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Abstract. Detecting temporal abnormal patterns over streaming data
is challenging due to volatile data properties and the lack of real-time
labels. The abnormal patterns are usually hidden in the temporal con-
text, which cannot be detected by evaluating single points. Furthermore,
the normal state evolves over time due to concept drifts. A single model
does not fit all data over time. Autoencoders are recently applied for
unsupervised anomaly detection. However, they are trained on a single
normal state and usually become invalid after distributional drifts in the
data stream. This paper uses an Autoencoder-based approach STAD for
anomaly detection under concept drifts. In particular, we propose a state-
transition-aware model to map different data distributions in each period
of the data stream into states, thereby addressing the model adaptation
problem in an interpretable way. Our experiments evaluate the proposed
method on synthetic and real-world datasets. While delivering compa-
rable anomaly detection performance as the state-of-the-art approaches,
STAD works more efficiently and provides extra interpretability.

Keywords: State transition · Anomaly detection · Concept drift ·
Autoencoder

1 Introduction

Anomaly detection in streaming data is gaining traction in the current big data
research. Despite the high demand in a variety of real-world applications [22]
(e.g., health care, device monitoring, and predictive maintenance), rare existing
models show convincing performance in real-time deployment. The detection of
abnormal patterns in streaming data is challenging. On the one hand, labels are
unavailable or expensive to acquire in real-time, such that supervised approaches
usually fail. On the other hand, the conventional batch models easily expire,
while a single stationary model does not fit the ever-changing data stream.

Recently, Autoencoders have been employed for anomaly detection in an
unsupervised manner [14,26]. Autoencoders are trained to reconstruct the nor-
mal data1, such that for any unknown data instance, a high reconstruction error
1 Unless specifically stated, instead of normally distributed data, normal data refers

to the opposite of abnormal data in the anomaly detection context.
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indicates an anomaly. Specifically, for time series data, the temporal dependen-
cies between data points can be captured by constructing Autoencoders using
Recurrent Neural Networks (RNNs) and their variants [14,16]. Although such
methods show impressive performance on time series data, they usually ignore
the fact that such data is commonly collected in a streaming way and does not
allow full access during the training phase. Therefore, an adaptive Autoencoder is
desired, which can be initialized with a few normal data and continuously capture
the latest knowledge from the real-time data stream. Another major challenge
of anomaly detection in streaming data is distinguishing between abnormal pat-
terns and concept drifts. Once the data stream drifts to a novel distribution, a
stationary model trained only on outdated data may detect most of the upcom-
ing data undesirably as anomalies.

Given the severe problems, we aim to consider the concept drift detection
and anomaly detection holistically, adapt the model to the latest data dis-
tribution, and detect anomalies only concerning the temporal context where
they are located. Previous concept drift detection researches focus on detecting
changes of the joint probability P (X, y) under a supervised setting, namely, the
decision boundary changes along with the distributional changes in the input
data [13]. However, for anomaly detection, the class distribution between nor-
mal and abnormal is extremely unbalanced, and labels are usually missing or
delayed, so it is impractical to use traditional supervised approaches [4,11], e.g.,
detecting drifts based on the changes of real-time prediction error rate. Instead,
the adaptation based on changes of the prior P (X) will ensure the Autoencoder
learns the normal data pattern from the latest data distribution.

Statistical tests are commonly used for unsupervised drift detection [13]. For
instance, the two-sample tests examine whether samples from two collections
are generated from the same data distribution. However, many existing methods
conduct tests mostly in the original input space, which only works for linearly
detectable drifts. Ceci et al. [7] introduce both PCA and Autoencoder to embed
features into a latent space for the change detection in power grid data. How-
ever, they use a feed-forward Autoencoder, which does not directly capture the
temporal information in the data.

In this paper, we propose STAD (State-Transition-aware Anomaly Detec-
tion). In STAD, data distribution in a time period is defined as a state. We use
state transitions to model the concept drifts between periods. As Autoencoders
are well-studied for non-linear time series anomaly detection, we are motivated
to extend the state transition paradigm to Autoencoders. We follow the standard
usage of Autoencoders for anomaly detection and novelly couple the detection
of concept drifts and anomalies with the informative latent representation of
Autoencoders. An existing Autoencoder can be reused when a data concept
reappears in the stream. A state transition is triggered by the detection of a
concept drift, and this will further guide the reuse or adaptation of Autoen-
coders for the next period. The states raise interpretability in understanding the
decisions of Autoencoders and changes in the data stream.
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2 Related Works

Online Anomaly Detection. A major category of online anomaly detection
methods is based on a prediction model, which employs historical data to pre-
dict the near future. Abnormal data may not fit the normal prediction and
therefore cause a large prediction error. The widely used ARIMA model in time
series analysis is also used in anomaly detection [3]. However, specific adap-
tation strategies are to be made to use it in online fashion. The Hierarchical
Temporal Memory (HTM) model [1] is designed for real-time application, while
it can automatically adapt to changing statistics. One issue with models in this
category is that they are usually designed for univariate data. Therefore, deep
neural networks are also used recently to model higher dimensional and more
complex data. [15] use LSTMs as a basic prediction model, which can capture
the high-dimensional contextual information between different timestamps. [12]
also employs an LSTMs-based prediction model for anomaly detection. However,
their semi-supervised approach requires partial labels from the history, which is
not always possible in the streaming processing scenario.

Reconstruction-based approaches train models to reconstruct the normal
data so that unknown abnormal data in the test phase will cause larger recon-
struction errors due to the lack of knowledge. Autoencoders are used as an
unsupervised approach for anomaly detection. [26] adopts a Gaussian Mixture
Model to detect anomalies from the reconstruction error. However, they use the
feed-forward network, which cannot deal with inter-dependent data points as in
the data stream. [14] builds the Autoencoder with LSTM units to capture tem-
poral information. Similarly, [17] constructs the Autoencoder with Transformers.
These models assume that the sequential data are generated from the same dis-
tribution. Therefore they are vulnerable to drifts. In the worst case, every data
point that arrives after the drifts will be predicted as an anomaly.

Drift Detection. Recent drift detection approaches are well-summarized
in [13]. Common processing paradigms aggregate the historical data, extract
data features and conduct statistical tests. Many works contribute to the stream-
ing data classification problem [4,18], where the real-time classification error is
used as an indicator of drift detection. Unfortunately, the labels are not always
immediately available in real time. On the contrary, unsupervised drift detec-
tion methods detect changes in P (X), namely the distributional changes in the
streaming data. Statistical tests are usually applied to detect drifts in univariate
streaming data [18,20]. For multivariate streaming data, each dimension can be
tested individually and aggregated afterward [19].

Finally, the model’s trustworthiness and reliability are important for real-
time anomaly detection, especially in safety-crucial applications. However, the
interpretation of black-box anomaly detection models and complex streaming
data is still under-studied. [22] interprets device anomalies by feature responsi-
bility gained from Integrated Gradient [24]. [2] uses a graph-based framework to
model recurring concepts in the data stream. None of them has a focus on the
drift detection perspective.
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3 Problem Definition

3.1 Terminology

Data Stream and Concept Drift. Let X = {Xt}D
t∈N∗ be a D-dimensional

data stream, where Xt denotes the observation at timestamp t. The data stream
contains unlabeled anomalies as well as distributional changes caused by con-
cept drifts. Instead of explicitly categorizing different concept drift types [13],
we uniformly consider that a concept drift occurs in the data stream between
timestamps t and t + c if the prior probability P<t(X) �= P>t+c(X), where P<t

and P>t+c are respectively the data distribution from the last concept drift to t
and from t + c to the next concept drift. The period [t, t + c] is the drift period,
defined as the minimum period that covers the whole distributional change. The
data distribution other than drift periods is assumed to be stable. Due to the
lack of labels under the unsupervised setting, we only consider the prior (virtual)
shifts [13] in the data stream.

State Transition. Imitating the automata theory, we formulate concept drifts
in streaming data with a state transition model M = 〈X ,S, δ〉 where X is
a multivariate data stream, S = {S1, S2, ..., SN} is a set of states (N is the
user-defined maximum number of states that can be maintained), δ is a set
of transition functions δ : {Si ⇒ Sj}(Si, Sj ∈ S, i �= j). For each state Si =
〈Pi, AEi〉(i = 1, ..., N), AEi is the Autoencoder trained on the current concept
data, Pi is the empirically estimated distribution in the Autoencoder latent
space. In this work, we assume sufficient data after the concept drifts is available
to learn Pi and AEi.

Considering that no information about the upcoming new concept is acces-
sible, despite a potential high error rate, we still keep using the previous model
for anomaly detection until the model adaptation is finished. Or in other words,
the previous model is used during the upcoming drift period. For distributional
stationary data streams where no concept drift occurs, there will be only a single
state without transition, and the model reduces to a single conventional Autoen-
coder for stationary data.

Anomaly. An observed data snippet Xw
t = {xt+1, ..., xt+w}(t, w ∈ N

∗) is abnor-
mal if it significantly deviates from its temporal neighbors (data snippets in the
same state). The significance of the deviation can be determined by thresholding
or statistical techniques. Both concept drifts and anomaly snippets are distribu-
tionally deviating from their temporal neighbors. In our study, we distinguish
them in terms of length. After the concept drifts, we assume that the data dis-
tribution stays stationary in the new concept for a significantly longer period.
In contrast, the data stream returns to the previous distribution after a short
anomaly snippet.
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3.2 Problem Statement

Given a D-dimensional data stream X = {Xt}D
t∈N∗ , we aim to identify any period

[t+1, t+w] where the corresponding data snippet Xw
t is abnormal. The detection

process should be unsupervised and in real time. We also detect concept drifts
in the data stream and switch to an existing Autoencoder or train a new one on
the newly arrived data.

4 State-Transition-Aware Anomaly Detection

In this section, we propose STAD, a state-transition-aware anomaly detection
model, which employs Autoencoder as the base model. The latent representations
of Autoencoders are used to detect concept drifts, which consequently trigger
state transitions. An overview of STAD is shown in Fig. 1.
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Fig. 1. STAD overview: The left block is a multivariate data stream, where red dots
denote abnormal data points and the dashed box is a data snippet. The middle block is
an conventional autoencoder-based anomaly detection module, which detects abnormal
snippets from the data stream. The right block takes latent representations from the
autoencoder and conducts concept drift detection, which consequently triggers state
transition and model adaptation. (Color figure online)

4.1 Reconstruction and Latent Representation Learning

Let fEnc : Rw×D → R
H and fDec : RH → R

w×D be the encoder and decoder of
an Autoencoder. The encoder maps a snippet Xw

t of the multivariate streaming
data into an H-dimensional latent representation L ∈ R

H , while the decoder
reconstructs the same format snippet X ′w

t from L, where w is the snippet length
and t, w ∈ N

∗. A common assumption for anomaly detection using Autoen-
coders is that pure normal data are available for the initial model training. The
reconstruction error ew

t = |Xw
t −X ′w

t | indicates the goodness of fit to the normal
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Algorithm 1. Latent Space Drift Detection
Input: Lhist with maximum size m, Lnew with maximum size n, minimum Lhist size

m∗ trigger test, current state S = 〈P, AE〉, state transition model M = 〈X , S, δ〉
1: while stream does not end do
2: Lt ← AnomalyDetection(AE,Xt+w

t ) � Get latent representation
3: Lnew ← Lnew ∪ Lt

4: if Lnew.size > n then � Move the oldest element of Lnew to Lhist

5: Lt−n+1 = Lnew.pop()
6: Lhist ← Lhist ∪ Lt−n+1

7: end if
8: if Lhist.size > m then
9: Lhist.pop()

10: end if
11: if Lhist.size ≥ m∗ and Lnew.size = n then
12: if KSTest(Lh

hist,Lh
new) is True then � Equation 1

13: S ← StateTransition(S, Lnew, S, δ) � Section 4.3
14: Report concept drift, clear Lhist and Lnew

15: end if
16: end if
17: end while

data. In the test phase, abnormal snippets will cause larger reconstruction errors
than normal data such that they are separable. The encoder and decoder can
be implemented with a variety of deep models [25,26]. Considering the temporal
dependencies in streaming data, RNNs and their variants [14,16] are naturally
suitable for the target. In the following illustration, as an example, we take the
LSTM-Autoencoder [14], which takes data snippets as input and produces a
single latent representation for each snippet. To map the multivariate recon-
struction error to the likelihood of anomalies, a commonly used approach is to
estimate a multivariate Gaussian distribution from the reconstruction error of
normal data and measure the Mahalanobis distance between the reconstruction
error of an unknown data point to the estimated distribution [14]. Moreover,
the Gaussian Mixture Model (GMM) [26] and energy-based model [25] can also
be used for likelihood estimation. The thresholding over the estimated anomaly
likelihood in an unsupervised manner is challenging, especially in the real-time
prediction scenario. A possible non-parametric dynamic thresholding technique
is proposed in [12]. The unsupervised approach for the adaptive threshold in
different periods is not the main focus of this paper and will be addressed in our
future work. In the following sections, we focus on adapting Autoencoders based
on the state transitions.

4.2 Drift Detection in the Latent Space

In real-time, the latent representations of the Autoencoder are accumulated for
concept drift detection. Existing concept drift detection approaches mostly work
in the original space, targeting linear separable concept drifts. Considering the
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complex concept drifts in multivariate streaming data, even non-linear distribu-
tional changes can be observed in the Autoencoder latent space. We perform
the non-parametric and distribution-free two-sample Kolmogorov-Smirnov Test
(KS-Test) [8,9] on each latent space dimension to check whether two latent repre-
sentations are drawn from the same continuous distribution. Algorithm 1 shows
the online concept drift detection process.

Formally, let Lhist = {Lt−m̂−n+1, Lt−m̂−n+2, ..., Lt−n} (m∗ ≤ m̂ ≤ m) be
the accumulated latent representation since the last concept drift and Lnew =
{Lt−n+1, Lt−n+2, ..., Lt} be the latest latent representations. m and n are the
maximum size of Lhist and Lnew, m∗ is the minimum size of Lhist to trigger
a statistical test. Fhist and Fnew are the empirical estimated cumulative distri-
bution functions from the two latent representation sets. The null hypothesis
(i.e., the observations in Lhist and Lnew are from the same distribution) will be
rejected if

sup
L

|Fhist(L) − Fnew(L)| > c(α)

√
m̂ + n

m̂ · n
(1)

where sup is the supremum function, α is the significance level, c(α) =√
− ln(α

2 ) · 1
2 . We maintain both Lhist and Lnew as queues. m is larger than

n such that Lhist contains longer and more stable historical information, while
Lnew captures the latest data characteristic. The drift detector will only start if
Lhist contains at least m∗ samples, such that the procedure starts smoothly.

Since the KS-test is designed for univariate data, we conduct parallel tests in
each latent dimension and report concept drift if the null hypothesis is rejected
on all the dimensions. Once a concept drift is detected, we will conduct the
state transition procedure for model adaptation (Sect. 4.3). The historical and
latest sample sets are emptied, and we further collect samples from the new data
distribution.

4.3 State Transition Model

Modeling reoccurring data distributions (e.g., seasonal changes), coupling
Autoencoders with drift detection, and reusing models based on the distribu-
tional features can increase the efficiency of updating a deep model in real time.
We represent every stable data distribution (concept) and the corresponding
Autoencoder as a state S ∈ S. In STAD, for each period between two concept
drifts in the data stream, the data distribution, as well as the corresponding
Autoencoder, are represented in a queue S with limited size. The first state
S0 ∈ S represents the beginning period of the data stream before the first con-
cept drift. After a concept drift, a new Autoencoder will be trained from scratch
with the latest m input data snippets, if no existing element in S fits the current
data distribution; Otherwise, the state will transit to the existing one and reuse
the corresponding Autoencoder. In our study, we assume that sufficient data
after the concept drifts can be accumulated to initialize a new Autoencoder.

To compare the distributional similarity between the newly arrived latent
representations Q and the distributions of existing states {Pi|i = 1, ..., N}, we



56 B. Li and E. Müller

employ the symmetrized Kullback-Leibler Divergence. The similarity between Q
and an existing state distribution Pi is defined as

DKL(Pi, Q) =
∑
L∈L

Pi(L)log
Pi(L)
Q(L)

+ Q(L)log
Q(L)
Pi(L)

(2)

The next step is to estimate the corresponding probability distributions from the
sequence of latent representations. In [8,9], the probability distribution of cate-
gorical data is estimated by the number of object appearances in each category.
In our case, the target is to estimate the probability distribution of fixed-length
real-valued latent representations. In previous research, one possibility for den-
sity estimation of streaming data is to maintain histograms of the raw data
stream [21]. In STAD, we take advantage of the fix-sized latent representation
of Autoencoders and maintain histograms of each period in the latent space for
the density estimation.

Let L = {L1, L2, ..., Lt} be a sequence of observed latent representations,
where Li = 〈hi

1, h
i
2, ..., h

i
H〉 and H is the latent space size, the histogram of L is

g(k) =
1
t

∑
Li∈L

ehi
k∑H

j=1 ehi
j

(k = 1...H) (3)

and the density of a given period is estimated by P (k) = g(k). Hence, Eq. 2 can
be converted to

DKL(Pi, Q) =
∑

k=1...H

Pi(k)log
Pi(k)
Q(k)

+ Q(k)log
Q(k)
Pi(k)

(4)

For a newly detected concept with distribution Q, if there exist a state Si(i ∈
[1, N ]) with corresponding probability distribution Pi satisfies DKL(Pi, Q) ≤ ε,
where ε is a tolerant factor, and Si is not the direct last state, the concept
drift can be treated as a reoccurrence of the existing concept. Therefore the
corresponding Autoencoder can be reused, and the state transfers to the existing
state. If no Autoencoder is reusable, a new one will be trained on the latest
arrived data after concept drift. To prevent an explosion in the number of states,
the state transition model M = 〈X ,S, δ〉 only maintains the N latest states.
Considering that no information about the upcoming new concept is accessible,
despite a potentially high error rate, we still keep using the previous model for
anomaly detection until the model adaptation is finished. Or in other words,
the previous model is used for prediction during the upcoming drift period. The
state transition procedure is described in Algorithm 2.

5 Experiment

Common time series anomaly detection benchmark datasets are often stationary
without concept drift. Although some claim that their datasets contain distribu-
tional changes, the drift positions are not explicitly labeled and are hard for us



State-Transition-Aware Anomaly Detection Under Concept Drifts 57

Algorithm 2. State Transition Procedure
1: function StateTransition(Shist, Lnew, S, δ)
2: Pnew = DensityEstimation(Lnew)
3: if min

Si=〈Pi,AEi〉∈S
{DKL(Pnew, Pi)} ≤ ε then � Equation 4

4: δ ← δ ∪ (Shist ⇒ Smin)
5: return Smin

6: end if
7: Snew ← 〈Pnew, AEnew〉 � AEnew: Trained on new concept data
8: S ← S ∪ Snew

9: δ ← δ ∪ (Shist ⇒ Snew)
10: if S.size > N then
11: Remove the oldest state and relevant transitions
12: end if
13: return Snew

14: end function

to evaluate. To this end, we introduce multiple synthetic datasets with known
positions of abnormal events and concept drifts. Furthermore, we concatenate
selected real-world datasets to simulate concept drifts. We evaluate the anomaly
detection performance and show the effectiveness of model adaptation based on
the detected drifts.

5.1 Experiment Setup

Datasets. We first generate multiple synthetic datasets from a sine and a cosine
wave with anomalies and concept drifts. For initialization, we generate 5000 in
purely normal data points with amplitude 1, period 25 for the two wave dimen-
sions. For real-time testing, we generate 60000 samples containing 300 point
anomalies. All synthetic datasets contain reoccurring concepts, such that we can
evaluate the state-transition and model reusing of STAD. Following [18], we cre-
ate the drifts in three fashions, abrupt (A-∗), gradual (G-∗) and incremental
(I-∗). For each type of drift, we create a standard version (∗-easy) and a hard
version (∗-hard) with more frequent drifts leaving the model less time for reac-
tion. The drifts are created by either swapping the feature dimensions (-Swap-)
or multiplying a factor by the amplitude (-Ampl-). The abrupt drifts are cre-
ated by directly concatenating two concepts. The gradual drifts take place in a
2000 timestamp period with partial instances changing to the new concepts. The
incremental drifts also take 2000 timestamps, while the drift features incremen-
tally change at every timestamp. Anomaly points are introduced by swapping
the values on the two dimensions.

SMD (Server Machine Dataset) [23] is a real-world multivariate dataset
containing anomalies. To simulate concept drifts, we manually compose SMD-
small and SMD-large. Both only contain abrupt drifts. SMD-small consists
of test data from machine-1-1 to machine-1-3, which are concatenated in the
order of machine-1-1⇒machine-1-2⇒machine-1-1⇒machine-1-3. We take each
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machine as a concept and machine-1-1 appears twice. SMD-large consists of
data from machine-1-1 to machine-1-8 and is composed in the same fashion
with machine-1-1 recurring after each concept. For both datasets, the training
set of machine-1-1 is used for the model initialization.

Forest (Forest CoverType) [5] is another widely used multivariate dataset in
drift detection. To examine the performance in a real-world scenario, we do not
introduce any artificial drift here, but only consider the forest cover type changes
as implicit drifts. As in [10], we consider the smallest class Cottonwood/Willow
as abnormal.

Evaluation Metrics. We adopt the AUROC (AUC) score to evaluate the
anomaly detection performance. An anomaly score a ∈ [0, 1] is predicted for
each timestamp. The larger a, the more likely it is to be abnormal. The labels
are either 0 (normal) or 1 (anomaly). We evaluate the AUC score over anomaly
scores without applying any threshold [6] so that the performance is not impacted
by the quality of the selected threshold technique.

Competitors. We compare our model with two commonly used unsupervised
streaming anomaly detectors. The LSTM-AD [15] is a prediction-based app-
roach. Using the near history to predict the near future, the model is less
impacted by concept drifts. The prediction deviation to real values of the data
stream indicates the likelihood of being abnormal. The HTM [1] model is able
to detect anomalies from streaming data with concept drifts. Neither LSTM-AD
nor HTM provides an interpretation of the evolving data stream besides anomaly
detection.

Experimental Details. We construct the Autoencoders with two single-layer
LSTM units. All training processes are configured with a 0.2 dropout rate, 1e−5
weight decay, 1e − 4 learning rate, and a batch size of 8. All Autoencoders are
trained for 20 epochs with early stopping. We detect drifts with the KS-Tests
at a significance level of α = 0.05. We restrict that Lhist has to contain at least
m∗ = 50 data point to trigger the KS-Tests. We set the input snippet size as the
sine curve period 25. For the SMD-based datasets, following [23], the snippet size
is set to 100. We process the snippets of the data stream as a sliding window
without overlap. All experiments are conducted on an NVIDIA Quadro RTX
6000 24GB GPU and are averaged over three runs.

5.2 Performance

Overall Anomaly Detection Performance Comparison. We compare the
AUC score in the streaming data anomaly detection task between STAD and the
competitors. In STAD, we set the latent representation size H = 50, and the sizes
of the two buffers during the online prediction phase as m = 200 and n = 50. The
threshold ε is set to 0.0005. We evaluate the performance of STAD in each state
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and report the average AUC. The results are shown in Table 1. STAD achieves
the best performance on all synthetic datasets with abrupt and gradual drifts.
In the two more complicated real-world datasets, STAD outperforms LSTM-
AD and stays comparable to HTM, while requiring significantly less processing
time (see Sect. 5.2). LSTM-AD shows a dominating performance on the two
incremental datasets. Due to the fact that the value at every single timestamp
changes in I-Ampl-easy and I-Ampl-hard, LSTM-AD benefits from its dynamic
forecasting at every timestamp, while STAD suffers under the delay between
state transitions.

Table 1. Anomaly detection performance (AUC).

STAD (Ours) LSTM-AD HTM

A-Swap-easy 0.986 ± 0.005 0.994 ± 0.005 0.535 ± 0.008

A-Swap-hard 0.883 ± 0.016 0.742 ± 0.076 0.440 ± 0.017

A-Ampl-easy 0.816 ± 0.025 0.717 ± 0.052 0.500 ± 0.006

A-Ampl-hard 0.810 ± 0.012 0.715 ± 0.051 0.499 ± 0.006

G-Swap-easy 0.948 ± 0.019 0.854 ± 0.064 0.506 ± 0.008

G-Swap-hard 0.926 ± 0.030 0.800 ± 0.082 0.502 ± 0.005

I-Ampl-easy 0.911 ± 0.014 0.975 ± 0.018 0.488 ± 0.003

I-Ampl-hard 0.970 ± 0.017 1.000 ± 0.000 0.470 ± 0.003

SMD-small 0.755 ± 0.067 0.562 ± 0.001 0.813 ± 0.001

SMD-large 0.763 ± 0.016 0.578 ± 0.002 0.762 ± 0.003

Forest 0.751 ± 0.022 0.977 ± 0.001 0.211 ± 0.001

Parameter Sensitivity. In this section, we conduct multiple experiments to
examine the impact of several parameters to STAD. We maintain two data
buffers Lhist and Lnew to collect data from the Autoencoder latent space to
detect drifts. We set the upper bound of Lhist’s size m = 200 for all experi-
ments. Depending on the computational resource, larger m will lead to more
stable test results. Here we examine the effect of the lower bound m∗. Similarly,
we also experiment with different sizes n of Lnew. Additionally, the latent rep-
resentation size H of Autoencoders is a parameter depending on the complexity
of the input data.

In Fig. 2, we check the impact of the three parameters H, n and m∗ on abrupt
drifting datasets. We try different values on each parameter while keeping the
other two parameters equal to 50. The model is not sensitive to either of the three
parameters on abrupt drifting datasets. Specifically for the two buffers, 20 data
windows of both the historical (m∗) and the latest (n) latent representations
are sufficient for drift detection. Similar results have been shown on the datasets
with gradual and incremental drifts. The performance is stably better than the
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Fig. 2. Parameter sensitivity: AUC scores under different settings of latent represen-
tation size H, Lnew size n and minimum size m∗ of Lhist to trigger KS-Tests.

Fig. 3. Number of distinct states
under different settings of threshold
ε.

Fig. 4. Average running time comparison.

abrupt drifting dataset. One reason is that a longer drifting period leaves the
model more time for detecting the drifts and conducting the state transition. On
the contrary, the model may make mistakes after an abrupt drift until sufficient
data is collected and the state transition is triggered.

The other parameter ε controls the sensitivity of re-identifying an existing
state. The larger ε, the more likely for the model to transfer to a similar existing
state. We set all H, m, and n to 50 and examine ε with a value that varies from
0.1 to 1e − 7, and observe the total number of distinct states created during the
online prediction. As shown in Fig. 3, with large ε’s (0.1 or 0.01), the model only
creates two states and transits only between them once a drift is detected. On
the contrary, too small ε will lead to an explosion of state. The model seldom
matches an existing state but creates a new state and trains a new model after
each detected drift. Currently, we determine a proper value of ε heuristically
during the online prediction.

Running Time Analysis. Finally, we compare the running time (including
training, prediction, and updating time) of the three models on all datasets in
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Fig. 4. It turns out that the efficient reusing of existing models especially benefits
large and complex datasets, where the model adaptation is time-consuming.
STAD costs a similar processing time as LSTMAD in synthetic datasets and
less in real-world datasets. The HTM always takes significantly more processing
time.

6 Conclusion

We proposed the state-transition-aware streaming data anomaly detection app-
roach STAD. With a reconstruction-based Autoencoder model, STAD detects
abnormal patterns from data streams in an unsupervised manner. Based on the
latent representation, STAD maintains states for concepts and detects drifts
with a state transition model. With this, STAD can identify recurring concepts
and reuse existing Autoencoders efficiently; or train a new Autoencoder when no
existing model fits the new data distribution. Our empirical results have shown
that STAD achieves comparable performance as the state-of-the-art streaming
data anomaly detectors. Beyond that, the states and transitions also shed light
on the complex and evolving data stream for more interpretability.

There are still some challenges in the current model. The current selection
of parameter ε is still heuristic-based. We assume sufficient data is available to
train a new Autoencoder if a drift has been detected. And we did not investigate
the variety of drift types, especially gradual drifts with different lengths of drift
periods. We plan to address the challenges above in future work.
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