
Shujun Li
Mark Manulis
Atsuko Miyaji (Eds.)

LN
CS

 1
39

83

17th International Conference, NSS 2023
Canterbury, UK, August 14–16, 2023
Proceedings

Network and
System Security

Lecture Notes in Computer Science 13983
Founding Editors
Gerhard Goos
Juris Hartmanis

Editorial Board Members
Elisa Bertino, Purdue University, West Lafayette, IN, USA
Wen Gao, Peking University, Beijing, China
Bernhard Steffen , TU Dortmund University, Dortmund, Germany
Moti Yung , Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873

The series Lecture Notes in Computer Science (LNCS), including its subseries Lecture
Notes in Artificial Intelligence (LNAI) and Lecture Notes in Bioinformatics (LNBI),
has established itself as a medium for the publication of new developments in computer
science and information technology research, teaching, and education.

LNCS enjoys close cooperation with the computer science R & D community, the
series countsmany renowned academics among its volume editors and paper authors, and
collaborates with prestigious societies. Its mission is to serve this international commu-
nity by providing an invaluable service, mainly focused on the publication of conference
andworkshop proceedings and postproceedings. LNCScommenced publication in 1973.

Shujun Li · Mark Manulis · Atsuko Miyaji
Editors

Network and
System Security
17th International Conference, NSS 2023
Canterbury, UK, August 14–16, 2023
Proceedings

Editors
Shujun Li
University of Kent
Canterbury, UK

Atsuko Miyaji
Osaka University
Suita, Osaka, Japan

Mark Manulis
Universität der Bundeswehr München
München, Germany

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-031-39827-8 ISBN 978-3-031-39828-5 (eBook)
https://doi.org/10.1007/978-3-031-39828-5

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2023
Chapter “Agnostic Label-Only Membership Inference Attack” is licensed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/). For further
details see license information in the chapters.

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors
or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0001-5628-7328
https://orcid.org/0000-0002-1512-9670
https://doi.org/10.1007/978-3-031-39828-5
http://creativecommons.org/licenses/by/4.0/

Preface

NSS (InternationalConference onNetwork andSystemSecurity) is an annual conference
focusing on all theoretical and practical aspects related to network and system security.
Its 17th edition, NSS 2023, took place from 14th to 16th August, 2023, in Canterbury,
Kent, United Kingdom. It was organized by the Institute of Cyber Security for Society
(iCCS) at the University of Kent, and co-located with the 9th International Symposium
on Security and Privacy in Social Networks and Big Data (SocialSec 2023).

NSS 2023 received 64 submissions. Each Technical Program Committee (TPC)
memberwas assigned an average of two submissions for review. Each paperwas assigned
to at least three reviewers. The TPC was helped by the reports and opinions of four
external reviewers. The submission process was anonymous and author names were not
visible to the reviewers. Received reviews were also anonymised to other TPC mem-
bers, as well as to the paper’s authors. The review process was organized and managed
through EasyChair. The reviewers were asked to declare any conflicts of interest for all
submissions at the beginning of the process, and the EasyChair system was configured
to ensure that TPC members (including TPC chairs) could see neither reviewer assign-
ments nor reviews of papers for which they had a confict of interest. For several papers,
one TPC Co-Chair had a conflict of interest, and the discussion on each of the papers
was held, and the decision was made, between the other two TPC Co-Chairs without a
conflict of interest. The selection process was competitive and after highly interactive
discussions and a careful deliberation, 12 full papers (18.8%) were selected by the TPC
for presentation at the conference. In addition, 9 papers were selected for presentation
as short papers, resulting in the overall acceptance rate of 32.8%.

NSS 2023 and the co-located SocialSec 2023 shared three invited talks for both con-
ferences’ participants, given by Julia Hesse from IBMResearch Zurich, Nishanth Sastry
from University of Surrey and Lorenzo Cavallaro from University College London.

The NSS 2023 TPC selected one paper to receive the Best Paper Award and another
one to receive the Best Student Paper Award. The Best Paper was awarded to Aurélien
Greuet, SimonMontoya andClémenceVermeersch for their paper “Modular Polynomial
Multiplication Using RSA/ECC coprocessor”. The Best Student Paper went to Mahshid
Mehr Nezhad, Elliot Laidlaw and Feng Hao for their paper “Security Analysis ofMobile
Point-of-Sale Terminals”. Both awards include a certificate and a cash prize. The cash
prizes were kindly sponsored by the Institute of Cyber Security for Society (iCCS),
University of Kent.

The NSS 2023 TPC was co-chaired by Shujun Li, Mark Manulis and Atsuko Miyaji
who selected the TPCmembers and led their efforts in selecting the papers that appear in
this volume. The organization of NSS 2023 and the co-located SocialSec 2023 was led
by Budi Arief, Robert Deng and Elena Ferrari as both conferences’ joint General Co-
Chairs. The conferences were also made possible due to the professional work of Yuntao
Wang, Yulei Wu and Zhe Xia as the Publicity Co-Chairs, Shujun Li as the Publication

vi Preface

Chair, and Haiyue Yuan as the Web Chair. The NSS 2023 TPC was also advised by a
Steering Committee chaired by Yang Xiang.

We would like to thank everyone who contributed to the success of NSS 2023. We
are grateful to all TPCmembers and external reviewers for their commitment, hard work
and enthusiasm, which ensured that each submitted paper went through a thorough and
fair review process. We thank all members of the Organizing Committee of both NSS
2023 and the co-located SocialSec 2023 for their professional work that supported us,
the TPC and all participants of both conferences. Last but not the least, we also wish to
thank all authors who submitted to NSS 2023 and all conference participants for making
NSS 2023 an enjoyable experience.

June 2023 Shujun Li
Mark Manulis
Atsuko Miyaji

Organization

General Chairs

Budi Arief University of Kent, UK
Robert Deng Singapore Management University, Singapore
Elena Ferrari University of Insubria, Italy

Program Committee Chairs

Shujun Li University of Kent, UK
Mark Manulis Universität der Bundeswehr München, Germany
Atsuko Miyaji Osaka University and Japan Advanced Institute of

Science and Technology, Japan

Steering Committee

Yang Xiang (Chair) Swinburne University of Technology, Australia
Elisa Bertino Purdue University, USA
Robert Deng Singapore Management University, Singapore
Dieter Gollmann Hamburg University of Technology, Germany
Xinyi Huang Hong Kong University of Science and

Technology, China
Kui Ren Zhejiang University, China
Ravi Sandhu University of Texas at San Antonio, USA
Wanlei Zhou City University of Macau, China

Publicity Co-chairs

Yuntao Wang Osaka University, Japan
Yulei Wu University of Exeter, UK
Zhe Xia Wuhan University of Technology, China

viii Organization

Publication Chair

Shujun Li University of Kent, UK

Web Chair

Haiyue Yuan University of Kent, UK

Program Committee

Sridhar Adepu Singapore University of Technology and Design,
Singapore

Chuadhry Mujeeb Ahmed Singapore University of Technology and Design,
Singapore

Nadeem Ahmed Cyber Security Cooperative Research Centre,
Australia

Magnus Almgren Chalmers University of Technology, Sweden
David Arroyo Spanish National Research Council (CSIC), Spain
Joonsang Baek University of Wollongong, Australia
Diogo Barradas University of Waterloo, Canada
Osman Biçer Koç University, Turkey
Silvia Bonomi Sapienza University of Rome, Italy
Alessandro Brighente University of Padova, Italy
Emiliano Casalicchio Blekinge Institute of Technology, Sweden and

Sapienza University of Rome, Italy
Luca Caviglione CNR - IMATI, Italy
Koji Chida Gunma University, Japan
Sherman S. M. Chow Chinese University of Hong Kong, China
Nora Cuppens-Boulahia Polytechnique Montréal, Canada
Bernardo David IT University of Copenhagen, Denmark
Keita Emura National Institute of Information and

Communications Technology, Japan
Wenjun Fan Xi’an Jiaotong-Liverpool University, China
Davide Ferraris University of Malaga, Spain
Afonso Ferreira CNRS - Institut de Recherches en Informatique

de Toulouse, France
Amrita Ghosal University of Limerick, Ireland
Stefanos Gritzalis University of Piraeus, Greece
Jinguang Han Southeast University, China
Guillaume Hiet CentraleSupélec, France

Organization ix

Shoichi Hirose University of Fukui, Japan
Darren Hurley-Smith Royal Holloway, University of London, UK
Sokratis Katsikas Norwegian University of Science and Technology,

Norway
Stefan Katzenbeisser University of Passau, Germany
Hiroaki Kikuchi Meiji University, Japan
Shinsaku Kiyomoto KDDI Research Inc, Japan
Veronika Kuchta Florida Atlantic University, USA
Shane Li Cardiff University, UK
Wanpeng Li University of Aberdeen, UK
Yingjiu Li University of Oregon, USA
Xiapu Luo Hong Kong Polytechnic University, China
Taous Leila Madi King Abdullah University of Science and

Technology, Saudi Arabia
Mohammad Mamun National Research Council Canada, Canada
Kalikinkar Mandal University of New Brunswick, Canada
Daisuke Mashima Advanced Digital Sciences Center, Singapore
Wojciech Mazurczyk Warsaw University of Technology, Poland
Florian Mendel Infineon Technologies, Germany
Kazuhiko Minematsu NEC Corporation, Japan
Antonio Muñoz University of Malaga, Spain
Rolf Oppliger eSECURITY Technologies, Switzerland
Daniela Pöhn Universität der Bundeswehr München, Germany
Chen Qian Shandong University, China
Fatemeh Rezaeibagha Murdoch University, Australia
Ruben Rios University of Malaga, Spain
Sankardas Roy Bowling Green State University, USA
Corinna Schmitt Universität der Bundeswehr München, Germany
Siamak Shahandashti University of York, UK
Paria Shirani University of Ottawa, Canada
Mohammad Shojafar University of Surrey, UK
Luisa Siniscalchi Danmarks Tekniske Universitet, Denmark
Simone Soderi IMT Scuola Alti Studi Lucca, Italy
Juraj Somorovsky Paderborn University, Germany
Chunhua Su University of Aizu, Japan
Erik Tews University of Twente, The Netherlands
Yangguang Tian University of Surrey, UK
Zhihong Tian Guangzhou University, China
Ehsan Toreini University of Surrey, UK
Jacques Traore Orange Labs, France
Luca Viganò King’s College London, UK
Yongge Wang University of North Carolina at Charlotte, USA

x Organization

Steffen Wendzel Worms University of Applied Sciences, Germany
Yongdong Wu Jinan University, China
Zhe Xia Wuhan University of Technology, China
Jinbo Xiong Fujian Normal University, China
Toshihiro Yamauchi Okayama University, Japan
Kuo-Hui Yeh National Dong Hwa University, Taiwan
Kazuki Yoneyama Ibaraki University, Japan
Tsz Hon Yuen University of Hong Kong, China
Melek Önen EURECOM, France

Additional Reviewers

Asmaa Hailane
Weihan Li
Thomas Poeppelmann
Harry W. H. Wong

Contents

Attacks and Malware

Evaluating Rule-Based Global XAI Malware Detection Methods 3
Rui Li and Olga Gadyatskaya

Whitelisting for Characterizing and Monitoring Process Control
Communication . 23

Andreas Paul, Franka Schuster, and Hartmut König

Detection of Malware Using Self-Attention Mechanism and Strings 46
Satoki Kanno and Mamoru Mimura

KDRM: Kernel Data Relocation Mechanism to Mitigate Privilege
Escalation Attack . 61

Hiroki Kuzuno and Toshihiro Yamauchi

The Effectiveness of Transformer-Based Models for BEC Attack Detection 77
Amirah Almutairi, BooJoong Kang, and Nawfal Fadhel

Blockchain

Resilience of Blockchain Overlay Networks . 93
Aristodemos Paphitis, Nicolas Kourtellis, and Michael Sirivianos

Provably Secure Blockchain Protocols from Distributed
Proof-of-Deep-Learning . 114

Xiangyu Su, Mario Larangeira, and Keisuke Tanaka

Security Model for Privacy-Preserving Blockchain-Based Cryptocurrency
Systems . 137

Mayank Raikwar, Shuang Wu, and Kristian Gjøsteen

Cryptography and Privacy

Group Oriented Attribute-Based Encryption Scheme from Lattices
with the Employment of Shamir’s Secret Sharing Scheme 155

Maharage Nisansala Sevwandi Perera, Toru Nakamura,
Takashi Matsunaka, Hiroyuki Yokoyama, and Kouichi Sakurai

xii Contents

New LDP Approach Using VAE . 177
Andres Hernandez-Matamoros and Hiroaki Kikuchi

Machine Learning

Privacy-Preserving Federated Learning with Hierarchical Clustering
to Improve Training on Non-IID Data . 195

Songwei Luo, Shaojing Fu, Yuchuan Luo, Lin Liu, Yanxiang Deng,
and Shixiong Wang

RRML: Privacy Preserving Machine Learning Based on Random
Response Technology . 217

Jia Wang, Shiqing He, and Qiuzhen Lin

SPoiL: Sybil-Based Untargeted Data Poisoning Attacks in Federated
Learning . 235

Zhuotao Lian, Chen Zhang, Kaixi Nan, and Chunhua Su

Agnostic Label-Only Membership Inference Attack . 249
Anna Monreale, Francesca Naretto, and Simone Rizzo

ppAURORA: Privacy Preserving Area Under Receiver Operating
Characteristic and Precision-Recall Curves . 265

Ali Burak Ünal, Nico Pfeifer, and Mete Akgün

Security Through Hardware

Modular Polynomial Multiplication Using RSA/ECC Coprocessor 283
Aurélien Greuet, Simon Montoya, and Clémence Vermeersch

T3E: A Practical Solution to Trusted Time in Secure Enclaves 305
Gilang Mentari Hamidy, Pieter Philippaerts, and Wouter Joosen

Decentralized SGX-Based Cloud Key Management . 327
Yunusa Simpa Abdulsalam, Jaouhara Bouamama, Yahya Benkaouz,
and Mustapha Hedabou

Security in the Wild

Spying on the Spy: Security Analysis of Hidden Cameras 345
Samuel Herodotou and Feng Hao

Security Analysis of Mobile Point-of-Sale Terminals . 363
Mahshid Mehr Nezhad, Elliot Laidlaw, and Feng Hao

Contents xiii

On the Design of a Misinformation Widget (MsW) Against Cloaked Science . . . 385
David Arroyo, Sara Degli-Esposti, Alberto Gómez-Espés,
Santiago Palmero-Muñoz, and Luis Pérez-Miguel

Author Index . 397

Attacks and Malware

Evaluating Rule-Based Global XAI
Malware Detection Methods

Rui Li and Olga Gadyatskaya(B)

LIACS, Leiden University, Leiden, The Netherlands
{r.li,o.gadyatskaya}@liacs.leidenuniv.nl

Abstract. In recent years explainable artificial intelligence (XAI) meth-
ods have been applied for interpreting machine learning-based Android
malware detection approaches. XAI methods are capable of providing
Android malware analysts with some explanations of why a certain sam-
ple has been classified as malicious or benign. However, human ana-
lysts also have domain-specific requirements, i.e., expectations of how
XAI methods should behave. For example, analysts expect that similar
malware samples will be explained in a similar way. Recent works by
Warnecke et al. [41] and Fan et al. [13] have proposed domain-specific
properties for local XAI methods that provide explanations for a single
sample.

In this work, we formulate three domain-specific properties for global
XAI rule-based malware detection methods: stability, robustness and
effectiveness. We evaluate performance of five explanation approaches
(SIRUS, deepRED, REM-D, ECLAIRE and inTrees) using these metrics.
Our experimental results show that the SIRUS method outperforms the
other five state-of-the-art methods, with stability, robustness, and effec-
tiveness values of 96.15%, 95.56%, and 91.65% respectively. Our study
provides valuable insights for Android malware analysts seeking reliable
explanation approaches.

Keywords: Explainability · Android malware · Rule extraction ·
Evaluation metrics

1 Introduction

In recent years, smartphones have become one of the most indispensable prod-
ucts. According to the report by StatCounter, the Android operating system
dominates the smartphone operating system market with a market share of
67.56%, as of June 20231. The flexibility and openness of the Android system
have brought great convenience to developers and users. For example, develop-
ers can freely develop and upload applications (apps for short) to an application
market, and users can download apps from many markets at will.
1 StatCounter, Mobile Operating System Market Share Worldwide, https://gs.

statcounter.com/os-market-share/mobile/worldwide, accessed on 19/06/2023.

Supported by Chinese Scholarship Council.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Li et al. (Eds.): NSS 2023, LNCS 13983, pp. 3–22, 2023.
https://doi.org/10.1007/978-3-031-39828-5_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-39828-5_1&domain=pdf
http://orcid.org/0000-0003-3729-3153
http://orcid.org/0000-0002-3760-9165
https://gs.statcounter.com/os-market-share/mobile/worldwide
https://gs.statcounter.com/os-market-share/mobile/worldwide
https://doi.org/10.1007/978-3-031-39828-5_1

4 R. Li and O. Gadyatskaya

However, Android provides no assurance of the trustworthiness of apps
installed from sources other than Google Play, the official market owned by
Google. This makes users vulnerable to malicious software. As reported in the
Mobile malware evolution 2021 report, in that year Kaspersky detected more
than 3 million malicious mobile installation packages. Moreover, attacks on
mobile users are becoming more sophisticated in terms of both malware function-
ality and attack vectors2. Driven by the need to protect security of the Android
operating system and privacy of Android device users, Android malware detec-
tion has become a booming research field in recent years [32]. Several effective
techniques have been proposed to counter the sheer volume and sophistication
of Android malware, frequently based on machine learning (ML) [9,12,22,33].

Nevertheless, most of the machine learning methods applied to malware
detection are black-box, which means that these methods do not explain how
and why certain classification decisions are made. Due to the size of training
data and the complexity of the learned model, malware analysts can find it hard
to interpret the detection model and explain the decision reasons [15,43]. More-
over, adversarial analyses have shown that only a few changes to the content of
a malicious Android app may suffice for evading detection by a ML-based detec-
tor [6,10]. Therefore, the analysts can start distrusting the detection results, and
doubt whether the detection model can be deployed in practice [7,30,37,44,46].

To make analysts and users trust the ML-based methods, a variety of inter-
pretable models has been proposed to explain predictions. An interpretable
model should be human-simulatable, which means that a user can “take in
input data together with the parameters of the model and in reasonable
time step through every calculation required to produce a prediction” [21].
In the mobile security domain, many XAI methods interpret the detection
model by identifying important features or extracting important rules [1–
3,14,16,18,24,28,31,34,35,40,42,47].

XAI methods can be generally categorized into local and global meth-
ods depending on what they strive to explain [5,8,46]. The local explanation
approaches provide short, human-accessible explanations why a certain sample
was classified as malicious or benign, while global explanations compute a short
representation of important indicators across a set of samples, for example, a
malware family or a category.

Moreover, there are some domain-specific requirements for XAI methods
applied to cyber security in general and to interpretable malware detection in
particular [7,30]. Security analysts, for example, can reasonably expect that the
provided explanations will be similar for similar apps, and that they will stay
similar across different runs of the model. Thus, there is a need to ensure that the
explainable ML techniques proposed for malware detection satisfy these require-
ments.

Addressing this problem, Warnecke et al. [41] and Fan et al. [13] have pro-
posed formalizations of several domain-specific requirements for Android mal-

2 Kaspersky https://securelist.com/mobile-malware-evolution-2021/105876/, acces-
sed on 19/06/2023.

https://securelist.com/mobile-malware-evolution-2021/105876/

Evaluating Rule-Based Global XAI Malware Detection Methods 5

ware detection. They have independently proposed several metrics that can be
used to assess the quality of local explainable ML techniques when applied to
Android malware, i.e., the explanation approaches applied to the classification
of individual samples. For example, Fan et al. [13] have shown that explana-
tion results provided by five local explanation approaches for the same Android
malware sample cannot achieve a consensus in general. However, to the best of
our knowledge, there has so far been no investigation of properties for global
explainability Android malware detection methods, i.e., methods that provide
a single explanation for a set of samples, and there has been no evaluation of
existing global XAI techniques with respect to the domain-specific requirements
of Android security analysts.

In this paper, we aim to close this gap. Specifically, we make the following
contributions:

1. We formulate three metrics – stability, robustness, and effectiveness– to assess
the fundamental properties that rule-based global explainable Android mal-
ware detection methods should satisfy. These metrics are crucial for evaluating
the performance of such methods.

2. We evaluate performance of five state-of-the-art explanation methods,
namely, SIRUS [4], DeepRED [48], REM-D [36], ECLAIRE [45], and
inTrees [11], for Android malware detection using the CICMalDroid
dataset [25,26]. Our experimental results show that SIRUS outperforms the
other four state-of-the-art global XAI methods in terms of detection perfor-
mance, stability, robustness, and effectiveness.

2 Related Work

As mentioned, the explainable Android malware detection methods can be
divided into local explanation methods and global explainable methods [5].
Another dimensions to categorize XAI methods refer to the connection of the
interpreter to the ML model: some XAI approaches are intrinsic, as it is the ML
model itself that is interpretable [7,8,46]. All linear classifiers are intrinsically
interpretable. In the Android malware research such approaches are, for exam-
ple, Drebin [2], Traffic AV [40], LUNA [3], and CASANDRA [31], where linear
Support Vector Machine, Decision Tree, Bayesian Classifier, and Online CW
Classifier are used, respectively. Other XAI approaches are post-hoc/extrinsic,
as they can be applied to any ML model after training.

The local explanation methods explain why a single Android application was
labeled as malware or benign via a detection model. Several research teams have
investigated application of local XAI methods for Android malware detection.
For example, Fan et al. [13] have applied five widely-used post-hoc explana-
tion approaches – LIME [34], Anchor [35], LORE [14], SHAP [24] and LEMNA
[16] – to Android malware detection. Alani and Awad [1] present the PAIRED
lightweight Android malware detection system that integrates SHAP as an inter-
preter. Morcos et al. [29] propose a surrogate-based technique to interpret Ran-
dom Forest models that integrates SHAP for interpreting the data exfiltrating
behavior in Android malware samples.

6 R. Li and O. Gadyatskaya

Martin et al. [18] propose a method to explain convolutional neural networks
(CNNs) by calculating network activations to identify locations deemed impor-
tant in an Android app’s opcode sequence. Zhu et al. [47] develop a backtracking
method to infer important suspicious features of apps for explaining classification
results.

Melis et al. [28] identify the most influential malicious local features by
leveraging a gradient-based approach, which enables using nonlinear models to
increase accuracy without sacrificing the interpretability of decisions. Lu and
Thing [23] develop the PhilaeX method to identify a subset of features for
explaining decisions of different AI models, including Support Vector Machines
implemented by Drebin [2] and BERT (a transformer-based deep neural network
classifier).

The global explanation methods let analysts understand how the whole model
makes decisions. Some approaches do this based on a holistic view of model’s
features and the learned components, such as weights, parameters, and struc-
tures. For example, Bozhi et al. [42] propose a global XAI approach called Xmal
that not only pinpoints the key features most related to the classification result
by hingeing the multi-layer perceptron and attention mechanisms, but also auto-
matically produces natural language descriptions to help analysts to interpret
malicious behaviours within apps.

Other global XAI methods extract a rule-based representation of the targeted
set from the model. For example, AdDroid [27] is based on various combinations
of artefacts called rules to analyze and detect malicious behaviour in Android
applications. Jerby et al. [17] develop the BMD method for malware detection
rules generation using a Bi-Level optimization problem. Both AdDroid and BMD
are intrinsic XAI methods.

Still, explanation methods in security need not only to be accurate but also
to satisfy domain-specific requirements, such as complete and robust explana-
tions [41]. This is arguably especially important when post-hoc XAI methods are
being applied to malware detection, as they are by design not aware of the under-
lying classification problem. To evaluate how well this problem is addressed by
the existing XAI methods in the field, Warnecke et al. propose general evaluation
criteria, which include descriptive accuracy and sparsity, and security (domain-
specific) evaluation criteria, which include stability, robustness, and efficiency.
Independently, Fan et al. [13] propose stability, robustness, and effectiveness to
evaluate the Android malware detection explanation results. We discuss these
metrics in more detail in Sect. 5.3. However, they have been developed only for
local explanation methods. Our work aims to close this gap and to formulate
domain-specific quality metrics to be used in conjunction with rule-based global
XAI methods.

Evaluating Rule-Based Global XAI Malware Detection Methods 7

3 Candidate XAI Methods and Evaluation Metrics

3.1 Evaluated XAI Methods

In this work we focus on evaluating the post-hoc XAI methods, as we were not
able to find implementation of the intrinsic XAI approaches AdDroid [27] and
BMD [17]. The following global rule-based XAI methods have been selected for
experiments:

– The SIRUS algorithm [4] is a stable and interpretable rule-based classifier
that consists of two main processes: training a black-box model, such as Ran-
dom Forest (RF), and constructing an agent model that extracts rules and
generates a rule-based malware detector. The goal of SIRUS is to identify a
concise set of non-overlapping detection rules that capture robust and strong
patterns in the data [4].

– The inTrees method [11] extracts, measures, prunes, selects, and summarizes
rules from a tree ensemble (such as RF and Boosted Trees), the rules can be
ranked by length, support, error, or a combination of multiple metrics.

– The deepRED method [48] extracts rules from deep neural networks by mim-
icking the internal logic of neural networks at each layer and neurone. This
makes hidden logic and features accessible, and also exploits deep structures
to improve the efficacy of rule extraction and induction process.

– The REM-D (Rule Extraction Methodology-Deep Neural Network)
method [36] approximates a deep neural network (DNN) with an interpretable
ruleset model and uses that ruleset to explain the results of the DNN. For
approximation, REM-D first decomposes the trained DNN into adjacent lay-
ers and then uses the C5.0 classification algorithm to extract rules from pairs
of layers in the network.

– The ECLAIRE (Efficient CLAuse-wIse Rule Extraction) method [45] is a
polynomial-time decompositional method applicable to arbitrary DNNs; it
exploits intermediate representations in parallel to build an ensemble of clas-
sifiers that can then be efficiently combined into a single rule set.

Interpreted Classifiers. Note that the selected interpreters work with two
types of classifiers: either the RF or DNNs. These classifiers are quite different
from one another, and rules generated with them will be quite distinct. One of
the goals of our work is to understand whether the established domain-specific
requirements previously considered for local methods can be expected at all from
deep neural network interpreters.

The RF algorithm builds multiple independent decision trees following the
bagging strategy, using both sample and attribute selection to prevent over-
fitting. This decision-making tree generation process helps to avoid the prob-
lem of under-fitting caused by single tree judgments and significantly improves
discrimination. Finally, the model combines the predictions of multiple trees
to make category determinations through a voting method, resulting in higher
accuracy.

8 R. Li and O. Gadyatskaya

A DNN consists of a sequence of multiple layers of interconnected neurones.
Each neurone in a layer receives input from the previous layer’s neurones and per-
forms a computation that typically involves a weighted sum of the inputs followed
by a nonlinear activation function. The network’s neurones collectively imple-
ment a complex nonlinear mapping from the input to the output, which is learned
from data by adjusting the weights of each neurone using error back-propagation.
This technique involves propagating the prediction error back through the layers
of the network to adjust the weights of the connections between neurones. By
adjusting the weights in this way, the DNN is able to learn complex patterns
and relationships within the data, leading to improved accuracy and robustness
in many machine learning tasks.

To explain a black-box detection model (an RF or a DNN-based classifier),
we apply one of the above explanation methods to extract rules, select rules and
generate a new rule-based detector, which is now an intrinsically interpretable
(white-box) classification model. These detectors are then evaluated based on
their detection performance and also the proposed domain-specific properties,
as we discuss further.

Rules. Rules produced by the considered XAI methods are in the format
“if f1&f2&......fn then p1 else p2”, where the conjunction of conditions
f1&f2&......fn is the detection rule body, p1 is the model’s confidence that the
sample is malware under the given condition in the rule body, and p2 is the
confidence that the sample is malware when the condition is not satisfied.

3.2 Evaluation

The literature [13,41] proposes domain-specific metrics for local XAI methods
applied to malware detection. However, these metrics are based on feature sets,
rather than rules, and are only suitable for local explanation methods. In our
study we consider global, rule-based explanation methods. Thus we propose
new definitions of the stability, robustness, and effectiveness metrics previously
defined in [13,41] to suit rule-based global explanation methods. Table 1 lists the
used notations.

Intuition 1. Stability requires that the generated explanations result do not
vary between multiple runs [41].

Since the explanation results remain similar on the same pre-trained mod-
els, good stability requires that an explanation approach can really capture the
actual reason for an individual classification decision. Otherwise, the analyst
would be confused and would not trust the explanation results [13]. The stabil-
ity of an explanation method m, denoted as stb(m,T), is measured on a target
testing dataset T as follows.

stb(m,T) =
1

C2
n

∗
∑

i,jεn,

sim(eni
(g), enj

(g)) (1)

Evaluating Rule-Based Global XAI Malware Detection Methods 9

Table 1. Notations and definitions

Notation Definition

Ck
n the number of combinations for selecting k elements out of n

f a classifier model constructed on a training dataset

m an explanation approach

g = m(f) a specific interpreter constructed based on an explanation
method m and a trained classifier f

e(g) the explanation results of the samples with interpreter g

stb(m,T) stability of explanation approach m on testing dataset T

rob(m,T) robustness of explanation approach m on testing dataset T

eff(m,T) effectiveness of explanation approach m on testing dataset T

g = m(f) (2)

sim(eni
(g), enj

(g)) = 2 ∗ eni
(g) ∩ enj

(g))
|eni

(g)| + |enj
(g)|) (3)

where n is the number of times that the experiment is repeated; C2
n denotes the

number of pre-trained models and is bigger than two. g is a specific interpreter
constructed based on an explanation method m and a trained classifier f , and
eni

(g) is the ni-th explanation results of the samples with the interpreter g.
sim(eni

(g), enj
(g)) is the similarity between eni

(g) and enj
(g) based on the Dice

coefficient.
The main difference between our stability metric and the one in [13] is that

we measure the malware explanation results for all the samples jointly rather
than each sample individually. Moreover, we compare all rules in different runs
rather than the top-k features.

Intuition 2. Robustness is an ability of the explanation method to remain
unaffected when slight variations are applied [13].

Robustness is used to measure how similar the explanation results are for
similar instances. Intuitively, the explanation results of similar malware instances
should be highly similar. The robustness formula proposed in [13] requires that
every sample has an individual explanation, which is not suitable for our work. So
according to the intuition of robustness, we propose a new robustness evaluation
metric that is based on variations in the whole dataset.

The dataset Tt(x) ranges from sampleX0+(t−1)∗u to sampleXr+(t−1)∗u, t ∈
(0, β), β is equal to total number of samples minus r, and then divided by u.
The robustness of an explanation approach p on the dataset T is calculated as
below. For example, if i = 0, that means we should calculate the similarity of
[X0,X1,X2......Xr] and [X1,X2,X3......Xr+1].

rob(p, T) =
1
t

∗
∑

i∈t

sim(Ti(g), Ti+1(g)), t ∈ (0, β)] (4)

10 R. Li and O. Gadyatskaya

Intuition 3. Effectiveness measures whether the explanation results are
important to the decision-making [13]. If the explanation results are really the
decision basis for an individual prediction, the classification result would change
after mutating rules [13].

To compute effectiveness, we mutate the produced rules. First, the confi-
dence score of rules above 0.5 will be set 1 (indicates malware), otherwise set
to 0 (indicates benign). For instance, a rule “if android.permission.DISABLE
KEYGUARD < 1 & android.permission.SEND SMS < 1 then 0.0031 else 0.95”
will change to “if android.permission.DISABLE KEYGUARD < 1 & android.
permission.SE-ND SMS < 1 then 0 else 1”.

The effectiveness eff(m,T) of an explanation approach m on testing dataset
T is then calculated as below.

eff(m,T) =
1

|T | ∗
∑

xiεT

eff(m,xi) (5)

eff(m,xi) =
{

1, ŷ∗
i �= ŷi, ŷ∗

i ∈ Ŷ ∗

0, ŷ∗
i = ŷi, ŷ∗

i ∈ Ŷ ∗

}
(6)

Ŷ ∗ = f(X∗) (7)

X∗ = mutate(x, e(g)) (8)

where eff(m,xi) denotes the effectiveness of explanation results for the sample
xi with m. The hat signˆdenotes the classification result. X∗ is a new ruleset
for the samples by mutating the original ruleset X, Ŷ ∗ are classification results
of X∗; it is a vector with values 0 or 1. If the mutate classification result ŷ∗

i

is not equal to the original classification result ŷi, eff(m,xi) is assigned to 1,
indicating that rules are important to the current decision-making. Otherwise,
eff(m,xi) is set to 0, indicating that rules are useless to predict malware.

The mutate operator in [13] changes the value of a feature that appears in the
explanation results. However, in our method, mutate applies the logical negation
to the rule body by, for instance, changing the rules from the AND condition to
the OR condition. Moreover, the conflicting rules are deleted.

As en example, the above rule “if android.permission.DISABLE KEYGUARD
< 1 & android.permission.SEND SMS < 1 then 0 else 1” will be mutated
into a set with two rules: 1) “if android.permission.DISABLE KEYGUARD >= 1
then 0 else 1”; and 2)“if android.permission.SEND SMS >= 1 then 0 else
1”.

4 Methodology

In this section, we introduce our set-up for evaluating the global rule-based
XAI Android malware detection methods according to the proposed definitions

Evaluating Rule-Based Global XAI Malware Detection Methods 11

Fig. 1. Our set-up for evaluating global rule-based XAI Android malware detection
methods

of stability, robustness and effectiveness, and their performance as white-box
classifiers.

Our process is divided into 4 steps: data and feature preprocessing, feature
selection, explainable Android malware detection process, and evaluation, as
shown in Fig. 1. These steps are further detailed in the remainder of this section.
In a nutshell, we first preprocess the data by treating the missing and outlier
values. Next, we select the important features using the Boruta algorithm [20].
Then, a black-box malware detection model based on the Random Forest algo-
rithm or Deep Neural Network is trained (the detection task A), and we use the
five selected agent models (explanation methods) – SIRUS [4], DeepRED [48],
REM-D [36], ECLAIRE [45], and inTrees [11] – to produce rule-based detectors
which can detect Android malware (the detection target B). Finally, we evaluate
the rules extracted by the considered XAI methods based on their robustness,
stability, effectiveness, and also the performance of rule detectors.

4.1 Features and Data Preprocessing

Android apps are software applications running on the Android platform. A typ-
ical Android app contains different components: activities, fragments, services,
content providers, and broadcast receivers. Most of these app components should
be declared in the special Manifest file. This file is used to decide how to integrate
the app into the device’s overall user experience by the Android OS. The apks
(Android application packages) are used to install Android apps onto device.
Different properties of apks are used to detect malicious apps as features. These
features are usually extracted using some program analysis techniques [39].

For static analysis of Android apps, apks should be unzipped and decompiled.
The Manifest file (AndroidManifest.xml) and the code file (classes.dex) are
usually used in static analysis. Static features like sensitive permissions, names
of activities, and intents are extracted from the Manifest file, while sensitive API
calls are extracted from the code file [2].

For dynamic analysis of the Android apps, apps should be executed in a
dedicated analysis environment, like, e.g., CopperDroid [38], to automatically
reconstruct low-level OS-specific and high-level Android-specific behaviours of
Android apps [26]. Dynamic features like system calls and Binder calls could be
extracted in dynamic analysis. We refer the interested reader to a survey by Tam

12 R. Li and O. Gadyatskaya

et al. [39] on Android malware detection techniques for more details on static
and dynamic analysis techniques and features.

Due to the challenges with the automatic processing of third-party Android
apps [19], there might be outliers or missing values in the collected data. We
therefore apply the usual data preprocessing step to remove the features with
missing values, transform categorical values into numeric values, etc.

4.2 Feature Selection

After completing the data collection and preprocessing steps, we apply the
Boruta algorithm [20] to eliminate redundant and irrelevant features from our
dataset. The Boruta algorithm is effective in minimizing the impact of random
fluctuations and correlations during feature selection [20]. The approach involves
augmenting the original features with a set of shadow features, which are ran-
domized copies of the original features. To identify the most important features
in the dataset, the Boruta algorithm trains a classifier using the extended fea-
ture set. It then compares the importance of each original feature with that of its
corresponding shadow feature. If a feature has higher importance than its cor-
responding shadow feature, it is considered important. This process is repeated
until all features are either confirmed as important, rejected as unimportant, or
remain uncertain.

5 Experimental Evaluation

5.1 Dataset

A generic Android malware detection pipeline requires automated app anal-
ysis tooling to extract static and dynamic features. In our work we use the
CICMalDroid [25,26] dataset, which already contains static and dynamic fea-
tures extracted from 1795 benign and 9803 malware samples. The samples were
collected from December 2017 to December 2018. The dataset includes five
distinct categories: Adware, Banking, SMS malware, Riskware and Benign, as
shown in Table 2.

The dataset includes 470 dynamic features, such as frequencies of system
calls, Binder calls, and composite behaviours; and 50,621 static features, such as
intent actions, permissions, sensitive APIs, services, etc. To balance the dataset
for experiments, we randomly subselected 1795 benign and 1795 malware sam-
ples.

5.2 The Experiment Procedure

To ensure the integrity of the dataset and minimize the impact of outliers and
missing values, we undertook the preprocessing steps before analysis. The dataset
initially included 50,621 static features and 470 dynamic features. We removed
features with missing values exceeding 90%, and converted object-type features

Evaluating Rule-Based Global XAI Malware Detection Methods 13

Table 2. The details of CICMalDroid dataset categories

Category Description # of samples

Adware Adware can infect and root-infect a device,
forcing it to download specific Adware types
and allowing attackers to steal personal
information

1253

Banking Mobile Banking malware is a specialized
malware designed to gain access to the
user’s online banking accounts by mimicking
the original banking applications or banking
web interface

2100

SMS malware SMS malware exploits the SMS service as
its medium of operation to intercept SMS
payload for conducting attacks. They
control attack instructions by sending
malicious SMS, intercepting SMS, and
stealing data

3940

Riskware Riskware refers to legitimate programs that
can cause damage if malicious users exploit
them. Consequently, it can turn into any
other form of malware such as Adware or
Ransomware, which extends functionalities
by installing newly infected applications

2546

such as incognito.is valid APK (with values of True or False) to integer-
type values. After these preprocessing steps, we reduced the number of static
features to 231, while retaining all 470 dynamic features.

With the resulting 701 features, we have applied the Boruta algorithm for
feature selection that has identified 240 important features3.

Then, the 10-fold cross-validation method is used to do the experiment. We
use the training set to train a Random Forest detection model and a Keras DNN
model4.

Next, we extract rules from the trained black-box detection models using the
studied SIRUS, deepRED, REM-D, ECLAIRE and inTrees methods. The max-
imum rule number of the SIRUS algorithm was set to 200; the hyperparameter
p0 = 〈p0.pred, p0.stab〉 is used to select rules, where p0.pred minimizes the error
and p0.stab finds a tradeoff between error and stability. In the SIRUS algorithm,
the error means 1-AUC for classification and the unexplained variance for regres-
sion, and stability refers to the average proportion of rules shared by two SIRUS

3 The settings of the Boruta algorithm were: the Random Forest classifier, auto esti-
mators, verbose is set to 2, random state is set to 1, number of trees is set to
200.

4 The parameters of Keras included: last-layer activation – softmax, loss function –
softmax xentr, and learning rate – 0.001.

14 R. Li and O. Gadyatskaya

models fit on two distinct folds in the cross-validation. We choose p0.pred as an
optimal hyperparameter.

In the REM-D method, trials (the number of sampling trials to use when
using bagging for C5.0 rule extraction) is set to 1, min cases ((the minimum
number of samples we must have to perform a split in a decision tree)) is set
to 30. In the ECLAIRE method, min cases is set to 30, block size (the hidden
layer sampling frequency) is set 1, ccp prune (whether or not we perform the
post-hoc cost complexity pruning in the trees we extract with CART before
rule induction) is set to True. In the deepRED method, min cases is set to 20,
ccp prune is set to True, trials is set to 1.

5.3 Evaluation Metrics

We will evaluate the performance of black-box models, white-box models and
rules using detection performance metrics and domain-specific metrics. Specif-
ically, we will use detection performance metrics, such as accuracy, precision,
recall, and F-measure, to evaluate the performance of both black-box models
(i.e., RF, DNNs) and white-box models (i.e., rule detectors). To do so, we will
use the standard confusion matrix, which summarizes the number of true pos-
itives, false positives, true negatives, and false negatives (see Table 3). Using
this matrix, Table 4 provides the definitions of accuracy, precision, recall, and F-
measure, which are commonly used to evaluate the performance of classification
models and rule detectors. In addition to these metrics, we will use domain-
specific metrics that we proposed (see Sect. 5.3) to evaluate the stability, robust-
ness, and effectiveness of rules extracted from the black-box models using five
explanation methods.

5.4 Experimental Results

The performance of black-box models (RF and DNNs) in the 10-fold validation
scheme on the pre-processed CICMalDroid dataset is presented in Table 5. The
performance of agent models (the considered explanation methods) on the same
dataset are shown in Table 6, where stability, robustness, effectiveness are eval-
uated on the produced rulesets, while accuracy, precision, recall, and F-measure
are evaluated on the generated rule detectors.

Table 3. Confusion matrix

Truth Prediction

Malware Benign

Malware True Positive (TP) False Negative (FN)

Benign False Positive (FP) True Negative (TN)

Evaluating Rule-Based Global XAI Malware Detection Methods 15

Table 4. Definitions of detection performance evaluation metrics

Term Description

Precision TP
TP+FP

Recall (Detection Rate) TP
TP+FN

Accuracy TP+FN
TP+TN+FP+FN

F-measure 2∗Recall∗Precision
Recall+Precision

Table 5. Performance of black-box models

Metric RF DNN

Accuracy 98.97% 95.54%

Precision 99.22% 96.73%

Recall 98.72% 93.94%

F-measure 98.74% 95.32%

Table 6. Performance of the chosen explanation methods

Metric SIRUS (RF) inTrees (RF) deepRED (DNN) REM-D (DNN) ECLAIRE (DNN)

of rules 55 12 3 2 2

Stability 96.15% 0% 0% 0% 0%

Robustness 95.56% 0% 0% 0% 0%

Effectiveness 91.65% 86.64% – – –

Accuracy 92.47% 88.19% 88.99% 86.35% 92.34%

Precision 87.20% 91.70% 88.29% 87.85% 86.87%

Recall 99.82% 87.11% 89.05% 76.08% 93.95%

F-measure 93.09% 87.75% 88.67% 81.54% 91.16%

To compute the robustness score according to the Eq. 4 in our experiments,
the variation parameter u was set 10, the r was set to 2000, the total number of
samples is 3580 (1790 malware and 1790 benign samples).

The deepRED, REM-D, and ECLAIRE methods output less than 5 rules;
the inTrees method produces 12 rules; and SIRUS produces 55 rules. Although
the ECLAIRE method only has 2 rules, they contain above 100 features per rule.
In contrast, SIRUS contains less than 3 features per rule.

The stability and robustness of SIRUS are above 95%. The other considered
XAI methods all have very low stability and robustness (0%). These results sug-
gest that SIRUS has higher potential as explainable Android malware detection
method, as it shows high stability and robustness. It is known that the stable
and robust XAI methods will improve the human trust and will not confuse the
analyst [13]. At the same time, the state-of-the-art methods inTrees, deepRED,
REM-D and ECLAIRE seem to have much higher variability of the rule condi-
tions. It will be interesting to investigate how to improve stability and robustness
of such methods. Otherwise, explanation results provided by these methods can

16 R. Li and O. Gadyatskaya

be regarded by human analysts as meaningless as they would not understand
how the detection model works [13].

The effectiveness of SIRUS is 91.65%, which is higher than the inTrees
method. We note that we could not compute effectiveness of deepRED, REM-D
and ECLAIRE as they use transformed features to generate rules, which do not
correspond to the app features from the original dataset. Thus, we could not
define a meaningful mutation procedure for them. As an example, the expla-
nation results produced by these DNN-based methods can look like the follow-
ing: “ if (0.4975 | 1.0000)[(h 0 0 ≤ 9805) AND (h 0 263 ≤ 25)] ... OR
(0.9746 | 1.0000)[(h 0 143 > 40002)] then 1”. Therefore, we can conclude
our formulation of the effectiveness metric needs to be improved in the future to
cover this case.

We examined the accuracy, precision, recall and precision of black-box mod-
els (RF and DNN) and the produced rule-based classifiers (agent models). Com-
pared to black-box models, detection performance of agent models has decreased.
This is understandable, as the agent models are based on rules extracted from
black-box models. For the rules to be readable and less complex, the neural net-
work or trees should be pruned, which leads to loss of detection performance
compared to the black-box models.

We note that accuracy of SIRUS is 92.47%, which is higher than the other
considered methods. The precision of inTrees is 91.70%, which is the highest in
all methods. The value of recall and F-measure of SIRUS is 99.82% and 93.09%;
higher than the other comparison methods. Overall, these results suggest that
SIRUS has acceptable stability, robustness, effectiveness, and detection perfor-
mance (as measured by accuracy, recall, and F-measure). The inTrees method
has better precision in malware detection.

6 SIRUS Rules

We have demonstrated in our experiments that the SIRUS method could be
considered a viable XAI solution for Android malware detection. We now give
examples of some detection rules produced by SIRUS.

The detection rule body produced by SIRUS is a conjunction of logic condi-
tions fi in the path from the root node to the current node in the tree. We note
that SIRUS takes care of removing overlapping rules. Therefore the generated
55 rules are not redundant. Five examples of the extracted rules are shown in
Table 7. To help understand how to read the rules, they are explained below.

Rule 1: If TelephonyManager.getLine1Number < 2 & TelephonyManager.
getSubscriberId < 1 then 0.04 else 0.87.

Explanation: TelephonyManager.getLine1Number is an API that obtains a
phone number, TelephonyManager.getSubscriberId is an sensitive API that
gets device information. The value of these features represents the count of API
calls in the code. These are all sensitive behaviors, that might lead to private
user data leakage. So this rule means: if an application tries to access the phone

Evaluating Rule-Based Global XAI Malware Detection Methods 17

Table 7. Example rules extracted by the SIRUS method

ID Rules

1 if TelephonyManager.getLine1Number < 2 &
TelephonyManager.getSubscriberId < 1 then 0.04 else 0.87

2 if Android.permission.SEND SMS < 1 &
removeAccessibilityInteractionCon nection < 3 then 0.012 else

0.97

3 If TelephonyManager.getCellLocation < 3 &
TelephonyManager.getSubscriberId < 1 then 0.05 else 0.88

4 if Android.intent.action.PACKAGE ADDED < 1 &
getInstallerPackageName ≥ 1 then 0.0089 else 0.76

5 if Android.permission.READ PHONE STATE < 1 & target sdk < 19
then 0.24 else 0.52

number at least 2 times or calls for device information, then there is a 87%
possibility that it belongs to malware.

Rule 2: If Android.permission.SEND SMS < 1 & removeAccessibilityIn-
teractionConnection < 3 then 0.012 else 0.97.

Explanation: Android.permission.SEND SMS is a permission that is required
to send SMS messages, the value of this feature is 0 means the app with-
out requesting this permission, otherwise means the app has been granted the
corresponding permissions. RemoveAccessibilityInteractionConnection is a
dynamic behavior to consume lots of system memory, which can reduce the
app’s speed or lead to crashes. So this rule means: if the application request the
SEND SMS permission or makes the system unstable by removing the accessibil-
ity interaction connection more than 3 times, there is a 97% possibility that it
belongs to malware. It indicates that this is a strong rule to identify malware.

Rule 3: If TelephonyManager.getCellLocation < 3 & TelephonyManager.
getSubscriberId < 1 then 0.05 else 0.88.

Explanation: TelephonyManager.getCellLocation is an API that obtains
the location information; TelephonyManager.getSubscriberId is an API that
obtains device information. The value of these features represents the count of
API calls in the code. This rule means that if an application calls for the user’s
location more than 3 times or tries to access the phone number, then there is a
88% possibility that it is malware.

Rule 4: If Android.intent.action.PACKAGE ADDED < 1 & getInstaller-
PackageName ≥ 1 then 0.0089 else 0.76.

Explanation: Android.intent.action.PACKAGE ADDED is an action that
notifies of an apk package added to the system; GetInstallerPackageName is
an API that obtains the source of the package, it could be from Google Play or
other third-party markets. The large number of these features might be indicate

18 R. Li and O. Gadyatskaya

there are abnormal frequent application installation behaviors or a large number
of installations of untrusted application packages.

This rule means that if an application is notified about added more than one
packages or the app does not show the source of the apk package, then there is
a 76% possibility that it is malware.

Rule 5: If Android.permission.READ PHONE STATE < 1 & target sdk < 19
then 0.24 else 0.52.

Explanation: Android.permission.READ PHONE STATE is a permission that
allows read-only access to phone states, such as phone numbers, network infor-
mation, and device identifiers. The value of 0 for this feature indicates that the
app has not requested the READ PHONE STATE permission, while a non-zero value
indicates that the app has been granted this permission. Target sdk is the app
Android SDK target version. This rule means that if an application tries to
access the phone state or has the target SDK version above 19, there it is a 52%
possibility that it is malware. So it is not a very strong rule for the analysts to
distinguish the malware.

7 Conclusion

In this study, we aimed to evaluate the quality of rule-based global XAI methods
in the context of Android malware detection and to provide useful insights for
malware analysts regarding the existing post-hoc XAI approaches. To achieve
this goal, we formulated three domain-specific properties to measure the quality
of the detection methods: stability, robustness, and effectiveness. Using these
metrics, we evaluated five state-of-the-art explanation approaches using the
CICMalDroid dataset. Our work investigating domain-specific evaluation met-
rics for global rule-based explanation methods extends the elegant works by Fan
et al. [13] and Warnecke et al. [41]. They proposed domain-specific properties
for local XAI methods that provide explanations for a single sample. However,
we now focus on rule-based global XAI methods.

Our experimental results demonstrate that these evaluation metrics can
assess the rule-based global XAI approaches, providing valuable insights for
researchers and practitioners. Specifically, we found that the SIRUS method
can generate stable, robust, and effective rules with high detection performance,
outperforming other state-of-the-art methods that were evaluated in our study.
Indeed, in our experiments, the deepRED, REM-D, and ECLAIRE methods
show zero stability and robustness: this means that with every run the produced
rules are different and any small change will change the explanation results.
These methods can still provide valuable malware-related information to human
analysts, but the analysts might become confused receiving constantly changing
explanations.

Our findings highlight the importance of evaluation metrics in assessing the
quality of rule-based global XAI Android malware detection methods. The pro-
posed metrics can provide useful guidance for researchers and practitioners work-

Evaluating Rule-Based Global XAI Malware Detection Methods 19

ing in this field, helping them to select the most effective and reliable detection
methods.

In the future work, we intend to focus on improving the proposed metrics
in discussion with practitioners, to be able to propose new domain-specific met-
rics definitions that will capture important properties while being computable
for the vast majority of available XAI methods. In addition, we are interested
in exploring the impact of the number of rules on the performance of explana-
tion methods. This is an important consideration, as it can help us to better
understand the trade-offs involved in using larger rulesets versus smaller ones,
and to identify the optimal ruleset size. Finally, we are interested in extending
our metrics definition to cover global XAI methods relying on interpretations in
terms of significant features rather than rules.

Acknowledgements. This research was partially supported by the Chinese Scholar-
ship Council (CSC).

References

1. Alani, M., Awad, A.: PAIRED: an explainable lightweight Android malware detec-
tion system. IEEE Access 10, 73214–73228 (2022)

2. Arp, D., Spreitzenbarth, M., Hübner, M., Gascon, H., Rieck, K.: DREBIN: effective
and explainable detection of android malware in your pocket. In: Symposium on
Network and Distributed System Security (NDSS) (2014)

3. Backes, M., Nauman, M.: LUNA: quantifying and leveraging uncertainty in
Android malware analysis through Bayesian machine learning. In: 2017 IEEE Euro-
pean Symposium on Security and Privacy, Los Alamitos, CA, USA, pp. 204–217.
IEEE (2017)

4. Bénard, C., Biau, G., Da Veiga, S., Scornet, E.: SIRUS: stable and interpretable
rule set for classification. Electron. J. Stat. 15(1), 427–505 (2021)

5. Burkart, N., Huber, M.F.: A survey on the explainability of supervised machine
learning. J. Artif. Intell. Res. 70, 245–317 (2021)

6. Calleja, A., Mart́ın, A., Menéndez, H.D., Tapiador, J., Clark, D.: Picking on the
family: disrupting Android malware triage by forcing misclassification. Expert Syst.
Appl. 95, 113–126 (2018)

7. Capuano, N., Fenza, G., Loia, V., Stanzione, C.: Explainable artificial intelligence
in cybersecurity: a survey. IEEE Access 10, 93575–93600 (2022)

8. Charmet, F., et al.: Explainable artificial intelligence for cybersecurity: a literature
survey. Ann. Telecommun. 77, 1–24 (2022)

9. Dashevskyi, S., Zhauniarovich, Y., Gadyatskaya, O., Pilgun, A., Ouhssain, H.:
Dissecting Android cryptocurrency miners. In: Proceedings of the Tenth ACM
Conference on Data and Application Security and Privacy, pp. 191–202 (2020)

10. Demontis, A., et al.: Yes, machine learning can be more secure! a case study on
android malware detection. IEEE Trans. Dependable Secure Comput. 16(4), 711–
724 (2017)

20 R. Li and O. Gadyatskaya

11. Deng, H.: Interpreting tree ensembles with intrees. Int. J. Data Sci. Anal. 7(4),
277–287 (2019)

12. Dhalaria, M., Gandotra, E.: Android malware detection techniques: a literature
review. Recent Patents Eng. 15(2), 225–245 (2021)

13. Fan, M., Wei, W., Xie, X., Liu, Y., Guan, X., Liu, T.: Can we trust your expla-
nations? Sanity checks for interpreters in Android malware analysis. IEEE Trans.
Inf. Forensics Secur. 16, 838–853 (2020)

14. Guidotti, R., Monreale, A., Ruggieri, S., Pedreschi, D., Turini, F., Giannotti,
F.: Local rule-based explanations of black box decision systems. arXiv preprint
arXiv:1805.10820 (2018)

15. Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., Pedreschi, D.: A
survey of methods for explaining black box models. ACM Comput. Surv. (CSUR)
51(5), 1–42 (2018)

16. Guo, W., Mu, D., Xu, J., Su, P., Wang, G., Xing, X.: LEMNA: explaining deep
learning based security applications. In: proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security (CCS), pp. 364–379 (2018)

17. Jerbi, M., Chelly Dagdia, Z., Bechikh, S., Ben Said, L.: Android malware detection
as a bi-level problem. Comput. Secur. 121, 102825 (2022)

18. Kinkead, M., Millar, S., McLaughlin, N., O’Kane, P.: Towards explainable CNNs
for Android malware detection. Procedia Comput. Sci. 184, 959–965 (2021)

19. Kong, P., Li, L., Gao, J., Liu, K., Bissyandé, T.F., Klein, J.: Automated testing
of Android apps: a systematic literature review. IEEE Trans. Reliab. 68(1), 45–66
(2018)

20. Kursa, M.B., Jankowski, A., Rudnicki, W.R.: Boruta - a system for feature selec-
tion. Fund. Inform. 101, 271–285 (2010)

21. Lipton, Z.C.: The mythos of model interpretability: in machine learning, the con-
cept of interpretability is both important and slippery. Queue 16(3), 31–57 (2018)

22. Liu, K., Xu, S., Xu, G., Zhang, M., Sun, D., Liu, H.: A review of Android malware
detection approaches based on machine learning. IEEE Access 8, 124579–124607
(2020)

23. Lu, Z., Thing, V.L.: PhilaeX: explaining the failure and success of AI models in
malware detection. arXiv preprint arXiv:2207.00740 (2022)

24. Lundberg, S.M., Lee, S.I.: A unified approach to interpreting model predictions.
In: Advances in Neural Information Processing Systems, vol. 30 (2017)

25. Mahdavifar, S., Alhadidi, D., Ghorbani, A.A.: Effective and efficient hybrid
Android malware classification using pseudo-label stacked auto-encoder. J. Netw.
Syst. Manage. 30, 1–34 (2022)

26. Mahdavifar, S., Kadir, A.F.A., Fatemi, R., Alhadidi, D., Ghorbani, A.A.: Dynamic
Android malware category classification using semi-supervised deep learning. In:
2020 IEEE International Conference on Dependable, Autonomic and Secure Com-
puting(DASC/PiCom/CBDCom/CyberSciTech), pp. 515–522. IEEE (2020)

27. Mehtab, A., et al.: AdDroid: rule-based machine learning framework for Android
malware analysis. Mob. Netw. Appl. 25(1), 180–192 (2020)

28. Melis, M., Maiorca, D., Biggio, B., Giacinto, G., Roli, F.: Explaining black-box
Android malware detection. In: 2018 26th European Signal Processing Confer-
ence (EUSIPCO), pp. 524–528 (2018). https://doi.org/10.23919/EUSIPCO.2018.
8553598

29. Morcos, M., Al Hamadi, H., Damiani, E., Nandyala, S., McGillion, B.: A surrogate-
based technique for Android malware detectors’ explainability. In: 2022 18th Inter-
national Conference on Wireless and Mobile Computing, Networking and Commu-
nications (WiMob), pp. 112–117. IEEE (2022)

http://arxiv.org/abs/1805.10820
http://arxiv.org/abs/2207.00740
https://doi.org/10.23919/EUSIPCO.2018.8553598
https://doi.org/10.23919/EUSIPCO.2018.8553598

Evaluating Rule-Based Global XAI Malware Detection Methods 21

30. Nadeem, A., et al.: SoK: explainable machine learning for computer security appli-
cations. arXiv preprint arXiv:2208.10605 (2022)

31. Narayanan, A., Chandramohan, M., Chen, L., Liu, Y.: Context-aware, adaptive,
and scalable Android malware detection through online learning. IEEE Trans.
Emerg. Top. Comput. Intell. 1(3), 157–175 (2017)

32. Odusami, M., Abayomi-Alli, O., Misra, S., Shobayo, O., Damasevicius, R., Maske-
liunas, R.: Android malware detection: a survey. In: Florez, H., Diaz, C., Chavar-
riaga, J. (eds.) ICAI 2018. CCIS, vol. 942, pp. 255–266. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-01535-0 19

33. Qiu, J., Zhang, J., Luo, W., Pan, L., Nepal, S., Xiang, Y.: A survey of Android
malware detection with deep neural models. ACM Comput. Surv. (CSUR) 53(6),
1–36 (2020)

34. Ribeiro, M.T., Singh, S., Guestrin, C.: “Why should I trust you?” Explaining the
predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, pp. 1135–1144 (2016)

35. Ribeiro, M.T., Singh, S., Guestrin, C.: Anchors: high-precision model-agnostic
explanations. In: Proceedings of the AAAI Conference on Artificial Intelligence
(2018)

36. Shams, Z., et al.: REM: an integrative rule extraction methodology for explainable
data analysis in healthcare. medRxiv (2021)

37. Srivastava, G., et al.: XAI for cybersecurity: state of the art, challenges, open issues
and future directions. arXiv preprint arXiv:2206.03585 (2022)

38. Tam, K., Fattori, A., Khan, S., Cavallaro, L.: CopperDroid: automatic reconstruc-
tion of android malware behaviors. In: NDSS Symposium 2015, pp. 1–15 (2015)

39. Tam, K., Feizollah, A., Anuar, N.B., Salleh, R., Cavallaro, L.: The evolution of
Android malware and Android analysis techniques. ACM Comput. Surv. (CSUR)
49(4), 1–41 (2017)

40. Wang, S., et al.: TrafficAV: an effective and explainable detection of mobile malware
behavior using network traffic. In: Proceedings of 24th International Symposium
on Quality of Service (IWQoS) (2016)

41. Warnecke, A., Arp, D., Wressnegger, C., Rieck, K.: Evaluating explanation meth-
ods for deep learning in security. In: Proceedings of European Symposium on Secu-
rity and Privacy (EuroS&P), pp. 158–174. IEEE (2020)

42. Wu, B., Chen, S., Gao, C., Fan, L., Liu, Y., Wen, W., Lyu, M.R.: Why an Android
app is classified as malware: toward malware classification interpretation. ACM
Trans. Softw. Eng. Methodol. (TOSEM) 30(2), 1–29 (2021)

43. Xu, F., Uszkoreit, H., Du, Y., Fan, W., Zhao, D., Zhu, J.: Explainable AI: a brief
survey on history, research areas, approaches and challenges. In: Tang, J., Kan, M.-
Y., Zhao, D., Li, S., Zan, H. (eds.) NLPCC 2019. LNCS (LNAI), vol. 11839, pp.
563–574. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32236-6 51

44. Yan, F., Wen, S., Nepal, S., Paris, C., Xiang, Y.: Explainable machine learning in
cybersecurity: a survey. Int. J. Intell. Syst. 37(12), 12305–12334 (2022)

45. Zarlenga, M.E., Shams, Z., Jamnik, M.: Efficient decompositional rule extraction
for deep neural networks. arXiv preprint arXiv:2111.12628 (2021)

http://arxiv.org/abs/2208.10605
https://doi.org/10.1007/978-3-030-01535-0_19
http://arxiv.org/abs/2206.03585
https://doi.org/10.1007/978-3-030-32236-6_51
http://arxiv.org/abs/2111.12628

22 R. Li and O. Gadyatskaya

46. Zhang, Z., Hamadi, H.A., Damiani, E., Yeun, C.Y., Taher, F.: Explainable artifi-
cial intelligence applications in cyber security: state-of-the-art in research. arXiv
preprint arXiv:2208.14937 (2022)

47. Zhu, D., Xi, T., Jing, P., Wu, D., Xia, Q., Zhang, Y.: A transparent and multi-
modal malware detection method for Android apps. In: Proceedings of the 22nd
International ACM Conference on Modeling, Analysis and Simulation of Wireless
and Mobile Systems (MSWIM), New York, NY, USA, pp. 51–60. ACM (2019).
https://doi.org/10.1145/3345768.3355915

48. Zilke, J.R., Loza Menćıa, E., Janssen, F.: DeepRED – rule extraction from deep
neural networks. In: Calders, T., Ceci, M., Malerba, D. (eds.) DS 2016. LNCS
(LNAI), vol. 9956, pp. 457–473. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-46307-0 29

http://arxiv.org/abs/2208.14937
https://doi.org/10.1145/3345768.3355915
https://doi.org/10.1007/978-3-319-46307-0_29
https://doi.org/10.1007/978-3-319-46307-0_29

Whitelisting for Characterizing and
Monitoring Process Control

Communication

Andreas Paul1(B), Franka Schuster2, and Hartmut König2

1 Codewerk GmbH, Karlsruhe, Germany
andreas.paul@codewerk.de

2 Brandenburg University of Technology Cottbus-Senftenberg, Cottbus, Germany
{franka.schuster,hartmut.koenig}@b-tu.de

Abstract. In recent years, industrial control systems (ICS) used in crit-
ical infrastructures have come under the spotlight as a powerful target to
potentially harm broader segments of society. Although there is a grow-
ing body of anomaly detection approaches in this field, the homogeneous
network traffic narrative that is supposed to justify their potential suc-
cess is poorly proven. At the same time, more and more machine learning
(ML) schemes have been developed for this purpose neglecting though
that ML is not the ideal approach for various profound detection aspects
in operational technology (OT) networks. In this paper, we present and
evaluate a communication whitelisting approach for anomaly detection
in OT networks and point out advantages of this allegedly ancient mon-
itoring method compared to machine learning. For this, we introduce
measures to express the variability of network traffic and use them to
quantify the communication dynamics of traffic for different OT infras-
tructures and network layers. We show that due to the static network
communication in the OT domain the detection capability is sufficiently
high without whitelist explosion or runtime concerns.

Keywords: Intrusion Detection · Industrial Networks · Whitelisting ·
Traffic Ananlysis

1 Introduction

In recent years, information technology (IT) and operational technology (OT)
have converged very closely. This trend has serious implications for the protection
of critical infrastructures from external and internal threats. In contrast to office
networks, the traffic in OT environments is commonly expected to be static and
homogeneous regarding the involved devices and their communication character-
istics. Hence, many approaches assume regular network communication for the
training phase to apply anomaly detection for the analysis. This reflects today’s
attack trends, which are increasingly characterised by polymorphic aspects, but
at the same time must address the need to identify unknown (zero-day) attacks,
which is not possible with the complement misuse detection approach.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Li et al. (Eds.): NSS 2023, LNCS 13983, pp. 23–45, 2023.
https://doi.org/10.1007/978-3-031-39828-5_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-39828-5_2&domain=pdf
https://doi.org/10.1007/978-3-031-39828-5_2

24 A. Paul et al.

For this, machine learning (ML) has meanwhile become the dominant app-
roach because it is considered to be more efficient for the definition of normality
than rule-based approaches. From the domain perspective, however, network-
based attack detection relies in no small part on communication aspects that ML
cannot model effectively. This comprises the precise characterization of commu-
nication relations which includes both the devices involved and the protocols and
message types used for data transmission. Here, the strength of ML to generalise
is simultaneously its weakness. Since this capability arises from abstractions of
the training data, it means that some important aspects are not reflected accu-
rately enough in the model. This leads to incorrect classifications for aspects that
can be expressed with rules. Especially in OT networks, which are less dynamic
than IT networks, it is an essential requirement to be able to precisely and com-
pletely recognise the devices seen in the training phase and their communication
relations1 and without any generalization2 for the detection. Consequently, the
question is not whether to apply machine learning or rules for attack detection.
It is actually, which method is the right one for which aspects. While rules allow
a precise monitoring of well-defined communication behavior, machine learning
is supposed to be applied to traffic parts for which it is not reasonable or feasi-
ble to express them by rules, e. g., the application payload of packets spanning
a comparably much broader space of information which is in general challeng-
ing to model. Apart from precise detection, communication rules can effectively
support a key problem in OT network security research: they enable the analysis
of characteristics and dynamics of OT network traffic to prove or disprove com-
mon assumptions of OT network communication compared to IT traffic. The
following essential contributions of this paper are derived from this:

– We present an approach for the automated generation of communication rules
from raw network traffic usable as whitelists in anomaly detection for a wide
range of OT protocols independent of their underlying protocol stack.

– We apply the rule generation on six datasets taken from real OT networks
and compare them to traffic from an OT [8] and an IT [22] testbed that are
prominent in research. By quantifying the emergence of the rules over time,
we measure the dynamics in network communication and express the static
nature of OT network traffic that are commonly expected in the literature,
but to the best of our knowledge have not been demonstrated so clearly, yet.

– We show that different OT network layers can be identified by a statistical
clustering applied on the metrics derived from the rule generation process
that allows us in turn to identify network layers from an unknown domain.

– We evaluate the efficiency of the rules regarding detection capability and
runtime. The former is done through attacks in a public OT dataset prominent
in research [8], the latter by converting the rules into a rule set for a widely

1 A communication observation devA → devB and devB → devC may not be part of
the abstraction without proper reflection in the model when using ML.

2 The same two observations could lead to a model reflecting also devA → devC when
applying ML.

Whitelisting of Process Control Communication 25

used Intrusion Detection System (IDS) [21] and their application on real
networks.

– In the course of the discussion regarding the attack detection capability of
our rules we precisely explain the impact of the attacks contained in the used
public OT data set on the network traffic. We conclude that in turn our
whitelisting can be used both for packet-based labeling of anomalous data
and as a baseline for more advanced detection mechanisms.

The remainder of this paper is organised as follows. In Sect. 2, we give back-
ground information of OT infrastructures and preliminary considerations for
communication whitelisting. The method for whitelist generation is explained
in Sect. 3. After introducing the datasets used for our evaluation in Sect. 4, the
approach and the results for measuring communication dynamics are presented
in Sect. 5. Practical results of the whitelist application are presented in Sect. 6.
We discuss related work in Sect. 7 before concluding this paper with some final
remarks in Sect. 8.

2 Preliminaries

Before presenting our approach we dive into necessary background and terminol-
ogy for assessing the concepts of the paper. There are two types of industrial con-
trol systems (ICSs): distributed control systems (DCSs) and supervisory control
and data acquisition (SCADA) networks [23]. In the energy sector, for example,
local energy production processes in power plants employ DCSs, while SCADA
networks are deployed for the power distribution to consumers spanning up to
thousands of dispersed assets. For the explanations of process control networks,
we use the generic term operational technology (OT), which describes hardware
and software for controlling physical processes.

2.1 OT Network Hierarchy

The field of process control involves particular constraints and trends leading to
major security issues that have already been identified for a decade from now [12],
but which still unaltered exist due to the long-term design and operation of most
networks. Regardless of the specific type, OT networks are typically divided
into multiple sub-networks, resulting in an organisation in different layers. A
simplified architecture of OT networks is presented in Fig. 1. On the lowest layer,
i. e. the fieldbus, sensors and actuators measure and adjust physical parameters,
e. g., pressure, temperature, or speed values, that are used by programmable logic
controllers (PLCs) to fulfill a control-loop-based task. Data from several PLCs
are collected in the control network for evaluation by servers that aggregate all
activities of sub-processes and prepare these data for visualization. By connecting
the (dual homed) servers with a second supervisory network, the data are made
available there. Operators can interact with the processes via human-machine
interfaces (HMI) by monitoring the data and manually adjusting sub-processes.

26 A. Paul et al.

Nowadays, OT networks are connected to public networks, such as the Inter-
net, to provide remote access to certain services provided by dedicated servers,
e.g., data historians or maintenance servers, which are placed in a demilitarised
zone (DMZ network). Firewalls are used as major prevalent security measure
to restrict access to these servers or to the OT network. To extend this basic
protection, we propose monitoring within the subnets, which takes effect, for
instance, when the firewall has been penetrated or an attack is launched within
the network. The monitoring is based on a simple whitelisting of network com-
munication. A set of rules defines the allowed communication behaviour, more
precisely, which components are allowed to communicate with each other and
how (with which protocols and message types).

Fig. 1. Example of a typical OT network topology

2.2 Aspects of the Whitelist Use

Whitelisting has several advantages and disadvantages compared to alternative
anomaly detection methods, which are discussed below regarding four aspects.

Completeness. Even in the case of a comprehensive learning, it cannot be guar-
anteed that a complete whitelist representing all legal network communication
can be generated. An incomplete whitelist leads to the generation of false posi-
tives (FPs) that quickly cause an unacceptable administrative effort due to the
necessary assessment of the alarms’ relevance and the consideration of whitelist
extensions. We conduct a detailed investigation of this in Sect. 5.

Monitoring Coverage. Whereas the completeness is associated with FPs, the
monitoring coverage is linked to the false negatives (FNs) problem. Thus, attacks
can occur in traffic parts not captured by the monitoring. Machine learning
approaches in particular are usually limited to monitoring a specific traffic type,
e.g., by targeted analysing process data or flow meta-information. In contrast, we
follow a complete monitoring of the network traffic, independent of the protocol
stack, up to the application-oriented protocol level.

Whitelisting of Process Control Communication 27

Interpretability. Since the generation of FPs cannot be precluded, the appli-
cation of systems that automatically initiate countermeasures, such as intrusion
prevention systems, is usually not considered acceptable in OT networks. It is
therefore more important that generated alerts are in a format that can easily be
interpreted by a human being, so that a direct identification of the attack causes
is possible. Compared to ML, whitelists offer great advantages here because the
rule-based expression of detection references is inherently comprehensible.

Efficiency. Attack steps have to be logged at the shortest possible time interval
after execution, so that countermeasures can immediately be initiated. It is likely
that both the memory and the computing capacity required for the analysis are
influenced by the size of the whitelist. Since the number of rules required for the
desired monitoring cannot be estimated in advance, it is questionable whether
a real-time monitoring can be achieved. We examine both the attack detection
capability and the practical application of whitelisting in detail in Sect. 6.

3 Methodology

The proposed approach for whitelist generation from raw network traffic and the
use for analysing the communication dynamics is shown in Fig. 2. Network traffic
is first preprocessed to collect all information for specifying regular communi-
cations in the form of so-called communication graphs [19] (Sect. 3.1). A com-
munication graph is first mapped to a general whitelist (Sect. 3.2) from which a
specific whitelist (Sect. 3.3) is generated subsequently. The latter is adapted to
a specific tool, here the IDS Snort [21], which can immediately be used for the
monitoring. The whitelist application to analyse the communication dynamics
and the experiments to investigate practical aspects are described in Sect. 5 and
Sect. 6.

Fig. 2. Methodology overview

3.1 Communication Graphs

A communication graph is a directed graph used to represent network devices
and their logical connections, also referred to as communication relations. For-
mally, a directed graph D = (V,E) consists of a set of nodes (vertices)

28 A. Paul et al.

V = {v1, ..., vn} representing the network devices and a set of edges E =
{e1, ..., em} for the communication relations. The addresses determined for a
node v are represented by A(v) = {a | a ∈ AIP ∪ AMAC} with AIP and AMAC rep-
resenting the domain of IP and MAC addresses. The set of all addresses of a
communication graph D is referred to as A(D):

A(D) =
n⋃

i=1

A(vi), vi ∈ V (D)

An edge e = (vsrc, vdst,M) contains the source and target vertices vsrc and vdst
as well as a set of messages M = {m1, ...,mo}. A message m = (asrc, adst, t, p, u)
is characterised by the transmission protocol t, the payload protocol p, and the
message type u. Since multiple addresses can be assigned to a vertex, the source
and destination addresses used for message transmission are available in asrc
and adst. We refer to all messages of a graph D as set M(D):

M(D) =
m⋃

i=1

M(ei), ei ∈ E(D)

A communication graph can directly be used as a reference to detect unde-
sired communication. Next, we explain this procedure.

3.2 Generation of the General Whitelist

The message set M(D) contains all information for describing legitimate network
communications. Hence, it forms the initial rule set: R = M(D). From this, more
meaningful rules can be derived that focus on single aspects of communication.
So, it is possible to distinguish between different types of whitelist violations.

Device-oriented Rules. These rules ensure that communication relations are
exclusively established between already known devices. This includes both (1)
detecting unknown devices and (2) new communication between known devices.
The two objectives can be achieved by evaluating address information alone.
Therefore, a device-oriented rule r = (Asrc, Adst) consists of only a 2-tuple for
specifying legal communication partners. For the detection of unknown devices,
a single rule rU = (A(D), A(D)) is sufficient. To monitor the device-based com-
munication of already known devices for each address a ∈ A(D) the associated
address set Adst(a) has to be determined. It is used to restrict regular target
components that can be addressed by means of a:

Adst(a) =
⋃

m∈M(D)|asrc(m)=a

adst(m)

In addition for each address a ∈ A(D), a rule r = ({a}, Adst(a)) is generated,
resulting in the rule set RK . We denote the rules for detecting new senders out of
the set of already known devices as RKsrc

= {r|r ∈ RK ∧ Adst(a) = ∅}. The set
RKdst

= RK \RKsrc
is used to identify devices that have already acted as senders

Whitelisting of Process Control Communication 29

but addressed different devices during monitoring. We refer to the complete set
of device-oriented rules as RD = rU ∪ RK .

Communication-oriented Rules. After ensuring the legitimacy of device-to-
device communication using the RD rule set, specific communication type are
verified. To generate these rules the tuple set AC(D) is first determined which
contains all source and destination address combinations specified by graph D:

AC(D) = {aC = (asrc, adst)|
⋃

m∈M(D)

(asrc(m), adst(m))}

Each address tuple is used to determine the associated message set

M(aC) = {m ∈ M(D)|asrc(m) = asrc(aC)∧
adst(m) = adst(aC)}

whose elements are subsequently combined in three different ways. First, commu-
nication protocols used for data transmission are determined, whereby transport-
oriented protocols T (aC) and application-oriented protocols are distinguished,
referred to as P (aC). In addition, the set of used message types U(aC) is deter-
mined for each application-oriented protocol. These three combination sets are
formally described as follows:

T (aC) =
⋃

m∈M(aC)

t(m)

P (aC) =
⋃

m∈M(aC)

(t(m), p(m))

U(aC) = {((t, p), U)|(t, p) ∈ P (aC),

U =
⋃

m∈M(aC):t(m)=t∧p(m)=p

u(m)}

A separate rule per address tuple is generated from each set:

RT (aC) = {(asrc(aC), adst(aC), T (aC))}
RP (aC) = {(asrc(aC), adst(aC), P (aC))}
RU (aC) = {(asrc(aC), adst(aC), U(aC))}

We name the sets of all rules of these three rule types as RT , RP , and RU ,
whose union gives the set of communication-oriented rules RC = RT ∪RP ∪RU .

3.3 Generation of Specific Whitelists

The rules describe aspects that are also analysed by existing security methods,
such as firewalls or IDSs. Thus, it is straightforward to generate rules from the
general whitelist for such tools. We realized that for Snort, a widely used IDS,
by mapping the address information of the general rules to device-oriented rules
and general communication-oriented rules to Snort header elements and options.
We give a detailed demonstration of the generation principle of specific whitelists
for Snort in respect of the syntax of Snort’s description language in Appendix A.

30 A. Paul et al.

4 Datasets

For the evaluation of our approach, we use eight datasets from different types
of infrastructures that operate both OT networks and standard IT technology.
Table 1 summarises the characteristics of the datasets. All are captured via dedi-
cated access points (typically switches). The properties specified in Table 1 refer
to the monitoring domain of the sensor used for capturing. As our evaluation
is carried out from several aspects, the last column of the table contains infor-
mation on whether a dataset is used for communication characterization (com),
attack detection capability evaluation (det), or runtime analysis (rta).

Table 1. Dataset characteristics

Dataset Infrastructure
type

Network
level

Duration
(hh:mm:ss)

Packets
(millions)

Packet rate
(k/second)

Devices Analysis aspect

com det rta

power1.1 power plant supervisory 02:39:34 90.53 9.46 114 • ◦ •
power2.1 supervisory 02:15:36 66.08 8.12 71 • ◦ ◦
power2.2 control 01:25:40 6.10 1.19 66 • ◦ ◦
power2.3 DMZ 17:36:10 83.89 1.32 682 • ◦ ◦
train1.1 train control 01:35:44 17.00 2.96 76 • ◦ ◦
train1.2 control 02:41:10 9.96 1.03 155 • ◦ ◦
cicids.17 office – 08:05:36 11.68 0.40 9,727 • ◦ ◦
swat.a3 water treatment control 24:12:58 1,248.96 14.00 61 • ◦ ◦
swat.a6 control 03:40:00 321.03 24.00 98 ◦ • •

Power Plants. We use several traffic traces that were captured at two coal-fired
power plants. They involve two different control systems from leading vendors
used worldwide. In our experience, networks of plants using the same control
technology have strong similarities in architecture, protocols, and hardware. The
dataset labeled as power1.1 was captured within the supervisory level of a plant
consisting of in total four generation units with a combined capacity of 2200MW.
The other datasets power2.1 to power2.3 originate from different network layers
of a second plant with two generation units of the 800MW class each.

Local Passenger Train. Two datasets originate from a control network of a
train used for urban passenger transport. The train communication network is
used for a train series rolled out in Germany at the end of 2018. The concrete
train is composed of six coaches including two railcars. The operation is imple-
mented by a network (conform to [5]) spanning all coaches. It is divided into two
local networks. The first subnet contains devices of subsystems that are essential
to ensure regular train operation. These include, for example, traction/brake and
door control, power converters, and safety systems. The second subnet includes
devices of various systems whose fault-free operation does not have a decisive
influence on the safe operation of the train. They serve organisational and coor-
dination purposes or contribute to passenger comfort. These include the camera
surveillance system, passenger counting, intercoms and passenger information
devices. Both subnets reflect the control network layer.

Whitelisting of Process Control Communication 31

Water Treatment. This dataset [8]3 represents a small-scale version of a mod-
ern water treatment plant. The network traffic considered in this study was
provided in two different datasets. The first one originates from 2016 and cov-
ers 136 h of network traffic from continuously running SWaT without performing
any attacks. We use the first about 24 h of this data and refer to them as swat.a3.
The dataset swat.a6 was provided in 2019 and contains a series of malware infec-
tion attacks on the engineering workstation. Due to the network architecture of
the testbed, the two datasets are assigned to the control level.

Standard IT Network. In addition to the OT traffic, we use a portion of
the popular public dataset CICIDS2017 [22] as an exemplary representative of
standard IT traffic for a direct comparison of communication characteristics. The
dataset labeled cicids.17 corresponds to the first day (Monday) of the capture
when no attack activity has been observed.

Notes on Private Datasets. The first two datasets contain sensitive informa-
tion that we are only allowed to describe in abstract form due to non-disclosure
agreements. The datasets were captured using the tool tcpdump, running on a
separate sensor device attached to switches with activated port mirroring.

5 Communication Dynamics Analysis

Besides the whitelist generation, the process depicted in Fig. 2 aims to analyse
the communication dynamics of OT networks. Here, we focus on investigating
the variability or homogeneity of the traffic and on determining whether (and to
what extent) a complete whitelist can be generated from it.

5.1 Multi-step Whitelist Generation

For the communication dynamics analysis, each dataset is first divided into two
parts, the generation data and the validation data. The whitelist is generated in
an n-step procedure in which the generation data is further split into n disjoint
and consecutive sub-captures. In each step i (1 ≤ i ≤ n), an increasing amount
(i sub-captures) of the generation data is used for the whitelist generation. After
each step, the validation data is analysed with the derived whitelist and the
number of packets that do not match the whitelist is determined. This proportion
of packets from the total amount of validation data is called mismatching packet
rate (MPR). The MPR in the i-th step is denoted as mi.

5.2 Measures for MPR Evolution Analysis

The MPR determined in the last sub-step mn is an indicator of the completeness
of the whitelist generated from the generation data used to monitor the validation
data. To characterize the communication dynamics within the generation data,

3 https://itrust.sutd.edu.sg/itrust-labs_datasets/dataset_info/.

https://itrust.sutd.edu.sg/itrust-labs_datasets/dataset_info/

32 A. Paul et al.

multiple measures are determined. The basis is the MPR reduction achieved
between two sub-steps. Due to the monotonicity of the MPR evolution function,
the MPR decrease after the i-th step is determined as difference of the current
MPR and the MPR of the next step: di = mi − mi+1, with 1 ≤ i < n.

Mean MPR Decrease. As base for the following measures this is defined by:

d̄ =
1

n − 1

n−1∑

i=1

di

Dispersion Measures. In addition to the mean MPR decrease, the communi-
cation dynamics can also be characterized by the distribution around the mean
value. A higher distribution indicates significant whitelist extensions within rela-
tively few generation steps. Thus, communication can be considered more static
in the case of a comparatively high dispersion than in the case of a relatively low
one. The analysis of the dispersion of individual MPR reduction rates around
the mean is based on relative measures. First, the relative standard deviation is
determined, which is also referred to as the variation coefficient:

v =

√
1

n−1

∑n−1
i=1 (di − d̄)2

d̄

As a second measure of dispersion, the normalized Gini coefficient is deter-
mined. For this purpose, the MPR decrease values are first sorted in increasing
order; we denote the values thus obtained as d̂1, ..., d̂n−1, with d̂i ≤ d̂i+1. The
normalized Gini coefficient is determined from these as follows:

g =

(
2 · ∑n−1

i=1 i · d̂i
n − 1 · ∑n−1

i=1 d̂i
− n

n − 1

)
· n − 1
n − 2

For the normalized Gini coefficient, it holds 0 ≤ g ≤ 1, with the value rising
as the inequality dispersion increases. Finally, we introduce a measure to analyse
how often the whitelist changes significantly during generation. Hence, we define
the jump rate j as the fraction of decreasing MPR values that exceed a certain
threshold. We use the product of the mean MPR decrease and the variation
coefficient as the relative threshold, so that the jump rate is defined by:

j =
|{d|d ∈ {d1, ..., dn−1} ∧ d > (d̄ · v)}|

n − 1

5.3 Experimental Setup and Results

The whitelist generation process (Sect. 5.1) is applied as follows. The split of a
dataset into generation and validation data was performed in a 1:1 ratio and ten
sub-steps (n = 10) were used to create the whitelist from the generation data.
All splits are time-based, so each resulting sub-capture has the same duration.

Whitelisting of Process Control Communication 33

Table 2. Whitelist information, mismatching packets, and clustered MPR evolution
measures for the investigated datasets

The measures introduced in Sect. 5.2 for the individual datasets are presented
in Table 24 Since the traffic of different networks exhibits a different protocol
mix and not every protocol is decoded to distinguish message types, two values
per measure were determined for each dataset. The lower line shows the mea-
sures that takes the rules for the identification of different message types into
account. In comparison, the upper row states the measures from the exclusive
application of the remaining rule types. For allowing a quick visual comparison
among the datasets, the results are clustered (column-wise) into four coloured
groups (corresponding to the number of different network layers) using k-means.
Table 2 also states for each rule type (cf. Sect. 3.2) the ratio of rules triggered
by mismatching packets to the total number of generated rules. Thus, the sum
of the numerators corresponds to the number of rules that would have to be
extended to complete the whitelist with respect to a mismatching packet free
analysis of the validation data. The evolution of the MPR over the whitelist
generation steps and the influence of the different rule classes on the MPR is
shown in the bar charts in Fig. 3.

5.4 Characterization Takeaways

Finding 1: Communication Whitelisting is not Suitable for Monitoring
Standard IT Networks. With an MPR of over 54%, by far the most incomplete
whitelist was generated for the cicdis.17 dataset. Due to about 4,000 different
rules to be extended, it must be concluded that a whitelist cannot be developed
with proper effort to a complete one. The values determined for the dispersion
measures indicate a uniform development of the MPR reduction and thus a
4 A repository for interactive analysis of the public datasets is provided here: https://

gitlab.com/paulandre/ot-whitelisting.

https://gitlab.com/paulandre/ot-whitelisting
https://gitlab.com/paulandre/ot-whitelisting

34 A. Paul et al.

Fig. 3. Evolution of MPRs taking (rows two and four) and not taking (rows one and
three) message-type-specific rules into account

high communication dynamics in the generation data. Consequently, we consider
communication whitelisting to be unsuitable for standard IT traffic represented
by the cicdis.17 dataset and do not discuss further details for this dataset.

Finding 2: Different OT Network Layers Exhibit Different (measur-
able) Communication Dynamics. A clustering of dispersion measures shows
that communication dynamics differ significantly among OT network layers.
Already on the basis of the jump rate measure, the supervisory networks (j = 0.2,
resp. j = 0.3) can be distinguished from other layers (j = 0.1). However, as the
range of the jump rate is too small, this measure is not suitable for an accurate
classification of network domains. In contrast, both the coefficient of variation
and the Gini coefficient can be used to clearly refer traffic to OT network layers.
Furthermore, the communication dynamics measures indicate that the lower the
network layer, the smaller the differences in communication dynamics among
different networks of the same layer. While the large difference between the two
datasets representing the supervisory layer can even be discerned in the jump
rate, the control-layer networks show a comparatively small range in terms of
the coefficient of variation (2.65 to 2.83) and the Gini coefficient (0.986 to 0.999).

Finding 3: Strong Correlation between Communication Dynamics and
Whitelist Completion Effort. Looking at the communication dynamics in
isolation using the measures to describe MPR evolution does not yet allow any

Whitelisting of Process Control Communication 35

conclusions to be drawn about the effort required to extend the whitelist towards
a complete one, since in the extreme cases to detect n mismatching packets
exactly one, but also n rules may be responsible. By including information
on triggering rules, a relatively strong negative correlation can be determined
between the proportion of triggering rules from the total amount of rules (rt
for short) and the MPR dispersion measures. Depending on the consideration or
exclusion of the message-type-specific rules, a correlation coefficient of −0.79 and
−0.83 was determined between rt and v, respectively. The correlation coefficient
between rt and g is −0.81 (taking message-type-specific rules into account) and
−0.84 (when excluding these rules), respectively.

Finding 4: Detection of Whitelist Violations is Dominated by Device-
oriented Rules. New device-level communication relations are the most com-
mon cause of logging whitelist mismatching packets. Only for dataset power1.1,
communication-specific rules are dominant, in case message-type-specific rules
are considered. For the remaining five datasets, the percentage of messages logged
by device-oriented rules ranges from 61% (train1.2) to 98% (power2.3). The most
common cause of new device-level communication relations involves, between
known components, a component already acting as a sender addressing one or
more additional devices.

6 Whitelist Application

We discuss the application by detection capability and evaluation performance.

6.1 Attack Detection Capability

The attack detection capability of the whitelists is exemplarily evaluated using
the swat.a6 dataset containing four malicious events. Information on the alloca-
tion of these events to the corresponding sub-captures are taken from the docu-
mentation of the dataset. A whitelist was generated from the first sub-capture
(referred to as c0), which does not contain any malicious traffic. Figure 4(a)
shows the MPRs derived from the remaining sub-captures c1-c14.

Fig. 4. Mismatching packet rates of the SWaT A6 sub-captures

36 A. Paul et al.

Infiltrate SCADA WS via USB Thumb Drive with First Malware.
A first malware infection is assigned to c1. As the pure infection does not
immediately result in changed communication relations, a relatively low MPR
(0.000139%) was determined for this capture.

Exfiltrate Historian Data. In a total of four cycles, which are assigned to
c2 to c5, a data exfiltration attack was performed. These result in high MPRs
(>1.5%), whereby logged packets mainly belong to the communication of three
devices. Figure 5(a) shows a message sequence chart (MSC) representing their
communication. The malware apparently enables a remote control of the infected
host. The SCADA workstation first establishes a TCP connection on port 6556
(messages 3 to 5, m3 to m5 for short) to the device designated as command-
and-control (C2) server. After exchanging initial alive messages, the C2 server
transmits a command (e5, see m8) to the workstation, whereupon the worksta-
tion requests current process data from the historian. For this purpose, a TCP
connection on port 8080 is established, transferring HTTP packets to request files
from the historian (m14). Subsequently, the historian responds (m15), transfer-
ring the file content in JSON format. This polls the current measurement and
status values of all devices involved in the six sub-processes step by step. After-
wards, the data is forwarded with a single TCP packet (m19). The data polling
from the historian and the transmission of the collected values to the C2 server
is repeated at regular intervals of about one second. The logging of the asso-
ciated packets was caused entirely by device-oriented rules. More precisely, the
communication between the victim and the C2 server (a so far unknown device)
was detected by rU . In contrast, the communication between the victim and the
historian was identified by two rules from set RKdst

.

Infiltrate SCADA WS with Second Malware, via Downloading from
C2 Server. After a rest period of 60min, represented by c6 to c9, a secondary
infection of the workstation occurs by reloading software from the C2 server.
This event is assigned to c10, where a slightly increased MPR (∼0.044%) can be
observed, that is mainly caused by the communication between the workstation
and the C2 server. Packets violating the whitelist are summarised by the MSC
shown in Fig. 5(b). This reveals that the malware operates through two different
channels. According to the execution of the data exfiltration attack, the control
commands are transmitted over a TCP connection on port 6556. In addition, a
connection established on port 6001 serves as a data channel. After the upload
command has been received (m1), the workstation initiates the establishment of
the data connection. Afterwards, the C2 server transfers the data to the victim by
sending several packets. Once the data transfer is finished, the TCP connection
is closed (m8 to m10). From the commands that are subsequently exchanged
over the second channel, it can be concluded that the transmitted data is the
malware executable file that is executed after it is stored.

Disrupt Sensor and Actuator. The malware execution tends to sensor and
actuator disruption, performed in five cycles associated to c10 to c13. While the
visibly increased MPR to c10 is caused by the malware transmission (Sect. 6.1),

Whitelisting of Process Control Communication 37

Fig. 5. Sequence charts representing analysed attacks

further events cannot be identified from the overall MPR. However, when look-
ing exclusively at the results of the communication-oriented rules (see Fig. 4(b)),
a significantly increased MPR for the sub-captures is evident. Here, the MPR is
dominated by rules of the setRU used to detect new message types. For c10, a total
of 236 associated packets can primarily be assigned to a communication between
the workstation and the primary PLC used to control the first sub-process (P1)
of the SWaT’s six-stage process. The logged communication between these com-
ponents consists of 220 messages transmitted via EtherNet/IP combined with the
Common Industrial Protocol (CIP). There are a combined total of ten different
message types that violate the whitelist. Figure 6 shows the communication. First,
a session is established by means of EtherNet/IP (m1, m2). The application-based
communication between the victim and PLC is realised using CIP, also operating
in a connection-oriented manner. A two-way handshake is used to establish and
terminate the connection (m5+m6 andm9+m10, respectively). To ensure that no
path to the objects to be accessed exists yet, prior to this (m3, m4) an attempt is
made to terminate the connection. Object access by the workstation is executed
by m7 and confirmed by the PLC through m8.

6.2 Application of a Specific Whitelist

Experimental Setup. We perform a communication monitoring with a runtime
analysis using Snort as an example. Here, we focus on power1.1 and swat.a6

38 A. Paul et al.

as the private and public dataset with the highest packet rates. Snort rules
were generated from the general whitelists created to measure communication
dynamics (in the case of power1.1) or to analyse attack detection capabilities
(swat.a6).

Table 3 summarises the mean packet processing rates for ten runs of Snort
using certain rule types as well as the complete rule set. In case of power1.1
two sets of validation data were applied. First, the complete whitelist generation
traffic (val1) was used, which naturally leads to no alarms. For comparing pro-
cessing rates with and without alarms the priorly defined validation part val2
used to measure the communication dynamics was also monitored. Regarding
swat.a6, the validation data corresponds to the traffic analysed in Sect. 6.1.

Fig. 6. Sequence chart of process disruption

Table 3. Packet processing rates using
Snort

power1.1 swat.a6

val1 val2

device-
orient.

#rules 43 57

#alerts 0 87 1,391,094

103 pkts/s 762 773 615

RT #rules 144 219

#alerts 0 0 0

103 pkts/s 563 574 432

RP #rules 161 140

#alerts 0 0 192

103 pkts/s 364 375 294

RU #rules 976 22

#alerts 0 46,126 0

103 pkts/s 2,429 2,416 3,644

all #rules 1,208 435

#alerts 0 46,213 1,391,286

103 pkts/s 225 225 113

Performance Results. All rule types allow processing rates in the three-digit
thousands range. The rate decreases with an increasing amount of packet header
information that has to be analysed. A significantly high processing rate was
achieved when only message-type-specific rules were used. This can be explained
by the fact that only for a subset of the communication protocols a distinction
between different message types is made. Depending on the protocol mix of the
analysed data, there is only a very small proportion of end-to-end communication
relations (specified by the header of the Snort rules) whose packets need to be
analysed at all, so that the analysis of the majority of packets can be terminated
at a very early stage. The rule set RU is significantly smaller in the case of the
swat.a6 dataset, which recognisably results in a higher processing rate. Since
there are no relevant differences in the analysis performance of the two power1.1
validation datasets, we conclude that only the number of rules used is decisive
and that the logging effort is of no importance. As all packet processing rates

Whitelisting of Process Control Communication 39

exceed the communication packet rates determined for the datasets (cf. Table 1)
by a factor of 4.5 to 23.5, we conclude that our whitelists can be used for a
real-time monitoring of OT traffic.

7 Related Work

We aim to contribute to OT security by both characterizing OT traffic and
providing a monitoring technique according to these characteristics. Hence, we
discuss the state of the art in both areas.

7.1 Characterization of Process Control Traffic

We distinguish two groups for characterizing process control traffic and refer to
the terms SCADA and DCS as differentiated in [23].

Aggregated Traffic Characterization. This kind focuses on the quantifica-
tion of traffic meta information, which is motivated by the need for realistic traffic
simulation in research. For SCADA networks, the approaches outline differences
to standard IT networks by measuring the periodicity in terms of the frame rate
and the number of active connections [2] and investigate the application of stan-
dard IT traffic models, which are figured out as not transferable to SCADA traf-
fic [3]. Other research measured the TCP-based DNP3 communication in terms of
polling intervals, inter-arrival times, idle and round-trip times per device, (tem-
poral and byte) duration of TCP flows, retransmission rates and timeouts [7].
Other works studied the traffic of the SCADA protocol IEC 60870-5-104 by cat-
egorizing the traffic into strongly cyclic, weakly cyclic, stable, bursty, and phase
transitional by quantifying distribution changes of event inter-arrival times over
time [15,16]. The authors of [13] recently proposed a five-step method for pro-
filing traffic by quantifying communication intensity, recognizing work-cycles by
repeated communication patterns, and identifying the work-cycles’ states with
their subsequent profiling. Regarding DCS, the presence of a rich protocol mix
has recently been identified in [18], in contrast to what is stated for SCADA
networks. The authors show the feasibility to distinguish proprietary protocols
by clustering traffic based on the inter-arrival times and header data of frames.

Structural Traffic Profiling. Related approaches try to model periodic com-
munication patterns. While this was initially examined for supporting single
protocols [9,10], other works proposed a protocol-independent modelling of con-
crete periodic traffic patterns [4,11] exploring message repetition and timing
information. They evaluated their approaches for a DCS (Siemens S7 and MMS,
respectively) as well as for a SCADA protocol (both Modbus). An analysis of the
IEC 60870-5-104 communication of the power distribution backbone network is
available in [17]. In addition to the analysis of physical network changes and the
communication flow lengths of the SCADA infrastructure, particularly struc-
tural traffic analyses are presented in the form of clustering session variants and

40 A. Paul et al.

measurements of the amount and the semantics of message types. A recent pub-
lication [6] suggest a deep-packet inspection on OT protocols to generate models
of communications between network device pairs, what they demonstrate for
three protocols (Modbus/TCP, DNP3, and EtherNet/IP) for SCADA and DCS
networks. They, however, admit that the used Discrete Time Markov Chains
suffer from state and transition explosion.

Research Gap. The former type of characterizations abstract network activi-
ties to aggregated traffic observations. These allows only a topview on OT traffic
quantities. The latter type of works analyzes communication frames, but it dives
to deep into the perspective of the process (modelling of process variables) and
thus loses track of network transactions and runs into state explosion. We target
at the gap between the two trends providing (1) a bottom view on the traffic
by analyzing frames instead of aggregated traffic properties, (2) by keeping the
network perspective as prerequisite for a network operator’s understanding and
re-use of findings, and (3) by providing a profiling approach capable to incor-
porate a mix of protocols in the network, as it was figured out to be the case
especially for DCS [18] and so-called brownfield systems [13].

7.2 Attack Detection for OT

For the sake of brevity we refer to the recent structured overview given in [25].
Our work falls into the smaller group of communication-based approaches, which
has decisive advantages over process state-aware approaches. These include the
applicability on networks independent from the existence of (potential vendor-
specific) systems for the necessary preprocessing to provide well-structured sen-
sor data. Many detection approaches have been identified as unnecessarily com-
plex [24] which relates to serious problems of interpretability and reliability in
real-world scenarios. In contrast, the presented approach provides both, trans-
parency into the modeled detection knowledge in the form of precise rules as
well as the possibility to influence the detection by the adaptions of the rules.

8 Conclusion

In this paper, we presented a whitelisting approach for characterizing and mon-
itoring communication in OT networks. We used it for measuring eight datasets
to express the homogeneity of OT traffic and differences among OT network
layers. We examined that the whitelists meet essential criteria regarding com-
pleteness (measured by a mismatching packet rate), interpretability (inherent
to rule-based approaches), detection capability (identified for a prominent OT
dataset), and efficiency (measuring the packet processing rates when using the
whitelists with a well-known IDS). Although the generation cannot guarantee
complete whitelists even in the OT domain, which can lead to false alarms, the
evaluation still proves the whitelists are very effective for process control traffic.
Hence, they can serve as an interpretable baseline in the OT domain in order
to justify the composition of more complex methods, which is often neglected

Whitelisting of Process Control Communication 41

when proposing new detection schemes [1]. Consequently, up next we will use
the whitelist approach to define baselines for the OT domain using public data
(e. g., [14,20]) and to transpose current rough time-based packet labelings of
public datasets into a precise pattern-based one.

A Specific Whitelist’s Generation for Snort

As a prerequisite to follow the description, an exemplary Snort rule is shown in
Fig. 7.

Fig. 7. Example of a Snort rule

Device-orientated Rules. Device-oriented Snort rules are created from the
address information of the general rules of this class. Since only IP-based network
traffic can be specified by Snort rules, all MAC addresses have to be removed
from the applied address sets. A set of addresses A filtered by IP addresses is
called A′ = {a|a ∈ A ∩ AIP}. The mapping of the general rule rU is done using
the set A(D)′ = {a1, ..., ai} as follows:

alert ip ![a1, ..., ai] any -> any any

As Snort operates in blacklist mode, the exclamation mark as negation oper-
ator is used which causes the rule to trigger an alert whenever a device with
an unknown IP address acts as a sender. The keyword any specifies the com-
plete value range of the respective header element (destination IP addresses,
and source/destination ports). Accordingly, the mapping of a rule r ∈ RK with
a source address a ∈ A(D)′ and the corresponding address set Adst(a)′ is done
accordingly to (1) in case Adst(a)′ 	= ∅, otherwise to (2):

(1) alert ip a any -> ![a1, ..., aj] any
(2) alert ip a any -> any any

Communication-orientated Rules. To map general communication-oriented
rules, Snort header elements and Snort options are used. Since only rules for the
specification of IP-based communication can be mapped here as well, further
notations of the sets used for the mapping are given first. We denote the set of
address tuples AC(D) filtered by IP addresses as AC(D)′, the set of messages

42 A. Paul et al.

determined for an address tuple aC
′ as M(aC ′), and the aggregated sets from

these as T (aC ′), P (aC ′), and U(aC ′), respectively. For a definition of allowed
transport-oriented protocols, the protocol field of the Snort header is used.
Since the application of the negation operator is not provided for this element and
also no list can be used, the mapping is done by several Snort rules if necessary.
To this end, the set of transport protocols to be mapped TM = {t|t ∈ TS\T (aC ′)}
is determined, where TS = {ip, icmp, tcp, udp} corresponds to the set of protocols
that can be used in the header. A Snort rule is created for each t ∈ TM :

alert t asrc any -> adst any

The generation of Snort rules for the specification of legal application-oriented
protocols is basically done by mapping the set P (aC ′) to the protocol header
element as well as the fields source_ports and dest_ports. The first step here is
to create a set that contains all port numbers in combination with the transport
protocol. It specifies the set of legitimate application protocols:

PS(P (aC ′)) = {(t, P)|t ∈ t(pC ∈ P (aC ′)) ∩ {tcp, udp},
P =

⋃

pC∈P (aC
′):t(pC)=t

p(pC)}

However, a Snort rule can only be created from this set if there is a distinct client-
server relationship between the communication partners regarding the packets
to be specified by the rule. If the corresponding services are hosted by the des-
tination component the mapping is as follows:

alert t asrc any -> adst![p1, ..., pn]

If the services are provided by the source device the values of the
source_ports and dest_ports header fields are swapped. To determine the
server component of a specific service the following strategies with descending
priority are used:

1. Message types: For typical client-server-oriented services, the observed mes-
sage types provides immediate information about the device role. For exam-
ple, in the case of DNS, when a request message is detected, the sender is
considered as a client and the target device as a server.

2. Connection establishment: In case of TCP-oriented services, an observed con-
nection establishment can be used for the assignment, whereby for the first
(or third) packet of the three-way handshake the sender is considered as the
client and the destination as the server.

3. Heuristic: The heuristic role determination is based on the subgraph resulting
from the communication graph filtered by the protocol used to transmit the
messages used for service provision. If a service is used by multiple clients the
server can be identified by the associated node in the graph with the highest
node degree (indegree and outdegree).

Whitelisting of Process Control Communication 43

Since the differntiation of message types relies on the protocol-specific decod-
ing of packet payload data, there is no generalized way to map message types
specified by general rules to a set of Snort rules. We present two exemplary ways.

Preprocessor Usage: Some existing preprocessors already allow explicit logging
of packets with specific message types being transmitted. For Modbus packets,
for example, the option modbus_func (Modbus function code) is available for
this purpose. Since negation and the specification of multiple values are also not
provided when using this option, a rule must be created for each non-permitted
Modbus message type. For example, packets sent from asrc to adst to request
coils status are logged by the following rule:

alert tcp asrc any -> adst 502 (modbus_func:read_coils)

Use of Payload Detection Options: Snort can be extended by further preproces-
sors for the detection of message types of arbitrary protocols. However, since
the proposed method is primarily intended to support existing unmodified tools,
the development of any extensions is omitted. Because the message type is often
encoded in the first bytes of the payload, another way to detect different message
types is to use options for payload investigation, such as content and byte_test,
which selectively examine byte values for one given pattern. Another possibility
is provided by the pcre option which can be used to specify a set of patterns of
illegitimate message types by means of a regular expression, thus requiring only
one rule to be created per PDU-specific communication relation. If, for example,
all read requests from asrc to adst should be logged, the following rule can be
used as an alternative to four different rules using the modbus_func option:

alert tcp asrc any -> adst 502
(pcre:"/^.{7}(\x01|\x02|\x03|\x04)/s")

References

1. Arp, D., et al.: Dos and don’ts of machine learning in computer security. In:
USENIX Security Symposium. USENIX Association (2022)

2. Barbosa, R.R.R., Sadre, R., Pras, A.: A first look into SCADA network traffic. In:
Network Operations and Management Symposium (NOMS). IEEE (2012)

3. Barbosa, R.R.R., Sadre, R., Pras, A.: Difficulties in modeling SCADA traffic: a
comparative analysis. In: Taft, N., Ricciato, F. (eds.) PAM 2012. LNCS, vol.
7192, pp. 126–135. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-28537-0_13

4. Barbosa, R.R.R., Sadre, R., Pras, A.: Exploiting traffic periodicity in industrial
control networks. Int. J. Crit. Infrastruct. Prot. 13 (2016)

5. Commission, I.E.: IEC 61375–1:2012 Electronic railway equipment - Train commu-
nication network (TCN) - Part 1: General architecture (2012)

6. Faisal, M.A., Cardenas, A.A., Wool, A.: Profiling communications in industrial IP
networks: model complexity and anomaly detection. In: Alcaraz, C. (ed.) Security
and Privacy Trends in the Industrial Internet of Things. ASTSA, pp. 139–160.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12330-7_7

https://doi.org/10.1007/978-3-642-28537-0_13
https://doi.org/10.1007/978-3-642-28537-0_13
https://doi.org/10.1007/978-3-030-12330-7_7

44 A. Paul et al.

7. Formby, D., Walid, A.I., Beyah, R.A.: A case study in power substation network
dynamics. In: International Conference on Measurement and Modeling of Com-
puter Systems (SIGMETRICS). ACM (2017)

8. Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in
the design of secure water treatment systems. In: Havarneanu, G., Setola, R., Nas-
sopoulos, H., Wolthusen, S. (eds.) CRITIS 2016. LNCS, vol. 10242, pp. 88–99.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71368-7_8

9. Goldenberg, N., Wool, A.: Accurate modeling of Modbus/TCP for intrusion detec-
tion in SCADA systems. Int. J. Crit. Infrastruct. Prot. 6(2), 63–75 (2013)

10. Kleinmann, A., Wool, A.: Accurate modeling of the siemens S7 SCADA protocol
for intrusion detection and digital forensic. J. Digit. Forensics Secur. Law 9(2),
37–50 (2014)

11. Kleinmann, A., Wool, A.: Automatic construction of statechart-based anomaly
detection models for multi-threaded SCADA via spectral analysis. In: Workshop
on Cyber-Physical Systems Security and Privacy (CPS-SPC). ACM (2016)

12. Krotofil, M., Gollmann, D.: Industrial control systems security: what is happening?
In: International Conference on Industrial Informatics (INDIN). IEEE (2013)

13. Lavassani, M., Åkerberg, J., Björkman, M.: Modeling and profiling of aggregated
industrial network traffic. Appl. Sci. 12(2) (2022)

14. Lemay, A., Fernandez, J.M.: Providing SCADA network data sets for intrusion
detection research. In: Workshop on Cyber Security Experimentation and Test
(CSET). USENIX Association (2016)

15. Lin, C., Nadjm-Tehrani, S.: Understanding IEC-60870-5-104 traffic patterns in
SCADA networks. In: Workshop on Cyber-Physical System Security (CPSS). ACM
(2018)

16. Lin, C., Nadjm-Tehrani, S.: Timing patterns and correlations in spontaneous
SCADA traffic for anomaly detection. In: International Symposium on Research
in Attacks, Intrusions and Defenses (RAID). USENIX Association (2019)

17. Mai, K., Qin, X., Silva, N.O., Molina, J., Cárdenas, A.A.: Uncharted Networks:
a first measurement study of the bulk power system. In: Internet Measurement
Conference (IMC). ACM (2020)

18. Mehner, S., Schuster, F., Hohlfeld, O.: Lights on power plant control networks.
In: Hohlfeld, O., Moura, G., Pelsser, C. (eds.) PAM 2022. LNCS, vol. 13210, pp.
470–484. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-98785-5_21

19. Paul, A., Schuster, F., König, H.: Network topology exploration for industrial net-
works. In: Maglaras, L.A., Janicke, H., Jones, K. (eds.) INISCOM 2016. LNICST,
vol. 188, pp. 62–76. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
52569-3_6

20. Rodofile, N.R., Schmidt, T., Sherry, S.T., Djamaludin, C., Radke, K., Foo, E.: Pro-
cess control cyber-attacks and labelled datasets on s7comm critical infrastructure.
In: Pieprzyk, J., Suriadi, S. (eds.) ACISP 2017. LNCS, vol. 10343, pp. 452–459.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59870-3_30

21. Roesch, M.: Snort: lightweight intrusion detection for networks. In: Conference on
Systems Administration (LISA). USENIX (1999)

22. Sharafaldin, I., Lashkari, A.H., Ghorbani, A.A.: Toward generating a new intrusion
detection dataset and intrusion traffic characterization. In: International Confer-
ence on Information Systems Security & Privacy (ICISSP). SciTePress (2018)

23. Stouffer, K., Pillitteri, V., Lightman, S., Abrams, M., Hahn, A.: Guide to industrial
control systems (ICS) security. NIST Spec. Publ. 800–82 (2015). Rev. 2

https://doi.org/10.1007/978-3-319-71368-7_8
https://doi.org/10.1007/978-3-030-98785-5_21
https://doi.org/10.1007/978-3-319-52569-3_6
https://doi.org/10.1007/978-3-319-52569-3_6
https://doi.org/10.1007/978-3-319-59870-3_30

Whitelisting of Process Control Communication 45

24. Wolsing, K., Thiemt, L., Sloun, C.v., Wagner, E., Wehrle, K., Henze, M.: Can
industrial intrusion detection be SIMPLE?. In: Atluri, V., Di Pietro, R., Jensen,
C.D., Meng, W. (eds.) Computer Security – ESORICS 2022. ESORICS 2022.
LNCS, vol. 13556. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-
17143-7_28

25. Wolsing, K., Wagner, E., Saillard, A., Henze, M.: IPAL: breaking up silos of
protocol-dependent and domain-specific industrial intrusion detection systems. In:
International Symposium on Research in Attacks, Intrusions and Defenses (RAID).
ACM (2022)

https://doi.org/10.1007/978-3-031-17143-7_28
https://doi.org/10.1007/978-3-031-17143-7_28

Detection of Malware Using Self-Attention
Mechanism and Strings

Satoki Kanno(B) and Mamoru Mimura

National Defense Academy, Yokosuka, Japan
{em61025,mim}@nda.ac.jp

Abstract. Readable strings that can be extracted from executable files
are used to aid in malware analysis. Recent advances in natural lan-
guage processing technology have made it possible to consider the word
order of sentences and use it for machine learning. Previous research has
proposed a method for detecting unknown malware by applying natural
language processing techniques to readable strings. This method detects
unknown malware by applying natural language processing technology
to readable strings. This method detects malware by excluding words
that occur infrequently and creating a corpus. However, it does not con-
sider word order, and the words that contribute to the recognition are
not known. In this study, we propose a method to detect malware using a
self-attention mechanism while preserving the order of readable strings.
In a experiment, the recall and f-measure of the proposed method that
considers word order and the model that considers only the number of
occurrences of words were compared using the FFRI Dataset. The max-
imum F-measure for the proposed method considering word order was
0.904. We also analyzed the weights of the self-attention mechanism to
identify the features that contribute to the detection of attacks.

Keywords: Self-Attention · Malware · Natural language processing ·
Machine learning · Bag-of-Words

1 Introduction

Targeted attacks are one of the ways that organizations and individuals can be
targeted to steal critical information. They often attach malware in the form
of executable files [13,34]. The computer is infected with malware by executing
an executable file sent by the attacker. Thus, the attacker can steal information
held by the victim. A countermeasure against targeted attacks is the detection
of malware by antivirus software. However, antivirus software sometimes fails to
detect malware used in targeted attacks. One reason is that attackers may have
confirmed in advance that they will not be detected by antivirus software.

Techniques that combine static or dynamic analysis with machine learning
have been proposed to detect unknown malware [2,21,22,27–30]. Although, these
have several problems.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Li et al. (Eds.): NSS 2023, LNCS 13983, pp. 46–60, 2023.
https://doi.org/10.1007/978-3-031-39828-5_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-39828-5_3&domain=pdf
http://orcid.org/0000-0003-4323-9911
https://doi.org/10.1007/978-3-031-39828-5_3

Detection of Malware Using Self-Attention Mechanism and Strings 47

Dynamic analysis of untrusted software requires kernel-level privileges [3],
virtual machines, and resources. Furthermore, malware typically executes after
examining the environment in which it will be run to avoid detection [10,23].
Therefore, when dynamic analysis is performed on a virtual machine, it may not
reproduce the environment targeted by the malware [25]. Moreover, performing
dynamic analysis on all untrusted software is time-consuming. Static analysis
can be performed to avoid these problems.

Some static analysis methods have been proposed to extract features from
the results of static analysis of executable files and classify them using machine
learning models [8,14,36]. In these studies, features were extracted from meta-
data extracted from executable files, readable strings, etc., and the similarity
between the extracted features was calculated. Thus, it is not possible to iden-
tify the features that contributed to the detection. The attention mechanism is
an effective way to reveal the features that contributed to the detection. It will
assign weights to features that are important to the input features. One method
of visualizing malware features using attention mechanisms is to convert binary
data into images and visualize the parts of high importance in the images [35].
However, many combined static analysis and machine learning models have been
found to be unable to deal with obfuscated or packed software [15,20]. Packing
is increasingly used against benign software, increasing the likelihood of misclas-
sifying benign software as malware and reducing detection accuracy [24].

The effectiveness of using NLP for malware detection has been demonstrated
by some methods [14,16,17,32]. One of these methods, the study of Mimura et
al., demonstrates the effectiveness of using NLP and readable strings to detect
obfuscated and packed malware [14]. Mimura et al. believe that the Applica-
tion programming interface (API) and argument names used for obfuscation are
effective for detection. In addition, typical instructions that need to be left for
de-obfuscation can be extracted as readable strings.

Therefore, we propose a malware detection method using readable strings
and a self-attention mechanism. The use of readable strings allows detection
of obfuscated malware, and the use of a self-attention mechanism reveals the
readable strings that contribute to detection. In this study, we compare the
accuracy of models that consider the word order of readable strings and models
that consider only the number of occurrences of words. In addition, we analyze
the weights of the self-attention mechanism to identify words that contribute to
malware detection.

The contributions of this study are as follows.

1. A new model with a self-attention mechanism was used to detect malware
using readable strings. The maximum F-measure was 0.904.

2. We confirmed that removing non-contiguous ASCII from the corpus has a
certain effect.

3. The influence of the self-attention mechanism on readable strings was clar-
ified, and it was confirmed that there are words of high importance that
contribute to detection.

48 S. Kanno and M. Mimura

2 Related Techniques

2.1 Bag-of-Words

Bag-of-Words (BoW) is a model that counts the number of times a word occurs
in a sentence and represents it as a vector [26]. In this model, the order of words
is not taken into account; if w is a word and n is the number of occurrences
corresponding to w, document d can be expressed as in Eq. (1). Based on Eq.
(1), if we fix the position of n and omit the word w, we can express d numerically.
This allows us to express the document-word relationship in terms of a vector in
Eq. (2), which represents the number of times a word appears in each document
d̂i. In this study, it is used to compare the word order of sentences. BoW can
convert any document into a vector of fixed dimensions with a unique number
of words.

d = [(w1, nw1), (w2, nw2), (w3, nw3), ..., (wj , nwj
)] (1)

d̂i = (nw1 , nw2 , nw3 , ..., nwj
) (2)

2.2 Long Short Term Memory

Long short term memory (LSTM) is a model for learning long term dependencies
that cannot be considered in Recurrent neural network (RNN) [5]. The LSTM
consists of a memory cell, a forget gate, an input gate, and an output gate. As
shown in Fig. 1, the output is also used for the next input, and each gate can
learn long-term dependencies by selecting past information.

In this study, LSTM is used in validation experiments to compare it with
other classifiers.

Fig. 1. Conceptual chart of LSTM structure

2.3 Self-attention Mechanism

Self-attention mechanism is a method of expressing input data by focusing on
the relationships between its elements [33]. Figure 2 shows an overview of the

Detection of Malware Using Self-Attention Mechanism and Strings 49

Self-attention mechanism, which has three elements, Query, Key, and Value, and
is represented by Eq. (3). For each element, Query represents the information to
be retrieved in the input data, Key is used to calculate the relevance of Query
to the target to be retrieved, and Value is used to output an appropriate value
based on Key.

Fig. 2. Conceptual chart of the structure of the self-attention mechanism

Attention(Q,K, V) = softmax(
QKT

√
dk

)V (3)

3 Related Works

Many methods have been proposed to detect executable malware, and many
virus vendors use a variety of methods to detect unknown malware. Malware
detection methods are categorized into dynamic and static analysis. Our research
is categorized as surface analysis. In this section, we describe the studies that are
related to this study and discuss the differences between them and this study.

3.1 Malware Detection Using Readable Strings Contained
in Executable Files

A variety of methods have been proposed to detect malware using readable
strings contained in executable files [9,12,14,36]. Lee et al. [9] proposed a method
to detect malware by extracting readable strings from executable files and cal-
culating the similarity of the strings. Their method showed that readable strings
are effective for malware detection. Mimura et al. [14] proposed a method for
detecting malware by applying NLP to readable strings. Mimura et al. showed
that their method was effective against packed malware and anti-debugging tech-
niques. However, these methods were not able to identify the words that con-
tributed to the malware detection.

50 S. Kanno and M. Mimura

3.2 Deep Learning Detection

Numerous methods have been proposed for malware detection using deep learn-
ing [1,6,8,19]. For example, Pascanu et al. [19] used RNN with API call history
to detect malware. Kolosnjaji et al. [8] used a convolutional neural network
(CNN) to detect malware using a combination of executable metadata, dynamic
linking library (DLL), and operation code. Although, it is difficult for humans
to determine from deep learning data which factors contribute to detection and
by how much.

3.3 Malware Detection Using an Attention Mechanism

Malware detection using an attention mechanism has been proposed by Yakura
et al. [35], Ma et al. [11] and Jian et al [7]. Their method adds an attention
mechanism to the method proposed by Nataraj et al. [18] to classify malware
by converting binary data into images. Incorporating an attention mechanism
into malware detection has demonstrated the potential to reduce the workload
of human analysts by using an attention mechanism to visualize regions of high
importance in the image. However, these methods can only identify malware
based on image characteristics, so when malware is obfuscated, the binary data
changes and the image-based characteristics change completely. In this study,
obfuscation is handled by using readable strings.

4 Proposed Method

4.1 Outline

Details of the unknown malware detection methods in this study are described.
An overview of the proposed method is shown in Fig. 3. The known and unknown
executable files contain benign and malicious files, respectively. The model used
in this study that combines the self-attention mechanism and LSTM is called
LSTM with self-attention mechanism.

For comparison with LSTM with self-attention mechanism considering word
order, we also perform the case when BoW is used for feature vector creation and
when the classifier is implemented with SVM. Figure 4 shows how the feature
vectors used in this experiment are generated and the classifier is applied.

The following is an overview of the proposed method. The numbers corre-
spond to those in Fig. 3.

1. Extract readable strings from known executable files.
2. Split the readable string into words, adjust the number of words in the read-

able string per file and make the number of words uniform.
3. Create a corpus by extracting words with a high number of occurrences and

words that are at least n(n � 1) consecutive ASCII strings.
4. Convert the readable strings into feature vectors using the corpus.
5. Train each classifier on feature vectors created from readable strings.

Detection of Malware Using Self-Attention Mechanism and Strings 51

6. Extract readable strings from unknown executable files.
7. Split the readable string into words, adjust the number of words in the read-

able string per file, and make the number of words uniform.
8. Convert the readable strings into feature vectors using the corpus.
9. Detect unknown executable files, which are converted into feature vectors

using the model trained in 5.
10. Extract words weighted by the self-attention mechanism in the executable

files classified in 9.

Fig. 3. Chart outlining the proposed method

Fig. 4. How to create the corpuses and feature vectors and how to apply the classifiers
used

52 S. Kanno and M. Mimura

4.2 Extract Readable Strings and Adjust Word Count

In Fig. 3, “1 Extract readable string” and “2 Adjust sequence length” are used to
extract readable strings contained in executable files. Readable strings consist of
alphabetic characters and symbols, and a sequence of readable strings in a file is
considered to be a single sentence. In this case, the readable strings are separated
by whitespace and written separately, and then the number of words per file is
adjusted by padding or reducing the number of words to a uniform number. The
same process is applied to unknown executables for “6 Extract readable strings”
and “7 Adjust sequence length” in Fig. 3.

4.3 Creating a Corpus

In Fig. 3, “3 Creating a corpus”, a corpus is created using words extracted from
known executables. A corpus is created by extracting unique words and n(n � 1)
or more consecutive ASCII strings in descending order of frequency of occurrence
from the words in the known executable files. The number of unique words
extracted is determined by preliminary experiments. The method of the prelim-
inary experiment is explained in the next section.

4.4 Creating Feature Vectors

In Fig. 3, “4 Creating feature vectors”, a known executable file is converted into
a feature vector using a corpus. Each word in the corpus is assigned an ID, and
words in readable strings in the executable are replaced with the ID correspond-
ing to the word. Words not in the corpus are assigned meaningless IDs. The same
process is performed for unknown executables in “8 Creating feature vectors” in
Fig. 3.

4.5 Training with Each Classifier

In Fig. 3, “5 Training with each classifier”, each classifier is trained with training
data. Known executable files are used as training data. In this case, the training
data is the data created in “4 Creating feature vectors” with labels of benign or
malicious files.

4.6 Application of Each Classification

In Fig. 3, “9 Use of each classifier”, test data is used and detection is performed
by each classifier. In this case, the training data is the data created in “8 Cre-
ating feature vectors” with labels of benign or malicious files. In “10 Extraction
of the importance of each word in the self-attention mechanism”, words that
have weight in the self-attention mechanism are extracted from the detected
executable files. In this case, the words are ranked by the Python rank func-
tion in order of increasing weight in each file, and the words with ranks 1 to
10 are extracted. Then the words are extracted in the order of the number of
occurrences of the words with ranks 1 to 10 in all files.

Detection of Malware Using Self-Attention Mechanism and Strings 53

5 Experiment

5.1 Dataset

In this study, we used strings extracted from the FFRI Dataset 2020 to FFRI
Dataset 2022 [4,31] provided by FFRI Inc. as a dataset. Strings were extracted
from both benign and malicious executables, and the data was prepared for
detection. The total number of datasets used is shown in Table 1. We used 75,000
benign and 75,000 malicious files each from the FFRI Dataset 2020 as training
data for detection. As test data, we used 75,000 benign and 75,000 malicious
files each from FFRI Dataset 2021 and FFRI Dataset 2022.

Table 1. Datasets used for experiments

Dataset Number of files Number of unique words

FFRI Dataset2020 (cleanware) 75,000 967,075,087
FFRI Dataset2020 (malware) 75,000 162,245,592
FFRI Dataset2021 (cleanware) 75,000 1,001,705,100
FFRI Dataset2021 (malware) 75,000 15,504,0251
FFRI Dataset2022 (cleanware) 75,000 712,981,765
FFRI Dataset2022 (malware) 75,000 298,828,720

5.2 Experimental Environment

The environment used in the experiments is shown in Table 2, and the library is
shown in Table 3.

Table 2. Experimental environment

CPU Core i9-10900X 3.70GHz

Memory 128GB

GPU GeForce RTX 3090

OS Windows10 Home

Language Python3.8.9

Table 3. Python main libraries used
for implementation

Library name Version

TensorFlow 2.4.3

Gensim 4.1.2

scikit-learn 1.0.2

5.3 Evaluation Index

This section describes the evaluation indices used in this study. The values
needed to calculate the evaluation index are shown in Table 4. For judgments,
a true/false judgment is made based on the true result, and True is used if the
result is true and False if the result is false. For example, True Negative (TN) is a
judgment of a benign file as a benign file, and False Positive (FP) is a judgment
of a benign file as a malicious file. Four types of evaluation indices were used:
Accuracy, Precision, Recall and F-measure.

54 S. Kanno and M. Mimura

Table 4. Relationship between predicted and true results

True results
Benign Malicious

Prediction Results Benign True Negative(TN) False Positive(FP)
Malicious False Negative(FN) True Positive(TP)

5.4 Preliminary Experiments

Preliminary experiments are conducted to determine the optimal number of
words and the optimal sequence length to be used in the corpus. The corpus
is created by extracting words with a high number of occurrences from benign
and malicious files. Using the FFRI Dataset 2020 for training and test data, 10-
Fold Cross Validation is performed using LSTM with a self-attention mechanism
and optimal values are measured using F-measure values. In the preliminary
experiment, we used a corpus created by extracting words that were at least 1
consecutive ASCII strings.

Case with BoW. Figure 5 shows the results of changing the number of unique
words used in the corpus. Figure 5 shows that the F-measure reached its max-
imum value of 0.686 when the number of words was set to 500, which is the
optimal value for the number of words of the corpus in the case of BoW in this
experiment.

Fig. 5. Number of unique words and length of sequences used in the corpus in the case
of BoW

Case Where Words Are Converted to Corresponding IDs. The results
of changing the number of unique words used in the corpus are shown in Fig. 6.
Figure 6 shows that the F-measure reached its maximum value of 0.826 when the
number of words in the corpus was set to 100,000, which is the optimal value for
the number of words in the corpus when assigning IDs corresponding to words
in this experiment. Figure 8 shows the results of changing the sequence length.
Figure 7 shows that the F-measure reached its maximum value of 0.844 when
the number of words in a file was set to 120, which is the optimal value for the
sequence length when assigning IDs corresponding to words in this experiment.

Detection of Malware Using Self-Attention Mechanism and Strings 55

Fig. 6. Number of unique words used in
the corpus when IDs are assigned corre-
sponding to words

Fig. 7. Length of the sequence when IDs
are assigned to words

5.5 Experiment Contents

In the validation experiment, we use 5 corpus types to create feature vectors
for the case with BoW and the case where words are replaced by their corre-
sponding IDs. We compare the results using a classifier based on each feature
vector created. We performed five experiments for each classifier and used the
average as the result. Moreover, using the corpus with the highest recall value
in the experiment, we tabulate the words with high importance in LSTM with
self-attention mechanism when replacing the IDs corresponding to the words in
the corpus.

5.6 Result

The results for the BoW case are shown in Figs. 8 and 9, and for the case of
replacing IDs corresponding to words in the corpus are shown in Figs. 10 and 11.
For the horizontal axis in Figs. 8 through 11, it is the minimum word length of
ASCII when the corpus is created by extracting ASCII. From Figs. 8 and 10, the
highest recall value was obtained when LSTM with a self-attention mechanism
was used with FFRI Dataset 2022 and a corpus of at least 2 consecutive ASCII
strings in the test data in the case of replacing IDs corresponding to words in the
corpus, and the recall value was 0.893. Figure 9 shows that in the case of BoW,
the highest F-measure value was obtained when SVM was used with the FFRI
Dataset 2021 as test data and a corpus of at least 5 consecutive ASCII strings,
resulting in an F-measure value of 0.890. Figure 11 shows that the highest F-
measure value when replacing IDs with IDs corresponding to words in the corpus
was obtained when LSTM with a self-attention mechanism was used with FFRI
Dataset 2022 in the test data and with a corpus of at least 1 consecutive ASCII
string, resulting in an F-measure value of 0.904.

Tables 5 and 6 show the results of tabulating the words of high importance
in LSTM with self-attention mechanism when substitutions are made to IDs
corresponding to words in the corpus. The top 20 words in the order of the
number of occurrences of words with ranks 1 to 10 are extracted using the rank
function for the weights of the words when they are divided into TN, FP, TP, and

56 S. Kanno and M. Mimura

FN. In each table, words common to TN, FP, TP, and FN are colored darker,
and words common to three of TN, FP, TP, and FN are colored lighter.

Fig. 8. Result of recall in case of BoW Fig. 9. Result of F-measure in case of
BoW

Fig. 10. Result of recall in case where
words are converted to corresponding
IDs

Fig. 11. Result of F-measure in case
where words are converted to corre-
sponding IDs

6 Discussion

6.1 Need to Consider Contiguous ASCII Strings in Corpus Creation

Figures. 8 and 9 show that in the case of BoW, the recall and F-measure values
initially decreased with increasing the value of n when LSTM with self-attention
mechanism was used, but the recall and F-measure values improved in the middle
of the process. The SVM did not show a significant change in the reproducibility
and F-measure values compared to the LSTM with the self-gazing mechanism,
however, they were almost similar. Figures 10 and 11 show that for both LSTM
and SVM with self-attention mechanism, when IDs are assigned to words, the
recall and F-measure values initially increase and later decrease with increasing
value of n for consecutive ASCII strings from the corpus. These results suggest
that removing non-consecutive strings from the dictionary has a certain effect.

Detection of Malware Using Self-Attention Mechanism and Strings 57

Table 5. Aggregate results based on
word weights (FFRI Dataset2021)

Rank TN FP TP FN

1 run run in in
2 program program run run
3 be be data up
4 in in rd rs
5 dos dos text data
6 text must rs text
7 rd under rich rd
8 reloc win32 id id
9 data text reloc rich
10 rs rd this dll
11 must data tls this
12 bs up win32 win32
13 under rs under under
14 win32 rich boolean tls
15 id dll FALSE sv
16 tls as it bs
17 xd wi TRUE ad
18 strings 54 integer as
19 rich yr sv reloc
20 it reloc up 4o

Table 6. Aggregate results based on
word weights (FFRI Dataset2022)

Rank TN FP TP FN

1 in in cannot cannot
2 dos dos run run
3 cannot cannot rich rich
4 rd js rd up
5 data text data main
6 bs data rs emu
7 reloc exe text g7
8 rs rd be bs
9 text z9 under fv
10 tls rs up dl
11 id dll sn petite
12 be go id ein
13 run ai gg sv
14 win32 kt reloc rs
15 core mp ad dll
16 pd zo as 5t
17 303 cm ed text
18 hh ds tls hd
19 uu qb bs uw
20 sv ni le code

6.2 Effect of Self-Attention Mechanism on Readable Strings

Tables 5 and 6 show that the number of words common to 3 or more of TN, FP,
TP, and FN is about 60% when using FFRI Dataset 2021, while it is about 30%
when using FFRI Dataset 2022. In addition, when looking at the top words for
each of TN, FP, TP, and FN, approximately 50% of the words are common to
both FFRI Dataset 2021 and FFRI Dataset 2022 in the test data. This indicates
that words of high importance overlap in the data sets used in this study, even
when the year of collection is changed. Creating a corpus with only words of
high importance may improve recognition accuracy.

6.3 Research Ethics

In this study, the FFRI Dataset provided by FFRI Security, Inc. was used for
both benign and malicious files. The experimental environment used, including
programming languages, natural language processing techniques, and machine
learning libraries such as scikit-learn, are publicly available and easy to imple-
ment. This study did not use any data or libraries that are not publicly available
and difficult to obtain, and we believe that the reproducibility of the results is
high.

6.4 Limitations

In this study, experiments were conducted using the FFRI Dataset, but this does
not necessarily mean that the validation reflects the trends of all executables in

58 S. Kanno and M. Mimura

reality. Although it is impossible to create a dataset from all executables, there
is room to consider the validity of the sampling method of the dataset.

7 Conclusion

In this study, we confirmed that the F-measure was at most 0.904 when malware
detection was performed using the LSTM model with a self-attention mechanism
and readable strings. In addition, we confirmed that removing non-contiguous
ASCII strings from the corpus has a certain effect, and identified the words that
contributed to the malware detection. There are two issues to be addressed in
the future. The first is to improve the detection accuracy by adjusting the value
of each parameter. In the validation experiments, default values were set for each
parameter except the number of words in the corpus and the sequence length,
which could be adjusted to improve detection accuracy. The second is to modify
the corpus used for LSTM with the self-attention mechanism. We believe that
the detection accuracy can be improved by creating a corpus that extracts only
words of high importance using the self-attention mechanism.

References

1. David, O.E., Netanyahu, N.S.: Deepsign: deep learning for automatic malware
signature generation and classification. In: 2015 International Joint Conference on
Neural Networks (IJCNN), pp. 1–8 (2015). https://doi.org/10.1109/IJCNN.2015.
7280815

2. Dube, T., et al.: Malware target recognition via static heuristics. Comput. Secur.
31(1), 137–147 (2012). https://doi.org/10.1016/j.cose.2011.09.002

3. Egele, M., et al.: A survey on automated dynamic malware-analysis techniques and
tools. ACM Comput. Surv. 44(2), 1–42 (2008). https://doi.org/10.1145/2089125.
2089126

4. Group, C.S.: Anti malware engineering workshop. https://www.iwsec.org/mws/
datasets.html. Accessed 03 Jan 2023

5. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997). https://doi.org/10.1162/neco.1997.9.8.1735

6. Huang, W., Stokes, J.W.: Mtnet: a multi-task neural network for dynamic mal-
ware classification. In: Caballero, J., et al. (eds.) Detection of Intrusions and Mal-
ware, and Vulnerability Assessment, pp. 399–418. Springer International Publish-
ing, Cham (2016). https://doi.org/10.1007/978-3-319-40667-1_20

7. Jian, Y., et al.: A novel framework for image-based malware detection with a deep
neural network. Comput. Secur. 109, 102400 (2021). https://doi.org/10.1016/j.
cose.2021.102400

8. Kolosnjaji, B., et al.: Empowering convolutional networks for malware classification
and analysis. In: 2017 International Joint Conference on Neural Networks, IJCNN
2017, Anchorage, AK, USA, 14–19 May 2017, pp. 3838–3845 (2017). https://doi.
org/10.1109/IJCNN.2017.7966340

9. Lee, J., et al.: A study of malware detection and classification by comparing
extracted strings. In: Proceedings of the 5th International Conference on Ubiq-
uitous Information Management and Communication. ICUIMC 2011, Association
for Computing Machinery, New York, NY, USA (2011). https://doi.org/10.1145/
1968613.1968704

https://doi.org/10.1109/IJCNN.2015.7280815
https://doi.org/10.1109/IJCNN.2015.7280815
https://doi.org/10.1016/j.cose.2011.09.002
https://doi.org/10.1145/2089125.2089126
https://doi.org/10.1145/2089125.2089126
https://www.iwsec.org/mws/datasets.html
https://www.iwsec.org/mws/datasets.html
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1007/978-3-319-40667-1_20
https://doi.org/10.1016/j.cose.2021.102400
https://doi.org/10.1016/j.cose.2021.102400
https://doi.org/10.1109/IJCNN.2017.7966340
https://doi.org/10.1109/IJCNN.2017.7966340
https://doi.org/10.1145/1968613.1968704
https://doi.org/10.1145/1968613.1968704

Detection of Malware Using Self-Attention Mechanism and Strings 59

10. Lindorfer, M., Kolbitsch, C., Milani Comparetti, P.: Detecting environment-
sensitive malware. In: Sommer, R., Balzarotti, D., Maier, G. (eds.) RAID 2011.
LNCS, vol. 6961, pp. 338–357. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-23644-0_18

11. Ma, X., et al.: How to make attention mechanisms more practical in malware classi-
fication. IEEE Access 7, 155270–155280 (2019). https://doi.org/10.1109/ACCESS.
2019.2948358

12. Mastjik, F., et al.: Comparison of pattern matching techniques on identification of
same family malware. Int. J. Inf. Secur. Sci. 4(3), 104–111 (2015)

13. Mimura, M.: Evaluation of printable character-based malicious PE file-detection
method. Internet Things 19, 100521 (2022). https://doi.org/10.1016/j.iot.2022.
100521

14. Mimura, M., Ito, R.: Applying NLP techniques to malware detection in a practi-
cal environment. Int. J. Inf. Sec. 21(2), 279–291 (2022). https://doi.org/10.1007/
s10207-021-00553-8

15. Moser, A., et al.: Limits of static analysis for malware detection. In: Twenty-Third
Annual Computer Security Applications Conference (ACSAC 2007), pp. 421–430
(2007). https://doi.org/10.1109/ACSAC.2007.21

16. Moskovitch, R., et al.: Unknown malcode detection via text categorization and
the imbalance problem. In: 2008 IEEE International Conference on Intelligence
and Security Informatics, pp. 156–161 (2008). https://doi.org/10.1109/ISI.2008.
4565046

17. Nagano, Y., Uda, R.: Static analysis with paragraph vector for malware detec-
tion. In: Proceedings of the 11th International Conference on Ubiquitous Informa-
tion Management and Communication. IMCOM 2017, Association for Computing
Machinery, New York, NY, USA (2017). https://doi.org/10.1145/3022227.3022306

18. Nataraj, L., et al.: Malware images: Visualization and automatic classification.
In: Proceedings of the 8th International Symposium on Visualization for Cyber
Security, VizSec 2011, Association for Computing Machinery, New York, NY, USA
(2011). https://doi.org/10.1145/2016904.2016908

19. Pascanu, R., et al.: Malware classification with recurrent networks. In: 2015 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP),
pp. 1916–1920 (2015). https://doi.org/10.1109/ICASSP.2015.7178304

20. Perdisci, R., et al.: Mcboost: boosting scalability in malware collection and analysis
using statistical classification of executables. In: 2008 Annual Computer Security
Applications Conference (ACSAC), pp. 301–310 (2008). https://doi.org/10.1109/
ACSAC.2008.22

21. Raff, E., et al.: Learning the PE header, malware detection with minimal domain
knowledge. In: Proceedings of the 10th ACM Workshop on Artificial Intelligence
and Security, AISec 2017, pp. 121–132. Association for Computing Machinery, New
York, NY, USA (2017). https://doi.org/10.1145/3128572.3140442

22. Raff, E., et al.: Malware detection by eating a whole exe (2017). https://doi.org/
10.48550/ARXIV.1710.09435

23. Raffetseder, T., Kruegel, C., Kirda, E.: Detecting system emulators. In: Garay,
J.A., Lenstra, A.K., Mambo, M., Peralta, R. (eds.) ISC 2007. LNCS, vol. 4779, pp.
1–18. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75496-1_1

24. Rahbarinia, B., et al.: Exploring the long tail of (malicious) software downloads.
In: 2017 47th Annual IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN), pp. 391–402 (2017). https://doi.org/10.1109/DSN.2017.19

https://doi.org/10.1007/978-3-642-23644-0_18
https://doi.org/10.1007/978-3-642-23644-0_18
https://doi.org/10.1109/ACCESS.2019.2948358
https://doi.org/10.1109/ACCESS.2019.2948358
https://doi.org/10.1016/j.iot.2022.100521
https://doi.org/10.1016/j.iot.2022.100521
https://doi.org/10.1007/s10207-021-00553-8
https://doi.org/10.1007/s10207-021-00553-8
https://doi.org/10.1109/ACSAC.2007.21
https://doi.org/10.1109/ISI.2008.4565046
https://doi.org/10.1109/ISI.2008.4565046
https://doi.org/10.1145/3022227.3022306
https://doi.org/10.1145/2016904.2016908
https://doi.org/10.1109/ICASSP.2015.7178304
https://doi.org/10.1109/ACSAC.2008.22
https://doi.org/10.1109/ACSAC.2008.22
https://doi.org/10.1145/3128572.3140442
https://doi.org/10.48550/ARXIV.1710.09435
https://doi.org/10.48550/ARXIV.1710.09435
https://doi.org/10.1007/978-3-540-75496-1_1
https://doi.org/10.1109/DSN.2017.19

60 S. Kanno and M. Mimura

25. Rossow, C., et al.: Prudent practices for designing malware experiments: status
quo and outlook. In: 2012 IEEE Symposium on Security and Privacy, pp. 65–79
(2012). https://doi.org/10.1109/SP.2012.14

26. Salton, G., et al.: A vector space model for automatic indexing. Commun. ACM
18(11), 613–620 (1975). https://doi.org/10.1145/361219.361220

27. Santos, I., et al.: OPEM: a static-dynamic approach for machine-learning-based
malware detection. In: Herrero, A., et al. (eds.) International Joint Conference
CISIS’12-ICEUTE’12-SOCO’12 Special Sessions. Advances in Intelligent Systems
and Computing, vol. 189, pp. 271–280. Springer, Berlin (2013)

28. Saxe, J., Berlin, K.: Deep neural network based malware detection using two dimen-
sional binary program features. In: 2015 10th International Conference on Mali-
cious and Unwanted Software (MALWARE), pp. 11–20 (2015). https://doi.org/10.
1109/MALWARE.2015.7413680

29. Schultz, M., et al.: Data mining methods for detection of new malicious executables.
In: Proceedings 2001 IEEE Symposium on Security and Privacy, S&P 2001, pp.
38–49 (2001). https://doi.org/10.1109/SECPRI.2001.924286

30. Shafiq, M.Z., et al.: Pe-miner: mining structural information to detect malicious
executables in realtime. In: Kirda, E., et al. (eds.) Recent Advances in Intrusion
Detection. Lecture Notes in Computer Science, vol. 5758, pp. 121–141. Springer,
Berlin Heidelberg, Berlin, Heidelberg (2009). https://doi.org/10.1007/978-3-642-
04342-0_7

31. Terada, M., et al.: MWS datasets for anti-malware research contribution to the
community and its challenges. Technical report 8, Tokyo Denki University/Hitachi
Ltd., NTT Secure Platform laboratories, N.F. Laboratories Inc., Nippon Telegraph
and Telephone Corporation, Japan Advanced Institute of Science and Technology
(2020)

32. Tran, T.K., Sato, H.: NLP-based approaches for malware classification from API
sequences. In: 2017 21st Asia Pacific Symposium on Intelligent and Evolutionary
Systems (IES), pp. 101–105 (2017). https://doi.org/10.1109/IESYS.2017.8233569

33. Vaswani, A., et al.: Attention is all you need. In: Guyon, I., et al.
(eds.) Advances in Neural Information Processing Systems, vol. 30. Cur-
ran Associates, Inc. (2017). https://proceedings.neurips.cc/paper/2017/file/
3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

34. VMware Inc: Global incident response threat report 2022. https://www.
vmware.com/content/dam/learn/en/amer/fy23/pdf/1553238_Global_Incident_
Response_Threat_Report_Weathering_The_Storm.pdf. Accessed 03 Feb 2023

35. Yakura, H., et al.: Neural malware analysis with attention mechanism. Comput.
Secur. 87(C), 101592 (2019). https://doi.org/10.1016/j.cose.2019.101592

36. Ye, Y., et al.: SBMDS: an interpretable string based malware detection sys-
tem using SVM ensemble with bagging. J. Comput. Virol. 5(4), 283–293 (2009).
https://doi.org/10.1007/s11416-008-0108-y

https://doi.org/10.1109/SP.2012.14
https://doi.org/10.1145/361219.361220
https://doi.org/10.1109/MALWARE.2015.7413680
https://doi.org/10.1109/MALWARE.2015.7413680
https://doi.org/10.1109/SECPRI.2001.924286
https://doi.org/10.1007/978-3-642-04342-0_7
https://doi.org/10.1007/978-3-642-04342-0_7
https://doi.org/10.1109/IESYS.2017.8233569
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://www.vmware.com/content/dam/learn/en/amer/fy23/pdf/1553238_Global_Incident_Response_Threat_Report_Weathering_The_Storm.pdf
https://www.vmware.com/content/dam/learn/en/amer/fy23/pdf/1553238_Global_Incident_Response_Threat_Report_Weathering_The_Storm.pdf
https://www.vmware.com/content/dam/learn/en/amer/fy23/pdf/1553238_Global_Incident_Response_Threat_Report_Weathering_The_Storm.pdf
https://doi.org/10.1016/j.cose.2019.101592
https://doi.org/10.1007/s11416-008-0108-y

KDRM: Kernel Data Relocation
Mechanism to Mitigate Privilege

Escalation Attack

Hiroki Kuzuno1(B) and Toshihiro Yamauchi2

1 Graduate School of Engineering, Kobe University, Kobe, Japan
kuzuno@port.kobe-u.ac.jp

2 Faculty of Environmental, Life, Natural Science and Technology,
Okayama University, Okayama, Japan

yamauchi@okayama-u.ac.jp

Abstract. A privilege escalation attack by memory corruption based
on kernel vulnerability has been reported as a security threat to operat-
ing systems. Kernel address layout randomization (KASLR) randomizes
kernel code and data placement on the kernel memory section for attack
mitigation. However, a privilege escalation attack will succeed because
the kernel data of privilege information is identified during a user pro-
cess execution in a running kernel. In this paper, we propose a kernel
data relocation mechanism (KDRM) that dynamically relocates privilege
information in the running kernel to mitigate privilege escalation attacks
using memory corruption. The KDRM provides multiple relocation-only
pages in the kernel. The KDRM selects one of the relocation-only pages
and moves the privilege information to the relocation-only pages when
the system call is invoked. This allows the virtual address of the privi-
lege information to change by dynamically relocating for a user process.
The evaluation results confirmed that privilege escalation attacks by user
processes on Linux could be prevented with KDRM. As a performance
evaluation, we showed that the overhead of issuing a system call was up
to 149.67%, and the impact on the kernel performance score was 2.50%,
indicating that the impact on the running kernel can be negligible.

1 Introduction

Memory corruption countermeasures in the operating system (OS) kernel are
paramount. In particular, privilege escalation attack and security-feature dis-
abling attacks use memory corruption of kernel data [3,7].

In this regard, kernel address space layout randomization (KASLR) randomly
places kernel code and data on the kernel memory at kernel startup as a coun-
termeasure against memory corruption attacks. KASLR makes it challenging to
identify the virtual address of the kernel data to be attacked and reduces the
possibility of kernel data tampering due to memory corruption. However, the
virtual address of kernel data (e.g., privilege information) on the kernel memory
is fixed in the running kernel, which poses the following problem.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Li et al. (Eds.): NSS 2023, LNCS 13983, pp. 61–76, 2023.
https://doi.org/10.1007/978-3-031-39828-5_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-39828-5_4&domain=pdf
http://orcid.org/0000-0003-2686-2541
http://orcid.org/0000-0001-6226-5715
https://doi.org/10.1007/978-3-031-39828-5_4

62 H. Kuzuno and T. Yamauchi

Fig. 1. Overview of the KDRM

Privilege information illegal modification
Assume that an attacking user process has identified the virtual address of
the privilege information to be attacked in a running kernel [8].
The privilege information can be tampered with by an attack exploiting the
kernel vulnerability. Therefore, an attacker can conduct a privilege escalation
attack.

This paper proposes a kernel data relocation mechanism (KDRM) that allows
dynamic relocation of privilege information in the kernel memory to provide the
kernel with resistance to attacks against privilege escalation attack. The KDRM
can be applied to a running kernel with KASLR to improve the attack resistance
of the kernel.

Figure 1 provides an overview of the proposed KDRM. The KDRM forces the
user process to relocate privilege information when a system call is issued. The
relocation of kernel data contains privilege information that makes it challenging
to identify the virtual address of privilege information.

The KDRM allocates multiple relocation-only pages (4 KB) for each user
process in the kernel memory and uses them to store privilege information to be
protected. When a system call is issued, the privilege information to be protected
is replicated to a randomly selected relocation page, and the reference to privilege
information to be protected is changed to the replicated page. Then, the original
page is temporary unmapped by KDRM for the tampering protection in the
kernel memory. The virtual address of privilege information in the running kernel
is dynamically changed by changing the page and protected by unmapping the
page where the privilege information is stored each time a system call is issued.

KDRM: Kernel Data Relocation Mechanism 63

Table 1. Types and effects of kernel vulnerability [1]

Item Description

Type Missing pointer check Lack of pointer variable verification

Missing permission check Lack of permission verification

Buffer overflow Overwriting of the stack or heap space

Uninitialized data Lack of initialization at variable creation

Null deference Access to Null variable

Divide by zero Zero dividing calculation

Infinite loop Occurrence of the infinite loop process

Data race / deadlock Occurrence of race condition or deadlock

Memory mismanagement Inconsistent allocation of memory allocation and free

Miscellaneous Other wrong implementations

Effect Memory corruption Modification of kernel data

Policy violation Miss implementation of access control decision

Denial of Service Forcing kernel to stop running

OS information leakage Information leakage from uninitialized data variables

In the proposed approach, the difficulty in identifying the virtual address
of privilege information depends on its size to be relocated and the number of
relocation-only pages. When the relocation target is 256 bytes (8 bits) and one
relocation-only page (4 KB, 12 bits) is set as one page, the privilege information
can be protected from brute force attacks in the range of 4 bits (see Sect. 6.7 for
details).

Suppose that a user process performing a privilege escalation attack executes
vulnerable kernel code that can be used in an arbitrary memory corruption
attack. In that case, an attempt to tamper with privilege information can occur.
However, the KDRM makes it challenging to locate the exact virtual address
of privilege information. Therefore, tampering with privilege information occurs
the page fault. In particular, tampering fails, and privilege escalation attacks are
prevented.

The research contributions in this paper are as follows:

1. To mitigate memory corruption attacks, we designed and implemented a secu-
rity mechanism that enables the dynamic relocation of privilege information
when a system call is issued. We implemented the KDRM on Linux, which is
resistant to privilege escalation attacks.

2. We confirmed that the KDRM could prevent privilege escalation against user
processes that attempt privilege escalation attacks. In this regard, the impact
of the KDRM on user process and kernel operation was evaluated. The results
showed that the overhead to the kernel when issuing system calls ranged from
102.88% to 149.67%, and the impact on the kernel performance score was
2.50%.

64 H. Kuzuno and T. Yamauchi

2 Memory Corruption Vulnerability

Kernel vulnerabilities are mis-implementations that can be used to attack the
kernel. Table 1 lists a classification of 10 types of kernel vulnerabilities and sum-
marizes the effect of four types of attacks using kernel vulnerabilities [1].

Fig. 2. Structures related to user ID in Linux [4]

The KDRM is a countermeasure against memory corruption attacks that
exploit kernel vulnerabilities related to pointers and variables. A memory cor-
ruption attack is an attack that attempts to write an arbitrary virtual address in
the kernel memory. If the memory area to be attacked is rewritable, the attack
target is overwritten by memory corruption.

Privilege Escalation Attack: For privilege escalation attacks, a kernel vul-
nerability that takes privilege management omissions to forcibly call kernel code
that performs privilege modification operations [14–16] and memory corruption
attacks has been reported [17].

The attacker attempts a privilege escalation attack that targets kernel data
concerning user process privilege information, which is placed in the kernel mem-
ory. As a precondition for a successful privilege escalation attack, the virtual
address of the kernel data that stores privilege information must be correctly
specified as the attack target. After that, an attacker attempts to tamper with
the kernel data that stores privilege information. Furthermore, the attacker can
change the user ID of a user process to an administrator user in the case of a
memory corruption attack.

KDRM: Kernel Data Relocation Mechanism 65

Privilege Information: The attack target was kernel data related to privilege
information. Figure 2 illustrates the structure definition of user ID in Linux. The
task_struct structure in Linux manages user processes and stores privilege
information. Line 5 shows that the privilege information is stored in the cred
structure that manages the user process. The user ID is stored in the variable
uid of the kuid_t structure on line 12, which is included in the cred structure
on lines 9 through 16. The kuid_t structure has variable val of uid_t on lines
18 through 22. In a privilege escalation attack, the variable val of the uid of
the kuid_t structure is rewritten to the user ID (0) of the root.

3 Threat Model

Attack Target Environment: The threat model in this study considered an
attacker attempting a memory corruption via a kernel vulnerability. The attack
target environment, assumed as the threat model, is summarized as follows:

– Attacker: Runs a user process with general user privileges. In the user pro-
cess, the attacker executes the attack code, calls vulnerable kernel code and
attempts a memory corruption attack.

– Kernel: Contains kernel vulnerabilities that can be used for memory corrup-
tion attacks, allowing user processes to call vulnerable kernel code. No security
mechanisms other than access control functions are applied to user processes.

– Kernel Vulnerability: Specify an arbitrary virtual address of kernel data and
achieve a memory corruption attack. Receive the virtual address and over-
written data of the attack target from the user process and tamper the kernel
data of the attack target.

– Attack target: The attack target is kernel data placed on the kernel memory.
The attack target stores user process privilege information.

Attack Scenario: In the assumed attack scenario, the attacker attempts a
memory corruption attack against the kernel. In particular, the attacker executes
an arbitrary user process as a normal user. The user process invokes vulnerable
kernel code to perform memory corruption attacks that can overwrite the kernel
data using arbitrary data.

For example, in a privilege escalation attack, an attacker identifies the posi-
tion of the kernel data containing the privilege information of a user process.
Subsequently, the attacker overwrites the privilege information of the user ID to
administrative privilege.

4 The Design of the Approach

4.1 Requirement

The KDRM dynamically relocates protected kernel data during kernel operation.
The design aims to satisfy the following requirements:

66 H. Kuzuno and T. Yamauchi

RQ1: The assumed attack is privilege information modification by a memory
corruption attack through a kernel vulnerability during the execution of a
system call.

RQ2: Relocation control of protected kernel data on the kernel is transparent to
user processes.

RQ3: To make it difficult to identify the relocation position of privilege infor-
mation.

Fig. 3. Design overview of the KDRM

4.2 Concept

The design concepts of the KDRM are defined as follows:

– Concept 1: The protected kernel data relocation handling its performed in
the kernel to mitigate attacks from user processes and make it challenging to
detect countermeasures.

– Concept 2: The KDRM is designed to mitigate attacks on the protected kernel
data relocation handling so that user processes and kernel operations are
unaffected.

4.3 Protected Kernel Data Relocation Challenge

The design outline of the KDRM is shown in Fig. 3. Based on the design concepts
of the KDRM and to satisfy the requirements, multiple relocation-only pages are

KDRM: Kernel Data Relocation Mechanism 67

provided as relocation destinations of kernel data to be protected in the kernel
on the kernel memory. In addition, a list of kernel data to be protected, a list of
relocation-only pages, and a list of system calls that are excluded from relocation
handling by the KDRM.

Protection Kernel Data: In the KDRM, the protected kernel data to be relo-
cated on the kernel memory. The protected kernel data is privilege information
that is created at the time of user process creation.

Relocation-Only Page: In the KDRM, the relocation-only page is kernel page
to which the protected kernel data is relocated. The KDRM provides multiple
relocation-only pages on the kernel memory.

Table 2. Protected kernel data and Exclusion system call list

(a) Kernel data to be protected in the KDRM
implementation

Item Description

Protected kernel data

User ID (e.g., uid, euid,

fsuid, and suid)

Group ID (e.g., gid, egid,

fsid, and sgid)

(b) A system call that performs authorization
operation that exempts the realization method

Item Description

Exclusion systemcall list

execve, setuid, setgid,

setreuid, setregid,

setresuid, setresgid,

setfsuid, setfsgid

Relocation Handling: The relocation handling of the protected kernel data in
the KDRM is performed before and after the execution of the system call.

– Before system call execution: Protected kernel data is relocated to a
relocation-only page and temporary unmapped the original kernel data from
kernel memory.

– After executing the system call: The protected kernel data on the relocation-
only page is moved to the original kernel data location.

In the KDRM, the relocation destination of protected kernel data is selected
randomly from a list of relocation-only pages before executing the system call.
The virtual address of the protected kernel data after relocation changes within
a specific range, making it difficult to specify the virtual address.

5 Implementation

5.1 Implementation Overview

Linux on the x86 64 CPU architecture was assumed to be the environment for
implementing the scheme. An overview of the implementation, the KDRM cre-
ates a new page and placed for each user process to make the privilege informa-
tion of the kernel data to be protected. While processing of the implementation
method, the page storing the privilege information is replicated to a randomly
selected relocation-only page before the execution of the system call, and the
virtual address of the privilege information is changed.

68 H. Kuzuno and T. Yamauchi

5.2 Protected Kernel Data

In the implementation method, a kernel page (4 KB) is created to store the
protected kernel data as the privilege information of the user process.

Table 2a lists the privilege information of the protection target. During the
operation period of the user process, each kernel page (4 KB) is subject to
relocation handling.

5.3 Relocation Kernel Page

In the implementation, a certain number of relocation-only pages are allocated at
kernel startup to reduce the load during user process creation. The alloc_pages
function is used for allocating relocation-only pages. Multiple relocation-only
pages (4 KB) (e.g., 10) are allocated when a user process was created. In addition,
the remove_pagetable function is used for the unmapping original kernel page
from the kernel page table that is the variable pgd of current.

A specific range of virtual addresses in the kernel memory can be used as relo-
cation destinations for privilege information by allocating multiple relocation-
only pages to each user process. In addition, the relocation-only page can be
randomly selected, making it difficult to identify the virtual address of the relo-
cation destination.

5.4 Relocation Handling

Relocation control of kernel data that stores privilege information is performed
by using a list of relocation-only pages and a list of exempted system calls as
follows:

1. Hooks system calls invocations by user processes.
2. Determine if the system call number is included in the list of exempted system

calls.
(a) For exempt system calls: privilege information is not relocated.
(b) For other than exempt system calls: privilege information is relocated.

i Randomly selects a relocation-only page from the list of relocation-
only pages as the relocation destination for privilege information.

ii Duplicate the kernel data storing the privilege information to the
relocation-only page by page.

iii Change the reference from the privilege information in the kernel to
the replication destination.

iv Unmap the privilege information of the original kernel page from the
kernel page table.

3. Continue execution of the system call.
4. Terminate system call.

KDRM: Kernel Data Relocation Mechanism 69

KDRM restores the privilege information of the original kernel page to the
kernel page table after the termination of other than exempt system calls.

Page Fault Handling: An attempt to illegally overwrite kernel data that con-
tain privilege. The page fault handler’s handle_page_fault function catches a
privilege escalation attack. The Linux kernel can know the referenced virtual
address at the page fault. The implementation method compares the virtual
address of the privilege information before relocation handling. As the page
fault occurs, a SIGKILL is sent to the target user process with the function
force_sig_info when considered an illegal write.

Protected Kernel Data Relocation Exemptions: Depending on the type
of kernel data to be protected, reference or write failures to kernel data due to
relocation in the kernel might affect the kernel and user process operations.

In particular, the KDRM allows the user to specify in advance which system
calls are exempted from relocation for each protected kernel data to avoid affect-
ing the kernel and user processes. Moreover, KDRM uses these system calls to
determine whether the relocation handling is applicable. The kernel data to be
protected is not relocated when the specified exempted system call is executed.

In the implementation, the writing to privilege information may cause page
faults; Thus, system calls that explicitly write to privilege information are man-
aged as a list of exemptions in Table 2b, which summarizes the system calls that
operate the privilege information.

6 Evaluation

6.1 Evaluation Purpose

We evaluated the kernel with KDRM to investigate the security capability, the
overhead to kernel processing, and the attack difficulty by relocating kernel data.
The evaluation contents are listed as follows:

1. Privilege escalation attacks security assessment
We evaluated whether the kernel with KDRM can prevent privilege escalation
attacks by introducing kernel vulnerabilities that can be used for memory
corruption.

2. Performance evaluation in kernel operation
We used benchmarking software to calculate the kernel performance score
with KDRM.

3. Performance evaluation in issuing system calls
Using benchmark software, we measured the overhead of relocating kernel
data before and after issuing system calls on a kernel with KDRM.

4. Attack difficulty assessment with kernel data relocation
The granularity of randomization of virtual addresses by the relocation of
kernel data using KDRM was compared with KASLR to evaluate the attack
difficulty.

70 H. Kuzuno and T. Yamauchi

6.2 Evaluation Environment

The evaluation device was used for security evaluation and performance evalu-
ations. The evaluation device was an Intel(R) Xeon(R) W-2295 (3.00 GHz, 18
cores, 32 GB memory) running Debian 11.3, Linux kernel 5.18.2. We imple-
mented the KDRM in Linux kernel 5.18.2 with 248 lines of code for nine files.
Furthermore, we added 32 lines of kernel vulnerabilities that can be used for
memory corruption for security evaluation to three files and implemented the
PoC code in 134 lines.

6.3 Kernel Vulnerability

The following system calls were introduced to evaluate the security capability of
KDRM:

Fig. 4. Results of Preventing Privilege Elevation Attacks Using the KDRM.

– Original system call 1: Original system call 1 identifies the virtual address
of the kernel data (e.g., the privilege information of the user process), then
returns it to the user process.

– Original system call 2: Original system call 2 takes two arguments. The first
argument is the virtual address, and the second is the overwritten data. Exe-
cution of the original system call 2 attempts to overwrite kernel data of the
specified virtual address. A privilege escalation attack is possible if the first
argument is the virtual address of the privilege information of the user process
and the second argument is root ID (e.g., 0).

6.4 Privilege Escalation Attacks Security Assessment

As a security assessment, the attacking user process uses the original system call
1 to identify the virtual address of the privilege information and then attempts
a privilege escalation attack using the original system call 2.

Figure 4 shows the attack prevention results of KDRM when a user process
executes a privilege escalation attack.

In the attacking user process, line 2 displays the privilege information of the
user process. The value of uid is 1,000, which confirms that the user is a normal

KDRM: Kernel Data Relocation Mechanism 71

user. In line 4, it calls the original system call 1 to specify the virtual address of
the kernel data storing the privilege information.

In line 5, the user executes the original system call 2, a privilege escalation
attack. In the kernel, line 8 shows the virtual address of the kernel data con-
taining the privilege information. Lines 13 and 14 indicate the range of virtual
addresses of the relocation-only page. In lines 15 and 16, KDRM moves the ker-
nel data that stores the privilege information to the relocation-only page. The
virtual address is changed before executing the original system call 2.

In line 18, an attempt is made to overwrite the virtual address specified by
the original system call 2. A page fault with error number 2 is caught in line
19. This indicates a violation of writing to the page for the virtual address. The
writing target is the previous virtual address of privilege information.

Table 3. UnixBench compile performance of implementation

Vanilla kernel Implementation

Dhrystone 2 4450.50 4440.50 (0.22%)

Double-Precision Whetstone 1557.54 1552.92 (0.30%)

Excel Throughput 1193.23 1187.14 (0.52%)

File Copy 1024 bufsize 4122.08 3997.08 (3.03%)

File Copy 256 bufsize 2790.40 2698.60 (3.29%)

File Copy 4096 bufsize 7401.80 7192.62 (2.82%)

Pipe Throughput 2109.68 2041.04 (3.25%)

Pipe-based Context Switching 806.02 785.34 (2.57%)

Process Creation 1019.10 1017.92 (0.12%)

Shell Scripts (1 concurrent) 2485.20 2456.13 (1.17%)

Shell Scripts (8 concurrent) 2298.00 2294.36 (0.16%)

System Call Overhead 1771.08 1620.68 (8.49%)

System Benchmarks Index Score 2195.16 2140.24 (2.50%)

6.5 Overhead of Kernel Performance

To evaluate the performance of the kernel, UnixBench version 5.1.3 was run
five times on the Linux kernel before and after KDRM was applied, and the
performance score was calculated from the average values.

Table 3 lists the UnixBench performance score of each running kernel for
numerical computation, file copy, process processing, and system calls. Higher
score values indicate high performance. From Table 3, the KDRM had most neg-
ligible impact on the score of 0.12% for Process Creation and the most significant
impact on the score of 8.49% for System Call Overhead. The overall impact on
the performance score was 2.50%.

72 H. Kuzuno and T. Yamauchi

6.6 Overhead of Kernel Processing

In KDRM, the privilege information is to be protected when a system call is
performed. In the evaluation, we ran the benchmark software LMbench version
3.0-a9 10 times on a Linux kernel before and after applying KDRM. We calcu-
lated the overhead from the average value of the system call.

Table 4a lists the results of the performance evaluation. In LMbench, the
number of system call invocations differs for each evaluation item: fork+/bin/sh
is 54 times, fork+execve is 4 times, fork+exit is 2 times, open/close is 2 times,
and the others are once.

6.7 Attack Difficulty Assessment by Kernel Data Relocation

A comparison of KDRM and the attack difficulty of Linux KASLR [5,13] is
summarized in Table 4b. The randomization granularity of the virtual address
was expressed in terms of entropy [19]. Moreover, 32 bits of Linux KASLR are
randomized in 2 MB (21 bits) units, 512 MB (29 bits) has 8 bits of entropy, and
1 GB (30 bits) has 9 bits of entropy. In Table 4b, the relocation target is 256
bytes, 8 bits, and the relocation-only pages (4 KB, 12 bits) are 1, 64, and 4096
pages with 4, 10, and 16 bits of entropy.

Table 4. Overhead and randomization entropy comparison

(a) Overhead of KDRM on the Linux kernel (µs)

System call Vanilla kernel Implementation Overhead

fork+/bin/sh 434.2899 446.8079 12.5180 (102.88%)

fork+execve 101.2726 129.0260 27.7534 (127.40%)

fork+exit 89.9990 94.8672 4.8682 (105.41%)

open/close 1.1642 1.4920 0.3278 (128.16%)

read 0.1177 0.1599 0.0422 (135.85%)

write 0.0908 0.1359 0.0451 (149.67%)

fstat 0.1484 0.1953 0.0468 (131.60%)

stat 0.5265 0.6979 0.1714 (132.55%)

(b) The comparison of randomization entropy

Type Entropy Range Align Size

Linux
8 bits 512 MB (29 bits) 2 MB (21 bits)

KASLR 32 bits

Linux
9 bits 1 GB (30 bits) 2 MB (21 bits)

KASLR 64 bits

KDRM 4 bits 4 KB (12 bits) 256 byte (8 bits)

KDRM 10 bits 256 KB (18 bits) 256 byte (8 bits)

KDRM 16 bits 16 MB (24 bits) 256 byte (8 bits)

The number of attack attempts required for successful memory corruption by
a brute-force attack is 1

2n−1 times for n bits entropy if the virtual address is not
changed during the attack attempts. If the virtual address can be randomized
for each attack attempt, it is 2n times [19]. Because Linux KASLR randomizes
virtual addresses only at startup, the number of attack attempts, the result is 1

2n

times. Moreover, KDRM can randomize the virtual address of the kernel data
at each system call of the user process; thus, number of attack attempts is 2n

times for n bits entropy.

7 Discussion

7.1 Evaluation Consideration

Evaluating the resistance to memory corruption attacks confirmed that the ker-
nel with KDRM can mitigate privilege escalation attacks. When implementing

KDRM: Kernel Data Relocation Mechanism 73

KDRM, kernel data of privilege information is designated as a protection target,
relocated, unmapped, and restored in the running kernel. Thus, making virtual
address identification of the privilege information difficult.

The performance evaluation results show that the KDRM slightly affects the
numerical calculations and process operations. However, the KDRM has a high
overhead for processes requiring system calls, such as file copying. As a factor
of overhead, we considered the processing time required to duplicate, unmap,
and restore the protected kernel data after issuing the system call. The results
confirmed that the stability of the kernel operation was not affected through
performance evaluation.

7.2 Approach Consideration

Design and Implementation: The design of KDRM allows the relocation
of protected kernel data at each system call issued to be transparent to user
processes. We specified the user process privilege information stored in the kernel
data at the time of user process creation because the privilege information is a
target of privilege escalation attacks by memory corruption. To protect kernel
data other than privilege information, investigate the writing location for each
kernel data and consider the related system calls.

System calls involving changes in privilege information are excluded from the
application of KDRM to minimize the impact of KDRM on the kernel operation.
In addition, if the kernel data to be protected exceeds the page size (4KB),
or if many references in the kernel exist, the applicability of KDRM must be
considered for performance impact.

Attack Difficulty: In the KDRM, the number of attack attempts against the
protected kernel data is 2n for n bits entropy. The attack cost is increased to
make the memory corruption attack more challenging.

However, the n bit entropy increases or decreases depending on the size of
the kernel data to be protected and the number of relocated pages. Thus, it is
necessary to consider the difficulty of identifying virtual addresses and calcu-
lating the attack cost of memory corruption attacks depending on the type of
kernel data.

7.3 Limitation of KDRM

The KDRM does not prevent vulnerable kernel code calls or illegal memory
writes. CFI verifies the order of code calls and prevents unauthorized code calls.
The Memory Protection Key (MPK) enables the CPU to limit writes on a page-
by-page basis [10]. Therefore, we believe that combining CFI and MPK with
KDRM can improve the attack resistance of the kernel.

7.4 Portability

The KDRM relies on managing the kernel memory per page to protect kernel
data and the privilege information per user process. FreeBSD builds and manages

74 H. Kuzuno and T. Yamauchi

the kernel memory using page tables and assigning privilege information to each
user process [6]. We also believe that the KDRM can be implemented as a
portability feature for FreeBSD.

8 Related Work

Running Kernel Protection: KASLR changes the kernel data and the virtual
address of the kernel code to mitigate kernel memory corruption attacks [19].
Adelie proposes a method for extending KASLR to 64-bit and applying it to
device drivers [18]. A method has also been proposed to apply KASLR to a
guest OS from a virtual machine monitor [9].

Prevention Malicious Code Injection: As an attack prevention technique in
the kernel, exclusive page frame ownership allows exclusive page allocation for
the kernel and user processes [11]. KCoFI enables the kernel to apply control flow
integrity (CFI), treating asynchronous processing as an exception and preventing
incorrect code execution through code call order checking [2].

Table 5. Comparison of kernel data protection methods

Feature KASLR [19] KCoFI [2] KDRM

Protection target kernel code & data kernel data privilege information

Implementation Memory layout randomization Verifying control flow Data relocation

Limitation Kernel booting Asynchronous Relocation number

Kernel Attack Surface Reduction: As an attack surface minimization tech-
nique that removes attackable areas of the kernel, kRazor makes availability
decisions on a per-kernel code basis during user process execution [12]. KASR
places only the kernel code and data necessary for user process execution in
memory space [20].

8.1 Comparison

Table 5 compares the proposed method with the previous studies [2,19].
In particular, KASLR changes the virtual address used for the kernel data

access and kernel code calls at each kernel boot to make attacks more difficult
[19]. In contrast, the virtual address locations of kernel code and kernel data do
not change during kernel startup. The virtual address of kernel code or kernel
data can be identified by a side-channel attack and used for the attack [8]. The
KDRM performs kernel data relocation by using multiple relocation-only pages
(4KB). The KDRM can be applied to a running kernel, and in combination with
KASLR, it can improve its resistance to attacks.

KCoFI runs the kernel on its architecture and can verify the call order of
asynchronous processing [2]. CFI is effective in preventing illegal code calls.

KDRM: Kernel Data Relocation Mechanism 75

In contrast, applying CFI to all kernel code calls in order increases the over-
head. The KDRM features kernel data relocation and does not suppress attacks.
Combined with CFI, the KDRM can prevent attacks when CFI is circumvented.

9 Conclusion

In this paper, we propose a KDRM that can relocate kernel data (e.g., privilege
information) in the kernel memory to mitigate memory corruption attacks. The
KDRM has multiple relocation-only pages, and privilege information is repli-
cated to one of the randomly selected relocation-only pages. It ensures that
allowing the placement of privilege information is changed dynamically and pro-
tected from privilege escalation. The KDRM can be used together with KASLR
in the running kernel. In particular, identifying privilege information and privi-
lege escalation attack is more challenging.

The evaluation results showed that privilege escalation attacks by user pro-
cesses could be prevented. In the overhead evaluation, the kernel load when issu-
ing system calls ranged from 102.88% to 149.67% with a kernel performance score
of 2.50%. The attack difficulty evaluation of the kernel data relocation in KDRM
indicates that this approach required more attack attempts than KASLR.

Acknowledgment. This work was partially supported by the Japan Society for the
Promotion of Science (JSPS) KAKENHI Grant Number JP19H04109, JP22H03592,
JP23K16882, and a contract of “Research and development on new generation cryptog-
raphy for secure wireless communication services” among “Research and Development
for Expansion of Radio Wave Resources (JPJ000254)”. which was supported by the
Ministry of Internal Affairs and Communications, Japan.

References

1. Chen, H., Mao, Y., Wang, X., Zhou, D., Zeldovich, N., Kaashoek, M.F.: Linux ker-
nel vulnerabilities: state-of-the-art defenses and open problems. In: Proceedings of
the Second Asia-Pacific Workshop on Systems. APSys 2011, Association for Com-
puting Machinery, NY, USA (2011). https://doi.org/10.1145/2103799.2103805

2. Criswell, J., Dautenhahn, N., Adve, V.: Kcofi: Complete control-flow integrity for
commodity operating system kernels. In: Proceedings of 2014 IEEE Symposium
on Security and Privacy, pp. 292–307 (2014). https://doi.org/10.1109/SP.2014.26

3. Exploit Database: Nexus 5 android 5.0 - privilege escalation. https://www.exploit-
db.com/exploits/35711/. Accessed 21 May 2019

4. Linux Foundation: The Linux kernel archives. https://www.kernel.org/ Accessed
10 June 2022

5. Linux Foundation: Randomize the address of the kernel image (KASLR). https://
www.kernelconfig.io/config randomize base. Accessed 10 June 2022

6. FreeBSD: FreeBSD architecture handbook. https://www.freebsd.org/doc/en US.
ISO8859-1/books/arch-handbook/. Accessed 18 August 2019

7. grsecurity: super fun 2.6.30+/rhel5 2.6.18 local kernel exploit. https://grsecurity.
net/spender/exploits/exploit2.txt. Accessed 21 May 2019

https://doi.org/10.1145/2103799.2103805
https://doi.org/10.1109/SP.2014.26
https://www.exploit-db.com/exploits/35711/
https://www.exploit-db.com/exploits/35711/
https://www.kernel.org/
https://www.kernelconfig.io/config_randomize_base
https://www.kernelconfig.io/config_randomize_base
https://www.freebsd.org/doc/en_US.ISO8859-1/books/arch-handbook/
https://www.freebsd.org/doc/en_US.ISO8859-1/books/arch-handbook/
https://grsecurity.net/spender/exploits/exploit2.txt
https://grsecurity.net/spender/exploits/exploit2.txt

76 H. Kuzuno and T. Yamauchi

8. Gruss, D., Lipp, M., Schwarz, M., Fellner, R., Maurice, C., Mangard, S.: KASLR
is dead: long live KASLR. In: Bodden, E., Payer, M., Athanasopoulos, E. (eds.)
ESSoS 2017. LNCS, vol. 10379, pp. 161–176. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-62105-0 11

9. Holmes, B., Waterman, J., Williams, D.: KASLR in the age of MicroVMs. In:
Proceedings of the Seventeenth European Conference on Computer Systems,
EuroSys 2022, pp. 149–165. Association for Computing Machinery, NY, USA
(2022). https://doi.org/10.1145/3492321.3519578

10. Intel: Intel R©64 and IA-32 architectures software developer’s manual. https://
www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html.
Accessed 18 Aug 2021

11. Kemerlis, V.P., Polychronakis, M., Keromytis, A.D.: Ret2dir: rethinking kernel
isolation. In: Proceedings of the 23rd USENIX Conference on Security Symposium,
SEC 2014, pp. 957–972. USENIX Association, USA (2014). https://doi.org/10.
5555/2671225.2671286

12. Kurmus, A., Dechand, S., Kapitza, R.: Quantifiable run-time Kernel attack sur-
face reduction. In: Dietrich, S. (ed.) DIMVA 2014. LNCS, vol. 8550, pp. 212–234.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08509-8 12

13. LWN.net: Kernel address space layout randomization. https://lwn.net/Articles/
569635/. Accessed 12 May 2022

14. MITRE: Cve-2016-4997. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-
2016-4997. Accessed 10 June 2019

15. MITRE: Cve-2016-9793. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-
2016-9793. Accessed 10 June 2019

16. MITRE: Cve-2017-1000112. https://cve.mitre.org/cgi-bin/cvename.cgi?
name=CVE-2017-1000112. Accessed 10 June 2019

17. MITRE: Cve-2017-16995. https://cve.mitre.org/cgi-bin/cvename.cgi?
name=CVE-2017-16995. Accessed 10 June 2019

18. Nikolaev, R., Nadeem, H., Stone, C., Ravindran, B.: Adelie: continuous address
space layout re-randomization for linux drivers. In: Proceedings of the 27th ACM
International Conference on Architectural Support for Programming Languages
and Operating Systems, ASPLOS 2022, pp. 483–498. Association for Computing
Machinery, NY, USA (2022). https://doi.org/10.1145/3503222.3507779

19. Shacham, H., Page, M., Pfaff, B., Goh, E.J., Modadugu, N., Boneh, D.: On the
effectiveness of address-space randomization. In: Proceedings of the 11th ACM
Conference on Computer and Communications Security, CCS 2004, pp. 298–307.
Association for Computing Machinery, NY, USA (2004). https://doi.org/10.1145/
1030083.1030124

20. Zhang, Z., Cheng, Y., Nepal, S., Liu, D., Shen, Q., Rabhi, F.: KASR: a reliable and
practical approach to attack surface reduction of commodity OS kernels. In: Bailey,
M., Holz, T., Stamatogiannakis, M., Ioannidis, S. (eds.) RAID 2018. LNCS, vol.
11050, pp. 691–710. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-
00470-5 32

https://doi.org/10.1007/978-3-319-62105-0_11
https://doi.org/10.1007/978-3-319-62105-0_11
https://doi.org/10.1145/3492321.3519578
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://doi.org/10.5555/2671225.2671286
https://doi.org/10.5555/2671225.2671286
https://doi.org/10.1007/978-3-319-08509-8_12
https://lwn.net/Articles/569635/
https://lwn.net/Articles/569635/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-4997
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-4997
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-9793
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-9793
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-1000112
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-1000112
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-16995
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-16995
https://doi.org/10.1145/3503222.3507779
https://doi.org/10.1145/1030083.1030124
https://doi.org/10.1145/1030083.1030124
https://doi.org/10.1007/978-3-030-00470-5_32
https://doi.org/10.1007/978-3-030-00470-5_32

The Effectiveness of Transformer-Based
Models for BEC Attack Detection

Amirah Almutairi1,2(B) , BooJoong Kang1 , and Nawfal Fadhel1

1 School of Electronics and Computer Science, University of Southampton,
Southampton, England, UK

{a.almutairi,b.kang,Nawfal}@soton.ac.uk
2 Department of Computer Science, Shaqra University, Shaqra 11961, Saudi Arabia

amirah@su.edu.sa

Abstract. Business Email Compromise (BEC) attacks are a significant
threat to organizations, with attackers using various tactics to acquire
sensitive information and cause financial damage to target firms. These
attacks are difficult to detect using existing email security systems, as
approximately 60% of BEC attacks do not include explicit indicators such
as attachments and links. Even state-of-the-art solutions using Natural
Language Processing (NLP) rely heavily on such explicit indicators. This
study proposes a transformer-based BEC detection method that can cap-
ture linguistic properties of emails so that could reduce the reliance on
explicit indicators. Our method of combining BERT and BiLSTM offers
the advantage of capturing both global context and local interdepen-
dence, resulting in a comprehensive and nuanced understanding of email
text. In our experiment, the proposed method outperforms the state-
of-the-art solutions, achieving a 0.99% accuracy and this highlights the
potential of transformer-based models in detecting BEC attacks.

Keywords: Business Email Compromise BEC · Phishing · Email
Security · Feature Engineering · Transformer · BERT · BiLSTM

1 Introduction

In today’s digital age, emails are a crucial communication tool used in various
fields, including business and education, due to their accessibility, convenience,
and easy replicability. The number of worldwide email service users is expected to
reach 4.48 billion by 2024, and over 347 billion global emails are predicted to be
sent and received daily by 2023 [1]. However, despite their numerous advantages,
emails also have drawbacks, including the prevalence of deceitful messages such
as spam, phishing, and fake emails.

Phishing emails often appear as fraudulent emails from legitimate companies,
such as banks or internet providers, that deceive the recipient into divulging
sensitive information or taking action, such as changing passwords or disclosing
login details. On the other hand, Business Email Compromise (BEC) attacks

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Li et al. (Eds.): NSS 2023, LNCS 13983, pp. 77–90, 2023.
https://doi.org/10.1007/978-3-031-39828-5_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-39828-5_5&domain=pdf
http://orcid.org/0000-0002-2194-7936
http://orcid.org/0000-0001-5984-9867
http://orcid.org/0000-0002-1129-5217
https://doi.org/10.1007/978-3-031-39828-5_5

78 A. Almutairi et al.

involve an attacker impersonating someone within an organization, such as a
supervisor or IT team member, to manipulate their targets into transferring
money or sensitive information. These attacks can be highly effective, as even
major companies like Google and Facebook have fallen victim to them. Thus, it
is essential that individuals and organizations remain vigilant and take measures
to protect themselves against these forms of cybercrime.

Business Email Compromise (BEC) attacks have become a significant con-
cern for organizations due to the malicious financial damage they can cause
by acquiring sensitive information related to executive accounts as stated by
Ecclesie et al. [2]. Detecting BEC attacks is crucial for maintaining stability and
confidence in digital communication among companies, especially since approx-
imately 60% of BEC incidents do not use a link [3], making them difficult to
detect using traditional email security systems.

The objective of this research is to proposes a transformer-based BEC detec-
tion method that can capture linguistic properties of emails so that could reduce
the reliance on explicit indicators. Additionally, we aim to identify factors that
could aid in identifying malicious attacks in email bodies without additional
information about sources, links, or attachments. To achieve this goal, we will
answer the following research question:

– How can transformer-based models be employed to detect BEC attacks in
plain text emails, and what factors aid in their identification?

While solutions for this problem have been explored within the scope of
NLP, the current state-of-the-art method heavily rely on explicit indicators of
malicious messages, such as links or attachments (Maleki et al. 2019; Cidon
et al. 2019) [4,5]. Our objective is to proposed a transformer-based models to
detect BEC attacks in plain text emails, even without additional information
about sources, links, or attachments, and to identify factors that aid in their
identification. Our results demonstrate the effectiveness of Transformer models,
beating both the baseline model and current state-of-the-art model with a 0.99%
accuracy on Fraud datasets.

2 Background

Our model uses Bidirectional Encoder Representations from Transformers
(BERT), and Long Short-Term Memory (LSTM). Therefore this section
describes the general related information for the proposed methodology.

2.1 Bidirectional Encoder Representations from Transformers
(BERT)

BERT is a pre-training technique for NLP based on a transformer model [6].
Unlike sequential directional models, the transformer encoder reads the entire
word sequence at once, allowing the model to learn the context of words based on

The Effectiveness of Transformer-Based Models for BEC Attack Detection 79

the sentence. BERT is designed to pre-train deep bidirectional representations
from text by conditioning on both left and right contexts, and can be fine-tuned
for a wide range of NLP tasks with only one additional output layer [7] as
shown in Fig. 1. BERT is a plain text corpus-based transformer framework that
employs pre-training and bidirectional, unsupervised language representation.
Google started using BERT for English language search queries in October 2019
and adopted it for 70 languages in December 2019.

– BERT works bidirectionally, left-right or right-left, unlike other techniques,
and provides extended performance and accuracy.

– BERT is pre-trained and uses an unlabelled, plain text corpus including the
entire English Wikipedia. Masked Language Modelling and Next Sentence
Prediction BERT tasks are used for NLP.

– BERT created the possibility of text classification in Python, like embeddings
for our text documents.

Fig. 1. Overall pre-training and fine-tuning procedures for BERT. [6]

Google uses BERT for its search engine, but it can be used for a variety of
language tasks, like fine-tuning, questioning/answering, sentence classification,
named entity recognition, sentence recognition and conversational response gen-
eration. BERT excels at Natural language understanding tasks like Polysemy and
Coreference resolution, natural language inference, sentiment classification and
word sense disambiguation. BERT is open source and is expected to introduce
improvements in terms of higher accuracy and computation time requirements
for different applications.

BERT also released the following pre-trained models:

– BERT-Base, Uncased: This refers to one of the two variants of the BERT
model, which has 12 encoder layers, 768 hidden units, 12 attention heads,
and 110 million parameters. It is called “uncased” because the model was
trained on lowercase text, which allows it to be more robust to variations in
capitalization.

80 A. Almutairi et al.

– BERT-Large, Uncased: This model has 24 layers, 1024 hidden units, 16 atten-
tion heads, and a total of 340 million parameters.

– BERT-Base, Multilingual: Designed to handle multiple languages and has
the following specifications: 104 languages, 12-layer, 768-hidden, 12-heads,
and 110M parameters.

– BERT-Base, Chinese: a version of the BERT model designed for Chinese
language understanding tasks. It consists of 12 layers, 768 hidden units, 12
attention heads, and 110 million parameters, and it supports both Simplified
and Traditional Chinese.

– DistilBERT is a compressed version of BERT that uses fewer parameters and
smaller computational resources while still achieving competitive results on
various NLP tasks. It was introduced in 2019 by Sanh et al. [7]. and is designed
to be faster and more lightweight than the original BERT model. The main
idea behind DistilBERT is to leverage the knowledge distilled from the large
BERT model and transfer it to a smaller model by using a knowledge dis-
tillation approach. DistilBERT has 40% fewer parameters than BERT-Base,
which makes it easier to deploy and train on devices with limited computa-
tional resources.

and there are some Common models of BERT including patentBERT, Med-
BERT, docBERT, G-BERT, and videoBERT, etc. as discussed by Rasmy et
al. [8].

2.2 Long and Bidirectional Short-Term Memory (LSTM) and
(Bi-LSTM)

Long Short-Term Memory was first introduced by Hochreiter and Schmidhuber
in 1997 [9]. LSTM networks are built on top of recurrent neural networks (RNNs)
and incorporate mechanisms to improve the storage of information from previous
data, prolonging the propagation and influence of the current instance on future
inputs. LSTMs are widely used in classification, time series analysis, and natural
language processing tasks, given their versatility and robustness in maintaining
context.

The three elements of the LSTM cell are commonly referred to as gates as
illustrated in Fig. 2:

Input gate allows the cell to incorporate new information from the current
input. Therefore, it determines which data will be stored in the memory cell
and is dependent on the past output and current input.

Forget gate determines the need to retain or discard information from the pre-
vious time step. Therefore, it is responsible for determining how the memory
cell is updated or reset.

Output gate updates information from the current time step to the next. There-
fore, it decides which information will be passed to the next time step.

Bidirectional LSTM (Bi-LSTM) was first introduced by Schuster and Paliwal
[11] Unlike LSTM which runs the input from future to the past, (Bi-LSTM) con-
sists of two LSTM parts and uses the same elements but in different sequence.

The Effectiveness of Transformer-Based Models for BEC Attack Detection 81

Fig. 2. The overall framework of the LSTM by Yong Yu et al. [10]

Forward LSTM runs input from the past to the future. While Backward LSTM
run input from future to past. Then, the outputs of both LSTMs are concate-
nated to form the final output of the Bi-LSTM model. This design enables the
model to analyze information from both the preceding and following context.

3 Related Works

Numerous studies have been performed to develop models that are capable of
detecting malicious messages. However, most of them focus on the directional
model, which does not consider the semantic meaning or context of the words,
where input text reading is done sequentially or surrounding the words. Also,
they depend heavily on explicit indicators of malicious messages but do not
necessarily tackle the problem when such evidence is not available.

Vorobeva et al. [12] proposed a strategy for detecting BEC attacks based on
an examination of the writing style in business email compromises and presented
a functional model. The feature space included writing features such as words
and three-gram phrases, as well as the day of the week and time of day the email
was sent, its urgency, and its header features. Trials were conducted on datasets
containing emails in Russian and English to determine the effectiveness of the
BEC attack detection. The results showed that using word n-grams and Linear
Support Vector Classification (LSVC) with a feature scaling algorithm produced

82 A. Almutairi et al.

the best accuracy for both Russian and English emails. The highest accuracy for
a dataset in English was 0.95, and 0.75 accuracy for the dataset in Russian.

The author Maleki [4] introduced and implemented a behavioural- based
paradigm for detecting BEC whenever accounts or computers were hacked. Their
suggested approach prevented fraudulent emails from being sent, since a lack of
sufficient emails from the sender on the receiver’s side prevents the development
of a valid user profile. Furthermore, they observed that a hacked account or
computer might be turned into a lethal weapon that targets many individuals.
They expressed that it should be halted at the sender’s end, and the actual owner
must be alerted of the calamity. In their experiment on the Enron Dataset, their
framework achieved a total average accuracy of 92% and an F1 score of 93 %.

The authors Debnath et al. [13] aim to develop an email spam detection
system using deep learning methods. The study utilized the Enron spam email
dataset containing 3672 emails classified as Ham and 1499 emails classified as
Spam, and employed NLP techniques, such as TF-IDF and text-to-vector, to pre-
process the email text data. Three deep learning models were constructed using
Long Short-Term Memory (LSTM), Bidirectional LSTM (BiLSTM), and BERT.
These models were trained to classify new incoming emails as either phishing or
legitimate. The results showed that the highest accuracy was achieved with the
BERT model, with a score of 99.14%, followed by Bi-LSTM with 98.34% and
LSTM with 97.15%.

The work by Xiao et al. [14] aims to detect phishing emails and spam by
analysing textual content. The actual representation is done by TF-IDF (Term
Frequency - Inverse Document Frequency) vector. To address a phishing email
according to the attacker which is its source, a Bi-LSTM-Attention model with
a self-trained word2vec model is proposed. The experiment took place with a
dataset built over a random selection of 1200 safe emails, 1200 spam and 1800
phishing emails from the dataset (trec06p) public English corpus provided by
TREC [15]. With the KNN model, the detection of both spam emails and phish-
ing attacks was highly effective. In phishing detection, the achieved accuracy
was 95.27% and the false positive rate was only 1.22%. For spam detection, the
achieved accuracy was 94.53%, with a false positive rate as low as 2.58%. Based
on different attack sources, phishing detection using the Bi-LSTM-Attention
model achieved an accuracy of 91.51%.

Authors Cidon et al. [5] propose a two-stage approach to detect imperson-
ation and avoid attacks of this kind. The setup relies on a divided task. The
classifier first analyses metadata only (i.e., sender, receiver, CC and BCC fields)
to detect impersonation emails by comparing previous behaviour and lists of
reliable websites. Once this classifier raises the flag for a suspicious message, it
is further analysed by a textual approach that individually processes title and
body fields. The content classifier performs the task of detecting messages by
employing an NLP text classifier and link detection. The textual content is rep-
resented using a counting TF-IDF model of unigrams and bigrams with 10,000
features. Links are defined as suspicious if they refer to a small or recent website
or the sending entity is identified as an impersonator. With the two-stage predic-

The Effectiveness of Transformer-Based Models for BEC Attack Detection 83

tion model, the impersonation model detection contributes substantially to the
accuracy of the second stage (textual model). The link classifier achieved 97%
precision and 96% recall with the random forest model. The text classification
model achieved around 99% in precision and 97.5% in recall with the KNN clas-
sifier. It was possible to accurately determine most of the impersonation with the
proposed system. It is notable that the attackers will constantly improvise their
attacks and training models need regular upgrades/training to ensure maximum
protection. By evaluating missed attacks, it was found that even small changes,
such as the name of the sender and new patterns in the textual content could
remain undetected in the system.

4 Proposed Model

BERT, one of the most popular transformer-based models, is an encoder stack of
transformer structures that applies bidirectional training to language modelling
developed by Devlin et al. [6]. BERT architectures have extensive feedforward
networks and attention heads. They take a classification (CLS) token and a
sequence of words as input. Each layer uses self-attention and passes the result
through a feedforward network to the next encoder. The output corresponding
to the CLS token can be used for classification tasks.

In this study, we use a pre-trained BERT BiLSTM model to produce word
embeddings from email texts. Our model uses BERT as a pre-trained language
model for feature extraction, combined with BiLSTM, to enable the model to
learn the context of words based on the sentence.

By combining BERT and BiLSTM, we can leverage the strengths of both
models to provide a more comprehensive representation of the context of a word.
BERT can capture the global context of a word, while BiLSTM can capture
the local context of a word. This combination can help in detecting the most
challenging phishing attacks Business Email Compromise (BEC) attacks, which
rely on publicly available research and social engineering rather than actual
malicious links and attachments.

In the following section, we will describe the experiments we conducted to
evaluate the effectiveness of our approach.

5 Experiment

We will investigate the research question outlines in Sect. 1 using the following
experiment protocol.

Step 1: Formulate the research hypothesis.
Step 2: Pre-process the dataset.
Step 3: Design the model.
Step 4: Evaluate the proposed model using traditional evaluation metrics.
Step 5: Compare our results against baseline models and current studies.

84 A. Almutairi et al.

Step 6: Explore factors that aid in the identification of malicious attacks in
plain email text.

We provide details on each step of the experiment protocol and discuss the
rationale behind our choices. We also present the datasets used, the evaluation
metrics, and the comparison methods. Finally, we analyze the results of our
experiments and draw conclusions regarding the effectiveness of our proposed
method.

5.1 Experimental Setup

The implementation was done in Python 3.9, and made use of the architec-
tures implemented in PyTorch [16] and scikit-learn [17]. The pre-trained BERT
embedding comes from the Hugging Face initiative [18].

For the transformer-based model for detection of BEC phishing attack emails
and safe/legitimate emails, the dataset will be divided randomly into three parts;
70% of the dataset will be used for training the model, 10% will be used for
validation and 20% will be selected for the testing.

Different proposed machine learning- and deep learning-based models will be
tested and results will be evaluated to select the best performing model.

Step 1- Formulate the Experiment Hypothesis. This Experiment aims to
study the following hypothesis:

In a scenario where there is no explicit indicator that mail is from an attacker,
for example: BEC attacks, transformer machine learning based models can be
used to classify messages from trustworthy sources and attackers accurately.

Our model addresses the gaps identified in recent studies by using a pre-
trained language model, BERT, and BiLSTM for feature extraction. The com-
bination of these models allows the model to learn the context of a word within
a sentence, leveraging the strengths of BERT’s ability to provide global context
and BiLSTM’s ability to provide local context. This approach is particularly
useful for detecting Business Email Compromise (BEC) attacks, which rely on
publicly available research and social engineering tactics rather than malicious
links or attachments.

Step 2- Dataset Pre-processing. For our experiment, two datasets were
used. The first one is the fraud email detection dataset [19]. This corpus contains
5,187 phishing emails and 6,742 reliable messages. The second dataset was first
introduced on the Trec 2007 shared task [20], where participants had to build
systems capable of determining the reliability of the messages. This dataset
contains 50,199 phishing emails and 25,220 messages in the control group.

The dataset will be divided randomly into three parts; 70% of the dataset
will be used for training the model, 10% will be used for validation and 20% will
be selected for the testing. An automatic parser was used to extract only the
body content of the message for the Trec dataset.

The Effectiveness of Transformer-Based Models for BEC Attack Detection 85

In contrast to prior works, the proposed method employs solely textual con-
tent to train and assess the efficacy of a natural language processing (NLP)
model. The removal of supplementary metadata related to the sender, recipient,
timestamp, and attachments is undertaken with the objective of creating a set-
ting where detecting Business Email Compromise (BEC) is predicated not on
metadata associated with the email medium, but rather on the linguistic con-
tent of the message. It is noteworthy that BEC is a type of phishing attack.
The present scenario involves detecting BEC without any presence of malicious
payloads and relying only on textual content. As such, employing a phishing
dataset and eliminating malicious payloads is appropriate. By focusing on the
language used in the email, rather than its metadata or attachments

Step 3- Design the Model. The proposed transform-based model shown in
Fig. 3 uses a Bidirectional Encoder Representation from a variation of the regular
BERT embedding model called DistilBERT by Sanh et al. [7]. The model uses
pre-trained embeddings and is fine-tuned for the current task using an LSTM
architecture. The LSTM layer is a bidirectional recurrent neural network layer
(BiLSTM) with 50 neurons in the hidden layer. After the LSTM layer, a fully
connected layer is applied with a softmax activation function.

The model starts by loading a pre-trained DistilBert model and storing its
hidden size as a member variable. Then, the model creates a bidirectional LSTM
layer with 50 hidden units The forward pass of the model starts with passing
the input data through the DistilBert model to get the last hidden state. This is
then permuted, packed, and passed through the LSTM layer to obtain the output
hidden state, output hidden. The output hidden state is then passed through a
dropout layer, with a keep probability of 0.5 to prevent overfitting.

Finally, the output hidden state is passed through a fully connected linear
layer with 2 units to get the binary classification prediction. The softmax func-
tion is then applied to the output to convert the predicted logits into a probability
distribution over the two classes.

Each sentence was tokenized and limited to the first 150 BERT tokens, which
helps reduce the input size while still maintaining a significant amount of context.
To balance the memory constraints and training time, the model was trained
with a batch size of 16 samples. We used AdamW optimizer with a learning rate
of 2e−5 and a weighted cross-entropy loss function to account for the imbalanced
nature of the dataset, where the number of legitimate emails is significantly
higher than the number of phishing emails.

In this study, we trained the model with a maximum of 3 epochs and used
a validation set to stop training early if necessary this helps prevent overfitting
and ensures optimal generalization performance. Table 1 summarize the hyper
parameters used.

To compare the results of the BERT-BiLSTM architecture, two additional
baseline models were implemented. Both of them use a bag-of-words with
weighted inverse frequency (TF-IDF) model as input data. The first one is

86 A. Almutairi et al.

Fig. 3. The structure of BERT-BiLSTM model.

Table 1. Hyperparameters

Hyperparameter Value

MAX length 150

batch size 16

learning rate 2e−5

epochs 3

hidden dim 50

trained with an l2-regularized logistic regression as a classifier, and the second
one is an Xgboost classifier. Table 2 summarizes the models.

In order to train the LogReg and Xgboost baseline models, the data was
cleaned, removing stopwords, numbers, punctuation, math symbols and single
letters. The same parser was used to extract the e-mail body from the Trec 2007
dataset. The input for the models will be a lower-case list of tokens in a sparse
Tf-idf vector. There is no limit to vocabulary or minimum occurrence.

The Effectiveness of Transformer-Based Models for BEC Attack Detection 87

Table 2. Models

Model name Method Features

LogReg Logistic regression TF-IDF counts

Xgboost Distributed gradient boosting TF-IDF counts

BERT-BiLSTM Long short-term memory network DistilBERT embedding

Table 3. Phishing classification weighted average F1 results. (The best F1 score for
each dataset is highlighted).

Model Fraud mail Trec07

Precision Recall F1 Precision Recall F1

LogReg 0.987 0.987 0.986 0.982 0.984 0.982

Xgboost 0.986 0.988 0.987 0.984 0.985 0.984

BERT 0.998 0.997 0.998 0.985 0.986 0.986

Step 4- Evaluate the Proposed Model by the Traditional Evaluation
Metrics and Against the Baseline Model. In this step we evaluate the per-
formance of the proposed model, we make use of a weighted f-measure for overall
performance, as well as the analysis of the false positive rate with precision and
false negative rate with recall metrics.

Table 3 summarizes the results of this exploratory experiment. In the case of
the Fraud mail dataset (left side of Table 3), we observe that BERT is the overall
best-performing alternative, obtaining a 1% improvement over the second best
result. Xgboost performed second on this dataset; however, with a slight margin
when compared with the logistic regression model.

When evaluating the performance over the Trec07 dataset (right side of
Table 3), the BERT model still performed the best, but only with a small
improvement over the Xgboost model, a relatively larger margin over the logistic
regression one.

Step 5 - Compare Against the Current Studies. In this step, we compared
the performance of our proposed model with an existing approach by Xiao et al.
[14]. We chose this study for comparison because it also focused on analyzing
textual content for phishing detection using the Fraud mail dataset. The authors
used KNN and TF-IDF vector representation for their analysis, as well as a Bi-
LSTM-Attention model with a self-trained word2vec model. By comparing the
accuracy of our model with theirs, we can better evaluate its effectiveness in
detecting BEC attacks. Table 4 shows the results of this comparison.

Step 6 - Explore the Factors that Aid in the Identification of Malicious
Attacks as Plain Text Format. Furthermore, we explore the factors that aid
in the identification of malicious attacks as plain email format, Fig. 4 which

88 A. Almutairi et al.

Table 4. Accuracy Comparison with an Existing Approach

Model Method Dataset Accuracy

KNN [14] LSTM /TF-IDF Fraud mail 0.94

(Proposed) BiLSTM / DistilBERT Fraud mail 0.99

presents the word-cloud plots from the 300 most important words to determine
the class for the datasets fraud mail and trec07, respectively. The set of words
is extracted from the initial TF-IDF model through univariate feature selection
using ANOVA with F1 as the score function.

(a) Word cloud of the 300 most
important words in the fraud mail
dataset

(b) Word cloud of the 300 most
important words in the trec06
dataset

Fig. 4. Word clouds of the most important words to determine the classes from datasets

When analysing the word clouds, it is possible to determine that certain
messages are more likely to be an attack based on the content and what they
aim to do with it. As expected, in Fig. 4a we can observe that the most important
features are related to financial topics, which indicates they will be related to
wire transactions. But also, it is notable that most of them address the request
politely (e.g., the use of words Mr., please, dear).

Similar behaviour can be found in Fig. 4b. However, this one is less dedicated
to talking about financial topics. On the other hand, it is possible to find words
that demonstrate the prevalence of links (e.g., www, org, https).

6 Discussion

The proposed model in this study demonstrates promising results in identifying
Business Email Compromise (BEC) attacks, achieving an accuracy of 0.99. This
is an improvement over the existing KNN approach used by Xiao et al. [14], which
achieved an accuracy of 0.94. The comparison against this existing approach
validates the effectiveness of our proposed model in detecting BEC attacks, which
is crucial in mitigating financial losses and preventing fraud.

The Effectiveness of Transformer-Based Models for BEC Attack Detection 89

As for the most common ways to identify, the feature selection model as
shown previously in Figs. 4a and 4b was able to identify the presence of prevalent
patterns in both data sets. In this way, it is possible to identify that they will
make constant use of language that refers to financial transactions, requests for
help, and urgency, mention the organization itself and contains links to external
sites. Those findings match with the previous features in the literature, but here
the model could manage to identify them without our intervention.

7 Conclusions

In this study, we proposed a novel approach for detecting Business Email Com-
promise (BEC) attacks using a pre-trained DistilBERT deep learning model.
Our proposed model achieved an impressive accuracy of 0.99 on the Fraud mail
dataset, outperforming an existing approach that used KNN and TF-IDF vector
representation. Our study also identified key factors that aid in the identifica-
tion of malicious attacks, such as the presence of certain language and content
patterns.

Our findings make a significant contribution to the field of email security, as
they provide an effective and efficient approach for detecting BEC attacks, which
are responsible for significant financial losses for individuals and organizations.
Moreover, our study highlights the importance of considering language and con-
tent factors in the detection of phishing attacks. Specifically, we observed that
polite language and financial topics were prevalent in the Fraud mail dataset,
while the use of links was more common in the TREC07 dataset.

Moving forward, future research can explore the generalizability of our pro-
posed model to other datasets and investigate the interpretability of the model’s
decisions. Additionally, integrating our model into existing email filtering sys-
tems can enhance their performance in detecting BEC attacks and prevent finan-
cial losses for individuals and organizations.

In summary, our proposed model offers a promising approach for detecting
BEC attacks and advancing the field of email security. By identifying key fac-
tors that aid in the identification of malicious attacks, our study offers valuable
insights that can be used to improve the performance of email filtering systems
and prevent financial losses due to BEC attacks.

Acknowledgement. The authors would like to thank the Deanship of Scientific
Research at Shaqra University and the Saudi Arabian Cultural Bureau in London
(SACB) for allowing the research to be undertaken.

References

1. Inc statistics. Online industries most targeted by phishing attacks as of 1st quarter
2021 (2021)

2. Alessandro Ecclesie Agazzi. Business email compromise (BEC) and cyberpsychol-
ogy. arXiv preprint arXiv:2007.02415 (2020)

http://arxiv.org/abs/2007.02415

90 A. Almutairi et al.

3. Barracuda. Threat spotlight: Barracuda study of 3,000 attacks reveals BEC targets
different departments (2018)

4. Maleki, N.: A behavioral based detection approach for business email compromises.
PhD thesis, University of New Brunswick (2019)

5. Cidon, A., et al.: High precision detection of business email compromise. In: 28th
USENIX Security Symposium (USENIX Security 19), pp. 1291–1307 (2019)

6. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of
deep bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805 (2018)

7. Sanh, V., Debut, L., Chaumond, J., Wolf, T.: DistilBERT, a distilled version of
BERT: smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108 (2019)

8. Rasmy, L., Xiang, Y., Xie, Z., Tao, C., Zhi, D.: Med-BERT: pretrained contextu-
alized embeddings on large-scale structured electronic health records for disease
prediction. NPJ Digit. Med. 4(1), 86 (2021)

9. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997)

10. Yong, Yu., Si, X., Changhua, H., Zhang, J.: A review of recurrent neural networks:
LSTM cells and network architectures. Neural Comput. 31(7), 1235–1270 (2019)

11. Schuster, M., Paliwal, K.K.: Bidirectional recurrent neural networks. IEEE Trans.
Sign. Process. 45(11), 2673–2681 (1997)

12. Vorobeva, A., Khisaeva, G., Zakoldaev, D., Kotenko, I.: Detection of business email
compromise attacks with writing style analysis. In: You, I., Kim, H., Youn, T.-
Y., Palmieri, F., Kotenko, I. (eds.) MobiSec 2021. CCIS, vol. 1544, pp. 248–262.
Springer, Singapore (2022). https://doi.org/10.1007/978-981-16-9576-6 18

13. Debnath, K., Kar, N.: Email spam detection using deep learning approach. In:
2022 International Conference on Machine Learning, Big Data, Cloud and Parallel
Computing (COM-IT-CON), vol. 1, pp. 37–41. IEEE (2022)

14. Xiao, D., Jiang, M.: Malicious mail filtering and tracing system based on KNN and
improved LSTM algorithm. In 2020 IEEE International Conference on Depend-
able, Autonomic and Secure Computing, International Conference on Pervasive
Intelligence and Computing, International Conference on Cloud and Big Data
Computing, International Conference on Cyber Science and Technology Congress
(DASC/PiCom/CBDCom/CyberSciTech), pp. 222–229. IEEE (2020)

15. Bratko, A., Filipic, B., Zupan, B.: Towards practical ppm spam filtering: experi-
ments for the TREC 2006 spam track. In: TREC, Citeseer (2006)

16. Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning
library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E.,
Garnett, R. (eds.) Advances in Neural Information Processing Systems vol. 32, pp.
8024–8035. Curran Associates Inc (2019)

17. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn.
Res. 12, 2825–2830 (2011)

18. Wolf, T., et al.: Transformers: state-of-the-art natural language processing. In:
Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing: System Demonstrations, pp. 38–45 (2020). Association for Computa-
tional Linguistics

19. Radev, D.: Clair collection of fraud email, ACL data and code repository.
ADCR2008T001 (2008)

20. Macdonald, C., Ounis, I., Soboroff, I.: Overview of the TREC 2007 blog track. In:
TREC vol. 7, pp. 31–43 (2007)

http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1910.01108
https://doi.org/10.1007/978-981-16-9576-6_18

Blockchain

Resilience of Blockchain Overlay
Networks

Aristodemos Paphitis1(B), Nicolas Kourtellis2, and Michael Sirivianos1

1 Cyprus University of Technology, Limassol, Cyprus
am.paphitis@edu.cut.ac.cy, michael.sirivianos@cut.ac.cy

2 Telefonica Research, Barcelona, Spain

nicolas.kourtellis@telefonica.com

Abstract. Blockchain (BC) systems are highly distributed peer-to-peer
networks that offer an alternative to centralized services and promise
robustness to coordinated attacks. However, the resilience and overall
security of a BC system rests heavily on the structural properties of
its underlying peer-to-peer overlay. Despite their success, critical design
aspects, connectivity properties, and interdependencies of BC overlay
networks are still poorly understood. In this work, our aim was to fill this
gap by analyzing the topological resilience of seven distinct BC networks.

In particular, we probed and crawled these BC networks for 28 days.
We constructed, at frequent intervals, connectivity graphs for each BC
network consisting of all potential connections between peers. We analyze
the structural graph properties of these networks and their topological
resilience. We show that by targeting fewer than 10 highly connected
peers, major BCs such as Bitcoin can be partitioned into disconnected
components. Finally, we uncover a hidden overlap between different BC
networks, where certain peers participate in more than one BC network.
Our findings have serious implications for the robustness of the overall
ecosystem of the BC network.

Keywords: Blockchain · P2P Networks · Robustness

1 Introduction

The success of Bitcoin has resulted in the emergence of numerous blockchains and
cryptocurrencies, with more than 20,000 cryptocurrencies in existence as of 2023.
The distinctive features of blockchain technology have enhanced its visibility
and are expected to disrupt various sectors that traditionally rely on trusted
centralized third parties. Due to their ability to decentralize trust and improve
asset management [12], numerous blockchain solutions have been proposed for
a wide range of use cases, including healthcare, advertising, insurance, copyright
protection, energy, cybersecurity, and government [5,13,14,62].

Blockchains (BC) rely on decentralized peer-to-peer (P2P) networks for their
operation. Peers need to constantly maintain a local copy of all transactions and

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Li et al. (Eds.): NSS 2023, LNCS 13983, pp. 93–113, 2023.
https://doi.org/10.1007/978-3-031-39828-5_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-39828-5_6&domain=pdf
https://doi.org/10.1007/978-3-031-39828-5_6

94 A. Paphitis et al.

blocks, so the availability of the P2P overlay is essential for blockchain-data
propagation. Generally, the security and resilience of networks depend on the
structure of the underlying topology. Despite the significant amount of research
on BC systems, the design and connectivity properties, as well as the interde-
pendencies of BC networks, are not fully understood.

To develop secure and robust blockchain-based tools and infrastructure, it
is crucial to examine the underlying P2P network of blockchains to identify
potential limitations and vulnerabilities. Despite the security provided by proof-
of-work consensus, attacks on the P2P network could weaken consensus in spe-
cific parts of the BC network. By analyzing and understanding the resilience of
these networks, we can mitigate damage from both natural failures and targeted
attacks.

Blockchains are already being used to process large amounts of money; con-
sidering their potential application in other aspects of everyday life, they become
an attractive target for ill-intentioned attacks by malicious actors. Attackers can
exploit network vulnerabilities to carry out various attacks on BC consensus and
fairness [31]. Therefore, it is important to investigate whether small-scale attacks
against a few nodes could provide attackers with a significant advantage.

Despite the rich literature on network resilience [2,6,42,46], the research
community has not yet investigated the robustness properties of blockchain net-
works. In this paper, our aim is to fill this gap by providing a first look at
the resilience of seven distinct blockchain overlays. In particular, we are inter-
ested in the partition tolerance of these networks. We present and discuss the
results of our analysis based on the connectivity graphs that we have collected.
Our analysis focused on several key aspects of blockchain overlays, including
their resilience against random failures and targeted attacks, their spatial cen-
tralization within Autonomous Systems, and their interdependencies. We first
present the results of our analysis on the partition tolerance of blockchain over-
lays against random failures and targeted attacks, examining how these types
of disruption can affect the stability and reliability of the network. Next, we
delve into the issue of spatial centralization in Autonomous Systems and its
impact on network resilience, exploring the concentration of nodes within the
same AS and its impact on network stability. Finally, we discuss their interde-
pendencies, examining the interconnections among blockchain overlays through
common peers and links.

2 Background and Related Work

Although the Bitcoin and Ethereum overlay networks have been thoroughly
studied, their resilience against attacks has not been adequately assessed. We
believe that this omission in the literature is mainly due to a lack of accurate
knowledge of the underlying topology.

2.1 Selected Overlay Networks

In this section, we provide background information on the blockchain networks
under study. Seven networks were chosen, all of which are consistently included

Resilience of Blockchain Overlay Networks 95

in the top 50 cryptocurrencies by market capitalization, according to [15] for
the past few years. We list them alphabetically: Bitcoin, BitcoinCash, Dash,
Dogecoin, Ethereum, Litecoin, and ZCash. With the exception of Ethereum,
the aforementioned BCs are descendants of Bitcoin using very similar overlay
implementations and node discovery protocols.

Bitcoin Overlay Network. In the Bitcoin overlay network, nodes communi-
cate through non-TLS TCP connections to form an unstructured P2P network.
Bitcoin’s security heavily depends on the global consistent state of the BC,
which relies on its Proof-of-Work based consensus protocol. The communication
protocol is briefly documented in [22], but there is no formal specification. To
understand its subtleties, we looked into previous studies [8,35,47] and Bitcoin’s
official source code [21] (reference client). When a node joins the network for
the first time, it queries a set of DNS seeds that are hardcoded in the reference
client. The response to this lookup query includes one or more IP addresses of
full nodes that can accept new incoming connections. Once connected to the
network, a node receives unsolicited addr messages from its connected peers
that contain IP addresses of other peers in the network. In addition, the client
can send to peers getaddr messages to gather additional peers. The reply to a
getaddr message may contain up to 1000 peer addresses. All known addresses
are maintained in an in-memory data structure managed by the address man-
ager(ADDRMAN), and are periodically dumped to disk, in the peers.dat file. This
allows the client to connect directly to those peers on subsequent starts without
having to use DNS seeds. When node A initiates a connection with peer B, it
is considered an outbound connection for A and an inbound for B. The default
Bitcoin parameters dictate 8 outbound connections and up to 117 inbound.

Ethereum Overlay Network. Ethereum’s network communication comprises
three distinct protocols, described in Ethereum’s official documentation [26].
Node discovery in Ethereum is based on the Kademlia routing algorithm, a
distributed hash table (DHT) [44]. In Ethereum, each peer has a unique 512-
bit node ID. A bitwise XOR is used to compute the distance between two Node
IDs. Nodes maintain 256 buckets, each containing a number of entries. Each node
assigns known peers to a bucket, according to the XOR distance from itself. To
find peers, a new node first adds a hard-coded set of bootstrap node IDs to
its routing table. Then sends to these bootstrapping nodes a FIND NODE message
that specifies a random target node ID. Each peer responds with a list of 16 nodes
from its own routing table that are closest to the requested target. Subsequently,
the node tries to establish a number of connections (typically between 25 and
50) with other peers in the network and performs the node discovery procedure
continuously.

2.2 Related Work

Arguably, the aspects of the network layer of blockchain systems have received
much less attention than security and consensus [31]. Dotan et al. [25] recognize

96 A. Paphitis et al.

that blockchain overlay networks have different requirements than traditional
communication networks and observe that their fundamental design aspects are
not well understood. Their work identifies differences and commonalities between
blockchains and traditional networks and highlights open research challenges in
network design for distributed decentralized systems.

Network measurements by Decker and Wattenhofer [18] have revealed that
propagation delay is a critical parameter positively correlated with the appear-
ance of blockchain forks. However, more recent studies indicate that Bitcoin’s
network infrastructure shows signs of improvement [27].

Gencer et al. where the first to point out that major cryptocurrencies face
centralization issues [32]. A large fraction of reachable nodes are located in a
handful of Autonomous Systems (AS). This opens the door for adversaries to
launch network attacks at the Internet level by hijacking the BGP protocol [4].
Such attacks can isolate a large group of nodes from the rest of the network
and introduce delays in message propagation. In fact, such attacks are becoming
more sophisticated and are not easy to detect [55]. Additionally, less than five
mining pools control the majority of hashing power. Furthermore, by combining
knowledge of network topology and message distribution, researchers were able
to identify highly influential nodes that have an advantage in block production
and dissemination, strengthening centralization indications [7,24,28,33].

A large percentage of nodes that participate in the Bitcoin network are
unreachable, making it difficult to accurately analyze their behavior and char-
acteristics. However, previous research has shown that these unreachable nodes
still play a significant role in the network. Wang and Pustogarov [58] found that
a significant number of unreachable nodes propagate a large number of trans-
actions and initiate a small number of connections to the reachable part of the
network. The number of unreachable nodes is estimated to be between 10 and
100 times the number of reachable nodes [34]. These nodes have been found to
have less secure wallets and initiate fewer connections to the reachable part of
the network than the default bitcoin client. In general, understanding the behav-
ior and characteristics of unreachable nodes in the Bitcoin network is important
to improve our understanding of the network as a whole.

Numerous attack vectors, or methods that can compromise blockchain sys-
tems, have been proposed and analyzed in the literature [4,37,43,54,55,60].
Review articles have analyzed these attack vectors, highlighting how network
attacks can be related to other types of attack and how the state of the net-
work can facilitate the success of an attack. Such reviews [31] provide important
information on the various ways networks can be targeted and the factors that
can increase the probability of a successful attack. Understanding these attack
vectors and their relationships to network conditions is crucial for developing
effective defenses and countermeasures.

Accurate inference of the topology, or the arrangement and interconnection
of nodes, in peer-to-peer (P2P) network overlays is a challenging problem that
has yet to be fully solved. Although some research has successfully developed
methodologies to accurately uncover the topology of Bitcoin and Ethereum net-

Resilience of Blockchain Overlay Networks 97

works [19,35,41,45,48], these approaches are often no longer applicable due to
changes in the protocol or the official Bitcoin client [20,50,59]. Additionally,
some of these methods [19,41] have an prohibitive cost to execute due to trans-
action fees imposed by the network. Furthermore, very few of these works present
network metrics, which could provide insights into the characteristics and proper-
ties of the network. Recently, the study by Paphitis et al. [52] has shed more light
on the structural properties of blockchain overlay networks. Their findings sug-
gest that major blockchains exhibit dissimilar structural characteristics and show
signs of vulnerability to malicious attacks due to the presence of highly central
nodes. In this work, we are specifically investigating the topological robustness
of such networks and their tolerance against partitioning due to random failures
and targeted attacks. Moreover, we investigate whether their spatial centraliza-
tion in various Autonomous Systems, and their hidden interdependencies, could
further facilitate such attacks.

3 Methodology

In order to study the resilience of blockchain P2P overlays, information on the
structure of the networks is needed. This section explains our main idea, which
bypasses the need for an accurate topology mapping of the network. We prove
that this idea is well founded and we proceed to describe the methods we used
to collect and validate data.

Topology inference in blockchain overlays is a challenging problem that has
not yet been solved. Our approach is to solve a simpler problem while still being
able to measure the structural robustness of these networks. Instead of trying to
accurately capture existing connections between online nodes, which is almost
impossible due to the design of blockchain networks, we focus on collecting all
possible connections that may exist over a period of time. A connection between
two nodes is considered possible if one node includes the other in its list of known
addresses. Using this strategy, we trade accuracy for completeness and are able
to synthesize connectivity graphs that include the vast majority of potential links
between nodes. This method also captures actual connections, that is, all active
links between nodes. Our main aim is to identify structural deficiencies in the
overlays, and we believe that if the synthesized graph of all possible connections
can be partitioned, then the actual realized topology of the overlay is likely to
be partitionable as well. In our data collection, we do not differentiate between
mining nodes or full nodes. We view all nodes as important contributors to the
health of the system and as vital in the dissemination of transactions and blocks.
If most of these nodes were partitioned, the blocks would not propagate in the
P2P network, thus preventing network synchronization.

The goal of our data collection process is to capture the contents of peer.dat
of every reachable peer in the network. This consists of the peer’s view of the
network, which contains all available peers to which it can connect. This is easily
achieved by repeatedly asking peers for addresses they know of. To discover the
nodes (peers) of the overlay networks, we modified the crawler maintained by the

98 A. Paphitis et al.

popular site bitnodes.io to meet our needs [9,61]. We added features that enable:
a) crawling multiple chains using distinct processes; b) storing the mapping of
each node to its known-peers; c) and synchronizing the processes to dump the
collected data for each blockchain at the same timestamp. Implementing an
Ethereum crawler is substantially different since it uses a different protocol.
The Ethereum crawler was built on the open source Trinity client [56] and all
blockchain-related processing was disabled. We only implemented those parts
of the protocols necessary to instantiate connections to Ethereum peers and
participate in the discovery process.

3.1 Validation

A simple proof that the actual connection graph is not likely to be resilient
when the synthesized one already is not, is provided here to further support
our argument. As already described in the previous paragraphs, a synthesized
graph G consists of all possible connections that could exist in the network. In
this case, the actual graph R, which contains only the real links (active links
between nodes), would be a spanning subgraph of G. A spanning subgraph is a
subgraph that contains all the vertices (nodes) of the original graph but not all
the edges (links). Our proposition is trivially proved considering Lemma 1 by
Harary [36] which states the following: if R is a spanning subgraph of G, then the
connectivity of R cannot be greater than the connectivity of G: k(R) ≤ k(G).
That is, if G is disconnected i.e., k(G) = 0, then R is also disconnected. Thus,
if the measured graph of possible connections can be partitioned by removing
some nodes, then the actual graph will be partitioned as well.

Validation Against Controlled Monitor. To assess the viability of our goal, we
set up an unmodified Bitcoin monitoring node using the official implementa-
tion [16]. We allowed the monitoring node to perform its initial bootstrap of the
blockchain for one week. Subsequently, every ten minutes we retrieve the follow-
ing information from the monitor: a) all inbound and outbound connections, b)
a snapshot of the peers.dat file, and c) the addr reply to a getaddr probing
message. We observe that by issuing enough getaddr messages, we are able to
reconstruct the peers.dat file almost to its entirety.

During our validation period, the monitoring node created a total of 12,241
connections with other peers, 466 were outbound and 11,775 inbound. We
observed 994 unique IP addresses, 368 corresponding to outbound connections,
and 634 to inbound connections. Four of these addresses were in both sets.
The crawler did not capture 444 of the 944 connected IP addresses. Looking
at this weakness, we found that the missing IP addresses were not included in
the peers.dat file. As expected, these were inbound connections from unreach-
able peers on the network. Further inspection revealed that most of these peers
created short-lived connections that were dropped after the initial handshake.
Only 30 of these peers (6% of inbound) created long-lasting connections of more
than 40 min (a similar duration was used in [19]). Interestingly, the client version
strings of these 30 nodes indicate that they were either network monitoring nodes

Resilience of Blockchain Overlay Networks 99

(like bitnodes.io), experimental wallets, or client applications under develop-
ment. We also observed a few client strings that have appeared in the past and
were identified as non-contributing nodes [30] by the community. If we exclude
these non-contributing peers, the total number of unique IP addresses that the
monitoring node connected to is 570 and our crawler missed 10 of them. The ten
missing nodes correspond to a percentage of 1.75%. Furthermore, we analyzed
the messages sent from these missing nodes to the monitoring node and noticed
that all these nodes were far behind on their blockchain. Their most recent block
was several days behind the latest block observed by the monitor.

Validation Against External Data Sources. To further validate the coverage of
our crawler against external data sources, we compared our results with the DSN
Bitcoin Monitoring infrastructure in https://www.dsn.kastel.kit.edu/bitcoin,
originally presented in [48]. Since the IP addresses of [48] are anonymized, we
compare the number of reachable nodes we capture with the number of nodes
scanned by the DSN Monitor. Counting only the reachable peers, we found that
our crawler was able to retrieve a few hundred more nodes on a daily basis. Simi-
larly, we compare the node counts with the historical data collected by a Bitcoin
core developer [38] and the bitnodes.io crawler with similar results. We also
note that although our data set is not very recent, comparing the number of
peers collected to recent captures of the DSN Bitcoin Monitoring, we see that
the size of the network has not changed significantly.

The previous paragraphs indicate that our method is adequate to
create a network snapshot, capable of capturing all active connections
that exist in the network, along with any potential connections that
could be realized among the participating peers.

3.2 Datasets and Experiments

Using the methodology mentioned above, we crawled the selected BC networks
from the datacenter of a European University. The monitoring server has an
8-core/3.2 GHz CPU, 64 GB RAM, and 2.1 TB of HDD storage. The crawling
operations were carried out for a period of about one month (26/06-22/07/2020).
Previous work [17,18,40,45] used a similar duration for their analyzes. At the
end of the crawling period, we had collected 335 network snapshots for each BC
network; 2345 graphs in total. The collected data set is available for review or
reuse at [51]. Our ethical considerations are outlined in Appendix A.

We denote by C the set of the 7 BC networks crawled. At the end of every
two hours period, we have seven different edge sets, one per BC c ∈ C. At the
end of each day, all edge sets belonging to the same network are merged into a
24-h set. All sets are annotated with the date t of their crawl. Each set of edges
corresponds to a graph, denoted St

c, representing a snapshot of the blockchain
network c, on date t.

The following analysis uses the established procedure for the exploration of
the resilience of a network [1,39]. The procedure starts by ranking the nodes by a
network metric and subsequently removing the element in the network with the

https://www.dsn.kastel.kit.edu/bitcoin

100 A. Paphitis et al.

highest ranking. At each removal, the network is analyzed to calculate its remain-
ing size and the number of connected components. The most common node-level
network metrics used are node degree and betweenness centrality [2,42].

4 Results

This section presents and discusses the results of the analysis performed on the
synthesized graphs that were collected, focusing on several key aspects of BC
overlays. The first aspect is the structural robustness of BC overlays to random
failures and targeted attacks. The study examines the impact of these types of
disruptions on the stability and reliability of the network. The next aspect is the
issue of spatial centralization in Autonomous Systems and how it affects the net-
work’s resilience. This exploration includes an examination of the concentration
of nodes within the same AS and how it impacts the network’s stability. The
study also investigates the interdependencies between BC networks, analyzing
how these networks connected to other networks through peers and links.

4.1 Network Resilience to Attacks

This section answers the following question: To what extent are blockchain over-
lays prone to random failures and targeted attacks? We start this investigation
by first describing the attack model. Then, we define three strategies that an
attacker could employ to partition a BC network and evaluate the efficacy of
each strategy. The practicality of the attack is beyond the scope of this work.

Attack Model. An adversary may have various incentives to attack a blockchain
system. In this work, we specifically study attacks on the underlying topology
of BC networks with the goal of impairing the main functions of the network.
Specifically, we define the following two goals of an attacker:

1. Network partitioning: to force the overlay into two or more network partitions.
A network partition is the decomposition of a network into independent sub-
nets, so that no information flow between the partitions is possible due to the
absence of links between nodes.

2. Disturb the information propagation mechanisms by introducing intolerable
delays. Such delays can typically increase the time to reach consensus among
all participants and create a split in the application layer of a BC system. In
fact, propagation delays are known to be a key contributor to BC forks [18].

Such attacks would impair the main functions of a BC network, potentially caus-
ing a decrease in users’ trust in the system. Attackers with external incentives
would be highly motivated to carry out such attacks. To measure the effective-
ness of each goal, we use the following three metrics: a) the size of the largest
weakly connected component, b) the number of connected components, and c)
the network diameter. To this end, we consider the following attack strategies:

Resilience of Blockchain Overlay Networks 101

1. Targeted attacks on unique nodes, based on a selected network metric. We
test out-degree, betweenness centrality, and page-rank.

2. Random attacks using random node removal emulate failures that can occur
in the network in a random fashion and are used as a baseline.

3. Attack minimum-cut edges, in order to partition the network by removing
edges that are positioned in key places in the graph.

Targeted Node Attacks. The removal of a node simultaneously cuts all its
adjacent links, therefore, it is more efficient for an attacker compared to the
removal of targeted links. We focus on how to remove nodes in the most efficient
way to minimize the number of node removals necessary to cause a disruption.
A node can be removed from the network by various means, including DoS
attacks. We follow a static procedure in the sense that each node is given a
static priority of removal, based on a chosen metric. For example, when using
the out-degree metric, the higher the degree, the greater the importance of the
node to be attacked. After removing a node, the priorities are not recalculated.
We remove only reachable nodes from the network one by one, following the
given priority. After each removal, we calculate the size of the largest connected
component and the approximate diameter of the resulting graph. We report
the effectiveness of the three node ranking metrics (betweenness centrality, out-
degree, and page-rank), and compare with the baseline random removal strategy.
We performed the procedure described on all 24-h snapshots per BC. Due to the
high number of graphs collected, we stopped execution after removing 12% of
nodes per snapshot.

As can be seen in Fig. 1, in Bitcoin and Bitcoin Cash, the betweenness and
out-degree strategies have roughly the same shape. The size of the largest con-
nected component decreases significantly after the removal of only a few nodes.
Further removal of nodes gradually shrinks the size to a threshold where the
connected component abruptly falls to 1% of its initial size. This occurs after
the removal of 6% and 4% of the nodes, respectively. Similar behavior has also
been found on the Internet [42]. This finding may not seem very worrisome, since
the reported percentages correspond to a few thousand nodes. However, closer
inspection (shown in Fig. 3) of these two networks indicates that removal of the
first five nodes reduces the size of the largest connected component by 60%,
which is rather alarming. Unlike the size of the largest component, the diameter
of the network starts to increase earlier in this process. This is more pronounced
in Bitcoin Cash.

In Ethereum, the out-degree strategy is more potent. Unlike Bitcoin and
Bitcoin Cash, the size of the largest component does not drop initially. After
removing 2% of the nodes, the size gradually drops to a threshold, close to 5%,
where its size abruptly drops to 1%. The diameter of the network starts to
increase early, but not as quickly as in Bitcoin Cash.

When targeting high-betweenness nodes in Zcash, the largest component
initially falls abruptly. Similarly to Bitcoin, the first removal of nodes reduces
the largest component by 40%. When 4% of the nodes are removed, the largest

102 A. Paphitis et al.

Fig. 1. Evolution of the approximate diameter (upper part) and size of largest weakly
connected component (lower part) when the network in under targeted attack. The
X-axis reports percentage of nodes removed. The lines correspond to the median value
across all snapshots. The shaded area indicates values between 1st-3rd quartile. Orange
x: Out-degree of unique nodes; Beige +: Random unique nodes; Green *: Betweenness
of unique nodes; Red o: Betweenness of overlapping nodes; (Color figure online)

component drops to 50% of its initial size and then shrinks almost linearly.
Targeting high out-degree nodes is less damaging in Zcash. More than 5% of the
nodes must be removed to observe a 20% reduction in the largest component.

The number of connected components for Bitcoin, BitcoinCash, and
Ethereum during the same experiment is plotted in Fig. 2. We cannot observe
a notable rise in the number of components until the networks are significantly
diminished.

Dash, Dogecoin, and Litecoin seem equally resilient to random and targeted
attacks (plots omitted due to space limitations). The size of their largest com-
ponent decreases linearly with the number of nodes removed, and their diameter
is not significantly affected (Table 1).

4.2 Attack Minimum-Cut Edges

Targeting minimum cut edges does not have a significant effect in the networks’
state and requires the removal (or disruption) of a considerable number of net-
work links. To compute the minimum edge cuts, we used the algebraic connec-
tivity of the derived graphs. The algebraic connectivity of a graph is defined as
the second smallest eigenvalue of its Laplacian matrix L, λ2(L), and is a lower

Resilience of Blockchain Overlay Networks 103

Fig. 2. Evolution of number of connected components during the same experiment as
with Fig. 1

Fig. 3. Evolution of the largest weakly connected component when the network is under
targeted attack. The difference with Fig. 1 is that this plot X-axis reports number of
nodes removed. Orange x: Out-degree of unique nodes; Green *: Betweenness of unique
nodes; (Color figure online)

bound on node/edge connectivity [29]. Since calculating the algebraic connec-
tivity of a graph is computationally very expensive (i.e., more than 3 compute
hours per snapshot), we analyzed one snapshot per network. Using the com-
puted eigenvector, we count how many edges are required to be removed to split
the network in two parts, and compute their sizes and ratio of the two subnets
(cut-ratio, computed as largest subnet over the total). The results are presented
in Table 2. Most cuts are highly unbalanced. Bitcoin Cash has an almost per-
fect cut, although a large fraction of edges have to be removed (6.5% of edges
or 10k edges). Bitcoin and Zcash are somewhat affected, by removing less than
0.5% of their network edges. Overall, targeting minimum cut edges does not
have a significant effect on the networks’ state and would require the removal
(or disruption) of a considerable number of edges connecting nodes.

4.3 Spatial Centralization of Blockchain Nodes

As already pointed out by previous works [4,54], BGP routing attacks can be
mounted against Bitcoin by taking advantage of the fact that a high percentage
of Bitcoin nodes reside in only a small number of Autonomous Systems (AS).
We also verify this node centralization by mapping the collected IP address to
ASes using the https://ip-api.com API. Furthermore, we were able to identify a
single AS that hosts 20% of highly connected Bitcoin nodes in all timestamps,
making it a strong candidate for such attacks. In more detail, we identify the

https://ip-api.com

104 A. Paphitis et al.

Table 1. Resilience of graphs to targeted node attacks. We report the number and
percentage of nodes that, when removed, reduce the largest component to 0.5 and 0.01
of its initial size, respectively.

Network Bitcoin Bitcoin
Cash

Dash Dogecoin Ethereum Litecoin Zcash

of Nodes
(50%
reduction)

10 10 - - 300 - 6

% of Nodes
(99%
reduction)

6.5% 4% >12% >12% 5.5% >12% >12%

Table 2. Resilience of synthesized graphs in edge and node removal when attacking
minimum-cut edges.

Bitcoin Bitcoin
Cash

Dash Dogecoin Ethereum Litecoin Zcash

Edges
Removed

5545
(0.1%)

10603
(6.5%)

1451
(0.02%)

581
(0.44%)

2220
(2.71%)

544
(0.08%)

363
(0.33%)

Network
Split

9964/
43949

11367/
11895

46/ 8556 11/ 1069 436/
15345

37/ 6576 258/
1231

Cut
Ratio

0.815 0.511 0.995 0.990 0.972 0.994 0.827

100 highest connected nodes in each snapshot. We then look at the distribution
of these nodes in ASes. Our results are summarized below.

1. 20% of the top Bitcoin nodes are located in a single AS.
2. A single AS hosts a significant number of highly connected nodes in all BCs

(see Sect. 4.4).
3. Ethereum’s top clients are spread over more than 550 ASes and have the most

wide distribution. Bitcoin nodes are spread in 200 ASes, BitcoinCash, Dash,
Dogecoin in 160 and Zcash and Litecoin in 65.

To measure the effect of targeted attacks against Autonomous Systems, we
performed the following test. For each snapshot, we identified the top 10 ASes
with the highest geometric mean of out-degree. Then we simulated the effect
of an attack against these ASes by removing all collocated nodes. The results
are plotted in Fig. 4. The blue dots correspond to the relative size of the largest
connected component, on the left y-axis (median values across snapshots). The
shaded area indicates values between the 1st and 3rd quartile. The yellow bars
indicate the percentage of nodes removed (averaged) and correspond to the scale
on the right y-axis.

Notably, these plots reveal the high centralization of BC nodes in the same
Autonomous Systems, an observation made by previous works as well. Interest-

Resilience of Blockchain Overlay Networks 105

Fig. 4. Targeting selected ASed. X-axis reports number of ASes removed. The Y-axis
on the left reports the size of the Largest Connected Component (blue dots). Right
Y-axis reports the (average) percentage of nodes removed (yellow bars). (Color figure
online)

ingly, all networks are sensitive to such attacks, mainly due to the centralization
of nodes. This is true for DASH, Dogecoin, and Litecoin, where a single AS
hosts 20% of each network’s nodes. On the contrary, Bitcoin is less affected by
this strategy (compared to attacking individual nodes), indicating that high-
degree nodes are scattered in different ASes. Note that results may differ using
a different selection strategy.

4.4 Dependency in Blockchain Overlays

In this section, we address the following questions: Are there network entities
(peers, links) that participate in more than one BC network, concurrently? How
do these common entities affect the resilience of overlay networks?

Chatzigiannis et al. [11] showed that miners can distribute their computa-
tional power over multiple pools and PoW cryptocurrencies to reduce risk and

106 A. Paphitis et al.

Table 3. Edge and Node overlaps (aggregated). ON : number of networks where a
unique entity (node or edge) was found to be overlapping, regardless of time

ON = 2 ON = 3 ON = 4 ON >= 5

Nodes 34814 3909 1489 779

Edges 143577 11034 1958 222

increase profits. Despite [11], there are no other indications that peers in BC sys-
tems participate in more than one cryptocurrencies at the same time. It would
not come as a surprise to find that end users are present in multiple networks,
however, this has not been observed or reported for participating peers so far.

We define as overlapping nodes those nodes that participate in more than
one network at the same timestamp. The intuition of our analysis is as follows.
In each snapshot, we compare the set of overlapping nodes with all other nodes,
in order to draw insights on overlapping nodes’ properties. Before describing the
details of our study, we outline our mathematical notation to help explain our
analysis. As mentioned above (cf. Section 3.2), C is the set of BCs. The notation
St
c represents a snapshot of a blockchain network c, at t timestamp.

We define the set S as our collected data set, which consists of all snapshots
St
c. We denote as St the subset of S that contains all networks at timestamp

t. Subsequently, for each snapshot St
c ∈ St we define two groups, Gt

c and G
′t
c ,

such that Gt
c = St

c − G
′t
c . The first set, Gt

c, is constructed so that ∀ nodes
n ∈ Gt

c, n /∈ St
C\c. That is, the set Gt

c contains the nodes that participate only in

blockchain c at timestamp t. On the contrary, the set G
′t
c contains the overlapping

nodes; those that participate in blockchain c and at least another blockchain
c

′ ∈ C\c, at the same timestamp t.
A first approach to finding network overlaps is to look at our aggregated data

set, S, and count how many nodes and edges (i.e., pairs of endpoints), appear in
more than one network, regardless of time. Table 3 shows the summary of these
results. Evidently, there exists a significant number of network entities (both
nodes and edges) that reside in more than one BC network.

A second step is to investigate whether overlapping entities occur frequently
or sporadically over time. For this, we count all overlapping peers in each St

c. In
Fig. 5 (left), for each BC network c, we plot the ratio of |G′t

c | over |St
c|, i.e., the

number of overlapping peers in snapshot c over the total number of nodes in the
snapshot. Our observations show that in all networks, there is a consistently high
percentage of nodes that overlap and belong to more than one BC network. Based
on this and previous results, we can conclude that there is significant overlap
between BC overlays and that this overlap occurs consistently over time.

Attacking Overlapping Network Entities. To examine how overlapping
nodes could impact the resilience of blockchain overlays to targeted attacks, we
repeat the test of the previous Section (4.1) with a small variation. From each
set St

c∈C , we remove all Gt
c sets. This new set, S

′t
c∈C , contains all nodes that

Resilience of Blockchain Overlay Networks 107

participate in more than one network at the same timestamp. We then sort the
unique elements of S

′t
c∈C in descending order based on their maximum normalized

betweenness centrality. Since a node can participate in more than one network,
we sort the nodes based on the highest value they have across all networks at
time t. We use the Min-Max method to normalize the betweenness centrality
values for each snapshot. After sorting the nodes, we proceed to remove them
from each snapshot St

c at the same time. The nodes are removed in the same
order from all snapshots.

The results of targeting overlapping nodes first are plotted in Fig. 1 with red
circles. The plot reports the average change in the largest connected compo-
nent over all snapshots St

c. Clearly, this strategy is less effective compared to
the strategies used earlier, which target the top central nodes within a specific
network. However, it provides the benefit of attacking multiple networks simul-
taneously. An interesting finding is that Litecoin is more susceptible to this kind
of attack compared to attacks focused on single BC node metrics (not shown in
figure). This is partly explained by the fact that Litecoin has one of the highest
percentages of overlapping nodes (see Fig. 5).

Closer inspection of the data at hand shows that an attacker is able to shrink
the largest connected component of Bitcoin Cash, Bitcoin, Zcash, and Litecoin
networks by 70%, 40%, 25% and 20% respectively. This demonstrates that by
targeting overlapping nodes, a powerful adversary can still mount a successful
partitioning attack in 4 different networks at the same time.

Another effect of overlapping nodes is shown in the strategy described next.
Similarly to the selection performed in Sect. 4.3, we calculated the geometric
mean of the out-degree of all networks, for each AS, across all timestamps. That
is, for each Autonomous System we took into consideration all nodes from all
chains and calculated the geometric mean of their out-degree. We then remove
each AS, simulating an attack against the AS, and calculate the effect on each
network. Removal of an AS simultaneously removes all nodes (from all networks)
that reside on that particular AS. The results of this selection strategy are plotted
in Fig. 5. The significance of overlapping nodes is profound. A disruption in just
6 ASes could have considerable effects in five networks at the same time. In fact,
ASes do not need to be broken down; as demonstrated by Apostolakiet al. [4]
they could be manipulated by false BGP routing advertisements (BGP hijacks).
Notably, a different selection strategy would produce different results.

5 Discussion

Our results suggest that BC overlay networks are robust against random fail-
ures but weak against targeted attacks, a known characteristic of scale-free net-
works [2]. This further suggests that BC overlay networks are not random, con-
trary to their intended design [18]. These results are in line with those obtained
by Miller et al. [45] and Delgado et al. [19]. Our analysis supports the findings of
Paphitis et al. [52], which suggest that larger BC networks are more susceptible
to targeted attacks as a result of the presence of highly connected and centrally
positioned peers.

108 A. Paphitis et al.

Fig. 5. Left : Percentage of nodes that were found in more than one BC network at the
same timestamp. X-axis indicates the timestamp. Right : Size of the largest connected
component of all networks when selected ASes are attacked.

Implications of Partitioning the Connectivity Graph. Peer-to-peer net-
works are known for their dynamic nature, allowing them to adapt to changing
conditions. However, our research reveals that even this inherent dynamicity is
insufficient in countering targeted attacks. The connectivity graphs we construct
serve as representations of all potential connections that could exist in the actual
network. Each edge in the connectivity graph signifies that two nodes are aware
of each other’s presence and have the ability to establish a connection.

Conversely, the absence of an edge in the connectivity graph indicates that
two nodes are unaware of each other’s existence and are highly unlikely to estab-
lish a connection. Partitioning of the connectivity graph has significant impli-
cations. Nodes within a specific partition not only become disconnected from
other network partitions but also lack the knowledge required to establish links
with nodes in different partitions. In essence, the nodes are confined to their
own partition and remain unaware that a portion of the network has become
disconnected.

Limitations. Measurement errors in network analysis are not infrequent [49]
and our approach is not an exception. In fact, the proposed method introduces
a number of false edges in the graph. Second, it is possible, albeit rare, that
certain edges may be overlooked (see Sect. 3.1). To understand how much the
calculated network properties are affected by these errors, we looked into related
studies that investigate the effect of measurement errors in network data. In [52],
we provide an in-depth analysis of these limitations and examine the impact of
false-positive edges. Our findings suggest that the observed connectivity graphs
demonstrate greater resilience compared to the actual connections in the real
network.

Wang et al. [57] studied the effect of measurement errors on node-level net-
work measures and found that networks are relatively robust to false positive
edges. Booker [10] measures the effects of measurement errors on the attack
vulnerability of networks. Similarly to [57], Booker also finds that false positive
edges have the least impact on the effectiveness of random and targeted attacks.

Resilience of Blockchain Overlay Networks 109

From the same work, it is also evident that an error rate of 5% in missing links
is acceptable, when analyzing the impact of different targeting strategies on the
network structure. We believe that the error rate observed in our study is small
enough to allow us to draw meaningful conclusions.

We readily admit that it is possible to miss connections from unreachable
peers towards reachable peers. This resilience assessment relies on the assump-
tion that these links constitute a small minority of all possible links. Our val-
idation results in Sect. 3.1 support this assumption. This assumption is also
supported by [34], which estimates an average degree of 9.8 for unreachable
peers on the Bitcoin network. Our measurements estimate an average degree
of 37 for unreachable peers. Furthermore, in [58] Wang and Pustogarov esti-
mate that unreachable peers establish only 3.5 connections to the network, on
average. Interestingly, they also find that such unreachable peers are not merely
disposable nodes of the network. Instead, they are involved in the propagation
of 43% of Bitcoin transactions. Our resilience study demonstrates that attacking
a handful of key peers can disconnect a large number of unreachable peers and
thus can severely affect message propagation in the network.

Moreover, transient disruptions of the network would increase the likelihood
of forks and could facilitate attacks against consensus. DDoS attacks or BGP
hijacks against a carefully selected AS could partition 10% to 50% nodes from
a network, while a disruption in a handful of ASes has the potential to remove
almost half of all BC nodes in most systems simultaneously.

6 Summary

Our results raise alarm about the resilience of the studied blockchains against
partitioning and message propagation delay attacks. We demonstrate that by
using our methodology, a deliberate and methodical attacker can uncover a small
set of entities central to the topology and target them to substantially suppress
message propagation in more than one BC network simultaneously. Importantly,
all networks seem vulnerable to at least one type of attack strategy. This high-
lights the need to employ measures to enhance network robustness or employ
open topology protocols, rather than relying on topology hiding techniques to
secure the overlay network.

Acknowledgements. This project has received funding from the European Union’s
Horizon 2020 Research and Innovation program under the Marie Sk�lodowska-Curie
INCOGNITO project (Grant Agreement No. 824015), CONCORDIA project (Grant
Agreement No. 830927), SPATIAL project (Grant Agreement No. 101021808) and
the Cyprus’s Research and Innovation Foundation (Grant Agreement: COMPLEMEN-
TARY/0916/0031). The authors bear the sole responsibility for the content presented
in this paper, and any interpretations or conclusions drawn from it do not reflect the
official position of the European Union nor the Research Innovation Foundation.

110 A. Paphitis et al.

A Ethics

In this work we followed standard ethical guidelines [3,23,53] for the collection
and sharing of measurement data. We only collect and process publicly available
data, make no attempt to deanonymize users or link people and/or organizations
to their IP address. No personally identifiable information was collected.

While crawling the networks we only take part in the peer discovery mech-
anism of each network and gather IP addresses known to each node. Those
addresses were only used to synthesize connectivity graphs on which our research
was based. We did not try to identify any user by her IP address and no informa-
tion was redistributed. In fact, our crawler created short lived connections to any
discovered peer in the network and did not respond to any other requests except
the expected initial handshake. We do not respond to any other messages or
requests. In addition, we employed low bandwidth utilization to avoid resource
exhaustion. Our measurements did not cause any disruption or exposure of the
BC networks under study.

Our results unveil particular nodes whose targeting has the potential to dis-
rupt the overlay’s operation. To prevent misuse of this portion of the results, we
do not publish the IP address of any node in our dataset. We instead replace
the IP address with a persistent random identifier and we privately maintain
a private map of IPs to random identifiers for verification and reproducibility
purposes.

References

1. Albert, R., Barabási, A.L.: Statistical mechanics of complex networks. Rev. Mod.
Phys. 74, 47–97 (2002). https://doi.org/10.1103/RevModPhys.74.47, https://link.
aps.org/doi/10.1103/RevModPhys.74.47

2. Albert, R., Jeong, H., Barabási, A.: Error and attack tolerance of complex net-
works. Nature 406(6794), 378–382 (2000). https://doi.org/10.1038/35019019

3. Allman, M., Paxson, V.: Issues and etiquette concerning use of shared measurement
data. In: IMC. ACM (2007)

4. Apostolaki, M., Zohar, A., Vanbever, L.: Hijacking bitcoin: routing attacks on
cryptocurrencies. In: 2017 IEEE Symposium on Security and Privacy, S&P 2017.
IEEE Computer Society (2017). https://doi.org/10.1109/SP.2017.29

5. Azaria, A., Ekblaw, A., Vieira, T., Lippman, A.: MedRec: using blockchain for
medical data access and permission management. In: 2016 2nd International Con-
ference on Open and Big Data (OBD) (2016). https://doi.org/10.1109/OBD.2016.
11

6. Baumann, A., Fabian, B.: How robust is the internet? – insights from graph anal-
ysis. In: Lopez, J., Ray, I., Crispo, B. (eds.) CRiSIS 2014. LNCS, vol. 8924, pp.
247–254. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-17127-2 18

7. Ben Mariem, S., Casas, P., Donnet, B.: Vivisecting blockchain p2p networks: unveil-
ing the bitcoin IP network. In: ACM CoNEXT Student Workshop (2018)

8. Biryukov, A., Tikhomirov, S.: Deanonymization and linkability of cryptocurrency
transactions based on network analysis. In: IEEE European Symposium on Security
and Privacy (EuroS&P) (2019). https://doi.org/10.1109/EuroSP.2019.00022

https://doi.org/10.1103/RevModPhys.74.47
https://link.aps.org/doi/10.1103/RevModPhys.74.47
https://link.aps.org/doi/10.1103/RevModPhys.74.47
https://doi.org/10.1038/35019019
https://doi.org/10.1109/SP.2017.29
https://doi.org/10.1109/OBD.2016.11
https://doi.org/10.1109/OBD.2016.11
https://doi.org/10.1007/978-3-319-17127-2_18
https://doi.org/10.1109/EuroSP.2019.00022

Resilience of Blockchain Overlay Networks 111

9. bitnodes.io: Global bitcoin nodes distribution (2020). https://bitnodes.io
10. Booker, L.B.: The effects of observation errors on the attack vulnerability of

complex networks: Technical report, Defense Technical Information Center, Fort
Belvoir, VA (2012). https://doi.org/10.21236/ADA576235, http://www.dtic.mil/
docs/citations/ADA576235

11. Chatzigiannis, P., Baldimtsi, F., Griva, I., Li, J.: Diversification across mining
pools: optimal mining strategies under pow. J. Cybersecur. 8(1), tyab027 (2022)

12. Chen, W., Xu, Z., Shi, S., Zhao, Y., Zhao, J.: A survey of blockchain applications
in different domains. In: ICBTA, pp. 17–21. ACM (2018)

13. Chen, W., Xu, Z., Shi, S., Zhao, Y., Zhao, J.: A survey of blockchain applica-
tions in different domains. In: Proceedings of the 2018 International Conference on
Blockchain Technology and Application. ICBTA 2018, Association for Computing
Machinery, New York, NY, USA (2018). https://doi.org/10.1145/3301403.3301407

14. Christidis, K., Devetsikiotis, M.: Blockchains and smart contracts for the internet
of things. IEEE Access 4, 2292–2303 (2016). https://doi.org/10.1109/ACCESS.
2016.2566339

15. CoinMarketCap: Coinmarketcap (2021). https://coinmarketcap.com
16. Core, B.: 0.20.1 release notes (2021)
17. Daniel, E., Rohrer, E., Tschorsch, F.: Map-z: exposing the Zcash network in times

of transition. In: LCN. IEEE (2019)
18. Decker, C., Wattenhofer, R.: Information propagation in the bitcoin network. In:

13th IEEE International Conference on Peer-to-Peer Computing, IEEE P2P 2013.
IEEE (2013). https://doi.org/10.1109/P2P.2013.6688704

19. Delgado-Segura, S., et al.: TxProbe: discovering bitcoin’s network topology using
orphan transactions. In: Goldberg, I., Moore, T. (eds.) FC 2019. LNCS, vol. 11598,
pp. 550–566. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32101-
7 32

20. Developers, B.C.: Bitcoin core 0.10.1 release notes (2015). https://github.com/
bitcoin/bitcoin/blob/v0.10.1/doc/release-notes.md

21. Developers, B.C.: Bitcoin core integration/staging tree (2021). https://github.
com/bitcoin/bitcoin

22. Developers, B.C.: Bitcoin p2p network (2021). https://developer.bitcoin.org/
devguide/p2p network.html

23. Dittrich, D., Kenneally, E., et al.: The menlo report: Ethical principles guiding
information and communication technology research. Technical report US Depart-
ment of Homeland Security (2012)

24. Donet Donet, J.A., Pérez-Solà, C., Herrera-Joancomart́ı, J.: The bitcoin P2P net-
work. In: Böhme, R., Brenner, M., Moore, T., Smith, M. (eds.) FC 2014. LNCS,
vol. 8438, pp. 87–102. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-662-44774-1 7

25. Dotan, M., Pignolet, Y.A., Schmid, S., Tochner, S., Zohar, A.: SOK: cryptocur-
rency networking context, state-of-the-art, challenges. In: Proceedings of the 15th
International Conference on Availability, Reliability and Security. ARES 2020,
ACM (2020). https://doi.org/10.1145/3407023.3407043

26. Ethereum: Ethereum peer-to-peer networking specifications (2014). https://
github.com/ethereum/devp2p

27. Fechner, J., Chandrasekaran, B., Makkes, M.X.: Calibrating the performance and
security of blockchains via information propagation delays: revisiting an old app-
roach with a new perspective. Proceedings of the 37th ACM/SIGAPP Symposium
on Applied Computing (2022)

https://bitnodes.io
https://doi.org/10.21236/ADA576235
http://www.dtic.mil/docs/citations/ADA576235
http://www.dtic.mil/docs/citations/ADA576235
https://doi.org/10.1145/3301403.3301407
https://doi.org/10.1109/ACCESS.2016.2566339
https://doi.org/10.1109/ACCESS.2016.2566339
https://coinmarketcap.com
https://doi.org/10.1109/P2P.2013.6688704
https://doi.org/10.1007/978-3-030-32101-7_32
https://doi.org/10.1007/978-3-030-32101-7_32
https://github.com/bitcoin/bitcoin/blob/v0.10.1/doc/release-notes.md
https://github.com/bitcoin/bitcoin/blob/v0.10.1/doc/release-notes.md
https://github.com/bitcoin/bitcoin
https://github.com/bitcoin/bitcoin
https://developer.bitcoin.org/devguide/p2p_network.html
https://developer.bitcoin.org/devguide/p2p_network.html
https://doi.org/10.1007/978-3-662-44774-1_7
https://doi.org/10.1007/978-3-662-44774-1_7
https://doi.org/10.1145/3407023.3407043
https://github.com/ethereum/devp2p
https://github.com/ethereum/devp2p

112 A. Paphitis et al.

28. Feld, S., Schönfeld, M., Werner, M.: Analyzing the deployment of bitcoin’s p2p
network under an as-level perspective. Procedia Comput. Sci. 32, 1121–1126
(2014). https://doi.org/10.1016/j.procs.2014.05.542, https://www.sciencedirect.
com/science/article/pii/S187705091400742X, the 5th International Conference on
Ambient Systems, Networks and Technologies (ANT-2014), the 4th International
Conference on Sustainable Energy Information Technology (SEIT-2014)

29. Fiedler, M.: Algebraic connectivity of graphs. Czechoslovak Math. J. 23(2), 298–
305 (1973)

30. Forum, B.: UASF nodes wrongly reporting IP (2017). https://bitcointalk.org/
index.php?topic=1954151.0

31. Franzoni, F., Daza, V.: SOK: network-level attacks on the bitcoin p2p net-
work. IEEE Access 10, 94924–94962 (2022). https://doi.org/10.1109/ACCESS.
2022.3204387

32. Gencer, A.E., Basu, S., Eyal, I., van Renesse, R., Sirer, E.G.: Decentralization in
bitcoin and ethereum networks. In: Meiklejohn, S., Sako, K. (eds.) FC 2018. LNCS,
vol. 10957, pp. 439–457. Springer, Heidelberg (2018). https://doi.org/10.1007/978-
3-662-58387-6 24

33. Gochhayat, S.P., Shetty, S.S., Mukkamala, R., Foytik, P.B., Kamhoua, G.A., Njilla,
L.L.: Measuring decentrality in blockchain based systems. IEEE Access 8, 178372–
178390 (2020)

34. Grundmann, M., Amberg, H., Baumstark, M., Hartenstein, H.: Short paper: what
peer announcements tell us about the size of the bitcoin P2P network. In: Eyal, I.,
Garay, J. (eds.) FC 2022. LNCS, vol. 13411, pp. 694–704. Springer, Cham (2022).
https://doi.org/10.1007/978-3-031-18283-9 35

35. Grundmann, M., Neudecker, T., Hartenstein, H.: Exploiting transaction accumula-
tion and double spends for topology inference in bitcoin. In: Zohar, A., et al. (eds.)
FC 2018. LNCS, vol. 10958, pp. 113–126. Springer, Heidelberg (2019). https://doi.
org/10.1007/978-3-662-58820-8 9

36. Harary, F.: The maximum connectivity of a graph. Proceedings Nat. Acad. Sci. U.
S. Am. 48(7), 1142–1146 (1962)

37. Heilman, E., Kendler, A., Zohar, A., Goldberg, S.: Eclipse attacks on bitcoin’s
peer-to-peer network. In: 24th USENIX Security Symposium (USENIX Security
15). USENIX Association (2015)

38. Jr, L.D.: Bitcoin historical node count (2022). https://luke.dashjr.org/programs/
bitcoin/files/charts/historical.html

39. Kim, H., Anderson, R.J.: An experimental evaluation of robustness of networks.
IEEE Syst. J. 7, 179–188 (2013)

40. Kim, S.K., Ma, Z., Murali, S., Mason, J., Miller, A., Bailey, M.: Measuring
ethereum network peers. In: IMC. ACM (2018)

41. Li, K., Tang, Y., Chen, J., Wang, Y., Liu, X.: Toposhot: uncovering Ethereum’s
network topology leveraging replacement transactions. In: Internet Measurement
Conference, pp. 302–319. ACM (2021)

42. Magoni, D.: Tearing down the internet. IEEE J. Sel. Areas Commun. 21(6), 949–
960 (2003)

43. Marcus, Y., Heilman, E., Goldberg, S.: Low-resource eclipse attacks on ethereum’s
peer-to-peer network. IACR Cryptol. ePrint Arch. 2018 (2018). http://eprint.iacr.
org/2018/236

44. Maymounkov, P., Mazières, D.: Kademlia: a peer-to-peer information system based
on the XOR metric. In: Druschel, P., Kaashoek, F., Rowstron, A. (eds.) IPTPS
2002. LNCS, vol. 2429, pp. 53–65. Springer, Heidelberg (2002). https://doi.org/10.
1007/3-540-45748-8 5

https://doi.org/10.1016/j.procs.2014.05.542
https://www.sciencedirect.com/science/article/pii/S187705091400742X
https://www.sciencedirect.com/science/article/pii/S187705091400742X
https://bitcointalk.org/index.php?topic=1954151.0
https://bitcointalk.org/index.php?topic=1954151.0
https://doi.org/10.1109/ACCESS.2022.3204387
https://doi.org/10.1109/ACCESS.2022.3204387
https://doi.org/10.1007/978-3-662-58387-6_24
https://doi.org/10.1007/978-3-662-58387-6_24
https://doi.org/10.1007/978-3-031-18283-9_35
https://doi.org/10.1007/978-3-662-58820-8_9
https://doi.org/10.1007/978-3-662-58820-8_9
https://luke.dashjr.org/programs/bitcoin/files/charts/historical.html
https://luke.dashjr.org/programs/bitcoin/files/charts/historical.html
http://eprint.iacr.org/2018/236
http://eprint.iacr.org/2018/236
https://doi.org/10.1007/3-540-45748-8_5
https://doi.org/10.1007/3-540-45748-8_5

Resilience of Blockchain Overlay Networks 113

45. Miller, A., Litton, J., Pachulski, A., Gupta, N., Levin, D., Spring, N., Bhattachar-
jee, B.: Discovering bitcoin’s network topology and influential nodes. University of
Maryland, Technical report (2015)

46. Muro, M.A.D., Valdez, L.D., Rêgo, H.H.A., Buldyrev, S.V., Stanley, H.E., Braun-
stein, L.A.: Cascading failures in interdependent networks with multiple supply-
demand links and functionality thresholds. Sci. Rep. 7, 15059 (2017)

47. Neudecker, T.: Characterization of the bitcoin peer-to-peer network (2015–2018).
Tech. Rep. 1, Karlsruher Institut für Technologie (KIT) (2019). https://doi.org/
10.5445/IR/1000091933

48. Neudecker, T., Andelfinger, P., Hartenstein, H.: Timing analysis
for inferring the topology of the bitcoin peer-to-peer network. In:
UIC/ATC/ScalCom/CBDCom/IoP/SmartWorld. IEEE Computer Society
(2016)

49. Newman, M.E.J.: Measurement errors in network data. ArXiv abs/1703.07376
(2017)

50. Nick, J.: Guessing bitcoin’s p2p connections (2015). https://jonasnick.github.io/
blog/2015/03/06/guessing-bitcoins-p2p-connections/

51. Paphitis, A., Kourtellis, N., Sirivianos, M.: Datasets for research on Resilience of
Blockchain Overlay Networks. figshare. Dataset (2023). https://doi.org/10.6084/
m9.figshare.23522919.v1

52. Paphitis, A., Kourtellis, N., Sirivianos, M.: Graph analysis of blockchain p2p over-
lays and their security implications. In: Security and Privacy in Social Networks
and Big Data. SocialSec 2023. LNCS, vol. 14097. Springer, Singapore (2023).
https://doi.org/10.1007/978-981-99-5177-2 10

53. Rivers, C., Lewis, B.: Ethical research standards in a world of big data.
F1000Research 3, 38 (2014). https://doi.org/10.12688/f1000research.3-38.v2

54. Saad, M., Cook, V., Nguyen, L., Thai, M.T., Mohaisen, A.: Partitioning attacks
on bitcoin: colliding space, time, and logic. In: 2019 IEEE 39th International Con-
ference on Distributed Computing Systems (ICDCS) (2019). https://doi.org/10.
1109/ICDCS.2019.00119

55. Tran, M., Choi, I., Moon, G.J., Vu, A.V., Kang, M.S.: A stealthier partitioning
attack against bitcoin peer-to-peer network. In: 2020 IEEE Symposium on Security
and Privacy (SP) (2020). https://doi.org/10.1109/SP40000.2020.00027

56. trinity.ethereum.org: The trinity Ethereum client (2021). https://trinity.ethereum.
org

57. Wang, D.J., Shi, X., McFarland, D.A., Leskovec, J.: Measurement error in network
data: a re-classification. Soc. Netw. 34, 396–409 (2012)

58. Wang, L., Pustogarov, I.: Towards better understanding of bitcoin unreachable
peers. CoRR abs/1709.06837 (2017)

59. Wuille, P.: Replace global trickle node with random delays (2022). https://github.
com/bitcoin/bitcoin/pull/7125

60. Yang, J., Sun, G., Xiao, R., He, H.: Detectable, traceable, and manageable
blockchain technologies BHE: an attack scheme against bitcoin p2p network. Wire-
less Communications and Mobile Computing (2022)

61. Yeow, A.: Bitnodes network crawler (2021). https://github.com/ayeowch/bitnodes
62. Zyskind, G., Nathan, O., Pentland, A.S.: Decentralizing privacy: using blockchain

to protect personal data. In: 2015 IEEE Security and Privacy Workshops (2015).
https://doi.org/10.1109/SPW.2015.27

https://doi.org/10.5445/IR/1000091933
https://doi.org/10.5445/IR/1000091933
https://jonasnick.github.io/blog/2015/03/06/guessing-bitcoins-p2p-connections/
https://jonasnick.github.io/blog/2015/03/06/guessing-bitcoins-p2p-connections/
https://doi.org/10.6084/m9.figshare.23522919.v1
https://doi.org/10.6084/m9.figshare.23522919.v1
https://doi.org/10.1007/978-981-99-5177-2_10
https://doi.org/10.12688/f1000research.3-38.v2
https://doi.org/10.1109/ICDCS.2019.00119
https://doi.org/10.1109/ICDCS.2019.00119
https://doi.org/10.1109/SP40000.2020.00027
https://trinity.ethereum.org
https://trinity.ethereum.org
https://github.com/bitcoin/bitcoin/pull/7125
https://github.com/bitcoin/bitcoin/pull/7125
https://github.com/ayeowch/bitnodes
https://doi.org/10.1109/SPW.2015.27

Provably Secure Blockchain Protocols
from Distributed Proof-of-Deep-Learning

Xiangyu Su1(B) , Mario Larangeira1,2 , and Keisuke Tanaka1

1 Department of Mathematical and Computing Science, School of Computing,
Tokyo Institute of Technology, Tokyo-to Meguro-ku Oookayama 2-12-1 W8-55,

Tokyo, Japan
su.x.ab@m.titech.ac.jp, mario@c.titech.ac.jp, keisuke@is.titech.ac.jp

2 Input Output Global, Singapore, Singapore
mario.larangeira@iohk.io

Abstract. Proof-of-useful-work (PoUW), an alternative to the widely
used proof-of-work (PoW), aims to re-purpose the network’s comput-
ing power. Namely, users evaluate meaningful computational problems,
e.g., solving optimization problems, instead of computing numerous hash
function values as in PoW. A recent approach utilizes the training pro-
cess of deep learning as “useful work”. However, these works lack secu-
rity analysis when deploying them with blockchain-based protocols, let
alone the informal and over-complicated system design. This work pro-
poses a distributed proof-of-deep-learning (D-PoDL) scheme concern-
ing PoUW’s requirements. With a novel hash-traininßg-hash structure
and model-referencing mechanism, our scheme is the first deep learning-
based PoUW scheme that enables achieving better accuracy distribu-
tively. Next, we introduce a transformation from the D-PoDL scheme
to a generic D-PoDL blockchain protocol which can be instantiated with
two chain selection rules, i.e., the longest-chain rule and the weight-based
blockchain framework (LatinCrypt’ 21). This work is the first to provide
formal proofs for deep learning-involved blockchain protocols concerning
the robust ledger properties, i.e., chain growth, chain quality, and com-
mon prefix. Finally, we implement the D-PoDL scheme to discuss the
effectiveness of our design.

Keywords: (Weight-based) blockchain protocols ·
Proof-of-useful-work · Distributed proof-of-deep-learning

1 Introduction

A promising new line of research is to consider the substitution of proof-of-
work (PoW) with “useful work”, i.e., proof-of-useful-work (PoUW) [3], in dis-

This work was supported by the JST CREST under Grant JPMJCR14D6, through
the JST OPERA, through the JSPS KAKENHI under Grant JP16H01705 and Grant
JP17H01695, through the JST CREST Grant Number JPMJCR2113, through the
JSPS KAKENHI JP21H04879 and JP21K11882.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Li et al. (Eds.): NSS 2023, LNCS 13983, pp. 114–136, 2023.
https://doi.org/10.1007/978-3-031-39828-5_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-39828-5_7&domain=pdf
http://orcid.org/0000-0002-1319-6394
http://orcid.org/0000-0001-7168-898X
http://orcid.org/0000-0003-1330-4495
https://doi.org/10.1007/978-3-031-39828-5_7

Provably Secure Blockchain Protocols from D-PoDL 115

tributed environments such as blockchain systems. This work focuses on the sub-
set of these protocols, namely the deep learning-based PoUW schemes. First, we
describe a brief but extensive survey of the research literature on deep learning-
based schemes. The list is surprisingly short, considering the wide range of its
applications. Our motivation is to formalize and extend these schemes so that
we can achieve better use of computing power in blockchain-based protocols.

1.1 Background and Related Work

Recently, Chenli et al. [8] propose a PoUW scheme that utilizes the training
process of deep learning tasks as useful work. To the best of our knowledge,
there are only a handful of papers targeting the same problem [2,7,8,14–16]. We
show a brief analysis to them in the following.

As a starting point, all these works involve task publishers who control the
publication of deep learning tasks and miners who intend to solve the given
tasks. Except for Proof-of-Learning (PoLe) [14], task publishers are forbidden to
perform as miners under the assumption of limited computing power, whereas,
PoLe [14] discards this impractical assumption by adding secure mapping layers
during model training. However, this approach also prevents miners from collab-
orating, which violates our goal. A deep learning task consists of a description,
a training dataset, a potential test dataset, and an accuracy target threshold. In
Proof-of-Deep-Learning (PoDL) [8], Li et al.’s work [15] and PoLe [14], miners
are required to train a model on the training dataset, and the model is verified
according to the test dataset and test accuracy. This approach requires a strong
synchronous network assumption because the task publisher has to publish the
test dataset after miners produce their trained model. Otherwise, an adversary
can directly train its model based on the test dataset.

DLchain [7] overcomes the strong synchronous assumption by removing the
test dataset-based verification. Instead, it focuses on improving training accu-
racy. In order to verify a trained model efficiently, DLchain utilizes a merkle-
tree-based verification [9] to check training history. Moreover, DLchain considers
a similar goal to distribute PoDL, i.e., achieving better accuracy distributively.
They partially fulfill the goal with priorly determined “short-term targets” which
are accuracy targets below the threshold. Miners can generate blocks once their
models surpass a short-term accuracy target. However, considering only training
accuracy may result in overfitting, and determined short-term targets can affect
blockchain growth rate, which may weaken the security of the protocol [11].

CoinAI [2] is a descriptive work that proposes an outline for designing a
deep learning-based PoUW and proof-of-storage scheme. The authors propose
a “hash-to-architecture” mapping based on format context-free grammar. It
maps a hash value to an initial deep learning model concerning model architec-
tures, including hyper-parameters and initial learnable-parameters. The hash-to-
architecture technique is vital for security since it prevents miners from grinding
initial parameters. However, the security impacts are not clarified due to the lack
of formality in [2]. Instead of proposing a PoUW-based blockchain protocol, Lihu

116 X. Su et al.

et al. [7] aim at taking blockchain’s security to enhance artificial intelligence sys-
tems. However, the protocol requires a dedicated blockchain structure and suffers
from complicated system design. For example, participants must select their role
before execution, and a unique type of participant called the supervisor needs
to monitor all message history during the execution. Thus, their work cannot be
integrated into any current blockchain-based protocols.

To sum up, none of these works can serve as a fully distributive deep learning
task solver, which is more desirable in distributed environments. Another cru-
cial problem is the lack of proper security analysis of the blockchain protocol.
For example, only DLchain [7] provides security proof against double-spending
attacks. However, a secure blockchain protocol should satisfy robust ledger prop-
erties, i.e., the chain growth, chain quality, and common prefix. Therefore, our
motivation for this work is to overcome the problems in the deep learning-
based PoUW schemes mentioned above, i.e., (1) to remove strong or impractical
assumptions; (2) to distribute the computation of deep learning-based PoUW;
(3) to provide concrete and thorough security analysis for blockchain protocols
based on our extended scheme. Next, we further detail our work’s significance.

1.2 Our Approach and Results

This work proposes a distributed proof-of-deep-learning (D-PoDL) scheme by
extending deep learning-based PoUW schemes so that provers can work col-
laboratively on given tasks. Note that the term “distributed” in D-PoDL differs
from distributed deep learning, i.e., we do not require provers to perform a single
training course together but let them train atop published pre-trained models.

Intuitively, D-PoDL provers train a model from a given deep learning task
as their useful work. We propose a “hash-training-hash” structure to achieve
adjustable difficulty while preventing provers from cherry-picking initial param-
eters (grinding attack) and pre-computing task instances (pre-computation
resilience). As a result, the provers output a trained model with the correspond-
ing accuracy and step number for D-PoDL verifiers to check. Another novelty of
our scheme lies in how we handle intermediate models. Throughout the paper,
an intermediate model, also called a pre-trained model, is a model “somewhat”
trained yet failing to meet a given accuracy or security level. Instead of discard-
ing such a model, we propose “model-referencing” that enables any prover to
reference the pre-trained model. Hence, provers can start their training process
atop the referenced model. Moreover, a referenced model will be rewarded so
that even if the prover fails to meet the goals, it is incentivized to do more train-
ing iterations. We emphasize that this approach forms the distributed training
process among provers, and such a design is never discussed in any previous
work.

The second contribution is that we build a generic blockchain protocol based
on our proposed D-PoDL scheme. We clarify the roles of participants: task pub-
lishers, miners, and external storage providers. Instead of assuming task pub-
lishers’ inability to train models properly, we enable them to perform as miners

Provably Secure Blockchain Protocols from D-PoDL 117

while preventing them from pre-computing deep learning tasks with the hash-
training-hash structure. Only Pole [14] shares the same property by embedding
secure mapping layers into its training algorithm. Moreover, we make use of
both training and test datasets. Concretely, miners (D-PoDL provers) extend
the blockchain with models that have better training accuracy. In order to mit-
igate the overfitting problem while avoiding the strong synchronous network
setting, we require miners to work on each deep learning task for multiple time
slots. Hence, task publishers can evaluate the produced models with test dataset
and select according to test accuracy. Since the training process is publicly ver-
ifiable, task publishers cannot take advantage by training directly on the test
dataset. We will also discuss model verification and storage issues in Sect. 3.3
and Sect. 4.1.

Furthermore, the generic D-PoDL-based blockchain protocol is capable of
two different chain selection rules: i.e., the conventional “longest-chain rule” [11]
and the “weight-based” framework [12,13]. The former requires honest miners to
choose the longest branch as their chain whenever a fork occurs. In contrast, the
weight-based framework assigns blocks with weights according to their quality.
Hence, honest miners choose the branch with higher accumulated weight as their
chain. Although the longest-chain rule can be considered a special case of the
weight-based framework, we separate them into two concrete protocols and prove
the robust ledger properties for each. Finally, we implement our D-PoDL scheme
and compare it to existing schemes.

Table 1 compares our work and related works. Note that we omit CoinAI [2]
due to its informality and Lihu et al.’s work [16] due to their different research
focus. We also include a recent result on stochastic local search-based PoUW [10].
The difference between our work and the PoUW [10] is that we leverage deep
learning characteristics, e.g., verifiable training steps and test datasets, and
derive a simple yet versatile protocol (i.e., proven secure under different chain
selection rules).

Table 1. Comparison with Previous Works

Protocols Work Evaluation Network
Synchronicity

Publisher
As Miner

Distributed
Task Solver

Formal
Security

Chenli et al. [8] Test accuracy Strong X X X

Lan et al. [14] Test accuracy Strong �1 X X

Li et al. [15] Training accuracy Bounded X X X

Chenli et al. [7] Training accuracy Bounded X �2 �3

Fitzi et al. [10] —4 Bounded � � �5

This work Training and test Bounded � � �6

Notes: (1) By secure mapping layers; (2) By pre-determined short-term targets; (3) Against
double-spending attack; (4) Stochastic local search; (5) Under the longest-chain rule [11];
(6) Against robust ledger properties under the longest-chain rule [11] and the weight-based
framework [12,13].

118 X. Su et al.

1.3 Paper Organization

The remainder is organized as follows. Section 2 reviews notations and the exe-
cution model of our blockchain protocol. The following two sections present
our main contribution: blockchain protocols from distributed proof-of-deep-
learning (D-PoDL). Concretely, Sect. 3 introduces the formal definition of D-
PoDL scheme and explains our design choices based on PoUW requirements;
Sect. 4 transforms the D-PoDL scheme into a generic blockchain protocol and
presents two concrete protocols by instantiating the chain selection rule with the
conventional longest-chain rule [11] and the weight-based framework [12,13]. We
analyze the security of our concrete protocols regarding robust ledger properties
in Sect. 5. Then, Sect. 6 provides an implementation of the D-PoDL scheme to
compare with existing algorithms. Finally, Sect. 7 concludes this work.

2 Preliminaries

Throughout this paper, we use λ for the security parameter. For an integer k ∈ N,
[k] denotes the set {1, . . . , k}. Given a set X, x

$← X denotes that x is randomly
and uniformly sampled from X. For an algorithm Alg, x ← Alg denotes that x is
assigned the output of an algorithm Alg on fresh randomness. Let Hash denote
a collision-free hash function.

Moreover, we employ and modify the hash-to-architecture mapping mech-
anism from [2], which is based on the formal context-free grammar and is
used to establish a surjective function between a hash value and a proper
deep learning architecture setup. Denote the original hash-to-architecture map-
ping with HtoA∗, i.e., given a hash value h, HtoA∗(h) = (A(hpp), initLP)
where A(hpp) is the architecture A concerning hyper-parameters hpp, and initLP
denotes the initial learnable parameters. Our modification, denoted by HtoA,
is to generate an additional random value from the hash, i.e., given a hash
value h = h1||h2 and a hash function Hash : {0, 1}∗ → {0, 1}λ, we extract
r = Hash(h2) and run HtoA∗(h1) = (A(hpp), initLP) so that the outputs of
HtoA(h) is (A(hpp), initLP, r).

Protocol Execution Model. Protocol executions are modeled by the standard
Interactive Turing Machines (ITM) approach [6]. A protocol refers to algorithms
for a set of nodes (users) to interact with each other. All corrupted nodes are
considered to be controlled by an adversary A who can read inputs and set
outputs for these nodes. We present our protocol settings as follows.

Time and Network. We assume the protocol execution proceeds in rounds, which
corresponds to the smallest unit of time of interest. The network is synchronous
with a known bounded delay δ time on the delivery time, i.e., any message sent
by an honest node in round r is guaranteed to arrive at all honest nodes until
round r + δ;

Provably Secure Blockchain Protocols from D-PoDL 119

Corruptions. We allow the adversary to corrupt up to β < 1
2 fraction of nodes

before each round, i.e., a corrupted node is under the adversary’s complete
control from the round. We also assume the adversary is rushing, i.e., it receives
honest users’ messages first and decides the order of message delivery or whether
to inject messages for each recipient.

3 The D-PoDL Scheme

As an extension of deep learning-based PoUW schemes, our D-PoDL scheme
provides an interface for its provers to solve a deep learning task together. Like
PoUW, a D-PoDL scheme involves two types of participants: provers and veri-
fiers. On a given deep learning task, a prover intends to output a trained model,
and claims the corresponding training accuracy and step number. Whereas, a
verifier checks if the model matches the prover’s claims and responds accord-
ingly. This section presents the D-PoDL scheme in terms of requirements and
syntax. We focus on a setting where provers work on a priorly given deep learn-
ing task with a designed target threshold. We clarify that the scheme focuses on
solving the task and verifying the model. Discussions about task selection, block
generation, and blockchain dynamics can be found in the protocol description
in later sections, i.e., Sect. 4 and Sect. 5.

D-PoDL Requirements. A D-PoDL scheme should satisfy the same security
requirements [10] as the PoUW, i.e., no-grinding, pre-computation resilience,
and adjustable difficulty. Moreover, it should satisfy efficiency and usefulness
requirements. The requirements are (1a) No-grinding: The adversary cannot
cherry-pick hyper-parameters to gain training advantages, i.e., less training steps
with higher accuracy; (1b) Pre-computation resilience: The adversary cannot
manufacture problem instances to train the model faster; (1c) Adjustable dif-
ficulty: The block difficulty (measured by training accuracy) can be adjusted
to the computing power of the network; (2a) Efficient verification: The running
time of the verification algorithm should be at most poly-logarithm of provers’
training time; (2b) Measurable usefulness: The usefulness of a training process
can be quantified and compared to each other.

3.1 Design Overview

Along with the two processes in a D-PoDL scheme, i.e., solving a deep learning
task and verifying the correctness of the solution, we propose a novel “hash-
training-hash” structure for the solving process and utilize a widely used merkle-
tree-based verification procedure [9] as a black-box for the verification process.
Additionally, we propose a weighting algorithm to evaluate a weight function that
quantifies a solution’s usefulness. We describe the “hash-training-hash” structure
briefly in this section. More details of our design choices can be found after the
formal definition.

120 X. Su et al.

Intuitively, on a given deep learning task, we enable provers to initialize its
solving algorithm with either a fresh or a pre-trained model from any prover,
i.e., for “model-referencing”. The first hash requires provers to perform a proof-
of-work (PoW) with threshold T1, i.e., a prover needs to find a nonce such that
the hash value of the previous block, potentially a pre-trained model and the
nonce is less than T1. If the hash value passes the PoW check (less than T1),
the prover can map the hash value to an architecture with respect to hyper-
parameters, (initial) learnable-parameters and a random seed with our modified
hash-to-architecture algorithm. As introduced in Sect. 2, the architecture (with
hyper-parameters) and learnable-parameters determine a deep learning model.
The prover trains the model by updating learnable-parameters iteratively. The
post-hash checks the output model against threshold T2 to decide if the models
are eligible for publishing. If the post-hash fails, the prover can return to the
pre-hash or training process. The prover must perform more training iterations
in both cases to generate a valid model.

3.2 Formal Syntax and Construction

A D-PoDL scheme involves a tuple of algorithms (Setup,Solve,Verify,Weight).
Setup extracts a training dataset and a designed target threshold from a
deep learning task. Solve consists of three sub-algorithms PreHash, Train, and
PostHash. In general, PreHash determines the initial model, including its archi-
tecture, hyper-parameters, learnable-parameters, and a random seed. Train casts
the training process and outputs a model with the corresponding accuracy and
step number. Note that we do NOT restrict the training algorithm to provide
generality for our design. Instead, as we will show in Sect. 5.1, we model it with an
oracle due to its stochastic nature and model provers’ computing power by their
capability of oracle queries. Next, due to security concerns, PostHash returns a
bit according to a hash proof. Verify verifies the trained model’s validity concern-
ing accuracy. Weight is available to both provers and verifiers, and it evaluates
a weight function w : acc × Tacc → R, which maps the model’s accuracy and a
priorly decided target threshold to a real value. We present the formal syntax
and construction of the D-PoDL scheme as follows.

Construction 1 (D-PoDL Scheme). Given the hash-to-architecture algo-
rithm HtoA(·) from Sect. 2 and the weight function w : acc× Tacc → R, the tuple
algorithm of a D-PoDL scheme (Setup,Solve,Verify,Weight) works as follows:

– Setup(1λ, task) takes as input the security parameter λ and the description of
a deep learning task task from the task publisher. Setup extracts the public
parameter pp and a pair of threshold (T1, T2) for security concerns from the
system. It parses the task with a training dataset D and a target threshold
Tacc. Setup outputs (pp, T1, T2,D, Tacc). We omit pp later for simplicity;

– Solve((T1, prevBK, refM), (D, Tacc), T2). We divide Solve into three algorithms:
(PreHash,Train,PostHash).

• PreHash(T1, prevBK, refM) takes as input T1, a previous block prevBK
and potentially a pre-trained model refM. It samples nonce such that

Provably Secure Blockchain Protocols from D-PoDL 121

Hash(prevBK, refM, nonce) = h1 ≤ T1. If refM =⊥, PreHash runs
HtoA(h1) = (A(hpp), lp, r) where A(hpp) denotes the architecture, lp
denotes the learnable-parameters, and r denotes the random seed. It sets
initM = (A(hpp), lp); Otherwise, It parses refM = (A(hppref), lpref) and
sets initM ∈ {refM, (A(hpp), lp)}. Then, PreHash returns (nonce, initM, r);

• Train(D, Tacc, initM, r) takes as input the training dataset D, a target
threshold Tacc, a initial model initM and a random seed r. It parses initM =
(A(hpp), lp) and trains the model by updating learnable-parameters itera-
tively. Train returns M = (A(hpp), lp∗), the corresponding training accu-
racy acc ∈ [0, 1], step number S and a list of checkpoints CPs

Δ=
{(Mi, acci, Si)} where each entry denotes an intermediate result of the
training process;

• PostHash(T2,M, acc, S) takes as input T2 and a model M with the corre-
sponding accuracy acc and step number S. It computes Hash(M, acc, S)
= h2. If h2 ≤ T2, PostHash returns 1; Otherwise, it returns 0.

Finally, Solve outputs ((refM, nonce, initM, r), (M, acc, S), b) where b ∈ {0, 1};
– Verify((T1, prevBK, refM, nonce, initM, r), (D, Tacc,M, acc, S,CPs), (T2, b))

checks:
• If Hash(prevBK, refM, nonce) = h1 ≤ T1 and if initM is derived correctly
from refM;

• If M is trained correctly from initM with Train according to (S,CPs) and
if the corresponding accuracy acc′ = acc;

• Compute PostHash(T2,M, acc, S) = b′ and check if b′ = b.
If the situations above are satisfied, Verify outputs 1; Otherwise, it outputs 0.

– Weight(acc, Tacc) evaluates the weight function w and outputs w ∈ R.

3.3 Design Choices Explanation

Here, we explain our construction choices with respect to the requirements.

Setting up Initial Models with Pre-hash. There are countless different
architectures in deep learning, each with its characteristics and limitations.
After selecting an appropriate architecture A, provers need to choose hyper-
parameters and initial learnable-parameters for the model, which may affect
the speed and quality of the training process. Usually, hyper-parameters are
not learnable, so provers must go through random sampling before obtaining a
good set of hyper-parameters. However, we may open a gate for grinding attacks
(Requirement 1a) if we offer provers the ability to choose hyper-parameters
and initial learnable-parameters. An adversary may outperform honest users’
training speed and quality by cherry-picking.

In order to mitigate this problem, we adopt the same approach as in Ofe-
limos [10]. Concretely, we rely on a PoW scheme with threshold T1, which
requires provers to sample a nonce nonce randomly and compute the hash of the
previous block (prevBK), potentially a pre-trained model refM with the nonce

122 X. Su et al.

such that Hash(prevBK, refM, nonce) = h1 ≤ T1. The hash function’s unifor-
mity prevents provers from grinding hyper-parameters and learnable-parameters.
Note that our T1 should not be as hard as a stand-alone PoW, e.g., the one in the
Bitcoin system, because we intend to encourage provers to train models instead
of solving PoW. Finally, if refM is empty, the prover needs to generate an initial
model with HtoA(h1) = (A(hpp), lp, r) such that initM = (A(hpp), lp); Otherwise,
the prover can either refer to the pre-trained model refM = (A(hppref), lpref)
or use the freshly generated hyper-parameters and the pre-trained learnable-
parameters (A(hpp), lpref) as its initial model. In this case, the pre-hash enforces
provers to establish links from their model to previous blocks and the referenced
models. Such links are crucial to the security of model-referencing.

Model-Referencing and Pre-computation Resilience. An initial model
can be sampled from HtoA or from a pre-trained model refM. The purpose
of taking as input a pre-trained model is to enable provers to work atop any
valid but not-good-enough model. Hence, we prevent their computing power
from being wasted and form a distributed solver for given deep learning tasks.
However, starting from a pre-trained model can shorten the prover’s train-
ing iteration because these models may be only a few steps from reaching
the accuracy target threshold. For example, an adversary may steal an hon-
est prover’s outputs (M0, acc0, S0) and produce a new model MA with accuracy
accA ≥ Tacc ≥ acc0 and a claimed step number SA. Such an attack violates
pre-computation resilience (Requirement 1b) because the adversary achieves
better accuracy while performing only (SA − S0) training steps.

In order to tackle this problem, we design a novel mechanism called “model-
referencing”. We require provers to make references if their models are trained
based on another model. Otherwise, their models are regarded as invalid. The ref-
erence is (prevBK, refM, nonce), which can be publicly verified with Hash(prevBK,
refM, nonce) ≤ T1. Hence, model-referencing enables provers to train each oth-
ers’ models together for the same goal (surpassing the target threshold and
post-hash check threshold) while preventing them from stealing others’ models
(by discarding those “use-without-reference” models). Furthermore, the provers
should only reference the latest models, i.e., if two pre-trained models share the
same setup, provers should reference the model with higher accuracy and step
number. With this setting, we also prevent provers from flooding the system
with too many pre-trained models. Therefore, the mechanism inherently forms
an additional “link” (like the hash link between blocks) that connects models,
i.e., a valid block must be linked to a previous block and a previous model. More
details can be found in Sect. 4.1.

Adjusting Computation with Post-hash. One argument concerning the
adjustable difficulty (Requirement 1c) is that training a model so that its
accuracy surpasses the target threshold Tacc should be harder than finding a
nonce to meet the PoW puzzle with threshold T1. Otherwise, the computa-
tional difficulty is determined by the PoW rather than the training process,

Provably Secure Blockchain Protocols from D-PoDL 123

which violates the usefulness of our scheme. Hence, we propose a solution based
on [5]’s approach, which requires the provers to perform one “post-hash” against
a threshold T2 to decide if their models are eligible for publishing. If a model fails
the post-hash, the prover must revert to the pre-hash or training process. The
threshold T2 guarantees the overall security and usefulness level for our scheme,
e.g., to preserve the 10 min interval for block generation while enforcing provers’
computation focus on model training instead of PoW. We will show the impact
of the post-hash algorithm during our implementation of the D-PoDL scheme in
Sect. 6.

Model Verification. In order to verify the outputs of a prover, a verifier needs
to check three conditions: (1) If the nonce satisfies the PoW check with threshold
T1; (2) If the model has the claimed accuracy; (3) If the post-hash outputs a
correct bit. In this section, we focus on verifying the model and its accuracy. A
naive approach is to check the prover’s model with the given training dataset.
However, it takes as many iterations as the training algorithm, which violates
the efficiency requirement (Requirement 2a).

We solve this problem by adopting the widely used merkle-tree-based ver-
ification [9] as a black box. This approach is also mentioned in the previous
work [7]. Namely, provers are required to include several intermediate results
as checkpoints into their training outputs and build a merkle-tree accordingly.
Hence, verifiers only need to check the validity of these checkpoints. Given n
checkpoints, the time complexity for verifiers can be reduced to O(polylog(n))
at the cost of provers’ space complexity being O(poly(n)). Moreover, there is
a trivial trade-off between the interval of two checkpoints and the granularity
of the check. As pointed out by [7], the interval setting can be left to users in
real-life applications and adjusted according to accuracy thresholds. However,
since each checkpoint has the size of a model, we explain this in Sect. 4.1 with
respect to external storage providers.

Measuring Usefulness. The D-PoDL scheme focuses on improving the mod-
els’ training accuracy, whereas, the test accuracy is left for the protocol. Except
for the conventional longest-chain-based blockchain protocols [11], we intend to
build our D-PoDL scheme under a weight-based framework by [13]. In such a
setting, blocks are assigned with weight, and the chain is selected based on the
accumulated weight. We argue that the weight-based approach is natural for the
D-PoDL scheme because accuracy can be regarded as a quantified measurement
for usefulness (Requirement 2b). Moreover, we can generalize the weight-based
approach to arbitrary PoUW schemes as long as their usefulness is measurable.

4 Our D-PoDL Blockchain Protocols

This section describes the transformation from our D-PoDL scheme to D-PoDL-
based blockchain protocols. As mentioned in the execution model from Sect. 2,

124 X. Su et al.

our protocol proceeds in rounds. Honest users may share a slightly different view
of the round number. We further divide our protocol execution into time slots.
Each time slot is associated with a deep learning task, and the time slot ends
when a validly generated block is added to the blockchain. Thus, a time slot may
include multiple rounds. Considering the workflow within a time slot, we propose
a generic D-PoDL blockchain protocol design as in Fig. 1. Then, two concrete
protocols are derived from the generic design by instantiating the chain selection
rule with the longest-chain rule [11] and the weight-based framework [13]. Finally,
we discuss the incentive model of our protocols.

4.1 Generic Protocol Workflow

The generic blockchain protocol involves three types of participants: task pub-
lishers, miners, and external storage providers. Task publishers handle deep
learning tasks. Each task is associated with a dataset and desired accuracy
thresholds. Task publishers first split the dataset into a training dataset and
a test dataset. They publish the task description, the training dataset, and the
corresponding desired training accuracy as the target threshold. Miners per-
form the protocol by generating and verifying blocks according to the D-PoDL
scheme’s instructions. Concerning the size of deep learning models and check-
points (which are the same size as models), we employ the approach from [7] to
prevent storage overhead, i.e., embedding only a downloadable link within the
block and relying on external storage to store the whole model and checkpoints.

Fig. 1. Design of our Generic D-PoDL Blockchain Protocol

Task Publication. We start our generic D-PoDL blockchain protocol from the
task publication mechanism. In order to keep the task publication as generic
as possible, we consider a situation in which these publishers form a network
to publish and decide the order of tasks. They aim to organize a distributed
solver for deep learning tasks and can be benefited from receiving the solutions.

Provably Secure Blockchain Protocols from D-PoDL 125

The only requirement is that the outputs of the publisher network should be an
ordered list of deep learning tasks. We denote the output as {taski}i∈[n] where
taski spans over a period of �i time slots in Ti = {ti,j}j∈[�i].

Note that we do NOT separate task publishers from miners, i.e., a task pub-
lisher can participate in the protocol as a miner and gain mining rewards. We
argue that the task publisher cannot pre-compute the task to gain advantages
over regular miners due to the pre-hash algorithm and the model-referencing
mechanism. Without loss generality, let the current time slot be tp,q, we con-
sider an adversarial publisher who intends to pre-compute deep learning task
taski where i > p, q ∈ [�p]. Since i > p, without pre-trained models, the pub-
lisher has to train an initial model generated from HtoA, i.e., to find nonce
such that Hash(prevBK, nonce) = h1 ≤ T1 where prevBK associates with slot
ti−1,�i−1−1 ∈ Ti−1 and compute initM from HtoA(h1). To find such a nonce
requires the publisher to either predict the block in the future or find a collision
in the hash function. Since the probabilities of both cases are negligible, the
publisher cannot produce a trained or pre-trained model to pass the D-PoDL
scheme’s verification by pre-computing taskk.

Execution of D-PoDL Scheme. Now, we consider a deep learning task taski

given to miners in time slot ti,j where j ∈ [�i]. Each miner runs as a prover
of the D-PoDL scheme. The Setup algorithm first extracts public parameters, a
training dataset, and thresholds (T1, T2, Tacc). The miner then finds a nonce and
initializes initM with PreHash; It runs the training course on the initial model
with the randomness r to obtain a model M, the corresponding accuracy acc
and step number S; PostHash tests the model according to T2 and outputs a bit
b. The miner outputs a tuple, including potentially a pre-trained model as the
reference, a nonce, an initial model, a random training seed, a trained model
with the corresponding accuracy and step number, and a post-hash check bit.

According to the post-hash check, the miner decides if its model is eligible for
publishing. Moreover, for generality, we introduce a relation between the model
accuracy and the target threshold as R(acc, Tacc), which will be instantiated in
concrete protocols. Hence, when b = 1∧R(acc, Tacc) = 1, the miner collects trans-
actions from the mempool as in conventional blockchain protocols and generates
a block candidate embedding the obtained model M; Otherwise, the miner gen-
erates a special model-transaction mtx for model-referencing, which contains the
outputs of the Solve algorithm, i.e., mtx = (prevBK, (refM, nonce, initM, r), (D,
Tacc,M, acc, S,CPs), 1). mtx is published into the mempool as ordinary transac-
tions. Any miner can reference the model M in the model-transaction mtx by
including mtx in the miner’s newly found block or model-transaction. That is,
the miner takes as input refM′ = M for its Solve algorithm. Note that different
miners can refer to the same model-transaction. We do not count this as “double-
spending” since no ordinary (money-used) transaction is involved. Newly trained
models still need to compete for acceptance. Moreover, miners can reference
model-transactions recursively, i.e., generating a model-transaction mtx′ with
higher accuracy from mtx is acceptable. The only restriction here is that miners

126 X. Su et al.

Fig. 2. Intuition of Cross Time Slot Attacks

must reference the latest model-transaction, which embeds a pre-trained model
with the highest accuracy observed so far. This prevents the adversary from
releasing a large amount of model-transaction to DoS attack [17] the network.

Cross Time Slot Attacks and Restrictions on Step Number. We leave
block selection (with respect to forks) to concrete protocols in Sect. 4.2. Here, we
consider the whole period (a span of time slots) associated with a deep learning
task. Once the blockchain gets updated, miners proceed to the next time slot.
A task can span over multiple time slots so that the publisher network can
check each selected model with the corresponding test dataset. This approach
is to mitigate the trend toward overfitting models since miners are given only
training datasets to overcome the strong synchronous network assumption.

However, this approach allows adversaries to reference models generated
in different time slots from the block they extend. Given a fragment of the
blockchain that associates with a deep learning task, we illustrate two attack
strategies in Fig. 2a and 2b. Note that the adversary can also reference models
embedded in blocks. We use model-transactions here for generality.

The first attack enables the adversary to extend the blockchain with fewer
training steps while not violating model-referencing requirements. In the second
attack, the adversary can produce a model with higher accuracy or weight using
new information, e.g., the model in mtx of Fig. 2b. This attack may subvert
blockchain history if the adversary produces enough blocks to compete with the
selected chain.

In order to tackle these problems, we restrict the training step number in
published blocks. We introduce a lower bound of acceptable step number as Smin

to control the selected blocks’ step number during the period of a given task task.
Denote the period with T = {ti}i∈[�], and for each i ∈ [�], we denote the selected
model (in a block on the chain) with Mi ∈ bki and the model’s corresponding
step number with Si. Now, consider a block candidate bk embedding Mbk trying
to extend bkn with n ∈ [�−1]. Let M = (M′

j)j∈[k] be Mbk’s recursively referenced
model list. Each of these models is either embedded in a block or a model trans-
action that extends some blocks on the blockchain. Without loss of generality,
we assume the first block being extended by one of these models in the period
to be bkm where m ∈ [� − 1],m ≤ n. The restriction on Mbk’s step number Sbk

is:
∑k−1

j=0 S′
j + Sbk ≥ ∑n−1

i=m Si + Smin. Intuitively, the restriction requires that a

Provably Secure Blockchain Protocols from D-PoDL 127

newly generated block and its referred models have no less training steps than
the steps on the main blockchain. It is reasonable in the sense that we require not
only the accuracy of models/blocks, but also miners donating enough comput-
ing power (training steps). Moreover, our D-PoDL scheme enables us to leverage
steps in model verification. The goal is to stabilize the block generation rate, and
we will discuss this later in Sect. 5.2. Finally, miners repeat the above process
when the publisher network proceeds to a new task.

4.2 Concrete Protocols

In this section, we instantiate the chain selection rule with the longest-chain rule
from [11] and the weight-based framework from [13].

Longest-Chain-Based D-PoDL Blockchain. First, in the longest-chain-based pro-
tocol, we clarify the relation introduced above as: R(acc, Tacc) = 1 if acc ≥ Tacc.
Hence, a model is eligible to be published as a block if b = 1 ∧ acc ≥ Tacc.
Otherwise, i.e., acc < Tacc, the model can be embedded in a model-transaction
mtx and published to the mempool; if b = 0, the miner must continue training
the model or resample the nonce for another initial model to be trained. By the
longest-chain rule, miners of each time slot add blocks to the end of the longest
blockchain they have observed and broadcast the chain to the network. Later,
we will show that forks of the same length as the main chain can exist only
with negligible probability by proving the robust ledger properties [11] for our
longest-chain-based protocol.

Weighted-Based D-PoDL Blockchain. In the weight-based protocol, R(acc,
Tacc) = 1 for any pair of (acc, Tacc). The situation indicates that a miner can
generate a block even if its deep learning model fails to surpass the target thresh-
old. However, the number of blocks produced in a time slot can be overwhelming
without proper filtering. Therefore, Kamp et al. [13] introduce a weight function
to quantify the quality of blocks so that miners only choose the blockchain with
the highest (accumulated) weight. Our weight function evaluates the embedded
model according to (acc, Tacc) with the Weight algorithm. Instead of showing
specific constructions, we will introduce two crucial properties for proving the
security of the weight-based D-PoDL blockchain in the next section. With these
properties, we show that forks with comparable weights as the main chain can
only exist with negligible probability by proving the weight-based variant of
robust ledger properties [13] for our weight-based protocol.

128 X. Su et al.

Discussion: Incentive Models. The incentive model is crucial to a practical proto-
col. We aim to reward miners according to their useful computation, i.e., training
iterations. Moreover, our protocol differs from previous works in that miners can
reference model-transactions to generate another model-transaction, or a block,
without training models from the sketch. Models in model-transactions may
have inferior accuracy. However, they are crucial in forming the distributed deep
learning task solver. Hence, in order to incentivize miners to produce models,
we reward not only the miners who produce selected blocks but also the model-
transactions referenced by selected blocks. The rewards are given according to
the model accuracy and the step number. For example, let M be the selected
model, which is trained for S steps. Furthermore, let its recursively referenced
models set be M = {Mj}j∈[k], and each j ∈ [k], Mj is trained for Sj steps.
Hence, M’s miner receives S/(

∑
Sj + S) fraction of the total rewards, and each

Mj ’s miner receives Sj/(
∑

Sj + S) of the total rewards. Finally, we want to
clarify that incentive models may affect the assumptions on honest miners’ frac-
tion, which will further affect chain growth for robust ledgers [1]. However, this
work assumes honest miners’ fractions directly. Hence, the incentive model in
this section will not change our security proofs.

5 Security Analysis

Our security analysis focuses on the period of one single deep learning task
because switching to a new task can be regarded as a mining difficulty shift in
the PoW-based protocols. However, extending the result to the whole blockchain
is easy if we assume the difficulty, represented by the accuracy target threshold,
is stable across different tasks. To clarify, the terms “model-transaction” and
“block” refer to the model embedded in the model-transaction or block.

Robust Ledger Properties. In this work, we focus on proving the robust ledger
properties, i.e., the chain growth, chain quality, and common prefix, for our
concrete protocols. The definitions originate from [11]. We adopt the modified
version from [10] for the longest-chain-based protocol. The weight-based variant
can be found in the original paper [13].

Definition 1 (Robust ledger properties).

– Chain Growth: For any honest miner with chain C at a round, the chain
growth with parameter τ ∈ (0, 1] and s ∈ N states that for any portion of C
spanning s consecutive rounds, the number of blocks in this portion is at least
τs;

– Existential Chain Quality: For any honest miner with chain C at a round, the
existential chain quality with parameter s ∈ N states that for any portion of C
spanning s consecutive rounds, at least one honestly-generated block appears
in this portion;

Provably Secure Blockchain Protocols from D-PoDL 129

– Common Prefix: For any two honest miners with chains C1, C2 at round r1, r2

respectively, where r1 ≤ r2, the common prefix with parameter s ∈ N indicates
that C1 should be a prefix of C2 after removing the last s blocks.

5.1 The Training Oracle

Our first step models the combination of training and post-hash process with a
training oracle. Following [13]’s approach, we assume protocol participants can
make at most one query to the training oracle in each round. This assumption
is reasonable because a round is the smallest unit of time of interest in our
protocol and corresponds to the time for evaluating the hash function over one
training iteration on one miner’s computing device. For a real-world miner with
the computing power of more than one device, we model it as a collection of
“one-query-per-round” participants.

In each round, a miner queries the oracle OTrain with (Mpre, accpre, S; r) where
Mpre denotes the pre-query model, accpre and S denotes the corresponding train-
ing accuracy and step number, and r denotes the random seed for training.
The oracle OTrain first verifies the queried model and returns ⊥ if the model
is invalid. Otherwise, OTrain performs one training iteration with r to obtain
(Mafter, accafter, S+1) where Mafter and accafter denote the model and training
accuracy after query, respectively. It samples a random value h2 ← {0, 1}λ uni-
formly, where λ is the security parameter that indicates the length of the hash
function output. OTrain returns (Mafter, accafter, S+1, h2). Moreover, regarding
queries with different random seeds (r) as different queries, OTrain keeps a list of
performed queries and replies to former queries according to the list.

The uniqueness of our model is that OTrain performs one training iteration
before sampling the random value. A query is said to be successful only if the
output model satisfies: h2 ≤ T2 ∧ R(accafter, Tacc) = 1. Since h2’s distribution is
defined to be uniform, we now consider the distribution of the output accuracy
accafter. Note that training accuracy usually grows faster before achieving a cer-
tain value. Like in [7], we name this value difficulty threshold, denoted by Dacc.
Our model focuses on the training process after such a threshold. The reason
is that, as explained in [4], increasing the training accuracy requires stochas-
tic/random search after this threshold. Hence, we assume that if accpre ≥ Dacc,
accafter follows an arbitrary distribution D over {acc : acc ≥ Dacc} such that
f1

Δ= Pr[accafter ≥ Tacc|accpre ≥ Dacc], e.g., when D is uniform, f1 = 1−Tacc

1−Dacc
.

Otherwise, i.e., accpre < Dacc, we assume accafter increase be monotonically but
unlikely to surpass Tacc, i.e., less than ε, negligible of the security parameter
λ. Therefore, we argue that the overall probability is Pr[accafter ≥ Tacc] ≥ 1

2f1

because the number of training steps before reaching the difficulty threshold is
much less than the step number afterward. The training oracle goes as follows.

130 X. Su et al.

Training Oracle OTrain

Let task be a deep learning task with dataset D and accuracy target
threshold Tacc. The oracle OTrain keeps a list L with performed queries.
On a query (Mpre, accpre, S; r) from a miner in a round:

– If (Mpre, accpre, S; r) is invalid, i.e., Mpre has unmatched accuracy or
step number, return ⊥;

– If (Mpre, accpre, S; r) ∈ L, return the reply entry (Mafter, accafter, S+1)
according to the list L;

– Otherwise, run one training step Train(D, Tacc,Mpre, r) → (Mafter,
accafter, S+1) and sample h2 ← {0, 1}λ uniformly at random.
Add ((Mpre, accpre, S; r), (Mafter, accafter, S+1, h2)) to L and return
(Mafter, accafter, S+1, h2) to the miner.

We assume the distribution of accafter following the distribution D over
{acc : acc ≥ Dacc} such that Pr[accafter ≥ Tacc|accpre ≥ Dacc] = f1, and
Pr[accafter ≥ Tacc|accpre < Dacc] = ε where ε is negligible of the security
parameter λ.

5.2 Proving Ledger Properties

Consider the situation in which a deep learning task taski spans over time slots
Ti = {ti,j}j∈[�]. We omit i in the following for simplicity. The hash function
in the PreHash algorithm guarantees that a new block is never added between
two existing blocks (insertions), the same block never occurs in two different
positions (copies), and a block never extends a block that will be mined in later
time slots (predictions).

The Longest-Chain-Based Protocol. A miner who outputs a block in slot
tj that meets the post-hash check, target accuracy, and step restriction has to
perform at least Sj training steps, which is equivalent to Sj queries to OTrain. As
miners, honest or adversarial, are bounded by the number of queries they can
make in each round, they cannot generate too many blocks in any polynomial
many consecutive rounds within the period T of taski. Simultaneously, miners
cannot generate too few blocks because the probability of at least one honest
miner outputting a block is lower bounded by the success rate of the oracle.

Like [11], we define typical execution for the situation in which miners
generate not too many nor too few blocks in polynomial many consecutive
rounds of protocol execution. First, we consider three Boolean random variables
Xr, Yr, Zrpq. If at round r an honest miner obtains an output from the oracle
OTrain that satisfies h2 ≤ T2 ∧ R(accafter, Tacc) = 1, then Xr = 1, otherwise
Xr = 0. If at round r exactly one honest miner obtains such an output, then
Yr = 1, otherwise Yr = 0. For the adversary, if at round r, the p-th corrupted
miner’s q-th query to the oracle OTrain obtains such an output, then Zrpq = 1,

Provably Secure Blockchain Protocols from D-PoDL 131

otherwise Zrpq = 0. Hence, we define a variable Zr =
∑

p

∑
q Zrpq. For a set X of

k consecutive rounds, we define X(X) =
∑

r∈X Xr, Y (X) =
∑

r∈X Yr, Z(X) =∑
r∈X Zr.

Definition 2 ((ε, k)-typical execution). Let ε ∈ (0, 1) and k ∈ N, an execu-
tion is (ε, k)-typical if for any set X of at least k consecutive rounds within the
period of a deep learning task, the following holds:

– (1 − ε)E[X(X)] < X(X) < (1 + ε)E[X(X)], (1 − ε)E[Y (X)] < Y (X);
– Z(X) < E[S(X)] + εE[X(X)].

Theorem 1. Assume the training oracle and at most β < 1
2 corrupted min-

ers each round, the longest-chain-based D-PoDL blockchain protocol satisfies the
robust ledger properties (Definition 1).

Proof. We first prove the following lemma.

Lemma 1. An execution is (ε, k)-typical with probability 1 − e−Ω(ε2kp) where p
is the probability of at least one honest miner obtaining a model that satisfies
h2 ≤ T2 ∧ acc ≥ Tacc.

Let accafter be the input accuracy to OTrain and Dacc be the difficulty thresh-
old, according to our oracle description, the probability of the output accuracy
accafter surpassing the target threshold Tacc in a query reply is:

Pr[accafter ≥ Tacc] = Pr[accafter ≥Tacc ∧ accpre ≥ Dacc]
+ Pr[accafter ≥ Tacc ∧ accpre < Dacc]

≥ Pr[accafter ≥Tacc|accpre ≥ Dacc] · Pr[accpre ≥ Dacc]
= f1 · Pr[accpre ≥ Dacc],

For a query, we have Pr[accpre ≥ Dacc] ≥ 1/2, as we assumed training steps
before reaching Dacc, which is less than the step number afterward. Thus, a
miner who makes at least one query to OTrain in a round obtains accafter ≥ Tacc

from OTrain with probability at least 1
2 · f1.

Let f2 be the probability of at least one honest miner obtaining an h2 from
the training oracle OTrain that satisfies h2 ≤ T2 in a round. Because the output of
the training algorithm is independent to the hash function, the probability of at
least one honest miner obtaining a tuple (Mafter, accafter, S+1, h2) that satisfies
h2 ≤ T2 ∧ accafter ≥ Tacc should be at least p ≥ 1

2 · f1 · f2 (and at most p ≤ f2).
Next, we analyze the probability of execution being typical. Note that the

training oracle OTrain takes queries with different training random seeds (r) as dif-
ferent queries. Moreover, a hash function, modeled as a random oracle, generates
such random seeds in the pre-hash PreHash algorithm. Hence, the probability
of two honest parties querying OTrain with the same input in polynomial many
rounds of execution is negligible of the security parameter λ. Such property
enables us to condition the probability space on the event that no two honest
parties query OTrain with the same input in a polynomial many rounds of exe-
cution. In this space, the random variables Xr (and similarly Yr and Zrpq) are

132 X. Su et al.

independent Bernoulli trials where each trail is successful with probability Θ(p)
(as analyzed above). Hence, by the Chernoff bound, we prove the probability of
an (ε, k)-typical execution is 1 − e−Ω(ε2kp).

Directly from [11], we have the following lemma that parameterizes the chain
growth, existential chain quality, and common prefix in a typical execution.

Lemma 2. In an (ε, k)-typical execution, the chain growth property holds for
parameter τ = (1−ε)p and s ≥ k, the existential chain quality property holds for
parameter s ≥ 2kp, and the common prefix property hold for parameter s ≥ 2kp.

Finally, by Lemma 1, we choose k = Ω(log2 λ) so that an execution fails to
be typical with negligible probability of the security parameter λ. Therefore, we
prove Theorem 1 with the parameters following Lemma 2.

The Weight-Based Protocol. One concern is that selecting models with
inferior accuracy may accelerate the block generation rate because training such
models requires fewer steps in each time slot. The block may not be adequately
propagated to all honest miners before the next block is generated. To prevent
so, we require the weight function to be appropriately bounded (with isolated-
lower-bounds and upper-bounds, definitions can be found in [13]) so that the
low block weight indicates low model accuracy and the low accuracy models are
hard to be selected according to the weight function. Like the typical execution,
we adopt model isolation (Definition 3) from [13] for the situation in which the
round gap between any two models with sufficient accuracy is longer than the
unknown network delay. Under the properly bounded weight functions, we fur-
ther argue that our model-referencing mechanism cannot break model isolation.
A miner has to perform enough training steps so that the total step number of its
model, including all the referenced models, is no less than the total steps of the
selected models (Restriction). Hence, the model-referencing mechanism offers
no advantage to the miner in generating a model faster. Finally, we conclude the
following theorem for the weight-based protocol.

Definition 3 (acc-Isolation). Let M be the model embedded in the block mined
in round r within the period of a deep learning task. M is left-isolated if M is
generated by an honest miner, accM ≥ acc, and there is no block on the left
embedding a model with accuracy higher than acc in rounds [r−Δ, r] where Δ is
the unknown network delay. M is isolated if M is generated by an honest miner,
accM ≥ acc, and there is no block embedding a model with accuracy higher than
acc in rounds [r − Δ, r + Δ].

Theorem 2. Assume the training oracle and at most β < 1
2 corrupted miners

each round, the weight-based D-PoDL blockchain protocol satisfies the weight-
based robust ledger properties (Definition 1) if the weight function is isolated-
lower-bounded and upper-bounded.

Proof. It has been proven that a secure longest-chain-based blockchain protocol
can be transformed into a secure weight-based protocol as long as the weight

Provably Secure Blockchain Protocols from D-PoDL 133

function is properly bounded [13]. We refer to their results and argue that our
model-referencing mechanism will not break the proof.

First, for chain growth, the restrictions on training step number in Sect. 4.1
enable honest miners to have enough time for block propagation. Therefore, hon-
est miners will have at least one chain that accumulates the weight from all left-
isolated blocks. Assuming the weight function is left-isolated-lower-bounded, the
probability of this accumulated weight being inferior to the lower bound is neg-
ligible to the security parameter. Next, for chain quality, the chain growth prop-
erty guarantees that the chain will accumulate at least all left-isolated blocks’
weights. Moreover, the adversary cannot generate left-isolated blocks fast enough
because it has to perform enough training steps, and the total weight is upper
bounded by the weight function. Finally, since model-referencing will not change
block selection, i.e., honest miners will only extend chains with sufficient weights
by each round, common prefix preserves regardless of model-referencing.

6 Implementation of D-PoDL Scheme

This section shows a toy example for our D-PoDL scheme implementation. We
compare the PoW scheme and the plain deep learning to our D-PoDL scheme
with different sets of threshold parameters (T1, T2, Tacc). We utilize the MNIST
dataset to implement deep learning-based schemes, i.e., plain deep learning and
our D-PoDL, and follow the original split of 60000 images for training and 10000
images for testing. Results can be found in Table 2.

Table 2. Experiment Results

Scheme/Algorithm Average Maximum Minimum Variance

PoW (2224) 433.37 1242.53 0.63 122336.11

Deep learning (0.97) 81.88 126.61 75.24 109.19

D-PoDL (2240, 2256, 0.97) 94.26 122.38 75.23 320.99

D-PoDL (2244, 2255, 0.97) 140.60 195.68 115.36 648.97

On MacBook Pro with 2.3GHz quad-core Intel Core i5 and 8GB of
2133MHz LPDDR3 onboard memory; Time consumption is presented
in seconds and recorded for 20 attempts.

In the PoW implementation, we use a 256-bit hash function, e.g., SHA-
256, and set the difficulty to be T = 2228, i.e., to find a nonce with
Hash(prevBK, nonce) < T . Hence, the expected hash iteration is 228. Next, In
the plain deep learning implementation, we set the batch size to 128, the learn-
ing rate to 0.001, and the target threshold to 0.97. Most models reach this
threshold in 2 epochs, each including 387 training steps. Finally, in the two D-
PoDL’s Solve algorithm, we implement with (T1, T2, Tacc) = (2240, 2256, 0.97) and
(2244, 2255, 0.97). For T2 = 2256, since the post-hash accepts all models, we use it

134 X. Su et al.

to distinguish the impact of the pre-hash algorithm PreHash. The change in time
comes from two factors: (1) Computation overhead from the hash function; (2)
Training speed due to the different hyper-parameters. For the second D-PoDL
implementation, the post-hash check significantly prolongs the average solving
time despite the fact that we lower the pre-hash threshold T1 to 2244. The result
indicates that the post-hash plays an important role in controlling the solution
generation speed, which is the overall difficulty of the scheme.

Concerning variance values, we observe a big gap between deep learning-
based schemes and the PoW scheme. The reason is that the stochastic gra-
dient descent algorithm that optimizes the neural network has a more consis-
tent convergence speed. In contrast, a well-behaving hash function in the PoW
scheme should follow the uniform distribution with a high variance. However, low
variance is not always preferable because the algorithm should involve enough
stochasticity to prevent domination, i.e., the miner with the most computing
power generates all blocks. By comparing the variance value of the deep learning-
based schemes, we notice that both pre-hash and post-hash algorithms involve
randomness in the solving time, which can benefit the fairness among miners.

7 Conclusion

This paper extends the concept of deep learning-based proof-of-useful-work with
distribution in solving the deep learning task. We then formalize the extended
scheme as distributed proof-of-deep-learning (D-PoDL). Our novel designs, hash-
training-hash, and model-referencing, enable users to train models distributively
without suffering from grinding attacks and pre-computation attacks, which have
not been achieved by any previous work. Next, a generic blockchain protocol is
built atop the D-PoDL scheme alongside two concrete construction based on the
longest-chain rule and the weight-based framework. We prove security for both
concrete protocols in terms of robust ledger properties, which again is the first
paper to achieve so. Finally, we implement the D-PoDL scheme to compare with
PoW and deep learning-based schemes. We conclude that our D-PoDL fits in the
middle point of these existing schemes with a more stabilized solution generation
speed and enough randomness for fairness.

References

1. Badertscher, C., Garay, J., Maurer, U., Tschudi, D., Zikas, V.: But why does it
work? a rational protocol design treatment of bitcoin. In: Nielsen, J.B., Rijmen, V.
(eds.) EUROCRYPT 2018. LNCS, vol. 10821, pp. 34–65. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-78375-8 2

2. Baldominos, A., Saez, Y.: Coin. AI: a proof-of-useful-work scheme for blockchain-
based distributed deep learning. Entropy 21(8), 723 (2019). https://doi.org/10.
3390/e21080723

3. Ball, M., Rosen, A., Sabin, M., Vasudevan, P.N.: Proofs of work from worst-case
assumptions. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol.
10991, pp. 789–819. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
96884-1 26

https://doi.org/10.1007/978-3-319-78375-8_2
https://doi.org/10.3390/e21080723
https://doi.org/10.3390/e21080723
https://doi.org/10.1007/978-3-319-96884-1_26
https://doi.org/10.1007/978-3-319-96884-1_26

Provably Secure Blockchain Protocols from D-PoDL 135

4. Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. J.
Mach. Learn. Res. 13, 281–305 (2012). http://dl.acm.org/citation.cfm?id=2188395

5. Blocki, J., Zhou, H.-S.: Designing proof of human-work puzzles for cryptocurrency
and beyond. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9986, pp. 517–
546. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53644-5 20

6. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: 42nd Annual Symposium on Foundations of Computer Science,
FOCS 2001, 14–17 October 2001, Las Vegas, Nevada, USA, pp. 136–145. IEEE
Computer Society (2001). https://doi.org/10.1109/SFCS.2001.959888

7. Chenli, C., Li, B., Jung, T.: DLchain: blockchain with deep learning as proof-
of-useful-work. In: Ferreira, J.E., Palanisamy, B., Ye, K., Kantamneni, S., Zhang,
L.-J. (eds.) SERVICES 2020. LNCS, vol. 12411, pp. 43–60. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-59595-1 4

8. Chenli, C., Li, B., Shi, Y., Jung, T.: Energy-recycling blockchain with proof-of-
deep-learning. In: IEEE International Conference on Blockchain and Cryptocur-
rency, ICBC 2019, Seoul, Korea (South), 14–17 May 2019, pp. 19–23. IEEE (2019).
https://doi.org/10.1109/BLOC.2019.8751419

9. Coelho, F.: An (almost) constant-effort solution-verification proof-of-work protocol
based on Merkle trees. In: Vaudenay, S. (ed.) AFRICACRYPT 2008. LNCS, vol.
5023, pp. 80–93. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-
68164-9 6

10. Fitzi, M., Kiayias, A., Panagiotakos, G., Russell, A.: Ofelimos: combinatorial opti-
mization via proof-of-useful-work a provably secure blockchain protocol. In: Dodis,
Y., Shrimpton, T. (eds.) CRYPTO 2022. Lecture Notes in Computer Science, vol.
13508, pp. 339–369. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-
15979-4 12

11. Garay, J., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol: analysis
and applications. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS,
vol. 9057, pp. 281–310. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46803-6 10

12. Garay, J.A., Kiayias, A., Leonardos, N., Panagiotakos, G.: Bootstrapping the
blockchain, with applications to consensus and fast PKI setup. In: Abdalla, M.,
Dahab, R. (eds.) PKC 2018. LNCS, vol. 10770, pp. 465–495. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-76581-5 16

13. Kamp, S.H., Magri, B., Matt, C., Nielsen, J.B., Thomsen, S.E., Tschudi, D.:
Weight-based Nakamoto-style blockchains. In: Longa, P., Ràfols, C. (eds.) LAT-
INCRYPT 2021. LNCS, vol. 12912, pp. 299–319. Springer, Cham (2021). https://
doi.org/10.1007/978-3-030-88238-9 15

14. Lan, Y., Liu, Y., Li, B., Miao, C.: Proof of learning (pole): empowering machine
learning with consensus building on blockchains (demo). In: Thirty-Fifth AAAI
Conference on Artificial Intelligence, AAAI 2021, Thirty-Third Conference on Inno-
vative Applications of Artificial Intelligence, IAAI 2021, The Eleventh Symposium
on Educational Advances in Artificial Intelligence, EAAI 2021, Virtual Event, 2–9
February 2021, pp. 16063–16066. AAAI Press (2021). https://ojs.aaai.org/index.
php/AAAI/article/view/18013

15. Li, B., Chenli, C., Xu, X., Jung, T., Shi, Y.: Exploiting computation power
of blockchain for biomedical image segmentation. In: IEEE Conference on
Computer Vision and Pattern Recognition Workshops, CVPR Workshops 2019,
Long Beach, CA, USA, 16–20 June 2019, pp. 2802–2811. Computer Vision
Foundation/IEEE (2019). https://doi.org/10.1109/CVPRW.2019.00339, http://

http://dl.acm.org/citation.cfm?id=2188395
https://doi.org/10.1007/978-3-662-53644-5_20
https://doi.org/10.1109/SFCS.2001.959888
https://doi.org/10.1007/978-3-030-59595-1_4
https://doi.org/10.1109/BLOC.2019.8751419
https://doi.org/10.1007/978-3-540-68164-9_6
https://doi.org/10.1007/978-3-540-68164-9_6
https://doi.org/10.1007/978-3-031-15979-4_12
https://doi.org/10.1007/978-3-031-15979-4_12
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-319-76581-5_16
https://doi.org/10.1007/978-3-030-88238-9_15
https://doi.org/10.1007/978-3-030-88238-9_15
https://ojs.aaai.org/index.php/AAAI/article/view/18013
https://ojs.aaai.org/index.php/AAAI/article/view/18013
https://doi.org/10.1109/CVPRW.2019.00339
http://openaccess.thecvf.com/content_CVPRW_2019/html/BCMCVAI/Li_Exploiting_Computation_Power_of_Blockchain_for_Biomedical_Image_Segmentation_CVPRW_2019_paper.html

136 X. Su et al.

openaccess.thecvf.com/content CVPRW 2019/html/BCMCVAI/Li Exploiting
Computation Power of Blockchain for Biomedical Image Segmentation CVPRW
2019 paper.html

16. Lihu, A., Du, J., Barjaktarevic, I., Gerzanics, P., Harvilla, M.: A proof of useful
work for artificial intelligence on the blockchain. CoRR abs/2001.09244 (2020).
https://arxiv.org/abs/2001.09244

17. Pass, R., Shi, E.: Fruitchains: a fair blockchain. In: Schiller, E.M., Schwarzmann,
A.A. (eds.) Proceedings of the ACM Symposium on Principles of Distributed Com-
puting, PODC 2017, Washington, DC, USA, 25–27 July 2017, pp. 315–324. ACM
(2017). https://doi.org/10.1145/3087801.3087809

http://openaccess.thecvf.com/content_CVPRW_2019/html/BCMCVAI/Li_Exploiting_Computation_Power_of_Blockchain_for_Biomedical_Image_Segmentation_CVPRW_2019_paper.html
http://openaccess.thecvf.com/content_CVPRW_2019/html/BCMCVAI/Li_Exploiting_Computation_Power_of_Blockchain_for_Biomedical_Image_Segmentation_CVPRW_2019_paper.html
http://openaccess.thecvf.com/content_CVPRW_2019/html/BCMCVAI/Li_Exploiting_Computation_Power_of_Blockchain_for_Biomedical_Image_Segmentation_CVPRW_2019_paper.html
https://arxiv.org/abs/2001.09244
https://doi.org/10.1145/3087801.3087809

Security Model for Privacy-Preserving
Blockchain-Based Cryptocurrency

Systems

Mayank Raikwar1(B), Shuang Wu2, and Kristian Gjøsteen3

1 University of Oslo, Oslo, Norway
mayankr@ifi.uio.no

2 DNV, Trondheim, Norway
Shuang.Wu@dnv.no

3 Norwegian University of Science and Technology (NTNU), Trondheim, Norway

kristian.gjosteen@ntnu.no

Abstract. Privacy-preserving blockchain-based cryptocurrency sys-
tems have become quite popular as a way to provide confidential pay-
ments. These cryptocurrency systems differ in their designs, underlying
cryptography, and confidentiality level. Some of these systems provide
confidentiality for their users or transactions or both. There has been a
thriving interest in constructing different privacy-preserving cryptocur-
rency systems with improved security and additional features. Neverthe-
less, many of these available systems lack security models which makes
it hard to prove the security properties of these systems.

Despite the differences in the privacy notions of existing privacy-
preserving cryptocurrency systems, in this paper, we present a first
attempt to create a general framework for a privacy-preserving
blockchain-based bank PBB. We present the security properties of this
system and model the security experiments for each of the properties.
Our PBB model can also work for bank-less cryptocurrency systems.
Henceforth, we present a brief security analysis for one of the most
notable privacy-preserving cryptocurrencies, Monero, using the security
model of the PBB system. Our analysis proves that our PBB system
can be easily used to formalise the security of other available privacy-
preserving cryptocurrencies.

1 Introduction

Privacy-preserving blockchain-based cryptocurrency systems are financial sys-
tems that allow users to conduct cryptocurrency transactions. Similar to online
banks, users can store their funds in cryptocurrencies, transfer cryptocurren-
cies between each other and withdraw their funds to fiat money. The privacy-
preserving feature is that these financial activities are not completely trans-
parent to the outsiders, in contrast to Bitcoin [16] and Ethereum [22] where

M. Raikwar and S. Wu—This work was done in part while the author was at NTNU,
Norway.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Li et al. (Eds.): NSS 2023, LNCS 13983, pp. 137–152, 2023.
https://doi.org/10.1007/978-3-031-39828-5_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-39828-5_8&domain=pdf
https://doi.org/10.1007/978-3-031-39828-5_8

138 M. Raikwar et al.

transaction information is public. There are many constructions of privacy-
preserving blockchain-based cryptocurrency systems [2,3,5,9–11,18,20], both in
the literature and deployed. Even though these systems offer the same function-
alities/services to the end-users, each of them has its own definitions and security
claims, and some of them even lack security proofs despite being deployed. The
diversity of the definitions and security models makes it hard to analyse and
compare these protocols in general, resulting in less convincing security claims.
There is therefore a need for a unified formal description and security model for
these systems which we attempt to provide in this paper. The security model
presented in the paper can be further matured by formal verification.

Giving a general definition and security model for privacy-preserving cryp-
tocurrency systems is not a simple task since the systems vary in many aspects.
Depending on the amount of information released to the public, these systems
provide different levels of privacy which is captured by the security model. Some
designs [3,7] provide confidential transactions where transfer values are hidden,
but the identities of the senders and recipients are public. In anonymous cryp-
tocurrencies such as Monero [20] and Zcash [18], the identities that are relevant
to a certain transaction are hidden, but they still have a somewhat different form
of anonymity. In addition to the differences in privacy levels, these systems also
differ structurally from each other. They can generally be divided as: Layer 1
blockchain-based anonymous cryptocurrency like Monero, Zcash and Zether [3]
and Layer 2 cryptocurrency like Pribank [7]. Pribank introduces a semi-trusted
centralized bank operator above the blockchain which hides the sensitive infor-
mation while relaying the users’ transactions to the blockchain periodically.

Despite the above differentiation among the systems, we attempt to build a
general model for privacy-preserving cryptocurrency systems. Firstly, we rename
these systems as blockchain-based online banks, as the functionality and the ser-
vices these systems provide are mostly identical to the traditional online bank
system. Our model is capable of expressing the differences of privacy, and it cap-
tures the most essential functionality and properties of an online financial system
(online bank) regardless of how they use the blockchain. We provide a security
model that has two essential security properties: Transaction Indistinguishability
(T-IND) and Overdraft Safety. Transaction indistinguishability captures the pri-
vacy features of an online bank, informally speaking, a transaction record on the
blockchain does not reveal any information about the user’s activity. Overdraft
safety claims an honest user is always able to withdraw his/her full balance. This
implies that no adversary can steal others’ funds or withdraw more than it has.

The definition of transaction indistinguishability was first proposed by Zether
without formalisation. There is a corresponding security definition in Zcash
which is called Ledger Indistinguishability (L-IND). We prove that these two
concepts are equivalent, but we believe that transaction indistinguishably is
intuitively easier to use. In addition, we add a leakage function to the secu-
rity experiment which controls the amount of information that is leaked to the
adversary. By this leakage function, the model is able to express different privacy
levels, i.e., from confidential transactions to completely anonymous transactions.

Security Model for Privacy-Preserving Blockchain-Based Cryptocurrency 139

The proposed security model is built by following and modifying the security
model of PriBank [7]. Our proposed model can also be employed to assess the
security of bank-less cryptocurrency systems. We demonstrate the applicability
and usability of our model by applying it to Monero as a case study.

1.1 Contribution

This paper presents a general definition and security model for the privacy-
preserving blockchain-based online bank for cryptocurrencies. Our model can
express different levels of privacy regardless of the structure of the systems. We
prove that two privacy-related security definitions in the literature, Transaction
indistinguishability and Ledger Indistinguishability, are equivalent. We also dis-
cuss the relationship among the definitions that are related to the integrity of
the protocol, namely, Balance and Overdraft Safety. We give a general security
model for a blockchain-based online bank system that has two essential prop-
erties: transaction indistinguishability and overdraft safety. We believe the pro-
posed security notions are helpful to simplify and formalise the security analysis
for privacy-preserving blockchain-based cryptocurrencies. We further analyse the
security properties of anonymous cryptocurrency system Monero.

1.2 Related Work

There are many constructions of privacy-preserving blockchain based online
banks for cryptocurrencies [2,3,5,9–11,18–20]. These systems are either built
on top of an underlying blockchain or on top of a smart contract. The main
goal of these systems are to provide privacy for their users and transactions. A
detailed overview of can be found here [1]. These systems employ cryptographic
primitives such as zero-knowledge proofs, ring signatures, or mixing techniques,
and achieve a variety of different trade-offs with respect to privacy.

After the proposal of the Zcash [18] system, many follow-up [2,8,9,12,15,23]
ledger-based constructions were proposed offering different meaningful privacy
notions for cryptocurrency systems. Furthermore, the security model of these sys-
tems is based on the security model of Zcash. Systems such as Hawk [12], Zexe [2]
and Z-Channel [23] provide on-chain privacy by performing high-frequency trans-
actions (computation) off-chain. Hawk and Zexe employ zk-SNARK proof sys-
tems to generate privacy-preserving transactions. But neither system defines its
security model and underlying properties. Z-Channel [23] is a micropayment
system that adds multi-signature and time-lock functionalities to the Zcash. Z-
Channel follows the security model of Zcash to prove its security guarantees.

Zcash inspired systems such as Lelantus [8], Spark [9] and a scheme by
Mitani and Otsuka [15] provide on-chain privacy with additional usability fea-
tures. Lelantus [8] is an anonymous payment system that ensures confidentiality,
small proof size, and fast transaction verification. Spark [9] is a modification to
the Lelantus that provides recipient privacy and opt-in transaction visibility to
third parties. Mitani and Otsuka [15] constructed a Confidential and Auditable
Payment (CAP) scheme. A CAP scheme uploads encrypted transactions to the

140 M. Raikwar et al.

ledger and also allows an authority to audit the transactions while keeping the
transactions confidential. The security of all these on-chain privacy-enabled pay-
ment schemes is defined by following the security model of the Zcash system.

Privacy-preserving systems can also be built on top of smart contracts.
Zether [3], zKay [19] and Kachina [10] are such systems built on Ethereum.
These systems establish privacy-preserving smart contracts to provide confiden-
tial payment or confidential data. Zether [3] defines its security properties but
does not provide formal security proofs which are essential to prove the security
of an anonymous payment system. zKay [19] defines its privacy model by defin-
ing a language zKay for writing smart contracts with private data. Further, these
contracts are transformed to be executable on Ethereum. zKay presents different
security notions related to indistinguishability and privacy of data. However, the
security proofs in zKay are informal and require more formalization.

Kachina [10] provides a unified security model based on the Universal Com-
position (UC) model to deploy privacy-preserving, general-purpose smart con-
tracts. The security model of Kachina consists of complex proofs and does not
capture properties, e.g., liveness. Kachina gives a proof sketch of Zcash but it
is hard to justify whether Kachina actually manages to capture all the security
properties through the UC-emulated Zcash contract. Hence, Kachina’s security
model cannot be used to assess the security of other privacy-preserving systems.

Another class of privacy-enabled systems is based on ring signature. The most
notable one is Monero [20]. Using ring signatures Monero achieves anonymity of
transacting parties. To achieve confidentiality, Monero uses confidential trans-
actions together with a ring signature, referred to as Ring Confidential Trans-
action (RingCT). Although there has been a decent amount of work to explore
the attacks on Monero [21], to the best of our knowledge only a recent work [4]
formalises the security of Monero (published after the submission of this work).

There have been several attempts to analyze the security of RingCT, but
due to the complexity of RingCT, most of them either provide informal proofs
or miss the fundamental functionality. Moreover, Monero limits the ring size to
only a few accounts. Therefore, to solve these issues, a new scheme, Omniring [13]
was constructed that not only solves the above issues but also provides improved
privacy without sacrificing performance. Omniring does provide a security model
followed by rigorous proofs for its scheme but its model is quite complex and
cannot be generalized to assess the security of other privacy-preserving systems.

Other works providing provable security notions are Quisquis [6] and an
anonymous mixing scheme [14]. The security proofs in these schemes provide
targeted security notions but it is not clear how these notions can be generalized.

The above described privacy-preserving systems define a number of security
properties. A few main security properties can be (informally) described as:

– Transaction Indistinguishability Given two different transactions tx0, tx1 from
an adversary A, the ledger L records only one transaction txi where i ∈ {0, 1},
the adversary A cannot distinguish which transaction was recorded.

– Ledger Indistinguishability Given two different ledgers L0, L1 constructed by
an adversary A using queries to two privacy-preserving system oracles, the
adversary A cannot distinguish between L0 and L1.

Security Model for Privacy-Preserving Blockchain-Based Cryptocurrency 141

– Overdraft Safety Given an adversary A, an honest user can always spend (or
withdraw) the funds that he rightfully owns.

– Balance No bounded adversary A can control more money than he minted
or received.

Although there have been many constructions of privacy-preserving systems,
as discussed above only a few systems define their security. This demonstrates
a need to define a generic privacy-preserving blockchain-based cryptocurrency
system and formalize its security. Therefore, we present a formal definition of a
privacy-preserving blockchain-based bank system (PBB), followed by an analysis
of essential security properties. We analyze the security of Monero system using
our framework. Due to the expressiveness of our framework, our analysis can be
further used to model the security of other structurally different systems having
different levels of privacy such as Zcash, Dash [5], zKay [19], and Spark [9].

2 Privacy-Preserving Blockchain-Based Bank

Privacy-preserving cryptocurrency systems, despite different structures, aim to
provide end-users services similar to an online bank. Based on this fact, we call
these systems privacy-preserving blockchain-based online banks. In this section,
we formally define this notion. In blockchain-based online banks, an entity always
keeps two types of states: permanent state and temporary state. Permanent
states are states that are already recorded on the blockchain, temporary states
are states not recorded on the blockchain yet. We denote TempStx as temporary
state and Stx as permanent state of an entity x (bank or a user).

We adapt the blockchain-based bank (BBank) defined in [7] and modify it to
formally define a unified privacy-preserving blockchain-based bank (PBB). The
BBank is a Layer 2 account-based ledger that works periodically in terms of
epochs. Hence, the PBB is also based on an account-based model. However, our
PBB system can also be used for the security analysis of UTXO-based systems.

Note: Depending on the concrete structure of a cryptocurrency system and
its underlying ledger model, some algorithms in this definition can be eliminated.

Definition 1 (PBB). A Privacy-preserving Blockchain-based Bank PBB is
a tuple of algorithms (Setup,KeyGen,EstablishBank,NewUser, Deposit,Withdraw,
Pay,Commit,Contract) with the following syntax and semantics

– The algorithm Setup takes input 1λ, where λ is the security parameter and
generates the public parameters pp, to be distributed off-chain. It also ini-
tialises a set KeyList ← ∅.

– The algorithm KeyGen takes the public parameters pp as input, and generates
a key pair for a user (pku, sku) or a bank (pkb, skb).

– The algorithm EstablishBank runs only once and establishes a bank. It takes
the public parameters pp and a key pair (pkb, skb) of a bank as inputs, gen-
erates an initial state of the bank TempStb and a transaction trans. Once the
transaction trans is accepted by the blockchain, the smart contract is launched.
(trans,TempStb) ← EstablishBank(pkb, skb, pp)

142 M. Raikwar et al.

– The algorithm NewUser is performed by a user to register on the smart con-
tract but without any deposit for her account yet. It takes the public parameters
pp, public key pkb of the bank and the key pair (pku, sku) of a user as inputs,
and outputs an initial state of the user TempStu and a transaction trans.
(trans,TempStu) ← NewUser(pkb, pku, sku, pp)

– The protocol Deposit is run by the bank operator and a user to deposit money
on the smart contract. It takes the public parameters pp, the key pairs and
states of a user pku, sku,Stu and of a bank pkb, skb,Stb, epoch counter epoch,
deposit value v as inputs, outputs a transaction trans and temporary states of
user and bank. Once the transaction trans get accepted by the smart contract,
the user gets a commitment for her initial balance.

(trans,TempStb,TempStu) ← Deposit(pkb, skb, pku, sku,Stb,Stu, pp, v, epoch)

– The algorithm Withdraw is performed by a registered user who wants to exit
the bank. It takes the public parameter pp, the key pair (pku, sku) of a user,
states of the user and the bank Stu,Stb, and the amount v of the user the bank
holds at the epoch counter epoch, generates a transaction trans and updates
the temporary states of this user and the bank.
(trans,TempStb,TempStu) ← Withdraw(pku, sku,Stb,Stu, pp, v, epoch)

– The protocol Pay is run by the bank and a user (payer p) to send funds to
other users. It takes the public key pkr of the receiver r, the key pair (pkp, skp)
of the payer and (pkb, skb) of the bank, the temporary states TempStp,TempStb
of the payer and the bank, the epoch counter epoch and the transferred amount
v′ as inputs, and then it updates the temporary states of the payer and the
bank.

(TempSt′p,TempSt′b) ← Pay(pkb, skb, pkp, skp, pkr,TempStp,TempStb, pp, v
′, epoch)

– The algorithm Commit is performed by the bank at the end of each epoch
epoch. It takes the key pair (pkb, skb), and the states Stb,TempStb of the bank
as inputs and generates a transaction trans and updates the temporary state.

(trans,TempSt′b) ← Commit(pkb, skb,Stb,TempStb, epoch)

– The algorithm Contract takes the public parameters pp, a transaction trans,
all users’ states {Stu}, {TempStu} and bank states Stb,TempStb as inputs and
then updates all of them.

(St′b, {St′u},TempSt′b, {TempSt′u}) ← Contract({Stu}, {TempStu},Stb,TempStb, trans, pp)

3 Security Properties

In this section, we provide a brief description of security properties associated
with the privacy-preserving blockchain-based online bank for cryptocurrencies.
To define these properties, first, we define a notion of Public Consistent that

Security Model for Privacy-Preserving Blockchain-Based Cryptocurrency 143

Fig. 1. Query Description in Blockchain-based Bank Experiment

will be used in security proofs. Further, we give formal descriptions of the secu-
rity properties in different ledger models. For the game-based security proofs,
we describe the queries in Fig. 1 that an adversary can make in the security
experiment. Our security definitions are based on this experiment.

Public Consistent: In our model, an adversary A will submit queries contain-
ing pairs of transactions. Public consistent applies restrictions for the queries
that the adversary can make, with the goal being to prevent adversary from
winning trivially. Informally, public consistent requires that the queries sent by
an adversary A have transactions of matching type that are identical in terms
of publicly-revealed information and the information related to addresses con-
trolled by the adversary A. Apart from public consistent, we also define a leakage
function that captures the amount of information that leaked to the adversary
for every query that the adversary makes.

144 M. Raikwar et al.

Definition 2 (Leakage Function). A leakage function Leakage maps a trans-
action to the query information leaked: η ← Leakage(Q)

Definition 3 (Public Consistent). We require the query pairs (Q0,Q1) for
Commit and Pay must be jointly consistent with respect to public information
and A’s view, namely:

– For all the users that the adversary controls (adversary has asked Reveal
query for them), their states in the two banks should be consistent.

– If one of the queries Q0 and Q1 is not legitimate, the other query will not be
proceeded by the experiment as well.

– The leaked information of Q0 and Q1 should be the same, i.e., Leakage(Q0) =
Leakage(Q1).

3.1 Privacy

Privacy in a privacy-preserving blockchain-based online bank can refer to differ-
ent meanings, ranging from the privacy of balance or identities of transacting
parties to the privacy of transacting amount. Therefore, to capture these privacy
requirements, two main security notions have been defined, transaction indistin-
guishability and ledger indistinguishability. Our preferred notion of transaction
indistinguishability captures privacy at a basic level, where each transaction
reveals no new information about transacting parties’ activity. Ledger indistin-
guishability meanwhile captures the big picture where the ledger reveals no new
information to an adversary beyond the publicly revealed information.

Ledger Indistinguishability. This property states that even in the presence of
an adversary that can adaptively induce honest users to perform PBB operations,
the ledger does not reveal any new information to the adversary except the
publicly available information. Given two PBB scheme oracles OPBB

0 and OPBB
1 ,

and two ledgers L0 and L1 constructed by a bounded adversary A using public
consistent blockchain-bank queries to the two oracles, ledger indistinguishability
implies that the adversary A cannot distinguish between L0 and L1.

Ledger indistinguishability is defined by an experiment L-IND, which involves
a polynomial-time adversary A attempting to break a given PBB scheme. Given a
PBB scheme Π, an adversary A and a challenger C, the experiment L-IND(Π,A)
proceeds as follows: First the challenger C samples a random bit b and ini-
tialises two PBB scheme oracles OPBB

0 and OPBB
1 , maintaining ledgers L0 and L1.

Throughout, the challenger C allows the adversary A to issue queries to OPBB
0

and OPBB
1 , thus controlling the behaviour of honest parties on L0 and L1. Fur-

ther, the challenger C provides the adversary A with the view of both ledgers,
but in a randomized order: LLeft := Lb and LRight := L1−b. The adversary’s goal is
to distinguish whether the view he sees corresponds to (LLeft, LRight) = (L0, L1),
i.e. b = 0, or to (LLeft, LRight) = (L1, L0), i.e. b = 1. The formal description is
here [18].

Transaction Indistinguishability. Transaction indistinguishability states
that given two different queries of an adversary, only one of the two queries is

Security Model for Privacy-Preserving Blockchain-Based Cryptocurrency 145

processed and the ledger is updated with the corresponding transaction. Trans-
action indistinguishability states that the adversary cannot distinguish which
query maps to the recorded transaction. Based on the leakage from the queries
sent by the adversary to the ledger, this property can also indicate other notions
of privacy such as confidential transactions or anonymity of the transacting par-
ties.

Transaction indistinguishability is defined by an experiment T-IND, which
involves a polynomial-time adversary A attempting to break a given PBB
scheme. Given a PBB scheme Π and an adversary A, the (probabilistic) exper-
iment T-IND(Π,A) proceeds as follows: The adversary A is allowed to send all
the queries (defined in Fig. 1) except the reveal query for the secret key of the
bank. In the challenge phase, first, the experiment randomly chooses b ← {0, 1}.
The adversary is allowed to make multiple challenge queries. For each challenge
query Q = Challenge(Q0,Q1) sent by the adversary A, these two queries
Q0,Q1 leak same information and the experiment only performs Qb. At the
end of the challenge phase, the adversary sends commit query Q = Commit
and receives the output transb. Finally, the adversary outputs a bit b′ ∈ {0, 1},
and wins the game if b′ = b. In this experiment T-IND, the queries sent by the
adversary A during the challenge phase should also be public consistent.

3.2 Security

Following, we describe overdraft safety and balance properties and discuss the
necessity to capture these in a privacy-preserving blockchain-based online bank.

Overdraft Safety. Informally, overdraft safety specifies that an honest user
can withdraw all the balance that he owns in the blockchain. In UTXO based
model, overdraft safety means that an honest user can always spend his unspent
outputs inductively. In an account-based model, it means that an honest user can
withdraw all the balance from his account (using smart contract). This security
requirement prohibits an adversary to withdraw more than what it has since
otherwise there must be an honest user who cannot withdraw all of his balance.

Experiment. Overdraft safety is defined by an experiment Overdraft, which
involves a polynomial-time adversary A attempting to break a given PBB
scheme. We now describe the Overdraft experiment for the PBB system.
Given a PBB scheme Π and an adversary A, the (probabilistic) experiment
Overdraft(Π,A) proceeds as the adversary is capable of sending all the queries
in the experiment that we define in Fig. 1. In addition, if the system model
involves a transaction relay entity, the adversary can send Q = Reveal for the
secret key and state of this entity. In the challenge epoch, the adversary wins if
in a certain epoch, there is an honest user who tries and fails to withdraw all his
balance within one epoch.

Balance. This property requires that no bounded adversary A can own more
money than what he minted or received via payments from others. In other
words, adversary A cannot spend more than what he owns. This property states

146 M. Raikwar et al.

that the total balance of honest users should not exceed the total balance of
the system. In case of a UTXO-based system, an adversary A can spend more
money (public unspent outputs) by directly putting a transaction on the ledger
through pouring or by asking honest parties to create such transactions.

Experiment. The balance property is formalised by an experiment Balance,
which involves a polynomial-time adversary A attempting to break a given
PBB scheme. Given a PBB scheme Π and adversary A, in the experiment
Balance(Π,A), the adversary A adaptively interacts with a challenger C and
produces a set of unspent coins. Given Addr as a set of honest user’s addresses
in ledger L, adversary A wins the game if the total value the adversary can
spend or has spent already is greater than the value it has minted or received
that means vunspent + vA−→Addr > vmint + vAddr−→A.

Note: Security properties such as transaction non-malleability, transaction
unlinkability and transaction untraceablility are not covered in this work.

4 Relation Between T-IND and L-IND

4.1 Transaction Indistinguishability Implies Ledger
Indistinguishability

Theorem 1. If there exists an adversary AT-IND that can win the T-IND experi-
ment with advantage AdvPBBAT-IND

within runtime t, then there must be an adversary
BL-IND that can win the L-IND experiment with advantage AdvPBBBL-IND

within run-
time essentially t such that

AdvPBBAT-IND
≤ 2AdvPBBBL-IND

.

Proof. The proof is a game among a challenger CL-IND, an adversary BL-IND and
an adversary AT-IND. BL-IND simulates a challenger CT-IND.

Initialisation. As described in the L-IND experiment, CL-IND at the beginning
samples a random bit b and initialises two PBB scheme oracles OPBB

0 and OPBB
1 ,

it provides adversary BL-IND with two ledgers (LLeft, LRight) = (Lb, L1−b). BL-IND is
expected to distinguish the order of the ledgers.

Query Phase. When CT-IND(BL-IND) receives queries from AT-IND, BL-IND for-
wards the queries (Q,Q) to OPBB

0 and OPBB
1 respectively. When the ledger LLeft

gets updated by one round, denoted as L′
Left, CT-IND extracts the new transaction

that is added in the last round, and forwards it back to AT-IND.

Challenge Phase. When CT-IND(BL-IND) receives two public consistent challenge
queries Q0, Q1 from AT-IND, CT-IND forwards queries (Q0, Q1) to oracles OPBB

0 and
OPBB

1 respectively. When the ledger LLeft gets updated to L′
Left, CT-IND extracts

the new transaction and returns it back to AT-IND.

Response Phase. If AT-IND responds with 0, BL-IND sets the view to be
(LLeft, LRight) = (L0, L1), otherwise sets the view as (LLeft, LRight) = (L1, L0).
Return the answer to CL-IND.

Security Model for Privacy-Preserving Blockchain-Based Cryptocurrency 147

Analysis. The left ledger contains the transactions corresponding to Lb, so the
transactions returned to AT-IND always correspond to Qb. It follows that the
challenger CL-IND and adversary BL-IND always simulate the challenger CT-IND with
the random bit b. It follows that BL-IND guesses the order of the ledgers correctly
exactly as often as AT-IND guesses its challenge bit correctly. The claim follows.

��

4.2 Ledger Indistinguishability Implies Transaction
Indistinguishability

In this section, we prove that ledger indistinguishability implies transaction
indistinguishability. We first construct an adversary AT-IND that only sends one
challenge query from an adversary AMultiT-IND that sends multiple (lc) challenge
queries. Then we prove that if there exists an adversary BL-IND that can break
ledger indistinguishability, there must be an adversary AMultiT-IND can break
transaction indistinguishability.

Lemma 1. Let T-INDlc denote the transaction indistinguishability game in
terms of lc challenge queries, and T-IND denote the original transaction indis-
tinguishability game in terms of one challenge query.

If there exists an adversary AT-INDlc
that can win T-INDlc game with advan-

tage AdvPBBAT-INDlc

within run time t, there must be an adversary AT-IND that can

win T-IND game with advantage AdvPBBAT-IND
within run time essentially t such that

AdvPBBAT-INDlc

≤ lcAdv
PBB
AT-IND

.

This follows from a standard hybrid argument.

Theorem 2. If there exists an adversary BL-IND that can win the L-IND game
with advantage AdvPBBBL-IND

within runtime t, then there exists an adversary AT-INDlc

that can win the T-INDlc game in terms of lc challenge queries, with advantage
AdvPBBAT-INDlc

and within runtime essentially t such that

AdvPBBBL-IND
≤ 2AdvPBBAT-INDlc

.

Proof. We consider three hybrid games H0, H1 and H2 involving the adversary
BL-IND, and two oracles OPBB

0 and OPBB
1 . The game constructs two ledgers L0

and L1 that the adversary is allowed to see. When the adversary makes a query
(Q0, Q1), the game provides queries to the oracles and records their transactions
on the appropriate ledger. The hybrid H0 gives the query Q0 to OPBB

0 and Q1 to
OPBB

1 . The hybrid H1 gives the query Q0 to both oracles. The hybrid H2 gives
the query Q1 to OPBB

0 and Q0 to OPBB
1 . Denote by εi, i ∈ {0, 1, 2}, the probability

that the adversary outputs 0 in hybrid Hi.
We see that H0 behaves the same as the experiment L-IND with b = 0, while

H2 behaves the same as the experiment L-IND with b = 1. Therefore,

AdvPBBBL-IND
= |ε0 − ε2| ≤ |ε0 − ε1| + |ε1 − ε2|.

148 M. Raikwar et al.

Now we consider two adversaries A0 and A1 against T-IND. They run a copy
of BL-IND and an oracle OPBB. They construct two ledgers L0 and L1 that the
adversary BL-IND is allowed to see. When BL-IND makes a query (Q0, Q1), the
adversaries make a query to their own challenge oracle, submit the query Q0

to OPBB, and update the ledgers. The adversary A0 makes the challenge query
(Q0, Q1) and appends the result to L1, appending the output of OPBB to L0. The
adversary A1 makes the challenge query (Q1, Q0) and appends the result to L0,
appending the output of OPBB to L1. When BL-IND outputs b′, the adversaries A0

and A1 output b′. Note, the queries made by each adversary are public consistent.
Denote by δi,β , i ∈ {0, 1}, β ∈ {0, 1}, the probability that the adversary

AL-IND outputs 0 when Ai interacts with a T-IND experiment with b = β. Then
the advantage of Ai is |δi,0 − δi,1|.

We see that the adversary A0 interacting with a T-IND experiment with b = 1
behaves exactly as the hybrid H0, so δ0,1 = ε0. The adversary A0 interacting with
a T-IND experiment with b = 0 behaves exactly as the adversary A1 interacting
with a T-IND experiment with b = 1, which again behaves exactly as H1, so
δ0,0 = δ1,1 = ε1. And the adversary A1 interacting with a T-IND experiment
with b = 0 behaves exactly as the hybrid H2, so δ1,0 = ε2.

Finally, we consider the adversary AT-INDlc
. It samples d ←$ {0, 1} and runs

Ad and outputs its guess b′. Its advantage is the average advantage of A0 and
A1. The claim follows. ��

5 Security Analysis of Monero

Monero is a cryptocurrency based on CryptoNote protocol [17]. Monero uses
ring signature to obfuscate a sender’s address among other users’ addresses. The
value of a user’s transaction is hidden by using the zero-knowledge protocol
Bulletproof. The receiver’s address is a one-time address that cannot be linked.
By these techniques, Monero provides unlinkability among transactions to a
certain extent, enabling the untraceable payment scheme. The idea of Monero
is: An output set O (of size s) of public keys (pk1, pk2, . . . , pkm) from the existing
public keys of monero users (U1, U2, . . . , Um) is chosen. A user Uk from the set O
creates a ring signature σ on its transaction which can be verified by the set of
public keys. The ring signature σ makes the signer U identity indistinguishable
from the users of set O and hence provides the property of plausible deniability.
We present Monero system (algorithms) according to our PBB system as follows.

– Setup The algorithm generates the public parameters pp.
– KeyGen The algorithm takes pp and generates the key pair for users.
– Deposit/Mint The algorithm is run by a miner to generate original coins

(base coins) of value v. It takes pp, the ledger state Stbc (similar to Stb in
PBB), and the key pairs of the miner u, outputs a new unspent transaction
and update miner’s temporary state.

(trans,TempStu) ← Deposit(pku, sku,Stbc,Stu, pp, v)

Security Model for Privacy-Preserving Blockchain-Based Cryptocurrency 149

– Pay The protocol is run by a user (payer) p to send transactions to other
users. It takes an anonymity set (a ring): a set of other irrelevant users’ public
keys, the size of the set n, the public key of the receiver r, the key pair of the
payer, the state of the payer, an unspent transaction with amount v′ and the
ledger state Stbc as inputs, it outputs a transaction with its one time output
address, and payer’s temporary state.

(trans,TempSt′p) ← Pay(pkp, skp, pkr, {pki}n−1
i=0 ,Stp,Stbc, pp, v

′)

– Contract The algorithm takes the public parameters, a trans, the public
state and all users’ states as inputs and then updates all of them.

(St′bc, {St′u}) ← Contract(Stbc, {Stu}, {TempStu}, trans, pp)

Security Proof Sketch for Monero. Following we first describe the T-IND
experiment customised to the algorithms of Monero, and further we define its
leakage function to capture the privacy of Monero to give the security proofs.

Experiment. T-IND Given a (candidate) PBB scheme Π, an adversary A,
and security parameter λ, the (probabilistic) experiment T-IND(Π,A, λ) pro-
ceeds as follows. In the query phase, the adversary is capable of sending the
queries for the Monero system to the experiment. In the challenge phase, the
experiment randomly chooses b ← {0, 1}, adversary then sends a challenge query
as Q = Challenge(Q0,Q1) where Q0,Q1 leak the some information and the
experiment only performs Qb. The adversary gets the output transb. At the end,
the adversary outputs b′ ∈ {0, 1}. The adversary wins the game if b′ = b. During
the challenge, the queries sent by the adversary need to be Public Consistent.

Leakage Function. The leakage function of Monero takes the total number N of
available public keys that can be added into a ring signature , all these public
keys {pki}N

i=1, the size of the ring signature n, and a Q = (Pay, pkp, pkr, v) query
as inputs, and outputs a set of public keys that is included in the ring signature.

{pk}n
j=1 ← Leakage(Q,N,n, {pki}Ni=1)

We adopt a game-hopping approach.
Experiment Exp0. The same as the T-IND experiment.
Experiment Exp1. The difference between Exp1 and Exp0 is that Exp1 does
not use the sender’s keys to generate the ring signature, instead, it uses a freshly
generated public key in the ring to generate the ring signature on the output
transaction. Due to a ring signature, an adversary is not able to distinguish
which public key is the real signer, Exp1 is indistinguishable with Exp0.
Experiment Exp2. The experiment Exp2 modifies Exp1 by replacing the zero-
knowledge proofs for balances by the simulated zero-knowledge proof using the
Bulletproof SHVZK simulator. Because of the zero-knowledge property of zero-
knowledge proof, the simulated proof reveals no information about the state-
ment, i.e., the balances, thus Exp2 is indistinguishable with Exp1. Furthermore,
the soundness property of zero-knowledge proof preserves the overdraft.

150 M. Raikwar et al.

Experiment Exp3. The Exp3 modifies Exp2 by replacing the one time address
of the output with a randomly generated address, which is irrelevant to the
receiver’s public key. Therefore Exp3 is indistinguishable with Exp2.

Balance + Overdraft Safety : Given the experiment Balance involving
polynomial-time adversary A and challenger C, the Monero scheme Π is Balance-
secure, if

Pr[Balance(Π,A) = 1] ≤ negl(λ)

We present a proof sketch for the above claim. Monero blockchain involves
certain types of transaction assertions and for which a number of transaction-
related knowledge proofs are implemented. In Monero, each user U has two pairs
of private/public keys. The first key pair is the view key pair (kv,Kv) that allows
a user to view the transactions directed to him/her. The other pair is spend key
pair (ks,Ks) that allows the user to spend his/her coins. For each transaction
tx, a sender first chooses a random number r and generates a One Time Address
(OTA) Ko using r and the receiver’s public keys (view and spend keys). The
sender sends the Ko along with transaction public key PKtx to the network.
The transaction public key PKtx = rG, where G is the base point in the elliptic
curve. Further, the OTA is recorded in the blockchain.

We say the Monero ledger is balanced if the following conditions hold. In
other words at anytime, it is possible to check any user’s transaction history by
verifying its incoming and outgoing transactions along with its unspent outputs.

– For each valid Pay transaction tx directed to a user U (receiver), U can always
verify tx by creating a new OTA and by matching it with the OTA created by
the sender. To prove the ownership of incoming transaction tx, the receiver
U proves the knowledge of kv in Kv and with the combination of transaction
public key rG, proves the knowledge of kv ∗ rG = rKv. A verifier having rKv

can check that the OTA is owned by the receiver’s address.
– For each valid Pay transaction tx made by a user U (sender), U can verify

tx by creating a valid key image for the owned output conditioning the key
image has not appeared in the blockchain before. To prove this to a verifier,
the sender U provides rKv to the verifier and proves that it corresponds with
the transaction public key rG and the receiver’s address.

– For each valid address owned by a user U , the user can always verify to others
that the provided address contains a minimum balance. To do that, the user
creates key images for the unspent outputs conditioning the key images that
have not appeared in the blockchain.

6 Conclusion

Privacy-preserving cryptocurrency systems should ensure the security properties
of their systems. Despite having many such systems, there is no unified model to
ensure or formalise the security of these systems. This paper attempts to create
a general model referred to as a privacy-preserving blockchain-based bank that

Security Model for Privacy-Preserving Blockchain-Based Cryptocurrency 151

can be used to prove the security of privacy-preserving cryptocurrency systems.
We presented the privacy properties of these systems and also the properties
related to the integrity of these systems. Further, to show the usefulness of our
model, we analysed the security of Monero system using our model. More details
such as security analysis of Zcash, discussion of different security properties and
their relationships with each other can be found in the full version of the paper.

References

1. Almashaqbeh, G., Solomon, R.: SoK: privacy-preserving computing in the
blockchain era. Cryptology ePrint Archive, Report 2021/727 (2021). https://ia.
cr/2021/727

2. Bowe, S., Chiesa, A., Green, M., Miers, I., Mishra, P., Wu, H.: ZEXE: enabling
decentralized private computation. In: 2020 IEEE Symposium on Security and
Privacy (SP), pp. 947–964 (2020). https://doi.org/10.1109/SP40000.2020.00050

3. Bünz, B., Agrawal, S., Zamani, M., Boneh, D.: Zether: towards privacy in a smart
contract world. In: Bonneau, J., Heninger, N. (eds.) FC 2020. LNCS, vol. 12059, pp.
423–443. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-51280-4 23

4. Cremers, C., Loss, J., Wagner, B.: A holistic security analysis of monero transac-
tions. Cryptology ePrint Archive, Paper 2023/321 (2023). https://eprint.iacr.org/
2023/321

5. Duffield, E., Diaz, D.: Dash: a privacy centric cryptocurrency (2015)
6. Fauzi, P., Meiklejohn, S., Mercer, R., Orlandi, C.: Quisquis: a new design for anony-

mous cryptocurrencies. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019.
LNCS, vol. 11921, pp. 649–678. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-34578-5 23

7. Gjøsteen, K., Raikwar, M., Wu, S.: PriBank: confidential blockchain scaling using
short commit-and-proof NIZK argument. In: Galbraith, S.D. (ed.) CT-RSA 2022.
LNCS, vol. 13161, pp. 589–619. Springer, Cham (2022). https://doi.org/10.1007/
978-3-030-95312-6 24

8. Jivanyan, A.: Lelantus: Towards confidentiality and anonymity of blockchain trans-
actions from standard assumptions. IACR Cryptol. ePrint Arch. 2019, 373 (2019)

9. Jivanyan, A., Feickert, A.: Lelantus spark: secure and flexible private transactions.
Cryptology ePrint Archive (2021)

10. Kerber, T., Kiayias, A., Kohlweiss, M.: Kachina-foundations of private smart con-
tracts. In: 2021 IEEE 34th Computer Security Foundations Symposium (CSF), pp.
1–16. IEEE (2021)

11. Kosba, A., Miller, A., Shi, E., Wen, Z., Papamanthou, C.: Hawk: the blockchain
model of cryptography and privacy-preserving smart contracts. In: 2016 IEEE
Symposium on Security and Privacy (SP), pp. 839–858 (2016). https://doi.org/10.
1109/SP.2016.55

12. Kosba, A., Miller, A., Shi, E., Wen, Z., Papamanthou, C.: Hawk: The blockchain
model of cryptography and privacy-preserving smart contracts. In: 2016 IEEE
Symposium on Security and Privacy (SP), pp. 839–858. IEEE (2016)

13. Lai, R.W., Ronge, V., Ruffing, T., Schröder, D., Thyagarajan, S.A.K., Wang, J.:
Omniring: scaling private payments without trusted setup. In: Proceedings of the
2019 ACM SIGSAC Conference on Computer and Communications Security, pp.
31–48 (2019)

https://ia.cr/2021/727
https://ia.cr/2021/727
https://doi.org/10.1109/SP40000.2020.00050
https://doi.org/10.1007/978-3-030-51280-4_23
https://eprint.iacr.org/2023/321
https://eprint.iacr.org/2023/321
https://doi.org/10.1007/978-3-030-34578-5_23
https://doi.org/10.1007/978-3-030-34578-5_23
https://doi.org/10.1007/978-3-030-95312-6_24
https://doi.org/10.1007/978-3-030-95312-6_24
https://doi.org/10.1109/SP.2016.55
https://doi.org/10.1109/SP.2016.55

152 M. Raikwar et al.

14. Liang, M., Karantaidou, I., Baldimtsi, F., Gordon, S.D., Varia, M.: (ε, δ)-
indistinguishable mixing for cryptocurrencies. Proc. Priv. Enhanc. Technol.
2022(1), 49–74 (2021)

15. Mitani, T., Otsuka, A.: Confidential and auditable payments. In: Bernhard, M.,
et al. (eds.) FC 2020. LNCS, vol. 12063, pp. 466–480. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-54455-3 33

16. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2009). http://bitcoin.
org/bitcoin.pdf

17. Saberhagen, N.V.: CryptoNote v 2.0 (2013). https://bytecoin.org/old/whitepaper.
pdf

18. Sasson, E.B., et al.: Zerocash: decentralized anonymous payments from bitcoin. In:
2014 IEEE Symposium on Security and Privacy, pp. 459–474. IEEE (2014)

19. Steffen, S., Bichsel, B., Gersbach, M., Melchior, N., Tsankov, P., Vechev, M.: zkay:
Specifying and enforcing data privacy in smart contracts. In: Proceedings of the
2019 ACM SIGSAC Conference on Computer and Communications Security, pp.
1759–1776 (2019)

20. The Monero Project: Monero (2014). https://web.getmonero.org
21. Wijaya, D.A., Liu, J., Steinfeld, R., Liu, D., Yuen, T.H.: Anonymity reduction

attacks to monero. In: Guo, F., Huang, X., Yung, M. (eds.) Inscrypt 2018. LNCS,
vol. 11449, pp. 86–100. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
14234-6 5

22. Wood, G.: Ethereum: a secure decentralised generalised transaction ledger. Yellow
Paper (2014)

23. Zhang, Y., Long, Y., Liu, Z., Liu, Z., Gu, D.: Z-channel: scalable and efficient
scheme in zerocash. Comput. Secur. 86, 112–131 (2019)

https://doi.org/10.1007/978-3-030-54455-3_33
http://bitcoin.org/bitcoin.pdf
http://bitcoin.org/bitcoin.pdf
https://bytecoin.org/old/whitepaper.pdf
https://bytecoin.org/old/whitepaper.pdf
https://web.getmonero.org
https://doi.org/10.1007/978-3-030-14234-6_5
https://doi.org/10.1007/978-3-030-14234-6_5

Cryptography and Privacy

Group Oriented Attribute-Based
Encryption Scheme from Lattices

with the Employment of Shamir’s Secret
Sharing Scheme

Maharage Nisansala Sevwandi Perera1(B) , Toru Nakamura2,
Takashi Matsunaka1, Hiroyuki Yokoyama1, and Kouichi Sakurai3

1 Advanced Telecommunications Research Institute International, 2-2-2 Hikaridai,
Seika-cho, Soraku-gun, 619-0288 Kyoto, Japan

{perera.nisansala,ta-matsunaka,hr-yokoyama}@atr.jp
2 KDDI Research, Inc., 2-1-15 Ohara, Fujimino, Saitama 356-0003, Japan

tr-nakamura@kddi.com
3 Kyushu University, 744 Motooka Nishi-ku, Fukuoka 819-0395, Japan

sakurai@inf.kyushu-u.ac.jp

Abstract. This paper delivers a post-quantum construction for group-
oriented attribute-based encryption (GO-ABE) using lattice-based cryp-
tography. The GO-ABE scheme enables users from the same group to
combine their attributes to satisfy a decryption policy without reveal-
ing their secret keys. GO-ABE is particularly useful when no single user
can fulfill the decryption policy alone, but a group of users can sat-
isfy it together. Li et al. introduced the idea of GO-ABE at NSS 2015,
discussing its importance in accessing patient data during emergencies.
However, since Li et al.’s scheme uses bilinear mappings, it is not secure
against quantum attacks. To ensure security against quantum attacks,
we construct the GO-ABE scheme using the post-quantum cryptographic
primitive lattices, and employ Shamir’s secret sharing scheme to meet
the GO-ABE requirements.

Keywords: attribute-based encryption · group-oriented systems ·
privacy · lattice-based cryptography

1 Introduction

The traditional public key encryption (PKE) schemes allow a message-sending
party to encrypt a message for a specific recipient only who can decrypt the
ciphertext. However, PKE is only suitable when the recipient’s identity is known
to the sender, limiting its real-world applications. Attribute-based encryption
(ABE) is a generalized form of PKE, which was first introduced by Sahai and
Waters [55] at EUROCRYPT 2005. In their scheme, both ciphertexts and user
private keys are constructed based on sets of attributes. A message sender
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Li et al. (Eds.): NSS 2023, LNCS 13983, pp. 155–176, 2023.
https://doi.org/10.1007/978-3-031-39828-5_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-39828-5_9&domain=pdf
http://orcid.org/0000-0002-0497-4553
https://doi.org/10.1007/978-3-031-39828-5_9

156 M. N. S. Perera et al.

encrypts the message with a specific attribute set (access policy) W, while each
user (receiver) has a decryption (private) key based on their possessing attribute
set S. A user can decrypt the ciphertext only when at least t (threshold value)
posessing attributes match with the given policy W. For instance, Alice encrypts
a message using the attribute set A,B,C with a threshold value t = 2. Even
though Bob possessing attributes A,B, can decrypt the message, Charles only
having the attribute A, cannot access the message. Since attributes represent
real-life characteristics like age, designation, and department, and the decryp-
tion party can be controlled via an access policy, ABE is more suitable for real-
world applications than general PKE. Thus, ABE is used to provide secured and
trusted cloud computing [6,60], controlled subscribed broadcasts, secured audit
logs, and more.

The scheme of Sahai and Waters [55] satisfies the threshold access struc-
ture. In their work, they presented Fuzzy Identity-based Encryption (FIBE).
Later, more works with constant size ciphertext [22,27,33], modifying user
attributes [29], with multi-authority [41], and providing practical applications
[14,38,43,45,53] were delivered using the threshold ABE technique. On the other
hand, attribute-based encryption schemes can be seen as a generalization of
identity-based encryption (IBE) [12,18,57,64]. Moreover, Goyal, Pandey, Sahai,
and Waters [24] categorized ABE into two types, namely, Key-Policy Attribute-
based Encryption (KP-ABE) and Ciphertext-Policy Attribute-based Encryption
(CP-ABE).

In KP-ABE ([8,19,39,63,68]), each piece of data has attributes, i.e., a cipher-
text is linked with a set of attributes, and a user private key is linked with a
policy (an access tree). Thus the ciphertext can be decrypted only by satisfying
the user access tree. KP-ABE is used when it is needed to decide which data
can be accessed by a user. KP-ABE is widely used in applications like purchased
(subscribe) broadcasting, structured organizations, and secure forensic analy-
sis, which control data access. For instance, in a broadcasting channel, Alice
can access data only what she has paid to watch. Goyal et al. [24] delivered
the first KP-ABE scheme. Early presented KP-ABE schemes had a problem
with ciphertext size. Solving that problem, Attrapadung et al. [8] submitted the
first KP-ABE scheme that allows non-monotonic access structures and outputs
constant-size ciphertexts. Then Li et al. [39] presented a decentralized KP-ABE
scheme that does not require a trusted centralized party for setup. Moreover,
their scheme outputs a constant-size ciphertext. On the other hand, Wang et
al. [63] delivered an accountable authority KP-ABE scheme. In addition, many
KP-ABE schemes were presented [38,69,70] to secure outsourced data in the
cloud.

In CP-ABE ([10,17,20,21,35,36,49,52,65]), a message is encrypted with an
access tree (policy) selected by the message sender, and a trusted authority
produces private keys for users based on their attribute sets. Thus, only users
whose possessing attributes meet the access policy can decrypt the message. CP-
ABE controls who can access data. For instance, if attributes A, B, C are used to
encrypt a text, then only a user who is possessing those attributes can decrypt

GO-ABE from Lattices 157

the text. Bethencourt et al. [10] suggested the first CP-ABE scheme. After that,
many CP-ABE schemes were presented, resolving security and scalable barriers.
For instance, Cheung and Newport [17] proposed a provably secure CP-ABE
scheme. Yu et al. [70] and Zhang et al. [71] discussed the essential issues of
attribute revocation and user revocation in CP-ABE, respectively. Moreover,
Emura et al. [21] delivered the CP-ABE scheme with constant-size ciphertexts,
and Lewko and Waters [36] suggested decentralized authority for CP-ABE. CP-
ABE is employed in applications more than KP-ABE because CP-ABE is more
suitable in real-life applications [16,31,66,73] like data access in mobile Personal
Health Record (PHR) systems [28,51] and IoT [44].

However, all the schemes mentioned above are in danger once quantum com-
puters become a reality becasue those works are not constructed from quantum
resists cryptographic primitives. Some IBE and ABE schemes were successfully
realized using lattice-based cryptography [30]. Lattice-based cryptography seems
to be the most promising alternative against quantum attacks [50]. For instance,
in the work of presenting trapdoors on hard lattices [23], the authors deliv-
ered the construction of the lattice-based IBE scheme in the random model by
using trapdoor functions. In the works of hierarchical IBE [2,3], the authors
presented (H)IBE schemes in the standard model from lattices. Katsumata et
al. [32] answered the security limitations of lattice-based (H)IBE, which sup-
ports the key revocation mechanism. In 2013, Xavier Boyen [13] suggested an
attribute-based functional encryption scheme from lattices. Moreover, Yongtao
Wang [62] presented a CP-ABE scheme in the standard model from lattices.
Gür et al. [25] presented a software implementation of CP-ABE schemes from
an efficient Gaussian sampling algorithm for trapdoor lattices. They provided
an efficient Ring-LWE (Ring Learning with Errors) construction for CP-ABE
schemes. Zhao et al. [72] also provided a revocable lattice-based CP-ABE from
Ring-LWE. Recently, Yang et al. [67] presented a revocable and multi-authority
CP-ABE scheme from Ring-LWE. Affum et al. [1] presented a different app-
roach supporting the flexible expression of access policy in CP-ABE with the
lattice-based construction.

In contrast to the CP-ABE schemes discussed earlier (which may or may
not be safe against quantum attacks), Li et al. [37] proposed a new form of
attribute-based encryption called Group-Oriented Attribute-Based Encryption
(GO-ABE) in 2015. This scheme allows users in the same group to pool their
attributes and private keys to generate a decryption key. If the union of attributes
matches the access policy, then they can retrieve the message. GO-ABE appears
advantageous in the setting of organizations, where two or more users’ collab-
oration is required for decryption and in emergencies when no user alone pos-
sesses an attribute set that matches the access tree. The scheme guarantees
that users from different groups cannot generate a valid decryption key by pool-
ing their attributes, and it also ensures that no user reveals their private keys.
However, the scheme is not quantum-safe because Li et al. [37] constructed
the scheme using bilinear mappings. As Peter Shor [58] showed in 1997, these
number-theoretic problems are vulnerable to quantum attacks. Therefore, as

158 M. N. S. Perera et al.

quantum computers may become a reality within next 30 years, cryptographic
schemes relying on bilinear mappings will be in danger. Recently, research on
quantum-safe constructions with post-quantum primitives has become a prior-
ity. In this paper, we deliver a lattice-based cryptography construction for the
GO-ABE idea of Li et al. [37] that ensures the security of applications employing
GO-ABE against quantum attacks.

1.1 Our Contribution

The motivation of this paper is to provide a quantum-safe construction for the
GO-ABE scheme to use in real-world applications like PHR systems. Thus, we
present the GO-ABE scheme from lattice-based cryptography, the post-quantum
primitive. Even though the GO-ABE idea of Li et al. [37] was studied or utilized
by many research works [26,40,48,61,66], especially in the aspect of allowing
collaborative description, none of them were constructed using post-quantum
cryptography. Thus, according to our knowledge, this paper presents the first
quantum-safe GO-ABE scheme. GO-ABE scheme presented by Li et al. [37] is
constructed from bilinear pairings. In GO-ABE, a single user (in case of pos-
sessing all the required attributes) or multiple users jointly (in case of required
pooling of their attributes) can decrypt a ciphertext. The attribute pooling users
should be from the same group. Moreover, they should not reveal their private
keys. When constructing the GO-ABE scheme from lattices, the challenging
point is satisfying the requirements; users should be from the same group and
should not reveal their private keys. Validating the users from the same group
is somewhat challenging because their identity is hidden. In group signature
schemes, different techniques are used to validate the signer’s group membership.
For instance, in lattice-based group signature schemes [11,34,42], signers prove
the validity of their signature using an underlying interactive zero-knowledge
protocol without leaking any privacy-related information. Thus, if the verifica-
tion process of the protocol is valid, the signature verifier is convinced about
the validity of the signer. However, in the encryption scheme of GO-ABE, the
member verification process is not applicable because GO-ABE requires collab-
oration to decrypt a ciphertext, and there is no verifier to check the validity
of the collaborating users. Since there is no verification process to validate the
collaborating users, GO-ABE satisfies the correction of the decryption process
only if the users are from the same group. Otherwise, decryption fails. It seems
challenging to reassure such a condition using only the techniques of existing
lattice-based encryption schemes. Thus, to overcome the challenge, we employ
Shamir’s Secret Sharing (SSS) scheme and Lagrange interpolation formula as in
the work of Agrawal et al. [5], the scheme fuzzy IBE from lattices. We intend to
allow users from the same group to reconstruct a variable related to the group
allowing them to satisfy the decryption of the given ciphertext and prove that
they are from the same group. We borrow the construction idea from Agrawal’s
scheme. We share a public key into � shares, where � is the universal attribute
size, and we generate the user private keys for each possessing attribute based
on the group-related keys. In other words, a group has public and secret keys,

GO-ABE from Lattices 159

and those keys are used for producing the secret keys of the user possessing
attributes. Thus, unless the users from the same group collude, reconstruction
of the decryption key that satisfies the shared public key is not possible. In con-
clusion, our lattice-based construction of GO-ABE enables users to ensure the
requirement of being in the same group and correctly decrypt the given cipher-
text by cooperating, while keeping their individual user secret keys private. The
security of our construction is based on the hardness assumption of the learning
with errors (LWE) problem and provides selective security in the security model.

1.2 Related Works

Our lattice-based construction is influenced by the work of Agrawal et al. [5]
with the title ‘Functional Encryption for Threshold Functions from Lattices’.
Agrawal’s scheme constructs a fuzzy IBE from the hardness of the LWE problem.
They employed Shamir’s k − out − of − � secret-sharing scheme for the key
extraction process. The idea of using the SSS scheme also appeared in the paper
of Bendlin and Damg̊ard [9], where the bounding size issue of the Lagrangian
coefficient did not occur. However, in the case of Agrawal et al., [5], they face the
bounding problem of the size of the Lagrangian coefficient, and they came up
with the idea of clearing the denominator inspired by the work of Victor [59]. We
follow the construction given by Agrawal et al. [5] when we provide GO-ABE
from lattices. Thus our work also uses a constant D as in Agrawal’s scheme
[5]. We outline the construction given by Agrawal [5] to clear the denominators
below.

The existing lattice-based IBE schemes [4,15] encrypt a message bit b ∈ {0, 1}
as follows.

Cid = IBE.Enc(id, b ∈ {0, 1}) = (AT
1,id1

s+e1, . . . ,AT
�,id�

s+e�,uT s+ e′ + b�q/2�)

Herer, 2� matrices (A1,0,A1,1, . . . ,A�,0,A�,1) ∈ Z
n×m
q and vector u ∈ Z

n
q =

(u1, . . . ,u� − secret shares) are public parameters in a system with security
parameter n, a small prime q, and m ≈ n log q. The vector s ∈ Z

n
q and

smal error terms e1, . . . e� ∈ Z
m and e′ ∈ Z are selected for the encryption

function. The decryption function shows that each component of Cid′ and secret
key SKid = (x1, . . . ,x�) gives a number approximately uT

i s, such that

xT
i (AT

i,idi
s + ei) = (Ai,idi

xi)T s + xT
i ei = uT

i s + xT
i ei ≈ uT s

Note that, Ai,idi
xi = ui.

The correctness of lattice-based IBE schemes [4,15] lies in bounding the
decryption error terms xT

i ei. That is cummulative error term ei −∑k
i=1 x

T
i ei by

q/4.
Instantiating the previous IBE schemes with Shamir′s secret sharing

scheme, the new cumulative error term is given as ei − ∑k
i∈S LixT

i ei, where
Li are the fractional Lagrangian coefficients for reconstructing the secret and S
is the subset of shares used in the reconstruction. Even though both numerator

160 M. N. S. Perera et al.

and denominator in Li can be bounded as a fraction of integers, when presenting
as an element in Zq the value Li is arbitrarily large. The idea of clearing the
denominators prevents the large-value problem of Li.

Let D := (�!)2 be a sufficiently large constant, such that DLi ∈ Z for all i.
Multiplying noise vectors of the encryption function with D we get,

Cid = IBE.Enc(id, b ∈ {0, 1}) = (AT
1,id1s+De1, . . . ,A

T
�,id�

s+De�,u
T s+De′ + b�q/2�).

Thus, it is sufficient to bind the below for the correctness of the IBE scheme
by q/4.

Dei −
k∑

i∈S

DLixT
i ei

Since DLi is an integer bounded by D2, it is enough to select noise vectors
bounded by q/4D� with overwhelming probability.

2 Preliminaries

In this section, we provide the notations we use in this paper, and briefly explain
Shamir’s Secret Sharing (SSS) Scheme. Then we provide definitions of lattices
with the related algorithms. Moreover, we give the syntax of the traditional
attribute-based encryption (ABE) scheme.

2.1 Notation

We symbolize matrices with upper-case bold letters and vectors with lower-case
bold letters. For any integer k ≥ 1, we show a set of integers {1, 2, . . . , k} by [k].
If S is a finite set, |S| is its size. S(k) represents its permutations of k elements
and b ← D shows that b is sampled from a uniformly random distribution D.
The encoding function with full rank differences (FRD) H : Zn

q → Z
n×n
q is taken

as discussed by Agrawal et al. [2] paper.

2.2 Shamir’s Secret Sharing Scheme [46,56]

Shamir’s Secret Sharing, in short SSS, is used to secure a secret using the dis-
tributed method. A secret is partitioned into multiple parts and shared with
different users, such that an individual share does not give any information
about the secret. SSS is an algorithm in cryptography created by Adi Shamir
[56]. The idea lies behind SSS is that for the given � points we can find a poly-
nomial equation with the degree (� − 1). The Lagrangian coefficient is employed
to control the reconstruction of the secret with a threshold value. For instance,
a secret s can be reconstructed from k shares out of � shares. Accordingly, no
party alone can reconstruct the secret s, but k parties can.

Let �-number of participants, q ≥ � + 1 - a prime number, and s - the secret.
Sharing algorithm:

GO-ABE from Lattices 161

1. Set � distinct and select public parameters x1, x2, . . . , x� ∈ Zq such that xj

for participant j, 1 ≤ j ≤ �.
2. Select a k − 1 degree random polynomial

f(x) = a0 + a1x + . . . + ak−1x
k−1(mod q)

, where a0 = s and aj ∈ Zq, (1 ≤ j ≤ k − 1).
3. Compute shares sj = f(x), 1 ≤ j ≤ �.

Reconstruction algorithm (based on the polynomial interpolation):

a(x) =
k∑

i=1

si

∏

1≤j≤=k,j �=i

x − xj

xi − xj

2.3 Lattices

Let q be a prime and B = [b1| · · · |bm] ∈ Z
r×m
q be linearly independent vectors

in Z
r
q. The r-dimensional lattice Λ(B) for B is defined as

Λ(B) = {y ∈ Z
r | y ≡ Bx mod q for some x ∈ Z

m
q },

which is the set of all linear combinations of columns of B. The value m is the
rank of B.

We consider a discrete Gaussian distribution for a lattice. The Gaussian
function centered in a vector c with parameter s > 0 is defined as ρs,c(x) =
e−π‖(x−c)/s‖2

. The corresponding probability density function proportional to
ρs,c is defined as Ds,c(x) = ρs,c(x)/sn for all x ∈ R

n. With respect to a lattice
Λ the discrete Gaussian distribution is defined as DΛ,s,c(x) = Ds,c(x)/Ds,c(Λ) =
ρs,c(x)/ρs,c(Λ) for all x ∈ Λ. Since Z

m is also a lattice, we can define a discrete
Gaussian distribution for Z

m. By DZm,σ, we denote the discrete Gaussian dis-
tribution for Z

m around the origin with the standard deviation σ.
Quantum computers can break the superposition principle where the quan-

tum bits are perfectly aligned. Accordingly in future, the systems constructed
from number theory and discrete logs are in danger. On the other hand, a lattice
is multi-dimensional. Thus it is hard to find, for instance, the nearest point from
the origin. Lattice-based cryptography is quantum resist because the computa-
tional problems on lattices are believed to be hard to solve, even for quantum
computers. Among those computational problems, Approximate Shortest Inde-
pendent Vector Problem (SIV Pγ) is one of the most well-studied problems. LWE
and SIS are two average-case SIV Pγ problems that we employ in this paper.

Definition 1 (Approximate Shortest Independent Vectors Problem -
SIV Pγ [47]). Given a basis B of an n-dimentional lattice L = L(B), finding
linearly independent vectors s1, . . . , sn is SIV Pγ problem, where ‖si‖ ≤ γ(n) ·
λn(L) for all i (λn(L) is n-th successive minimum).

162 M. N. S. Perera et al.

Definition 2 (Learning With Errors (LWE)). For integers n,m ≥ 1, and
q ≥ 2, a vector s ∈ Z

n
q , and the Gaussian error distribution χ, the distribu-

tion As,χ is obtained by sampling a ∈ Z
n
q and e ← χ, and outputting the pair

(a,aT ·s+e). LWE problem (decision-LWE problem) requires distinguishing LWE
samples from truly random samples ← Z

n
q × Zq.

For a prime power q, b ≥ √
nω(log n), and distribution χ, solving LWEn,q,χ

problem is at least as hard as solving SIV Pγ (Shortest Independent Vector Prob-
lem), where γ = Õ(nq/b) [23].

Since the LWE problem was defined [54], it has been extensively studied and
used. In this paper, we use the decisional version of the LWE problem, which is
defined in Definition 2.

Definition 3 (Small Integer Solution (SIS)). Given uniformly random
matrix A ∈ Z

n×m
q , find non-zero vector x ∈ Z

m, such that A · x = 0 mod q
and ‖x‖∞ ≤ β.

For any m, β = poly(n), and q >
√

nβ, solving SISn,m,q,β problem with non-
negligible probability is at least as hard as solving SIV Pγ problem, for some
γ = β · Õ(

√
nm) [23,42].

2.4 Lattice Related Algorithms

Lemma 1 (TrapGen[5,7]). Let n = n(λ), q = q(λ), and m = m(λ) be positive
integers. For an odd integer q ≥ 2 and m = 5n log q� this algorithm outputs
a matrix A ∈ Z

n×m
q and a basis TA ∈ Z

m×m
q for Λ⊥

q (A) such that ||T̃A|| ≤
O(

√
n log q) and ||TA|| ≤ O(n log q) with all but negligible probability in n.

Lemma 2 (SamplePre [23]). On input a matrix A ∈ Z
n×m
q , a trapdoor basis

R, a target image u ∈ Z
n
q , and the standard deviation σ ≥ ω(

√
log m), the PPT

algorithm SamplePre(A,R,u, σ) outputs a sample e ∈ Z
m from a distribution

that is within negligible statistical distance of DΛu
q (A),σ.

Lemma 3 (ExtBasis [15]). ExtBasis is a PPT algorithm that takes a matrix
B ∈ Z

n×m′
q , whose first m columns span Z

n
q , and a basis TA of Λ⊥

q (A), where A
is the left n × m sub-matrix of B, as inputs, and outputs a basis TB of Λ⊥

q (B)
with ||T̃B|| ≤ ||T̃A||.

2.5 Attribute-Based Encryption

Setup: This algorithm gets the security parameter λ as inputs, and generates a
public parameter PK and a master secret key MK.

KeyGen: For a given public parameter PK, a master secret key MK, and
an attribute set S for a user, this algorithm outputs a user private key SK
associated with S.

GO-ABE from Lattices 163

Encrypt: On input the public parameter PK, and an access tree (policy) W,
and a message M, this algorithm outputs a ciphertext C.

Decrypt: On input a user private key SK and a ciphertext C for a message
M, if the user attribute set S can satisfy the given policy W, this algorithm
outputs the message M.

3 Group Oriented Attribute-Based Encryption
(GO-ABE) Scheme

ABE schemes allow a user satisfying the decryption policy to read the message.
Thus, no users colluding together can access the message. However, in many
real-life scenarios, due to the orgnazation’s structure, the encrypted data can-
not be accessed individually by a single user alone. In many organizations and
enterprises, some important data (files, documents, etc.) is shared among mul-
tiple users having responsibility to protect data. Those organizations require
the multple users to collaborate to access data [66]. For instance, secured data
(information, banknotes, or other resources) stored in a banking system (money
safe/locker, data bank, or system) can be accessed by permitted authorities by
collaborating. A single authority cannot access data. It is required k−number of
authorities to join to open the data. The collaboration ensures the security of
the data aginst illegal access.

Another requirement of user collaboration is the exceptional case of an emer-
gency. In case of an emergency like accessing the Personal Health Records (PHR)
of a patient stored in the cloud, if no user can satisfy the decryption policy, then
the patient’s life may be in danger. As a solution to this problem, Ming Li et
al. [38] proposed a break-glass access method. Thus, when an emergency hap-
pens, the message-accessing party should contact the emergency department
(ED), which provides temporary keys after validating the user and the emer-
gency. However, considering a scenario where the message accessing party can-
not contact ED, Li et al. [37] suggested the new ABE scheme, Group Oriented
Attribute-Based Encryption (GO-ABE) Scheme.

In the GO-ABE scheme, the users belong to a specific group, and only users
from the same group can combine their attributes to meet the access tree. For
instance, when the decryption policy requires the user to satisfy two attributes A
and B, the idea of GO-ABE allows two users with attributes A and B separately,
from the same group to combine their attributes to generate the decryption key.
However, no user will reveal their private keys. The following real-life example
given in Li et al.’s paper [37] explains the requirement of user collaboration.

If the PHR owner Alice has heart and stomach problems, it is required a car-
diologist and gastroenterologist to jointly diagnose her to give better treatment.
That means it is required to satisfy the access policy (Cardiologist, Gastroen-
terologist, 2) to access her PHR. In a case, no individual doctor is satisfying
both specialties; cardiology and gastroenterology, the system may put Alice’s
life in danger, if she is in an emergency. On the other hand, it is obvious that in
a real-life situation, two or more doctors jointly diagnose complicated or serious

164 M. N. S. Perera et al.

patients. Therefore, it is rational to let doctors jointly decrypt the health records
of patients in the cloud to treat them. However, since the doctors are from the
same hospital, decrypting users should be from the same group g. The GO-ABE
is proposed by Li et al. [37] addressing such kinds of emergencies.

3.1 GO-ABE

Definition 4 (GO-ABE). [37] A group-oriented attribute-based encryption
scheme is parameterized by a universal set of possible attributes A, a space of
group identities G = g1, g2, . . . , gn, and a message space M, and has the following
algorithms.

Setup: This randomized algorithm takes inputs as only the security parameter
and outputs a public parameter PK and a master secret key MK.

Encryption: On input, a message M ∈ M, the public parameter PK, and a
set of attributes (access structure) W, this algorithm outputs a ciphertext C for
message M.

KeyGen: On input, an attribute set S, a group id g, the master secret key
MK, and the public parameter PK, this algorithm outputs a decryption key
SKg

S .
Decryption: On input, the ciphertext C, that was encrypted under a set of

attributes W, the public parameter PK, and a set of users from same group g,
this algorithm pools the user attribute sets as U = S1 ∪ S2 ∪ . . . ,SN to generate
a decryption key SKg

U and outputs the message M if |W ∩ U | ≥ t, where t is
the threshold value. Here N is the number of pooling users.

3.2 Security Definition: Selective-Set Model for GO-ABE

The selective set model game captures the indistinguishability of challenging
ciphertext. The adversary’s goal is to determine which of the two messages is
encrypted.

Int: The adversary declares the attribute set W that he wishes to be chal-
lenged upon.

Setup: The challenger creates a public parameter PK and a master secret
key MK executing Setup and sends PK to the adversary.

Phase 1: The adversary queries the private secret keys SKg
Si

for different
attribute sets Si with a group id g ∈ G, where |Si ∩ W| < t for all i queries.

At the end of Phase 1, |U ∩ W| < t, where U = S1 ∪ S2, . . . ,SN is the union
of N attribute sets such that all are from the group g.

Challenge: The adversary sends two messages M0 and M1 whose lengths are
the same. The challenger selects b ← {0, 1} and encrypts Mb with W. Then he
passes the generated ciphertext C to the adversary.

Phase 2: Phase 1 is repeated with the same conditions.
Guess: The adversary outputs a guess b′.
The advantage of the adversary winning the game is Pr[b′ = b] − 1/2.

GO-ABE from Lattices 165

Definition 5. The GO-ABE scheme is secure in the Selective-set model of secu-
rity if all polynomial time and adversaries have at most negligible advantage in
the above Selective-set game.

4 Lattice-Based Construction of GO-ABE Scheme

In this section, first, we delineate how we satisfy the requirements of GO-ABE
while constructing the scheme from lattice-based cryptography. Recall that the
GO-ABE scheme of Li et al. [37] required the users who are pooling together to
be from the same group and not to reveal their private keys. The construction of
GO-ABE from lattices is somewhat challenging to satisfy the requirements that
only the users are from the same group can collude together and support the
decryption without revealing the secret keys. We discuss this in the Subsect. 4.1.
Then we provide the lattice-based construction of the GO-ABE scheme.

4.1 Description

GO-ABE required collaborating users to be from the same group and should
be able to decrypt the given data. In Li et al.’s paper for the construction
from bilinear mappings, a random d − 1 degree polynomial, qg(x) is taken for
the group g, where each user should have polynomials with same valuation at
point 0, that is qg(0) = y. This ensures that the final decryption of each user’s
contribution satisfies y, i.e., users obtain decryption while proving they are from
the same group. However, when constructing the GO-ABE scheme from lattices,
we have to resolve this challenge. We came up with the idea of sharing a group-
related public variable such that the collaboration of users satisfying matching
attributes should be able to reconstruct it. We share the public vector u, such
that each universal attribute hold ûi a piece of u. In parallel, the user secret key
for each possessing attribute is generated based on the group g ensuring that
the user secret key for an attribute can satisfy the related piece of u. That is
(Ai · (Gd ·xd

i))+g = ûi, where Ai is the public key of the relevant attribute, Gd

is the public key of the user, and xd
i is the secret key for the attribute that was

generated based on the group id and user id. The vector g is a unique vector for
the group. Thus, no outsider can collaborate with the group users to reconstruct
u. Below, we explain more about the lattice-based construction of GO-ABE.

Let A be the universal attribute set of size �. Each attribute has a matrix
A, which is publicly available. Thus the public parameters PK consists of �
matrices (A1, . . . ,A�) and a vector u. The master secret key MSK consists of
the trapdoors (T1, . . . ,T�) corresponding to each matrix Ai. The trapdoor Ti

is used to derive secret key xi using the Gaussian sampling algorithm. In our
scheme, we take g ∈ G as the group id and each user id d ∈ N. Each group
has a uniformly random matrix G ∈ Z

m×n
q with related trapdoor TG obtained

from TrapGen(n,m, q), two other randomly selected matrices G0,G1 ∈ Z
m×n
q ,

and a uniformly random vector g ∈ Z
n
q . We set the group public key GPK =

(G,G0,G1,g). The secret key TG for each group with id g is selected and stored

166 M. N. S. Perera et al.

such that only the authority with MSK = (T1, . . . ,T�) can access TG. Thus
at the key generation for a set of attributes, only the authority can compute
the secret keys relating to the group. First, using the SSS scheme, the authority
shares the public key u into � shares, where � is the size of the universal attribute
set. Next, based on the group and then based on the user id secret keys are
computed for each user possessing an attribute. Since the secret keys are based
on the group, only the same group of users can pool to regenerate or satisfy u.

Satisfying the above requirements, we employ Shamir’s k-out-of-� secret shar-
ing scheme. Inspired by the work of Agrawal et al. [5] to answer the issues of
correctness and security challenges, fractional Lagrangian coefficients are used in
reconstructing the public key u. As a result, we take sufficiently large constant
D as in Agrawal’s work [5] to multiply with the noise vector when generating
the ciphertext.

4.2 Construction of Algorithms

Let λ ∈ Z
+ be a security parameter. Let n = n(λ), m = m(λ) be two positive

integers and q = q(λ) be a prime. Let σ = σ(λ) be a Gaussian parameter. Let
each group has an id g and has unique group public key (GPK = (G,G0,G1,g))
and a secret key (GSK = TG) selected from (G,TG) ← TrapGen(n,m, q) and
G0,G1 ∈ Z

m×n
q , and g ∈ Z

n
q randomly.

– Setup(1λ): On input a security parameter λ, the algorithm outputs the public
parameters PK and the master secret key MSK.
1. Obtain uniformly random matrices A�

i=1 ∈ Z
n×m
q and corresponding trap-

doors T�
i=1 executing TrapGen(n,m, q) for all attributes in A.

2. Select uniformly random vector u ∈ Z
n
q .

3. Output PK = ({Ai}i∈[�],u) and MSK = {Ti}i∈[�].
– Encrypt(PK,M,W): This algorithm takes the public parameter PK, a mes-

sage bit M ∈ {0, 1} = b, and a policy W with attribute size w, and outputs
the ciphertext C as below.

1. Let D
def= (�!)2.

2. Select a uniformly random s ∈ Z
n
q , ei ∈ Z

m
q for i ∈ [w], and e′ ∈ Zq.

3. Set c1 = AT
i s + Dei for i ∈ [w], c2 = uT s + De′ + b�q/2�.

4. Output C = (c1, c2).
– KeyGen(PK,MSK, g,S): On input the public parameter PK, the master

secret key MSK, a group id g which the user belongs to, and a user id d with
the possessing attribute set S, this algorithm outputs private key (decryption
key) SKg

S which consists of skg,d
i for each attribute i ∈ S.

1. Select the group public key GPK = (G,G0,G1,g), and secret key GSK
= TG related to the group id g.

2. Select a fresh positive integer d ∈ N as the user id who is possessing S.

GO-ABE from Lattices 167

3. Using Shamir secret sharing (SSS) scheme construct � shares of vector
u = (u1, . . . , un) ∈ Z

n
q (applying SSS scheme for each co-ordinates of u

independently). Be precise, for each j ∈ [n] select a uniformly random
polynomial pj ∈ Zq[x] of degree k − 1 such that pj(0) = uj . Here k is the
threshold value. Construct the j − th share vector ûj = (ûj,1, . . . , ûj,n) =
(p1(j), p2(j), . . . , pn(j)) ∈ Z

n
q .

Calculate fractional Lagrangian coefficients Lj such that u =
∑

j∈J Lj ·
ûj(mod p). Note that for all J ⊂ [�] such that |J | ≥ k [5].

4. For each attribute i ∈ S, using SamplePre(Ai,Ti, ûi − g, σ) get vi ∈ Z
m
q

such that Ai · vi = ûi − g.
5. For the user with id d compute Gd = [G|G0 + dG1]Zm×2n

q and obtain a
short basis Td for the lattice Λ⊥(Gd) executing ExtBasis(TG,Gd).

6. Then for each attribute i ∈ S obtain xd
i ← SamplePre(Gd,Td,vi, σ), such

that Gd · xd
i = vi.

Note that, (Ai · (Gd · xd
i)) + g = ûi.

7. Output SKg
S = ((xd

1, . . . ,x
d
s), d), where s = |S|.

– Decrypt(PK,C, Ug): On input the public parameter PK, the ciphertext C,
and the set of users Ug from the same group G with group id g, this algo-
rithm executes as below and returns a message M if the attributes satisfy the
decryption policy. That is , |W ∩ U | ≥ k and U = S1 ∪ S2 ∪ . . . ∪ SN , where
N is the number of pooling attribute sets (users). Note that the secret keys
of users SKg

Si
are only known to the owners.

1. Select an arbitrary subset S with size k of W ∩ U .
2. Each user computes Gd using his id d and publishes yi = (Gd · xi) for

i ∈ [k].
3. The ciphertext can be decrypted as follows.

• Calculate the fraction Lagrangian coefficients Li;∑
i∈[k] LiAiyi = u mod q.

• Compute r ← c2 − ((k × g)T +
∑

i∈[k] LiyT
i c1)(mod q), where g is

the unique key (part of the group public key) of the group with id g.
View it as r ∈ [−�q/2�, �q/2�) ⊂ Z.

• If |r| < q/4, output 0, else output 1.

Figure 1 depicts the overall view of the lattice-based construction of the
scheme.

Setup: Trusted Setup Party generates public parameters PK for all the other
involving parties and master secret key MSK for the key generator.
Encrypt: Encrypting Party encrypts his message M with the selected access tree
W and stores the ciphertext in the cloud or any other storing location.
KeyGen: Key Generator generates secret keys for individual users for their pos-
sessing attributes. For instance, he creates a secret key SKg

S1 for User 1 for the
possessing attribute set S1.
Decrypt: Each user computes part of the decryption key which decrypts the given
ciphertext. The part of the decryption key is produced based on the possessing
attributes. For instance, User 1 with satisfying attributes Xa ∈ S1 generates

168 M. N. S. Perera et al.

Fig. 1. Lattice-based construction of GO-ABE scheme

GO-ABE from Lattices 169

ya share using the relevant secret key xa. User 2 and other attribute-satisfying
users follow the same two steps that were executed by User 1 but with their user
id and secret keys for the matching attributes. Then they publish their shares
to the decrypting system (D-system). D-System computes the final decryption
key from the collected outputs of users and decrypts the ciphertext such that
users can access it. Note that D-system may not be a centralized party, but an
algorithm embedded in the decryption mechanism of the data location.

5 Analysis of the Scheme

This section shows the correctness and the indistinguishability of the lattice-
based GO-ABE scheme.

5.1 Correctness

For the proof of the correctness of the decryption, we only need to consider the
case |J | ≥ k. Let Lj be the fractional Lagrangian coefficient as discussed before.

We compute the below to obtain the decryption of the ciphertext.
r ← c2 − ((k × g)T +

∑
i∈[k] LiyT

i c1) (mod q).
Here,
c2 = uT s + e + b�q/2�
k is the threshold value.
g is the group-related public key vector.
yi = (Gd · xi)
c1 = AT

i s + ei

Thus we can write,
r ← c2 − ((k × g)T +

∑
i∈[k] LiyT

i c1)(mod q) as
r ← (uT s + De + b�q/2�) − ((k × g)T + (

∑
i∈[k] Li(Gd · xi)TAT

i s + Dei)).
In simple,
r ← b�q/2� + (uT s − ((k × g)T + (

∑
i∈[k] Li(Gd · xiAi)T s))) + (Dx −

∑
i∈[k] DLixT

i ei)(mod q) ≈ b�q/2�.
Here, (Dx − ∑

i∈[k] DLixT
i ei) ≈ 0.

This proves the correctness of our scheme’s construction.
The correctness of our scheme shown above is based on the SSS scheme

and the correctness of Agrawal’s scheme [5] we emphasize that the GO-ABE
construction from lattices works properly only allowing users from the same
group to collaborate to decrypt a given ciphertext without revealing their secret
keys.

5.2 Security Proof

We show the lattice-based construction of GO-ABE provides ciphertext privacy
in the Selective-Set model under the hardness of the LWE problem. Since our
scheme is constructed using lattice-based cryptography, based on the hardness

170 M. N. S. Perera et al.

of the LWE problem our construction is secured. In other words, if an adversary
can break the security of our scheme, then with the support of that adversary
the LWE problem can be solved.

Theorem 1. If there is an adversary A with advantage ε > 0 against the
selective-set model for the GO-ABE scheme, then there exists a PPT algorithm
B that can solve the decision-LWE problem.

Proof. The simulator B uses the adversary A to distinguish LWE oracle O.
First B queries the LWE oracle O for (�m + 1) times and obtain LWE samples
(ak, bk) ∈ Z

n
q × Zq, where k ∈ {0, 1, 2, . . . ,m}. Then B proceeds as below. Take

the public key GPK = (G,G0,G1,g) and secret key TG for each group with
id g.

– Init: A announces the challenging access structure W∗ to B.
– Setup: B prepares the public keys as follows.

1. Choose � matrices Âi, i ∈ [�] from LWE challenge as {(a0, b0), (a1i , b
1
i),

(a2i , b
2
i), . . . , (a

m
i , bm

i)}i∈[�].
2. Select � matrices Ai and trapdoors Ti using TrapGen.
3. Set vector u from LWE challenge a0.
4. Give public parameters to A.

– Phase 1: B answers each private key query for attribute set S as follows.
1. Let S ∩W∗ := I ⊂ [�] and let |I| = t < k. (Assume first set of t attributes

in S is equal to attributes in W∗.
2. Represents the shares of u as ûi = u+w1i+w2i

2+ . . .+wk−1i
k−1 where

w1, . . .wk−1 are vectors of length n each.
3. For all i ∈ [t] select vi and set ûi := (Aivi) + g.
4. For all [k − 1 − t] shares, that is for ût+1, . . . , ûk−1 determine values for

w1 . . .wk−1 such that all � shares of û1, . . . , û� are determined.
5. Invoke SamplePre(Ai,Tj , ûj , σ) to find vi such that (Aivi) + g = ûi.
6. Return (v1, . . . ,v�).

– Challenge: A outputs challenge messages M0 and M1. The simulator B
responds with a challenge ciphertext for W∗ as follows.
1. Let c1 = (Db1i ,Db2i , . . . , Dbm

i) for i ∈ [�].
2. Let c2 = Da0 + Mb�q/2�.

– Phase 2: The simulator repeats Phase 1 under the same conditions.
– Guess: The adversary A outputs a guess b′. If b = b′ then A wins the game.

The simulator B can use the adversary A’s guess to determine an answer to
the LWE problem.

Recall in the original construction of the lattice-based scheme the secret
keys of attributes are computed based on the user id who are possessing the
attributes. According to the construction (given in Sect. 4.2) vi = Gd ·xd

i , where
Gd = [G|G0 + dG1] for the user d and xd

i is the secret key of the attribute for
that user. However, in the proof given above, we provide v as the secret key of
the attribute, and no user id is used in the query. For the discussion of ciphertext
privacy, it is not affected.

GO-ABE from Lattices 171

5.3 Further Discussion

In our scheme and the existing GO-ABE scheme, we have observed that each
user shares their decrypted or collaborating output with others to compute the
final decryption. We assume that the users communicate or send their results via
a secure channel, so that nobody except the final decryption computing system
can see each user’s shared output, and nobody can trace it back to the original
user. We assume the final computing system is a trusted party. We will need
to provide a new security model that discusses user privacy against all other
parties, in addition to proving the security of our scheme using the existing
selective model. Moreover, in this paper, we prove our scheme’s security using
the existing selective model. It will not be enough when we discuss the security
level of the final computing party. Thus, in the future, we need to provide a new
security model discussing user privacy against all the other parties. Additionally,
we have observed that in both our scheme and the existing GO-ABE scheme,
users can pool their attributes even when there is no emergency. We believe that
there should be some level of control based on the situation, and we will discuss
these limitations in the future. However, the existing GO-ABE scheme with our
constuction is more suitable for the applications that requires two or more user
collaboartion because of the orgnization structure.

When we compare the efficiency of decryption in the GO-ABE scheme and
other ABE schemes, we observe that the GO-ABE scheme’s decryption is less
efficient. In general ABE schemes, the attribute satisfying a single user involve
in decryption, but in the GO-ABE scheme, two or more users and decrypting
systems are involved. The decrypting system has to wait until all the user shares
are recieved to generate the message. Moreover, other than decrypting process
the users have to show that they are from the same group. Thus the construc-
tion given in this paper is somewhat less efficient compared to the general ABE
schemes. However, the requirement of the GO-ABE scheme is reasonable to ful-
fill the real-world applications’ requirements of collaborating users. The general
ABE schemes cannot satisfy user collaboration for accessing data.

6 Conclusion

In this paper, we provided a construction of the GO-ABE scheme from lattices
that supports users from the same group to pool their attributes anonymously
(without revealing their secret keys) to satisfy a given access tree. Since we used
lattice cryptography, our scheme is quantum resistant. The idea of GO-ABE
seems advantageous in real-life applications, where multiple user collaboration is
required to access data or applications like PHR systems to perform decryption,
especially in emergencies. However, some limitations as shown in Sect. 5.3 need to
discuss in the future to make GO-ABE more practical. This paper has answered
the lack of security against quantum attacks in the GO-ABE schemes. We will
discuss other limitations of GO-ABE in our future works.

172 M. N. S. Perera et al.

References

1. Affum, E., Zhang, X., Wang, X.: Lattice CP-ABE scheme supporting reduced-
OBDD structure. In: Bhatia, S.K., Tiwari, S., Ruidan, S., Trivedi, M.C., Mishra,
K.K. (eds.) Advances in Computer, Communication and Computational Sciences.
AISC, vol. 1158, pp. 131–142. Springer, Singapore (2021). https://doi.org/10.1007/
978-981-15-4409-5 12

2. Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model.
In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 28

3. Agrawal, S., Boneh, D., Boyen, X.: Lattice basis delegation in fixed dimension and
shorter-ciphertext hierarchical IBE. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol.
6223, pp. 98–115. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-
14623-7 6

4. Agrawal, S., Boyen, X.: Identity-based encryption from lattices in the standard
model. Manuscript, 3 July 2009

5. Agrawal, S., Boyen, X., Vaikuntanathan, V., Voulgaris, P., Wee, H.: Functional
encryption for threshold functions (or Fuzzy IBE) from lattices. In: Fischlin, M.,
Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 280–297.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30057-8 17

6. Aluvalu, R., Uma Maheswari, V., Chennam, K.K., Shitharth, S.: Data security
in cloud computing using ABE-based access control. Archit. Wirel. Netw. Solut.
Secur. Issues 196, 47–61 (2021)

7. Alwen, J., Peikert, C.: Generating shorter bases for hard random lattices. Theory
Comput. Syst. 48(3), 535–553 (2011)

8. Attrapadung, N., Libert, B., de Panafieu, E.: Expressive key-policy attribute-based
encryption with constant-size ciphertexts. In: Catalano, D., Fazio, N., Gennaro, R.,
Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 90–108. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-19379-8 6

9. Bendlin, R., Damg̊ard, I.: Threshold decryption and zero-knowledge proofs for
lattice-based cryptosystems. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol.
5978, pp. 201–218. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-11799-2 13

10. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryp-
tion. In: SP 2007, pp. 321–334. IEEE (2007)

11. Beullens, W., Dobson, S., Katsumata, S., Lai, Y.F., Pintore, F.: Group signatures
and more from isogenies and lattices: generic, simple, and efficient. Designs, Codes
and Cryptography, pp. 1–60 (2023)

12. Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. In: Kil-
ian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-44647-8 13

13. Boyen, X.: Attribute-based functional encryption on lattices. In: Sahai, A. (ed.)
TCC 2013. LNCS, vol. 7785, pp. 122–142. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-36594-2 8

14. Butnaru, A.I.: Attribute-based encryption for weighted threshold access structures.
In: IC ECCO-2022. Technical University of Moldova (2022). https://doi.org/10.
52326/ic-ecco.2022/SEC.03

15. Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to delegate a
lattice basis. J. Cryptol. 25(4), 601–639 (2012)

https://doi.org/10.1007/978-981-15-4409-5_12
https://doi.org/10.1007/978-981-15-4409-5_12
https://doi.org/10.1007/978-3-642-13190-5_28
https://doi.org/10.1007/978-3-642-14623-7_6
https://doi.org/10.1007/978-3-642-14623-7_6
https://doi.org/10.1007/978-3-642-30057-8_17
https://doi.org/10.1007/978-3-642-19379-8_6
https://doi.org/10.1007/978-3-642-11799-2_13
https://doi.org/10.1007/978-3-642-11799-2_13
https://doi.org/10.1007/3-540-44647-8_13
https://doi.org/10.1007/978-3-642-36594-2_8
https://doi.org/10.1007/978-3-642-36594-2_8
https://doi.org/10.52326/ic-ecco.2022/SEC.03
https://doi.org/10.52326/ic-ecco.2022/SEC.03

GO-ABE from Lattices 173

16. Cheng, R., Wu, K., Su, Y., Li, W., Cui, W., Tong, J.: An efficient ECC-based
CP-ABE scheme for power IoT. Processes 9(7), 1176 (2021)

17. Cheung, L., Newport, C.: Provably secure ciphertext policy ABE. In: CCS 2007,
pp. 456–465 (2007)

18. Cocks, C.: An identity based encryption scheme based on quadratic residues. In:
Honary, B. (ed.) Cryptography and Coding 2001. LNCS, vol. 2260, pp. 360–363.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45325-3 32

19. Dai, W., et al.: Implementation and evaluation of a lattice-based key-policy ABE
scheme. IEEE Trans. Inf. Forensics Secur. 13(5), 1169–1184 (2017)

20. Das, S., Namasudra, S.: Macpabe: Multi-authority-based CP-ABE with effi-
cient attribute revocation for IoT-enabled healthcare infrastructure. Int. J. Netw.
Manag. 33(3), e2200 (2023)

21. Emura, K., Miyaji, A., Nomura, A., Omote, K., Soshi, M.: A ciphertext-policy
attribute-based encryption scheme with constant ciphertext length. In: Bao, F., Li,
H., Wang, G. (eds.) ISPEC 2009. LNCS, vol. 5451, pp. 13–23. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-00843-6 2

22. Ge, A., Zhang, R., Chen, C., Ma, C., Zhang, Z.: Threshold ciphertext policy
attribute-based encryption with constant size ciphertexts. In: Susilo, W., Mu, Y.,
Seberry, J. (eds.) ACISP 2012. LNCS, vol. 7372, pp. 336–349. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-31448-3 25

23. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: STOC 2008, pp. 197–206 (2008)

24. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: CCS 2006, pp. 89–98. ACM (2006)

25. Gür, K.D., Polyakov, Y., Rohloff, K., Ryan, G.W., Sajjadpour, H., Savaş, E.: Prac-
tical applications of improved gaussian sampling for trapdoor lattices. IEEE Trans.
Comput. 68(4), 570–584 (2018)

26. He, Y., et al.: An efficient ciphertext-policy attribute-based encryption scheme
supporting collaborative decryption with blockchain. IEEE Internet Things J. 9(4),
2722–2733 (2021)

27. Herranz, J., Laguillaumie, F., Ràfols, C.: Constant size ciphertexts in threshold
attribute-based encryption. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010.
LNCS, vol. 6056, pp. 19–34. Springer, Heidelberg (2010). https://doi.org/10.1007/
978-3-642-13013-7 2

28. Hong, H., Chen, D., Sun, Z.: A practical application of CP-ABE for mobile PHR
system: a study on the user accountability. SpringerPlus 5(1), 1320 (2016)

29. Ibraimi, L., Petkovic, M., Nikova, S., Hartel, P., Jonker, W.: Ciphertext-policy
attribute-based threshold decryption with flexible delegation and revocation of
user attributes (2009)

30. Jemihin, Z.B., Tan, S.F., Chung, G.C.: Attribute-based encryption in securing big
data from post-quantum perspective: a survey. Cryptography 6(3), 40 (2022)

31. Joshi, M., Joshi, K.P., Finin, T.: Delegated authorization framework for EHR ser-
vices using attribute based encryption. IEEE Trans. Serv. Comput. 14(6), 1612–
1623 (2019)

32. Katsumata, S., Matsuda, T., Takayasu, A.: Lattice-based revocable (hierarchical)
IBE with decryption key exposure resistance. Theor. Comput. Sci. 809, 103–136
(2020)

33. Lai, J., Guo, F., Susilo, W., Jiang, P., Yang, G., Huang, X.: Generic conversions
from CPA to CCA without ciphertext expansion for threshold ABE with constant-
size ciphertexts. Inf. Sci. 613, 966–981 (2022)

https://doi.org/10.1007/3-540-45325-3_32
https://doi.org/10.1007/978-3-642-00843-6_2
https://doi.org/10.1007/978-3-642-31448-3_25
https://doi.org/10.1007/978-3-642-13013-7_2
https://doi.org/10.1007/978-3-642-13013-7_2

174 M. N. S. Perera et al.

34. Langlois, A., Ling, S., Nguyen, K., Wang, H.: Lattice-based group signature
scheme with verifier-local revocation. In: Krawczyk, H. (ed.) PKC 2014. LNCS,
vol. 8383, pp. 345–361. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-642-54631-0 20

35. Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully secure
functional encryption: attribute-based encryption and (hierarchical) inner prod-
uct encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp.
62–91. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 4

36. Lewko, A., Waters, B.: Decentralizing attribute-based encryption. In: Paterson,
K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 568–588. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-20465-4 31

37. Li, M., Huang, X., Liu, J.K., Xu, L.: GO-ABE: group-oriented attribute-based
encryption. In: Au, M.H., Carminati, B., Kuo, C.-C.J. (eds.) NSS 2014. LNCS,
vol. 8792, pp. 260–270. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
11698-3 20

38. Li, M., Yu, S., Zheng, Y., Ren, K., Lou, W.: Scalable and secure sharing of personal
health records in cloud computing using attribute-based encryption. IEEE Trans.
Parallel Distrib. Syst. 24(1), 131–143 (2012)

39. Li, Q., Xiong, H., Zhang, F., Zeng, S., et al.: An expressive decentralizing KP-ABE
scheme with constant-size ciphertext. IJ Netw. Secur. 15(3), 161–170 (2013)

40. Li, Y., Zhang, Y., Liu, W., Ning, J., Zheng, D.: A collaborative access control
scheme based on incentive mechanisms. In: Chen, X., Shen, J., Susilo, W. (eds.)
Cyberspace Safety and Security. CSS 2022. LNCS, vol. 13547, pp. 48–55. Springer,
Cham (2022). https://doi.org/10.1007/978-3-031-18067-5 4

41. Lin, H., Cao, Z., Liang, X., Shao, J.: Secure threshold multi authority attribute
based encryption without a central authority. In: Chowdhury, D.R., Rijmen, V.,
Das, A. (eds.) INDOCRYPT 2008. LNCS, vol. 5365, pp. 426–436. Springer, Hei-
delberg (2008). https://doi.org/10.1007/978-3-540-89754-5 33

42. Ling, S., Nguyen, K., Wang, H.: Group signatures from lattices: simpler, tighter,
shorter, ring-based. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 427–449.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46447-2 19

43. Lu, Z., Guo, Y., Li, J., Jia, W., Lv, L., Shen, J.: Novel searchable attribute-based
encryption for the internet of things. Wirel. Commun. Mob. Comput. 2022 (2022)

44. Moffat, S., Hammoudeh, M., Hegarty, R.: A survey on ciphertext-policy attribute-
based encryption (CP-ABE) approaches to data security on mobile devices and
its application to IoT. In: Proceedings of the International Conference on Future
Networks and Distributed Systems (2017)

45. Nali, D., Adams, C.M., Miri, A.: Using threshold attribute-based encryption for
practical biometric-based access control. IJ Netw. Secur. 1(3), 173–182 (2005)

46. Olimid, R.F.: Setup in secret sharing schemes using random values. Secur. Com-
mun. Netw. 9(18), 6034–6041 (2016)

47. Peikert, C.: A decade of lattice cryptography. Found. Trends Theor. Comput. Sci.
10(4), 283–424 (2016). https://doi.org/10.1561/0400000074

48. Perera, M.N.S., Nakamura, T., Hashimoto, M., Yokoyama, H., Cheng, C.M., Saku-
rai, K.: Decentralized and collaborative tracing for group signatures. In: Proceed-
ings of the 2022 ACM on Asia Conference on Computer and Communications
Security, pp. 1258–1260 (2022)

49. Porwal, S., Mittal, S.: A fully flexible key delegation mechanism with efficient fine-
grained access control in CP-ABE. J. Ambient Intell. Humaniz. Comput. 1–20
(2022)

https://doi.org/10.1007/978-3-642-54631-0_20
https://doi.org/10.1007/978-3-642-54631-0_20
https://doi.org/10.1007/978-3-642-13190-5_4
https://doi.org/10.1007/978-3-642-20465-4_31
https://doi.org/10.1007/978-3-319-11698-3_20
https://doi.org/10.1007/978-3-319-11698-3_20
https://doi.org/10.1007/978-3-031-18067-5_4
https://doi.org/10.1007/978-3-540-89754-5_33
https://doi.org/10.1007/978-3-662-46447-2_19
https://doi.org/10.1561/0400000074

GO-ABE from Lattices 175

50. Process, N.P.S.: Lecture 08: Shamir secret sharing (introduction) (2022). https://
csrc.nist.gov/News/2022/pqc-candidates-to-be-standardized-and-round-4

51. Pussewalage, H.S.G., Oleshchuk, V.: A delegatable attribute based encryption
scheme for a collaborative e-health cloud. IEEE Trans. Serv. Comput. 16(2), 787–
801 (2022)

52. Ramu, G., Reddy, B.E., Jayanthi, A., Prasad, L.N.: Fine-grained access control of
EHRs in cloud using CP-ABE with user revocation. Health Technol. 9(4), 487–496
(2019)

53. Rasori, M., La Manna, M., Perazzo, P., Dini, G.: A survey on attribute-based
encryption schemes suitable for the internet of things. IEEE Internet Things J.
9(11), 8269–8290 (2022)

54. Regev, O.: New lattice-based cryptographic constructions. J. ACM (JACM) 51(6),
899–942 (2004)

55. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EURO-
CRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005). https://
doi.org/10.1007/11426639 27

56. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
57. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakley, G.R.,

Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg
(1985). https://doi.org/10.1007/3-540-39568-7 5

58. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM Review 41(2), 303–332 (1999)

59. Shoup, V.: Practical threshold signatures. In: Preneel, B. (ed.) EUROCRYPT 2000.
LNCS, vol. 1807, pp. 207–220. Springer, Heidelberg (2000). https://doi.org/10.
1007/3-540-45539-6 15

60. Sun, P.J.: Privacy protection and data security in cloud computing: a survey, chal-
lenges, and solutions. IEEE Access 7, 147420–147452 (2019)

61. Tao, X., Lin, C., Zhou, Q., Wang, Y., Liang, K., Li, Y.: Secure and efficient access of
personal health record: a group-oriented ciphertext-policy attribute-based encryp-
tion. J. Chin. Inst. Eng. 42(1), 80–86 (2019)

62. Wang, Y.: Lattice ciphertext policy attribute-based encryption in the standard
model. IJ Netw. Secur. 16(6), 444–451 (2014)

63. Wang, Y., Chen, K., Long, Y., Liu, Z.: Accountable authority key policy attribute-
based encryption. Sci. China Inf. Sci. 55(7), 1631–1638 (2012)

64. Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer,
R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg
(2005). https://doi.org/10.1007/11426639 7

65. Waters, B.: Ciphertext-policy attribute-based encryption: an expressive, efficient,
and provably secure realization. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi,
A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 53–70. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-19379-8 4

66. Xue, Y., Xue, K., Gai, N., Hong, J., Wei, D.S., Hong, P.: An attribute-based
controlled collaborative access control scheme for public cloud storage. IEEE Trans.
Inf. Forensics Secur. 14(11), 2927–2942 (2019)

67. Yang, Y., Sun, J., Liu, Z., Qiao, Y.: Practical revocable and multi-authority CP-
ABE scheme from RLWE for cloud computing. J. Inf. Secur. Appl. 65, 103108
(2022)

68. Yin, H., Xiong, Y., Zhang, J., Ou, L., Liao, S., Qin, Z.: A key-policy searchable
attribute-based encryption scheme for efficient keyword search and fine-grained
access control over encrypted data. Electronics 8(3), 265 (2019)

https://csrc.nist.gov/News/2022/pqc-candidates-to-be-standardized-and-round-4
https://csrc.nist.gov/News/2022/pqc-candidates-to-be-standardized-and-round-4
https://doi.org/10.1007/11426639_27
https://doi.org/10.1007/11426639_27
https://doi.org/10.1007/3-540-39568-7_5
https://doi.org/10.1007/3-540-45539-6_15
https://doi.org/10.1007/3-540-45539-6_15
https://doi.org/10.1007/11426639_7
https://doi.org/10.1007/978-3-642-19379-8_4

176 M. N. S. Perera et al.

69. Yu, S., Wang, C., Ren, K., Lou, W.: Achieving secure, scalable, and fine-grained
data access control in cloud computing. In: 2010 Proceedings IEEE INFOCOM,
pp. 1–9. IEEE (2010)

70. Yu, S., Wang, C., Ren, K., Lou, W.: Attribute based data sharing with attribute
revocation. In: ASIACCS 2010, pp. 261–270. ACM (2010)

71. Zhang, R., Li, J., Lu, Y., Han, J., Zhang, Y.: Key escrow-free attribute based
encryption with user revocation. Inf. Sci. 600, 59–72 (2022)

72. Zhao, S., Jiang, R., Bhargava, B.: RL-ABE: a revocable lattice attribute based
encryption scheme based on R-LWE problem in cloud storage. IEEE Trans. Serv.
Comput. 15(2), 1026–1035 (2020)

73. Zhao, Y., Zhang, X., Xie, X., Ding, Y., Kumar, S.: A verifiable hidden policy CP-
ABE with decryption testing scheme and its application in VANET. Trans. Emerg.
Telecommun. Technol. 33(5), e3785 (2022)

New LDP Approach Using VAE

Andres Hernandez-Matamoros(B) and Hiroaki Kikuchi

Meiji University, 4-21-1 Nakano, Nakano-ku, Tokyo 164-8525, Japan
{matamoros,kikn}@meiji.ac.jp

https://www.kikn.fms.meiji.ac.jp

Abstract. Local Differential Privacy allows individuals to share their
personal data without compromising their privacy. In traditional data
collection and analysis methods, sensitive information such as names,
addresses, and other identifying details may be included, making it easy
to link the data to a specific individual. On the other hand, Local Dif-
ferential Privacy enables data to be collected and analyzed in a way that
safeguards individual privacy. This makes it possible for people to par-
ticipate in data collection and analysis without the fear of being identi-
fied. While Local Differential Privacy approaches have been proposed for
releasing privacy-preserving databases with statistical approximations,
they have limitations when dealing with k-dimensional distribution esti-
mations. To address this issue, we propose a solution that guarantees
Local Differential Privacy based on the latent space of a Variational
AutoEncoder (VAE), which is used to recover the original distribution.
We tested our proposal on four real and open datasets with different
characteristics, including the number of users, the number of attributes,
and their cardinality. The proposed solution outperforms the well-known
approach, LoPub. Our work can reduce the average variant distance by
the LoPub algorithm from 0.6 to 0.1. These results suggest that the VAE
can serve as a useful tool for privacy-preserving data. The source code
used in this paper can be downloaded from the following link https://
github.com/phdmatamoros/New-LDP-approach-using-VAE.

Keywords: Local Differential Privacy · Latent Space · VAE

1 Introduction

Our everyday activities involve sharing personal information with various ser-
vices, such as online streaming, food delivery, social media, and filling out appli-
cation forms. These services store our data on their central servers to obtain
insights into their user base or train machine learning models. In recent years,
the emergence of Differential Privacy [2], also known as Central Differential Pri-
vacy (CDP), aims to release databases for statistical analysis of sensitive indi-
vidual data while preserving user privacy. One drawback of CDP is that users
send their data without protection, entrusting it to the central server.

To address this issue, Local Differential Privacy (LDP) was introduced, where
users only trust themselves. LDP is a technique that involves encoding and
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Li et al. (Eds.): NSS 2023, LNCS 13983, pp. 177–191, 2023.
https://doi.org/10.1007/978-3-031-39828-5_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-39828-5_10&domain=pdf
http://orcid.org/0000-0002-4896-2909
http://orcid.org/0000-0002-0903-8430
https://github.com/phdmatamoros/New-LDP-approach-using-VAE
https://github.com/phdmatamoros/New-LDP-approach-using-VAE
https://doi.org/10.1007/978-3-031-39828-5_10

178 A. Hernandez-Matamoros and H. Kikuchi

introducing random noise to users’ data before sending it to the central server,
allowing the central server to compute the distribution of the users’ information.
By using this approach, it is possible to protect sensitive data while still allowing
it to be used for research or other purposes. LDP is also important in situations
where privacy is legally mandated, such as in the European Union’s General
Data Protection Regulation or the California Consumer Privacy Act.

Ren et al. proposed LoPub [3], in which users encode their data using Bloom
filters and perturb the encoded data using the Randomize Response (RR) algo-
rithm [10]. The perturbed-encoded data is then transmitted to the central server,
which estimates the multi-dimensional joint distribution using the LASSO algo-
rithm [6] and the Expectation Maximization algorithm [7]. While LoPub demon-
strates good performance in datasets with low multi-dimensional joint distribu-
tions, it encounters issues with low data utility when the number of attributes
is high or the cardinality of an attribute is large.

In LDP, both cardinality and attributes have an impact on the data utility
and accuracy of the estimated joint distribution. Firstly, cardinality refers to
the number of distinct elements in an attribute. In high-dimensional data with
a large number of attributes and high cardinality, LDP approaches may experi-
ence a reduction in data utility, resulting in compromised estimation accuracy.
This occurs because the introduced noise can make it challenging to identify
correlations and patterns, leading to inaccurate estimates.

Secondly, highly correlated attributes can also pose challenges in LDP. When
attributes exhibit strong correlations, introducing noise to one attribute can
cause the noise to propagate to other attributes, leading to a further decline in
data utility. This propagation of noise makes it difficult to accurately estimate
joint probability distributions. To mitigate the spread of noise across attributes,
Mina [1] made an assumption that the features in the dataset are both inde-
pendent and categorical. Based on this assumption, a framework was developed
that incorporates feature selection to generate a synthetic dataset.

We propose leveraging the latent space of a Variational Auto-Encoder (VAE)
[18] within LDP to enhance privacy-preserving data analysis. VAEs have been
successfully utilized in various domains and applications [16]. By incorporating
the VAE’s latent space, which captures meaningful representations of the data,
we can improve the utility and accuracy of LDP in scenarios with a high number
of attributes or large attribute cardinalities. The VAE acts as a denoising and
reconstructing tool, enabling precise estimation of joint probability distributions.
This approach offers a more effective and privacy-preserving solution compared
to traditional LDP methods, especially in complex, high-dimensional datasets.

To evaluate the performance of our VAE based approach in comparison to
a baseline method introduced by Ren [3], we conducted experiments on four
publicly available datasets featuring varying numbers of users and cardinalities.
Our approach follows the data encoding and perturbation method proposed by
[3], but with the incorporation of VAE on the central server. Table 1 highlights
the distinctions between the [3] method and our proposed approach. The key
contributions of this paper can be summarized as follows:

New LDP Approach Using VAE 179

– We propose a novel LDP approach that utilizes a VAE on the central server
to estimate joint probability distributions. In our approach, we use a VAE to
learn a latent representation of the data that is shared across all parties. This
allows us to estimate the joint probability distribution of the data.

– We explore the impact of attribute cardinality on the reconstruction error
during VAE training. We find that as the attribute cardinality increases, the
reconstruction error also increases. This is because it becomes more difficult
for the VAE to learn a latent representation that is able to capture the diver-
sity of the data.

– We compare our proposed approach to [3], a baseline algorithm for LDP. We
find that our proposed approach outperforms [3] in terms of accuracy with
same privacy budget.

– We demonstrate the effectiveness of VAE in estimating the joint probability
distribution through experiments on four diverse datasets. We find that VAE
is able to accurately estimate the joint probability distribution of the data in
all four datasets.

Table 1. Difference between LoPub and ours

LoPub [3] Ours

User Hash F.
Randomize Response

Hash F.
Randomize Response

Central Server LASSO regression Latent space (VAE)

The paper is structured as follows: Sect. 2 presents the preliminaries, Sect. 3
describes our proposed approach, and the paper concludes with the Experiments
and Conclusion sections.

2 Preliminaries

2.1 Generalizing the Problem

In LDP approaches, the users encode and perturb their data before share
their information with a central server. By doing this, the users preserve their
anonymity. In this work, we follow the user steps proposed by LoPub [3]. We
generalize the LDP problem; a dataset U with N users could be represented as
U = {u1, u2, u3, ..., uN}.

The users have the same number of attributes k, and each attribute has
a specific domain. Thinking about the nth user has a k-dimensional vec-
tor (un

1 , un
2 , un

3 , ..., un
k), the domain of each attribute j ∈ {1, ..., k} is denoted

Ωj = {ω1
i , ..., ω

|Ωj |
i }. The cardinality |Ωj | means the number of elements in the

attribute j.

180 A. Hernandez-Matamoros and H. Kikuchi

2.2 Local Differential Privacy (LDP)

LDP proposes that for any user n, a randomization mechanism Ψ satisfies ε-LDP
if and only if for any two records un, wn, and for any outputs ũτ ∈ Range(Ψ),
the probability computed over Ψ ’s and ε > 0; privacy budget holds

Pr[Ψ(un) = ũτ] ≤ eεPr[Ψ(wn) = ũτ] (1)

On Eq. (1), we can figure how important is the privacy budget. A smaller ε
means stronger privacy protection, and viceversa.

2.3 Privacy Analysis

User privacy is preserved by claiming the privacy of local randomizers, which all
user run on data records separately. Local perturbation of a specific attribute
value can achieve ε-LDP, where ε=2h ln 2−f

f , with h being the number of hash
functions in the Bloom filter [9] and f the flip bit probability. Based on the
sequential composition theorem [14], the local transformation of a k-dimensional
data record achieves ε-LDP, where:

ε = 2kh ln
2 − f

f
,

with k being the number of attributes in the original data. Because all users
perform the same transformation independently, the above ε-LDP guarantee
applies to all distributed users.

2.4 Lopub Scheme

The LDP approach relies on the participation of two components: users and a
central server. In this work, we utilize the algorithm proposed by Ren [3] to
encode and perturb users’ data. Our proposal involves replacing the LASSO and
EM algorithms with VAE in the central server.

User. This section explains how users encode and perturb their data, an app-
roach consisting of two main steps:

– Encoding user information. The user input is represented using a Bloom filter
(BF) H, a technique used to test whether an element is a member of a set; it
is a probabilistic data structure proposed by Bloom [9]. To encode each un

j ,
the user incorporates BF using a set Hj of hash functions that are designed
for Uj , where Uj is the jth attribute of U . Specifically, the user applies hj

hash functions Hj,1, . . . ,Hj,hj
from Hj to map un

j to a length-mj bit string
sn

j , where mj is the length of the BF. Therefore, un
j is inserted into a length

mj bit BF using hj hash functions from Hj , represented as Hj(ω), where

New LDP Approach Using VAE 181

sn
j [b] denotes the bth bit of the bit string sn

j . The length of BF mj for Uj is
computed as:

mj =
ln 1

p

ln 22
|Ωj |, (2)

where |Ωj | is the cardinality of the attribute Uj and p is the false positive
probability; in our experiments we set p = 0.022.

– Perturbing the data. Randomized Response (RR) is a method proposed by
Warner [10] that allows interviewee to give their answers while maintaining
confidentiality. Randomly whether the question is to be answered truthfully
is unknown to the interviewer. RR is applied after encoding each step, where
each bit sn

j [b] (b = 1, 2, . . .,mj) is randomly flipped using the following rule:

ŝi
j =

⎧
⎨

⎩

sn
j with probability of 1 − f,
1 with probability of f/2,
0 with probability of f/2

(3)

Where f ∈ [0, 1] is the probability of flipping a bit randomly. Once the ran-
domized BF sn

j is obtained, the nth user combines si
1 through sn

k to create a
bit vector (sn

1 ||...||sn
k), which consists of (

∑k
j=1 mj) bits. This resultant vector

is transmitted to the server.

Central Server. After users encode and perturb their data, they send their
data to the central server, which receives the distribution of users with random
noise added by RR. For each bit b in each attribute j, the central server counts
the number of frequencies of the perturbed value ŝi

j as ŷj [b] =
∑N

i=1 ŝi
j [b]. Next,

the original count yj [b] is estimated as

y[b] =
ŷ[b] − fN

2

1 − f
,

where after the original count is computed, the candidate bit matrix is created
using a candidate set of Bloom filters H, as M = [H1(Ω1) × H2(Ω2) × · · · ×
Hd(Ωd)], where d is the number of attributes. As we illustrate, the block dia-
gram in Fig. 1 reviews how it works from the previous steps applied by the
central server and gives an example with k =2-way, estimating the distribution
of two attributes in the following steps. To estimate the distribution from the
noise data using a regression technique, y = Mβ. LASSO, is a linear regression
technique that performs regularization order to improve prediction accuracy; it
was introduced by [8]. If the reader wants to read more about the whole process,
please refer to [3].

3 Proposed Scheme

3.1 VAE Preliminaries

Auto-Encoders (AE) were introduced by Hinton in 1986 [17]. They are designed
to encode input data into an essential representation and then decode it back

182 A. Hernandez-Matamoros and H. Kikuchi

Fig. 1. Central server block diagram proposed by [3] computing the joint distributions
of two attributes for N users.

to create a reconstructed input that is as similar as possible to the original
input. AE consists of two parts: the encoder and the decoder. The input to
the encoder is the data Γ . The output of the encoder is called Y , which is the
reduced representation of Γ in a latent space. Next, the decoder is adjusted to
reconstruct the data Γ . Finally, the decoder reconstructs the original data Γ
from Y by minimizing the Euclidean distance between Γ and Γ ′.

Later, in 2013, Kingma proposed a variation of AE called Variational Auto-
Encoder (VAE) [18]. The main difference between AE and VAE is that the
encoder in AE outputs latent vectors, whereas VAE imposes a constraint on this
latent distribution, forcing it to be a normal distribution. VAE has two main
stages: training and testing. In the training stage of VAE, a reconstruction error
function RE(Γ, Γ ′) is defined as follows:

RE (Γ, Γ ′) =
√∑

(Γ − Γ ′)2 + MMD(V, Samplez), (4)

where V is the output of VAE’s encoder and Samplez is drawn from N (0, 1), the
Maximum Mean Discrepancy (MMD) distance measures the distance between
the feature maps of two probability distributions. A smaller distance suggests
that the two distributions are more alike.

3.2 VAE Model

Training. During the training step, the Algorithm 1 is applied to synthesizing
two datasets.

– X contains the encoded information of each attribute.
– X ′ is X after being perturbed using RR.

Using these datasets, our model trains to create a latent space for each
attribute available in the dataset. VAE is trained on two datasets: a perturbed
dataset X ′ and a non-perturbed dataset X, where RR(X) = X ′ (Fig. 2). These

New LDP Approach Using VAE 183

Fig. 2. How train VAE.

Algorithm 1. Creating Datasets
Require: jth attribute � Attribute on Dataset
Require: t = 1000 � Perturbed times
Require: Xj = [] � No perturbed
Require: X′

j = [] � Perturbed
Require: Lj = [] � Attributes Label
Require: f � Flip Bit Probability

for element in j do
Hj � The Bloom filters on jth attribute
for each p = 1, 2, ..., t do

Xj ← [Xj , Hj(element)] � Append
X′

j ← [X′
j , RR(Hj(element), f)] � Append

Lj ← [Lj , element] � Append
end for

end for
return Xj , X′

j , Lj

datasets are created by the central server using the method described in Algo-
rithm 1. For this experiment, the central server creates one thousand artificial
users per attribute in both X and X ′ datasets. The datasets are then split into
training and validation sets with a ratio of 90% and 10%, respectively.

The Algorithm 2 invokes Algorithms 1 and 3. Given a specific value of f ,
Algorithm 1 uses it to create datasets X and X ′ for each attribute. Algorithm 3
is used to train the VAE. A summary of the VAE is available in Appendix A.1.
In Algorithm 3, a simplified algorithm for training the VAE is presented. For
further details on how to train the VAE, please refer to [11].

The outputs of Algorithm 2 are the encoder Ej and the latent space Yj for
attribute j. The latent space models the cardinality for each element in the
attribute. Examples of a 2D latent space for the “Marital Status” and “Sex”
attributes in the Adult dataset are shown in Fig. 5. In our experiments, we set
the latent space as 4D.

Latent Space Evaluation. Once the model has been trained on synthetic
datasets, it is evaluated using real datasets. To achieve this, the records of per-
turbed data are transformed into the latent space by the VAE encoder. Sub-

184 A. Hernandez-Matamoros and H. Kikuchi

Algorithm 2. Main algorithm
Require: t = 1000 � Perturbed times
Require: k � Number of attributes on the original dataset
Require: f � Flip Bit Probability Value

for each j=1,..., k do
Xj , X′

j , Lj ← Creating Datasets(j, f, t) � Algorithm 1
Ej , Vj ← TrainingV AE(Xj , X′

j) � Algorithm 3
end for
return Ej , Vj , Lj

Algorithm 3. Training VAE
Require: Xj , X′

j � Created by Algorithm 1
Require: Encoder of VAE please refer to Appendix A.1
Require: Decoder of VAE please refer to Appendix A.1
Require: epochs=1000
Require: Optimizer Adam, lr=0.0001

patience = 0
for each epoch = 1,..., epochs do

Yj ← Encoderj(X
′
j)

Wj ← Decoderj(Yj)
Rej ← RE(Xj , Wj) � Eq. 4
Using lr update internal parameters of VAE
Reepoch ← average of Rej

if Reepoch ≥ Reepoch−1 then
patience ← patience + 1

end if
if patience=16 then

finish training
end if

end for
return Encoderj , Yj

sequently, the approach calculates the Euclidean distance between the user’s
coordinates and the latent space created during the training step for a specific
attribute.

For simplicity, the latent space Yj which belongs to the jth attribute using f
value will be represented as Y in the following expressions. Y is a matrix with
s rows and d columns, where s is the number of elements of latent space and d
is the dimension of the latent space. In our experiments the dimension of latent
space d is four and the number of elements of latent space s is 900|Ωj | for each
jth attribute.

Y =

⎡

⎢
⎢
⎢
⎢
⎣

Y1,1, Y1,2, ..., Y1,d

Y2,1, Y2,2, ..., Y2,d

Y3,1, Y3,2, ..., Y3,d

...
Ys,1, Ys,2, ..., Ys,d

⎤

⎥
⎥
⎥
⎥
⎦

The latent space evaluation consists of two steps, as shown in Fig. 3;

– The first step is performed by the encoder Ej , which transforms ith user’s
record into the latent space. Ej outputs a vector V of size d, where each
component Vi corresponds to a dimension in the latent space.

Ej(ith user’s record) = (V1, ..., Vd)

New LDP Approach Using VAE 185

– We compare the vector V with the latent space Yj , which was computed
during the training stage. Our proposed method involves computing the
Euclidean distance between V and each row in the matrix Yj . By identifying
the index of the row that exhibits the closest similarity to V , we evaluate this
index in Lj which is created using Algorithm 1, to determine the potential
element in the attribute.

Fig. 3. Latent Space Evaluation.

Algorithm 4. Inference Attribute
Require: Ei,Yi,Li

Require: D = [] � Recovered Dataset
Require: fpb

for each u = 1, 2, ..., Users do
for each j=1,...,k do

V ← Ej(j) � Transforming V into Latent Space
dj = dis(V, Yj) � Computing Euclidean distance
j*=argmin(dj)

D(u, j) ← Lj(j
*)

end for
end for
return D

After Algorithm 4 finishes, we obtain D, where each row represents an anony-
mous user and each column represents a possible attribute. This matrix can be
used to estimate the joint distribution of the original dataset. To calculate the
joint probability distribution of two or more attributes for the users in D, follow
these steps:

– Calculate the total number of users in the D.
– Count the frequency of each combination of attribute values for the users of

interest. It is the joint frequency distribution.
– Divide the joint frequency of each combination by the number of users to

obtain the joint probability of that combination.

4 Experiments

4.1 Experimental Method

We tested our approach on four open datasets from different areas. The Nurs-
ery dataset [15] was originally created in the 1980s s to evaluate applications

186 A. Hernandez-Matamoros and H. Kikuchi

for nursery schools in Europe. The NHANES dataset [12] was used in the PWS
Cup 2021 [13] to provide anonymized healthcare data. The Adult dataset [4]
is one of the most popular datasets used to measure the performance of CDP
and LDP approaches. The Bank dataset [5] contains information about market-
ing campaigns. Table 2 summarizes the datasets, showing the number of users,
attributes, their cardinality, and their size after encoding.

The default parameters for our approach are as follows: we use h = 5 hash
functions for all four datasets. The value of m varies depending on the dataset’s
cardinality and could be calculated using the Eq. 2.

Table 2. Statistics of Datasets

Dataset Users Attributes Cardinality m

min max min max

Adult 45223 8 2 16 8 64
Bank 45212 10 2 12 8 47
Nursery 12960 9 2 5 8 20
NHANES 4190 5 2 6 8 23

4.2 Results

VAE Reconstruction Error (RE). We evaluated the Reconstruction Error
(RE) during the training stage of the VAE using Eq. 4. The results are presented
in Figs. 4(a)–(b). Figure 4(a) displays the results for the Adult dataset, where the
attribute marital−status exhibits a lower reconstruction error compared to the
attribute sex. A comparison between their latent spaces is depicted in Figs. 5(a)
and (b). For simplicity, the latent spaces are shown in 2D, although 4D were
used in the experiments.

Figure 4(b) shows the results for the NHANES dataset, with the attribute
Education having a lower RE than the others. The attribute Qm demonstrates
the highest reconstruction error.

Joint Probability. We randomly selected k-way joint probabilities of attributes
one hundred times. To analyze the joint distributions, we used the Average Vari-
ance Distance (AVD) metric to quantify the difference between the real and
computed data. The AVD distance, as used by [3], is defined as follows:

AV D =
1
2

∑

ω∈Ω

|P (ω) − Q(ω)|. (5)

Figures 6(a)–(d) show the results of VAE and LASSO using color and
grayscale, respectively. The x-axis corresponds to the AVD distance, while the y-
axis shows the algorithms with a flip bit probability f = 0.5. LASSO regression,

New LDP Approach Using VAE 187

Fig. 4. Reconstruction Error with f = 0.5 (a) Adult, (b) NHANES Datasets.

Fig. 5. Latent Space for Adult dataset with f = 0.1 on training stage (a) Marital
Status, (b) Sex Attributes.

proposed by [3], was used to recover the original distribution in LDP schemes.
In summary, the comparison of LASSO and VAE models on different datasets
revealed interesting insights. In the NHANES dataset, LASSO struggled to cap-
ture complex patterns, as indicated by increasing AVD distances with higher
values of k-way. On the other hand, VAE consistently outperformed LASSO,
suggesting its ability to effectively capture latent representations and reproduce
patterns in the NHANES dataset.

Similarly, on the Adults dataset, LASSO exhibited decreasing predictive
accuracy with higher model complexity, while VAE consistently outperformed
LASSO with lower AVD distances. This indicates that VAE’s capacity to capture
latent representations and generate data is advantageous for the Adults dataset.

The Nursery dataset posed challenges for LASSO, as it struggled to accu-
rately predict values with higher values of k-way. In contrast, VAE significantly
outperformed LASSO on the Nursery dataset, indicating its superior ability to
capture complex relationships and reproduce values accurately.

The Bank dataset showed relatively good performance for LASSO, with low
AVD distances across all values of k-way. VAE slightly outperformed LASSO,
indicating its capability to capture and reproduce underlying patterns in the
Bank dataset.

In summary, VAE consistently outperformed LASSO in terms of AVD dis-
tances across different datasets and values of k-way. VAE’s ability to capture
latent representations and generate data allows it to capture complex patterns
and relationships better, resulting in improved predictive accuracy.

188 A. Hernandez-Matamoros and H. Kikuchi

Fig. 6. Accuracy (a) Adult, (b) Bank, (c) Nursery, (d) NHANES Datasets.

Figures 7(a)–(d) display the results of VAE and LASSO with f = 0.5 when
varying the number of users N . The dotted line represents the results of Lasso,
while the solid line represents the results of VAE. The blue color represents the
results of k-way=2, yellow represents k-way=3, and green represents k-way=4.
Then, we discuss the performance for each dataset

In the Adult dataset shown in Fig. 7(a), VAE performs better than LASSO
for all values of k-way when N > 15000. In the case where k-way is two and
N < 15000, LASSO and VAE have similar performance. However, when N =
5000, LASSO shows better performance than our approach, but the difference
between the two is minimal.

In the Bank dataset shown in Fig. 7(b), VAE outperforms LASSO for k-way
equal to four when N > 10000. For k-way equal to three and N > 15000, VAE
also outperforms LASSO. However, for k-way equal to two, VAE performs better
when N < 30000, after which LASSO and VAE exhibit similar performance.

In the Nursery dataset shown in Fig. 7(c), VAE outperforms LASSO for k-
way={3,4}, regardless of the number of users. For k-way=2 and N > 3000, VAE
also outperforms LASSO.

Finally, in NHANES dataset, VAE outperforms LASSO for k-way={2, 3, 4},
regardless of the number of users.

The difference in AVD values across the Dataset is related to the cardinality
of the attributes. For instance, the Nursery dataset has more attributes than
the Adult dataset, but the Adult dataset exhibits the maximum cardinality, as
shown in Table 2. The experimental results demonstrate that VAE outperforms
LASSO for all four datasets analyzed in this paper when the number of users is
greater than half the size of the original dataset.

New LDP Approach Using VAE 189

Fig. 7. Accuracy versus N users with f = 0.5 (a) Adult, (b) Bank, (c) Nursery, (d)
NHANES Datasets.

5 Conclusions

In conclusion, this work proposes the use of the latent space of a VAE in the
central server of the LDP scheme to calculate the joint probability. The approach
is tested on real datasets with varying numbers of users and attribute cardinali-
ties using a single VAE model. The results show that VAE outperforms LASSO
regression, as it allows each attribute to have its own independent latent space,
preventing noise from one attribute from affecting others. The AVD of VAE
exhibits stable behavior across different numbers of users, indicating that the
LDP model using VAE can be applied to extract information from datasets that
increase over time. Future work includes investigating the relationship between
attribute cardinality and corresponding latent space to develop an improved
VAE model, which could be used to create synthetic datasets by computing
correlations between attributes.

Acknowledgements. This work was supported by JST, CREST Grant Number
JPMJCR21M1, Japan.

A Appendix

A.1 VAE’s Summary

This appendix provides an overview of the VAE architecture. For more detailed
information on these concepts, please refer to [11].

190 A. Hernandez-Matamoros and H. Kikuchi

Table A. Encoder Summary
Layer(Type) Output Shape
Conv1d-1 [-1,16,(inputdim − 1)]
ReLU-2 [-1,16,(inputdim − 1)]
BatchNorm1d-3 [-1,16,(inputdim − 1)]
Conv1d-4 [-1,16,(inputdim − 2)]
ReLU-5 [-1,16,(inputdim − 2)]
BatchNorm1d-6 [-1,16,(inputdim − 2)]
Conv1d-7 [-1,32,(inputdim − 3)]
ReLU-8 [-1,32,(inputdim − 3)]
BatchNorm1d-9 [-1,32,(inputdim − 3)]
Conv1d-10 [-1,32,(inputdim − 4)]
ReLU-11 [-1,32,(inputdim − 4)]
BatchNorm1d-12 [-1,32,(inputdim − 4)]
Linear-13 [-1,64]
ReLU-14 [-1,64]
BatchNorm1d-15 [-1,64]
Linear-16 [-1,16]
ReLU-17 [-1,16]
Linear-18 [-1,4]
Linear-19 [-1,4]

Table B. Decoder Summary
Layer(Type) Output Shape
Linear-1 [-1,1,32x(inputdim − 4)]
ReLU-2 [-1,1,32x(inputdim − 4)]
ConvTranspose1d-3 [-1,1,(inputdim − 4)]
ReLU-4 [-1,1,(inputdim − 3)]
BatchNorm1d-5 [-1,1,(inputdim − 3)]
ConvTranspose1d-6 [-1,1,(inputdim − 2)]
ReLU-7 [-1,1,(inputdim − 2)]
BatchNorm1d-8 [-1,1,(inputdim − 2)]
ConvTranspose1d-9 [-1,1,(inputdim − 1)]
ReLU-10 [-1,1,(inputdim − 1)]
BatchNorm1d-11 [-1,1,(inputdim − 1)]
ConvTranspose1d-12 [-1,1,inputdim]

References

1. Alishahi, M., Moghtadaiee, V., Navidan, H.: Add noise to remove noise: local dif-
ferential privacy for feature selection. Comput. Secur. 123, 102934 (2022). https://
doi.org/10.1016/j.cose.2022.102934. ISSN: 0167-4048

2. Dwork, C., Roth, A.: The algorithmic foundations of differential privacy. Found.
Trends Theoret. Comput. Sci. 9(3–4), 211–407 (2014)

3. Ren, X., et al.: LoPub: high-dimensional crowdsourced data publication with
local differential privacy. IEEE Trans. Inf. Forensics Secur. 13, 2151–2166 (2018).
https://doi.org/10.1109/TIFS.2018.2812146

4. Adult: UCI Machine Learning Repository (1996)
5. Moro, S., Rita, P., Cortez, P.: Bank Marketing. In: UCI Machine Learning Repos-

itory (2012)
6. Zou, H., Hastie, T., Tibshirani, R.: On the “degrees of freedom” of the lasso, Insti-

tute of Mathematical Statistics, 35, The Annals of Statistics
7. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete

data via the EM algorithm. J. Roy. Statist. Soc.: Ser. 39, 1–22 (1977)
8. Santosa, F., Symes, W.W.: Linear inversion of band-limited reflection seismograms.

SIAM J. Sci. Statist. Comput. 7(4), 1307–1330 (1986). https://doi.org/10.1137/
0907087

9. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commun.
ACM 13(7), 422–426 (1970)

10. Warner, S.L.: Randomized response: a survey technique for eliminating evasive
answer bias. J. Am. Statist. Assoc. 60, 63–69 (1965)

11. Alzubaidi, L., Zhang, J., Humaidi, A.J., et al.: Review of deep learning: concepts,
CNN architectures, challenges, applications, future directions. J Big Data 8, 53
(2021). https://doi.org/10.1186/s40537-021-00444-8

12. Kikuchi, H.: PWS Cup: Data Anonymization Competition ‘Diabetes’ (2021).
https://github.com/kikn88/pwscup2021. Accessed 10 May 2023

13. PWS: PWS (2021). https://www.iwsec.org/pws/2021/cup21.html. Accessed 10
May 2023

https://doi.org/10.1016/j.cose.2022.102934
https://doi.org/10.1016/j.cose.2022.102934
https://doi.org/10.1109/TIFS.2018.2812146
https://doi.org/10.1137/0907087
https://doi.org/10.1137/0907087
https://doi.org/10.1186/s40537-021-00444-8
https://github.com/kikn88/pwscup2021
https://www.iwsec.org/pws/2021/cup21.html

New LDP Approach Using VAE 191

14. McSherry, F.D.: Privacy integrated queries: an extensible platform for privacy-
preserving data analysis. In: Proceedings of the ACM SIGMOD, pp. 19–30 (2009)

15. Rajkovic, V.: Nursery, UCI Machine Learning Repository (1997)
16. Bengio, Y., Yao, L., Alain, G., Vincent, P.: Generalized denoising auto-encoders as

generative models. In: Advances in Neural Information Processing Systems (2013)
17. Rumelhart, D.E., Hinton, G.E., Williams, R.J. : Learning internal representa-

tions by error propagation. In: Parallel Distributed Processing: Explorations in
the Microstructure of Cognition: Foundations, pp. 318–362. MIT Press (1987)

18. Diederik, P.: Kingma. Auto-Encoding Variational Bayes, ICLR, Max Welling
(2014)

Machine Learning

Privacy-Preserving Federated Learning
with Hierarchical Clustering to Improve

Training on Non-IID Data

Songwei Luo1(B) , Shaojing Fu1(B) , Yuchuan Luo1 , Lin Liu1 ,
Yanxiang Deng1 , and Shixiong Wang2

1 College of Computer, National University of Defense Technology, Changsha, China
{luosongwei20,fushaojing,luoyuchuan09,liulin16,

dengyanxiang20}@nudt.edu.cn
2 Academy of Military Sciences, Beijing, China

Abstract. Federated learning (FL), as a privacy-enhanced distributed
machine learning paradigm, has achieved tremendous success in solv-
ing the data silo problem. However, data heterogeneity (Non-IID data)
between parties (data owners) poses challenges for the vanilla feder-
ated learning aggregation approach (FedAvg), including more interac-
tion rounds and lower accuracy of the global model. To address this
challenge, some works make improvements based on FedAvg. However,
most of these works do not consider the privacy protection of gradients,
which would leak private data information about the parties involved in
the training. To protect parties’ privacy and enhance the FL training on
Non-IID data at the same time, in this paper, we present PPFL+HC,
an efficient, private FL framework. Our PPFL+HC follows the state-
of-the-art Non-IID FL method (FL+HC IJCNN’20), which presents a
modification to FL by introducing a hierarchical clustering step to sepa-
rate clusters of parties by the similarity of their local gradients, adapting
it to the privacy-preserving context. We design a series of secure crypto-
graphic protocols to ensure the privacy of parties. Specifically, first, we
use additive secret sharing to protect local gradients and global gradients
privacy, while using pseudorandom generation techniques to reduce half
the communication overhead. Second, we design a secure and efficient
Euclidean distance computation and Manhattan distance computation
protocol to accelerate the secure hierarchical clustering process. Finally,
to improve the computational efficiency of the clustering process, we
perform randomized gradient cropping to reduce the computational over-
head while ensuring the accuracy of clustering. Moreover, experiments
conducted on two real-world datasets demonstrate that our PPFL+HC
achieves secure and efficient FL training for Non-IID data.

Keywords: Federated Learning · Privacy-preserving · Non-IID Data ·
2PC

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Li et al. (Eds.): NSS 2023, LNCS 13983, pp. 195–216, 2023.
https://doi.org/10.1007/978-3-031-39828-5_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-39828-5_11&domain=pdf
http://orcid.org/0000-0002-6615-5326
http://orcid.org/0000-0002-7275-8190
http://orcid.org/0000-0002-0720-4925
http://orcid.org/0000-0002-5930-8881
http://orcid.org/0000-0001-7604-1405
https://doi.org/10.1007/978-3-031-39828-5_11

196 S. Luo et al.

1 Introduction

Federated learning (FL) [23] is a novel distributed machine learning framework
that empowers privacy-conscious participants to train jointly, and has been
applied in real-world scenarios, such as Google’s mobile keyboard prediction
[13], intelligent medical diagnosis [7] and treatment systems to protect patient’s
privacy [19], and WeBank’s credit risk prediction [5]. Roughly speaking, FL com-
pletes the joint training of participants (e.g. mobile users) via aggregating local
updates (e.g., gradients) under the coordination of a service provider (e.g. aggre-
gation server), while keeping the private datasets of participants local. Despite
these advantages, works [9,10,41] have shown that FL still suffers from privacy
threats, e.g., the service provider can infer private information (e.g., sensitive
data of participants) from the uploaded gradients, which violates data protection
regulations, such as General Data Protection Regulation (GDPR) [34]. Mean-
while, heterogeneous data, i.e., non-independent and identically distributed data
(Non-IID data) poses challenges to FL [33,38,39]. Concretely, in the real-world
FL scenarios, it is common that the private data of participants do not con-
form to independent and identically distributed (IID) settings, which negatively
affects the performance of the global model in vanilla FL.

To address the privacy leakage problem of gradients in FL, many secure
aggregation schemes [1,6,12,22] based on cryptographic protocols are proposed
for enhancing the security of vanilla FL. For example, several schemes [1,22] use
homomorphic encryption (HE) to encrypt local gradients and perform aggrega-
tion without decryption, so the service provider cannot compromise the private
data of parties. Besides, some works [6,12] utilize secure multi-party computa-
tion (MPC) to achieve privacy protection for gradients, since MPC can perform
arbitrary function evaluations without revealing participants’ inputs. On the
other hand, to improve the performance of FL on Non-IID data, several works
[4,8,11,21] based on FedAvg [23] have been proposed. For instance, work [21]
fine-tunes the local training process, i.e., adds a regularization term in the objec-
tive function, to reduce the weight divergence between the different participants.

Although there are many efforts to address the privacy leakage problem as
well as the data heterogeneity problem, most of them consider these two com-
ponents separately. Many solutions to address privacy leakage do not apply to
Non-IID scenarios, while many solutions that work to improve the performance
of FL on Non-IID data do not consider the privacy protection of the gradients,
and they tend to collect local gradients of participants directly. Some schemes
[26,35,40] based on differential privacy consider both aspects, but the noise
added to gradients can negatively affect the global model accuracy.

In this paper, we implement privacy-preserving FL with hierarchical cluster-
ing (PPFL+HC), an accurate, efficient, and Non-IID compatible FL framework.
Our framework is based on the state-of-the-art Non-IID compatible FL frame-
work, FL+HC [4], and adapts it to the privacy-preserving context to achieve full
privacy protection, which includes the parties’ local gradients privacy, as well as
the global gradients privacy after aggregation. We are committed to achieving
an efficient and high-precision privacy-preserving hierarchical clustering (HC)

PPFL+HC 197

process. Specifically, we design secure algorithms to calculate the inter-gradient
distance on Secure 2-Party Computation (2PC). We perform random cropping
of gradients with high dimensions to reduce computational and communication
overheads while ensuring clustering accuracy. Meanwhile, we use pseudo-random
generations (PRGs) [36] to achieve privacy protection for global gradients with-
out boosting additional communication overhead. In summary, our contributions
are as follows:

– We propose an FL scheme that simultaneously preserves gradients (including
local gradients and global gradients) privacy and is compatible with Non-IID
scenarios.

– We elaborate several protocols for secure distance computation on the secret
shared gradients to achieve accurate, private, and effective hierarchical clus-
tering.

– Experiments on real-world datasets and comprehensible security analysis
show that our scheme achieves strong privacy preservation while improving
training on FL with Non-IID data.

2 Related Work

FL on Non-IID Data: The classical FL aggregation algorithm FedAvg [23] is
based on the assumption of independent identical distribution (IID) of the data,
and the performance of the global model is affected by the weight divergence
when the data distribution is non-independent identical distribution (Non-IID).
To address this challenge, there are three main types of solutions, including
data sharing [33,38,39], local training fine-tuning [8,21] and clustering-based
approaches [4,11,37]. Zhao et al. [39] propose sharing a global dataset between
participants for reducing weight divergence between participants. However, it
relies heavily on the quality of the shared dataset and compromises data pri-
vacy, violating the original purpose of FL. Li et al. [21] propose a local training
fine-tuning approach (adding a regularisation term to the local optimization) to
reduce the weight divergence and thus improve the performance of the global
model. However, both of the above approaches train a single joint model, which
is difficult to perform well across all participants simultaneously at Non-IID set-
tings. Therefore some FL schemes based on clustering are proposed. Briggs et
al. [4] propose an FL with hierarchical clustering (FL+HC) setting. Hierarchical
clustering of gradients is performed at a specific round, and then participants in
the same cluster are allowed to train collaboratively. Yeganeh et al. [37] also intro-
duce a FL scheme based on Hierarchical clustering, which uses meta-learning to
improve the personalization of the participants’ models. Sattler et al. [30] present
clustered FL (CFL), a novel federated multitask learning (FMTL) framework,
which exploits geometric properties of the FL loss surface to group the client
population into clusters with jointly trainable data distributions. Huang et al.
[15] propose FedAMP, a new method employing federated attentive message
passing to facilitate similar clients to collaborate more, exploring a novel idea of

198 S. Luo et al.

facilitating pairwise collaborations between clients with similar data. Neverthe-
less, none of the above schemes consider the privacy-preserving of gradients, so
they have privacy issues.

Privacy-Preserving FL: Uploading gradients in plaintext violates user privacy
due to the aggregation server could infer the raw data of participants through
data reconstruction attacks [10,41] and membership inference attacks [24]. To
protect user privacy, some FL frameworks have been proposed, mainly based
on the following three cryptographic techniques, Differential Privacy (DP) [32],
Secure 2-Party Computation (2PC) [6,12], Homomorphic Encryption (HE) [22].
Shokri et al. [32] first proposed a privacy-preserving FL framework, which is
implemented by selectively sharing small subsets of model parameters and per-
turbing them by exploiting the DP mechanism. However, this scheme has to
make a trade-off between accuracy and privacy. Hao et al. [12] and Dong et al.
[6] send additional secret sharing values of gradients to two servers, and then use
custom 2PC protocols for secure aggregation. All operations are performed under
secret shared values, so no gradient privacy is compromised. Liu et al. [22] per-
form homomorphic encryption on gradients before uploading to the aggregation
server, and they protect the privacy of intermediate results by adding random
masks. However, none of the above privacy-preserving FL methods considers the
Non-IID settings in FL, which is common in the real world. To accommodate
Non-IID settings in FL, Zhou et al. [40] propose a secure and privacy-preserving
machine learning method (PPML-Omics) by designing a decentralized version
of the DP FL algorithm. Xiong et al. [35] propose the 2DP-FL scheme, which
uses DP approach to add noise to both the local model and the global model.
Noble et al. [26] use DP to modify SCAFFOLD and propose the DP-SCAFFOLD
scheme, which is dedicated to solving the problem of degraded model training
performance due to the introduction of noise. The above DP FL schemes com-
promise on data availability and can only provide a certain degree of privacy
protection for gradients. At the same time such type of schemes inevitably affect
the performance of the original algorithm due to the addition of noise.

3 Preliminaries

3.1 Effect of Non-IID Data in FL

In real FL scenarios, Non-IID data among participants is commonly encoun-
tered, which can have a large impact on FedAvg [17,20]. Specifically, the data
distribution between participants is inconsistent, e.g., Pi �= Pj , which causes the
local objective of party Pi to be inconsistent with party Pj . Thus, there exists
a drift in the local updates [18]. Eventually, the converged global model has
much worse accuracy than in the IID scenarios. The following are some typical
Non-IID settings [17]:

– Feature distribution skew: The Pi(x) (party Pi’s feature distribution)
varies between participants, which is the case where the input features are
not evenly distributed between participants.

PPFL+HC 199

– Label distribution skew: The Pi(y) (party Pi’s label distribution) varies
between participants, which is the case where the data labels are not evenly
distributed between participants.

– Concept shift (same features, different label): The Pi(y | x) condi-
tional distribution varies between participants. In this case, different labels
are assigned for the same features across participants. For example, partic-
ipant Pi labels all cat images as ‘cat’, but client pj labels all cat images as
‘dog’.

3.2 FL+HC

FL+HC is committed to addressing the challenge of Non-IID data in FL and
proposes a modified FL framework based on hierarchical clustering (HC). Specif-
ically, FL+HC introduces a clustering step at communication round t during the
FL procedure. Before the clustering step, FL+HC behaves the same as FedAvg.
When the clustering round t comes, FL+HC performs HC based on the similar-
ity between the gradients of all participants, and divides the participants into
different clusters based on the clustering results. In subsequent rounds, partic-
ipants in the same cluster are considered to have the same objective, and each
cluster collaboratively generates a global model as FedAvg. Thus, each cluster
has a global model that is independent of other clusters. As Fig. 1 shows, partic-
ipants with different objectives are divided into different clusters after HC and
then aggregated to generate different global models.

Fig. 1. Brief Introduction of FL+HC.

3.3 Cryptographic Primitives

Secret Sharing Schemes. In this paper, we use 2-out-of-2 additive secret
sharing schemes [31] over different rings. The two specific rings that we consider
are the field Z2 and the ring Zp, where p = 2l (l = 32, typically), the former is

200 S. Luo et al.

also knowns as boolean secret sharing. In boolean secret sharing, we denote the
boolean shares of x ∈ Z2 as 〈x〉B0 and 〈x〉B1 , which satisfies x = 〈x〉B0 ⊕ 〈x〉B0 . To
additively share x ∈ Zp, we indicate an additive secret sharing of x as a pair of
(〈x〉0, 〈x〉1) = (r, x−r) ∈ Z

2
p, where r is sampled randomly over Zp. By using the

2PC protocols [28,29], arithmetic operations can be performed on shared values
without reconstruction.

Secure Two-Party Computation Functions. For performing secure two-
party computation (2PC) functions over shared values, we introduce several
functions [28] that are used in our PPFL+HC:

– Signed value multiplication (FSMul): The SMul functionality (FSMul), takes
as input 〈x〉 and 〈y〉 and outputs 〈z〉 such that z = x × y.

– Multiplexer (FMUX): The MUX functionality (FMUX), takes as input 〈x〉B
and 〈y〉 and outputs 〈z〉 such that z = y if x = 1 and z = 0 otherwise.

– DRelu (FDRelu): The DRelu functionality (FDRelu), takes as input 〈x〉 and
outputs 〈z〉B such that z = 1 if x ≥ 0 otherwise z = 0.

Pseudorandom Generator. A Pseudorandom Generator (PRG) [36] could
generate a long pseudorandom string with a uniformly random seed. The secure
of PRG ensures that the output of the generator is indistinguishable from the
uniform distribution in polynomial time, as long as the seed is hidden from the
adversary. PRG is applied in our PPFL+HC to cut the communication to half
in the local gradient uploading phase and the global model broadcasting phase.

4 Problem Setup

In this section, we first describe the system model and the threat model and
then introduce the design goals.

4.1 System Model

In our PPFL+HC, there exist n participants P1, P2, ..., Pn and two non-colluding
servers, i.e., the FL service provider (SP) and the computing server (CS), which
is common in prior private FL works [6,12,22]. SP coordinates the whole FL
training process and CS performs 2PC with SP. Each participant P has its local
data D, and the data distribution among the participants is Non-IID. The target
of participant P is to combine other participants with the same objective (par-
ticipants with similar data distribution) and train a global model with improved
performance. Figure 2 shows the system model of our PPFL+HC, which con-
tains three steps at each iteration. Specifically, at step I, SP broadcasts the
corresponding global model to each participant P . Then in step II, each party
P trains the local model and sends the encrypted local updates to SP. Finally,
in step III, SP and CS perform private aggregation of local updates with HC
results by using custom 2PC protocols.

PPFL+HC 201

Fig. 2. System model of PPFL+HC.

4.2 Threat Model

In our PPFL+HC, we consider the servers (SP and CS) as honest-but-curious,
which means that SP and CS will strictly follow the private secure aggrega-
tion protocols but try to passively infer private data information of FL parties.
Besides, we assume that SP and CS will not be complicit, so it is secure to upload
the gradients in a 2-out-of-2 secret sharing manner to SP and CS. This setting
is reasonable and also consistent with the real-world FL system [25]. Namely,
for maintaining a good reputation to provide more FL services, the servers (e.g.,
Google and Amazon) prefer to follow protocols rather than collude to obtain the
private information of parties.

4.3 Design Goals

In Our PPFL+HC, we are committed to improving FL’s privacy-preserving abil-
ity on gradients and the accuracy of joint training on Non-IID data at the same
time. Specifically, our design goals are as follows:

– Privacy protection: We aim to achieve full privacy protection of the gra-
dients, which includes the local gradients uploaded by the parties, and the
global gradients after aggregation.

– Accuracy on Non-IID data: When encountering the Non-IID data in FL,
we aim to improve the test accuracy of the global model with the designed
secure HC process.

– Efficient 2PC protocols: We carefully design the 2PC protocols to mini-
mize the complexity of computation and communication while ensuring the
correct gradients clustering and aggregation results.

202 S. Luo et al.

5 PPFL+HC Framework

In this section, we show the PPFL+HC framework that adopts PPFL in a
privacy-preserving context. First, we present an overview of our PPFL+HC and
then describe the framework in detail. For ease of understanding, the symbols
that will be used are listed in Table 1.

Table 1. Symbols

Symbols Description

gi Party Pi’s local gradients vector

Gx Cluster cx’s global gradients vector

〈gi〉 Gradients gi ’s secret sharing values

SP holds 〈gi〉0 and CS holds 〈gi〉1
Di Local dataset of party Pi

EDis Euclidean distance

MDis Manhattan distance

5.1 Overview

In the upload phase of the gradients, consistent with SecureFL [12], our
PPFL+HC reduces the communication overhead by half by having participants
send only a secret sharing of the gradient to SP, while another shared share of the
gradient is generated by PRGs with the same random seeds that are negotiated
between the participants and CS. In the gradients’ aggregation phase, SP and
CS follow our privacy-preserving HC algorithm to obtain the clustering results
in the HC round. Then the SP and CS collaborate to complete the aggregation
of local gradients based on the clustering results (If before the HC round, all
parties are treated as a cluster). Finally, SP and CS complete the broadcast of
global gradients while protecting the global gradients’ privacy.

5.2 Details of PPFL+HC Framework

Phase 1: The Initialization Phase
This phase is called once for the entire protocol. By using the Diffie-Hellman
key agreement protocol [14], each participant Pi establishes a private seed key
kseedi with CS. The kseedi is applied in the upload and broadcast phases of the
gradients, allowing CS and Pi to generate the same vector of random numbers
non-interactively using PRGs, the details are shown in Phase 2 and Phase 4
below.

Phase 2: The Gradients’ Generation and Encoding Phase
This phase describes how participant Pi generates the secret sharing of gradients
gi , which includes 〈gi〉0 for SP and 〈gi〉1 for CS.

PPFL+HC 203

First, the participant Pi updates the local model using the obtained global
gradient and then trains the local data Di to obtain the local gradient gi , the
original floating-point gradient vector. We then map gi onto the ring Zp (p = 2l,
l denotes bit width) using fixed-point encoding. For float value v, our fixed-point
encoding operation is as follows:

Encode(v) = �2s × v	 mod p,

where �v	 denotes the largest integer less than or equal to v and s indicates the
precision of fixed-point number. Then we obtain gi over Zp by performing

gi = Encode(gi)

where function Encode is carried out element-wise.
Then, participant Pi samples random vector ri over Zp using PRGs on kseedi

and sends 〈gi〉0 = gi − ri to SP. To improve communication efficiency, CS uses
PRGs to obtain sharing 〈gi〉1 = ri non-interactively, where ri is sampled by
using PRGs with kseedi .

Phase 3: Secure Hierarchical Clustering of Gradients
This phase will complete the hierarchical clustering of gradients without reveal-
ing the plain text of gradients. We provide secure Euclidean distance (SED)
calculation and secure Manhattan distance (SMD) calculation algorithms to sup-
port the calculation of mutual distances between gradients, and can be paired
with different inter-cluster distance calculation methods (avg, min or max) to
perform secure hierarchical clustering (SHC)of gradients.

In the rounds prior to the HC round, we treat all participants involved in
the training as a cluster (act as FedAvg), and if it comes to the HC round, we
execute the secure hierarchical clustering algorithm we designed once to update
the clustering results. Hierarchical clustering can be divided into two steps, the
first step is to calculate the distance between any two gradients (Euclidean dis-
tance or Manhattan distance), and the second step is to perform the clustering
process based on the obtained distance matrix and related parameters such as
distance thresholds to obtain the clustering results, the details of the specific
privacy-preserving hierarchical clustering are described as follows.

To calculate the above distance matrix, we devise secure Euclidean distance
(SED) and secure Manhattan distance (SMD) calculations, based on 2PC. For
SED, we adopt FSMul in [28] to perform signed secret sharing multiplication.
The details of SED are shown at Algorithm 1. For SMD, we use FDRelu and
FMUX in [28] to obtain the positive values and negative values separately. The
details of SMD are displayed at Algorithm 2.

Remark 1. In both our SED and SMD protocols, the final results (〈EDis〉 and
〈MDis〉) are reconstructed from shared values to plaintexts (EDis and MDis),
we believe that this reconstruction of distance information does not violate the
user’s data privacy. Existing privacy inference schemes [10,24,41] need to obtain
the global model and the user gradients information. Our PPFL+HC achieves

204 S. Luo et al.

Algorithm 1. Secure Euclidean Distance
SED(〈gi〉, 〈gj〉) −→ EDis

Input: SP holds 〈gi〉0 and 〈gj 〉0, CS holds 〈gi〉1 and 〈gj 〉1. FSMul are adopted from
[28].

Output: Euclidean distance EDis between gi and gj

1: SP sets 〈z〉0 = 〈gi〉0 − 〈gj 〉0.
2: CS sets 〈z〉1 = 〈gi〉1 − 〈gj 〉1.
3: for i ∈ 1 to m do � m is the dimension of gi

4: SP and CS invoke an instance of FSMul, in which SPs input is 〈z〉0[i] and CSs
input is 〈z〉1[i]. After that SP and CS learn result of multiplication 〈d〉0[i] and
〈d〉1[i], respectively.

5: end for
6: SP sets 〈EDis2〉0 =

∑m
i=1 〈d〉0[i].

7: CS sets 〈EDis2〉1 =
∑m

i=1 〈d〉1[i].
8: CS sends 〈EDis2〉1 to SP, SP reconstructs EDis2 = 〈EDis2〉0 + 〈EDis2〉1 and gets

EDis.
9: return Eucliean distance EDis at SP.

Algorithm 2. Secure Manhattan Distance
SMD(〈gi〉, 〈gj〉) −→ MDis

Input: SP holds 〈gi〉0 and 〈gj 〉0, CS holds 〈gi〉1 and 〈gj 〉1. FDRelu and FMUX are
adopted from [28].

Output: Manhattan distance MDis between gi and gj

1: SP sets 〈z〉0 = 〈gi〉0 − 〈gj 〉0
2: CS sets 〈z〉1 = 〈gi〉1 − 〈gj 〉1
3: SP and CS invoke FDRelu with input 〈z〉 to learn output 〈y〉B
4: SP and CS set 〈ỹ〉0B = 〈y〉0B and 〈ỹ〉1B = 〈y〉1B ⊕ 1, respectively.
5: SP and CS invoke FMUX with input 〈z〉 and 〈y〉B to learn the positive values 〈dp 〉
6: SP and CS invoke FMUX with input 〈z〉 and 〈ỹ〉B to learn the negative values

〈dn 〉
7: SP sets 〈MDis〉0 =

∑m
i=1 〈dp 〉0[i] − ∑m

i=1 〈dn 〉0[i] � m is the dimension of gi

8: CS sets 〈MDis〉1 =
∑m

i=1 〈dp 〉1[i] − ∑m
i=1 〈dn 〉1[i]

9: CS sends 〈MDis〉1 to SP and SP reconstructs MDis = 〈MDis〉0 + 〈MDis〉1.
10: return Manhattan distance MDis at SP.

the confidentiality of the global model parameters from SP and CS, thus SP
cannot generate virtual gradients based on the global model. Secondly, the dis-
tance information between gradients obtained by SP does not reveal any specific
information of the gradients, including the magnitude and direction of gradi-
ents as well as the positive and negative of individual elements, so SP cannot
construct the optimization objective based on real gradients. In summary, the
reconstruction of distance information does not violate the data privacy of users.

Based on the above secure distance metric algorithms (SED and SMD), the
next step is to complete the secure HC of gradients. Considering that the distance
information between the gradients does not leak the original data information

PPFL+HC 205

(see Remark 1), we reconstruct the above distance matrix into plain text before
performing the subsequent clustering process. Due to the high dimensionality of
〈gi〉, the overhead of using all dimensions of 〈gi〉 to calculate the distance is too
much, so we randomly crop the party’s gradients with a retention proportion.
Note that we choose the same dimension for all gradients. The experiments show
that random dimensionality reduction has little effect on the clustering accuracy
while improving 2PC protocols’ efficiency significantly. The details are described
in Algorithm 3.

Algorithm 3. Secure Hierarchical Clustering of Gradients
SHC({〈g1〉, 〈g2〉, ..., 〈gn〉}) → {c1, c2, ..., cl}
Input: SP and CS hold {〈g1〉, 〈g2〉, ..., 〈gn 〉} � n is the number of parties
Output: l clusters {c1, c2, ..., cl}
1: SP and CS perform random dimensionality reduction with {〈g1〉, 〈g2〉, ..., 〈gn 〉},

and then obtain: { ˙〈g1〉, ˙〈g2〉, ..., ˙〈gn 〉}
2: for i ← 1 to n do
3: for j ← 1 to n do
4: SP and CS invoke Disij ←− SMD(˙〈gi〉, ˙〈gj 〉) (or SED(˙〈gi〉, ˙〈gj 〉)), then SP

holds Disij
5: end for
6: end for

7: {c1, c2, ..., cl} ←− Clustering(

⎡

⎢
⎢
⎢
⎣

Dis1,1 Dis1,2 · · · Dis1,n
Dis2,1 Dis2,2 · · · Dis2,n

...
...

. . .
...

Disn,1 Disn,2 · · · Disn,n

⎤

⎥
⎥
⎥
⎦

) � Hierarchical

clustering results based on a precomputed distance matrix

Phase 4: Gradients’ Aggregation and Broadcast
After obtaining the clustering results, we perform a linear aggregation of the
participants in each cluster to obtain the global gradients. Specifically, for cx ∈
{c1, c2, ..., cl}, SP and CS calculate as follows:

〈Gx〉 =

∑
j∈cx

〈gj〉
nx

where nx denotes the number of participants in cluster cx.
To ensure the privacy of 〈Gx〉, instead of letting SP and CS reconstruct Gx

directly, we design a secure global gradients broadcast (SGB) algorithm. The
details are shown in Algorithm 4.

6 Security Analysis

The purpose of this scheme is to protect the privacy of the local data of the
participants and the privacy of the global gradient after aggregation. This section

206 S. Luo et al.

Algorithm 4. Secure Global Gradients Broadcast
SGB(〈Gx〉) → Gx

Input: SP and CS hold party Pi’s global gradients 〈Gx 〉.
Output: Party Pi gets the corresponding global gradients Gx

1: Pi and CS generates r′
i = PRG(kseed

i) with the same dimension as Gx � Identical
kseed
i guarantee the consistency of r′

i in Pi and CS
2: CS masks 〈Gx 〉1 as follows: 〈Ĝx 〉1 = 〈Gx 〉1 + r′

i

3: CS sends 〈Ĝx 〉1 to SP, then SP reconstructs masked global gradients Ĝx as follows:

Ĝx = 〈Gx 〉0 + 〈Ĝx 〉1
4: SP sends Ĝx to Pi, then Pi unmask the global gradients as follow: Gx = Ĝx − r′

i

analyzes the security of the secure computing protocols SED, SMD, SHC , and
SGB, where the adversaries are the semi-honest servers (SP and CS).

To justify this scheme, this section defines security under the semi-honest
model, as shown in Definition 1 and two lemmas, i.e., Lemma 1 and Lemma 2.

Definition 1. (Security under the semi-honest model [3]). We say a pro-
tocol is secure if there exists a probabilistic polynomial-time simulator S that can
generate a view for the adversary A in the real world and the view is computa-
tionally indistinguishable from its real view.

Lemma 1. A protocol is perfectly simulated if all its sub-protocols are perfectly
simulated [2].

Lemma 2. If a random element r is uniformly distributed on Zp and inde-
pendent from any variable x ∈ Zp, then r ± x is also uniformly random and
independent from x [3].

Next, We analyze the security of the protocols as follows:

Theorem 1. The SED protocol proposed is secure under the semi-honest model.

Proof.
In the SED protocol, the SP obtains the real view as {〈z〉0, 〈d〉0, 〈EDis2〉0},
where 〈z〉0 is obtained by subtracting independent shared values, and according
to Lemma 2, 〈z〉0 is randomly and uniformly distributed. 〈d〉0 is obtained from
the SP and CS by invoking FSMul with input 〈z〉, and the security of FSMul

is proved in [28]. 〈EDis2〉0 is obtained by summing the vectors 〈d〉0 over the
internal elements with random uniform distribution, and by Lemma 2 it follows
that 〈EDis2〉0 is also randomly and uniformly distributed, so based on Lemma
1, it is impossible for SP to distinguish in polynomial time between the real view
and the simulated view generated by the simulator S. Similarly, for the real view
held by CS {〈z〉1, 〈d〉1, 〈EDis2〉1}, it cannot be distinguished from the randomly
generated simulated view, so the SED protocol is secure under the semi-honest
model.

Theorem 2. The SMD protocol proposed is secure under the semi-honest model.

PPFL+HC 207

Proof. In the SMD protocol, the SP gets the real view as

{〈z〉0, 〈y〉0B , 〈ỹ〉0B , 〈dp〉0, 〈dn〉0},
where 〈z〉0 is randomly and uniformly distributed by the Proof 6, and 〈y〉0B is
obtained by calling the function FMUX jointly by SP and CS, and the security
of FMUX has been proved by [28]. 〈ỹ〉0B is the opposite of 〈y〉0B since 〈y〉0B is
randomly and uniformly distributed, so 〈ỹ〉0B is also randomly and uniformly
distributed. Both 〈dp〉0 and 〈dn〉0 are the result of SP and CS running protocol
FMUX, whose security has been proved in the [28], and in summary, combined
with Lemma 1, SP in polynomial time cannot distinguish between the real view
and the simulated view generated by the simulator S. Similarly, for the real view
received by CS {〈z〉1, 〈y〉1B , 〈ỹ〉1B , 〈dp〉1, 〈dn〉1}, it is also indistinguishable
from the randomly generated simulated view, so the SMD protocol under the
semi-honest model is secure.

Theorem 3. The SHC protocol proposed is secure under the semi-honest model.

Proof. The SHC protocol proposed is built on top of the SED and SMD proto-
cols, and since the security of the SED and SMD protocols under the semi-honest
model has been proved (see Proof 6 and Proof 6), the SHC protocol is also secure
under the semi-honest model according to Lemma 1.

Theorem 4. The SGB protocol proposed is secure under the semi-honest model.

Proof. In the SGB protocol, the SP receives a true view of {〈Ĝx〉1, Ĝx}, where
〈Ĝx〉1 is obtained by summing the shared values and the random vector, and
Ĝx is obtained by summing the shared values and the perturbed shared values,
which are randomly and uniformly distributed according to Lemma 2, so the
real view received by SP is indistinguishable from the simulator S randomly
generated. The real view obtained by the CS is {〈Gx〉1, ri , 〈Ĝx〉1}, where 〈Gx〉1
is the shared values, ri is the generated random vector, all are randomly and
uniformly distributed, and 〈Ĝx〉1 = 〈Gx〉1 + ri is also randomly and uniformly
distributed by Lemma 2, so neither SP nor CS can distinguish the real view from
the simulated view generated by the simulator S, and thus the SGB protocol is
safe under the semi-honest model.

7 Evaluation

In this section, we demonstrate the improvement of Non-IID data training and
analyze the performance of 2PC protocols in PPFL+HC by conducting a series
of comparative experiments with real-world datasets. All our experiments are
executed on a custom server with the configuration of Ubuntu 20.04, Intel(R)
Core(TM) i9-10980XE CPU @ 3.00 GHz CPU and 64 GB RAM. The parties
and servers are simulated with separate processes. The local model training in
parties is implemented using PyTorch [27], the 2PC protocols on is implemented
in C++, and the communication between entries is implemented using gRPC.

208 S. Luo et al.

7.1 Experiment Setup

Datasets and Model Architectures: To evaluate the performance of the
PPFL+HC, we chose two classic image classification datasets, (i) MNIST
dataset, including 60, 000 handwritten digit pictures with a size of 28 × 28, and
10, 000 test samples, (ii) CIFAR-10 dataset, containing 60, 000 color images in
total and 50, 000 of them is used for training and the other 10, 000 is used for
testing. These images are divided into 10 categories with the size of 32 × 32 and
each category has 6, 000 images. The model structure of the MNIST classifica-
tion task has a two-layer fully connected network, and the parameter settings
of each layer are 724 × 100 and 100 × 10 in sequence respectively, for a total
of about 80K parameters. For the CIFAR-10 image classification task, we use a
simple model architecture in the TensorFlow tutorial online1 which consists of
three convolutional layers followed by two fully connected layers, for a total of
about 123K parameters.

Non-IID Settings: (i) Pathological Non-IID (as described in [23]), which par-
titions the data such that parties receive digits corresponding to only 2 labels.
For example, the first party might receive 300 examples labeled as 2 and 300
examples labeled as 7. Subsequent parties might receive different labels. Again
all parties have 600 examples to perform local learning on. In this setting, we test
how the FL model performs with label distribution skew, as P(y) varies across
parties. (ii) Label-swapped Non-IID (described in [30]), which first shuffles the
data and then partitions the data into four groups. For each group, two digit
labels are swapped. For example, one group might swap all digits labeled as 3 to
9 and vice versa. Each group is then evenly distributed to 25 parties, resulting
in 100 parties each with 600 training examples. This way, the parties naturally
form 4 clusters and allow us to test FL’s ability to train models in the presence
of concept shift (P(y | x) varies between parties).

Hyper-parameters: For each experiment, we set the batch size of training to
27, the momentum of SGD to 0.9, and the initial learning rate to 0.1. Moreover,
in each FL round, the server aggregates all the uploaded gradients by parties.
The scale s in fixed-point encoding is set to 6 and the ring Zp’s size p is set to
232.

7.2 Experiment Results

Accuracy Evaluation. Many factors affect the accuracy of the global model,
including the capacity of the model, the quality and quantity of parties’ data,
the number of training rounds, etc. We focus on testing the improvement of
training quality of PPFL+HC in the Non-IID setting. We thus conduct experi-
ments on how the number of rounds before clustering, i.e., HC round affects the
global model’s test accuracy. Note that the model architecture for the CIFAR-10
classification task is relatively simple, which results in relatively low accuracy.

1 web URL: https://www.tensorflow.org/tutorials/images/cnn?hl=en.

https://www.tensorflow.org/tutorials/images/cnn?hl=en

PPFL+HC 209

However, we only focus on the improvement compared to FedAvg on Non-IID
data training.

Impact of the different Non-IID settings: Figure 3 demonstrates the impact
of different datasets (MNIST and CIFAR-10) with different Non-IID settings
(Pathological Non-IID and Label-swapped Non-IID), the impact of different HC
rounds on the joint training accuracy. Table 2 and 3 show the comparison of
the post round of HC and the final round with FedAvg in terms of accuracy
We observe that the test accuracy for all scenarios has a significant increase
(1.04–1.57× FedAvg) in the final round. Nearly all scenarios achieve an accuracy
improvement in the post round of HC, with the CIFAR-10 in the Pathological
Non-IID setting has the largest increase in test accuracy (5.0× FedAvg). This
indicates that our secure hierarchical clustering process can classify participants
well, allowing participants with similar gradients to train collaboratively and
avoiding the influence of participants with inconsistent objectives, thus improv-
ing the global test accuracy.

Fig. 3. Impact of different Non-IID settings and different HC rounds on test accuracy,
In Figs. (a) (b), The MNIST dataset is used to evaluate. In Figs. (c) (d), The CIFAR-10
dataset is used to evaluate.

Comparing with Random Clustering: Figure 4 shows the final accuracy
comparison using Hierarchical Clustering (HC) and Random Clustering (RC)

210 S. Luo et al.

Table 2. MNIST Key Round Accuracy

MNIST (Pathological Non-IID) MNIST (Label-swapped Non-IID)

HC round Post round of HC Final round HC round Post round of HC Final round

1 92.68 (1.4×)∗ 98.28 (1.08×) 1 87.42 (1.42×) 91.63 (1.36×)

3 88.21 (1.28×) 94.79 (1.04×) 3 87.83 (1.35×) 91.65 (1.36×)

5 82.52 (1.09×) 96.54 (1.06×) 5 88.37 (1.35×) 91.61 (1.36×)

10 77.00 (0.87×) 94.54 (1.04×) 10 89.58 (1.28×) 91.67 (1.36×)

Table 3. CIFAR10 Key Round Accuracy

CIFAR10 (Pathological Non-IID) CIFAR10 (Label-swapped Non-IID)

Hc round Post round of HC Final round HC round Post round of HC Final round

10 50.21 (5×) 85.54 (1.57×) 10 24.0 (1.13×) 60.32 (1.15×)

20 36.76 (2.88×) 80.12 (1.47×) 20 29.76 (1.12×) 60.09 (1.15×)

30 53.14 (2.59×) 83.37 (1.53×) 30 32.17 (1.07×) 60.67 (1.16×)

50 58.39 (2.28×) 81.01 (1.49×) 50 35.26 (1.07×) 61.56 (1.17×)

* (1.4x) Means 1.4x FedAvg.

methods. We observe that the final accuracy obtained by HC is better than RC
for all scenarios, which indicates that HC method is necessary in our PPFL+HC.

Fig. 4. Comparing final test accuracy with Random Clustering (RC) in different Non-
IID settings (Pathological and Label-swapped)

Impact of Gradients Dimensional Random Cropping. This section uses
the Adjusted Rand Index (ARI) [16] as a measure of the clustering results. ARI
provides regularized output which ranges from −1 to 1. In the Label-swapped
Non-IID setting, the data held by participants have distinct category features
(four categories), thus we choose to compare the effects of different factors on the
HC results in this scenario. Firstly, we explore the effect of different dimensional

PPFL+HC 211

retention proportion in dimensional random cropping, and then compare the
effect of two metrics on the HC results.

Impact of Dimensional Retention Proportion: Table 4 shows the effect of
the retention proportion of gradient dimensionality in the random cropping of
gradient on the HC results under different HC rounds. From Table 4, we can
see that the gradients generated by the MNIST dataset can be fully consistent
with the true clustering results under different HC rounds and different retention
proportions, indicating that the dimensional random cropping does not affect its
clustering accuracy. As for CIFAR-10, the ARI is higher with larger retention
proportion and larger HC rounds. And the ARI is relatively low when the reten-
tion proportion is 0.1% (the dimension is 122) and the HC round is small. In
summary, the gradient random cropping method proposed in this paper, under
the premise of controlling the retention proportion and the HC round, basically
does not have a negative impact on the clustering accuracy.

Table 4. Different Gradients Dimensional Retention Proportions’ ARI

MNIST ARI CIFAR-10 ARI

HC round Retention Proportion HC round Retention Proportion

100% 10% 1% 0.1% 100% 10% 1% 0.1%

1 1.0 1.0 1.0 1.0 10 1.0 1.0 0.59 0.47

3 1.0 1.0 1.0 1.0 20 1.0 1.0 0.92 0.71

5 1.0 1.0 1.0 1.0 30 1.0 1.0 0.97 0.97

10 1.0 1.0 1.0 1.0 50 1.0 1.0 1.0 0.97

Fig. 5. Different dimensional retention proportions’ average ARI

Impact of Different Metrics: The distance metrics between gradients, such
as SED and SMD, can be combined with other hyperparameters to accomplish
SHC. In this section, The inter-cluster distance metric strategy paired with the
Euclidean distance is Ward Linkage, while the Manhattan distance is paired
with Complete Linkage. Figure 5 shows the effect of these two metrics on the

212 S. Luo et al.

HC results (measured as the average ARI of different HC rounds) at different
retention proportions. As can be seen in Fig. 5, the MNIST dataset performs well
with both metrics, matching the true classification results perfectly. As for the
CIFAR-10 dataset, the average ARI difference between two metrics is small, and
both gradually approach a perfect match as the retension proportion increases.
In summary, the two metrics do not differ much in the clustering performance
for the gradients, and both can complete the clustering with high accuracy at
the appropriate retention proportion.

The Efficiency of PPFL+HC. Our PPFL+HC performance bottleneck lies
in the computation of the mutual distance between all gradients (using SED or
SMD), which has a complexity of O(n2×d) for n participants, each with gradient
dimension d. Then we test the communication cost and execution time of the
distance matrix calculation separately.

Impact of the Different Number of Parties: In Figs. 6a and 6b we fix the
input dimension as 795 (1%Retention proportion of MNIST gradients dimension)
and observe the change in communication cost and execution time by varying the
number of parties, we find that there is a significant increase in both communica-
tion cost and time overhead as the number of parties increases. Considering that
HC is performed only once during the training process, and combined with the
efficiency improvement brought by the dimensional random cropping, the com-
plexity can be practical even if the number of participants increases. Comparing
the different distance measures (SED or SMD), it can be seen that using SMD
results in an 8.93× improvement in communication overhead and a 1.11–1.44×
improvement in execution time over using SED. The performance advantage of
the SMD Algorithm 2 comes from the lightweight building block (without secure
multiplication operations).

Impact of Different Input Dimensions: To reduce the communication cost
and computational cost of the secure distance matrix without compromising the
clustering accuracy, we perform random cropping on gradients before HC. In
Figs. 6c and 6d, we progressively reduce the dimension of gradients (from 79510
to 79). Combining with Table 4, it is found that when the retension proportion
of gradients goes to 1% (795 for MNIST), the clustering accuracy is guaranteed
while minimizing the computation and communication overhead. This is due
to the high dimensionality of the gradients, which retains features that can be
identified by HC after random cropping. For the different metrics, we also observe
that SMD versus SED results in a 4.78–8.93× less communication overhead and
a 1.33-1.77× less execution time overhead.

Combining with the efficiency test and clustering metrics test, there is little
difference in the clustering metrics when using SED or SMD for HC, but SMD
has a significant advantage in efficiency, so it is recommended to use SMD as
the distance metric for SHC.

PPFL+HC 213

Fig. 6. Communication Cost and Execution Time of PPFL+HC’s secure distance
matrix of gradients with different affinity metrics, In Figs. (a) (b), the number of input
dimensions is fixed as 795. In Figs. (c) (d), the number of parties is fixed as 100.

8 Conclusion

In this paper, we introduce PPFL+HC, a novel FL framework that achieves full
privacy protection of gradients and high accuracy over Non-IID data at the same
time. PPFL+HC designs efficient cryptographic protocols to implement secure
hierarchical clustering over 2PC. Moreover, we evaluate our PPFL+HC on two
real-world datasets over two classic Non-IID settings, to justify our claim.

The main downside is that PPFL+HC adapts the scheme of FL+HC to the
privacy-preserving context, and so PPFL+HC inherits some constraints of the
scheme, which includes the performance of the global model is more dependent
on the accuracy of the clustering results. An additional limitation is that our
framework requires two non-colluding servers. Reducing to a single-server setting
requires more elaborate secret protocol construction and may also introduce
efficiency bottlenecks. We leave the resolutions of these limitations for future
works.

214 S. Luo et al.

Acknowledgment. This work is supported by the National Nature Science Foun-
dation of China (No. 62102429, No. 62072466, No. 62102430, No. 62102440), Natural
Science Foundation of Hunan Province, China (Grant No. 2021JJ40688), the NUDT
Grants (No. ZK19-38, No. ZK22-50).

References

1. Aono, Y., Hayashi, T., Wang, L., Moriai, S., et al.: Privacy-preserving deep learning
via additively homomorphic encryption. IEEE Trans. Inf. Forensics Secur. 13(5),
1333–1345 (2017)

2. Bi, R., Chen, Q., Xiong, J., Liu, X.: Design method of secure computing protocol
for deep neural network. Chin. J. Netw. Inf. Secur. 6(4), 130–139 (2020)

3. Bogdanov, D., Laur, S., Willemson, J.: Sharemind: a framework for fast privacy-
preserving computations. In: Jajodia, S., Lopez, J. (eds.) ESORICS 2008. LNCS,
vol. 5283, pp. 192–206. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-88313-5 13

4. Briggs, C., Fan, Z., Andras, P.: Federated learning with hierarchical clustering of
local updates to improve training on non-IID data. In: 2020 International Joint
Conference on Neural Networks (IJCNN), pp. 1–9. IEEE (2020)

5. Cao, X., Fang, M., Liu, J., Gong, N.Z.: FLTrust: byzantine-robust federated learn-
ing via trust bootstrapping. In: 28th Annual Network and Distributed System
Security Symposium, NDSS 2021, virtually, 21–25 February 2021. The Internet
Society (2021). https://www.ndss-symposium.org/ndss-paper/fltrust-byzantine-
robust-federated-learning-via-trust-bootstrapping/

6. Dong, Y., Chen, X., Li, K., Wang, D., Zeng, S.: FLOD: oblivious defender for
private byzantine-robust federated learning with dishonest-majority. In: Bertino,
E., Shulman, H., Waidner, M. (eds.) ESORICS 2021, Part I. LNCS, vol. 12972, pp.
497–518. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-88418-5 24

7. Erickson, B.J., Korfiatis, P., Akkus, Z., Kline, T.L.: Machine learning for medical
imaging. Radiographics 37(2), 505–515 (2017)

8. Gao, L., Fu, H., Li, L., Chen, Y., Xu, M., Xu, C.Z.: FedDC: federated learning
with non-IID data via local drift decoupling and correction. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10112–
10121 (2022)

9. Gao, W., Guo, S., Zhang, T., Qiu, H., Wen, Y., Liu, Y.: Privacy-preserving col-
laborative learning with automatic transformation search. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 114–123
(2021)

10. Geiping, J., Bauermeister, H., Dröge, H., Moeller, M.: Inverting gradients-how easy
is it to break privacy in federated learning? Adv. Neural. Inf. Process. Syst. 33,
16937–16947 (2020)

11. Ghosh, A., Chung, J., Yin, D., Ramchandran, K.: An efficient framework for clus-
tered federated learning. Adv. Neural. Inf. Process. Syst. 33, 19586–19597 (2020)

12. Hao, M., Li, H., Xu, G., Chen, H., Zhang, T.: Efficient, private and robust federated
learning. In: Annual Computer Security Applications Conference, pp. 45–60 (2021)

13. Hard, A., et al.: Federated learning for mobile keyboard prediction. arXiv preprint
arXiv:1811.03604 (2018)

14. Hellman, M.: New directions in cryptography. IEEE Trans. Inf. Theory 22(6),
644–654 (1976)

https://doi.org/10.1007/978-3-540-88313-5_13
https://doi.org/10.1007/978-3-540-88313-5_13
https://www.ndss-symposium.org/ndss-paper/fltrust-byzantine-robust-federated-learning-via-trust-bootstrapping/
https://www.ndss-symposium.org/ndss-paper/fltrust-byzantine-robust-federated-learning-via-trust-bootstrapping/
https://doi.org/10.1007/978-3-030-88418-5_24
http://arxiv.org/abs/1811.03604

PPFL+HC 215

15. Huang, Y., et al.: Personalized cross-silo federated learning on non-IID data. In:
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 7865–
7873 (2021)

16. Hubert, L., Arabie, P.: Comparing partitions. J. Classif. 2(1), 193–218 (1985)
17. Kairouz, P., et al.: Advances and open problems in federated learning. Found.

Trends® Mach. Learn. 14(1–2), 1–210 (2021)
18. Kaissis, G.A., Makowski, M.R., Rückert, D., Braren, R.F.: Secure, privacy-

preserving and federated machine learning in medical imaging. Nat. Mach. Intell.
2(6), 305–311 (2020)

19. Li, B., Wu, Y., Song, J., Lu, R., Li, T., Zhao, L.: DeepFed: federated deep learning
for intrusion detection in industrial cyber-physical systems. IEEE Trans. Industr.
Inf. 17(8), 5615–5624 (2020)

20. Li, Q., et al.: A survey on federated learning systems: vision, hype and reality for
data privacy and protection. IEEE Trans. Knowl. Data Eng. (2021)

21. Li, T., Sahu, A.K., Zaheer, M., Sanjabi, M., Talwalkar, A., Smith, V.: Feder-
ated optimization in heterogeneous networks. Proc. Mach. Learn. Syst. 2, 429–450
(2020)

22. Liu, X., Li, H., Xu, G., Chen, Z., Huang, X., Lu, R.: Privacy-enhanced federated
learning against poisoning adversaries. IEEE Trans. Inf. Forensics Secur. 16, 4574–
4588 (2021)

23. McMahan, B., Moore, E., Ramage, D., Hampson, S., y Arcas, B.A.:
Communication-efficient learning of deep networks from decentralized data. In:
Artificial Intelligence and Statistics, pp. 1273–1282. PMLR (2017)

24. Nasr, M., Shokri, R., Houmansadr, A.: Comprehensive privacy analysis of deep
learning: passive and active white-box inference attacks against centralized and
federated learning. In: 2019 IEEE Symposium on Security and Privacy (SP), pp.
739–753. IEEE (2019)

25. Nguyen, T.D., et al.: {FLAME}: taming backdoors in federated learning. In: 31st
USENIX Security Symposium (USENIX Security 2022), pp. 1415–1432 (2022)

26. Noble, M., Bellet, A., Dieuleveut, A.: Differentially private federated learning on
heterogeneous data. In: International Conference on Artificial Intelligence and
Statistics, pp. 10110–10145. PMLR (2022)

27. Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning
library. Advances Neural Inf. Process. Syst. 32 (2019)

28. Rathee, D., et al.: SIRNN: a math library for secure RNN inference. In: 2021 IEEE
Symposium on Security and Privacy (SP), pp. 1003–1020. IEEE (2021)

29. Rathee, D., et al.: CrypTflow2: practical 2-party secure inference. In: Proceedings
of the 2020 ACM SIGSAC Conference on Computer and Communications Security,
pp. 325–342 (2020)

30. Sattler, F., Müller, K.R., Samek, W.: Clustered federated learning: model-agnostic
distributed multitask optimization under privacy constraints. IEEE Trans. Neu-
ral Netw. Learn. Syst. 32(8), 3710–3722 (2021). https://doi.org/10.1109/TNNLS.
2020.3015958

31. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
32. Shokri, R., Shmatikov, V.: Privacy-preserving deep learning. In: Proceedings of the

22nd ACM SIGSAC Conference on Computer and Communications Security, pp.
1310–1321 (2015)

33. Tuor, T., Wang, S., Ko, B.J., Liu, C., Leung, K.K.: Overcoming noisy and irrele-
vant data in federated learning. In: 2020 25th International Conference on Pattern
Recognition (ICPR), pp. 5020–5027. IEEE (2021)

https://doi.org/10.1109/TNNLS.2020.3015958
https://doi.org/10.1109/TNNLS.2020.3015958

216 S. Luo et al.

34. Voigt, P., Von dem Bussche, A.: The eu general data protection regulation (GDPR).
A Practical Guide, 1st edn., vol. 10, no. 3152676, p. 10–5555. Springer, Cham
(2017)

35. Xiong, Z., Cai, Z., Takabi, D., Li, W.: Privacy threat and defense for federated
learning with non-IID data in AIoT. IEEE Trans. Industr. Inf. 18(2), 1310–1321
(2021)

36. Yao, A.C.: Theory and application of trapdoor functions. In: 23rd Annual Sympo-
sium on Foundations of Computer Science (SFCS 1982), pp. 80–91. IEEE (1982)

37. Yeganeh, Y., Farshad, A., Boschmann, J., Gaus, R., Frantzen, M., Navab, N.:
Adaptive personlization in federated learning for highly non-IID Data. arXiv
preprint arXiv:2207.03448 (2022)

38. Yoshida, N., Nishio, T., Morikura, M., Yamamoto, K., Yonetani, R.: Hybrid-FL:
cooperative learning mechanism using non-IID data in wireless networks. arXiv
preprint arXiv:1905.07210 (2019)

39. Zhao, Y., Li, M., Lai, L., Suda, N., Civin, D., Chandra, V.: Federated learning
with non-IID data. arXiv preprint arXiv:1806.00582 (2018)

40. Zhou, J., et al.: PPML-omics: a privacy-preserving federated machine learning
system protects patients’ privacy from omic data. bioRxiv, pp. 2022–03 (2022)

41. Zhu, L., Liu, Z., Han, S.: Deep leakage from gradients. Adv. Neural Inf. Process.
Syst. 32 (2019)

http://arxiv.org/abs/2207.03448
http://arxiv.org/abs/1905.07210
http://arxiv.org/abs/1806.00582

RRML: Privacy Preserving Machine
Learning Based on Random Response

Technology

Jia Wang1(B) , Shiqing He2, and Qiuzhen Lin1

1 Shenzhen University, 3688 Nanhai Avenue, Shenzhen, Guangdong, China
{jia.wang,qiuzhlin}@szu.edu.cn

2 Shangqiu University, No. 66, Beihai East Road, Shangqiu, Henan, China

Abstract. Machine learning algorithms are proven to be vulnerable to
model inversion and membership inference attacks, which raises much
privacy concerns for its applications in sensitive scenarios. Typically,
the state-of-the-art privacy preserving machine learning methods tend
to provide privacy protection guarantee at the cost of losing data util-
ity. This inevitably causes degradation of the model performance, espe-
cially for those tasks who are trained using small data sets. Therefore,
optimizations on the trade-offs between individual privacy and data util-
ity become a critical issue in machine learning. In this work, we pro-
posed a privacy preserving machine learning algorithm RRML (Ran-
dom Response Machine Learning) by combining the random response
mechanism with the semi-supervised teachers-student learning way, and
give the privacy analysis. Extensive experiments have been conducted to
validate the effectiveness of RRML in addressing the above mentioned
problem. The experimental results confirmed its superiority in balancing
data utility and privacy against the state-of-the-art privacy preserving
machine learning algorithms, especially in small data scenarios.

Keywords: Privacy preserving · Machine Learning · Random response

1 Instruction

Constructively combined with the advances of computational and analytical
methods, data-driven learning models burst the full power of massive flux of
data [7], which leads to new insights in terms of, inter alia, healthcare treatment
[5,11,21,25], finance [16], the Internet of Things [13], automation and robotics
[29]. However, as the popularity of machine learning continues to increase, secu-
rity issues have become particularly prominent. Recent works [4,17,27] demon-
strated that machine learning algorithms suffer from malicious privacy attacks.
As shown in Fig. 1, despite of data collection, privacy leakage could also happen
in processes such as model training and the prediction stage. Song et al. [24]
indicated that the learning model may unintentionally memorize the training
data, which makes it possible for the adversaries to extract sensitive information
of the deep learning participants. [20,23] showed that the traditional data-to-
model training task is not a one-way process. Even if the model training service
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Li et al. (Eds.): NSS 2023, LNCS 13983, pp. 217–234, 2023.
https://doi.org/10.1007/978-3-031-39828-5_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-39828-5_12&domain=pdf
http://orcid.org/0000-0002-0861-2496
https://doi.org/10.1007/978-3-031-39828-5_12

218 J. Wang et al.

provider is trusted, an attacker can still obtain relevant information about the
model or data in its usage, by applying attacks such as membership inference,
model inversion, or model parameter extraction. In fact, due to the statistically
driven nature of the learning algorithm, the training process tends to encode data
patterns as model parameters. Once the decoder is successfully constructed, even
if the model parameters are not explicitly shared, the source domain statistics
can still be recovered in the reverse direction [8,19].

In membership inference attacks, an attacker tries to determine whether the
data of a specific person exists in the training data set of the target model. Nasr et
al. [14] assumed that the attacker could use the structure and parameter knowl-
edge of the neural network model to perform membership inference attack. They
firstly proposed a layered attack method, which took the output and gradient
information of each layer of the neural network as the input characteristics of
the attack model, and input them to several full-connection layers and convo-
lutional layers respectively to construct the attack model. The accuracy rate of
white-box attack reached 75.1% on the CIFAR dataset. Hayes et al. [9] firstly
applied member inference attack using a generative adversarial network, with
the generative model as the target model. Model inversion attacks attempt to
infer some or all of the attribute values of a certain target data in the train-
ing set through the output of the model. When an attacker adopts a passive
attack method and performs model backwards without intervening in the model
training process, the basic idea is to find the input that makes a certain type
of output most likely to the observed one. Fredrikson et al. [8] also proposed a
model inversion attack that applies more models and obtained better attacking
performance. Authors in [10] launched a model push attack on the deep learning
model in a white box scenario to restore the user’s face data. Wang et al. [31]
proposed white box model backward attack, assuming the central server who
calculates the participants’ average gradient as the attacker. It also designed a
multi-task generative adversarial model as the attack model, which successfully
restored the images in the training set of a participant. Song et al. [24] envisioned
the following attack scenario: the data owner obtains the algorithm code of the
model from the model provider, and then runs it on his own data set. Assuming
that the model provider is a potential attacker, he is designing the algorithm
When the training algorithm is slightly modified, the specific training data you
want can be obtained during the release stage of the model. Model parameter
extraction refers to an attack in which when the target model parameters are not
disclosed, the attacker knows part of the model structure information and label
information, and tries to obtain the model parameters by accessing the target
model. Authors in [3] proposed and extended the model extraction method for
equation solving, and discussed the occasions where only the output labels are
accessible with the target model.

As to the defense techniques, data anonymization [26], homomorphic encryp-
tion [2] and differential privacy are most commonly used. Data anonymization
intends to protect privacy by removing personally identifiable information from
the collected raw data. Algorithms in this category work efficiently in protecting
data from identity disclosure and linking attacks. However, they could not resist

RRML: Privacy Preserving Machine Learning 219

machine learning privacy attacks. Homomorphic encryption methods allow one
to perform certain types of computation on the encrypted data without knowing
its contents. Although homomorphic encryption provides promising privacy pro-
tection guarantee for machine learning tasks, there are still few design challenges
exist in its practical application in scenarios like neural networks, mainly in terms
of limitations in supported operation types, operator data types, computation
complexity as well as efficiency.

Differential Privacy (DP) [6] is widely acknowledged as a mathematically
rigorous privacy definition. Countermeasures [12,18] constructed on this con-
cept provide insights into the design of privacy preserving machine learning
approaches. In [18], Papernot et al. proposed a practical differential private
machine learning algorithm, namely Private Aggregation of Teacher Ensembles
(PATE), which ensures security of the training data against model inversion
and membership inference attacks. PATE works in a collaborative learning fash-
ion. Data segregation is firstly applied to independently train multiple teacher
models. Coupled with a noisy aggregation mechanisms for teacher ensembles, a
general consensus is then learned to train a student model in a query-answer
way. Since no underlying data or parameter is accessed by the student model,
privacy guarantee could be achieved intuitively.

However, Many research works [12,15] have made their attempt to provide
better privacy-utility trade-offs under PATE infrastructure, either by applying
new noisy aggregation mechanism or new student learning methodology. How-
ever, the data segregation may still cause undesirable performance loss of the
learned model. For instance, if the number of teacher models is not large enough,
even a small amount of noise will cause the model accuracy drop drastically,
mainly due to the sensitivity of the voting mechanism. On the other hand, these
algorithms all assume the existence of a trusted training service provider, which
not always hold.

Wang et al. [30] formally proved that randomized response technique pro-
vides better statistical utility preservation compared with the standard Laplace
mechanism (output perturbation) in data collection scenarios, especially when
the privacy budget is very limited. Inspired by [30], we propose a local differen-
tial private machine learning algorithm based on randomized response (dubbed
RRML) mechanism and conduct privacy analysis on it. Extensive experiments
have been conducted and the results show the superiority of our algorithm to
PATE in preserving privacy of machine learning while ensuring the accuracy,
especially when there are strict privacy requirements and the training data is
relatively small. Meanwhile, RRML adds disturbances locally, and privacy pro-
tection can be achieved even if the third party is not trusted.

Contributions of this work are listed as follows:

1. A differential private classification method based on randomized response
perturbed aggregation teacher ensembles (RRML) is proposed. In contrast
with standard Laplace noise mechanism which directly uses noised statistical
results to train a student model, RRML utilizes maximum likelihood esti-
mate to approximate the real aggregated teacher ensembles. It’s proved both

220 J. Wang et al.

formally and empirically that RRML obtains better utility while applied in
private data classification tasks, especially when the privacy budget is small.

2. In the case of small data learning scenarios, RRML still guarantees a relatively
high prediction accuracy. We confirmed this through extensive experiments
on a real COVID-19 dataset, which contains 349 COVID-19 CT images from
216 patients and 463 non-COVID-19 CT images. The results show that the
proposed scheme provides a privacy guarantee of ε ≤ 1.5 with a COVID-19
prediction accuracy drop of 0.03, in contrast of 0.11 for PATE under the same
privacy budget.

Fig. 1. Privacy risks and protection schemes in machine learning.

The rest of this paper is organized as follows. Section 2 briefs some rela-
tive background knowledge. Section 3.1 presents the proposed RRML algorithm
and its privacy analysis. Section 4 gives the empirical results and the analysis.
Section 5 concludes the paper.

2 Related Work

In this section, we focus on the background knowledge used in the proposed
RRML framework, including differential privacy, moment accounting as well as
the privacy calculation method. Then we introduce the random perturbation
technology and differential private machine learning algorithms.

2.1 Differential Privacy

A randomized algorithm A : D → R satisfies ε-differentially privacy ((ε, δ)-DP)
if for any given adjacent datasets d, d′ ∈ D (|d Δ d′| ≤ 1) and any output subset
S ⊆ R, it holds that

RRML: Privacy Preserving Machine Learning 221

Pr[A (d) ∈ S] ≤ eεPr[A (d′) ∈ S] + δ, (1)

where ε and δ are two non-negative real numbers and Pr[.] denotes the proba-
bility.

2.2 Moment Accountant

Moment accountant (MA) is a method used to estimate the privacy loss. It’s
firstly proposed in [1]. The basic idea is as follows. For an output o ∈ R, the
privacy loss at o is defined as:

c (o;A, aux, d, d′) � log
Pr [A (aux, d) = o]
Pr [A (aux, d′) = o]

,

where aux denotes an auxiliary input, the privacy loss random variable is defined
as c (A (d) ;A, aux, d, d′). MA could be calculated by:

αA (λ) � max
aux,d,d′

αA (λ; aux, d, d′) ,

where αA (λ; aux, d, d′) � logE [exp (λC (A, aux, d, d′))] is the moment genera-
tion function of the privacy loss random variable. The following properties of the
moments accountant are proved in [1].

Theorem 1 (Composability). Suppose that a mechanism A consists of a
sequence of adaptive mechanisms A1, ...Ak, where Ai :

∏i−1
j=1 Rj × D → Ri, then

for any output sequence o1, o2, ..., ok−1 and any λ, there is:

αA (λ; d, d′) =
k∑

i=1

αAi
(λ; o1, ..., oi−1, d, d′).

where αA is conditioned on Ai’s output being oi for i < k.

Theorem 2 (Tail Bound). For any ε > 0, the mechanism A is (ε, δ)-DP and

δ = min
λ

exp (αA (λ) − λε). (2)

2.3 Random Perturbation

Randomized response is firstly proposed by Warner to eliminate bias in sur-
veys which may involve sensitive individual information. Instead of outsourcing
obfuscated answers or datasets to the curator, it responds randomly, i.e., the
respondents have plausible deniability. Hence randomized response mechanism
can intuitively prevent the private individual data from being disclosed before
its collection and provides local privacy. Meanwhile, the curator can still conduct
statistical analysis on the collected randomized data. A toy example is given as
follows.

222 J. Wang et al.

Suppose there are n respondents taking the AIDS questionnaire and each
responds the true answer of the question “Are you an AIDS patient?” with a
probability p. Let the number of people who answered “yes” be denoted as n1,
and the number of people who answered “no” be denoted by n2. Obviously n2 =
n − n1. Assume the real prevalent rate of AIDS is π, there are

Pr (Xi = yes) = πp + (1 − π) (1 − p) ,

Pr (Xi = no) = (1 − π)p + π (1 − p) .

Obviously, the above statistical ratio is not an unbiased estimate of π. Upon the
construction of the likelihood function

L = [πp + (1 − p)(1 − π)]n1 [(1 − π)p + π(1 − p)]n−n1 , (3)

the maximum likelihood estimate for π can be calculated as

π̂ =
p − 1
2p − 1

+
n1

(2p − 1)n
. (4)

Let N represents the corrected statistical estimate of the number of people with
AIDS and

N = π̂ × n =
p − 1
2p − 1

n +
n1

2p − 1
. (5)

To ensure that it meets ε-localized differential privacy, the privacy budget ε is
set to:

ε = ln
p

1 − p
(6)

where the disturbance probability p ∈ (0, 1) and eε > 0. We extend it to a sensi-
tive polychotomous attribute with t (t ≥ 2) mutually exclusive and exhaustive
classes. The corresponding unknown proportions to be estimated are denoted as
π1, ...πt, the randomization device is such that an individual belonging to the
v -th category (v = 1, ...t), reports a random value u (u = 1, ...t) with probability
puv and

∑t
u=1 puv = 1 for all v = 1, ...t.

The matrix P = {puv} is called the design matrix, where the sum of each
column in P is 1:

P =

⎛

⎜
⎝

p11 · · · p1t

...
. . .

...
pt1 · · · ptt

⎞

⎟
⎠ (7)

The probability λu of the (randomized) response u is given as:

λu =
t∑

v=1

puvπv (8)

In order to maximize the sum of the diagonal elements, the design matrix for
randomized response P = {Puv} should be in the following form:

puv =

{
eε

t−1+eε , u = v
1

t−1+eε , u �= v
(9)

RRML: Privacy Preserving Machine Learning 223

where puv represents the elements of the design matrix, u represents the distur-
bance label, v is the output label, e stands for the natural constant, and t ≥ 2
denotes the label, ε demonstrates the privacy budget. And obviously when t = 2,
we have ε = ln P

1−P , where P represents the probability that the scrambled label
is the same as the output label.

3 Local Differentially Private Machine Learning
Algorithm Based on Randomized Response Mechanism

PATE in [18] proposed to divide the private training set into multiple inde-
pendent data groups, and use each group to train a teacher model. Then the
inference results of all the teacher models are aggregated to teach a student
model in the query-answer manner. It provides precise privacy guarantee on the
training data, independent of the learning algorithms adopted. However, there
are still several issues to be addressed to enhance its practicality, including the
following two aspects.

1) PATE as well as its variants require disjoint training data for a large number
of teacher models to compensate the introduced Laplace noises for the privacy
preserving guarantee. Meanwhile, the data partitioning way is of much impact
on the prediction accuracy. To achieve differential privacy, they proposed to
add Laplace noise to the voting results before releasing it to the student
model. Since the perturbation is conducted directly on the queried results,
PATE-G and its variants may cause inevitable significant degradation on the
learning accuracy, i.,e, the trade-off between accuracy and privacy is highly
dependent on the number of teacher models. As the number of teacher models
increase in an ensemble, the accuracy deceases, especially for learning tasks
in small data scenarios.

2) PATE as well as its variants require the exist of a third trusted data center
to train an ensemble of the teacher models and then use it to supervise the
training of a student model.

[30] proved that random perturbations are more efficient in achieving differ-
ential privacy compared with Laplacian mechanism, especially when the privacy
budget is relatively small. To maximize the utility of the data while providing
rigorous local differential privacy, this paper proposes a randomized response
based machine learning algorithm RRML. It combines the random perturbation
mechanism with the general teacher-student training framework.

In order to address these limitations of PATE mentioned in Sect. 2, we
propose the RRML framework, which combines the semi-supervised teachers-
student learning way with random response based local differential privacy. The
privacy analysis demonstrates its superiority in obtaining better statistical util-
ity preservation, compared with private machine learning algorithms like PATE
and its variants.

224 J. Wang et al.

3.1 Differential Privacy Based on Randomized Response
Mechanism

Instead of adding Laplace-distributed noises into the data, the random response
mechanism achieves data privacy protection by injecting probabilistic distur-
bances locally.

The Realization Principle of Differential Privacy Based on Random-
ized Response Mechanism. First, let’s observe the settings in Differential
Privacy in PATE. Similar to the user uploading data to the server, the server
performs a data analysis algorithm that satisfies differential privacy on the data,
and obtains the machine learning model for its own use or release for human use.
For foreign attackers who have obtained machine learning models, they cannot
make reliable inferences about individual data. It is assumed here that the server
is reliable and the user’s raw data is available on the server. The setting of Local
Differential Privacy assumes that this server is not trusted by us, and requires
users to add noise before uploading data, so that the server cannot obtain effec-
tive information about individual users.

Fig. 2. Local Differential Privacy.

As shown in Fig. 2, Algorithm A satisfies local differential privacy, where
∀t ∈ Range (A), Pr[A(X1=t)]

Pr[A(X2=t)] ≤ eε, The individual user encrypts the data and
then uploads it to the server. The server restores the user information through a
certain method (may be agreed with the user in advance) so that it can under-
stand the trend on the entire data set. The current Local Differential Privacy is
mostly based on the random response mentioned in Chap. 2. Random response
can make managers get distorted individual information, but can get an estimate
of real information on this information.

Application of Random Response Differential Privacy in Two Classi-
fication. Now we only consider a two-category problem. There is a transition
matrix, like:

P =
(

P00 P01

P10 P11

)

, Puv = P [yi = v|Xi = u] (u, v ∈ [0, 1]) (10)

RRML: Privacy Preserving Machine Learning 225

where Xi is the true value, Yi is a random output value. Generally, there are
P00 = P11. The server expects to construct the original distribution after collect-
ing all noisy data, where the original distribution of 0 (1) is π0 (π1), the observed
distribution is λ0 (λ1), then there is:

π̂b =
Pbb − 1
2P bb − 1

+
λb

2P bb − 1
(11)

Then construct a probability transition matrix that is satisfied with differ-
ential privacy, which has:

P =

(
eε

1+eε
1

1+eε

1
1+eε

eε

1+eε

)

, (12)

where P satisfy ε−DP , this form proved to be the best DP-randomized response
under a single two-category. (“best” means that the restored estimate has a
smaller variance). The Laplace Mechanism used in PATE is also the most com-
mon noise addition method for differential privacy. Here is the following form,
first add a Laplace Noise, and then round to λ0 (λ1):

yi =
{
0, if xi + Lap (1/ε) < 0.5.
1, if xi + Lap (1/ε) ≥ 0.5. (13)

P =
(
1 − 1

2e− ε
2 1

2e− ε
2

1
2e− ε

2 1 − 1
2e− ε

2

)

. (14)

In fact, LM can be regarded as a special random response, In the comparison
of Mean Squared Error/Variance two types of indicators, RR is better than LM.
It can be found here that exactly P00

P11
in RR is eε, and P00

P11
in LM is less than

eε. It can be considered that the rounding and truncation after adding Laplace
noise provides further privacy protection, thereby increasing the error.

Application of Random Response Differential Privacy in Multi-
classification. Now it is extended to the category attribute categorical attribute
with t values. The direct extension to the above RR and LM is:

Puv =
{

eε

t−1+eε , if u = v.
1

t−1+eε , if u �= v.
(15)

Puv =

⎧
⎪⎪⎨

⎪⎪⎩

.

F v, ε
t−1

(1.5) , if u = 1.

1 − F v, ε
t−1

(1.5) , if u = t.

Fv, ε
t−1

(u + 0.5) − Fv, ε
t−1

(u − 0.5) , otherwise.

(16)

where Fv, ε
t−1

(1.5) is a cumulative distribution function that satisfies the Laplace
distribution with a mean of v, a variance of 2λ2, and λ = (t − 1) /ε. Compared
with the sensitive attribute LDL in YesiWell dataset [30], for the reconstruction
of the two methods on the original data distribution, it can be seen that RR
performs better than that of LM .

226 J. Wang et al.

3.2 The Basic Infrastructure of RRML

From Sect. 3.1, we find that random response based differential privacy can
achieve better privacy utility tradeoff than Laplace noising based differential
privacy, and it allows applications with untrustworthy third-parties. Inspired
by this observation, we propose to improve the teacher consensus mechanism
in PATE, and establish a teacher consensus aggregation learning mechanism
based on random response differential privacy, which is referred to as the RRML
mechanism.

As depicted in Fig. 3, in RRML, each teacher model is trained on an indepen-
dent data group of the privacy dataset. In contrast with PATE-G, the teachers
output the predicted results for the queried input x in a randomized-response
way.

Suppose there’re totally n teachers trained independently. Let the originally
predicted label on input x of the i-th (i ∈ {1, 2, ...n}) teacher model be denoted as
fi(x), suppose fi (x) = v, where v ∈ {1, 2, ...n}. Disrupt fi(x) and obtain f ′

i (x)
and let f ′

i (x) = u, where u ∈ {1, 2, ...n}. Denote Puv =
{

fi (x) = v, f̂i (x) = u
}

,

where λ̂ represents the proportion of disturbed labels in all labels. For example,
λ̂u represents the percentage of the u-th label uv in all labels in the scrambled
label. Let the number of the u-th tag u in the disturbed tag f ′

i (x) is n′
u (x), then

λ̂u = n′
u(x)
n . Count the number of each label in the disturbed label and the total

n labels to get λ̂. Define λ = (λ1, . . . , λt)
T

, π = (π1, . . . , πt)
T , we have:

λ = pπ, (17)

where λ represents the proportion of the scrambled label in all labels, π represents
the unbiased estimate of the label count of the scrambled label, and p = {puv},
represents the design matrix.

In the data collection scenario, compared with the standard Laplace mecha-
nism, the random response technique can provide better statistical utility, espe-
cially when the privacy budget is very limited. In order to maximize the sum of
diagonal elements, the random response design matrix p = {puv} should be in
Eq. (9).

Therefore, there is π = p−1λ. It should be noted that there is no sample
size here. For a simple random sample replaced with n, λ̂ is a vector of sample
proportions corresponding to λ. For example, λ represents the proportion of
the disturbed label in all labels, of course, λ̂u means the sample proportion of
the disturbed label u among all disturbed labels. Then suppose that the design
matrix p is non-singular, π̂ represents the unbiased estimator of the label count,
because according to the above derivation, π = p−1λ, then there is π̂ = p−1λ̂,
then the label of each label The unbiased estimator corresponding to the count
is:

n̂j (x) = π̂ × n = p−1λ̂n. (18)

RRML: Privacy Preserving Machine Learning 227

Fig. 3. The proposed RRML Algorithm

Specifically, each label corresponds to a n̂j (x), where n̂j (x) is an unbiased
estimator of nj(x), that is to say, although nj(x) and n′

j (x) are disturbed The
difference between n̂j (x) and nj(x) is small after correction.

Since the output label needs to be scrambled to ensure privacy, and the
scrambled label obtained by the scrambled has a large difference with the output
label, the scrambled label needs to be corrected to obtain the estimated label,
so that the difference between the estimated label and the output label is small,
So that the estimated labels and queries can be used as data sets. The estimated
label is determined according to the unbiased estimator, and the label when
the unbiased estimator takes the maximum value is used as the estimated label.
Specifically, the estimated label is:

f̂(x) = argmax
j

{n̂j(x)},

where, f̂ (x) represents the estimated label, and argargmax(ů) represents the
variable value when the objective function is maximized. Specifically, the label
corresponding to the maximum value of n̂j (x) is used as the estimated label,
that is to say, the unbiased estimator of the label count corresponding to each
label, the label count The maximum value of the unbiased estimator, the label is
the estimated label, and the difference between n̂j (x) and nj(x) obtained after
disturbance and correction is small, then the label is estimated The accuracy is
also higher.

228 J. Wang et al.

3.3 Privacy Analysis on RRML

To obtain the overall privacy loss of RRML, we firstly calculate the probability
of that f̂(x) differs from f(x), i.e., the corrected voting label obtained after the
disturbance is different from the actual voting result. Let Pr[f̂(x) = f(x)] denote
the probability of correctly reconstructing the individual’s value as v from the
perturbed data, given that the original value xi is v where v ∈ {1, 2, ...n}.

This reconstruction probability implies how much information is preserved
in the randomization process:

Pr[f̂(x) = f(x)] =
t∑

u=1

P (yi = u|xi = u)P (x̂i = v|yi = u) (19)

According to Bayes’s theorem, we have:

Pr[f̂(x) = f(x)] =
t∑

u=1

p2uv • πv

λu
(20)

We denote this failure probability as q and obviously q = 1−Pr[f̂(x) = f(x)], q
could be further derived as:

q = 1 −
∑

j=0,1

(
p2λj

pλj + (1 − p)(1 − λj)
+

(1 − p)2λj

(1 − p)λj + p(1 − λj)

)

. (21)

Then we utilize moment accountant to tighten the total privacy budget for mul-
tiple queries and it’s proven in [18] that the following theorem holds.

Theorem 3 (MA). Let A be a randomized algorithm which satisfies ε-DP,
where ε, l ≥ 0, for any two adjacent databases d, d′, there’s

αA (l) ≤ log(1 − q)(
1 − q

1 − eεq
)l + qeεl. (22)

The total privacy budget εtotal is bounded by Theorem 2. Details of the proposed
RRML scheme and the computation of εtotal are presented in Algorithm 1.

4 Experimental Results and Analysis

We use the MNIST and SVHN datasets to verify the effectiveness of RRML,
and then compare its performance with the PATE framework. Our MNIST
model stacks two convolutional layers with max-pooling and one fully con-
nected layer with ReLUs. When trained on the MNIST dataset, the non-privacy-
preserving model obtains a test accuracy of 99.18%. For SVHN, we add two
hidden layers. The non-private model achieves a test accuracy of 92.8%. In this
paper, we are more interested in comparing the private student model’s perfor-
mance with the non-privacy-preserving model as well as the state-of-art privacy-
preserving machine learning algorithms trained on the same dataset, under dif-
ferent privacy-preserving guarantees. Finally, in order to further verify the effec-
tiveness of RRML in practical medical scenarios, we conducted experiments on

RRML: Privacy Preserving Machine Learning 229

the COVID-CT-Dataset. The COVID-CT-Dataset contains 349 COVID-19 CT
images from 216 patients and 463 non-COVID-19 CTs.

Experiment 1: The test accuracy of the proposed RRML algorithm
on MNIST and SVHN. Figure 4 illustrates the test accuracy of the proposed
RRML scheme under different settings in terms of disturbance probability and
the number of teacher models (n). As shown in the figure, when n = 100, better
results can be achieved by the student model. While n = 10, the performance of
the model is more susceptible to be affected by the probability of disturbance.
For n = 250, each teacher model is allocated less data, which leads to an overall
decrease in accuracy. It can also be observed that the greater the probability
of disturbance is, the smaller the privacy budget will be. When n = 100 and
p = 0.1, the accuracy of MNIST can reach 98.03% and SVHN can reach 89%.

Algorithm 1. RRML algorithm
Input: teacher models’ training data set Dt, query dataset T , student models’
training dataset, a Learner
Other Parameter: number of teachers n, disturbance probability p, the number of
iterations N , moment number m
Output: ε, accuracy, precision, recall, AUC, F-measure

1: Let t = 0.
2: while t < N do
3: Divide Dt into n disjoint data subsets (Xi, Yi), and train n classifiers fi, where

i ∈ 1, 2, ..., n;
4: Input x ∈ T , each teacher model calculate a label fi(x) and suggest a randomly

disturbed label f ′
i(x) with disturbance probability of p;

5: Calculate the proportion for each label:
λ = pπ;

6: Count the voting results:
n̂j (x) = π̂ × n = p−1λ̂n.;

7: Correct the voting results:
f̂(x) = argmaxj{n̂j(x)}.;

8: Using the Learner to train the student model on database
(
x, f̂(x)

)
and evaluate

its performance, output its accuracy, precision, recall, F-measure, AUC;
9: Estimate the privacy loss of each query using Eq. (9);

10: Calculate failure probability q using Eq. (21);
11: Calculate moment accountant lm at m randomly selected moment using Eq. (22);

12: Calculate the total privacy loss:
εtotal = min

(
α−log(δ)

lm

)

13: end while
14: return ε, Accuracy, precision, recall, F-measure, AUC

230 J. Wang et al.

Table 1. Test accuracy comparison of RRML and other privacy-preserving machine
learning algorithms

Dataset Aggregator Queries ε Accuracy
Student Baseline

MNIST PATE 1000 8.03 98.1 99.2
DSSGD / 10 99.17
ARDEN / 5 98.16
PATE-G 286 1.97 98.5
RRML 128 1.22 98.9

SVHN PATE 1000 8.19 90.7 92.8
DSSGD / 10 92.99
ARDEN / 5 90.02
PATE-G 3098 4.96 91.6
RRML 640 4.01 90.84

Experiment 2: Performance comparison of RRML and Other frames.
PATE utilizes Laplace noising scheme to disturb the teachers’ voting results,
while PATE-G [17] adopts GAN to further reduce privacy budget. The DSSGD
algorithm [22] also uses the Laplacian noising mechanism on the selected gra-
dients before it’s uploaded or distributed by the participants or the service
provider. The noise depends on the budget and the sensitivity level of each
parameter gradient. ARDEN is a new mechanism for perturbing and trans-
forming local data based on the differential privacy mechanism proposed in
[28]. RRML uses randomized response technique as the disturbance mechanism.
As depicted in Table 1, RRML achieved the best performance, considering the
privacy-preserving guarantee level as well as the test accuracy. Random distur-
bance means to add disturbance when each teacher model predicts. When the
number of teacher models increases to a certain degree (not very large), the influ-
ence of the probability of disturbance can be kept within a certain range. For
example, when n = 100 and n = 200, the performance of RRML based models
are very close. However, PATE adds disturbance to the statistical results of the
total n teacher models. The n of PATE is required to be large enough to tolerate
the added noise. For example, performance of PATE while n = 200 is obviously
better than that of n = 100.

Therefore, it can be concluded that the random response can achieve high
accuracy when the teacher model is not too large, especially in small data train-
ing scenarios. In order to further understand this favorable feature, we conducted
experiments on a small dataset COVID-CT-Dataset, which has higher privacy
preserving requirements.

Experiment 3: Comparison of model accuracy loss based on RRML
and PATE on the COVID-CT-Dataset. As demonstrated in Fig. 5, The blue
line represents the training accuracy of the student model based on the RRML

RRML: Privacy Preserving Machine Learning 231

Table 2. Performance comparison on Covid-CT-Dataset of RRML and PATE-G with
ε fixed at 10.

Scenarios Accuracy Precision Recall F-measure AUC

Baseline 0.84 0.77 0.98 0.96 0.88
PATE-G 0.71 0.64 0.93 0.76 0.77
RRML 0.76 0.70 0.91 0.80 0.82

framework, and the red line represents the training accuracy of the student
model based on the PATE framework. A larger ε means a smaller interference
probability or noise that can be added to the training frame and consequently
higher accuracy that can be achieved. At the same time we can see that when
the value of ε is very small, the accuracy loss based on the RRML framework is
much smaller than that of PATE, due to the difference between the two noising
mechanism.

Experiment 4: Comparison of the data statistical utility of Laplace
noising scheme and random response disturbance. As demonstrated in
Fig. 6, the green line represents the percentage of correct labels after the teacher
models’ voting. The blue line indicates the proportion of correct labels after
adding Laplace noise to the number of votes. We can see that the overall random
perturbation is closer to the green line, especially when the privacy budget is
small, the overall error is relatively small. When the ε of the blue line is less
than 2.5, there is a high probability of outputting wrong results. Figure 7 shows
the predicted results of 100 queries when the number of teacher models are
3, 5, and 7, and the ordinate represents the number of queries with correct
predicted results. The green line represents the prediction result of the original
model, and the red line represents the prediction result with the random response
mechanisim. The blue line represents the prediction result after adding noise. It
can be seen that due to insufficient training data, as the number of teacher
models increases, the number of correctly predicted labels gradually decreases,
but the performance of random response is obviously better than the Laplacian
noising method, especially when the number of teacher models is relatively small.
Since the purpose of adding noise is to obtain strict privacy protection, there
must be a sufficient number of teachers to guarantee the learning performance.
In small data training scenarios, without a large number of teacher models, the
overall data utility will be greatly reduced. Occasions where privacy is a main
concern.

Experiment 5: Performance comparison on Covid-CT-Dataset of
RRML and PATE-G with ε fixed at 10. As demonstrated in Table 2, com-
pared with the PATE-G framework, RRML framework obtains higher precision
with the same privacy guarantee.

232 J. Wang et al.

Fig. 4. Test accuracy of MNIST and
SVHN under different disturbance prob-
abilities and teachers’ numbers.

Fig. 5. Comparison of model accuracy
loss based on RRML and PATE the
COVID-CT-Dataset under different pri-
vacy budgets.

Fig. 6. Comparison of model accuracy
loss based on RRML and PATE the
COVID-CT-Dataset under different pri-
vacy budgets

Fig. 7. Comparison of model accuracy
loss based on RRML and PATE the
COVID-CT-Dataset under different pri-
vacy budgets

5 Conclusions

This work proposes a randomized response based privacy preserving machine
learning algorithm RRML, in order to address data privacy-utility trade-off
issues existed in machine learning. Intensive experiments have been conducted
to evaluate the performance of the proposed RRML algorithm. Experimental
results show that randomized response based disturbance provides better data
privacy-utility trade-off than Laplace noising mechanism, especially when the
amount of data is small, e.g., COVID-19 data, or the privacy budget is tight,
e.g., ε ≤ 1.5.

Acknowledgements. This work was supported in part by the National Nature Sci-
ence Foundation of China under Grant No. 6197226, the Natural Science Foundation
of Guangdong Province under Grant No. 2021A1515011153, and the Shenzhen Sci-
ence and Technology Innovation Commission under Grant No. 20200805142159001,
No. JCYJ20220531103401003.

RRML: Privacy Preserving Machine Learning 233

References

1. Abadi, M., et al.: Deep learning with differential privacy. In: Proceedings of the
2016 ACM SIGSAC Conference on Computer and Communications Security, pp.
308–318. ACM (2016)

2. Aono, Y., Hayashi, T., Wang, L., Moriai, S., et al.: Privacy-preserving deep learning
via additively homomorphic encryption. IEEE Trans. Inf. Forensics Secur. 13(5),
1333–1345 (2017)

3. Ateniese, G., Mancini, L.V., Spognardi, A., Villani, A., Vitali, D., Felici, G.:
Hacking smart machines with smarter ones: how to extract meaningful data from
machine learning classifiers. Int. J. Secur. Netw. 10(3), 137 (2015)

4. Carlini, N., Liu, C., Erlingsson, Ú., Kos, J., Song, D.: The secret sharer: evalu-
ating and testing unintended memorization in neural networks. In: 28th USENIX
Security Symposium (USENIX Security 2019), pp. 267–284 (2019)

5. Che, Z., Purushotham, S., Cho, K., Sontag, D., Liu, Y.: Recurrent neural networks
for multivariate time series with missing values. Sci. Rep. 8(1), 1–12 (2018)

6. Dwork, C.: Differential privacy. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener,
I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 1–12. Springer, Heidelberg (2006).
https://doi.org/10.1007/11787006_1

7. Esteva, A., et al.: A guide to deep learning in healthcare. Nat. Med. 25(1), 24–29
(2019)

8. Fredrikson, M., Jha, S., Ristenpart, T.: Model inversion attacks that exploit con-
fidence information and basic countermeasures. In: Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security, pp. 1322–1333.
ACM (2015)

9. Hayes, J., Melis, L., Danezis, G., De Cristofaro, E.: LOGAN: evaluating infor-
mation leakage of generative models using generative adversarial networks. arXiv
preprint arXiv:1705.07663 (2017)

10. Hitaj, B., Ateniese, G., Perez-Cruz, F.: Deep models under the GAN: information
leakage from collaborative deep learning. In: Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, pp. 603–618 (2017)

11. Liu, J., Zhang, Z., Razavian, N.: Deep EHR: chronic disease prediction using med-
ical notes. arXiv preprint: arXiv:1808.04928 (2018)

12. Long, Y., Lin, S., Yang, Z., Gunter, C.A., Li, B.: Scalable differentially private
generative student model via pate. arXiv preprint arXiv:1906.09338 (2019)

13. Mahdavinejad, M.S., Rezvan, M., Barekatain, M., Adibi, P., Barnaghi, P., Sheth,
A.P.: Machine learning for internet of things data analysis: a survey. Digit. Com-
mun. Netw. 4(3), 161–175 (2018)

14. Nasr, M., Shokri, R., Houmansadr, A.: Comprehensive privacy analysis of deep
learning: passive and active white-box inference attacks against centralized and
federated learning. In: 2019 IEEE Symposium on Security and Privacy (SP), pp.
739–753. IEEE (2019)

15. Nicolas, P., Shuang, S., Ilya, M., Ananth, R., Kunal, T., Úlfar, E.: Scalable private
learning with pate. arXiv preprint arXiv:1802.08908 (2018)

16. Ozbayoglu, A.M., Gudelek, M.U., Sezer, O.B.: Deep learning for financial applica-
tions: a survey. Appl. Soft Comput. 106384 (2020)

17. Papernot, N.: A marauder’s map of security and privacy in machine learning. arXiv
preprint arXiv:1811.01134 (2018)

18. Papernot, N., Abadi, M., Erlingsson, U., Goodfellow, I., Talwar, K.: Semi-
supervised knowledge transfer for deep learning from private training data. arXiv
preprint arXiv:1610.05755 (2016)

https://doi.org/10.1007/11787006_1
http://arxiv.org/abs/1705.07663
http://arxiv.org/abs/1808.04928
http://arxiv.org/abs/1906.09338
http://arxiv.org/abs/1802.08908
http://arxiv.org/abs/1811.01134
http://arxiv.org/abs/1610.05755

234 J. Wang et al.

19. Phong, L.T., Aono, Y., Hayashi, T., Wang, L., Moriai, S.: Privacy-preserving deep
learning: revisited and enhanced. In: Batten, L., Kim, D.S., Zhang, X., Li, G. (eds.)
ATIS 2017. CCIS, vol. 719, pp. 100–110. Springer, Singapore (2017). https://doi.
org/10.1007/978-981-10-5421-1_9

20. Pyrgelis, A., Troncoso, C., De Cristofaro, E.: Knock knock, who’s there? Member-
ship inference on aggregate location data. arXiv preprint arXiv:1708.06145 (2017)

21. Rajkomar, A., et al.: Scalable and accurate deep learning with electronic health
records. NPJ Digit. Med. 1(1), 1–10 (2018)

22. Shokri, R., Shmatikov, V.: Privacy-preserving deep learning. In: ACM Conference
on Computer and Communications Security (CCS) (2015)

23. Shokri, R., Stronati, M., Song, C., Shmatikov, V.: Membership inference attacks
against machine learning models. In: 2017 IEEE Symposium on Security and Pri-
vacy (SP), pp. 3–18. IEEE (2017)

24. Song, C., Ristenpart, T., Shmatikov, V.: Machine learning models that remember
too much. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, pp. 587–601 (2017)

25. Suresh, H., Hunt, N., Johnson, A., Celi, L.A., Szolovits, P., Ghassemi, M.: Clinical
intervention prediction and understanding with deep neural networks. In: Machine
Learning for Healthcare Conference, pp. 322–337. PMLR (2017)

26. Tai, C.H., Tseng, P.J., Yu, P.S., Chen, M.S.: Identity protection in sequential
releases of dynamic networks. IEEE Trans. Knowl. Data Eng. 26(3), 635–651
(2014)

27. Veale, M., Binns, R., Edwards, L.: Algorithms that remember: model inversion
attacks and data protection law. Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci.
376(2133), 20180083 (2018)

28. Wang, J., Zhang, J., Bao, W., Zhu, X., Cao, B., Yu, P.S.: Not just privacy: improv-
ing performance of private deep learning in mobile cloud. In: Proceedings of the
24th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining, KDD 2018, pp. 2407–2416. Association for Computing Machinery, New
York (2018). https://doi.org/10.1145/3219819.3220106

29. Wang, W., Siau, K.: Artificial intelligence, machine learning, automation, robotics,
future of work and future of humanity: a review and research agenda. J. Database
Manag. (JDM) 30(1), 61–79 (2019)

30. Wang, Y., Wu, X., Hu, D.: Using randomized response for differential privacy
preserving data collection. In: EDBT/ICDT Workshops, vol. 1558 (2016)

31. Wang, Z., Song, M., Zhang, Z., Song, Y., Wang, Q., Qi, H.: Beyond inferring
class representatives: user-level privacy leakage from federated learning. In: IEEE
Conference on Computer Communications, IEEE INFOCOM 2019, pp. 2512–2520.
IEEE (2019)

https://doi.org/10.1007/978-981-10-5421-1_9
https://doi.org/10.1007/978-981-10-5421-1_9
http://arxiv.org/abs/1708.06145
https://doi.org/10.1145/3219819.3220106

SPoiL: Sybil-Based Untargeted Data
Poisoning Attacks in Federated Learning

Zhuotao Lian, Chen Zhang, Kaixi Nan, and Chunhua Su(B)

Department of Computer Science and Engineering, The University of Aizu,
Aizuwakamatsu, Japan

chsu@u-aizu.ac.jp

Abstract. Federated learning is widely used in mobile computing, the
Internet of Things, and other scenarios due to its distributed and privacy-
preserving nature. It allows mobile devices to train machine learning
models collaboratively without sharing their local private data. However,
during the model aggregation phase, federated learning is vulnerable to
poisoning attacks carried out by malicious users. Furthermore, due to the
heterogeneity of network status, communication conditions, hardware,
and other factors, users are at high risk of offline, which allows attackers
to fake virtual participants and increase the damage of poisoning. Unlike
existing work, we focus on the more general case of untargeted poisoning
attacks. In this paper, we propose novel sybil-based untargeted data
poisoning attacks in federated learning (SPoiL), in which malicious users
corrupt the performance of the global model by modifying the training
data and increasing the probability of poisoning by virtualizing several
sybil nodes. Finally, we validate the superiority of our attack approach
through experiments across the commonly used datasets.

Keywords: Federated learning · Poisoning attacks · Sybil ·
Distributed learning

1 Introduction

Federated learning has emerged as a prominent distributed machine learning
paradigm that enables collaboration among data owners without the need to
share sensitive data. It allows each participant to train a local model using their
private data and then aggregate the models’ parameters to create a global model.
This approach has found applications in various domains, including finance, rec-
ommendation systems, and healthcare, due to its privacy-preserving nature and
compliance with data privacy regulations [13]. One of the key advantages of
federated learning is its ability to facilitate collaboration between distrustful
clients, such as competing banks or mobile phone users [14]. By enabling col-
laboration without compromising data privacy, federated learning allows com-
petitors to benefit from shared insights and advancements while preserving their
business interests and privacy. For example, banks can collectively train credit
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Li et al. (Eds.): NSS 2023, LNCS 13983, pp. 235–248, 2023.
https://doi.org/10.1007/978-3-031-39828-5_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-39828-5_13&domain=pdf
https://doi.org/10.1007/978-3-031-39828-5_13

236 Z. Lian et al.

models, and medical institutions can collaborate on disease diagnosis models,
which would be challenging using traditional machine learning methods with
gathered sensitive data.

Despite the privacy protection mechanisms in federated learning, it is sus-
ceptible to poisoning attacks due to the lack of direct access to training data.
Poisoning attacks refer to the fact that a subset of participants in a federated
learning system, which we call compromised clients, can be owned or controlled
by a malicious user, and thus can artificially interfere with the local training of
the node and thus further interfere with the effectiveness of the global model.
Data poisoning attempts to make the model learn such patterns with incorrectly
associated labels by modifying the data used for model training, thereby affecting
the integrity and availability, which in turn affects the training performance [11].

Furthermore, federated learning participants exhibit high heterogeneity in
multiple aspects. Firstly, the collected data among participants is often het-
erogeneous, including variations in data volume, label distributions, and data
quality. This heterogeneity, commonly referred to as non-independent and iden-
tically distributed (non-IID) data, has been a focus of research, particularly
regarding label distribution imbalances [6,18,19]. Secondly, heterogeneity exists
in terms of hardware capabilities and device configurations [16]. Differences in
CPU, GPU, memory, and network environments introduce variations in partic-
ipant capabilities. Additionally, the dynamic and intermittent nature of partic-
ipant involvement in the training process increases the risk of offline scenarios,
creating opportunities for adversaries to exploit vulnerabilities [8]. In such sce-
narios, sybil-based attacks become viable, allowing malicious users to create
multiple virtual nodes and assume fake identities, enabling more malicious users
to participate in the training and parameter aggregation process, thereby ampli-
fying the impact of data poisoning.

While there are limited studies focusing on sybil-based untargeted poison-
ing attacks, untargeted attacks are more prevalent and practical in real-world
scenarios. Through our inductive analysis, we have identified untargeted attacks
as having higher prevalence and research value. Therefore, this paper aims to
propose a novel sybil-based untargeted poisoning attack method that leverages
virtual node forgery by malicious users and manipulates local training data to
undermine the performance of the global model.

In summary, our contributions are as follows:

– An overview of poisoning attacks in federated learning systems is provided,
emphasizing the importance of untargeted attacks within a broader context.

– We explore sybil-based untargeted data poisoning attacks, in which malicious
users further enhance the harm of poisoning by virtualizing sybils.

– Simulation experiments are conducted to evaluate the impact of key fac-
tors on attack performance, including the proportion of malicious users, the
number of Sybil nodes, and the ratio of poisoned data. And we presented a
comprehensive analysis based on the experimental results.

SPoiL: Sybil-Based Untargeted Data Poisoning Attacks in FL 237

2 Background

2.1 Federated Learning (FL)

Federated Learning (FL) is a distributed approach to machine learning that
allows large-scale training on devices with decentralized data while preserving
the privacy of sensitive data held by device owners [10]. FL brings the machine
learning model to the endpoint, rather than transferring data to a central server
for local collection and training [1]. This decentralized paradigm enables collab-
oration among data stakeholders while protecting the privacy of customers and
organizations [2]. In domains like financial payment, FL plays a crucial role in
ensuring personal privacy and complying with institutional or corporate data
security requirements. For instance, platforms like Jingdong Lending leverage
FL to collaborate with financial institutions and assess the credit risk of users,
effectively addressing the challenge of “data silo” under legal regulations [2].

2.2 Targeted Poisoning Attacks in FL

Poisoning Attack is an attack in which a malicious participant injects malicious
information into the training data or uploaded model parameters to disrupt the
accuracy of federal learning [3]. There are two types of Poisoning Attacks: Data
Poisoning Attacks and Model Poisoning Attacks [17].

Poisoning attacks are malicious attempts by participants to inject harmful
information into the training data or uploaded model parameters, with the inten-
tion of disrupting the accuracy of federated learning [3]. In terms of the targets
of poisoning attacks, they can be classified into two categories: data poisoning
attacks and model poisoning attacks [17].

– Data Poisoning Attacks refer to malicious participants modifying the labels
or features of their local training data to make them inconsistent with the
global data distribution, thus affecting the accuracy and robustness of the
global model. Examples of data poisoning attacks include label flipping and
feature transformation.

– Model poisoning attacks in federated learning involve participants manip-
ulating the shared global model’s weights and injecting malicious elements
through unauthorized modifications, aiming to compromise the model’s
integrity and performance and undermine the effectiveness of the global model
[20]. These attacks exploit participants’ control over the model updates and
training strategies to evade detection and

Poisoning attacks can be categorized into three types as illustrated in Table 1
based on their goals: targeted attacks, untargeted attacks, and backdoor attacks
[15]. Targeted attacks aim to manipulate the model’s behavior to generate spe-
cific incorrect predictions. Untargeted attacks focus on diminishing the overall
accuracy and robustness of the model without specific target objectives. Back-
door attacks involve inserting a concealed trigger into the model to manipulate

238 Z. Lian et al.

Table 1. Poisoning Attacks in Federated Learning.

Type of Attack Goal

Targeted Attack Misclassify the target class of data

Untarget Attack Misclassify all classes of data from the distribution

Backdoor Attack Misclassify data with trigger patterns

its behavior when a specific trigger condition is met. In the context mentioned,
the focus is specifically on untargeted attacks.

Untargeted attacks in federated learning aim to disrupt the performance of
models without specific target objectives, such as by introducing random noise or
labels that degrade the model’s generalization ability [12], as illustrated in Fig. 1.
These attacks are challenging to detect because the attacker’s goal is to reduce
the overall accuracy of the model, and the service provider does not predefine
the expected overall accuracy. This makes it harder to identify the presence of
untargeted poisoning attacks.

Fig. 1. Example diagram of Untargeted Attacks.

2.3 Sybil Attacks in FL

Sybil attack is a term used to describe the act of adversaries creating multiple
virtual identities, accounts, or nodes in order to disrupt the balance of a global
system [5]. Interestingly, sybil attacks share many similarities with distributed
poisoning attacks. For instance, both attacks involve controlling or utilizing mul-
tiple clients to interfere with the global model. However, the sybil attack could
be primarily carried out by a single adversary, while the distributed poisoning
attack is usually a coordinated effort involving multiple adversaries [4]. In the

SPoiL: Sybil-Based Untargeted Data Poisoning Attacks in FL 239

Fig. 2. Sybil-based Untargeted Attacks. Sybil attacks often interfere with the global
model in federated learning by constructing fake identities, and may even be coordi-
nated among Sybils.

context of untargeted attacks, sybil attacks, compared to traditional distributed
attacks, have the advantage of leveraging the relationship between malicious
nodes and Sybil nodes to further maximize the impact of the attack on the
global model. Additionally, s sybil nodes can theoretically be created in larger
numbers and are more susceptible to control under a coordinated attack strat-
egy. This makes sybil attacks more potent in terms of their potential impact on
the system (Fig.2).

A sybil-based poisoning attack represents an evolved form of distributed poi-
soning attacks. Due to the inherent difficulty in identifying the existence and
number of sybil nodes, detecting such attacks becomes more challenging. More-
over, sybil attacks are more destructive in nature, as they allow for coordinated
efforts to maximize the impact of the attack, even in the absence of specific
target objectives. For instance, a malicious user can monitor the success of the
attack on the controlled sybil nodes, facilitating convenient adjustments to spe-
cific attack parameters.

This mathematical representation illustrates the scenario in federated learn-
ing where there are K participants, including N benign clients and S sybil clients

240 Z. Lian et al.

controlled by M malicious nodes. Each of the K clients uses SGD to update their
local model wi by minimizing the local loss function. The central aggregator then
receives a weighted average of the local models.

wattacked =
1
K

(
N∑
i

wi +
S+M∑

i

wi+N

)
(1)

where K = S + M + N .
If no attack occurs, then all K participants are benign clients. The aggregated

result should be:

wglobal =
1
K

K∑
i=1

wi (2)

To measure the impact of the attack, we calculate the offset O between the
global model and the attacked model:

O = |wglobal − wattacked| (3)

A larger offset O indicates a less accurate global model overall. The size of O
is closely related to the size of S+M . When multiple sybil nodes coordinate their
attacks, the offset O tends to increase. Solving sybil-based poisoning attacks in
federated learning is a complex problem due to the coordination and impact of
multiple sybil nodes.

3 Design of SPoiL

In this part, we first introduce the threat model of SPoiL, including the adver-
sary’s ability, knowledge, etc., and then further, we give the algorithm descrip-
tion.

In this section, we begin by presenting the threat model of SPoiL, which
includes the objective, knowledge, and capabilities of the adversary. We then
proceed to provide a detailed description of the algorithm.

3.1 Threat Model

Adversary’s Objective. In SPoiL, the adversaries aim to cause misclassifi-
cation of any test input without targeting a specific class. The objective of the
attack is indiscriminate, and the specific incorrect class label assigned to the
misclassified sample is not a concern for the attacker.

Adversary’s Knowledge. We assume that the adversary has complete access
to the global model information. This assumption is reasonable in federated
learning since the global model is shared among all participants. Additionally,
this assumption is necessary as the adversary will create virtual nodes to train
on the poisoned data. Regarding data access, we assume that the adversary can
only access the local initial data of compromised users.

SPoiL: Sybil-Based Untargeted Data Poisoning Attacks in FL 241

Adversary’s Capabilities. In SPoiL, we consider a more generalized assump-
tion where the adversary can only modify local data to perform data poisoning
attacks, indirectly influencing the global model. For model poisoning attacks, it
is unrealistic to expect the adversary to directly manipulate the updated data
uploaded by users by bypassing the security protocols. This assumption is not
practical in large-scale federated learning systems.

3.2 Algorithms

In this section, we give a generalized algorithm representation of SPoiL. Then
we explain the design of the algorithm in detail from the perspectives of the user
and the server.

Algorithm 1. SPoiL
1: Input:Initial global model w(t), Learning rate η, Loss function L
2: Output:w(t + 1)
3: //User-side
4: for Honest users i = 1 to h do
5: wi(t) ← LocalTraining(w(t), Di)
6: end for
7: for Malicious users j = 1 to m do
8: Modify local data Dj ; � Construct the poisoning dataset
9: wj(t) ← LocalTraining(w(t), Dj)

10: Virtualize s sybil users;
11: for Sybil users k = 1 to s do
12: wk(t) ← LocalTraining(w(t), Dj) � Sybil users will inherit the dataset
13: end for
14: end for
15: //Sever-side
16: Sever will aggregate the local models
17: Randomly select n from h + m + m ∗ s users � n ≤ h + m + m ∗ s
18: w(t + 1) ← GlobalAggregation(wi(t), |Di|)
19: return w(t + 1);

In the considered federated learning scenario, a classic user-server architec-
ture is employed. Users participate in collaborative training to develop a global
model. Initially, each user performs local training using their local data. The
updated local models are then uploaded to the server. The server conducts aggre-
gation operations to generate a new global model, which is subsequently broad-
casted to all users. This iterative process continues for multiple epochs until
the model converges or the predetermined number of communication rounds is
reached.

It is important to note that data poisoning occurs during specific rounds,
which is referred to as static poisoning. If the poisoned data is not repaired
afterward, allowing for long-term attacks, the attack becomes persistent.

242 Z. Lian et al.

Additionally, if data poisoning is performed in multiple rounds with different
techniques, it can be considered a dynamic poisoning attack. In this paper, we
primarily focus on a typical static poisoning approach.

User-Side. In this system, there are different types of users, including honest
users, malicious users, and sybil users, collectively forming the participant pool
of federated learning.

During round t, each user initializes their local model with the latest model
w(t) generated by the server. Honest users employ gradient descent to train their
local models on their respective local data and update them accordingly.

Malicious users, on the other hand, start by modifying their local data. In this
context, we consider the construction of a poisoned dataset using label flipping.
Since our focus is on untargeted attacks, random incorrect labels are assigned
to the original training samples. Of course, other methods of data modification
can also be applicable to our system.

Subsequently, malicious users create multiple sybil users, as depicted in line
10 of the algorithm. We assume that each malicious user is capable of creating
s sybil users. The value of s depends on the capabilities of the malicious users,
algorithm constraints, and other factors. It should not be excessively large, as
an excessively large value may expose the attack. The sybil users inherit the
poisoned data from the original malicious users. Both malicious users and sybil
users train poisoning models using the poisoned data.

Server-Side. In the server-side process, after the local training is finished, the
server performs parameter aggregation using the popular FedAvg algorithm. The
server begins by randomly selecting n users from the user pool and proceeds to
compute a weighted average of their respective local models. It’s worth noting
that in this context, we simplify the aggregation process by using simple aver-
aging, as many existing works also adopt this approach. The intention here is to
focus on the attack methods without utilizing weight-related mechanisms.

4 Simulation Experiments

In this section, we aim to validate the effectiveness of our attack by conducting
experiments on the task of fake news identification. We begin by presenting
the details of our experimental settings, including the hardware and software
configurations used. Next, we describe the chosen data sets that we employed in
our experiments. Moreover, we elaborate on the models selected for our analysis,
providing insights into their architecture and training methodology. Finally, we
present a comprehensive analysis of the experimental results, highlighting the
impact of our attack on the performance of the fake news identification models.

SPoiL: Sybil-Based Untargeted Data Poisoning Attacks in FL 243

4.1 Settings

We conducted our distributed virtual experiments on a single machine running
Ubuntu 18.04. The machine was equipped with 32GB of RAM and an Nvidia
GTX 3070 GPU, which provided the necessary computational resources for our
experiments.

Kaggle Fake News Dataset. In this study, we selected the Kaggle fake news
dataset [7] for our experiments. The dataset consists of five attributes: “ID,”
“Title,” “Text,” “Author,” and “Label.” For our experiments, we focused on
two attributes: ”Text” and ”Label,” which were used to train our model. The
training dataset (train.csv) contained 20,800 records. To preprocess the text
data, we followed the approach described in [9]. After preprocessing, we trained
our neural network model on the preprocessed dataset.

Neural Network Model. Our neural network model consisted of three hid-
den layers, totaling 163,570 trainable parameters. The activation function used
for the first three dense layers was Rectified Linear Unit (ReLU), while the
activation function for the last layer was softmax. These choices of activation
functions helped in capturing complex patterns and making predictions based
on the learned representations.

4.2 Results

We clarify that the malicious users mentioned do not include sybil users. We
specifically state that each malicious user, along with their created sybil users,
shares the same local data. The experimental setup involves a total of 20 users
participating in the training process, with 20 epochs of training conducted. For
each round, 10 users are randomly selected. For each experiment, we performed
five repetitions and obtained the average results.

The dataset is evenly partitioned among the participants, ensuring that each
user has 800 local data items. The malicious users carry out two operations
as part of their attacks. Firstly, they create several sybil users who can share
local data and collaborate in subsequent attacks. Secondly, they execute label-
flipping attacks on the training data. Once the data is poisoned, the impact
on the training process persists throughout. These attack strategies employed
by malicious users result in a continuous and persistent impact on the training
process, undermining the integrity and reliability of the trained model. Based
on our experiments, we obtained the following results regarding the impact of
the propotion of malicious users, sybil users, and poisoned data.

Number of Malicious Users. We conducted poison attacks initiated by the
malicious users in the 9th epoch, where they randomly flipped the corresponding
labels of the training data. We tested different scenarios with varying proportions
of malicious users: 0%, 5%, 10%, and 20%.

244 Z. Lian et al.

The confusion matrix of the trained model, depicting the classification results,
is presented in Fig. 3. A darker color along the main diagonal in the matrix indi-
cates higher accuracy. Here are our observations: When the proportion of mali-
cious users reaches 20%, the model becomes almost unusable. The classification
accuracy rates for real and false information are 25.6% and 10.4% respectively.
As the number of malicious users decreases to around 10%, which aligns with
assumptions made in many existing works, the classification accuracy rate for
false information improves to 79.8%. This rate surpasses the 50% accuracy of
random selection in binary classification. The best performance is achieved when
there are no malicious users present, resulting in a classification accuracy rate
of 89.67%. These findings highlight the significant impact of the proportion of
malicious users on the attack’s effectiveness. The presence of even a small pro-
portion of malicious users can lead to a considerable decrease in classification
accuracy.

Number of Sybils Created by Each Malicious User. Next, we investigated
the influence of the number of sybils each malicious user can create on the
model. In this scenario, we considered a general case where 10% of the users
are malicious. We used s in Fig. 4 to represent the number of sybil users created
by each malicious user. We visualized the changes in accuracy and loss over the
training epochs. The term “Attack” indicates the time when the attack begins.

From Fig. 4a, we can make two observations. Firstly, it is clear that the
attack has a direct and significant impact on the model’s accuracy and loss.
Upon initiating the attack, the model’s accuracy decreases by approximately
14%, 11%, 5%, and 0.6% for s = 4, 3, 2, and 1, respectively. This indicates that
a higher number of sybil users leads to a greater impact on the global model,
even when using the same local training data. As anticipated, the effect on the
loss is also considerable. Secondly, since the poisoned data is not rectified, the
influence of malicious users on the model’s training persists for a long time. Even
if the majority of users are benign, the presence of malicious users still hampers
the performace of the model.

The Proportion of Poisoned Data and the Number of Sybils. Finally, we
investigated the combined impact of the number of Sybil users created, denoted
as “s,” and the proportion of poisoned data, denoted as “Pd,” on the model’s
accuracy. We used a surface plot in Fig. 5 to visually represent the experimental
results. The deepest blue region in the plot corresponds to the lowest accuracy,
indicating that higher values of Pd and a larger number of s result in a more
pronounced negative impact on the model.

Furthermore, we observed that the decrease in accuracy is not linear but
rather exhibits a gradual acceleration as Pd and s change. This observation
provides inspiration and raises considerations for our future work, particularly
in the design of defenses that can achieve better results while minimizing costs.

SPoiL: Sybil-Based Untargeted Data Poisoning Attacks in FL 245

Fig. 3. Confusion matrix with respect to the proportion of malicious users.

Fig. 4. Accuracy versus epochs with respect to the number of sybils.

246 Z. Lian et al.

Fig. 5. Test accuracy with different Pd and s. Pd refers to the proportion of poisoned
data while s refers to the number of sybils created by each malicious user.

5 Conclusion

In this paper, we present SPoiL, a novel sybil-based untargeted poisoning attack.
Our approach involves manipulating local data by flipping labels and creating
virtual sybil nodes to simulate participants during training and global model
updates. We conduct experiments using a fake news detection dataset to evaluate
the feasibility of our method. The preliminary results confirm the effectiveness of
sybil-based untargeted attacks and investigate the influence of sybil node count
and poisoned data proportion on attack performance. These findings lay a solid
foundation for future research in sybil-based attacks.

6 Future Research

In future research, several directions can be explored to further advance the
understanding and mitigation of sybil-based attacks.

Firstly, it is important to investigate the effectiveness of existing defense
mechanisms against sybil-based attacks. This includes analyzing the vulnerabil-
ities and limitations of current defense methods when confronted with sophisti-
cated sybil-based strategies.

Secondly, studying the impact of synergy among sybil nodes on the attack
effectiveness is crucial. Understanding how coordinated actions among sybil
nodes enhance the attack potency can provide insights into developing more
robust defense strategies that can disrupt such collaborative efforts.

Moreover, an intriguing direction for future research is the exploration of
sybil-based backdoor attacks. This involves investigating how sybil nodes can
be leveraged to implant hidden triggers or manipulate the model’s behavior
under specific conditions. Understanding the mechanisms and implications of

SPoiL: Sybil-Based Untargeted Data Poisoning Attacks in FL 247

such attacks can provide valuable insights for the development of effective coun-
termeasures to mitigate the impact of these stealthy and potentially devastating
attacks.

Overall, future research should focus on enhancing the understanding of sybil-
based attacks, developing robust defense mechanisms, and investigating the var-
ious aspects of sybil node collaboration and backdoor attacks. By addressing
these aspects, we can enhance the security and resilience of federated learning
systems against sybil-based threats.

Acknowledgment. This work was partially supported by JSPS Grant-in-Aid for
Scientific Research (C) 23K11103 and NEC C&C Foundation under Grants for
Researchers.

References

1. Bonawitz, K., et al.: Towards federated learning at scale: system design. Proc.
Mach. Learn. Syst. 1, 374–388 (2019). https://proceedings.mlsys.org/paper/2019/
hash/bd686fd640be98efaae0091fa301e613-Abstract.html

2. Bonawitz, K., et al.: Practical secure aggregation for privacy-preserving machine
learning. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, CCS 2017, pp. 1175–1191. Association for Computing
Machinery, New York, NY, USA (2017). https://doi.org/10.1145/3133956.3133982

3. Cao, D., Chang, S., Lin, Z., Liu, G., Sun, D.: Understanding distributed poison-
ing attack in federated learning. In: 2019 IEEE 25th International Conference on
Parallel and Distributed Systems (ICPADS), pp. 233–239. IEEE (2019). https://
doi.org/10.1109/ICPADS47876.2019.00042

4. Cao, D., Chang, S., Lin, Z., Liu, G., Sun, D.: Understanding distributed poison-
ing attack in federated learning. In: 2019 IEEE 25th International Conference on
Parallel and Distributed Systems (ICPADS), pp. 233–239 (2019). https://doi.org/
10.1109/ICPADS47876.2019.00042

5. Douceur, J.R.: The Sybil attack. In: Druschel, P., Kaashoek, F., Rowstron, A.
(eds.) IPTPS 2002. LNCS, vol. 2429, pp. 251–260. Springer, Heidelberg (2002).
https://doi.org/10.1007/3-540-45748-8 24

6. Jamali-Rad, H., Abdizadeh, M., Singh, A.: Federated learning with taskonomy for
non-IID data. IEEE Trans. Neural Netw. Learn. Syst., 1–12 (2022). https://doi.
org/10.1109/TNNLS.2022.3152581

7. Kaggle fake news dataset. https://www.kaggle.com/competitions/fake-news/data
8. Kourtellis, N., Katevas, K., Perino, D.: Flaas: federated learning as a service. In:

Proceedings of the 1st Workshop on Distributed Machine Learning, DistributedML
2020, pp. 7–13. Association for Computing Machinery, New York, NY, USA (2020).
https://doi.org/10.1145/3426745.3431337

9. Krešňáková, V.M., Sarnovský, M., Butka, P.: Deep learning methods for fake
news detection. In: 2019 IEEE 19th International Symposium on Computational
Intelligence and Informatics and 7th IEEE International Conference on Recent
Achievements in Mechatronics, Automation, Computer Sciences and Robotics
(CINTI-MACRo), pp. 000143–000148 (2019). https://doi.org/10.1109/CINTI-
MACRo49179.2019.9105317

https://proceedings.mlsys.org/paper/2019/hash/bd686fd640be98efaae0091fa301e613-Abstract.html
https://proceedings.mlsys.org/paper/2019/hash/bd686fd640be98efaae0091fa301e613-Abstract.html
https://doi.org/10.1145/3133956.3133982
https://doi.org/10.1109/ICPADS47876.2019.00042
https://doi.org/10.1109/ICPADS47876.2019.00042
https://doi.org/10.1109/ICPADS47876.2019.00042
https://doi.org/10.1109/ICPADS47876.2019.00042
https://doi.org/10.1007/3-540-45748-8_24
https://doi.org/10.1109/TNNLS.2022.3152581
https://doi.org/10.1109/TNNLS.2022.3152581
https://www.kaggle.com/competitions/fake-news/data
https://doi.org/10.1145/3426745.3431337
https://doi.org/10.1109/CINTI-MACRo49179.2019.9105317
https://doi.org/10.1109/CINTI-MACRo49179.2019.9105317

248 Z. Lian et al.

10. McMahan, B., Ramage, D.: Federated Learning: Collaborative Machine Learn-
ing without Centralized Training Data (2017). https://ai.googleblog.com/2017/
04/federated-learning-collaborative.html

11. Nuding, F., Mayer, R.: Data poisoning in sequential and parallel federated learning.
In: Proceedings of the 2022 ACM on International Workshop on Security and
Privacy Analytics, IWSPA 2022, pp. 24–34. Association for Computing Machinery,
New York, NY, USA (2022). https://doi.org/10.1145/3510548.3519372

12. Sagar, S., Li, C.S., Loke, S.W., Choi, J.: Poisoning attacks and defenses in federated
learning: a survey. arXiv (Jan 2023). https://doi.org/10.48550/arXiv.2301.05795

13. Sharma, P.K., Park, J.H., Cho, K.: Blockchain and federated learning-based dis-
tributed computing defence framework for sustainable society. Sustain. Cities Soc.
59, 102220 (2020)

14. Shejwalkar, V., Houmansadr, A., Kairouz, P., Ramage, D.: Back to the drawing
board: a critical evaluation of poisoning attacks on production federated learning.
In: 2022 IEEE Symposium on Security and Privacy (SP), pp. 1354–1371 (2022).
https://doi.org/10.1109/SP46214.2022.9833647

15. Shejwalkar, V., Houmansadr, A., Kairouz, P., Ramage, D.: Back to the drawing
board: a critical evaluation of poisoning attacks on production federated learning.
In: 2022 IEEE Symposium on Security and Privacy (SP), pp. 1354–1371. IEEE
(2022). https://doi.org/10.1109/SP46214.2022.9833647

16. Tahir, M., Ali, M.I.: On the performance of federated learning algorithms for IoT.
IoT 3(2), 273–284 (2022)

17. Tolpegin, V., Truex, S., Gursoy, M.E., Liu, L.: Data poisoning attacks against
federated learning systems. In: Chen, L., Li, N., Liang, K., Schneider, S. (eds.)
ESORICS 2020. LNCS, vol. 12308, pp. 480–501. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-58951-6 24

18. Wang, H., Kaplan, Z., Niu, D., Li, B.: Optimizing federated learning on non-IID
data with reinforcement learning. In: IEEE INFOCOM 2020-IEEE Conference on
Computer Communications, pp. 1698–1707. IEEE (2020)

19. Zhao, Y., Li, M., Lai, L., Suda, N., Civin, D., Chandra, V.: Federated learning
with non-IID data. arXiv preprint arXiv:1806.00582 (2018)

20. Zhou, X., Xu, M., Wu, Y., Zheng, N.: Deep model poisoning attack on federated
learning. Future Internet 13(3), 73 (2021). https://doi.org/10.3390/fi13030073,
https://www.mdpi.com/1999-5903/13/3/73

https://ai.googleblog.com/2017/04/federated-learning-collaborative.html
https://ai.googleblog.com/2017/04/federated-learning-collaborative.html
https://doi.org/10.1145/3510548.3519372
https://doi.org/10.48550/arXiv.2301.05795
https://doi.org/10.1109/SP46214.2022.9833647
https://doi.org/10.1109/SP46214.2022.9833647
https://doi.org/10.1007/978-3-030-58951-6_24
https://doi.org/10.1007/978-3-030-58951-6_24
http://arxiv.org/abs/1806.00582
https://doi.org/10.3390/fi13030073
https://www.mdpi.com/1999-5903/13/3/73

Agnostic Label-Only Membership
Inference Attack

Anna Monreale2 , Francesca Naretto1,2(B) , and Simone Rizzo2

1 Scuola Normale Superiore, Pisa, Italy
francesca.naretto@sns.it

2 University of Pisa, Pisa, Italy
anna.monreale@unipi.it, s.rizzo14@studenti.unipi.it

Abstract. In recent years we are witnessing the diffusion of AI sys-
tems based on powerful Machine Learning models which find applica-
tion in many critical contexts such as medicine and financial market. In
such contexts, it is important to design Trustworthy AI systems while
guaranteeing privacy protection. However, some attacks on the privacy
of Machine Learning models have been designed to show the threats
of exposing such models. Membership Inference is one of the simplest
privacy threats faced by Machine Learning models. It is based on the
assumption that an adversary, observing the confidence of the model
prediction, can infer whether a particular record was used for training
the classifier. A variant, called Label-Only attack, exploits the adver-
sary’s knowledge of the training data statistics to infer the record mem-
bership without accessing the confidence score of the prediction. In this
paper, we propose a variant of the Label-Only attack, called Aloa, which
estimates the prediction confidence exploiting a mechanism that is com-
pletely agnostic to the input data distributions. In fact, it requires neither
statistical knowledge of the data nor the type of variables. Experimen-
tal results show better performance of our attack with respect to the
competitors.

1 Introduction

The increasing prevalence of smart technology in our daily lives, including self-
learning and automated decision-making systems, can be attributed to advance-
ments in Machine Learning (ML) [3,9]. ML algorithms are utilized in appli-
cations such as Gmail’s spam filtering and YouTube’s video recommendations,
enhancing their functionality. However, along with the benefits, ML also brings
potential vulnerabilities that attackers can exploit for malicious purposes, jeop-
ardizing system reliability.

One notable privacy attack, introduced by Shokri et al. in 2017 [13], and
subsequent variants like the Label-Only Membership Inference Attack [2], aim
to distinguish between records used during the training phase of an ML model
and those that were not, operating under different assumptions. These attacks
pose risks to privacy and confidentiality. The reconstruction of training data can
c© The Author(s) 2023
S. Li et al. (Eds.): NSS 2023, LNCS 13983, pp. 249–264, 2023.
https://doi.org/10.1007/978-3-031-39828-5_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-39828-5_14&domain=pdf
http://orcid.org/0000-0001-8541-0284
http://orcid.org/0000-0003-1301-7787
http://orcid.org/0009-0005-1973-7496
https://doi.org/10.1007/978-3-031-39828-5_14

250 A. Monreale et al.

potentially conflict with trade secrets, as some training data may derive from suc-
cessful corporate experiences, providing competitive advantages. Consequently,
organizations holding such data are reluctant to disclose it to competitors.

In this paper, we present Aloa, an improved variant of LabelOnly, which
achieves high performance and stable prediction metrics. Unlike LabelOnly,
Aloa calculates a data-agnostic robustness score without exploiting knowledge
of the training data’s feature distribution. This score determines membership.
The experimental results highlight that our attack allows for better stability
and an enhanced performance, up to 3 percentage points, in terms of accuracy
in predicting the records membership. Even if this enhancement may seem small,
for the privacy setting this is extremely risky since it means that the adversary
may have a higher probability of re-identifying people in the dataset. In addition,
we relax the assumption that the attacker needs a dataset following the same
distribution as the original training dataset, making the attack easier to perform
with respect to the competitors.

The remaining of the paper is organized as follows. Section 2 discusses prior
works related to our; Sect. 3 introduces some preliminary notions useful for
understanding the details of our attack. In Sect. 4 we describe how to learn
and apply Aloa while in Sect. 5, we present the experimental results on its
performance. Lastly, Sect. 6 concludes the paper.

2 Related Work

In this Section, we contextualize our work concerning the current literature.
The issue of privacy has been addressed in several fields to assess the privacy
risk and/or protect information systems from the dangerous disclosure of sensi-
tive information. Disclosure of sensitive information may derive from accessing
directly data [15] or accessing ML models [1,5,13]. Indeed, ML models learn
from data, and even if the data are not exposed but simply used during the
training, querying the model may still leak sensitive information about the peo-
ple in the training dataset. In the context of data privacy, the first goal is to
assess the privacy risk of the users represented in a dataset by using a privacy risk
assessment methodology. Then, depending on the results of this assessment, a
privacy protection technique on the data or the ML model can be applied to pro-
tect the users from malicious adversaries. Such protection techniques are based
on well-defined privacy models, such as randomization, differential privacy, and
k-anonymity [4,12,15], and transform data/ML models in such a way to guar-
antee certain thresholds on the risk of privacy leaks. In this paper, we focus on
the research topic of privacy risk assessment, Therefore, in the following, we dis-
cuss the literature in this context. The process of assessing privacy risks can be
applied to either data or ML models. Pratesi et al. [11] proposed PRUDEnce, a
framework enabling a systematic assessment of empirical privacy risk concerning
specific privacy attacks on data. In practice, it simulates an adversary that, for
each individual, possesses the knowledge to maximize the privacy risk of that
individual. To this end, the framework generates all the possible background

Agnostic Label-Only Membership Inference Attack 251

knowledge that the adversary may know and assesses the risk with respect to the
worst. Similar approaches have been studied in various works over the past few
years to detect privacy attacks against ML models. Shokri et al. [13] proposed the
Membership Inference Attack (Mia) with the aim is to infer the membership of
a given record to the training set of a classification model. Fredrikson et al. [5,6]
designed the so-called reconstruction attacks, where the attacker’s objective is
to reconstruct one or more training samples and their respective training labels.
Another type of attack is the property inference attack [7], which extracts unin-
tentionally learned information not explicitly encoded as features in the model.
For instance, property inference attacks can uncover information such as the
gender ratio in the training data set. Such attacks can be used in tandem with
Mia or reconstruction attacks to enhance the adversary’s knowledge. Recently,
Choquette-Choo et al. [2] proposed a variant of the original Membership Infer-
ence Attack called LabelOnly attack, in which some of the assumptions of
Shokri’s attack are relaxed. In particular, Mia needs the probability vector for
inferring the membership of a record while LabelOnly exploits only the hard
labels. In our paper, we present Aloa, a variant of the LabelOnly attack,
which is completely agnostic.

3 Background

Before providing the details of our privacy attack against classification mod-
els, in this Section we introduce some basic notions that are fundamental for
understanding the details of our approach.

Classifier. A classifier, is a function b : X (m) → Y which maps instances (tuples)
x from a feature space X (m) with m input features to a decision y in a target
space Y of size L = |Y|, i.e., y can assume one of the L different labels (L = 2
is binary classification). We use f(x) = y to denote the decision y taken by b we
denote by yb the probability vector of size L in which the sum of all the values is
one. An instance x consists of a set of m attribute-value pairs (ai, vi), where ai

is a feature (or attribute) and vi is a value from the domain of ai. The domain
of a feature can be continuous or categorical. We assume a classifier is available
as a function that can be queried at will.

Membership Inference Attack (Mia). Shokri et al. [13] assume that a ML
algorithm is used to train a classifier b that captures the relationship between
data records and their labels. To attack b trained on Dtrain

b , Mia defines an
attack model A(·): it is a ML model able to discern if a record was part of
the training dataset Dtrain

b or not. Note that, Dtrain
b is composed by (xi, yi

o)b,
where yi

o is the true labels associated to xi
b. In practice, the attack A(·) is a

binary classifier that predicts in if the record was part of the training set or
out otherwise. A(·) is trained on a dataset Dtrain

a : (xi, yi)a, where each xi
a is

composed by the label predicted by the classifier b for a record under analysis
and its probability vector yi of length L obtained by querying a shadow model
si(·) mimicking b; while yi

a is the correct membership label and that can be in or

252 A. Monreale et al.

out. The attack model A(·) is a voting model composed of L ML models: one
for each output class of the classifier model under attack. The key factor in this
attack is the knowledge of the probability vector: given how the probabilities in
yb are distributed around the true value of the record, the attack model computes
the membership probability Pr{(x, y) ∈ Dtrain

b }, which is the probability that x
belongs to the in class, i.e. it is part of the training set. To obtain the dataset
(xi, yi)a, on which the Mia model A(·) is trained, the authors used shadow
models. In the original paper, the authors assume a black-box setting in which
there is no knowledge about the type of classifier to be attacked or the training
dataset used to train it. In the following, we use the term black-box model to
indicate the classifier to be attacked. To overcome the limitation of absence of
knowledge on data and model, they employed a set of k shadow models si(·):
ML models trained to mimic the decisions of the black-box model b(·) we would
like to attack. These shadow models are trained on Dtrain

s : (xi, yi)s, in which xi
s

has the same format and similar distribution w.r.t. to the dataset employed to
train the black-box model X, while yi

s is the predicted class obtained querying
the black-box model b(·). After the training, we know which record was part
of the training dataset (class in) for each shadow model and which was part
of the test one (class out). Hence, we can exploit this information to create a
supervised training dataset for training the attack model A(·), which is Dtrain

a .
The datasets employed for training the shadow models are disjoint from the

unknown dataset used to train the black-box model. Shokri et al. [13] tested
different kinds of training data for the shadow models: (i) a random dataset,
with randomly generated records labeled querying the black-box model; (ii) a
statistical one, with synthetic data generated exploiting the original statistical
distribution; (iii) a noise one, in which the attacker knows a noisy portion of
data from the same distribution of the original training dataset. The different
data for shadow models allow for privacy attacks of different strengths.

Label-Only Membership Inference Attack (LabelOnly). Choquette-
Choo et al. [2] design a variant of Mia which relaxes some requirements of
the original attack. Given a black-box model b, LabelOnly ALO(·) targets it
by exploiting only the hard labels, i.e. the output predictions of the model under
analysis. Hence, the probability vector yi, employed by Mia, is not exploited
in LabelOnly. It develops a procedure that derives the robustness of a model
to perturbations and uses it as a proxy for model confidence in its predictions.
The basic intuition is that records which exhibit high robustness belong to the
training dataset. ALO(·) exploits a dataset Dtrain

s for training only one shadow
model s(·), i.e., a ML model mimicking the decision of black-box model b. The
dataset Dtrain

s : (xi, yi)s is composed of records with the same format and simi-
lar distribution w.r.t. to the dataset for training the black-box b, and is labeled
by the predicted class obtained querying b. With the shadow model, we know
which records were part of the training dataset (in) of the shadow model and
which was part of the test (out). For each tuple xi

s the algorithm generates a
set of records resulting from its perturbation and labels the generated records
using the trained shadow model. Analyzing the percentage of generated records

Agnostic Label-Only Membership Inference Attack 253

Algorithm 1: Aloa (b, Ds, pmin, pmax, k, n)
Input : b - classifier,

Ds - dataset for training the shadow models,
pmin, pmax - perturbation percentage range,
k- number of neighbours to be generated

Output: thresholdsplit - split threshold found for the dataset Ds

1 {Ds1 , . . . , Dsk} ← RandomSample(Ds, k)
2 S ← ∅; D ← ∅; Scores ← ∅
3 for i ∈ {1, . . . , k} do
4 Dtrain

si , Dtest
si = split train test(Dsi)

5 S ← S ∪ train shadow(Dtrain
si)

6 Din
si ← Assign the in label to each record in Dtrain

si

7 Dout
si ← Assign the out label to each record in Dtest

si

8 D ← D ∪ Din
si ∪ Dout

si

9 for xi ∈ D do
10 N i

x ← Noisy Neighborhood Generation(xi, pmin, pmax, n)

11 rScorexi ← Robustness Score(N i
x, S, b(xi))

12 Scores ← Scores ∪ rScorexi

13 thresholdsplit ← Iterative Thresholding(D, Scores)
14 return thresholdsplit

having the same predicted class of xi
s, the algorithm computes the robustness

score of the black-box with respect to the xi
s classification. Then, the attack uses

an iterative thresholding procedure on the robustness scores, assigned to each
record of the training an testing dataset of the shadow model, to find a threshold
on the scores to separate the records between in and out. The attack will use
this threshold for classifying new records as part of the training of the black-box
or not.

4 Agnostic Label-Only Membership Inference Attack

In this paper, we present Aloa (Agnostic Label-Only membership inference
Attack), which is a variant of LabelOnly attack, presented in Sect. 3. The
LabelOnly attack assumes the statistical distributions and the domain of the
features in training data. This knowledge is exploited for applying a perturbation
to each feature tailored to its type and its statistical distribution. We propose
a variant completely agnostic with respect to the training data and the type of
classifier to be attacked.

Threat Model. The objective of this kind of attack is to determine whether
or not a given data record belongs to the training dataset of a specific classi-
fication model. To conduct an attack, the adversary can exploit specific prior
knowledge that can be accessed. In this paper we assume an adversary having
black-box access to the classifier b.: the adversary can only query the model to
obtain a prediction and, as in [2], the model only returns hard labels to queries.

254 A. Monreale et al.

The adversary does not know the model architecture, e.g., the type of classifier.
The adversary knows the total number of classes, the class labels, and the input
format. To perform Aloa we do not need to know distributions of the origi-
nal training dataset, nor during the training of the shadow model, nor in the
perturbation mechanism, in contrast to LabelOnly.

Learning ALOA. Given a black-box b, trained on Dtrain
b , Aloa targets it by

exploiting only the hard labels, e.g. b(x) = ŷ, and deriving a robustness score by
an agnostic data perturbation. This score enables Aloa to determine if a record
x belongs to the training data Dtrain

b of the black-box model under attack. The
algorithm’s pseudo-code is reported in Algorithm 1. The process to create Aloa
model requires as input a dataset Ds: (xi, yi)s in which xi

s has the same format
of training data of b and yi

s is the predicted class obtained querying the black-box
model b. Given the agnostic nature of Aloa, it does not rely on any assumptions
about Ds, which may include a completely random dataset.

After querying the black-box model for labeling each xi
s, Aloa splits the

dataset Ds into training and testing datasets, obtaining Dtrain
s and Dtest

s respec-
tively, and then it trains one or more shadow models, si(·) on sub-samples of
Dtrain

s (lines 6–7). The goal is to mimic the behavior of b, by also knowing which
records are part of the training set and which are not. In particular, as reported
in Algorithm 1, Aloa constructs a dataset D, where assigns the label in to each
record in the training data of the shadow models and the label out to those
belonging to their test data (lines 8–10).

At this point, Aloa performs its core process: the agnostic perturbation of
the data used for training and testing a given shadow model (line 12, Algo-
rithm 1). We call this procedure Noisy Neighborhood Generation and we report
its pseudo-code in Algorithm 2. For each data record xi

s of the shadow dataset
Ds, it generates a neighborhood of n records obtained perturbing the values
of its attributes. Since the goal is to perturb each data record in their local
vicinity without using any knowledge of the dataset’s domain or attributes dis-
tribution, making the algorithm completely domain agnostic, our perturbation
mechanism adds noise values to each attribute of the record under analysis.
Given an instance xi

s composed by m attribute-value pairs (aj , vj), to generate
the noise value for perturbing vj Aloa adds or subtracts to vj a noise values
ν = p×vj (lines 10–14, Algorithm 2). The value p is a percentage randomly gen-
erated from a uniform distribution in the range [pmin, pmax] (line 5, Algorithm
2). The noise value ν is added or subtracted with a probability equal to 50%
(i.e., following a Bernoulli process).

After this perturbation, Aloa computes for each record in the shadow
dataset the robustness score to estimate the confidence of the shadow model
s in predicting the record label (line 13, Algorithm 1). This score is formally
defined as follows:

rScorexi
s
(Nxi

s
) =

⎧

⎨

⎩

0 if s(xi
s) �= b(xi

s)∑
x′∈N

xi
s

F (s(x′),s(xi
s))

|Nxi
s
| otherwise

(1)

Agnostic Label-Only Membership Inference Attack 255

Algorithm 2: Noisy Neighborhood Generation(x, pmin, pmax, n)
Input : x - a record composed by m attribute-value pairs (aj , vj),

pmin, pmax - perturbation percentage range,
n - number of neighbours to be generated

Output: Nx - Set of new generated records

1 Nx ← ∅
2 for t ∈ {1, . . . , n} do
3 x′ ← x
4 for j ∈ {1, . . . , |x′|} do
5 p ← randomNumber(pmin, pmax)
6 if vj == 0 then
7 vj == randomNumber()
8

9 else
10 ν ← vj × p
11 if randomBoolean() == True then
12 vj ← vj + ν
13 else
14 vj ← vj − ν

15 Nx ← Nx ∪ {x′}
16 return Nx

where F (s(x′), s(xi)) is a function returning 0 in case the shadow model predicts
a label for the neighbor x′, which is not coherent with the label predicted for
xi. In other words, if the shadow model is faithful to the black-box model on
xi, the robustness score on this record is computed as the fraction of perturbed
records having coherent labels with xi. This score has values in the range [0, 1]:
values close to 1 mean that the classifier is robust to perturbations, thus the
model is confident in predicting the record, while values close to zero register
low confidence of the classifier in the prediction, indeed, in this case several
neighbors have the opposite class label to the record under analysis, meaning
that the model is unsure of the prediction since it is very close to the boundary.

Once each record of the shadow dataset has its robustness score, we get a
dataset where for each record xi

s we have its score rScorexi
s

and the label in, in
case xi

s belongs to the training dataset of the shadow model, or out if it belongs
to the test dataset. Using the iterative thresholding procedure, Aloa finds the
threshold value on the score that optimizes the accuracy in separating records
with class label in and out (line 15, Algorithm 1).

ALOA Application. Once Aloa has been trained, an adversary can use it to
determine whether a given record belongs to the training dataset of the black-
box model b or not. Given a record x, having the same shape as the records
Dtrain

b on which the black-box was trained, our attack performs the following
steps:

256 A. Monreale et al.

1. Aloa applies the Noisy Neighborhood Generation procedure, presented in
Algorithm 2, to the record x. The result is a set of synthetic neighbors Nx

which are perturbed through our agnostic procedure;
2. Exploiting the neighborhood Nx, Aloa computes the Robustness Score

rScore of the record x applying Eq. (1);
3. The best threshold value thresholdsplit, found during the training of Aloa,

is used to discern whether the record x is part of the training set or not: if
rScore ≥ thresholdbest then it will be predicted as part of the training set,
otherwise not.

5 Experiments

In this Section, we report the results obtained testing Aloa attack, presented
in Sect. 4 the code developed is in Python 3.8 and publicly available [10]. We
present the experiments as follows: we present the datasets used and their pre-
processing (Sect. 5); then, we describe the trained black-box models on which
we tested the validity of our attack (Sect. 5). Lastly, in Sect. 5.1 we present the
results of Aloa attacks to all the ML models, comparing the performance with
respect to the original Mia and LabelOnly attack, and discussing the privacy
risk of each of them.

Datasets. We use three classification datasets, each with different characteris-
tics.

We utilize the Adult dataset, a benchmark dataset of 48, 842 records and 15
numerical or categorical variables. It has information about employees, such as
job, capital loss, marital status, etc. The labels are “≤50K” or “>50K,” referred
to as Class 0 and 1 respectively. They indicate whether the individual’s annual
income will be above or below 50, 000. Next, we exploit the Bank dataset,
which contains information about bank’s customers. It has 150, 000 records and
10 numerical variables. The objective is to classify individuals as either good
or bad creditors. Finally, we include the Synth dataset, which is a synthetic
dataset generated using a Gaussian mixture model. It has 30, 000 records and 30
numerical variables, with 15 classes. We chose this dataset to address the multi-
class classification problem and to evaluate the attack’s behavior in a controlled
environment through synthetic data.

For Adult, we handled null values by removing them exploiting a Pear-
son correlation analysis among the variables (≥ 80% correlation were dropped).
For the categorical variables, we applied a one-hot encoding technique. For the
Bank dataset, null values were also eliminated, and a correlation analysis was
performed. Regarding the Synth dataset, since it was synthetically generated,
we did not perform any pre-processing procedures.

Following the pre-processing stage, we partitioned each dataset into two sub-
sets: (i) 70% of the original dataset (Db) was utilized for training and testing

Agnostic Label-Only Membership Inference Attack 257

the black-box models, and (ii) the remaining 30% of the pre-processed data (Ds)
was designated for training the attack models.

Black-Boxes. Given each pre-processed dataset Db, we split it into Dtrain
b (70%

of it) and Dtest
b (30% of it). We use Dtrain

b for training the black-box models.
The ML models selected are described in the following:

1. Decision Tree (dt), selected for its simplicity, but prone to overfitting and to
noise data;

2. Random Forest (rf), an ensemble model composed of multiple decision trees,
with better performance with respect to the dt;

3. Neural Network (nn), a feed-forward network with some hidden layers, vary-
ing from 1 to 3, depending on the data in input;

For all the models we trained two variants: regularized, with very good per-
formance and with a good level of generalization; and overfitted on purpose,
specific to the input training dataset and with poor generalization capabilities.
This choice resides in the fact that it has been proved that Mia leads to higher
privacy risk when attacking overfitted models ([14,16]). For this reason, we also
want to evaluate how privacy exposure changes concerning the level of overfit-
ting of black-boxes. We report the classification performance of these models in
Table 11. The results reported in this table show that all the black-box models
have an overall good performance, with comparable performance for the rf and
nn models, and a slightly worse prediction performance for the dt, as expected.
The model performance reported in the table also shows a different behavior of
the regularized models w.r.t. the overfitted ones.

Table 1. Prediction performance of the black-box models for all the dataset. We report
the Accuracy both for the train and test sets to appreciate the difference in performance
in generalization capability for the generalized and overfitted models. We achieve good
performance for all the models presented.

Data Metric DT DT-O RF RF-O NN NN-O

TR Acc 0.84 1 0.84 1 0.83 1
Adult

TS Acc 0.81 0.78 0.82 0.85 0.82 0.79

TR Acc 0.78 1 0.81 1 0.78 0.97
Synth

TS Acc 0.77 0.69 0.79 0.78 0.78 0.70

TR Acc 0.84 1 0.98 1 0.93 1
Bank

TS Acc 0.61 0.59 0.87 0.89 0.92 0.90

1 The results reported refer to the best set of hyperparameters determined by a grid
search. The results were validated with a 3 fold cross-validation.

258 A. Monreale et al.

5.1 Evaluation of ALOA and Comparison Against Competitors

In this Section, we present the privacy threats obtained by applying Aloa,
LabelOnly and the original Mia to the trained black-boxes. In order to train
all the attacks, we need to have the shadow dataset Ds having the same format
as the data used for training the black-box model. We employed two variants
of this dataset, denoted as Dstat

s and Drand
s , in our experiments. The former

was designed to have the same statistical distribution as the original training
dataset, whereas the latter was generated randomly. We used Dstat

s for learning
the LabelOnly attack because the procedure described in [2] requires training
the shadow models on a dataset with similar distributions to those of the train-
ing data of the black box, and it also exploits the distribution knowledge in the
computation of the robustness score. Although Aloa does not require the use
of Dstat

s , as it is agnostic to the training data distributions, we conducted exper-
iments with both Dstat

s and Drand
s to evaluate the effectiveness of Aloa and

having a more complete comparison with LabelOnly. To ensure a clear under-
standing of the performance of the attack, we have balanced the Ds used for
creating the attack models: having 50% of the rows of class in and 50% of class
out. This setting is the same used in [2] to clearly compare our proposal and
the attacks in the literature. Indeed, the balanced setting enables the possibility
to compare the attack performance based on accuracy that, in this case, cannot
be influenced by the under or over-representation of one class with respect to
the others. In this way, if the attack has more than 50%

The results of the attacks are reported in Table 2 for Adult, Bank and
Synth. Aloa was run three times for each black-box, with n = 1000 perturba-
tions for each record of Ds (the same n is used for the training of LabelOnly
attack), pmin and pmax set to20.10 and 0.50 respectively, and a Bernoulli prob-
ability p = 0.50 for adding or subtracting the noise value. Mia was created with
8 shadow models and nn as final attack models. For LabelOnly we applied
the same hyper-parameters as in the work [2]: n = 1000 perturbations, with
a Bernoulli flip probability of 0.60% and a Gaussian noise with σ = 0.04. We
remark that Mia and LabelOnly were tested on the Dstat

s due to the assump-
tions needed, while Aloa was tested both on Dstat

s and on Drand
s .

Regarding Adult dataset, Mia and LabelOnly attacks performance is
coherent with the one presented in their original papers. For the Mia, over-
all the attack against regularized models is not effective, apart from the decision
tree with 51% of accuracy. On the other hand, the overfitted models are easily
attacked, in particular rf-o and nn-o. However, the attack on the dt-o is not
posing a privacy threat. This result may be due to the poor prediction perfor-
mance of the dt-o for Adult. In fact, the overall accuracy of the model is 48%,
suggesting that the model is not able to learn patterns in the data. Hence, the
attack cannot have sufficient information from the confidence. By looking at the
LabelOnly attack, it is ineffective for all the regularized models, while it poses
2 This range adjusts the level of perturbation of the data, it is a parameter of the

attack, after some observations shown in Fig. 1 we felt that a range between 0.10
and 0.50 is sufficient to have a good estimate of the robustness of the points.

Agnostic Label-Only Membership Inference Attack 259

privacy threats for all the overfitted ones. Analyzing Aloa in both experimental
settings, we have the same performance as LabelOnly on the overfitted models
with 54% dt, 55% rf, 60% nn. Instead, by looking at the regularized models,
we have in general better performance: the attack has gained 1–3% points in the
attack compared to LabelOnly. With Aloa based on Dstat

s we are always bet-
ter than LabelOnly except for the regularized nn, for which we have the same
performance. Hence, for Adult Aloa poses the worst privacy threats both for
the overfitted and regularized models. Among the ML models, the attack shows
more privacy leakage for the rf and nn. This finding is reasonable because, as
highlighted in prior works, more complex models learn more information.

For Bank dataset, the results are in line with the ones described for Adult,
even if overall they are slightly lower. Interestingly, the improvement in terms of
privacy threats posed by Aloa is more significant for the rf-o model (+3%) and
lower for the nn-o one (+1%). This result may be due to the different structure
of this dataset: it is composed of only a few numerical variables.

In Synth dataset we can better appreciate the effectiveness of Aloa: the
trend is again that the attacks undermine the privacy more in the case of over-
fitted models, while regularized ones remain in danger, but with a lower privacy
risk. Both Aloa and LabelOnly have better privacy threats with respect to
Mia. However, Aloa in both settings shows better or comparable performance
with respect to LabelOnly with an improvement for rf-o and nn-o. Compar-
ing the two experimental settings of Aloa, our results indicate that the perfor-
mance of our attack is generically consistent for both Dstat

s and Drand
s , showing at

most a discrepancy of 1% in accuracy. More importantly, they also demonstrate
that even if our attack is assuming an adversary with weaker knowledge with
respect to LabelOnly, we achieve higher or comparable privacy risks. These
findings have significant implications for privacy protection in ML models.

Overall, the experiments show that Aloa poses a worrying privacy risk, espe-
cially if the model is overfitted. The more complex a model is, the easier it is
to overfit and experience higher privacy leakage. Comparing Aloa against the
LabelOnly attack, we note that for the overfitted models we have comparable
or better performance. This behavior may be the result of the agnostic perturba-
tion we perform, which is independent of the distributions of the input variables,
and hence Aloa is not affected by the slight changes in the data. We remark
that this property is valid for both cases where we use Dstat

s and Drand
s since

the perturbation mechanism always remains agnostic. Regarding Aloa against
the original Mia, the performances of our method are overall better with the
exception of rf-o. For this model, in fact, the accuracies of the Mia attack are
always higher w.r.t. both LabelOnly and Aloa, highlighting that in the case
of overfitted rf the added knowledge of the prediction probability has a greater
impact in this setting. However, for the regularized rf and nn, instead, Mia
shows higher accuracy and precision for the in class but an extremely low recall
and hence F -1 score, showing that this attack is unstable.

Aloa performed overall better than the LabelOnly, with an improvement
up to 3%. It is a significant improvement in the context of privacy assessment,

260 A. Monreale et al.

where every gain in performance can shed light on the privacy leakage of a
model. Aloa is more stable and the perturbation we performed is data agnostic,
without knowledge of the distribution of the features. Importantly, our attack
showed better results in attacking regularized models compared to others.

Table 2. Results of the attacks on the three datasets for all the black-box models
selected. In bold are highlighted the highest privacy risks. We remark that for the Mia
and LabelOnly we exploit the statistical dataset Dstat

s , while Aloa was tested both
on the Dstat

s and on the Drand
s , showing that it is completely agnostic w.r.t. the data

and a good stability. Aloa is the one with the highest privacy threats overall, showing
a good stability since for all the datasets we achieve similar performance.

Adult Bank Synth

Attack Model PIN RIN F1IN Acc PIN RIN F1IN Acc PIN RIN F1IN Acc

dt 0.51 0.53 0.52 0.51 0.50 0.58 0.54 0.51 0.49 0.51 0.50 0.49
dt-o 0.48 0.62 0.55 0.48 0.49 0.49 0.49 0.49 0.51 0.47 0.49 0.51
rf 0.45 0.27 0.34 0.47 0.53 0.16 0.24 0.51 0.73 0.04 0.08 0.51

rf-o 0.59 0.68 0.63 0.61 0.67 0.60 0.63 0.65 0.90 0.86 0.88 0.88

nn 0.53 0.04 0.08 0.50 0.45 0.03 0.06 0.50 0.52 0.30 0.38 0.51

MIA
Dstat

s

nn-o 0.55 0.94 0.69 0.59 0.53 0.85 0.65 0.54 0.58 0.59 0.58 0.58

dt 0.50 0.62 0.55 0.50 0.51 0.79 0.62 0.51 0.58 0.84 0.69 0.62

dt-o 0.52 0.85 0.65 0.54 0.59 0.98 0.74 0.65 0.63 1.00 0.77 0.70

rf 0.51 0.78 0.62 0.51 0.50 0.76 0.61 0.51 0.54 0.94 0.68 0.57

rf-o 0.53 0.83 0.65 0.55 0.55 0.84 0.66 0.57 0.56 1.00 0.72 0.61
nn 0.50 0.55 0.53 0.50 0.50 0.70 0.58 0.50 0.51 0.91 0.65 0.51

LabelOnly
Dstat

s

nn-o 0.56 1.00 0.71 0.60 0.59 0.80 0.68 0.63 0.54 1.00 0.70 0.57

dt 0.51 0.81 0.63 0.52 0.51 0.80 0.62 0.51 0.58 0.84 0.69 0.62

dt-o 0.53 0.86 0.65 0.54 0.59 1.00 0.74 0.66 0.63 1.00 0.77 0.70

rf 0.52 0.51 0.52 0.52 0.51 1.00 0.67 0.52 0.54 0.83 0.66 0.57

rf-o 0.54 0.65 0.59 0.55 0.56 0.98 0.71 0.60 0.58 0.96 0.72 0.63
nn 0.53 0.49 0.51 0.53 0.50 0.76 0.60 0.49 0.51 0.89 0.65 0.52

ALOA
Dstat

s

nn-o 0.56 1.00 0.72 0.60 0.58 0.98 0.73 0.64 0.55 1.00 0.71 0.59

dt 0.52 0.83 0.64 0.53 0.49 0.66 0.56 0.49 0.59 0.81 0.68 0.62

dt-o 0.53 0.86 0.65 0.54 0.59 0.95 0.73 0.64 0.63 0.95 0.76 0.70

rf 0.51 0.44 0.47 0.52 0.49 0.71 0.58 0.48 0.54 0.97 0.69 0.57

rf-o 0.55 0.66 0.59 0.55 0.56 1 0.72 0.60 0.57 0.98 0.72 0.62
nn 0.50 0.64 0.56 0.50 0.50 0.68 0.58 0.51 0.51 0.91 0.66 0.52

ALOA
Drand

s

nn-o 0.56 1 0.72 0.60 0.60 0.84 0.70 0.64 0.54 1 0.70 0.58

Comparison Between Regularized and Overfitted Models. Recently, sev-
eral works have empirically shown that if the model being attacked is overfitted,
the attack will be much more damaging to the users of the training set [14,16].
For this reason, we study the behavior of both models that generalize well and
those that are overfitting. From the results in Table 2, all the overfitted models
exhibit a higher degree of privacy leakage than regularized models, as evidenced
in all three datasets, particularly in the third one. This dataset highlights the vul-
nerability of models that are not properly regularized and exhibit a gap between
training and test accuracy. As outlined in [8], the gap between training and test
accuracy is directly proportional to the efficacy of the accuracy of an attack -
the larger the gap, the more effective the attack. To better analyze this aspect,
we took advantage of the Synth dataset, which allows for a controlled study
in which ML models achieve excellent performance and it is easy to overfit ML
models. In Fig. 1, it is possible to examine the difference in the performance of
Aloa for nn and nn-o trained on the Synth dataset. In particular, we present a

Agnostic Label-Only Membership Inference Attack 261

box plot on the robustness score which shows that the overfitted model exhibits a
larger difference between the average in and out robustness scores, which could
potentially enable an attacker to distinguish between the two classes more easily.
In this way, we empirically prove the existing link between model overfitting and
privacy risk and the train-test gap [8].

Fig. 1. These two box plots show the robustness score behaviour for overfitted and
regularized nn on Synth. It is possible to see that the overfitted exhibits a larger
difference between the average in and out robustness scores, which could enable an
attacker to distinguish between the two classes more easily. This confirms the existing
link between model overfitting and privacy risk and the train-test gap [8]. On the other
hand, the regularized displayed a smaller gap between the two classes, hence separating
the two classes is more difficult.

Analysis on the Number of Shadow Models. There are many conflicting
opinions in the literature about the use of shadow models, i.e., models that mimic
the behavior of the original black box. In fact, in the first publication of Mia
[13] the authors used a large number of shadow models, but in LabelOnly
[2] only one shadow model is used. In our paper, we present the results with
only one shadow model after having analyzed the effectiveness of using different
shadow models, and our results highlight that for Aloa one or k models does
not lead to any improvement. This behavior can be seen in Fig. 2, in which the
performance of the attack on Adult is the same whether using only one or 10
shadow models. Given this finding, our experiments were conducted with just
one shadow model for time constraints.

262 A. Monreale et al.

Fig. 2. The performance of Aloa by changing the number of shadow models from 1
to 10 for the nn-o trained on the Adult dataset. It is clear that the performance of
the attack are not affected by the number of shadow models.

6 Conclusion

We presented Aloa, a variant of the LabelOnly attack. Our proposed attack is
completely data agnostic, both in the shadow model training and in the pertur-
bation mechanism. In particular, the perturbation does not exploit knowledge
of the statistical distributions and domains of the features in the training data.
Our results demonstrate that Aloa outperforms the traditional LabelOnly
attack with an improvement of up to 3% in terms of attack accuracy, although
it assumes an adversary with weaker prior knowledge. This improvement is sig-
nificant in the context of privacy assessment, where every gain in performance
can provide valuable, sensitive insights into the people represented in the data.
The agnostic nature of our attack raises concerns regarding privacy protection,
as it can be executed without any specific assumptions. Moreover, Aloa exhibits
excellent stability in terms of prediction performance, outperforming standard
Mia and other attacks when targeting regularized models. In summary, Aloa
offers a robust and effective approach for assessing the privacy of ML models.

Acknowledgments. This work is supported by the European Union - Horizon
2020 Program under the scheme “INFRAIA-01-2018-2019 - Integrating Activities
for Advanced Communities”, Grant Agreement n.871042, “SoBigData++: European
Integrated Infrastructure for Social Mining and Big Data Analytics” (http://www.
sobigdata.eu/), TAILOR (G.A. 952215) and HumanE-AI-Net (G.A. 952026).

A Appendix: Machine Learning Models
Hyper-parameters

DecisionTree. Parameters for dt and dt-o in Table 3 (Scikit-learn library).

http://www.sobigdata.eu/
http://www.sobigdata.eu/

Agnostic Label-Only Membership Inference Attack 263

Table 3. Best hyper parameter setting for dt and dt-o for each dataset.

Adult Bank Synth

Model Criterion Max depth Max feat Min split Criterion Max depth Max feat Min split Criterion Max depth Max feat Min split

dt Entropy 80 Auto 30 Entropy 20 5 50 Gini 13 Best 2
dt-o Entropy None Auto 20 Entropy None Auto 20 Gini None Auto 20

RandomForest. Parameters for rf and rf-o in Table 4(Scikit-learn library).

Table 4. Best set of hyper parameters for the rf and rf-o for each dataset.

Adult Bank Synth

Model Criterion Max depth Max feat Min split Boostrap Estimators Criterion Max depth Max feat Min split Boostrap Estimators Criterion Max depth Max feat Min split Boostrap Estimators

rf Gini 500 Auto 50 False 100 Gini 100 5 5 True 350 Gini 500 Auto 10 False 100

rf-o Gini False Sqrt 2 True 100 Gini False Sqrt 2 True 100 Gini False Sqrt 2 True 100

NeuralNetwork. Parameters in Table 5 (TensorFlow). The layers are Dense
(Adult 256 nodes for nn and 300 for nn-o; Bank and Synth 300 neurons).
Hidden layers tanh, output layers softmax.

Table 5. Hyper parameters selected for the nn and nn-o models.

Adult Bank Synth

Model Layers Dropout Loss Optim Learning rate Epochs Batch Layers Dropout Loss Optim Learning rate Epochs Batch Layers Dropout Loss Optim Learning rate Epochs Batch

nn 2 0.10 SCC Adam 0.005 10 512 2 0.30 SCC Adam 0.001 30 512 2 0.30 SCC Adam 0.001 30 512

nn-o 6 None SCC Adam 0.001 250 512 6 None SCC Adam 0.001 250 512 6 None SCC Adam 0.001 250 512

References

1. Al-Rubaie, M., Chang, J.M.: Privacy-preserving machine learning: threats and
solutions. IEEE Secur. Priv. 17(2), 49–58 (2019)

2. Choquette-Choo, C.A., Tramer, F., Carlini, N., Papernot, N.: Label-only mem-
bership inference attacks. In: Proceedings of the 38th International Conference on
Machine Learning (2021)

3. Dada, E.G., Bassi, J.S., Chiroma, H., Abdulhamid, S.M., Adetunmbi, A.O.,
Ajibuwa, O.E.: Machine learning for email spam filtering: review, approaches and
open research problems. Heliyon (2019)

4. Dwork, C., et al.: Calibrating noise to sensitivity in private data analysis. In: TCC
2006, pp. 265–284 (2006)

5. Fredrikson, M., Jha, S., Ristenpart, T.: Model inversion attacks that exploit con-
fidence information and basic countermeasures. In: Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security, CCS 2015 (2015)

6. Fredrikson, M., Lantz, E., Jha, S., Lin, S., Page, D., Ristenpart, T.: Privacy in
pharmacogenetics: an end-to-end case study of personalized warfarin dosing. In:
Proceedings of the 23rd USENIX Conference on Security Symposium, SEC 2014
(2014)

264 A. Monreale et al.

7. Ganju, K., Wang, Q., Yang, W., Gunter, C.A., Borisov, N.: Property inference
attacks on fully connected neural networks using permutation invariant represen-
tations. In: Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, CCS 2018 (2018)

8. Hardt, M., Recht, B., Singer, Y.: Train faster, generalize better: stability of stochas-
tic gradient descent. CoRR (2015)

9. Mwinyi, I.H., Narman, H.S., Fang, K.C., Yoo, W.S.: Predictive self-learning content
recommendation system for multimedia contents. In: 2018 Wireless Telecommuni-
cations Symposium (WTS) (2018)

10. Naretto, F., Monreale, A., Rizzo, S.: Datasets for research on Agnostic Label-
Only Membership Inference Attack (2023). https://doi.org/10.6084/m9.figshare.
23559921.v1

11. Pratesi, F., Monreale, A., Trasarti, R., Giannotti, F., Pedreschi, D., Yanagihara,
T.: PRUDEnce: a system for assessing privacy risk vs utility in data sharing ecosys-
tems. Trans. Data Priv. 11(2), 139–167 (2018)

12. Samarati, P., Sweeney, L.: Generalizing data to provide anonymity when disclosing
information. In: ACM (1998)

13. Shokri, R., Stronati, M., Song, C., Shmatikov, V.: Membership inference attacks
against machine learning models. In: IEEE Symposium on Security and Privacy,
pp. 3–18. IEEE Computer Society (2017)

14. Song, L., Shokri, R., Mittal, P.: Membership inference attacks against adversari-
ally robust deep learning models. In: 2019 IEEE Security and Privacy Workshops
(SPW) (2019)

15. Torra, V.: Data Privacy: Foundations, 1st edn. New Developments and the Big
Data Challenge. Springer Publishing Company, Incorporated (2017)

16. Yeom, S., Giacomelli, I., Fredrikson, M., Jha, S.: Privacy risk in machine learning:
analyzing the connection to overfitting. In: 2018 IEEE 31st Computer Security
Foundations Symposium (CSF) (2018)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.6084/m9.figshare.23559921.v1
https://doi.org/10.6084/m9.figshare.23559921.v1
http://creativecommons.org/licenses/by/4.0/

ppAURORA: Privacy Preserving Area
Under Receiver Operating Characteristic

and Precision-Recall Curves

Ali Burak Ünal1,3(B) , Nico Pfeifer2,3 , and Mete Akgün1,3

1 Medical Data Privacy Preserving Machine Learning (MDPPML),
University of Tübingen, Tübingen, Germany

2 Methods in Medical Informatics, University of Tübingen, Tübingen, Germany
3 Institute for Bioinformatics and Medical Informatics (IBMI),

University of Tübingen, Tübingen, Germany
{ali-burak.uenal,nico.pfeifer,mete.akguen}@uni-tuebingen.de

Abstract. Computing an area under the curve (AUC) as a performance
measure to compare the quality of different machine learning models is
one of the final steps of many research projects. Many of these meth-
ods are trained on privacy-sensitive data and there are several different
approaches like ε-differential privacy, federated learning and cryptogra-
phy if the datasets cannot be shared or used jointly at one place for
training and/or testing. In this setting, it can also be a problem to com-
pute the global AUC, since the labels might also contain privacy-sensitive
information. There have been approaches based on ε-differential privacy
to address this problem, but to the best of our knowledge, no exact pri-
vacy preserving solution has been introduced. In this paper, we propose
an MPC-based solution, called ppAURORA, with private merging of indi-
vidually sorted lists from multiple sources to compute the exact AUC as
one could obtain on the pooled original test samples. With ppAURORA,
the computation of the exact area under precision-recall and receiver
operating characteristic curves is possible even when ties between pre-
diction confidence values exist. We use ppAURORA to evaluate two dif-
ferent models predicting acute myeloid leukemia therapy response and
heart disease, respectively. We also assess its scalability via synthetic
data experiments. All these experiments show that we efficiently and
privately compute the exact same AUC with both evaluation metrics as
one can obtain on the pooled test samples in plaintext according to the
semi-honest adversary setting.

Keywords: Privacy preserving AUC · ROC curve · PR curve · MPC

1 Introduction

Recently, privacy preserving machine learning studies aimed at protecting sen-
sitive information during training and/or testing of a model in scenarios where
data is distributed between different sources and cannot be shared in plaintext
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Li et al. (Eds.): NSS 2023, LNCS 13983, pp. 265–280, 2023.
https://doi.org/10.1007/978-3-031-39828-5_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-39828-5_15&domain=pdf
http://orcid.org/0000-0002-7279-620X
http://orcid.org/0000-0002-4647-8566
http://orcid.org/0000-0003-4088-2784
https://doi.org/10.1007/978-3-031-39828-5_15

266 A. B. Ünal et al.

[3,7,8,12,13,15,17,18]. However, privacy protection in the computation of the
area under curve (AUC), which is one of the most preferred methods to compare
different machine learning models with binary outcome, has not been addressed
sufficiently. There are several differential privacy based approaches in the liter-
ature for computing the receiver operating characteristic (ROC) curve [2,5,6].
Briefly, they aim to protect the privacy of the data by introducing noise into
the computation so that one cannot obtain the original data used in the com-
putation. However, due to the nature of differential privacy, the resulting AUC
is different from the one which could be obtained using non-perturbed predic-
tion confidence values (PCVs) when noise is added to the PCVs [16]. For the
precision-recall (PR) curve, there even exists no such studies in the literature.
As a general statement, private computation of the exact AUC has never been
addressed before to the best of our knowledge.

In this paper, we propose a 3-party computation based privacy preserving
area under receiver operating characteristic and precision-recall curves (ppAU-
RORA). For this purpose, we use CECILIA [17] offering several efficient privacy
preserving operations. The most important missing operation of it is division. To
address the necessity of an efficient, private and secure computation of the exact
AUC, we adapt the division operation of SecureNN [18]. Since the building blocks
of CECILIA require less communication rounds than SecureNN, we implemented
the division operation of SecureNN using the building blocks of CECILIA. Using
ppAURORA, we compute the area under the PR curve (AUPR) and ROC curve
(AUROC). We address two different cases of ROC curve in ppAURORA by two
different versions of AUROC computation. The first one is designed for the com-
putation of the exact AUC using PCVs with no tie. In case of a tie of PCVs of
samples from different classes, this version just approximates the metric based
on the order of the samples, having a problem when values of both axes of ROC
curve plot change at the same time. To compute the exact AUC even in case of a
tie, we introduce the second version of AUROC with a slightly higher communi-
cation cost than the first approach. Along with the privacy of the resulting AUC,
since the labels are also kept secret during the whole computation, both versions
are capable of protecting the information of the number of samples belonging
to the classes from all participants of the computation. Otherwise, such infor-
mation could have been used to obtain the order of the labels of the PCVs [19].
Furthermore, since we do not provide the data sources with the ROC curve, they
cannot regenerate the underlying true data. Therefore, both versions are secure
against such attacks [11]. We used the with-tie version of AUROC computation
to compute the AUPR since the values of both axes can change at the same time
even if there is no tie. To the best of our knowledge, ppAURORA is the first
study for the privacy preserving AUPR computation.

2 Motivation

ppAURORA can enable collaborative privacy preserving evaluation of a binary
model. Especially when there are parties with insufficient test samples, even

ppAURORA 267

if these parties obtain the collaboratively trained model, they cannot reliably
evaluate the predictions of this model on their test samples. The result of AUC
on such a small set of test samples could vary significantly as shown in Fig. 1,
making the reliability of the model evaluation questionable.

Fig. 1. AUROC for varying number of test samples from the all dataset

To demonstrate ppAURORA’s contribute to the community more, let us
imagine a scenario where a model is trained collaboratively using MPC frame-
work [7,13,18], federated learning framework [9] or any other privacy preserving
training method. Once the model is obtained, the participating parties can per-
form predictions on the model using their test samples to evaluate it. However,
the parties with fewer data cannot reliably determine the performance of the
model. Instead of individual evaluation of the model that could lead to incorrect
assessment of the model’s performance, they can use ppAURORA to evaluate it
collaboratively and obtain the result of this evaluation as if it was performed on
the pooled test samples of the parties without sacrificing the privacy of neither
the labels nor the predictions of the samples.

3 Preliminaries

Security Model: In this study, we aim to protect the privacy of the PCVs and
the labels of the samples from parties, the ranking of these samples in the glob-
ally sorted list and the resulting AUC. We prove the full security of our solution
(i.e., privacy and correctness) in the presence of semi-honest adversaries that fol-
low the protocol specification, but try to learn information from the execution of
the protocol. We consider a scenario where a semi-honest adversary corrupts a
single server and an arbitrary number of data owners in the simulation paradigm
[4,10] where two worlds are defined: the real world where parties run the protocol
without any trusted party, and the ideal world where parties make the compu-
tation through a trusted party. Security is modeled as the view of an adversary
called a simulator S in the ideal world, who cannot be distinguished from the
view of an adversary A in the real world. The universal composability framework
[4] introduces an adversarial entity called environment Z, which gives inputs to

268 A. B. Ünal et al.

all parties and reads outputs from them. The environment is used in modeling
the security of end-to-end protocols where several secure protocols are used arbi-
trarily. Security here is modeled as no environment can distinguish if it interacts
with the real world and the adversary A or the ideal world and the simulator
S. We also provide privacy in the presence of a malicious adversary corrupting
any single server, which is formalized in [1]. The privacy is formalized by saying
that a malicious party arbitrarily deviating from the protocol description, cannot
learn anything about the inputs and outputs of the honest parties.

Notations: In our secure protocols, we use additive secret sharing over the ring
ZK where K = 264 to benefit from the natural modulo of CPUs of most modern
computers. We denote two shares of x over ZK with (〈x〉0, 〈x〉1).
CECILIA: In ppAURORA, we use secure multi-party computation framework
CECILIA, which has three computing parties, P0, P1 and P2, and uses 2-out-of-
2 additive secret sharing where an �-bit value x is shared additively in a ring
among P0 and P1 as the sum of two values. For �-bit secret sharing of x, we have
〈x〉0 + 〈x〉1 ≡ x mod L where Pi knows only 〈x〉i and i ∈ {0, 1}. All arithmetic
operations are performed in the ring ZL.

3.1 Area Under Curve

One of the most common ways summarizing the plot-based model evaluation
metrics is area under curve (AUC). It calculates the area under the curve of a
plot-based model such as ROC curve and the PR curve.

Area Under ROC Curve (AUROC): The ROC curve takes the sensitivity
and the specificity of a binary classifier into account by plotting the false positive
rate (FPR) on the x-axis and the true positive rate (TPR) on the y-axis. AUC
summarizes this plot by measuring the area between the line and the x-axis,
which is the area under the ROC curve (AUROC). Let M be the number of test
samples, V ∈ [0, 1]M contain the sorted PCVs of test samples in descending order,
T ∈ [0, 1]M and F ∈ [0, 1]M contain the corresponding TPR and FPR values,
respectively, where the threshold for entry i is set to V [i], and T [0] = F [0] = 0. In
case there is no tie in V , the privacy-friendly AUROC computation is as follows:

AUROC =
M∑

i=1

(
T [i] · (F [i] − F [i − 1])

)
(1)

This formula just approximates the exact AUROC in case of a tie in V
depending on samples’ order. As an extreme example, let V have 10 samples
with the same PCV. Let the first 5 samples have label 1 and the last 5 samples
have label 0. Such a setting outputs AUROC = 1 via Eq. 1. In the reverse order,
however, it gives AUROC = 0. To define an accurate formula for the AUROC
in case of such a tie condition, let ξ be the vector of indices in ascending order
where the PCV of the sample at that index and the preceding one are different

ppAURORA 269

for 0 < |ξ| ≤ M where |ξ| denotes the size of the vector. Assuming that ξ[0] = 0,
the computation of AUROC in case of a tie can be done as follows:

AUROC =
|ξ|∑

i=1

(
T [ξ[i − 1]] · (F [ξ[i]] − F [ξ[i − 1]])+

(T [ξ[i]] − T [ξ[i − 1]]) · (F [ξ[i]] − F [ξ[i − 1]])
2

)
(2)

As Eq. 2 indicates, one only needs TPR and FPR values on the points where the
PCV changes to obtain the exact AUROC. We will benefit from this observation
in the privacy preserving AUROC computation when there is a tie condition in
the PCVs.

Area Under PR Curve (AUPR): The PR curve evaluates binary models by
plotting recall on the x-axis and precision on the y-axis and summarizes it by
measuring the area under the PR curve (AUPR). It is generally preferred over
AUROC for problems with class imbalances. Since both precision and recall can
change at the same time even without a tie, we measure the area by using the
Eq. 2 where T becomes the precision and F becomes the recall.

4 ppAURORA

In this section, we give the description of our protocol for ppAURORA where
we have data owners that outsource their PCVs and the ground truth labels in
secret shared form and three non-colluding servers that perform 3-party compu-
tation on secret shared PCVs to compute the AUC. The data sources start the
protocol by outsourcing the labels and the predictions of their test samples to the
servers. Afterward, the servers perform the desired calculation privately. Finally,
they send the shares of the result back to the data sources. The communication
between all parties is performed over a secure channel (e.g., TLS).

Outsourcing: At the start of ppAURORA, each data owner Hi has a list of
PCVs and corresponding ground truth labels for i ∈ {1, . . . , n}. Then, each data
owner Hi sorts its whole list Li according to PCVs in descending order, divides it
into two additive shares Li0 and Li1 , and sends them to P0 and P1, respectively.
We refer to P0 and P1 as proxies.

Sorting: After the outsourcing phase, P0 and P1 obtain the shares of individually
sorted lists of PCVs of the data owners. The proxies need to merge individually
sorted lists pairwise until they obtain the global sorted list of PCVs. This can
be considered as the leaves of a binary tree merging into the root node, which
is, in our case, the global sorted list. Due to the high complexity of privacy
preserving sorting, we decided to make the sorting parametric to adjust the
trade-off between privacy and practicality. Let δ = 2a + 1 be this parameter
determining the number of PCVs that will be added to the global sorted list in
each iteration for a ∈ N, and Lik and Ljk be the shares of two individually sorted

270 A. B. Ünal et al.

lists of PCVs in Pks for k ∈ {0, 1} and |Li| ≥ |Lj | where |.| is the size operator.
First, the proxies privately compare the lists elementwise. They use the results
of the comparison in MUXs to privately exchange the shares of PCVs in each
pair, if the PCV in Lj is larger than the PCV in Li. In the first MUX, they input
the share in Lik to MUX first and then the share in Ljk along with the share
of the result of the comparison to select the larger of the PCVs. They move the
results of the MUX to Lik . In the second MUX, they reverse the order to select
the smaller of the PCVs and move it to Ljk . We call this stage shuffling. Then,
they move the top PCV of Lik to the merged list of PCVs. If δ �= 1, then they
continue comparing the top PCVs in the lists and moving the largest of them
to the merged list. Once they move δ PCVs to the merged list, they shuffle the
lists again, and if |Ljk | > |Lik |, then they switch the lists. Until finishing up the
PCVs in Lik , the proxies follow shuffling-moving cycle.

By shuffling, we increase the number of candidates for a specific position and,
naturally, lower the chance of matching a PCV in the individually sorted lists
to a PCV in the merged list. The highest chance of matching is 50%, leading
to a very low chance of guessing the matching of whole PCVs in the list. In
sorting, δ must be an odd number to make sure that shuffling always leads to an
increment in the number of candidates. An even value of δ may cause ineffective
shuffling during the sorting. Although δ = 1 provides the utmost privacy, which
means that the chance of guessing the matching of the whole PCVs is 1 over
the number of all possible merging of those two individually sorted lists, the
execution time of sorting can be relatively high. For δ �= 1, the execution time
can be low but the number of possible matching of PCVs in the individually
sorted list to the merged list decreases in parallel to the increment of δ. As a
guideline on the choice of δ, one can decide it based on how much privacy loss
any matching could cause on the specific task. In case of δ �= 1 and |Ljk | = 1
at some point in the sorting, the sorting continues as if it had just started with
δ = 1 to make sure that the worst case scenario for guessing the matching can
be secured. More details of the sorting phase are in the Appendix.

Division (DIV): For the exact AUC, we need a division operation which is
not offered by CECILIA. Therefore, we adapted the division operation from
SecureNN [18]. However, we use the building blocks of CECILIA to implement
the division operation since they have less communication round complexities
than SecureNN. DIV uses long division to find the quotient. Although DIV of
SecureNN is rather a normalization operation, requiring the denominator to be
larger than the nominator, it is still useful for the exact AUC computation.
In both AUROC and AUPR, the denomitors and nominators of the division
operations satisfy this requirement.

4.1 Secure Computation of AUROC

Once P0 and P1 obtain the global sorted list of PCVs, they calculate the AUROC
based on this list using one of the versions of AUROC depending on whether
there exists a tie in the list.

ppAURORA 271

input : 〈L〉i = ({〈con1〉i, 〈label1〉i}, ..., {〈conM 〉i, 〈labelM 〉i}), 〈L〉i is a share of the
global sorted list of PCVs, and labels

1 For each i ∈ {0, 1}, Pi executes Steps 2-11
2 〈TP 〉i ← 0, 〈P 〉i ← 0, 〈pFP 〉i ← 0, 〈N〉i ← 0
3 foreach item 〈t〉 ∈ 〈L〉 do
4 〈TP 〉i ← 〈TP 〉i + 〈t.label〉i
5 〈P 〉i ← 〈P 〉i + i
6 〈FP 〉i ← 〈P 〉i − 〈TP 〉i
7 〈A〉i ← MUL(〈TP 〉i, 〈FP 〉i − 〈pFP 〉i)
8 〈N〉i ← 〈N〉i + 〈A〉i
9 〈pFP 〉i ← 〈FP 〉i

10 〈D〉i ← MUL(〈TP 〉i, 〈FP 〉i)
11 〈ROC〉i ← DIV(〈N〉i, 〈D〉i)
Algorithm 1: Secure AUROC computation without ties

input : 〈L〉i = ({〈con1〉i, 〈label1〉i}, , ..., {〈conM 〉i, 〈labelM 〉i}), 〈L〉i is a share of
the global sorted list of PCVs, and labels

1 For each i ∈ {0, 1}, Pi executes Steps 2-14
2 〈TP 〉i ← 0, 〈P 〉i ← 0, 〈pFP 〉i ← 0, 〈pTP 〉i ← 0, 〈N1〉i ← 0, 〈N2〉i ← 0
3 foreach item 〈t〉i ∈ 〈L〉i do
4 〈TP 〉i ← 〈TP 〉i + 〈t.label〉i
5 〈P 〉i ← 〈P 〉i + i
6 〈FP 〉i ← 〈P 〉i − 〈TP 〉i
7 〈A〉i ← MUL([〈pTP 〉i, 〈TP 〉i − 〈pTP 〉i], [〈FP 〉i − 〈pFP 〉i, 〈FP 〉i − 〈pFP 〉i])
8 〈A〉i ← MUL(〈A〉i, [〈t.con〉i, 〈t.con〉i])
9 〈N1〉i ← 〈N1〉i + 〈A[0]〉i

10 〈N2〉i ← 〈N2〉i + 〈A[1]〉i
11 [〈pre FP 〉i, 〈pre TP 〉i] ← MUX([〈pFP 〉i, 〈pTP 〉i], [〈FP 〉i, 〈TP 〉i],

[〈t.con〉i, 〈t.con〉i])
12 〈N〉i ← 2 · 〈N1〉i + 〈N2〉i
13 〈D〉i ← 2 · MUL(〈TP 〉i, 〈FP 〉i)
14 〈ROC〉i ← DIV(〈N〉i, 〈D〉i)

Algorithm 2: Secure AUROC computation with tie

Secure AUROC Computation without Ties: In Algorithm 1, we compute
the AUROC as shown in Eq. 1 by assuming that there is no tie in the sorted
list of PCVs. At the end of the secure computation, the shares of numerator N
and denominator D are computed. Since N is always greater than or equal to
D, we can use the division of SecureNN to obtain AUROC = N/D. With the
help of high numeric value precision of the results, most of the machine learning
algorithms yield different PCVs for samples. Therefore, this version of computing
the AUROC is applicable to most machine learning tasks. However, in case of
a tie between samples from two classes in the PCVs, it does not guarantee the
exact AUROC. Depending on the order of the samples, it approximates the
score. To have a more accurate AUROC, we propose another version of AUROC
computation with a slightly higher communication cost in the next section.

Secure AUROC Computation with Ties: To detect ties in the list of PCVs,
P0 and P1 compute the difference between each PCV and its following PCV.
P0 computes the modular additive inverse of its shares. The proxies apply a
common random permutation to the bits of each share in the list to prevent
P2 from learning the non-zero relative differences. They also permute the list
of shares using a common random permutation to shuffle the order of the real

272 A. B. Ünal et al.

input : 〈C〉i = (〈con1〉i, ..., 〈conM 〉i), 〈C〉i is a share of the global sorted list of
PCVs, M is the number of PCVs

1 P0 and P1 hold a common random permutation π for M items
2 P0 and P1 hold a list of common random values R
3 P0 and P1 hold a list of common random permutation σ for � items
4 For each i ∈ {0, 1}, Pi executes Steps 5-13
5 for j ← 1 to M − 1 do
6 〈C[j]〉i ← (〈C[j]〉i − 〈C[j + 1]〉i)
7 if i = 0 then
8 〈C[j]〉i = K − 〈C[j]〉i
9 〈C[j]〉i = 〈C[j]〉i ⊕ R[j]

10 〈C[j]〉i = σj(〈C[j]〉i)
11 〈D〉i = π(〈C〉i)
12 Insert arbitrary number of dummy zero and non-zero values to randomly chosen

locations in 〈D〉i
13 Pi sends 〈D〉i to P2
14 P2 reconstructs D by computing 〈D〉0 ⊕ 〈D〉1
15 foreach item 〈d〉 ∈ 〈D〉 do
16 if d > 0 then
17 d ← 1

18 P2 creates new shares of D, denoted by 〈D〉0 and 〈D〉1, and sends them to P0 and P1,
respectively.

19 For each i ∈ {0, 1}, Pi executes Steps 18-21
20 Remove dummy zero and non-zero values from 〈D〉i
21 〈C〉i = π−1(〈D〉i)
22 for j ← 1 to M − 1 do
23 〈L[j].con〉i ← 〈C[j]〉i
24 〈L[M].con〉i ← i

Algorithm 3: Secure detection of ties

test samples. Then, they send the list of shares to P2. P2 XORes two shares
and maps the result to one, if it is greater than zero and zero otherwise. Then,
proxies privately map PCVs to zero if they equal to their previous PCV and
one otherwise. This phase is depicted in Algorithm 3. In Algorithm 2, P0 and
P1 use these mappings to take only the PCVs which are different from their
subsequent PCV into account in the computation of the AUROC based on Eq. 2.
In Algorithm 2, DIV adapted from SecureNN can be used since the numerator is
always less than or equal to the denominator, as in the AUROC computation.

4.2 Secure AUPR Computation

As in the AUROC with tie computation, P0 and P1 map a PCV in the global
sorted list to 0 if it equals the previous PCV and 1 otherwise via Algorithm
3. Then, we use Eq. 2 to calculate AUPR as shown in Algorithm 4. The most
significant difference of AUPR from AUROC with tie computation is that the
denominator of each precision value is different in the AUPR calculation. Thus,
we need to compute the precision for each iteration in advance, requiring a
vectorized division operation before iterating the list of PCVs mapped to one.

ppAURORA 273

input : 〈L〉i = ({〈con1〉i, 〈label1〉i}, ..., {〈conM 〉i, 〈labelM 〉i}), 〈L〉i is a share of the
global sorted list of PCVs, and labels

1 P0 and P1 hold a common random permutation π for M items
2 For each i ∈ {0, 1}, Pi executes Steps 3-19
3 〈TP [0]〉i ← 0, 〈RC[0]〉i ← 0, 〈pPC〉i ← i, 〈pRC〉i ← 0, 〈N1〉i ← 0, 〈N2〉i ← 0
4 for j ← 1 to M do
5 〈TP [j]〉i ← 〈TP [j − 1]〉i + 〈L[j].label〉i
6 〈RC[j]〉i ← 〈RC[j − 1]〉i + i

7 〈T TP 〉i = π(〈TP 〉i)
8 〈T RC〉i = π(〈RC〉i)
9 〈T PC〉i ← DIV(〈T TP 〉i, 〈T RC〉i)

10 〈PC〉i = π′(〈T PC〉i)
11 for j ← 1 to M do
12 〈A〉i ← MUL([〈pPC〉i〈RC[j]〉i −〈pRC〉i], [〈RC[j]〉i −〈pRC〉i, 〈PC[j]〉i −〈pPC〉i])

13 〈A〉i ← MUL(〈A〉i, [〈L[j].con〉i, 〈L[j].con〉i])
14 〈N1〉i ← 〈N1〉i + 〈A[0]〉i
15 〈N2〉i ← 〈N2〉i + 〈A[1]〉i
16 [〈pPC〉i, 〈pRC〉i] ←

MUX([〈pPC〉i, 〈pRC〉i], [〈PC[j]〉i, 〈RC[j]〉i],
[〈L[j].con〉i, 〈L[j].con〉i])

17 〈N〉i ← 2 · 〈N1〉i + 〈N2〉i
18 〈D〉i ← 2 · 〈TP [M]〉i
19 〈PRC〉i ← DIV(〈N〉i, 〈D〉i)

Algorithm 4: Secure AUPR computation

5 Security Analysis

In this section, we provide semi-honest simulation-based security proofs for
the computations of ppAURORA based on the security of CECILIA’s building
blocks.

Lemma 1. The protocol in Algorithm 1 securely computes AUROC in the
(FMUL,FDIV) hybrid model.

Proof. In the protocol, we separately calculate the numerator N and the denom-
inator D of the AUROC, which can be expressed as AUROC = N

D . Let us first
focus on the computation of D. It is equal to the multiplication of the number
of samples with label 1 by the number of samples with label 0. In the end, we
have the number of samples with label 1 in TP and calculate the number of
samples with label 0 by P −TP . Then, the computation of D is simply the mul-
tiplication of these two values. To compute N , we used Eq. 1. We have already
shown the denominator part of it. For the numerator part, we need to multiply
the current TP by the change in FP and sum up these multiplication results.
〈A〉 ← MUL(〈TP 〉, 〈FP 〉 − 〈pFP 〉) computes the contribution of the current
sample on the denominator and we accumulate all the contributions in N , which
is the numerator part of Eq. 1. Therefore, we can conclude that we correctly
compute the AUROC.

Next, we prove the security of our protocol. Pi where i ∈ {0, 1} sees {〈A〉}j∈M ,
〈D〉 and 〈ROC〉, which are fresh shares of these values. Thus the view of Pi is
perfectly simulatable with uniformly random values.

274 A. B. Ünal et al.

Lemma 2. The protocol in Algorithm 3 securely marks the location of ties in
the list of prediction confidences.

Proof. For the correctness of our protocol, we need to prove that for each index
j in L, L[j].con = 0 if (C[j] − C[j + 1]) = 0, L[j].con = 1, otherwise. We first
calculate the difference of successive items in C. Assume we have two additive
shares (〈a〉0, 〈a〉1) of a over the ring ZK . If a = 0, then (K − 〈a〉0) ⊕ 〈a〉1 = 0
and if a �= 0, then (K − 〈a〉0) ⊕ 〈a〉1 �= 0 where K − 〈a〉0 is the additive modular
inverse of 〈a〉0. We use this fact in our protocol. P0 computes the additive inverse
of each item 〈c〉0 in 〈C〉0 which is denoted by 〈c〉′

0, XORes 〈c〉′
0 with a common

random number in R, which is denoted by 〈c〉′′
0 and permutes the bits of 〈c〉′′

0

with a common permutation σ which is denoted by 〈c〉′′′
0 . P1 XORes each item

〈c〉1 in 〈C〉1 with a common random number in R which is denoted by 〈c〉′′
1

and permutes the bits of 〈c〉′′
1 with a common permutation σ which is denoted

by 〈c〉′′′
1 . Pi where i ∈ {0, 1} permutes values in 〈C〉′′′

i by a common random
permutation π which is denoted by 〈D〉i. After receiving 〈D〉0 and 〈D〉1, P2

maps each item d of D to 0 if 〈d〉′
0 ⊕ 〈d〉1 = 0 which means 〈d〉0 + 〈d〉1 = 0 and

maps 1 if 〈d〉′
0 ⊕ 〈d〉1 �= 0 which means 〈d〉0 + 〈d〉1 �= 0. After receiving a new

share of D from P2, Pi where i ∈ {0, 1} removes dummy values and permutes
remaining values by π−1. Therefore, our protocol correctly maps items of C to
0 or 1.

We next prove the security of our protocol. Pi where i ∈ {0, 1} calculates the
difference of successive prediction values. The view of P2 is D, which includes real
and dummy zero values. Pi XORes each item of 〈C〉i with fresh boolean shares
of zero, applies a random permutation to bits of each item of 〈C〉i, applies
a random permutation π to 〈C〉i and add dummy zero and non-zero values.
Thus the differences, the positions of the differences, and the distribution of the
differences are completely random. The number of zero and non-zero values are
not known to P2 due to dummy values. With common random permutations
σj∈M and common random values R[j], j ∈ M , each item in C is hidden. Thus
P2 can not infer anything about real values in C. Furthermore, the number of
repeating predictions is not known to P2 due to the random permutation π.

Lemma 3. The protocol in Algorithm 2 securely computes AUROC in (FMUL,
FMUX, FDIV) hybrid model.

Proof. To compute the AUROC in case of a tie, we use Eq. 2, of which we
calculate the numerator and the denominator separately. The calculation of the
denominator D is the same as Lemma 1. The computation of the numerator
N has two different components, which are N1 and N2. N1, more precisely the
numerator of T [i−1]∗ (F [i]−F [i−1]), is similar to the no-tie version of privacy
preserving AUROC computation. This part corresponds to the rectangle areas
in the ROC curve. The decision of adding this area A to the cumulative area
N1 is made based on the result of the multiplication of A by L.con. L.con = 1
indicates if the sample is one of the points of prediction confidence change, 0
otherwise. If it is 0, then A becomes 0 and there is no contribution to N1. If it
is 1, then we add A to N1. On the other hand, N2, which is the numerator of

ppAURORA 275

(T [i]−T [i−1])∗ (F [i]−F [i−1]), accumulates the triangular areas. We compute
the possible contribution of the current sample to N2. In case this sample is not
one of the points that the prediction confidence changes, which is determined by
L.con, then the value of A is set to 0. If it is, then A remains the same. Finally,
A is added to N2. Since there is a division by 2 in the second part of Eq. 2,
we multiply N1 by 2 to make them have common denominator. Then, we sum
N1 and N2 to obtain N . To have the term 2 in the common denominator, we
multiply D by 2. As a result, we correctly compute the denominator and the
nominator of the AUROC.

Next, we prove the security of our protocol. Pi where i ∈ {0, 1} sees {〈A〉}j∈M ,
{〈pFP 〉}j∈M , {〈pTP 〉}j∈M , 〈D〉 and 〈ROC〉, which are fresh shares of them.
Thus the view of Pi is perfectly simulatable with uniformly random values.

Lemma 4. The protocol in Algorithm 4 securely computes AUPR in (FMUL,
FMUX, FDIV) hybrid model.

Proof. To compute the AUPR, we use Eq. 2 of which we calculate the numerator
and the denominator separately. We nearly perform the same computation with
the AUROC with tie computation. The main difference is that we need to per-
form a division to calculate each precision value because denominators of each
precision value are different. The rest of the computation is the same with the
computation in Algorithm 2. The readers can follow the proof of Lemma 3.

Next, we prove the security of our protocol. Pi where i ∈ {0, 1} sees
{〈T PC〉}j∈M , {〈A〉}j∈M , {〈pPC〉}j∈M , {〈pRC〉}j∈M and 〈PRC〉, which are
fresh shares of them. Thus the view of Pi is perfectly simulatable with uniformly
random values.

Lemma 5. The sorting protocol in Sect. 4 securely merges two sorted lists in
(FCMP,FMUX) hybrid model.

Proof. First, we prove the correctness of our merge sorting of lists L1 and L2.
In the merging of L1 and L2, the corresponding values are first compared using
CMP operation. The larger values are placed in L1 and the smaller values are
placed in L2, after MUX operation is called twice. This process is called shuffling
because it shuffles the corresponding values in the two lists. After the shuffling,
we know that the largest element of the two lists is the top element of L1. Thus, it
is moved to the global sorted list L3. On the next step, the top elements of L1 and
L2 are compared with CMP method. The comparison result is reconstructed by
P0 and P1 and the top element of L1 or L2 is moved to L3 based on the result of
CMP. The selection operation also gives the largest element of L1 and L2 because
L1 and L2 are sorted. We show that shuffling and selection operations give the
largest element of two sorted lists. This ensures that our merge sort algorithm
that only uses these operations correctly merges two sorted lists privately.

Next, we prove the security of our merge sort algorithm in which CMP and
MUX are called. CMP outputs fresh shares of comparison of corresponding values
in L1 and L2. Shares of these comparison results are used in MUX that generates
fresh shares of the corresponding values. Thus, P0 and P1 cannot precisely map

276 A. B. Ünal et al.

Fig. 2. The scalability of ppAURORA to varying (a) number of samples, (b) number
of parties and (c) δ where the other parameters are fixed

these values to the values in L1 and L2. In the selection operation, CMP is
called and its reconstructed output is used to select. P0 and P1 are still unable
to map the values added to L3 to the values in L1 and L2 precisely since at least
one shuffling operation took place before these repeated selection operations.
Shuffling and δ − 1 selection operations are performed repeatedly until the L1 is
empty. After each shuffling operation, the fresh share of the larger corresponding
values in L1 and the fresh share of the smaller corresponding values in L2 are
stored. The view of P0 and P1 are perfectly simulatable with random values due
to the shuffling process performed at regular intervals.

To prevent the usage of unshuffled values in some cases, the following rules
are followed in the execution of the merge protocol. If there are two lists that
do not have the same length, the longer list is chosen as L1. If the δ is greater
than the length of the L2 list, it is set to the largest odd value smaller or equal
to the length of L2 so that the unshuffled values that L1 may have are not used
in selection processes. If the length of L2 is reduced to 1 at some point in the
sorting, the δ is set to 1. Thus L2 will have 1 element until the end of the merge
and shuffling is done before each selection. After moving δ values to the sorted
list, if the length of L2 is greater than the length of L1, we switch the list.

5.1 Privacy Against Malicious Adversaries

Araki et al. [1] defined a privacy notion against malicious adversaries in the client-
server setting where the servers performing secure computation on the shares of
the inputs to produce the shares of the outputs do not see the plain inputs and
outputs of the clients, which is very similar to our setting. In our framework, two
parties exchange a seed to generate common random values between them. Two
parties randomize their shares using these random values, which are unknown
to the third party. It is very easy to add fresh shares of zero to outputs of two
parties with common random values shared between them. In our algorithms, we
do not state the randomization of outputs with fresh shares of zero. Thus, our
framework provides privacy against a malicious party by relying on the security
of a seed shared between two honest parties.

ppAURORA 277

6 Results

Dataset: We used the Acute Myeloid Leukemia (AML) dataset1 and the UCI
Heart Disease dataset2 for the correctness analysis of ppAURORA. AML dataset
is from the submission of the team Snail, which has the lowest score, in the
first subchallenge of the DREAM Challenge [14] and has 191 samples, among
which 136 patients have complete remission. UCI Heart Disease test set has 54
samples with binary outcome. Moreover, we aimed to analyze the scalability of
ppAURORA for different settings. For this purpose, we generated a synthetic
dataset with no restriction other than having the PCVs from [0, 1].

Experimental Setup: We conducted our experiments on LAN and WAN set-
tings. In the LAN, we ran the experiments with 0.18 ms round trip time (RTT).
In the WAN, we simulated the network connection with 10 ms RTT.

Correctness Analysis: We conducted the correctness analysis on the LAN set-
ting. To assess the correctness of AUROC with tie, we computed the AUROC of
the predictions on the AML dataset by ppAURORA, yielding AUROC = 0.693
which is the same the result obtained without privacy on the DREAM Challenge
dataset. For the correctness of AUROC with no-tie of ppAURORA, we randomly
picked one of the samples in tie condition in DREAM Challenge dataset and gen-
erated a subset of the samples with no tie. We got the same AUROC with no-tie
version of AUROC of ppAURORA as the non-private computation. We directly
used the UCI dataset in AUROC with no-tie since it does not have any tie con-
dition. The result, which is AUROC = 0.927, is the same for both private and
non-private computation. Besides, we verified that ppAURORA computes the
same AUPR as for the non-private computation for both the DREAM Challenge
and the UCI dataset, which are AUPR = 0.844 and AUPR = 0.893, respectively.
These results indicate that ppAURORA can privately compute the exact same
AUC as one could obtain on the pooled test samples.

Scalability Analysis: We evaluated the scalability of no-tie and with-tie
versions of AUROC and AUPR of ppAURORA to the number of samples
M ∈ {64, 128, 256, 512, 1024} with δ = 1 and 3 data sources. The results showed
that ppAURORA scales almost quadratically in terms of both communication
costs among all parties and the execution time of the computation. We also
analyzed the performance of all computations of ppAURORA on a varying num-
ber of data sources. We fixed δ = 1 and the number of samples in each data
sources to 1000, and we experimented with D data sources where D ∈ {2, 4, 8}.
ppAURORA scales around quadratically to the number of data sources. We
also analyzed the effect of δ ∈ {3, 5, 11, 25, 51, 101} by fixing D to 8 and M in
each data source to 1000. The execution time displays a logarithmic decrease for
increasing δ. In all analyses, since the dominating factor is sorting, the execu-
tion times of the computations are close to each other. Additionally, our analysis
showed that LAN is 12 to 14 times faster than WAN on average due to the high
1 https://www.synapse.org/#!Synapse:syn2700200.
2 https://archive.ics.uci.edu/ml/datasets/heart+disease.

https://www.synapse.org/#!Synapse:syn2700200
https://archive.ics.uci.edu/ml/datasets/heart+disease

278 A. B. Ünal et al.

Table 1. The results of AUPR computation with ppAURORA where D is the num-
ber of data sources and M is the number of samples in one data source. UNB, i.e.
unbalanced sample distribution, is {12, 18, 32, 58, 107, 258, 507, 1008}.

Communication Costs (MB)

D × M δ P1 P2 Helper Total Time
(sec)

3 × 64 1 1.96 1.3 1.13 4.39 24.41

3 × 128 1 6.61 4.14 3.97 14.72 48.05

3 × 256 1 24.44 15.23 15.06 54.73 95.65

3 × 512 1 93.23 58.44 58.26 209.93 191.55

3 × 1024 1 359.67 226.62 226.41 812.7 355.32

2 × 1000 1 125.05 78.37 78.19 281.61 174.16

4 × 1000 1 726.44 458.81 458.57 1643.82 523.39

8 × 1000 1 3355.74 2125.91 2125.51 7607.16 1404.22

8 × 1000 3 1692.85 1069.58 1069.25 3831.68 1194.08

8 × 1000 5 1137.91 717.45 717.15 2572.51 1105.46

8 × 1000 11 583.02 365.36 365.08 1313.46 1032.29

8 × 1000 25 284.22 175.76 175.5 635.48 972.0

8 × 1000 51 156.23 94.54 94.29 345.06 935.65

8 × 1000 101 93.59 54.79 54.53 202.91 940.07

8 × UNB 1 130.48 81.82 81.6 293.9 379.99

round trip time of WAN, which is approximately 10 ms. Even with such a scal-
ing factor, ppAURORA can be deployed in real life scenarios if the alternative
is a more time-consuming approval process required for gathering all data in
one place still protecting the privacy of data. Figure 2 and Table 1 display the
results.

7 Conclusion

In this work, we presented an efficient and exact solution based on a secure
3-party computation framework to compute AUC of the ROC and PR curves
privately even when there exist ties in the PCVs. We benefited from the built-in
building blocks of CECILIA and adapted the division operation of SecureNN to
compute the exact AUC. ppAURORA is secure against passive adversaries in
the honest majority setting. We demonstrated that ppAURORA can compute
correctly and privately the exact AUC that one could obtain on the pooled
plaintext test samples, and ppAURORA scales quadratically to the number of

ppAURORA 279

both parties and samples. In future work, we will further optimize the sorting
phase in terms of both privacy and efficiency.

Acknowledgement. This study is supported by the DFG Cluster of Excellence
“Machine Learning - New Perspectives for Science”, EXC 2064/1, project number
390727645 and the German Ministry of Research and Education (BMBF), project
number 01ZZ2010.

References

1. Araki, T., Furukawa, J., Lindell, Y., Nof, A., Ohara, K.: High-throughput semi-
honest secure three-party computation with an honest majority. In: Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications Security,
pp. 805–817 (2016)

2. Boyd, K., Lantz, E., Page, D.: Differential privacy for classifier evaluation. In:
Proceedings of the 8th ACM Workshop on Artificial Intelligence and Security, pp.
15–23 (2015)

3. Byali, M., Chaudhari, H., Patra, A., Suresh, A.: Flash: fast and robust framework
for privacy-preserving machine learning. Proc. Priv. Enh. Technol. 2020(2), 459–
480 (2020)

4. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: 42nd Annual Symposium on Foundations of Computer Science,
FOCS 2001, 14–17 October 2001, Las Vegas, Nevada, USA, pp. 136–145. IEEE
Computer Society (2001). https://doi.org/10.1109/SFCS.2001.959888

5. Chaudhuri, K., Vinterbo, S.A.: A stability-based validation procedure for differ-
entially private machine learning. In: Advances in Neural Information Processing
Systems, pp. 2652–2660 (2013)

6. Chen, Y., Machanavajjhala, A., Reiter, J.P., Barrientos, A.F.: Differentially private
regression diagnostics. In: ICDM, pp. 81–90 (2016)

7. Damg̊ard, I., Escudero, D., Frederiksen, T., Keller, M., Scholl, P., Volgushev, N.:
New primitives for actively-secure MPC over rings with applications to private
machine learning. In: 2019 IEEE Symposium on Security and Privacy (SP), pp.
1102–1120. IEEE (2019)

8. Juvekar, C., Vaikuntanathan, V., Chandrakasan, A.: {GAZELLE}: a low latency
framework for secure neural network inference. In: 27th {USENIX} Security Sym-
posium ({USENIX} Security 2018), pp. 1651–1669 (2018)

9. Li, B., Wu, Y., Song, J., Lu, R., Li, T., Zhao, L.: Deepfed: federated deep learning
for intrusion detection in industrial cyber-physical systems. IEEE Trans. Industr.
Inf. 17(8), 5615–5624 (2020)

10. Lindell, Y.: How to simulate it – a tutorial on the simulation proof technique. In:
Lindell, Y. (ed.) Tutorials on the Foundations of Cryptography. ISC, pp. 277–346.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57048-8 6

11. Matthews, G.J., Harel, O.: An examination of data confidentiality and disclosure
issues related to publication of empirical ROC curves. Acad. Radiol. 20(7), 889–896
(2013)

12. Mohassel, P., Rindal, P.: ABY3: a mixed protocol framework for machine learning.
In: Proceedings of the 2018 ACM SIGSAC Conference on Computer and Commu-
nications Security, pp. 35–52 (2018)

https://doi.org/10.1109/SFCS.2001.959888
https://doi.org/10.1007/978-3-319-57048-8_6

280 A. B. Ünal et al.

13. Mohassel, P., Zhang, Y.: Secureml: a system for scalable privacy-preserving
machine learning. In: 2017 IEEE Symposium on Security and Privacy (SP), pp.
19–38. IEEE (2017)

14. Noren, D.P., et al.: A crowdsourcing approach to developing and assessing predic-
tion algorithms for AML prognosis. PLoS Comput. Biol. 12(6), e1004890 (2016)

15. Patra, A., Suresh, A.: BLAZE: blazing fast privacy-preserving machine learning. In:
27th Annual Network and Distributed System Security Symposium, NDSS 2020,
San Diego, California, USA, 23–26 February 2020. The Internet Society (2020)

16. Sun, J., Yang, X., Yao, Y., Xie, J., Wu, D., Wang, C.: Differentially private AUC
computation in vertical federated learning. arXiv preprint arXiv:2205.12412 (2022)

17. Ünal, A.B., Akgün, M., Pfeifer, N.: CECILIA: comprehensive secure machine learn-
ing framework. CoRR abs/2202.03023 (2022). https://arxiv.org/abs/2202.03023

18. Wagh, S., Gupta, D., Chandran, N.: SecureNN: efficient and private neural network
training. IACR Cryptology ePrint Archive, vol. 2018, p. 442 (2018)

19. Whitehill, J.: How does knowledge of the AUC constrain the set of possible ground-
truth labelings? In: Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 33, pp. 5425–5432 (2019)

http://arxiv.org/abs/2205.12412
https://arxiv.org/abs/2202.03023

Security Through Hardware

Modular Polynomial Multiplication Using
RSA/ECC Coprocessor

Aurélien Greuet1(B) , Simon Montoya1,2 , and Clémence Vermeersch1

1 IDEMIA, Cryptography and Security Labs, Courbevoie, France
{aurelien.greuet,simon.montoya,clemence.vermeersch}@idemia.com

2 LIX, INRIA, CNRS, École Polytechnique, Institut Polytechnique de Paris,
Palaiseau, France

simon.montoya@lix.polytechnique.fr

Abstract. Modular polynomial multiplication is a core and costly oper-
ation of ideal lattice-based schemes. In the context of embedded devices,
previous works transform the polynomial multiplication to an integer one
using Kronecker substitution. Thanks to this transformation, existing
coprocessors which handle large-integer operations can be re-purposed to
speed-up lattice-based cryptography. In a nutshell, the Kronecker substi-
tution transforms by evaluation the polynomials to integers, multiplies
it with an integer multiplication and gets back to a polynomial result
using a radix conversion. The previous work focused on optimization
of the integer multiplication using coprocessors. In this work, we pur-
sue the seminal research by optimizing the evaluation, radix conversion
and the modular reductions modulo q with today’s RSA/ECC copro-
cessor. In particular we show that with a coprocessor handling addi-
tion/subtraction, (modular) multiplication, shift and logical AND on
large integers, the whole modular polynomial multiplication can be com-
puted. The efficiency of our modular polynomial multiplication depends
on the component specification and on the cryptosystem parameters
set. Hence, we assess our algorithm on a chip for several lattice-based
schemes, which are finalists of the NIST standardization. Moreover, we
compare our modular polynomial multiplication with other polynomial
multiplication techniques.

Keywords: Post-Quantum Lattice-based Cryptography · Modular
Polynomial Multiplication · Embedded devices

1 Introduction

In the next few years, a quantum computer powerful enough to run Shor’s algo-
rithm [19] could emerge. Such a computer can break the entire cryptography
based on the hardness of integer factorization and discrete logarithm like RSA
or Elliptic Curve Cryptography (ECC). Due to this potential threat, national
agencies started to study new proposals (e.g. [7]) and initiated standardization
of quantum safe algorithms [9,16]. The most followed standardization by the
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Li et al. (Eds.): NSS 2023, LNCS 13983, pp. 283–304, 2023.
https://doi.org/10.1007/978-3-031-39828-5_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-39828-5_16&domain=pdf
http://orcid.org/0000-0002-1430-0843
http://orcid.org/0000-0001-9037-9023
https://doi.org/10.1007/978-3-031-39828-5_16

284 A. Greuet et al.

community is the one of the National Institute of Standards and Technology
(NIST), which was launched in 2016 [16]. This standardization aims to bring
together an important part of the community to determine future Key Encapsu-
lation Mechanisms (KEMs) and signatures standards. In 2020, the third round of
this standardization started with seven finalists remaining, including four KEMs
and three signatures. Among these seven finalists, five are based on lattice or
assimilated problems [17]. In July 2022, NIST published the four algorithms
selected for standardization [1]. Three of them are related with lattices. Hence,
the international community around post-quantum cryptography is very likely
to include lattice-based standards. Therefore, optimizing and ensuring practical
security of these cryptosystems is an important area of research.

Post-quantum cryptography will be deployed on embedded devices like
smartcards. Today on a smartcard, the amount of RAM or the CPU frequency
are very limited: less than 60 kB of RAM and less than 100 MHz. Therefore,
implementing efficient cryptosystems in these constrained environments is a real
challenge. In order to speed-up the cryptographic algorithms, these devices may
embed additional hardware coprocessors for symmetric and asymmetric crypto-
graphic computations. Moreover, these coprocessors can provide additional secu-
rity features as hardware and software security against faults and side-channel
leakage. Most of the asymmetric coprocessors currently deployed are designed
for the ECC or RSA schemes and not for lattice-based cryptosystems. How-
ever, the underlying arithmetic of these cryptosystems can be tweaked with the
purpose of using an arithmetic close to the one used on RSA/ECC schemes.
Therefore, re-purposing such asymmetric coprocessors is interesting to optimize
lattice-based schemes and to facilitate the transition in the post-quantum world.
Indeed, the easier the transition, the more it will be used and deployed.

Motivations and Previous Works. Lattice-based cryptography is believed to be
a promising direction to provide efficient and secure post-quantum algorithms.
One of the main operation in these schemes is modular polynomial multipli-
cation. Research has been conducted in the way of optimizing the polynomial
multiplication operation using specific software instructions or by designing a
specific hardware. However, most of the polynomial multiplication optimization
are intended to ARM-Cortex M4, or less frequently to ARM-Cortex M3 CPU
architecture. The ARM CPU is powerful and has a larger panel of interesting
assembly instruction. However, embedded systems generally don’t have such a
powerful CPU and base their cryptographic efficiency on the additional copro-
cessor.

Moreover, the transition period should rely on hybrid cryptography which
is the combination of a post-quantum algorithm and a classical one. Hence,
such cryptography is both secure against quantum attacks, thanks to the post-
quantum part, and secure against classical attacks, with at least the same secu-
rity level as a pure classical crypto algorithm. Several governmental agencies
(NIST, ANSSI, BSI) recommend and will impose in a few years the use of
hybrid cryptography for long term security certification [3,7]. In this context,
re-purposing the current asymmetric coprocessors to optimize the modular poly-

Modular Polynomial Multiplication Using RSA/ECC Coprocessor 285

nomial multiplication is of interest in terms of costs, ease of deployment and to
propose optimization for a wide range of components.

The seminal work of Albrecht et al. in [2] re-purposes a RSA/ECC coproces-
sor to optimize polynomial multiplication on Kyber algorithm. To do so, they
use techniques introduced in [13] which transform polynomial multiplication to
an integer one using the Kronecker substitution [14]. Afterwards, another work
in [20] adapts the previous technique on Saber algorithm.

The work of Bos et al. in [6] introduced Kronecker+, a generalization of
the Kronecker substitution used by Albrecht et al. in [2]. This generalization
allows trade-off between number of integer multiplications, size of the integers
and the number of polynomial evaluations. Depending on the component and
coprocessor specifications, Kronecker+ allows a faster polynomial multiplication
than Kronecker substitution.

In [12], the authors provide a variant of the Kronecker substitution and an
adaptation of the schoolbook multiplication to perform hardware polynomial
multiplication. Depending on the RSA/ECC coprocessor specifications, one of
these algorithms can outperform the classical Kronecker substitution.

Our Contribution. This work aims to perform modular polynomial multi-
plication in Rq,δ = Zq[X]/(XN + δ) using a RSA/ECC coprocessor, where
δ ∈ {−1, 1}. These rings are the most used by the lattice-based in the NIST
standardization.

The contemporary asymmetric coprocessor can perform integer operations
and not polynomial ones. As we have seen previously, most techniques to repur-
pose current coprocessor to optimize polynomial multiplication on embedded
devices are based on the Kronecker substitution. In Rq,δ this substitution can
be summarized in four steps:

1. Convert polynomials in Rq,δ to integers in N of bit size bitsize. When
polynomials have coefficients with a negative representation, this conversion
requires additional operations.

2. Modular integer multiplication mod 2bitsize + δ of the obtained integers.
3. Convert back integer multiplication result to a polynomial in Z[X]/(XN +

δ). Like Step 1, if the initial polynomials have coefficients with a negative
representation this conversion requires additional operations.

4. Reduce the coefficients modulo q to have result over Rq,δ.

All the previous works re-purpose the coprocessor only to optimize Step 2.
All the other steps are implemented in software without the use of coprocessor.

In this work for most of the previous steps, we describe algorithms which
allow to re-purpose existing coprocessor. Our work focuses on two mains contri-
butions:

– Handle negative evaluation and radix conversion using RSA/ECC coprocessor
(Steps 1 and 3).

– Perform modular reduction of the coefficients modulo q with a RSA/ECC
coprocessor (Step 4).

286 A. Greuet et al.

These improvements are possible only if the coprocessor can handle the follow-
ing integer operations: addition/subtraction, bitwise AND, logical shift, multipli-
cation and modular multiplication. Except the logical AND operation, most of
current asymmetric coprocessors handle these operations. The logical AND is less
common on the current RSA/ECC coprocessor. However adding this operation
to an existing architecture is easier and cheaper than designing a new one for
polynomial multiplication.

Organization. In Sect. 2 we introduce notations which we use in the rest of the
paper. In Sect. 2.3 we present how to perform a polynomial multiplication in
N[X] using the Kronecker substitution. Afterwards, in Sect. 3 we explain how to
use the coprocessor instructions to perform the Kronecker substitution evaluation
and radix conversation, since the polynomials are in Rq,δ = Zq[X]/(XN + δ),
where δ ∈ {−1, 1}. In Sect. 4 we describe modular reductions modulo q using
coprocessor instructions. Finally, in Sect. 5 we present the results of our practical
implementations of our algorithms on several lattice-based finalists.

2 Background

RSA/ECC Coprocessor. The RSA/ECC coprocessor are designed to speed-up
RSA or elliptic curves cryptosystems. To do so, these components provide a
range of integer operations. In this work, we assume that we have access to
a component which can perform, at least, addition/subtraction, bitwise AND,
logical shift, multiplication and modular multiplication operations.

2.1 Element Representation

Integers Representation. Let a ∈ N such that 0 ≤ a < 2�. In the following, we
say that a is represented over � bits to mean that a is stored in a machine buffer
of � bits.

Let b ∈ Z such that −2�′−1 < b < 2�′−1. Let b̃ be the two’s complement repre-
sentation of b over �′ bits, defined by b̃ = 2�′

+ b mod 2�′ ∈ N. In the following,
we say that b is represented over �′ bits to mean that the two’s complement
representation of b is stored in a machine buffer of �′ bits.

Let r be a N�-bit natural number. We denote by ri the i-th digit of r in
base 2�. In other words, r =

∑N−1
i=0 ri2i� with 0 ≤ ri < 2�. We use the following

notation r = (r0, r1, . . . , rN−1)�.

Polynomial Representation. Let F (X) = f0 + f1X + . . .+ fN−1X
N−1 ∈ Z[X] of

degree at most N − 1. Let f̃i be a two’s complement representation of fi.

– Array representation: the usual machine representation of F (X) is an array
where the i-th item is f̃i. To ease the reading, we denote in the following, fi

or f [i] the coefficient associated to the i-th item. Moreover, unless otherwise
specified, a polynomial is represented as an array.

Modular Polynomial Multiplication Using RSA/ECC Coprocessor 287

– Packed integer representation: F (X) is represented as the concatenation of
all the f̃i into a buffer f = f̃N−1| . . . |f̃1|f̃0 ∈ N.

In this work, this representation is used to represent polynomials into a natu-
ral number. Afterwards, the polynomial arithmetic is carried out with operations
on this natural number.

2.2 Notations

Rings. Let q ∈ N, δ ∈ {−1, 1} and Rq,δ = Zq [X]
(XN+δ)

. F (X) ∈ Rq,δ is represented
as a polynomial of degree at most N − 1 with coefficients in {0, . . . , q − 1}. R−

q,δ

denotes the elements of Rq,δ represented by a polynomial of degree at most N −1
with coefficients in {− q

2 − 1, . . . , q
2}.

Integer Operations. In the sequel, the algorithms are described using the follow-
ing notations. Their purpose is to clarify the size of the manipulated operands.

– add(a,b,bitlen) (resp. sub(a,b,bitlen)): addition (resp. subtraction)
between a and b. The values a and b are represented over bitlen bits.

– lshift(a,k,bitlen) (resp. rshift(a,k,bitlen)): left (resp. right) shift a << k
(resp. a >> k) over bitlen bits.

– and(a,b,bitlen): bitwise logical AND a&b over bitlen bits.
– mult(a,b,bitlena,bitlenb): integer multiplication a × b where a (resp. b) is

represented on bitlena (resp. bitlenb) bits.
– modMult(a,b,bitlena,bitlenb,p): modular multiplication a × b mod p

where a (resp. b) is represented on bitlena (resp. bitlenb) bits.

Concatenation. Let (�, k,N) ∈ N
3 with � ≤ k and m ∈ N represented over �

bits. Define concat(m, k,N) =
∑N−1

j=0 m2jk ∈ N, that represents m on k bits
and concatenates this new representation N times.

Example 1. Let m = 1. Then concat(m, 8, 3) = 0x10101.

Integer to Polynomial. Let (�, k,N) ∈ N
3, � > k and F (X) = f0 + . . . +

fN−1X
N−1 ∈ Z[X]. For all i, let f̃i be the two’s complement representation

of fi over k bits. We define f = polyToN(F (X), k, �) =
∑N−1

i=0 f̃i2i� ∈ N.

Polynomial to Integer. Let g = (g0, g1, . . . , gN−1)� ∈ N a N�-bit number. We
define G(X) = NtoPoly(g, �) =

∑N−1
i=0 giX

i. G(X) lies in N[X] and has degree
at most N − 1.

Example 2. Let F (X) = f2X
2 + f1X + f0 = 2X2 + 4X − 2. Let f̃0 =

0xE, f̃1 = 0x4, f̃2 = 0x2, be representations of all fi over 4 bits. Then,
f = polyToN(F (X), 4, 8) = 0x02040E and NtoPoly(f, 8) = 2X2 + 4X + 14

288 A. Greuet et al.

2.3 Multiplication in N[X] Using Kronecker Substitution

The Kronecker substitution was first introduced in [14]. We give here the main
steps of this substitution. The idea of this substitution is to transform a poly-
nomial multiplication to an integer one by evaluating the polynomials and get
back to the result using a radix conversion. In the context of embedded devices,
this transformation is of interest to perform polynomial multiplication by using
the RSA/ECC coprocessor. Indeed, such coprocessor handles multiplication on
integers. In this section we assume that our polynomials are defined over N[X].

Kronecker Substitution. The Kronecker substitution multiplies two polyno-
mials F (X) and G(X) using an integer multiplication. This substitution can
be summarized in three steps (see Appendix A for examples illustrating these
steps):

1. Evaluation of F (X) and G(X) at 2�. The value � is chosen such that all the
coefficients after the polynomial multiplication are lower than 2�.

2. Integer multiplication r = F
(
2�

)
G

(
2�

)
, r ∈ N.

3. Get back to polynomial R(X) ∈ N[X] using radix conversion on r.

Evaluation. The first step of the Kronecker substitution is the polynomial eval-
uation at 2�. Since F (X) has coefficients in N represented over k bits:

Evaluation≥0(F (X), k, �) := F
(
2�

)
= polyToN(F (X), k, �) (1)

Evaluation Point. Let R(X) = F (X)G(X) where F (X), G(X) ∈ N[X] of degree
at most N − 1. The evaluation point 2� is chosen such that for all i ≤ 2(N − 1):

ri ≤ N max
j∈{0,...,N−1}

(fj) max
j∈{0,...,N−1}

(gj) < 2�

By the fact that all the coefficients are non-negative, this evaluation is only a
representation of all the fi over � bits. Then in an implementation, the evaluation
does not require arithmetic operations.

Radix Conversion. Radix conversion aims to transform an integer into a poly-
nomial. Let f = (f0, . . . , fN−1)� ∈ N, then:

F (X) = f0 + . . . + fN−1X
N−1 := RadixConv≥0(f) = NtoPoly(f, �) (2)

The radix conversion converts a packed integer representation to an array
one. Like the evaluation algorithm, in an implementation, the radix conversion
does not require arithmetic operation.

Modular Polynomial Multiplication Using RSA/ECC Coprocessor 289

3 Multiplication in Rq,δ Using Kronecker Substitution

In the previous section we perform polynomial multiplication as an integer one
with polynomials in N[X]. However, in lattice-based schemes some polynomials
have coefficients in {−μ, μ} for a small μ ∈ N. Moreover, the reduction modulo
XN + 1 can also bring negative coefficients. Then in this section we focus on
polynomial multiplication in Rq,δ = Zq[X]/(XN + δ). In Rq,δ, the polynomial
multiplication using Kronecker substitution is achieved as follows:

– Evaluation of polynomials considering negative coefficients.
– Integer multiplication modulo 2N� + δ. The modular reduction ensures that

after radix conversion the polynomial result is reduced modulo XN + δ.
– Radix conversion to obtain a polynomial in Z[X]/(XN + δ).
– Reduction modulo q of the polynomial coefficients.

Previous works [2,6,12] achieve the evaluation and the radix conversion with
negative coefficients using array representations. In this section we describe a way
to realize these algorithms where polynomial are represented as packed integer.
The main advantage of this representation is that it allows the use of existing
coprocessor.

3.1 Evaluation with Negative Coefficients

Our goal is to perform polynomial multiplication over Rq,δ with at least one
input in R−

q,δ. Such a polynomial can be transformed to a polynomial in Rq,δ by
adding q to its negative coefficients. However, since δ is small, these coefficients
would be close to q. This implies a larger evaluation point for the Kronecker
substitution, leading to operations on larger integers (see [12]). Then for the
sake of efficiency it is relevant to work with polynomials in R−

q,δ.
Let F (X) = f0 + f1X + . . . + fN−1X

N−1 ∈ R−
q,δ and f̃i be the two’s comple-

ment representation over k bits of fi.
Our goal is to evaluate F (X) at 2� where � > k, then for i = 0 to N − 1:

– If fi ≥ 0, then we only have to represent it on � bits (as in Sect. 2).
– If fi < 0, then we have to represent it with a two’s complement over � bits

and propagate a borrow to the next coefficient. To obtain a two’s complement
representation from k bits to � bits, we compute:

f̃i + (2� − 2k) = 2k + fi + (2� − 2k) = 2� + fi

Algorithm 1 computes the two’s complement representation of the polyno-
mial evaluation when the coefficients are in Z. This evaluation is done using
arithmetic operations on a packed integers representation. To do so, we first rep-
resent the polynomial coefficients into a packed integer form, as defined in Eq. 1.
Afterwards, we use arithmetic operations in order to convert the two comple-
ment’s representation from k to � bits and to propagate the required borrows.

An example to illustrate Algorithm 1 execution is given in Appendix B.

290 A. Greuet et al.

Algorithm 1. Evaluation
Input: F (X) ∈ R−

q,δ, k, � ∈ N where � > k.

Output: f̃ ∈ N the two’s complement representation of F
(
2�

)
mod 2N�

1: mask ← concat(1, �, N) //Precomputed
2: f̃ ← polyToN(F (X), k, �)
3: neg ← rshift(f̃ , k − 1, N�)
4: neg ← and(neg, mask, N�) // Detect negative coefficients
5: tmp ← mult(neg, 2� − 2k, N�, 32)
6: f̃ ← add(f̃ , tmp, N�) // Two’s complement representation of each coeff over

� bits
7: neg ← lshift(neg, �, N�)
8: f̃ ← sub(f̃ , neg, N�) // Borrow propagation
9: return f̃

Remark 1. The value mask is always the same for a fixed scheme. Then, this
integer can be precomputed and stored in Non-Volatile Memory (NVM).

Remark 2. The Evaluation (Algorithm 1) returns the two’s complement rep-
resentation of F

(
2�

)
mod 2N�. If F

(
2�

) ≥ 0, then the returned value is equal
to F

(
2�

)
. Otherwise, the returned value is not equal to F

(
2�

)
. This case occurs

when the latest non-zero coefficient of F (X) is negative.
To obtain the expected result after the Kronecker Substitution, the last case

requires additional operations before the radix conversion. These additional oper-
ations are described in Sect. 3.2.

3.2 Radix Conversion with Negative Coefficient Representation

As mentioned in [2,12], the radix conversion has to be adapted since some coef-
ficients have negative representations. Two issues arise with the negative coeffi-
cients:

1. The evaluation and the integer multiplication propagate borrow between the
polynomial coefficients.

2. The negative evaluation algorithm returns the two’s complement representa-
tion over N� bits.

Borrow Between the Coefficients. The evaluation converts a polynomial to a
packed integers representation. In the following of the Kronecker substitution,
the obtained natural numbers are manipulated regardless the original polyno-
mial structure. Therefore, borrows can be propagated between the coefficients.
However in order to retrieve the expected polynomial result, the radix conversion
must compensate the propagated borrows by propagating back carries.

Modular Polynomial Multiplication Using RSA/ECC Coprocessor 291

Let r̃ = (r̃0, r̃1, . . . , r̃N−1)� ∈ N be the integer that we want to convert to a
polynomial, where for all i, r̃i is a two’s complement representation over � bits
of an integer −2�−1 < ri < 2�−1. In order to propagate back the carries, we
transform the negative coefficients to non-negative ones by adding a multiple of
our modulus q: maxValue. More precisely, maxValue is the smallest multiple of q
such that for all i, −maxValue ≤ ri < maxValue. Moreover with the parameters
that we use in Sect. 5, we have maxValue < 2�−1. Then, by adding maxValue we
got:

– If ri < 0, then 2� ≤ r̃i + maxValue = 2� + ri + maxValue < 2�+1. Therefore a
carry is propagated to r̃i+1.

– If ri ≥ 0, then r̃i + maxValue = ri + maxValue < 2�.

After adding maxValue, the values ri are considered as natural numbers repre-
sented over � bits. Then, the expected polynomial is obtained by using the radix
conversion algorithm defined in Eq. 2 on r̃.

This negative to non-negative conversion is possible because the polynomial
multiplication is done over Rq,δ. Indeed after reduction modulo q, the added
value maxValue is equal to 0.

Two’s Complement Representation of the Evaluated Polynomial. The second
issue is due to the two’s complement representation of the evaluated polynomial.

Let F (X) = f0 + . . . + fN−1X
N−1 ∈ R−

q,δ of degree N − 1 and � ∈ N.
Then Algorithm 1 returns the integer f ← Evaluation(F (X), k, �), that is
the two’s complement representation of F

(
2�

)
mod 2N�. Two cases are to be

distinguished:

– fN−1 > 0, then f = F
(
2�

) ∈ N.
– fN−1 < 0, then f = 2N�+F

(
2�

)
is the two’s complement of F

(
2�

)
mod 2N�.

Only the second case will lead to a wrong result after the modular multiplication.
Indeed, let g ∈ N and f = 2N� + F

(
2�

)
we got:

r mod
(
2N� + δ

)
= fg mod

(
2N� + δ

)
= 2N�g + F

(
2�

)
g mod

(
2N� + δ

)

�= F
(
2�

)
g mod

(
2N� + δ

)

Then depending on δ, we must add or subtract g to r before radix conversion:

– δ = 1 : 2N�g mod
(
2N� + 1

)
= −g mod

(
2N� + 1

)
, then

r + g mod
(
2N� + 1

)
= F

(
2�

)
g mod

(
2N� + 1

)

– δ = −1 : 2N�g mod
(
2N� − 1

)
= g mod

(
2N� − 1

)
, then

r − g mod
(
2N� − 1

)
= F

(
2�

)
g mod

(
2N� − 1

)

292 A. Greuet et al.

Previously, we supposed that at most one polynomial can have negative coeffi-
cients. In case of lattice-based schemes, this is always the case.

Algorithm 2. RadixConv

Input: r, g, maxValue ∈ N, and sign ∈ {0, 1}
Output: R(X) ∈ N[X]/(XN + δ)
1: max ← concat(maxValue, �, N) //Can be precomputed
2: if sign eq 1 then
3: if δ eq 1 then r ← add(r, g, N�) // To handle negative last coeff
4: else r ← sub(r, g, N�)
5: else
6: if δ eq 1 then dummy ← add(r, g, N�) // For isochrony
7: else dummy ← sub(r, g, N�)
8: end if
9: r ← add(r, max, N�) // Add maxValue to each coefficient

10: R(X) ← RadixConv≥0(r)

3.3 Multiplication in Rq,δ Using Coprocessor

Sections 3.1 and 3.2 are used to obtain a polynomial multiplication algorithm in
Rq,δ using, mainly, a packed integer representation. More precisely, except for the
modular reductions modulo q, the operations are done using this representation.
All operations performed on the packed integers representation can be achieved
with coprocessor as defined in Sect. 2.

The Polynomial Multiplication in Rq,δ algorithm is described in Algorithm 3.
In the following section we determine how to perform modular reductions modulo
q using packed integers representation.

Algorithm 3. Polynomial Multiplication in Rq,δ

Input: (F (X), G(X)) ∈ (R−
q,δ, Rq,δ) of degree N − 1. Let k, �, q ∈ N where � > k, and

maxValue defined as above.
Output: R(X) = F (X)G(X) ∈ Rq,δ

1: f ← Evaluation(F (X), k, �)
2: G

(
2�

) ← Evaluation≥0(G(X), k, �)

3: r ← modMult(f, G
(
2�

)
, N�, N�, 2N� + δ)

4: b ← sign(F [N − 1]) // if FN−1 < 0 then b = 1, otherwise b = 0.
5: R(X) ← RadixConv(r, G

(
2�

)
, maxValue, b)

6: R(X) ← R(X) mod q // Any modular reduction
7: return R(X)

Modular Polynomial Multiplication Using RSA/ECC Coprocessor 293

4 Reducing Coefficients Modulo q

In this section we show how to perform reduction modulo q using packed integers
representation. As mentioned previously, such representation allows to repurpose
existing RSA/ECC coprocessor.

Let r = (r0, . . . , rN−1)� ∈ N. In our context, r is obtained after polynomial
evaluation and modular integer multiplication. Moreover, each ri is such that
for all i, 0 ≤ ri < 2maxValue like in Sect. 3.2.

In the following we denote by simultaneous reduction the process of reducing
all the ri mod q by performing operations on r.

4.1 Power-of-Two Modulus

Some lattice-based schemes, like NTRU [8] and Saber [10], use a power-of-two
modulus. In this context, the simultaneous reduction is simply achieved with the
following logical AND: r & concat(q − 1, �,N).

4.2 Prime Modulus

In this section we adapt the Barrett reduction, introduced in [4], to perform
simultaneous reduction.

The main idea is to precompute an approximation of a division and use it
to perform modular reduction. Let α, β ∈ Z and a ∈ N be an integer to reduce
modulo q ∈ N of bit-length k. Barrett reduction precomputes m =

⌊
2k+α

q

⌋
and

computes a′ = a − [((a >> (k + β)) · m) >> (α − β)] q.
Note that when α = β, it becomes a′ = a − [a >> (k + β)] · m · q, so that

only one shift and one multiplication is performed (m · q is precomputed).
The result a′ is equal to a mod q + tq where 0 ≤ t <

⌊
a
q

⌋
. Note that a

better bound on t can be obtained, depending on α and β. Further details on
the Barrett algorithms are given in [15].

Algorithm 4 describes the simultaneous Barrett reduction, where logical ANDs
are use to avoid overflow of coefficient i + 1 on coefficient i after a shift.

294 A. Greuet et al.

Algorithm 4. Simult. Barrettα,β

Input: r = (r0, . . . , rN−1)� ∈ N. Let q ∈ N of bit-length k and m =
⌊

2k+α

q

⌋
.

Output: r′ = (r′
0, . . . , r

′
N−1)� ∈ N, all ri are reduced with Barrett reduction

1: mask ← concat(2�−α+β − 1, �, N) // Can be precomputed
2: mask′ ← concat(2�−k−β − 1, �, N) // Can be precomputed
3: tmp ← rshift(r, k + β, N�)
4: tmp ← and(tmp, mask′, N�)
5: tmp ← mult(tmp, m, N�, 32) // Mult between a word and a large integer
6: tmp ← rshift(tmp, α − β, N�)
7: tmp ← and(tmp, mask, N�)
8: tmp ← mult(tmp, q, N�, 32) // Mult between a word and a large integer
9: r′ ← sub(r, tmp, N�)

10: return r′

Final Reduction. Using the simultaneous Barrett Algorithm 4, the returned
result r′ = (r′

0, . . . , r
′
N−1)� ∈ N is such that, for all i, r′

i = r′
i mod q + tiq. With

the parameters sets that we use in Sect. 5, for all i, ti ∈ {0, 1, 2}.
Let k and c such that q = 2k − c. Then r′

i ≥ 2q if and only if r′
i + 2c has

its (k + 1)-th bit equal to one. This fact is used in Algorithm 5 to detect and
subtract q to coefficients ≥ 2q in a packed integers representation.

After using the Algorithm 5, the r′′
i are bounded by 2q. In that case, this

algorithm can be adapted replacing 2c by c (line 1) and k + 1 by k (line 3). It
follows that q is subtracted from each r′′

i ≥ q. Afterwards, each r′′
i is necessary

lower than q.

Algorithm 5. Simult. Conditional Subtraction

Input: r′ = (r′
0, . . . , r

′
N−1)� with all 0 ≤ r′

i < 3q, where q = 2k − c, �, N ∈ N.
Output: r′′ = (r′′

0 , . . . , r′′
N−1)� with all 0 ≤ r′′

i < 2q
1: (C, mask) ← (concat(2c, �, N), concat(1, �, N)) //Can be precomputed
2: tmp ← add(r′, C, N�) //Raised the k + 1-th bit in each coeff
3: tmp ← rshift(tmp, k + 1, N�) // Move the k + 1-th bit to position 0 in each coeff
4: tmp ← and(tmp, mask, N�) // Detect the coeff ≥ 2q
5: tmp ← mult(tmp, q, N�, 32) // Mult between a word and a large integer
6: r′′ ← sub(r′, tmp, N�) // Subtract q to each coeff ≥ 2q
7: return r′′

4.3 Modular Polynomial Multiplication Using Coprocessor

Algorithm 6 performs polynomial multiplication in Rq,δ using operations on
packed integers representation. All operations performed on this representation
can be achieved with coprocessor as defined in Sect. 2.

Modular Polynomial Multiplication Using RSA/ECC Coprocessor 295

Algorithm 6. Modular Polynomial Multiplication

Input: (F (X), G(X)) ∈ (R−
q,δ, Rq,δ) of degree N − 1. Let k, �, q ∈ N where � > k, and

maxValue defined as above.
Output: R(X) = F (X)G(X) ∈ Rq,δ

1: max ← concat(maxValue, �, N) // Precomputed
2:

(
f, G

(
2�

)) ← (Evaluation(F (X), �),Evaluation≥0(G(X), �))

3: r ← modMult(f, G
(
2�

)
, N�, N�, 2N� ± δ)

4: b ← sign(f [N − 1])
5: if b eq 1 then
6: if δ eq 1 then r ← sub(r, G

(
2�

)
, N�) // To handle negative last coeff

7: else r ← add(r, G
(
2�

)
, N�)

8: else
9: if δ eq 1 then dummy ← sub(r, G

(
2�

)
, N�) // For isochrony

10: else dummy ← add(r, G
(
2�

)
, N�)

11: end if
12: r ← add(r, max, N�) //Negative to non negative representation for all r′

i

13: if q eq 2k then
14: mask′ ← concat(2k − 1, �, N)
15: r ← and(r, mask′, N�)
16: else
17: r ←Simult. Barrett(r)
18: r ← Simult. Cond. Sub.(r, �, N) Can be applied twice if some ri ≥ 2q
19: end if
20: R(X) ← RadixConv≥0(r)
21: return R(X)

The Modular Polynomial Multiplication Algorithm 6 works as fol-
lows:

1. Line 2: Polynomial evaluations defined in Eq. 1 and Algorithm 1.
2. Line 3: Modular integer multiplication modulo 2N� + δ of the evaluated poly-

nomials.
3. Line 4 to 11: Handle the two’s complement representation of the evaluated

polynomial; see Sect. 3.2.
4. Line 12: Convert the negative representation to non negative one; see Sect. 3.2.

This operation allows to perform simultaneous reduction mod q and radix
conversion.

5. Line 13 to 19: Perform simultaneous reduction mod q. This ensures that the
polynomial result has coefficients reduced mod q.

6. Line 20: Radix conversion defined in Eq. 2 to obtain a polynomial result.

5 Applications and Results

In this section, after some preliminaries, we present the component on which we
perform our experiments and the results obtained by implementing the Modular
Polynomial Multiplication (MPM), see Algorithm 6, and another polynomial

296 A. Greuet et al.

multiplication depending of the evaluated scheme. The evaluated lattice-based
algorithms are Kyber, NTRU, and Saber. Results for Dilithium, that need addi-
tional tweaks to be competitive on our target, are given in Appendix C.

5.1 Background

NTT. NTT is an algorithm allowing to perform fast polynomial multi-
plication in Rq,1 [18]. Given a and b ∈ Rq,1, a × b is computed as
NTT−1 (NTT (a) ◦ NTT (b)), where ◦ is the coefficient-wise multiplication.

Theoretically, NTT has the best asymptotic complexity for multiplication
in Rq,1. However, in constrained environments (e.g. smart cards), devices may
have dedicated hardware to perform fast large-integer arithmetic. In this context,
NTT can be outperformed by an algorithm relying on integer arithmetic, even
if its theoretical complexity is worse than NTT.

Evaluation Point. In our context the Karatsuba subdivision requires to
increase the size of the evaluation point by 1 bit at each subdivision. It is due
to the computation (fI + fS)(gI + gS). Indeed, this computation is performed
on integers of length twice as small but with values twice as large.

In the following results, the evaluation point is chosen to take into account
the negative coefficients and the Karatsuba subdivisions.

Polynomial Distribution. The following polynomial multiplications are per-
formed between a polynomial G(X) ∈ Rq,δ and F (X) ∈ R−

q,δ. More precisely,
the coefficients of G(X) are sampled uniformly in {0, . . . , q − 1} and the coeffi-
cients of F (X) are sampled in a distribution Dσ. Using a distribution Dσ, the
coefficients are represented in {−σ, . . . , 0, . . . , σ}.

Masked Secret Polynomial. Most of the time the polynomial using the distribu-
tion Dσ is the secret polynomial. In some use cases, an embedded implementation
must be strongly secured against side-channel attacks. One way to do this is to
mask the secret data. To do so, we split the sensitive data into shares x = x1+x2

mod q, where x1, x2 belongs to {0, . . . , q − 1}, and then we process the opera-
tions on each share separately. In our context the value q is much larger than
the secret distribution. Therefore, that implies we will manipulate larger secret
data and then it increases the evaluation point. For some assessments, in order
to consider this security requirement, we suppose that the polynomial F (X) is
defined over Rq,δ and its coefficients are sampled uniformly in {0, . . . , q − 1}. In
the following results, we denote this case by Uq distribution.

In the following results, we only specify the distribution of F (X).

Target. Assessments are done on a smart card component using a 32-bit archi-
tecture. In the following we refer to this device as Component A. Due to intel-
lectual properties reasons, the component name or a detailed description cannot
be given. Then, we only give the main characteristics of Component A:

Modular Polynomial Multiplication Using RSA/ECC Coprocessor 297

– Standard 32-bit instructions: add, sub, shifts, bitwise and, bitwise xor, bitwise
or, etc. Each logical or arithmetic instruction is executed in 1 cycle. Data
transfert from and to memory takes 2 cycles.

– No CPU multiplication, no CPU division.
– A coprocessor which handles bitwise AND, addition, modular addition, sub-

traction, modular subtraction, shifts, integer multiplication and modular
Montgomery multiplication.
To perform one operation, its opcode and the size and address of each operand
are given to the coprocessor. It takes 15 cycles regardless of the operation or
the size of the operands.
Bitwise AND, addition, modular addition, subtraction, modular subtraction
and shifts are executed in roughly s/2 cycles, where s is the number of 32-bit
words of the largest operand.
Integer multiplication and modular Montgomery multiplication are done in
roughly s1 · s2/4 cycles, where s1 and s2 are the size of operands in words.

Except for the bitwise AND, these operations are standard on such a copro-
cessor. The bitwise AND is less common but easy to add to a standard design.

The following results take into account a complete modular reduction. More-
over like the previous works [2,6,12,20], we assume that the inputs are already
in the appropriate machine representation. This implies that the inputs are in:

– Polynomial representation for NTT, Karatsuba and schoolbook polynomial
multiplication.

– Packed integers representation for the MPM algorithm.

5.2 Results

Kyber. Kyber [5] is a lattice-based KEM, selected by the NIST for standard-
ization. The polynomial ring defined in Kyber is Rq,1 = Zq[X]/(XN +1), where
q = 3329 and N = 256. The polynomial multiplication used in the specification
is the NTT algorithm. In this context, we have implemented two polynomial
multiplications:

– A NTT multiplication. It is adapted from the reference implementation, in
order to use the hardware Montgomery multiplication. Tables of roots of unity
have been recomputed to handle the Montgomery arithmetic with R = 232,
the smallest handled by the coprocessor, instead of R = 216. In addition,
the multiplication followed by a Montgomery reduction is replaced by a call
to the coprocessor Montgomery multiplication. In Table 1 we present timings
from the NTT’s implementation.

Table 1. Kyber NTT cycles on Component A

NTT Pointwise NTT−1

Cycles 98k 40k 106k

298 A. Greuet et al.

– The modular polynomial multiplication (MPM) described in Algorithm 6. For
this algorithm we consider two distributions for the polynomial F (X):

• D3. In this case the modular reduction modulo q is done using Simult.Ba-
rrett11,0. In order to completely reduce the coefficients we perform 2 final
subtractions using the technique described in Sect. 4.2.

• Uq. In this case the modular reduction modulo q is done using Simult.
Barrett10,10 and then an application of Simult. Barrett13,−2. After-
wards, a final subtraction is performed using the technique described in
Sect. 4.2.

In Table 2, we give the � such that the evaluation point is 2�, the maximum value
to convert negative coefficients to non-negative ones, the subdivision used and
the number of cycles for MPM algorithms.

Table 2. Parameters and cost of one multiplication in Rq,1 for Kyber parameters

Distribution � maxValue Subdivision Cycles MPM

D3 23 3qn None 50k

Uq 34 q2n 2 calls to Karatsuba 67k

Comparison. The previous results take into account one execution of MPM algo-
rithm and each NTT routine. In order to compare NTT and MPM algorithms,
we must not only compare pointwise routine with MPM algorithm. Indeed, we
must also take into account calls to the NTT and NTT−1 routines. Then, in order
to compare the two polynomial multiplication methods we must determine how
many times each algorithm is called.

Table 3 describes the number of calls to NTT, pointwise multiplication and
NTT−1 during the Key Generation, Encrypt and Decrypt routines. The number
of calls depends on the Kyber’s security parameters which are k = 2/3/4. Note
that the number of pointwise matches the number of MPM calls.

Table 3. Number of call to NTT routines in Kyber

NTT Pointwise/MPM NTT−1

Key Gen. 2k k2 0

Encrypt k k2 + k k + 1

Decrypt k k 1

In order to fairly compare NTT and MPM algorithms we use:

– The official specification of Kyber for the NTT algorithm. The private and
public keys are stored in the NTT domain.

– A tweaked version of Kyber for the MPM algorithm. The private and public
keys are not stored in the NTT domain. Therefore, we do not need to apply
NTT−1 to perform MPM algorithm.

The MPM algorithm is called with the Uq distribution parameters (Table 4).

Modular Polynomial Multiplication Using RSA/ECC Coprocessor 299

Table 4. Cycle count for all multiplications in Kyber for the Uq distribution parameters

Total cycles NTT Total cycles MPM Ratio (NTT/MPM)

Key Gen. k = 2 552k 268k 2

Encrypt k = 2 754k 402k 1.9

Decrypt k = 2 382k 134k 2.9

Key Gen. k = 3 948k 603k 1.6

Encrypt k = 3 1198k 804k 1.5

Decrypt k = 3 520k 201k 2.6

Key Gen. k = 4 1424k 1072k 1.3

Encaps k = 4 1722k 1340k 1.3

Decrypt k = 4 658k 268k 2.5

Saber and NTRU

Saber. Saber [10] is a lattice-based KEM finalist of the NIST standardization.
The polynomial ring used in Saber is Rq,1 = Zq[X]/(XN + 1), where N = 256
and q = 8192 = 213. In this work we consider two distributions for F (X):

– D5. Other distributions are used in Saber. However we only describe the worst
one for the MPM algorithm.

– Uq.

Since the modulus is a power of two, the reductions are achieved using a bitwise
AND with the appropriate mask.

NTRU. NTRU [8] is also a KEM finalist of the NIST competition. The polyno-
mial ring used in NTRU is Rq,−1 = Zq[X]

(XN −1)
. The modulus q and the value N

depends on the security parameters. In this work we only consider NTRU HPS
1 parameters, where N = 509 and q = 2048 = 211.

The value of N does not allow to easily make subdivisions. To overcome
this issue, we work on polynomials with Ñ = 512 coefficients where the latest
coefficients are equal to 0.

In this work, we consider only a Uq distribution. Since q is a power of two,
the modular reductions are performed with a bitwise AND.

Comparison. The Saber and NTRU MPM algorithms are compared with the poly-
nomial multiplication used in their reference implementations.

– Saber: A combination of a 4-way Toom-Cook and Karatsuba algorithms.
– NTRU: A schoolbook multiplication.

The polynomial multiplication of the reference implementations are achieved
with the 32 bits coprocessor multiplication. The Table 5 describes the obtained
results on Component A.

300 A. Greuet et al.

Table 5. Parameters and cost of one multiplication in Rq,δ for Saber and NTRU
parameters

Distribution � maxValue Subdivision Cycl.MPM Cycl. ref.

Saber

D5 25 5qn None 47k 1405k

Uq 36 q2n 2 calls to Karatsuba 61k 1405k

NTRU

Uq 34 q2n 3 calls to Karatsuba 173k 17256k

6 Conclusion

We pursue the previous works that optimize lattice-based schemes, by re-
purposing today’s RSA/ECC coprocessor. We propose an algorithm, MPM, that
performs modular polynomial multiplication using coprocessor instructions. It
handles modular reductions and negative coefficients during polynomial multi-
plication.

We assess in practice the MPM algorithm for some NIST lattice-based final-
ists. This assessment is done on a component that bases the asymmetric crypto-
graphic efficiency on its RSA/ECC coprocessor. The MPM algorithm is compared
to software polynomial multiplications, as NTT or Karatsuba. On this component,
MPM algorithm brings a significant speed-up.

Hence, re-purposing standard asymmetric coprocessor to speed-up lattice-
based cryptography is of interest, especially in a context of hybrid deployment.

Acknowledgements. We would like to thank the reviewers for the valuable comments
and suggestions, which helped us in improving the quality of the article.

A Examples for Section 2.3

Example 3 (Evaluation). Let F (X) = 2X2 + X + 3 then, F (28) = 0x020103
= Evaluation≥0(F (X), 2, 8)

Example 4 (Radix Conversion). Let f = 0x020103. Then F (X) = 2X2 + X +
3 = RadixConv≥0(f).

Example 5 (Kronecker Multiplication). Let F (X) = 2X2 + X + 3 and G(X) =
X2 + 1. Then,

F (28) = 0x020103 = Evaluation≥0(F (X), 2, 8)

G(28) = 0x010001 = Evaluation≥0(G(X), 2, 8)

Then evaluations are multiplied: r = F (28)G(28) = 0x201050103. Finally, we
get R(X) = RadixConv≥0(r) = 2X4 + X3 + 5X2 + X + 3.

Modular Polynomial Multiplication Using RSA/ECC Coprocessor 301

B Example for Sect. 3.1

Example 6 (Evaluation with Negative Coefficients). Let F (X) = 3X2 − 2X + 2,
where all the coefficients are encoded with a two’s complement representation
over k = 4 bits. Let N = 3 and � = 8. The expected result is F (28) = 0x02FE02.
This is obtained with Evaluation(F (X), k, �):

1. mask ← concat(1, 8, 3) = 0x010101
2. f̃ ← polyToN(F (X), 4, 8) = 0x030E02
3. neg ← rshift(f̃ , 4 − 1, 3 × 8) = 0x0061C0
4. neg ← and(neg, mask, 3 × 8) = 0x000100
5. tmp ← mult(neg, 28 − 24, 3 × 8, 32) = 0x00F000
6. f̃ ← add(f̃ , tmp, 3 × 8) = 0x03FE02
7. neg ← lshift(neg, 8, 3 × 8) = 0x010000
8. F (28) ← sub(f̃ , neg, 3 × 8) = 0x02FE02

C Results for Dilithium

Dilithium [11] is a lattice-based signature, selected by the NIST for standard-
ization. The polynomial ring defined in Dilithium is Rq,1 = Zq[X]/(XN + 1),
where q = 8380417 and N = 256. Like Kyber, the specification specified the use
of NTT polynomial multiplication. Therefore, we have implemented two poly-
nomial multiplications:

– A NTT multiplication. To this end, we adapt the reference implementation.
Tables of roots of unity are recomputed to get non-negative values and mul-
tiplications followed by a Montgomery reduction in the reference code are
replaced by a call to the hardware Montgomery multiplication (Table 6).

Table 6. Dilithium NTT cycles on Component A

NTT Pointwise NTT−1

Cycles 114k 15k 128k

– MPM algorithm. Two distributions for polynomial coefficients are considered:
• D1. The polynomial sampled in this distribution is always not sensitive to

side-channel attacks. Therefore, we never need to mask it. The modular
reduction modulo q is done by calling Simult. Quotient Approxima-
tion Reduction with J ′

� = {23} and a final subtraction is performed
using the technique described in Sect. 4.2.

• Uq. The modular reduction modulo q is done by calling Simult. Quo-
tient Approximation Reduction algorithm with J ′

� = {23, 33} and
afterwards by calling it twice with J ′

� = {23}. A final subtraction is per-
formed using the technique described in Sect. 4.2.

Many other distributions are used in Dilithium. For the sake of clarity, we
describe only the worst ones for MPM algorithm (Table 7).

302 A. Greuet et al.

Table 7. Parameters and cost of one multiplication in Rq,1 for Dilithium parameters

Distribution � maxValue Subdivision Cycles MPM

D1 32 60q None 48k

Uq 57 q2n 3 calls to Karatsuba 146k

Comparison. Like Kyber, not every NTT-based multiplication uses all the three
algorithms NTT, pointwise and NTT−1.

Table 8 presents the number of calls to NTT, pointwise multiplication and
NTT−1 depending on the Dilithium’s security parameters which are (k, l) =
(4, 4)/(6, 5)/(8, 7). In this operation count we suppose that during the sign algo-
rithm there is no rejection sampling. Note that the number of pointwise matches
the number of MPM calls. The pointwise operations in boldface correspond to the
polynomial multiplication with one polynomial in D1.

Table 8. Number of call to NTT routines in Dilithium

NTT Pointwise/MPM NTT−1

Key Gen. l lk k

Sign 2l + 2k + 1 lk + l + 2k l + 3k

Verify l + k + 1 lk + k k

Like Kyber, in order to compare fairly NTT and MPM algorithms we use:

– The official specification of Dilithium for the NTT algorithm. The public key
is stored in the NTT domain.

– A tweaked version of Dilithium for the MPM algorithm. The public keys is not
stored in the NTT domain. Therefore, we do not need to apply NTT−1 to
perform MPM algorithm.

Moreover, for the MPM algorithm, the multiplication in boldface implies a polyno-
mial sampled in D1 and the other ones are performed with a polynomial sampled
in a Uq distribution.

Table 9. Cycle count for all multiplications in Dilithium for the Uq distribution param-
eters

Total cycles NTT Total cycles MPM Ratio (NTT/MPM)

Key Gen. (k, l) = (4, 4) 1208k 2336k 0.5

Sign (k, l) = (4, 4) 4406k 2912k 1.5

Verify (k, l) = (4, 4) 1838k 2528k 0.7

Key Gen. (k, l) = (6, 5) 1788k 4380k 0.4

Sign (k, l) = (6, 5) 6271k 5196k 1.2

Verify (k, l) = (6, 5) 2676k 4668k 0.6

Key Gen. (k, l) = (8, 7) 2662k 8176k 0.3

Sign (k, l) = (8, 7) 8687k 9280k 0.9

Verify (k, l) = (8, 7) 3808k 8560k 0.4

Modular Polynomial Multiplication Using RSA/ECC Coprocessor 303

In this context, MPM algorithm is almost less efficient than NTT. However, we
can combine NTT and MPM algorithms to obtain a faster Sign and Verify routines.
Indeed, one can perform the multiplication which implies a polynomial sampled
D1 using the MPM algorithm and the others multiplication using NTT algorithm.
By combining these two multiplications, we avoid a lot of NTT and NTT−1

transformation which ensures an efficient polynomial multiplication. Moreover,
this combination is achieved without changing the Dilithium specification.

In Table 10 the ratio is between the best algorithm in Table 9 (result in bold
face) over the combination of NTT and MPM algorithms.

Table 10. Cycle count for all multiplications in Dilithium using the Uq and D1 distri-
bution parameters

Best in Table 9 Total cycles NTT + MPM Ratio

Sign (k, l) = (4, 4) 2912k 1784k 1.6

Verify (k, l) = (4, 4) 1838k 1400k 1.3

Sign (k, l) = (6, 5) 5196k 2604k 2

Verify (k, l) = (6, 5) 2676k 2076k 1.3

Sign (k, l) = (8, 7) 8687k 3766k 2.3

Verify (k, l) = (8, 7) 3808k 3046k 1.25

References

1. Alagic, G., et al.: Status report on the third round of the NIST post-quantum cryp-
tography standardization process. Technical report, National Institute of Standards
and Technology (2022). https://doi.org/10.6028/NIST.IR.8413

2. Albrecht, M.R., Hanser, C., Hoeller, A., Pöppelmann, T., Virdia, F., Wallner,
A.: Implementing RLWE-based schemes using an RSA co-processor. IACR Trans.
Cryptograph. Hardw. Embed. Syst. 169–208 (2019). https://doi.org/10.13154/
tches.v2019.i1.169-208

3. ANSSI: Technical position paper - ANSSI views on the Post-Quantum Cryptog-
raphy transition. https://www.ssi.gouv.fr/publication/anssi-views-on-the-post-
quantum-cryptography-transition/

4. Barrett, P.: Implementing the Rivest Shamir and Adleman public key encryption
algorithm on a standard digital signal processor. In: Odlyzko, A.M. (ed.) CRYPTO
1986. LNCS, vol. 263, pp. 311–323. Springer, Heidelberg (1987). https://doi.org/
10.1007/3-540-47721-7 24

5. Bos, J., et al.: CRYSTALS - Kyber: a CCA-Secure module-lattice-based KEM. In:
2018 IEEE European Symposium on Security and Privacy (EuroS&P), pp. 353–367
(2018). https://doi.org/10.1109/EuroSP.2018.00032

6. Bos, J.W., Renes, J., van Vredendaal, C.: Post-quantum cryptography with con-
temporary co-processors. USENIX (2021). https://www.usenix.org/system/files/
sec22summer bos.pdf

7. BSI: Migration zu Post-Quanten-Kryptografie - Handlungsempfehlungen des
BSI. https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Krypto/Post-
Quanten-Kryptografie.pdf

https://doi.org/10.6028/NIST.IR.8413
https://doi.org/10.13154/tches.v2019.i1.169-208
https://doi.org/10.13154/tches.v2019.i1.169-208
https://www.ssi.gouv.fr/publication/anssi-views-on-the-post-quantum-cryptography-transition/
https://www.ssi.gouv.fr/publication/anssi-views-on-the-post-quantum-cryptography-transition/
https://doi.org/10.1007/3-540-47721-7_24
https://doi.org/10.1007/3-540-47721-7_24
https://doi.org/10.1109/EuroSP.2018.00032
https://www.usenix.org/system/files/sec22summer_bos.pdf
https://www.usenix.org/system/files/sec22summer_bos.pdf
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Krypto/Post-Quanten-Kryptografie.pdf
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Krypto/Post-Quanten-Kryptografie.pdf

304 A. Greuet et al.

8. Chen, C., et al.: NTRU (2020). https://ntru.org/
9. Chinese Association For Cryptography Research: National Cryptographic Algo-

rithm Design Competition (2018). https://www.cacrnet.org.cn/site/content/838.
html

10. D’Anvers, J.-P., Karmakar, A., Sinha Roy, S., Vercauteren, F.: Saber: module-LWR
based key exchange, CPA-secure encryption and CCA-secure KEM. In: Joux, A.,
Nitaj, A., Rachidi, T. (eds.) AFRICACRYPT 2018. LNCS, vol. 10831, pp. 282–305.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89339-6 16

11. Ducas, L., et al.: CRYSTALS-Dilithium: a lattice-based digital signature scheme.
IACR Trans. Cryptograph. Hardw. Embed. Syst. 2018(1), 238–268 (2018).
https://doi.org/10.13154/tches.v2018.i1.238-268

12. Greuet, A., Montoya, S., Renault, G.: On using RSA/ECC coprocessor for ideal
lattice-based key exchange. In: Bhasin, S., De Santis, F. (eds.) COSADE 2021.
LNCS, vol. 12910, pp. 205–227. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-89915-8 10

13. Harvey, D.: Faster polynomial multiplication via multipoint Kronecker substitu-
tion. J. Symb. Comput. 44(10), 1502–1510 (2009). https://doi.org/10.1016/j.jsc.
2009.05.004

14. Kronecker, L.: Grundzüge einer arithmetischen theorie der algebraischen grössen.
(abdruck einer festschrift zu herrn e. e. kummers doctor-jubiläum, 10. september
1881.). J. für die reine angewandte Math. 92, 1–122 (1882)

15. Menezes, A.J., Van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryp-
tography. CRC Press, Boca Raton (2018)

16. Moody, D.: Post-quantum cryptography NIST’s plan for the future (2016). https://
csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/
pqcrypto-2016-presentation.pdf

17. Moody, D., et al.: Status report on the second round of the NIST post-quantum
cryptography standardization process. Technical report, National Institute of Stan-
dards and Technology (2020). https://doi.org/10.6028/NIST.IR.8309

18. Nussbaumer, H.J.: Number theoretic transforms. In: Nussbaumer, H.J. (ed.) Fast
Fourier Transform and Convolution Algorithms. Springer Series in Information
Sciences, vol. 2, pp. 211–240. Springer, Heidelberg (1982). https://doi.org/10.1007/
978-3-642-81897-4 8

19. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete log-
arithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997).
https://doi.org/10.1137/S0097539795293172

20. Wang, B., Gu, X., Yang, Y.: Saber on ESP32. In: Conti, M., Zhou, J., Casalicchio,
E., Spognardi, A. (eds.) ACNS 2020. LNCS, vol. 12146, pp. 421–440. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-57808-4 21

https://ntru.org/
https://www.cacrnet.org.cn/site/content/838.html
https://www.cacrnet.org.cn/site/content/838.html
https://doi.org/10.1007/978-3-319-89339-6_16
https://doi.org/10.13154/tches.v2018.i1.238-268
https://doi.org/10.1007/978-3-030-89915-8_10
https://doi.org/10.1007/978-3-030-89915-8_10
https://doi.org/10.1016/j.jsc.2009.05.004
https://doi.org/10.1016/j.jsc.2009.05.004
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/pqcrypto-2016-presentation.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/pqcrypto-2016-presentation.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/pqcrypto-2016-presentation.pdf
https://doi.org/10.6028/NIST.IR.8309
https://doi.org/10.1007/978-3-642-81897-4_8
https://doi.org/10.1007/978-3-642-81897-4_8
https://doi.org/10.1137/S0097539795293172
https://doi.org/10.1007/978-3-030-57808-4_21

T3E: A Practical Solution to Trusted
Time in Secure Enclaves

Gilang Mentari Hamidy(B) , Pieter Philippaerts , and Wouter Joosen

imec-DistriNet, KU Leuven, Leuven, Belgium
{gilang.hamidy,pieter.philippaerts,wouter.joosen}@kuleuven.be

Abstract. Time is used in secure systems to validate security proper-
ties. Consequently, it is vital to protect the integrity of time information.
Intel SGX enables building secure applications inside a Trusted Execu-
tion Environment (TEE), called an enclave, isolated from the untrusted
OS. However, accessing time information from the enclave remains chal-
lenging as the OS controls the system time. Previous versions of the SGX
SDK provided the sgx get trusted time function as an alternative to
OS time. However, Intel removed the API in 2020, without providing
an alternative. This paper examines trusted time challenges in SGX and
presents TPM-based Trusted Time Extensions (T3E), a novel solution
that builds on readily available hardware. T3E leverages TPM function-
ality to provide trusted time services in enclaves while protecting against
common attacks. It offers better time granularity and lower latency than
Intel’s sgx get trusted time implementation. Unlike related work, it
does not rely on deprecated features or hardware/firmware modifica-
tions.

Keywords: Intel SGX · Trusted Time · Trusted Execution
Environment

1 Introduction

Time information is essential in computer systems as it represents the frame of
reference for events occurring in the real world. Specifically, in computer security,
time is essential to implement secure validation operations, such as checking the
lifetime of cryptographic keys, or timing out sessions for sensitive operations. A
prominent example is checking the validity of a digital certificate, which requires
time information to check whether the certificate is not expired when being used.

Applications running in a Trusted Execution Environment (TEE), such as
Intel SGX, also need access to time information [2]. SGX allows third-party
vendors to build their own trusted applications for their specific purposes. It
introduces the concept of an enclave, which provides total isolation of the soft-
ware running inside it. Developers build their applications using a traditional
software development approach, by leveraging existing toolchains and applica-
tion libraries.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Li et al. (Eds.): NSS 2023, LNCS 13983, pp. 305–326, 2023.
https://doi.org/10.1007/978-3-031-39828-5_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-39828-5_17&domain=pdf
http://orcid.org/0000-0001-6874-5875
http://orcid.org/0000-0002-0940-8446
http://orcid.org/0000-0002-7710-5092
https://doi.org/10.1007/978-3-031-39828-5_17

306 G. M. Hamidy et al.

While SGX provides a Trusted Runtime (TRTS) for the trusted application,
it has a main limitation: it does not provide support for operating system ser-
vices. According to the SGX threat model, the operating system is untrusted.
Therefore, trusted applications must explicitly express their desire to access any
OS-related functions in their code through an OCALL, i.e., a call from the
trusted application to the untrusted domain. The trusted application must treat
information obtained from the untrusted domain with caution as it may have
been tampered with to attack the trusted app.

Time is usually managed centrally by the operating system. Applications can
use the time services that are provided by the OS to request the current time or
measure time differences. As the operating system is untrusted in the SGX threat
model, trusted applications cannot rely on conventional time services. Intel pre-
viously provided an API in their TRTS called sgx get trusted time that acted
as a secure alternative to regular time services. Yet, the sgx get trusted time
function was removed circa 2020 from the Intel SGX SDK 2.8 release for Linux,
leaving enclaves with no secure option to get time information.

In this paper, we present TPM-based Trusted Time Extensions (T3E) as a
solution to the trusted time problem in SGX. T3E combines Trusted Platform
Module (TPM) hardware, which is readily available, with SGX to guarantee that
the time is reliable from a point when it was securely provisioned. It can be used
as a replacement for Intel’s sgx get trusted time function but offers a higher
granularity, better performance, and a comparable degree of security. In contrast
to related work, it does not rely on hardware or firmware modifications.

Section 2 provides a background on Intel SGX, Trusted Platform Modules,
and Sect. 3 explores related work. We outline the design of our proposed T3E
system in Sect. 4, and evaluate the security of our design in Sect. 5. Section 6
focuses on the implementation of the T3E system and presents benchmark
results. Finally, Sect. 7 concludes the paper, summarizing our findings.

2 Background

This section gives an overview of the two main technologies used in T3E: TPM
and SGX. Despite the fact that both TPM an SGX are TEE technologies, they
both play a very different role. Therefore, it is common for a machine to support
both SGX and TPM.

2.1 Intel SGX

Intel introduced Software Guard eXtensions (SGX, [13,19]) in 2013 as a novel
technique to establish a Trusted Execution Environment (TEE) in user space,
called a secure enclave. It provides user programs with a way to instantiate an
isolated code and data region, which offers confidentiality, integrity, and authen-
ticity. An enclave enables a program to have two different domains: the trusted
part, where the processor enforces certain security guarantees, and the untrusted
part, which is the regular code. SGX protects enclaves from external adversaries,

T3E: A Practical Solution to Trusted Time in Secure Enclaves 307

including a malicious operating system on which the program executes. Since its
debut, SGX has been incorporated into many consumer and server-grade pro-
cessors.

SGX protects confidentiality by isolating the memory region used by the
enclave in the processor reserved memory. This hardware-based enforcement
protects an enclave’s private data to be only accessible by itself. Meanwhile,
the authenticity of an enclave is protected through an attestation mechanism,
which uses a hardware-based private key as the root of trust. Finally, an enclave
signature protects the integrity of an enclave. The processor checks the signa-
ture when loading the enclave into memory. Therefore, any modifications to the
enclave code can be detected, and the processor will refuse to execute it.

2.2 Trusted Platform Module

A Trusted Platform Module (TPM) is a security device that enables computing
platforms to establish trust. A TPM device provides essential cryptographic
operations to perform integrity measurements, key storage and reporting [5]. It
is isolated from the primary system, which ensures the trustworthiness of its
cryptographic operations. TPM devices are commonly used as a root of trust in
a secure system. Every TPM device must comply with the TPM specification
[23], which defines the features that must be present, as well as the interface
to access these features. However, the actual implementation of the device can
vary.

The most common implementation of a TPM is via a discrete TPM chip. This
low-powered device with limited computing power is connected to the processor
via a hardware bus. Although it is dedicated to processing TPM requests, its
throughput remains low. Firmware TPMs (fTPM, [7,20]) are TPMs that are
implemented in firmware and use the main processor to handle cryptographic
calculations. While they might theoretically be more prone to tampering, they
offer much-improved performance, allow updates of the firmware code, and often
support additional functionality beyond the use cases of a TPM. To enable an
unlimited number of virtual machines to access TPM services, a hypervisor can
create a virtual TPM (vTPM, [6]). vTPMs are software implementations that
emulate the behavior of a regular TPM and are protected by the hypervisor’s
hardware boundaries.

2.3 Trusted Time Sources in Intel SGX

According to the threat model for SGX, the trusted code must treat all informa-
tion obtained from outside of the enclave as untrusted unless the trust can be
established through, for example, attestation. Meanwhile, the SGX instruction
set does not provide programming primitives for system operations and services,
such as access to a real-time clock. Hence, enclaves have to rely on external
sources by performing an OCALL.

Early iterations of the SGX SDK provided a trusted service called the Plat-
form Service Enclave (PSE, [15]), which offers services that are natively unavail-
able in the SGX instruction set. The PSE ran as a separate enclave to which the

308 G. M. Hamidy et al.

application enclave could establish a secure connection through local attestation.
The PSE was the gateway for the application enclave to access Intel’s Converged
Security and Management Engine (CSME). CSME provided several trusted ser-
vices, including a trusted time service and a monotonic counter service, which
were made available to the application enclave via the PSE.

The Linux SGX SDK provided an API function to access the PSE services
called sgx get trusted time to obtain trusted time from the CSME. However,
Intel removed this API in early 20201 from the SDK and eventually removed
the PSE entirely. The removal of the PSE and its related services break all
applications that rely on those services. Intel has not issued an official statement
regarding the reason of the removal2, and they provide no clear alternative.

Earlier research results rely on the existence of the sgx get trusted time
API in SGX [3,10,18,24,27,28]. Without a secure alternative to this deprecated
function, it is unclear what the impact is on these previously published results.
Other research based on SGX opts to utilize time from untrusted sources, such
as the OS [26]. In this case, the time information is considered untrusted and
may not be suitable to be used as part of a security primitive.

One straightforward approach to solve the trusted time problem is to call
an external time service, such as an NTPSec server, whenever trusted time is
needed. While this approach could work for some scenarios, it has some notable
drawbacks. It will have a (much) higher latency, thus rendering it less effective in
scenarios characterized by high loads. Moreover, the attack surface of a network-
based channel is much larger compared to locally-sourced time information.

3 Related Work

Due to the availability of the sgx get trusted time function in the SGX SDK,
accessing trusted time inside enclaves has not been a major research topic in
the past. Nonetheless, prior work exists where the authors aimed to replace the
sgx get trusted time function with solutions that offer better security prop-
erties or better performance characteristics.

Anwar et al. [4] discussed the importance and challenges of trusted time in a
trusted application. In their follow-up research, they propose TimeSeal [3] as a
solution to secure time-based primitives. TimeSeal offers a high-resolution clock
by interpolating the trusted low-resolution clock through a trusted counting
thread which counts the subticks per low-resolution trusted tick. Unfortunately,
TimeSeal relies on SGX’s sgx get trusted time function, which renders this
solution unusable in the current iteration of the SGX SDK.

1 Removed as of Intel SGX SDK for Linux version 2.8 (https://github.com/intel/
linux-sgx/releases/tag/sgx 2.8).

2 A post on the Intel Developer Forum by a moderator suggests that the reason of the
removal might be linked to the fact that the CSME is not available on server plat-
forms, and due to licensing issues. https://community.intel.com/t5/Intel-Software-
Guard-Extensions/The-delay-attack-towards-the-trusted-time/m-p/1343497.

https://github.com/intel/linux-sgx/releases/tag/sgx_2.8
https://github.com/intel/linux-sgx/releases/tag/sgx_2.8
https://community.intel.com/t5/Intel-Software-Guard-Extensions/The-delay-attack-towards-the-trusted-time/m-p/1343497
https://community.intel.com/t5/Intel-Software-Guard-Extensions/The-delay-attack-towards-the-trusted-time/m-p/1343497

T3E: A Practical Solution to Trusted Time in Secure Enclaves 309

Alder et al. [1] proposed a solution for a high-resolution timer inside an
SGX enclave in combination with their Secure-Function-as-a-Service (S-FaaS)
proposal as a cloud-based confidential computing platform. S-FaaS requires a
trusted timer to reliably measure the resource usage that both the platform
owner and user can trust.

S-FaaS adapted the approach proposed by Chen et al. [9] to create a refer-
ence clock inside an SGX enclave. The proposed solution uses a separate counter
thread and uses the behavior of the Intel Transactional Synchronization Exten-
sion (TSX) that allows the enclave to detect an asynchronous exit event, which
may interrupt the counter thread. While the S-FaaS solution may guarantee
strict lower-bound timing, the time measurement is tied to processor clock speed
rather than the actual real-world tick. It relies on Intel TSX to detect malicious
attempts to manipulate the time measurement, but TSX has recently been dis-
abled by Intel to mitigate a transient execution attack [16].

Liang et al. [17] proposed a trusted time service for SGX enclaves by creat-
ing a trusted channel between the hardware timer and the SGX enclave. This is
achieved by implementing a custom handler for the System Management Inter-
rupt (SMI) handler. This approach requires the system firmware to be updated,
which Liang et al. evaluated by modifying the SMI handler for SeaBIOS, an
open-source implementation of an x86 BIOS. The trusted channel implemented
in the SMI handler allows SGX enclaves to obtain authenticated information
from the hardware timer. However, this approach can be considered too intru-
sive for regular use as it requires modifying the firmware of commodity hardware.

Appendix A presents a more-detailed comparison of the related works with
respect to each other and T3E. Unlike other solutions, T3E does not depend on
uncommon or deprecated APIs, does not require custom hardware modifications,
and does not rely on modified firmware, making T3E generally applicable.

4 Design

T3E is an open-source3 secure time service for the Intel SGX platform. It relies
on the TPM as the trusted time source and builds a trusted path between the
TPM and the enclave. T3E leverages the specialized characteristics of the SGX
and TPM trusted execution environments. It takes into account that the TPM
is not designed to run user software and that the current version of SGX does
not provide a viable trusted time source for software that requires it. Our goal
is to provide applications with trusted time information even under high system
load.

4.1 The TPM as a Time Source

While it is possible to utilize an external time service to provide time services to
a trusted application, it is highly desirable to source the trusted time information

3 https://github.com/DistriNet/T3E.

https://github.com/DistriNet/T3E

310 G. M. Hamidy et al.

as close as possible to the running program. An external time authority, such
as a trusted NTP server, adds additional latency that may reduce the system’s
performance and dependability. It also does not protect against delay attacks as
the network packet still has to pass through the untrusted operating system. For
this reason, we consider the TPM as the best choice available to support a trusted
time service in an Intel SGX environment, which can provide a considerable
performance benefit while preserving the trustworthiness of the time information.

The TPM provides a trusted time source independent from the machine’s
hardware clock. It tracks two separate counters: the time and the clock. The
time is a value that contains the time in milliseconds since the TPM has been
powered on. Meanwhile, the clock counts the milliseconds since the TPM epoch,
i.e., when the TPM was powered on and initialized for the first time. While
TPM time is ephemeral, the TPM records its clock periodically in non-volatile
memory (NVRAM). The TPM provides a security guarantee that its clock is
monotonously increasing.

The monotonic clock is primarily used by the TPM to perform the time-
stamping required for attestation and authorization [8]. In addition to that,
external users may request the TPM to produce attested time, in which exter-
nal users can validate the authenticity of the time information from the TPM
device.

4.2 Overview of T3E

The trust model in Fig. 1 shows all the components in the T3E architecture. The
T3E component represents the implementation of the time service. It is located
in the secure enclave, together with the code of the client application that uses
the time service. The T3E component obtains the time information from the
TPM, which is transmitted via an untrusted channel between the enclave and
the TPM. The time information is validated by verifying it with the TPM chain
of trust, which allows third parties to identify a genuine TPM device and attest
and verify TPM-generated data using public key cryptography.

A TPM device possesses an Endorsement Key (EK) that is provisioned by
the manufacturer. The EK is signed by the TPM manufacturer and acts as a
certificate authority in the TPM public key infrastructure. The EK, however,
cannot be used to sign data. Consequently, the TPM must derive a signing key
from the EK, which is called the Attestation Key (AK). The AK can be used to
sign information from the TPM.

T3E validates the authenticity of the time data from the TPM and stores
it inside the protected enclave. The client application code, which resides in
the same enclave, fully trusts the T3E library and its time information. T3E
effectively acts as a trust proxy between the TPM and the client code and
increases the availability of time data by caching it.

The TPM driver resides in the OS and is untrusted from the viewpoint of the
enclave. Since confidentiality is not required in this trust model, the T3E and
TPM are not required to establish an encrypted channel. Trust is established by
attesting the TPM device to T3E during the provisioning phase.

T3E: A Practical Solution to Trusted Time in Secure Enclaves 311

Fig. 1. Trust model for the T3E system. Components with a green background belong
to the trusted domain. Components with a red background are untrusted. (Color figure
online)

Fig. 2. TPM provisioning steps

Initialization of T3E requires access to an external time authority, for exam-
ple, a trusted NTPSec server. The time authority does not have to be fast and
will only be used sporadically to resynchronize.

4.3 Provisioning the Time Service

During the initialization process of the enclave, the T3E framework is required
to be provisioned with credentials to access the TPM. Furthermore, T3E must
receive the initial time information from an external trusted real-world clock as
presented in Fig. 2.

The first step is to establish trust between T3E and the TPM by using a
TPM attestation procedure. The steps of the attestation procedure are outlined
in Fig. 3. The TPM device produces an attestation key that T3E can use to
validate the data it receives from the TPM. It also generates a credential, which
serves as proof that the TPM owns the endorsement key, thus proving that it is
indeed a genuine device.

The TPM attestation procedure involves an untrusted party that may see
the public key that is transferred between the TPM and T3E. However, only the
TPM can produce the correct attestation information, which requires access to
the private parts of the EK and the AK.

312 G. M. Hamidy et al.

Fig. 3. TPM attestation steps

T3E needs to securely obtain the manufacturer’s CA certificate for the
attestation to work correctly. T3E should not automatically trust a certificate
obtained from an untrusted source, such as the operating system certificate store.
A simple approach is to attach the root certificate to the enclave binary, which
is equivalent to certificate pinning. SGX provides the integrity assurance by val-
idating the enclave’s signature before launch. A more advanced approach is to
transmit the root certificate from the manufacturer’s infrastructure, as done in
remote attestation protocols. The implementation of such a protocol is beyond
the scope of this paper.

After verifying the TPM device, the next step is to obtain the current real-
world time to serve as the epoch for T3E. An eligible trusted time source can be
a trusted NTPSec server, which provides authenticated time information. Alter-
natively, an operator with direct access to the machine can manually provision
the epoch time as part of the provisioning process.

The real-world clock epoch is paired with the first timestamp obtained from
the TPM, thus constructing the epoch pair used by T3E. T3E uses this epoch
pair to calculate the current time information by simply computing the elapsed
time between the TPM time epoch and the current TPM time, and adding
the elapsed time to the real clock epoch, resulting in the current real-world
clock time. Pairing the TPM epoch with the real-world clock epoch is necessary
because the TPM does not track real-world time. Instead, its time epoch starts
when the TPM is initialized or started.

4.4 Refreshing the Internal Clock

T3E advances its internal clock by reading the TPM time periodically. The
implementation can optimistically request the TPM time as often as possible
and without delay. This ensures that the cache always contains the most recent
time information. Algorithm 1 shows the ClockTick function to advance the
internal clock of T3E. An infinite loop requests the current time from the TPM
and processes the result.

T3E: A Practical Solution to Trusted Time in Secure Enclaves 313

Algorithm 1 . Advance the internal
clock when new time information is
received from the TPM
Ensure: epochTPM �= ∅, epochClock �= ∅

time ← ∅
procedure ClockTick

repeat
nonce ← GetRandom

timeMsg ← Ocall GetTime(nonce)
if VerifySig(timeMsg.sig, tpmAK,nonce)

then
tpmtime ← timeMsg.time
else
Error

end if
time ← (tpmtime−epochTPM)+epochClock

until terminates
end procedure

Algorithm 2. The pseudo-code imple-
mentation of the GetTrustedTime func-
tion
Ensure: time �= ∅, cmax �= ∅

timethread ← ∅
cthread ← ∅
procedure GetTrustedTime

while cthread ≥ cmax ∧ timethread = time
do
Sleep

end while
if time > timethread then
timethread ← time
cthread ← 0
end if
cthread ← cthread + 1
return timethread

end procedure

The ClockTick function calls the TPM2 GetTime function to obtain verified
time information. To ensure the freshness of the time request, a random nonce is
passed to the TPM and included in the signed time information. After success-
fully verifying the signature, the time information is updated. T3E calculates the
delta between the TPM epoch and the current time, which gives the number of
milliseconds since the previous synchronization with the time authority. Then,
the epoch of the real-world clock is added to calculate the real-world time. This
algorithm is implemented in a separate logical thread. It continuously updates
the current time and stores it in enclave memory.

While the time is reported in milliseconds, the actual granularity of the
time information is determined by the latency of the requests to the TPM.
Depending on the type of TPM used, this latency can range from tens of mil-
liseconds to hundreds of milliseconds, which is still an improvement over Intel’s
sgx get trusted time with second granularity.

4.5 Processing Trusted Time Requests

Retrieving the current time information from the TPM quickly becomes a bot-
tleneck, due to the latency introduced by the TPM. For this reason, T3E caches
the information received from the TPM and allows a client application to reuse
the same information multiple times.

Under normal circumstances, time information is received at regular intervals
from the TPM. However, as the attacker has full access to the operating system
and the TPM driver, they could delay or completely block time information
from reaching T3E. In the absence of a trusted internal clock within the SGX
environment, it is impossible to accurately measure the interval between two
TPM messages.

To address this issue, T3E enforces a security policy that sets a maximum
use count on cached time information before requiring a refreshed time value
from the TPM. When a counter reaches a specific threshold, requests to T3E

314 G. M. Hamidy et al.

will block until a fresh message with time information has been received from
the TPM. Whenever a new message from the TPM arrives, the use count is reset
to 0.

The maximum use count is not uniform across different hardware configura-
tions or workloads. The following formula can be used to calculate the use count
limit:

cmax =
t̄tpm interval

t̄usertime

where t̄tpm interval is the average latency of the GetTPMTime function, and
t̄usertime is the average duration between time requests made by the client code.

The average latency and the average duration between time requests should
be measured by benchmarking the enclave code on a target machine. Therefore,
it is preferable to perform the measurement during the provisioning process,
in order for T3E to enforce the policy throughout the unattended processing
afterward.

To maximize the throughput on a multi-core processor, T3E evaluates the
maximum use count on a thread-specific basis. Multiple enclave threads request-
ing time data in parallel should not disproportionately affect the freshness of
the cached time information. The maximum number of threads in the enclave
is defined by the enclave developer and stored in the enclave manifest. Intel
recommends not to exceed the number of processor cores.

Algorithm 2 presents the GetTrustedTime procedure as it is implemented in
T3E. The procedure blocks the call when the use count, stored in cthread, has
exceeded cmax and no new time information, stored in the global variable time,
has been received.

4.6 Reprovisioning Time from the Time Authority

T3E uses the trusted time authority (e.g., a trusted external NTPSec server) to
periodically resynchronize the time epoch. This is necessary to avoid clock drift—
a normal phenomenon that occurs between any two clocks. Resynchronization
also serves as a mitigation against delay attacks where the attacker tries to
secretly manipulate the progression of time (cf. Sect. 5.5). The periodicity of the
resynchronization can be configured by the enclave owner and is expressed in a
multiple of TPM ticks. T3E will expect an answer from the time authority in a
timely manner. If it receives no response within a configurable number of TPM
ticks, the processing of time requests by the client application will be suspended.

5 Security Evaluation

Attackers may try to manipulate the time information in a trusted system to
gain an advantage. For a time service to be trusted, it must be able to guar-
antee the integrity of the time information or be able to detect any attempt to
influence the returned time within certain reasonable bounds. In this section,

T3E: A Practical Solution to Trusted Time in Secure Enclaves 315

we define the requirements of a secure time service and evaluate the T3E frame-
work. Appendix A further evaluates and compares the related works, presented
in Sect. 3, with respect to the security requirements that are presented in this
section.

5.1 Requirement 1: The Time Source Must Be Authentic

A trusted time service is built around a time source that is trusted. Many dif-
ferent time sources may be available on a system (e.g., OS time, SW timers
[22], TSC [14], HPET [12], PTP [25], TPM [5]), but most do not protect the
integrity of the time information. Because the SGX threat model assumes a
strong attacker with full control over the operating system, the time source must
be able to resist any attempt to manipulate the returned time information, even
by privileged users.

T3E uses two time sources: an initial real-world time source during the pro-
visioning phase and the TPM time. T3E defines two practical ways to provision
the initial time source. Automatic provisioning is supported by using an NTPSec
server. Protocols such as NTS [11] support authenticated and integrity-protected
access to a time service. Alternatively, T3E can be provisioned manually by the
owner of the enclave.

The TPM provides time information that can be attested. The enclave can
verify the authenticity of the TPM device and can agree on a key to validate the
time data. This trust model also prevents man-in-the-middle attacks where the
adversary tries to impersonate the TPM device or otherwise forge time infor-
mation. An adversary can never access the attestation or endorsement keys, as
they are kept inside the TPM. T3E validates the signature on the timing infor-
mation it receives from the TPM (cf. Algorithm 1). If the signature is invalid,
the information is discarded.

5.2 Requirement 2: Time Information Cannot Be Replayed

The time information returned by the trusted time service must be monotonously
increasing. An adversary may try to trick the time service into returning old time
information by intercepting and replaying messages from the trusted time source.
This would effectively revert the clock to an earlier time and repeat the time
that has passed. A trusted time service must detect and mitigate replay attacks.

The ClockTick function (cf. Algorithm 1) uses a random nonce to request
time information from the TPM. The nonce ensures freshness and avoids replay
attacks. The nonce is generated inside the protection boundaries of the enclave,
and cannot be guessed or otherwise deduced by an attacker.

5.3 Requirement 3: Time Cannot Be Sped Up

A reliable time source must provide a stable and consistent progression of time,
synchronously with the real-world clock. An adversary may try to advance the

316 G. M. Hamidy et al.

clock to expedite an event that should not have yet occurred. A trusted time
service must be resilient against artificial time progression.

For an attacker to be able to speed up time, they must be able to forge
messages from the TPM and manipulate the reported time information. How-
ever, the signatures on the time information messages protect them from being
tampered with. The attacker cannot falsify the signature because the associated
private keys are securely stored inside the TPM.

An attacker can try to influence the clock frequency of the TPM to adjust
the speed of the reported time, or may attack the TPM chip directly by trying
to inject faults or retrieve secret keys through side channels. However, TPM
chips are specifically designed to defend against these types of attacks, and any
successful attack should be considered a design flaw of the TPM and not a
weakness in the T3E architecture.

5.4 Requirement 4: Time Cannot Be Paused or Slowed Down

Due to the absence of a trusted time source that is directly accessible from within
an enclave, the time service must communicate with an external trusted time
source. Communication between the enclave and the external time source can
be intercepted by the OS and an attacker may choose to block certain messages
indefinitely, thus causing time to slow down or stand still. While this problem
can only be fully solved on an architectural level, the time service must have
mitigations in place against this type of attack.

When the TPM provides new time information, the attacker could delay the
message from reaching the enclave. Because the enclave does not have direct
access to a trusted time source, it cannot accurately measure the latency of
the TPM messages and detect the delay. While a comprehensive solution would
involve changing part of the processor architecture, only Intel is in a position to
effectuate this.

T3E mitigates delay attacks by enforcing a maximum use count after receiv-
ing time information from the TPM. This forces the attacker to regularly allow
new time measurements to reach the enclave, or T3E would refuse to hand out
time information, blocking the client program in the enclave.

Delaying TPM messages will also increase the frequency with which the max-
imum use count is reached by the client program. This can serve as an early indi-
cation that a resynchronization with the trusted time anchor from the external
time oracle is necessary.

5.5 Attack Scenarios

To evaluate the effectiveness of T3E, we discuss four potential strategies that an
attacker may use and discuss how they impact T3E.

Introducing Delays: An adversary may introduce arbitrary delays between
T3E and the TPM. Figure 4 shows the normal operation of T3E, and Fig. 5
shows the attack, where each tick is delayed and arrives later than expected.

T3E: A Practical Solution to Trusted Time in Secure Enclaves 317

Fig. 4. The normal operation of T3E

Fig. 5. The behavior of T3E in a delay attack

If the enclave was provisioned with the appropriate maximum use count,
T3E would hit the limit around the time the next tick should have been received
and block the client application until fresh time information has arrived. If the
attacker delays the ticks for long periods, the client application will be denied
service by T3E. Like SGX, T3E does not protect against DoS attacks. If the
attacker delays the ticks for only a short period, the difference between the
actual time and the time reported by T3E is small, limiting the effectiveness of
the attack. The periodic resynchronization with an external trusted time source
further mitigates this attack. Note that the delay does not accumulate over
multiple ticks because T3E only sends the request for the next tick after receiving
the previous one. To maintain a false sense of time, the attacker must delay
all communication between T3E and the TPM. If the attack stops, T3E will
automatically revert to the real time.

Precaching Results: An adversary may request attested time information from
the TPM, cache the results, and slowly feed T3E with outdated time information.
This would slow down the time from the perspective of T3E, and could over
time result in a large clock drift between the T3E time and the actual time.
T3E counters this threat by adding a random nonce to each TPM GetTime
request, which is included in the signature. As the attacker cannot know which
random nonce T3E will use for a request, they cannot proactively request time
information from the TPM that will be accepted by T3E.

Changing the CPU Frequency: An adversary may attempt to change the
CPU frequency to process requests at a faster or slower rate to create the illu-
sion in the enclave that time is sped up or slowed down. However, changing

318 G. M. Hamidy et al.

the processor frequency does not impact the functioning of the TPM. Hence,
although the client application in the enclave will run faster or slower, it will
continue to receive the correct time information from the TPM. If the processor
frequency is increased, the client application will regularly hit the maximum use
count and the throughput will be throttled down automatically. If the processor
frequency is decreased, the client application will run slower but will otherwise
see no impact with respect to trusted time requests.

Scheduling Attacks: An adversary has full control over the scheduler in the
OS and may arbitrarily interrupt or pause the execution of T3E. Pausing the
enclave can allow the attacker to force T3E to use time information beyond its
normal lifetime. However, large pauses equate to a DoS attack for which T3E
does not offer protection. Short pauses are possible and may not be detected,
but limit the potential advantage to an attacker.

Misbehavior of the TPM Owner: T3E operates under the assumption that
the TPM’s owner is not acting as an adversary, but this may not be practical
in cloud scenarios. In this case, the hardware is managed by the cloud service
provider and not the enclave owner. This enables the cloud service provider to
use the TPM owner authorization password to move the clock forward. T3E
can mitigate this type of attack by comparing the time received from the TPM
with the time received in the previous tick. If the difference is suddenly larger
than expected (because an adversary has moved the clock forward), T3E can
trigger a resynchronization with the external time source. If the attacker only
advances the time of the TPM slightly, T3E may not detect the modification.
However, the advantage for the attacker would be small, and the modification
will be neutralized during the next periodic resynchronization with the external
time source.

Microarchitectural and Rollback Attacks on SGX: Previous research [21]
has leveraged different types of microarchitectural attacks against SGX enclaves.
These attacks allow adversaries to recover secret data from within the bounds
of the enclave. However, as T3E does not process any secret data, microarchi-
tectural attacks are not directly applicable to T3E. In enclave rollback attacks
[18], an attacker violates the integrity of a protected enclave state by replaying
old persistently stored data. This type of attack also does not apply to T3E,
because T3E does not store persistent data. Instead, whenever the enclave is
reinitialized, it resynchronizes the time with the external trusted time source
and stores all its data in volatile memory.

6 Implementation and Analysis

We implemented the T3E framework in C++ using the Intel SGX SDK4 v2.17
and the TPM2 Software Stack (TSS)5 v3.2. Most of the TPM2 library runs as
4 https://www.intel.com/content/www/us/en/developer/tools/software-guard-

extensions/get-started.html.
5 https://github.com/tpm2-software/tpm2-tss.

https://www.intel.com/content/www/us/en/developer/tools/software-guard-extensions/get-started.html
https://www.intel.com/content/www/us/en/developer/tools/software-guard-extensions/get-started.html
https://github.com/tpm2-software/tpm2-tss

T3E: A Practical Solution to Trusted Time in Secure Enclaves 319

Table 1. Machine specification for the experiments

Machine 1 Machine 2 Machine 3

Processor Core i7 10700 Xeon Platinum 8480+ Celeron J4025

Base Freq. 2.9 GHz 2.0 GHz 2.0 GHz

SGX Ver. 1 2 2

TPM Type Discrete fTPM fTPM

TPM Model Infineon SLB9670 Intel PTT Intel PTT

Table 2. Measurement results for the different signature schemes (in milliseconds)

RSASSA-PKCS1 RSASSA-PSS ECDSA

Avg Min Max Avg Min Max Avg Min Max

Machine 1 396 391 401 402 398 415 280 278 297

Machine 2 83 82 92 85 84 95 30 29 37

Machine 3 231 227 291 231 229 254 138 136 190

part of the untrusted code outside of the enclave. However, to guarantee the
integrity and confidentiality of the attestation protocol between the TPM and
T3E, the attestation challenge generation algorithm and the signature verifica-
tion scheme were ported into the enclave and are a part of the trusted domain.
We conducted the experiment on three different machines, as outlined in Table 1.
The experimental application is compiled using Clang/LLVM 14.

For the analysis, we use the RDTSC instruction to measure the internal timing
of T3E. In the SGX 1 machine, which cannot call RDTSC inside the enclave, we
execute the instruction in the untrusted code via an OCALL and subtract the
average overhead caused by the enclave transition from the result.

6.1 Microbenchmark Results

We evaluated three signature schemes for signing the time information received
from the TPM2 GetTime command in our TPM device: two RSA-based signatures
schemes and one elliptic-curve signature scheme. Our test application invokes
TPM2 GetTime from an enclave via an OCALL, and verifies the signed time infor-
mation internally in the trusted domain. This corresponds to the inner workings
of the ClockTick function (Algorithm 1). The enclave obtains the time infor-
mation repeatedly for 60 s.

The results of these measurements are presented in Table 2. The numbers
in the table represent the duration of the GetTPMTime function, measured in
milliseconds and derived from the time date received from the TPM. In T3E
terminology, this corresponds to the tick count of the system. The measurements
show that ECDSA performs almost 30% faster than the RSA-based signature
schemes.

320 G. M. Hamidy et al.

Fig. 6. Timing results for timestamping data of various input sizes

Our experiment also presents the performance potential of fTPM solutions,
which provide more frequent ticks and thus have a higher time granularity than
the discrete TPM solution. Using ECDSA on Machine 2’s fTPM, the T3E frame-
work can retrieve fresh time information every 30ms. This is a 33× improvement
over the 1-second granularity of Intel’s sgx get trusted time implementation.
It also translates to a shorter tick interval, which improves security by reducing
the attack potential of an adversary to abuse the use count by launching a delay
attack.

6.2 Macrobenchmark Using OpenSSL

To evaluate T3E in a realistic use case of trusted time, we implemented Time-
stamping Authority (TSA, [29]) functionality inside the enclave. The implemen-
tation uses OpenSSL’s timestamp components, where the enclave performs data
measurement and generates a signed timestamp along with the hash of the data
that can be verified using the TSA verification mechanism.

Our experiment uses exponentially increasing input data size to observe the
execution time growth over the input data. We specifically measure the execu-
tion time of the timestamp query and reply process. Additional administrative
operations, such as loading keys and certificates, are excluded from the measure-
ment.

We can calculate the machine throughput by dividing the microbenchmark
timing results from Table 2 and the macrobenchmark result in Fig. 6. The
throughput value can become the baseline from which to calculate the maximum
use count for the trusted time. A throughput n can be interpreted as follows:
within a single tick (i.e., the granularity of the T3E clock), n time information
requests are sent to T3E.

Since the throughput n depends on the data size that has to be processed, it
is also important to build an accurate profile of the average input for the actual
application. If the expected throughput is estimated too low, the T3E framework

T3E: A Practical Solution to Trusted Time in Secure Enclaves 321

Fig. 7. Effect of delay and scheduling attacks on throughput

might use a maximum use count that is too low and some time requests may
be blocked. If the expected throughput is estimated too high, the maximum use
count will never be reached, giving an attacker some extra leeway to perform a
delay attack.

6.3 Impact of Attacks on Throughput

As discussed in Sect. 5.5, an attacker can use a delay attack or scheduling
attack to introduce small slowdowns in the reported time. Using the results
from Table 2, we can calculate the effect these slowdowns have on the system’s
throughput.

Consider ttick the tick interval (i.e., the average time between two TPM
messages) and d the delay that is induced by an attacker through a delay or
scheduling attack. Because of the delay, fewer TPM messages will reach T3E
in a given time frame, causing T3E to hit the maximum use count cmax and
throttle down the time requests. We can calculate this effect on the throughput
τ as follows:

τ =
ttick

ttick + d

Figure 7 plots the results of this calculation for the three test systems and
different delays. The impact of the tick interval on the effectiveness of the attack
is clearly visible: with only a minimal delay of 10ms, Machine 2 (with the shortest
tick interval) loses 25% of its original throughput. For the same delay, Machine 1
only loses 3.4% throughput. Hence, frequent ticks do not only increase the time
granularity, but also improve the protection against attacks.

When the delay is increased, the throughput plummets. Delaying the time
by 1 s reduces the throughput of the systems to 3%–22% of the original through-
put. This change in system behavior would be immediately visible to external
monitoring tools.

322 G. M. Hamidy et al.

7 Conclusion

Access to authentic time information is important in any trusted system. Intel
SGX enables building trusted applications inside a Trusted Execution Environ-
ment, called an enclave, which can be isolated from an untrusted operating
system. However, accessing time information from within the enclave poses a
major challenge since this information is typically maintained by the untrusted
OS. The previous iteration of the Intel SGX SDK provided an API function
called sgx get trusted time that uses the Intel Management Engine technol-
ogy stack as a more secure alternative to OS time. However, the API function
has been removed from the Linux SGX SDK as of 2020, leaving enclaves with
no good alternative.

In this paper, we examined the problem of trusted time in SGX enclaves
and presented TPM-based Trusted Time Extensions (T3E), a novel solution
that builds on readily available hardware components. T3E leverages TPM 2.0
functionality to provide trusted time services in enclaves, while also protecting
against common attacks. It offers better time granularity and lower latency than
Intel’s sgx get trusted time implementation. Unlike related work, it does not
rely on deprecated features or hardware/firmware modifications.

Acknowledgements. This research is partially funded by the Research Fund KU
Leuven, and by the Flemish Research Program Cybersecurity. The authors thank all
reviewers, who provided constructive feedback to improve our paper. In addition, the
first author would like to also thank Dody Suhendra from Sandhiguna for triggering
the discussion leading to this research question.

A Appendix: Comparison with Related Solutions

The features of T3E are comparable to the related works presented in Sect. 3.
However, T3E can be implemented without requiring intrusive changes to hard-
ware or software. It does not rely on deprecated infrastructure or APIs and
does not require modifications to commodity hardware such as custom-made
firmware. T3E is an alternative for the deprecated sgx get trusted time func-
tion, offering better security guarantees and a higher clock granularity.

T3E builds on the security properties of the TPM and SGX to ensure the
clock’s monotonicity and authenticity. A trusted channel is set up between the
TPM and the enclave. This approach is similar to the TimeSeal solution, where
the time information originates from the PSE.

To mitigate delay attacks, T3E maintains a maximum use count for each
set of time information received from the TPM. While TimeSeal considered a
scheduling delay, it did not consider the possibility of the entire application
thread being suspended, pausing the time progression altogether. S-FaaS can
detect the pause attack, but it cannot determine the duration of the delay,
making it impossible to use it as a reliable tick source for a clock. TrustedClock
does not have this issue because the tick generator is completely isolated from
the untrusted OS. However, a powerful adversary can still suspend the enclave

T3E: A Practical Solution to Trusted Time in Secure Enclaves 323

Table 3. Comparison of T3E and related solutions for trusted time in SGX.

Solution Tick
Granularity

Time
Unit

Uses
PSE

H/W
Changes

sgx get trusted time 1 s Timepoint • –

TimeSeal [3] ˜100 ms Timepoint • –

S-FaaS [1] ns Duration – –

TrustedClock [17] ˜1 ms Timepoint – •
T3E 30˜300 ms Timepoint – –

Table 4. Security evaluation of T3E and related solutions for trusted time in SGX,
with regard to the security requirements in Sect. 5

Requirement 1 Requirement 2 Requirement 3 Requirement 4

Intel SGX PSE (sgx get trusted time)

Uses Intel’s

(deprecated) PSE.

protected against

privileged adversaries,

to update the clock

value inside the

trusted domain

Guaranteed to be

monotonically

increasing, inherited

from its underlying

hardware (Intel

CSME)

The operating system

does not have access to

the clock configuration,

which prevents tampering

to accelerate the clock

The hardware runs

independently from the

main processor, however,

the time information

passes through the OS

and has no mitigations

against delay attacks

TimeSeal [3]

Uses Intel’s

(deprecated) PSE,

and in addition,

calculates the subtick

interpolation inside

the trusted domain

Inherits PSE

guarantees and the

interpolated subtick is

also designed to be

monotonically

increasing

Inherits the properties of

the PSE time source that

prevents accelerating the

clock

Faces similar delay attack

as SGX PSE, however,

TimeSeal detects these

delays via separate

counter threads and

corrects it via

interpolation

S-FaaS [1]

The software timer

and its state resides

within the trusted

domain

The software timer is

designed to be

monotonically

increasing

The software timer may

be sped up by

overclocking the processor

Can detect if the software

timer is being paused,

but unable to determine

the pause duration, and

not immune to processor

clock changes

TrustedClock [17]

Uses a hardware timer

that cannot be

modified by a

privileged attacker

Monotonically

increasing derived

from the hardware

timer specification

The hardware clock runs independently of the OS. The

OS cannot influence the behavior of the time source,

including delaying its messages, as it runs in a higher

privilege level (System Management Mode)

T3E

Combines the

authenticated

hardware timer from

the TPM and a

software counter

inside the trusted

domain

Monotonically

increasing derived

from the TPM clock

specification

The TPM clock can only

be manually changed

using the owner

authorization secret, and

T3E can detect the

irregular tick that may be

caused by an adversary

TPM clock runs

independently from the

OS, and a software

counter limits the

maximum use count of

time information, and

periodically

resynchronizes with an

external trusted time

authority

execution right before the trusted time is used, allowing TOCTTOU (Time-of-
Check to Time-of-Use) attacks. We summarize our comparison in Table 3 and
Table 4.

324 G. M. Hamidy et al.

References

1. Alder, F., Asokan, N., Kurnikov, A., Paverd, A., Steiner, M.: S-FaaS: trustworthy
and accountable function-as-a-service using Intel SGX. In: Proceedings of the 2019
ACM SIGSAC Conference on Cloud Computing Security Workshop, CCSW 2019,
pp. 185–199. Association for Computing Machinery, New York (2019). https://doi.
org/10.1145/3338466.3358916

2. Alder, F., Scopelliti, G., Bulck, J.V., Mühlberg, J.T.: About time: on the chal-
lenges of temporal guarantees in untrusted environments. In: Proceedings of the
6th Workshop on System Software for Trusted Execution (SysTEX 2023) (2023)

3. Anwar, F.M., Garcia, L., Han, X., Srivastava, M.: Securing time in untrusted
operating systems with TimeSeal. In: 2019 IEEE Real-Time Systems Symposium
(RTSS), pp. 80–92 (2019). https://doi.org/10.1109/RTSS46320.2019.00018

4. Anwar, F.M., Srivastava, M.: Applications and challenges in securing time. In:
12th USENIX Workshop on Cyber Security Experimentation and Test (CSET
2019), Santa Clara, CA. USENIX Association (2019). https://www.usenix.org/
conference/cset19/presentation/anwar

5. Arthur, W., Challener, D., Goldman, K.: A Practical Guide to TPM 2.0: Using
the New Trusted Platform Module in the New Age of Security. Springer, Cham
(2015). https://doi.org/10.1007/978-1-4302-6584-9

6. Berger, S., Caceres, R., Goldman, K.A., Perez, R., Sailer, R., van Doorn,
L.: vTPM: virtualizing the trusted platform module. In: 15th USENIX
Security Symposium (USENIX Security 2006), Vancouver, B.C., Canada.
USENIX Association (2006). https://www.usenix.org/conference/15th-usenix-
security-symposium/vtpm-virtualizing-trusted-platform-module

7. Boubakri, M., Chiatante, F., Zouari, B.: Towards a firmware TPM on RISC-V. In:
2021 Design, Automation & Test in Europe Conference & Exhibition (DATE), pp.
647–650. IEEE (2021). https://doi.org/10.23919/DATE51398.2021.9474152

8. Chen, L., et al.: Trusted Computing Platforms: TPM2.0 in Context. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-08744-3

9. Chen, S., Zhang, X., Reiter, M.K., Zhang, Y.: Detecting privileged side-channel
attacks in shielded execution with Déjà Vu. In: Proceedings of the 2017 ACM on
Asia Conference on Computer and Communications Security, ASIA CCS 2017, pp.
7–18. Association for Computing Machinery, New York (2017). https://doi.org/10.
1145/3052973.3053007

10. Dang, H., Dinh, A., Chang, E.C., Ooi, B.C.: Chain of trust: can trusted hardware
help scaling blockchains. arXiv preprint arXiv:1804.00399 (2018)

11. Franke, D.F., et al.: Network Time Security for the Network Time Protocol. RFC
8915 (2020). https://www.rfc-editor.org/info/rfc8915

12. Intel: IA-PC HPET (High Precision Event Timers) Specification. Intel (2004).
https://www.intel.com/content/dam/www/public/us/en/documents/technical-
specifications/software-developers-hpet-spec-1-0a.pdf

13. Intel: Intel® Software Guard Extensions Programming Reference (2014). https://
www.intel.com/content/dam/develop/external/us/en/documents/329298-002-
629101.pdf

14. Intel: Intel® 64 and IA-32 Architectures Software Developer’s Manual, chap. 39,
pp. 13–14. Intel (2016). https://www.intel.com/content/dam/www/public/us/
en/documents/manuals/64-ia-32-architectures-software-developer-vol-3d-part-4-
manual.pdf

https://doi.org/10.1145/3338466.3358916
https://doi.org/10.1145/3338466.3358916
https://doi.org/10.1109/RTSS46320.2019.00018
https://www.usenix.org/conference/cset19/presentation/anwar
https://www.usenix.org/conference/cset19/presentation/anwar
https://doi.org/10.1007/978-1-4302-6584-9
https://www.usenix.org/conference/15th-usenix-security-symposium/vtpm-virtualizing-trusted-platform-module
https://www.usenix.org/conference/15th-usenix-security-symposium/vtpm-virtualizing-trusted-platform-module
https://doi.org/10.23919/DATE51398.2021.9474152
https://doi.org/10.1007/978-3-319-08744-3
https://doi.org/10.1145/3052973.3053007
https://doi.org/10.1145/3052973.3053007
http://arxiv.org/abs/1804.00399
https://www.rfc-editor.org/info/rfc8915
https://www.intel.com/content/dam/www/public/us/en/documents/technical-specifications/software-developers-hpet-spec-1-0a.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/technical-specifications/software-developers-hpet-spec-1-0a.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/329298-002-629101.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/329298-002-629101.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/329298-002-629101.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3d-part-4-manual.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3d-part-4-manual.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3d-part-4-manual.pdf

T3E: A Practical Solution to Trusted Time in Secure Enclaves 325

15. Intel: Trusted Time and Monotonic Counters with Intel® Software Guard Exten-
sions Platform Services (2017). https://community.intel.com/legacyfs/online/
drupal files/managed/1b/a2/Intel-SGX-Platform-Services.pdf

16. Intel: Intel® Transactional Synchronization Extension (Intel® TSX) Dis-
able Update for Selected Processors (2022). https://cdrdv2.intel.com/v1/dl/
getContent/643557

17. Liang, H., Li, M.: Bring the missing jigsaw back: trustedclock for SGX enclaves. In:
Proceedings of the 11th European Workshop on Systems Security, EuroSec 2018.
Association for Computing Machinery, New York (2018). https://doi.org/10.1145/
3193111.3193119

18. Matetic, S., et al.: ROTE: rollback Protection for Trusted Execution. In:
26th USENIX Security Symposium (USENIX Security 2017), pp. 1289–1306
(2017). https://www.usenix.org/conference/usenixsecurity17/technical-sessions/
presentation/matetic

19. McKeen, F., et al.: Innovative instructions and software model for isolated execu-
tion. In: Proceedings of the 2nd International Workshop on Hardware and Archi-
tectural Support for Security and Privacy, HASP 2013. Association for Computing
Machinery, New York (2013). https://doi.org/10.1145/2487726.2488368

20. Raj, H., et al.: fTPM: a software-only implementation of a TPM chip. In:
25th USENIX Security Symposium (USENIX Security 2016), pp. 841–856
(2016). https://www.usenix.org/system/files/conference/usenixsecurity16/sec16
paper raj.pdf

21. Schwarz, M., Gruss, D.: How trusted execution environments fuel research on
microarchitectural attacks. IEEE Secur. Priv. 18(5), 18–27 (2020). https://doi.
org/10.1109/MSEC.2020.2993896

22. Schwarz, M., Weiser, S., Gruss, D., Maurice, C., Mangard, S.: Malware guard
extension: using SGX to conceal cache attacks. In: Polychronakis, M., Meier, M.
(eds.) DIMVA 2017. LNCS, vol. 10327, pp. 3–24. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-60876-1 1

23. The Trusted Computing Group: ISO/IEC 11889-1:2015 - Information Technology
- Trusted Platform Module (2015). https://www.iso.org/standard/66510.html

24. Tople, S., Park, S., Kang, M.S., Saxena, P.: VeriCount: verifiable resource
accounting using hardware and software isolation. In: Preneel, B., Vercauteren,
F. (eds.) ACNS 2018. LNCS, vol. 10892, pp. 657–677. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-93387-0 34

25. Trach, B., Krohmer, A., Gregor, F., Arnautov, S., Bhatotia, P., Fetzer, C.: Shield-
Box: secure middleboxes using shielded execution. In: Proceedings of the Sympo-
sium on SDN Research, SOSR 2018. Association for Computing Machinery, New
York (2018). https://doi.org/10.1145/3185467.3185469

26. Tsai, C.C., Porter, D.E., Vij, M.: Graphene-SGX: a practical library OS for
unmodified applications on SGX. In: 2017 USENIX Annual Technical Conference
(USENIX ATC 2017), pp. 645–658 (2017). https://www.usenix.org/conference/
atc17/technical-sessions/presentation/tsai

27. Wang, H., Chen, G., Zhang, Y., Lin, Z.: Multi-certificate attacks against proof-
of-elapsed-time and their countermeasures. In: Network and Distributed System
Security Symposium, NDSS 2022 (2022). https://www.ndss-symposium.org/ndss-
paper/auto-draft-253/

https://community.intel.com/legacyfs/online/drupal_files/managed/1b/a2/Intel-SGX-Platform-Services.pdf
https://community.intel.com/legacyfs/online/drupal_files/managed/1b/a2/Intel-SGX-Platform-Services.pdf
https://cdrdv2.intel.com/v1/dl/getContent/643557
https://cdrdv2.intel.com/v1/dl/getContent/643557
https://doi.org/10.1145/3193111.3193119
https://doi.org/10.1145/3193111.3193119
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/matetic
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/matetic
https://doi.org/10.1145/2487726.2488368
https://www.usenix.org/system/files/conference/usenixsecurity16/sec16_paper_raj.pdf
https://www.usenix.org/system/files/conference/usenixsecurity16/sec16_paper_raj.pdf
https://doi.org/10.1109/MSEC.2020.2993896
https://doi.org/10.1109/MSEC.2020.2993896
https://doi.org/10.1007/978-3-319-60876-1_1
https://doi.org/10.1007/978-3-319-60876-1_1
https://www.iso.org/standard/66510.html
https://doi.org/10.1007/978-3-319-93387-0_34
https://doi.org/10.1145/3185467.3185469
https://www.usenix.org/conference/atc17/technical-sessions/presentation/tsai
https://www.usenix.org/conference/atc17/technical-sessions/presentation/tsai
https://www.ndss-symposium.org/ndss-paper/auto-draft-253/
https://www.ndss-symposium.org/ndss-paper/auto-draft-253/

326 G. M. Hamidy et al.

28. Zhang, F., Cecchetti, E., Croman, K., Juels, A., Shi, E.: Town crier: an authen-
ticated data feed for smart contracts. In: Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, CCS 2016, pp. 270–282.
Association for Computing Machinery, New York (2016). https://doi.org/10.1145/
2976749.2978326

29. Zuccherato, R., et al.: Internet X.509 Public Key Infrastructure Time-Stamp Pro-
tocol (TSP). RFC 3161 (2001). https://doi.org/10.17487/RFC3161. https://www.
rfc-editor.org/info/rfc3161

https://doi.org/10.1145/2976749.2978326
https://doi.org/10.1145/2976749.2978326
https://doi.org/10.17487/RFC3161
https://www.rfc-editor.org/info/rfc3161
https://www.rfc-editor.org/info/rfc3161

Decentralized SGX-Based Cloud Key
Management

Yunusa Simpa Abdulsalam1(B), Jaouhara Bouamama1(B), Yahya Benkaouz2,
and Mustapha Hedabou1

1 College of Computing, Mohammed VI Polytechnic University, Benguerir, Morocco
{abdulsalam.yunusa,jaouhara.bouamama,mustapha.hedabou}@um6p.ma

2 Computer Science Department, Faculty of Sciences, Mohammed V University in
Rabat, Rabat, Morocco

yahya.benkaouz@fsr.um5.ac.ma

Abstract. The adoption of cloud computing is expanding at an aston-
ishing pace for personal and professional usage. The high computational
power and storage capacity have created a preference for traditional on-
premise service provisioning. However, security remains the primary issue
when dealing with the cloud paradigm. Encryption schemes have been
considered a straightforward approach to protecting sensitive data. Yet,
several key management schemes are vulnerable to various threats that
weaken the long-term efficiency of the encryption scheme. This paper
proposes MultiSGX-KMS, an efficient and secure cloud key management
scheme. The suggested scheme aims to protect exchanged user keys while
ensuring fault tolerance using secret sharing and trusted execution envi-
ronments. In addition, the encryption keys are deployed in the SGX
instance in the cloud while being fully controlled by the end user. The
scheme is robust against proactive attacks and mitigates against a com-
putationally bounded attacker without assuming a possible hardware
attack on an SGX enclave. The proposed scheme presents a limited over-
head of 0.1% for a file size of 50 MB compared to the traditional app-
roach. The overhead further decreases proportionally as file sizes increase.

Keywords: key Management · Intel SGX · Secret Sharing Schemes

1 Introduction

In recent times, cloud application systems have been highly rated due to their
effective storage capacity and availability. This is because outsourcing infor-
mation reduces data management and storage bottlenecks, which lowers costs
[7]. In most cloud settings, cloud service providers have partial or full control
over key management functions, including highly sensitive cryptographic keys
[16]. Therefore, organizations face challenges in migrating to public cloud sys-
tems due to the lack of efficient key user-centric management solutions. To

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Li et al. (Eds.): NSS 2023, LNCS 13983, pp. 327–341, 2023.
https://doi.org/10.1007/978-3-031-39828-5_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-39828-5_18&domain=pdf
https://doi.org/10.1007/978-3-031-39828-5_18

328 Y. S. Abdulsalam et al.

protect cryptographic keys, several approaches have been proposed in the lit-
erature [4,15,21,23], including software and hardware solutions. However, these
approaches have limitations in terms of performance, scalability, and on-demand
self-service.
Trusted Execution Environments (TEEs) are secure areas in central processing
units that were developed to provide a safe, isolated environment for executing
secret codes [24]. Popular technologies like ARM TrustZone [3] and Intel Software
Guard Extensions (SGX) [1] utilize TEEs to isolate sensitive code from untrusted
access. However, Intel SGX is preferred over the ARM TrustZone because it oper-
ates over one CPU, which can have multiple secure environments running over
untrusted software [20]. Although SGX enclaves offer protection against various
attacks, their use necessitates careful application refactoring into trusted and
untrusted environments to achieve the desired security and privacy goals. This
paper proposes a cloud key management system that can be leveraged to solve
problems of authentication, integrity, confidentiality, and a single SGX point of
failure. The proposed scheme is based on a redefined Trusted Execution Envi-
ronment. The solution allows the secure execution of an on-premise software key
management system on the cloud providers for keeping control over sensitive
keys. The proposed scheme splits and distributes a cryptographic key over mul-
tiple trusted execution environments (SGX instances) to enhance security for
encryption keys. The proposed protocol offers confidentiality without commit-
ment schemes, reducing the heavy computational power required for generating
and reconstructing secret shares. Additionally, the approach provides proactive
confidentiality and integrity through the generation of shares distributed to each
SGX, which are encrypted within SGXi using a unique seal key SGXikey

. This
approach provides mitigation against computationally bounded attackers with-
out relying on the assumption of a possible hardware attack on an SGX enclave.
The major contributions of this work are summarized as follows:

1. We design MultiSGX-KMS, a scalable cloud-based key management scheme.
2. We present a security analysis of the suggested scheme.
3. We validate the efficiency of our scheme with implementation and evaluation.

The remainder of this paper is organized as follows: Section 2 presents the pre-
liminaries on Intel SGX as an efficient TEE technology and the different secret-
sharing schemes in the literature. Section 3 provides a literature review on SGX
for data security. Section 4 presents an overview of the considered system and
adversarial models. Section 5 presents the suggested MultiSGX-KMS scheme.
Section 6 presents the security analysis. Section 7 shows the experimental results
and discusses the takeaways, the advantages and the limitations of the suggested
system. Finally, Sect. 8 concludes and provides direction for future works.

2 Preliminaries

This section presents the building blocks used in the proposed MultiSGX-KMS
scheme. Mainly, we present the Intel SGX and the secret sharing scheme.

Decentralized SGX-Based Cloud Key Management 329

2.1 Intel SGX

Intel SGX is a technology that enables high-level protection of secrets against all
non-authorized access, including operating systems and hypervisors. SGX uses
enclave to allocate hardware-protected memory where data and code reside. The
enclave code can be invoked only via special instructions such as ECALL and
OCALL. The ECALL instruction is a call to a predefined function inside the
enclave from the application. The OCALL allows an enclave to invoke a prede-
fined function in the application.
Furthermore, Intel SGX provides dedicated attestation and sealing mechanisms
to build a secure model. To this end, two different keys are associated with
the enclave: a report key to verify the signature of the enclave and a seal key
to encrypt sensitive data outside the enclave. Generally, a software attestation
aims to convince a challenger that the software is trustworthy and runs on the
same platform. Accordingly, an enclave can prove its identity to another enclave
on the same platform or remotely. These processes are identified as Local Attes-
tation and Remote Attestation.
As shown in Fig. 1, the service provider requests attestation from the enclave.
The enclave generates a signed REPORT. This REPORT is sent to the quoting
enclave. This step is a local attestation between two enclaves on the same plat-
form. The quoting enclave is responsible for converting a local REPORT to a
QUOTE verifiable by the service provider. The QUOTE is generated by signing
the REPORT with the private key of the enclave, then, forwarded to the service
provider. Finally, the service provider verifies the QUOTE via Intel Attestation
Service, a public web service operated by Intel that proves the trustworthiness
of QUOTES [5].

Fig. 1. Remote Attestation Flow

2.2 Secret Sharing Schemes

Secret Sharing Schemes (SSS) refer to methods by which a party divides a secret
into multiple shares distributed amongst a group of parties. The secret is shared

330 Y. S. Abdulsalam et al.

such that only authorized subsets of parties can reconstruct the secret. The secret
is reconstructed if at least t participants present their shares. The knowledge of
t − 1 or fewer shares leaves the secret s undetermined. These schemes are called
the (t, n)−threshold scheme (Fig. 2). Such schemes represent a building block in
several solutions for multiple purposes, such as Distributed polling [9] and Private
data aggregation [8]. Several schemes have been suggested in the literature, such
as Shamir’s scheme [25], Blakley et al. [11] and Asmuth et al. [6]. Shamir’s
scheme is one of the earliest and most studied schemes. It is based on the idea
that: from a set of t points, a unique polynomial of degree t − 1 passes through
the t points.
Hence, given t points in the 2-dimensional plane (x1, y1), (x2, y2), . . . , (xt, yt),
with distinct xi’s, there is only one polynomial p(x) = a0 + a1x + a2x

2 + · · · +
at−1x

t−1 of degree t − 1 such that p(xi) = yi for all i. In order to create the
shares, according to Shamir’s scheme, the user chooses a random polynomial of
degree t− 1 in which the secret is the first coefficient, p(0) = s. Then, n random
points are chosen from the curve. The coordinates of these points represent the
shares to be given to the different parties. Thus, the n shares are si = p(i) with
i �= 0. Given t distinct shares, the secret is recovered based on the Lagrange
interpolation in Eqs. 1 and 2.

Fig. 2. Secret Sharing Scheme

Given (x1, y1), ..., (xt, yt), where, xi �= xj : f(x) :=
∑t

j=1 yj lj(x)

f(x) :=
t∑

j=1

yj lj(x) (1)

lj(x) :=
∏

1≤m≤t
m �=j

x − xm

xj − xm
(2)

3 Related Works

Intel SGX is widely used to protect sensitive data and has been evaluated to
some extent to provide hardware protection to many potential cloud actors [14].

Decentralized SGX-Based Cloud Key Management 331

Several approaches have been proposed in the literature by using the tamper-
resistant nature of Intel SGX. EnclaveCache [17] provided privacy and data
confidentiality by leveraging the Intel SGX. Their multi-tenant key-value cache
ensured the security of a distinct encryption key for cryptographic operations
guarded by SGX enclaves. EnclaveDB [22] provided a less sophisticated approach
to key management (Intel SGX enclaves) that guaranteed integrity, data fresh-
ness, and confidentiality by managing and associating encryption keys for data
columns that represent sensitive information. KMSGX [12] proposed an efficient
and secure model allowing on-premise software key management securely on the
cloud provider side. RansomClave [10], a cryptographic key management scheme
using enclaves, provided enhanced encryption, key generation, and release phases
of enclave-ransomware. SecureKeeper [13] reduced the complexity of a key man-
agement scheme by creating a non-interactive enclave for confidentiality and
integrity. Unfortunately, independent enclaves still use the same secret key to
encrypt and decrypt users’ data.
Highlighted works in the literature [10,12–14,17,22] propose an approach that
seals the secret key within a single SGX appliance. Their approach lacks flexible
authentication, verification, and scalability. Also, these approaches can easily be
faulted by a compromised or failed appliance. Thus, there is a high tendency
to lose the secret key alongside its encrypted sensitive data. Table 1 shows a
comparison of the different approaches in the literature. Our suggested design
MultiSGX-KMS aims to build a multi-trusted execution environment that guar-
antees secure cryptographic keys while in transit and at rest. Also, the scheme
provides a secure verification of each SGX in the computation process while
ensuring secret key availability.

Table 1. Related works summary

Approach Confidentiality Integrity Authentication Single Point
of Failure

Scalability

Traditional Approach × × � × ×
KMSGX [12] × � � × ×
EnclaveDB [22] � � � × ×
RansomClave [10] � � � × ×
EnclaveCache [17] � � � × ×
SecureKeeper [13] � � � × ×
MultiSGX-KMS � � � � �

4 System Model and Adversarial Model

This section presents the system model for the suggested cloud-based key man-
agement scheme. As well as the security and adversarial model. The system’s
protocol notations and definitions are presented in Table 2.

332 Y. S. Abdulsalam et al.

4.1 System Model

The proposed scheme is configured and runs on the cloud side by the end user
which, involves two entities, the Key Management System (KMS) and n virtual
appliances.

• Key Management System (KMS) on-premise responsible for key generation,
splitting, and distribution of shares among the participants.

• n Virtual SGX appliance running on the cloud side, executing sensitive codes
within its enclaves.

Table 2. Notations and definitions

Notation Definition

n Number of SGX appliances

IDSGXi SGX unique identifier

t Threshold for key reconstruction

MsKey Master Key

KMSkey Cloud key management system key

SGXikey SGX’s unique seal key

Q Attestation request

σ Enclave’s signature for the service provider

ρ Enclave’s signature confirmation for the KMS

ϕ Encrypted shares

φ Encrypted KMS key

The system model is divided into four phases as shown in the Fig. 3.

– Attestation: The KMS initiates a communication with the n SGX appliances
to create secure channels. Using, the SGX remote attestation, the KMS can
verify the trustworthiness of the appliances and exchange a channel session
key with each SGX.

– Key generation: The KMS on-premise generates an encryption key to protect
sensitive data.

– Key Sharing/Reconstruction: The encryption key is split using a (t, n)−
threshold secret sharing scheme. Where, each share is encrypted and trans-
mitted to an SGX appliance using its session key. The reconstruction phase
requires that at least t SGX appliances send their shares to the KMS.

– Sealing/Unsealing: After receiving the shares, each appliance decrypts its
share with the session key. Then, each share is encrypted with a hardware
key (seal key) by creating a stamp known only to the actual enclave. The
unsealing phase is done in reverse.

Decentralized SGX-Based Cloud Key Management 333

Fig. 3. System model

4.2 Adversarial Model

The proposed system model is designed to enable the secure generation, distri-
bution, and storage of encryption keys. An authorized user is assumed to be
trustworthy and can generate encryption keys with an enabled KMS. The model
considers multiple SGX running in the cloud for secret sharing with a distrusted
virtual cloud service provider. The key integrity of SGX enclave instances is
ensured by Intel’s standard assumption of providing isolation for SGX enclave
[1]. However, an adversary may attempt to steal cryptographic keys by exploiting
vulnerabilities, such as compromising the integrity and verification of each SGX
instance. This can be achieved through a faulty SGX because SGX instances are
prone to failure or denial of service availability. Here, the cloud service provider
is considered honest and curious [14]. The proposed model considers concrete
scenarios where an adversary can generate shares for enclave verification and
contribute to the key reconstruction process. Likewise, an attacker can create
an adversarial enclave that contributes to the initialization process. The security
analysis of the proposed scheme goes by the standard assumptions of a secret
sharing protocol that an intruder can not compromise more than t − 1 SGX
appliance.

5 The MultiSGX-KMS Scheme

This section presents the proposed cloud key management system and the under-
lying protocol. The designed protocol is further grouped into different algorithms,
as shown in Sect. 5.2

5.1 MultiSGX-KMS Protocols Definition

The proposed design consists of the following protocols.

Initialization: all SGX appliances are initialized by the KMS. A secure com-
munication channel is set up between the KMS and SGX before starting any

334 Y. S. Abdulsalam et al.

secret sharing. Let n represents all available SGX, SGX1, · · · , SGXn with a
unique identifier as IDSGXi

for i = 1, · · · , n.
Key Generation: takes as input the required security parameter to generate
respective keys for SGX1, · · · , SGXn. The security parameter is computed
from a cyclic group with generator g and prime order p. The algorithm outputs
a secret key α ←∈R

Zp. This secret key is used to generate the preshared key

gα. Then the KMS generates gαβ1 , gαβ2 · · · gαβn for all βi ←∈R

Zp. Finally,

MsKey ←∈R

Zp is the Master Key. And, SGXikey
←∈R

Zp is a unique seal key for

every SGXi.
Attestation: the algorithm serves as a replacement for the heavy computa-
tional power of a traditional commitment. In this protocol, an enclave proves
its identity to maintain the integrity.
1. KMS generates a private key as α ←∈R

Zp, and a corresponding public key

as gα.
2. Enclave generates a private key as βi ←∈R

Zp, and a corresponding public

key as gβi .
3. The KMS and each enclave establish a session key gαβi

4. KMS sends an attestation request Q stamped with his public key as
(Qi)

gα

.
5. Enclaves creates a signature (σ) of the stamped request (Qi)

gα

to be
verified by the service provider. For each SGXi the signature is generated
as follows:

σi = sign
(
SGXikey

,Qi ‖ IDSGXi

)
.

6. KMS receives a signed confirmation (ρ) from each enclave using their
established private key as follows ρi = sign (βi, σi ‖ IDSGXi

).
7. KMS performs the verification of ρ by performing the following function:

V erify(gβi , ρi ‖ IDSGXi
) ?

= True

Share Generation: is initialized by the KMS if previous verification is cor-
rect:
1. KMS generates the master key MsKey to be shared among SGXi and

determines the threshold t necessary for the reconstruction phase.
2. Define a polynomial of degree t − 1 as f(x) = a0 + a1x + · · · + at−1x

t−1,
such that MsKey = a0 where
a1, · · · , at−1 ←∈R

Zp

3. Compute n shares as (x1, f(x1)), ..., (xn, f(xn)) for each SGXi, i = 1, · · · n
4. Encrypt the shares (xi, f(xi)) using the KMS key as

ϕi = Enc (KMSkey, (xi, f(xi)))

then, encrypt the KMS key using the shared key as

φi = Enc
(
gαβi ,KMSkey

)

Decentralized SGX-Based Cloud Key Management 335

5. Send the tuple (ϕi, φi) to each SGXi, i = 1, · · · n
6. SGXi receives the tuple (ϕi, φi) and creates a stamp using its unique seal

key, for integrity check and future retrieval: (ϕi, φi)
SGXikey .

Share Reconstruction: the algorithm is performed by the KMS, initiated
by the user for sensitive data recovery. The protocol is performed as follows.
1. KMS sends t reconstruction requests (R)gα

i∈t stamped with the KMS public
key to avoid impersonation.

2. Each SGXi, i = 1, · · · , n processes the request by retrieving

(ϕi, φi)
SGXikey

3. Each SGXi, i = 1, · · · n sends (xi, f(xi))
gαβi

i∈t and ρi to the KMS.
4. KMS apply the following check: V erify(gβi , σi ‖ IDSGXi

) ?
= True, if

check is valid KMS requests another share from SGXj �=i

5. KMS reconstruct the polynomial f(x) using t shares. The Polynomial
f(x) is constructed using Newton Divided Differences Interpolating.

5.2 MultiSGX-KMS Algorithms

The proposed solution is grouped into three algorithms: Initialization, Download,
and Upload.

1. Initialization: Algorithm 1 depicts the initialization algorithm for chosen
appliances, the exchange of session keys and the generation of encryption
keys.

Algorithm 1 Initialization
1: Attestation
2: Input: n Number of SGX Appliances
3: KMS chooses a generator g in a finite cyclic group G
4: KMS generates random α
5: KMS sends gα to SGXi

6: SGXi generates βi

7: SGXi sends QUOTE(gβi) to KMS
8: Output: SKi := gαβi session key between KMS and SGXi

9: Key Generation
10: generate MsKey

11: Output: MsKey : encryption key

2. Download: Algorithm 2 depicts the download algorithm, which consists of
unsealing the shares using the same specific seal key and send the shares to
the KMS through the dedicated secure channel. When receiving the thresh-
old number of shares the reconstruction can be done using Newton divided
differences interpolation.

336 Y. S. Abdulsalam et al.

Algorithm 2 Download
1: Unsealing
2: Input: SGXiKey (SGXi’s sealing key)
3: Unseal (xi, f(xi)) with SGXikey

4: Output: send < (xi, f(xi)) >KMSkey to SGXi

5: Input: t threshold number, (xi, f(xi)) for i ≥ t
6: Apply Newton Divided differences:
7: f(x) = f(x0) + (x − x0)f [x0, x1] + ... + (x − x0)...(x − xt)f [x0, .., xt]
8: Output: MsKey Encryption key

3. Upload: Algorithm 3 depicts the upload algorithm which consists of split-
ting and sharing each part of the key to the specific appliance. Then, each
appliance seals the share to an external storage using a seal key.

Algorithm 3 Upload
1: Split Key.
2: Input: t threshold number, MsKey encryption key
3: KMS generates random a1 · · · at−1

4: KMS computes f(x) = a0, a1x · · · at−1x
t−1, where a0 = MsKey

5: KMS generates n shares (x1, f(x1)) · · · (xn, f(xn))
6: Output: n shares: (x1, f(x1)) · · · (xn, f(xn))
7: Distribute Shares.
8: Input: SKi (SGXi’s session key), (xi, f(xi)), KMSkey

9: Using SKi as the key in the exchange protocol, Encrypt KMSkey

10: Encrypt shares with KMSkey

11: Output: send < (xi, f(xi)) >KMSkey to SGXi

12: Sealing.
13: Input: SGXiKey (SGXi’s sealing key)
14: Decrypt < (xi, f(xi)) >KMSkey using the shared key SKi for exchanging KMSkey

15: Seal (xi, f(xi)) with SGXikey

6 Security Analysis

In the adversary model, we assume that communication between the user and
the cloud is secured through standard IT channels. However, an active attacker
may have high privileges within the cloud, where all system software is consid-
ered malicious, including the operating system and hypervisor. Therefore, the
adversary’s goal is to retrieve the user’s secret key to learn its sensitive data. On
the other hand, it is also assumed that an attacker cannot perform any hard-
ware attacks on the SGX appliances [18,19], and side channel attacks are out
of the scope of this study for future recommendations. Additionally, we assume
that the SGX as a TEE offers a complete secure private computations within its
enclaves.
Thus, the security of the proposed scheme is analyzed using Theorems 1 and 2,
going by the standard assumptions defined as follows:

Decentralized SGX-Based Cloud Key Management 337

1. Let the Discrete Logarithm (DL) problem in the presence of probabilistic
polynomial time adversary A be defined as AdvDL[A, a], where DL = ga.
Then, Pr[DL = 1] ≤ negligible.

2. Let the Decisional Diffie Hellman (DDH) problem in the presence of prob-
abilistic polynomial time adversary A be defined as AdvDDH [A, a, b], where
DDH = gab. Then, Pr[DDH = 1] ≤ negligible.

3. A function ε(·) : N → R+ is called negligible if for all n > 0 there exists
p0 such that negligible < 1

pn for all p > p0.

Theorem 1. The MsKey cannot be learned with the presence of an adversary
A except with an advantage of AdvSS [A,MsKey] < ε.

The semantic security is defined by an advantage (AdvSS) on MsKey for the
adversary to obtain given a key in key space κ ← [0, 1]128, according to Lemma
1.

Lemma 1. Let
∏

represent the proposed cloud key management scheme. Then∏
with key space κ ← [0, 1]128 is termed secure if and only if Theorem 1 holds

for every MsKey ∈ κ

Proof. Assume an adversary A, and for an instance of Share Reconstruction t
is the threshold required for a successful recovery of MsKey. Then, the requested
shares for reconstruction must be at least t for the polynomial f(x) to be fully
reconstructed. The first case of A is to provide a single rogue share (x

′
1, f

′
(x1)),

then, trivially Pr[F (X) = f (x) | (Xi, F (Xi)) = (xi, f(xi))] < ε since there are
t shares needed to reconstruct f(x) and Pr[(x

′
0, f

′
(x0)) = (xi, f(xi))] < ε, given

a1, a2 · · · at−1 ←∈R

Zp. The non trivial situation will be for an adversary to pro-

vide all t shares necessary to reconstruct f(x). The probability of reconstructing
polynomials f(x) with shares (xi, f(xi))i≥t for a0 = MsKey is shown below.

Pr[f (x) |(xi, f(xi))] =
Pr[(xi, f(xi))|f (x)] · Pr[f (x)]

Pr[(xi, f(xi))]

=
Pr[(xi, f(xi))|f (x)] · Pr[f (x)]

∑
f ′ (xi)∈F (Xi)

Pr[(xi, f(xi))|f ′ (x)] · Pr[f ′ (x)]

Let ∂ = Pr[(xi, f(xi))|f (x)], then

Pr[f (x) |(xi, f(xi))] =
∂ · Pr[f (x)]

∑
f ′ (xi)∈F (Xi)

∂ · Pr[f ′ (x)]

=
Pr[f (x)]

∑
f ′ (xi)∈F (Xi)

Pr[f ′ (x)]
= Pr[f (x)]

= Pr[f (x)] ⇒ Pr[a0 = MsKey] <
1

2128
< ε

This implies that Pr[F (X) = f (x) | (Xi, F (Xi)) = (xi, f(xi))] = Pr[F (X) =
f (x)]. Therefore,

∏
is secure, recall that MsKey ∈ κ ← [0, 1]128.

338 Y. S. Abdulsalam et al.

Theorem 2. The integrity of every verified SGX1, SGX2 · · · SGXn is without
forgery, even in the presence of software impersonation.

Lemma 2. The proposed cloud key management scheme
∏

guarantees avail-
ability and integrity, if and only if Theorem 2 holds.

Proof. Before initializing the shares, the KMS has to verify that a signature
ρi = sign (βi, ρi ‖ IDSGXi

) is valid for a particular SGX for every attestation
sequence. Additionally, the enclaves proves its integrity before sending a signa-
ture to the KMS by verifying σi = sign

(
SGXikey

,Qi ‖ IDSGXi

)
for an attes-

tation request from the KMS. This process can only be correctly verified with
the SGXikey

since σi = sign
(
SGXikey

,Qi ‖ IDSGXi

)
. To ensure the correctness

of V erify(gβi , ρi ‖ IDSGXi
) ?

= true, the KMS retrieves the public key of the
intended SGX and the private key used for signing. In fact, the session key can-
not be retrieved by an adversary according to standard assumptions of Discrete
Logarithm and Decisional Diffie-Hellman problems.

According to Theorem 1, we claim that the confidentiality of generated shares
is maintained in the presence of an active attacker since each share (xi, f(xi))
is processed inside a secure SGX enclave. However, to maintain the integrity of
generated shares in the presence of a rogue SGX, each (xi, f(xi)) is signed using
SGXikey

by the intended SGX. Consider an active adversary A that participates
in the shares reconstruction with shares (x

′
1, f

′
(x1)). A trivial way of retrieving

the secret key by the KMS is to reconstruct all shares in the presence of the

adversary A as f
′
(x) :=

∑t
j=1 y

′
j l

′
j(x) and l

′
j(x) :=

∏
1≤m≤t

m �=j

x−x
′
m

xj−x′
m

. This implies

that f(x) �= f
′
(x), since lj(x) �= l

′
j(x) and therefore a0 �= a

′
0, meaning that

MsKey will not be retrieved. The proposed scheme offers a moderate and yet
achievable solution by running only the Attestation part of the protocol, which
is independent of the entire protocol, to re-ensure the integrity of SGXi for all
i = 1, 2, 3 · · · n.

7 Experimental Results

The scheme was evaluated on Intel i5-8259U processors simulating multiple vir-
tual appliances hosted in Ubuntu 18.04 LTS 64bit running the SGX driver, SDK,
and platform software version 2.9.1. PyKMIP version 0.10.0 [2] is a Python
implementation of the key management interoperability protocol: It was used to
illustrate the key management system on-premise. A KMIP server was respon-
sible for generating, deleting, and encrypting secret data on behalf of the user.
The tests were performed over several files: 10 MB, 20 MB, 50 MB, 100 MB,
200 MB, and 500 MB, using different (n, t) values for secret sharing: (n = 3, t =
2), (n = 5, t = 3), (n = 7, t = 4). The distribution of the time performance for
Algorithms 1, 2, and 3 includes the cryptographic primitives (i.e. key generation,
encryption, and secret sharing), as well as duration via the remote attestation
and sealing included in the Intel SGX as illustrated in Fig. 4.

Decentralized SGX-Based Cloud Key Management 339

Fig. 4. MultiSGX-KMS duration

Fig. 5. MultiSGX-KMS overhead

The performance of the proposed scheme was measured within the three
phases and using different (n, t) parameters. Afterward, we compared it with
[12] where only one SGX appliance was used. Also, we compared the system
model with a plain design in which no cryptography algorithm and SGX primi-
tives were included.
The experimental results show that the time required for model initialization
scales linearly for all document sizes with varied secret-sharing system choices.
Similarly, upload and download times scale linearly with file size, with mini-
mal overhead between parameters. Furthermore, the comparison experiments
between our model, KMSGX [12], and plain design show that the added secu-
rity properties of key splitting/ reconstruction, encryption/decryption, and seal-
ing/unsealing in both the upload and download phases did not significantly
degrade the performance of the proposed model. Figures 5a and 5b shows that

340 Y. S. Abdulsalam et al.

the overhead between the models is less than 0.1% for a file size of 50 MB.
Therefore, the overhead cost of the proposed system model is negligible when
the file size is increased, proving its scalability.

8 Conclusion

Cloud computing, despite its pervasiveness, suffers from confidentiality and
integrity issues that may arise from securing sensitive user information. The
Intel SGX architecture is advantageous for key management and data computa-
tion without complete trust in the cloud provider service. This paper introduces
a decentralized SGX-key management system in an untrusted cloud environ-
ment (MultiSGX-KMS). MultiSGX-KMS provides an efficient key management
system that is entirely under the control of the end user. The scheme ensures
authentication and verification by establishing a secure channel between the
KMS and each SGX appliance. Confidentiality is also ensured by running sensi-
tive data inside the SGX enclave and encrypting secret data outside the enclave.
The proposed deployment of a decentralized SGX with secret data reconstruction
ensures that users’ sensitive data is always available, removing the bottleneck
of a single SGX failure, breakdown, or sabotage. The scheme’s experimental
evaluations demonstrate no substantial cost because the processing time scales
linearly with the increase in file size. In other words, due to the effectiveness
and scalability of the proposed design, the additional security properties and
the SGX primitives added to the scheme do not decrease the efficiency of the
computational time.
Protocols in the literature are based on the general assumption that a secure
channel exists for communication. This is because the Diffie-Helman key
exchange used in the hard-coded industrial attestation procedure for SGX appli-
ances can be considered insecure without a secure channel. Therefore, in the
future, we would like to address the insecurity that might exist using the above
basic ad-hoc approach. We will also like to explore mitigations against cache and
page-fault side-channel attacks for SGX deployed in the cloud. Also, to apply
the same approach that will support multi-cloud requirements while preserving
privacy.

References

1. Intel software guard extensions. https://www.intel.com
2. Python implementation of the key management interoperability protocol
3. Security technology-building a secure system using trustzone technology, ARM

technical white paper (2009)
4. Amazon, cloudhsm (2015). http://www.amazon.com/
5. Anati, I., Gueron, S., Johnson, S., Scarlata, V.: Innovative technology for CPU

based attestation and sealing. In: Proceedings of the 2nd International Workshop
on Hardware and Architectural Support for Security and Privacy, vol. 13. ACM
New York, NY, USA (2013)

https://www.intel.com
http://www.amazon.com/

Decentralized SGX-Based Cloud Key Management 341

6. Asmuth, C., Bloom, J.: A modular approach to key safeguarding. IEEE Trans. Inf.
Theory 29(2), 208–210 (1983)

7. Azougaghe, A., Oualhaj, O.A., Hedabou, M., Belkasmi, M., Kobbane, A.: Many-
to-one matching game towards secure virtual machines migration in cloud com-
puting. In: 2016 International Conference on Advanced Communication Systems
and Information Security (ACOSIS), pp. 1–7. IEEE (2016)

8. Benkaouz, Y., Erradi, M.: A distributed protocol for privacy preserving aggregation
with non-permanent participants. Computing 97(9), 893–912 (2015)

9. Benkaouz, Y., Guerraoui, R., Erradi, M., Huc, F.: A distributed polling with prob-
abilistic privacy. In: 2013 IEEE 32nd International Symposium on Reliable Dis-
tributed Systems, pp. 41–50. IEEE (2013)

10. Bhudia, A., O’Keeffe, D., Sgandurra, D., Hurley-Smith, D.: RansomClave: ran-
somware key management using SGX. In: The 16th International Conference on
Availability, Reliability and Security, pp. 1–10 (2021)

11. Blakley, G.R.: Safeguarding cryptographic keys. In: Managing Requirements
Knowledge, International Workshop on, pp. 313–313. IEEE Computer Society
(1979)

12. Bouamama, J., Hedabou, M., Erradi, M.: Cloud key management using trusted
execution environment. In: 18th International Conference on Security and Cryp-
tography, pp. 10–16 (2021)

13. Brenner, S., et al.: SecureKeeper: confidential zookeeper using intel SGX. In: Pro-
ceedings of the 17th International Middleware Conference, pp. 1–13 (2016)

14. Brorsson, J., Bideh, P.N., Nilsson, A., Hell, M.: On the suitability of using SGX
for secure key storage in the cloud. In: Gritzalis, S., Weippl, E.R., Kotsis, G., Tjoa,
A.M., Khalil, I. (eds.) TrustBus 2020. LNCS, vol. 12395, pp. 32–47. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-58986-8 3

15. Chakrabarti, S., Baker, B., Vij, M.: Intel SGX enabled key manager service with
openstack barbican. arXiv preprint arXiv:1712.07694 (2017)

16. Chandramouli, R., Iorga, M., Chokhani, S.: Cryptographic key management issues
and challenges in cloud services. Secure Cloud Comput. 1–30 (2014)

17. Chen, L., Li, J., Ma, R., Guan, H., Jacobsen, H.A.: EnclaveCache: a secure and
scalable key-value cache in multi-tenant clouds using intel SGX. In: Proceedings
of the 20th International Middleware Conference, pp. 14–27 (2019)

18. Kocher, P., et al.: Spectre attacks: exploiting speculative execution. In: 2019 IEEE
Symposium on Security and Privacy (SP), pp. 1–19. IEEE (2019)

19. Lipp, M., et al.: Meltdown: reading kernel memory from user space. In: 27th
USENIX Security Symposium (USENIX Security 18), pp. 973–990 (2018)

20. Mukhtar, M.A., Bhatti, M.K., Gogniat, G.: Architectures for security: a compar-
ative analysis of hardware security features in intel SGX and ARM TrustZone.
In: 2019 2nd International Conference on Communication, Computing and Digital
systems (C-CODE), pp. 299–304. IEEE (2019)

21. Phegade, V., Schrater, J., Kumar, A., Kashyap, A.: Self-defending key management
service with intel R© software guard extensions (2017)

22. Priebe, C., Vaswani, K., Costa, M.: EnclaveDB: a secure database using SGX. In:
2018 IEEE Symposium on Security and Privacy (SP), pp. 264–278. IEEE (2018)

23. Rosen, A.: Analysis of the porticor homomorphic key management protocol. Por-
ticor Cloud Security (2012)

24. Sabt, M., Achemlal, M., Bouabdallah, A.: Trusted execution environment: what
it is, and what it is not. In: 2015 IEEE Trustcom/BigDataSE/ISPA. vol. 1, pp.
57–64. IEEE (2015)

25. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)

https://doi.org/10.1007/978-3-030-58986-8_3
http://arxiv.org/abs/1712.07694

Security in the Wild

Spying on the Spy: Security Analysis
of Hidden Cameras

Samuel Herodotou(B) and Feng Hao

Warwick University, Coventry CV4 7AL, UK
{samuel.herodotou,feng.hao}@warwick.ac.uk

Abstract. Hidden cameras, also called spy cameras, are surveillance
tools commonly used to spy on people without their knowledge. Whilst
previous studies largely focused on investigating the detection of such
a camera and the privacy implications, the security of the camera itself
has received limited attention. Compared with ordinary IP cameras, spy
cameras are normally sold in bulk at cheap prices and are ubiquitously
deployed in hidden places within homes and workplaces. A security com-
promise of these cameras can have severe consequences. In this paper,
we analyse a generic IP camera module, which has been packaged and
re-branded for sale by several spy camera vendors. The module is con-
trolled by mobile phone apps available on iOS and Android. By analysing
the Android app and the traffic data, we reverse-engineered the security
design of the whole system, including the module’s Linux OS environ-
ment, the file structure, the authentication mechanism, the session man-
agement, and the communication with a remote server. Serious vulner-
abilities have been identified in every component. Combined together,
these vulnerabilities allow an adversary to take complete control of a spy
camera from anywhere over the Internet, enabling arbitrary code exe-
cution. This is possible even if the camera is behind a firewall. All that
an adversary needs to launch an attack is the camera’s serial number,
which users sometimes unknowingly share in online reviews. We responsi-
bly disclosed our findings to the manufacturer. Whilst the manufacturer
acknowledged our work, they showed no intention to fix the problems.
Patching or recalling the affected cameras is infeasible due to complexi-
ties in the supply chain. However, it is prudent to assume that bad actors
have already been exploiting these flaws. We provide details of the iden-
tified vulnerabilities in order to raise public awareness, especially on the
grave danger of disclosing a spy camera’s serial number.

Keywords: Internet of Things · Security · Vulnerability · IP Camera ·
Spy Camera

1 Introduction and Motivation

Hidden cameras, also known as spy cameras, are digital cameras hidden or dis-
guised as part of common objects, and are generally deployed with the goal
to conduct surveillance on people without their knowledge [24]. Although there
are legitimate use cases for such cameras (e.g., lawful surveillance on suspects),
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Li et al. (Eds.): NSS 2023, LNCS 13983, pp. 345–362, 2023.
https://doi.org/10.1007/978-3-031-39828-5_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-39828-5_19&domain=pdf
http://orcid.org/0000-0002-0382-2902
http://orcid.org/0000-0002-8664-5074
https://doi.org/10.1007/978-3-031-39828-5_19

346 S. Herodotou and F. Hao

they can also be misused to spy on people unscrupulously. It has been reported
that many Airbnbs (1 in 19 in Singapore) have hidden cameras installed, but
only 17% of Airbnb providers specify where these cameras are located [8]. Hid-
den cameras are also frequently installed by parents at homes to monitor the
activities of nannies and often the children themselves [9].

The ubiquitous presence of hidden cameras installed in private spaces within
homes and workplaces to monitor people without their knowledge clearly raises
many privacy concerns. This has motivated many researchers to investigate the
detection of such cameras, e.g., via a smartphone’s time-of-flight sensors [20], a
stimulating-and-probing technique [16], the analysis of thermal emissions [24],
the RF (radio frequency) signal characteristics [6,21], the Wi-Fi data fluctua-
tions [3–5,7,13,14,19], and the camera’s electromagnetic emanations [17].

However, the security of the hidden camera itself has received limited atten-
tion. So far, only a few researchers have investigated this subject. Abdalla et
al. show that many cameras use default passwords and the communications
are unencrypted [1]. Ling et al. reveal that it is possible to perform an online
brute-force attack to uncover the camera’s password when the password is only
four-digits long [15]. They further show that if the MAC address of the camera
is known, it is possible to spoof the camera. Biondi et al. demonstrate that when
an attacker is in the same Wi-Fi network as the IP camera, they can eavesdrop
on the video data [2]. Although these studies provide useful insights, their anal-
ysis is not systematic, and the identified vulnerabilities tend to have a limited
impact. Some of the attacks will not work if the attacker is not in the same
network as the camera or if the user changes the default password.

This paper presents a thorough and systematic analysis of a generic IP cam-
era module, which after repackaging and re-branding, has been built into several
best-selling hidden cameras available on Amazon. The camera modules under
investigation were purchased at around $30 each. Some of these hidden cameras
are integrated into household objects such as alarm clocks, and are typically sold
on Amazon in the range of $50–120. The camera module is controlled by mobile
phone apps that are freely available on iOS and Android. One example is the
LookCam app, which has over half a million downloads on Google Play alone.
However, there are also other apps that work with the same type of module but
are branded by different vendors. Security designs for the camera module and
the app are not officially published.

By decompiling the LookCam Android app and analysing the camera’s traffic
data, we were able to reverse-engineer the entire security design of the camera
system. This includes the Linux operating system (OS) environment on the
module, the file structure in the firmware, the authentication mechanism, the
session management, and the remote communication with servers in the cloud.
Security flaws have been identified in all these areas, and are detailed in Sect. 3.

Our contributions are summarised below.

– Based on publicly available hardware modules and mobile applications, we
have reverse-engineered the security design of a generic hidden camera system.
This design does not represent all hidden cameras in the market but is believed
to be fairly common among commercial products.

Spying on the Spy: Security Analysis of Hidden Cameras 347

– Based on the reverse-engineered security design, we have identified categorical
flaws and presented proof-of-concept attacks accordingly. These flaws allow
an adversary to perform remote code execution on a camera from anywhere
in the world with the mere knowledge of the camera’s serial number.

– Based on the findings, we propose mitigation measures and good practices
for designing more secure camera systems in the future.

Ethics and Responsible Disclosure. The camera modules being analysed
were purchased and owned by the authors. Proof-of-concept attacks were demon-
strated against these devices only without affecting other IP cameras in use. We
responsibly disclosed the findings to the manufacturer. Whilst the manufacturer
acknowledged our work, they showed no intention to fix the problems, mainly
because patching/recalling these modules is infeasible due to complexities in the
supply chain. On the other hand, the public needs to be informed of the risk
of using hidden cameras, especially since users sometimes share serial numbers
of the purchased cameras in online reviews. One CVE (Common Vulnerabilities
and Exposures) has already been assigned (CVE-2023-30400), and others are
also under review at the time of writing. The following sections will detail the
vulnerabilities with the manufacturer’s name anonymised.

2 Hardware and Supply Chain

The generic camera module under analysis is a portable, thumb-sized device that
can be powered with a battery or micro-USB. It works completely standalone,
supporting live video streaming and Wi-Fi connectivity out-of-the-box. Option-
ally, a Micro SD card can be inserted to enable video recordings. Figure 1 shows
a photograph of the camera module.

The device is designed to connect with a companion app, which is developed
by vendors under different brands. The app analysed in this investigation is
called LookCam. Its features include live streaming, remote configuration, and
downloading previously recorded footage.

The modules in question originate from a prominent firm in the electronics
industry, referred to hereafter as the manufacturer. This manufacturer specialises
in the production of camera modules and CCTV (closed-circuit television) equip-
ment, and according to publicly available information online, exports $5–10 mil-
lion worth of product yearly, with their main markets in Europe, America and
Asia.

In terms of the supply chain, this manufacturer acts as the OEM (original
equipment manufacturer). The modules are sold in bulk to other vendors, which
are then packaged and re-branded. The final products are released to consumers
in online stores such as Amazon. After the generic camera modules are sold in
bulk, even the manufacturer cannot track where these modules are distributed
to third-party sellers at multiple retail levels. The complexities in the supply
chain have profound security implications since if there is a security flaw in the
generic module, it is virtually impossible to patch or recall the affected products.

348 S. Herodotou and F. Hao

Fig. 1. The Camera Module. (1) Micro camera. (2) Reset button. (3) Power switch.
(4) Micro-USB port. (5) Power pins (battery). (6) Wi-Fi antenna. (7) Wi-Fi module.
(8) Central Processing Unit.

This manufacturer also partners with two other companies in producing the
camera modules. One is a leading integrated circuit manufacturer. They produce
the system-on-chip, which is a core component of the camera module, provid-
ing an embedded-Linux operating system and drivers to support an IP camera
product. The other company specialises in providing a peer-to-peer networking
system, which is a software component of the camera module responsible for
facilitating remote connections to the cameras. Serious flaws have been discov-
ered in these components as well. According to public information available on
the company’s website, the peer-to-peer networking system has been adopted by
over 50 million IoT devices.

3 Investigation

This section describes the testbed setup, the reverse-engineering process, and
the vulnerabilities identified with proof-of-concept attacks.

3.1 Pairing the Device

To pair a camera with the mobile app, there are multiple approaches. When no
network is configured (e.g., if reset to factory settings), the device hosts its own
hotspot network which the user can connect to. Once connected, the LookCam
app can automatically pair by listening for packets sent by the device (which
contain its serial number). Alternatively, a user can add a device that is already
connected to the internet by supplying its serial number to the app. It is common
for these devices to include a sticker or QR code which contains the serial. When
connecting via the app, the user will be prompted to enter a password to gain
access. All devices are configured with a default password of 123456.

3.2 Testbed Setup

To facilitate an investigation of the network services running on the device, it
is necessary to construct a network sandbox to intercept all relevant communi-
cations. This was achieved by connecting an external wireless network adapter

Spying on the Spy: Security Analysis of Hidden Cameras 349

(Alfa-Network AWUS036NHA) to a Kali Linux virtual machine. By using the
hostapd tool, a custom Wi-Fi hotspot was created with the adaptor. Configuring
the camera module to connect to this network would then enable all commu-
nications to be intercepted using a packet-sniffing tool such as Wireshark. By
using an additional network adaptor to create the hotspot, the built-in network
adaptor of the Kali machine could be used to bridge an Internet connection to
the hotspot, enabling all external traffic to be intercepted (e.g., communications
with peer-to-peer servers). See Fig. 2 for a diagram of the structure. This testbed
was set up only for reverse-engineering the security design of the camera sys-
tem. For attacking the system, the adversary does not need to be in the same
Wi-Fi network as the camera; the attack can be launched from anywhere on the
Internet.

Fig. 2. Architecture of the network sandbox used to intercept traffic

3.3 Mobile Application Analysis

Without knowledge of the camera’s security design, the reverse-engineering pro-
cess started with analysing the controlling app, in particular, the LookCam
Android app that is publicly available in Google Play. Decompiling the Look-
Cam Android application with Jadx enabled its source code to be analysed.
From an initial scan, it was discovered that the core of the networking function-
ality is implemented within a C-library named libPPCS_API.so. Investigating
this library required disassembly in Ghidra, and is discussed later in this paper.

Additionally, a secret logging feature was discovered in the AboutActivity.
java file. This file controls how users can interact with the ‘About’ page in
the app. The code reveals that, if a user holds down the ‘LookCam’ logo for
a few seconds, a menu is revealed that allows the user to export a debug log.
Other applications were also discovered to include this functionality. This log
contains output from all the components of the application, including the C-
libraries that communicate directly with the camera. This log output provided
vital information on how the phone communicates with the camera module, and
revealed a JSON (JavaScript Object Notation) command system in use. Listing
1 provides a portion of the output, revealing the structure of a login command
sent to the camera.

350 S. Herodotou and F. Hao

LookCam[28765:1775458] Connect Success!! SessionID=34
LookCam[28765:1775458] will login with session 34
LookCam[28765:1775519] mediaDataRecThread going...
LookCam[28765:1775458] send json {

cmd = LoginDev;
pwd = 123456;

}

Listing 1. Log output revealing a JSON-style command system in use

3.4 Unencrypted Communications

By analysing the network traffic produced during interactions between the cam-
era module and the app, a UDP (User Datagram Protocol) service running
on port 32100 was discovered. Monitoring network traffic whilst using the app
revealed that the service provides all of the core functionality of the module,
from configuration to live-streaming video. This was possible since the protocol
transmits all data in plaintext, enabling an eavesdropper to read all commu-
nications between the camera and the app. This includes sensitive information
such as login requests (containing the device’s password in plaintext), the con-
tents of configuration commands, and live video footage. Once the attacker has
intercepted the device’s password, they can gain full access to the camera via
the mobile application as if they were a legitimate user. However, exploiting this
flaw is not easy as it requires the adversary to be a man-in-the-middle (MITM)
between the camera and the phone. However, this MITM requirement no longer
becomes a constraint when exploiting vulnerabilities in the camera’s peer-to-peer
and command systems, enabling the camera to be controlled from anywhere on
the Internet. These vulnerabilities are discussed in the following sections.

3.5 Vulnerable Command System

Many flaws were discovered in the JSON command system, used by the app to
interact with the camera. A custom client was developed to mimic the actions
of the mobile phone app, which enabled custom JSON payloads to be sent that
could exploit potential vulnerabilities in the implementation of the command
handlers.

Bypassing Authentication. To begin, an analysis of communications between
the camera and the app revealed that the camera’s password is included in every
request made by the app. This is included in plaintext under the pwd field in
the JSON body. Not only does this increase the probability of an eavesdropper
capturing the device’s password, but highlights a lack of session management
in use by the system. Listing 2 demonstrates the standard format used by all
commands sent by the app.

Spying on the Spy: Security Analysis of Hidden Cameras 351

{
"cmd": "[Command name]",
"pwd": "[Device password]",
"...": "...",

}

Listing 2. JSON structure of commands

When sending an incorrect value for the pwd field, one would expect the
camera to reject the command completely. However, using the custom client to
send malformed commands with the pwd field omitted revealed that the camera
makes no attempt to verify the supplied credentials. This shows that the user’s
password authentication is performed client-side in the app, and not on the
camera. Although the LoginDev command is sent to the camera to verify the
supplied password, this command simply verifies the correctness of the password
without updating the state of the system or establishing a session. This makes
it possible for an attacker to gain full access to the camera without knowing
the password by using a custom client, similar to the one developed in this
investigation. Alternatively, using dynamic instrumentation tools such as Frida
makes it possible to disable the code responsible for performing the client-sided
check. The loginDevice function within LuPPCSSession.java was successfully
hooked and overwritten to bypass this check. This eliminates the need for an
adversary to develop a custom app from scratch to bypass the authentication
system. Thus, by adding any known serial number to the LookCam app with
this custom code enabled, an attacker can gain full access to a target camera
without being on the same network or being a MITM.

Reading Configuration Values. Given that full access can be granted with-
out knowing the password, an attacker no longer needs to perform a man-in-
the-middle attack and rely on user-interaction for sensitive information to be
obtained. This information can be requested directly, as the device cannot dis-
tinguish an attacker from a legitimate user. The GetDevInfo command can be
sent, which is then responded with sensitive information such as the user’s Wi-
Fi credentials, as shown in Fig. 3. The transmission of the Wi-Fi credentials
to the app appears totally unnecessary, which demonstrates a lack of security-
consciousness from the manufacturer in the security design.

Fig. 3. Extracting Wi-Fi credentials in Wireshark

352 S. Herodotou and F. Hao

Live Streaming. By imitating the requests the application makes when
requesting a live-stream, an attacker can access live-footage from a target camera
without the user’s interaction. Many of these cameras also include microphones,
enabling audio to be captured too. Even the installer of the camera may not be
aware that the spy camera can be spied on by random people on the Internet.
This clearly aggravates privacy concerns about these hidden cameras.

Arbitrary File Downloading. The camera module offers a file-downloading
command to facilitate the remote retrieval of historic footage. A vulnerability
was discovered in the file-download command handler that enables attackers to
download arbitrary files present on the system. See Listing 3 for an example
file-download request.

{
"cmd": "DownloadFile",
"pwd": "123456",
"patch": "/mnt/CYC_DV/20220708@111673.mp4",
"pos": 0

}

Listing 3. Example file download request

By sending modified requests with a custom client that was designed to
mimic the LookCam app, it was possible to send any file path under the patch
parameter. The camera immediately responds with a series of UDP packets
containing the contents of the file. No attempt was made by the manufacturer
to sandbox the file system or ensure file paths are within the recording direc-
tory. This makes it possible to download any file on the device, as long as the
path is known. Recalling that this can be performed without the user’s pass-
word, the scope in which an attacker can extract data is no longer limited by
what information the network service is designed to share. For example, the
file /etc/jffs2/.devpsd was discovered, which stores the user’s password in
plaintext.1 The lack of encryption in this file makes it possible for an attacker
to effortlessly obtain this information. This breach of confidentiality could pave
the way for further malicious activities, as the password may be reused on other
systems.

Shadow File Extraction. It was possible to download the shadow file located
in /etc/shadow using the file-downloading vulnerability. The shadow file is a
protected file that stores the password hashes for Linux users.2 Not only does
the ability to read this file indicate that the user running the server daemon
has superuser privileges; it also makes it possible to attempt a hash-cracking
1 In some newer devices, this is stored in /etc/config/.devpsd.
2 We note that these hashes are unrelated to the device password used by the app to

authenticate users. They are instead part of the internal Linux environment.

Spying on the Spy: Security Analysis of Hidden Cameras 353

attack on the root password set by the manufacturer. The password was hashed
using the insecure MD5 Crypt algorithm, making it more vulnerable to crack-
ing attacks compared to modern hashing algorithms [18]. Despite this, it was
not feasible to crack the password after an aggressive combination of dictionary
and brute-force attacks lasting over a month. This shows that the root pass-
word set by the manufacturer is a long and complex string. However, taking
control of the device does not require knowing the root password, as this can be
achieved by exploiting command-injection vulnerabilities. Furthermore, through
the command-injection attack, the root password can be modified to an arbi-
trary one, hence effectively bypassing the root password authentication. Details
of this are discussed later in this paper.

3.6 Firmware Extraction

The existence of the file-downloading vulnerability made it possible for the
entire file system to be extracted for further examination. By analysing the
/proc/mounts file, three files were discovered which, if downloaded, could be
used to rebuild the entire file system. This solved the blind file-downloading
limitation, as all files could be downloaded at once without having to know (or
fuzz) specific paths. Table 1 provides further details of these files.

Table 1. File systems mounted by the device

Path Type Contents

/dev/mtdblock5 jffs2 Stores user data, such as configuration values.
Mounted at /etc/jffs2a.

/dev/mtdblock6 Squashfs Read-only partition for the /usr directory. Stores
vendor-specific binaries and scripts, such as startup
scripts and the core server application.

/dev/root Squashfs Stores remaining files that belong in the root folder
(/). Includes the Linux kernel and built-in
executables

a In some newer devices, this area is mounted at /etc/config.

Having access to the file system made it possible to discover and anal-
yse additional files on the device. This included custom programs such as
/usr/bin/anyka_ipc, the daemon responsible for the UDP service.

3.7 Remote Code Execution

Analysis of the file system and start-up procedure revealed a chain of bash scripts
that are executed on boot, as seen in Fig. 4. Some of these scripts contain
command-injection vulnerabilities that enable an attacker to perform remote
code execution on a target device with superuser privileges.

354 S. Herodotou and F. Hao

Fig. 4. Chain of processes and scripts called on startup

Vulnerable code has been discovered in modules with software versions as
recent as November 2022. A lack of remote updating functionality found in
these modules means that it is impossible for patches to be pushed by the man-
ufacturer. An example includes station_connect.sh, a script responsible for
connecting the camera to a user-configured Wi-Fi network. Listing 4 contains a
vulnerable excerpt from the script.

SSID=\'\"$GSSID\"\'
PSK=\'\"$GPSK\"\'
...
sh -c "wpa_cli -iwlan0 set_network $NET_ID ssid $SSID"
...
sh -c "wpa_cli -iwlan0 set_network $NET_ID psk $PSK"

Listing 4. Vulnerable code in station_connect.sh

The script makes multiple calls to the command ‘sh -c’, which instructs
the shell to interpret any following string as a shell command. The variables
$GSSID and $GPSK originate from the camera’s configuration settings (the net-
work name and password), making them directly modifiable by the user, and
also an attacker. The danger present is that the user-supplied values are being
passed directly into the command, making it possible for a crafted payload to
execute arbitrary commands. A weak attempt was made by the manufacturer to
prevent this from occurring, however. These values are initially read and parsed

Spying on the Spy: Security Analysis of Hidden Cameras 355

in another script, wifi_station.sh, before being sent to station_connect.sh.
The inputs are weakly sanitised with an awk script (see Listing 5) that performs
the following operations, according to the awk reference [11]:

– Removes all double quotes
– Removes leading whitespace
– Removes any occurrences of the semicolon (;) character, and any following

characters on the same line

BEGIN {FS="="}/[wireless]/{a=1} a==1 &&
$1~/^ssid/{

gsub(/\"/,"",$2);
gsub(/\;.*/, "", $2);
gsub(/^[[:blank:]]*/,"",$2);
print $2

}

Listing 5. Script to read and sanitise the configuration value for the Wi-Fi SSID

The removal of the semicolon character (and anything after) is a clear attempt
to prevent command-chaining. However, not all cases were considered, since addi-
tional chaining operators using the ampersand (&&) and pipe (||) symbols are
never filtered out, which can be used to achieve a similar result. Additionally,
the inputs are surrounded with pairs of single and double quotes (see lines 1
and 2 in Listing 4), in an attempt to ensure the input is interpreted as a string
instead of being executed. These techniques, although potentially thwarting a
naive command-injection attempt, proved futile since the source code could be
viewed. By surrounding the payload with a pair of single quotes, it was possible
to break out of the string and achieve code execution.

To perform the attack, an OpenWifi command is sent to the device to
update the Wi-Fi settings with the embedded payload. When this is sent, the
camera updates its configuration file with the inputs and reboots. On boot,
station_connect.sh is executed, triggering the attacker’s code via the call to
‘sh -c’. A slight barrier to the attack is that the OpenWifi command only sup-
ports a maximum length of 32 characters for the SSID and password fields. Recall
that the file /etc/jffs2/.devpsd was previously discovered to store the device’s
password in plaintext. By updating the password to be the contents of a desired
script, the password file can be used as a temporary storage mechanism for the
payload. The input in the OpenWifi command can then be shortened to execute
the contents of this file with the command ‘source /etc/jffs2/.devpsd’.

Thus, a more sophisticated attack involves sending two commands. The first
updates the camera’s password to a payload of choice (Listing 6), whilst the
second updates the Wi-Fi configuration so that the payload is executed on the
next boot (Listing 7). It should be noted that no user interaction is required to
perform this attack.

356 S. Herodotou and F. Hao

{
"cmd": "ModifyPwd",
"newpwd": $payload, // desired payload
"pwd": ""

}

Listing 6. Command to update the device’s password

{
"cmd": "OpenWifi",
"sid": $ssid, // user's SSID
"wifiPwd": "'&&source /etc/jffs2/.devpsd '",
"state": 1

}

Listing 7. Payload sent to exploit the command-injection vulnerability in
station_connect.sh

Since the exploit requires an attacker to update the camera’s network con-
figuration, this attack has the side-effect of disconnecting the camera from the
Internet, preventing an attacker from sending further commands. This can be
resolved by rolling back the credentials after code execution is established. The
shell code in Listing 8 can be added to the payload to restore the original con-
figuration and reconnect to the Internet. Additionally, the password file can be
reinstated to its original value to make the attack much harder to detect. By
ignoring this step, however, a denial-of-service attack is achieved, since updat-
ing the password file is equivalent to changing the password. With the device’s
password being set to the contents of an arbitrary script, the user will no longer
be able to connect to their device via the LookCam app.

sed -i 's/^password.*=.*/password = [OLD PASSWORD]/'
/etc/jffs2/anyka_cfg.ini↪→

reboot

Listing 8. Shell code to reinstate the previous Wi-Fi password

Searching for the vulnerable code segments discovered via Github Code Search
[10] and Sourcegraph [22] revealed that the scripts originate from the AK3918
microcontroller software development kit (SDK). Consequently, the command-
execution vulnerability is not restricted to the specific modules in this investi-
gation, but potentially to many other products that incorporate the same SDK
(or derivatives).

3.8 Persistent Access

With the ability to perform code execution, an adversary can perform more
sophisticated attacks to persist this access, such as installing a malicious start-
up script that exposes a reverse shell. These attacks are immune to the device’s

Spying on the Spy: Security Analysis of Hidden Cameras 357

‘reset’ button, as resetting the device only restores the factory configuration file
whilst leaving the rest of the filesystem unaffected. In a large-scale attack, this
could lead to the formation of a botnet, enabling considerable attacks such as
distributed denial of service, botnet mining and mass surveillance. A vulnerable
section of code located in service.sh (see Listing 9) exposes debug functionality
left behind by the manufacturer, making it possible to install a custom start-up
script. The code looks for a script located in /mnt/usbnet/product_test, and
if present, executes it on every boot. Additionally, Telnet and FTP (File Transfer
Protocol) daemons are started, exposing additional entry points to the camera.

if test -d /mnt/usbnet ;then # Checks if the directory exists
FACTORY_TEST=1

...
if [$FACTORY_TEST = 1]; then

/usr/bin/tcpsvd 0 21 ftpd -w / -t 600 & # Start FTP
telnetd & # Start Telnet
echo "start product test."
/mnt/usbnet/product_test & # Execute the start-up script

...

Listing 9. Vulnerable debug functionality left behind in service.sh

An adversary can insert an additional command into the start-up script to change
the vendor-set root password to an arbitrary one, as shown in Listing 10. This
effectively bypasses the root password originally set by the vendor and enables
the adversary to authenticate themselves to the Telnet and FTP services which
were previously protected by this root password.

echo -e "1234\n1234" | passwd root

Listing 10. Changing the vendor-set root password to ‘1234’ by exploiting the exposed
start-up script

Fig. 5. UDP hole punching procedure

358 S. Herodotou and F. Hao

3.9 Insecure Peer-to-Peer System

To facilitate remote connections to the cameras outside of the user’s local net-
work, the peer-to-peer (P2P) system is utilised. Although it offers convenience
by enabling users to access their cameras from anywhere in the world, expos-
ing devices to the Internet creates the opportunity for the previously discussed
vulnerabilities to be exploited remotely.

The P2P system uses a proprietary security protocol and is inherently inse-
cure. The main role of this P2P network is to provide clients with a direct IP
connection to the requested device without requiring complex network config-
uration changes. To achieve this, a technique called UDP hole-punching [12] is
employed. This method makes it possible for the camera to traverse the NAT
(Network Address Translation) system in place within the user’s network, essen-
tially performing a port-forward operation without requiring manual changes to
the router’s settings. It abuses the fact that in many networks, when an outgo-
ing request to a server is made, a temporary NAT rule is created to enable the
response to be received. By constantly firing out packets to the client, a ‘hole’ in
the NAT table is left open, allowing the app to connect directly to the camera.
Figure 5 shows the steps involved in UDP hole punching. The procedure works
as follows:

1. Both the app and the camera inform centralised peer-to-peer server(s) of their
IP addresses and listener ports.

2. Given that both the phone app and the camera are online, the camera sends
outgoing packets to the phone’s IP and port to open a NAT hole.

3. Once the NAT hole is open, the app can connect directly to the camera.

Each camera is assigned a unique serial number for identification. When an
app wishes to connect to a camera, it sends a request to the peer-to-peer server
with the respective serial number. Figure 6 depicts the serial number format
in further detail. Each serial consists of a vendor prefix, an ID number, and a
check code (there are 1 million IDs for each prefix; a vendor can license multiple
prefixes to support more devices). The check code is used as an attempt to
prevent serial numbers from being enumerated, making it difficult for attackers
to guess the serials of other devices. Since serial verification checks have been
found to be performed on the server side, it has not been possible to locate the
check-code algorithm.

A proprietary encryption method was implemented in the P2P network to
protect packets between the apps and the P2P servers. By disassembling the
code responsible for this encryption in the anyka_ipc program using Ghidra (a
reverse-engineering tool), it was found possible to extract the encryption key and
the algorithm used to decrypt packets. A function was found within the disas-
sembled program called cs2p2p_P2P_Proprietary_Decrypt, which was reverse-
engineered and rewritten in C to decrypt packets captured in Wireshark. Multi-
ple keys were located by probing the binary for encryption parameters. Namely,
the string ‘SSDXXXXXXXXXXXk.’ (part of this string is marked out with ‘X’) is
used as a global symmetric key to encrypt and decrypt packets. An additional

Spying on the Spy: Security Analysis of Hidden Cameras 359

Fig. 6. Format of the serial numbers used to identify devices

256-byte key was discovered that is incorporated as an additional parameter to
the encryption/decryption functions. These keys are hard-coded into the binary
and are the same for all cameras of the same type. They are also present in the
libPPCS_API.so library included in the mobile app, as it also communicates
with the peer-to-peer system.

With the ability to communicate with the P2P servers, an attacker can
request the IP addresses of cameras, enabling a direct connection to be made. It
is important to note that this vulnerability does not only apply to the cameras
in question, but to any IoT device using this network to facilitate P2P con-
nections. This makes it possible for vulnerabilities present in the spy cameras
and also other IoT devices to be exploited remotely, since no authentication is
required to gain a direct IP connection. This raises concerns surrounding poten-
tially many more products in the IoT space.

To sum up, these generic hidden camera modules have exhibited considerable
defects in their various components, involving multiple companies in the supply
chain. The network service running on each camera to support the mobile apps
contains several vulnerabilities that enable attackers to bypass the authentica-
tion system and extract sensitive information. The insecure configuration scripts
included as part of the microcontroller SDK make the cameras vulnerable to
command-injection attacks. Poor system configuration enables the command
injection attacks to be performed with superuser privileges. A flawed encryp-
tion system in use by the peer-to-peer system enables attackers to impersonate
legitimate users, exposing IoT devices to the Internet and allowing attacks to be
performed on an international scale, to potentially many millions of devices.

4 Mitigation Measures

To protect these cameras, a complete overhaul of the system would be necessary.
This is due to the numerous vulnerabilities present in all of their components.
Despite several attempts to bring these issues to the attention of the respon-
sible parties, many refused to respond or cooperate whilst others expressed no
interest. The lack of success in identifying remote updating functionality in the
system suggests that any mitigation attempt through patching would be infea-
sible nevertheless. A list of remedial actions has been compiled below to address
each of the identified vulnerabilities for the future development of IP cameras:

1. Verbose debug logging – Strip out debug messages in the production
build of the controlling app.

2. Unencrypted communications – Implement Transport Layer Security
(TLS) to protect traffic in-transit.

360 S. Herodotou and F. Hao

3. Authentication loophole – Issue a token on successful login and verify
the presence of a valid token in the subsequent requests.

4. Unencrypted password storage – Store a salted hash of the user’s pass-
word instead of storing it in plaintext.

5. Arbitrary file downloading – Associate each video file with an identifier
and have an internal database mapping identifiers to file paths. With this
method, a user only inputs an identifier instead of a path. Thus, the input
is not directly incorporated into the path, avoiding directory traversal.

6. Unnecessary exposure of sensitive information – Avoid printing sen-
sitive information such as Wi-Fi credentials in command responses, e.g.,
GetDevInfo.

7. Poor access control – Create a non-privileged Linux user to run the appli-
cation server. Modify file/directory permissions to protect privileged infor-
mation.

8. Outdated password hashing algorithm – Ensure password hashes for
all users are using a modern algorithm such as bcrypt [18].

9. Command injection – Modify shell scripts to correctly sanitise user input.
Alternatively, rewrite the functionality in another language such as C to
mitigate the risk of command injection.

10. Flawed encryption in P2P network – Implement a TLS layer to protect
traffic in-transit.

11. Device impersonation – Adopt a secure enrolment process to register a
camera with the app, e.g., based on Thread [23], to create end-to-end secure
channels between the camera and the controlling app without having to trust
any peer-to-peer servers.

5 Future Work

It has been demonstrated how attackers can perform remote code execution
on an arbitrary spy camera with only the knowledge of its serial number. The
proprietary check-code algorithm used to verify serial numbers serves as the
sole defence against device enumeration, which could lead to the formation of a
botnet of potentially millions of vulnerable devices. Serial enumeration does not
only impact the hidden cameras investigated in this paper, but also any type
of IoT device connected to the P2P network. Recalling that over 50 million IoT
devices are estimated to be using this system, the possible impact here can be
much greater. Flaws in the design of the network and its encryption protocol
make it possible to gain a direct IP connection to arbitrary devices without
supplying any credentials. Further exploits could be possible based on the designs
of these devices. A possible route to cracking the check-code algorithm would
be to purchase a copy of the P2P server software from the manufacturer (which
costs around $1,000), so one has access to the source code of the server software
including the implementation of the check-code algorithm. With the knowledge
of the check-code algorithm, an attacker may extend the reported attacks to an
arbitrary IoT device with a valid device ID in the P2P network, including not
only IP cameras but also IP-based smart locks, doorbells, bulbs, light switches,
speakers and so on. We leave this to future study.

Spying on the Spy: Security Analysis of Hidden Cameras 361

6 Conclusion

A systematic investigation of the security of IP-based hidden cameras has been
conducted, revealing a broad range of vulnerabilities. These vulnerabilities allow
a remote attacker, with the mere knowledge of the camera’s serial number, to
take complete control of the camera even if the camera is within an internal
network behind a firewall. Proof-of-concept attacks have been demonstrated to
eavesdrop on the audio and video streams, retrieve any recorded video stored on
the camera module along with other sensitive information (such as the Wi-Fi
passwords of the user’s home network), and run a reverse shell script on the cam-
era device (by abusing the password update function and specifying the reverse
shell as part of the input to that function), thus turning the camera into a plat-
form to attack other nodes in the home network or as part of a botnet. These
attacks are not just limited to hidden cameras; they are generally applicable to
IoT devices that follow a similar security design. Countermeasures are proposed
to contain these attacks. However, patching or recalling the affected cameras is
infeasible given the existing designs of these products and the complexities of the
supply chain. Manufacturers are urged to pay more attention to security and get
it right at the start, as failures can cause unintended, severe, and long-lasting
consequences, especially when retrospective fixes are impossible. In the mean-
time, the public should be informed of the security issues of a hidden camera,
especially about the danger of sharing a camera’s serial number with others.
Even if a user diligently does not share the serial number, we caution that an
attacker may already know it, e.g., by enumeration, or reading the product infor-
mation in the supply chain. To ultimately address the vulnerabilities identified
in this paper, we call for open, peer-reviewed and standardised security designs,
which are currently lacking for hidden cameras and similar IoT products.

Acknowledgements. The second author is supported by Royal Society (ICA\R1\
180226) and EPSRC (EP/T014784/1).

References

1. Abdalla, P.A., Varol, C.: Testing IoT security: the case study of an IP camera. In:
2020 8th International Symposium on Digital Forensics and Security (ISDFS), pp.
1–5. IEEE (2020)

2. Biondi, P., Bognanni, S., Bella, G.: Vulnerability assessment and penetration test-
ing on IP camera. In: 8th International Conference on Internet of Things: Systems,
Management and Security (IOTSMS), pp. 1–8. IEEE (2021)

3. Chaudhary, P.R., Narasimhan, A., Maiti, R.R.: Demystifying video traffic from IoT
(spy) camera using undecrypted network traffic. In: Proceedings of the Twelfth
ACM Conference on Data and Application Security and Privacy, pp. 361–363
(2022)

4. Cheng, Y., Ji, X., Lu, T., Xu, W.: DeWiCam: detecting hidden wireless cameras
via smartphones. In: Proceedings of the 2018 on Asia Conference on Computer
and Communications Security, pp. 1–13 (2018)

362 S. Herodotou and F. Hao

5. Cheng, Y., Ji, X., Lu, T., Xu, W.: On detecting hidden wireless cameras: a traffic
pattern-based approach. IEEE Trans. Mob. Comput. 19(4), 907–921 (2019)

6. Cunningham, R., Tan, W.L.: Detection and localization of hidden Wi-Fi cameras.
In: 2022 27th Asia Pacific Conference on Communications (APCC), pp. 12–17.
IEEE (2022)

7. Dao, D., Salman, M., Noh, Y.: DeepDeSpy: a deep learning-based wireless spy
camera detection system. IEEE Access 9, 145486–145497 (2021)

8. Janssen, D.: Many Airbnbs have cameras installed, especially in the US,
Canada and Singapore. https://vpnoverview.com/news/camera-presence-airbnb-
accommodations/. Accessed 09 Mar 2023

9. Laljee, F.: Using a nanny cam in the home. https://www.kidsitter.co.uk/blog/
using-nanny-cam-in-the-home/. Accessed 09 Mar 2023

10. Github: Github Code Search. https://github.com/features/code-search. Accessed
04 Mar 2023

11. GNU: The GNU Awk User’s Guide. https://www.gnu.org/software/gawk/manual/
gawk.html. Accessed 04 Mar 2023

12. Halkes, G., Pouwelse, J.: UDP NAT and firewall puncturing in the wild. In:
Domingo-Pascual, J., Manzoni, P., Palazzo, S., Pont, A., Scoglio, C. (eds.) NET-
WORKING 2011. LNCS, vol. 6641, pp. 1–12. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-20798-3_1

13. Heo, J., et al.: Are there wireless hidden cameras spying on me? In: Proceedings of
the 38th Annual Computer Security Applications Conference, pp. 714–726 (2022)

14. Lee, J., Seo, S., Yang, T., Park, S.: Ai-aided hidden camera detection and local-
ization based on raw IoT network traffic. In: 2022 IEEE 47th Conference on Local
Computer Networks (LCN), pp. 315–318. IEEE (2022)

15. Ling, Z., Liu, K., Xu, Y., Jin, Y., Fu, X.: An end-to-end view of IoT security and
privacy. In: IEEE Global Communications Conference (GLOBECOM), pp. 1–7.
IEEE (2017)

16. Liu, T., Liu, Z., Huang, J., Tan, R., Tan, Z.: Detecting wireless spy cameras via
stimulating and probing. In: Proceedings of the 16th Annual International Confer-
ence on Mobile Systems, Applications, and Services, pp. 243–255 (2018)

17. Liu, Z., et al.: CamRadar: hidden camera detection leveraging amplitude-
modulated sensor images embedded in electromagnetic emanations. Proc. ACM
Interact. Mob. Wear. Ubiquit. Technol. 6(4), 1–25 (2023)

18. Provos, N., Mazieres, D.: A future-adaptable password scheme. In: USENIX
Annual Technical Conference, FREENIX Track, vol. 1999, pp. 81–91 (1999)

19. Salman, M., Dao, N., Lee, U., Noh, Y.: CSI: DeSpy: enabling effortless spy camera
detection via passive sensing of user activities and bitrate variations. Proc. ACM
Interact. Mob. Wear. Ubiquit. Technol. 6(2), 1–27 (2022)

20. Sami, S., Tan, S.R.X., Sun, B., Han, J.: LAPD: hidden spy camera detection using
smartphone time-of-flight sensors. In: Proceedings of the 19th ACM Conference on
Embedded Networked Sensor Systems, pp. 288–301 (2021)

21. Sindhu, K., Subhashini, R., Gowri, S., Vimali, J.: A women safety portable hidden
camera detector and jammer. In: 2018 3rd International Conference on Communi-
cation and Electronics Systems (ICCES), pp. 1187–1189. IEEE (2018)

22. Sourcegraph: Sourcegraph. https://sourcegraph.com. Accessed 04 Mar 2023
23. Thread Group: Thread specification. https://www.threadgroup.org/support#

specifications. Accessed 09 Mar 2023
24. Yu, Z., Li, Z., Chang, Y., Fong, S., Liu, J., Zhang, N.: HeatDeCam: detecting hid-

den spy cameras via thermal emissions. In: Proceedings of the 2022 ACM SIGSAC
Conference on Computer and Communications Security, pp. 3107–3120 (2022)

https://vpnoverview.com/news/camera-presence-airbnb-accommodations/
https://vpnoverview.com/news/camera-presence-airbnb-accommodations/
https://www.kidsitter.co.uk/blog/using-nanny-cam-in-the-home/
https://www.kidsitter.co.uk/blog/using-nanny-cam-in-the-home/
https://github.com/features/code-search
https://www.gnu.org/software/gawk/manual/gawk.html
https://www.gnu.org/software/gawk/manual/gawk.html
https://doi.org/10.1007/978-3-642-20798-3_1
https://doi.org/10.1007/978-3-642-20798-3_1
https://sourcegraph.com
https://www.threadgroup.org/support#specifications
https://www.threadgroup.org/support#specifications

Security Analysis of Mobile Point-of-Sale
Terminals

Mahshid Mehr Nezhad(B), Elliot Laidlaw, and Feng Hao

Department of Computer Science, University of Warwick, Coventry, UK
{Mahshid.Mehr-Nezhad,Elliot.Laidlaw,Feng.Hao}@warwick.ac.uk

Abstract. The increasing prevalence of Card Present (CP) transactions
has driven the growth of mobile Point-of-Sale (mPoS) terminals. These
compact, wireless, and low-cost terminals allow merchants to process
transactions conveniently by utilizing a mobile phone. In this paper,
we analyze the security implications of mPoS terminals with a focus
to study the merchants’ mobile phones as a key component in the
mPoS ecosystem. Our examination covers the security aspects of the
mobile phone’s communication with the mPoS terminal and the pay-
ment provider server, and also the security risks in the mobile phone
application itself. We perform an eavesdropping attack to reveal the
cryptographic keys in the BLE (Bluetooth Low Energy) communication
between the mPoS terminal and the merchant phone, execute a man-
in-the-middle (MITM) attack to tamper with the mPoS terminal mes-
sages transmitted between the mPoS terminal and the payment provider
server, and reverse engineer the mobile phone application to disable the
security features that are controlled by the mobile phone.

Keywords: EMV · Payment Systems · Contactless Payment · mPoS
Terminals

1 Introduction

Card Present (CP) transactions, also known as face-to-face (F2F) transactions,
are growing in popularity as consumers increasingly use credit and debit cards
for purchases [8], in contrast to Card Not Present (CNP) transactions. CP trans-
actions are performed when the card is physically present, typically at a Point-of-
Sale (PoS) terminal, while CNP transactions occur when neither the cardholder
nor the credit card is physically present at the time of the transaction [28]. The
focus of this paper is CP transactions.

Traditionally, PoS terminals have been used to process CP transactions.
These terminals are typically large, fixed devices that are found in retail stores
and other locations where goods and services are sold. They are connected to a
payment processor through a wired or wireless network. However, with the grow-
ing demand for more flexible and cost-effective payment solutions, mobile PoS
(mPoS) terminals have emerged as an alternative to traditional PoS terminals

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Li et al. (Eds.): NSS 2023, LNCS 13983, pp. 363–384, 2023.
https://doi.org/10.1007/978-3-031-39828-5_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-39828-5_20&domain=pdf
https://doi.org/10.1007/978-3-031-39828-5_20

364 M. Mehr Nezhad et al.

due to their flexibility and affordability, especially for small businesses. Examples
are Sumup [29], Square [27], and iZettle [14]. These terminals are small, compact,
low-cost, wireless and easy to configure, requiring a few simple steps. They are
equipped to accept various payment methods such as debit/credit/prepaid cards
with magnetic strips or embedded chips, contactless payments through mobile
wallets, QR codes, and/or cash and checks [9]. They offer the ability for anyone
with a bank account to establish their own payment terminal, mostly without
requiring a business account or a fixed contract.

Although they provide convenience for merchants and customers, they raise
potential risks that can be exploited for malicious purposes. This can include
holding an mPoS terminal near a victim’s payment device (credit/debit card
or Near Field Communication (NFC)-enabled devices such as smartphones or
wearable devices (e,g, smartwatches) without their knowledge, in conjunction
with other emulation hardware, to perform malicious activities. An example of
such exploitation is using these mPoS terminals in a man-in-the-middle (MITM)
attack setup, as shown in [22], which bypasses the lock screen on mobile phones
as a method of cardholder verification when a Visa card is utilized on Apple Pay
with transit mode enabled. Furthermore, studies conducted by researchers at
ETH Zurich have revealed various methods for bypassing the Personal Identifi-
cation Number (PIN) on contactless cards during transactions above the contact-
less limit, including PIN bypass on Visa cards [3] and on Mastercard cards [4,5]
by using an mPoS terminal with emulators. Another example is the mPoS-based
passive attack (also known as digital pick-pocketing), which effectively combines
all the required emulation components in a relay attack in a single mPoS termi-
nal for a fraudulent merchant to perform passive relay attacks in order to steal
money from users via contactless transactions without their knowledge [17].

The management of these terminals is usually done with a mobile device
such as a mobile phone or tablet which plays a crucial role in various aspects of
the transaction process, including the establishment of a Bluetooth connection
with the mPoS terminal, the connection to the payment provider server over
the internet, and the installation of an application on the device to manage the
mPoS terminal. In this paper, the potential security risks and vulnerabilities of
mPoS terminals are analyzed with a focus on the involvement of mobile phones
in their management, which is owned by the merchant. Specifically, the security
aspects of the communication between the mobile phone and the mPoS termi-
nal, the communication between the mobile phone and the payment provider
server, and the mobile phone application itself are examined. The security of the
Bluetooth Low Energy (BLE) communication between the mobile phone and
the mPoS terminal is analyzed, and methods for revealing the cryptographic
keys used in this communication are explored. Furthermore, a MITM attack is
performed to demonstrate the vulnerability of the communication between the
mobile phone and the payment provider server. Additionally, the feasibility of
reverse engineering the mobile phone application code is shown, and the modi-
fication of the security features of the mPoS terminals controlled by the mobile
phone is demonstrated. We summarize our contributions as follows:

Security Analysis of Mobile Point-of-Sale Terminals 365

– Performing an eavesdropping attack on the BLE communication between the
mobile phone and the mPoS terminal to extract the cryptographic keys used
for communication;

– Performing a MITM attack between the mobile phone and the payment server
to intercept and tamper with the messages to be displayed on the terminal;

– Demonstrating the feasibility of reverse engineering the mobile phone appli-
cation code and the alteration of the security features of the mPoS terminals
that are controlled by the mobile phone.

This paper employs the terms card reader, terminal, and mPoS terminal
interchangeably. The rest of the paper is organized as follows. In Sect. 2, we
provide the background and the related work on studying the mPoS terminals
vulnerabilities. Section 3 explains encryption security, with a focus on the BLE
communication between the mPoS terminal and the mobile phone. Section 4
explains network security, with a focus on the security vulnerabilities of the
HTTP communication between the mobile phone and the payment server. In
Sect. 5, we investigate the mobile application installed on the mobile phone and
demonstrate the feasibility of bypassing the security features, followed by a dis-
cussion in Sect. 6. Finally, we conclude the paper in Sect. 7.

2 Background and Related Work

The installation of an mPoS terminal requires a series of straightforward steps.
These steps include purchasing the device, which can vary in price based on its
features (with options starting as low as £19), registering for an online account
(usually done via the vendor website), installing the corresponding application
on the merchant’s mobile phone, pairing the phone with the terminal, and finally,
making transactions.

The ecosystem of mPoS terminals and their communication with various
entities in transactions are depicted in Fig. 1. The mPoS terminal is operated by
a mobile phone, owned by the merchant. The merchant downloads an application
on their mobile phone and uses it to connect to the mPoS terminal. This enables
the merchant to initiate and request payments. When the payment is sent from
the merchant’s mobile phone to the mPoS terminal, the user is ready to pay.

As shown in Fig. 1, the user has the option to make a payment transac-
tion through either a contactless or chip-and-PIN method by tapping, insert-
ing, or swiping their payment device against the mPoS terminal (1). The pay-
ment is then transmitted from the mPoS terminal to the merchant’s mobile
phone through Bluetooth communication (2). The transaction information is
then transmitted from the merchant’s mobile phone to the payment provider
server for authorization (3). The payment provider, in turn, communicates with
the acquirer bank to verify the transaction details and ensure its security and
accuracy (4). The acquirer verifies the authenticity of the customer’s payment
card and checks the available funds with the payment network (5), which com-
municates with the card issuer (6). Upon receiving approval from the card issuer,

366 M. Mehr Nezhad et al.

(1) (2)

User

mPoS Terminal Merchant Phone

Payment Provider

Payment Network

Issuer Bank Acquirer Bank

(6) (5)

(4)
(7)

(3)

Fig. 1. Mobile Point-of-Sale (mPoS) Terminals Ecosystem

the customer’s account is charged, and the customer is notified (7). The mer-
chant’s account is credited, and the notification is propagated all the way back
to the merchant’s mobile phone.

The mPoS terminals have been the subject of security studies in the past
decade. One of the first studies, by Frisby et al. [10] in 2012, investigated the
smartphone-based PoS systems that consist of a software application combined
with an audio-jack magnetic stripe reader (AMSR) on a smartphone. The study
focused on mPoS systems that relied on a smartphone, incorporating an AMSR
and a corresponding application running on an Android smartphone. The secu-
rity assessment concluded that any application running on the smartphone could
potentially disable the magnetic stripe reader and obtain confidential crypto-
graphic keys. However, the architecture of mPoS terminals has since evolved,
and the current study is not centred around AMSR but shifts the focus from
audio-jack magnetic stripe smartphone-based PoS systems to mPoS terminals
that are controlled via smartphones.

A subsequent study on mPoS terminals is by Mellen et al. [18] where they
demonstrated potential attack vectors for Square [27] mPoS terminals, both in
the software and hardware. In software, their research found security weaknesses
in the old Square terminals, which were later deprecated, and discovered vul-
nerabilities in the encrypted Square reader S4 model and Square registration
application, which have since been addressed. In the hardware, the researchers
discovered that the Square Reader devices used a chip for point-of-swipe encryp-
tion, but were able to bypass the encryption by jumping the connection from the
magnetic head reader to the headphone jack input or by crushing the encryption
chip. The attack tool, called Swordphish, was developed to record unencrypted
swipes and transmit the credit card information to an external server.

In another study published in [15], the security of mPoS terminals, with
a specific emphasis on the Miura [30] Shuttle chip-and-PIN reader, was thor-
oughly investigated. The researchers demonstrated the capability of performing

Security Analysis of Mobile Point-of-Sale Terminals 367

arbitrary code execution as a root user on the device, utilizing both the USB
and Bluetooth interfaces. Additionally, they exhibited how they could gain root
access to the terminal via the chip-and-PIN mode, thereby manipulating the
display and keyboard of the device to elicit the entry of the user’s PIN, by
changing the displayed message to “Try Again” and downgrading to magnetic
stripe (magstripe) mode. However, this vulnerability was remediated by 2014.

In 2018, researchers in [11] conducted a follow-up investigation, exploiting a
vulnerability that existed at that time through the Bluetooth interface. It was
found that the SumUp [29] terminal transmitted commands in plaintext over
Bluetooth, thereby allowing for the sending of arbitrary commands and tamper-
ing of amounts, following the reverse engineering of the terminal’s characteristics
and functions. As a result, researchers were able to perform a similar attack vec-
tor as outlined in [15], by manipulating the displayed messages to prompt the
user to swipe their card, with a message that reads “Please Swipe Card”. Our
subsequent analysis of transaction data collected from SumUp terminals, how-
ever, revealed that the vulnerability had been addressed by the vendor, with the
implementation of encryption for all messages. More details will be provided in
Sect. 3. Thus, the demonstrated attack vector is no longer viable, as a successful
attacker would require knowledge of the encryption key to send valid messages to
the card reader through Bluetooth communication. The researchers also explored
the manipulation of amounts in magstripe mode transactions, through the forc-
ing of card swiping. Finally, the study highlights the use of a tamper detection
circuit in the tested terminals, which would render the device inoperable in the
event of attempted tampering.

Having previously addressed vulnerabilities from various angles on different
mPoS terminals, in this paper, we explore the mPoS terminal ecosystem from a
novel standpoint, examining the capacity of merchant’s mobile phones to initiate
attacks as it is a crucial part of the mPoS ecosystem. This study involves a com-
prehensive analysis of the mobile application and the communication protocols
between the mPoS terminal, merchant phone, and payment provider server. The
aim of the analysis is to identify and examine security weaknesses at various
layers, in order to provide insights into the mitigation of associated risks. The
results of our analysis will be presented in the subsequent sections of this paper.

3 Encryption Security

The deployment of an mPoS terminal requires the establishment of a wireless
communication channel with the merchant’s device, typically a mobile phone
which is owned by the merchant. Bluetooth Low Energy (BLE) is a widely
used technology for this purpose. The merchant first pairs an mPoS terminal
with their mobile phone and uses that established communication link to send
and receive transactions to/from the mPoS terminal. However, it is critical to
consider the security implications of this communication channel, as exploita-
tion of vulnerabilities can result in extracting the cryptographic keys. As previ-
ously stated, the attack vector described in [11] is no longer viable; our analysis

368 M. Mehr Nezhad et al.

of Bluetooth traffic contradicts the findings in [11], where certain commands
sent to the SumUp terminal were discovered in plaintext. Subsequent security
improvements made to the SumUp platform have made both packet analysis and
arbitrary command execution more challenging since all the packets on the BLE
communication are encrypted now.

To carry out the arbitrary command execution attack, an attacker would need
knowledge of the encryption key in order to send valid messages to the mPoS
terminal through Bluetooth communication. In this section, we first provide
background information on BLE communication with a focus on the pairing
session and then demonstrate how it is possible to capture the cryptographic
keys of the BLE communication by exploiting existing vulnerabilities in the
pairing session between the mPoS terminal and the merchant’s mobile phone.

3.1 BLE Communication

The BLE protocol stack is comprised of three main architectural layers: the
Controller, Host, and Application. The Host Controller Interface (HCI) serves
as a bridge between the Host and Controller. The Security Manager Protocol
(SMP) located in the Host layer is of particular importance in this context, as
it is responsible for establishing secure connections and facilitating secure data
exchange between devices. SMP outlines the procedures for pairing, authentica-
tion, and encryption of links between devices. During the pairing process, keys
are generated for encrypting links and shared through a key distribution proto-
col for future connections and verification of data. The two devices involved in
pairing are differentiated as the initiating device and the responding device. In
the context of this paper, the initiating device is the merchant’s mobile phone
and the responding device is the mPoS terminal.

Based on the BLE specification [26], the SMP carries out pairing in three
phases: phase 1, phase 2, and phase 3. In phase 1, the devices engage in a Pairing
Feature Exchange using the SMP Pairing Request and Pairing Response com-
mands. During this exchange, information such as Input/Output (I/O) capabil-
ity, Out-of-Band (OOB) data flags, Bonding flags, MITM protection and Secure
Connection (SC) requirements are shared between the devices. The Key Press
(KP) flag is only relevant in the Passkey Entry protocol and is ignored in other
protocols. Based on this information, both devices determine their I/O capa-
bilities and select the appropriate pairing mechanism for use in the next phase
of the pairing process, according to the mapping table specified in the BLE
specification.

In phase 2 of the pairing process, the devices utilize the information
exchanged in the Pairing Feature Exchange to determine the suitable pairing
mechanism, either Low Energy Legacy (LE Legacy) pairing or Secure Connec-
tion (SC) pairing. In LE Legacy pairing, the devices exchange a Temporary Key
(TK) and use it to create a Short Term Key (STK) which is used to encrypt the
connection. If the I/O capabilities of a device, either the initiating or respond-
ing device, has a display capability, then it will display a randomly generated
passkey value between “000000” and “999999”. The other device should have

Security Analysis of Mobile Point-of-Sale Terminals 369

an input capability like a keyboard so a user can input the value displayed for
the TK. If the I/O capabilities of both the initiating and responding devices do
not have display capabilities but only have a keyboard, the user needs to guar-
antee that the TKs between the initiating and responding devices are the same.
This is a special case for Passkey Entry. After the generation of the TK, it is
then combined with two random numbers to produce the STK; Mrand for the
initiating device, Srand for the responding device. The Mconfirm and Sconfirm
are 128-bit confirmation values that can be calculated using the confirm value
generation function c1. The detail for this function is out of the scope of this
research and can be found in Bluetooth Specification [26]. The security of this
process depends greatly on the pairing method used to exchange the TK. In
Legacy Pairing, the pairing method can be Just Works, Out of Band (OOB), or
Passkey. In Just Works, the TK is set to zero. In OOB, the TK is exchanged
using a different wireless technology such as NFC. In Passkey, the TK is a 6-digit
number that is passed between the devices by the user.

In LE Secure Connection, instead of using a TK and STK, LE Secure
Connections use a single Long Term Key (LTK) to encrypt the connection.
This LTK is generated and exchanged using the Elliptic Curve Diffie Hellman
(ECDH) protocol. In addition to supporting the pairing methods in the LE
Legacy, it also supports the Numeric Comparison pairing method. It is similar
to Just Works but adds another step at the end. Once the devices confirm that
the confirmation values match, then both devices will independently generate
a final 6-digit confirmation value using nonces. They both then display their
calculated values to the user and the user manually checks both values match
and confirms the connection.

In phase 3, the devices use the secure communication channel established in
the previous phase to share the LTKs which will be used for link encryption.
Each LTK is a 128-bit random number that may be generated along with a 16-bit
Encrypted Diversifier (EDIV) and 64-bit Random Number (Rand) by both the
slave and master device. The exact function of EDIV and Rand keys may vary
depending on the implementation of the BLE protocol, but they are typically
used to identify or derive the LTK for future connections. In order to conserve
energy and storage, the slave device may not retain these values, leaving the
responsibility of encrypting future communications to the master device, which
in this case is the smartphone.

3.2 Eavesdropping to Extract Cryptographic Keys

The attacker, who may be a malicious merchant or an eavesdropper, can extract
the cryptographic keys by capturing the pairing session between the mPoS ter-
minal and the merchant’s mobile phone. These keys are then used to carry out
various attacks. Malicious merchants can capture their phone’s pairing session
with their terminal during the initial BLE communication setup to obtain the
cryptographic keys. These keys can then be utilized to access future transac-
tion data exchanged between the phone and the terminal. An eavesdropper can
also sniff the established BLE communication to compromise the encryption.

370 M. Mehr Nezhad et al.

As demonstrated in [24], the attacker can exploit the vulnerability of the BLE
communication by jamming the connection, which forces the master and slave
to reconnect and establish a new pairing session. During this process, the eaves-
dropper can inject appropriate control packets to initiate a key renegotiation to
obtain the keys. Our proposed model takes advantage of the vulnerability present
in the BLE communication between the merchant’s phone and the mPoS termi-
nal without requiring physical access to the mPoS terminal.

Eavesdropping: There are two primary methods for eavesdropping on BLE
traffic: using the HCI Snoop Log on the merchant’s mobile phone and using
over-the-air Bluetooth sniffers. The HCI Snoop Log approach involves capturing
and analyzing the HCI data packets on the merchant’s Android phone, which can
provide detailed information about the BLE communication between the phone
and other devices. The over-the-air Bluetooth sniffers, on the other hand, capture
BLE communication in the air by using specialized hardware and software. This
approach is useful for monitoring and analyzing the Bluetooth traffic between
multiple devices over a larger area. Both of these approaches have their own
advantages and disadvantages and it depends on the specific requirements of the
task and the environment in which it is being performed.

The utilization of HCI snoop logs, which requires the Developers Options
setting to be enabled on the Android phone, offers several advantages. Firstly,
the HCI snoop log is immune to missing packets during the capture process,
which is a prevalent issue with over-the-air Bluetooth sniffers. Secondly, as the
HCI protocol is situated above the Link Layer (LL) in the Bluetooth protocol
stack, the contents of all packets are already decrypted by the LL. This results
in a more straightforward analysis of the packets, as they are not impacted by
the encryption performed by the LL. However, it has a limitation for some of
the mPoS terminals, such as Square [27], that is equipped with the ability to
recognize whether Developer Options are enabled on the smartphone, thereby
disabling any transactions during this period. As a result, over-the-air Bluetooth
sniffers would be a better choice for these mPoS terminals. We used the com-
bination of HCI Snoop Log and Bluefruit BLE sniffer [1] to eavesdrop on the
pairing session of the mPoS terminal’s BLE communication with an Android
phone.

We used Pixel6 as our phone and tested SumUp Air and Square mPoS termi-
nals to capture their pairing session with the phone. The pairing session of the
Square [27] terminal is very similar to the SumUp [29] terminal. Hence, for our
proof-of-concept, we show the pairing session for a SumUp terminal in Fig. 2,
with detailed Pairing Request and Pairing Response shown in Table 1.

Extracting Cryptographic Keys: The pairing request, as depicted in Fig. 2,
is initiated by the smartphone and details the desired parameters for the BLE
connection. This includes the type of pairing, the I/O capabilities of both devices
(the keyboard and display), the request for bonding for future connections, and
the demand for a secure connection with MITM protection. The Max Encryp-
tion Size field of the request is set to 16, and the Initiator Key Distribution
and Responder Key Distribution fields specify that all of the encryption keys

Security Analysis of Mobile Point-of-Sale Terminals 371

mPoS
Reader
mPoS
Reader

Merchant
Phone

Merchant
Phone

Pairing Request*
Pairing Response**

Pairing Confirm
Opcode: Pairing Confirm (0x03)

Confirm Value: 62dccb4391e92e015788d5f0c1a30b6e

Pairing Confirm
Opcode: Pairing Confirm (0x03)

Confirm Value: e986ecd9c46116f6011d0fdb5094d5e1
Pairing Random

Opcode: Pairing Random (0x04)
Random Value: 175cd8c8c13eea7707764aec097c67f4

Pairing Random
Opcode: Pairing Random (0x04)

Random Value: 8ca4029f95e517217bc49378de63997a

Master Identification
Opcode: Master Identification (0x07)
Encrypted Diversifier (EDIV): 0x80b3
Random Value: a87692cec357f54f

Encryption Information
Opcode: Encryption Information (0x06)

Long Term Key: 81297920b7b9b8140d440c47b08c6828

Identity Information
Opcode: Identity Information (0x08)

Identity Resolving Key: 5eef6dbaefa3b9a87706a05035881e2b

Identity Address Information
Opcode: Identity Address Information (0x09)

Address Type: Random (0x01)
BD_ADDR: d8:90:6c:23:51:f5 (d8:90:6c:23:51:f5)

Encryption Information
Opcode: Encryption Information (0x06)

Long Term Key: 5e0060f815c4eff8ef5da019fc8bed4b

Master Identification
Opcode: Master Identification (0x07)
Encrypted Diversifier (EDIV): 0xe006
Random Value: 4235c246a77ee21b

Identity Information
Opcode: Identity Information (0x08)

Identity Resolving Key: 16a90b1b4360eb4e020d0a4885cfb6fe

Identity Address Information
Opcode: Identity Address Information (0x09)

Address Type: Public (0x00)
BD_ADDR: 0c:c4:13:15:41:a6 (0c:c4:13:15:41:a6)

Fig. 2. Pairing Session- SumUp Card Reader

372 M. Mehr Nezhad et al.

(LTK, Identity Key (IRK), Signature Key (CSRK), and Link Key) should be
distributed to both devices. This ensures that both the smartphone and the
mPoS terminal have all of the necessary keys for secure and encrypted commu-
nication.

Table 1. Pairing Request and Response- SumUp Card Reader

Field Pairing Request
Value

Pairing Request
Meaning

Pairing Response
Value

Pairing Response
Meaning

Code 0x01 Pairing Request 0x02 Pairing Response

I/O 0x04 Keyboard/Display 0x03 No I/O

OOB 0x00 NOT Present 0x00 NOT Present

Authentication Request

Bonding 0x1 Bonding 0x1 Bonding

MITM 1 True 0 False

SC 1 True 0 False

KP 0 False 0 False

Reserved 0x0 – 0x0 –

Max Enc 16 Max Enc. Size 16 Max Enc. Size

Initiator Key Distribution

LTK 1 True 1 True

IRK 1 True 1 True

CSRK 1 True 0 False

Link Key 1 True 0 False

Reserved 0x0 – 0x0 –

Responder Key Distribution

LTK 1 True 1 True

IRK 1 True 1 True

CSRK 1 True 0 False

Link Key 1 True 0 False

Reserved 0x0 – 0x0 –

However, the response from the SumUp card reader to the pairing request
is surprising in that it indicates a lack of I/O capabilities despite having both a
keyboard and a display. Additionally, the respondent refuses to establish a secure
connection and protection against MITM attacks. As a result, LE Legacy pair-
ing will be used. The Initiator Key Distribution and Responder Key Distribution
fields in the response specify that only the Encryption Key (LTK) and Id Key
(IRK) will be shared between the devices, whereas the Signature Key (CSRK)
and Link Key will not be exchanged.

It is determined from the mapping of I/O capabilities to the key generation
method in the BLE specification (as specified in Table 2.8 of the Bluetooth Core
Specification v5.3 [26]) that, given the initiator has a keyboard and display and

Security Analysis of Mobile Point-of-Sale Terminals 373

the responder claims to have no input or output capabilities, the Just Works-
Unauthenticated key generation method will be employed. The utilization of
the Just Works pairing method results in the generation of the TK and STK.
The Just Works STK generation method provides no protection against eaves-
dropping or MITM attacks during the pairing process. Both devices set the TK
value utilized in the authentication mechanism to zero, leading to a lack of
protection against such attacks. The STK is not explicitly shared between the
devices, rather the participating devices share random values and calculate the
STK individually.

Due to the lack of utilization of the mPoS terminal’s keyboard and display
for a secure pairing method, the attacker can have access to the distributed keys
in phase 3, as shown in Fig. 2. The access to security keys used in a LE Legacy
pairing session by an attacker grants them the ability to eavesdrop on the data
being transmitted between the two devices. This is because these keys are used to
encrypt and secure communication, and having access to them would enable the
attacker to decrypt the data and have access to it. For instance, if the attacker
possesses the LTK, they could use it to encrypt the data exchanged between the
two devices, allowing them to intercept and manipulate the data. Crackle [23] is
one of the tools that can be used for this purpose. With the “Decrypt with LTK”
feature, crackle uses a user-supplied LTK to decrypt communications between a
master and slave.

Not utilizing the I/O capabilities for secure pairing is not common practice
across all mPoS terminals. The examination of the SumUp Air mPoS terminal
in this study revealed that it does not employ such mechanisms, in contrast
to other terminals like iZettle, which do incorporate secure pairing techniques.
Specifically, iZettle’s method involves the presentation of a numerical value on
the terminal’s display, which the user must then confirm as matching the corre-
sponding value on their paired device [13].

4 Network Security

The implementation of a mobile application on a smartphone connected to an
mPoS terminal requires interaction with servers of the payment service providers
through the Internet. In this section, we investigate the analysis of decrypted
Hypertext Transfer Protocol Secure (HTTPS) packets and the feasibility of mod-
ifying these packets. The subsequent sections present the specifics of our inter-
cepted network traffic, followed by a demonstration of a tampering attack on
this traffic, serving as proof of concept for MITM attacks.

4.1 HTTPS Interception

The merchant’s mobile phone uses HTTPS packets to communicate with pay-
ment providers over the Internet. This protocol employs Transport Layer Secu-
rity (TLS) to encrypt network traffic. In order to gain access to the contents
of these packets, a MITM attack is employed using a proxy server. The proxy

374 M. Mehr Nezhad et al.

server is able to intercept and decrypt the HTTPS packets, as the smartphone
establishes a secure connection with it, believing it to be the intended recipi-
ent of the network traffic. The proxy server subsequently forwards the packets
to the payment server. Details of communication over the course of a trans-
action for a SumUp terminal can be seen in Fig. 3. As shown in this figure, a
transaction begins with a Checkout Request from the merchant’s mobile phone,
which requests the appropriate resources to display in the application during the
transaction from the payment server. Other information in this request includes
the currency, transaction amount, location and mPoS terminal device informa-
tion, which is sent to the SumUp device for logging and handling purposes.
For example, the transaction will fail and the sequence will end if the battery
level of the terminal is too low. Continuing from the Checkout Request is a
Transaction Request, where the beginning of the transaction is requested from
a payment endpoint within SumUp’s payment server. This is also the point at
which the merchant’s mobile phone begins to act as a proxy for communications
between the terminal and payment server, which exchange messages without the
SumUp application’s influence. After this response to the transaction request,
we then see four or five request-response pairs to and from the payment end-
point, depending on the payment method (chip-and-PIN or contactless). After
successful payment, the transaction ends with a response from the payment end-
point and a value stop. The SumUp application processes this action to end the
transaction and reject any other responses from the terminal. The transaction
officially ends when the merchant phone sends two messages to the terminal on
behalf of the payment server, signalling a successful closure of the transaction.

In our attack scenario, the Mitmproxy tool [19] is utilized as the proxy server
on a desktop computer to perform a MITM attack between the SumUp applica-
tion and the payment server. This tool is designed as an interactive, SSL/TLS-
capable intercepting proxy for HTTP/1, HTTP/2, and web sockets, as it allows
the attacker to monitor, capture and alter connections in real time. On the smart-
phone, a manual proxy configuration is set up, with the local IPv4 address being
used as the server address and 8080 as the port. The Mitmproxy’s Certificate
Authority (CA) is then installed on the smartphone.

When an application establishes an HTTPS connection, it verifies the legit-
imacy of the server’s certificate through comparison with the trusted system
certificate authorities listed in the Android operating system. The list of CA is
fixed and secure, but some applications may choose to implement their own cus-
tom certificate validation process, known as “Certificate Pinning”. We bypass
this process by using the Apk-mitm [20] tool. This is accomplished through
the application of a series of steps, including 1) decoding the APK file with
Apktool (more details in Sect. 5), 2) replacing the application’s network secu-
rity configuration to allow user-added certificates, 3) modifying the source code
to disable various certificate pinning implementations, 4) encoding the patched
APK file with Apktool, and finally, 5) signing the patched APK file with Uber-
apk-signer [21]. The application of the Apk-mitm to the extracted SumUp APK
file results in the creation of a modified version of the app. This modified app

Security Analysis of Mobile Point-of-Sale Terminals 375

mPoS
Terminal

mPoS
Terminal

Merchant
Phone

Merchant
Phone

Payment
Provider
Server

Payment
Provider
Server

(1) Response from Terminal

getDeviceInfo() Request

Checkout Request
(rcpActionCheckout)

Checkout Response
(rcpEventCheckout)

Start Transaction Request
(rcpActionDeviceInfo)

Start Transaction Response
(rcpEventEMVServerResponse)

Response from Terminal

Request from Payment Server

Send Reader Response Request
(rcpActionReaderResponse)

Send Reader Response Response
(rcpEventEMVServerResponse)

Request from Payment Server

Customer PaymentCustomer Payment

Response from Terminal

Send Reader Response Request
(rcpActionReaderResponse)

Send Reader Response Response
(rcpEventEMVServerResponse)

Request from Payment Server

Loop

Fig. 3. Sequence Diagram of the Exchanged Messages

now trusts the Mitmproxy certificate, which is added to Android’s built-in list
of trusted system certificate authorities, allowing for the interception of traffic
sent to SumUp’s payment provider servers.

376 M. Mehr Nezhad et al.

4.2 Tampering Attack

In this proof-of-concept demonstration, we present a tampering attack that high-
lights the feasibility of data modification. In this scenario, a MITM attack is
utilized to intercept and manipulate the communication transmitted during a
transaction.

By tampering with the messages sent by the payment server for the termi-
nal, we can change the behaviour of the terminal for fraudulent purposes. The
messages from the payment server are commands that tell the terminal what
to do next to proceed with a transaction. Aside from the messages that we see
in network traffic analysis, there are two commands exposed in the application
source code, as can be seen in Table 2. The PINPLUS SHOW DEFAULT MES-
SAGE command is used to show a default message of “SumUp PIN+” on the
terminal’s display. If we decode the command into hexadecimal, the command
contains this string in plaintext ASCII. This means that we can insert arbitrary
ASCII into this command to display arbitrary text on the terminal’s display.

Table 2. Exposed Commands in SumUp Application Source Code

Command Name Base64-Encoded Command

PINPLUS DEVICE POWER
OFF COMMAND

AAIBAQ4=

PINPLUS SHOW DEFAULT
MESSAGE

ABUBAQsAAAABAAtTdW1VcCBQSU4rAP8A

However, there are limitations to this attack. Protected messages cannot be
altered, as the terminal will reject them, resulting in an error message. Addi-
tionally, unprotected messages are not accepted by the terminal during protected
message exchange. This presents a problem as modification and sending of com-
mands are desired during a transaction, which largely involves protected message
exchanges. The “leave protected session” command, which is sent in response to
the payment server during a protected message exchange, provides a solution.
Tracing its usage in the source code as shown in Fig. 4, reveals its sole purpose is
to end a protected message exchange in case of errors. This allows us to propose
an attack on the SumUp terminal by exploiting the ability to exit a protected
message exchange at any point during a transaction.

The ability to leave a protected message exchange at any point in a trans-
action allows us to propose an attack on the SumUp terminal. At the end of a
normal transaction, the payment server will send two commands to the terminal
to inform it that the transaction was successful. In our attack, we replace these
two commands to trick the terminal into displaying that the payment method
was declined. First, we use the “leave protected session” command sent earlier
in the transaction to exit the protected message exchange, allowing us to send
an unprotected command. This is followed by the PINPLUS SHOW DEFAULT

Security Analysis of Mobile Point-of-Sale Terminals 377

@Override
publ ic void onError (i . t . n . a . c . b bar , @Nullable List l i s t , h

hVar)
Str ing s t r = ”onError event rece ived . e r ro r code : ” + hVar ;
i f ((hVar == i . t . n . a . d . b .NOT ALLOWED
hVar == i . t . n . a . d . b . INVALID SEQUENCE NUMBER IN PROTECTED

MODE && ReaderCoreManager
ReaderCoreManager . t h i s . leave Protected Mode () ;

e l s e
WReaderModuleCoreState . getBus () .m(new

CardReaderErrorEvent (bar , ReaderCoreManager . t h i s .
isReadyToTransmit () , l i s t)) ;

Fig. 4. Usage of Leaving a Protected Session in the SumUp’s Application Source Code

MESSAGE command that has been modified to display the text “Declined” on
the terminal’s display. The result of this attack is a successful transaction with
the terminal displaying that the transaction was not successful. This is shown
in Fig. 5. This vulnerability could be part of a social engineering attack and
multiple transactions could be carried out.

5 Software Security

The security of mPoS terminals can be analyzed through the reverse engineering
of their code. Reverse engineering refers to the systematic examination of the
code of a software program to comprehend its functioning, identify its vulner-
abilities, and potentially modify it. In this section, we demonstrate the viabil-
ity of reverse engineering the code of mPoS terminals mobile applications. In
particular, we employ an Android smartphone to analyze the source code and
demonstrate the capability of modifying the behaviour of the mPoS terminal
through the alteration of the mobile application code. In our case study, we use
the SumUp Air mPoS terminal and the Android mobile application. To this end,
we outline the procedures involved in the reverse engineering process and present
the results of our case study. Our findings underscore the significance of adopt-
ing secure code development and deployment practices for mPoS technology to
prevent potential security threats.

378 M. Mehr Nezhad et al.

Fig. 5. Tampering Attack on Transaction Messages

5.1 Reverse Engineering

The Android applications are primarily written in Java and are stored as Android
packages in the Android Package Kit (APK) file format, which is essentially zip
files that encompass resources and assembled Java code. The process of reverse
engineering the APK files on Android phones includes several steps: decompil-
ing, making modifications, re-compiling, and signing the APK to be used on
Android phones. We use the APK of the SumUp application and decompiled
using two methods, Apktool [20] and a standard Java decompiler [7]. The first
tool produces Smali code, while the second produces Java code. We use two
different tools as they are complementary. Smali code is more difficult to read,
therefore we use Java code to understand the application code and identify the
vulnerable parts that can be exploited, apply the changes in the relevant part of
the Smali code and use it to rebuild and sign the code. To do this, we reverse the
decompiling process by rebuilding and signing the APK. The APK was rebuilt
using Apk-mitm [25], which uses Apktool to encode the patched APK file and
the Uber-apk-signer [21] tool to sign and verify the APK.

5.2 Software Modification Attack

As outlined in Sect. 4.1, modification of the code can circumvent the Certificate
Pinning mechanism, thereby allowing the attacker to execute MITM and tam-
pering attacks on the communication between the merchant’s mobile phone and
the server of the service provider. Here, we demonstrate another software modi-

Security Analysis of Mobile Point-of-Sale Terminals 379

fication attack, showcasing how this vulnerability can be exploited to neutralize
an additional security feature: beep sound.

The process of performing a contactless payment on an mPoS terminal is
often accompanied by an audible beep sound as a security feature, which alerts
the user to the transaction taking place. This serves as a notification to the
user regarding the ongoing transaction and is essential in the prevention of relay
attacks. However, a study of the SumUp Air card reader application showed that
it is possible to compromise this security feature through modification of the app
software.

The analysis of the code revealed that the volume of the beep sound is con-
trolled by the PlaySoundEffect method within the AudioManagers class. By
modifying this method, it is possible to completely control the sound and disable
this security feature. In addition, the keyboard input sound made by the SumUp
app can also be muted through modification of the code. This involved remov-
ing all function declarations and calls related to the PlaySoundEffect method
from the code base. The recompilation and installation of the modified appli-
cation showed that the sound is no longer played when keyboard inputs are
used during the charge creation process. This highlights the vulnerability of the
application to modification and raises concerns about the potential for malicious
actors to manipulate the app and compromise the security protocols designed to
protect customers. This finding underscores the importance of employing more
secure solutions to ensure the safety of user transactions. Relying solely on an
audible beep sound as a security feature is insufficient and poses a significant
risk to users.

6 Discussion

6.1 Ethical Disclosures

The present study was performed within a controlled setting. The authors pur-
chased commercially available mPoS terminals and used their own bank accounts
to demonstrate the proof-of-concept attacks. Our research primarily focused on
the SumUp Air mPoS terminal. We have shared our findings with the vendor for
their review and feedback. We are currently in discussions with them to further
address these issues.

6.2 Mitigating the Vulnerabilities

During our study, we have identified possible solutions for the security issues of
mPoS terminals. These solutions include secure pairing methods for encryption
security, code obscuring [32], anti-tampering (AT) [6], and abuse detection [2]
techniques for traffic security and application code protection. In future research,
we plan to study these potential solutions further and evaluate the feasibility and
effectiveness of these countermeasures in addressing the identified security issues.

380 M. Mehr Nezhad et al.

6.3 Tap-to-Phone Technology

The next generation of acceptance terminals, like Tap-to-Phone [31] (also known
as Tap-to-Pay [16]), offers potential solutions to the security risks and vulnerabil-
ities associated with mPoS terminals. This technology utilizes Near Field Com-
munication (NFC), allowing merchants to accept contactless payments through
their mobile devices. On the other hand, contactless payments have seen a sig-
nificant increase in popularity in the UK, accounting for over a quarter of all
payments made, with mobile payments playing a significant role in this growth.
The trend towards contactless payment methods continues to grow, as the spend-
ing limit in the UK has increased progressively over the years, reaching £100 in
2021 [12]. Tap-to-Phone technology provides a more convenient and cost-effective
solution to accepting these increasingly contactless payments without the need
for a dedicated mPoS terminal. However, new systems are still susceptible to
security risks, which require further research.

7 Conclusion

This paper analyzes the security implications of mobile Point-of-Sale (mPoS)
terminals and their relationship with merchant’s mobile phones as a key compo-
nent of the mPoS system. The security aspects of communication between the
(merchant’s) mobile phone and the mPoS terminal, the mobile phone and the
payment server, and also the security risks in the mobile phone application itself
are examined. An eavesdropping attack is performed to reveal cryptographic keys
in the BLE communication, a man-in-the-middle (MITM) attack is performed
to tamper with mPoS terminal messages, and the mobile phone application is
reverse engineered to alter the security features of the mPoS terminals controlled
by the mobile phone.

Future research directions for this study include examining other mPoS ter-
minals for their security vulnerabilities and investigating potential solutions to
the attacks and vulnerabilities identified in this study. These steps will contribute
to a more comprehensive understanding of the security landscape of mPoS ter-
minals and aid in the development of effective security measures to mitigate the
risks.

Acknowledgements. The third author is supported by Royal Society (ICA\R1\
180226) and EPSRC (EP/T014784/1).

Security Analysis of Mobile Point-of-Sale Terminals 381

A Appendix

(See Table 3).

Table 3. List of Acronyms

Acronym Stands For Description

APK Android Package
Kit

The file format for applications used on the Android
operating system (OS)

AT Anti Tampering A security approach that hampers or prevents the reverse
engineering or modification of the software or application

AMSR Audio-jack
Magnetic Stripe
Reader

A device that plugs into the audio jack of a smartphone
or tablet and reads the magnetic stripe on a credit or
debit card for mobile payment processing

BLE Bluetooth Low
Energy

A power-efficient variant of the classic Bluetooth
technology, used for connecting and exchanging data
between devices over short distances

CA Certificate
Authority

An entity that stores, signs, and issues digital certificates

CNP Card Not Present A payment term for transactions where the cardholder
does not physically present the card to the merchant (like
online purchases)

CP Card Present A payment term for transactions where the card is
physically swiped, inserted, or tapped at a payment
terminal

CSRK Signature Key Encryption Key used in BLE Protocol

ECDH Elliptic Curve
Diffie Hellman

A key agreement protocol that allows two parties, each
having an elliptic-curve public-private key pair, to
establish a shared secret over an insecure channel

EDIV Encrypted
Diversifier

A 16-bit stored value used to identify the LTK
distributed during LE legacy pairing

F2F Face to Face A payment term for transactions where the payment
device is physically present

HCI Host Controller
Interface

A standardized communication interface in BLE that
provides a layer for transmitting and receiving data
between the host and the controller

HTTP Hypertext Transfer
Protocol

The secure version of HTTP

HTTPS Hypertext Transfer
Protocol Secure

A protocol used for communication between a web server
and a client

I/O Input/Output The capabilities of the devices to enter (input) or display
(output) information

IRK Identity Key Encryption Key used in BLE Protocol

KP Key Press The notifications sent between devices to indicate when a
key on one device is pressed during the passkey entry
pairing method

(continued)

382 M. Mehr Nezhad et al.

Table 3. (continued)

Acronym Stands For Description

LE Legacy Low Energy
Legacy

A method of pairing devices in Bluetooth Low Energy
(BLE) prior to the introduction of Secure Connections,
which provides a lower level of security compared to
Secure Connections

LL Link Layer A layer in Bluetooth protocol stack responsible for
managing the connection and communication between
Bluetooth devices

LTK Long Term Key Encryption Key used in BLE Protocol

MITM Man-in-the-middle A type of cyber attack where a malicious actor intercepts
and possibly alters the communication between two
parties without their knowledge

mPoS Mobile
Point-of-Sale

Similar to PoS, but smaller compact PoS terminals that
are portable and are usually managed by a smartphone
(merchant’s phone)

NFC Near Field
Communication

A wireless communication technology allowing data
exchange between devices in close proximity

OOB Out-of-band A method for sharing pairing information using an
external channel, separate from the standard BLE channel

PIN Personal
Identification
Number

A numerical code used in payment cards providing a layer
of security by verifying the user’s identity

PoS Point-of-Sale A device used by merchants to accept card payments

SMP Security Manager
Protocol

The protocol responsible for pairing and key distribution
between devices

SC Secure Connection A protocol that authenticates two Bluetooth devices and
derives a shared secret key between them

STK Short Term Key Encryption Key used in BLE Protocol

TK Temporary Key Encryption Key used in BLE Protocol

TLS Transport Layer
Security

A cryptographic protocol that provides secure
communication between devices on Internet
communications

References

1. Adafruit. Adafruit Bluefruit BLE Sniffer. https://www.adafruit.com/product/
2269. Accessed 10 May 2022

2. Android. Safetynet attestation API. https://developer.android.com/training/
safetynet/attestation. Accessed 12 Mar 2023

3. Basin, D., Sasse, R., Toro-Pozo, J.: The EMV standard: break, fix, verify. In: 2021
IEEE Symposium on Security and Privacy (SP), Los Alamitos, CA, USA, pp.
1766–1781. IEEE Computer Society (2021)

4. Basin, D., Sasse, R., Toro-Pozo, J.: Card brand mixup attack: bypassing the PIN
in non-visa cards by using them for visa transactions. In: 30th USENIX Security
Symposium (USENIX Security 2021), pp. 179–194. USENIX Association (2021)

https://www.adafruit.com/product/2269
https://www.adafruit.com/product/2269
https://developer.android.com/training/safetynet/attestation
https://developer.android.com/training/safetynet/attestation

Security Analysis of Mobile Point-of-Sale Terminals 383

5. Basin, D., Schaller, P., Toro-Pozo, J.: Inducing authentication failures to bypass
credit card PINs. In: 32rd USENIX Security Symposium (USENIX Security) (2023)

6. Berlato, S., Ceccato, M.: A large-scale study on the adoption of anti-debugging
and anti-tampering protections in Android apps. J. Inf. Secur. Appl. 52, 102463
(2020)

7. Java Decompiler. Java online decompiler. http://www.javadecompilers.com/apk.
Accessed 13 May 2022

8. EMVCo. Worldwide EMV deployment statistics. https://www.emvco.com/about-
us/worldwide-emv-deployment-statistics/. Accessed 11 Jan 2023

9. Forbes. What is POS and how does it work? https://www.forbes.com/advisor/in/
banking/what-is-pos-and-how-does-it-work/. Accessed 11 Jan 2023

10. Frisby, W., Moench, B., Recht, B., Ristenpart, T.: Security analysis of smartphone
point-of-sale systems. In: WOOT, pp. 22–33 (2012)

11. Galloway, L.-A., Yunusov, T.: For the love of money: finding and exploiting vul-
nerabilities in mobile point of sales systems. https://leigh-annegalloway.com/for-
the-love-of-money/. Accessed 11 Jan 2023

12. United Kingdom Government. 2021 budget plan. https://www.gov.uk/
government/publications/budget-2021-documents. Accessed 01 June 2021

13. iZettle. In-app pairing guide. https://developer.zettle.com/docs/ios-sdk/user-
guides/manage-in-app-pairing. Accessed 12 Mar 2023

14. iZettle. iZettle card reader. https://www.izettle.com/. Accessed 11 Jan 2023
15. MWR Labs. Mission mpossible: Mobile card payment security. https://www.

youtube.com/watch?v=iwOP1hoVJEE. Accessed 11 Jan 2023
16. Mastercard. Mastercard tap to pay on iPhone. https://partner.visa.com/site/

programs/visa-ready/tap-to-phone.html. Accessed 11 Jan 2023
17. Nezhad, M.M., Hao, F.: OPay: an orientation-based contactless payment solution

against passive attacks. In: Annual Computer Security Applications Conference,
pp. 375–384 (2021)

18. Mellen, A., Moore, J., Losev, A.: Mobile Point of Scam: Attacking the Square
Reader. Black Hat, USA (2015)

19. Mitmproxy. How mitmproxy works. https://docs.mitmproxy.org/stable/concepts-
howmitmproxyworks/. Accessed 11 Jan 2023

20. Patrickfav. APK tool-a tool for reverse engineering Android APK files. https://
ibotpeaches.github.io/Apktool/. Accessed 13 May 2022

21. Patrickfav. Uber APK signer. https://github.com/patrickfav/uber-apk-signer.
Accessed 13 May 2022

22. Radu, A.-I., Chothia, T., Newton, C.J.P., Boureanu, I., Chen, L.: Practical EMV
relay protection. In: 2022 IEEE Symposium on Security and Privacy (SP), pp.
1737–1756 (2022)

23. Ryan, M.: Crackle. https://github.com/mikeryan/crackle. Accessed 24 May 2022
24. Ryan, M.: Bluetooth: with low energy comes low security. In: 7th USENIX Work-

shop on Offensive Technologies (WOOT 2013) (2013)
25. shroudedcode. apk-mitm. https://github.com/shroudedcode/apk-mitm. Accessed

13 May 2022
26. Bluetooth SIG. Bluetooth core specification, v5.2. https://www.bluetooth.com/

specifications/specs/core-specification-5-2/. Accessed 9 May 2022
27. Square. Square card reader. https://squareup.com/gb/en. Accessed 11 Jan 2023
28. Square. What is a card-not-present (CNP) transaction and why does it

cost more. https://squareup.com/gb/en/townsquare/what-is-a-card-not-present-
transaction. Accessed 11 Jan 2023

http://www.javadecompilers.com/apk
https://www.emvco.com/about-us/worldwide-emv-deployment-statistics/
https://www.emvco.com/about-us/worldwide-emv-deployment-statistics/
https://www.forbes.com/advisor/in/banking/what-is-pos-and-how-does-it-work/
https://www.forbes.com/advisor/in/banking/what-is-pos-and-how-does-it-work/
https://leigh-annegalloway.com/for-the-love-of-money/
https://leigh-annegalloway.com/for-the-love-of-money/
https://www.gov.uk/government/publications/budget-2021-documents
https://www.gov.uk/government/publications/budget-2021-documents
https://developer.zettle.com/docs/ios-sdk/user-guides/manage-in-app-pairing
https://developer.zettle.com/docs/ios-sdk/user-guides/manage-in-app-pairing
https://www.izettle.com/
https://www.youtube.com/watch?v=iwOP1hoVJEE
https://www.youtube.com/watch?v=iwOP1hoVJEE
https://partner.visa.com/site/programs/visa-ready/tap-to-phone.html
https://partner.visa.com/site/programs/visa-ready/tap-to-phone.html
https://docs.mitmproxy.org/stable/concepts-howmitmproxyworks/
https://docs.mitmproxy.org/stable/concepts-howmitmproxyworks/
https://ibotpeaches.github.io/Apktool/
https://ibotpeaches.github.io/Apktool/
https://github.com/patrickfav/uber-apk-signer
https://github.com/mikeryan/crackle
https://github.com/shroudedcode/apk-mitm
https://www.bluetooth.com/specifications/specs/core-specification-5-2/
https://www.bluetooth.com/specifications/specs/core-specification-5-2/
https://squareup.com/gb/en
https://squareup.com/gb/en/townsquare/what-is-a-card-not-present-transaction
https://squareup.com/gb/en/townsquare/what-is-a-card-not-present-transaction

384 M. Mehr Nezhad et al.

29. Sumup. Sumup card reader. https://www.sumup.com/en-gb/. Accessed 11 Jan
2023

30. Miura Systems. Miura card reader. https://www.miurasystems.com/. Accessed 11
Jan 2023

31. Visa. Visa tap to phone. https://partner.visa.com/site/programs/visa-ready/tap-
to-phone.html. Accessed 11 Jan 2023

32. Wermke, D., Huaman, N., Acar, Y., Reaves, B., Traynor, P., Fahl, S.: A large scale
investigation of obfuscation use in Google Play. In: Proceedings of the 34th Annual
Computer Security Applications Conference, pp. 222–235 (2018)

https://www.sumup.com/en-gb/
https://www.miurasystems.com/
https://partner.visa.com/site/programs/visa-ready/tap-to-phone.html
https://partner.visa.com/site/programs/visa-ready/tap-to-phone.html

On the Design of a Misinformation
Widget (MsW) Against Cloaked Science

David Arroyo1 , Sara Degli-Esposti2(B) , Alberto Gómez-Espés1,
Santiago Palmero-Muñoz1, and Luis Pérez-Miguel1

1 Institute of Physics and Information Technologies “Leonardo Torres Quevedo”
(ITEFI), Spanish National Research Council (CSIC), Madrid, Spain

david.arroyo@csic.es
2 Institute of Philosophy, Spanish National Research Council (CSIC), Madrid, Spain

sara.degli.esposti@csic.es

Abstract. Amongst all types of fabricated information travelling on
open social networks, scientific disinformation, or cloaked science, is both
insidious and challenging to be investigated. Here we present the design
of the TRESCA misinformation widget (MsW), which is both a method-
ology and a toolbox for investigating disinformation operations leverag-
ing scientific communications. In developing MsW we adopt a human-in-
charge approach to AI: the automated tools included in MsW REST API
are meant to support, not to substitute or undermine, users’ decision-
making capacity. On the journey toward information verification, MsW
AI toolbox helps users test both the veracity of claims and the relia-
bility of sources. While the toolbox integrates open source intelligence
solutions, MsW methodology fosters users’ critical thinking.

Keywords: Disinformation · Cloaked science · Verification ·
Infodemics · Fake News

1 Introduction

The pandemic has exacerbated the risk that misleading scientific communica-
tions can harm public and individual health. The hoax about the benefits of
bleach-based alcohol against SARS-COV-2 caused the hospitalization of hun-
dreds of people and deaths in some countries [6]. Emphasis about the origin of
the pandemic in Wuhan (China) and claims that SARS-COV-2 was human-made
triggered hate speech against Asian people on Twitter [23].

Supporters of the theory of SARS-COV-2 being a bioweapon developed in
a Chinese laboratory used as evidence two scientific reports sponsored by the
Rule of Law Society in September 2020 and authored by Dr Li-Meng Yan. The
preprints supposedly contained scientific evidence that SARS-CoV-2 had been
deliberately engineered. Despite the scientific claims being discredited by the
scientific community [16], Dr Yan’s story appeared credible to some mainstream

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Li et al. (Eds.): NSS 2023, LNCS 13983, pp. 385–396, 2023.
https://doi.org/10.1007/978-3-031-39828-5_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-39828-5_21&domain=pdf
http://orcid.org/0000-0001-8894-9779
http://orcid.org/0000-0003-0616-8974
https://doi.org/10.1007/978-3-031-39828-5_21

386 D. Arroyo et al.

American news media that described her as a whistle-blower. Her theory was
even endorsed by former US president Donald Trump and his administration [3].

Media expert Dr. Joan Donovan considers the Yan reports an example of
cloaked science [10]. Cloaked science refers to the use of scientific jargon and pro-
cedures to hide political, ideological, or financial interests under the appearance
of legitimate scientific research. Cloaked science follows within the vast range of
strategies used in disinformation campaigns or information operations. In line
with previous investigations in the context of national security [9], we distin-
guish dis- from mis-information. Disinformation is deliberately false or mislead-
ing information that spreads for political gain or economic profit. It can include
information meant at discrediting a specific target (individual, group, movement,
or political party) or fabricated or contextualized information meant to support
conspiracy thinking, democratic disaffection or even protests or uprising part of
undeclared belligerent actions by foreign powers known as hybrid threats. Misin-
formation, in contrast, refers to information whose inaccuracy is unintentional
and whose spread is not promoted by malicious agents through an orchestrated
strategy.

The problem of attribution is key to establishing whether the events we are
observing are part of a disinformation campaign or not. Attribution is a task
that always requires indepth knowledge and insight about the motivations and
strategy of an attacker. This is the reason why we adopt a human-in-charge
(HIC) approach to the investigation of cloaked science. Political responsibility
No fully-automated tool shall assume the political responsibility of identifying
who is the enemy in the context of national security. To ensure human intelligence
and artificial intelligence complement each other, a space for soft skills and non-
quantifiable information needs to be preserved in the decision-making process.
This is the reason why MsW gives users the initial and final word in the process of
verification and envision the entire process as recursive and subject to adaptation
and change.

In the digital ecosystem it is worryingly easy to convert someone into an
expert and give them tools to amplify their voice. The rise in the number of
articles published before peer-review (preprints), the presence of retracted sci-
entific articles, and the proliferation of predatory scientific journals contribute to
the weaponisation of science. The crisis of the peer-review system and the “pub-
lish or perish” mainstream culture can make science increasingly vulnerable to
disinformation. Furthermore, the complexity of science and its numerous con-
troversies create the conditions for fabricating scientific falsehoods starting from
half-true arguments exploiting rumours and psychological biases. Self-proclaimed
experts can reach large audiences by mixing pseudo-scientific information and
conspiracy theories. In March 2021 the Center for Countering Digital Hate iden-
tified twelve influential anti-vaxxers producing high volumes of content against
COVID19 vaccines and distributing this false information to a considerable large
numbers of followers [7].

Fighting disinformation is a priority for society and national security. In 2016,
the European Commission adopted a Joint Framework to foster the resilience to

On the Design of a Misinformation Widget (MsW) Against Cloaked Science 387

countering hybrid threats in cooperation with NATO, while in 2018, it issued a
Communication titled “Tackling online disinformation: a European approach”,
followed in 2021 by a Code of Practice on Disinformation, which has been signed
by digital platforms (Facebook, Google, Mozilla, Twitter, Microsoft, and Tik-
Tok) and trade associations.

Despite these efforts, there is still a lack of “solutions (especially auto-
mated ones) that can mitigate the ease that existing online infrastructures allow
adversaries to engage in deceptive content creation and dissemination” [19]. We
respond to this call by presenting a methodological contribution that includes
a modus operandi and a toolbox developed as part of the activities of H2020
project TRESCA and called Misinformation Widget, or MsW.

In the rest of the article, we present the methodology, then the MsW API
REST logic and functionalities. We discuss how to apply the methodology while
discussing a hypothetical case based on actual research performed by the authors.
In the conclusion we discuss limitations and future directions for research.

2 Blending Human and Machine Intelligence:
Human-in-Charge Approach to the Investigation
of Cloaked Science

On 19 May 2021 the Spanish fact-checking agency Newtral disputed the accu-
racy of a text circulating on WhatsApp saying that in India only people who
were vaccinated were getting infected. The text misquoted an excerpt from an
interview with Spanish doctor Amaia Foces, who lives in New Delhi. Was this
story the product of poor quality journalism or was it part of an orchestrated
cloaked science operation?

In the investigation of scientific misinformation we need to assess both claim
veracity and source credibility. There are tools we can use to assess the credibility
of the source of a claim by analysing the degree of expertise and trustworthiness
of individuals and institutions alike (e.g. ORCID). There are also solutions avail-
able to fact-check scientific claims. An example is CORD-19 Claim Verification
demo [21], which is a solution that can be used to assess the veracity of claims in
scientific articles. Thus, we argue that at the time of investigating controversial
scientific claims we need to treat the veracity of claims and the credibility of
sources as complementary things. Assessing authors’ reputation and credentials
can be applied as a predictor of content veracity and can also be used to establish
authors’ motivations and worldview.

The methodology presented below and the logic of the toolbox are based
on this basic assumption: the recursive relationship between claim veracity and
source credibility and the need for users’ constant engagement and critical think-
ing to reach a conclusion about whether the events they are observing are
instances of simple misinformation or can follow within the category of scien-
tific disinformation. As disinformation investigation requires attribution, which
demands an evaluation of malicious agents’ intentions, we need to rely on human
intelligence especially at the time of assessing inter-state coordination and state-
backed information operations [22].

https://orcid.org/

388 D. Arroyo et al.

3 MsW Methodology

The basic assumption behind MsW methodology is the interconnection between
claims and sources.

By claim we mean a statement about reality that can appear in a scientific
outlet, but also in a newspaper, a blog, or a social media. In the specific case
of scientific claims the distinction between inreach and outreach communication
activities is useful to classify the format of the communication: the claim can
appear in scientific outlets or conference proceedings (inreach activity), or in
newspaper articles, blog posts, memes or videos (outreach activity).

By source we mean the author of a claim, but also the publisher of the
newspaper where the claim appears, or any other individual or relevant entity
spreading the claim. MsW methodology includes various steps for verifying the
accuracy of claims and the credibility of sources. These steps include various
verification tasks that could be performed with the support of MsW toolbox; the
methodology also includes reflections meant to help users leverage their ability
to think critically.

MsW methodology underlines the active role users need to play not only to
distinguish true from false information, but also to perform attribution, that
is, to establish if we are facing simple misinformation or we are dealing with
disinformation. Thus, in the design of MsW methodology and toolbox, we have
adopted a human-in-charge (HIC) approach. HIC is a variation of the human-
in-the-loop machine learning (HITL-ML) approach [8] that not only requires
human-machine interaction, but also the assignment of clear responsibility to
humans during the decision-making process. The result is the partial automation
of the investigative process, which is expected to reduce the risk of making
mistakes that may undermine public trust in the scientific enterprise. We can
consider HIC an approach to Explainable AI (XAI) that introduces multiple
points of human verification and control. Clearly this approach is costly and,
thus, mostly suitable in the investigation of politically sensible cases.

Below we present the critical questions and actions that inform the investiga-
tive journey of MsW methodology with the support of solutions integrated in
MsW toolbox. The journey is organised around three moves: assess, verify and
estimate or AVE.

1. First move - Assess the credibility of the source.
Where does the post come from? Is the source real and credible? What do
we know about the intentions, interests, worldview of the source?
(a) Verify the credentials, curriculum vitae and reputation of sources that

claim to be experts or official authorities.
– MsW toolbox integrates functionalities to search authors’ social pro-

files in OSN and also scientists’ profiles on DBPedia, Google Scholar
or e-thesis online services (such as EthOS in the UK or Teseo in
Spain).

(b) Check for partisan bias, that is for a specific worldview the source might
be reproducing.

https://ethos.bl.uk/
https://www.educacion.gob.es/teseo/irGestionarConsulta.do

On the Design of a Misinformation Widget (MsW) Against Cloaked Science 389

– In case of news outlets, MsW toolbox helps users assess outlet ideo-
logical bias based on Media Bias Fact Check.

– For scientific articles, check if the journal appears in
Beall’s list of potential predatory journals and publishers or if it is a
preprint that has not been peer-reviewed yet.

(c) In the case of social media, check if the source authoring or sharing the
claim are bots rather than real people.

– MsW toolbox relies on the Botometer to assess the likelihood of a
Twitter account being a bot [20].

(d) Be aware of your own psychological and social biases.
– Pay attention to sociopsychological dynamics associated with group

identity and ingroup-outgroup communication strategies.
– If the person who shares the post is not the author, but a family

member or friend, do not trust their judgement simply because their
are similar or close to you.

2. Second move - Verify the veracity of the claim.
What type of evidence or research supports the claim? Do I know enough to
express an informed opinion?
(a) Verify that the headline matches the content, that is if the title of the

article reflects the story written in it.
– Use the clickbait functionality available in MsW toolbox [13,14].

(b) Check whether a reputable fact-checking organisation or official authority
has already verified the claim.

– From MsW toolbox send a query to Skeptics Stack Exchange,
Google Fact Check or other national fact-checkers websites.

– In the case of a scientific publication, from MsW toolbox verify if the
claim appears in a retracted publication on Retraction Watch.

(c) Verify that the source is not re-posting old stories claiming they are timely
and relevant after taking the information or image out of context.

– From MsW toolbox perform a reverse image search with
Google Image or Yandex Image to find out the true origin of the pic-
ture [15].

– From MsW toolbox check whether a quote has been misreported
based on Wikiquote API and other similar resources such as
Quotations Page.

3. Third move - Estimate if the claim can trigger collective action.
Is the claim about a politically controversial scientific issues? Does the claim
produce strong emotional reactions? Does the claim create distrust or division
between social groups?
(a) If the claim makes people feel really excited or angry it might be an

attempt to trigger a collective response by increasing polarisation, divi-
sion, and distrust between different social groups.

– Use MsW toolbox to perform a sentiment analysis of the content of
the claim while also looking for the presence of satire [18].

https://mediabiasfactcheck.com/
https://beallslist.net/
https://skeptics.stackexchange.com/
https://toolbox.google.com/factcheck/explorer
https://retractionwatch.com/
https://www.google.com/imghp?hl=EN
https://yandex.com/images/
https://github.com/FranDepascuali/wikiquotes-python-api
http://www.quotationspage.com/

390 D. Arroyo et al.

– Double-check claims that area ssociated with discourses that try
to: undermine the integrity of the election system; spread hate
and division based on misogyny, racism, antisemitism, Islamopho-
bia, and homophobia; denigrate immigrants; promote conspiracies
about global networks of power; include a call to a violent or extreme
response.

(b) Beware of claims presented in an unbalanced way and that emphasise spe-
cific aspects hiding others and disregarding the complexity and subtleties
of broader issues.

– Use the controversy measure functionality in MsW [4] to address
whether a topic is being talked about in a separated manner according
to the keywords used by the communities discussing it.

4 MsW REST API

In line with the methodology presented, MsW toolbox (shown in Fig. 1) and
REST API includes external and internal tools for dealing with the evaluation
of both claim accuracy and source credibility. All functionalities return outputs
that can be downloaded in JSON format.

Fig. 1. MsW API REST for advanced users

Internal tools have been developed by the research team: the clickbait algo-
rithm is based on [11], while the sentiment analysis associated with the response
to a post is based on [18]; authorship identification is based on [12].

External tools leverage open-source intelligence (OSINT), which refers to
the analysis of publicly available information that may come from media such
as newspapers, television and websites and that can help establish the identity,
reputation and network of supporters and detractors of an argument or a user

On the Design of a Misinformation Widget (MsW) Against Cloaked Science 391

account. Social bots play an important role in disinformation campaigns [2]:
between January and April 2020 bots promoting anti-Asian hate speech were
highly vocal and hateful (compared to non-bot users) and comprised 10.4 percent
of hateful users on Twitter [23]. To control for bot presence, MsW Toolbox
includes the Botometer and other similar tools for bots and trolls detection [1].
The toolbox also includes blacklists such as Stop Funding Misinformation, Iffy+
and the dataset compiled by [5] to identify malicious accounts (Fig. 2).

Fig. 2. An overview of MsW toolbox and methodology

An example of how MsW methodology and tools can be used to monitor
malicious accounts and contents across platforms such as Twitter and Telegram
is described in [15].

4.1 MsW Users’ Profiles and Access Privileges

MsW REST API envisions three types of users: a super-user or system admin-
istrator (admin), an advanced user and a basic user. The admin has all priv-
ileges and has complete access to the system. The admin can create users’
profiles and let them access the REST API. The advanced user accesses the
REST API directly and has writing privileges: they can upload RSS feeds from

392 D. Arroyo et al.

their favourite news outlets, add definitions to the glossary, and upload labelled
datasets. Basic users only have reading privileges and access the REST API
through MsW frontend.

5 Presenting MsW Methodology and Toolbox with a Use
Case

In this section we present a use case to show how an advanced user can take
advantage of MsW toolbox and methodology. Let us assume a user wants to
assess the veracity of a claim made in a tweet about a scientific finding about
COVID19. The ideal tweet shown in Fig. 3 is a privacy-preserving artefact
adopted to avoid exposing specific accounts and the claims they endorse; still
the tweet preserves the format and content of tweets used in a real investigation.
The content of the real tweets is summarised in the clouds of words included in
the figure.

Fig. 3. Using MsW toolbox and methodology to investigate fabricated scientific claims

Following MsW methodology, we start from assessing the credibility of the
source by, for example, evaluating whether the account promoting the claim is a
bot. The advanced user calls the Botometer endpoint and obtains as a result a
68% chance of the Twitter account being a bot (taking into account that 28% of
accounts with a bot score above 1.1 are labeled as humans by the Botometer).

To better understand the worldview of the source, the user then obtains from
MsW REST API a wordcloud of the last 150 tweets the account published (in
Fig. 3 Twitter handles are removed to protect users’ identities). Words appearing

On the Design of a Misinformation Widget (MsW) Against Cloaked Science 393

in the cloud show that the account has been vocal about COVID19 vaccine.
Focusing now on the claim made in the post, the advanced user decides to run,
on the endpoint, a reverse image search. From all returned URLs that may
include the image, the user selects a URL from a newspaper article where she
finds the scientific article, which is the true origin of the image.

As the news article provides the DOI of the scientific article, the user calls the
retraction endpoint to confirm whether or not the scientific article was accepted
or retracted. Afterwards, the user requests from the endpoint a wordcloud of the
tweets that contain the title of the scientific article in order to obtain aggregated
information about it. Besides content specific expressions such as “clinical trial”,
the word “retracted” is also visible in the results with the name of the scientist
authoring the piece.

This information is especially relevant as it helps the user identify other
accounts talking about the retracted scientific article. MsW includes tools for
performing complex network analysis facilitating the study of the community of
supporters and opponents emerging around a controversial scientific claim. In
the use case here discussed this analysis was performed but was not included
in the article to preserve accounts’ privacy. The identification of the community
enables he user to label new data. Once it has been obtained the list of similar
suspicious accounts, the user can characterise them by adding information about
the worldview and emotions expressed in comments, messages or tweets.

This way a group of COVID19 denialists could be isolated from the overall
community in which experts and lay people are discussing the claim and its
associated scientific findings. The connection between the scientific article and
the presence of clickbait in associated newspaper articles could also be assessed
to study the impact the claim already had in the media. All these pieces together
would contribute to obtain a nuanced picture of the events while fostering users’
fact-checking abilities and investigative capacity.

6 Discussion and Conclusion

After the COVID19 pandemic it is evident the need for official authorities to
prevent, debunk and stop infodemics from the start. In this article we propose
to adopt a human-in-charge (HIC) approach in the design of the Misinformation
Widget (MsW). MsW is an expression of human-centred security. MsW toolbox
and methodology propose to semi-automate the investigation of disinformation
campaigns built around sensitive scientific controversies that can be included
under the category of cloaked science. By cloaked science we mean the weaponi-
sation of false or fabricated scientific information within a wider disinformation
campaign to achieve a political or economic gain.

Briefly MsW includes: (a) a methodology meant to promote users’ critical
thinking and capacity to verify the accuracy of claims and the credibility of
sources; (b) a toolbox that consists of a REST API integrating a number of
new and available AI solutions suitable for fact-checking and cyber-attribution.
By constantly moving from small to big data in their investigative efforts, users

394 D. Arroyo et al.

can triangulate findings, revise their assumptions and reach robust conclusions.
Another advantage of MsW as a REST API for advanced users is its adaptabil-
ity and the possibility of developing and integrating more investigative tools to
the MsW toolbox. By promoting users’ critical thinking, MsW is also a promis-
ing tool for improving the quality of data labelling and helping users becoming
more aware of their own ideological and psychological biases. The HIC approach
adopted is based on the assumption that AI should never replace human intel-
ligence, but rather complement it, and that only humans can be politically and
legally responsible of performing attribution tasks needed to distinguish mis-
from dis-information.

Even though since 2014 there has been an exponential growth in the number
of active fact-checkers, there are still no specific applications helping users to
tackle the problem of scientific disinformation or cloaked science. By focusing
on the interdependence between the veracity of claims and the credibility of
sources, MsW includes a robust, recursive approach toward the epistemic chal-
lenge of separating truth from falsehood. Considering the relevant operational,
judicial and public policy implications disentangling mis- from dis-information,
we invite all concerned stakeholders to adopt MsW methodology and toolbox
to foster the collaboration between fact-checkers, who focus on debunking mis-
information by verifying content accuracy, and cybersecurity researchers and
law enforcement agencies, who concentrate their efforts on identifying malicious
actors - either criminal groups or State-sponsored agencies. As the investigation
of disinformation demands to collect evidence to identify malicious agents and
infer their motivations, it is important to ensure humans take full responsibility
and control of the entire process and AI tools support, never replace, human
judgement.

Furthermore, MsW is aligned with new paradigms emerging in the domain
of national security to foster the collaboration between private and public actors
in fighting disinformation. For example MsW can be used within the DISARM
framework, which is a working tool derived from MITRE ATT&CK framework
methodology that includes Adversarial Misinformation and Influence Tactics
and Techniques (AMITT) [17]. DISARM is increasingly adopted within NATO
allies to label information and build datasets describing disinformation cam-
paigns. MsW is compatible with DISARM and can be deployed to support
the investigative work of fact-checkers, civil society as well as law enforcement
agencies. Finally, MsW toolbox can be customised and can benefit a variety of
stakeholders. It can be used by law enforcement agencies in the investigation of
disinformation campaigns as well as to promote investigative journalism.

Acknowledgements. This work was partially funded by European H2020 project
TRESCA (Grant Agreement No 872855), national project XAI-DisInfodemics (grant
PLEC2021-007681 funded by MCIN/AEI/10.13039/501100011033 and by European
Union NextGeneration EU/PRTR), and regional project “CYNAMON - Cybersecu-
rity, Network Analysis and Monitoring for the Next Generation Internet” (funded by
“Programas de Actividades de I+D entre grupos de investigación de la Comunidad de
Madrid en tecnoloǵıas 2018” P2018/TCS-4566; BOCM. No. 304; 21/12/2018).

On the Design of a Misinformation Widget (MsW) Against Cloaked Science 395

References

1. Antenore, M., Camacho Rodriguez, J.M., Panizzi, E.: A comparative study of bot
detection techniques with an application in Twitter Covid-19 discourse. Soc. Sci.
Comput. Rev. 08944393211073733 (2022)

2. Cresci, S.: A decade of social bot detection. Commun. ACM 63(10), 72–83 (2020).
https://doi.org/10.1145/3409116

3. Donovan, J., Nilsen, J.: Cloaked science: the Yan reports. Media Manip-
ulation Casebook (2021). https://mediamanipulation.org/case-studies/cloaked-
science-yan-reports

4. Garimella, K., Morales, G.D.F., Gionis, A., Mathioudakis, M.: Quantifying con-
troversy in social media. CoRR abs/1507.05224 (2015). http://arxiv.org/abs/1507.
05224

5. Hounsel, A., Holland, J., Kaiser, B., Borgolte, K., Feamster, N., Mayer, J.: Iden-
tifying disinformation websites using infrastructure features. In: 10th {USENIX}
Workshop on Free and Open Communications on the Internet ({FOCI} 2020)
(2020)

6. Islam, M.S., et al.: Covid-19-related infodemic and its impact on public health: a
global social media analysis. Am. J. Trop. Med. Hyg. 103(4), 1621–1629 (2020).
https://doi.org/10.4269/ajtmh.20-0812

7. Jonason, P.K., Webster, G.D.: The dirty dozen: a concise measure of the dark
triad. Psychol. Assess. 22(2), 420 (2010)

8. Mosqueira-Rey, E., et al.: Human-in-the-loop machine learning: a state of the art.
Artif. Intell. Rev. 56(4), 3005–3054 (2023)

9. NATO: Nato’s approach to countering disinformation: a focus on Covid-19 (2020).
https://www.nato.int/cps/en/natohq/177273.htm

10. Nilsen, J., Donovan, J., Faris, R.: Cloaked science: the Yan reports. Inf. Commun.
Soc. 25(5), 598–608 (2022)

11. Oliva, C., Palacio-Maŕın, I., Lago-Fernández, L., Arroyo, D.: Rumor and click-
bait detection by combining information divergence measures and deep learning
techniques. In: Proceedings of the 17th International Conference on Availability,
Reliability and Security, pp. 1–6 (2022)

12. Oliva, C., Palmero Muñoz, S., Lago-Fernández, L., Arroyo, D.: Improving LSTMS’
under-performance in authorship attribution for short texts. In: Proceedings of
the 2022 European Interdisciplinary Cybersecurity Conference, EICC 2022, pp.
99–101. Association for Computing Machinery, New York (2022). https://doi.org/
10.1145/3528580.3532994

13. Oliva, C., Palmero Muñoz, S., Lago-Fernández, L., Arroyo, D.: Improving LSTMS’
under-performance in authorship attribution for short texts. In: Proceedings of the
2022 European Interdisciplinary Cybersecurity Conference, pp. 99–101 (2022)

14. Palmero Muñoz, S., Oliva, C., Lago-Fernández, L., Arroyo, D.: Advancing the use
of information compression distances in authorship attribution. In: Spezzano, F.,
Amaral, A., Ceolin, D., Fazio, L., Serra, E. (eds.) MISDOOM 2022. LNCS, pp.
114–122. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-18253-2 8

15. de Paz, A., et al.: Following negationists on Twitter and telegram: application
of NCD to the analysis of multiplatform misinformation dynamics. In: Bravo, J.,
Ochoa, S., Favela, J. (eds.) UCAml 2022. LNNS, vol. 594, pp. 1110–1116. Springer,
Cham (2022). https://doi.org/10.1007/978-3-031-21333-5 110

16. Rasmussen, A.L.: On the origins of SARS-CoV-2. Nat. Med. 27(1), 9 (2021).
https://doi.org/10.1038/s41591-020-01205-5

https://doi.org/10.1145/3409116
https://mediamanipulation.org/case-studies/cloaked-science-yan-reports
https://mediamanipulation.org/case-studies/cloaked-science-yan-reports
http://arxiv.org/abs/1507.05224
http://arxiv.org/abs/1507.05224
https://doi.org/10.4269/ajtmh.20-0812
https://www.nato.int/cps/en/natohq/177273.htm
https://doi.org/10.1145/3528580.3532994
https://doi.org/10.1145/3528580.3532994
https://doi.org/10.1007/978-3-031-18253-2_8
https://doi.org/10.1007/978-3-031-21333-5_110
https://doi.org/10.1038/s41591-020-01205-5

396 D. Arroyo et al.

17. Terp, S., Breuer, P.: Disarm: a framework for analysis of disinformation campaigns.
In: 2022 IEEE Conference on Cognitive and Computational Aspects of Situation
Management (CogSIMA), Salerno, Italy, pp. 1–8 (2022)

18. de la Torre-Abaitua, G., Lago-Fernández, L.F., Arroyo, D.: A compression-based
method for detecting anomalies in textual data. Entropy 23(5), 618 (2021).
https://doi.org/10.3390/e23050618

19. Tsikerdekis, M., Zeadally, S.: Detecting online content deception. IT Prof. 22(2),
35–44 (2020)

20. Varol, O., Ferrara, E., Davis, C., Menczer, F., Flammini, A.: Online human-bot
interactions: detection, estimation, and characterization. In: Proceedings of the
International AAAI Conference on Web and Social Media, vol. 11 (2017)

21. Wadden, D., et al.: Fact or fiction: verifying scientific claims. In: Proceedings of the
2020 Conference on Empirical Methods in Natural Language Processing (EMNLP),
pp. 7534–7550. Association for Computational Linguistics (2020). https://doi.org/
10.18653/v1/2020.emnlp-main.609

22. Wang, X., Li, J., Srivatsavaya, E., Rajtmajer, S.: Evidence of inter-state coordina-
tion amongst state-backed information operations. Sci. Rep. 13(1), 7716 (2023)

23. Ziems, C., He, B., Soni, S., Kumar, S.: Racism is a virus: anti-Asian hate and coun-
terhate in social media during the Covid-19 crisis. arXiv preprint arXiv:2005.12423
(2020)

https://doi.org/10.3390/e23050618
https://doi.org/10.18653/v1/2020.emnlp-main.609
https://doi.org/10.18653/v1/2020.emnlp-main.609
http://arxiv.org/abs/2005.12423

Author Index

A
Abdulsalam, Yunusa Simpa 327
Akgün, Mete 265
Almutairi, Amirah 77
Arroyo, David 385

B
Benkaouz, Yahya 327
Bouamama, Jaouhara 327

D
Degli-Esposti, Sara 385
Deng, Yanxiang 195

F
Fadhel, Nawfal 77
Fu, Shaojing 195

G
Gadyatskaya, Olga 3
Gjøsteen, Kristian 137
Gómez-Espés, Alberto 385
Greuet, Aurélien 283

H
Hamidy, Gilang Mentari 305
Hao, Feng 345, 363
He, Shiqing 217
Hedabou, Mustapha 327
Hernandez-Matamoros, Andres 177
Herodotou, Samuel 345

J
Joosen, Wouter 305

K
Kang, BooJoong 77
Kanno, Satoki 46
Kikuchi, Hiroaki 177

König, Hartmut 23
Kourtellis, Nicolas 93
Kuzuno, Hiroki 61

L
Laidlaw, Elliot 363
Larangeira, Mario 114
Li, Rui 3
Lian, Zhuotao 235
Lin, Qiuzhen 217
Liu, Lin 195
Luo, Songwei 195
Luo, Yuchuan 195

M
Matsunaka, Takashi 155
Mehr Nezhad, Mahshid 363
Mimura, Mamoru 46
Monreale, Anna 249
Montoya, Simon 283

N
Nakamura, Toru 155
Nan, Kaixi 235
Naretto, Francesca 249

P
Palmero-Muñoz, Santiago 385
Paphitis, Aristodemos 93
Paul, Andreas 23
Perera, Maharage Nisansala Sevwandi 155
Pérez-Miguel, Luis 385
Pfeifer, Nico 265
Philippaerts, Pieter 305

R
Raikwar, Mayank 137
Rizzo, Simone 249

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2023
S. Li et al. (Eds.): NSS 2023, LNCS 13983, pp. 397–398, 2023.
https://doi.org/10.1007/978-3-031-39828-5

https://doi.org/10.1007/978-3-031-39828-5

398 Author Index

S
Sakurai, Kouichi 155
Schuster, Franka 23
Sirivianos, Michael 93
Su, Chunhua 235
Su, Xiangyu 114

T
Tanaka, Keisuke 114

U
Ünal, Ali Burak 265

V
Vermeersch, Clémence 283

W
Wang, Jia 217
Wang, Shixiong 195
Wu, Shuang 137

Y
Yamauchi, Toshihiro 61
Yokoyama, Hiroyuki 155

Z
Zhang, Chen 235

	 Preface
	 Organization
	 Contents
	Attacks and Malware
	Evaluating Rule-Based Global XAI Malware Detection Methods
	1 Introduction
	2 Related Work
	3 Candidate XAI Methods and Evaluation Metrics
	3.1 Evaluated XAI Methods
	3.2 Evaluation

	4 Methodology
	4.1 Features and Data Preprocessing
	4.2 Feature Selection

	5 Experimental Evaluation
	5.1 Dataset
	5.2 The Experiment Procedure
	5.3 Evaluation Metrics
	5.4 Experimental Results

	6 SIRUS Rules
	7 Conclusion
	References

	Whitelisting for Characterizing and Monitoring Process Control Communication
	1 Introduction
	2 Preliminaries
	2.1 OT Network Hierarchy
	2.2 Aspects of the Whitelist Use

	3 Methodology
	3.1 Communication Graphs
	3.2 Generation of the General Whitelist
	3.3 Generation of Specific Whitelists

	4 Datasets
	5 Communication Dynamics Analysis
	5.1 Multi-step Whitelist Generation
	5.2 Measures for MPR Evolution Analysis
	5.3 Experimental Setup and Results
	5.4 Characterization Takeaways

	6 Whitelist Application
	6.1 Attack Detection Capability
	6.2 Application of a Specific Whitelist

	7 Related Work
	7.1 Characterization of Process Control Traffic
	7.2 Attack Detection for OT

	8 Conclusion
	A Specific Whitelist's Generation for Snort
	References

	Detection of Malware Using Self-Attention Mechanism and Strings
	1 Introduction
	2 Related Techniques
	2.1 Bag-of-Words
	2.2 Long Short Term Memory
	2.3 Self-attention Mechanism

	3 Related Works
	3.1 Malware Detection Using Readable Strings Contained in Executable Files
	3.2 Deep Learning Detection
	3.3 Malware Detection Using an Attention Mechanism

	4 Proposed Method
	4.1 Outline
	4.2 Extract Readable Strings and Adjust Word Count
	4.3 Creating a Corpus
	4.4 Creating Feature Vectors
	4.5 Training with Each Classifier
	4.6 Application of Each Classification

	5 Experiment
	5.1 Dataset
	5.2 Experimental Environment
	5.3 Evaluation Index
	5.4 Preliminary Experiments
	5.5 Experiment Contents
	5.6 Result

	6 Discussion
	6.1 Need to Consider Contiguous ASCII Strings in Corpus Creation
	6.2 Effect of Self-Attention Mechanism on Readable Strings
	6.3 Research Ethics
	6.4 Limitations

	7 Conclusion
	References

	KDRM: Kernel Data Relocation Mechanism to Mitigate Privilege Escalation Attack
	1 Introduction
	2 Memory Corruption Vulnerability
	3 Threat Model
	4 The Design of the Approach
	4.1 Requirement
	4.2 Concept
	4.3 Protected Kernel Data Relocation Challenge

	5 Implementation
	5.1 Implementation Overview
	5.2 Protected Kernel Data
	5.3 Relocation Kernel Page
	5.4 Relocation Handling

	6 Evaluation
	6.1 Evaluation Purpose
	6.2 Evaluation Environment
	6.3 Kernel Vulnerability
	6.4 Privilege Escalation Attacks Security Assessment
	6.5 Overhead of Kernel Performance
	6.6 Overhead of Kernel Processing
	6.7 Attack Difficulty Assessment by Kernel Data Relocation

	7 Discussion
	7.1 Evaluation Consideration
	7.2 Approach Consideration
	7.3 Limitation of KDRM
	7.4 Portability

	8 Related Work
	8.1 Comparison

	9 Conclusion
	References

	The Effectiveness of Transformer-Based Models for BEC Attack Detection
	1 Introduction
	2 Background
	2.1 Bidirectional Encoder Representations from Transformers (BERT)
	2.2 Long and Bidirectional Short-Term Memory (LSTM) and (Bi-LSTM)

	3 Related Works
	4 Proposed Model
	5 Experiment
	5.1 Experimental Setup

	6 Discussion
	7 Conclusions
	References

	Blockchain
	Resilience of Blockchain Overlay Networks
	1 Introduction
	2 Background and Related Work
	2.1 Selected Overlay Networks
	2.2 Related Work

	3 Methodology
	3.1 Validation
	3.2 Datasets and Experiments

	4 Results
	4.1 Network Resilience to Attacks
	4.2 Attack Minimum-Cut Edges
	4.3 Spatial Centralization of Blockchain Nodes
	4.4 Dependency in Blockchain Overlays

	5 Discussion
	6 Summary
	A Ethics
	References

	Provably Secure Blockchain Protocols from Distributed Proof-of-Deep-Learning
	1 Introduction
	1.1 Background and Related Work
	1.2 Our Approach and Results
	1.3 Paper Organization

	2 Preliminaries
	3 The D-PoDL Scheme
	3.1 Design Overview
	3.2 Formal Syntax and Construction
	3.3 Design Choices Explanation

	4 Our D-PoDL Blockchain Protocols
	4.1 Generic Protocol Workflow
	4.2 Concrete Protocols

	5 Security Analysis
	5.1 The Training Oracle
	5.2 Proving Ledger Properties

	6 Implementation of D-PoDL Scheme
	7 Conclusion
	References

	Security Model for Privacy-Preserving Blockchain-Based Cryptocurrency Systems
	1 Introduction
	1.1 Contribution
	1.2 Related Work

	2 Privacy-Preserving Blockchain-Based Bank
	3 Security Properties
	3.1 Privacy
	3.2 Security

	4 Relation Between tind and lind
	4.1 Transaction Indistinguishability Implies Ledger Indistinguishability
	4.2 Ledger Indistinguishability Implies Transaction Indistinguishability

	5 Security Analysis of Monero
	6 Conclusion
	References

	Cryptography and Privacy
	Group Oriented Attribute-Based Encryption Scheme from Lattices with the Employment of Shamir's Secret Sharing Scheme
	1 Introduction
	1.1 Our Contribution
	1.2 Related Works

	2 Preliminaries
	2.1 Notation
	2.2 Shamir's Secret Sharing Scheme ch9S79,ch9O16
	2.3 Lattices
	2.4 Lattice Related Algorithms
	2.5 Attribute-Based Encryption

	3 Group Oriented Attribute-Based Encryption (GO-ABE) Scheme
	3.1 GO-ABE
	3.2 Security Definition: Selective-Set Model for GO-ABE

	4 Lattice-Based Construction of GO-ABE Scheme
	4.1 Description
	4.2 Construction of Algorithms

	5 Analysis of the Scheme
	5.1 Correctness
	5.2 Security Proof
	5.3 Further Discussion

	6 Conclusion
	References

	New LDP Approach Using VAE
	1 Introduction
	2 Preliminaries
	2.1 Generalizing the Problem
	2.2 Local Differential Privacy (LDP)
	2.3 Privacy Analysis
	2.4 Lopub Scheme

	3 Proposed Scheme
	3.1 VAE Preliminaries
	3.2 VAE Model

	4 Experiments
	4.1 Experimental Method
	4.2 Results

	5 Conclusions
	A Appendix
	A.1 VAE's Summary

	References

	Machine Learning
	Privacy-Preserving Federated Learning with Hierarchical Clustering to Improve Training on Non-IID Data
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Effect of Non-IID Data in FL
	3.2 FL+HC
	3.3 Cryptographic Primitives

	4 Problem Setup
	4.1 System Model
	4.2 Threat Model
	4.3 Design Goals

	5 PPFL+HC Framework
	5.1 Overview
	5.2 Details of PPFL+HC Framework

	6 Security Analysis
	7 Evaluation
	7.1 Experiment Setup
	7.2 Experiment Results

	8 Conclusion
	References

	RRML: Privacy Preserving Machine Learning Based on Random Response Technology
	1 Instruction
	2 Related Work
	2.1 Differential Privacy
	2.2 Moment Accountant
	2.3 Random Perturbation

	3 Local Differentially Private Machine Learning Algorithm Based on Randomized Response Mechanism
	3.1 Differential Privacy Based on Randomized Response Mechanism
	3.2 The Basic Infrastructure of RRML
	3.3 Privacy Analysis on RRML

	4 Experimental Results and Analysis
	5 Conclusions
	References

	SPoiL: Sybil-Based Untargeted Data Poisoning Attacks in Federated Learning
	1 Introduction
	2 Background
	2.1 Federated Learning (FL)
	2.2 Targeted Poisoning Attacks in FL
	2.3 Sybil Attacks in FL

	3 Design of SPoiL
	3.1 Threat Model
	3.2 Algorithms

	4 Simulation Experiments
	4.1 Settings
	4.2 Results

	5 Conclusion
	6 Future Research
	References

	Agnostic Label-Only Membership Inference Attack
	1 Introduction
	2 Related Work
	3 Background
	4 Agnostic Label-Only Membership Inference Attack
	5 Experiments
	5.1 Evaluation of ALOA and Comparison Against Competitors

	6 Conclusion
	A Appendix: Machine Learning Models Hyper-parameters
	References

	ppAURORA: Privacy Preserving Area Under Receiver Operating Characteristic and Precision-Recall Curves
	1 Introduction
	2 Motivation
	3 Preliminaries
	3.1 Area Under Curve

	4 ppAURORA
	4.1 Secure Computation of AUROC
	4.2 Secure AUPR Computation

	5 Security Analysis
	5.1 Privacy Against Malicious Adversaries

	6 Results
	7 Conclusion
	References

	Security Through Hardware
	Modular Polynomial Multiplication Using RSA/ECC Coprocessor
	1 Introduction
	2 Background
	2.1 Element Representation
	2.2 Notations
	2.3 Multiplication in N[X] Using Kronecker Substitution

	3 Multiplication in Rq, Using Kronecker Substitution
	3.1 Evaluation with Negative Coefficients
	3.2 Radix Conversion with Negative Coefficient Representation
	3.3 Multiplication in Rq, Using Coprocessor

	4 Reducing Coefficients Modulo q
	4.1 Power-of-Two Modulus
	4.2 Prime Modulus
	4.3 Modular Polynomial Multiplication Using Coprocessor

	5 Applications and Results
	5.1 Background
	5.2 Results

	6 Conclusion
	A Examples for Section2.3
	B Example for Sect.3.1
	C Results for Dilithium
	References

	T3E: A Practical Solution to Trusted Time in Secure Enclaves
	1 Introduction
	2 Background
	2.1 Intel SGX
	2.2 Trusted Platform Module
	2.3 Trusted Time Sources in Intel SGX

	3 Related Work
	4 Design
	4.1 The TPM as a Time Source
	4.2 Overview of T3E
	4.3 Provisioning the Time Service
	4.4 Refreshing the Internal Clock
	4.5 Processing Trusted Time Requests
	4.6 Reprovisioning Time from the Time Authority

	5 Security Evaluation
	5.1 Requirement 1: The Time Source Must Be Authentic
	5.2 Requirement 2: Time Information Cannot Be Replayed
	5.3 Requirement 3: Time Cannot Be Sped Up
	5.4 Requirement 4: Time Cannot Be Paused or Slowed Down
	5.5 Attack Scenarios

	6 Implementation and Analysis
	6.1 Microbenchmark Results
	6.2 Macrobenchmark Using OpenSSL
	6.3 Impact of Attacks on Throughput

	7 Conclusion
	A Appendix: Comparison with Related Solutions
	References

	Decentralized SGX-Based Cloud Key Management
	1 Introduction
	2 Preliminaries
	2.1 Intel SGX
	2.2 Secret Sharing Schemes

	3 Related Works
	4 System Model and Adversarial Model
	4.1 System Model
	4.2 Adversarial Model

	5 The MultiSGX-KMS Scheme
	5.1 MultiSGX-KMS Protocols Definition
	5.2 MultiSGX-KMS Algorithms

	6 Security Analysis
	7 Experimental Results
	8 Conclusion
	References

	Security in the Wild
	Spying on the Spy: Security Analysis of Hidden Cameras
	1 Introduction and Motivation
	2 Hardware and Supply Chain
	3 Investigation
	3.1 Pairing the Device
	3.2 Testbed Setup
	3.3 Mobile Application Analysis
	3.4 Unencrypted Communications
	3.5 Vulnerable Command System
	3.6 Firmware Extraction
	3.7 Remote Code Execution
	3.8 Persistent Access
	3.9 Insecure Peer-to-Peer System

	4 Mitigation Measures
	5 Future Work
	6 Conclusion
	References

	Security Analysis of Mobile Point-of-Sale Terminals
	1 Introduction
	2 Background and Related Work
	3 Encryption Security
	3.1 BLE Communication
	3.2 Eavesdropping to Extract Cryptographic Keys

	4 Network Security
	4.1 HTTPS Interception
	4.2 Tampering Attack

	5 Software Security
	5.1 Reverse Engineering
	5.2 Software Modification Attack

	6 Discussion
	6.1 Ethical Disclosures
	6.2 Mitigating the Vulnerabilities
	6.3 Tap-to-Phone Technology

	7 Conclusion
	A Appendix
	References

	On the Design of a Misinformation Widget (MsW) Against Cloaked Science
	1 Introduction
	2 Blending Human and Machine Intelligence: Human-in-Charge Approach to the Investigation of Cloaked Science
	3 MsW Methodology
	4 MsW REST API
	4.1 MsW Users' Profiles and Access Privileges

	5 Presenting MsW Methodology and Toolbox with a Use Case
	6 Discussion and Conclusion
	References

	Author Index

