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Abstract. Real-time outlier detection is important in many data stream applica-
tions. To help analysts understand the detected outliers better, the outliers should
be presented with their explanations. One type of explanations for an outlier is
its set of outlying attributes which is a subset of features responsible for the out-
lier’s abnormality. There exist techniques that generate outlying attributes in data
streams; however, none simultaneously considers the cross-correlation among data
streams, the unbounded volume of data, and concept drift. To fill this gap, we pro-
pose EXOS, a framework that generates outlying attributes in multi-dimensional
data streams. For each outlier, it incrementally finds a local context to determine the
decision boundary that separates the outlier from the normal data while handling
both the unbounded volume of data and concept drift. It considers the potential
data correlation within a data stream and across data streams to estimate the local
context. The experiments using three real and two synthetic datasets show that,
on average, EXOS achieves up to 49% higher F1 score and 29.6 times lower
explanation time than existing algorithms.
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1 Introduction

An outlier in a dataset is a data point that has a significantly different value compared
to other data points in the dataset [1]. The increasing demand for real-time analytics
has created a need to apply real-time outlier detection over data streams [2, 3]. Unfor-
tunately, these techniques do not provide explanations of why some data points are
deemed to be anomalous, leaving analysts with no guidance to decide whether those
objects require further actions. for critical applications like structural health monitoring
(SHM) and intrusion detection, the investigation of whether the outliers are subjects of
interest should be done fast. However, analysts’ effort to investigate an outlier roughly
corresponds to the number of attributes associated with the outlier [4]. The investigation
takes time, but it can be done faster if each detected outlier is presented with a subset of
attributes responsible for its abnormality. This type of explanation is known as outlying
attributes [5].

A data stream is an infinite sequence of data points with explicit or implicit times-
tamps [2, 5]. Monitoring and processing data streams in real-time are bound to time
and memory constraints as data arrive continuously. They require that every data point

be processed online and incrementally [5]. Furthermore, data streams are known for
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concept drift, where the data distribution changes over time [6]. In data streams, data
attributes may be correlated not only within a data stream but also across data streams
(cross-correlation [5]) which can then be used to improve outlier explanations. The exist-
ing outlying attribute algorithms do not simultaneously consider the unbounded volume
of data, concept drift, and cross-correlation in data streams [5]. Thus, to fill this gap, we
propose EXOS, an algorithm to generate outlying attributes of each point outlier in data
streams in real time that addresses all the three characteristics.

EXOS provides outlying attributes for each point outlier detected by any outlier
detectors in data streams. We assume that EXOS and outlier detectors are independent
processes that communicate through queues. To deal with the unbounded data volume,
outlying attributes are generated based on a time-based tumbling window where a win-
dow is used to store a sequence of data in the main memory, and when a specified
time period expires, i.e., when the window slides, all the data stored in the window are
replaced with the new arriving sequence of data [11]. For each stream, when its window
slides, EXOS will read the queue that stores the stream’s outliers detected by an outlier
detector and apply single-pass incremental computation on the data in the window to
generate the outliers’ outlying attributes.

EXOS is a local neighborhood-based outlier explanation technique. For each outlier,
it defines a local context, which is a set of inlier neighbors of the outlier and uses
the local context to find the outlier’s outlying attributes. The local context is formed
by considering the cross-correlations among data streams. The eigenvectors, used in
forming the local context, are initially generated using offline data, yet since data streams
are subject to concept drift, the eigenvectors are updated whenever the window slides
using a single-pass eigendecomposition.

Our contributions are as follows: 1) we develop an algorithm that generates outlier
explanations in terms of outlying attributes that considers the possible data attribute cor-
relation within a data stream and across data streams, while simultaneously addressing
the unbounded data volume and concept drift in data streams; and 2) we perform a com-
prehensive experimental analysis comparing EXOS with existing algorithms in terms of
average precision, recall, F1 score, and execution time using real and synthetic datasets.

2 Related Work

In the recent survey of outlier explanations [5], there exist techniques that generate
outlying attributes. For example, SFE [4] Applies subspace search with heuristics to find
a subset of attributes where a detected outlier has the highest outlier score. Micenkovi
Et AL[7] and COIN [8] utilize inlier neighbors of an outlier to find its outlying attributes.
They use a linear classifier to find a decision boundary between inlier and outlier classes.
Attributes whose corresponding weights in the hyperplanes are higher than a threshold
are considered outlying attributes. However, all these techniques are designed for static
or non-stream data where they assume a finite amount of data and require multiple passes
on the dataset; thus, they are unsuitable for dealing with the unbounded volume of data
streams in real-time.
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There are outlying attribute techniques proposed for data streams, for example,
EXAD [9], MICOES [10], MacroBase [15, 16], and EXstream [16, 17]. EXAD employs
a decision tree estimated from a neural network trained offline to generate the outly-
ing attributes of each detected outlier in an online manner. However, the decision tree is
never updated to address concept drift. MICOES absorbs arriving data points into micro-
clusters and uses them to form an inlier class and an outlier class associated with each
detected outlier. The inlier and outlier classes are used to generate outlying attributes.
Since micro-clusters adapt to the changes in data distribution, the explanations also
adapt. MacroBase produces outlier explanations using a prefix tree of frequent itemsets
updated periodically, allowing it to handle concept drifts. EXstream generates outlier
explanations based on the temporal context of the outliers, which is updated over time,
making it hardly unaffected by concept drifts. Still, none of these algorithms consider the
relationships among data streams. Thus, in this work, we develop a local context-based
outlier explanation for data streams that consider the potential cross-correlations among
data streams to improve outlying attribute generation while dealing with the unbounded
volume and concept drift.

3 Preliminaries

This section formally defines the problem of finding outlying attributes of an outlier in
data streams.

Definition 3.1 (Data Stream). A data stream S is an infinite sequence of data points
{X;li > 0}. Each X; is a tuple of length d + 1 denoted as X; = ay, aa, ..., aq, t where
d is the number of attributes, ay is the value of the k-th attribute, and ¢ is the associated
timestamp when the tuple is recorded or collected.

We consider a set of m concurrent data streams S = {S, ..., Sy} where m > 1. The
i-th data point in a data stream S; is denoted as le The attributes in §; can differ from

those in S;. We denote XJI as (D)i when le is detected as an outlier. We assume that all
data streams have the same arrival rate (synchronous data streams) and each data stream
has a corresponding outlier detector.

Data streams arrive continuously and are inherently unbounded; hence, keeping
all data in the memory for real-time processing is impossible. EXOS handles this by
processing data on a time-based tumbling window residing in the memory as defined in
Definition 3.2.

Definition 3.2 (Tumbling Window). Given a time interval T that consists of start and
end timestamps, a tumbling window W is a finite sequence of data points or tuples
Xy, Xy+1, - -+ Xy) where Xy.t — X,,.r < T. All the data points in the window will
expire when T expires, i.e., when the window slides.

The outlying attributes of an outlier are the subset of attributes responsible for the
abnormality of the outlier. They are formally defined in Definition 3.3.
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Definition 3.3 (Outlying Attributes). [5]. Given an outlier O, a set of d dimensions
D={A|,As, ..., Ay} where O € A| x Ay x --- x Ay, an outlier attribute contribution
score function 2 : D — R that generates a real-value quantifying the contribution of
each attribute to the abnormality of @, and an outlying contribution score threshold
y > 0, the outlying attributes of Q is a subspace F C D such that VA; € F, h(A;) > y.

Problem Definition: Given a set of m synchronous multi-dimensional data streams S =

{S1,S2, ..., Su}, an outlier (D)i identified by an arbitrary outlier detector, and an outlying
contribution score threshold y > 0, the problem is to find all the outlying attributes of

(O)i. accurately and efficiently.

4 The Proposed Algorithm: EXOS

Algorithm 1: EXOS (S, k,D, v, A, T, init_data, n_clusters, outlier_queues)

Input: S the set of m concurrent data streams, & the number of eigenvectors, D the total number of
attributes, y the attribute contribution threshold, A the list of the attribute names in the streams, T the
window size represented as a time interval, init_data the offline data, n_clusters the list of the IDs of the
clusters for each data stream, outlier _queues the list of m queues storing the outliers of the m streams.
Output: F; the set of outlying attributes of each outlier in each stream j

O :=Iinitialize_eigen_vectors (init_data)

C, = initialize_set of clusters(init_data, n_clusters)

end _ts := current_time ()

start ts :=end ts— T

1

2

3

4

5 while (true): ## repeat indefinitely

6 Lo = get_outliers(outlier_queues, start_ts, end_ts)
7 N := the number of data points in each window
8 do in parallel

9 Q, est_list := Estimator (S, Lo, k, D, Q, start_ts, end_ts, N) ##Component 1

10 parallel for j in [1: m]

11 W; := Sj[start_ts, end_ts] # get data in the current window

12 C; := TemporalNeighborClustering(W;, C,[j]) ## Component 2

13 C,[j] := the latest centroids in G

14 end parallel for

15 end do in parallel

16 parallel for j in [1: m]

17 0 ;= est_list[j] ## get estimated normal values of the outliers in stream j

18 0; = W;[Lolj]] ## get outlier values in stream j

19 F; = OutlyingAttributesGenerator(@j, 0;,C;, v, A[j]) ) ## Component 3
20 yields([F;) ## return the outlying attributes of the outliers in the current window of stream j
21 end parallel for

22 while (end ts + T > current_time()) : wait() end while

23 end_ts = current_time (); start_ts =end_ts — T

24 end while
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To determine the outlying attributes of the outliers detected in a recent window,
EXOS goes through six steps: (1) combine the windows from all streams and use the
data attribute correlation within each stream and across streams to estimate the normal
value of each outlier (O)i (2) in parallel with Step (1), incrementally group all the data
points in the window into clusters in each data stream S;; (3) use the estimated normal

value of each @f and its closest cluster to form a local context of the outlier (the inlier
class); (4) for each @i., form an outlier class by randomly generating the auxiliary outlier

data points that have uncorrelated multivariate normal distribution centered at @i (®)]
find a decision boundary that separates the inlier class from the outlier class using a linear
classifier; and (6) use the weights of the decision boundary to determine the outlying
contribution scores of the attributes of @i The attributes having the outlying contribution

scores greater than the threshold y are the outlying attributes of (O)i

Algorithm 1 shows the overall EXOS algorithm. It consists of the initialization and
online phases. Using offline data, EXOS initializes Q, the estimated eigenvectors (Line
1), and C, the list of the initial clusters’ centroids in each stream (Line 2). The online
phase indicated in Lines 3-24 has three key components: (i) Estimator Est (Line 9),
(ii) Temporal Neighbor Clustering Cy, C3, . . ., Cy, (Line 12) and (iii) Outlying Attribute
Generators G1, G, ..., Gy (Line 19). The Est component corresponding with Step (1)
uses the eigenvectors to estimate the normal values of outliers. The eigenvectors capture
the correlation among attributes from the same data stream and attributes from different
streams (cross-correlation). They are incrementally updated whenever the window slides
to ensure they deal with concept drift. The C; component, which handles Step (2), groups
the data points in the window of §;, based on a symmetric distance function. The clusters
serve as a temporal context which is the neighborhood that will be used by §; to find the

outlying attributes of (O){ The G; component manages Steps (3)—(6).
We now describe the details of the three key components of EXOS.
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Fig. 1. Illustration of finding a local context of an outlier in concurrent data streams
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4.1 Estimator

Estimator, Est, approximates the normal value @{ of each outlier @i by using the infor-
mation from other data streams. Let us consider an example of 3-source data streams
depicted in Figs. la and b. Between 8:01 am and 8:05 am, the outlier detector at S

detects th 43 asan outlier (denoted as @zl +3). Its normal value estimation is denoted as

(O)tl 3 in Fig. 1d. Suppose S1, 52, and S3 in Fig. 1a have three, two, and two attributes,
respectively. The data are observed between 8:01 am and 8:05 am where an outlier is
detected in S; at 8:03 am. We can represent the data points from those streams asa 7 x 5
matrix as shown in Fig. 1b.

Algorithm 2: Estimator (S, Lo, k, D, Q, start ts, end t, N)

Input: S the set of m concurrent data streams in the current window, Lg the list of the indices of the

outliers in the window, & the number of eigenvectors, D the total number of attributes, O the estimated
eigenvectors, start_ts the starting timestamp of the window, end_ts the end timestamp of the window,
and N the number of data points in the window,

Output: eigenvector matrix O, list of estimated outliers @ j est_list

1 set O as an empty list

2 create a set of outlier indices from Lg, Ip = set(Lg)
3 Initialize a zero matrix Z of size D X k

4 for each ¢ between start ts and end_ts do
5 if |S| > 1 do ## when m > 1

6 x = combine tuples in § that share the same ¢ into x € R?
7 else

8 x = tuple at t

9 end if

10 Z:=7Z+ txx"Q

11 if 7 isin Ip do

12 O.append(x)

13 end if

14 end for

15 QO := QR-decomposition of Z

16 Set O as a matrix O

17 0 = 0QQT

18 Set est_list as a list of length S|

19 for 0 <j < |S| do

20 0 ;2= slice_matrix(0, Lo[/])

21 est_list[j] = @j

22 end for

23 return Q, est list

To find @é, Est uses the PCA-based approach that captures the correlations among
the observed attributes to derive the k eigenvectors (principal components) and stores
them in the matrix Q. In each window, Est combines the data points that share the same
timestamp from all the data streams. If there is only one data stream, Est will use only
the data points in that stream. The combined tuples, after their timestamp is omitted,
are used to compute the eigenvectors in the matrix Q. When there are outliers O in that
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window, Q is then used to estimate the normal values of those outliers as follows:
0 = 000" (1)

where the matrix O e RlfolxD , ’I@| is the number of unique timestamps when the
outliers are detected in the current window, D is the total number of attributes in S, and
Q € RP*k k < D. Referring to the transpose of the matrix in Fig. 1b), Qisa 1 x 7
matrix because there is one outlier detected between 8:01 am and 8:05 am.

The incremental update of the eigenvectors or principal components allows Est to
adapt to concept drift. When the data distribution changes, the eigenvectors adjust to that
change. While the naive PCA algorithm can be used to build new eigenvectors in every
window, it ignores the data seen in the previous windows and requires multi-passes on
the current window. Hence to update the eigenvector Q, we adopt DBPCA, a single-pass
eigendecomposition algorithm described in [25].

Algorithm 2 explains how Est works. In Line 1, the algorithm initializes an empty
list O to store the outliers detected in the current window. Line 2 ensures that there are no
duplicate outlier timestamps if the outliers are detected in two or more streams at the same
timestamp. Continuing our example in Fig. 1, Lg = [{8 : 03}, {}, {}] and Ip = {8 : 03}.
Line 3 gets the eigenvector matrix Q generated from the previous window. Lines 4—15,
which are the DBPCA approach, are responsible for updating Q of the current window
by first absorbing each combined vector x into a Z matrix and then then conduct QR
decomposition on Z to get the updated eigenvectors Q. Lines 16—17 estimate the normal
values of the outliers as one matrix O e RPxlol, Finally, Lines 18-22 break down
O so that each stream gets the estimated normal values of its outliers. The algorithm
returns the updated estimated eigenvector matrix and the list of estimated normal values
of outliers.

4.2 Temporal Neighbor Clustering

The temporal neighbor clustering component is a set of m independent functions
C1,Ca, ..., Cy that runs in parallel with the estimator component. Each C; receives
data points from the data stream S; and forms the temporal context that will be used in

generating the outlying attributes of each (O)i € WjT.

As depicted in Fig. 2, the temporal context of a data stream can be further grouped
into a set of clusters C = {Cy, ..., C;} such that C, N C, = @ for all a # b and
W]T = Ué: 1Ca. C is considered the neighborhood outliers in WjT. Each cluster has

a center ¢, € R and has the total number of points assigned to the cluster. A point
Xe WjT is assigned to the cluster C, if the distance between X and ¢, is the closest. By
excluding the timestamp attribute from X, the distance function denoted as d (X, ¢,) is
formulated as d (X, ¢,) = ||X — ¢4]].

Recall that the continuous arrival of data points demands a single-pass computation;
thus, forming clusters of data points in the window should be done incrementally. We
use sequential k-means [12] to form C. Due to the unbounded amount of data points in
data streams, we cannot store all the data points in all the clusters in the main memory.
To handle this problem, for each cluster C, € C we only keep n,, the number of points
in the cluster, and c,, the centroid of the cluster.
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Fig. 2. Grouping Data Points of a Stream Sj

4.3 Outlying Attribute Generators

The outlying attribute generator component is a set of m independent functions
{G1, G2, ..., Gn}. Each G; receives the inputs produced by the estimator component

Est and the temporal clustering component C;. For each (O)’ € OT, G; will form an inlier
class and an outlier class. The inlier class is generated by ﬁndmg acluster C, € C; whose

centroid ¢, is the closest to (O)i We denote by dc, the distance between ¢, and (O)i Recall
that the cluster no longer keeps the data points it has absorbed, but it has the information
about n, the number of data points. Initially, the inlier class only has two members: ¢,
and @’ The additional members are then added by generating n, auxiliary data points
Whose distances to ¢, is less than dc,. All members of the inlier class are labeled 0.
Figure 3a describes how the inlier class is formed.

The outlier class is formed by generating multivariate normal data centered around
@] To ensure that the members of the outlier class do not overlap with those of the
1n11er class, the standard deviation is set to be less than one-third of the distance between
(O)’ and (O)’ All objects in the outlier class are labeled 1. Figure 3b illustrates how the
outher class is formed. After forming the inlier and outlier classes, the next step is to find
a decision boundary that separates both groups using a linear support vector machine
(SVM) [13]. The classifier applies lasso regularization [14] such that the resulting hyper-
plane has zero weights on any attributes that are not relevant in forming the boundary.
The absolute values of the hyperplane’s weights, Hj; € RY% are used to calculate the

outlying contribution scores stored in the vector f; € RY for the attributes of the outlier

@f This vector is computed using Eq. (2). Each attribute corresponds to a score in f.
The attributes having a score higher than a given threshold are the outlying attributes of
0.

1

f‘=d,,,1—i 2

5 Evaluation

In this section, we discuss our experimental setup and results comparing EXOS with
four existing algorithms: COIN [8], MICOES [10], MacroBase [15, 16], and EXstream
[9, 16, 17]. Like EXOS, all these algorithms are agnostic to the algorithm used for outlier
detection. COIN is one of the algorithms that use inlier neighbors of an outlier as a local
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Fig. 3. Forming a) the inlier class and b) the outlier class

context to find the outlier’s outlying attributes. It is designed for static data, yet we run
it in batches to compare it with EXOS. The other three algorithms are proposed for data
streams. EXstream is intended for interval or collective outliers, yet it can also be applied
for point outliers. The source code of each algorithm is publicly available.

5.1 Experimental Setup

Dataset. We use three real datasets that reflect multiple-source data streams: Intel,
Microtremor, and AMPds2. The Intel dataset [18] is multiple-sensor data where each
sensor sent multi-dimensional data with the attributes of humidity, temperature, light,
and voltages every 31 s. Since the sensors started sending measurements on different
dates, we simulate data gathered between March 1% =315, 2004 from Sensors 7, 9, 23,
25, 26, 29, 36, 38, and 44. The Microtremor dataset [19] was collected using temporary
broadband seismometers over continuous time intervals ranging between 2 and 2.8 h.
After examining the metadata, we decide to use the data collected from 4 seismic record-
ing stations, 2030, 2031, 2032, and 2033, because they were collected on the same day.
The AMPds dataset [20] contains the measurements of 21 electricity power, 3 water,
and 2 natural gas meters at one-minute intervals of a residential house. Each meter sent
a total of 1, 051, 200 readings for 2 years (April 2012 to March 2014). Power, water,
and gas have 11, 2, and 3 attributes, respectively. These datasets do not have ground
truth information for outliers and their outlying attributes. For performance evaluation
purposes, we synthetically generate that information. Specifically, for each dataset, we
inject outliers into the dataset by randomly selecting around 1% of the original data
points to be outliers. For each selected outlier, we randomly select a number of attributes
from the dataset to be the outlying attributes and set the value of each of those attributes
to be far away from its mean value. For example, suppose in the Intel dataset, the data
point #100 is chosen as an outlier and the temperature as the outlying attribute. The
temperature value of the data point #100 is then set to be either max (temperature) +
delta * standard deviation(temperature) or min(temperature) — delta * standard devia-
tion(temperature), where delta >3. The summary of the datasets used for the evaluation
is provided in Table 1.

In addition, we create synthetic datasets that consist of five and four groups of
data whose attributes are correlated. Each group represents a data stream and has 10
attributes. To ensure that the data streams are correlated, we first generate a correlation
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matrix using a technique described in [21]. This technique allows us to specify whether
the data attributes within and across data streams are highly or weakly correlated. The
correlation matrix is then used to generate multivariate normal data. We inject outliers
into the dataset in the same way as we do for the real datasets.

Table 1. Summary of the Datasets

Datasets # Streams | Total number of data | # Outliers injected | # Attributes per
points stream

Microtremor | 4 ™ 70 K (1%) 3

AMPds2 25 26 M 260 K (1%) 2,3, 11

Intel 9 401 K 45K (1.12%) 4

Synthetic 1 5 50K 500 (1%) 10

Synthetic 2 4 40K 400 (1%) 10

Evaluation Metrics. We measure the effectiveness of the algorithms in finding outly-
ing attributes using average precision, average recall, and average F1 score. For each
outlier, we compute the numbers of True Positives (TP), False Positives (FP), False
Negatives (FN), and True Negatives (TN) of its outlying attributes. For each outlier,
we compute the numbers of True Positives (TP), False Positives (FP), False Negatives
(FN), and True Negatives (TN) of its outlying attributes. We then use the information to
compute Precision = T}.ﬂ_%, Recall = Trﬂﬁ, F1 Score = %. In addition
to measuring the accuracy of the algorithms, we also consider their efficiency. Given that
we are dealing with a continuous arrival of data, we need to ensure that the algorithms
can keep up with the incoming data in a timely manner. Therefore, we also measure the
average explanation time of the algorithms as part of our evaluation process.

Software and Hardware. We implement EXOS in Python 3 and simulate the multi-
source data streams in parallel using the multiprocessing package. Our source code is
available on GitHub https://github.com/egawati/exos. We use the Python implementa-
tions of MacroBase and EXstream that are provided for the Exathlon benchmark [16].
We add some helper functions to the competitive algorithms so that they can run in
parallel as we simulate synchronous data streams. The experiments were conducted on
a MacBook Pro: macOS Catalina, Processor 2.7 GHz Quad-Core Intel Core 17, Memory
16 GB 1600 MHz DDR3.

5.2 Results and Analysis

We evaluate EXOS by simulating each dataset described in Sect. 5.1 as data streams.
Since EXOS generates outlying attributes in the tumbling window where the number of
data points inside the window depends on the data point arrival rate; we set the window
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Table 2. Algorithm Performance Evaluation

Datasets Algorithms | Avg precision | Avg recall | Avg F1 Score | Avg Execution Time
(second)
Intel COIN 0.49 0.99 0.63 0.042
MICOES | 0.5 0.91 0.61 0.020
MacroBase | 0.49 0.92 0.59 0.016
EXstream | 0.85 0.59 0.66 0.011
EXOS 0.95 0.84 0.85 0.010
Microtremor | COIN 0.33 0.99 0.49 0.045
MICOES | 0.33 0.99 0.50 0.089
MacroBase | 0.34 0.99 0.51 0.007
Exstream | 0.87 0.87 0.87 0.003
EXOS 0.83 0.99 0.89 0.003
AMPds2 COIN 043 0.86 0.54 0.045
MICOES |0.39 0.80 0.48 0.020
MacroBase | 0.56 0.89 0.64 0.097
Exstream | 0.91 0.42 0.52 0.007
EXOS 0.94 0.48 0.58 0.007
Synthetic I | COIN 1.00 0.52 0.64 0.072
MICOES | 047 0.79 0.54 0.055
MacroBase | 0.3 1.00 0.44 0.599
Exstream | 0.98 0.45 0.56 0.050
EXOS 0.84 0.87 0.82 0.047
Synthetic 2 | COIN 0.42 0.86 0.54 0.076
MICOES | 0.51 0.58 0.51 0.234
MacroBase | 0.34 1.00 0.50 0.629
Exstream | 0.99 0.44 0.58 0.093
EXOS 0.88 0.97 0.91 0.058

size to be 1,440 data points (1 day) for Intel and AMPds2 and 1,000 data points for
Microtremor and Synthetic. Table 2 shows that EXOS has the highest average precision
for Intel and AMPds2. Exstream get the best average precision for Microtremor and
Synthetic 2 while COIN wins on Synthetic 1. When it comes to average recall, MacroBase
wins for AMPds2, Synthetic 1 and 2, while COIN dominates for Intel. For Microtremor,
the four algorithms achieve an average recall of 0.99, while Exstream 0.87.

Obviously, there is a tradeoff between precision and recall among these algorithms.
Precision measures the extent of error by False Positives, while recall deals with the error
caused by False Negatives. F1 score balances those scores. EXOS achieves the best F1
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score in all the datasets except for AMPds2. The F1 scores of EXOS are 22%, 40%, 4%,
18%, and 37% better than those of COIN, 24%, 49%, 10%, 28%, and 40% better than
those of MICOES, 26%, 38%, —6%, 38%, 41% better than those of MacroBase, and
19%, 2%, 6%, 26%, and 33% better than those of Exstream for the Intel, Microtremor,
AMPds2, Synthetic 1, and Synthetic 2 datasets, respectively.

Table 2 shows that for all the datasets, EXOS has the fastest average execution time
for generating outlying attributes for outliers. EXOS is 4.2, 15, 6.4, 1.5, and 1.3 times
faster than COIN, 2, 29.6, 2.8, 1.1, and 4 times faster than MICOES, and 1.6, 2.3,
13.8, 12.7, and 10.8 times faster than MacroBase for the Intel, Microtremor, AMPds2,
Synthetic 1, and Synthetic 2 datasets, respectively. Even though EXOS and Exstream
have similar average execution times, EXOS outperforms Exstream in the average F1
scores for all the datasets.

The Impact of Concept Drift. We investigate the impact of data distribution changes,
known as concept drift, on the performance of the algorithms. We simulate four data
streams, each having ten attributes, eleven windows, and 1K data points per window. Our
experiments focus on two key questions: (Q1) Does the performance of the algorithms
alter when a concept drift occurs in a specific window?, and (Q2) How does the frequency
of concept drift occurrences affect the algorithms’ performance?

To address Question (Q1), we simulate the synthetic datasets with varying locations
of concept drift occurrences, i.e., varying the IDs of the windows where concept drifts
occur. Following the similar approaches used to verify that concept drifts indeed occur in
adataset [22, 23], we confirm the presence of concept drift by adding binary classification
labels to the datasets and then training a logistic regression classifier using the data in
Window 0 before testing it using the data in Windows 1 through 10. It is worth noting
that this classification model is designed for static data and thus is expected to perform
similarly across all the windows in the absence of concept drifts. However, as shown in
Fig. 4, once there is a change in data distribution at Window i, the classifier performance
begins to decline, indicating the presence of concept drifts in the datasets.

Confirming concept drift, logistic regression F1 Score
trained using data window 0 and tested using data window 1-10

o
©

—@- no concept drift

-#&- change at window 1

-l change at window 5
% change at window 9

o
©

F1 Score
°
3

S S i A, Zo

o
o

0 1 2 3 2 5 6 7 8 9 10
Window ID

Fig. 4. Using a static data-based classifier to confirm whether a dataset indeed has concept drift

Figure 5 demonstrates the performance of the outlying attribute algorithms when the
location of a concept drift occurrence is varied from Window 0 to Window 10. EXOS
achieves the highest average F1 scores, followed by Exstream, MacroBase, MICOES,
and COIN. However, MacroBase has the highest average explanation time, while other
algorithms performed similarly. The consistent performance is maintained by all the
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algorithms regardless of the concept drift locations as their model and/or temporal con-
text are updated in each window. Thus, we can conclude that the performance of the
algorithms is unaffected by the locations of concept drifts.
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Fig. 5. The impact of the location of concept drift on the algorithms’ average F1 Score and
explanation time

To answer Question (Q2), we vary the occurrences of concept drifts across eleven
windows ranging from 0% to 100%. A 0% concept drift indicates that Windows 1—
10 have the same data distribution as Window 0. A 50% concept drift means from
Window 1 through Window 10; there are five windows where data distribution changes. A
100% concept drift means the data distribution changes every time the window slides. We
run experiments on four synthetic datasets. Sets 1, 2, and 3 are composed of multivariate
Gaussian data. In Set 1, a change in the mean vectors occurs during specific windows
while the covariance matrices remain unchanged. In contrast, in Set 2, only the covariance
matrices change while the mean vectors stay constant. Finally, both the mean vectors
and covariance matrices change simultaneously in Set 3.

Set 4 has mixed data distributions consisting of randomly chosen multivariate Gaus-
sian, Beta, Gamma, and Exponential distributions. For instance, when we set the per-
centage concept drifts to be 50%; Windows 0-2 can have a Gaussian distribution, while
Window 3 may use a gamma distribution. Likewise, Windows 4—7 could be exponential,
Window 8 beta and finally, Windows 9—10 are gamma distributed.

Figure 6 displays the performance of the algorithms on Sets 1-4, with EXOS having
the best average F1 score. All the algorithms have similar average explanation times
while MacroBase has the highest one. The frequency of concept drifts hardly has any
effect on the performance of EXOS, EXstream, Coin, and MacroBase. With EXOS, the
eigenvectors used to estimate the normal values of the outliers in a window are updated
when the window slides. The same update applies to its temporal context component,
which, together with the estimated normal values of the outliers, forms the inlier and
outlier classes. Therefore, even when a window data distribution differs from that in
the previous window, the EXOS components are constantly adjusted, allowing it to
maintain its performance. A similar window-sliding update on the explanation model
also applies to the other algorithms. Even though COIN is intended for static data, we
run it in batches such that the subsets of data points used to build its outlier explanation
model are continually updated as the window slides. The average F1 score slightly
fluctuates on MICOES, indicating that the temporal context formed using denstream-
based micro-clusters in a window still mixes with some micro-clusters from the previous
window. MICOES’s average explanation time also slightly increases in Sets 2—4 when
the frequency of concept drifts is getting higher. This explanation time increase relates
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to the maintenance of its micro-clusters. When the data distribution changes more often,
the state of its micro-clusters also changes, requiring more time to maintain/update.
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Fig. 6. The Impact of the frequency of concept drifts on average F1 score and explanation time

EXOS’ Parameter Study. We also studied the impact of three EXOS user-defined
parameters using the synthetic dataset, which we report below.

1) Impact of the number of eigenvectors (k)

In order to generate the estimated normal value of each outlier found in each window,
EXOS needs the estimated eigenvectors (principal components) whose size depends on
k. k can be varied from 1 to D (the total number of attributes). In our study, we vary
k from 1 to 10. Figure 7 tells us that & has an impact on the average precision, recall,
and F1 score. As k increases, the average recall also increases but the average precision
and F1 score decrease. However, the average F1 score remains almost constant. It is not
surprising that as k gets larger, the average explanation time gets longer as the EXOS’
estimation component uses more eigenvectors. Therefore, to provide the explanation
quickly, a small value of k such as k = 1 would be preferred.

2) Impact of the outlier attribute contribution threshold (y)

The threshold y tells EXOS which attributes to consider as the outlying attributes
of an outlier after finding the decision boundary that separates the inlier class from the
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outlier class for that outlier. y = 0.01 indicates that only attributes that have the outlying
contribution scores greater than 1% are considered the outlying attributes. The study on
the synthetic dataset reveals that y has a small impact on the algorithm’s performance
as shown in Fig. 7.

3) Impact of the window size

In generating outlier explanations, EXOS depends on the time period that determines
the size of the tumbling window used by its components. For the synthetic data, we
varied the window size from 1,000 to 10,000 data points. Figure 7 shows that when
the window size increases, EXOS’ average recall increases but average precision and
F1 score decrease. Thus, more inliers compared with the outlier does not mean a more
accurate explanation of outlying attributes. The larger the window size also means the
larger the average running time. The running time using the window size of 10K is about
three times of that using the window size of 1K.
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Fig. 7. EXOS parameter study

6 Conclusions

Our experiments on the three real datasets and two synthetic datasets show that EXOS is
promising in generating outlying attributes for each outlier in data streams. It addresses
the data streams’ characteristics of the unbounded data volume, concept drift, and cross-
correlation. For all the studied datasets, it achieves the best average F1 score (except for
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one dataset) and the fastest average running time compared with the existing algorithms.
For future work, we plan to extend the estimator component to deal with asynchronous
data streams.
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