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Preface

Welcome to the proceedings of the 34th International Conference on Database and
Expert Systems Applications (DEXA 2023). This gathering of brilliant minds from
around the world serves as a testament to the tremendous progress made in the fields of
data management, intelligent systems, and advanced algorithms. It is our great pleasure
to present this compilation of papers, capturing the essence of groundbreaking research
and innovative ideas that were shared during the conference.

The rapid advancements in technology have ushered in an era where data has become
an invaluable asset, and its effective management and analysis have become critical
for organizations across various domains. The integration of expert systems, artificial
intelligence, and machine learning techniques has revolutionized the way we approach
data, enabling us to extract insights, make informed decisions, and create intelligent
systems that can adapt and learn from the vast amounts of information available.

This conference has provided a platform for researchers, academics, industry experts,
and practitioners to come together and exchange their knowledge, experiences, and ideas.
The proceedings reflect the diverse range of topics covered during the event, including
but not limited to data modeling, database design, query optimization, knowledge rep-
resentation, rule-based systems, natural language processing, deep learning, and neural
networks.

The papers included in this volume represent the collective efforts of the authors who
have dedicated their time and expertise to advancing the frontiers of database systems,
expert systems, artificial intelligence, and machine learning. Each paper has undergone
a rigorous review process by a panel of experts in the respective fields, ensuring the
highest standards of quality and relevance.

As you delve into the pages of these proceedings, you will witness the fascinat-
ing discoveries, novel methodologies, and practical applications that are shaping the
future of data-driven decision making. From the development of efficient algorithms for
data processing to the creation of intelligent systems capable of autonomous reason-
ing and decision making, the papers within this volume illuminate the vast potential of
interdisciplinary research.

We are proud to report that authors from more than 37 different countries submitted
papers toDEXA this year. Our program committees have conducted close to five hundred
single-blind reviews, with each submission receiving three reviews, on average. From
155 submitted papers the program committee decided to accept 49 full papers, 35 short
papers with an acceptance rate of 31%, a rate lower than previous DEXA conferences.

We would like to express our heartfelt gratitude to the authors for their contributions
and the dedication they have shown in presenting their work. We also extend our sincere
appreciation to the members of the program committee, whose rigorous evaluation and
insightful feedback have played a crucial role in shaping this collection.

Finally, we would like to thank the conference organizers, keynote speakers, and
attendees for their invaluable support in making this event a resounding success. Their
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commitment to advancing the frontiers of knowledge and fostering collaboration has
been instrumental in creating an environment conducive to intellectual growth and
innovation.

It is our hope that these proceedings serve as a source of inspiration and knowledge
for researchers, students, and professionals alike, as they embark on their own journeys
to unravel the mysteries of data, expert systems, artificial intelligence, and machine
learning.

August 2023 Christine Strauss
Toshiyuki Amagasa

Gabriele Kotsis
A Min Tjoa

Ismail Khalil
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Physics-Informed Machine Learning

Stéphane Bressan

National University of Singapore, Singapore

Abstract. In 1687, Isaac Newton published his groundbreaking work,
“Philosophiæ Naturalis Principia Mathematica”. Newton’s remarkable
discoveries unveiled the laws of motion and the law of universal gravita-
tion, propelling humanity’s understanding of the physical world to new
heights. In a letter to Robert Hooke in 1675, in response to an invitation
to collaborate, Newton humbly remarked, “If I have seen further, it is
by standing on the shoulders of giants.” This metaphor swiftly became
a powerful symbol of intellectual and scientific progress, signifying the
idea that knowledge is built upon foundations laid by brilliant minds that
came before us.

Fast-forwarding to the present, we find ourselves amidst a triumphant
statistical machine learning revolution. In 2016, Google’s AlphaGo, a
deep reinforcement learning algorithm, astounded the world by out-
performing a professional Go player. The following year, CheXNet, a
deep convolutional neural network developed at Stanford University, sur-
passed radiologists in accurately detecting pneumonia from chest X-ray
images. And in 2020, AlphaFold, a neural network model created by
DeepMind, revolutionised protein structure prediction, surpassing other
existing methods.

These advancements stand on the shoulders of giants. They owe their
existence to the work of logicians, mathematicians, physicists, neurobi-
ologists, computer scientists, and cyberneticists who have paved the way
for the birth of modern machine learning models and algorithms. They
also owe their existence to the work of material, electrical, electronics
and other engineers, whose ingenuity has birthed the computer hardware
and technology enabling such performance.

However, the remarkable ascent of machine learning is not solely
reliant on these contributions. It thrives on the vast amounts of data per-
meating the global information infrastructure, enabling the construction
of accurate representations of the world. What about knowledge?

In this context, we propose exploring and discussing how machine
learning can both leverage and contribute to scientific knowledge. We
explore how the training of a machine learning model can be informed by
the fundamental principles of the very systems it seeks to comprehend and
how it can create symbolic scientific knowledge.We explore applications
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in classical mechanics, fluid mechanics, quantum many-body systems,
macroeconomics, chemistry, and astronomy.Along this journey, we cross
the paths of such great minds as William Rowan Hamilton, Ernst Ising,
Richard Feynman, and Johannes Kepler.



Data Integration Revitalized: from Data Warehouse
through Data Lake to Data Mesh

Robert Wrembel

Faculty of Computing and Telecommunications,
Poznan University of Technology Poland

Abstract. For years, data integration (DI) architectures evolved from
those supporting virtual integration (mediated, federated), through phys-
ical integration (data warehouse), to those supporting both virtual and
physical integration (data lake, lakehouse, polystore, data mesh/fabric).
Regardless of its type, all of the developed DI architectures include an
integration layer. This layer is implemented by a sophisticated software,
which runs the so-calledDI processes. The integration layer is responsible
for ingesting data from various sources (typically heterogeneous and dis-
tributed) and for homogenizing data into formats suitable for future pro-
cessing and analysis. Nowadays, in all business domains, large volumes
of highly heterogeneous data are produced, e.g., medical systems, smart
cities, precision/smart agriculture, which require further advancements
in the data integration technologies. In this paper, I present my subjec-
tive view on still-to-be developed data integration techniques, namely:
(1) novel agile/flexible integration techniques, (2) cost-based and ML-
based execution optimization of DI processes, and (3) quality assurance
techniques in complex multi-modal data systems.
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Abstract. Neurodegenerative diseases are a group of conditions resulting from
the progressive degeneration of neurons and their functions in the nervous system.
Alzheimer’s disease, currently incurable, is one of the most common neurodegen-
erative diseases. Early detection is crucial for delaying disease progression. Cur-
rent methods for early detection of Alzheimer’s rely on handwriting tasks through
which a considerable amount of data is generated. The resulting data is character-
ized by high dimensionality, obscuring the importance of relevant attributes. The
various methods used in detecting or classifying Alzheimer’s disease could be
impaired by the Curse of dimensionality (sparsity present in data due to the large
number of features given the lower number of data samples, hindering model per-
formance in identifying a pattern in the data). In thiswork,we propose amethod for
enhancing the performance of early Alzheimer’s detection by identifying essential
features while avoiding the Curse of dimensionality. Our proposedmethod outper-
formed the current state-of-the-art benchmarks and demonstrated the effectiveness
of our approach. The reported findings suggest that our method can significantly
improve the performance of early detection of Alzheimer’s disease and provide a
foundation for early interventions and better patient outcomes.

Keywords: RD-Classifier · Alzheimer’s diagnosis · Curse of dimensionality ·
Decision Support System

1 Introduction

Alzheimer’s Disease (AD) is a progressive neurodegenerative illness that results in
the loss of cognitive function due to the degradation of synapses and neurons in the
cerebral cortex, as defined by the National Institute of Neurological Disorders and
Stroke (NINDS) [1]. The global prevalence of AD and related dementias is estimated
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to be around 50 million people, with projections indicating a tripling of this number to
approximately 150 million individuals by 2050 [2].

Despite the significant strides in medical research, an absolute cure for AD remains
elusive. Present treatment can only slow the disease progression [2]. Alarmingly, despite
the warning symptoms such as memory loss, language difficulties, and personality
changes, the diagnosis of Alzheimer’s remains challenging, with a failure rate of over
20% [3]. This high failure rate poses substantial obstacles to developing effective
therapies, emphasizing the need for early detection [4].

Detection at an early stage offers the best chance to intervene therapeutically, with
estimations suggesting that it can occur up to 9 years prior to the manifestation of
diagnosable dementia symptoms [5]. AD’s known influence on motor and cognitive
functions, which correlate closely with handwriting movements, has inspired innovative
diagnosticmethodologies [6, 7]. Researchers have explored the dynamics of handwriting
and drawing tasks, generating a wide array of features that have been employed in AD
and Parkingson’s disease diagnosis usingmachine learning (ML) and deep learning (DL)
techniques [8, 9].

However, the high dimensionality of the dataset generated in previous studies, char-
acterized by an excessive number of features, can hamper the performance of ML and
DL methods. [9–11]. This high dimensionality could lead to various problems referred
to as the “curse of dimensionality”, which has yet to be comprehensively addressed in
previous research.

In this context, the present study proposes a novel method that reduces dimension-
ality and selectively retains the most significant features. Our approach is designed to
enhance the learning of feature maps, mitigating overfitting, and decreasing the com-
putational complexity of the ML models. By generating a concise feature subset, our
proposed approach seeks to improve the performance of ML models for AD detection,
enabling neurologists to focus on specific features during patients’ diagnosis. This app-
roach can potentially facilitate earlier detection and treatment, ultimately improving
patient outcomes.

The remainder of the research paper is structured as follows: The related work
section provides a comprehensive literature review of relevant studies. In the proposed
model section, we describe our proposed approach, which includes the data acquisition,
the proposed RD-Classifier algorithm, and evaluation metrics. In the Experimentation
section, we provide a detailed account of the experimental environment, including the
hardware and software used in our study. We also provide statistical information about
our dataset’s composition. Furthermore, we present the results of our experiments using
variousmetrics and simultaneously discuss the results. Finally, in theConclusion section,
we summarize our findings and discuss their implications for AD diagnosis using ML.
We also acknowledge the limitations of our study and suggest potential future research
directions for the scientific community.
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2 Related Work

In the past few years, numerous studies have investigated early diagnosis of neurode-
generative diseases. Awasthi et al. [13] proposed a novel approach to AD diagnosis that
combinesMRI, immunoassay, and biomarker analysis through amultimodal approach to
enhance treatment development. Diogo V.S et al. [14] developed a multi-diagnostic app-
roach to diagnosing mild cognitive impairment and AD, exploring the impact of graph
technology on classification performance and interpretability of predicted results. Sev-
eral studies [15–20] have also explored early-stage AD identification through handwrit-
ing tasks, utilizing machine learning methods due to their cost-effectiveness, time effi-
ciency, and simplicity. These studies suggest that handwriting tasks can serve as amarker
for neurodegenerative diseases due to their reliance on visual-spatial abilities and eye-
hand coordination, which can be compromised in individuals with neurodegenerative
diseases [21–23].

Diagnosis of AD using handwriting tasks is an area of active research, where various
datasets with different sets of features and dimensionality are commonly used. ML
models can leverage these features to detect AD more effectively. However, in ML,
the size of the dataset used to train the model is an important factor that affects the
performance of themodel [24–26]. Although a larger dataset leads to better performance,
an increase in the number of dimensions can cause the data to become noisy, which
negatively impacts themodel’s performance.This is knownas the curse of dimensionality
[12, 27], which can lead to overfitting [28, 29]. To address this issue, it is essential to
find an even distribution of data points across the dataset’s dimensions. An appropriate
feature map can be applied to the data to achieve this, and then ML models can be
experimented with to perform classification on less noisy data. This approach has not
been considered by previous studies on Alzheimer’s detection [2].

3 Proposed Model

This section presents our proposed approach for detecting Alzheimer’s disease (AD) in
patients using handwriting task-driven features. Figure 1 outlines three key stages of the
approach: the Data Preparation stage, RD-Classifier stage, and Evaluation stage. In the
Data Preparation stage, relevant data is collected, and valuable features are extracted. The
RD-Classifier stage employs dimensionality reduction methods such as PCA, Forward-
Feature-Selection/Backward-Feature-Selection, and several ML models, including K-
Nearest Neighbors (K-NN), Random Forest (RF), Decision Tree (DT), Logistic Regres-
sion (LR), Gaussian Naive Bayes (GNB), and Support Vector Machine (SVM), to
develop an effective classificationmodel. Finally, the Evaluation stage involves assessing
the performance of the proposed model in accurately identifying AD.

3.1 Data Preparation

Our study utilized a novel dataset from the benchmarking study [2], whichwas generated
using an acquisition protocol detailed in [30]. The Data Module encompassed both data
collection and feature extraction.During the data collection stage, participants completed
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Fig. 1. Overall framework of the proposed RD-Classifier. M (Memory and dictation tasks), G
(Graphic tasks), and C (Copy task).

25 handwriting tasks using a Wacom’s Bambo tablet equipped with a pen and an A4
size paper connected to a Personal Computer.

The resulting data were processed to acquire the necessary features. The feature
extraction stage utilized Wacom’s Bambo tablet coordinates, the pressure exerted on
the tablet, the timestamp of the task performed, and the break time while the pen was
removed from the device to extract a total of 18 features for each task. For a more
comprehensive understanding of the data collection and feature extraction stages, please
refer to [2].

Our study benefited from this unique dataset and the careful execution of the
acquisition protocol, which enabled the precise collection and extraction of relevant
features.
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3.2 RD-Classifier

This section presents our proposed RD-Classifier (Reduced Dimensionality Classi-
fier), which comprises three primary components: Dimensionality Reduction, Training
through Cross Validation, and Prediction Models, as illustrated in the RD-Classifier
Module (Fig. 1).

The dimensionality reduction step involves the application of three methods, namely
Principal Component Analysis (PCA), forward feature selection, and backward feature
selection, to sequentially select the features that maximize the accuracy of the models
in detecting the disease. PCA is a widely used data reduction technique that transforms
high-dimensional data into a set of orthogonal variables called principal components
(PCs). PCs are linear combinations of original variables representing different data space
directions. The first PC captures themost variance, and each subsequent one captures the
remaining variance in order of importance. This enables a more efficient representation
of data with fewer variables, identifying important features or patterns [31]. Forward and
backward feature selections are popular techniques in ML for dimensionality reduction.
Forward selection starts with an empty feature set and adds one feature at a time based on
performance. In contrast, backward selection begins with all features and eliminates the
least important ones iteratively. Both methods aim to identify the most relevant features,
improving model performance and reducing computational complexity [32]. We opted
for the forward feature selection technique to reduce the dimensionality and constructed
the appropriate dataset with a specified number of features for further steps.

In the second step of the RD-classifier, we performed cross-validation to ensure our
model generalizes well to new, unseen data and avoids overfitting or underfitting. This
involved dividing our available data into several subsets, training the model on the train-
ing set with different combinations of hyperparameters, and evaluating its performance
on a held-out validation set. By doing so, we obtained a more accurate estimate of the
model’s performance and selected the best hyperparameters for our problem.

The reduced set of features was used in the third step of RD-Classifier to experi-
ment with different classifiers (K-NN, RF, DT, LR, GBN, and SVM) and evaluate their
performance using various metrics such as accuracy, precision, f1-score, and recall. The
proposed RD-Classifier is presented with pseudocode in Algorithm 1.
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3.3 Evaluation

To evaluate the performance of the proposed RD-Classifier in predicting AD, we
employed a range of commonly used performance metrics, including accuracy, preci-
sion, f1-score, and recall. We used k-fold cross-validation (k= 10) to present the model
generalization (see Sect. 3) on the data while fine-tuning. Additionally, we compared
the AUC-ROC to demonstrate how different methods performed in correctly classifying
patients with AD. The following formulas represent the measurement indicators used to
assess the different methods.

Accuracy (Acc.)= TP + TN

TP + FP + TN + FN
× 100 (1)

Precision (Pre.)= TP

TP + FP
× 100 (2)

Recall (sensitivity) = TP

TP + FN
× 100 (3)

F1 - score =
2TP

2TP + FP + FN
(4)
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AUC - ROC = 1+ TPR− FPR

2
(5)

where TP, FP, TN, FN, TPR, and PR describe true positive, false positive, true negative,
false negative, true positive rate, and false positive rate.

4 Experimentation

This section outlines our experimental setup, dataset composition, results, and discus-
sion. We first report the attended outcomes before comparing our findings to those in the
relevant literature review. By providing a detailed account of our methodology, exper-
imental setup, and results, we ensure transparency and reproducibility of our study,
allowing others to reproduce our results and further advance the field of research.

4.1 Experimental Environment Setup

In this study, we conducted all experiments using Jupyter notebook with TensorFlow
2.2.0 and Python 3.7.13. Our experiments were run on an Intel Core i7-6850k PC with
a 3.60 GHz CPU, GeForce GTX 1080 Ti GPU, and 32GB RAM. These specifications
are summarized in the following Table 1.

Table 1. Environmental setup of the development environment

Components Details

CPU Core i7-6850k CPU @ 3.60GZ x 12

GPU GeForce GTX 1080 Ti

RAM 32GB

Web-based tools Jupyter notebook IPython 7.34.0

TensorFlow 2.2.0

Python 3.7.13

4.2 Dataset

In this study, we used the DARWIN (Diagnosis AlzheimeR With handwriting) dataset
provided by [2], which consisted of 174 samples from patients assessed for AD. The
dataset was divided into two classes: label “0” for healthy patients and label “1” for
patients with AD, with 85 and 89 samples, respectively. A total of 452 features were
extracted from the 25 handwriting tasks, categorized intomemory and dictation, graphic,
and copy tasks (see Table 2). Because the dataset was already balanced between the
two classes, no additional balancing mechanism was required. This dataset provides a
valuable resource for developing accurate and reliable algorithms for diagnosing AD.
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Table 2. Statistics of the DARWIN dataset [2].

# Patients # Tasks Type and number of tasks # Feature

85 (Healthy) 25 5 (Memory & dictation task) 452 (18 features from each task +
label and ID)6 (Graphic task)

89 (Unhealthy)

14 (Copy task)

4.3 Results and Discussion

We evaluated the proposed RD-Classifier after experimenting with various ML models
and dimensionality reduction techniques, namely PCA and FFS. Our results in Table 3
indicate that the RD-Classifier with RF and FFS achieved the best performance, with
an accuracy score of 87.75%, precision of 90.03%, recall of 86.58%, and f1-score of
87.30%.Conversely, when employing PCA,LRoffered the highest efficiency of 79.89%,
78.07%, 80.50%, and 78.72% for accuracy, precision, recall, and f1-score, respectively.

Table 3. Mean accuracy of the RD-Classifier for the different ML models.

Model PCA FSS

Acc. f1-score Pre. recall Acc. f1-score Pre. recall

RF 79.84 (±6.69) 77.45 85.92 72.41 87.75 (±5.93) 87.30 90.03 86.58

K-NN 75.71 (±8.50) 73.42 75.69 73.42 79.23 (±7.90) 79.81 73.07 88.75

DT 64.07 (±9.12) 64.29 67.51 64.67 79.18 (±7.93) 79.81 79.01 83.67

SVM 78.41 (±7.50) 77.91 77.11 81.00 81.92 (±4.84) 81.51 82.02 83.75

GNB 51.70 (±7.89) 21.86 49.33 15.33 51.70 (±6.10) 18.91 48.33 12.00

LR 79.89 (±8.19) 78.72 78.07 80.50 84.84 (±8.48) 84.25 83.42 87.08

Our experiments showed that using FFS in dimensionality reduction significantly
improved themodel performance, as demonstrated in Fig. 2. The proposedRD-Classifier
(RF + FFS) showed the highest ability to correctly classify AD when the comparison
was performed using the AUC-ROC scores.

The superior performance of the RD-Classifier demonstrated on the AD dataset
used in this study, compared to FFS or PCA methods paired with KNN, DT, LR, or
SVM, can be primarily attributed to the unique characteristics offered the combination
of components of our proposed classifier (RF and FFS). Notably, the salient attributes of
the RD-Classifier comprise Feature importance, as both RF and FFS are equipped with
the ability to evaluate the significance of each attribute within the dataset in relation to
the target variable; And robustness, primarily attributed to the ensemble nature of the
RF, which is composed of multiple DTs, hence making it less susceptible to overfitting.
In addition, FFS further enhances the RF’s robustness by selecting the most significant
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features to reduce the dataset’s dimensionality, as opposed to PCA, which transforms
the original dataset into new components with a different spatial distribution than the
original data.

We compared our proposed approach to the benchmarking method from a previous
study [2]. As shown in Table 4, the RD-Classifier reduced computational complexity, as
evidenced by reduced computing times. We also conducted hyperparameter optimiza-
tion via cross-validation grid search, and Table 5 presents the performance comparison
results. Inmost cases, themeanmetric values obtained usingRD-Classifier outperformed
or were similar to the ML models used in the benchmarking approach.

Fig. 2. AUC-ROC comparison results of the proposed approach based on the dimensionality
reduction techniques.

Table 4. Comparison of computational time (in second).

RD-Classifier [2]

Training time Test time Training time Test Time

RF 0.0433 0.0214 0.3601 0.0288

K-NN 0.0004 0.034 0.0035 0.0103

DT 0.0087 0.0001 0.0192 0.0037

SVM 0.156 0.0004 0.0122 0.0047

GBN 0.0012 0.0005 0.0048 0.0044

LR 0.0055 0.0001 0.0219 0.0043

Regarding disease classification for each task performed, our proposed approach
demonstrated the highest efficiency with the highest accuracy and recall (specificity) for
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Table 5. Mean metrics comparison of proposed RD-Classifier and benchmarking model [2].

RD-Classifier [2]

Acc. Sensitivity Acc. Sensitivity

RF 87.75 (±5.93) 86.58 85.29 (±6.03) 88.06

K-NN 79.23 (±7.90) 88.75 77.29 (±7.15) 68.00

DT 79.18 (±7.93) 83.67 78.57 (±7.21) 82.50

SVM 81.92 (±4.84) 83.75 81.86 (±4.57) 80.56

GNB 51.70 (±6.10) 12.00 85.14 (±5.53) 83.61

LR 84.84 (±8.48) 87.08 83.86 (±4.57) 83.00

the K-NN algorithm on 24 of the 25 tasks and, in the case of RF, performed similarly or
better than the benchmarking approach in some tasks, as shown in Table 6. Moreover,
the RD-Classifier, through dimensionality reduction and selecting the essential features
from the best task, showed better results when compared to the method proposed by [2],
as demonstrated in Table 5.

Our proposed RD-Classifier algorithm achieved superior accuracy when performing
dimensionality reduction on the entire set of features compared to the approach presented
in [2]. Specifically, our approach outperformed [2]’s results obtained using task-specific
classifiers by 5.72% with the K-NN algorithm while yielding similar results with the RF
and SVM algorithms. However, our proposed algorithm’s LR, GNB, and DT classifiers
were outperformed by [2]’s approach. These findings are illustrated in Fig. 3.
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Table 6. Mean accuracy and specificity comparison between RD-Classifier and benchmarking
model [2] on each task.

No RD-Classifier (Our approach) Cilia, Nicole. D

K-NN RF K-NN RF

Acc. recall Acc. recall Acc. recall Acc. recall

1 65.44 (±6.92) 71.38 62.58
(±7.57)

77.89 49.47
(±9.81)

40.56 65.86
(±8.22)

63.89

2 68.96 (±8.37) 66.15 66.15
(±8.81)

78.98 55.29
(±7.43)

61.39 67.14
(±7.78)

65.28

3 61.81 (±9.81) 71.25 64.73
(±7.57)

74.98 51.86
(±9.19)

61.67 66.57
(±8.90

61.67

4 61.04 (±5.37) 69.71 69.78
(±6.13)

74.04 64.71
(±5.58)

61.11 71.29
(±6.78)

66.67

5 67.64 (±7.90) 74.24 72.03
(±6.81)

76.04 65.86
(±5.90)

60.00 72.14
(±6.35)

72.22

6 74.12 (±7.82) 83.49 75.49
(±7.00)

77.19 65.57
(±10.22)

54.72 72.43
(±7.66)

66.94

7 76.32 (±6.89) 77.48 74.12
(±7.81)

83.74 72.00
(±5.76)

59.17 78.00
(±7.54)

70.83

8 71.15
(±10.04)

80.28 69.84
(±6.92)

80.54 57.00
(±8.57)

51.94 64.86
(±6.36)

67.50

9 83.41 (±7.06) 84.39 79.78
(±9.77)

91.08 74.86
(±5.83)

63.06 77.43
(±7.69)

70.83

10 63.35(±7.21) 63.86 66.15
(±5.59)

80.33 58.14
(±8.95)

44.17 69.29
(±6.80

69.44

11 69.84(±8.87) 71.46 70.55
(±8.93)

63.56 53.71
(±6.12)

41.67 64.86
(±6.23

66.94

12 61.76 (±9.25) 58.99 59.78
(±7.59)

64.44 55.29
(±7.43)

52.50 67.14
(±7.78)

56.67

13 71.21 (±7.21) 76.96 71.15
(±10.25)

76.98 51.86
(±9.19)

45.00 66.57
(±8.90)

61.94

14 72.69 (±6.46) 76.99 66.21
(±8.93)

74.04 64.71
(±5.58)

57.22 71.29
(±6.78)

70.00

15 72.69 (±7.22) 76.54 74.78
(±7.88)

83.32 65.86
(±5.90)

51.94 72.14
(±6.35)

69.44

16 67.64 (±9.90) 73.15 71.87
(±6.19)

84.51 65.57
(±10.22)

63.61 72.43
(±7.66)

67.78

17 79.07 (±7.67) 81.97 73.96
(±6.14)

75.46 72.00
(±5.76)

70.28 78.00
(±7.54)

76.67

(continued)
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Table 6. (continued)

No RD-Classifier (Our approach) Cilia, Nicole. D

K-NN RF K-NN RF

Acc. recall Acc. recall Acc. recall Acc. recall

18 66.10 (±9.65) 68.03 68.30
(±8.03)

70.82 57.00
(±8.57)

55.83 64.86
(±6.36)

65.00

19 75.55 (±6.03) 75.44 72.58
(±5.03)

75.74 74.86
(±5.83)

70.28 77.43
(±7.69)

74.17

20 78.30 (±8.95) 85.82 75.38
(±10.19)

79.24 60.29
(±7.47)

45.56 71.43
(±8.03)

68.89

21 70.33 (±8.15) 67.79 72.47
(±6.93)

67.48 64.43
(±7.21)

69.17 72.29
(±6.56)

76.39

22 72.64 (±7.38) 79.24 77.03
(±8.14)

85.13 68.43
(±6.04)

67.22 75.00
(±7.80)

75.28

23 76.92 (±7.70) 74.49 77.64
(±4.81)

75.25 68.71
(±7.21)

69.17 80.00
(±5.48)

82.78

24 64.01 (±6.83) 72.38 68.46
(±8.56)

77.34 61.29
(±6.25)

56.67 72.14
(±4.98)

67.78

25 71.10 (±5.90) 72.44 72.53
(±7.42)

72.82 68.43
(±6.78)

63.89 73.71
(±7.79)

74.17

Our findings demonstrate the effectiveness of the proposed approach for developing
and refining ML algorithms in detecting AD through handwriting tasks. Although the
present RD-Classifier has advantages such as avoiding the curse of dimensionality and
reducing computational complexity, there are still gaps that can be investigated for future
research.

Fig. 3. RD-Classifier (dimensionality reduction on the entire set of features) Vs benchmarking
model [2] (combining task-specific classifiers).
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5 Conclusion

AD is a growing public health concern, and early detection is crucial for timely inter-
vention and better patient outcomes. In this study, we proposed a novel approach to
detecting AD using high-dimensional handwriting data from the non-invasive approach
introduced by [2]. We employed three dimensionality reduction methods together with
sixML classifiers and identified a subset of themost important features for accurate diag-
nosis support. Our results showed that using the most important features led to similar
or better performance compared to state-of-the-art models. Moreover, our method sig-
nificantly improved the accuracy of detecting patients with AD, outperforming current
benchmarks [2]. The importance of each feature was evaluated, and the most important
ones were used to enhance the performance of the ML model and reduce computational
complexity. Overall, our proposed method offers a significant advance in detecting AD
and provides a foundation for developing more accurate and efficient diagnosis support
systems.

While our approach demonstrated promising results, further improvements are pos-
sible. For example, an effective hyperparameter tuning method could optimize the per-
formance of the different ML models used. Additionally, novel approaches could be
developed and compared to the current study to achieve higher prediction accuracy.
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Abstract. The performance of recommender systems can be improved
effectively by using knowledge graphs as auxiliary information. However,
most of the knowledge graph-based recommendations focus on learn-
ing item representations in knowledge graphs, capture the collaborative
signals between user interactions inadequately. The user-item bipartite
graph contains explicit preference information of users, and the collabo-
rative signals of user-item interactions help to enhance representations of
users. A user interaction-aware knowledge graph recommendation model
(UIKR) is proposed, which enhances user representation and introduces
the higher-order collaborative signals in user interactions into the repre-
sentation learning of items in knowledge graphs. Specifically, the high-
order collaborative signals hidden in the user-item bipartite graph are
captured to strengthen user representations. Then, the enhanced user
representation is applied to the representation learning of items in knowl-
edge graphs. A hybrid attention function is proposed to aggregate neigh-
bor representation of items, which augments the propagation of user
preferences in knowledge graphs and helps to learn personalized item
representations. Finally, the user interaction-aware item representations
and the enhanced user representations are used for recommendations.
Extensive experiments are conducted on two standard datasets and the
results show that proposed UIKR model outperforms current state-of-
the-art baselines.

Keywords: Recommender system · Knowledge graph · Graph neural
network

1 Introduction

Recommender system is a powerful information filtering tool, which can solve
information profusion effectively and provide users with personalized services
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[14]. Collaborative filtering (CF) [3] is a widely used recommendation technique,
which uses historical behavioral preference data to build models. Although CF-
based methods are effective, they still have the problems of sparse user-item
interactions and the cold start. To solve the above limitations, researchers try
to combine CF with other auxiliary information (e.g., user-item attributes, user
social network information, etc.), which can help alleviate the sparsity problem
and improve the performance of recommendation [10].

Knowledge graph (KG) is a structured network that stores knowledge entities
and relationships between entities and contains abundant information of items,
which can effectively alleviate the problem of data sparsity and provides an effec-
tive tool for the study of the interpretability and accuracy of the recommender
systems [21]. KG contains many types of entities and relations, it is a challenge
to learn the feature representations of users and items based on complex graph
structures. Graph Neural Networks (GNN) [19,20,25] can be used to model
knowledge graphs, which can learn high-order relationships between users and
items, capture the user’s interest and the characteristics of items, and improve
the recommendation performance effectively. In recent years, the KG-aware app-
roach has achieved significant success, but there are still two problems [6]. (1)
This approach focuses on extracting information from KG, while not combin-
ing higher-order signals in user interactions with representation learning in KG.
For example, KGCN [13] and KGNN-LS [12] fail to model user preferences and
neglect the collaborative signals in historical interactions of users that can help
enhance user representations. In addition, some models (such as KGAT [16],
MKGAT [8], and CKAN [17]) construct a unified graph with user interactions
and KG, but they still only perform higher-order aggregation propagation in
KG and do not explicitly model historical interactions of users. (2) Most of the
existing efforts apply relational-aware attention to aggregate neighbor represen-
tations of items, which does not spread user preferences adequately and learn
personalized item representations in KG with few types of relations [18]. It is
a challenge to design a reasonable and effective attention function to aggregate
the neighbor representations of items.

Based on these limitations, a user interaction-aware knowledge graph recom-
mendation model (UIKR) is proposed. The motivation of the UIKR model is
shown in Fig. 1. The items that users have interacted with can reveal the prefer-
ences of users, and the higher-order collaborative signals hidden in the user-item
bipartite graph are actually the user’s high-order interactions, which are advan-
tageous for augmenting user representations. First, we enhance user representa-
tions based on high-order collaborative signals in user interactions, and apply
them to the representation learning of items in KG. Then, a hybrid attention
function is proposed to aggregate neighbor representations of items. The neigh-
bor information is weighted according to the user’s preferences for relations and
neighbor entities when updating item representations in KG, which combines
the high-order collaborative signals in user-item interactions with the represen-
tation learning of items in KG effectively and assists to learn personalized item
representations. The higher-order collaborative signals in the user-item bipartite
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graph and a hybrid attention function is introduced into the representation learn-
ing of items in KG, which enhances the propagation of user preferences in KG,
and can effectively improve the performance of personalized recommendations.

Our contributions can be summarized as follows:

– A user interaction-aware knowledge graph recommendation model (UIKR)
is proposed, which explicitly models the user representations based on the
historical interactions of users, combines the high-order collaborative signals
in user-item interactions with the representation learning of items in KG, and
improves the performance of recommendations effectively.

– A hybrid attention function is proposed for assigning weights to neighbor-
hoods. The weights are assigned according to the user’s preferences for rela-
tions and linked entities, which enhance the propagation of user preferences
in KG.

– Extensive experiments are conducted on two public datasets to demonstrate
that our model is superior to the current state-of-the-art baselines.

Challenge 1: Capture the higher-

order collaborative signals between 

interactions of users inadequately.

Enhance user representations and learn personalized

item representations

A user interaction-aware knowledge graph 
recommendation model (UIKR)

Challenge 1  Challenge 2

Challenge 2: Relational-aware 

attention is adverse to spread user 

preferences and learn personalized 

item representations in KG with few 

types of relations.

Learn high-order collaborative 

signals in user interactions to 

enhance user representations, and 

apply them to representation 

learning of items in KG.

A hybrid attention function is 

proposed, which aggregates 

neighbor representations according 

to the user's preferences for 

relations and  entities.

Challenge

Solution

Contribution

Fig. 1. Motivation of the proposed model.

2 Related Work

This section discusses existing work on KG-based recommendation and GNN
techniques, which are closely related to our work.
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2.1 KG-Based Recommendation

KG contains abundant entities and relations, which is effective auxiliary informa-
tion in recommender systems. Generally, the existing KG-based recommendation
methods can be divided into three types: embedding-based methods, path-based
methods, and GNN-based methods [9].

Embedding-based methods usually use knowledge graph embedding
(KGE) [15] algorithms to represent entities and relations in KG, which is con-
ducive to expanding the semantic information of original items and users. The
embedded method is very flexible in KG-based recommender systems, but it is
more suitable for the graph tasks in knowledge graph, such as link prediction
and knowledge graph completion, because the commonly used knowledge graph
embedding algorithms focus on modeling strict semantic relevance.

Path-based methods provide auxiliary information for the recommender sys-
tems by mining various association paths among items in KG. These paths visu-
ally present the propagation of user preferences. FMG [24] and PER [22] treated
KG as a heterogeneous information network, and the multiple relations between
user and item were obtained by extracting potential features based on meta-
path/meta-graph. However, this method largely relies on manually designed
meta-paths/meta-graphs, so it is difficult to optimize in practice.

In recent years, GNN has shown great potential in the graph task, and more
and more researchers apply GNN to the KG-based recommendations. Given the
graph data, the main idea of GNN is to iteratively aggregate information from
neighbors during propagation and update current node representation by the
aggregated information. KGCN applies graph convolutional networks (GCN) [4]
to item KGs and uses an attention mechanism to capture users’ personalized
preference on relations.

2.2 Graph Neural Network Techniques

Recently, systems based on variants of GNN have shown breakthrough perfor-
mance in many tasks related to graph data. In this part, we will briefly introduce
the existing GNN frameworks, and summarize the work of applying GNN in KG-
based recommendations.

In general, there are five typical GNN frameworks that are used in recom-
mender systems [18]. GCN approximates the first-order eigendecomposition of
the graph Laplacian to iteratively aggregate information from neighbors. Graph-
SAGE [2] samples a fixed-size neighborhood for each node, proposes mean/ sum/
max-pooling aggregator, and adopts concatenation operation for the update of
entities. GAT utilizes the attention mechanism to distinguish the contribution
of neighbors and updates the vector of each node according to the weight of
neighbors. GGNN [5] uses a gated recurrent unit (GRU) [5] in the update step.
HGNN [1] is a hypergraph neural network, which encodes high-order data cor-
relation in a hypergraph structure.

At present, the application of GNN in KG-based recommendations mainly
focuses on the construction of graphs and relation-aware aggregation [18]. In
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the construction of graphs, one way is to explicitly incorporate user nodes into
the knowledge graph, and another way is to use user nodes implicitly to distin-
guish the importance of different relationships. There are also two approaches to
relation-aware aggregation. For the collaborative graph that merges user nodes
and KG, user preferences will be propagated to the entities in KG. As for the
works that do not merge user nodes and KG, usually characterize users’ interests
in relations according to the score function between users and relations.

Fig. 2. Illustration of the proposed UIKR framework, which consists of three modules:
learning user representations based on the user-item bipartite graph, learning item
representations based on KG and predicting the probability of a user interacting with
a candidate item.

3 Problem Formulation

In this section, the formulation of the problem we studied is introduced. The
input of the model includes historical interaction records of users to items
and KG. We use U = {u1, u2, ...un} to denote the sets of users, and V =
{v1, v2, ...vm} to denote the sets of items. The user-item interaction matrix
Y = {(u, v)|u ∈ U, v ∈ V } is defined according to the interaction records of
users. The value of yuv is 0 or 1. If user u has engaged with item v, such as
clicking, browsing, or purchasing, then yuv = 1; otherwise, yuv = 0. In addition,
we use G = {(h, r, t)|(h, t) ∈ E , r ∈ R} to represent the knowledge graph, which
is constructed in the form of entity-relation-entity triples (h, r, t). The E and R
denote the sets of entities and relations in KG, respectively.

Given the user-item interaction matrix Y and the knowledge graph G, the
goal of our model is to learn the prediction function ŷuv = F(u, v|Y,G, θ), where
ŷuv denotes the probability that the user u interact with the item v, with a value
between 0 and 1, and θ is the model parameters.
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4 Methodology

In this section, we detail the proposed UIKR model, the model framework is
shown in Fig. 2, which mainly consists of three parts: (1) Learn user representa-
tion based on the user-item bipartite graph, the user representation can be aug-
mented by capturing the high-order cooperative signals hidden in it. (2) Learn
item representation based on KG. GCN framework is used to model KG, iter-
atively aggregate information from neighbors during propagation, and update
current entity representation according to the hybrid attention function. (3)
Predict the probability of interaction based on user representation and item
representation.

4.1 Learn User Representation

The higher-order collaborative signals hidden in the user-item bipartite graph
can effectively help recommendation, so we try to explicitly model user prefer-
ences based on it. We inherit the method of learning the higher-order collabora-
tive signals from the user-item bipartite graph in UltraGCN [7] to enhance the
user representation. In this approach, the message passing is removed in the rep-
resentation learning of users and the constraint loss is constructed by setting the
convergence mode to approximate the convergence state after the infinite-layer
message passing. More details in the original paper [7].

The expected user representation is shown in the following formula [7]:

eu =
∑

i∈N (u) βu,i ei , βu,i = 1
du

√
du+1
di+1

(1)

where eu and ei are the representations of user u and item i, N (u) is a set of
items for user u interacted, du denotes the number of items that user u has inter-
acted with, and di denotes the number of times that item i has been interacted.
When each user node satisfies the following formula, the model approximates
the convergence state of message passing. The constraint loss is constructed by
maximizing the cosine similarity between eu and ei.

max
∑

i∈N (u) βu,ie�
u ei , ∀u ∈ U (2)

For the convenience of optimization, the sigmoid activation function and negative
log likelihood are introduced. In addition, we choose to perform negative sam-
pling during training to alleviate the over-smoothing problem. After performing
negative sampling, the ultimate constraint loss is as follows [7]:

LC = −∑
(u,i)∈N+ βu,i log

(
σ(e�

u ei)
) − ∑

(u,j)∈N − βu,j log
(
σ(−e�

u ej)
)

(3)

where the σ is the sigmoid function, N+ and N − represent the sets of positive
pairs and randomly sampled negative pairs, and βu,i is the constraint coefficients.

In addition to the constraint loss, the BCE(binary cross-entropy) loss is used
as the main optimization objective in the user-item bipartite graph [7].

LO = −∑
(u,i)∈N+ log

(
σ(e�

u ei)
) − ∑

(u,i)∈N − log
(
σ(−e�

u ej)
)

(4)
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For simplicity, LO and LC use the same sets of sample pairs. Hence, the total
loss on the user-item bipartite graph is:

LU = LO + LC (5)

Instead of modeling user preference by explicit multi-hop information prop-
agation in the user-item bipartite graph, the enhanced user representation is
obtained by constructing loss which approximates the convergence state of multi-
hop message passing. This approach not only learns high-order collaborative
signals from interactions to enhance user representations, but also avoids the
over-smooth problem that easily occurs in multi-layer information propagation.

4.2 Learn Item Representation

To obtain the representations of items, the GCN framework is used to aggre-
gate and propagate messages in KG. The neighborhood information is weighted
according to the personalized interests of users when calculating the representa-
tion of a given entity in KG.

KGCN [13] is a typical KG-aware recommendation model, which can effi-
ciently aggregate the attributes of items in KG and obtain satisfactory results
in multiple datasets. Users have different interests in different relationships. For
example, one user may be more interested in the “director” of a movie while
another user is more concerned about the “actor” of the movie. Therefore, the
KGCN model aggregates neighbor information based on user preferences for
relations. The attention function is as follows:

πu
r = g( eu, er) (6)

where eu and er are the representations of user u and relation r, respectively,
πu

r shows the importance of relation r to user u.
To learn personalized item representations and enhance the propagation of

user preferences in KG, user preferences for item attributes also need to be con-
sidered. Assuming that there are two triples in KG: (The Shawshank Redemp-
tion, actor, Tim Robbins) and (The Shawshank Redemption, director, Frank
Darabont). Two types of relations connect two different neighbors with the
same central node. Suppose that user A is very interested in “Tim Robbins”
and not very interested in “Frank Darabont”, when recommending movies to
user A, “Tim Robbins” plays a more important role than “Frank Darabont” in
calculating the representation of “The Shawshank Redemption”. In other words,
“Tim Robbins” needs to make a greater contribution when aggregating neighbor
information. Considering the different preferences of users for item attributes, a
hybrid attention function is Proposed as follows:

πu
t = g( eu, et)

πu
r = exp (πu

r )∑
e∈N(v) exp (πu

r )
, πu

t = exp (πu
t )∑

e∈N(v) exp (πu
t )

(7)

π = απu
r + μπu

t (8)
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where πu
r and πu

t shows the importance of relation r and attribute node t to user
u, respectively, α and μ are the weights of attention scores πu

r and πu
t , t is the

attribute node of candidate item v, and N(v) represents the neighborhood set of
item v. For ease of calculation, the number of entities in neighborhood set N(v)
is fixed, |N(v)| = K, where K is a configurable constant. Figure 2 describes an
example of aggregating neighbor information using the hybrid attention func-
tion, which considers not only the user’s preferences for relations, but also the
user’s preferences for entities. With regard to the weight of two attention scores,
ablation experiments are performed in the experimental part, which proved the
validity of our proposed hybrid attention weights.

After receiving the attention, the neighborhood information of item i is aggre-
gated according to the attention score. As shown below:

e(1)N(v) =
∑

t∈N(v) πet (9)

where e(1)N(v) represents the first-layer neighborhood representation of item v, et

is the initial representations of entity t. Similar to the KGCN model, a fixed-size
neighborhood set is sampled for each entity in KG for ease of calculation. The
neighborhood representation of an item is weighted by the user’s preferences for
relations and neighborhood entities.

The representation of item v is updated by itself and its neighborhood repre-
sentation. It has been proved by LightGCN that feature transformation and non-
linear activation function have no substantial effect on GCN model. Inspired by
this, feature transformation and nonlinear activation function are discarded when
aggregating neighbor information. The ultimate item representation is shown in
the following formulas:

e(h)v = e(h−1)
v + e(h)N(v)

(10)

e(h)N(v)
=

∑
t∈N(v) πe(h−1)

t (11)

where e(h)v represents the h-layer representation of item v, and e(h)Nv
represents

the h-layer neighborhood representation of item v.
After obtaining the ultimate h-layer item representation, using the inner

product to predict the probability of user u interacting with item v.

ŷuv = eT
u e(h)v . (12)

where eu is the user representation learned on the user-item bipartite graph.
The BCE loss and negative sampling strategy are also used for optimization

when learning item representation in KG. The total loss on KG is:

LKG = −∑
(u,v)∈N+ I(ŷuv, yuv) − ∑

(u,j)∈N − I(ŷuj , yuj) (13)

where I is BCE loss, ŷuv is a prediction, and yuv is a true label.
The final total loss function of the UIKR model is as follows:

L = LU + LKG + γ‖θ‖22 (14)

where γ is the parameter for L2 regularization.
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5 Experiments

In this section, extensive experiments are conducted on two realistic scenarios to
determine the validity of our proposed model. Firstly, the datasets and evaluation
metrics used in the experiment are introduced. Then, the experiment settings
are discussed. Finally, the experimental results are presented and analyzed.

5.1 Evaluation Datasets and Metrics

Two typical datasets were used in our experiment: Last.FM and Book-Crossing.
All datasets are publicly accessible and vary in size and sparsity. KGs of these
datasets are provided by KGCN [13] which are constructed using Satori, a com-
mercial KG built by Microsoft. The statistics of the two datasets are recorded
in Table 1.

– Last.FM. This is a music dataset from Last.FM online music system, which
contains music listening events created by Last.FM users.

– Book-Crossing. It is a frequently used book dataset, which includes user
rating data (ratings) and book metadata (description, category information,
price, and brand).

Table 1. Statistics of the datasets.

Last.FM Book-Crossing

Users 1,872 17,860

Items 3,846 14,967

Interactions 42,346 139,746

Entities 9366 77,903

Relations 60 25

KG triples 15,518 151,500

We evaluate the model in the experimental scenario of click-through rate
(CTR) prediction, which uses the trained model to predict each interaction in the
test set. The metrics of AUC and F1 to evaluate the results of CTR prediction.
The AUC is equivalent to the probability of positive samples are ranked higher
than negative samples. F1 is the harmonic mean of accuracy and recall of the
model, which can reflect the robustness of the model.

5.2 Baselines

To demonstrate the effectiveness of our proposed model, UIKR is compared with
recent state-of-the-art KG-based recommendation models, including CKE [23],
PER [22], RippleNet [11], KGAT [16], KGCN [13], and CKAN [17]. The details
are as follows:
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– CKE [23]. CKE introduces structure information, text data, image data,
and other knowledge base information into the recommendation system to
improve the performance of the recommender systems.

– PER [22]. PER treats KG as a heterogeneous information network, and the
multiple relations between user and item were obtained by extracting poten-
tial features based on meta-path/meta-graph.

– RippleNet [11]. RippleNet is an end-to-end framework for KG-based recom-
mendation, which automatically discovers the potential interests of users by
means of preference propagation in KGs.

– KGAT [16]. KGAT trains recommendation and KGE alternately, which
assigns the weight according to the distance between the linked entities in
space of the relation.

– KGCN [13]. KGCN applies GCN to discover the high-order structural and
semantic information from item KGs, which aggregates information based on
user preferences for relation.

– CKAN [17]. CKAN explicitly encodes the collaborative signals that are
latent in user-item interactions and naturally combines them with knowledge
associations in an end-to-end.

5.3 Experimental Setup

For each dataset, we randomly select 60% of interaction history of each user to
constitute the training set, and treat the remaining as the test set. For compar-
isons, the batch size of data for all of the models was fixed as 256, the embedding
parameters were initialized by the Xavier method, and our model was optimized
by the Adam optimizer. The optimal parameter settings were determined by
grid search, the learning rate is explored between {0.001, 0.002, 0.0015, 0.01},
the L2 normalization coefficients are set {0.0001, 0.00002, 0.0002, 0.00015}, and
the embedding size is searched in 8, 16, 32, 64, 128. For some baselines, we report
the results from their papers to keep consistency. They are also comparable since
we use the exactly same datasets and experimental settings provided by them.
For other baselines, we mainly use their official open-source code and carefully
tune the parameters to achieve the best performance for fair comparisons.

5.4 Results

Table 2 shows the experimental results of all models in CTR prediction. We have
the following observations from the results of the experiment:

– The UIKR has significantly improved over the state-of-the-art baselines in
both datasets. The values of AUC and F1 were increased by 2.6% and 1.2%
in the Last.FM and by 5.2% and 7.9% in the Book-Crossing, respectively,
which shows the effectiveness of our model.

– The performance improvement of the UIKR in the Book-Crossing was higher
than in the Last.FM, which may be caused by the fewer relationship types
in Book-Crossing than in Last.FM. On average, there are 6060 triples per
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relationship in Book-Crossing (compared with 258 triples per relationship in
Last.FM). In this case, aggregation of neighborhood representations based on
user’s preference for relations easy to learn similar item representations.

– The performance of GNN-based model (KGAT, KGCN, and CKAN) is bet-
ter than that of non-GNN-based model (CKE, PER, and RippleNet), which
shows that superior item representations can be learned by using the GNN
framework to model the KG.

Table 2. Overall performance comparison. The best results are highlighted in bold.

Last.FM Book-Crossing

Models AUC F1 AUC F1

CKE 0.747 0.674 0.676 0.623

PER 0.641 0.603 0.605 0.572

RippleNet 0.776 0.702 0.721 0.647

KGCN 0.829 0.725 0.813 0.728

KGAT 0.829 0.742 0.731 0.654

CKAN 0.842 0.769 0.753 0.673

UIKR(Ours) 0.864 0.778 0.856 0.786

%imp 2.60% 1.20% 5.20% 7.90%

5.5 Ablation Study of UIKR

In order to verify the effectiveness of the proposed model, we performed the
ablation experiment from the following two aspects.

First, we investigate the effect of the perception of user interactions and
the proposed hybrid attention function on the performance of the model. Other
parameters are consistent, UIKR-w indicates that the model uses the hybrid
attention function, but the perception of user interactions are ignored. UIKR-u
indicates that the model captures the perception of user interactions, but the
attention function is determined only by the user’s preference for the relations.

Then, the effect of different weights in attention function on the performance
of the model is explored. Set α + μ = 1, we changed the values of α and μ to
explore the performance of UIKR after using the attention function with different
coefficients.

Impact of Different Improved Modules. The ablation experiment results of
different improved modules on the performance of the model are shown in Fig. 3.
We found that in both datasets, UIKR performed best, followed by UIKR-u, and
UIKR-w performed worst, which indicates that both of our proposed improve-
ments can help to improve recommendation performance, and the perception
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Fig. 3. Performance comparison w.r.t different improved modules. UIKR-w indicates
that the model introduces the hybrid attention function, UIKR-u indicates that the
model captures the perception of user interactions, and UIKR indicates that both
improved modules are introduced.

of user interactions is more effective than the hybrid attention function. The
experimental results show that the cooperative signals on the user-item bipar-
tite graph can effectively enhance representations of users and the use of hybrid
attention functions can also help spread the user’s personalized preferences.

Impact of Weights in Attention Function. The experimental results of the
model using hybrid attention functions with different coefficients are shown in
Fig. 4. We can observe that the model of α = 0.9 and μ = 0.1 performs best
in the Last.FM, and the model of α = 0.1 and μ = 0.9 performs best in the
Book-Crossing, which shows the effectiveness of our proposed hybrid attention
function. In the Last.FM, the more even the proportion of α and μ, the lower
the performance of the model, which may be due to the rich types of relations
(60 types) in the Last.FM. The aggregated representations of items may tend to
be similar when considering the user’s preference for relationship and the user’s
preference for neighbor nodes on average, which is not conducive to improving
the performance of model. Furthermore, aggregation of neighborhoods based on
user’s preferences for relations is more efficient in the Last.FM, so the model
performs best when α = 0.9. In the Book-Crossing, the performance of UIKR
decreases with increasing values of α, which indicates that it is more efficient for
Book-Crossing to aggregate neighbor information based on user’s preferences for
neighbor entities. Therefore, the UIKR performs best when α = 0.1.
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Fig. 4. Performance comparison w.r.t different attention function.

6 Conclusion and Future Work

In this paper, a new model named UIKR is proposed, which enhances user repre-
sentations and introduces higher-order collaborative signals in user interactions
into the representation learning of items in knowledge graphs. First, user rep-
resentations are enhanced by capturing high-order collaborative signals in user
interactions. Then, the augmented user representations are applied to represen-
tation learning of items in KG. Finally, a hybrid attention function is proposed
to aggregate neighbor information according to user’s preferences for relations
and entities when learning item representations. The experiments on two public
datasets have demonstrated that UIKR outperforms the current state-of-the-art
baselines.

It is an important and hot research topic to apply the CNN framework to
model graph data for improving recommendations. We consider two directions
for future work. (1) To make the time complexity of the UIKR model predictable,
we have used a random strategy for selecting a fixed number of neighbors. We
can possibly explore neighborhood samples in more effective ways than random
sampling. (2) With the development of multimodal KGs, the data in a KG
includes not only text, but also pictures and videos. It will be worth our while
to use multimodal KGs for enhancing recommendations.
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Abstract. We present a transparent and tunable recommender system
using neural networks in which the user’s preference for each tag cal-
culated from his or her rating history is extracted as a user feature,
and latent knowledge about the relationship between an item and a tag
is extracted as an item feature. To improve user satisfaction with rec-
ommender systems, researchers have been focusing not only on a sys-
tem’s recommendation accuracy but also on its transparency, novelty,
and serendipity as evaluation indices. Furthermore, the degree of user
involvement in the recommendation process has been shown to substan-
tially affect user satisfaction. Therefore, we propose showing a tag cloud
as the user’s profile as captured by the system from the user’s interaction
history and providing the user with a way to tune the recommendation
results so that user satisfaction can be improved.

Keywords: recommender system · user profile · transparent
recommendation · tunable recommendation

1 Introduction

With the advancement of information technology and the rapid spread of the
Internet, the cost of storing and processing data has decreased dramatically, and
an enormous amount of information is spread over the web. While a wide vari-
ety of information has already been made available to everyone, it is becoming
increasingly difficult to identify useful information from the vast amount of data.
Hence, recommender systems that support user decision-making are attracting
attention and being utilized in many fields.

Many conventional recommender systems are based on the assumption that
recommending items that match the user’s preferences leads to higher user sat-
isfaction. However, recent research has shown that user satisfaction cannot be
improved by focusing only on recommendation accuracy and that new evaluation
indices such as diversity, novelty, and serendipity are required [7].
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Research on satisfaction with recommender systems suggests that the trans-
parency of recommendations, i.e., the ability of users to understand the rec-
ommendation process and reasons for the recommendations, contributes to the
acceptability of recommended items, trust in the system, and satisfaction [6,15].
While many systems now provide users with reasons for recommending items,
such as “this item is recommended because ...”, they do not tell users how their
preferences were captured. This is because it is hard to directly show it to users,
in particular, when neural networks are used. To the best of our knowledge,
there is no recommender system that gives the user the entire picture of user
preferences.

Furthermore, one of the most important factors in determining user satisfac-
tion is the degree of user involvement in the recommender system. Although con-
ventional recommender systems are often studied from the viewpoint of how to
reduce the user’s load, several experiments have demonstrated that user involve-
ment in the recommendation process improves satisfaction even if the user’s load
increases [8].

Many web services currently use the user’s personal information and inter-
action history to make recommendations, which leaves the user with very lim-
ited means to influence the recommendations based on his or her preferences.
For example, TikTok, a video-sharing application, provides users with a means
to update its recommendation algorithm in response to user feedback such as
“likes” or “not interested” on recommended videos. However, it is very difficult
to change all past relevant ratings if the user’s interests change substantially. In
addition, if a user has an interest that is not in his or her interaction history, it
will not be reflected in the recommendation results unless the user searches for
and evaluates items related to that interest. Under these circumstances, users are
more likely to unknowingly fall into a filter bubble, which reduces their exposure
to information outside their interests and to new information [11].

Therefore, we aim to improve user satisfaction by providing users with a
higher level of involvement while increasing the transparency of the recommender
system. Specifically, by making use of tags which are keywords labeled on items,
we have devised a system that presents a tag cloud of an individual user’s tag
preferences calculated on the basis of the user’s rating history in order to provide
an overall picture of the user’s preferences and to enable users to adjust their
tag profile to match their preferences. A user can then adjust the tag profile in
accordance with his or her preferences to obtain a new recommendation result.

However, in the real world, user preferences often change over the course
of using a system due to a variety of factors. For the system to recommend
items that match the user’s current preferences, it is necessary to consider the
relationship between the user’s previous and subsequent interaction histories.
Therefore, the recommendation algorithm of the proposed system extracts the
relationship between items and tags as item features and time-series data for the
user’s preference and rating history for each tag as user features. Both features
are used for making recommendations using neural networks.
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This paper is organized as follows. Section 2 describes related work. Section 3
introduces our method. We show experimental results and discuss them in
Sect. 4. Section 5 summarizes the key points.

2 Related Work

2.1 Explainable Recommendation

Explainable recommendation refers to a recommendation algorithm that recom-
mends items and at the same time provides the reason the items are recom-
mended to the user. For instance, an explainable recommender system provides
explanations like “this item has been bought by people similar to you” or “these
items are similar to the item you are currently browsing” on Amazon and other
online shopping service sites. Recommendation explanations in recommender
systems are expected to have various effects, such as increasing trust and satis-
faction with the system and assisting the user’s decision-making.

The category of explanation is divided into three components: (1) input, or
user models, (2) process, or algorithms, and (3) output, or recommended items.
An explainable recommender system that focuses on process aims to understand
how the algorithm works. Various studies have focused on this point. Given an
arbitrary trained recommendation model, Ribeiro et al. [13] proposed a method
for learning input-output pairs for the model by using linear regression and for
interpreting the model with the weight of each feature as the feature’s impor-
tance.

Recommender systems that focus on explaining outputs regard the recom-
mendation process as a black box and try to justify the recommendation results.
Liu et al. [10] provided a visual and knowledge-level explanation of the inter-
actions between users and items with a knowledge graph constructed by users’
reviews. Wang et al. [17] fused a knowledge graph and sentiment extracted from
review aspect information to generate recommendation reasons.

Recommender systems that focus on explanations for inputs have become
increasingly important in recent years. This is because users are concerned about
the collection and use of their personal data in the system, and there is a growing
interest in transparency of the user model as input. An example of this type of
recommender system is System U developed by Badenes et al. [1]. System U uses
psycho-linguistic analysis to automatically derive personality traits from social
media information.

2.2 Interactive Recommendation

Recommender systems in web services such as Amazon and Netflix aim to present
recommended items that fit well with the user’s overall preferences in order to
reduce their decision-making efforts.

However, users may feel too dominated by the system, which reduces their
exposure to more diverse and novel information. In particular, in cold-start sit-
uations, where it is difficult to make recommendations for targets that do not
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yet have sufficient interaction history, considerable effort is required on the part
of the user before an appropriate recommendation can be obtained. In light of
these limitations, research on interactive recommendation has recently focused
on increasing the degree of user involvement in the recommendation process and
improving the transparency of the system.

In the Movie tuner interface proposed by Vig et al. [16], the user adjusts
his or her preferences for tags to obtain recommendations for movies that differ
from the currently recommended ones in terms of certain features while they are
similar overall.

Many other studies have focused on the degree of involvement. The TEA
(Tunable and Explainable Attributes) system [5] devised by Farooq Butt et al.
enables users to adjust the importance of demographic features such as age,
gender, and occupation. Chen et al. developed a technique called critiquing that
enables users to manipulate recommendation results by rating the attributes
of recommended items [4]. Taste Weights [3], a model devised by Bostandjiev
et al., makes recommendations on the basis of different sources of information
available on social networks and based on user feedback. Denis et al. [12] devel-
oped a hybrid recommendation system that enables the user to control how the
algorithms are combined. These approaches aim to increase the transparency of
the recommender system and provide users with more satisfactory recommen-
dations.

2.3 Tag-Based Recommendation

The use of tags, or keywords, on web sites such as Delicious, Flickr, and Amazon
to search and post contents has become widespread. This is because tags are
easily manageable and searchable by users. Tags can describe what a particular
item is, what it is about, and what characteristics it has, and they are useful
in explaining recommendations. Shirky [14] asserted that since tags are created
by the user, they represent concepts that are meaningful to the user. Tags serve
as a bridge for users to understand unknown relationships between items and
themselves. The user’s attitude toward tags can also be seen as a reflection of
their preferences.

There are many studies on tag-based recommendation systems, and they
have shown that tags can help users discover and understand items and make
decisions [2,9]. However, none of them applies tags to a user feedback mechanism.

3 Proposed System

Our proposed recommender system shows how it perceives a user’s profile on the
basis of his or her tag preferences as a tag cloud and provides a user feedback
mechanism based on the tag cloud. The principle of deciding this design is to
provide more intuitive and easier user interface to users.

An overview of our system is shown in Fig. 1. The left side shows the flow of
the tag-based recommendation model. Specifically, the item part (pink boxes)
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embeds item and tag relevance information, and the user part (green boxes)
embeds user interaction history. The generated item and user embeddings are
each learned by a neural network and used to generate latent factors. The ratings
of the items to be recommended to this user are predicted by calculating the
inner product of the item feature and the user feature. On the basis of the
predicted ratings, the Top-k recommended items are generated and presented
to the user. At the same time, on the basis of the user’s tag preferences, a
tag cloud representing the user’s profile is generated and presented to the user.
The user can then adjust the tag preferences in accordance with his or her
current preferences. The system immediately updates the recommendations in
accordance with the adjusted tag preferences.

The proposed system can be divided into three components: item modeling,
user modeling, and rating prediction. We explain the user feedback mechanism
as well as these three components in detail in the following sections.

Fig. 1. Overview of proposed recommender system

3.1 Item Modeling

Item modeling uses a neural network to learn item-tag associations on the basis
of the tag genome proposed by Vig et al. [16]. They are created by extracting
content features such as user reviews, ratings, and tags on the basis of human
judgment of tag relevance derived from user surveys conducted by the Movie-
Lens group. As a biological genome contains all the genetic information of DNA,
a tag genome contains information about the relationships between items and
common tags in a vector space. The tag genome indicates the degree of associa-
tion between each item and its tag by a sequence of values ranging from 0 to 1 (0
means no association at all, and 1 means very strong association). For example,
Table 1 shows that the movie “Toy Story” has a higher association with the tag
“toys” than with the tag “computer animation”.
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Table 1. Example of tag genome

Toy Story (1995)

Tag Relev.

toys 0.999

computer animation 0.998

pixar animation 0.995

kids and family 0.995

animation 0.987

animated 0.979

children 0.973

cartoon 0.947

pixar 0.941

disney 0.929

Item modeling is performed using a fully coupled neural network. The number
of units in the input layer corresponds to the number of tags. Item features Ĩ
are calculated using the ReLU activation function.

3.2 User Modeling

User modeling is performed by combining the embedding of inferred user tag
preference information and that of time-series data generated using LSTM (long
short-term memory), which is a type of RNN used to understand changes in user
interests.

RNNs are effective for learning patterns of temporal variation from contin-
uous data. In an RNN, the output of one layer is not only used as the input
of the next layer but also as an output, whereas the input of one layer in a
conventional neural network is only used as input for the next layer. RNNs are
not well suited to handling data with long-term dependencies beyond the gradi-
ent explosion and disappearance problem of convolutional neural networks. To
avoid this long-term dependence problem, our user model uses LSTM to learn
the long-term dependencies in a user’s rating history.

Specifically, we represent each user as an Lts × Eu matrix, where Lts is the
maximum length of the time series, and Eu is the number of dimensions of the
user embedding. Potential dependencies in the rating history are learned and
used as additional information for defining the user’s features, as represented in
Eq. (1), where w1 and w2 are the weights of the user embedding and time-series
embedding, respectively. User modeling, like item modeling, uses a fully coupled
neural network. However, the user’s tag preference information is used as input.

Uembedding = w1 · Ufeature embedding + w2 · Useq embedding (1)
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3.3 Rating Prediction

The rating value determined from the item and user features for user ui is
calculated using

r̂ui = Ũ · Ĩ , (2)

where r̂ is the predicted value, and Ũ and Ĩ are the user and item features,
respectively. Loss function J(θ) is defined as the squared error between the actual
and predicted values:

J(θ) =
∑

rui∈R

(r̂ui − rui)
2
. (3)

To further improve the accuracy of the model, we introduce a bias term
representing the average rating per user and per item, while several techniques,
such as a z-score, to deal with the bias exist. User bias can be considered as
the inherent tendency of users to give higher or lower ratings than the average
for the system as a whole. Similarly, item bias represents the tendency for a
particular item to receive a higher or lower rating than the average. When the
bias term is taken into account, the predicted values of the ratings are modified
using

r̂ui = Ũ · Ĩ + μ + bi + bu, (4)

where μ is the mean of all non-missing values, bi is computed by subtracting μ
from the average rating of item i and is the item’s rating bias term, and bu is
the user’s rating bias, calculated by subtracting μ from the average rating value
of user u.

3.4 User Feedback

To improve the acceptability of recommended items to a user, trust in the system,
and satisfaction with its use, we introduce a mechanism that requires users to
provide feedback. To help users intuitively understand how their preferences are
perceived by the system, a tag cloud like that shown in Fig. 2 is generated from
the user embedding like that shown in Table 2 and presented to the user as a tag
cloud corresponding to the user’s profile. From the tag cloud in Fig. 2, the user
can understand that the system perceives that he or she is interested in movies
that are highly related to the tags “bad ending”, “sexuality”, and “made for tv”.

This tag cloud enables the user to adjust the tag size in accordance with
his or her preferences. The embedding weight of a tag is updated in response
to the adjustment by using Eq. (5). The terms weighttag and weight ˆtag are the
embedding weights of the tag before and after adjustment, respectively, and
weightvariation is the amount the embedding weight is adjusted.

weight ˆtag =
weighttag

∑
weighttag∑

weighttag +
∑

weightvariation
(5)

As an example, if we adjust the embedding weights of the tags “pixar ani-
mation” and “007 (series)” to be 0.0499 and 0.0500, respectively, the tag “pixar
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Table 2. Example of user embedding

tag embedding weight

bad ending 0.049998

sexuality 0.049998

made for tv 0.049923

iran 0.049886

better than expected 0.049879

neo-nazis 0.049811

romantic 0.049804

male nulity 0.049743

witch 0.049578

competition 0.049498

Fig. 2. Example of tag cloud

animation” is placed between the tags “made for tv” and “iran” and the tag
“007 (series)” between the tags “romantic” and “male nudity”. The updated
user embedding profile and tag cloud are shown in Table 3 and Fig. 3, respec-
tively.

Table 3. Example of user embedding after tag
adjustment

tag embedding weight

bad ending 0.049888

sexuality 0.049888

made for tv 0.049814

pixar animation 0.049790

iran 0.049777

better than expected 0.049770

neo-nazis 0.049702

romantic 0.049694

007 (series) 0.049691

male nudity 0.049634

Fig. 3. Example of tag cloud after
tag adjustment

In accordance with this user feedback, the system updates the feature embed-
ding, which was learned by combining the user feature shown in Fig. 1 and the
embedding generated by using LSTM for time-series data. This update causes
the user profile to be recalculated and the user features to be updated, which
results in a new recommendation list being generated.
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4 Experimental Evaluation

Our aim was to construct a transparent and tunable recommendation model.
Therefore, we first needed to design an underlying highly accurate recommender
system based on our proposed tag-based model. We then evaluate our trans-
parent and tunable recommendation model which is built on top of this recom-
mender system.

After determining the best underlying recommender system out of four design
choices, we evaluate our transparent and tunable recommendation model based
on user feedback through case studies. This is because being able to see the
generated tag profile as a cloud enables the user to understand how the system
understands his or her preferences, to efficiently adjust his or her preferences,
and to obtain recommendations that match those preferences.

4.1 Datasets

We conducted experiments using the MovieLens-1M (ml-1m) and MovieLens-
25M (ml-25m) datasets, which are publicly available from GroupLens, to eval-
uate the effectiveness of the proposed method. From each dataset, we selected
only users who had rated at least 20 movies. A summary of the datasets is shown
in Table 4. For the experiments, the datasets were sorted on the basis of time
stamps, with 80% of the data from the oldest to the newest used as training
data and the remaining 20% used as test data.

Table 4. Summary of datasets

Dataset ml-1m ml-25m

Users 6,019 162,541

Movies 2,618 13,816

Ratings 404,273 24,674,113

Tags 1,128 1,128

Rating Scale {1, 2, 3, 4, 5} {0.5, 1, · · · , 4.5, 5}

4.2 Evaluation Metrics

We evaluated recommendation accuracy using RMSE, which is a measure of
accuracy in predicting ratings and is defined by

RMSE =

√√√√ 1
n

n∑

i=1

(r̂i − ri)2, (6)

where n is the total number of predictions, and ri and r̂i are the measured and
predicted values, respectively.
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4.3 Design Choices

To evaluate the effect of using LSTM and the bias term on the underlying rec-
ommender system performance, we created four systems, each with a different
design, and conducted experiments. For training, the hyperparameters were set
so that the number of dimensions of the hidden layer was 512, the learning
rate was 0.001, and the batch size was 1024, on the basis of the exploratory
experimental results.

– Rec: This model was trained using item embedding for the association
between items and tags and user embedding for the inferred user tag prefer-
ences.

– Rec++: This model was trained using item embedding for the item-tag asso-
ciation and user embedding for the inferred user tag preferences with a bias
term.

– RecLSTM: This model was trained using item embedding for the item-tag
association and user embedding plus LSTM-trained time-series data for the
inferred user tag preferences. The maximum length of the time series to be
trained was set to 20.

– RecLSTM++: This model was trained using item embedding for the item-tag
association and user embedding plus LSTM-trained time-series data for the
inferred user tag preferences with a bias term. The maximum length of the
time series to be trained was set to 20.

Table 5. RMSEs of recommender systems

Design ml-1m ml-25m

Rec 3.785 3.737

Rec++ 1.154 1.248

RecLSTM 1.094 0.986

RecLSTM++ 0.971 0.925

For both datasets in Table 5, the RecLSTM++ design system showed the best
recommendation accuracy. The Rec++ and RecLSTM++ design systems, which
take account into account user and item evaluation biases, showed better recom-
mendation accuracy than Rec and RecLSTM, which do not. On the other hand,
the RecLSTM and RecLSTM++ design systems, which take into account the
user’s history, showed better recommendation accuracy than Rec and Rec++,
which do not. These results demonstrate that it is possible to improve perfor-
mance and provide more accurate recommendations by considering evaluation
bias and learning time-series data.

From the above discussion, we decided to use the RecLSTM++ as an under-
lying recommender system for our proposed transparent and tunable system for
the following two case studies.
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Table 6. User embedding of target user (Case 1)

tag embedding weight

independent film 0.090688

action 0.070832

talky 0.070338

black comedy 0.067924

weird 0.067227

enigmatic 0.065787

off-beat comedy 0.063943

low budget 0.060274

funny 0.060227

creepy 0.060054

Fig. 4. Tag cloud of target user
before adjustment (Case 1)

4.4 Case Studies

We evaluated the transparency and tunable features of our proposed system
through case studies because it is difficult to evaluate such features in an auto-
matic and systematic way.

For the first case study, we randomly selected a user from the MovieLens-
25m dataset. We adjusted the tag profile of the target user on the basis of user
feedback and presented new recommendations in accordance with the adjusted
tag profile.

Table 6 shows the part of the user embedding that contains the target user’s
preferences, and Fig. 4 shows the tag cloud generated from the user embedding.
From this tag cloud, we can see that the system perceives that the target user
is likely interested in movies that are highly related to the tags “independent
film”, “action”, “talky”, “black comedy”, and “weird”.

The system presented the tag cloud to the user and, at the same time, pre-
sented a list of the recommendations generated by the recommendation algo-
rithm, which is shown in the second column in Table 8.

To test the user feedback mechanism, we changed the size of the tags “sci-fi”,
“adventure”, and “drama” and adjusted their weights accordingly. The adjusted
user embedding profile and tag cloud are shown in Table 7 and Fig. 5, respec-
tively.

In response to this user feedback, the user embedding was updated and the
ratings were recalculated and predicted. The newly generated recommendation
list is shown in the third column in Table 8.

Table 9 shows the associations between the recommended items before and
after adjustment and the Top-5 tags of high interest to the target user (“inde-
pendent film”, “action”, “talky”, “black comedy”, and “weird”) and the three
adjusted tags (“sci-fi”, “adventure”, and “drama”). It shows that the movies with
high relevance to the tags of high user interest were ranked higher. Comparing
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Table 7. User embedding after adjustment (Case
1)

tag embedding weight

independent film 0.090290

sci-fi 0.079649

adventure 0.074671

action 0.070521

talky 0.070029

drama 0.069693

black comedy 0.067626

weird 0.066932

enigmatic 0.065499

off-beat comedy 0.063662

Fig. 5. Tag cloud after adjustment
(Case 1)

Table 8. Recommendation lists for target user before and after feedback (Case 1)

Top-10 Before adjustment After adjustment

1 Heavenly Creatures The City of Lost Children

2 The City of Lost Children Heavenly Creatures

3 Space Jam Space Jam

4 That Thing You Do! That Thing You Do!

5 Artemisia Yes, Madam

6 Glengarry Glen Ross Artemisia

7 Miami Rhapsody Glengarry Glen Ross

8 The White Balloon Miami Rhapsody

9 Loaded What’s Eating Gilbert Grape

10 Second Jungle Book The White Balloon

the before and after adjustment recommendation lists, we see that “The City
of Lost Children,” which was in second place before the adjustment, is now in
first place due to the user feedback. This is because “The City of Lost Children”
is more relevant to the adjusted tags than “Heavenly Creatures”, which was in
first place in the original recommendation list. In addition, “Yes, Madam” and
“What’s Eating Gilbert Grape”, which were not in the Top-10 recommended
list before the adjustment, are now in the Top-10 as a result of the user feed-
back. These two movies were apparently recommended due to their very high
relevance to the tags “action” and “weird”, respectively, and because they have
higher relevance to the three adjusted tags than the other movies.
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Table 9. Relationships between recommended movies and tags (Case 1)

Movie indepen-dent film action talky black comedy weird sci-fi adven-ture drama

Heavenly Creatures 0.484 0.070 0.509 0.266 0.805 0.023 0.111 0.631

The City of Lost Children 0.273 0.105 0.542 0.289 0.984 0.602 0.312 0.330

Space Jam 0.131 0.602 0.209 0.088 0.257 0.087 0.313 0.137

That Thing You Do! 0.170 0.153 0.220 0.103 0.276 0.043 0.212 0.360

Artemisia 0.253 0.116 0.263 0.102 0.428 0.029 0.104 0.420

Glengarry Glen Ross 0.527 0.161 0.828 0.374 0.470 0.019 0.086 0.931

Miami Rhapsody 0.486 0.101 0.376 0.177 0.225 0.043 0.117 0.279

The White Balloon 0.280 0.067 0.403 0.147 0.466 0.019 0.197 0.196

Loaded 0.625 0.223 0.323 0.198 0.418 0.071 0.147 0.331

Second Jungle Book 0.101 0.184 0.085 0.065 0.357 0.045 0.313 0.150

Yes, Madam 0.074 0.959 0.229 0.090 0.179 0.058 0.200 0.192

What’s Eating Gilbert Grape 0.444 0.076 0.503 0.226 0.527 0.020 0.079 0.790

Fig. 6. Tag cloud of target user before
adjustment (Case 2)

Fig. 7. Tag cloud of target user after
adjustment (Case 2)

Table 10. Recommendation lists before and after adjustment (Case 2)

Top-10 Before adjustment After adjustment

1 Blackmail Blackmail

2 Gordy Black Beauty

3 Burnt by the Sun Gordy

4 Black Beauty Burnt by the Sun

5 Nemesis 2: Nebula Nemesis 2: Nebula

6 Pretty in Pink Mother Night

7 For Whom the Bell Tolls Pretty in Pink

8 The Philadelphia Story For Whom the Bell Tolls

9 Broken Arrow The Philadelphia Story

10 House Party 3 Broken Arrow

To verify the effectiveness of the proposed transparent and tunable recom-
mender system, another case study was performed for a different user. The tag
cloud for this user before adjustment is shown in Fig. 6, and the one after adjust-
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Table 11. Associations between recommended items and tags (Case 2)

Movie money dark hero paranoid 007 (series) coming-of- age oscar winner vampires

Blackmail 0.066 0.818 0.624 0.019 0.278 0.710 0.003

Gordy 0.100 0.608 0.480 0.020 0.189 0.510 0.003

Burnt by the Sun 0.052 0.424 0.302 0.043 0.332 0.832 0.002

Black Beauty 0.067 0.337 0.263 0.019 0.275 0.948 0.003

Nemesis 2: Nebula 0.023 0.160 0.103 0.024 0.280 0.861 0.003

Pretty in Pink 0.081 0.449 0.235 0.019 0.449 0.797 0.003

For Whom the Bell Tolls 0.049 0.394 0.242 0.034 0.301 0.750 0.003

The Philadelphia Story 0.024 0.426 0.197 0.038 0.256 0.795 0.003

Broken Arrow 0.017 0.401 0.142 0.034 0.143 0.843 0.005

House Party 3 0.632 0.150 0.342 0.015 0.124 0.454 0.003

Mother Night 0.038 0.458 0.616 0.018 0.216 0.962 0.003

ment with larger tags “oscar winner” and “vampires” is shown in Fig. 7. Table 10
shows the recommendations before and after adjustment. From Table 11, it can
be seen that movies with higher associations with the tag “oscar winner” are
ranked higher due to user feedback.

5 Conclusion

Our proposed recommender system is aimed at improving transparency and user
involvement. The former aim is achieved by presenting the user’s tag preferences
corresponding to the user’s profile to the user in the form of a tag cloud, and the
second is achieved by enabling the user to adjust the tag profile in accordance
with his or her preferences. A new recommendation list is then presented that
is based on the adjusted profile.

We built and compared four neural-network-based recommender systems
with different designs as an underlying system of our proposed system, in which
item embedding represents the relationship between items and tags and user
embedding represents the time-series data of the user’s preference and rating
history for each tag. The results demonstrated that considering bias and learn-
ing time-series data improved performance.

Evaluation using two case studies with user feedback demonstrated that our
proposed system enables users to obtain an overall picture of their preferences
and that adjusting their preferences on the basis of user feedback yields new
recommendation results. This should lead to increased user satisfaction with the
recommender system.

Although the proposed recommender system can provide new recommenda-
tion results to users in accordance with their adjusted preferences, it may not
be able to do so if the amount of user adjustment is small. Moreover, since
the system does not consider relationships among tags, when user embedding is
updated in response to user feedback, tags that are highly similar to the tags
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to be adjusted may be updated in the direction opposite to the user prefer-
ences. This may cause the system to learn different user preferences for the same
preference, which may cause the system to operate improperly. We intend to
investigate these limitations and improve the system to obtain more satisfactory
recommendation results. Future work also includes assessing the effectiveness of
the proposed system in the real world through user satisfaction surveys, and
dealing with scalability issues of the proposed system.
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Abstract. There are various styles of sightseeing, such as sightseeing
tours and city walk, and support is required to meet the various needs
derived from these styles. Most existing methods specialize in a single
sightseeing style and optimize time and distance. We proposes a “MER-
IHARI Area Tourism” style in which sightseeing spots, POI (Point Of
Interest) are clustered into multiple areas and visiting style is varied for
each area, so that visitors can enjoy the “representative” of the sight-
seeing city. The proposed method divides a tourist city into multiple
areas (clusters) by clustering tourist POIs. Next, features obtained from
trajectory data and image data are analyzed to calculate representative
spots that symbolize area characteristics, and multiple area visitation
courses (plans) that include these places are generated. The system then
optimizes these courses based on the user’s time and other conditions and
generates a sightseeing plan, contrasting the number of visiting spots in
each area.

Keywords: Smart Tourism · Tour Planning · POI Mining

1 Introduction

There are various styles of sightseeing. For example, there is the “Sightseeing
tours” style, which aims to visit as many famous and well-known tourist spots as
possible tourists. On the other hand, the “City walking” style, in which tourists
aim to experience the atmosphere of the city by walking around the area. These
styles differ regarding the selection of POIs (Point Of Interest), duration of stay,
and area transition. However, tourists may prefer to a combination of multiple
tourist styles, except in the case of group tours where the plan is decided by travel
agents. Therefore, by combining multiple tourism styles, it will be possible to
support tourists with high satisfaction.
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Fig. 1. Overview of the MERIHARI Area Tourism

Existing research has mainly focused on a single style of sightseeing. For
example, some research tries planning a tour by clustering POIs and optimizing
the plan in terms of time and distance [2]. In contrast, others analyze POIs suit-
able for city walking by evaluating the number of nearby POIs to walk around
major tourist POIs [3]. In addition, the characteristics (appearance, name recog-
nition, etc.) of individual POIs are not considered in detail when compared and
analyzed with those of other POIs. The comparison and analysis of the char-
acteristics of POIs will enable tourism planning that allows visitors to enjoy
the attractions of a city or region and visit a wide range of tourist POIs with
different characteristics.

In this study, we propose and support “MERIHARI Area Tourism style,”
in which we divide tourist spots into multiple areas and vary the granularity of
the selection of tourist spots in each area to allow visitors to enjoy the “rep-
resentative” of the tourist city. The word “MERIHARI” is derived from the
Japanese word meaning “to make things strong or weak” or “not monotonous”.
An overview of the MERIHARI Area Tourism is shown in Fig. 1. We divide a
tourist city into several areas, and each area determines its visitation style of
sightseeing. MERIHARI area planning can choose different sightseeing styles for
each area, and even for the same area, different sightseeing styles can be selected
for each user. In the proposed method, We construct plans by performing four
major processes: clustering, extracting representative spots, course generation,
and planning for a set of POIs the user has selected as candidates to visit among
tourist cities.

The contributions of this study are as follows:

– We advocate a new sightseeing style, “MERIHARI Area Tourism”. It pro-
poses a mechanism of combining multiple sightseeing styles. We also propose
a method that considers the value of POIs in tourist attractions by intro-
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ducing the concept of representative spots, generating multiple visit plans to
correspond to each tourist style, and generating a plan optimized according
to the user’s conditions (Sect. 3).

– We proposed a method for extracting representative spots in tourist cities and
areas. We extract representative spots by evaluating the degree of recognition
and visual characteristics obtained from the Normalized Google Distance and
Vision Transformer (Sect. 3.2).

2 Related Work

D. Gavalas et al. [2] performed route generation by clustering POIs and then
sequentially selecting POIs from multiple clusters according to time budget to
optimize the user’s time budget and efficiency of travel for planning. However,
this study regarded POIs as data points, and individual preferences and regional
characteristics are not considered. In our study, POIs selection considers regional
characteristics, and courses are set for each area, thus enabling the weighting of
stay time for areas and POIs. Furthermore, the novelty of our method is that it
allows visitors to visit more places with different characteristics by considering
differences in tourist destinations (areas and POIs).

Hara et al. [3] calculated the degree of suitability for city walking based on
the total number of nearby walking spots for a predefined set of major sight-
seeing spots. However, switching between multiple sightseeing styles is limited
to supporting the user’s decision-making and does not consider the sightseeing
spots’ regional and urban characteristics. The novelty of our proposed method
is that it switches sightseeing styles within the plan by selecting spots that con-
sider the characteristics of regions and cities, called “representative spots,” and
by optimizing multiple courses generated based on them according to conditions.

Y. Shen and M. Ge et al. [8] estimated the value of tourism in terms of natu-
ral and cultural values and analyzed geosocial images. J. Sun et al. [9] extracted
POIs from trajectory data collected from tourists and applied a weighted HITS-
based algorithm [5] to classify the nature of POIs. J. Sun et al. [10] analyzed
tourists’ travel patterns from trajectory data and proposed a travel route rec-
ommendation method that combines knowledge of locations and transitions and
rewards both.

3 MERIHARI Area Tour Planning

Figure 2 shows an overview of the proposed method. The main flow of the method
consists of trajectory data, image data, the user’s time budget, and a set of
candidate POIs as inputs, and a sightseeing plan (MERIHARI area plan) as
an output. First, we construct a POI database from trajectory data and image
data. From this database, the user selects a set of candidate POIs to visit.
We perform clustering on the candidate POI sets based on the actual travel
distance to generate areas (clusters). We then extract a “representative spot”
for each area, symbolizing the tourist city and area, and consider the regional
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Fig. 2. Overview of the MERIHARI Area Tourism Framework

characteristics. Based on the representative spots for each area, we generate
multiple courses (visit plans) to express the sightseeing style. Then, we combine
and optimize these courses according to the user’s time and budget to generate
a MERIHARI area plan.

3.1 Area Clustering

We use the well-known density clustering method DBSCAN to generate areas
from a set of candidate POIs, using the walking time calculated by the route
search function of the Open Route Service (ORS)1. ORS allows us to consider
the cost of taking a passable route. In this case, the radius of the clusters is set
to a travel range of 8 to 9 min on foot by ORS, and the existence of a cluster
(area) with a single data point (POI) is allowed.

3.2 Extraction of Representative Spots

We describe a method for extracting representative spots in the areas generated
in Sect. 3.1. The definitions of representative spots are as follows.

Representative Spots
POIs in the generated areas adequately represent the characteristics and visibil-
ity of the city or area in particular.
1 https://openrouteservice.org.

https://openrouteservice.org
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Representative spots aim to extract POIs that have features that are univer-
sal in the same area but not unique in other areas or that have specific features
that can only be seen in that spot throughout the city. In this study, we calculate
the property of “representative” by recognition and uniqueness.

– Recognition
• The cycle of many tourists visiting the city and the reviews spreading

through various media by those who have visited the city.
• For example, the degree to which Kyoto is widely recognized, such as

“Kyoto is known as XX”.
– Uniqueness

• Focus on the “character” of the city or area, which is the motivation for
tourism.

• Indicates “unique” characteristics that cannot be found in other cities or
areas.

Calculation of Recognition. Normalized Google Distance (NGD) [4] is a
measure of the degree of co-occurrence between two words and is calculated by
substituting the total number of search results for the two words in a Google
search into the Eq. 1, where N is the total number of web pages searched by
Google, f(x) and f(y) are the number of hits for each search term x and y, and
f(x, y) is the number of hits for both x and y simultaneously. In this method,
we use the query “(Name of city to visit) sightseeing” and the name of each POI
(e.g., “kyoto sightseeing” gion), and calculate the results to obtain the degree
of recognition of a city or area and its POIs. To reduce the bias in the number
of results when searching in each language, we created queries in both Japanese
and English, calculated the NGD, and used the harmonic mean as the score as
in the Eq. 2.

NGD(x, y) =
max{log f(x), log f(y)} − log f(x, y)

log N − min{log f(x), log f(y)} (1)

Score(x, y) =
2(NGDJapanese(x, y) × NGDEnglish(x, y))
NGDJapanese(x, y) + NGDEnglish(x, y)

(2)

Calculation of Uniqueness. We use the Vision Transformer (ViT) [1] to
extract the features of an area or POI from an image as a feature vector and
compare the similarity of the vectors inside and among the area. The similarity
within an area compares the feature vector of the corresponding POI with the
feature vector of each POI belonging to the same area, and the similarity among
areas compares the feature vector of the corresponding POI with the average
feature vector of the POIs belonging to that area for each area.

The results of these comparisons can be categorized as shown in Table 1.
POIs with specific features that have low out-of-area (similarity among areas)
similarity and low in-area similarity (similarity within area) and POIs with area-
unique features that have low out-of-area similarity and high in-area similarity
are judged to be high uniqueness.
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Table 1. Comparison of feature vectors in and among area

Similarity within area

High Low

Similarity
among
areas

High POIs with universal
characteristics in that city

POIs where similar features can be
seen outside of the relevant area

Low POIs indicating the char-
acteristics
and visibility of the area

POIs that are specific to the city as
a whole and symbolic of the city or
area

Determining the Representative Spots. The features of each POI obtained
from recognition and uniqueness are expressed as a representative score. We
define the representative score by the following equation.

RepresentativeScore = 0.6(1−NGD)+0.3(1−SimAreaout)+0.1(1−SimAreain)
(3)

where NGD is the Normalized Google Distance score, SimAreaout is the similar-
ity among areas, and SimAreain is the similarity within area, respectively. The
coefficients of the scores are positioned as hyper-parameters so that POIs that
are well-known, famous, and have features found only in that city or area will
have higher scores.

Then, We determine the representative spots for each area according to the
flow shown in Fig. 3.

3.3 Courses of Area Visiting

We generate three types of area visitation routes (called courses) from each area
generated in Sect. 3.1, with varying degrees of granularity in the selection of
tourist spots. Each course differs in terms of the number of places to visit and
time spent in the area, and is defined as follows.

Full-enjoyable Course. Course to visit all POIs belonging to the area with an
average length of stay.

Model Course. Course to visit the most popular POIs and representative spots
in the area with an average length of stay.

Must-see Course. Course to visit visits only representative spots belonging to
an area with a minimum length of stay (or an average).

To generate the courses, we use the extracted information on representative
spots and length of stay. We calculate the time spent at each POI using the [9]’s
method, which refers to the time spent associated with a stay point when the
stay point is calculated from the trajectory data. The output of each course is
information on the set of POIs belonging to the course, the time spent on the
course (travel time and visiting time), and the satisfaction level of each course.
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Fig. 3. Flow of determining the representative spots

We define satisfaction as the linear sum of the representative scores defined
in Sect. 3.2 clause at the POIs belonging to the course, as in Eq. 4.

Cx
i =

K∑

k=1

RepScorexik (4)

where Cx
i refers to the satisfaction score of course i in area x and the number of

POIs belonging to course i in area x is K.
Many existing methods focus on area generation through clustering [2]. When

outputting a sightseeing plan, they output a sightseeing plan that assumes that
all POIs belonging to a cluster will be visited. In the proposed method, since
the three types of courses are determined for each area, it is possible to create
a sightseeing plan with a contrast selection of sightseeing spots according to the
user’s purpose and preferences.

3.4 MERIHARI Area Plan

The course generated in Sect. 3.3 is used in the context of integer programming
in tourism [6,7] to define the Eq. 5 and generate a MERIHARI area plan I =
(Area1Coursei, . . . , AreaNCoursei) that maximizes this within the user’s time
budget Timebudgetu.

We define each area and course score as Cx
i by the Eq. 4. This equation

enables the generation of a flexible plan by optimizing the “area’s uniqueness”
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and “efficiency of movement” according to the user’s time budget. Therefore,
instead of selecting courses from all areas one by one, a plan is generated by
selecting and combining areas and courses with higher scores within the user’s
conditions. In addition, different sightseeing styles can be selected for each area,
and even within the same area, different sightseeing styles can be selected for
each user.

maximize
N∑

x=1

N∑

y=1

3∑

i=1

3∑

j=1

(Axiyj
× Cx

i ) (5)

where Axiyj
is a binary variable set to 1 if a user visits course i in area x and

then successively visits courses j in area y. Solving this Eq. 5 with the following
constraints.

3∑

i=1

N−1∑

y=1

3∑

j=1

A0iyj
=

N−1∑

x=1

3∑

i=1

3∑

j=1

AxiNj
= 1 (6)

N∑

x=1

3∑

i=1

Axiwk
=

N∑

y=1

3∑

j=1

Awkyj
≤ 1

∀w = 2 . . . N − 1,∀k = 1, 2, 3

(7)

N−1∑

x=1

N∑

y=1

3∑

i=1

3∑

j=1

Timexiyj
× Axiyj

≤ Timebudgetu (8)

ui − uj + 1 ≤ (N − 1) × (1 − Axiyj
)

2 ≤ ui, uj ≤ N,∀i, j = 2 . . . N
(9)

Existing methods such as [6,7] define equations to express movement between
spots or areas, but our method generates multiple courses in each area and selects
and combines them. Therefore, in our study, constraints on courses (the part of
the sum calculation) are newly devised and added in Eqs. 6, 7, and 8, respectively.
Equation 6 expresses that the plan starts in area 1 and ends in area N. Equation 7
expresses the constraint that the plan routes are connected, that the same area
is not visited more than once, and that from each area at most one course out
of three is selected. The constraints are expressed in the following way Eq. 8
expresses the constraint that all time spent on the plan does not exceed user u’s
time budget Timebudgetu, and Eq. 9 expresses the exclusion of sub-tours.

4 Experiments

4.1 Dataset

We used a dataset containing 91 spots and their trajectories in Kyoto Prefecture
[10]. The dataset contains the name of the POIs, their location information in
latitude and longitude, and the time spent at the POIs. The trajectory data
include data estimated from photographs taken by tourists. We compared the
average time spent in each spot obtained from the trajectory data with the
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average time spent in each spot shown on Google Maps and the official website
of the POI, and if there was a discrepancy of two times or more, the latter
was used. For the POI image data, we obtained POI images via Google Custom
Search API and used approximately 10 to 30 images per spot.

4.2 Result of Area Clustering

The results of DBSCAN are shown in Fig. 4. The parameter ε = 550 (within a
9-min walking distance) was set as the radius of the search from the data points,
and minPts = 1 was set as the minimum number of data points required to
form a cluster (area).

Fig. 4. Result of Area clustering

4.3 Result of Extraction of Representative Spots and Generate
Courses

We were able to extract representative spots according to the decision flow in
Sect. 3.2. Table 2 shows some of the results. The POIs with all values in bold in
each row are the extracted representative spots. We were able to generate three
courses. Table 3 shows some of the results. The POIs in boldface refer to the
representative spots in the area obtained. The average time spent in the POIs
of the “must-see” courses was set as the average time spent in the course.
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Table 2. Example of representative spots extraction(Higashiyama Area)

POI NGD Similarity among Area Similarity in Area

Sannenzaka 0.2811 0.4114 0.4310

Ninenzaka 0.3426 0.2980 0.3514

Kiyomizu Temple 0.3552 0.2400 0.2656

Yasaka Shrine 0.3567 0.6982 0.6138

Kodaiji Temple 0.4248 0.7339 0.6260

Kenninji Temple 0.4464 0.7282 0.6342

Gion 0.4801 0.5927 0.5504

Chionin 0.5219 0.7359 0.6410

Shorenin Temple 0.5302 0.5099 0.4983

Ryozen Kannon 0.5689 0.4580 0.4327

Maruyama Park 0.5692 0.3491 0.3808

Kyoto Ryozen Gokoku Shrine 0.5951 0.6992 0.6177

Table 3. Course Example(Higashiyama Area)

Full enjoyable (7.94 h) Model (3.33 h) Must-see (2.11 h)

Sannnenzaka Sannnenzaka Sannnenzaka

Ninenzaka Ninenzaka Ninenzaka

Kiyomizu Temple Kiyomizu Temple Kiyomizu Temple

Yasaka Shrine Yasaka Shrine

Gion Gion

Kenninji Temple Kenninji Temple

Kodaiji Temple

Chionin Temple

Shorenin Temple

Ryozen Kannon

Maruyama Park

Kyoto Ryozen Gokoku Shrine

4.4 Result of Generate MERIHARI Area Plan

From the areas and associated courses obtained in the previous section, an opti-
mized plan was generated for the user’s time budget. Table 4 shows the plan gen-
erated by the proposed method when the starting spot is “Kyoto Tower” (near
Kyoto Station), the destination spot is “Kawaramachi” and the time budget is
8 h. Note that the satisfaction level of the course refers to the value obtained from
Eq. 4 in Sect. 3.3. The results show that multiple tourist styles can be combined
within a condition.
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Table 4. MERIHARI Area plan Example (Start: Kyoto Tower, Goal: Kawaramachi,
Time Budget: 8 h)

Order Course Spots to visit Required
time
(hours)

Course
Satisfaction
Score

1 Must see Kyoto Tower 0.32 0.793

2 Model Kiyomizu temple, Ninenzaka
Sannenzaka, Gion,
Yasaka-shrine

4.10 3.51

3 Full enjoyable Heian Shrine, Okazaki Park 1.76 1.10

4 Model Kawaramachi 1.77 0.634

Table 5. Query used for evaluation

Start Point End Point Timebudget (hours)

Kyoto Tower Kawaramachi 4, 6, 8

Kyoto Tower Arashiyama Station 4, 6, 8

Kyoto Tower Kinkaku Temle 4, 6, 8

4.5 Evaluation Methods

We conducted an ablation study of the index for extracting representative spots,
and evaluated them using nDCG. We also conducted a user study. We prepared
three queries and generate tour plans. Here, a query consisting of a start point,
end point, and time budget was set, and the course plan generated from the
query was evaluated.

Ablation Study. We evaluate our method of extracting representative spots
(combining scores of recognition and uniqueness). In all areas consisting of mul-
tiple spots, the validity of representative spots was evaluated by comparing the
combined scores and their Ablation Study rankings with the order of validity of
representative spots by the author using nDCG@k (k = 1, 3, 5, 10).

User Study. We conducted a user questionnaire to evaluate the proposed
method. The participants were three people in their 20 s, all of whom had expe-
rience sightseeing in Kyoto Prefecture. A query (Eq. 10) consisting of a starting
point, an end point, and a time budget was set, and 9 different plans (3 time
budgets × 3 plans) generated from each query were evaluated. The queries used
in the evaluation are shown in Table 5.

Query = (Startpoint, Endpoint, T imebudget) (10)
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Table 6. Results for Representative Spots Decision Score

Score Combinations nDCG@1 nDCG@3 nDCG@5 nDCG@10 nDCG

Proposed Method 0.9028 0.9699 0.8700 0.9032 0.9869

NGD 0.8958 0.8950 0.8211 0.8599 0.9807

Similarity in Area 0.7014 0.8470 0.7196 0.8123 0.9779

Similarity among Area 0.7153 0.8141 0.8686 0.8804 0.9679

NGD+Similarity in Area 0.9028 0.9699 0.8700 0.9001 0.9864

NGD+Similarity among
Area

0.9028 0.9589 0.8249 0.8889 0.9810

Similarity among
Area+Similarity in Area

0.7569 0.8937 0.8686 0.9062 0.9788

NGD+Similarity among
Area+Similarity in Area

0.8056 0.9588 0.8308 0.9204 0.9816

Table 7. Areas to be evaluated and their representative locations used in user study

Area number Spot

1 Kyoto Tower, Higashi Honganji Temple

2 Heian Shrine, Okazaki Park

3 Kiyomizu Temple, Sannenzaka, Ninenzaka, Gion,
Yasaka Shrine,
Chionin Temple, Kenninji Temple, Kodaiji Temple,
Maruyama Park
Shorenin Temple, Ryozen Kannon, Kyoto Ryozen
Gokoku Shrine

4 The bamboo forest path, Togetsukyo Bridge,
Arashiyama Station,
Tenryuji Temple, Arashiyama Park, Arashiyama Trokko
Station
Okochi Sanso Garden, Jojakkoji Temple, Seiryoji Temple
Giouji Temple, Nisoin Temple, Hokyoin Temple

5 Kinkakuji Temple, Kitano-Tenmangu Shrine,
Hirano Shrine, Wara-tenjingu Shrine

We compared three methods as follows.

Proposed Method. Both areas and courses are considered. Optimization is
performed for area and course.

Area Method. Only area is considered in planning. Optimization is performed
for the area.

Spot Method. Area and courses are not considered. The tour is planned by
using spots, which is well studied in conventional methods.

In the user questionnaire, we asked users to review the generated plans and
evaluate the adequacy of the representative spots, the adequacy of the plans
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Table 8. Evaluation results for representative spots in user study

Area 1 Area2 Area3 Area4 Area5 Average

nDCG 1.000 1.000 0.761 1.000 1.000 0.952

Table 9. Area Planning Example (Start: Kyoto Tower, End: Kawaramachi, Time
Budget: 8 h)

Order Spots to visit Required Time (hours)

1 Kyoto Tower, Higashi Honganji Temple 0.94

2 Kyoto aquarium 1.20

3 Toji Temple 0.67

4 Heian jingu Shrine, Okazaki Park 1.81

5 Shogoin 0.73

6 Kyoto University 0.60

7 Kawaramachi 1.80

(i.e., whether visits can be completed in a timely manner with little inefficient
travel), and the degree to which the plans are balanced between “sightseeing
tours” and “city walking.”

4.6 Experimental Results

Extraction of Representative Locations. First, we discuss the results of
the evaluation of the method itself. The ablation Study for the index used to
determine the representative spots, Eq. 3, is shown in Table 6. In this evaluation,
all areas consisting of multiple spots were evaluated. From this result, it can be
said that the proposed method is the best for determining the representative
spots.

Next, we discuss the evaluation results of the user questionnaire. We evaluate
the representative spots indicated by the proposed method and the degree to
which they are appropriate for the representative spots given by the subjects,
using nDCGs. Table 7 shows the areas to be evaluated and the names of the spots
belonging to them, and Table 8 shows the nDCG for each area. For Table 7,
the spot names in boldface refer to the representative spots extracted by the
proposed method. From this result, it can be said that the representative spots
generated by the proposed method have high validity.

The results of the user study show that in areas where the number of their
member spots is small and where a certain spot is significantly better known
and more accessible than others, the subjects tend to perceive the same spots as
representative spots. However, when the number of spots belonging to an area
is large, there is a difference between the results of the proposed method and
those of the users. Specifically, in the Higashiyama area (area 3) in Table 7, Gion
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Table 10. Spot Planning Example (Start: Kyoto Tower, End: Kawaramachi, Time
Budget: 8 h)

Order Spots to visit Required Time (hours)

1 Kyoto Tower 0.31

2 Higashi Honganji Temple 0.46

3 Heian jingu Shrine 1.12

4 Okazaki Park 0.58

5 Shorenin Temple 0.60

6 Yasaka Shrine 0.49

7 Kodaiji Temple 0.58

8 Ninenzaka 0.54

9 Sannenzaka 0.71

10 Kenninji Temple 0.64

11 Gion 0.54

12 Kawaramachi 1.23

and Yasaka Shrine were ranked highly by the subjects as representative spots,
although the proposed method did not extract them. As for Gion, since the
recognition was calculated around October 2022, more articles about autumn
leaves were detected than usual, so the recognition of other spots famous for
autumn leaves was calculated higher. This indicated that recognition highly
depends on the number of search results. For Yasaka Shrine, the vermilion-
lacquered gate was used in the image used for feature vector generation. The
gate of Kiyomizu-dera Temple and the gate of Shimogamo-jinja Shrine, both
of which belong to the same area, and the vermilion gate of Shimogamo-jinja
Shrine, both of which belong to a different area, are located inside the facility,
and ViT judged that the color and shape are similar, so both the similarity
within an area and outside an area was calculated to be high.

In addition to recognition and uniqueness, other possible indicators for select-
ing representative spots include the genre of the spot and the number of visitors.
By considering these factors from multiple perspectives, it is thought that spots
with higher representativeness can be selected.

User Study Results. For the same query as Table 5, Table 9 shows an example
result of the area method, and Table 10 shows an example result of the spot
method used for comparison.

We evaluated the adequacy of the courses generated by each method in terms
of whether the visits could be completed within the time budget provided and
whether there was no wasteful transition. We also evaluated whether the selection
of spots was balanced or not on a 5-point scale. Plans for the query “Kyoto
Tower - Arashiyama Station” generated by the Area Method were not evaluated
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Table 11. Questionnaire results regarding the adequacy and Balance of each plan

Query Timebudget (h) Adequacy Balance

Proposed Area Spot Proposed Area Spot

Kyoto Tower - Kawaramachi 4 3.67 3.67 4.67 3.00 3.33 2.00

6 4.00 3.00 4.67 3.67 4.33 3.33

8 3.00 3.00 4.33 4.33 4.33 2.67

Kyoto Tower - Arashiyama Station 4 4.67 – 4.67 3.67 – 4.33

6 4.00 – 4.33 3.67 – 3.67

8 3.33 3.00 4.00 4.33 4.33 2.67

Kyoto Tower - Kinkakuji Temple 4 4.33 5.00 5.00 3.67 3.33 4.33

6 3.67 4.33 4.00 4.00 4.33 4.00

8 2.67 2.67 4.33 4.00 4.33 3.00

for time budgets of 4 and 6 h because the minimum time budget to satisfy the
query was 8 h.

The results of the user study are shown in Table 11. The results of the user
questionnaire showed that the comparative method, the spot method (which
optimizes the movement between individual POIs), was the most appropriate in
terms of validity. Regarding the degree of balance, it was generally clear that
the proposed method was able to generate more balanced plans with larger time
budgets. The reason for the higher validity of the spot method is that the spot
method performs optimization for each set of POIs, so that the travel distance
between POIs is calculated to be shorter compared to the proposed method
and the area method. In particular, the number of POIs around Kawaramachi,
Higashiyama, and Arashiyama Stations is abundant, and a plan with a short
travel distance to visit them in order was generated, so it is highly likely that
the subjects judged that the plan was highly appropriate (i.e., the travel was
not unreasonable). In addition, the proposed method showed a higher degree
of balance as the time budget became larger. In fact, the number of times the
proposed method switches courses tends to increase as the time budget increases.
Therefore, the proposed method and the “MERIHARI-Area Tourism” may be
suitable for long-term and wide-area sightseeing.

In the future, it is expected that personalized scoring and course generation
will become possible by adjusting the weights when scoring recognition and
uniqueness.

5 Conclusion

In this paper, we propose a method to generate a sightseeing plan that combines
multiple sightseeing styles to taste the “representative” of a sightseeing city, and
to support this method, we propose a method to generate a sightseeing plan
with a contrast selection of spots according to user conditions such as time and
budget. Further experiments with data in other cities are planned. We also plan
to apply our method to longer and more extensive sightseeing tours.
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Abstract. Arguments are ubiquitous. Yet, the definition of what is a
good argument depends on the goal, and the settings. Although various
business communication studies confirm the crucial role of argumenta-
tion, no work has shaped financial argument quality in a way that is
concise enough for a practical application.

In this paper, we aim to close this research gap by modeling the qual-
ity of managers’ arguments, during the Q&A sessions of earnings confer-
ence calls. To this end, we propose various quality dimensions at both
levels of argument and argument units. Our quality model establishes
a well-considered link between, on the one hand, insights as they are
expressed in financial text analysis literature, and, on the other hand,
insights derived from empirical quality descriptions as provided by argu-
mentation discourse linguistics and computational models.

We further conducted the related annotation study and produced
FinArgQuality, the first financial dataset annotated with argument qual-
ity. This corpus composes of 14,146 sentences in a total of 80 earnings
calls transcripts.

Our proposed quality assessment dimensions, and final annotated cor-
pus are publicly available, and can serve as strong baselines for future
work in both FinNLP and computational argumentation disciplines. We
further discuss some potential optimization goals and financial applica-
tions of this data, and highlight future directions.

Keywords: Argument quality · FinNLP · Earnings Conference Calls ·
FinArgQuality dataset

1 Motivation

The rise of data and the development of machine learning have arrived at
the foundation of the financial technology (FinTech) domain. This interdis-
ciplinary field aims at supporting financial services with digital innovations
and technology-enabled business models [1]. However, given that about 80%
of today’s data is unstructured information which is composed mainly of textual
data, some argue that Natural Language Processing (NLP) is the most impor-
tant research nowadays. That is because we need to automatically leverage this
data and to process it in different frameworks, which, in financial aspect, is called
Financial Natural Language Processing (FinNLP).
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C. Strauss et al. (Eds.): DEXA 2023, LNCS 14147, pp. 65–81, 2023.
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Among various financial textual sources, Earnings Conference Calls (ECCs)
are one of the most considerable information players in the stock market [2].

An earnings call is a quarterly organized event where public traded compa-
nies report their last quarter performance and give guidelines about the next one.
The company management often discuss and detail key points, such as growth,
risks, buybacks, and dividends. Explicitly, an earnings call consists of two sec-
tions: a presentation held by the company, followed by a Questions & Answers
(Q&A) session where company representatives1 answer the questions of profes-
sional analysts and other market participants. The analysts are later expected
to announce their opinions about this stock in a sort of recommendation (in a
scale 1–5), expected price target and sometimes a detailed report. In fact, many
studies show that analyst’s discussions during the question-answering session to
be the most informative and impacting part on the market [3–5]. Therefore, we
focus in our study on this particular section of the call.

During this session, the management team may provide additional context
and information on the company’s financial results and future outlook, which
can help analysts better understand the company’s performance and make more
informed recommendations. For example, if a company reports weaker-than-
expected earnings, but the management team explains that the results were
affected by one-time events that are not expected to reoccur, analysts may be
more likely to maintain or even upgrade their recommendations. Contrarily, if
a company reports weaker-than-expected earnings, and the management team
provides no clear explanation for the results, analysts may be more likely to
downgrade their recommendations towards this company.

In fact, the automatic analysis of earnings calls is valuable for different finan-
cial services and applications (e.g., financial risk prediction [6,7], modeling of
analysts’ decision-making [2]). However, these calls are still an under-resourced
text genre in computational argumentation, despite the fact that various busi-
ness communication studies proved the important role of argumentation in ECCs
(e.g., [8,9]).

In our previous work [10], we covered the argument structure in the managers’
speech during the Q&A sessions of four top tech companies (Apple, Facebook,
Amazon, and Microsoft) for the period of five years 2015–2019, resulting in 80
transcripts.

In this work, we extend on it, to study further the quality of managers’
arguments during these public calls. In other words, we want to answer the
following research question: How to handle the quality of company executives’
arguments, while establishing a well-considered link between, on the one hand,
insights as they are expressed in financial text analysis literature, and, on the
other hand, insights derived from empirical quality descriptions as provided by
argumentation discourse linguistics and computational models?

We tackle this research gap by conducting a comprehensive synthesis on earn-
ings calls and Computational Argument Quality (CAQ) state of the art. Investi-
gating on the same FinArg corpus, we have introduced in [10], our contributions

1 Mainly chief executive officer and chief financial officer.
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in this paper are two-fold. First, we develop a scoring model for argument qual-
ity in ECCs, that covers both argument units and overall argument. Second, we
conduct the related annotation study, and contribute to the research community
with FinArgQuality : the first financial corpus annotated with argument quality
scores.

This paper is organized as follows: Sect. 2 covers a conceptual background
of argument quality, financial text analysis, aligned with most related works to
our research. In Sect. 3, we define and illustrate our argument quality dimen-
sions with detailed examples and explore our rating rubrics. We further report
our annotation study, inter-annotator agreement, size, and statistics of our final
corpus - FinArgQuality in Sect. 4. We discuss our findings, the potentials of this
data, and conclude future directions in Sect. 5.

2 Related Work

Our work is closely related to the following two lines of research:

2.1 Computational Argument Quality Assessment

An argument is defined as the justification made to reach a conclusion on a
controversial topic. Thus, the simplest argument composes of one claim and
one premise supporting it. Argument Quality is the assessment of its attributes,
strength, and persuasiveness. Delving into the rich realm of argumentation the-
ories, various quality proposals have been introduced. To the best of our knowl-
edge, the computational argumentation literature reported only one study that
comprehensively survey the argument quality assessment theories and proposals
by Waschsmuth et al. [11]. By that, they derived a taxonomy of 15 dimensions
covering the logical (e.g., level of support), rhetorical (e.g., persuasiveness) and
dialectical (e.g., relevance) aspects of an argument.

Despite the philosophical background of argumentation and argument qual-
ity, researchers in computational argumentation looked for practical, yet con-
siderable definitions of argument quality. They further faced this problem with
different methodologies of assessment. An overview of the literature approaches
entails the following categories of treatment: First, Point-wise versus Pair-wise
Rating, meaning, either an absolute rating of the argument (e.g., ranking the
strength of a student essay [12]), or a relative rating of it in comparison with
another argument (e.g., which argument is more convincing by [13]). Second,
with respect to the level of granularity, we can distinguish methods that estimate
the quality of an overall argument (e.g., [14]) versus, the quality of its particu-
lar components (e.g., [15]). Furthermore, some scholars explored the interaction
dynamics into debate context. For instance, [16] tried to define the wining argu-
ment on the Reddit platform using the interaction patterns. Third, regarding
the method of assessment, the literature reported mostly direct classification
(regression) models (e.g., [17,18]), with some indirect attempts. For instance,
[19] investigated on a set of linguistic features that reflect the argument quality
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instead of considering the original text. Similarly, Gurcke et al. [20] aimed at
assessing the sufficiency of arguments through conclusion generation. However,
not surprisingly, direct methods outperform their peers. This discussion should
give you a bird’s-eye view on the diversity of computational argument quality
field.

Furthermore, while many studies treat the argument in a holistic manner,
Walton [21] argues, “if the concept of an argument is defined in terms of the
premises in it (providing grounds or reasons for accepting the conclusion), then
we have to ask what “grounds” or “reasons” are, other than being good or reason-
able arguments”. We also follow this vision in our argument quality dimensions.
Thus, we distinguish further the types of argumentative units (i.e., premises and
claim). We provide further discussions all across our quality dimensions.

2.2 Text Quality in Finance and Business Communication

The analysis of available textual data has always been a topic of interest for
many researchers in the financial domain. However, the end target could be
widely different. For example, while [22,23] evaluated the forecasting skills of
investors, [24] analyzed the managers’ speech with the goal of predicting the
financial risk, and [25] aimed at making a future price prediction out of detected
events on news and social media. We present in the following some related work
that is directly linked to our proposed quality metrics:

Zong et al. [23] used the Linguistic Inquiry and Word Count (LIWC) lexicon
[26] to detect the temporal orientation of a forecaster’s justifications. They found
that good forecasters tend to focus more on past rather than future events.
Therefore, we build on that, and we extend to more fine-grained assessment of
the past level in our temporal history attribute.

Besides, as we have aforesaid, various business communication studies proved
the important role of argumentation in earnings conference calls. Among others,
Rocci et al. [27] differentiate evidential type presented in different sections of an
earnings calls to be: “common knowledge, direct, epistemic possibility, generic
indirect, inference, report, and subjective”. In their empirical study, they found
that the subjective type to be the most frequent in the answers of company
executives. Hence, we consider studying the subjectivity of an argument as one
of our quality metrics, since we want to highlight the objective arguments.

Notably, different financial studies focus on the statement specificity as a
major factor of its quality. Text “uncertainty” [23] and “hedging” [2] are only
indicators of “the lack of commitment to the content of the speech” [28]. This
is logical, since the qualitative analysis of a financial text cannot be separated
from its quantitative property. Therefore, we also concentrate on the argument
specificity, but further from two angles: the specificity of the answer in relation
to the asked question, and the specificity of the premises and claims through
identifying their particular types.
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3 Argument Quality Dimensions

Given that the criteria of what is a good argument depends on the goal orienta-
tion [19,29], we define our quality attributes in collaboration with experts from
the Chair of Financial Data Analytics at Faculty of Business, Economics, and
Information Systems - University of Passau2.

The CAQ literature reported different guidelines in terms of the annotation
scale. For instance, Stab et al. [17] reported 681 (66.2%) sufficient to 348 (33.8%)
insufficient arguments in their student essays corpus. Likewise, in the corpus of
Persing and Ng [12] annotated with the strength attribute of 1000 student essays,
they used a scale of 1.0 to 4.0 with 0.5 increments, giving a total of seven values.
Among all essays, 372 are categorized as class 3.0, whereas only 2 are categorized
as class 1.0; 21 with class 1.5 and merely 15 belong to class 4.0. Therefore, to
avoid such a high data imbalance and to make more fair fine-grained judgment
rather than binary decision, we suggest our annotation guidelines with respect to
a 3-point scale of assessment, except for objectivity which remains binary, given
its nature, and the temporal-history of an argument, to provide more gradual
indicators. In addition, we suggest the argument quality on the unit level (claim
and premise types) to be categorical rather than numerical.

In summary, our rating follows the point-wise approach, and looks at each
argument from two levels:

3.1 At the Level of Argument

A holistic assessment of an argument quality is the most used approach in the
literature. We present in the following the quality metrics we define at the gran-
ularity of the overall argument. In other words, considering the argument claim
and premises as well as the relations between them.

• Strong Persing et al. [12] labeled the strength of a student essay using a scale
1.0 to 4.0. On the other hand, [30] inspected the strength of only the premise
component. They defined it by “how well a single statement is contributing
to persuasiveness” on a scale 1–6. Inspired by these studies, we define the
strength of an argument by two factors: how many and what type of premises
are backing its claim? For example, an argument with a statistical premise
is supposed to be stronger than an argument with a hypothetical premise.
Furthermore, Table 1 represents the rubrics for rating the argument strength.

• Specific Carlile et al. [30] studied the specificity of every single argumentative
statement in a student essay (i.e., premise, claim, major-claim). They score it
on a scale of 1 to 5 based on how detailed the statement is. The main source
of tolerant and inexact language is using hedging expressions. Prokofieva et
al. [28] defined some general guidelines for recognizing hedge expressions in
English. Hedges can appear in forms like: “I think”, “it is sort of”, “probably”,
etc. In our particular case, we study the arguments presented by company
managers to answer analysts’ questions. Therefore, it was important for us to

2 https://www.wiwi.uni-passau.de/en/financial-data-analytics.

https://www.wiwi.uni-passau.de/en/financial-data-analytics
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declare the specificity in a relation to the question itself. Hence, we rate the
argument specificity on a 0–2 Likert scale, as illustrated in Table 1.

• Persuasive The persuasiveness is the most subjective attribute to judge.
Yet, it is still taken into account by many other studies. This could be due
to the fact that, we have a more holistic feedback from the annotator about
all argument elements, and their coordination. In addition, we can use these
annotations to analyze the relations with other argument attributes (i.e.,
what makes a persuasive argument). Table 1 displays also our hints to label
persuasiveness across arguments.

Table 1. Quality dimensions at the argument level.

Attribute Definition Score

Strong How well the

statement

contributes to

persuasiveness,

considering the count

and types of

supporting premises?

• Strong-0: A poor, not supported argument (e.g.,

the claim is supported by only one premise that

is doubtful)

• Strong-1: A decent, fairly clear argument. The

argument has at least two premises that authorize

its standpoint

• Strong-2: A clear and well-defended argument,

supported by concrete and powerful premises

Specific How well the

statement is precise

and answers directly

the question?

• Specific-0: The argument is not related to the

question (e.g., blaming the market, mentioning

competitors)

• Specific-1: The statement partially answers the

question, but still implies some hedging

• Specific-2: The argument is concrete and

directly related to the question

Persuasive From the annotator

view, to what extent

is the argument

convincing?

• Persuasive-0: The argument is not easily under-

standable, the speaker may state some descrip-

tion, incident, value but does not explain why

it’s important. It may then persuade only listen-

ers who are already inclined to agree with it

• Persuasive-1: The argument provides accept-

able reasoning, may still contain some defects

that decrease its ability of convincing. Hence, it

would persuade some listeners

• Persuasive-2: A clear, well-structured

argument that would persuade most listeners.

The speaker stated precise and sound premises

that remove doubts of the listener

Objective Is the argument

based on facts rather

than feelings or

opinions?

• Objective-0: A subjective or biased argument

based on particular views and opinions

• Objective-1: A logical argument supported by

verifiable evidences

Temporal-history Does the argument

include any time

indicator? In case of

many, choose the

most recent one

• Temporal-3: during this quarter

• Temporal-2: up to two quarters

• Temporal-1: half to one year

• Temporal-0: more than one year

• Temporal-1: not mentioned (if there is no

explicit time indicator, choose this value, even if

you think that it could be concluded from the

context)
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• Objective Being objective, is very essential from the market perspective.
Arguing by opinions and particular views has less impact on investors than
arguing with objective information and reached earnings. Hence, we binary
classify the argument to objective or subjective based on the question: is the
argument based on facts rather than feelings or opinions?.

• Temporal-history The temporal information assessment, composes a spe-
cial phenomenon in financial opinions. Studying the time associated with
given information, and estimating its impact period, are important research
questions to the stock market [22,31,32]. On the other hand, in a business
communication study, Crawford et al. [33] analyzed the persuasion language
in economic “Crisis Corpus” in comparison to economic “Recovery Corpus”.
They found that executives tend to emphasize progress and future expecta-
tions in the crisis corpus, while they report achievements in their recovery
time period. This is similar to the findings of [23] we have aforementioned,
that providing past information reflects better forecasts. Hence, we ignore
future expressions and rather weight the temporal spans of text that repre-
sents a real value for finance, by recognizing five degrees of temporal-history
as shown in Table 1.

3.2 At the Level of Argument Unit

Most argument models include one type of premise. However, we can easily
distinguish different types of premises in everyday discourse [34]. For example,
a premise may provide empirical evidence, a fact, or a justification why the
reasoning of an argument is correct. Similarly, this applies to claims.

Despite the fact, that knowing the types of the argument claim or premise(s)
can give us a clear estimation about its quality, the literature reports very rare
attempts towards this research direction. Moreover, the annotation of those types
could be more objective and less biased itself than scoring the whole argument
towards one attribute (e.g., strength, clarity, etc.). Hence, we elaborated part of
the data with one of our annotators and suggest the following pragmatic types
of premises and claims, as shown in Fig. 1.

Types of Claims
Clarile et al. [30] distinguish three types of claims: Fact, Value (something is
good or bad), and Policy. Their study shows that fact claims seem to be the
most frequent in their corpus of student essays. We distinguish the following
types of a claim:

• Fact The earning conference call, is the event where a company shares private
information with the public. Therefore, some managers’ claims tend to be
facts, that still need to be accepted by supporting evidences.

Example: “..When it comes to our Commercial Licensing and our
servers, it’s the same trend, which is the big shift that’s happening is
our enterprise and datacenter products, being Windows Server, Systems
Centers, SQL Server, are more competitive...”
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• Value Considering our kind of data (earnings calls), when claiming some
information that reflects quantities and reports measures, the claim is classi-
fied as a numerical value.

Example: “ Secondly to provide a bit more color, sales of the Watch
did exceed our expectations and they did so despite supply still trailing
demand at the end of the quarter.”

• Opinion We identify this type of claims, for all statements that reflect the
company vision and its executives’ standpoints. Few terms introducing an
opinion are like: we’re very happy, I think. In fact, this type of claim is very
common, especially while expressing the company future hopes [33].

Example: “...And so we are incredibly optimistic about what we’ve seen
so far.”

• Policy This kind of claim is used to express a plan of action, or existent
rules.

Example: “And so as you know, we don’t make long term forecasts on
here.”

• Reformulated During our pilot annotation, we observed a common pattern
of repeating the same claim with some reformulation, mainly at the end of
the answer. Hence, we define the Reformulated claim type, which could be
justified by the oral argumentation nature of our data.
According to [35], reformulation or restatement is a rephrase of the evaluative
expression without adding any significant information, where the goal is to
make certain that the evaluation is clear and unambiguous. Some indicators
to reformulations are: in other words, that is to say, rather. In our data, the
reformulated claim is mostly the shorter one of the two claims. We ask the
annotators not to link this claim to any premises (i.e., not to consider it as a
new argument).

Example: “...And I think when you take those two things, along with
what Satya said, being able to balance disciplined focus and execution for
us, I think we feel very good about the progress we’ve made.”

• Other
This label is selected when no particular claim type is recognized.

Types of Premises. Similarly to claims forms, and motivated by the works of
[30,36], we set the following premise types:

• Fact This unit provides evidence by stating a known truth, a testimony, or
reporting something that happened.
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Fig. 1. Our quality dimensions at the levels of argument and argument units

Example: “And then at the same time, we’re bringing more and more
advertisers into the system and that’s giving us a better selection of the
ads that we can serve to the people using Facebook, and that, again,
improves the quality and the relevance.”

• Real Example Sharing out a comparable experience, a specific event, or
similar, is a common strategy in spoken language and in argumentation in
general [37].

Example: “I also look at the first time iPhone buyers and we’re still
seeing very, very large numbers in the countries that you would want to
see those in, like China and Russia and Brazil and so forth.”

• Statistics This type of premise is decisive in any argumentative discussion.
Definitely, it is very common and powerful in earnings calls.

Example: “So we ended the year last year with 109 fulfillment centers
around the world and 19 U.S. sort centers...”

This example also implies that the automatic understanding of numerical
data is more complicated in this genre of text [31].

• Hypothesis Besides probative deductions, hypothetical, and assumption evi-
dences can be used. However, this type of text seems not to be frequent in
our data.

Example: And if this works as planned, it can be big.

• Other This unit is supporting the final conclusion, but none of the previous
evidence characteristics applies to it.
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Example: “...These numbers are unbelievable and they’re done in an
environment where it’s not the best of conditions...”

We assume that those fine-grained types of argumentative units, should pro-
vide a clear and concrete reflection of the argument quality. In addition, rec-
ognizing the argument ground basis of reasoning is inline with analyzing the
argumentation scheme [38].

4 Data Creation

4.1 Annotation Study

We downloaded our data using a paid subscription to the Financial Modeling
Prep API3. We used Label Studio4 as a visualized annotation tool. Our anno-
tated data concerns the quarterly earnings calls of four companies: Amazon,
Apple, Microsoft, and Facebook for the period of 2015–2019. For each tran-
script, we determine, using a Python script, the list of all the speakers (Analyst,
Representative, or an Operator). We then split each transcript into different doc-
uments. Each document contains one or two questions asked by a single analyst,
along with the corresponding response(s) by the company’s managers.

We elaborate with one of our annotators to define the annotation guide-
lines as a first step. Later on, three other annotators have joined the annotation
process. All of them have a significant level of language. One of them is an
international economics master student, whereas the others are all computer-
science students. Therefore, our choice of companies was more tech-oriented,
where industry jargon and different products are known to all. Moreover, to let
annotators gain insight into the company’s performance over the years, we assign
one company for each of our four annotators to do all its quarters’ annotations.
We started by training sessions and discussions with the annotators. Based on
their feedback, we were able to refine the guidelines and clarify ambiguous situa-
tions. Thereafter, a division of the data was done to 20% to be double annotated
for inter-annotator agreement calculations, and 80% individual annotations. We
call the output corpus: FinArgQuality and it is publicly available to foster future
research5.

4.2 Inter Annotator Agreement

To calculate the inter annotator agreement, we define about 20% of our data
to be twice annotated. Each of the annotators had to label 4 transcripts at this
stage, one from each company. At the end, they meet and discuss disagreements
to proceed the final version (gold annotation) on this part. The value of this
3 https://site.financialmodelingprep.com/developer.
4 https://labelstud.io/.
5 https://github.com/Alaa-Ah/The-FinArgQuality-dataset-Quality-of-managers-

arguments-in-Eearnings-Conference-Calls.

https://site.financialmodelingprep.com/developer
https://labelstud.io/
https://github.com/Alaa-Ah/The-FinArgQuality-dataset-Quality-of-managers-arguments-in-Eearnings-Conference-Calls
https://github.com/Alaa-Ah/The-FinArgQuality-dataset-Quality-of-managers-arguments-in-Eearnings-Conference-Calls
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strategy is that it guarantees direct discussions between every pair of annotators,
which help at the end to unify their mindset towards the annotations.

We report in the following Cohen’s kappa inter-annotator agreement [39] on
our FinArgQuality final corpus. For all data, we measure the agreement sepa-
rately for each pair of annotators, and report the average. Table 2 shows that we
obtained fair to substantial agreements [40].

Table 2. Inter-annotator agreement of the overall argument quality and unit types

Company Specific Persuasive Strong Objective Temporal-history Claim
(All
types)

Premise
(All
types)

MSFT 0.63 0.64 0.72 0.65 0.79 0.61 0.59

FB 0.33 0.13 0.21 0.36 0.66 0.56 0.57

AAPL 0.31 0.31 0.35 0.27 0.55 0.66 0.69

AMZN 0.11 0.21 0.24 0.36 0.26 0.37 0.51

All 0.345 0.322 0.38 0.41 0.565 0.55 0.59

We compare our results to a similar study by Wachsmuth et al. [41], that
introduced the Dagstuhl15512 ArgQuality Corpus for ranking argumentation
quality based on their developed taxonomy of 15 dimensions. They also adopted
a 3-point scale (low, medium, high) for rating. Therefore, we consider this data
as the most relevant to compare with. They reported Krippendorf’s α of all
annotators ranging from 0.174 to 0.447 only.

By analyzing disagreements, we found that the main source of disagreement
is the missing of unit boundaries (Speech-To-Text nature of the transcripts’
data), and the multiple possible interpretations of argument structure [42–44].
This, definitely, applies to rating argument quality, which is even more inher-
ently subjective [11]. In addition, a high proportion of disagreement is associated
with arguments that include modal verbs, and uncertainty quantification (e.g.,
“many”, “some”) which may hastily perceived with low degrees of specificity,
strength, and persuasiveness. Thus, extending guidelines with those cases would
improve further annotations.

4.3 FinArgQuality Data Statistics

The overall quality dimensions are described in Table 3 in total, and per com-
pany. The percentages are based on the total number of arguments. Overall, the
score 1 is always the most associated with specific, persuasive and strong quality
dimensions. Argument objectivity is validated mostly when mentioning unbi-
ased indicators, such as numerical values or time references. We also notice that
label 0 (low) is the least frequent. In addition, only 0.4% of the arguments are
considered bad, i.e., all four dimensions (specific, persuasive, strong and objec-
tive) are rated by zero. This small percentage reflects the overall good quality
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Table 3. Statistics of overall argument quality dimensions over FinArgQuality

Dimension Company

FB AMZN MSFT AAPL Total

Count [%] Count [%] Count [%] Count [%] Count [%]

Specific 0 29.0 1.33 13.0 0.60 34.0 1.56 7.0 0.32 83.0 3.80

Specific 1 281.0 12.87 202.0 9.25 466.0 21.34 147.0 6.73 1096.0 50.18

Specific 2 180.0 8.24 220.0 10.07 309.0 14.15 296.0 13.55 1005.0 46.02

Strong 0 39.0 1.79 31.0 1.42 49.0 2.24 19.0 0.87 138.0 6.32

Strong 1 317.0 14.51 274.0 12.55 557.0 25.50 285.0 13.05 1433.0 65.61

Strong 2 134.0 6.14 130.0 5.95 203.0 9.29 146.0 6.68 613.0 28.07

Persuasive 0 70.0 3.21 20.0 0.92 37.0 1.69 11.0 0.50 138.0 6.32

Persuasive 1 254.0 11.63 209.0 9.57 370.0 16.94 221.0 10.12 1054.0 48.26

Persuasive 2 166.0 7.60 206.0 9.43 402.0 18.41 218.0 9.98 992.0 45.42

Objective 0 102.0 4.67 76.0 3.48 304.0 13.92 149.0 6.82 631.0 28.89

Objective 1 388.0 17.77 359.0 16.44 505.0 23.12 301.0 13.78 1553.0 71.11

Temp.history -1 338.0 15.48 288.0 13.19 733.0 33.56 408.0 18.68 1767.0 80.91

Temp.history 0 26.0 1.19 18.0 0.82 12.0 0.55 4.0 0.18 60.0 2.75

Temp.history 1 54.0 2.47 43.0 1.97 7.0 0.32 10.0 0.46 114.0 5.22

Temp.history 2 24.0 1.10 41.0 1.88 17.0 0.78 11.0 0.50 93.0 4.26

Temp.history 3 48.0 2.20 45.0 2.06 40.0 1.83 17.0 0.78 150.0 6.87

of arguments, and the persuasion strategies which managers often use during
the earnings calls and public speech, as highlighted by Crawford [33]. The time
reference itself, is defined in our guidelines only in the past, as the temporal-
history dimension. To standardize the annotations, we asked the annotators not
to assume their interpretations of time references if it is not explicitly mentioned.
Therefore, we got a majority class of −1, while all expressed time indicators com-
pose about 20% of our arguments.

Furthermore, Table 4 exhibits the detailed corpus size and sentence/tokens
distributions, as well as statistics with respect to the claim and premise types
and argument relation. We can see that 43% of claims are factual, while 36% are
based on opinions. The remaining claim types (Reformulated, Policy, Value, and
Other) represent approximately 21%. This is reasonable since managers mainly
report facts, or explain their views and future prospects.

Moreover, the distribution of premise types confirms the financial nature
of the collected data, since it mostly covers facts (71%) and statistics (13%).
Nevertheless, some background information seems to be annotated as facts by
our annotators, given that it is still true (happened) information that could be
tricky not to consider as a fact. Similarly, Carlile et al. [30] found that 493 of
their premises received a “common knoweledge” label, out of 707 premises with
8 potential premises types defined in the annotation guidelines. In a related anal-
ysis, Villalba and Saint-Dizier [35] show how “a number of evaluative expressions
with a’heavy’ semantic load receive an argumentative interpretation”.
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Table 4. Size and statistics of argument components types and argument relation over
FinArgQuality. The average is presented along with its standard deviation

Attribute Count [%] Avg. per doc Avg. per company

Sentences In-argument 9693 68.53 12 ± 6 2423 ± 423

Out-of-argument 4453 31.47 6 ± 4 1113 ± 158

Tokens In-argument 244253 78.84 297 ± 155 61063 ±13437

Out-of-argument 65537 21.16 82 ± 78 16384 ± 4796

Arg. components Premises 5078 52.40 6 ± 4 1270 ± 271

Claims 4613 47.60 6 ± 3 1153 ± 158

Claims Fact 2001 43.38 3 ± 2 500 ± 93

Opinion(view) 1672 36.25 2 ± 2 418 ± 64

Reformulated 850 18.43 2 ± 1 212 ± 56

Policy 45 0.99 1 ± 0 11 ± 5

Value 28 0.60 1 ± 0 7 ± 3

Other 17 0.37 1 ± 0 4 ± 3

Premises Fact 3624 71.37 5 ± 3 906 ± 303

Statistic 691 13.60 2 ± 1 173 ± 92

Real Example 496 9.77 2 ± 1 124 ± 53

Hypothesis 46 0.91 1 ± 0 12 ± 5

Other 221 4.35 2 ± 1 55 ± 24

Relation types Support 4823 98.41 6 ± 4 1206 ± 271

Attack 78 1.59 1 ± 1 20 ± 10

5 Discussion and Conclusions

Recently, financial argumentation gained momentum in different languages (e.g.,
[45,46]). Given that both financial NLP and computational argumentation com-
munities suffer from the lack of labeled data, we believe that our proposed
assessment model and publicly available dataset, can serve as strong baselines
for future work. We expect our carefully developed corpus to prompt various
directions.

On the one hand, six potential argument mining tasks could be investigated
using our data: argument identification, argument unit classification, argument
relation classification, premise type multi-class classification, claim type multi-
class classification, and overall argument quality assessment. In addition, a future
direction could be to use the argumentative unit types in order to mine the
argumentation strategies [47].

On the other hand, the automatic detection and qualification of arguments
in financial domain is important for several goals, including but not limited to:

– Efficiency: It allows for the analysis of large amounts of financial data and
reports quickly and accurately, reducing the time and resources required to
manually identify and analyze arguments.
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– Objectivity: It eliminates the subjective biases that can occur when humans
are manually reviewing financial data, resulting in a more objective analysis.

– Enhanced market transparency: Arguments can provide more visibility into
the reasoning behind investment decisions or analysts’ recommendations,
improving market transparency and trust.

– Improved decision-making: Providing a comprehensive analysis of financial
arguments, identifying worthiness, and detection of verified claims, can help
inform and improve decision-making in finance. For example, by using argu-
ment mining to validate managers’ claims (e.g., [9]), we can assess the objec-
tivity, completeness, and credibility of these arguments, providing investors
with more informed and reliable insights for making investment decisions.

Last but not least, we would like to note that a first emerging output of this
work is established by the FinArg-1 Shared Task6, in cooperation with AIST,
Japan7, as well as different other partners. FinArg–1 covers argument unit and
relation classification. The data reported in this paper is planned to be used
in the next editions of this task. We plan to cover different tasks, including
argument quality assessment. Our ultimate goal is to improve the automatic
understanding of financial text. Therefore, we hope that the work presented in
this paper fuels and inspires more research in computational argumentation,
stock market and their interplay.
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Abstract. Machine learning models are ubiquitous today in most appli-
cation domains and are often taken for granted. While integrated into
many systems, oftentimes even unnoticed by the user, these powerful
models frequently remain as black-boxes. They are black-boxes because
while they are powerful predictive models, it is commonly the case that
one cannot understand the decision-making process behind their predic-
tions. Even if we understand the inner workings of a learning algorithm
building a predictive model, the mechanism during inference is more
often than not obscure. How can we trust that a certain prediction from
a model is correct? How can we trust that the model is making reason-
able predictions in general? Debugging a predictive model is unworkable
in the absence of explanations.

We propose herein a new framework, called BARBE, a model-
independent explainer, that learns a surrogate rule-based model on data
labeled by the black-box. BARBE makes use of an interpretable associa-
tive classifier to create a rule-based model that provides various explana-
tions, including salient features, associations between features, and rule-
based representations. Our experimental analysis illustrates the effective-
ness of BARBE in generating rule-based explanations for both numerical
and text data, when compared to state-of-the-art explainers. Our study
demonstrates the faithfulness of BARBE to black-box models. The text-
based explanations generated by BARBE are more meaningful to show
the fidelity and trustworthiness of the explanation.

Keywords: Machine Learning · Explainable AI · Associative
Classification · Model Independent Explanation

1 Introduction

Explainable Artificial Intelligence (XAI) has attracted the attention of many
researchers in recent years. This surge in interest is prompted by the need to
obtain explainability in different AI domains. Providing an explanation is indeed
a requirement in many jurisdictions when an AI system is used to make critical
decisions for humans [1,23]. The objective of augmenting systems with explain-
ability is to provide supplementary information on top of the main output created
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by them (such as the class label in a classifier). This new information allows or
empowers the user to know why the AI system provided the aforementioned
output. One example is a model trained to detect colon cancer in people based
on their medical records. Researchers later noticed the data included the name
of medical clinics in which patients were admitted later. The presence of this
feature was erroneously picked up by the trained model and had caused a sig-
nificant fictitious boost in the performance of the system [26]. In all such cases,
some sort of explainability providing transparency could have helped them avoid
the consequences, consequences that are often far-reaching like contributing to
the distrust of machine learning.

To tackle this issue, various XAI methods have been developed in recent years
that attempt to provide explainability in one way or another. Most effort has
been on attempting to justify or elucidate neural networks since the spotlight
is currently on deep learning. However, there is also an effort for more generic
approaches. For the classification task, in particular, methods have been devel-
oped in which the explanation framework is either independent of the classifier
or is integrated into it. The former approach is called model-independent expla-
nation (or sometimes called model-agnostic), while the latter is called model-
dependent. One significant advantage of model-independent approach frame-
works is that these frameworks can be added to different classifiers. This addi-
tion allows machine learning enthusiasts to inject some sort of explainability into
any existing classifier and leverage them readily.

One problem with some of the current model-independent approaches is that
they do not provide highly precise explanations. In other words, regardless of
what the “real” explanation is, the user can ask for a fixed number of impor-
tant features (e.g., give me top k features relevant to the decision), and the
system then provides k important features accordingly. Additionally, another
notable aspect is to take into account the correlations among input features.
Some approaches, as we discuss in the next section, pay no attention to this
aspect. In our view, this is a critical part in which the end-user should be able
to depend on to better understand the underlying “reasoning” of the black-box
model.

In this work, we introduce BARBE, for Black-box Association Rule-Based
Explanation, a model-independent method that explains the decisions of any
black-box classifier for tabular and text datasets with high precision. More-
over, the black-box classifier is not required to provide any probability score
to take advantage of BARBE. Furthermore, BARBE presents explanations in
three alternative forms: 1) the importance score for salient features, which many
methods also benefit from; 2) significant associations between pertinent features;
and 3) the construction of classification rules, which distinguishes BARBE from
other methods. BARBE exploits association rules, a particular kind of rules that
take into account the associations between features, helping users grasp different
underlying potential causes of a decision.

The rest of this paper is organized as follows. We discuss a few of the main
XAI approaches in the next section. Section 3 contains some preliminaries on
associative classification. This section is needed as we take advantage of an
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associative classifier as the core of our work. We introduce BARBE, the main con-
tribution of this paper, in Sect. 4. Later, we report the experiments we conducted
in Sect. 5 and Sect. 6 to show correctness and fidelity to the black-box predic-
tions. In this section, we show how BARBE performs and compare it against
other methods. We conclude this work in Sect. 7 and provide some thoughts
about future work.

2 Related Work

Attempts to explain classification decisions are not new. ExplainD is a tool intro-
duced by Poulin et al. [19] that visualizes the decisions of well-known classifiers,
which helps users understand their behavior during inference. Most researchers
focus on explaining Deep Neural Networks (DNNs), particularly for image classi-
fication, by exposing the internals of the model using methods such as computing
gradients and propagating them back to input to capture important pixels, which
can be presented as the explanation [7,25] (e.g., Grad CAM [24]).

LIME [21] is a popular model-agnostic method that uses perturbed samples
to train a linear regression model for explaining black-box models. It relies on
the input and output of the model to generate explanations, without knowledge
of the internal structure of the black-box model, and its explanation is a ranked
list of important features for the prediction of each data point. Anchor [22] is an
approach for explaining black-box models that provides a set of salient features
in the form of a single “if-then” rule to overcome the limitation of the linear
model associated with LIME. A weakness of this approach is that it does not
reveal the associations among features. Also, in contrast to LIME, it cannot
provide any relative feature importance scores anymore.

Guidotti et al. introduce LORE [6] that takes advantage of rules for providing
explanations. In their method, they create a neighbourhood around the instance
using a Genetic Algorithm. Moreover, they enforce the data point selection algo-
rithm to choose at most half of the data points from the class of the original data
point. Note that while data points are created by the genetic algorithm, the class
labels are obtained by querying the black-box model. With the labeled synthetic
data points they train a decision tree. They take advantage of the decision tree
to produce two types of rules; a single decision rule, and a set of counter-factual
rules.

Pattern Aided Local Explanation (PALEX) is another method proposed to
provide explanations for black-box models. In their method, Jia et al. [10] sug-
gest a set of patterns as the explanation using FP-Growth algorithm [9]. Their
method, however, requires defining a few hyper-parameters such as minimum
support, and minimum growth ratio thresholds as well as the probability score
provided by the black-box model. Alternatively, LACE [17] directly learns an
associative classifier by exploiting the nearest data points in training data.
Their method, however, requires the training data to be available, and this
may not always be realistic. Additionally, the sparsity of the training data in
that neighbourhood, can have a substantial impact on the performance of their
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system. CoSP (Co-Selection Pick) is a recent framework proposed by Meddahi
et al. [15], which aims to provide global explainability for black-box machine
learning models. It does not explain a specific prediction but piggybacks on an
existing explainer to co-select the most important test instances and features of
the model as a whole. The framework selects individual explanations based on
a similarity preserving approach, achieving a co-selection of instances and fea-
tures. Unlike submodular optimization methods, CoSP considers the problem
as a co-selection task and can be applied in both supervised and unsupervised
scenarios with supposedly any local explainer. In their paper they used LIME.

3 Associative Classification

Rule-based classifiers, such as Ripper [4] or SigDirect [11], generate easily inter-
pretable models by learning classification rules of the form “If condition Then
class”. Being known as transparent classifiers, they use attribute-value pairs as
the antecedent and a class label as the consequent. During inference, applica-
ble rules are selected based on whether their antecedent matches the instance’s
features, and a heuristic is used to assign the consequent as the prediction.

Associative classifiers learn their classification rules by applying association
rule mining, a canonical task in data mining on the data after modeling the
training data into transactions, each transaction being a set of attribute-value
pairs and the class label. The rules are conjunctions of feature-values implying
a class label: f1, and f2, and f3, and f4, and ..., fn → class1.

Associative classifiers have, for the most part, after the rule generation, a
rule pruning phase to weed out redundant and noisy rules, and this is where
the various approaches differ, in addition to the heuristics used to select rules
at inference time. The most recent associative classifier approach that outper-
forms all preceding algorithms is SigDirect [11], which we take advantage of
in our framework BARBE. The authors of SigDirect showed that not only did
their algorithm outperform the other associative classifier contenders in accuracy
on various datasets, it also generates a classification model with significantly
less rules. Having fewer and more accurate rules is particularly pertinent for
providing explanations in BARBE. Another advantage is the lack of cumber-
some parameters. With other associative classifiers like CBA [13], CMAR [12]
or ARC [3] hyper-parameter tuning is required. They heavily rely on support
and confidence thresholds which are notoriously difficult to assess. SigDirect uses
instead statistical significance to appraise rules.

SigDirect uses an Apriori-like strategy to first generate the rules and then
leverage a new instance-based approach for the pruning step to only keep rules
with the highest quality [11]. Similar to Apriori [2], it expands one level at a time
but uses the Kingfisher algorithm [8] to find globally optimum, non-redundant
dependencies with a scalable branch and bound approach with supplementary
pruning by means of Fisher exact test and a P-value for statistical significance.



86 M. Motallebi et al.

Therefore we use SigDirect, a strong interpretable rule-based classifier that gen-
erates a minimal number of statistically significant classification rules, as the
core of our model-independent explanation framework.

4 BARBE: Black-Box Association Rule-Based
Explanation

4.1 Shortcoming of Other Methods

Take what LIME generates for the text “A movie where tensions build and
conflicts arise” as shown in Fig. 6A. The number below each feature is simply
the “importance scores” used for ranking. For example, 0.10 for movie and 0.06
for conflicts highlight that movie has slightly higher importance than conflicts
in making the sentence negative. This leads us to the conclusion that only the
order among features matters to the users and not the numbers generated in
the explanations. Sine LIME uses a weighted loss function for its linear model
that also benefits from regularisation, it is likely that the instances which are
not in the very close proximity of the original instance would be misclassified
by this linear model, thus providing wrong explanations to the user. Ribeiro et
al. [22], the same authors of LIME, also point out the fact that features are taken
independently (see example in Fig. 6B). They introduce Anchor to overcome this
issue. In their new method, an explanation is a set of features that whenever
they co-occur, the class label is determined with a 95% confidence. This Anchor
essentially resembles a rule (with a high confidence threshold of 95%).

The authors of LORE [6] benefit from the idea of using a set of counter-
factual rules as the explanation in their method as well. Despite the fact that
these methods, to some degree, overcome the problem mentioned above, one
issue remains: is there always only one set of correlative features (and hence
one reason) behind the final outcome of the model? What if there were multiple
sets of correlative features that independently derive the final conclusion of the
system [16]. Therefore an explanation should not solely focus on independent
features or one unique set of associated features but on possibly a set of causes.
Hence the interest in an associative classifier that can provide a set of rules as
an explanation.

To overcome the above shortcomings, we introduce Black-box Association
Rule-Based Explanations or BARBE. Our method, unlike LIME, provides a set
of rules as the explanation, where not only do rules provide users with important
features (what LIME does), but also takes care of the associations among them
(what LORE and Anchor do). In addition, since we provide multiple rules as an
explanation, we can hint at multiple causes that have led to that decision by the
system, something that the aforementioned methods are unable to provide. Note
that using a decision tree (in systems like LORE [6]) the path in the tree leading
to the predicted label results in a single applicable rule which constitutes only
one unique cause.
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4.2 Explanations by BARBE

BARBE generates a descriptive model learned on data labeled by the black-box
and provides as the explanation a subset of rules from the model that apply to
the instance for which the explanation is expected. From this set of rules and
their individual measure of confidence and significance, BARBE can provide an
ordered set of important features as an alternative way of providing explanations.
This allows the users to have the choice to look at these two types and get a
better understanding of the underlying causes. Moreover, as mentioned earlier,
each rule in addition to the items in its antecedent and the class label, comes
with added information such as its confidence, support value, and p-value. Not
only does this provide an alternative means for users to comprehend black-box
models, but it also opens the door for researchers to conduct comparisons with
other techniques such as LIME.

Figure 1 shows an example of what BARBE outputs for an instance of the
Glass dataset [5]. In this example, BARBE produces three rules in which they
not only provide important features to the users but also hint at the associations
among the features. For compactness, the feature number in both the table and
histogram is displayed instead of the full name. The first rule could be written as
“Magnesium = [0.38, 2.13], Aluminum = [1.64, 1.76], Calcium = [7.80, 8.23] →
Vehicle Window”. The second rule could be expressed as “Magnesium = [0.38,
2.13], Potassium = [0.00, 0.61] → Vehicle Window” and the third rule could be
written as “Potassium = [0.00, 0.61] → Vehicle Window”. Here, the rules are
inferring class label 3.

Fig. 1. The explanation provided by BARBE for an instance of the Glass dataset [5].
Here, feature tokens are shown for conciseness. The right side contains the important
features ranked based on their importance. The left side contains important rules with
their support, confidence, and the logarithm of the p-value reported by SigDirect.
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4.3 How Does BARBE Work?

A high-level representation of BARBE’s activity diagram is shown in Fig. 2.
BARBE creates a neighbourhood around the instance to explain with synthetic
data points produced by perturbing the features of the instance. The synthetic
data points are labeled by the black-box which produces a training set for the
SigDirect classifier. The outcome of the training is a set of rules. Rules from the
trained model relevant to the original instance are extracted. Lastly, BARBE
derives important features from these rules. BARBE needs to have access to
the set of possible values for each attribute. Moreover, SigDirect, the heart of
BARBE, relies on associations between discrete features. Indeed numerical val-
ues of continuous attributes need to be discretized into intervals. Associative
classification rules demand ordinal features. Therefore, if buckets are not pre-
defined, and in order to define buckets for continuous data, BARBE needs to
access a sample of data from which the instance to be explained was drawn.

Fig. 2. Coarse representation of BARBE’s framework.

BARBE receives an instance and a label to explain. If there are continuous
features, and buckets for value intervals are not defined, a dataset of data points
is used to discretize numerical attributes and define buckets. These buckets are
then used to perturb the original instance and generate a neighbourhood of
synthetic data points around the original instance. All these points are then
labeled by the black-box after being converted to the input format of the black-
box. For instance, before the labeling by the black-box, a reverse quantization
may be required for continuous values that were mapped to the set of discrete
finite buckets. This reverse transformation creates a normal distribution for each
bucket of a feature and then randomly samples from the distribution. For text
data, BARBE uses a simple strategy to generate a synthetic dataset around the
original instance. BARBE takes advantage of random word removal from the
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sentence. The algorithm takes the input sentence and a number which tells the
algorithm to iterate the process for n times to generate n number of synthetic
text data. It selects a set of random positions within the input sentence and
deletes the words from those positions. The resulting sentence after deleting
random words is returned as the synthetic sentence. This process is repeated n
times to generate n new sentences which form the neighbourhood dataset around
the original text.

The resulting set of classification rules is relevant to the original instance
since the training data is made of instances from its vicinity. The set is further
reduced by selecting the most relevant rules to the instance to explain. The
most important features are thereafter selected from these selected rules. We
have experimented with different metrics to rank the features and found that
summing the supports of all applied rules in which a feature f appears provides
the best accuracy when compared with the features used by the black-box.

5 Experiments

5.1 Experiments Setup

To evaluate our method, we compare the explanation produced by BARBE
against the true explanation. We replace the black-box model with a fully-
transparent model and conduct experiments on this “open box”. The inter-
pretable model we leverage in our experiments is a Decision Tree (DT)1. Not
every DT is interpretable. Its depth should be limited to a reasonable level so
humans can track different paths in this data structure [7]. We limit the depth
of the DT to a specific level k at train time, with k set at 5 in our experiment.

5.2 Experiments’ Metrics

We use Precision, Recall, Fβ-score, and Rank-Biased Overlap (RBO) as our com-
parative metrics in the experiments. We make use of F 0.5-score in our exper-
iments to put more importance on Precision than Recall. If the explanation
includes only a few of the features which are mostly tagged correctly as impor-
tant (i.e., a case where Precision is high but Recall is low), then the end-user can
still trust the system as this case indicates the black-box model is focusing on
some of the right features. Moreover, since BARBE is presenting a ranked list of
features as explanation, we take advantage of Rank-Biased Overlap (RBO) [27]
to evaluate the order of important features compared to the ground truth expla-
nation2.

In our experiments, we compare the explanation provided by BARBE with
the ground truth explanation obtained from the DT for each instance in the
dataset. We then calculated the metrics for each one. These metrics are later
averaged over all instances used in the experiment and finally reported in Table 1
and Fig. 3 in the next section. All results are averages for 100 experiments of
explanation evaluations.
1 We use scikit-learn [18] for implementing the DT.
2 We used the implementation in https://github.com/changyaochen/rbo.

https://github.com/changyaochen/rbo
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Table 1. F 0.5 and RBO for different methods and datasets with sample size at 5, 000.

dataset F 0.5-score RBO

LIME Anchor BARBE LIME Anchor BARBE

Glass 0.736 0.534 0.796 0.777 0.287 0.796

Wine 0.554 0.656 0.680 0.314 0.484 0.416

Hungarian 0.483 0.508 0.570 0.776 0.264 0.427

Poker 0.666 0.331 0.637 0.353 0.713 0.368

Breast 0.633 0.497 0.715 0.300 0.246 0.332

Image 0.566 0.570 0.852 0.483 0.321 0.500

Magic 0.596 0.729 0.712 0.684 0.835 0.515

Vowel 0.526 0.683 0.840 0.671 0.444 0.675

Hepatitis 0.432 0.492 0.340 0.106 0.218 0.055

WPBC 0.489 0.536 0.642 0.543 0.594 0.606

WDBC 0.468 0.131 0.494 0.228 0.056 0.320

Average 0.559 0.515 0.662 0.476 0.406 0.455

Nb. Wins 1/11 2/11 8/11 1/11 4/11 6/11

5.3 Comparison with Other Explainers

We choose LIME and Anchor to compare with BARBE through different exper-
iments with an interpretable decision tree disguised as a black-box. We exploit
11 different UCI datasets [5] (Table 1) to conduct these experiments where the
results we report are averages over five runs with different random seeds. In
Fig. 3, we provide Precision, Recall, and F 0.5-score for all data points that the
method has predicted the class label correctly when the generated sample size
around the instance increases from 1,000 to 5,000. For lack of space, we report
here the results of the average for all 11 datasets.

To estimate the faithfulness of LIME, we examine its prediction score.
Because the regression model is trained on values originating from a proba-
bility space, we can expect the regression model to generate a number in the
same domain. Additionally, for the original point, if the interpretable model is
trained properly, the predicted value should be close to 1. If the score, however,
is below 1

n , where n is the number of classes, that explanation is not faithful, and
thus we do not include the incorrect case. Our criterion generously considers the
outcome of LIME’s regression model faithful, since most instances would belong
to the target class and thus their probability score should be close to 1, yet,
we observe BARBE providing competing results throughout our experiments.
Anchor, however, does not rely on any interpretable model, and therefore, we
are not able to determine its fidelity with the ground truth. Consequently, we
assume in our experiments that all its explanations are faithful, and as a result,
we include all instances of Anchor in the evaluation.
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We also report the F 0.5 and RBO for the three methods and for all the
datasets in Table 1 where the sample size is 5, 000.

Fig. 3. Performance of LIME, Anchor, and BARBE.

In terms of F 0.5-score, BARBE displays the best results for all datasets
but two, for which it was still a good contender. This good performance of
BARBE is mainly due to the very high Precision. It was able to pinpoint correct
features as per the ground truth. Moreover, LIME had typically higher Recall
as LIME ranked all available features and therefore would rarely miss relevant
ones. Interestingly, BARBE outperforms Anchor in not only for the F 0.5-score,
but also Precision in most datasets, even though Anchor depends on a high
precision rule to explain an instance. Moreover, the results demonstrate that
BARBE has a better capacity to order the importance of features. In more than
half the datasets, BARBE gives a betterRBO score, followed by Anchor which
beats LIME in terms of arranging the discovered salient features by importance.

5.4 Faithfulness to the Black-Box

To show the real importance of the features claimed important by BARBE on the
decision of the black-box model, we make changes to the values of those features
and request the black-box to do another classification. The more those changes
are significant, the higher the chance that the black-box flips its decision. This
is illustrated in Fig. 4. We changed the value of the most important features by
1 standard deviation up to 2 standard deviations for 100 randomly selected data
points from the Pen Digits dataset of UCI repository and classified by a neural
network with 2 hidden layers as a black-box. The accuracy clearly and steadily
drops as we increase the extent of the change which indicates that the features
highlighted by BARBE are indeed the influencers for the black-box.

6 Experiments on BARBE for Text

In this section, we discuss the settings under which we conduct experiments
to evaluate BARBE for text. Our goal is to develop a framework that can be
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Fig. 4. Impact on Accuracy of changing values of important features.

employed not only on tabular datasets but also on text datasets. For text data, we
demonstrate the efficacy of BARBE for binary classification tasks in this paper.
We choose the IMDB movie review dataset [14] for the binary classification task
since it is widely used in the literature for text classification.

6.1 Results

BARBE uses the data labeled by the black-box model to train a descriptive
model that generates a set of rules as the explanation. Each rule has a support,
confidence, and statistical significance value associated with it. The rules corre-
spond to the features in the data which constitute the set of important features
as the form of explanation. We have used support vector machine (SVM) as the
underlying black-box and trained it with the IMDB movie review dataset. TF-
IDF [20] has been used to convert the text into features in BARBE. When the
black-box is ready, we use the neighbourhood generation process as discussed
in Sect. 4.3 to create the synthetic dataset. This dataset once labeled by the
black-box is used by BARBE to generate the rules in the form of explanation.
Figure 5 shows the result generated by BARBE for a sentence with negative sen-
timent as labeled by the black-box. The sentence depicted in Fig. 5A contains
words that have been highlighted with a color gradient of red for negative words
and green for positive words. Figure 5B depicts the rules generated by BARBE.
Here, BARBE generates a total of 5 rules for this sentence to identify the most
important features. The important features are highlighted from strong red to
light red for negative and strong green to light green for positive ones.

It is evident from the figure that the words “conflicts” and “tensions” are the
two negative words that are responsible for labeling the sentence as negative by
the black-box model. It is noteworthy that BARBE generates a set of rules, not
a single rule, and each rule contains a set of words. For the sentence of Fig. 5A,
BARBE generates “conflicts arise” as the association rule that essentially has
semantic context in the sentence. “conflicts arise” has more semantic significance
than the word “conflicts” only. The three other rules generated by BARBE are:
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“tensions”, “movie”, and “build” as shown in Fig. 5B. It is important to note
that the word “build” has been detected as a feature having a positive label here.
With 31.01% confidence, this rule has a positive label meaning this rule has little
impact on making the sentence positive. Thus, BARBE not only identifies the
rules that explain the negative sentiment of the sentence but also highlights
the rules that may contribute slightly to the sentence being positive. Each rule
has its support, confidence, and the logarithm of statistical significance values
shown in the table in Fig. 5B inside brackets. BARBE represents the black-box
prediction probabilities as depicted in Fig. 5C. In Fig. 5D, the vertical bar chart
showcases the most important features based on their frequency within the rules,
along with the corresponding weighted confidence value. It is evident from this
figure that the word “conflicts” and “tensions” are the most important feature
whereas “movie”, and “arise” are the least important ones.

We also demonstrate the explanation obtained by BARBE for a sentence
having positive sentiment. Figure 5E presents the sentence. BARBE generates 5
rules to explain why the sentence has been labeled as positive by the black-box
model as shown in Fig. 5F. The words “wonderful” and “success” are enough to
justify the sentence as positive. Figure 5G is the prediction probabilities of the
black-box model and Fig. 5H highlights the most important features in terms of
their frequency weighted by the confidence values within the rules.

6.2 Comparison with Other Explainers

We compare the explanation generated by BARBE with LIME and Anchor for
the text dataset. LIME for text differs from LIME for tabular data in terms
of the neighborhood data generation methodology. Starting from the original
instance, new instances are created by randomly removing words from the orig-
inal instance. There is a major drawback here. While generating such neigh-
borhood instances, LIME creates a large number of empty sentences as we
explore the neighborhood generation algorithm of LIME. An empty sentence
does not make any sense when it is used to be labeled by the black-box model.
On the other hand, Anchor deploys a perturbation-based strategy to generate
local explanations for predictions of black-box model.

Figure 6 illustrates the explanation generated by LIME and Anchor for the
sentence “A movie where tensions build and conflicts arise”. LIME highlights the
feature “movie” as the most important word for making the sentence negative. It
provides fewer weights to “tensions” and “conflicts”. The word “movie” cannot
justify the decision of the black-box alone with such a significant weight of 0.10.
Besides, there is no association within the features generated by LIME. LIME
provides less significance to “tensions” and “conflicts” whereas BARBE provides
higher significance to them (see Fig. 5). Moreover, BARBE discovers the rules
containing a set of features e.g. a conjunction of features that makes more sense
when explaining the decision of the black-box. All the rules have their support,
confidence, and statistical significance values which are not available in LIME.
On the other hand, Anchor generates only a single feature “conflicts” and treats
this word as solely responsible for making the sentence negative. It misses the



94 M. Motallebi et al.

Fig. 5. The explanation provided by BARBE for two instances of the IMDB movie
review dataset labeled by the black-box model. (A) shows a negative sentence with fea-
tures highlighted. Red presents the negative words and green presents the positive ones.
(B) presents the set of important rules with their support, confidence, and logarithm of
statistical significance values Found by BARBE. (C) presents the prediction probabil-
ity of the black-box, and (D) presents the histogram of important features ranked by
BARBE. Figures E-F present the case for a positive sentence. (Color figure online)
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other significant words present in the sentence as BARBE and LIME figure out
in their explanation.

A. Explanation generated by LIME

B. Explanation generated by Anchor

Fig. 6. Comparing the explanation generated by Lime and Anchor for the sentence: “A
movie where tensions build and conflicts arise”. (A) presents the explanation of LIME.
The probabilities on the left of Figure A are the prediction probabilities of the under-
lying black-box model. On the right of Figure A, the features and their corresponding
importance scores generated by LIME are shown in order of their importance. (B)
presents the explanation of Anchor which only depends on the single word “conflicts”

7 Conclusion and Perspectives

We have presented a model-independent explanation framework based on asso-
ciative classifiers, BARBE, that provides explanations for any black-box clas-
sifier in three forms: a set of ranked salient features that are relevant in the
prediction of an instance; significant associations between features; and a set
of interpretable classification rules that could explain the attribution of a class
label to an instance. Unlike other methods, BARBE does not require from the
black-box anything more than the predicted label for a given input. For a given
input and its imputed label to explain, BARBE creates a perturbed sample
around the input, requests labels from the black-box, and learns from the sam-
ple classification rules using an effective associative classifier. Taking advantage
of the interpretability of the model generated by the surrogate learner, BARBE
can then provide useful explanations. Compared to other prevalent methods
that provide salient features, we have shown that BARBE has a better Preci-
sion, presents a better balance between Precision and Recall via the F0.5 score,
and ranks better the features as indicated by a respectable RBO score. In addi-
tion, BARBE provides classification rules with associations between the features.
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Demonstrating the performance of BARBE on text makes the association rule
more feasible to explain. By providing a conjunction of rules e.g. conjunction of
features, the semantic fidelity is preserved by BARBE.

Associative classifiers are highly accurate but can generate noisy rules, which
can be misleading when used in explanations. Pruning techniques can help
address this issue, but finding more effective techniques could be beneficial. High
dimensionality is also an issue, and an ensemble of associative classifiers can be
used to partition the feature space. However, a better pruning of the search space
would be an improvement. Associative classifiers are suitable for text categoriza-
tion [3], and using BARBE for text classification explanations is straightforward,
allowing the discovery of n-gram causes like with Anchor.
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Abstract. Video captioning combines computer vision and Natural
Language Processing (NLP) to perform the challenging task of scene
understanding. The rapid advancements in artificial intelligence have led
to a growing interest in video captioning, which involves generating nat-
ural language descriptions based on the visual content of videos. In this
paper, we present a novel approach to video caption generation. The
proposed method first extracts frames from the video and reduces the
number of frames based on their similarity. The remaining frames are
then processed by a Convolution Neural Network (CNN) to extract a fea-
ture vector, which is then fed into a Long Short-Term Memory (LSTM)
network to generate the captions. The results are compared with the
state-of-the-art models which demonstrate that the proposed approach
outperforms the existing methods on MSVD, M-VAD, and MPII-MD
datasets.

Keywords: Video Caption Generation · Video frame similarity ·
Sequence to Sequence · Stacked LSTM

1 Introduction

The enormous amount of digital information has led researchers to explore the
use of natural language processing to interpret video content. Video captioning,
which involves generating written descriptions of the visual content of a video,
has particularly captured the interest of researchers due to its many potential
applications [1]. Some of the important applications are human-robot interaction
such as chat-bot [2], describing movies for the blind [3], movie interpretation for
elderly people, and video indexing [4]. Image caption generation requires han-
dling variable lengths of text captions and videos. Holistic video representation
[5], pooling over frames [6], and choosing a fixed length of frames [7] are some of
the existing approaches used to handling variable lengths of input frames. We
propose a novel sequence-to-sequence approach that is trained on selected video
frames and has the ability to better recognize patterns from video captioning
including input sequence. Our model operates by processing video frames in a
sequence, reducing the number of frames, and producing words in a sequence to
make it a sequence-to-sequence model.
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Open-domain videos have a diverse set of actions, objects, and attributes.
Therefore, generating text descriptions in each domain offers different challenges
that researchers are trying to address [8]. In addition, determining the visible
and important content to interpret and explain an event properly in the detected
context is difficult for open-domain videos. The proposed model is trained with
video frames and their paired sentences which describe the salient actions in the
context of natural language. The Long Short-Term Memory (LSTM) network
[9] is a Recurrent Neural Network (RNN) that is used with time-series data,
especially in sequence-to-sequence tasks such as speech processing [10], natural
language processing from the Internet of Things (IOT) sensor data [11], and
machine translation [12]. Since the video caption method presents a combination
of the sequential nature of videos and languages, LSTM is a simple and efficient
model that can handle the inherent sequential pattern in both language and
video [13].

The main contribution of our work is developing a video frame selection
approach that can provide a good result with existing models. It uses a stan-
dard sequence-to-sequence architecture, which enables the model to 1) accept
an unpredictable number of input frames, 2) reduce the number of frames to a
fixed number that enables the model to train fast, and 3) develop a language
model that creates grammatical sentences naturally. Our model is trained end-
to-end, taking into account both Convolution Neural Network (CNN) and LSTM
networks for feature extraction and caption generation respectively. We demon-
strate that our method surpasses the state-of-the-art results in three distinct
datasets: MSVD [14], M-VAD [15], and MPII movie description [16].

2 Related Work

Video caption generation is a bridge between two research paradigms namely
computer vision and natural language processing, which has attracted great
attention recently [17]. Generating a description of the content of an image or
video is a challenging topic in computer vision [18]. Kojima et al. [19] extracted
body features including, head directions, and head and hand positions, which
are related to detecting human postures. They generated case frames based on
the syntactic components and converted these case frames into sentences based
on syntactic rules. Khan et al. [20] and Hanckmann et al. [21] tried to use some
strategies to enhance multimedia applications.

Later on, probabilistic graphical models were used to describe video and
images [18,22,23]. For example, Farhadi et al. [22] designed three different spaces:
image space, sentence space, and meaning space. For the next step, the authors
combined image and sentence spaces and generated the meaning space to find
meaningful connections between images and related sentences. For representing
the meaning space, they used a triplet as <object, action, scene>. The image
space was mapped into a meaning space by predicting triples from images, while
the sentence space was mapped into a meaning space by extracting triples from
sentences and then calculating their similarity. In addition, Rohrbach et al. pro-
posed a method named Conditional Random Field (CRF) [23] to detect the
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relationship between computer vision and semantic representation. The main
disadvantage of these models is their dependency on sentence templates.

Deep learning has been used by many researchers to solve the problem
of video captioning [13,24–26]. For instance, Venugopalan et al. [13] used a
stacked LSTM to generate effective descriptions, while Pan et al. [25] used
visual-semantic embedding to learn from the semantics of entire sentences and
video content. Some studies have shown that semantic attributes can greatly
contribute to video captioning [27,28]. For example, Pan et al. [27] used Multi-
ple Instance Learning (MIL) to learn semantic attributes from videos and then
improve their models. Instead of using mean pooling [26,29,30], others have
used attention mechanisms to tackle video captioning. Yao et al. [30] used a
temporal soft attention mechanism to select the most relevant frames. Yu et
al. [31] used a supervised spatial attention mechanism to guide the model to
learn relevant spatial information for video captioning. In addition to our uni-
modal approach that utilizes only video content for caption generation, several
state-of-the-art models incorporate other modalities such as audio with video
frames. Yang et al. proposed Vid2Seq [32], a visual language model pretraining
approach, aimed at dense video captioning. Their large-scale pretraining method
effectively captures the visual and linguistic information in videos, improving the
quality and accuracy of generated captions. Wang et al. introduced a powerful
few-shot video-language learning approach [33] by combining language models
with image descriptors. Their method demonstrates impressive performance in
understanding and generating captions for videos with limited training data. Li
et al. proposed Clip-event [34], a novel framework that establishes connections
between text and images using event structures. By leveraging event informa-
tion, their approach effectively bridges the gap between textual descriptions and
visual content, enabling better understanding and interpretation of visual data.

3 Preliminaries

3.1 Tensor Dot (TD)

The TD (also known as Tensor Contraction) between two tensors A and B of
shape N1 × N2 × K and K × M1 × M2 respectively, is defined as the product of
corresponding components over specific axes. This operation is denoted as per
the notation in [35] as

C = A(i, j) · B (1)

where C is the resulting tensor of the TD operation which has a shape of N1 ×
N2 ×M1 ×M2, and i and j represent the axes over which the sum is performed.
In this example, i and j can only be 3 and 1 respectively, as they are the only
axes that are of the same size (K).
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3.2 Chamfer Similarity (CS)

The Chamfer Similarity (CS) is the similarity counterpart of the Chamfer Dis-
tance [36]. It involves comparing two sets of items, for example, set x with N
items, and set y with M items. The similarity between each item in set x and
set y is represented by a matrix S with shape N × M . The CS is calculated as
the average of the highest similarity between each item in set x and the items
in set y, as represented by Eq. 2.

CS(x, y) =
1
N

∑

i∈N

max
j∈[1,M ]

S(i, j) (2)

It is important to note that the CS is not symmetric, meaning CS(x, y) is
not equal to CS(y, x), however, a symmetric variant, SCS(x, y) can be defined
as the average of CS(x, y) and CS(y, x):

SCS(x, y) = (CS(x, y) + CS(y, x))/2 (3)

3.3 LSTM for the Sequence-to-Sequence Models

We use a latent vector representation to handle varying lengths of input and
output in video captioning. This representation encodes the sequence of frames
in the video and then decodes it into a sentence, word by word. A popular
approach to do this is to use the Long Short-Term Memory Recurrent Neural
Network (LSTM-RNN). LSTM was first introduced by Hochreiter et al. [9] which
uses the LSTM unit proposed in [37]. This unit computes a hidden/control state
and a memory cell state at each time step, which encodes all observations made
until that time as demonstrated in Eq. 4.

it = σ (Wxixt + Whiht−1 + bi)
ft = σ (Wxfxt + Whfht−1 + bf )
ot = σ (Wxoxt + Whoht−1 + bo)
gt = φ (Wxgxt + Whght−1 + bg)
ct = ft � ct−1 + it � gt

ht = ot � φ (ct)

(4)

where a sigmoidal non-linearity σ and a hyperbolic tangent non-linearity φ are
used to compute the hidden control state and memory cell state. These states are
determined by the element-wise product of gate values, weight matrices (Wij),
and biases (bj) which are learned through the model training. So, during the
encoding phase, the LSTM takes in an input sequence X of length n which is
composed of x1, x2, ...xn and computes a sequence of hidden states h1, h2, ...hn.
During the decoding phase, it defines a probability distribution over the output
sequence Y = (y1, ...ym) given the input sequence is X = (x1, ...xn) as p(Y |X).

p (y1, . . . , ym | x1, . . . , xn) =
m∏

t=1

p (yt | hn+t−1, yt−1) (5)
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The distribution p(yt|hn+t) is determined by a SoftMax function over all the
words in the vocabulary as shown in Eq. 5. It is important to note that the hn+t

is obtained from the previous hidden state hn+t−1 and the previous output yt−1

using the recursion in Eq. 5.

4 Proposed Method

The main contribution of this work is to develop a model that can reduce the
number of video frames without missing information and can directly translate
a series of frames into a sequence of words. The model is illustrated in Fig. 1.
First, all the frames are extracted from the video. Then a series of consecutive
frames are selected and processed through a CNN to extract the significant
features of each frame. Finally, a stacked LSTM translates frame vectors into
sentences. These frames are encoded one by one through a stacked LSTM. After
all frames are encoded, the model starts to generate words in a sentence in the
decoder stage, one at a time. The encoding and decoding of the frame and word
representations are trained together. In this problem, the input is a sequence of
frames and the output is a sequence of words. The sequence of inputs or video
frames is denoted as x where x = x1, x2, x3, ..., xn and the generated words in the
output are denoted by y = y1, y2, y3, ..., ym. We have to estimate the probability
of p(y1, ..., ym|x1, ..., xn). The length of n and m may vary for each video or label.

Fig. 1. Proposed Model Structure

The video caption generation problem is similar to that of machine transla-
tion in that both involve the mapping of a sequence of words from one modality
to another. While the numbers of input and output tokens in machine translation
are approximately the same, there can be many times more video frames than
the number of words in the generated captions. In addressing this challenge, one
common approach is to utilize a stacked LSTM network that contains both an
encoder and a decoder. However, the imbalance in size between the number of
video frames and the generated captions often leads to an imbalanced LSTM.
To address this issue, it is necessary to reduce the number of video frames by
removing the redundant similar frames.

This can be achieved by first creating a similarity matrix based on frame
similarity as described in Sect. 4.1. Then, Principal Component Analysis (PCA)
can be applied to select a subset of frames that are not similar, which results
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in detecting the distinctive video frames as outlined in Sect. 4.2. These meth-
ods help to reduce the number of video frames and allow for a more balanced
representation in the stacked LSTM.

Auhroanme et al. [12] show the effectiveness of LSTM and RNN models in
addressing sequence-to-sequence problems. We used the LSTM model to extract
features from the video frame as input and interpret the frames to generate a
meaningful sequence of words as the caption. In the following four subsections,
we first describe data preprocessing which includes extracting frames from videos
and calculating the similarity between frames. The second subsection explains
the algorithms used to reduce the number of frames based on frame similarity.
In the third subsection, we describe the CNN model used to extract features
from selected frames. The fourth subsection illustrates the used stacked LSTM
respectively.

4.1 Frame-to-Frame Similarity

To determine the similarity between two video frames, d, and b, we use Chamfer
Similarity (CS) on the similarity matrix of the frames. This process is depicted
in Fig. 2. First, d and b frames are decomposed into individual RGB vectors,
Md and Mb, respectively. Then, the similarity between each pair of RGB vectors
is calculated to create the similarity matrix for the two frames. Finally, CS
is applied to the matrix to determine the similarity between the frames. The
equation for CS is given below.

CSf (d, b) =
1

N2

N∑

i,j=1

max
k,l∈[1,N ]

d�
ijbkl (6)

Fig. 2. Frame to frame similarity scheme
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4.2 Frame Selection

The goal of this task is to select significant and distinct frames from a video. The
task starts with the calculation of the similarity matrix for all frames of the video
which is defined in the previous section. Then, by applying the PCA algorithm
on the similarity matrix, which detects the correlations between frames, n frames
with the lowest correlation are selected as the output of the task.

The principal components of the data are calculated by finding the eigenvec-
tors of the covariance matrix. An eigenvector is a non-zero vector which, when
multiplied by a matrix, returns a scalar multiple of itself. In PCA, the eigen-
vectors of the covariance or similarity matrix represent the directions in the
data space with the most variance, and are used to construct the principal com-
ponents [38]. Each principal component is a linear combination of the original
variables, and the first principal component corresponds to the direction in the
data space with the maximum variance. The subsequent components correspond
to the directions of decreasing variance.

By transforming the similarity matrix into the space defined by the principal
components, PCA helped to identify the n frames that have the lowest correlation.
The frames with the lowest correlations are most different from one another, and
thus represent the most significant information contained in the video.

4.3 Feature Extraction

VGGNet [39] and AlexNet [40] represent two variations of CNN architecture
that are often used as feature extractors for image classification tasks. In order
to generate a 4096-dimensional feature vector for each frame using VGGNet or
AlexNet, the frame is first passed through the network and processed by several
layers of convolutions and max pooling operations. These layers extract local and
global features from the frame. The final layer of the network, usually referred to
as the fully-connected layer, takes the output of the previous layer and computes
a dense 4096 dimensional feature vector. This feature vector summarizes the
important features of the frames and can be used as a compact representation
for further processing or analysis. This feature vector is then fed into an LSTM
model to train the model to generate captions.

4.4 LSTM for Video Caption Generation

A stacked LSTM model is employed to generate captions from video frames in
this study. The model uses n consecutive frames as input, where each frame is
represented as a 4096 dimensional feature vector. The output of the model con-
sists of n LSTM blocks (each block generates one word) that generate captions
in the form of sentences.

The encoder (green blocks) processes the input feature vectors and converts
them into a compact representation that summarizes the key information from
the video frames. This can be done using a series of LSTM layers where each
LSTM block processes a single video frame represented by a feature vector.
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Fig. 3. LSTM structure to generate captions (Color figure online)

When all frames are fed to the model, the decoder takes the context vector as
input and uses another series of LSTM layers to generate the caption. At each
time step, the decoder outputs a probability distribution over the vocabulary of
words that can be used to generate the caption. The stacked LSTM structure
enables the model to process long-range dependencies in the data, and the use
of a fixed-length context vector allows the model to handle input sequences of
varying lengths (Fig. 3).

5 Results and Discussion

This section describes the datasets, evaluation metrics, and results.

5.1 Data Sets

This paper presents the evaluation of our proposed approach on three video
description corpora: MSVD [14], MPII-MD [15], and M-VAD [16]. These three
corpora form the largest collection of open-domain video and natural language
descriptions. MSVD consists of web clips with brief human-annotated sentences,
whereas MPII-MD and M-VAD include scenes from Hollywood movies and have
descriptions obtained from script and audio sources. The statistics for each cor-
pus as given in Table 1.

Microsoft Video Description Corpus (MSVD). The MSVD is a set of
short videos from YouTube, collected by asking Mechanical Turk workers to
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Table 1. Dataset Properties

Properties MSVD MPII-MD M-VAD

1 number of videos 1,970 68,337 46,009

2 number of sentences 80,827 68,375 56,634

3 sentence per video 41 1 1–2

4 vocabs 12,594 21,700 18,092

5 number of tokens 567,874 679,157 568,408

6 average video length 10.2 s 3.9 s 6.2 s

select clips that show a specific activity. The videos were then annotated with
short, single-sentence descriptions. We used only English descriptions in this
study. The text underwent basic preprocessing such as converting to lowercase,
dividing the sentences into tokens, and removing punctuation marks. We used
the same data splitting and sampling approach proposed by Vedantam et al. [41]
and sampled every tenth frame from each video.

MPII Movie Description Dataset (MPII-MD). The MPII-MD dataset
contains 68,000 video clips from 94 Hollywood movies [29]. Each video clip is
accompanied by a single sentence description sourced from movie scripts and
audio descriptions (AD) for the visually impaired. Although the movie clips are
manually aligned with their descriptions, the data remains challenging due to
the diverse visual and textual content and the fact that most clips have only one
reference sentence. The study uses the training/validation/test split provided
by the authors and every 5th frame is extracted (the videos are shorter than
MSVD, averaging 94 frames per each video clip).

Montreal Video Annotation Dataset (M-VAD). The M-VAD movie
description corpus is a collection of 49,000 short video clips from 92 movies
that are similar to MPII-MD but contain only audio description data with auto-
matic alignment. The same setup as MPII-MD is used for this dataset to extract
video frames.

5.2 Evaluation Metric

The effectiveness of the models is assessed using the METEOR [42] evalua-
tion metric, designed to measure the performance of machine translations. The
METEOR score is determined by comparing a hypothetical sentence to ref-
erence sentences, taking into account exact token matches, stemmed tokens,
semantic similarities, and paraphrases using WordNet synonyms. METEOR is
a semantic-based metric, unlike other measures such as BLEU [43], ROUGE-L
[44], or CIDEr [41]. Research has shown that METEOR performs better than
BLEU and ROUGE, and outperforms CIDEr when the number of references is
limited. Since MPII-MD and M-VAD only have a single reference sentence per
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video clip, METEOR was selected as the evaluation metric in this study. The
study uses METEOR version 1.5.2 from the Microsoft COCO Evaluation Server
[45]. The METEOR score consistently exhibits a low numerical value, which
does not necessarily indicate poor performance. Being sensitive to Grammarly
errors, sentence structure, and word choice and vocabulary, are the factors that
contribute to the lower METEOR scores reported.

5.3 Results

In this work, we compare the proposed method against several state-of-the-art
models in the field namely Factor Graph Model (FGM) [46], Mean-Pooled (MP)
model [47], Temporal-Attention [7], and the Sequence to Sequence - Video to
Text (S2VT) model [13]. The reason for selecting these models is that they are
all popular baseline methods for video captioning. They have been widely used
in previous studies and have been shown to produce competitive results.

FGM is presented by Thomason et al. [46], which identifies the most proba-
ble subject by using a two-step process. At first, the verb, object, and scene ele-
ments in a video are identified and then a sentence is generated based on a pre-
defined template. We also compare our model with a different variation of the MP
model [48]. The MP model uses a fixed-length vector representation of the video
obtained by pooling activation from a deep neural network named AlexNet. MP
model uses LSTM to generate sequence of words from the encoded vector. We
compare our models with the basic MP model pre-trained on the Flickr30k [47],
and an MP model pre-trained on the MSCOCO dataset [49]. Both MP models
were fine-tuned on MSVD. We also compare our model with the GoogleNet [50]
which is a variant of the MP model [7] is shown in row 5 Table 2. We use another
variation of GoogleNet that applied temporal attention by Yao et al. [7] (row 6
Table 2). Another variant of this model uses a combination of GoogleNet and 3D-
CNN which extract features over a set of video frames that is trained for activity
classification (row 7 Table 2). Finally, we compare our model with variants of the
S2VT [13] are shown in the row 8 and 9 of Table 2. The AlexNet or VGG are used
in the two variants to extract video frame features and then feed the features into
a sequence to sequence LSTM model to generate a caption.

Table 2 displays the experimental results of the above mentioned methods on
the MSVD dataset. The first nine rows show results from the SOTA methods,
and the rest depict variations of our method. Our method with AlexNet as the
feature extractor selecting 20 frames that utilize RGB video frames (line 10 in
Table 2) achieves a METEOR score of 28.1%, surpassing the basic MP model
[41] (line 2, 26.9%) and the S2VT model with the same setup (line 8, 27.9%).
When using the VGG-Net to extract features, our method achieves a METEOR
score of 29.9%, where the S2VT method achieves only 29.2%. It is clear that
using redundant frames during training can lead to over-fitting of the model
with a drop in the test accuracy.

The performance of any model drops considerably when it is trained using
fewer frames (lines 12 and 13 in Table 2). This low performance was likely due to
missing important information when we select fewer frames. The average length
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Table 2. METEOR results for MSVD dataset (higher is better)

Method METEOR

1 FGM [46] 23.9

Mean Pool models

2 AlexNet [47] 26.9

3 VGG [47] 27.7

4 AlexNet COCO pre-trained [49] 29.1

5 GoogleNet [7] 28.7

Temporal Attention

6 GoogleNet [7] 29.0

7 GoogleNet + 3D-CNN [7] 29.6

Sequential Models

8 S2VT + AlexNet [13] 27.9

9 S2VT + VGG [13] 29.2

10 Proposed Method (20 frames) + AlexNet 28.1

11 Proposed Method (20 frames) + VGG 29.9

12 Proposed Method (10 frames) + AlexNet 27.8

13 Proposed Method (10 frames) + VGG 29.0

of all videos in the MSVD dataset is 10.2 s which shows that choosing 10 frames
cannot represent the whole content of the video. Therefore, in the experiment,
the best performance is achieved when using VGGNet as a feature extractor
with the 20 frame selected from the video for training our model.

Furthermore, we evaluate our model with the MPII-MD and M-VAD datasets
and compare it with S2VT and other caption generation models. We utilize our
best model from previous experiment, which is trained on RGB frames using
VGG. To reduce over-fitting on the movie corpora, we implement dropout, which
has proven effective on these datasets [28]. We found that the best results were
achieved by applying dropout to both inputs and outputs of the LSTM layers.
Optimization was done using ADAM with a momentum of 0.7. The results for
MPII-MD and M-VAD datasets are shown in the second and third columns in
Table 3. For the MPII-MD dataset, our approach outperforms the SMT method
proposed by Rohrbach et al. [16], and achieves 7.4% in METEOR compared to
5.6% achieved by SMT. Our method achieves a 0.7% improvement compared to
the MP method [48]. In addition, our result is also better than Visual-Labels
[51] and S2VT in the same setup. Visual-Labels is a contemporary LSTM-based
approach that lacks temporal encoding but utilizes more diverse visual features
such as object detectors and activity/scene classifiers. Our results on the M-VAD
dataset were not superior to those of S2VT. This is likely due to the fact that
the dataset contains a smaller number of videos and vocabulary compared to the
other datasets, and reducing the number of frames results in the loss of valuable
information.
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Table 3. METEOR results for MPII-MD and M-VAD datasets (higher is better)

Method MPII-MD M-VAD

1 SMT [16] 5.6% –

2 MP (VGG) [48] 6.7% 6.1%

3 Visual-Labels [51] 7.0% 6.3%

5 S2VT (VGG) [13] 7.1% 6.7%

6 Proposed Method 7.4% 6.6%

5.4 Training Time and Number of Parameters

Our experiments are conducted on a server with 32 CPU cores, 256 GB of RAM,
and an A40 GPU (48 GB). The server is running on the ubuntu operating system
and is equipped with python 3.8. All the data used for the experiments are
stored on an extensible SSD storage. This hardware and software configuration
provided the necessary computational resources for our experiments and allowed
us to efficiently run the machine learning models. The number of parameters for
the two best performing models, S2VT and the proposed method is shown in
Table 4.

Table 4. Number of parameters and training time for S2VT and our proposed method

Method # Parameters Training Time

1 S2VT [13] 14M 55 min

2 Proposed Method 9M 37min

6 Conclusion

We propose a model that can reduce the number of video frames without miss-
ing information and can directly translate a series of frames into a sequence of
words. Based on this study, we conclude that the proposed approach for video
caption generation demonstrates superior performance compared to the existing
methods on multiple datasets. By utilizing a combination of processes such as
frame similarity reduction, CNN feature extraction, and LSTM caption gener-
ation, the proposed approach can generate natural language descriptions that
accurately reflect the contents of the video. These results provide promising evi-
dence for the potential of this approach to advance the field of video captioning.
Future research in this area may explore further improvements to the proposed
method by the application of reinforcement learning and investigating other data
sampling strategies.
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Abstract. Nowadays, microservice architecture has been widely
adopted in various real systems because of the advantages such as
high availability and scalability. However, microservice architecture
also brings the complexity of operation and maintenance. Trace-based
anomaly detection is a key step in the troubleshooting of microservice
systems, which can help to understand the anomaly propagation chain
and then locate the root cause. In this paper, we propose a trace-based
anomaly detection approach called TICAD. Our core idea is to group
the invocations according to their microservice pairs and then perform
anomaly detection individually. For each distinct microservice pair, we
propose a neural network based on LSTM and self-attention to automat-
ically learn the contextual pattern in the target invocation and previous
invocations. Detected invocation anomalies can be further used to infer
the trace anomalies. We have verified it on a public data set and the
experimental results show that our proposed method is effective com-
pared to the existing approaches.

Keywords: Trace · Anomaly Detection · AIOps · Deep Learning

1 Introduction

Trace-based anomaly detection is a key step in the troubleshooting of microser-
vice systems because the structure of trace can help operators to understand the
anomaly propagation chain and then locate the root cause.

Existing approaches can be divided into two categories: trace-level
approaches and invocation-level approaches. For those trace-level approaches
such as [3,5], they need further analysis to locate the abnormal microservice.
For those invocation-level approaches such as [2,4], they can directly detect the
invocation anomalies but highly depend on the accuracy.

We propose a supervised trace anomaly detection method called TICAD
(Trace Invocation Callee Anomaly Detection), which can effectively learn the
sequential patterns in the invocations and then infer the anomalies in the traces.
Firstly, TICAD reorganizes the invocations of traces. Then, each invocation’s
callee state will be represented as a vector using multiple metrics. TICAD will
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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mine the inherent relationship between the previous invocations and the current
one through a neural network based on LSTM and self-attention. After the
invocation anomalies are detected, whether a trace is abnormal can be inferred
from them.

Our main contributions are listed below: We propose the TICAD, which
detects invocation anomalies and subsequently infers the anomalies of the traces.
We further propose a neural network based on LSTM and self-attention to detect
anomalies in the invocations, which can learn the contextual dependencies and
patterns between the invocation vectors. We conduct extensive experiments on
TICAD to verify its effectiveness on the public dataset.

2 Related Works

Supervised Machine Learning Approaches: MEPFL [8] is proposed to pre-
dict multiple tasks such as latent error detection in the trace log, which is col-
lected from both normal and faulty versions of the application. And Seer [1] is
presented to detect Qos violations in the massive trace data. A deep learning
model, which contains CNN and LSTM layers, is trained in Seer to predict the
abnormal microservices.

Unsupervised Machine Learning Approaches: Among all the unsupervised
approaches, most of them are based on the normal assumption. AVEB [4] trains
a variational autoencoder to learn the response time feature of normal cases
for each microservice. Then the target data with significant reconstruct errors
will be determined as anomalous. TraceAnomaly [3] also trains a variational
autoencoder with posterior flow to model the normal pattern of trace. In [5],
a multimodal LSTM model is proposed to learn the sequential pattern of the
invocation type and response time.

3 TICAD Design

As shown in the Fig. 1, we first reorganize all the traces. After that, each invo-
cation will be transformed into a vector according to the metrics. For each
invocation, its vector will be fed into a neural network based on LSTM and
self-attention along with those of the previous invocations. Finally, it will auto-
matically learn the potential features associated with anomalies.

3.1 Trace Pre-processing

In this section, we process the original trace data and fine tune the data struc-
ture to better detect anomalies. We group all the invocations with the same
microservice pair and reorder them by their timestamp. After that, the original
dataset is divided into nc datasets where nc is the number of unique microservice
pairs. In the following steps, invocations of different groups can be processed and
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Fig. 1. The framework of TICAD

learned in parallel without affecting each other. Next, we vectorize the invoca-
tions from different perspectives. More precisely, we vectorize the callee state of
the invocation, which means the label represents whether the callee is normal
when the invocation occurs. To avoid the problem caused by using the latency
alone, we use additional resource utilization metrics of the callee to enhance
the representation of the invocation. We directly concatenate the latency and
resource utilization metrics to form the vector of the invocation and standardize
the values of each dimension in the vector.

3.2 Anomaly Detection

After the vectorization of the invocations, we will detect whether each invoca-
tion is abnormal. For the target invocation, in addition to its own feature vector
information, we also use the extra vectors of the previous invocations to enrich
the current information. Instead of relying only on the vector of the target invo-
cation, this kind of learning method can help to decrease the false positives
caused by the noise data. In practice, a reasonable window will be selected to
slice the invocations. For each invocation waiting to be detected, the input is a
matrix X consists of w + 1 vectors:

Xi = [vi−w, vi−w+1, . . . , vi]� (1)

where vi is the vector of current invocation and w is the window length.
Now that we have the input matrix X, TICAD demands a neural network

to automatically learn the relation between the input and the fact whether the
current invocation is anomalous. Therefore, we propose a neural network based
on both LSTM and self-attention [6]. Briefly, The same input matrix will be
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learned with LSTM and self-attention neural network separately, and the output
of target invocation will be concatenated to detect anomalies.

For the self-attention part, a neural network will take the input and use the
multi-head scaled dot-product attention mechanism to aggregate the informa-
tion. Instead of directly using the whole encoder of Transformer, we only utilize a
few parts which are easy but effective. We first scale the input and add positional
information to the original vector:

Xh = dropout(
√

h(XiW
h) + W pos) (2)

where h is a scalar representing the hidden size. Wh ∈ Rnf×h is the weight
of the linear transformation and nf is the number of features, i.e., the size of
original invocation vector. W pos ∈ R(w+1)×h represents the learned positional
embedding.

Then the Xh will be fed into the multi-head scaled dot-product attention
layer, which can aggregate the information according to the attention scores.
In practise, multiple heads can be calculated in parallel. The Qi, Ki and Vi of
each head, which are the indispensable elements of attention mechanism, will be
transformed from the same input Xh:

Qi = XWQ
i ,Ki = XWK

i , Vi = XWV
i (3)

where WQ,WK ,WV ∈ Rh×dhead , dhead = h/nheads, nheads is the number of
heads.

For each head, scaled dot-product attention mechanism will calculate the
attention scores and then get the weighted sum of values, which is shown in the
following equation:

headi = softmax(
QiKi�√

dhead
)Vi (4)

All the results of the heads will be concatenated and transformed to X ′
h

which is shown below:

Xh′ = (head1 ⊕ head2 ⊕ · · · ⊕ headi)Wh′
(5)

where Wh′ ∈ Rh×h.
The final part of self-attention consists of layer normalization and residual

dropout and the aggregated vector of target invocation is represented as vs,
which is shown in the following equation:

Xf = LayerNormalization(Xh + dropout(Xh′) (6)

vs = Xf [w] (7)

For the LSTM part, we adopt a variant of LSTM called Bi-LSTM (Bidi-
rectional Long Short Term Memory), whose detailed structure is shown in the
Fig. 2. Each row of Xh will be input into the Bi-LSTM model at each time step.
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As shown in the figure, hfw ∈ Rh/2 and hb0 ∈ Rh/2 are the hidden state vec-
tors at the last time step, which will be concatenated to represent the result of
Bi-LSTM:

vl = hl
w ⊕ hr

0 (8)

Finally, vs and vl will be concatenated to calculate the anomaly probability:

Anomaly Probability = σ((vs ⊕ vl)�W a + ba) (9)

where σ represents the sigmoid function and W a ∈ R2∗h×1.
If a trace has at least one abnormal invocation, the trace will be judged as

abnormal.

vi-w vi-w+1 vi

LSTML LSTMLhl
0 hl

1 LSTML

...

... hl
w

LSTMR LSTMRhr
w-1 ... LSTMRhr

0hr
w

concat vl

Fig. 2. The structure of LSTM based neural network

4 Evaluation

4.1 Datasets and Criteria

Datasets. To make the experiments more convincing, we use the public dataset
which is proposed in TraceRCA [2] to evaluate the effectiveness of TICAD. This
dataset collected traces from the Train Ticket [7] system, which is one of the
largest open source microservice systems.

Baselines. To demonstrate the effectiveness of TICAD, We compare it with
TraceAnomaly [3] and MEPFL-RF [8]. MEPFL-RF refers to the Random Forest
version of MEPFL. Parameters of them are set best for accuracy.

Evaluation Metrics. As with previous researches, we use three evaluation met-
rics: precision, recall and F1 score, which are calculated as follows: Precision =
TP/(TP + FP), Recall = TP/(TP + FN), F1 score = (2*Precision*Recall)/
(Precision + Recall).

4.2 Preparation Experiments

For TICAD, if we directly divides all the invocations, it’s likely that there will
be no complete trace in the test set. This will result in the inability to compare
the effectiveness of methods because TICAD can’t infer trace-level results from
incomplete trace invocations. Therefore, we randomly select 5% normal trace ID
and 5% abnormal trace ID as the reserved ID, which means all the invocations of
these traces will be reserved for test set. For supervised methods such as TICAD
and MEPFL, we directly copy the abnormal traces or invocations to solve the
lack of positive samples.
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4.3 Experiments on Trace-Level Anomaly Detection

In this section, we use different methods to perform trace-level anomaly detec-
tion, which can show the effectiveness of different methods on whole traces.
The results are shown in the Table 1. It can be seen that TICAD proposed
in this paper achieved the highest F1 score(0.974) and the highest recall(0.986).
Although the precision is not the highest, it doesn’t lag far behind other methods.
In general, TICAD shows its availability and effectiveness in anomaly detection
tasks at the level of trace.

Table 1. Trace-level Anomaly Detection Results

Precision Recall F1 score

TICAD 0.961 0.986 0.974

TraceAnomaly 0.901 0.159 0.270

MEPFL-RF 0.987 0.953 0.970

5 Conclusion

In this paper, we propose an end-to-end trace anomaly detection method called
TICAD. It has the ability to effectively learn the sequential patterns in the invo-
cations and then infer the anomalies in the traces. TICAD will mine the inher-
ent relationship between the current invocation and the previous ones through
a neural network based on LSTM and self-attention.
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Abstract. In this paper, we propose a novel method that fuses Fine-
grained Information of Sequential News for personalized news rec-
ommendation (FISN). FISN comprises three primary modules: news
encoder, clicked news optimizer and user encoder. The news encoder
uses fine-grained information to learn accurate news representations.
The clicked news optimizer introduces multi-headed self-attention and
positional encoding techniques to optimize the clicked news representa-
tion. The user encoder uses news-level attention to learn user represen-
tations. Extensive experimental results demonstrate that FISN outper-
forms many baseline approaches in terms of metrics for real datasets.

Keywords: Fine-grained Information · News Recommendation ·
Personalized Attention

1 Introduction

With the exponential growth in the volume of news data, information overload
has become a problem for users, and personalized news recommendation systems
are employed to solve this problem. There are two central issues in this field,
one is to fully utilize the rich information in content to accurately learn the
news representation, and the other is to capture users’ preferences through their
behaviors to achieve a precise matching of users and candidate news. Traditional
recommendation methods such as LibFM [5] and DeepFM [2] are classical rec-
ommendation models based on factorization machines. Recently, several studies
have introduced deep learning techniques into news recommendations [9,11,14].
These existing methods have been remarkably successful, however, personalized
news recommendation is a difficult task that still faces challenges. First, a news
item usually contains much fine-grained information, including title, abstract,
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news category, and subcategory, which are very helpful to refine news represen-
tation. However, the majority of existing techniques fail to utilize fine-grained
information [9,10]. Secondly, the sequence information of users’ clicked history
can also reflect users’ preferences to some extent. Users’ long-term preferences
may change over time, and users’ short-term interests may change suddenly due
to recent hot events. Accurately obtaining this information from the sequence in
which users have clicked on past news is also difficult.

Based on the above challenges in this field, This paper proposes a novel
method that fuses Fine-grained Information of Sequential News for personalized
news recommendation (FISN). This method exploits the fine-grained informa-
tion of news and the sequential information of users’ clicked history to provide
personalized news recommendations. FISN contains three core components, of
which the news encoder aims to extract fine-grained information such as news
titles, abstracts, categories, and subcategories, and to fuse this information using
a rational framework to obtain the final news representation. In addition, a novel
clicked news optimization network for capturing the sequential information of
clicked news is proposed. Finally, a user encoder is employed to learn user rep-
resentations from the sequences of clicked news.

2 Related Work

Traditional news recommendation methods rely on manual feature engineering.
Recently, numerous approaches based on deep learning have been presented [9–
12,14]. For instance, Wang et al. [9] utilized knowledge graph and knowledge-
aware CNN for news representation learning. Wu et al. [12] applied multi-headed
self-attention to acquire news representations. However, most of them obtain
news vectors based on a single piece of news information. Wu et al. [10] intro-
duced a multi-view learning-based method that aggregates different types of
information to enrich the news representation, but it does not capture the clicked
news’ sequential information and interaction between historical news in the user
interest modeling stage.

3 Personalized News Recommendation

FISN is illustrated in Fig. 1. Our method has three core modules. i.e., the news
encoder that learns news representations by incorporating fine-grained informa-
tion, the clicked news optimizer that optimizes clicked news representations, and
the user encoder that learns user representations by using news-level attention.
We formulate the question in the following way. Denote the titles and abstracts
of each news separately as

[
wt

1, w
t
2, . . . , w

t
p

]
and

[
wa

1 , w
a
2 , . . . , w

a
q

]
, where p and

q stand for the length of the title and abstract, respectively. Given the user’s
clicked news sequence Nh =

[
N1

h , N
2
h , . . . , N

k
h

]
and the candidate news Nc, where

k is the number of news articles that were clicked. We are attempting to calcu-
late the probability of a user clicking on a piece of candidate news that this user
has not browsed before.
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Fig. 1. The overall architecture of FISN.

3.1 News Encoder

This module is utilized to encode the fine-grained information of news to obtain
the news representations. This fine-grained information is useful for generating
news representations, as the title of the news often concisely conveys its content,
and the abstract provides more detailed information. Furthermore, the category
and subcategory are also instructive, and if a user clicks on numerous items
in the same category and subcategory, the user’s preferences can be inferred
accordingly.

The initial stage is to obtain fine-grained information. The titles and
abstracts can be represented as

[
wt

1, w
t
2, . . . , w

t
p

]
and

[
wa

1 , w
a
2 , . . . , w

a
q

]
, respec-

tively. Then using pre-trained Glove word embeddings [4], news titles
and abstracts are converted to low-dimensional embedding vector sequences[
et1, e

t
2, . . . , e

t
p

] ∈ Rp×dw and
[
ea1 , e

a
2 , . . . , e

a
q

] ∈ Rq×dw where dw denotes
the dimension of word vector. Simultaneously, the ID of the category and
subcategory can be converted into low-dimensional embeddings (convert to
ec ∈ Rdc and esc ∈ Rdc , respectively) via category and subcategory embed-
ding layer, where dc indicates the dimension of the category embedding.
Then a linear layer is employed to optimize these category embeddings into

rc = ReLu (Mc × ec + bc) ∈ Rdw

rsc = ReLu (Msc × esc + bsc) ∈ Rdw
.

For news titles, the news encoder takes
[
et1, e

t
2, . . . , e

t
p

]
as input, and obtains

the contextual embedding cti of each word by using a CNN layer to capture the
local context, where i denotes the ith word in the title, which is computed as
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cti = ReLu
(
Ht × et(i−k,i+k) + bt

)
∈ RNf , At this point,

[
et1, e

t
2, . . . , e

t
p

]
is finally

converted to
[
ct1, c

t
2, . . . , c

t
p

] ∈ Rp×Nf , where Ht ∈ RNf×(2K+1)dw and bt denote
the convolution kernel and bias parameters, respectively. Nf represents the num-
ber of convolution kernels equal to the dimension of word embedding. Then, a
word-level attention network was applied to select important words in the title to
model the news vectors. This is due to the fact that different words within a single
news title have varying implications for modeling news representations. The word-
level attention network can assign weights W t

i to each word in news title based on

the importance. The formula is wt
i = qTt tanh (Mt × cti + bt) ,W t

i =
exp(wt

i)
∑p

j=1 exp(wt
j)

,

in which qTt is the transpose of the attention query vector. A weighted total of the
contextual embedding of each word in the title by attention weighting serves as
the final representation of a news title rt =

∑p
j=1 W

t
j c

t
j ∈ RNf .

Similarly, news abstracts can be considered as longer titles with a larger
number of words, hence the representation of news abstracts can be learned
in a similar way to news title learning. The news encoder takes news abstract
embedding sequence

[
ea1 , e

a
2 , . . . , e

a
q

]
as input, and obtains the final representation

of a news abstract ra =
∑q

j=1 W
a
j c

a
j ∈ RNf .

Finally, because different kinds of fine-grained information are not equally
important for modeling news representations. Hence, we take the final represen-
tation rt of title, ra of abstract, rc of category, and rsc of subcategory as inputs
to the fine-grained information-level attention network, and assign attention
weights W t,W a,W c, and W sc, respectively to each kind of information accord-
ing to the importance. For example, the attention weight of the title W t is cal-

culated by wt = qT tanh (M t × rt + bt) ,W t =
exp(wt)

exp(wt)+exp(wa)+exp(wc)+exp(wsc) .
The final news feature representation is a weighted sum of the fine-grained infor-
mation by attention weights: r = (W trt +W ara +W crc +W scrsc) .

3.2 Clicked News Optimizer and User Encoder

The clicked news optimizer fuses the position information of clicked news to opti-
mize the feature representation of all the clicked news. Firstly, a learnable posi-
tion encoding matrix P ∈ RNf×k is randomly initialized by the location encod-
ing layer to add position information for each news in the history sequence. This
is used to assist the multi-headed self-attention layer [7] to learn the sequence
information of clicked news. Where k represents the number of news in the user’s
history sequence. Then the representation of all clicked news is concatenated into
rh =

[
r1h , r

2
h , . . . , r

k
h

]
+ P as the input to the multi-headed self-attention layer.

Finally we get the output rh_m =
[
r1h_m , r2h_m , . . . , rkh_m

]T
∈ Rk×dw .

The user encoder is designed to obtain the user’s representation from the
clicked news sequence. Different news in clicked news sequence are not equally
important for modeling the user interest representation. Hence, a news-level
attention network was applied to select important news to model the user
representations. The news-level attention network can assign weights Wn

i to
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each news in clicked news sequence based on the importance. The formula is
wn

i = qTn tanh
(
Mn × rih−m + bn

)
,Wn

i = exp(wn
i )

∑k
j=1 exp(wn

j )
. The final representa-

tion of the user is a weighted sum of each clicked news in historical sequence by
attention weighting u =

∑k
j=1 W

n
j r

j
h−m ∈ Rdw .

3.3 Click Predictor and Model Training

The click predictor is applied to calculate the click probability. The candidate
news Nc is denoted as rc . The click probability ŷ is calculated by the inner
product of the user vector and the candidate news vector, i.e., ŷ = uTrc .

Our model was trained by using negative sampling techniques. For each
clicked news(as a positive example), K news that not clicked are then randomly
selected (as negative example). Then denote the click probabilities of positive
example and K negative examples as ŷ+and

[
ŷ−
1 , ŷ

−
2 , . . . , ŷ

−
k

]
, respectively. The

posterior click probability of positive samples is determined by normalizing these

click probability scores using softmax: pi =
exp(ŷ+

i )
exp(ŷ+

i )+
∑K

j=1 exp(ŷ−
i,j)

. The loss func-

tion L = −∑
i∈S log (pi) in the model training is the negative log likelihood of

all positive samples S .

4 Experiments

Experiments are conducted on the real-world news recommendation dataset
MIND-large and MIND-small. [13]. The hyperparameters are tuned on the val-
idation set to optimize the performance of the FISN model. Word embedding
is assigned a dimension of 300, and category and subcategory embeddings are
assigned a dimension of 100. The attention queries have a dimension of 200, and
the model utilizes 300 CNN filters with a window size of 3. We set the number
of self-attention heads for multi-headed self-attention to 15. A dropout rate of
20% [6] is applied in the news encoder. We select a batch size of 128 and the
Adam optimizer [3] with a learning rate of 0.0001.

By comparing with the following baseline approaches, we evaluate the per-
formance of FISN. (1) LibFM [5], (2) DeepFM [2], (3) DKN [9], (4) NPA [11],
(5) NAML [10], (6) LSTUR [1], (7) NRMS [12], (8) FIM [8]. The performance
of these methods on two datasets is summarized in Table 1.

First, end-to-end learning techniques like DKN, NAML, LSTUR, NRMS, etc.
outperform traditional methods that require human feature engineering (LibFM
and DeepFM). The reason for this result may be those recommendation meth-
ods that rely on manual feature engineering have inconsistent training goals
across modules, while the end-to-end approach avoids the inherent drawbacks
of multiple modules. This finding supports the idea that neural networks are
more effective at learning news and user representations from raw data than fea-
ture engineering. Second, in deep recommendation frameworks, using attention
mechanisms(LSTUR, NRMS, NPA, and NAML) may assist recommendations
to perform better to some degree, probably because attention mechanisms can
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model the relative importance of each word to learn news representations more
accurately. In addition, attention mechanisms can also capture user preferences
and thus model user representations more accurately. Third, FIM is superior
to other methods because it can detect fine-grained matching signals for the
interaction between each news pair at multiple levels of semantic granularity.
Finally, across all metrics, our method FISN can consistently beat other base-
line approaches. This result shows that our approach makes reasonable use of
fine-grained information. Since the form of fine-grained information is usually
different, a uniform approach to extracting features from this information is
certainly not feasible. We use various components to extract different features,
and finally, learn accurate representations for each piece of news through a fine-
grained information-level attention network. In addition, our approach uses posi-
tional encoding techniques to capture sequential information of historical news
and introduces multi-headed self-attention to learn interactions between clicked
news. The user’s representation is then learned through a news-level attention
network, which enhances the user’s representation learning. The results of the
experiments validate the effectiveness of FISN.

Table 1. The overall performance of different methods on MIND

Method MIND-small MIND-large
AUC MRR nDCG@5 nDCG@10 AUC MRR nDCG@5 nDCG@10

LibFM 0.5974 0.2633 0.2795 0.3429 0.6185 0.2945 0.3145 0.3713
DeepFM 0.5989 0.2621 0.2774 0.3406 0.6187 0.2930 0.3135 0.3705
DKN 0.6175 0.2705 0.2890 0.3538 0.6407 0.3042 0.3292 0.3866
NPA 0.6321 0.2911 0.3170 0.3781 0.6592 0.3207 0.3472 0.4037
LSTUR 0.6438 0.2946 0.3189 0.3817 0.6708 03236 0.3515 0.4093
NRMS 0.6483 0.3001 0.3252 0.3892 0.6766 0.3325 0.3628 0.4198
NAML 0.6550 0.3039 0.3308 0.3931 0.6646 0.3275 0.3566 0.4140
FIM 0.6502 0.3026 0.3291 0.3910 0.6787 0.3346 0.3653 0.4221
FISN 0.6658 0 .3211 0.3552 0.4161 0.6906 0.3379 0.3749 0.4369
%Improv 1.08 1.72 2.24 2.30 1.19 0.33 0.96 1.48

5 Conclusion and Future Work

In this paper, we present the FISN for news recommendation. Our experimental
results demonstrate that FISN outperforms several baseline approaches on real
datasets based on various metrics. In future work, we aim to incorporate knowl-
edge graphs as side information into news recommendations using knowledge
graph embedding techniques.
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Abstract. Transport problems are a significant challenge for companies,
i.e. due to concerns about climate change and the constant increase in
raw material prices, such as for petrol. One issue in transporting bulk
materials is the Stockyard Planning Problem (SPP), which plays a crucial
role in mine production scheduling and bulk material transportation by
using stockpiles to store and blend raw material. The SPP aims to: 1)
blend superior and inferior components to achieve a desired quality, 2)
transfer material from import (e.g. ocean-going ships) to interim storage
(e.g. stockpiles) and then to export (e.g. docks at inland ports), and
3) find a time-/cost-optimized schedule for working steps of 1 and 2.
This paper presents a novel constraint-based approach for solving the
Stockyard Planning Problem (SPP) by utilizing new abstractions such
as time, storage, and potential movements within a stockyard system.

Keywords: Planning and Scheduling · Decision Support Systems ·
Mining · Stockyard Planning Problem · SPP · Constraint Programming

1 Introduction

In a globalized world, raw materials are mined at one end of the world, refined
and then distributed all over the world. In mining and transportation of bulk
materials, there are certain transition points, often ports with stockpile systems,
where much material of different qualities comes to a transition point where the
materials need to be blended, stored, prepared and loaded for onward transport.

Each stockpile system can have unique and specific structures, components
and constraints, like different import and export variants (e.g. ships or trains),
different number of simultaneous imports and exports, materials, number of
stockpiles, sizes of stockpiles, machines, conveyor belts and much more. This
makes individual planning necessary. Mistakes in scheduling can lead to deliveries
not being made (on time), agreed upon qualities not beeing achieved or ships
docking longer than necessary, resulting in additional mooring fees.

Our industrial partner ABB - Sales Minerals and Mining, Engineering Sub-
station and Power Generation, Service Metals branch office Cottbus implement
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C. Strauss et al. (Eds.): DEXA 2023, LNCS 14147, pp. 126–133, 2023.
https://doi.org/10.1007/978-3-031-39821-6_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-39821-6_10&domain=pdf
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Fig. 1. An example stockyard system.

and operate stockpile monitoring and management systems all over the world.
They also support their customer companies, e.g. ports, with the scheduling pro-
cess. In doing so they recognized that a particularly high degree of optimization
is possible here. Our goal is to create a constraint-based planning tool that takes
into account all the requirements of the SPP and finds plans that minimize the
idle time of import and export ships and relieve the human planner.

The rest of this paper is organized as follows. The second section introduces
the stockyard planning problem (SPP) and its components and also gives an
overview of previous research regarding SPP. Section 3 shows the basics of con-
straint programming. Section 4 describes the necessary abstractions to model
the problem. The developed constraint problem for the presented SPP and pos-
sible improvements of it is described in Sect. 5. Finally, a conclusion is given and
possible future improvements of the developed method are discussed.

2 The Stockyard Planning Problem

The Stockyard Planning Problem: The SPP comprises the unloading, transporta-
tion, blending and loading of bulk material at e.g. a port. In [6] a special SPP
for the port of Newcastle is described. We created our own SPP problem, which
better takes into account the limitations of the conveyor belt net.

Consider a conveyor belt net with import vehicles, storage places (stockpile
areas), export vehicles and transportation vehicles. The goal is it to transport
bulk materials from the import vehicles to the storage places (import moves),
blend different qualities of the bulk materials to reach agreed qualities (blending
moves), transport the bulk materials from a storage place to another storage
place (transport moves) or transport the bulk materials from the storage places
to the export vehicles (export moves), such that the import vehicles are all
unloaded and the export vehicles are loaded correctly.

Figure 1 shows an example stockyard system. We see one import and one
export ship, each with one ship unloader and one ship loader, respectively. There
are five conveyor belts (b1 to b5), two stackers which are also reclaimers and two
stockpiles with two (H1.1 and H1.2) respectively one stockpile areas (H2.1).
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The import vehicles are unloaded and the export vehicles are loaded accord-
ing to specific loading and unloading plans, with the goal to do the loading and
unloading as fast as possible while minimizing vehicle effort (optional).

The import plans P I and export plans PE are lists indicating material, mass
and order for loading and unloading. Depending on the system, several import
and export ships can be loaded or unloaded simultaneously.

For the four possible moves (import, transport, export and blending) a sys-
tem of conveyor belts and vehicles: stackers, reclaimers, ship unloaders and ship
loaders is used. Each vehicle is connected to other vehicles via one or more
conveyor belts. The conveyor belt net of the system decides which moves are
possible separately and in parallel.

To store, refine or blend the imported materials separated areas on the stock-
piles are used. Each stockpile can be accessed with a stacker or reclaimer. A
stockyard plan contains information about the number of areas of each stock-
pile, the capacity of the stockpile areas, the stackers and reclaimers connectable
to a certain stockpile and the type and quantity of material currently stored at
each stockpile area.

To fulfill the export requirements, not only material transportation but also
material refinement (or blending) is necessary. Each material category has a
set of quality parameters. It is the scheduler’s task to combine the materials
provided from the import and stockpile areas in such a way that they meet the
requirements of the export plan. To this end the blending ratio of the different
materials must be determined and applied.

Related Aproaches for the Stockyard Planning Problem (SPP): Certain aspects
of the SPP are well-studied, e.g., scheduling of trains and optimizing storage
at seaport terminals. However, these papers usually only consider these aspects
individually and not simultaneously in a single comprehensive problem setting.
The problem described by Abdekhodaee et al. [3] considers a coal chain in Aus-
tralia, but primarily focuses on train scheduling rather than stockyard manage-
ment. They decompose the problem into several modules and solve each of the
modules separately using a greedy heuristic.

The SPP also has elements of a 2D packing problem because a stockpile
area takes up space and time in the stockyard, and no two stockpile areas can
occupy the same space at the same time. Extensive work has been done on the
2D packing problem, see Lodi et al. [9] for a survey. However, the problem of
locating stockpiles in the stockyard in the SPP is more complex than a traditional
2D packing problem, because the time dimension of a stockpile is not known
in advance and depends on the material movements on the stockpiles and the
import and export plans.

Wen et al. [13] focus mainly on the times and the places, when and where a
stockpile area should be created and filled with material. For this they also use
integer programming, in a similar way as we do for our SPP problem. Even if the
description of the problem and the scenario presented in [6] looks very similar to
ours at first, it is different in a few key points, such as: 1) in [6] it is possible to
move materials from each input or reclaimer to each stacker or export, but this
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is not the case in our SPP; 2) in [6] the perfect stockpile areas are also planned
(number, size, build and tear down time), whereas these are fixed in our SPP.

3 Basics of Constraint Programming

Constraint programming (CP) is a powerful way to declaratively model and solve
NP problems. Typical research problems in CP are rostering, graph coloring,
optimization, and satisfiability (SAT) problems [10]. In this section, we introduce
basics of constraint programming needed for our approach.

The general procedure for constraint programming is divided into two parts:
1.: the declarative description/representation of a problem as a constraint model,
2.: the solving process of a constraint model using a constraint solver. The CP
user is only responsible for modeling the application problem with constraints
as well as setting up and starting the solver, which acts independently.

A constraint satisfaction problem (CSP) is defined as a 3-tuple P = (X,D,C)
where X = {x1, x2, . . . , xn} is a set of variables, D = {D1,D2, . . ., Dn} is a set
of finite-domains where Di is the domain of xi, and C = {c1, c2, . . . , cm} is a set
of constraints each over between one and all variables of X [4].

A constraint is a tuple (X ′, R) of a relation R and an ordered set of variables
X ′ ⊆ X over which the relation R is defined [7]. A solution of a CSP is an
instantiation of all variables xi each with a value di of its corresponding domain
Di, such that all constraints are satisfied.

A constraint optimization problem (COP) is an extension of a CSP, where an
optimization variable xopt identified as such will be minimized or maximized.

To solve constraint problems (CSPs and COPs), so-called constraint solvers
usually use backtracking search nested with propagation. Popular solvers are
among others Google OR tools [1], Gecode [12], JaCoP [2], and the Choco-
Solver [11], which is used here in the following. More information about solvers
and how they work in detail can be found in [5,8].

4 Abstraction of the Problem

Abstraction of Time: In our modeling we want to optimize moves (import, trans-
portation, blending, export) over the time, whereby multiple processing streams
exist, such that moves typically happen in parallel. Each move runs in a time
interval and can potentially start and end at any point of time.

One typical way to handle time is to consider time intervals of a fixed size.
In our case this approach would mean to deal with a huge amount of relatively
small time intervals because of the high flexibility of the start and end times
of the moves. This inflates the problem size, and consequently increases the
computation and optimization costs. Hence, we designed a more flexible interval
partitioning.

We use n ∈ N time intervals I = {I1, I2, ..., In} which may be of different
sizes. Each time interval Ii+1 = [b, c] starts when the previous time interval
Ii = [a, b] ends. Start and end times of the intervals Ii are start and end times
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Table 1. The transition from one state to another by means of different moves.

MatI1 MassI1 MatI2 MassI2 MatH1 MassH1 MatH3 MassH3 MatE1 MassE1

State qi Ironq1 15 Ironq2 15 0 0 ... Ironq3 15 0 0 ...

Import Ironq1 -15 0 0 Ironq1 +15 ... 0 0 0 0 ...

Transport 0 0 0 0 0 0 ... 0 0 0 0 ...

Export 0 0 0 0 0 0 ... Ironq3 -10 Ironq3 +10 ...

State qi+1 0 0 Ironq2 15 Ironq1 15 Ironq3 5 Ironq3 10

of moves, such that each move can be represented by a sequence of successive
intervals [Ij , Ij+1, .., Ij+k]. The start and the end time of each interval is handled
as a constraint variable so that the interval sizes will separately be handeld as
part of the solution process.

Abstraction of the Stockyard: We abstract the stockyard system by focusing on
the main information about storage places which include the stockpiles, and
import and export vehicles. Every storage place has a maximum capacity in
tons it can store . We represent a storage place by a tuple (Mat,Mass), with
Mat being an integer assignment to the corresponding material or 0 if there is
no material, and Mass being the mass of the material in tons.

We abstract the state of a SPP by a three tuple (I,H,E) with import vehicles
(resp. plans) I = P I = [(MatI1,MasI1), ..., (MatIk, MasIk)], storage places H =
[(MatH1 ,MasH1 ), ..., (MatHm,MasHm)], and output vehicles (or plans) E = PE =
[(MatE1 ,MasE1 ), ..., (MatIn,MasIn)]. For example, the stockard system of Fig. 1
is described accordingly, where k = 2 (2 hatches at the import ship), m = 3 (3
stockpile areas), and n = 2 (2 hatches at the export ship). The hatches must be
unloaded resp. loaded in the given order. This means that the second hatch can
not be unloaded or loaded until the first hatch is completely processed.

Abstraction of the Moves: Each move (import, transport, export) is represented
by a vector T = [(MatI1, MasI1), ..., (MatIk, MasIk), (MatH1 ,MasH1 ), ..., (MatHm,
MasHm), (MatE1 ,MasE1 ), ..., (MatEn ,MasEn )], where k is the number of hatches of
the import ship, m is the number of storage places, and n is the number of hatches
of the export ship. At this, exactly one mass Massi has a value a > 0,∈ N, one
mass Massj has a value −a, and both corresponding materials Mati and Matj
have the same value b, with all others material and mass values being 0. The
negative value −a for mass Massj indicates that the corresponding storage place
will be decreased by a thousand tons, while the corresponding storage place to
Massi will be increased by a thousand tons. The corresponding materials Mati
and Matj show for the material b which is moved. For a move the mass values
Massi and Massj correspond to storage places on stockyards, import or export
ships. See Table 1 for an example of a parallel import and export move.
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5 A Constraint Optimization Problem for the SPP

We use constraint programming to mathematically model and solve the SPP, in
particular the choice and order of the moves (import, transport, blending, and
export). We create a CSP that describes the conditions for the SPP, i.e. solutions
of the CSP are all possible sequenzes of moves to unload the import ship, blend
material and load the export ship in a way that the import I = {P I

1 , P
I
2 , ...}

and export plans E = {PE
1 , PE

2 , ...} (see Sect. 2) are satisfied. An optimization
is then carried out by addition of an objective function f = (minimize(xTime

n )).
The aim of this COP is to achieve a minimum time duration for the planned
moves to perform ship unloading, blending and loading.

Provided Starting Data: For the COP we assume a given fix number of time
intervals n, a maximum time tmax how long the sequence to be planned may
take, one import P I , one export plan PE , a stockyard system i.e. its struc-
ture, components, their connections, and dimensions. Furthermore, an initial
state q0 of the material types Mat0 = [mat1, ...,matm] and masses Mass0 =
[mass1, ...,massm], where m is the number of storage places, of the whole sys-
tem is given. Each state qi = [(mat1,mass1), (mat2,mass2), ..., (matm,massm)]
is a tuple, where the first iI values represent the hatches of the import ship, the
next iH values present the storage places of the stockyard and the last iE values
describe the hatches of the export ship (as schown e.g. in Table 1). The mixing
ratios for blending two materials into another and the conveyor belt net are also
provided.

Variables and Domains: The aim of the SPP is to model and optimally solve a
sequence of moves to unload material from (an) import ship(s), transport and
blend the material between stockpile areas, and finally load the material to (an)
export ship(s).

Considering n time intervals means that the move sequence to be planned
has n + 1 many states q0, ..., qn with each m material variables xMat

i,j and m

mass variables xMass
i,j with i ∈ {0, 1, ..., n} and j ∈ {1, 2, ...,m}. The domains of

the material variables DMat
i,j contains all allowed materials (for example iron ore

of different qualities), whereas the mass domains DMass
i,j contain integer values

between 0 and the capacity of the corresponding storage place in thousand tons.
To model state changes we use move vectors for the import, transportation,

blending, and export moves (cf. Table 1). Each vector also consists of material
variables xMatV and mass variables xMassV , which describe the value changes
of a variable from one state to a subsequent state.

Finally, we also need variables XTime to represent the time. Each state has
a time variable xTime

i (time stamp),∀i ∈ {0, 1, ..., n} with value between 0 and
the maximum time maxT available for the whole move sequence.

Constraints: We structure the constraints into basic constraints which real-
ize basic rules of the stockyard system, all vector constraints which handle
valid conditions for all move vectors, simple vector constraints (valid condi-
tions for import, transportation and export move vectors), and blending vector
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constraints. Furthermore we consider vehicle constraints which realize vehicle
dependencies like conveyor belt joints.

Basic Constraints: These realize basic conditions, e.g.: If there is no material at
a storage places, then the corresponding material and the mass variable must be
0, otherwise both variables must be greater than 0 ((xMat

i,j = 0) ⇔ (xMass
i,j = 0)).

Other constraints realize that an import ship can only be unloaded, an export
ship can only be loaded, you can not get different materials at the same storage
place, you only can unload an import ship hatch if the previous hatch of the
ship is empty, and you only can load an export ship hatch if the loading of the
previous hatch is completed.

All Vector Constraints: If there is no material change for a storage place, then
the material and mass variables in a vector must be assinged to 0. If material is
moved, just as much material is removed from (one or two) storage places as is
added to another storage place. The transported mass can not be higher than
the flowrate of the conveyor belts and the duration of the move allow it.

Simple Vector Constraints: One simple move (import, transport, export) allows
only the reduction of a mass variable with the simultaneous increase of another
mass variable. So the mass values of an import, transportation or export move
are either all 0 (no move happens) or exactly two of them are not 0. Furthermore,
the two values different from 0 of a simple vector must be equal.

Blending Vector Constraints: In a blending process the mass of exactly two stor-
age places is reduced while exactly one mass is increased. At the mass reducing
storage places the material in the vector must be equal to the material at the
storage in state before and in a state after or there is no material left afterwards.
The same, but vice versa, applies to storage places, where the mass is increased
when blending. At a blending move two materials are refined to one new mate-
rial. For this the input and resulting materials as well as the blending ratio must
be given and respected.

Vehicle Constraints: Each vehicle (stacker, reclaimer) can only reach stockpiles
which are directly at the rail of the vehicle. We use table constraints with pos-
itive tuples to limit the pairing of vehicles and stockpiles in the conveyor belt
network to specific combinations. We use table constraints with negative tuples
to prevent vehicles from working simultaneously at neighboring stockpiles to
avoid collisions.

Optimizations and Results: The solution speed of the presented COP can be
improved by applying typical optimizations of constraint programming, such as
parallelization, remodeling, (re)configuration of the solver settings, decomposi-
tion into small subproblems, or the use of implicit constraints. We are currently
implementing some of these optimizations, and we have already achieved good
results on smaller stockpile systems (e.g., 5 stockpiles, 20 stockpile areas, and
10 devices) for short periods of time (a few days). Our approach has been tested
on both fictitious systems and the digital twin of a real system.
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We expect to be able to further accelerate the solution process by imple-
menting the optimizations mentioned above, which will enable us to plan ideal
solutions for larger systems over longer periods of time. So far, we have been
able to determine our results in a few minutes, which often represent optimal
solutions for the mentioned problem size.

6 Conclusion and Future Work

We have presented and developed a new method for finding an optimal solution to
the Stockyard Planning Problem (SPP) using finite-domain constraint program-
ming. To achieve this, we abstracted various aspects of the stockyard planning
process, such as time, storage, and possible moves in a stockyard system. We mod-
eled and solved a representative Constraint Optimization Problem (COP) and
explained methods to improve its solution process. Our approach was tested on
simulated plants and the digital twin of a real plant operated by ABB.

Future work includes testing our method on more stockyard plants and inte-
grating the optimization techniques presented in the COP to speed up the solu-
tion process and make it applicable for larger systems over longer periods. It
would also be interesting to investigate whether the abstractions made in this
paper can be used for other facilities, such as train-operated stockyard systems
with different capacities, machines, and belt networks.
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Abstract. Smart waste management systems (SWMS), including var-
ious technologies, including routing, scheduling, infrastructure, and the
Internet of Things (IoT), are used to enhance the efficiency and automa-
tion of waste management processes. The availability of big data gener-
ated by IoT sensors has the potential to significantly improve waste man-
agement systems by providing valuable insights and enabling automa-
tion. This study presents a data analytics framework that supports
decision-makers in implementing, monitoring, and optimising SWMS.
The framework utilises IoT sensor data and employs data analytic tech-
niques to analyse and predict municipal bins’ waste generation trends and
patterns. Finally, the framework demonstrates the capability to forecast
waste generation, leading to the development of a sustainable environ-
ment and efficient managerial administration in waste management.

Keywords: Smart waste management · Internet of Things (IoT) ·
councils · sustainability · data analytics

1 Introduction

Due to rapid urbanisation and population growth in urban areas, waste man-
agement has become one of the most challenging tasks for city councils [2,8].
Despite encompassing a wide range of technologies, waste management remains
a significant global concern due to improper waste management [6,8]. Improper
waste disposal systems, inadequate resources, and other factors have a nega-
tive impact on waste management systems. Improper waste disposal systems,
inadequate resources, and other factors such as lack of policy-making knowledge
and insufficient infrastructure have a detrimental effect on waste management
systems.

To deal with waste management issues, several studies have been conducted
on solid waste management, covering areas such as waste collection, classifica-
tion, recycling, and resource allocation [1,3,10]. However, most of these studies
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have focused solely on the traditional system, rather than utilising the poten-
tial benefits of integrating computation, networking, and cyber-physical systems
[1,12]. There is a limited study on the application of cyber-physical systems,
which involve IoT, cloud computing, and data analytics techniques for waste
management [6,13]. Furthermore, the complexity of data knowledge discovery,
analysis, and computation can be effectively addressed by utilising machine-
generated data from IoT devices, rather than relying solely on traditionally gen-
erated human data [8]. Therefore, to fully leverage the advantages of IoT and
data analytics, it is essential to conduct an in-depth study on waste management
for ensuring environmental awareness and public health through the adoption of
more sustainable practices.

Currently, the smart waste management system (SWMS) incorporates IoT
and data analytics tools [6,12]. The adoption of smart waste management solu-
tions has been facilitated by enhanced machine communication, reduced costs of
IoT sensors, and improved performance of data analytics tools. The implementa-
tion of IoT sensors in waste management enables effective solutions to challenges
such as scheduling optimisation and trend analysis. By leveraging the integration
of computation, networking, and physical systems enabled by IoT, city councils
can achieve efficient and robust waste management [1]. However, the implemen-
tation of smart waste management systems faces challenges including limited
knowledge among policymakers and a lack of standards and strategic guidelines
[11]. Therefore, this study aims to address the main research question: How can
data analytics tools or algorithms utilise IoT sensor data to aid decision-makers
in implementing, monitoring, and optimising SWMS?

To address this research question, we propose a framework for a SWMS that
leverages historical data from IoT sensors and employs data analytic techniques
to achieve optimal waste management practices. This approach is significant
as it aids decision-makers in implementing, monitoring, and optimising SWMS
while ensuring efficient waste collection for public bins, including appropriate
scheduling, bin deployment, and resource utilisation. Additionally, the SWMS
utilises bin usage data and compartment filling levels for behavior analysis and
forecasting. By applying data analytic techniques to analyse trends, patterns,
frequency, and timing, a more optimised and sustainable waste management
ecosystem can be achieved.

This paper is organised as follows: Sect. 2 introduces the proposed framework
for SWMS. We then describe the implementation of the framework in Sect. 3.
Finally, Sect. 4 concludes the study.

2 Proposed Data Analytics Framework

This section presents an overview of the proposed data analytics framework for
the waste management system. Lin et al. [8] and Ihsanullah et al. [6] have recog-
nised the need to adopt a data analytics framework for efficient waste adminis-
tration. Therefore, our objective is to design an optimised system that utilises
real-time IoT sensor data and data analytics to support a sustainable ecosystem.
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Fig. 1. Overview of the proposed data analytics framework for SWMS

Figure 1 presents the data analytics framework which provides an overview of
the entire system for city council authorities to monitor and manage waste.

The waste data analytics framework comprises the data source layer (includ-
ing physical infrastructure), the application layer (for data processing and anal-
ysis), and the visualisation layer (for knowledge discovery). By incorporating
these layers, the framework enables efficient collection, analysis, and visualisation
of waste data, leading to improved waste management strategies and decision-
making. Moreover, the implementation of the framework can be divided into four
phases: data collection and preparation from smart bins, initial dataset analysis,
implementing of data analytics techniques for waste generation, and conducting
experiments, collecting and analysing data to draw conclusions.

3 Implementation

3.1 Dataset

The smart bins in Wyndham city council, Melbourne, Australia have been gen-
erating data through IoT devices, including information on bin filling level, and
geolocation. The structured data from public bins, collected since 2018 [4], was
obtained from the data portal: https://data.gov.au. These bins are positioned
in different public locations and the dataset spans for around four years. Table 1
shows the detailed description of each attribute.

The attributes are utilised to determine the appropriate bin for emptying
based on the fill level detection. These attributes include the collection point,
geographical position, status (empty/full), verbal status, serial number, descrip-
tion, position, and timestamp.

https://data.gov.au
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Table 1. Detail description of the collected data set

Coordinates0

Coordinates1

LatestFullness

AgeThreshold

Reason Serial

Number

Description Position Fullness

Threshold

Time

stamp

Latitude

Longitude

Numeric

0 to 10

Fullness,

NoReady

Numeric

value

Details for

points

Where

Locates

Numeric

6 or 8

Date

3.2 Waste Generation Forecasting

At this stage, data analytics techniques, specifically deep learning algorithms
[7,8] have been applied using stochastic waste data. Convolution neural networks
(CNN) and Recurrent neural network (RNN) have been applied to bigdata pro-
cessing in different sectors in complex problems like waste management [9]. In
this study, we have used 1D CNN, RNN and Long Short-Term Memory (LSTM)
[9] to predict waste generation from smart bins.

Bin-level prediction plays a crucial role in waste management for municipal-
ities. One approach to tackle this is by utilising CNN, RNN, and LSTM models,
which are trained on historical data to forecast future waste generation trends.
The dataset is split into training and testing sets, with 80% and 20% respec-
tively, for the forecasting process. Python Deep Learning API Keras is used
along with the Adam optimiser and 20 epochs for all models [5]. The predic-
tion performance of the models is evaluated using three indices: Mean Absolute
Error (MAE), Root Mean Square Error (RMSE), and Mean Absolute Percent-
age Error (MAPE) [6]. Lower values of MAE, RMSE, and MAPE indicate better
prediction performance.

3.3 Results and Discussion

All experiment data is collected and stored during and after the experiments for
further analysis. Table 2 shows the data using the MAE and RMSE performance
indices to show the error values. The smallest value for MAE and RMSE is
considered the best model. We found that LSTM is outperformed as it contains
the lowest value.

Table 2. Error measures for deep learning models using performance indices

Model MAE RMSE MAPE

Train Test Train Test Train Test

1D CNN 0.651 0.779 1.758 2.026 1.054 1.277

RNN 0.818 0.951 1.863 2.124 1.317 1.536

LSTM 0.579 0.680 1.479 1.688 10.325 12.830

Figure 2(a) shows the train and test loss for the models. For 1D CNN, the
trends of loss are getting higher after four epochs; however, it is close, starting
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from 2 to 4 epochs. A continuous gap of around 0.15 has been found, starting at
1.00 epoch to the end of the epochs for the RNN model. In terms of LSTM at
the beginning, we found the loss containing greater value; however, after 2.75,
the gap is too low. Hence, LSTM incorporates a better forecasting for waste
generation procedures.

Fig. 2. Prediction results for models- a) epoch vs loss and b) actual vs prediction

The LSTM model outperforms CNN and RNN in forecasting waste genera-
tion, with higher accuracy and lower loss rates. LSTM demonstrates lower MAE
and RMSE values for the training dataset, indicating better capture of trends
and patterns. However, it has a higher MAPE value, suggesting less accuracy in
predicting actual values. Overall, this study highlights the potential of LSTM
deep learning models (Fig. 2(b)) for waste management authorities in accurately
predicting waste generation patterns and optimising collection schedules.

The proposed techniques in this paper are applicable and reliable for waste
forecasting. While previous studies have focused on different seasonal periods
and total waste amounts, our study specifically focuses on daily waste predic-
tion using real-time sensor data [6,9,10]. Lin et al. [9] achieved high correlation
coefficients of 78, 86.6, and 90 using attention, one-dimensional CNN, and LSTM
models for waste forecasting. Niu et al. [10] utilised two-year data and obtained
an RMSE of 940 and a coefficient determination (R2) of 0.90 using the LSTM
model. In our study, the LSTM model outperformed the CNN and RNN models,
with the lowest MAE and RMSE values of 0.68 and 1.688, respectively, for both
the training and test sets. The performance indicators confirm the accuracy and
reliability of the proposed models in waste estimation, offering valuable insights
for informed decision-making by waste management authorities.

4 Conclusion

This study developed a data analytics framework that supports decision-makers
in implementing, monitoring, and optimising SWMS. The framework utilises
IoT sensor data and employs data analytic techniques to analyse and predict
municipal bins’ waste generation trends and patterns. The system successfully



Data Analytics Framework for Smart Waste Management 139

imposed a platform incorporating the sensor data from the smart bins located in
different public places. Finally, to implement the framework, we have devised the
whole approach with four distinct phases, and the outcome has been measured
through the evaluation of deep learning models to ensure a better predictive
capability and is more accurate in forecasting waste generation patterns.
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Abstract. Hierarchical text classification is an essential task in natural
language processing. Existing studies focus only on label hierarchy struc-
ture, such as building classifiers for each level of labels or employing the
label taxonomic hierarchy to improve the hierarchy classification perfor-
mance. However, these methods ignore issues with imbalanced datasets,
which present tremendous challenges to text classification performance,
especially for the tail categories. To this end, we propose Hierarchy-
awareBilateral-BranchNetwork (HiBBN) to address this problem, where
we introduce the bilateral-branch network and apply a hierarchy-aware
encoder to model text representation with label dependencies. In addi-
tion, HiBBN has two network branches that cooperate with the uniform
sampler and reversed sampler, which can deal with the data imbalance
problem sufficiently. Therefore, our model handles both hierarchical struc-
tural information and modeling of tail data simultaneously, and extensive
experiments on benchmark datasets indicate that our model achieves bet-
ter performance, especially for fine-grained categories.

Keywords: Hierarchical Text Classification · Imbalanced Data

1 Introduction

As an important task in the natural language processing domain, multi-label
text classification (MLC) is widely employed for various text classification pro-
cedures, such as news categorization, sentimental analysis and scientific paper
classification. Hierarchical text classification (HTC) is an essential subtask of
multi-label text classification, which introduces hierarchies to organize the cate-
gory structure. As depicted in Fig. 1, the category hierarchical structure is com-
monly modeled as a tree or directed acyclic graph from coarse-grained categories
(i.e., parent categories) to fine-grained categories (i.e., child categories), with the
objective of predicting multiple labels in a given category hierarchy for a given
text. In general, the fine-grained categories are the most appropriate labels to
describe the input text, whereas the coarse-grained categories express more gen-
eral concepts, represented as parent nodes of the fine-grained categories.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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Fig. 1. A hierarchical text classification example from the WOS [12] dataset, tagged
with category Medical and category Cancer from coarse-grained categories to fine-
grained categories.

Fig. 2. The imbalance problem in the hierarchical text classification dataset. (a) In the
distribution of instance numbers for different categories of NYT [5] training data, the
number of instances is imbalanced, as many tail categories have only a small number
of instances. (b) In the hierarchical text classification datasets, NYT [5] and WOS [12],
as the hierarchy level deepens, the label frequency decreases, and the average number
of coarse-grained categories significantly exceeds that of fine-grained categories.

In practice, however, in the real world, text classification datasets tend to
exhibit imbalanced distributions, as depicted in Fig. 2(a), where the distribu-
tion of instances across the categories is biased or skewed. Specifically, a few
categories dominate most of the data (i.e., head categories), while the majority
are represented by few instances (i.e., tail categories), with the overall distri-
bution varying between a slight and a severe imbalance. In a hierarchical text
classification dataset, the number of coarse-grained categories may significantly
exceed that of fine-grained categories, as depicted in Fig. 2(b), causing an imbal-
ance between coarse-grained and find-grained categories. Imbalanced classifica-
tion poses a tremendous challenge for predictive modeling, as most machine
learning algorithms used for classification were designed around the assumption
of an equal number of samples for each class. Consequently, models trained on
these datasets exhibit relatively low representability on the learned deep fea-
tures, resulting in an overall decrease in predictive performance, especially for
the tail categories.
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Existing HTC approaches can be categorized as local approaches and global
approaches. Local approaches generally construct a classifier for each label or
each level of the label hierarchy. Some local methods [18] have been proposed
to overcome the data imbalance problem on child nodes by learning from the
parent node. However, these methods require large quantities of parameters and
lack holistic structural information, which can easily lead to exposure bias. Con-
versely, global approaches treat the HTC task as a flat multi-label classification
(MLC) problem, and build a single classifier to simultaneously predict multi-
ple labels for a given text. Early global methods [10] ignore the hierarchical
structure of labels, instead assuming that no dependencies among labels exist.
More recently, global approaches [15] have increasingly begun to employ var-
ious strategies to exploit information pertaining to the hierarchical structure
of labels. However, these global methods ignore the data imbalance problem,
which is crucial for accurate text classification. Therefore, these methods may
be insufficient when modeling fine-grained category data and producing satis-
factory classification performance.

To address the data imbalance problem in the hierarchical text classification
task, we propose a hierarchy-aware bilateral-branch network (HiBBN) based on
the conventional bilateral-branch network (BBN) [24], which was originally pro-
posed to address the data imbalance problem in computer vision tasks. Specif-
ically, HiBBN consists of two branches, a conventional learning branch, and a
re-balancing branch, used for representation learning and modeling of tail data,
respectively. Furthermore, we consider the uniform sampler and reversed sam-
pler for each branch separately, wherein the uniform sampler retains the original
data distribution and the reversed sampler is sampled by possibility. The con-
ventional learning branch equipped with the uniform sampler is responsible for
learning universal patterns, whereas the re-balancing branch coupled with the
reversed sampler is designed to model the tail data. As an extension of a prior
approach [25], we also introduce a hierarchy-aware encoder to model text fea-
tures with hierarchical structure information. Experimental results confirm that
HiBBN is more robust than previous models, and is able to alleviate the problem
caused by imbalanced data. The contributions of this work can be summarized
as follows:

– We address both the category hierarchical structure information and the data
imbalance problem in HTC, and propose a novel end-to-end trainable model,
called the hierarchy-aware bilateral-branch network (HiBBN), to address the
data imbalance problem in the HTC task.

– We successfully adapted the bilateral-branch network proposed in the com-
puter vision domain to the hierarchical text classification task. To our knowl-
edge, this is the first research attempt to accomplish this.

– We evaluated our model on various hierarchical datasets with imbalanced
data, with experimental results indicating that our model achieves better
classification performance, especially for fine-grained categories.
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2 Related Work

2.1 Hierarchical Text Classification

Hierarchical text classification is an important subtask of multi-label text classi-
fication, wherein classification results are assigned to one or more nodes within a
taxonomic hierarchy. Although certain traditional methods exist for text classifi-
cation [13,21], they do not consider the hierarchical structure information. Exist-
ing approaches for HTC can be categorized into two groups: local approaches
and global approaches. Local approaches build a classifier for each label, or
each level of the label hierarchy. For example, Shimura et al. [18] proposed a
method to learn a local classifier per level that can effectively utilize data in
the upper levels to contribute to categorization in the lower levels. Banerjee et
al. [1] proposed a transfer learning strategy where classifiers at lower levels are
initialized using parameters of the parent classifier and fine-tuned on the child
category classification task. In contrast, global approaches treat the HTC task
as a flat multi-label text classification problem. Early global methods effectively
uses word order for text categorization, but ignore hierarchical label structures.
Subsequently, many methods have been developed to extend flat multi-label clas-
sification models with hierarchical information. Peng et al. [16] proposed a GCN
[22] model wherein the deep architecture is regularized with inter-label depen-
dencies to improve large-scale HTC performance. Zhou et al. [25] formulated
the hierarchy as a directed graph, and introduced a hierarchy-aware structure
encoder to model label dependencies. Chen et al. [4] proposed HiMatch, which
formulates HTC as a semantic matching problem with a hierarchy-aware text
feature propagation module. However, the aforementioned methods ignore the
data imbalance problem, which we believe must be addressed to ensure accurate
classification performance.

2.2 Data Imbalance in Classification

The problem of imbalanced data among different categories is a common chal-
lenge in classification tasks. Various methods have been proposed to alleviate
this problem. Some approaches [9,19] introduce re-sampling methods to over-
sampling the tail categories or under-sampling the head categories. However,
this incurs the problem of label co-occurrence in multi-label text classification,
and simply increasing the quantity of tail data does not sufficiently address the
data imbalance problem. Although some re-weight approaches [3,6] have been
developed to assign a weight to each label, wherein labels with smaller sam-
ple sizes are assigned larger weights, these schemes are inconsistent with the
principle of cross-entropy loss, and naturally result in conflict between learning
generalizable representations and the facilitation of learning for tail categories.
More recently, Yang et al. [20] proposed HSCNN with a multi-task architecture
based on the Single and Siamese network [2] to improve performance on the
tail or entire categories. Guo et al. [8] proposed an approach to train on both
uniform and re-balanced samplings in a collaborative way, yielding performance



HiBBN for Imbalanced Hierarchical Text Classification 147

improvement on both head and tail categories. Li et al. [14] proposed a novel bal-
anced group softmax module to balance the classifiers, thereby ensuring that the
head and tail categories are both sufficiently trained. However, these approaches
ignore hierarchical label information, or are otherwise inapplicable to the HTC
task. In contrast, we address the hierarchical structure information and data
imbalance problem simultaneously.

3 Problem Definition

Hierarchical text classification (HTC) is an essential subtask of multi-label text
classification (MLC). To an extent, the HTC problem is equivalent to the MLC
problem, as both aim to predict multiple labels in a given text. The difference
is that HTC organizes the label space with a predefined taxonomic hierarchy,
which primarily contains a tree or a directed acyclic graph structure.

In general, we denote the dataset as D=(x,y), wherein x = {x1, x2, ..., xn} is
the text content and n is the instance number of the dataset, yi ∈ {0, 1}|C| is the
corresponding label of instance xi, and |C| is the size of the label set. Formulated,
we write yj

i =1 if label j belongs to instance xi, else we set yj
i to 0. Additionally,

we formulate a hierarchical category structure as a directed graph G = (V,
→
E,

←
E),

where V = (v1, v2, ..., v|C|) indicates the set of hierarchical structure label nodes,
→
E is the top-down hierarchy path, and

←
E is built from the bottom-up hierarchy

path to represent the connection relationship from child label nodes to parent
label nodes.

4 Methodology

In this section, we introduce details pertaining to our Hierarchy-aware Bilateral-
Branch Network (HiBBN) approach. As depicted in Fig. 3, our model is struc-
tured based on the BBN [24], with two branches for representation learning and
modeling of tail data, equipped with the uniform sampler and reversed sam-
pler respectively. Both branches use the same network structure and share all
parameter weights except for the last classifier.

4.1 Data Sampler

The sampler is an important component of our method that controls a focus
on the universal pattern or tail data in the learning process. For the bilateral
branches, we considered the uniform sampler and reversed sampler separately.
The uniform sampler focuses on universal pattern learning and retains the orig-
inal data distribution so that each instance in the training dataset is sampled
only once.

To allocate more attention to the tail data, we apply the reversed sampler,
wherein the sampling possibility of each category is proportional to the reciprocal
of its sample size. In formulation, we denote the number of samplers for label j
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Fig. 3. Overall architecture of proposed model. The parameter weights of the Text
Encoder, Transformation Linear Layer, and Graph Convolution Network are shared by
two branches. (1) The conventional learning branch equipped with the uniform sampler
is responsible for learning universal patterns; (2) The re-balancing branch coupled with
the reversed sampler is designed for the tail data. (3) Feature propagation encodes the
text features with the category hierarchy information. (4) Cumulative learning strategy
shifts the learning focus between bilateral branches by controlling the feature weights
generated by the two branches simultaneously with the classification loss.

as Nj , and the maximum number of all labels as Nmax. The reversed sampling
process is organized into the following steps:

– Step 1: calculate the ratio wj = Nmax

Nj
;

– Step 2: calculate the sampling probability of label j based on wj , the sampling
probability Pj = wj

∑|C|
k=1 wk

;

– Step 3: randomly select a label depending on the sampling probability;;
– Step 4: randomly select an instance that contains the selected label.

Iterations of this reversed sampling process produce training batch data of the
reversed sampler is obtained.
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4.2 Text Encoder

We use (xc, yc) and (xr, yr) to denote the input data sampled by the uniform
sampler and reversed sampler respectively, where xc and xr are the text input
sequence and yc and yr are the corresponding labels. Our proposed method can
be applied to any existing text encoder. In this study, we implemented our model
with two different encoders to verify our approach.

The first encoder is a traditional text encoder based on Bi-GRU and CNN,
with word embeddings generated by Glove [17]. Concretely, the text input
sequence is first fed into the embedding layer initialized by the Glove. Sub-
sequently, a bidirectional GRU layer is employed to extract contextual fea-
tures. Finally, CNN layers with top-k max-pooling generate key n-gram features
fc ∈ R

k×dcnn and fr ∈ R
k×dcnn , where dcnn indicates the output dimension of

the CNN layer.
The other encoder is based on BERT [7], a pre-trained language model. We

employed the top-level representation hCLS of BERT’s special CLS token for
text representation.

4.3 Cumulative Learning

The cumulative learning strategy was proposed in the BBN [24], which was
designed to learn the universal patterns and then pay attention to the tail data
gradually. During the training phase, there is an adaptive parameter α to shift
the learning focus between the bilateral branches. The value of α is automatically
generated according to the training epoch, and will gradually decrease with
subsequent epochs.

α = 1 −
(

T

Tmax

)2

(1)

where T is the current epoch and Tmax is the total number of training epochs.
Concretely, the feature fc of the conventional learning branch is multiplied by

α, whereas the feature fr of the re-balancing branch is multiplied by 1−α. Then,
the weighted features αfc and (1 − α)fr are sent into the feature propagation
component to encode with the label hierarchy information.

In addition, the cumulative learning strategy is also applied to update the
parameters and thereby control the weights for the classification losses of the
two branches. This process is described in more detail in Subsect. 4.5.

4.4 Feature Propagation

Inspired by a previous approach [25], we introduce hierarchy-aware text feature
propagation to model hierarchical category information. As illustrated in Fig. 4,
the hierarchical category structure is a directed graph G=(V,

→
E,

←
E).
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Fig. 4. Example of the hierarchical category structure. Each number indicates the prior
statistical probability of label dependencies according to the training corpus.

Specifically,
→
E ∈ R

|C|×|C| denotes the top-down hierarchy paths representing
the prior statistical probability from parent nodes to child nodes, calculated as

P (Ub|Ua) =
P (Ub ∩ Ua)

P (Ua)
=

P (Ub)
P (Ua)

=
Nb

Na
(2)

where Ua indicates the occurrence of parent label node va, Ub denotes that of
child label node vb, P (Ub|Ua) represents the conditional probability of parent
label node va given that child label node vb occurs, P (Ub ∩Ua) is the probability
of {va, vb} occurring simultaneously, and Na and Nb refer to the quantities of
Ua and Ub in the training subset, respectively. Finally, we rescale and normalize
the prior probability values of child nodes vchild(a) to a sum total of 1.

Meanwhile,
←
E ∈ R

|C|×|C| is constructed from the bottom-top hierarchy paths
representing connectivity relationships from children nodes to parent nodes

P (Ua|Ub) =
P (Ub ∩ Ua)

P (Ub)
=

P (Ub)
P (Ub)

= 1.0 (3)

To obtain the aforementioned hierarchical category information, the text
feature propagation component uses a transformation linear layer Wp ∈
R

|C|×dcnn×dt to project the text semantics features αfc and (1−α)fr into the node
embedding space. Thus, we can obtain the text nodes Vc and Vr respectively

Vc = αWpfc (4)

Vr = (1 − α)Wpfr (5)

where Vc ∈ R
|C|×dt and Vr ∈ R

|C|×dt are the text node features, and dt repre-
sents the hierarchical structure node embedding dimension.
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Finally, a graph convolutional network (GCN) is adopted to explicitly com-
bine textual semantics with hierarchical structure information. Concretely, we
take the text node feature and hierarchy path as input for the GCN. The
hierarchy-aware text features Sc ∈ R

|C|×dt and Sr ∈ R
|C|×dt can be obtained

by

Sc = σ(
→
E · Vc · Wg1 +

←
E · Vc · Wg2) (6)

Sr = σ(
→
E · Vr · Wg1 +

←
E · Vr · Wg2) (7)

where σ(·) is the ReLU activation function, and Wg1 ∈ R
dt×dt and Wg2 ∈ R

dt×dt

are the trainable parameters of GCN.

4.5 Training and Inference

We flatten the hierarchy by regarding all nodes as leaf nodes for multi-label
classification. Concretely, the hierarchy-aware text features Sc and Sr are sent
into classifiers Wc ∈ R

|C|×dt×|C| and Wr ∈ R
|C|×dt×|C| respectively, and the

outputs are integrated together by element-wise addition. The output logits are
formulated as

ŷ = WcSc + WrSr (8)

where ŷ ∈ R
|C| denotes the prediction result.

During the training phase, the cumulative learning strategy is applied to
control the weights for the classification losses of two branches, which shifts
the learning focus between bilateral branches and ensures that both branches
are constantly updated throughout the training process. Denoting E(·,·) as the
binary cross-entropy loss function, the weighted binary cross-entropy classifica-
tion loss of our method can be written as

L = αE(ŷ, yc) + (1 − α)E(ŷ, yr) (9)

This loss function is minimized by gradient descent during training.
During the inference phase, we fix α = 0.5 to predict the output logits ŷ, and

apply the sigmoid activation function to calculate the probability of each label

pj =
1

1 + eŷj
(10)

If the value of pj exceeds the classification threshold value λ, we append the
label j to the instance.

5 Experiments

The following section presents the details of our experiments, including the
dataset, implementation details, comparison, ablation study, and analysis of
experimental results.
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Table 1. Data Statics

Dataset |C| Depth Avg(|Ci|) Avg(Nc) Nmax
c Nmin

c Train V alid Test

NYT 166 8 7.6 1336 19610 121 23345 5834 7292

WOS 141 2 2.0 537 11783 34 30070 7518 9397

5.1 Datasets

To evaluate our model’s effectiveness, we conducted experiments on two imbal-
anced datasets for hierarchical multi-label text classification. The statistical
information of these datasets is listed in Table 1, where |C| is the size of label
set, Avg(|Ci|) indicates the average number of labels of per sample, and Depth
represents the maximum level of the hierarchy path. Furthermore, we define Nc

as the number of labels c in the training data, Avg(Nc) as the mean of Nc and
Nmax

c and Nmin
c as the maximum and minimum of Nc, respectively. We observe

a significant difference between Nmax
c and Nmin

c , with the datasets exhibiting
an imbalanced distribution.

NYT: The NYT [5] dataset is a news categorization corpus compiled and pub-
lished by the New York Times between January 1, 1987 and June 19, 2007,
with article metadata provided by the New York Times Newsroom. The dataset
comprises 166 labels and 8 levels, with 4 labels in the first level.

WOS: The WOS [12] is the world’s oldest, most widely used and authoritative
database of research publications and citations, comprising 46,985 documents
with 141 labels including 7 parent labels. This tree typical text classification
datasets are all annotated with the ground truth of hierarchical taxonomic labels.

Note that the NYT dataset uses multi-path taxonomic labels, whereas the
WOS dataset is employed for single-path hierarchical text classification.

5.2 Implementation Details

In our experimental setting, we initialized the embedding layer with 300 dimen-
sional pre-trained word embeddings from Glove [17], and employed a one-layer
bidirectional GRU with 100 hidden units. For the CNN layers, we applied 100
filters with a kernel size of [2–4], and set k = 1 for the top-k max-pooling.
The dimension dt of the text propagation feature and graph convolution weight
matrix was 300, the classification threshold value λ = 0.5. All models were
trained over 150 epochs with a batch size of 64. We used Adam [11] as our opti-
mizer, and set the initial learning rate to 1e-4 with the warmup linear scheduler.

To comprehensively validate our model’s performance, we further evaluated
our method in a pre-trained language model scenario. Concretely, we applied
BERT [7] as our encoder, and use the bert-base-cased version in all experiments.
We also trained the model for 150 epochs with a fixed batch size of 16 and an
initial learning rate of 2e–5.
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We evaluated the experiment results by F1 score, which is a statistical mea-
sure that considers both the precision and recall of a classification model. The F1
score can further be divided into the micro-F1 and macro-F1 scores. The micro-
F1 score accounts for the overall precision and recall of all instances, whereas the
macro-F1 score represents the average F1 score of all categories. Thus, micro-
F1 assigns higher weights to frequent categories, whereas macro-F1 weighs all
categories equally. Because the tail categories are significantly underrepresented
compared to the head categories, the micro average is somewhat biased. Accord-
ingly, we employed the micro-F1 and macro-F1 scores simultaneously to ensure
a more comprehensive analytical perspective.

5.3 Comparison Models

We compared our model with three types of existing works.

– Text classification baselines:
– TextCNN [23] is the traditional deep learning method for text classifi-

cation with a convolutional neural network (CNN).
– TextRCNN [13] is based on TextCNN, and uses an extra recurrent struc-

ture to capture contextual information.
– Hierarchy-aware models:

– HiAGM [25] is an end-to-end hierarchy-aware global method that
extracts structural information to aggregate label-wise text features.

– HiMatch [4] is a hierarchical text classification method that captures
semantic relationships among texts and labels at different abstraction
levels.

– Pre-trained language model:
– BERT [7] is a powerful and broadly used pre-trained language model in

the natural language processing domain, for the text classification task,
which only uses text as input.

5.4 Results and Discussion

Table 2 reports the performance of our approach against existing methods on
the NYT and WOS datasets. We observe that the traditional text classification
methods TextCNN and TextRCNN did not perform as well as the hierarchy-
aware models, as they fail to consider hierarchical structure information. Fur-
thermore, our model consistently achieved the best performance, especially in
terms of the macro-F1 score. Concretely, our model yielded an advantage of 0.68
on the micro-F1 score and 1.13 on the macro-F1 score, compared with HiMatch
on the WOS dataset. Likewise, it exhibited an improvement of 1.84 in terms of
macro-F1 score on the NYT dataset.

To further verify our model’s performance, we evaluated it in a pre-trained
language model scenario. BERT is an effective and powerful pre-trained language
model for fine-tuning downstream tasks. However, the primary results indicate
that BERT yields inferior performance compared to the other approaches, which
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Table 2. The main experimental results.

Dataset WOS NYT

Metric Micro-F1 Macro-F1 Micro-F1 Macro-F1

Text classification baselines

TextCNN [23] 83.32 76.41 70.25 54.27

TextRCNN [13] 83.02 76.65 70.57 54.68

Hierarchy-aware models

HiAGM [25] 85.82 80.28 74.97 60.83

HiMatch [4] 86.00 80.11 75.00 59.42

HiBBN (Ours) 86.68 81.24 75.39 61.26

with Pre-trained language model

BERT [7] 86.09 80.90 77.47 64.13

HiMatch+BERT [4] 86.70 81.06 78.39 66.00

HiBBN+BERT (Ours) 86.73 81.28 78.53 66.57

combine BERT with the hierarchy-aware method. In other words, our method
brings improvements to BERT, thereby producing better performance compared
to the other hierarchy-aware approach under the pre-trained language model
scenario.

The experimental results indicate that our model successfully handles repre-
sentation learning and modeling of tail data to achieve imbalanced HTC classifi-
cation. Furthermore, the improvement in macro-F1 score demonstrates that our
model significantly improves classification performance in the tail categories.

5.5 Label Granularity Performance Study

We analyzed the performance of different label granularities based on the label
hierarchy levels. Figure 5 shows the level-based micro-F1 and macro-F1 scores
obtained by TextCNN, TextRCNN, HiMatch, and our model. Because the second
and third hierarchical levels contain some tail categories, their F1 scores are
relatively low. From the figures, we observe that our method outperformed the
other approaches on both datasets. Concretely, Fig. 5.(a) and Fig. 5.(c) show
that our model achieves satisfactory performance scores in the coarse-grained
categories, and outperforms in the fine-grained categories in terms of micro-
F1 score. Figure 5.(b) and Fig. 5.(d) indicate that our model yields the best
performance in terms of macro-F1 score, especially in the fine-grained categories,
which demonstrates our model’s ability to improve classification performance
with imbalanced data.

5.6 Ablation Study

To further understand our proposed HiBBN model, we conducted an ablation
study to evaluate the effectiveness of the bilateral-branch network component.
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(a) Micro-F1 Score on WOS dataset (b) Macro-F1 Score on WOS dataset

(c) Micro-F1 Score on NYT dataset (d) Macro-F1 Score on NYT dataset

Fig. 5. Performance of different hierarchical levels

Table 3. Ablation study results.

Dataset WOS NYT

Metric Micro-F1 Macro-F1 Micro-F1 Macro-F1

HiBBN (Ours) 86.68 81.24 75.39 61.26

w/o BBN 86.24 80.15 75.02 58.74

with Pre-trained language model

HiBBN+BERT (Ours) 86.73 81.28 78.53 66.57

w/o BBN 86.33 80.86 78.34 66.19

The ablation study results are reported in Table 3, showing that the micro-F1
score decreased by 0.44 and 0.37 when removing the bilateral-branch network on
the WOS and NYT datasets respectively. These decreases are magnified to 1.09
and 2.52 on the macro-F1 score, as the bilateral-branch network exerts a signifi-
cant influence on the tail categories. Under the pre-trained language scenario, the
bilateral-branch network can still be effective in improving performance. These
results also verify that our model can make better use of tail data to mitigate
the imbalance problem in the hierarchical text classification task.



156 J. Zhao et al.

6 Conclusion

In this study, we addressed the imbalance problem in the hierarchical text clas-
sification task, and developed a novel hierarchy-aware bilateral-branch network
(HiBBN) that considers hierarchical structural information and models the tail
data simultaneously. We also considered the uniform sampler and reversed sam-
pler for the bilateral branches. The network uses an adaptive parameter α to
regulate model focus throughout the training process. By conducting extensive
experiments, we verified that our method achieves superior performance in the
imbalanced hierarchical text classification task compared to existing methods.
In future work, we intend to research the zero-shot learning scenario in the hier-
archical text classification task.
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Abstract. Aspect Based Sentiment Analysis (ABSA) is a challenging
task in natural language processing that involves identifying the sentiment
polarity of different aspects in a given text. While graph convolutional net-
work (GCN) has been shown to achieve state-of-the-art results for ABSA,
existing methods typically rely on investigating a single type of feature in
the sentence to construct the graph representation, which may not capture
enough relevant information. In this paper, we propose an approach that
leverages multiple channels to extract multiple features, including aspect
relations, word dependency relation types, and semantic information, to
enhance the performance of the model. We evaluate our approach on four
benchmark datasets and demonstrate its validity, achieving state-of-the-
art results. We also conduct extensive ablation studies to analyze the con-
tribution of different components of our model. Our findings suggest that
the combination of multiple channels and multiple features GCN is crucial
for achieving the best performance in ABSA tasks. In conclusion, our pro-
posed approach provides a promising solution to the ABSA problem and
contributes to advancing the field by highlighting the importance of con-
sidering multiple features and leveraging the power of multiple channels
GCN to improve performance.

Keywords: Aspect Based Sentiment Analysis · GCN · Multiple
features

1 Introduction

As the volume of online reviews and sentiment-expressing texts continues to
increase, there is a growing need for algorithms that can automatically analyze
sentiment. [18,31] Aspect-based sentiment analysis (ABSA) or Aspect-level sen-
timent analysis which is a fine-grained task that is more challenging to address.
ABSA enables the extraction of detailed sentiment information from text docu-
ments or sentences. [2] Specifically, ABSA aims to infer the sentiment polarities
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C. Strauss et al. (Eds.): DEXA 2023, LNCS 14147, pp. 158–172, 2023.
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of the different aspects mentioned in a sentence. For example, the given sentence:
”The menu is limited but almost all of the dishes are excellent.” and the corre-
sponding aspects of ”menu” and ”dishes”, the sentiment polarity of ”menu” is
negative, while the sentiment polarity of ”dishes” is positive. Notably, these two
aspects have opposite sentiment polarities, highlighting the need for aspect-level
analysis, which can provide more nuanced insights than sentence-level analysis.

With the rapid development of deep learning, attention mechanisms have
become popular in Aspect Based Sentiment Analysis (ABSA) research. Previ-
ous studies have applied various attention mechanisms to model the relationship
between aspect words and opinion terms in the context [3,6,7,19,25,28]. How-
ever, simply applying the attention mechanism without thoroughly investigat-
ing the sentence information may lead to incorrect aspect-term associations and
result in degrading the model’s performance.

In recent years, Graph Neural Networks (GNNs) such as GCN [11] and
GAT [27] have been introduced to the field of sentiment analysis. These models
aim to better pair the aspect and corresponding opinion term, and have achieved
state-of-the-art performance [1,13,14,16,21,23,30,32]. The overall procedure of
this method can be summarized into several steps: Graph construction, which
involves using a parser to analyze the text and construct a graph, and Node rep-
resentation, which involves using an encoder to obtain hidden representations
and then feeding them into a GNN-based model to extract more information
and perform sentiment prediction. However, previous studies have only focused
on one type of feature in the text, such as semantic information [16], aspect-based
relation [14], or dependency relation type [1], without attempting to use multiple
features simultaneously. This limitation may result in insufficient knowledge for
the model to learn from.

Therefore, there is a need to explore and integrate multiple types of features
in the GNN-based model to achieve more comprehensive and accurate senti-
ment prediction. In our approach, we propose to integrate multiple features into
our model through a multiple channel network. Based on this, a Multi-Features
and Multi-Channels Graph Convolution Networks (MFMCGCN) model is pro-
posed to fit this need. By using this approach, we can successfully integrate
different features of a sentence simultaneously for sentiment polarity prediction.

The main contributions of our work can be summarized as follows:

• We introduce a novel approach to sentiment analysis that integrates multiple
features of a sentence simultaneously.

• Our approach uses a multiple channel network to effectively integrate different
types of features in our model.

• Through extensive experiments on four benchmark datasets, we demonstrate
that our proposed approach achieves the state-of-the-art result. This high-
lights the effectiveness of our approach in sentiment analysis tasks. The code
and datasets involved in this paper are provided on Github.1

1 https://github.com/xijuan-hdu/MFMCGCN.

https://github.com/xijuan-hdu/MFMCGCN
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2 Related Work

Early methods in ABSA relied on machine learning and used handcrafted fea-
tures, which required significant human labor and failed to effectively model the
correlation between aspects and their context [12,24].

Recently, various attention mechanisms have been used in this field to auto-
matically model the correlation between aspects and their context by assigning
attention weights to relevant words in a sentence [3,6,7,19,22,28]. For exam-
ple, Wang [28] introduces an attention mechanism to dynamically weigh the
importance of different parts of a sentence when predicting the sentiment of a
particular aspect. Chen [3] uses a recurrent attention network to model inter-
actions between different aspects and their associated sentiments. In addition,
pre-trained models such as BERT [4] have been introduced into this field, involv-
ing the construction of an auxiliary sentence for each aspect to incorporate aspect
information into the model [20].

More recently, researchers have focused on integrating GNN-based models
into ABSA. Aspects can be represented as nodes in a graph, and the relation-
ships between aspects can be represented as edges in the graph. For example,
Sun [21] uses a convolution operation over a dependency tree to capture the rela-
tionships between different aspects and their associated sentiments. Liang [14]
proposes a novel neural network architecture for ABSA that uses graph convolu-
tional networks to learn aspect-focused and inter-aspect relations. Pang [16] uses
a dynamic and multi-channel graph convolutional network to capture the rela-
tionships between aspects and their associated sentiments. Bai [1] uses typed
syntactic dependencies and a graph attention neural network to capture rela-
tionships between aspects and their associated sentiments. Li [13] uses two par-
allel graph neural networks to capture both aspect-sentiment and aspect-term
relations in a sentence. Zhang [32] combines both syntactic and semantic infor-
mation to enhance a graph convolutional network for ABSA. However, none of
these methods consider using multiple types of features, which could potentially
enrich the information that the model can learn.

3 Proposed Approach

Figure 1 provides an overview of proposed model MFMCGCN. In this section,
we will provide a detailed introduction to the components of MFMCGCN.

3.1 Embedding and Encoding Layer

Based on the previous studies [21], given an input sentence s = {w1, w2, · · · ,
wa

1 , · · · , wa
m, · · · , wn−1, wn} with n words and a specific aspect {wa

1 , · · · , wa
m}

with m words. Each word in this sentence is fed into the embedding layer to obtain
the corresponding word vector, which is retrieved from the embedding lookup
table E ∈ R

|V |×de , where V is the vocabulary size and de is the dimension of
the word embedding. After obtaining the word vectors, we get the corresponding
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Fig. 1. Overview of proposed model MFMCGCN.

embedding matrix v = [v1, v2, · · · , vn], where vi ∈ R
de is the word embedding

of wi. Additionally, we concatenate POS-tag embeddings ti ∈ R
dt and position

embeddings pi ∈ R
dp with the previous embedding matrix v. Here, dt and dp are

the dimensions of the POS-tag and position embeddings, respectively. The final
representation of the sentence s is x = [x1, x2, · · · , xa

1 , · · · , xa
m, · · · , xn−1, xn],

where xi = [vi; ti; pi] represents the concatenation of the three embeddings.
We then input x to a bidirectional LSTM to learn the hidden represen-

tation of the given sentence. Specifically, a forward
−−−−→
LSTM generates the for-

ward hidden representation
−→
h = {−→

h 1,
−→
h 2, · · · ,

−→
h a

1 , · · · ,
−→
h a

m, · · · ,
−→
h n−1,

−→
h n},

while a backward
←−−−−
LSTM generates the backward hidden representation

←−
h =

{←−
h 1,

←−
h 2, · · · ,

←−
h a

1 , · · · ,
←−
h a

m, · · · ,
←−
h n−1,

←−
h n}. Finally, we concatenate the

−→
h and←−

h to obtain the hidden representation h = [
−→
h ;

←−
h ].

3.2 Aspect GCN Module

Follows the previous study [21,30], We can represent the dependency tree G of
an sentence as an adjacency matrix D of size n×n. Each entry Dij in the matrix
indicates whether node i is connected to node j by a single dependency path in
G. More specifically, Dij = 1 if node i is connected to node j, and Dij = 0 if
there is no connection between them.

Our Aspect GCN module mainly focuses on the aspect relation of a sen-
tence, which requires two types of graphs as inputs: an aspect-focused graph
and an inter-aspect graph. The module aims to enhance the aspect-related rep-
resentation of the sentence. Following the approach in the previous work [14],
we constructed the aspect-focused graph GF and the inter-aspect graph GI . We
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then applied the graph convolutional network(GCN) to these two types of graphs
and the hidden representation h obtained earlier, in order to extract the aspect
information. GCN can be formulated as follows, according to [11]:

hl
i = ReLU(

n∑

j=1

DijW
lhl−1

j + bl) (1)

In the above equation, hl
i represents the hidden representation of the i-th node

at the l-th layer of the GCN. hl−1
j denotes the output from the previous layer.

W l is a trainable weight matrix and bl is a bias term.
So the output of this module can be formulated as follows:

Hf = GCN(GF , h) (2)

Hi = GCN(GI , h) (3)

Ha = hF + γhI (4)

Hf and Ha represent the final representations obtained from the aspect-focused
and inter-aspect GCN layers, respectively. The variable γ is a tunable parameter,
as used in previous work [14]. Ha is the final output of this module.

3.3 Type RGAT Module

Our Type RGAT module focuses mainly on the dependency relations between
words in a sentence, following previous study [1]. This module requires a label
matrix Rij , which records the corresponding label of Dij if Dij = 1, otherwise
Rij = 0. Rij is then transformed into a vector rij ∈ R

dr , where dr is the dimen-
sion of the relation matrix. The procedure to obtain the hidden representation
of this module can be summarized as the following equation:

hl
i = ||Zz=1σ(

∑

j∈N(i)

α̂lz
ij(W

lz
V hl−1

j + W l
V rrij)) (5)

In the equation, Z represents the number of attention heads, || denotes vec-
tor concatenation, and σ is the sigmoid function. W lz

V ∈ R
d
Z ×d represents the

parameter matrices of the z-th head at layer l, while W l
V r ∈ R

d
Z ×dr represents

a parameter matrix for the relation matrix. In addition, j ∈ N(i) denotes the
neighbor word index, where N(i) is induced from the adjacent matrix D. α̂lz

ij

represents a weight that models the extent to which hl
i depends on hl−1

j . The
weight is determined by the following equation:

α̂ij =
exp(eNij + eRij)∑

j∈N(i) exp(eNij + eRij)
(6)

eNij is the node-aware attention, and eRij is the relation-aware attention, as given
by the following equations:

eNij =

{
f(h(l−1)

i , h
(l−1)
j ) if j ∈ N(i)

−inf otherwise
(7)
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eRij =

{
f(h(l−1)

i , rij) if j ∈ N(i)
−inf otherwise

(8)

f is a scaled dot-product attention function [26], given by the following equation:

f(hl−1
i , hl−1

j ) =
(W lz

Q hl−1
i )T (W lz

K hl−1
J )

√
d/Z

(9)

For simplicity, we represent the graph representation Hg as:

Hg = RGAT (D,h, rij) (10)

which is the output of this module.

3.4 Sem-Syn GCN Module

The Sem-Syn module addresses the problem of sentences lacking remarkable syn-
tactic structure, as described in the previous research [16]. To enhance semantic
information, we generate a training matrix Dse following the previous work’s
approach. The Sem-Syn module consists of three parts: Syntactic GCN, Seman-
tic GCN, and Common-GCN, which we have simplified based on the previous
study [16].

H l
sy = SY GCN(D,h,Wsy) (11)

H l
se = SEGCN(Dse, h,Wse) (12)

and the common representation H l
c:

H l
c =

AH l
c−sy + BH l

c−se

2
(13)

where A and B are trainable parameters, H l
c−sy and H l

c−se is given by the
following equations:

H l
c−sy = SY GCN(D,h,Wc) (14)

H l
c−se = SEGCN(Dse, h,Wc) (15)

where Wc ∈ R
dlstm+l×dgcn is the l-th layer learnable weight matrix.

The final output of this module is denoted as Hs, which is obtained by
concatenating Hsy,Hse and Hc:

Hs = [Hsy;Hc;Hse] (16)

3.5 Feature Fusion

Before fusing the representations extracted by our three modules, we employ
a mask mechanism and average pooling to capture the aspect representation,
following the previous studies [1,14,16,21,30].

ha = AveragePooling(mask(Ha)) (17)
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hg = AveragePooling(mask(Hg)) (18)

hs = AveragePooling(mask(Hs)) (19)

he = AveragePooling(mask(h)) (20)

he will be used to fuse with the hg as the previous work [1]:

ht = g × hg + (1 − g) × he (21)

where g is a gate computed by:

g = σ(Wg[hg;he] + bg) (22)

[; ] is concatenation operation, Wg and bg are model learnable parameters. σ is the
sigmoid function. The final aspect representation is obtained by concatenating
the output vectors ha, ht, and hs. The formulas used are as follows:

hf = [α ∗ ha, β ∗ ht, γ ∗ hs] (23)

where α,β,γ are tunable parameters.

mask =

{
1 if word index ∈ aspect words indexes

0 otherwise
(24)

3.6 Classifier

The classifier in our model is implemented as a fully connected neural network.
It takes the fused final representation hF as input and computes the probability
of each sentiment class c using the softmax function. Specifically, the probability
P (y = c) is calculated as:

P (y = c) =
exp(Whf + b)c∑

c′∈C exp(Whf + b)c′
(25)

where W and b are trainable parameters and C is the set of sentiment classes.

3.7 Training

To train the classifier, we define the objective as minimizing the cross-entropy
loss between the predicted probabilities and the ground-truth distribution.
Specifically, let yi be the ground-truth label for the i-th example and pi(c) be
the predicted probability for class c.The cross-entropy loss L is computed as:

L = − 1
N

N∑

i=1

∑

c∈C

yi(c) log pi(c) + λ ‖Θ‖2 (26)

where N is the total number of examples and yi(c) is an indicator function that
equals 1 if the label of example i is c, and 0 otherwise. λ is the weight of L2

regularization and Θ is the trainable parameters in the model.
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4 Experiments

4.1 Dataset

Table 1. Statistics of experimental datasets.

Dataset Positive Neutral Negative

Train Test Train Test Train Test

MAMS 3380 400 5042 607 2764 329

Twitter 1507 172 3016 336 1528 169

Restaurant 2164 727 637 196 807 196

Laptop 976 337 455 167 807 196

We used four datasets to evaluate our model. These four datasets include the
MAMS dataset [9], the ACL14 Twitter dataset [5], the Restaurant dataset and
Laptop dataset from SemEval 2014 [17]. It is worth noting that each data may
have multiple aspects. For each aspect, there is a corresponding sentimental
polarity including positive, neutral, and negative. The statistics of each dataset
is given in Table 1.

4.2 Experimental Setting

Our experimental setup is similar to that of previous work, such as RGAT [1] and
Inter-GCN [14]. We investigated two types of models: one based on GloVe and
the other based on BERT. For the GloVe-based model, we utilized 840 billion
tokens with 300-dimensional GloVe vectors2 for word embedding. Additionally,
we set the position, POS, and dependency embeddings to 30. To train the mod-
els, we used the AdaMax [10] optimizer with a learning rate of 10−2. The train
epoch is set to 100. For the BERT-based model,we employ the bert-base-uncased
pre-trained model3. We fine-tuned a pre-trained BERT and used the Adam [10]
optimizer for training. The train epochs is set to 15. We evaluated the models
using two metrics: accuracy and Macro-Averaged F1 score. And we obtained the
α, β, and γ parameters by trying different combinations. The final parameter
settings for each dataset can be found in our code. To ensure a fair compar-
ison between models, we selected the best results achieved by each model for
comparison.

4.3 Baseline Methods

We compared our proposed method with the following methods.
2 https://github.com/stanfordnlp/GloVe.
3 https://github.com/huggingface/transformers.

https://github.com/stanfordnlp/GloVe
https://github.com/huggingface/transformers
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GloVe-Based Models: SVM [12], ATAE-LSTM [28], IAN [15], AOA [8], AEN
[19], ASGCN [30], CDT [21], InterGCN [14], SD-GCN-G [33], DGEDT [23],
RGAT [1], DM-GCN [16],

BERT-BasedModels: RGAT+BERT [1], BERT4GCN [29], DualGCN+BER-
T [13], SSEGCN+BERT [32].

Table 2. Main experimental results. Acc means accuracy rate. F1 means Macro-F1
score. Best results are in bold. Results underlined indicate that it is the second best
result. The symbol ’-’ indicates this result is not available.

Model MAMS Twitter Restaurant Laptop

Acc F1 Acc F1 Acc F1 Acc F1

SVM - - 63.30 64.40 80.16 - 70.49 -

ATAE-LSTM - - - - 78.60 67.02 68.88 63.93

IAN 76.60 - - - 78.60 - 72.10

AOA 77.26 - - - 79.97 70.42 72.62 67.52

AEN 66.72 - 72.83 69.81 80.98 72.14 73.51 69.04

ASGCN - - 72.15 70.40 80.77 72.02 75.55 71.05

CDT 80.70 79.79 74.66 73.66 82.30 74.02 77.19 72.99

InterGCN - - - - 82.23 74.01 77.86 74.32

SD-GCN-G - - - - 82.95 75.79 75.55 71.35

DGEDT - - 74.8 73.4 83.9 75.1 76.8 72.3

RGAT 81.75 80.87 75.36 74.15 83.55 75.99 78.02 74.00

DM-GCN - - 76.93 75.9 83.98 75.59 78.48 74.9

MFMCGCN 82.76 81.91 76.51 75.31 83.99 77.07 78.65 75.19

RGAT+BERT 84.52 83.74 76.28 75.25 86.68 80.92 80.94 78.20

BERT4GCN - - 74.43 73.76 84.75 77.11 77.49 73.01

DualGCN+BERT - - 77.40 76.02 87.13 81.16 81.80 78.10

SSEGCN+BERT - - 77.40 76.02 87.31 81.09 81.01 77.96

MFMCGCN+BERT 84.97 84.43 77.44 76.53 87.13 81.76 82.03 78.86

4.4 Main Results

Our main experimental results of all the models are shown in Table 2. We cam-
pare the GloVe-based models and BERT-based models respectively.

We observed that the MFMCGCN model showed accuracy improvement on
the MAMS dataset, achieving a 1.01 percent gain compared to the performance
of RGAT [1]. For the Restaurant dataset, while the accuracy gain was rela-
tively modest, our model achieved a noteworthy improvement of 1.41 percent in
F1 score compared to DM-GCN [16]. This is particularly meaningful since the
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Table 3. Experimental results of the ablation study. The w/o means remove one
module from MFMCGCN.

Model MAMS Twitter Restaurant Laptop

Acc F1 Acc F1 Acc F1 Acc F1

MFMCGCN w/o hA 80.13 79.42 75.00 72.90 83.36 76.00 76.15 72.17

MFMCGCN w/o hT 81.36 80.80 74.52 72.95 83.00 75.57 75.89 72.03

MFMCGCN w/o hS 81.43 80.62 72.53 70.96 82.57 74.29 77.34 73.05

MFMCGCN w/o hA and hT 80.23 79.21 74.01 71.79 82.38 74.00 75.94 72.10

MFMCGCN w/o hA and hS 79.95 79.32 73.10 71.86 81.30 72.97 75.52 71.21

MFMCGCN w/o hT and hS 79.85 78.83 73.51 72.24 78.26 73.09 75.55 71.29

MFMCGCN 82.76 81.91 76.51 75.31 83.99 77.07 78.65 75.19

Restaurant dataset is unbalanced, making F1 score a more relevant and desir-
able metric for evaluation. We suspect that the reason why our method did not
outperform DM-GCN on the Twitter dataset is because the Twitter data is less
structured and more informal. Since the data of this dataset is collected from
the Internet, it may contain a higher degree of noise, making it more challenging
for our proposed model to handle. Specifically, our model may have struggled
to effectively process the informal language used in the Twitter data, which
DM-GCN may have been better equipped to handle.

Our MFMCGCN+BERT model has achieved state-of-the-art results. Com-
pared to current state-of-the-art results, the MFMCGCN+BERT model’s accu-
racy improvement is relatively small, with the biggest gain being 0.45 percent
on the MAMS dataset, as compared to RGAT+BERT [1]. However, there is a
more significant improvement in F1 score, with a 0.76 percent increase on the
Laptop dataset, as compared to DualGCN+BERT [13].

4.5 Ablation Study

To further investigate the role of modules in the MFMCGCN model, we conduct
extensive ablation study. The results are shown in Table 3. It is obvious that
MFMCGCN obtains the best result on all dataset, which means that all three
modules contribute to the performence of our proposed model.

In the first three rows of our experimental results, we evaluated the perfor-
mance of our MFMCGCN model by removing one module at a time. The results
showed that the Aspect GCN module (hA) played a crucial role in achieving the
best performance on the MAMS dataset. Similarly, the Sem-Syn GCN module
(hS) was the most important part of our model for the Twitter and Restau-
rant datasets. In particular, the MFMCGCN model without hS achieved the
worst result on the Twitter and Restaurant datasets. For the Laptop dataset,
we found that the Type-GCN module (hT ) was also a critical component of
our model, as the MFMCGCN model without hT had the worst performance.
These observations suggest that certain datasets may have more pronounced or
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hidden features, highlighting the importance of extracting and utilizing multiple
features of data simultaneously.

We have conducted experiments where we removed two modules at a time,
and the results are shown in the fourth to sixth row of the experimental results
table. We observed that MFMCGCN without both hT and hS performed poorly
on the MAMS and Laptop datasets, indicating that this combination is more crit-
ical for these datasets. On the other hand, for the Twitter and Laptop datasets,
MFMCGCN without both hA and hS yielded worse results, suggesting that this
combination is more important for these two datasets. We have thus identified
the relative importance of different module combinations for each dataset.

It is noteworthy that in some cases, removing two modules at once can result
in better performance than removing just one module. For instance, we observed
that the performance of MFMCGCN w/o hS was worse than that of MFMCGCN
w/o hA and hS , as well as w/0 hT and hS . This finding suggests that if the
combination of different modules is not well-matched, it may have a negative
impact on the overall performance of the model. The specific reasons behind
this phenomenon will require further investigation in future work. Despite this,
we can draw preliminary conclusions. It is important to take into account the
interactions between different modules and their compatibility during the design
and optimization of GCN-based models.

4.6 Case Study

Fig. 2. Visualization of attention weights assigned to each word by our model, as well
as the ablation models.

To gain a better understanding of the different modules in our model, we will use
a sentence from the Restaurant dataset as a case study. Using the methodology
employed in CDT [21], we created heatmaps that display the weight assigned by
our model and ablation models to each word in the given sentence, as shown in
Fig. 2.

Comparing the first row result obtained by the w/o Aspect-GCN model with
the fourth row result obtained by our full model, it is evident that our model
pays more attention to the aspect term ”food”. This indicates that the Aspect-
GCN module has a positive effect on helping our model learn the knowledge
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related to aspects. Moreover, it can be observed that the remaining two ablation
models pay more attention to ”food” than the first one.

In the second row, comparing the result obtained by the w/o Type-RGCN
model with that of the full model, we notice that the w/o Type-RGCN model
almost does not pay any attention to the word ”the” which is related to ”food”
and it pays less attention to the opinion term ”disappointed”.

Finally, comparing the results of the last two rows, we can conclude that the
w/o Sem-Syn GCN model cannot pay more attention to the opinion term and
wrongly pays more attention to ”the” than ”food”.

From the findings above, it is evident that each module in our model plays
an important role.

5 Conclusion

In this paper, we proposed a multiple features and multiple channels GCN
model for Aspect Based Sentiment Analysis. Our experiments on four bench-
mark datasets showed that introducing multiple features through a multiple
channels model is useful for ABSA task. Moreover, the ablation study justified
the influence of each module, and the case study visualized the attention weight,
indicating that our model can pay more attention to the corresponding word
based on the condition. In future investigations, we will explore the factors con-
tributing to the incompatibility between different modules in specific scenarios.
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Abstract. Since the increase of Web reviews of products and services,
Aspect-Based Sentiment Classification (ABSC) has become more impor-
tant to determine the sentiment of online opinions. Useful information
extracted from these reviews can then be used by companies themselves,
but can also be applicable by consumers. In the recent literature on
ABSC, hybrid methods, which combine knowledge-based and machine
learning approaches, are becoming more popular as well. However, in this
work, instead of following a two-step procedure, we attempt to improve
the model accuracy by proposing to directly inject the information from
a domain ontology in a state-of-the-art neural network model, more pre-
cisely LCR-Rot-hop++. Furthermore, by using soft-positioning and vis-
ible matrices we aim to prevent that the injected knowledge hinders
the semantics of the original sentences. To evaluate the accuracy of our
model, LCR-Rot-hop-ont++, we use the standard SemEval 2015 and
SemEval 2016 datasets for ABSC. We conclude that knowledge injection
in the neural network is effective for sentiment classification, especially
if the amount of labeled data is limited.

Keywords: LCR-Rot-hop-ont++ · ABSC · Knowledge Injection

1 Introduction

In an era where life seems to be moving more and more towards the online
dimension, information has as well moved to the online domain. Taking form in
Web reviews of products and services, enormous amounts of useful information
are up for grabs. When the size of this information gets enormously large, the
sheer size of data requires automatic approaches in order to retrieve people’s
opinion from their reviews. One proposal for an automatic approach for gathering
these opinions is called sentiment analysis [6], which determines the sentiment
expressed in a text.

A discipline within sentiment analysis is Aspect-Based Sentiment Analysis
(ABSA) [15]. Here, the overall sentiment of an entity is determined by identi-
fying the sentiment of the aspects of that entity. ABSA usually consists of two
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steps: finding the aspects present in the sentences and determining the senti-
ments associated to these aspects. The sentiments are often defined as positive,
neutral, or negative. For example, in the sentence “I was very disappointed with
this restaurant.” the aspect is “restaurant” and the sentiment is classified as neg-
ative. In this research, we assume the aspect to be given and therefore focus only
on the sentiment classification part of the ABSA, also known as Aspect-Based
Sentiment Classification (ABSC) [3]. To efficiently and accurately predict the
sentiment of the given aspects, knowledge-based methods and machine learn-
ing approaches are generally used. Because a combination of both techniques
outperforms the models that only use one technique [16], a hybrid approach is
considered [2].

One hybrid approach is HAABSA++ [17] which increased the accuracy of
sentiment classification w.r.t. its predecessor the Hybrid Approach for Aspect-
Based Sentiment Analysis (HAABSA) [19] by introducing two extensions. First,
in HAABSA++ the non-contextual GloVe [11] word embeddings are replaced
by deep contextual word embeddings like BERT [4]. Furthermore, a hierarchical
attention is implemented ensuring that the high-level input sentence represen-
tations are tuned to each other. HAABSA++ is a two-step model which first
uses a domain ontology to estimate the sentiment. When this turns out to be
inconclusive, a back-up algorithm is used taking form as the state-of-the-art neu-
ral network LCR-Rot-hop++ which has a rotatory attention mechanism based
on LCR-Rot [23] and a hopping (repetition) mechanism defined by its successor
LCR-Rot-hop [19].

Different than in [17] where the ontology is used before the back-up neural
network, in this work we plan to inject the knowledge of the domain ontology in
the neural network itself. We call the new model LCR-Rot-hop-ont++, referring
to the ontology now being incorporated in the neural network LCR-Rot-hop++.
We know that such an approach has been used for contextual word embeddings,
i.e., K-BERT [8], for language representation, but very little is known about
applying this method to the neural models (in our case LCR-Rot-hop++) in the
context of ABSC. We approach our knowledge injection inspired by K-BERT,
where the target text is first augmented with domain knowledge before being
passed on to the neural network, providing for a richer context. Furthermore,
our research contributes to the previous work in the following way. We make
use of a domain ontology instead of a knowledge graph to inject knowledge.
Furthermore, we follow a multi-hop approach where different concepts, which are
semantically close to the original words, from the domain ontology are injected
into the sentences. The Python source code of our model has been made publicly
available at https://github.com/DanaeGielisse/LCR-Rot-hop-ont-plus-plus.

The rest of the paper is organized as follows. In Sect. 2 relevant related works
regarding sentiment analysis and knowledge injection are discussed. Next, Sect. 3
presents the used data for experiments and Sect. 4 provides a detailed descrip-
tion of the proposed method. Furthermore, in Sect. 5 the results are presented
and discussed. Last, Sect. 6 gives the conclusions of our research and provides
suggestions for future work.

https://github.com/DanaeGielisse/LCR-Rot-hop-ont-plus-plus


Knowledge Injection for Aspect-Based Sentiment Classification 175

2 Related Work

In this section we discuss the research that is relevant to our work. First, Sect. 2.1
presents hybrid methods for ABSC. Second, in Sect. 2.2 the literature regarding
knowledge injection in neural models is outlined.

2.1 Hybrid Models for ABSC

Hybrid models [2] combine the symbolic with sub-symbolic approaches in classi-
fying sentiment. The former makes use of ontologies and lexicons to determine if
words are positive, neutral, or negative, and the latter includes machine learning
techniques that perform sentiment classification [5]. Several researches concluded
that the use of hybrid models for ABSC leads to an increase in the performance
of sentiment prediction [9,10,16,19].

ALDONA [9] and its extension ALDONAr [10] are among those researches
which use a hybrid approach of ABSC on a sentence-level. Both models deter-
mine the polarity of the aspect by using a lexicalized domain ontology and the
statistical relations captured by a regularized neural attention model. ALDONAr
improves the results of ALDONA by using BERT word embeddings among other
things. Furthermore, these models also outperform state-of-the-art models such
as CABASC [7].

[17] introduced the HAABSA++ model which is a two-step hybrid model for
ABSC. In the first step, a domain sentiment ontology is employed in order to pre-
dict the target polarities. If this ontology leads to inconclusive results (e.g., due
to conflicting sentiments), the neural network LCR-Rot-hop++ is used. LCR-
Rot-hop++ extends the neural network LCR-Rot-hop of HAABSA [19] in two
ways. First, deep contextual word embeddings are taken into account, namely
ELMo [12] and BERT [4] (better results are obtained with BERT), in order to
better deal with word semantics in text. Second, hierarchical attention is used
by adding an extra attention layer to the HAABSA high-level representations.
Therefore, the method is more flexible to model the input data. It was proved
that the fourth method, out of three other methods, gives the highest accuracy,
where for each iteration the rotatory attention weighting was applied separately
on the intermediate context and target vectors pairs.

In this work, we directly include the information from the domain ontology
in the neural network, which results in the model LCR-Rot-hop-ont++. Hence,
the ontology is now part of the neural network and thus our model does not
follow a two-step approach. More precisely, we account for our whole domain
knowledge by replacing the BERT word embeddings with the word embeddings
from K-BERT [8]. We also devise a novel multi-hop approach for embedding
domain knowledge using K-BERT into the neural network. Last, we compare
the performance of our model with HAABSA++ and LCR-Rot-hop++.

2.2 Knowledge Injection in Neural Networks

One of the first works to inject knowledge in a deep neural network is the
knowledge-enhanced language representation model K-BERT [8]. This is an
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extension of the BERT model which is a language representation model that
takes contextual information into account [4]. Both the architectures of BERT
and K-BERT are based on the Transformer [18]. However, K-BERT outperforms
BERT on domain-specific tasks by injecting knowledge obtained from a Knowl-
edge Graph (KG), which could be described as a graph structure modeling a
domain, into sentences. Although, this has to be done with care as too much
knowledge could be injected which could change the meaning of the original
input sentence. This undesired information is called Knowledge Noise (KN). K-
BERT could be made more robust to KN in two ways. First, soft-positioning
retains the sequential structure of the original sentence. Second, visible matrices
control the visible area of each word in the sentence by blocking the words from
the injected knowledge except from the corresponding subject.

[22] proposed to use a knowledge-enhanced BERT model for ABSC. The
authors utilize a Sentiment Knowledge Graph (SKG) as an external source to
increase the accuracy of sentiment detection by injecting domain knowledge into
BERT. Like our research, [22] employs the BERT component and injects the
information from the SKG into the input sentences and then uses these knowl-
edge enhanced embeddings for ABSC. However, in [22] the knowledge is injected
in the same way as in the K-BERT model, namely, in the form of candidate
triples which are pairs of concepts and their associated relation. Differently, in
our approach we inject the lexical representations obtained from a domain ontol-
ogy. After comparing the model BERT+SKG to another external knowledge-
enhanced model and several self-attention based models, the authors concluded
that the BERT+SKG is effective for the ABSC task.

[21] also makes use of a KG to enhance the language representation model.
The authors use the model SAKG-BERT, which utilizes the information from
Sentiment Analysis Knowledge Graph (SAKG) and the language model BERT.
Contrary to our research, the authors focus on the extraction of knowledge triples
from the SAKG. Then, the triples are injected as domain knowledge into the
input sentences. Also different to our research, the authors have constructed
their own KG that is related to online reviews. It was found that the use of a KG
shows promising results for sentiment analysis tasks and sentence completion.

In our research, we use an approach based on K-BERT to inject knowl-
edge into a neural network for ABSC instead of a general language model. We,
however, inject the information from a domain ontology in the form of lexical
representations (words) associated to ontology concepts. Furthermore, compared
to previous work, we follow a multi-hop approach for knowledge injection. We
only opt to perform knowledge injection at test time. This is because employing
such an approach at training time might result in semantic loss, i.e., the model
not capturing the meaning conveyed in the original sentences.

3 Data

To evaluate the performance of our model, we have used the SemEval 2015 Task
12 [14] and SemEval 2016 Task 5 [13] datasets. These datasets are often used
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in research relating to ABSC which makes them convenient for comparing the
performance of our model to that of other models. The data contains customers
reviews about restaurants which can consist of multiple sentences. Furthermore,
the sentences express one or more opinions about the provided aspects. Each
aspect is assigned to a predefined category that is labeled as positive, neutral,
or negative. In Fig. 1 an example of a customer review from the SemEval 2016
dataset is presented. It is shown that a sentence can have multiple targets, here
“food”, “drinks”, and “atmosphere”. Furthermore, the polarities and categories
for each target are listed.

<sentence id="1609375:1">
<text>We love the food, drinks, and atmosphere!</text>
<Opinions>

<Opinion from="12" to="16" polarity="positive"
category="FOOD#QUALITY" target="food"/>

<Opinion from="18" to="24" polarity="positive"
category="DRINKS#QUALITY" target="drinks"/>

<Opinion from="30" to="40" polarity="positive"
category="AMBIENCE#GENERAL" target="atmosphere"/>

</Opinions>
</sentence>

Fig. 1. Example of a sentence from the SemEval 2016 dataset.

For training we have used 1278 and 1880 reviews and for testing 597 and 650
reviews of the SemEval 2015 and SemEval 2016 dataset, respectively. Table 1
shows the frequencies of the positive, neutral, and negative targets of the
SemEval 2015 Task 12 and SemEval 2016 Task 5 datasets. For both datasets
it holds that the targets are valued the most as positive, followed by negative,
and neutral.

Table 1. Polarity frequencies of the training and test data of the SemEval 2015 and
SemEval 2016 datasets for ABSC.

Training Data Test Data

Positive Neutral Negative Positive Neutral Negative

SemEval 2015 75.3% 2.8% 21.9% 59.1% 6.1% 34.8%

SemEval 2016 70.2% 3.8% 26.0% 74.3% 4.9% 20.8%

To inject knowledge into our input sentences we have used the information
obtained from a restaurant domain ontology [16]. An ontology describes a set
of concepts and the relations between these concepts. This ontology is divided
in multiple classes and subclasses regarding the sentiments and targets. The
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subclasses of the targets are, for example, service, restaurant, and ambience. The
sentiment class only consists of the subclasses positive, neutral, and negative.
We have especially focused on the synonyms or different spellings of a certain
concept (called concept lexical representations) that the ontology provides. For
instance, for the concept “Outside” the ontology gives the lexical representations
“outdoor”, “outside”, and “outdoors”. However, related concepts could also be
found in the ontology, such as “chef” being a direct subclass of “staff”.

Furthermore, in our research we make use of the pre-trained BERT word
embeddings [4]. In particular, we use the uncased BERT base model which has
12 transformer layers, 768 as hidden size, and 12 self-attention heads and was
pre-trained on BookCorpus and English Wikipedia.

4 Methodology

In this section we explain our model. As an extension of the LCR-Rot-hop++
model we propose to use the information from a domain ontology to enrich the
word embeddings. We call this model LCR-Rot-hop-ont++. First, in Sect. 4.1
we describe how the LCR-Rot-hop++ model works. Furthermore, in Sect. 4.2
we explain how we inject the knowledge from the domain ontology in the test
sentences using K-BERT. The methodology was implemented in Python (ver-
sion 3.7) with the HuggingFace’s Transformer [20] and Google’s TensorFlow [1]
packages.

4.1 LCR-Rot-hop++

LCR-Rot-hop++ builds further on the model proposed in [17] which uses con-
textual word embeddings as input for three bidirectional Long Short-Term Mem-
ory (Bi-LSTM) models. Bi-LSTMs are a particular Recurrent Neural Network
(RNN) that are able to incorporate long-term dependencies in their learning. In
Fig. 2 a visualization of the LCR-Rot-hop-ont++ model is presented. This figure
is split into two parts. The lower part of this figure is inspired by K-BERT. On
the left side the training process is displayed and on the right side the testing.
For training we just use the input sentence. However, for testing we also use
the input sentence and the information from the domain ontology to create a
sentence tree and contextualized word embeddings. We describe this step more
extensively in Sect. 4.2.

The procedure described in the upper part of Fig. 2 goes as follows. First
the sentence s = [w1, w2, ..., wN ] is split into three parts: the left context sl =
[wl

1, w
l
2, ..., w

l
L], the target phrase st = [wt

1, w
t
2, ..., w

t
T ], and the right context

sr = [wr
1, w

r
2, ..., w

r
R]. Hereby, N is the number of words in sentence s, and L,

T , and R are the number of tokens in each part of the sentence, respectively.
These three parts are then embedded together using BERT for training data
and K-BERT for test data.

The embeddings are then used as input for three separate Bi-LSTMs and give
three hidden states h for each part, namely: [hl

1, h
l
2, ..., h

l
L] for the left context,
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[ht
1, h

t
2, ..., h

t
T ] for the target phrase, and [hr

1, h
r
2, ..., h

r
R] for the right context.

Next, the three Bi-LSTMs hidden states are used in a two-step rotatory mecha-
nism which creates in the first step the new context representations using target
information. In the first iteration, we use an average pooling mechanism to obtain
the target representation rtp = pooling[ht

1, h
t
2, ..., h

t
T ].

Furthermore, we calculate the attention scores for each word using a softmax
function in order to compute the new context and target representations. We
compute the representation of the left context for i = 1, ..., L as follows:

f(hl
i, r

tp) = tanh(hl′
i × W l

c × rtp + blc), (1)

where W l
c is a weight matrix and blc is the bias for the left context l.

Fig. 2. Visualization of LCR-Rot-hop-ont++.
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Next, we normalize the attention scores by using a softmax function, where
i = 1, ..., L:

αl
i =

exp(f(hl
i, r

tp))
∑L

j=1 exp(f(hl
j , r

tp))
. (2)

Furthermore, we calculate the representation of the left context as:

rl =
L∑

i=1

αl
i × hl

i. (3)

In a similar way, we obtain the representation of the right context. In the second
step of this rotary mechanism, we determine the target representations w.r.t the
left and right context. Here, the target representation w.r.t. the left context is
given by:

rtl =
T∑

i=1

αtl
i × ht

i, (4)

where the attention scores are computed between target words and previously
computed representations of the left and right context. In the first iteration of
the multi-hop method we use the pooled target vector. However, in the iterations
thereafter we use the left and right target representations to compute the left and
right context representations, respectively. We then use a hierarchical attention
model to further improve the representations by including the information on
sentence-level as well.

First, we calculate the normalized attention scores using the attention func-
tion in (1) for i = 1, ..., 4:

f(vi) = tanh(vi′ × W + b), (5)

where vi ∈ {rl, rtl , rtr , rr}, W is a weight matrix, and b is a bias. Next, we
compute the normalized attention scores as follows:

αi =
exp(f(vi))

∑2
j=1 exp(f(vj))

. (6)

This is done separately for the context vectors (rl and rr) and target vectors
(rtl and rrl). Furthermore, we determine the new representations:

vi
new = vi

old × αi. (7)

We use n = 3 hops for the multi-hop approach as this was found optimal in
[17]. The final representations are then concatenated, linearized, and squashed
to compute the vector of probabilities of length |C|, where |C| is the amount of
sentiment categories. For this we use the vector v obtained by concatenation of
four vectors:

v = [rl; rtl ; rtr ; rr], (8)
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Then, after applying a linear layer this is sent into the softmax function in order
to predict the sentiment probability:

p = softmax(Wc × v + bc), (9)

where p is the conditional probability distribution, Wc is a weight matrix, and
bc is the bias for class c.

To obtain the model parameters that best capture the semantics in the train-
ing data, we minimize the cross-entropy loss function which measures the differ-
ence in the estimated probability and the true value of the sentiment classifica-
tion.

In addition, we penalize the complexity of the system by using L2-
regularization. The loss formula is:

Loss = −
∑

j

yj · log(p̂j) + λ||θ||22, (10)

where yj is a |C| × 1 vector of the true sentiment classification values, p̂j is the
|C| × 1 vector of sentiment classification predictions, λ is the L2-regularization
term that penalizes the squared values of the model parameters, and θ is the
vector containing all the model parameters, these are the LSTM parameters and
{W l

c , b
l
c,W

r
c , brc ,W

l
t , b

l
t,W

r
t , brt ,Wc, bc,W, b}. The squaring of the model parame-

ters ensures that we penalize the large model parameters more than the small
model parameters.

4.2 Knowledge Injection

We inject knowledge from a domain ontology which represents concepts and rela-
tions between these concepts. Furthermore, a concept has one or more lexical
representations attached which denote synonyms. We define a k-hop as navigat-
ing k classes from the current class in the ontology in order to extract lexical
representations, for k = 0, ..., N − 1 with N being the total number of classes.
In this case, performing a 0-hop points to synonyms which are then injected
into the test input sentence, because we do not have to navigate through the
ontology.

We inject the information from the ontology according to the following pro-
cedure. First in the K-Query step, we determine for each k-hop all the lexical
representations. Furthermore, wi,k denotes the word i in the sentence for which
the lexical representations of the subclasses were obtained by navigating k-hops
from the current class in ontology O (domain-specific relations from the ontology
are ignored in this study due to the possibility of divergent semantics w.r.t. the
current concept). Second, the words corresponding to the concepts are added to
sentence s. For sentence s, the selection of these words could then be written as:

E = K-Query(s,O, k). (11)

The collection of a k-hop is then:

E = ∪wi∈s[(wi ∪ {wi,0} ∪ ...{wi,k})], (12)
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whereby {wi,n} represents the set of all words obtained from word i using n hops
in the ontology.

The second step is called K-Inject, where we create a sentence tree t by
injecting the queried concepts of the k-hops to the corresponding positions. Next,
we enter the embedding layer where we input the new sentence tree and get as
output an embedding representation. Since the sentence tree is incompatible with
the embedding layer of BERT, we first have to create a new sentence tree. We
inject the words, obtained through the concepts by navigating k-hops, directly
after the corresponding words in the sentence. Note that if a word from the
original sentence is also listed in the ontology, we do not inject this word again
in the sentence. We consider injecting synonyms by adding “soft branches” to
our sentence tree. We define “hard branches” for the words obtained through
the concepts of the other k-hops. Hereby, we only add branches of length one. In
Fig. 3 an example of a sentence tree is shown. The original word in the sentence
“staff” has a synonym, namely “crew”. Furthermore, the words attached to the
“hard branches” which represents the 1-hops, are “Chef”, “Waiter”, and “Host”.
Also, the words obtained by performing a 1-hop could have synonyms themselves
given by corresponding “soft branches”.

Fig. 3. Example of a sentence tree.

The embedding representation is a sum of three parts: the token embedding,
soft-position embedding, and the segment embedding. The token and segment
embeddings are the same as in BERT. However, the main difference is in the
soft-position embedding, because we cannot input the new sentence tree into the
embedding layer. As mentioned, we have to place the words obtained through the
concepts of performing k-hops in the original sentence at specific places which
ruins the structure of the original sentence. This problem could be solved by
using soft-positioning in which the lexical representations are given the same soft-
position as the original word in the sentence, displayed by the red numbers (below
text numbers for black and white printing) in Fig. 3. This way the structural
information of the sentence is retained, however, this might also lead to false
semantic information.

To solve the previously identified problem, we use the visible matrix M . This
makes sure that the k-hop of the original word does not affect the hidden state
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value of this word that is not in the same branch of the sentence tree. We create a
visible matrix by using the hard-position indexes, displayed by the gray numbers
(above text numbers for black and white printing) in Fig. 3. We define the visible
matrix as:

Mij =

{
0, if wi ⊕ wj

−∞, if wi ⊗ wj

, (13)

where ⊕ means that the words are in the same branch and thus are visible to
each other and ⊗ means the words are not visible to each other. Furthermore, i
and j are the hard-position indexes. Thus, it holds that all words in the original
sentence are visible to each other. Furthermore, the synonyms are only visible to
the words they belong to and the words obtained from performing the k-hops are
not able to see each other unless they are in the same branch. In Fig. 4 an example
of a visible matrix is shown which has as input the sentence tree of Fig. 3. The
numbers on the sides are the hard-position indexes, the red dots (gray dots for
black and white printing) indicate that the words are visible to each other and
the white dots indicate that they are invisible. For example, the word “staff” of
the original sentence with hard-position 2, is visible to the words obtained by
performing k-hops and the other words of the original sentence. It is, however,
unable to see the synonyms “Waitress” and “Hostess” with hard-positions 5 and
7, respectively.

Fig. 4. Example of a visible matrix.

Next, we apply the BERT-encoder where we change the multi-head attention
block by adding the visible matrix M in (15). The input of the first multi-head
attention block of the first layer is h0 = sum(Et, Es, Eseg), where E are the
embeddings of the tokens, soft-positions, and segments, respectively. The input
plus output of this block is then the input for the first normalization layer in
the BERT-encoder. Furthermore, the output of this first normalization layer is
then the input of the feed-forward layer. Then, the input plus output of the
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feed-forward layer is used as the input of the second normalization layer. The
output of the second normalization layer is then used as the input for the next
encoder layer. This process is repeated until we arrive at the last encoder layer
and set that output as hidden states for all tokens. These steps are repeated for
all twelve encoder layers. In the next three equations the multi-head attention
block is given where we add the visible matrix M (13).

Qi+1,Ki+1, V i+1 = hiWq, h
iWk, h

iWv, (14)

Si+1 = softmax

(
Qi+1Ki+1�

+ M√
dk

)

, (15)

hi+1 = Si+1V i+1, (16)

where Q, K, and V are matrices of queries, keys, and values, respectively. Fur-
thermore, hi and hi+1 denote the input and output of the multi-head attention
block, respectively. In addition, Wq, Wk, and Wv are trainable model parameters
and dk is a scaling factor. Now, we are able to identify that if the words k and
j are not in the same branch, Si+1

kj is set to zero. This means that word k does
not make a contribution to the hidden state of word j. This process is repeated
for the whole sentence. Next, the sum of the outputs of the last four encoder
layers are split into the three parts that correspond to the left context, target,
and right context of the sentence. These are then each used as input for the
Bi-LSTMs as was showed in Fig. 2.

It is possible to do knowledge injection at training time and at test time.
However, by injecting knowledge at training time we add lexical representations
to the sentences which could lead to sentences with a different structure and thus
a different meaning. This in turn could lead to different embeddings and thus
different predictions at test time. If the knowledge is only injected at test time
then we just have to change the embeddings and hidden states in K-BERT with
the use of soft-positioning and visible matrices. One can note that the model
training remains unchanged, the only changes are being made for testing.

5 Results

In the section we report the results of our model LCR-Rot-hop-ont++ which
makes use of soft-positioning and visible matrices. To evaluate the performance
of our model we have used the SemEval 2015 Task 12 and SemEval 2016 Task 5
datasets. Furthermore, we compare the accuracy of our model with the accuracy
of two benchmarks. These are HAABSA++ and LCR-Rot-hop++. In this paper
we adopt a conservative approach and focus on 0-hops as these affect the least
the semantics of the original sentences. By performing 0-hops, synonyms are
injected into the input sentences. In Table 2 the test accuracies of the LCR-Rot-
hop-ont++ model and its benchmarks are presented for both the SemEval 2015
and SemEval 2016 datasets. We do not replicate the HAABSA++ and LCR-
Rot-hop++ work and thus give the results as reported in the previous work
[17].
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In Table 2 is given that for the SemEval 2015 dataset LCR-Rot-hop-ont++
outperforms HAABSA++ and LCR-Rot-hop++ in terms of test accuracy by
0.2% and 0.8%, respectively. In addition, for the SemEval 2016 dataset LCR-Rot-
hop-ont++ outperforms LCR-Rot-hop++ by 0.2% points, but LCR-Rot-hop-
ont++ has a lower performance than HAABSA++ (0.1% points). As SemEval
2015 is a smaller dataset than SemEval 2016 we conclude that our proposed app-
roach helps boost the performance of a neural model where for smaller datasets
knowledge injection is preferred over the hybrid approach.

Table 2. Comparison of LCR-Rot-hop-ont++ to its benchmarks using accuracy (the
bold font indicates the best results).

SemEval 2015 SemEval 2016

LCR-Rot-hop-ont++ 81.9% 86.9%

HAABSA++ 81.7% 87.0%

LCR-Rot-hop++ 81.1% 86.7%

6 Conclusion

In this research, we propose the LCR-Rot-hop-ont++ model for performing
Aspect-Based Sentiment Classification (ABSC) on a sentence-level of restau-
rant reviews. The model is formed by injecting the information from a domain
ontology into the state-of-the-art neural network model LCR-Rot-hop++ in our
test instances. This approach of knowledge injection is based on the language
representation model K-BERT which also makes use of soft-positioning and vis-
ible matrices. These are used to control the scope of the injected knowledge
and thus help to retain the meaning of the original sentences. Furthermore, the
performance of the LCR-Rot-hop-ont++ model was evaluated by using the stan-
dard SemEval 2015 and SemEval 2016 datasets for ABSC. We have compared
our model to its benchmarks, namely HAABSA++ (ont+LCR-Rot-hop++) and
LCR-Rot-hop++.

Hereby, we conclude that LCR-Rot-hop-ont++ boosts the testing accuracy
for the SemEval 2015 dataset, namely from 81.7% for HAABSA++ and 81.1%
for LCR-Rot-hop++ to 81.9%. Furthermore, for the SemEval 2016 dataset we
conclude that LCR-Rot-hop-ont++ outperforms LCR-Rot-hop++, but does not
outperform HAABSA++. Therefore, we conclude that knowledge injection is
effective for the neural network to perform sentiment classification, especially
for smaller datasets.

For future work, we propose to further explore the amount of information
that can be injected from the ontology into the neural network. We have only
researched knowledge injection for a 0-hop, but perhaps injecting more infor-
mation could boost the performance of the neural network more for sentiment
classification. In addition, we could try different percentages of knowledge injec-
tion, e.g., 20%, 40%, 60%, 80%, and 100%. Furthermore, we could analyze the
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characteristics of sentences that can benefit the most from knowledge injection.
For example, it is expected that shorter sentences could benefit the most from
knowledge injection for building additional context information.
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17. Truşcǎ, M.M., Wassenberg, D., Frasincar, F., Dekker, R.: A hybrid approach for
aspect-based sentiment analysis using deep contextual word embeddings and hier-
archical attention. In: Bielikova, M., Mikkonen, T., Pautasso, C. (eds.) ICWE 2020.
LNCS, vol. 12128, pp. 365–380. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-50578-3 25

18. Vaswani, A., et al.: Attention is all you need. In: 31st Annual Conference on Neu-
ral Information Processing Systems (NIPS 2017), vol. 30, pp. 5998–6008. Curran
Associates (2017)

19. Wallaart, O., Frasincar, F.: A hybrid approach for aspect-based sentiment analysis
using a lexicalized domain ontology and attentional neural models. In: Hitzler, P.,
et al. (eds.) ESWC 2019. LNCS, vol. 11503, pp. 363–378. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-21348-0 24

20. Wolf, T., et al.: Transformers: state-of-the-art natural language processing. In:
2020 Conference on Empirical Methods in Natural Language Processing: System
Demonstrations (EMNLP 2020), pp. 38–45. ACL (2020)

21. Yan, X., Jian, F., Sun, B.: SAKG-BERT: enabling language representation with
knowledge graphs for Chinese sentiment analysis. IEEE Access 9, 101695–101701
(2021)

22. Zhao, A., Yu, Y.: Knowledge-enabled BERT for aspect-based sentiment analysis.
Knowl.-Based Syst. 227, 107220 (2021)

23. Zheng, S., Xia, R.: Left-center-right separated neural network for aspect-based
sentiment analysis with rotatory attention. arXiv preprint arXiv:1802.00892 (2018)

https://doi.org/10.1007/978-3-319-60131-1_17
https://doi.org/10.1007/978-3-319-60131-1_17
https://doi.org/10.1007/978-3-030-50578-3_25
https://doi.org/10.1007/978-3-030-50578-3_25
https://doi.org/10.1007/978-3-030-21348-0_24
http://arxiv.org/abs/1802.00892


Towards Ensemble-Based Imbalanced
Text Classification Using Metric Learning

Takahiro Komamizu(B)

Nagoya University, Nagoya, Japan

taka-coma@acm.org

Abstract. This paper reports s series of ensemble approaches for imbal-
ance text classification. All the approaches utilize a metric learning
technique for obtaining better representations of texts to train weak
classifiers. Each approach deals with the class imbalance problem with
an undersampling-based ensemble approach, because metric learning
techniques also suffer from this problem. In this paper, four ensem-
ble approaches (namely, MLBagging, MLBoosting, MLStacking, and
MLBoostacking) are proposed, three of which are corresponding to
ensemble frameworks (namely, bagging, boosting, and stacking), and the
other is a combination of boosting and stacking. MLBagging, MLBoost-
ing, and MLStacking train metric learners on the individual undersam-
pled dataset and combine them, while MLBoostacking trains metric
learners in a step-by-step manner; that is, a metric learner learns a
feature transformation so that failed-to-classify samples in the previ-
ous step should be correctly classified. The experimental evaluation on
three imbalanced text classification datasets (namely, unfair statement
classification in terms of service, hate speech detection in a forum, and
hate speech tweet detection) shows that the proposed approaches lift
classification performance from BERT-based approaches, by improving
the representations of texts through metric learning.

Keywords: Imbalanced Classification · Metric Learning · Ensemble

1 Introduction

Text classification [16,22] is a fundamental problem in a wide range of research
areas. This problem is to assign classes defined in advance for given texts. Text
classification has been studied for a while, and its major issue is representations
of texts. A breakthrough of the representations of texts is the appearance of con-
textualized embeddings of texts, especially, Transformer [30] has a great impact
and is used for a wide variety of approaches such as BERT (Bidirectional Encoder
Representations from Transformers) [4], RoBERTa (Robustly Optimized BERT
Pretraining Approach) [19], and DeBERTa (Decoding-enhanced BERT with Dis-
entangled Attention) [10]. These approaches realize to represent semantic rela-
tionships among words on an embedding space.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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From the viewpoint of classification, the class imbalance is a crucial problem
in real-world applications, which degrades classification performance, especially
on minority classes. The class imbalance refers to a situation with datasets in
which the number of instances in a class is much larger than that in other
classes. This large difference of the numbers of instances causes classifiers to be
biased toward the majority class. Text classification tasks also suffer from the
class imbalance problem, such as the unfair statement prediction in terms of
service [17], the hate speech detections [8,32].

In this paper, learning representations of texts is a focused issue in the imbal-
anced text classification. One straightforward text classification method is to
fine-tune the aforementioned Transformer-based models using class-imbalanced
datasets. However, it does not show good results, that will be shown in Sect. 4.
Another approach is to train classifiers modeled for the class imbalance (e.g.,
EasyEnsemble [18]) based on the representations obtained from these models.
Section 4 shows that this approach does not show good results either. These
two results indicate that classification methodology is not the main issue for the
imbalanced text classification problem. Instead, representations obtained from
pre-trained models can be a major issue for the imbalanced text classification.

In this paper, a series of ensemble approaches (called MLEnsemble) is pro-
posed to tackle imbalanced text classification for incorporating metric learning to
learn appropriate representations of texts. The basic idea of MLEnsemble inher-
its that of existing approaches [13,33], that is an undersampling-based ensemble
with metric learning. MLEnsemble includes four approaches, namely, MLBag-
ging, MLBoosting, MLStacking, and MLBoostacking, each of which cor-
responds with the ensemble frameworks; MLBagging is based on a bagging
ensemble framework; MLBoosting is based on a boosting ensemble framework;
MLStacking is based on a stacking ensemble framework; and MLBoostacking is
a combination of boosting and stacking frameworks.

In an experimental evaluation, MLEnsemble is examined on three imbal-
anced text classification datasets (namely, unfair statement classification in
terms of service, hate speech detection in a forum, and hate speech tweet
detection). It is compared with the Transformer-based approaches including
BERT [4], advanced models like DeBERTa [10] and DistilRoBERTa (distilled
version of RoBERTa) [19,26], and pretrained models for dedicated domains such
as Legal-BERT [3]. The experiment shows that MLEnsemble outperforms the
Transformer-based approaches in terms of precision, recall, f-measure, and geo-
metric mean (gmean for short) of true positive rate and true negative rate.
This superiority of MLEnsemble to the existing approaches means that it lifts
up classification performance from Transformer-based approaches, by improving
the representations of texts through metric learning.

In summary, this paper includes the following contributions.

– Feasibility of Ensemble Frameworks: The proposed method, MLEnsem-
ble, is a series of approaches each of which takes advantage of an
undersampling-based ensemble and metric learning. In contrast to the exist-
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ing approaches, MLEnsemble covers wide variety of ensemble frameworks,
namely, bagging, boosting, and stacking.

– Lifting-up Classification Performance of Imbalanced Text Classi-
fication: Transformer-based models (e.g., BERT) have been succeeded in
many natural language processing tasks, however, their classification perfor-
mance is limited in imbalanced text classification. To cope with this diffi-
culty, MLEnsemble transforms representations of texts obtained from these
models by using the metric learning technique. In an experiment in this
paper, MLEnsemble shows better performances than Transformer-based mod-
els. This fact indicates that MLEnsemble successfully lifts the classification
performance via transforming representations of texts so that texts in major-
ity classes and those in minority classes are separable.

The rest of this paper is organized as follows. Section 2 gives a brief review of
related work to this paper. Section 3 introduces the proposed method, named
MLEnsemble, and individual approaches (namely, MLBagging, MLBoosting,
MLStacking, and MLBoostacking) in detail. Section 4 shows the experimental
results and findings. Finally, Sect. 5 concludes this paper.

2 Related Work

A key to text classification is to obtain the best representations of texts, and
this is the same for imbalanced text classification. Therefore, this section first
introduces the current state of representations of texts, and the following section
introduces related work of imbalanced classification.

2.1 Text Representations

To obtain representations of texts, there have been a large variety of approaches,
and they can be roughly grouped into three categories; bag-of-words (BoW),
word representation learning, and contextualized embedding. The BoW is a
primitive representation of a text that is a count vector of words in a sen-
tence, and TFIDF (term frequency-inverse document frequency) is a popular
extended approach of BoW. Word representation learning (a.k.a. Word2Vec) is
a data-oriented approach to obtaining representations of a word by using the
surrounding words as its context. There are many variations of Word2Vec, such
as SkipGram [21] and FastText [12]. Based on these word representations, rep-
resentations of texts can be obtained in various ways such as using recurrent
neural network, long short-term memory, and smooth inverse frequency [1].

BERT [4] is a neural language model that captures semantic relationships
among text tokens (i.e., word or subword) by learning from vast amounts of text
data. In addition to the success of BERT in various natural language processing
tasks, Transformer-based approaches have been proposed such as RoBERTa [19],
DeBERTa [10], and ALBERT [15]. An important feature of these Transformer-
based models is that they can be pretrained on a vast amount of text data and
applications can use the pretrained models for their tasks by fine-tuning the
models in addition to training parameters of additional layers.
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2.2 Imbalanced Classification

To deal with class imbalance, resampling is widely accepted preprocessing. It
samples datasets so that the number of instances in different classes are bal-
anced. Resampling can be divided into two major approaches; one is (synthetic)
oversampling (such as SMOTE [5] and PolynomFitSMOTE [7]), and the other
is undersampling (such as EasyEnsemble [18] and MUEnsemble [14]). The for-
mer generates synthetic instances of minority classes, and the latter samples
instances of majority classes.

For imbalanced text classification, there are few attempts, and their main
focus is oversampling [9,29]. [9] explores possibilities of SMOTE and its vari-
ants for text classification. MISO (Mutual Information constrained Semantically
Oversampling framework) [29] is an oversampling-based approach for imbalanced
text classification. It re-embeds difficult-to-classify texts by generating anchor
instances. Though data augmentation methods by using text style transfer [6]
and text generation [24] can be used as oversampling, their performances on
imbalanced text classification are not revealed. [2] explores classification perfor-
mances when using random under- and over-sampling for fake review detection,
which is an imbalanced text classification task. However, it only applies simple
random undersampling which discards a large portion of texts of the majority
classes. In consequence, imbalanced text classification has been scarcely studied.

3 MLEnsemble: Metric Learning-Based Ensemble
for Imbalanced Text Classification

MLEnsemble is a series of ensemble approaches that integrate metric learning
into undersampling-based ensemble frameworks. In this paper, it consists of four
approaches: MLBagging, MLBoosting, MLStacking, and MLBoostack-
ing. MLBagging is based on bagging framework, MLBoosting is based on boost-
ing framework, MLStacking is based on stacking framework, and MLBoostacking
is based both on boosting and stacking frameworks

3.1 MLBagging

An overview of MLBagging is shown in Fig. 1, where it integrates metric learning
into a balanced bagging ensemble. The basic idea of MLBagging is as follows. To
deal with the class imbalance problem in metric learning, MLBagging utilizes
undersampling to balance instances fed to metric learning models. A simple RUS
throws many instances of majority classes away; therefore, MLBagging borrows
the idea of EasyEnsemble. EasyEnsemble is based on a technique called balanced
bagging. Balanced bagging is a bagging-based ensemble technique by which each
batch of samples is balanced by undersampling. The light grey box in Fig. 1 is
the balanced bagging part of MLBagging. It illustrates that given input data is
copied several times, and each piece of copied data is randomly undersampled,
and these individual pieces of undersampled data are used for learning different
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Fig. 1. Overview of MLBagging

spaces in metric learning and base classifiers on the basis of data transformed
by metric learning. Each base classifier predicts a label with a probability (or
confidence score) for a text and pushes that label to a merger of the ensemble.
The merger collects the predictions from the base classifiers, and finalizes the
prediction for the label with the highest probability.

3.2 MLBoosting

An overview of MLBoosting is shown in Fig. 2, where it integrates metric learn-
ing into a boosting framework. MLBoosting is based on boosting framework with
undersampling (i.e., RUSBoost [27]); that is, for each iteration of learning a base
classifier including a metric learning module, difficult-to-classify texts are deter-
mined, and MLBoosting gives higher weights to these texts for a sampling of the
next iteration. The light grey box in Fig. 2 is the boosting part of MLBoosting.
It illustrates that given input data is sampled for each iteration. Weights for
sampling to sample difficult-to-classify texts are calculated by a weak classifier
in the preceding iteration. In addition to the weighted sampling, undersampling
is also applied to balance the data to be fed to metric learning and base classifier
in that iteration.

3.3 MLStacking

An overview of MLStacking is shown in Fig. 3, where it integrates metric learning
into a stacking framework. MLStacking applies undersampling to deal with the
class imbalance problem in metric learning in a similar way to balanced bagging,
and, it combines representations of input texts with prediction probabilities from
individual base classifiers, instead of passing prediction results of base classifiers
to the merger of the ensemble. A basic idea of the stacking framework is to
integrate different characteristics of base classifiers by training a final classifier
based on predictions of these base classifiers. Therefore, the stacking framework
expects that base classifiers are in a wide variety, and MLStacking expects these
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Fig. 2. Overview of MLBoosting

Fig. 3. Overview of MLStacking

base classifiers trained on different pieces of data with different transformations
by metric learning are of a wide variety. The light grey box in Fig. 3 is the stacking
part of MLStacking. It illustrates that given input data is copied several times,
and each piece of copied data is randomly undersampled, and these individual
pieces of undersampled data are used for learning different spaces in metric
learning and base classifiers on the basis of transformed data by metric learning.
The original representations of texts and predictions from base classifiers are
concatenated and are fed into the final classifier.

3.4 MLBoostacking

An overview of MLBoostacking is shown in Fig. 4, where it integrates metric
learning into a combination of boosting and stacking frameworks. The basic
idea of MLBoostacking is close to MLBoosting except for learning the final clas-
sifier. MLBoostacking applies undersampling to deal with the class imbalance
problem in metric learning in a similar way to MLBoosting, and, it combines
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Fig. 4. Overview of MLBoostacking

representations of input texts with transformed representations by individual
metric learning modules. To learn better representations of texts, MLBoost-
acking is based on boosting framework with undersampling to train variational
transformations by metric learning modules. Specifically, for each iteration of
learning a metric learning module and a base classifier, difficult-to-classify texts
are determined, and MLBoostacking gives higher weights to these texts for a
sampling of the next iteration. The light grey box in Fig. 4 is the boosting-and-
stacking part of MLBoostacking. It illustrates that given input data is copied
several times, and each piece of copied data is undersampled with weights from
the previous iteration, and these individual pieces of undersampled data are used
for learning different spaces in metric learning and base classifiers based on data
transformed by metric learning. The original representations of texts and trans-
formed representations from metric learning modules are concatenated and are
fed into the final classifier.

4 Experimental Evaluation

In this experiment, MLEnsemble approaches were compared with Transformer-
based classifiers and undersampling-based ensemble classifiers on three imbal-
anced text classification tasks. In the recent literature on text classification,
Transformer-based approaches have achieved better performances than tradi-
tional approaches. A major contribution to this achievement is a learning proce-
dure of representation of text. However, the learning procedure requires a vast
amount of text, therefore, the classification performance of Transformer-based
approaches is limited for domains that have a potentially small amount of texts,
especially, for those whose amounts of texts in a domain are highly imbalanced.
MLEnsemble, proposed in this paper, deals with this problem by using metric
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learning. To show the capability of MLEnsemble, in this experiment, represen-
tations obtained by using Transformer-based pretrained models were used for
MLEnsemble.

4.1 Settings

Evaluation Metrics: The evaluation metrics were precision, recall, F1, and
Gmean. Let TP, FN, TN, and FP be true positives, false negatives, true neg-
atives, and false positives. Precision = TP/(TP + FP) measures how many
positive instances are correctly among instances predicted as positive. Recall =
TP/(TP + FN ) measures how many positive instances are correctly classified
among all true positive instances. Fβ = ((1 + β2)Recall · Precision)/(Recall +
β2Precision) is the harmonic mean of recall and precision, where β determines
the weight on recall. In this experiment, β was set to 1, where β = 1 means that
precision and recall were considered equally. Gmean =

√
Recall · TNR is the

geometric mean of the recalls of both classes, where TNR = TN /(TN + FP).

Table 1. Statistics of Datasets: the numbers of positive and negative sentences (#pos-
itives, #negatives) and imbalance ratio which is #negatives/#positives

Dataset # positives # negatives Imbalance Ratio

claudette 1,032 8,382 8.12

hate-speech18 1,914 15,210 7.95

tweets-hate-speech-detection 2,242 29,720 13.26

Datasets and Tasks: In this experiment, three datasets were used: claudette
dataset1, hate-speech18 dataset2, and tweets-hate-speech-detection
dataset3. The claudette dataset is a dataset for detecting unfair sen-
tences in a terms of service. The hate-speech18 dataset is for detect-
ing hate speech in a Stormfront, a white supremacist forum, and the
tweets-hate-speech-detection dataset is for detecting hate speech on Twit-
ter. These three datasets are potentially imbalanced; that is, they are not con-
trolled (or sampled) to make imbalanced datasets. Statistics of these datasets
are summarized in Table 1.

The claudette dataset [17] consists of 50 documents (i.e., terms of service)
and 9,414 sentences. The classification task in this experiment was a binary clas-
sification setting, where an unfair label was considered to belong to the positive
class and the others the negative class. In the dataset, 1,032 sentences belonged
to the positive class, and 8,382 sentences belonged to the negative class. The

1 http://claudette.eui.eu/ToS.zip.
2 https://huggingface.co/datasets/hate speech18.
3 https://huggingface.co/datasets/tweets hate speech detection.

http://claudette.eui.eu/ToS.zip
https://huggingface.co/datasets/hate_speech18
https://huggingface.co/datasets/tweets_hate_speech_detection
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imbalance ratio (which is a ratio of negative instances to positive instances) of
this dataset was 8.12; in other words, the number of negative texts was 8.12
times larger than that of positive texts.

In contrast, the hate speech detection tasks (hate-speech18 and tweets-hate-
speech-detection) were sentence-level prediction. In these datasets, sentences of
hate speech were considered to belong to the positive class and the others to the
negative class. hate-speech18 dataset [8] is a set of sentences from forum posts
in the Stormfront forum, and those have been manually labeled as containing
hate speech or not. This dataset contains 17,124 sentences, and 1,914 sentences
out of them belong to the positive class, therefore, the imbalance ratio of this
dataset was 7.95. tweets-hate-speech-detection [28] dataset also consists of
sentences (i.e., tweets), and “hate speech” in this dataset means that a tweet
has a racist or sexist sentiment associated with it. This dataset contains 31,962
sentences, and 2,242 sentences out of them belong to the positive class, therefore,
the imbalance ratio of this dataset was 13.26.

In this experiment, for claudette dataset, the experimental task followed
that in [17]; that is, leave-one-document-out cross validation was applied, mean-
ing that 1 out of 50 documents was used for testing and the rest for train-
ing. This setting follows a real situation; that is, given a document (a terms
of service), a classifier should find unfair sentences in the document. There-
fore, the validation process was repeated for each document being tested, and
scores of evaluation metrics were summarized as macro averages over the 50
documents. In contrast, for hate speech detection tasks (hate-speech18 and
tweets-hate-speech-detection), a sentence-level cross validation was applied.
To prepare datasets for trials, a set of sentences was randomly split into 8:2 for
training and testing, and this random split was repeated 10 times to generate 10
trials for each task. The scores of evaluation metrics were summarized as macro
averages over the 10 trials.

Baseline Methods: The baseline methods in this experiment were selected
from undersampling-based ensemble classification method, and neural language
model-based representations of text. Approaches on the former category were
bagging-based and boosting-based ensemble methods; namely, EasyEnsem-
ble [18] and RUSBoost [27]. Those on the latter category were Transformer-based
models, BERT [4] and its extensions for dedicated tasks.

For the input to the former category approaches, representations of texts
were generated by using sentence-transformers library [25]. In addition, to
compare MLEnsemble with deep metric learning approaches, representations of
texts were re-trained by using training data with triplet loss [31].

For the latter category, the following approaches were used in this experiment.

– BERT4 for all tasks, which is pretrained by using the BooksCorpus [34] and
English Wikipedia.

– LegalBERT5 for the claudette task, which is a pretrained BERT by using
English legal texts from several fields (e.g., legislation and court cases).

4 https://huggingface.co/bert-large-uncased.
5 https://huggingface.co/nlpaueb/legal-bert-base-uncased.

https://huggingface.co/bert-large-uncased
https://huggingface.co/nlpaueb/legal-bert-base-uncased
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– DeBERTa6 for the hate-speech18 task, which is a fine-tuned model of
DeBERTa V3 [11] on the dataset of this task.

– DiRoBERTa7 for the tweets-hate-speech-detection task, which is a fine-tuned
model of a distilled version of RoBERTa by using the dataset of this task.

The classifiers based on them were implemented by adding a linear layer on top of
the pooled output of each model. Their optimizers were the Adam weighted decay
(AdamW) optimizer [20]. In addition, to deal with imbalanced text classification,
the balanced sampling (BS) and a weighted loss function (WCE) were also used.

– BS: The sampling weights for instances of positive and negative classes were
set to

∣
∣D(+)

∣
∣
−1

and
∣
∣D(−)

∣
∣
−1

, respectively, where D(+) and D(−) denote sets
of positive and negative pieces of training data, respectively.

– WCE: In this experiment, weighted cross entropy loss was used. The weight
of weighted cross entropy loss was calculated as follows. w(+) and w(−) denote
weights for positive and negative classes, respectively, and they are computed
as w(+) = log

(|D| / ∣
∣D(+)

∣
∣
)

and w(−) = log
(|D| / ∣

∣D(−)
∣
∣
)

, where D = D(+)∪
D(−) is a total set of instances.

4.2 Results

Table 2, 3, and 4 showcase the comparison results. The tables are vertically sep-
arated into three groups: (a) baseline methods including BERT-based classifier,
RUSBoost, and EasyEnsemble, (b) extended BERT model-based classifier with
balanced sampling and weighted loss function, and (c) the proposed method,
MLEnsemble, is based on representations from extended BERT models. In each
table, the best scores for each metric (i.e., column) in the table are boldfaced,
and the best score of each metric in each group is underlined.

Results on claudette Task: In Table 2, MLBoostacking, one of the framework
in MLEnsemble, performed the best in terms of precision, Gmean and F1 met-
rics. It outperformed the best Transformer-based model (i.e., LegalBERT+BS)
in all the metrics with large gaps, especially the precision score of MLBoost-
acking was .289 higher than that of LegalBERT+BS, while, in contrast, the
gap of recall scores between them was not large (i.e., .029). MLBoostacking also
showed superior performance to the best imbalanced classification methods (i.e.,
EasyEnsemble) in all the metrics.

In terms of Transformer-based classifiers, pretrained model trained by using
dedicated corpus (i.e., LegalBERT) performed better than that by using general-
purpose corpus (i.e., BERT), and the improvement by using balanced sampling
(BS) and weighted loss function (WCE) was limited. BERT classifier achieved the
highest recall score, however, its precision score was low, and LegalBERT classi-
fiers achieved higher precision scores and their recall scores were still high. Legal-
BERT with balanced sampling performed (LegalBERT+BS) the best among

6 https://huggingface.co/Narrativaai/deberta-v3-small-finetuned-hate speech18.
7 https://huggingface.co/mrm8488/distilroberta-finetuned-tweets-hate-speech.

https://huggingface.co/Narrativaai/deberta-v3-small-finetuned-hate_speech18
https://huggingface.co/mrm8488/distilroberta-finetuned-tweets-hate-speech
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Table 2. Comparison for claudette dataset.

Model Feature Precision Recall Gmean F1

BERT .244 .944 .754 .382

LegalBERT .361 .899 .844 .508

LegalBERT+BS .356 .910 .848 .509

LegalBERT+WCE .327 .907 .824 .474

LegalBERT+BS+WCE .338 .931 .842 .492

RUSBoost LegalBERT .388 .752 .788 .503

EasyEnsemble LegalBERT .451 .840 .844 .579

EasyEnsemble LegalBERT+Triplet .432 .854 .844 .565

MLBagging LegalBERT .636 .894 .910 .736

MLBoosting LegalBERT .554 .883 .890 .672

MLStacking LegalBERT .582 .902 .905 .702

MLBoostacking LegalBERT .629 .939 .919 .736

LegalBERT-based approaches, however, gaps between LegalBERT+BS and oth-
ers were not significant.

Comparison between MLEnsemble with imbalanced classification methods
shows the effectiveness of involvement of metric learning into undersampling-
based ensemble classification frameworks. In particular, in the bagging frame-
work, MLBagging was superior to EasyEnsemble in all metrics, and, in the boost-
ing, MLBoosting also totally outperformed RUSBoost. In addition, EasyEnsem-
ble trained on re-trained representations of text by re-training text encoder of
LegalBERT by using triplet loss did not show clear superiority to that trained
on the original representations by using the LegalBERT model. This observation
indicates that deep metric learning did not always help learn suitable representa-
tions for classification as complained in [23]. In contrast, a fact that approaches
in MLEnsemble showed their superiority over EasyEnsemble indicates that the
non-deep metric learning (i.e., LMNN) performed better.

Results on hate-speech18 Task: In Table 3, MLBoostacking performed the
best in terms of recall and Gmean metrics. It outperformed Transformer-based
models in terms of recall and Gmean, while these models achieved higher pre-
cision and F1. MLBoostacking outperformed the best imbalanced classifier (i.e.,
EasyEnsemble on DeBERTa+Triplet encoding). In terms of Transformer-based
classifiers, fine-tuned models (i.e., DeBERTa) outperformed the general model
(i.e., BERT), and balanced sampling (BS) and weighted loss function (WCE)
improve the base model in terms of recall. In terms of imbalanced classifiers,
re-trained encoder by using triplet loss for representation of text contributed to
improving classification performance.

Similar to the result of claudette task, a comparison between MLEnsemble
with imbalanced classification methods shows the effectiveness of involvement of
metric learning in undersampling-based ensemble classification frameworks. A
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Table 3. Comparison for hate-speech18 dataset.

Model Feature Precision Recall Gmean F1

BERT .856 .727 .845 .784

DeBERTa .898 .825 .902 .857

DeBERTa+BS .890 .885 .934 .886

DeBERTa+WCE .841 .876 .926 .857

DeBERTa+BS+WCE .791 .916 .942 .847

RUSBoost DeBERTa .595 .822 .872 .688

EasyEnsemble DeBERTa .670 .921 .932 .775

EasyEnsemble DeBERTa+Triplet .683 .937 .941 .790

MLBagging DeBERTa .713 .947 .949 .813

MLBoosting DeBERTa .724 .957 .956 .824

MLStacking DeBERTa .733 .967 .961 .834

MLBoostacking DeBERTa .745 .969 .963 .841

fact that all the approaches in MLEnsemble outperformed the imbalanced clas-
sifiers (RUSBoost and EasyEnsemble) indicates that involvement of metric learn-
ing contributes to improve precision. Another fact that approaches in MLEnsem-
ble showed their superiority to EasyEnsemble based on DeBERTa+Triplet rep-
resentations indicates that the non-deep metric learning (i.e., LMNN) performed
better.

Results on tweets-hate-speech-detection Task: In Table 4, MLBoost-
acking performed the best in terms of Gmean and F1 metrics. It outper-
formed Transformer-based approaches in all the metrics except precision, and it
achieved superior performance to the best imbalanced classifier (i.e., EasyEnsem-
ble+Triplet) except recall. For the DistilRoBERTa approach, balanced sampling
and weighted loss function assisted to improve recall scores, however, its preci-
sion scores dropped. In terms of imbalanced classifiers, deep metric learning by
triplet loss slightly improved classification performance.

Comparison among MLBagging, EasyEnsemble, and EasyEnsemble+Triplet
shows that deep/non-deep metric learning improves classification performance.
A fact that MLBoostacking performed superior to them indicates that stacking
transformed representations of texts can construct more suitable representations
for imbalanced text classification. Another fact that MLBoostacking outper-
formed MLBoosting also supports this observation, that is, stacking transformed
representations of texts is a better strategy for imbalanced text classification
than stacking classification probabilities of weak classifiers.

4.3 Lessons Learned

MLEnsemble Confirms Effectiveness of Metric Learning for Undersampling-
Based Ensemble Classifiers. This experiment showed that the ensemble
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Table 4. Comparison for tweets-hate-speech-detection dataset.

Model Feature Precision Recall Gmean F1

BERT .780 .730 .847 .752

DiRoBERTa .847 .547 .733 .655

DiRoBERTa+BS .718 .704 .827 .700

DiRoBERTa+WCE .712 .595 .757 .634

DiRoBERTa+BS+WCE .485 .840 .882 .607

RUSBoost DiRoBERTa .547 .840 .889 .660

EasyEnsemble DiRoBERTa .647 .959 .961 .776

EasyEnsemble DiRoBERTa+Triplet .658 .964 .963 .782

MLBagging DiRoBERTa .704 .958 .964 .812

MLBoosting DiRoBERTa .625 .864 .910 .723

MLStacking DiRoBERTa .673 .967 .966 .794

MLBoostacking DiRoBERTa .722 .964 .967 .823

approaches in MLEnsemble outperformed the imbalanced classifiers (namely,
EasyEnsemble and RUSBoost), and a deep metric learning approach using triplet
loss also improves classification performance. It is noteworthy that MLEnsemble
outperformed EasyEnsemble with representations by using a deep metric learn-
ing. This indicates that the quality of batch-level metric learning depends on
the batch size. Since GPU memory was limited, the batch size in the experiment
was 16. In contrast, due to larger RAM for CPU, MLEnsemble can utilize a
larger subset of training data for each metric learning model. This fact indicates
that larger GPU memory or memory-effective deep metric learning method can
improve deep metric learning. To the best of our knowledge, such a deep metric
learning approach does not exist.

Stacking Transformed Representations is the Best Approach Among the Ensem-
ble Frameworks in MLEnsemble. A major stream of undersampling-based ensem-
ble approaches is based on bagging framework [13,14,18,33]. This paper shows
another direction of ensemble for imbalanced text classification, the combination
of boosting and stacking framework. MLBagging, MLBoosting and MLStack-
ing showed their superiority to the undersampling-based imbalanced classifiers
(i.e., RUSBoost and EasyEnsemble), besides that, MLBoostacking outperformed
them. Stacking transformed representations can be regarded as a feature expan-
sion, thus MLBoostacking realizes it based on classification difficulties on weak
classifiers.

5 Conclusion

This paper reports series of ensemble approaches, MLEnsemble, for imbal-
ance text classification. Each approach deals with the class imbalance problem
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with an undersampling-based ensemble approach, because metric learning tech-
niques also suffer from class imbalance problems. In this paper, four ensemble
approaches (namely, MLBagging, MLBoosting, MLStacking, and MLBoostack-
ing) are proposed, three of which are corresponding to ensemble frameworks
(namely, bagging, boosting, and stacking), and the other is a combination of
boosting and stacking. The experimental evaluation on three imbalanced text
classification datasets (namely, unfair statement classification in terms of ser-
vice, hate speech detection in a forum, and hate speech tweet detection) shows
that the proposed approaches lift classification performance from BERT-based
approaches, by improving the representations of texts through metric learning.
MLBoostacking achieves the best among the approaches in MLEnsemble, and
it indicates that stacking transformed representations of texts is an effective
approach for imbalanced text classification.
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Abstract. Named Entity Recognition (NER) is an essential task in nat-
ural language processing, especially in the domain of scientific texts. This
paper presents a study of NER for scientific texts in high-temperature
steel, a type of alloy used in various applications where high tempera-
tures prevail. We propose a NER system using Bi-LSTM with a domain-
specific embedding approach and evaluate its performance on a test
dataset. The study results show that the proposed NER system achieves
an F1 score of 0.99, indicating that it can accurately identify and classify
named entities in scientific texts about high-temperature steel with high
precision and recall. The proposed approach was more effective than the
classical machine learning-based approach. Our results suggest that the
domain-specific embedded Bi-LSTM technique can be an effective app-
roach for NER in scientific texts, especially in specialized domains such
as high-temperature steel.

Keywords: Material Named Entity Recognition · High-temperature
steel · Bi-LSTM · Deep learning in industry · Material Natural
Language Processing

1 Introduction

Named entity recognition (NER) is a critical task in natural language process-
ing, with applications ranging from information extraction and text summariza-
tion to machine translation and question answering. In the scientific text, NER
is particularly important for extracting and organizing information about spe-
cific concepts, techniques, and tools, often mentioned using technical terms and
abbreviations.

High-temperature steel [9] is a type of alloy steel used in various applications
where high temperatures are encountered, such as power generation, aerospace,
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C. Strauss et al. (Eds.): DEXA 2023, LNCS 14147, pp. 203–208, 2023.
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and automotive engineering. Accurate identification and classification of named
entities in the scientific text on high-temperature steel are important for tasks
such as information extraction and text summarization and for enabling the
automated analysis of scientific literature in this domain.

However, NER in scientific texts can be challenging due to the named entities’
complexity and the lack of annotated data for training and evaluating NER
systems [14]. In this paper, we present a study of NER for scientific texts in the
domain of high-temperature steel, focusing on the key challenges and approaches
to this task, as well as the recent advances and areas for future research. We
also propose a NER system that utilizes Bi-LSTM [4] with a domain-specific
embedding approach and evaluates its performance on a domain expert-curated
test dataset [10].

To conduct the study, we have reviewed the existing literature on NER for sci-
entific texts in the domain of high-temperature steel, using a variety of databases
such as the ACM Digital Library, IEEE Xplore, and PubMed. We have analyzed
the methods used for identifying and classifying named entities, the performance
of different NER systems, and the challenges and limitations of these systems.
Our study has identified several key challenges in NER for scientific texts in
high-temperature steel. These include the complexity of the named entities, the
lack of annotated data, the ability to handle synonyms and variations of named
entities, and named entities mentioned in different ways in the text. To address
these challenges, we propose the NER system, which utilizes a domain-specific
embedding with the Bi-LSTM technique.

We evaluate the performance of the proposed NER system on a test dataset
and compare it to several classic machine learning-only approaches [7]. Pre-
trained models fine-tuned with the test dataset, namely BERT [3] and sciB-
ERT [1].

2 Related Works

Kim et al. investigate the use of neural networks in predicting synthesis con-
ditions for inorganic materials [8]. The Conditional Variational Autoencoder
(CVAE) model identifies influential parameters and suggests changes for optimal
results. It learns from literature data and generalizes to new materials, enabling
diverse applications. The model achieves accuracy of 59%, 67%, and 91% on
training datasets with 100, 1000, and 10,000 precursors, respectively. Increas-
ing latent dimensions to 64 improves accuracy to 98%, but affects conditioning
similarly to the synthesis action CVAE.

Cruse et al. present a dataset extracted from the scientific literature on gold
nanoparticle synthesis [2]. The text-mining algorithms accurately capture infor-
mation on synthesis methodologies, nanoparticle morphologies, and sizes. The
dataset enables the study of synthesis-process associations and facilitates the
design of new materials.

Wang et al. propose an automated NLP pipeline for superalloy data, extract-
ing chemical composition and property data from 14425 journal articles [16].
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Their synthesis and characterization of three alloys confirm the pipeline’s accu-
racy. The recovered database through text mining provides a valuable superalloy
production and global analysis resource.

Gupta et al. compares MatSciBERT to SciBERT, showing MatSciBERT’s
superior performance in recognizing named entities, relation classification, and
abstract classification [5]. MatSciBERT achieves an 82% Macro-F1 score on the
SOFC-Slot dataset using five cross-validation splits.

3 Methodology

Several steps are performed to create the proposed deep neural network model.
First, pertinent scientific publications are collected in PDF format and converted
to plain text with appropriate sentence boundaries [11]. The dataset is then anno-
tated and validated by domain experts. The dataset is produced in IOB format.
After preparing the dataset, the model TP-NER is created, trained, tested, and
fine-tuned to ensure it reliably recognizes named entities in unseen text. Finally,
the proposed approach extracts named entities from scientific articles.

3.1 Data Collection and Processing

Through the electronic resource of Universiti Malaysia Pahang’s library, scientific
papers are downloaded [15]. Using the search term “high temperature steel AND
P91 P92”, the top 500 most-cited scholarly articles are collected and analyzed
for use in this investigation.

3.2 Dataset Preparation for TP-NER Model Training

Experts in the domain have used 50 relevant papers to compile the dataset. 1551
sentences from these articles are annotated with the labels B-target, I-target, B-
precursor, I-precursor, and O. The output of the annotation process is saved in
IOB format. The annotated dataset contains 426 tokens with the target class,
which combines B-target and I-target labels, and 486 tokens with the precursor
class, which combines B-precursor and I-precursor labels. The inter-annotator
agreement (IAA) score for this dataset is 94% of Cohen’s Kappa, indicating a
high level of agreement between the annotators as they assigned labels to the
texts. The dataset can be accessed via Mendeley data [10].

3.3 TP-NER: Deep Neural Network Model Development

There are 5 layers in the proposed model, with 3 of them being concealed.
The first layer is an input layer, the second is a domain-specific integer-coded
word embedding layer, the third is a dropout layer, the fourth is a Bi-LSTM
layer with TanH activation and 200 neurons, and the fifth and final layer is a
time-distributed dense layer with softmax activation. Algorithm 1 illustrates the
architecture and layer-by-layer setup.
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Algorithm 1 Architecture of the Proposed TP-NER DNN model
1: Input: Sequence with token and labels: SL
2: num words = unique words in dataset, num tags = unique labels in dataset
3: set maxLen = 60
4: For {S in sent list}{ X = pad sequences words }
5: For {S in sent list}{ y = pad sequences labels, y = hot encode y }
6: Split data into training and testing set
7: input word = (maxLen)
8: Embedding(input dim = num words, output dim = maxLen, input length =

maxLen)
9: SpatialDropout1D(0.2)

10: Bidirectional(LSTM(units = 200,return sequences = True, recurrent dropout =
0.2))

11: out=TimeDistributed(Dense(activation = ‘softmax’))
12: matrec = Model(input word,out)
13: matrec.compile(optimizer = ‘adam’, loss = ‘categorical crossentropy’, metrics =

[accuracy, precision mt, recall mt, f1 mt])
14: matrec.fit(train-test data, batch size = 16, verbose = 1, epochs = 50,
15: validation split = 0.2, callbacks=[tensorboard cbk, es])
16: model.save(‘tpner.h5’)
17: Return medner.h5

3.4 Evaluation Metrics

The proposed TP-NER model is evaluated utilizing Precision(Pr), Recall(Rcl),
and F1 metrics. If each token is identified correctly during entity prediction, the
entity is marked as true. True Positives (TPs) are calculated when the entities
are accurately predicted. However, False Positives (FPs) are indicated when the
predicted beginning token does not match the marked token of the entity. False
Negatives (FNg) are recorded whenever the system wrongly forecasts the initial
token of expected entities. The equations in Eq. (1) calculate the evaluation
metrics.

Pr =
TPs

TPs + FPs
, Rcl =

TPs

TPs + FNg
, F1 =

2 ∗ Pr ∗ Rcl

Pr + Rcl
(1)

4 Result and Discussion

This study examines the efficacy of machine learning methods for recognising tar-
get and precursor-named entities for high-temperature steel from scientific pub-
lications. On a dataset of published scientific publications, the study compares
the performance of numerous algorithms, including BERT [3], sci-BERT [1],
Decision Tree [13], Random Forest [6], and Gaussian Naive Bayes [12]. Table 1
presents the outcomes of the experiments.

The proposed TP-NER model based on Bi-LSTM achieves the highest F1
score of 0̃.99, followed by Decision Tree with an F1 score of 0.92 and Ran-
dom Forest with an F1 score of 0.91. In addition, the performance of the
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Table 1. Precision, recall and F1 scores for different models

Model Name Precision Recall F1

Proposed TP-NER 0.9972 0.9964 0.9968

BERT 0.81 0.865 0.8365

sci-BERT 0.88 0.81 0.85

Decision Tree .89 .95 .923

Random Forest .91 0.92 .91

Gaussian Naive Bayes .85 .88 .86

approaches improves when the training dataset is domain-specific. Still, larger
BERT and sci-BERT models perform less adequately despite being fine-tuned
using the same dataset. This observation presents an opportunity to explore
larger language models with a growing volume of domain-specific data to deter-
mine whether their performance may be enhanced. In contrast, the experimen-
tal results demonstrate that a domain-specific embedded neural network model
without pre-trained embedding and language models outperforms finely tuned
large pre-trained models for target and precursor-named entity recognition in
high-temperature steel-related scientific papers.

The experimental results show that the proposed model for target and precur-
sor named entity recognition from scientific text is the most successful algorithm
among those compared. However, an additional study is required to evaluate the
effectiveness of the suggested model on various forms of texts, such as patent
records and technical reports.

5 Conclusion and Future Work

This study demonstrates the effectiveness of the proposed deep learning-based
method for recognising target and precursor named entities. The experimental
results show that the proposed method outperforms conventional machine learn-
ing techniques and pre-trained models and achieves high precision, recall, and F1
score of 0.9972, 0.9964, and 0.9968, respectively, in recognizing different types of
named entities related to high-temperature steel, such as targets and precursors.

To further validate the proposed deep learning model, it is planned to extend
the study to other material domains and languages in the future. In addition,
the proposed model can combine the named entity identification system with
different natural language processing approaches to improve the system’s overall
performance.

Acknowledgment. This research was supported by the Post Graduate Research
Scheme of Universiti Malaysia Pahang entitled: An automated knowledge-based frame-
work for EDLC using deep learning approach, PGRS220337.



208 M. S. U. Miah et al.

References

1. Beltagy, I., Lo, K., Cohan, A.: SciBERT: a pretrained language model for scientific
text. arXiv preprint arXiv:1903.10676 (2019)

2. Cruse, K., et al.: Text-mined dataset of gold nanoparticle synthesis procedures,
morphologies, and size entities. Sci. Data 9(1), 234 (2022)

3. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep
bidirectional transformers for language understanding. In: Proceedings of the
2019 Conference of the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies, vol. 1 (Long and Short
Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis,
Minnesota (2019). https://doi.org/10.18653/v1/N19-1423. https://aclanthology.
org/N19-1423

4. Graves, A., Schmidhuber, J.: Framewise phoneme classification with bidirectional
LSTM and other neural network architectures. Neural Netw. 18(5–6), 602–610
(2005)

5. Gupta, T., Zaki, M., Krishnan, N.A.: MatSciBERT: a materials domain language
model for text mining and information extraction. NPJ Comput. Mater. 8(1), 102
(2022)

6. Ho, T.K.: Random decision forests. In: Proceedings of 3rd International Confer-
ence on Document Analysis and Recognition. vol. 1, pp. 278–282 (1995)

7. Islam, S.S., Haque, M.S., Miah, M.S.U., Sarwar, T.B., Nugraha, R.: Application
of machine learning algorithms to predict the thyroid disease risk: an experimental
comparative study. PeerJ Comput. Sci. 8, e898 (2022)

8. Kim, E., et al.: Inorganic materials synthesis planning with literature-trained neu-
ral networks. J. Chem. Inf. Model. 60(3), 1194–1201 (2020)

9. Meetham, G.W.: High-temperature materials - a general review. J. Mater. Sci.
26(4), 853–860 (1991). https://doi.org/10.1007/BF00576759

10. Miah, M.S.U., Sulaiman, J., Ferdous, I.U., Sarwar, T.B.: TP-NER: a named entity
recognition dataset of target and precursor named entities for high-temperature
steel (2022). https://doi.org/10.17632/5ZNG6KHY9H.1. https://data.mendeley.
com/datasets/5zng6khy9h/1

11. Miah, M.S.U., et al.: Sentence boundary extraction from scientific literature of
electric double layer capacitor domain: tools and techniques. Appl. Sci. 12(3),
1352 (2022)

12. Rish, I., et al.: An empirical study of the Naive Bayes classifier. In: IJCAI 2001
Workshop on Empirical Methods in Artificial Intelligence, vol. 3, pp. 41–46 (2001)

13. Rokach, L.: Decision forest: twenty years of research. Inf. Fusion 27, 111–125
(2016)

14. Sharma, A., Amrita, Chakraborty, S., Kumar, S.: Named entity recognition in
natural language processing: a systematic review. In: Gupta, D., Khanna, A.,
Kansal, V., Fortino, G., Hassanien, A.E. (eds.) Proceedings of Second Doctoral
Symposium on Computational Intelligence. Advances in Intelligent Systems and
Computing, vol. 1374, pp. 817–828. Springer, Singapore (2022). https://doi.org/
10.1007/978-981-16-3346-1 66

15. UMP Library: e-Resource UMP Lib (2022). https://login.ezproxy.ump.edu.my/
login

16. Wang, W., et al.: Automated pipeline for superalloy data by text mining. NPJ
Comput. Mater. 8(1), 9 (2022)

http://arxiv.org/abs/1903.10676
https://doi.org/10.18653/v1/N19-1423
https://aclanthology.org/N19-1423
https://aclanthology.org/N19-1423
https://doi.org/10.1007/BF00576759
https://doi.org/10.17632/5ZNG6KHY9H.1
https://data.mendeley.com/datasets/5zng6khy9h/1
https://data.mendeley.com/datasets/5zng6khy9h/1
https://doi.org/10.1007/978-981-16-3346-1_66
https://doi.org/10.1007/978-981-16-3346-1_66
https://login.ezproxy.ump.edu.my/login
https://login.ezproxy.ump.edu.my/login


Enabling PII Discovery in Textual Data
via Outlier Detection

Md. Rakibul Islam1(B), Anne V. D. M. Kayem2, and Christoph Meinel2

1 Department of Computational Science, University of Potsdam, Potsdam, Germany
md.rakibul.islam@uni-potsdam.de

2 Hasso-Plattner-Institute for Digital Engineering, University of Potsdam,
Potsdam, Germany

Anne.Kayem@hpi.de, Christoph.Meinel@hpi.de

Abstract. Discovering Personal Identifying Information (PII) in tex-
tual data is an important pre-processing step to enabling privacy pre-
serving data analytics. One approach to PII discovery in textual data
is to characterise the PII as abnormal or unusual observations that can
potentially result in privacy violations. However, discovering PII in tex-
tual data is challenging because the data is unstructured, and comprises
sparse representations of similar text elements. This limits the availabil-
ity of labeled data for training and the accuracy of PII discovery. In
this paper, we present an approach to discovering PII in textual data
by characterising the PII as outliers. The PII discovery is done without
labelled data, and the PII are identified using named entities. Based on
the recognised named entities, we then employ five (5) unsupervised out-
lier detection models (LOF, DBSCAN, iForest, OCSVM, and SUOD).
Our performance comparison results indicate that iForest offers the best
prediction accuracy with an ROC AUC value of 0.89. We employ a mask-
ing mechanism, to replace discovered PII with semantically similar val-
ues. Our results indicate a median semantic similarity score of 0.461
between original and transformed texts which results in low information
loss.

Keywords: Outlier Detection · Named Entity Recognition · Data
Masking · Personal Identifying Information (PII)

1 Introduction

Growing instances of information and data sharing abound on the Internet, with
an increasing representation in the form of free text on social media, forums,
blogs, and wikis. According to Gandomi and Haider [9], textual data makes up
to 95% of all unstructured data online. Sharing textual data can inadvertently
lead to sensitive information disclosure, without either the subjects concerned
or the data owners being aware of it.

Discovering personal identifying information (PII) in unstructured textual
data is challenging because the data does not lend itself well to labelling. This is
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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mainly because unstructured textual data is comprised of sparse representations
of similar text elements, that do not necessarily obey grammatical structures.
This as such limits the availability of labeled data for training and the accuracy of
PII discovery. PII discovery is also typically followed by masking and/or deletion
which results in high information loss.

In this paper, we present an approach to discovering and masking PII in
textual data by characterising PII as outliers. Our results show that iForest
predicts outliers with ROC AUC value of 0.89, confirming that iForest performs
well for large datasets. Detected outliers are masked to anonymise but preserve
semantic similarity. Our similarity scores comparing the original and anonymised
text show a median score of 0.461.

The rest of the paper is structured as follows, Sect. 2 presents related work
and Sect. 3 presents our outlier detection and masking approach. Section 4
presents our results and Sect. 5, concludes the paper.

2 Related Work

Outlier detection has been researched primarily with respect to structured
data [1,10,12]. Recent work also shows that approaches such as deep fea-
ture extraction using neural networks [5] and generative neural networks [17]
can also be used to predict outliers. However, the correctness of labeled data
impacts significantly on the performance and accuracy of these models. Unsu-
pervised approaches such as proximity-based, density, and cluster-based methods
[4,10,11] handle low dimensional numerical data well but are prone to overfit-
ting on textual data due to assumptions about data format and distance differ-
ences [15,20]. Angle-based vector similarity is useful in estimating divergence in
textual documents that are represented as feature vectors based on word occur-
rences, and vector cosine similarity but is not scalable to large datasets [21].
While cluster-based approaches handle large datasets well by emphasising clus-
ter tightness but are dependent on threshold values and so are not suited to
textual data [7]. Furthermore, identifying outliers in textual data using distance
and density-based approaches are processing intensive in terms of similarity cal-
culations [1]. Dimension reduction can address this problem, but incurs high
information loss when applied to identifying sensitive data [3]. Alternatively,
outlier identification approaches based on subspaces can address this issue by
integrating pattern analysis of local data with analysis of subspaces [2], but are
processing intensive [1,13]. Other work on PII discovery, focuses either on struc-
tured data [6,18] or semi-structured data [18] but assumes the availability of
labelled data to support training PII discovery models, which is impractical for
unstructured textual data.

We present an approach to solving the problem of PII discovery in unstruc-
tured textual data in the next section.
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3 PII Discovery and Masking

Our PII discovery and masking mechanism operates in three (3) steps, namely:
(1.) Named entity recognition to support feature generation, (2.) Using the
named entities to support PII discovery and (3.) Replacing the identified PII
with semantically similar but different values.

Table 1. Named entity categories based on spaCy NER system

Feature Description

PERSON People, including fictional

EMAIL Any valid email

PHONE Any valid phone number

NORP Nationalities or religious or political groups

FAC Buildings, airports, highways, bridges, etc

ORG Companies, agencies, institutions, etc

GPE Countries, cities, states

LOC Non-GPE locations, mountain ranges, bodies of water

PRODUCT Objects, vehicles, foods, etc

EVENT Named hurricanes, battles, wars, sports events, etc

WORK OF ART Titles of books, songs, etc

LAW Named documents made into laws

LANGUAGE Any named language

DATE Absolute or relative dates or periods

TIME Times smaller than a day

PERCENT Percentage, including “%”

MONEY Monetary values, including unit

QUANTITY Measurements, as of weight or distance

ORDINAL “first”, “second”, etc

CARDINAL Numerals that do not fall under another type

We define an outlier as the occurrence of PII in a text. To detect outliers
(PII), We are only interested in phrases that contain PII such as name, date of
birth, address, etc.. Typically, these sensitive phrases form named entities, thus
requiring the use of Named Entity Recognition (NER) [19]. Most NER systems
are largely dependant on plain features and domain-specific information to learn
reliably from already available supervised training corpora. We address this issue
by identifying named entities (NE) using a pre-trained transition-based parser
model [14]. The model constructs portions of the input sequentially using a stack
data structure. To generate representations of the stack required for prediction,
our NER model employs the Stack-LSTM, which augments the LSTM model

https://spacy.io/models/en#en_core_web_lg-labels
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with a stack pointer [8]. NER is done by detecting a single word or a collection of
words that comprise an entity and classifying them into different categories. So,
given a collection of comments C1, C2, ..., Cn, we want to locate all named entities
and calculate their frequency count by category. Each of the named entity (NE)
categories is considered a feature for detecting outliers. We selected 20 categories
that can represent most of the known named entities. Table 1 describes the NE
categories that we used as features to represent documents. Among them, 18
of these categories were selected based on the NER implementation of spaCy
library. The remaining two (i.e., EMAIL and PHONE) were manually annotated.
Thus the feature extraction process of finding PII in unstructured data reduces
to locating named entities for each document and creating a feature matrix with
the frequency count by each named entity category. This process gives us a
concise representation of a textual document compared to the traditional bag of
words model, which requires a large representational space.

Five unsupervised outlier detection models (LOF, DBSCAN, iForest,
OCSVM, SUOD) were then employed for outlier detection. The PIIs (out-
liers) were then transformed by substituting named entities with pseudo-values.
Pseudo-values are created as comparable replacement types for the named enti-
ties based on the types of named entities in the text. For instance, when an
EMAIL, PHONE, or DATE is discovered as a named entity, the masking algo-
rithm generates entities of a similar kind. We maintain a hash-table lookup
approach to produce consistent masking values that translate to the same mask-
ing value each time a particular type of named item is discovered. In terms of
content replacement, we used pre-defined pseudo-values to replace PII realis-
tically without mapping to a real person. Semantic similarity, based on com-
paring word embeddings, is used to evaluate the distance between the original
and anonymised textual data elements rather than their lexicographical similar-
ity [16]. We trained our Word2Vec embeddings on the Common Bag of Words
(CBOW) pre-trained model for performance efficiency and accuracy for repre-
sentations of more frequently occurring words. The resulting word embeddings
are used to calculate document similarity by measuring the cosine angle.

4 Experimental Evaluation and Results

Code for our implementation can be found at1. We used AirBnB review data
for Berlin, Germany, compiled on 17 December 2021 containing 410, 291 reviews
including spam2. We considered comments written in English only, for a total of
253, 908 reviews.

Using the named entities in Table 1, we pre-trained an NER system to iden-
tify named entities and calculated their frequency count by category, giving a
253, 908 × 20 initial feature matrix. We applied dimension reduction using Prin-
cipal Component Analysis (PCA) and Singular Value Decomposition (SVD)to
reduce the sparsity of the feature vectors.
1 Github Code.
2 AirBnB Dataset.

https://github.com/mdrkb/text-outlier-detection
http://insideairbnb.com/get-the-data.html
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Since we do not have any ground truth about what an outlier (PII) looks
like in our context, we used domain knowledge and data analysis, to make two
assumptions for labeling comments as an outlier (PII). (1) If EMAIL or PHONE is
present as a named entity, we consider the comment to be an outlier (PII), and
(2) likewise, for the presence of PERSON or ORG with other named entities.

vi > 0; i ∈ {EMAIL,PHONE}

vi > 0 and vj > 0; i ∈ {PERSON,ORG}; j /∈ {PERSON,ORG}
Here vi is an element of the feature vector and i represents a category of named
entities. We take the same sample of 50, 782 reviews that are used in the model
implementation part. After labeling, we get 42% outlier reviews and 58% not
outlier reviews.

Table 2. Execution time comparison for base models

Model n jobs = 1 n jobs =−1

LOF 3.51 s ± 274ms 2.32 s ± 92.9ms

DBSCAN 8.54 s ± 799 ms 3.74 s ± 346 ms

iForest 5.23 s ± 485 ms 4.2 s ± 109 ms

OCSVM 7 min 23 s ± 8.99 s 7 min 2 s ± 24.8 s

SUOD 5 min 32 s ± 1 min 19 s 4 min 46 s ± 16.6 s

Table 2 shows the execution time of the five models. As the density calculation
depends on the dimension of the dataset, dimension reduction helps run LOF
and DBSCAN faster, but both do not scale well for PII discovery in unstructured
textual data. iForest is slower, but scales well with growing data sizes and, due
to the isolation property, is faster than density-based approaches. Also, iForest
has linear time complexity and requires low memory, while SVM is based on a
nonlinear kernel function which can have a complexity of up to O(nfeatures ×
n3
samples). Table 3 illustrates the outlier score threshold, precision, recall, F1-

score, ROC AUC, and PR AUC score for five models. For model evaluation, recall
is the most important metric as we interested in reducing the false negative value.
The table shows that based on the recall and F1-score value, SUOD, iForest, and
OCSVM perform well with recall values of 0.70, 0.69, and 0.68, respectively. On
the other hand, LOF and DBSCAN perform worst, with 0.33 and 0.18 recall
values, respectively. Figure 1 shows the TPR (True Positive Rate)/recall versus
the FPR(False Positive Rate) at various outlier score thresholds. In this case,
iForest performs best with a ROC AUC of 0.86, followed by SUOD and OCSVM.
LOF and DBScan performed worst, which is aligned with our previous result
based on recall and F1-score (Table 3). Figure 2 and Table 3 show results of the
PR curve, indicating that iForest performs best with a PR AUC of 0.78, followed
by SUOD, OCSVM, LOF, and DBSCAN.
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Table 3. Evaluation matrices for the models

Model Threshold Precision Recall F1-score ROC AUC PR AUC

LOF 1.00 0.84 0.33 0.47 0.61 0.55

DBSCAN – 0.90 0.18 0.30 0.58 0.51

iForest 0.00 0.73 0.69 0.71 0.86 0.78

OCSVM 500.77 0.74 0.68 0.71 0.79 0.73

SUOD −0.16 0.75 0.70 0.72 0.84 0.77

Fig. 1. ROC curve

Fig. 2. Precision-Recall curve
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During the data masking step, we only substitute the named entities from
the outlier comments and use these named entities to generate document embed-
dings. This avoids the remaining terms from affecting the embeddings that are
unchanged in both original and transformed comments. The results show that
50% of the anonymised comments have a similarity score between 0.357 to 0.554
with a median score of 0.461 while only 7% of the transformed comments have
a similarity score less than or equal to 0. As the majority of the similarity score
has a value greater than 0, we can conclude that our proposed data masking
approach preserves most of the semantic properties of the original comments.
LOF performs best after tuning with a recall value of 0.74. The Receiver Oper-
ating Characteristic (ROC) curves of the tuned iforest model performs best with
a ROC AUC of 0.89, followed by SUOD, LOF, and OCSVM. Furthermore, ifor-
est performs best with Precision-Recall (PR) AUC of 0.81, followed by SUOD,
OCSVM, LOF, and DBSCAN.

5 Conclusion

We presented an approach to discovering personal identifying information (PII)
in unstructured textual data, by characterising PIIs as outliers. We show that
by using named entities it is possible to detect outliers (PIIs) using traditional
unsupervised outlier detection models. Our experiments show that iForest pre-
dicts outliers with a ROC AUC score of 0.86 and a recall value of 0.69. Detected
outliers are masked to anonymise but preserve semantic similarity. Our similar-
ity scores comparing the original and anonymised text show a median score of
0.461.
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Abstract. Graph data with uncertain connections between entities is
commonly represented using uncertain graphs. This paper tackles the
challenge of graph embedding within such uncertain attribute graphs.
Current graph embedding techniques are typically oriented towards
deterministic graphs, or uncertain graphs that lack attribute data. Fur-
thermore, the majority of studies on uncertain graph learning simply
adapt conventional algorithms for deterministic graphs to handle uncer-
tainty, leading to compromised computational efficiency. To address these
issues, we introduce an optimized embedding framework UAGE for
uncertain attribute graphs. In UAGE, nodes are represented within a
Gaussian distribution space to learn node attributes. We also propose a
Probability Similarity Value (PSV) to manage relationship uncertainty
and ensure that nodes with higher-order similar structures are located
more closely in the latent space. Real-world dataset experiments con-
firm that UAGE surpasses contemporary methods in performance for
downstream tasks.

Keywords: Uncertain graph · Gaussian embedding · encoder-decoder

1 Introduction

Graphs have been widely used to model various real-world networks, such as
social networks [15] and traffic networks [21]. However, uncertainties caused
by data collection defects, fuzzy data sources, and inaccurate data [18], can
pose challenges in effective network analysis. Moreover, the links in real-world
networks may be derived from probabilistic techniques, resulting in uncertain
graphs.

An uncertain graph [1] is a type of graph where nodes are connected with
probability values. The interpretation of these probabilities may vary from the
context. In social networks, the relationships between users, such as influence,
are not directly visible but instead inferred from user activities, such as paper
citations. In PPI networks, an edge between two proteins corresponds to an
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interaction that may be observed in a noisy experiment with uncertainty. Thus,
the probability value of an edge represents the probability of such an interaction
existing. Graph embedding [30] is a technique used to learn effective represen-
tations of nodes in a lower-dimensional space while preserving structural and
semantic information. It plays a vital role in network analysis [29] and enables
many downstream machine-learning tasks.

However, most existing graph embedding methods, such as DeepWalk [22]
and SDNE [28], don’t consider uncertainty during the modeling process and
are highly susceptible to noise from node attributes and graph structure [8].
Recently, some studies [2,32] have leveraged the Gaussian embedding technique
to obtain better representations with uncertainty quantification, but they have
not considered the attribute noise of the graph and are designed for determinis-
tic graphs and are unable to support uncertain graphs. For studies on uncertain
graph learning [1], most of them simply modify existing algorithms for determin-
istic graphs to handle the uncertain information of graph edges, and there are
few studies on embedding uncertain graphs, such as URGE [11] and DGCU [5].
However, both of them only learn from the topological structure of the graph and
are designed for uncertain graphs without attributes. Many real-world networks
have both uncertainties on relationships and attributes on objects. Learning node
attribute information at the same time can lead to more effective embedding [25].

In this paper, we propose an efficient embedding framework UAGE for uncer-
tain attribute graphs. To the best of our knowledge, UAGE is the first method
that uses deep learning to embed uncertain attribute graphs. Specifically, 1) PSV
is proposed and utilized in our model to handle the relationship uncertainty and
preserve the higher-order structural information in the embedding space; 2) the
Gaussian embedding method is adopted to capture the structural uncertainty
and node attributes, and an encoder-decoder structure is designed to reconstruct
node attributes; 3) our model is evaluated on several real-world networks and
experiment results show that UAGE outperforms state-of-the-art methods.

2 Related Works

In this section, we provide a brief overview of recent works on graph embedding
learning and uncertain graph learning.

Graph Embedding Learning. Graph embedding learning aims to project
nodes into a lower-dimensional latent space while preserving the original graph
structure properties. There is some deterministic vector-based graph embed-
ding methods. Several popular methods leverage random walks, such as Deep-
Walk [22] and node2vec [6], to learn embeddings. Other approaches, such as
LINE [26] and SDNE [28], learn from first/second-order proximity, respectively.

Inspired by word2Gauss [27], which embeds words into an infinite-
dimensional Gaussian distributional functional space, several studies have pro-
posed the learning of the uncertainty of embeddings using Gaussian distribution-
based graph embedding methods. VGAE [13] embeds nodes into a standard
normal distribution space and learns embeddings by reconstructing the graph
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structure. G2G [2] attempts to preserve the graph structural proximity by con-
trolling the distance between probability distribution embeddings. DVNE [32]
learns Gaussian embeddings using the deep variational mode. The Gaussian
embedding technique enables better node representations with quantification of
uncertainty. However, current approaches can only capture the structural noise
without considering the attributes noise on nodes. For a more comprehensive
introduction to graph embedding learning, we refer readers to [30].

Uncertain Graph Learning. Several tasks, such as clustering [12], classifica-
tion [4], and kNN [23], have been studied for uncertain graphs. However, most of
these studies just modify deterministic graph models to handle the uncertainty
of graph edges, leading to computational inefficiencies. Taking clustering, for
example, most methods are based on the possible worlds model. For a graph
with m edges, the number of possible worlds is 2m and grows exponentially.
Consequently, many approximate algorithms have been developed to efficiently
cluster uncertain graphs. pKwikCluster [14] is a random 5-approximation algo-
rithm, which extends the edit-distance-based definition of graph clustering to
uncertain graphs. EA-CPG [7] uses a multi-population evolutionary algorithm
(EA) for clustering, guided by pKwikCluster. USCAN [24] adopts a method
based on structural clustering, establishing a structural clustering model based
on reliable structural similarity obtained from the possible world of the uncer-
tain graph. However, the computational efficiency is low, and ProbSCAN [17]
attempts to improve the time complexity of this part. URGE [11] is the first to
adopt the embedding method for uncertain graphs, using the matrix factoriza-
tion method to calculate the embedding vector and preserve both structural and
uncertainty information of the relationship in the embedding space. DGCU [5]
is the first to use the deep learning method to learn uncertain graphs for node
clustering tasks. However, both methods only learn the structural information of
graphs and ignore the attribute information of nodes. For a more comprehensive
introduction to uncertain graphs learning, we refer readers to [1].

3 The Proposed Methods

In this section, we formally present the problem definition and introduce the
framework of our proposed model.

3.1 Problem Definition

Given a uncertain attribute graph G = {V,E,X, P}, where V = {vi|i = 1, ..., N},
E = {(vi, vj)|vi, vj ∈ V } are the node and edge set of graph G. X = [xi] ∈ R

N×F

is a attribute matrix and xi ∈ R
F is a F -dimension attribute vector of node vi.

The transition probability matrix P = [pij ] ∈ [0, 1]N×N , represents the connect
probability between N nodes, where pij > 0 if and only if there is an edges
(vi, vj) ∈ E. In this paper, we propose an embedding framework that can handle
uncertain graphs and preserve both node attributes and graph structure.
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Fig. 1. The framework of UAGE.

3.2 Embedding Framework for Uncertain Attribute Graph

As Fig. 1 shown, our embedding framework UAGE consists of three main compo-
nents: deep Gaussian encoding, graph structure preservation, and node attribute
decoding. We describe each of these components in detail below.

Deep Gaussian Encoding. We use a deep feed-forward network to learn the
attributes and uncertainty of nodes, which are used as inputs to two encoders:
fμ and fσ, which aggregate and transform information while propagating the
uncertainty in node attributes. They can be implemented using either a multi-
layer Graph Neural Network or an MLP. In this paper, We utilize two L-layer
MLPs to encode the attributes and uncertainty of nodes and learn the vector
values of nodes in the Gaussian distribution space, where μ ∈ R

N×emb and
Σ ∈ R

N×emb are the embedded mean and covariance vectors calculated by:

μ = fμ

(
ReLU(XW (0)

μ + b(0)μ )|P
)

, Σ = fσ

(
ELU(XW (0)

σ + b(0)σ ) + 1|P
)

(1)

where X are attribute vectors, W
(0)
μ ,W

(0)
σ ∈ R

F×F (0)
, b

(0)
μ , b

(0)
σ ∈ R

F (0)
are

parameters shared across instances. Functions ReLU and ELU are defined as:

ReLU(x) = max(0, x), ELU(x) =
{

ex − 1, x < 0
x , x ≥ 0

(2)

Graph Structure Preservation. Inspired by SimRank∗ [31], we propose the
Probability Similarity Value (PSV) to estimate the probability of similarity
between node pairs, maintain the structural information of the graph, and ensure
that nodes with similar structures are mapped closer together in the latent space:

Psim = (1 − c)
t∑

i=0

ci

2i

i∑
l=0

(
i
l

)
(P )l(PT )

i−l
(3)
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where P is the transition probability matrix, t is the number of iterations, rep-
resenting the highest order of neighbors, and c ∈ (0, 1) is the damping factor.

To ensure that nodes with a higher probability of similarity to node vi are
mapped closer to vi in the embedding space, we try to satisfy the following set
of constraints, where the symmetric 2nd Wasserstein distance is used:

∀vi, vj , vk ∈ V : Psim[i, j] > Psim[i, k] ⇔ dist(vi, vj) > dist(vi, vk) (4)

To preserve high-order similarity and satisfy the constraints of Eq. 4, We
treat the probability similarity between nodes as a distribution and minimize the
distance between the empirical and conditional probability distribution Eq. 5:

p̂(i, j) =
Psim[i, j]∑

k∈V Psim[i, k]
, p(i, j) =

exp(−dist(vi, vj))∑
k∈V exp(−dist(vi, vk)

(5)

Ls = −
∑

(vi,vj)∈E

Psim[i, j] logp(i, j) (6)

Node Attribute Decoding. The values of node vectors z can be sampled from
the Gaussian distribution N(μ,Σ), which are then used as inputs to an MLP
decoder for reconstructing the node attributes Z:

Z = MLP (z) ∈ R
N×F , z ∼ N(μ,Σ) (7)

The entire model cannot perform Back Propagation (BP) due to the non-
differentiable sampling operation described in Eq. 7. To overcome this limitation,
we utilize the reparametrization technique. Specifically, we first sample ε from a
standard Gaussian distribution N(0, I), and then transform it through scaling
and shifting, which makes BP possible.

To mitigate the impact of attribute uncertainty on the model’s error, nodes
with greater uncertainty are given lower reconstruction error weights:

La =
N−1∑
i=0

e−λσmean[i] ‖Xi − Zi‖2F (8)

where λ > 0 is a hyper-parameter and σmean[i] = Mean(Σi) ∈ R and e−λσmean[i]

is the reconstruction error weight of the ith node.

Model Optimization. To preserve node attributes and graph structure, we
create a loss function that combines Eq. 6 and Eq. 8, which is represented as:

L = Ls + αLa (9)

where α > 0 is a hyper-parameter that balances structure and attribute losses.
Optimizing Ls can be computationally expensive, as evaluating the entire node
set is required to calculate the conditional probability in Eq. 5. To address this
issue, we adopt the negative sampling method:

Ls =
∑

Psim[i,j]>0

(
logσ(−dist(vi, vj) +

K∑
n=1

Evn∼Pn(v)logσ(dist(vi, vn))

)
(10)
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Table 1. The statistics of social networks and PPI networks.

Datasets #Nodes #Edges #Dimension #Labels

Cora ml 2,995 8,416 2,879 7

Citeseer 4,230 5,358 602 6

PUBMED 19,717 88,648 500 3

– #Nodes #Edges Min. Pro Max. Pro

Collins 1,622 9,074 0.48 0.99

Gavin 1,855 7,669 0.24 1

Krogan-core 2,708 7,123 0.27 0.99

Krogan-extended 3,672 14,317 0.1 0.99

where σ(x) is the Sigmoid function, (vi, vj) represents the observed edge, and
(vi, vn) denotes the negative edge sampled from the noise distribution Pn(v) [19].
K is the number of negative edges for node vi. Similarly, we sample a batch of
nodes to compute the attribute reconstruction loss in each batch to optimize La.

4 Experiments

In this section, we conduct experiments on several real-world graphs for node
classification, clustering, and visualization tasks.

4.1 Datasets and Experiment Setup

Datasets and Baselines. We evaluated our model for node classification,
clustering, and visualization tasks on 3 widely-used social networks, includ-
ing Cora ml, Citeseer and PUBMED. An obfuscating algorithm [3] is used to
obtain uncertain graphs. Additionally, we use 4 classical PPI networks collated
by Nepusz et. al [20] for node clustering tasks, including Collins, Gavin, Krogan-
core and Krogan-extended. Table 1 provides detailed statistical information on
all datasets. We compare the performance of our model UAGE with state-of-
the-art methods, including: Attributes directly uses original node attributes as
node features; LINE 1 respectively preserves the first and second-order proximity
between nodes, and directly concatenates the representations; VGAE 2 embeds
node into a standard normal distribution space by an encoder and reconstructs
the graph structure by a decoder; uBayes+3 is a Bayes-based classification algo-
rithm customized for uncertain graphs; DGCU is a Gaussian embedding-based
clustering method customized for uncertain graphs; G2G4 and GLACE [9]5 learn
the lower-dimensional Gaussian distribution embedding of graphs.
1 https://github.com/tangjianpku/LINE.
2 https://github.com/tkipf/gae.
3 https://helios2.mi.parisdescartes.fr/∼themisp/collectiveclassification/.
4 https://www.cs.cit.tum.de/daml/g2g/.
5 https://github.com/bhagya-hettige/GLACE.

https://github.com/tangjianpku/LINE
https://github.com/tkipf/gae
https://helios2.mi.parisdescartes.fr/~themisp/collectiveclassification/
https://www.cs.cit.tum.de/daml/g2g/
https://github.com/bhagya-hettige/GLACE
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Table 2. The results of classification with 10% of labeled nodes.

Datasets Metric LINE Attributes VGAE uBayes+ GLACE G2G OURS

Cora ml F1 0.6125 0.7222 0.6583 0.7024 0.7494 0.8041 0.8175

ACC 0.6391 0.7296 0.6684 0.7149 0.7685 0.8149 0.8315

Prec 0.6584 0.7852 0.7107 0.7075 0.7522 0.8021 0.8202

Recall 0.5932 0.6855 0.6318 0.6989 0.7549 0.8080 0.8176

AUPRC 0.6839 0.8024 0.7230 0.7518 0.8036 0.8690 0.8910

AUROC 0.8867 0.9412 0.9111 0.9304 0.9454 0.9662 0.9737

Citeseer F1 0.4492 0.7397 0.5832 0.6821 0.7739 0.7911 0.8278

ACC 0.4610 0.7389 0.5868 0.6833 0.7780 0.7943 0.8278

Prec 0.4487 0.7473 0.5842 0.6841 0.7744 0.7943 0.8276

Recall 0.4516 0.7377 0.5870 0.6829 0.7750 0.7948 0.8281

AUPRC 0.4853 0.5895 0.6490 0.7425 0.8432 0.8707 0.8957

AUROC 0.759 0.8426 0.8590 0.8462 0.9372 0.9559 0.9655

PUBMED F1 0.5282 0.8416 0.8204 0.6451 0.8358 0.8065 0.8454

ACC 0.5910 0.8414 0.8293 0.6488 0.8416 0.8171 0.8470

Prec 0.5615 0.8428 0.8236 0.646 0.8367 0.8107 0.8448

Recall 0.5318 0.8405 0.8176 0.6447 0.8353 0.8033 0.8465

AUPRC 0.6006 0.9119 0.8852 0.7187 0.9061 0.8791 0.9132

AUROC 0.7537 0.9520 0.9413 0.8551 0.9503 0.9354 0.9537

Experimental Setup. In all models, the dimension of the embedding vector
emb is set to 128 by default. For UAGE, we set the initially learned intermediate
vector dimension F (0) to 215. We set the iteration number t and the sampling
factor c to 2 and 0.6, respectively. The reconstruction error parameter λ and loss
weight α are set to 0.05 and 0.1. The number of negative edges for each node K
is set to 10, and all model parameters are optimized using the Adam optimizer
with a fixed learning rate of 0.001.

4.2 Performance Comparisons

Node Classification. In this task, we use the learned embeddings (mean vec-
tors μ) as input to an MLP to classify nodes. Table 2 summarizes the average
classification results of ten randomly sampled training runs on 3 datasets with
10% of labeled nodes as the training set. The results indicate that UAGE outper-
forms the baseline methods in all metrics. We also evaluate the performance of
our model on datasets with more labeled nodes. Figure 2 shows the performance
curves of F1 and AUPRC scores for each algorithm as the proportion of labeled
nodes in all datasets increased from 10% to 50%. The results show that UAGE is
more effective than other methods, which is particularly evident for the Citeseer
and PUBMED datasets as the proportion of labeled nodes increases.

Node Clustering. In this task, we use the learned embeddings (mean vectors
μ) for clustering using the k-means algorithm, where the cluster number is set
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Fig. 2. Classification results with different proportions of labeled nodes.

Fig. 3. Clustering results on real-world networks.

Fig. 4. The 2-dimensional visualizations of the latent representations.

to the number of categories in each dataset. As shown in Fig. 3(a), our method
UAGE achieves the highest scores in all metrics and shows the best clustering
performance, which is particularly evident in Citeseer. For PPI networks, we use
a benchmark dataset of 323 authentic complexes from SGD [10] for evaluation
and compare the F1 scores of our model with other algorithms. The results show
that our model outperforms other algorithms, as shown in Fig. 3(b).
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Visualization. In this task, we visualize the learned latent representation of
the Cora ml, Citeseer, and PUBMED datasets by mapping embeddings into 2-
dimensional space using the t-SNE algorithm [16]. Figure 4 shows the t-SNE
visualization results of our UAGE model, where the same color indicates the
same class. The visualization results are visually appealing, with points of the
same color forming segmented clusters and the boundaries of each class being
clearer. This is particularly evident in dataset Citeseer. The results demonstrate
that our model successfully captures the underlying structure of the graph and
preserves the node attributes in the lower-dimensional space.

5 Conclusion

In this study, we proposed an efficient embedding framework UAGE for uncer-
tain attribute graphs, which embeds nodes into Gaussian distribution space to
account for the uncertainty present in the graph, preserving the graph’s struc-
tural and attribute information. We evaluated UAGE on several real-world net-
works, and the results demonstrate the effectiveness of UAGE for downstream
tasks such as node classification, clustering, and visualization. In conclusion,
UAGE provides a promising direction for uncertain attribute graph embedding,
improving downstream task performance by better handling uncertainty.
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Abstract. Time series forecasting (TSF) is crucial in many real-world
applications. This paper studies the long-term forecasting problem of
time series. Recent research has demonstrated that Transformer-based
forecasting models can enhance forecasting accuracy, but their computa-
tional demands present a significant challenge for Long Sequence Time-
series Forecasting (LSTF). To mitigate this, some researchers propose
using a sparse attention network to reduce computational costs, but this
approach can result in low information utilization and hinder long-term
forecasting performance. This limitation impacts the overall effective-
ness of the forecasting model. To address this issue, a new approach
called Double-layer Efficient ProbSparse self-attention (DEPformer) is
proposed in this paper for Long Sequence Time-series Forecasting. It
combines a sparse attention network with an attention network that
extracts global context vectors. This approach improves upon the low
information utilization of sparse attention alone and enhances long-term
forecasting performance. Experiments using standard and real datasets
show that DEPformer outperforms the previous mainstream models.

Keywords: Long sequence time-series forecasting · ProbSparse
self-attention · Efficient self-attention

1 Introduction

TSF has become increasingly prevalent in diverse fields including energy consump-
tion, voltage sensor network detection, and weather prediction. In such practi-
cal scenarios, the ability to accurately forecast long-term future trends (LSTF)
is crucial for enabling effective strategic planning and providing advanced warn-
ing. Traditional TSF methods, including the Autoregressive Integrated Moving
Average (ARIMA) model [1], Support Vector Machine (SVM) [2] and the Holt-
Winters seasonal method [3], offer theoretical guarantees. However, their applica-
tion is primarily limited to univariate forecasting problems, which restricts their
practicality when dealing with complex, real-world time series data. While conven-
tional approaches have centered on parametric models grounded in field-specific
knowledge, such as autoregressive (AR) [4] and exponential smoothing [5,6], con-
temporary machine learning techniques offer a means of acquiring knowledge of
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C. Strauss et al. (Eds.): DEXA 2023, LNCS 14147, pp. 230–244, 2023.
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temporal dynamics through purely data-driven means [7]. As data access and com-
puting capacity have increased in recent times, machine learning has emerged as
an essential component of the upcoming cohort of time series forecasting mod-
els. However, these methods exhibit limitations in effectively handling forecast-
ing problems with long time series. In recent years, the field of TSF has seen a
significant advancement through the development of deep learning techniques.
These methods have demonstrated superior forecasting accuracy when compared
to traditional forecasting technologies. Among the various deep learning models,
the Transformer-based model has emerged as the most prominent. Its effective-
ness can be attributed to the incorporation of a self-attention mechanism, which
allows the model to capture remote dependencies more effectively than previous
approaches.

However, the Transformer’s complexity grows exponentially with the length
of the time series, rendering direct modeling of long time series infeasible. To
address this challenge, Zhou and Peng et al. proposed a novel model called
Informer [8], which is based on the Transformer architecture and designed to
solve LSTF problem. However, due to the sparse point-by-point connection
mode, using the sparse attention network alone may lead to the problem of low
information utilization, which leads to the bottleneck of long-term prediction of
time series and further affects the prediction effect. To solve this problem, this
paper proposes a new model that combines sparse attention network with an
efficient attention network that computes attention by extracting global context
vectors. For simplicity, name this model DEPformer. The main contributions of
this work are as follows:

• The global context vector extraction is added to the ProbSparse attention
network, to calculate attention through the extracted global context vector
to further improve the forecasting accuracy.

• We propose a new model, named DEPformer, which combines the ProbSparse
attention network with an efficient attention network that computes attention
by extracting global context vectors. DEPformer model makes up for the
defect of using single sparse attention network through the combination of
dual attention networks.

• Our proposed model has been extensively experiments on the public standard
data set and the real data set, and the experimental results show that our
model is superior to the previous mainstream models, in which the Double-
layer Efficient ProbSparse self-attention has played an important role. The
experimental results confirm the superiority of our proposed model.

2 Related Work

In this section, a review is presented on conventional TSF techniques as well as
Transformer-based methods for time series analysis.
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2.1 Traditional Time Series Forecasting Models

Because of the great importance of TSF, people have proposed various methods
to solve this problem. Classical time-series models are a reliable and indispens-
able tool in the field of time-series forecasting, offering attractive features such
as interpretability and theoretical guarantees [9,10]. ARIMA [1] solves the fore-
casting problem by transforming the non-stationary process into a stationary
process by difference. In addition, the recurrent neural network (RNN) model is
used to model the time correlation of time series [11–14]. DeepAR [15] models
the probability distribution of future series by combining autoregressive method
and RNN. LSTNet [16] captures the short-term and long-term time models by
introducing the convolutional neural network (CNN) with recurrent-skip con-
nection. The attention-based RNN [17–19] explores the long-term dependence
of forecasting by introducing temporal attention. In addition, there are many
studies based on temporal convolution network (TCN) [20–22] trying to model
temporal causality by using causal convolution.

2.2 Transformer-Based Time Series Models

Inspired by the success of Transformers in CV and NLP, the TSF model based
on Transformer has been actively studied recently. LogTrans [23] introduces
the local context into the Transformer model by querying the causal convolu-
tion in the key projection layer, and proposes the LogSparse focus to reduce
the complexity to O(LlogL). Informer [8] extends Transformer by proposing
ProbSparse attention and distillation operations to achieve O(LlogL) complex-
ity, and alleviates the problem that the complexity of traditional attention in
Transformer increases twice with the length of the sequence. However, using a
sparsely processed attention network alone may result in low information utiliza-
tion, which in turn can become a bottleneck for long-term time series forecasting
and ultimately impact the accuracy of the forecast. In order to solve this prob-
lem, this paper not only integrates a special attention with a global mechanism
into sparse attention, but also integrates a layer of this attention network with
a global mechanism on the updated sparse attention to alleviate the problem of
low information utilization.

3 The Proposed Model: DEPformer

3.1 Problem Definition

Firstly, we introduce the problem of time series prediction, which is defined as
follows: in a sliding window prediction scenario, at time t, the input is represented
by Xt = {xt

1, .., x
t
Lx

|xt
i ∈ Rdx} and the output is a predicted sequence Y t =

{yt
1, .., y

t
Ly

|yt
i ∈ Rdy}. Long-term time series forecasting aims to predict a longer

horizon, that is,the longer Ly, and encourage the prediction variable to not limit
the situation of single variable (dy ≥ 1).
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Fig. 1. Schematic diagram of DEPformer model

3.2 DEPformer Model

The DEPformer model is shown in Fig. 1. The DEPformer model consists of two
key components, encoder and decoder. The encoder converts the input infor-
mation into a dense vector with fixed dimensions, and extracts features from
elements to generate feature maps. On the contrary, the decoder combines infor-
mation and feature mapping to jointly predict the output. The DEPformer model
proposed in this paper is an encoder-decoder architecture for LSTF problems,
and has good information utilization and predictive performance.

Efficient Self-attention. Efficient self-attention is shown in Fig. 2. Efficient
Attention [24] is a mechanism different from the traditional attention network.
This mechanism is equivalent to the click attention mechanism, but it is faster
and more efficient. It is still to map the input into three eigenvectors through
three linear layers, namely Q ∈ RL×dq , K ∈ RL×dk , V ∈ RL×dv . What is
different from the traditional attention mechanism is that Efficient attention
no longer takes the dot product of Q and K� calculated by the normalization
function as the weight of all positions, but uses each feature in these feature maps
as the weight of all positions, and all eigenvalues are aggregated to form a global
context vector by weighted summation. This also reflects a phenomenon that
the vector formed by normalization does not correspond to a specific position,
but represents the global description of input features. The effective attention
formula is as follows:
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E(Q,K, V ) = ρq(Q)(ρk(K)�V ) (1)

where ρq and ρk represent the normalization functions of the two feature vectors
of queries and keys. The main normalization function used in this paper is the
softmax function. The specific functions are as follows:

Softmax : ρq(Y ) = σrow(Y )
ρk(Y ) = σcol(Y )

(2)

where σrow and σcol represent the function mapping of softmax along each row
or column of matrix Y .

Fig. 2. Efficient Self-attention

Global ProbSparse Self-attention. After analyzing the Efficient attention,
we propose Global ProbSparse self-attention, which is an attention mechanism
that integrates the global mechanism of Efficient attention into sparse atten-
tion. This novel sparse attention network not only has a sparse mechanism, but
instead of calculating the weights of all positions according to the normalization
of traditional attention, it uses each feature in the feature map as a weight for
all positions, and aggregates all features into a sparse global context vector by
weighted summation. Global ProbSparse attention is shown in Fig. 3. The Global
ProbSparse self-attention formula is as follows:

A(Q,K, V ) =
Softmax(Q̄) × (Softmax(K�)V )√

d
(3)
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where Q̄ is the filtered sparse matrix, which is the top u Qs with a higher score
calculated by the sparsity measurement formula, and Q ∈ Ru×d, K ∈ RL×d,
V ∈ RL×d. The mapping matrix of global attention score is d×d. Its meaning is
no longer the similarity matrix between input sequences, but the global descrip-
tion of input characteristics. Finally, the global attention map and the filtered
Q are weighted and summed to obtain the final output of Global ProbSparse
attention. The activity of input elements needs to be calculated before calculat-
ing the attention of Global ProbSparse self-attention. The activity of elements
is calculated through sparsity measurement. The sparsity measurement method
of Global ProbSparse self-attention is as follows:

M̄(qi,K) = max
j

{
qik

�
j√
d

}
− 1

LK

LK∑
j=1

qik
�
j√
d

(4)

where LK is 1/q(kj |qi); qi is the i times query measured by sparsity, and qi and
kj are from Q and K, respectively. The Global ProbSparse self-attention selects
the Q with higher score in the sparsity measurement, and uses these screened Q
to calculate the corresponding attention.

Fig. 3. Global ProbSparse Self-attention

Encoder. The experiments in this paper show that Global ProbSparse Self-
attention has a better prediction effect than the original sparse attention net-
work, but it also has the problem of low information utilization. Therefore, in
this paper, a layer of Efficient attention is integrated in all places where Global
ProbSparse self-attention is used in the encoder and decoder to alleviate this
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situation. First, the encoder receives the encoded input matrix, and then cal-
culates through the double-layer attention network. The double-layer attention
network D is defined as follows:

D(Q,K, V ) = A(Q,K, V ) ⊗ Softmax(E(Q,K, V )) (5)

where A is formula (3) and E is formula (1). From the formula, we can see that
the output of the double-layer attention network is to calculate two kinds of
attention respectively, and then calculate the output of Efficient Self-attention
through softmax, and then multiply it with the output of the element at the
corresponding position of Global ProbSparse self-attention to obtain the final
Output. The purpose of this method is to make the information representing
the global feature description extracted from Efficient Self-Attention can be inte-
grated into Global ProbSparse Self-Attention, so as to make up for the problem
of low information utilization caused by only using sparse attention, so as to
improve the prediction effect.

Self-attention Distilling. Self-attention distilling is shown in Fig. 4. After
passing through the double-layer attention network, it will go through the self-
attention distilling layer, which adds convolution, activation and maximum pool-
ing operations between each encoder layer, so as to reduce the feature dimension,
thereby improving the stacking efficiency of encoder. The equation is defined as:

Xt
j+1 = MaxPool(ELU(Conv1d([Xt

j ]AB))) (6)

where Xt
j+1 is the output of the multi-head double-layer Efficient ProbSparse

self-attention layer in this layer; [Xt
j ]AB is the output of multi-head double-layer

ProbSparse self-attention in the previous layer; ELU(.) is used as the activation
function. The ELU function is as follows:

ELU(x) =

{
x, x > 0
a(ex − 1), x ≤ 0

(7)

where a is a positive decimal close to 0.

Fig. 4. Self-attention distilling
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Decoder. The decoder part uses the method of batch generation to directly
output the multi-step prediction results at one time, thus improving the efficiency
of long series prediction. The equation is as follows:

Xt
de = Concat(Xt

token,Xt
0) ∈ R(Ltoken+Ly)×dmodel (8)

where Xt
de is the predicted output of the decoder, Xt

token ∈ RLtoken×dmodel repre-
sentations a known sequence prior to the predicted time, Xt

0 indicates the time-
stamp of prediction results, Ltoken is the length of the sequence of start tokens,
Ly is the length of the sequence to be predicted, and dmodel is the dimension
of the model. Unlike the traditional coder, it needs to input a period of time
series Xt

token in advance, and Xt
0 uses 0 to fill in and mask, so as to predict this

part of the hidden content. For example, if we want to predict the temperature
data of the next 7 days, we will use the known data of the past 7 days as “start
token”, set it as X7d, and enter it as Xde = X7d,X0. It can be understood that
the input part contains a part of known information, which is used as prompt
information to jointly assist the prediction. Finally, the prediction results are
obtained through a full connection layer.

4 Experiments

4.1 Datasets

In our experiment, we used ETT(Electric Transformer Temperature) dataset
and Weather dataset.

ETT (Electricity Transformer Temperature) [8]: ETT is important indicators
for long-term deployment of electricity. It collects two years of data from two
different regions in one province of China. In order to explore the granularity of
the LSTF problem, this article selected datasets ETTm1 for 15-minute-level and
{ETTh1, ETTh2} for 1-hour-level. Each sample has seven features, including oil
temperature and six different types of external power load features.

Weather: This is a dataset containing the local climate data of nearly 1600
regions in the United States from 2010 to 2013. The data is recorded on an
hourly basis, with each data point consisting of the target variable “wet bulb”
and 11 other climate parameters.

4.2 Baselines

This paper has selected 7 baseline methods, including Informer [8], Reformer
[25], LogTrans [23], LSTnet [16], LSTMa [26], Prophet [27], DeepAR [15] and
ARIMA [28].

4.3 Hyper-parameter Tuning

In the experiments in this paper, hyperparameters are optimized by performing
a grid search on the dataset. DEPformer contains a 3−layer stack and a 1−layer
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stack (1/4 input) in the encoder, and a 2−layer decoder. The optimizer is Adam
and learning rate starts from le−4, decaying twice every epoch. For the double-
layers Efficient ProbSparse self-attention mechanism, this paper sets the same
settings for Global ProbSparse self-attention and Efficient self-attention, both set
to d = 32, n = 16. In addition, a position-wise feed-forward network layer (inner-
layer dimension is 2048) and a dropout layer (p = 0.1) likewise. All experiments
are conducted at 5 random train/val shifting selection along time, and the results
are averaged over five runs. The total number of epochs is 6 with proper early
stopping. This paper sets up the comparison methods as suggested, with a batch
size is 32.

Setup: The input of each dataset is zero-mean normalized. Under the LSTF
settings, this paper gradually extends the prediction windows size Ly progres-
sively, i.e., {6 h, 12 h, 24 h, 72 h, 168 h} in ETTm, {1d, 2d, 7d, 14d, 30d, 40d}
in {ETTh, Weather}. In addition, this paper uses the following two evaluation
metrics:

MSE =
1
n

∑n
i=1(y − ŷ)2 (9)

MAE =
1
n

∑n
i=1|y − ŷ| (10)

Use these two indicators on each prediction window (averaging for multivariate
prediction), and roll the whole set with stride = 1. And for all methods, the input
length of recurrent component is chosen from {24, 48, 96, 168, 336, 720} for the
ETTh1, ETTh2 and Weather dataset, and chosen from {24, 48, 96, 192, 288, 672}
for the ETTm1 dataset.

4.4 Results and Analysis

Table 1 and Table 2 summarize the univariate/multivariate evaluation results of
all the methods on 4 datasets. Best results are highlighted in bold.

Univariate Time-Series Forecasting. Table 1 shows the comparison between
the experimental results of the seven baseline models of univariate prediction
and DEPformer model on four datasets. From the table, it can be found that
DEPformer achieves the best performance on all datasets, which also shows the
advantages of the DEPformer model. In the experiment, the dynamic decoding
maintained by the Reformer does not perform well in LSTF, while the effect of
other methods is better than that of it, which may be the reason why the gener-
ative style decoder as non-autoregressive predictors. Informer model is obviously
superior to recurrent neural network LSTMa, which shows that the shorter net-
work path in the self-attention mechanism can obtain better prediction effect
than the model based on RNN. And from the experimental results, it can be
seen that as the prediction length increases, the prediction error of our model
increases steadily and slowly, which shows that DEPformer is successful in the
prediction ability of LSTF.
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Table 1. Univariate long sequence time-series forecasting results on four datasets.

Methods DEPformer Informer LogTrans Reformer LSTMa DeepAR ARIMA Prophet

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1 24 0.091 0.233 0.098 0.247 0.103 0.259 0.222 0.389 0.114 0.272 0.107 0.280 0.108 0.284 0.115 0.275

48 0.155 0.314 0.158 0.319 0.167 0.328 0.284 0.445 0.193 0.358 0.162 0.327 0.175 0.424 0.168 0.330

168 0.162 0.322 0.183 0.346 0.207 0.375 1.522 1.191 0.236 0.392 0.239 0.422 0.396 0.504 1.224 0.763

336 0.207 0.361 0.222 0.387 0.230 0.398 1.860 1.124 0.590 0.698 0.445 0.552 0.468 0.593 1.549 1.820

720 0.248 0.408 0.269 0.435 0.273 0.463 2.112 1.436 0.683 0.768 0.658 0.707 0.659 0.766 2.735 3.253

ETTh2 24 0.087 0.219 0.093 0.240 0.102 0.255 0.263 0.437 0.155 0.307 0.098 0.263 3.554 0.445 0.199 0.381

48 0.139 0.297 0.155 0.314 0.169 0.348 0.458 0.545 0.190 0.348 0.163 0.341 3.190 0.474 0.304 0.462

168 0.221 0.382 0.232 0.389 0.246 0.422 1.029 0.879 0.385 0.514 0.255 0.414 2.800 0.595 2.145 1.068

336 0.261 0.412 0.263 0.417 0.267 0.437 1.668 1.228 0.558 0.606 0.604 0.607 2.753 0.738 2.096 2.543

720 0.265 0.423 0.277 0.431 0.303 0.493 2.030 1.721 0.640 0.681 0.429 0.580 2.878 1.044 3.355 4.664

ETTm1 24 0.027 0.132 0.030 0.137 0.065 0.202 0.095 0.228 0.121 0.233 0.091 0.243 0.090 0.206 0.120 0.290

48 0.061 0.184 0.069 0.203 0.078 0.220 0.249 0.390 0.305 0.411 0.219 0.362 0.179 0.306 0.133 0.305

96 0.186 0.367 0.194 0.372 0.199 0.386 0.920 0.767 0.287 0.420 0.364 0.496 0.272 0.399 0.194 0.396

288 0.398 0.547 0.401 0.554 0.411 0.572 1.108 1.245 0.524 0.584 0.948 0.795 0.462 0.558 0.452 0.574

672 0.496 0.629 0.512 0.644 0.598 0.702 1.793 1.528 1.064 0.873 2.437 1.352 0.639 0.697 2.747 1.174

Weather 24 0.104 0.234 0.117 0.251 0.136 0.279 0.231 0.401 0.131 0.254 0.128 0.274 0.219 0.355 0.302 0.433

48 0.171 0.316 0.178 0.318 0.206 0.356 0.328 0.423 0.190 0.334 0.203 0.353 0.273 0.409 0.445 0.536

168 0.263 0.381 0.266 0.398 0.309 0.439 0.654 0.634 0.341 0.448 0.293 0.451 0.503 0.599 2.441 1.142

336 0.291 0.409 0.297 0.416 0.359 0.484 1.792 1.093 0.456 0.554 0.585 0.644 0.728 0.730 1.987 2.468

720 0.324 0.445 0.359 0.466 0.388 0.499 2.087 1.534 0.866 0.809 0.499 0.596 1.062 0.943 3.859 1.144

Table 2. Multivariate long sequence time-series forecasting results on four datasets.

Methods DEPformer Informer LogTrans Reformer LSTMa LSTnet

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1 24 0.510 0.529 0.577 0.549 0.686 0.604 0.991 0.754 0.650 0.624 1.293 0.901

48 0.653 0.607 0.685 0.625 0.766 0.757 1.313 0.906 0.702 0.675 1.456 0.960

168 0.929 0.746 0.931 0.752 1.002 0.846 1.824 1.138 1.212 0.867 1.997 1.214

336 1.022 0.863 1.128 0.873 1.362 0.952 2.117 1.280 1.424 0.994 2.655 1.369

720 1.197 0.891 1.215 0.896 1.397 1.291 2.415 1.520 1.960 1.322 2.143 1.380

ETTh2 24 0.706 0.659 0.720 0.665 0.828 0.750 1.531 1.613 1.143 0.813 2.742 1.457

48 1.433 0.954 1.457 1.001 1.806 1.034 1.871 1.735 1.671 1.221 3.567 1.687

168 3.466 1.508 3.489 1.515 4.070 1.681 4.660 1.846 4.117 1.674 3.242 2.513

336 2.711 1.324 2.723 1.340 3.875 1.763 4.028 1.688 3.434 1.549 2.544 2.591

720 3.443 1.468 3.467 1.473 3.913 1.552 5.381 2.015 3.963 1.788 4.625 3.709

ETTm1 24 0.315 0.368 0.323 0.369 0.419 0.412 0.724 0.607 0.621 0.629 1.968 1.170

48 0.472 0.483 0.494 0.503 0.507 0.583 1.098 0.777 1.392 0.939 1.999 1.215

96 0.657 0.605 0.678 0.614 0.768 0.792 1.433 0.945 1.339 0.913 2.762 1.542

288 0.991 0.764 1.056 0.786 1.462 1.320 1.820 1.094 1.740 1.124 1.257 2.076

672 1.095 0.859 1.192 0.926 1.669 1.461 2.187 1.232 2.736 1.555 1.917 2.941

Weather 24 0.316 0.372 0.335 0.381 0.435 0.477 0.655 0.583 0.546 0.570 0.615 0.545

48 0.376 0.417 0.395 0.459 0.426 0.495 0.729 0.666 0.829 0.677 0.660 0.589

168 0.587 0.542 0.608 0.567 0.727 0.671 1.318 0.855 1.038 0.835 0.748 0.647

336 0.644 0.597 0.702 0.620 0.754 0.670 1.930 1.167 1.657 1.059 0.782 0.683

720 0.807 0.718 0.831 0.731 0.885 0.773 2.726 1.575 1.536 1.109 0.851 0.757



240 J. Ma et al.

Multivariate Time-Series Forecasting. Table 2 shows the comparison
between the experimental results of multivariate prediction in five baseline mod-
els and our model in four data sets. Compared with RNN-based LSTMa and
CNN-based LSTnet, transformer-based methods (such as LogTrans, Reformer
and Informer) have better prediction effect, and our method is better than the
above transformer-based methods, which also shows that our method has better
ability to capture long-term potential laws in the entire historical data, thus
reducing the prediction error in the future.

4.5 Model Analysis and Discussion

In this section, we will discuss the proposed model in depth, and the experiment
is only for multivariate time-series forecasting. The purpose is to better under-
stand our model behavior and compare the effects of different hyperparameters
on the model.

Table 3. Influence of different attention modules on the effect of the model.

Methods DEPformer Informer DEPformer-P

Metric MSE MAE MSE MAE MSE MAE

Weather 24 0.316 0.372 0.335 0.381 0.326 0.379

48 0.376 0.417 0.395 0.459 0.389 0.431

168 0.587 0.542 0.608 0.567 0.619 0.582

336 0.644 0.597 0.702 0.620 0.681 0.610

720 0.807 0.718 0.831 0.731 0.819 0.722

The Effect of the Attention Module. The model proposed in this paper
contains two parts: encoder and decoder, and each part has two attention mech-
anisms. In this experiment, we not only want to analyze the effectiveness of the
Global ProbSparse multi-headed attention network with a global mechanism
added to sparse attention compared to ordinary sparse attention networks, but
also want to prove whether adding efficient multi-headed attention to the Global
ProbeSparse multi-headed attention network can actually improve the predic-
tion effect. This paper divides it into three models: DEPformer-P is a model
that uses the Global ProbSparse multi-headed attention network only, Informer
model, and DEPformer is a double-layer network model that uses two kinds of
attention networks at the same time.

Table 3 shows the performance of the three models on the Weather dataset.
It can be seen from the table that when the model uses a separate Global Prob-
Sparse multi-head attention network, it is better than the traditional Informer
model that uses sparse attention. This demonstrates the effectiveness of extract-
ing global feature descriptions in sparse attention networks. However, the effect
of DEPformer-P is lower than that of DEPformer. This may be due to the sparse
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effect of DEPformer-P, which results in some valuable data that may exist not
being utilized, making its effect not as good as that of DEPformer using double-
layer attention network. Compared with the other two models, the DEPformer
model using a double-layer attention network has improved, which also shows
the effectiveness of the double-layer attention network model proposed in this
paper.

Fig. 5. The performance of different number of attention heads

The Effect of the Number of Attention Heads. The multi-head atten-
tion mechanism used in the model can expand the model to focus on different
positions, allowing the model with this mechanism to better extract potential
rules from longer sequences. However, if there are too many attention heads,
the dimension of a single attention may become too small, which can limit the
attention performance. Therefore, this paper conducted an experiment to inves-
tigate whether the number of heads in the double-layer attention network of the
model has an impact on the model’s prediction performance. In the experiment,
we found that the number of heads in Global ProbSparse attention and Efficient
attention had the same effect on the experimental results. Therefore, this paper
will not analyze these two types of attention networks separately in this part of
the experiment.

Figure 5 shows the effect of different number of attention heads on the effect
of the model. This paper conducted experiments on the Weather dataset. The
predicted sequence length was set 168. This paper compares the number of atten-
tion heads for five settings of 1, 2, 4, 8 and 16, respectively. From the results in
the table, we can find that when the number of attention heads is 8, the model
works best on the Weather dataset.

The Effect of the Number of Encoder Layers. The Encoder extracts long-
range correlations to improve prediction accuracy in the decoder, so the number
of encoder layers affects prediction performance significantly. To investigate the
influence of different encoder layer numbers on the model’s prediction effect, we
conducted a comparative experiment on the Weather dataset. In this experiment,
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Fig. 6. The performance of different number of encoder layers

we set the decoder layer number to 2, the predicted sequence length to 168 and
336, the encoder layer number to e, and the value of e to range from 1 to 4.

Fig. 6 shows the model prediction effect of encoders with different layers. It
can be seen from the figure that when the number of layers of the encoder is 3,
the prediction effect of the model on the Weather dataset is the best.

5 Conclusion

In the context of long sequence time series forecasting (LSTF), using a traditional
Transformer model may result in significant computational cost issues. On the
other hand, the Transformer model using sparse attention network can greatly
improve the computational efficiency and prediction accuracy. However, due to
the use of sparse attention mechanisms, such models may have the problem
of low information utilization. To alleviate this problem, this study proposes a
double-layer attention mechanism. Experiments were conducted on public and
real datasets, and good predictive performance was obtained.
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Abstract. NoSQL databases have gained great popularity recently. Most of them
use the Log Structured Merge (LSM) tree which provides fast write throughput
and fast lookup of primary keys. Nevertheless, searching by non-key attributes
is very slow because the entire LSM-tree must be scanned. To overcome this
problem, the secondary index can be used. Typically, all items in the database
are equally covered by the secondary index. However, this is not effective in big
data stores where some items are queried very often and some never. To solve
this problem, adaptive merging has been introduced. The key idea is to create a
secondary index adaptively as a side-product of query processing. Consequently,
the database is indexed partially depending on the query workload.

The paper considers the adaptive merging of the secondary index in LSM-
based stores. In this approach, the secondary index can be initiated at an arbi-
trary moment. Thereafter, only the requested data are inserted into the secondary
index. They are retrieved from the independent immutable files created during
the index initialization in a parallel way. The method can work in the dynamic
database environment where database modifications interleave with user queries.
The experiments show that the proposed approach outperforms traditional meth-
ods by about 30%.

Keywords: LSM-tree · adaptive indexing · NoSQL database

1 Introduction and Motivation

NoSQL databases have reached great popularity due to their scalability, simplicity, and
flexibility. Nowadays, they are used in various areas such as social networks, sensor
networks, and other big data applications. The most popular NoSQL database systems
are HBase [1], Cassandra [2], AsterixDB [3], MongoDB [4], BigTable [5], LevelDB [6],
and RocksDB [7]. Typically, NoSQL database systems store the data in Log Structured
Merge (LSM) tree [8]. The LSM-tree consists of a few levels. Each level holds many
key-value entries that are sorted within the level. A new entry can be inserted only into
the top level. When the number of entries in the level exceeds the predefined limit, this
level is merged with the level below.

In general, LSM-based stores support fast write throughput and fast lookups on pri-
mary keys. However, this is not enough to support effective query processing on non-
key attributes. Let us consider a shopping database containing sale transactions defined
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C. Strauss et al. (Eds.): DEXA 2023, LNCS 14147, pp. 245–257, 2023.
https://doi.org/10.1007/978-3-031-39821-6_20
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as e = <id, {user, product, date, quantity, price}>. It means that the user bought
a product with a specific quantity and price on a particular date. In this case, a sale
transaction identifier (id) is the key of entry e. Unfortunately, to find all transactions for
the particular product, the whole LSM-tree must be scanned. Clearly, the secondary
index on the product would improve the query execution significantly. However, sec-
ondary indexes cannot be used without any limits. When the database size grows the
maintaining of the secondary index on the entire dataset may spoil system performance.
Let us assume that the secondary index is imposed on the attribute date. If only records
from the last year are queried, it is not necessary to index the whole table by date.
In this case, it would be sufficient to index only the entries of the last year and leave
the older ones not indexed. To cope with this problem, two main approaches of partial
indexing were introduced: database cracking and adaptive merging.

This paper faces a problem of adaptive merging for secondary indexing in the LSM-
tree storage. The secondary index is created adaptively as a consequence of range query
processing. In the initial phase, the files (SSTables) of the main database are copied to
the Adaptive Log. Then, when a range query arrives, the files of the Adaptive Log are
scanned separately using different threads. To skip the irrelevant files, each file in the
Adaptive Log is equipped with a bitmap and a range filter. The query results are inserted
into the partial secondary index. In summary, the contribution of the paper is as follows:

– We propose the multi-core adaptive merging of the secondary index for LSM-tree.
Although we assume that the secondary index is based on the LSM-tree, the app-
roach is flexible enough to utilize the other index structures (for example B+ tree).

– Unlike most of the approaches, our framework is very efficient in the dynamic
database environment where updates interleave with range queries.

– We did a real implementation of the framework and integrate it into LevelDB key-
value storage [6] in a non-intrusive way.

The paper is organized as follows. Section 2 contains the related work. In Sect. 3, we
first describe the adaptive merging of the LSM tree without dataset modification. Then,
we extend the method so that it could consider modified data. In Sect. 4, we present
several experiments that confirm the efficiency of the proposed method.

2 Related Work

NoSQL databases adopt two different strategies for secondary indexing: stand-alone
index table and embedded secondary indexing (see [9]). In the first strategy, the sec-
ondary index is separated from the data. It uses B+-tree (MongoDB [4]) or LSM index
table (BigTable [5], Cassandra [2], AsterixDB [3], Spanner [10]). The second strat-
egy relies on storing the attribute information inside the original data blocks. In [11],
the authors analyze the utilization of auxiliary structures like secondary indexes, range
filters, primary key indexes, and bitmaps in the LSM-stores. They propose some val-
idation and query processing strategies that use these structures. In [12], the authors
explore the challenges associated with indexing modern distributed data stores and pro-
pose two different approaches for secondary indexing on HBase [1].
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The first approach to partial indexing is described in [13]. The authors present a
cracking architecture in the context of a full-fledged relational system. This concept
is extended in [14]. The paper proposes novel algorithms for database cracking in a
dynamic environment where updates interleave with queries. In [15], adaptive merging
is introduced. In that approach, the data are first split into n sorted partitions. Then,
a range query fetches the data from these partitions and inserts them into the sec-
ondary index. As a consequence, the process considers only such data that are relevant
to actual range queries, leaving all other data in their initial places. Both approaches
have some drawbacks. Database cracking has a low initialization cost but converges
relatively slowly. On the other hand, adaptive merging enjoys a high initialization cost
but converges rapidly. To overcome such limitations, a hybrid approach is proposed (see
[16,17]). The paper [18] concentrates on tuning the merge policy, the buffer size, and
the Bloom filters across the LSM-tree’s different levels. The authors in [19] analyze
the index cracking algorithms in a parallel environment. They mainly check how the
increasing number of threads impacts the efficiency of index cracking. The paper [20]
concentrates on the adaptive merging for phase change memory (PCM). The authors
apply several techniques to optimize this process taking into account PCM limitations.

3 Adaptive Indexing

This section presents the adaptive merging for LSM-based stores. We assume that the
main database holds <key, value> entries in the LSM-tree. When a range query on
value is executed, the main database is scanned and the required entries are fetched.
Then, these entries are inserted into the secondary index. So, the secondary index is
updated as a response to user queries. The architecture of our system consists of the
following components:

– Main LSM database. The main data storage. The data are held in the LSM-tree which
consists of several independent levels. Each level has many files called SSTables.
Each file contains <key, value> entries.

– Partial Secondary Index. The structure for storing the secondary index entries. An
entry is of the form <value, key>. Please note that value can be duplicated while
<value, key> cannot be.

– Adaptive Log. A set of files copied from the Main LSM database. Generally speak-
ing, the files hold such entries <value, key> that have not yet been added to the
partial secondary index. Each file f is equipped with a range filter and a bitmap. The
range filter: <f.min, f.max> holds the minimum and maximum values in f . Each
entry of the file f has its bit in the bitmap. It shows whether the entry is already
in the partial secondary index or not. The range filter and the bitmap for f can be
stored in RAM.

– Index Range. The tree-like structure stored in RAM that contains already indexed
query ranges.
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3.1 Adaptive Merging Without Database Modification

This subsection presents an intuitive description and basic algorithms of the approach.
First, we assume that the database is not modified during the adaptive merging process
(see Fig. 1).

Initially (step 1), the Main LSM database contains three levels and each level has a
fixed number of SSTables. In the example, the SSTable can hold two key-value entries.

Fig. 1. Adaptive merging after the range query

The adaptive index is initiated when the range query arrives (step 2). In this case,
the Adaptive Log is created. In the beginning, the Adaptive Log is a simple copy of all
SSTables ordered by time. It means that the SSTables from the top level of the Main
LSM database are at the front of the Adaptive Log and the SSTables from the oldest
level are placed at the end of the Adaptive Log. The entries inside the file are sorted
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by value and each file holds a filter range. To answer the range query q = <e, p>, the
system must iterate over all files in the Adaptive Log and fetch the entries that satisfy
the query condition. It is easy to see that query q retrieves the following entries:<g, 6>,
<i, 9>, <k, 4> and <o, 7>. Then, these entries are inserted into the partial secondary
index. In this example, the secondary index is based on LSM-tree, but this assumption
is not obligatory. After that, the Adaptive Log is updated by setting the bitmap values
to 0 for the already indexed entries (they are marked with the shadowed rectangle) and
by changing the range filter of each file. Please note that the range filter only considers
the entries with a bitmap value set to 1. So, the range filter of the third file is empty. At
last, the query range <e, p> is added to the Index Range.

In step 3, a range query q1 = <a, j> arrives. Obviously, the following entries ful-
fill the search condition:<g, 6>,<i, 9>,<a, 5> and<b, 10>. As q1 partially overlaps
the actual Index Range (<e, p>), all entries in <e, j> can be retrieved from the par-
tial secondary index. To fetch entries of the range <a, e>, the Adaptive Log must be
traversed. Fortunately, each file in the Adaptive Log is equipped with the bitmap and
the range filter. So, the iteration process can skip the irrelevant files and entries. As a
result, only two files in the Adaptive Log must be accessed. The entries fetched from
the Adaptive Log are inserted into the partial secondary index. It is carried out in the
same way as in the case of the “normal” LSM-tree. So, the entries<a, 5> and<b, 10>
are added to L′0. If L′0 is full, the LSM-tree merge process must be invoked. At the
end of the method, the range filters of all files in the Adaptive Log and the Index Range
must be updated.

Code Description. When the Adaptive Log (L) is initiated, Algorithm 1.1 traverses all
the levels of the Main LSM database and copies its files into Adaptive Log L. For each
file f in L, the bitmap is created and the range filter <f.min, f.max> is estimated. It
denotes the minimum and maximum values in f . When a range query r = <v1, v2>
arrives, Algorithm 1.2 is invoked. The entry e with value v that fulfills the condition r
can be found either in the partial secondary index or in the Adaptive Log. If v is already
in the Index Range, it means that the value has been queried before. In this case, the
entries can be directly fetched from the partial secondary index (line 6). Otherwise,
Algorithm 1.3 is invoked. It handles the files of the Adaptive Log in parallel. When the
condition in line 6 is fulfilled, the iterator seeks the entries for which the value is equal
to v and its bit in the bitmap are set to 1 (line 11). If the entry is found, it is added to the
result set, and its bit is set to 0 (lines 12 to 13). After that, the f.min and f.max values
of file f are updated (lines 15 and 16). The entries returned by Algorithm 1.3 are then
inserted into the partial secondary index and the IndexRange is updated (see lines 10
and 12 of Algorithm 1.2).

3.2 Database Modification

In the previous subsection, we consider adaptive merging without database modifica-
tion. Obviously, the database can be changed after adaptive merging initiation.



250 W. Macyna et al.

Algorithm 1.1: initAdaptiveLog(input: Main LSM database T )

1 Let height be the height of T
2 Let SSTables[k] denote the SSTable set in level k of T
3 Let L denote the Adaptive Log
4 Let f denote a file in the Adaptive Log
5 Let f.min and f.max denote the minimum and maximum value of file f in L
6 lvl := 1
7 while lvl <= height do
8 foreach SSTable s ∈ SSTables[lvl] do
9 f := createFile(s)

10 f.min:=getMinValue(f )
11 f.max:=getMaxValue(f )

// setting all bitmap values to 1
12 createBitmap(f )
13 addFileToAdaptiveLog(L,f )

14 lvl := lvl + 1

15 IndexRange := ∅

Algorithm 1.2: userQuery(input: QueryRange q, Main LSM database T , Partial
Secondary Index S, output: Entry resultSet[ ])

1 Entry resultSet[ ] := ∅
2 if S is Empty then
3 initAdaptiveLog(T )

4 foreach Value v ∈ q do
5 if v ∈ IndexRange then

// fetching directly from the partial secondary index
6 Entry[] e := findInPartialSecondaryIndex(v, S)

7 else
// fetching from the Adaptive Log

8 Entry[] e := findInAdaptiveLog(v, L)
9 if e is not null then

// inserting into the partial secondary index
10 insertIntoPartialSecondaryIndex(S, e)

11 resultSet:= resultSet ∪ e

12 IndexRange:= IndexRange ∪ q
13 return resultSet

Typically, each modification of the LSM-tree is performed as an insertion. The new
entry is simply inserted into the MemTable. When an entry e = <key, val> must
be deleted, a new deleted entry ed = <key, del> with the same key is inserted into
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Algorithm 1.3: findInAdaptiveLog(input: Value v, AdaptiveLog L, output: Entry
resultSet[ ])

1 Entry resultSet[ ] := ∅
2 Let f.min and f.max denote the minimum and maximum value of file f in L
3 Let files be an array of files in Adaptive Log L
4 Let entries denote an array of entries in file f
5 foreach File f ∈ files do
6 if v ≥ f.min and v ≤ f.max then

// taking all entries in f
7 entries[]:=getEntries(f)
8 Int posEntry:=0
9 while posEntry ≤ entries.size do

10 Entry e := entries[posEntry]
// when the entry is not in the partial secondary

index (bitmap=1)
11 if bitmap[posEntry]=1 and value(e) = v then
12 resultSet:= resultSet ∪ e
13 bitmap[posEntry]:=0

14 posEntry: = posEntry +1

15 f.min:=getMinValue(f )
16 f.max:=getMaxValue(f )

17 return resultSet

the MemTable. Then, when the query requires entry e, it comes across ed at first. In
this case, entry e would not be considered in the query result, because it is marked as
deleted. A similar situation happens when the entry e = <key, val> must be updated.
In that case, the old version of the entry is deleted (by insertion of ed) and a new version
en = <key, valn> is inserted into the MemTable.

In our approach, the database modifications are treated a similar. The insertion into
the Main LSM database must be reflected in the adaptive merging. For that, we consider
the following cases.

– New entry. When a new entry e = <key, val> is inserted into the Main LSM
database, a corresponding secondary index entry e′ = <val, key> is created. If
val is inside the Index Range, entry e′ is inserted directly into the partial secondary
index. Otherwise, it is inserted at the beginning of the Adaptive Log.

– Deleted entry. When an entry e = <key, val> is deleted from the Main LSM
database, a new deleted entry e′

d = <val, key, del> is created. If val is inside
the Index Range, entry e′

d is inserted directly into the partial secondary index. Other-
wise, it is inserted at the beginning of the Adaptive Log. Then, even when val fulfills
a query condition, the corresponding entry would not be fetched by this query.

– Updated entry. As we mentioned before, when an entry e = <key, val> is updated
in the Main LSM database, the old version of the entry is deleted (by inserting of
ed) and a new version en = <key, valn> is inserted into the Main LSM database.
Consequently, a new secondary entry e′

n = <valn, key> and a new deleted entry
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e′
d = <val, key, del> are created. The entries e′

n and e′
d are inserted into the partial

secondary index or the Adaptive Log. It depends on whether the values val and valn
are inside the Index Range or not.

In the example on Fig. 2, we insert two new entries<15,m> and<19, x> into level
L0 of the Main LSM database. As a consequence, two new secondary index entries are
created: e1 = <m, 15> and e2 = <x, 19> Please note that the Index Range is<a, p>.
So, entry e1 is added to L′

0 in the partial secondary index and entry e2 to the Adaptive
Log.

Fig. 2. Database modification

4 Experiments

In this section, we present some experiments that confirm the effectiveness of the
method. We implement the adaptive merging framework as an extension to LevelDB,
which is a very popular key-value storage used as a persistent level in many commercial
database systems. The experiments are conducted on Dell PowerEdge R910 equipped
with 4 CPU and 256GB RAM. Each CPU has 20 cores and the cache lines: L1, L2, and
L3 of 640KB, 2560KB, and 24MB, respectively.

In each experiment, we create the Main LSM database with 10 million entries of
the form <key, value>. Then, we generate a set of range queries. To do this, we fetch
the minimum (vmin) and maximum (vmax) values from all entries. Then, we randomly
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choose v1 with a uniform distribution from the range <vmin, vmax>. After that, we
calculate v2 so that the fixed query selectivity is obtained. By selectivity we mean which
fraction of the total database entries must be queried. A range query fetches all entries
for which value is between v1 and v2. We repeat this process until the whole set of
range queries is generated. In the experiments, we execute the same set of range queries
for the following methods.

1. Full scan - only the Main LSM database is used. The data are stored as
<key, value>. To answer the range query with a predicate on value, the whole
Main LSM database must be traversed.

2. Secondary scan - a secondary index is created for all entries of the Main LSM
database before each experiment. The entries in this index are of the form:
<value, key> In this paper, the secondary index relies on the LSM-tree, so the
entries are sorted by value within each level. A range query on value seeks the
appropriate key in the secondary index and then, using this key, fetches the corre-
sponding entry in the Main LSM database.

3. Adaptive merging - the approach described in this paper. When a secondary index is
initiated, the SSTables of the Main LSM database are copied to the Adaptive Log.
When a range query arrives, the Adaptive Log is scanned in parallel and the data
fetched by the query are added to the partial secondary index. Then, the next queries
can benefit from this index if their range overlaps with the range of the already stored
data.

In the first experiment, we consider the creation time of the secondary index for
the whole Main LSM database and compare it with the creation time of the Adaptive
Log in the adaptive merging. Figure 3 presents elapsed time depending on the thread
number. As the Adaptive Log is a set of independent files, it may be created separately
by several threads. On the contrary, the secondary index used in the secondary scan must
be created sequentially since the sorting order of the keys has to be retained. It explains
the big overhead difference between both methods. Figure 4 shows index creation time
depending on the data size. Clearly, when the data size grows, creation time gets larger
as well. All the subsequent experiments include the construction time in the runtime.

In the next experiment, we measure the time elapsed after 100 range queries with
different selectivity (see Fig. 5). We can observe that the adaptive merging shows bet-
ter performance than the secondary scan. When the selectivity increases, elapsed time
gets higher. We can also see that elapsed time of the full scan is independent of the
selectivity. It comes from the fact that the whole Main LSM database must be traversed
for each query. In Fig. 6, we consider a different data size. Clearly, elapsed time grows
proportionally with the data size.

In Fig. 7 wemeasure time for different query numbers. We clearly show that the time
increases with the increasing number of queries. The adaptive merging outperforms the
secondary scan by about 30%. We can also see that the adaptive merging performance
gets closer to the performance of the secondary scan with the increasing number of
queries. Clearly, both methods are drastically better than the full scan. Figure 8 com-
pares a different dataset range used in the queries. It means that the query set fetches
the data not from the whole database but only from a fixed fraction of the dataset. When
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the system uses a small dataset range (for example 5%), the performance of the adaptive
merging is better since more data is indexed in the partial secondary index and fewer
data must be fetched from the Adaptive Log.
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In the next experiment (see Fig. 9), we execute the same query 100 times and com-
pare it with the execution of different queries 100 times. We see that when the data
retrieved by the query are already in the partial secondary index, the system does not
have to traverse through the Adaptive Log and better performance is obtained.
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The last experiment assumes that the database is modified after the partial secondary
index initialization. In this example, we execute 10 batches. Each batch consists of a
fixed number of range queries, insert and delete operations. Figure 10 shows an example
where the number of range queries in each batch is different (1, 5, 10, 20) and the
number of inserts and deletes is equal to 10 and 5, respectively. As in the previous
experiments, we clearly show that the adaptive merging outperforms the other methods.

From all the experiments, we can draw the following conclusions. The full scan
is very effective for queries on key but not effective for queries on value. The most
time-consuming part of the secondary scan is its initiation phase, i.e. a secondary index
creation for the entire dataset. Clearly, when the secondary index is already created,
its effectiveness is very high. On the other hand, the adaptive merging creates the sec-
ondary index partially. It can use threads both when creating the Adaptive Log and
when executing the query. Thus, although the query execution is slower on the adaptive
merging, the total performance of this approach is better since it avoids the creation of
the secondary index for the whole database at the beginning.

5 Conclusion

The paper faces adaptive merging of the secondary index in LSM-based stores. Tradi-
tionally, the secondary index covers all records equally. The key idea of this paper is to
insert into the partial secondary index only the data required by the user queries. In this
way, we avoid indexing unnecessary and unused records. Such an approach drastically
decreases the creation and maintenance cost of the secondary index. When we initial-
ize a new secondary index, we copy the SSTable files and fetch the data requested by
the user from them independently, in a parallel way. Worth mentioning is the fact that
the Main LSM database can be modified during the adaptive merging. The experiments
clearly show that the method is very useful in the situation when the limited subset
of the values is frequently requested by the user. Moreover, modern SSD disks exploit
multi-threading and parallel access very well. Thus, the multi-core approach will gain
even more advantages over the single-thread secondary index creation in the future.



256 W. Macyna et al.

In this paper, we do not focus on the secondary index structure. We conduct all
the experiments on the LSM-based secondary index. In future work, we are going to
consider the other index types typical for NoSQL databases. We can also optimize the
LSM-based secondary indexes by applying several auxiliary structures like the primary
key index and deleted key B+ tree (see [11]).
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Abstract. Imputation for missing values is a key operation in building
data analysis models. In this paper, we target numerical and categorical
values in tabular data. While previous studies have demonstrated the
effectiveness of state-of-the-art methods, a major limitation is that these
methods lack robustness and their performance significantly varies across
datasets and the missing rate of values, hence posing considerable over-
head of selecting and tuning models in a real-world scenario. To tackle
this problem, we propose a Column Attention Generative Adversarial
Imputation Network (CAGAIN), an imputation model which employs
a generative adversarial network (GAN) and the attention mechanism.
The generator of CAGAIN mimics the distribution of original data and
generates imputed samples similar to real ones. The discriminator of
CAGAIN distinguishes real and generated samples, so as to improve the
quality of the imputed data. At the same time, the attention mechanism
captures the correlation between attributes and focuses on the most sig-
nificant attributes that determine the values of the missing positions.
By inheriting the advantages of GAN and the attention mechanism, our
model is endowed with robustness to shifting datasets and missing rates,
which is demonstrated by experiments using 9 real datasets.

Keywords: data imputation · GAN · attention mechanism

1 Introduction

With the explosion of data, one of the major issues is dealing with missing val-
ues in a dataset. This problem can be caused by a variety of factors, including
human error during data manipulation, machine error due to mechanical break-
downs, and discrepancies in merging datasets. Data imputation is the process of
filling missing data with substituted values. It is a key operation in data ana-
lytics because missing data can cause severe problems for data analysis models,
such as reduction in accuracy and non-convergence. In data management, data
imputation has also been extensively studied as a data cleaning problem.

In this paper, we study the problem of data imputation for tabular data,
and focus on numerical values and categorical values, which are among the most
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C. Strauss et al. (Eds.): DEXA 2023, LNCS 14147, pp. 258–273, 2023.
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common data types in tabular data. While early attempts at this problem are
based on simple statistical techniques [10] such as filling by mean or mode,
more advanced approaches resort to machine learning to impute missing val-
ues by creating either a discriminative (e.g., decision trees [5,23]) or a genera-
tive (e.g., autoencoders [7,14]) model from the dataset. Whereas state-of-the-art
approaches have been shown to deliver high-quality imputation results by pre-
vious studies, a main drawback is that their performance lacks robustness and
significantly varies when applied to different datasets or missing rates of values.
For this reason, data analysts tend to spend considerable effort and computing
resources in selecting and tuning data imputation models. For example, even if
high accuracy has been reported by previous studies, we still need to try many
hyperparameter combinations to reproduce the results on the same datasets, and
sometimes domain knowledge is required for feature selection.

To address the above limitation, we propose a Column Attention Generative
Adversarial Imputation Network (CAGAIN) for imputing numerical and cat-
egorical values in tabular data. CAGAIN features a generative adversarial
network (GAN) [8] and the attention mechanism [26]. CAGAIN is com-
posed of a generator network and a discriminator network trained in an adversar-
ial manner. The generator imputes missing values by generating samples that are
close to real complete values. The discriminator distinguishes generated values
from real ones, thereby improving the quality of imputed values from the gener-
ator. At the same time, the attention mechanism, which devotes more focus to
a subset of attributes (i.e., columns), is used to discover the correlation between
the missing value and those of other attributes.

To use the attention mechanism together with the GAN, we develop a net-
work architecture consisting of an embedding layer, an attention layer, and a
prediction layer. Since GANs are often unstable in training [12] due to gradient
vanishing, the overhead of model tuning tends to be increased, and thus the
usability in real-world imptation tasks is compromised. This occurs when the
discriminator mistakes a false sample for a real sample, and the problem is also
observed when one simply integrates the attention mechanism into a GAN. To
address this issue, based on our network architecture, we propose a loss function
for the generator, which balances the similarities of generated data to original
input and complete data, and a least-squared loss for the discriminator, which
aims to prevent gradient vanishing.

CAGAIN inherits the advantages of both GAN and the attention mechanism.
By adversarial training, the imputed values keep approaching the distribution in
the original dataset, and the attention mechanism helps infer the correct values
of the missing positions by focusing on the most determinant subset of attributes.
Moreover, since CAGAIN’s embedding layer transforms each input value to a
vector, it is enabled to model complex correlations such that the determinant
attributes are conditional on the observed values (e.g., risk is highly correlated
to age if COVID-19 is “positive”). As such, CAGAIN is endowed with the ability
to deliver robust imputation performance to shifting datasets and missing rates.
Despite the existence of approaches to tabular data imputation using either
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GANs [19,28] or the attention mechanism [24], or both for other data types [18],
to the best of our knowledge, we are the first of combining them to effectively
cope with the imputation for numerical and categorical values in tabular data.

We perform experiments on 9 real datasets with missing rates from 20% to
80%. The results showcase the superiority of CAGAIN in a diversified real-world
scenario. The accuracy of CAGAIN, without feature selection and laborious tun-
ing (we tune one hyperparameter of 3 options and report the best results, while
fixing other hyperparameters), always ranks in the top-3 among 9 competitors
and outperforms the runner-up baselines by up to 15% RMSE for numerical
values and 3% accuracy for categorical values, while the performance of exist-
ing approaches drastically varies across these datasets and missing rate set-
tings. Moreover, even trained without the discriminator, CAGAIN is still robust
and outperforms some state-of-the-art approaches. A post-imputation predic-
tion experiment demonstrates that the imputation by CAGAIN results in higher
accuracy in classification tasks. We would also like to mention that the perfor-
mance of CAGAIN can be further improved by more effort of hyperparameter
tuning, yet this is not our goal in this paper.

Our contributions are summarized as follows. (1) We propose a new solu-
tion to data imputation for numerical and categorical values in tabular data.
Our solution, which integrates a GAN and the attention mechanism, is robust
against shifting datasets and missing rates. (2) We develop a network architec-
ture which consists of an embedding layer, an attention layer, and a prediction
layer. We design a series of loss functions for model training, which balances
the similarities of generated data to original input and complete data. (3) We
conduct experiments on 9 real datasets with missing rates varying from 20%
to 80%. The experiments demonstrate that with simple hyperparameter tuning,
our solution reports high accuracy of data imputation across these datasets and
missing rate settings.

2 Related Work

We focus on tabular data and learning-based methods, the state-of-the-art
methods for data imputation. The methods targeting different data types
(e.g., time series [18]) and those based on different methodologies (e.g., con-
straints [3,20,22]) are omitted due to the page limitation.

Discriminative methods formulate data imputation as a classification or a
regression problem and train a learning model to solve it. A widely used method
is KNN [9], which assigns the missing value to the most common class or the
average value of the sample’s k nearest neighbors. Another series of popular
solutions is tree-based methods (MissForest, XGBoost, etc.) [4,5,23]. While tree-
based models have demonstrated outstanding performance for classification and
regression problems, they suffer from poor generalizability of imputation when
missing values occur systematically or explanatory variables for prediction are
misaligned between observed and missing values [2]. Multivariate imputation by
chained equations (MICE) [25] is a popular tool for data imputation. It is valid
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only under the assumption that missing values are dependent on other values,
and does not converge if the assumption does not hold. AimNet [27] is a state-
of-the-art method based on the attention mechanism, with attention weights
indicating the importance of the features used for imputation. Despite superior
performance on some datasets, it is less effective for the case of complex data
distributions or limited training data.

Generative methods model the joint probability distribution of observed val-
ues and missing values. Most methods in this category employ autoencoders or
GANs. Denoising autoencoder (DAE) [7,14,21,24] is a representative method in
this category. By adding a noise process to the standard autoencoder, a DAE
takes a noisy input and attempts to recover the original data without noise.
Among various DAEs, DAEMA [24] features a DAE with the attention mecha-
nism and trains the model to focus on observed values rather than on missing
values. It demonstrates competitive performance on numerical values, whereas
it often overfits on categorical values and reports inferior accuracy. Another
notable autoencoder-based method is HI-VAE [16]. It uses reconstruction error
for observed values and takes as input missing values filled with zeros. While HI-
VAE is able to correct data with a mixture of numerical and categorical values,
it is difficult to train, and the predicted values may significantly diverge in some
cases. For GANs, a representative method is GAIN [28]. Its generator takes as
input the cell values of a record, along with a mask matrix to indicate whether
a cell is missing or observed, and outputs the predicted values. Its discriminator
aims to distinguish true values from the generated values. By training them in
an adversarial way, GAIN is enabled to generate values following a conditional
distribution of the observed data. Yet, mode collapse, a common problem for
GANs, is sometimes observed in GAIN, and it is consistently outperformed by
AimNet [27]. Other notable GAN-based methods include IFGAN [19], which
proposes the notion of feature-specific GANs to preserve inter-feature correla-
tions, as well as WGAIN [6] and WSGAIN [17], which employ the Wasserstein
distance in the loss function to stabilize GAN training and tackle mode collapse.

3 Problem Statement

Given a data space X = X1 × · · · × Xd, where each Xj , j ∈ [1, d] refers to
either a numerical or a categorical column, we consider n i.i.d. random variables
X = {X1, . . . ,Xn }. Each variable Xi is a vector {Xi,1, . . . , Xi,d }, where each
Xi,j is either an observed value in Xj , or a missing value, denoted by ∗. A matrix
M ∈ {0, 1}n×d indicates whether a value is observed or missing; i.e., Mi,j = 1,
if Xi,j is observed, or 0, if Xi,j is missing. Each sample x in X is called a data
vector, and each m = {0, 1}d is called a mask vector.

For data imputation, our task is to impute the missing values in X. Specif-
ically, for each (i, j) such that Mi,j = 0, we predict the value of Xi,j upon
observing Xi,−j and Mi,−j , where −j denotes all the columns except j.
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Fig. 1. Model architecture.

4 Method

4.1 The CAGAIN Model

The architecture of CAGAIN, our imputation model, is shown in Fig. 1a (nota-
tions ′ and ′′ denote the bits in the one-hot encoding of categorical variables).
CAGAIN employs a GAN, which consists of a generator G and a discriminator
D. The input of G is a vector that preserves the observed values of a data vector
x and fills each missing value of x with a random noise z taken from a Gaus-
sian distribution where μ = 0 and σ = 0.01. G outputs x̄, a predicted variable
for imputation. Note that each column has an output value from G, even if it
is observed. The input of D is a completed vector x̂, which completes a data
vector x by replacing missing values ∗ with the corresponding values in x̄. D
tries to distinguish between generated values and observed (i.e., real) values by
outputting a d-dimensional vector that indicates the probability of each position
being observed. Note that the input of D is different from the traditional setting
of a GAN, which takes real and generated data as input separately. Inspired by
AimNet [27], we design both G and D as a network consisting of an embedding
layer, an attention layer, and a prediction layer.

Embedding Layer. The embedding layer transforms each input feature xj to
a k-dimensional embedding vector Vj ∈ R

k, implemented as a two-layer neural
network with ReLU activation function. Before the input, observed numerical
values are standardized by mean and variance, and observed categorical values
are transformed into vectors by one-hot encoding.
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Attention Layer. To effectively capture the correlation between the missing
value and the observed values in other columns, we employ the attention mecha-
nism [26], which enhances some observed values while diminishing others. First,
we are given the output of the embedding layer, i.e., the embedding vectors
V = [V1, . . . ,Vd] of the input features. To apply the attention mechanism, we
have a set of query vectors Q ∈ R

d×d and key vectors K ∈ R
d×d. Q indicate

which column we shall focus on. K are unit vectors and they are used to select
from Q to produce a set of weights to represent the correlation between columns.
The softmax function normalizes the weights, so they sum up to 1. The normal-
ized weights are then multiplied to V to output context vectors S. Formally, for
column j, Sj = softmax(KT

j Q)V. Moreover, the weight of a column to itself is
masked to be 0 for G.

Prediction Layer. The prediction layer transforms the context vectors S to the
output of either G or D. It is a two-layer neural network for G and a three-layer
neural network for D, with ReLU activation function. For categorical values, G
also learns target embedding vectors. It is unique for target domain values in a
categorical column. G computes the inner product between the output of a two-
layer neural network and the categorical target embedding vectors, and then, the
softmax function is applied to generate prediction probabilities for each domain
value.

Let x̄ be the output of G, i.e., the data vector x with imputed values. Since
each column has an output value from G even if it is observed, we use the
following equation to obtain the completed vector, which serves as the result of
data imputation: x̂ = m � x + (1 − m) � x̄, where m is the mask vector, 1 is a
vector of 1s, and � denotes element-wise multiplication.

D takes x̂ as input and outputs the probability of each value being observed.
Figure 1b shows its architecture. Since G is very similar to this (only differ in
the attention and prediction layers, as mentioned above), we do not repeatedly
illustrate the architecture of G.

4.2 Loss Functions

We design loss functions to measure the degree of imputation fitness. For G,
the loss function consists of two parts: observation loss LObs

G and adversarial
loss LAdv

G . Minimizing the observation loss has the effect of making generated
samples similar to incomplete input samples, while minimizing the adversarial
loss has the effect of making generated samples similar to real complete samples.
In essence, the objective of G tries to strike a balance between the original
input and the complete data. The two loss functions are defined in the following
equations. Specifically, for categorical data, ‖ · ‖ denotes 1-norm, · denotes the
inner product, and log returns the logarithmic value for each element of a one-hot
encoding vector.

LObs
G (G) =

{
E[mT(x − x̄)2], if numerical
E[mT‖x · log x̄‖1], if categorical.
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Table 1. Dataset statistics.

Dataset # samples # columns # numerical # categorical

Spam 4601 58 57 1

Letter 20000 17 16 1

Balance 625 5 4 1

Breast 569 31 30 1

Eye EEG 14980 15 14 1

Credit 30000 24 14 10

Solar Flare 1066 13 3 10

Contraceptive 1473 10 2 8

Thoracic 470 17 3 14

LAdv
G (D) =

1
2
E[(1 − m)T(D(x̂))2],

where D(·)2 returns the square value of each element in D’s output. Then, we
have the loss function for G:

LG(D) = λLObs
G (G) + LAdv

G (D). (1)

λ is a tunable hyperparameter to balance the impact of the observation loss and
the adversarial loss. When λ is large, G is trained to minimize the error to the
original input. When λ is small, G is trained to output imputed values similar
to the distribution of real data.

For D, to stable the GAN training so as to achieve more robustness, we use
a least-squared loss as the adversarial loss, in line with LSGAN [13]. The loss
function for D is given as follows.

LD(G) =
1
2
E[mT(D(x̂) − 1)2] +

1
2
E[(1 − m)T(D(x̂) + 1)2]. (2)

With the above loss functions, G and D are trained in an alternate manner,
by minimizing Eq. 1 for G and minimizing Eq. 2 for D.

5 Experiments

5.1 Experimental Setup

Datasets. We choose a variety of 9 real-world datasets from the UCI Machine
Learning Repository [1]. Dataset statistics is given in Table 1. Raw data are used,
except Eye EEG, for which we remove the outliers beyond three standard devia-
tions from the mean. We randomly split each dataset into training, validation,
and testing datasets with a 80-10-10 ratio. To generate missing values, we use
a missing completely at random (MCAR) strategy by randomly removing 20%
cell values from each dataset, unless otherwise noted.
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Baselines. We compare the following methods, including 7 existing ones as
baselines. We also show the hyperparameter settings, of which the best is used
for reporting the experimental results: (1) Mean/mode imputation, which fills
with the mean value for numerical data and the mode for categorical data; (2)
KNN [9], k = 3, 5, or 7; (3) MICE [25], number of iteration = 1, 5, or 10; (4)
MissForest [23], number of trees = 50, 100, or 300; (5) GAIN [28], α = 0.1,
1, or 10; (6) AimNet [27], embedding size = 16, 64, or 128; (7) DAEMA [24],
dropout rate = 0.2, 0.3, or 0.4; (8) CAGAIN (our model), λ = 0.1, 1, or 10;
(9) CAGAIN w/o D, CAGAIN evaluated without training its discriminator, in
order to show the effectiveness of the balanced design for the generator’s loss
function. Its hyperparameter setting is the same as CAGAIN.

Other hyperparameters of CAGAIN are as follows. Embedding size k is 64
for both D and G. We train CAGAIN by Adam [11], with β1 = 0 and β2 = 0.9.
We train D for two epochs and G for one epoch in each iteration. The learning
rate is 0.004 for D and 0.001 for G. We use spectral normalization [15] for D
except its output layer. We set batch size to 128 for the four large datasets
(Spam, Letter, Eye EEG, and Credit), and 64 for the five small ones.

Due to the versioning of TensorFlow and other issues (e.g., unable to retrieve
the original hyperparameter settings), the observed results in our experiments
may differ from what have been reported in the original papers of the baselines.
Nonetheless, many of our observed results are even better than in the original
papers. For example, with the same missing rate for categorical data, out of
the six datasets which were also used in the AimNet [27] paper, here we observe
higher accuracy for AimNet on three of them and equal accuracy on two of them.

Metrics. We measure root mean square error (RMSE) for numerical data and

accuracy for categorical data: RMSE =
√∑N

1 (X̂−X)2

N , where X̂ is the imputed
value and X is the true value. Accuracy (ACC) measures the percentage of cor-

rectly imputed values: ACC =
∑N

1 1(X̂=X)

N , where 1(·) is the indicator function.

Environments. Experiments are run on a server with a 2.20 GHz Intel Xeon
Gold CPU and 630 GB RAM. Models are trained and run on a NVidia Tesla
V100 Tensor Core. All the competitors are implemented in Python 3.8.

5.2 Experimental Results

Varying Datasets. We first evaluate the performance for numerical data.
Table 2 shows the results of the competitors on the 9 datasets. For each com-
petitor, we report the average RMSE, standard deviation, and the rank among
all the competitors, with the best one highlighted in boldface. Mean imputation
has an overall worst rank as it always fills with the average value. For existing
learning methods, the performance significantly varies across datasets. Many of
them report high ranking for a few datasets, but the performance is mediocre
on others. For example, KNN is the best on Letter and Eye EEG, but ranks from
5th to 9th for the other datasets. The most robust existing method is AimNet,
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Table 2. Varying datasets. Numerical, missing rate = 20%. RMSE± std (rank), lower
is better.

Spam Letter Balance Breast Eye EEG

Mean Imputation 0.99±0.04 (9) 1.01±0.01 (9) 1.01±0.06 (6) 1.06±0.02 (9) 1.00±0.01 (9)

KNN 0.95±0.04 (7) 0.41±0.01 (1) 1.10±0.10 (9) 0.68±0.04 (7) 0.40±0.01 (1)

MICE 0.93±0.03 (6) 0.65±0.01 (7) 0.93±0.05 (2) 0.65±0.04 (5) 0.49±0.01 (7)

MISSFOREST 0.95±0.04 (7) 0.51±0.01 (5) 1.08±0.03 (7) 0.67±0.06 (6) 0.46±0.01 (6)

GAIN 0.85±0.01 (1) 0.80±0.01 (8) 1.08±0.06 (7) 0.73±0.03 (8) 0.61±0.02 (8)

AimNet 0.87±0.05 (2) 0.43±0.01 (2) 0.97±0.04 (4) 0.62±0.06 (2) 0.41±0.01 (2)

DAEMA 0.91±0.01 (5) 0.58±0.01 (6) 0.94±0.02 (3) 0.58±0.04 (1) 0.45±0.01 (5)

CAGAIN w/o D 0.90±0.04 (4) 0.44±0.01 (3) 0.99±0.03 (5) 0.64±0.06 (4) 0.43±0.01 (4)

CAGAIN 0.88±0.03 (3) 0.44±0.01 (3) 0.90±0.05 (1) 0.62±0.04 (2) 0.42±0.01 (3)

Credit Solar Flare Contraceptive Thoracic

Mean Imputation 1.00±0.04 (9) 0.87±0.41 (4) 0.99±0.04 (7) 0.83±0.14 (3)

KNN 0.76±0.04 (6) 0.95±0.29 (7) 1.09±0.11 (9) 0.88±0.17 (5)

MICE 0.76±0.04 (6) 1.00±0.36 (8) 0.93±0.04 (5) 1.02±0.12 (8)

MISSFOREST 0.65±0.03 (4) 1.27±0.14 (9) 0.99±0.09 (7) 0.76±0.17 (1)

GAIN 0.80±0.05 (8) 0.86±0.36 (3) 0.93±0.04 (5) 2.68±0.89 (9)

AimNet 0.61±0.03 (3) 0.92±0.35 (6) 0.91±0.04 (3) 0.91±0.19 (7)

DAEMA 0.68±0.04 (5) 0.88±0.33 (5) 0.87±0.05 (2) 0.83±0.17 (3)

CAGAIN w/o D 0.59±0.04 (1) 0.76±0.31 (2) 0.92±0.04 (4) 0.88±0.14 (5)

CAGAIN 0.59±0.03 (1) 0.71±0.32 (1) 0.83±0.04 (1) 0.77±0.18 (2)

which ranks from 2th to 4th on most datasets, yet ends up with 6th on Solar
Flare. In contrast, CAGAIN is always in the top-3 for all the datasets, showcas-
ing its robustness to various datasets. In particular, CAGAIN performs the best
on Balance, Credit, Solar Flare, and Contraceptive, and the gap to the runner-up
baseline is up to 15%, observed on Solar Flare. We also observe that even without
the discriminator, the performance of CAGAIN is still robust, ranking in the 4th
to 5th for 6 out of 9 datasets and top-3 for the others. This result demonstrates
the robustness of our model design in generating imputed values.

We then evaluate the competitors on categorical data. Table 3 shows their
average accuracies, standard deviations, and ranks. Mode imputation is overall
the worst. Similar to what we have witnessed in numerical data, the performance
of existing methods exhibits a considerable variation across datasets, though
AimNet is still competitive on some datasets. In contrast, CAGAIN still delivers
a rank in top-3 across all the datasets, and is the winner on Balance, Breast,
Eye EEG, Credit, and Solar Flare. The gap to the runner-up baseline is up to 3%,
observed on Balance. Its robustness is also demonstrated when we remove its dis-
criminator, with top-3 ranking for all the datasets except Breast and Thoracic.
We also observe that GAIN does not perform well, ranking at 4th on Breast and
7th to 9th on the other datasets. In addition, along with the results on numeri-
cal data, the results show that the methods based on the attention mechanism
(AimNet, DAEMA, and CAGAIN) generally perform better than the other com-
petitors. We think the reason is that the attention mechanism correctly captures
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Table 3. Varying datasets. Categorical, missing rate = 20%. ACC ± std (rank), higher
is better.

Spam Letter Balance Breast Eye EEG

Mode Imputation 0.59±0.02 (9) 0.04±0.01 (8) 0.38±0.09 (9) 0.69±0.15 (9) 0.54±0.02 (9)

KNN 0.84±0.02 (8) 0.87±0.01 (1) 0.63±0.04 (6) 1.00±0.00 (1) 0.85±0.02 (1)

MICE 0.89±0.03 (6) 0.27±0.01 (6) 0.83±0.06 (3) 0.98±0.03 (4) 0.61±0.02 (7)

MISSFOREST 0.92±0.02 (1) 0.76±0.01 (4) 0.67±0.12 (5) 0.94±0.09 (7) 0.78±0.02 (4)

GAIN 0.86±0.06 (7) 0.03±0.01 (9) 0.52±0.16 (8) 0.98±0.04 (4) 0.56±0.01 (8)

AimNet 0.90±0.03 (5) 0.64±0.02 (5) 0.81±0.05 (4) 0.98±0.04 (4) 0.71±0.01 (6)

DAEMA 0.91±0.02 (2) 0.12±0.01 (7) 0.57±0.15 (7) 1.00±0.00 (1) 0.72±0.02 (5)

CAGAIN w/o D 0.91±0.02 (2) 0.77±0.01 (2) 0.85±0.04 (2) 0.98±0.04 (4) 0.80±0.01 (3)

CAGAIN 0.91±0.02 (2) 0.77±0.01 (2) 0.86±0.05 (1) 1.00±0.00 (1) 0.85±0.02 (1)

Credit Solar Flare Contraceptive Thoracic

Mode Imputation 0.56±0.01 (9) 0.67±0.03 (9) 0.61±0.02 (5) 0.83±0.05 (6)

KNN 0.73±0.01 (6) 0.75±0.02 (6) 0.60±0.03 (7) 0.83±0.05 (6)

MICE 0.74±0.01 (5) 0.76±0.02 (4) 0.61±0.03 (5) 0.86±0.03 (1)

MISSFOREST 0.79±0.01 (3) 0.76±0.03 (4) 0.62±0.02 (4) 0.84±0.05 (5)

GAIN 0.65±0.01 (8) 0.68±0.04 (8) 0.58±0.04 (9) 0.80±0.04 (9)

AimNet 0.78±0.01 (4) 0.78±0.02 (2) 0.66±0.01 (1) 0.85±0.05 (3)

DAEMA 0.71±0.01 (7) 0.75±0.03 (6) 0.59±0.01 (8) 0.86±0.05 (1)

CAGAIN w/o D 0.80±0.01 (1) 0.78±0.02 (2) 0.64±0.02 (2) 0.82±0.02 (8)

CAGAIN 0.80±0.01 (1) 0.79±0.01 (1) 0.64±0.01 (2) 0.85±0.01 (3)

the correlation between attributes and focuses on the more correlated attributes
to produce a more accurate imputed value.

Varying Missing Rates. We investigate how missing rate affects the perfor-
mance of data imputation, and report the results in Tables 4, 5, 6 and 7, by vary-
ing missing rates from 20% to 80% on Credit and Solar Flare. Other datasets, on
which similar results are observed, are omitted here due to the page limitation.
When the missing rate increases, almost all the competitors have their RMSE in
a rising trend and accuracy in a falling trend. Some are also very sensitive and
even cannot converge (e.g., MICE). This is expected, because a higher missing
rate yields a dirtier and thus harder dataset. Again, we observe that CAGAIN
is in top-3 across all the settings, showcasing its robustness to missing rates.

Performance Analysis. To explain why CAGAIN performs better than exist-
ing GAN-based methods and attention-based methods, we show in Fig. 2 a toy
example of 50% missing values on a moon dataset generated using scikit-learn.
CAGAIN is compared with GAIN and AIMNET. GAIN uses an autoencoder as
its generator, which reduces the dimensions and recovers them. However, dimen-
sion reduction may lose some necessary information, and thus result in inaccurate
imputation results for many values, as shown in the figure. Moreover, the train-
ing of GAIN is unstable and requires considerable effort in tuning the model.
For AIMNET, which uses a least-squares loss function, often imputes with a
point in the middle which is far from the original data. In contrast, CAGAIN
imputes the missing value with a latent variable, and the use of an adversarial loss
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Table 4. Varying missing rates (MR). Numerical, Credit. RMSE ± std (rank), lower
is better, N/C for non-convergence.

MR = 20% MR = 40% MR = 60% MR = 80%

Mean Imputation 1.00± 0.04 (9) 1.01± 0.02 (8) 0.99± 0.01 (7) 1.00± 0.01 (6)

KNN 0.76± 0.04 (6) 0.91± 0.02 (7) 1.06± 0.04 (8) 1.06± 0.02 (7)

MICE 0.76± 0.04 (6) N/C (9) N/C (9) N/C (9)

MISSFOREST 0.65± 0.03 (4) 0.77± 0.03 (5) 0.92± 0.03 (6) 1.06± 0.06 (7)

GAIN 0.80± 0.05 (8) 0.83± 0.03 (6) 0.83± 0.02 (5) 0.92± 0.01 (5)

AimNet 0.61± 0.03 (3) 0.69± 0.02 (2) 0.72 ± 0.02 (1) 0.83 ± 0.01 (1)

DAEMA 0.68± 0.04 (5) 0.72± 0.03 (4) 0.74± 0.02 (2) 0.84± 0.01 (3)

CAGAIN w/o D 0.59 ± 0.04 (1) 0.69± 0.02 (2) 0.75± 0.02 (4) 0.84± 0.01 (3)

CAGAIN 0.59 ± 0.03 (1) 0.67 ± 0.02 (1) 0.73± 0.01 (2) 0.83 ± 0.01 (1)

Table 5. Varying missing rates (MR). Categorical, Credit. ACC ± std (rank), higher
is better.

MR = 20% MR = 40% MR = 60% MR = 80%

Mode Imputation 0.56± 0.01 (9) 0.56± 0.01 (9) 0.56± 0.01 (8) 0.56± 0.01 (8)

KNN 0.73± 0.01 (6) 0.69± 0.01 (7) 0.62± 0.01 (7) 0.59± 0.01 (6)

MICE 0.74± 0.01 (5) 0.71± 0.01 (5) 0.53± 0.01 (9) 0.40± 0.15 (9)

MISSFOREST 0.79± 0.01 (3) 0.76± 0.01 (3) 0.71± 0.01 (6) 0.64± 0.01 (4)

GAIN 0.65± 0.01 (8) 0.65± 0.01 (8) 0.63± 0.01 (9) 0.59± 0.01 (6)

AimNet 0.78± 0.01 (4) 0.75± 0.01 (4) 0.72± 0.01 (3) 0.66± 0.01 (3)

DAEMA 0.71± 0.01 (7) 0.69± 0.01 (6) 0.66± 0.01 (5) 0.62± 0.01 (5)

CAGAIN w/o D 0.80 ± 0.01 (1) 0.77± 0.01 (2) 0.73 ± 0.01 (1) 0.67± 0.01 (2)

CAGAIN 0.80 ± 0.01 (1) 0.78 ± 0.01 (1) 0.73 ± 0.01 (1) 0.68 ± 0.01 (1)

Table 6. Varying missing rates (MR). Numerical, Solar Flare. RMSE ± std (rank),
lower is better, N/C for non-convergence.

MR = 20% MR = 40% MR = 60% MR = 80%

Mean Imputation 0.87± 0.41 (4) 0.72± 0.18 (2) 0.87± 0.08 (1) 0.84± 0.08 (2)

KNN 0.95± 0.29 (7) 0.75± 0.18 (3) 0.94± 0.11 (7) 0.93± 0.08 (7)

MICE 1.00± 0.36 (8) 0.87± 0.24 (8) 1.63± 0.38 (9) N/C (9)

MISSFOREST 1.27± 0.14 (9) 1.12± 0.20 (9) 1.42± 0.43 (8) 1.55± 0.71 (8)

GAIN 0.86± 0.36 (3) 0.79± 0.17 (5) 0.88± 0.06 (2) 0.89± 0.06 (6)

AimNet 0.92± 0.35 (6) 0.85± 0.25 (6) 0.92± 0.07 (5) 0.87± 0.10 (5)

DAEMA 0.88± 0.33 (5) 0.77± 0.17 (4) 0.89± 0.06 (4) 0.85± 0.07 (3)

CAGAIN w/o D 0.76± 0.31 (2) 0.86± 0.22 (7) 0.92± 0.07 (5) 0.85± 0.08 (3)

CAGAIN 0.71 ± 0.32 (1) 0.71 ± 0.15 (1) 0.88 ± 0.10 (2) 0.83 ± 0.08 (1)

function makes it possible to generate values that follow the same distribution
as the original data. When the adversarial loss function is not used, CAGAIN
behaves similarly to AIMNET.

Model Training. The training time of CAGAIN varies from 3 min to 97 min
across the 9 datasets. It is fast on Balance and Contraceptive, but slow on Spam
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Table 7. Varying missing rates (MR). Categorical, Solar Flare. ACC ± std (rank),
higher is better.

MR = 20% MR = 40% MR = 60% MR = 80%

Mode Imputation 0.67± 0.03 (9) 0.67± 0.01 (8) 0.67± 0.02 (6) 0.68± 0.01 (1)

KNN 0.75± 0.02 (6) 0.70± 0.02 (7) 0.66± 0.01 (8) 0.67± 0.01 (5)

MICE 0.76± 0.02 (4) 0.71± 0.01 (5) 0.69± 0.02 (4) 0.62± 0.06 (9)

MISSFOREST 0.76± 0.03 (4) 0.71± 0.02 (5) 0.67± 0.02 (6) 0.65± 0.01 (7)

GAIN 0.68± 0.04 (8) 0.65± 0.01 (9) 0.64± 0.02 (9) 0.64± 0.01 (8)

AimNet 0.78± 0.03 (2) 0.75 ± 0.01 (1) 0.72 ± 0.01 (1) 0.68 ± 0.01 (1)

DAEMA 0.75± 0.03 (6) 0.73± 0.01 (4) 0.69± 0.01 (4) 0.67± 0.01 (5)

CAGAIN w/o D 0.78± 0.02 (2) 0.74± 0.02 (2) 0.70± 0.01 (3) 0.68 ± 0.01 (1)

CAGAIN 0.79 ± 0.01 (1) 0.74± 0.01 (2) 0.71± 0.01 (2) 0.68 ± 0.01 (1)

(a) GAIN (α = 0.1). (b) AIMNET.

(c) CAGAIN (λ = 0.1). (d) CAGAIN (λ = 10).

Fig. 2. Toy example: 50% missing values on a scikit-learn moon dataset. Blue points
have no missing values. Orange points have one missing value on either coordinate.
(Color figure online)

Table 8. Effect of attention. Numerical, missing rate = 20%, RMSE, lower is better.

Credit Solar Flare Contraceptive Thoracic

CAGAIN 0.59± 0.03 0.71± 0.32 0.83± 0.04 0.77± 0.18

CAGAIN w/o Attention in D 0.59± 0.05 0.76± 0.41 0.94± 0.05 0.99± 0.27

and Letter, approximately proportional to the dataset size reported in Table 1.
Compared to AimNet, another attention-based method, CAGAIN spends about
twice training time. Nonetheless, considering the advantage of CAGAIN in
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Table 9. Effect of attention. Categorical, missing rate = 20%, ACC, higher is better.

Credit Solar Flare Contraceptive Thoracic

CAGAIN 0.80± 0.01 0.79± 0.01 0.64± 0.01 0.85± 0.01

CAGAIN w/o Attention in D 0.79± 0.01 0.77± 0.01 0.61± 0.01 0.79± 0.03

robustness, CAGAIN saves the effort of users in selecting and tuning models
for data imputation.

Ablation Study. To evaluate the impact of using the attention mechanism, we
conduct an ablation study and report the results in Table 8 for numerical data
and Table 9 for categorical data on Credit, Solar Flare, Contraceptive, and Tho-
racic. We remove the attention mechanism from the discriminator of CAGAIN,
and comapre the performance. For both data types, it can be observed that
using the attention mechanism consistently improves the performance, reduc-
ing RMSE by up to 25% and raising accuracy by up to 8%. This result shows
that the attention mechanism can effectively devote more focus to a subset of
attributes and discover the correlation between the missing value and those of
other attributes. Among the four datasets, Thoracic reports the most significant
impact of the attention mechanism. We believe this is because of its dataset
statistics and distributions, e.g., less number of numericals and more number of
categoricals. As such, we expect that CAGAIN will deliver more superior results
when imputing missing values for such kind of datasets.

Table 10. Post-imputation prediction performance. Numerical, missing rate = 20%.
ACC ± std (rank), higher is better.

Spam Letter Balance Breast Eye EEG

Mean Imputation 0.92±0.01 (8) 0.78±0.01 (8) 0.79±0.01 (8) 0.92±0.01 (8) 0.87±0.01 (8)

KNN 0.96±0.01 (6) 0.95±0.01 (1) 0.87±0.01 (6) 0.98±0.01 (2) 0.96±0.01 (1)

MICE 0.98±0.01 (2) 0.85±0.01 (6) 0.91±0.01 (3) 0.99±0.01 (1) 0.90±0.01 (6)

MISSFOREST 0.97±0.01 (2) 0.95±0.01 (1) 0.90±0.01 (5) 0.98±0.01 (2) 0.94±0.02 (2)

GAIN 0.96±0.01 (6) 0.80±0.02 (7) 0.81±0.02 (7) 0.97±0.02 (7) 0.89±0.02 (6)

AimNet 0.97±0.01 (2) 0.93±0.01 (4) 0.92±0.01 (1) 0.98±0.01 (2) 0.93±0.01 (4)

DAEMA 0.97±0.01 (2) 0.91±0.01 (5) 0.90±0.01 (3) 0.98±0.02 (2) 0.93±0.01 (4)

CAGAIN 0.98±0.01 (1) 0.94±0.01 (3) 0.92±0.01 (1) 0.98±0.01 (2) 0.94±0.01 (2)

Credit Solar Flare Contraceptive Thoracic

Mean Imputation 0.85±0.01 (8) 0.83±0.01 (7) 0.76±0.01 (6) 0.93±0.01 (1)

KNN 0.86±0.01 (1) 0.86±0.01 (1) 0.78±0.01 (4) 0.93±0.01 (1)

MICE 0.86±0.01 (1) 0.85±0.01 (3) 0.79±0.01 (1) 0.93±0.01 (1)

MISSFOREST 0.86±0.01 (1) 0.83±0.01 (7) 0.74±0.01 (8) 0.92±0.01 (8)

GAIN 0.86±0.01 (1) 0.86±0.01 (1) 0.77±0.02 (5) 0.93±0.01 (1)

AimNet 0.86±0.01 (1) 0.84±0.01 (5) 0.79±0.01 (1) 0.93±0.01 (1)

DAEMA 0.86±0.01 (1) 0.84±0.01 (5) 0.76±0.01 (6) 0.93±0.01 (1)

CAGAIN 0.86±0.01 (1) 0.85±0.01 (3) 0.79±0.01 (1) 0.93±0.01 (1)
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Table 11. Post-imputation prediction performance. Numerical, missing rate = 80%.
ACC ± std (rank), higher is better.

Spam Letter Balance Breast Eye EEG

Mean Imputation 0.67±0.01 (7) 0.05±0.01 (8) 0.47±0.01 (6) 0.68±0.01 (8) 0.59±0.01 (8)

KNN 0.67±0.01 (7) 0.18±0.01 (5) 0.61±0.02 (3) 0.82±0.03 (6) 0.63±0.01 (4)

MICE 0.74±0.03 (5) 0.08±0.01 (6) 0.63±0.02 (1) 0.80±0.02 (7) 0.60±0.01 (7)

MISSFOREST 0.81±0.01 (3) 0.23±0.02 (3) 0.53±0.03 (5) 0.89±0.01 (2) 0.62±0.02 (5)

GAIN 0.73±0.01 (6) 0.06±0.01 (7) 0.34±0.09 (8) 0.84±0.02 (4) 0.62±0.02 (5)

AimNet 0.80±0.02 (4) 0.27±0.01 (2) 0.62±0.02 (2) 0.82±0.07 (5) 0.66±0.01 (2)

DAEMA 0.82±0.01 (2) 0.20±0.01 (4) 0.34±0.05 (7) 0.89±0.02 (2) 0.65±0.01 (3)

CAGAIN 0.83±0.01 (1) 0.30±0.01 (1) 0.57±0.02 (4) 0.91±0.01 (1) 0.67±0.01 (1)

Credit Solar Flare Contraceptive Thoracic

Mean Imputation 0.79±0.01 (7) 0.80±0.01 (3) 0.42±0.03 (5) 0.86±0.01 (4)

KNN 0.80±0.01 (4) 0.77±0.02 (5) 0.50±0.01 (1) 0.87±0.01 (1)

MICE 0.52±0.07 (8) 0.56±0.23 (8) 0.48±0.05 (2) 0.86±0.01 (4)

MISSFOREST 0.80±0.01 (4) 0.62±0.11 (7) 0.41±0.05 (6) 0.85±0.01 (7)

GAIN 0.80±0.01 (4) 0.81±0.03 (2) 0.39±0.01 (7) 0.85±0.02 (7)

AimNet 0.82±0.01 (1) 0.78±0.02 (4) 0.47±0.03 (3) 0.87±0.01 (1)

DAEMA 0.82±0.01 (1) 0.77±0.02 (5) 0.37±0.02 (8) 0.86±0.01 (4)

CAGAIN 0.81±0.01 (3) 0.82±0.02 (1) 0.47±0.03 (3) 0.87±0.01 (1)

Post-imputation Performance To show how data imputation affects down-
stream tasks, we perform a post-imputation prediction with a random forest to
predict the class labels in the datasets. Tables 10 and 11 report the classifica-
tion accuracy with pre-imputation missing rate of 20% and 80%, respectively.
When missing rate is 20%, CAGAIN is always in the top-3 on all the datasets,
and is the best on 5 of them. When the missing rate is 80%, CAGAIN is the
winner of 6 datasets and in the top-3 on 8 datasets, showcasing its robustness
and advantage in a high missing rate scenario. In contrast, the performance of
other competitors drastically varies across the datasets, and many recently pro-
posed methods are even worse than KNN. This experiment demonstrates the
superiority of CAGAIN in imputation quality.

6 Conclusion and Future Work

Seeing the weakness of existing approaches in producing robust results for
dataset or missing rate shift, we proposed CAGAIN, a new model for tabular
data imputation. CAGAIN employs a GAN along with the attention mecha-
nism, with former mimicking real complete data, and the latter capturing the
correlation between columns by focusing on the most important attributes that
determine the true values of the missing positions. The experiments showed that
while the performance of existing approaches significantly varies across datasets
and missing rates, our model is always in the top-3, thereby demonstrating its
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robustness. A post-imputation prediction test reported higher and more robust
accuracy using CAGAIN. Future work includes further improving the imputa-
tion accuracy and training time.
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struction using a wasserstein generative adversarial imputation network. In: ICCS,
pp. 225–239 (2020)

7. Gondara, L., Wang, K.: MIDA: multiple imputation using denoising autoencoders.
In: PAKDD, pp. 260–272 (2018)

8. Goodfellow, I.J., et al.: Generative adversarial nets. In: NIPS, pp. 2672–2680 (2014)
9. Jonsson, P., Wohlin, C.: An evaluation of k-nearest neighbour imputation using

likert data. In: METRICS, pp. 108–118 (2004)
10. Kalton, G., Kasprzyk, D.: Imputing for missing survey responses. In: ASA-SRMS,

vol. 22, p. 31 (1982)
11. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: ICLR (2015)
12. Kodali, N., Abernethy, J., Hays, J., Kira, Z.: On convergence and stability of GANs

(2017). arXiv preprint arXiv:1705.07215
13. Mao, X., Li, Q., Xie, H., Lau, R.Y., Wang, Z., Smolley, S.P.: Least squares gener-

ative adversarial networks. In: ICCV, pp. 2794–2802 (2017)
14. McCoy, J.T., Kroon, S., Auret, L.: Variational autoencoders for missing data impu-

tation with application to a simulated milling circuit. IFAC 51(21), 141–146 (2018)
15. Miyato, T., Kataoka, T., Koyama, M., Yoshida, Y.: Spectral normalization for

generative adversarial networks. In: ICLR (2018)
16. Nazabal, A., Olmos, P.M., Ghahramani, Z., Valera, I.: Handling incomplete het-

erogeneous data using VAEs. Pattern Recogn. 107, 107501 (2020)
17. Neves, D.T., Naik, M.G., Proença, A.: SGAIN, WSGAIN-CP and WSGAIN-GP:

novel GAN methods for missing data imputation. In: ICCS, pp. 98–113 (2021)
18. Oh, E., Kim, T., Ji, Y., Khyalia, S.: STING: self-attention based time-series impu-

tation networks using GAN. In: ICDM, pp. 1264–1269 (2021)
19. Qiu, W., Huang, Y., Li, Q.: IFGAN: missing value imputation using feature-specific

generative adversarial networks. In: BigData, pp. 4715–4723 (2020)

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://arxiv.org/abs/1705.07215


CAGAIN: Column Attention Generative Adversarial Imputation Networks 273

20. Rekatsinas, T., Chu, X., Ilyas, I.F., Ré, C.: Holoclean: holistic data repairs with
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Abstract. User features and item features are important information
for recommendation systems, and their interaction significantly improves
the accuracy of recommendations. Existing work classifies types of inter-
actions as internal and cross interactions. However, it does not take into
consideration the different importance of information in cross interac-
tions, nor captures more complex dependencies between features with
higher-order interactions. To solve this problem we propose Collabora-
tive Filtering based on Self-Attention Mechanism and Feature Fusion
(CF-SAFF). It explicitly uses internal interactions for user and item fea-
ture learning, and assigns different weights to cross interactions based
on the Self-Attention mechanism to represent the different importance
of interaction nodes, thereby performing preference matching on recom-
mendations. At the same time, the fusion operation of internal interac-
tion information and cross interaction information is used to discover
high-order feature combination information, which improves the predic-
tion accuracy and generalization ability of the model. The model has
conducted extensive experiments on public standard datasets, and the
results show that the model has achieved better results than previous
mainstream models in all performance indicators.

Keywords: recommendation systems · Self-Attention · high-order
interactions · Collaborative Filtering

1 Introduction

Research on recommendation systems dates back to the 1990s, and many content
based and collaborative filtering-based approaches have been developed. Collab-
orative filtering (CF) is one of the earliest proposed recommendation techniques
[11,22], and it is also the most researched and most practically applied rec-
ommendation system based on matrix factorization technology. It learns the
embedding of users and items in user-item interactions, and shows the interac-
tion between users and items [18]. Considering attribute interactions for each
data sample when learning attribute embedding [16,17] provides useful informa-
tion for accurate predictions. Typically, attribute interaction-aware CF models
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C. Strauss et al. (Eds.): DEXA 2023, LNCS 14147, pp. 274–288, 2023.
https://doi.org/10.1007/978-3-031-39821-6_22
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consider attribute interactions to determine the final predictor Factorization
Machine (FM) [16] models each attribute interaction as a dot product of two
embedding vectors and linearly aggregates all modeling results. However, lim-
ited by the linear nature of factorization models, they lack performance when
dealing with large-scale and complex data, such as complex attribute interac-
tions and may contain complex semantic information. With the application of
Graph Neural Network (GNN) in recommendation systems, Li et al. [13] and
Su et al. [19] used the relational modeling capability of GNN to capture more
complex attribute interaction information. These models treat all attribute inter-
actions equally, modeling and aggregating them in the same way, which may not
give satisfactory results since different attribute interactions should have differ-
ent effects. Attribute interactions are classified into two categories [20] in Neu-
ral Graph Matching based Collaborative Filtering model (GMCF). The inter-
actions between user attributes (or item attributes) are described as internal
interactions. The interaction between user attributes and item attributes are
called cross interactions. If the application scenario is to predict the possibility
of male users liking to watch sci-fi movies, the cross feature <male, science> is
more important than <male, comedy>. It is unreasonable for the above model
to perform indiscriminate sum pooling for all cross interactions. At the same
time, high-level interaction information is not used. We know that there are
certain dependencies between features, and they are all “and” relationships. For
recommendation model, it is crucial to extract high-order interactions between
features.

To solve the above problem, we propose Collaborative Filtering based on
Self-Attention Mechanism and Feature Fusion (CF-SAFF). CF-SAFF uses the
Self-Attention mechanism to assign different weights to cross interactions to indi-
cate the different importance of interaction nodes, thus matching preferences
for recommendations. CF-SAFF attempts to perform information fusion oper-
ations to model internal and cross interaction information, capture meaningful
high-order interactions between users and items, give important features greater
weight, and consider interactions between multiple features, while they are not
simply considered as independent factors. High-order interactions can capture
more complex dependencies between features, thereby improving the predictive
accuracy of the model. To the best of our knowledge, this is the first attempt
to use the Self-Attention mechanism to assign weight to cross interactions and
to fuse internal and cross interaction information to obtain high-order feature
combination information. Our contributions can be summarized in three aspects:

• We use the Self-Attention mechanism to improve the cross interaction, and
assign different weights to the cross interaction to represent the different
importance of the interaction nodes, so as to perform preference matching on
the recommendation.

• We perform fusion operations on internal and cross-interaction information
to capture meaningful high-order interactions between users and items, give
important features greater weight, and improve the prediction accuracy and
generalization ability of the model.
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• We conduct extensive experiments on three public standard datasets. The
Self-Attention mechanism and high-order interaction modules play an impor-
tant role, and the experiments confirm the superiority of our proposed model.

2 Related Work

2.1 CF Model

“Collaborative filtering” is a process that filters massive amounts of informa-
tion in collaboration with everyone’s feedback, evaluations, and opinions, and
screens out information that target users may be interested in. Decomposing the
co-occurrence matrix in a collaborative filtering algorithm into a user matrix
and an item matrix, and using the inner product of the user hidden vector and
the item hidden vector to rank and recommend, is the basic idea of the classical
model of collaborative filtering, FM [16]. The feature field [10] is introduced to
increase the concept of field, and the same feature uses different latent vectors for
different fields, so that the model modeling is more accurate, or add a gate [14],
to remove useless features. However, limited by the natural linear nature of the
factorization model, its performance in dealing with large-scale and complex data
is lacking, such as complex attribute interactions, and the item side may con-
tain complex semantic information. Adding more complex nonlinear structures
such as Multi-Layer Perceptron (MLP) to capture implicit information [2,4,7,9]
has not been proven effective [1]. GMCF [20] aggregates attribute interactions
in an explicit way to obtain more effective attribute interaction modeling and
structural information. On this basis, we perform fusion operations on internal
and cross interaction information to capture meaningful high-order interactions
between users and items, and improve the prediction accuracy and generalization
ability of the model.

2.2 Self-attention Mechanism

Attention mechanisms have been widely used in various fields of deep learning
in recent years, whether it is image processing, speech recognition, or natu-
ral language processing, attention models can be clearly seen in the processing
of various tasks in recommendation systems [15,24]. Self-attention mechanism
can reduce the dependence on external information, and is good at mining the
internal correlation of features from the data itself. Items in the input sequence
are first encoded in parallel into multiple representations, called keys, queries,
and values. Self-Attention mechanism has played an important role in vari-
ous tasks such as reading comprehension, textual implicit, sentence representa-
tion, abstract summaries, and recommendation systems [6,12,21]. Our proposed
model uses the Self-Attention mechanism to assign different weights to user-item
cross interactions to represent the different importance of interaction nodes and
optimize preference matching.



Self-attention Mechanism and Feature Fusion 277

2.3 Graph Neural Networks

Graph Neural Networks (GNNs) are powerful tools for processing graph struc-
tured data [23]. The molecular data are the data of the graph structure, with
the atoms acting as nodes in the graph and the bonds connecting them as the
edges of the graph. GNNs can improve the quality of node embedding by consid-
ering neighborhood information extracted from the underlying graph topology.
They have been widely used in a variety of applications, including knowledge
graphs, drug discovery, neuroscience, social networks, recommendation systems
[3,5,8,25]. GNN is essentially suitable for node interaction modeling on graph
structure features. Li et al., [13] and Su et al., [19] utilize GNNs for attribute
interaction modeling and aggregation as a graph learning process. But these
models do not differentiate attribute interactions, which is inefficient in captur-
ing useful structural information. Our data is modeled with a graph structure,
and the final mixed features are generated by fusion of internal interaction infor-
mation, cross interaction information, basic graph structure information, and
high-order interaction information, and then aggregated in a graph matching
structure to make recommendation more efficient.

3 The Proposed Model: CF-SAFF

3.1 Symbolic Description

The user’s attribute space is represented by J U and the item’s attribute space
is represented by J I . Attribute-value pair is represented as (att, val), where
att represents the attribute and val represents the attribute value. For exam-
ple, (female, 1) means that the user’s gender is female, where female ∈
J U means that female is a user attribute. Let D be N training pairs with
D = (xn, yn)1≤n≤N , where xn is called the data sample consisting of CU

n =
cU = (att, val)att∈J U and CI

n = cI = (att, val)att∈J I . Respectively, CU
n and CU

n

are called the feature representation of the user and the item. The user’s implicit
feedback on the item (e.g., liked, watched) is denoted as yn ∈ R. Our goal is to
devise a prediction function Fsaff (xn) that gives the correct feedback yn for the
input xn.

Each attribute att ∈ J U ∪ J I is embedded in d-dimensional space R
d as a

vector v. The same attribute att in all data samples shares the same embed-
ding vector vatt, but their corresponding attribute values val are different. The
attribute-value pairs are represented as uatt, uatt = val · vatt. For simplicity,
the subscripts of v and u are omitted hereinafter. The co-occurrence of two
attributes att1 and att2 is defined as an attribute interaction. The function
f(u1, u2):R2×d −→ R

� is modeled as an attribute interaction. Where � represents
the dimension of the output, and the collaborative information of interactions
in different data samples will further help to discover the interactions between
attributes that have never happened simultaneously. Therefore, f(·, ·) actually
learns attribute embedding that capture the collaborative information between
attributes (i.e. similar attributes will have similar embedding) [16].
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G = <V, E> is represented as a graph, where v = vi1<i<n is the set of n
nodes, each represented by a vector vi. Neighborhood information between nodes
is denoted as E. Graph neural networks aggregate neighborhood information
through message passing. Specifically, node’s message passing first aggregates
the vector representations of its neighbors. Then, aggregate vectors by fusing
nodes and neighbor nodes. The updated nodes are represented as:

v′
i = ffuse(vi, Aggr(vj))j∈N(i) (1)

where the ffuse(·, ·) fusion function, Aggr(.) is an aggregation function that
aggregates neighborhood information into a fixed dimensional representation
(e.g., element sum), and N(i) is the set of neighborhoods of node i.

3.2 Attention Mechanism Attempts

In order to prove that the Self-Attention mechanism is more suitable for our
model, we tried different attention mechanisms.

Attention Net. An attention network is added to the interaction of second-
order cross features. Figure 1 illustrates the basic structure of Attention net.
Attention is given in the form of a net, an MLP is used to parameterize the
attention score, and the Attention net is defined as:

a′
ij = hT Relu(W (ui � ûj) + b) (2)

aij =
exp(a′

ij)∑
j∈Ni

exp(a′
ij)

(3)

The structure of Attention net is a simple single fully connected layer with a
softmax output layer. Where, W ∈ R

N×d, b ∈ R
N , h ∈ R

N , j ∈ Ni is the set of
all neighbors of the node i. The learned model parameters are the weight matrix
W and bias vector b from the feature intersection layer to the fully connected
layer of the Attention network and the weight vector h from the fully connected
layer to the softmax output layer. ui is the embedding of a node i in one graph,
ûj is the embedding of node j in another graph. aij is the importance of each
interaction feature. Attention net participates in the back-propagation process
with the whole model to obtain the final weight parameters, and the model with
Attention net is called CF-AFF.

Fig. 1. Structural Model of Attention net.
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Self-attention Mechanism. Self-Attention mechanism is a special case of
attention mechanism that captures the relationship between each user and
each item in the sequence, Self-Attention mechanism as shown in Fig. 2. Use
the element-level product of ui and ûj as input to the Self-Attention layer,
X ∈ R

N×d:
X = ui � ûj (4)

The initial values of query, key and value are all equal to input matrix X, query
and key are projected into the same space by a linear transformation and they
have common parameters.

Q = XWq (5)
K = XWk (6)

where Wk = Wq ∈ R
d×d is the weight matrix of query and key respectively, the

scaled dot product is used as the attention score function, and then the attention
score mapping matrix can be obtained by calculation.

aij = softmax(
KT Q√

d
) (7)

The output attention score mapping matrix aij is a matrix of N × N , repre-
senting the similarity of N items. Finally, the attention score mapping matrix is
multiplied by value.

sij = aijX (8)

Fig. 2. A structural Model of the Self-Attention Mechanism.
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3.3 CF-SAFF Model

Our model is composed of three main modules: (1) Feature embedding and graph
construction modules. (2) Internal interaction based on message passing and
cross interaction module based on Self-Attention mechanism. (3) Information
fusion module, an overview of the CF-SAFF model is shown in Fig. 3.
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Fig. 3. An Overview of the CF-SAFF Model.

Feature Embedding and Graph Construction. Each data sample x = cU
i ∪

cI
j is feature-embedded to obtain user feature vector cU

i 1<i<p and item feature
vector cI

i 1<i<q, and then the user attribute graph and item attribute graph are
constructed respectively. Specifically, each user (each item) is constructed as a
graph, with attributes as nodes and internal interactions between attributes as
edges. For each input sample x, we use the attribute representation uU

i as the
node representation for each node i. Thus, the set of nodes in user attribute
graph is denoted as V U = uU

i i∈J U . Pairs of nodes in a node set are connected
by an edge to represent the interaction between two attributes, so the user
attribute graph is a complete graph. Each user property graph is represented as
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GU =
〈
V U , EU

〉
, where EU is the set of edges formed by the interaction of all

internal properties. The item graphs are constructed in the same way.

Internal Interaction Based on Message Passing and Cross Interaction
Based on Self-attention Mechanism. In this model, message passing is used
to model internal interactions, which are used for the user (item) feature learning.
Specifically, we used a MLP function to model each internal interaction. The
feature embeddings of two nodes are taken as input and the modelling results
are output:

zij = fMLP (ui, uj) (9)

where zij ∈ R
d is the result of modelling the interaction of node pair (i, j).

fMLP explicitly modeling the interaction information between two attributes,
combining interaction modeling and message passing in graph learning. Then, all
interaction modelling results corresponding to node i are aggregated into message
passing information. We use element-level sums to aggregate the interaction
modelling results:

zi =
∑

j∈Ni

zij (10)

where zi ∈ R
d is the result of a message passing information and Ni denotes the

set of neighbors of node i.
Intersection modeling is used to match nodes in the two graphs. Intuitively, if

user attribute cU
i shows a higher preference for item attribute cI

j , then cU
i and cI

j

have a higher matching score. We use Self-Attention mechanism to assign differ-
ent weights to each cross feature to increase the weight of valuable information.
Specifically, we model the cross interactions as:

sij = aij(ui � ûj) (11)

where aij is the attention score calculated using the Self-Attention mechanism,
sij denotes the result of matching two nodes. Similar to message passing, we use
element-level sums to aggregate node matches between one node in a graph and
all nodes in another graph, and aggregate the node matching results as:

si =
∑

j∈v̂i

sij (12)

Information Fusion Module. We use the cross interaction node si and the
messaging of internal interactions zi to capture meaningful high-order interac-
tions. Modelling with element-level products as:

li = zi � si (13)

where li denotes the element-level product of high-order interactions result of
node i.

Using the initial node representation ui, the internal interaction information
zi, the cross interaction information si, and high-order interactions information
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li as input sequences, the recurrent neural network model GRU as the fusion
function, the final output hidden layer is the fused node representation as:

u′
i = fGRU (ui ⊕ zi ⊕ si ⊕ li) (14)

where u′
i denotes the fused representation of node i and, fGRU ∈ R

4×d → R
d, ⊕

the connection operation.
We aggregate the fused node representations into a graph structure, and

then element-level sums are used to aggregate the fused node representations,
resulting in vector representations of the user attribute graph and item attribute
graph:

vU
G =

∑

i∈V I

uU
i

′
, vI

G =
∑

i∈V U

uI
i

′
(15)

where V I denotes the set of nodes of the project attribute graph and V U denotes
the set of nodes of the user attribute graph.

Finally we match the two graphs using the dot product to get the final
prediction function as:

y′ = vU
G

T
vI

G (16)

Model Training. We use the L2 norm to regularize all parameters of the
CF-SAFF model, the empirical risk minimization function consisting of a cross-
entropy loss function and an L2 norm:

R(θ) =
1
N

N∑

n=1

ynlogy′ + (1 − yn) log(1 − y′) + λ(||θ||2) (17)

θ∗ = argminθR(θ) (18)

All parameters in the CF-SAFF model are denoted as θ, θ∗ is the optimal
parameter obtained.

4 Experiments

4.1 Datasets and Data Preparation

The proposed model was evaluated on three datasets and the statistical infor-
mation is presented in Table 1. User ratings of film are included in Movielens
1M. A user and a movie with the corresponding attributes are included in each
data example. Other attributes are added to the dataset, such as directors and
actors. Explicit ratings were transformed into implicit feedback, with ratings
greater than 3 being treated as positive for Movielens 1M. Invisible user ratings
of books are included in Book-crossing. A user and a book with the correspond-
ing attributes are included in each data instance. The Taobao dataset collects
records of users clicking on advertisements, and each record contains a category
of users and advertisements.
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Table 1. Experimental Dataset Statistics

Dataset Data User Item User attr. Item attr.

MovieLens 1M 1,149,238 5,950 3514 30 6944
Book-Crossing 1,050,834 4,873 53168 87 43157
Taobao 2,599,463 4,532 371,760 36 434,254

4.2 Evaluation Indicators

We use the Area Under Curve (AUC), Logloss, Normalized Discounted Cumula-
tive Gain (NDCG) to evaluate the performance of the proposed model and the
baseline model. Logloss is an evaluation metric for binary classification models
that measures the distance between the predicted score and the true label of each
instance, NDCG@k is a common metric for evaluating top k recommendations.
It is an evaluation index that considers the return order. We set the values of k
to 5 and 10.

4.3 Baselines

FM [16] is established that second-order feature interactions from vector inner
products and all modelling results are aggregated into a final prediction. NFM
[9] combines the linearity of FM in second-order feature interaction modelling
with the non-linearity of neural networks in higher-order feature interaction mod-
elling. W&D [4] can efficiently memorise sparse feature interactions and gen-
eralize to previously unseen feature interactions. DeepFM [7] consists of two
components, the FM component and the depth component, which share the same
input. AutoInt [17] uses a Self-Attention mechanism with residual networks to
explicitly model feature interactions in low-dimensional space. Fi-GNN [13]
models complex interactions between feature fields into modeling node interac-
tions on feature graphs. L0-SIGN [19] detects the most beneficial feature inter-
actions and uses only the beneficial feature interactions for recommendations,
treating each data sample as a graph, features as nodes and feature interactions
as edges. GMCF [20] recognizes two different types of attribute interactions,
aggregated into a graph matching structure, and both types of attribute inter-
actions are effectively captured for recommendation. CAN [2] uses the MLP
structure to mine the relationship between the user’s historical behavior and the
target item, which approximates the empirical feature interaction.

4.4 Experimental Setup

The training set, validation set and test set are randomly divided in the ratio
of 6:2:2. The embedding dimension of the node is set to 64 (i.e. d = 64). The
hidden layer of the MLP is set to 1 and the number of units is set to 4d. For all
baselines, the MLP structure of the interaction modeling is set to be the same



284 W. Kong et al.

Table 2. Summary of the Performance in Comparison with Baselines

model MovieLens 1M Book-Crossing Taobao

AUC LoglossNDCG@5NDCG@10AUC LoglossNDCG@5NDCG@10AUC LoglossNDCG@5NDCG@10

FM 0.8761 0.4409 0.8143 0.8431 0.7417 0.5771 0.7616 0.8029 0.6171 0.2375 0.0812 0.1120

NFM 0.8985 0.3996 0.8486 0.8832 0.7988 0.5432 0.7989 0.8326 0.6550 0.2122 0.0997 0.1251

W&D 0.9043 0.3878 0.8538 0.8869 0.8105 0.5366 0.8048 0.8381 0.6531 0.2124 0.0959 0.1242

DeepFM 0.9049 0.3856 0.8510 1.8848 0.8127 0.5379 0.8088 0.8400 0.6550 0.2115 0.0974 0.1243

AutoInt 0.9034 0.3883 0.8619 0.8931 0.8130 0.5355 0.8127 0.8472 0.6434 0.2146 0.0924 0.1206

Fi-GNN 0.9049 0.3871 0.8705 0.9029 0.8136 0.5338 0.8094 0.8522 0.6462 0.2131 0.0986 0.1241

L0-SIGN 0.9072 0.3846 0.8849 0.9094 0.8163 0.5274 0.8148 0.8629 0.6547 0.2124 0.1006 0.1259

GMCF 0.9127 0.3789 0.9374 0.9436 0.8228 0.5233 0.8671 0.8951 0.6679 0.1960 0.1112 0.1467

CAN 0.9133 0.3773 0.9396 0.9442 0.8235 0.5143 0.8722 0.8996 0.6776 0.1919 0.1130 0.1494

CF-AFF 0.9194 0.3702 0.9412 0.9472 0.8326 0.5139 0.8859 0.9068 0.6803 0.1911 0.1145 0.1539

CF-SAFF0.92870.36230.9477 0.9538 0.83790.50170.8965 0.9224 0.68920.18740.1210 0.1566

Improv 1.68% 3.97% 0.86% 1.02% 1.75% 2.45% 2.79% 2.53% 1.71% 2.34% 7.08% 4.82%

as the MLP in our model to allow for a fair comparison. The parameter λ for
regularisation is set to 1×10−5; the learning rate α is set to 1×10−3; and Adam
is used as the optimization algorithm for the model.

4.5 Performance Comparison

The experimental results of the nine baseline models with the proposed model
on the three datasets are presented in Table 2. CF-AFF and CF-SAFF outper-
formed the baseline model for all metrics on all datasets. Our model achieved
the best performance, which shows that this model is able to analyse attribute
information effectively. FM and AFM are the worst performers, using only dot
products for modelling attribute interactions and are unable to model complex
interactions effectively. GMCF, AutoInt, Fi-GNN, L0-SIGN, CAN, CF-AFF, and
CF-SAFF are models that explicitly model attribute interactions. They obtain
better prediction accuracy than other models, which says that explicit modelling
is more helpful in extracting useful attribute information. The GNN-based mod-
els (such as Fi-GNN, GMCF, CF-AFF, CF-SAFF) have better predictions than
other models, which illustrate the role of GNN in attribute interaction mod-
elling. This shows that the Self-Attention mechanism assigns different weights
to cross interactions and increases high-order interaction information, effectively
improving the performance of the model.

4.6 Model Analysis and Discussion

Ablation Study. To explore whether the Self-Attention mechanism and high-
order interactions have a positive effect on prediction. We removed the Self-
Attention mechanism module and the high-order interactions module. The Self-
Attention module is denoted as -A, and the high-order interactions module is
denoted as -L. Removing the high-order interactions module gives the model
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no-L and removing the Self-Attention mechanism module gives the model no-
A. If both modules are present, our model is obtained. As shown in Fig. 4 (the
results of Logloss and NDCG@5 are omitted because they have the same trend
as AUC and NDCG@10), we found that both the Self-Attention module and
the high-order interactions module improved the performance of the model to a
certain extent, and the feasibility of the two modules was proved.

Fig. 4. Impact of Using Different Modules on The Model.

Fusion Algorithm Research. To demonstrate the validity of GRU, we further
used SUM and MLP as aggregation functions, and the experimental results of
these three algorithms as fusion methods are in Table 3. GRU was used as a fusion
function to efficiently represent the fused nodes for accurate predictions. The
worst results were obtained when SUM was used as a fusion function. This shows
that information fusion is a complex process that requires powerful algorithms.

Table 3. Performance Using Different Fusion Algorithms

MovieLens 1M Book-Crossing Taobao
AUC NDCG@10 AUC NDCG@10 AUC NDCG@10

SUM 0.9143 0.9488 0.8312 0.9198 0.6729 0.1489
MLP 0.9131 0.9494 0.8304 0.9211 0.6807 0.1548
GRU 0.9287 0.9538 0.8379 0.9224 0.6892 0.1566

Dimensional Studies. The results of the proposed model on different node
embedding dimensions (d) are presented in Fig. 5. Our model achieved the best
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Fig. 5. Performance of CF-SAFF in Different Node (attribute) Embedding Dimensions.

performance on both datasets when d = 64, suggesting that higher dimension
does not necessarily lead to better prediction accuracy. Higher dimension means
that more parameters are fitted, which can lead to over-fitting of this model.

Effect of the Number of Hidden Layers of MLP. Evaluate how differ-
ent numbers of hidden layers in the MLP would affect the performance of the
proposed model. Specifically, the proposed model was run using 0, 1, 2 and 3
hidden layers. The absence of hidden layers means that the MLP only performs
the transformation from linear, using the same number of cells per hidden layer
(4d), and the results are shown in Table 4. The results show that the process of
extracting useful information is complex and requires a non-linear approach. The
best results for the proposed model were obtained when the number of layers
of hidden layers was 1. This shows that increasing the number of hidden layers
does not make the model perform better, as higher numbers of hidden layers can
lead to overfitting.

Table 4. The Performance of CF-SAFF on Using Different MLP Depths

MovieLens 1M Book-Crossing Taobao
AUC NDCG@10 AUC NDCG@10 AUC NDCG@10

0 0.9196 0.9477 0.8289 0.9112 0.6782 0.1512
1 0.9287 0.9538 0.8379 0.9224 0.6892 0.1566
2 0.9264 0.9501 0.8344 0.9176 0.6843 0.1537
3 0.9233 0.9489 0.8311 0.9155 0.6831 0.1526

Effect of Self-attention on Different Datasets. We find that the proposed
model on the Taobao dataset improves the accuracy more because the Taobao
dataset is more sparse compared to others. We know that a dense dataset con-
tains more effective user information, while a sparse dataset has more dispersed
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effective information, and the Self-Attention mechanism can compensate for the
performance impact caused by sparse data by assigning higher weights to more
important information.

5 Conclusion

In this paper, we propose a new recommendation model based on Self-Attention
mechanism and high-order interactions. We use a Self-Attention mechanism to
assign different weights to cross interactions for preference matching. We per-
form fusion operations on internal and cross interaction information to capture
meaningful high-order interactions between users and items, give important fea-
tures greater weight, and improve the prediction accuracy and generalization
ability of the model. Experimental results show that the proposed model is an
effective and experiments were conducted on three standard datasets widely used
by recommendation systems, the results outperformed all the baselines.
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References

1. Beutel, A., et al.: Latent cross: making use of context in recurrent recommender
systems. In: Proceedings of the Eleventh ACM International Conference on Web
Search and Data Mining, pp. 46–54 (2018)

2. Bian, W., et al.: CAN: feature co-action network for click-through rate prediction.
In: Proceedings of the Fifteenth ACM International Conference on Web Search
and Data Mining (2022)

3. Chen, Y., Wu, L., Zaki, M.J.: Toward subgraph guided knowledge graph question
generation with graph neural networks. arXiv preprint arXiv:2004.06015 (2020)

4. Cheng, H.T., et al.: Wide & deep learning for recommender systems. In: Proceed-
ings of the 1st Workshop on Deep Learning for Recommender Systems, pp. 7–10
(2016)

5. Di, W.: LightFIG: simplifying and powering feature interactions via graph for
recommendation. PeerJ Comput. Sci. 8, e1019 (2022)

6. Fu, Y., Liu, Y.: CGSPN: cascading gated self-attention and phrase-attention net-
work for sentence modeling. J. Intell. Inf. Syst. 56, 147–168 (2020). https://doi.
org/10.1007/s10844-020-00610-z

7. Guo, H., Tang, R., Ye, Y., Li, Z., He, X.: DeepFM: a factorization-machine based
neural network for CTR prediction. arXiv preprint arXiv:1703.04247 (2017)

8. Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large
graphs. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

9. He, X., Chua, T.S.: Neural factorization machines for sparse predictive analytics.
In: Proceedings of the 40th International ACM SIGIR Conference on Research and
Development in Information Retrieval, pp. 355–364 (2017)

10. Juan, Y., Zhuang, Y., Chin, W.S., Lin, C.J.: Field-aware factorization machines for
CTR prediction. In: Proceedings of the 10th ACM Conference on Recommender
Systems, pp. 43–50 (2016)

http://arxiv.org/abs/2004.06015
https://doi.org/10.1007/s10844-020-00610-z
https://doi.org/10.1007/s10844-020-00610-z
http://arxiv.org/abs/1703.04247


288 W. Kong et al.

11. Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender
systems. Computer 42(8), 30–37 (2009)

12. Li, J., Wu, M.: Deep attention factorization machine network for distributed recom-
mendation system. In: 2022 International Conference on Machine Learning, Cloud
Computing and Intelligent Mining (MLCCIM), pp. 511–517 (2022)

13. Li, Z., Cui, Z., Wu, S., Zhang, X., Wang, L.: Fi-GNN: modeling feature interactions
via graph neural networks for CTR prediction. In: Proceedings of the 28th ACM
International Conference on Information and Knowledge Management, pp. 539–548
(2019)

14. Liu, B., et al.: AutoFIS: automatic feature interaction selection in factorization
models for click-through rate prediction. In: Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, pp. 2636–2645
(2020)

15. Qiu, S., Wu, Y., Anwar, S., Li, C.: Investigating attention mechanism in 3D point
cloud object detection. In: 2021 International Conference on 3D Vision (3DV), pp.
403–412. IEEE (2021)

16. Rendle, S.: Factorization machines. In: 2010 IEEE International Conference on
Data Mining, pp. 995–1000. IEEE (2010)

17. Song, W., et al.: AutoInt: automatic feature interaction learning via self-attentive
neural networks. In: Proceedings of the 28th ACM International Conference on
Information and Knowledge Management, pp. 1161–1170 (2019)

18. Su, Y., Erfani, S.M., Zhang, R.: MMF: attribute interpretable collaborative filter-
ing. In: 2019 International Joint Conference on Neural Networks (IJCNN), pp. 1–8.
IEEE (2019)

19. Su, Y., Zhang, R., Erfani, S., Xu, Z.: Detecting beneficial feature interactions
for recommender systems. In: Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 35, pp. 4357–4365 (2021)

20. Su, Y., Zhang, R., Erfani, S.M., Gan, J.: Neural graph matching based collaborative
filtering. In: Proceedings of the 44th International ACM SIGIR Conference on
Research and Development in Information Retrieval, pp. 849–858 (2021)

21. Sun, G., Wang, Z., Zhao, J.: Automatic text summarization using deep reinforce-
ment learning and beyond. Inf. Technol. Control 50, 458–469 (2021)

22. Wang, X., Zhang, R., Sun, Y., Qi, J.: Combating selection biases in recommender
systems with a few unbiased ratings. In: Proceedings of the 14th ACM International
Conference on Web Search and Data Mining, pp. 427–435 (2021)

23. Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., Philip, S.Y.: A comprehensive
survey on graph neural networks. IEEE Trans. Neural Netw. Learn. Syst. 32(1),
4–24 (2020)

24. Yin, Y., Huang, C., Sun, J., Huang, F.: Multi-head self-attention recommendation
model based on feature interaction enhancement. In: ICC 2022 - IEEE International
Conference on Communications, pp. 1740–1745 (2022)

25. Ying, R., He, R., Chen, K., Eksombatchai, P., Hamilton, W.L., Leskovec, J.: Graph
convolutional neural networks for web-scale recommender systems. In: Proceedings
of the 24th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, pp. 974–983 (2018)



Except-Condition Generative Adversarial
Network for Generating Trajectory Data

Yeji Song1, Jihwan Shin1, Jinhyun Ahn2, Taewhi Lee3, and Dong-Hyuk Im1(B)

1 Kwangwoon University, Seoul, South Korea
dhim@kw.ac.kr

2 Jeju National University, Jeju, South Korea
3 Electronics and Telecommunications Research Institute, Daejeon, South Korea

Abstract. Location data shared on social media is collected and processed as
trajectory data,which exposes individuals to leakage of sensitive information, such
as sensitive geographic areas. A typical countermeasure is a generative adversarial
network (GAN) model that ensures data anonymity. However, generating data
selectively by identifying only sensitive areas is difficult. In this study, we propose
an except-condition GAN (exGAN) model that generates synthetic data while
maintaining the original’s utility. This model ensures the anonymity of sensitive
areas and maintains the distribution of data in relatively less sensitive areas. It
uses a method that assigns the remaining labels except for specific selected labels
as a condition. The selected labels represent points of high sensitivity, and the
trajectory data generated by the model contains only points corresponding to the
labels, except for the selected labels. Furthermore, in our comparative evaluation
of the exGAN model, it outperformed the original GAN model.

Keywords: Generative Adversarial Network · Privacy Protection · Trajectory
Data

1 Introduction

Personal information uploaded onto social media may occasionally be shared in a man-
ner that could violate a user’s right to privacy. Therefore, significant effort has been put
into protecting information that can identify individuals. Generally, individual users are
largely unaware of the risks they are exposed to when posting location information on
social media. Therefore, they readily share information about their visited locations [1].
Such location information can be treated as trajectory data showing the user’smovement,
which can be used to expose the user’s sensitive information. For example, if a record of
visiting a place, such as a police station or hospital, is shared, it can be combined with
other information to expose sensitive personal data. Several methods of protecting user
trajectory data have been studied. However, research on methods for ensuring informa-
tion privacy while sharing information is limited. Existing approaches mostly protect
only specific points.

Anonymization, which is different from encryption, includes methods such as k-
anonymity and l-diversity [2–4]. Anonymization allows a user to distribute data to be
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read by anyone while simultaneously protecting the user’s personal information from
being identified. Generally, even if the individual’s identification information is deleted,
certain quasi-identifiers can be combined to identify the individual. Thus, such attributes
must be anonymized.

Trajectory data generation is one of the ways to ensure anonymity while maintaining
the utility of data and is being studied of various ways. One relatively recent approach
is to use GANs. Unlike in fields such as image generation, it is not a very active area of
research. Therefore, various approaches are possible to the GAN model and its deriva-
tives, which are generative models. One approach to using the GANmodel is to generate
approximate data. Approximate data is designed to be similar to the input data by balanc-
ing anonymity and utility using the objective and loss functions. The generated synthetic
trajectory data ensures the anonymity of individuals while preserving the utility value of
the data, because of its similarity to the original data. However, due to the nature of the
GANmodel, protecting only certain sensitive points is difficult. Accordingly, derivative
models, such as conditional GAN (cGAN) have been studied [5]. Therefore, research
into generating trajectory data using a derivative GAN model can contribute to the safe
publication of data while maintaining its utility value.

In this study, we propose a novel GAN model that focuses on and protects certain
sensitive points and retains information about relatively less sensitive points. The model
is trained to generate synthetic trajectory data effectively by applying the Long Short-
Term Memory (LSTM) and Attention techniques to fit the characteristics of trajectory
data.

2 Background

GANs perform extremely well as image-generation models and have received a lot
of attention [6]. A GAN model can be divided into two sub-models: the Generator,
which executes the image generation function, and the Discriminator, which determines
whether the image is correct. The two models are trained by keeping each other in
check, with the goal of maximizing their performance. This can be expressed as the
GAN model’s overall objective function, as shown in Eq. (1):

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1 − D(G(z)))] (1)

This equation minimizes G in the objective function and maximizes D. x represents
the real data and x ∼ pdata(x) represents the data sampled from the probability distribu-
tion of the entire real data. D(x) uses the real data as the input to the Discriminator to
distinguish the real data. z ∼ pz(z) represents the data sampled from random noise using
a Gaussian distribution. G(z) generates data by using the noise as the input to the Gen-
erator. D(G(z)) takes the data generated by the Generator as input to the Discriminator
and classifies it as fake data.

One of the limitations of the GAN model is that it cannot generate only the specific
image that onewants.One of its improvedmodels is the cGAN,which utilizes a condition
[7]. The structure of the objective function of cGAN is nearly identical to that of the
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original GAN. It can be modified and written as Eq. (2) because the input data’s label is
given along with the input data:

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x|y)] + Ez∼pz(z)[log(1 − D(G(z|y)))] (2)

In contrast to the original GAN, the value of y is given in D(x). y represents the
ground truth label corresponding to the real data x. Therefore, in D(x|y) and D(G(z|y)),
the label is assigned to the input data and taken as an input.

3 Except-Condition Generative Adversarial Network (ExGAN)

The exGAN model proposed in this study generates data, excluding those satisfying
given conditions. In the case of cGAN, if a label is given, as a condition on the data to
be generated, only data that fits the label are generated. However, to generate data by
excluding certain labels among different selectable labels, the given condition must be
changed. Equation (3) shows the exGAN objective function.

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x|yexc) + Ez∼pz(z)[log(1 − D(G(z|yexc)))] (3)

The object function of exGAN has the same structure as that of cGAN. yexc replaces
y, which corresponds to the label condition in cGAN. Therefore, it gives the exception
condition in the same way that a label is given as a condition in cGAN.

3.1 Condition and Exception

For the value given as a condition, we select a label to be excluded from a set of selectable
labels. Setting a single label value for trajectory data that have location, time, and cate-
gory attributes is difficult. Thus, the median value of the entire distribution is used. For
example, if the category attribute of the trajectory data ranges from 0 to 9, the label to
be hidden is selected. If one point with a category attribute of 9 must be hidden, the
value given as the input label will be the median value of those points, which reflects
the overall distribution. For the location attribute, the median value is the middle value
of the densest area. For the time attribute, the median value is the middle value of the
most frequently visited time. Therefore, if one category attribute value must be hidden,
the median value of the other category attribute for it to be replaced with is given as an
except-condition.

3.2 Trajectory Data Model

Figure 1 shows the exGAN’s overall structure. The input data are preprocessed to facil-
itate training because they comprise real number and integer values corresponding to
spatial and temporal attributes. Subsequently, the values obtained by adding noise to the
original data are used as inputs for effective training of the Generator. For the noise-
added input data, a corresponding label value is assigned to each record and appended.
Here, if the value corresponds to a pre-specified label, it is replaced with the median
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value of other labels. The Generator embeds the label value-connected input data, learns
them through the LSTM layer, and finally decodes them to restore the original trajectory
data. The data generated as output become synthetic trajectory data, which are used as
distributable data after training.

Fig. 1. exGAN’s structure, consisting of Generator on the left and Discriminator on the right.

The Discriminator takes the real and the synthetic data generated by the Generator
as inputs. Again, each data record is paired with a label value that meets the condition. In
contrast to the Generator, the Discriminator uses an Attention layer instead of an LSTM
layer.

4 Experimental Results

The data used for our experiments were collected from Foursquare [8]. We used only the
records of those who had checked in from New York City during the 10-month period
starting in April 2012. The check-in records comprise userID, trajectoryID, Latitude,
Longitude, Temporal (Weekday, Hour), and Category attributes. The number of trajecto-
ries was 2,052, and the training and test data were split in a 2:1 ratio. In the experiment,
we evaluatedwhether the points in the generated data were similar to those in the original
data in terms of spatial data using Latitude and Longitude. In addition, Trajectory User
Linking (TUL) was used in the comparison to evaluate the anonymity of the trajectory
data. The models compared were the trajectory data generation model using exGAN
proposed in this study and an LSTM-TrajGAN model [9]. The LSTM-TrajGAN model
uses the original GAN and generates trajectory data effectively by configuring an LSTM
layer internally.

By representing a single trajectory on a graph, we can evaluate the graph similarity
between the original and generated data using the Hausdorff distance. Table 1 shows
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Table 1. Hausdorff distance-based utility assessment results for spatial attribute data

Model MIN MAX AVG MEAN

LSTM-TrajGAN 0.006838 0.062886 0.020647 0.019752

exGAN 0.005475 0.066636 0.019705 0.018124

the results of the Hausdorff distance similarity assessment. A value approaching 0 indi-
cates that the generated trajectory data has a higher degree of similarity to the original.
Although both models show values close to 0, the trajectory data generated by exGAN
shows the highest similarity, except for the MAX value. The longest trajectory is eval-
uated as having relatively low utility. Thus, the MAX score is lower than that of the
comparative model. Because longer trajectories mean higher probabilities of including
the sensitive point, more changes will occur. The anonymity score will be higher accord-
ingly. In addition, the difference between the MAX scores is not large, and the proposed
model fairs better in the average score. This implies the exGAN model’s performance
is similar or better than that of the comparative model.

Table 2. Anonymity evaluation results through TUL test

Model ACC@1 ACC@5 Macro-F1 Macro-P Macro-R

LSTM-TrajGAN 0.406037 0.651412 0.345144 0.390910 0.374779

exGAN 0.335930 0.636806 0.279527 0.334072 0.328148

The TUL evaluation examines if the user who distributed the trajectory data can
be connected to the trajectory without an identifier. Table 2 shows the TUL evaluation
results. TheTULevaluation result is a value between 0 and 1.Avalue closer to 1 indicates
that trajectory data can be associated with the user, whereas a value closer to 0 indicates
that the user cannot be identified based on the trajectory data alone. As shown in the
results, the trajectory data generated using exGAN has values closer to 0, indicating
greater anonymity.

5 Conclusion

This study proposes exGAN for trajectory data generation by changing the structure of
the original GAN to overcome its limitations and facilitate effective learning of trajectory
data. By evaluating data utility and comparing the anonymity provided by the various
models, we demonstrated that the proposed exGANmodel outperforms the conventional
LSTM-TrajGAN model. Rather than modifying the data in its entirety, exGAN offers
greater anonymity by selecting and replacing only certain highly sensitive points. By
generating data while maintaining as much of the original data as possible for relatively
less sensitive points, our model maintains the data’s usefulness even if the original data
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at sensitive points are impaired. We expect that the proposed model will find application
in various fields. For example, it can be used to generate synthetic data, excluding certain
selected conditions.

However, this study has a limitation; it does not propose an alternative method for
replacing a label to be given as a condition when the labels do not exist. In a follow-
up study, we aim to overcome this limitation and strengthen the model by considering
unlabeled data as well as trajectory data.
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Abstract. A significant amount of data are significantly available due to
the dramatic proliferation of location-based social networks. This has led
to the development of location-based recommendation tools that assist
users in discovering attractive Points-of-Interest (POIs). Next POIs rec-
ommendation is of great importance for not only individuals but also
group of users since group activities have become an integral part of
our daily life. However, most existing methods make recommendations
through aggregating individual predictive results rather than considering
the collective features that govern user preferences made within a group.
This insufficiency can directly affect the completeness and semantic accu-
racy of group features. For this reason, we propose a novel approach
which accommodates both individual preferences and group decisions in
a joint model. More specifically, based on influencing users in a group,
we devise a hybrid deep architecture model built with graph convolution
networks and attention mechanism to extract connections between group
and personal preferences and then capture the impact of each user on
the group decision-making, respectively. We conduct extensive experi-
ments to evaluate the performance of our model on two well-known real
large-scale datasets, namely, Gowalla and Foursquare.

1 Introduction

Points-Of-Interest (POIs) recommendation is useful for both service providers
and users by (i) estimating the number of users that may visit the POI and (ii)
helping users discover various POIs for social activities occurring in the near
future close to their current locations, respectively. As a natural extension of
general POIs recommendation, next POIs recommendation aims at predicting
the POIs that are most likely to be visited next by analyzing the users’ behav-
iors and mobility given their check-in history. Location-based social networks
(LBSNs) such as Yelp, Foursquare, Gowalla, Facebook Place and GeoLife have

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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enabled users to share their experiences and locations via check-ins for Points-
Of-Interest (POIs), e.g., restaurants, stores, tourists spots, etc. With the expo-
nential increase in the amount of geo-tagged data collected from the LBSNs,
POIs recommendation has attracted wide attention from both academia and
industry [13].

Compared with the general POIs recommendation, next POIs recommenda-
tion focuses more on exploiting user movement patterns hidden in the historical
check-in data for individuals. However, individuals tend to have several group
activities reflecting their social life, e.g. friends often dine out and see a movie
and families often watch TV programs, attend parties or travel together. For
this reason, it is highly critical to develop group recommender systems to sug-
gest relevant POIs for a group of users, known as group recommendation.

Group recommendation is much more challenging than making recommenda-
tions to individual users, as the group members may have different preferences
[4]. A straightforward way to predict the next POIs for a group is to consider
every group as a virtual individual and apply existing individual recommendation
methods. However, it may lead to poor recommendation quality due to mainly
two reasons: (i) the data of group-POIs interactions is usually very sparse, which
makes it difficult to accurately learn group preferences on POIs and (ii) the influ-
ence of each member preferences is completely ignored on the group decisions and
thus, recommended POIs are often not highly desired by members. Therefore,
learning users’ personal preferences is important to reach a consensus among
group members. Authors in [1] generated the most favorable items for groups by
modeling the groups’ decision-making processes while authors in [10] aggregated
the members’ preferences but without considering interactions among members
in a group. This insufficiency may lead to unsatisfactory recommendation of
items for a group as a whole.

In this paper, inspired by the success of the attention mechanism architecture
in learning group members interactions, we investigate how to apply a hybrid
deep learning model by proposing a representation of the different factors and
integrate them smoothly in a shared latent space. We propose a high-quality
representation for POIs, groups and its members. We then propose our hybrid
deep learning model KYD to predict the next POIs for a set of groups exploring
and analysing the influence of their members.

2 Problem Definition

In this section, we first introduce the key data structures used in this paper and
formally define the next POIs prediction problem for a set of groups. Following
the convention, we use bold capital letters (e.g., X) to represent both matrices
and graphs, and use squiggle capital letters (e.g., X ) to denote sets. We use
lowercase letters with superscript → (e.g., �x) to denote vectors. We employ
normal lowercase letters (e.g., x) to denote scalars. Assume a set of POIs P =
{p1, p2, . . . , p|P|} and a set of users U = {u1, u2, . . . , u|U|} belonging to a LBSN
N and a set of groups G = {g1, g2, . . . , g|G|}. The k-th group gk ∈ G is a set of
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Fig. 1. Illustration of the input data: A set of users visiting a set of POIs and a set of
groups interacting with the POIs set.

users and we use Ugk
to denote this set. We make use of the following graphs that

reflect the interactions between the different sets U , P and G. We use bipartite
graphs GUP and GGP as shown in Fig. 1, to represent three kinds of interactions:
(i) User-POIs Interaction: called also a user check-in activity, is a visit of the
user u to the POI p at a time t denoted by xu,t, i.e., xu,t is the POI visited by
the user u at time t. A sequence of historical user check-ins over time (from t−
n to t) is called a user check-in profile and represented by the vector �xu. A given
POI p is characterised by the geographical coordinates in terms of longitude and
latitude coordinates denoted by lp and its content (e.g., food, shop, service, etc.)
denoted by cp, (ii) Group-POIs Interaction: it is the group check-in activity
related to the group g and the POI p at a time t denoted by xg,t. The vector
�xg represents the group profile over time, i.e., a set of POIs visited by the group
g over a sequence of historical time-slots and (iii) User-User Interaction: it
is the relation related to a set of users visiting a given POI at the same time
forming an active group gk ∈ G.

In the following, we formally define the problem of next POIs group predic-
tion, which consists in predicting the next POIs for all users forming a group.

Problem 1 (Next POIs Prediction). Given a set of groups G, each comprises a
set of users, our task is to predict the next POIs of all groups G in a given LBSN
N that they would be interested in at a future time T where T = t + z and z
is the number of the future time-slots to be predicted. More formally, given �xgk

and �xu/u ∈ gk, we want to predict xgk,t+i for all gk ∈ G where 1 ≤ i ≤ z and
1 ≤ k ≤ |G|.

3 Methodology

In our framework, the bipartite graphs GUP and GGP and interactions between
users in a given LBSN N are the data containing information about all interac-
tions. A baseline method for predicting the next POIs for a set of users forming
a group is to learn the preferences of the group by aggregating the personal
preferences of its members. This method may have a high computational cost
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Fig. 2. KYD Framework: it consists of mainly three components: (i) Minimum Graph
Code Process, (ii) Representation Process and (iii) Interaction Learning Process.

with (i) larger graphs N and thus a large number of groups K where K = |G|
and (ii) larger number of users forming the groups gk ∈ G,∀k ∈ [1,K]. However,
when analysing the group behaviour, we have observed that the group decision is
related to the preferences of some group members, that we call influencers, but
not all. Thus, introducing the preferences of the non influencers into the aggre-
gation process may bias the results in terms of accuracy. As shown in Fig. 2, our
framework proposes the concept of “the minimum graph code” which replaces
the original input graph data considering the preferences of the influencers and
neglecting the non acting users. Then, we introduce a representation process
which consists of modeling the different interactions between the entities users,
groups and POIs sets (as shown in Sects. 3.1 and 3.2). To make the problem
learnable, the graph interactions should be either represented as a sequence of
visited POIs, or a series of adjacent matrices and vertex features. For sequence
inputs we can use Transformers [12] to extract high-level features and learn
interactions between the different entities. If the inputs are modeled as series
of adjacent matrices and vertex features, we can use convolution GNN to learn
vertex representations with message passing from neighborhoods. After obtain-
ing the representations of our entities, we feed them into an interaction learning
module to extract the correlated features from each side. Then we feed the out-
put into fully-connected layers to make predictions. In the following, we give the
representations of both sets Users and Groups. We then model the interactions
between these two entities and the POIs set.

3.1 User Representation

The User-POI interaction at a given time denoted by xu,t is the POI vis-
ited by the user u at time t. For each user, we create a profile which is a
set of User-POIs interactions. A user Profile is a sequence of check-in activ-
ities in chronological order from t − n to t. Formally, the check-in sequence
of a user u up to time-slot t is represented by the vector �xu as follows:
�xu = [xu,t−n, xu,t−(n−1), . . . , xu,t−2, xu,t−1, xu,t].
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In a given social network N , we model the check-ins of all users in U by
designing the user check-in matrix XU recording the check-ins sequences of all
users in U with n historical time-slots. Formally, the user check-in matrix XU is
represented as follows.

XU =

⎡
⎢⎢⎢⎢⎢⎣

xu1,t−n . . . xu1,t−1 xu1,t

xu2,t−n . . . xu2,t−1 xu2,t

...
. . .

...
...

xu|U|−1,t−n . . . xu|U|−1,t−1 xu|U|−1,t

xu|U|,t−n . . . xu|U|,t−1 xu|U|,t

⎤
⎥⎥⎥⎥⎥⎦

(1)

Each row vector in XU contains check-in data for the same user from continuous
time slots from t − n up to t, while each column contains check-in data for all
users at the same time slot.

3.2 Group Representation

A group is a set of users visiting together one POI at the same time. The
Group-POI interaction at a given time denoted by xg,t is the POI visited by
the group g at time t. A group may have a check-in profile which is a set of
Group-POIs interactions over time from t − m to t. Formally, the check-in pro-
file of the group g up to time-slot t is represented by the vector �xg such as
�xg = [xg,t−m, xg,t−(m−1), . . . , xg,t−2, xg,t−1, xg,t].

In a given social network N , we model the check-ins of all groups gk in G,∀k ∈
[1,K] where K = |G| by designing the group check-in matrix XG recording the
check-ins sequences of all groups in G with m historical time-slots. Formally, the

group check-in matrix XG is represented such as XG =

⎡
⎢⎢⎢⎣

�xg1

�xg2

...
�xgK

⎤
⎥⎥⎥⎦

In location-based group recommender, we can consider only XG as an input
to learn the mobility behaviour from the historical check-ins of the group as
one individual. However, the group preferences may be affected by the personal
preferences of its members. Thus, integrating the preferences related to the group
members is of great importance for more accurate prediction. However, some of
the group members may not be active in the group decision making and some
of them, may have more influence than others, i.e., they affect more the group
preferences. For this reason, we measure in the following the influence degree of
each group member. We then propose the minimum graph code by discarding
the non influencing users from the learning module.

The User Influence Modeling. The personal preferences of a user u are
represented by the vector �xu, extracted from the matrix XU and reflecting the
user check-in profile over time, i.e., all visited POIs, alone or as a group member.
Similarly, the vector �xg records the group check-ins over time. Let φ(�xu) and
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φ(�xg) be the sets of distinct check-ins visited by the user u and the group g,
respectively.

Definition 1 (Influence Degree). Given a group gk in G where k ∈ [1, |G|].
A set of users forming the group gk is called Ugk

. The influence degree for each
user u in Ugk

, denoted by ϕ(u)u∈Ugk
, is defined as follows

ϕ(u)u∈Ugk
=

φ(�xu)u∈Ugk
∩ φ(�xgk

)
|φ(�xgk

)| (2)

The intuition behind the influence degree is to measure the impact of the personal
preferences of the user u in Ugk

on the preferences of the group gk. The more
the user u has similar preferences to those of the group gk, the more the user
influenced the group behaviour.

In the following, we model the group representation by proposing the mini-
mum group code.

The Minimum Group Code. Given a group gk in G where k ∈ [1, |G|].
We assume that the users u in Ugk

are either influencers or followers. A group
influencers are the group members having the power to affect the decisions of
others which are the followers. The set of influencing users i in the group gk ∈ G
according to an influence threshold α, is called Igk

and defined as Igk
= {u ∈

Ugk
/ϕ(u) ≥ α} where α ∈ [0, 1].
The code of the group gk contains the check-in profiles of all users u in Ugk

.
Since personal preferences can affect the group decision and thus improving the
prediction accuracy, we integrate into the learning module, the check-in profiles
of the users, but not all. The minimum group code is the representation of only

its influencing members i in Igk
such as |Igk

| ≤ |Ugk
| and XIgk

=

⎡
⎢⎢⎢⎣

�xi1

�xi2
...

�x|Igk
|

⎤
⎥⎥⎥⎦

where �xim/m ∈ [1, |Igk
|] is the check-in profile of the influencer im in Igk

.
The minimum group code is the code with the minimum group members with
the highest influence according to an influence threshold α. Finally, each group
can be represented by the corresponding minimum code, and vice versa. The
input of our learning module is the group check-in profile as well as the check-in
profiles of all its influencers. More formally, we design the matrix X such as

X = XG ⊕ XIgk
/k∈[1,K] =

⎡
⎢⎢⎢⎣

�xg1 ,XIg1

�xg2 ,XIg2
...

�xgK
,XIgK

⎤
⎥⎥⎥⎦ (3)

where K = |G|. This representation allows the integration of the group check-in
profiles as well as the influencing check-in profiles to be analysed. In the following,
given the matrix X, we propose a learning module to extract the hidden features
behind the group behaviour.
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3.3 The Interaction Learning Module

After obtaining the representations of both users and groups interactions,
inspired by existing hybrid deep learning models [3], we propose a hybrid deep
learning model which comprises three major components: (1) Learning the group
mobility from XG and then by extracting the hidden patterns of the embedded
influencing users using a convolution GNN, (2) a time-series learning using the
attention mechanism to model the temporal dependency and (3) the POIs con-
tent extraction layer modeling the impact of POIs content.

The learning module proceeds as follows: First, we extract the hidden pat-
terns from the group behaviour over time, i.e., features from historical group
check-ins. Then, the influencing users are extracted and embedded into the
matrix X. To learn the patterns hidden in the influencing preferences as well
as the group preferences, KYD employs GCN as shown in Fig. 3 since it has a
very deep structure that can effectively capture the dynamics behind neighbor
nodes, i.e., influencing users. Then, we reshape these features to be suitable for
time-series learning. Since the group mobility is directly affected by periodicity
features, i.e., the mobility behavior during the week-ends may be similar on con-
secutive week-ends, we feed the group check-in vectors of periodic time intervals
into an attention layer, a deep variant sequence modeling, to capture such tem-
poral dynamics. We then employ a fully connected (FC) layers to extract the
semantic features that describe the POIs content.

Group Encoding. In graph models, each node has a feature vector, and each
edge is used to pass information from its source to its target. GNNs do not need
node ids and edge ids explicitly because the adjacency information is included
in an adjacent matrix. i.e., interactions between users, groups and POIs. Given
that a group is represented as a set of influencing users and thus defined by a
minimum graph code, the next encoding step is to transform each influencing
user into a vector. As explained in Sect. 3.2, we can vectorize node labels into
multi-hot vectors represented by the input matrix X as shown in the Eq. 3.
In such representation, the adjacent information of the group influencers can
be stored in a sparse matrix (XIgk

/k∈[1,|G|]) to reduce the memory usage and
improve the computation speed.

Fig. 3. Interaction Learning Module Architecture is mainly composed by two compo-
nents: (1) Learning the group behaviour by embedding the influencing users and (2)
Learning the sequential patterns.
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Graph Convolutional Network. After obtaining the input representations,
we feed them as inputs of interaction layers to extract the correlated behaviour
between the group preferences and those of the group members. Graph Convo-
lutional Network (GCN) [11] is developed specifically to handle multi-relational
data in realistic knowledge bases. GCN is acting as an embedding operation or
a look-up operation (LK) to integrate the influencing users. A stack of convolu-
tions (CNN) is used to understand the connections between group preferences
and user preferences. We employ the Batch Normalization (BN) after the con-
volution layer for faster training speed.

The input of the convolution layer is the check-in profiles of groups as well
as the embedded influencing user check-in profiles X (l). The output layer is to
generate the prediction result. At an arbitrary l-th layer, we use f (l) filters to
convolve and concatenate all matrices to get X (l+1). The f -th matrix convolved
by the f -th filter can be formulated as follows: X l,f = [xl,f

1 , . . . , xl,f
k , . . . , xl,f

|G|]

where xl,f
k = F

(
LK(X(l−1)

G , I) ∗ W l,f + bl,f
)
.

Here, ∗ denotes the convolution operation which uses the f -th filter W l,f , F
is an activation function, e.g. the rectifier ReLU F (x) = max(0, x) which has
achieved a training effectiveness in reducing the problem of gradient vanishing,
W l,f and bl,f are the learnable parameters in the l-th layer with the f -th filter.
This filter aims at emphasizing the correlated features of influencing users.

Attention Mechanism. In addition to the impact of the influencing users
on the group preferences, the group check-in movement may have temporal
and sequential patterns, i.e., a visited POI at a given time interval (12:00 pm–
02:00 pm) on Monday can be similar to the next following weekdays for a given
group. For learning such patterns, our experimental results show that the atten-
tion mechanism outperforms LSTM, GRU and RNN in the benchmark datasets.
We thus employ the attention mechanism [12] that has shown great success in
capturing such sequential patterns. After C convolution units, we use the atten-
tion model to learn the long-term temporal patterns considering the influencing
group members. On top of the C convolution units, we get the output tensor
XC ∈ R

pd×|G|×fC where fC is the number of the convolution filters at the last
C-th Conv layer and pd is the period (the number of days/weeks). We reshape
XC in the way of time sequence to feed into the attention layer. We get a tensor
X ′ ∈ R

|G|×n×fC representing the group check-in profile vectors for all n time-
slots, where X ′

k,t = XC [t, k, :]. We train the group profile vector X ′
k,t which

records the check-ins for group gk ∈ G for n time-slots. We use the transformers
architecture by applying the attention mechanism based on the original imple-
mentation described in [12]. However, we have made some changes to the original
architecture since we are not working with sequences of words. Additionally, we
are doing a regression and not a classification of words or characters. We also
need to keep the SoftMax layer from the output of the Transformer because our
output nodes are probabilities of visiting a given POI x at a future time-slot.
The used transformer block is a parameterized function class Fθ : R|G|×n with |G|
and n are the number of groups and time-slots, respectively and Fθ(X ′

k,t) = Yk
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where Fθ is attention mechanism [12] and the parameters θ consist of the entries
of the weight matrices. The input X ′

k,t ∈ R
|G|×n is the check-in behavior of |G|

groups, each with n features. The final output of the transformer layers can be
represented by the sequential vector YS in which the last element is the predicted
check-in for the next time iteration such as YS = [Yk,t−n, . . . , Yk,t, Yk,t+1].

Content Learning. Groups at lunchtime tend to go to restaurants for food
rather than going to a cinema or any other entertainment points. We thus extract
POIs content features by a fully connected layer (FC) as shown in Fig. 3. The
output is denoted by YC . The predicted POI at the t-th time interval, denoted by
ỸT , is defined as ỸT = tanh(WS ◦ YS + WC ◦ YC) where ◦ is Hadamard product
(i.e., element-wise multiplication), WS and WC are the learnable parameters
in the sequential and the content learning component, respectively. The model
output is a probability distribution on all POIs calculated by ỸT . And then
we take a gradient step to optimize the loss based on the output and one-hot
representations of POIs.

4 Experimental Evaluation

Data Description: We describe in the following the data-sets used for our
experimental evaluation. We used two data-sets to test our model. Details are
given as follows: (i) Foursquare Dataset: a public data-set, on which we
extract social relationships between users forming groups and content features.
This data-set contains more than 450,000 check-in records from 2009 to 2011
generated by 2114 users living in USA. For each user, we acquired her POI
attendance list and social friend list. For each POI, its visiting time and its con-
tent were also collected. Each check-in contains a user, a timestamp and a POI,
indicating the user visited the POI at that time; users having relationships visit-
ing the same POI at the same time are considered as a group and (2) Gowalla
Dataset: This data-set contains 6,442,892 check-in historical records from 2009
to 2010 which is much more than the Foursquare data-set. However, it does not
contain the content information about POIs. Therefore, each check-in record has
the same format with the above Foursquare data-set except for POI-content. The
two real data-sets are publicly available1.

Pre-processing: Given a group profile �xg in terms of a collection of group
check-in records, we first sort them according to their check-in time-slot order.
We then use the 80th percentile as the cut-off point so that check-ins before this
point will be used for training and the rest are for testing. A group is consid-
ered as an active group if it records 80% of the studied n time-slots. We then
eliminate inactive groups from the training data-set since their mobility behav-
ior cannot be captured with their sparse check-ins. Meanwhile, we figure out
a strategy to deal with missing check-in data for active groups. We fill these

1 https://sites.google.com/site/dbhongzhi/.

https://sites.google.com/site/dbhongzhi/
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missing check-ins by interpolating similar check-ins at the same time-slots in
the previous days/weeks. To find out the connections between group and its
members, we represent the social network as a graph where nodes are users and
edges are relations between users. Each edge is a link connecting two users. To
learn the short-term periodicity hidden in check-in data, we divide a day into
different time-slots. For POIs content information, a binary vector is given by
one-hot coding to transform and represent the content for the visited POIs. We
use Tanh in the output of the KYD model as our final activation. We train our
network with the following hyper-parameters setting: mini-batch size (48), learn-
ing rate (0.01) with adam optimizer, a variant of Stochastic Gradient Descent
(SGD). Afterwards, we continue to train the model on the full training data for
a fixed number of epochs (e.g., 20, 50, 100, 200 epochs). A transformer includes
L transformer blocks. The hyper-parameters of the transformer are d, k, m, H,
and L. The settings of these hyper-parameters are d = 512, k = 64, m = 2048,
H = 8 and L = 6.

Benchmarks: Several prevailing algorithms are chosen for comparisons with our
proposed model KYD. (1) PRME-G [6]: It uses the metric embedding method
to embed users and POIs into the same latent space to capture the user transition
patterns; (2) STGCN [14]: Used to predict next POIs, it is a variant of recurrent
neural networks that consider the temporal intervals between neighbor check-ins;
(3) RNN [7]: This method leverages the temporal dependency in user’s behavior
sequence for next POIs problem through a standard recurrent structure; (4)
FPMC-LR [2]: It uses the Markov chains to model the user movement in a given
region. (5) ST-RNN [9]: Based on the standard RNN model, ST-RNN replaces
the single transition matrix in RNN with time-specific transition matrices and
distance specific transition matrices to model spatial and temporal contexts of
next POIs problem; (6) LSTM [15]: This is a variant of RNN model, (7) HST-
LSTM [8]: It introduces Spatio-Temporal preferences for location prediction into
gate mechanism in LSTM and (8) GRU [5]: This is a variant of RNN model.
Some of the baselines were used only to predict the next POIs for individuals.
To test these methods on groups, we consider a group as a virtual individual.

Evaluation Metrics: The performance of our KYD model is evaluated by using
two metrics Accuracy@K (Acc@K) and Mean Average Precision (MAP). These
two metrics are popularly used for evaluating location based prediction results,
such as [14]. These metrics are used to compare our proposed model with the
eight baselines described above. Note that for an instance in testing set, Accu-
racy@K is 1 if the visited POI appears in the set of the top-K predicted POIs,
and 0 otherwise. The overall Accuracy@K is calculated as the average value of
all testing instances. In this paper, to illustrate different results of Acc@K, we
only show the performance for K ∈ 1, 5, 10, 15, 20, since a greater value of K
is usually ignored for the top-K recommendation tasks. Effectiveness of the
Minimum Graph Code: In addition to KYD, we design two other algorithms
KY D′′ and KY D′ to show the effectiveness of the minimum graph code app-
roach: (i) KY D′′ considers the input X ′′ = XG to learn the mobility behaviour
from the historical check-ins of the group as one individual, (ii) KY D′ considers
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the input X ′ representing the group check-ins as well as all its members check-ins
where X ′ = XG ⊕ XUgk

/k∈[1,|G|] since the group preferences may be affected by
the personal preferences of its members. However, KYD employs the minimum
graph code and has the input X where X = XG ⊕ XIgk

/k∈[1,|G|] as described in
the Sect. 3.2. As shown in the Fig. 4, KY D′ performs better than KY D′′ which
proves that including the preferences of the group members captures more pat-
terns and thus improves the prediction accuracy. However, KYD outperforms
KY D′ since non influencing group members can bias the prediction results.

Fig. 4. Minimum Graph Code Evaluation.

Table 1. Evaluation of next POIs Prediction in terms of Accuracy@K and MAP on
both datasets

Method Ref Foursquare Gowalla

Acc@1 Acc@5 Acc@10 MAP Acc@1 Acc@5 Acc@10 MAP

FPMC-LR [2] IJCAI, 2013 0.216 0.228 0.285 0.251 0.163 0.247 0.276 0.271

PRME-G [6] IJCAI, 2015 0.181 0.253 0.321 0.301 0.211 0.222 0.251 0.251

RNN [7] SIGIR, 2018 0.241 0.345 0.395 0.352 0.301 0.342 0.359 0.365

STGCN [14] AAAI, 2019 0.481 0.501 0.512 0.502 0.391 0.421 0.439 0.442

LSTM [15] IJCAI, 2017 0.382 0.395 0.421 0.430 0.256 0.278 0.314 0.321

ST-RNN [9] AAAI, 2016 0.452 0.473 0.491 0.486 0.332 0.351 0.392 0.398

GRU [5] EMNLP, 2014 0.296 0.325 0.391 0.404 0.218 0.251 0.289 0.312

HST-LSTM [8] IJCAI, 2018 0.471 0.492 0.519 0.498 0.365 0.398 0.412 0.419

ST-KYD 0.508 0.521 0.541 0.539 0.441 0.453 0.468 0.459

KYD 0.589 0.603 0.657 0.695 0.461 0.473 0.498 0.490

Method Comparison. Table 1 shows the experimental results for both
Foursquare and Gowalla data-sets. Our proposed KYD, including spatial, tem-
poral and content learning, is significantly better than existing state-of-the-art
methods considering all metrics. Specifically, KYD outperforms the Markov
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Table 2. Accuracy of KYD Variants on Foursquare

Method Acc@K

K = 1 K = 5 K = 10 K = 15 K = 20

KYD-S 0.235 0.279 0.339 0.394 0.475

KYD-T 0.212 0.267 0.364 0.376 0.445

KYD-C 0.519 0.529 0.551 0.582 0.601

KYD 0.589 0.603 0.657 0.681 0.691

chain based methods considerably by a large margin. In addition, KYD con-
sistently outperforms five RNN-based methods: RNN, LSTM, GRU, ST-RNN,
and HST-LSTM. The significant improvement indicates that the mechanism to
model temporal and spatial, in addition to the content learning in KYD can
better catch the user’s behaviors and are effective for the task of next POIs
prediction.

Ablation Study. To further validate the benefits brought by each learned fac-
tor, we design four variants of KYD. KYD-S is the first variant where we remove
the spatial learning and we only keep learning other factors. KYD-T is the sec-
ond simplified version of the KYD model where the temporal feature extraction
is eliminated. As the third simplified version of KYD, KYD-C does not consider
the content effect by removing the category feature extraction. To explore the
benefits of incorporating the spatial impact, temporal effect and content effect
into KYD model respectively, we compare our KYD model with KYD-S, KYD-T
and KYD-C. Since Gowalla dataset has no content information, we only show
the results on Foursquare dataset in Table 2. From the result, we first observe
that KYD consistently outperforms all variants. That is because KYD benefits
from considering the simultaneously learning of three factors in a joint way. Sec-
ond, as shown in Table 2, the contribution of each learning block to improve
the prediction accuracy is different. Specifically, according to the importance of
every extracted feature, they can be ranked as follows: Spatial Feature, Tempo-
ral Feature and then the Content Feature. However, we find that there is a slight
difference between the spatial and temporal learning blocks, which shows that
they are similarly contributing to KYD model. In other words, the performance
gap between 〈KYD and KYD-S〉 and 〈KYD and KYD-T〉 are the most signifi-
cant, indicating that spatial and temporal effects play an important role in next
POIs prediction. This shows that spatial and temporal related factors matter a
lot in group users’ daily routines (Fig. 5).

Impact of the Parameter p: Since the input check-in data record user POIs
over three time-slots per day, i.e., morning check-in, afternoon check-in and
evening-night check-in, the number of predicted check-ins per day denoted by p
can vary from 1 up to 3, i.e., p can be 1, 2 or 3 to denote morning, afternoon
or evening check-in, respectively. In the following, we first show the impact of
varying this parameter on the performance of KYD as well as other methods. We
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Fig. 5. The impact of the Parameter K

Fig. 6. the impact of the Parameter p.

then show the KYD performance varying p under different values of K. Figure 6
shows the comparative performances varying the number of predicted check-ins
for all the state-of-art methods. As shown in the figure, KYD achieves the best
performance when varying p. Note that the performance becomes worse with
larger p since the correlation between check-in in time intervals being predicted
and check-ins in current moment decreases. However, this fact does not have
much impact on our KYD model, which reveals the robustness of our model.
In the following, Table 3 shows the performance of the KYD model varying the
parameter p under different values of K on Foursquare data-sets. Similar observa-
tions can be made on both Foursquare and Gowalla datasets. The results show
that the prediction accuracy of KYD is not highly sensitive to the dimension
p. For a given value of K, the prediction accuracy does not change much when
increasing the number of predicted check-ins per day p. This fact proves that our
proposed model KYD has a strong capability of capturing long-term features.

Evaluation of Cold Start: Since the group check-in data are very sparse,
there are many groups with few check-in records in the Foursquare as well as
the Gowalla datasets. If a group of users just visits a few POIs in the datasets,
which means we can hardly learn group preference on POIs, we suppose that the
group is a cold case. Specifically, we consider the groups having only one check-in
per day as cold groups in our experiments. We then evaluate the performance of



308 S. Elmi and K.-L. Tan

Table 3. Impact of time interval on Foursquare

p Acc@K

K = 1 K = 5 K = 10 K = 15 K = 20

1 0.589 0.603 0.657 0.681 0.691

2 0.569 0.591 0.613 0.669 0.698

3 0.541 0.578 0.578 0.671 0.689

Fig. 7. Cold Start Evaluation.

the KYD model by comparing it with other next POIs prediction competitors for
cold-start groups. Figure 7 shows the experiments conducted on Foursquare and
Gowalla datasets. We show the results of different methods using Accuracy@K
with varying K where K = {1, 5, 10, 15, 20}. As shown in the figure, we can
observe that the KYD model performs much better than the other methods
under cold start scenario. The reason is that our proposed KYD model figures
out a strategy to deal with missing check-ins by interpolating values of similar
time-slots in the previous day, which proves that our method can work out well
with sparse data.

5 Conclusion

In this paper, GCN-attention based network named KYD, was proposed for
group next POIs prediction. In KYD model, a new representation of the group
preferences is introduced and given by the minimum graph code. A hybrid archi-
tecture is employed to capture the hidden patterns considering the social rela-
tions connecting users in a group. An attention mechanism is then employed
to extract the sequential features. We evaluate our model on two real location-
based networks, Foursquare and Gowalla, achieving performances which are sig-
nificantly beyond eight existing methods.
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Abstract. Quantification learning is a relatively new deep learning task.
Differing from a classic classification problem where the class of a single
instance is predicted, a quantification model predicts the distribution of
classes within a given set of instances. Quantification learning has appli-
cations in various domains. For example, in designing political campaign
ads, it is important to know the proportion of different aspects voters
care about. QuaNet is a recent deep learning quantification model that
was shown to achieve good quantification performance. Like many deep
learning models, there is no explanation about the contributions of dif-
ferent inputs QuaNet uses to predict a class distribution. In this study,
we propose a method to provide such an explanation, which is important
to increase users’ trust in the model. Our method is the first work on
interpreting deep learning quantification models.

Keywords: Deep learning · Interpretation · Quantification

1 Introduction

Quantification learning is formally defined as “given a labeled training set, induce
a quantifier that takes an unlabeled test set as input and returns its best estimate
of the class distribution” [9]. For instance, given all votes for two presidential
candidates, a quantifier predicts the class distribution of the votes for the two
candidates as 1:2. Predicting the class distribution or class ratios is important for
numerous domains such as social sciences, epidemiology, healthcare, and market
research [20]. For example, in healthcare, the proportion of patients in different
age groups affected by a specific disease is important for developing appropri-
ate treatment. In e-commerce, a company should know customers’ ratings on
different aspects of its product.

Different methods were proposed for quantification learning [7]: Classify and
Count (CC) [6,10], an ensemble-based method [21], distribution matching [15,
25], and direct quantification [12,16,17]. CC methods use a classifier to classify
each document and tally the number of documents predicted in each class. CC
suffers when the distribution of the test dataset is significantly different from
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that of the training dataset. However, effective quantification learning methods
are expected to handle different class distributions. Deep learning quantifiers
were recently proposed [8,23]. Deep learning models have performed excellently
in various tasks, such as image captioning, object detection, and time series
forecasting. There are plenty of deep learning models for classification tasks, but
there exist only two deep learning models for quantification tasks: QuaNet [8]
and Deep Quantification Network (DQN) [23]. Both approaches showed better
performance than non-deep learning models for quantification tasks. However,
both models do not provide insights into the extracted features and the influence
of these features on the final class distribution prediction. There has been active
research to interpret/explain what a deep-learning model learns and uses to
make a decision given an input (local interpretation) or the inner working of the
model (global interpretation) for classification tasks [13]. However, none exists
for quantification tasks. This motivates our study to design and evaluate an
interpretation method for deep quantification models.

QuaNet [8] and DQN [23] are very different in their architecture design,
making it difficult to design one interpretation method that works for both
models. QuaNet relies on a separate classifier to predict the class of an individual
document, whereas DQN is an end-to-end deep-learning model. In this work, we
focus on the interpretation of QuaNet since it was the top-performing method
among thirteen different quantification methods in one of the datasets. QuaNet
ranked fourth in performance based on the average absolute error on eleven
different datasets in a recent study [20]. Furthermore, a public Python library,
QuaPy [19] created by the authors of QuaNet is available.

Our interpretation method is built on Layer-wise Relevance Propagation
(LRP) [4]. LRP is a well-known interpretation method that has been applied
to interpret text and image classification models [2,4]. LRP was also adapted
to interpret Long Short-Term Memory (LSTM) recurrent networks [3]. LSTM
is a component of QuaNet, which makes LRP suitable for interpreting QuaNet.
Additionally, recent studies [1,26] showed that LRP outperformed several well-
established explanation methods. Our unique contributions described in this
paper are as follows.

– The first interpretation of a deep quantification model, QuaNet, using LRP.
Our interpretation method provides insights into which input component of
QuaNet plays an important role in the predicted class distribution; the code
for the interpretation will be available on a public github site upon acceptance
of the paper.

– Explanation of the QuaNet models on three public datasets: IMDB [14],
YELP [27], and AG-NEWS [27], and two political science datasets [22].

The remainder of this paper is organized as follows. Section 2 provides the
necessary background. Section 3 introduces our proposed interpretation method.
In Sect. 4, we show the experiments, results, and findings. Finally, Sect. 5 con-
cludes our study and states some future directions.
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2 Background and Related Work

We present an overview of QuaNet and LRP as they are most related to our
work. Other quantification methods [5,6,10,11,17,21,25] are not discussed due
to limited space. Readers interested in the overview of these methods are referred
to [13].

QuaNet [8] is a deep-learning quantification model built on top of a classifier.
QuaNet utilizes a probabilistic classifier to obtain a document representation and
a posterior probability for each document in the input set of documents. Further-
more, to predict the class distribution, QuaNet also uses four class distributions
predicted by Classification and Count (CC) [10], Adjusted Classification and
Count (ACC) [10], Probabilistic Classification and Count (PCC) [6], and Prob-
abilistic Adjusted Classification and Count (PACC) [6], respectively. CC counts
the ratio of the number of documents predicted in each class to the total number
of documents [10]. ACC adjusts the predicted class distribution by CC using true
positive and false positive rates. PCC and PACC are similar to CC and ACC,
respectively, except that each document is probabilistically assigned to one or
more classes.

Figure 1 shows the architecture of QuaNet given |C| = 2. C denotes the set
of classes and |C| denotes the cardinality of the set. The bi-LSTM recurrent
network produces a quantification embedding given a list of document repre-
sentation embedding for each document x and posterior probabilities (Pr(c|x))
from the trained classifier. This list is later referred to as L. Let x denote an
embedding vector of x. The fully connected layers with ReLU activation process
the concatenation of the quantification embedding and the class distribution
predictions from CC, ACC, PCC, and PACC. The final layer with |C| neurons
and softmax activation produces the final prediction.

Training Process: Let DL be the training dataset where each document has
an associated class label. Given an already trained classifier f on DL, the train-
ing procedure of QuaNet is as follows. Run the classifier on each document x in
DL to obtain the document representation and posterior probabilities. The true
positive rate and the false positive rate for each class is calculated by applying
the trained classifier f on a separate validation dataset. Run CC and PCC on
the training dataset. Run ACC and PACC quantifiers using the calculated true
and false positive rates to output the predicted class distribution. The sorted
list L (input component 1) is then created and passed through the bidirectional
LSTM layer (bi-LSTM) to obtain the corresponding quantification embedding.
The quantification embedding is a vector of 2h elements where h is the size of
each LSTM cell in bi-LSTM. The quantification embedding is then concatenated
with the four quantifiers’ predicted class distributions, where each is a vector of
|C| elements. These are the last four input components of QuaNet. The result-
ing vector of size 2h + 4|C| is given to the fully connected layers with ReLU
activation. The final layer with |C| neurons and softmax activation outputs the
final prediction. The loss function is the Mean Square Error of the prediction
compared to the ground truth. The loss function is minimized via stochastic
gradient descent.
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Fig. 1. QuaNet’s architecture given |C| = 2; black forward arrows show the infer-
ence flow of QuaNet. For each document x, two purple boxes represent the two posterior
probabilities, one for each class, and orange boxes represent the document embedding.
The predicted class distribution by each quantifier has two values (blue boxes), one for
each class. Our proposed work: The green backward arrows show the interpre-
tation flow of our Algorithm 1. The mathematical expressions in the green boxes show
the conservation principle of LRP. (Color figure online)

Testing Process: QuaNet uses the same process as its training procedure to
produce its input from the testing dataset, DU . The list L and the four quan-
tifiers’ predictions then pass through the trained QuaNet to arrive at a final
prediction.

2.1 Performance Metrics for Quantification Models

Unlike classification problems, the performance metrics for quantification models
are different. The commonly used metrics are Mean Absolute Error (MAE), Rel-
ative Mean Absolute Error (RMAE), and Kullback-Leibler Divergence (KLD).

MAE(P, P̂ ) =
1

|C|
∑

c∈C

|P (c) − P̂ (c)| (1)

RMAE(P, P̂ ) =
1

|C|
∑

c∈C

|P (c) − P̂ (c)|
P (c)

(2)

KLD(P, P̂ ) =
∑

c∈C

P (c) log
P (c)
P̂ (c)

(3)

where P is the true class distribution; P̂ is the predicted class distribution; |C|
is the total number of classes; and |P (c) − P̂ (c)| is the absolute value of the
difference between the true and the predicted ratios of class c. A small value of
error or divergence is desirable.
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2.2 LRP

LRP computes the relevance flow in a neural network [4]. It uses the network
weights and the neural activations created during the forward pass to propagate
the output back through the network until the input layer. Then the contribution
of each pixel (with an image as input) to the classifier’s decision is visualized for
users’ understanding. A large relevance score means the input is more important.
A positive score means the input contributes positively to the prediction, and
a negative score means otherwise. A score of 0 means that the input does not
contribute anything. LRP uses the layer-wise relevance conservation principle.
For a deep learning model f , input x, and target class c, LRP redistributes the
posterior probability of class c for x, fc(x), layer by layer, following different
rules [3,18] for different types of layers.

The benefits of LRP outweigh its time-consuming drawback for interpreta-
tion. (1) LRP is not dependent on the input type. Thus, the input can be a
mix of two or more forms, for example, a list of words and numerical scores. (2)
The application of LRP is straightforward and does not require the training of
an external model to derive the explanation. (3) LRP is applicable to different
model architectures [2,4]. (4) Finally, the output relevance scores are signed val-
ues, which differentiate whether a highly relevant feature contributes positively
or negatively to the final prediction.

3 Proposed Work: Interpreting QuaNet

We focus on two research questions in our attempt to gain insights into the
inner-working of QuaNet.

– RQ1: What input components are important to the class distribution predic-
tion by QuaNet?

– RQ2: Does sorting L by Pr(c|x) increase the performance of QuaNet?

Section 3.1 presents Algorithm 1 that adapts LRP for interpreting QuaNet by
deriving a relevance score for each input of the input components of the QuaNet
model to the final prediction. Section 3.2 describes how to utilize the relevance
scores to calculate the contribution amount of each of the five input components
where each component has several input elements.

3.1 LRP-Based Algorithm to Calculate Relevance Scores

Algorithm 1 is based on the QuaNet implementation by the authors of QuaNet
[8] as summarized in Sect. 2. Algorithm 1 takes as its input the trained QuaNet
model to be interpreted and SU , the QuaNet’s input components based on the
test dataset U . Recall that QuaNet has five input components. Thus, SU has five
different components: (1) a sorted list L of pairs 〈Pr(c|x),x〉 for all document
x ∈ DU , where x is the document embedding of x and L is sorted by the values of
Pr(c|x), (2) predicted class distribution using CC (p̂CC(DU )), (3) predicted class
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Algorithm 1. Interpreting QuaNet
Input: Trained QuaNet model and SU

Output: Relevance score of each input component of QuaNet in SU

Notation: See Table 1.

1: Run QuaNet on SU to get intermediate input and output of each layer
2: Rout

fclayer3 ← List of neuron activations of fclayer3
3: for � ∈ [fclayer3, fclayer2, fclayer1] do
4: R�

in ← LRP(�, I�, O�, R
�
out)

5: R�′
out ← R�

in � �′ = � of the next iteration; when � = fclayer1, �′ is null.
6: end for
7: Rout

bi-LSTM ← first |Obi-LSTM| elements of Rin
fclayer1

8: RL ← LRP(bi-LSTM, Ibi-LSTM, Obi-LSTM, Rout
bi-LSTM)

9: RCC , RACC , RPCC , RPACC ← all elements after the |Obi-LSTM|-th elements in
Rin

fclayer1

10: return RCC , RACC , RPCC , RPACC , RL

distribution using ACC (p̂ACC(DU )), (4) predicted class distribution using PCC
(p̂PCC(DU )), and (5) predicted class distribution using PACC (p̂PACC(DU )).
L is input to the bi-LSTM layer to obtain a quantification embedding which is
then concatenated with the input components 2–5.

The green arrows in Fig. 1 show the overall interpretation process of Algo-
rithm 1. In this algorithm, Step 1 runs the QuaNet model on the input to obtain
the intermediate input and output of each layer. In Step 2, the relevance scores
of the last layer, fclayer3, are set as its neuron activations. Steps 3–6 iterate
over the three QuaNet’s fully connected layers, from the last layer, fclayer3, to
the first fully connected layer, fclayer1. The relevance scores of each layer are
backpropagated to the layer before it. In Step 4, LRP is used to calculate the
relevance scores to be propagated to the previous layer, R�

in, by using the layer
information of layer �, the input I�, the output O�, and the relevance scores of
the layer �, R�

out. Step 5 then assigns the relevance scores to be propagated as
the relevance scores of the layer � in the next iteration. At the last iteration,
the relevance scores to be propagated are for the bi-LSTM layer and the four
quantifiers’ results.

Recall that h is the hidden size of an LSTM cell, and the quantification
embedding is a vector of 2h elements. The purpose of Step 7 and Step 9 is to
allocate elements in Rfclayer1

in to Rbi-LSTM
out , RCC , RACC , RPCC , RPACC . Step

7 assigns the first 2h relevance scores as Rbi-LSTM
out for Step 8. In Step 8, the

relevance scores of the bi-LSTM layer are backpropagated to list L. To interpret
the bi-LSTM layer of QuaNet in Step 8, we followed the implementation of [3]1.
Finally, Step 9 assigns the rest of Rfclayer1

in as the relevance scores for the four
quantifiers’ results.

1 https://github.com/alewarne/Layerwise-Relevance-Propagation-for-LSTMs.

https://github.com/alewarne/Layerwise-Relevance-Propagation-for-LSTMs
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Table 1. Notation used in Fig. 1 and Algorithm 1

C Set of classes with the cardinality denoted as |C|
I� and O� Input and output of layer �, respectively

R�
in List of relevance scores to be propagated to the layer

before �, |R�
in| = |I�|

R�
out List of relevance scores for all the neurons in layer �,

|R�
out| = |O�|

LRP(�, I�, O�, R
�
out) LRP denotes the function that implements the LRP

algorithm. It returns the relevance score of each element of
the input of this layer �

q Trained quantifier (QuaNet)

Pr(c|x) Class posterior probability of document x for class c, which
is obtained from classifier f

L Sorted list of pairs of document representation (x) and
Pr(c|x) for a chosen class c for all input documents

bi-LSTM, fclayer1,
fclayer2, fclayer3

BiLSTM and the three fully connected layers of QuaNet

p̂CC(D) CC quantifier prediction on D with given classifier,
|p̂CC(D)| = |C|

SU List of five elements given unlabelled documents/training
set: L, p̂CC(DU ), p̂ACC(DU ), p̂PCC(DU ), p̂PACC(DU )

Ibi-LSTM Same as L

Ifclayer1 Obi-LSTM⊕p̂CC(DU )⊕p̂ACC(DU )⊕p̂PCC(DU )⊕p̂PACC(DU )
where ⊕ denotes a concatenation

3.2 Method to Calculate the Amount of the Contribution of Each
Input to QuaNet

We propose Eq. 4 using the relevance scores output by Algorithm 1. Let RX

denote the sum of the absolute relevance scores of each element of the input
component X. For example, the CC input component is a list of |C| numbers,
where each number represents the class ratio of the corresponding class. In Algo-
rithm 1, LRP returns a relevance score for each number. Thus, the total contri-
bution of the CC component is the sum of the absolute relevance scores of all
|C| predictions by CC. The contribution of the input component is calculated
as a percentage for a better comparison and visualization between results from
different test datasets.

contribution of input component X (%) =
∑

RX∑
y∈SU Ry

× 100 (4)

Given a test dataset, we consider two methods to apply Eq. 4 to calculate
the contribution amount for each input component.
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– Naive method: We input the entire test dataset. The output is the amount
of contribution for each input component. However, this method does not
provide any statistics, such as a mean, median, or variance of the contribution
amount.

– Sampling method: We design different sampling methods to obtain multiple
subsets of the entire test dataset. Since the design of our sampling methods
considers the number of classes and class imbalance ratios, we describe them
in more detail in the next section.

4 Experiment Design and Results

This section describes the datasets, the experimental settings, and the results of
the interpretation of QuaNet. Our two research questions guided the design of
the experiments.

4.1 Datasets

We used five different classification datasets as summarized in Table 2. Three of
them are publicly available and commonly used for quantification tasks. They
are also balanced datasets, i.e., having the same number of documents for each
class. The Standford Large Movie Review dataset (IMDB) has movie reviews
with binary sentiment classification [14]. Yelp Polarity Reviews (YELP) [27]
dataset was constructed for binary sentiment classification by grouping reviews
with one or two stars in a negative class and reviews with three or four stars in
a positive class. AG-NEWS [27] is a balanced multi-class classification dataset.
For this study, only the titles in AG-NEWS were kept, while the article and
description of each document were removed.

Table 2. Statistics of the five datasets used for experiments.

Dataset #classes # training
documents

#testing
documents

Average
#words

IMDB 2 25,000 25,000 231

YELP 2 560,000 76,000 133

AG-NEWS 4 120,000 7,600 8

PAPT-Iowa 20 10,124 1,114 16

PAPT-Nebraska 20 5,132 559 17

The PAPT dataset [22] is a highly imbalanced dataset constructed by collect-
ing tweets from state legislators in the US. These tweets were manually classified
into 20 topics by Policy Agenda Project [24]. PAPT-Iowa and PAPT-Nebraska
represent the PAPT dataset, specifically from Iowa and Nebraska legislators.
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4.2 Experimental Settings

The training of both the underlying classifier and QuaNet was done by using the
default implementation in the QuaPy library [19] available online2. This imple-
mentation uses a bi-LSTM network for the classifier model with all the same
hyperparameters as in [8]. The classifier was trained to minimize the Cross-
Entropy loss for a maximum of 200 epochs with an early stopping criterion. The
training loop was ended after no improvement in the validation accuracy was
observed for ten consecutive epochs. No data augmentation was used for any of
the datasets. QuaNet was trained with stochastic gradient descent to minimize
the Mean Square Error of the predictions. A batch size of 100 was used with
a maximum number of iterations of 100. The training data was split into three
parts, where the first two parts remained as the training data, and the third
part was used as the validation data. The same early stopping criterion was
also applied in training QuaNet. In [19], the list of document representation and
posterior probabilities, L, was sorted based on a given target class for binary
quantification tasks. L was not sorted for multi-class quantification tasks. We
kept this default configuration in obtaining the results in Sect. 4.3, as [8] only
tackled binary quantification and did not mention sorting L for multi-class quan-
tification.

4.3 RQ1: What Input Features are Important to the Final Class
Distribution Prediction of QuaNet?

We show the results of the two methods discussed in Sect. 3.2.

Interpretation Results Using the Naive Method: This method inputs
the entire test dataset to QuaNet. Hence, Algorithm 1 produces only one con-
tribution score for each of the five input components to QuaNet. Recall that
the contribution is calculated using Eq. 4. Figure 2 shows the pie charts of the
contributions.

Fig. 2. Percentage of contributions of each input component towards the final predic-
tion of QuaNet on different test datasets.

Figure 2 shows that the sorted list L has the lowest contributions across
all the datasets by a large margin. For IMDB, the contribution of L is almost
2 https://github.com/HLT-ISTI/QuaPy.

https://github.com/HLT-ISTI/QuaPy
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negligible (0.11%), but not so for AG-NEWS and PAPT-Iowa. For the balanced
test datasets, IMDB, YELP, and AG-NEWS, the predicted class distribution
by CC contributes the most, but not too far ahead from the other predicted
class distributions by ACC, PCC, and ACC. For PAPT-Nebraska, we see the
most contributions from PACC. However, for PAPT-Iowa, there is a tie in the
contributions by PACC and ACC, with the sorted list L contributing more.
The results on the two imbalanced PAPT datasets indicate that adjusting the
predicted class distribution using false positive and true positive rates via PACC
or ACC is important for dealing with class imbalance.

Interpretation Results Using the Sampling Method: We created multiple
equal-sized subsets from a given test dataset. Each subset (sample) had 100
documents. We designed different sampling strategies to reflect the difference in
the number of classes and the class imbalance ratios for different datasets.

For binary quantification tasks (IMDB and YELP datasets), we made the
prevalence of a positive class for different samples take a value in {0, 0.01, 0.02,
..., 0.99, 1}. We ensured that the class ratios of the positive and the negative
classes sum to one, e.g., if the positive class ratio is 0.99, then the negative class
ratio is 0.01. This strategy created 101 samples with different distributions.

For four-class quantification tasks on AG-NEWS, the prevalence of each class
took a value in {0, 0.1, 0.2, ..., 0.9, 1}. We ensured that the sum of the four class
ratios was one. This strategy resulted in 282 different samples. When assigning
documents to a given sample, sampling without replacement was used if the
specified prevalence for the class was larger than the actual prevalence of the
class. Otherwise, sampling with replacement was used. For twenty-class quan-
tification on both the PAPT datasets, we randomly selected 100 documents per
sample instead of restricting each class to a specified class ratio for the following
reasons. 1) To avoid too many combinations of class distributions. 2) To pre-
vent the creation of samples with many duplicate documents caused by sampling
with replacement since the PAPT datasets are small, and the class distribution
is highly imbalanced.

Figure 3 and 4 show the boxplot of contributions of each of the five input
components. Recall that the contributions were calculated from the relevance
scores given by Algorithm 1 using Eq. 4. There are five data points per sample
in Fig. 3 where each data point for the sample is the contribution of the cor-
responding input component shown on the x-axis towards the final prediction
of QuaNet. For each input component on the x-axis, the box in the boxplot
indicates the center of the distribution of the contributions for that component.
The solid line across the box shows the median value. The bottom and top of
the box are drawn at the first quartile and the third quartile, while the whiskers
represent 1.5 times an interquartile range away from the first and third quartile,
respectively. Any data point outside of this range is considered an outlier.

Figures 3 and 4 show that the sorted list L consistently has the lowest contri-
bution towards the final prediction. This component has a median contribution
of less than 5% in all except AG-NEWS. Furthermore, there are relatively less
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Fig. 3. Percentage of contributions of each input component towards the final predic-
tion of QuaNet on the testing sets for binary quantification tasks.

outliers on the contributions of L for the PAPT datasets. We found that all
the large outliers in YELP and AG-NEWS resulted from samples with highly
skewed class prevalence. This shows that QuaNet relies on L when the training
and test data class distributions are very different. This also explains why the
data points from PAPT datasets are highly clustered and have fewer outliers,
as the samples were produced randomly, leading to similar class distributions
between different samples. Interestingly, the contributions were spread out more
for IMDB compared to YELP and AG-NEWS.

Fig. 4. Percentage of contributions of each input component towards the final predic-
tion of QuaNet on the testing sets for multiclass quantification tasks.

The predictions from the four quantifiers, CC, ACC, PCC, and PACC, con-
tribute on average more than 20% respectively, totaling over 90% of the contribu-
tion towards QuaNet’s decisions. PACC is consistently the highest contributing
component, meaning that PACC’s prediction is considered the most valuable
information in QuaNet’s decision. This aligns with the finding in [20], where
PACC was the top-performing quantifier among these four quantifiers. Having a
total of over 90% contribution from the quantifiers reflects that QuaNet learns
to rely heavily on the results from these quantifiers more than the quantification
embedding. We trained a simple neural network called Small-NN to predict the
class prevalence with only these four quantifiers’ predicted class prevalence as
input.
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Table 3. Performance of QuaNet vs Small-NN. Small-NN is a simple fully connected
network that takes the four quantifiers’ predicted class prevalence as input on the same
test data for each dataset. MAE, KLD, and RMAE are performance metrics mentioned
in Sect. 2.1. Bold numbers indicate better performances.

Model QuaNet Small-NN

Dataset MAE KLD RMAE MAE KLD RMAE

IMDB 0.0907 0.0613 0.2278 0.0560 0.0292 0.1686

YELP 0.0216 0.0026 0.0800 0.0179 0.0273 0.0801

AG-NEWS 0.0370 0.0749 0.3130 0.0177 0.0122 0.1224

PAPT-Iowa 0.0612 1.1222 1.5903 0.0117 0.0626 0.3489

PAPT-Nebraska 0.0514 0.9164 1.1115 0.0112 0.0570 0.3361

Small-NN has one fully connected layer with 64 neurons with ReLU activa-
tion, followed by a final layer of |C| neurons with softmax activation. The training
and test data for Small-NN were produced by discarding the input component
L to QuaNet during the training and testing. 30% of the training data was used
as the validation data for training purposes. Small-NN was trained to optimize
MAE with Adam optimization at a learning rate of 10−3. It was trained for 50
epochs with the stopping criterion to end the training after no improvement in
validation loss for 2 epochs. Table 3 shows that Small-NN, a much less sophis-
ticated model, outperforms QuaNet on all the datasets based on MAE. This
outcome aligns with our interpretation that the predicted class distributions of
the four quantifiers are more valuable as quantification features.

4.4 RQ2: Does Sorting L by Pr(c|x) Increase the Performance
of QuaNet?

Esuli et al. [8] proposed to sort the list L because of the intuition that RNN
can learn to count by observing the ordered sequence of Pr(c|x) values, thus
recognizing the switch point between classes. This RQ is framed to examine if
bi-LSTM can recognize the switch point.

We performed an experiment to compare the performance of QuaNet on the
IMDB dataset by sorting L on the test data with two other sorting methods.
Method 1 sorts the posterior probabilities of a class different from the class used
in training. Method 2 does not sort the posterior probabilities. Algorithm 1 was
used in this experiment with its inputs SU produced by the different sorting
methods. The MAE provided by QuaNet on the IMDB test dataset (Table 2) is
as follows (best to worst): 0.0253 for sorting based on the default class used in
QuaNet, 0.0706 for no sorting (Method 2), and 0.4835 for Method 1. This result
shows that QuaNet achieved the best performance with sorted L as its input.

One hypothesis is that the trained bi-LSTM layer observes the sorted order in
L, i.e., sorted by Pr(c|x). Once the posterior probabilities of the test data are not
sorted according to the order it learned (sorted by Pr(c′|x) where c′ �= c or not
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sorted at all), L has a different pattern that the quantifier has not seen before,
thus affecting its prediction. To confirm this hypothesis, we trained different
versions of QuaNet by applying different sorting methods on L from the training
data and compared the performance. With each dataset, the same classifier is
used to train the different versions of QuaNet. We tested each QuaNet with
samples created as described in Sect. 4.3.

Table 4 shows the average performance using the common metrics for quan-
tification defined in Sect. 2.1. QuaNet with or without sorting L performs sim-
ilarly. We conclude that sorting L does not necessarily increase the average
performance of QuaNet.

Table 4. Performance of QuaNet models trained with different sorting methods. The
average performance on samples created as described in Sect. 4.3 is shown. QuaNet
denotes the model that was trained with default sorting. QuaNet-unsorted denotes the
model trained with unsorted L. QuaNet-revsort denotes the model trained by sorting
L on the posterior probabilities of a different class than the default.

Dataset IMDB YELP

Model MAE KLD RMAE MAE KLD RMAE

QuaNet 0.0907 0.0613 0.2278 0.0216 0.0026 0.0800

QuaNet-unsorted 0.0837 0.0509 0.2168 0.0195 0.0026 0.0828

QuaNet-revsort 0.0972 0.0553 0.2442 0.0216 0.0033 0.0792

(a) Binary quantification tasks

Dataset AG-NEWS PAPT-Iowa PAPT-Nebraska

Model MAE KLD RMAE MAE KLD RMAE MAE KLD RMAE

QuaNet-sorted 0.0377 0.0651 0.3214 0.0510 1.0872 1.2434 0.0516 0.8162 0.9433

QuaNet-unsorted 0.0370 0.0749 0.3130 0.0612 1.1222 1.5903 0.0514 0.9164 1.1115

(b) Multi-class quantification tasks

5 Conclusion and Future Work

We present the first attempt at interpreting a deep text quantifier. By using
LRP, we calculate the relevance of each input component to a quantifier’s pre-
dicted class distribution and identify important quantification features. This
work presents an interpretation of QuaNet, a recent deep-learning quantifier for
text quantification tasks. Our findings are as follows. 1) QuaNet relies the most
on one of its inputs, the PACC prediction. QuaNet learns that PACC is the most
reliable feature to guide its prediction. This finding is consistent with the study
by [20], that PACC is the top performing quantifier among CC, ACC, PCC,
and PACC. 2) The quantification embedding used in QuaNet [8] is an important
quantification feature when the class prevalence of a given test dataset is signif-
icantly different from that of the training dataset. 3) On the five test datasets
used in this study, a small fully connected network with CC, ACC, PCC, and
PACC as input gives a better average quantification performance than QuaNet.
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As QuaNet relies on a separate classifier to classify each document, our method
cannot provide relevance scores for individual words in the input documents.
Achieving such interpretation requires an interpretation method on the classifier
model and integration with the contributions calculated from Algorithm 1.

In our future work, we plan to interpret the other deep text quantifier, DQN.
This is where the advantage of LRP on returning signed relevance scores should
stand out. DQN is a direct quantification model which does not need any classi-
fier. Modifying LRP to interpret DQN can trace the relevance back to each word
in a document in the input. This allows word-level interpretation, where we can
identify both the positive and negatively contributing words to the quantification
prediction.
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Abstract. To alleviate information overload, the recommender system is pushing
personalized contents to users and improving the efficiency of information distri-
bution. Graph Convolution Networks (GCNs), which can better gather structured
information and becomes a new state-of-the-art for collaborative filtering. Many
current works on GCNs tend to be easier to train and have better generalization
ability like LightGCN. However, they care less about the importance of nodes.
In this work, we propose a new model named NExtGCN (Neighbor Excitation
Graph Convolutional Network), which models the node importance of GCN by
neighbor excitation. The NExtGCN can learn the importance of nodes via the
global and local excitation layer which is inspired by the Squeeze-Excitation net-
work. Furthermore, we propose a neighbor excitation layer that can fully utilize
graph structure and make this model practical to large-scale datasets. Extensive
experimental results on four real-world datasets have shown the effectiveness
and robustness of the proposed model. Especially on the Amazon-Books dataset,
our NExtGCN has improved by 10.95%, 49.36%, and 26.8% in Recall@20,
MRR@20, and NDCG@20 compared to LightGCN.We also provide source code
(https://github.com/clemaph/NExtGCN.git) to reproduce the experimental results
(This job is supported by Postgraduate Research & Practice Innovation Program
of Jiangsu Province, the item number is KYCX22 3071).

Keywords: Recommendation · Graph Convolution Networks · Collaborative
Filtering

1 Introduction

The recommender system has become the infrastructure of information services, pro-
viding users with personalized contents. LightGCN [1] simplifies GCNs by only keep-
ing the neighborhood aggregation module and achieves better empirical performance
than other sota methods. UltraGCN [4] uses several constraint losses. SGL [7] explores
self-supervised learning on useritem graph. The above models ignore the weights of
neighbor nodes, so it is difficult to effectively distinguish the influence of important
nodes from non-important nodes. There has been some existed works [2,5,6] that
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can model node or item importance by attention mechanism, typical attention mech-
anism is not suitable for user-item bipartite graph. As shown in Fig. 1(a), the learned
attention score in GAT has a high variance and it makes the model hard to optimize.
Besides, we observe that k3 and k7 always have a relatively high attention score for
any query node. Intuitively, k3 and k7 are representative works in romance and sci-
ence fiction movies. We make an assumption that there is an intrinsic importance score
for each node in the user-item graph and we need to learn a static importance score
for each user and item node. It should be much easier to optimize and requires fewer
parameters than a dynamic attention mechanism. The importance scores learned by our
NExtGCN are also presented in Fig. 1(b). We propose to apply Squeeze-Excitation net-
work [3] on node importance modeling and design global and local modules to capture
the node-wise and dimension-wise importance weights of neighbor node embeddings
by Squeeze-Excitation network. We propose the neighbor excitation layer to adapt the
large node number and high-order connectivity in graph node importance modeling.

Fig. 1. The importance of ten nodes in the Movielens-1M. k0 to k9 represent 10 different movies:
k0 (Digimon), k1 (Contender), k2 (Tigerland), k3 (Roman Holiday), k4 (Bikini Beach), k5 (Meet
the Parents), k6 (Urban Legends), k7 (2001: A Space Odyssey), k8 (Beach Party), and k9 (Kro-
nos). q0 to q4 denotes 5 user nodes.

2 Method

2.1 Input Layer

At the beginning, we formulate the recommendation task to be addressed in this paper:
Input: user-item bipartite graph G. Output: A function that predicts the likelihood
ŷui of user u choosing item i. D denotes the embedding size, eu ∈ R

D denotes user
embeddings while ei ∈ R

D denotes item embeddings. And the parameter matrix after
splicing the two is as follows:

E = [eu1 , ...,euN
,ei1 , ...,eiM ]. (1)
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2.2 NExtGCN Layer

The importance weights su and si of user u and item i are employed in aggregation,
and our graph convolution operation is defined as follows:

e(l+1)
u =

∑

i∈Nu

su√|Nu|√|Ni|
e
(l)
i ,e

(l+1)
i =

∑

u∈Ni

si√|Ni|
√|Nu|e

(l)
u . (2)

where Nu denotes neighbors of user u, Ni denotes neighbors of item i. As mentioned
above, not all neighbor nodes are equally important when aggregating extended neigh-
bors and we need to give them different scores to capture different effects via the two-
level excitation layer.

Modeling Global and Local Node Importance. The i-th feature embeddings are
squeezed into a scalar value zi which represents the global information about i-th fea-
ture embedding. All features are squeezed into scalar values and two linear layers are
followed to model the final importance of all features. We consider squeezing node
embedding in Eq. 3, and calculate global importance by Eq. 4:

z0 = MaxPooling(E(0)) (3)

zk+1 = Dropout(σ(Wkz
k)),zk+1

u =
∑

uεNi

W k
i,uz

k
u (4)

where we use MaxPooling denotes the max pooling mechanism. Wk denotes a learn-
able parameter matrix in the k-th excitation layer, Dropout denotes dropout and σ
denotes ReLU activation function. A typical excitation layer consists of linear layer,
dropout operation and ReLU activation function. To capture the overall importance
score of a node, it is necessary to first pass the embedding through a layer of global
maximum pooling to obtain an initial global importance score with a shape of N × 1.
Then several excitation layers will be applied to the global importance scores. We set
the shape of all parameter matrix W as N × N , which will keep the input and output
dimension of all excitation layers’ as N .

Except the global excitation layer, the local excitation mechanism layer is to input
an embedding of shape N × D and generates a dimension-wise weight matrix. The
local modules are computed via a similar structure without pooling as follows:

Xk+1 = Dropout(σ(WkX
k)),Xk+1

u =
∑

uεNi

W k
i,uX

k
u (5)

with the local module, we can compute fine-grain importance score Xk+1 for each
dimension of all nodes. The final importance score Xk+1 should still keep the N ×
D shape. Given the global importance score zK and local importance score XK , we
obtain the final importance scores of user and item embeddings as follows:

s = MeanPooling(λ ∗ σ(zK ⊕ XK)) (6)
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where ⊕ denotes the broadcasting addition and σ denotes Sigmoid activation function.
The Sigmoid activation function is used to predict the importance score. Since the range
of Sigmoid is [0, 1], we set λ = 2 to scale up its range. Finally, we add a mean-pooling
mechanism on the addition embedding which has a shape of N ×D to obtain an impor-
tance score for each node.

2.3 Prediction Layer

After neighbor aggregation layer, we get weighted e
(0)
u for all users and e

(0)
i for all

items. We get a final representation of the user and item via L-layers normalized sum:

eu =
L∑

l=0

ale
(l)
u ;ei =

L∑

l=0

ale
(l)
i (7)

where αl means the importance of l-th layer, which keeps the same setting with Light-
GCN [1]. We use the inner product of user and item final representations to define the
model prediction:

ŷui = eT
uei (8)

3 Experiments

3.1 Experimental Settings

We conduct experiments on four benchmark datasets: MovieLens-1M, Gowalla,
Yelp2018, and Amazon-Books, randomly rearrange the data, set the dataset to be
divided into 8:1:1 training, test, and evaluation sets, and use full sort. We mainly com-
pare three indicators: Recall@20, NDCG@20, andMRR@20. For the embedding layer
and optimization method, we use L2 regularization with 10−4 weight, and the learning
rate is set to 10−3, the batch size of training to 4096 and batch size of evaluating to
204800, the negative sampling radio R to 300, we fix the embedding size to 64.

3.2 Performance Comparison

We present the results of the performance comparison in Table 1. First, GCNs are
generally better than embedding based methods and matrix factorization based meth-
ods, because GCNs can utilize high-order connectivity in user-item bipartite. Second,
NExtGCN has the best performance on all four datasets, especially on the Amazon-
Books dataset. The results in the table illustrate our considerable improvement over
state-of-the-art GCN models. Finally, GAT doesn’t achieve higher results compared
with other GCN-based recommendation methods. It’s possible that the dynamic atten-
tion mechanism in GAT is not suitable to a user-item bipartite graph, because it’s too
complicated to be optimized on a simple graph structure.
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Table 1.Overall performance comparison. NExtGCN denotes our model which consists of global
and local modules. R, M, and N denote Recall, MRR, and NDCG, respectively. Improv. denotes
the relative improvements over the best GNN-based baselines. The results of significance test-
ing indicate that our improvements over the current strong GCN-based baseline are statistically
significant(p-value< 0.05).

Metrics LINE BPRMF NeuMF GCMC GAT NGCF DGCF LightGCN NExtGCN Improv.

Amazon-Books R@20 0.0358 0.0968 0.0655 0.0908 0.0921 0.0937 0.1068 0.1123 0.1246 10.95%

M@20 0.0241 0.0678 0.0389 0.5860 0.6171 0.0629 0.0693 0.0778 0.1162 49.36%

N@20 0.0191 0.0389 0.0336 0.0557 0.0574 0.0580 0.0588 0.0638 0.0809 26.8%

Gowalla R@20 0.1047 0.1517 0.1447 0.1497 0.1514 0.1572 0.1811 0.1898 0.2070 9.06%

M@20 0.0750 0.1114 0.0901 0.0904 0.1538 0.1074 0.1257 0.1307 0.1421 8.72%

N@20 0.0610 0.1001 0.7950 0.0807 0.0866 0.0904 0.1058 0.1106 0.1211 9.49%

Yelp2018 R@20 0.0491 0.1000 0.7610 0.0924 0.0939 0.0963 0.1132 0.1134 0.1206 6.35%

M@20 0.0341 0.0690 0.0466 0.0601 0.0625 0.0644 0.0757 0.0772 0.0835 8.16%

N@20 0.0266 0.0557 0.0396 0.0495 0.0514 0.0523 0.0604 0.0628 0.0674 7.32%

Movielens-1M R@20 0.2419 0.2665 0.2483 0.2630 0.2691 0.2725 0.2799 0.2677 0.3000 7.18%

M@20 0.3994 0.4248 0.3906 0.4232 0.4211 0.4169 0.4386 0.4333 0.4614 5.20%

N@20 0.2277 0.2495 0.2296 0.2493 0.2501 0.2513 0.2608 0.2540 0.2795 7.17%

3.3 Ablation of NExtGCN

Effect of Neighbor Excitation Layer Numbers. Figure 2 shows how the neighbor
excitation layer benefits from high-order connectivity on the graph. We can conclude
that NExtGCN outperforms LightGCN, means that it can always learn the importance
of neighbor nodes w/ or w/o high-order information.

Fig. 2. Performance comparison of setting the different number of the neighbor excitation layers
on Yelp2018. N 2, N 3, N 4 denotes the model with 2, 3, 4 neighbor excitation layer numbers.

Effect of Global and Local Modules. Figure 3 shows the effect of the global module,
the local module, and the combination of the two. Whether the two modules are used
alone or in combination, they perform better than LightGCN and the combination of
the two modules is better than using one alone module.
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Fig. 3. Performance comparison of different modules on Yelp2018. N g, N l, N g+l denotes the
model with the global module, local module, and both modules.

4 Conclusions

In this work, we explore the influence of static node importance and dynamic node
importance on recommendation results. Due to the drawbacks of the state-of-the-art
models, we propose NExtGCN to model nodes’ static importance of GCN by global
and local excitation for the recommendation. Furthermore, the NExtGCN can capture
graph structure to enhance importance modeling, and makes node importance modeling
to be more applicable when facing dozens of thousands of nodes.
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Abstract. Tourist route planning has been extensively investigated due
to the rapid development of the tourism industry. Existing methods
often recommend popular and optimized (short or quick) routes based
on interest of tourists. Consequently, the sightseeing area becomes more
crowded, and the overtourism issue becomes more serious. As a solu-
tion, we propose a multi-agent reinforcement learning (RL) framework
for congestion-aware routes planning. Our work contains two parts: first,
we introduce a novel tourism RL environment that can interact with
multiple tourists. Then we propose a dual-congestion awareness model.
Specifically, both the local congestion of visited sightseeing spot and the
global tourists’ distribution in the target city are considered to model the
reward in our multi-agent RL framework. We conduct experiments by
using real datasets collected from Kyoto, one of the most popular sight-
seeing cities in the world. The experimental results demonstrate that our
model is superior to previous methods in terms of tourists’ distribution
in the target city.

Keywords: Multi-agent Reinforcement Learning · Sustainable
Tourism Development · Multiple Tourists Route Planning

1 Introduction

Tourism route planning models [1–3] have been developed from various aspects,
such as popular route optimization and route personalization. Existing studies
have primarily considered interest of tourists, resulting in that visits are mainly
planned on popular points-of-interest (POIs) and some minor POIs remain unvis-
ited at the end of the trip. We term this problem as popularity-biased route plan-
ning which not only poses a burden on the popular POIs but also discourages
the development of sustainable tourism.

To address this issue, we propose a route planning model with considera-
tion of tourists distribution (RPMTD). We first design a novel tourism multi-
agent reinforcement learning (RL) environment which can interact with multiple
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C. Strauss et al. (Eds.): DEXA 2023, LNCS 14147, pp. 331–336, 2023.
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tourists. Subsequently, based on this environment, we propose dual-congestion
awareness model. Specifically, local and global congestion rewards are consid-
ered. The local congestion reward evaluates the crowdness of visited POI and the
global congestion reward evaluates the evenness of tourists’ distribution across
all POIs.

We implement our method on Kyoto real human-mobility data with scalable
tourists settings. The model is evaluated in terms of the fairness of POIs’ vis-
its and the evenness of tourists’ distribution. Result indicates that our model
generally outperforms other models and shows robustness in various tourists
scenarios.

2 Related Work

Numerous works have developed single tourist route planning schemes consid-
ering different aspects. Some studies [5–7] aim to maximize trip reward. Some
other works focus on personalized route planning [2,8–10]. Conversely, few stud-
ies focus on multiple tourists. Sylejmani et al. [11] plans a group of tourists with
considerations of individual preferences and mutual social relationship. Sarkar et
al. [12] applies Subgame-Perfect Nash equilibrium of game theory to recommend
various routes for a group of tourists. Kong et al. [4] applies single-agent RL
framework to diversify multiple tourists routes. Different from previous meth-
ods, our model is the first to generate routes considering the POI’s interest.

3 Multi-agent Reinforcement Learning Environment

Our proposed environment consists of the mobility matrix, tourists and POIs.
The U × V mobility matrix M presents the POIs’ population change over one
day, where U is the number of POIs; V is the number of time slots representing
one day. Celluv of M indicates the number of people in POI u at the specific time
slot v. There is a current time indicator timecur for M , indicating the current
time slot and moving to next time slot after one interaction. For each tourist
tj , there is an indicator of activate time timeact

j . Before the activate time, tj
does not interact with the environment. Specifically, tj is either in sightseeing
or unstarted before the activate time. For each POI pi, the popularity is set
according to current time slot of the mobility matrix in each interaction.

At the beginning, the current time indicator timecur is initialized by the
tourists’ starting time. The POIs’ popularity is set according to current time
slot from the mobility matrix M . Environment generates the observation Oj for
the tourist tj , which is stacking of each POI pi’s observation Oi

j . In Oi
j , there are

8 features: capacity, time cost, score, visit count, popularity, tourist remaining
time, tourist time budget and tourist moving time. Thus, the size of Oj is n× 8,
where n represents the number of POIs. Given observation Oj , agentj outputs
the action Aj which is the next visiting POI. Then the mobility matrix M is
updated, and the reward is given. timeact

j moves to the time slot where is the
end of this POI visiting.
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4 Dual-Congestion Aware Routes Planning Model

4.1 Multi-agent Reinforcement Learning Implementation

Our work is based on fully decentralized approach to accommodate our model to
scalable tourists scenarios. The actor-critic method is adopted and independent
PPO (IPPO) [15] is utilized for training. Since all the agents are homogeneous,
namely, they having the same state space, action space and optimization objec-
tive, parameter sharing is conducted.

Formally, in the actor-critic method, the observation O is given for an agent
from the environment in each interaction. Specifically, O = {O1, ..., On} ∈ R

n×d,
where n and d denotes the number of POIs and the POI’s feature dimension,
respectively. The actor firstly maps O into the hidden space with a feed-forward
network (FNN) to obtain the hidden representation: O′ = FFN1(O) ∈ R

n×h ,
where h denotes the hidden dimension.

Then the self-attention is applied to update hidden representation O′,
which is motivated by its effectiveness in combinatorial optimization stud-
ies [16]. Specifically, it learns the relations between each pair of POIs,
and updates each POI’s representation from all POIs. We use transformer
encoder [17] as self-attention module, and stack 2 layers with 8 heads: H =
TransformerEncoder(O′) ∈ R

n×h.
The updated representation H is further fed into another FNN to calculate

the logits of each POI, and then is normalized by softmax. The final action is
obtained by random sampling. The critic has the similar structure with actor
except that it finally calculates a scalar value.

4.2 Dual-Congestion Mechanism

For the unbiased routes planning, we propose a dual-congestion mechanism to
construct reward function. Specifically, the local congestion considers visited
POI congestion and the global congestion considers evenness of tourists overall
distribution. The total reward is the sum of local and global congestion reward:

Rewardtotal = Rewardglobal + Rewardlocal (1)

Reward Based on Local Congestion: Rewardlocal evaluates the visited
POI’s crowdness. The intuition is that less tourists poses less burden on the
POI and makes tourists more satisfied, which results in higher reward. We use a
linear function to define the local congestion reward without considering negative
reward as follows:

Rewardlocal = max(scoresc · (1 − numt

c
), 0) (2)

where scoresc is the scaled POI score, which depends on each POI’s visit num-
ber and overall trip process, aiming to improve the minor POIs’ visiting. The
intuition is that POIs with less visit will have higher score.
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scoresc = max(I(x) · Sc(numt), 1) · score

I(x) =
1

1 + e−20(x−λ1)

Sc(numt) = 1 +
20

(numt + 1)4

(3)

where I(x) is the trigger function. x is the percentage of total tour process.
Sc(numt) is the score scaling function. I(x) triggers score scaling function after
a certain time. λ1 is a hyperparameter and set to 0.6 as default, indicating that
the score scaling function is triggered from the 60% of total touring process.

Reward Based on Global Congestion: To more fairly distribute the tourists
over all POIs, we propose the global congestion reward Rewardglobal, which is
inversely proportional to the variance of all POIs’ attendance percentage:

Rewardglobal =
λ2

V ar(ap1, ..., apn)
, where api =

numt
i

ci
(4)

λ2 is the hyperparameter and set to 0.1 in our experiment.

5 Experimental Evaluation

5.1 Environment Setting

Mobility Setting. We conduct experiments on Kyoto real data settings: FYP-
Data. Details are given as following:

– F-Data: We count the number of Flicker users who post photos on Flicker in
each POI and different time slots. It represents the Kyoto tourists’ mobility
and the maximum mobility is about 4000.

– Y-Data: This data set is provided by Yahoo Japan Corporation. It includes
6667031 trajectories of 757878 mobile users using Yahoo! JAPAN services in
16 days. The data is pre-anonymized and random noise is added. It represents
the Kyoto local residents’ mobility and the maximum mobility is about 25000.

– P-Data: Based on Y-data, we use a density model [14] to generate trajectory
data of 500 pseudo-users to simulate the mobility of random tourists.

– FYP-Data: This data is the combination of Y-Data, F-Data and P-Data,
which is closer to reality.

Tourists Setting. We generate 100, 200 tourists as small-scale tourists and 500,
1000 tourists as large-scale tourists.

5.2 Baseline Setting

– MARLRR [4] diversifies tourists’ routes by dynamic reward function and
applies single-agent RL framework.

– Pointer-NN [7] is one state-of-the-art model for single tourist route planning.
It constructs model with pointer networks and dynamic graph self-attention.
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Table 1. Result based on FYP-Data.

GiniPOI Ginitourist Varave Varmax EDr

FYP-Data 100 tourists RPMTD 0.612 0.168 0.036 0.067 1315.286
MARLRR 0.713 0.176 0.038 0.071 1287.936
Pointer-NN 0.821 0.196 0.275 0.356 69.328

FYP-Data 200 tourists RPMTD 0.625 0.189 0.032 0.071 2265.351
MARLRR 0.736 0.191 0.107 0.181 2313.025
Pointer-NN 0.868 0.187 0.292 0.478 93.836

FYP-Data 500 tourists RPMTD 0.651 0.193 0.043 0.081 3619.283
MARLRR 0.692 0.269 0.151 1.498 3592.875
Pointer-NN 0.921 0.186 0.412 1.754 151.802

FYP-Data 1000 tourists RPMTD 0.674 0.216 0.045 0.096 5812.231
MARLRR 0.851 0.659 0.398 0.967 5762.922
Pointer-NN 0.948 0.201 1.104 3.257 184.064

5.3 Evaluation Metrics

Performance is evaluated by following metrics: Maximum and average variance
of all POIs’ percentage of attendance (Varmax and Varave) throughout the whole
trip; Gini coefficient [13] of POIs (GiniPOI) and tourists (Ginitourist); Average
of edit distance of planned routes (EDr).

5.4 Experimental Results

Table 1 shows the results of FYP-Data. RPMTD shows the smallest GiniPOI ,
while MARLRR and Pointer-NN show much larger GiniPOI , indicating stronger
bias of POI. Pointer-NN shows the smallest Ginitourist and EDr, which means
that tourists’ rewards are similar and routes are homogeneous. RPMTD and
MARLRR show comparable Ginitourist in small-scale tourists scenarios. How-
ever, Ginitourist of MARLRR increases significantly in large-scale tourists sce-
narios. In terms of Varave and Varmax, RPMTD shows the best performance.
Pointer-NN performs much worse than other two models because tourists are
planned in similar POIs.

Three models show same tendency in GiniPOI that bias always grows in large-
scale tourists. MARLRR outperforms us in small-scale tourists for Ginitourist,
however, it increases significantly in large-scale tourists. For the Varave and
Varmax, MARLRR shows the same unstable performance with large-scalar
tourists. Pointer-NN performance indicates that existing single tourist planning
method cannot be applied to multiple tourists planning.

6 Conclusion

We introduce the popularity-biased routes planning problem. We solve this prob-
lem using our multi-agent RL framework, which includes an environment and



336 K. Yuntao et al.

a dual-congestion aware model. In our experiments, we consider novel mobil-
ity data to make it closer to reality. Experiments with baseline models are
conducted. The result reveals the superior performance and robustness of our
model. Additionally, our work is the first to plan multiple tourists’ routes from
the interest of POIs, which could be incorporated with existing models to meet
the sustainable development goals for tourism.

Acknowledgements. This work was partly supported by JSPS KAKENHI
(23H03404) and MIC SCOPE(201607008).
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Abstract. Clustering categorical data has been a challenging task. Most
known clustering techniques for such data often achieve excellent perfor-
mance over binary data, however, their performance on multi-class data
has not been as good. We believe this could be improved by taking
into account the overlapping and imbalance issues in the clustering pro-
cess. This would allow detecting small and informative clusters as well,
and hence improved cluster quality. In this paper, we introduce a novel
subspace technique for multi-class data. For this, we use the notion of
entropy from information theory in conjunction with Coa’s density func-
tion to identify and combine potential sub-clusters from the same classes,
revealing smaller clusters. We compare our results to those of well-known
subspace clustering approaches, density-based algorithms, and ensemble
clustering. The results of our numerous experiments indicate that our
proposed technique outperforms the majority of existing solutions.

Keywords: Clustering · Categorical data · Density function ·
Entropy · Overlapping

1 Introduction

Categorical data is conceptual and inherits layer structure, so it makes sense to
analyze it based on its attributes to find clusters in the subspace, which resulted
in the development of subspace-based clustering algorithms. These algorithms
can be divided into two groups: weighted-based and standalone clustering algo-
rithms. The algorithms in the first group embed the attribute weight in the clus-
tering process. The assigned weight denotes the importance of each categorical
attribute and is used to control the contribution of attribute-cluster similarity to
object-cluster similarity. In this technique, weight is calculated as the weighted
distance between the object and the mode categories of the cluster on each
attribute. We note that most weighted-based algorithms were successful when
applied to binary data. However, their applications to multi-class data were not
as successful. This weakness, we believe, is rooted in two problems. Firstly, the
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initial clustering used in those algorithms is mainly based on either k-modes or
fuzzy k-modes. The underlying assumption of such algorithms is that clusters are
”cohesive” and mapped around a real or virtual center. However, the cohesion
degree in multi-cluster data could vary. Obviously, such distance computation
methods can easily lead to loss of non-mode categories in small and scattered
clusters [4]. In contrast to the algorithms in the first group, standalone-based
algorithms avoid forming clusters around the modes. Instead, they sequentially
scan the entire space and search for dense clusters in subspaces. After identify-
ing all potential dense clusters, an integration process is used to generate the
desired number of clusters. Examples of popular such algorithms include ROCK,
COOLCAT, and ROCAT [5], to name a few. Those algorithms have the follow-
ing drawbacks. They need a number of parameters to define dense regions, and
setting these parameters poses challenges [5]. Another drawback is that small
clusters are lost during the merging phase. This is because the heuristic search
used generates a large number of redundant sub-clusters [4,5]. Furthermore,
these algorithms are affected by the order of data objects or attributes [5].

In this paper, we propose a new subspace algorithm to address the above
problems. For this, we study the application of entropy and a density function at
every iteration of the clustering process. First, we present an iterative technique
for detecting sub-clusters and overlapping clusters. We then merge sub-clusters
(dense clusters) and re-cluster the overlapping clusters. This process is repeated
until the necessary number of clusters is obtained. Following that, using expected
entropy, non-clustered objects are reassigned to the closest cluster.

The rest of this paper is organized as follows. In Sect. 2, we introduce our
proposed techniques. The experiments and results are reported in Sect. 3. Con-
cluding remarks and future work are presented in Sect. 4.

2 The Proposed Multi-objective Technique

Our proposed clustering technique is built based on two assumptions. First,
categorical data is complex and has a layer structure. Therefore, hidden pat-
terns may be difficult to find using a single clustering objective function [4].
Second, the detection of small clusters is less likely to happen during the early
steps of the process as they can be easily hidden inside larger clusters. Based
on these assumptions, Cao’s algorithm [1] and the entropy concept are used, as
they employ functions that are both adequate and complementary. Cao’s algo-
rithm creates clusters based on the frequency of attribute values and matching
similarity. The ROCAT [5] algorithm used the Shannon entropy to find overlap-
ping clusters based on attribute homogeneity. Both algorithms use categorical
data properties to define clusters; thus, we believe their combined application
is appropriate and beneficial. Moreover, they complement each other and avoid
their weaknesses. That is, Cao’s algorithm outputs sub-clusters of a golden clus-
ter as primary clusters [4], whereas ROCAT [5], on the other hand, sequentially
searches the entire space for such clusters. Therefore, instead of searching the
entire space, we localize the search within the clustering solution found.
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Before going into the details, let’s define some notations. Let D =
{x1, x2, · · · , xn} be a categorical dataset of n objects describes by m features.
F = {f1, f2, · · · , fm}. Vj is domain of attribute fj ∈ F ; Vj = {vj1, vj2, · · · , vjr},
where r is the number of categories of attribute fj .

2.1 Cao Clustering Algorithm

The Cao algorithm [1] is an extension of the k-modes clustering algorithm. The
algorithm seeks the cluster center of categorical data by calculating the average
density of the objects. Given a dataset D, Cao’s algorithm partitions the data
into K clusters as follows: it selects the first center which has the highest density
in the dataset, computed as the following

Dens(x) =
∑

f∈F

Densf (x)/|F | (1)

where Densf (x) is the density of objects x in D with respect to f , given by

Densf (x) =
|{y ∈ D|V al(x, f) = V al(y, f)}|

|D| (2)

For the rest of k − 1 centers, both density and the distance from the selected
centers xm are applied.

center(c) = d(xi, xcen) × Dens(xi) (3)

where d(xi, xcen) is the simple matching method.

2.2 Step One: Finding and Analyzing the Clusters

Identifying Sub-clusters. This is the first step of the proposed technique.
Figure 1 illustrates the idea. Suppose we apply the Cao algorithm on the dataset
D and obtain the clusters Π = {C1, C2, C3, C4}. For each cluster Ci ∈ Π,
we identify the subset of features that contributed to the discovery of the corre-
sponding cluster [5]. We refer to these features as relevant features of Ci, denoted
as Relv(Ci), which are selected based on their level of variability in the clusters.
To measure the variability of a categorical feature, we follow ROCT and use
Shannon entropy. Then,

Relv(Ci) = {fj | H(fj | Ci) < Δ,∀fj ∈ F}

where H(fj | Ci) is the entropy of feature fj in cluster Ci computed as :

H(fj | Ci) = −
|Vj |∑

q=1

P (vjq | Ci) log P (vjq | Ci) (4)
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and P (vjq | Ci) is the probability of objects in the cluster Ci obtaining the same
attribute values

P (vjq | Ci) =
|{xi ∈ Ci | xij = vjq}|

|Ci| (5)

As shown in Fig. 1, Relv(C1) = {f1, f2, f3, f4, f7, f9} is the set of relevant fea-
tures of C1 because these features have fewer categories, indicated by different
colors. We do the same to clusters C2 and C3. Depending on the entropy thresh-
old, relative features divided the clusters into equivalence classes1. Large equiv-
alence classes are considered dense sub-clusters; equivalence classes with only
one item are deleted and relocated in the last step, and the remaining equiv-
alence classes proceed to the second iteration. Consider the value C2 in Fig. 1.
The first two items form a dense sub-cluster, whereas the latter two are redis-
tributed in the final step. The proposed technique is based on a density function,
and hence we expect some clusters to be spatially sparse. We refer to such clus-
ters as overlapped clusters. These clusters are described by a small number of
relative features or the full subspace F . In the literature, such clusters are con-
sidered uninteresting [6]. However, our view is to consider such clusters to be
composed of smaller clusters that are scattered throughout the space. Conse-
quently, a detailed analysis may be further applied to identify them. C4 in Fig. 1
is an illustration of overlapping clusters.

Fig. 1. Overview of the proposed technique

Merging Dens-Clusters. Following each iteration, the similarity between the
current dens clusters is computed. To achieve this, we used the merge function
proposed in [2], which is given as follows:

sim(Cx, Cy) =
|Fxy|∏

i=1

[ |Vi|∑

j=1

min{P (vij | Cx), P (vij | Cy)} + ε

]
(6)

where |Fxy| is size of the union of the relative features, P (vij |Cx) denotes the
probability of the jth value for the ith feature in cluster Cx, |fi| the size of the
domain value of the ith feature, and ε is a very small value. A higher similarity

1 A set of objects share strong associations defined by their relative features.
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score means that the distribution of attribute values in two clusters is similar,
and should be merged. Note that the transitive concept to group the dense
clusters is applied. In Fig. 1, C1 and C2 can be merged since they are similar;
however, C3 has low similarity with both clusters.

2.3 Step Two: Reassigning Non-clustered Objects

Some objects may not be assigned to any cluster. Those objects are assigned to
a cluster to which they have the highest similarity. Suppose that from step one,
we obtained K clusters CK = {C1, . . . , Ck} where each Ci has ni objects. Let
X =

⋃
CK and d be the union of the relative feature of CK . One of the solutions

to find the best cluster is expected entropy, computed as the following [3]

O(CK) =
1
d

(
Ĥ(X) − 1

n

K∑

i=1

niĤ(Ci)
)

(7)

where

Ĥ(X) = −
d∑

i=1

|Vi|∑

j=1

p(vij | C) log p(vij | C) (8)

Using the above, objects are assigned to the cluster, resulting in minimal changes
to the overall clustering structure CK .

3 Experiments and Results

In this section, we present the experiments conducted to study the performance
of the proposed multi-objective techniques and report the results obtained using
well-known datasets from the UCI machine learning repository. Table 1 provides
a brief description of these datasets. To evaluate the overall performance of the
proposed technique, we followed the literature and used three well-known eval-
uation measures: clustering accuracy (AC), and normalized mutual information
(NMI) measures. In Tables 2 and 3, we compare the performance of the pro-
posed technique against well-known clustering techniques. The results showed
that the proposed techniques yield high AC and NMI in all datasets except
Mushrooms, where KALM provides better results. As the proposed technique

Table 1. Descriptions of the datasets

Datasets Zoo Dermatology lymphoma Mushroom

No.Objects 101 366 148 8123

No.Attributes 16 35 18 23

Classes 7 6 3 2
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Table 2. Comparison of the proposed techniques based on AC

Dataset Proposed Al-Razgan KALM FKMAWCW Khan COOLCAT

Dermatology 0.9261 0.6180 0.7889 0.7926 0.6175 *

Zoo 0.8996 0.7907 0.8476 0.8218 0.8911 0.785

Lymphoma 0.7260 0.0061 0.4624 0.6139 0.5068 0.574

Mushroom 0.8132 0.7474 0.8496 0.8182 0.8288 0.531

requires three parameters, we tested the sensitivity of the suggested technique
to changes in parameters. Figure 2 shows the effect of entropy over the clustering
results. For the minRelf parameter, we observed that minRelf = 5 works for all
three dataset datasets except the Zoo, for which we set the value to 10. Finally,
for the merger threshold, we followed the author’s suggestion [2] and used 0.9 as
the default value.

We also examine the proposed technique to identify smaller clusters. The
confusion matrix in Fig. 4, shows that the proposed technique effectively detected
the entire cluster C0 in dermatology. In the case of the Zoo dataset, we can see
that the proposed solution accurately discovered all four objects in cluster C5.
Although they are merged with the objects in cluster C3, this is much more
effective than merging with huge clusters, as in the case of Cao’s technique. The
same applies to the Lymphoma dataset where our technique output the smaller
cluster C0 with very high purity, unlike Cao’s algorithm (Fig. 3).

Table 3. Comparison of the proposed techniques based on NMI

Dataset Proposed Al-Razgan KALM FKMAWCW Khan COOLCAT

Dermatology 0.8811 0.7769 0.7418 0.7466 0.6175 *

Zoo 0.9027 0.8150 0.8485 0.7806 0.8911 0.6615

Lymphoma 0.4793 0.0061 0.2020 0.4221 0.4226 0.05

Mushroom 0.3812 0.4323 0.4766 0.4053 0.19155 0.2812

Fig. 2. Proposed sensitivity to the entropy value
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Fig. 3. The confusion matrix of clustering results by Cao’s algorithm

Fig. 4. The confusion matrix of clustering results by the proposed technique

4 Conclusion and Future Work

We introduced a new multi-objective function for clustering categorical data. The
proposed technique is intuitive, straightforward, and yet powerful. The results of
our experiments and analyses indicated the efficiency of the proposed technique
in handling multi-class data. Currently, we are working on more effective ways
to solve the entropy threshold problem. We also look into employing classifiers
to handle imbalance issues and study the impact this could have on clustering
performance.
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Abstract. Graph neural networks, the mainstream paradigm of graph
data mining, optimize the traditional feature-based node classification
models with supplementing spatial topology. However, those isolated
nodes not well connected to the whole graph are difficult to capture
effective information through structural aggregation and sometimes even
bring the negative local over-smoothing phenomenon, which is called
structure fairness problem. To the best of our knowledge, current meth-
ods mainly focus on amending the network structure to improve the
expressiveness with absence of the influence of the isolated parts. To facil-
itate this line of research, we innovatively propose a Multi-task Graph
Neural Network for Optimizing the Structure Fairness (GNN-OSF). In
GNN-OSF, nodes set is divided into diverse positions with a comprehen-
sive investigation of the correlation between node position and accuracy
in global topology. Besides, the link matrix is constructed to express
the consistency of node labels, which expects isolated nodes to learn
the same embedding and label when nodes share similar features. After-
ward, the GNN-OSF network structure is explored by introducing the
auxiliary link prediction task, where the task-shared and task-specific
layer of diverse tasks are integrated with the auto-encoder architecture.
Our comprehensive experiments demonstrate that GNN-OSF achieves
superior node classification performance on both public benchmark and
real-world industrial datasets, which effectively alleviates the structure
unfairness of the isolated parts and leverages off-the -shelf models with
the interaction of auxiliary tasks.

Keywords: Graph Neural Network · Structure fairness ·
Over-smoothing · Isolated parts · Multi-task Learning

1 Introduction

Driven by various social needs, Internet application scenarios are showing an
explosive growth trend [1]. The data entities behind not only include their

Supported by the National Natural Science Foundation of China (Grant No. 62002216),
the Shanghai Sailing Program (Grant No. 20YF1414400), the Shanghai Polytechnic
University Research Projects (Grant No. EGD23DS05).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C. Strauss et al. (Eds.): DEXA 2023, LNCS 14147, pp. 347–362, 2023.
https://doi.org/10.1007/978-3-031-39821-6_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-39821-6_29&domain=pdf
https://doi.org/10.1007/978-3-031-39821-6_29


348 J. Wang et al.

internal feature information but also contain a large number of complicated topo-
logical associations [2]. Therefore, the direction of academic research is migrating
to the non-Euclidean graph structure [3,4]. While current data mining theoreti-
cal systems are mainly established on the structured Euclidean data, the effective
integration of topological structure is still in the exploratory stage.

Recently, Graph Neural Networks (GNN) break the limitations of conven-
tional models without graph structure by neighborhood aggregation with a
tremendous capability of node representation. However, there are significant dif-
ferences in the prediction effect between the isolated part(small sub-graph or
single nodes) and the main part(tightly connected nodes). For example, GNN
got 70% accuracy (60.8% of isolated part, 74.7% of main part) on the widely
discussed benchmark Citeseer dataset according to statistics [5]. Thus, there is
strong evidence that the isolated part significantly restricts the capability of the
GNN model with 13.9% lower on accuracy metric.

In-depth exploration of the reason, GNN cannot capture effective informa-
tion for isolated parts through conventional structure aggregation, which is called
structure fairness problem. Also, the isolated parts may cause the negative over-
smoothing problem that the node representation will converge to the local sub-
graph representation [6]. While, most models focus on optimizing the network
structure from the global perspective, especially the neighborhood convolutional
aggregation strategies, which could obtain more accurate latent feature represen-
tation for classification. To our best knowledge, very limited work pays attention
to the isolated part that significantly restricts the performance of GNN.

Motivated by the above observation, this paper innovatively proposes the
multi-task Graph Neural Network for Optimizing the Structure Fairness (GNN-
OSF), which is dedicated to alleviating the negative influence of the isolated
part in the classical node classification task on the homogeneous graph.

Considering that the information captured is very limited to the isolated part,
GNN-OSF intends to introduce an auxiliary link prediction task to describe the
consistency of the label predicted with the high-level latent node embedding,
which enhances the feature representation of the isolated parts. Through collab-
orative training of multiple tasks, GNN-OSF is expected to learn a more accurate
and extensive model with information sharing with different tasks.

With the link prediction task, those nodes pairwise containing the isolated
nodes and their similar feature nodes expect to be connected by some particular
links, indicating that they are highly likely to share the same label. Besides, pair-
wise composed of the training nodes are also utilized to describe the consistency
of labels in the link matrix, where the positive and negative ones mean consis-
tency and inconsistency, respectively. By introducing the multi-task mechanism,
the original N node-level comparison items have been expanded with N2 edge-
level comparison items, which exponentially expands the number of comparison
items in the loss function and enables the model to learn more information.
On the other hand, the interaction of different tasks might be conducive to the
node representation. The experiment also gives strong evidence that GNN-OSP
achieves relatively high performance compared with other off-the-shelf models.
In summary, this work makes the following contributions:
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1. Investigate the correlation between node position and classification accuracy
in global topology, and deliver a graph partition algorithm to divide the nodes
into diverse positions.

2. Construct a link matrix to express the consistency of labels as the reference
standard for link prediction tasks, which expects isolated nodes to learn the
same embedding and label as nodes with similar features.

3. Propose a novel multi-task graph neural network for optimizing the structure
fairness, where the task-shared and task-specific layer of diverse tasks are
integrated with the auto-encoder architecture.

4. Establish clear superiority of GNN-OSF through comprehensive experimental
results that link matrix and multi-task mechanism can learn more accurate
node embedding and enhance the expressive capability.

2 Related Work

Compared with traditional structured Euclidean data, graph data supplements
the spatial topological relationship based on the inherent node features. Cur-
rent data mining theoretical systems are mainly established on the structured
data directly extracted from relational databases, but the effective integration
of topological structure in previous models is still in the exploratory stage.

Motivated by some previous exploration work on convolution definition,
Henaff [7] established the general definition of the convolution operation. The
first-generation convolution kernel was defined as a diagonal matrix of eigen-
values to simplify the sophisticated process of spectral decomposition process.
Afterward, Defferrard [8] utilized the Tylor and Chebyshev polynomials to pro-
pose the second and third-generation convolution kernels, which improved the
aggregation capability. As a milestone, Kipf [9] introduced a novel approach
for semi-supervised classification on graph-structured data, which injected new
vitality into the field of graph deep learning.

Although vanilla GCN has the advantage of low computational complexity,
the aggregation process is only simply to superimpose neighbor information,
which causes the pitfall of node representation and restricts the performance.
To solve the problem, researchers focused on optimizing the subprocesses of the
initial model. The GraphHeat [10] and PPNP [11] models utilized the Heated ker-
nel and PageRank function to revise the original linearly connected convolution
layer. GCNII [12] added the self-mapping and residual connections mechanisms.
GWNN [13] replaced the original Fourier transform with wavelet transform,
which solved the defect of Fourier transform in locality representation. SGC [14]
combined multiple convolutional layers into one layer, which could greatly reduce
the number of parameters and achieve similar effects.

Considering that the essence of graph convolution is the aggregation of neigh-
bor nodes, Hamilton [15] pioneered the inductive framework GraphSAGE, which
can naturally generalize to unseen nodes. Different from the spectral method, the
eigendecomposition process of the Laplacian matrix has been completely aban-
doned, which can be regarded as the spatial graph model. GAT [16] and UniMP
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[17] took into account the different contributions of neighbors, and then inte-
grated the attention mechanisms. PNA [18] and CPAN [19] integrate potential
information of nodes for signal scaling and Attention aggregation.

Since the advent of GNN, node classification with GNN as a basic task has
attracted worldwide attention. A large number of scholars have perfected related
theories from different perspectives. While, compared with the nodes in the main
body, those nodes in the isolated marginal groups are more likely to converge to
the subgraph representation. For those nodes in the marginal part, the structure
might be meaningless and even cause obstruction. So, the model will unavoidably
face the challenge of the structure fairness problem.

To overcome this pitfall, DropEdge [20] utilized the strategy of drop edge
and JK-NET [21] concatenated the convolution layers, which considered the
difference between the k-order neighborhood of the marginal and core edges.
PairNorm [22] designed a regular term to keep the features intra-community
concertation and inter-community scatter. P-reg [23] explored a new node-based
graph regularization, instead of the traditional edge-based Laplacian regulariza-
tion. MADGAP [24] introduced MAD metrics to quantify the smoothness.

However, to our best knowledge, current models only consider the global
over-smoothing problem, most of them still have little effect when dealing with
the local over-smoothing phenomenon of structure fairness issue. Under this
situation, it is difficult for GNN models to distinguish the nodes with different
labels in the same isolated group. The position will extremely affect the reliability
of the feature and structure. Therefore, it is important to optimize the structure
fairness of GNN, especially the isolated parts.

Besides, most approaches merely focus on the classification task itself with the
absence of other relevant tasks to enhance the capability of models. Therefore,
this paper intends to leverage the performance of the isolated parts with the
multi-task learning mechanism.

3 Methodology

3.1 Overview of Architecture

Generally, the neighbor aggregation with graph convolution is beneficial for
extracting high-level feature representation of nodes. While, this method is not
always effective and sometimes even brings negative impact for those isolated
nodes, which shows the phenomenon of structure unfairness of GNN models.

To deal with this issue, we innovatively propose a novel Multi-task Graph
Neural Network for Optimizing the Structure Fairness (GNN-OSF), which lever-
ages the feature expression of isolated nodes. GNN-OSF breaks the limitation
of traditional models that ignore the isolated parts such as [9–12], which signif-
icantly improves the representation and learning ability.

GNN-OSF consists of position partition, link matrix construction, and multi-
task graph networks module as shown in Fig. 1. Specifically, GNN-OSF first
divides the original graph into several diverse connected groups with position
information, and then partitions the nodes into main parts and isolated parts.
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Afterward, the link matrix is constructed with the similarity to express the con-
sistency of labels, which expects isolated nodes to learn the same embedding and
label as nodes with similar features. The link matrix is also utilized as the ground
truth of the link prediction auxiliary task, which is trained cooperatively with
the conventional node classification task. Under this circumstance, the isolated
part can learn more effective embedding representation for achieving more accu-
rate classification, since the interaction and collaborative training of different
tasks enriches the expressive ability of the model.

Fig. 1. GCN-OSF architecture framework

3.2 Position Partition

Typically, those nodes in the main body are closely connected to other parts.
After the graph convolution procedure, better node embedding representations
can be obtained with the supplement of topological structure information. How-
ever, for the nodes in the isolated part, the node representation will easily con-
verge to the subgraph representation. Therefore, the diverse positions will sig-
nificantly affect the predictive performance.

The given graph is defined as G(V,E), where V = {v1, v2, ..., vn} and E =
[(vs1, ve1) , (vs2, ve2) ... (vsm, vem)] represent the vertex and edge set, respectively.
Besides, each node in the graph has a corresponding d-dimensional feature vector
xi ∈ R

d and X = [x1, x2, ..., xn] denotes the entire feature matrix. Then, the
binary adjacency matrix A ∈ R

n×n and the degree matrix D ∈ R
n×n could be

easily calculated by the edge information.
In response to the aforementioned problems, GNN-OSF divides the nodes

into the main part Pmain and isolated parts Pisolated as Algorithm 1. First,
the deep-first-search strategy is exploited to find all connected subgraphs of the
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graph. Specifically, the nodes are traversed according to the adjacency matrix
A ∈ R

n×n of the graph. When the current node v is traversed, its neighbor nodes
R(v) are visited and added to the subgraph according to the deep-first-search
order until the maximal connected subgraph is constructed. If the number of
nodes in the subgraph is greater than a specific threshold N , the connected
subgraph is added to the main part of the graph Pmain ∈ R

n. The remaining
connected subgraphs are then divided into the isolated part.

Algorithm 1: Position Partition

Input: node set V
Output: Pmain, Pisolated

1. Pmain, Pisolated= {}, {}
2. visit = [1] ∗ N
3. for v in nodeSet:
4. tmpSet.add(v)
5. while tmpSet:
6. curNode = tmpSet.pop.()
7. for t in R(curNode):
8. if visit[t]:
9. tmpSet.add.(t)
10. visit[t] = 0
11. if len(tmpSet) ≥ N :
12. Pmain.add(tmpSet)
13. else:
14. Pisolated.add(tmpSet)
15. return Pmain, Pisolated

3.3 Link Matrix Construction

GNN-OSF intends to enhance the feature embedding and weaken the invalid
structural information of the isolated parts. Therefore, the link matrix L is con-
structed to describe the consistency of labels, which expects isolated nodes to
learn the same embedding and label as nodes with similar features. Input as the
reference standard of link prediction task, the link matrix is helpful in capturing
more effective embedding representation for alleviating the structural unfair-
ness and reducing the negative impact of the local over-smoothing phenomenon.
According to the node position, the construction of link matrix L is divided into
two components, where Liso includes Pisolated −Pmain, Pisolated −Pisolated node
pair-wises, and Llab includes Ptrain − Ptrain node pair-wises.

For the Liso component, GNN-OSF calculates the similarity sim (xi, xj)
between nodes as Eq. (1), where xi, xj are the node features corresponding to vi, vj
in the Euclidean feature space, each component is expressed as xik, xjk. According
to the value range, feature variables can be divided into two categories: continu-
ous variables and discrete variables. The discrete data with one-hot encoding will
utilize Jaccard similarity to calculate the distance between nodes vi, vj , which
measures the number of the same attributes. Besides, cosine similarity is utilized
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to measure the similarity of continuous data. Afterward, the link matrix Liso can
be set as ρ with the comparison with the preset threshold t as Eq. (2).

sim(xi, xj) =

⎧
⎪⎪⎨

⎪⎪⎩

|xi ∩ xj |
|xi ∪ xj | xi, xj ∈ {0, 1}

xi · xj

||xi|| × ||xj || otherwise
(1)

Liso[i][j] =

{
0 if sim(xi, xj) < t

ρ if sim(xi, xj) ≥ t
(2)

For the Llab component, the link weight matrix is calculated according to
the labels’ consistency of the data node of the training set. For those nodes that
share the same labels, the corresponding value of the link matrix Llab[i][j] is 1,
which is equivalent to strengthening the structural information between the two
nodes. If the labels are opposite, the value is −1, which is regarded as weakening
the structural information between nodes. The formulation is shown in Eq. (3)

Llab[i][j] =

⎧
⎪⎨

⎪⎩

+1 if lab((i) == lab(j) and i, j ∈ Ptrain

0 otherwise

−1 if lab(i)! = lab(j) and i, j ∈ Ptrain

(3)

L[i][j] = Llab[i][j] + Liso[i][j] (4)

3.4 Multi-task Graph Neural Network

GNN-OSF expects those nodes with a high probability of sharing the same label
can learn similar representations before classification layer. So, we construct
a novel network structure to optimize the high-level latent embedding with the
integration of the link matrix. GNN-OSF consists of three key components: node
embedding, message passing, and graph reconstruction. The pseudocode is shown
in Algorithm 2, and the details will be elaborated on below.

First, the node embedding fe(x) is extracted with the strategy of prediction
then propagation [11]. As regular, the ReLU activation function is added for
non-linear representation and the dropout mechanism is designed for preventing
the overfitting phenomenon in Line 1–6.

Afterward, the transmission of node information on the graph is simulated in
the message-passing module. In GNN-OSF, the propagation progress has been
defined with the PageRank matrix. The propagation progress could be expressed
by Eq. (5), where A ∈ R

n×n and D ∈ R
n×n denote the adjacency and degree

matrix of the graph, respectively.

Z(k) = (1 − α)AD−1Z(k−1) + αfe(x) (5)

Furthermore, the node vectors have been decoded into the graph structure
in the graph reconstruction module, which attempts to predict whether there is
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Algorithm 2:GNN-OSF

Input: Graph Data
Output: LnodeCls, Ledge

1. //Node Embedding

2.X(1) = ReLU(XW1)

3.dropout(X(1))

4.X(2) = ReLU(X(1)W2)

5.Z(0) = fe(X) = dropout(X(2))
6. //Message Passing
7.for k in range(2, K) :

8. Z(K) = (1 − α)AD−1Z(k−1) + αZ(0)

9.Ĉ(xi) = softmax((1 − α)AD−1Z(k) + αZ(0))

10.LnodeCls =
∑

i loss(Ĉ(xi), C(xi)), i ∈ Strain

11. //Graph Reconstruction

12.L̂(i, j) = tanh(fe(x), fe(x)T )

13.Ledge =
∑

i

∑
j loss(L̂(i, j), L(i, j)), i, j ∈ Strain

14. return LnodeCls, Ledge

an edge between two nodes. In the network structure, the dot decoder approach
is conducted to transform the node representation into the link matrix L̂ as
Eq. (6). Considering the scope of L(i, j), the activated function is utilized to
perform non-linear representation and scale the value between −1 and 1.

L̂(i, j) = tanh(fe(x)fe(x)T ) (6)

For classification, the node vector output from the message passing is then fed
into a softmax classifier to predict its label, and the cross-entropy loss function
is utilized to minimize the error of node multi-classification as Eq. (7), where Nt

denote to the number of training set.

LossnodeCls = − 1
Nt

Nt∑

i=1

C(i) log Ĉ(i) (7)

Besides, GNN-OSF introduces the link matrix to express the labels’ consis-
tency with link prediction task. Thus, the edge-level loss is defined as Eq. (8)
that minimizes the difference between the generated graph structure and link
matrix, where Nlink denotes the number of virtual links in the link matrix L.

Lossedge =
1

Nlink(Nlink − 1)

Nlink∑

i=1

Nlink∑

j=1,j �=i

(L̂(i, j) − L(i, j))2 (8)

Essentially, LossnodeCls pays attention to the feature information, which min-
imizes the prediction label and ground truth of the training set. From another
point of view, Lossedge takes into account the information of the virtual edge
formed by the training node, which expects the nodes with the same label to
obtain a similar representation. Each task is treated as equal in GNN-OSF and
the final loss is defined as Eq. (9) to train the model cooperatively.

Loss = LossnodeCls + Lossedge (9)
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4 Experimental Analysis and Discussion

4.1 Data Description

To evaluate the effectiveness, we evaluate GNN-OSF on both experimental and
industrial datasets in Table 1. For the public datasets, we select three differ-
ent citation networks: Cora, Citeseer, and Pubmed, which have been widely
compared in the literature on graph convolutional networks. Furthermore, we
implement our model in the industrial financial scenario of fraud detection. The
Fraud dataset consists of 20 consumption and operation features extracted from
the real business data provided by the famous e-commerce payment platform.

As illustrated in Table 1, a very limited amount of labeled data is available
for training in the citation network. Therefore, the model is confronted with the
problem of lacking sufficient annotated data. Besides, the model is expected to
detect more highly suspicious hidden users from very limited fraudulent users
that have been discovered in the fraud detection task. So, we partition the Fraud
dataset with different proportions for testing the robustness, especially the small
training scale.

Table 1. Data Description

Domain Dataset Nodes Features Class Edges Train/Test Labeled

Citation Network Cora 2708 1433 7 5278 140/1000 5.15%

Citeseer 3327 3703 6 4552 120/1000 3.61%

Pubmed 19717 500 3 44324 60/1000 0.30%

Fraud Detection Fraud 12917 20 2 588699 / /

4.2 Performance of GNN-OSF

For evaluation, we compare GNN-OSF with some current frontier models on the
benchmark datasets in Table 2. Node2vec [25], Planetoid [26], and GPNN [27]
are three classic methods. PKGCN-JS [28], HLHG [29], and MGCN [30] are very
recent algorithms published in higher impact factor journals and GCN [8], SGC
[14], GAT [16], and PPNP [11] are four well-recognized methods proposed in
the latest influential conferences. The models with asterisks are reproduced by
ourselves, and the others are directly quoted from the original papers.

Table 2 reveals that GNN-OSF achieves relatively high accuracy than current
models. The accuracy has been improved by 1.14 and 1.09 percent on Cora and
Citeseer datasets, respectively. Under the multi-task mechanism, 19,460 edge-
level comparison items of high reliability (Ptrain − Ptrain pairwise) have been
added. While in the Pubmed dataset, only 3,540 edge-level comparison items
have been introduced, where the proportion of the supplementary information
is too low compared with the original 19,717 nodes and 44,324 edges. Thus, the
improvement on the Pubmed dataset is not as significant as that on Cora and
Citeseer datasets.
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It is worth mentioning that GNN-SAT [31] also transfers the multi-task learn-
ing mechanism to the fundamental graph data mining tasks. While, the experi-
ments also indicate GNN-OSF has achieved better performance than GNN-SAT.

Table 2. Performance on Citation Network

Methods Datasets

Cora Citeseer PubMed

Fixed Random Fixed Random Fixed Random

Node2vec 74.9 72.9 54.7 47.3 75.3 72.4

Planetoid 75.7 – 64.7 – 77.2 –

GPNN 81.8 79.9± 2.4 69.7 68.6± 1.7 79.3 76.1± 2.0

PKGCN-JS 82.94 – 70.61 – 77.44 –

HLHG 82.7± 0.29 – 71.5± 0.39 – 79.3± 0.39 –

MGCN 82.6± 0.53 – 72.1± 0.44 – 79.4± 0.20 –

GNN-SAT 82.17± 0.09 – 71.14± 0.12 – 79.33± 0.07 –

GAT* 83.1± 0.4 81.0± 1.4 70.8± 0.5 69.2± 1.9 78.5± 0.3 78.3± 2.3

GCN* 80.86± 0.62 78.78± 1.93 70.26± 1.00 67.04± 1.52 79.15± 0.36 76.89± 2.27

PPNP* 83.30± 0.97 81.27± 1.99 71.70± 0.78 68.88± 1.24 79.28± 0.87 78.98 ± 2.57

GNN-OSF* 84.44 ± 0.50 81.69 ± 2.00 72.61 ± 0.93 70.41 ± 1.65 79.45 ± 0.43 78.79± 2.59

4.3 Ablation Experiments

Moreover, we further demonstrate the effectiveness of introducing the multi-task
learning mechanism and optimizing the structure fairness. From the perspective
of model structure, GNN-OSF is regarded as an optimized version of conven-
tional single-task GNN. Hence, we also conduct the ablation experiments on
the benchmark datasets, where GNN-ML introduce the multi-task mechanism
with the link matrix Llab that only considers the Ptrain − Ptrain pairwise and
GNN-OSF further expand the link matrix as Llab + Liso that supplement the
Pisolated − Pisolated, and Pisoalted − Pmain pairwise. The structure of the single-
task and multi-task versions are the same, only the link prediction is added in
the multi-task version of GNN-ML, and GNN-OSF.

Fig. 2. Comparison of single-task and multi-task learning

Figure 2 compares the performance of GNN, GNN-ML, and GNN-OSF with
bar charts. As shown, GNN-ML achieves higher accuracy on all the datasets,
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which constructs the link matrix to express the labels’ consistency of the nodes in
Ptrain and cooperatively trains the model with multi-task learning. Meanwhile,
GNN-OSF optimizes the link matrix with the supplement of the isolated pairwise
and gains 84.44, 72.61, 79.45 accuracy, which is absolutely 1.14, 0.91,0.17 higher
than the original single version GNN, which significantly breaks the limitation
with the optimizing the structure fairness. Therefore, GNN-OSF strengthens the
feature-level information and eliminates the negative impact of invalid structure
information of the isolated parts. Under this situation, more effective node rep-
resentation and richer information can be learned with our proposal.

4.4 Effect of Different Similarity Distances Threshold t

When constructing the link matrix, the similarity distances threshold t is an
important parameter, which significantly affects the number of virtual links.
Figure 3 displays the accuracy and virtual link numbers under different similarity
distance thresholds t. Since Cora and Citeseer datasets utilize one-hot encoding
to represent features, we simplify the Jaccard similarity as the intersection of
the number of features between two nodes as |xi ∩ xj |.

When the threshold is set too strictly, the information learned from the link
matrix is very limited. On the other hand, too many noisy edges will be intro-
duced with a too-relaxed threshold t, where the performance will be significantly
reduced. According to the curve, it can be found that the accuracy increases
rapidly at first, and then tends to decline after the peak. GNN-OSF utilizes the
link matrix to ensure the isolated parts can learn the similar representation in
the embedding space with similar nodes on the original graph, which optimize
the structure fairness to some extent. When the threshold is set as 4 and 8 on the
Cora and Citeseer datasets, GNN-OSF achieves 84.44% and 72.61% accuracy,
respectively. Carefully observing the bar chart in the figure, we can find that the
peak value can be reached when the increment of the edge in the link matrix
Liso is about 20%, which can guide the parameter setting.

Fig. 3. Performance with different similarity threshold t
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4.5 Effect of Different Link Weight ρ

The link weight is another important parameter during the link matrix construc-
tion. Hence, we discuss the influence of the link weight ρ in Fig. 4. Specifically,
We fix the threshold near the optimal value and then discuss the accuracy with
different link weights ρ. All the curves show the tendency of increasing first
and then decreasing. With in-depth analysis, the links with a higher similarity
threshold are of high confidence, so the link weight should be set larger to achieve
higher accuracy.

4.6 Impact of Multi-task Learning on Node Representation

GNN-OSF intends to optimize the structure fairness with link matrix and multi-
task learning. The multi-task mechanism exponentially increases the edge-level
comparison items, which enhances the node representation of the isolated parts
through the interaction of different tasks. Therefore, we design further experi-
ments to explore whether multi-task is helpful to obtain a more accurate node
representation.

Fig. 4. Performance with different link weight ρ
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Fig. 5. Performance of node representation with multi-task learning

Obviously, we expect the embedding representation of nodes with the same
label to be as close as possible, and that of the nodes with different labels to be
as far as possible in the new representation space outputted from the encoder
layer. Figure 5 records the AUC score between the similarity of node repre-
sentation NodeRepSim(i, j) = fe(xi)

T fe(xj)
||fe(xi)T ||×||fe(xj)|| and the consistency of the

taxonomy LabelCons(i, j). Compared with the single-task-based GNN network,
GNN-OSF achieves a relatively higher AUC score, which means that multi-task
learning has the capability of obtaining more effective node embedding for the
later classification task.

4.7 Performance of Fraud Detection

In addition to the public datasets, we also conduct experiments on e-commerce
fraud detection tasks. Fraudulent users often maliciously steal marketing budgets
with some illegal methods. Due to the lack of annotated data, semi-supervised
learning methods are usually exploited to find more “escape fish” from the black-
list database. So, we treat the fraud detection as the semi-supervised node clas-
sification problem with reference to [9]. Besides, the model is expected to equip
with the capability to detect more fraudulent users based on rare labeled data.
So, we testified the performance with different training scales with AUC metric,
especially in the case of small annotation data as shown in Fig. 6.

According to the tendency, the accuracy gradually increases as the scale of
labeled data increases in all methods. Besides, GNN-OSF sharply reaches 0.9
when only 5% of the labeled data are available and then shows a gentle growth
trend. But, the other methods exhibit a linear increasing trend. Thus, GNN-OSF
is more advantageous under the condition of scarcity of annotations. Besides, there
is no obvious difference in the effects of each model when the annotation data is
extremely large or small. Therefore, comprehensive experimental results indicate
that GNN-OSF can effectively deal with different training scales and achieve an
impressive superiority over other state-of-the-art models in most situations.
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Fig. 6. Performance on fraud detection with different training scale

5 Conclusion

Graph neural networks show structural unfairness to the isolated parts and some-
times even bring the negative local over-smoothing phenomenon. To facilitate
this line of research, this paper proposes a Multi-task Graph Neural Network for
Optimizing the Structure Fairness (GNN-OSF), which is dedicated to alleviating
the negative influence of the isolated part in the classical node classification task
on the homogeneous graph.

GNN-OSF consists of position partition, link matrix construction, and multi-
task graph networks. Firstly, all the nodes are divided into Ptrain, Pmain,
Pisolated. Then, the link matrix is exploited to describe the label’s consistency,
where those nodes pairwise Ptrain −Ptrain, Pmain −Pisolated, Pisolated −Pisolated

of high probability to share the same label are expected to be positive in the
link matrix. Afterward, the multi-task learning network structure is exploited
to enhance the feature representation of the nodes in the Pisolated and weaken
the meaningless structure. Our exhaustive experiments also establish the clear
superiority of GNN-OSF, which enhances expressive capability and leverages
off-the-shelf models with the optimization of structure fairness.
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Abstract. Multi-label aspect category detection is intended to detect
multiple aspect categories occurring in a given sentence. Since aspect
category detection often suffers from limited datasets and data sparsity,
the prototypical network with attention mechanisms has been applied
for few-shot aspect category detection. Nevertheless, most of the pro-
totypical networks used so far calculate the prototypes by taking the
mean value of all the instances in the support set. This seems to ignore
the variations between instances in multi-label aspect category detec-
tion. Also, several related works utilize label text information to enhance
the attention mechanism. However, the label text information is often
short and limited, and not specific enough to discern categories. In this
paper, we first introduce support set attention along with the augmented
label information to mitigate the noise at word-level for each support set
instance. Moreover, we use a sentence-level attention mechanism that
gives different weights to each instance in the support set in order to
compute prototypes by weighted averaging. Finally, the calculated pro-
totypes are further used in conjunction with query instances to compute
query attention and thereby eliminate noises from the query set. Exper-
imental results on the Yelp dataset show that our proposed method is
useful and outperforms all baselines in four different scenarios.

Keywords: Aspect category detection · Few-shot learning ·
Meta-learning · Prototypical network · Label augmentation

1 Introduction

Aspect category detection (ACD) [13,14] is a sub-task of aspect-based senti-
ment analysis (ABSA) [9]. ACD is to categorize user reviews on products and
services such as hotels and restaurants into a pre-defined set of aspect categories.
Examples of aspect categories for hotels are location, price, room, while those
of restaurants are food, service, interior, etc. ACD will facilitate access to view-
point information for users and provide assistance for making decisions. As in
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Table 1. Example of a 3-way 2-shot meta-task. The bolded parts with gray background
represent the target aspects, while the square marked parts indicate the noise aspects.

Support Set

(A) experience
(1) Perhaps we’ll try one more time and hope our experience is better.

(2) The experience and service is very great!

(B) drinks
(1) It was happy hour so the drinks were a little less expensive .

(2) Just an hour in the afternoon and only 50 cents or so off the drinks with no food specials.

(C) food
(1) They also have rotating dining specials.

(2) The food was good and price was reasonable.

Query Set
(A) and (C) My experience as far as service and the food are the same.

(B) Drinks were tasty and quick, and the atmosphere was cool.

practical scenarios, user reviews are generally diversified and contain more than
one aspect, the task of multi-label aspect category detection becomes essential.
This task can also be perceived as a special case of multi-label text classification
tasks.

Few-shot learning (FSL) [3,4] enables a quick adaption to novel classes with
a limited number of samples after learning a large amount of data, being an
effective solution to the issues of finite data and data sparsity. FSL problems can
be dealt with by a meta-learning [7] strategy, which is also known as “learning
to learn.” In the meta-training phase, the dataset is divided into separate meta-
tasks to learn the generalization capability of the model in the case of category
changes. The meta-task adopts the N -way K-shot setting, as demonstrated in
Table 1, which is an example of a 3-way 2-shot meta-task, meaning that there
are altogether three classes (aspect categories) in the support set and in each
class there are two samples (sentences). The prototypical network [18] utilized
in this paper follows exactly the meta-paradigm described above.

A prototypical network aims to extract a prototype for each class by averag-
ing all the instances in one class to measure the distance with the instance of the
query set. However, as shown in Table 1, it is evident that the number of noise
aspects contained in the sentences of each support set class is different. In terms
of that, simply averaging all instances in a class neglects the differences between
sentences and treats samples from the same classes equally. Related work of
multi-label few-shot learning for ACD [8] merely uses attention mechanism to
denoise the sentence at word-level, but just denoising over words is not enough,
since variance of noise between sentences still exists.

Moreover, in the context of few-shot text classification tasks, there are several
papers that incorporate label text information and have obtained promising
results. In the work exemplified by [25], although a higher boost in word-level
attention using label embedding was obtained, it still has some deficiencies. We
point out that there are many semantically similar or poorly expressed labels in
the Yelp dataset we are using. For instance, the labels of food_food_meat and
food_food_chicken are semantically similar in their label texts, which may lead
to confusion in the classification. Furthermore, there are labels whose meanings
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are rather obscure or ambiguous. Take the label drinks_alcohol_hard as an
example, it is known that the word “hard ” is a polysemous word. The word
“hard ” in this class name is related to hardness, difficulty, etc. It is obvious that
“hard” modifies “alcohol”, but the word order is reversed, which may confuse
the classier. In this case, augmenting the label name with a word related to the
label, such as “vodka”, can give more specific meaning to the label name and
assist separation from other aspects.

For the purpose of tackling all the issues mentioned above, we propose a
novel model named Sentence-Level Weighted prototypical network with Label
Augmentation (Proto-SLWLA) that can well solve the current multi-label few-
shot ACD task. Our model mainly consists of two parts, LA and SLW. Specifi-
cally, in the LA part, we concatenate the synonyms obtained from the original
label text with the label itself and incorporate it into the existing word-level
attention. The augmented label words will add certain auxiliary information to
the label, which will make the label information become more adequate. For the
SLW part, we propose assigning corresponding weights to different sentences in
a class inspired by [10], which likewise treats the samples in one class as dif-
ferentiated individuals. After mitigating noises at word-level, we implement our
idea as giving lower weights to sentences with more noise and higher weights
to sentences with less noise, by means of a sentence-level attention mechanism.
Then prototypes by giving weighted averages to the instances are obtained. With
these two methods, the prototype can be more representative of the current class.
Our experiments conducted on Yelp_review [1] dataset shows that our method
Proto-SLWLA outperforms the baselines in nearly all conditions, which demon-
strates the effectiveness of our method.

The rest of this paper is organized as follows: Sect. 2 covers related work.
Section 3 describes the proposed method of Proto-SLWLA. In Sect. 4, perfor-
mance evaluation of Proto-SLWLA and comparision with baseline methods are
shown. Section 5 presents concluding remarks and future work.

2 Related Work

Aspect Category Detection. Previous research on ACD has concentrated
on a single aspect, which includes unsupervised and supervised methods. Unsu-
pervised methods use semantic association analysis based on pointwise mutual
information [19] or co-occurrence frequency [6,17] to extract aspects. However,
these approaches require large corpus resource and the performance is hardly
satisfactory. Supervised methods exploit representation learning [26] or topic-
attention network [12] to identity different aspect categories. In practice, these
methods have shown to be effective, yet they heavily rely on a massive amount
of labeled data for each aspect to train discriminative classifiers. In addition, a
review sentence often encompasses multiple aspects due to the diversity and arbi-
trariness of human expression, which motivates the multi-label aspect category
detection.
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Few-Shot Learning. FSL is a paradigm to solve the problem of scarcity of
data. Meta-learning for solving FSL problems has been widely adopted, notably
in model-based approaches, optimization-based approaches, and metric-based
approaches. In our paper, we concentrate on the metric-based method, whose
representative models are matching network [22], relation network [20], proto-
typical network [18], and so forth. An essential element of their idea is to learn
a feature mapping function in which support and query samples are projected
into an embedding space, and to classify queries by learning some metrics in
that space.

Multi-label Few-Shot Learning. Compared to single-label FSL, the potential
of multi-label FSL is yet to be stimulated. In the NLP domain, Proto-HATT [5]
is proposed for an intent classification task, while designing a meta calibrated
threshold mechanism with logits adaption and kernel regression. Proto-AWATT
[8] focuses on multi-label few-shot aspect category detection and it is also the
first work to focus on this task. It utilizes attention mechanisms to alleviate
noise aspects, achieving remarkable results. However, its prototypical network
assigns an equal weight to all samples, even if certain samples contain abundance
of noises and multiple aspects. This is relatively disadvantageous for a multi-
label few-shot learning task. In our work, we introduce a sentence-level attention
module to give different weights to different instances.

Using Label Information for Text Classification. Label embedding is cur-
rently widely used in NLP for text classification tasks [23] to enhance general-
ization ability, and it is also very common in zero-shot and few-shot settings. In
the context of zero-shot learning, prompt-based strategies [15,16] to match text
against class names in an implicit way have been developed. For few-shot learn-
ing, [11] extracts semantics of class names and simply appends class names to the
input support set and query set sentences to guide the feature representation. A
work close to our task is [25] which takes label embeddings as a supplementary
information in its LAS and LCL part. In our work, we extend its LAS part by
applying a label augmentation method to expand the label information.

3 Methodology

3.1 Overview

A meta-task consists of a support set and a query set. We assume that in
an N -way K-shot meta-task, the support set is denoted as S = {(xn

1 , xn
2 , ...,

xn
K), yn}Nn=1, where xn

k represents the k-th sentence in n-th class and yn is
the common aspect that all xn sentences contain. The query set is denoted
as Q = {(xm, ym)}Mm=1, where xm indicates a query instance and ym is its cor-
responding N -bit binary label from the support classes.
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Fig. 1. General architecture of our proposed model.

Our proposed model mainly consists of three components, which are support-
set attention (word-level attention), sentence-level attention and query-set atten-
tion modules, as illustrated in Fig. 1(a). Given a sentence x = [w1, w2, ..., wl] with
length l, we utilize the BERT [2] pre-trained model as the encoder and obtain an
embedding matrix H = [h1,h2, ...,hl], where H ∈ R

d×L and L is the maximum
length of BERT input.

3.2 Word-Level Attention with Label Augmentation

Support Set Attention. Following the work of [8], we primarily alleviate the
noises in the support set by using support set attention (word-level attention).
We extract the common aspect vector vn ∈ R

d out of the K-shot instances by
mean pooling each instance and then perform a word-level average on the K
instances.

vn = avg(Hn
1 ,Hn

2 , ...,Hn
K) (1)

In order to further remove the noises, we adopt the approach of [24] following
[8] to train a dynamic attention matrix by feeding the repeated common aspect
vector [21] into a linear layer. This approach is possible to learn to accommodate
the common aspect and pick up on its different perspectives.

Wn = W (vn ⊗ eM ) + b, (2)

where (vn ⊗ eM ) ∈ R
eM×d denotes repeating vn for eM times and Wn ∈ R

d×d.
The linear layer has parameter matrix W ∈ R

d×eM and bias b ∈ R
d. As different

classes are trained, the parameters of this linear layer are constantly updated
to accommodate the new classes. Then we use the common aspect vector to



368 Z. Wang and M. Iwaihara

Fig. 2. Specific framework of our proposed model. (a) Structure of the word-level atten-
tion module. (b) Structure of the sentence-level attention module.

calculate the attention with each instance and multiply the obtained word-level
weights on each sentence.

βn
k = softmax(vn tanh(WnHn

k )), (3)

where n ∈ [1, N ] and k ∈ [1,K]. So far, we have achieved a preliminary word-
level attention weight to enhance the focus on the target aspect, for reducing
the effect of noise aspects to some extent.

Label-Guided Attention Enhanced by Label Augmentation. As previ-
ously stated, since there are semantically similar and ambiguous labels in the
dataset, we attempt to augment label texts with supplementary words to enrich
label information. In particular, in order to dig words that are relevant to the
sentence as well as the label name, we design a template whose format is: “[X].
It is about [Label], and its synonym is [MASK].” In this template, [X] repre-
sents a sentence of a given aspect category in the dataset. [Label] stands for
its aspect category label, and [MASK] denotes the mask token. We then sup-
ply the embedding vector d ∈ R

l into the BERT pre-trained masked language
model (MLM) to predict the word that should appear at the [MASK] position,
as shown in Fig. 3. The MLM head will output a probability distribution which
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Table 2. Part of the finally obtained words relevant to a label name

Label Name Predicted Words

food_food eat, delicious, dining, cooking, meal, eating, foods, ...

parking cars, space, traffic, parking, cars, driving, bike, ...

restaurant_entertainment_music song, pop, jazz, opera, melody, rock, blues, folk, ...

drinks_alcochol_hard vodka, tequila, rum, gin, bitter, bourbon, ...

restaurant_location place, destination, locality, spot, geography, ...

entertainment_casino gambling, vegas, gaming, poker, casinos, game, ...

building_hall hallway, lobby, corridor, wall, halls, library,

indicates the likelihood of each word w appearing at the [MASK] position over
all the vocabulary V .

p(w|d) = softmax(W2σ(W1d + b ′)), (4)

where W1 ∈ R
l×l, W2 ∈ R

|V |×l and b ′ ∈ R
l are learnable parameters that have

been pre-trained with the MLM objective of BERT, and σ(·) is the activation
function.

After we have obtained a list of candidate label name related words, we filter
the predicted words from each sentence by removing stop words, punctuations,
words identical to the class name, etc. The final predicted augmenting words for
each class name are shown in Table 2. Then we take the top words of all the
predicted words in each category, and find the top m words with the highest
frequency among the total number of sentences multiplied by m words.

Once we obtained these words, we append them to the original label name
with an underline to form a new label. For instance, take m = 1 as an
example, the original label name drinks_alcohol_hard will be transformed into
drinks_alcohol_hard_vodka, which nicely emphasizes the meaning of “ liquor ”,
thus eliminating its interference with other meanings in the synonym.

So far, we have accomplished the process of label augmentation. Now we need
to integrate augmented label information into the word-level attention to give
more guidance to support sentences on label information as [25]. Specifically,
we enter the augmented label information into the BERT model to obtain its
embedding, and compute the cosine similarity between the label information
embedding and sentence embedding:

αn
k = cos(Ln,Hn

k ), (5)

where Ln ∈ R
d is the label information embedding of class n in the support

set, which is calculated by averaging in terms of the length of label information.
Hn

k is the word embedding matrix of the k-th sentence in the n-th class. We
then combine the calculated cosine similarity αn

k with the previously obtained
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Fig. 3. Using BERT masked language model (MLM) to predict words relevant to a
label name.

word-level attention βn
k in (3). We concatenate the two vectors and enter them

into the linear layer to obtain the final attention weight.

θn
k = Wg[αn

k ;β
n
k ] + bg, (6)

where θn
k ∈ R

l, Wg and bg are trainable parameters of the linear layer. [·; ·]
denotes the concatenation operation. We then renormalize the attention score
by the softmax function to make the weight more reliable.

θ̃n
k = softmax(θn

k ) (7)

Eventually, we assign the final word-level attention weight to each sentence
in the support set.

rn
k = θ̃n

kHn
k , (8)

where n ∈ [1, N ] and k ∈ [1,K]. So far, we have constructed a collection of
Rn = [rn

1 , rn
2 , ..., rn

K ] which consists of denoised support set representations. The
whole process of this word-level attention module is illustrated in Fig. 2(a).

3.3 Sentence-Level Attention

In this section, we describe calculation of sentence-level weights. The architecture
is depicted in Fig. 2(b). As previously mentioned, we would like to adjust weights
on different sentences in the classes depending on the amount of estimated noises
involved in the sentence. Hence, we introduce a method to compute the attention
by centering on the shortest sentence in the class. As illustrated in Fig. 4, we
can observe that as the length of the sentence increases, the number of aspects
therein increases as well. That is, the noises of the sentence are also extending.
Consequently, it is reasonable to surmise that the shorter the sentence, the fewer
number of aspects the sentence contains, which will then have a larger possibility
of having a single aspect. Since each sentence always contains the target aspect,
the chance of having noisy aspects becomes smaller than longer sentences.
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Fig. 4. Distribution of sentence length and number of aspects in the Yelp dataset. We
randomly selected 8000 samples in the dataset and averaged the number of aspects for
all sentences of the same length.

Thus, we introduce a mechanism that emphasizes aspects learned from the
shortest sentence and apply this aspect weighting to all the sentences in the
support set. We first locate the denoised support representation rn

min of the
shortest sentence and then repeating it for eM times, which aims to learn different
perspectives of the shortest sentence. Then we feed it to a linear layer to obtain
the attention matrix Wn

s , where Wn
s ∈ R

d×d and Ws, and bs are trainable
parameters.

Wn
s = Ws(rn

min ⊗ eM ) + bs (9)

Similarly, we follow the preceding method to directly use the shortest sentence
embedding rn

min to compute sentence-level attention on all the denoised sentence
representations. Particularly, Rn is multiplied with the attention matrix W ′n to
exploit the relationships between the shortest sentence and other sentences from
different perspectives. The weight is calculated as follows:

γn = softmax(rn
min tanh(W

n
s Rn)), (10)

where γn ∈ R
k, and Rn ∈ R

d×k represents the concatenation of all the denoised
representations in one class as shown in (8). By doing this, longer sentences
which are dissimilar to the shortest sentence and meanwhile contain more noise
will obtain lower weights. Finally, we perform a weighted average to the repre-
sentations to derive the final prototype pn ∈ R

d.

pn = γnRn (11)

In this way, we obtain N prototypes [p1,p2, ...,pN ] after processing all the
classes in the support set.
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3.4 Query Attention

Following the denoising operation of the support set, we ought to mitigate the
noises in the query set as well, since the query set also contains some irrelevant
aspects. To achieve this goal, we use the prototype pn we just obtained to com-
pute the attention with the embedding of a query sentence Hm ∈ R

d×L and
acquire the query representation rm ∈ R

d. What we want to accomplish is to
enable query representation to be more attentive to the prototype aspect.

rm = softmax(pn tanh(Hm)) (12)

Up to this point, we have completed introducing all the modules of the model
and finished construction of representations of a given support set and query set.

3.5 Training Objective

In this paper, we use the Euclidean Distance (ED) to measure the distances
between prototypes and query representations. The final prediction of a query
instance is the negative distances and then we use a softmax to normalize the
result.

ŷ = softmax(−ED(pn, rm)), (13)

where n ∈ [0, N ], and m ∈ [0,M ]. Lastly, we use the mean square error (MSE)
loss to be our final training objective.

L =
∑

(ŷ − ym)2, (14)

where ym is the N -bit golden label for query instance xm. Note that since ŷ is
softmaxed, our golden label ym should be normalized as well. During the training
process we allow the predicted values to be as close as possible to the golden
label.

4 Experiments

In this section, we primarily introduce the dataset used in our work, together
with baselines, evaluation metrics, and implement details. Thereafter, we present
and analyze the experimental results on our dataset in four different settings.

4.1 Dataset

Since the Yelp dataset having review aspects and used in [8] is not publicly
available, we construct the dataset by combining the Yelp_dataset_round8 and
Yelp_review_aspect [1] which are datasets consisting of extensive user reviews.
After processing the raw data into sentences and their corresponding aspects,
we collected the sentences for each aspect and selected 100 aspects from all
the 135 aspects and remove 35 of them. The selected aspects are split without
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Table 3. Statistics of the Yelp dataset. #cls. indicates the number of classes.
#inst./cls. indicates the number of instances per class. #inst. indicates the total
number of instances.

Dataset #cls. #inst./cls. #inst.

FewAsp 100 630 63000

intersection into 64 aspects for training, 16 aspects for validation, and 20 aspects
for testing. We randomly sample 800 meta-tasks from the 64 gathered aspect
sentences for training, 600 meta-tasks from the 16 gathered aspects for validation
and 600 meta-tasks from the 20 gathered aspects for testing, following [8]. The
statistics of our dataset is shown in Table 3. Note that at each epoch of training,
the 800 meta-tasks are resampled.

4.2 Baseline Models

Our method is compared with the following methods: Matching Network [22],
Relation Network [20], Prototypical Network [18] and Proto-AWATT w/o DT [8]
and Proto-SLW. Note that we use BERT as the encoder for all baseline models
for the sake of fairness.

Matching Network [22]. It learns an embedding mapping function first, com-
bines the samples of support set and query set samples and enters them into
Bi-LSTM, and finally adopts the cosine similarity as the distance measure to
obtain the classification result.

Relation Network [20]. Instead of a fixed distance metric, it uses a deep neural
network with multiple layers of convolution to compute the relationship between
query samples and support samples.

Prototypical Network [18]. By averaging the corresponding support samples,
it computes a prototype for each class and uses the negative Euclidean distance
between the query samples and the prototype for the few-shot classification task.

Proto-AWATT [8]. It is the first approach for multi-label aspect category
detection tasks. It mitigates the adverse effects caused by noisy aspects using
support set and query set attention mechanisms.

Proto-SLW. As an ablation setting, this model is removed of the LA part from
our proposing model and only utilizing the sentence-level attention to assign
different weights to different sentences in one class in the support set.

Proto-SLW+LAS. We add the LAS part from [25] to our SLW model to take
the label name itself as a complementary information of the attention weights
in the support set. Note that this case is actually equivalent to the case of m=0
in Proto-SLWLA.
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Table 4. Experimental results of our model with AUC and macro-F1(%) evaluated on
FewAsp. m represents for the number of words augmented by each label. The symbol
† indicates p-value< 0.05 of the T-test comparing with Proto-AWATT, while symbol ‡
indicates that p-value< 0.05 of the T-test comparing with Proto-SLW.

Models 5-way 5-shot 5-way 10-shot 10-way 5-shot 10-way 10-shot

AUC F1 AUC F1 AUC F1 AUC F1

Matching Network 0.9025 66.59 0.9230 70.97 0.8834 51.54 0.9085 53.84

Prototypical Network 0.9017 65.71 0.9318 71.55 0.8991 53.82 0.9063 55.44

Relation Network 0.8463 54.72 0.8473 55.54 0.8428 42.92 0.8325 45.86

Proto-AWATT w/o DT 0.9061 66.32 0.9319 71.67 0.8999 53.86 0.9125 57.75

Proto-SLW 0.9116 67.27 0.9387 72.83 0.9062 54.74 0.9156 57.33

Proto-SLW+LAS (m = 0) 0.9123 67.94 0.9374 72.90 0.9037 54.98 0.9119 57.09

Proto-SLWLA (m = 1) 0.9156 68.11 0.9391† 73.20†‡ 0.9024 54.79 0.9179†‡ 58.69†‡

Proto-SLWLA (m = 2) 0.9157†‡ 68.30†‡ 0.9377 72.87 0.9026 55.18 0.9156 58.20

Proto-SLWLA (m = 3) 0.9117 67.57 0.9380 72.97 0.9038 55.63†‡ 0.9154 57.94

4.3 Evaluation Metrics

Traditional single-label FSL tasks in the past typically used accuracy to measure
the performance of the model. In the multi-label task, we follow Proto-AWATT
and choose the AUC (Area Under Curve) score which is used to select model
and macro-F1 score as evaluation metrics.

4.4 Experimental Settings

For parameter settings, we set m = 1, d = 768, L = 50, eM = 4, Q = 5 × N .
We train our model on GeForce RTX 3090 GPU and set our learning rate as
1e-5, batch size as 4 when N = 5, as 2 when N = 10. When performing label
augmentation, we randomly select 2000 sentences in the query set of each class
for subsequent operations.

Regarding the threshold value, we set τ = 0.3 in all the conditions. We adopt
an early stop strategy when the AUC score is no longer increased in 3 epochs.
Then we will select the epoch which has the best result of the AUC score in the
validation phase for testing.

4.5 Experimental Results and Discussions

The experimental results are shown in Table 4. The results demonstrates that
both our word-level attention with label augmentation module and sentence-level
attention module are effective. It is worth mentioning that in the 10-way 10-shot
scenario, Proto-SLWLA(m= 1) improves F1 score by 1.36% from Proto-SLW,
which is considered a significant improvement in our experimental results.

When Proto-SLW is compared with Proto-AWATT, the results of Proto-
SLW are better than those of Proto-AWATT in all four scenarios, which fully
illustrates the effectiveness of our sentence-level attention module. Furthermore,
the result on 10-shot has slightly more improvement than that of the 5-shot
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result. This suggests that a noise-less short sentence is more likely to be included
in more shots (sentences). However, the 10-way boost is a little less pronounced
than the 5-way, since 10-way (10-classes) causes more chance for short sentences
to contain noise aspects than 5-way (5-classes).

Compared with Proto-SLW+LAS, the results of Proto-SLWLA outperform
in all these four scenarios. This indicates that our LA part is effective, and
suggests that it is reliable to use label-related words to enhance the label itself.
In addition, for Proto-SLWLA we evaluated with three different values of m,
which represents the number of words augmented by each label. We can observe
that our model can achieve the best results when m = 1 or 2, whereas for
m = 3, the performance of the model is decreasing and sometimes even lower
than Proto-SLW+LAS. This demonstrates that the first or the second of the
augmenting words are highly relevant to the label. However as the number of
augmenting words increases, lower-ranked words seem to be causing drifts on
label semantics.

5 Conclusion

In this paper, we proposed Proto-SLWLA, which is based on prototypical net-
work with sentence-level weighting and label augmentation to tackle the multi-
label few-shot aspect category detection task. Existing methods in this domain
often utilize prototypical network, but they perform denoising merely at the
word-level and do not focus on the variations between instances. Since the con-
centrations of noises in the target aspects are varying between instances, we
introduced sentence-level attention to assign specific weights to the instances
after using word-level attention. Also, another existing approach incorporates
label text information into the word-level attention module to improve the per-
formance, but the label name texts are not sufficient, because label names are
often semantically similar and ambiguous each other, causing separation hard in
the representation space. To improve separation by label names, we introduced
label name augmentation in which a template is designed and masked language
model prediction is utilized to generate words related to each label name, and
append them to the label information, which is then used for a guidance of the
word-level weights. Our experimental evaluations by AUC and macro-F1 score
demonstrate that our design is feasible and effective, outperforming nearly all
the baseline models.
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Abstract. Virtually all countries in the world are experiencing growth
in the number and proportion of seniors in their population. Almost half
of these seniors live with one or more disabling conditions. This high-
lights the concern about when, and how probably, a disability is likely
to occur in aging people. In this paper, we mathematicize this concern
as a prediction and a warning of the onset of disability. As such, we
propose to start by transforming the fitting problem into a series of inde-
pendent survival learning and prediction problems. Our approach can
use all repeated measures of disability-specific factors and, more impor-
tantly, effectively quantify their different impacts on the onset of disabil-
ity. We also present a new approach for estimating the time of onset and
determining the better-timed warning of disability onset. To evaluate
our time predictions and warning decisions, we develop four evaluation
metrics based on the criteria we explore for the aging study. The results
of comparative experiments and ablation studies on the elderly cohorts
across Canada demonstrate the effectiveness of our approach.

1 Introduction

Each of us is aging. In every country in the world, the population is aging faster
than ever before. As of November 2022, the global population aged 65 or over
numbers 800 million. Over the next three decades, this number is projected to
more than double, reaching over 1.5 billion in 2050 [24]. Statistics Canada said
that over 861,000 Canadian people (which is 2.3% of the population) aged 85 and
older were counted in the 2021 Census, more than twice the number observed
in the 2001 Census [19]. Over the next 25 years (by 2046), the population aged
85 and older could triple to almost 2.5 million people in Canada [19]. Age has a
significant impact on health – the older you get, the more likely you are to become
disabled. The number of people aging with disabilities is on the rise all around
the world. According to the 2017 Canadian Survey on Disability [18], roughly
37.8% of Canadians aged 65 and above had been identified as having some form
of disability regarding flexibility, dexterity, mobility, cognition, vision, hearing,
pain-related, etc. The disability was severe enough to limit them to some extent
in their daily activities, especially for those aged 85 and older.
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The concern of this work is a generation of better-timed warnings of the
onset of disability. The warning in advance induces healthcare providers to take
early actions toward healthy aging. For example, they can make early informed
decisions regarding healthcare and social services, which will enable the elderly
to delay the onset and reduce the severity of disabilities, thereby maintaining
optimal health and quality of life. What is needed for this concern is, from a
computational perspective, to predict ‘when and how probably a disability is
likely to occur in aging people’, and determine ‘when a warning of disability
onset should be issued ’. Hence, we have two tasks: time-to-onset prediction –
i.e., predicting the time elapsing from the beginning of the follow-up until the
onset of disability, and better-timed warning decision – i.e., determining the time
when the lowest onset-free probability below which the warning should be issued.
There is as yet no documented work to make such a time-to-onset prediction and
the warning decision based on that prediction. For example, one may be able
to estimate that a 65-year-old woman has a 70% probability of living without a
disability for one year and only a 10% probability for two years but is incapable
of determining the exact time when this woman will be disabled and nailing
down the time of warning. Making such a prediction and decision is arduous.
Late warnings might lead to conditions’ worsening, while too early warnings may
increase unnecessary nursing and sometimes make the actions unfeasible. This
is the motivation for the work reported here, whose aim is to accurately predict
the onset-free probability over time, estimate the time-to-onset, and determine
the better-timed warning.

To make better predictions and decisions, we shall examine the link between
the onset of disability and various social, demographic, geographic, and economic
factors that impact healthy aging, such as general health and well-being, physi-
cal activity, and the use of healthcare services. For example, among older adults,
injuries due to falls threaten independent living, mobility, and functional ability
(such as the ability to engage in regular exercise), and increase the risk for future
disabilities [16]. Note, however, that these factors may be repeatedly measured
and therefore the measures may vary over time (e.g., taking measurements with
an interval of a particular time frame). For example, the seniors may be asked,
‘Have you had a fall in the past 6, 12, and 18 months? ’ Here, the factor ‘fall’ is
measured repeatedly at 6, 12, and 18 months, producing three measures. Han-
dling these repeated measures has been challenging [6] because of the difficulty
in using these measures together to train the existing time-to-event data analysis
methods [27]. Besides this, we suffer from censoring : most of the older people in
our study had not experienced a disability by the close of the study period (e.g.,
the past 6, 12, or 18 months), and therefore the time of the onset is unknown
for a subset of the seniors. How to build the link between these unknown onset
times and repeated measures is the key issue of this work.

In this paper, we first formalize aging data in two parts: factors’ repeated mea-
sures and encoded onset times, and then develop temporal survival regression
(TR) to explore the link between these two time-dependent parts. It is trained
by learning the measures of various factors and the onset of disability over time.
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With the learned model, we predict the onset-free probabilities at different times,
estimate the time of onset in the future, and determine the better-timed warn-
ing of disability. We conduct experiments on real-life aging data and compare the
performance of our approach with state-of-the-art models. An extensive ablation
study is also performed to investigate the effectiveness of each elaboration of our
approach. The experimental results demonstrate that our approach performs bet-
ter than other baselines and TR’s variants, yielding more accurate predictions of
onset-free probability and estimates of onset time. We summarize the contribu-
tions as follows:

• Our approach is computationally simple: it requires only a sequence of logistic
regression fits and the operations are easily understood in terms of regression
modeling. We transform the fitting problem into a series of independent learn-
ing problems by predicting the encoded responses that we redefined based on
the observations. The prediction tasks at different times are independent of
each other, but the predicted results are highly related.

• Our approach is conceptually interpretable: it performs predictions and makes
prediction-based healthcare decisions on a reasoning basis so that people read-
ily understand how factors are jointly related to form the final predictions and
decisions. We impose the impact of the factors and their repeated measures
on the onset of disability, where the impact values explored by the model
identify the risk or protective effect of both time-varying and time-invariant
factors, thereby guiding healthcare actions.

• Our approach is empirically effective: it performs a retrospective study on a
Canadian cohort including a bunch of non-disabled people, where the results
demonstrate not just the high accuracy achieved by the model but its pre-
dictive confidence in dealing with censoring contexts. We develop our own
assessment criteria based on the consensuses in life science and mathemati-
cize the criteria as evaluation metrics in the absence of ground truth.

2 Related Work

We will review the work related to time-to-event data analysis. Broadly speaking,
time-to-event data analysis can be classified into two main categories: statistical
methods and machine-learning-based methods, which share the common goal of
predicting the time of the event. Statistical approaches can be grouped into non-
parametric (e.g., Nelson-Aalen estimator [1], Kaplan-Meier estimator [9]), para-
metric (e.g., accelerated failure time model [26]), and semi-parametric estimators
(e.g., semi-parametric Cox proportional-hazards model [4]), developed primarily
for retrospective cohort studies, each has its inherent disadvantages. Nonpara-
metric approaches are intended to generate unbiased descriptive statistics, but
generally cannot be used to assess the effect of multiple factors on the response
variable (e.g., time-to-event probability), and the parametric approaches suffer
from a critical weakness, relying as they do on the assumption that the underly-
ing failure distribution (i.e., how the probability of failure changes over time) has
been correctly specified. For semi-parametric approaches, the assumption about
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how the factors influence the risk of failure is often violated in practical use.
The increasing availability of a wide variety of data (e.g., time-varying factors)
poses more challenges to the statistical approaches and is stimulating numerous
research efforts that use machine learning methods in conjunction with time-to-
event modeling. For example, feed-forward neural networks have been used for
time-to-event data analysis [28]. Although the feed-forward network can preserve
most of the advantages of a typical Cox proportional-hazards hypothesis, it was
still not the optimal way to model the baseline variations. This was the ratio-
nale for deep learning studies [11]. Additionally, recurrent neural networks [29]
proposed to compute the survival function by considering a series of binary clas-
sification problems, each leading to the estimation of the survival probability in a
given interval of time. Besides neural networks, typical examples include multi-
task learning [13], Gaussian process [7], active learning [25], transfer learning
[12], etc.

In practice, the factors’ effects (e.g., the effect of a treatment) may change
over time with longer follow-up [8]. To accommodate such situations, there has
been a surge of interest in learning time-varying coefficients instead of time-
invariant ones. The varying coefficient models are a very important tool to
explore the dynamic pattern. The association between repeated measures and
the outcome has been modeled in various ways. The work related to repeated
measures focuses mainly on the analysis of time-varying risk factors. For the Cox
model, [23] estimated time-varying coefficients by maximizing a kernel-weighted
partial likelihood, while [22] employed a local empirical partial likelihood smooth-
ing. Time-varying coefficients were also used in [14] to describe the potential
time-varying effects of factors on breast cancer. The proportionality assumption
may not hold in practice when factor effects change over time.

3 Problem Statement

In our study, each senior is identified by two response variables – i.e., ‘censor’
C ∈ {0, 1} and ‘stamp’ time S ∈ R

+. The response ‘censor’ C = 0 indicates that
the time of disability onset, say T , is uncensored, where the disability occurred
right at the ‘stamp’ time S (i.e., the last recorded time), that is, T = S. If
C = 1, the onset time T is censored, and the stamp time S underestimates the
true but unknown T , i.e., T > S. As an example for three old Canadians aged
over 65 shown in Table 1 (e.g., T = 7 months for the 77-year-old Québecois), and
otherwise C = 1 means T is censored (i.e., unknown) because of dropout (e.g.,
the 69-year-old Ontarian dropped out of the study at 11 months) or early end of
study (e.g., the 86-year-old Albertan has been free of disability throughout the
18-month study period). Each senior is described by D factors, such as ‘province’
and ‘age’ that are time-invariant and ‘depression’, ‘sleep’, and ‘fall’ that are time-
varying (i.e., repeatedly measured). All these factors’ measures can be expressed
as X = (x1, . . . ,xV ) ∈ R

D×V at V different times τ1 < · · · < τV , where xv =
(xv1, . . . , xvD)�. For time-invariant factor d, we have x1d = x2d = · · · = xV d.
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Table 1. Factors and responses for three aging Canadians.

Risk Factors Response

time-invariant time-varying Censor Stamp

Province Age ·· Depression ·· Fall Smoking (C) (S)

Québec 77 ·· mild ·· no sometimes 0 7

mild ·· yes sometimes

·· ·· ·· ··
no ·· no seldom

Ontario 69 ·· severe ·· no often 1 11

moderate ·· no seldom

·· ·· ·· ··
moderate ·· no sometimes

Alberta 86 ·· no ·· yes never 1 18

no ·· no never

·· ·· ·· ··
mild ·· no never

To say that someone remains onset-free means that they are still at risk of the
onset of disability, that is, the disability has not yet occurred in them. Hence, the
onset-free probability at time t means the probability of remaining onset-free up
to time t, i.e., the probability that the disability will not occur earlier than time
t, that is, Pr(T ≥ t). Our learning task is to find a mapping function fW (W
is the learnable parameters) for predicting the probabilities at t1 < t2 · · · < tK .
Then, based on these predictions, we shall determine the onset time T at which
the newly designed error E is lowest and the warning policy p minimizing the
newly defined warning cost Q, as follows:

x1, . . . ,xv:τv≤t1
fW−−→ Pr(T ≥ t1)

...

x1, . . . ,xv:τv≤tK
fW−−→ Pr(T ≥ tK)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

argminE−−−−−−→ T

argminQ−−−−−−→ p

4 Our Approach

4.1 Encoding

The first thing we need to do is encoding the dualistic response, C and S, as the
encoded responses Y , where its value at time t can be given by

y[t] = (−1(C = 1))1(S<t),
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which takes the value 1 if the disability happened before or at time t, i.e., S ≥ t,
and otherwise either 0 if C = 0 or –1 if C = 1. Here, 1(judgment) is an indicator
function taking a value of 1 if the judgment is true and 0 otherwise. Table 2
shows the encoded response for the three Canadians. Each encoded response
y[tk] indicates whether the disability has occurred by time tk, being 1 if it has
occurred, 0 if it has not occurred, and –1 if unknown. Once y[tk] becomes “0”
it will not turn over to “1”. There are thus K + 1 legally possible sequences of
the form (1, 1, . . . , 0, 0, . . .), including the sequences composed of all “1”s and
all “0”s. For the 67-year-old Québecois, the encoded response remains “1” until
S = 7 and “0” thereafter; for the other two, whose onset time is censored, the
encoded response is “1” until the stamp time and “–1” thereafter.

Table 2. An example of the encoded responses for three Canadian seniors aged over
60.

Encoded Temporal Responses Response

y[1] ·· y[7] y[8] ·· y[11] y[12] ·· y[18] y[19] ·· C S

1 1 1 0 0 0 0 0 0 0 0 0 7

1 1 1 1 1 1 –1 –1 –1 –1 –1 1 11

1 1 1 1 1 1 1 1 1 –1 –1 1 18

4.2 Training

For senior i ∈ G0 = {i|∀i : Ci = 0} with known encoded responses Y =
(y[t1], . . . , y[tK ]) at times t1 < ·· < tK and measures X (τV ≤ tK), we can
estimate the probability of Y via the generalized logistic regression

Pr (Y | X;W)0 =
exp (W ∗ X · Δ · 1(y ≤ 0))
exp (W ∗ X · Δ ∗ A) · 1 (1)

W = (w1, . . . ,wV ) ∈ R
D×V

wv = (wv1, . . . , wvD)� ∈ R
D×1,∀v = 1, 2, . . . , V

W ∗ X = (w1 · x1, . . . ,wV · xV ) ∈ R
1×V .

The regression coefficient W quantifies how the factors and their repeated mea-
sures affect the chance of the senior remaining free of disability, where the coef-
ficients wv shows the contribution of D measures at time τv. The sum of trans-
formed measures across V time points is given by the column-wise Hadamard
product [15]. To quantify the different impacts of the D factors and their V
repeated measures on the appearance of Y , we develop the time-decay ratio,
which is determined by the elapsed time, as follows,

Δ = exp(δ(k, v)) ∈ R
K×V (2)

δ(k, v) = −(tk − τv) × 1(tk ≥ τv). (3)
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Here, exp means the element-wise exponential matrix. The decay ratio
exp(σ(k, v)) is the exponential of the time difference between tk and τv, indi-
cating that the impact of measure at time τv on the probability at time tk
decreases as time elapses. The more time elapses, the more the impact is
reduced. For instance, a fall-caused injury poses an effect on the onset and
this effect will go down as time goes on. We use the lower triangular identity
matrix A = (α1, . . . , αK) ∈ R

K×K , where αij = 1 if i ≥ j and 0 otherwise,
to explore the onset-free probabilities. The denominator means the total score
(where 1 = (1, . . . , 1) ∈ R

1×K) of the probability during the period [tk, tk+1).
For senior i ∈ G1 = {i|∀i : Ci = 1} with unknown onset time, the encoded

responses before the stamp time are consistent. Hence, we have

Pr (Y | X;W)1 =
exp(W ∗ X · Δ ∗ A · 1(y ≤ 0)) · 1

exp (W ∗ X · Δ ∗ A) · 1 . (4)

The numerator is the sum of the risks of the target responses appearing. We
learn W by minimizing the negative logarithm of the above likelihood across all
seniors via expectation-maximization [5] with suitable initialization, as follows,

min
W

P (W) −
∑

i∈G0
log(Pr(Yi|Xi;W)0) −

∑

i∈G1
log(Pr(Yi|Xi;W)1), (5)

where the elastic-net penalty P (W) = λ1‖W‖1 + λ2‖W‖22 makes the loss func-
tion strongly convex and leads to a unique minimum. We choose the hyperpa-
rameters λ1 and λ2 on an independent validation set.

4.3 Prediction

Given the known measures X′ for a new senior at times τ1 < · · · < τV ′ before
time tk and the learned parameters Ŵ ∈ R

D×V , predicting the onset-free
probability at time tk is actually predicting the encoded responses Y ′[tk] =
(1, 1, . . . , 1) ∈ R

1×k. This probability, Pr
(
Y ′[tk] | X′;Ŵ

)
, can be estimated by

the temporal regression shown in Eq. 1. (In what follows, the notation with a ‘′’
indicates it is redefined on the test set.)

4.4 Decision-Making

When our model yields the predicted onset-free probabilities at different times
for the new senior, we will make two decisions: the time of onset for this senior
and the time of warning.

• To estimate the time of onset, we define the relative error at time t as follows:

E(t) =
∑K

k=1
(|log t − log tk|) Pr

(
Y ′[tk] | X′;Ŵ

)
,

thereby seeking the time at which E is the lowest, i.e., the time of onset is

T̂ = argmint∈{t1,...,tK}E(t).
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• To determine the better-timed warning, we define pL as the threshold for warn-
ing generation, so that a warning is put in place as soon as the predicted prob-
ability goes down below this threshold, where L is the ideal lead time between
the time of warning and the time of onset T . The better-timed warning can be
issued at the time when either this senior becomes disabled or his/her predicted
probability becomes lower than the threshold, whichever occurs first, i.e.,

T (pL) = min{T, inf{t|Pr(Y [t]|X;Ŵ) < pL}}, t ∈ {t1, . . . , tK}.

For any decision-maker-determined L, the optimal policy p̂L should minimize
the total cost of the warning generation, i.e.,

p̂L = argmin
∑

i∈G0
Qα(L, Ti − Ti(pL)),

where Qα(L, Ti − Ti(pL)) is the cost of a warning at Ti − Ti(pL) days before
the actual onset time Ti for senior i. Particularly, Qα(L,L) (which equals 0)
is the cost of the warning at L days early and Qα(L, 0) at the onset time (i.e.,
no early warning). We use the pinball loss [21] as the cost in this paper.

5 Experiments

5.1 Data

The Canadian Community Health Survey provided a survey between 2015 and
2017 that focused on the health of Canadians living in the ten provinces by exam-
ining various factors that affect healthy aging. In this study, we extracted data
from the survey respondents from 3,604 Canadians aged 65 and over. Table 3
(top) presents the statistics of the data. For the factors, we tested for pairwise
correlations between independent factors using a correlation matrix; if the Pear-
son correlation coefficient [10] was greater than 0.75 for two factors, we removed
the one we deemed to be of lesser importance. In doing so, we obtained 24 fac-
tors, of which 12 are time-invariant and the other 12 are time-varying, see Table 3
(bottom). The numeralization of categorical factors (except the two numerical
factors: age and BMI) was implemented through Softmax normalization.

5.2 Baselines

Since there are no methods particularly able to handle repeated measures, we
selected as our baselines seven survival models that can deal with survival data
a bit like our aging data.

• The nonparametric Kaplan-Meier estimator [9] considers the number of dis-
abled people, mk, at tk and non-disabled people, nk, by time tk, producing
the onset-free probability Pr(T ≥ t) =

∏
k:tk≤t(1 − mk/nk).

• The parametric approach assumes T ∼ Weibull(ξ, q) = qξqtq−1, where the
scale of the distribution is determined by ξ and the shape by q, and predicts
the probability at time t as Pr(T ≥ t) = exp(−(ξt)q).
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Table 3. Data statistics (top) and 24 factors (bottom).

Population by number of people

gender: M / F 2,045 (56.7%) / 1,559 (43.3%)

age group: 65–74 / 75–84 / 85+ 2,089 (58.0%) / 1,188 (33.0%) / 327 (9.0%)

health group: disabled / censored 711 (19.7%) / 2,893 (80.3%)

12 time-invariant factors 12 time-varying factors

age, gender, BMI, marital, caregiving, medication use, oral health,

province, education, cognition, depression, transportation, fall, smoking,

dietary supplement, sleep, pain, social participation, physical activity,

chronic conditions, alcohol use care receiving, lifestyle changes, pension

• The semi-parametric Cox regression [4] estimates the probability Pr(T ≥
t | X) = exp(−H0(t) exp(βx)). The baseline hazard H0 is the cumulative
hazard with no consideration of the factors and determined by the Breslow’s
estimator [3] and the coefficient β describes the relationship between outcome
and factors. We adopted this model to include a single measure x at time t.

• MTLR [13] builds multiple independent logistic regressors for prediction.
Given the measures xk at tk, it predicts the probability at tk, i.e., Pr(T ≥
tk|X) = exp

∑K
k=1 wkxk/

∑K
k=0 exp(

∑K
l=k+1(wlxl)).

• DeepHit [11] uses a neural network to predict the probability, by adding all
outcomes up, i.e., Pr(T ≥ tk|X;ω) =

∑K
k=1 Pr(Y [tk]|xk;ω), where ω is the

link between the factors and the onset. We used the single-hit setting here.
• SNN [29] uses neural networks to estimate binary classification scores of

remaining onset-free at fixed time intervals, where the network’s outcomes are
considered as the onset-free probability at different time intervals and scaled
by a sigmoid function σ: Pr(τk|X;W) = σ(wout

k · σ(WhideXhide)), where the
networks’ parameters wout

k and Whide are the weights for the output layer
and the hidden layers, respectively.

5.3 Variants

To analyze the significance of our model’s settings, we conducted an extensive
ablation study, in which we developed our model variants by respectively reduc-
ing the time-dependent impact (i.e., Δ in Eq. 1), the repeated measures (i.e., X
in Eq. 1), the estimate for censoring seniors (i.e., Pr (Y | X;W) in Eq. 4), and
the elastic-net penalty (i.e., P (W) in Eq. 5). The four variants are thus:

• TR-censor, which ignores the seniors with no confirmed onset and does not
include Eq. 4 in the objective function when learning model parameters.

• TR-impact, which ignores the time-dependent impact of repeated measures
on the outcomes and causes each element of Δ to be exp 0 = 1.

• TR-static, which discards repeated measures and uses W = (0, . . . , 0,wV ) ∈
R

D×V and X = (0, . . . , 0,xV ) ∈ R
D×V to predict the onset-free probability.
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• TR-penalty, which excludes the elastic-net penalty P (W) from Eq. 5 and
therefore learns the regression coefficients W without regularization.

5.4 Evaluation

To evaluate the models’ predictive power, we consider three questions that a
good model should be able to answer well:

• Is the senior would be likely to be disabled in 18 months?
• Which one of the two seniors is more likely to be disabled?
• How accurate is the prediction that a senior will be disabled?

These questions can be answered based on the following facts:

• Seniors who have an onset confirmed during the study period should have a
lower onset-free probability at the end than those without an onset.

• Every senior who has an onset should have a smaller onset-free probability
at his/her onset time than all those who remain onset-free.

• Seniors who have an onset of a disability at a certain time should have an
onset-free probability as close as to 0%, while, for those without the onset,
the probability should be approaching 100%.

We formalize these facts to develop three evaluation metrics that can be used to
quantify a model’s ability to address the questions. The restricted concordance
index (rC-index) measures the models’ predictive ability at T ∗ (i.e., at the end
of the study). The unrestricted concordance index (uC-index) is a generalization
of rC-index [20] across all comparable pairs P = {(i, j)|∀i, j : Ti ≤ Sj}. The
censoring mean squared error (C-MSE) is an overall error of predicted probability
across all stamp times. They are defined as follows:

rC-index =
1

|G′
0| × |G′

1|
∑

i∈G′
0

∑

j∈G′
1

1
(
Pr(Y ′

i [T ∗]|Xi) < Pr(Y ′
j [T ∗]|Xj)

)

uC-index =
1

|P|
∑

i,j∈P
1

(
Pr(Y ′

i [Ti]|Xi) ≤ Pr(Y ′
j [Sj ]|Xj)

)

C-MSE =
1

|G′
0 ∪ G′

1|
∑

i∈G′
0∪G′

1

(Ci − Pr(Y ′
i [Si]|Xi))

2
.

The three metrics are highly independent of each other. This means that a
model which performs very well on one may not do well on the other two. A
sophisticated prediction model should achieve a high rC-index and uC-index
with a low C-MSE. Additionally, to evaluate the predicted onset time, we define
the relative error (RE) that measures the difference between the estimated time
T̂ and ground truth T for all seniors with a disability in the test set:

RE =
1

|G′
0|

∑

∀i∈G′
0

min
{∣

∣(T̂i − Ti)/Ti

∣
∣, 1

}
.
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Table 4. The 10 cross-validation rC-index, uC-index, C-MSE, and RE test results,
expressed as mean (standard deviation). The best results are in bold. There is no
definite answer to the ideal lead time; 60-days is deemed reasonable, according to the
health care system.

rC-index uC-index C-MSE RE avg. Qα (L = 60 days)

α = 0.2 α = 0.5

Baselines KM .673(.031) .669(.028) .372(.029) .583(.059) 20.6(2.2) 37.9(3.4)

Weibull .687(.027) .682(.034) .274(.036) .410(.094) 32.9(6.5) 24.9(3.3)

Cox .693(.024) .673(.033) .313(.035) .542(.073) 28.3(5.4) 26.9(2.5)

MTLR .744(.035) .739(.030) .197(.021) .311(.053) 17.9(1.5) 31.7(3.8)

DeepHit .735(.032) .701(.029) .234(.025) .392(.085) 23.6(4.3) 28.9(2.2)

TR .757(.022) .753(.029) .192(.022) .308(.068) 12.7(2.5) 18.3(3.4)

Variants TR-censor .718(.024) .702(.033) .269(.022) .426(.072) 33.9(6.5) 24.5(3.0)

TR-impact .730(.037) .717(.026) .294(.034) .465(.068) 17.2(6.6) 29.4(1.7)

TR-static .698(.020) .685(.023) .293(.033) .504(.072) 25.7(2.0) 25.8(4.5)

TR-penalty .735(.028) .723(.032) .238(.019) .533(.065) 19.5(3.6) 26.4(7.1)

5.5 Results

Table 4 shows the 10 cross-validation results on the test data. Our approach out-
performs all the other baselines, achieving an rC-index improvement of 1.3% and
an uC-index improvement of over 2% in comparison with the second-best model
MTLR. MTLR performs better than other baselines mainly due to its particular
sequencing setting [13], which is a bit similar to our approach here. Overall, the
machine-learning-based models (MTLR and DeepHit) perform better than the
statistical models (KM, Weibull, and Cox), revealing the strong processing capa-
bilities and applicability of multi-task learning and neural networks for dealing
with complex aging data. Weibull performs badly partly because the log-logistic
distribution assumption does not fit our aging distribution well. In most cases,
the accuracy in terms of the uC-index is slightly lower than the rC-index because
sorting the onset time of all people accurately in the log-rank test [2] is more chal-
lenging. More importantly, our approach achieves not only accurate predictions
of the onset-free probability but accurate estimates of onset time, compared to
all the baselines. On the other hand, TR consistently outperforms all variants.
Specifically, the superior performance of TR relative to TR-censor reveals that
censors are also informative for model learning. In addition, the improvement
of TR over the TR-impact demonstrates the benefit of the dynamic impact of
repeated measures on the outcomes. Moreover, the comparison between TR and
the TR-static reveals the importance of considering repeated measures. The supe-
rior performance of TR relative to TR-penalty demonstrates the effectiveness of
the regularization. By using our TR, the warning can be issued at the lowest
cost in the context of a 60-day ideal lead time.
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Fig. 1. Average predicted onset-free probability for all disabled seniors.

Predicted Probability. Figure 1 shows the average of the predicted onset-free
probability for all disabled seniors through the 12 months. It can be seen that TR
yields probabilities that differ highly from other models, where the probability
produced by our model at every time interval (e.g. between 4 and 5 months)
is much lower than others. The curves produced by the statistical models are
close together and much higher than for the other two machine-learning-based
models. Among the four variants, TR-penalty produces much lower probabilities
than the other three variants.

Fig. 2. Our model’s predicted onset-free probability for the low-risk and high-risk
seniors, estimated onset time for the high-risk senior, and warning policy.

Case Study. For the sake of investigation, Fig. 2 shows the predicted onset-free
probabilities for two seniors: a high-risk versus a low-risk senior. (N.B.: We
consider seniors who experienced a disability during the study period to be at
high risk and the others at low risk.) The high-risk senior here is a 69-year-old
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woman who became disabled at 207 days (shown by the vertical dashed lines).
The low-risk senior is a 75-year-old man who remained onset-free at the end of
the study period. It can be seen that only MTLR and TR can clearly distinguish
between the two seniors, with TR yielding the largest difference between them.
More importantly, TR can predict the extremely low probability for the high-risk
senior at 7 months (the onset-free probability is predicted to be lower than 20%).
Among these models, only TR, TR-censor, and TR-penalty can generate a warn-
ing (shown by the orange point) before the time of onset (i.e., 207 days), where
the warning policy (i.e., probability threshold, shown by the orange horizontal
dash) yielded by TR is 0.193, 0.422 by TR-censor, and 0.503 by TR-penalty.
Note that, the warning issued by our model is 74 days before the disability
onset, which is close to the ideal lead time (i.e., 60 days). This high-risk senior
could thus be issued a warning and offered advice on early intervention. This is
crucial for aging people who are likely to have a severe disability at a specific
time.

5.6 Factors’ Impact

Figure 3 shows the factors’ impact produced by our approach. Here positive
impacts reveal a risky effect while negative for a protective effect [17]. The risk
factors (e.g., fall and sleep) are associated with a higher likelihood of disability
onset, while the protective factors (e.g., lifestyle changes and caregiving) have a
cumulative effect on the development of disability.

Fig. 3. Factors’ impact yielded by our model.

6 Conclusions

This paper proposes a complete paradigm for modeling aging data, predicting
onset-free probability, determining the time of onset and better-timed warning,
and evaluating the predictions and decisions. The proposed approach successfully
addresses the particularities of aging data (i.e., censored responses and repeated
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measures) when performing onset prediction and decision-making for a Cana-
dian cohort. It achieves a high prediction accuracy and a low decision error and
warning cost, in comparison with various baseline models and our approach’s
variants. It is the first attempt to develop a machine-learning-based method
for predicting older people’s possible disabilities, and, of course, we will further
improve our approach to address other issues in aging research, e.g., the hetero-
geneous cohorts (e.g., interprovincial difference) and the time inconsistency (e.g.,
the difference between measurement times and the times of onset).
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Abstract. Multi-label classification has revealed broad applications and
outstanding importance in machine learning and data mining. In the
multi-label domain, in addition to the problems including large instance
size and high-dimensional features which need to be addressed urgently,
the dimensionality of label space is increasing rapidly, leading to high
computational overhead and curse of dimensionality. For tackling this
issue, a typical technique called label space dimensionality reduction
(LSDR) has been proposed, whose various corresponding methods are
responsible for converting the high-dimensional label space into a low-
dimensional one, including label embedding (LE) and label selection
(LS), and then solve a low-dimensional classification or regression prob-
lem efficiently. In this paper, we focus on LE approaches, whose perfor-
mance greatly depends on a preferable LE criterion. We investigate the
conditional covariance operator, which originally is a nonlinear kernel-
based dependence between two random vectors, formulated as a trace
operation including label Gram matrix and feature Gram inverse matrix.
We simplify this operator with linear label kernel matrix, which is then
maximized under orthonormal constraints, resulting in an eigenvector
problem. Therefore, our compression and recovery matrices correspond
to those eigenvectors with several top-ranked eigenvalues. Our proposed
novel LE method based on conditional covariance maximization is termed
as ML-CCM for short. The experiments on four public benchmark data
sets demonstrate that our proposed technique is statistically superior
to three state-of-the-art LE methods on the basis of two performance
evaluation metrics.
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1 Introduction

Traditional supervised classification deals with the problem of each instance
being associated with only a single class label [4,12,18], named as a single-
label classification task, whose classes are mutually exclusive from one another.
However, in many real-world applications, it is more common that an instance
may belong to several different labels at the same time, which is referred to as a
multi-label classification problem [8,27,34]. Nowadays, multi-label classification
has many promising applications in a broad variety of domains, such as sound
analysis [5,28], computer vision [6,11], text analysis [13,24], and recommender
systems [19,41].

As much attention has been paid to multi-label classification continuously, a
proliferation of methods to solve multi-label classification problems are proposed
effectively. Apart from traditional large instance size and high-dimensional fea-
ture space, the scaling evolution has rendered problems in which the number
of labels is extremely large [22,30,38], which results in a high computational
burden and even an unsatisfactory classification performance. It is well known
that dimension reduction methods can well handle multi-label high-dimensional
features via feature extraction and selection [34,40]. In principle, this dimen-
sionality reduction strategy for feature space can be also applied to multi-label
high-dimensional label space [34].

Similarly to feature selection and feature extraction in feature space, the
existing label space dimensionality reduction techniques can also be classified
into two categories: label selection (LS) and label embedding (LE) [40]. The
former method prefers to select an informative label subset directly from the
original label set, and subsequently deals with a low-dimensional multi-label
classification problem [23,29]. The latter method aims to convert the binary
high-dimensional label space into a real or binary low-dimensional one, which
then induces a low-dimensional regression or classification problem [7,34]. In this
paper, we mainly focus on LE approaches.

The pioneering LE method for multi-label classification is ML-CS [20] based
on compressed sensing theory (CS) [31,32]. In the training stage of ML-CS,
each high-dimensional binary label vector is transformed into a low-dimensional
real vector via a random Gaussian matrix, which corresponds to a multi-output
regression task. In the predicting stage of ML-CS, a low-dimensional real vector
is predicted via a trained regressor and then reconstructed back to its high-
dimension label vector via solving an �1-regularized minimization problem. Fol-
lowing this framework, subsequently, various LE approaches have been proposed,
which would be separated into two categories: feature-independent and feature-
dependent techniques.

Among existing feature-independent techniques, only label information is
exploited, as in ML-CS [20]. Several representatives include principal label
space transformation (PLST) [35], cost-sensitive label embedding with multi-
dimensional scaling (CLEMS) [21], binary matrix decomposition (MLC-BMaD)
[39], binary linear compression (BILC) [45], minimizing local variance method
(ML-mLV) [37], and etc. Particularly, PLST [35] essentially conducts principal
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component analysis (PCA) [1] on label space, which results in a pair of effective
compression and recovery matrices with several top-ranked eigenvectors, due
to the orthonormal property. This work inspires some researchers to pursue a
fast recovery procedure. On the other hand, in CLEMS [21], multidimensional
scaling (MDS) [33] is applied to reduce the high-dimensional label vector into
a low-dimensional real one nonlinearly, which needs a nearest neighbor strat-
egy as its independent recovery step and thus induces a kind of two-stage LE
techniques, just as ML-CS [20].

In order to improve classification performance for LE techniques further, the
feature information is also integrated into feature-dependent LE algorithms. The
first feature-dependent LE technique is conditional principal label space trans-
formation (CPLST) [10], which at first generalizes canonical correlation anal-
ysis (CCA) to construct its orthonormal version (OCCA), and then combines
OCCA with PCA. Several typical approaches were proposed successively, such
as, dependence maximization-based label space dimension reduction (DMLR)
[42], Bayesian multi-label compressed sensing (BML-CS) [25], and feature-aware
implicit label space encoding (FaIE) [26], label compression coding method
(LCCMD) [7], and so on. In principle, these methods aim to maximize the cor-
relations or dependency between feature space and compressed label space to
design some better compression and recovery matrices.

The success of LE methods is greatly associated with their LE criteria. There-
fore, how to design or search for a desirable LE criterion has become a challenging
task. In this study, we pay special attention on conditional covariance operator
(CCO) [2], which has been successfully applied in nonlinear feature extraction
[14,15], and non-linear feature selection [9]. This operator primarily describes a
nonlinear kernel dependence for two sets of random vectors, and is formulated
as a trace operation consisting of label kernel matrix and inverse feature ker-
nel matrix. To adapt to our LE task, at first, a linear label kernel matrix is
applied to construct a simplified CCO (SCCO). We maximize this SCCO, sub-
ject to an orthonormal constraint, to build a constrained optimization problem,
which then is converted into an eigenvalue problem. Some eigenvectors with the
largest eigenvalues would be comprised of our compression matrix, whose trans-
pose matrix becomes our recovery matrix naturally. This novel LE method is
referred to as an LE method via conditional covariance maximization, or ML-
CCM simply. Experiments on four public data sets illustrate that our proposed
LE approach is more effective than three state-of-the-art LE techniques, includ-
ing PLST [35], CPLST [10] and FaIE [26]), according to two metrics (precision@n
and discounted gain@n, where n = 1, 3 and 5).

Summarily, there are three contributions in this study: (a) We build a new
LE criterion via adapting the conditional covariance operator with linear label
kernel; (b) A novel LE method (ML-CCM) is proposed as an eigenvalue problem,
resulting in effective compression and recovery matrices; (c) We validate our ML-
CCM experimentally via comparing with three existing LE techniques.

This paper is organized as follows. Section 2 will give some preliminaries
for our work. In Sect. 3, we review conditional covariance operator, build its
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simplified version and propose our novel LE method based on conditional covari-
ance maximization. Some detailed experiments are reported and analyzed in
Sect. 4. Finally some conclusions and discussion will end up this paper.

2 Preliminaries

Mathematically, a multi-label training set with N instances can be formulated
as follows:

{(x1,y1) , . . . , (xi,yi) , . . . , (xN ,yN )} (1)

where for the i -th instance its xi ∈ RD and yi ∈ {0, 1}C refer to its D-
dimensional feature column vector and C -dimensional binary label column vec-
tor, respectively.

Let zi ∈ {0, 1}c denote the low-dimensional label vector of yi after label
compression, where c is the dimension of the compressed label vector (c < C).
For the aforementioned training date set, we define three corresponding matrices:
original feature matrix X, original label matrix Y and compressed label matrix
Z, respectively, i.e.,

X = [x1, . . . ,xi, . . . ,xN ]T ∈ RN×D

Y = [y1, . . . ,yi, . . . ,yN ]T = [y1, . . . ,yj , . . . ,yC ] ∈ {0, 1}N×C

Z = [z1, . . . , zi, . . . , zN ]T = [z1, . . . , zj , . . . , zc] ∈ RN×c

(2)

where the column vectors yj and zj indicate the j-th label in Y and Z, respec-
tively.

Here, we define a centering matrix of size N × N as follows:

H = I − 11T /N (3)

where I is the identity matrix of size N × N , and 1 indicates the column vector
with N one elements. Using H, we could centralize feature and label matrices:

X̄ = HX = [x̄1, ..., x̄i, ..., x̄N ]T

Ȳ = HY = [ȳ1, ..., ȳi, ..., ȳN ]T .
(4)

In particular, the mean of label matrix Y is defined as

my =
1
N

N∑

i=1

yi (5)

which will be used to recover a high-dimension label vector from its centralized
predicted label vector.

Suppose that the feature and label kernel matrices are represented as Kx

and Ky, respectively, which are usually centralized doubly to obtain two Gram
matrices, i.e.,

Gx = HKxH, Gy = HKyH (6)

which will usually used in some kernel-based criteria [9].
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The original multi-label classification is to learn a classifier f : x ∈ RD →
y ∈ {0, 1}C , directly. However, for LE methods for multi-label classification, we
need to design a label compression operator: φ : y → z, and its corresponding
inverse recovery operator φ−1 : z → y.

For some linear LE methods, the aforementioned compression operator is
simplified into a matrix φ = Q. Further, if Q satisfies an orthonormal property,
i.e., QT Q = I, we have φ−1 = QT .

When z is a binary vector, we still learn a multi-label or multi-class classifier
g : x → z ∈ {0, 1}c, otherwise a multi-output regressor g : x → z ∈ Rc.

In general, an LE-type method for multi-label classification consists of two
more sophisticated training and testing phases [7,8], which are embedded into
compression and recovery operators, respectively. During its training phase, there
are three key missions: (a) designing a compression operator and its correspond-
ing recovery operator; (b) compressing each high-dimensional label vector into
a low-dimensional compressed label vector; and (c) training a multi-label/class
classifiers, or a multi-output regressor, on the reduced training data set. In its
testing phase, three steps are executed: (a) predicting a low-dimensional label
vector for each testing instance using the trained classifier or regressor; (b) recov-
ering a high-dimensional label vector from the predicted low-dimensional label
vector by the recovery operator; and (c) evaluating some classification for an
entire test data set.

In the next section, we will propose a novel LE-like method for multi-label
classification.

3 A Novel Label Embedding Approach via Conditional
Covariance Maximization

In this section, we review the conditional covariance operator [2], and then max-
imize this operator to introduce our novel label embedding algorithm for multi-
label classification.

3.1 Conditional Covariance Operator and Its Simplified Form

The conditional covariance operator is primarily introduced by Baker [2], which
characterizes a conditional dependence for two sets of random variables. It is
well known that this operator has been applied to nonlinear feature extraction
[14,15], and nonlinear feature selection [9]. In this sub-section, we will show a
brief overview of this operator and then define its simplified version.

Let (Hx, kx) and (Hy, ky) denote the reproducing kernel Hilbert spaces
(RKHSs) of the functions on spaces X and Y, respectively, where k(·, ·) indi-
cates some specific kernel function. Additionally, a pair of random vectors (x,y)
is defined on X × Y with joint distribution Px,y. Assuming that the kernels kx

and ky are bounded in expectation:

Ex [kx(x,x)] < ∞
Ey [ky(y,y)] < ∞.

(7)
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Under this assumption, the cross-covariance operator associated with a pair
(x,y) is the mapping Σxy : Hx → Hy, defined by the following relation for all
f ∈ Hx and g ∈ Hy

〈g ,Σyxf 〉Hy
= Ex,y[(f (x)−Ex[f (x)])(g(y)−Ey[g(y)])] (8)

where 〈·, ·〉 indicates the inner product operation.
Baker [2] showed there is a unique bounded operator Vyx such that

Σyx = Σ1/2
yy VyxΣ1/2

xx . (9)

Then the definition of the conditional covariance operator can be given as:

Σyy|x = Σyy − Σ1/2
yy VyxVxyΣ1/2

yy . (10)

Fukumizu et al. [14,15] showed that the conditional covariance operator
describes the conditional covariance of y given x.

It is also indicated that the trace of the conditional covariance operator can
characterize the dependence between x and y in [9].

For the training set (1), according to [15], the empirical estimate of the
conditional covariance operator is defined as:

CCO := trace(Σyy|x)
= trace[Σyy − Σyx(Σxx + εI)−1Σxy]
= εtrace[Gy(Gx+NεI)−1]

(11)

where Gx, Gy are defined in (6), and ε is a regularization constant to avoid the
singularity of inverse matrix.

In the above CCO (11), there are two Gram matrices, which are associated
with a nonlinear kernel function. For feature kernels, three kernel functions have
been widely investigated, i.e., linear, polynomial and Gaussian kernels [17,36],
which are defined as follows:

k(xi,xj) = xT
i xj (linear kernel)

k(xi,xj) = (xT
i xj + 1)p (polynomail kernel)

k(xi,xj) = exp
(
− ||xi−xj ||2

2σ2

)
(Gaussian kernel)

(12)

where p is the degree of polynomial kernel and σ is the width of Gaussian kernel.
It is worth noting that these kernels could be also calculated using the centralized
feature vectors.

For the label kernel, we use the linear kernel, which corresponds to the fol-
lowing Gram matrix:

Gy = HYYT H = ȲȲT . (13)

In this setting, we obtain a simplified CCO:

SCCO = trace
(
ȲȲT (Gx + NεI)

)
(14)

which will be regarded as an LE criterion to build our novel linear LE method.
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3.2 A Novel Label Embedding Method for Multi-label Classification

Now, let Q be a compression matrix, which reduces the centralized high-
dimension label vector into a low-dimensional one, i.e.,

Z = ȲQ. (15)

The above SCCO (14) is applied to measure the dependence between the
reduced label matrix Z and the original feature matrix X̄:

SCCO = trace
(
ZZT (Gx + NεI)

)

= trace
(
ZT (Gx + NεI)Z

)

= trace
(
QT ȲT (Gx + NεI)ȲQ

)
.

(16)

Further, we apply an orthonormal constraint on Q, i.e., QT Q = I, and max-
imize the aforementioned SCCO to build the following maximization problem:

max trace(QT ȲT (Gx+NεI)−1ȲQ)
s.t. QT Q = I.

(17)

In order to solve this task, we apply the Lagrangian method [3], whose func-
tion could be defined as

J(Q,Λ) = trace
(
QT ȲT (Gx+NεI)−1ȲQ − Λ(QT Q − I)

)
(18)

where Λ = diag(λ1, ..., λC) denotes a diagonal matrix composed of non-negative
Lagrangian multipliers. Based on the trace differential equation in [16,43,44]:
∂tr(AXXTB)

∂X = (BA + ATBT)X, we have

∂J

∂Q
= 2(ȲT (Gx+NεNI)−1Ȳ)Q − 2ΛQ. (19)

Let this relation be zeros, we can obtain an eigenvalue problem:

ȲT (Gx+εNI)−1ȲQ = ΛQ (20)

where Λ also could be explained as a diagonal matrix with non-negative eigenval-
ues from the matrix ȲT (Gx+NεI)−1Ȳ, and Q are those corresponding eigen-
vectors. In this case, the problem can be rewritten as

J(Q,Λ) = trace(Λ) =
C∑

i=1

λi. (21)

In order to maximize the objective in (17), according to (21), we ought to
select the largest c eigenvalues and their corresponding eigenvector to construct
a compression matrix as our compression operator φ = Q ∈ RC×c. On the other
hand, due to QT Q = I, our recovery operator becomes a transpose matrix of
Q, i.e., φ−1 = QT ∈ Rc×C . Therefore, our compression and recovery procedures
could be formulated as
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Algorithm 1. Pseudo-code of our ML-CCM
Training Stage:
Input:

X and Y: feature and label matrices.
c: reduced dimensionality of label space.
kx(·, ·): a proper feature kernel function and its parameter.

Process:
1: To centralize feature and label matrices to obtain X̄ and Ȳ.
2: To normalize the training data set if neccesdary.
3: To calculate the feature kernel matrix Kx and its Gram matrix Gx.
4: To solve the eigenvalue problem (20).
5: To determine compression matrix Q with the c largest eigenvalues and their eigen-

vectors (column vectors).
6: To calculate compressed label matrix Z = ȲQ.
7: To learn a regressor g(x) : x → z.
Output:

Q: the compression matrix of size C × c.
g(x): a trained regressor.

Testing Stage:
Input:

x: some testing instance.
Q: the recovery matrix.
g(x): the trained regressor.

Process:
1: To calculate the c-dimensional real label vector z = g(x).
2: To reconstruct the C-dimensional real label vector ȳ = Qz.
3: To de-centering operation to achieve a real label vector ŷ if necessary.
4: To detect a binary label vector y using round operation on ŷ.
Output:

ŷ or y: a predicted high-dimensional real or binary label vector.

z = QT ȳ or Z = ȲQ
ȳ = Qz or Ȳ = ZQT .

(22)

Further, we de-centralize ȳ to obtain a high-dimensional label vector ŷ using
the label mean my in (5), which could directly be used to calculate the ranking-
based metrics [8]. For instance-based and label-based metrics [8], we need to
recover its binary label vector y.

Based on the above description, we propose a novel label embedding algo-
rithm in label space dimensionality reduction for multi-label classification, which
is summarized as the training stage and the testing stage in Algorithm 1. This
label embedding method via conditional covariance maximization proposed in
this paper is termed as ML-CCM for short.
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Table 1. Statistics of four multi-label data sets.

Dataset Domain Train Test Features Labels Cardinality

Birds Audio 179 172 260 19 1.01

CAL500 Music 300 202 68 174 26.04

Human Biology 1864 1244 440 14 1.19

Plant978 Biology 588 390 440 12 1.08

4 Experiments

In this section, we evaluate our proposed ML-CCM on four public benchmark
data sets, and compare ML-CCM with three classic LE approaches including
PLST [35], CPLST [10] and FaIE [26]. To begin with, we briefly introduce the
four data sets and two different evaluation metrics used in our experiments.
Subsequently, extensive comparative studies are also presented.

4.1 Four Data Sets and Two Evaluation Metrics

To validate the performance of our algorithm, our experiments are carried out
on four benchmark multi-label data sets downloaded from Mulan1 and Labic2,
including Birds, CAL500, Human and Plant978, which come from three applica-
tion domains (audio, music and biology). Table 1 shows some detailed informa-
tion with respect to these four data sets, e.g., the number of instances in split
training and testing, the dimensionality of features and labels, and the label
cardinality.

Two ranking-based evaluation metrics coming from [22] are used as our per-
formance measure for various label sets: precision@n and (DisCounted Gain)
DCG@n (n=1, 2, 3, ...). For a testing instance x, its ground label vector is
y = [y1, ..., yi, ...yC ]T and predicted function values ŷ = [ŷ1, ..., ŷi, ...ŷC ]T , and
then such two metrics can be described as follows:

Precision@n = 1
n

∑
i∈rankn(ŷ)

yi

DCG@n = 1
n

∑
i∈rankn(ŷ)

yi

log2(i+1)

(23)

where rankn(ŷ) returns the top n label indexes of ŷ. For statistical comparison,
average scores are calculated for overall performance measure across all testing
instances. In addition, it is expected to achieve higher metric values for a better
performance on a certain technique.

4.2 Three Compared Methods

In this subsection, we introduce three compared methods mathematically, i.e.,
PLST [35], CPLST [10] and FaIE [26].
1 https://mulan.sourceforge.net/datasets-mlc.html.
2 http://ceai.njnu.edu.cn/Lab/LABIC/LABIC_Software.html.

https://mulan.sourceforge.net/datasets-mlc.html
http://ceai.njnu.edu.cn/Lab/LABIC/LABIC_Software.html
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Fig. 1. Performance of the proposed ML-CCM using two metrics on the four benchmark
data sets.
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Table 2. The number of tops for each method and metric across four data sets.

Metric Precision@1 Precision@3 Precision@5 DCG@1 DCG@3 DCG@5 Total tops

PLST 11 15 9 11 10 8 64

CPLST 13 13 12 13 11 10 72

FaIE 7 10 9 7 7 6 46

ML-CCM 36 33 33 36 32 33 203

Table 3. Two metrics from four methods and four data sets with 30% reduced labels.

Metric Precision@1 Precision@3 Precision@5 DCG@1 DCG@3 DCG@5

Birds
PLST 0.37209 0.26938 0.20349 0.37209 0.20838 0.14229
CPLST 0.37209 0.26938 0.20349 0.37209 0.20838 0.14229
FaIE 0.37209 0.26938 0.20349 0.37209 0.20838 0.14229
ML-CCM 0.37791 0.26938 0.20465 0.37791 0.20884 0.14252
CAL500
PLST 0.70297 0.63366 0.59307 0.70297 0.46100 0.36390
CPLST 0.69307 0.63531 0.58020 0.71782 0.46409 0.35973
FaIE 0.71782 0.61056 0.58317 0.69307 0.44672 0.35690
ML-CCM 0.72277 0.63696 0.60396 0.72277 0.46530 0.36988
Human
PLST 0.40836 0.26018 0.18424 0.40836 0.20815 0.13654
CPLST 0.40916 0.26259 0.18682 0.40916 0.20995 0.13808
FaIE 0.40836 0.25965 0.18441 0.40836 0.20778 0.13651
ML-CCM 0.42203 0.26393 0.18666 0.42203 0.21258 0.13924
Plant978
PLST 0.29231 0.20000 0.13795 0.29231 0.15599 0.10097
CPLST 0.29231 0.19231 0.13692 0.29231 0.15215 0.10029
FaIE 0.29231 0.19744 0.13795 0.29231 0.15471 0.10088
ML-CCM 0.31539 0.22821 0.16256 0.31539 0.17573 0.11606

Essentially, the PLST [35] conducts principal component analysis on the
centralized label matrix, whose eigenvalue problem is formulated as

ȲT ȲQ = ΛQ. (24)

The CPLST [10] considers the feature information, whose eigenvalue problem
is described as

ȲT
(
X̄X̄+

)
ȲQ = ΛQ (25)

where X̄+ is the Penrose-Moore inverse of X̄ [44].
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The FaIE [26] is formulated as the following eigenvalue problem:
(
ȲT Ȳ + αX̄T

(
X̄T X̄

)−1
X̄

)
Z = ΛZ (26)

where α is a balanced factor to control the tradeoff between two terms. It is
worth noting that the top-ranked values are used to detect several eigenvectors
to construct compressed matrix Z directly and the recovery operator becomes
ZT Ȳ.

4.3 Experimental Settings

In our experiments, we validate our method ML-CCM and three existing meth-
ods: PLST [35], CPLST [10], and FaIE [26]. For this purpose, a linear ridge
regressor is chosen as our baseline, in which the regularization constant is set to
0.01. In order to investigate the effect of the number of reduced labels (i.e., c)
on classification performance, the dimension proposition after label reduction is
predefined ranging from 10% to 100% with a step of 10%.

As for feature kernel functions in our ML-CCM, we have provided three
popular functions, i.e., linear, polynomial and Gaussian kernel forms. After a
primary experimental comparison, we pick up the Gaussian kernel, whose width
parameter σ is set to the number of features, just as in [9]. For FaIE, we use its
default and recommended setting: α = 1.0. Additionally, we set n = 1, 3, and 5
for two evaluation metrics (23).

4.4 Performance Comparison and Analysis

According to the aforementioned experimental settings, two classification metrics
focus on summarizing different dimension proportions after compressed label
dimensionality, as shown in Fig. 1.

It can be observed from these figures that our method ML-CCM performs the
best compared with the other techniques, especially when the label dimensional-
ity is compressed to around 20 ∼ 40%. On Human and Plant978, ML-CCM even
achieves a complete victory, which benefits from the key part in our method for
maximizing the correlation between feature space and reduced label space.

To provide more insight into these experimental results, we also use the top
index in [7], which indicates how many times some method performs the best
among four approaches. As can be seen from Table 2, the number of tops in
ML-CCM is at least twice as many as, or up to four times as much as, those in
the other three methods.

Moreover, given the 30% reduced dimensionality in label space, Table 3 shows
two evaluation metric values. It is found out that our ML-CCM achieves 22 wins
(i.e., the highest value), an incredible percentage of 91.67%, and one equiva-
lent value as the other three methods for the best metric values. Additionally,
some results have much higher values than, or even three times as many as,
those from three state-of-the-art compared methods. These results substantially
demonstrate the superiority of our proposed ML-CCM when compared with the
other three competitors.
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5 Conclusions

To copy with the issue on high-dimensional label space, the label dimensionality
reduction (including label selection and label embedding) has become one impor-
tant line of research in multi-label classification. In particular, the success of a
label embedding approach largely depends on a desirable LE criterion. In this
paper, we investigated the conditional covariance operator, originally formulated
as a trace operation consisting of label Gram kernel matrix and feature Gram
kernel inverse matrix. This operator is simplified via linear label kernel from
scratch, and is then maximized under an orthonormal constraint to build our
label embedding method based on conditional covariance maximization. Thus,
our proposed technique is finally described as an eigenvalue problem, which could
be solved by various existing solvers. Comprehensive evaluations and extensive
comparative studies on the four diverse benchmark data sets demonstrate the
efficacy and superiority of our ML-CCM compared with the other LE approaches.

In our future work, more benchmark data sets and advanced label embedding
methods will be involved in our experiments for further performance evaluation.
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Abstract. Deep neural networks (DNNs) are one of the most widely
used machine learning algorithms. In the literature, most of the privacy
related work to DNNs focus on adding perturbations to avoid attacks
in the output which can lead to significant utility loss. Large number
of weights and biases in DNNs can result in a unique model for each
set of training data. In this case, an adversary can perform model com-
parison attacks which lead to the disclosure of the training data. In our
work, we first introduce the model comparison attack for DNNs which
accounts for the permutation of nodes in a layer. To overcome this, we
introduce a relaxed notion of integral privacy called ε-integral privacy.
We further provide a methodology for recommending ε-Integrally private
models. We use a data-centric approach to generate subsamples which
have the same class-distribution as the original data. We have experi-
mented with 6 datasets of varied sizes (10k to 7 million instances) and
our experimental results show that our recommended private models
achieve benchmark comparable utility. We also achieve benchmark com-
parable test accuracy for 4 different DNN architectures. The results from
our methodology show superiority under comparison with three different
levels of differential privacy.

Keywords: Data privacy · Integral privacy · Deep neural networks ·
Privacy-preserving ML

1 Introduction

In today’s world, Artificial Intelligence (AI) plays a crucial role in our day-to-
day life. AI techniques are widely used in object recognition, speech recognition,
medical imaging, robotics and many other fields. AI approaches and Machine
Learning (ML) in particular are very data hungry [1]. They tend to improve with
the quality and quantity of data. The data often include sensitive and personal
information which must be guarded to ensure security/privacy of each individual
or organization. Several guidelines exists such as Europe’s General Data Protec-
tion Regulation (GDPR), to regulate the use of data in ML. GDPR requires
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that the analysis to be made should use the minimum amount of data and must
be privacy-preserving. There are several data masking and privacy-preserving
models such as k-anonymity [2], differential privacy [3], integral privacy [4], etc.
which try to protect privacy of individuals and organizations from any adver-
saries. Adversaries aim to gain sensitive information about individuals or a group
of individuals making inferences from ML models.

Data masking is used to modify sensitive information so that a record can
not be uniquely identified. K-anonymity is one of the most used data masking
methods. A database satisfies k-anonymity if for each record there are k-1 other
indistinguishable records. This can be implemented using clustering (replacing k
similar records with their mean or with their generalization). In the recent years,
much attention has been given to differential privacy (DP) and its variants (see
[5] for more details). Differential privacy is satisfied if the outputs of a query on
neighbouring datasets are similar i.e. addition or removal of one record should
not affect the outcome of the query. Differential privacy depends on a parame-
ter ε that establishes the level of this similarity. Theoretically, DP offers sound
privacy-preserving models but it has practical limitations such as the amount
of noise for small ε (high privacy) can be very high. Therefore, high sensitivity
queries require high amount of noise. However, in case of multiple queries as the
privacy budget is limited, high amount of noise is also required. High noise leads
to a loss of utility for ML models. In our approach, we have considered Inte-
gral Privacy as an alternative to DP to achieve high utility privacy-preserving
machine learning.

Integral Privacy models [4] are the data-driven models that appear recur-
rently with different training data sets. This makes inferences on sensitive infor-
mation harder for an intruder. Formally, the set of integrally private models are
the set of recurrent models, i.e. generated by different datasets for the same
problem. This approach has practical limitations, as in general, we rarely have
a huge number of different datasets. The first practical approach for Integral
private model selection was given for decision trees [6], where instead of having
an available set of datasets, the authors have used sampling approaches to build
the model space and eventually suggesting models which are integrally private.
The authors expanded the idea with integral privacy guarantees for linear regres-
sion. This is given in [7]. In [8], authors have shown how maximal c-consensus
meets (see [9] for further details) can be used in the context of integral privacy
to find datasets which can produce the same models. The work presented in [6]
generates or approximates the model space for a given dataset. A stratified sub-
sampling approach is used to approximate the model space for small datasets (≈
200 instances). The authors approximate the model space using 100k, 150k and
300k subsamples from each datasets. This can be time consuming and 100–300k
subsamples may not be enough to approximate the model space for real-world
big datasets. Overall, the approach is computationally expensive.

Deep Neural Networks is one of the most successful machine learning
paradigms for several computer vision tasks such as image classification [10],
object detection [11], video classification [12], and many other areas. However,
DNNs are known to be highly dependent on the input data. In the last few years,
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interest in adversarial DNN examples has grown [13]. DNNs are assumed to work
well with large datasets. They have large number of weights and biases which can
result in very few generators (unique in many of the cases) for each model. In other
words, generation or discovery of recurrent models in DNNs is difficult.

Considering these challenges in mind, we introduce a relaxed variant of inte-
gral privacy called ‘ε-Integral Privacy’ where models in the ε range are considered
perturbated version of each other and, thus, they are considered ε-integrally pri-
vate. We also propose a model selection strategy for choosing ε-integrally private
models for Deep Neural Networks (DNNs). Our algorithm recommends the mean
of the top recurrent models as the private model. We distribute the data in dis-
joint subsamples having same class-distribution as the original dataset. We find
that large enough disjoint subsets having same class-distribution as the original
dataset leads to the generation of the models which are utmost ε-different, with
utility comparable to the benchmark model. This way we do not need to gener-
ate 100–300k sub samples. Our approach also supports the data-centric approach
[14]. We are able to generate benchmark comparable models with samples sizes
1/100th of the original dataset. There hasn’t been much work in the literature
which discusses about using smaller datasets for training DNNs. The work in [15]
improves the quality of data by eliminating the invalid instances, our approach
is focused on maintaining the class-distribution of the data.

In this paper, we have also extended the potential model comparison attack
[6] for DNNs. In this type of attack, an intruder gets access to the training data
by comparing the models learned by the intruder obtained from original data
and the model obtained from a modified dataset. In case of DNNs, the attack
becomes tricky as any permutation of the similar set of nodes at any given layer l
results in the same learning. We incorporate this to extend the model comparison
attack on DNNs.

We have arbitrarily chosen a 3-hidden layered DNN for 6 datasets with varied
sizes. Our experimental results show that large enough disjoint sets lead to the
generation of ε-integral private models with benchmark comparable utility and
loss. We get benchmark metrics by training and testing on our chosen DNN on
70-30 split for each data. We have also compared ε-integral private models with
high DP (differential privacy) model, moderate DP model and low DP model;
we found integrally private models have better utility in many cases and have
significant improvement in terms of loss for most of the datasets.

This paper is organized as follows. In Sect. 2 we introduce the model com-
parison attack for DNNs; In Sect. 3 we introduce the notion of ε-integral privacy
and present the algorithm for private model selection procedure for DNNs; In
Sect. 4 we present the experimental analysis to support our claim and in Sect. 5
we present our conclusion and directions for future work.

2 Model Comparison Attack for DNNs

In this section, we describe our model comparison attack for deep neural net-
works. Deep neural networks are machine learning models which were created to
learn like the human brain. The underlying architecture of DNNs consists of the
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perceptron (or commonly known as neuron) which receives an array of inputs
and transform them into output signal(s). DNNs learns from data by putting
together a list of layers. Each layer is responsible for learning some relationship
or functionality in the input. Each layer is a collection of neurons that learns
to detect patterns in the input. Each neuron in the DNNs can be considered as
a logistic regression. DNNs are the extension of artificial neural networks with
two or more hidden layers. In each neuron, the weighted sum of the input with
a bias term is computed which is then transformed using an activation function,
which is then passed on to the next layer of the DNNs. Nodes at layer l receive
input from the nodes at layer l − 1, which means each neuron has |l − 1|+1 (+1
for bias) number of parameters to be tuned in training. Final weights and biases
of each neuron highly depends on their initialization.

2.1 Framework

In this section, we propose our framework. Let X be the training set from the
original dataset D, G be the model generated on X. In our work, we have con-
sidered DNNs as learning algorithm. Let us denote an initial architecture and
weight by Arch and let A be the algorithm.

We assume the intruder has some background knowledge S∗ ⊆ D. They are
the records that are known to be used to train the model. The intruder also has
access to the model. That to G which was learned from the training set X on the
initial architecture Arch. That is, G = DNN(Arch,X). With this information,
the intruder aims to gain knowledge on the training set and do membership
inference attacks

The intruder essentially can perform the model comparison attack once they
can generate the model space associated to S∗. The intruder can perform compar-
ison with the models in model space and his knowledge of G. After comparison,
if there is a single generator for the model, the intruder gets complete access to
the training set and their inferences. If there are more than one generator for the
model, an intruder can do membership inference attack for dominant records by
finding the intersection between the generators.

2.2 Intruders Approach

The intruder has some background information S∗. Then, they can draw a block
of subsamples S = {S1, S2, ..., Sn} where Si ⊆ S∗ to generate the (approxi-
mated) model space. Each subsample is a set of instances from S∗ which are used
to generate a DNN (see Fig. 1). Generation of the complete model space can be
computationally expensive but can be approximated using sampling approaches.

Comparison of two DNNs for model comparison attack is a difficult task
because we need to deal with a combinatorial problem. We need to align neurons
in each layer. Observe that layers in both DNNs must contain the same neurons
i.e. for two DNNs to be the same they must have equal layers; and for two layers
to be equal, neurons in one layer must be some permutation of the neurons in
the other layer. Given r neurons, we will have r! possible permutations.
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Fig. 1. Demonstration of model generation using algorithm A for subsamples
S1, S2, ..., Sn.

Each model in the generated model space can be compared with the original
model G. In case of DNNs, each model has one or very few generators due to
the high number of parameters of the model. Therefore, after the comparison
attack, the intruder may be able to uniquely identify the training set used to
generate the model. When there are more than one generator for a model G,
an intruder can check for membership inference by finding the dominant records
from the intersection of the generators for the model.

2.3 Integral Privacy

This privacy model [4] aims to protect the disclosure of training data and infer-
ences from a model comparison attack. Let A be an algorithm to compute
model G from a given population of samples P . The model G is integrally
private if it can be generated by enough number of samples from the popu-
lation. Let S∗ be the background information available to the intruder, then
Gen∗(G,S∗) = {S′ \ S∗ |S∗ ⊆ S′ ⊆ P,A(S′) = G} is the possible set of genera-
tors for the model G. K-anonymous integral privacy holds when there are at least
k disjoint generators in the set Gen∗(G,S∗). Disjoint generators are required to
avoid membership inference attacks. Formal definition for Integral privacy is as
follows.

Integral Privacy. Let P be the set of samples or a dataset. For model G ∈ G
generated by algorithm A on samples S ⊆ P , let Gen∗(G,S∗) represent the set
of all generators of G which are consistent with the background knowledge S∗.
Then, the model G is said to be k-anonymous integrally private if Gen∗(G,S∗)
contains at least k sets of generators and

⋂

S∈Gen∗(G,S∗)

S = ∅ (1)

3 ε-Integrally Private Model Selection for DNNs

To construct the complete model space is computationally intractable for large
sets. Consider an example of a dataset with 5000 instances. Considering all
possible datasets to produce all possible models of the model space (say Mc)
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corresponds to producing 25000 generators and the corresponding models. The
alternative to Mc is to construct an approximation of the model space (Me)
using sampling. This approach was used in previous works [6,7]. Nevertheless,
even in this case the number of generators and their corresponding models can
be high and computationally expensive. In case of bigger datasets say with 5
million instances, the process of building an approximation of a model space
will be very costly. In our approach, we have focused on reducing the huge
computational requirement to recommend relaxed integrally private deep neural
network models.

Let us consider the problem of finding the set of different models of the
model space. First, let us recall that each neuron at layer l in DNNs receive
inputs from all the neurons in layer l − 1, which in turn require weights and bias
for the neuron. The weights and biases in DNNs can take any value between
−1 and +1. Even for a small DNN there can be a unique generator for each
model or only very few models will have more than one generator. Our initial
studies on DNNs confirms this even when we round-off weights to 3 digits. It
is worth mentioning here that initialization of DNNs also affects the number of
generators. More concretely, we may not get the same generators on differently
initialized models. This makes achieving integral privacy difficult.

Because of this in our approach, we have adopted the relaxed version of
integral privacy which we call ’ε-Integral privacy’ in which models utmost ε
different from each other are considered. In case of DNNs, two models are utmost
ε different if and only if the difference between weights for the same connections
between neurons is always less than ε I.e. if G1, G2 represent the weights for two
DNNs then ||G1 − G2|| ≤ ε, where ||G1 − G2|| represent the difference between
every same connection between neurons for both DNNs. Now, let Gen∗(G,S∗, ε)
denote the set of possible pairwise disjoint generators for the models which are
utmost ε different than G (generators that are consistent with the background
knowledge S∗), then k-anonymous ε-Integral privacy holds if Gen∗(G,S∗, ε) has
at least k elements and their intersection is empty. A more formal definition
follows.

ε-Integral Privacy: Let P be the set of samples or datasets. For a model G ∈ G
generated by algorithm A on samples S ⊆ P , let Gen∗(G,S∗, ε) represent the
set of all generators of G which are consistent with the background knowledge
S∗ and are utmost ε different. Then, the model G is said to be k-anonymous
ε-Integrally private if Gen∗(G,S∗, ε) contains at least k elements and

⋂

S∈Gen∗(G,S∗,ε)

S = ∅ (2)

Now, we will focus on the private model selection procedure for DNNs. Our
approach to generate subsampling is data centric. We choose subsamples of size
N with same class-distribution as the original dataset D. We denote these sub-
samples by S1, S2, ..., Sn (here n = �|D|/N�). Here, we also satisfy there is no
intersection between subsamples i.e. S1 ∩ S2 ∩ ... ∩ Sn = ∅. This condition is
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Algorithm 1. Integrally private model selection procedure for Deep Neural Net-
works for a given perturbed dataset D′. The algorithm returns top 5 integrally
private models with their accuracies
Inputs: D - Perturbed Dataset
N - Size of subsamples
ε - Privacy parameter
A - Algorithm to generate DNNs
Output: returns a list of integrally private models with their accuracies
Algorithm:
S = Generate_subsample(D, N) � Generate n subsamples of size N
ModelList = [[]]
for Si in S do

Mi ← A(Si)
present = False
for each mj ∈ ModelList do

if compare_model(mj , Mi) ≤ ε then
ModelList[j].append(Mi)
present = True
break

end if
end for

if present == False then
ModelList.append(list(Mi))

end if
end for
chosen_models = choseXModels(ModelList)

� Chose top X recurring models
meanModels = A(mean(chosen_models)) � Compute mean models
statistics = computeMetrics(meanModels) � Statistics of mean models
return meanModels, statistics

important to avoid membership inference attack from the intersection analysis
between generators.

Now, we propose our algorithm for choosing integrally private models for
DNNs. Its flowchart is given in Fig. 2. The algorithm is as follows for a given
dataset D. First, we generate n subsamples each of size N having the same class-
distribution as the original. Second, we compute models and cluster them so that
each cluster has models that are utmost ε different from each other. Finally, we
can choose a cluster of models which are recurring in nature and has high utility.
In our methodology, we chose the mean of all the models in the cluster as our
recommended model. I.e. we generate a new model whose weights are the mean
of the weights of all the ε-integrally private models.



Integrally Private Model Selection for Deep Neural Networks 415

Fig. 2. Flowchart of the proposed methodology to recommend an ε-integral private
model.

Algorithm 1 formalizes this approach. In the algorithm we have a dataset D,
Algorithm A, privacy parameter ε and size of each subsample N as inputs. We
initialize an empty list of lists and append models which are utmost ε distant
apart from the first one. For our results we can either chose the top recurring
model or X most frequent models (for more ambiguity) which is done in func-
tion choseXModels(). Our recommended model is the mean of the models in
the cluster. For X ε−ranged models, we recommend X mean models and their
statistics as the output of our proposed algorithm.

4 Experimental Results

In this section, we present our experimental results for our proposed methodol-
ogy. Our approach is valid for both numerical/categorical data and for classifi-
cation problems with an arbitrary number of classes. Table 1 shows the details
of the datasets we have considered for our experiments namely Adult, Susy, ai4i
and HepMass from UCI repository [16]; and Churn_Modelling, Diabetes [17]. Of
these datasets, Churn Modelling and Adult have categorical data and Diabetes is
a multi-class problem. We have considered small datasets (≈10–50K instances),
medium dataset (≈250K instances) and large datasets (≈5–7 million instances)
for our experimental study. Table 1 also shows the size of the subsamples. The
size is chosen so that there are enough subsamples to find integrally private
models.
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Table 1. Details of the used datasets

Dataset # instances # attribute Data type # classes subsample size
Adult 48842 14 Categorical

Integer
2 1000

Susy 5000000 18 Real 2 10000
ai4i 10000 14 Real 2 500
HepMass 7000000 28 Real 2 10000
Churn Modelling 10000 21 Categorical

Real
2 500

Diabetes 254000 21 Real 3 5000

To compare the performance of our approach and 2 benchmark, we have used
an architecture of 5-layered DNN with 3-hidden layers with 5-10-5 neurons. As
we explain later, we have considered other architectures as well. Then, we have
taken ε = 0.05 for all the datasets, other values could be used depending on the
application requirements.

The results of our methodology have been compared with results with a
differential private solution [18] and the benchmark results. Benchmark results
are obtained by training the model with 70-30 train-test split of original dataset.
Now, let us look at the number of generated models from randomly chosen
subsamples of the size given in Table 1. In case of the adult dataset, the total
possible models which can be considered for integral privacy are 47, similarly for
ai4i dataset we have 19, for susy dataset we have 498, for hepmass dataset we
have 698, for churn modelling dataset we have 18, and for diabetes dataset we
have 49 models to be considered for integral privacy.

Figure 3 shows the training f1 score of top 5 (for ai4i and Churn Modelling
datasets there are 2 and 3 generators only) recurring models along with the
training score of the benchmark model in black solid line and three level of
differential privacy(DP): high privacy (ε ≈ 0.1, represented by ), moderate
privacy (ε ≈ 0.5, represented by ·−) and low privacy (ε ≈ 1.0, represented by
). In general, higher DP privacy (low ε, ) leads to lower training score and

higher training loss. In the plots, the f1 scores of all the models are in the
light shade, and the dark solid line represents the mean of the ε ranged integral
private models. Observe from Fig. 3a and 3b, we achieve better training score
than the benchmark training scores while from Fig. 3c, 3d, 3e and 3f we can
observe benchmark comparable results. It can be seen from Fig. 3a, 3c and 3d,
integrally private models have better training score than all three variants of
differentially private models on the other hand Fig. 3b, 3e and 3f, the training
utility of integrally private model is comparable with the differentially private
models. We get similar results for the training loss as shown in Fig. 4. We have
denoted the loss of each model in the lighter shade solid line, their mean loss
in dark solid line, the benchmark model loss with solid black line and three
level of differential privacy: high privacy with , moderate privacy with ·− and
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Fig. 3. f1 score of top 5 ε-recurring models over training data for (a) Adult (b) ai4i (c)
HepMass (d) Churn Modelling (e) Diabetes (f) Susy Datasets

low privacy with . It can be seen that the loss for integrally private models
is comparable with the benchmark model loss. We can observe from Fig. 4b,
4c and 4d, integrally private models have significant improvement in terms of
training loss from DP variants while Fig 4a, 4e shows some improvement from DP
variants in contrast to Fig. 4f where low, moderate DP privacy has improvement
in training loss from integrally private models.

The concept of data-centric AI simply suggests that good quality of data
can lead to good models. In our approach, we have only used 0.15% to 2% of
the original data, but with the same class-distribution, to train our model (see
Table 1 for subsample size). We got surprising result when we compared their
performance on test data i.e. 30% of the original data. Figure 5 shows the result
on the test data, lighter shade circles represent the test result for each model
while dark solid colored circle represents their mean value. From Fig. 5, we can
say that our ε-integrally private models achieve benchmark comparable f1 score
on much bigger test datasets (15 to 200 times).

Our recommended model is the mean of all the models in the ε-integral
private range. The result in Fig 5 motivated us to compare performance of the
aggregated ε-integrally private models with the original training and testing
datasets. Figure 6 shows the comparison of f1 score on training data (in solid
color circles) and test data (in hollow circles) with benchmark training score (in
solid line) and benchmark test score (in dashed line). Our recommended models
have benchmark comparable f1 score on all the datasets.
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Fig. 4. Training loss of top 5 ε-recurring models for (a) Adult (b) ai4i (c) HepMass (d)
Churn Modelling (e) Diabetes (f) Susy Datasets

Fig. 5. f1 score of top 5 ε-recurring models on bigger test data for (a) Adult (b) ai4i
(c) HepMass (d) Churn Modelling (e) Diabetes (f) Susy

Table 2 shows the recurrence of the recommended model with the test accu-
racy on much bigger test sets. We have considered 4 different architectures: DNN-
1 has 3-hidden layers (with 5-10-5 neurons respectively) architecture; DNN-2
has 1- hidden layer (with 1024 neurons) architecture; DNN-3 has 3-hidden lay-
ers (with 10-20-10 neurons respective) architecture; and DNN-4 has 5-hidden
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Table 2. Different architectures and their f1 score on 30% test dataset.

Dataset DNN-1 DNN-2 DNN-3 DNN-4
recurrence test_acc recurrence test_acc recurrence test_acc recurrence test_acc

Adult 10 0.8387 89 0.7797 16 0.8286 36 0.8284
Susy 64 0.7758 366 0.7917 8 0.7636 6 0.7882
ai4i 17 0.9647 19 0.9723 12 0.9683 10 0.9747
HepMass 171 0.8325 562 0.8344 68 0.8325 51 0.8336
Churn Modelling 9 0.8145 13 0.8520 10 0.7927 10 0.7870
Diabetes 12 0.8627 21 0.8596 13 0.8634 5 0.8596

layers (with 5-10-20-10-5 neurons respectively) architecture. Table 2 shows that
the proposed methodology produces benchmark comparable results for different
DNN architectures as well.

Fig. 6. f1 score on train and test data for mean of the ε-recurring models for (a) Adult
(b) ai4i (c) HepMass (d) Churn Modelling (e) Diabetes (f) Susy

4.1 Discussion

In summary, our results with varied sized, multi-class and categorical datasets
suggest that we can achieve ε-integral privacy with good utility (comparable to
benchmark utility) from the list of the recommended models depending on the
value of k (number of models in ε range) with no additional computational cost.

The good results of our approach can essentially be linked to the data centric
AI approach where we train our model for smaller datasets with the same class-
distribution as the original dataset and get good results. We further explored
the impact of subsample size and compared their performance on separate 70-30
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training data and testing data on moderately sized adult and diabetes datasets.
Our results from Fig. 7 shows that the f1 score for both training and testing
data is non-decreasing but it is neither increasing significantly with respect to
the increase in subsample size. Our results are in line with [19] which highlights
that one can generate arbitrarily similar model of finite floating point weights
from two (or more) non-overlapping dataset. The paper [19] also suggest that
we can get good results on smaller datasets as well, which aligns with the results
in Fig. 7.

Fig. 7. f1 score of various subsample sizes on (a) Adult (b) Diabetes datasets

For our proposed methodology, we must chose subsamples size (N) very care-
fully. The choice for N must be large enough to generate the model with good
utility at the same time it should be able to generate sufficient number of disjoint
subsamples. Probably approximately correct (PAC) [20] can suggest an estimate
for the choice of the parameter N . A model G is said to be PAC learnable with
respect to loss l if and only if the difference between the loss for the learned model
G and true (best possible) model Ḡ is at most ε with probability at least 1 − δ
i.e. P [Gl − Ḡl ≤ ε] ≥ 1− δ. With this the minimum number of samples required
for a PAC learnable model is bounded by O([V C(G) + ln(1/δ)]/ε2) [21] where
V C(G) is the Vapnik-Chervonenkis dimension of the model G. Quantifying the
VC-dimension for complex models like deep neural network is still an open prob-
lem [22]. Therefore, in the literature scientists follow the rule-of-thumbs: (1) The
VC dimension of DNNs is considered equal to the number of weights in DNNs
[23] and then (2) the minimum number of samples required to learn the DNN is
established as 10 times the VC dimension [24]. Considering this, i.e., a sample
size of 10-times the VC-dimension (number of weights) should provide a PAC
learnable model. For datasets ai4i, and Churn_Modeling the number of weights
are 172 and 197, respectively, and hence the minimum subsample size is esti-
mated as 1720 and 1970 for PAC learnability. This results in very few disjoint
subsamples (5 for both datasets) which may not be enough to find integrally
private models. This suggests a trade-off between model complexity (number of
weights) and its learning ability for integral privacy. Further study in this area
is required to investigate the impact of this trade-off for integral privacy.
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4.2 Limitations

Based on a critical analysis of our approach and the results obtained, we can
underline the following limitations of our approach:

1. Our methodolgy may not be suitable in the presence of outliers as the outliers
disturbs the distribution of the dataset.

2. Selection of private models on very small datasets with our proposed method-
ology is not feasible.

3. High model complexity may result in less number of models in ε-range.

5 Conclusion and Future Work

In this paper, we have first extended the model comparison attack to deep neural
networks. We have also introduced the concept of ε-integral privacy which is
then used to recommend integrally private models for deep neural networks.
Our results show that we are able to achieve ε-integrally private models without
any significant utility loss (improvement of utility in some cases). Our results
also highlights that small data of good quality can result in a well trained model.

For our proposed methodology, we have arbitrarily chosen the size of the sub-
samples; the privacy parameter ε and the DNNs architecture. Tuning of these
areas may yield interesting results. Another interesting direction is to use a
data-enhancement approach to remove outliers as done in [15]. Federated Learn-
ing takes advantage of data distributed across multiple users, where learning
takes place locally. Our methodology can be seen as independent and identically
distributed (IID) ε-integral private model selection in federated learning for a
single pass. Our work can further be extended into non-IID settings of federated
learning.
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Abstract. Gaussian process models are a commonly used tool for
model-based analysis of time series data. With growing database size,
the difficulty to identify the most interesting insights in order to gain
a deeper understanding of the data’s underlying behavior increases. To
address this issue, we propose a novel approach for finding frequent ker-
nel components efficiently. In this way, data scientists are empowered to
focus their investigations on the most common parts hidden in a set of
Gaussian process models. We show how to solve this task by means of
frequent item set mining methods, which are capable of analyzing large
databases efficiently. We provide evidence of our proposal with a first
series of experiments, indicating that our method is capable of detecting
frequent kernel components from Gaussian process models. Though this
short paper can be thought of as a first preliminary approach towards
analyzing Gaussian processes with conventional data mining methods, it
simultaneously opens a novel research direction of Gaussian process min-
ing at the intersection between machine learning and database research.

Keywords: Frequent Item Set Mining · Gaussian Process · Time
Series

1 Introduction

Time series data is encountered in a variety of domains including finance, eco-
nomics, manufacturing and marketing, to name just a few. As a complex type
of data, time series frequently comprise time-dependent measurements, such as
stock prices, inflation rates, quality control indicators or customer behavior. Due
to the wide applicability and inherent complexity of time series data, model-
based management and analysis remains a challenging issue. Many machine
learning approaches [7,8,10] have been introduced to counteract the complexity
of time series and to provide insight into underlying patterns and structures.
Gaussian Processes (GPs) [10] epitomize an adaptive, time-elastic, and proba-
bilistic class of machine learning models for time series analysis.
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GPs are primarily defined by means of a covariance function, also denoted
as kernel, which determines the behavior of the model based on given data
points. The kernel can be used to interpret the data [7], but methods to analyse
similarities between different kernels have not yet been explored.

In this paper, we propose a method for transforming GP kernels into item
sets, which can then be analyzed via well-established methods for frequent item
set mining [5]. Our approach is simple yet efficient and it is intended to present an
early step into a new area of research. This short paper spans a brief introduction
into the necessary fundamentals of GPs, a description of our method and two
exemplary examinations of its results.

2 Gaussian Processes

GPs are probabilistic non-parametric machine learning models [10]. Formally, a
model GP (m, k) depends on mean function m : R → R and covariance function,
i.e. kernel, k : R × R → R. Since the most information is contained within the
latter, the mean function is often set to zero, leading to zero-mean GPs.

There are a number of commonly used kernels that correspond to frequently
appearing behavioral patterns in the data. For example, the periodic kernel,
which is defined as kPER(x, x′) = σ2exp

(
− 2sin2(π|x−x′|/p

l2

)
[3], can be utilized

to represent periodicity in the data. Similarly, a linear kernel and squared expo-
nential kernel are used to indicate trends and smoothness in the data. Such base
kernels can be combined via addition or multiplication to construct composite
kernels, allowing GPs to adapt to more complicated data behavior [4].

For the automatic inference of a kernel befitting the training data, Duvenaud
et al. [4] have introduced the Compositional Kernel Search (CKS) algorithm and
have demonstrated how CKS can be used to generate textual descriptions of a
given time series [7]. More recently, local kernel search approaches have been
proposed, which aim to separate time series data into segments and to describe
each of those segments with a suitable kernel [1,2,6].

These kernel search methods work by incrementally adding or multiplying
base kernels to an existing kernel and evaluating the likelihood in the training
data to find the best fit. The resulting kernel function has a structure that can
be represented by means of a tree, as shown in the definition below.

Definition 1 (Tree). A tree T = (V,E) ∈ T is a connected, acyclic directed
graph. It is defined by a set of vertices V and a set of edges E ⊂ V × V . The
relevant notations are the defined as:

1. r(T ) ∈ V , which denotes the root of tree T
2. c(v) ⊂ V , which denotes the set of children of node v ∈ V
3. s(v) ⊂ T, which denotes the subtree with root v ∈ V

Based on this data structure, the kernel can be intuitively represented as
shown in the following definition.
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Definition 2 (GP Kernel Representation). Let B be a set of base kernels
and O = {+,×} be available operations. A GP kernel representation is a tree
T = (V,E) ∈ T, that fulfills the following conditions:

1. For every leaf l ∈ V , it holds that l ∈ B
2. For every internal node v ∈ V , it holds that v ∈ O
To later define the transformation of a kernel into this representation, we define
the evaluation E(T ) of a tree T as the result of applying each operator in T to
their respective children. If an operator only has one child, that child is treated
as the result for that operator. A tree T thus represents a kernel k if k = E(T ).

The leaves in this representation thus contain base kernels, while the inner
nodes define the relationships and dependencies between these base kernels. Note
that the representation of a kernel k is not necessarily unique, so E−1 is not
defined. As the distributive property is valid in the function space, both k1 ×
(k2 + k3) and k1×k2+k1×k3 are the same function, but with different intuitive
tree representations. This problem will be addressed in the next section.

With these definitions, we have defined a transformation of arbitrary GP
kernels into trees with easily interpretable structure. In the next section, we will
use this structure to extract a kernel’s basic components, which can then be used
for frequent item set mining.

3 Method

In this section, we propose a simple yet effective method for analyzing shared
behavior in a set of zero-mean GP models. In order to analyze such a set, each
model is decomposed into its internal components which can be processed with
conventional item set mining algorithms, such as Apriori, FP-Growth or ECLAT
[5].

Different operators have very distinct effects on the combination of GP ker-
nels: A sum treats the individual kernels as independent processes, while a prod-
uct defines inter-kernel dependency [7]. Accordingly, we consider products of base
kernels within a kernel expression inseparable. These products will be referred
to as the kernel’s components. We use the fact that every combination of base
kernels can be written as a sum of products to make the components extractable
from the corresponding tree representation.

Definition 3 (Sum-of-products Representation). A tree T ∈ T represent-
ing a kernel as defined in Definition 2 is in sum-of-products form, if the following
conditions are met:

1. The root r(T ) of tree T contains the operator +
2. All nodes with depth 1 c(r(T )) contain the operator ×
3. The tree T has a height of 2

The set of all sum-of-products trees is denoted as T̄ ⊂ T. The relationship between
kernels and trees in this set is bijective, so we can define the function R =
(E|T̄)−1, which assigns each kernel its sum-of-products tree representation.
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Extracting the components of a kernel k is now simplified to extracting all sub-
trees starting in the multiplication nodes in R(k). Thus the set of components
of a kernel k is defined as C(k) = {s(x) ∈ T|x ∈ c(r(R(k)))}.

To solve the initial problem of finding frequent components, we can now
extract the set of components for each given model. Each such set is then con-
sidered an item set in the classical sense, which makes (for example) the Apriori
algorithm applicable to find frequently occurring components.

The effectiveness of this approach will be examined in the next section.

4 Preliminary Experiments

In this section, we investigate two different aspects of our proposal: First, we
show that our treatment of components as items is viable for frequent item set
mining. To do so, we will generate a set of GP models with a slight bias towards
specific components and show that these components are identified as frequent
items after our transformation. In the second experiment, we provide a proof
of concept and demonstrate that our method generates insights from a time
series. Here, we determine local GP models on the Mauna Loa [9] data set and
show, that our method’s generated insights comply with manual inspection. For
the comparison of components in these experiments, we disregard the kernels’
parameterization and thus define components as equal, if they contain the same
base kernel functions.

4.1 Synthetic Data

In our first experiment, we simulate a database of GP models with varying
kernels, that contain reoccurring components.

To do so, we generate a set of 1 million GP models from a set of base kernels B
and a set of components with an increased rate of appearance K̂ via the following
rules: (i) Every kernel consists of up to three components that are combined via
addition, (ii) every component consists of up to three randomly selected base
kernels b ∈ B that are multiplied, and (iii) every component has a 10% chance
of being selected from K̂ instead.

The components are consequently randomly selected from K := {Πn
i=1bi|n ∈

{1, 2, 3}, bi ∈ B} with a higher occurrence rate for components in K̂ ⊂ K.
Figure 1 shows that the average support of item sets containing elements of

K̂ is significantly higher than the support of other item sets. Consequently, any
frequent item set mining algorithm, such as the Apriori algorithm, will return
the structures that had an increased likelihood of appearing. These structures
naturally correspond to repeating patterns in the underlying data and as such,
provide interesting insights.

The second experiment will show a direct application of this principle (Fig. 2).
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Fig. 1. The average relative support of item sets whose items consists either of kernel
from K̂ or from K\K̂.

Fig. 2. The Mauna Loa time series data set. Input and output are normalized.

4.2 Real Data

In this second experiment, we use the described method to generate insights
into the Mauna Loa [9] time series data set. This data set contains recordings of
CO2 levels at the Mauna Loa observatory in Hawaii. Naturally, these recordings
follow a yearly periodic trend, combined with a linear increase over time.

To analyze this data, we generate GP models from a sliding window of fixed
length using Event-Triggered Kernel Adjustments [6]. All generated models are
then itemized as described in Sect. 3 and the items’ frequency are scaled up to
match the length of their respective segment. For the frequent item set mining,
we use the Apriori algorithm with a minimum relative support of 0.3, meaning
that all resulting components will be found in at least 30% of the data set.
The frequent components together with their support are shown in Table 1. The
results indicate that the most prominent components are of periodic and linear
behavior, which matches our manual analysis of the time series.
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Table 1. Frequent components in local models on the Mauna Loa data set. PER and
LIN refer to the periodic and the linear kernel respectively.

Components Support

PER 100%

LIN 85%

LIN, PER 85%

PER, PER 85%

LIN, PER, PER 85%

5 Conclusion

In this short paper, we have presented a way to understand GP models as item
sets and apply frequent item set mining to them. We applied this approach to
synthetic models as well as to a set of models generated from the Mauna Loa
time series. In both cases, the analysis has proven to show relevant insights into
the model database. While there are multiple aspects left for future work, all
findings so far indicate great potential.
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Abstract. The recommendation system based on graph neural networks has
gained increasing attention due to its superior learning ability of various additional
information. Among them, the recommendation system based on social network
graphs integrates social network graphs with user-item-graph interactions, aim-
ing to extract dynamic preference features from recorded user behavior data to
obtain more accurate recommendation results. However, recorded user behavior
data contains noise and exhibits skewed distributions, which may lead to slightly
insufficient representation performance of graph neural networkmodels. This arti-
cle proposes a new approach to address this issue by applying filtering algorithms
commonly used in signal processing to noise reduction in the frequency domain.
In this study, we combine learnable filter components with anMLP architecture to
learn user and item latent embeddings inmodeling social network graphs and user-
item interaction graphs, and ultimately predict ratings using the latent embeddings
of users and items. The entire MLP architecture has low time complexity, and the
adaptive filter components are able to effectively suppress noise information. The
model proposed in this article has been applied to real datasets and outperformed
other models, achieving a 3.2% increase in the MAE evaluation index.

Keywords: Social Recommendation · Graph Neural Network · Filtering
Algorithm

1 Introduction

Recommendation systems [7], which predict the likelihood of a user being interested
in a particular item, are an extensively researched area. However, the recommendation
performance is always unsatisfactory due to the cold-start problem [13]. To address this
issue, social network-based recommendationmethods have emerged [1]. In recent years,
graph neural networks [15] further advance the development of social recommendation.
However, user behavior data in social network graphs and user-item interaction graphs
inevitably contain noise [8], including malicious forgeries [12], which can easily lead
to overfitting of recommendation models [14].

Therefore, in this paper,we draw inspiration fromfiltering algorithms in digital signal
processing and apply them in the frequency domain to eliminate noise and improve
the robustness of the model to noisy data. In addition, some recent studies [10, 11]
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have explored variants of the Transformer [9] architecture, mainly by modifying the
multi-head attention component of the universal architecture.

Therefore, the main contribution of this article is:

i. This article proposes a novel collaborative filtering model that incorporates social
networks. Themodel drawson thewisdomoffiltering algorithms in signal processing
and innovatively introduces a learnable filtering component to suppress noise and
bias in user behavior data in the frequency domain.

ii. This paper replaces the traditional multi-head self-attention component in the trans-
former with learnable filter components and integrates MLP architecture to achieve
lower time complexity. Compared with multi-head self-attention, MLP in this paper
not only reduces the number of network parameters and the complexity of the model,
but also optimizes the calculation speed and efficiency.

iii. This paper conducted experiments on two real-world datasets and six baselines,
demonstrating the effectiveness of the proposed model.

2 Framework Overview

This paper proposes a collaborative filtering model called FMRec that combines social
network graphs with recommendation systems. The model consists of three modules:
user modeling, item modeling, and rating prediction. The model includes two types of
relationship graphs, namely social relationship graph and user-item graph. For these
two types of graphs, this paper combines learnable filter components with a full multi-
layer perceptron structure to learn the latent embeddings of users and items. Finally, by
aggregating the embeddings of users and items, the rating prediction result is calculated.

2.1 Problem Definition

The recommendation problem of aggregative social networks is composed of three types
of entities. One is the user group U = {u1, u2, . . . , um}, and the other is the item group
I = {i1, i2, . . . , in}. It is noteworthy that m and n represent the total numbers of users
and items. In addition, there is also a rating matrix R ∈ R

m×n, where Ru,i represents
the rating of user u for item i, and the higher rating indicates a higher preference for the
item. These entities contain three types of information, as shown in Fig. 1. One is the
user-item graph Gu = {U , εr|Rγ }, where U represents the user nodes, εr is the weighted
edge representing the user’s rating for the purchased item. Another is the item-user graph
Gi = {I, εr|Rγ }, where I represents the node of the item, and εr represents the ratings of
all users who have purchased the item. The last one is the user social relationship graph
Gs = {U , εs}, where U represents the user nodes, εs denotes the edges of the graph, and
(u1, u2) ∈ εs represents the social connection between user u1 and user u2.

2.2 Model Architecture

The model architecture in this article is shown in Fig. 2. The model consists of three
parts: user modeling, project modeling, and score prediction. In the attentionmodule, we
use a general architecture similar to the original Transformer, but replace the multi-head
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Fig. 1. Three kinds of information map

self-attention component with a learnable filter component and stack multiple neural
blocks. In addition to the feature of eliminating noise effects, filters are mathematically
equivalent to cyclic convolutions, which can better capture periodic features and thus
have a larger perceptual range across the entire sequence. Next, we will describe in detail
the role of each model component.

User Modeling
The project sequence diagramof the user not only includes information about the projects
the user likes, but also includes information about the ratings the user gives to these
projects.

air = ReLU (W (qi ⊕ er) + b) (1)

where qi is the user’s item sequence, er is the user’s score for the item and ⊕ is a simple
matrix stitching.

x̃ui = air ⊕ u (2)

where u is the user to which all items belong.

Xu
i = Norm(x̃ui + Filter(x̃ui )) (3)

where Norm is a normalized operation, Filter indicates a filter operation, and X u
i is a

sequence of items that carry user ratings.
In this paper, a filtering operation is performed on each feature dimension in the

frequency domain as follows.

X̃ l = W ◦ F(Fl) (4)

where Fl represents the input tensor, F represents the one-dimensional FFT operation
and X l is the spectral representation of Fl . ◦ is multiplied by elements.

F−1
(
X̃ l

)
→ F̃ l (5)

where F−1 represents the IFFT operation.

ni = softmax(W2(ReLU
(
W1X

u
i + b1

)
) + b2) (6)
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Fig. 2. The overall architecture of proposed model

β = ni · Xu
i (7)

where ni is the association attention. Next is the process by which the user’s friends
sequence captures potential embedding.

mu = softmax(W2(ReLU
(
W1X

u
u + b1

)
) + b2) (8)

γ = mu · Xu
u (9)

where Xu
u is a sequence of user’s friends after Filter, mu is associated attention.

t = ReLU (W (β ⊕ γ ) + b) (10)

The output t represents the potential embedding of the user.

Item Modeling
Item modeling aims to learn item potential embedding by processing user sequence
diagrams of items.

ku = softmax(W2(ReLU
(
W1X

i
u + b1

)
) + b2) (11)

δ = kuX
i
u (12)

where Xi
u is a sequence of all users who have purchased the item after Filter, ku is

associative attention.

y = ReLU (W δ + b) (13)

where the output y is the potential embedding of the item.

Score Prediction and Optimization
Since the latent embeddings for both user and item have already been obtained in this
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study, the next task is to connect these two embeddings together in order to make
predictions for the ratings.

r = ReLU (W (t ⊕ y) + b) (14)

The output r is the predicted score. The objective function of the model in this paper
is as follows:

Loss = 1

2|O|
∑

(u,i∈O)
(r − rui)

2 (15)

where |O| is predicted scores, rui is the actual rating of u to i.

3 Experiment

3.1 Dataset

Two representative datasets were used in this experiment, namely Ciao (http://www.
ciao.co.uk) and Epinions (www.Epinions.com).

Table 1. Statistics of the datasets

Dataset Ciao Epinions

# of Users 7317 18088

# of Items 114975 261649

# of Ratings 283320 764352

# of Social Connections 111781 355217

# of Density (Ratings) 0.0337% 0.0162%

# of Density (Social Relations) 0.2088% 0.1086%

3.2 Evaluation Index

In this paper, MAE and RMSE were used to evaluate the quality of the recommendation
models. Please note that the lower the values for both, the better the performance.

MAE = 1

|Rtest |
∑

(u,i∈Rtest)
∣∣ru,i − r′ui

∣∣ (16)

RMSE =
√

1

|Rtest |
∑

(u,i∈Rtest)
∣∣ru,i − r′ui

∣∣2 (17)

http://www.ciao.co.uk
http://www.Epinions.com
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3.3 Baseline

In order to validate the effectiveness of the proposed algorithm in this article, we
compared it with six benchmark algorithms.

i. SoRec [1]: Based on probabilistic matrix factorization, it integrates social network
between users and user-item interaction matrix into the recommendation process.

ii. SoReg [2]: Based on matrix factorization, it uses user relationships as social
regularization to constrain the matrix factorization objective.

iii. SocialMF [3]: The method combines trust propagation with matrix factorization
structure to capture social phenomena in recommendation scenarios.

iv. DGRec [4]: Considering user interests and session-based dynamic social influence,
this method uses graph attention neural network to simulate context-relevant social
influence.

v. GraphRec [5]: A recommendation graph neural network model based on attention
mechanism is proposed to aggregate social relationships.

vi. SR-HGNN [6]: A top-level cultural social relationship encoder is designed to capture
global social dependencies between users. Based on understanding of multiple types
of user-item interactions, it provides a graph structure for collaborative relationships.

3.4 Parameter Setting

For the data set, this paper uses 80% as the training set for learning parameters, 10%
as the verification set for optimizing hyperparameters, and 10% as the test set for final
performance evaluation. For embedded dimensions, this article tests the range {8, 16,
32, 64, 128, 256; For more, this paper test range {0.0005, 0.001, 0.005, 0.01, 0.05}; For
batch sizes, the range tested in this article is {8, 16, 32, 64, 128, 256}. In order to deal
with the overfitting problem, all experiments used an early stop method, that is, to stop
training when the RMSE on the verification set did not improve for 5 consecutive epochs
(Table 2).

3.5 Experimental Results and Analysis

Analysis of Experimental Results
According to the experimental results in Table 1, we can see that compared to SoRec,

SoReg, and SocialMF, DGRec, GraphRec, and SR-HGNN have all demonstrated supe-
rior performance. This leads us to conclude that the application of graph neural networks
and graph embedding layers is more effective thanmatrix factorization. Specifically, this
method outperforms similar models in terms of the RMSE and MAE metrics, providing
further evidence of its effectiveness. Moreover, our model performs even better on the
Ciao dataset than the Epinions dataset. We believe that this is due to the higher data
density of the Ciao dataset.

Ablation Study
In order to further evaluate the effectiveness of the proposed method, we conducted a
ablation study. Specifically, we created two variants of ourmodel, FMRec-α and FMRec-
β. FMRec-α removes the attention layer, while FMRec-β removes the social connection
pattern.
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Table 2. Baseline algorithm comparison. The best results are in bold, Suboptimal underlined
representation.

Methods Ciao Epinions

RMSE MAE RMSE MAE

SoRec 1.0663 0.8279 1.1656 0.8853

SoReg 1.0876 0.8403 1.1721 0.9137

SocialMF 1.0704 0.8361 1.1682 0.8924

DGRec 1.0143 0.8031 1.0763 0.8570

GraphRec 1.0089 0.7586 1.0715 0.8261

SR-HGNN 0.9908 0.7735 1.0644 0.8135

FMRec 0.9789 0.7347 1.0554 0.7983

Improvement 1.2% 3.2% 0.8% 1.9%

Based on the results presented in Fig. 3, we can see that the FMRec model exhibits
the best performance. This further confirms the importance of the learnable filter com-
ponent and social connections in the model. Because of the impact of page numbers, the
experiment of the model hyperparameters was omitted.

Fig. 3. MAE and RMSE of two datasets under three models

4 Conclusion and Future Work

The recommendation model is easily overfitting due to noise and malicious forgery in
user behavior data. To enhance themodel’s robustness to noisy data, this paper adopts the
filtering algorithmconcept in digital signal processing and introduces a learnable filtering
component. Research indicates that the learnable filterer is time-domain equivalent to
circular convolution, with a broader receptive field, which can better capture periodic
features. This study validates the effectiveness of the FMRecmodel on two real datasets.
Future research can further integrate other aspects of information to solve the cold start
problem and propose more effective methods to capture dynamic behavior features of
users.
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Abstract. Cytochrome P450 (CYP450) enzymes are crucial in drug metabolism
and development. They are mainly involved in drug efficacy and toxicity, which
are significant concerns while exploring potential pharmaceutical compounds.
Machine learning-based approaches to predict the inhibitory effects of new com-
pounds on these enzymes can help resolve the time and cost-intensive in vivo and
in vitro experiments. Most proposed Machine Learning methods for predicting
CYP450 isoform inhibitors often rely on complex models and numerous fea-
tures that may not accurately distinguish between inhibitors and non-inhibitors.
This work proposes a new approach that merges the MACCS and Morgan fin-
gerprints with 200 other molecular descriptors to generate input features for a
robust and straightforward computational model. Using 10-fold cross-validation,
we trained and evaluated several classifiers using the proposed input features for
each CYP450 isoform. The Support Vector Machine and LightGBM consistently
showed the best performance for all five isoforms. Our models exhibited good per-
formance proving the effectiveness of the proposed features and indicating their
potential use for CYP450 inhibition prediction.

Keywords: Machine Learning · Feature Engineering · Cytochrome P450

1 Introduction

CYP450 enzymes belong to a family of enzymes essential for drug metabolism. These
enzymes metabolize various endogenous and exogenous compounds, including drugs
and toxins. To date, over 50 human CYP450 enzymes have been identified, but five
major isozymes are responsible for themetabolism ofmost drugs. Thesemajor isozymes
include CYP1A2, CYP3A4, CYP2D6, CYP2C9, and CYP2C19. Understanding their
activity is crucial for predicting potential drug-drug interactions and optimizing drug
metabolism [1].
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Throughout recent years, there has been a significant surge in the utilization of
Machine Learning (ML) and Deep Learning (DL) algorithms to predict the inhibition
of major CYP450 isozymes, namely 1A2, 2C9, 2C19, 3A4, and 2D6. Various computa-
tional methods have been put forward to address this prediction challenge. For instance,
a study by [2] utilized the random forest algorithm to predict the inhibition of the 5
major CYP450 isozymes using molecular fingerprints of various compounds collected
from the PubChem Bioassay, ChEMBL, and ADME databases. MACCS keys and FP4
fingerprints were combined in Cheng et al. [3], while Support Vector Machine (SVM)
with molecular signatures were used in [4]. Additionally, Grisoni et al. [5] analyzed the
impact of different molecular descriptors on ML and DL models.

Most proposed computational approaches have focused on adding more data or fea-
tures. While having more data and features can sometimes improve performance, there
are other factors to consider, such as the quality of the data and features and the com-
plexity of the model. It is essential to achieve a balance between having large quantity of
data and features to capture the underlying patterns in the data while avoiding overfitting
and keeping the model interpretable and efficient. Most of the CYP450 bioassay data
available to date suffer from the unbalanced class problem, which can lead to the misin-
terpretation of the performancemetrics of theML andDLmodels. This study proposed a
new approach to tackle the abovementioned challenges by integrating a large amount of
data and presenting a unique combination of features without compromising the model
performance. Our goal is to create a robust and straightforward computational model.
To accomplish this, we aim to maintain a balance between utilizing a significant amount
of data and selecting relevant features. We integrated multiple molecular descriptors
that provide greater insight into the unique characteristics between the inhibitor and
non-inhibitor compounds. The appropriately selected molecular descriptors include the
Morgan fingerprint,MACCSfingerprint, and 200molecular descriptors from theRDKIT
Python library.

2 Proposed Model for the CYP450 Isoforms Inhibition Prediction

The steps involved in this work are shown in Fig. 1. The overall process starts with data
collection from various CYP450 bioassay datasets, followed by a preprocessing step
and calculation of the molecular descriptors, where we generate the input features for
the ML models. Next, hyperparameter tuning and 10-fold cross-validation (10CV) of
different ML models are performed for each isozyme.

2.1 CYP450 Bioassay Data Collection

Data were collected from publicly available repositories on the inhibition of human
CYP450 isozymes 1A2, 2C9, 2C19, 2D6, and 3A4. Various sources were consulted,
including the PubChem bioassay datasets 1851, 410, 883, 884, 899, and 891 [6]. In
addition, the ChEMBL database [7] was also included. Following a prior study [2],
PubChem compounds with activity class marked “active” with observed inhibition were
designated as inhibitors. Conversely, compounds with an “inactive” activity class and
no observed inhibition were classified as non-inhibitors.
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Fig. 1. Conceptual model for the CYP450 isoforms inhibition prediction

Compounds with inconclusive observations were excluded from the analysis. Fol-
lowing [2], ChEMBL compounds were classified as inhibitors or non-inhibitors based
on their Half-maximal inhibitory concentration (IC50) values, “standard relation”, and
“percentage of inhibition”.

2.2 Data Preprocessing

The chemical structures of each compound,mainly the smiles,were extracted. For further
analysis, various steps were required to ensure the accuracy and consistency of the data.
First, any syntax and semantic errors in the SMILES notation were corrected. Then, the
canonical SMILES for each molecule were generated. After this step, we performed
the same filtering procedure described in [2] using the RDKIT Python library version
2022.09.1 [8].

The datasets obtained from PubChem and the ChEMBL database were combined
separately for each of the five CYP450 (1A2, 2D6, 2C9, 2C19, and 3A4). Compounds
that shared the same smiles were considered duplicates and removed since they would
produce identical molecular descriptor values. The resulting dataset was accurate and
reliable by following these steps, providing a solid foundation for further analysis and
research. A detailed summary of the data partition is provided in Table 1.

2.3 Molecular Descriptors Calculation

The suggestedmethod combinesmolecular descriptors as input features to trainMLmod-
els. These features combine the 2048 bitsMorgan fingerprints [9], the 166 bits molecular
access system (MACCS) fingerprints [10], and additional 200 molecular descriptors that
describe diverse aspects of molecule’s properties, such as its electronic structure, drug-
likeness and weight. The complete list of these descriptors can be obtained from the
RDKIT function MolecularDescriptorCalculator. All these descriptors were generated
using the RDKIT Python library version 2022.09.1 [8].
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2.4 Experimentation

To assess the efficacy and performance of our proposed input features, we applied 6 ML
models for each of the five major isozymes datasets. For the ML models, we included
the SVM, the LightGBM (LGBM), the Random Forest (RF), Extreme Gradient Boost-
ing (XGB), K-NN, and the Gaussian Naive Bayes classifiers (GNB). Each isozyme set
was randomly partitioned into training and testing with a ratio of 80% for training and
fine-tuning and 20% for testing (Table 1). To optimize our candidate algorithms’ perfor-
mance, we thoroughly searched for the best hyperparameters using the GridSearchCV
function from the scikit-learn library. Our search involved testing various combinations
of hyperparameter values across a range of parameters for each of the corresponding
models. The explored range of hyperparameters is presented in Table 2. For a more
robust and accurate estimate of the performance of each model, 10CV was performed
after hyperparameter tuning. This helps to ensure that the model is not just performing
well on a particular subset of data.

Table 1. Distribution of training versus test set.

Partition Isoforms

1A2 2C19 2C9 2D6 3A4

Training set Inhibitors 5350 4567 3446 2410 5278

Non-Inhibitor 6431 6625 8050 10353 9143

Testing set Inhibitors 1348 1134 846 593 1327

Non-Inhibitor 1598 1664 2029 2598 2279

Table 2. Optimized parameters for ML models

Models Parameters

Random Forest min_samples_leaf = 2, min_samples_split = 5, n_estimators =
100

Support Vector Machine C = 10.0, Gamma = 0.01, Kernel = rbf,

LightGBM boosting_type = dart, learning_rate = 0.1, ‘max_depth = −1,
n_estimator = 300,

K-Nearest Neighbors n_neighbors = 10, Weights = distance

3 Results and Discussion

To thoroughly evaluate the performance of our proposed approach, we utilized various
performance metrics. The primary metrics used were the Matthews Correlation Coeffi-
cient (MCC), Accuracy, and the Area Under the receiver operating characteristic Curve
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Table 3. The average performance of each model across 10-fold cross-validation.

Isozymes Models Metrics

Accuracy AUC MCC

1A2 LGBM 0.84 0.92 0.68

SVM 0.84 0.91 0.68

RF 0.83 0.91 0.65

XGB 0.82 0.90 0.63

K-NN 0.82 0.90 0.64

GNB 0.72 0.76 0.45

2C9 SVM 0.86 0.92 0.66

LGBM 0.86 0.92 0.66

RF 0.84 0.91 0.61

K-NN 0.84 0.90 0.59

XGB 0.82 0.88 0.57

GNB 0.67 0.75 0.41

2D6 SVM 0.91 0.92 0.68

LGBM 0.90 0.92 0.67

K-NN 0.89 0.90 0.63

RF 0.89 0.92 0.62

XGB 0.88 0.89 0.58

GNB 0.63 0.72 0.32

3A4 SVM 0.87 0.94 0.72

LGBM 0.86 0.93 0.70

RF 0.85 0.93 0.68

XGB 0.83 0.90 0.62

K-NN 0.84 0.91 0.65

GNB 0.73 0.79 0.48

2C19 LGBM 0.84 0.91 0.66

SVM 0.84 0.91 0.67

RF 0.83 0.90 0.64

K-NN 0.81 0.89 0.61

XGB 0.80 0.88 0.60

GNB 0.72 0.76 0.46
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(AUC). Table 3 displays the performance of each model for the five major CYP450
isozymes using 10CV: For the 1A2 isozyme, LGBM and SVM models exhibited the
best performance with 84% accuracy and 0.92 AUC on average. Likewise, the SVM and
LGBM models demonstrated superior performance for other isozymes.

The LGBM and SVM models consistently achieved the highest accuracy scores
for all five isozymes through 10CV, with an accuracy range of 0.84 to 0.91. These
models also showed high AUC scores ranging from 0.91 to 0.94, which indicates good
discrimination performance.

We also measured the performance of various models on the 20% left-out dataset.
The observed performance showed that SVM and LGBM reliably performed well for
all five isozymes. Both models had an overall AUC ranging from 0.91 to 0.93 and a
recorded MCC between 0.66 and 0.70. These findings prove that our proposed approach
can effectively predict the inhibitory effect of new molecules, with the LGBM and SVM
models being the most promising for accurate and reliable predictions.

As for the future directions of ourwork,we plan to investigate amultimodal approach
for predicting inhibitors of the five major isoforms of CYP450. To achieve this, we aim
to jointly train a Convolutional Neural Network on chemical compound images and a
ML model that combines the compound’s features proposed in this work.

4 Conclusion

In summary, our proposed feature combination is effective for constructing a robust
and scalable model capable of handling large and structurally diverse molecules with-
out compromising performance. The proposed approach of combining the RDKIT 200
molecular descriptors to the MACCS and Morgan fingerprints has proven to be efficient
in predicting the inhibition of the CYP450 isozymes.

The LGBM and SVM models consistently performed well for all five isozymes.
By incorporating various molecular descriptors as features, we enhanced our mod-
els’ accuracy and provided a valuable tool for researchers in the field. The proposed
method can be valuable in identifying potential interactions between a drug candidate
and CYP450 enzymes. By assessing the metabolic activity of a drug candidate on these
enzymes, researchers can gain insights into the potential for drug-drug interactions,
metabolism-mediated adverse effects, and optimization of pharmacokinetic properties.
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Abstract. Matrix Factorization (MF) which is a Collaborative Filtering (CF)
based model, is widely used in Recommendation Systems (RS). In this research,
we deal with a specific recommendation problem of recommending content to
users in a Content Management System (CMS) utilizing users’ feedback data.
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Regularization · Objective Function · Hybrid

1 Introduction

Recommender Systems (RS) are widely used to help users find items of their interest [2].
Depending on the user profile, recommender system can determine whether a particular
user will like an item or not. To build a recommender system, various approaches have
been developed, including Collaborative Filtering (CF), Content-Based (CT) Filtering
andHybrid Filtering [3]. In this research, a recommender system is built for a company’s
Content Management System (CMS). All the content (posts) and users’ interaction data
are saved in the CMS database. It would be helpful to implement a recommender system
using the saved data. The dataset is small in terms of number of posts, number of users,
and number of interactions. Designing a recommender system for this type of dataset
is a challenging task. Many existing papers on recommender systems work on some
common datasets such as MovieLens, Amazon reviews, etc., which are much bigger
than our dataset. The models that are working for the larger dataset might not work
well for our dataset. So, we want to explore what type of information and which RS
model works well for our dataset. The objectives for this research work are: 1) to study
user interactions and utilize user feedback data saved in the database to generate user

This research has been made in the context of the Excellence Chair in Big Data Management and
Analytics at University of Paris City, Paris, France.
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profiles; 2) to use CF method for content recommendation, here we use feedback scores
as the rating data and a MF model on the rating matrix; 3) to incorporate the similarity
score as a regularization term into the MF model; 4) to analyze the effect of different
categories of feedback data on the recommendation results, here we want to investigate
the accuracy of recommendation if different categories of feedback data are used.

2 Related Work

Recommender systems are information filtering systems that are used to provide sug-
gestions to users depending on user profile [1, 11]. We can apply mainly two types
of approaches for content recommendation [8]: CF-Based Approach and a CT-Based
Approach. CF is the most commonly used and it recommends items by identifying other
users with similar interest [5, 12]. CT-Based technique recommends items based on con-
tent similarity. To get the best of the both worlds, some hybrid approaches, which use a
combination of both techniques, are used. CT-based approach recommends the unseen
items to the users, depending on the items already seen by the users [4]. Researchers
have used different ways to build the user profiles. To model the content profile, we
have used one of the main content profile modeling algorithms: Term Frequency-Inverse
Document Frequency (TF-IDF) [13]. In our research work, to build a user profile, we
have used users’ explicit interactions, implicit interactions and users’ social share inter-
actions. Then, we used a weighted combination of these three types of interactions to
calculate a combined feedback score to generate the user profiles. We also have used
the weighted score for the individual types of feedback to generate the user profiles. We
have compared CF-Based recommendation models created using different categories
of feedback data. We have also compared these models with the hybrid model which
considers both user feedback information and post content information.

3 Methodology

This section focuses on the proposed methods of utilizing user feedback data for content
recommendations. In this work, we use two recommendation approaches: CF approach
using just the feedback data and hybrid model using CF and post similarity score. To
accomplish our research goal, we take the following steps: (i) we generate individual
user profiles based on user interactions with the posts. After extracting user interactions,
we classify these interactions into three major categories based on the nature of the inter-
action. First category is Direct Interaction, which is the user/post interaction happened
in the CMS itself. Second category is Social Share, which is the interaction on user’s
own social network. Third category is Reading Statistics, which refers to the feedback
score user provided to the content by taking a certain action, such as reading progress.
All the interactions have already been assigned a weight by the CMS. We use those
weights and calculate user feedback score for each user. We then compare results from
each category with overall feedback score to evaluate which category reflects the user
behavior the best; (ii) we generate content recommendations using CF algorithm; (iii)
we find similarity score between posts; (iv) we evaluate the results.
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3.1 System Architecture

In this paper, we mainly want to compare recommendations generated by Collaborative-
Filtering approach and the hybrid approach for the CMS dataset. Furthermore, we want
to find out which type of feedback data provides the most accurate recommendations.
Figure 1 shows the system architecture of our recommender system. It has two major
components: (i) a CF model and (ii) a model to calculate similarity between the content
of the posts. At first, we extract users’ implicit/explicit feedback data and contents of
the posts. User feedback data is an input to the CF model and contents of the posts are
input to the content profile modeling system. Post similarity score is used as an input
to the hybrid model. Then, we apply MF model on user profiles to generate CF-Based
recommendations. In the hybrid model, we integrate post similarity as a regularization
term into the MF model.

Fig. 1. Overall System Architecture for Recommendations

3.2 User Preference Matrix Generation

After examining the user’s historical data and interactions, we calculate user’s preference
score pertaining to those categories. The interactions or user feedback data which show
user/item interactions internally on the CMS such as like, comment, impression and
click-through come under the category known as Direct Interaction. The interactions
which showdata is shared externally by the users on their social networkingwebsites such
as shares, re-shares, reply, retweets come under Social Share category. The interactions
like reading duration and the number of reads which show reading progress made by a
user internally on the CMS itself come under the Reading Statistics Category. Lastly, the
Feedback Score is calculated by adding scores from all the categories together with the
weights defined by us for each category. After calculating score for each category and
the overall feedback score, we model user profile for each user. We use these calculated
scores together with the content profiles of the posts that the user has interacted with to
get the user profile. In this way, we created multiple user profiles based on the different
user/post interaction categories and content profile developed using TF-IDF.
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3.3 Matrix Factorization and Post Similarity Calculation

The process of MF [9] starts with a user-item rating matrix R. Here, the size of matrix R
is: m × n where m denotes the total number of users and n denotes the total number of
items. MF will decompose the rating matrix R into two low rank latent feature matrices
[6] P for users andQ for items; here, the size of matrix P is:m×d and the size of matrix
Q is: n × d , d is the rank of the matrices and defines dimension for the latent features
[5]. To decompose a sparse rating matrix, the following objective function is used by the
traditional MF methods [10]:

L = min
P,Q

1

2

∑

(u,i)∈C
(Ru,i − PuQ

T
i )2 + λ

2
(||P||2F + ||Q||2F ) (1)

In Eq. 1,C indicates the set of (user, item) pairs of known ratings, to avoid overfitting,
two regularization terms on the sizes ofP andQ are added as constraints andλ is used as a
regularization parameter. In our researchwork, to completeMF just using the rating data,
we have used the objective function defined in Eq. 1. However, the objective function in
Eq. 1 is only based on users’ ratings, it does not include the content information. To do so,
we include the post similarity score. We define Sjn as the similarity co-efficient between
two posts j and n which satisfies: (i)Sjnε[0, 1]; ; (ii)Sjn = Snj; ; (iii) the larger Sjn is, the
more similar the posts are. With the similarity co-efficient, the updated regularization
term is to minimize the following:

min
α

2

∑N

j=1

∑N

n=1
(Sjn − QT

j Qn)
2

(2)

To add the impact of content profiles to the basic factorization model, we add the
regularization term defined in Eq. 2 to the previous objective function 1. In our work,
using this updated objective function, we have designed the hybrid model and also used
thismodel to completeMFusing both rating data and content similarity score. To find out
the similarity between posts, we build the content profiles. Tomodel the post profiles, we
can use bag-of-wordsmodels such as Term Frequency-Inverse Document Frequency and
Latent Dirichlet Allocation (LDA). Our experiment shows that TF-IDF model performs
better than the LDA model. So, we have used the TF-IDF model. We have used cosine
similarity to find the similarities between different posts.

4 Experiments

This section discusses experiment design and the results. We use a CMS dataset to
generate recommendations for effective content suggestions to the users of the dataset.
The dataset has two major entities: posts and users. The dataset consists of 250 users,
6900 posts as well as the user/post interactions. 150 users have 20868 direct interactions,
165 users have 28363 social shares, and 134 users have 10985 reading statistics. In our
research work, we have used RMSE and F1-Score for evaluation [7].
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4.1 Result Analysis

Evaluation of Results Using RMSE and F1-score. We have used both basic MF and
hybrid MF to generate the recommendations. We calculated the RMSE scores for the
generated recommendation results. For the same result sets, we calculated the F1 scores
for top-10 recommendations. From Fig. 2, we see that all Interaction-Based recom-
mendations generated the smallest RMSE, and all Interaction-Based recommendations
generated the highest F1-score for both models. We find that Social Share-Based recom-
mendation performed the best and the worst performing one is the Reading Statistics-
Based recommendations. In all the cases, the hybrid model outperformed the traditional
model. And social share is very close to all interaction.

Results Comparison on User Profile Types. We have in total four different categories
of user profiles. The results show that All Interaction Feedback Score profile is perform-
ing the best among all four profiles. If we consider three profile categories: Social Share,
Direct Interaction and Reading Statistics, the Social Share category performs much bet-
ter than the other two. We get the second-best performance from Direct Interaction
profile and last one is the Reading Statistics profile. The major reason behind this result
is that there are more types of social shares in this category. In other words, we can say
in this category, we have more types of user/post interactions as compared to the other
categories and data is largely shared by users on their social networking websites. As
a comparison, Reading Statistics profile has only two types of interactions. Therefore,
as Social Share profile has more interaction data, it works better than Direct Interaction
profile and Reading Statistics Profile. While comparing Social Share profile with all
interaction Feedback Score profile, the overall Feedback Score profile works better than
the social share profile. However, their differences are very small. When efficiency is a
concern, we may use the social feedback only because it requires less data processing
time. Finally, when we compare all the evaluation metrics on the two methods of MF:
basic MF and hybrid MF, the results show that hybrid MF performs better than the basic
MF for all the four types of user profiles.

Fig. 2. Evaluation Using RMSE and F1Score
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5 Conclusions and Future Work

The evaluation results show that the combination of TF-IDF content profiles with all
interaction feedback, i.e., the hybrid model, generates the best recommendations for
this CMS dataset. Moreover, different types of user interaction data may have different
impacts on the recommendation accuracy, therefore it is necessary to explore and inves-
tigate the optimal way of using and combining them in a recommender system. As a
future work, we want to compare the automatically generated user interaction weights
with those that are predefined in the dataset. We will apply a regression model or by
using a classification algorithm to find optimal weights based on the user interactions.
Also, dealing with emerging big data trends (e.g., [12, 13]) is a goal of future efforts.

Acknowledgments. This research is supported by the ICSC National Research Centre for High
Performance Computing, Big Data and Quantum Computing within the NextGenerationEU
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Abstract. Consumer fraud is a significant problem that requires accu-
rate and prompt detection. However, existing approaches such as peri-
odic government inspections and consumer reports are inefficient and
cumbersome. This paper proposes a novel approach named CFD-BERT,
to detect consumer fraud automatically based on the group intelligence
from consumer reviews. By applying the correlation between consumer
reviews and official regulations to accurately mine consumer fraud pat-
terns, and fine-tuning a pretrained model BERT to better model their
semantics, which can detect fraudulent behaviors. Experimental evalua-
tions using real-world datasets confirms the effectiveness of CFD-BERT
in fraud detection. To explore its potential application and usefulness in
real world scenarios, an empirical study was conducted with CFD-BERT
on 143,587 reviews from the last three months. The results confirmed that
CFD-BERT can serve as an auxiliary tool to provide early warnings to
relevant regulators and consumers.

Keywords: Consumer fraud detection · Consumer reviews ·
Regulation

1 Introduction

Consumer fraud, defined as the use of false or improper means by business
operators to harm the legitimate rights and interests of consumers, which poses
a significant challenge for both customers and regulatory authorities [4].

Conventional approaches to consumer fraud detection rely on regulatory
authorities conducting inspections via sampling, a process that is labor-intensive
and often inefficient [5]. Regrettably, consumer fraud is a multifaceted problem
that manifests in diverse life scenarios, and the transactions involved are fre-
quently uncomplicated and challenging to document, thereby posing difficulties
in quantifying the extent of fraud [1]. Fraud detection in the financial and credit
card sectors has achieved considerable maturity, benefiting from the availability
of public datasets and the development of numerous models that exhibit superior
detection capabilities [2]. However, detecting consumer fraud is more challenging
due to the absence of public datasets.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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Some previous research has revealed that online consumer reviews can reduce
the workload of manual consumer fraud detection, and scientific methods can be
used to support online consumer fraud detection and prevention [7]. Lai et al.
introduced a fraud detection model, BTextCAN, based on fraudulent merchant
reviews [6]. However, the amount of fraud merchant data published by regulatory
authorities are small, which compromises the effective extraction of fraudulent
features.

Inspired by above observations, we were wondering whether the official reg-
ulations and online consumer reviews can be combined to effectively detect con-
sumer fraud automatically. This paper presents our latest efforts on this issue
and our study has yielded promising results in this regard.

This paper propose a novel approach named CFD-BERT, which aims to
detect consumer fraud automatically based on the group intelligence from con-
sumer reviews. By applying the BTM model to extract common consumer fraud
patterns from consumer reviews and fine-tuning a pretrained model BERT to
better model their semantics, our semantic-aware, fine-grained approach can
match consumer reviews with regulations automatically to detect fraudulent
behaviors. Through experimental evaluations conducted on real-world datasets,
CFD-BERT demonstrates effective consumer fraud detection capabilities and
successfully identifies the specific fraud categories associated with each review.

2 Methodology

Figure 1 presents an overview of CFD-BERT, which comprises three main parts.
The first part is data preprocessing, which involves classifying consumer reviews.
The second part is BERT fine-tuning, where a fine-tuned BERT is built and
trained. The third part is consumer fraud detection, which detects consumer
fraud and identifies fraud categories.

2.1 Dataset Construction

Topic Extraction. BTM directly models co-occurring words as semantic trans-
fer units of topics, which can reveal topics better than single words. BTM labels
topics with appropriate behavior by computing the probability that each docu-
ment is assigned to each topic. The generated probability of each topic z is shown
in (1), where z represents topic, b represents biterm and d represents document.

P (z | d) =
∑

b

P (z | b)P (b | d) (1)

P (z | b) can be calculated via Bayes formula based on the parameters esti-
mated in BTM as (2), BTM draws distributions of φz ∼ Dir(β), θ ∼ Dir(α),
Z ∼ Multi(θ), where α and θ are the Dirichlet priors. P (b | d) can be estimated
by the empirical distribution of biterms in the document as (3), where nd(b) is
the frequency of the biterm b in the document d.

P (z | b) =
θzφi|zφj|z∑
z θzφi|zφj|z

(2)
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Fig. 1. Overview of CFD-BERT.

p(b | d) =
nd(b)∑
b nd(b)

(3)

Fraud Category Collection. Based on the Law on the Protection of Consumer
Rights and Interests, which defines the legitimate rights and interests of con-
sumers, we analyze and summarize the frauds defined by two sets of regulations:
“What is Fraudulent Consumer Behaviour” [4] and “Hainan Free Trade Port Anti-
Consumer Fraud Regulations” [3]. We compare the similarity of the generated
topic types with the regulations and ultimately classify consumer fraud.

Manual Labeling of Consumer Reviews. After identifying the fraud cate-
gory, classified reviews can be collected. To do this, we employ manual methods
to label and check consumer reviews. If a single review involves multiple frauds,
we split the review into separate reviews, each belonging to only one consumer
fraud type. These reviews are then fed into CFD-BERT for training.

2.2 Model Training

We employ fine-tuned BERT_BASE on our own data to extract and detect
fraudulent features, which first maps consumer reviews to an encoded vector
with contextual semantic relationships. The encoded vectors are then passed
to the MLP network layer, and finally, the softmax layer is employed for fraud
detection and classification.



454 X. Tang et al.

Table 1. Fraud categories and number of consumer reviews.

Category Fraudulent behavior Number

Unqualified
goods

There are foreign objects, such as hair, bugs, plastic, etc.
Food is not fresh, odorous, spoiled, expired, moldy, etc.
Have symptoms of illness after eating.
Food adulteration, such as pork chops as steaks, etc.

2073

Insufficient
portion

Less weight and smaller size
Less in quality, such as seafood only shells without meat.

812

False
advertising

Group purchase activities are not recognized and not given
to use.
The description of the goods does not match the real thing.
Deceptive activities where the “discounted price”
is equal to or even higher than the original price.
Discounted goods are not the same as the original priced
goods.

1115

Payment
issues

No refund in case of unused fees.
Overcharge.
Inducing consumption, such as giving more goods.
The actual price does not match the marked price.
Unspecified before charging, with hidden fees.

873

Invoice
issues

No invoicing.
The amount of the invoice is incorrect.

195

The activation function is denoted as f , and W is a trainable parameter in the
MLP, the probability vector of fraudulent category labels for each review denoted
as p, v is the text vector, hc is the fraud category vector, p = f (W [hc; v]).
Finally, the probability vector of the fraud category label for each word after
normalization is obtained by the softmax layer. We choose the cross-entropy
function as the loss function, which combined with the softmax function of the
output layer can accelerate the training speed of deep learning more quickly.

3 Experiment

3.1 Data Preparation

To evaluate our model, we collected reviews from Meituan and Dianping, two
popular Chinese apps that are widely used by a significant portion of consumers.
We crawled public reviews from these apps between January 2021 and June
2022, resulting in a total of 640,000 negative reviews (rated below 3 stars).
We randomly selected 100,000 reviews and performed topic extraction on them
using the BTM topic model to obtain eight topics. After comparing the topics
obtained with the regulations, we manually labeled the consumer reviews by
injecting specific classification information, resulting in a total of 5,071 labeled
reviews. The resulting fraud categories are as Table 1.
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Table 2. Evaluation results on the consumer reviews (Best results are show in bold).

Category Unqualified goods Insufficient portion False Advertising Payment issues Invoice issues
acc pre rec acc pre rec acc pre rec acc pre rec acc pre rec

CFD-BERT 98% 98% 99% 94% 88% 96% 95% 86% 98% 94% 97% 97% 100% 97% 100%
SRE 82% 96% 58% 89% 85% 37% 79% 71% 10% 85% 81% 15% 100% 97% 94%
SVM 69% 80% 27% 86% 83% 14% 76% 75% 12% 79% 90% 12% 97% 75% 26%
Text-CNN 91% 91% 94% 79% 78% 75% 85% 85% 85% 87% 88% 81% 75% 85% 100%
Text-RNN 86% 93% 93% 79% 77% 67% 78% 76% 81% 80% 88% 80% 90% 60% 100%
Text-RCNN 89% 93% 91% 75% 71% 67% 80% 68% 93% 81% 94% 62% 85% 75% 100%
Transformer 85% 95% 95% 73% 73% 73% 63% 70% 93% 87% 85% 67% 87% 67% 67%

3.2 Experimental Setup

To obtain the optimal hyper-parameters, we engaged in an iterative process of
training and testing. Ultimately, a batch size of 4 and learning rate of 2e-5 yielded
the best results. Throughout the training process, the model with the highest
accuracy was saved for future use.

3.3 Experimental Evaluation

To establish a baseline for our study, we selected methods capable of extracting
fraudulent features from consumer reviews. Based on our analysis, we catego-
rized existing methods into three types based on their underlying techniques:
(1) Semantic rule matching (SRM). (2) Machine learning with Support Vector
Machines (SVM). (3) Deep learning with Text-CNN, Text-RNN, Text-RCNN,
and Transformer models.

The results is shown in Table 2. Notably, the CFD-BERT model achieved
superior results in all fraud category detection, owing to its capacity to con-
struct key features based on contextual semantic relationships compared to tradi-
tional deep learning techniques. Despite this, the accuracy of all baseline models
exceeded 0.7, indicating their effectiveness in detecting consumer fraud.

3.4 Empirical Study

To demonstrate the dynamic fraud detection capabilities of CFD-BERT, we
crawled negative reviews from Meituan and Dianping in Haikou over the past
three months, yielding a total of 9,253 reviews. The detection results as pre-
sented in Table 3. It included 5,944 reviews exhibiting consumer fraud, with the
sale of unqualified goods being the most prevalent type, followed by false adver-
tising. Invoice issues occurred less frequently than other types of fraud. Thus,
CFD-BERT can effectively detect consumer fraud and between different types of
fraudulent behavior. Our method can play a crucial role in maintaining consumer
confidence in the marketplace.
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Table 3. Evaluation results on the consumer reviews (Best results are show in bold).

Category Comment (%)

Unqualified goods 2364 (40%)
Insufficient portion 972 (16%)
False advertising 1335 (22%)
Payment issues 1016 (17%)
Invoice issues 257 (4%)
Total 5944

4 Conclusion

This paper presents a approach CFD-BERT, which combines regulations and
extracted topics to identify fraud categories and employs a novel BTM+BERT
model to extract fine-grained fraudulent features. Through experimental evalua-
tion and empirical study, the results confirming the effectiveness of our proposed
approach. Our approach has the potential to help regulatory authorities better
understand consumer concerns, verify fraudulent merchants, and take follow-up
fraud-solving activities. We plan to further explore the impact of other features
on consumer fraud detection models.
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Abstract. Click-Through Rate (CTR) prediction plays a crucial role in
the field of recommendation systems. Some previous works treat the
user’s historical behavior as a sequence to uncover the hidden inter-
ests behind it. However, these works often ignore the dependencies and
dynamic interests between different user behaviors evolving over time,
as well as hidden information by user representation. To solve the above
problems, we propose Deep Multi-Interaction Hidden Interest Evolution
Network (MIHIEN). Specifically, we first design Hidden Interest Extrac-
tion Layer (HIE) to initially mine the hidden interests of users evolving
over time from it, which can better reflect the user representation. The
deeper interests of users are then explored in two types of interactions in
the Item-to-Item Sub-network (IISN) and the User-to-Item Sub-network
(UISN), respectively. The experimental results show that our proposed
MIHIEN model outperforms other previous mainstream models.

Keywords: CTR prediction · Dynamic Interests · Self-attention · Two
Types of Interactions

1 Introduction

In e-commerce scenarios, the user’s intent is not explicitly a single point. There-
fore, it is more efficient to obtain user interest from user behavior. DIN [13] and
DIEN [12] were early to focus on the historical behavior of users. However, these
models only consider item-to-item interactions between historical user behavior
sequences and target items. DMR [5] changes this by introducing a user-item
correlation, and directly measures the user’s interest preference for the target
user. Nevertheless, we observe that these works often ignore the dependencies
among user behaviors and the dynamic user interests evolving over time when
mining the hidden interests behind users and user representations in user behav-
ior sequences, and suffer from the problem of biased user interest mining due to
insufficient mining of the hidden information of user representation.

To solve the above problems, we propose Deep Multi-Interaction Hidden
Interest Evolution Network (MIHIEN). HIE treats the user’s historical behavior
as a sequence to uncover the hidden potential interest behind user behavior.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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IISN uses an attention mechanism to extract multiple target interests of the
user. UISN introduces the correlation between users and items, where the user
representation is extracted from the potential interest behavior of the users,
which better reflects the evolution of user interests over time.

The main contributions are as follows: We design the MIHIEN, which intro-
duces correlations between users and target items that evolve over time, ade-
quately exploiting the hidden information of user representation. The HIE mod-
ule is designed, which solves the problem of inadequate information mining under
the evolution over time, thus better extracting the dynamic hidden interests
behind user behavior sequences.

2 Related Work

In recent years, inspired by the great success of deep neural networks in various
other fields [7,8], researchers have used DNN models to characterize user behav-
ior for CTR prediction [3,4,6,11]. DHAN [10] introduces a hierarchical attention
network, which introduces a multidimensional hierarchy on the first attentional
level focusing on a single item. DMIN [9] further extracts multiple potential
interests of the user by introducing multi-head self-attention mechanism. CAN
[2] uses a new method to mine explicit feature interactions.

3 The Proposed Method

3.1 Embedding Layer

In this paper, we use four main groups of features: User Profile, User His-
torical Behavior, Context and Target Item. Each feature can be encoded as a
high-dimensional one-hot vector [1]. These features are usually very sparse and
need to be transformed into low-dimensional dense features by embedding lay-
ers. For example, the embedding matrix of the item id can be expressed as
E = [v1, v2, ..., vk] ∈ R

K×de , where K is the total number of items, de is the
embedding size and de � K. With the embedding layer, User Profile, User His-
torical Behavior, Context and Target Item can be represented as xp, xb, xc, xi,
respectively. In particular, User Historical Behavior consists of multiple items
and can be represented as xb = {e1, e2, ..., eT } ∈ R

T×dmodel , where T is the num-
ber of User Historical Behavior and dmodel is the dimension of item embedding
et. pt ∈ R

dp is the position code of the t-th item and dp is the dimension of pt.

3.2 Hidden Interest Extraction Layer

Having more hidden interest representations facilitates enriching user behavior
and reflecting user interest preferences.

To better capture the dependencies with larger intervals in the tempo-
ral space, we use GRU to model the dependencies between behaviors. To be
specific, the formula for GRU is as follows: ut = σ (Wuit + Uuht−1 + bu) ,
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Fig. 1. The architecture of the proposed MIHIEN and Attention Module

rt = σ (W rit + Urht−1 + br) , ˜ht = tanh
(

Whit + rt ◦ Uhht−1 + bh
)

, ht =
(1 − ut)◦ht−1+ut ◦ ˜ht, where σ is the sigmoid activation function, ◦ is element-
wise product, Wu,W r,Wh ∈ R

nH×dmodel , Uz, Ur, Uh ∈ nH × nH , nH is the
hidden size, and dmodel is the dimension of item embedding. it is the input of
GRU, it = xb [t] represents the t-th behavior of the user, ht is the t-th hidden
states. Hb is the set of hidden states ht. This method enables the user’s changing
interest to be effectively captured over time.

As shown in the HIE of Fig. 1, we further pass the hidden state of the user’s
historical behavior sequence from the GRU into the multi-head self-attention
structure. To be specific, the output of the headh is calculated as follows: headh =

Attention
(

HbW
Q
h ,HbW

K
h ,HbW

V
h

)

= Softmax

(

HbW
Q
h ·(HbW

K
h )T√

dh
· HbW

V
h

)

,

where WQ
h ,WK

h ,WV
h ∈ R

dmodel×dh are projection matrices of the h-th head for
query, key and value respectively. Thus the latent item representation of the t-th
subspace is expressed by headh.

The different heads are then concatenated to obtain a completely new repre-
sentation of the project, which can be defined as follows: Z = MultiHead (Hb) =
Concat (head1, head2, ..., headHN

)WO, where HN is the number of heads, WO ∈
R

dmodel×dmodel is a linear matrix.

3.3 Item-to-Item Sub-network and User-to-Item Sub-network

In previous research, we found that user interests are not set in stone and that
they change over time. To mine the weight of the correlation between each output
head and the target item, we use the Attention Module, which also incorporates a
position embedding containing position information. Thus the user’s e-th inter-
est can be formulated as: inte =

∑T
j=1 α (Ije, xi, pj) Ije =

∑T
j=1 wjIje, where

Ije ∈ R
dmodel represents the e-th head’s vector of the j-th item. α represents the

Attention Module, which represents the relevance of inte to the target item.
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Therefore, the potential target interest of the user can be obtained. The
final output vector of the Item-to-Item Sub-network can now be expressed as
{int1, int2, ..., intN} ∈ R

N×dmodel . Note that the number of user’s interests
depends directly on the number of heads N .

User-to-Item Sub-network directly models the relevance of the user to the tar-
get item through the inner product of the corresponding representation, which
can be seen as a feature interaction between the user and the item. We also use
the attention mechanism to adaptively learn the position weight of each hidden
interest in the sequence of behaviors to be used as a user representation. The for-
mulas are as follows: at = zT tanh (Wppt + WeIje + b) , αt =

exp(at)∑T
i=1 exp(ai)

, where

Wp ∈ R
dh×dp , We ∈ R

dh×dmodel , b ∈ R
dh and z ∈ R

dh are learning parameters,
αt is the normalized weight of the t-th behavior. The final user representation
u ∈ R

de can be formulated as: u = V
(

∑T
t=1 (αtIje)

)

= V
(

∑T
t=1 (ht)

)

, where
the function V (·) denotes the non-linear transformation of the input dimension
dmodel and the output dimension de, ht is the weighted feature vector of t-th
behavior. Using the user representation u and the target item representation v′,
we apply the inner product operation to represent the user-to-item relevance:
r = uT v′.

3.4 MLP and Loss Function

The results with other information are connected and passed together into the
MLP for final prediction. Since the click-through prediction task is a binary
classification task, the loss function is chosen to be a cross-entropy loss, usually
defined as: Ltarget = − 1

N

(

∑N
i=1 y log p(x) + (1 − y) log(1 − p(x))

)

, where x =
(xp, xb, xc, xi) ∈ B, B is the training set of size N . y ∈ {0, 1} indicates whether
the user will click on the target item. p (x) is the predicted output of our network.

In addition, in the Hidden Interest Extraction Layer we use auxiliary losses,
so that the global negative function is: L = Ltarget + β ∗ Laux, where β is the
hyper-parameter used to balance the two subtasks.

4 Experiments

4.1 Datasets and Experimental Setup

We use the Amazon1 Dataset, which contains product reviews and metadata
from Amazon. There are 24 categories in this dataset, and we chose Electronics,
CDs_and_Vinyl, Movies_and_TV, Kindle_Store, and Beauty as the datasets
in our experiments.

In this experiment, we use Adam to optimize the training procedure, the
dimension of dmodel is set as 36, the embedding size of position encoding is set
as 2, the dimension of user profile embedding is 18. We set the maximum value of

1 http://snap.stanford.edu/data/amazon/productGraph/.

http://snap.stanford.edu/data/amazon/productGraph/
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Table 1. The AUC performance and the results of ablation study on real-world
datasets. All experimental results are the results of rerunning on our equipment.

Model Ele CDs Movies Kindle Beauty

Base 0.7189 0.7905 0.7084 0.7467 0.7013
WDL 0.7345 0.8016 0.7065 0.7561 0.7086
PNN 0.7376 0.8101 0.7107 0.7602 0.7144
DIN 0.7394 0.8248 0.7136 0.7766 0.7157
DIEN 0.7509 0.8315 0.7269 0.7864 0.7169
DIEN-NO 0.7405 0.8251 0.7135 0.7726 0.7151
DHAN 0.7417 0.8361 0.7247 0.7748 0.7159
DMIN 0.7540 0.8441 0.7280 0.7944 0.7172
CAN 0.7528 0.8316 0.7240 0.7825 0.7185
MIHIEN 0.7589 0.8583 0.7379 0.8036 0.7211
NO HIEa 0.7568 0.8539 0.7341 0.7852 0.7171
NO IISNb 0.7540 0.8579 0.7374 0.7775 0.7144
NO UISNc 0.7574 0.8502 0.7361 0.7809 0.7150
a MIHIEN without Hidden Interest Extraction Layer
b MIHIEN without Item-to-Item Sub-network
c MIHIEN without User-to-Item Sub-network

user history behavior length to 20. All compared models have the same settings,
their batch size is set to 128 and their learning rate is 0.001. The performance
of the model is evaluated by using AUC.

4.2 Baseline and Result

To comprehensively evaluate our method, this paper compares the proposed
method with the model baselines: BaseModel, WDL [3], PNN [6], DIN [13],
DIEN [12], DIEN-NO, DHAN [10], DMIN [9], CAN [2].

We will compare the proposed MIHIEN model with the models in base-
line methods and show the result in Table 1. From the experimental results,
MIHIEN has achieved the best performance compared to the state-of-the-art
methods. DIN represents the user’s interest in the target product, and its results
are mostly better than those of WDL and PNN. Based on DIN, DIEN further
uses GRU to capture the dynamically evolving interest of users and obtains a
better representation of user interest than DIN. DIEN-NO is based on DIEN
and removes the auxiliary loss, which is not as effective as DIEN. DHAN uses
multiple Attention Units to capture the user’s hierarchical interest, which also
shows the importance of capturing the evolutionary interest of users. DMIN
manifests the efficacy of modeling and tracking user’s multiple interests. CAN
mine the information between user and item through multiple MLPs. Our pro-
posed MIHIEN is 0.65%, 1.68%, 1.36%, 1.16% and 0.36% higher than the best
AUC results of the above models in all datasets.

We also perform an ablation study on MIHIEN to verify the effectiveness of
our proposed module. From the results, we can see that the AUC decreases on
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all five datasets regardless of which module of HIE, IISN, or USIN is removed.
Therefore, we believe that HIE can filter out a large amount of useless informa-
tion from users’ historical behaviors, and the extracted users’ hidden interests
better reflect the users’ own interest preferences. The combination of the two
sub-networks performs better than alone, which illustrates the effectiveness of
two different forms of user-item interaction, and the two forms of user-item inter-
action are complementary, rather than redundant.

5 Conclusion

We propose the MIHIEN, which focuses on mining the hidden interests behind
user time-varying behavior sequences and mining user preferences with two forms
of interactions for click-through rate prediction tasks. The results demonstrate
that MIHIEN is useful for CTR prediction.

Acknowledgements. This work is supported by “Tianjin Project + Team” Key
Training Project under Grant No. XC202022.
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Abstract. Aspect-based sentiment analysis aims to predict the polarity of sen-
timent towards a specific aspect in the context. In this paper, we propose the
Temporal Semantic Attention Network (TSAN) model for ABSA tasks, which
comprising a Global Semantic Feature Network for feature extraction and an
Interact Dual Attention module to capture the dependencies of text-target interac-
tion. Experiments on four ABSA benchmark datasets validates the effectiveness
of our modules in extracting aspect-level sentiment features.

Keywords: Aspect-based sentiment analysis · attention · feature extraction

1 Introduction

Sentiment classification based on comment data has become a hot topic in natural lan-
guage processing. As technology advances, this field has been refined to Aspect-Based
Sentiment Analysis (ABSA), which aims to distinguish sentiment polarities of different
aspect words when they appear simultaneously.

In recent years, more and more researchers have used neural networks to solve
sentiment classification problems. Among them, the Long Short-TermMemory (LSTM)
network has become a typical method in the ABSA field. To better capture important
parts of a sentence, Tang et al. [1] proposed TD-LSTM and TC-LSTM, which further
considered the position and content relationship between aspect and context information
based on the LSTM approach.

In addition, attention mechanisms have been shown to be effective in enhancing the
performance of neural network models in sentiment analysis, which are used to cap-
ture the interaction between the sentiment aspect and context information. For example,
ATAE-LSTM was designed to focus on different parts of a sentence depending on the
input aspect [2]. Ma et al. [3] designed an attention-based model called IAN, which
focuses attention on the parts of the text that contribute to the semantic meaning of the
sentiment word. Huang et al. [4] proposed an attention-over-attention (AOA)mechanism

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C. Strauss et al. (Eds.): DEXA 2023, LNCS 14147, pp. 463–468, 2023.
https://doi.org/10.1007/978-3-031-39821-6_40
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that generates mutual attention between sentimental aspects and their contextual infor-
mation. Tang et al. [5] introduced MemNet to capture the importance of each context
word of an aspect with multiple computational layers.

By using LSTM networks and attention layers, probabilities of different sentiment
classifications are generated, resulting in different sentiment polarity outputs. How-
ever, LSTMmodels encounter challenges in capturing semantic information as sentence
length increases, and are having difficulty considering semantic relationships between
non-adjacent text terms. Moreover, while attention models often emphasize the signif-
icance of textual words that contribute to aspects, fewer models address the semantic
reliance of aspects on context. For example, “The food is too hard to eat” may indicate
eating difficulty, while “The computer case is hard” may indicate high quality. Both
sentences use the word “hard”, but express completely different emotions, indicating
that the meaning of adjectives for each aspect may differ.

To address these limitations, we propose the Temporal Semantic Attention Network
(TSAN) model. We apply convolutional structures and extract contextual features from
both sequence and spatial aspects. Furthermore, in order to capture the dependency rela-
tionship between aspect words and text words, we developed an Interact Dual Attention
mechanism that takes into account the semantic influences of text and aspect interaction.

Our contributions are as follows:

– We proposed a global feature extraction structure that extracts spatial and sequence
semantic features, which enhanced text representation capabilities.

– We design the Interact Dual Attention (IDA) structure to extract semantic dependen-
cies by fusing aspect-to-text attention and text-to-aspect attention.

Experiments on four benchmark datasets show that TSAN effectively alleviates both
LSTM and attention limitations, and performs better than other LSTM-based attention
models in ABSA tasks (Fig. 1).

2 Methodology

Fig. 1. Overview of the Temporal Semantic Attention Network (TSAN)



Temporal Semantic Attention Network for Aspect-Based Sentiment Analysis 465

2.1 Embedding

We map each word in the sentence to a set of word vectors, using a pre-trained word
embedding matrix. In our experiments, we use pre-trained GloVe and BERT word
embedding methods to initialize word embeddings.

2.2 Global Semantic Feature Network

After obtaining word vectors, we extract further text features through two parallel
layers. The initial layer combines LSTM and temporal convolutional networks to
achieve spatial semantic extraction, while the subsequent layer employs a Bi-LSTM net-
work for sequence semantic comprehension. Finally, we combine semantic and spatial
representation from two layers by averaging hidden feature outputs.

Sequence Feature Extraction. We use Bi-LSTM to capture contextual sequence infor-
mation for text and aspect. Word vectors of aspects and context enter the network to
generate hidden states respectively.

Spatial Feature Extraction. Phrases can be crucial in depicting the meaning of a
sentence, which contains a combination of words. Therefore, to extract semantic infor-
mation from spatial order, we designed a spatial semantic feature extraction structure.
It applies methods such as causal convolution, dilated convolution, and residual linking,
which fuse feature information extracted from the temporal convolution network and
Bi-LSTM. To augment a more comprehensive representation of semantic features, the
output of the convolution module is further regenerated by a LSTM network.

2.3 Interact Dual Attention

We further apply attention mechanisms to extract the dependency relationships between
text words and aspect words.

We first calculate their interaction matrix I, which is the dot product between
extracted hidden context and aspect word vectors. The dot product result Iij represents
the semantic similarity between the i-th word in the context, while the j-th word in the
aspect word reflects the semantic similarity between the context word and the aspect
word. In addition, by performing softmax by row and column, we obtain the attention
score correlation matrix α from aspect to context, as well as the correlation matrix β

from context to aspect. We then average α by row to obtain the attention score vector at
the text level, and average β by column to obtain the attention score vector at the aspect
word level.

Finally, according to the attention mechanism, we apply the obtained attention score
matrices to update the semantic feature vectors by using dot product. By considering
the semantic relevance between aspect and context, we learn the important weights for
each context word contributing to aspect, as well as the weights for each aspect word
contributing to context.



466 B. Yang et al.

2.4 Output

We concatenate two hidden vectors from context and aspect as the final classification
feature. Through a fully connected layer and a softmax normalization layer, feature
vectors are mapped to the aspect space of three classes, which are positive, neutral, and
negative.

3 Experiment

3.1 Experiment Settings

Datasets. In this paper, we experiment on four datasets: restaurant14, restaurant15,
restaurant16, and twitter [6–9], which are standard datasets for the ABSA task. Within
each dataset, the content consists of three parts: comment context, aspect words, and
sentiment polarity.

Experimental Parameter Settings. We use 300-dimensional GloVe word vectors to
initialize word embedding for all baseline models. Furthermore, we apply the BERT pre-
trainedword embeddingmodel, to better ourmodel’s performance. TheL2 regularization
coefficient is set at 0.0001, and the dropout keep rate is set at 0.2. If the training loss
does not drop after every three epochs, we decrease the learning rate by half.

3.2 Performance Comparison

Table 1. Model comparison results (%). Average accuracy and macro-F1 score with random
initialization. The best two results with each dataset are in bold.

Model
Res14 Res15 Res16 Twi�er

acc f1 acc f1 acc f1 acc f1

LSTM 77.05 64.39 75.09 52.11 85.88 55.96 68.93 66.77
TC-LSTM 72.43 62.92 73.99 52.09 83.44 53.45 70.81 68.90
TD-LSTM 78.48 66.94 77.68 61.95 85.88 61.04 69.94 67.93
ATAE-LSTM 77.77 64.91 78.04 57.15 83.60 52.05 68.35 66.71

AOA 79.97 70.42 78.17 57.02 87.5 66.21 72.3 70.2

MemNet 79.55 71.05 75.83 55.71 85.06 56.21 70.23 68.60

IAN 79.26 70.09 78.54 52.65 84.74 55.21 72.5 70.81

TSAN-Glove 80.01 71.24 78.78 52.98 87.66 66.91 72.83 70.84
TSAN-BERT 81.96 71.48 81.55 64.11 89.61 72.02 73.84 72.11

The table above shows the main experimental results of the TSAN model training.
In the experiment, we took the average of three random seed results and recorded the
experimental results, using Accuracy and Macro-Averaged F1 as evaluation criteria
(Table 1).
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The results showed that the TSAN model achieved better results on all datasets. As
shown in the table, when using the same GloVe word vector for embedding, the TSAN
model outperforms all other models across all datasets.

Compared to the model that relied solely on LSTM to capture text information,
our performance improved by 2.51%, 3.69%, 1.78%, and 3.9% across four datasets,
respectively. In addition, the IDA structure allows a better capture of semantic depen-
dencies between text and aspect words, outperforming attention-oriented models such
as ATAE-LSTM, MemNet, and IAN. When using BERT for word embedding instead
of Glove, which captures more contextual semantic information, it further improves the
performance of the TSANmodel. Compared to all datasets, the test effect on the Twitter
dataset is slightly worse than that on other datasets, probably because there are more
syntax errors and non-standard expressions in the comment text on the social platform.

Based on the above analysis, it can be seen that the TSAN model can achieve bet-
ter results in sentiment analysis tasks by adding text feature extraction methods and
capturing the dependency relationship between text and aspect words.

3.3 Case Study

To gain a better understanding of how the TSAN model works, we use a heat map
to visualize the influence of words on different aspects depending on attention scores
(Table 2).

Table 2. Examples of final attention weights for sentences. The color indicates the importance
degree of the weight in attention vector.

Aspect Sentence Predict / Answer
food The food was extremely tasty. +1/+1
food Good food but the service was dreadful! +1/+1
service Good food but the service was dreadful! -1/-1

For example, regarding the sentence “The food was extremely tasty.” Our model
successfully identified the words “extremely” and “tasty” as having the most significant
impact on the emotional attitude of the aspect word “food”. The second example “Good
food but the service was dreadful!” contains two aspects “food” and “service” in one
sentence. For the aspect “food”, the weight of the word “good” in the text is relatively
high, resulting in positive emotional polarity. For the aspect word “service”, the word
“dreadful” gets a higher weight, indicating that the attention mechanism has correctly
identified the aspect and the description of the aspect.

4 Conclusion

In this paper, we propose the TSAN model, which captures both spatial and sequential
features of text sequences, and includes an IDA attention module to extract seman-
tic dependencies between aspect and context. Our experimental results on four ABSA
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datasets indicate the model’s ability to extract aspect and context features. Furthermore,
the case study demonstrates the model’s ability to focus on critical words for predicting
aspect sentiment polarity. In the future, we plan to improve feature extraction in infor-
mation extraction by incorporating position information to further focus on the relative
position relationship between aspect words and text. In addition, we will investigate the
effectiveness of dependency information extraction between text and aspect words, with
a particular focus on the contribution of text words to aspect words in polysemy cases.
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Abstract. Can a machine or algorithm discover or learn Kepler’s first
law from astronomical sightings alone? We emulate Johannes Kepler’s
discovery of the equation of the orbit of Mars with the Rudolphine tables
using AI Feynman, a physics-inspired tool for symbolic regression.

1 Introduction

In 2020, Silviu-Marian Udrescu and Max Tegmark introduced AI Feynman [17],
a symbolic regression algorithm that could rediscover one hundred equations
from the Feynman Lectures on Physics [3]. Although the authors motivated
their work with Johannes Kepler’s discovery of the orbital equation of Mars,
to our knowledge, they did not attempt to rediscover the same equation with
AI Feynman. We show that AI Feynman can emulate Kepler’s discovery of the
orbital equation of Mars from the data published in the Rudolphine tables.

Around 1514, Nicolaus Copernicus described a heliocentric model of the orbit
of terrestrial planets, with the orbit of Mars described by its deferent and two
epicycles [13]. Copernicus may have used sightings such as those in the Alfon-
sine Tables. The model was later published in 1543 in De revolutionibus orbium
coelestium. Less than a decade later, Erasmus Reinhold calculated and published
a new set of astronomical tables, the Prutenic Tables, based on Copernicus’ helio-
centric model. It was Tycho Brahe, however, who recorded sufficiently frequent
and rigorous sightings to allow the discovery of the Laws of Planetary Motion.
Kepler, Brahe’s assistant and successor as imperial mathematician to Rudolf II,
transposed Brahe’s sightings of Mars. In 1627, Kepler published the Rudolphine
Tables, comprising a set of 180 heliocentric positions of the planet. Kepler could
have described the motions of Mars as a generalised ovoid or added additional
epicycles to the Copernican model, but instead described the orbit of the planet
as elliptical in Astronomia nova in 1609 [9]. Kepler leveraged a combination of
mathematics and physics knowledge and hypotheses to propose the most accu-
rate and parsimonious model he could devise. We use AI Feynman to illustrate
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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how an algorithm can combine optimisation and heuristics to emulate Kepler’s
discovery of the elliptical orbital equation of Mars from the Rudolphine tables.

2 Background and Related Work

Finding an equation from sample data, for instance, an equation describing the
orbit of Mars from sightings of the planet and the Sun, is a combinatorial chal-
lenge [17]. To circumvent this, one may use universal function approximators
such as multilayer perceptron neural networks [6].

Alternatively, symbolic regressions search for a parsimonious and elegant
form of the unknown equation. There are three main classes of symbolic
regression methods [11]: regression-based, expression tree-based and physics- or
mathematics-inspired. We use AI Feynman, a physics-inspired algorithm [17].

Regression-based symbolic regression methods [11], given solutions to the
unknown equation, find the coefficients of a fixed basis that minimise the pre-
diction error. As the basis grows, the fit improves, but the functional form of
the unknown equation becomes less sparse or parsimonious. Sparse regressions
promote sparsity through regularisation, as proposed by Robert Tibshirani [16]
who used the l1 norm, thus inventing the Lasso regression. Steven Brunton et
al.’s Sparse Identification of Nonlinear Dynamics [1] is a state-of-the-art sparse
symbolic regression approach. It leverages regularisation and identifies a system’s
equations of motion using a sparse regression over a chosen basis. However, com-
mitting to a basis limits the applicability of regression-based methods.

Expression tree-based symbolic regression methods based on genetic pro-
gramming [11] can instead discover the form and coefficients of the unknown
equation. The seminal work by John Koza [10] represents each approximation
of an unknown equation as a genetic programme with a tree-like data struc-
ture, with traits (or nodes in the tree) representing functions or operations and
variables representing real numbers. The fitness of each genetic programme is
its prediction error. Fitter genetic programmes undergo a set of transition rules
comprising selection, crossover and mutation to find the optimal equation form
iteratively. Genetic programmes may greedily mimic nuances of the unknown
equation [15], limiting generalisability. David Goldberg [5] used Pareto optimi-
sation to balance the objectives of fit and parsimony in symbolic regression.
State-of-the-art symbolic regression using genetic programming includes Eureqa
by Michael Schmidt and Hod Lipson [14] and PySR by Miles Cranmer [2]. How-
ever, if an expression tree-based method finds a reasonably accurate equation
with the wrong functional form, it risks getting stuck at a local optimum [17].

Physics-inspired symbolic regression methods leverage properties of the
unknown equation like symmetry and separability [17]. Udrescu and Tegmark
[17], in AI Feynman, use a neural network to test for such properties and recur-
sively break the search for the unknown equation into that of simpler equa-
tions [17]. Each equation is then regressed with a basis-set of nonlinear functions.
This guarantees that more accurate approximations of an equation are symbol-
ically closer to the truth [17]. AI Feynman outputs a sequence of increasingly
complex equations with progressively better accuracy along a Pareto frontier,
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leveraging the work of Goldberg [5] and Guido Smits [15]. We use AI Feynman
to rediscover the orbital equation of Mars.

3 Methodology

We use AI Feynman to rediscover the orbital equation of Mars from the Rudol-
phine Tables. We devise and compare four algorithms representing different com-
binations of observational and inductive biases that inform AI Feynman of the
periodicity of Mars’ orbit, and the trigonometric nature of the data.

Observational biases are introduced directly through data that embody the
underlying physics. The predictions of a machine learning model trained on such
data will reflect the physical structure of the data. Inductive biases correspond to
prior assumptions incorporated by tailored interventions to a machine learning
model architecture, so predictions will satisfy a set of given physical laws [7].

The Rudolphine Tables already embed the assumptions of heliocentricity and
planarity of Mars’ orbit. All algorithms, in this sense, are already observationally
biased as the data in the Rudolphine Tables is a transposition of the terrestrial
sightings of Brahe to an angle and a distance from the Sun. We highlight further
biases embedded in the four algorithms.

The first algorithm directly applies AI Feynman with no further biases. The
second algorithm is observationally biased. AI Feynman is informed of the peri-
odicity of Mars’ orbit and the trigonometric nature of the data by replacing angu-
lar values with their sine and cosine. The third algorithm is inductively biased.
AI Feynman is informed of the periodicity of Mars’ orbit and the trigonometric
nature of the data by the restriction of the search space. This inference stems
from the knowledge that exponential and logarithmic functions only transform
dimensionless quantities, therefore cannot transform data representing physical
quantities. The inductive bias limits the search space to trigonometric, polyno-
mial and radical functions. The fourth algorithm combines both observational
and inductive biases. AI Feynman is informed of the periodicity of Mars’ orbit
by replacing angular values and limiting the search space of functions.

4 Performance Evaluation

We conduct four experiments corresponding to the application of the four algo-
rithms, respectively, to the data in the table Tabula Aequationum MARTIS of the
Rudolphine Tables [8]. The Tabula Aequationum MARTIS, or Table of Correc-
tions for Mars, contains two columns of primary data, Anomalia coaequata and
Intervallu, and two columns of derived data Anomalia eccentri and Intercolum-
nium. The four columns represent the coequated or true anomaly, the distance
between the Sun and Mars, the eccentric anomaly and an interpolating factor
respectively. The table, see Fig. 1, was digitised for this experiment.

We apply AI Feynman to the primary data to recover the orbital equation of
Mars. We convert Anomalia coaequata, an angle in degrees minutes seconds, to
decimal degrees. We scale Intervallu by E − 05. The code and data are available
at https://github.com/zykhoo/AI-Feynman.

https://github.com/zykhoo/AI-Feynman
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Fig. 1. Excerpt of the Table of Corrections for Mars from the Rudolphine Tables

We compare the equations discovered along the AI Feynman Pareto frontier
with the orbital equation of Mars: r = a

1+ε×cosθ where r is the Intervallu, θ is the
Anomalia coaequata, ε is the ellipse eccentricity, and a is the semi-major axis.

Results of the experiments are reported in Tables 1 and 2. We list the equa-
tions along the Pareto frontier in order of decreasing parsimony and increasing
goodness of fit. We also indicate the mean description length loss [17,18] (DL)
computed between each predicted and true Intervallu for each equation. The
mean description length loss minimises the geometric mean instead of the arith-
metic mean, which encourages improving already well-fit points [18].

Table 1. Results of Experiment 2, which took 1451 s seconds.

Eqn No. Equation MSE

(1a) r = log cos θ + 5 26.006

(1b) r = 1
7
× cos θ + 1.5 24.053

(1c) r = 1.5 × exp 0.1 × cos θ 23.512

(1d) r = 1
2
3
−0.0556244812357114×cos θ

22.857

(1e) r = 1.5119670200057298 × exp (0.1 × cos θ) 22.457

(1f) r = 1.510965630582 + (cos θ/(sin θ + 6)) 21.070

(1g) r = 1.51366746425629 × exp(0.0931480601429939 × cos θ) 20.762

(1h) r = 1
0.662428796291351−0.0612906403839588×cos θ

19.781

(1i) r = (0.662428796291351− 0.0612906403839588× cos θ)−1.00133872032166 12.211

In Experiments 1 and 3, none of the equations on the Pareto frontier match
the orbital equation for Mars. We omit their detailed results in this paper. Exper-
iments 1 and 3 had execution times of 748 and 621 s respectively. In Experiments
2 and 4, three out of nine equations on the Pareto frontier match the orbital
equation for Mars. We omit results independent of θ. Relative to Experiment
1, the observational bias in Experiment 2 doubles the number of inputs to AI
Feynman thereby doubling execution time. The inductive bias in Experiment
3 reduces the search space thereby reducing execution time. Experiment 4 has
twice the execution time of Experiment 3 but is faster than Experiment 2.

Contrasting the Pareto fronts of Experiments 1 and 2 highlights the impor-
tance of an observational bias in guiding the search by AI Feynman. Contrast-
ing the Pareto fronts of Experiments 2 and 4 highlight the importance of an
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Table 2. Results of Experiment 4, which took 1184 s seconds.

Eqn No. Equation MSE

(2a) r = 1
7
× cos θ + 1.5 24.053

(2b) r = cos θ/(sin θ + 6) + 1.5 23.617

(2c) r = arccos(0.0420224035468255 − 0.142857142857143 × cos θ) 23.392

(2d) r = 1
2
3
−0.0566732120453772×cos θ

22.575

(2e) r = 1.511006320056 + (cos θ/(sin θ + 6)) 21.089

(2f) r = tan(0.0425049090340329 × cos θ + 0.986141372332807) 20.057

(2g) r = tan(0.0427569970488548 × cos θ + 0.98658412694931) 20.021

(2h) r = 1
0.662420213222504−0.0612917765974998×cos θ

19.747

(2i) r = (0.662420213222504− 0.0612917765974998× cos θ)−1.00130701065063 12.208

inductive bias in limiting the search space for AI Feynman. In Experiment 2,
three equations utilise an exponential function applied to cos θ (Eqs. 1c, 1e and
1g), and three utilise an inverse function applied to cos θ (Eqs. 1d, 1h and 1i).
Only the latter matches the orbital equation of Mars but both equation forms
are equally prevalent. In Experiment 4, the equation form which matches the
orbital equation of Mars (Eqs. 2d, 2h and 2i) is the most prevalent.

Therefore, AI Feynman, augmented with both an observational and inductive
bias, can best rediscover Mars’ orbital equation. The inductive bias also reduces
the execution time for solving NP-hard in principle [17] symbolic regression
problems. We observe Eqs. 1h, 1i, 2h, and 2i have forms that match the orbital
equation of Mars and lowest mean description length loss of less than 20.

Lastly, while AI Feynman combines optimisation and heuristics in exploring
the combinatorial space of candidate solutions, Kepler may instead have used
thought experiments to hypothesise an elliptical orbit. Fitting the data from the
Rudolphine tables to the orbital equation of Mars using non-linear least squares
yields ε = 0.0926 and a = 1.5235. For reference, the National Aeronautics and
Space Administration reports values of 0.0934 and 1.5237, respectively [12]. We
observe that Eqs. 1h and 2h suggest values of ε = 0.0925 and a = 1.5226.

5 Conclusion

We have successfully shown that AI Feynman can rediscover the equation of the
orbit of Mars from the Rudolphine Tables, provided it is further informed of the
underlying physics of the periodicity of Mars’ orbit and the trigonometric nature
of the data. AI Feynman can be informed by the introduction of observational
bias, inductive bias, and even more successfully, both.

We were not able to locate a copy of Brahe’s original sightings. A contem-
porary version is, however, available from the National Aeronautics and Space
Administration’s Horizons system [4]. The challenge is to modify the symbolic
regression algorithm to discover the change of referential from geocentric to
heliocentric. We are also working on rediscovering the equations of the orbit of
various celestial objects, such as Mercury, from heliocentric and geocentric data.

The discovery of laws of physics can be seen as an optimisation problem for
the discovery of maximally accurate and parsimonious models, Occam’s razor.
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This discovery, by man or machine, whether directed by intuition and thought
experiments or by combinatorial search and heuristics, can be effectively guided
by the information of the underlying physics knowledge and hypotheses.
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