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Abstract. In this paper, we consider embedding hypergraphs using ran-
dom walks. By executing a random walk on a hypergraph and inputting
the resulting node sequence into a skip-gram used in natural language
processing, a vector representation that captures the graph structure can
be obtained. We propose a random walk method with adjustable transi-
tion probabilities for hypergraphs. As a result, we argue that it is possible
to embed graph features more appropriately. Experimental results show
that by tuning the parameters of the proposed method appropriately,
highly accurate results can be obtained even for large hypergraphs for
machine learning tasks such as node label classification.
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1 Introduction

Graphs are powerful mathematical models for quantitatively dealing with the
relationships between people and things. For example, hyperlinks on the World
Wide Web, friend networks on social networking services, and the structure
of chemical compounds are often represented mathematically by graphs, which
have been studied actively in recent years. Among these, recent developments
in machine learning methods have attracted attention to embedding methods
that represent entire graphs or graph nodes as low-order vectors for graphs,
which are unstructured data, and have been applied to graph classification, node
classification, and prediction of edges acquired by new nodes.

On the other hand, there are relationships in real networks that interact as
a group, and these relationships cannot be represented by ordinary graphs in
which an edge connects two nodes. Therefore, a mathematical model called a
hypergraph, which is a generalization of graphs, is the target of research. Edges
in a hypergraph can contain an arbitrary number of nodes, and higher-order
relationships between nodes can be captured. The problem of node embedding
for hypergraphs is important issue, and it is applied to recommendation systems,
etc.
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And random walks are useful as a means of capturing node characteristics
of graphs and hypergraphs. A random walk on a graph transitions through the
nodes that are connected to each other, and thus provides information on the
subgraphs of a node’s neighbors as a sequence of nodes.

In this paper, we propose a random walk method with adjustable transition
probabilities for hypergraphs and apply it to node embedding. Experimental
results on node label estimation show that the proposed method can achieve
similar estimation results to existing methods and reduce spatial computational
complexity.

The remainder of this paper is organized as follows. Section 2 describes related
work on node embedding in graphs using random walks and related work on ran-
dom walks on hypergraphs. Section 3 describes the prior knowledge in this paper,
and Sect. 4 describes the proposed method. In Sect. 5, we conduct experiments
on a real data set and conclude in Sect. 6.

2 Related Work

In recent years, there has been much research on graph embedding. Spectral
embedding [5] is a method based on graph signal processing that produces a
vector representation so that the distance of vectors between neighboring nodes
is close. There have been many studies on graph neural networks [6], which are
derived from this method. However, these methods use n×n adjacency matrices
as input, which are computationally expensive and not suitable for large data
sets.

DeepWalk [1] and node2vec [2] are methods for embedding graphs using
random walks. These methods obtain a vector representation of each node by
inputting a sequence of nodes obtained from a random walk into a skip-gram [4].
These methods are scalable and can perform embedding on large graphs, espe-
cially when executed in parallel.

Carletti et al. [3] show that selecting adjacent nodes with equal probability
is not a wise decision for random walk transitions in hypergraphs because the
connections between nodes belonging to a hyperedge are often stronger than the
connections between consecutive individuals. Carletti et al. Therefore, Carletti et
al. defined transition probabilities for neighboring nodes based on their weights,
which are the number of nodes in the hyper-edge to which they belong minus
themselves. Random walks based on this definition can visit many high-order
hyperedges [3].

Chitra et al. defined transition probabilities and formulated random walks
for hypergraphs with edge-dependent node weights [7]. Chitra et al. show that
when node weights are independent of edges in a hypergraph, a random walk
on a hypergraph is equivalent to a random walk on a general weighted graph
projected onto a clique representation.

Gatta et al. proposed a hypergraph embedding method specifically for music
recommendation [19]. They defined a hypergraph data model specific to music
recommendation, performs a random walk on the hypergraph, and then inputs
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the resulting node sequence into a skip-gram to obtain a vector representation of
the nodes. The results show that their technique significantly outperforms other
state-of-the-art techniques, especially in scenarios where the cold-start problem
arise.

3 Preliminaries

3.1 Notation

In this paper, for a undirected hypergraph H(V,E), let V = {1, ..., n} be the set
of nodes and E = {E1, ..., Em} be the set of hyperedges, where n is the number
of nodes and m is the number of hyperedges. Each Eα is a subset of V and is
equivalent to a general graph, especially when |Eα| = 2 holds for any α.

let

eiα =

{
1 for i ∈ Eα

0 otherwise
(1)

be a hypergraph incidence matrix, the adjacency matrix A of a hypergraph
is denoted by A = eeT and the hyperedge matrix C by C = eT e where e is a
matrix representing the inclusion relationship between hyperedges and nodes,
Aij is the number of hyperedges shared by node i and node j, and Cαβ is the
number of nodes included in Eα ∩ Eβ .

3.2 Hypergraph Projection

In a hypergraph, a hyperedge can contain any number of nodes, and thus has a
high degree of freedom, making it difficult to treat the hypergraph as it is. There-
fore, there has been a lot of research using a method called Clique expansion,
which treats hypergraphs as general unweighted undirected graphs by represent-
ing hyperedges as complete graphs (cliques) in which all nodes have edges with
each other. However, a clique expansion is an irreversible transformation, which
results in a considerable loss of information as a hypergraph. Therefore, in this
paper, a random walk on an unweighted undirected graph, which is a clique
expansion of a hypergraph, is used as a comparison target.

3.3 Random Walk and Stationary Distribution

In general, if we define a node in a graph as a state and define the transition
probability Tij from node i to node j, the transition of a node in the graph
can be regarded as a random walk. A stochastic process in which the next state
is determined only by the current state is called a Markov chain. An ergodic
Markov chain has a stationary distribution p and is obtained by solving

p = pT. (2)

Equation (2) shows that the stationary distribution of the random walk is
a right eigenvector corresponding to eigenvalue 1 of the transition probability
matrix T .
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3.4 Skip-Gram

We employ skip-gram as a node embedding method [4]. Skip-gram is a neu-
ral network that learns a function f : V → R

d to obtain a d-dimensional vector
representation of nodes, and was designed to maximize word co-occurrence prob-
ability in natural language processing. In this study, we perform a random walk
on a hypergraph and use the resulting node sequence as input to obtain a vector
representation of the nodes that captures the relationships among the nodes.

4 Proposed Method

In this chapter, we propose a random walk whose behavior can be controlled
by parameters. By setting parameters that match the dataset and executing a
random walk, a set of nodes that capture the graph structure can be obtained.
Then, by inputting the obtained nodes into a skip-gram, a vector representation
of each node can be obtained.

4.1 Random Walk

If the current node is i, then the adjacent node j is assigned the weight kH
ij (β)

expressed in Eq. (3).

kH
ij (β) =

∑
α

(Cαα − 1)βeiαejα (3)

This definition is an extension of the previous study [3] by adding the param-
eter β as a power.

By normalizing so as to impose a uniform choice among the connected hyper-
edges, we get the expression for the transition probabilities

Tij =
kH

ij (β)∑
l �=i kH

il (β)
. (4)

Equation (4) is a function of β. Depending on the value of β, a random walk
with various behaviors is realized. β = 1 is equivalent to the previous study [3],
and a behavior of visiting more high-order hyperedges is expected when β is
larger than 1. When β is smaller, it is expected to visit more low-order hyper-
edges. When β = 0, adjacent nodes are visited with equal probability, which is
equivalent to a random walk in a graph with a hyper-edge clique expansion.

From the above, our hypothesis in the proposed random walk can be sum-
marized as follows.

– β > 1 Extracts many high-order hyperedge structures
– β = 1 Equivalent to previous studies [3]
– β < 1 Extracts many low-order hyperedge structures
– β = 0 Equivalent to a hypergraph with clique expansion
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Fig. 1. Artificial hypergraphs. Each number represents a node number.

Also, when the hypergraph is ergodic for a given β, the random walk has a
stationary distribution

p∞
j =

dH
j (β)∑

j dH
j (β)

(5)

for all j = 1, ..., n, where dH
j (β) is defined as dH

j (β) =
∑

l �=j kH
jl (β).

5 Experiment

First, a simple artificial hypergraph is used to verify the behavior of the proposed
random walk. Then, we check the accuracy in the label estimation task when
the parameters are changed for the three datasets.

5.1 Transition Probabilities in Steady State

For the artificial hypergraph (Fig. 1), the stationary distribution given by Eq. (5)
was computed to verify the random walk behavior.

As a result, when β = −1, the probability of staying at high-order hyperedges
was lower and the probability of staying at hubs included in low-order hyperedges
was higher than in the random walk in the clique-expanded hypergraph. On the
other hand, when β = 2, the probability of staying at a node included in a
high-order hyperedge was higher than β = 1 in the previous study [3], and the
probability of staying at a hub included in a low-order hyperedge was lower
(Fig. 2).

Also, examining the probability of staying at each node, higher β induced
higher latent probabilities to higher order hyperedges, and vice versa (Fig. 2).

These results indicate that our hypothesis is correct and that we can control
the random walk behavior by changing the parameter β.

5.2 Node Label Estimation

In this section, we perform the label estimation task on real data. First, we
input the sequence of nodes obtained from the proposed random walk into a
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Fig. 2. The left column shows the stationary transition probabilities for node 0 and
node 7 when the order of the hub is varied. ph and qh represent the stationary transition
probabilities for each β at node 0 and node 7, respectively. pc and qc represent the
stationary transition probabilities for β = 0 (clique expansion) at node 0 and node 7,
respectively. The right column represents the stationary distribution when the degree
of node 0 is fixed to 7. The red histograms are for each β, and the gray histograms
correspond to β = 0.(Color figure online)

skip-gram to obtain a vector representation of each node. Then, we perform
the task of estimating labels from the vector representation of the nodes using
logistic regression. When executing the random walk, the transition probabilities
are calculated for each state sequentially, and the walk is performed without
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explicitly describing the transition probability matrix. This significantly reduces
the amount of spatial computation and allows experiments to be performed on
large data sets.

The experimental procedure is as follows.

1. A sequence of nodes is obtained from each node in the hypergraph γ times,
each with a walk length t, by the proposed random walk.

2. The obtained node sequence is input into a skip-gram to obtain a d-
dimensional vector representation for each node.

3. The percentage of supervised data is set to 80% of the number of nodes, and
logistic regression is used to estimate the labels of the remaining nodes.

4. (1)–(3) is repeated s times for each β to obtain the mean and standard error
of the F1 score.

Table 1. Hypergraphs used in our experiments.

dataset n m avg|Ei| max|Ei| labels

senate-bills 294 29,157 8.0 99 2

contact-primary-school 242 12,704 2.4 5 11

mathoverflow-answers 73,851 5,446 24.2 1,784 1,456

We use the datasets [8–12] shown in Table 1. The senate-bills dataset is a
hypergraph, where nodes are US Congresspersons and hyperedges are comprised
of the sponsor and co-sponsors of bills put forth in the Senate. The contact-
priary-school dataset represents students in proximity. Each hyperedge corre-
sponds to a group of people that were all in proximity of one another at a
given time, based on data from sensors worn by students and teachers. Each
node is labeled as a teacher or the classroom to which the student belongs.
The mathoverflow-answers dataset is a hypergraph where hyperedges are sets of
questions answered by users on Math Overflow. Nodes are labeled by the tags
used in the questions, and nodes often have multiple labels.

We set γ ∈ {8, 16, 32, 64}, t = 20, d = 64, β ∈ {−1, 0, 1}, s = 20 for senate-
bills and contact-private-school datasets. For mathoverflow-answers we set γ ∈
{8, 16}, t = 20, d = 128, β ∈ {−1, 0, 1}, s = 1. When β = 0, the embedding
technique is equal to the deepwalk in the clique expansion graph, and when
β = 1, the random walk is equal to the [3] in the previous study.

Figure 3 shows the experimental results for the three data sets. Figure 3 shows
that the F1 score varies depending on the value of β. In particular, for the
senate-bills dataset, setting β = −1 yields a high F1 score even with a small
number of samples, which is significantly higher than that of the existing method
β = 0. The proposed method is also able to obtain results on the mathoverflow-
answers dataset, which is a large dataset, due to its ability to reduce the spatial
computational complexity, and it correctly answers nearly half of the labels on
the 1, 456 label count.
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Fig. 3. Experimental results with label estimation for each dataset. Error bars in the
figure represent standard errors.

Fig. 4. Dependence of β on F1 score. Error bars in the figure represent standard error.

5.3 Parameter Dependence of F1 Score

In this subsection, we show how the F1 score varies with the parameter β. For
two datasets, senate-bills and contact-primary-school, we conducted experiments
by moving the value of β from −3 to 3 and from −3 to 4 in 0.5 increments,
respectively (Fig. 4). The range of values of β was kept around 0 based on the
hypothesis that random walks would not be able to extract relationships between
nodes in these cases because random walks would not be able to escape from
high-order hyperedges if β is too large or from low-order hyperedges if β is too
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small. Figure 4 shows that senate-bills and contact-primary-school are convex
functions with maximum values around β = −0.5 and β = 1.5, respectively.
Therefore, it may be possible to optimize the results using the proposed method
by appropriately searching for the parameter β according to the data set.

6 Conclusion

In this paper, we propose a random walk with tunable transition probabilities
for hypergraphs and apply it to embedding.

By using an artificial hypergraph, we have confirmed that the proposed ran-
dom walk can freely exhibit behavior by changing the parameters according to
our hypothesis. The proposed random walk can embed even large datasets by
executing the random walk on the hypergraph, and it shows higher accuracy than
existing methods in the label estimation task using real data. The parameters of
the proposed method may be optimized for each dataset, and more appropriate
embedding can be achieved by optimizing the parameters.
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