
Evaluating Rule-Based Global XAI
Malware Detection Methods

Rui Li and Olga Gadyatskaya(B)

LIACS, Leiden University, Leiden, The Netherlands
{r.li,o.gadyatskaya}@liacs.leidenuniv.nl

Abstract. In recent years explainable artificial intelligence (XAI) meth-
ods have been applied for interpreting machine learning-based Android
malware detection approaches. XAI methods are capable of providing
Android malware analysts with some explanations of why a certain sam-
ple has been classified as malicious or benign. However, human ana-
lysts also have domain-specific requirements, i.e., expectations of how
XAI methods should behave. For example, analysts expect that similar
malware samples will be explained in a similar way. Recent works by
Warnecke et al. [41] and Fan et al. [13] have proposed domain-specific
properties for local XAI methods that provide explanations for a single
sample.

In this work, we formulate three domain-specific properties for global
XAI rule-based malware detection methods: stability, robustness and
effectiveness. We evaluate performance of five explanation approaches
(SIRUS, deepRED, REM-D, ECLAIRE and inTrees) using these metrics.
Our experimental results show that the SIRUS method outperforms the
other five state-of-the-art methods, with stability, robustness, and effec-
tiveness values of 96.15%, 95.56%, and 91.65% respectively. Our study
provides valuable insights for Android malware analysts seeking reliable
explanation approaches.

Keywords: Explainability · Android malware · Rule extraction ·
Evaluation metrics

1 Introduction

In recent years, smartphones have become one of the most indispensable prod-
ucts. According to the report by StatCounter, the Android operating system
dominates the smartphone operating system market with a market share of
67.56%, as of June 20231. The flexibility and openness of the Android system
have brought great convenience to developers and users. For example, develop-
ers can freely develop and upload applications (apps for short) to an application
market, and users can download apps from many markets at will.
1 StatCounter, Mobile Operating System Market Share Worldwide, https://gs.

statcounter.com/os-market-share/mobile/worldwide, accessed on 19/06/2023.

Supported by Chinese Scholarship Council.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Li et al. (Eds.): NSS 2023, LNCS 13983, pp. 3–22, 2023.
https://doi.org/10.1007/978-3-031-39828-5_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-39828-5_1&domain=pdf
http://orcid.org/0000-0003-3729-3153
http://orcid.org/0000-0002-3760-9165
https://gs.statcounter.com/os-market-share/mobile/worldwide
https://gs.statcounter.com/os-market-share/mobile/worldwide
https://doi.org/10.1007/978-3-031-39828-5_1

4 R. Li and O. Gadyatskaya

However, Android provides no assurance of the trustworthiness of apps
installed from sources other than Google Play, the official market owned by
Google. This makes users vulnerable to malicious software. As reported in the
Mobile malware evolution 2021 report, in that year Kaspersky detected more
than 3 million malicious mobile installation packages. Moreover, attacks on
mobile users are becoming more sophisticated in terms of both malware function-
ality and attack vectors2. Driven by the need to protect security of the Android
operating system and privacy of Android device users, Android malware detec-
tion has become a booming research field in recent years [32]. Several effective
techniques have been proposed to counter the sheer volume and sophistication
of Android malware, frequently based on machine learning (ML) [9,12,22,33].

Nevertheless, most of the machine learning methods applied to malware
detection are black-box, which means that these methods do not explain how
and why certain classification decisions are made. Due to the size of training
data and the complexity of the learned model, malware analysts can find it hard
to interpret the detection model and explain the decision reasons [15,43]. More-
over, adversarial analyses have shown that only a few changes to the content of
a malicious Android app may suffice for evading detection by a ML-based detec-
tor [6,10]. Therefore, the analysts can start distrusting the detection results, and
doubt whether the detection model can be deployed in practice [7,30,37,44,46].

To make analysts and users trust the ML-based methods, a variety of inter-
pretable models has been proposed to explain predictions. An interpretable
model should be human-simulatable, which means that a user can “take in
input data together with the parameters of the model and in reasonable
time step through every calculation required to produce a prediction” [21].
In the mobile security domain, many XAI methods interpret the detection
model by identifying important features or extracting important rules [1–
3,14,16,18,24,28,31,34,35,40,42,47].

XAI methods can be generally categorized into local and global meth-
ods depending on what they strive to explain [5,8,46]. The local explanation
approaches provide short, human-accessible explanations why a certain sample
was classified as malicious or benign, while global explanations compute a short
representation of important indicators across a set of samples, for example, a
malware family or a category.

Moreover, there are some domain-specific requirements for XAI methods
applied to cyber security in general and to interpretable malware detection in
particular [7,30]. Security analysts, for example, can reasonably expect that the
provided explanations will be similar for similar apps, and that they will stay
similar across different runs of the model. Thus, there is a need to ensure that the
explainable ML techniques proposed for malware detection satisfy these require-
ments.

Addressing this problem, Warnecke et al. [41] and Fan et al. [13] have pro-
posed formalizations of several domain-specific requirements for Android mal-

2 Kaspersky https://securelist.com/mobile-malware-evolution-2021/105876/, acces-
sed on 19/06/2023.

https://securelist.com/mobile-malware-evolution-2021/105876/

Evaluating Rule-Based Global XAI Malware Detection Methods 5

ware detection. They have independently proposed several metrics that can be
used to assess the quality of local explainable ML techniques when applied to
Android malware, i.e., the explanation approaches applied to the classification
of individual samples. For example, Fan et al. [13] have shown that explana-
tion results provided by five local explanation approaches for the same Android
malware sample cannot achieve a consensus in general. However, to the best of
our knowledge, there has so far been no investigation of properties for global
explainability Android malware detection methods, i.e., methods that provide
a single explanation for a set of samples, and there has been no evaluation of
existing global XAI techniques with respect to the domain-specific requirements
of Android security analysts.

In this paper, we aim to close this gap. Specifically, we make the following
contributions:

1. We formulate three metrics – stability, robustness, and effectiveness– to assess
the fundamental properties that rule-based global explainable Android mal-
ware detection methods should satisfy. These metrics are crucial for evaluating
the performance of such methods.

2. We evaluate performance of five state-of-the-art explanation methods,
namely, SIRUS [4], DeepRED [48], REM-D [36], ECLAIRE [45], and
inTrees [11], for Android malware detection using the CICMalDroid
dataset [25,26]. Our experimental results show that SIRUS outperforms the
other four state-of-the-art global XAI methods in terms of detection perfor-
mance, stability, robustness, and effectiveness.

2 Related Work

As mentioned, the explainable Android malware detection methods can be
divided into local explanation methods and global explainable methods [5].
Another dimensions to categorize XAI methods refer to the connection of the
interpreter to the ML model: some XAI approaches are intrinsic, as it is the ML
model itself that is interpretable [7,8,46]. All linear classifiers are intrinsically
interpretable. In the Android malware research such approaches are, for exam-
ple, Drebin [2], Traffic AV [40], LUNA [3], and CASANDRA [31], where linear
Support Vector Machine, Decision Tree, Bayesian Classifier, and Online CW
Classifier are used, respectively. Other XAI approaches are post-hoc/extrinsic,
as they can be applied to any ML model after training.

The local explanation methods explain why a single Android application was
labeled as malware or benign via a detection model. Several research teams have
investigated application of local XAI methods for Android malware detection.
For example, Fan et al. [13] have applied five widely-used post-hoc explana-
tion approaches – LIME [34], Anchor [35], LORE [14], SHAP [24] and LEMNA
[16] – to Android malware detection. Alani and Awad [1] present the PAIRED
lightweight Android malware detection system that integrates SHAP as an inter-
preter. Morcos et al. [29] propose a surrogate-based technique to interpret Ran-
dom Forest models that integrates SHAP for interpreting the data exfiltrating
behavior in Android malware samples.

6 R. Li and O. Gadyatskaya

Martin et al. [18] propose a method to explain convolutional neural networks
(CNNs) by calculating network activations to identify locations deemed impor-
tant in an Android app’s opcode sequence. Zhu et al. [47] develop a backtracking
method to infer important suspicious features of apps for explaining classification
results.

Melis et al. [28] identify the most influential malicious local features by
leveraging a gradient-based approach, which enables using nonlinear models to
increase accuracy without sacrificing the interpretability of decisions. Lu and
Thing [23] develop the PhilaeX method to identify a subset of features for
explaining decisions of different AI models, including Support Vector Machines
implemented by Drebin [2] and BERT (a transformer-based deep neural network
classifier).

The global explanation methods let analysts understand how the whole model
makes decisions. Some approaches do this based on a holistic view of model’s
features and the learned components, such as weights, parameters, and struc-
tures. For example, Bozhi et al. [42] propose a global XAI approach called Xmal
that not only pinpoints the key features most related to the classification result
by hingeing the multi-layer perceptron and attention mechanisms, but also auto-
matically produces natural language descriptions to help analysts to interpret
malicious behaviours within apps.

Other global XAI methods extract a rule-based representation of the targeted
set from the model. For example, AdDroid [27] is based on various combinations
of artefacts called rules to analyze and detect malicious behaviour in Android
applications. Jerby et al. [17] develop the BMD method for malware detection
rules generation using a Bi-Level optimization problem. Both AdDroid and BMD
are intrinsic XAI methods.

Still, explanation methods in security need not only to be accurate but also
to satisfy domain-specific requirements, such as complete and robust explana-
tions [41]. This is arguably especially important when post-hoc XAI methods are
being applied to malware detection, as they are by design not aware of the under-
lying classification problem. To evaluate how well this problem is addressed by
the existing XAI methods in the field, Warnecke et al. propose general evaluation
criteria, which include descriptive accuracy and sparsity, and security (domain-
specific) evaluation criteria, which include stability, robustness, and efficiency.
Independently, Fan et al. [13] propose stability, robustness, and effectiveness to
evaluate the Android malware detection explanation results. We discuss these
metrics in more detail in Sect. 5.3. However, they have been developed only for
local explanation methods. Our work aims to close this gap and to formulate
domain-specific quality metrics to be used in conjunction with rule-based global
XAI methods.

Evaluating Rule-Based Global XAI Malware Detection Methods 7

3 Candidate XAI Methods and Evaluation Metrics

3.1 Evaluated XAI Methods

In this work we focus on evaluating the post-hoc XAI methods, as we were not
able to find implementation of the intrinsic XAI approaches AdDroid [27] and
BMD [17]. The following global rule-based XAI methods have been selected for
experiments:

– The SIRUS algorithm [4] is a stable and interpretable rule-based classifier
that consists of two main processes: training a black-box model, such as Ran-
dom Forest (RF), and constructing an agent model that extracts rules and
generates a rule-based malware detector. The goal of SIRUS is to identify a
concise set of non-overlapping detection rules that capture robust and strong
patterns in the data [4].

– The inTrees method [11] extracts, measures, prunes, selects, and summarizes
rules from a tree ensemble (such as RF and Boosted Trees), the rules can be
ranked by length, support, error, or a combination of multiple metrics.

– The deepRED method [48] extracts rules from deep neural networks by mim-
icking the internal logic of neural networks at each layer and neurone. This
makes hidden logic and features accessible, and also exploits deep structures
to improve the efficacy of rule extraction and induction process.

– The REM-D (Rule Extraction Methodology-Deep Neural Network)
method [36] approximates a deep neural network (DNN) with an interpretable
ruleset model and uses that ruleset to explain the results of the DNN. For
approximation, REM-D first decomposes the trained DNN into adjacent lay-
ers and then uses the C5.0 classification algorithm to extract rules from pairs
of layers in the network.

– The ECLAIRE (Efficient CLAuse-wIse Rule Extraction) method [45] is a
polynomial-time decompositional method applicable to arbitrary DNNs; it
exploits intermediate representations in parallel to build an ensemble of clas-
sifiers that can then be efficiently combined into a single rule set.

Interpreted Classifiers. Note that the selected interpreters work with two
types of classifiers: either the RF or DNNs. These classifiers are quite different
from one another, and rules generated with them will be quite distinct. One of
the goals of our work is to understand whether the established domain-specific
requirements previously considered for local methods can be expected at all from
deep neural network interpreters.

The RF algorithm builds multiple independent decision trees following the
bagging strategy, using both sample and attribute selection to prevent over-
fitting. This decision-making tree generation process helps to avoid the prob-
lem of under-fitting caused by single tree judgments and significantly improves
discrimination. Finally, the model combines the predictions of multiple trees
to make category determinations through a voting method, resulting in higher
accuracy.

8 R. Li and O. Gadyatskaya

A DNN consists of a sequence of multiple layers of interconnected neurones.
Each neurone in a layer receives input from the previous layer’s neurones and per-
forms a computation that typically involves a weighted sum of the inputs followed
by a nonlinear activation function. The network’s neurones collectively imple-
ment a complex nonlinear mapping from the input to the output, which is learned
from data by adjusting the weights of each neurone using error back-propagation.
This technique involves propagating the prediction error back through the layers
of the network to adjust the weights of the connections between neurones. By
adjusting the weights in this way, the DNN is able to learn complex patterns
and relationships within the data, leading to improved accuracy and robustness
in many machine learning tasks.

To explain a black-box detection model (an RF or a DNN-based classifier),
we apply one of the above explanation methods to extract rules, select rules and
generate a new rule-based detector, which is now an intrinsically interpretable
(white-box) classification model. These detectors are then evaluated based on
their detection performance and also the proposed domain-specific properties,
as we discuss further.

Rules. Rules produced by the considered XAI methods are in the format
“if f1&f2&......fn then p1 else p2”, where the conjunction of conditions
f1&f2&......fn is the detection rule body, p1 is the model’s confidence that the
sample is malware under the given condition in the rule body, and p2 is the
confidence that the sample is malware when the condition is not satisfied.

3.2 Evaluation

The literature [13,41] proposes domain-specific metrics for local XAI methods
applied to malware detection. However, these metrics are based on feature sets,
rather than rules, and are only suitable for local explanation methods. In our
study we consider global, rule-based explanation methods. Thus we propose
new definitions of the stability, robustness, and effectiveness metrics previously
defined in [13,41] to suit rule-based global explanation methods. Table 1 lists the
used notations.

Intuition 1. Stability requires that the generated explanations result do not
vary between multiple runs [41].

Since the explanation results remain similar on the same pre-trained mod-
els, good stability requires that an explanation approach can really capture the
actual reason for an individual classification decision. Otherwise, the analyst
would be confused and would not trust the explanation results [13]. The stabil-
ity of an explanation method m, denoted as stb(m,T), is measured on a target
testing dataset T as follows.

stb(m,T) =
1

C2
n

∗
∑

i,jεn,

sim(eni
(g), enj

(g)) (1)

Evaluating Rule-Based Global XAI Malware Detection Methods 9

Table 1. Notations and definitions

Notation Definition

Ck
n the number of combinations for selecting k elements out of n

f a classifier model constructed on a training dataset

m an explanation approach

g = m(f) a specific interpreter constructed based on an explanation
method m and a trained classifier f

e(g) the explanation results of the samples with interpreter g

stb(m,T) stability of explanation approach m on testing dataset T

rob(m,T) robustness of explanation approach m on testing dataset T

eff(m,T) effectiveness of explanation approach m on testing dataset T

g = m(f) (2)

sim(eni
(g), enj

(g)) = 2 ∗ eni
(g) ∩ enj

(g))
|eni

(g)| + |enj
(g)|) (3)

where n is the number of times that the experiment is repeated; C2
n denotes the

number of pre-trained models and is bigger than two. g is a specific interpreter
constructed based on an explanation method m and a trained classifier f , and
eni

(g) is the ni-th explanation results of the samples with the interpreter g.
sim(eni

(g), enj
(g)) is the similarity between eni

(g) and enj
(g) based on the Dice

coefficient.
The main difference between our stability metric and the one in [13] is that

we measure the malware explanation results for all the samples jointly rather
than each sample individually. Moreover, we compare all rules in different runs
rather than the top-k features.

Intuition 2. Robustness is an ability of the explanation method to remain
unaffected when slight variations are applied [13].

Robustness is used to measure how similar the explanation results are for
similar instances. Intuitively, the explanation results of similar malware instances
should be highly similar. The robustness formula proposed in [13] requires that
every sample has an individual explanation, which is not suitable for our work. So
according to the intuition of robustness, we propose a new robustness evaluation
metric that is based on variations in the whole dataset.

The dataset Tt(x) ranges from sampleX0+(t−1)∗u to sampleXr+(t−1)∗u, t ∈
(0, β), β is equal to total number of samples minus r, and then divided by u.
The robustness of an explanation approach p on the dataset T is calculated as
below. For example, if i = 0, that means we should calculate the similarity of
[X0,X1,X2......Xr] and [X1,X2,X3......Xr+1].

rob(p, T) =
1
t

∗
∑

i∈t

sim(Ti(g), Ti+1(g)), t ∈ (0, β)] (4)

10 R. Li and O. Gadyatskaya

Intuition 3. Effectiveness measures whether the explanation results are
important to the decision-making [13]. If the explanation results are really the
decision basis for an individual prediction, the classification result would change
after mutating rules [13].

To compute effectiveness, we mutate the produced rules. First, the confi-
dence score of rules above 0.5 will be set 1 (indicates malware), otherwise set
to 0 (indicates benign). For instance, a rule “if android.permission.DISABLE
KEYGUARD < 1 & android.permission.SEND SMS < 1 then 0.0031 else 0.95”
will change to “if android.permission.DISABLE KEYGUARD < 1 & android.
permission.SE-ND SMS < 1 then 0 else 1”.

The effectiveness eff(m,T) of an explanation approach m on testing dataset
T is then calculated as below.

eff(m,T) =
1

|T | ∗
∑

xiεT

eff(m,xi) (5)

eff(m,xi) =
{

1, ŷ∗
i �= ŷi, ŷ∗

i ∈ Ŷ ∗

0, ŷ∗
i = ŷi, ŷ∗

i ∈ Ŷ ∗

}
(6)

Ŷ ∗ = f(X∗) (7)

X∗ = mutate(x, e(g)) (8)

where eff(m,xi) denotes the effectiveness of explanation results for the sample
xi with m. The hat signˆdenotes the classification result. X∗ is a new ruleset
for the samples by mutating the original ruleset X, Ŷ ∗ are classification results
of X∗; it is a vector with values 0 or 1. If the mutate classification result ŷ∗

i

is not equal to the original classification result ŷi, eff(m,xi) is assigned to 1,
indicating that rules are important to the current decision-making. Otherwise,
eff(m,xi) is set to 0, indicating that rules are useless to predict malware.

The mutate operator in [13] changes the value of a feature that appears in the
explanation results. However, in our method, mutate applies the logical negation
to the rule body by, for instance, changing the rules from the AND condition to
the OR condition. Moreover, the conflicting rules are deleted.

As en example, the above rule “if android.permission.DISABLE KEYGUARD
< 1 & android.permission.SEND SMS < 1 then 0 else 1” will be mutated
into a set with two rules: 1) “if android.permission.DISABLE KEYGUARD >= 1
then 0 else 1”; and 2)“if android.permission.SEND SMS >= 1 then 0 else
1”.

4 Methodology

In this section, we introduce our set-up for evaluating the global rule-based
XAI Android malware detection methods according to the proposed definitions

Evaluating Rule-Based Global XAI Malware Detection Methods 11

Fig. 1. Our set-up for evaluating global rule-based XAI Android malware detection
methods

of stability, robustness and effectiveness, and their performance as white-box
classifiers.

Our process is divided into 4 steps: data and feature preprocessing, feature
selection, explainable Android malware detection process, and evaluation, as
shown in Fig. 1. These steps are further detailed in the remainder of this section.
In a nutshell, we first preprocess the data by treating the missing and outlier
values. Next, we select the important features using the Boruta algorithm [20].
Then, a black-box malware detection model based on the Random Forest algo-
rithm or Deep Neural Network is trained (the detection task A), and we use the
five selected agent models (explanation methods) – SIRUS [4], DeepRED [48],
REM-D [36], ECLAIRE [45], and inTrees [11] – to produce rule-based detectors
which can detect Android malware (the detection target B). Finally, we evaluate
the rules extracted by the considered XAI methods based on their robustness,
stability, effectiveness, and also the performance of rule detectors.

4.1 Features and Data Preprocessing

Android apps are software applications running on the Android platform. A typ-
ical Android app contains different components: activities, fragments, services,
content providers, and broadcast receivers. Most of these app components should
be declared in the special Manifest file. This file is used to decide how to integrate
the app into the device’s overall user experience by the Android OS. The apks
(Android application packages) are used to install Android apps onto device.
Different properties of apks are used to detect malicious apps as features. These
features are usually extracted using some program analysis techniques [39].

For static analysis of Android apps, apks should be unzipped and decompiled.
The Manifest file (AndroidManifest.xml) and the code file (classes.dex) are
usually used in static analysis. Static features like sensitive permissions, names
of activities, and intents are extracted from the Manifest file, while sensitive API
calls are extracted from the code file [2].

For dynamic analysis of the Android apps, apps should be executed in a
dedicated analysis environment, like, e.g., CopperDroid [38], to automatically
reconstruct low-level OS-specific and high-level Android-specific behaviours of
Android apps [26]. Dynamic features like system calls and Binder calls could be
extracted in dynamic analysis. We refer the interested reader to a survey by Tam

12 R. Li and O. Gadyatskaya

et al. [39] on Android malware detection techniques for more details on static
and dynamic analysis techniques and features.

Due to the challenges with the automatic processing of third-party Android
apps [19], there might be outliers or missing values in the collected data. We
therefore apply the usual data preprocessing step to remove the features with
missing values, transform categorical values into numeric values, etc.

4.2 Feature Selection

After completing the data collection and preprocessing steps, we apply the
Boruta algorithm [20] to eliminate redundant and irrelevant features from our
dataset. The Boruta algorithm is effective in minimizing the impact of random
fluctuations and correlations during feature selection [20]. The approach involves
augmenting the original features with a set of shadow features, which are ran-
domized copies of the original features. To identify the most important features
in the dataset, the Boruta algorithm trains a classifier using the extended fea-
ture set. It then compares the importance of each original feature with that of its
corresponding shadow feature. If a feature has higher importance than its cor-
responding shadow feature, it is considered important. This process is repeated
until all features are either confirmed as important, rejected as unimportant, or
remain uncertain.

5 Experimental Evaluation

5.1 Dataset

A generic Android malware detection pipeline requires automated app anal-
ysis tooling to extract static and dynamic features. In our work we use the
CICMalDroid [25,26] dataset, which already contains static and dynamic fea-
tures extracted from 1795 benign and 9803 malware samples. The samples were
collected from December 2017 to December 2018. The dataset includes five
distinct categories: Adware, Banking, SMS malware, Riskware and Benign, as
shown in Table 2.

The dataset includes 470 dynamic features, such as frequencies of system
calls, Binder calls, and composite behaviours; and 50,621 static features, such as
intent actions, permissions, sensitive APIs, services, etc. To balance the dataset
for experiments, we randomly subselected 1795 benign and 1795 malware sam-
ples.

5.2 The Experiment Procedure

To ensure the integrity of the dataset and minimize the impact of outliers and
missing values, we undertook the preprocessing steps before analysis. The dataset
initially included 50,621 static features and 470 dynamic features. We removed
features with missing values exceeding 90%, and converted object-type features

Evaluating Rule-Based Global XAI Malware Detection Methods 13

Table 2. The details of CICMalDroid dataset categories

Category Description # of samples

Adware Adware can infect and root-infect a device,
forcing it to download specific Adware types
and allowing attackers to steal personal
information

1253

Banking Mobile Banking malware is a specialized
malware designed to gain access to the
user’s online banking accounts by mimicking
the original banking applications or banking
web interface

2100

SMS malware SMS malware exploits the SMS service as
its medium of operation to intercept SMS
payload for conducting attacks. They
control attack instructions by sending
malicious SMS, intercepting SMS, and
stealing data

3940

Riskware Riskware refers to legitimate programs that
can cause damage if malicious users exploit
them. Consequently, it can turn into any
other form of malware such as Adware or
Ransomware, which extends functionalities
by installing newly infected applications

2546

such as incognito.is valid APK (with values of True or False) to integer-
type values. After these preprocessing steps, we reduced the number of static
features to 231, while retaining all 470 dynamic features.

With the resulting 701 features, we have applied the Boruta algorithm for
feature selection that has identified 240 important features3.

Then, the 10-fold cross-validation method is used to do the experiment. We
use the training set to train a Random Forest detection model and a Keras DNN
model4.

Next, we extract rules from the trained black-box detection models using the
studied SIRUS, deepRED, REM-D, ECLAIRE and inTrees methods. The max-
imum rule number of the SIRUS algorithm was set to 200; the hyperparameter
p0 = 〈p0.pred, p0.stab〉 is used to select rules, where p0.pred minimizes the error
and p0.stab finds a tradeoff between error and stability. In the SIRUS algorithm,
the error means 1-AUC for classification and the unexplained variance for regres-
sion, and stability refers to the average proportion of rules shared by two SIRUS

3 The settings of the Boruta algorithm were: the Random Forest classifier, auto esti-
mators, verbose is set to 2, random state is set to 1, number of trees is set to
200.

4 The parameters of Keras included: last-layer activation – softmax, loss function –
softmax xentr, and learning rate – 0.001.

14 R. Li and O. Gadyatskaya

models fit on two distinct folds in the cross-validation. We choose p0.pred as an
optimal hyperparameter.

In the REM-D method, trials (the number of sampling trials to use when
using bagging for C5.0 rule extraction) is set to 1, min cases ((the minimum
number of samples we must have to perform a split in a decision tree)) is set
to 30. In the ECLAIRE method, min cases is set to 30, block size (the hidden
layer sampling frequency) is set 1, ccp prune (whether or not we perform the
post-hoc cost complexity pruning in the trees we extract with CART before
rule induction) is set to True. In the deepRED method, min cases is set to 20,
ccp prune is set to True, trials is set to 1.

5.3 Evaluation Metrics

We will evaluate the performance of black-box models, white-box models and
rules using detection performance metrics and domain-specific metrics. Specif-
ically, we will use detection performance metrics, such as accuracy, precision,
recall, and F-measure, to evaluate the performance of both black-box models
(i.e., RF, DNNs) and white-box models (i.e., rule detectors). To do so, we will
use the standard confusion matrix, which summarizes the number of true pos-
itives, false positives, true negatives, and false negatives (see Table 3). Using
this matrix, Table 4 provides the definitions of accuracy, precision, recall, and F-
measure, which are commonly used to evaluate the performance of classification
models and rule detectors. In addition to these metrics, we will use domain-
specific metrics that we proposed (see Sect. 5.3) to evaluate the stability, robust-
ness, and effectiveness of rules extracted from the black-box models using five
explanation methods.

5.4 Experimental Results

The performance of black-box models (RF and DNNs) in the 10-fold validation
scheme on the pre-processed CICMalDroid dataset is presented in Table 5. The
performance of agent models (the considered explanation methods) on the same
dataset are shown in Table 6, where stability, robustness, effectiveness are eval-
uated on the produced rulesets, while accuracy, precision, recall, and F-measure
are evaluated on the generated rule detectors.

Table 3. Confusion matrix

Truth Prediction

Malware Benign

Malware True Positive (TP) False Negative (FN)

Benign False Positive (FP) True Negative (TN)

Evaluating Rule-Based Global XAI Malware Detection Methods 15

Table 4. Definitions of detection performance evaluation metrics

Term Description

Precision TP
TP+FP

Recall (Detection Rate) TP
TP+FN

Accuracy TP+FN
TP+TN+FP+FN

F-measure 2∗Recall∗Precision
Recall+Precision

Table 5. Performance of black-box models

Metric RF DNN

Accuracy 98.97% 95.54%

Precision 99.22% 96.73%

Recall 98.72% 93.94%

F-measure 98.74% 95.32%

Table 6. Performance of the chosen explanation methods

Metric SIRUS (RF) inTrees (RF) deepRED (DNN) REM-D (DNN) ECLAIRE (DNN)

of rules 55 12 3 2 2

Stability 96.15% 0% 0% 0% 0%

Robustness 95.56% 0% 0% 0% 0%

Effectiveness 91.65% 86.64% – – –

Accuracy 92.47% 88.19% 88.99% 86.35% 92.34%

Precision 87.20% 91.70% 88.29% 87.85% 86.87%

Recall 99.82% 87.11% 89.05% 76.08% 93.95%

F-measure 93.09% 87.75% 88.67% 81.54% 91.16%

To compute the robustness score according to the Eq. 4 in our experiments,
the variation parameter u was set 10, the r was set to 2000, the total number of
samples is 3580 (1790 malware and 1790 benign samples).

The deepRED, REM-D, and ECLAIRE methods output less than 5 rules;
the inTrees method produces 12 rules; and SIRUS produces 55 rules. Although
the ECLAIRE method only has 2 rules, they contain above 100 features per rule.
In contrast, SIRUS contains less than 3 features per rule.

The stability and robustness of SIRUS are above 95%. The other considered
XAI methods all have very low stability and robustness (0%). These results sug-
gest that SIRUS has higher potential as explainable Android malware detection
method, as it shows high stability and robustness. It is known that the stable
and robust XAI methods will improve the human trust and will not confuse the
analyst [13]. At the same time, the state-of-the-art methods inTrees, deepRED,
REM-D and ECLAIRE seem to have much higher variability of the rule condi-
tions. It will be interesting to investigate how to improve stability and robustness
of such methods. Otherwise, explanation results provided by these methods can

16 R. Li and O. Gadyatskaya

be regarded by human analysts as meaningless as they would not understand
how the detection model works [13].

The effectiveness of SIRUS is 91.65%, which is higher than the inTrees
method. We note that we could not compute effectiveness of deepRED, REM-D
and ECLAIRE as they use transformed features to generate rules, which do not
correspond to the app features from the original dataset. Thus, we could not
define a meaningful mutation procedure for them. As an example, the expla-
nation results produced by these DNN-based methods can look like the follow-
ing: “ if (0.4975 | 1.0000)[(h 0 0 ≤ 9805) AND (h 0 263 ≤ 25)] ... OR
(0.9746 | 1.0000)[(h 0 143 > 40002)] then 1”. Therefore, we can conclude
our formulation of the effectiveness metric needs to be improved in the future to
cover this case.

We examined the accuracy, precision, recall and precision of black-box mod-
els (RF and DNN) and the produced rule-based classifiers (agent models). Com-
pared to black-box models, detection performance of agent models has decreased.
This is understandable, as the agent models are based on rules extracted from
black-box models. For the rules to be readable and less complex, the neural net-
work or trees should be pruned, which leads to loss of detection performance
compared to the black-box models.

We note that accuracy of SIRUS is 92.47%, which is higher than the other
considered methods. The precision of inTrees is 91.70%, which is the highest in
all methods. The value of recall and F-measure of SIRUS is 99.82% and 93.09%;
higher than the other comparison methods. Overall, these results suggest that
SIRUS has acceptable stability, robustness, effectiveness, and detection perfor-
mance (as measured by accuracy, recall, and F-measure). The inTrees method
has better precision in malware detection.

6 SIRUS Rules

We have demonstrated in our experiments that the SIRUS method could be
considered a viable XAI solution for Android malware detection. We now give
examples of some detection rules produced by SIRUS.

The detection rule body produced by SIRUS is a conjunction of logic condi-
tions fi in the path from the root node to the current node in the tree. We note
that SIRUS takes care of removing overlapping rules. Therefore the generated
55 rules are not redundant. Five examples of the extracted rules are shown in
Table 7. To help understand how to read the rules, they are explained below.

Rule 1: If TelephonyManager.getLine1Number < 2 & TelephonyManager.
getSubscriberId < 1 then 0.04 else 0.87.

Explanation: TelephonyManager.getLine1Number is an API that obtains a
phone number, TelephonyManager.getSubscriberId is an sensitive API that
gets device information. The value of these features represents the count of API
calls in the code. These are all sensitive behaviors, that might lead to private
user data leakage. So this rule means: if an application tries to access the phone

Evaluating Rule-Based Global XAI Malware Detection Methods 17

Table 7. Example rules extracted by the SIRUS method

ID Rules

1 if TelephonyManager.getLine1Number < 2 &
TelephonyManager.getSubscriberId < 1 then 0.04 else 0.87

2 if Android.permission.SEND SMS < 1 &
removeAccessibilityInteractionCon nection < 3 then 0.012 else

0.97

3 If TelephonyManager.getCellLocation < 3 &
TelephonyManager.getSubscriberId < 1 then 0.05 else 0.88

4 if Android.intent.action.PACKAGE ADDED < 1 &
getInstallerPackageName ≥ 1 then 0.0089 else 0.76

5 if Android.permission.READ PHONE STATE < 1 & target sdk < 19
then 0.24 else 0.52

number at least 2 times or calls for device information, then there is a 87%
possibility that it belongs to malware.

Rule 2: If Android.permission.SEND SMS < 1 & removeAccessibilityIn-
teractionConnection < 3 then 0.012 else 0.97.

Explanation: Android.permission.SEND SMS is a permission that is required
to send SMS messages, the value of this feature is 0 means the app with-
out requesting this permission, otherwise means the app has been granted the
corresponding permissions. RemoveAccessibilityInteractionConnection is a
dynamic behavior to consume lots of system memory, which can reduce the
app’s speed or lead to crashes. So this rule means: if the application request the
SEND SMS permission or makes the system unstable by removing the accessibil-
ity interaction connection more than 3 times, there is a 97% possibility that it
belongs to malware. It indicates that this is a strong rule to identify malware.

Rule 3: If TelephonyManager.getCellLocation < 3 & TelephonyManager.
getSubscriberId < 1 then 0.05 else 0.88.

Explanation: TelephonyManager.getCellLocation is an API that obtains
the location information; TelephonyManager.getSubscriberId is an API that
obtains device information. The value of these features represents the count of
API calls in the code. This rule means that if an application calls for the user’s
location more than 3 times or tries to access the phone number, then there is a
88% possibility that it is malware.

Rule 4: If Android.intent.action.PACKAGE ADDED < 1 & getInstaller-
PackageName ≥ 1 then 0.0089 else 0.76.

Explanation: Android.intent.action.PACKAGE ADDED is an action that
notifies of an apk package added to the system; GetInstallerPackageName is
an API that obtains the source of the package, it could be from Google Play or
other third-party markets. The large number of these features might be indicate

18 R. Li and O. Gadyatskaya

there are abnormal frequent application installation behaviors or a large number
of installations of untrusted application packages.

This rule means that if an application is notified about added more than one
packages or the app does not show the source of the apk package, then there is
a 76% possibility that it is malware.

Rule 5: If Android.permission.READ PHONE STATE < 1 & target sdk < 19
then 0.24 else 0.52.

Explanation: Android.permission.READ PHONE STATE is a permission that
allows read-only access to phone states, such as phone numbers, network infor-
mation, and device identifiers. The value of 0 for this feature indicates that the
app has not requested the READ PHONE STATE permission, while a non-zero value
indicates that the app has been granted this permission. Target sdk is the app
Android SDK target version. This rule means that if an application tries to
access the phone state or has the target SDK version above 19, there it is a 52%
possibility that it is malware. So it is not a very strong rule for the analysts to
distinguish the malware.

7 Conclusion

In this study, we aimed to evaluate the quality of rule-based global XAI methods
in the context of Android malware detection and to provide useful insights for
malware analysts regarding the existing post-hoc XAI approaches. To achieve
this goal, we formulated three domain-specific properties to measure the quality
of the detection methods: stability, robustness, and effectiveness. Using these
metrics, we evaluated five state-of-the-art explanation approaches using the
CICMalDroid dataset. Our work investigating domain-specific evaluation met-
rics for global rule-based explanation methods extends the elegant works by Fan
et al. [13] and Warnecke et al. [41]. They proposed domain-specific properties
for local XAI methods that provide explanations for a single sample. However,
we now focus on rule-based global XAI methods.

Our experimental results demonstrate that these evaluation metrics can
assess the rule-based global XAI approaches, providing valuable insights for
researchers and practitioners. Specifically, we found that the SIRUS method
can generate stable, robust, and effective rules with high detection performance,
outperforming other state-of-the-art methods that were evaluated in our study.
Indeed, in our experiments, the deepRED, REM-D, and ECLAIRE methods
show zero stability and robustness: this means that with every run the produced
rules are different and any small change will change the explanation results.
These methods can still provide valuable malware-related information to human
analysts, but the analysts might become confused receiving constantly changing
explanations.

Our findings highlight the importance of evaluation metrics in assessing the
quality of rule-based global XAI Android malware detection methods. The pro-
posed metrics can provide useful guidance for researchers and practitioners work-

Evaluating Rule-Based Global XAI Malware Detection Methods 19

ing in this field, helping them to select the most effective and reliable detection
methods.

In the future work, we intend to focus on improving the proposed metrics
in discussion with practitioners, to be able to propose new domain-specific met-
rics definitions that will capture important properties while being computable
for the vast majority of available XAI methods. In addition, we are interested
in exploring the impact of the number of rules on the performance of explana-
tion methods. This is an important consideration, as it can help us to better
understand the trade-offs involved in using larger rulesets versus smaller ones,
and to identify the optimal ruleset size. Finally, we are interested in extending
our metrics definition to cover global XAI methods relying on interpretations in
terms of significant features rather than rules.

Acknowledgements. This research was partially supported by the Chinese Scholar-
ship Council (CSC).

References

1. Alani, M., Awad, A.: PAIRED: an explainable lightweight Android malware detec-
tion system. IEEE Access 10, 73214–73228 (2022)

2. Arp, D., Spreitzenbarth, M., Hübner, M., Gascon, H., Rieck, K.: DREBIN: effective
and explainable detection of android malware in your pocket. In: Symposium on
Network and Distributed System Security (NDSS) (2014)

3. Backes, M., Nauman, M.: LUNA: quantifying and leveraging uncertainty in
Android malware analysis through Bayesian machine learning. In: 2017 IEEE Euro-
pean Symposium on Security and Privacy, Los Alamitos, CA, USA, pp. 204–217.
IEEE (2017)

4. Bénard, C., Biau, G., Da Veiga, S., Scornet, E.: SIRUS: stable and interpretable
rule set for classification. Electron. J. Stat. 15(1), 427–505 (2021)

5. Burkart, N., Huber, M.F.: A survey on the explainability of supervised machine
learning. J. Artif. Intell. Res. 70, 245–317 (2021)

6. Calleja, A., Mart́ın, A., Menéndez, H.D., Tapiador, J., Clark, D.: Picking on the
family: disrupting Android malware triage by forcing misclassification. Expert Syst.
Appl. 95, 113–126 (2018)

7. Capuano, N., Fenza, G., Loia, V., Stanzione, C.: Explainable artificial intelligence
in cybersecurity: a survey. IEEE Access 10, 93575–93600 (2022)

8. Charmet, F., et al.: Explainable artificial intelligence for cybersecurity: a literature
survey. Ann. Telecommun. 77, 1–24 (2022)

9. Dashevskyi, S., Zhauniarovich, Y., Gadyatskaya, O., Pilgun, A., Ouhssain, H.:
Dissecting Android cryptocurrency miners. In: Proceedings of the Tenth ACM
Conference on Data and Application Security and Privacy, pp. 191–202 (2020)

10. Demontis, A., et al.: Yes, machine learning can be more secure! a case study on
android malware detection. IEEE Trans. Dependable Secure Comput. 16(4), 711–
724 (2017)

20 R. Li and O. Gadyatskaya

11. Deng, H.: Interpreting tree ensembles with intrees. Int. J. Data Sci. Anal. 7(4),
277–287 (2019)

12. Dhalaria, M., Gandotra, E.: Android malware detection techniques: a literature
review. Recent Patents Eng. 15(2), 225–245 (2021)

13. Fan, M., Wei, W., Xie, X., Liu, Y., Guan, X., Liu, T.: Can we trust your expla-
nations? Sanity checks for interpreters in Android malware analysis. IEEE Trans.
Inf. Forensics Secur. 16, 838–853 (2020)

14. Guidotti, R., Monreale, A., Ruggieri, S., Pedreschi, D., Turini, F., Giannotti,
F.: Local rule-based explanations of black box decision systems. arXiv preprint
arXiv:1805.10820 (2018)

15. Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., Pedreschi, D.: A
survey of methods for explaining black box models. ACM Comput. Surv. (CSUR)
51(5), 1–42 (2018)

16. Guo, W., Mu, D., Xu, J., Su, P., Wang, G., Xing, X.: LEMNA: explaining deep
learning based security applications. In: proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security (CCS), pp. 364–379 (2018)

17. Jerbi, M., Chelly Dagdia, Z., Bechikh, S., Ben Said, L.: Android malware detection
as a bi-level problem. Comput. Secur. 121, 102825 (2022)

18. Kinkead, M., Millar, S., McLaughlin, N., O’Kane, P.: Towards explainable CNNs
for Android malware detection. Procedia Comput. Sci. 184, 959–965 (2021)

19. Kong, P., Li, L., Gao, J., Liu, K., Bissyandé, T.F., Klein, J.: Automated testing
of Android apps: a systematic literature review. IEEE Trans. Reliab. 68(1), 45–66
(2018)

20. Kursa, M.B., Jankowski, A., Rudnicki, W.R.: Boruta - a system for feature selec-
tion. Fund. Inform. 101, 271–285 (2010)

21. Lipton, Z.C.: The mythos of model interpretability: in machine learning, the con-
cept of interpretability is both important and slippery. Queue 16(3), 31–57 (2018)

22. Liu, K., Xu, S., Xu, G., Zhang, M., Sun, D., Liu, H.: A review of Android malware
detection approaches based on machine learning. IEEE Access 8, 124579–124607
(2020)

23. Lu, Z., Thing, V.L.: PhilaeX: explaining the failure and success of AI models in
malware detection. arXiv preprint arXiv:2207.00740 (2022)

24. Lundberg, S.M., Lee, S.I.: A unified approach to interpreting model predictions.
In: Advances in Neural Information Processing Systems, vol. 30 (2017)

25. Mahdavifar, S., Alhadidi, D., Ghorbani, A.A.: Effective and efficient hybrid
Android malware classification using pseudo-label stacked auto-encoder. J. Netw.
Syst. Manage. 30, 1–34 (2022)

26. Mahdavifar, S., Kadir, A.F.A., Fatemi, R., Alhadidi, D., Ghorbani, A.A.: Dynamic
Android malware category classification using semi-supervised deep learning. In:
2020 IEEE International Conference on Dependable, Autonomic and Secure Com-
puting(DASC/PiCom/CBDCom/CyberSciTech), pp. 515–522. IEEE (2020)

27. Mehtab, A., et al.: AdDroid: rule-based machine learning framework for Android
malware analysis. Mob. Netw. Appl. 25(1), 180–192 (2020)

28. Melis, M., Maiorca, D., Biggio, B., Giacinto, G., Roli, F.: Explaining black-box
Android malware detection. In: 2018 26th European Signal Processing Confer-
ence (EUSIPCO), pp. 524–528 (2018). https://doi.org/10.23919/EUSIPCO.2018.
8553598

29. Morcos, M., Al Hamadi, H., Damiani, E., Nandyala, S., McGillion, B.: A surrogate-
based technique for Android malware detectors’ explainability. In: 2022 18th Inter-
national Conference on Wireless and Mobile Computing, Networking and Commu-
nications (WiMob), pp. 112–117. IEEE (2022)

http://arxiv.org/abs/1805.10820
http://arxiv.org/abs/2207.00740
https://doi.org/10.23919/EUSIPCO.2018.8553598
https://doi.org/10.23919/EUSIPCO.2018.8553598

Evaluating Rule-Based Global XAI Malware Detection Methods 21

30. Nadeem, A., et al.: SoK: explainable machine learning for computer security appli-
cations. arXiv preprint arXiv:2208.10605 (2022)

31. Narayanan, A., Chandramohan, M., Chen, L., Liu, Y.: Context-aware, adaptive,
and scalable Android malware detection through online learning. IEEE Trans.
Emerg. Top. Comput. Intell. 1(3), 157–175 (2017)

32. Odusami, M., Abayomi-Alli, O., Misra, S., Shobayo, O., Damasevicius, R., Maske-
liunas, R.: Android malware detection: a survey. In: Florez, H., Diaz, C., Chavar-
riaga, J. (eds.) ICAI 2018. CCIS, vol. 942, pp. 255–266. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-01535-0 19

33. Qiu, J., Zhang, J., Luo, W., Pan, L., Nepal, S., Xiang, Y.: A survey of Android
malware detection with deep neural models. ACM Comput. Surv. (CSUR) 53(6),
1–36 (2020)

34. Ribeiro, M.T., Singh, S., Guestrin, C.: “Why should I trust you?” Explaining the
predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, pp. 1135–1144 (2016)

35. Ribeiro, M.T., Singh, S., Guestrin, C.: Anchors: high-precision model-agnostic
explanations. In: Proceedings of the AAAI Conference on Artificial Intelligence
(2018)

36. Shams, Z., et al.: REM: an integrative rule extraction methodology for explainable
data analysis in healthcare. medRxiv (2021)

37. Srivastava, G., et al.: XAI for cybersecurity: state of the art, challenges, open issues
and future directions. arXiv preprint arXiv:2206.03585 (2022)

38. Tam, K., Fattori, A., Khan, S., Cavallaro, L.: CopperDroid: automatic reconstruc-
tion of android malware behaviors. In: NDSS Symposium 2015, pp. 1–15 (2015)

39. Tam, K., Feizollah, A., Anuar, N.B., Salleh, R., Cavallaro, L.: The evolution of
Android malware and Android analysis techniques. ACM Comput. Surv. (CSUR)
49(4), 1–41 (2017)

40. Wang, S., et al.: TrafficAV: an effective and explainable detection of mobile malware
behavior using network traffic. In: Proceedings of 24th International Symposium
on Quality of Service (IWQoS) (2016)

41. Warnecke, A., Arp, D., Wressnegger, C., Rieck, K.: Evaluating explanation meth-
ods for deep learning in security. In: Proceedings of European Symposium on Secu-
rity and Privacy (EuroS&P), pp. 158–174. IEEE (2020)

42. Wu, B., Chen, S., Gao, C., Fan, L., Liu, Y., Wen, W., Lyu, M.R.: Why an Android
app is classified as malware: toward malware classification interpretation. ACM
Trans. Softw. Eng. Methodol. (TOSEM) 30(2), 1–29 (2021)

43. Xu, F., Uszkoreit, H., Du, Y., Fan, W., Zhao, D., Zhu, J.: Explainable AI: a brief
survey on history, research areas, approaches and challenges. In: Tang, J., Kan, M.-
Y., Zhao, D., Li, S., Zan, H. (eds.) NLPCC 2019. LNCS (LNAI), vol. 11839, pp.
563–574. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32236-6 51

44. Yan, F., Wen, S., Nepal, S., Paris, C., Xiang, Y.: Explainable machine learning in
cybersecurity: a survey. Int. J. Intell. Syst. 37(12), 12305–12334 (2022)

45. Zarlenga, M.E., Shams, Z., Jamnik, M.: Efficient decompositional rule extraction
for deep neural networks. arXiv preprint arXiv:2111.12628 (2021)

http://arxiv.org/abs/2208.10605
https://doi.org/10.1007/978-3-030-01535-0_19
http://arxiv.org/abs/2206.03585
https://doi.org/10.1007/978-3-030-32236-6_51
http://arxiv.org/abs/2111.12628

22 R. Li and O. Gadyatskaya

46. Zhang, Z., Hamadi, H.A., Damiani, E., Yeun, C.Y., Taher, F.: Explainable artifi-
cial intelligence applications in cyber security: state-of-the-art in research. arXiv
preprint arXiv:2208.14937 (2022)

47. Zhu, D., Xi, T., Jing, P., Wu, D., Xia, Q., Zhang, Y.: A transparent and multi-
modal malware detection method for Android apps. In: Proceedings of the 22nd
International ACM Conference on Modeling, Analysis and Simulation of Wireless
and Mobile Systems (MSWIM), New York, NY, USA, pp. 51–60. ACM (2019).
https://doi.org/10.1145/3345768.3355915

48. Zilke, J.R., Loza Menćıa, E., Janssen, F.: DeepRED – rule extraction from deep
neural networks. In: Calders, T., Ceci, M., Malerba, D. (eds.) DS 2016. LNCS
(LNAI), vol. 9956, pp. 457–473. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-46307-0 29

http://arxiv.org/abs/2208.14937
https://doi.org/10.1145/3345768.3355915
https://doi.org/10.1007/978-3-319-46307-0_29
https://doi.org/10.1007/978-3-319-46307-0_29

	Evaluating Rule-Based Global XAI Malware Detection Methods
	1 Introduction
	2 Related Work
	3 Candidate XAI Methods and Evaluation Metrics
	3.1 Evaluated XAI Methods
	3.2 Evaluation

	4 Methodology
	4.1 Features and Data Preprocessing
	4.2 Feature Selection

	5 Experimental Evaluation
	5.1 Dataset
	5.2 The Experiment Procedure
	5.3 Evaluation Metrics
	5.4 Experimental Results

	6 SIRUS Rules
	7 Conclusion
	References

