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Abstract. Fairness is a critical consideration in data analytics and
knowledge discovery because biased data can perpetuate inequalities
through further pipelines. In this paper, we propose a novel pre-
processing method to address fairness issues in classification tasks by
adding synthetic data points for more representativeness. Our approach
utilizes a statistical model to generate new data points, which are eval-
uated for fairness using discrimination measures. These measures aim
to quantify the disparities between demographic groups that may be
induced by the bias in data. Our experimental results demonstrate that
the proposed method effectively reduces bias for several machine learn-
ing classifiers without compromising prediction performance. Moreover,
our method outperforms existing pre-processing methods on multiple
datasets by Pareto-dominating them in terms of performance and fair-
ness. Our findings suggest that our method can be a valuable tool for
data analysts and knowledge discovery practitioners who seek to yield
for fair, diverse, and representative data.

Keywords: fairness · bias · synthetic data · fairness-agnostic ·
machine learning · optimization

1 Introduction

Data analytics has grown in popularity due to its ability to automate decision-
making through machine learning. However, real-world data can contain biases
that produce unfair outcomes, making fairness in data pipelines involving
machine learning a pressing concern. Fairness in machine learning typically deals
with intervening algorithms providing equitable outcomes regardless of protected
characteristics such as gender, race, or age group.

The existing related works can be divided into three categories [5,8,20]. The
first category of methods are pre-processing methods, which aim to reduce bias
in the data. Examples of such methods include data augmentation and data
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balancing [2]. The second category of methods are in-processing methods, which
aim to enforce fairness constraints during the training procedure [15]. Exam-
ples of in-processing methods include regularization techniques and constrained
optimization [31]. The last category are post-processing methods that allow the
improvement of fairness after training by correcting the outputs of the trained
model [14].

The goal of this paper is to introduce a pre-processing method that achieves
fairness by including generated data points. This is done by utilizing a statisti-
cal model that learns the distribution of the dataset, enabling the generation of
synthetic samples. Additionally, a discrimination measure is employed to eval-
uate the fairness when incorporating the generated data points. Our method
treats the discrimination measure as a black-box, making it able to optimize
any discrimination measure defined by the user. We refer to this property of our
algorithm as fairness-agnostic. This makes it suitable for cases where a specific
fairness notion is required.

For the experimentation, multiple datasets known to be discriminatory were
used. The experiments were performed by firstly loading the datasets and then
pre-processing them using different pre-processing techniques. The pre-processed
datasets were then fed into several classifiers. The performance of each classifier
was then evaluated in terms of performance and fairness to assess the effective-
ness of the pre-processing methods. Our experiments have empirically shown
that our technique effectively lessens discrimination without sacrificing the clas-
sifiers’ prediction qualities. Moreover, it is compatible with any machine learning
model. Of the pre-processors tested, none were able to meet all of these condi-
tions. The scope and application of our method is not necessarily limited to
tabular data and classification tasks, even though experiments were conducted
on them. The method is more broadly suitable for supervised learning tasks
where the data, label, and protected attribute are available. Only the appropri-
ate discrimination measures have to be derived for the right task. Generally, our
primary contributions are:

– The introduction of a novel pre-processing technique that can optimize any
given fairness metric by pre-selecting generated data points to include into
the new fair dataset.

– We carry out a comprehensive empirical study, comparing our method against
three widely recognized pre-processors [9,13,31], using multiple datasets com-
monly found in fairness literature.

– We present interesting and valuable properties, such as the empirical evi-
dence that our method consistently improved fairness in comparison to the
unprocessed data.

2 Related Work

Many pre-processing algorithms in literature alter the dataset to achieve fair-
ness [4,9,31]. Because the methods simply return a fair dataset, they can be used
with any estimator. However, such approaches cannot be used with ease: They
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often require a parameter setting that sets how aggressive the change should be.
As the approaches differ in their methodology, it is hard to interpret the param-
eter’s setting and their unexpected effects on the data. Data alteration methods
also have a higher risk of producing data that do not resemble the original data
distribution in any ways.

Other approaches return a weight for each sample in the dataset that the esti-
mator should account for when fitting the data [1,13]. While the approaches seem
promising [1,13], they require estimators to be able to handle sample weights.
A way to account for this is to replicate samples based on their sample weights.
However, this is not computationally scalable for larger datasets or for larger
differences between the sample weights.

Another related approach is removing data samples that influence estimators
in a discriminatory way [28]. Nevertheless, this approach does not seem feasible
for smaller datasets.

Differently from related works, we present an algorithm that does not come
with the above mentioned drawbacks. Further, our approach is able to satisfy any
fairness notion that is defined for measuring discrimination or bias in the dataset.
While the work of Agarwal et al. [1] also features this property, the fairness
definitions must be formalizable by linear inequalities on conditional moments.
In contrast, our work requires the fairness definitions to quantify discrimination
in a numeric scale where lower values indicate less discrimination. This can be as
simple as calculating the differences of probabilistic outcomes between groups.

While there exist works that train fair generative models to produce data that
is fair towards the protected attribute on images [7,24,27] or tabular data [12,23],
our approach can be seen as a framework that employs generative models and
can therefore be used for any data where the protected attribute is accessible.
Specifically, our research question is not “How can fair generative models be con-
structed?”, we instead deal with the question “Using any statistical or generative
model that learns the distribution of the dataset, how can the samples drawn from
the distribution be selected and then included in the dataset such that fairness can
be guaranteed?”. Other works that generate data for fairness include generating
counterfactuals [26] and generating pseudo-labels for unlabeled data [6].

3 Measuring Discrimination

In this section, we briefly present discrimination measures that assess the fairness
of data. For that, we make use of following notation [5,8,20]: A data point or
sample is represented as a triple (x, y, z), where x ∈ X is the feature, y ∈ Y is
the ground truth label indicating favorable or unfavorable outcomes, and z ∈ Z
is the protected attribute, which is used to differentiate between groups. The sets
X,Y,Z typically hold numeric values and are defined as X = R

d, Y = {0, 1},
and Z = {1, 2, . . . , k} with k ≥ 2. For simplicity, we consider the case where
protected attributes are binary, i.e., k = 2. Following the preceding notation, a
dataset is defined as the set of data points, i.e., D = {(xi, yi, zi)}ni=1. Machine
learning models φ : X × Z → Y are trained using these datasets to predict the
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target variable y ∈ Y based on the input variables x ∈ X and z ∈ Z. We call
the output ŷ := φ(x, z) prediction.

Based on the work of [32], we derive discrimination measures to the needs
of the pre-processing method in this paper. To make our algorithm work, a
discrimination measure must satisfy certain properties which we introduce in
the following.

Definition 1. A discrimination measure is a function ψ : D → R
+, where D is

the set of all datasets, satisfying the following axioms:

1. The discrimination measure ψ(·) is bounded by [0, 1]. (Normalization)
2. Minimal and maximal discrimination are captured with 0, 1 by ψ(·), respec-

tively.

The first and second axiom together assure that the minimal or maximal discrim-
ination can be assessed by this measure. Furthermore, through normalization it
is possible to evaluate the amount of bias present and its proximity to the optimal
solution. As achieving no discrimination is not always possible, i.e., ψ(D) = 0,
we consider lower discrimination as better and define a fairer dataset as the one
with the lower discrimination measure among two datasets.

Literature [2,5,8,19,20,32] on fairness-aware machine learning have classified
fairness notions to either representing group or individual fairness. We subdivide
the most relevant fairness notions into two categories which are dataset and pre-
diction notions and derive discrimination measures from it as suggested by [32].
From now on, we denote x, y, z as random variables describing the events of
observing an individual from a dataset D taking specific values.

Dataset notions typically demand the independency between two variables.
When the protected attribute and the label of a dataset are independent, it is
considered fair because it implies that the protected attribute does not influ-
ence or determine the label. An example to measure such dependency would
be the normalized mutual information (NMI) [29] where independency can be
concluded if and only if the score is zero. Because it is normalized as suggested
by the name, it is a discrimination measure.

Definition 2 (Normalized mutual information). Let H(·) be the entropy
and I(y; z) be the mutual information [25]. The normalized mutual information
score is defined in the following [30]:

ψNMI(D) = 2
I(y; z)

H(y) + H(z)
.

Statistical parity [15,31] and disparate impact [9] are similar notions that also
demand independency, except they are specifically designed for binary variables.
Kang et al. [16] proved that zero mutual information is equivalent to statistical
parity. To translate statistical parity to a discrimination measurement, we make
use of differences similarly to Žliobaitė [32].
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Definition 3 (Statistical parity). Demanding that each group has the same
probability of receiving the favorable outcome is statistical parity, i.e.,

p(y = 1 | z = 1) = p(y = 1 | z = 0).

Because we want to minimize discrimination towards any group, we measure
the absolute difference between the two groups to assess the extent to which
the dataset fulfills statistical parity. This is also known as (absolute) statistical
disparity (SDP) [8]. A value of 0 indicates minimal discrimination:

ψSDP (D) = |p(y = 1 | z = 1) − p(y = 1 | z = 0)|. (1)

Because disparate impact [9] essentially demands the same as statistical parity
but contains a fraction, dividing by zero is a potential issue that may arise.
Therefore, its use should be disregarded [32]. Note that dataset notions can also
be applied to measure the fairness on predictions by exchanging the data label
with the prediction label.

Parity-based notions, fulfilling the separation or sufficiency criterion [2],
require both prediction and truth labels to evaluate the fairness. Contrary to
the category before, measuring solely on datasets is not possible here. Despite
this, it is still essential to evaluate on such measures to account for algorithmic
bias. Here, the discrimination measure takes an additional argument, which is
the prediction label ŷ as a random variable. According fairness notions are, for
example, equality of opportunity [10], predictive parity [2], and equalized odds [2].

Definition 4 (Equalized odds). Equalized odds is defined over the satisfac-
tion of both equality of opportunity and predictive parity [10],

p(ŷ = 1 | y = i, z = 1) = p(ŷ = 1 | y = i, z = 0) ∀i ∈ {0, 1},

where equality of opportunity is the case of i = 1 and predictive parity is the
case of i = 0, correspondingly. Making use of the absolute difference, likewise
to SDP (1), we denote the measure of equality of opportunity as ψEO(D, ŷ) and
predictive parity as ψPP (D, ŷ).

To turn equalized odds into a discrimination measure, we can calculate the
average of the absolute differences for both equality of opportunity and predictive
parity. This is referred to as average odds error [3]:

ψODDS(D, ŷ) =
ψEO(D, ŷ) + ψPP (D, ŷ)

2
. (2)

4 Problem Formulation

Intuitively, the goal is to add an amount of synthetic datapoints to the original
data to yield for minimal discrimination. With the right discrimination mea-
sure chosen, it can be ensured that the unprivileged group gets more exposure
and representation in receiving the favorable outcome. Still, the synthetic data
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should resemble the distribution of the original data. The problem can be stated
formally in the following: Let D be a dataset with cardinality n, let ñ be the
number of samples to be added to D. The goal is to find a set of data points
S = {d1, d2, . . . , dñ} that can be added to the dataset, i.e., D∪S with S ∼ P (D),
that minimizes the discrimination function ψ(D∪S). Hence, we consider the fol-
lowing constrained problem:

min ψ(D ∪ S)
subject to S ∼ P (D)

|S| = ñ. (3)

The objective (3) suggests that the samples di that are added to the dataset
D are drawn from P (D). To draw from P (D), a statistical or generative model
PG that learns the data distribution can be used. Therefore generating data
samples and bias mitigation are treated as sequential tasks where the former can
be solved by methods from literature [22]. Because the discrimination measure
ψ can be of any form, the optimization objective is treated as a black-box and
is solved heuristically.

5 Methodology

Our algorithm relies on a statistical model, specifically the Gaussian copula [22],
to learn the distribution of the given dataset P (D). Gaussian copula captures
the relationship between variables using Gaussian distributions. While assuming
a Gaussian relationship, the individual distributions of the variables can be any
continuous distribution, providing flexibility in modeling the data.

Still, the type of model for this task can be set by the user as long as it can
sample from P (D). Because discrimination functions are treated as black-boxes,
the algorithm does not require the derivatives of ψ and optimizing for it leads
to our desired fairness-agnostic property: It is suitable for any fairness notion
that can be expressed as a discrimination function. Our method handles the
size constraint in Eq. (3) as an upper bound constraint, where a maximum of ñ
samples are added to D.

Our method, outlined in Algorithm 1, begins by initializing D̂ with the biased
dataset D. Then n̂ is set as a multiplicative r > 1 of the original dataset’s size.
Lastly in the initialization, the distribution of P (D) is learned by a generative
model PG. The algorithm then draws m samples from the generative model PG

which are referred to as the set of candidates C. The next step is decisive for the
optimization (Line 9): The candidate which minimizes the discrimination most
when included in the dataset D̂ is added to D̂. The steps of drawing samples and
adding the best candidate to the dataset is repeated till D̂ has a cardinality of n̂
or the discrimination is less than the fairness threshold ε. Because ε is set to 0 by
default, the algorithm can stop earlier before the dataset reaches its requested
size if the discrimination cannot be further reduced, i.e., ψ(D̂) = 0. Because
calculating ψ(D̂∪{c}) (Line 9) does not involve retraining any classifier and solely
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Algorithm 1. Pseudocode of MetricOptGenerator
Input: D, r = 1.25, m = 5, ε = 0
Output: D̂

Initialization:
1: D̂ ← D
2: n̂ ← �r · |D|�
3: PG ← learn distribution of P (D)

Generating fair samples:
4: for i = 1 to n̂ − |D| do
5: if (ψ(D̂) ≤ ε) then
6: return D̂
7: end if
8: C ← sample m candidates from PG

9: D̂ ← D̂ ∪ {argminc∈C ψ(D̂ ∪ {c})}
10: end for
11: return D̂

evaluates the dataset, this step is practically very fast. In our implementation,
we generate a set of synthetic data points prior to the for-loop, eliminating the
sampling cost during the optimization step. We refer to Appendix A for the
proof outlining the polynomial time complexity of the presented method.

6 Evaluation

To evaluate the effectiveness of the presented method against other pre-
processors in ensuring fairness in the data used to train machine learning models,
we aim to answer following research questions:

– RQ1 What pre-processing approach can effectively improve fairness while
maintaining classification accuracy, and how does it perform across different
datasets?

– RQ2 How stable are the performance and fairness results of classifiers trained
on pre-processed datasets?

– RQ3 How does pursuing for statistical parity, a data-based notion, affect a
prediction-based notion such as average odds error?

– RQ4 Is the presented method fairness-agnostic as stated?

To especially address the first three research questions, which deal with effec-
tiveness and stability, we adopted the following experimental methodology: We
examined our approach against three pre-processors on four real-world datasets
(see Table 1). The pre-processors we compare against are Reweighing [13], Learn-
ing Fair Representation [31] (LFR), and Disparate Impact Remover [9] (DIR).
The data were prepared such that categorical features are one-hot encoded and
rows containing empty values are removed from the data. We selected sex, age,
race, and foreign worker as protected attributes for the respective datasets. Gen-
erally, the data preparation was adopted from AIF360 [3].
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Table 1. Overview of datasets.

Dataset Protected Attribute Label Size Description

Adult [17] Sex Income 45 222 Indicates individuals
earning over $50 000
annually

Bank [21] Age Term Deposit 30 488 Subscription to a
term deposit

COMPAS [18] Race Recidivism 6 167 Arrested again for a
new offense within a
period of 2 years
after initial arrest

German [11] Foreign Worker Credit Risk 1 000 Creditworthiness of
loan applicants

All hyperparameter settings of the pre-processsors were kept as they are,
given the implementation provided by AIF360 [3]. For the case of LFR, we
empirically had to lower the hyperparameter of optimizing for fairness. It was
initially set too high which led to identical predictions for all data points. For
our approach, we set r = 1.25 which returns a dataset consisting of additional
25% samples of the dataset’s initial size. The discrimination measure chosen was
the absolute difference of statistical parity (1), which all other methods also
optimize for. Further, we set m = 5 and ε = 0 as shown in Algorithm 1.

The experimental methodology for a single dataset is visualized in Fig. 1 as a
pipeline. The given dataset is firstly split into a training (80%) and test set (20%).
Afterwards, the training set is then passed into the available pre-processors.
Then, all debiased data are used to train several classifiers. We employed
three different machine learning algorithms—k-nearest neighbors (KNN), logistic
regression (LR), and decision tree classifier (DT)—to analyze the pre-processed
datasets and the original, unprocessed dataset for comparison. The unprocessed
dataset is referred to as the baseline. Finally, the performance and fairness is
evaluated on the prediction of the test set. It is noteworthy to mention that the
test sets were left untouched to demonstrate that by pre-processing the training
data, unbiased results can be achieved in the prediction space even without per-
forming bias mitigation in the test data. Due to stability reasons (and to handle
RQ2), we used Monte Carlo cross-validation to shuffle and split the dataset.
This was done 10 times for all datasets. The results from it set the performance-
fairness baseline. While our optimization focuses on SDP, we address RQ3 by
assessing the error of average odds. To answer RQ4, we refer to Sect. 6.2 for the
experimentation and discussion.
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Fig. 1. Experimental methodology visualized as a pipeline

6.1 Comparing Pre-processors

Table 2 presents the performance-fairness test results of pre-processors on differ-
ent datasets (RQ1). For the discrimination, the table displays SDP and average
odds error of the predictions on the test sets. To assess the classifier’s perfor-
mances, we used area under the receiver operating characteristic curve (AUC).
An estimator that guesses classes randomly would produce an AUC score of 0.5.
Here, higher scores imply better prediction performances. Means and standard
deviations of the Monte Carlo cross-validation results are also displayed to eval-
uate the robustness (RQ2). We note that all classifiers except of KNN were
able to handle sample weights in training, which are required for Reweighing.
Therefore Reweighing was not able to mitigate bias in KNN and performed as
well as the baseline in contrast to other approaches including ours.

Because all pre-processors aim to reduce statistical disparity (or the equiv-
alent formulation), we compare the SDP scores between the pre-processors: In
most cases, our approach produced Pareto optimal solutions with respect to
both SDP and AUC. Generally, only Reweighing and our approach appear to
consistently improve fairness without sacrificing notable prediction power. In
direct comparison, LFR improved the fairness at most across all experiments
but at the same time sacrifices prediction quality of all classifiers to such a great
extent that the predictions become essentially useless. In experiments where
LFR attained standard deviations of 0 across all scores (Table 2b, 2d), we inves-
tigated the pre-processed data and found that LFR had modified almost all
labels to a single value. As a result, the estimators were unable to classify the
data effectively, as they predicted only one outcome. The results of DIR are very
inconsistent. DIR sometimes even worsens the fairness, as seen in the COMPAS
and German datasets, where SDP and average odds error are increased in most
settings. This situation arises when there is an excessive correction of the avail-
able discrimination for the unprivileged group, leading to discrimination against
the privileged group. If the discrimination measures are defined such that the
privileged or unprivileged groups do not matter (similarly to this paper), reverse
discrimination would not mistakenly occur by our approach. This extra property
renders our method more suitable for responsible use cases.
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When comparing the average odds error rates (RQ3), our approach has suc-
cessfully reduced algorithmic bias without aiming for it under nearly all exper-
iments. The increase in the average odds error rate (mean), albeit negligible,
was observed only when training DT on the Banking data and LR in the Ger-
man dataset. In all other ten model and dataset configurations, our approach did
reduce the error rate without particularly optimizing for it. This can be expected
in practice as the independency of the label with the protected attribute (SDP)
is a sufficient condition for average odds.

Table 2. The tables displays each classifier’s mean test performance and discrimination
when trained on different pre-processed training sets. The best performing statistic for
each classifier is marked in bold. Minimal standard deviations are marked bold, too.
All values displayed are percentages.

(a) Adult

AUC SDP AVG Odds Error

mean std mean std mean std

Model Preprocessor

DT

DIR 81.28 0.53 19.65 1.04 24.50 1.27

LFR 50.18 1.20 0.18 0.46 0.16 0.37

Our 78.91 0.52 9.68 1.19 10.55 1.26

Original 81.35 0.52 19.77 0.96 24.66 1.21

Reweighing 78.95 0.48 4.96 1.22 1.37 0.76

KNN

DIR 75.35 0.86 20.94 2.35 22.31 3.32

LFR 51.80 4.96 1.14 3.26 0.70 2.02

Our 75.26 0.60 18.84 2.91 19.80 3.54

Original 75.53 0.85 21.09 2.16 22.33 3.05

Reweighing 75.53 0.85 21.09 2.16 22.33 3.05

LR

DIR 80.12 0.59 17.84 0.46 22.80 0.49

LFR 55.35 8.64 1.33 3.05 0.80 2.02

Our 76.96 0.52 3.60 0.82 1.30 0.63

Original 80.13 0.59 17.75 0.45 22.71 0.48

Reweighing 77.29 0.51 4.63 0.57 1.90 0.71

(b) Bank

AUC SDP AVG Odds Error

mean std mean std mean std

Model Preprocessor

DT

DIR 67.66 1.24 3.30 2.03 7.81 3.66

LFR 50.00 0.00 0.00 0.00 0.00 0.00

Our 72.68 0.96 10.36 3.75 6.93 3.42

Original 72.94 1.15 10.69 1.70 6.49 2.97

Reweighing 72.81 1.16 9.58 1.99 5.93 3.07

KNN

DIR 81.42 0.82 8.43 3.69 6.56 3.16

LFR 50.00 0.00 0.00 0.00 0.00 0.00

Our 86.98 0.66 9.05 3.55 5.00 3.74

Original 86.98 0.65 9.05 3.55 5.00 3.75

Reweighing 86.98 0.65 9.05 3.55 5.00 3.75

LR

DIR 91.48 0.42 3.90 1.08 3.60 2.59

LFR 50.00 0.00 0.00 0.00 0.00 0.00

Our 91.25 0.51 6.72 2.24 2.87 2.00

Original 92.14 0.34 7.00 2.85 4.37 2.57

Reweighing 92.11 0.36 5.82 2.47 3.37 1.81

(c) COMPAS

AUC SDP AVG Odds Error

mean std mean std mean std

Model Preprocessor

DT

DIR 70.75 0.53 23.58 4.70 22.06 4.71

LFR 50.26 3.97 8.32 21.12 8.05 21.17

Our 70.91 0.85 10.55 4.31 8.63 4.06

Original 70.76 0.82 21.16 3.64 19.67 3.77

Reweighing 70.35 0.97 10.22 4.02 8.98 2.80

KNN

DIR 65.78 2.88 21.74 7.64 20.58 7.03

LFR 53.58 6.15 2.29 3.67 3.00 4.20

Our 65.13 1.49 12.56 7.98 11.94 7.48

Original 64.84 2.52 15.62 7.88 14.55 8.16

Reweighing 64.84 2.52 15.62 7.88 14.55 8.16

LR

DIR 72.28 0.54 23.20 3.41 21.31 3.77

LFR 56.94 9.07 1.95 3.44 2.55 3.57

Our 71.78 0.68 2.31 1.51 5.38 1.79

Original 72.08 0.48 21.74 3.76 20.01 4.06

Reweighing 71.52 0.76 3.89 2.46 5.61 2.17

(d) German

AUC SDP AVG Odds Error

mean std mean std mean std

Model Preprocessor

DT

DIR 61.15 4.02 23.22 13.70 28.23 14.30

LFR 50.00 0.00 0.00 0.00 0.00 0.00

Our 63.08 3.47 16.61 10.90 26.78 11.09

Original 62.76 3.95 15.07 11.29 27.12 10.83

Reweighing 62.71 4.65 17.53 15.03 33.15 6.73

KNN

DIR 55.42 4.44 18.70 9.28 23.91 7.47

LFR 50.00 0.00 0.00 0.00 0.00 0.00

Our 54.21 4.34 12.95 2.95 13.81 3.26

Original 54.08 3.86 16.99 4.63 18.27 4.95

Reweighing 54.08 3.86 16.99 4.63 18.27 4.95

LR

DIR 78.05 2.15 20.05 11.84 29.79 14.16

LFR 50.00 0.00 0.00 0.00 0.00 0.00

Our 77.60 1.73 15.49 10.46 31.00 9.50

Original 78.10 1.67 16.79 11.10 29.83 10.54

Reweighing 78.05 1.88 16.42 11.10 30.32 10.56
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Fig. 2. Results of optimizing different discrimination objectives with our method on
the COMPAS dataset. Objectives are ordered by columns, classifiers by rows. The
y-axis displays AUC.

6.2 Investigating the Fairness-Agnostic Property

To demonstrate the fairness-agnostic property of our algorithm (RQ4), we eval-
uated our method against the baseline dataset on multiple measures and examine
whether the objective was improved (see Fig. 2). The COMPAS dataset was used
for this experiment. The chosen objectives are: the absolute value of Pearson’s
ρ, NMI (2), and the objective of disparate impact (DI) as given by [9]. All other
experimental settings remained the same as described prior, except that other
pre-processing methods were not used.

It can be observed that all discrimination measures were lowered significantly.
Generally, our method was able to optimize on any fairness notion, as evidenced
here and Sect. 6.1. It was even able to outperform algorithms that were specifi-
cally designed for a single metric, demonstrating its adaptability.
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7 Conclusion

Machine learning can be utilized for malicious purposes if estimators are trained
on data that is biased against certain demographic groups. This can have an
incredibly negative impact on the decisions made and the groups that are being
discriminated against.

The presented pre-processing method in this work is a sampling-based opti-
mization algorithm that firstly uses a statistical model to learn the distribution
of the given dataset, then samples points from this distribution, and determines
which one to add to the data to minimize the discrimination. This process con-
tinues until the predefined criteria set by the user are satisfied. The method can
optimize any discrimination measure as it is treated as a black-box, making it
more accessible for wider use cases.

The results of our experiments demonstrate that our technique is reliable and
significantly reduces discrimination while not compromising accuracy. Although
a few other methods performed similarly in a few experiments, they were not
compatible with certain estimators or even added bias to the original data.
Because fairness was improved among the experiments and our method adds
samples, it indicates that representativeness can be achieved with our method.
Our research underscores the importance of addressing bias in data and we hope
to contribute such concerns in data analytics and knowledge discovery applica-
tions.

8 Discussion and Future Work

The results of our approach demonstrate that it is possible to achieve fairness
in machine learning models using generated data points. Despite our approach
showing promise, it is important to acknowledge that our results rely heavily on
the quality of the statistical model used to generate synthetic data. For tabular
data, Gaussian copula [22] seems to be a good choice.

In future work, we aim to explore the potential of our method in making
pre-trained models fairer with our method. While retraining large models using
debiased datasets may not always be feasible from a cost-effective perspective,
our approach allows using generated data to fine-tune the model for fairness,
which provides a more efficient alternative.

Additionally, our evaluation deals with datasets where the protected attribute
is a binary variable, which leaves some use cases untreated. Neglecting to rec-
ognize non-binary groups can lead to overlooking those who are most in need
of attention. Similarly, research on dealing with multiple protected attributes at
the same time could be done. This is to make sure that no protected group is
being disadvantaged. Previous studies have touched on this subject [1,4,32], but
we hope to reformulate these issues as objectives that work with our approach.



188 M. K. Duong and S. Conrad

A Proof of Time Complexity

Theorem 1 (Time complexity). If the number of candidates m and fraction r
are fixed and calculating the discrimination ψ(D) of any dataset D takes a linear
amount of time, i.e., O(n), Algorithm 1 has a worst-case time complexity of
O(n2) where n is the dataset’s size when neglecting learning the data distribution.

Proof. In this proof, we will focus on analyzing the runtime complexity of the
for-loop within our algorithm as the steps before such as learning the data distri-
bution depends heavily on the used method. The final runtime of the complete
algorithm is simply the sum of the runtime complexities of the for-loop that is
focus of this analysis and the step of learning the data distribution.

Our algorithm firstly checks whether the discrimination of the dataset D̂ is
already fair. The dataset grows at each iteration and runs for �rn	−n = �n(r−1)	
times. For simplicity, we use n(r − 1) and yield,

n(r−1)−1∑

i=0

n + i =
n(r−1)∑

i=1

n + i + 1

=
n(r−1)∑

i=1

n +
n(r−1)∑

i=1

i +
n(r−1)∑

i=1

1

= n2(r − 1) +
(n(r − 1))2 + (n(r − 1) + 1)

2
+ n(r − 1) ∈ O(n2),

making the first decisive step for the runtime quadratic.
The second step that affects the runtime is returning the dataset that min-

imizes the discrimination where each of the m candidates c ∈ C is merged
with the dataset, i.e., ψ(D̂ ∪ {c}). The worst-case time complexity of it can be
expressed by

n(r−1)∑

i=1

m(n + i) = m ·
n(r−1)∑

i=1

n + i = m ·
⎛

⎝
n(r−1)∑

i=1

n +
n(r−1)∑

i=1

i

⎞

⎠

= m ·
(

n2(r − 1) +
(n(r − 1))2 + (n(r − 1))

2

)
∈ O(n2),

which is also quadratic. Summing both time complexities makes the overall com-
plexity quadratic. 
�

Although the theoretical time complexity of our algorithm is quadratic, mea-
suring the discrimination, which is a crucial part of the algorithm, is very fast and
can be assumed to be constant for smaller datasets. Conclusively, the complexity
behaves nearly linearly in practice.

In our experimentation, measuring the discrimination of the Adult
dataset [17], which consists of 45 222 samples, did not pose a bottleneck for
our algorithm.
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