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Abstract. In recent years, industrial control systems (ICS) used in crit-
ical infrastructures have come under the spotlight as a powerful target to
potentially harm broader segments of society. Although there is a grow-
ing body of anomaly detection approaches in this field, the homogeneous
network traffic narrative that is supposed to justify their potential suc-
cess is poorly proven. At the same time, more and more machine learning
(ML) schemes have been developed for this purpose neglecting though
that ML is not the ideal approach for various profound detection aspects
in operational technology (OT) networks. In this paper, we present and
evaluate a communication whitelisting approach for anomaly detection
in OT networks and point out advantages of this allegedly ancient mon-
itoring method compared to machine learning. For this, we introduce
measures to express the variability of network traffic and use them to
quantify the communication dynamics of traffic for different OT infras-
tructures and network layers. We show that due to the static network
communication in the OT domain the detection capability is sufficiently
high without whitelist explosion or runtime concerns.

Keywords: Intrusion Detection · Industrial Networks · Whitelisting ·
Traffic Ananlysis

1 Introduction

In recent years, information technology (IT) and operational technology (OT)
have converged very closely. This trend has serious implications for the protection
of critical infrastructures from external and internal threats. In contrast to office
networks, the traffic in OT environments is commonly expected to be static and
homogeneous regarding the involved devices and their communication character-
istics. Hence, many approaches assume regular network communication for the
training phase to apply anomaly detection for the analysis. This reflects today’s
attack trends, which are increasingly characterised by polymorphic aspects, but
at the same time must address the need to identify unknown (zero-day) attacks,
which is not possible with the complement misuse detection approach.
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For this, machine learning (ML) has meanwhile become the dominant app-
roach because it is considered to be more efficient for the definition of normality
than rule-based approaches. From the domain perspective, however, network-
based attack detection relies in no small part on communication aspects that ML
cannot model effectively. This comprises the precise characterization of commu-
nication relations which includes both the devices involved and the protocols and
message types used for data transmission. Here, the strength of ML to generalise
is simultaneously its weakness. Since this capability arises from abstractions of
the training data, it means that some important aspects are not reflected accu-
rately enough in the model. This leads to incorrect classifications for aspects that
can be expressed with rules. Especially in OT networks, which are less dynamic
than IT networks, it is an essential requirement to be able to precisely and com-
pletely recognise the devices seen in the training phase and their communication
relations1 and without any generalization2 for the detection. Consequently, the
question is not whether to apply machine learning or rules for attack detection.
It is actually, which method is the right one for which aspects. While rules allow
a precise monitoring of well-defined communication behavior, machine learning
is supposed to be applied to traffic parts for which it is not reasonable or feasi-
ble to express them by rules, e. g., the application payload of packets spanning
a comparably much broader space of information which is in general challeng-
ing to model. Apart from precise detection, communication rules can effectively
support a key problem in OT network security research: they enable the analysis
of characteristics and dynamics of OT network traffic to prove or disprove com-
mon assumptions of OT network communication compared to IT traffic. The
following essential contributions of this paper are derived from this:

– We present an approach for the automated generation of communication rules
from raw network traffic usable as whitelists in anomaly detection for a wide
range of OT protocols independent of their underlying protocol stack.

– We apply the rule generation on six datasets taken from real OT networks
and compare them to traffic from an OT [8] and an IT [22] testbed that are
prominent in research. By quantifying the emergence of the rules over time,
we measure the dynamics in network communication and express the static
nature of OT network traffic that are commonly expected in the literature,
but to the best of our knowledge have not been demonstrated so clearly, yet.

– We show that different OT network layers can be identified by a statistical
clustering applied on the metrics derived from the rule generation process
that allows us in turn to identify network layers from an unknown domain.

– We evaluate the efficiency of the rules regarding detection capability and
runtime. The former is done through attacks in a public OT dataset prominent
in research [8], the latter by converting the rules into a rule set for a widely

1 A communication observation devA → devB and devB → devC may not be part of
the abstraction without proper reflection in the model when using ML.

2 The same two observations could lead to a model reflecting also devA → devC when
applying ML.
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used Intrusion Detection System (IDS) [21] and their application on real
networks.

– In the course of the discussion regarding the attack detection capability of
our rules we precisely explain the impact of the attacks contained in the used
public OT data set on the network traffic. We conclude that in turn our
whitelisting can be used both for packet-based labeling of anomalous data
and as a baseline for more advanced detection mechanisms.

The remainder of this paper is organised as follows. In Sect. 2, we give back-
ground information of OT infrastructures and preliminary considerations for
communication whitelisting. The method for whitelist generation is explained
in Sect. 3. After introducing the datasets used for our evaluation in Sect. 4, the
approach and the results for measuring communication dynamics are presented
in Sect. 5. Practical results of the whitelist application are presented in Sect. 6.
We discuss related work in Sect. 7 before concluding this paper with some final
remarks in Sect. 8.

2 Preliminaries

Before presenting our approach we dive into necessary background and terminol-
ogy for assessing the concepts of the paper. There are two types of industrial con-
trol systems (ICSs): distributed control systems (DCSs) and supervisory control
and data acquisition (SCADA) networks [23]. In the energy sector, for example,
local energy production processes in power plants employ DCSs, while SCADA
networks are deployed for the power distribution to consumers spanning up to
thousands of dispersed assets. For the explanations of process control networks,
we use the generic term operational technology (OT), which describes hardware
and software for controlling physical processes.

2.1 OT Network Hierarchy

The field of process control involves particular constraints and trends leading to
major security issues that have already been identified for a decade from now [12],
but which still unaltered exist due to the long-term design and operation of most
networks. Regardless of the specific type, OT networks are typically divided
into multiple sub-networks, resulting in an organisation in different layers. A
simplified architecture of OT networks is presented in Fig. 1. On the lowest layer,
i. e. the fieldbus, sensors and actuators measure and adjust physical parameters,
e. g., pressure, temperature, or speed values, that are used by programmable logic
controllers (PLCs) to fulfill a control-loop-based task. Data from several PLCs
are collected in the control network for evaluation by servers that aggregate all
activities of sub-processes and prepare these data for visualization. By connecting
the (dual homed) servers with a second supervisory network, the data are made
available there. Operators can interact with the processes via human-machine
interfaces (HMI) by monitoring the data and manually adjusting sub-processes.
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Nowadays, OT networks are connected to public networks, such as the Inter-
net, to provide remote access to certain services provided by dedicated servers,
e.g., data historians or maintenance servers, which are placed in a demilitarised
zone (DMZ network). Firewalls are used as major prevalent security measure
to restrict access to these servers or to the OT network. To extend this basic
protection, we propose monitoring within the subnets, which takes effect, for
instance, when the firewall has been penetrated or an attack is launched within
the network. The monitoring is based on a simple whitelisting of network com-
munication. A set of rules defines the allowed communication behaviour, more
precisely, which components are allowed to communicate with each other and
how (with which protocols and message types).

Fig. 1. Example of a typical OT network topology

2.2 Aspects of the Whitelist Use

Whitelisting has several advantages and disadvantages compared to alternative
anomaly detection methods, which are discussed below regarding four aspects.

Completeness. Even in the case of a comprehensive learning, it cannot be guar-
anteed that a complete whitelist representing all legal network communication
can be generated. An incomplete whitelist leads to the generation of false posi-
tives (FPs) that quickly cause an unacceptable administrative effort due to the
necessary assessment of the alarms’ relevance and the consideration of whitelist
extensions. We conduct a detailed investigation of this in Sect. 5.

Monitoring Coverage. Whereas the completeness is associated with FPs, the
monitoring coverage is linked to the false negatives (FNs) problem. Thus, attacks
can occur in traffic parts not captured by the monitoring. Machine learning
approaches in particular are usually limited to monitoring a specific traffic type,
e.g., by targeted analysing process data or flow meta-information. In contrast, we
follow a complete monitoring of the network traffic, independent of the protocol
stack, up to the application-oriented protocol level.
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Interpretability. Since the generation of FPs cannot be precluded, the appli-
cation of systems that automatically initiate countermeasures, such as intrusion
prevention systems, is usually not considered acceptable in OT networks. It is
therefore more important that generated alerts are in a format that can easily be
interpreted by a human being, so that a direct identification of the attack causes
is possible. Compared to ML, whitelists offer great advantages here because the
rule-based expression of detection references is inherently comprehensible.

Efficiency. Attack steps have to be logged at the shortest possible time interval
after execution, so that countermeasures can immediately be initiated. It is likely
that both the memory and the computing capacity required for the analysis are
influenced by the size of the whitelist. Since the number of rules required for the
desired monitoring cannot be estimated in advance, it is questionable whether
a real-time monitoring can be achieved. We examine both the attack detection
capability and the practical application of whitelisting in detail in Sect. 6.

3 Methodology

The proposed approach for whitelist generation from raw network traffic and the
use for analysing the communication dynamics is shown in Fig. 2. Network traffic
is first preprocessed to collect all information for specifying regular communi-
cations in the form of so-called communication graphs [19] (Sect. 3.1). A com-
munication graph is first mapped to a general whitelist (Sect. 3.2) from which a
specific whitelist (Sect. 3.3) is generated subsequently. The latter is adapted to
a specific tool, here the IDS Snort [21], which can immediately be used for the
monitoring. The whitelist application to analyse the communication dynamics
and the experiments to investigate practical aspects are described in Sect. 5 and
Sect. 6.

Fig. 2. Methodology overview

3.1 Communication Graphs

A communication graph is a directed graph used to represent network devices
and their logical connections, also referred to as communication relations. For-
mally, a directed graph D = (V,E) consists of a set of nodes (vertices)
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V = {v1, ..., vn} representing the network devices and a set of edges E =
{e1, ..., em} for the communication relations. The addresses determined for a
node v are represented by A(v) = {a | a ∈ AIP ∪ AMAC} with AIP and AMAC rep-
resenting the domain of IP and MAC addresses. The set of all addresses of a
communication graph D is referred to as A(D):

A(D) =
n⋃

i=1

A(vi), vi ∈ V (D)

An edge e = (vsrc, vdst,M) contains the source and target vertices vsrc and vdst
as well as a set of messages M = {m1, ...,mo}. A message m = (asrc, adst, t, p, u)
is characterised by the transmission protocol t, the payload protocol p, and the
message type u. Since multiple addresses can be assigned to a vertex, the source
and destination addresses used for message transmission are available in asrc
and adst. We refer to all messages of a graph D as set M(D):

M(D) =
m⋃

i=1

M(ei), ei ∈ E(D)

A communication graph can directly be used as a reference to detect unde-
sired communication. Next, we explain this procedure.

3.2 Generation of the General Whitelist

The message set M(D) contains all information for describing legitimate network
communications. Hence, it forms the initial rule set: R = M(D). From this, more
meaningful rules can be derived that focus on single aspects of communication.
So, it is possible to distinguish between different types of whitelist violations.

Device-oriented Rules. These rules ensure that communication relations are
exclusively established between already known devices. This includes both (1)
detecting unknown devices and (2) new communication between known devices.
The two objectives can be achieved by evaluating address information alone.
Therefore, a device-oriented rule r = (Asrc, Adst) consists of only a 2-tuple for
specifying legal communication partners. For the detection of unknown devices,
a single rule rU = (A(D), A(D)) is sufficient. To monitor the device-based com-
munication of already known devices for each address a ∈ A(D) the associated
address set Adst(a) has to be determined. It is used to restrict regular target
components that can be addressed by means of a:

Adst(a) =
⋃

m∈M(D)|asrc(m)=a

adst(m)

In addition for each address a ∈ A(D), a rule r = ({a}, Adst(a)) is generated,
resulting in the rule set RK . We denote the rules for detecting new senders out of
the set of already known devices as RKsrc

= {r|r ∈ RK ∧ Adst(a) = ∅}. The set
RKdst

= RK \RKsrc
is used to identify devices that have already acted as senders
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but addressed different devices during monitoring. We refer to the complete set
of device-oriented rules as RD = rU ∪ RK .

Communication-oriented Rules. After ensuring the legitimacy of device-to-
device communication using the RD rule set, specific communication type are
verified. To generate these rules the tuple set AC(D) is first determined which
contains all source and destination address combinations specified by graph D:

AC(D) = {aC = (asrc, adst)|
⋃

m∈M(D)

(asrc(m), adst(m))}

Each address tuple is used to determine the associated message set

M(aC) = {m ∈ M(D)|asrc(m) = asrc(aC)∧
adst(m) = adst(aC)}

whose elements are subsequently combined in three different ways. First, commu-
nication protocols used for data transmission are determined, whereby transport-
oriented protocols T (aC) and application-oriented protocols are distinguished,
referred to as P (aC). In addition, the set of used message types U(aC) is deter-
mined for each application-oriented protocol. These three combination sets are
formally described as follows:

T (aC) =
⋃

m∈M(aC)

t(m)

P (aC) =
⋃

m∈M(aC)

(t(m), p(m))

U(aC) = {((t, p), U)|(t, p) ∈ P (aC),

U =
⋃

m∈M(aC):t(m)=t∧p(m)=p

u(m)}

A separate rule per address tuple is generated from each set:

RT (aC) = {(asrc(aC), adst(aC), T (aC))}
RP (aC) = {(asrc(aC), adst(aC), P (aC))}
RU (aC) = {(asrc(aC), adst(aC), U(aC))}

We name the sets of all rules of these three rule types as RT , RP , and RU ,
whose union gives the set of communication-oriented rules RC = RT ∪RP ∪RU .

3.3 Generation of Specific Whitelists

The rules describe aspects that are also analysed by existing security methods,
such as firewalls or IDSs. Thus, it is straightforward to generate rules from the
general whitelist for such tools. We realized that for Snort, a widely used IDS,
by mapping the address information of the general rules to device-oriented rules
and general communication-oriented rules to Snort header elements and options.
We give a detailed demonstration of the generation principle of specific whitelists
for Snort in respect of the syntax of Snort’s description language in Appendix A.
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4 Datasets

For the evaluation of our approach, we use eight datasets from different types
of infrastructures that operate both OT networks and standard IT technology.
Table 1 summarises the characteristics of the datasets. All are captured via dedi-
cated access points (typically switches). The properties specified in Table 1 refer
to the monitoring domain of the sensor used for capturing. As our evaluation
is carried out from several aspects, the last column of the table contains infor-
mation on whether a dataset is used for communication characterization (com),
attack detection capability evaluation (det), or runtime analysis (rta).

Table 1. Dataset characteristics

Dataset Infrastructure
type

Network
level

Duration
(hh:mm:ss)

# Packets
(millions)

Packet rate
(k/second)

# Devices Analysis aspect

com det rta

power1.1 power plant supervisory 02:39:34 90.53 9.46 114 • ◦ •
power2.1 supervisory 02:15:36 66.08 8.12 71 • ◦ ◦
power2.2 control 01:25:40 6.10 1.19 66 • ◦ ◦
power2.3 DMZ 17:36:10 83.89 1.32 682 • ◦ ◦
train1.1 train control 01:35:44 17.00 2.96 76 • ◦ ◦
train1.2 control 02:41:10 9.96 1.03 155 • ◦ ◦
cicids.17 office – 08:05:36 11.68 0.40 9,727 • ◦ ◦
swat.a3 water treatment control 24:12:58 1,248.96 14.00 61 • ◦ ◦
swat.a6 control 03:40:00 321.03 24.00 98 ◦ • •

Power Plants. We use several traffic traces that were captured at two coal-fired
power plants. They involve two different control systems from leading vendors
used worldwide. In our experience, networks of plants using the same control
technology have strong similarities in architecture, protocols, and hardware. The
dataset labeled as power1.1 was captured within the supervisory level of a plant
consisting of in total four generation units with a combined capacity of 2200MW.
The other datasets power2.1 to power2.3 originate from different network layers
of a second plant with two generation units of the 800MW class each.

Local Passenger Train. Two datasets originate from a control network of a
train used for urban passenger transport. The train communication network is
used for a train series rolled out in Germany at the end of 2018. The concrete
train is composed of six coaches including two railcars. The operation is imple-
mented by a network (conform to [5]) spanning all coaches. It is divided into two
local networks. The first subnet contains devices of subsystems that are essential
to ensure regular train operation. These include, for example, traction/brake and
door control, power converters, and safety systems. The second subnet includes
devices of various systems whose fault-free operation does not have a decisive
influence on the safe operation of the train. They serve organisational and coor-
dination purposes or contribute to passenger comfort. These include the camera
surveillance system, passenger counting, intercoms and passenger information
devices. Both subnets reflect the control network layer.
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Water Treatment. This dataset [8]3 represents a small-scale version of a mod-
ern water treatment plant. The network traffic considered in this study was
provided in two different datasets. The first one originates from 2016 and cov-
ers 136 h of network traffic from continuously running SWaT without performing
any attacks. We use the first about 24 h of this data and refer to them as swat.a3.
The dataset swat.a6 was provided in 2019 and contains a series of malware infec-
tion attacks on the engineering workstation. Due to the network architecture of
the testbed, the two datasets are assigned to the control level.

Standard IT Network. In addition to the OT traffic, we use a portion of
the popular public dataset CICIDS2017 [22] as an exemplary representative of
standard IT traffic for a direct comparison of communication characteristics. The
dataset labeled cicids.17 corresponds to the first day (Monday) of the capture
when no attack activity has been observed.

Notes on Private Datasets. The first two datasets contain sensitive informa-
tion that we are only allowed to describe in abstract form due to non-disclosure
agreements. The datasets were captured using the tool tcpdump, running on a
separate sensor device attached to switches with activated port mirroring.

5 Communication Dynamics Analysis

Besides the whitelist generation, the process depicted in Fig. 2 aims to analyse
the communication dynamics of OT networks. Here, we focus on investigating
the variability or homogeneity of the traffic and on determining whether (and to
what extent) a complete whitelist can be generated from it.

5.1 Multi-step Whitelist Generation

For the communication dynamics analysis, each dataset is first divided into two
parts, the generation data and the validation data. The whitelist is generated in
an n-step procedure in which the generation data is further split into n disjoint
and consecutive sub-captures. In each step i (1 ≤ i ≤ n), an increasing amount
(i sub-captures) of the generation data is used for the whitelist generation. After
each step, the validation data is analysed with the derived whitelist and the
number of packets that do not match the whitelist is determined. This proportion
of packets from the total amount of validation data is called mismatching packet
rate (MPR). The MPR in the i-th step is denoted as mi.

5.2 Measures for MPR Evolution Analysis

The MPR determined in the last sub-step mn is an indicator of the completeness
of the whitelist generated from the generation data used to monitor the validation
data. To characterize the communication dynamics within the generation data,

3 https://itrust.sutd.edu.sg/itrust-labs_datasets/dataset_info/.

https://itrust.sutd.edu.sg/itrust-labs_datasets/dataset_info/
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multiple measures are determined. The basis is the MPR reduction achieved
between two sub-steps. Due to the monotonicity of the MPR evolution function,
the MPR decrease after the i-th step is determined as difference of the current
MPR and the MPR of the next step: di = mi − mi+1, with 1 ≤ i < n.

Mean MPR Decrease. As base for the following measures this is defined by:

d̄ =
1

n − 1

n−1∑

i=1

di

Dispersion Measures. In addition to the mean MPR decrease, the communi-
cation dynamics can also be characterized by the distribution around the mean
value. A higher distribution indicates significant whitelist extensions within rela-
tively few generation steps. Thus, communication can be considered more static
in the case of a comparatively high dispersion than in the case of a relatively low
one. The analysis of the dispersion of individual MPR reduction rates around
the mean is based on relative measures. First, the relative standard deviation is
determined, which is also referred to as the variation coefficient:

v =

√
1

n−1

∑n−1
i=1 (di − d̄)2

d̄

As a second measure of dispersion, the normalized Gini coefficient is deter-
mined. For this purpose, the MPR decrease values are first sorted in increasing
order; we denote the values thus obtained as d̂1, ..., d̂n−1, with d̂i ≤ d̂i+1. The
normalized Gini coefficient is determined from these as follows:

g =

(
2 · ∑n−1

i=1 i · d̂i
n − 1 · ∑n−1

i=1 d̂i
− n

n − 1

)
· n − 1
n − 2

For the normalized Gini coefficient, it holds 0 ≤ g ≤ 1, with the value rising
as the inequality dispersion increases. Finally, we introduce a measure to analyse
how often the whitelist changes significantly during generation. Hence, we define
the jump rate j as the fraction of decreasing MPR values that exceed a certain
threshold. We use the product of the mean MPR decrease and the variation
coefficient as the relative threshold, so that the jump rate is defined by:

j =
|{d|d ∈ {d1, ..., dn−1} ∧ d > (d̄ · v)}|

n − 1

5.3 Experimental Setup and Results

The whitelist generation process (Sect. 5.1) is applied as follows. The split of a
dataset into generation and validation data was performed in a 1:1 ratio and ten
sub-steps (n = 10) were used to create the whitelist from the generation data.
All splits are time-based, so each resulting sub-capture has the same duration.
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Table 2. Whitelist information, mismatching packets, and clustered MPR evolution
measures for the investigated datasets

The measures introduced in Sect. 5.2 for the individual datasets are presented
in Table 24 Since the traffic of different networks exhibits a different protocol
mix and not every protocol is decoded to distinguish message types, two values
per measure were determined for each dataset. The lower line shows the mea-
sures that takes the rules for the identification of different message types into
account. In comparison, the upper row states the measures from the exclusive
application of the remaining rule types. For allowing a quick visual comparison
among the datasets, the results are clustered (column-wise) into four coloured
groups (corresponding to the number of different network layers) using k-means.
Table 2 also states for each rule type (cf. Sect. 3.2) the ratio of rules triggered
by mismatching packets to the total number of generated rules. Thus, the sum
of the numerators corresponds to the number of rules that would have to be
extended to complete the whitelist with respect to a mismatching packet free
analysis of the validation data. The evolution of the MPR over the whitelist
generation steps and the influence of the different rule classes on the MPR is
shown in the bar charts in Fig. 3.

5.4 Characterization Takeaways

Finding 1: Communication Whitelisting is not Suitable for Monitoring
Standard IT Networks. With an MPR of over 54%, by far the most incomplete
whitelist was generated for the cicdis.17 dataset. Due to about 4,000 different
rules to be extended, it must be concluded that a whitelist cannot be developed
with proper effort to a complete one. The values determined for the dispersion
measures indicate a uniform development of the MPR reduction and thus a
4 A repository for interactive analysis of the public datasets is provided here: https://

gitlab.com/paulandre/ot-whitelisting.

https://gitlab.com/paulandre/ot-whitelisting
https://gitlab.com/paulandre/ot-whitelisting
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Fig. 3. Evolution of MPRs taking (rows two and four) and not taking (rows one and
three) message-type-specific rules into account

high communication dynamics in the generation data. Consequently, we consider
communication whitelisting to be unsuitable for standard IT traffic represented
by the cicdis.17 dataset and do not discuss further details for this dataset.

Finding 2: Different OT Network Layers Exhibit Different (measur-
able) Communication Dynamics. A clustering of dispersion measures shows
that communication dynamics differ significantly among OT network layers.
Already on the basis of the jump rate measure, the supervisory networks (j = 0.2,
resp. j = 0.3) can be distinguished from other layers (j = 0.1). However, as the
range of the jump rate is too small, this measure is not suitable for an accurate
classification of network domains. In contrast, both the coefficient of variation
and the Gini coefficient can be used to clearly refer traffic to OT network layers.
Furthermore, the communication dynamics measures indicate that the lower the
network layer, the smaller the differences in communication dynamics among
different networks of the same layer. While the large difference between the two
datasets representing the supervisory layer can even be discerned in the jump
rate, the control-layer networks show a comparatively small range in terms of
the coefficient of variation (2.65 to 2.83) and the Gini coefficient (0.986 to 0.999).

Finding 3: Strong Correlation between Communication Dynamics and
Whitelist Completion Effort. Looking at the communication dynamics in
isolation using the measures to describe MPR evolution does not yet allow any
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conclusions to be drawn about the effort required to extend the whitelist towards
a complete one, since in the extreme cases to detect n mismatching packets
exactly one, but also n rules may be responsible. By including information
on triggering rules, a relatively strong negative correlation can be determined
between the proportion of triggering rules from the total amount of rules (rt
for short) and the MPR dispersion measures. Depending on the consideration or
exclusion of the message-type-specific rules, a correlation coefficient of −0.79 and
−0.83 was determined between rt and v, respectively. The correlation coefficient
between rt and g is −0.81 (taking message-type-specific rules into account) and
−0.84 (when excluding these rules), respectively.

Finding 4: Detection of Whitelist Violations is Dominated by Device-
oriented Rules. New device-level communication relations are the most com-
mon cause of logging whitelist mismatching packets. Only for dataset power1.1,
communication-specific rules are dominant, in case message-type-specific rules
are considered. For the remaining five datasets, the percentage of messages logged
by device-oriented rules ranges from 61% (train1.2) to 98% (power2.3). The most
common cause of new device-level communication relations involves, between
known components, a component already acting as a sender addressing one or
more additional devices.

6 Whitelist Application

We discuss the application by detection capability and evaluation performance.

6.1 Attack Detection Capability

The attack detection capability of the whitelists is exemplarily evaluated using
the swat.a6 dataset containing four malicious events. Information on the alloca-
tion of these events to the corresponding sub-captures are taken from the docu-
mentation of the dataset. A whitelist was generated from the first sub-capture
(referred to as c0 ), which does not contain any malicious traffic. Figure 4(a)
shows the MPRs derived from the remaining sub-captures c1-c14.

Fig. 4. Mismatching packet rates of the SWaT A6 sub-captures
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Infiltrate SCADA WS via USB Thumb Drive with First Malware.
A first malware infection is assigned to c1. As the pure infection does not
immediately result in changed communication relations, a relatively low MPR
(0.000139%) was determined for this capture.

Exfiltrate Historian Data. In a total of four cycles, which are assigned to
c2 to c5, a data exfiltration attack was performed. These result in high MPRs
(>1.5%), whereby logged packets mainly belong to the communication of three
devices. Figure 5(a) shows a message sequence chart (MSC) representing their
communication. The malware apparently enables a remote control of the infected
host. The SCADA workstation first establishes a TCP connection on port 6556
(messages 3 to 5, m3 to m5 for short) to the device designated as command-
and-control (C2) server. After exchanging initial alive messages, the C2 server
transmits a command (e5, see m8 ) to the workstation, whereupon the worksta-
tion requests current process data from the historian. For this purpose, a TCP
connection on port 8080 is established, transferring HTTP packets to request files
from the historian (m14). Subsequently, the historian responds (m15), transfer-
ring the file content in JSON format. This polls the current measurement and
status values of all devices involved in the six sub-processes step by step. After-
wards, the data is forwarded with a single TCP packet (m19). The data polling
from the historian and the transmission of the collected values to the C2 server
is repeated at regular intervals of about one second. The logging of the asso-
ciated packets was caused entirely by device-oriented rules. More precisely, the
communication between the victim and the C2 server (a so far unknown device)
was detected by rU . In contrast, the communication between the victim and the
historian was identified by two rules from set RKdst

.

Infiltrate SCADA WS with Second Malware, via Downloading from
C2 Server. After a rest period of 60min, represented by c6 to c9, a secondary
infection of the workstation occurs by reloading software from the C2 server.
This event is assigned to c10, where a slightly increased MPR (∼0.044%) can be
observed, that is mainly caused by the communication between the workstation
and the C2 server. Packets violating the whitelist are summarised by the MSC
shown in Fig. 5(b). This reveals that the malware operates through two different
channels. According to the execution of the data exfiltration attack, the control
commands are transmitted over a TCP connection on port 6556. In addition, a
connection established on port 6001 serves as a data channel. After the upload
command has been received (m1), the workstation initiates the establishment of
the data connection. Afterwards, the C2 server transfers the data to the victim by
sending several packets. Once the data transfer is finished, the TCP connection
is closed (m8 to m10 ). From the commands that are subsequently exchanged
over the second channel, it can be concluded that the transmitted data is the
malware executable file that is executed after it is stored.

Disrupt Sensor and Actuator. The malware execution tends to sensor and
actuator disruption, performed in five cycles associated to c10 to c13. While the
visibly increased MPR to c10 is caused by the malware transmission (Sect. 6.1),
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Fig. 5. Sequence charts representing analysed attacks

further events cannot be identified from the overall MPR. However, when look-
ing exclusively at the results of the communication-oriented rules (see Fig. 4(b)),
a significantly increased MPR for the sub-captures is evident. Here, the MPR is
dominated by rules of the setRU used to detect new message types. For c10, a total
of 236 associated packets can primarily be assigned to a communication between
the workstation and the primary PLC used to control the first sub-process (P1)
of the SWaT’s six-stage process. The logged communication between these com-
ponents consists of 220 messages transmitted via EtherNet/IP combined with the
Common Industrial Protocol (CIP). There are a combined total of ten different
message types that violate the whitelist. Figure 6 shows the communication. First,
a session is established by means of EtherNet/IP (m1, m2). The application-based
communication between the victim and PLC is realised using CIP, also operating
in a connection-oriented manner. A two-way handshake is used to establish and
terminate the connection (m5+m6 andm9+m10, respectively). To ensure that no
path to the objects to be accessed exists yet, prior to this (m3, m4) an attempt is
made to terminate the connection. Object access by the workstation is executed
by m7 and confirmed by the PLC through m8.

6.2 Application of a Specific Whitelist

Experimental Setup. We perform a communication monitoring with a runtime
analysis using Snort as an example. Here, we focus on power1.1 and swat.a6
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as the private and public dataset with the highest packet rates. Snort rules
were generated from the general whitelists created to measure communication
dynamics (in the case of power1.1 ) or to analyse attack detection capabilities
(swat.a6).

Table 3 summarises the mean packet processing rates for ten runs of Snort
using certain rule types as well as the complete rule set. In case of power1.1
two sets of validation data were applied. First, the complete whitelist generation
traffic (val1) was used, which naturally leads to no alarms. For comparing pro-
cessing rates with and without alarms the priorly defined validation part val2
used to measure the communication dynamics was also monitored. Regarding
swat.a6, the validation data corresponds to the traffic analysed in Sect. 6.1.

Fig. 6. Sequence chart of process disruption

Table 3. Packet processing rates using
Snort

power1.1 swat.a6

val1 val2

device-
orient.

#rules 43 57

#alerts 0 87 1,391,094

103 pkts/s 762 773 615

RT #rules 144 219

#alerts 0 0 0

103 pkts/s 563 574 432

RP #rules 161 140

#alerts 0 0 192

103 pkts/s 364 375 294

RU #rules 976 22

#alerts 0 46,126 0

103 pkts/s 2,429 2,416 3,644

all #rules 1,208 435

#alerts 0 46,213 1,391,286

103 pkts/s 225 225 113

Performance Results. All rule types allow processing rates in the three-digit
thousands range. The rate decreases with an increasing amount of packet header
information that has to be analysed. A significantly high processing rate was
achieved when only message-type-specific rules were used. This can be explained
by the fact that only for a subset of the communication protocols a distinction
between different message types is made. Depending on the protocol mix of the
analysed data, there is only a very small proportion of end-to-end communication
relations (specified by the header of the Snort rules) whose packets need to be
analysed at all, so that the analysis of the majority of packets can be terminated
at a very early stage. The rule set RU is significantly smaller in the case of the
swat.a6 dataset, which recognisably results in a higher processing rate. Since
there are no relevant differences in the analysis performance of the two power1.1
validation datasets, we conclude that only the number of rules used is decisive
and that the logging effort is of no importance. As all packet processing rates
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exceed the communication packet rates determined for the datasets (cf. Table 1)
by a factor of 4.5 to 23.5, we conclude that our whitelists can be used for a
real-time monitoring of OT traffic.

7 Related Work

We aim to contribute to OT security by both characterizing OT traffic and
providing a monitoring technique according to these characteristics. Hence, we
discuss the state of the art in both areas.

7.1 Characterization of Process Control Traffic

We distinguish two groups for characterizing process control traffic and refer to
the terms SCADA and DCS as differentiated in [23].

Aggregated Traffic Characterization. This kind focuses on the quantifica-
tion of traffic meta information, which is motivated by the need for realistic traffic
simulation in research. For SCADA networks, the approaches outline differences
to standard IT networks by measuring the periodicity in terms of the frame rate
and the number of active connections [2] and investigate the application of stan-
dard IT traffic models, which are figured out as not transferable to SCADA traf-
fic [3]. Other research measured the TCP-based DNP3 communication in terms of
polling intervals, inter-arrival times, idle and round-trip times per device, (tem-
poral and byte) duration of TCP flows, retransmission rates and timeouts [7].
Other works studied the traffic of the SCADA protocol IEC 60870-5-104 by cat-
egorizing the traffic into strongly cyclic, weakly cyclic, stable, bursty, and phase
transitional by quantifying distribution changes of event inter-arrival times over
time [15,16]. The authors of [13] recently proposed a five-step method for pro-
filing traffic by quantifying communication intensity, recognizing work-cycles by
repeated communication patterns, and identifying the work-cycles’ states with
their subsequent profiling. Regarding DCS, the presence of a rich protocol mix
has recently been identified in [18], in contrast to what is stated for SCADA
networks. The authors show the feasibility to distinguish proprietary protocols
by clustering traffic based on the inter-arrival times and header data of frames.

Structural Traffic Profiling. Related approaches try to model periodic com-
munication patterns. While this was initially examined for supporting single
protocols [9,10], other works proposed a protocol-independent modelling of con-
crete periodic traffic patterns [4,11] exploring message repetition and timing
information. They evaluated their approaches for a DCS (Siemens S7 and MMS,
respectively) as well as for a SCADA protocol (both Modbus). An analysis of the
IEC 60870-5-104 communication of the power distribution backbone network is
available in [17]. In addition to the analysis of physical network changes and the
communication flow lengths of the SCADA infrastructure, particularly struc-
tural traffic analyses are presented in the form of clustering session variants and
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measurements of the amount and the semantics of message types. A recent pub-
lication [6] suggest a deep-packet inspection on OT protocols to generate models
of communications between network device pairs, what they demonstrate for
three protocols (Modbus/TCP, DNP3, and EtherNet/IP) for SCADA and DCS
networks. They, however, admit that the used Discrete Time Markov Chains
suffer from state and transition explosion.

Research Gap. The former type of characterizations abstract network activi-
ties to aggregated traffic observations. These allows only a topview on OT traffic
quantities. The latter type of works analyzes communication frames, but it dives
to deep into the perspective of the process (modelling of process variables) and
thus loses track of network transactions and runs into state explosion. We target
at the gap between the two trends providing (1) a bottom view on the traffic
by analyzing frames instead of aggregated traffic properties, (2) by keeping the
network perspective as prerequisite for a network operator’s understanding and
re-use of findings, and (3) by providing a profiling approach capable to incor-
porate a mix of protocols in the network, as it was figured out to be the case
especially for DCS [18] and so-called brownfield systems [13].

7.2 Attack Detection for OT

For the sake of brevity we refer to the recent structured overview given in [25].
Our work falls into the smaller group of communication-based approaches, which
has decisive advantages over process state-aware approaches. These include the
applicability on networks independent from the existence of (potential vendor-
specific) systems for the necessary preprocessing to provide well-structured sen-
sor data. Many detection approaches have been identified as unnecessarily com-
plex [24] which relates to serious problems of interpretability and reliability in
real-world scenarios. In contrast, the presented approach provides both, trans-
parency into the modeled detection knowledge in the form of precise rules as
well as the possibility to influence the detection by the adaptions of the rules.

8 Conclusion

In this paper, we presented a whitelisting approach for characterizing and mon-
itoring communication in OT networks. We used it for measuring eight datasets
to express the homogeneity of OT traffic and differences among OT network
layers. We examined that the whitelists meet essential criteria regarding com-
pleteness (measured by a mismatching packet rate), interpretability (inherent
to rule-based approaches), detection capability (identified for a prominent OT
dataset), and efficiency (measuring the packet processing rates when using the
whitelists with a well-known IDS). Although the generation cannot guarantee
complete whitelists even in the OT domain, which can lead to false alarms, the
evaluation still proves the whitelists are very effective for process control traffic.
Hence, they can serve as an interpretable baseline in the OT domain in order
to justify the composition of more complex methods, which is often neglected
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when proposing new detection schemes [1]. Consequently, up next we will use
the whitelist approach to define baselines for the OT domain using public data
(e. g., [14,20]) and to transpose current rough time-based packet labelings of
public datasets into a precise pattern-based one.

A Specific Whitelist’s Generation for Snort

As a prerequisite to follow the description, an exemplary Snort rule is shown in
Fig. 7.

Fig. 7. Example of a Snort rule

Device-orientated Rules. Device-oriented Snort rules are created from the
address information of the general rules of this class. Since only IP-based network
traffic can be specified by Snort rules, all MAC addresses have to be removed
from the applied address sets. A set of addresses A filtered by IP addresses is
called A′ = {a|a ∈ A ∩ AIP}. The mapping of the general rule rU is done using
the set A(D)′ = {a1, ..., ai} as follows:

alert ip ![a1, ..., ai] any -> any any

As Snort operates in blacklist mode, the exclamation mark as negation oper-
ator is used which causes the rule to trigger an alert whenever a device with
an unknown IP address acts as a sender. The keyword any specifies the com-
plete value range of the respective header element (destination IP addresses,
and source/destination ports). Accordingly, the mapping of a rule r ∈ RK with
a source address a ∈ A(D)′ and the corresponding address set Adst(a)′ is done
accordingly to (1) in case Adst(a)′ 	= ∅, otherwise to (2):

(1) alert ip a any -> ![a1, ..., aj] any
(2) alert ip a any -> any any

Communication-orientated Rules. To map general communication-oriented
rules, Snort header elements and Snort options are used. Since only rules for the
specification of IP-based communication can be mapped here as well, further
notations of the sets used for the mapping are given first. We denote the set of
address tuples AC(D) filtered by IP addresses as AC(D)′, the set of messages
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determined for an address tuple aC
′ as M(aC ′), and the aggregated sets from

these as T (aC ′), P (aC ′), and U(aC ′), respectively. For a definition of allowed
transport-oriented protocols, the protocol field of the Snort header is used.
Since the application of the negation operator is not provided for this element and
also no list can be used, the mapping is done by several Snort rules if necessary.
To this end, the set of transport protocols to be mapped TM = {t|t ∈ TS\T (aC ′)}
is determined, where TS = {ip, icmp, tcp, udp} corresponds to the set of protocols
that can be used in the header. A Snort rule is created for each t ∈ TM :

alert t asrc any -> adst any

The generation of Snort rules for the specification of legal application-oriented
protocols is basically done by mapping the set P (aC ′) to the protocol header
element as well as the fields source_ports and dest_ports. The first step here is
to create a set that contains all port numbers in combination with the transport
protocol. It specifies the set of legitimate application protocols:

PS(P (aC ′)) = {(t, P )|t ∈ t(pC ∈ P (aC ′)) ∩ {tcp, udp},
P =

⋃

pC∈P (aC
′):t(pC)=t

p(pC)}

However, a Snort rule can only be created from this set if there is a distinct client-
server relationship between the communication partners regarding the packets
to be specified by the rule. If the corresponding services are hosted by the des-
tination component the mapping is as follows:

alert t asrc any -> adst![p1, ..., pn]

If the services are provided by the source device the values of the
source_ports and dest_ports header fields are swapped. To determine the
server component of a specific service the following strategies with descending
priority are used:

1. Message types: For typical client-server-oriented services, the observed mes-
sage types provides immediate information about the device role. For exam-
ple, in the case of DNS, when a request message is detected, the sender is
considered as a client and the target device as a server.

2. Connection establishment: In case of TCP-oriented services, an observed con-
nection establishment can be used for the assignment, whereby for the first
(or third) packet of the three-way handshake the sender is considered as the
client and the destination as the server.

3. Heuristic: The heuristic role determination is based on the subgraph resulting
from the communication graph filtered by the protocol used to transmit the
messages used for service provision. If a service is used by multiple clients the
server can be identified by the associated node in the graph with the highest
node degree (indegree and outdegree).
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Since the differntiation of message types relies on the protocol-specific decod-
ing of packet payload data, there is no generalized way to map message types
specified by general rules to a set of Snort rules. We present two exemplary ways.

Preprocessor Usage: Some existing preprocessors already allow explicit logging
of packets with specific message types being transmitted. For Modbus packets,
for example, the option modbus_func (Modbus function code) is available for
this purpose. Since negation and the specification of multiple values are also not
provided when using this option, a rule must be created for each non-permitted
Modbus message type. For example, packets sent from asrc to adst to request
coils status are logged by the following rule:

alert tcp asrc any -> adst 502 (modbus_func:read_coils)

Use of Payload Detection Options: Snort can be extended by further preproces-
sors for the detection of message types of arbitrary protocols. However, since
the proposed method is primarily intended to support existing unmodified tools,
the development of any extensions is omitted. Because the message type is often
encoded in the first bytes of the payload, another way to detect different message
types is to use options for payload investigation, such as content and byte_test,
which selectively examine byte values for one given pattern. Another possibility
is provided by the pcre option which can be used to specify a set of patterns of
illegitimate message types by means of a regular expression, thus requiring only
one rule to be created per PDU-specific communication relation. If, for example,
all read requests from asrc to adst should be logged, the following rule can be
used as an alternative to four different rules using the modbus_func option:

alert tcp asrc any -> adst 502
(pcre:"/^.{7}(\x01|\x02|\x03|\x04)/s")
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