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Abstract. Local Differential Privacy allows individuals to share their
personal data without compromising their privacy. In traditional data
collection and analysis methods, sensitive information such as names,
addresses, and other identifying details may be included, making it easy
to link the data to a specific individual. On the other hand, Local Dif-
ferential Privacy enables data to be collected and analyzed in a way that
safeguards individual privacy. This makes it possible for people to par-
ticipate in data collection and analysis without the fear of being identi-
fied. While Local Differential Privacy approaches have been proposed for
releasing privacy-preserving databases with statistical approximations,
they have limitations when dealing with k-dimensional distribution esti-
mations. To address this issue, we propose a solution that guarantees
Local Differential Privacy based on the latent space of a Variational
AutoEncoder (VAE), which is used to recover the original distribution.
We tested our proposal on four real and open datasets with different
characteristics, including the number of users, the number of attributes,
and their cardinality. The proposed solution outperforms the well-known
approach, LoPub. Our work can reduce the average variant distance by
the LoPub algorithm from 0.6 to 0.1. These results suggest that the VAE
can serve as a useful tool for privacy-preserving data. The source code
used in this paper can be downloaded from the following link https://
github.com/phdmatamoros/New-LDP-approach-using-VAE.
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1 Introduction

Our everyday activities involve sharing personal information with various ser-
vices, such as online streaming, food delivery, social media, and filling out appli-
cation forms. These services store our data on their central servers to obtain
insights into their user base or train machine learning models. In recent years,
the emergence of Differential Privacy [2], also known as Central Differential Pri-
vacy (CDP), aims to release databases for statistical analysis of sensitive indi-
vidual data while preserving user privacy. One drawback of CDP is that users
send their data without protection, entrusting it to the central server.

To address this issue, Local Differential Privacy (LDP) was introduced, where
users only trust themselves. LDP is a technique that involves encoding and
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introducing random noise to users’ data before sending it to the central server,
allowing the central server to compute the distribution of the users’ information.
By using this approach, it is possible to protect sensitive data while still allowing
it to be used for research or other purposes. LDP is also important in situations
where privacy is legally mandated, such as in the European Union’s General
Data Protection Regulation or the California Consumer Privacy Act.

Ren et al. proposed LoPub [3], in which users encode their data using Bloom
filters and perturb the encoded data using the Randomize Response (RR) algo-
rithm [10]. The perturbed-encoded data is then transmitted to the central server,
which estimates the multi-dimensional joint distribution using the LASSO algo-
rithm [6] and the Expectation Maximization algorithm [7]. While LoPub demon-
strates good performance in datasets with low multi-dimensional joint distribu-
tions, it encounters issues with low data utility when the number of attributes
is high or the cardinality of an attribute is large.

In LDP, both cardinality and attributes have an impact on the data utility
and accuracy of the estimated joint distribution. Firstly, cardinality refers to
the number of distinct elements in an attribute. In high-dimensional data with
a large number of attributes and high cardinality, LDP approaches may experi-
ence a reduction in data utility, resulting in compromised estimation accuracy.
This occurs because the introduced noise can make it challenging to identify
correlations and patterns, leading to inaccurate estimates.

Secondly, highly correlated attributes can also pose challenges in LDP. When
attributes exhibit strong correlations, introducing noise to one attribute can
cause the noise to propagate to other attributes, leading to a further decline in
data utility. This propagation of noise makes it difficult to accurately estimate
joint probability distributions. To mitigate the spread of noise across attributes,
Mina [1] made an assumption that the features in the dataset are both inde-
pendent and categorical. Based on this assumption, a framework was developed
that incorporates feature selection to generate a synthetic dataset.

We propose leveraging the latent space of a Variational Auto-Encoder (VAE)
[18] within LDP to enhance privacy-preserving data analysis. VAEs have been
successfully utilized in various domains and applications [16]. By incorporating
the VAE’s latent space, which captures meaningful representations of the data,
we can improve the utility and accuracy of LDP in scenarios with a high number
of attributes or large attribute cardinalities. The VAE acts as a denoising and
reconstructing tool, enabling precise estimation of joint probability distributions.
This approach offers a more effective and privacy-preserving solution compared
to traditional LDP methods, especially in complex, high-dimensional datasets.

To evaluate the performance of our VAE based approach in comparison to
a baseline method introduced by Ren [3], we conducted experiments on four
publicly available datasets featuring varying numbers of users and cardinalities.
Our approach follows the data encoding and perturbation method proposed by
[3], but with the incorporation of VAE on the central server. Table 1 highlights
the distinctions between the [3] method and our proposed approach. The key
contributions of this paper can be summarized as follows:
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– We propose a novel LDP approach that utilizes a VAE on the central server
to estimate joint probability distributions. In our approach, we use a VAE to
learn a latent representation of the data that is shared across all parties. This
allows us to estimate the joint probability distribution of the data.

– We explore the impact of attribute cardinality on the reconstruction error
during VAE training. We find that as the attribute cardinality increases, the
reconstruction error also increases. This is because it becomes more difficult
for the VAE to learn a latent representation that is able to capture the diver-
sity of the data.

– We compare our proposed approach to [3], a baseline algorithm for LDP. We
find that our proposed approach outperforms [3] in terms of accuracy with
same privacy budget.

– We demonstrate the effectiveness of VAE in estimating the joint probability
distribution through experiments on four diverse datasets. We find that VAE
is able to accurately estimate the joint probability distribution of the data in
all four datasets.

Table 1. Difference between LoPub and ours

LoPub [3] Ours

User Hash F.
Randomize Response

Hash F.
Randomize Response

Central Server LASSO regression Latent space (VAE)

The paper is structured as follows: Sect. 2 presents the preliminaries, Sect. 3
describes our proposed approach, and the paper concludes with the Experiments
and Conclusion sections.

2 Preliminaries

2.1 Generalizing the Problem

In LDP approaches, the users encode and perturb their data before share
their information with a central server. By doing this, the users preserve their
anonymity. In this work, we follow the user steps proposed by LoPub [3]. We
generalize the LDP problem; a dataset U with N users could be represented as
U = {u1, u2, u3, ..., uN}.

The users have the same number of attributes k, and each attribute has
a specific domain. Thinking about the nth user has a k-dimensional vec-
tor (un

1 , un
2 , un

3 , ..., un
k ), the domain of each attribute j ∈ {1, ..., k} is denoted

Ωj = {ω1
i , ..., ω

|Ωj |
i }. The cardinality |Ωj | means the number of elements in the

attribute j.
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2.2 Local Differential Privacy (LDP)

LDP proposes that for any user n, a randomization mechanism Ψ satisfies ε-LDP
if and only if for any two records un, wn, and for any outputs ũτ ∈ Range(Ψ),
the probability computed over Ψ ’s and ε > 0; privacy budget holds

Pr[Ψ(un) = ũτ ] ≤ eεPr[Ψ(wn) = ũτ ] (1)

On Eq. (1), we can figure how important is the privacy budget. A smaller ε
means stronger privacy protection, and viceversa.

2.3 Privacy Analysis

User privacy is preserved by claiming the privacy of local randomizers, which all
user run on data records separately. Local perturbation of a specific attribute
value can achieve ε-LDP, where ε=2h ln 2−f

f , with h being the number of hash
functions in the Bloom filter [9] and f the flip bit probability. Based on the
sequential composition theorem [14], the local transformation of a k-dimensional
data record achieves ε-LDP, where:

ε = 2kh ln
2 − f

f
,

with k being the number of attributes in the original data. Because all users
perform the same transformation independently, the above ε-LDP guarantee
applies to all distributed users.

2.4 Lopub Scheme

The LDP approach relies on the participation of two components: users and a
central server. In this work, we utilize the algorithm proposed by Ren [3] to
encode and perturb users’ data. Our proposal involves replacing the LASSO and
EM algorithms with VAE in the central server.

User. This section explains how users encode and perturb their data, an app-
roach consisting of two main steps:

– Encoding user information. The user input is represented using a Bloom filter
(BF) H, a technique used to test whether an element is a member of a set; it
is a probabilistic data structure proposed by Bloom [9]. To encode each un

j ,
the user incorporates BF using a set Hj of hash functions that are designed
for Uj , where Uj is the jth attribute of U . Specifically, the user applies hj

hash functions Hj,1, . . . ,Hj,hj
from Hj to map un

j to a length-mj bit string
sn

j , where mj is the length of the BF. Therefore, un
j is inserted into a length

mj bit BF using hj hash functions from Hj , represented as Hj(ω), where
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sn
j [b] denotes the bth bit of the bit string sn

j . The length of BF mj for Uj is
computed as:

mj =
ln 1

p

ln 22
|Ωj |, (2)

where |Ωj | is the cardinality of the attribute Uj and p is the false positive
probability; in our experiments we set p = 0.022.

– Perturbing the data. Randomized Response (RR) is a method proposed by
Warner [10] that allows interviewee to give their answers while maintaining
confidentiality. Randomly whether the question is to be answered truthfully
is unknown to the interviewer. RR is applied after encoding each step, where
each bit sn

j [b] (b = 1, 2, . . .,mj) is randomly flipped using the following rule:

ŝi
j =

⎧
⎨

⎩

sn
j with probability of 1 − f,
1 with probability of f/2,
0 with probability of f/2

(3)

Where f ∈ [0, 1] is the probability of flipping a bit randomly. Once the ran-
domized BF sn

j is obtained, the nth user combines si
1 through sn

k to create a
bit vector (sn

1 ||...||sn
k ), which consists of (

∑k
j=1 mj) bits. This resultant vector

is transmitted to the server.

Central Server. After users encode and perturb their data, they send their
data to the central server, which receives the distribution of users with random
noise added by RR. For each bit b in each attribute j, the central server counts
the number of frequencies of the perturbed value ŝi

j as ŷj [b] =
∑N

i=1 ŝi
j [b]. Next,

the original count yj [b] is estimated as

y[b] =
ŷ[b] − fN

2

1 − f
,

where after the original count is computed, the candidate bit matrix is created
using a candidate set of Bloom filters H, as M = [H1(Ω1) × H2(Ω2) × · · · ×
Hd(Ωd)], where d is the number of attributes. As we illustrate, the block dia-
gram in Fig. 1 reviews how it works from the previous steps applied by the
central server and gives an example with k =2-way, estimating the distribution
of two attributes in the following steps. To estimate the distribution from the
noise data using a regression technique, y = Mβ. LASSO, is a linear regression
technique that performs regularization order to improve prediction accuracy; it
was introduced by [8]. If the reader wants to read more about the whole process,
please refer to [3].

3 Proposed Scheme

3.1 VAE Preliminaries

Auto-Encoders (AE) were introduced by Hinton in 1986 [17]. They are designed
to encode input data into an essential representation and then decode it back
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Fig. 1. Central server block diagram proposed by [3] computing the joint distributions
of two attributes for N users.

to create a reconstructed input that is as similar as possible to the original
input. AE consists of two parts: the encoder and the decoder. The input to
the encoder is the data Γ . The output of the encoder is called Y , which is the
reduced representation of Γ in a latent space. Next, the decoder is adjusted to
reconstruct the data Γ . Finally, the decoder reconstructs the original data Γ
from Y by minimizing the Euclidean distance between Γ and Γ ′.

Later, in 2013, Kingma proposed a variation of AE called Variational Auto-
Encoder (VAE) [18]. The main difference between AE and VAE is that the
encoder in AE outputs latent vectors, whereas VAE imposes a constraint on this
latent distribution, forcing it to be a normal distribution. VAE has two main
stages: training and testing. In the training stage of VAE, a reconstruction error
function RE(Γ, Γ ′) is defined as follows:

RE (Γ, Γ ′) =
√∑

(Γ − Γ ′)2 + MMD(V, Samplez), (4)

where V is the output of VAE’s encoder and Samplez is drawn from N (0, 1), the
Maximum Mean Discrepancy (MMD) distance measures the distance between
the feature maps of two probability distributions. A smaller distance suggests
that the two distributions are more alike.

3.2 VAE Model

Training. During the training step, the Algorithm 1 is applied to synthesizing
two datasets.

– X contains the encoded information of each attribute.
– X ′ is X after being perturbed using RR.

Using these datasets, our model trains to create a latent space for each
attribute available in the dataset. VAE is trained on two datasets: a perturbed
dataset X ′ and a non-perturbed dataset X, where RR(X) = X ′ (Fig. 2). These
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Fig. 2. How train VAE.

Algorithm 1. Creating Datasets
Require: jth attribute � Attribute on Dataset
Require: t = 1000 � Perturbed times
Require: Xj = [ ] � No perturbed
Require: X′

j = [ ] � Perturbed
Require: Lj = [ ] � Attributes Label
Require: f � Flip Bit Probability

for element in j do
Hj � The Bloom filters on jth attribute
for each p = 1, 2, ..., t do

Xj ← [Xj , Hj(element)] � Append
X′

j ← [X′
j , RR(Hj(element), f)] � Append

Lj ← [Lj , element] � Append
end for

end for
return Xj , X′

j , Lj

datasets are created by the central server using the method described in Algo-
rithm 1. For this experiment, the central server creates one thousand artificial
users per attribute in both X and X ′ datasets. The datasets are then split into
training and validation sets with a ratio of 90% and 10%, respectively.

The Algorithm 2 invokes Algorithms 1 and 3. Given a specific value of f ,
Algorithm 1 uses it to create datasets X and X ′ for each attribute. Algorithm 3
is used to train the VAE. A summary of the VAE is available in Appendix A.1.
In Algorithm 3, a simplified algorithm for training the VAE is presented. For
further details on how to train the VAE, please refer to [11].

The outputs of Algorithm 2 are the encoder Ej and the latent space Yj for
attribute j. The latent space models the cardinality for each element in the
attribute. Examples of a 2D latent space for the “Marital Status” and “Sex”
attributes in the Adult dataset are shown in Fig. 5. In our experiments, we set
the latent space as 4D.

Latent Space Evaluation. Once the model has been trained on synthetic
datasets, it is evaluated using real datasets. To achieve this, the records of per-
turbed data are transformed into the latent space by the VAE encoder. Sub-
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Algorithm 2. Main algorithm
Require: t = 1000 � Perturbed times
Require: k � Number of attributes on the original dataset
Require: f � Flip Bit Probability Value

for each j=1,..., k do
Xj , X′

j , Lj ← Creating Datasets(j, f, t) � Algorithm 1
Ej , Vj ← TrainingV AE(Xj , X′

j) � Algorithm 3
end for
return Ej , Vj , Lj

Algorithm 3. Training VAE
Require: Xj , X′

j � Created by Algorithm 1
Require: Encoder of VAE please refer to Appendix A.1
Require: Decoder of VAE please refer to Appendix A.1
Require: epochs=1000
Require: Optimizer Adam, lr=0.0001

patience = 0
for each epoch = 1,..., epochs do

Yj ← Encoderj(X
′
j)

Wj ← Decoderj(Yj)
Rej ← RE(Xj , Wj) � Eq. 4
Using lr update internal parameters of VAE
Reepoch ← average of Rej

if Reepoch ≥ Reepoch−1 then
patience ← patience + 1

end if
if patience=16 then

finish training
end if

end for
return Encoderj , Yj

sequently, the approach calculates the Euclidean distance between the user’s
coordinates and the latent space created during the training step for a specific
attribute.

For simplicity, the latent space Yj which belongs to the jth attribute using f
value will be represented as Y in the following expressions. Y is a matrix with
s rows and d columns, where s is the number of elements of latent space and d
is the dimension of the latent space. In our experiments the dimension of latent
space d is four and the number of elements of latent space s is 900|Ωj | for each
jth attribute.

Y =

⎡

⎢
⎢
⎢
⎢
⎣

Y1,1, Y1,2, ..., Y1,d

Y2,1, Y2,2, ..., Y2,d

Y3,1, Y3,2, ..., Y3,d

...
Ys,1, Ys,2, ..., Ys,d

⎤

⎥
⎥
⎥
⎥
⎦

The latent space evaluation consists of two steps, as shown in Fig. 3;

– The first step is performed by the encoder Ej , which transforms ith user’s
record into the latent space. Ej outputs a vector V of size d, where each
component Vi corresponds to a dimension in the latent space.

Ej(ith user’s record) = (V1, ..., Vd)
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– We compare the vector V with the latent space Yj , which was computed
during the training stage. Our proposed method involves computing the
Euclidean distance between V and each row in the matrix Yj . By identifying
the index of the row that exhibits the closest similarity to V , we evaluate this
index in Lj which is created using Algorithm 1, to determine the potential
element in the attribute.

Fig. 3. Latent Space Evaluation.

Algorithm 4. Inference Attribute
Require: Ei,Yi,Li

Require: D = [ ] � Recovered Dataset
Require: fpb

for each u = 1, 2, ..., Users do
for each j=1,...,k do

V ← Ej(j) � Transforming V into Latent Space
dj = dis(V, Yj) � Computing Euclidean distance
j*=argmin(dj)

D(u, j) ← Lj(j
*)

end for
end for
return D

After Algorithm 4 finishes, we obtain D, where each row represents an anony-
mous user and each column represents a possible attribute. This matrix can be
used to estimate the joint distribution of the original dataset. To calculate the
joint probability distribution of two or more attributes for the users in D, follow
these steps:

– Calculate the total number of users in the D.
– Count the frequency of each combination of attribute values for the users of

interest. It is the joint frequency distribution.
– Divide the joint frequency of each combination by the number of users to

obtain the joint probability of that combination.

4 Experiments

4.1 Experimental Method

We tested our approach on four open datasets from different areas. The Nurs-
ery dataset [15] was originally created in the 1980s s to evaluate applications
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for nursery schools in Europe. The NHANES dataset [12] was used in the PWS
Cup 2021 [13] to provide anonymized healthcare data. The Adult dataset [4]
is one of the most popular datasets used to measure the performance of CDP
and LDP approaches. The Bank dataset [5] contains information about market-
ing campaigns. Table 2 summarizes the datasets, showing the number of users,
attributes, their cardinality, and their size after encoding.

The default parameters for our approach are as follows: we use h = 5 hash
functions for all four datasets. The value of m varies depending on the dataset’s
cardinality and could be calculated using the Eq. 2.

Table 2. Statistics of Datasets

Dataset Users Attributes Cardinality m

min max min max

Adult 45223 8 2 16 8 64
Bank 45212 10 2 12 8 47
Nursery 12960 9 2 5 8 20
NHANES 4190 5 2 6 8 23

4.2 Results

VAE Reconstruction Error (RE). We evaluated the Reconstruction Error
(RE) during the training stage of the VAE using Eq. 4. The results are presented
in Figs. 4(a)–(b). Figure 4(a) displays the results for the Adult dataset, where the
attribute marital−status exhibits a lower reconstruction error compared to the
attribute sex. A comparison between their latent spaces is depicted in Figs. 5(a)
and (b). For simplicity, the latent spaces are shown in 2D, although 4D were
used in the experiments.

Figure 4(b) shows the results for the NHANES dataset, with the attribute
Education having a lower RE than the others. The attribute Qm demonstrates
the highest reconstruction error.

Joint Probability. We randomly selected k-way joint probabilities of attributes
one hundred times. To analyze the joint distributions, we used the Average Vari-
ance Distance (AVD) metric to quantify the difference between the real and
computed data. The AVD distance, as used by [3], is defined as follows:

AV D =
1
2

∑

ω∈Ω

|P (ω) − Q(ω)|. (5)

Figures 6(a)–(d) show the results of VAE and LASSO using color and
grayscale, respectively. The x-axis corresponds to the AVD distance, while the y-
axis shows the algorithms with a flip bit probability f = 0.5. LASSO regression,
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Fig. 4. Reconstruction Error with f = 0.5 (a) Adult, (b) NHANES Datasets.

Fig. 5. Latent Space for Adult dataset with f = 0.1 on training stage (a) Marital
Status, (b) Sex Attributes.

proposed by [3], was used to recover the original distribution in LDP schemes.
In summary, the comparison of LASSO and VAE models on different datasets
revealed interesting insights. In the NHANES dataset, LASSO struggled to cap-
ture complex patterns, as indicated by increasing AVD distances with higher
values of k-way. On the other hand, VAE consistently outperformed LASSO,
suggesting its ability to effectively capture latent representations and reproduce
patterns in the NHANES dataset.

Similarly, on the Adults dataset, LASSO exhibited decreasing predictive
accuracy with higher model complexity, while VAE consistently outperformed
LASSO with lower AVD distances. This indicates that VAE’s capacity to capture
latent representations and generate data is advantageous for the Adults dataset.

The Nursery dataset posed challenges for LASSO, as it struggled to accu-
rately predict values with higher values of k-way. In contrast, VAE significantly
outperformed LASSO on the Nursery dataset, indicating its superior ability to
capture complex relationships and reproduce values accurately.

The Bank dataset showed relatively good performance for LASSO, with low
AVD distances across all values of k-way. VAE slightly outperformed LASSO,
indicating its capability to capture and reproduce underlying patterns in the
Bank dataset.

In summary, VAE consistently outperformed LASSO in terms of AVD dis-
tances across different datasets and values of k-way. VAE’s ability to capture
latent representations and generate data allows it to capture complex patterns
and relationships better, resulting in improved predictive accuracy.
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Fig. 6. Accuracy (a) Adult, (b) Bank, (c) Nursery, (d) NHANES Datasets.

Figures 7(a)–(d) display the results of VAE and LASSO with f = 0.5 when
varying the number of users N . The dotted line represents the results of Lasso,
while the solid line represents the results of VAE. The blue color represents the
results of k-way=2, yellow represents k-way=3, and green represents k-way=4.
Then, we discuss the performance for each dataset

In the Adult dataset shown in Fig. 7(a), VAE performs better than LASSO
for all values of k-way when N > 15000. In the case where k-way is two and
N < 15000, LASSO and VAE have similar performance. However, when N =
5000, LASSO shows better performance than our approach, but the difference
between the two is minimal.

In the Bank dataset shown in Fig. 7(b), VAE outperforms LASSO for k-way
equal to four when N > 10000. For k-way equal to three and N > 15000, VAE
also outperforms LASSO. However, for k-way equal to two, VAE performs better
when N < 30000, after which LASSO and VAE exhibit similar performance.

In the Nursery dataset shown in Fig. 7(c), VAE outperforms LASSO for k-
way={3,4}, regardless of the number of users. For k-way=2 and N > 3000, VAE
also outperforms LASSO.

Finally, in NHANES dataset, VAE outperforms LASSO for k-way={2, 3, 4},
regardless of the number of users.

The difference in AVD values across the Dataset is related to the cardinality
of the attributes. For instance, the Nursery dataset has more attributes than
the Adult dataset, but the Adult dataset exhibits the maximum cardinality, as
shown in Table 2. The experimental results demonstrate that VAE outperforms
LASSO for all four datasets analyzed in this paper when the number of users is
greater than half the size of the original dataset.
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Fig. 7. Accuracy versus N users with f = 0.5 (a) Adult, (b) Bank, (c) Nursery, (d)
NHANES Datasets.

5 Conclusions

In conclusion, this work proposes the use of the latent space of a VAE in the
central server of the LDP scheme to calculate the joint probability. The approach
is tested on real datasets with varying numbers of users and attribute cardinali-
ties using a single VAE model. The results show that VAE outperforms LASSO
regression, as it allows each attribute to have its own independent latent space,
preventing noise from one attribute from affecting others. The AVD of VAE
exhibits stable behavior across different numbers of users, indicating that the
LDP model using VAE can be applied to extract information from datasets that
increase over time. Future work includes investigating the relationship between
attribute cardinality and corresponding latent space to develop an improved
VAE model, which could be used to create synthetic datasets by computing
correlations between attributes.

Acknowledgements. This work was supported by JST, CREST Grant Number
JPMJCR21M1, Japan.

A Appendix

A.1 VAE’s Summary

This appendix provides an overview of the VAE architecture. For more detailed
information on these concepts, please refer to [11].
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Table A. Encoder Summary
Layer(Type) Output Shape
Conv1d-1 [-1,16,(inputdim − 1)]
ReLU-2 [-1,16,(inputdim − 1)]
BatchNorm1d-3 [-1,16,(inputdim − 1)]
Conv1d-4 [-1,16,(inputdim − 2)]
ReLU-5 [-1,16,(inputdim − 2)]
BatchNorm1d-6 [-1,16,(inputdim − 2)]
Conv1d-7 [-1,32,(inputdim − 3)]
ReLU-8 [-1,32,(inputdim − 3)]
BatchNorm1d-9 [-1,32,(inputdim − 3)]
Conv1d-10 [-1,32,(inputdim − 4)]
ReLU-11 [-1,32,(inputdim − 4)]
BatchNorm1d-12 [-1,32,(inputdim − 4)]
Linear-13 [-1,64]
ReLU-14 [-1,64]
BatchNorm1d-15 [-1,64]
Linear-16 [-1,16]
ReLU-17 [-1,16]
Linear-18 [-1,4]
Linear-19 [-1,4]

Table B. Decoder Summary
Layer(Type) Output Shape
Linear-1 [-1,1,32x(inputdim − 4)]
ReLU-2 [-1,1,32x(inputdim − 4)]
ConvTranspose1d-3 [-1,1,(inputdim − 4)]
ReLU-4 [-1,1,(inputdim − 3)]
BatchNorm1d-5 [-1,1,(inputdim − 3)]
ConvTranspose1d-6 [-1,1,(inputdim − 2)]
ReLU-7 [-1,1,(inputdim − 2)]
BatchNorm1d-8 [-1,1,(inputdim − 2)]
ConvTranspose1d-9 [-1,1,(inputdim − 1)]
ReLU-10 [-1,1,(inputdim − 1)]
BatchNorm1d-11 [-1,1,(inputdim − 1)]
ConvTranspose1d-12 [-1,1,inputdim]
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