3 Semantically Constitutive Entities

Our goal, as stated in Sect. 1, is to select a (user-specified) number of constitutive
nodes from a given knowledge graph. Graph embeddings of constitutive nodes
can be used to reconstitute non-selected (i.e., accessory) node embeddings.

Problem Definition. A knowledge graph G = (E,R, T) consists of a set of
entities E, relations R, and relational triples T ⊂ E × R × E. Triple (h, r, t) ∈ T
indicates that relation r is present between head h and tail t entities. Let H(·)
return the corresponding embeddings for entity or relation. For a given target
size P, we seek to select a semantically constitutive graph Ĝ = (Ê, R̂, T̂) that ties
subset of constitutive entities Ê ⊂ E with the accessory entities Ê′ via relations
R̂ ⊆ R: T̂ ⊂ Ê × R × Ê′. Formally, we seek to solve the minimization problem:

argmin
Ĝ:|Ê|=P

∑

e∈Ê′

d(H(e), f(e|Ĝ)), (1)

where d is a distance function on embeddings (L2 in this work) and f(e|Ĝ)
reconstitutes the accessory node e from entities and relations in Ĝ.

To define a particular reconstitution function f(· |Ĝ), we draw on the knowl-
edge graph embedding training procedures: a family of related models (Trans*)
learn embeddings by treating the relations between entities as translations
between two points in a high-dimensional space, which effectively turns into
the following equation: H(h) + H(r) � H(t). A target entity e in principle can
be reconstituted using multiple head entities and relations as long as we have an
appropriate relation between them:

f(e|Ĝ) =
∑

(h,r,t)∈T̂

[
1t=e · (H(h) + H(r))

]
/

∑

(h,r,t)∈T̂

[
1t=e

]
, (2)

where 1t=e is 1 when t and e refer to the same node and 0 otherwise.
We also experimented with the use of deep neural networks, such as Multi-

Headed Attention [47] encoders, as the basis for an alternate reconstitution

Semantically Constitutive Entities in Knowledge Graphs 449

function, in order to allow varying levels of reconstitution importance for each
constitutive node. However, such networks are challenging to train as modelling
reconstruction from an unordered set of constituent node/relation pairs is com-
plex. Furthermore, it is not clear how we can retain the translational embedding
relationships in such approaches. As such, we opt to use Eq. 2, which is simple
and effective for accessory node reconstitution in our experiments, and leave the
exploration of alternative reconstruction functions for future work.

Optimization. The optimization problem above is similar to the well-known
P-Median Problem (PMP) [10], which selects P facilities such that the total
cost of serving all locations is minimized. However, PMP covers only a basic
scenario where each accessory entity must be reconstituted with only a single
semantically constitutive node, which is too limiting (as noted in Sect. 1). It is
also not feasible to use a fixed number of constitutive nodes, simply because
there may not be sufficient triplets in G to reconstitute each accessory node.
Thus, we introduce “phantom” nodes, which “reconstitutes” any accessory node
at a higher cost. These phantom nodes serve as padding nodes for the entities
with low in-degree and are discarded after selection process is completed.

Given that all nodes in G are both facilities and locations, we allow facilities
to serve themselves without cost, mirroring the memorization of retained con-
stitutive node embeddings. We update the constraint on location assignment to
allow exactly G facilities to serve the same location, mirroring accessory node
reconstitution with multiple constitutive nodes, and introduce “free” facilities
which serve locations that are also facilities at no cost.

Let P be the desired number of facilities, and G be the maximum number
of constitutive nodes used to reconstitute a given accessory node. Given a set
of locations I = E, the set of facilities J is defined as J = I ∪ P ∪ F , where
P = {p1, p2, . . . , pG} and F = {f1, f2, . . . , fG−1} are the set of phantom and free
nodes respectively with I, P , and F being mutually disjoint.

Let X be the facility assignment matrix, such that Xij = 1 if location i is
served by facility j, and 0 otherwise. Y is the facility opening matrix, such that
Yj = 1 if facility j is open, and 0 otherwise. Cij denotes the cost of serving loca-
tion i from facility j. For the nodes i and j from the knowledge graph G, such
that (i, r, j) ∈ T for some r, we define the cost consistently with the reconstitu-
tion function: d(H(i) + H(r),H(j)). If an entity pair has multiple relations, we
select the relation that minimizes distance, and denote it as Rij . Free facilities
serve locations at no cost (i.e., Cij = 0) for any j ∈ F . We arbitrarily set a high
cost (α ≥ 1) for phantom nodes to encourage the preferential selection of real
entities, and discard both free and phantom nodes post-selection.

Cij =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

min
(j,r,i)∈T

d(H(j) + H(r),H(i)) if ∃r ∈ R : (i, r, j) ∈ T,

α max
(j,r,i)∈T

d(H(j) + H(r),H(i)) if j ∈ P,

0 if i = j or j ∈ F,

+∞ otherwise,

(3)

450 C. C. Chia et al.

Since PMP is known to be NP-hard, we use an Integer Linear Programming
(ILP) solver (i.e., Gurobi [17]) to find an approximate solution:

min
∑

i∈I

∑

j∈J

CijXij subject to (4)

∑

j∈J

Xij = G ∀i ∈ I (5)

∑

j∈I

Yj = P (6)

Xij ≤ Yj ∀i ∈ I, j ∈ J (7)

Xiĵ ≥ Yi ∀i ∈ I,∀ĵ ∈ F (8)

Yj ∈ {0, 1} and Xij ∈ {0, 1} ∀i ∈ I, j ∈ J (9)

Having a solution to the program above, we can generate the semantically
constitutive graph Ĝ = (Ê, R̂, T̂) from X, Y , and R, where Ê = {e ∈ I|Ye = 1},
R̂ = {Rij |i, j ∈ I} and T̂ = {(h,Rht, t)|h ∈ Ê, t ∈ Ê′}.

Approximation. While it is possible to obtain an integer solution directly, we
observed that a 2-step procedure achieves slightly better performance at the
cost of marginally higher computational costs. We first solve a relaxed version
of the problem where the Eq. (9) is removed. This results in a partial solution
Ȳ containing fractional assignment of facilities. We replace the facility set J in
the original program with a restricted set J̄ = {i : Ȳi ≥ ε}, and solve the new
program directly. In our experiments, we default to the 2-step procedure, and
set ε = 0.01 to discard non-significant facilities.

Discussion. We note that our problem definition is distinct from the Capaci-
tated P Median Problem [15,35,45], which limits the number of locations allowed
in each cluster. Our work, conversely, increases the number of clusters each loca-
tion can belong to, and is therefore not comparable. We also note that phantom
(P) and free nodes (F) are artificial constraints, and are removed in Y .

4 Experiments

Our experimental objective is to validate whether paying attention to the seman-
tics in the selection of semantically constitutive entities within a knowledge graph
would outperform baselines that focus primarily on structural centrality.

4.1 Experimental Setup

Datasets. We experiment on publicly-available datasets (Table 1) which are
common benchmarks for evaluating Knowledge Graph Embeddings.

Semantically Constitutive Entities in Knowledge Graphs 451

Table 1. Dataset Summary

Dataset # Entities # Relations # Training Triples # Validation Triples # Testing Triples

FB15k-237 14,541 237 272,115 17,535 20,466
WN18RR 40,943 11 86,835 3,034 3,134
CoDEx-L 77,951 69 551,193 30,662 30,662

FB15k-237. FreeBase is a knowledge base containing general facts, and con-
tains reversible (i.e., symmetric) relations. The FB15k-237 dataset [3,46] is a
collection of FreeBase triples which retains only a single copy of reversible rela-
tion pairs, preventing information leakage during downstream evaluation.

WN18RR. WordNet is a knowledge base consisting of different usages of a
given word (“senses”), as well as the lexical relations between these “senses”. The
WN18RR dataset is selected from a collection of WordNet triples [3], where
reversible relations have been removed in the same manner as FB15k-237 [12].

CoDEx. Wikipedia is a crowdsourced encyclopedia that is openly edited. The
CoDEx dataset is sampled from Wikipedia using a selection of seed entities and
relations [43]. We use CoDEx-L, the largest version of CoDEx.

Baselines. We compare our semantically constitutive nodes to nodes selected
by the graph centrality approaches that focus on structural connectivity:

Point Centrality. We expect that highly connected nodes are better suited
for accessory node reconstitution as compared to low degree nodes, due to the
larger number of possible reconstitutions. We calculate the degrees for all nodes
in each dataset, and select the top k nodes as a baseline. We experimented with
using in-degrees (Point-In-Centrality) and out-degrees (Point-Out-Centrality)
for selection, and observed that the latter generally performs better.

Group Centrality. Point Centrality approaches prioritizes nodes within a
dense subgraph at the expense of sparser nodes, as they are selected based on
local network topology. We attempt to address this by selecting the nodes itera-
tively in a greedy fashion; after a node ei is selected, we remove edges to/from ei
from the degree counts of the remaining nodes, stopping after we have selected k
nodes or after all edges have been removed. In the latter case, we then randomly
select nodes to ensure that there are k facilities. We note that this is similar to
the SingleDiscount heuristic [7]. We report the results when using only in-degrees
(Group-In-Centrality) and out-degrees (Group-Out-Centrality), as above.

Eigenvector Centrality. We observe that the above baselines only consider the
centrality of each node (i.e., degree), and places no weight on the influence of
their neighbours. We therefore also compare to PageRank2, which considers both
the centrality as well as neighbouring influence when ranking node importance.

Influence Maximization. We note that PageRank ranks nodes individually,
and may therefore not return the best group of nodes. Our last baseline selects
a group of nodes which maximizes the social influence of the group. As this is an
NP-Hard problem [25], we use the SSA algorithm (Linear Threshold, ε = 0.03,
δ = 0.01), which guarantees a (1 − 1/e − ε)-approximate solution [20,37,38].

2 Adapted from https://github.com/louridas/pagerank, a = 0.85, c = 1× 10−32.

https://github.com/louridas/pagerank

452 C. C. Chia et al.

Embedding Models. As our focus is on reconstruction, we obtain embeddings
from the OpenKE implementation and suggested parameters for TransE, TransH
and TransD. We target P to be a similar proportion (30%) of entities (7K for
CoDEx-L, 4K for FB15k-237, 9K for WN18RR) in all following experiments.

4.2 Quantitative Comparisons

A measure of quality is the ability of the selected nodes to retain the semantic
meaning of accessory nodes. As we use knowledge graph embeddings to represent
node semantics, we turn to knowledge graph embedding evaluation tasks.

Link Prediction. Knowledge graph embedding quality is commonly compared
via downstream task such as the well-known Link Prediction task. We form
embeddings for each node selection by replacing the embedding for discarded
entities with the reconstituted embedding. We use the (filtered) Link Prediction
Task [3,53]. Given a true testing triple (ĥ, r̂, t̂), we wish to rank t̂ given (ĥ, r̂)
amongst the set of testing entities Ẽ (or ĥ given (r̂, t̂)).

Table 2 shows the experimental results for each dataset, where Hit@10% (of
entities in the dataset; similar results observed for Hit@5%) is used as met-
ric to facilitate comparison between differently-sized datasets. The first line is
the performance of the original (i.e., full-sized) TransE embeddings. Subsequent
lines are performances (relative to the original, in percentage) of each selection
method. Semantically-Constitutive consistently achieves a higher Hit@10% as
compared to the baselines in all cases for FB15k-237 and WN18RR. For CoDEx-
L, Semantically-Constitutive outperforms most baselines, tying with one.

Table 2. Link Prediction Task Hit@10%, Relative % to Original (TransE Embeddings,
Higher is Better)

Model FB15k-237 WN18RR CoDEx-L

Original 0.968 0.755 0.989
Point-In-Centrality 80.5 35.0 7.3
Point-Out-Centrality 86.1 37.3 24.9
Group-In-Centrality 78.7 40.0 7.2
Group-Out-Centrality 86.6 41.9 25.1
SSA 71.1 25.4 14.3
PageRank 77.1 39.3 6.1
Semantically-Constitutive 87.9 43.2 25.1

Multiple Node Reconstitution. We now study the effect of multiple nodes
for reconstitution, which is controlled by the parameter G. We expect that larger
G allows reconstitutions to better capture the semantic meaning of the accessory
entity, as shown in Sect. 1. We conduct an ablation study for each dataset, by

Semantically Constitutive Entities in Knowledge Graphs 453

reducing the number of reconstitution nodes allowed (from G = 10) from the
same partial solution Ȳ (as described in Sect. 3), and repeat the Link Prediction
task with the resulting reconstitutions (Table 3).

We observe that while the Hit@10% generally remains fairly consistent as
G is reduced for all models, small but noticeable differences in performance can
be observed. For example, in FB15k-237, Semantically-Constitutive outperforms
all baselines at every G level. Next, we observe that the best performance for
Semantically-Constitutive is at G−4 (88.29%). This suggests that the number
of constitutive nodes G can be tuned to best utilize the selected semantically
constitutive nodes, improving downstream performance. WN18RR shows similar
improvements (G−2, 43.29%), but CoDEx-L performance is flat across G.

Embedding Models. Lastly, although not the focus of our work, we study
the generalizability of our approach. We replace the entity embeddings with the
encoding representations from translational knowledge graph embedding models
such as TransH and TransD, and show the Hit@10% for WN18RR in Table 4
(consistent results are observed for other datasets).

First, we observe that among the original embeddings, TransE performs the
best (0.755), while TransD (0.738) is able to outperform TransH (0.723). We
speculate that this is related to the choice of encoding representation function
f , which does not fully capture the translation operation in the TransH and
TransD training processes, and leave the selection of a suitable f as future work.

Turning to the baseline approaches, we observe that all models generally
perform at similar relative levels across the embedding models. Group-Out-
Centrality, the best performing baseline, achieves the best baseline performance
on TransE (41.90), similar to the performance of the full embeddings.

Lastly, we observe that while Semantically-Constitutive shows a similar drop
in relative performance on TransH (42.86) as compared to TransE (43.21), it
was able to achieve a minor improvement on TransD (43.47). We note that the
absolute performance of Semantically-Constitutive is still higher on TransE.

Effect of Graph Size on Runtime. We study the effects of knowledge graph
size on runtime between Semantically-Constitutive and the “Direct” one-step pro-
gram. We sample (from 23,616 unique) CoDEx-L tail entities to between 23,000
and 14,000 (with intervals of 1,000), and retain only triples containing those
sampled tail entities. We then run both “Direct” and Semantically-Constitutive
on these sub-graphs, and set P to 30% of the number of sampled entities to
ensure consistent difficulty. We report the mean runtimes on 5 samples in Fig. 2
(labelled with the initial sample sizes, from 23K to 14K). As discussed in Sect. 3,
we observe that Semantically-Constitutive achieves a general improvement in
model performance at the expense of slightly longer runtimes, particularly at
smaller sampled sizes.

454 C. C. Chia et al.

Table 3. G Reduction Hit@10%, Relative % to Original (TransE Embeddings, Higher
is Better)

Model G = 10 G−1 G−2 G−3 G−4

FB15k-237
Original 0.968
Point-In-Centrality 80.5 80.5 80.5 80.4 80.4
Point-Out-Centrality 86.1 86.1 86.1 86.1 86.1
Group-In-Centrality 78.7 78.7 78.7 78.7 78.7
Group-Out-Centrality 86.6 86.7 86.7 86.7 86.7
SSA 71.1 70.9 70.9 70.0 70.9
PageRank 77.1 77.1 77.2 77.1 77.1
Semantically-Constitutive 87.9 88.0 88.1 88.2 88.3

WN18RR
Original 0.968
Point-In-Centrality 35.0 35.0 35.0 35.0 35.0
Point-Out-Centrality 37.3 37.3 37.3 37.0 37.0
Group-In-Centrality 40.0 40.0 40.0 40.0 40.0
Group-Out-Centrality 41.9 41.9 41.9 41.9 42.0
SSA 25.4 25.4 25.4 25.5 25.4
PageRank 39.3 39.3 39.3 39.3 39.3
Semantically-Constitutive 43.2 43.2 43.3 43.2 43.1

CoDEx-L
Original 0.968
Point-In-Centrality 7.3 7.3 7.3 7.3 7.3
Point-Out-Centrality 24.9 24.9 24.9 24.9 24.9
Group-In-Centrality 7.2 7.2 7.2 7.2 7.2
Group-Out-Centrality 25.1 25.1 25.1 25.1 25.1
SSA 14.3 14.3 14.3 14.3 14.3
PageRank 6.1 6.1 6.1 6.1 6.1
Semantically-Constitutive 25.1 25.1 25.1 25.1 25.1

4.3 User Study

We conducted a user study to investigate the real-world informativeness of
Semantically-Constitutive, and expect Semantically-Constitutive to provide
reconstructions (i.e., relation between accessory and constitutive nodes) with
higher relevance due to the semantic reconstruction process. We first filter the
CoDEx-L dataset to retain only entities that have at least 10 unique edges. We
then compare Group-Out-Centrality (best performing baseline) to Semantically-
Constitutive (TransE embeddings, G=10, Ĝ=3), and select accessory nodes where

Semantically Constitutive Entities in Knowledge Graphs 455

Table 4. Translational Knowledge Graph Embedding Hit@10%, Relative % to Original
(WN18RR, Higher is Better)

Model TransE TransH TransD

Original 0.755 0.723 0.738
Point-In-Centrality 35.0 35.8 33.9
Point-Out-Centrality 37.3 38.7 38.2
Group-In-Centrality 40.0 39.2 40.9
Group-Out-Centrality 41.9 41.3 41.5
SSA 25.4 25.0 25.1
PageRank 39.3 42.3 41.2
Semantically-Constitutive 43.2 42.9 43.5

Fig. 2. Model Runtime and Hit@10% on Sampled CODEXL

the triplet relation is “occupation”3 and all 3 constitutive nodes differ. We ran-
domly select 20 (from 45 total) such accessory nodes for the user study.

Each user was presented a accessory node (e.g.,“Film Actor” in Table 5a)
in each question4, and asked to rank the relevance of all 6 constitutive nodes
(supplemented with their Codex-L description) on a five-level Likert Scale [29].
We compare the collected responses by assigning a score between −1 and 1 to
each level (Table 5b). Figure 3 shows the average score by 13 users5 for Group-
Out-Centrality (mean = 0.103) and Semantically-Constitutive (mean = 0.458)
on each question. We observe that Semantically-Constitutive (in red) gener-
ally achieves a higher average score on all questions as compared to Group-
Out-Centrality (in blue), showing that the nodes selected by Semantically-
Constitutive is better related to the query occupation, and are therefore more
informative.

3 Selected in order to limit the obscurity of triplets in the user study.
4 The order of questions and Likert items were randomized for every user.
5 This was the number of study participants who agreed to take part in the study.

They were neither co-authors, nor aware of the subject of this paper.

456 C. C. Chia et al.

Inter-rater Reliability. Next, we wish to study the agreement between differ-
ent raters. Fleiss’ Kappa [27] is commonly used for understanding the inter-rater
reliability of ordinal rating data, and range from -1 to 1, with values above 0
indicate agreement (beyond chance) between the raters.

Fig. 3. User Study Scores

Table 5. Example User Study Question (“Film Actor”)

(a) Likert Items (Constitutive Node + Codex-L description)
Semantically-Constitutive Group-Out-Centrality

Robin Williams
(American actor and

stand up comedian (1951-2014))

John Cale
(Welsh composer, singer-songwriter

and record producer)
Justin Timberlake

(American singer, record producer,
and actor)

John Lennon
(English singer and songwriter,

founding member of The Beatles)
Nicolas Cage

(American actor)
A. R. Rahman

(Indian singer and composer)
(b) Ranking Options and Associated Score

Option Relevant Somewhat
relevant

Neither relevant
or irrelevant

Somewhat
irrelevant Irrelevant

Score 1 0.5 0 -0.5 -1

We first combine all “Relevant” and “Somewhat relevant” responses, and do
the same for “Neither relevant or irrelevant”, “Somewhat irrelevant” and “Irrele-
vant” classes. Next, we calculate the (2-Rater 2-Class) Fleiss’ Kappa for each pair
of raters, and average them. The expected Fleiss’ Kappa in this setting is 0.245,
which suggests that a random pair of raters would likely show fair agreement
(as suggested by [27]) on the (binary) relevance of each choice.

Next, we investigate the overall reliability of the User Study. We report that
the Multiple-Rater 5-Class Fleiss’ Kappa (0.119 > 0), indicates that there is
likely to be agreement amongst the raters.

Semantically Constitutive Entities in Knowledge Graphs 457

Fig. 4. Codex-L Case Studies

458 C. C. Chia et al.

4.4 Case Studies

Next, we show 2 subgraphs generated by Semantically-Constitutive on Codex-
L. Figure 4a shows the reconstruction of an accessory node {Angelina Jolie},
from two constitutive nodes, ({Girl, Interrupted} and {Billy Bob Thornton}).
Other triplets involving accessory nodes such as {Mr. & Mrs. Smith} are dis-
carded from the full knowledge graph. We also show accessory nodes that are
reconstituted by other constitutive nodes, such as {Brad Pitt} being reconsti-
tuted by {Moneyball}, {World War Z}, and {Interview with the Vampire}. This
subgraph shows how Semantically-Constitutive reconstitutes (specific) nodes by
combining multiple more general relations, such as being cast in a movie.

Figure 4b shows a subgraph from the CoDEx-L dataset, centered on the node
representing the constitutive node {Guy Ligier}. We also show nodes which are
reconstituted by {Guy Ligier}, other retained nodes, and reconstituted nodes
from these retained nodes. From Fig. 4b, we can infer that {Guy Ligier} was
probably involved in rowing ({occupation}→{rowing}), racing ({occupation}
→{motorcycle racer}), and rugby ({occupation}→{rugby union player}), Note
that while {Guy Ligier} is used to reconstitute {racing automobile driver}, this
reconstitution is in conjunction with other constitutive nodes such as {Karl
Ebb} and {Eddie Jordan}, suggesting that the concept of {racing automobile
driver} is not fully captured by a single node. Next, we observe that while a
relation exists between {Guy Ligier} and the accessory node {businessperson}, it
is reconstituted by {Howard Hughes} and {Donald Trump}, who may be relatively
better recognized as businesspersons, instead.

5 Conclusion

In this work, we identify semantically constitutive entities in a knowledge graph
(KG). Intuitively, embeddings of “constitutive” nodes can be used to reconstitute
“accessory” nodes, and is based on actual KG triples, providing credence and
interpretability. Experiments on three knowledge bases validate the proposed
methodology in several ways. On the downstream Link Prediction task, our
method outperforms structural connectivity baselines. A user study validates
our reconstitutions as more consistent with human evaluation.

One limitation of our work is a reliance on pretrained graph embedding
as input, as our approach is unable to generate these embeddings from the
knowledge graph directly. Next, reconstructions are only as accurate as the KG
provided; problematic reconstructions can be avoided by auditing the underly-
ing KG.

One future direction is to adapt our approach to non-translational KG
embeddings. Another is to explore how semantically constitutive entities could
enhance related tasks such as KG summarization.

Semantically Constitutive Entities in Knowledge Graphs 459

References

1. Bonacich, P.: Factoring and weighting approaches to status scores and clique iden-
tification. J. Math. Sociol. 2(1), 113–120 (1972)

2. Bonacich, P.: Power and centrality: a family of measures. Am. J. Sociol. 92(5),
1170–1182 (1987)

3. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating
embeddings for modeling multi-relational data. In: NeurIPS, vol. 26 (2013)

4. Borgatti, S.P., Everett, M.G.: A graph-theoretic perspective on centrality. Soc.
Netw. 28(4), 466–484 (2006)

5. Buehrer, G., Chellapilla, K.: A scalable pattern mining approach to web graph
compression with communities. In: WSDM, pp. 95–106 (2008)

6. Chen, C., Lin, C.X., Fredrikson, M., Christodorescu, M., Yan, X., Han, J.: Mining
graph patterns efficiently via randomized summaries. PVLDB 2(1), 742–753 (2009)

7. Chen, W., Wang, Y., Yang, S.: Efficient influence maximization in social networks.
In: KDD, pp. 199–208 (2009)

8. Ciampaglia, G.L., Shiralkar, P., Rocha, L.M., Bollen, J., Menczer, F., Flammini,
A.: Computational fact checking from knowledge networks. PLoS ONE 10(6),
e0128193 (2015)

9. Cook, D.J., Holder, L.B.: Substructure discovery using minimum description length
and background knowledge. JAIR 1, 231–255 (1993)

10. Cornuéjols, G., Nemhauser, G., Wolsey, L.: The uncapacitated facility location
problem. Cornell University Operations Research and Industrial Engineering, Tech-
nical report (1983)

11. Dai, D., Zheng, H., Luo, F., Yang, P., Chang, B., Sui, Z.: Inductively representing
out-of-knowledge-graph entities by optimal estimation under translational assump-
tions. arXiv preprint arXiv:2009.12765 (2020)

12. Dettmers, T., Minervini, P., Stenetorp, P., Riedel, S.: Convolutional 2D knowledge
graph embeddings. In: AAAI. No. 1 (2018)

13. Dunne, C., Shneiderman, B.: Motif simplification: improving network visualization
readability with fan, connector, and clique glyphs. In: CHI, pp. 3247–3256 (2013)

14. Fellbaum, C.: WordNet. In: Poli, R., Healy, M., Kameas, A. (eds.) Theory and
applications of ontology: Computer Applications, pp. 231–243. Springer, Dordrecht
(2010). https://doi.org/10.1007/978-90-481-8847-5_10

15. Fleszar, K., Hindi, K.S.: An effective VNS for the capacitated p-median problem.
Eur. J. Oper. Res. 191(3), 612–622 (2008)

16. Freeman, L.C.: A set of measures of centrality based on betweenness. Sociometry
40, 35–41 (1977)

17. Gurobi Optimization, LLC: Gurobi Optimizer Reference Manual (2022)
18. Hamann, F., Ulges, A., Krechel, D., Bergmann, R.: Open-world knowledge graph

completion benchmarks for knowledge discovery. In: Fujita, H., Selamat, A., Lin,
J.C.-W., Ali, M. (eds.) IEA/AIE 2021. LNCS (LNAI), vol. 12799, pp. 252–264.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-79463-7_21

19. Hirsch, J.E.: An index to quantify an individual’s scientific research output. PNAS
102(46), 16569–16572 (2005)

20. Huang, K., Wang, S., Bevilacqua, G., Xiao, X., Lakshmanan, L.V.: Revisiting
the stop-and-stare algorithms for influence maximization. PVLDB 10(9), 913–924
(2017)

21. Huang, X., Zhang, J., Li, D., Li, P.: Knowledge graph embedding based question
answering. In: WSDM, pp. 105–113 (2019)

http://arxiv.org/abs/2009.12765
https://doi.org/10.1007/978-90-481-8847-5_10
https://doi.org/10.1007/978-3-030-79463-7_21

460 C. C. Chia et al.

22. vol. Jenatton, R., Roux, N., Bordes, A., Obozinski, G.R.: A latent factor model
for highly multi-relational data. In: NeurIPS, vol. 25 (2012)

23. Ji, G., He, S., Xu, L., Liu, K., Zhao, J.: Knowledge graph embedding via dynamic
mapping matrix. In: COLING-IJCNLP, pp. 687–696 (2015)

24. Ji, S., Pan, S., Cambria, E., Marttinen, P., Philip, S.Y.: A survey on knowl-
edge graphs: representation, acquisition, and applications. TNNLS 33(2), 494–514
(2021)

25. Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through
a social network. In: KDD, pp. 137–146 (2003)

26. Korn, A., Schubert, A., Telcs, A.: Lobby index in networks. Physica A 388(11),
2221–2226 (2009)

27. Landis, J.R., Koch, G.G.: The measurement of observer agreement for categorical
data. Biometrics 33, 159–174 (1977)

28. Li, C.T., Lin, S.D.: Egocentric information abstraction for heterogeneous social
networks. In: ASONAM, pp. 255–260. IEEE (2009)

29. Likert, R.: A technique for the measurement of attitudes. Arch. Psychol (1932)
30. Liu, S., Grau, B., Horrocks, I., Kostylev, E.: Indigo: GNN-based inductive knowl-

edge graph completion using pair-wise encoding. In: NeurIPS, vol. 34 (2021)
31. Liu, Y., Safavi, T., Dighe, A., Koutra, D.: Graph summarization methods and

applications: a survey. CSUR 51(3), 1–34 (2018)
32. Maccioni, A., Abadi, D.J.: Scalable pattern matching over compressed graphs via

dedensification. In: KDD, pp. 1755–1764 (2016)
33. Mahdisoltani, F., Biega, J., Suchanek, F.: Yago3: a knowledge base from multilin-

gual wikipedias. In: CIDR (2014)
34. Mitchell, T., et al.: Never-ending learning. Commun. ACM 61(5), 103–115 (2018)
35. Mulvey, J.M., Beck, M.P.: Solving capacitated clustering problems. Eur. J. Oper.

Res. 18(3), 339–348 (1984)
36. Nguyen, D.Q., Nguyen, T.D., Nguyen, D.Q., Phung, D.: A novel embedding model

for knowledge base completion based on convolutional neural network. arXiv
preprint arXiv:1712.02121 (2017)

37. Nguyen, H.T., Dinh, T.N., Thai, M.T.: Revisiting of revisiting the stop-and-stare
algorithms for influence maximization. In: Chen, X., Sen, A., Li, W.W., Thai,
M.T. (eds.) CSoNet 2018. LNCS, vol. 11280, pp. 273–285. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-04648-4_23

38. Nguyen, H.T., Thai, M.T., Dinh, T.N.: Stop-and-stare: optimal sampling algo-
rithms for viral marketing in billion-scale networks. In: SIGMOD, pp. 695–710
(2016)

39. Nickel, M., Tresp, V., Kriegel, H.P.: A three-way model for collective learning on
multi-relational data. In: ICML (2011)

40. Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking:
Bringing order to the web. Technical report, Stanford InfoLab (1999)

41. Purohit, M., Prakash, B.A., Kang, C., Zhang, Y., Subrahmanian, V.: Fast
influence-based coarsening for large networks. In: KDD, pp. 1296–1305 (2014)

42. Riondato, M., García-Soriano, D., Bonchi, F.: Graph summarization with quality
guarantees. DMKD 31(2), 314–349 (2017)

43. Safavi, T., Koutra, D.: CoDEx: a comprehensive knowledge graph completion
benchmark. In: EMNLP, pp. 8328–8350 (2020)

44. Shen, Z., Ma, K.L., Eliassi-Rad, T.: Visual analysis of large heterogeneous social
networks by semantic and structural abstraction. IEEE TVCG 12(6), 1427–1439
(2006)

http://arxiv.org/abs/1712.02121
https://doi.org/10.1007/978-3-030-04648-4_23

Semantically Constitutive Entities in Knowledge Graphs 461

45. Stefanello, F., de Araújo, O.C., Müller, F.M.: Matheuristics for the capacitated
p-median problem. ITOR 22(1), 149–167 (2015)

46. Toutanova, K., Chen, D.: Observed versus latent features for knowledge base and
text inference. In: CVSC, pp. 57–66 (2015)

47. Vaswani, A., et al.: Attention is all you need. In: NIPS, vol. 30 (2017)
48. Wan, Z., Mahajan, Y., Kang, B.W., Moore, T.J., Cho, J.H.: A survey on centrality

metrics and their network resilience analysis. IEEE Access 9, 104773–104819 (2021)
49. Wang, P., Han, J., Li, C., Pan, R.: Logic attention based neighborhood aggregation

for inductive knowledge graph embedding. In: AAAI, vol. 33, pp. 7152–7159 (2019)
50. Wang, Q.,et al.: Coke: contextualized knowledge graph embedding. arXiv preprint

arXiv:1911.02168 (2019)
51. Wang, Q., Mao, Z., Wang, B., Guo, L.: Knowledge graph embedding: a survey of

approaches and applications. TKDD 29(12), 2724–2743 (2017)
52. Wang, X., He, X., Cao, Y., Liu, M., Chua, T.S.: KGAT: knowledge graph attention

network for recommendation. In: KDD, pp. 950–958 (2019)
53. Wang, Z., Zhang, J., Feng, J., Chen, Z.: Knowledge graph embedding by translating

on hyperplanes. In: AAAI, vol. 28 (2014)
54. Yao, L., Mao, C., Luo, Y.: KG-BERT: bert for knowledge graph completion. arXiv

preprint arXiv:1909.03193 (2019)
55. Zhang, N., Tian, Y., Patel, J.M.: Discovery-driven graph summarization. In: ICDE,

pp. 880–891. IEEE (2010)
56. Zhu, L., Ghasemi-Gol, M., Szekely, P., Galstyan, A., Knoblock, C.A.: Unsupervised

entity resolution on multi-type graphs. In: Groth, P., et al. (eds.) ISWC 2016.
LNCS, vol. 9981, pp. 649–667. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-46523-4_39

http://arxiv.org/abs/1911.02168
http://arxiv.org/abs/1909.03193
https://doi.org/10.1007/978-3-319-46523-4_39
https://doi.org/10.1007/978-3-319-46523-4_39

KBQA: Accelerate Fuzzy Path Query
on Knowledge Graph

Li Zeng(B), Qiheng You, Jincheng Lu, Shizheng Liu, Weijian Sun, Rongqian Zhao,
and Xin Chen

Huawei Technologies Co., Ltd., Shenzhen, China
{zengli43,youqiheng,lujincheng7,liushizheng1,sunweijian,

zhaorongqian,chenxin}@huawei.com

Abstract. Fuzzy path query is widely used to find the deep association of entities
in many real-world applications such as knowledge graph answering and social
network analysis. However, existing engines fail to support fuzzy path queries on
large property graphs due to the imprecise string matching and indefinite search
space. In this paper, we propose an extremely fast graph query engine KBQA,
which can perform semantic matching in both entities and properties, and search
arbitrarily long paths efficiently. Facing the performance problem, KBQA designs
two-phase filtering strategy to accelerate candidate selection. Also, bitwise oper-
ations are adopted for fast graph exploration. Furthermore, KBQA adaptively
prunes unpromising search paths based on path similarity. Extensive experiments
show that KBQA outperforms all state-of-the-art graph databases by 2×∼10×
and searches all 6-hop paths within ten seconds. Our system has been applied in
the ICT field and has achieved remarkable results.

Keywords: Knowledge Graph · Path Query · Fuzzy Matching · Graph
Database

1 Introduction

With the development of information technology, the Internet has evolved towards the
semantic network [3,17,25] (i.e., from the link between web pages to the link between
data). Semantic network is a network of knowledge, e.g., social graph as shown in
Fig. 1. Users can query the information on the semantic network like “Who is the wife
of Obama”, which is translated into a precise path query (Obama,Wife, ?) by existing
knowledge engine, then the precise answer are displayed in graphs (Fig. 2).

Though existing engines can support precise path queries well, in practical applica-
tions the entity names as well as the word sequence are usually inaccurate and incom-
plete, which is called fuzzy path query. Figure 3 gives an example of fuzzy path queries,
i.e., “AAU heaviness”. Note that the AAU node does not have the property heaviness or
its synonym weight. Besides, the words AAU and heavinessmay not be precise, thus the
similarity of string matching needs to be computed. The engine needs to start the search
from AAU and checks the existence of the required property in each successive node
until all possible results are found. All valid search paths are required to be displayed,
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C. Strauss et al. (Eds.): DEXA 2023, LNCS 14146, pp. 462–477, 2023.
https://doi.org/10.1007/978-3-031-39847-6_37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-39847-6_37&domain=pdf
https://doi.org/10.1007/978-3-031-39847-6_37

KBQA: Accelerate Fuzzy Path Query on Knowledge Graph 463

Fig. 1. Example of social graph

which can improve the interpretability. In precise path queries, the query should be the
form of an exact path (e.g., “AAU AAU3910 Type02312 Specification Weight”), other-
wise existing engines can not find any answer. But in fuzzy path queries, the path length
as well as the intermediate nodes can be arbitrary between AAU and heaviness. Obvi-
ously, the problem of fuzzy path query is more difficult due to the similar entity/property
matching, synonym replacement and variable path completion.

Fig. 2. Example of precise path query on social graph

In the ICT (Information and Communication Technology) field, engineers fre-
quently use the knowledge engine during the planning, construction, maintenance, opti-
mization, and marketing of Telecom network. The ICT domain features massive knowl-
edge and diverse topology, while queries tend to be vague and short. Existing engines
[7,9,10,12,18,29] can not process such kinds of queries efficiently because the indefi-
nite search space as well as the imprecise string matching is rather costly. For example,
the lengths of different paths between AAU and the required property can vary from 1 to
6, leading to a large search space. Considering the query “AAU heaviness” in Fig. 3, if
there is > 100 candidates in each hop, the number of 4-hop paths should be larger than
1004 = 108. On modern large-scale graphs, the out degree of a super node is usually
larger than 1000, thus the search space of 6-hop paths is higher than 10006 = 1018.
Things can be worse if synonym and string matching are considered in each hop. This
is not feasible in practical applications such as social network analysis and the engi-
neering operations. Therefore, an efficient fuzzy query engine is required to accelerate
fuzzy path matching on large graphs.

To answer a fuzzy path query q, the routine includes the selection of candidate
nodes for the first word (e.g., AAU) and the exploration of valid paths that are similar
to q. Let C, d and n be the size of candidate set, the average degree in each hop, and
the path length, respectively. The search space can be formulated as C × dn, which
is proportional to the size of candidate set. Thus, the candidate selection needs to be

464 L. Zeng et al.

Fig. 3. System Execution Instance

high-precision and lightweight. However, traditional engines adopt naive one-to-one
mapping [23], whose computational complexity is |V | × z (let |V | and z be the num-
ber of nodes and the average string matching cost respectively). This is not feasible
on large graphs with tens of thousands of nodes, thus we design 2-phase filtering to
strike a good balance between performance and precision. Path exploration consists of
two phases: DFS-based medium node matching and BFS-based valid endpoint search.
The brute-force strategy used by existing solutions has a C × dn cost, which is longer
than ten minutes on large graphs. Due to the large search space of fuzzy matching,
pruning of dissimilar paths is rather prominent in improving the search efficiency of
DFS (Depth-first Search) [13]. In addition, a frontier queue is maintained and used for
exploration during BFS (Breadth-first Search). Existing solutions generate the frontier
queue by ordinary STL queue container with sequential push operations, which can be
costly in both time and memory when the frontier queue is very large. Instead, we elab-
orate bitmap-based graph storage and generate the frontier queue by innovative bitwise
operations, which is extremely fast due to the fitness to modern CPU architecture.

In this paper, we propose a novel system KBQA (Knowledge-base Query Answer-
ing), which can answer vague queries by supporting semantic string matching and arbi-
trary path exploration. To the best of our knowledge, KBQA is the first query engine
that can process fuzzy path queries in reasonable time even on knowledge graphs with
hundreds of millions of edges. Our primary contributions are the following:

– We design an advanced framework of fuzzy path query processing, which can sup-
port the matching based on both string similarity and path similarity.

– During the candidate selection, novel 2-phase filtering are devised to accelerate the
string matching.

– To optimize the frontier queue generation during path exploration, bitwise primitives
are elaborated and carefully implemented.

– Unpromising search paths are adaptively pruned based on dynamically computed
path similarity.

– Experiments on both synthetic and real-world graph datasets show that KBQA out-
performs the state-of-the-art approaches by up to 10×.

KBQA: Accelerate Fuzzy Path Query on Knowledge Graph 465

The rest of the paper is organized as follows. Section 2 reviews the problem defini-
tion and the related work. Then, Sect. 3 presents the framework and accelerative tech-
niques of KBQA. Section 4 shows all experimental results and their analysis. Finally,
Sect. 5 concludes the paper.

2 Background

2.1 Problem Definition

Definition 1 (Graph). A graph is denoted as G = {V,E,L, Y }, where V is the set of
vertices; E ⊆ V ×V is the set of undirected edges; L is a labeling function that maps a
vertex (of V (G)) to a dictionary of properties (each property is a pair of key and value);
Y is the dictionary of each node/property and its synonym list. The labeling function of
G can also be specified as LG. V (G) and E(G) are used to denote vertices and edges
of graph G, respectively.

Definition 2 (Subgraph). Given a graph G = {V,E,L}, a subgraph of G is denoted
as G′ = {V ′, E′, L′}, where vertex sets V ′ and edge sets E′ in G′ are subsets of V
and E, respectively, denoted as V ′ ⊆ V and E′ ⊆ E. Furthermore, for vertex labeling
functions, L′ ⊆ L.

Definition 3 (Path Query). The path query q consists of a beginning word s, k medium
words {m1, ...,mk}, and the final property key prop.

Definition 4 (Path Match). Given a graph g and a path query q = {s,m1, ...,mk,
prop}, a path match of q in g is the subgraph {v0, v1, ..., vj , val} of g such that:
(1) vivi+1 ∈ E(g), ∀0 ≤ i < j
(2) s or one of Y [s] is similar to v0, prop ∈ L(vj) or one of Y [prop] ∈ L(vj) and
val = L(vj)[prop]
(3) ∃ a subsequence {u1, ..., uk} of {v1, ..., vj} such that uz or one of Y [uz] is similar
tomz , ∀1 ≤ z ≤ k

Definition 5 (Problem Statement). Given a graph g and a path query q, the fuzzy path
query problem is to find out all matching paths of q in g.

A running example is given in Fig. 3. According to Definition 3, the beginning
word and the final property key is s and heaviness respectively, while no medium
word exists in this case. Many valid path matches exist and one of them is AAU →
AAU3910→ Type02312→ Specification→ 39.5kg (note that heaviness and weight
are synonyms). This paper aims to accelerate fuzzy path query processing on large-scale
knowledge graph. Note that a node is also called an entity, and different nodes may have
the same entity names. Without loss of generality, we assume the graph g is connected
and the result set of path query is not empty. Though our solution can be easily extended
to process directed graphs, vertex/edge labels or label sets, that is not our focus. Unless
otherwise specified, we use u, N(u), deg(u), num(L), and |A| to denote a vertex, the
neighbor set of u, degree of u, the number of currently valid elements in set L, and the
size of set A, respectively.

466 L. Zeng et al.

2.2 Related Work

Existing work related to path queries can be mainly divided into three categories: rela-
tional table join, subgraph matching, graph exploration.

Relational Table Join. Some earlier solutions (Jena [18], Virtuoso [10]) store the graph
data as relational tables and answer path queries by joining these tables. The structure
of relational table and the algorithm of join are different in various systems, e.g., binary
join [19] and worst-case optimal join [21,22]. However, these solutions conduct too
many self-joins and the total computational cost is exponential to the path length, which
marks them inefficient.

Subgraph Matching. Neo4j [12] and gStore [29] treat each query as a query graph
and find out all its matches in the data graph. The subgraph matching is usually done
by a filter-and-verification framework, as detailed in [27,30,31]. The query languages
of Neo4j and gStore are Cypher [11] and SPARQL [1], which are not Turing-complete
[8,14] and can not support fuzzy path queries. As gStore is open-source and has better
performance than Neo4j, we can modify the query processing procedure of gStore to
support fuzzy path queries.

Graph Exploration. Other graph databases (ArangoDB [9] and TigerGraph [7]) adopt
the paradigm of graph exploration such as breadth-first search (BFS) and depth-first
search (DFS). The query language GSQL of TigerGraph is Turing-complete, thus it
naturally support fuzzy path queries. As for the language AQL of ArangoDB, it can be
enhanced by implementing javascript plug-ins. Thus, both ArangoDB and TigerGraph
are used in our experiments.

KBQA adopts the graph exploration paradigm, which is obviously more flexible and
efficient than relational table join. ArangoDB is inefficient as it lacks optimizations of
the graph exploration. Besides, ArangoDB needs to be equipped with javascript to sup-
port fuzzy path matching, but the performance of javascript is not competitive when
compared with C++/Java. In contrast, gStore is implemented in C++ and has done
sophisticated optimizations of the matching process. However, it targets at more gen-
eral subgraph matches, thus neglecting special techniques for accelerating fuzzy path
matching, e.g., pruning of unpromising paths based on path similarity. As for Tiger-
Graph, it is rather powerful and has thoroughly optimized the graph exploration with
techniques such as fine-grain parallelism and query compilation. The main shortcoming
of TigerGraph is the missing of optimization in the candidate selection and pruning of
path similarities. In addition, these solutions do not support special graph storage and
bitwise-based frontier queue generation for super nodes. In contrast, KBQA proposes
lightweight semantic filtering strategies and advanced bitwise-based graph structures,
and leverages powerful pruning techniques to early terminate dissimilar search paths.

3 The Proposed System

3.1 Architecture

The architecture of our KBQA system is shown in Fig. 4. The knowledge graph is built
offline, while the user’s query are processed online. For each raw query, a series of

KBQA: Accelerate Fuzzy Path Query on Knowledge Graph 467

words (i.e., a path query q = {s,m1, ...,mk, prop} defined in Definition 3) are obtained
by the entity recognition algorithm [5]. Our main innovations include starting node
search algorithm and variable path search algorithm. The starting node search algo-
rithm calculates the similarity score between s and each nodes in the knowledge graph
and chooses the highest n ones as candidates. Later, the variable path search algorithm
searches from each candidate and checks whether the similarity of current path and q
satisfies the semantic constraints (Definition 4).

Fig. 4. The architecture of KBQA system

In KBQA system, the starting candidates C and final results (all valid paths in g)
can be displayed on the graph visualization interface. Users can directly observe the
effects, as shown in Fig. 3.

3.2 Starting Node Search

Since words of q may not be precise entities, we need to calculate the similarity between
each word and all nodes of g. When loading a knowledge graph, all entities are seg-
mented and the weight of each word is calculated according to Inverse Document Fre-
quency (IDF [24]). Then, when processing online queries, KBQA adopts a 2-phase
filtering strategy which consists of rough filtering and semantic matching. Instead of
matching all nodes directly, our strategy filter out most candidates by a coarse-grain
method and only performs fine-grain filtering on a small node set. Therefore, our 2-
phase strategy achieves much better performance than the naive method.

Rough Filtering. The similarity score of the first query word s to an entity l is computed
by the number of occurrences of s in l and the average number of words in all the
entities. If the IDF weight (idf) of s does not exist, the matching ends. Otherwise, the
score is computed as below:

score = idf × value × 1 + k

value+ k × (1 − b × 1−d
avgd

)
(1)

where k and b are hyper-parameters (0 ≤ b ≤ 1 and k ≥ 0). value indicates the number
of times that s appears in the entity l. d is the number of words of l, while avgd is the
average number of words for all entities.

Then, all calculated scores are sorted in descending order, and the top n names
(e.g.,, five names) with their corresponding nodes are selected. For these nodes, seman-
tic matching is performed with the original starting query word. The nodes that are
successfully matched form a set, which is marked as candidate set C.

468 L. Zeng et al.

Semantic Matching. The entity l and the first query word s are viewed as semantically
similar if one of the conditions below is satisfied:

– The levenshtein distance [20] cannot exceed the parameter x.
– The levenshtein distance between a synonym s′ of s and l cannot be greater than the

parameter y.
– The entity name consists of the original word s plus a string of digits.
– Other reasonable user-defined conditions approved by business.

For example, if the levenshtein distance is 0, the corresponding entity is retained.

Optimization by Inverted Indexing. To process large graphs, we further propose an
efficient accurate score calculation based on lexical inverted tables [15]. When calcu-
lating the scores of all entities during preprocessing, indexes are created for each word
and the corresponding entities. During query answering, only the names of all entities
that contain the word are obtained and calculated. This greatly reduces the number of
useless calculation.

3.3 Variable Path Search

After the starting candidate set C is found, we need to find out all feasible paths with
variable lengths. The framework of our method is shown in Fig. 5: DFS is performed
on g starting from each candidate, and all medium words of q are matched one by one
to check the similarity of current path. For each path P that completes medium node
matching, BFS is conducted from the endpoint of P for the nearest valid end node (i.e.,
the node with attributes).

Fig. 5. The framework of variable path search

Medium Node Matching. Taking each node of the starting candidate set C as the
source, DFS is carried out to extend the partial path and check whether the similarity of
current path and q satisfies the constraint. The similarity calculation of medium words
is similar to that of starting node search in Sect. 3.2. For each node v, if v successfully

KBQA: Accelerate Fuzzy Path Query on Knowledge Graph 469

Algorithm 1: The algorithm of medium node matching
Input: candidate set C, query q = {s,m1, ...,mk, prop}, graph g
Output: partial path matches {Pi}

1 procedure EXPAND(C, q, g)
2 R ← ∅
3 foreach v ∈ C do
4 path ← {v}
5 DFS(v, 1, path)

6 return R
7 procedure DFS(u, pos, path)
8 if pos = k then
9 if checkSimilarity(path, q) then

10 R ← R ∪ {path}
11 return
12 foreach v ∈ N(u) do
13 path ← path ∪ {v}
14 DFS(v, pos, path)
15 recover the original path
16 if v or one of Y [v] is similar tompos then
17 path ← path ∪ {v}
18 DFS(v, pos+ 1, path)
19 recover the original path

matches current medium word, the path Pi is extended by v. Otherwise, though v and
mpos are not similar, Pi can be extended by v butmpos remains unmatched in this case.
There may be several nodes between medium words, thus the path length is variable,
which is the inherent hardness of fuzzy path matching. The pseudo code of medium
node matching is given in Algorithm 1.

Valid Endpoint Search.After matching all medium words in q, the processing of fuzzy
path queries does not end because the property that named prop needs to be found out.
For each path Pi, BFS starts the search from the final node of Pi to match a valid
endpoint which contains the given property prop or contains one synonym of prop. As
long as there is an endpoint v that is successfully matched, the path from the source
to v is recorded, which will be returned as one of the final answers. Algorithm 2 lists
the pseudo code of valid endpoint search. BFS is selected as the search mechanism to
provide better performance because it facilitates parallelism, has better cache locality,
and can detect endpoints within the shortest hop count.

Optimization of Graph Storage. Nodes in the original graph g are distinguished by
string IDs, which is costly and limits the optimization techniques. We utilize the state-
of-the-art preprocessing method [26] that assigns consecutive integer IDs to nodes of
g, meanwhile enhancing the locality. Later, efficient data structures can be designed by
leveraging the integer IDs.

1. Multi-form neighbor structure. There are some nodes in g that have many neighbors,
which is called supernode. The common adjacency list occupies too much memory

470 L. Zeng et al.

Algorithm 2: The algorithm of valid endpoint search
Input: partial matches {Pi}, query q = {s,m1, ...,mk, prop}, graph g
Output: entire path matches {Ri}

1 procedure DETECT ({Pi}, q, g)
2 R ← ∅
3 foreach path ∈ {Pi} do
4 let u be the final node of path
5 BFS(u, path)

6 return R
7 procedure BFS(u, path)
8 if prop ∈ L(u) or one of Y [prop] ∈ L(u) then
9 R ← R ∪ {path ∪ L(u)[prop]}

10 return
11 foreach v ∈ N(u) do
12 BFS(v, path ∪ {v})

in this case, as shown in Fig. 6 (left-top). A tightly compressed bit array [28] is used
to store the neighbors of the supernode, which greatly reduces memory usage, as
shown in Fig. 6 (right-top). In the bit array, if bits 2∼37 are 1, the AAU3910 has
neighbors numbered from 2 to 37.

2. Inversion table of node properties. When matching the final property, each traversed
node needs to be matched. However, when the graph search space is large, the num-
ber of matching times may reach hundreds of millions, which seriously slows down
the query answering. Thus, an inverted index from the property name to the cor-
responding node set is constructed, as shown in Fig. 6 (bottom). Before matching
the endpoint, we filter out nodes that do not contain the required property, and then
match only the remaining nodes. This greatly reduces the number of matching times
and shortens the matching time. In the bit array, bits 791∼880 are 1 indicating that
nodes numbered from 791 to 880 have the Weight property.

Fig. 6. Inverted table index of the property

KBQA: Accelerate Fuzzy Path Query on Knowledge Graph 471

Optimization of Pruning. During variable path search, semantic matching is required
for each medium word, and hybrid DFS+BFS search (called ADBFS [28]) is used to
traverse the search space. In each search path, KBQA combines the graph diameter gd,
the number of unmatched medium words (uk), and the current path length pl to make
judgment to prune unnecessary search space, thus speeding up the search and reducing
the memory occupation.

1. When uk + pl exceeds the diameter of the graph, it is impossible to obtain a valid
result, thus the current search path can be terminated.

2. If a perfect path p match exists (i.e., the similarity of p and q is 1.0), all other imper-
fect search paths can be terminated as the path similarity never increases.

The matching process of the example question “AAU 02310 heaviness” is shown
in Fig. 7. Note that heaviness is equivalent to Weight in g. All neighbors of a node are
grouped in pairs, while each group is considered as a whole for ADBFS traversal. Each
group traversal is equivalent to traversing all nodes of the group in parallel, that is, BFS
expansion of nodes in the group. After medium words are successfully matched and
the partial path AAU → AAU3910 → Type02310 is obtained, BFS searches for the
required property Weight using Type02310 as the new starting point. In the figure, the
blue box indicates nodes that have the property Weight, and the black box indicates
nodes that do not have the property Weight. Whether the node has the required prop-
erty can be determined by the inverted table of node properties. During exploration,
the index is used to filter out invalid nodes to obtain the required property Weight at
the endpoint and yield the valid path match AAU → AAU3910 → Type02310 →
specifications → weight = 39.5kg.

Fig. 7.Matching process of the question”AAU 02310 heaviness”

4 Experiments

In this section, we evaluate our method (KBQA) against state-of-the-art graph databases
(ArangoDB [9], gStore [29] and TigerGraph [7]). ArangoDB and gStore need to be

472 L. Zeng et al.

enhanced to support fuzzy path queries, as discussed in Sect. 2.2. All experiments are
carried out on a workstation running CentOS 7 and equipped with Intel Xeon E5-2620
2.40GHz CPU, 64GB host memory and 256GB disk.

4.1 Datasets and Queries

The experiments are conducted on both real and synthetic datasets. The statistics are
listed in Table 1. The patent citation network (patent), the online social network (jour-
nal), as well as the mesh-like road [16] are downloaded from SNAP [16]. gsc is the
telecom graph in ICT field, representing the properties and relationship of equipments.
Each node of gsc has one non-unique label, and there is 173 kinds of properties in gsc.
Figure 3 is an instance of gsc. Synthetic graphs include R-MAT and WatDiv. R-MAT
is generated by [4] under Graph500 settings [6]. WatDiv is a RDF graph with semantic
node/edge labels, which is generated by the Waterloo Benchmark [2].

Due to the lack of string node IDs and node properties in all graphs except for gsc,
we perform some data augmentation. For node properties, we generate 100 kinds of
properties and randomly assign them to each node following the 20/80 rule. The string
node IDs are also generated and assigned in a similar way. The value corresponding to
each property name can be arbitrary as it does not affect the query performance.

For each dataset, 100 queries are generated by randomly exploring paths from the
graph. The length of all paths can not exceed six because in most real-life graphs all rela-
tionships can be found within six hops. In each path, string edit and synonym replace-
ment is randomly applied on labels or properties to test fuzzy cases. Besides, medium
words are also randomly eliminated from each path. For example, a fuzzy query on gsc
is shown in Fig. 3, where heaviness is a synonym of weight and all medium words (e.g.,
AAU3910) are removed. The time limit is set to 10min, i.e., a query can not be selected
if it is not responded within 600 s. For each dataset, the average running time of all
queries is reported.

Table 1. Statistics of Datasets

Name |V | |E| MD1 Type2

patent 3,774,768 16,518,948 793 rs

journal 4,847,570 33,099,465 20,290 rs

road 1,965,206 2,766,607 8 rm

R-MAT 1,048,576 15,680,861 67,086 s

WatDiv 10,899,920 109,959,180 671K s

gsc 5,169,893 62,207,935 486 rs
1 Maximum degree of the graph.
2 Graph type: r:real-world, s:scale-free, and m:mesh-
like.

4.2 Evaluation of Techniques of Starting Node Search

We evaluate the effect of the 2-phase filtering technique, as shown in in Table 2. Since
the length of queried paths is as high as six, all algorithms need several seconds to

KBQA: Accelerate Fuzzy Path Query on Knowledge Graph 473

answer fuzzy queries due to the explosion of search space as 6-hop subgraph touches
nearly all nodes in most real graphs. Compared with the naive implementation that per-
forms one-to-one mapping between the first word and all nodes, our technique achieves
>1.24× speedup on all graphs except for road. The improvement on road is only 1.12×
due to its small graph scale and low degree. Generally, the gain is more obvious on
graphs with larger size and higher degree. For example, on journal and WatDiv the
performance gain is much more prominent (>1.3×).

The reduction in time comes from the optimization of start node search. Though the
final candidate set is the same, the naive method compares the first word with all nodes
one by one, and checks whether the string similarity is enough. Before our optimiza-
tion, nearly 10%∼20% time (several seconds) is consumed in the start node search. In
contrast, with our 2-phase filtering strategy the filtering time can be reduced to several
milliseconds, which can be marginally omitted in the total time cost. Most invalid can-
didate nodes can be filtered out by the rough filter and inverted table lookup, which
reduces the burden of the more precise filter (semantic matching).

Table 2. The performance of start node search (ms)

System patent journal road R-MAT WatDiv gsc

KBQA-1 5.56K 8.03K 1.75K 6.1K 57K 21K

KBQA*2 4.36K 6.37K 1.56K 4.8K 44K 17K

speedup 1.28× 1.71× 1.12× 1.27× 1.3× 1.24×
1 KBQA- represents the implementation without the optimiza-
tion of start node search and variable path matching.
2 KBQA* represents the implementation without the optimiza-
tion of variable path matching.

4.3 Evaluation of Techniques of Variable Path Search

In this section, we evaluate the effect of our optimization of variable path search, which
consists of medium node matching and valid endpoint search. As stated in Table 3,
the overall minimum speedup is 1.22× compared with naive search mechanism, which
is a simple DFS process without the optimization of graph storage and pruning. The
minimum speedup is achieved only on the smallest dataset road, which is a mesh-like
and low-degree graph. Its small and regular adjacency list has no need for bitwise-based
graph storage and operations. Except for road, our technique achieves> 2.29× speedup
on all other graphs.

Obviously, the improvement is more prominent on larger and more skewed graphs
like WatDiv and gsc, showing 4.49× speedup and 2.83× speedup respectively. Gener-
ally, large skewed graphs have several super nodes, whose degree is much larger than
others. Inherently, the search space grows exponentially on super nodes, especially on
the fuzzy matching case, incurring both time and memory pressure on the query pro-
cessing. On the one hand, the valid endpoint search is costly if the last medium node
does not contain the required property. Before our optimization, nearly 30%∼40% time

474 L. Zeng et al.

(as high as dozens of seconds) is consumed in the valid endpoint search, which is a
BFS process and its main cost is the frontier queue generation. But with the multi-form
graph storage and bitwise-based frontier queue generation, the proportion is reduced to
5%∼10% (no more than 2 s). On the other hand, the explosion of temporary paths is
prohibitive on large skewed graphs, implying more potential for our dynamical pruning
of dissimilar paths. Based on the monotonicity of path similarity as well as the restric-
tion of graph diameter and current matching process, KBQA adaptively eliminates most
unpromising search paths as early as possible. Thanks to our multi-form graph struc-
ture and adaptive pruning techniques, the explosion of search space on super nodes is
greatly alleviated.

Table 3. The performance of variable path matching (ms)

System patent journal road R-MAT WatDiv gsc

KBQA* 4.36K 6.37K 1.56K 4.8K 44K 17K

KBQA1 1.82K 2.37K 1.28K 2.1K 9.8K 6K

speedup 2.4× 2.69× 1.22× 2.29× 4.49× 2.83×
1 KBQA represents the implementation with the optimization
of start node search and variable path matching.

4.4 Overall Performance

In this section, we compare KBQA with Neo4j, Virtuoso, ArangoDB, gStore and
TigerGraph, which are the state-of-the-art graph databases. The overall performance
is reported in Table 4. Obviously, our optimized KBQA is the single winner, showing
2 ∼ 10× speedup compared with all counterparts. Among other systems, the rank is
TigerGraph > gStore > ArangoDB > Virtuoso > Neo4j.

Compared with TigerGraph, the minimum speedup is 2.03× on the mesh-like graph
road. As the degree of road is rather low and its degree distribution is balanced, the
search space is not very large and the effects of our techniques are limited. On the
power-law graph WatDiv and gsc, the improvement is much more prominent: > 3.3×
and 4× respectively. They have rather skewed degree distribution and much larger
search space, which is a disaster for other engines but can be handled well by KBQA.
For example, our elaborate graph structure (bitmap and adjacency list) is very suitable
for the storage and traversal of supernodes in scale-free graphs.

The performance of ArangoDB is strictly limited by its inefficient javascript plug-
ins. In contrast, gStore is implemented in C++, but it lacks special techniques for path
matching rather than general subgraph matching. Though optimized by fine-grain par-
allelism and query compilation, TigerGraph does not have any optimization in the com-
putation and pruning of path similarities. Furthermore, existing engines do not sup-
port multi-form graph storage and bitwise-based frontier queue generation for super
nodes. As a result, all these solutions encounter the explosion of response time on large
skewed graphs, just like our KBQA- implementation. Comparatively, KBQA proposes

KBQA: Accelerate Fuzzy Path Query on Knowledge Graph 475

advanced graph structures for storing irregular neighbors and inverted tables, and lever-
ages powerful pruning techniques for early termination of infeasible search paths, which
contribute to its extraordinary performance.

To sum up, on all datasets only KBQA can answer all fuzzy path queries within
10 s, which means KBQA can be practically used in online applications.

Table 4. The elapsed time of different algorithms (ms)

System patent journal road R-MAT WatDiv gsc

Neo4j 9.56K 12K 5.2K 11K 115K 76K

Virtuoso 4.98K 6.6K 3.6K 5K 62K 39K

ArangoDB 4.74K 5.41K 3.1K 5.4K 55K 31K

gStore 4.71K 5.28K 3K 4.8K 40K 28K

TigerGraph 4.12K 5.30K 2.6K 4.5K 32K 20K

KBQA 1.82K 2.37K 1.28K 2.1K 9.6K 5K

5 Conclusions

We introduce an extremely fast query engine KBQA, which supports fuzzy path query
answering efficiently on knowledge graphs. Extensive experiments show that KBQA
outperforms the state-of-the-art graph databases by 2×∼10×. In future, KBQA can be
enhanced by analyzing the impact of query result complexity and adding distributed
computing ability.

References

1. SPARQL 1.1. In: Alhajj, R., Rokne, J.G. (eds.) Encyclopedia of Social Network Analysis
and Mining, 2nd Edition. Springer (2018)

2. Aluç, G., Hartig, O., Özsu, M.T., Daudjee, K.: Diversified stress testing of RDF data man-
agement systems. In: Mika, P., et al. (eds.) ISWC 2014. LNCS, vol. 8796, pp. 197–212.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11964-9 13

3. Borge-Holthoefer, J., Arenas, A.: Semantic networks: structure and dynamics. Entropy 12(5),
1264–1302 (2010). https://doi.org/10.3390/e12051264

4. Chakrabarti, D., Zhan, Y., Faloutsos, C.: R-MAT: a recursive model for graph mining. In:
Berry, M.W., Dayal, U., Kamath, C., Skillicorn, D.B. (eds.) Proceedings of the Fourth SIAM
International Conference on Data Mining, Lake Buena Vista, Florida, USA, April 22–24,
2004, pp. 442–446. SIAM (2004)

5. Chang, Y., Kong, L., Jia, K., Meng, Q.: Chinese named entity recognition method based on
BERT. In: 2021 IEEE International Conference on Data Science and Computer Application
(ICDSCA), pp. 294–299. IEEE (2021)

6. D’Azevedo, E.F., Imam, N.: Graph 500 in OpenSHMEM. In: Gorentla Venkata, M., Shamis,
P., Imam, N., Lopez, M.G. (eds.) OpenSHMEM 2014. LNCS, vol. 9397, pp. 154–163.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-26428-8 10

https://doi.org/10.1007/978-3-319-11964-9_13
https://doi.org/10.3390/e12051264
https://doi.org/10.1007/978-3-319-26428-8_10

476 L. Zeng et al.

7. Deutsch, A., Yu, X., Wu, M., Lee, V.: Tigergraph: A native MPP graph database. arXiv
(2019)

8. Deutsch, A., et al.: Graph pattern matching in GQL and SQL/PGQ. In: SIGMOD, pp. 2246–
2258. ACM (2022)

9. Dohmen, L.: Algorithms for large networks in the NoSQL database Arangodb. Bachelor
Thesis of RWTH Aachen University (2012)

10. Erling, O.: Virtuoso, a hybrid RDBMS/graph column store. IEEE Data Eng. Bull. 35(1), 3–8
(2012)

11. Francis, N., et al.: Cypher: An evolving query language for property graphs. In: SIGMOD,
pp. 1433–1445. ACM (2018)

12. Guia, J., Soares, V.G., Bernardino, J.: Graph databases: Neo4j analysis. In: ICEIS 2017 - Pro-
ceedings of the 19th International Conference on Enterprise Information Systems, Volume
1, Porto, Portugal, 26–29 April 2017, pp. 351–356 (2017)

13. Han, M., Kim, H., Gu, G., Park, K., Han, W.: Efficient subgraph matching: harmonizing
dynamic programming, adaptive matching order, and failing set together. In: Proceedings
of the 2019 International Conference on Management of Data, SIGMOD Conference 2019,
Amsterdam, The Netherlands, 30 June–5 July 2019, pp. 1429–1446. ACM (2019)

14. Hogan, A., Reutter, J.L., Soto, A.: Recursive SPARQL for graph analytics. arXiv
abs/2004.01816 (2020)

15. Knuth, D.E.: Retrieval on secondary keys. Art Comput. Program. Sorting Searching 3, 550–
567 (1997)

16. Leskovec, J., Krevl, A.: SNAP Datasets: Stanford large network dataset collection (2014).
http://snap.stanford.edu/data

17. Lytras, M., Downes, S.: Semantic networks and social networks. Learn. Organ. 12(5), 411–
417 (2005)

18. McBride, B.: Jena: a semantic web toolkit. IEEE Internet Comput. 6(6), 55–59 (2002)
19. Mhedhbi, A., Salihoglu, S.: Optimizing subgraph queries by combining binary and worst-

case optimal joins. VLDB (2019)
20. Navarro, G.: A guided tour to approximate string matching. ACM Comput. Surv. 33(1), 31–

88 (2001)
21. Ngo, H.Q.: Worst-case optimal join algorithms: techniques, results, and open problems. In:

PODS (2018)
22. Ngo, H.Q., Porat, E., Ré, C., Rudra, A.: Worst-case optimal join algorithms: [extended

abstract]. In: PODS (2012)
23. Nolé, M., Sartiani, C.: Regular path queries on massive graphs. In: Proceedings of the 28th

International Conference on Scientific and Statistical Database Management, SSDBM 2016,
Budapest, Hungary, 18–20 July 2016, pp. 13:1–13:12. ACM (2016)

24. Rajaraman, A., Ullman, J.D.: Data Mining, pp. 1–17. Cambridge University Press, Cam-
bridge (2011). https://doi.org/10.1017/CBO9781139058452.002

25. Sowa, J.F.: Semantic networks. Encycl. Cogn. Sci. (2012)
26. Wei, H., Yu, J.X., Lu, C., Lin, X.: Speedup graph processing by graph ordering. In: Özcan,

F., Koutrika, G., Madden, S. (eds.) Proceedings of the 2016 International Conference on
Management of Data, SIGMOD Conference 2016, San Francisco, CA, USA, 26 June 01
July 2016, pp. 1813–1828. ACM (2016)

27. Zeng, L., Jiang, Y., Lu, W., Zou, L.: Deep analysis on subgraph isomorphism. arXiv (2020)
28. Zeng, L., Zhou, J., Qin, S., Cai, H., Zhao, R., Chen, X.: SQLG+: efficient-hop query pro-

cessing on RDBMS. In: Bhattacharya, A., et al. (eds.) DASFAA 2022. LNCS, pp. 430–442.
Springer, Cham (2022)

29. Zeng, L., Zou, L.: Redesign of the gStore system. Front. Comput. Sci. 12, 623–641 (2018)

http://snap.stanford.edu/data
https://doi.org/10.1017/CBO9781139058452.002

KBQA: Accelerate Fuzzy Path Query on Knowledge Graph 477

30. Zeng, L., Zou, L., Özsu, M.T., Hu, L., Zhang, F.: GSI: GPU-friendly subgraph isomorphism.
In: 36th IEEE International Conference on Data Engineering, ICDE 2020, Dallas, TX, USA,
April 20–24, 2020, pp. 1249–1260. IEEE (2020)

31. Zeng, L., Zou, L., Özsu, M.T.: SGSI - a scalable GPU-friendly subgraph isomorphism algo-
rithm. IEEE Trans. Knowl. Data Eng. 1–17 (2022)

Tour Route Generation Considering Spot
Congestion

Takeyuki Maekawa1, Hidekazu Kasahara2, and Qiang Ma3(B)

1 Kyoto University, Yoshida-Hommachi, Sakyo-ku, Kyoto 606-8501, Japan
maekawa.takeyuki.28s@st.kyoto-u.ac.jp

2 Osaka Seikei University, Aikawa 3-5-9, Higasiyodogawa-ku, Osaka, Japan
kasahara.hidekazu.k13@kyoto-u.jp

3 Kyoto Institute of Technology, Matasugasaki, Sakyo-ku, Kyoto 606-8585, Japan
qiang@kit.ac.jp

Abstract. Crowding in tourism has been gaining attention in recent
years, and its effects include tourism pollution and a lower-quality travel
experience. Tourists often have rough plans and take action to avoid
crowding. Therefore, we can help them by planning tourist routes that
consider crowding. However, conventional route planning and recommen-
dation methods do not consider dynamic factors such as congestion. In
this study, we introduce two novel concepts, “dynamic stay duration”
and “environmental tax metaphor”, into tour route generation methods
to plan routes while considering congestion. We implement the proposed
method based on a pointer network and the REINFORCE algorithm.
The results of an experiment and a user study confirm that the proposed
method is superior to the conventional methods.

Keywords: Sightseeing · Congestion · Route Planning ·
Reinforcement Learning

1 Introduction

The problem of congestion in tourism harms both the destination city and
tourists and has attracted attention in recent years. Overtourism occurs when
tourists are concentrated in a few tourist spots in a tourist city, causing problems
such as traffic congestion, garbage, and noise. The negative effects on tourists
include a decrease in the quality of the travel experience and a decline in satis-
faction. For example, destination arrival times may be delayed, itineraries may
change, and planned sightseeing may not be possible.

The impact of such congestion should be reduced. One way to reduce the
impact of congestion and achieve sustainable sightseeing [14] is to support
tourists by generating routes that consider congestion. Tourists are likely to
make rough travel plans, such as lists of places they want to visit. Therefore,

This work was partly supported by JSPS KAKENHI (23H03404,21K12140) and MIC
SCOPE (201607008).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C. Strauss et al. (Eds.): DEXA 2023, LNCS 14146, pp. 478–492, 2023.
https://doi.org/10.1007/978-3-031-39847-6_38

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-39847-6_38&domain=pdf
http://orcid.org/0000-0003-3430-9244
https://doi.org/10.1007/978-3-031-39847-6_38

Tour Route Generation Considering Spot Congestion 479

while sightseeing in the destination area, tourists often use navigation apps to
search for a way to travel from their current location to their destination on the
spot and follow the search results.

Most conventional sightseeing route planning methods use heuristics to solve
the issue as an optimization problem. Therefore, it may be difficult to deal with
complex problems such as having a large number of spots that need to be traveled
to. Gama et al. [2] proposed a method using reinforcement learning and a pointer
network [15] to reduce the computational cost of large-scale planning. Their
method achieved superior results in a static environment. However, in the real
world, certain factors change from moment to moment, such as the congestion
and sightseeing value of spots [17], and the method proposed by Gama et al.
cannot cope with such dynamic factors. Among these dynamic factors, crowding
is time-dependent. As shown in our user study (Sect. 5), this is an important
factor for tourists. Additionally, crowded spots may require more time to visit.
Because tourists have limited time, generating sightseeing routes that consider
congestion is necessary.

In this study, we propose two novel concepts and introduce them as dynamic
factors into the model proposed by Gama et al. One is the “dynamic stay dura-
tion,” which estimates the necessary visiting (stay) duration at a spot based on
its congestion. The other is the “environmental tax metaphor”, an additional
reward mechanism dependent on congestion. A negative reward is assigned to
routes consisting of more crowded spots. A brief overview of the proposed method
is shown in Fig. 1. We define two congestion indices: the “occupancy rate” and
“relative congestion level”. The occupancy rate is the ratio of the number of peo-
ple staying at a tourist spot at a given time to the capacity (maximum number

Fig. 1. Overview of Proposed Method

480 T. Maekawa et al.

of people) of that spot. Relative congestion is the normalized occupancy rate,
assuming that the distribution of the occupancy rates of spots in a tourist city
follows a normal distribution.

– Dynamic stay durations change the time spent at a spot based on the occu-
pancy rate. The higher the occupancy rate, the more time the tourists spend
in a spot.

– We consider two rewards in our environmental tax metaphor: an environmen-
tal tax and a subsidy. The environmental tax is a negative additional reward
for discouraging visits to spots with high occupancy rates. It is calculated
based on relative congestion. Conversely, subsidies are positive additional
rewards for visiting places with low occupancy rates.

Inspired by [2], we implement the proposed method based on a pointer net-
work and the REINFORCE algorithm. The proposed method provides users with
routes that allow them to enjoy sightseeing while avoiding congestion. Travelers
can enjoy their trips without being bothered by crowds. In this way, destinations
can disperse tourists and reduce congestion.

The remainder of this paper is organized as follows. First, the related work is
introduced in Sect. 2, and then the problem is defined in Sect. 3. The proposed
method is described in Sect. 4, and experiments to verify the method’s usefulness
are described in Sect. 5. Finally, the conclusion is given in Sect. 6.

2 Related Work

Many studies have been conducted regarding sightseeing route planning. Opti-
mization methods include heuristics, deep learning, and reinforcement learning.
There are also many optimization targets, such as the shortest route, shortest
travel time, maximization of user preferences, and maximization of environmen-
tal rewards.

Gavalas et al. [3] proposed a method for constructing a route by dynami-
cally setting the travel times between spots. The route is constructed by insert-
ing spots. Wu et al. [16] proposed a method to maximize satisfaction, which is
determined by the time and financial cost of the trip. Similarly, Hirano et al. [6]
used a genetic algorithm to solve the problem of optimizing multiple functions
to minimize expenditures of time, energy, and money. Zhang et al. [20] proposed
a method for setting the time-varying attractiveness of a spot and constructing
a route to maximize this value. They solved this optimization problem by using
a genetic algorithm. Route searches using methods based on genetic algorithms
have also been proposed [10,21].

Isoda et al. [8] proposed a method for searching for the route with the high-
est score using a dynamic programming approach. They introduced dynamic
features that vary with time and season, in addition to static features such as
the value of the spot itself. Congestion was included in the dynamic features,
and the values were obtained from Yahoo! Congestion Radar. Muccini et al. [11]
developed a mobile application that eliminates the waiting time before a reserved

Tour Route Generation Considering Spot Congestion 481

museum visit by stopping at surrounding museums. The application uses real-
time museum waiting times as congestion information. It then builds a tree of
spots to visit and searches until a route that satisfies certain time constraints
is generated. Xu et al. [18] proposed a method that represents spots as a graph
network, calculates the value of spots based on their congestion and popularity,
and uses heuristics to find routes to visit spots in order of increasing popular-
ity. Mahdis et al. [1] created data on spots and travel between spots based on
big data regarding traffic, weather, and tourist spots. They proposed a planning
method using metaheuristics that reflect user preferences. This method focused
on road congestion rather than spot congestion. Cristina et al. [13] solved for the
shortest route through a specified number of spots on a road network using a
backtracking method. Their method calculates a route that avoided congestion
by setting the congestion level and eliminating the most congested spots.

Geng et al. [4] proposed a reinforcement method for training agents on a
road network without prior information. The optimization target was the short-
est travel time. By employing deep reinforcement learning, the training time
became approximately half that of conventional shortest-path algorithms, even
for unknown road networks. Kong et al. [9] proposed a method for generat-
ing sightseeing routes that are not overcrowded by tourists, using a multi-agent
reinforcement learning approach.

Many studies have proposed methods for solving optimization problems
using heuristic approaches. In addition, deep learning and reinforcement learn-
ing methods have emerged in recent years. For example, Gama et al. [2] utilized
a pointer network and the REINFORCE algorithm to facilitate computation in
complex environments, which previous research found to be difficult. In contrast,
this study aims to reproduce a complex environment by introducing dynamic
factors that change with the time of day and to perform route planning.

3 Preliminaries

The method proposed by Gama et al. [2] does not consider dynamic factors such
as crowding, although it facilitates the introduction of reinforcement learning.
It tackles the problems in existing research and complicates computations when
large-scale searches are involved. However, their method also refers to fixed infor-
mation, such as travel time depending on the coordinates and the static reward
for visiting a spot. As mentioned before, such information should be dynamic.
In the real world, the transit time depends on the geographic coordinates and
means of transportation. The quality of the tourist experience when visiting a
spot may vary depending on the time, season, and crowds [14,17].

Among the types of dynamic information, congestion is considered to have
the greatest impact on visiting time. The extra time spent waiting in line during
a sightseeing trip often places pressure on the itinerary. In some cases, this can
lead to changes in the itinerary, forcing visitors to give up on spots they had
hoped to visit. Failure to visit a spot reduces the quality of the travel experience.
Therefore, it is necessary to generate routes that consider congestion. To this

482 T. Maekawa et al.

end, in this study, we propose two concepts for tour trip generation that consider
congestion. The first is the “dynamic stay duration”, which changes the time
spent at a spot. The other is the “environmental tax metaphor”, which provides
additional rewards according to the relative degree of congestion.

Here, we explain the terms used in this paper.

Spot P Generally, this term refers to tourist and scenic spots. For example,
there are 91 spots in and around Kyoto City [17].

Instance This denotes tourist queries and information regarding tourist spots
that exist in a certain tourist city.

Query A tuple of a tourist’s starting point, destination, departure time, and
time budget, which are the inputs for route generation in the Gama method
and the proposed method.

Time Budget T The time a tourist plans to spend from the start to the end
of the route.

Occupancy Rate C The ratio of people staying in a spot to its capacity. The
higher the ratio, the more people are concentrated in the spot.

Relative Congestion Level Zc This indicates how crowded a spot is compared
to other spots in the instance, and is calculated based on the occupancy rate.
This value is a standardized measure of a spot’s occupancy rate, assuming
that the occupancy rate of the spots in an instance follows a normal distri-
bution. That is, assuming that the spot filling rate C follows N(μ, σ2), the
relative congestion Zc is Zc = C−μ

σ .
Reward This study uses three rewards corresponding to spots: visiting rewards,

environmental taxes, and subsidies.
Visiting Reward Rv Positive reward for visiting a spot. Conventional methods

typically use popularity as the visiting reward. Our study uses the scenery
score [17] as the visiting reward.

Environmental Tax Rp Negative reward based on relative congestion.
Subsidy Rb Positive reward based on relative congestion.
Route S A chronological sequence of spots to be visited is an output element

in the Gama and proposed methods.
Value V The value of a route is the sum of all the visiting rewards, environ-

mental taxes, and subsidies of the spots included in the route.
Stay Duration D This value indicates how long a tourist stays at a spot. The

standard stay duration D corresponds to the case when a spot is deserted.
The dynamic stay duration d assumes that the duration varies depending on
the spot’s occupancy rate.

Transit Time mPiPj
Travel time from spot Pi to Pj .

4 Methodology

We propose two concepts, “dynamic stay duration” and the “environmental tax
metaphor”, and introduce them into Gama’s method [2] to generate tour routes

Tour Route Generation Considering Spot Congestion 483

by considering crowdedness. The proposed method can be represented as an
optimization problem as in Eq. (1).

max Vroute =
∑

Pi∈route

(1 − α)Rv(Pi, t) + α penalty(Pi, t)

subject to
∑

Pi,Pj∈route

dPi
(t) + mPiPj

≤ T

α ∈ [0, 1]

(1)

where, α is a hyper-parameter. t denotes the time a tourist visits the spot Pi.
Rv(Pi, t) denotes the dynamic visiting reward of Pi at time t. penalty(Pi, t)
denotes the environmental tax (and subsidy) for visiting Pi at t. dPi

(t) denotes
the dynamic stay duration of Pi at t.

4.1 Dynamic Stay Duration

Dynamic stay duration represents a mechanism in which the time spent at a
spot varies depending on congestion. In conventional tour route planning that
does not consider congestion, the time spent at a spot is often static and fixed.
However, in the real world, crowding occurs due to the presence of other tourists.
The delay caused by congestion can result in spending more time than expected
at a sightseeing spot.

Therefore, it is assumed that the time spent at a spot is extended because
of congestion, which is considered as a factor in route generation. We assume
that the congestion here is related to the spot’s own congestion, that is, the
occupancy rate. The following assumptions are made regarding the relationship
between the occupancy rate and the time spent in a spot. First, two thresholds
L,H are set for the occupancy rate C. Let 0 ≤ L < H ≤ 100.

– If 0 ≤ C < L, we call this situation low-degree congestion and assume that
no congestion-related stay time is incurred.

– If L ≤ C < H, we call this moderate congestion, and the congestion-induced
stay time increases linearly with the number of people staying.

– If H ≤ C, we call this high-degree congestion, and the stay time due to
congestion is assigned the maximum value because the spot is very crowded.

In this study, the stay durations during low-degree congestion are used as
the base durations, and the stay durations during high-degree congestion are set
to twice the base durations. The relationship between the occupancy rate and
the dynamic stay duration is shown in Fig. 2. The stay duration dPi

(t) at time
t for spot i can be expressed as Eq. (2):

dPi
(t) =

⎧
⎪⎨

⎪⎩

DPi,t (CPi,t ≤ L)
(1 + CPi,t

−L

H−L)DPi,t (L ≤ CPi,t ≤ H)
2DPi,t (H ≤ CPi,t)

(2)

484 T. Maekawa et al.

Fig. 2. Assumed Relationship between Occupancy Rate and Stay Duration

4.2 Environmental Tax Metaphor

One way to avoid tourist concentration and reduce pollution is to decentralize
tourism [14]. This study aims to contribute to the decentralization of tourism
by generating routes that discourage visits to crowded spots. To avoid visiting
crowded spots, we introduce a dynamic reward mechanism called the “environ-
mental tax metaphor”. Two types of rewards are considered: environmental taxes
and subsidies.

Environmental Tax. If a spot is more crowded than other spots in the city, a
negative reward is given for visiting that spot. This reward is an environmental
tax independent of the visiting reward.

The value of the environmental tax depends on the relative congestion. The
environmental tax at time t for spot i is expressed as in Eq. (3). Two threshold
values are set: TB , TM (0 ≤ TB < TM). TB is the allowable relative congestion,
and an environmental tax is imposed if it exceeds TB . The environmental tax
will be the minimum value if the relative congestion is above TM . The minimum
value is the negative value of the average visiting rewards (Rv(P∗, t)) of all the
spots at time t .

penalty(Pi, t) = −min(1,
ZcPi,t − TB

TM − TB
) ∗ Rv(P∗, t) (3)

Subsidy. A possible counterpart to an environmental tax would be a subsidy
to direct tourists to uncrowded places. The environmental tax penalizes visits
to crowded places, whereas the subsidy rewards visits to uncrowded places.

Similar to the environmental tax, the subsidy depends on relative congestion
to determine its value. The subsidy at time t for spot i is expressed as in Eq. (4).
Two threshold values are set: TB , TM (TM < TB ≤ 0). TB is the allowable relative

Tour Route Generation Considering Spot Congestion 485

congestion. A bonus subsidy will be given when relative congestion is below TB.
When relative congestion is below TM , the maximum value of the subsidy will
be given. The maximum value is the mean value of the visiting rewards of all
the spots at time t.

bonus(Pi, t) = min(1,
ZcPi,t − TB

TM − TB
) ∗ Rv(P∗, t) (4)

4.3 Dataset

We used the dataset of Kyoto Sightseeing Map2.0 [17] and trajectory data pro-
vided by Yahoo Japan Corporation [19] to prepare the following data used in
our work:

– Visiting reward matrix
– Base stay duration
– Population matrix
– Spot business hours
– Transit Time Matrix

The visiting reward matrix and base stay duration were generated using
Kyoto Sightseeing Map2.0. This is a dataset of 91 tourist spots in Kyoto
extracted from social images posted on Flickr. The data include the name of
the spot, its geographic coordinates, and the hourly aesthetic score. The aes-
thetic score [7] is an estimated beauty score of the photos taken around the spot.
This study used the aesthetic score as the visiting reward for a spot. Indepen-
dent of the spot data, GPS trajectory data from Kyoto Sightseeing Map2.0 were
also used. From the coordinates, we determined which spots the visitor stayed
at, according to the trajectory data, and calculated the number of minutes the
visitor stayed at each spot, assuming that log updates within an hour were con-
tinuous. If the time spent was extremely short (20 min or less) or extremely long
(80 min or more), values of 40 and 70 min were used, respectively. These values
were used as the base stay durations.

The population matrix was constructed using GPS trajectory data from
Yahoo Japan Corporation [19]. It includes 6667031 trajectories from 757878
users. The number of visitors per hour was calculated by comparison with the
latitude and longitude of each spot. The population matrix was used to calculate
the occupancy rates. The occupancy rate is the ratio of the number of people
staying at each spot to the capacity of the spot. The capacity was set as fol-
lows. For spots that are particularly famous and are expected to be crowded as
tourist attractions, the occupancy rate was set such that it reached 100 percent
two hours before the maximum number of visitors were present. Therefore, there
were periods when the fill rate exceeded 100%. The other spots were set such
that the occupancy rate reached 80% when the number of visitors reached its
maximum. Using this capacity, we created the occupancy matrix.

486 T. Maekawa et al.

The business hours of the spots were obtained using the Place Details API [5]
of Google Maps. Spots that could not be obtained using this API were assumed
to be open 24 h a day if they were considered to be outdoors, and assumed to
be open from 9:00 to 17:00 if they were considered to be indoors. The travel
times were calculated using the OpenRouteService matrix API [12]. Because it
is impossible to calculate the travel time when using public transportation, the
travel time matrix was created by empirically setting the travel time to 2.5 times
the travel time by car.

4.4 Training and Inference

The model of the proposed method and its training process were based on those
of Gama et al. [2] The input consisted of two types of information: spot infor-
mation and queries. The former is described in Sect. 4.3. The latter refers to
queries provided by the user, consisting of the spot where the trip starts (start-
ing point), the spot where the trip ends (destination), departure time, and time
budget. The output is the most valuable route.

We trained our model using reinforcement learning with a revised REIN-
FORCE algorithm [2]. Please note that our reward mechanism differed from
the original mechanism used in [2]. The training process is shown in Fig. 3 and
Algorithm 1.

The inference generates a route for a given query using our model trained in
the target city. We applied a beam search in our inference process to maximize
the total route probability using our model. For further details, please refer to [2].

The proposed method was designed to generate routes for a single user.
Because the model is trained to maximize the value of the trip, it may return
the same route for the same query, and congestion may occur. However, it is
theoretically possible to generate routes that contribute to decentralization while
maintaining the value of the tourist experience. This goal could be realized by
modifying the system to acquire real-time information on the number of visitors
and congestion and to learn from these data on a case-by-case basis.

5 Experimental Evaluation

5.1 Parameter Tuning

Tuning was performed to determine the most effective parameters (α in Eq.
(1), L,M in Eq. (2), and TM in Eq. (3)) for further processing. Two variations
of the proposed method were compared. In Model A, dynamic stay duration
and environmental tax are applied, and in Model B, the subsidy mechanism is
additionally applied.

The parameters to be tuned and their candidate values are as follows:

Tour Route Generation Considering Spot Congestion 487

Fig. 3. Training

– α = 1/3, 1/2, 2/3 (Eq. (1))
– L,M = (20, 80), (30, 70), (40, 60) (Eq. (2))
– TM = 0.5, 1.0, 1.5, TB = 0 (Eq. (3))

27 models were compared for three different parameters under three different
settings. The models were trained 30,000 times each. The time budget for the
queries was 8 h, and the starting point and destination were randomly selected
so that they were not the same. Thirty queries were prepared.

Model A with (L,M) = (30, 70), TM = 1.5, α = 1/3 had the lowest average
relative congestion level and was used for further comparison. Model B with
(L,M) = (40, 60), TM = 1.5, α = 2/3 had the lowest average relative congestion
level and was used for further comparison.

5.2 Comparison Experiment

The evaluation experiment compared the proposed method with the original
Gama method to determine whether it could generate a route that avoids
congestion, contributes to decentralization, and does not impair the tourist
experience.

488 T. Maekawa et al.

Data: Query set Q, batch size B, instance Φ (set of spots in a city)
Initialize θ
while Training is not finished do

for q ∈ Q do
for b ∈ 1, ..., B do

while Destination spot not reached do
Find the set A of spots that can be visited based on the current
time and location.

/* The criteria for visitability are as follows: From

the current location, we can visit the spot and

arrive at the destination within the time budget.

When we visit the spot from the current location, it

is during business hours. */

A is inputted to the pointer network model to generate a
probability distribution of visits to each spot (pθ(S|Φ)).

// S is a route consisting of a series of spots.

Sample a spot from the generated probability distribution and
add it to the current route Sb. Then, visit the spots and
update the current time and location.

end

end

V
′
= 1

B
ΣB

b=1V (Sb)

gθ = − 1
B

ΣB
b=1(V (Sb) − V

′∇θlogpθ(Sb|Φ)
Update θ by using gθ

end

end
Algorithm 1: Training with REINFORCE Algorithm

We compared models A and B with the Gama model. We modified the orig-
inal Gama model so that the conditions were the same as those of the proposed
model: the starting point and destination could differ, and the training was per-
formed by referring to data from Kyoto City. The difference between the Gama
model and the other models is whether the dynamic stay duration is applied.
This allowed the Gama model to generate routes with fewer time constraints,
resulting in higher visiting rewards. Therefore, we introduced a Gama-D model
with dynamic stay duration and included it in the comparison.

The models were trained for 30,000 iterations each. The time budget for
the queries was 8 h, and the starting and destination locations were randomly
selected such that they were not identical. 30 queries were used.

The experimental results are listed in Table 1. All items in Table 1 were aver-
aged over 30 queries.

Dynamic Stay Duration. The effect of the dynamic stay duration was confirmed
by comparing Models Gama and Gama-D. Table 1 shows that Model Gama-D is
superior to Gama in all indices of occupancy rate and relative congestion level.
Note that the visiting rewards cannot be compared because the number of spots

Tour Route Generation Considering Spot Congestion 489

Table 1. Experimental Results. Gama-D is an extension of the original Gama model
with dynamic stay duration. Model A is the proposed method with only the environ-
mental tax. Model B is the proposed method with both the environmental tax and
subsidy.

Method Occupancy Rate Relative Congestion Level Value

Gama 0.797 0.0121 42.478

Gama-D 0.722 −0.587 24.126

A 0.639 −1.197 23.847

B 0.538 −1.900 22.906

that can be visited within the same time budget varies depending on whether
the dynamic stay duration is applied.

Environmental Tax Metaphor. We confirmed the effect of environmental taxes
and subsidies by comparing models that use the dynamic stay duration, that is,
models A and B. Table 1 shows that Model B is more effective in terms of the
average occupancy rate and average relative congestion level, whereas Model
Gama is more effective for the route value. The superiority of Model B was
demonstrated in terms of the occupancy rate and relative congestion level.

A comparison of the criteria for the occupancy rate shows that Model B
recorded superior scores. Model B has a high occupancy rate, almost 20% points
lower than that of Model Gama-D. This may be because the introduction of
environmental taxes and subsidies led tourists to visit places with low relative
congestion. Because the relative congestion is calculated based on the occupancy
rate, small relative congestion means that the occupancy rate is relatively low
and the route contains many spots that do not meet the criteria for high occu-
pancy. Because of the decrease in the high occupancy rate, the average occupancy
rate also decreased.

The relative congestion levels were the smallest for Model B, followed by
Model B and then Model Gama. The average relative congestion level of -1.900
in Model B refers to a lower range of approximately 3.8 percent, which means
that users can take action to avoid congestion.

For these three models, the route value was highest for Model Gama-D,
followed by model A and then model B. This is related to the degrees of freedom
in spot selection. Model Gama-D is affected only by the dynamic stay duration
and chooses the spot with the highest reward based on the occupancy rate. Model
A applies an environmental tax and avoids spots with high relative congestion.
Model B applies an environmental tax and a subsidy, so it tends to primarily
select spots with low relative congestion. Thus, the more choices a model has, the
higher the visiting reward. However, the largest difference is 8 percent between
Models Gama-D and B. Therefore, it is unlikely to have a significant impact
when the visiting reward is considered to the quality of the travel experience.

490 T. Maekawa et al.

Fig. 4. Example of User Interface for User Study

5.3 User Study

Three subjects were asked to evaluate the routes generated by Models Gama
and B.

The routes generated for the queries in Models B and Gama are presented
to the user who was asked to answer a questionnaire.

We generated start and destination spots with a large number of tourists,
such as (1) Kyoto Tower→ Kawaramachi; (2) Kawaramachi→ Arashiyama; (3)
Kawaramachi→ Kinkakuji;

Three time budgets of 4, 6, and 8 h were used. Because there were two mod-
els, 18 routes were generated. To distinguish these queries, we denote them as
{Method (G for Gama, B for Model B)}{Query number} {Time budget}. For
example, the query for a time budget of 6 h for Kawahara→Arashiyama with
Model Gama is G2 6.

An example of the presentation screen for a subject is shown in Fig. 4. The
central part of the screen is divided into three parts from left to right: query
information, map display, and spot information. The query information section
shows the query for the route, spots to be visited on the generated route, and the
time of the visit. The map display section displays the generated route on a map,
indicating the route taken during the trip. In addition, the number of visitors is
based on GPS statistical data from Yahoo JAPAN. The spot information section
displays photos of the spot, congestion information, and tourist impressions. This
information is based on the Kyoto Sightseeing Map 2.0 data.

The questionnaire items for the participants were as follows. All items were
rated on a five-point scale, with 1 indicating no agreement at all (bad, low, do not
want to), and 5 indicating strong agreement (good, high, want to). The smaller
the value of the degree of congestion, the better, and the larger the values for the
other evaluation criteria, the better. The respondents were also asked to provide
optional reasons for their evaluations.

1. Do you care how crowded a spot is regarding sightseeing?

Tour Route Generation Considering Spot Congestion 491

Table 2. Average Scores of User Study (Question 4)

4 h 6 h 8 h

Gama Model B Model Gama Model B Model Gama Model B Model

Order 4.00 4.44 2.78 3.55 3.22 3.66

Distance 3.89 3.44 3.44 1.33 3.44 1.89

Crowdedness 3.56 2.33 3.56 2.33 3.78 2.67

Satisfaction 3.78 3.11 3.56 2.89 3.78 3.22

Acceptance 3.88 3.22 3.56 2.33 3.78 3.11

2. Do you care about congestion when traveling for sightseeing?
3. Are you aware of overtourism in tourism?
4. Evaluate for each query: order of visit, distance traveled, crowdedness, satis-

faction, acceptance (choose the route for your tour).

The respondents tended to be relatively concerned about crowding during
sightseeing trips and in crowded spots, with average response values of 4.333.
On the other hand, awareness of overtourism was not very high, with an average
response value of 2.667. The average responses to question 4 are shown in Table 2.
The crowdedness ratings were lower in Model B. The proposed method could
provide routes to avoid congestion. Model B was not observed to be superior
in terms of travel distance or satisfaction. One possible reason for this is that
although the subjects care about crowding during trips, travel distance is more
important to them. Therefore, further study on this subject is necessary.

6 Conclusion

To generate tour routes that consider crowdedness, we propose the two novel
concepts of “dynamic stay duration” and the “environmental tax metaphor”. We
realized these concepts by extending the Gama method using a pointer network
and the REINFORCE algorithm.

The results of comparative experiments and user studies confirmed the use-
fulness of these two concepts and the route generation method. We confirmed
that the proposed model can generate routes that maintain the value of the
tourist experience and avoid congestion. Future work includes the development
of a model that can be trained by reading real-time information. Further user
studies that consider user preferences are also planned.

References

1. Dezfouli, M.B., Shahraki, M.H.N., Zamani, H.: A novel tour planning model using
big data. In: Proceedings of the IDAP 2018, pp. 1–6 (2018)

2. Gama, R., Fernandes, H.L.: A reinforcement learning approach to the orienteering
problem with time windows. Comput. Oper. Res. 133, 105357 (2021)

492 T. Maekawa et al.

3. Gavalas, D., Kasapakis, V., Konstantopoulos, C., Pantziou, G., Vathis, N., Zaro-
liagis, C.: The eCOMPASS multimodal tourist tour planner. Expert Syst. Appl.
42(21), 7303–7316 (2015)

4. Geng, Y., et al.: Deep reinforcement learning based dynamic route planning for
minimizing travel time. In: Proceedings of the ICC Workshops 2021, pp. 1–6 (2021)

5. Google: https://developers.google.com/maps/documentation/javascript/places?
hl=ja#place details

6. Hirano, Y., Suwa, H., Yasumoto, K.: A method for generating multiple tour routes
balancing user satisfaction and resource consumption. In: Proceedings of the Intel-
ligent Environments 2019. Ambient Intelligence and Smart Environments, vol. 26,
pp. 180–189. IOS Press (2019)

7. Hosu, V., Goldlucke, B., Saupe, D.: Effective aesthetics prediction with multi-
level spatially pooled features. In: proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 9375–9383 (2019)

8. Isoda, S., Hidaka, M., Matsuda, Y., Suwa, H., Yasumoto, K.: Timeliness-aware
on-site planning method for tour navigation. Smart Cities 3(4), 1383–1404 (2020).
https://doi.org/10.3390/smartcities3040066

9. Kong, W.K., Zheng, S., Nguyen, M.L., Ma, Q.: Diversity-oriented route planning
for tourists. In: Strauss, C., Cuzzocrea, A., Kotsis, G., Tjoa, A.M., Khalil, I. (eds.)
Database and Expert Systems Applications, DEXA 2022. Lecture Notes in Com-
puter Science, vol. 13427, pp. 243–255. Springer, Cham (2022). https://doi.org/10.
1007/978-3-031-12426-6 20

10. Kurata, Y., Shinagawa, Y., Hara, T.: CT-Planner5: a computer-aided tour planning
service which profits both tourists and destinations. In: Workshop on Tourism
Recommender Systems, RecSys, vol. 15, pp. 35–42 (2015)

11. Muccini, H., Rossi, F., Traini, L.: A smart city run-time planner for multi-site
congestion management. In: 2017 International Conference on Smart Systems and
Technologies (SST), pp. 175–179 (2017)

12. openrouteservice: Retrieved January 25th (2023). https://openrouteservice.org/
dev/#/api-docs/v2/matrix/profile/post

13. Păcurar, C.M., Albu, R.G., Păcurar, V.D.: Tourist route optimization in the con-
text of COVID-19 pandemic. Sustainability 13(10), 5492 (2021)

14. Qiang, M.: Tourism informatics - smart tourism toward tourism informatics - : Dis-
covery and recommendation of tourism resources by using user generated content
(in Japanese). IPSJ Magaz. 62(11), e12–e17 (2021)

15. Vinyals, O., Fortunato, M., Jaitly, N.: Pointer networks. In: Cortes, C., Lawrence,
N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Advances in Neural Information
Processing Systems, vol. 28. Curran Associates, Inc. (2015)

16. Wu, X., Guan, H., Han, Y., Ma, J.: A tour route planning model for tourism
experience utility maximization. Adv. Mech. Eng. 9(10), 1687814017732309 (2017)

17. Xu, J., Sun, J., Li, T., Ma, Q.: Kyoto sightseeing map 2.0 for user-experience
oriented tourism. In: Proceedings of the MIPR 2021, pp. 239–242 (2021)

18. Xu, Y., Hu, T., Li, Y.: A travel route recommendation algorithm with personal
preference. In: 2016 12th International Conference on Natural Computation, Fuzzy
Systems and Knowledge Discovery (ICNC-FSKD), pp. 390–396 (2016)

19. Yahoo Japan Corporation: Yahoo! JAPAN
20. Zhang, Y., Jiao, L., Yu, Z., Lin, Z., Gan, M.: A tourism route-planning approach

based on comprehensive attractiveness. IEEE Access 8, 39536–39547 (2020)
21. Zheng, W., Liao, Z., Qin, J.: Using a four-step heuristic algorithm to design per-

sonalized day tour route within a tourist attraction. Tour. Manage. 62, 335–349
(2017)

https://developers.google.com/maps/documentation/javascript/places?hl=ja#place_details
https://developers.google.com/maps/documentation/javascript/places?hl=ja#place_details
https://doi.org/10.3390/smartcities3040066
https://doi.org/10.1007/978-3-031-12426-6_20
https://doi.org/10.1007/978-3-031-12426-6_20
https://openrouteservice.org/dev/#/api-docs/v2/matrix/profile/post
https://openrouteservice.org/dev/#/api-docs/v2/matrix/profile/post

A Knowledge-Based Approach
to Business Process Analysis: From

Informal to Formal

Antonio De Nicola1(B) , Anna Formica2 , Ida Mele2 , Michele Missikoff2 ,
and Francesco Taglino2

1 Agenzia Nazionale per Le Nuove Tecnologie, l’Energia e lo Sviluppo Economico
Sostenibile (ENEA), Via Anguillarese 301, 00123 Rome, Italy

antonio.denicola@enea.it
2 Istituto di Analisi dei Sistemi ed Informatica (IASI) “Antonio Ruberti”

National Research Council, Via dei Taurini 19, 00185 Rome, Italy
{anna.formica,ida.mele,michele.missikoff,

francesco.taglino}@iasi.cnr.it

Abstract. Business Process Analysis (BPA) is a strategic activity, nec-
essary for enterprises to model their business operations. It is a central
activity in information system development, but also for business pro-
cess design and reengineering. Despite several decades of research, the
effectiveness of available BPA methods is still questionable. The major-
ity of methodologies adopted by enterprises are rather qualitative and
lack a formal basis, often yielding inadequate specifications. On the other
hand, there are methodologies with a solid theoretical background, but
they appear too cumbersome for the majority of enterprises. This paper
proposes a knowledge framework, referred to as BPA Canvas, conceived
to be easily mastered by business people and, at the same time, based
on a sound formal theory. The methodology starts with the construction
of natural language knowledge artifacts and, then, progressively guides
the user toward more rigorous structures. The formal approach of the
methodology allows us to prove the correctness of the resulting knowl-
edge base while maintaining the centrality of business people in the whole
knowledge construction process.

Keywords: Business Process Analysis · Business Model Canvas ·
Knowledge Representation · Formal Methods

1 Introduction

Business Process Analysis (BPA) [16] is a strategic activity for an enterprise, used
for instance for organizational changes, Business Process (BP) reengineering, and
information system development. BPA, positioned in the preliminary phase of a
software project, represents a fundamental part of the Requirement Engineering
task.

Software projects are among the most challenging engineering undertakings.
According to the Standish Group’s Annual Chaos Report of 2020, based on the
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C. Strauss et al. (Eds.): DEXA 2023, LNCS 14146, pp. 493–507, 2023.
https://doi.org/10.1007/978-3-031-39847-6_39

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-39847-6_39&domain=pdf
http://orcid.org/0000-0002-1045-0510
http://orcid.org/0000-0002-7992-6898
http://orcid.org/0000-0002-3730-6383
http://orcid.org/0000-0002-7972-5201
http://orcid.org/0000-0001-8364-4407
https://doi.org/10.1007/978-3-031-39847-6_39

494 A. De Nicola et al.

analysis of 50K projects, 69% of software projects end in a partial or total failure.
It is well known that one of the major causes of software project failure is rep-
resented by the problem of business/IT misalignment [15], i.e., the fact that the
services of the information system do not fully correspond to the business needs.
Such a problem is mainly caused by difficulties in the communications between
business people and IT specialists, yielding poor requirement specifications [4].

Traditionally, BPA is a territory of business experts, who adopt methodolo-
gies that are mainly descriptive, without a rigorous approach for carrying out
the analysis and drawing up related documents [1]. The informal nature of the
produced documents, often containing imprecise statements or missing informa-
tion, is one of the primary causes of poor requirement specification and, then,
of the failures in the development of enterprise information systems. There are
proposals of formally grounded methodologies but they appear too cumbersome
and generally are not adopted by business people.

In this paper, we propose an evolution of the knowledge-driven BPA method-
ology, referred to as BPA Canvas, presented in its preliminary version in [9].
The novel contribution of this work is represented by the formalization of the
methodology, necessary to check the correctness of the Business Process Knowl-
edge Base (BPKB). Such a formalization has been introduced without losing the
user-friendly characteristics of the methodology, aimed at being easily adopted
by business people. The BPA Canvas grants business experts a central role in
gathering and modeling business process knowledge. To this end, the method-
ology proposes a progressive construction of the knowledge artifacts based on a
visual layout, inspired by the Business Model Canvas [12], organized into eight
sections. The sections are conceived in a sequence that evolves from simple, nar-
rative models, to semantically richer ones. An approach that facilitates knowl-
edge management activities for business experts (substantially reducing the role
of IT specialists). At the same time, the formal grounding of the methodology
guarantees the achievement of a formally founded knowledge base, easy to be
inspected, queried, and automatically verified.

The rest of the paper is organized as follows. Section 2 provides a review of the
literature in the area of knowledge management for BPA. Section 3 describes the
BPA Canvas methodology, then Sect. 4 shows the application of the methodology
by means of a running example in a home delivery pizza shop, called PizzaPazza.
Section 5 presents the formal grounding of BPA Canvas and, finally, in Sect. 6
the conclusions are given.

2 Related Work

The area of BPA is very active, both at the scientific and industrial levels, how-
ever, knowledge-based BPA research supported by a solid formal background
presents only a few results and none of them tries to conjugate the rigor of a
formal approach with ease of use. Here, we briefly review some of the key results
in the area, with a focus on knowledge management aimed at BPA [3]. In the
quest for a formal method for BPA, the large majority of the literature proposes

A Knowledge-Based Approach to Business Process Analysis 495

ontology-based solutions. We recall COBRA, a Core Ontology for Business pRo-
cess Analysis [11], that is based on a Time Ontology. Another research line,
with a wider scope, is represented by the adoption of ontologies and semantic
web services for BP management, such as Semantic Business Process Manage-
ment (SBPM) [6]. Such proposals appear to be more inclined towards the for-
mal aspects than the ease of use for business experts. A different research line,
rooted in the business domain, starts from the international business standard
UBL (Universal Business Language) [19].

An interesting proposal [14] is based on the association of a business ontology
to UBL (Universal Business Language), introducing some formal models of the
UBL components and templates, including the UBL process flows. The formal
implementation of the UBL ontology has been achieved by using OWL (the
W3C Web Ontology Language). Probably due to an excess of formalization, the
proposal was not largely adopted by the business community.

Another interesting proposal is represented by the Business Process Modeling
Ontology (BPMO) [17] that besides UBL also considers other business modeling
standards, including ebXML. BPMO has been mainly conceived for interoper-
ability, i.e., to allow the exchange of information among cooperating enterprises,
rather than to support BPA. Then, SemPrAnn is a tool to semantically enrich
BPMN (Business Process Model and Notation) processes [5].

Finally, it is worth to coming back to the mentioned Business Model Canvas
[12] that inspired the BPA Canvas layout. The former addresses a high-level
enterprise space related to business strategies with respect to our proposal that
is focused on business processes. Furthermore, it remains at an informal level
and lacks a systematic approach for modeling activities and business objects.
Along this line, another work to be mentioned is the Business Process Canvas
(BP Canvas) [7] which has a similar scope to ours, since it aims at supporting the
BPA. However, in the mentioned proposal, the only similarity is the adoption of
a canvas layout to analyze business processes. The BP Canvas is not based on a
formal theory and, thus, does not produce a formally grounded knowledge base.
In fact, the gathered domain knowledge is represented by informal descriptions.
Finally, the BP Canvas still requires validation on the field. On the contrary,
our BPA Canvas has been experimented in two real-world cases, in particular
in an SME (a fashion atelier) and a Public Administration department (Italian
Ministry of Economy and Finance), and the feedback is very encouraging.

In conclusion, in the literature, there is a growing awareness of the impor-
tance of a solid, systematic, formally grounded knowledge-driven approach to
the BPA and of the need for the coexistence of formal and informal knowledge
management practices [18] [20]. However, the existing proposals have a limited
practical impact, failing in the objective of convincing business experts to adopt
more rigorous and formal business process modeling methods.

3 The Business Process Analysis Canvas

In this section, we present the main ideas of the BPA Canvas and the related
methodology. It includes a set of knowledge artifacts and a procedure aimed at

496 A. De Nicola et al.

Fig. 1. BPA Canvas layout

guiding business experts in collecting and organizing the knowledge of a business
process. With respect to the business process modeling methods available in the
literature, the BPA Canvas has not the objective of drawing process diagrams,
an activity that is postponed to the BP design phase. BPA Canvas is aimed at
the careful collection of the knowledge necessary to build a first static model of
the business process. The idea is that a rigorous and detailed knowledge base
about the BP will substantially support the subsequent design task and improve
the quality of the process flow diagrams, improving therefore the quality of the
produced information system.

3.1 The BPA Canvas Layout

The BPA Canvas is organized into eight knowledge sections that hold different
kinds of knowledge artifacts, i.e., models of the given business process. The
models can assume various forms, with different levels of details and formality. In
particular, we have (i) plain text, a narrative form of knowledge representation;
(ii) structured text, e.g., itemized lists (bullet points) that collect and organize
short statements; (iii) tables, typically providing a systematic visualization of
knowledge items; (iv) diagrams, where the knowledge is graphically represented,
according to a given standard; (v) formal representation of the business domain
by means of a BP Ontology.

Figure 1 shows the layout of the eight sections of the BPA Canvas that are
listed below.

– BP Signature. The first knowledge artifact, in the form of a list, aimed at
providing a synthetic profile of the business process.

– BP Statement. This is a preliminary plain text description of the busi-
ness process and its business scenario, described in general terms (i.e., at an
intentional level).

– User Stories. One or more plain text descriptions of exemplar executions
of the BP (i.e., at an extensional level). In essence, it represents one or more
instances of the BP Statement.

A Knowledge-Based Approach to Business Process Analysis 497

– APO Tasks. This is a set of triples representing a first operational account
of the business process, abstracting the actual sequencing of the tasks.

– BP Glossary. A collection of terms that characterize the BP domain,
together with their descriptions.

– OPAAL Kinds & Links. This section is composed of two parts. The first
part, Kinds, provides a semantic tagging of the terms (concept names) used
in the construction of the knowledge artefacts, according to the following
categories: Object, Process, Actor, and Attribute.
The second part, Links, represents semantic relations among concept names,
i.e., ISA for subsumption relation, PartOf for composition relation, and HasA
to relate an entity with an attribute.

– UML Class Diagram. A set of diagrams representing the relationships
among the concepts that provide a static view of the BP. The Class Dia-
gram is built by using tasks and links in APO Tasks and OPAAL sections,
respectively.

– BP Ontology. It is an encompassing representation of the knowledge col-
lected in the previous sections, encoded in formal terms by using an ontology
language (e.g., OWL).

3.2 The BPA Canvas Methodology

The proposed methodology, which will be applied to an example in the next
section, suggests starting with the BP Signature, and, then, continuing with the
BP Statement and a number of User Stories. The latter represents the instances
of the BP, therefore for sake of completeness, we need to report one story for each
distinct process execution (i.e., one for each source-sink direct path in the BP
graph). These models are built by using plain text descriptions, easily provided
by business experts.

The APO Task section requires a first linguistic analysis of the two above
sections, extracting simple triples in the form: (subject, verb, direct or indirect
object). Please note that the tasks are collected in a set, without considering their
actual sequencing. Their sequencing, to create the BP diagram, is postponed to
the subsequent phase of BP design, not addressed in this paper. This choice is
motivated by the progressive approach of the methodology, aimed at lightening
the cognitive overload for people not trained in Knowledge Engineering.

Another important section of the BPA Canvas is the BP Glossary. It is
constructed by collecting all the terms used in the analyzed business domain,
together with their descriptions. The Glossary represents a solid reference point
for end-users and stakeholders, useful when the picture gets large and compli-
cated.

The OPAAL Kinds & Links section requires that the analyst classifies the
terminology according to the four anticipated kinds: Object, Process, Actor, and
Attribute. In particular:

i. Object: refers to the terms denoting any passive entity with a lifecycle that
follows the CRUDA paradigm composed by Create, Read, Update, Delete
[8], plus Archive that is relevant in business processes;

498 A. De Nicola et al.

ii. Process: terms denoting any form of activity, function, or operation aimed
at enacting CRUDA operations on one or more business objects;

iii. Actor: terms denoting any active entity involved in one or more processes;
iv. Attribute: a property (simple or complex) associated with one or more

concepts of the above kinds;

Then, in the second part of the OPAAL section, it is necessary to model the
structural links among the above terms (i.e., concept names). As anticipated, we
consider the ISA, PartOf, HasA (i.e., Attribution) relations.

The next BPA Canvas section consists of a UML Class Diagram. It is built
starting from the triples reported in the BP Task and the Link part of the
OPAAL section. In particular, given a task, we use the second element of the
triple to represent the label of an arc connecting the first and third elements
that name the boxes of the Class Diagram. Then, given a triple in Links, the
second element labels the arch established between the boxes labeled by the first
and the third elements.

In the final step, we have all the knowledge necessary to formalize the whole
picture, building the BP Ontology.

We presented the eight canvas sections in a sequence, but the methodology
adopts the Agile philosophy [13], therefore the sections can be populated itera-
tively, with a spiral approach, with frequent releases, validation with end-users
and stakeholders, and successive improvements.

The rest of the paper illustrates, by means of an example, how the BPA
Canvas can be used to build a BP Knowledge Base (BPKB). We know that such
an endeavor is a challenging one, requiring time, energy, and constant attention
to keep the BPKB aligned with the (ever-changing) business reality. But another
key challenge is to keep the BPKB self-consistent, i.e., without contradictions,
dangling references, missing or disconnected concepts, etc.

To address the problem of “certifying” a BPKB (with respect to the BPA
Canvas) in a systematic way, we need to develop a formal grounding. This is
presented in Sect. 5, where we propose a formalization of a BPKB.

In the next section, we present a running example that illustrates a practical
use the BPA Canvas methodology.

4 A Running Example

The example illustrates the construction of the BPKB for a home delivery pizza
shop, called PizzaPazza, achieved following the BPA Canvas methodology. We
show how the knowledge artifacts are first built in a step-wise fashion, omitting,
for sake of space, the successive refinement cycles.

BP Signature. Table 1 represents the first knowledge artifact of the pizza shop,
called BP Signature. This is a structure of seven labeled elements with a meaning
clearly explained by the labels.

A Knowledge-Based Approach to Business Process Analysis 499

Table 1. The BP Signature

BP Name HomeDeliveryPizza

Trigger OrderArrived

Key Actors Customer, Cook, Delivery Boy

Key Objects Order, Dough, Pizza, Delivery Vehicle

Input Purchase Order

Objective Cook and deliver pizzas to customers

Output Pizza Delivered, Customer Happy

BP Statement. The text of the BP Statement is the synthesis of an interview
with a (fictitious) pizza shop owner, who describes how a customer order is
handled by the shop.

My business, PizzaPazza, is a home-delivery pizza shop. The customer
fills in the order, by using our Web site, and then submits it to the
shop, together with the payment. Making good pizzas requires good
quality dough, produced in-house, and careful baking of the pizza. To
make clients happy, we need to quickly fulfill the order and the delivery
boy needs to know the streets and how to speedily reach the customer’s
address.

BP User story. Here the text reports a specific execution of the BP, i.e., it
represents an instance of the BP. If necessary, more user stories are reported, to
represent various use cases and the corresponding process instances.

Mary connects to the PizzaPazza Web site and places her order of
two Napoli pizzas, providing also the payment. Upon the arrival of
Mary’s order at PizzaPazza, John, the cook, puts the order on the
worklist. When Mary’s turn arrives, John prepares the ordered pizzas,
bakes them, and then alerts the delivery boy Ed to come and pick up
the pizzas. Thus, Ed collects the pizzas and starts his delivery trip,
eventually achieving the delivery to Mary’s home.

The first three knowledge artifacts, Signature, Statement, and User story, rep-
resent an important, but informal, starting point easily managed by a business
expert. The following BPA Canvas sections are built starting from the textual
artifacts, moving toward the semantic analysis of the business scenario.

4.1 Analysis of the BP Statement and User Stories

The analysis starts from the above free-form texts to extract a first structured
knowledge artifact, APO Tasks (see Table 2). Such an artifact collects the
knowledge extracted from the text that concerns who (Actor) is doing what (Pro-
cess/Actions) yielding what results (Object/Outcome). Then, each task assumes
the form of a triple representing an atomic action in the form of (actor, process,
object).

500 A. De Nicola et al.

In essence, according to linguistic theory, the text is analyzed to extract
triples formed by a subject noun phrase, a verb phrase, and a direct or indirect
object noun phrase. In the triples, actions are represented using the gerund,
which is more readable compared to the more ‘technical’ stemming form. Fur-
thermore, tasks are represented in active verbal form, therefore if in the text we
have a passive form (e.g., the order is issued by the customer), when building the
triple we need to turn it into an active form (e.g., customer issuing an order).

Table 2. Some of the BP Tasks

Actor Action Object

Customer Filling Order

Customer Submitting Order

PizzaShop Receiving Order

Cook Preparing Pizza

Cook Producing Dough

Cook Baking Pizza

DeliveryBoy Collecting Pizza

DeliveryBoy Delivering Pizza

Customer Receiving Pizza

Customer Appraising Service

4.2 OPAAL Kinds and Links

In this step, we start creating a lexicon of terms organized according to four
categories: Object, Process, Actor, and Attribute. Then, we introduce a set of
triples representing the static relationships (Links) among terms, as explained
in Sect. 3.2.

Table 3 shows an excerpt of the Lexicon organized according to the OPAAL
kinds. Please note that here we do not mean to be complete, the reported struc-
tures have mainly an illustrative purpose.

Table 3. The OPAAL Kinds of the BP

Categories Business terminology

Object Order, Pizza, Margherita, Dough, Topping, . . .

Process Baking, Submitting, Receiving, Delivering, . . .

Actor PizzaShop, Customer, Cook, DeliveryBoy, . . .

Attribute Price, Quantity, PizzaKind, Address, . . .

A Knowledge-Based Approach to Business Process Analysis 501

Then, in Table 4, we report the set of triples representing the structural links
of the BP.

Table 4. OPAAL Links of the BP

Structural Links

Dough PartOf Pizza

Customer HasA Address

Margherita ISA Pizza

...

Once more, in the Link structure we only represent static relationships. For
instance, the operational relation between Customer and Order is reported in
the APO Tasks, e.g., (Customer, Submitting, Order).

4.3 Building the Remaining Knowledge Artifacts

The BP Glossary is built starting from the knowledge artifacts that have been
produced so far, plus additional terms that the analyst deems necessary. But
primarily, it is created by extracting from the text the relevant terminology, i.e.,
the terms that represent objects, actors, attributes, and activities (processes)
characterizing the analyzed business domain. For each term, a short description
is provided and, if the case, one or more synonyms. In Table 5, an excerpt from
the BP Glossary (the descriptions have been derived from The Free Dictionary1)
is shown.

Table 5. The BP Glossary

Term Description

Customer One who buys goods or services from a store or business

Baking To cook food with dry heat, especially in an oven

DeliveryBoy One that performs the act of conveying or delivering

Order A request made by a customer at a pizza shop for food

Pizza A baked pie consisting of a shallow bread-like crust covered with toppings

... ...

The two final sections, the UML Class Diagram and the BP Ontology can
be derived from the three central sections of the BPA Canvas. For the sake of
space, we will not elaborate on them.

1 https://www.thefreedictionary.com/.

https://www.thefreedictionary.com/

502 A. De Nicola et al.

5 A Formal Account of a Business Process Knowledge
Base

In this section, we present the formal grounding of the BPA Canvas method-
ology. Such a formalization aims at guaranteeing the quality of the released
knowledge base, avoiding missing information, redundancy, and contradictions.
Furthermore, a well-defined BPKB is easier to be inspected, queried, and main-
tained. This is particularly important since our Agile methodology allows for
an iterative construction of the BPKB with frequent, partial releases. At each
cycle, the BPKB, which is refined and possibly enriched with the introduction
of new knowledge items, needs to be checked to verify its quality.

5.1 Formalising the BPKB Core Components

We first propose a formal account of the BPKB components according to the
BPA Canvas methodology. In particular, the formalization focuses on the knowl-
edge base core, represented by the APO Task, Glossary, and the OPAAL Kind
and Link sections. Then, we present a number of correctness rules aimed at
checking that a BPKB instance has been correctly built2.

Definition 1. BPKB. Given a terminology N (i.e., a set of terms), a Business
Process Knowledge Base (BPKB) is a complex structure organized according to
the layout of the BPA Canvas, where the OPAAL section has been decomposed
into two parts: Kind and Link, yielding a 9-tuple defined as follows:

BPKB = (P,S,U ,K,L, T ,G,D,O)

where:

– P is the BP Signature (or Profile)
– S is the BP Statement
– U is one or more User stories
– K is a set of pairs representing the categorization of terms (Kinds)
– L is a set of structural Links
– T is the set of triples representing the Tasks belonging to the BP
– G is the BP Glossary in the form of a set of pairs (conceptName, description)
– D is the BP UML Diagram
– O is the BP Ontology

The following formalization focuses on the core of the BPKB represented by the
four central components, i.e., K, L, T , and G. In the formalization, we omit the
first three sections, which are unstructured and expressed in natural language,
and the last two sections, the UML Diagram and the Ontology, which can be
derived from the core.
2 For sake of precision, each BPKB that is built is an interpretation of the axiomatic

definitions that, together with the correctness rules, allows for checking if the BPKB
at hand is actually a correct interpretation, i.e., a model of our theory.

A Knowledge-Based Approach to Business Process Analysis 503

Definition 2. Kind. Given a terminology N , K is a set of pairs:

K ⊆ {(n, k) | n ∈ N, k ∈ K}
where K = {O,P,Ac,At} represents the categories a term can belong to, and:

– O stands for Object
– P stands for Process (or activity)
– Ac stands for Actor
– At stands for Attribute

In our running example, for instance, the pairs (Cook,Ac) and (Pizza,O)
state that the terms Cook and Pizza represent an Actor and an Object, respec-
tively.

Definition 3. Structural Link. Given a terminology N , L is a set of triples:

L ⊆ {(n1, r, n2) | n1, n2 ∈ N, r ∈ R,n1 �= n2}
where R = {ISA, PartOf, HasA} defines the structural relations (links) used in
the BPKB. A triple (n1, r, n2) is in L if n1 and n2 are related according to r.

For example, (Cook, ISA, Person), (Dough, PartOf, P izza) are triples in
L.

Definition 4. Tasks. This component of the BPKB represents the tasks of the
BP as a set T of 3-tuple, defined as follows:

T = {(ac, p, o) | {(ac,Ac), (p, P), (o,O)} ⊆ K, (ac, p) ∈ Inv, (p, o) ∈ Ach}

Then, Inv and Ach are two sets of term pairs defined as follows:

Inv = {(ac, p) | {(ac,Ac), (p, P)} ⊆ K and ac is involved in p}

Ach = {(p, o) | {(p, P), (o,O)} ⊆ K and p achieves o}
i.e., Inv contains all the ordered pairs of terms formed by an actor, ac, involved
in an activity, p, and Ach includes all the pairs whose first element is an activity,
p, achieving or producing the second element that is an object, o.

Note that the set of concept names in L represents a superset of those involved
in T as there could be pairs of concepts in the ISA relation for which the most
general concepts do not necessarily participate in a triple in T . For instance, in
our business domain (Cook, Preparing, P izza) is a possible task that implies
(Person, Preparing, P izza).

504 A. De Nicola et al.

Definition 5. BP Glossary. The glossary G of the BPKB is a set of ordered
pairs defined as follows:

G = {(n, d) | n ∈ N, d ∈ D}
where D is the set of all possible strings, standing for natural language descrip-
tions.

In our running example, the pair (Pizza, “Italian open pie made of thin bread
dough spread with a spiced mixture of e.g. tomato sauce and cheese”) is a possible
element belonging to the glossary.

Definition 6. Correct concept. Given a BPKB, a well-formed concept c
associated with it is a 5-tuple defined as follows:

c = (n, d, k, Tn,Ln)

where:

– n ∈ N represents the concept name
– d is a textual description such that the pair (n, d) ∈ G
– k is a kind such that the pair (n, k) ∈ K
– Tn = {(ac, p, o) | (ac, p, o) ∈ T , ac = n or p = n or o = n} is the set of tasks

in which n participates
– Ln = {(n1, r, n2) | (n1, r, n2) ∈ L, n1 = n or n2 = n}, that is the set of

Structural Links involving n.

and the concept c is also correct (under Closed World Assumption (CWA) [2])
if it satisfies the rules in Sect. 5.2.

Although in this paper we do not elaborate on the UML Class Diagram and
the Ontology details, we anticipate that the UML Class Diagram can be built
starting from the APO Tasks and the structural Links. In particular, the built
UML Class Diagram will consist of boxes (i.e., classes), named with object or
actor names, connected by two types of arcs: functional and structural. The
functional arcs (i.e., associations) will be labeled with process names connecting
the actors with the objects, as reported in the APO Tasks triples. The structural
arcs will be created from the triples in the structural Links where the label of
the arc is the second element. For the ISA and PartOf relations, the arc will
connect two boxes labeled with the first and third elements. In the case of the
HasA relation, the first element will be a box name, and the third element one
of its attributes that will be listed within the box (according to the UML Class
Diagram syntax).

At this point, the Ontology can be derived from the knowledge so far collected.
Note that the construction of the knowledge base does not follow a ’waterfall’
approach, but the Agile philosophy [13]. Therefore, its construction is achieved
in a spiral fashion, and, at each cycle, it is possible to check and correct it, while
enriching the overall content.

A Knowledge-Based Approach to Business Process Analysis 505

Definition 7. Correct BPKB. A BPKB is correct if all the concepts associated
with it are correct.

Definition 8. Enterprise Knowledge Base. Consider a set BPKBi, i =
1, ..., k, where k is the total number of Business Processes of an enterprise. The
Enterprise Knowledge Base EKB is defined as:

EKB ⊇
⊔

i

BPKBi

where
⊔

i stands for a merge operation.

We expect that in an enterprise there are several BP, each having its own
BPKB that needs to be merged to form the EKB. We are aware that such a
merging is a complex endeavor, and it falls outside the scope of the paper.

5.2 Consistency Rules for Concept Correctness

In this section, we present the consistency rules that need to be satisfied for the
correctness of the business concepts, and consequently of the BPKB.

Given a concept:
c = (n, d, k, Tn,Ln)

associated with a BPKB, the following rules must hold:

R1 – Definedness. The concept name n needs to have a description in G.

R2 – Uniqueness. The concept name n needs to be present only once in G.

R3 – Categorization. The concept name n needs to be categorized according
to the set of categories K = {O,P,Ac,At}.

R4 – Disjointness. The concept name n needs to be associated with only one
kind in K.

R5 – Structural completeness. All the concept names in G need to participate
in at least one triple in L.

R6 – Functional completeness. All the actor, object, and process names need
to participate in at least one task, i.e., a triple in T . If a concept does not appear
in a task, at least one of its subsumees or components or attributes (as declared
in L) needs to participate.

R7 – Pragmatics. For all triples in T , the concept names need to belong to
their respective categories, i.e., ac in the first place, p in the second place, and o
in the third place.

The correctness rules have been informally presented with descriptive texts,
for the sake of space, the formal account is omitted.

506 A. De Nicola et al.

6 Conclusions and Discussion

In this paper, we presented the BPA Canvas, a methodology for the acquisi-
tion, modeling, and management of business process knowledge. The proposed
methodology has been conceived to be easily adopted by business people being,
at the same time, based on a solid formal grounding. The knowledge organiza-
tion is guided by a canvas layout, structured in eight sections representing a sort
of knowledge dashboard and providing a synoptic view of the BPKB. As seen,
concerning previous proposals in the area of BPA, this methodology presents
three key characteristics: (i) it starts with informal, intuitive models to grant
business experts a central role; (ii) it adopts an Agile approach, with a cyclic
progression of model building, with continuous releases and validity checks; (iii)
it is characterized by a theoretical foundation for the core of the BPKB that
represents its backbone.

Currently, we are working on a platform that, based on the formal part of the
methodology, supports the knowledge acquisition task and checks the consistency
as well as the completeness of the BPKB (under the CWA). In the most popular
BPA methodologies, such properties need to be achieved manually. Then, our
work will continue along two main lines. The first consists of the development
of several services to support the BPKB construction. We will start with NLP
services that analyze the first three canvas sections (BP Signature, Statement,
and User Stories) to start populating the core of the BPKB. Then, we will
provide semantic services aimed at enriching the BPKB by exploring existing
terminological resources, such as DBpedia, Wikidata, and WordNet, available
on the Internet.

The work presented in this paper is the continuation of the work carried out
in the context of the European Project BIVEE (Business Innovation in Virtual
Enterprise Environment) where a first proposal of knowledge-based enterprise
analysis has been proposed in [10].

Acknowledgement. We gratefully acknowledge the partial support of the PNRR
MUR project PE0000013-FAIR.

References

1. Aguilar-Savén, R.S.: Business process modelling: review and framework. Int. J.
Prod. Econ. 90(2), 129–149 (2004). https://doi.org/10.1016/S0925-5273(03)00102-
6, production Planning and Control

2. Álvez, J., Gonzalez-Dios, I., Rigau, G.: Applying the closed world assumption to
SUMO-based FOL ontologies for effective commonsense reasoning. In: ECAI 2020.
Frontiers in Artificial Intelligence and Applications, vol. 325, pp. 585–592. IOS
Press (2020). https://doi.org/10.3233/FAIA200142

3. Andersson, B., et al.: Towards a reference ontology for business models. In: Embley,
D.W., Olivé, A., Ram, S. (eds.) ER 2006. LNCS, vol. 4215, pp. 482–496. Springer,
Heidelberg (2006). https://doi.org/10.1007/11901181 36

https://doi.org/10.1016/S0925-5273(03)00102-6
https://doi.org/10.1016/S0925-5273(03)00102-6
https://doi.org/10.3233/FAIA200142
https://doi.org/10.1007/11901181_36

A Knowledge-Based Approach to Business Process Analysis 507

4. Aversano, L., Grasso, C., Tortorella, M.: A Literature review of business/IT align-
ment strategies. Procedia Technol. 5, 462–474 (2012). https://doi.org/10.1016/j.
protcy.2012.09.051, 4th Conference of ENTERprise Information Systems - aligning
technology, organizations and people (CENTERIS 2012)

5. Di Martino, B., Colucci Cante, L., Esposito, A., Graziano, M.: A tool for the seman-
tic annotation, validation and optimization of business process models. Softw.
Pract. Exp. (2023). https://doi.org/10.1002/spe.3184

6. Hepp, M., Leymann, F., Domingue, J., Wahler, A., Fensel, D.: Semantic business
process management: a vision towards using semantic web services for business pro-
cess management, vol. 2005, pp. 535–540 (2005). https://doi.org/10.1109/ICEBE.
2005.110

7. Koutsopoulos, G., Bider, I.: Business process canvas as a process model in a nut-
shell. In: Gulden, J., Reinhartz-Berger, I., Schmidt, R., Guerreiro, S., Guédria, W.,
Bera, P. (eds.) BPMDS/EMMSAD -2018. LNBIP, vol. 318, pp. 49–63. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-91704-7 4

8. Martin, J.: Managing the Data Base Environment, 1st edn. Prentice Hall PTR,
USA (1983)

9. Missikoff, M.: A knowledge-driven business process analysis methodology. In:
Strauss, C., Cuzzocrea, A., Kotsis, G., Tjoa, A.M., Khalil, I. (eds.) Database and
Expert Systems Applications. DEXA 2022. LNCS, vol. 13427, pp. 62–67. Springer,
Cham (2022). https://doi.org/10.1007/978-3-031-12426-6 5

10. Missikoff, M., Assogna, P.: The BIVEE Project: An Overview of Methodology and
Tools (2015). https://doi.org/10.1002/9781119145622.ch3

11. Pedrinaci, C., Domingue, J., Alves de Medeiros, A.K.: A core ontology for busi-
ness process analysis. In: Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis,
M. (eds.) ESWC 2008. LNCS, vol. 5021, pp. 49–64. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-68234-9 7

12. Pigneur, Y., Osterwalder, A.: Business Model Generation: A Handbook for Vision-
aries, Game Changers and Challengers. John Wiley and Sons, Hoboken, New Jersey
(2010)

13. Prakash, R., Agarwal, N.: Managing business analysis for agile development. Int.
J. Mod. Eng. Res. (IJMER) 3(3), 1393–1395 (2013)

14. Roy, S., Sawant, K.P., Ghose, A.K.: Ontology modeling of UBL process diagrams
using owl, pp. 535–540 (2010). https://doi.org/10.1109/CISIM.2010.5643509

15. van Grembergen, W., De Haes, S.: A Research Journey into Enterprise Governance
of IT, Business/IT Alignment and Value Creation, pp. 1–13, January 2010. https://
doi.org/10.4018/jitbag.2010120401

16. Vergidis, K., Tiwari, A., Maieed, B.: Business process analysis and optimization:
beyond reengineering. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 38(1),
69–82 (2008). https://doi.org/10.1109/TSMCC.2007.905812

17. Von Rosing, M., Laurier, W.P., Polovina, S.M.: The BPM ontology, vol. 1 (2015).
https://doi.org/10.1016/B978-0-12-799959-3.00007-0

18. Värk, A., Reino, A.: Practice ecology of knowledge management-connecting the
formal, informal and personal. J. Doc. 77(1), 163–180 (2021). https://doi.org/10.
1108/JD-03-2020-0043

19. W3C Recommendation: Universal business language v2.0. Technical report, W3C
(2006). http://docs.oasis-open.org/ubl/cs-UBL-2.0/UBL-2.0.htm

20. Wen, P., Wang, R.: Does knowledge structure matter? Key factors influencing
formal and informal knowledge sharing in manufacturing. J. Knowl. Manag. 26(9),
2275–2305 (2022). https://doi.org/10.1108/JKM-06-2021-0478

https://doi.org/10.1016/j.protcy.2012.09.051
https://doi.org/10.1016/j.protcy.2012.09.051
https://doi.org/10.1002/spe.3184
https://doi.org/10.1109/ICEBE.2005.110
https://doi.org/10.1109/ICEBE.2005.110
https://doi.org/10.1007/978-3-319-91704-7_4
https://doi.org/10.1007/978-3-031-12426-6_5
https://doi.org/10.1002/9781119145622.ch3
https://doi.org/10.1007/978-3-540-68234-9_7
https://doi.org/10.1109/CISIM.2010.5643509
https://doi.org/10.4018/jitbag.2010120401
https://doi.org/10.4018/jitbag.2010120401
https://doi.org/10.1109/TSMCC.2007.905812
https://doi.org/10.1016/B978-0-12-799959-3.00007-0
https://doi.org/10.1108/JD-03-2020-0043
https://doi.org/10.1108/JD-03-2020-0043
http://docs.oasis-open.org/ubl/cs-UBL-2.0/UBL-2.0.htm
https://doi.org/10.1108/JKM-06-2021-0478

Evaluating Prompt-Based Question
Answering for Object Prediction

in the Open Research Knowledge Graph

Jennifer D’Souza1(B) , Moussab Hrou2, and Sören Auer1,3

1 TIB Leibniz Information Centre for Science and Technology, Hannover, Germany
{jennifer.dsouza,auer}@tib.eu

2 Gottfried Wilhelm Leibniz Universität Hannover, Hannover, Germany
3 L3S Research Center, Leibniz University of Hannover, Hannover, Germany

Abstract. Recent investigations have explored prompt-based training
of transformer language models for new text genres in low-resource set-
tings. This approach has proven effective in transferring pre-trained or
fine-tuned models to resource-scarce environments. This work presents
the first results on applying prompt-based training to transformers for
scholarly knowledge graph object prediction. Methodologically, it stands
out in two main ways: 1) it deviates from previous studies that propose
entity and relation extraction pipelines, and 2) it tests the method in a
significantly different domain, scholarly knowledge, evaluating linguistic,
probabilistic, and factual generalizability of large-scale transformer mod-
els. Our findings demonstrate that: i) out-of-the-box transformer models
underperform on the new scholarly domain, ii) prompt-based training
improves performance by up to 40% in relaxed evaluation, and iii) tests
of the models in a distinct domain reveals a gap in capturing domain
knowledge, highlighting the need for increased attention and resources
in the scholarly domain for transformer models.

Keywords: Question Answering · Prompt-based Question
Answering · Natural Language Processing · Knowledge Graph
Completion · Open Research Knowledge Graph

1 Introduction

The seminal work by Petroni et al. [7] introduced testing transformer-based [13]
language models for their vasts store of linguistic and factual knowledge with
explicit relational cloze objectives [12] for extracting new facts from them for
knowledge base (KB) population. KBs are effective solutions for accessing rela-
tional data such as (Michael Jordan, born-in, x). The traditional method for pop-
ulating such KBs with additional facts would otherwise leverage complex NLP

Supported by TIB Leibniz Information Centre for Science and Technology, the EU
H2020 ERC project ScienceGraph (GA ID: 819536) and the BMBF project SCINEXT
(GA ID: 01lS22070).
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C. Strauss et al. (Eds.): DEXA 2023, LNCS 14146, pp. 508–515, 2023.
https://doi.org/10.1007/978-3-031-39847-6_40

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-39847-6_40&domain=pdf
http://orcid.org/0000-0002-6616-9509
http://orcid.org/0000-0002-0698-2864
https://doi.org/10.1007/978-3-031-39847-6_40

Evaluating Prompt-Based QA for the ORKG Completion 509

pipelines involving entity extraction, co-reference resolution, entity linking, and
relation extraction components [11] that are known to be plagued by the error
propagation problem from earlier to later components in the pipeline. Instead,
the powerful transformer language models as rich stores of linguistic and factual
information having been pre-trained on billion-word corpus from encyclopedic
sources were probed for additional facts, showing to outperform the traditional
NLP pipeline method for generating relational knowledge to populate KBs as a
downstream task [7].

Pretraining language models on large-scale corpora provides a task-agnostic
foundation, which can be enhanced through fine-tuning with task-specific objec-
tives for better performance in downstream tasks. To probe transformer language
models for relational facts, the original models’ knowledge is accessed by condi-
tioning on their latent context representations. For the Question Answering (QA)
task, the approach involves initializing a task-agnostic model with the pretrained
models’ weights, followed by fine-tuning to create a QA task-specific model using
instances from, say, the Stanford Question Answering Dataset (SQuAD) [8,9],
which this work follows. This work specifically focuses on fine-tuning language
models for the QA task over scholarly knowledge by aiming to effectively transfer
the models’ learned structural representation from SQuAD QA. Next, the why
and how of our work are introduced.

Why Focus on the Scholarly Domain? In the face of rapid publication rates at
an alarming rate of millions of articles per year [4], researchers are immensely
challenged in keeping up with the latest findings in scholarly publications. The
Open Research Knowledge Graph(ORKG) [1] was created to help researchers
overcome this challenge. By leveraging semantic scholarly knowledge publish-
ing tools, ORKG offers smart information access methods such as Comparisons,
Visualizations, and Benchmarks. This enables researchers to comprehend knowl-
edge in a matter of minutes instead of months or days. The structured science-
wide scholarly contributions within ORKG can serve as a valuable resource for
discovering new facts using transformer language models, potentially leading to
an NLP service that assists with scholarly knowledge curation and completion.
Inspired by Petroni et al’s fact probing method [7], this service could utilize
fine-tuned versions of language models to discover additional objects for new
relations. Table 1 shows some example instances of the proposed task. The task
involves extracting objects as answers from scientific paper abstracts using a
question-answer format, similar to the SQuAD QA task. This approach is cho-
sen for its intuitive transferability to the scholarly domain and the potential to
leverage state-of-the-art language models fine-tuned on the QA task. Our study
examines the capacity of linguistically-rich, fine-tuned SQuAD QA models to
transfer to the scholarly domain, which has been previously unexplored.

How to Obtain an Optimal Model for a New Domain? To pre-train or fine-tune
a language model for QA on a new domain, the traditional method is to use
expensive human-labeled data. Instead, inspired from prior work [3,10,16], this
study uses two strategies: 1) template-based unsupervised generation of struc-
tured data similar to SQuAD QA data from the ORKG KB, and 2) structural

https://orkg.org/
https://orkg.org/comparisons
https://orkg.org/visualizations
https://orkg.org/benchmarks

510 J. D’Souza et al.

Table 1. Example instances depicting our Cloze-style adaptation of SQuAD Question
Answering task as an extractive objective from the context given a question prompt.
The “Context” is a paper abstract, the “Cloze task” shows the four question variants
created by appending a “Wh” question word given an input predicate as: no label,
What, Which, and How questions. Text in blue show the answer extraction object
from the context; text in red show the appended prompt elements including “Wh”
question words and the “?” symbol.

Context Cloze task Answer

... In the following process oriented knowledge
management as it was defined in the EU-project
PROMOTE (IST-1999-11658) is presented and
the KM-Service approach to realise process
oriented ...

Approach name? ___ PROMOTE

What approach name? ___
Which approach name? ___
How approach name? ___

... to investigate processes of community
assembly contributing to biotic resistance to an
introduced lineage of Phragmites australis, a
model invasive species in North America. ...

Continent? ___ North America
What continent? ___
Which continent? ___
How continent? ___

Solid lipid nanoparticles (SLNs) are nanocarriers
developed as substitute colloidal drug delivery
systems parallel to liposomes, lipid emulsions,
polymeric nanoparticles, and so forth. ...

Type of nanocarrier? ___ Solid lipid nanoparticles
What type of nanocarrier? ___
Which type of nanocarrier? ___
How type of nanocarrier? ___

prompt-based learning over state-of-the-art SQuAD-specific fine-tuned trans-
former models for the scholarly domain. Similar structured QA data prompts
knowledge generalization or optimal knowledge stimulation in fine-tuned lan-
guage models, optimizing training in a resource-scarce setting.

Summarily, our contributions are: 1) we introduce a template-based unsuper-
vised question generation framework for the scholarly domain, similar in format
to the SQuAD dataset; 2) we report, for the first time, a detailed empirical anal-
ysis of the scholarly domain object prediction task using prompt-based QA task
and state-of-the-art transformer models as rich stores of linguistic, probabilistic,
and factual parameters, thereby testing the transferability of these pre-trained
models on a novel domain. Our dataset, code, and models are publicly released.

2 Task Definition

The article introduces a new task of object extraction, for RDF knowledge graph
statements, which is structurally formulated based on the SQuAD QA task
dataset [8,9]. The task is an extractive task in a machine reading comprehension
setting, where the model is expected to extract the answer as a contiguous span to
a given question. Our task is: given an ORKG predicate formulated as a question
using an unsupervised template-based generation prompting function fprompt(x),
to extract the object answer from the corresponding paper Abstract context.
For unsupervised question generation as fprompt(x), a static template pattern
is defined. Inspired by the prior seminal work on this theme [3], the fprompt(x)
template is: “Wh”+predicate+“?”, where “Wh” ∈ {What, Which, How} as the
most common question types. Each “Wh” question results in a question-type-
specific homogeneous dataset where the same prompt template considering the

https://data.uni-hannover.de/dataset/evaluating-squad-based-question-answering-for-the-open-research-knowledge-graph-completion
https://github.com/as18cia/thesis_work
https://huggingface.co/Moussab

Evaluating Prompt-Based QA for the ORKG Completion 511

specific question-type word was applied to all predicates. Finally, a note on the
expected object answer granularity considered in this task: They include three
different granularities: tokens, span as a short multi-token phrase, and sentences.

3 PROMPT-ORKG: Our Scholarly Knowledge Question
Answering Corpus

The ORKG semantic web model uses contribution triples to describe papers in a
structured RDF format. We adapt the model for scholarly knowledge object pre-
diction, employing extractive QA structured per SQuAD. By querying specific
portions of the ORKG KB using the ORKG Rest API, we extract triples related
to the Contribution node. Our challenge is to gather (context, question, answer)
data instances. Initially, we create a preliminary dataset by selecting predicates
as question candidates and corresponding object nodes as answer units. In the
preliminary raw dataset, displayed in the ‘Before’ column of Table 2, the number
of contributions exceeds the number of papers since a paper can have more than
one contribution; and the (predicate, object) pairs are sparsely distributed across
more than 200 research fields in the ORKG taxonomy). Four dataset variants
are generated based on the predicate: 1) three variants using the most common
“Wh” question words (What, Which, and How) generated unsupervisedly with
the template “Wh+predicate+?,” and 2) one variant using the cloze-style ques-
tion template “predicate+?,” replacing the [MASK] token with the “?” symbol.
We define our experimental settings based on these four variants, and also eval-
uate an “unchanged” dataset where the predicate remains as the question unit
without any modifications, allowing us to demonstrate the effectiveness of the
SQuAD-format prompt-based QA setting. The context in each data instance
comprises paper Abstracts. However, not all papers in the ORKG get abstracts
from Crossref or SemanticScholar. Specifically, we were able to obtain abstracts
for 5,486 (58,5%) out of the 9,379 papers in the raw data. This results in prun-
ing all the rows in our triples dataset whose abstracts could not be fetched.
We further narrow down the selection for the answer unit by choosing object
candidates that can be found in the paper’s abstract, resulting in a reduction
from 116,421 to 14,499 (predicate, object) pairs in the raw dataset. Finally, after
deduplication and heuristics-based filtering of unsuitable object candidates, our
dataset comprised 5,909 (predicate, object) pairs coupled with a context (see
row 3 in Table 2) which we name the Prompt-ORKG corpus.

4 Models

With the Prompt-ORKG dataset for the scholarly domain in place, we rele-
gated attention to selecting three optimal transformer model variants to test
as machine learners on our newly introduced, previously unexplored problem
setting. The machine learning test specifically sought out empirical evidence for
the transferability of the probabilistic parameters of the existing large-scale trans-
former models. In this respect, we were interested in two main strengths of the

http://tibhannover.gitlab.io/orkg/orkg-backend/api-doc/
https://orkg.org/fields
https://api.crossref.org/
https://api.semanticscholar.org/

512 J. D’Souza et al.

Table 2. Our scholarly knowledge question answering for object prediction task dataset
statistics on the raw data (‘Before’ column) and after data cleaning (‘After’ column).

Statistic parameter Before After

number of unique papers 9,379 2,710
number of unique contributions 14,499 3,059
number of (predicate,object) pairs 116,421 5,909
number of unique predicate labels 3,436 853
number of unique object labels 38,234 3,524
avg. number of tokens per predicate label – 2.01
avg. number of tokens per object label – 2.43
number of unique abstracts – 2649
avg. number of tokens per paper abstract – 196.97
number of abstracts with more than 510 tokens – 37
number of unique abstracts with more than 510 tokens – 14

transformer models: to query over an open class of relations [7] and the ability
to train them on structurally similar data [3,10]. Thus selecting optimal SQuAD
transformer model variants were a natural choice since the structural patterns
in the Prompt-ORKG dataset emulate SQuAD.

The selected language model variants are based on BERT [2] which
seminally introduced the “masked language model” (MLM) cloze-based pre-
training objective based on a bidirectional self-attention architecture [13]. They
are: BERT pretrained, SQuAD2.0 finetuned (deepset/bert-base-cased-squad2);
RoBERTa pretrained [6], SQuAD2.0 finetuned (deepset/roberta-base-squad2);
and MiniLM pretraining distillation [14], SQuAD2.0 finetuned (deepset/
minilm-uncased-squad2).

5 Results

5.1 Experimental Setup

Hyper-parameter Tuning. All models are tuned for 4 epochs, learning rate
∈ {0.0001, 0.00005}, train batch size 8, eval batch size 8, and weight decay 0.01.
Only the best model is saved and used in the evaluation phase.

Metrics. Evaluations are considered in two main settings: 1. strict, i.e. exact
match; and 2. relaxed, i.e. containment match where the gold answer is checked
to be contained in the predicted answer. In both settings, the main metric is
F1 score and secondarily accuracy is also applied. Note that after prediction,
the answers undergo minimal post-processing to be suitable for evaluation. This
entailed trimming the trailing and leading white spaces, converting all answers
to lower case, and removing the following special characters: ., comma, ;, :, -,),
(, _ and +, if they are at the end of the answers.

https://huggingface.co/deepset/bert-base-cased-squad2
https://huggingface.co/deepset/roberta-base-squad2
https://huggingface.co/deepset/minilm-uncased-squad2
https://huggingface.co/deepset/minilm-uncased-squad2

Evaluating Prompt-Based QA for the ORKG Completion 513

Table 3. F1-score (and parenthesized Accuracy) results in the exact-match setting
over the 4 dataset variants from the 3 models with cell values as “vanilla models”/“after
prompt-based training.”

Dataset

variant

bert-base-cased

-squad2

roberta-base

-squad2

minilm-uncased

-squad2 *row avg*

unchanged 0.5/11.2 (1.0/29.4) 2.5/22.7 (1.8/35.5) 0.5/16.2 (0.4/35.5) 1.2/16.7 (1.1/33.5)

none 1.4/23.5 (1.4/31.7) 4.0/23.0 (2.5/37.5) 3.6/18.0 (3.5/35.4) 1.8/21.5 (2.5/34.9)

what 1.5/25.7 (1.0/33.8) 5.1/21.2 (4.3/35.9) 6.3/19.8 (5.1/36.1) 4.3/22.2 (3.5/35.3)

how 0.3/19.8 (0.5/34.0) 3.0/20.9 (2.2/36.4) 4.6/22.3 (4.0/33.8) 2.6/21.0 (2.2/34.7)

which 1.9/17.8 (1.6/33.5) 5.5/24.0 (4.5/36.6) 5.9/25.9 (5.5/36.8) 4.4/22.6 (3.9/35.6)

column avg 1.1/19.6 (1.1/32.5) 4.0/22.4 (3.1/36.4) 4.2/20.4 (3.7/35.5) -

Table 4. F1-score (and parenthesized Accuracy) results in the relaxed setting over
the 4 dataset variants from the 3 models with cell values as “vanilla models”/“after
prompt-based training.”

Dataset

variant

bert-base-cased

-squad2

roberta-base

-squad2

minilm-uncased

-squad2 *row avg*

unchanged 6.7/17.1 (9.2/42.9) 7.6/23.7 (5.7/49.7) 18.6/22.9 (18.2/47.5) 11.0/21.2 (11.0/46.7)

none 6.2/31.7 (5.9/43.4) 20.3/32.3 (14.8/50.6) 21.3/26.1 (16.0/48.3) 15.9/30.0 (12.2/47.4)

what 7.3/34.6 (5.6/46.0) 22.8/31.0 (17.0/49.5) 24.4/26.2 (16.5/46.0) 18.2/30.6 (13.0/47.2)

how 6.8/27.6 (8.2/45.2) 23.7/30.4 (16.5/51.2) 22.7/28.5 (16.3/47.0) 17.7/28.8 (13.7/47.8)

which 8.3/24.0 (7.4/43.9) 25.1/35.9 (18.2/48.6) 23.0/36.4 (18.0/47.9) 18.8/32.1 (14.5/46.8)

column avg 7.1/27.0 (7.2/44.3) 19.9/30.7 (14.4/49.9) 22.0/28.0 (17.0/47.3) -

5.2 Evaluations

In this section, we present the results and discuss observations from each of our 30
total experiments considering 5 dataset variants, 3 optimal SQuAD QA models,
and 2 experimental settings i.e. vanilla and after prompt-based learning. The core
experimental results are depicted in Tables 3 and 4 in terms of F1-scores, and
parenthesized accuracies, in the exact-match vs. relaxed settings, respectively.
We discuss the experimental results with respect to two main research questions.

RQ1: What is the Impact of the Prompt-ORKG SQuAD-format
Structural QA Task Formulation on the Transferability of the Large-
scale SQuAD Fine-tuned Language Models? This question subsumes two
sub-questions. RQ1.1: How do the BERT model performances contrast when
queried out-of-the-box, i.e. as vanilla models, versus after being trained on our
corpus variants? RQ1.2: Is it effective to adopt the SQuAD-format structural rep-
resentation to optimally query the large-scale SQuAD fine-tuned language mod-
els? For RQ1.1, examining both F1 scores and accuracies, in the exact match
setting (Table 3), the results from the trained models on our corpus variants
are approximately 25% (and 35%) higher, respectively, than when testing the
untrained “vanilla” models on data from a new domain. For RQ1.2, examin-

514 J. D’Souza et al.

ing the *row avg* exact match F1 scores in Table 3, we see the results from
the SQuAD-format dataset variants are 5% or 6% higher than the “unchanged”
dataset. Note the SQuAD-format dataset variants report results in the range 21%
to 22% F1 scores, while the “unchanged” dataset evaluations report only 16% F1
score. Thus we can conclude that indeed the SQuAD-format task formulation as
the four variants in the Prompt-ORKG corpus is an effective strategy to opti-
mally stimulate the probabilistic parameters of the SQuAD fine-tuned language
models towards their transferability on a new domain, i.e. the scholarly domain.

Thus our findings cumulatively are as follows. Training the models on our
corpora produce more effective predictors compared to the vanilla models with
performances as low as 1% reflecting the domain gap of the language models
between the generic domain and the scholarly domain. To obtain optimal ver-
sions of the SQuAD fine-tuned language models, formulating the task dataset in
SQuAD format is an effective strategy to obtain optimally trained models.

RQ2: Which Dataset Variant Produced the Most Optimal Models?
Given that we have 2 evaluation tables, the F1 scores in the exact match set-
ting shown in Table 3 were considered the reference evaluations on which to base
conclusions. Examining the *row avg* results in the Table, we observed that the
results from the which variant of the Prompt-ORKG corpus was statistically
insignificantly better than the what variant with 22.6% F1 score versus 22.2% F1
score. This indicates directions for future work to examine the automated gener-
ation of the questions by selecting and applying the most suitable question type
which or what for the predicates. Across all four tables, examining the *column
avg* results, the RoBERTa SQuAD model proved optimal for transferability to
a new domain.

6 Conclusions

The prompt-based learning paradigm [5,15] is increasingly used in NLP for fine-
tuning BERT-based QA models on domains with less training data. In this work,
we demonstrated the applicability of SQuAD-based prompt format training of
BERT models on scholarly data for object prediction in the ORKG. Our experi-
ments showed promising results in terms of domain transferability of the models
with the right training strategy, however, the model performances reflect the
need for further improvement to be realized as practical solutions.

References

1. Auer, S., et al.: Improving access to scientific literature with knowledge graphs.
Bibliothek Forschung und Praxis 44(3), 516–529 (2020)

2. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: pre-training of deep bidirec-
tional transformers for language understanding. arXiv preprint arXiv:1810.04805
(2018)

http://arxiv.org/abs/1810.04805

Evaluating Prompt-Based QA for the ORKG Completion 515

3. Fabbri, A.R., Ng, P., Wang, Z., Nallapati, R., Xiang, B.: Template-based question
generation from retrieved sentences for improved unsupervised question answering.
In: Proceedings of the 58th Annual Meeting of the Association for Computational
Linguistics, pp. 4508–4513 (2020)

4. Johnson, R., Watkinson, A., Mabe, M.: The STM report. An overview of scientific
and scholarly publishing, 5th edn, October 2018

5. Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H., Neubig, G.: Pre-train, prompt, and
predict: a systematic survey of prompting methods in natural language processing.
arXiv preprint arXiv:2107.13586 (2021)

6. Liu, Y., et al.: Roberta: a robustly optimized Bert pretraining approach (2019).
https://arxiv.org/abs/1907.11692

7. Petroni, F., et al.: Language models as knowledge bases? In: Proceedings of the
2019 Conference on Empirical Methods in Natural Language Processing and the
9th International Joint Conference on Natural Language Processing (EMNLP-
IJCNLP), pp. 2463–2473 (2019)

8. Rajpurkar, P., Jia, R., Liang, P.: Know what you don’t know: unanswerable ques-
tions for squad. In: Proceedings of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers), pp. 784–789 (2018)

9. Rajpurkar, P., Zhang, J., Lopyrev, K., Liang, P.: Squad: 100,000+ questions for
machine comprehension of text. In: Proceedings of the 2016 Conference on Empir-
ical Methods in Natural Language Processing, pp. 2383–2392 (2016)

10. Schick, T., Schütze, H.: Exploiting cloze-questions for few-shot text classification
and natural language inference. In: Proceedings of the 16th Conference of the
European Chapter of the Association for Computational Linguistics: Main Volume,
pp. 255–269 (2021)

11. Surdeanu, M., Ji, H.: Overview of the English slot filling track at the tac2014 knowl-
edge base population evaluation. In: Proceedings of the Text Analysis Conference
(TAC2014) (2014)

12. Taylor, W.L.: “Cloze procedure": a new tool for measuring readability. Journal. Q.
30(4), 415–433 (1953)

13. Vaswani, A., et al.: Attention is all you need. Adv. Neural Inf. Process. Syst. 30
(2017)

14. Wang, W., et al.: Minilm: deep self-attention distillation for task-agnostic com-
pression of pre-trained transformers (2020)

15. Wei, J., et al.: Chain of thought prompting elicits reasoning in large language
models. arXiv preprint arXiv:2201.11903 (2022)

16. Zhong, W., et al.: ProQA: structural prompt-based pre-training for unified question
answering. arXiv preprint arXiv:2205.04040 (2022)

http://arxiv.org/abs/2107.13586
https://arxiv.org/abs/1907.11692
http://arxiv.org/abs/2201.11903
http://arxiv.org/abs/2205.04040

Variables are a Curse in Software
Vulnerability Prediction

Jinghua Groppe(B), Sven Groppe, and Ralf Möller

Institute of Information Systems (IFIS), University of Lübeck, Ratzeburger Allee 160,
23562 Lübeck, Germany

jinghua.groppe@uni-luebeck.de

Abstract. Deep learning-based approaches for software vulnerability
prediction currently mainly rely on the original text of software code as
the feature of nodes in the graph of code and thus could learn a represen-
tation that is only specific to the code text, rather than the representation
that depicts the ‘intrinsic’ functionality of a program hidden in the text
representation. One curse that causes this problem is an infinite num-
ber of possibilities to name a variable. In order to lift the curse, in this
work we introduce a new type of edge called name dependence, a type
of abstract syntax graph based on the name dependence, and an efficient
node representation method named 3-property encoding scheme. These
techniques will allow us to remove the concrete variable names from code,
and facilitate deep learning models to learn the functionality of software
hidden in diverse code expressions. The experimental results show that
the deep learning models built on these techniques outperform the ones
based on existing approaches not only in the prediction of vulnerabilities
but also in the memory need. The factor of memory usage reductions of
our techniques can be up to the order of 30,000 in comparison to existing
approaches.

Keywords: deep learning · software security · software vulnerability ·
abstract syntax graph · 3-property encoding · name dependence

1 Introduction

A number of efforts have been dedicated to applying deep learning (DL) to pre-
dict the vulnerabilities of software code. However, DL-based approaches have
not achieved significant breakthroughs in this field and still have a limited capa-
bility to distinguish vulnerable code from non-vulnerable one [1]. Currently, DL
approaches, both unstructured [2,5,8,11] or structure-based [1,6,7,9,10], bor-
rowed the method used in the natural language processing to define the seman-
tics of the full code or nodes in a code graph. The full code or a piece of the
code is considered plain text like a natural language and it is first split into
tokens, and each token is represented by a real-valued vector called embedding.

This work is part of the BMBF project with the contract number 16KIS1337.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C. Strauss et al. (Eds.): DEXA 2023, LNCS 14146, pp. 516–521, 2023.
https://doi.org/10.1007/978-3-031-39847-6_41

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-39847-6_41&domain=pdf
https://doi.org/10.1007/978-3-031-39847-6_41

Variables are a Curse in Software Vulnerability Prediction 517

Unstructured approaches learn the representation of the code only based on the
sequence of the tokens. The sophisticated graph-based approaches learn a pre-
sentation based on the tokens appearing in each node and the relations between
nodes.

A functionality can be programmed using an infinite number of text repre-
sentations and one main reason for the infinity is the arbitrariness in naming
variables. For example, the functionality of the summation of two variables can
be coded as a + b, x1 + x2 or using any other names. Since different names
have different embeddings, a DL model, which learns based on the raw code
text, could only find a representation, which is specific to the code text with the
used variable names, and would not be able to capture the intrinsic functionality
beyond the diversity of code expression using different variable names.

We could not obtain a well-generalized model in the presence of an infinity of
text code of a functionality. Therefore, we need solutions to transform an infinite
number of text representations of variable names into a finite number and we are
suggesting such a solution in this work. Concretely, we suggest a new edge type of
name dependence and an abstract syntax graph (ASG) that extends a standard
abstract syntax tree (AST) with the edges of name dependence and develop a
3-property node encoding scheme based on the ASG. These techniques can be
used to remove variable names from code, and greatly mitigate the semantic
uncertainty of variables and the infinity of text code of a functionality. The
empirical evidence presented later shows that our techniques do help DL models
to learn the intrinsic functionality of the software and improve their prediction
performance.

2 Breaking the Curse of Variables

In order to help DL models of software vulnerability prediction to improve their
generalization ability, in this section, we suggest techniques of how to transform
an infinite number of text representations of varable names into a finite number.

2.1 Name Dependence and Abstract Syntax Graph

In programming languages, a variable is related to its declaration (which is either
explicitly given or implied). We can determine this relation by the name of the
variable. Software engineering uses the term ‘dependence’ to describe the rela-
tions between two components, like data dependence, and control dependence.
To align with it, we define a new kind of dependence called name dependence
to express the relation between a variable and its declaration. In an AST with
full information, the name dependence between two nodes can be inferred by the
names of variables and identifiers. When we remove the names of variables and
identifiers from the AST, we lose the information on name dependence. Without
the information, we will not be able to restore the semantics of the original code.
So, we need a way to express the name dependence when names are absent. A
solution is to add an edge of name dependence between two related nodes. After

518 J. Groppe et al.

Fig. 1. ASG example

Table 1. 3-property encoding scheme

construct 3-prop. encode with variable names 3-prop. encode without variable
class name type class name type

int a varDecl a int varDecl – int
If (a ≥ 0) control IF – control IF –
a*0.01 mathOp mul – mathOp MUL –
f(a) call f – call f –
a ident a int ident VAR int
stdout ident stdout – ident stdout –
{...} block – – block – –
10.01 literal 10.01 float literal – float
‘Hi’ literal ‘Hi’ str literal – str
int[8] b varDecl b int[8] varDecl – int[N]

adding such edges, the tree structure turns into a graph structure as illustrated
in Fig. 1, which we call abstract syntax graph (ASG). From the graph, we can
construct a fragment of code with the exact semantics as the original code, but
perhaps with a different text representation, which would not be a problem at
all for the task of vulnerability prediction.

2.2 3-Property Encoding Scheme

Apart from the ASG, we further suggest a method to efficiently represent the
nodes in a code graph, 3-property encoding, which provides a consistent descrip-
tion of the feature of nodes and allows DL models to infer the commons and
differences between nodes easily. This 3-property encoding is developed in the
context of our ASG but it can be applied to other code graphs and it is also
programming languages agnostic.

In a code graph, every node represents an executable syntactic construct
in code, which can be an expression, a statement or its constituent parts, like
variables and constants (which are of course also executable). Currently, the
piece of code that consists of the construct (with or without a notation to the
construct like ‘varDecl’ and ‘add’) is used as the feature of the node. The feature
is encoded by first splitting the piece of code into tokens and then averaging the
embeddings of all the tokens. The code-based encoding uses the original piece of
code to present the feature of a node, and at the same time, the result of encoding
blurs the semantics of the original code since the averaging operation. Our 3-
property encoding avoids these two issues by introducing additional information
related to the language constructs.

Each language construct has its properties, which may not explicitly appear
in the raw code text. Independent of specific programming languages, we found
that it is enough to use three properties to describe different constructs: class,
name and type of data if any, and each value of the properties will be represented
by a unique token. Table 1 demonstrates several common language constructs
and their representation with the three properties. With this property-based
approach, we can encode all nodes in a consistent way, and this is a very valuable
characteristic for many applications. So far, this 3-property encoding has not

Variables are a Curse in Software Vulnerability Prediction 519

removed the diversity of text representations and we will further normalize this
encoding scheme to mitigate the diversity as much as possible based on the name
dependence and ASG.

Besides the variable names which we can remove thanks to the edges of
name dependence, there are also other constructs in code, which can have any
values. One of them is literals, e.g. 0.01 and ‘Hello’, which will cause similar
issues as variable names, so we will also remove the concrete value of a literal.
Another construct is array declarations with size, e.g. char[8], char[1024]. We will
normalize them as e.g. char[N]. A more refined solution could be to create several
normalized data types e.g., char[int8], char[int16] and so on, and normalize
the data type of arrays according to their sizes. For instance, any char arrays
with sizes between 0 and 256 could be normalized to char[int8]. Table 1 also
provides examples of normalized representations. The definition of the classes
of language constructs and the normalized tokens could vary depending on the
implementation of applications and the tool for generating code graphs.

3 Evaluation

In order to evaluate our techniques, we build four types of code graphs, AST,
AST+, ASG and ASG+, for training DL models of software vulnerability pre-
diction. AST+ is an AST extended with flow and data dependencies and control
flow. ASG is an AST with the edges of name dependence and variable names
removed, and ASG+ is ASG with flow and data dependencies and control flow.

Models: We develop two models (3propASG and 3propASG+), which use
our graph structures and 3-property node encoding scheme, and two baselines
(codeAST and codeAST+), which adopt the common graph structures and the
pieces of code as the feature of nodes (i.e., the code-based encoding presented
in Sect. 2) that is currently adopted by existing models [1,10]. All models share
the following architecture: the input data is delivered to the layer of GGRU with
one time step, the least expensive option. The output of GGRU is sent to each of
three 1D convolution (Conv1d) layers with 128 filters each and perceptive fields
of 1, 2, and 3 respectively, and one 1D max pooling (MaxPool1d) is applied over
the output of each Conv1D to perform downsample. The results of the Max-
Pool1d layers are concatenated together and sent to the hidden layer with 128
neurons, and a 25% dropout is applied to the output of convolution and the
hidden layer. We apply Relu for non-linear transformation and the embeddings
of 100 dimensions to encode tokens.

Datasets: We use several real-world datasets from different open-source
projects: Chromium+Debian [1], which contains 10,699 samples and 7.05% of
which are flawed; FFmpeg+Quemu [10] with 13,428 samples and 43.68% flawed;
VDISC [8] with 68,398 samples and 46.38% flawed. The tool Joern1 is utilized
to create the AST and AST+ from source code and our AST+ corresponds the
code property graph of Joern.
1 https://github.com/joernio/joern.

https://github.com/joernio/joern

520 J. Groppe et al.

Table 2. Performance of models over the datasets

Model Graph Encoding Chromium+Debian FFmpeg+Quemu VDISC

Acc F1 Acc F1 Acc F1

codeAST AST code 92.01 30.20 55.36 57.01 77.82 75.57
3propASG ASG 3-Prop 92.34 44.97 60.35 62.30 81.27 79.86
codeAST+ AST+ code 90.89 25.86 58.38 46.66 75.67 74.49
3propASG+ ASG+ 3-Prop 92.34 44.59 57.04 62.99 80.94 79.63

Table 3. Memory need of three samples from Chromium+Debian

Hash (Code ID) #nodes #tokens code-based 3-prop. code-based /3-prop.

–6552851419396579257 4,409 33,659 59G 5.3M 11,220
2388171415474875762 7,012 54,157 152G 8.4M 18,052
5045872831385413038 12,077 96,805 468G 14.5M 32,268

Performance: We use 80% of the datasets as training data and 20% for val-
idation and evaluation. The models are trained with a batch size of 32 and a
learning rate of 0.001, and the Adam optimizer [4] is used to minimize the loss
function. Since much empirical evidence (e.g. [3]) has shown that the pre-trained
embeddings are not necessarily better than random initializations. Therefore,
we use the standard normal distribution N (0, 1) to initialize the embeddings
and train models with 10 different initializations. Table 2 presents the perfor-
mance of models with the best F1 values. The evaluation results show that the
DL models based on our graph structures (ASG and ASG+) and 3-property
encoding scheme outperform those based on existing graph structures (AST and
AST+) and code-based encoding over all the datasets. Among these datasets,
Chromium+Debian is extremely imbalanced and contains only 592 (6.92%) sam-
ples with vulnerability. Over this dataset, our models perform significantly well
with F1. These results are strong evidence that our techniques improve the abil-
ity of DL models to infer the functionality of code.

Memory Requirement: A huge advantage of our 3-property encoding is that
it has a very low memory footprint and can process very large code graphs
in comparison to the existing code-based encoding. In our experiments, an 8G
memory is enough to process all the data using the 3-property encoding. In
comparison, the code-based encoding requires as much as 560G memory. With
the 3-property encoding, the feature of each node is represented by only three
tokens. With the code-based encoding, the feature of each node is represented
by a piece of raw code. Although different pieces of code will create different
number of tokens and the minimal node could contain only one token, all nodes
are required to have the same number of tokens. This means that all the nodes
in a code graph finally consist of the maximal number of tokens.

Variables are a Curse in Software Vulnerability Prediction 521

Table 3 provides the memory footprint required by our 3-property encoding
and the existing code-based encoding for processing these samples. The compar-
ison shows that our encoding scheme can be up to 30,000 times more efficient
than the code-based encoding. This explains why existing works [1,10] only use
the code samples with a number of nodes less than 500.

4 Conclusions

In order to break the curse of variables, we introduce the edges of name depen-
dence and ASG extending AST with this new type of edges and suggest a 3-
property node encoding scheme based on the ASG. These techniques not only
allow us to represent the semantics of code without using its variable names but
also allow us to encode all nodes in a consistent way. The evaluation shows that
our techniques do improve the abilities of DL models to predict software vulner-
abilities. Furthermore, we also believe that the 3-property encoding will be also
a useful technique for many tasks in software analysis and software engineering.

References

1. Chakraborty, S., Krishna, R., Ding, Y., Ray, B.: Deep learning based vulnerability
detection: are we there yet. IEEE Trans. Softw. Eng. (2021)

2. Dam, H.K., Tran, T., Pham, T., Ng, S.W., Grundy, J., Ghose, A.: Automatic fea-
ture learning for vulnerability prediction. arXiv preprint arXiv:1708.02368 (2017)

3. Groppe, J., Schlichting, R., Groppe, S., Möller, R.: Deep learning-based classi-
fication of customer communications of a German utility company. In: Jain, S.,
Groppe, S., Bhargava, B.K. (eds.) Semantic Intelligence. LNEE, vol. 964, pp. 1–
16. Springer, Singapore (2023). https://doi.org/10.1007/978-981-19-7126-6_16

4. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

5. Li, Z., et al.: Vuldeepecker: a deep learning-based system for vulnerability detec-
tion. arXiv preprint arXiv:1801.01681 (2018)

6. Lin, G., et al.: Cross-project transfer representation learning for vulnerable function
discovery. IEEE Trans. Ind. Inf. 14(7), 3289–3297 (2018)

7. Pradel, M., Sen, K.: Deepbugs: a learning approach to name-based bug detection.
Proc. ACM Program. Lang. 2(OOPSLA), 1–25 (2018)

8. Russell, R., et al.: Automated vulnerability detection in source code using deep rep-
resentation learning. In: 17th IEEE International Conference on Machine Learning
and Applications (ICMLA), pp. 757–762 (2018)

9. Wang, S., Liu, T., Tan, L.: Automatically learning semantic features for defect
prediction. In: 38th International Conference on Software Engineering, pp. 297–
308 (2016)

10. Zhou, Y., Liu, S., Siow, J., Du, X., Liu, Y.: Devign: effective vulnerability identi-
fication by learning comprehensive program semantics via graph neural networks.
Adv. Neural Inf. Process. Syst. 32 (2019)

11. Zou, D., Wang, S., Xu, S., Li, Z., Jin, H.: Vuldeepecker: a deep learning-based sys-
tem for multiclass vulnerability detection. IEEE Trans. Dependable Secure Com-
put. 18(5), 2224–2236 (2019)

http://arxiv.org/abs/1708.02368
https://doi.org/10.1007/978-981-19-7126-6_16
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1801.01681

Feature Selection for Aero-Engine Fault
Detection

Amadi Gabriel Udu1,2 , Andrea Lecchini-Visintini3(B) , and Hongbiao Dong1

1 School of Engineering, University of Leicester, University Road, Leicester LE1 7RH, UK
2 Air Force Institute of Technology, PMB 2014, Kaduna, Nigeria

3 School of Electronics and Computer Science, University of Southampton, University Road,
Southampton SO17 1BJ, UK
alv1e22@soton.ac.uk

Abstract. Timely and accurate detection of aero-engine faults is crucial to pre-
venting loss of lives and equipment. In recent times, there has been a focus on
data-driven approaches to fault detection in aero-engines owing to the availabil-
ity of numerous sensor information which addresses the complexities of model-
based techniques. However, the increased use of sensors in aero-engines induces
problems relating to multicollinearity and high dimensionality in developing fault
detection models. Various feature selection approaches have been proposed for
tackling dimensionality problems, with each offering advantages based on the
peculiarity of the data. This study, therefore, investigates the use of feature-
selection approaches to address the dimensionality problems associated with aero-
engine data. Our study also reveals that careful evaluation of feature selection
approaches is effective in achieving earlier fault detection in aero-engines with
enhanced model performance.

Keywords: Feature Selection · Fault Detection · Aero-engine · Machine
Learning

1 Introduction

Within the last decade, engine related faults contributed at least 20% of all fatal aviation
accidents [1]. This has necessitated an increased focus on adopting improved mainte-
nance philosophies and development of models for predicting aero-engine faults [2].
Generally, two approaches for fault detection are reported in the literature; these include
model-based and data-driven approaches. Of the two approaches, the data-driven app-
roach can be easily applied to fault detection and has proven to offer high versatility
in locating and classing faults without the burden of modelling sophisticated systems
[3, 4]. Data-driven approach utilises data measured from positioned sensors and detects
faults based on the analysis of symptoms and prior knowledge of characteristics of a
healthy system.

There exist some inherent problems in building data-driven fault detection models
using aero-engine data. These include high dimensionality resulting from the increased

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C. Strauss et al. (Eds.): DEXA 2023, LNCS 14146, pp. 522–527, 2023.
https://doi.org/10.1007/978-3-031-39847-6_42

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-39847-6_42&domain=pdf
http://orcid.org/0000-0001-8944-4940
http://orcid.org/0000-0002-1654-8877
http://orcid.org/0000-0003-1244-0364
https://doi.org/10.1007/978-3-031-39847-6_42

Feature Selection for Aero-Engine Fault Detection 523

use of sensors, class imbalance due to lownumber of faults onoperational flights, anddata
sparsity resulting from malfunctioning transducers/sensors, among others. One of the
available approaches to addressing high dimensionality is feature selection. It involves
selecting a subset of relevant features from the original feature set that provides the most
significant information for model building. Accordingly, features that do not contribute
significantly or add noise to the model are removed. In certain cases this could help in
enhancing model performance, reducing computational cost involved in model training,
improving interpretability, and mitigating overfitting problems [5].

In this study, feature selection is explored as a means of addressing the problem of
high dimensionality inherent in aero-engine data and enhancing model performance.

2 Materials and Methods

2.1 Data Description

This study benefits from an aero-engine dataset taken from 10 x Lycoming IO-540
engines which have logged over 4,000 h in flying operations spanning a 5-year utilisation
period. There are 36 time-series sensor data which are presented in Table 1 from the
engines, with a total of 1,802 flights, which formed the primary data set. From these data,
120 s of the 4 critical flight segments (namely: take-off, climb, descent, and landing)
for each flight were retrieved and this formed the new dataset used in this study. These
segments are consistent in all flights and important for fault detection owing to the level
of stress exerted on the aero-engines during these periods. Also, most air accidents occur
during these segments [6].

Table 1. Some sensor information available from IO-540 aero-engine.

Sensor Parameters

Attitude Pressure altitude (ft), air speed (kts), angle of attack (o), pitch (o), vertical
speed (ft/min)

Category Exhaust gas temperature (EGT) mixture, power setting (%)

Electric
Fuel

Alternator contact (V), current (A), voltage (V), canopy contact (V)
Fuel level (gal) x 2, fuel remaining (gal), fuel flow (gal/hr), fuel contact (V),
fuel pressure (psi)

Pressure Manifold pressure (inHg), oil pressure (psi), barometer setting (inHg),

Speed Engine speed (rpm)

Temperature Cabin temperature (°C), cylinder head temperature (°C) x. 6, EGT (°C) x6, oil
temperature (°C), outside air temperature (oC)

2.2 Feature Extraction

Six features comprising three time-domain features - root mean square, skewness, and
kurtosis - and three frequency-domain features - mean frequency, median frequency,

524 A. G. Udu et al.

and spectral flatness - were extracted from the time-series data. Various studies have
established the usefulness of these features in building fault detection models [7, 8].
Also, the coefficients of quadratic fit of the four flight segments were computed and
taken as features. Subsequently, 8 features that exhibited infinite variance inflation factor
scores were removed. This transformed to 1,288 features for each flight.

As it is an operational aero-engine dataset, there exist a class imbalance of flights
where fault occurred on the aero-engine, as against normal flights without fault. Thus,
a binary classification problem was considered in the study, where Class 0, are flights
without fault occurrence (1,756 flights) and Class 1, represents flights where a fault
occurred (46 flights).

2.3 Feature Selection Methods

Two feature selection approaches are considered in the study, comprising sequential
feature selection (SFS) and feature importance (FI). SFS involves the iterative selection
of a subset of features from the original feature set, where the selected features are
used to train a model, and their performance is evaluated [9]. FI ranks the importance of
features in a dataset based on their estimated impact on the performance of anMLmodel
and is embedded in the 4 classifiers considered in this study [10]. FI scores are assigned
based on various factors such as the frequency of a feature being used to split the data in
decision-tree based models, and the impact of a feature on the model’s predictive ability
measured by coefficient magnitude, among others.

2.4 ML Algorithms

Four ensemble learners were considered in this study. These include random forest
(RF), adaptive boosting (AdaBoost), extreme gradient boosting (XGBoost) and light
gradient boost machine (LightGBM). These classifiers are robust to noise and handling
of high-dimensional/imbalanced datasets [11].

2.5 Evaluation Metrics

Being a typical class imbalance problem, where there are relatively few samples with
faults present, evaluation metrics such as accuracy do not give a reliable indication of the
model’s performance. Therefore, in this study, the area under curve (AUC) of the receiver
operator characteristics (ROC) curve and geometric mean were adopted to guarantee a
reliable assessment as they capture the varying aspects of model performance for class
imbalance problem [12].

3 Results and Discussion

3.1 Set-Up

Python libraries used for the major part of this study include NumPy, scikit-learn, and
SciPy. In computing features based on SFS, a forward selection was initiated with AUC-
ROC chosen as the scoring parameter. For FI, the importance scores were retrieved based
on decision trees of the four respective ML classifiers.

Feature Selection for Aero-Engine Fault Detection 525

Only the highest scoring 500 features were selected for both feature selection meth-
ods considered in the study, as subsequent features made no significant contributions to
model performance. Consequently, the selected features were stacked in rows with the
highest-ranking feature on the first row and the next highest-ranking feature appended on
the subsequent rows. This formed 500 rows of features with the first row containing only
the highest-ranked feature, the second row containing the two highest-ranked features,
and the last row containing 500 features.

Starting with the first row, each feature array was trained on the four respective ML
algorithms using 5-fold stratified k-fold cross validation. Finally, the array that produced
the maximum evaluation scores was retrieved. To determine the enhancement in model
performance resulting from the feature selection method considered, a control model
was also trained without feature selection.

3.2 Performance

Table 2 presents the performance scores for the fault detection models and the respective
flight segments where these features were selected. The highest performance values and
enhancement on eachmetrics are emphasised. The results show that feature selection led
to an enhancement inmodel performance for all cases considered. Furthermore, FI deliv-
ered comparatively higher performance scores than SFS across all models. The model
built on XGBoost had the highest AUC-ROC score of 0.972 using FI. The peak benefi-
ciaries from FI however were models built on AdaBoost and XGBoost algorithms with
corresponding AUC-ROC and G-mean enhancement of 0.332 and 0.299, respectively.

Comparatively, the models based on RF and LightGBM required fewer features to
achieve theirmaximumperformance scores than those based onAdaBoost andXGBoost.
For the control fault detection model where feature selection was not implemented (No
FS), the RF algorithm gave the maximum performance for AUC-ROC and G-mean,
respectively. TheAUCplots for the fault detectionmodels are presented inFig. 1. It is also

Table 2. Performance scores and features for fault detection models.

Model FS
method

AUC-ROC G-mean �

AUC-ROC
�

G-mean
No. of
features

Take-off Climb Descent Landing

RF No FS 0.834 0.770 1288 324 324 324 324

SFS 0.902 0.874 0.075 0.119 30 30 0 0 0

FI 0.938 0.890 0.111 0.135 66 19 18 18 11

AdaBoost No FS 0.646 0.660 1288 324 324 324 324

SFS 0.777 0.786 0.169 0.160 51 51 0 0 0

FI 0.967 0.920 0.332 0.283 141 31 40 35 35

XGBoost No FS 0.671 0.658 1288 324 324 324 324

SFS 0.855 0.809 0.215 0.187 216 65 57 65 29

FI 0.972 0.938 0.310 0.299 106 29 36 17 24

LightGBM No FS 0.796 0.740 1288 324 324 324 324

SFS 0.854 0.770 0.068 0.039 159 65 57 37 0

FI 0.962 0.922 0.173 0.197 45 10 12 9 14

526 A. G. Udu et al.

noted that for themodel based onRF, SFS requiredminimal number of features to deliver
AUC-ROC and G-mean scores of about 0.902 and 0.874 respectively. Additionally, the
features selected by SFS for RF and AdaBoost were taken from the take-off phase only.
This suggests an early fault detection using the SFS.

Fig. 1. AUC-ROC scores for fault detection models with (a) no feature selection, (b) sequential
feature selection, and (c) feature importance.

4 Conclusion and Future Work

In this study, two feature selection approaches namely sequential feature selection and
feature importance were adopted in developing fault detection models for aero-engines.
For both approaches, the features were computed using the cascade of features that
maximised model performance on each of the four machine learning algorithms con-
sidered in the study (i.e. RF, AdaBoost, XGBoost and LightGBM). The results indi-
cate that feature selection led to an enhancement in model performance for all cases
considered, with feature importance method delivering a comparatively higher perfor-
mance of the approaches considered. The study suggests that adopting sequential feature
selection with the appropriate machine learning algorithms could enable the early detec-
tion of faults in aero-engines. Future work could explore the use of feature selection
methods in addressing data sparsity resulting from malfunctioning transducers/sensors,
during aero-engine operation. This provides an alternative to the regular dropping of
“not-a-number” (nan) or missing values which characterises aero-engine data and often
alleviates penalties to fault detection model performance.

Declaration of Competing Interest. The authors have no conflict of interest to declare.

References

1. NTSB: Aviation accident database & synopses. Ntsb.Gov (2023). https://www.ntsb.gov/_lay
outs/ntsb.aviation/index.aspx

2. Patel, D., Zhou, N., Shrivastava, S., Kalagnanam, J.: Doctor for machines: a failure pattern
analysis solution for Industry 4.0. In: Proceedings 2020 IEEE International Conference Big
Data, Big Data 2020, pp. 1614–1623 (2020). https://doi.org/10.1109/BigData50022.2020.
9378369

https://www.ntsb.gov/_layouts/ntsb.aviation/index.aspx
https://doi.org/10.1109/BigData50022.2020.9378369

Feature Selection for Aero-Engine Fault Detection 527

3. Poon, J., Jain, P., Konstantakopoulos, I.C., Spanos, C., Panda, S.K., Sanders, S.R.: Model-
based fault detection and identification for switching power converters. IEEE Trans. Power
Electron. 32(2), 1419–1430 (2017). https://doi.org/10.1109/TPEL.2016.2541342

4. Naderi, E., Khorasani, K.: Data-driven fault detection, isolation and estimation of aircraft
gas turbine engine actuator and sensors. Mech. Syst. Signal Process. 100, 415–438 (2018).
https://doi.org/10.1016/j.ymssp.2017.07.021

5. Dhal, P., Azad, C.: A comprehensive survey on feature selection in the various fields of
machine learning. Appl. Intell. 52(4), 4543–4581 (2022). https://doi.org/10.1007/s10489-
021-02550-9

6. Boyd, D.D., Stolzer, A.: Accident-precipitating factors for crashes in turbine-powered general
aviation aircraft. Accid. Anal. Prev. 86, 209–216 (2016). https://doi.org/10.1016/j.aap.2015.
10.024

7. Burns, T., Rajan, R.: A mathematical approach to correlating objective spectro-temporal
features of non-linguistic soundswith their subjective perceptions in humans. Front. Neurosci.
13(Jul), 1–14 (2019). https://doi.org/10.3389/fnins.2019.00794

8. Patel, D., et al.: FLOps: on learning important time series features for real-valued prediction.
In: Proceedings 2020 IEEE International ConferenceBigData, BigData 2020, pp. 1624–1633
(2020). https://doi.org/10.1109/BigData50022.2020.9378499

9. Rückstieß, T., Osendorfer, C., van der Smagt, P.: Sequential feature selection for classification.
In: Wang, D., Reynolds, M. (eds.) AI 2011. LNCS (LNAI), vol. 7106, pp. 132–141. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-25832-9_14

10. Li, J., et al.: Feature selection: a data perspective. ACM Comput. Surv. 50(6), 1–45 (2017).
https://doi.org/10.1145/3136625

11. Bentéjac, Candice, Csörgő, Anna, Martínez-Muñoz, Gonzalo: A comparative analysis of
gradient boosting algorithms. Artif. Intell. Rev. 54(3), 1937–1967 (2020). https://doi.org/10.
1007/s10462-020-09896-5

12. Salim, R., Xizhao, W.: A broad review on class imbalance learning techniques. Appl. Soft
Comput. 143, 110415 (2023). https://doi.org/10.1016/j.asoc.2023.110415

https://doi.org/10.1109/TPEL.2016.2541342
https://doi.org/10.1016/j.ymssp.2017.07.021
https://doi.org/10.1007/s10489-021-02550-9
https://doi.org/10.1016/j.aap.2015.10.024
https://doi.org/10.3389/fnins.2019.00794
https://doi.org/10.1109/BigData50022.2020.9378499
https://doi.org/10.1007/978-3-642-25832-9_14
https://doi.org/10.1145/3136625
https://doi.org/10.1007/s10462-020-09896-5
https://doi.org/10.1016/j.asoc.2023.110415

Tracking Clusters of Links in Dynamic
Social Networks

Erick Stattner(B)

University of the French West Indies, Pointe-á-Pitre, France

erick.stattner@univ-antilles.fr

Abstract. In this work, we focus on the tracking of cluster of links,
called conceptual links, in dynamic networks. We seek to understand how
conceptual links appear and evolve during the network development. For
this purpose, we propose a set of measures to capture some behaviors
characterizing the evolution of these clusters. Our approach is used to
understand the evolution of the conceptual links extracted on two real
world networks: a scientific co-author network and a mobile communi-
cation network. The results obtained highlight significant trends in the
evolution of the conceptual links in these two networks.

Keywords: Social network analysis · Network dynamics · Clustering ·
Cluster tracking

1 Introduction

Several methods of network clustering have been proposed in recent years [3]. It
is interesting to note that these different approaches have allowed an evolution of
the notion of “clusters” in social networks. Indeed, whereas the first contributions
exploited only the structure of the networks to extract densely connected groups
of nodes, also called communities [4], more recent approaches have focused on
the extraction of more complex clusters defined both by their structure and by
the attributes of the nodes [8]. One of the recent network clustering approach
is the search for conceptual links [5]. This is a method that performs clusters of
links exploiting both network structure and node attributes in order to identify
frequent links between groups of nodes sharing common attributes.

However all these approaches make the assumption of static networks while
it is now accepted that the temporal dimension is an inherent part of these
structures [7]. Indeed, networks are living structures in which nodes and links
may appear or disappears [2,6] to undergo significant structural changes.

In this work, we focus on the tracking of conceptual links in dynamic net-
works. More particularly, we seek to understand how conceptual links appear
and evolve during the network development. For this purpose, we propose a set
of measures to capture some behaviours characterizing the evolution of these
clusters, namely the transitions that occur inside these clusters. Our approach
has been used on two real world networks: a scientific co-author network and a
mobile communication network. The results obtained highlight significant trends
in the evolution of the conceptual links in these two networks.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C. Strauss et al. (Eds.): DEXA 2023, LNCS 14146, pp. 528–533, 2023.
https://doi.org/10.1007/978-3-031-39847-6_43

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-39847-6_43&domain=pdf
http://orcid.org/0000-0001-7371-9620
https://doi.org/10.1007/978-3-031-39847-6_43

Tracking Clusters of Links in Dynamic Social Networks 529

2 Clusters of Links in Social Networks

Let us introduce G = (V,E) a network, in which V is the set of nodes (vertexes)
and E the set of links (edges) with E ⊆ V × V .
V is defined as a relation R(A1, ..., Ap) where each Ai is an attribute. Thus, each
vertex v ∈ V is defined by a tuple (a1, ..., ap) where ∀q ∈ [1..p], v(Aq) = aq, the
value of the attribute Aq in v.
An item is a logical expression A = x where A is an attribute and x a value.
The empty item is denoted ∅. An itemset is a conjunction of items for instance
A1 = x and A2 = y. An itemset which is a conjunction of k non empty items is
called a k-itemsets. We denote IV the set of all itemsets built from V .

Thus, for any itemset m in IV , we denote Vm the set of nodes in V that
satisfy m and we define:

– the m-left-hand linkset LEm as the set of links in E that start from nodes
satisfying m, i.e. nodes in Vm with LEm = {e ∈ E ; e = (a, b) a ∈ Vm}

– the m-right-hand linkset REm as the set of links in E that arrive to nodes
satisfying m, i.e. nodes in Vm with REm = {e ∈ E ; e = (a, b) b ∈ Vm}

Definition 1. Conceptual link. For any two itemsets m1 and m2 in IV , the
conceptual link (m1,m2) of G is the cluster of links connecting nodes in Vm1 to
nodes in Vm2 (as shown on Fig. 1).
For instance, if m1 is the itemset cd and m2 is the itemset efj, the conceptual
link (m1,m2) = (cd, efj) includes all links in E between nodes in V that satisfy
the property cd with nodes in V that satisfy the property efj. Thus, |(m1,m2)|
gives the number of links connecting nodes in Vm1 to nodes in Vm2 . Let LV be
the set of conceptual links of G = (V,E) and (m1,m2) be any element in LV .

(m1,m2) = LEm1 ∩ REm2 = {e ∈ E ; e = (a, b) a ∈ Vm1 and b ∈ Vm2} (1)

Vm1 Vm2

Fig. 1. Example of conceptual link extracted between m1 and m2

Definition 2. Support of conceptual link. We call support of any element
l = (m1,m2) in LV , the proportion of links in E that belong to l.

supp(l) =
|(m1,m2)|

|E| (2)

Definition 3. Frequent Conceptual Link. Given a real number β ∈ [0..1], a
conceptual link l in LV is frequent if its support is greater than a minimum link
support threshold β,

supp(l) > β (3)

530 E. Stattner

3 Methodology for Tracking Clusters of Links

Our objective is to track the evolution of the clusters of links during the evolution
of the network. As depicted on Fig. 2 we have adapted the rules used in order to
track traditional communities in social networks [1] to conceptual links.

Time t

Time t+1 ø

ø

Survival Division Fusion Appearance Disappearance

Fig. 2. Transitions that may occur on a conceptual link

More precisely, let L = E(m1,m2) and L′ = E(m′
1,m

′
2) be two clusters

of links extracted at successive states of the network. We define the similarity
between L and L′ as being the amount of links shared by these two sets.

sim(L,L′) = min

(|L ∩ L′|
|L| ,

|L ∩ L′|
|L′|

)
(4)

This measurement is between 0 and 1 and provides knowledge on the size of
the intersection between L and L′. If it is equal to 0, it indicates that the sets
are disjoint, while a value close to 1 indicates that the clusters are very close.

In this way, from this notion of similarity, we define the transitional behaviors
that characterize the changes that may occur on a conceptual link between the
state Gt of the network and its state Gt+1. Typically, let L be a cluster of links
extracted from Gt, we introduce match(L) as the set of conceptual links L′ in
Gt+1 whose the intersection with L is greater than a certain threshold, that is to
say whose the similarity with L exceeds the given threshold. In our experiments
the threshold is set to 0.75.

If there is no such cluster in Gt+1 we have match(L) = ∅, namely no cluster
in Gt+1 is identified as being sufficient similar to L in Gt. Thus by exploit-
ing match(L), we use a set of rules to identify each of the evolution behaviors
depicted in Fig. 2.

– Fusion: L in Gt merges with other conceptual links of Gt to form L′ in Gt+1

if L′ ∈ match(L) and ∃Z �= L in Gt such as L′ ∈ match(Z).
– Division: L in Gt divides in several conceptual links L′

1, L
′
2, ...L

′
k in Gt+1,

if ∀i, L′
i ∈ match(L).

– Survival: L in Gt becomes L′ in Gt+1,
if L′ ∈ match(L) and ∀Z �= L in Gt, L′ /∈ match(Z).

– Disappearance: L in Gt disappears, if none of the above cases occur.
– Appearance: L in Gt appears, if ∀L in Gt, L′ /∈ match(L)

Finally, note that the fusion and division events are not disjoint. Indeed one part
of a cluster may be involved in a merging process while another part may be
involved in a division.

Tracking Clusters of Links in Dynamic Social Networks 531

4 Experimental Results

We have applied our approach to two dynamic networks having different nature.

(i) A collaboration network, that represents the co-writing links of the scien-
tific articles published at the conference EGC (Extraction and Knowledge
Management) from 2004 to 2015. The network went from 140 nodes to 1400
nodes from 2004 to 2015, while the links went from 340 to 2500 over the
same period.

(ii) A mobile communications network that represents the phone calls made by
subscribers of a local mobile phone operator on the 1st of June 2009 from
5am to 3pm. The number of nodes varies from about 7000 to 250000 on the
study period, while the number of links varies from about 7000 to 250000.

It should be noted that these networks only grow during their development; no
link or node is removed from the network.

In a first step, we have studied the fraction of appearance and disappearance
for both networks (see Fig. 3) between the states Gt and Gt+1 of the network.

Appearance Disappearance

C
o -

A
ut

ho
r

Te
le

co
m

m
un

ic
at

io
ns

0

0,2

0,4

0,6

0,8

1
β = 0,2
β = 0,3
β = 0,4

0

0,2

0,4

0,6

0,8

1

06
:0

0

07
:0

0

08
:0

0

09
:0

0

10
:0

0

11
:0

0

12
:0

0

13
:0

0

14
:0

0

15
:0

0

β = 0,2
β = 0,3
β = 0,4

0

0,2

0,4

0,6

0,8

1

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

β = 0,2

β = 0,3

β = 0,4

0

0,2

0,4

0,6

0,8

1

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

β = 0,2
β = 0,3
β = 0,4

Fig. 3. Appearance and Disappearance rates in both networks

We observe that during the first moments of the study, 100% of the clusters
are identified as appearances. This can be explained by the fact that, at the
beginning of the study, the clusters are volatile because of the small amount
of data that do not reflect strong tendencies. A similar observation can also be
made if we focus on the rate disappearance that is 100% during the first moments
of the study. However, after a certain period of study, we observe a decrease in
the rate of appearances and disappearances.

532 E. Stattner

0
0,1
0,2
0,3
0,4
0,5
0,6

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

β = 0,2
β = 0,3
β = 0,4

(a)

0
0,1
0,2
0,3
0,4
0,5
0,6

06
:0

0

07
:0

0

08
:0

0

09
:0

0

10
:0

0

11
:0

0

12
:0

0

13
:0

0

14
:0

0

15
:0

0

β = 0,2
β = 0,3
β = 0,4

(b)

Fig. 4. Survival rate in (a) co-author network and (b) communication network

These results suggest that on these two networks, after a certain period
of data accumulation, the tendencies tend to be confirmed from one state to
another, which lead to a decrease in the rates of appearance and disappearance.

In order to understand what happens to these clusters that do not to disap-
pear, we focused on the survival rate on both networks. Figure 4(a) shows the
results on the co-author network and Fig. 4(b) on the communication network.

Unlike previous results, the trends are different according to the datasets.
Whatever is the support threshold used the co-author network has a negligible
fraction of clusters that survive. The survival rate is always lower than 10% over
the study period. However, the survival rate varies according to the support
threshold and grows with the time on the communication network.

The results show that on some datasets, although clusters do not disappear,
we also do not observe significant survival rates between two successive states
of the network. This suggests that these clusters are only maintained through
fusion and division behavior.

Fusion Division

C
o-

A
ut

ho
r

Te
le

co
m

m
un

ic
at

io
ns

0

0,2

0,4

0,6

0,8

1

06
:0

0

07
:0

0

08
:0

0

09
:0

0

10
:0

0

11
:0

0

12
:0

0

13
:0

0

14
:0

0

15
:0

0

β = 0,2
β = 0,3
β = 0,4

0

0,2

0,4

0,6

0,8

1

06
:0

0

07
:0

0

08
:0

0

09
:0

0

10
:0

0

11
:0

0

12
:0

0

13
:0

0

14
:0

0

15
:0

0

β = 0,2
β = 0,3
β = 0,4

0

0,2

0,4

0,6

0,8

1

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

β = 0,2
β = 0,3
β = 0,4

0

0,2

0,4

0,6

0,8

1

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

β = 0,2
β = 0,3
β = 0,4

Fig. 5. Fusion and Division rates in both networks

Tracking Clusters of Links in Dynamic Social Networks 533

Finally, if we focused on the fusion and division rates (Fig. 5), we can observe
that the large majority of transitions that take place in the co-author network
appear to be fusions and divisions of clusters (we remind that these two events
are not disjoint). On the communication network, the rates of fusion and division
also remain important, but vary according to the support threshold β.

Thus this result suggests that, on these two networks, a certain accumulation
time is necessary to identify strong and tenacious clusters, which only evolve by
mixing with the others in fusion and division processes.

5 Conclusions and Future Directions

In this paper, we have proposed a methodology to track cluster of links in
dynamic networks. The contributions of this paper can be summarized as follows.
(i) We identified five transitions that could take place on the clusters between
two states of the network and introduced the notion of similarity to formally
describe these transitions. (ii) Our method has been implemented and tested on
two social networks experiencing significant changes in their structure over time.
(iii) The results have highlighted significant trends in cluster evolutions.

In perspective, we plan to apply our approach to other datasets in order to
confirm the observed trends or identify new ones.

References

1. Aynaud, T., Fleury, E., Guillaume, J.L., Wang, Q.: Communities in evolving net-
works: definitions, detection, and analysis techniques. In: Mukherjee, A., Choudhury,
M., Peruani, F., Ganguly, N., Mitra, B. (eds.) Dynamics on and of Complex Net-
works. Modeling and Simulation in Science, Engineering and Technology, vol. 2, pp.
159–200. Springer, New York (2013). https://doi.org/10.1007/978-1-4614-6729-8 9

2. Calabrese, F., Smoreda, Z., Blondel, V.D., Ratti, C.: Interplay between telecom-
munications and face-to-face interactions: a study using mobile phone data. PLoS
ONE 6(7), e20814 (2011)

3. Fortunato, S.: Community detection in graphs. Phys. Rep. 486, 75–174 (2010)
4. Newman, M.E., Girvan, M.: Finding and evaluating community structure in net-

works. Phys. Rev. E 69(2), 026113 (2004)
5. Stattner, E., Collard, M.: Social-based conceptual links: conceptual analysis applied

to social networks. In: International Conference on Advances in Social Networks
Analysis and Mining (2012)

6. Stehle, J., et al.: High-resolution measurements of face-to-face contact patterns in
a primary school. PloS One 6(8), e23176 (2011)

7. Toivonen, R., Kovanen, L., Kivela, M., Onnela, J., Saramaki, J., Kaski, K.: A
comparative study of social network models: network evolution models and nodal
attribute models. Social Networks 31, 240–254 (2009)

8. Yang, J., McAuley, J., Leskovec, J.: Community detection in networks with node
attributes. In: 2013 IEEE 13th International Conference on Data Mining (ICDM),
pp. 1151–1156. IEEE (2013)

https://doi.org/10.1007/978-1-4614-6729-8_9

Mind in Action: Cognitive Assessment
Using Action Recognition

Sayda Elmi1,2(B), Sai Karthik Navuluru2, and Morris Bell1

1 School of Medicine, Yale University, New Haven, USA
{saida.elmi,morris.bell}@yale.edu

2 University of New Haven, West Haven, USA
snavu3@unh.newhaven.edu

Abstract. Human action recognition aims at extracting features on top
of human skeletons and estimating human pose. It has received increas-
ing attention in recent years. However, existing methods capture only
the action information while in a real world application such as cog-
nitive assessment, we need to measure the executive functioning that
helps psychiatrists to identify some mental disease such as Alzheimer,
Schizophrenia and ADHD. In this paper, we propose a skeleton-based
action recognition named Mind-In-Action (MIA) for cognitive assess-
ment. MIA integrates a pose estimator to extract the human body joints
and then automatically measures the executive functioning employing
the distance and elbow angle calculation. Three score functions were
designed to measure the executive functioning: the accuracy score, the
rhythm score and the functioning score. We evaluate our model on two
different datasets and show that our approach significantly outperforms
the existing methods.

Keywords: Mental health · Embodied cognition · executive
functioning · ADHD · Alzheimer · Action recognition · Skeleton
extraction

1 Introduction

Human action recognition, as a central task in video analyses, becomes increas-
ingly crucial and has received an important attention in recent years. Moreover,
existing studies have shown promising progress on pose estimation [1,3]. To fully
describe the spatial configurations and temporal dynamics in human actions,
skeleton-based representations have been used for human action recognition, as
human skeletons provide a compact data form to extract dynamic features in
human body movements [8]. In practice, human skeletons in a video are mainly
represented as a sequence of joint coordinate lists. Many action recognition tech-
niques [12–15] have shown great performance on public benchmarks, where the
body joint coordinates are extracted by pose estimators. However, such per-
formance is not necessarily replicated in real-world scenarios, where the data
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C. Strauss et al. (Eds.): DEXA 2023, LNCS 14146, pp. 534–539, 2023.
https://doi.org/10.1007/978-3-031-39847-6_44

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-39847-6_44&domain=pdf
https://doi.org/10.1007/978-3-031-39847-6_44

Mind in Action: Cognitive Assessment Using Action Recognition 535

comes from specific application requirements. The specific real-world applica-
tion that we are focusing on in this paper is cognitive assessment in adults and
children using cognitively demanding physical tasks. In addition, in the existing
state-of the-art, only the pose information is extracted and skeleton sequences
capture only action information while in a real world application such as cog-
nitive assessment, we need to measure executive functioning in addition to the
pose estimation.

Cognitive impairments, represented by inattention, laziness, hyperactivity or
acting impulsively, lack of motivation and being forgetful, are commonly found
among children and adults. According to [2,16], Attention Deficit/Hyperactivity
Disorder (ADHD) is a psychiatric neurodevelopmental disorder that is very hard
to diagnose. In fact, symptoms for ADHD arise from a primary deficit in exec-
utive functions [10]. Embodied cognition is a well established construct [18],
recognizing that mental functioning involves brain and body working together
and cognition develops along with and by way of physical movement. Better
measures of cognition that closely relate to individual functioning and predict
disability are sorely needed to provide proper remedial intervention at the appro-
priate time [11]. As measures of embodied cognition, two cognitive games can
be used: (i) the Cross-Your-Body (CYB) game can provide sufficient psychome-
tric observations and can be used as a measure of behavioral self-regulation. As
shown in [11], the game is significantly related to cognitive flexibility, inhibitory
control and working memory. The game has four trials with up to four paired
behavioral rules: “touch your ears”, “touch your shoulders”, “touch your hips”
and “touch your knees”. Subjects first respond naturally, and then are instructed
to switch rules by responding in the “opposite” way (e.g., touch their knees when
told to touch their ears) and (ii) the Traffic-Lights Game (TLG), which is one of
the core tasks with higher cognitive demand, is an attention and response inhibi-
tion task. It is similar to computerized continuous performance tests that assess
sustained attention and response inhibition but is more complex and requires
rhythmic upper body movement in response to commands. The participant is
asked to pass a juggling ball (or any other object) from one hand to the other
in rhythm to the words “Green Light”, to move the ball up and down to the
words “Yellow Light” and to not pass the ball when the participant hears “Red
Light”. The task is subsequently repeated at a faster pace in different trials.
The participant is then presented with the same task but using a sequence of
pictures of green, red, and yellow traffic lights as visual cues, rather than the
spoken cues, thus allowing for comparison between sensory modalities in audio
and visual trials. The Traffic-Lights-Game can provide sufficient psychometric
observations and can be used as a measure of behavioral self-regulation. The
game has four trials and the subjects are expected to perform the sequential
movement for every count/beat provided by the therapist. Then, they are eval-
uated by three scores: (i) Action Score: helps to evaluate the working memory
and represents the total number of correct actions, (ii) Rhythm Score: helps to
evaluate the coordination and self-regulation and represents the total number of
correct rhythms, accurately keeping the beat. Starting late and rushing to catch

536 S. Elmi et al.

the beat is not correct and (iii) Functioning Score: helps to evaluate the execu-
tive functioning and represents the total number of correct actions in rhythm.
Monitoring such a task and scoring it manually is tiresome and requires constant
attention from the therapists.

In this paper, inspired by the success of the computer vision tools for action
recognition and human skeleton extraction, we investigate how to apply a deep
learning model to monitor cognitive abilities, which helps with identifying cog-
nitive impairments.

Fig. 1. Overview of the proposed architecture.

2 MIA: Model Overview

2.1 Problem Formulation

In this section, we first introduce the key data structures used in this paper
and formally define our problem. Following the convention, we use capital let-
ters (e.g., X) to represent both matrices and graphs, and use squiggle capital
letters (e.g., X) to denote sets. Human action recognition requires to temporally
segment allframes of a given video. We first extract a set of temporal regions of
interest X where X = Xi,i∈{1..K}. Then, we predict the action in each tempo-
ral region of interest Xi,i∈{1..K} and calculate a set of cognitive scores S where
S = {ϕA, ϕR, ϕF } and ϕA, ϕR, ϕF are the action, rhythm and functioning scores,
respectively. The task can be formulated as follows:

Given K temporal regions of interest X, each Xi,i∈K is a sequence of D-
dimensional features where Xi,i∈K = (x1, . . . , x|Xi|) and xj,j∈{1..|Xi|} ∈ R

D, the
task is to infer the sequence of frame-wise action labels Yi,i∈K = (y1, . . . , y|Yi|)
and there are C action classes C where C = {1, . . . , C} and yj,j∈{1..|Yi|} ∈ C.
A set of cognitive scores S is calculated for every Yi for K temporal regions of
interest.

Mind in Action: Cognitive Assessment Using Action Recognition 537

2.2 Model Architecture

As shown in Fig. 1, inspired by [4], the architecture of MIA comprises four major
modules which are:

– Temporal regions of interest extraction: Given a trial video, a temporal region
of interest (TRI) is defined as the trial segment where the subject is told to
do an action. TRI is denoted by Xi,i∈K where K in the total number of TRIs
in the video.

– Human skeleton joints extraction: For the joint localization problem on RGB
data, we explored various existing state-of-the-art methods and decided on
using the deep-learning architecture proposed in [13]. While some of the other
pre-trained models works well with upper-body pose [6] and useful for certain
other applications, our problem requires an efficient and accurate pose esti-
mator for full-body human joint. In particular, we build upon the GCN model
[13] providing highly accurate results regarding the relative position of human
body-joints. We choose to use the pose estimator model stated above as it is
the current state-of-the-art pose estimator for multi-person pose estimation.

– Human action recognition: Based on the Traffic-Lights task, there are a total
of three classes, i.e., |C| = 3, as represented in Fig. 1 where class1: hands are
in the initial position at the same level, when the subject is told “Red-Light”,
class2: one hand goes up and down when the subject is told “Yellow-Light”,
class3: one hand is up and ready to pass the ball (or other object) to the
other hand.

– Cognitive scoring module: The scoring protocol was created by the psy-
chologist experts and specifies 3 cognitive scores S = {ϕA, ϕR, ϕF } where
ϕA, ϕR, ϕF represent action, rhythm and function scores, respectively and
they are defined as the amount of times that the subject performs the correct
action and reflects how the subject follows the instructions in rhythm.

3 Experimental Evaluation

In our experiment, we collected data from a broad range of people who are
healthy or clinically well characterized and when possible have had conventional
cognitive assessments. The adult data collection covers the life-span from 11 year
to 90 years. We collected RGB data from 35 participants that are recruited
to follow the instructions provided by the music video and perform the task
sequences for 4 trials with a total of around 150 videos. Traffic-Light task was
performed twice for a sub-sample, approximately 2 weeks apart. Motion capture
data were collected and then converted into cognitive scores.

Our MIA model aims to predict three cognitive scores, i.e., ϕA, ϕR and
ϕF . We measure our method by Root Mean Square Error (RMSE) and Mean
Absolute Error (MAE) for each of our predicted cognitive scores as follows:

RMSE =

√
1
nΣn

t=1

(
s − ϕ(Y)t

)2

and MAE = 1
nΣn

t=1|s − ϕ(Y)t| where ϕ(Y)

538 S. Elmi et al.

Table 1. Evaluation of MIA model in terms of RMSE and MAE

Method Adult Data-set

Action Score Rhythm Score Function Score

RMSE MAE RMSE MAE RMSE MAE

DTGRM 1.652 0.791 1.521 1.192 0.101 0.498

MSTCN++ 1.532 0.738 1.422 1.132 0.925 0.412

ASRF 1.743 0.818 1.635 1.254 1.132 0.52

MSTCN 2.051 1.215 1.982 1.458 1.532 0.891

MIA 1.312 0.635 1.198 0.912 0.707 0.250

and s are the predicted score value and real score value, respectively; n is the
number of all predicted score values.

For the first three trials, the subjects are required to follow the audio instruc-
tions, but for the last trial, the challenge becomes cognitively demanding as they
are told to follow visual instructions showing green, yellow and red traffic lights.
In the following, we evaluate the performance of our MIA model in terms of
accuracy of the predicted cognitive scores. The results on four trials were used
to evaluate the accuracy, reported in Table 1.

Four deep learning-based methods are used to evaluate our proposed model
MIA: (i) MSTCN [5]: introduces an auxilliary self-supervised task to find cor-
rect and in-correct temporal relations in videos using smoothing loss to avoid
over-segmentation errors, (ii) DTGRM [17]: uses Graph Convolution Networks
(GCN) and to model temporal relations in videos. It has the ability for effi-
cient temporal reasoning, (iii) MSTCN++ [9]: is an improvement over MSTCN
where the system generates frame level predictions using a dual dilated layer
that combines small and large receptive field and (iv) ASRF [7]: alleviates over-
segmentation errors by detecting action boundaries. Table 1 shows the compar-
ative performances for MSTCN, DTGRM, MSTCN++, ASRF and MIA for
different predicted cognitive scores. On Adult data-sets, MSTCN++ shows a
better performance against DTGRM and ASRF while MIA has the best perfor-
mance comparing to other models, being immune to contextual nuisances, such
as background variation and lighting changes.

4 Conclusion

This paper proposes a deep learning based action recognition method for eval-
uating and monitoring cognitive abilities of human subjects. We deploy a deep
learning architecture to analyze human activity and provide informative mea-
sures to the experts regarding the performance of the subject, i.e., cognitive
scores.

Mind in Action: Cognitive Assessment Using Action Recognition 539

References

1. Chen, Y., Zhang, Z., Yuan, C., Li, B., Deng, Y., Hu, W.: Channel-wise topology
refinement graph convolution for skeleton-based action recognition. In: ICCV, pp.
13359–13368 (2021)

2. Cormier, E.: Attention deficit/hyperactivity disorder: a review and update. J. Pedi-
atr. Nurs. 23(5), 345–357 (2008)

3. Duan, H., Zhao, Y., Chen, K., Lin, D., Dai, B.: Revisiting skeleton-based action
recognition. In: CVPR (2022)

4. Elmi, S., Bell, M., Tan, K.L.: Deep-Cogn: skeleton-based human action recognition
for cognitive behavior assessment. In: IEEE 34th ICTAI, pp. 692–699 (2022)

5. Farha, Y.A., Gall, J.: MS-TCN: multi-stage temporal convolutional network for
action segmentation. In: IEEE CVPR, pp. 3575–3584 (2019)

6. Gattupalli, S., Ghaderi, A., Athitsos, V.: Evaluation of deep learning based pose
estimation for sign language recognition. In: PETRA, p. 12. ACM (2016)

7. Ishikawa, Y., Kasai, S., Aoki, Y., Kataoka, H.: Alleviating over-segmentation errors
by detecting action boundaries. In: IEEE WACV, pp. 2321–2330. IEEE (2021)

8. Johansson, G.: Visual perception of biological motion and a model for its analysis.
Percept. Psychophysics 14(2), 201–211 (1973)

9. Li, S.J., AbuFarha, Y., Liu, Y., Cheng, M.M., Gall, J.: MS-TCN++: multi-stage
temporal convolutional network for action segmentation. CoRR, abs/2006.09220
(2020)

10. McClelland, M.M., Cameron, C.E.: Self-regulation in early childhood: improving
conceptual clarity and developing ecologically valid measures. Child Dev. Perspect.
6(2), 136–142 (2012)

11. McClelland, M.M., et al.: Predictors of early growth in academic achievement: the
head-toes-knees-shoulders task. Front. Psychol. 5(2), 599 (2014)

12. Song, Y.-F., Zhang, Z., Shan, C., Wang, L.: Stronger, faster and more explainable:
a graph convolutional baseline for skeleton-based action recognition. In: MM, pp.
1625–1633. ACM (2020)

13. Song, Y.F., Zhang, Z., Shan, C., Wang, L.: Constructing stronger and faster base-
lines for skeleton-based action recognition. IEEE Trans. Patterns Pattern Anal.
Mach. Intell. 45, 1474–1488 (2021)

14. Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning
for human pose estimation. In: CVPR, pp. 5693–5703 (2019)

15. Tran, D., Wang, H., Torresani, L., Feiszli, M.: Video classification with channel-
separated convolutional networks. In: ICCV, pp. 5552–5561 (2019)

16. Tucha, O.: The history of attention deficit hyperactivity disorder. ADHD Attention
Deficit Hyperactivity Disord. 2(4) (1999)

17. Wang, D., Hu, D., Li, X., Dou, D.: Temporal relational modeling with self-
supervision for action segmentation. CoRR, abs/2012.07508 (2020)

18. Wilson, A.D., Golonka, S.: Embodied cognition is not what you think it is. Front.
Psychol. 12(2) (2013)

Author Index

A
Ahmed, Sabbir II-134
Ahn, Jinhyun II-289
Alhamzeh, Alaa II-65
Alizadeh Mansouri, Ali I-114
Alves, Marco A. Z. I-213
Aly Abdelkader, Gelany II-3, II-438
Amrouche, Karima I-377
Andrzejewski, Witold I-164
Anik, Md Tanvir Alam II-82
Auer, Dagmar I-431
Auer, Sören I-508

B
Bang, YunQi II-310
Bębel, Bartosz I-164
Becker, Ilja II-126
Bedo, Marcos I-68
Beecks, Christian II-423
Bell, Morris I-534
Bellatreche, Ladjel I-345, I-408
Belmerabet, Islam II-445
Bhuyan, Monowar I-266
Boiński, Paweł I-164
Boukhetta, Salah Eddine I-377
Braghetto, Kelly Rosa I-179
Bressan, Stéphane I-259, I-332, II-469
Brnawy, Rahmah II-337
Broneske, David I-243
Bu, Chenyang II-18

C
Canadè, Luigi I-84
Cao, Huayang I-52
Carvalho, Luiz Olmes I-68
Chang, Qiong II-33
Chavelli, Félix I-259
Chen, Fangshu II-347
Chen, Lifei II-378
Chen, Peng II-331
Chen, Xi II-119

Chen, Xin I-462
Chia, Chong Cher I-445
Cuzzocrea, Alfredo I-84, II-445

D
D’Souza, Jennifer I-508
de Almeida, Eduardo C. I-213
De Nicola, Antonio I-493
de Oliveira, Daniel I-68
Dekker, Romany II-173
Ding, Chen II-445
Dominico, Simone I-213
Dong, Bingbing II-18
Dong, Hongbiao I-522
Dong, Yuyang II-258
Du, Qingfeng II-113

E
El Ahdab, Lea I-437
Elmi, Sayda I-534, II-295

F
Fan, Xing I-298
Farouzi, Abir I-345, I-408
Feigel, Janusz I-243
Feng, Xiaoyue I-304
Ferdous, Imam Ul II-203
Ferré, Sébastien I-361
Formica, Anna I-493
Fornari, Giulia I-84
Fournier-Viger, Philippe I-186
Frasincar, Flavius II-173
Fukumoto, Fumiyo II-143, II-158

G
Gatto, Vittorio I-84
Ge, Xiaodong I-424
Giannakos, Aristotelis I-186
Gidiglo, Prince Delator II-438
Gielisse, Danae II-173

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2023
C. Strauss et al. (Eds.): DEXA 2023, LNCS 14146, pp. 541–544, 2023.
https://doi.org/10.1007/978-3-031-39847-6

https://doi.org/10.1007/978-3-031-39847-6

542 Author Index

Gong, Mingkang I-392
Govan, Rodrigue I-186
Groppe, Jinghua I-516
Groppe, Sven I-516
Guo, Chaopeng I-304
Guo, Yi I-392

H
Hafsaoui, Abderraouf I-84
Han, Yongqi II-113
Hang, Haitian I-197
Hao, Qingbo II-457
Haque, Md. Samiul II-203
Hofer, Daniel I-431
Hofstedt, Petra II-126
Hrou, Moussab I-508
Hu, Chuan I-338, I-424
Hu, Xinrong I-392
Huang, Liting II-451
Huang, WenJie II-430
Huang, Xiaoxi II-158
Hüwel, Jan David II-423

I
Im, Dong-Hyuk II-289
Islam, Md. Rakibul II-209
Islam, Saima Sharleen II-203
Ito, Yuki I-326
Iwaihara, Mizuho II-363

J
Jaggan, Chaya II-173
Javadtalab, Abbas I-114
Jiang, Ting II-219
Jiao, Tianzhe I-304
Jie, Song I-304

K
Kasahara, Hidekazu I-478, II-49
Kawagoshi, Jun II-258
Kayem, Anne V. D. M. II-209
Khaleel, Mohammed II-310
Khoo, Zi-Yu II-469
Kim, Jeong-Dong II-3, II-438
Kiran, Rage Uday I-352
Komamizu, Takahiro II-188
Kong, Weixin II-274
Kuang, Xiaohui I-52
Kukowski, Michal II-245

Kumar, Gaurav I-266
Küng, Josef I-431

L
Lauw, Hady W. I-445
Le, Nguyen Minh II-331
Lecchini-Visintini, Andrea I-522
Lee, Hyun II-3
Lee, Taewhi II-289
Lee, Xiaodong I-147
Lenard, Ben I-129, I-281
Li, Dan II-393
Li, Jiyi II-143
Li, Jun II-393
Li, Keqi II-451
Li, Meng II-347
Li, Taihao I-310
Li, Tianyang II-18
Li, Ying I-147
Li, Yunqian II-393
Likhitha, Palla I-352
Liu, Junping I-392
Liu, Lanzhong I-99
Liu, Shizheng I-462
Liu, Xiaofang I-298
Löffler, Sven II-126
Long, Yin I-99
Low, Jonathan Sze Choong I-259, II-469
Lu, Jincheng I-462

M
Ma, Jiasheng II-230
Ma, Qiang I-326, I-478, II-49
Macyna, Wojciech II-245
Maekawa, Takeyuki I-478
Malki, Mimoun I-408
Mao, Along I-338
Mecharnia, Thamer I-377
Megdiche, Imen I-437
Meijers, Sander II-173
Meinel, Christoph II-209
Mele, Ida I-493
Meng, Xiankai II-347
Miah, M. Saef Ullah II-203
Missikoff, Michele I-493
Miyazaki, Jun II-33
Mohamed, Aya I-431
Möller, Ralf I-516
Moritake, Sotaro II-49

Author Index 543

Motallebi, Mohammad II-82
Mubarak, Sameera II-134

N
Nabti, Chems Eddine I-377
Nadschläger, Stefan I-431
Nault, Zachary I-129
Navuluru, Sai Karthik I-534
Nepomuceno, Pedro Ivo Siqueira I-179
Ngnamsie Njimbouom, Soualihou II-3
Njimbouom, Soualihou Ngnamsie II-438
Nozawa, Takuma II-258

O
Oh, Tae-Jin II-438
Ordonez, Carlos I-345, I-408

P
Palpanas, Themis I-147
Peng, Botao I-147
Peninou, Andre I-437
Pershey, Eric I-129
Piewek, Jan I-243

Q
Qian, Cheng I-52
Qiang, Ma II-331
Qiao, Xueting II-219

R
Rashno, Elyas II-98
Rasin, Alexander I-129, I-281
Ren, Hao I-338
Roy, Debashish II-445

S
Saadeh, Angelo I-332
Saake, Gunter I-243
Sahoo, Kshira Sagar I-266
Sang, Yingpeng I-228
Santos, Lúcio F. D. I-68
Sarwar, Talha Bin II-203
Sasaki, Yuta I-37
Scope, Nick I-281
Seba, Hamida I-377
Selmaoui-Folcher, Nazha I-186
Senellart, Pierre I-332
Shen, Qi II-463
Shen, Zhihong I-338, I-424

Shin, Jihwan II-289
Shiraishi, Yuhki I-37
Shiri, Nematollaah I-114, II-337
Song, Yeji II-289
Souza, Vinícius I-68
Stattner, Erick I-528
Sulaiman, Junaida II-203
Sun, Jianling I-197
Sun, Weijian I-462
Suzuki, Yoshimi II-158

T
Taglino, Francesco I-493
Tan, Kian-Lee II-295
Tang, Xingli II-451
Tavanapong, Wallapak II-310
Teste, Olivier I-437
Tian, Fulong II-113
Tian, Hui I-228
Tina Du, Jia II-134
Tkachenko, Maksim I-445
Tong, Xinyang II-463
Torra, Vicenç II-408

U
Udu, Amadi Gabriel I-522

V
Varshney, Ayush K. II-408
Vox, Christopher I-243

W
Wagner, James I-281
Wang, Chaoyang I-298
Wang, Dongxia I-52
Wang, Huajin I-424
Wang, Jiahui II-347
Wang, Qia I-21
Wang, Ru II-18
Wang, Shengrui II-378
Wang, Xiaoye II-230, II-274
Wang, Yi I-21
Wang, Ying I-21
Wang, Zeyu II-363
Wibowo, Santoso II-134
Wrembel, Robert I-3, I-164
Wu, Meng II-18
Wu, Ning II-325
Wu, Xindong II-18

544 Author Index

X
Xi, Wenlong II-158
Xiao, Chuan II-258
Xiao, Yingyuan II-230, II-274, II-457
Xie, Zhipu II-463
Xing, Ying II-463
Xu, Jianhua II-393
Xu, Mingman II-33
Xue, Jingan I-147
Xue, Weihao I-228

Y
Yang, Abel II-469
Yang, Bin II-463
Yang, Changchun II-325
Yang, Jie I-392
Yang, Jing I-310
Ye, Chunyang II-451
You, Qiheng I-462
Yu, Chengcheng II-347
Yu, Ting II-219
Yuntao, Kong II-331

Z
Zaïane, Osmar R. II-82
Zain, Azlan Mohd II-119

Zeng, Li I-462
Zhang, Ji II-219
Zhang, Jianfei II-378
Zhang, Jianwei I-37
Zhang, Jin-Cheng II-119
Zhang, Jingxue II-325
Zhang, Ren-Min II-119
Zhang, XianKun II-430
Zhang, Zhongxing II-457
Zhao, Huiying II-463
Zhao, Jiangjiang II-143
Zhao, Liang II-113
Zhao, Rongqian I-462
Zhao, Xujian I-99
Zhao, Zihao I-338, I-424
Zheng, Wenguang II-457
Zheng, Yaning I-52
Zhou, Hui II-451
Zhou, Kai-Qing II-119
Zhou, Xiantian I-345, I-408
Zhuang, Honglin I-52
Zi-Yu, Khoo I-259
Zonyfar, Candra II-3
Zou, Xiaomei I-310
Zulkernine, Farhana II-98
Zwarzko, Michal II-245

	 Preface
	 Organization
	Abstracts of Keynote Talks
	 Physics-Informed Machine Learning
	 Data Integration Revitalized: from Data Warehouse through Data Lake to Data Mesh
	 Contents – Part I
	 Contents – Part II

	Keynote Paper
	Data Integration Revitalized: From Data Warehouse Through Data Lake to Data Mesh
	1 Introduction
	2 Data Integration Architectures: Overview
	3 Data Integration Use-Cases
	3.1 Data Integration in Medicine
	3.2 Data Integration in Smart Agriculture
	3.3 Data Integration in Smart Cities

	4 Subjective View on Challenges in Data Integration
	5 Flexible Data Integration
	6 Data Quality
	7 Performance of DI Processes
	7.1 DI Process Optimization
	7.2 UDFs in DI Processes Make Life More Difficult

	8 Summary
	References

	Data Modeling
	Scalable Summarization for Knowledge Graphs with Controlled Utility Loss
	1 Introduction
	2 Preliminaries
	3 Lossless Simple Node Feature Based Summary (SiFS)
	4 Lossy Scalable Node Feature Based Summary (ScFS)
	5 KG Search with Summaries
	6 Experiments
	6.1 Goals and Datasets of the Experiments
	6.2 Performance of the Summary Algorithms
	6.3 Querying Evaluation

	7 Related Work
	8 Conclusion and Future Work
	References

	Commonsense-Aware Attentive Modeling for Humor Recognition
	1 Introduction
	2 Related Works
	3 Proposed Method
	3.1 Context Encoder
	3.2 Commonsense Acquisition Module
	3.3 Commonsense-Aware Humor Classification Module
	3.4 Objective Function

	4 Experimental Setup
	4.1 Datasets
	4.2 Experimental Configuration

	5 Experimental Results
	5.1 Model Performance
	5.2 Efficacy of Commonsense

	6 Conclusion and Future Works
	References

	A Study on Vulnerability Code Labeling Method in Open-Source C Programs
	1 Introduction
	2 Motivation
	3 Labeling Methods
	3.1 Labeling Based on Text Description
	3.2 Labeling Based on Patch Analysis
	3.3 Labeling Based on Vulnerability Scanning

	4 Findings and Future Work
	4.1 Summary of Papers Distribution
	4.2 The Framework of Labeling Based on Text Description
	4.3 The Framework of Labeling Based on Patch Analysis
	4.4 The Framework of Labeling Based on Vulnerability Scanning
	4.5 Summary

	5 Conclusion
	References

	Adding Result Diversification to kNN-Based Joins in a Map-Reduce Framework
	1 Introduction
	2 Preliminaries
	3 Material and Methods
	3.1 The Baseline Approach
	3.2 The P-BRIDk Method: A Novel Pivot-Based Approach
	3.3 The SP-BRIDk: A Novel Context-Aware Approach

	4 Empirical Evaluation
	4.1 Experimental Setup
	4.2 P-BRIDk Performance
	4.3 SP-BRIDk Tuning
	4.4 Scalability

	5 Conclusion and Future Work
	References

	Effective and Efficient Heuristic Algorithms for Supporting Optimal Location of Hubs over Networks with Demand Uncertainty
	1 Introduction
	2 Dataset Generation
	3 Mathematical Foundations
	4 Baseline Solution
	5 Heuristic Algorithms
	5.1 Fundamental Theory of Proposed Heuristics
	5.2 Algorithm SimpleHeu
	5.3 Algorithm HeuNew
	5.4 Algorithm HeuNew2

	6 Experimental Evaluation and Analysis
	7 Conclusions and Future Work
	References

	DMIS: Dual Model Index Structure for Enhanced Performance on Complexly Distributed Datasets
	1 Introduction
	2 Related Work
	3 Learning-Friendly Data Evaluation Rules
	4 Hybrid Index Structure
	4.1 Index Building
	4.2 Index Operation

	5 Evaluation
	5.1 Setup
	5.2 Datasets
	5.3 Design
	5.4 Result

	6 Conclusion
	References

	Streaming Data Analytics for Feature Importance Measures in Concept Drift Detection and Adaptation
	1 Introduction
	2 Methodology
	2.1 Variables
	2.2 Hypotheses
	2.3 Statistical Methods

	3 Experiments, Results, and Analyses
	3.1 Experimental Setup
	3.2 Datasets
	3.3 Experimental Results

	4 Conclusion and Future Work
	References

	An Approach for Efficient Processing of Machine Operational Data
	1 Introduction
	2 Related Work
	3 Paper Definitions
	4 ODPS
	4.1 Bitmask
	4.2 Location to Mask
	4.3 ETL

	5 Methodology
	5.1 Static Table Approach
	5.2 Materialized Views and Views
	5.3 Row Per Event and Node
	5.4 Bitmask

	6 Comparative Analysis
	6.1 Raw Storage
	6.2 Workflow of Calculated Availability

	7 Results and Discussion
	8 Future Work
	References

	PrivSketch: A Private Sketch-Based Frequency Estimation Protocol for Data Streams
	1 Introduction
	2 Background and Preliminaries
	3 PrivSketch Solution
	3.1 Decoding-First Collector-Side Workflow
	3.2 Ordering Matrix Generation
	3.3 Utility Proof and Improvements
	3.4 Privacy Analysis

	4 Experimental Evaluation
	4.1 Comparing to Advanced Protocols
	4.2 Experiments with Different Parameters

	5 Related Work
	6 Conclusions
	References

	On Tuning the Sorted Neighborhood Method for Record Comparisons in a Data Deduplication Pipeline
	1 Introduction
	2 Overview of Data Deduplication
	2.1 Basic Data Deduplication Pipeline
	2.2 Blocking
	2.3 Sorted Neighborhood
	2.4 Data Quality
	2.5 Similarity Measures
	2.6 Computing Overall Record Similarity

	3 Experimental Setup
	3.1 Experimental Environment
	3.2 Data Sets
	3.3 Blocking Scheme
	3.4 Computing Record Similarities

	4 Results
	4.1 Number of Discovered Duplicates w.r.t. Window Size
	4.2 Percentage of Discovered Duplicates w.r.t. Number of Pair Comparisons
	4.3 Percentage Change of Discovered Duplicates w.r.t. Window Size

	5 Summary
	References

	Managing Semantic Evolutions in Semi-Structured Data
	1 Introduction
	2 Related Work
	3 Framework to Handle Semantic Evolution Operations
	4 Storage Model and Algorithms
	4.1 Semantic Operation Processing
	4.2 Query Transformation Algorithm

	5 Implementation and Performance Analysis
	6 Concluding Remarks
	References

	Co-location Pattern Mining Under the Spatial Structure Constraint
	1 Introduction
	2 Related Work
	2.1 Maximal Clique Mining
	2.2 Co-location Pattern Mining and Interestingness Measures
	2.3 Shortest Path Search

	3 Methods
	3.1 Taking into Account the Spatial Structure Constraint
	3.2 Graph Construction

	4 Experimental Results
	4.1 Data Preprocessing
	4.2 Results

	5 Conclusion and Perspectives
	References

	Database Design
	Enhancing Online Index Tuning with a Learned Tuning Diagnostic
	1 Introduction
	2 Preliminaries
	2.1 Online Index Tuning
	2.2 Workload and Index Configuration Featurization

	3 Overview
	4 Learned Tuning Diagnostic Model
	4.1 Model Design
	4.2 Training Model

	5 Experimental Evaluation
	5.1 Experimental Setup
	5.2 Performance of Learned Tuning Diagnostic
	5.3 Ability of Cross-Database Learning
	5.4 Online Index Tuning with Learned Diagnostic

	6 Conclusion
	References

	NoGar: A Non-cooperative Game for Thread Pinning in Array Databases
	1 Introduction
	2 Background
	2.1 Memory Access Patterns in Array Databases
	2.2 Overview of NUMA Architectures

	3 Nogar: A Non-cooperative Game to Array Database Thread Pinning
	3.1 Nash Equilibrium
	3.2 The Thread Pinning Mechanism

	4 Experimental Evaluation
	4.1 Impact of the Number of Chunks
	4.2 Evaluating the Behavior of Database Operators
	4.3 Energy Efficiency

	5 Related Work
	6 Conclusion
	References

	LHKV: A Key-Value Data Collection Mechanism Under Local Differential Privacy
	1 Introduction
	2 Related Work
	3 Preliminaries and Problem Definition
	3.1 Local Differential Privacy
	3.2 Problem Definition

	4 LHKV
	4.1 Data Preprocessing
	4.2 Perturbation
	4.3 Aggregation and Estimation
	4.4 Fast Local Hashing

	5 Experiments
	5.1 Experimental Settings
	5.2 Experimental Results

	6 Conclusion
	References

	Investigating Lakehouse-Backbones for Vehicle Sensor Data
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Vehicle Sensor Data
	3.2 Relational Representation of Vehicle Sensor Data
	3.3 Relational Schemata for Vehicle Sensor Data
	3.4 Simulation Setup

	4 Experiment
	4.1 Data Source
	4.2 Implementation Details
	4.3 Data Ingest
	4.4 Data Retrieval

	5 Conclusion
	References

	Assessing the Effectiveness of Intrinsic Dimension Estimators for Uncovering the Phase Space Dimensionality of Dynamical Systems from State Observations
	1 Introduction
	2 Background and Related Work
	3 Methodology
	4 Performance Evaluation
	5 Conclusion
	References

	Towards a Workload Mapping Model for Tuning Backing Services in Cloud Systems
	1 Introduction
	2 Related Work
	3 System Design
	3.1 Problem Formulation
	3.2 Mapping Workload
	3.3 Proposed Classification Approach

	4 System Architecture
	4.1 Database Service Instances
	4.2 Data Management Module
	4.3 Tuning Service
	4.4 Central Tuning Agent

	5 Overcoming Training Challenges
	6 Performance Evaluation
	7 Concluding Remarks
	References

	Compliance and Data Lifecycle Management in Databases and Backups
	1 Introduction
	1.1 System Overview

	2 Related Work
	3 Data Governance and Compliance
	4 System Overview
	4.1 Background
	4.2 Leveraging External or Third Party Servers
	4.3 Encryption Keys During the Backup and Restore Process
	4.4 NoSQL Process Considerations

	5 Experiments
	5.1 Experimental Setup
	5.2 Query Overhead Imposed by the Framework
	5.3 Backup and Restore Overhead Imposed by the Framework
	5.4 External Backup and Restore Performance Considerations

	6 Discussion
	6.1 Third Party Server Vendor Considerations
	6.2 Managing the Size of the Archive Tables
	6.3 Reclaiming Unused Storage Space
	6.4 Concerns with Forensically Recoverable Data

	7 Conclusion
	References

	A Real-Time Parallel Information Processing Method for Signal Sorting
	1 Introduction
	2 Multi-computer Information Processing Architecture
	2.1 McIP Architecture Operation Mechanism
	2.2 McIP Architecture Design

	3 Parallel Scheduling Signal Sorting Algorithm
	3.1 PS3 Sorting and Scheduling Process

	4 Simulation Experiments
	5 Conclusion
	References

	Learning Optimal Tree-Based Index Placement for Autonomous Database
	1 Introduction
	2 Methodology
	2.1 DRL Framework Overview
	2.2 DRL Components

	3 Experiment
	3.1 Setup
	3.2 Results

	4 Conclusion
	References

	Social Links Enhanced Microblog Sentiment Analysis: Integrating Link Prediction and Sentiment Connection Weights
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Problem Statement
	3.2 Modeling Text Information
	3.3 Modeling Social Relations

	4 Experiment
	4.1 Observations
	4.2 Model Effectiveness
	4.3 Performance Evaluation

	5 Conclusion
	References

	Discovering Diverse Information Considering User Acceptability
	1 Introduction
	2 Related Work
	3 Proposed Method
	3.1 Document Representation Model Generator
	3.2 Acceptability and Diversity Evaluator
	3.3 SVM Classifier and Ranking

	4 Evaluation
	4.1 Training
	4.2 User Experiments
	4.3 Result

	5 Conclusion
	References

	Confidential Truth Finding with Multi-Party Computation
	1 Introduction
	2 Proposed Approach
	3 Experimental Results
	References

	A Key-Value Based Approach to Scalable Graph Database
	1 Introduction
	2 Methodology
	2.1 Storage
	2.2 Query

	3 Implementation and Experiments
	4 Conclusion
	References

	Bitwise Algorithms to Compute the Transitive Closure of Graphs in Python
	1 Introduction
	2 Background
	2.1 Graph
	2.2 Classical Algorithms in Main Memory

	3 TC Solved in Python with Database Algorithms
	3.1 Transforming the Edge Data Set into a Bit Matrix
	3.2 Our Scalable Warren's Algorithm
	3.3 Time, Space and I/O Cost Analysis

	4 Performance Evaluation
	4.1 Experimental Setup
	4.2 Comparing with Python NetworkX Graph Library

	5 Conclusions and Future Work
	References

	Discovering Top-K Partial Periodic Patterns in Big Temporal Databases
	1 Introduction
	2 Proposed Algorithm
	2.1 Basic Idea: Dynamic Minimum Periodic-Support

	3 Experimental Results
	3.1 Experimental Setup
	3.2 Evaluation of both the Algorithms by Varying only k
	3.3 Scalability Test

	4 Conclusions and Future Work
	References

	Query Optimization
	Dexteris: Data Exploration and Transformation with a Guided Query Builder Approach
	1 Introduction
	2 Motivating Example
	3 Related Work and Background
	4 Intermediate Language and Transformations
	4.1 A Language Based on JSONiq
	4.2 Query Focus and Query Transformations

	5 Formalization and Suggestions (Machine Side)
	5.1 Formalization by Expression Rewriting
	5.2 Computation of Suggestions

	6 Verbalization and Control (User Interface)
	7 Evaluation
	8 Conclusion and Perspectives
	References

	A Neighborhood Encoding for Subgraph Queries in Graph Databases
	1 Background and Motivation
	2 Proposed Approach
	2.1 Definitions and Notation
	2.2 Compact Neighbourhood Encoding (CNE)
	2.3 Iterative Local Global Filtering Algorithm (ILGF)
	2.4 Subgraph Search

	3 Experiments
	3.1 Datasets
	3.2 Results

	4 Conclusion
	References

	MIRS: [MASK] Insertion Based Retrieval Stabilizer for Query Variations
	1 Introduction
	2 Related Work
	3 Proposed Method
	3.1 MIRS
	3.2 Analysis

	4 Experiments
	4.1 Setup
	4.2 Main Results
	4.3 Ablation Study
	4.4 Discussion

	5 Conclusion
	References

	Parallel Pattern Enumeration in Large Graphs
	1 Introduction
	2 Preliminaries
	2.1 Graph
	2.2 Graphlets (Patterns in Connected Subgraphs)
	2.3 Computational Model

	3 Our Approach for Pattern Enumeration
	3.1 Data Partitioning
	3.2 k-Machine Distributed Model Optimization
	3.3 Graphlet Enumeration

	4 Graphlet Enumeration Theoretical Analysis
	4.1 Partitioning Strategy Effectiveness
	4.2 Complexity and Load Balancing

	5 Experimental Study
	5.1 Hardware and Software Setup, and Data Set
	5.2 Graphlet Enumeration

	6 Related Work
	7 Conclusion
	References

	S2CTrans: Building a Bridge from SPARQL to Cypher
	1 Introduction
	2 S2CTrans
	2.1 System Architecture
	2.2 Pattern Matching Mapping
	2.3 Solution Modifiers Mapping

	3 Experiments
	3.1 Evaluation Criteria
	3.2 Experimental Setup
	3.3 Result Evaluation

	4 Conclusion
	References

	Rewriting Graph-DB Queries to Enforce Attribute-Based Access Control
	1 Introduction
	2 Related Work
	3 Relevant Information in the Insecure Query
	4 Policy Model
	5 Query Processing
	6 Evaluation
	7 Conclusion
	References

	A Polystore Querying System Applied to Heterogeneous and Horizontally Distributed Data
	1 Introduction
	2 Related Work
	3 Algebraic Definition of Polystores for Horizontally Distributed Data
	4 Rewriting Process Definition
	5 Experiments
	6 Conclusion
	References

	Knowledge Representation
	Semantically Constitutive Entities in Knowledge Graphs
	1 Introduction
	2 Related Work
	3 Semantically Constitutive Entities
	4 Experiments
	4.1 Experimental Setup
	4.2 Quantitative Comparisons
	4.3 User Study
	4.4 Case Studies

	5 Conclusion
	References

	KBQA: Accelerate Fuzzy Path Query on Knowledge Graph
	1 Introduction
	2 Background
	2.1 Problem Definition
	2.2 Related Work

	3 The Proposed System
	3.1 Architecture
	3.2 Starting Node Search
	3.3 Variable Path Search

	4 Experiments
	4.1 Datasets and Queries
	4.2 Evaluation of Techniques of Starting Node Search
	4.3 Evaluation of Techniques of Variable Path Search
	4.4 Overall Performance

	5 Conclusions
	References

	Tour Route Generation Considering Spot Congestion
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Methodology
	4.1 Dynamic Stay Duration
	4.2 Environmental Tax Metaphor
	4.3 Dataset
	4.4 Training and Inference

	5 Experimental Evaluation
	5.1 Parameter Tuning
	5.2 Comparison Experiment
	5.3 User Study

	6 Conclusion
	References

	A Knowledge-Based Approach to Business Process Analysis: From Informal to Formal
	1 Introduction
	2 Related Work
	3 The Business Process Analysis Canvas
	3.1 The BPA Canvas Layout
	3.2 The BPA Canvas Methodology

	4 A Running Example
	4.1 Analysis of the BP Statement and User Stories
	4.2 OPAAL Kinds and Links
	4.3 Building the Remaining Knowledge Artifacts

	5 A Formal Account of a Business Process Knowledge Base
	5.1 Formalising the BPKB Core Components
	5.2 Consistency Rules for Concept Correctness

	6 Conclusions and Discussion
	References

	Evaluating Prompt-Based Question Answering for Object Prediction in the Open Research Knowledge Graph
	1 Introduction
	2 Task Definition
	3 Prompt-ORKG: Our Scholarly Knowledge Question Answering Corpus
	4 Models
	5 Results
	5.1 Experimental Setup
	5.2 Evaluations

	6 Conclusions
	References

	Variables are a Curse in Software Vulnerability Prediction
	1 Introduction
	2 Breaking the Curse of Variables
	2.1 Name Dependence and Abstract Syntax Graph
	2.2 3-Property Encoding Scheme

	3 Evaluation
	4 Conclusions
	References

	Feature Selection for Aero-Engine Fault Detection
	1 Introduction
	2 Materials and Methods
	2.1 Data Description
	2.2 Feature Extraction
	2.3 Feature Selection Methods
	2.4 ML Algorithms
	2.5 Evaluation Metrics

	3 Results and Discussion
	3.1 Set-Up
	3.2 Performance

	4 Conclusion and Future Work
	References

	Tracking Clusters of Links in Dynamic Social Networks
	1 Introduction
	2 Clusters of Links in Social Networks
	3 Methodology for Tracking Clusters of Links
	4 Experimental Results
	5 Conclusions and Future Directions
	References

	Mind in Action: Cognitive Assessment Using Action Recognition
	1 Introduction
	2 MIA: Model Overview
	2.1 Problem Formulation
	2.2 Model Architecture

	3 Experimental Evaluation
	4 Conclusion
	References

	Author Index

