
ppAURORA: Privacy Preserving Area
Under Receiver Operating Characteristic

and Precision-Recall Curves

Ali Burak Ünal1,3(B) , Nico Pfeifer2,3 , and Mete Akgün1,3

1 Medical Data Privacy Preserving Machine Learning (MDPPML),
University of Tübingen, Tübingen, Germany

2 Methods in Medical Informatics, University of Tübingen, Tübingen, Germany
3 Institute for Bioinformatics and Medical Informatics (IBMI),

University of Tübingen, Tübingen, Germany
{ali-burak.uenal,nico.pfeifer,mete.akguen}@uni-tuebingen.de

Abstract. Computing an area under the curve (AUC) as a performance
measure to compare the quality of different machine learning models is
one of the final steps of many research projects. Many of these meth-
ods are trained on privacy-sensitive data and there are several different
approaches like ε-differential privacy, federated learning and cryptogra-
phy if the datasets cannot be shared or used jointly at one place for
training and/or testing. In this setting, it can also be a problem to com-
pute the global AUC, since the labels might also contain privacy-sensitive
information. There have been approaches based on ε-differential privacy
to address this problem, but to the best of our knowledge, no exact pri-
vacy preserving solution has been introduced. In this paper, we propose
an MPC-based solution, called ppAURORA, with private merging of indi-
vidually sorted lists from multiple sources to compute the exact AUC as
one could obtain on the pooled original test samples. With ppAURORA,
the computation of the exact area under precision-recall and receiver
operating characteristic curves is possible even when ties between pre-
diction confidence values exist. We use ppAURORA to evaluate two dif-
ferent models predicting acute myeloid leukemia therapy response and
heart disease, respectively. We also assess its scalability via synthetic
data experiments. All these experiments show that we efficiently and
privately compute the exact same AUC with both evaluation metrics as
one can obtain on the pooled test samples in plaintext according to the
semi-honest adversary setting.

Keywords: Privacy preserving AUC · ROC curve · PR curve · MPC

1 Introduction

Recently, privacy preserving machine learning studies aimed at protecting sen-
sitive information during training and/or testing of a model in scenarios where
data is distributed between different sources and cannot be shared in plaintext
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Li et al. (Eds.): NSS 2023, LNCS 13983, pp. 265–280, 2023.
https://doi.org/10.1007/978-3-031-39828-5_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-39828-5_15&domain=pdf
http://orcid.org/0000-0002-7279-620X
http://orcid.org/0000-0002-4647-8566
http://orcid.org/0000-0003-4088-2784
https://doi.org/10.1007/978-3-031-39828-5_15

266 A. B. Ünal et al.

[3,7,8,12,13,15,17,18]. However, privacy protection in the computation of the
area under curve (AUC), which is one of the most preferred methods to compare
different machine learning models with binary outcome, has not been addressed
sufficiently. There are several differential privacy based approaches in the liter-
ature for computing the receiver operating characteristic (ROC) curve [2,5,6].
Briefly, they aim to protect the privacy of the data by introducing noise into
the computation so that one cannot obtain the original data used in the com-
putation. However, due to the nature of differential privacy, the resulting AUC
is different from the one which could be obtained using non-perturbed predic-
tion confidence values (PCVs) when noise is added to the PCVs [16]. For the
precision-recall (PR) curve, there even exists no such studies in the literature.
As a general statement, private computation of the exact AUC has never been
addressed before to the best of our knowledge.

In this paper, we propose a 3-party computation based privacy preserving
area under receiver operating characteristic and precision-recall curves (ppAU-
RORA). For this purpose, we use CECILIA [17] offering several efficient privacy
preserving operations. The most important missing operation of it is division. To
address the necessity of an efficient, private and secure computation of the exact
AUC, we adapt the division operation of SecureNN [18]. Since the building blocks
of CECILIA require less communication rounds than SecureNN, we implemented
the division operation of SecureNN using the building blocks of CECILIA. Using
ppAURORA, we compute the area under the PR curve (AUPR) and ROC curve
(AUROC). We address two different cases of ROC curve in ppAURORA by two
different versions of AUROC computation. The first one is designed for the com-
putation of the exact AUC using PCVs with no tie. In case of a tie of PCVs of
samples from different classes, this version just approximates the metric based
on the order of the samples, having a problem when values of both axes of ROC
curve plot change at the same time. To compute the exact AUC even in case of a
tie, we introduce the second version of AUROC with a slightly higher communi-
cation cost than the first approach. Along with the privacy of the resulting AUC,
since the labels are also kept secret during the whole computation, both versions
are capable of protecting the information of the number of samples belonging
to the classes from all participants of the computation. Otherwise, such infor-
mation could have been used to obtain the order of the labels of the PCVs [19].
Furthermore, since we do not provide the data sources with the ROC curve, they
cannot regenerate the underlying true data. Therefore, both versions are secure
against such attacks [11]. We used the with-tie version of AUROC computation
to compute the AUPR since the values of both axes can change at the same time
even if there is no tie. To the best of our knowledge, ppAURORA is the first
study for the privacy preserving AUPR computation.

2 Motivation

ppAURORA can enable collaborative privacy preserving evaluation of a binary
model. Especially when there are parties with insufficient test samples, even

ppAURORA 267

if these parties obtain the collaboratively trained model, they cannot reliably
evaluate the predictions of this model on their test samples. The result of AUC
on such a small set of test samples could vary significantly as shown in Fig. 1,
making the reliability of the model evaluation questionable.

Fig. 1. AUROC for varying number of test samples from the all dataset

To demonstrate ppAURORA’s contribute to the community more, let us
imagine a scenario where a model is trained collaboratively using MPC frame-
work [7,13,18], federated learning framework [9] or any other privacy preserving
training method. Once the model is obtained, the participating parties can per-
form predictions on the model using their test samples to evaluate it. However,
the parties with fewer data cannot reliably determine the performance of the
model. Instead of individual evaluation of the model that could lead to incorrect
assessment of the model’s performance, they can use ppAURORA to evaluate it
collaboratively and obtain the result of this evaluation as if it was performed on
the pooled test samples of the parties without sacrificing the privacy of neither
the labels nor the predictions of the samples.

3 Preliminaries

Security Model: In this study, we aim to protect the privacy of the PCVs and
the labels of the samples from parties, the ranking of these samples in the glob-
ally sorted list and the resulting AUC. We prove the full security of our solution
(i.e., privacy and correctness) in the presence of semi-honest adversaries that fol-
low the protocol specification, but try to learn information from the execution of
the protocol. We consider a scenario where a semi-honest adversary corrupts a
single server and an arbitrary number of data owners in the simulation paradigm
[4,10] where two worlds are defined: the real world where parties run the protocol
without any trusted party, and the ideal world where parties make the compu-
tation through a trusted party. Security is modeled as the view of an adversary
called a simulator S in the ideal world, who cannot be distinguished from the
view of an adversary A in the real world. The universal composability framework
[4] introduces an adversarial entity called environment Z, which gives inputs to

268 A. B. Ünal et al.

all parties and reads outputs from them. The environment is used in modeling
the security of end-to-end protocols where several secure protocols are used arbi-
trarily. Security here is modeled as no environment can distinguish if it interacts
with the real world and the adversary A or the ideal world and the simulator
S. We also provide privacy in the presence of a malicious adversary corrupting
any single server, which is formalized in [1]. The privacy is formalized by saying
that a malicious party arbitrarily deviating from the protocol description, cannot
learn anything about the inputs and outputs of the honest parties.

Notations: In our secure protocols, we use additive secret sharing over the ring
ZK where K = 264 to benefit from the natural modulo of CPUs of most modern
computers. We denote two shares of x over ZK with (〈x〉0, 〈x〉1).
CECILIA: In ppAURORA, we use secure multi-party computation framework
CECILIA, which has three computing parties, P0, P1 and P2, and uses 2-out-of-
2 additive secret sharing where an �-bit value x is shared additively in a ring
among P0 and P1 as the sum of two values. For �-bit secret sharing of x, we have
〈x〉0 + 〈x〉1 ≡ x mod L where Pi knows only 〈x〉i and i ∈ {0, 1}. All arithmetic
operations are performed in the ring ZL.

3.1 Area Under Curve

One of the most common ways summarizing the plot-based model evaluation
metrics is area under curve (AUC). It calculates the area under the curve of a
plot-based model such as ROC curve and the PR curve.

Area Under ROC Curve (AUROC): The ROC curve takes the sensitivity
and the specificity of a binary classifier into account by plotting the false positive
rate (FPR) on the x-axis and the true positive rate (TPR) on the y-axis. AUC
summarizes this plot by measuring the area between the line and the x-axis,
which is the area under the ROC curve (AUROC). Let M be the number of test
samples, V ∈ [0, 1]M contain the sorted PCVs of test samples in descending order,
T ∈ [0, 1]M and F ∈ [0, 1]M contain the corresponding TPR and FPR values,
respectively, where the threshold for entry i is set to V [i], and T [0] = F [0] = 0. In
case there is no tie in V , the privacy-friendly AUROC computation is as follows:

AUROC =
M∑

i=1

(
T [i] · (F [i] − F [i − 1])

)
(1)

This formula just approximates the exact AUROC in case of a tie in V
depending on samples’ order. As an extreme example, let V have 10 samples
with the same PCV. Let the first 5 samples have label 1 and the last 5 samples
have label 0. Such a setting outputs AUROC = 1 via Eq. 1. In the reverse order,
however, it gives AUROC = 0. To define an accurate formula for the AUROC
in case of such a tie condition, let ξ be the vector of indices in ascending order
where the PCV of the sample at that index and the preceding one are different

ppAURORA 269

for 0 < |ξ| ≤ M where |ξ| denotes the size of the vector. Assuming that ξ[0] = 0,
the computation of AUROC in case of a tie can be done as follows:

AUROC =
|ξ|∑

i=1

(
T [ξ[i − 1]] · (F [ξ[i]] − F [ξ[i − 1]])+

(T [ξ[i]] − T [ξ[i − 1]]) · (F [ξ[i]] − F [ξ[i − 1]])
2

)
(2)

As Eq. 2 indicates, one only needs TPR and FPR values on the points where the
PCV changes to obtain the exact AUROC. We will benefit from this observation
in the privacy preserving AUROC computation when there is a tie condition in
the PCVs.

Area Under PR Curve (AUPR): The PR curve evaluates binary models by
plotting recall on the x-axis and precision on the y-axis and summarizes it by
measuring the area under the PR curve (AUPR). It is generally preferred over
AUROC for problems with class imbalances. Since both precision and recall can
change at the same time even without a tie, we measure the area by using the
Eq. 2 where T becomes the precision and F becomes the recall.

4 ppAURORA

In this section, we give the description of our protocol for ppAURORA where
we have data owners that outsource their PCVs and the ground truth labels in
secret shared form and three non-colluding servers that perform 3-party compu-
tation on secret shared PCVs to compute the AUC. The data sources start the
protocol by outsourcing the labels and the predictions of their test samples to the
servers. Afterward, the servers perform the desired calculation privately. Finally,
they send the shares of the result back to the data sources. The communication
between all parties is performed over a secure channel (e.g., TLS).

Outsourcing: At the start of ppAURORA, each data owner Hi has a list of
PCVs and corresponding ground truth labels for i ∈ {1, . . . , n}. Then, each data
owner Hi sorts its whole list Li according to PCVs in descending order, divides it
into two additive shares Li0 and Li1 , and sends them to P0 and P1, respectively.
We refer to P0 and P1 as proxies.

Sorting: After the outsourcing phase, P0 and P1 obtain the shares of individually
sorted lists of PCVs of the data owners. The proxies need to merge individually
sorted lists pairwise until they obtain the global sorted list of PCVs. This can
be considered as the leaves of a binary tree merging into the root node, which
is, in our case, the global sorted list. Due to the high complexity of privacy
preserving sorting, we decided to make the sorting parametric to adjust the
trade-off between privacy and practicality. Let δ = 2a + 1 be this parameter
determining the number of PCVs that will be added to the global sorted list in
each iteration for a ∈ N, and Lik and Ljk be the shares of two individually sorted

270 A. B. Ünal et al.

lists of PCVs in Pks for k ∈ {0, 1} and |Li| ≥ |Lj | where |.| is the size operator.
First, the proxies privately compare the lists elementwise. They use the results
of the comparison in MUXs to privately exchange the shares of PCVs in each
pair, if the PCV in Lj is larger than the PCV in Li. In the first MUX, they input
the share in Lik to MUX first and then the share in Ljk along with the share
of the result of the comparison to select the larger of the PCVs. They move the
results of the MUX to Lik . In the second MUX, they reverse the order to select
the smaller of the PCVs and move it to Ljk . We call this stage shuffling. Then,
they move the top PCV of Lik to the merged list of PCVs. If δ �= 1, then they
continue comparing the top PCVs in the lists and moving the largest of them
to the merged list. Once they move δ PCVs to the merged list, they shuffle the
lists again, and if |Ljk | > |Lik |, then they switch the lists. Until finishing up the
PCVs in Lik , the proxies follow shuffling-moving cycle.

By shuffling, we increase the number of candidates for a specific position and,
naturally, lower the chance of matching a PCV in the individually sorted lists
to a PCV in the merged list. The highest chance of matching is 50%, leading
to a very low chance of guessing the matching of whole PCVs in the list. In
sorting, δ must be an odd number to make sure that shuffling always leads to an
increment in the number of candidates. An even value of δ may cause ineffective
shuffling during the sorting. Although δ = 1 provides the utmost privacy, which
means that the chance of guessing the matching of the whole PCVs is 1 over
the number of all possible merging of those two individually sorted lists, the
execution time of sorting can be relatively high. For δ �= 1, the execution time
can be low but the number of possible matching of PCVs in the individually
sorted list to the merged list decreases in parallel to the increment of δ. As a
guideline on the choice of δ, one can decide it based on how much privacy loss
any matching could cause on the specific task. In case of δ �= 1 and |Ljk | = 1
at some point in the sorting, the sorting continues as if it had just started with
δ = 1 to make sure that the worst case scenario for guessing the matching can
be secured. More details of the sorting phase are in the Appendix.

Division (DIV): For the exact AUC, we need a division operation which is
not offered by CECILIA. Therefore, we adapted the division operation from
SecureNN [18]. However, we use the building blocks of CECILIA to implement
the division operation since they have less communication round complexities
than SecureNN. DIV uses long division to find the quotient. Although DIV of
SecureNN is rather a normalization operation, requiring the denominator to be
larger than the nominator, it is still useful for the exact AUC computation.
In both AUROC and AUPR, the denomitors and nominators of the division
operations satisfy this requirement.

4.1 Secure Computation of AUROC

Once P0 and P1 obtain the global sorted list of PCVs, they calculate the AUROC
based on this list using one of the versions of AUROC depending on whether
there exists a tie in the list.

ppAURORA 271

input : 〈L〉i = ({〈con1〉i, 〈label1〉i}, ..., {〈conM 〉i, 〈labelM 〉i}), 〈L〉i is a share of the
global sorted list of PCVs, and labels

1 For each i ∈ {0, 1}, Pi executes Steps 2-11
2 〈TP 〉i ← 0, 〈P 〉i ← 0, 〈pFP 〉i ← 0, 〈N〉i ← 0
3 foreach item 〈t〉 ∈ 〈L〉 do
4 〈TP 〉i ← 〈TP 〉i + 〈t.label〉i
5 〈P 〉i ← 〈P 〉i + i
6 〈FP 〉i ← 〈P 〉i − 〈TP 〉i
7 〈A〉i ← MUL(〈TP 〉i, 〈FP 〉i − 〈pFP 〉i)
8 〈N〉i ← 〈N〉i + 〈A〉i
9 〈pFP 〉i ← 〈FP 〉i

10 〈D〉i ← MUL(〈TP 〉i, 〈FP 〉i)
11 〈ROC〉i ← DIV(〈N〉i, 〈D〉i)
Algorithm 1: Secure AUROC computation without ties

input : 〈L〉i = ({〈con1〉i, 〈label1〉i}, , ..., {〈conM 〉i, 〈labelM 〉i}), 〈L〉i is a share of
the global sorted list of PCVs, and labels

1 For each i ∈ {0, 1}, Pi executes Steps 2-14
2 〈TP 〉i ← 0, 〈P 〉i ← 0, 〈pFP 〉i ← 0, 〈pTP 〉i ← 0, 〈N1〉i ← 0, 〈N2〉i ← 0
3 foreach item 〈t〉i ∈ 〈L〉i do
4 〈TP 〉i ← 〈TP 〉i + 〈t.label〉i
5 〈P 〉i ← 〈P 〉i + i
6 〈FP 〉i ← 〈P 〉i − 〈TP 〉i
7 〈A〉i ← MUL([〈pTP 〉i, 〈TP 〉i − 〈pTP 〉i], [〈FP 〉i − 〈pFP 〉i, 〈FP 〉i − 〈pFP 〉i])
8 〈A〉i ← MUL(〈A〉i, [〈t.con〉i, 〈t.con〉i])
9 〈N1〉i ← 〈N1〉i + 〈A[0]〉i

10 〈N2〉i ← 〈N2〉i + 〈A[1]〉i
11 [〈pre FP 〉i, 〈pre TP 〉i] ← MUX([〈pFP 〉i, 〈pTP 〉i], [〈FP 〉i, 〈TP 〉i],

[〈t.con〉i, 〈t.con〉i])
12 〈N〉i ← 2 · 〈N1〉i + 〈N2〉i
13 〈D〉i ← 2 · MUL(〈TP 〉i, 〈FP 〉i)
14 〈ROC〉i ← DIV(〈N〉i, 〈D〉i)

Algorithm 2: Secure AUROC computation with tie

Secure AUROC Computation without Ties: In Algorithm 1, we compute
the AUROC as shown in Eq. 1 by assuming that there is no tie in the sorted
list of PCVs. At the end of the secure computation, the shares of numerator N
and denominator D are computed. Since N is always greater than or equal to
D, we can use the division of SecureNN to obtain AUROC = N/D. With the
help of high numeric value precision of the results, most of the machine learning
algorithms yield different PCVs for samples. Therefore, this version of computing
the AUROC is applicable to most machine learning tasks. However, in case of
a tie between samples from two classes in the PCVs, it does not guarantee the
exact AUROC. Depending on the order of the samples, it approximates the
score. To have a more accurate AUROC, we propose another version of AUROC
computation with a slightly higher communication cost in the next section.

Secure AUROC Computation with Ties: To detect ties in the list of PCVs,
P0 and P1 compute the difference between each PCV and its following PCV.
P0 computes the modular additive inverse of its shares. The proxies apply a
common random permutation to the bits of each share in the list to prevent
P2 from learning the non-zero relative differences. They also permute the list
of shares using a common random permutation to shuffle the order of the real

272 A. B. Ünal et al.

input : 〈C〉i = (〈con1〉i, ..., 〈conM 〉i), 〈C〉i is a share of the global sorted list of
PCVs, M is the number of PCVs

1 P0 and P1 hold a common random permutation π for M items
2 P0 and P1 hold a list of common random values R
3 P0 and P1 hold a list of common random permutation σ for � items
4 For each i ∈ {0, 1}, Pi executes Steps 5-13
5 for j ← 1 to M − 1 do
6 〈C[j]〉i ← (〈C[j]〉i − 〈C[j + 1]〉i)
7 if i = 0 then
8 〈C[j]〉i = K − 〈C[j]〉i
9 〈C[j]〉i = 〈C[j]〉i ⊕ R[j]

10 〈C[j]〉i = σj(〈C[j]〉i)
11 〈D〉i = π(〈C〉i)
12 Insert arbitrary number of dummy zero and non-zero values to randomly chosen

locations in 〈D〉i
13 Pi sends 〈D〉i to P2
14 P2 reconstructs D by computing 〈D〉0 ⊕ 〈D〉1
15 foreach item 〈d〉 ∈ 〈D〉 do
16 if d > 0 then
17 d ← 1

18 P2 creates new shares of D, denoted by 〈D〉0 and 〈D〉1, and sends them to P0 and P1,
respectively.

19 For each i ∈ {0, 1}, Pi executes Steps 18-21
20 Remove dummy zero and non-zero values from 〈D〉i
21 〈C〉i = π−1(〈D〉i)
22 for j ← 1 to M − 1 do
23 〈L[j].con〉i ← 〈C[j]〉i
24 〈L[M].con〉i ← i

Algorithm 3: Secure detection of ties

test samples. Then, they send the list of shares to P2. P2 XORes two shares
and maps the result to one, if it is greater than zero and zero otherwise. Then,
proxies privately map PCVs to zero if they equal to their previous PCV and
one otherwise. This phase is depicted in Algorithm 3. In Algorithm 2, P0 and
P1 use these mappings to take only the PCVs which are different from their
subsequent PCV into account in the computation of the AUROC based on Eq. 2.
In Algorithm 2, DIV adapted from SecureNN can be used since the numerator is
always less than or equal to the denominator, as in the AUROC computation.

4.2 Secure AUPR Computation

As in the AUROC with tie computation, P0 and P1 map a PCV in the global
sorted list to 0 if it equals the previous PCV and 1 otherwise via Algorithm
3. Then, we use Eq. 2 to calculate AUPR as shown in Algorithm 4. The most
significant difference of AUPR from AUROC with tie computation is that the
denominator of each precision value is different in the AUPR calculation. Thus,
we need to compute the precision for each iteration in advance, requiring a
vectorized division operation before iterating the list of PCVs mapped to one.

ppAURORA 273

input : 〈L〉i = ({〈con1〉i, 〈label1〉i}, ..., {〈conM 〉i, 〈labelM 〉i}), 〈L〉i is a share of the
global sorted list of PCVs, and labels

1 P0 and P1 hold a common random permutation π for M items
2 For each i ∈ {0, 1}, Pi executes Steps 3-19
3 〈TP [0]〉i ← 0, 〈RC[0]〉i ← 0, 〈pPC〉i ← i, 〈pRC〉i ← 0, 〈N1〉i ← 0, 〈N2〉i ← 0
4 for j ← 1 to M do
5 〈TP [j]〉i ← 〈TP [j − 1]〉i + 〈L[j].label〉i
6 〈RC[j]〉i ← 〈RC[j − 1]〉i + i

7 〈T TP 〉i = π(〈TP 〉i)
8 〈T RC〉i = π(〈RC〉i)
9 〈T PC〉i ← DIV(〈T TP 〉i, 〈T RC〉i)

10 〈PC〉i = π′(〈T PC〉i)
11 for j ← 1 to M do
12 〈A〉i ← MUL([〈pPC〉i〈RC[j]〉i −〈pRC〉i], [〈RC[j]〉i −〈pRC〉i, 〈PC[j]〉i −〈pPC〉i])

13 〈A〉i ← MUL(〈A〉i, [〈L[j].con〉i, 〈L[j].con〉i])
14 〈N1〉i ← 〈N1〉i + 〈A[0]〉i
15 〈N2〉i ← 〈N2〉i + 〈A[1]〉i
16 [〈pPC〉i, 〈pRC〉i] ←

MUX([〈pPC〉i, 〈pRC〉i], [〈PC[j]〉i, 〈RC[j]〉i],
[〈L[j].con〉i, 〈L[j].con〉i])

17 〈N〉i ← 2 · 〈N1〉i + 〈N2〉i
18 〈D〉i ← 2 · 〈TP [M]〉i
19 〈PRC〉i ← DIV(〈N〉i, 〈D〉i)

Algorithm 4: Secure AUPR computation

5 Security Analysis

In this section, we provide semi-honest simulation-based security proofs for
the computations of ppAURORA based on the security of CECILIA’s building
blocks.

Lemma 1. The protocol in Algorithm 1 securely computes AUROC in the
(FMUL,FDIV) hybrid model.

Proof. In the protocol, we separately calculate the numerator N and the denom-
inator D of the AUROC, which can be expressed as AUROC = N

D . Let us first
focus on the computation of D. It is equal to the multiplication of the number
of samples with label 1 by the number of samples with label 0. In the end, we
have the number of samples with label 1 in TP and calculate the number of
samples with label 0 by P −TP . Then, the computation of D is simply the mul-
tiplication of these two values. To compute N , we used Eq. 1. We have already
shown the denominator part of it. For the numerator part, we need to multiply
the current TP by the change in FP and sum up these multiplication results.
〈A〉 ← MUL(〈TP 〉, 〈FP 〉 − 〈pFP 〉) computes the contribution of the current
sample on the denominator and we accumulate all the contributions in N , which
is the numerator part of Eq. 1. Therefore, we can conclude that we correctly
compute the AUROC.

Next, we prove the security of our protocol. Pi where i ∈ {0, 1} sees {〈A〉}j∈M ,
〈D〉 and 〈ROC〉, which are fresh shares of these values. Thus the view of Pi is
perfectly simulatable with uniformly random values.

274 A. B. Ünal et al.

Lemma 2. The protocol in Algorithm 3 securely marks the location of ties in
the list of prediction confidences.

Proof. For the correctness of our protocol, we need to prove that for each index
j in L, L[j].con = 0 if (C[j] − C[j + 1]) = 0, L[j].con = 1, otherwise. We first
calculate the difference of successive items in C. Assume we have two additive
shares (〈a〉0, 〈a〉1) of a over the ring ZK . If a = 0, then (K − 〈a〉0) ⊕ 〈a〉1 = 0
and if a �= 0, then (K − 〈a〉0) ⊕ 〈a〉1 �= 0 where K − 〈a〉0 is the additive modular
inverse of 〈a〉0. We use this fact in our protocol. P0 computes the additive inverse
of each item 〈c〉0 in 〈C〉0 which is denoted by 〈c〉′

0, XORes 〈c〉′
0 with a common

random number in R, which is denoted by 〈c〉′′
0 and permutes the bits of 〈c〉′′

0

with a common permutation σ which is denoted by 〈c〉′′′
0 . P1 XORes each item

〈c〉1 in 〈C〉1 with a common random number in R which is denoted by 〈c〉′′
1

and permutes the bits of 〈c〉′′
1 with a common permutation σ which is denoted

by 〈c〉′′′
1 . Pi where i ∈ {0, 1} permutes values in 〈C〉′′′

i by a common random
permutation π which is denoted by 〈D〉i. After receiving 〈D〉0 and 〈D〉1, P2

maps each item d of D to 0 if 〈d〉′
0 ⊕ 〈d〉1 = 0 which means 〈d〉0 + 〈d〉1 = 0 and

maps 1 if 〈d〉′
0 ⊕ 〈d〉1 �= 0 which means 〈d〉0 + 〈d〉1 �= 0. After receiving a new

share of D from P2, Pi where i ∈ {0, 1} removes dummy values and permutes
remaining values by π−1. Therefore, our protocol correctly maps items of C to
0 or 1.

We next prove the security of our protocol. Pi where i ∈ {0, 1} calculates the
difference of successive prediction values. The view of P2 is D, which includes real
and dummy zero values. Pi XORes each item of 〈C〉i with fresh boolean shares
of zero, applies a random permutation to bits of each item of 〈C〉i, applies
a random permutation π to 〈C〉i and add dummy zero and non-zero values.
Thus the differences, the positions of the differences, and the distribution of the
differences are completely random. The number of zero and non-zero values are
not known to P2 due to dummy values. With common random permutations
σj∈M and common random values R[j], j ∈ M , each item in C is hidden. Thus
P2 can not infer anything about real values in C. Furthermore, the number of
repeating predictions is not known to P2 due to the random permutation π.

Lemma 3. The protocol in Algorithm 2 securely computes AUROC in (FMUL,
FMUX, FDIV) hybrid model.

Proof. To compute the AUROC in case of a tie, we use Eq. 2, of which we
calculate the numerator and the denominator separately. The calculation of the
denominator D is the same as Lemma 1. The computation of the numerator
N has two different components, which are N1 and N2. N1, more precisely the
numerator of T [i−1]∗ (F [i]−F [i−1]), is similar to the no-tie version of privacy
preserving AUROC computation. This part corresponds to the rectangle areas
in the ROC curve. The decision of adding this area A to the cumulative area
N1 is made based on the result of the multiplication of A by L.con. L.con = 1
indicates if the sample is one of the points of prediction confidence change, 0
otherwise. If it is 0, then A becomes 0 and there is no contribution to N1. If it
is 1, then we add A to N1. On the other hand, N2, which is the numerator of

ppAURORA 275

(T [i]−T [i−1])∗ (F [i]−F [i−1]), accumulates the triangular areas. We compute
the possible contribution of the current sample to N2. In case this sample is not
one of the points that the prediction confidence changes, which is determined by
L.con, then the value of A is set to 0. If it is, then A remains the same. Finally,
A is added to N2. Since there is a division by 2 in the second part of Eq. 2,
we multiply N1 by 2 to make them have common denominator. Then, we sum
N1 and N2 to obtain N . To have the term 2 in the common denominator, we
multiply D by 2. As a result, we correctly compute the denominator and the
nominator of the AUROC.

Next, we prove the security of our protocol. Pi where i ∈ {0, 1} sees {〈A〉}j∈M ,
{〈pFP 〉}j∈M , {〈pTP 〉}j∈M , 〈D〉 and 〈ROC〉, which are fresh shares of them.
Thus the view of Pi is perfectly simulatable with uniformly random values.

Lemma 4. The protocol in Algorithm 4 securely computes AUPR in (FMUL,
FMUX, FDIV) hybrid model.

Proof. To compute the AUPR, we use Eq. 2 of which we calculate the numerator
and the denominator separately. We nearly perform the same computation with
the AUROC with tie computation. The main difference is that we need to per-
form a division to calculate each precision value because denominators of each
precision value are different. The rest of the computation is the same with the
computation in Algorithm 2. The readers can follow the proof of Lemma 3.

Next, we prove the security of our protocol. Pi where i ∈ {0, 1} sees
{〈T PC〉}j∈M , {〈A〉}j∈M , {〈pPC〉}j∈M , {〈pRC〉}j∈M and 〈PRC〉, which are
fresh shares of them. Thus the view of Pi is perfectly simulatable with uniformly
random values.

Lemma 5. The sorting protocol in Sect. 4 securely merges two sorted lists in
(FCMP,FMUX) hybrid model.

Proof. First, we prove the correctness of our merge sorting of lists L1 and L2.
In the merging of L1 and L2, the corresponding values are first compared using
CMP operation. The larger values are placed in L1 and the smaller values are
placed in L2, after MUX operation is called twice. This process is called shuffling
because it shuffles the corresponding values in the two lists. After the shuffling,
we know that the largest element of the two lists is the top element of L1. Thus, it
is moved to the global sorted list L3. On the next step, the top elements of L1 and
L2 are compared with CMP method. The comparison result is reconstructed by
P0 and P1 and the top element of L1 or L2 is moved to L3 based on the result of
CMP. The selection operation also gives the largest element of L1 and L2 because
L1 and L2 are sorted. We show that shuffling and selection operations give the
largest element of two sorted lists. This ensures that our merge sort algorithm
that only uses these operations correctly merges two sorted lists privately.

Next, we prove the security of our merge sort algorithm in which CMP and
MUX are called. CMP outputs fresh shares of comparison of corresponding values
in L1 and L2. Shares of these comparison results are used in MUX that generates
fresh shares of the corresponding values. Thus, P0 and P1 cannot precisely map

276 A. B. Ünal et al.

Fig. 2. The scalability of ppAURORA to varying (a) number of samples, (b) number
of parties and (c) δ where the other parameters are fixed

these values to the values in L1 and L2. In the selection operation, CMP is
called and its reconstructed output is used to select. P0 and P1 are still unable
to map the values added to L3 to the values in L1 and L2 precisely since at least
one shuffling operation took place before these repeated selection operations.
Shuffling and δ − 1 selection operations are performed repeatedly until the L1 is
empty. After each shuffling operation, the fresh share of the larger corresponding
values in L1 and the fresh share of the smaller corresponding values in L2 are
stored. The view of P0 and P1 are perfectly simulatable with random values due
to the shuffling process performed at regular intervals.

To prevent the usage of unshuffled values in some cases, the following rules
are followed in the execution of the merge protocol. If there are two lists that
do not have the same length, the longer list is chosen as L1. If the δ is greater
than the length of the L2 list, it is set to the largest odd value smaller or equal
to the length of L2 so that the unshuffled values that L1 may have are not used
in selection processes. If the length of L2 is reduced to 1 at some point in the
sorting, the δ is set to 1. Thus L2 will have 1 element until the end of the merge
and shuffling is done before each selection. After moving δ values to the sorted
list, if the length of L2 is greater than the length of L1, we switch the list.

5.1 Privacy Against Malicious Adversaries

Araki et al. [1] defined a privacy notion against malicious adversaries in the client-
server setting where the servers performing secure computation on the shares of
the inputs to produce the shares of the outputs do not see the plain inputs and
outputs of the clients, which is very similar to our setting. In our framework, two
parties exchange a seed to generate common random values between them. Two
parties randomize their shares using these random values, which are unknown
to the third party. It is very easy to add fresh shares of zero to outputs of two
parties with common random values shared between them. In our algorithms, we
do not state the randomization of outputs with fresh shares of zero. Thus, our
framework provides privacy against a malicious party by relying on the security
of a seed shared between two honest parties.

ppAURORA 277

6 Results

Dataset: We used the Acute Myeloid Leukemia (AML) dataset1 and the UCI
Heart Disease dataset2 for the correctness analysis of ppAURORA. AML dataset
is from the submission of the team Snail, which has the lowest score, in the
first subchallenge of the DREAM Challenge [14] and has 191 samples, among
which 136 patients have complete remission. UCI Heart Disease test set has 54
samples with binary outcome. Moreover, we aimed to analyze the scalability of
ppAURORA for different settings. For this purpose, we generated a synthetic
dataset with no restriction other than having the PCVs from [0, 1].

Experimental Setup: We conducted our experiments on LAN and WAN set-
tings. In the LAN, we ran the experiments with 0.18 ms round trip time (RTT).
In the WAN, we simulated the network connection with 10 ms RTT.

Correctness Analysis: We conducted the correctness analysis on the LAN set-
ting. To assess the correctness of AUROC with tie, we computed the AUROC of
the predictions on the AML dataset by ppAURORA, yielding AUROC = 0.693
which is the same the result obtained without privacy on the DREAM Challenge
dataset. For the correctness of AUROC with no-tie of ppAURORA, we randomly
picked one of the samples in tie condition in DREAM Challenge dataset and gen-
erated a subset of the samples with no tie. We got the same AUROC with no-tie
version of AUROC of ppAURORA as the non-private computation. We directly
used the UCI dataset in AUROC with no-tie since it does not have any tie con-
dition. The result, which is AUROC = 0.927, is the same for both private and
non-private computation. Besides, we verified that ppAURORA computes the
same AUPR as for the non-private computation for both the DREAM Challenge
and the UCI dataset, which are AUPR = 0.844 and AUPR = 0.893, respectively.
These results indicate that ppAURORA can privately compute the exact same
AUC as one could obtain on the pooled test samples.

Scalability Analysis: We evaluated the scalability of no-tie and with-tie
versions of AUROC and AUPR of ppAURORA to the number of samples
M ∈ {64, 128, 256, 512, 1024} with δ = 1 and 3 data sources. The results showed
that ppAURORA scales almost quadratically in terms of both communication
costs among all parties and the execution time of the computation. We also
analyzed the performance of all computations of ppAURORA on a varying num-
ber of data sources. We fixed δ = 1 and the number of samples in each data
sources to 1000, and we experimented with D data sources where D ∈ {2, 4, 8}.
ppAURORA scales around quadratically to the number of data sources. We
also analyzed the effect of δ ∈ {3, 5, 11, 25, 51, 101} by fixing D to 8 and M in
each data source to 1000. The execution time displays a logarithmic decrease for
increasing δ. In all analyses, since the dominating factor is sorting, the execu-
tion times of the computations are close to each other. Additionally, our analysis
showed that LAN is 12 to 14 times faster than WAN on average due to the high
1 https://www.synapse.org/#!Synapse:syn2700200.
2 https://archive.ics.uci.edu/ml/datasets/heart+disease.

https://www.synapse.org/#!Synapse:syn2700200
https://archive.ics.uci.edu/ml/datasets/heart+disease

278 A. B. Ünal et al.

Table 1. The results of AUPR computation with ppAURORA where D is the num-
ber of data sources and M is the number of samples in one data source. UNB, i.e.
unbalanced sample distribution, is {12, 18, 32, 58, 107, 258, 507, 1008}.

Communication Costs (MB)

D × M δ P1 P2 Helper Total Time
(sec)

3 × 64 1 1.96 1.3 1.13 4.39 24.41

3 × 128 1 6.61 4.14 3.97 14.72 48.05

3 × 256 1 24.44 15.23 15.06 54.73 95.65

3 × 512 1 93.23 58.44 58.26 209.93 191.55

3 × 1024 1 359.67 226.62 226.41 812.7 355.32

2 × 1000 1 125.05 78.37 78.19 281.61 174.16

4 × 1000 1 726.44 458.81 458.57 1643.82 523.39

8 × 1000 1 3355.74 2125.91 2125.51 7607.16 1404.22

8 × 1000 3 1692.85 1069.58 1069.25 3831.68 1194.08

8 × 1000 5 1137.91 717.45 717.15 2572.51 1105.46

8 × 1000 11 583.02 365.36 365.08 1313.46 1032.29

8 × 1000 25 284.22 175.76 175.5 635.48 972.0

8 × 1000 51 156.23 94.54 94.29 345.06 935.65

8 × 1000 101 93.59 54.79 54.53 202.91 940.07

8 × UNB 1 130.48 81.82 81.6 293.9 379.99

round trip time of WAN, which is approximately 10 ms. Even with such a scal-
ing factor, ppAURORA can be deployed in real life scenarios if the alternative
is a more time-consuming approval process required for gathering all data in
one place still protecting the privacy of data. Figure 2 and Table 1 display the
results.

7 Conclusion

In this work, we presented an efficient and exact solution based on a secure
3-party computation framework to compute AUC of the ROC and PR curves
privately even when there exist ties in the PCVs. We benefited from the built-in
building blocks of CECILIA and adapted the division operation of SecureNN to
compute the exact AUC. ppAURORA is secure against passive adversaries in
the honest majority setting. We demonstrated that ppAURORA can compute
correctly and privately the exact AUC that one could obtain on the pooled
plaintext test samples, and ppAURORA scales quadratically to the number of

ppAURORA 279

both parties and samples. In future work, we will further optimize the sorting
phase in terms of both privacy and efficiency.

Acknowledgement. This study is supported by the DFG Cluster of Excellence
“Machine Learning - New Perspectives for Science”, EXC 2064/1, project number
390727645 and the German Ministry of Research and Education (BMBF), project
number 01ZZ2010.

References

1. Araki, T., Furukawa, J., Lindell, Y., Nof, A., Ohara, K.: High-throughput semi-
honest secure three-party computation with an honest majority. In: Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications Security,
pp. 805–817 (2016)

2. Boyd, K., Lantz, E., Page, D.: Differential privacy for classifier evaluation. In:
Proceedings of the 8th ACM Workshop on Artificial Intelligence and Security, pp.
15–23 (2015)

3. Byali, M., Chaudhari, H., Patra, A., Suresh, A.: Flash: fast and robust framework
for privacy-preserving machine learning. Proc. Priv. Enh. Technol. 2020(2), 459–
480 (2020)

4. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: 42nd Annual Symposium on Foundations of Computer Science,
FOCS 2001, 14–17 October 2001, Las Vegas, Nevada, USA, pp. 136–145. IEEE
Computer Society (2001). https://doi.org/10.1109/SFCS.2001.959888

5. Chaudhuri, K., Vinterbo, S.A.: A stability-based validation procedure for differ-
entially private machine learning. In: Advances in Neural Information Processing
Systems, pp. 2652–2660 (2013)

6. Chen, Y., Machanavajjhala, A., Reiter, J.P., Barrientos, A.F.: Differentially private
regression diagnostics. In: ICDM, pp. 81–90 (2016)

7. Damg̊ard, I., Escudero, D., Frederiksen, T., Keller, M., Scholl, P., Volgushev, N.:
New primitives for actively-secure MPC over rings with applications to private
machine learning. In: 2019 IEEE Symposium on Security and Privacy (SP), pp.
1102–1120. IEEE (2019)

8. Juvekar, C., Vaikuntanathan, V., Chandrakasan, A.: {GAZELLE}: a low latency
framework for secure neural network inference. In: 27th {USENIX} Security Sym-
posium ({USENIX} Security 2018), pp. 1651–1669 (2018)

9. Li, B., Wu, Y., Song, J., Lu, R., Li, T., Zhao, L.: Deepfed: federated deep learning
for intrusion detection in industrial cyber-physical systems. IEEE Trans. Industr.
Inf. 17(8), 5615–5624 (2020)

10. Lindell, Y.: How to simulate it – a tutorial on the simulation proof technique. In:
Lindell, Y. (ed.) Tutorials on the Foundations of Cryptography. ISC, pp. 277–346.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57048-8 6

11. Matthews, G.J., Harel, O.: An examination of data confidentiality and disclosure
issues related to publication of empirical ROC curves. Acad. Radiol. 20(7), 889–896
(2013)

12. Mohassel, P., Rindal, P.: ABY3: a mixed protocol framework for machine learning.
In: Proceedings of the 2018 ACM SIGSAC Conference on Computer and Commu-
nications Security, pp. 35–52 (2018)

https://doi.org/10.1109/SFCS.2001.959888
https://doi.org/10.1007/978-3-319-57048-8_6

280 A. B. Ünal et al.

13. Mohassel, P., Zhang, Y.: Secureml: a system for scalable privacy-preserving
machine learning. In: 2017 IEEE Symposium on Security and Privacy (SP), pp.
19–38. IEEE (2017)

14. Noren, D.P., et al.: A crowdsourcing approach to developing and assessing predic-
tion algorithms for AML prognosis. PLoS Comput. Biol. 12(6), e1004890 (2016)

15. Patra, A., Suresh, A.: BLAZE: blazing fast privacy-preserving machine learning. In:
27th Annual Network and Distributed System Security Symposium, NDSS 2020,
San Diego, California, USA, 23–26 February 2020. The Internet Society (2020)

16. Sun, J., Yang, X., Yao, Y., Xie, J., Wu, D., Wang, C.: Differentially private AUC
computation in vertical federated learning. arXiv preprint arXiv:2205.12412 (2022)

17. Ünal, A.B., Akgün, M., Pfeifer, N.: CECILIA: comprehensive secure machine learn-
ing framework. CoRR abs/2202.03023 (2022). https://arxiv.org/abs/2202.03023

18. Wagh, S., Gupta, D., Chandran, N.: SecureNN: efficient and private neural network
training. IACR Cryptology ePrint Archive, vol. 2018, p. 442 (2018)

19. Whitehill, J.: How does knowledge of the AUC constrain the set of possible ground-
truth labelings? In: Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 33, pp. 5425–5432 (2019)

http://arxiv.org/abs/2205.12412
https://arxiv.org/abs/2202.03023

	ppAURORA: Privacy Preserving Area Under Receiver Operating Characteristic and Precision-Recall Curves
	1 Introduction
	2 Motivation
	3 Preliminaries
	3.1 Area Under Curve

	4 ppAURORA
	4.1 Secure Computation of AUROC
	4.2 Secure AUPR Computation

	5 Security Analysis
	5.1 Privacy Against Malicious Adversaries

	6 Results
	7 Conclusion
	References

