
Trace-Based Anomaly Detection
with Contextual Sequential Invocations

Qingfeng Du1, Liang Zhao1(B), Fulong Tian2, and Yongqi Han1

1 School of Software Engineering, Tongji University, Shanghai, China
{du cloud,1931525,2011438}@tongji.edu.cn

2 Di-Matrix(Shanghai) Information Technology Co., Ltd., Shanghai, China

Abstract. Nowadays, microservice architecture has been widely
adopted in various real systems because of the advantages such as
high availability and scalability. However, microservice architecture
also brings the complexity of operation and maintenance. Trace-based
anomaly detection is a key step in the troubleshooting of microservice
systems, which can help to understand the anomaly propagation chain
and then locate the root cause. In this paper, we propose a trace-based
anomaly detection approach called TICAD. Our core idea is to group
the invocations according to their microservice pairs and then perform
anomaly detection individually. For each distinct microservice pair, we
propose a neural network based on LSTM and self-attention to automat-
ically learn the contextual pattern in the target invocation and previous
invocations. Detected invocation anomalies can be further used to infer
the trace anomalies. We have verified it on a public data set and the
experimental results show that our proposed method is effective com-
pared to the existing approaches.

Keywords: Trace · Anomaly Detection · AIOps · Deep Learning

1 Introduction

Trace-based anomaly detection is a key step in the troubleshooting of microser-
vice systems because the structure of trace can help operators to understand the
anomaly propagation chain and then locate the root cause.

Existing approaches can be divided into two categories: trace-level
approaches and invocation-level approaches. For those trace-level approaches
such as [3,5], they need further analysis to locate the abnormal microservice.
For those invocation-level approaches such as [2,4], they can directly detect the
invocation anomalies but highly depend on the accuracy.

We propose a supervised trace anomaly detection method called TICAD
(Trace Invocation Callee Anomaly Detection), which can effectively learn the
sequential patterns in the invocations and then infer the anomalies in the traces.
Firstly, TICAD reorganizes the invocations of traces. Then, each invocation’s
callee state will be represented as a vector using multiple metrics. TICAD will
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C. Strauss et al. (Eds.): DEXA 2023, LNCS 14147, pp. 113–118, 2023.
https://doi.org/10.1007/978-3-031-39821-6_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-39821-6_8&domain=pdf
https://doi.org/10.1007/978-3-031-39821-6_8


114 Q. Du et al.

mine the inherent relationship between the previous invocations and the current
one through a neural network based on LSTM and self-attention. After the
invocation anomalies are detected, whether a trace is abnormal can be inferred
from them.

Our main contributions are listed below: We propose the TICAD, which
detects invocation anomalies and subsequently infers the anomalies of the traces.
We further propose a neural network based on LSTM and self-attention to detect
anomalies in the invocations, which can learn the contextual dependencies and
patterns between the invocation vectors. We conduct extensive experiments on
TICAD to verify its effectiveness on the public dataset.

2 Related Works

Supervised Machine Learning Approaches: MEPFL [8] is proposed to pre-
dict multiple tasks such as latent error detection in the trace log, which is col-
lected from both normal and faulty versions of the application. And Seer [1] is
presented to detect Qos violations in the massive trace data. A deep learning
model, which contains CNN and LSTM layers, is trained in Seer to predict the
abnormal microservices.

Unsupervised Machine Learning Approaches: Among all the unsupervised
approaches, most of them are based on the normal assumption. AVEB [4] trains
a variational autoencoder to learn the response time feature of normal cases
for each microservice. Then the target data with significant reconstruct errors
will be determined as anomalous. TraceAnomaly [3] also trains a variational
autoencoder with posterior flow to model the normal pattern of trace. In [5],
a multimodal LSTM model is proposed to learn the sequential pattern of the
invocation type and response time.

3 TICAD Design

As shown in the Fig. 1, we first reorganize all the traces. After that, each invo-
cation will be transformed into a vector according to the metrics. For each
invocation, its vector will be fed into a neural network based on LSTM and
self-attention along with those of the previous invocations. Finally, it will auto-
matically learn the potential features associated with anomalies.

3.1 Trace Pre-processing

In this section, we process the original trace data and fine tune the data struc-
ture to better detect anomalies. We group all the invocations with the same
microservice pair and reorder them by their timestamp. After that, the original
dataset is divided into nc datasets where nc is the number of unique microservice
pairs. In the following steps, invocations of different groups can be processed and



Trace-Based Anomaly Detection with Contextual Sequential Invocations 115

TID1
TID2

...
TIDi

Invocation1
Invocation2

...
Invocationk

Trace IDs

TIDi's
Invocations

reorganize

MS_A - MS_C
1 : [x1,...,xm]

2 : [y1,...,ym]
3 : [u1,...,um]

...
w+1: [z1,...,zm]

Original
Traces

Neural Network
based on Self-

attention and LSTM

Vector Sequences

Invocationk
(MS_C - MS_D)

Properties
Latency

...
CPU Utilization

Invocation
Sequences 

MS_A - MS_C
1 : Invocation1
2 : Invocation3

3 : Invocation8
...

i : Invocationi

MS_C - MS_D
1 : Invocation2
2 : Invocation4

3 : Invocation7
...

k : Invocationk

MS_* - MS_*
...

vectorize

...
MS_* - MS_*

slice

2 : ...

...

3 : ...

4 : ...

w+2 :
...

Anomaly Detection

...

Fig. 1. The framework of TICAD

learned in parallel without affecting each other. Next, we vectorize the invoca-
tions from different perspectives. More precisely, we vectorize the callee state of
the invocation, which means the label represents whether the callee is normal
when the invocation occurs. To avoid the problem caused by using the latency
alone, we use additional resource utilization metrics of the callee to enhance
the representation of the invocation. We directly concatenate the latency and
resource utilization metrics to form the vector of the invocation and standardize
the values of each dimension in the vector.

3.2 Anomaly Detection

After the vectorization of the invocations, we will detect whether each invoca-
tion is abnormal. For the target invocation, in addition to its own feature vector
information, we also use the extra vectors of the previous invocations to enrich
the current information. Instead of relying only on the vector of the target invo-
cation, this kind of learning method can help to decrease the false positives
caused by the noise data. In practice, a reasonable window will be selected to
slice the invocations. For each invocation waiting to be detected, the input is a
matrix X consists of w + 1 vectors:

Xi = [vi−w, vi−w+1, . . . , vi]� (1)

where vi is the vector of current invocation and w is the window length.
Now that we have the input matrix X, TICAD demands a neural network

to automatically learn the relation between the input and the fact whether the
current invocation is anomalous. Therefore, we propose a neural network based
on both LSTM and self-attention [6]. Briefly, The same input matrix will be



116 Q. Du et al.

learned with LSTM and self-attention neural network separately, and the output
of target invocation will be concatenated to detect anomalies.

For the self-attention part, a neural network will take the input and use the
multi-head scaled dot-product attention mechanism to aggregate the informa-
tion. Instead of directly using the whole encoder of Transformer, we only utilize a
few parts which are easy but effective. We first scale the input and add positional
information to the original vector:

Xh = dropout(
√

h(XiW
h) + W pos) (2)

where h is a scalar representing the hidden size. Wh ∈ Rnf×h is the weight
of the linear transformation and nf is the number of features, i.e., the size of
original invocation vector. W pos ∈ R(w+1)×h represents the learned positional
embedding.

Then the Xh will be fed into the multi-head scaled dot-product attention
layer, which can aggregate the information according to the attention scores.
In practise, multiple heads can be calculated in parallel. The Qi, Ki and Vi of
each head, which are the indispensable elements of attention mechanism, will be
transformed from the same input Xh:

Qi = XWQ
i ,Ki = XWK

i , Vi = XWV
i (3)

where WQ,WK ,WV ∈ Rh×dhead , dhead = h/nheads, nheads is the number of
heads.

For each head, scaled dot-product attention mechanism will calculate the
attention scores and then get the weighted sum of values, which is shown in the
following equation:

headi = softmax(
QiKi�√

dhead
)Vi (4)

All the results of the heads will be concatenated and transformed to X ′
h

which is shown below:

Xh′ = (head1 ⊕ head2 ⊕ · · · ⊕ headi)Wh′
(5)

where Wh′ ∈ Rh×h.
The final part of self-attention consists of layer normalization and residual

dropout and the aggregated vector of target invocation is represented as vs,
which is shown in the following equation:

Xf = LayerNormalization(Xh + dropout(Xh′) (6)

vs = Xf [w] (7)

For the LSTM part, we adopt a variant of LSTM called Bi-LSTM (Bidi-
rectional Long Short Term Memory), whose detailed structure is shown in the
Fig. 2. Each row of Xh will be input into the Bi-LSTM model at each time step.



Trace-Based Anomaly Detection with Contextual Sequential Invocations 117

As shown in the figure, hfw ∈ Rh/2 and hb0 ∈ Rh/2 are the hidden state vec-
tors at the last time step, which will be concatenated to represent the result of
Bi-LSTM:

vl = hl
w ⊕ hr

0 (8)

Finally, vs and vl will be concatenated to calculate the anomaly probability:

Anomaly Probability = σ((vs ⊕ vl)�W a + ba) (9)

where σ represents the sigmoid function and W a ∈ R2∗h×1.
If a trace has at least one abnormal invocation, the trace will be judged as

abnormal.

vi-w vi-w+1 vi

LSTML LSTMLhl
0 hl

1 LSTML

...

... hl
w

LSTMR LSTMRhr
w-1 ... LSTMRhr

0hr
w

concat vl

Fig. 2. The structure of LSTM based neural network

4 Evaluation

4.1 Datasets and Criteria

Datasets. To make the experiments more convincing, we use the public dataset
which is proposed in TraceRCA [2] to evaluate the effectiveness of TICAD. This
dataset collected traces from the Train Ticket [7] system, which is one of the
largest open source microservice systems.

Baselines. To demonstrate the effectiveness of TICAD, We compare it with
TraceAnomaly [3] and MEPFL-RF [8]. MEPFL-RF refers to the Random Forest
version of MEPFL. Parameters of them are set best for accuracy.

Evaluation Metrics. As with previous researches, we use three evaluation met-
rics: precision, recall and F1 score, which are calculated as follows: Precision =
TP/(TP + FP), Recall = TP/(TP + FN), F1 score = (2*Precision*Recall)/
(Precision + Recall).

4.2 Preparation Experiments

For TICAD, if we directly divides all the invocations, it’s likely that there will
be no complete trace in the test set. This will result in the inability to compare
the effectiveness of methods because TICAD can’t infer trace-level results from
incomplete trace invocations. Therefore, we randomly select 5% normal trace ID
and 5% abnormal trace ID as the reserved ID, which means all the invocations of
these traces will be reserved for test set. For supervised methods such as TICAD
and MEPFL, we directly copy the abnormal traces or invocations to solve the
lack of positive samples.



118 Q. Du et al.

4.3 Experiments on Trace-Level Anomaly Detection

In this section, we use different methods to perform trace-level anomaly detec-
tion, which can show the effectiveness of different methods on whole traces.
The results are shown in the Table 1. It can be seen that TICAD proposed
in this paper achieved the highest F1 score(0.974) and the highest recall(0.986).
Although the precision is not the highest, it doesn’t lag far behind other methods.
In general, TICAD shows its availability and effectiveness in anomaly detection
tasks at the level of trace.

Table 1. Trace-level Anomaly Detection Results

Precision Recall F1 score

TICAD 0.961 0.986 0.974

TraceAnomaly 0.901 0.159 0.270

MEPFL-RF 0.987 0.953 0.970

5 Conclusion

In this paper, we propose an end-to-end trace anomaly detection method called
TICAD. It has the ability to effectively learn the sequential patterns in the invo-
cations and then infer the anomalies in the traces. TICAD will mine the inher-
ent relationship between the current invocation and the previous ones through
a neural network based on LSTM and self-attention.

References

1. Gan, Y., Zhang, Y., Hu, K., Cheng, D., Delimitrou, C.: Seer: leveraging big data to
navigate the complexity of performance debugging in cloud microservices. In: the
Twenty-Fourth International Conference (2019)

2. Li, Z., Chen, J., Jiao, R., Zhao, N., Wang, Z., Zhang, S., Pei, D.: Practical root
cause localization for microservice systems via trace analysis. In: IWQOS (2021)

3. Liu, P., Xu, H., Ouyang, Q., Jiao, R., Pei, D.: Unsupervised detection of microservice
trace anomalies through service-level deep Bayesian networks. In: 2020 IEEE 31st
International Symposium on Software Reliability Engineering (ISSRE) (2020)

4. Nedelkoski, S., Cardoso, J., Kao, O.: Anomaly detection and classification using
distributed tracing and deep learning. In: 2019 19th IEEE/ACM International Sym-
posium on Cluster, Cloud and Grid Computing (CCGRID) (2019)

5. Nedelkoski, S., Cardoso, J., Kao, O.: Anomaly detection from system tracing data
using multimodal deep learning. In: 2019 IEEE 12th International Conference on
Cloud Computing (CLOUD) (2019)

6. Vaswani, A., et al.: Attention is all you need. arXiv (2017)
7. Zhou, X., et al.: Fault analysis and debugging of microservice systems: industrial

survey, benchmark system, and empirical study. IEEE Trans. Softw. Eng. 1 (2018)
8. Zhou, X., et al.: Latent error prediction and fault localization for microservice appli-

cations by learning from system trace logs. In: 27th ACM Joint Meeting on Euro-
pean Software Engineering Conference (ESEC)/Symposium on the Foundations of
Software Engineering (FSE) (2019)


	Trace-Based Anomaly Detection with Contextual Sequential Invocations
	1 Introduction
	2 Related Works
	3 TICAD Design
	3.1 Trace Pre-processing
	3.2 Anomaly Detection

	4 Evaluation
	4.1 Datasets and Criteria
	4.2 Preparation Experiments
	4.3 Experiments on Trace-Level Anomaly Detection

	5 Conclusion
	References


