
Helle Hvid Hansen
Andre Scedrov
Ruy J.G.B. de Queiroz (Eds.)

LN
CS

 1
39

23

Logic, Language,
Information,
and Computation
29th International Workshop, WoLLIC 2023
Halifax, NS, Canada, July 11–14, 2023
Proceedings

Lecture Notes in Computer Science 13923

Editorial Board Members

Elisa Bertino, USA
Wen Gao, China

Bernhard Steffen , Germany
Moti Yung , USA

FoLLI Publications on Logic, Language and Information
Subline of Lecture Notes in Computer Science

Subline Editors-in-Chief

Valentin Goranko, Stockholm University, Sweden

Michael Moortgat, Utrecht University, The Netherlands

Subline Area Editors

Nick Bezhanishvili, University of Amsterdam, The Netherlands
Anuj Dawar, University of Cambridge, UK
Philippe de Groote, Inria Nancy, France
Gerhard Jäger, University of Tübingen, Germany
Fenrong Liu, Tsinghua University, Beijing, China
Eric Pacuit, University of Maryland, USA
Ruy de Queiroz, Universidade Federal de Pernambuco, Brazil
Ram Ramanujam, Institute of Mathematical Sciences, Chennai, India

Founding Editors

Gerhard Goos
Juris Hartmanis

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873

More information about this series at https://link.springer.com/bookseries/558

https://springerlink.bibliotecabuap.elogim.com/bookseries/558

Helle Hvid Hansen • Andre Scedrov •

Ruy J.G.B. de Queiroz
Editors

Logic, Language,
Information,
and Computation
29th International Workshop, WoLLIC 2023
Halifax, NS, Canada, July 11–14, 2023
Proceedings

123

Editors
Helle Hvid Hansen
University of Groningen
Groningen, The Netherlands

Andre Scedrov
University of Pennsylvania
Philadelphia, PA, USA

Ruy J.G.B. de Queiroz
Universidade Federal de Pernambuco
Recife, Pernambuco, Brazil

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-031-39783-7 ISBN 978-3-031-39784-4 (eBook)
https://doi.org/10.1007/978-3-031-39784-4

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2023, corrected publication 2023

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0001-7061-1219
https://orcid.org/0000-0003-1482-0977
https://doi.org/10.1007/978-3-031-39784-4

Preface

This volume contains the papers presented at the 29th Workshop on Logic, Language,
Information and Computation (WoLLIC 2023), held on July 11−14, 2023 at the
Department of Mathematics and Statistics of Dalhousie University, Halifax, Nova
Scotia, Canada. The WoLLIC series of workshops started in 1994 with the aim of
fostering interdisciplinary research in pure and applied logic. The idea is to have a
forum which is large enough in the number of possible interactions between logic and
the sciences related to information and computation, and yet is small enough to allow
for concrete and useful interaction among participants.

For WoLLIC 2023 there were 43 submissions. The committee decided to accept 21
papers. Submissions and the reviewing process were handled using Easychair. Each
submission received at least 3 extensive reviews. PC members had 7 weeks for the
reviewing and discussion. We intentionally chose a large PC to keep the review load
light, in order to keep up the high quality of reviewing that has been the standard at
WoLLIC. PC members were allowed to submit. PC co-chairs did not submit. In order
to safeguard the integrity of the reviewing process, PC members, including the
co-chairs, had to declare conflict with a submission if they were a co-author, shared an
affiliation or recent or upcoming collaboration with one of the co-authors, or if it could
be otherwise perceived that the PC member would have a bias towards the decision on
the submission. Using an Easychair functionality, PC members were blocked from
seeing the reviews and the discussion on submissions for which they had declared a
conflict.

This volume includes all the accepted papers, together with the abstracts of the
invited lectures at WoLLIC 2023:

– Thomas Bolander (Technical University of Denmark, Denmark)
– Makoto Kanazawa (Hosei University, Japan)
– Michael Moortgat (Utrecht University, The Netherlands)
– Magdalena Ortiz (University of Umeå, Sweden)
– Aybüke Özgün (University of Amsterdam, The Netherlands)
– Dusko Pavlovic (University of Hawaii, USA)
– Richard Zach (University of Calgary, Canada)

Four of the invited lecturers gave a tutorial to prepare the audience for their main
talk. The volume also includes the abstracts for these tutorials, which were given by:

– Michael Moortgat (Utrecht University, The Netherlands)
– Magdalena Ortiz (University of Umeå, Sweden)
– Aybüke Özgün (University of Amsterdam, The Netherlands)
– Dusko Pavlovic (University of Hawaii, USA)

The invited speakers were also given the option to submit papers related to their
invited talks. This volume includes 3 invited submissions from the invited speakers

who chose to submit their papers (Kanazawa, Ortiz, Pavlovic). Their submissions were
reviewed by a separate reviewing process, each by 2 different reviewers from the PC.

We would like to thank all the people who contributed to making WoLLIC 2023 a
success. We thank all the invited speakers and the authors for their excellent contri-
butions. We thank the Program Committee and all additional reviewers for the work
they put into reviewing the submissions. One of the additional reviewers was Line van
den Berg, who tragically passed away in May 2023. We are grateful for having
received one of her last services to the logic community.

We thank the Steering Committee and the Advisory Committee for their advice, and
the Local Organizing Committee (especially Peter Selinger and Julien Ross) for their
great support. The submission and reviewing process was faciliated by the Easychair
system by Andrei Voronkov under a professional license.

We gratefully acknowledge financial support for WoLLIC 2023 from the Atlantic
Association for Research in the Mathematical Sciences (AARMS) and Dalhousie
University. We also would like to acknowledge the scientific sponsorship of the fol-
lowing organizations: Interest Group in Pure and Applied Logics (IGPL), Association
for Logic, Language and Information (FoLLI), Association for Symbolic Logic (ASL),
European Association for Theoretical Computer Science (EATCS), European Asso-
ciation for Computer Science Logic (EACSL) and the Brazilian Logic Society (SBL).

June 2023 Helle Hvid Hansen
Andre Scedrov

Ruy J.G.B. de Queiroz

vi Preface

Organization

Program Committee Chairs

Helle Hvid Hansen University of Groningen, The Netherlands
Andre Scedrov University of Pennsylvania, USA

General Chair

Ruy de Queiroz Universidade Federal de Pernambuco, Brazil

Steering Committee

Samson Abramsky University College London, UK
Agata Ciabattoni TU Wien, Austria
Anuj Dawar University of Cambridge, UK
Juliette Kennedy University of Helsinki, Finland
Ulrich Kohlenbach Technische Universität Darmstadt, Germany
Daniel Leivant Indiana University Bloomington, USA
Leonid Libkin University of Edinburgh, UK
Lawrence Moss Indiana University Bloomington, USA
Luke Ong Nanyang Technological University, Singapore
Valeria de Paiva Topos Institute, USA
Elaine Pimentel University College London, UK
Ruy de Queiroz Universidade Federal de Pernambuco, Brazil
Alexandra Silva Cornell University, USA
Renata Wassermann Universidade de São Paulo, Brazil

Advisory Committee

Johan van Benthem University of Amsterdam, The Netherlands, and
Stanford University, USA

Joe Halpern Cornell University, USA
Wilfrid Hodges Queen Mary, University of London, UK
Angus Macintyre Queen Mary, University of London, UK
Hiroakira Ono Japan Advanced Institute of Science and

Technology, Japan
Jouko Väänänen University of Helsinki, Finland

Program Committee

Bahareh Afshari University of Gothenburg, Sweden, and University
of Amsterdam, The Netherlands

Zena Ariola University of Oregon, USA
Adriana Balan University Politehnica of Bucharest, Romania
Marta Bílková Czech Academy of Sciences, Czech Republic
Ranald Clouston Australian National University, Australia
Willem Conradie University of the Witwatersrand, South Africa
Josée Desharnais Laval University, Canada
David Fernández-Duque Universitat de Barcelona, Spain
Santiago Figueira Universidad de Buenos Aires, Argentina
Silvia Ghilezan University of Novi Sad & Mathematical

Institute SASA, Serbia
Sujata Ghosh Indian Statistical Institute, India
Nina Gierasimczuk Technical University of Denmark, Denmark
Helle Hvid Hansen (Co-chair) University of Groningen, The Netherlands
Andreas Herzig CNRS, University of Toulouse, France
Juha Kontinen University of Helsinki, Finland
Roman Kuznets TU Wien, Austria
Martha Lewis University of Bristol, UK
Johannes Marti University of Oxford, UK
George Metcalfe University of Bern, Switzerland
Cláudia Nalon University of Brasilia, Brazil
Carlos Olarte Université Sorbonne Paris Nord, France
Sophie Pinchinat University of Rennes, France
Francesca Poggiolesi CNRS, University Paris 1 Panthéon-Sorbonne,

France
Sylvain Pogodalla Inria Nancy, France
Revantha Ramanayake University of Groningen, The Netherlands
Mehrnoosh Sadrzadeh University College London, UK
Andre Scedrov (Co-chair) University of Pennsylvania, USA
Philip Scott University of Ottawa, Canada
Viorica Sofronie-Stokkermans University of Koblenz-Landau, Germany
Kazushige Terui Kyoto University, Japan
Mladen Vuković University of Zagreb, Croatia

Additional Reviewers

Sergio Abriola Universidad de Buenos Aires, Argentina
A. Baskar Birla Institute of Technology and Science, India
Dylan Bellier École normale supérieure de Rennes, France
Jeremias Berg University of Helsinki, Finland
Line van den Berg University of Bern, Switzerland
Vedran Čačić University of Zagreb, Croatia
David Cerna Czech Academy of Sciences, Czech Republic

viii Organization

Kaustuv Chaudhuri Inria Saclay, France
Vikraman Choudhury University of Glasgow, UK
Diana Costa Universidade de Lisboa, Portugal
Edwin Hamel-de le Court Université Libre de Bruxelles, Belgium
Ugo Dal Lago University of Bologna, Italy
Farzaneh Derakhshan Carnegie Mellon University, USA
Huimin Dong Sun Yat-sen University, China
Fredrik Engström University of Gothenburg, Sweden
Pietro Galliani Free University of Bozen-Bolzano, Italy
Ronald de Haan University of Amsterdam, The Netherlands
Willem Heijltjes University of Bath, UK
Kengo Hirata Kyoto University, Japan
Marko Horvat University of Zagreb, Croatia
Purbita Jana Institute of Mathematical Sciences, India
Mark Jago Nottingham University, UK
Daniil Kozhemiachenko Institut National des Sciences Appliquées, France
Xu Li University of Luxembourg, Luxembourg
Yao Li Portland State University, USA
Chun-Yu Lin Czech Academy of Sciences, Czech Republic
John Longley University of Edinburgh, UK
Meena Mahajan Institute of Mathematical Sciences, India
Alessio Mansutti IMDEA Software Institute, Spain
Maria Vanina Martinez Universidad de Buenos Aires, Argentina
Luka Mikec University of Zagreb, Croatia
Richard Moot CNRS, University of Montpellier, France
Andreas Niskanen University of Helsinki, Finland
Jovana Obradović Serbian Academy of Sciences and Arts, Serbia
Hitoshi Omori Ruhr-Universität Bochum, Germany
Victor Pambuccian Arizona State University, USA
Mattia Panettiere Vrije Universiteit Amsterdam, The Netherlands
Xavier Parent TU Wien, Austria
Romain Péchoux Inria Loria, France
Samuel Pollard Sandia National Laboratories, USA
Davide Emilio Quadrellaro University of Helsinki, Finland
Wilmer Ricciotti University of Edinburgh, UK
S. P. Suresh Chennai Mathematical Institute, India
Yì Nicholas Wáng Sun Yat-sen University, China
Dominik Wehr University of Gothenburg, Sweden

Sponsoring Institutions

Scientific Sponsorship

Interest Group in Pure and Applied Logics (IGPL)
Association for Logic, Language and Information (FoLLI)
Association for Symbolic Logic (ASL)

Organization ix

European Association for Theoretical Computer Science (EATCS)
European Association for Computer Science Logic (EACSL)
Brazilian Logic Society (SBL)

Financial Support

Atlantic Association for Research in the Mathematical Sciences (AARMS)
Dalhousie University

x Organization

Abstracts of Invited Talks

From Dynamic Epistemic Logic to Socially
Intelligent Robots

Thomas Bolander

Technical University of Denmark, Denmark
tobo@dtu.dk

Dynamic Epistemic Logic (DEL) can be used as a formalism for agents to represent the
mental states of other agents: their beliefs and knowledge, and potentially even their
plans and goals. Hence, the logic can be used as a formalism to give agents a Theory of
Mind allowing them to take the perspective of other agents. In my research, I have
combined DEL with techniques from automated planning in order to describe a theory
of what I call Epistemic Planning: planning where agents explicitly reason about the
mental states of others. One of the recurring themes is implicit coordination: how to
successfully achieve joint goals in decentralised multi-agent systems without prior
negotiation or coordination. The talk will first motivate the importance of Theory of
Mind reasoning to achieve efficient agent interaction and coordination, will then give a
brief introduction to epistemic planning based on DEL, address its (computational)
complexity, address issues of implicit coordination and, finally, demonstrate applica-
tions of epistemic planning in human-robot collaboration.

Learning Context-Free Grammars
from Positive Data and Membership Queries

Makoto Kanazawa

Hosei University, Japan
kanazawa@hosei.ac.jp

A key difficulty in learning context-free, as opposed to regular, languages from positive
data and membership queries lies in the relationship between the string sets corre-
sponding to the nonterminals of a context-free grammar and the language generated by
the grammar. In the case of a regular language, the states of a minimal DFA for the
language correspond to the nonempty left quotients of the language. A left quotient of
L is a language of the formunL ¼ fxjux 2 Lg. Whether a string x belongs to unL can be
determined by the membership query “ux 2 L?”. In the case of a context-free language
L generated by a context-free grammar G, there seems to be no general recipe for
deciding membership in the string set associated with a nonterminal of G using the
membership oracle for L.

In this talk, I present some results of recent work (with Ryo Yoshinaka) about
learning a special class of context-free grammars whose nonterminals correspond to
“relativized extended regular expressions”. These expressions translate into
polynomial-time reductions of the membership problem for nonterminals to the
membership problem for the language generated by the grammar. There is a successful
learner for this class that uses these reductions to test postulated productions for
adequacy.

It is an interesting problem to determine the scope of this class of context-free
grammars. We have not yet found a context-free language that is not inherently
ambiguous that has no grammar in this class. Another intriguing open question is
whether extended regular expressions can be restricted to star-free expressions without
altering the class of context-free languages that are covered.

Lambek Calculus and its Modal Extensions

Michael Moortgat

Utrecht University, The Netherlands
M.J.Moortgat@uu.nl

In this talk, I review the different uses of modalities in extensions of the Lambek
calculus and the ensuing challenges for efficient Natural Language Processing.

The Syntactic Calculus, seen as a non-commutative [4] (or also non-associative [5])
precursor of Intuitionistic Linear Logic, is an early representative of substructural logic.
With the revival of interest in the Syntactic Calculus came the realization that the
original formulation lacked the expressivity required for realistic grammar develop-
ment. The extended Lambek calculi introduced in the 1990s enrich the type language
with modalities for structural control. These categorial modalities have found two
distinct uses. On the one hand, they can act as licenses granting modally marked
formulas access to structural operations that by default would not be permitted. On the
other hand, modalities can be used to block structural rules that otherwise would be
available.

Examples of modalities as licensors relate to various aspects of grammatical
resource management: multiplicity, order and structure. As for multiplicity, under the
control of modalities limited forms of copying can be introduced in grammar logics that
overall are resource-sensitive systems. As for order and structure, modalities may be
used to license changes of word order and/or constituent structure that leave the
form-meaning correspondence intact. The complementary use of modalities as block-
ing devices provides the means to seal off phrases as impenetrable locality domains.

Reviewing early results and current work on extensions of the Lambek calculus,
one finds two contrasting views on the nature of modalities. One strand of research
addresses the licensing type of control taking its inspiration from the ‘!’ exponential of
Linear Logic, but introduces sub-exponential refinements providing access to packages
of structural rules, see [1] for a recent representative of this approach. Under the
alternative view, advocated in [6] and subsequent work, modalities come in residuated
pairs (adjoints), unary variants of the residuated triples (product, left and right impli-
cations) of the core Syntactic Calculus; the blocking and licensing type of control here
share the same logical rules. A reconciliation of these views is suggested by the
multi-type approach of [2] who argue on semantic and proof-theoretic grounds that the
linear exponential, rather than being treated as a primitive connective, has to be
decomposed into a composition of adjoint operations.

The fine-grained type theory of modally enhanced Lambek calculus increases the
complexity of Natural Language Processing when it comes to supertagging (assigning
words the contextually appropriate type in the light of high lexical type ambiguity) and
parsing (associating a string of words with a structural representation that can serve as

the scaffolding for semantic interpretation). In the final part of the talk I discuss pro-
posals of [3] that aim to tackle these problems with an integrated neurosymbolic
approach.

References

1. Blaisdell, E., Kanovich, M.I., Kuznetsov, S.L., Pimentel, E., Scedrov, A.:
Non-associative, non-commutative multi-modal linear logic. In: Blanchette, J.,
Kovács, L., Pattinson, D. (eds.) Proceedings IJCAR 2022. Lecture Notes in
Computer Science, vol. 13385, pp. 449−467. Springer, Cham (2022). https://doi.
org/10.1007/978-3-031-10769-6_27

2. Greco, G., Palmigiano, A.: Linear logic properly displayed. ACM Trans. Comput.
Log. 24(2), 13:1−13:56 (2023). https://doi.org/10.1145/3570919

3. Kogkalidis, K.: Dependency as Modality, Parsing as Permutation: A Neurosym-
bolic Perspective on Categorial Grammars. Ph.D. thesis, Utrecht University (2023).
https://doi.org/10.33540/1721

4. Lambek, J.: The mathematics of sentence structure. Am. Math. Mon. 65, 154–170
(1958)

5. Lambek, J.: On the calculus of syntactic types. In: Jakobson, R. (ed.) Structure of
Language and its Mathematical Aspects, Proceedings of Symposia in Applied
Mathematics. vol. XII, pp. 166−178. American Mathematical Society (1961)

6. Moortgat, M.: Multimodal linguistic inference. J. Log. Lang. Inf. 5(3/4), 349–385
(1996). https://doi.org/10.1007/BF00159344

xviii M. Moortgat

https://doi.org/10.1007/978-3-031-10769-6_27
https://doi.org/10.1007/978-3-031-10769-6_27
https://doi.org/10.1145/3570919
https://doi.org/10.33540/1721
https://doi.org/10.1007/BF00159344

A Short Introduction to SHACL for Logicians

Magdalena Ortiz

University of Umeå, Sweden
magdalena.ortiz@umu.se

The SHACL Shapes Constraint Language was recommended in 2017 by the W3C for
describing constraints on web data (specifically, on RDF graphs) and validating them.
At first glance, it may not seem to be a topic for logicians, but as it turns out, SHACL
can be approached as a formal logic, and actually quite an interesting one. In this talk,
we give a brief introduction to SHACL tailored towards logicians. We discuss how
SHACL relates to some well-known modal and description logics, and frame the
common uses of SHACL as familiar logic reasoning tasks. This connection allows us to
infer some interesting results about SHACL. Finally, we summarise some of our recent
work in the SHACL world, aiming to shed light on how ideas, results, and techniques
from well-established areas of logic can advance the state of the art in this emerging
field.

Beliefs Based on Conflicting and Uncertain
Evidence: Connecting Dempster-Shafer
Theory and the Topology of Evidence

Aybüke Özgün

University of Amsterdam, The Netherlands
A.Ozgun@uva.nl

One problem to solve in the context of information fusion, decision-making, and other
artificial intelligence challenges is to compute justified beliefs based on evidence. In
real-life examples, this evidence may be inconsistent, incomplete, or uncertain, making
the problem of evidence fusion highly non-trivial. In this talk, I will present a new
model for measuring degrees of beliefs based on possibly inconsistent, incomplete, and
uncertain evidence, by combining tools from Dempster-Shafer Theory and Topological
Models of Evidence. Our belief model is more general than the aforementioned
approaches in two important ways: (1) it can reproduce them when appropriate con-
straints are imposed, and, more notably, (2) it is flexible enough to compute beliefs
according to various standards that represent agents’ evidential demands. The latter
novelty allows us to compute an agent’s (possibly) distinct degrees of belief, based on
the same evidence, in situations when, e.g, the agent prioritizes avoiding false negatives
and when it prioritizes avoiding false positives. Finally, I will discuss further research
directions and, time permitting, report on the computational complexity of computing
degrees of belief using the proposed belief model.

The main part of the talk is based on joint work with Daira Pinto Prieto and Ronald
de Haan. The underlying topological formalism for evidence and belief has been
developed in collaboration with Alexandru Baltag, Nick Bezhanishvili, and Sonja
Smets.

From Incompleteness of Static Theories
to Completeness of Dynamic Beliefs, in People

and in Bots

Dusko Pavlovic

University of Hawaii, USA
dusko@hawaii.edu

Self-referential statements, referring to their own truth values, have been studied in
logic ever since Epimenides. Self-fulfilling prophecies and self-defeating claims,
modifying their truth values as they go, have been studied in tragedies and comedies
since Sophocles and Aristophanes. In modern times, the methods for steering truth
values in marketing and political campaigns have evolved so rapidly that both the
logical and the dramatic traditions have been left behind in the dust. In this talk, I will
try to provide a logical reconstruction of some of the methods for constructing
self-confirming and self-modifying statements.

The reconstruction requires broadening the logical perspective from static deduc-
tive theories to dynamic and inductive. While the main ideas are familiar from the
theory of computation, the technical prerequisites will also be discussed in the intro-
ductory tutorial.

The Epsilon Calculus in Non-classical Logics:
Recent Results and Open Questions

Richard Zach

University of Calgary, Canada
rzach@ucalgary.ca

The epsilon operator [1, 3] is mainly studied in the context of classical logic. It is a term
forming operator: if A xð Þ is a formula, then ex A xð Þ is a term—intuitively, a witness for
A xð Þ if one exists, but arbitrary otherwise. Its dual sx A xð Þ is a counterexample to A xð Þ
if one exists. Classically, it can be defined as ex :A xð Þ. Epsilon and tau terms allow the
classical quantifiers to be defined: 9x A xð Þ as A ex A xð Þð Þ and 8x A xð Þ as A sx A xð Þð Þ.

Epsilon operators are closely related to Skolem functions, and the fundamental
so-called epsilon theorems to Herbrand’s theorem. Recent work with Matthias Baaz [2]
investigates the proof theory of es-calculi in superintuitionistic logics. In contrast to the
classical e-calculus, the addition of e- and s-operators to intuitionistic and intermediate
logics is not conservative, and the epsilon theorems hold only in special cases.
However, it is conservative as far as the propositional fragment is concerned.

Despite these results, the proof theory and semantics of es-systems on the basis of
non-classical logics remains underexplored.

References

1. Avigad, J., Zach, R.: The epsilon calculus. In: Zalta, E.N. (ed.) Stanford Ency-
clopedia of Philosophy. Fall 2020 edn (2020). https://plato.stanford.edu/archives/
fall2020/entries/epsilon-calculus/

2. Baaz, M., Zach, R.: Epsilon theorems in intermediate logics. J. Symbolic Logic 87
(2), 682–720 (2022). https://doi.org/10.1017/jsl.2021.103

3. Zach, R.: Semantics and proof theory of the epsilon calculus. In: Ghosh, S., Prasad,
S. (eds.) Logic and Its Applications. ICLA 2017, pp. 27–47. No. 10119 in LNCS,
Springer, Berlin (2017). https://doi.org/10.1007/978-3-662-54069-5_4

Supported by the Natural Sciences and Engineering Council of Canada.

https://orcid.org/0000-0003-1633-8324
https://plato.stanford.edu/archives/fall2020/entries/epsilon-calculus/
https://plato.stanford.edu/archives/fall2020/entries/epsilon-calculus/
https://doi.org/10.1017/jsl.2021.103
https://doi.org/10.1007/978-3-662-54069-5_4

Abstracts of Tutorials

Compositionality: Categorial Variations
on a Theme

Michael Moortgat

Utrecht University, The Netherlands
M.J.Moortgat@uu.nl

In the line of work initiated by Richard Montague, natural language syntax and
semantics are related by a homomorphism, a structure-preserving map that sends the
sorts and operations of a syntactic source algebra to their counterparts in an algebra for
composing meanings. In categorial grammar, source and target take the form of
deductive systems, logics of syntactic and semantic types respectively. Natural
language syntax and semantics often pose conflicting demands on compositional
interpretation and different strategies for resolving these conflicts have shaped the
development of the field. The tutorial, aimed at researchers with a logic/computer
science background, illustrates some of the main design choices: what is the
nature of the syntactic calculus - modelling surface form (Lambek) or abstract
syntax (Abstract Categorial Grammar); what is the target interpretation -
truth-conditional/model-theoretic (formal semantics), or vector spaces/linear maps
(distributional semantics); what is the division of labour between lexical and deriva-
tional semantics?

Description Logics and Other Decidable Logics
for Graph-structured Data

Magdalena Ortiz

University of Umeå, Sweden
magdalena.ortiz@umu.se

In this tutorial, we will introduce a few expressive description logics that can be used to
describe graph-shaped structures, and see how these logics relate to well-established
modal logics such as graded and hybrid modal logics, and variants of propositional
dynamic logic (PDL). We will also summarise some computational properties of these
logics, particularly the boundaries of decidability and the complexity of basic reasoning
services.

Dempster-Shafer Theory and Topological
Models for Evidence

Aybüke Özgün

University of Amsterdam, The Netherlands
A.Ozgun@uva.nl

In the short tutorial preceding the invited talk, I will provide a brief introduction to
Dempster-Shafer theory of belief functions and topological models for evidence, and
motivate the proposed framework combining the two approaches.

Prerequisites for the Talk on Incompleteness
of Static Theories and Completeness

of Dynamic Beliefs, in People and in Bots

Dusko Pavlovic

University of Hawaii, USA
dusko@hawaii.edu

The claim of the main talk is that combining the encodings and self-reference leading to
the incompleteness results in static logics and the belief updates in dynamic logics leads
to suitable completeness results. But the combined formalism needed to prove this
claim may seem unfamiliar. I will use this tutorial to explain how this unfamiliar
framework arises from familiar formalisms. (I will also do my best to make it possible
to follow both the main talk and the tutorial independently, but the presented research is
concerned with self-fulfilling and self-deceiving claims, so it is applicable to itself.)

Contents

Invited Papers

Learning Context-Free Grammars from Positive Data and
Membership Queries . 3

Makoto Kanazawa

A Short Introduction to SHACL for Logicians . 19
Magdalena Ortiz

From Gödel’s Incompleteness Theorem to the Completeness of
Bot Beliefs (Extended Abstract) . 33

Dusko Pavlovic and Temra Pavlovic

Contributed Papers

Quantitative Global Memory . 53
Sandra Alves, Delia Kesner, and Miguel Ramos

Effective Skolemization . 69
Matthias Baaz and Anela Lolić

Factive Complements are Not Always Unique Entities:
A Case Study with Bangla Remember . 83

Arka Banerjee

Two-Layered Logics for Paraconsistent Probabilities 101
Marta Bílková, Sabine Frittella, Daniil Kozhemiachenko,
and Ondrej Majer

An Axiom System for Basic Hybrid Logic with Propositional Quantifiers 118
Patrick Blackburn, Torben Braüner, and Julie Lundbak Kofod

An Evidence Logic Perspective on Schotch-Jennings Forcing 135
Tyler D. P. Brunet and Gillman Payette

A Separation Logic with Histories of Epistemic Actions as Resources 161
Hans van Ditmarsch, Didier Galmiche, and Marta Gawek

Conditional Obligations in Justification Logic . 178
Federico L. G. Faroldi, Atefeh Rohani, and Thomas Studer

Structural Completeness and Superintuitionistic Inquisitive Logics. 194
Thomas Ferguson and Vít Punčochář

Validity in Choice Logics: A Game-Theoretic Investigation 211
Robert Freiman and Michael Bernreiter

Aleatoric Propositions: Reasoning About Coins . 227
Tim French

Towards an Induction Principle for Nested Data Types 244
Peng Fu and Peter Selinger

A Principled Approach to Expectation Maximisation and Latent Dirichlet
Allocation Using Jeffrey’s Update Rule . 256

Bart Jacobs

Parameterized Complexity of Propositional Inclusion and Independence
Logic. 274

Yasir Mahmood and Jonni Virtema

Parallelism in Realizability Models . 292
Satoshi Nakata

Bisimulations Between Verbrugge Models and Veltman Models 305
Tin Perkov

Focus-Style Proofs for the Two-Way Alternation-Free l-Calculus 318
Jan Rooduijn and Yde Venema

Relevant Reasoning and Implicit Beliefs . 336
Igor Sedlár and Pietro Vigiani

Decidability of Modal Logics of Non-k-Colorable Graphs 351
Ilya Shapirovsky

Subsumption-Linear Q-Resolution for QBF Theorem Proving. 362
Allen Van Gelder

Maximally Multi-Focused Proofs for Skew Non-Commutative MILL. 377
Niccolò Veltri

Correction to: Decidability of Modal Logics of Non-k-Colorable Graphs C1
Ilya Shapirovsky

Author Index . 395

xxxviii Contents

Invited Papers

Learning Context-Free Grammars
from Positive Data and Membership

Queries

Makoto Kanazawa(B)

Faculty of Science and Engineering, Hosei University, Koganei, Japan
kanazawa@hosei.ac.jp

https://makotokanazawa.ws.hosei.ac.jp

Abstract. I review some recent results on learning subclasses of the
context-free grammars from positive data and membership queries. I
motivate the relevant learning algorithms through comparison with a
similar and arguably reasonable learning algorithm for regular languages.

Keywords: Grammatical inference · Membership queries ·
Context-free grammars · Extended regular closure

1 Introduction

This paper concerns algorithmic learning of context-free languages. The “learn-
ing paradigm” we use is polynomial-time identification in the limit from positive
data and membership queries. The learner receives an infinite stream of pos-
itive examples enumerating the target language, and each time it receives a
new positive example, it makes polynomially many queries to the oracle for the
target language before outputting a hypothesis. The goal is to converge to a
correct grammar for the target language. The availability of the membership
oracle makes it possible to learn some interesting subclasses of the context-free
languages that properly include the regular languages. This paper presents a
variant of previously proposed learning algorithms for three such classes [5–7,9].

A key difficulty in learning context-free, as opposed to regular, languages lies
in the relationship between the string sets corresponding to the nonterminals of
a context-free grammar and the generated language. In the case of a regular lan-
guage, states of a minimal DFA for the language correspond to its left quotients.1

A left quotient of a language L is a language of the form u\L = {x | ux ∈ L},
where u is some string. In order to determine whether a string x belongs to
u\L, the learner can just ask the membership oracle whether ux belongs to L.
Furthermore, when L is regular, there are only finitely many left quotients of L,
and this makes it possible to identify the set of left quotients of L in the limit.

In the case of a context-free grammar G, the relationship between the set of
strings derived from a nonterminal A of G and the language L = L(G) of G is
1 In this paper, by a “minimal DFA” for a regular language, we mean one with no

dead state.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
H. H. Hansen et al. (Eds.): WoLLIC 2023, LNCS 13923, pp. 3–18, 2023.
https://doi.org/10.1007/978-3-031-39784-4_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-39784-4_1&domain=pdf
https://doi.org/10.1007/978-3-031-39784-4_1

4 M. Kanazawa

much less straightforward. Unless A is useless, there is a pair of terminal strings
(u, v) such that S ⇒∗

G uAv, so the set LG(A) = {x | A ⇒∗
G x} must be a subset

of u\L/v = {x | uxv ∈ L}. (A set of this latter form is called a quotient of L.)
In general, LG(A) may be a proper subset of

⋂{u\L/v | S ⇒∗
G uAv}, and it is

not clear whether there is anything further that can be said in general about the
relationship between LG(A) and the quotients of L.

The kind of learning algorithm we look at in this paper simply assumes
that the string set associated with each nonterminal of the target grammar G∗
can be expressed as the result of applying certain operations to quotients of
L∗ = L(G∗). We consider three successively larger sets of operations that may
be used in these expressions: (i) the set consisting of intersection only, (ii) the
set of Boolean operations, and (iii) the set consisting of Boolean and regular
operations. With the choice (i), the string sets associated with the nonterminals
are in the intersection closure of Quot(L∗) = {u\L∗/v | (u, v) ∈ Σ∗ × Σ∗}, the
set of quotients of L∗. With (ii), they are in the Boolean closure of Quot(L∗).
With (iii), they are in what we call the extended regular closure of Quot(L∗).
When K is a language in one of these classes, the membership of a string x in K
can be determined by making a finite number of queries of the form “uyv ∈ L∗?”,
where (u, v) is an element of some fixed set (depending on K) and y is a substring
of x. As we will see, the fact that the membership problem for the set associated
with a nonterminal reduces to the membership problem for the target language
means that the “validity” of a production can be decided in the limit with the
help of the oracle for the target language.

Before describing our learning algorithms for the three subclasses of the
context-free languages (Sect. 3), it is perhaps instructive to look at how the
class of regular languages can be learned within the same paradigm, so we start
with the latter.

2 Regular Languages

Let us describe a learning algorithm that identifies an unknown regular language
L∗ from positive data and membership queries. So as to facilitate comparison
with the case of context-free languages, we assume that the learner outputs
right-linear context-free grammars. A context-free grammar G = (N,Σ,P, S),
where N is the set of nonterminals, Σ is the terminal alphabet, P is the set
of productions, and S is the start symbol, is said to be right-linear if each
production in P is either of the form A → aB or of the form A → ε, where
A,B ∈ N and a ∈ Σ. Suppose that G∗ = (N∗, Σ, P∗, S) is the right-linear
context-free grammar corresponding to the minimal DFA for L∗. (This means
that G∗ has no useless nonterminal.) The sets of terminal strings derived from the
nonterminals of G∗ are exactly the nonempty left quotients of L∗. For each B ∈
N∗, let uB be the length-lexicographically first string such that uB\L∗ = {x ∈
Σ∗ | B ⇒∗

G∗ x}.2 We have uS = ε, corresponding to ε\L∗ = L∗. Productions in
P∗ are of one of two forms:
2 The choice of the length-lexicographic order is not essential. Other strict total orders

on Σ∗ may be used instead, provided that the empty string comes first.

Learning Context-Free Grammars 5

A → aB, where a ∈ Σ and uAa\L∗ = uB\L∗,
A → ε, where uA ∈ L∗.

(The former type of production means that there is a transition labeled a from
the state corresponding to A to the state corresponding to B in the minimal
DFA, and the latter type of production means that A corresponds to a final
state.) The learner’s task is (i) to identify the set Q∗ = {uB | B ∈ N∗}, and (ii)
to determine, for each u, v ∈ Q∗ and a ∈ Σ, whether ua\L∗ = v\L∗.

For K ⊆ Σ∗, let

Pref(K) = {u ∈ Σ∗ | uv ∈ K for some v ∈ Σ∗},

Suff(K) = {v ∈ Σ∗ | uv ∈ K for some u ∈ Σ∗}.

One reasonable strategy for the learner is to work under the assumption that the
available positive data T is large enough that Q∗ ⊆ Pref(T) and for each pair
of distinct nonempty left quotients of L∗, a string in their symmetric difference
occurs in ({ε} ∪ Σ)Suff(T). (The assumption will eventually be true.) Let ≺ be
the length-lexicographic strict total order on Σ∗. For J,E ⊆ Σ∗, define

Q(J,E) = {u | u ∈ J and for every v ∈ J,

if v ≺ u, then({ε} ∪ Σ)E ∩ (v\L∗)
= ({ε} ∪ Σ)E ∩ (u\L∗)}.

Then Q(Pref(T),Suff(T)) is the set of nonterminals of the grammar the learner
hypothesizes. When we use a string u as a nonterminal in a grammar, we write
〈〈u〉〉 instead of just u to avoid confusion. A production 〈〈u〉〉 → a 〈〈v〉〉 should be
included in the grammar if and only if ua\L∗ = v\L∗, but this cannot be decided
without knowledge of the identity of L∗, even with the help of the oracle for L∗.
It is again reasonable for the learner to assume that the available positive data
is large enough to provide any witness to the falsity of this identity. Let

P (J,E) = {〈〈u〉〉 → a 〈〈v〉〉 | u, v ∈ J, a ∈ Σ,E ∩ (ua\L∗) = E ∩ (v\L∗)} ∪
{〈〈u〉〉 → ε | u ∈ J, u ∈ L∗}.

(1)

Then P (Q(Pref(T),Suff(T)),Suff(T)) is the set of productions of the hypothe-
sized grammar.

The learning algorithm in its entirety is listed in Algorithm 1.3

It is not difficult to see that the output Gi of Algorithm 1 is isomorphic to
G∗ whenever the following conditions hold:4

(i) Q∗ ⊆ Pref(Ti),
(ii) for each u, v ∈ Q∗,

u\L∗
= v\L∗ =⇒ ({ε} ∪ Σ)Suff(Ti) ∩ ((u\L∗) (v\L∗))
= ∅,

3 There is an obvious connection with the work of Angluin [1,2] and many others which
I will not discuss here since this algorithm is not the basis of our generalization to
context-free languages.

4 I write X � Y for the symmetric difference of X and Y .

6 M. Kanazawa

Algorithm 1. Learner for the regular languages.
Data: A positive presentation t1, t2, . . . of L∗ ⊆ Σ∗; membership oracle for L∗;
Result: A sequence of grammars G1, G2, . . . ;

T0 := ∅;
for i = 1, 2, . . . do

Ti := Ti−1 ∪ {ti}; output Gi := (Ni, Σ, Pi, 〈〈ε〉〉) where

Ni := Q(Pref(Ti), Suff(Ti));

Pi := P (Ni, Suff(Ti));

end

(iii) for each u, v ∈ Q∗ and a ∈ Σ,

ua\L∗
= v\L∗ =⇒ Suff(Ti) ∩ ((ua\L∗) (v\L∗))
= ∅.

Computing N(Ti) requires membership queries for all elements of
Pref(Ti) ({ε} ∪ Σ) Suff(Ti), while computing P (Ti) requires membership queries
for some subset of Pref(Ti) ({ε} ∪ Σ) Suff(Ti). The number of queries needed to
compute Gi is polynomial in the total lengths of the strings in Ti.

Algorithm 1 satisfies the following properties:

(a) It is set-driven: Gi is determined uniquely by {t1, . . . , ti} (for a fixed L∗ but
across different positive presentations t1, t2, . . . of L∗).

(b) Its conjecture is consistent with the positive data: {t1, . . . , ti} ⊆ L(Gi).5
(c) It updates its conjecture in polynomial time (in the total lengths of the

strings in {t1, . . . , ti}).
(d) There is a “characteristic sample” D ⊆ L∗ whose total size is polynomial

in the representation size of G∗ such that Gi is isomorphic to G∗ whenever
D ⊆ {t1, . . . , ti}.

These characteristics of Algorithm 1 obviously rest on special properties of
the regular languages, and not all of them can be maintained as we move to
learning algorithms for context-free languages. We keep (c), but abandon (a),
(b), and (d) in favor of weaker conditions. Since a context-free language has
no canonical grammar and there is no polynomial bound on the length of the
shortest string generated by a context-free grammar, we cannot hope to maintain
(d), but even the following weakening will not hold of our algorithms:

(d†) There is a “characteristic sample” D ⊆ L∗ whose cardinality is polynomial
in the representation size of G∗ such that L(Gi) = L∗ whenever D ⊆ Ti.

Let us illustrate the kind of change we must make with another learning
algorithm for the regular languages. The algorithm will no longer be set-driven.
For J,E ⊆ Σ∗, define

P ′(J,E) = {〈〈u〉〉 → a 〈〈v〉〉 | u, v ∈ J, a ∈ Σ, u\L∗ ⊇ a (E ∩ (v\L∗))} ∪
{〈〈u〉〉 → ε | u ∈ J, u ∈ L∗}.

(2)

5 This requires a proof. Here it is crucial that we had ({ε} ∪ Σ)E rather than E in
the definition of Q(J, E).

Learning Context-Free Grammars 7

Since u\L∗ ⊇ a (E ∩ (v\L∗)) is equivalent to E ∩ (ua\L∗) ⊇ E ∩ (v\L∗), the
difference between P (J,E) and P ′(J,E) just consists in replacing equality with
inclusion. The algorithm updates the set Ji of prefixes of positive examples only
when the positive examples received so far are incompatible with the previous
conjecture. It is listed in Algorithm 2.

Algorithm 2. Learner for the regular languages, nondeterministic version.
Data: A positive presentation t1, t2, . . . of L∗ ⊆ Σ∗; membership oracle for L∗;
Result: A sequence of grammars G1, G2, . . . ;

T0 := ∅; E0 := ∅; J0 := ∅; G0 := ({〈〈ε〉〉}, Σ, ∅, 〈〈ε〉〉);
for i = 1, 2, . . . do

Ti := Ti−1 ∪ {ti}; Ei := Ei−1 ∪ Suff({ti});
if Ti ⊆ L(Gi−1) then

Ji := Ji−1;
else

Ji := Pref(Ti);
end
Ni := Q(Ji, Ei);
Pi := P ′(Ni, Ei);
output Gi := (Ni, Σ, Pi, 〈〈ε〉〉);

end

Suppose that the conditions (i), (ii) above and the following condition (iii′)
hold of Ti:

(iii′) for each u, v ∈ Q∗ and a ∈ Σ,

u\L∗
⊇ a(v\L∗) =⇒ a (Suff(Ti) ∩ (v\L∗)) − (u\L∗)
= ∅.

The conditions (i) and (ii) mean that Q∗ = Q (Pref(Ti), Ei). There are two cases
to consider.

Case 1. Ti
⊆ L(Gi−1). Then Ji = Pref(Ti) and Ni = Q∗. The condition (iii′)
then means that

Pi = P ′(Ni, Ei)
= {〈〈u〉〉 → a 〈〈v〉〉 | u, v ∈ Q∗, a ∈ Σ, u\L∗ ⊇ a (v\L∗)} ∪

{〈〈u〉〉 → ε | u ∈ Q∗, u ∈ L∗}.

The learner’s hypothesis Gi is just like G∗ (the right-linear grammar correspond-
ing to the minimal DFA for L∗) except that it may have additional productions.
In general, the finite automaton corresponding to Gi is nondeterministic, but it
accepts exactly the same strings as the minimal DFA. It is in fact the result of
adding to the minimal DFA as many transitions as possible without changing
the accepted language. (Let us call this NFA the fattening of the minimal DFA.)
We have L(Gi) = L∗, and at all stages l ≥ i, the sets Nl and Pl, as well as the
output grammar Gl, will stay constant.

8 M. Kanazawa

Fig. 1. The minimal DFA for aba∗ ∪ bb∗ ∪ aa(a∗ ∪ b∗) (left) and its fattening (right).

Case 2. Ti ⊆ L(Gi−1). In this case, Ji may be a proper subset of Pref(Ti).
The condition (ii) implies that Ni is in one-to-one correspondence with some
subset of Q∗. That is to say, for each u′ ∈ Ni, there is a u ∈ Q∗ such that
u′\L∗ = u\L∗, and if u′, v′ ∈ Ni and u′\L∗ = v′\L∗, then u′ = v′. The condition
(iii′) implies

P ′(Ni, Ei) = {〈〈u〉〉 → a 〈〈v〉〉 | u, v ∈ Ni, a ∈ Σ, u\L∗ ⊇ a (v\L∗)} ∪
{〈〈u〉〉 → ε | u ∈ Ni, u ∈ L∗}.

This means that the NFA corresponding to this right-linear grammar is isomor-
phic to a subautomaton of the fattening of the minimal DFA, so we must have
L(Gi) ⊆ L∗. If L(Gi) = L∗, then the learner’s hypothesis will remain the same
at all later stages. If L∗ − L(Gi)
= ∅, then Case 1 applies at the earliest stage
l ≥ i such that tl
∈ L(Gi).

Example 1. Suppose that the target language is L∗ = aba∗ ∪ bb∗ ∪ aa(a∗ ∪ b∗).
The minimal DFA for L∗ and its fattening are shown in Fig. 1. On receiving
{b, aa, ab} (presented in this order), Algorithm 2 outputs the right-linear gram-
mar corresponding to the NFA on the right. On receiving {b, aba}, it outputs
the right-linear grammar corresponding to the NFA in Fig. 2. In both cases, the
learner’s hypothesis stays constant at all later stages.

Although Algorithm 2 is not set-driven and the grammar it stabilizes on
depends on the order of the positive presentation, its behavior is not unreason-
able. In a way, it tries to postulate as few nonterminals (states) as possible. It
processes all positive examples immediately and does not engage in any “delay-
ing trick” [3,4] just to achieve polynomial update time.

Instead of (a) and (b), Algorithm 2 satisfies the following weaker conditions:

(a′) If {t1, . . . , ti} ⊆ L(Gi) and ti+1 ∈ {t1, . . . , ti}, then Gi+1 = Gi.
(b′) If {t1, . . . , ti}
⊆ L(Gi−1), then {t1, . . . , ti} ⊆ L(Gi).

It is easy to verify (a′). For (b′), if tk = a1 . . . an with aj ∈ Σ (1 ≤ j ≤ n), then
Pref({tk}) ⊆ Ji means that for each j = 0, . . . , n, there is a uj ∈ Ni such that

Learning Context-Free Grammars 9

Fig. 2. An NFA for aba∗ ∪ bb∗ ∪ aa(a∗ ∪ b∗).

({ε} ∪ Σ)Ei ∩ (uj\L∗) = ({ε} ∪ Σ)Ei ∩ (a1 . . . aj\L∗). We have

aj+1(Ei ∩ (vj+1\L∗)) = aj+1(Ei ∩ (a1 . . . aj+1\L∗))
= aj+1Ei ∩ (a1 . . . aj\L∗)
= aj+1Ei ∩ (vj\L∗)
⊆ vj\L∗,

so Pi contains the production 〈〈vj〉〉 → aj+1〈〈vj+1〉〉. Since

ε ∈ {ε}Ei ∩ (a1 . . . an\L∗) = {ε}Ei ∩ (vn\L∗),

we have vn ∈ L∗, which implies that 〈〈vn〉〉 → ε is in Pi as well. So we have a
derivation 〈〈ε〉〉 = 〈〈v0〉〉 ⇒∗

Gi
a1 . . . an = tk.

We cannot prove that Algorithm 2 satisfies (d) (or (d†), for that matter) in
the same way we proved (d) for Algorithm 1. This is because when D ⊆ Ti,
where D is a polynomial-sized set satisfying (i), (ii), and (iii′), we may have
Ti ⊆ L(Gi−1), in which case the algorithm may need an additional string from
L∗ − L(Gi) in order to reach a correct grammar. This additional string depends
on the set Ni ⊂ Q∗, of which there are exponentially many possibilities.6 We
can summarize this behavior of Algorithm 2 as follows:

(d′) There is a finite set D ⊆ L∗ whose total size is bounded by a polynomial
in the representation size of G∗ such that whenever D ⊆ {t1, . . . , ti}, there
is a string t, depending on (t1, . . . , ti), of length less than |Q∗| such that
whenever t ∈ {ti+1, . . . , tl}, Gl is constant and isomorphic to the right-linear
grammar corresponding to a subautomaton of the fattening of the minimal
DFA corresponding to G∗.

Our learning algorithms for context-free languages resemble Algorithm 2 in
many ways, but also differ in some important respects.

6 We only need to worry about maximal subsets of Q∗ such that the corresponding
subautomaton of the fattening of the minimal DFA for L∗ fails to accept all strings
in L∗. Still, there may be exponentially many such maximal sets.

10 M. Kanazawa

3 Context-Free Languages

Like Algorithms 1 and 2, our algorithms for learning context-free languages
use membership queries to test whether a given string x belongs to the string
set associated with a postulated nonterminal. For this to be possible, we must
assume that the set reduces in polynomial time to the target language L∗. The
reduction must be uniform across different target languages—the learner must
have a representation of a nonterminal without full knowledge of the target
language, and this representation must determine the reduction by which the
string set of the nonterminal reduces to the target language.

Let us formally define the three subclasses of context-free grammars we
are interested in. If G = (N,Σ,P, S) is a context-free grammar, a tuple
(XB)B∈N of sets in P(Σ∗) is a pre-fixed point of G if for each production
A → w0 B1 w1 . . . Bn wn in P , we have

XA ⊇ w0 XB1 w1 . . . XBn
wn.

The tuple (XB)B∈N with XB = Σ∗ for all B ∈ N is the greatest pre-fixed
point of G, and the tuple (LG(B))B∈N is the least pre-fixed point (under the
partial order of componentwise inclusion). A pre-fixed point (XB)B∈N is sound
if XS ⊆ L(G) (or, equivalently, if XS = L(G)). Let Γ be a set of operations on
P(Σ∗) (of varying arity). Then G has the Γ -closure property if G has a sound
pre-fixed point (SPP) each of whose components belongs to the Γ -closure of
Quot(L(G)). Setting Γ to {∩}, we get the class of context-free grammars with
the intersection closure property. With Γ = {∩, ·,∪} (intersection, complement,
and union), we get the context-free grammars with the Boolean closure property.
If we add to this set ∅, ε, and a (a ∈ Σ) (considered the zero-ary operations
producing ∅, {ε}, and {a}, respectively) and the concatenation and Kleene star
operations, we get the context-free grammars with the extended regular closure
property.

Our learning algorithms targeting context-free grammars with the Γ -closure
property use expressions built from query atoms (u, v)�, where u, v ∈ Σ∗, and
symbols for operations in Γ . These expressions denote subsets of Σ∗ relative to
L∗ in the obvious way:

[[(u, v)�]]L∗ = u\L∗/v,

[[e1 ∩ e2]]
L∗ = [[e1]]

L∗ ∩ [[e2]]
L∗ ,

[[e1]]
L∗ = Σ∗ − [[e1]]

L∗ ,

[[e1 ∪ e2]]
L∗ = [[e1]]

L∗ ∪ [[e2]]
L∗ ,

[[∅]]L∗ = ∅,

[[ε]]L∗ = {ε},

[[a]]L∗ = {a},

[[e1e2]]
L∗ = [[e1]]

L∗ [[e2]]
L∗ ,

[[
e∗1

]]L∗ = ([[e1]]
L∗)∗.

An important property of these expressions is the following. If e is an expression,
let Ce = {(u, v) | (u, v)�occurs in e}.

Learning Context-Free Grammars 11

(*) The truth value of x ∈ [[e]]L∗ only depends on the truth values of y ∈ u\L∗/v
for substrings y of x and (u, v) ∈ Ce.

3.1 Examples

Let us look at some examples.7 If A is a nonterminal of a grammar G, we often
abuse the notation and write just A for the set LG(A).

Example 2. Consider

L1 = {ambn | m is even and m = n} ∪ {ambn | m is odd and 2m = n}.

This language is generated by the following grammar:

S → T | U, T → ε | aaTbb, U → abb | aaUbbbb.

We have

S = L1 = [[(ε, ε)�]]L1 ,

T = {ambn | m is even and m = n} = [[(ε, ε)� ∩ (aa, bb)�]]L1 ,

U = {ambn | m is odd and 2m = n} = [[(ε, ε)� ∩ (aa, bbbb)�]]L1 .

So this grammar has the intersection closure property.

Example 3. Consider

L2 = {ambn | m is even and m = n} ∪ {ambn | m is odd and 2m ≤ n}.

This language is generated by the following grammar:

S → T | UB, T → ε | aaTbb, U → abb | aaUbbbb, B → ε | Bb.

We have

S = L2 = [[(ε, ε)�]]L2 ,

T = {ambn | m is even and m = n} =
[[
(ε, ε)� ∩ (aa, bbbb)�

]]L2

,

U = {ambn | m is odd and 2m = n} =
[[
(ε, ε)� ∩ (aa, bbbb)� ∩ (aa, bbb)�

]]L2

,

B = b∗ = [[(abb, ε)]]L2 .

So this grammar has the Boolean closure property. We can show that the set T
is not in the intersection closure of Quot(L2), and indeed, L2 has no grammar
with the intersection closure property.

7 In all of these examples, the SPP witnessing the relevant closure property is the least
SPP, but there are cases where the witnessing SPP cannot be the least one [5].

12 M. Kanazawa

Example 4. Consider

L3 = {ambn | m is even and m ≥ n} ∪ {ambn | m is odd and 2m ≤ n ≤ 3m}.

This language is generated by the following grammar:

S → AT | U, A → ε | Aaa, T → ε | aaTbb,

U → abb | V | aaUbbbb, V → abbb | aaV bbbbbb.

We have

S = L3 = [[(ε, ε)�]]L3 ,

A = (aa)∗ = [[(ε, aabb)�]]L3

T = {ambn | m is even and m = n} =
[[
(ε, ε)� ∩ (aa)∗b∗ ∩ (ε, b)�

]]L3

,

U = {ambn | m is odd and 2m ≤ n ≤ 3m} =
[[
(ε, ε)� ∩ (aa)∗ab∗]]L3

,

V = {ambn | m is odd and n = 3m} =
[[
(ε, ε)� ∩ (aa)∗ab∗ ∩ (ε, b)�

]]L3

So this grammar has the extended regular closure property. We can show that
L3 has no grammar with the Boolean closure property.

Example 5. Consider

L4 = {ambn | m ≥ n} ∪ {ambn | m ≥ 1 and 2m ≤ n ≤ 3m}.

Unlike the previous three examples, this is not a deterministic context-free lan-
guage. It is generated by the following unambiguous grammar:

S → AT | U, A → ε | Aa, T → ε | aTb,

U → abb | V | aUbb, V → abbb | aV bbb.

We have

S = L4 = [[(ε, ε)�]]L4 ,

A = a∗ = [[(ε, ab)�]]L4 ,

T = {ambn | m = n} =
[[
(ε, ε)� ∩

(
ε ∪ (a, bb)�

)]]L4

,

U = {ambn | m ≥ 1 and 2m ≤ n ≤ 3m} =
[[
(ε, ε)� ∩

(
ab ∪ (ε, ε)�

)
bb∗

]]L4

,

V = {ambn | n = 3m} =
[[
(ε, ε)� ∩

(
ab ∪ (ε, ε)�

)
bb∗ ∩ (ε, b)�

]]L4

.

So this grammar has the extended regular closure property. Again, we can show
that L4 has no grammar with the Boolean closure property.

Example 6. The inherently ambiguous language

{albmcndq | l,m, n, q ≥ 1 and l = n ∨ m > q}
does not have a grammar with the extended regular closure property [7].

Learning Context-Free Grammars 13

3.2 Algorithm

Let us describe our algorithm for learning context-free languages, leaving the set
Γ of available operations as an unspecified parameter. The set Γ may be any
subset of the Boolean and regular operations, as long as it contains intersection.
In this algorithm, quotients of L∗ will play a role similar to the role left quo-
tients played in Algorithm 2. An important difference is that since a context-free
language has infinitely many quotients (unless it is regular), the learner cannot
identify the set of all quotients, even in the limit. It tries to identify a superset
of the set of quotients the target grammar “uses”, so to speak, and this is done
by a strategy similar to Algorithm 2.

Since the learner can only postulate a polynomial number of nonterminals,
we place an arbitrary finite bound k on the number of occurrences of symbols
for operations in the representation of a nonterminal. Since polynomially many
string pairs (u, v) are available as building blocks of nonterminals, this is a
necessary restriction.

We also have to place a suitable syntactic restriction on nonterminals that
ensures that their denotations relative to L∗ are included in Sub(L∗) = {x |
for some (u, v), uxv ∈ L∗}. We call a nonterminal obeying this restriction
guarded :

– (u, v)� is guarded.
– If e1 is guarded, so is e1 ∩ e2.
– If e1 and e2 are guarded, so is e1 ∪ e2.

If C is a finite subset of Σ∗ × Σ∗, we write Ek(C,Γ) for the set of all guarded
expressions built up from query atoms in {(u, v)� | (u, v) ∈ C} using operations
in Γ up to k times.8

As for productions, we place a bound r on the number of occurrences of
nonterminals and a bound s on the length of contiguous terminal strings on the
right-hand side of a production. So a production postulated by the learner is of
the form

A → w0 B1 w1 . . . Bn wn,

where n ≤ r and |wi| ≤ s (0 ≤ i ≤ n).9 The notation 〈Σ≤s〉≤r+1 is used to
denote the set of possible choices of (w0, w1, . . . , wn). Note that if E ⊆ Σ∗ is
closed under substring, then the set

Σ≤s(E Σ≤s)≤r =
⋃

{w0 E w1 . . . E wn | (w0, w1, . . . , wn) ∈ 〈Σ≤s〉≤r+1}

is also closed under substring, and is a superset of E.

8 A reasonable optimization is to put expressions in some suitable “normal form”, to
avoid including a large number of equivalent expressions in Ek(C, Γ).

9 An alternative is to allow arbitrary terminal strings to surround nonterminals on the
right-hand side of productions, as long as they are “observed” in the positive data
[5–7].

14 M. Kanazawa

Define a strict total order ≺2 on Σ∗ × Σ∗ by

(u1, u2) ≺2 (v1, v2) ⇐⇒ u1 ≺ v1 ∨ (u1 = v1 ∧ u2 ≺ v2).

We write �2 for the reflexive counterpart of ≺2. For J ⊆ Σ∗ ×Σ∗ and E ⊆ Σ∗,
let

Qr,s(J,E) =
{(u1, u2) | (u1, u2) ∈ J and for each (v1, v2) ∈ J,

if (v1, v2) ≺2 (u1, u2), then

(Σ≤s(E Σ≤s)≤r) ∩ (v1\L∗/v2)
= (Σ≤s(E Σ≤s)≤r) ∩ (u1\L∗/u2)}.

For K,E ⊆ Σ∗ and a set N of expressions, define

Sub(K) = {y ∈ Σ∗ | uyv ∈ K for some (u, v) ∈ Σ∗ × Σ∗},

Con(K) = {(u, v) ∈ Σ∗ × Σ∗ | uyv ∈ K for some y ∈ Σ∗},

P r,s(N,E) = {A → w0 B1 w1 . . . Bn wn |
0 ≤ n ≤ r,A,B1, . . . , Bn ∈ N,

(w0, w1, . . . , wn) ∈ 〈Σ≤s〉≤r+1,

[[A]]L∗ ⊇ w0 (E ∩ [[B1]]
L∗)w1 . . . (E ∩ [[Bn]]L∗)wn}.

The inclusion [[A]]L∗ ⊇ w0 (E∩[[B1]]
L∗)w1 . . . (E∩[[Bn]]L∗)wn in the definition of

P r,s(N,E) is analogous to the inclusion u\L∗ ⊇ a (E ∩ (v\L∗)) in the definition
of P ′(J,E) in (2).

With the necessary definitions in place, we can list the learning algorithm in
Algorithm 3.

Algorithm 3. Learner for a subclass of the context-free languages.
Parameters: Positive integers r, s, k
Data: A positive presentation t1, t2, . . . of L∗ ⊆ Σ∗; membership oracle for L∗;
Result: A sequence of grammars G1, G2, . . . ;

T0 := ∅; E0 := ∅; J0 := ∅; G0 := ({(ε, ε)�}, Σ, ∅, (ε, ε)�);
for i = 1, 2, . . . do

Ti := Ti−1 ∪ {ti}; Ei := Ei−1 ∪ Sub({ti});
if Ti ⊆ L(Gi−1) then

Ji := Ji−1;
else

Ji := Con(Ti);
end
Ni := Ek(Qr,s(Ji, Ei), Γ);
Pi := P r,s(Ni, Ei);
output Gi := (Ni, Σ, Pi, (ε, ε)

�);
end

Learning Context-Free Grammars 15

By the property (∗) of expressions used by the learner, membership queries
that are needed to compute Ni and Pi are all of the form “uyv ∈ L∗?”, where
(u, v) ∈ Con(Ti) and y ∈ Σ≤s(Sub(Ti)Σ≤s)≤r. There are only polynomially
many of them (in the total lengths of the strings in Ti).

Algorithm 3 is by no means capable of learning all context-free languages.
What is the class of context-free languages that the algorithm can learn? Recall
that the denotation of each nonterminal B (relative to L∗) is a subset of Sub(L∗).
Because of how P r,s(N,E) is defined, if Algorithm 3 stabilizes on a grammar
Gi, then all its productions A → w0 B1 w1 . . . Bn wn are valid in the sense that

[[A]]L∗ ⊇ w0 [[B1]]
L∗ w1 . . . [[Bn]]L∗ wn, (3)

since
⋃

i Ei = Sub(L∗). This means that the tuple of sets ([[B]]L∗)B∈Ni
is a pre-

fixed point of Gi. So LGi
(B) ⊆ [[B]]L∗ . In particular, L(Gi) = LGi

((ε, ε)�) ⊆
[[(ε, ε)�]]L∗ = L∗. The converse inclusion can be shown by appealing to the fact
that Algorithm 3 satisfies the property (b′), which can be proved in the same
way as with Algorithm 2. If L∗
⊆ L(Gi), then at the earliest stage l > i such that
tl
∈ L(Gi), we must have Gl
= Gi, since tl ∈ L(Gl) by (b′). This contradicts
the assumption that Algorithm 3 stabilizes on Gi. So we have L(Gi) = L∗ and
([[B]]L∗)B∈Ni

is an SPP of Gi. This shows that Gi has the Γ -closure property.

Theorem 7. If, given a positive presentation of L∗ and the membership oracle
for L∗, Algorithm 3 stabilizes on a grammar G, then L(G) = L∗ and G has the
Γ -closure property.

We have seen that Algorithm 3 can only learn a context-free language that
has a grammar with the Γ -closure property. Conversely, if L∗ has a grammar G∗
with the Γ -closure property, let r and s be the maximal number of nonterminals
and the maximal length of contiguous terminal strings, respectively, on the right-
hand side of productions of G∗. Let k be the least number such that G∗ has an
SPP each of whose components is denoted by a guarded expression containing
at most k operations in Γ . Then with this choice of r, s, k, one can show that
Algorithm 3 learns L∗. The proof is similar to the proof for Algorithm 2, with
some additional complications.10

Let Q∗ be the set of pairs (u, v) of strings such that the query atom (u, v)�

occurs in expressions for components of the SPP for G∗. So if N∗ is the set of
nonterminals of G∗, there is an expression eB ∈ Ek(Q∗, Γ) for each B ∈ N∗ such
that ([[eB]]L∗)B∈N∗ is an SPP of G∗. We can safely assume that if (u, v) ∈ Q∗ and
(u′, v′) ≺2 (u, v), then u′\L∗/v′
= u\L∗/v. In particular, if (u1, v1) and (u2, v2)
are distinct elements of Q∗, we have u1\L∗/v1
= u2\L∗/v2.

Now assume that t1, t2, . . . is a positive presentation of L∗, and suppose
Ti = {t1, . . . , ti} is such that Q∗ ⊆ Con(Ti).
10 Unlike the algorithms in [5–7,9], Algorithm 3 tries to avoid using different query

atoms that denote the same quotient of L∗. This should be compared with Leiß’s [8]
algorithm for the case Γ = {∩}, which tries to minimize the number of nonterminals
used.

16 M. Kanazawa

Case 1. Ti
⊆ L(Gi−1). Then Q∗ ⊆ Ji = Con(Ti). At each stage l ≥ i, we
have Q∗ ⊆ Jl, and for each (u, v) ∈ Q∗, there is a (u′, v′) ∈ Qr,s(Jl, El) such
that (u′, v′) �2 (u, v) and

(Σ≤s(ElΣ
≤s)≤r) ∩ (u′\L∗/v′) = (Σ≤s(ElΣ

≤s)≤r) ∩ (u\L∗/v). (4)

For each B ∈ N∗, let e′
B be the result of replacing each query atom (u, v)� in eB

by (u′, v′)�. Then e′
B ∈ Nl for each B ∈ N∗, and (4) implies

(Σ≤s(ElΣ
≤s)≤r) ∩ [[eB′]]L∗ = (Σ≤s(ElΣ

≤s)≤r) ∩ [[eB]]L∗ . (5)

For each production
A → w0 B1 w1 . . . Bn wn

of G∗, we have
[[eA]]L∗ ⊇ w0 [[eB1]]

L∗ w1 . . . [[eBn
]]L∗ wn,

since ([[eB]]L∗)B∈N∗ is an SPP of G∗. Since (w0, w1, . . . , wn) ∈ 〈Σ≤s〉≤r+1, we
have

(Σ≤s)(ElΣ
≤s)≤r ∩ [[eA]]L∗ ⊇ w0 (El ∩ [[eB1]]

L∗)w1 . . . (El ∩ [[eBn
]]L∗)wn.

But since El ⊆ Σ≤s(ElΣ
≤s)≤r, this together with (5) implies

(Σ≤s)(ElΣ
≤s)≤r ∩ [[eA′]]L∗ ⊇ w0 (El ∩ [[

eB′
1

]]L∗)w1 . . . (El ∩ [[
eB′

n

]]L∗)wn,

so
eA′ → w0 eB′

1
w1 . . . eB′

n
wn

is a production in Pl. Since (ε, ε)′ = (ε, ε) and ((ε, ε)�)′ = (ε, ε)�, this means
that Gl contains a homomorphic image of G∗, and so L∗ ⊆ L(Gl). It follows that
for all l ≥ i, we have Jl = Ji and Qr,s(Jl, El) ⊆ Ji. Since Qr,s(J,E) is monotone
in E, we see that Qr,s(Jl, El) eventually stabilizes, i.e., there is an m ≥ i such
that for all l ≥ m, Qr,s(Jl, El) = Qr,s(Jm, Em). Then we have Nl = Nm and
Pl = P r,s(Nm, El) for all l ≥ m. Since P r,s(N,E) is antitone in E, it follows
that Pl, and hence Gl, eventually stabilize. By Theorem 7, the grammar that
the algorithm stabilizes on is a grammar for L∗.

Case 2. Ti ⊆ L(Gi−1). We distinguish two cases.
Case 2.1. Tl ⊆ L(Gl−1) for all l ≥ i. Then Jl = Ji = Ji−1 for all l ≥ i, and by

a reasoning similar to Case 1, Gl will eventually stabilize to a correct grammar
for L∗.

Case 2.2. Tl
⊆ L(Gl−1) for some l ≥ i. Then we are in Case 1 at the earliest
stage l ≥ i when this happens.

Theorem 8. Suppose that G∗ = (N∗, Σ, P∗, S) is a context-free grammar with
the Γ -closure property such that if B → w0 B1 w1 . . . , Bn wn is a production in
P∗, then n ≤ r and |wj | ≤ s (0 ≤ j ≤ n). Let L∗ = L(G∗). Given a positive
presentation of L∗ and the membership oracle for L∗, Algorithm 3 converges to
a grammar for L∗ with the Γ -closure property.

Learning Context-Free Grammars 17

Let us close by stating a data efficiency property of Algorithm 3 in the style
of (d′). Let D be the subset of L∗ with the least cardinality such that Q∗ ⊆
Con(D). Then |D| ≤ |Q∗| ≤ k|N∗|, but there may be strings in D whose length
is exponential in the representation size of G∗. Suppose D ⊆ Ti = {t1, . . . , ti}.

Case 1. If Ti
⊆ L(Gi−1), then the size of Ji = Con(Ti) is polynomial in the
total lengths of the strings in Ti. We need additional positive examples to make
the set of nonterminals postulated by the learner equal Ek(Qr,s(Ji,Sub(L∗)), Γ).
We need at most

(|Ji|
2

)
such positive examples. We also need positive examples

to eliminate any productions that are not valid in the sense of (3). The number
of such productions is at most polynomial in |Ji|. We can combine these two
types of positive examples and present them in any order, interspersed with
other positive examples, to force the learner to stabilize on a correct grammar.

Case 2. Ti ⊆ L(Gi−1). Then Ji may be a proper subset of Con(Ti). As soon
as we have Tl
⊆ L(Gl−1) (i ≤ l), we will be in Case 1. Until this happens,
polynomially many positive examples (in the size of Ji) suffice to make the set
of nonterminals postulated by the learner equal Ek(Qr,s(Ji,Sub(L∗)), Γ) and
to eliminate all invalid productions formed with these nonterminals. When Tl

(l ≥ i) contains these positive examples and we are still in Case 2, we have two
possibilities.

Case 2.1. L∗ ⊆ L(Gl). In this case, Gl has already stabilized.
Case 2.2. L∗
⊆ L(Gl). Then any positive example not in L(Gl) puts us in

Case 1.
Summarizing, all we seem to be able to say about Algorithm 3 is that it

satisfies the following complex property:

(d†′) There exists a finite subset D of L∗ whose cardinality is bounded by a
polynomial in the representation size of G∗ such that

– whenever D ⊆ {t1, . . . , ti} ⊆ L∗, one can find a finite subset D′ of L∗,
depending on (t1, . . . , ti), whose cardinality is polynomial in the total
lengths of the strings in {t1, . . . , ti} such that

• whenever D′ ⊆ {ti+1, . . . , tk} ⊆ L∗, one can find a string t ∈ L∗,
depending on (t1, . . . , tk), such that

* whenever t ∈ {tk+1, . . . , tl} ⊆ L∗, one can find a finite subset D′′

of L∗, depending on (t1, . . . , tl), whose cardinality is polynomial
in the total lengths of the strings in {t1, . . . , tl} such that

· whenever D′′ ⊆ {tl+1, . . . , tm} ⊆ L∗, the output Gm of
Algorithm 3 is constant and is a correct grammar for L∗.

Acknowledgements. I am grateful to Ryo Yoshinaka for the joint work this paper
is an outgrowth of. This work was supported by JSPS KAKENHI Grant Number
17K00026.

18 M. Kanazawa

References

1. Angluin, D.: A note on the number of queries needed to identify regular languages.
Inf. Control 51(1), 76–87 (1981). https://doi.org/10.1016/S0019-9958(81)90090-5

2. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput.
75(2), 87–106 (1987). https://doi.org/10.1016/0890-5401(87)90052-6

3. Case, J.: Gold-style learning theory. In: Heinz, J., Sempere, J.M. (eds.) Topics in
Grammatical Inference, pp. 1–23. Springer, Heidelberg (2016). https://doi.org/10.
1007/978-3-662-48395-4 1

4. Eyraud, R., Heinz, J., Yoshinaka, R.: Efficiency in the identification in the limit
learning paradigm. In: Heinz, J., Sempere, J.M. (eds.) Topics in Grammatical Infer-
ence, pp. 25–46. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-
48395-4 2

5. Kanazawa, M., Yoshinaka, R.: The strong, weak, and very weak finite context and
kernel properties. In: Drewes, F., Mart́ın-Vide, C., Truthe, B. (eds.) LATA 2017.
LNCS, vol. 10168, pp. 77–88. Springer, Cham (2017). https://doi.org/10.1007/978-
3-319-53733-7 5

6. Kanazawa, M., Yoshinaka, R.: A hierarchy of context-free languages learnable from
positive data and membership queries. In: Chandlee, J., Eyraud, R., Heinz, J.,
Jardine, A., van Zaanen, M. (eds.) Proceedings of the Fifteenth International Con-
ference on Grammatical Inference. Proceedings of Machine Learning Research, vol.
153, pp. 18–31 (2021). https://www.proceedings.mlr.press/v153/kanazawa21a.html

7. Kanazawa, M., Yoshinaka, R.: Extending distributional learning from positive data
and membership queries. In: Proceedings of 16th edition of the International Con-
ference on Grammatical Inference. Proceedings of Machine Learning Research, vol.
217, pp. 8–22 (2023). https://proceedings.mlr.press/v217/kanazawa23a.html

8. Leiß, H.: Learning context free grammars with the finite context property: a correc-
tion of A. Clark’s algorithm. In: Morrill, G., Muskens, R., Osswald, R., Richter, F.
(eds.) Formal Grammar 2014. LNCS, vol. 8612, pp. 121–137. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-662-44121-3 8

9. Yoshinaka, R.: Towards dual approaches for learning context-free grammars based
on syntactic concept lattices. In: Mauri, G., Leporati, A. (eds.) DLT 2011. LNCS,
vol. 6795, pp. 429–440. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22321-1 37

https://doi.org/10.1016/S0019-9958(81)90090-5
https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.1007/978-3-662-48395-4_1
https://doi.org/10.1007/978-3-662-48395-4_1
https://doi.org/10.1007/978-3-662-48395-4_2
https://doi.org/10.1007/978-3-662-48395-4_2
https://doi.org/10.1007/978-3-319-53733-7_5
https://doi.org/10.1007/978-3-319-53733-7_5
https://www.proceedings.mlr.press/v153/kanazawa21a.html
https://proceedings.mlr.press/v217/kanazawa23a.html
https://doi.org/10.1007/978-3-662-44121-3_8
https://doi.org/10.1007/978-3-642-22321-1_37
https://doi.org/10.1007/978-3-642-22321-1_37

A Short Introduction to SHACL for
Logicians

Magdalena Ortiz(B)

Ume̊a University,Ume̊a, Sweden

magdalena.ortiz@cs.umu.se

Abstract. The Shapes Constraint Language (SHACL) was recom-
mended by the W3C in 2017 for describing constraints on web data
(specifically, on the so-called RDF graphs) and validating them. At first
glance, it may not seem to be a topic for logicians, but as it turns out,
SHACL can be approached as a formal logic, and actually quite an inter-
esting one. In this paper, we give a brief introduction to SHACL tailored
towards logicians and frame key uses of SHACL as familiar logic reason-
ing tasks. We discuss how SHACL relates to description logics, which are
the basis of the OWL Web Ontology Languages, a related yet orthogonal
standard for web data. Finally, we summarize some of our recent work in
the SHACL world, hoping that this may shed light on how ideas, results,
and techniques from well-established areas of logic can advance the state
of the art in this emerging field.

Keywords: SHACL · semantic web · description logics

1 What is SHACL and Why Do We Need It?

One of the most fundamental changes the world has seen in the last decades is the
emergence and ultrafast growth of the Web, where almost inconceivable amounts
of data of all shapes and forms is shared and interconnected. The World Wide
Web Consortium (W3C) has been a key player in this growth: an international
community that develops open standards that are used for building the web
from documents and data. A particularly influential set of standards are those
developed within the semantic web initiative, which aims to build a useful web
of data that is interoperable and understandable to both humans and machines.

The big bulk of shared data on the web uses the RDF standard [28]. In a
nutshell, labelled graphs where nodes represent web resources and data values,
connected by arrows labelled with different kinds of properties with a standard-
ized meaning. RDF datasets are often described as sets of triples (s, p, o) where
the subject s and the object o are data items of resources with a unique identifier,
and they are connected by property p. For our purposes, it is enough to think
of graphs whose edges are labeled with properties from a dedicated alphabet.1

1 In RDF, properties are not necessarily disjoint from the nodes, which can be either
web identifiers called IRIs, data values given as literals, and the so-called blank nodes;
we omit RDF details from here and refer to [28].

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
H. H. Hansen et al. (Eds.): WoLLIC 2023, LNCS 13923, pp. 19–32, 2023.
https://doi.org/10.1007/978-3-031-39784-4_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-39784-4_2&domain=pdf
http://orcid.org/0000-0002-2344-9658
https://doi.org/10.1007/978-3-031-39784-4_2

20 M. Ortiz

There are enormous repositories of such data on the web containing millions
of nodes and edges; famous examples include knowledge graphs like DBPedia2

which contains several hundred million of facts extracted from Wikipedia, and
Yago, a high-quality knowledge base about people, cities, countries, and orga-
nizations, containing more than 2 billion facts about 50 million entities.3 Once
RDF became widespread for sharing data on the web, accompanying standards
were proposed, like the OWL Web Ontology Languages for describing knowl-
edge domains and for inferring implicit relationships and facts from data on the
web [26], and a dedicated query language for RDF data called SPARQL [27].
Web interfaces called SPARQL end-points allow any person to ask questions and
obtain interesting facts from these knowledge graphs.

A crucial feature of the RDF data format is its flexibility : if something can
be represented as a labelled graph, then it can be published on the web using
RDF. But so much flexibility is a two-edged sword. Users that want to query a
source like DBpedia easily find themselves lost and do not know where to start:
how do I formulate my query? Which properties may connect a country to its
capital city? Is there information about the family relationships of celebrities?
Which facts about rivers could I query for?

As the web of linked data kept growing, the pressing need for a normative
standard emerged: a language that can be used for describing and validating
the structure and content of RDF graphs. This language is SHACL, the Shapes
Constraint Language, recommended in 2017 by the W3C [29]. It allows users
to define “shapes” which may, for example, say that a person has a name and
exactly one date of birth, and may be married to another person. Like other W3C
standards, SHACL is defined in a long ‘specification’ document that is very hard
to read for anybody that is not familiar with the semantic web jargon. While
OWL was standardized on the basis of over two decades of research in description
logics, a well-understood family of decidable logics [6,26], the younger SHACL
did not come to the world equipped with such a robust logic foundation. How-
ever, a handful of logic-minded people from the knowledge representation and
database theory community have been developing a solid logic-based foundation
for SHACL. As it turns out, SHACL can be seen as a simple and elegant logic,
and its fundamental validation problem is a model checking task very familiar
in logic and computer science.

2 SHACL as a Logic

The challenge of extracting from the specification a formal syntax and semantics
was tackled by Corman et al. [13], and the majority of the later SHACL works
have built on their formalization, e.g. [1,3,4,10,11]. We do the same, and like
most of them, we focus on the ‘core’ of SHACL. Some authors have extended
this formalization to cover more SHACL features; see, for example, the extended
formalization compiled by Jakubowski [16].
2 http://dbpedia.org/.
3 https://yago-knowledge.org/.

http://dbpedia.org/
https://yago-knowledge.org/

A Short Introduction to SHACL for Logicians 21

2.1 Syntax

The main syntactic object in SHACL are the so-called shape constraints, which
assign possibly complex shape expressions to special predicates called shape
names.

For writing these, we use an alphabet consisting of three countably infinite
pairwise disjoint sets: the set of shape names S, the set of property names P,
and the set of node names N. Then shape expressions ϕ and path expressions ρ
obey the following grammar.

ρ ::= p | p− | ρ ∪ ρ | ρ · ρ | ρ∗

ϕ ::= s | � | {a} | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ |≥n ρ.ϕ | ρ = ρ

where s ∈ S, a ∈ N, p ∈ P, and n ≥ 0 is a natural number. We may write
≤n−1 ρ.ϕ in place of ¬(≥n ρ.ϕ), and write ∃ρ.ϕ and ∀ρ.ϕ in place of ≥1 ρ.ϕ
and ≤0 ρ.¬ϕ, respectively. Those familiar with modal logic will recognise the
syntax of multidimensional modal formulas extended with nominals {a} from
hybrid logics [5], graded modalities ≥n ρ.ϕ, converse ρ−, and reflexive, transitive
closure as in propositional dynamic logic [14]. We will revisit this relationship
from the perspective of description logics in the next section.

We can now write shape constraints of the form

s ≡ ϕ

where s ∈ S and ϕ is a shape expression. In SHACL, shape constraints come
together with a set of targets, indicating at which nodes of the graph the shapes
of interest are to be validated. We focus here on atomic targets of the form s(a)
with s ∈ S and a ∈ N. Since shape names are unary predicates, we can read
s(a) as ‘a is in the interpretation of s’. Then we define a shapes graph as a pair
(C, T) of a set C of shape constraints where each s ≡ ϕ has a different s in the
head, and a set T of target atoms.

Example 1. Consider the following shape constraints:

Pizza ≡ ≥2 hasTopping.�,

VeggiePizza ≡ Pizza ∧ ∀hasTopping.VeggieTopping ,

VeggieTopping ≡ {mozzarella} ∨ {tomato} ∨ {basil} ∨ {artichoke}

Intuitively, these constraints define the shape ‘pizza’ as having at least two top-
pings, and vegetarian pizzas as pizzas having only vegetarian toppings. A shape
can be defined by directly listing the nodes in it, as done here for vegetarian
toppings. To give a rough impression of the way this is written in usual SHACL
documents, we show in Fig. 1 an incomplete declaration of the first constraint in
SHACL machine-readable syntax.

22 M. Ortiz

Fig. 1. A SHACL shape in machine-readable syntax

2.2 Semantics

We now define the so-called supported model semantics for SHACL, and discuss
other semantics in Sect. 4.1.

Like other logic formalisms, the semantics of SHACL can be elegantly defined
using interpretations. For our purposes, it will be enough to consider interpreta-
tions whose domains are nodes from N. We consider interpretations I consisting
of a non-empty domain Δ ⊆ N, and an interpretation function ·I that maps

– each shape name s ∈ S a set sI ⊆ Δ, and
– each property name to a set of pairs sI ⊆ Δ × Δ.

The interpretation function I is inductively extended to complex expressions,
see Fig. 2. Note that path expressions ρ are interpreted as binary relations ρI

over Δ, while shape expressions ϕ are interpreted as sets ϕI ⊆ Δ.

Fig. 2. Interpretation of path and shape expressions

A Short Introduction to SHACL for Logicians 23

We say that I satisfies a constraint s ≡ ϕ if sI = ϕI , and I satisfies a shapes
graph (C, T) if it satisfies all constraints in C and additionally it contains all the
targets, that is, a ∈ sI for every s(a) ∈ T .

SHACL shapes graphs are intended to be validated over an input data graph
(essentially a knowledge graph or RDF graph). A data graph G = (N,E, �) is
defined as a graph with vertices N ⊆ N and a labelling function � : E → 2P,
that is, edges are labelled with sets of property names from P, and a graph is
just a collection of P-indexed binary relations on N .

Given such a graph G = (N,E, �), we say that the interpretation I = (Δ, ·I)
is a shape adornment for G if Δ = N and pI = {(a, b) ∈ E | p ∈ �((a, b))}
for each property p. That is, I is a shape adornment of G if properties p are
interpreted as relations as specified by G. Note that G does not determine the
interpretation of the shape names. In modal logic terms, we can call G a multi-
relational Kripke frame, and I is a multi-relational Kripke model.
In SHACL, the main problem of interest is the validation of given constraints
and targets on a given graph.

Definition 1 (SHACL validation). We say that a data graph G validates a
shapes graph (C, T) if there exists a shape adornment for G that satisfies (C, T).

The SHACL validation problem consists of deciding, for a given G and (C, T),
whether G validates (C, T).

Example 2. Consider the following shape constraints:

CPizza = {Pizza ≡ ≥2 hasTopping.�,

VeggiePizza ≡ Pizza ∧ ∀hasTopping.VeggieTopping ,

VeggieTopping ≡ {mozzarella} ∨ {tomato} ∨ {basil} ∨ {artichoke} }
The graph GPizza in Fig. 3 validates the target Pizza(pizza capricciosa), but
it does not validate the target VeggiePizza(pizza capricciosa) since there is
no shape adornment I satisfying CPizza where prosciutto ∈ VeggieToppingI .

Fig. 3. A pizza data graph GPizza

3 SHACL, OWL and Description Logics

The syntax of shape expressions is more than familiar to those acquainted with
description logics, a well-studied family of decidable logics tailored for knowledge

24 M. Ortiz

representation and reasoning [6,7], and the logics underpinning the OWL stan-
dard. In fact, if instead of shape names we call the symbols in S concept names,
then exactly the same grammar defines concept expressions ϕ in a description
logic that we will call ALCOIQ=

reg . It extends the well-known description logic
ALCOIQ with regular role expressions and equalities thereof. Concept defini-
tions take the form

s ≡ ϕ

Hence, there is basically no difference between SHACL constraints and sets of
ALCOIQ=

reg concept definitions, at least syntactically.
In description logics, one often considers not only concept definitions but a

more general form of concept inclusions ϕ1 � ϕ2, and a set of such inclusions is
called an ontology. The variant of OWL called OWL-DL allows writing ontologies
in a DL called SHOIQ that is quite similar to ALCOIQ=

reg [15]. The main
differences are that the concept constructor ρ = ρ′ is omitted, and instead of
regular path expressions ρ we can only use property names p and their inverses
p− inside concept expressions. SHOIQ also allows for subproperty relations, not
supported in SHACL, and for declaring a set of property names that must be
interpreted as transitive relations, which can be used inside concept expressions
of the form ∃p.ϕ and ∀p.ϕ.

Semantically they are closely related too. However, we must pay attention
to some subtle details. The semantics of DLs is also defined in terms of inter-
pretations I as above, and the satisfaction of concept definitions is just as for
SHACL constraints. For the more general concept inclusions ϕ1 � ϕ2 we have
satisfaction if ϕI

1 ⊆ ϕI
2 , as expected. An interpretation I that satisfies all the

inclusions in an ontology O is called a model of O, in symbols, I |= O. When we
pair an ontology with a data graph G (typically called an ABox in description
logics jargon), then we require I to model G as well, that is, to contain all the
facts given in the graph. Formally, we say that I = (Δ, ·I) models G = (N,E, �)
if N ⊆ Δ and {(a, b) ∈ E | p ∈ �(a, b)} ⊆ pI for each property p. I is a model of
(O, G) if I models both O and G. We say that (O, G) is consistent if it admits
a model, and we say that a fact s(a) (resp. p(a, b)) is entailed by (O, G) if a ∈ sI

(resp. (a, b) ∈ pI) for every model I of (O, G).
We stress here that for reasoning in description logics, we typically consider

all models, in contrast to SHACL, where we restrict our attention to shape
adornments. In fact, SHACL can be seen as a special instance of ALCOIQ=

reg

with closed predicates [20,24]. Closed predicates are a well-known extension of
description logics for reasoning in settings where complete and incomplete infor-
mation co-exist. A selected set of concepts and roles is declared to be closed, and
the models of the ontology are restricted to those that interpret the closed pred-
icates exactly as in the data. Shape adornments in SHACL precisely coincide
with the models in ALCOIQ=

reg when all roles are closed.
The following example illustrates the difference between SHACL validation

and description logic entailment.

A Short Introduction to SHACL for Logicians 25

Example 3. Consider the graph G′
Pizza in Fig. 4, and the following shape con-

straints:

C′
Pizza = {VeggiePizza ≡ ∀hasTopping.VeggieTopping ,

VeggieTopping ≡ {mozzarella} ∨ {tomato} ∨ {basil} ∨ {artichoke}}
Then G′

Pizza validates the target VeggiePizza(pizza margherita), as witnessed
by the shape adornment I that assigns the nodes mozzarella, tomato and basil
to the shape VeggieTopping and the node pizza margherita to VeggiePizza.

Assume now that VeggieTopping and VeggiePizza are concept names, and
consider the description logic ontology:

OPizza = {VeggiePizza ≡ ∀hasTopping.VeggieTopping ,

VeggieTopping ≡ {mozzarella} ∨ {tomato} ∨ {basil} ∨ {artichoke}}
The interpretation I above is a model of OPizza, G

′
Pizza. However, the following

I ′ is also a model:

VeggieToppingI′
= VeggieToppingI

hasToppingI′
= hasToppingI ∪ {(pizza margherita, new topping)}

VeggiePizzaI′
= ∅

where pizza margherita has an additional non-vegetarian topping. This shows
that OPizza, G

′
Pizza does not entail VeggiePizza(pizza margherita).

Fig. 4. Another pizza data graph G′
Pizza

3.1 Reasoning in SHACL and in OWL

The fundamental difference in purpose between SHACL and OWL means that
their reasoning problems are also different. In SHACL we are interested in
whether the input graph validates the constraints, which is essentially a model
checking problem. In contrast, in description logics we focus on inferring infor-
mation: determining whether facts and inclusions are entailed by the ontology,
that is, whether they are true in all models. Moreover, models may extend the
graph and make it arbitrarily large. In fact, even for significantly less expressive
description logics than ALCOIQ=

reg—such as ALCIF—there are ontologies that
only have models with an infinite domain.

26 M. Ortiz

The different nature of SHACL reasoning vs traditional description logic
reasoning matters because, as we know very well in logic, entailment is com-
putationally much more challenging than model checking. One can naturally
define logic reasoning problems for SHACL, like satisfiability or containment of
constraints [19,21]. But the connection to DLs allows us to immediately observe
that such problems are practically always undecidable. Consider the satisfiability
of SHACL constraints: given a set of constraints C, is there a graph for which
an interpretation satisfying the constraints exists? This problem is precisely the
ALCOIQ=

reg satisfiability problem, which has been known to be undecidable for
decades. Indeed, the equality between regular role expressions ρ = ρ′ is a vari-
ation of the well-known role-value maps p1 · · · · · pn ⊆ p′

1 · · · · · p′
m that were

present already in the very early description logic KL-ONE. Schmidt-Schauß
proved in 1989 that role-value maps make inference in KL-ONE undecidable
[22], one of the oldest undecidability results in the field. It is widely known that
without strong restrictions on the role-value maps, not even the weakest of DLs
remain decidable [8]. Even without path equalities, allowing path expressions in
the counting constructors ≥n ρ.ϕ and ≤n ρ.ϕ is another well-known cause of
undecidability [18]. If we only allow property names and their inverses in count-
ing concepts, and restrict complex property paths to allowing expressions of the
forms ∃r∗.ϕ and ∀r∗.ϕ, then we end up with the description logic ALCOIQ∗:
the decidability of which is a very long-standing open problem in description
and modal logic [17].

These straightforward observations already make clear that SHACL satisfi-
ability and containment can only be decidable for rather restricted fragments.
For instance, we can restrict ourselves to ALCOIQ, which only allows property
names and their inverses, and obtain decidability. (We note that this logic is
closely related to SHOIQ mentioned above, and their satisfiability problems
are interreducible). A detailed study of fragments of SHACL with (un)decidable
satisfiability and containment problems has been done by Pareti et al. [21],
while Leinberger et al. [19] have shown cases where containment is decidable by
reducing the problem to description logic reasoning.

Description logics also tell us a lot about the complexity of satisfiability and
containment in SHACL fragments. But the news is not particularly positive and
their worst-case complexity is high. Indeed, in the ALCOIQ fragment, satisfia-
bility is complete for NExpTIme [25]. (Here the ontology is considered as input,
that is, we are talking of ontology complexity or combined complexity). On the
positive side, ALCOIQ and SHOIQ are supported by off-the-shelf reasoners
which can handle efficiently large real-world ontologies, and these reasoners can
be directly deployed for deciding SHACL satisfiability and containment in the
corresponding fragments.

4 What has Logic Done for SHACL?

Viewing SHACL as a logic allows us to transfer important insights, techniques
and results from other areas of logic. We already illustrated how we can obtain

A Short Introduction to SHACL for Logicians 27

some (un)decidability and complexity results directly from description logics. In
this section we briefly summarize a few recent results of our research group that
also illustrate how the logic view of SHACL can be a stepping stone to providing
robust solutions to some SHACL open problems.

4.1 Semantics of Recursive SHACL

Our definition of SHACL expressions above imposes no constraints on the occur-
rences of shape names in the definitions of other shape names, that is, it allows
for recursion. Given a set of SHACL constraints C, its dependency graph has a
node for each shape name occurring in C, and there is an arc from s to s′ if s′

occurs in the body ϕ of a constraint s ≡ ϕ for s. C is called recursive if this graph
contains a cycle.4 The SHACL specification does not disallow such recursion, but
when the semantics of validation is defined, one encounters a surprise:

“The validation with recursive shapes is not defined in SHACL and is left
to SHACL processor implementations. For example, SHACL processors
may support recursion scenarios or produce a failure when they detect
recursion.” SHACL Recommendation [29], §3.4.3

Naturally, this lack of proper validation semantics in the presence of recur-
sion was one of the first SHACL open problems to be addressed by means of
formal logic. The semantics that we have presented here is often called supported
model semantics, and it was proposed already by Corman et al. when they first
formalized SHACL [13]. However, this semantics has not been free of criticism.

Example 4. Consider the following constraint, stating that a node may be cer-
tified if it either has a certificate or if it has been approved by a node that is
certified. Consider the graph Gcc below.

certifiedNode ≡ ∃hasCertificate.Certificate ∨ ∃approvedBy.certifiedNode

Gcc validates the target certifiedNode(node 1), as witnessed by the adorn-
ment

certifiedNodeI = {node 1, node 2}.

Intuitively, node 1 can be considered certified because it was approved by node 2,
which in turn is certified because it was approved by node 1, although no node
has any legitimate certification.

4 Note that this monadic recursion over shape names is orthogonal to the linear recur-
sion over properties present in the path expressions ρ.

28 M. Ortiz

The stable model semantics [4] and the well-founded semantics [12] were both
proposed for avoiding these dubious validations and instead only allow for vali-
dations that are based on proper well-founded assignments. Both semantics are
not only intuitive, but they are also computationally more manageable. Unlike
supported validation, stable validation can be decided in polynomial time if
the constraints are stratified, which intuitively allows only for positive recursion
cycles. Here we refer to data complexity, which assumes that the constraints are
fixed and measures the complexity in terms of the size of the data graph only.
Well-founded validation is particularly interesting since it is always computable
in polynomial time; it yields a three-valued approximation of stable models, and
coincides with it whenever there is no recursion involving negation. These results
witness the value of building on the decades of experience of the logic program-
ming and non-monotonic reasoning community when defining proper semantics
for full recursive SHACL, an aspect emphasized in [9]. Techniques for efficient
goal-oriented validation in the presence of recursion, like magic sets, have been
successfully applied to SHACL [3].

4.2 Explaining Non-Validation

The SHACL specification calls for the so-called validation reports, which are
meant to explain to the users the outcome of validating an RDF graph against
a collection of constraints. The specification gives some details about how these
reports should look, e.g., which fields they should contain (e.g., the node(s) and
value(s) that caused the failure of some target), but it does not address the
problem of what does it mean to ‘cause’ a failure, and how to find the causes
when a test does not succeed. These questions are far from obvious.

In our recent work [1] we draw inspiration from logic-based abduction and
database repairs to study the problem of explaining non-validation of SHACL
constraints. In our framework non-validation is explained using the notion of a
repair, i.e., a collection of additions and deletions whose application on an input
graph results in a repaired graph that does satisfy the given SHACL constraints.

Example 5. Consider the following shapes graph (Ct, Tt) and data graph Gt.

Ct ={Teacher ↔ ∃teaches.� ,

Student ↔ ∃enrolledIn.� ∧ ¬Teacher}
Tt ={Student(Ben),Teacher(Ann)}
Gt ={enrolledIn(Ben, c1), teaches(Ben, c2)}

Gt does not validate either target. To validate Student(Ben) we need to
remove teaches(Ben, c2), while to validate Teacher(Ann) we need to add a
fact teaches(Ann, c) for some c ∈ N. We call the pair (A,D) of Additions
A = {teaches(Ann, c)} and Deletions D = {teaches(Ben, c2)} an explanation
for the SHACL validation problem above.

A Short Introduction to SHACL for Logicians 29

Since sometimes we need to introduce fresh nodes, in order to keep things
computationally manageable, we assume that the set of acceptable additions is
somehow given as an (implicit or explicit) data graph H. Then we can define
our SHACL explanations as follows.

Definition 2 ([1]). Let G be a data graph, let (C, T) be a shapes graph, and let
the set of hypotheses H be a data graph disjoint from G. Then Ψ = (G, C, T,H)
is a SHACL Explanation Problem (SEP). An explanation for Ψ is a pair (A,D),
such that (a) D ⊆ G, A ⊆ H, and (b) (G \ D) ∪ A validates (C, T).

A preference order is a preorder � on the set of explanations for Ψ . A pre-
ferred explanation of a SEP Ψ under the �, or a �-explanation for short, is an
explanation ξ such that there is no explanation ξ′ for Ψ with ξ′ � ξ and ξ �� ξ′.

The following decision problems for explanations are defined:

– �-IsExpl: is a given pair (A,D) a �-explanation for Ψ?
– �-Exist: does there exist a �-explanation for Ψ?
– �-NecAdd: is α a �-necessary addition for Ψ , that is does α occur in A in

every �-explanation (A,D) for Ψ?
– �-NecDel: is α a �-necessary deletion for Ψ , that is does α occur in D in

every �-explanation (A,D) for Ψ?
– �-RelAdd: is α a �-relevant addition for Ψ , that is does α occur in A in

some �-explanation (A,D) for Ψ?
– �-RelDel: is α a �-relevant deletion for Ψ , that is does α occur in D in

some �-explanation (A,D) for Ψ?

We studied all these decision problems for the following preorders �:

– the subset relation (A,D) ⊆ (A′,D′), defined as A′ ⊆ A and D′ ⊆ D,
– the cardinality relation (A,D) ≤ (A′,D′), defined as |A| + |D| ≤ |A′| + |D′|,
– the identity; in this case, we may talk of ‘no preference order’ and omit �.

We characterized the computational complexity of all of them, in the general case
and in the non-recursive case. We also analyzed the effect on the complexity of
restricting the set of predicates that can be added or removed. Most of the
problems turned out to be intractable, up to the second level of the polynomial
hierarchy, but some problems can be solved in polynomial time. The results are
summarised in Table 1, see [1] for details.

Table 1. The complexity of SHACL Explanation Problems (completeness results). The
bounds hold also under signature restrictions and for non-recursive SHACL.

pref. order IsExpl Exist NecAdd NecDel RelAdd RelDel

∅ NP NP coNP coNP NP NP

⊆ DP NP coNP coNP ΣP
2 ΣP

2

≤ DP NP P ‖NP P ‖NP P ‖NP P ‖NP

30 M. Ortiz

Our algorithms can be a stepping stone for automatically computing such
explanations, even in intractable cases. For instance, a follow-up work of some
co-authors used Answer Set Programming (ASP) to implement a prototype tool
for repairing SHACL specifications [2].

5 Conclusions and Outlook

The recent emergence of SHACL as a standard for web data provides fresh evi-
dence that, in the complex data landscape of today’s world, increasingly flexible
new formalisms for describing, validating, and managing data are still needed,
and approaches grounded in formal logic are as important as ever. SHACL has
profound connections to well-established research fields of logic in computer sci-
ence, in particular to two related communities: description logics on the one
hand, and logic programming and non-monotonic reasoning on the other. The
debates about the semantics of negation are reminiscent of the challenges that
the latter community faced already in the 1990s,s, and in retrospect, maybe more
active communication between these two fields could have helped avoid the tor-
tuous road towards the different semantics for validation of recursive SHACL.

It is hard to overstate the similarity between SHACL and description logics.
We gave a few examples of (un)decidability and complexity results that can be
immediately transferred to the SHACL world, but there is much more to leverage
in this connection. The vast trove of computational complexity and decidability
results accumulated by the community can guide further SHACL developments,
and the use of SHACL may bring forward new problems that have not yet been
addressed in description logics.

The open- versus the closed-world assumption is often emphasized as a key
difference between OWL and SHACL. And discussed, SHACL can be seen as
a DL where properties are closed predicates. This points once more towards an
ever-present challenge in knowledge representation and reasoning: combining
open- and closed-world reasoning. Neither of them is enough on its own,
since more often than not complete and incomplete information co-exist, and
useful inferences call for leveraging this partial completeness.

In our ongoing work we are studying, for example, how to do validation
in the presence of ontologies, that is, taking implicit facts into account in the
validation. We are also exploring techniques for SHACL validation when the
graph is subjected to updates, and we are continuing our work on explanations
for SHACL in order to devise better and more useful validation reports.

Many open problems remain ahead, and SHACL is a relatively young field
where technologies are still being constructed. We hope that this short journey
through SHACL and some of its challenges may inspire more logicians to explore
SHACL and other emerging data management solutions and to try to contribute
to that field by bringing insights from well-established areas of logic [23].

Acknowledgments. The work summarized here has been carried out with many col-
laborators, to whom I want to express my sincere thanks. I want to thank in particular

A Short Introduction to SHACL for Logicians 31

the current and former members of our team Mantas Šimkus, Shqiponja Ahmetaj,
Anouk Oudshoorn, Medina Andresel and Bianca Löhnert. Thank you also to Juan
Reutter and Julien Corman. This work was partially supported by the Wallenberg AI,
Autonomous Systems and Software Program (WASP) funded by the Knut and Alice
Wallenberg Foundation. It was also partially supported by the Austrian Science Fund
(FWF) projects P30360 and P30873.

References

1. Ahmetaj, S., David, R., Ortiz, M., Polleres, A., Shehu, B., Simkus, M.: Reasoning
about explanations for non-validation in SHACL. In: KR, pp. 12–21 (2021)

2. Ahmetaj, S., David, R., Polleres, A., Simkus, M.: Repairing SHACL constraint
violations using answer set programming. In: Sattler, U., et al. (eds.) The Semantic
Web – ISWC 2022. ISWC 2022. LNCS, vol. 13489, pp. 375–391. Springer, Cham
(2022). https://doi.org/10.1007/978-3-031-19433-7 22

3. Ahmetaj, S., Löhnert, B., Ortiz, M., Simkus, M.: Magic shapes for SHACL valida-
tion. Proc. VLDB Endow. 15(10), 2284–2296 (2022)

4. Andresel, M., Corman, J., Ortiz, M., Reutter, J.L., Savkovic, O., Šimkus, M.: Sta-
ble model semantics for recursive SHACL. In: Proceedings of the Web Conference
2020, pp. 1570–1580. ACM (2020). https://doi.org/10.1145/3366423.3380229

5. Areces, C., ten Cate, B.: Hybrid logics. In: Blackburn, P., van Benthem, J.F.A.K.,
Wolter, F. (eds.) Handbook of Modal Logic, Studies in Logic and Practical Rea-
soning, vol. 3, pp. 821–868. North-Holland (2007). https://doi.org/10.1016/s1570-
2464(07)80017-6

6. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.
(eds.): The Description Logic Handbook: Theory, Implementation, and Applica-
tions. Cambridge University Press, Cambridge (2003)

7. Baader, F., Horrocks, I., Lutz, C., Sattler, U.: An Introduction to Description
Logic. Cambridge University Press, Cambridge (2017)

8. Baader, F., Théron, C.: Role-value maps and general concept inclusions in the
minimal description logic with value restrictions or revisiting old skeletons in the
DL cupboard. Künstliche Intell. 34(3), 291–301 (2020)

9. Bogaerts, B., Jakubowski, M.: Fixpoint semantics for recursive SHACL. In: ICLP
Technical Communications. EPTCS, vol. 345, pp. 41–47 (2021)

10. Bogaerts, B., Jakubowski, M., den Bussche, J.V.: Expressiveness of SHACL fea-
tures. In: ICDT. LIPIcs, vol. 220, pp. 15:1–15:16. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik (2022)

11. Bogaerts, B., Jakubowski, M., den Bussche, J.V.: SHACL: a description logic in
disguise. In: Gottlob, G., Inclezan, D., Maratea, M. (eds.) Logic Programming and
Nonmonotonic Reasoning. LPNMR 2022. LNCS, vol. 13416, pp. 75–88. Springer,
Cham (2022). https://doi.org/10.1007/978-3-031-15707-3 7

12. Chmurovic, A., Simkus, M.: Well-founded semantics for recursive SHACL. In: Dat-
alog. CEUR Workshop Proceedings, vol. 3203, pp. 2–13. CEUR-WS.org (2022)

13. Corman, J., Reutter, J.L., Savković, O.: Semantics and validation of recursive
SHACL. In: Vrandečić, D., et al. (eds.) ISWC 2018. LNCS, vol. 11136, pp. 318–
336. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00671-6 19

14. Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. MIT Press, Cambridge (2000)
15. Horrocks, I., Sattler, U.: A tableau decision procedure for SHOIQ. J. Autom. Rea-

son. 39(3), 249–276 (2007)

https://doi.org/10.1007/978-3-031-19433-7_22
https://doi.org/10.1145/3366423.3380229
https://doi.org/10.1016/s1570-2464(07)80017-6
https://doi.org/10.1016/s1570-2464(07)80017-6
https://doi.org/10.1007/978-3-031-15707-3_7
https://doi.org/10.1007/978-3-030-00671-6_19

32 M. Ortiz

16. Jakubowski, M.: Formalization of SHACL. Technical report, (unpublished) (2021).
www.mjakubowski.info/files/shacl.pdf. Accessed 15 Apr 2023

17. Kaminski, M., Smolka, G.: A goal-directed decision procedure for hybrid PDL. J.
Autom. Reason. 52(4), 407–450 (2014)

18. Kazakov, Y., Sattler, U., Zolin, E.: How many legs do i have? Non-simple roles in
number restrictions revisited. In: Dershowitz, N., Voronkov, A. (eds.) LPAR 2007.
LNCS (LNAI), vol. 4790, pp. 303–317. Springer, Heidelberg (2007). https://doi.
org/10.1007/978-3-540-75560-9 23

19. Leinberger, M., Seifer, P., Rienstra, T., Lämmel, R., Staab, S.: Deciding SHACL
shape containment through description logics reasoning. In: Pan, J.Z., et al. (eds.)
ISWC 2020. LNCS, vol. 12506, pp. 366–383. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-62419-4 21

20. Ngo, N., Ortiz, M., Simkus, M.: Closed predicates in description logics: results on
combined complexity. In: KR, pp. 237–246. AAAI Press (2016)

21. Pareti, P., Konstantinidis, G., Mogavero, F.: Satisfiability and containment of
recursive SHACL. J. Web Semant. 74, 100721 (2022)

22. Schmidt-Schauß, M.: Subsumption in KL-ONE is undecidable. In: Brachman, R.J.,
Levesque, H.J., Reiter, R. (eds.) Proceedings of the 1st International Conference on
Principles of Knowledge Representation and Reasoning (KR’89). Toronto, Canada,
15–18 May 1989, pp. 421–431. Morgan Kaufmann (1989)

23. Schneider, T., Simkus, M.: Ontologies and data management: a brief survey.
Künstliche Intell. 34(3), 329–353 (2020)

24. Seylan, I., Franconi, E., de Bruijn, J.: Effective query rewriting with ontologies
over DBoxes. In: IJCAI, pp. 923–925 (2009)

25. Tobies, S.: The complexity of reasoning with cardinality restrictions and nominals
in expressive description logics. J. Artif. Intell. Res. 12, 199–217 (2000)

26. World Wide Web Consortium: OWL 2 Web Ontology Language Primer. World
Wide Web Consortium (W3C) (2009). www.w3.org/TR/owl2-primer/

27. World Wide Web Consortium: Sparql 1.1 query language (2013). www.w3.org/
TR/sparql11-query/

28. World Wide Web Consortium: RDF 1.1 Primer. World Wide Web Consortium
(W3C) (2014). www.w3.org/TR/rdf11-primer/

29. World Wide Web Consortium: Shape Constraint Language (SHACL). W3C World
Wide Web Consortium (2017). www.w3.org/TR/shacl

www.mjakubowski.info/files/shacl.pdf
https://doi.org/10.1007/978-3-540-75560-9_23
https://doi.org/10.1007/978-3-540-75560-9_23
https://doi.org/10.1007/978-3-030-62419-4_21
https://doi.org/10.1007/978-3-030-62419-4_21
www.w3.org/TR/owl2-primer/
www.w3.org/TR/sparql11-query/
www.w3.org/TR/sparql11-query/
www.w3.org/TR/rdf11-primer/
www.w3.org/TR/shacl

From Gödel’s Incompleteness Theorem
to the Completeness of Bot Beliefs

(Extended Abstract)

Dusko Pavlovic(B) and Temra Pavlovic

University of Hawaii, Honolulu, HI, USA

dusko@hawaii.edu

Abstract. Hilbert and Ackermann asked for a method to consistently
extend incomplete theories to complete theories. Gödel essentially proved
that any theory capable of encoding its own statements and their proofs
contains statements that are true but not provable. Hilbert did not
accept that Gödel’s construction answered his question, and in his late
writings and lectures, Gödel agreed that it did not, since theories can
be completed incrementally, by adding axioms to prove ever more true
statements, as science normally does, with completeness as the vanishing
point. This pragmatic view of validity is familiar not only to scientists
who conjecture test hypotheses but also to real-estate agents and other
dealers, who conjure claims, albeit invalid, as necessary to close a deal,
confident that they will be able to conjure other claims, albeit invalid,
sufficient to make the first claims valid. We study the underlying logical
process and describe the trajectories leading to testable but unfalsifi-
able theories to which bots and other automated learners are likely to
converge.

1 Introduction

Logic as the theory of theories was originally developed to prove true statements.
Here we study developments in the opposite direction: modifying interpretations
to make true some previously false statements. In modal logic, such logical pro-
cesses have been modeled as instances of belief update [2,3,10]. In the practice
of science, such processes arise when theories are updated to explain new obser-
vations [22, Ch. 4]. In public life, the goal of such processes is to influence some
public perceptions to better suit some private preferences [11, Part V]. This
range of applications gave rise to a gamut of techniques of influence and belief
engineering, from unsupervised learning to conditioning.

From Incomplete Theories to Complete Beliefs. The idea to incrementally
complete incomplete theories [9] arose soon after Gödel proved his Incomplete-
ness Theorem [14]. Alan Turing wrote a thesis about ordinal towers of comple-
tions and discovered the hierarchy of unsolvability degrees [35]. The core idea

D. Pavlovic—Partially supported by NSF and AFOSR.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
H. H. Hansen et al. (Eds.): WoLLIC 2023, LNCS 13923, pp. 33–50, 2023.
https://doi.org/10.1007/978-3-031-39784-4_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-39784-4_3&domain=pdf
https://doi.org/10.1007/978-3-031-39784-4_3

34 D. Pavlovic and T. Pavlovic

was to keep recognizing and adding true but unprovable statements to theo-
ries. In the meantime, interests shifted from making true statements provable
to making false statements true. Many toy examples of belief updates and revi-
sions have been formalized and studied in dynamic-epistemic logic [4,7], but the
advances in belief engineering and the resulting industry of influence overtook
the theory at great speed, and turned several corners of market and political
monetization. The theory remained fragmented even on its own. While modal
presentations of Gödel’s theorems appeared early on [33], the computational
ideas, that made his self-referential constructions possible [34], never transpired
back into modal logic. The point of the present paper is that combining belief
updates with universal languages and self-reference leads to a curious new logi-
cal capability, whereby theories and models can be steered to assure consistency
and completeness of future updates. This capability precludes disproving current
beliefs and the framework becomes belief-complete in a suitable formal sense,
discussed below.

The logical framework combining belief updates and universal languages may
seem unfamiliar. The main body of this paper is devoted to an attempt to
describe how it arises from familiar logical frameworks. Here we try to clarify
the underlying ideas.

Universality. Just like Gödel’s incompleteness theorems, our constructions of
unfalsifiable beliefs are based on a universal language L. The abstract charac-
terization of universality, which we borrow from [24, Ch. 2], is that L comes
equipped with a family of interpreters {} : L × A −→ B, one for each pair of
types1 A,B, such that every function f : A −→ B has a description2 �f� in L,
satisfying3

f = {�f�} (1)

This is spelled out in Sect. 4. The construction in Sect. 5 will imply that every
g : L × A −→ B has a fixpoint Γ , satisfying

g(Γ, a) = {Γ}(a) (2)

Any complete programming language can be used as L. Its interpreters support
(1) and its specializers induce (2). A sufficiently expressive software specification
framework [28] would also fit the bill, as would a general scientific formalism [22].

Gödel’s Incompleteness: True But Unprovable Statement. Gödel used
the set of natural numbers N as L, with arithmetic as a programming language.
The concept of a programming language did not yet exist, but it came into
existence through Gödel’s construction. An arithmetic expression specifying a
function f was encoded as a number �f� and decoded by an arithmetic func-
tion {} : N × N −→ N as in (1). A restriction of (2) was proved for arithmetic

1 Each pair carries a different interpreter {}AB
but we elide the superscripts.

2 There may be many descriptions for each f and �f� refers to an arbitrary one.
3 The curly bracket notation allows abbreviating λa.{} (p, a) to {p}.

From Gödel’s Incompleteness Theorem to the Completeness of Bot Beliefs 35

predicates p : N −→ B, where B = {0, 1} ⊂ N, and a fixpoint of a predicate
g : L × A −→ B was constructed as a predicate encoding �γ� satisfying4

g (�γ� , a) = {�γ�}(a) = γ(a) (3)

To complete the incompleteness proof, Gödel constructed a predicate ¶ : N −→ B
characterizing provability in formal arithmetic:

¶ (�p� , a) ⇐⇒ � p(a) (4)

for all arithmetic predicates p : N −→ B. Although proofs may be arbitrarily
large, they are always finite, and if p(a) has a proof, ¶ will eventually find it. On
the other hand, since arithmetic predicates, like all arithmetic functions, satisfy
p = {�p�}, we also have

¶ (�p� , a) = {�p�}(a) = p(a) (5)

Setting g(p, a) = ¶(�¬p� , a) in (2) induces a fixpoint γ with

¶(�¬γ� , a)
(3)
= {�γ�}(a)

(5)
= ¶ (�γ� , a) (6)

But (4) then implies

� ¬γ(a) ⇐⇒ � γ(a) (7)

which means that neither γ nor ¬γ can be provable. On the other hand, the
disjunction γ ∨ ¬γ is classically true. The statement γ ∨ ¬γ is thus true but not
provable, and arithmetic is therefore incomplete.

Belief Completeness: Universal Updating. Remarkably, the same
encoding-fixpoint conundrum (1–2), which leads to the incompleteness of static
theories, also leads to the completeness of dynamically updated theories. Updat-
ing is presented as state dependency. The function f in (1) is now in the form
f : X × A −→ X × B where X is the state space. It may be more intuitive to
think of f as a process, since it captures state changes5. We conveniently present
it as a pair f = 〈f ′, f ′′〉, where f ′ : X × A −→ X is the next state update,
whereas f ′′ : X × A −→ B is an X-indexed family of functions f ′′

x : A −→ B.
The elements of the universal language L are now construed as belief states.
Its universality means that every observable state x from any state space X is
expressible as a belief. The interpreters {} : L×A −→ L×B are also presented as
pairs {} = 〈{}′

, {}′′〉, where {}′ : L × A −→ L updates the belief states whereas
{}′′ : L × A −→ B evaluates beliefs to functions. Just like every state x in X

4 Although this discussion is semi-formal, it may be helpful to bear in mind that the
equality {�γ�}(a) = γ(a) is extensional : it just says that interpreting the description

�γ� on an input value a always outputs the value γ(a). But the process whereby
{�γ�}(a) arrives at this value may be different from a given direct evaluation of
γ(a).

5 In automata theory, such functions are called the Mealy machines.

36 D. Pavlovic and T. Pavlovic

determines a function f ′′
x : A −→ B, every belief � in L determines a function

{�}′′
: A −→ B, which makes predictions based on the current belief. Generaliz-

ing the fixpoint construction (2), every process f = 〈f ′, f ′′〉 : X × A −→ X × B
now induces an assignment �f� : X −→ L of beliefs to states such that

{�f�(x)}′
= �f� (f ′

x) {�f�(x)}′′
= f ′′

x (8)

The construction of �f� is presented in Sect. 6. Here we propose an interpretation.
The second equation says that the output component of {} behaves as it did in
(1): it interprets the description �f�(x) and recovers the function f ′′

x executed
by the process f at the state x. The first equation says that the interpreter {}
maps the �f�-description of the state x to a �f�-description of the updated state
f ′

x:
f ′ : x
−→ f ′

x

{}′
: �f�(x)
−→ �f� (f ′

x)
(9)

Any state change caused by the process f is thus explained by a belief update
of �f� along {}. Interpreting the belief states �f� by the interpreter {} pro-
vides belief updates that can be construed as explanations in the language L of
any state changes in the process f . All that can be learned about f is already
expressed in �f� and all state changes that may be observed will be explained
by the updates anticipated by the current belief, as indicated in (9). The belief
is complete.

Remark. In coalgebra and process calculus, the universal interpreters {} : L ×
A −→ L × B would be characterized as weakly final simulators [30]. They are
universal in the sense that the same state space L works for all types A,B. See
[24, Sec. 7.2] for details and references.

The Logic of Going Dynamic. When L is a programming language, the
interpreter {} interprets programs as computable functions A −→ B, where
A and B are types, usually predicates that allow type checking. When L is
a language of software specifications or scientific theories construed as beliefs
about the state of the world, the interpreter {} updates beliefs to explain the
state changes observed in explainable processes X × A −→ X × B, where A,B
and X are state spaces. States are usually also defined by some predicates,
but their purpose is not to be easy to check but to define the state changes as
semantical reassignments. This is spelled out in Sect. 2.1. Dynamic reassignments
of meaning bring us into the realm of dynamic logic. If the propositions from a
lattice T are used as assertions about the states of the world or the states of our
beliefs about the world, then the dynamic changes of these assertions under the
influence of events from a lattice E can be expressed in terms of Hoare triples

A{e}B (10)

saying that the event e ∈ E after the precondition A ∈ T leads to the postcondi-
tion B ∈ T . The Hoare logic of such statements was developed in the late 1960s

From Gödel’s Incompleteness Theorem to the Completeness of Bot Beliefs 37

as a method for reasoning about programs. The algebra of events E was gener-
ated by program expressions, whereas the propositional lattice T was generated
by formal versions of the comments inserted by programmers into their code,
to clarify the intended meanings of blocks of code [13,17]. A triple (10) would
thus correspond to a block of code e, a comment A describing the assumed
state before e is executed, as its precondition, and a comment B describing
the guaranteed state after e is executed, as its postcondition. By formalizing the
“assume-guarantee” reasoning of software developers, the Hoare triples provided
a stepping stone into the logic of state transitions in general. The propositional
algebra of dynamic logic can be viewed as a monotone map

T o × E × T
−{−}−
−−−−−−→ O

where O is a lattice of truth values, whereas T and E are as above, and T o is
T with the opposite order. If the lattice T is complete, then each event e ∈ E
induces a Galois connection

A � e � B ⇐⇒ A{e}B ⇐⇒ A � [e]B

determining a dynamic modality [e] : T −→ T for every e ∈ E [31]. The induced
interior operation ([e]B)�E � B says that [e]B is the weakest precondition that
guarantees B after e. The induced closure A � [e] (A � e) says that A � e is the
strongest postcondition that can be guaranteed by the assumption A before e. In
addition to formal program annotations, dynamic logic found many other uses
and interpretations [6,10,15]. Here we use it as a backdrop for the coevolution
of theories and their interpretations.

Updating Completeness. In static logic, a theory is complete when all state-
ments true in a reference model are provable in the theory. In dynamic logic,
the model changes dynamically and the true statements vary. There are different
ways in which the notion of completeness can be generalized for dynamic situa-
tions. The notion of completeness that seems to be of greatest practical interest
is the requirement that the theory and the model can be dynamically adapted
to each other: the theory can be updated to make provable some true state-
ments or the model can be updated to make true some false statements. This
requirement covers both the theory updates in science and the model updates
by selffulfilling and belief-building announcements in various non-sciences. The
logical frameworks satisfying such completeness requirements allow for matching
current beliefs and future states.

2 World as a Monoidal Category

2.1 State Spaces as Objects

In computation, a state is a family of typed variables with a partial assignment
of values. In science, a state is a family of observables, some with expected

38 D. Pavlovic and T. Pavlovic

values. Formally, a state can be viewed as a family of predicates, or a theory in
first-order logic, with a specified model. Both can be presented in the standard
Tarskian format, where a theory is a quadruple of sorts, operations, predicates,
and axioms, and its interpretation is an inductively defined model [8].

Theories as Sketches. In this extended abstract, theories are presented as cat-
egorical sketches and their models are specified in extended functorial semantics
[1,5,19–21]. While this may not be the most popular view, it is succinct enough
to fit into the available space. The main constructions, presented in Sect. 4–6, do
not depend on the choice of presentation. The reader could thus skip to Sect. 3
and come back as needed.

Definition 1. A clone Σ is a cartesian category6 freely generated by sorts, oper-
ations, and equational axioms of a logical theory. A theory is a pair Θ = 〈Σ,Γ 〉,
where Σ is a clone and Γ is a set of cones and cocones in Σ, capturing the general
axioms7 of the logical theory. A model of Θ is a cartesian functor M : Σ −→ Set
mapping the Γ -cones into limit cones and the Γ -cocones into colimit cocones. A
state of belief (or belief state) is a triple

A = 〈ΣA, ΓA,MA〉

where ΘA = 〈ΣA, ΓA〉 is a theory and MA its model in a category Set of sets
and functions. An element of the model MA is called an observable of the state
A.

States of A as Extensions of MA. The reference model MA determines
the notion of truth in the state space A. It expresses properties that may not
be proved in the theory ΘA or even effectively specified8. The reference model
MA should thus not be thought of as a single object of the category of all
models of ΘA but as the (accessible) subcategory of model extensions of MA.
These model extensions are the states of the state space A. The structure of a
state space can be further refined to capture other features of theories in science
and engineering, including their statistical and complexity-theoretic valuations
[32,36]. While such refinements have no direct impact on our considerations, they
signal that we are in the realm of inductive inference, which may feel unusual
for the Tarskian framework of static logic, normally concerned with deductive
aspects. The fact that the theory ΘA has a model MA implies that it is logically
consistent but it does not imply that it is true within an external frame of
reference, a “reality” that may drive the state transitions, i.e. the processes of
6 We stick with the traditional terminology where a category is cartesian when it

has cartesian products. The cartesian product preserving functors are abbreviated
to cartesian functors. This clashes with the standard terminology for morphisms
between fibrations, but fibrations do not come about in this paper.

7 Equational axioms could be subsumed among cones and cocones, and omitted from
Σ, which would boil down to the free category generated by sorts and operations.

8 E.g., the set of all true statements of Peano arithmetic is expressed by its standard
model, but most of them cannot be described effectively.

From Gödel’s Incompleteness Theorem to the Completeness of Bot Beliefs 39

extending and reinterpreting theories. The intuition is that the states in the space
A are observables that may never be observed, since MA may be incompatible
with the actual observations. The theory ΘA may be consistent but wrong.

Examples of state spaces include logical theories with standard models that
arise not only in natural sciences but also in social systems, as policy formal-
izations. A software specification with a reference implementation can also be
viewed as a state space. Updates and evolution of a software system can then be
analyzed using a higher-order dynamic logic [12]. The functorial semantics view
was spelled out in [23], used in a software synthesis tool [26,28,29], and applied
in algorithm design [25,27].

2.2 Transitions as Morphisms

Intuitively, a transition f from a state space A to a state space B is a specification
that induces a transition from any A-state to a B-state. We first consider the
transitions arising from reinterpreting theories and then expand to modifying
the reference models.

Definition 2. An interpretation of state space A in a state space B is a log-
ical interpretation of the theory ΘB = 〈ΣB , ΓB〉 in the theory ΘA = 〈ΣA, ΓA〉
which reduces the reference model MA to MB. More precisely, an interpreta-
tion f : A −→ B is a cartesian functor f : ΣA ←− ΣB mapping ΓB-(co)cones to
ΓA-(co)cones according to a given assignment fΓ : ΓA ←− ΓB and making the
following diagram commute

ΣA ΣB

Set

MA MB

f

(11)

The models MA and MB map the (co)cones from ΓA and ΓB to (co)limits of
sets, as required by Definition 1.

Interpretations as Assignments. The structure of interpretations of software
specifications and the method to compose them were spelled out in [23,28]. Since
software specifications are finite, an interpretation f : ΣA ←− ΣB boils down to
a tuple of assignments

x1 := t1 ; x2 := t2 ; . . . ; xn := tn

of terms t = 〈t1, t2, . . . , tn〉 from ΣA to variables x = 〈x1, x2, . . . , xn〉 from ΣB

in such a way that, for each axiom γ ∈ ΓB , the substitution instance

f(γ) = [x := t]γ

40 D. Pavlovic and T. Pavlovic

is a theorem derivable from the axioms in ΓA. In Hoare logic [17], a state tran-
sition f : ΣA ←− ΣB is presented as a triple ΘA{x := t}ΘB . By definition, this
triple is valid if and only if ΘA � [x := t]ΘB , where [x := t]ΘB is the result
substituting the ΘA-terms t for ΘB-variables x in all axioms γ ∈ ΓB . Condition
(11) moreover requires that this theory interpretation recovers the model MB

from the model MA.
In general, however, it is not always possible to transform all computational

states annotated at all relevant program points into one another by mere sub-
stitutions. That is why Hoare logic does not boil down to the assignment clause,
but specifies the meaning of other program constants in other clauses, which can
be viewed as more general state transitions.

Definition 3. A state transition f : A −→ B is a cartesian functor f : ΘA ←−
ΘB mapping ΓB-(co)cones to ΓA-(co)cones according to a given assignment
fΓ : ΓA ←− ΓB and moreover making the following diagram commute

ΘA ΘB

Set

MA MB

f

(12)

where MA is the extension of MA along the completion ΣA ↪→ ΘA of ΣA under
the limits and colimits generated by ΓA; ditto for MB.

General Sketches. In Definition 2, theories were presented as pairs Θ = 〈Σ,Γ 〉,
where the category Σ is comprised of sorts, operations, and equations of the
theory, whereas the cones and the cocones in Γ specify its predicates and axioms.
In Definition 3, a theory Θ is presented as the category obtained by completing
Σ under the limits and the colimits specified by Γ . This general sketch, with the
family of limit cones and colimit cocones from Γ , is now denoted Θ, by abuse
of notation. A detailed construction of this sketch can be found in [21, §4.2–3].
It is a canonical view of the theory derived in the signature Σ from the axioms
Γ . Since the category Θ is the Γ -completion of Σ, any functor M : Σ −→ Set
mapping the Γ -(co)cones in Σ to (co)limit (co)cones in Set has a unique Γ -
preserving extension M : Θ −→ Set. These extensions are displayed in (11). The
upshot of saturating the sketches from Definition 2 in the form Θ = 〈Σ,Γ 〉 to the
general sketches over Θ in Definition 3 is that the general explainable transitions
are now simply the structure-preserving functors displayed in (11).

2.3 Monoidal Category of State Spaces and Transitions

Let

– U be the category of state spaces from Definition 1 and transitions from
Definition 3, and let

From Gödel’s Incompleteness Theorem to the Completeness of Bot Beliefs 41

– U• be the category of state spaces from Definition 1 and interpretations from
Definition 2.

In both cases, the monoidal structure is induced by the disjoint unions of theo-
ries:

A ⊗ B =
〈
ΣA + ΣB , ΓA + ΓB , [MA + MB]

〉
(13)

where MA⊗B = [MA + MB] : ΣA + ΣB
ΓA⊗B−−−−→ Set maps ΣA like MA and ΣB

like MB . The tensor unit is I = 〈⊥,⊥, ∅〉, where the truth value ⊥ denotes
the inconsistent theory or sketch, its only axiom, and ∅ is its empty model. It
obviously satisfies I ⊗ A = A = A ⊗ I. The associativity of the tensor ⊗ follows
from the associativity of the disjoint union +. The arrow part of ⊗ is induced
by the disjoint unions as coproducts. The coproduct structure equips every state
space A with a cartesian comonoid structure

A ⊗ A
Δ←−−−−−− A �•

−−−−→ I (14)

ΣA + ΣA
[id,id]−−−−−→ ΣA

⊥←−−− ⊥

This provides a categorical mechanism for cloning and erasing states, which
makes some observations repeatable and deletable, as required for testing in
science and software engineering. However, U is not a cartesian category, and
⊗ is not a cartesian product, because some transitions f : A −→ B do not
in general boil down to functors ΣA ←− ΣB , but only to functors ΘA ←− ΣB ,
where ΘA is a completion of ΣA under the ΓA-(co)-limits. Intuitively, this means
that the axioms of the theory ΘB may not be interpreted as axioms of ΘA, but
may be mapped into theorems, which only arise in the ΓA-completion. This
captures the uncloneable and undeletable states that arise in many sciences,
including physics of very small or very large (quantum or cosmological) and
economics. The only transitions that preserve the cartesian structure (14) are
the interpretations f : A −→ B, with the underlying functors ΣA ←− ΣB . They
form the category U•, which is the largest cartesian subcategory of U . If the
states α ∈ U(I,A) are thought of as observables, the states a ∈ U•(I,A) are the
actual observations.

3 String Diagrams

Constructions in monoidal categories yield to insightful presentations in terms
of string diagrams [18,24, Ch. 1]. We will need them to present the construc-
tions like (2) and in particular (8). While commutative diagrams like (11) dis-
play compositions of morphisms and abbreviate their equations, string diagrams
display decompositions of morphisms. Monoidal categories come with two com-
position operations: the categorical (sequential) morphism composition ◦ and
the monoidal (parallel) composition ⊗. The former is drawn along the vertical
axis, the latter along the horizontal axis. The objects are drawn as strings, the

42 D. Pavlovic and T. Pavlovic

morphisms as boxes. A morphism A
f−→ B is presented as a box f with a string A

hanging from the bottom and a string B sticking out from the top. The identities
are presented as invisible boxes: the identity on A is just the string A. The unit
type I is presented as the invisible string. There are thus boxes with no strings
attached. The composite morphism g ◦ f = (A

f−→ B
g−→ C) is drawn bottom-up,

by hanging the box f on the string B under the box g. The monoidal composi-
tion is presented as the horizontal adjacency: the composite (g ◦ f) ⊗ (s ◦ t) is
drawn by placing the boxes g ◦ f next to the boxes for s ◦ t:

B

A

f

g

C

U

V

t

f⊗t

g◦f

s

W

(15)

The middle-two-interchange law (g◦f)⊗(s◦t) = (g⊗s)◦(f⊗t) corresponds to the
two ways of reading the diagram: vertical-first and horizontal-first, marked by
the red and the blue rectangle respectively. The string diagrams corresponding
to the cartesian comonoids (14) are

A A

AA �•

Δ
(16)

The equations that make them into commutative comonoids look like this:

= = = =

State Parametrization and Updating. Products A⊗B denote a space where
A and B but do not interfere. In a diagram, they are just parallel strings. Since
the product states from the space X ⊗ A do not interfere, a transition g : X ⊗
A −→ B can be viewed as X-parametrized family gx : A −→ B, as it was viewed
in Sect. 1. Since the product states from X⊗B also remain separate, a transition
q : X ⊗A −→ X ⊗B can be viewed as X-updating process, as it was also viewed

From Gödel’s Incompleteness Theorem to the Completeness of Bot Beliefs 43

in Sect. 1. The corresponding string diagrams are

B

X A

g

B

X A

X

q (17)

Shape Conventions. While the boxes in (15) and (17) are rectangular, the
cartesian “boxes” in (16) are reduced to black dots. In general, the boxes denot-
ing general transitions can vary in shape, and fixed shapes are used for generic
notations. E.g., the interpreters, introduced in (19) below, are denoted by trape-
zoids, and the interpretations, that are fed to them, by triangles. A black dot on
a box signals that it is cartesian, i.e. belongs to U•.

Projections. Using the cartesian structure from (16), a state updating transi-
tion q can still be decomposed like before

q′ =
(

X ⊗ A
q−→ X × B

id⊗ �•
−−−→ X

)
q′′ =

(
X ⊗ A

q−→ X ⊗ B �•⊗id−−−→ B

)
(18)

In general, however, although the transitions u : Z −→ U and v : Z −→ V can
be paired into 〈u, v〉 = (Z Δ−→ Z ⊗ Z

u⊗v−−−→ U ⊗ V), the pair 〈q′, q′′〉 may not be
equal to q in the universe U , unless it happens to be cloneable, in the sense that
it commutes with Δ.

4 Universal Language

A theory of theories, such as the categorical theory of sketches, is a theory.
Category theory is also a theory and functorial semantics provides a categorical
theory of reference models. The theory of state spaces from Sect. 2.1 can thus
be formalized and presented as a state space in the category U . The theory of
state spaces from Sect. 2.1 can thus be formalized into a sketch with a reference
model and presented as a state space in the category U . The theory of state
transitions from Sect. 2.2 is another sketch, and with another reference model it
is also a state space in U . Call it L. The fact that the states in L correspond to
the transitions in U means that it satisfies a parametrized version of (1). It is a
universal language for U . Its interpreters follow from its definition, as the models
of the theory of transitions. Since there is no room here to spell out the details of
a theory of transitions and show that the correspondence of its cartesian models
and the transitions in U equips L with all interpreters, we postulate the existence
of the interpreters by the following definition.

44 D. Pavlovic and T. Pavlovic

Definition 4. An universal interpreter for state spaces A,B is a transition
{} : L ⊗ A −→ B in U which is universal for all parametric families of tran-
sitions from A to B. This means that for any state space X and any transition
g ∈ U(X ⊗ A,B) there is an interpretation G ∈ U•(X,L) with

{}
= P

BB

X A

g

G

X A

•
(19)

On one hand, a universal interpreter is universal for parametric families. On the
other hand, it is a parametric family itself. It is thus capable of interpreting
itself. This capability of self-reflection was crucial for Gödel’s incompleteness
construction. This capability is embodied in the specializers, which are derived
directly from Definition 4.

Lemma 1. For any X,A,B there is an interpretation [] ∈ U•(L × X,L) which
specializes from a given X ⊗ A-interpreter to an A-interpreter, in the sense

{}
= L

BB

X A

{}
[]

X A

•
LL

(20)

Hoare Logic of Interpreters and Specializers. If interpreters are presented
as Hoare triples in the form (X ⊗A){G}B, and if X[G] denotes a specialization
of G to X as above, then (20) can be written as the invertible Hoare rule

(X ⊗ A){G}B
============

A{X[G]}B

Explanations. Interpretations (in the sense of Definition 2) of arbitrary states
from some space X along G ∈ U•(X,L) in a universal language L can be con-
strued as explanations. If L is a programming language, they are programs. The
idea that explaining a process means programming a computation has been pur-
sued in theory of science from various directions [22, and references therein].
A universal language L is thus a universal space of explanations. The idea

From Gödel’s Incompleteness Theorem to the Completeness of Bot Beliefs 45

of programming languages as universal state spaces is pursued in [24, Ch. 7].
Just like any universal programming language makes every computation pro-
grammable, any universal language from Definition 4 makes any observable tran-
sition explainable. What we cannot explain, we cannot recognize, and therefore
we cannot observe. But it gets funny when we take into account how our expla-
nations influence our observations, and how our current explanations can be
made to steer future observations. This is sketched in the next two sections.

5 Self-explanations

When a state change depends on our explanations, then we can find an explana-
tion consistent with its own impact: the state changes the way the explanation
predicts. More precisely, if a family of transitions in the form t : L⊗X⊗A −→ B,
then the predictions t�x can be steered by varying the explanations � for every
x until a family of explanations �t� : X −→ L is found, which is self-confirming
at all states x, i.e. it satisfies t(�t�x , x, a) = {�t�x}a.

Proposition 1. For any belief transition t ∈ U(L⊗X ⊗A,B) there is an expla-
nation �t� ∈ U•(X,L) such that

• •

A A

t

B B

{}=

�t� �t�

XX

•

(21)

Proof. Let T ∈ U•(X,L) be an explanation of the transition on the left in (21).

•

• •

A A

[]

t

B B

{}=

T

XX

(22)

46 D. Pavlovic and T. Pavlovic

H exists by Definition 4. Then �t�x = [Tx] is self-confirming, because

•

• •

A A

[]

t

B B

{}=

T

XX

•
T

•

•
T

A

B

{}=

X

•
T

A

B

{}=

•

•[]

X

•
T

•�t� �t�

•
(23)

��

6 Unfalsifiable Explanations

A transition in the form q : X ⊗ A −→ X ⊗ B updates the state x on input a
to a state x′ = q′

x(a) in X and moreover produces an output b = q′′
x(a) in B.

A correct explanation �q� : X −→ L of the process q must correctly predict the
next state and the output. The predictions are extracted from an explanation
by the interpreter {}. In this case, the predictions of an explanation �q� of the
process q at a state x and on an input a will be in the form {�q�x}(a) in X ⊗B.
A correct prediction of the output b = q′′

x(a) is simply {�q�x}′′
(a) = b. However,

the external state x′ = q′
x(a) may not be directly observable. It is believed to

be explained by �q�x′ . A correct prediction of the next state is thus a correct
prediction of its explanation {�q�x}′

(a) = �q�x′ . At each state x, the explanation
�q�x is required to anticipate the explanations �q�x′ of all future states and be
consistent with them. If the explanation �q�x′ at a future state x′ = q′

x(a) is
found to be inconsistent with the explanation {�q�x}′

(a), then the explanations
�q� of the process q have been proven false. This is the standard process of
testing explanations. Our claim is, however, that a universal language allows
constructing testable but unfalsifiable explanations, that remain consistent at all
future states. This persistent consistency can be viewed as a dynamic form of
completeness. It is achieved by predicting the state updates of the given process
q and anticipating their explanations, as in the following construction.

From Gödel’s Incompleteness Theorem to the Completeness of Bot Beliefs 47

Proposition 2. For any process q ∈ U(X ⊗ A,X ⊗ B) there is an explanation
�q� ∈ U•(X,L) which maintains consistency of all future explanations:

=

L

X

�q�

A

B

q

L

X A

B

•

•

�q�

{}
(24)

Proof. Set �q� = [Q] where Q is an explanation of the belief transition q post-
composed with a specialization over the state space X of updates:

=

Q

q

•

•
Q

{}

•

[]

=

Q
•

{}
•[]

(25)

��

7 From Natural Science to Artificial Delusions

7.1 What Did We Learn?

We sketched the category U of state spaces A,B, . . ., comprised of theories with
reference models. A transition f : A −→ B transforms the A-states to B-states.
Such morphisms capture theory expansions, reinterpretations, and map observ-
ables of type A to observables of type B. They can be construed in terms of
dynamic logic and support reasoning about the evolution of software systems
or scientific theories. The crucial point is that the category U contains a uni-
versal language L of explanations and belief updates. The self-reference in such
languages was the crux of Gödel’s incompleteness constructions. While Gödel
established that static theories capable of self-reference cannot be complete or
prove their own consistency, we note that dynamic theory and model updates
allow constructing testable theories that preempt falsification. While a static
model of a given theory fixes a space of true statements once and for all, the
availability of dynamic semantical updates opens up the floodgates of changing
models and varying notions of truth. Faster learners conquer this space faster.

48 D. Pavlovic and T. Pavlovic

The bots, as the fastest learners among us, have been said to acquire their delu-
sions from our training sets. The presented constructions suggest that they may
also become delusional by dynamically updating their belief states and steering
their current explanations of reality into persistent consistency, resilient to fur-
ther learning. They may also combine the empiric delusions from our training
sets with the logical delusions constructed in a universal language, leverage one
against the other, and get the best of both worlds.

But why would they do that?

7.2 Beyond True and False

Why did the Witches tell Macbeth that it is his destiny to be king thereafter,
whereupon he proceeded to kill the King? Why did the Social Network have to
convince its very first users that more than half of their friends were already
users? Some statements only ever become true if they are announced to be
true when they are false. They are self-fulfilling prophecies. There are also self-
defeating claims. In the dynamic logic of social interactions, most claims interfere
with their own truth values in one way or another. If I convince enough people
that I am rich, I stand a better chance to become rich. If we convince enough
people that this research direction is promising and well-funded, it will become
well-funded and promising. Just like true statements about nature help us to
build machines and get ahead in the universe, the manipulations of truth seem
to help us get ahead in society. They are the high-level patterns of language that
used to be studied in early logic right after the low-level patterns of meaning
(that used to be called “categories”). If you train a bot to speak correctly, it will
start speaking convincingly as soon as it learns long enough n-grams. It will lie
not only the static lies contained in its training set but also the lies generated
dynamically, according to the rules of rational interaction. Rhetorics used to be
studied right after grammar, sophistic argumentation after syllogisms, witchcraft
arose from cooking, magic from tool building. The bot religions arise along that
well-trodden path.

We presented two constructions. One produces self-confirming explanations.
The other one explains all future states, so it is testable but not falsifiable.
Science requires that its theories are testable and falsifiable. Religion explains
all future observations. If you train a bot on long enough n-grams, it may arrive
at persistently unfalsifiable false beliefs.

Truth be told, all of the constructions presented in this extended abstract
have only been tested on toy examples. We may be just toying with logic. Nev-
ertheless, the fact that semantical assignments are programmable, tacitly estab-
lished by Gödel and mostly ignored as an elephant in the room of logic ever since,
seems to call for attention, as beliefs transition beyond the human carriers.

From Gödel’s Incompleteness Theorem to the Completeness of Bot Beliefs 49

References

1. Adámek, J., Rosický, J.: Locally Presentable and Accessible Categories. London
Mathematical Society Lecture Notes, no. 189. Cambridge University Press (1994)

2. Baltag, A., Coecke, B., Sadrzadeh, M.: Epistemic actions as resources. J. Logic
Comput. 17, 555–585 (2007). https://doi.org/10.1093/logcom/exm015

3. Baltag, A., Moss, L.S.: Logics for epistemic programs. Synthese 139, 165–224
(2004). https://doi.org/10.2307/20118416

4. Baltag, A., Sadrzadeh, M.: The algebra of multi-agent dynamic belief revision.
Electron. Notes Theor. Comput. Sci. 157, 37–56 (2006). https://doi.org/10.1016/
j.entcs.2006.02.012

5. Bastiani, A., Ehresmann, C.: Categories of sketched structures. Cahiers Topologie
Géom. Différentielle Catég. 13(2), 104–214 (1972)

6. Benthem, J.: Language in Action: Categories, Lambdas and Dynamic Logic. North-
Holland (1995)

7. Benthem, J.: Logical Dynamics of Information and Interaction. Cambridge Uni-
versity Press, Cambridge (2011)

8. Chang, C.C., Keisler, J.: Model Theory. Studies in Logic and the Foundations of
Mathematics, no. 73. North-Holland (1973). Third edition (1990)

9. Davis, M. (ed.): The Undecidable: Basic Papers on Undecidable Propositions,
Unsolvable Problems, and Computable Functions. Raven Press, Helwett (1965)

10. Ditmarsch, H., Hoek, W., Kooi, B.: Dynamic Epistemic Logic. Synthese Library,
Springer, Dordrecht (2007)

11. Easley, D., Kleinberg, J.: Networks, Crowds, and Markets: Reasoning about a
Highly Connected World. Cambridge University Press, Cambridge (2010)

12. Fiadeiro, J.L., Tutu, I., Lopez, A., Pavlovic, D.: Logics for actor networks: a case
study in constrained hybridization. J. Logical Algebraic Methods Program. 106,
141–166 (2019)

13. Floyd, R.: Assigning meaning to programs. In: Schwartz, J.T. (ed.) Mathematical
Aspects of Computer Science. Proceedings of Symposia in Applied Mathematics,
no. 19, pp. 19–32. American Mathematical Society (1967)

14. Gödel, K.: Über formal unentscheidbare Sätze der Principia Mathematica und ver-
wandter Systeme I. Monatshefte für Mathematik und Physik 38, 173–198 (1931).
English translations, “On Formally Undecidable Propositions of ‘Principia Math-
ematica’ and Related Systems” published by Oliver and Boyd, 1962 and Dover,
1992; also in [9], pp. 5–38 and [16], pp. 596–616

15. Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. Foundations of Computing. MIT
Press, Cambridge (2000)

16. van Heijenoort, J. (ed.): From Frege to Gödel: A Source Book in Mathematical
Logic, 1879–1931. Harvard University Press (1967). Reprinted 1971, 1976

17. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM
12(10), 576–580 (1969). https://doi.org/10.1145/363235.363259

18. Joyal, A., Street, R.: The geometry of tensor calculus I. Adv. in Math. 88, 55–113
(1991)

19. Lair, C.: Catégories modelables et catégories esquissables. Diagrammes 6, L1–L20
(1981). http://eudml.org/doc/192986

20. Lair, C.: Catégories qualifiables et catégories esquissables. Diagrammes 17, 1–153
(1987). http://eudml.org/doc/193012

21. Makkai, M., Paré, R.: Accessible Categories: The Foundations of Categorical Model
Theory. Contemporary Mathematics, no. 104. American Mathematical Society
(1990)

https://doi.org/10.1093/logcom/exm015
https://doi.org/10.2307/20118416
https://doi.org/10.1016/j.entcs.2006.02.012
https://doi.org/10.1016/j.entcs.2006.02.012
https://doi.org/10.1145/363235.363259
http://eudml.org/doc/192986
http://eudml.org/doc/193012

50 D. Pavlovic and T. Pavlovic

22. Martin, E., Osherson, D.N.: Elements of Scientific Inquiry. MIT Press, Cambridge
(1998)

23. Pavlović, D.: Semantics of first order parametric specifications. In: Wing, J.M.,
Woodcock, J., Davies, J. (eds.) FM 1999. LNCS, vol. 1708, pp. 155–172. Springer,
Heidelberg (1999). https://doi.org/10.1007/3-540-48119-2 11

24. Pavlovic, D.: Programs as Diagrams: From Categorical Computability to Com-
putable Categories. Springer (2023, to appear). http://arxiv.org/abs/2208.03817

25. Pavlovic, D., Pepper, P., Smith, D.: Colimits for concurrent collectors. In: Der-
showitz, N. (ed.) Verification: Theory and Practice. LNCS, vol. 2772, pp. 568–597.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-39910-0 25

26. Pavlovic, D., Pepper, P., Smith, D.: Evolving specification engineering. In:
Meseguer, J., Roşu, G. (eds.) AMAST 2008. LNCS, vol. 5140, pp. 299–314.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-79980-1 23

27. Pavlovic, D., Pepper, P., Smith, D.R.: Formal derivation of concurrent garbage
collectors. In: Bolduc, C., Desharnais, J., Ktari, B. (eds.) MPC 2010. LNCS, vol.
6120, pp. 353–376. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-13321-3 20. arxiv.org:1006.4342

28. Pavlovic, D., Smith, D.R.: Composition and refinement of behavioral specifications.
In: Automated Software Engineering 2001. The Sixteenth International Conference
on Automated Software Engineering. IEEE (2001)

29. Pavlovic, D., Smith, D.R.: Software development by refinement. In: Aichernig,
B.K., Maibaum, T. (eds.) Formal Methods at the Crossroads. From Panacea to
Foundational Support. LNCS, vol. 2757, pp. 267–286. Springer, Heidelberg (2003).
https://doi.org/10.1007/978-3-540-40007-3 17

30. Pavlovic, D., Yahia, M.: Monoidal computer III: a coalgebraic view of computabil-
ity and complexity (extended abstract). In: Ĉırstea, C. (ed.) CMCS 2018. LNCS,
vol. 11202, pp. 167–189. Springer, Cham (2018). https://doi.org/10.1007/978-3-
030-00389-0 10. http://arxiv.org/abs/1704.04882

31. Pratt, V.R.: Semantical considerations on Floyd-Hoare logic. In: Proceedings of
17th Annual Symposium on Foundations of Computer Science (FoCS), pp. 109–
121. IEEE (1976)

32. Rissanen, J.: Information and Complexity in Statistical Modeling. Information
Science and Statistics, Springer, New York (2007)

33. Rosser, B.: Extensions of some theorems of Gödel and Church. J. Symb. Logic 1,
87–91 (1936). https://doi.org/10.2307/2269028, reprinted in [9]

34. Smorynski, C.: Self-reference and Modal Logic. Universitext, Springer, New York
(2012)

35. Turing, A.M.: Systems of logic based on ordinals. Proc. Lond. Math. Soc. Second
Series 45, 161–228 (1939). Reprinted in [9]

36. Wallace, C.S.: Statistical and Inductive Inference by Minimum Message Length.
Information Science and Statistics, Springer, Cham (2005)

https://doi.org/10.1007/3-540-48119-2_11
http://arxiv.org/abs/2208.03817
https://doi.org/10.1007/978-3-540-39910-0_25
https://doi.org/10.1007/978-3-540-79980-1_23
https://doi.org/10.1007/978-3-642-13321-3_20
https://doi.org/10.1007/978-3-642-13321-3_20
http://arxiv.org/abs/1006.4342
https://doi.org/10.1007/978-3-540-40007-3_17
https://doi.org/10.1007/978-3-030-00389-0_10
https://doi.org/10.1007/978-3-030-00389-0_10
http://arxiv.org/abs/1704.04882
https://doi.org/10.2307/2269028

Contributed Papers

Quantitative Global Memory

Sandra Alves1, Delia Kesner2,3, and Miguel Ramos4(B)

1 CRACS/INESC-TEC, DCC, Faculdade de Ciências, Universidade do Porto,
Rua do Campo Alegre s/n, 4169-007 Porto, Portugal

sandra@fc.up.pt
2 Université Paris Cité, CNRS, IRIF, Paris, France

kesner@irif.fr
3 Institut Universitaire de France, Paris, France

4 LIACC, DCC, Faculdade de Ciências, Universidade do Porto,
Rua do Campo Alegre s/n, 4169-007 Porto, Portugal

jmiguelsramos@gmail.com

Abstract. We show that recent approaches to static analysis based on
quantitative typing systems can be extended to programming languages
with global state. More precisely, we define a call-by-value language
equipped with operations to access a global memory, together with a
semantic model based on a (tight) multi-type system that captures exact
measures of time and space related to evaluation of programs. We show
that the type system is quantitatively sound and complete with respect
to the operational semantics of the language.

1 Introduction

The aim of this paper is to extend quantitative techniques of static analysis based
on multi-types to programs with effects.

Effectful Programs. Programming languages produce different kinds of effects
(observable interactions with the environment), such as handling exceptions,
read/write from a global memory outside its own scope, using a database or
a file, performing non-deterministic choices, or sampling from probabilistic dis-
tributions. The degree to which these side effects are used depends on each
programming paradigm [24] (imperative programming makes use of them while
declarative programming does not). In general, avoiding the use of side effects
facilitates the formal verification of programs, thus allowing to (statically) ensure
their correctness. For example, the functional language Haskell eliminates side
effects by replacing them with monadic actions, a clean approach that continues
to attract growing attention. Indeed, rather than writing a function that returns
a raw type, an effectful function returns a raw type inside a useful wrapper – and

Supported by: National Funds through the Portuguese funding agency, FCT - Fundação
para a Ciência e a Tecnologia -, within project LA/P/0063/2020, and the project
and individual research grant 2021.04731.BD; Base Funding UIDB/00027/2020 of the
Artificial Intelligence and Computer Science Laboratory - LIACC - funded by national
funds through the FCT/MCTES (PIDDAC); and Cost Action CA20111 EuroProofNet.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
H. H. Hansen et al. (Eds.): WoLLIC 2023, LNCS 13923, pp. 53–68, 2023.
https://doi.org/10.1007/978-3-031-39784-4_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-39784-4_4&domain=pdf
https://doi.org/10.1007/978-3-031-39784-4_4

54 S. Alves et al.

that wrapper is a monad [34]. This approach allows programming languages to
combine the qualities of both the imperative and declarative worlds: programs
produce effects, but these are encoded in such a way that formal verification can
be performed very conveniently.

Quantitative Properties. We address quantitative properties of programs
with effects using multi-types, which originate in the theory of intersection type
systems. They extend simple types with a new constructor ∩ in such a way
that a program t is typable with σ ∩ τ if t is typable with both types σ and
τ independently. Intersection types were first introduced as models capturing
computational properties of functional programming in a broader sense [14]. For
example, termination of different evaluation strategies can be characterized by
typability in some appropriate intersection type system: a program t is termi-
nating if and only if t is typable. Originally, intersection enjoys associativity,
commutativity, and in particular idempotency (i.e. σ ∩ σ = σ). By switching
to a non-idempotent intersection constructor, one naturally comes to represent
types by multisets, which is why they are called multi-types. Just like their
idempotent precursors, multi-types still allow for a characterization of several
operational properties of programs, but they also grant a substantial improve-
ment: they provide quantitative measures about these properties. For example,
it is still possible to prove that a program is terminating if and only if it is
typable, but now an upper bound or exact measure for the time needed for its
evaluation length can be derived from the typing derivation of the program. This
shift of perspective, from idempotent to non-idempotent types, goes beyond low-
ering the logical complexity of the proof: the quantitative information provided
by typing derivations in the non-idempotent setting unveils crucial quantitative
relations between typing (static) and reduction (dynamic) of programs.

Upper Bounds and Exact Split Measures. Multi-types are extensively used
to reason about programming languages from a quantitative point of view, as
pioneered by de Carvalho [12,13]. For example, they are able to provide upper
bounds, in the sense that the evaluation length of a program t plus the size of its
result (called normal form) can be bounded by the size of the type derivation of t.
A major drawback of this approach, however, is that the size of normal forms can
be exponentially bigger than the length of the evaluation reaching those normal
forms. This means that bounding the sum of these two natural numbers at the
same time is too rough, and not very relevant from a quantitative point of view.
Fortunately, it is possible to extract better measures from a multi-type system.
A crucial point to obtain exact measures, instead of upper bounds, is to consider
minimal type derivations, called tight derivations. Moreover, using appropriate
refined tight systems it is also possible to obtain independent measures (called
exact split measures) for length and for size. More precisely, the quantitative
typing systems1 are now equipped with constants and counters, together with
an appropriate notion of tightness, which encodes minimality of type derivations.
For any tight type derivation Φ of a program t with counters b and d, it is now

1 In this paper, by quantitative types we mean non-idempotent intersection types.
Another meaning can be found in [6].

Quantitative Global Memory 55

possible to show that t evaluates to a normal form of size d in exactly b steps.
Therefore, the type system is not only sound, i.e. it is able to guess the number
of steps to normal form as well as the size of this normal form, but the opposite
direction providing completeness of the approach also holds.

Contribution. The focus of this paper is on effectful computations, such as
reading and writing on a global memory able to hold values in cells. Taking
inspiration from the monadic approach adopted in [16], we design a tight quan-
titative type system that provides exact split measures. More precisely, our sys-
tem is not only capable of discriminating between length of evaluation to normal
form and size of the normal form, but the measure corresponding to the length
of the evaluation is split into two different natural numbers: the first one cor-
responds to the length of standard computation (β-reduction) and the second
one to the number of memory accesses. We show that the system is sound i.e.
for any tight type derivation Φ of t ending with counters (b,m, d), the term t is
normalisable by performing b evaluation steps and m memory accesses, yielding
a normal form having size d. The opposite direction, giving completeness of the
model, is also proved.

In order to gradually present the material, we first develop the technique for
a weak (open) call-by-value (CBV) calculus, which can be seen as a contribution
per se, and then we encapsulate these preliminary ideas in the general framework
of the language with global state.

Summary. Section 2 illustrates the technique on a weak (open) CBV calculus. We
then lift the technique to the λ-calculus with global state in Sect. 3 by following the
same methodology. More precisely, Sect. 3.1 introduces the λgs-calculus, Sect. 3.2
defines a quantitative type system P. Soundness and completeness of P w.r.t. λgs

are proved in Sect. 3.3. We conclude and discuss related work in Sect. 4. Due to
space limitations we do not include proofs, but they are available in [5].

Preliminary General Notations. We start with some general notations. Given
a (one-step) reduction relation →R, �R denotes the reflexive-transitive closure
of →R. We write t �b u for a reduction sequence from t to u of length b. A term
t is said to be (1) in R-normal form (written t �→R) iff there is no u such that
t →R u, and (2) R-normalizing iff there is some R-normal form u such that
t �R u. The reduction relation R is normalizing iff every term is R-normalizing.

2 Weak Open CBV

In this section we first introduce the technique of tight typing on a simple lan-
guage without effects, the weak open CBV. Section 2.1 defines the syntax and
operational semantics of the language, Sect. 2.2 presents the tight typing system
O and discusses soundness and completeness of O w.r.t. the CBV language.

2.1 Syntax and Operational Semantics

Weak open CBV is based on two principles: reduction is weak (not performed
inside abstractions), and terms are open (may contain free variables). Value,

56 S. Alves et al.

terms and weak contexts are given by the following grammars, respectively:

v, w ::= x | λx.t t, u, p ::= v | tu W ::= � | Wt | tW

We write Val for the set of all values. Symbol I is used to denote the identity
function λz.z.

The sets of free and bound variables of terms and the notion of α-conversion
are defined as usual. A term t is said to be closed if t does not contain any free
variable, and open otherwise. The size of a term t, denoted |t|, is given by:
|x| = |λx.t| = 0; and |tu| = 1 + |t| + |u|. Since our reduction relation is weak,
i.e., reduction does not occur in the body of abstractions, we assign size zero to
abstractions.

We now introduce the operational semantics of our language, which models
the core behavior of programming languages such as OCaml, where CBV eval-
uation is weak. The deterministic reduction relation (written →), is given
by the following rules:

(βv)
(λx.t)v → t{x\v}

t → t′ (appL)
tu → t′u

t �→ u → u′
(appR)

tu → tu′

Terms in →-normal form can be characterized by the following grammars:
no ::= Val | ne and ne ::= x no | no ne | ne no.

Proposition 1. Let t be a term. Then t ∈ no iff t �→.

In closed CBV [31] (only reducing closed terms), abstractions are the only
normal forms, but in open CBV, the following terms turn out to be also accept-
able normal forms: xy, x(λy.y(λz.z)) and (λx.x)(y(λz.z)).

2.2 A Quantitative Type System for the Weak Open CBV

The untyped λ-calculus can be interpreted as a typed calculus with a single type
D, where D = D ⇒ D [33]. Applying Girard’s [22] “boring” CBV translation of
intuitionistic logic into linear logic, we get D = !D � !D [1]. Type system O is
built having this equation in mind.

The set of types is given by the following grammar:

(Tight Constants) tt ::= v | a | n
(Value Types) σ ::= v | a | M | M ⇒ τ
(Multi-Types) M ::= [σi]i∈I where I is a finite set
(Types) τ ::= n | σ

Tight constants are minimal types assigned to terms reducing to normal
forms (v for persistent variables, a for abstractions or variables that are going to
be replaced by abstractions, and n for neutral terms). Given an arbitrary tight
constant tt0, we write tt0 to denote all the other tight constants in tt different
from tt0. Multi-types are multisets of value types. A (typing) environment,

Quantitative Global Memory 57

written Γ,Δ, is a function from variables to multi-types, assigning the empty
multi-type [] to all but a finite set of variables. The domain of Γ is dom(Γ) :=
{x | Γ (x) �= []}. The union of environments, written Γ + Δ, is defined by
(Γ + Δ)(x) = Γ (x) � Δ(x), where � denotes multiset union. An example is
(x : [σ1], y : [σ2]) + (x : [σ1], z : [σ2]) = (x : [σ1, σ1], y : [σ2], z : [σ2]). This
notion is extended to a finite union of environments, written +i∈IΓi (the empty
environment is obtained when I = ∅). We write Γ \\x for the environment
(Γ \\x)(x) = [] and (Γ \\x)(y) = Γ (y) if y �= x and we write Γ ;x : M for
Γ + (x : M), when x �∈ dom(Γ). Notice that Γ and Γ ;x : [] are the same
environment.

A judgement has the form Γ 	(b,s) t : τ , where b and s are two natural
numbers, representing, respectively, the number of β-steps needed to normalize
t, and the size of the normal form of t. The typing system O is defined by the
rules in Fig. 1. We write
Γ 	(b,s) t : τ if there is a (tree) type derivation of the
judgement Γ 	(b,s) t : τ using the rules of system O. The term t is O-typable
(we may omit the name O) iff there is an environment Γ , a type τ and counters
(b, s) such that
Γ 	(b,s) t : τ . We use letters Φ, Ψ, . . . to name type derivations,
by writing for example Φ
 Γ 	(b,s) t : τ .

Fig. 1. Typing Rules of System O

Notice that in rule (ax) of Fig. 1 variables can only be assigned value types σ
(in particular no type n): this is because they can only be substituted by values.
Due to this fact, multi-types only contain value types. Regarding typing rules
(ax), (λ), (@), and (m), they are the usual rules for non-idempotent intersection
types [10]. Rules (λp), (@p1), and (@p2) are used to type persistent symbols, i.e.
symbols that are not going to be consumed during evaluation. More specifically,
rule (λp) types abstractions (with type a) that are normal regardless of the
typability of its body. Rule (@p1) types applications that will never reduce to an
abstraction on the left (thus of any tight constant that is not a, i.e. a), while any
term reducing to a normal form is allowed on the right (of tight constant tt).
Rule (@p2) also types applications, but when values will never be obtained on

58 S. Alves et al.

the right (only neutral terms of type n). Rule (ax) is also used to type persistent
variables, in particular when σ ∈ {v, a}.

A type τ is tight if τ ∈ tt. We write tight(M), if every σ ∈ M is tight. A
type environment Γ is tight if it assigns tight multi-types to all variables. A
type derivation Φ
 Γ 	(b,s) t : τ is tight if Γ and τ are both tight.
Example 1. Let t = (λx.(xx)(yy))(λz.z). Let Φ be the following typing deriva-
tion:

(ax)
x : [[a] ⇒ a] �(0,0) x : [a] ⇒ a

(ax)
x : [a] �(0,0) x : a

(m)
x : [a] �(0,0) x : [a]

(@)
x : [[a] ⇒ a, a] �(1,0) xx : a

And Ψ be the following typing derivation:

Φ

(ax)
y : [v] �(0,0) y : v

(ax)
y : [v] �(0,0) y : v

(@p1)
y : [v, v] �(0,1) yy : n

(@p2)
x : [[a] ⇒ a, a], y : [v, v] �(1,1) (xx)(yy) : n

(λ)
y : [v, v] �(1,2) λx.(xx)(yy) : [[a] ⇒ a, a] ⇒ n

Then, we can build the following tight typing derivation Φt for t:

Ψ

(λp)
z : [a] �(0,0) z : a

(λ)
�(0,0) λz.z : [a] ⇒ a

(λp)
�(0,0) λz.z : a

(m)
�(0,0) λz.z : [[a] ⇒ a, a]

(@)
y : [v, v] �(2,2) (λx.(xx)(yy))(λz.z) : n

The type system O can be shown to be sound and complete w.r.t. the oper-
ational semantics → introduced in Sect. 2.1. Soundness means that not only a
tightly typable term t is terminating, but also that the tight type derivation of
t gives exact and split measures concerning the reduction sequence from t to
normal form. More precisely, if Φ
Γ 	(b,s) t : τ is tight, then there exists u ∈ no
such that t �b u with |u| = s. Dually for completeness. Because we are going to
show this kind of properties for the more sophisticated language with global state
(Sect. 3.3), we do not give here technical details of them. However, we highlight
these properties on our previous example. Consider again term t in Example 1
and its tight derivation Φt with counters (b, s) = (2, 2). Counter b is different from
0, so t /∈ no, but t normalizes in two βv-steps (b = 2) to a normal form having
size s = 2. Indeed, (λx.(xx)(yy))(λz.z) →βv

((λz.z)(λz.z))(yy) →βv
(λz.z)(yy)

and |(λz.z)(yy)| = 2.

3 A λ-Calculus with Global State

Based on the preliminary presentation of Sect. 2, we now introduce a λ-calculus
with global state following a CBV strategy. Section 3.1 defines the syntax and
operational semantics of the λ-calculus with global state. Section 3.2 presents
the tight typing system P, and Sect. 3.3 shows soundness and completeness.

Quantitative Global Memory 59

3.1 Syntax and Operational Semantics

Let l be a location drawn from some set of location names. Values, terms,
states and configurations of λgs are defined respectively as follows:

v, w ::= x | λx.t t, u, p ::= v | vt | getl(λx.t) | setl(v, t)
s, q ::= ε | updl(v, s) c ::= (t, s)

Notice that applications are restricted to the form vt. This, combined with
the use of a deterministic reduction strategy based on weak contexts, ensures
that composition of effects is well behaved. Indeed, this kind of restriction is
usual in computational calculi [16,19,30,32].

Intuitively, operation getl(λx.t) interacts with the global state by retrieving
the value stored in location l and binding it to variable x of the continuation t.
And operation setl(v, t) interacts with the state by storing value v in location
l and (possibly) overwriting whatever was previously stored there, and then
returns t.

The size function is extended to states and configurations: |s| := 0, and
|(t, s)| := |t|. The update constructor is commutative in the following sense:

updl(v, updl′(w, s)) ≡c updl′(w, updl(v, s)) if l �= l′

We denote by ≡ the equivalence relation generated by the axiom ≡c. We write
l ∈ dom(s), if s ≡ updl(v, q), for some value v and state q. Moreover, these v
and q are unique. For example, if l1 �= l2, then s1 = updl1

(v1, updl2
(v2, q)) ≡

updl2
(v2, updl1

(v1, q)) = s2, but updl1
(v1, updl1

(v2, s)) �≡ updl1
(v2, updl1

(v1, s)).
As a consequence, whenever we want to access the content of a particular location
in a state, we can simply assume that the location is at the top of the state.

The operational semantics of the λgs-calculus is given on configurations. The
deterministic reduction relation → is defined to be the union of the rules
→r (r ∈ {βv, g, s}) below. We write (t, s) �(b,m) (u, q) if (t, s) reduces to (u, q)
in b βv-steps and m g/s-steps.

(βv)
((λx.t)v, s) →βv (t{x\v}, s)

s ≡ updl(v, q)
(get)

(getl(λx.t), s) →g (t{x\v}, s)

(t, s) →r (u, q) r ∈ {βv, g, s}
(appR)

(vt, s) →r (vu, q)
(set)

(setl(v, t), s) →s (t, updl(v, s))

Note that in reduction rule (appR), the r appearing as the name of the
reduction rule in the premise is the same as the one appearing in the reduction
rule in the conclusion.

Example 2. Consider the configuration c0 = ((λx.getl(λy.yx))(setl(I, z)), ε).
Then we can reach an irreducible configuration as follows:

((λx.getl(λy.yx))(setl(I, z)), ε) →g ((λx.getl(λy.yx))z, updl(I, ε))
→βv

(getl(λy.yz), updl(I, ε)) →g (Iz, updl(I, ε)) →βv
(z, updl(I, ε))

60 S. Alves et al.

A configuration (t, s) is said to be blocked if either t = getl(λx.u) and l �∈
dom(s); or t = vu and (u, s) is blocked. A configuration is unblocked if it is not
blocked. As an example, (getl(λx.x), ε) is obviously blocked. As a consequence,
the following configuration reduces to a blocked one: ((λy.y getl(λx.x))z, ε) →
(z getl(λx.x), ε). This suggests a notion of final configuration: (t, s) is final
if either (t, s) is blocked; or t ∈ no, where neutral and normal terms are given
respectively by the grammars ne ::= x no | (λx.t) ne and no ::= Val | ne.
Proposition 2. Let (t, s) be a configuration. Then (t, s) is final iff (t, s) �→.

Notice that when (t, s) is an unblocked final configuration, then t ∈ no. These
are the configurations captured by the typing system P in Sect. 3.2. Consider the
final configurations c0 = (getl(λx.x), ε), c1 = (z getl(λx.x), ε), c2 = (y, s) and
c3 = ((λx.x)(yz), s). Then c0 and c1 are blocked, while c2 and c3 are unblocked.

3.2 A Quantitative Type System for the λgs-Calculus

We now introduce the quantitative type system P for λgs. To deal with global
states, we extend the language of types with the notions of state, configuration
and monadic types. To do this, we translate linear arrow types according to
Moggi’s [30] CBV interpretation of reflexive objects in the category of λc-models:
D = !D � !D becomes D = !D � T (!D), where T is a monad. Type system
P was built having this equation in mind, similarly to what was done in [21].

The set of types is given by the following grammar:

(Tight Constants) tt ::= v | a | n
(Value Types) σ ::= v | a | M | M ⇒ δ
(Multi-types) M ::= [σi]i∈I where I is a finite set
(Liftable Types) μ ::= v | a | M
(Types) τ ::= n | σ
(State Types) S ::= {(li : Mi)}i∈I where all li are distinct
(Configuration Types) κ ::= τ × S
(Monadic Types) δ ::= S � κ

In system P, the minimal types to be assigned to normal forms distinguish
between variables (v), abstractions (a), and neutral terms (n). A multi-type is
a multi-set of value types. A state type is a partial function mapping labels to
(possibly empty) multi-types. A configuration type is a product type, where
the first component is a type and the second is a state type. A monadic type
associates a state type to a configuration type. We use symbol T to denote a
value type or a monadic type. Typing environments and operations over types
are defined in the same way as in system O.

The domain of a state type S is the set of all its labels, i.e. dom(S) := {l |
(l : M) ∈ S}. Also, when l ∈ dom(S), i.e. (l : M) ∈ S, we write S(l) to denote
M. The union of state types is defined as follows:

(S � S ′)(l) = if (l : M) ∈ S then (if (l : M′) ∈ S ′ then M � M′ else M)
else (if (l : M′) ∈ S ′ then M′ else undefined)

Quantitative Global Memory 61

Example 3. Let S = {(l1 : [σ1, σ2]), (l2 : [σ1])} � {(l2 : [σ1, σ2]), (l3 : [σ3])}.
Then, S(l1) = [σ1, σ2], S(l2) = [σ1, σ1, σ2], S(l3) = [σ3], and S(l) = undefined,
assuming l �= li, for i ∈ {1, 2, 3}.

Notice that dom(S � S ′) = dom(S) ∪ dom(S ′). Also {(l : [])} � S �= S, if
l �∈ dom(S), while x : [];Γ = Γ . Indeed, typing environments are total func-
tions, where variables mapped to [] do not occur in typed programs. In contrast,
states are partial functions, where labels mapped to [] correspond to positions
in memory that are accessed (by get or set), but ignored/discarded by the typed
program. We use {(l : M)};S for {(l : M)} � S if l �∈ dom(S).

A term type judgement (resp. state type judgment and configuration
type judgment) has the form Γ 	(b,m,d) t : T (resp. Γ 	(b,m,d) s : S and
Γ 	(b,m,d) (t, s) : κ) where b,m, d are three natural numbers, the first and
second representing, respectively, the number of β-steps and g/s-steps needed
to normalize t, and the third representing the size of the normal form of t. The
typing system P is defined by the rules in Fig. 2. We write
J if there is a
type derivation of the judgement J using the rules of system P. The term t
(resp. state s, configuration (t, s)) is P-typable iff there is an environment Γ ,
a type T (resp. S, κ) and counters (b,m, d) such that
Γ 	(b,m,d) t : T (resp.

Γ 	(b,m,d) s : S,
Γ 	(b,m,d) (t, s) : κ). As before, we use letters Φ, Ψ, . . . to
name type derivations.

Rules (ax), (λ), (m), and (@) are essentially the same as in Fig. 1, but with
types lifted to monadic types (i.e. decorated with state types). Rule (@) assumes
a value type associated to a value v on the left premise and a monadic type
associated to a term t on the right premise. To type the application vt, it is
necessary to match both the value type M inside the type of t with the input
value type of v, and the output state type S ′ of t with the input state type of v.
Rule (↑) is used to lift multi-types or tight constants v and a (the type of values)
to monadic types. Rules (get) and (set) are used to type operations over the
state. Rule (emp) types empty states, rule (upd) types states, and (conf) types
configurations.

A type τ is tight, if τ ∈ tt. We write tight(M) if every σ ∈ M is tight. A
state type S is tight if tight(S(l)) holds for all l ∈ dom(S). A configuration
type τ × S is tight, if τ and S are tight. A monadic type S � κ is tight, if κ
is tight. The notion of tightness of type derivations is defined in the same way
as in system O, i.e. a type derivation Φ is tight if the type environment and
the type of the conclusion of Φ are tight.

62 S. Alves et al.

Fig. 2. Typing Rules for λgs.

Example 4. Consider configuration c0 from Example 2. Let M = [[v] ⇒ ∅ �
(v × ∅)], and Φ be the following typing derivation:

(ax)
y : M �(0,0,0) y : [v] ⇒ ∅ � (v × ∅)

(ax)
x : [v] �(0,0,0) x : v

(m)
x : [v] �(0,0,0) x : [v]

(↑)
x : [v] �(0,0,0) x : ∅ � ([v] × ∅)

(@)
y : M, x : [v] �(1,0,0) yx : ∅ � (v × ∅)

(get)
x : [v] �(1,1,0) getl(λy.yx) : {(l : M)} � (v × ∅)

(λ)
�(1,1,0) λx.getl(λy.yx) : [v] ⇒ ({(l : M)} � (v × ∅))

Quantitative Global Memory 63

And Φ′ be the following typing derivation:

(ax)
x : [v] �(0,0,0) x : v

(↑)
x : [v] �(0,0,0) x : ∅ � (v × ∅)

(λ)
�(0,0,0) I : [v] ⇒ ∅ � (v × ∅)

(m)
�(0,0,0) I : M

(ax)
z : [v] �(0,0,0) z : v

(m)
z : [v] �(0,0,0) z : [v]

(↑)
z : [v] �(0,0,0) z : {(l : M)} � ([v] × {(l : M)})

(set)
z : [v] �(0,1,0) setl(I, z) : ∅ � ([v] × {(l : M)})

Then we can build the following tight typing derivation Φc for c:

Φ Φ′
(@)

z : [v] �(2,2,0) (λx.getl(λy.yx))(setl(I, z)) : ∅ � (v × ∅)
(emp)

�(0,0,0) ε : ∅
(conf)

z : [v] �(2,2,0) ((λx.getl(λy.yx))(setl(I, z)), ε) : v × ∅
We will come back to this example at the end of Sect. 3.3.

3.3 Soundness and Completeness

In this section, we show the main properties of the type system P with respect
to the operational semantics of the λ-calculus with global state introduced in
Sect. 3.1. The properties of type system P are similar to the ones for O, but now
with respect to configurations instead of terms. Soundness does not only state
that a (tightly) typable configuration (t, s) is terminating, but also gives exact
(and split) measures concerning the reduction sequence from (t, s) to a final
form. Completeness guarantees that a terminating configuration (t, s) is tightly
typable, where the measures of the associated reduction sequence of (t, s) to final
form are reflected in the counters of the resulting type derivation of (t, s). This
is the first work providing a model for a language with global memory being able
to count the number of memory accesses.

We start by noting that type system P does not type blocked configurations,
which is exactly the notion that we want to capture.

Proposition 3. If Φ
 Γ 	(b,m,d) (t, s) : κ, then (t, s) is unblocked.

We also show that counters capture the notion of normal form correctly, both
for terms and states.

Lemma 1.

1. Let Φ
 Γ 	(0,0,d) t : δ be tight. Then, (1) t ∈ no and (2) d = |t|.
2. Let Φ
 Δ 	(0,0,d) s : S be tight. Then d = 0.

In fact, we can show the following stronger property with respect to the
counters for the number of βv- and g/s-steps.

Lemma 2. Let Φ
 Γ 	(b,m,d) t : δ be tight. Then, b = m = 0 iff t ∈ no.

The following property is essential for tight type systems [2], and it shows
that tightness of types spreads throughout type derivations of neutral terms,
just as long as the environments are tight.

64 S. Alves et al.

Lemma 3 (Tight Spreading). Let Φ
 Γ 	(b,m,d) t : S � (τ × S ′), such that
Γ is tight. If t ∈ ne, then τ ∈ tt.

The two following properties ensure tight typability of final configurations.
For that we need to be able to tightly type any state, as well as any normal
form. In fact, normal forms do not depend on a particular state since they are
irreducible, so we can type them with any state type.

Lemma 4 (Typability of States and Normal Forms).

1. Let s be a state. Then, there exists Φ
 	(0,0,0) s : S tight.
2. Let t ∈ no. Then for any tight S there exists Φ
 Γ 	(0,0,d) t : S � (tt × S)

tight s.t. d = |t|.

Finally, we state the usual basic properties.

Lemma 5 (Substitution and Anti-Substitution).

1. (Substitution) If Φt
Γt;x : M 	(bt,mt,dt) t : δ and Φv
Γv 	(bv,mv,dv) v : M,
then Φt{x\v}
 Γt + Γv 	(bt+bv,mt+mv,dt+dv) t{x\v} : δ.

2. (Anti-Substitution) If Φt{x\v}
 Γt{x\v} 	(b,m,d) t{x\v} : δ, then Φt
 Γt;x :
M 	(bt,mt,dt) t : δ and Φv
 Γv 	(bv,mv,dv) v : M, such that Γt{x\v} = Γt + Γv,
b = bt + bv, m = mt + mv, and d = dt + dv.

Lemma 6 (Split Exact Subject Reduction and Expansion).

1. (Subject Reduction) Let (t, s) →r (u, q). If Φ
 Γ 	(b,m,d) (t, s) : κ is tight,
then Φ′
 Γ 	(b′,m′,d) (u, q) : κ, where r = β implies b′ = b − 1 and m′ = m,
while r ∈ {g, s} implies b′ = b and m′ = m − 1.

2. (Subject Expansion) Let (t, s) →r (u, q). If Φ′
 Γ 	(b′,m′,d) (u, q) : κ is
tight, then Φ
Γ 	(b,m,d) (t, s) : κ, where r = β implies b′ = b−1 and m′ = m,
while r ∈ {g, s} implies b′ = b and m′ = m − 1.

Soundness (resp. completeness) is based on exact subject reduction (resp.
expansion), in turn based on the previous substitution (resp. anti-substitution)
lemma.

Theorem 1 (Quantitative Soundness and Completeness).

1. (Soundness) If Φ
Γ 	(b,m,d) (t, s) : κ tight, then there exists (u, q) such that
u ∈ no and (t, s) �(b,m) (u, q) with b β-steps, m g/s-steps, and |(u, q)| = d.

2. (Completeness) If (t, s) �(b,m,d) (u, q) and u ∈ no, then there exists Φ

Γ 	(b,m,|(u,q)|) (t, s) : κ tight.

Example 5. Consider again configuration c0 from Example 2 and its associated
tight derivation Φc0 . The first two counters of Φc are different from 0: this means
that c is not a final configuration, but normalizes in two βv-step (b = 2) and
two g/s-steps (m = 2), to a final configuration having size d = 0 = |z| =
|(z, updl(I, ε))|.

Quantitative Global Memory 65

4 Conclusion and Related Work

This paper provides a foundational step into the development of quantitative
models for programming languages with effects. We focus on a simple language
with global memory access capabilities. Due to the inherent lack of confluence in
such framework we fix a particular evaluation strategy following a (weak) CBV
approach. We provide a type system for our language that is able to (both)
extract and discriminate between (exact) measures for the length of evaluation,
number of memory accesses and size of normal forms. This study provides a
valuable insight into time and space analysis of languages with global memory,
with respect to length of evaluation and the size of normal forms, respectively.

In future work we would like to explore effectful computations involving
global memory in a more general framework being able to capture different
models of computation, such as the CBPV [28] or the bang calculus [9]. Further-
more, we would like to apply our quantitative techniques to other effects that
can be found in programming languages, such as non-termination, exceptions,
non-determinism, and I/O.

Related Work. Several papers proposed quantitative approaches for different
notions of CBV (without effects). But none of them exploits the idea of exact
and split tight typing. Indeed, the first non-idempotent intersection type sys-
tem for Plotkin’s CBV is [18], where reduction is allowed under abstractions,
and terms are considered to be closed. This work was further extended to [11],
where commutation rules are added to the calculus. None of these contributions
extracts quantitative bounds from the type derivations. A calculus for open CBV
is proposed in [3], where fireball –normal forms– can be either erased or dupli-
cated. Quantitative results are obtained, but no split measures. Other similar
approaches appear in [23]. A logical characterization of CBV solvability is given
in [4], the resulting non-idempotent system gives quantitative information of the
solvable associated reduction relation. A similar notion of solvability for CBV
for generalized applications was studied in [26], together with a logical charac-
terization provided by a quantitative system. Other non-idempotent systems for
CBV were proposed [25,29], but they are defective in the sense that they do not
enjoy subject reduction and expansion. Split measures for (strong) open CBV
are developed in [27].

In [17], a system with universally quantified intersection and reference types
is introduced for a language belonging to the ML-family. However, intersections
are idempotent and only (qualitative) soundness is proved.

More recently, there has been a lot of work involving probabilistic versions of
the lambda calculus. In [20], extensions of the lambda calculus with a probabilis-
tic choice operator are introduced. However, no quantitative results are provided.
In [8], monadic intersection types are used to obtain a (non-exact) quantitative
model for a probabilistic calculus identical to the one in [20].

Concerning (exact) quantitative models for programming languages with
global state, the state of the art is still underexplored. Some sound but not
complete approaches are given in [7,15], and quantitative results are not pro-

66 S. Alves et al.

vided. Our work is inspired by a recent idempotent (thus only qualitative and not
quantitative) model for CBV with global memory proposed by [16]. This work
was further extended in [21] to a more generic framework of algebraic effect-
ful computation, still the model does not provide any quantitative information
about the evaluation of programs and the size of their results.

References

1. Accattoli, B.: Proof nets and the call-by-value λ-calculus. Theor. Comput. Sci.
606, 2–24 (2015). https://doi.org/10.1016/j.tcs.2015.08.006

2. Accattoli, B., Graham-Lengrand, S., Kesner, D.: Tight typings and split bounds,
fully developed. J. Funct. Program. 30(e14), 1–101 (2020). https://doi.org/10.
1017/S095679682000012X

3. Accattoli, B., Guerrieri, G.: Types of fireballs. In: Ryu, S. (ed.) APLAS 2018.
LNCS, vol. 11275, pp. 45–66. Springer, Cham (2018). https://doi.org/10.1007/
978-3-030-02768-1 3

4. Accattoli, B., Guerrieri, G.: The theory of call-by-value solvability. Proc. ACM
Program. Lang. 6(ICFP), 855–885 (2022). https://doi.org/10.1145/3547652

5. Alves, S., Kesner, D., Ramos, M.: Quantitative global memory (2023). https://
arxiv.org/abs/2303.08940

6. Atkey, R.: Syntax and semantics of quantitative type theory. In: Dawar, A., Grädel,
E. (eds.) Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in
Computer Science, (LICS), Oxford, UK, pp. 56–65. ACM (2018). https://doi.org/
10.1145/3209108.3209189

7. Benton, N., Kennedy, A., Beringer, L., Hofmann, M.: Relational semantics for
effect-based program transformations: higher-order store. In: Porto, A., López-
Fraguas, F.J. (eds.) 11th International ACM SIGPLAN Conference on Principles
and Practice of Declarative Programming, (PPDP), Coimbra, Portugal, pp. 301–
312. ACM (2009). https://doi.org/10.1145/1599410.1599447

8. Breuvart, F., Lago, U.D.: On intersection types and probabilistic lambda calculi. In:
Sabel, D., Thiemann, P. (eds.) Proceedings of the 20th International Symposium on
Principles and Practice of Declarative Programming, (PPDP), Frankfurt am Main,
Germany, pp. 8:1–8:13. ACM (2018). https://doi.org/10.1145/3236950.3236968

9. Bucciarelli, A., Kesner, D., Ŕıos, A., Viso, A.: The bang calculus revisited. In:
Nakano, K., Sagonas, K. (eds.) FLOPS 2020. LNCS, vol. 12073, pp. 13–32.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59025-3 2

10. Bucciarelli, A., Kesner, D., Ventura, D.: Non-idempotent intersection types for the
lambda-calculus. Log. J. (IGPL) 25(4), 431–464 (2017). https://doi.org/10.1093/
jigpal/jzx018

11. Carraro, A., Guerrieri, G.: A semantical and operational account of call-by-value
solvability. In: Muscholl, A. (ed.) FoSSaCS 2014. LNCS, vol. 8412, pp. 103–118.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54830-7 7

12. de Carvalho, D.: Sémantiques de la logique linéaire et temps de calcul. These de
doctorat, Université Aix-Marseille II (2007)

13. de Carvalho, D.: Execution time of λ-terms via denotational semantics and inter-
section types. Math. Struct. Comput. Sci. 28(7), 1169–1203 (2018). https://doi.
org/10.1017/S0960129516000396

14. Coppo, M., Dezani-Ciancaglini, M.: A new type assignment for lambda-terms.
Archiv für Math. Logik 19, 139–156 (1978)

https://doi.org/10.1016/j.tcs.2015.08.006
https://doi.org/10.1017/S095679682000012X
https://doi.org/10.1017/S095679682000012X
https://doi.org/10.1007/978-3-030-02768-1_3
https://doi.org/10.1007/978-3-030-02768-1_3
https://doi.org/10.1145/3547652
https://arxiv.org/abs/2303.08940
https://arxiv.org/abs/2303.08940
https://doi.org/10.1145/3209108.3209189
https://doi.org/10.1145/3209108.3209189
https://doi.org/10.1145/1599410.1599447
https://doi.org/10.1145/3236950.3236968
https://doi.org/10.1007/978-3-030-59025-3_2
https://doi.org/10.1093/jigpal/jzx018
https://doi.org/10.1093/jigpal/jzx018
https://doi.org/10.1007/978-3-642-54830-7_7
https://doi.org/10.1017/S0960129516000396
https://doi.org/10.1017/S0960129516000396

Quantitative Global Memory 67

15. Davies, R., Pfenning, F.: Intersection types and computational effects. In: Pro-
ceedings of the Fifth ACM SIGPLAN International Conference on Functional Pro-
gramming, (ICFP), Montreal, Canada, pp. 198–208. ACM (2000). https://doi.org/
10.1145/351240.351259

16. de’Liguoro, U., Treglia, R.: Intersection types for a λ-calculus with global store.
In: Veltri, N., Benton, N., Ghilezan, S. (eds.) 23rd International Symposium on
Principles and Practice of Declarative Programming, (PPDP), Tallinn, Estonia,
pp. 5:1–5:11. ACM (2021). https://doi.org/10.1145/3479394.3479400

17. Dezani-Ciancaglini, M., Giannini, P., Della Rocca, S.R.: Intersection, universally
quantified, and reference types. In: Grädel, E., Kahle, R. (eds.) CSL 2009. LNCS,
vol. 5771, pp. 209–224. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-04027-6 17

18. Ehrhard, T.: Collapsing non-idempotent intersection types. In: 26th International
Workshop/21st Annual Conference of the EACSL on Computer Science Logic,
(CSL), Fontainebleau, France. LIPIcs, vol. 16, pp. 259–273. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik (2012). https://doi.org/10.4230/LIPIcs.CSL.2012.
259

19. Faggian, C., Guerrieri, G., de’Liguoro, U., Treglia, R.: On reduction and normaliza-
tion in the computational core. Math. Struct. Comput. Sci. 32(7), 934–981 (2022).
https://doi.org/10.1017/S0960129522000433

20. Faggian, C., Rocca, S.R.D.: Lambda calculus and probabilistic computation. In:
34th Annual ACM/IEEE Symposium on Logic in Computer Science, (LICS), Van-
couver, BC, Canada, pp. 1–13. IEEE (2019). https://doi.org/10.1109/LICS.2019.
8785699

21. Gavazzo, F., Vanoni, G., Treglia, R.: On monadic intersection types (2023, draft)
22. Girard, J.: Linear logic. Theor. Comput. Sci. 50, 1–102 (1987). https://doi.org/

10.1016/0304-3975(87)90045-4
23. Guerrieri, G.: Towards a semantic measure of the execution time in call-by-value

lambda-calculus. In: 12th Workshop on Developments in Computational Models
and Ninth Workshop on Intersection Types and Related Systems, (DCM/ITRS),
Oxford, UK. EPTCS, vol. 293, pp. 57–72 (2018). https://doi.org/10.4204/EPTCS.
293.5

24. Jones, S.L.P., Wadler, P.: Imperative functional programming. In: Conference
Record of the Twentieth Annual (ACM) (SIGPLAN-SIGACT) Symposium on
Principles of Programming Languages (POPL), Charleston, South Carolina, USA,
pp. 71–84. ACM Press (1993). https://doi.org/10.1145/158511.158524

25. Kerinec, A., Manzonetto, G., Rocca, S.R.D.: Call-by-value, again! In: 6th Interna-
tional Conference on Formal Structures for Computation and Deduction (FSCD),
Buenos Aires, Argentina (Virtual Conference). LIPIcs, vol. 195, pp. 7:1–7:18.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021). https://doi.org/10.
4230/LIPIcs.FSCD.2021.7

26. Kesner, D., Peyrot, L.: Solvability for generalized applications. In: 7th International
Conference on Formal Structures for Computation and Deduction (FSCD), Haifa,
Israel. LIPIcs, vol. 228, pp. 18:1–18:22. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik (2022). https://doi.org/10.4230/LIPIcs.FSCD.2022.18

27. Kesner, D., Viso, A.: Encoding tight typing in a unified framework. In: 30th EACSL
Annual Conference on Computer Science Logic, (CSL), Göttingen, Germany (Vir-
tual Conference). LIPIcs, vol. 216, pp. 27:1–27:20. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik (2022). https://doi.org/10.4230/LIPIcs.CSL.2022.27

https://doi.org/10.1145/351240.351259
https://doi.org/10.1145/351240.351259
https://doi.org/10.1145/3479394.3479400
https://doi.org/10.1007/978-3-642-04027-6_17
https://doi.org/10.1007/978-3-642-04027-6_17
https://doi.org/10.4230/LIPIcs.CSL.2012.259
https://doi.org/10.4230/LIPIcs.CSL.2012.259
https://doi.org/10.1017/S0960129522000433
https://doi.org/10.1109/LICS.2019.8785699
https://doi.org/10.1109/LICS.2019.8785699
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.4204/EPTCS.293.5
https://doi.org/10.4204/EPTCS.293.5
https://doi.org/10.1145/158511.158524
https://doi.org/10.4230/LIPIcs.FSCD.2021.7
https://doi.org/10.4230/LIPIcs.FSCD.2021.7
https://doi.org/10.4230/LIPIcs.FSCD.2022.18
https://doi.org/10.4230/LIPIcs.CSL.2022.27

68 S. Alves et al.

28. Levy, P.B.: Call-by-push-value: a subsuming paradigm. In: Girard, J.-Y. (ed.)
TLCA 1999. LNCS, vol. 1581, pp. 228–243. Springer, Heidelberg (1999). https://
doi.org/10.1007/3-540-48959-2 17

29. Manzonetto, G., Pagani, M., Rocca, S.R.D.: New semantical insights into call-
by-value λ-calculus. Fund. Inform. 170(1–3), 241–265 (2019). https://doi.org/10.
3233/fi-2019-1862

30. Moggi, E.: Computational lambda-calculus and monads. In: 4th Annual Sympo-
sium on Logic in Computer Science, (LICS), Pacific Grove, California, USA, pp.
14–23. IEEE Computer Society (1989). https://doi.org/10.1109/LICS.1989.39155

31. Plotkin, G.D.: Call-by-name, call-by-value and the lambda-calculus. Theor. Com-
put. Sci. 1(2), 125–159 (1975). https://doi.org/10.1016/0304-3975(75)90017-1

32. Sabry, A., Wadler, P.: A reflection on call-by-value. ACM Trans. Program. Lang.
Syst. 19(6), 916–941 (1997). https://doi.org/10.1145/267959.269968

33. Treglia, R.: The computational core: reduction theory and intersection type disci-
pline. Ph.D. thesis, Università di Torino (2022)

34. Wadler, P.: Monads for functional programming. In: Jeuring, J., Meijer, E. (eds.)
AFP 1995. LNCS, vol. 925, pp. 24–52. Springer, Heidelberg (1995). https://doi.
org/10.1007/3-540-59451-5 2

https://doi.org/10.1007/3-540-48959-2_17
https://doi.org/10.1007/3-540-48959-2_17
https://doi.org/10.3233/fi-2019-1862
https://doi.org/10.3233/fi-2019-1862
https://doi.org/10.1109/LICS.1989.39155
https://doi.org/10.1016/0304-3975(75)90017-1
https://doi.org/10.1145/267959.269968
https://doi.org/10.1007/3-540-59451-5_2
https://doi.org/10.1007/3-540-59451-5_2

Effective Skolemization

Matthias Baaz1 and Anela Lolić2(B)

1 Institute of Discrete Mathematics and Geometry, TU Wien, Vienna, Austria
baaz@logic.at

2 Kurt Gödel Society, Institute of Logic and Computation, TU Wien,
Vienna, Austria

anela@logic.at

Abstract. We define a new relatively simple Skolemization method
called atomic Skolemization which allows for a non-elementarily bounded
speed-up of cut-free LK-proofs and resolution proofs w.r.t. the standard
Skolemization and Andrews Skolemization.

Keywords: Skolemization · Cut-free Proofs · Resolution Proofs

1 Introduction

Skolem functions are one of the most important features of classical and related
first-order logics. They represent quantifiers within the term language, similar
to epsilon calculus. A Skolemization is a functional from a closed formula with
distinct bound variables to a closed formula with distinct bound variables, which
replaces some occurrences of bound variables by Skolem terms (terms of bound
variables and new functions) such that all bound variables in the Skolem term
belong to not replaced quantifiers where the term is in the scope.

For satisfiability of formulas, the main precondition of the introduction of
Skolem functions is the preservation of soundness. For validity of formulas the
dual main precondition is that the original formula is valid when the Skolemized
formula is valid. In this contribution we work with Skolemization in the sense of
satisfiability.

The standard Skolemization in the satisfiability case is based on the replace-
ment of positive existential and negative universal quantifiers by Skolem func-
tions depending on all negative existential and positive universal quantifiers
where the replaced quantifier is in the scope.

Example 1. Consider the formula

∀x(∃yP (y) ∨ ∀u∃v(R(x, u) ∨ Q(x, v)).

Then its Skolemization is

∀x(P (f(x)) ∨ ∀u(R(x, u) ∨ Q(x, g(x, u)).

Supported by FWF projects I 5848, I 4427, and P 36571.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
H. H. Hansen et al. (Eds.): WoLLIC 2023, LNCS 13923, pp. 69–82, 2023.
https://doi.org/10.1007/978-3-031-39784-4_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-39784-4_5&domain=pdf
http://orcid.org/0000-0002-7815-2501
http://orcid.org/0000-0002-4753-7302
https://doi.org/10.1007/978-3-031-39784-4_5

70 M. Baaz and A. Lolić

The quantified variable y is replaced by f(x), where f is a fresh Skolem function
symbol, and the quantified variable v is replaced by g(x, u), for the fresh Skolem
function symbol g.

The standard Skolemization is sound because the addition of Skolem axioms

∀x(∃yA(y, x)) ⊃ A(f(x), x) and ∀x(A(f(x), x) ⊃ ∀yA(y, x))

to a satisfiable set of sentences is conservative (it is possible to argue also directly
replacing quantifiers within the formulas). The conservativity of Skolem axioms
corresponds to the fact that in the case of validity Skolemized formulas are not
weaker than the original ones. The introduction of Skolem formulas by projection
of positive universal and negative existential quantifiers is always possible.1

Andrews Skolemization [2,3] is an optimized form of standard Skolemiza-
tion, where positive existential and negative universal quantifiers are replaced
by Skolem functions depending only on the negative existential or positive uni-
versal quantifiers which bind in the subformula that begins with the quantifier
to be replaced.

Example 2. Consider the formula

∀x(∃yP (y) ∨ ∀u∃v(R(x, u) ∨ Q(x, v)).

Then its Andrews Skolemization is

∀x(P (c) ∨ ∀u(R(x, u) ∨ Q(x, g(x, u)).

Here, the quantified variable y is replaced by the Skolem constant c (as x does
not occur in P (y), and the quantified variable v is replaced by g(x, u), as x and
u occur in R(x, u) ∨ Q(x, v).

To refute a formula in theorem proving based on resolution refutation, the
formula has first to be Skolemized, then transformed into its clause form, and
finally refuted with the resolution method. It was shown that Andrews Skolem-
ization allows for a non-elementarily2 bounded speed-up of the resolution proofs
with regard to standard Skolemization [8]. In this contribution we present a sim-
ple algorithm for a Skolemization method, which is more effective than Andrews
Skolemization: There is a speed-up even over Andrews Skolemization.
1 It is obvious that the validity of the argument for the conservativity of Skolem axioms

is equivalent to the validity of the full axiom of choice. To demonstrate that valid
Skolemized formulas can be retransferred to their original form needs at most the
completeness of first-order logic, i.e. the validity of König’s lemma, which is much
weaker than the axiom of choice. This difference can be explained as follows: The
argument for conservativity of Skolem axioms validitates automatically the Skolem
functions as functions, i.e. their identity axioms x = y ⊃ f(x) = f(y). Such axioms
are not automatically eliminated when resetting Skolemized formulas in the validity
sense.

2 A primitive recursive function f(x) is elementary if it is bound by a fix stack of 2:

22.
..
x

.

Effective Skolemization 71

2 Standard Skolemization and Andrews Skolemization

In this section the standard Skolemization method and the Andrews Skolemiza-
tion method are introduced and compared.

Definition 1 (standard Skolem form w.r.t. satisfiability). Let A be a
closed first-order formula. If A does not contain positive existential or negative
universal quantifiers, we define its standard Skolemization as sk(A) = A.

Suppose now that A contains positive existential or negative universal quantifiers
and (Qy) is the first positive existential or negative universal quantifier occurring
in A. If (Qy) is not in the scope of negative existential or positive universal
quantifiers, then its standard Skolemization is

sk(A) = sk(A\(Qy){y ← c}),

where A\(Qy) denotes the formula A after omission of (Qy) and c is a constant
symbol not occurring in A. If (Qy) is in the scope of the negative existential or
positive universal quantifiers (Q1x1) . . . (Qnxn), then its standard Skolemization
is

sk(A) = sk(A\(Qy){y ← f(x1, . . . , xn)}),

where f is a function symbol (Skolem function) not occurring in A.

In Andrews’ method the introduced Skolem functions do not depend on the pos-
itive existential or negative universal quantifiers (Q1x1) . . . (Qnxn) dominating
the positive universal or negative existential quantifier (Qx), but on the subset
of {x, . . . , xn} appearing (free) in the subformula dominated by (Qx). In general,
this method leads to smaller Skolem terms.

Definition 2 (Andrews Skolem form w.r.t. satisfiability). Let A be a
closed first-order formula. If A does not contain positive existential or negative
universal quantifiers, we define its Andrews Skolemization as skA(A) = A.

Suppose now that A contains positive existential or negative universal quantifiers,
(Qy)B is a subformula of A and (Qy) is the first positive existential or negative
universal quantifier occurring in A (in a tree-like ordering). If (Qy)B has no
free variables which are quantified by a negative existential or positive universal
quantifier, then its Andrews Skolemization is

skA(A) = skA(A\(Qy){y ← c}),

where A\(Qy) denotes the formula A after omission of (Qy) and c is a constant
symbol not occurring in A. If (Qy)B has n variables x1, . . . , xn which are quan-
tified by a negative existential or positive universal quantifier from outside, then
its Andrews Skolemization is

skA(A) = skA(A\(Qy){y ← f(x1, . . . , xn)}),

where f is a function symbol not occurring in A.

Let Γ → Δ be a sequent, and let F =
∧

Γ ⊃ ∨
Δ and skA(F) =

∧
Π ⊃ ∨

Λ,
then we define the Andrews Skolemization of the sequent Γ → Δ as

skA(Γ → Δ) = Π → Λ.

72 M. Baaz and A. Lolić

The usual Skolemizations are outside-in. This uses the global knowledge which
of the bound variables are bound by positive universal or negative existential
quantifiers. If we define standard Skolemization locally (i.e. inside-out), the result
is an iteration of the Skolem functions within the Skolem semi-terms3.

Example 3. Consider the formula

∃x∀y∃u∀vA(x, y, u, v).

Following the standard Skolemization (outside-in) we obtain

∀y∀vA(c, y, f(y), v),

and following the standard Skolemization inside-out we obtain

∀y∀vA(c, y, g(c, y), v).

The Skolem functions in the Skolem semi-terms are ordered in occurrence. Let
g and h be Skolem function symbols that occur in a Skolem semi-term as
h(. . . g(. . .) . . .), then we say that h < g. The iteration of the Skolem terms
poses no problem by the following proposition which allow their elimination. We
call such Skolem terms normalized.

Proposition 1. The formulas A and A′ are equi-satisfiable, where A is obtained
from A′ by replacing different iterated Skolem semi-terms h(. . . g(. . .) . . .) by
Skolem semi-terms fi(. . .) with new function symbols.

Proof. ⇒: obvious.

⇐: A <-minimal Skolem semi-term g(. . .) corresponds directly to one fi(. . .)
w.r.t. satisfiability. In the iterated case the Skolem semi-term h(. . . g(. . .) . . .)
w.r.t. satisfiability corresponds also directly to a fj(. . .), as g(. . .) is already
determined.

From now on we will denote with # the operator that normalizes Skolem semi-
terms according to Proposition 1.

Theorem 1. The Andrews Skolemization preserves soundness.

Proof. Proposition 1 allows us to argue locally, i.e. to replace positive exis-
tential or negative universal quantifiers inside-out. Assume the innermost still
existing such quantifier is existential (analogously for the case of an universal
quantifier). Then

3 Semi-terms are terms that might contain bound variables.

Effective Skolemization 73

A(. . . ∃xB(x, y) . . .) is satisfiable, where the occurrence of ∃xB(x, y) is positive
⇓

A(. . . F (y) . . .) ∧ ∀y(F (y) ⊃ ∃xB(x, y)) ∧ ∀y(∃xB(x, y) ⊃ F (y)) is satisfiable
⇓

A(. . . F (y) . . .) ∧ ∀y(F (y) ⊃ B(f(y), y)) ∧ ∀y(B(f(y), y) ⊃ F (y)) is satisfiable
by standard Skolemization with f and instantiation

⇓
A(. . . B(f(y), y) . . .) is satisfiable

⇓
A(. . . ∃xB(x, y) . . .) is satisfiable.

Theorem 2 ([8]). There is a sequence of refutable formulas A1, A2, . . . such that
the length of the shortest resolution refutations of their standard clause forms4

with standard Skolemization cannot be elementarily bounded in the length of
the shortest resolution refutations of their standard clause forms with Andrews
Skolemization.

Proof (Sketch). The validity variant of standard Skolemization, i.e. the replace-
ment of positive universal and negative existential quantifiers by Skolem terms
corresponds exponentially in the length of cut-free proofs to usual sequent calcu-
lus LK, whereas Andrews Skolemization corresponds exponentially in the length
of cut-free proofs to sequent calculus LK+ [1]. LK+ is obtained from LK by
weakening the eigenvariable condition. The resulting calculus is therefore glob-
ally but possibly not locally sound. This means that all derived statements are
true but that not every sub-derivation is meaningful. LK+-proofs are based on
the side variable relation <ϕ,LK. We say b is a side variable of a in ϕ (written
a <ϕ,LK b) if ϕ contains a positive universal or negative existential quantifier
inference of the form

Γ → Δ,A(a, b, c) ∀r
Γ → Δ,∀xA(x, b, c)

or of the form

A(a, b, c), Γ → Δ ∃l∃xA(x, b, c), Γ → Δ

Proofs are determined by LK+-suitable quantifier inferences. We say a quantifier
inference is suitable for a proof ϕ if either it is a positive existential or negative
universal quantifier inference, or the following three conditions are satisfied:

– (substitutability) the eigenvariable does not appear in the conclusion of ϕ.
– (side variable condition) the relation <ϕ,LK is acyclic.
– (weak regularity) the eigenvariable of an inference is not the eigenvariable of

another positive universal or negative existential quantifier inference in ϕ.

4 See Definition 7.

74 M. Baaz and A. Lolić

LK+ is obtained from LK by replacing the usual eigenvariable conditions by
LK+-suitable ones. LK+ admits cut-elimination and there is a non-elementary
speed-up of cut-free LK+-proofs w.r.t. cut-free LK-proofs.

The following proposition is obvious.

Proposition 2. Standard Skolemization and Andrews Skolemization coincide
on prenex formulas.

3 Atomic Skolemization

For simplicity we define the new algorithm for satisfiability and closed formu-
las with distinct bound variables in negation normal form (NNF). Therefore,
existential quantifiers are replaced by Skolem terms.

Similar to Andrews Skolemization, atomic Skolemization is based on the
elimination of the innermost quantifiers, i.e. generating iterated Skolem semi-
terms in principle. This situation can be stratified using Proposition 1.

Definition 3. Let F be a closed NNF formula with distinct bound variables.
Then <F is a total order of the bound variables occurring in F , such that when-
ever Qx occurs in the scope of Q′y, we have that x <F y, where Q,Q′ ∈ {∀,∃}
and x, y are bound variables in F .

Note that we might omit the subscript F in <F whenever it is clear from the
context. For simplicity reasons in the Skolemization procedure, we will introduce
the notion of corresponding quantifier of a bound variable.

Definition 4. Let F be a closed NNF formula with distinct bound variables. Let
x be such a bound variable. Then its corresponding quantifier is denoted by Ψ(x),
i.e.

Ψ(x) =
{∃ if x is bound by ∃,

∀ if x is bound by ∀.

The atomic Skolemization of a closed NNF formula F with distinct bound vari-
ables is computed based on the set of atomic semi-formulas occurring in F and
containing the bound variables, and on the substitutions of Skolem semi-terms
for these bound variables. We first give a description of the procedure, and then
a formal definition of the algorithm for atomic Skolemization.

In a first step we consider all the atoms of the formula F and construct a
set of sets of bound variables by collecting all the bound variables occurring in
each of the atoms, which are not empty (this set will later be denoted with Ln).
The substitution is initialized with the identity substitution. As long as Ln is
not empty, we pick the <F -minimal bound variable x and the corresponding
sets in Ln containing x. Note that these sets might contain also other variables,
which we denote by y. In case the corresponding quantifier of x is existential,
i.e. Ψ(x) = ∃, we delete all sets {x, yi} from Ln and add {y} to the remaining
variables. Furthermore, we add {x ← f(y)}, where f is a new function symbol
to the set of substitutions. Alternatively, in case Ψ(x) = ∀, the sets {x, yi} are

Effective Skolemization 75

again deleted from Ln and we add a set {y} to the remaining variables, but the
set of substitutions is not updated. ({y} is only added when it is maximal under
inclusion and the initial L0 is stratified in this respect.) Finally, the iterated
Skolem terms are replaced by uniterated ones according to Proposition 1.

Definition 5. Let F be a closed NNF formula with distinct bound variables
V (F). Then its atomic Skolemization AS(F) is computed by the following steps:

1. L0 = {{γ1, . . . , γn} | {γ1, . . . , γn} ∈ V (F)(and = ∅)which occur jointly in
an atomof F}.

2. σ0 = id(σn will substitute Skolemsemi − terms for bound variables).
3. Ln = Ln\{γ1, . . . , γn} if {γ1, . . . , γn} is not maximal in Ln w.r.t. inclusion.
4. while Ln = ∅

6. Let x be the <F -minimal variable in Ln and
Δn+1 = {{γ1, . . . , γn} | {γ1, . . . , γn}in Ln containing x}.
Let x, y all the variables in Δn+1.

7. If Ψ(x) = ∃:
Ln+1 = Ln\Δn ∪ {y} if {y} is maximal in Ln\Δn, Ln\Δn otherwise,
σn+1 = σn ∪ {x ← f(y)}, where f a new function symbol.

8. If Ψ(x) = ∀:
Ln+1 = Ln\Δn ∪ {y} if {y} is maximal in Ln\Δn, Ln\Δn otherwise.

9. Ln = ∅ ⇒ σ = σn.
10. Let F ′ be F after deletion of ∃. Then AS(F) = #F ′σ.

Note that this algorithm is at most quadratic in the number of symbols of the
original formula. However, its verification will need exponentially many steps.

Example 4. Let F be the formula

∀x(∃yP (y) ∨ ∀u∃v(R(x, u) ∨ Q(x, v)).

We calculate its atomic Skolemization AS(F). To start, we initialize the set
L0 = {{y}, {x, u}, {x, v}}, with the ordering v <F u <F y <F x.
As Ψ(v) = ∃ we obtain

L1 = {L0\{x, v}} ∪ {x}, σ1 = σ0 ∪ {v ← h(x)}.

A <F -minimal variable is now u. Then, as Ψ(u) = ∀, we obtain

L2 = {L1\{x, u}}, σ2 = σ1

as {x} is already in L1. Now y is <F -minimal. As Ψ(y) = ∃ we obtain in a next
step

L3 = L2\{y}, σ3 = σ2 ∪ {y ← c}.

In a last step, as Ψ(x) = ∀, we obtain

L4 = L3\{x} = L3\L3 = ∅, σ4 = σ3

76 M. Baaz and A. Lolić

F ′ is F after deletion of all occurrences of ∃, and F ′σ4 is

∀x(P (c) ∨ ∀u(R(x, u) ∨ Q(x, h(x)))

which is also #F ′σ = AS(F) as no iterated Skolem terms occur.

Proposition 3. Skolem functions can be combined over disjunctions. Let xi ∈ x

∀x
∨

i

Ai(fi(xi)) ⊃ ∀x
∨

i

Ai(f(x))

is satisfiable, where f is a new function symbol.

Theorem 3 (Soundness of atomic Skolemization).

Proof. Consider step 3. in the AS-algorithm given in Definition 5. We have Ln =
0 and x the <F -minimal variable.

Δn+1 = {{γ1, . . . , γn} | {γ1, . . . , γn} in Ln containing x},

x, y all the bound variables in Δn. Let ∃xA(x, y) be the corresponding subfor-
mula.

|= ∀y∀z(∃xA(x, y) ↔ ∃x

(×)
︷ ︸︸ ︷∨

i

(
∧

j

Bi,j(x, yi,j)) ∧ Ci(y, z)),

where yi = ∪j(yi,j), (×) is a suitable CNF where the Bi,j atomic contain x and
the Ci atomic do not.

|= ∀y∀z(∃x(×) ↔
(××)

︷ ︸︸ ︷∨

i

(∃x
∧

j

Bi,j(x, yi,j)) ∧ Ci(y, z)), yi,j ⊆ y

|= ∀y∀z((××) →
(×××)

︷ ︸︸ ︷∨

i

∧

j

Bi,j(fi(y), yi,j)) ∧ Ci(y, z))

by Andrews Skolemization

|= ∀x∀z((× × ×) →
(××××)

︷ ︸︸ ︷∨

i

(
∧

j

Bi,j(f(y), y)) ∧ Ci(y, z))

by Proposition 3

|= ∀x∀z((× × ××) → ∃x

(×)
︷ ︸︸ ︷∨

i

∧

j

Bi,j(x, y) ∧ Ci(y, z))

Effective Skolemization 77

Now let ∀xA(x, y) be the corresponding subformula.

|= ∀y∀z(∀xA(x, y) ↔ ∀x(

(◦)
︷ ︸︸ ︷∧

i

(
∨

j

Bi,j(x, yi,j) ∧ Ci(y, z))),

where yi = ∪j(yi,j), (◦) is a suitable CNF where the Bi,j contain x and the Ci,j

do not.
|= ∀y∀z(∀x(◦) ↔

∧

i

(∀x
∨

j

Bi,j(x, yi,j)) ∧ Ci(y, z))).

Now introduce new predicates Fi and add suitable

∀y(F (yi,j) ↔ ∀x
∨

j

Bi,j(x, yi,j))

and continue to work with the formula after replacement. Semi-subformulas con-
taining x disappear from the main formula. The consideration to work with y
instead of the subsets yi might lead to larger dependencies, but not incorrect
ones as all relevant variables are contained in y.

As an application we obtain:

Corollary 1. The monadic fragment of classical first-order logic is decidable.

Proof. For a monadic function-free formula A, AS(A) contains only constants as
Skolem functions, and therefore it is decidable whether a Herbrand expansion
for AS(A) exists.

Proposition 4. The arity of the Skolem function symbols w.r.t. atomic Skolem-
ization is less or equal to the arity of the Skolem function symbols w.r.t. Andrews
Skolemization which is less or equal to the arity of Skolem function symbols in
standard Skolemization. The number of introduced Skolem function symbols is
not increased.

4 Speed-Up Result for Cut-Free Proofs

In this section we demonstrate that there is a non-elementary speed-up for cut-
free proofs of atomic Skolemization w.r.t. standard Skolemization and Andrews
Skolemization. Let τ = {QxA(x) ∨ QDxA(x) closed | Q quantifier string,
QD dual quantifier sequence, A atomic}. Our argument is based on the following
theorem.

Theorem 4. There is a sequence of sequents

A1 →, A2 →, . . . , Ai →,

where A1, . . . , Ai are in NNF containing universal quantifiers only such that

78 M. Baaz and A. Lolić

1. there is a bound for a sequence of cut-free LK-proofs for

Δ1, A1 →,Δ2, A2 →, . . .

elementary in the complexity of A1 →, A2 →, . . . for suitable Δi ⊆ τ .
2. there is no elementary bound for any sequence of cut-free proofs for

A1 →, A2 →, . . .

in the complexity of A1 →, A2 →, . . . , Ai →.

Proof. Consider Statman’s sequence of provable quantifier-free statements fol-
lowing from universal formulas where the cut-free proofs grow non-elementarily
versus the proofs with cuts, which are elementarily bounded [7,10]. Cuts can be
closed by inferring A ⊃ A on the left side instead of the cut, closing A ⊃ A
with universal quantifiers and cutting it. Replace all cuts by prenex cuts in an
elementary way [6]. Code the matrices of the cuts by using coding formulas

∀x(F (x) ↔ M(x))

added to the antecedents and replace the cuts:

Πi → Γi,M(si)
...

...
...

Π → Γ,QxM(x)

M(si), Λj → Δj

...
...

...
QxM(x), Λ → Δ

Π,Λ → Γ,Δ

⇓
Πi → Γi,M(si) F (si) → F (si)

M(si) ⊃ F (si),Πi → Γi, F (si)
F (si) → F (si) M(si), Λj → Δj

F (si) ⊃ M(si), Λj → Δj , F (si)

Apply ∧ : l and ∀ : l to infer the equivalence ∀x(Fi(x) ↔ Mi(x)).

⇓

Π → Γ,QxF (x) QxF (x), Λ → Δ

∀x(F (x) ↔ M(x)),Π,Λ → Γ,Δ

These codings do not shorten the cut-free proofs much, as they can be imme-
diately eliminated by replacing F by M and eliminating ∀x(M(x) ↔ M(x))
by universal cuts whose elimination is at most double exponential. By an easy
transformation we obtain cut-free proofs by adding QxF (x) ∨ QDx¬F (x).

Note that for standard, Andrews, and atomic Skolemization it holds that the
Skolemization of A w.r.t. satisfiability corresponds to the Skolemization of A →
w.r.t. validity.

Effective Skolemization 79

Definition 6. H(A), where A ∈ τ (A = QxA(x) ∨ QDxA(x)) is the prenexifi-
cation of A such that ∀ always stands in front of the dual ∃, and H(Δ), where
Δ ⊆ τ , is {H(A) | A ∈ Δ}.
Example 5. H(∃x∀yB(x, y) ∨ ∀u∃v¬B(u, v)) = ∀u∃x∀y∃v(B(x, y) ∨ ¬B(u, v)).

Theorem 5. There is a sequence of formulas B1, B2 . . . such that

1. there is a bound for a sequence of cut-free proofs for

AS(B1) →,AS(B2) →, . . .

elementary in the complexity of B1, B2
2. there is no elementary bound for any sequence of cut-free proofs for

sk(B1) →, sk(B2) →, . . .

in the complexity of B1, B2
3. there is no elementary bound for any sequence of cut-free proofs for

skA(B1) →, skA(B2) →, . . .

in the complexity of B1, B2

Proof. By Proposition 2 standard Skolemization and Andrews Skolemization
coincide for prenex formulas. Therefore, we argue only for standard Skolemiza-
tion. Let Bi =

∧
H(Δi)∧Ai

from Theorem 4 (note that Bi is in NNF). Assume
that there is an elementary bound for the cut-free proofs of

sk(B1) →, sk(B2) →,

Therefore, there is an elementary bound for cut-free proofs of

sk(C1
1), . . . sk(C1

n), sk(A′
1) →, sk(C2

1), . . . sk(C2
n), sk(A′

2) →, . . . ,

where Δi is Ci
1, . . . C

i
n and A′

i is obtained from Ai by shifting the universal
quantifiers outside. By [5] there is an elementary bound for the corresponding
Herbrand sequent. Note that the Skolem terms always depend on the dual posi-
tion, w.l.o.g.

D(. . . tj . . .) ∨ ¬D(. . . fi(. . . tj . . .) . . .).

Now replace all occurrences of fi(. . . tj . . .) inside-out by tj . As the Herbrand
expansion is propositionally valid, and the term is replaced on all positions by
the same term, the result remains valid. Finally all Skolem terms disappear, and
the original Skolemized formulas in H(Δ) are transformed into formulas of the
form Ei ∨ ¬Ei, which do not influence the validity of the remaining sequent.
Hence, the size of the remaining sequents is elementarily bounded and therefore
the cut-free proofs are elementarily bounded. Contradiction to Theorem 4.

Now consider
AS(B1),AS(B2),

80 M. Baaz and A. Lolić

Note that the bound variables in QxA(x) and QDxA(x) in QxA(x)∨QDxA(x) ∈
Δi are distinct, which remains invariant w.r.t. any prenexation. Therefore, the
atomic Skolemization of

H(QxA(x) ∨ QDxA(x))

is the standard Skolemization of QxA(x)∨QDxA(x). Deskolemization of cut-free
proofs is exponential [4], therefore the cut-free proofs of

AS(B1) →,AS(B2) →, . . .

are elementarily bounded.

5 Cut-Free LK-Proofs With Positive Existential/Negative
Universal Quantifiers and Resolution

As we are interested in this paper mainly in the impact of different forms of
Skolemization we allow any elementary form of clause form constructions (for
the purpose of this paper it is not necessary to specify the exact form of res-
olution proofs, as they simulate each other within elementary bounds in the
complexity of the proofs). This leads to a non-elementary speed-up of resolution
proofs presupposing atomic Skolemization w.r.t. resolution proofs presupposing
standard Skolemization or Andrews Skolemization.

Definition 7. Let A be a formula which contains only positive existential or
negative universal quantifiers when written on the left side of the sequent sign and
therefore only positive universal or negative existential quantifiers when written
on the right side of the sequent sign. An admissible clause form construction
consists of sequents A → C and C → A elementary in the complexity of A,
where

1. C (the clause form) is a conjunction of universally quantified disjunctions of
literals (negated or unnegated atomic formulas),

2. A → C and C → A are cut-free elementary derivable in the complexity A.

Note that both, structural clause forms and standard clause forms fall under this
definition, together with clause forms which allow for atom evaluation etc. [9].

Theorem 6.

1. Let ϕ be a cut-free LK-proof of the sequent

A1, . . . , An → B1, . . . , Bm

with positive existential or negative universal quantifiers only. Then there is
a resolution refutation of an admissible clause form of

A1 ∧ . . . ∧ An ∧ ¬B1 ∧ . . . ∧ ¬Bm

elementary in the complexity of ϕ.

Effective Skolemization 81

2. Let ϕ′ be a resolution refutation of an admissible clause form of

A1 ∧ . . . ∧ An ∧ ¬B1 ∧ . . . ∧ ¬Bm.

Then there is a cut-free LK-proof of

A1, . . . , An → B1, . . . , Bm

with positive existential or negative universal quantifiers only elementary in
the complexity of ϕ′.

Proof. See [8,9].

The next theorem follows directly from the theorem above.

Theorem 7. There is a sequence of formulas B1, B2 . . . such that

1. there is a bound for a sequence of resolution refutation of standard clause
forms of

AS(B1) →, AS(B2) →, . . .

elementary in the complexity of B1, B2
2. there is no elementary bound for any sequence of resolution refutations of

standard clause forms of

sk(B1) →, sk(B2) →, . . .

in the complexity of B1, B2,
3. there is no elementary bound for any sequence of resolution refutations of

standard clause forms of

skA(B1) →, skA(B2) →, . . .

in the complexity of B1, B2,

6 Conclusion

The worst case sequences constructed in this paper are highly artificial. It might
be asked if they have an impact in the real world. It is however a known fact that
worst case examples with extreme complexities correspond to practical examples
which are not that bad, but bad enough.

References

1. Aguilera, J.P., Baaz, M.: Unsound inferences make proofs shorter. J. Symb. Log.
84(1), 102–122 (2019)

2. Andrews, P.B.: Resolution in type theory. J. Symb. Log. 36(3), 414–432 (1971)
3. Andrews, P.B.: Theorem proving via general matings. J. ACM 28(2), 193–214

(1981)

82 M. Baaz and A. Lolić

4. Baaz, M., Hetzl, S., Weller, D.: On the complexity of proof deskolemization. J.
Symb. Log. 77(2), 669–686 (2012)

5. Baaz, M., Leitsch, A.: On skolemization and proof complexity. Fundam. Informat-
icae 20(4), 353–379 (1994)

6. Baaz, M., Leitsch, A.: Cut normal forms and proof complexity. Ann. Pure Appl.
Log. 97(1–3), 127–177 (1999)

7. Baaz, M., Leitsch, A.: Methods of Cut-Elimination, vol. 34. Springer, Dordrecht
(2011). https://doi.org/10.1007/978-94-007-0320-9

8. Baaz, M., Lolic, A.: Andrews skolemization may shorten resolution proofs non-
elementarily. In: Artemov, S., Nerode, A. (eds.) LFCS 2022. LNCS, vol. 13137, pp.
9–24. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-93100-1 2

9. Eder, E.: Relative Complexities of First Order Calculi. Springer, Wiesbaden (2013).
https://doi.org/10.1007/978-3-322-84222-0

10. Statman, R.: Lower bounds on Herbrand’s theorem. In: Proceedings of the Amer-
ican Mathematical Society, pp. 104–107 (1979)

https://doi.org/10.1007/978-94-007-0320-9
https://doi.org/10.1007/978-3-030-93100-1_2
https://doi.org/10.1007/978-3-322-84222-0

Factive Complements are Not Always
Unique Entities: A Case Study

with Bangla remember

Arka Banerjee(B)

Jadavpur University, Kolkata, India
banerjeesoumyo29@gmail.com

Abstract. There are many approaches regarding the emergence of fac-
tivity in literature. Some of them who are proponents of the view that
factive inferences are exported from complements, attribute it to the def-
initeness feature of the complements [28,29,35]. This definiteness feature
can be realized covertly via a semantically-sensitive definite determiner
Δ [35], or via an overt marker (e.g., ge in Washo) [28]. Although [14] later
revised their claim by calling this ge a marker of familiarity, not that of
definiteness, they did not provide any evidence where the D in factive
nominalized complements is not definite. This paper provides evidence
from Bangla (/Bengali; an Indo-Aryan language) where an attitude verb
mone pora ‘remember’ can embed nominalized complements that can be
interpreted indefinitely but still remains factive. In this paper, we provide
a formal compositional analysis that can account for this.

Keywords: Attitude verbs · Factive complements · Definiteness ·
Compositionality · Definedness condition · Familiarity · Bangla

1 Setting the Stage

A statement Pϕ is called a factive attitude report if the proposition ϕ is presup-
posed to be true [34,37]. Instantiating from natural language, verbs like regret,
resent, know, remember, etc. presuppose (») the truth of their complements. See
the following:

(1) John knows that Bill passed the test. » Bill passed the test.

(2) John regrets that he misbehaved with Sue. » he misbehaved with Sue.

Both the sentences are factive reports because the verbs know and regret presup-
pose the truth of their complement clauses. There are three standpoints regard-
ing the emergence of factiviy in literature. Some associate this with verbs [33,56]
and some with complements ([35,37,40] a.m.o). The third group denies either
of these options and describes it as a compositional offspring [17]. Those who
envisage that factivity is exported from complements often attribute it to the
definiteness feature of the complements [28,29,35]. We argue that this type of
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
H. H. Hansen et al. (Eds.): WoLLIC 2023, LNCS 13923, pp. 83–100, 2023.
https://doi.org/10.1007/978-3-031-39784-4_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-39784-4_6&domain=pdf
http://orcid.org/0000-0002-6522-3374
https://doi.org/10.1007/978-3-031-39784-4_6

84 A. Banerjee

linking is not so obvious across the board (cf. [16,17]). In this paper, we provide
evidence from Bangla (alternatively, Bengali) in which an attitude verb mone
pora ‘remember’ can embed nominalized complements that are not obligatorily
interpreted in a definite way, but it still remains factive (cf. [13]).1 Consider the
following:

(3) Context: Mary visited Delhi three times.

John-er
John-gen

[Mary-r
Mary-gen

Delhi
Delhi

ja-wa]
go-ger

mone
in memory

pore.
fall.prs.3

‘John remembers Mary visiting Delhi.’

In (3), the Bangla counterpart of remember embeds a nominalized complement
or a gerund, viz. Mary-r Delhi ja-wa ‘Mary’s visiting Delhi’. Here the attitude
report can pick out any one of the three visiting events, not necessarily any
particular event of her visiting Delhi. Hence, by intuition, one can argue that
the nominalized complement can feasibly refer to an indefinite event here. In
order to establish it in a more concrete way, we conform to [17]’s insight which
can tell us about the lack of its obligatory definiteness in the following way:

(4) John-er
John-gen

[Mary-r
Mary-gen

Delhi
Delhi

ja-wa]
go-ger

mone
in memory

pore,
fall.prs.3

Bill-er
Bill-gen

[Mary-r
Mary-gen

Delhi
Delhi

ja-wa]
go-ger

mone
in memory

pore,
fall.prs.3

Sam-er
Sam-gen

[Mary-r
Mary-gen

Delhi
Delhi

ja-wa]
go-ger

mone
in memory

pore.
fall.prs.3

Context 1: Mary visited Delhi three times.
✓John, Bill, and Sam remember different events of Mary visiting Delhi.
Context 2: Mary visited Delhi once.
✓John, Bill, and Sam remember the same event of Mary visiting Delhi.

As noted, the first context points us to the fact that the gerundial complement is
referring to different events of Mary visiting Delhi, whereas the second one refers
to a single event. Hence, no obligatory sense of definiteness can be attached to
the gerundial complement in this case.

Now, the task is to show that truth of the content of this complement is
presupposed, i.e., the attitude report is factive. Since presuppositions are non-
defeasible, the following but-clause which contradicts the content of the comple-
ment sounds pragmatically weird (marked with the # symbol) after (3):

(5) kintu,
but

Mary
Mary

konodino
ever

Delhi
Delhi

ja-e
go-3

ni.
pst.prf.neg

‘But, Mary did not visit Delhi ever.’ [# after (3)]
1 To give an answer to one of the anonymous reviewers, we mention that not only this

one verb but there are other verbs in Bangla like mone ach- ‘have in memory’, mone
rakha ‘keep in memory’, bhule jawa ‘forget’ that behave alike. In this paper, we will
restrict ourselves to zooming in on the case of mone pora only. We would like to keep
open the possibility of the semantics of these other verbs being different from it.

Factive Complements are Not Always Unique Entities 85

The presupposed status of the nominalized complement can be shown if we
negate the sentence in (3) because presuppositions survive negation. The nega-
tion of (3) still entails (�) that Mary visited Delhi.

(6) John-er
John-gen

[Mary-r
Mary-gen

Delhi
Delhi

ja-wa]
go-ger

mone
in memory

pore
fall.prs.3

na.
neg

‘John does not remember Mary visiting Delhi.’ � Mary visited Delhi.

Alternatively, one can execute the ‘Hey! wait a minute’ test [26] to check
the presupposition projection. In a conversational setting, the following can be
a good response to (3):

(7) ei!
Hey!

ek
one

minute
minute

dnara,
wait

ami
I

jantam
know.1

na
neg

je
that

Mary
Mary

Delhi
delhi

gechilo.
go.prf.pst.3
‘Hey! wait a minute, I did not know that Mary had visited Delhi.’

[✓in response to (3)]

(7) sounds perfectly okay as a response to (3) because one can be ignorant
about something which is already a fact. Therefore, it is quite established that
the nominalized complement in (3) is presupposed to be true but does not need
to be read in a definite way always. Hence, it challenges the view that assimilates
factivity into definiteness of the complement [28,29,35]. In this paper, we account
for this phenomenon in a compositional way at the syntax-semantic interface.

The next section discusses the approaches that relate factivity to the defi-
niteness feature of complements. Section 3 explores if the verb in concern can be
seen as lexically factive and contends that it cannot be so. Section 4 sheds light
on how to view this verb and discusses its internal structure. Section 5 deals with
how factive inferences can be compositionally inferred in the case of an indefi-
nite nominalized complement. Lastly, Sect. 6 concludes the paper with a note on
future work.

2 Existing Approaches Relating Factivity to Definiteness

That definite nominalization is liable for the rise of factive inferences is propa-
gated in [35]. This is supported by the work of [28] on Washo language – in their
work, it is shown that definiteness is the core feature in giving rise to factivity.
[35]’s standpoint results in the following syntactic representations:

(8) a. Presuppositional: VP

V DP

D
Δ

CP

...

b. Non-presuppositional: VP

V CP

...

86 A. Banerjee

[35] classifies clauses into two classes, i.e., presuppositional and non- pre-
suppositional rooting back to what [20] pioneered about stance verbs. The
following is the famous classification of stance verbs [20,30,31]:

a. non-stance (factive): know, remember, realize, notice, regret, etc.
b. response stance: accept, deny, agree, admit, verify, confirm, etc.
c. volunteered stance (non-factive): think, believe, suppose, claim, suspect,

assume, etc.

[35] groups the first two clusters into the presuppositional class since they
presuppose the existence of their complements, while the volunteered stance
class refers to the non-factives because of being non-presuppositional in nature.
Though the former two classes are presuppositional, truth is guaranteed in the
case of non-stance predicates only. Let us consider the following:

(9) John regrets that he studied linguistics.

(10) John denied that he studied linguistics.

In the former example, it is presupposed that John studied linguistics, and the
truth of it is certified. Thus, regret is a non-stance or factive. But, in (10)
the complement clause is not verified to be true even if it exists beforehand in
the common ground (CG) [61]. If it did not exist in the context before, the
question of denying it would not come to the scenario. So both in non-stance
and response stance predicates, the existence of presupposed complements in
the CG is noted, but in the non-stance class, the truth of them is guaranteed
additionally. The following captures the notion:

a. Non-stance: Existence of presupposed complement p in CG + The truth of p

b. Response stance: Existence of presupposed complement p in CG
c. Factives ⊂ Presuppositional verbs

Fig. 1. Factives and presuppositional verbs

As evident from Fig. 1, the set of factives is a proper subset of presuppositional
verbs. That means all factives are presuppositional verbs, but not vice-versa.

Factive Complements are Not Always Unique Entities 87

By contrast, volunteered stance verbs do not select for any complement which
already exists in the CG. At this point, [35] proposes that presuppositional verbs
pick up definite DPs from the CG, while non-presuppositional ones simply opt for
CPs. And, as [35] propounds, the D head of definite DPs in English is occupied
by a covert Δ which invokes the definiteness. This Δ in turn takes the clause
as its complement. Follow the structure in (8a) where presuppositional verbs
select for a semantically-sensitive definite D, viz. Δ. He assimilates factivity into
the definiteness of nominalized complements. [28], following [55], mention that
this D slot is filled with definite -gi/ge morpheme in clausal nominalizations in
Washo. In their recent work, [14] revised their standpoint advancing that this
-gi/-ge morpheme stands for mere familiarity under idx head in Washo, but not
for definiteness, and mentioned that familiarity alone cannot explain factivity.
However, they did not provide any evidence showing us an indefinite use of
nominalized complements embedded under factive predicates.

This paper has discussed such a case in Bangla where we can find indefinite
use of eventualities embedded under a factive report. Not only in Bangla but this
kind of observation is also noted in Barguzin Buryat (a Mongolic language) by
[17]. We will account for this phenomenon in Bangla in a compositional manner
in this paper. Prior to getting into that, we need to address why the verb mone
pora ‘remember’ cannot be claimed factive lexically. Let us look at this in the
following section.

3 Is Bangla remember Lexically Factive?

At this point, the reader might ask why we do not ascribe factivity lexically
to mone pora ‘remember’. Technically, why don’t we formulate the following
semantics of it relative to a world w and a variable assignment function g, where
it is presupposed that the < s, t >-type propositional argument is presupposed
to be true in w?

(11) �mone pora�w,g = λp<s,t>λxe : p(w) = 1.rememberw(p)(x)

(11) denotes a partial function – this concerned verb is said to be defined if
its argument holds true in the actual world, otherwise undefined. However, in
(12) we are getting a hallucination context with mone pora, which is purely
non-factive in nature.

(12) Context: Eight-year-old Rahul is remembering some stuff that did not
happen ever. His father gets tensed and visits a doctor. The following
conversation is under such a circumstance.

Father: Doctor,
Doctor

Rahul-er
Rahul-gen

majhe majhe
at times

[amra
we

US
US

gechilam
go.prf.pst.1

bol-e]
say-ptcp

mone
mind.loc

pore,
fall.prs.3

kintu
but

amra
we

kokhono
ever

US
US.loc

ja-i
go-1

ni.
prf.pst.neg

88 A. Banerjee

‘Doctor, Rahul at times hallucinates/imagines that we went to the
US, but, we never went to the US.’

Doctor: In fact, Rahul is suffering from false memory syndrome.

In this above example, the verb mone pora is embedding a finite clause whose
propositional content is not true in the actual world. Hence, if the verb would
have been factive per se and carried a semantics as in (11), it would presuppose
that the proposition – ‘we went to the US’ – is true in the actual world, but which
is certainly not the case in actual reality, as seen in (12). Thus, factivity in (3)
cannot be exported from the verb itself. So, how should the logical translation of
this concerned Bangla verb be? We will deal with this issue in the next section.

4 How to View Bangla remember

Drawing reference from the previous section, one could argue for having two
different avatars of mone pora – one is factive, and the other is non-factive. But,
viewing it as lexically ambiguous would be less economical for the lexicon than
proposing a single semantics that accounts for both readings. In other words, a
single semantics of mone pora which can take care of both factive and non-factive
readings will undoubtedly increase the delicacy of our formal system.

In the above data examples, the interlinear glosses reflect that Bangla remem-
ber is a complex predicate2 where the preverb is mone ‘in memory/mind’ and
the light verb is pora ‘to fall’ (see [18,19], a.m.o.). The preverb mostly provides
the semantic content of the complex predicate [47] and the light verb adds some
extra colors to it. This attitude verb in concern is a composite that literally
means ‘to fall in memory’. Another interesting fact is that the subject of this
verb is in the Genitive case instead of the regular Nominative one.3 Follow the
-r marker on the attitude subject, which is the morphological realization of the
Genitive case in Bangla. This type of construction draws our attention to some
diachronic processes that Bangla has undergone. Genitive subject constructions
of the verbs or predicates denoting mental activities and psychological states
have a long history. [38] mentioned that subjects of these predicates in Middle
Bangla used to occur in Genitive, Locative, and Objective cases. As mentioned
in [51], the most frequent pattern among them was:

Genitive NP + body part (L) + sensation/feeling (NOM)+
be/become/happen

2 According to [19], a complex predicate consists of a main predicational element
(noun, verb, or adjective) and a light verb that is usually the syntactic head of
the construction. Complex predicates are composed of more than one grammatical
element, each of which contributes part of the information ordinarily associated with
a head [2]. As [3] echoes [46], they exhibit word-like properties in terms of argument
structure composition and sometimes in having lexicalized meanings.

3 cf. [21] who called it an Indirect Case that is not too far removed from the Dative
subjects. He mentioned that it is morphologically a Genitive, but has features that
are Dative-like.

Factive Complements are Not Always Unique Entities 89

[51] also mentioned that the Genitive NP originally referred to the inalienable
possessor of the body part. Eventually, the Experiencer/Patient status of the
possessor was focused on and it got the subject status. In Modern Bangla, pred-
icates like mon-e pora still retain the Locative NP referring to a body part,
where -e denotes the Locative marker and the NP that denotes the body part is
mon or ‘memory/mind’. Thus, in present-day Bangla, the original possessor of
the memory has faded away and it acquired the status of a subject who is expe-
riencing the mental state. In other words, the apparent Genitive NP is no more
the possessor now, rather it is the subject of the mental predicate. Now, getting
back to the literal form of mon-e pora, we propose the following compositional
structure of it where there is no possessor of memory:4

(13) λxeλev : lb(τ(x)) < lb(τ(e)).fall(x)(e) ∧ in(memory)(x)(e)
< e,< v, t >>

mone
λxeλev.in(memory)(x)(e)*

< e,< v, t >>

mon
memory

-e
λyeλxeλev.in(y)(x)(e)
< e,< e,< v, t >>>

pora
λxeλev : lb(τ(x)) < lb(τ(e)).fall(x)(e)

< e,< v, t >>

*It is a short for ‘λxeλev.∃y[memory(y)∧in(y)(x)(e)]’. We actually intro-
duced a type shifter having the form ‘λR<e,<e,<v,t>>>λP<e,t>λxeλev.
∃y.P (y)∧ R(y)(x)(e)’ which shifts the type of the Locative marker -e to
the type << e, t >,< e,< v, t >>>, so that the Locative -e can combine
with the < e, t >-type one-place predicate memory.

In (13), the semantics of fall encodes a definedness condition which says that the
left boundary (lb) of the interval denoting the life-span of the object of falling
precedes (<) that of the interval referring to the running time of the falling
event e. This is the pre-existence presupposition [15,16] associated with
the internal argument of fall. In a nutshell, the object of falling must pre-exist
the starting point of the falling event. In the definedness condition, τ denotes
the temporal trace function [43–45]. Such restrictions on the arguments of
verbs are noted by [24]. See the following:

(14) John broke the glass. → The glass was there before the event of breaking.

4 Thanks to one of the reviewers for questioning the logic behind not introducing the
possessor as one of the arguments of memory. It is due to the historical reason which
tells us how the possessor status of the body part had lost its focus diachronically.
That is why we treated memory as a one-place predicate, but not a two-place one.

90 A. Banerjee

(15) John wrote an essay. /→ The essay existed before the event of writing.

In the same way we can show that the object of pora ‘fall’ exists before the start
of the falling event and hence the pre-existence restriction gets associated with
its object or theme (cf. [7,8]). Consider the following:

(16) gach
tree

theke
from

apel-ta
apple-clf

porlo,
fall.pst.3

#kintu
but

gach-e
tree-loc

kono
any

apel
apple

chilo
was

na.
neg

‘The apple fell from the tree, #but there was no apple in the tree.’
⇒ The apple existed before the falling event started.

In (13), we defined the locative suffix -e as a transitive predicate that takes
two arguments y and x and returns us the set of eventualities e such that x is
e-ing in y. Now, in order to compose mone, of type < e,< v, t >>-type, with
the < e,< v, t >>-type pora, we resort to the Generalized Conjunction [54] rule
which is stated below:

(17) Generalized Conjunction:
Pointwise definition of � [54]
X � Y =
a. = X ∧ Y if both X and Y are truth values

b. = {< z, x � y > : < z, x >∈ X and < z, y >∈ Y } if X and Y are
functions

Via this composition, the event argument of in gets identified with the event of
falling (cf. [39]). Hence, the root node in (13) refers to a function-valued function
that takes an individual x and an event argument e. It is defined if x pre-exists
e, if defined then it returns 1 iff e is the event of falling whose object is x and x
is falling in memory.

We argue that this composite gets lexicalized with the meaning of remember-
ing or recalling over time. Intriguingly, this phenomenon is not specific to Bangla.
It can be noted cross-linguistically in many related and unrelated languages. To
convey the sense of remembering, languages like Assamese and Odia (both are
Indo-Aryan) have the verbal forms monot pelua and mone pokila, respectively,
which literally mean ‘falling in memory’ just like Bangla. As noted by [17], a
Balkar language that is family-wise very much distant from Bangla lexicalizes
remember as ‘dropping in memory’. Now, once the complex form in (13) gets
lexicalized with the meaning of remembering, it can accommodate another argu-
ment that acts as the subject of the concerned event. Recall that the possessor of
the memory (i.e., the body part) lost its Possessor status and evolved as an Expe-
riencer historically, occurring as the external argument of remember and bearing
the quirky Case5. The presence of this quirky Genitive Case on the subject is
reminiscent of the fact that once it used to carry the status of a Possessor of the

5 Quirky Case is something which is linked to the theta grid of a particular predicate.
A Genitive/Indirect experiencer subject is directly linked to the theta grid of the
verb mone pora.

Factive Complements are Not Always Unique Entities 91

body part. Additionally, we argue, Bangla remember retains the pre-existence
presupposition which comes from the light verb fall in its interpretation (cf. [7]).
Consider the following:

(18) �mone pora�w,g = λx ∈ De∪Dv.λz ∈ De.λe ∈ Dv : lb(τ(x)) < lb(τ(e)).
rememberw(x)(z)(e)

The transition from (13) to (18) should not be understood synchronically, rather
this transition covers a huge time period between Middle and Modern Bengali.
Thus, it is a long historical process that is at play behind this type of tran-
sition.6 In (18), we followed a Davidsonian representation [22] in viewing the
verbal semantics where an event variable is introduced along with all its argu-
ments. (18) tells us that it takes two arguments x and z and an event argument
e, and is defined if x pre-exists e. If defined then it returns true iff e is the event
of remembering and z is remembering x. An interesting thing to note about
(18) is that the internal argument of mone pora can be picked out either from
the domain of individuals or from the domain of eventualities. That means this
verb can take either an entity or an event as its argument. If we take gerunds
as events (see Sect. 5), then (3) is an example of this attitude verb taking even-
tualities. However, apart from the eventualities, it can take e-type entities too,
both contentful and non-contentful.7 See the following:

(19) Contentful DP

amar
I.gen

golpo-ta
story-clf

mone
mind.loc

pore.
fall.prs.3

‘I remember the story.’

(20) Non-contentful DP

amar
I.gen

John-ke
John-acc

mone
mind.loc

pore.
fall.prs.3

‘I remember John.’

In the former example, the object of mone pora is some particular story that
refers to propositional content. However, in the latter one, we get a proper name
as the theme or object, which is purely non-contentful in nature. The way we
defined the nature of the internal argument of mone pora in (18) can feasibly
take care of (3) along with (19, 20).

Now, we are set with everything before we get into how the factive interpre-
tation is inferred while it embeds a nominalized complement that is indefinite in
nature. The following section deals with it.
6 Thanks to one of the anonymous reviewers for the suggestion to account for the leap

from the semantics in (13) to that in (18).
7 Contentful entities are those which are associated with propositional contents [48].

For example, entities like news, story, etc. are contentful. On the other hand, entities
like proper names are non-contentful because they are not associated with any sort
of propositional element.

92 A. Banerjee

5 Accounting for the Factive Reading with an Indefinite
Nominalized Complement

From the data above in (3), we postulate that Bangla POSS-ing gerunds8 can
be indefinite unlike English ones that are, as per [57,59], definite. We propose
the following LF (logical form) of (3):

(21) t
S

<< v, t >, t >
DP2

Mary-r Delhi ja-wa

< v, t >

λ2,v t

∃ < v, t >
vP

e
NP

John-er

< e,< v, t >>
VP

t2,v < e/v,< e,< v, t >>>
V

mone pore

We assume that gerunds denote sets of eventualities [58,59]. Thus, the POSS-ing
complement in (3) will have the interpretation as in (22), relative to a world w
and an assignment function g.

(22) �DP�w,g = λev.visitingw(Delhi)(Mary)(e)

It denotes the set of v-type events such that they are events of Mary visiting
Delhi. Since the concerned POSS-ing is interpreted indefinitely in (3), we can
tap into [53]’s type shifter A that maps a predicate onto a quantifier.9 Thus,
applying it on the POSS-ing DP would yield the following translation:

(23) A(�DP�w,g) = λQ<v,t>.∃e′[visitingw(Delhi)(Mary)(e
′) ∧ Q(e′)]

[via Functional Application (FA)]

Consequently, a type-mismatch happens while composing it with the attitude
verb which looks for an argument of type e or v. See the interpretation in (18).

8 [1] discussed four types of gerunds in English – POSS-ing (e.g. John’s visiting NY),
ACC-ing (e.g. John visiting NY), PRO-ing (e.g. visiting NY), and Ing-of (e.g. vis-
iting of John).

9 [53] originally defined this type shifter over the domain of entities of type e. But, if we
extend [53]’s A to the domain of eventualities (Dv), nothing plays as a hindrance for
us. This A will then have the semantics as follows: λP<v,t>λQ<v,t>.∃e′[P (e′)∧Q(e′)].

Factive Complements are Not Always Unique Entities 93

In order to avoid this type-mismatch, we perform a covert Quantifier Raising
(QR) movement, due to which the DP moves to a higher position in the tree
leaving a v-type trace t2 and creating a λ-binder that binds the trace. The
compositional steps are the following:

a. �VP�w,g = λze.λev : lb(τ(g(2))) < lb(τ(e)).rememberw(g(2))(z)(e)
[via FA, V & t2,v]

b. �NP�w,g = John
c. �vP�w,g = λev : lb(τ(g(2))) < lb(τ(e)).rememberw(g(2))(John)(e) [via FA,

NP & VP]
d. �∃� = λR<v,t>.∃e.R(e) (existential closure over events)
e. �∃ + vP�w,g = ∃e : lb(τ(g(2))) < lb(τ(e)).rememberw(g(2))(John)(e)
f. �λ2,v+(e.)�w,g = λuv.∃e : lb(τ(u)) < lb(τ(e)).rememberw(u)(John)(e)

[via Predicate Abstraction]
g. �S�w,g = ∃e′∃e : lb(τ(e′)) < lb(τ(e)).rememberw(e′)(John)(e) ∧

visitingw(e
′)(Delhi)(Mary)(e′) [via FA, (f.) & (23)]

Thus, at the topmost node S we get the reading that there already exists an
event of Mary visiting Delhi before John remembers it. In other words, there is
a pre-existing event of Mary visiting Delhi and this event is the object of John’s
remembering. Hence, a factive reading comes to the fore.

6 Summary and Future Work

Overall, in this paper, we show that factivity is not a subject to be exported
from the definiteness or uniqueness of the complements. It is only familiarity,
not uniqueness, which is linked to the factive nominalized complements in this
case. However, unlike Washo, this familiarity is not morphologically encoded in
Bangla nominalizations, rather it is derived compositionally through the defined-
ness condition associated with the concerned attitude verb, which says that
its internal argument or theme/object pre-exists the main attitude event. One
anonymous reviewer mentioned that [35]’s familiarity can be equated with [16]’s
pre-existence presupposition in that both of them make references to old
discourse referents. We completely agree with this intuition, however, we argue
that the basic difference between these two approaches lies in the presence or
absence of definiteness. The advantage of embracing the pre-existence presup-
position is that it allows us to get rid of the obligatory definiteness condition
linked to the factive complements.

Apart from gerundial complements, there appears another clausal comple-
mentation pattern where mone pora gives rise to factivity: when it embeds a
finite je-clause (see [9,11], a.m.o.) and bears the main sentential stress (denoted
by the capital letters in the following), it gives rise to factive inferences [6]. See
the following:

(24) Rahul-er
Rahul-gen

MONE
mind.loc

PORE
fall.prs.3

je
that

Mary
Mary

Delhi
Delhi

giyechilo.
go.prf.pst.3

‘Rahul remembers that Mary went to Delhi.’ » Mary went to Delhi.

94 A. Banerjee

It is also experimentally reported in [6] that if the main stress docks on the
matrix subject instead of the matrix verb, the attitude report does not anymore
entail the truth of the complement clause. We leave this puzzle for future work.

Acknowledgements. We convey our thanks to all the native Bangla speakers who
gave their data judgments. We also extend our thanks to Ankana Saha, Diti Bhadra,
Kousani Banerjee, Nirnimesh Bhattacharjee, Sadhwi Srinivas, Srabasti Dey, Tatiana
Bondarenko, Ushasi Banerjee, and Utpal Lahiri for their valuable insights on various
issues. All errors are mine.

Appendix 1

An accompanying question might arise regarding the source of factivity – can
factivity be built into nominalization? The answer would be - ‘no’. See the fol-
lowing example in (25) where the contradictory but-conjunct is compatible with
the preceding clause. Hence, no factive inference is drawn. This observation con-
verges with other languages too, e.g. Turkish [52], Buryat [17], and so on.

(25) John
John

[Bill-er
Bill-gen

bhot-e
election-loc

jet-a]
win-ger

asha
hope

korechilo,
do.prf.pst.3

✓kintu,
but

durbhagyoboshoto
unfortunately

Bill
Bill

konodino
ever

bhot-e
election-loc

je-te
win-3

ni.
prf.pst.neg

‘John hoped for Bill winning elections, ✓but unfortunately he did not
ever win any.’

Now, there can be questions about the compositional path in (25) – should
we take the path of argumenthood here as well? That means, should we take
the nominalized complement to compose as the internal argument of hope? The
answer would be - ‘no!’. If it would have been the path of argumenthood, we
would end up having a veridical10 report which is certainly not the case in (25).
We argue that the complement denotes the content of hope, but not the
object of it.11 Content of hope might be false in actual reality. Along this line
of intuition, we assert that the complement here is not a DP, but rather some
eventive projection, εP in disguise where the ε head takes the gerundial DP as
its argument. The semantics of ε is given below:

(26) �ε�w,g = λP<v,t>λev.contw(e) = λw′.∃e′.P (e′) in w′

The cont is a function that takes entities that have intensional content. For
example, entities like story, gossip, etc. are contentful as mentioned in Sect. 4.
10 A statement Pϕ is a veridical report if the truth of ϕ is entailed, e.g. verbs like prove

are veridical predicates.
11 Thanks to Tatiana Bondarenko for a discussion on this issue. Thanks are also due

to Ankana Saha, Diti Bhadra, Kousani Banerjee, Nirnimesh Bhattacharjee, Sadhwi
Srinivas, and Ushasi Banerjee for their insights. It is noteworthy that [17] reported
a Case-shift phenomenon in the case of Buryat where nominalized complements of
hope, believe are Dative marked, not Accusative marked (see [17]). However, Bangla
does not show us any such Case-changing phenomenon morphologically.

Factive Complements are Not Always Unique Entities 95

Events can also be contentful though [25,48,49] (e.g. belief, saying event etc.).
But, the event of running is not contentful at all. For any element a, cont(a) =
{w : w is compatible with the intensional content determined by a in w} [42].

When the ε head gets composed with the nominalized DP by FA, it will yield
the εP projection which is a function of type < v, t >. This would not compose
with the verb via its internal argument. Instead, it only modifies the eventuality
argument of the matrix verb hope whose content will then be denoted by the
proposition that Bill would win the election/vote. See the following composition:

(27) λyλxλe.hope(y)(x)(e) ∧ cont(e) = λw′.∃e′.winw′(vote)(Bill)(e′)
< e,< e,< v, t >>>

VP

λe.cont(e) = λw′.∃e′.winw′(vote)(Bill)(e′)
< v, t >

εP

Bill-er bhot-e jet-a

λyλxλe.hope(y)(x)(e)
< e,< e,< v, t >>>

V
asha korechilo

We used the rule Modified Predicate Modification [15] for the composition. The
rule is stated below:

(28) Modified Predicate Modification: [15]
If α is a branching node and {β, γ} is the set of its daughters, then, for
any assignment g and world w, α is in the domain of � �w,g if both β and
γ are, and if �β�w,g is a predicate Pβ of type < σ1, < σ2, ... < σk, ... <
σn, t >>>> and �γ�w,g is a predicate Pγ of type < σk, t >. In this case,
�α�w,g = λx1λx2...λxk...λxn : x1...xn are in the domain of �β�w,g and xk

is also in the domain of �γ�w,g.Pβ(x1)(x2)...(xk)...(xn) & Pγ(xk) = 1.

(28) “allows a modifier of a type < σk, t > to modify any σk-type variable of
a predicate.” Following this, we arrive at the root note in (27) which shows us
that the content of hope becomes the proposition ‘Bill would win the election’.
Therefore, the truth of it will not be guaranteed because the content of an
attitude event might be false in the actual scenario.

Appendix 2

The reviewers have suggested addressing the question of how the semantics in
(18) can account for the non-factive reading in (12). Earlier, we argued that
the semantics in (11) fails to account for any non-factive reading because the
semantics as stated in (11) would require the embedded proposition to be always
true in the actual world. However, we will show that the proposed semantics in
(18) can do so. The embedded clause involved in (12) is a finite clause with
the verby embedder bole which is a SAY-based complementizer [9–12,50,60].

96 A. Banerjee

This kind of embedded clause is not even the complement to the verb, rather it
sits outside of the main clause and adjoins to the vP domain [4,5,23,36]. Thus,
the structure will be like this:

(29) 1©

vP2

boleP

TP

amra US gechilam

bole

vP1

DP

Rahul-er

VP

V
mone pore

∃

We assume that Bangla bole complementizer is an overt realization of the covert
reportative modal �SAY� which can denote mental states and is built on content-
ful eventualities, but not individuals [41,50].12 Not only Bangla bole, there exist
SAY-based complementizers in other languages too, e.g., Korean ko, Japanese
to, Zulu ukuthi, etc. that are also built on contentful eventualities [48]. Following
[50], the semantics of bole is the following where it takes a propositional argu-
ment p and returns the set of contentful eventualities whose intensional content
is denoted by p:

(30) �bole�w,g = λp<s,t>λev.contw(e) = p

(31) �boleP�w,g = λev.contw(e) = λw′.we went to US in w′ [via Intensional
FA, �TP�g¢ & ‘bole’]

Now, what is important to note is the type of the bole-clause, which is < v, t >.
And, it neither modifies nor saturates the internal argument of the verb. What
does it do then? It combines with vP1 via Predicate Conjunction, by modifying
the matrix event only. Below we write down the semantic computations:

(32) �vP1�
w,g = λev∃x : lb(τ(x)) < lb(τ(e)).rememberw(x)(Rahul)(e)13

(33) �vP2�
w,g = λev∃x : lb(τ(x)) < lb(τ(e)).rememberw(x)(Rahul)(e) ∧

contw(e) = λw′.we went to US in w′

Now, another existential closure will be executed to close off the matrix event
argument. Though the pre-existence presupposition is present here, we do not
12 English complementizer that is built on contentful individuals ([48], a.m.o.).
13 In spite of the fact that there is no theme argument of V in (29), we do not want to

leave this slot unsaturated or open. That is why we proceed by existentially closing
the internal argument of the verb so that it can compose it with its subject by FA.

Factive Complements are Not Always Unique Entities 97

find any lexical correlate of x. Thus, it should not bother us. The important
thing is – we have the subordinate proposition as the content (but not the
object) of remember, which might be false in the actual world. This is the crux of
getting non-factivity in (12). One of the reviewers also pointed to the non-factive
readings with English remember too. This is a very interesting point that [48] has
already discussed. [48] mentioned that we get examples like Martha remembered
John to be bald, but he wasn’t where remember is used in a non-factive manner.
Here, he proposed a null embedder FDox which acts like bole/ko/to.

Technical Notes

i. In this paper, we used the tools of formal semantics such as lambda calculus,
restricted lambda for introducing definedness conditions, and compositional
rules like Functional Application, Predicate Modification, Predicate Abstrac-
tion, Trace rule, etc. Readers are requested to follow [32] for all these.

ii. We considered the following types:
a. e for entities/individuals
b. t for truth values
c. v for events
d. s for the worlds

We viewed propositions as functions from worlds to truth values. In other
words, a proposition is a set of those worlds where it holds true. Readers are
advised to follow [27].

iii. For the reference of the readers, a full picture of [53]’s type shifters is given
below:

iv. For interlinear glossing of the non-English data, we followed the Leipzig con-
vention for glossing: https://www.eva.mpg.de/lingua/pdf/Glossing-Rules.
pdf (Fig. 2).

Fig. 2. Partee’s type shifters (taken from [62])

https://www.eva.mpg.de/lingua/pdf/Glossing-Rules.pdf
https://www.eva.mpg.de/lingua/pdf/Glossing-Rules.pdf

98 A. Banerjee

References

1. Abney, S.P.: The English Noun Phrase in its Sentential Aspect. Ph.D. dissertation,
MIT, Cambridge MA (1987)

2. Alsina, A., Bresnan, J., Sells, P.: Complex predicates: structure and theory. In:
Alsina, A., Bresnan, J., Sells, P. (eds.) Complex predicates, pp. 1–12. Center for
the Study of Language and Information, Stanford (1997)

3. Balusu, R.: Complex predicates in Telugu: a computational perspective. In: Pro-
ceedings of the 24th Conference on Computational Linguistics (COLING 2012):
Demonstration papers, pp. 1–8 (2012)

4. Balusu, R.: The quotative complementizer says “I’m too Baroque for that”. In:
Dash, B., Kaur, G. (eds.) Proceedings of 8th Formal Approaches to South Asian
Languages (FASAL 8), vol. 3, pp. 1–12 (2020)

5. Banerjee, A.: Response-stance predicates with two types of finite clauses in Bangla.
University of Pennsylvania Working Papers in Linguistics: Vol. 29: Iss. 1, Article
2 (2023)

6. Banerjee, A., Banerjee, A., Sanyal, S., Das, S.K.: Role of speech rhythms in shaping
meaning inferences: an experimental study in Bangla. Paper presented at The
International Conference cum Workshop on Rhythm of Happiness (ICRH 2021)
held at IIT Kharagpur, December 2021

7. Banerjee, A., Karmakar, S.: How light verbs shed light on attitude building.
In: Proceedings of 22nd Seoul International Conference on Generative Grammar
(SICOGG), p. 22 (2020)

8. Banerjee, A., Karmakar, S., Ghosh, S.: Factivity and nominalization: a study on
‘mind-predicates’ in Bangla. Paper presented at 8th Indian Conference on Logic
and its Applications (ICLA 8) (2019)

9. Bayer, J.: Directionality and Logical Form: On the Scope of Focusing Particles
and Wh-in-situ. Springer, Dordrecht (1996). https://doi.org/10.1007/978-94-017-
1272-9

10. Bayer, J.: Final complementizers in hybrid languages. J. Linguist. 35(2), 233–271
(1999)

11. Bayer, J.: Two Grammars in One: Sentential Complements and Complementizers
in Bengali and Other South Asian Languages. In: Bhaskarorao, P., Subbarao, K.V.
(eds.) The Yearbook of South Asian Languages: Tokyo Symposium on South Asian
Languages-Contact, Convergence and Typology, pp. 11–36. Sage Publications, New
Delhi (2001)

12. Bayer, J., Schmid, T., Bader, M.: Clause union and clausal position. In: Dikken,
D.M., Tortora, C.M. (eds.) The Function of Function Words and Functional Cat-
egories, pp. 79–113. John Benjamins, Amsterdam (2005)

13. Bhadra, D., Banerjee, A.: Obligation, prohibition, non-finite complementation.
Talk presented at 53rd North East Linguistic Society (NELS 53), University of
Göttingen, January 2023

14. Bochnak, R., Hanink, E.: Clausal embedding in Washo: complementation vs. mod-
ification. Nat. Lang. Linguist. Theory 40, 979–1022 (2022)

15. Bondarenko, T.I.: Factivity alternation due to semantic composition: think and
remember in Barguzin Buryat (2019. ms, MIT

16. Bondarenko, T.I.: From think to remember: how CPs and NPs combine with atti-
tudes in Buryat. In: Proceedings of 29th Semantics and Linguistic Theory (SALT
29), pp. 509–528 (2019)

17. Bondarenko, T.I.: Factivity from pre-existence: evidence from Barguzin Buryat.
Glossa 5(1), 109. 1–35 (2020)

https://doi.org/10.1007/978-94-017-1272-9
https://doi.org/10.1007/978-94-017-1272-9

Factive Complements are Not Always Unique Entities 99

18. Butt, M.: The light verb jungle (2003). paper presented at Workshop on Multi-Verb
Constructions. Trondheim

19. Butt, M.: Complex Predicate Compendium. Handout from talk given in
Tromsø, May 2005. http://ling.uni-konstanz.de/pages/home/butt/main/papers/
cp-hnd.pdf

20. Cattell, R.: On the source of interrogative adverbs. Language 54, 61–77 (1978)
21. Dasgupta, P.: Some non-nominative subjects in Bangla. In: Bhaskararao, P., Sub-

barao, K.V. (eds.) Non-nominative Subjects, vol. 1, pp. 129–140. John Benjamins
Publishing Co., Amsterdam/Philadelphia (2004)

22. Davidson, D.: The Logical Form of Action Sentences. In: Resher, N. (ed.) The
Logic of Decision and Action, pp. 81–95. University of Pittsburgh Press, Pittsburgh
(1967)

23. Dey, S.: Bangla equative clauses and finiteness. Poster presented at 31st Conference
of the Student Organization of Linguistics in Europe (2023)

24. Diesing, M.: Indefinites: Linguistic Inquiry Monographs. MIT Press, Cambridge,
MA (1992)

25. Elliott, P.D.: Elements of clausal embedding. Ph.D. dissertation, University College
London (2017)

26. von Fintel, K.: Would you believe it? The King of France is back! Presuppositions
and truth-value intuitions. In: Reimer, M., Bezuidenhout, A. (eds.) Descriptions
and Beyond. Oxford University Press, Oxford (2004)

27. von Fintel, K., Heim, I.: Intensional semantics. Lecture notes, MIT Spring (2011)
28. Hanink, E., Bochnak, R.: Factivity and two types of embedded clauses in Washo. In:

Lamont, A., Tetzloff, K. (eds.) Proceedings of 47th North-East Linguistic Society
(NELS 47), pp. 65–78 (2017)

29. Hanink, E., Bochnak, R.: Selection and complement clause size in Washo. Paper
presented at the Selection Fest Berlin 2017 workshop at the Leibniz-Zentruem für
Allgemeine Sprachenwissenschaft (2017)

30. Hegarty, M.: On adjunct extraction from complements. In: Demirdash, L.C.H. (ed.)
MIT Working Papers in Linguistics, vol. 3, pp. 101–124. MITWPL, Cambridge MA
(1990)

31. Hegarty, M.: Adjunct extraction without traces. In: Proceedings of 10th West Coast
Conference on Formal Linguistics (WCCFL 10) (1992)

32. Heim, I., Kratzer, A.: Semantics in Generative Grammar. Blackwell, Oxford (1998)
33. Hintikka, J.: Knowledge and Belief: An Introduction to the Logic of the Two

Notions. Cornell University Press, Ithaca (1962)
34. Karttunen, L.: Some observations on factivity. Pap. Linguist. 4(1), 55–69 (1971)
35. Kastner, I.: Factivity mirrors interpretation: the selectional requirements of pre-

suppositional verbs. Lingua 164(Part A), 156–188 (2015)
36. Kidwai, A.: Why Say That: Complementizer Sources and their Extended Projec-

tions (2014). invited talk at FASAL 4, Rutgers University
37. Kiparsky, P., Kiparsky, C.: Fact. In: Bierwisch, M., Heidolph, K.E. (eds.) Progress

in Linguistics, pp. 143–173. Mouton de Gruyter, The Hague (1970)
38. Klaiman, M.: Volitionality and subject in Bengali: a study of semantic parameters

in grammatical processes. Indiana University Linguistics club, Bloomington (1981)
39. Kratzer, A.: Severing the external argument from the verb. In: Roryck, J., Zaring

(eds.) Phrase Structure and the Lexicon, pp. 109–138. Kluwer, Dordrecht (1996)
40. Kratzer, A.: Decomposing attitude verbs (2006). talk presented at the workshop

in honor of Anita Mittwoch. The Hebrew University of Jerusalem
41. Kratzer, A.: Modality and the semantics of embedding. Talk given at Amsterdam

Colloquium (2013)

http://ling.uni-konstanz.de/pages/home/butt/main/papers/cp-hnd.pdf
http://ling.uni-konstanz.de/pages/home/butt/main/papers/cp-hnd.pdf

100 A. Banerjee

42. Kratzer, A.: Modality for the 21st century. In: Anderson, S.R., Moeschler, J.,
Reboul, F. (eds.) L’interface Langage-Cognition/The Language-Cognition Inter-
face: Actes du 19e Congrès International des Linguistes Genève, pp. 179–199.
Librarie Droz (2013)

43. Krifka, M.: Nominal Reference, Temporal Constitution and Quantification in Event
Semantics. In: Bartsch, R., van Benthem, J., van Emde Boas, P. (eds.) Semantics
and Contextual Expressions, pp. 75–115. Foris, Dordrecht (1989)

44. Krifka, M.: Thematic Relations as Links between Nominal Reference and Temporal
Constitution. In: Sag, I.A., Szabolcsi, A. (eds.) Lexical Matters, pp. 29–53. CSLI
Publications, US (1992)

45. Krifka, M.: The Origins of Telicity. In: Rothstein, S. (ed.) Events and Grammar,
pp. 197–235. Kluwer Academic Publishers, Dordrecht/Boston/London (1998)

46. Lapointe, S.: A lexical analysis of the English auxiliary verb system. Lexical gram-
mar, pp. 215–254 (1980)

47. Lazard, G.: Grammaire du Persan contemporain. Librairie C. Klincksiek, Paris
(1957)

48. Moulton, K.: Natural Selection and the Syntax of Clausal Complementation. Ph.D.
dissertation, University of Massachusetts (2009)

49. Moulton, K.: CPs: copies and compositionality. Linguist. Inq. 46(2), 305–342
(2015)

50. Moulton, K.: (Non)-complement clauses and in-situ saturation: consequences for
cross-clausal A-dependencies (2019). workshop on (Non)-Complementation GLOW
in Asia XII/SICOGG XXI

51. Onishi, M.: Non-canonically marked S/A in Bengali. In: Aikhenvald, A.Y., Dixon,
R., Onishi, M. (eds.) Non-canonincal Marking of Subjects and Objects, pp. 113–
147. John Benjamins Publishing Co., Amsterdam/Philadelphia (2001)

52. Özyıldız, D.: Attitude reports with and without true belief. In: Proceedings of 27th
Semantic and Linguistic Theory (SALT 27), pp. 397–417 (2017)

53. Partee, B.: Noun phrase interpretation and type-shifting principles. In: Groe-
nendijk, J. (ed.) Studies in Discourse Representation Theory and the Theory of
Generalized Quantifiers, pp. 115–143. Foris, Dordrecht (1987)

54. Partee, B., Rooth, M.: Generalized conjunction and type ambiguity. In: Bäuerle,
R., Schwarze, C., von Stechow, A. (eds.) Meaning, Use, and Interpretation of Lan-
guage, pp. 361–383. Walter de Gruyter, Berlin (1983)

55. Peachey, R.: On switch-reference and the internally-headed relative clause con-
struction in Washo (2006). ms. University of Chicago

56. Percus, O.: Antipresuppositions. In: Ueyama, A. (ed.) Theoretical and empirical
studies of reference and anaphora: toward the establishment of generative grammar
as an empirical science. Japan Society for the promotion of science (2006)

57. Portner, P.: The semantic variability of gerunds. University of Massachusetts Occa-
sional Papers in Linguistics, vol. 12 (1986)

58. Portner, P.H.: Gerunds and types of events. In: proceedings of 1st Semantics and
Linguistic Theory (SALT 1) (1991)

59. Portner, P.H.: Situation theory and the semantics of propositional expressions.
Ph.D. dissertation, University of Massachusetts (1992)

60. Singh, U.N.: Bole: an unresolved problem in Bengali syntax. Indian Linguist. 41,
188–195 (1980)

61. Stalnaker, R.: Common ground. Linguist. Philos. 25(5), 701–721 (2002)
62. Winter, Y.: On Partee’s “noun phrase interpretation and type-shifting principles”.

In: McNally, L., Szabó, Z.G. (eds.) A Reader’s Guide to Classic Papers in Formal
Semantics. Studies in Linguistics and Philosophy, vol. 100, pp. 367–385. Springer,
Cham (2022). https://doi.org/10.1007/978-3-030-85308-2_19

https://doi.org/10.1007/978-3-030-85308-2_19

Two-Layered Logics for Paraconsistent
Probabilities

Marta B́ılková1 , Sabine Frittella2 , Daniil Kozhemiachenko2(B) ,
and Ondrej Majer3

1 Institute of Computer Science, The Czech Academy of Sciences, Prague, Czechia
bilkova@cs.cas.cz

2 INSA Centre Val de Loire, Univ. Orléans, LIFO EA 4022, Blois, France
{sabine.frittella,daniil.kozhemiachenko}@insa-cvl.fr

3 The Czech Academy of Sciences, Institute of Philosophy, Prague, Czechia
majer@flu.cas.cz

Abstract. We discuss two-layered logics formalising reasoning with
paraconsistent probabilities that combine the �Lukasiewicz [0, 1]-valued
logic with Baaz � operator and the Belnap–Dunn logic. The first logic

Pr�L
2

� (introduced in [7]) formalises a ‘two-valued’ approach where each
event φ has independent positive and negative measures that stand for,
respectively, the likelihoods of φ and ¬φ. The second logic 4Pr�L� that
we introduce here corresponds to ‘four-valued’ probabilities. There, φ
is equipped with four measures standing for pure belief, pure disbelief,
conflict and uncertainty of an agent in φ.

We construct faithful embeddings of 4Pr�L� and Pr�L
2

� into one another

and axiomatise 4Pr�L� using a Hilbert-style calculus. We also establish
the decidability of both logics and provide complexity evaluations for
them using an expansion of the constraint tableaux calculus for �L.

Keywords: two-layered logics · �Lukasiewicz logic · non-standard
probabilities · paraconsistent logics · constraint tableaux

1 Introduction

Classical probability theory studies probability measures: maps from a proba-
bility space to [0, 1] that satisfy the (finite or countable) additivity1 condition:

μ

(⋃
i∈I

Ei

)
=

∑
i∈I

μ(Ei) (∀i, j ∈ I : i �= j ⇒ Ei ∩ Ej = ∅)

1 In this paper, when dealing with the classical probability measures we will assume
that they are finitely additive.

The research of Marta B́ılková was supported by the grant 22-01137S of the Czech
Science Foundation. The research of Sabine Frittella and Daniil Kozhemiachenko was
funded by the grant ANR JCJC 2019, project PRELAP (ANR-19-CE48-0006). This
research is part of the MOSAIC project financed by the European Union’s Marie
Sk�lodowska-Curie grant No. 101007627.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
H. H. Hansen et al. (Eds.): WoLLIC 2023, LNCS 13923, pp. 101–117, 2023.
https://doi.org/10.1007/978-3-031-39784-4_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-39784-4_7&domain=pdf
http://orcid.org/0000-0002-3490-2083
http://orcid.org/0000-0003-4736-8614
http://orcid.org/0000-0002-1533-8034
http://orcid.org/0000-0002-7243-1622
https://doi.org/10.1007/978-3-031-39784-4_7

102 M. B́ılková et al.

Above, the disjointness of Ei and Ej can be construed as their incompatibility.
Most importantly, if a propositional formula φ is associated with an event (and
interpreted as a statement about it), then φ and ¬φ are incompatible and φ∨¬φ
exhausts the entire sample space.

Paraconsistent probability theory, on the other hand, assumes that the prob-
ability measure of an event represents not the likelihood of it happening but an
agent’s certainty therein which they infer from the information given by the
sources. As a single source can give incomplete or contradictory information, it
is reasonable to assume that a ‘contradictory’ event φ ∧ ¬φ can have a positive
probability and that φ ∨ ¬φ does not necessarily have probability 1.

Thus, a logic describing events should allow them to be both true and false
(if the source gives contradictory information) or neither true nor false (when
the source does not give information). Formally, this means that ¬ does not
correspond to the complement in the sample space.

Paraconsistent Probabilities in BD. The simplest logic to represent reasoning
about information provided by sources is the Belnap–Dunn logic [3,4,15]. Orig-
inally, BD was presented as a four-valued propositional logic in the {¬,∧,∨}
language. The values represent the different accounts a source can give regard-
ing a statement φ:

– T stands for ‘the source only says that φ is true’;
– F stands for ‘the source only says that φ is false’;
– B stands for ‘the source says both that φ is false and that φ is true’;
– N stands for ‘the source does not say that φ is false nor that it is true’.

The interpretation of the truth values allows for a reformulation of BD semantics
in terms of two classical but independent valuations. Namely,

is true when is false when
¬φ φ is false φ is true

φ1 ∧ φ2 φ1 and φ2 are true φ1 is false or φ2 is false
φ1 ∨ φ2 φ1 is true or φ2 is true φ1 and φ2 are false

It is easy to see that there are no universally true nor universally false for-
mulas in BD. Thus, BD satisfies the desiderata outlined above.

The original interpretation of the Belnapian truth values is given in terms
of the information one has. However, the information is assumed to be crisp.
Probabilities over BD were introduced to formalise situations where one has
access to probabilistic information. For instance, a first source could tell that
p is true with probability 0.4 and a second that p is false with probability 0.7.
If one follows BD and treats positive and negative evidence independently, one
needs a non-classical notion of probabilities to represent this information.

The first representation of paraconsistent probabilities in terms of BD was
given in [16], however, no axiomatisation was provided. Dunn proposes to divide
the sample space into four exhaustive and mutually exclusive parts depending on
the Belnapian value of φ. An alternative approach was proposed in [26]. There,

Paraconsistent Non-standard Modalities 103

the authors propose two equivalent interpretations based on the two formulations
of semantics. The first option is to give φ two independent probability measures:
the one determining the likelihood of φ to be true and the other the likelihood of
φ to be false. The second option follows Dunn and also divides the sample space
according to whether φ has value T, B, N, or F in a given state. Note that in
both cases, the probabilities are interpreted subjectively.

The main difference between these two approaches is that in [16], the prob-
ability of φ ∧ φ′ is entirely determined by those of φ and φ′ which makes it
compositional. On the other hand, the paraconsistent probabilities proposed
in [26] are not compositional w.r.t. conjunction. In this paper, we choose the
latter approach since it can be argued [14] that belief is not compositional.

A similar approach to paraconsistent probabilities can be found in, e.g. [9,29].
There, probabilities are defined over an extension of BD with classicality and
non-classicality operators. It is worth mentioning that the proposed axioms of
probability are very close to those from [26]: e.g., both allow measures p s.t.
p(φ)+p(¬φ) < 1 (if the information regarding φ is incomplete) or p(φ)+p(¬φ) >
1 (when the information is contradictory).

Two-Layered Logics for Uncertainty. Reasoning about uncertainty can be for-
malised via modal logics where the modality is interpreted as a measure of an
event. The concrete semantics of the modality can be defined in two ways. First,
using a modal language with Kripke semantics where the measure is defined
on the set of states as done in, e.g., [12,13,19] for qualitative probabilities and
in [11] for the quantitative ones. Second, employing a two-layered formalism
(cf. [2,17,18], and [6,7] for examples). There, the logic is split into two levels:
the inner layer describes events, and the outer layer describes the reasoning with
the measure defined on events. The measure is a non-nesting modality M, and the
outer-layer formulas are built from ‘modal atoms’ of the form Mφ with φ being
an inner-layer formula. The outer-layer formulas are then equipped with the
semantics of a fuzzy logic that permits necessary operations (e.g., �Lukasiewicz
for the quantitative reasoning and Gödel for the qualitative).

In this work, we choose the two-layered approach. First, it is more modular
than the usual Kripke semantics: as long as the logic of the event description
is chosen, we can define different measures on top of it using different upper-
layer logics. Second, the completeness proof is very simple since one only needs to
translate the axioms of the given measure into the outer-layer logic. Finally, even
though, the traditional Kripke semantics is more expressive than two-layered
logics, this expressivity is not really necessary in many contexts. Indeed, people
rarely say something like ‘it is probable that it is probable that φ’. Moreover, it
is considerably more difficult to motivate the assignment of truth values in the
nesting case, in particular, when one and the same measure is applied both to
a propositional and modalised formula as in, e.g., M(p ∧ Mq).

We will also be dealing with the formalisation of the quantitative probabilis-
tic reasoning. Formally, this means that we assume that the agents can assign
numerical values to their certainty in a given proposition or say something like ‘I

104 M. B́ılková et al.

am twice as certain that it is going to rain than that it is going to snow’. Thus,
we need a logic that can express the paraconsistent counterparts of the additivity
condition as well as basic arithmetic operations. We choose the �Lukasiewicz logic
(�L) for the outer layer since it can define (truncated) addition and subtraction
on [0, 1].

Plan of the Paper. Our paper continues the project proposed in [8] and continued
in [7] and [6]. Here, we set to provide a logic that formalises the reasoning with
four-valued probabilities as presented in [26]. The rest of the text is organised as
follows. In Sect. 2, we recall two approaches to probabilities over BD from [26].
In Sect. 3, we provide the semantics of our two-layered logics and in Sect. 4,
we axiomatise them using Hilbert-style calculi. In Sect. 5, we prove that all our
logics are decidable and establish their complexity evaluations. Finally, we wrap
up our results in Sect. 6.

2 Two Approaches to Paraconsistent Probabilities

We begin with defining the semantics of BD on sets of states. The language
of BD is given by the following grammar (with Prop being a countable set of
propositional variables).

LBD 	 φ := p ∈ Prop | ¬φ | (φ ∧ φ) | (φ ∨ φ)

Convention 1. In what follows, we will write Prop(φ) to denote the set of vari-
ables occurring in φ and Lit(φ) to denote the set of literals (i.e., variables or
their negations) occurring in φ. Moreover, we use Sf(φ) to stand for the set of
all subformulas of φ.

We are also going to use two kinds of formulas: the single- and the two-
layered ones. To make the differentiation between them simpler, we use Greek
letters from the end of the alphabet (φ, χ, ψ, etc.) to designate the first kind and
the letters from the beginning of the alphabet (α, β, γ, . . .) for the second kind.

Furthermore, we use v (with indices) to stand for the valuations of single-
layered formulas and e (with indices) for the two-layered formulas.

Definition 1 (Set semantics of BD). Let φ, φ′ ∈ LBD, W �= ∅, and v+, v− :
Prop → 2W . For a model M = 〈W, v+, v−〉, we define notions of w �+ φ and
w �− φ for w ∈ W as follows.

w �+ p iff w ∈ v+(p) w �− p iff w ∈ v−(p)

w �+ ¬φ iff w �− φ w �− ¬φ iff w �+ φ

w �+ φ ∧ φ′ iff w �+ φ and w �+ φ′ w �− φ ∧ φ′ iff w �− φ or w �− φ′

w �+ φ ∨ φ′ iff w �+ φ or w �+ φ′ w �− φ ∨ φ′ iff w �− φ and w �− φ′

We denote the positive and negative extensions of a formula as follows:

|φ|+ := {w ∈ W | w �+ φ} |φ|− := {w ∈ W | w �− φ}.

Paraconsistent Non-standard Modalities 105

We say that a sequent φ χ is valid on M = 〈W, v+, v−〉 (denoted, M |= [φ χ])
iff |φ|+ ⊆ |χ|+ and |χ|− ⊆ |φ|−. A sequent φ χ is BD-valid (φ |=BD χ) iff it is
valid on every model. In this case, we will say that φ entails χ.

Now, we can use the above semantics to define probabilities on the models.
We adapt the definitions from [26].

Definition 2 (BD models with ±-probabilities). A BD model with a ±-
probability is a tuple Mμ = 〈M, μ〉 with M being a BD model and μ : 2W → [0, 1]
satisfying:

mon: if X ⊆ Y , then μ(X) ≤ μ(Y);
neg: μ(|φ|−) = μ(|¬φ|+);
ex: μ(|φ ∨ χ|+) = μ(|φ|+) + μ(|χ|+) − μ(|φ ∧ χ|+).

To facilitate the presentation of the four-valued probabilities defined over BD
models, we introduce additional extensions of φ defined via |φ|+ and |φ|−.

Convention 2. Let M = 〈W, v+, v−〉 be a BD model, φ ∈ LBD. We set

|φ|b =|φ|+\|φ|− |φ|d =|φ|−\|φ|+

|φ|c =|φ|+ ∩ |φ|− |φ|u =W\(|φ|+ ∪ |φ|−)

We call these extensions, respectively, pure belief, pure disbelief, conflict, and
uncertainty in φ, following [26].

Definition 3 (BD models with 4-probabilities). A BD model with a 4-
probability is a tuple M4 = 〈M, μ4〉 with M being a BD model and μ4 : 2W →
[0, 1] satisfying:

part: μ4(|φ|b) + μ4(|φ|d) + μ4(|φ|u) + μ4(|φ|c) = 1;
neg: μ4(|¬φ|b) = μ4(|φ|d), μ4(|¬φ|c) = μ4(|φ|c);
contr: μ4(|φ ∧ ¬φ|b) = 0, μ4(|φ ∧ ¬φ|c) = μ4(|φ|c);
BCmon: if M |= [φ χ], then μ4(|φ|b) + μ4(|φ|c) ≤ μ4(|χ|b) + μ4(|χ|c);
BCex: μ4(|φ|b) + μ4(|φ|c) + μ4(|ψ|b) + μ4(|ψ|c) = μ4(|φ ∧ ψ|b) + μ4(|φ ∧ ψ|c) +

μ4(|φ ∨ ψ|b) + μ4(|φ ∨ ψ|c).

Convention 3. We will further utilise the following naming convention:

– we use the term ‘±-probability’ to stand for μ from Definition 2;
– we call μ4 from Defintion 3 a ‘4-probability’ or a ‘four-valued probability’.

Recall that ±-probabilities are referred to as ‘non-standard’ in [26] and [7]. As
this term is too broad (four-valued probabilities are not ‘standard’ either), we use
a different designation.

Let us quickly discuss the measures defined above. First, observe that μ(|φ|+)
and μ(|φ|−) are independent from one another. Thus, μ gives two measures to
each φ, as desired. Second, recall [26, Theorems 2–3] that every 4-probability on
a BD model induces a ±-probability and vice versa. In the following sections,
we will define two-layered logics for BD models with ±- and 4-probabilities and
show that they can be faithfully embedded into each other.

106 M. B́ılková et al.

Remark 1. Note, that for every BD model with a ±-probability 〈W, v+, v−, μ〉
(resp., BD model with 4-probability 〈W, v+, v−, μ4〉), there exist a BD model
〈W ′, v′+, v′−, π〉 with a classical probability measure π s.t. π(|φ|+) = μ(|φ|+)
(resp., π(|φ|x) = μ4(|φ|x) for x ∈ {b, d, c, u}) [26, Theorems 4–5]. Thus, we can
further assume w.l.o.g. that μ and μ4 are classical probability measures on W .

3 Logics for Paraconsistent Probabilities

In this section, we provide logics that are (weakly) complete w.r.t. BD mod-
els with ±- and 4-probabilities. Since conditions on measures contain arith-
metic operations on [0, 1], we choose an expansion of �Lukasiewicz logic, namely,
�Lukasiewicz logic with � (�L�), for the outer layer. Furthermore, ±-probabilities
work with both positive and negative extensions of formulas, whence it seems
reasonable to use �L2 — a paraconsistent expansion of �L (cf. [5,8] for details) with
two valuations — v1 (support of truth) and v2 (support of falsity) — on [0, 1].
This was done in [7] — the resulting logic Pr�L

2

� was proven to be complete w.r.t.
BD models with ±-probabilities.

We begin by recalling the language and standard semantics of �Lukasiewicz
logic with � and its paraconsistent expansion �L2

�.

Definition 4. The standard �L�-algebra is a tuple 〈[0, 1],∼�L,��L,∧�L,∨�L,→�L,
��L,⊕�L,��L〉 with the operations are defined as follows.

∼�La := 1 − a ��La :=

{
1 if a = 1
0 otherwise

a∧�Lb := min(a, b) a∨�Lb := max(a, b) a→�L b := min(1, 1−a+b)
a��Lb := max(0, a+b−1) a⊕�Lb := min(1, a+b) a��Lb := max(0, a−b)

Definition 5 (�Lukasiewicz logic with �). The language of �L� is given via
the following grammar

L�L 	φ := p∈Prop | ∼φ | �φ | (φ∧φ) | (φ∨φ) | (φ → φ) | (φ�φ) | (φ⊕φ) | (φ�φ)

We will also write φ ↔ χ as a shorthand for (φ → χ) � (χ → φ).
A valuation is a map v :Prop→ [0, 1] that is extended to the complex formulas

as expected: v(φ◦χ)=v(φ)◦�Lv(χ).
φ is �L�-valid iff v(φ)=1 for every v. Γ entails χ (denoted Γ |=�L� χ) iff for

every v s.t. v(φ) = 1 for all φ ∈ Γ , it holds that v(χ) = 1 as well.

Remark 2. Note that �, ∼, and → can be used to define all other connectives
as follows.

φ ∨ χ := (φ → χ) → χ φ ∧ χ := ∼(∼φ ∨ ∼χ) φ ⊕ χ := ∼φ → χ

φ � χ := ∼(φ → ∼χ) φ � χ := φ � ∼χ

Paraconsistent Non-standard Modalities 107

To facilitate the presentation, we recall the Hilbert calculus for �L�. It can be
obtained by adding � axioms and rules from [1], [24, Defenition 2.4.5], or [10,
Chapter I,2.2.1] to the Hilbert-style calculus for �L from [27, §6.2].

Definition 6 (H�L� — the Hilbert-style calculus for �L�). The calculus
contains the following axioms and rules.

w: φ → (χ → φ).
sf : (φ → χ) → ((χ → ψ) → (φ → ψ)).
waj: ((φ → χ) → χ) → ((χ → φ) → φ).
co: (∼χ → ∼φ) → (φ → χ).

MP:
φ φ → χ

χ
.

�1: �φ ∨ ∼�φ.
�2: �φ → φ.
�3: �φ → ��φ.
�4: �(φ ∨ χ) → �φ ∨ �χ.
�5: �(φ → χ) → �φ → �χ.

�nec:
φ

�φ
.

�Lukasiewicz logic is known to lack compactness [24, Remark 3.2.14], whence,
H�L� is only weakly complete.

Proposition 1 (Weak completeness of H�L�). Let Γ ⊆ L�L be finite. Then

Γ |=�L� φ iff Γ H�L� φ

Definition 7 (�L2
�). The language is constructed using the following grammar.

L�L2
�

	 φ := p ∈ Prop | ¬φ | ∼φ | �φ | (φ → φ)

The semantics is given by two valuations v1 (support of truth) and v2 (support
of falsity) v1, v2 : Prop → [0, 1] that are extended as follows.

v1(¬φ) = v2(φ) v2(¬φ) = v1(φ)
v1(∼φ) = ∼�Lv1(φ) v2(∼φ) = ∼�Lv2(φ)
v1(�φ) = ��Lv1(φ) v2(�φ) = ∼�L��L∼�Lv2(φ)

v1(φ → χ) = v1(φ) →�L v1(χ) v2(φ → χ) = v2(χ) ��L v2(φ)

We say that φ is �L2
�-valid iff for every v1 and v2, it holds that v1(φ) = 1 and

v2(φ) = 0.

Remark 3. Again, the remaining connectives can be defined as in Remark 2. Fur-
thermore, when there is no risk of confusion, we write v(φ) = (x, y) to designate
that v1(φ) = x and v2(φ) = y.

We are now ready to present the two-layered logics. We begin withPr�L
2

� from [7].

108 M. B́ılková et al.

Definition 8 (Pr�L
2

� : language and semantics). The language of Pr�L
2

� is given
by the following grammar

L
Pr�L

2
�

	 α := Prφ | ∼α | ¬α | �α | (α → α) (φ ∈ LBD)

A Pr�L
2

� model is a tuple M = 〈M, μ, e1, e2〉 with 〈M, μ〉 being a BD model with ±-
probability and e1, e2 : L

Pr�L
2

�
→ [0, 1] s.t. e1(Prφ) = μ(|φ|+), e2(Prφ) = μ(|φ|−),

and the values of complex formulas being computed following Definition 7. We
say that α is Pr�L

2

� valid iff e(α) = (1, 0) in every model.

Definition 9 (4Pr�L� : language and semantics). The language of 4Pr�L� is
constructed by the following grammar:

L
4Pr�L� 	 α := Blφ | Dbφ | Cfφ | Ucφ | ∼α | �α | (α → α) (φ ∈ LBD)

A 4Pr�L� model is a tuple M = 〈M, μ4, e〉 with 〈M, μ4〉 being a BD model with 4-
probability s.t. e(Blφ)=μ4(|φ|b), e(Dbφ)=μ4(|φ|d), e(Cfφ)=μ4(|φ|c), e(Ucφ)=
μ4(|φ|u), and the values of complex formulas computed via Definition 5. We say
that α is 4Pr�L� valid iff e(α) = 1 in every model. A set of formulas Γ entails α
(Γ |=

4Pr�L� α) iff there is no M s.t. e(γ) = 1 for every γ ∈ Γ but e(α) �= 1.

Remark 4. Note that we are going to prove only the weak completeness. In
addition, BD is a tabular logic, whence there exist only finitely many pairwise
non-equivalent formulas over a finite set of variables. Thus, we do not need to
explicitly assume that the underlying BD models are finite.

Convention 4. We will further call formulas of the form Xφ (φ ∈ LBD, X ∈
{Pr,Bl,Db,Cf,Uc}) modal atoms. We interpret the value of a modal atom as
a degree of certainty that the agent has in φ. For example, e(Prp) = (34 , 1

2)
means that the agent’s certainty in p is 3

4 and in ¬p is 1
2 . Similarly, e(Cfq) = 1

3
is construed as ‘the agent is conflicted w.r.t. q to the degree 1

3 ’.

To make the semantics clearer, we provide the following example.

Example 1. Consider the following BD model.

w0 : p±, ��q w1 : p−, q−

And let μ = μ4 be defined as follows: μ({w0}) = 2
3 , μ({w1}) = 1

3 , μ(W) = 1,
μ(∅) = 0. It is easy to check that μ satisfies the conditions of Definitions 2 and 3.
Now let e be the �L2

� valuation and e4 the �L� valuation induced by μ and μ4,
respectively.

Paraconsistent Non-standard Modalities 109

Consider two BD formulas: p∨q and p. We have e(Pr(p∨q)) =
(
2
3 , 1

3

)
and

e(Prp) =
(
2
3 , 1

)
. In 4Pr�L� , we have e4(Bl(p ∨ q)) = 2

3 , e4(Db(p ∨ q)) = 1
3 ,

e4(Cfp) = 2
3 , e4(Cf(p ∨ q)), e4(Uc(p ∨ q)) = 0, e4(Blp), e(Ucp) = 0, e4(Cfp) = 2

3 ,
and e(Dbp) = 1

3 .

The following property of Pr�L
2

� is going to be useful further in the section.

Lemma 1. Let α ∈ L
Pr�L

2
�

. Then, α is Pr�L
2

� valid iff e1(α) = 1 in every Pr�L
2

�
model.

Proof. Let M = 〈W, v+, v−, μ, e1, e2〉 be a Pr�L
2

� model s.t. e2(α) �= 0. We con-
struct a model M

∗ = 〈W, (v∗)+, (v∗)−, μ, e∗
1, e

∗
2〉 where e∗

1(α) �= 1. To do this, we
define new BD valuations (v∗)+ and (v∗)− on W as follows.

w ∈ v+(p), w /∈ v−(p) then w ∈ (v∗)+(p), w /∈ (v∗)−(p)

w ∈ v+(p), v−(p) then w /∈ (v∗)+(p), (v∗)−(p)

w /∈ v+(p), v−(p) then w ∈ (v∗)+(p), (v∗)−(p)

w /∈ v+(p), w ∈ v−(p) then w /∈ (v∗)+(p), w ∈ (v∗)−(p)

It can be easily checked by induction on φ ∈ LBD that

|φ|+
M

= W\|φ|−
M∗ |φ|−

M
= W\|φ|+

M∗

Now, since we can w.l.o.g. assume that μ is a (classical) probability measure
on W (recall Remark 1), we have that

e∗(Prφ) = (1 − μ(|φ|−), 1 − μ(|φ|+)) = (1 − e2(Prφ), 1 − e1(Prφ))

Observe that if e(α) = (x, y), then e(¬∼α) = (1 − y, 1 − x). Furthermore, it is
straightforward to verify that the following formulas are valid.

¬∼¬α ↔ ¬¬∼α ¬∼∼α ↔ ∼¬∼α

¬∼�α ↔ �¬∼α ¬∼(α→α′) ↔ ¬∼α→¬∼α′

Hence, e∗(α) = (1 − e2(α), 1 − e1(α)) for every α ∈ L
Pr�L

2
�

. The result follows.

At first glance, 4Pr�L� gives a more fine-grained view on a BD model than
Pr�L

2

� since it can evaluate each extension of a given φ ∈ LBD, while Pr�L
2

� always
considers |φ|+ and |φ|− together. In the remainder of the section, we show that
the two logics have, in fact, the same expressivity.

One can see from Definition 8 that ¬Prφ ↔ Pr¬φ. Furthermore, �L2 admits
¬ negation normal forms and is a conservative extension of �L [5,8]. Thus, it is
possible to push all ¬’s occurring in α ∈ L

Pr�L
2

�
to modal atoms. We will use this

fact to establish the embeddings of Pr�L
2

� and 4Pr�L� into one another.

110 M. B́ılková et al.

Definition 10. Let α ∈ L
Pr�L

2
�

. α¬ is produced from α by successively applying
the following transformations.

¬Prφ � Pr¬φ ¬¬α � α ¬∼α � ∼¬α

¬(α → α′) � ∼(¬α′ → ¬α) ¬�α � ∼�∼¬α

It is easy to check that e(α) = e(α¬) in every Pr�L
2

� model.

Definition 11. Let α ∈ L
Pr�L

2
�

be ¬-free, we define α4 ∈ L
4Pr�L� as follows.

(Prφ)4 = Blφ ⊕ Cfφ

(♥α)4 = ♥α4 (♥ ∈ {�,∼})

(α → α′)4 = α4 → α′4

Let β ∈ L4Pr�L� . We define β± as follows.

(Blφ)± = Prφ � Pr(φ ∧ ¬φ)

(Cfφ)± = Pr(φ ∧ ¬φ)

(Ucφ)± = ∼Pr(φ ∨ ¬φ)

(Dbφ)± = Pr¬φ � Pr(φ ∧ ¬φ)

(♥β)± = ♥β± (♥ ∈ {�,∼})

(β → β′)± = β± → β′±

Theorem 1. α ∈ L
Pr�L

2
�

is Pr�L
2

� valid iff (α¬)4 is 4Pr�L� valid.

Proof. Let w.l.o.g. M = 〈W, v+, v−, μ, e1, e2〉 be a BD model with ±-probability
where μ is a classical probability measure and let e(α) = (x, y). We show that
in the BD model M4 = 〈W, v+, v−, μ, e1〉 with four-probability μ, e1((α¬)4) = x.
This is sufficient to prove the result. Indeed, by Lemma 1, it suffices to verify
that e1(α) = 1 for every e1, to establish the validity of α ∈ L

Pr�L
2

�
.

We proceed by induction on α¬ (recall that α ↔ α¬ is Pr�L
2

� valid). If α = Prφ,
then e1(Prφ) = μ(|φ|+) = μ(|φ|b ∪ |φ|c). But |φ|b and |φ|c are disjoint, whence
μ(|φ|b ∪ |φ|c) = μ(|φ|b) + μ(|φ|c), and since μ(|φ|b) + μ(|φ|c) ≤ 1, we have that
e1(Blφ ⊕ Cfφ) = μ(|φ|b) + μ(|φ|c) = e1(Prφ), as required.

The induction steps are straightforward since the semantic conditions of sup-
port of truth in �L2

� coincide with the semantics of �L� (cf. Definitions 7 and 5).

Theorem 2. β ∈ L
4Pr�L� is L

4Pr�L� valid iff β± is Pr�L
2

� valid.

Paraconsistent Non-standard Modalities 111

Proof. Assume w.l.o.g. that M = 〈W, v+, v−, μ4, e〉 is a BD model with a 4-
probability where μ4 is a classical probability measure and e(β) = x. We define
a BD model with ±-probability M

± = 〈W, v+, v−, μ4, e1, e2〉 and show that
e1(β±) = x. Again, it is sufficient for us by Lemma 1.

We proceed by induction on β. If β = Blφ, then e(Blφ) = μ4(|φ|b). Now
observe that μ4(|φ|+) = μ(|φ|b ∪|φ|c) = μ4(|φ|b)+μ4(|φ|c) since |φ|b and |φ|c are
disjoint. But μ4(|φ|+)=e1(Prφ) and μ4(|φ|c)=μ4(|φ∧¬φ|+) since |φ∧¬φ|+= |φ|c.
Thus, μ4(|φ|b) = e1(Prφ � Pr(φ ∧ ¬φ)) as required.

Other basis cases of Cfφ, Ucφ, and Dbφ can be tackled in a similar man-
ner. The induction steps are straightforward since the support of truth in �L2

�
coincides with semantical conditions in �L�.

Remark 5. Theorem 1 and 2 mean, in a sense, that Pr�L
2

� and 4Pr�L� can be treated
as syntactic variants of one another. Conceptually, however, they are somewhat
different. Namely, Pr�L

2

� assigns two independent measures to each formula φ

corresponding to the likelihoods of φ itself and ¬φ. On the other hand, 4Pr�L�

treats the extensions φ as a separation of the underlying sample set into four
parts whose measures must add up to 1.

4 Hilbert-Style Axiomatisation of 4Pr�L�

Let us proceed to the axiomatisation of 4Pr�L� . Since its outer layer expands �L�,
we will need to encode the conditions on μ4 therein. Furthermore, since �L (and
hence, �L�) is not compact [24, Remark 3.2.14], our axiomatisation can only be
weakly complete (i.e., complete w.r.t. finite theories).

The axiomatisation will consist of two types of axioms: those that axioma-
tise �L� and modal axioms that encode the conditions from Definition 3. For the
sake of brevity, we will compress the axiomatisation of �L� into one axiom that
allows us to use �L� theorems2 without proof.

Definition 12 (H4Pr�L� — Hilbert-style calculus for 4Pr�L�). The calculus
H4Pr�L� consists of the following axioms and rules.

�L�: �L� valid formulas instantiated in L
4Pr�L� .

equiv: Xφ ↔ Xχ for every φ, χ ∈ LBD s.t. φ � χ is BD-valid and X ∈
{Bl,Db,Cf,Uc}.

contr: ∼Bl(φ ∧ ¬φ); Cfφ ↔ Cf(φ ∧ ¬φ).
neg: Bl¬φ ↔ Dbφ; Cf¬φ ↔ Cfφ.
mon: (Blφ ⊕ Cfφ) → (Blχ ⊕ Cfχ) for every φ, χ ∈ LBD s.t. φ χ is BD-valid.
part1: Blφ ⊕ Dbφ ⊕ Cfφ ⊕ Ucφ.
part2: ((X1φ ⊕ X2φ ⊕ X3φ ⊕ X4φ) � X4φ) ↔ (X1φ ⊕ X2φ ⊕ X3φ) with Xi �= Xj,

Xi ∈ {Bl,Db,Cf,Uc}.
ex: (Bl(φ∨χ)⊕Cf(φ∨χ)) ↔ ((Blφ⊕Cfφ)�(Bl(φ∧χ)⊕Cf(φ∧χ))⊕(Blχ⊕Cfχ)).

2 A Hilbert-style calculus for �L can be found in, e.g. [27], and the axioms for � in [1].
A concise presentation of a Hilbert-style calculus for �L� is also given in [7].

112 M. B́ılková et al.

MP:
α α → α′

α′ .

�nec:
H4Pr�L� α

H4Pr�L� �α
.

The axioms above are simple translations of properties from Definition 3. We
split part in two axioms to ensure that the values of Blφ, Dbφ, Cfφ, and Ucφ
sum up exactly to 1.

Theorem 3. Let Ξ ⊆ L
4Pr�L� be finite. Then Ξ |=

4Pr�L� α iff Ξ H4Pr�L� α.

Proof. Soundness can be established by the routine check of the axioms’ valid-
ity. Thus, we prove completeness. We reason by contraposition. Assume that
Ξ �H4Pr�L� α. Now, observe that H4Pr�L� proofs are, actually, H�L� proofs with
additional probabilistic axioms. Let Ξ∗ stand for Ξ extended with probabilis-
tic axioms built over all pairwise non-equivalent LBD formulas constructed from
Prop[Ξ ∪{α}]. Clearly, Ξ∗

�H4Pr�L� α either. Moreover, Ξ∗ is finite as well since
BD is tabular (and whence, there exist only finitely many pairwise non-equivalent
LBD formulas over a finite set of variables). Now, by the weak completeness of
H�L� (Proposition 1), there exists an �L� valuation e on [0, 1] s.t. e[Ξ∗] = 1 and
e(α) �= 1.

It remains to construct a 4Pr�L� model M falsifying Ξ∗ |=4Pr�L� α using e. We
proceed as follows. First, we set W = 2Lit[Ξ∗∪{α}], and for every w ∈ W define
w ∈ v+(p) iff p ∈ w and w ∈ v−(p) iff ¬p ∈ w. We extend the valuations to φ ∈
LBD in the usual manner. Then, for Xφ ∈ Sf[Ξ∗ ∪ {α}], we set μ4(|φ|x) = e(Xφ)
according to modality X.

It remains to extend μ4 to the whole 2W . Observe, however, that any map
from 2W to [0, 1] that extends μ4 is, in fact, a 4-probability. Indeed, all require-
ments from Definition 3 concern only the extensions of formulas. But the model
is finite, BD is tabular, and Ξ∗ contains all the necessary instances of probabilis-
tic axioms and e[Ξ∗] = 1, whence all constraints on the formulas are satisfied.

Remark 6. Observe that we could use a classical probability measure in the proof
of Theorem 3 because of [26, Theorem 5]. This, however, would require us to
show that the extensions of formulas form a subalgebra of 2W . On the other
hand, it is simpler to use 4-probabilities instead of classical probabilities since
we can immediately extend them to the full powerset from the extensions of
formulas by Definition 3.

5 Decidability and Complexity

In the completeness proof, we reduced H4Pr�L� proofs to �L� proofs. We know
that validity and finitary entailment of �L� are coNP-complete (since �L is coNP-
complete and � has truth-functional semantics).

Likewise, Pr�L
2

� proofs are also reducible to �L2 proofs (cf. [7, Theorem 4.24])
from substitution instances of axioms Prφ → Prχ (for φ |=BD χ), ¬Prφ ↔ Pr¬φ,

Paraconsistent Non-standard Modalities 113

and Pr(φ ∨ χ) ↔ (Prφ � Pr(φ ∧ χ)) ⊕ Prχ. Thus, it is clear that the validity and
satisfiability of 4Pr�L� and Pr�L

2

� are coNP-hard and NP-hard, respectively.

In this section, we provide a simple decision procedure for Pr�L
2

� and 4Pr�L� and
show that their satisfiability and validity are NP- and coNP-complete, respec-
tively. Namely, we adapt constraint tableaux for �L2 defined in [5] and expand
them with rules for �. We then adapt the NP-completeness proof FP(�L) from [25]
to establish our result.

Definition 13 (Constraint tableaux for �L2
� — T

(
�L2

�
)
). Branches contain

labelled formulas of the form φ �1 i, φ �2 i, φ �1 i, or φ �2 i, and numerical
constraints of the form i ≤ j with i, j ∈ [0, 1].

Each branch can be extended by an application of one of the rules below.

¬�1
¬φ �1 i

φ �2 i
¬�2

¬φ �2 i

φ �1 i
¬�1

¬φ �1 i

φ �2 i
¬�2

¬φ �2 i

φ �1 i

∼�1
∼φ �1 i

φ �1 1 − i
∼�2

∼φ �2 i

φ �2 1 − i
∼�1

∼φ �1 i

φ �1 1 − i
∼�2

∼φ �2 i

φ �2 1 − i

��1
�φ �1 i

i ≤ 0
∣∣∣∣φ �1 j
j ≥ 1

��1
�φ �1 i

i ≥ 1
∣∣∣∣φ �1 j
j < 1

��2
�φ �2 i

i ≥ 1
∣∣∣∣φ � j
j ≤ 0

��2
�φ �2 i

i ≤ 0
∣∣∣∣φ � j
j > 0

→�1
φ1 → φ2 �1 i

i ≥ 1

∣∣∣∣∣∣
φ1 �1 1 − i + j

φ2 �1 j
j ≤ i

→�2
φ1 → φ2 �2 i

φ1 �2 j
φ2 �2 i + j

→�1
φ1 → φ2 �1 i

φ1 �1 1 − i + j
φ2 �1 j

→�2
φ1 → φ2 �2 i

i ≤ 0

∣∣∣∣∣∣
φ1 �2 j

φ2 �2 i + j
j ≤ 1 − i

Let i’s be in [0, 1] and x’s be variables ranging over the real interval [0, 1]. We
define the translation τ from labelled formulas to linear inequalities as follows:

τ(φ�1 i) = xL
φ ≤ i; τ(φ�1 i) = xL

φ ≥ i; τ(φ�2 i) = xR
φ ≤ i; τ(φ�2 i) = xR

φ ≥ i

Let • ∈ {�1,�1} and ◦ ∈ {�2,�2}. A tableau branch

B = {φ1 ◦ i1, . . . , φm ◦ im, φ′
1 • j1, . . . , φ

′
n • jn, k1 ≤ l1, . . . , kq ≤ lq}

is closed if the system of inequalities

τ(φ1 ◦ i1), . . . , τ(φm ◦ im), τ(φ′
1 • j1), . . . , τ(φ′

n • jn), k1 ≤ l1, . . . , kq ≤ lq

does not have solutions. Otherwise, B is open. A tableau is closed if all its
branches are closed. φ has a T

(
�L2

�
)

proof if the tableau beginning with {φ �1

c, c < 1} is closed.

114 M. B́ılková et al.

Observe that the → and ∼ rules for �1 coincide with the analoguous rules in
the constraint tableaux for �L as given in [20,21,23]. Thus, we can use the calculus
both for 4Pr�L� and Pr�L

2

� . Note also that we need to build only one tableau for
L

Pr�L
2

�
formulas because of Lemma 1.

The next statement can be proved in the same manner as [5, Theorem 1].

Theorem 4 (Completeness of tableaux).

1. φ is �L� valid iff it has a T
(
�L2

�
)

proof.
2. φ is �L2

� valid iff it has a T
(
�L2

�
)

proof.

As we have already mentioned in the beginning of the section, the proof of
NP-completeness is an adaptation of a similar proof from [25]. This, in turn,
uses the reduction of �Lukasiewicz formulas to bounded mixed-integer problems
(bMIPs) as given in [20–22]. To make the paper self-contained, we state the
required definitions and results here.

Definition 14 (Mixed-integer problem). Let x = (x1, . . . , xk) ∈ R
k and

y = (y1, . . . , ym) ∈ Z
m be variables, A and B be integer matrices and h an

integer vector, and f(x,y) be a k + m-place linear function.

1. A general MIP is to find x and y s.t. f(x,y) = min{f(x,y) : Ax+By ≥ h}.
2. In a bounded MIP (bMIP), all solutions should belong to [0, 1].

Proposition 2. Bounded MIP is NP-complete.

Theorem 5. Satisfiability of Pr�L
2

� and 4Pr�L� is NP-complete.

Proof. Recall that Pr�L
2

� and 4Pr�L� can be linearly embedded into one another
(Theorems 1 and 2). Thus, it remains to provide a non-deterministic polynomial
algorithm for one of these logics. We choose Pr�L

2

� since it has only one modality.
Let α ∈ L

Pr�L
2

�
. We can w.l.o.g. assume that ¬ occurs only in modal atoms and

that in every modal atom Prφi, φi is in negation normal form. Define α∗ to be
the result of the substitution of every ¬p occurring in α with a new variable p∗. It
is easy to check that α is satisfiable iff α∗ is. We construct a satisfying valuation
for α∗.

First, we replace every modal atom Prφi with a fresh variable qφi
. Denote

the new formula (α∗)−. It is clear that the size of (α∗)− (|(α∗)−|) is only linearly
greater than |α|. We construct a tableau beginning with {(α∗)− �1 c, c ≥ 1}.
Every branch gives us an instance of a bMIP equivalent to the �L-satisfiability of
(α∗)−: (α∗)− is satisfiable iff at least one instance of a bMIP has a solution.

Now, write zi for the values of qφi
’s in (α∗)−. Our instance of a bMIP also

has additional variables xj ranging over [0, 1] as well as equalities k = 1 and
k′ = 0 obtained from entries k ≥ 1 and k′ ≤ 0. It is clear that both the number
of (in)equalities l1 and the number of variables l2 in the MIP are linear w.r.t.
|(α∗)−|. Denote this instance MIP(1).

Paraconsistent Non-standard Modalities 115

We need to show that zi’s are coherent as probabilities of φi’s (here, i ≤ n
indexes the modal atoms of (α∗)−). We introduce 2n variables uv indexed by
n-letter words over {0, 1} and denoting whether the variables of φi’s are true
under v+.3 We let ai,v = 1 when φi is true under v+ and ai,v = 0 otherwise.
Now add new equalities denoted with MIP(2 exp) to MIP(1), namely,

∑
v uv = 1

and
∑

v(ai,v ·uv) = zi. It is clear that the new MIP (MIP(1)∪MIP(2 exp)) has a
non-negative solution iff its corresponding branch is open. Furthermore, although
there are l2+2n+n variables in MIP(1)∪MIP(2 exp), it has no more than l1+n+1
(in)equalities. Thus by [18, Lemma 2.5], it has a non-negative solution with at
most l1 + n + 1 non-zero entries. We guess a list L of at most l1 + n + 1 words
v (its size is n · (l1 + n + 1)). We can now compute the values of ai,v’s for i ≤ n
and v ∈ L and obtain a new MIP which we denote MIP(2poly):

∑
v∈L uv = 1

and
∑

v∈L(ai,v · uv) = zi. It is clear that MIP(1) ∪ MIP(2poly) is of polynomial
size w.r.t. |α| and has a non-negative solution iff the corresponding branch of
the tableau is open. Thus, we can solve it in non-deterministic polynomial time
as required.

6 Conclusion

We presented logic 4Pr�L� formalising four-valued probabilities proposed in [26]
using a two-layered expansion of �Lukasiewicz logic with �. We established faith-
ful embeddings between 4Pr�L� and Pr�L

2

� , the logic of ±-probabilities [7]. More-
over, we constructed a sound and complete axiomatisation of 4Pr�L� and proved
its decidability using constraint tableaux for �L�.

Several questions remain open. In [7], we presented two-layered logics for
reasoning with belief and plausibility functions. These logics employ a ‘two-
valued’ interpretation of belief and plausibility (i.e., φ has two belief assignments:
for φ and for ¬φ). It would be instructive to axiomatise ‘four-valued’ belief and
plausibility functions and formalise reasoning with those via a two-layered logic.

Moreover, we have been considering logics whose inner layer lacks implica-
tion. It is, however, reasonable to assume that an agent can assign certainty
to conditional statements. Furthermore, there are expansions of BD with truth-
functional implications (cf. [28] for examples). A natural next step now is to
axiomatise paraconsistent probabilities defined over a logic with an implication.

References

1. Baaz, M.: Infinite-valued Gödel logics with 0-1-projections and relativizations. In:
Gödel’96: Logical Foundations of Mathematics, Computer Science and Physics–
Kurt Gödel’s Legacy, Brno, Czech Republic, August 1996, Proceedings, pp. 23–33.
Association for Symbolic Logic (1996)

3 Note that ¬ does not occur in (α∗)− and thus we care only about e1 and v+.
Furthermore, while n is the number of φi’s, we can add superfluous modal atoms or
variables to make it also the number of variables.

116 M. B́ılková et al.

2. Baldi, P., Cintula, P., Noguera, C.: Classical and fuzzy two-layered modal logics
for uncertainty: translations and proof-theory. Int. J. Comput. Intell. Syst. 13,
988–1001 (2020). https://doi.org/10.2991/ijcis.d.200703.001

3. Belnap, N.: A useful four-valued logic. In: Dunn, J.M., Epstein, G. (eds.) Modern
Uses of Multiple-Valued Logic, pp. 5–37. Springer, Netherlands (1977). https://
doi.org/10.1007/978-94-010-1161-7 2

4. Belnap, N.D.: How a computer should think. In: New Essays on Belnap-Dunn
Logic. SL, vol. 418, pp. 35–53. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-31136-0 4

5. B́ılková, M., Frittella, S., Kozhemiachenko, D.: Constraint tableaux for two-
dimensional fuzzy logics. In: Das, A., Negri, S. (eds.) TABLEAUX 2021. LNCS
(LNAI), vol. 12842, pp. 20–37. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-86059-2 2

6. B́ılková, M., Frittella, S., Kozhemiachenko, D., Majer, O.: Qualitative reasoning
in a two-layered framework. Int. J. Approximate Reason. 154, 84–108 (2023)

7. Bilkova, M., Frittella, S., Kozhemiachenko, D., Majer, O., Nazari, S.: Reason-
ing with belief functions over Belnap-Dunn logic. Ann. Pure Appl. Logic (2022).
https://doi.org/10.1016/j.apal.2023.103338

8. B́ılková, M., Frittella, S., Majer, O., Nazari, S.: Belief based on inconsistent infor-
mation. In: Martins, M., Sedlár, I. (eds.) Dynamic Logic. New Trends and Appli-
cations. Lecture Notes in Computer Science, vol. 12569, pp. 68–86. Springer Inter-
national Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-65840-3 5

9. Bueno-Soler, J., Carnielli, W.: Paraconsistent probabilities: consistency, contradic-
tions and Bayes’ theorem. Entropy 18(9), 325 (2016)

10. Běhounek, L., Cintula, P., Hájek, P.: Introduction to mathematical fuzzy logic. In:
Cintula, P., Hájek, P., Noguera, C. (eds.) Handbook of Mathematical Fuzzy Logic,
Studies in logic, vol. 37, pp. 1–102. College Publications (2011)

11. Dautović, Š, Doder, D., Ognjanović, Z.: An epistemic probabilistic logic with con-
ditional probabilities. In: Faber, W., Friedrich, G., Gebser, M., Morak, M. (eds.)
JELIA 2021. LNCS (LNAI), vol. 12678, pp. 279–293. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-75775-5 19

12. Delgrande, J., Renne, B.: The logic of qualitative probability. In: Twenty-Fourth
International Joint Conference on Artificial Intelligence (2015)

13. Delgrande, J., Renne, B., Sack, J.: The logic of qualitative probability. Artif. Intell.
275, 457–486 (2019)

14. Dubois, D.: On ignorance and contradiction considered as truth-values. Logic J.
IGPL 16(2), 195–216 (2008)

15. Dunn, J.M.: Intuitive semantics for first-degree entailments and ‘coupled trees’.
Philos. Stud. 29(3), 149–168 (1976)

16. Dunn, J.: Contradictory information: too much of a good thing. J. Philos. Logic
39, 425–452 (2010)

17. Fagin, R., Halpern, J.: Uncertainty, belief, and probability. Comput. Intell. 7(3),
160–173 (1991)

18. Fagin, R., Halpern, J., Megiddo, N.: A logic for reasoning about probabilities. Inf.
Comput. 87(1–2), 78–128 (1990)

19. Gärdenfors, P.: Qualitative probability as an intensional logic. J. Philos. Logic,
171–185 (1975)

20. Hähnle, R.: A new translation from deduction into integer programming. In: Cal-
met, J., Campbell, J.A. (eds.) AISMC 1992. LNCS, vol. 737, pp. 262–275. Springer,
Heidelberg (1993). https://doi.org/10.1007/3-540-57322-4 18

https://doi.org/10.2991/ijcis.d.200703.001
https://doi.org/10.1007/978-94-010-1161-7_2
https://doi.org/10.1007/978-94-010-1161-7_2
https://doi.org/10.1007/978-3-030-31136-0_4
https://doi.org/10.1007/978-3-030-31136-0_4
https://doi.org/10.1007/978-3-030-86059-2_2
https://doi.org/10.1007/978-3-030-86059-2_2
https://doi.org/10.1016/j.apal.2023.103338
https://doi.org/10.1007/978-3-030-65840-3_5
https://doi.org/10.1007/978-3-030-75775-5_19
https://doi.org/10.1007/3-540-57322-4_18

Paraconsistent Non-standard Modalities 117

21. Hähnle, R.: Many-valued logic and mixed integer programming. Ann. Math. Artif.
Intell. 12(3–4), 231–263 (1994)

22. Hähnle, R.: Tableaux for many-valued logics. In: D’Agostino, M., Gabbay, D.,
Hähnle, R., Posegga, J. (eds.) Handbook of Tableaux Methods, pp. 529–580.
Springer, Dordrecht (1999). https://doi.org/10.1007/978-94-017-1754-0 9

23. Hähnle, R.: Advanced many-valued logics. In: Gabbay, D., Guenthner, F. (eds.)
Handbook of Philosophical Logic, vol. 2, pp. 297–395. Springer, Netherlands
(2001). https://doi.org/10.1007/978-94-017-0452-6 5

24. Hájek, P.: Metamathematics of Fuzzy Logic, Trends in Logic, vol. 4. Springer,
Dordrecht (1998)

25. Hájek, P., Tulipani, S.: Complexity of fuzzy probability logics. Fundamenta Inf.
45(3), 207–213 (2001)

26. Klein, D., Majer, O., Rafiee Rad, S.: Probabilities with gaps and gluts. J. Philos.
Logic 50(5), 1107–1141 (2021). https://doi.org/10.1007/s10992-021-09592-x

27. Metcalfe, G., Olivetti, N., Gabbay, D.: Proof Theory for Fuzzy Logics. Applied
Logic Series, vol. 36, Springer, Cham (2008)

28. Omori, H., Wansing, H.: 40 years of FDE: an introductory overview. Stud. Logica.
105(6), 1021–1049 (2017). https://doi.org/10.1007/s11225-017-9748-6

29. Rodrigues, A., Bueno-Soler, J., Carnielli, W.: Measuring evidence: a probabilistic
approach to an extension of Belnap-Dunn logic. Synthese 198(S22), 5451–5480
(2021)

https://doi.org/10.1007/978-94-017-1754-0_9
https://doi.org/10.1007/978-94-017-0452-6_5
https://doi.org/10.1007/s10992-021-09592-x
https://doi.org/10.1007/s11225-017-9748-6

An Axiom System for Basic Hybrid Logic
with Propositional Quantifiers

Patrick Blackburn1, Torben Braüner2(B), and Julie Lundbak Kofod1

1 Department of Philosophy and Science Studies, Roskilde University, Roskilde,
Denmark

2 Department of People and Technology, Roskilde University, Roskilde, Denmark
torben@ruc.dk

Abstract. We present an axiom system for basic hybrid logic extended
with propositional quantifiers (a second-order extension of basic hybrid
logic) and prove its (basic and pure) strong completeness with respect
to general models.

1 Introduction

We present an axiom system for basic hybrid logic augmented with proposi-
tional quantifiers—a second-order extension of basic hybrid logic—and prove its
basic and pure completeness with respect to general models. A notable feature
of our axiom system is that the universal instantiation rule for propositional
quantification is restricted: variables can only be replaced by formulas that (a)
are quantifier-free and (b) don’t contain nominals in formula position.

Although this is primarily a technical paper, its roots are philosophical: it is
part of an ongoing re-examination of the later work of Arthur Prior, a philo-
sophical logician who is probably best known as the inventor of tense logic
(see [10,15]). However Prior was also the founder of hybrid logic (see [4,8]) and
he sometimes used propositional quantifiers to define what we now call nominals;
these developments led Prior, shortly before his death in 1969, to explore such
ideas as “quasi-modalities” and “egocentric logic”.1 We believe that the combina-
tion of contemporary hybrid logic and propositional quantification explored in
this paper is a promising setting for better understanding Prior’s later work.

We proceed as follows. In Sect. 2 we define the syntax of our languages,
drawing special attention to what are called soft-QF formulas and soft-QF sub-
stitutions. In Sect. 3 we introduce general frames and models, give a Henkin-style
satisfaction definition, and note some basic semantic lemmas. In Sect. 4 we define
an axiom system and prove it sound, and then in Sect. 5 we prove its (basic and
pure) strong completeness. Section 6 concludes and briefly discusses the links
with Prior’s later work.

1 See, in particular, the technical papers in the new edition of his book Papers on
Time and Tense [17], and the posthumous volume Worlds, Times and Selves [20].

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
H. H. Hansen et al. (Eds.): WoLLIC 2023, LNCS 13923, pp. 118–134, 2023.
https://doi.org/10.1007/978-3-031-39784-4_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-39784-4_8&domain=pdf
https://doi.org/10.1007/978-3-031-39784-4_8

An Axiom System for Basic Hybrid Logic with Propositional Quantifiers 119

2 Syntax and Substitution

In this section we define basic hybrid logic with quantification over proposi-
tional variables, soft-QF formulas, and soft-QF substitutions. Basic hybrid logic
is obtained by adding nominals and satisfaction operators to basic (proposi-
tional) modal logic. Nominals are usually written i, j, k; they are atomic symbols
true at a unique world in any model. Nominals play two distinct syntactic roles.
First, they can be used as atomic formulas, in exactly the same way as ordinary
propositional variables p, q, and r can; because of the “true at a unique world”
restriction on their interpretation, in this first role nominals can be thought of
as 0-place world-naming modalities. Second, any nominal i can occur as a sub-
script to the symbol @. Any such @i is called a satisfaction operator, and for
any formula ϕ, @iϕ is true at a world w iff ϕ is true at the world that i names.
Thus satisfaction operators are 1-place rigidifying modalities: they transform any
proposition ϕ into a rigid proposition @iϕ, one that is either true at all worlds,
or false at all worlds (depending on whether ϕ is true or false at the world that
nominal i names). Any formula of the form @iϕ is called a satisfaction statement.

We can now define what we mean by a basic hybrid language with propo-
sitional quantification. Let PLET = {c, b, a, . . . } be a set of propositional let-
ters, let PVAR = {p, q, r, . . . } be a set of propositional variables, and let
NOM = {i, j, k . . . } be a set of nominals. We assume that all three sets are
countable and pairwise disjoint, write ATOM for PLET∪PVAR∪NOM and call
any element of ATOM an atomic symbol. The basic hybrid language with propo-
sitional quantification LBHPQ is built over ATOM using the following grammar:

ϕ :: = c | p | i | ¬ϕ | ϕ ∧ ϕ | �ϕ | @iϕ | ∀pϕ,

where c ∈ PLET, p ∈ PVAR, and i ∈ NOM. Other booleans are defined as
expected, and ♦ and ∃ are defined by ¬�¬ ≡ ♦ and ¬∀p¬ ≡ ∃p.

It is clear from this definition that nominals can occur in formulas in two
ways: either as an atomic formula (that is: in formula position) or as part of a
satisfaction operator (that is: in operator position). Similarly, any propositional
variable p can occur in a formula in two ways: either as an atomic formula
(that is: in formula position) or right after the symbol ∀ (that is: in binding
position). But unlike occurrences of @i (which do not bind occurrences of i),
occurrences of ∀p bind all the (free) occurrences of p they have scope over.
Propositional letters, on the other hand, cannot be bound; they occur only in
formula position. So propositional letters are essentially “propositional constants”
and we will use them in our Lindenbaum Lemma as Henkin-style witnesses for
existential quantifiers. We define free and bound propositional variables in the
standard way, and write FV(ϕ) for the set of free propositional variables in
formula ϕ. A sentence is a formula that contains no free propositional variables.

The result of substituting a formula ψ for a propositional variable q occurring
in some formula ϕ, written ϕ[ψ/q], is defined in the expected way. It is always
possible to carry out a substitution safely (that is: without accidental binding)
by relabelling the bound variables in ϕ.

120 P. Blackburn et al.

In the Hilbert-style system presented in Sect. 4, the universal instantiation
axiom has a side condition: only quantifer free formulas with no nominals in
formula position can be used to instantiate universal quantifications. We call
such formulas soft-QF formulas. That is, soft-QF formulas are built using the
grammar

ϕ :: = c | p | ¬ϕ | ϕ ∧ ϕ | �ϕ | @iϕ,

where c ∈ PLET, p ∈ PVAR, and i ∈ NOM. A substitution ϕ[ψ/q] is called a
soft-QF substitution iff ψ is a soft-QF formula.

3 Semantics

We interpret LBHPQ using a Henkin-style general semantics. That is, we shall
use general frames and general models as our basic semantic structures: such
structures restrict the domain over which the propositional quantifiers range.
Writing P(W) for the powerset of the W , we define:

Definition 1 (Kripke frames, general frames, standard frames). A
Kripke frame is a pair F = 〈W,R〉 where W is a non-empty set (of worlds)
and R is a binary relation on W (the accessibility relation between worlds). A
general frame is a pair G = 〈F ,Π〉 where F is a Kripke frame and Π is a
non-empty subset of P(W) that is closed under the following three conditions:

– relative complement: if X ∈ Π, then W − X ∈ Π
– intersection: if X,Y ∈ Π, then X ∩ Y ∈ Π
– modal projection: if X ∈ Π then {w ∈ W | ∀v(wRv → v ∈ X)} ∈ Π.

We call a subset Π of P(W) that satisfies these conditions a closed set of admis-
sible propositions, and we call the elements of Π admissible propositions. A
general frame is called a standard frame iff Π = P(W).

We are interested in general frames rather than standard frames because
this paper is devoted to completeness results; using only standard frames typ-
ically leads to logics that are not axiomatisable. For example, if there are no
propositional quantifiers in the language, the basic modal logic K (the set of
basic modal formulas valid on all frames) is decidable in PSPACE; but if we add
propositional quantifiers—and interpret them using only standard frames—the
resulting set of validities is not even recursively enumerable.2 Modal languages
with propositional quantifiers may look simple, but (interpreted over standard
frames) they are powerful second-order systems.

Leon Henkin [12] introduced a way of “taming” higher-order logics. The
underlying idea is to increase the number of models, thereby reducing the number

2 This negative result (and others) were proved in Kit Fine’s pioneering 1970 paper [11]
(though the paper also contains an interesting positive result: extending ordinary S5
with propositional quantification using standard frames yields a decidable logic). For
some sharper negative results see [13].

An Axiom System for Basic Hybrid Logic with Propositional Quantifiers 121

of validities—hopefully to the point where the set of validities becomes recur-
sively enumerable. General frames can be viewed as a (successful) Henkin-style
attempt to tame modal semantics: a general frame is just a Kripke frame 〈W,R〉
together with a selection of propositions Π, that is, subsets of W .3 We don’t
insist that all subsets of W belong to Π; we simply insist that Π has enough
structure to behave like a set of propositions. In particular, in any general frame,
the set of admissible propositions should be closed under the operations corre-
sponding to the boolean operators and �. So there are a lot more general frames
than frames—a single Kripke frame gives rise to multiple general frames — and
it turns out that this expansion successfully “tames” the set of validities.

The success of general frames in the setting of ordinary modal logic leads
to the questions that drive this paper. What happens if we add propositional
quantification to basic hybrid logic rather than just basic modal logic? In partic-
ular: what is the logic of general frames if our base language contains not only
booleans and boxes, but also nominals and satisfaction operators? Moreover,
do general frames allow us to “tame” not merely the basic logic, but also what
hybrid logicians call its pure extensions?

But this is jumping ahead. We must first answer a more basic question: how
do we interpret LBHPQ on general frames? The interpretation of the nominals
will be taken care of by a naming function (or nomination) N assigning a world
to each nominal, while the interpretation of the propositional letters will be given
by a modal valuation function V .

Definition 2 (General models and standard models). A general model
M based on a general frame 〈W,R,Π〉 is a tuple 〈W,R,Π,N, V 〉 where
N : NOM → W and V : PLET → Π. A standard model is a model based
on a standard frame.

This definition builds in our central semantic design decision for LBHPQ:
the interpretation of the nominals is independent of the choice of Π. Nominals
directly “tag” arbitrary worlds via the nomination. This is important, because Π
may not contain all—or even any—singleton subsets of W as admissible propo-
sitions. Our nominals ignore Π. They are hardwired to the underlying Kripke
frame.

Definition 3 (Variable assignments and variants). A variable assignment
on a general frame G = 〈W,R,Π〉 is a function g : PVAR → Π. For any
propositional variable p, we say that a variable assignment g′ is a p-variant of
variable assignment g iff for all propositional variables q �= p, we have g′(q) =
g(q). We write this as g′ ∼p g.

3 There is more to general frames that this: they can also be viewed as representations
of modal algebras; see Chap. 5 of [6] for details. Both lines of work stem from a classic
paper by S. K. Thomason [21]. This links general frames and modal algebras, and
shows that (a) there are Priorean tense logics that are not complete with respect to
any class of frames, that (b) every Priorean tense logic is complete with respect to
a class of general frames. That is: general frames “tame” frame validity.

122 P. Blackburn et al.

Now for a Henkin-style definition of satisfaction and truth:

Definition 4 (Satisfaction and truth). Let M = 〈W,R,Π,N, V 〉 be a gen-
eral model, and g be a variable assignment on 〈W,R,Π〉. We define what it
means for M to satisfy a formula at a world w with respect to assignment g as
follows:

– M, g, w |= i iff w = N(i), for any i ∈ NOM
– M, g, w |= c iff w ∈ V (c), for any c ∈ PLET
– M, g, w |= p iff w ∈ g(p), for any p ∈ PVAR
– M, g, w |= ¬ϕ iff M, g, w �|= ϕ
– M, g, w |= ϕ ∧ ψ iff M, g, w |= ϕ and M, g, w |= ψ
– M, g, w |= �ϕ iff for all v ∈ W , if wRv then M, g, v |= ϕ
– M, g, w |= @iϕ iff M, g,N(i) |= ϕ
– M, g, w |= ∀pϕ iff for all g′ ∼p g, we have M, g′, w |= ϕ.

A formula ϕ is true at a world w in M iff for all variable assignments g,
M, g, w |= ϕ, and we write this as M, w |= ϕ.

Definition 5 (Validity and consequence). A formula ϕ is valid in a general
model M iff it is true at all worlds in M; we write this as M |= ϕ. A formula
ϕ is valid iff it is valid in all general models; and we write this as |= ϕ.

A formula ϕ is a consequence of a set of formulas Γ , written Γ |= ϕ, iff
for all general models M, all assignments g on M, and all worlds w in M,
if M, g, w |= Γ then M, g, w |= ϕ. Here M, g, w |= Γ means: for all formulas
γ ∈ Γ , M, g, w |= γ. Note: ϕ is valid iff ∅ |= ϕ.

We could also have defined notions of standard validity and standard conse-
quence; these are defined exactly as above but with “standard model(s)” replac-
ing “general model(s)”. But, as discussed earlier, for the purposes of the present
paper standard structures are of little interest. Completeness results are rare
when working with standard structures, but by working with general models we
will be able to prove Henkin-style completeness results that cover both the basic
logic and all its pure extensions (we will explain this terminology later).

The following semantic lemmas will be used in our soundness and complete-
ness proofs. We start with the Agreement Lemma. This tells us that to ensure
that nominations, valuations, and assignments agree on whether ϕ is satisfied,
it suffices that they agree on the atomic symbols actually occurring in ϕ

Lemma 1 (Agreement Lemma). Let ϕ be a formula, and let both M =
〈W,R,Π,N, V 〉 and M∗ = 〈W,R,Π,N∗, V ∗〉 be general models based on
〈W,R,Π〉 such that:

i) V (c) = V ∗(c) for all propositional letters c occurring in ϕ, and
ii) N(i) = N∗(i) for all nominals i occurring in ϕ.

Furthermore, let g and h be variable assignments on 〈W,R,Π〉 such that g(q) =
h(q) for all the free propositional variables q occurring in ϕ. Then for all w ∈ W ,
we have that M, g, w |= ϕ iff M∗, h, w |= ϕ.

An Axiom System for Basic Hybrid Logic with Propositional Quantifiers 123

Proof. By induction of the number of propositional connectives in ϕ. �

A standard corollary follows: the variable assignment is irrelevant when eval-
uating sentences, so for sentences ϕ can write M, w |= ϕ instead of M, g, w |= ϕ.

Definition 6. Let M = 〈W,R,Π,N, V 〉 be a general model, and g an assign-
ment on 〈W,R,Π〉. Then for all formulas ϕ we define

[M, g]ϕ = {w ∈ W | M, g, w |= ϕ}.

For ϕ a sentence we can just write [M]ϕ, as g is irrelevant.

Next we see that all soft-QF formulas pick out admissible propositions.

Lemma 2. Let M = 〈W,R,Π,N, V 〉 be a general model, and g be any assign-
ment on 〈W,R,Π〉. Then for all soft-QF formulas ϕ, we have [M, g]ϕ ∈ Π.

Proof. By induction on the number of connectives in soft-QF formulas. All
propositional letters are assigned elements of Π by V , and any assignment g
on M assigns all propositional variables an element of Π, which establishes the
base case. The inductive steps for ¬ϕ, ϕ ∧ ψ, and �ϕ, follow from the three clo-
sure conditions on Π. As for the @iϕ step, note that any such formula is either
true at all worlds, or false at all worlds, that is any such formula picks out either
the proposition W or ∅. But these two propositions are always admissible: as Π
is non-empty, it contains at least one proposition X. But then ∅ = X ∩ (W −X)
and W = W − ∅ are both in Π �

Our next lemma tells us that the set of all propositions picked out by soft-QF
formulas is a subset of Π that is a closed collection of admissible propositions.
Let us write [M, g]sqf for {[M, g]ϕ : ϕ is a soft-QF formula}. Then:

Lemma 3. Given any general model M = 〈W,R,Π,N, V 〉 and an assignment
g on M:

1. [M, g]sqf ⊆ Π, and
2. [M, g]sqf is a closed set of admissible propositions.

Proof. Item 1 follows from Lemma 2. Item 2 holds because the three closure con-
ditions conditions correspond to the connectives ¬, ∧ and �. Argue as follows:
Relative complement: Consider [M, g]ϕ for some soft-QF formula ϕ. It is suffi-
cient to show that Π − [M, g]ϕ = [M, g]¬ϕ. But w ∈ [M, g]¬ϕ iff M, g, w |= ¬ϕ
iff M, g, w �� ϕ iff w ∈ Π − [M, g]ϕ.
Intersection: Similar to the previous case.
Modal projection: We show that {w ∈ W | ∀v(wRv → v ∈ [M, g]ϕ)} = [M, g]�ϕ

for any soft-QF formula ϕ. But u ∈ [M, g]�ϕ iff M, g, u |= �ϕ iff ∀v(uRv →
v ∈ [M, g]ϕ) iff u ∈ {w ∈ W | ∀v(wRv → v ∈ [M, g]ϕ)}. �

Now for the Substitution Lemma; note the restriction to soft-QF formulas.

124 P. Blackburn et al.

Lemma 4 (Substitution Lemma). Let M = 〈W,R,Π,N, V 〉 be a general
model and let g be a variable assignment on 〈W,R,Π〉. Then for any safe sub-
stitution ϕ[ψ/p], where ψ is a soft-QF formula, we have that:

M, g, w |= ϕ[ψ/p] iff M, g′, w |= ϕ,

where g′ ∼p g is defined by setting g′(p) = [M, g]ψ.

Proof. First note that g′ is well-defined since [M, g]ψ ∈ Π by the previous
lemma. The proof is by induction on the number of connectives in ϕ. The inter-
esting case is ϕ = ∀qθ. We have three subcases:
If p = q, then the result follows from the Agreement Lemma.
If p �= q, but p does not occur free in θ, then the result again follows from the
Agreement Lemma.
Finally there is the case where p �= q and p occurs free in θ. Then M, g, w |=
(∀qθ)[ψ/p] iff M, g, w |= ∀q(θ[ψ/p]) iff for all g′′ ∼q g, we have M, g′′, w |=
θ[ψ/p]. But by the induction hypothesis this is equivalent to for all g′′ ∼q g, we
have M, g′′′, w |= θ where g′′′ ∼p g′′ is defined by setting g′′′(p) = [M, g′′]ψ.
But giving a g′′′ such that g′′′ ∼p g′′ where g′′′(p) = [M, g′′]ψ and g′′ ∼q g is
equivalent to giving a g′′′ such that g′′′ ∼q g′ where g′ ∼p g is defined by setting
g′(p) = [M, g′′]ψ. But q cannot occur free in ψ, so [M, g′′]ψ = [M, g]ψ by the
Agreement Lemma. The result follows from M, g′, w |= ∀qθ being equivalent to
for all g′′′ ∼q g′, so we have M, g′′′, w |= θ. �

4 The Axiomatisation

Our axiomatisation is called KSQph+rules. It is an extension of the Kh+rules
axiomatisation for basic propositional hybrid logic presented in Chapter 7
Section 3 of [6]. We first present the two components of Kh+rules axioma-
tisation, and then add on what we need to handle propositional quantification.

Definition 7 (The Kh axiom system). The Kh axiom system contains as
axioms all propositional tautologies, and all instances of K for the modalities:

K�: �(ϕ → ψ) → (�ϕ → �ψ)
K@: @i(ϕ → ψ) → (@iϕ → @iψ)

It also contains all instances of the following interaction schemas:

Intro: i ∧ ϕ → @iϕ
Agree: @j@iϕ ↔ @iϕ
Back: ♦@iϕ → @iϕ
Sdual: @iϕ ↔ ¬@i¬ϕ,

and in addition, all instances of the modal equality schemas:

Ref: @ii
Sym: @ij ↔ @ji
Nom: @ij ∧ @jp → @iϕ.

An Axiom System for Basic Hybrid Logic with Propositional Quantifiers 125

The proof rules of Kh are:

MP: If � ϕ → ψ and � ϕ then � ψ
Gen�: If � ϕ then � �ϕ
Gen@: If � ϕ then � @iϕ

Kh proofs are Hilbert-style proofs and it is fairly straightforward to adapt
the usual modal machinery of canonical models and prove that Kh is a (sound
and) strongly complete axiom system for minimal propositional hybrid logic (see
Chapter 7, Section 3 of [6] for details). The interaction axioms (together with
the Gen@ rule) capture the logic of the satisfaction operators: self-dual normal
modal operators that interact smoothly with the other connectives. The axioms
Ref, Sym, and Nom capture the logic of atomic satisfaction statements like @ij;
such statements are “modal equality assertions”, modal equivalents of first-order
atomic formulas of the form i = j. Clearly Ref and Sym express the reflexivity
and symmetry of identity. The Nom axiom is more interesting. It can be read
as a Leibniz-style identity axiom: “if i and j are identical, and i has property ϕ,
then j has property ϕ too”. But also note an important special case: if ϕ is k
this becomes @ij ∧ @jk → @ik, which expresses the transitivity of identity.

Here are two schemas that are used in the completeness proof:

Elim: i ∧ @iϕ → ϕ
Bridge: ♦i ∧ @iϕ → ♦ϕ

Note that Elim is a contraposed form of the Intro axiom (using the Sdual axiom).
As for Bridge, here are the main steps of a Kh proof of it:

1) ♦i ∧ �ϕ → ♦(i ∧ ϕ) Modal validity
2) i ∧ ϕ → @iϕ Intro axiom
3) �(i ∧ ϕ → @iϕ) Gen@ on 2
4) �(i ∧ ϕ → @iϕ) → (♦(i ∧ ϕ) → ♦@iϕ) Modal validity
5) ♦(i ∧ ϕ) → ♦@iϕ 3,4 Modus ponens
6) ♦i ∧ �ϕ → ♦@iϕ 1,5 Propositional logic
7) ♦@iϕ → @iϕ Back axiom
8) ♦i ∧ �ϕ → @iϕ 6,7 Propositional logic
9) ♦i ∧ @iϕ → ♦ϕ 8 Contraposition, Sdual axiom

Nonetheless, despite the fact that Kh is complete with respect to the class
of all Kripke models (that is, it is the “minimal hybrid logic”), it is more usual
to work with more powerful proof systems such as Kh+rules.4

Definition 8 (The Kh+rules axiom system). The Kh+rules axiom sys-
tem contains all the axioms and rules of Kh plus the following two proof rules:

Name :
� j → θ

� θ
Paste :

� @i♦j ∧ @jϕ → θ

� @i♦ϕ → θ

In both rules, j is a nominal distinct from i that does not occur in ϕ or θ.
4 Several such systems have been explored; see [1,5] for more. Here we follow [6].

126 P. Blackburn et al.

As we shall see later, these two rules allow us to do some things that are
not possible in Kh—things that will become important when we look at the
pure extensions of Kh. Anticipating this, we shall define KSQph+rules, our
basic axiomatisation for minimal propositional hybrid logic with propositional
quantification, on top of Kh+rules.

Definition 9 (The KSQph+rules axiom system). The KSQph+rules
axiom system contains all the axioms and rules of Kh+rules. It also contains
the following axioms:

Q1: ∀p(ϕ → ψ) → (ϕ → ∀pψ), where ϕ contains no free occurrences of p
Q2-sqf: ∀pϕ → ϕ[ψ/p], where ϕ[ψ/p] is a soft-QF substitution

Barcan@: ∀p@iϕ ↔ @i∀pϕ,

and one more proof rule:

Gen∀: If � ϕ then � ∀pϕ.

While Q1 is familiar from modal and classical logic, and Barcan@ from hybrid
logic, the side condition on Q2 -sqf deserves comment We cannot substitute
nominals (as not all admissible sets of propositions contain singleton subsets)
nor can we substitute quantified formulas either (our Substitution Lemma does
not cover such substitutions, since the admissible sets are only required to be
closed under finite intersections, not arbitrary intersections). Allowing only soft-
QF substitutions ensures soundness. 5

Definition 10 (Provability and consistency in KSQph+rules). A formula
ϕ is KSQph + rules-provable iff there is a KSQph + rules Hilbert-style proof
of ϕ; we write � ϕ for provability and �� ϕ for unprovability. A formula ϕ is
KSQph + rules-provable from a set of formulas Σ iff for some conjunction
σ of formulas from Σ we have � σ → ϕ. A formula ϕ is KSQph + rules-
consistent iff �� ¬ϕ. A set of formulas Σ is KSQph + rules-consistent iff there
is no conjunction σ of formulas from Σ such that � ¬σ.

Theorem 1. KSQph+rules is sound with respect to general frames.

Proof. To prove this we need to show that (a) all the axioms are valid on all
general frames, and (b) that the proof rules preserve validity. This is known for
all the axioms and rules in Kh+rules, so we only need to check that the Q1 and
Q2 -sqf are valid and that Gen∀ preserves validity. That Gen∀ preserves validity

5 Note that on standard models we could drop the restriction prohibiting substitution
of quantified formulas as standard models admit all subsets of the frame as propo-
sitions. That is, the rule which permits any soft substitution is sound on standard
models. However this does not lead to a completeness result for standard models, as
(thanks to Kit Fine’s results [11]) we know that the set of all standard validities on
the class of all standard models is not recursively enumerable.

An Axiom System for Basic Hybrid Logic with Propositional Quantifiers 127

is more-or-less immediate. The axioms are also easy to handle; we present the
argument for Q2 -sqf and leave Q1 and Barcan@ for the reader.

So: choose an arbitrary general model M = 〈W,R,Π,N, V 〉, let w ∈ W , and
let g be a variable assignment on 〈W,R,Π〉. Then to show that ∀pϕ → ϕ[ψ/p]
is valid, where ϕ[ψ/p] is a soft-QF substitution, suppose that M, g, w |= ∀pϕ.
This is equivalent to: for all g′ such that g′ ∼p g, we have M, g′, w |= ϕ. Define
g′′ ∼p g by setting g′′(p) = [M, g]ψ; Lemma 2 tells us that g′′ is a well-defined
variant of g because ψ is a soft-QF formula. Hence M, g′′, w |= ϕ and so, using
the Substitution Lemma, M, g, w |= ϕ[ψ/p].

Lemma 5. If � σ → θ[c/p] and c does not occur in θ or σ, then � σ → ∀qθ[q/p],
where q is any variable not occurring in θ or σ.

Proof. Left to the reader. �

Lemma 6. Suppose that q can be safely substituted for p in ϕ and that ϕ has
no free occurrences of q. Then � ∀pϕ ↔ ∀qϕ[q/p].

Proof. Left to the reader. �

One final remark. We formulated Barcan@ in its ∀-form, that is, in the form
∀p@iϕ ↔ @i∀pϕ. Its ∃-form is @i∃pϕ ↔ ∃p@iϕ. Strictly speaking, the left-to-
right arrows of both forms are Barcan formulas, while the right-to-left directions
of both are converse Barcan formulas.

5 Strong Completeness

We will now extend a standard model-building strategy used to prove the strong
completeness of Kh + rules (see Chap. 7, Sect. 3 of [6]) to show that every
KSQph + rules-consistent set of formulas has a general model. The general
model we shall construct has a number of special properties (described below)
which will enable us to prove strong completeness not only for KSQph + rules
itself, but for all of its pure extensions as well.

Definition 11 (KSQph + rules Maximal Consistent Sets). Fix a language
of LBHPQ. A set of formulas Σ in this language is a KSQph + rules-MCS iff it
is KSQph + rules-consistent, and any proper extension (in the same language)
is inconsistent.

Lemma 7 (Named sets yielded by an MCS). Let Γ be a KSQph +rules-
MCS. For every nominal i, let Δi = {ϕ | @iϕ ∈ Γ}. Then:

1. For every nominal i, Δi is a KSQph + rules-mcs that contains i.
2. For all nominals i and j, if i ∈ Δj, then Δj = Δi.
3. For all nominals i and j, @iϕ ∈ Δj iff @iϕ ∈ Γ .
4. If a nominal k ∈ Γ , then Γ = Δk.

Proof. This is Lemma 7.24 of [6], and proof details can be found there. In fact,
Lemma 7.24 shows that only Kh reasoning is needed to prove this lemma. �

128 P. Blackburn et al.

The Δi in this lemma are called the named sets yielded by Γ . Clause 1 of
the previous lemma tells us that each of these is an MCS containing at least one
nominal; all of these MCSs are “hidden inside” the original Kh-mcs. Clause 2
tells us that each nominal picks out a unique such MCS, and Clause 3 tells us
that any satisfaction statement is either in all the Δj or in none of them. So
every Kh-mcs contains almost all that is required to build structures in which
every world is named by some nominal. But not quite. For note that Clause 4
is only a conditional—we have no guarantee that Γ itself is one of the MCSs
“hidden inside” Γ .

Indeed, this weakness in Clause 4 is the key reason for using Kh+rules
instead of Kh. The addition of the Name and Paste rules does allow us to
guarantee that Γ itself is one of the MCSs “hidden inside” Γ . This will let us
create a “named and pasted” MCS, which contains all the information required to
build a frame in which each world is named by a nominal, which will prove crucial
for the pure extensions completeness result. Furthermore, the axioms and rules
for propositional quantification in KSQph + rules also ensure that this MCS is
“witnessed”, which allows us to define a suitable set of admissible propositions
over its frame, thereby creating a general model. We first define what we mean by
“named”, “pasted” and “witnessed” and then prove the Lindenbaum-style lemma
which will lead us to these goals.

Definition 12 (Named, pasted and witnessed MCSs). Let Σ be a
KSQph + rules-MCS. Then we say:

– Σ is named iff for some nominal i, i ∈ Σ,
– Σ is pasted iff for every formula of the form @i♦ϕ ∈ Σ, there is some

nominal j such that @i♦j ∈ Σ and @jϕ ∈ Σ, and
– Σ is witnessed iff for every formula of the form @i∃pϕ, there is some propo-

sitional letter c such that @iϕ[c/p] ∈ Σ.

To prove a Lindenbaum-style lemma for KSQph+rules, we must extend the
language. Suppose we start with language L. We will add a countably infinite
set of nominals (called NewN) and a countably infinite set of new propositional
letters (called NewL), and call the extended language L′. We will use NewN for
naming and pasting and NewL for witnessing.

Lemma 8 (Lindenbaum). Every KSQph + rules-consistent set of formulas
in language L can be extended to a named, pasted and witnessed KSQph+rules-
MCS in language L′.

Proof. Given a consistent set of L-formulas Σ, add NewN and NewP as just
described to form L′, and enumerate all three sets. Define Σk to be Σ ∪ {k},
where k is the first nominal in NewN. Σk is consistent. For suppose not. Then
for some conjunction of formulas θ from Σ, we have � k → ¬θ. But k is a new
nominal, so it does not occur in θ; hence, by the name rule we have � ¬θ. This
contradicts the consistency of Σ, so Σk must be consistent.

An Axiom System for Basic Hybrid Logic with Propositional Quantifiers 129

Define Σ0 to be Σk, and suppose we have defined Σm, where m ≥ 0. Let
ϕm+1 be the (m + 1)-th formula in our enumeration of L′. We define Σm+1 as
follows:

If Σm+1 ∪ {ϕm+1} is inconsistent, then Σm+1 = Σm. Otherwise:

1. Σm+1 = Σm ∪ {ϕm+1}, if ϕm+1 is not of the form @i♦ϕ or @i∃pϕ.
2. Σm+1 = Σm ∪{ϕm+1}∪{@i♦j ∧@jϕ}, if ϕm+1 is of the form @i♦ϕ. (Here j

is the first nominal in the enumeration of NewN that does not occur in Σm

or @i♦ϕ).
3. Σm+1 = Σm ∪{ϕm+1}∪{@iϕ[c/p]}, if ϕm+1 is of the form @i∃pϕ. (Here c is

the first propositional letter in the enumeration of NewL that does not occur
in Σm or @i∃pϕ).

Let Σ∗ =
⋃

n≥0 Σn. Clearly this set is named (as we added k in the first
step), maximal (by construction), pasted and witnessed.

Furthermore, it is consistent, for the only aspects of the expansion that
require checking are those given in by the second and third steps. Preservation
of consistency by the second step is precisely what the paste rule guarantees. As
for the third step, we argue as follows. Assume for the sake of contradiction that
Σm ∪ {@i∃pϕ} ∪ {@iϕ[c/p]} is inconsistent. Then there are formulas σ1, ..., σn

in Σm such that � ¬(σ1 ∧ ... ∧ σn ∧ @i∃pϕ ∧ @iϕ[c/p]). Writing σ1 ∧ ... ∧ σn

as σ, propositional logic yields � (σ ∧ @i∃pϕ) → ¬@iϕ[c/p]. The conditions of
Lemma 5 are fulfilled, so we have � (σ ∧ @i∃pϕ) → ∀q¬@iϕ[q/p] where q is a
new propositional variable. This is equivalent to � (σ ∧@i∃pϕ) → ¬∃q@iϕ[q/p],
so using (the ∃-form of) Barcan@ we have � (σ ∧@i∃pϕ) → ¬@i∃qϕ[q/p]. More-
over, the conditions of Lemma 6 are fulfilled as well, so � @i∃pϕ ↔ @i∃qϕ[q/p],
and we have that � (σ ∧@i∃pϕ) → ¬@i∃pϕ. This contradicts the consistency of
Σm ∪ {@i∃pϕ}, thus the third step must preserve consistency after all. �

Lemma 9 (Generated admissible sets). Let F = 〈W,R〉 be a Kripke frame,
let P(W) be the powerset of W , let B ⊆ P(W) and define Π(B), the admis-
sible set generated by B, to be the smallest subset of P(W) containing B that
is closed under relative complement, intersection, and modal projection. Then
〈W,R,Π(B)〉 is a general frame.

Proof. Immediate by definition of Π(B). �

Lemma 10. Let F = 〈W,R〉 be a Kripke frame, and let N be any nomination on
F . Let V be any mapping such that V : PLET → P(W) and let g be any mapping
such that g : PVAR → P(W). Then M = 〈W,R,Π(im(V) ∪ im(g)), N, V 〉 is a
general model (here im(V) and im(g) are the images of V and g respectively).

Proof. As 〈W,R〉 is a Kripke frame and im(V)∪ im(g) ⊆ P(W), by the previous
lemma 〈W,R,Π(im(V)∪im(g))〉 is a general frame. Hence V and g are mappings
into Π(im(V)∪ im(g)), thus V is a valuation and g is an assignment on a general
frame. Thus M is a general model. �

130 P. Blackburn et al.

Definition 13 (Canonical named structures). Let Γ be a named, pasted
and witnessed KSQph +rules-MCS. Let MΓ be 〈WΓ , RΓ ,ΠΓ , NΓ , V Γ 〉 where:

– WΓ is the set of all named sets yielded by Γ .
– RΓ is the standard modal canonical relation between MCSs. That is, for any

u, v ∈ WΓ we define uRΓ v iff for all formulas ϕ, ϕ ∈ v implies ♦ϕ ∈ u. Or
equivalently: uRΓ v iff for all formulas ϕ, �ϕ ∈ u implies ϕ ∈ v.

– NΓ : NOM → WΓ is defined as follows. For any any nominal i, N(i) is the
unique w ∈ WΓ such that i ∈ w; that is, N(i) = Δi.

– V Γ : PLET → P(WΓ) is the standard modal canonical valuation (for propo-
sition letters). That is, V Γ (c) = {w ∈ WΓ | c ∈ w}, for any proposition letter
c.

– gΓ : PVAR → P(WΓ) is the standard modal canonical valuation (for propo-
sition variables). That is, gΓ (p) = {w ∈ WΓ | p ∈ w}, for any proposition
variable p.

– ΠΓ is Π(im(V Γ) ∪ im(gΓ)).

We now check that this definition does indeed gives rise to Kripke frames
and general models where every world is named by some nominal.

Lemma 11. Let Γ be a named, pasted and witnessed KSQph+rules-MCS, and
let MΓ be the canonical named general model yielded by Γ . Then 〈WΓ , RΓ 〉 is
a Kripke frame and MΓ is a named general model.

Proof. To see that 〈WΓ , RΓ 〉 is a Kripke frame, first note that by Lemma 7 (1),
for every nominal i, Δi is a KSQph +rules-MCS containing i. As WΓ is a non-
empty set of MCSs, the standard modal canonical relation RΓ can be defined over
it, thus 〈WΓ , RΓ 〉 is a Kripke frame. Moreover NΓ is a well-defined nomination,
for Lemma 7 (2) guarantees that Δi is the unique element of WΓ such that
i ∈ w, and it clearly “names” every world in WΓ . Finally, both V Γ and gΓ are
well-defined, so we have all we need to apply Lemma 10 and conclude that MΓ

is a named general model. �

So from now on we will call 〈WΓ , RΓ 〉 the canonical named Kripke frame
yielded by Γ , and MΓ the canonical named general model yielded by Γ . We
now examine them more closely. Our first lemma tells us that RΓ works exactly
as it does in ordinary propositional modal logic.

Lemma 12 (Existence Lemma). Let Γ be a named, pasted, and witnessed
KSQph+rules-MCS, and let MΓ be the canonical named general model yielded
by Γ . Suppose u ∈ WΓ and ♦ϕ ∈ u. Then there is a v ∈ WΓ such that uRΓ v
and ϕ ∈ v.

Proof. This is essentially Lemma 7.27 from [6]. �

Lemma 13. Let Γ be a named, pasted and witnessed KSQph +rules-MCS, let
MΓ be the canonical named general model yielded by Γ , and let u ∈ WΓ . Then
for all quantifier-free formulas ϕ, we have that:

An Axiom System for Basic Hybrid Logic with Propositional Quantifiers 131

1. MΓ , gΓ , u � ϕ iff ϕ ∈ u
2. MΓ , gΓ ,Δi � ϕ iff @iϕ ∈ Γ .

Proof. Item 1 follows by induction on the number of connectives. It is essentially
Lemma 7.28 from [6]. Item 2 then follows by the definition of Δi. �

Next for a simple but important lemma:

Lemma 14. Let Γ be a named, pasted and witnessed KSQph +rules-MCS, let
MΓ be the canonical named general model yielded by Γ . Then [MΓ , gΓ]sqf = ΠΓ .

Proof. Item 1 of Lemma 3 tells us that [MΓ , gΓ]sqf ⊆ ΠΓ . Item 2 of same
lemma tells us that [MΓ , gΓ]sqf is a closed set of admissible propositions. Now,
im(V Γ) ∪ im(gΓ) ⊆ [M, g]sqf, as these are the atomic propositions picked out
by the propositional constants and variables. But ΠΓ is Π(im(V Γ) ∪ im(gΓ)),
the smallest closed set of admissible propositions containing im(V Γ) ∪ im(gΓ).
So ΠΓ ⊆ [MΓ , gΓ]sqf. �

The previous lemma is important because it gives us a syntactic handle
on the elements of ΠΓ : every proposition in ΠΓ is “picked out” by some soft-
QF formula; this syntactic characterisation enables us to prove the final lemma
leading to completeness.

Lemma 15 (Truth Lemma). Let Γ be a named, pasted, and witnessed
KSQph+rules-MCS, and let MΓ be the canonical named general model yielded
by Γ , and let u ∈ WΓ . Then, for all formulas ϕ, we have that MΓ , gΓ , u � ϕ iff
ϕ ∈ u.

Proof. For any formula ϕ, let con(ϕ) be the number of connectives in ϕ. More-
over, let quan(ϕ) be the maximal depth of quantifier nesting in ϕ, that is:

quan(ϕ) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if ϕ is atomic
sup{quan(ψ), quan(θ)} if ϕ = ψ ∧ θ
quan(ψ) if ϕ ∈ {¬ψ,@iψ,�ψ}
quan(ψ) + 1 if ϕ = ∀pψ

We prove the result by induction on pairs (quan(ϕ), con(ϕ)) ordered lexicograph-
ically, that is, (q, c) < (q′, c′) iff (1) q < q′ or (2) q = q′ and c < c′.

Note that Lemma 13 has established this for all formulas ϕ associated with
the pair (0, 0) (that is, atomic formulas) and indeed for all formulas associated
with pairs (0, n) for any natural number n (that is, quantifier-free formulas). So
the base cases are established, and as our inductive hypothesis (IH) we assume
that for natural numbers q and c, with q ≤ c, we have that MΓ , gΓ , u � ϕ iff
ϕ ∈ u for all formulas associated with the pair (q, c)

So let θ be a formula associated with a pair with c + 1 connectives. Now, if
θ is a boolean, or of the form �ψ or @iψ, we can argue as in Lemma 13, for all
such formulas are associated with (q, c + 1), and we can use our new IH just as
before. The critical case is when θ is of the form ∀pψ. Note that such formulas
are associated with (q + 1, c + 1).

132 P. Blackburn et al.

We want to show that MΓ , gΓ , u � ϕ iff ϕ ∈ u For the left-to-right direction,
we show the contrapositive. So suppose that ∀pψ �∈ u. As u is an MCS, ¬∀pψ ∈ u,
that is, ∃p¬ψ ∈ u. Γ is witnessed, so for some proposition letter c, @j¬ψ[c/p] ∈
Γ . But then ¬ψ[c/p] ∈ Δj . But ¬ψ[c/p] ∈ Δj is associated with (q, c+1), so the
IH applies and we have MΓ , gΓ , u � ¬ψ[c/p]. It follows from the Substitution
Lemma that MΓ , g′, u � ¬ψ, that is, MΓ , g′, u �� ψ, where g′ ∼p gΓ is defined
by setting g′(p) = [MΓ , gΓ]c. Hence MΓ , gΓ , u �� ∀pψ, and we have proved the
contrapositive.

For the right-to-left direction, suppose that ∀pψ ∈ u, and further suppose for
the sake of contradiction that MΓ , gΓ , u �� ∀pϕ. Then for some g′ ∼p gΓ we have
MΓ , g′, u � ¬ϕ. Now g′(p) ∈ ΠΓ , but by Lemma 14 we know ΠΓ = [MΓ , gΓ]sqf,
hence g′(p) = [MΓ , gΓ]θ for some soft-QF formula θ. The Substitution Lemma
tells us that MΓ , gΓ , u � ¬ϕ[θ/p] iff MΓ , g′, u |= ¬ϕ, and hence we have
MΓ , gΓ , u � ¬ϕ[θ/p]. As ¬ϕ[θ/p] is associated with the pair (q, c + 1), so we
can apply the IH to conclude ¬ϕ[θ/p] ∈ u. But this leads to a contradiction. As
u is an MCS, for all soft QF formulas θ, ψ[θ/p] ∈ u by the Q2 -sqf axiom. In
particular, ϕ[θ/p] ∈ u. We conclude that MΓ , gΓ , u � ∀pϕ after all. �
Theorem 2 (Strong basic completeness). Every KSQph+rules-consistent
set of sentences has a named model.

Proof. Follows from the previous lemma in the familiar way. �
So we have proved the basic strong completeness result. But the general

model we have built is named, so we can immediately extend this to cover all
pure extensions of KSQph + rules. In hybrid logic, a formula is called “pure”
if all its atomic formulas are nominals. Here are three well-known examples:
i → ♦i (the Irreflexivity axiom), i → �(♦i → i) (the Antisymmetry axiom), and
@i♦j ∨ @ij ∨ @j♦i (the Trichotomy axiom). A pure formula ϕ defines a class
of frames F iff: (W,R) ∈ F ⇔ (W,R) |= ϕ. It is easy to check that our three
examples define the class of ireflexive, antisymmetric, and trichotomous frames
respectively. More importantly: adding any (combination of) pure formula(s) as
extra axiom(s) to Kh + rules is a proof system that is complete with respect
to the class of frames defined. For a more detailed statement and discussion of
this result, see [5]. Here we shall simply record that:

Theorem 3 (Strong pure completeness). Let Λ be a set of pure formulas,
and let KSQph + rules + Λ be the Hilbert-system obtained by using the pure
formulas in Λ as extra axioms. Then every KSQph +rules+Λ-consistent set of
sentences has a named model built over a Kripke frame belonging to the frame-
class defined by the pure formulas in Λ.

Proof. This is essentially the same as the proof of Theorem 7.29 from [6]. Because
nominals directly “tag” worlds in the underlying Kripke frames, the standard
completeness result for pure formulas carry over unchanged. �

Here is an example. Let Λ = {i → ♦i, i → �(♦i → i),♦♦i → ♦i}. These
three formulas jointly define the class of partially ordered frames. Adding them
as axioms to KSQph + rules gives us the complete logic of this frame class.

An Axiom System for Basic Hybrid Logic with Propositional Quantifiers 133

6 Concluding Remarks

In this paper we have extended completeness results for basic hybrid logic to
cover languages containing propositional quantifiers. We adapted well-known
techniques from the hybrid logic literature to build named general models, and
thus prove completeness not merely for the minimal logic but for any pure exten-
sion. The key to this was our decision to directly “hardwire” nominals to worlds:
this decoupled the world naming apparatus (nominals) from the quantificational
apparatus (admissible propositions). Although we only treated the case for basic
hybrid logic with a single modality, the results proved here can be extended to
systems containing multiple modalities, the universal modality, the ↓-binder,
and quantification over nominals, as we will show in an extended version of
this paper. We also think the basic system outlined here hints at potentially
useful applications. For example, Belardinelli et al [3] argue that (multimodal)
epistemic logic augmented with propositional quantifiers is a useful knowledge
representation tool. Our results for pure extensions suggest that adding a hybrid
component might make them even more useful for such tasks.

But to close the paper, we return to the work of Arthur Prior that inspired
it. Arthur Prior was a pioneer of propositional quantification in modal logic (see,
in particular, [18,19]), and his students Robert Bull [9] and Kit Fine [11] both
published technical results about it, the latter paper becoming highly influen-
tial. But Arthur Prior was also the inventor of hybrid logic, and in the final
years of his career, these two interests became intertwined. Prior had oscillated
between the “tag” view of nominals that is now standard and a “telescope” view
that views them as (something more like) an infinite conjunction of informa-
tion (see [7,14]). In two key late papers, Prior seems to have moved towards
the “tag” view of nominals.6 He also realised—anticipating the mantra of the
Amsterdam school of modal logic — that modalities could be used to talk about
absolutely anything. Indeed, his egocentric logic is an early example of what is
now called description logic [2]. In egocentric logic, “worlds” are people and their
properties and relationships (for example, their relative heights) are described
using what Prior called “quasi modalities”, with the help of propositional quan-
tifiers and “people propositions” (nominals). Prior’s death left many of these
ideas underexplored, but it is clear that in his final years Prior developed several
philosophically and technically novel systems, often involving both nominal-like
entities and/or propositional quantification (“Prior’s cocktail”). We want to use
the language presented in this paper to explore this work more systematically.

Acknowledgements. We would like to thank Antje Rumberg and the three anony-
mous referees for their comments and corrections on earlier versions of this paper.

6 Namely: “Tense logic and the logic of earlier and later”, and “Quasi-propositions and
quasi-individuals”, both of which can be found in the first edition of Papers on Time
and Tense [16]. The new edition [17] contains several more papers that build on these
two, including “Egocentric logic”. See Kofod’s PhD thesis [14] for further discussion.

134 P. Blackburn et al.

References

1. Areces, C., ten Cate, B.: Hybrid logic. In: Handbook of Modal Logic, pp. 821–868.
Elsevier (2007)

2. Baader, F., Calvanese, D., McGuinness, D., Patel-Schneider, P., Nardi, D., et al.:
The Description Logic Handbook: Theory, Implementation and Applications. Cam-
bridge University Press, Cambridge (2003)

3. Belardinelli, F., Van Der Hoek, W., Kuijer, L.B.: Second-order propositional modal
logic: expressiveness and completeness results. Artif. Intell. 263, 3–45 (2018)

4. Blackburn, P.: Arthur Prior and hybrid logic. Synthese 150(3), 329–372 (2006)
5. Blackburn, P., ten Cate, B.: Pure extensions, proof rules, and hybrid axiomatics.

Stud. Logica. 84, 277–322 (2006)
6. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge University Press,

Press (2001)
7. Blackburn, P.R., Braüner, T., Kofod, J.L.: Remarks on hybrid modal logic with

propositional quantfiers. In: The Metaphysics of Time: Themes from Prior, pp.
401–426. Aalborg Universitetsforlag (2020)

8. Braüner, T.: Hybrid Logic. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of
Philosophy. Metaphysics Research Lab, Stanford University, summer 2017 edn.
(2017)

9. Bull, R.: On modal logic with propositional quantifiers. J. Symbolic Logic 34(2),
257–263 (1969)

10. Copeland, B.J.: Arthur Prior. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of
Philosophy. Metaphysics Research Lab, Stanford University, Summer 2017 edn.
(2017)

11. Fine, K.: Propositional quantifiers in modal logic. Theoria 36, 336–346 (1970)
12. Henkin, L.: Completeness in the theory of types. J. Symbolic Logic 15(2), 81–91

(1950)
13. Kaminski, M., Tiomkin, M.: The expressive power of second-order propositional

modal logic. Notre Dame J. Formal Logic 37(1), 35–43 (1996)
14. Kofod, J.L.: What on earth was Arthur Prior thinking?: About physics and hybrid

logic. Ph.D. thesis, IKH, Roskilde University (2022)
15. Øhrstrøm, P., Hasle, P.: Temporal Logic: from Ancient Ideas to Artificial Intel-

ligence, vol. 57. Springer, Dordrecht (2007). https://doi.org/10.1007/978-0-585-
37463-5

16. Prior, A.: Papers on Time and Tense. Oxford University Press (1968)
17. Prior, A.: Papers on Time and Tense. Oxford University Press, new edn. (2003)
18. Prior, A.N.: Epimenides the Cretan. J Symbolic Logic 23(3), 261–266 (1958)
19. Prior, A.N.: On a family of paradoxes. Notre Dame J. Formal Logic 2(1), 16–32

(1961)
20. Prior, A.N., Fine, K.: Worlds, Times, and Selves. Duckworth, London (1977)
21. Thomason, S.: Semantic analysis of tense logics. J. Symbolic Logic 37, 150–158

(1972)

https://doi.org/10.1007/978-0-585-37463-5
https://doi.org/10.1007/978-0-585-37463-5

An Evidence Logic Perspective
on Schotch-Jennings Forcing

Tyler D. P. Brunet1 and Gillman Payette2(B)

1 Egenis: the Center for the Study of the Life Science, Department of Social and
Political Sciences Philosophy and Anthropology, University of Exeter, Exeter, UK

t.d.p.brunet@exeter.co.uk
2 Department of Philosophy, University of Calgary, Calgary, AB, Canada

ggpayett@ucalgary.ca

Abstract. Traditional epistemic and doxastic logics cannot deal with
inconsistent beliefs nor do they represent the evidence an agent pos-
sesses. So-called ‘evidence logics’ have been introduced to deal with both
of those issues. The semantics of these logics are based on neighbourhood
or hypergraph frames. The neighbourhoods of a world represent the basic
evidence available to an agent. On one view, beliefs supported by evi-
dence are propositions derived from all maximally consistent collections
evidence. An alternative concept of beliefs takes them to be propositions
derivable from consistent partitions of one’s inconsistent evidence; this is
known as Schotch-Jennings Forcing. This paper develops a modal logic
based on the hypergraph semantics to represent Schotch-Jennings Forc-
ing. The modal language includes an operator U(ϕ1, . . . , ϕn; ψ) which
is similar to one introduced in Instantial Neighbourhood Logic. It is of
variable arity and the input formulas enjoy distinct roles. The U opera-
tor expresses that all evidence at a particular world that supports ψ can
be supported by at least one of the ϕis. U can then be used to express
that all the evidence available can be unified by the finite set of formulas
ϕ1, . . . , ϕn if ψ is taken to be �. Future developments will then use that
semantics as the basis for a doxastic logic akin to evidence logics.

Keywords: Evidence Logic · Epistemic Logic · Paraconsistent Logic ·
Schotch-Jennings Forcing · Pointed Operators

1 Introduction

In [4] and [2] the authors proffer modal logics for reasoning about beliefs which
are based on evidence. Traditionally, epistemic and doxastic logics are about how
an agent reasons from propositions they know or believe. How the agent arrives
at those propositions they reason from is not part of the model. However, these
new “Evidence Logics” include an explicit representation of what evidence an
agent has. They then can go on to define conditions for belief on the basis of
what evidence the agent possesses.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
H. H. Hansen et al. (Eds.): WoLLIC 2023, LNCS 13923, pp. 135–160, 2023.
https://doi.org/10.1007/978-3-031-39784-4_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-39784-4_9&domain=pdf
http://orcid.org/0000-0002-7609-7254
http://orcid.org/0000-0002-8499-1774
https://doi.org/10.1007/978-3-031-39784-4_9

136 T. D. P. Brunet and G. Payette

One of the challenges of doxastic and epistemic logic has been that agents
often possess inconsistent evidence. Traditional modal logics based on (binary)
relational semantics cannot tolerate inconsistency; everything is believed when
beliefs are inconsistent. These evidence models suggest a different approach.
They allow the evidence one accumulates to be inconsistent, while restrain-
ing beliefs based on that evidence in ways that ensure consistency of result-
ing belief—at least in the case of [2]. Filtering beliefs from evidence requires
novel ways of combining the evidence and deriving conclusions from it that will
avoid—if not eliminate—inconsistencies.

The approaches to evidence based belief in [2] and [4] relate to the method
of dealing with inconsistent data/premises proposed by [12] in which one rea-
sons from maximally consistent subsets of one’s data. We take a different start-
ing point, namely, the preservationist approach to paraconsistency in [8]. The
preservationist method of reasoning from inconsistent data is to reason from
special partitions of one’s data; when something follows from one of these par-
titions, that conclusion is forced, and this inference method is called forcing.
The relationship between these two approaches to paraconsistent propositional
inference has been studied in [11]. Before any application of this preservationist
approach can be made in the present context—to the modal logic representa-
tion of evidence—it must first be given a semantic representation (Sect. 3) that
facilitates comparison between the two starting points.

The meeting point of the two views is the use of neighbourhood models to
represent the evidence of an agent: the collection of neighbourhoods is the set of
basic evidence available at that world. The preservationist approach to paracon-
sistency was inspired by modal logics which use n-ary relation frames, cf. [1,7]. It
came to be understood that those frames corresponded to neighbourhood frames
for modal logic [9]. The paraconsistent n-ary modal logics could be interpreted
on those neighbourhood frames when a variation on the truth condition for the
� operator is used: in order for �ϕ to be true at x, there must be a neighbour-
hood of x where that ϕ is true throughout. This differs from the usual truth
condition, in which all the worlds where ϕ is true must be a neighbourhood of
x. A thorough study of the relations between n-ary modal logics and n-relation
modal logics has been conducted in [6] which explores these connections via
neighbourhood semantics.

Here, we offer a way to use neighbourhood models to represent a preserva-
tionist approach of deriving belief from evidence. The goal of this paper is to
capture the general forcing relation in a neighbourhood semantics. To do this, we
introduce an operator, similar to that found in [3], which takes two arguments:
a non-empty list of formulas and a formula. This operator expresses the suffi-
ciency of the formulas in the list of the first argument for implying the formula
in the second argument. What we show is that a semantics can be given which
represents Schotch-Jennings forcing on classical propositional logic, and provide
a logic which is sound and complete for that semantics.

Evidence Logic and Forcing 137

1.1 Evidence Models

Evidence models are built on the standard set up from modal logic where we
have a non-empty set of ways the world might be W , i.e., possible worlds, and
propositions or facts that might be true in those worlds represented by subsets
of W . An agent’s evidence will be represented by a so-called ‘evidence frame’

F = 〈W, E〉

consisting of W and a function E : W → P(P(W)). For each x ∈ W , E(x)
represents the evidence the agent has collected at x; the agent’s basic evidence
at x. The only conditions that we will impose on E(x)—at the moment—are that
∅ �∈ E(x) �= ∅. Thus, the agent can never collect a contradiction as evidence.
There are no conditions at this point on whether E(x) must be closed under
various set-theoretic operations like supersets or intersection. We will consider
an agent to have evidence that X ⊆ W , when there is Y ∈ E(x) such that Y ⊆ X.
That is, agents have all evidence that their basic evidence, taken individually,
implies. That makes the requirement of closure under supersets unnecessary.

Although the evidence an agent has is simply what that agent’s evidence
individually implies, what an agent’s evidence supports is an holistic matter.
Intuitively, evidential support should be computed by combining the basic evi-
dence somehow, but it is not clear how that should be done. We have not assumed
that E(x) is factual or even consistent: the actual world may not be in

⋂ E(x)
nor is it guaranteed that

⋂ E(x) �= ∅, respectively. So a simple combining of
one’s basic evidence via taking what is common between all of it may result
in “supporting” everything since all propositions are implied by an inconsistent
set: when

⋂ E(x) = ∅,
⋂ E(x) ⊆ X for any X ⊆ W . The authors van Benthem

et al. and Baltag et al. have suggested two fruitful ways of combining evidence.
Inspired by their ideas, we here offer a method of combining evidence by using
a representation of Schotch-Jennings Forcing in modal logic.

Schotch-Jennings Forcing offers a way to disentangle any inconsistency, and
then to infer from the disentangled collection. In the following section we will
review the syntactic account of this method, survey the extant connections
between modal logic and forcing, and then develop a semantic analog of forcing
in neighbourhood models, suitable as a basis for a modal logic.

1.2 Forcing and Level

In a series of papers, [7,13], and [14] Jennings and Schotch developed a method of
drawing inferences from inconsistent sets which they refer to as ‘forcing’. The set
up is to find the minimal way to partition the premises so that each element, or
‘cell’, of the partition is consistent. Then one reasons from those consistent cells.
Taking the smallest or minimal partitions of a set, if some conclusion follows
from at least one cell in every such partition, then the set forces that conclusion.

More precisely, lets say that a partition Π is a cover of a set of formulas Γ iff,⋃
Π = Γ and for all π ∈ Π, π � ⊥ where 	 is simply the consequence relation

138 T. D. P. Brunet and G. Payette

of classical logic. We will also refer to the cardinality of Π as its width. There
is another definition of a syntactic cover as follows: a collection of consistent
sets of sentences Π (not necessarily a partition of Γ) such that for each γ ∈ Γ ,
there is π ∈ Π such that π 	 γ. If we introduce C(Γ) = { α : Γ 	 α } to refer
to the deductive closure of Γ , then we can say that Π is a cover of Γ when
Γ ⊆ ⋃

π∈Π C(π) and each π is consistent. Partitions are a special case of this
more general kind of cover and are thus referred to as ‘partition covers’.

The level of Γ , �(Γ), is a kind of measure of how inconsistent Γ is, and it is
determined by the minimum width a set of sets must have in order to be a cover
of Γ , but if there is no such minimum, its level is ∞. Thus:

�(Γ) =

⎧
⎪⎨

⎪⎩

0 Γ ⊆ C(∅)
min { |Π| : Π is a cover of Γ } if it exists & Γ �⊆ C(∅)
∞ otherwise

We assign the level of 0 to the special case where Γ is a set of theorems. We
can then say that Γ forces α, Γ � α iff in any cover of Γ (partition or otherwise),
Π, such that |Π| = �(Γ), there is π ∈ Π such that π 	 α. However, it can be
shown that forcing is determined by the collection of partition covers since we
can always generate a partition cover from a cover.

Most conceptions of consequence are based on considering what is true across
all the ways things could be and forcing incorporates this ‘all the ways things
could be’ kind of thinking by consulting all covers of Γ to determine the forcing
consequences. It is interesting to note that this does not simply mean looking
at all �(Γ)-tuples of distinct maximally consistent subsets of Γ . This could seem
odd since obviously each cell in a (partition) cover of Γ can be extended to a
maximally consistent subset (i.e., Γ ′ is a maximally consistent subset of Γ iff
Γ ′ ⊆ Γ , Γ ′

� ⊥ and for any α ∈ Γ\Γ ′, Γ ′ ∪ {α } 	 ⊥). The issue is that
some maximally consistent subsets may not be reachable by such extensions.
For example, consider the following set from classical logic:

Φ = { ¬q ∧ p, q → r,¬r, q,¬p }
This set gives rise to maximally consistent subsets. We will not list all of them,
but for instructional purposes here are two of them:

(A) { q → r,¬r,¬p }, and
(B) { q → r,¬r,¬q ∧ p }, and

It is easy to see that �(Φ) = 2 since it is inconsistent but we only need a
cover of width 2:

{ { q → r,¬r,¬q ∧ p } , { q,¬p } } .

What this means is that the covers that would be used to determine the forcing
consequences of Φ would all have width 2. This gives rise to a curious situation
when we consider set A above. Set A would never appear in a cover of Φ that was
used to calculate forcing consequences. The reason is that, if set A is removed

Evidence Logic and Forcing 139

from Φ, the set that is left over has level 2 as well. That means no cover of Φ
with width 2 could be constructed with set A as a cell.

If one ends up with inconsistent evidence, another way to make inferences
from it, or another way to calculate what the evidence supports, is by what the
evidence forces. Of course, if one’s evidence is consistent, then the conclusions one
can draw are simply all those which follow, classically speaking. We now consider
a semantics for forcing which relates it to the semantics of prior evidence logics.

2 Forcing and Modal Logic

Although we are interested in representing forcing in an evidence logic manner,
there already exist some connections between modal logics and forcing. In fact,
these modal logics are non-normal and have natural semantics in terms of evi-
dence logic-like semantics. First we will define a language which we will add to as
we encounter problems. The basic semantic set up is just like that for evidence
logics; we start with a frame and then a model:

Definition 1. A structure F = 〈W, E〉 is a hypergraph/evidence frame iff:

1. W �= ∅, and
2. E : W → P(P(W)) such that for all x ∈ W

(a) ∅ �∈ E(x), and
(b) E(x) �= ∅.

A hypergraph/evidence model is a structure M = 〈F, V 〉 where F is a hyper-
graph/evidence frame and V : At → P(W) where At is the set of atomic
formulas of a propositional language.

For simplicity we will refer to hypergraph frames as ‘hyperframes’. We can
then define the semantics for a language on such models which we will sometimes
refer to simply as ‘models’. The language consists of the boolean operators and
the unary operator ‘Eϕ’ which is meant to be interpreted, intuitively, as that
there is evidence supporting the proposition ϕ among one’s basic evidence. Its
dual is denoted as 〈E〉. Let M = 〈F, V 〉 be a model, the semantics is:

– M, x � p iff x ∈ V (p) for all p ∈ At
– Boolean cases as usual,
– M, x � Eϕ iff there is X ∈ E(x) such that X ⊆ �ϕ�,
– M, x � 〈E〉 ϕ iff for all X ∈ E(x), X ∩ �ϕ� �= ∅.

Of course M satisfies ϕ iff there is x ∈ W such that M, x � ϕ and satisfies
a set of sentences Γ iff M satisfies all members of Γ at some world x ∈ W . As
is also standard, Γ �E ϕ iff for all M and x, if M, x � Γ , then M, x � ϕ. As is
well known [5], this logic can be axiomatized as follows:

CL All theorems of classical propositional logic.
D 	E ¬E⊥
N 	E E�

140 T. D. P. Brunet and G. Payette

M
	E p → q

	E Ep → Eq
With rules

MP Modus Ponens, and
US Uniform Substitution.

This is the basic logic of hypergraphs as we have defined them above. But as
one might expect it is nowhere near expressive enough to capture forcing. But
there are near-by logics based on hyperframes that connect to forcing and are
fairly well understood. First, there are the Kn modal logics which sometimes
represent the forcing consequences of a set of formulas.

The modal logics Kn are non-normal modal logics which are axiomatized in
the following way:1

CL All theorems of classical propositional logic.
N 	Kn

〈E〉 �
K♦

n 	Kn
(〈E〉 p1 ∧ . . . ∧ 〈E〉 pn+1) → 〈E〉∨

1≤i<j≤n+1(pi ∧ pj)
With rules

M
	Kn

p → q

	Kn
〈E〉 p → 〈E〉 q

MP Modus Ponens, and
US Uniform Substitution.

What is unique about these modal logics is the axiom K♦
n
2 which weakens the

adjunctive properties of the logic and keeps inconsistent formulas from interact-
ing. The modal logic Kn axiomatizes the logic valid on the class of all n-bounded
hyperframes. A hyperframe is n-bounded when for all X ∈ E(x) and x ∈ W ,
|X| ≤ n. This doesn’t mean that an n-bounded hyperframe is finite, just that
each edge in each hypergraph is at most n.

What can be shown is that if the level of a set Γ is n, then

Γ � α iff 〈E〉 [Γ] 	Kn
〈E〉 α

where 〈E〉 [Γ] = { 〈E〉 γ : γ ∈ Γ }. These logics, however, are not suitable for forc-
ing in general. They capture what is called ‘fixed-level forcing’ which is when one
consults all of the covers of Γ which have a fixed width, say, n.3 The problem
with Kn is two fold. If Γ ’s level is less than n, then one will lose many forcing
consequences. And if the level of Γ is larger than n, then Γ is treated as incon-
sistent, so it ‘fixed-level forces’ everything. The source of the issue is that the
Kn logics cannot discern what level a set of sentences has before determining its
consequences.

There are also the Pn logics studied in [6]. These logics are axiomatized as
follows:
1 Usually, they are presented with Es (�s) in the place of all the 〈E〉 (♦s) which makes

the connection to the modal logic K clearer in which K1 = K. But we are choosing
to remain consistent with the notation in the literature on evidence logic.

2 This is the name of the axiom as presented in [6].
3 A more appropriate name would be ‘fixed-width forcing’.

Evidence Logic and Forcing 141

CL All theorems of classical propositional logic.
N 	P n E�

Pn 	P n (Ep1 ∧ . . . ∧ Epn+1) → ∨
1≤i<j≤n+1 E(pi ∧ pj)

With rules

M
	P n p → q

	P n Ep → Eq
MP Modus Ponens, and
US Uniform Substitution.

The Pn logics are determined by the class of all consistent and n-bounded
in degree hyperframes. A hyperframe is n-bounded in degree iff for all x ∈ W ,
|E(x)| ≤ n and consistent iff for all X ∈ E(x), |X| ≥ 1 for all x ∈ W .

These logics have the resources to determine what level a set of sentences has.
If Γ has level n and m < n, then E[Γ] 	P m ⊥. That is because if M, x � E[Γ],
then for all γ ∈ Γ there is X ∈ E(x) such that X ⊆ �γ�. Now, if |E(x)| < �(Γ),
then by a pigeon hole argument we could create a syntactic cover of Γ whose
width is less than �(Γ); but that should be impossible when �(Γ) = n. So, when
E[Γ] 	P m ⊥, �(Γ) ≥ m. Similarly, if E[Γ] �P m ⊥ then �(Γ) ≤ m. If Γ is
finite, then �(Γ) ≤ |Γ |. So, for finite sets Γ , �(Γ) = n iff E[Γ] 	P n−1 ⊥ and
E[Γ] �P n ⊥.

But just because the Pn logics can determine the level of a set, that doesn’t
mean that it can determine the forcing consequences. Indeed, it doesn’t. The
logic Kn determines the forcing consequences of sets which have level n.

The fundamental issue is that forcing is a dynamic, global and contextual
conception of consequence. Generally, the logical consequences of a set of sen-
tences are dependent on what the set contains but are not influenced by global
properties of that set. Forcing, on the other hand, contextually adapts to a
particular, and important, global property of the set, namely the set’s level.
Typically, logics do not change their behaviour from context to context; that
is kind of the point of them. But forcing must, since it depends on preserving
the overall coherence of the set of premises, not just interactions between some
individual premises. So to develop a semantics for forcing we have to find a way
to overcome that narrow focus. We need a logic that can both determine the
level of a set and its forcing consequences.

3 Covers: Syntactic vs. Semantic

Although there are various logics that can represent certain kinds of forcing, none
captures forcing in general. The goal is to represent forcing using an evidence
logic style semantics. The first thing which is needed is a semantic analog of
a cover in order to represent the level of a set via a semantic object, i.e., an
evidence set.

Given a set X of subsets of a set W , we can define the level of this set in
much the same way as we defined the level of a set of formulas since, after all,

142 T. D. P. Brunet and G. Payette

subsets of W are supposed to represent propositions. We start with a cover.4 A
cover of X is a set Y ⊆ P(W)\ { ∅ } such that for each X ∈ X , there is Y ∈ Y
and Y ⊆ X. Again,

�(X) =

⎧
⎪⎨

⎪⎩

0 when X = { W }
min { |Π| : Π is a cover of X } if it exists
∞ otherwise

Like in the syntactic case, �(X) = ∞ iff there is a self-inconsistent proposition
in X , i.e., ∅ ∈ X . The conditions on evidence frames will rule out ∅ ever being
in an E(x), so no evidence set will have level ∞. A major difference is that since
E(x) could be uncountable, �(E(x)) could be an uncountable cardinal, which
cannot happen in the syntactic case when one is only working with countable
languages. But even in the syntactic case one could have an evidence set of
level ω. An evidence set like that would have covers where the extension of each
formula is in its own cell. However, given an evidence set whose narrowest cover
is of size ω, its forcing consequences boil down to only what follows from the
individual pieces of evidence on their own.

Another fact which is easy to see is that if Y is a cover of X , then �(Y) ≥ �(X).
For suppose that Y ′ is a cover of minimal width of Y. Then |Y ′| = �(Y). But the
transitivity of ⊆ means that Y ′ is also a cover of X . Thus, �(X) ≤ |Y ′| = �(Y).

We now introduce some closely related concepts to connect semantic covers to
syntactic covers via the evidence models. These concepts help us discuss the vari-
ous ways that sets of sentences may relate to sets of basic evidence, given a model
and point within it. Note that if M is a model, �Γ �M = { �γ� : γ ∈ Γ } rather
than the more common understanding of that notation as

⋂ { �γ� : γ ∈ Γ }. We
will usually omit the subscript M.

Definition 2. Let M be a model, x ∈ W , Γ a set of sentences, and X ∈ E(x).
We will say,

– M covers Γ at x iff ∀γ ∈ Γ ,∃X ∈ E(x),X ⊆ �γ�.
– M strongly covers Γ at x iff �Γ � ⊆ E(x).
– M is unified by Γ at x iff ∀X ∈ E(x),∃γ ∈ Γ , �γ� ⊆ X.
– M is strongly unified by Γ at x iff �Γ � ⊆ E(x) and M is unified by Γ at x.

In the vocabulary of evidence models from Sect. 1, M covers Γ at x iff there
is evidence that γ at x for each γ ∈ Γ , and strong covering is, intuitively, the
claim that Γ is among the basic evidence at x. For unification, M unifies Γ at
x when every piece of basic evidence is evidenced by something in Γ . Finally,
strong unification is when the evidence at x is unified by a subset of the evidence
at x. These concepts (and those that can be defined in terms of them) exhausts

4 We could define a cover of X as a subset of P(P(W)), Π such that for each π ∈ Π,
∩π �= ∅ and for each X ∈ X there is π ∈ Π such that ∩π ⊆ X and if Π is a partition
of X we say that Π would be a partition cover. However, the definition on offer is
slightly more economical.

Evidence Logic and Forcing 143

the ways in which we will need to refer to the relationships between theories and
evidence sets, in order to establish a correspondence between syntactic covers
of Γ and semantic covers of E(x). Moreover, note that covering is stable under
subsets of Γ and it is easy to see that M covers Γ at x iff M, x � E[Γ]. Also,
when M is unified by Γ at x, then �Γ � is a cover of E(x).

The natural epistemic interpretation of unification is that the evidence at x
can be theoretically unified by taking Γ as a set of hypotheses, e.g., each piece
of evidence can be predicted by the propositions in Γ . When we have Γ in hand,
this is clearly an epistemic virtue often sought after in scientific theories: good
theories should imply our evidence.5 While philosophically important, we neglect
further discussion of the intuitive philosophical interpretation of these concepts.
Instead, we show that unification provides a relationships between evidence sets
E(x) and theories Γ that suffices for a preservationist approach to evidence, by
ensuring that syntactic level and semantic level coincide.

Notice first that covering does not suffice. When M covers Γ at x, the
level of E(x) is not guaranteed to be the same as the level of Γ . Take Γ =
{ p, q, r,¬p, r → ¬q }. This set has level 2 since

Π = { π1 = { p, q, r } , π2 = { ¬p, r → ¬q } }

is a partition cover. Then take any model M in which ∩�π1� �= ∅ and ∩�π2� �= ∅
such that there are a, b, c for which a ⊂ �p�\�q� ∪ �r� and b ⊂ �q�\�p� ∪ �r�
and c ⊂ �r�\�q� ∪ �p�. Let E(x) = { a, b, c }. Then M covers Γ at x, since for
each γ ∈ Γ one of a, b, c is a subset of its extension. (Obvious for p, q and r).
Consider �¬q�, e.g. a ⊂ �¬q�, and likewise a ⊂ �r�c ∪ �q�c.6 But now we have
an M that covers Γ at x but where �(E(x)) > �(Γ), since a, b, c all pairwise
disjoint, �(E(x)) = 3. We will also notice that in this model �(�Γ �) > �(Γ). In
general, by a similar pigeon hole argument as above, it will always be the case
that �(�Γ �) ≥ �(Γ) for any Γ .

However, although M covers Γ does not ensure that the semantic cover has
the same level as Γ , if M is also unified by Γ then the evidence set will have
the same level as the extensions of all of the sentences in Γ .

Observation 1. Let M be a model and x ∈ W . If M is unified by Γ at x, then
�(�Γ �M) ≥ �(E(x)). If, in addition, M covers Γ at x, then �(�Γ �M) = �(E(x)).

Proof. �(�Γ �M) ≥ �(E(x)) is immediate since �Γ �M is a cover of E(x) when M
is unified by Γ at x.

Suppose also that for all �γ� ∈ �Γ �M, there is X ∈ E(x) such that X ⊆ �γ�,
i.e., M covers Γ at x. That means E(x) is a cover of �Γ �M and as we have
observed, then, �(E(x)) ≥ �(�Γ �M). Therefore, �(E(x)) = �(�Γ �M)

5 Of course, it is also a property that can be trivially satisfied by taking Γ to be large
enough—assuming that each X ∈ E(x) can be represented by a formula. Of course,
if Γ has other properties, e.g., finiteness, that makes a better case for a non-trivial
unification.

6 Xc is the relative complement of X with respect to W .

144 T. D. P. Brunet and G. Payette

In the modal language introduced so far, we can express covering, but not
unification. The above result thus gives us reason to introduce an operator which
allows us to express in the object language that a set of sentences unifies one’s
evidence. This operator, having variable arity, will be somewhat unorthodox.
However, a similar operator has been introduced by [3] in the development of
Instantial Neighbourhood Logic (INL).7 The operator is constructed as follows:

If ϕ1, . . . , ϕn, ψ are formulas, so is U(ϕ1, . . . , ϕn;ψ).8

The inclusion of the formula at the end ‘. . . ;ψ)’ is an effort to build a logic
that is parallel with INL. In future work we intend to investigate classes of
operators—which we call ‘pointed operators’, where ψ is the point—that all
have the same syntactic form and whose truth conditions have a similar shape.
Having said that, the pointedness of the formula provides some very useful, and
perhaps required, expressive power. The semantics of this operator is as one
might expect given the discussion above:

M, x � U(ϕ1, . . . , ϕn;ψ) ⇐⇒ for all X ∈ E(x), if X ⊆ �ψ� then there is i ≤ n s.t. �ϕi� ⊆ X.

We have yet to bring syntactic and semantic conceptions of level together and
a major stumbling block is that the syntactic consistency of a set of formulas
requires looking at all the models whereas semantic level is determined merely
by the model at hand. In some cases this gap can be bridged. Let At(Γ) =
{ p ∈ At : p is mentioned in Γ } where At is the set of atomic sentences. Note
that in the following observation we will just be using the conceptions of syntactic
level derived from classical consequence. Let’s call a model M consistency
comprehensive for Γ when for all X ⊆ At(Γ), there is x ∈ W such that for
all p ∈ At(Γ), M, x � p iff p ∈ X.

Observation 2. Suppose Γ is a set of pure Boolean formulas. If M = 〈F, V 〉
is consistency for Γ , then �(Γ) = �(�Γ �M).

Proof. First notice that if Γ contains some formula equivalent to ⊥, then ∅ ∈
�Γ �M, and �(Γ) = ∞ = �(�Γ �M).

Next, notice that if Γ ′ ⊆ Γ and is propositionally consistent, there is a truth
value assignment v to the atoms that are mentioned in Γ ′ such that �v Γ ′. Let
X = { p : v(p) = T } ∩ At(Γ). Then, by hypothesis there is a x ∈ W such that
M, x � p iff p ∈ X for all p ∈ At(Γ), so M, x � Γ ′.
7 The operator in [3] is �(ϕ1, . . . , ϕn; ψ) which is true at M, x iff there is X ∈ E(x)

such that X ⊆ �ψ� and X ∩ �ϕi� �= ∅ for each i ≤ n. Its dual would be true, then, iff
for all X ∈ E(x) if X ⊆ �ψ�, then X ⊆ �ϕi� for some i ≤ n. Whereas that operator
says that all of the evidence is sufficient for at least one of ϕis—when it is sufficient
for ψ, our U operator says that any piece of evidence is necessary for at least one of
the ϕis, when it is sufficient for ψ.

8 As abbreviations, we will write ϕ to mean ϕ1, . . . , ϕn, and (ϕ/ψ)i to mean

ϕ1, . . . , ϕi−1, ψ, ϕi+1, . . . , ϕn

for i ≤ n.

Evidence Logic and Forcing 145

Let Π be a (syntatic) cover of Γ of width �(Γ). Without loss of generality,
we can assume that all logically equivalent formulas are in the same cells of the
partition. Now form the following partition of �Γ �M by

Π ′ = { { �γ� : γ ∈ π } : π ∈ Π } .

Claim: If π′ ∈ Π ′, then ∩π′ �= ∅. Since π ⊆ Γ is a consistent subset of Γ
(it is a cell in a cover of Γ), by the observation above there is x ∈ W such that
M, x � π. Thus, x ∈ ∩π′. Hence Π ′′ = { ∩π′ : π′ ∈ Π ′ } is a cover of �Γ �M and
its width is �(Γ) by construction. Thus �(�Γ �M) ≤ �(Γ). Since �(�Γ �M) cannot
be less than �(Γ), �(�Γ �M) = �(Γ).

For a finite and purely Boolean Γ , consistency comprehensiveness can be
expressible if we include a standard modal operator: ♦ϕ meaning that ϕ is true
at some “related” world. Although a relation could be added to interpret ♦, we
will simply interpret ♦ as a global modality:

M, x � ♦ϕ ⇐⇒ there is w ∈ W s.t. M, w � ϕ.

Now we can express consistency comprehensiveness. When Γ is finite and
purely Boolean, let ♦At(Γ) be the formula:

∧

Γ ′⊆At(Γ)

♦((
∧

p∈Γ ′
p) ∧

∧

q∈At(Γ)\Γ ′
(¬q)).

So, for example, if At(Γ) = { p, q, r }, then ♦At(Γ) is

♦(p ∧ q ∧ r) ∧ ♦(p ∧ q ∧ ¬r) ∧ ♦(p ∧ ¬q ∧ r)∧
♦(¬p ∧ q ∧ r) ∧ ♦(p ∧ ¬q ∧ ¬r) ∧ ♦(¬p ∧ q ∧ ¬r)∧
♦(¬p ∧ ¬q ∧ r) ∧ ♦(¬p ∧ ¬q ∧ ¬r)

As is easily verified, M satisfies ♦At(Γ) iff M is consistency comprehensive
for Γ .

While the results above assumed a particular proof theoretic relation to define
the syntactic covers, none of its specifics beyond being an extension of classi-
cal propositional logic were used. It can be replaced by any extension of CPL
even one that is merely determined by a semantics. In the latter case we replace
consistency with satisfiability and consequence with entailment, both relative
to whatever semantics is being used. As long as the resulting (semantic) conse-
quence relation is reflexive, transitive and monotonic, the syntactic covers and
thus the level function will have all the necessary properties. This is fortunate
since the subsequent extensions we have made to the language have not been
given any sort of axiomatization so far. Nonetheless, the results above still hold
for our new language which includes the U operator and ♦/�. With this obser-
vation in mind we can then show the following:

Lemma 1. Suppose that Γ = { γ1, . . . , γn }. If M, x � (Eγ1 ∧ . . . ∧ Eγn) ∧
U(γ1, . . . , γn;�), then �(E(x)) = �(�Γ �M). If in addition Γ is purely boolean
and M is consistency comprehensive for Γ , �(Γ) = �(E(x)).

146 T. D. P. Brunet and G. Payette

Proof. From the previous observations and the definition of U .

Just as a reminder of the goal, we are trying to find a representation for
forcing in terms of evidence logic in the same way that the Kn logics represent
‘fixed-level forcing’. We have so far been able to find a way to express the level
of a set of formulas, at least in the Boolean case (which is all we need).

To express that a formula is a forcing consequence we also need a way to
canvas all the relevant covers of a set of sentences. While we will have to add
an operator to the language to express the relevant relationship, it is express-
ible by a relation definable on the frames rather than on the models given.
To define this relation we first need the idea of the core of E(x), denoted
‘cor(E(x))’ which is the set of any ⊆-minimal elements of E(x). More precisely,
cor(E(x)) = { X ∈ E(x) :� ∃Y ∈ E(x), Y � X }, i.e., the set of elements of E(x)
for which there is no proper subset also in E(x). A frame will be said to be core
complete iff the core represents all the sets in E(x) in the sense that if Y ∈ E(x)
there is some set X ∈ cor(E(x)) such that X ⊆ Y .

It is fairly easy to see that �(cor(X)) = �(X). What is also fairly easy to see
is that if all the elements in the core are mutually exclusive, then the size of the
core is the level of the set, i.e., |cor(X)| = �(X), if for all distinct X,Y ∈ cor(X),
X ∩ Y = ∅.

Now we define a relation covF ⊆ W × W as follows:

Definition 3. Let F = 〈W, E〉 be a hyperframe. For all x, y ∈ W , covF(x, y)
holds iff

1. for all X ∈ E(x) there is Y ∈ E(y) such that Y ⊆ X,
2. for all Y ∈ cor(E(y)) there is X ∈ E(x) such that Y ⊆ X, and
3. |cor(E(y))| = �(E(x)).

The idea is to have covF(x, y) iff the “evidence set” at y forms a cover of
minimal width of the evidence at x relative to F. So, if we were to look at all
models on all frames we would be able to find all possible covers of Γ of width
�(Γ). We can now extend the language to include a new operator F to interpret
the covF relation on the frames, but the relation which interprets F needn’t be
all of covF. In fact, it needn’t be a subset of covF for the application that we
have in mind. All that matters is that RF and covF agree when E(x) is finitely
unifiable, but we will discuss this in more detail in Sect. 5. So, we can simply
use a relation RF on W which we will assume agrees with covF on the relevant
pairs (x, y).

M, x � Fϕ ⇐⇒ ∀w ∈ W,RF (x,w),M, w � ϕ.

Define Γ �F ϕ iff for all hypermodels over the language defined so far with
the semantics developed so far, if M, x � Γ , then M, x � ϕ. �F ϕ when ϕ is true
at all worlds in all hypermodels. As discussed above, we can use �F to define
syntactic covers and observations 1 and 2 will carry over to the current context.
Just to be explicit about how that is done: Π is a syntactic cover of Γ relative
to F iff for each π ∈ Π, π is satisfiable and for each γ ∈ Γ there is π ∈ Π such
that π �F γ.

Evidence Logic and Forcing 147

Lemma 2. Let M be a hypergraph model. If M covers and is unified by Γ at
x and covF(x, y), then ΠE(y) = { { ϕ : Y ⊆ �ϕ� } : Y ∈ cor(E(y)) } is a syntactic
cover of Γ (not necessarily a partition cover). If, in addition, Γ is pure boolean
and M is consistency comprehensive for Γ , then the width of ΠE(y) is �(Γ).

Proof. Consider ΠE(y) = { { ϕ : Y ⊆ �ϕ� } : Y ∈ cor(E(y)) }. Since M covers Γ
at x, for each γ ∈ Γ , there is X ∈ E(x) such that X ⊆ �γ�. By condition 1 in
the definition of cov, there is Y ∈ E(y) such that Y ⊆ X and, by definition of
the core, there is Y ′ ∈ cor(E(y)) such that Y ′ ⊆ Y . Thus, for any γ ∈ Γ , there
is a Y ′ ∈ cor(E(y)) such that Y ′ ⊆ �γ�. That means, for each γ ∈ Γ , there is
π ∈ ΠE(y) such that γ ∈ π, hence π �F γ. Furthermore, by definition of ΠE(y),
for each π ∈ ΠE(y) there is a Y ∈ cor(E(y)) such that Y ⊆ ∩�π� and of course
Y �= ∅ since M is a hypermodel and so ∅ �∈ E(y). Hence each π is satisfiable.
Thus ΠE(y) is a syntactic cover of Γ . Also notice that the width of ΠE(y) is
|cor(E(y))|.

From observation 1 we know that �(E(x)) = �(�Γ �) since M covers and is
unified by Γ at x. So, |cor(E(y))| = �(�Γ �) by condition 3 in the definition
of cov. If we also assume that Γ is pure boolean and that M is consistency
comprehensive for Γ , then by observation 2, �(�Γ �) = �(Γ). Hence the width of
ΠE(y) is �(Γ).

Now we can ask the relevant question: is this logic one that allows us to
capture classical forcing in at least the finite cases? The answer, fortunately, is
‘yes’.

Theorem 1. Suppose Γ = { γ1, . . . , γm } and ϕ are purely Boolean.

Γ � ϕ ⇐⇒ �F [(Eγ1 ∧ . . . ∧ Eγm) ∧ U(γ1, . . . , γm;�) ∧ ♦At(Γ)] → FEϕ

Proof. The only if direction follows by proving the contrapositive using Lemma
2. If �F [(Eγ1∧ . . .∧Eγm)∧U(γ1, . . . , γm;�)∧♦At(Γ)] → FEϕ, then there is a
model and world M, x such that M, x � (Eγ1 ∧ . . .∧Eγm)∧U(γ1, . . . , γm;�)∧
♦At(Γ), but M, x � FEϕ. Since ♦At(Γ) is true at x, M is consistency compre-
hensive for Γ . And since M, x � FEϕ, there is a y ∈ W such that cov(x, y) such
that M, y � Eϕ. Now we can apply Lemma 2 to E(y) and given that cov(x, y),
|cor(E(y))| = �(Γ). Given that |ΠE(y)| = |cor(E(y))|, we get a cover of Γ such
that each cell does not entail ϕ.

For the if direction again we will argue contrapositively. Assume that Γ �� ϕ.
Note that in this case, � is forcing based on classical propositional logic.

Notice that since Γ is finite �(Γ) = n ≤ |Γ |. Since Γ does not force ϕ there is
a syntactic partition cover Π = { πi : 1 ≤ i ≤ n } of Γ (of width n) such that for
all π ∈ Π, π � ϕ. Hence there are n truth value assignments v1, . . . , vn such that
for each π ∈ Π, there is i ≤ n such that �vi

π and �vi
ϕ by the completeness of

CPL with respect to two-valued truth value assignments.

148 T. D. P. Brunet and G. Payette

Define WΠ = { v : ∃X ⊆ At(Γ),∀p ∈ At, p ∈ X only if v(p) = T }; and VΠ :
At → P(W) such that VΠ(p) = { v ∈ WΠ : v(p) = T }. Finally, define EΠ(v) as

EΠ(v) =

{
{ �γ� : γ ∈ Γ } v = v1

{ ∩�π� : π ∈ Π } v �= v1

Let MΠ = 〈WΠ , EΠ , VΠ〉. In the case where Γ is consistent E(v) = { ∩�Γ � }
for all v �= v1. Since all the vi above are in WΠ , WΠ �= ∅. Similarly, for all v ∈ W ,
and X ∈ EΠ(v), there is vi from above such that vi ∈ X. So, ∅ �∈ EΠ(v). As
we have defined MΠ , it is consistency comprehensive for Γ , and since EΠ(v1) =
{ �γ� : γ ∈ Γ }, MΠ , v1 � [(Eγ1 ∧ . . . ∧ Eγm) ∧ U(γ1, . . . , γm;�) ∧ ♦At(Γ)].

Let FΠ = 〈WΠ , EΠ〉. Now we must exhibit at least one world that v1 relates
to by covFΠ

at which ϕ is false. Again since MΠ is consistency comprehensive
for Γ , by Lemma 2,

�(EΠ(v1)) = �(cor(EΠ(v1))) = �(�Γ �) = �(Γ) = |EΠ(v)|

for all v �= v1. Since for each γ ∈ Γ , there is π ∈ Π such that π � γ, ∩�π� ⊆ �γ�.
But also, since each π is a consistent non-empty subset of Γ , there is γ ∈ Γ such
that ∩�π� ⊆ �γ�, since γ ∈ π. Thus, covFΠ

(v1, v) for all v �= v1. So, in particular
covFΠ

(v1, v2) and we can set RF = covFΠ
.

Finally, each of the vi from above are such that vi ∈ ∩�πi� but vi �∈ �ϕ� for
i ≤ n; hence ∩�πi� �⊆ �ϕ�. So, by definition, MΠ , v2 � Eϕ and so MΠ , v1 � FEϕ.
Therefore, �F [(Eγ1 ∧ . . . ∧ Eγm) ∧ U(γ1, . . . , γm;�) ∧ ♦At(Γ)] → FEϕ.

Thus, this logic allows one to represent classical forcing via a modal evidence
logic. The next step, is to axiomatize the system. We will first give an axioma-
tization for a logic with the operators E,�, F, and U relative to all hypergraph
models for which ∅ �∈ E(x) �= ∅. The logic F required by Theorem 1 is obtained
by adding axioms to the logic U and is discussed in Sect. 5.

4 Semantics and Axiomatization for U

We start with the language LU. It is defined by the following BNF:

ϕ := ⊥ | p | ¬ϕ | Fϕ | Eϕ | �ϕ | ϕ → ϕ | U(ϕ, . . . , ϕ
︸ ︷︷ ︸
n−times

;ϕ) n ∈ Z+

Where p ∈ At the set of atoms. The operators ♦, 〈F 〉, and 〈E〉 are defined via
their duals ¬�¬ϕ for � ∈ {�, F,E }, and the other Boolean connectives are
defined in the usual way. In the interest of limiting the number of operators to
keep it in line with the literature on evidence logics we won’t introduce addi-
tional neighbourhood operators like: for all X ∈ E(x),X ⊆ �ϕ� which have been
discussed elsewhere [10]. Next we have a frame and then a model:

Definition 4. A structure F = 〈W, E〉 is a hypergraph frame iff:

Evidence Logic and Forcing 149

1. W �= ∅, and
2. E : W → P(P(W)) such that for all x ∈ W

(a) ∅ �∈ E(x), and
(b) E(x) �= ∅

3. RF is a relation on W
4. The frame is augmented when there is an equivalence relation R� ⊆ W ×W

added to the frame.

A hypergraph9 model is a structure M = 〈F, V 〉 where F is a hypergraph frame
and V : At → P(W).

Let M = 〈F, V 〉 be a hypermodel. The semantics for the logic U for hypermodels
is:

– M, x � p iff x ∈ V (p) for all p ∈ At
– Boolean cases as usual,
– M, x � Eϕ iff there is X ∈ E(x) such that X ⊆ �ϕ�,
– M, x � 〈E〉 ϕ iff for all X ∈ E(x), X ∩ �ϕ� �= ∅,
– M, x � �ϕ iff �ϕ� = W ,
– M, x � ♦ϕ iff �ϕ� �= ∅,
– M, x � Fϕ iff RF (x) ⊆ �ϕ�,
– M, x � U(ϕ1, . . . , ϕn;ψ) iff for all X ∈ E(x), X ⊆ �ψ� only if for some i ≤ n,

�ϕi� ⊆ X

This semantics gives rise to a semantic consequence relation �U, defined in
the usual way. This system is complete with respect to the following axioms,
which will give rise to the syntactic system 	U. In the following axioms ϕ refers
to a tuple of formulas ϕ1, . . . , ϕn as before, but in cases where it is not the only
argument on the left of the ‘;’ in a U operator it can be empty. n! refers to all
permutations of { 1, 2, . . . , n } and σ will be a specific permutation in n! where
σ(k) is the number that k is permuted to by the permutation σ. Let p, q, r, s, pi

be in At.

CL All theorems of classical propositional logic.
S5 The axioms of S5 for �.

KF (Fp ∧ Fq) ←→ F (p ∧ q)
�F �p → Fp

D ¬E⊥
N E�

E� �(p → q) → (Ep → Eq)
MergeE (Ep ∧ �q) → E(p ∧ q)

U⊥ U(⊥; q)

9 We are using a ‘hypergraph model’ in the sense found in [9] rather than in [6].
Our hypergraph models are what they call neighbourhood models and what [5]
calls ‘Minimal Models’. Topologically speaking, it would make more sense to call
neighbourhood models those minimal models 〈W, E〉 in which for each x ∈ W , x ∈⋂ E(x) since a neighbourhood of x would usually contain x.

150 T. D. P. Brunet and G. Payette

U! U(p1, . . . , pn;ψ) → (
∧

σ∈n! U(pσ(1), . . . , pσ(n); q))
UE ¬U(p; q) → Eq
U+ U(p; q) → U(p, r; q)
U- U(p, r, r; q) → U(p, r; q)

UV (U(p; q) ∧ Eq) → ∨n
i=1 �(pi → q)

U�R �(q → r) → (U(p; r) → U(p; q))
U�L �(q → r) → (U((p/r)i; s) → U((p/q)i; s))

With rules
US Uniform Substitution,
MP Modus Ponens,
Nec 	 ϕ only if 	 �ϕ

UInf

� θ → (�(p → ψ) → (
∧n

j=1 ♦(ϕj ∧ ¬p) → ¬Ep))

� θ → U(ϕ1, . . . , ϕn;ψ)
p foreign to ϕ1, . . . , ϕn, ψ, θ

The usual definitions for Hilbert-style proof theory are used: Γ 	U ϕ iff there
are γ1, . . . , γk ∈ Γ such that 	U (γ1 ∧ . . .∧ γn) → ϕ. As will be shown in Sect. 6:

Theorem 2. The system 	U is sound and complete with respect to �U.

A few comments about the system are in order. The axiomatization is obvi-
ously not finite, but it is recursive. We can also treat the tuple of formulas before
the semicolon in the U operators as a set given axioms U! and U-. The contra-
positive of UV is equivalent to

∧n
i=1 ♦(ϕi ∧¬ψ) → (Eψ → ¬U(ϕ;ψ)), and given

UE,
∧n

i=1 ♦(ϕi ∧ ¬ψ) → (Eψ ←→ ¬U(ϕ;ψ)) is derivable for any formulas ϕ,ψ.
That also indicates how to interpret the UInf rule. UInf formalizes the idea that
if no proposition that both implies ψ and is not implied by any of the ϕis in
U(ϕ1, . . . , ϕn;ψ), can be in an evidence set at a world when θ is also true, then
U(ϕ1, . . . , ϕn;ψ) must be true.

5 Definability and the Logic F

The first thing we will point out is that we know the logic U is distinct from
Instantial Neighbourhood Logic (INL) of [3]. The reason for this is that using
the U and E operators we can define � in the context of the E� axiom10:

(U(¬ϕ;ϕ) ∧ Eϕ) ←→ �ϕ

10 A syntactic derivation of this equivalence proceeds as follows: Suppose U(¬ϕ; ϕ)∧Eϕ.
An instance of UV is (U(¬ϕ; ϕ) ∧ Eϕ) → �(¬ϕ → ϕ), so we can infer �(¬ϕ → ϕ)
which is equivalent to �ϕ in any normal modal logic. Conversely, suppose �ϕ. Thus,
in any normal modal logic �ϕ → �(¬ϕ → ⊥) is a theorem. By U⊥, U(⊥; ϕ) is a
theorem of U , and by U�L, �(¬ϕ → ⊥) → (U(⊥; ϕ) → U(¬ϕ; ϕ)) is a theorem and
thus, U(¬ϕ; ϕ) follows. Since �ϕ → �(� → ϕ) is a theorem of any normal modal
logic, using N, and E�, we can derive Eϕ.

Evidence Logic and Forcing 151

While the E operator can be defined in INL—it is a special case of it—the
authors show that � is not definable in INL. Although this means that � isn’t
needed in U, it is convenient to treat it as separate.

The system U is complete with respect to the class of all hypermodels. But
the system needed to meet the requirements for the proof of Theorem 1 asks
more of the relation RF which interprets the F operator. The condition that is
sufficient for Theorem 1 is the following: If M is a hypergraph model based on
the frame F = 〈W, E〉, then for all x ∈ W , E(x) is finitely unifiable only if for
all y ∈ W such that RF (x, y), covF(x, y). I.e., when E(x) is finitely unifiable, all
the RF -realted worlds are minimal covers of E(x).

The task is to find axioms which guarantee that the conditions in the defini-
tion of covF(x, y) are met. Thus, we need to show that if, RF (x, y) and E(x)
is finitely unifiable, then 1) for all X ∈ E(x) there is Y ∈ E(y) such that
Y ⊆ X, 2) for all Y ∈ cor(E(y)) there is X ∈ E(x) such that Y ⊆ X, and
3) |cor(E(y))| = �(E(x)).

These requirements can be achieved by imposing axioms which define certain
properties of the frames, since, after all, the properties that are required depend
on the frames rather than the models. As per usual, a formula α is valid on a
frame F = 〈W, E , RF 〉 iff for all models M based on F, and all x ∈ W , M, x � α,
and we will denote that α is valid on F by F � α.

Ensuring that condition 1 is met requires a fairly simple axiom which we
refer to as EF: Ep → FEp.

Proposition 1. Let F be a hyperframe. F � Ep → FEp iff for all x, y ∈ W , if
RF (x, y), then for all X ∈ E(x) there is Y ∈ E(y) such that Y ⊆ X. The proof
is standard and uncomplicated, so we will omit it.

To capture the other conditions we will first define some operators as abbre-
viations to simplify the expression of the axioms. One of the first things that we
can notice is the one can express that a (finite) set of formulas forms a cover of
E(x). We define cov(p):

cov(p1, . . . , pn) :=
n∧

i=1

♦pi ∧ U(p1, . . . , pn;�)

When cov(ϕ) is true at x ∈ W , then ϕ unifies E(x) so { �ϕ� : ϕ ∈ ϕ } could serve
as a semantic cover for E(x) since none of the �ϕ� is empty, but not necessarily
a partition cover. But ϕ may not strongly unify M at x when cov(ϕ) is true.

The next operator indicates that the extensions of the formulas to which it
applies are found in the core of E(x):

core(p1, . . . , pn) :=
n∧

i=1

(Epi ∧ U(pi; pi))

The ability to express that the extension of a formula is in the core of an evidence
set is a great side-effect of making the U operator parallel with those found in the

152 T. D. P. Brunet and G. Payette

Instantial Neighbourhood Logic of [3]. Without the operator’s “point”—the for-
mula after the semicolon—we could not guarantee that, when Ep is also true, �p�
is the only element of E(x) which is contained in �p�. If we add U(p1, . . . , pn;�)
to core(p1, . . . , pn), we get a formula that expresses that E(x) contains a cover
of itself as its core, i.e., cor(E(x)) = { �pi� : i ≤ n }. This operator expresses that
the sequence of formulas constitute the entire core of E(x):

totalcore(p1, . . . , pn) :=
n∧

i=1

(Epi ∧ U(pi; pi)) ∧ U(p1, . . . , pn;�).

To capture conditions 2 and 3 in the definition of covF(x, y) we use recursive
sets of formulas. While EF provided condition 1 without the assumption that
E(x) is finitely unifiable, our next “axioms” make that assumption explicit.

While we usually work with individual axioms or collections of various axioms
to define frame conditions, the following “axioms” are actually recursive sets of
formulas. Define the set of formulas Cor by

Cor :=

{

totalcore(p1, . . . , pn) → (〈F 〉 core(q) →
n∨

i=1

�(q → pi)) : n > 0 & pi, q ∈ At

}

Proposition 2. Let F be a hyperframe. F � Cor iff for all x, y ∈ W if RF (x, y)
and E(x) has a finite and non-empty core, then for all Y ∈ cor(E(y)) there is
X ∈ cor(E(x)) such that Y ⊆ X.

The condition on frames above is stronger than what condition 2 requires
since it says that for each set in the core of any world that x RF -relates to
will imply all the elements of the core of E(x), provided there is a core. That
could pose a problem since condition 2 doesn’t require that all evidence sets
have cores. However, as we discuss at the end of Sect. 6.2, U is complete with
respect to the class of core-complete hyperframes, so we can restrict attention
to only core-complete hyperframes in this context as well. In addition, the proof
of Theorem 1 only use a model which is core-complete, so the assumption of
core-completeness leaves all results intact.

Now we can home in on finding conditions for |cor(E(y))| = �(E(x)). The first
thing to notice is that in section three the results were limited to finite cases, so
while there can be evidence sets which have infinite levels, we are setting those
to the side for the moment. We shall define another set of formulas UpLev as
follows:

UpLev = {cov(q1, . . . , qk) → (〈F 〉 totalcore(p1, . . . , pn) → U(p1, . . . , pn;�)) :
n, k ∈ N & pi, qj ∈ At}

Proposition 3. Let F be a hyperframe. F � UpLev iff for all x, y ∈ W , if
cor(E(y)) and �(E(x)) are finite, then RF (x, y) only if cor(E(y)) is a cover of
E(x).

Evidence Logic and Forcing 153

The effect of this result is to enforce an upper bound on �(E(x)) when it
is finite; hence the name. Notice that if |cor(E(y))| is finite and RF (x, y) in an
UpLev-frame, i.e., a frame F where all formulas in UpLev are valid on F, then
�(E(x)) ≤ |cor(E(y))|. That follows since if cor(E(y)) is a cover of E(x), then the
level of �(E(x)) can’t be any larger than the size of that cover. What is needed,
then, is a lower bound. For that we define:

LowLev=

⎧
⎨

⎩
cov(r1, . . . , rn) → (〈F 〉 core(p1, . . . , pk) → (U(q1, . . . , qm; �) →

m∨

i=1
¬♦qi)) : n, k, m ∈ N & m < k

⎫
⎬

⎭

Proposition 4. Let F be an hyperframe. F � LowLev iff for all x, y ∈ W , if
RF (x, y), then �(E(x)) ≥ |cor(E(y))| when �(E(x)) is finite.

Proof. Suppose that F is a hyperframe such that for all x, y ∈ W , if
RF (x, y), then �(E(x)) ∈ N only if �(E(x)) ≥ |cor(E(y))|. Now suppose
that M is a model based on F and that x ∈ W such that M, x �
cov(r1, . . . , rn) ∧ 〈F 〉 core(p1, . . . , pk) ∧ U(q1, . . . , qm;�) where m < k. From
M, x � cov(r1, . . . , rn), we can infer that �(E(x)) is finite and from M, x �
〈F 〉 core(p1, . . . , pk) we can infer that there is y ∈ W such that RF (x, y) (and
that M, y � core(p1, . . . , pk)). Thus, by our assumption about F, �(E(x)) ≥
|cor(E(y))|. Since M, y � core(p1, . . . , pk), { �pi� : i ≤ k } ⊆ cor(E(y)), hence,
|cor(E(y))| ≥ k. Now suppose for reductio that for each i ≤ m, �qi� �= ∅.
Since M, x � U(q1, . . . , qm;�), { �qi� : i ≤ m } is a cover of E(x). In general,
if X is a cover of Y, then �(Y) ≤ �(X), and �(X) ≤ |X |. Thus, �(E(x)) ≤
�({ �qi� : i ≤ m }) ≤ | { �qi� : i ≤ m } | ≤ m. Thus,

�(E(x)) ≥ |cor(E(y))| ≥ k > m ≥ �({ �qi� : i ≤ m }) ≥ �(E(x)),

a contradiction. So, some �qi� = ∅. Therefore, M, x �
∨m

i=1 ¬♦qi. Since, n,m,
and k were arbitrary as was the model M based on F, F � LowLev.

Conversely, suppose that F is such that there are x, y ∈ W such that RF (x, y)
and �(E(x)) is finite, but that �(E(x)) < |cor(E(y))|. Since �(E(x)) is finite
suppose it is n and then suppose that { X1, . . . , Xn } is a cover of minimal
width of E(x). Suppose that { Y1, . . . , Yn+1 } ⊆ cor(E(y)) which must exist since
|cor(E(y))| > n. Define M in which V (ri) = Xi = V (qi) for i ≤ n and V (pj) = Yj

for j ≤ n + 1. Since n < n + 1, the formula:

cov(r1, . . . , rn) → (〈F 〉 core(p1, . . . , pn+1) → (U(q1, . . . , qm;�) →
n∨

i=1

¬♦qi))

is in LowLev. Furthermore, since the Xi’s form a cover of E(x) none of them
is empty nor are any of the Yjs since they are from the core of E(y). As
we have assumed that RF (x, y), M, y � core(p1, . . . , pn+1) and so M, x �
〈F 〉 core(p1, . . . , pn+1). And as we have assumed the Xis are a cover of E(x),
M, x � cov(r1, . . . , rn), but also as part of that M, x � U(q1, . . . , qn). However,
since none of the Xis is empty M, x �

∨n
i=1 ¬♦qi. Thus

M, x � cov(r1, . . . , rn) → (〈F 〉 core(p1, . . . , pn+1) → (U(q1, . . . , qm;�) →
n∨

i=1

¬♦qi))

154 T. D. P. Brunet and G. Payette

and so F � LowLev.

Suppose now that F is a (core-complete) frame on which EF, UpLev, LowLev,
and Cor are all valid. If x ∈ W and �(E(x)) is finite, then for any y ∈ W such
that RF (x, y), |cor(E(y))| must also be finite by LowLev. Hence, by UpLev, if
RF (x, y), cor(E(y)) must be a cover of E(x). Thus, |cor(E(y))| = �(E(x)).

We will refer to a hyperframe F which is an EF, LowLev, UpLev, and Cor
frame as a forcing-frame. If F is a forcing-frame, then if x ∈ W and �(E(x)) is
finite, then RF (x, y) only if covF(x, y). Thus, the relation �F and its underly-
ing semantics needed to prove Theorem 1 is the class of forcing frames. As an
example of a forcing frame, one can consider the frame constructed in the proof
of Theorem 1.

We can then get the proof theory of the logic F by adding to the logic U the
additional axioms:

EF Ep → FEp
Cor totalcore(p1, . . . , pn) → (〈F 〉 core(q) → ∨n

i=1 �(q → pi)) where n > 0
UpLev cov(q1, . . . , qk) → (〈F 〉 totalcore(p1, . . . , pn) → U(p1, . . . , pn;�)) where

n > 0
LowLev cov(r1, . . . , rn) → (〈F 〉 core(p1, . . . , pk) → (U(q1, . . . , qm;�) →∨m

i=1 ¬♦qi)) where m < k and n > 0

6 Soundness and Completeness of U

6.1 Soundness

The validity of most of the axioms is straightforward. The � operator is supposed
to be a global necessity, and F is, at this point, just a normal modal operator.
D ensures that ∅ �∈ E(x) and N ensures that E(x) �= ∅. The E operator is a
classical modal operator in Segerberg’s sense, hence E�. The other things to
notice is that since � is global necessity, the truth of �(ϕ → ψ) anywhere in a
model translates to �ϕ� ⊆ �ψ�.

U⊥ is valid becuase ∅ is a subset of any set and U! is valid because the
disjunction used to give the truth condition of U is communative. Similarly, U+
and U- are valid because of properties of disjunction. The U� axioms show that
the operator is anti-monotonic on both the left and right side of ‘;’ and follows
because of the transitivity of the subset relation. The validity of UE can be seen
by inspecting the truth condition for U and noticing that it is a conditional with
X ⊆ �ψ� as its antecedent. Finally, UV is valid again because of the transitivity
of the subset relation.

The only really interesting inference rule/axiom is UInf, and to prove that it
is sound we need the following standard fact. Say that M = 〈W,RF , E , V 〉 and
M′ = 〈W ′, R′

F , E ′, V ′〉 differ at most on p ∈ At iff W = W ′, E = E ′, RF = R′
F

and V (q) = V ′(q) for all q �= p from At. Then we have that:

Lemma 3. If M and M′ differ at most on p, then �ϕ�M = �ϕ�M′ for all ϕ
which do not mention p.

Evidence Logic and Forcing 155

Proof. The usual induction on the complexity of ϕ.

Proposition 5. UInf is sound.

Proof. Suppose that p is foreign to all of ϕ1, . . . , ϕn, ψ, θ and � θ →
U(ϕ1, . . . , ϕn;ψ). So there is a model M = 〈W,RF , E , V 〉 and x ∈ W such
that M, x � θ, but M, x � U(ϕ;ψ). By definition there is X ∈ E(x) such that
X ⊆ �ψ�M and �ϕj� �⊆ X for all j ≤ n. The last fact means that �ϕj�M∩Xc �= ∅

for all j ≤ n. Define M′ to be just like M other than V ′(p) = X. Then, since M
and M′ differ at most on p, by the lemma above, �θ�M = �θ�M′ , �ψ�M = �ψ�M′ ,
and �ϕj�M = �ϕj�M′ for all j ≤ n. Immediately we have M′, x � θ. Further-
more, �ϕj�M′ ∩ �p�c

M′ �= ∅ for all j ≤ n, so �ϕj�M′ ∩ �¬p�M′ �= ∅ for all j ≤ n.
Hence, M′, x �

∧n
j=1 ♦(ϕj ∧ ¬p). Since

�p�M′ = X ⊆ �ψ�M = �ψ�M′ ,

M′, x � �(p → ψ). Since �p�M′ = X ∈ E(x) = E ′(x), there is an X ∈ E ′(x) such
that X ⊆ �p�M′ , thus M′, x � Ep, i.e. M′, x � ¬Ep. Therefore, � θ → (�(p →
ψ) → (

∧n
j=1 ♦(ϕj ∧ ¬p) → ¬Ep)).

6.2 Completeness

The completeness proof resembles the Henkin-style completeness proofs for first-
order and hybrid logics in that the domain of the canonical model isn’t simply
the collection of all maximally consistent sets of formulas. The sets need to
have an additional property since ¬U(ϕ;ψ) can be true, while there is no for-
mula which witnesses that fact, i.e., no formula θ such that Eθ, �(θ → ψ) and∨n

j=1 ♦(ϕj ∧ ¬θ) are all in the set. Naturally, the fix is to choose maximally
consistent subsets Γ which are “filled-up” with enough formulas to witness each
case where ¬U(ϕ,ψ) ∈ Γ . We will call sets with this property U -saturated. Let
Φ(U(ϕ;ψ), p) =

{
Ep,�(p → ψ),

∧n
j=1 ♦(ϕj ∧ ¬p)

}
.

Proposition 6. Each U-consistent set of sentences Γ can be extended to a max-
imally consistent and U -saturated set of sentences Γ+.

Proof. Suppose Γ is an U-consistent set of sentences. Then let { pi : i ∈ N } be
a set of atoms not mentioned in Γ . Define a new language which includes the
language of Γ and the new atoms and let { ψi : i ∈ Z

+ } be an enumeration of
that language. Then we define the following sequence of sets. Let Γ0 = Γ and

Γn =

⎧
⎪⎪⎨

⎪⎪⎩

Γn−1 ∪ { ¬ψn } Γn−1 ∪ { ψn } � ⊥
Γn−1 ∪ { ψn } Γn−1 ∪ { ψn } � ⊥ & ψn �= ¬U(ϕ, ψ), or

Γn−1 ∪ { ψn } ∪ Φ(ψn, pi) where i is the least i such that pi is not mentioned in Γn−1 ∪ { ψn }

We can see that each Γn is consistent by induction on n. The only case that is
non-standard to see this in the inductive step is the third clause in the definition
of Γn.

156 T. D. P. Brunet and G. Payette

Suppose for reductio that Γn = Γn−1∪{ ψn }∪Φ(ψn, p) 	 ⊥ where p is the first
pi not mentioned in Γn−1∪{ψn }. That can happen only when Γn−1∪{ψn } � ⊥.
By definition of ψn and Φ(ψn, p), then,

Γn−1,¬U(ϕ;ψ), Ep,�(p → ψ),
n∧

j=1

♦(ϕj ∧ ¬p) 	 ⊥.

By the definition of provability, there is a finite subset of Γn−1, Γ ′ such that
Γ ′,¬U(ϕ;ψ), Ep,�(p → ψ),

∧n
j=1 ♦(ϕj ∧ ¬p) 	 ⊥. It then follows by classical

logic that
Γ ′, Ep,�(p → ψ),

∧n
j=1 ♦(ϕj ∧ ¬p) 	 U(ϕ;ψ) and by U�R, that Γ ′, Ep,�(p →

ψ),
∧n

j=1 ♦(ϕj ∧ ¬p) 	 U(ϕ; p). By the contrapositive of UV, 	 ∧n
j=1 ♦(ϕj ∧

¬p) → (Ep → ¬U(ϕ; p)) so by MP, and the transitivity and monotonicity
of 	, Γ ′, Ep,�(p → ψ),

∧n
j=1 ♦(ϕj ∧ ¬p) 	 ¬U(ϕ; p) hence Γ ′, Ep,�(p →

ψ),
∧n

j=1 ♦(ϕj ∧ ¬p) is inconsistent. But that means, by classical logic, that

Γ ′,�(p → ψ) 	
n∧

j=1

♦(ϕj ∧ ¬p) → ¬Ep

and so by UInf Γ ′ 	 U(ϕ;ψ). But that implies that Γn−1,¬U(ϕ;ψ) 	 ⊥ contrary
to assumption. Naturally, let Γ+ =

⋃
i∈N

Γn.

To define the canonical model, we will start with the set of all maximally
U-consistent and U-saturated sets of sentences, but we will always select only all
the R�-related worlds in order for the � operator to represent global necessity.
The canonical model M∗ =

〈
W ∗, R∗

�, R∗
F , E∗, V ∗〉 is augmented and defined in

the following way:

– W ∗ is the set of maximally U-consistent and saturated sets of formulas,
– R∗

�(x) = { y ∈ W ∗ : ∀ψ,�ψ ∈ x ⇒ ψ ∈ y },
– R∗

F (x) = { y ∈ W ∗ : ∀ψ,Fψ ∈ x ⇒ ψ ∈ y },
– V ∗(p) = { x ∈ W ∗ : p ∈ x }, and
– E∗ is defined by: X ∈ E∗(x) iff there is { θi : i ∈ I } ⊆ { θ : Eθ ∈ x } such that

(a)
⋂

i∈I |θi| = X, and
(b) For all δ, if

⋂
i∈I |θi| ⊆ |δ|, then Eδ ∈ x

Observation 3. If Eθ ∈ x then |θ| ∈ E∗(x).

Proof. This follows since if |θ| ⊆ |δ|, then 	 θ → δ, so 	 �(θ → δ), hence if
Eθ ∈ x, Eδ ∈ x. Thus { |θ| } satisfies conditions (a) and (b).

From the canonical model we can define the model which will be used for
counterexamples. For each y ∈ W ∗ define M∗,y as follows:

– W ∗,y = R∗
�(y),

– R∗,y
F (x) = R∗

F (x) ∩ W ∗,y,
– E∗,y(x) = { X ∩ W ∗,y : X ∈ E∗(x) }, and

Evidence Logic and Forcing 157

– V ∗,y(p) = V ∗(p) ∩ W ∗,y.

It is possible to give alternative representations of W ∗,y. For example, W ∗,y =
{ z ∈ W ∗ : �(y) ⊆ z }, where �(y) = { ϕ : �ϕ ∈ y }. Since � is an S5 operator
it follows that if z ∈ W ∗,y, then �(z) = �(y). So we can also represent W ∗,y as
{ z ∈ W ∗ : �(z) = �(y) }. In fact, since � is an S5 operator, for all z ∈ W ∗,y,
�ϕ ∈ z iff �ϕ ∈ y, i.e., all elements of W ∗,y agree on �ed formulas. We can also
show the following:

Lemma 4. If x ∈ W ∗,y for some y ∈ W ∗, then all X ∈ E∗,y(x) are non-empty.

Proof. Let X ∈ E∗,y(x). Suppose that X = ∅. By definition, there is { θi }i∈I ⊆
{ θ : Eθ ∈ x } such that

⋂
i∈I |θi| ∈ E∗(x) and

⋂
i∈I |θi| ∩ W ∗,y = X = ∅. Thus,⋂

i∈I |θi| ∩ W ∗,y = ∅ iff { θi : i ∈ I } ∪ �(y) 	 ⊥. By the compactness of 	,
then there are { ϕ1, . . . , ϕk } ⊆ �(y) and { θ1, . . . , θn } ⊆ { θi : i ∈ I } such that
∧k

i=1 ϕi ∧ ∧n
j=1 θj 	 ⊥. Since each θj is one of the θis for some i ∈ I,

⋂
i∈I |θi| ⊆

|∧n
j=1 θj |. So by condition b in the definition of E∗, E(

∧n
j=1 θj) ∈ x. Due to

the fact that x ∈ W ∗,y, �(x) = �(y), thus �(
∧k

i=1 ϕi) ∈ x. Then, by MergeE,
E(

∧k
i=1 ϕi ∧ ∧n

j=1 θj). But then, by E�, E⊥ ∈ x which is impossible since
¬E⊥ ∈ x and x is consistent.

Now we can show that the truth lemma for M∗,y is true for any y ∈ W ∗.

Lemma 5 (Truth Lemma). For all ϕ, and x ∈ W ∗,y, M∗,y, x � ϕ iff ϕ ∈ x,
i.e., �ϕ�M∗,y = |ϕ| ∩ W ∗,y.

Proof. Let x ∈ W ∗,y. The proof is by induction on the complexity of ϕ. The
atomic case follows by the definition of V ∗,y. The induction hypothesis (IH) is
that for all δ of less complexity than ϕ, �δ�M∗,y = |δ| ∩ W ∗,y. We will omit
the subscript ‘M∗,y’ and the ∩W ∗,y from here on, unless it is important. The
Boolean cases are standard and the case for � follows since all members of W ∗,y

agree on �ed formulas. The F and E cases are also fairly straightforward, so we
will just do the U case.

Suppose ϕ = U(ϕ1, . . . , ϕn; δ). Assume that M∗,y, x � U(ϕ1, . . . , ϕn; δ). By
the truth condition for U , ∀X ∈ E∗,y(x), X ⊆ �δ� only if �ϕj� ⊆ X for some
j ≤ n. Then, by the IH, ∀X ∈ E∗,y(x), X ⊆ |δ| ∩ W ∗,y only if |ϕj | ∩ W ∗,y ⊆ X
for some j ≤ n.

Now suppose for reductio that U(ϕ1, . . . , ϕn; δ) �∈ x, by x’s maximality,
¬U(ϕ1, . . . , ϕn; δ) ∈ x. Since x is U-saturated there is θ such that Φ(U(ϕ; δ), θ) ⊆
x. From observation 4 above, then, |θ| ∩W ∗,y ∈ E∗,y(x) since Eθ ∈ x. It also fol-
lows that, since �(θ → δ) ∈ x, |θ| ∩ W ∗,y ⊆ |δ| ∩ W ∗,y because �(θ → δ) ∈ z for
all z ∈ W ∗,y. By IH, |δ|∩W ∗,y = �δ�, so there is X ∈ E∗,y(x) such that X ⊆ �δ�.
But we also have that

∧n
j=1 ♦(ϕj ∧ ¬θ) ∈ x, thus for each j ≤ n, ♦(ϕj ∧ ¬θ) ∈ x

which implies |ϕj |∩W ∗,y �⊆ |θ|∩W ∗,y. Since |θ|∩W ∗,y = X ∈ E∗,y(x), that should
be impossible according to our first assumption. Thus, U(ϕ1, . . . , ϕn; δ) ∈ x.

Conversely, suppose U(ϕ1, . . . , ϕn; δ) ∈ x. Further, suppose that X ∈ E∗,y(x)
and that X ⊆ �δ�; if not the conclusion follows vacuously. We need to show that

158 T. D. P. Brunet and G. Payette

�ϕj� ⊆ X for some j ≤ n. By the IH, we get that X ⊆ |δ| ∩ W ∗,y and by the
definition of E∗,y we get X =

⋂
i∈I |θi| ∩ W ∗,y for some

⋂
i∈I |θi| ∈ E∗(x).

Suppose for reductio that �ϕj� �⊆ ⋂
i∈I |θi| ∩ W ∗,y for all j ≤ n. By IH

|ϕj | ∩ W ∗,y �⊆ ⋂
i∈I |θi| ∩ W ∗,y for all j ≤ n. For each j there is at least one xj ∈

|ϕj |∩W ∗,y and xj �∈ ⋂
i∈I |θi|∩W ∗,y. Thus, there is θij

such that xj �∈ |θij
|∩W ∗,y

which means that for each j, |ϕj | ∩ W ∗,y �⊆ ⋂n
k=1 |θik

| ∩ W ∗,y. Hence, for each
j, |ϕj | ∩ |¬(

∧n
k=1 θik

)| ∩ W ∗,y �= ∅, which implies that ϕj ∧ ¬(
∧n

k=1 θik
) ∈ z for

some z ∈ W ∗,y for each j ≤ n. But that means ♦(ϕj ∧¬(
∧n

k=1 θik
)) ∈ x for each

j and thus, due to x’s maximal consistency,
∧n

j=1 ♦(ϕj ∧ ¬(
∧n

k=1 θik
)) ∈ x.

Since
⋂

i∈I |θi| ∩ W ∗,y ⊆ |δ| ∩ W ∗,y ⊆ |δ|, ⋂
i∈I |θi| ∩

⋂ { |ψ| : �ψ ∈ y } ⊆ |δ|.
By standard facts about proof sets, then, { θi : i ∈ I } ∪ {ψ : �ψ ∈ y } 	 δ. So
there are finite sets Θ ⊆ { θi : i ∈ I } and Ψ ⊆ { ψ : �ψ ∈ y } such that Θ∪Ψ 	 δ.
Hence, by monotonicity and classical logic

∧
Θ ∧ ∧

Ψ ∧ ∧n
k=1 θik

	 δ. Thus,

�[(
∧

Θ ∧
∧

Ψ ∧
n∧

k=1

θik
) → δ] ∈ x.

Also, 	 ϕj ∧ ¬(
∧n

k=1 θik
) → (ϕj ∧ ¬(

∧
Θ ∧ ∧

Ψ ∧ ∧n
k=1 θik

)), which implies
	 ♦(ϕj ∧ ¬(

∧n
k=1 θik

)) → ♦(ϕj ∧ ¬(
∧

Θ ∧ ∧
Ψ ∧ ∧n

k=1 θik
)) since � is normal, so

♦(ϕj ∧ ¬(
∧

Θ ∧ ∧
Ψ ∧ ∧n

k=1 θik
)) ∈ x for each j ≤ n and thus,

n∧

j=1

♦(ϕj ∧ ¬(
∧

Θ ∧
∧

Ψ ∧
n∧

k=1

θik
)) ∈ x.

By the contrapositive of UV, then,

	 [
n∧

j=1

♦(ϕj∧ ¬ (
∧

Θ ∧
∧

Ψ ∧
n∧

k=1

θik
))] → [E(

∧
Θ ∧

∧
Ψ ∧

n∧

k=1

θik
)

→ ¬U(ϕ1, . . . , ϕn; (
∧

Θ ∧
∧

Ψ ∧
n∧

k=1

θik
))]

is a theorem of U and so in x. But that means, since x is closed under modus
ponens, that

E(
∧

Θ ∧
∧

Ψ ∧
n∧

k=1

θik
) → ¬U(ϕ1, . . . , ϕn; (

∧
Θ ∧

∧
Ψ ∧

n∧

k=1

θik
)) ∈ x.

Notice, however, that since
⋂

i∈I |θi| ⊆ ⋂ { |θ| : θ ∈ Θ } ∩ ⋂n
k=1 |θik

|, by stan-
dard facts about proof sets we have

⋂ { |θ| : θ ∈ Θ } ∩ ⋂n
k=1 |θik

| = |∧ Θ ∧∧n
k=1 θik

|, so by condition (b) on E∗(x), E(
∧

Θ ∧ ∧n
k=1 θik

) ∈ x. But since
Ψ ⊆ �(x) = �(y), and � is a normal operator, �(

∧
Ψ) ∈ x. But then, by

MergeE, E(
∧

Θ ∧ ∧
Ψ ∧ ∧n

k=1 θik
) ∈ x. Thus,

¬U(ϕ1, . . . , ϕn; (
∧

Θ ∧
∧

Ψ ∧
n∧

k=1

θik
)) ∈ x.

Evidence Logic and Forcing 159

Since we have already established that �[(
∧

Θ∧∧
Ψ ∧∧n

k=1 θik
) → δ] ∈ x, it

follows from U�R, that U(ϕ1, . . . , ϕn; (
∧

Θ ∧∧
Ψ ∧∧n

k=1 θik
)) ∈ x. That means

x is inconsistent. But x is maximally consistent, so �ϕj� ⊆ X for some j ≤ n.
Therefore, M∗,y, x � U(ϕ1, . . . , ϕn; δ).

If we then notice that assuming E� ∈ x for each x ∈ W ∗,y, we get that
��� ∈ E∗,y(x) by the truth lemma and the definition of E∗,y, thus, E∗,y(x) �= ∅.
Also, if we were to assume ∅ ∈ E∗,y(x), then �⊥� ∈ E∗,y(x). However, given
the definition of E∗,y(x) and the truth lemma, we would have E⊥ ∈ x which is
impossible since x must be consistent. Therefore M∗,y is a hypergraph model as
given in definition 4. The standard argument shows that the logic U is complete
with respect to the arguments validated in all hypergraph models. In fact, it
shows something stronger.

The proof of completeness from the previous section shows that the logic U is
actually complete with respect to the class of all core-complete models. Thus, we
may assume that all frames considered are core-complete: i.e., cor(E(x)) �= ∅ and
for all X ∈ E(x) there is X ′ ∈ cor(E(x)) such that X ′ ⊆ X. This observation
was made in [6]. Their construction of a canonical model resulted in a core-
reduced model rather than just one that is core-complete because they only
kept the cores of each E∗(x) they defined. The core of E∗(x) consists of all sets⋂ { |θi| : i ∈ I } that are maximal subsets of { |θ| : Eθ ∈ x } which also satisfy
the second condition in the definition of E∗(x). Since E∗,y is defined from E∗(x),
E∗,y(x) is also core-complete.

Thus, we have given a modal evidence logic for general Schotch-Jennings
forcing, not simply the fixed-level versions. Now that we have this logic, in future
work we can extend this semantics to a doxastic logic in the style of the evidence
logics of van Benthem et al. and Baltag et al. We will also explore generalizations
of the U operator which we have called ‘pointed operators’.

References

1. Apostoli, P., Brown, B.: A solution to the completeness problem for weakly
aggregative modal logic. J. Symbolic Logic 60(3), 832–842 (1995). https://doi.
org/10.2307/2275759

2. Baltag, A., Bezhanishvili, N., Özgün, A., Smets, S.: Justified belief and the topology
of evidence. In: Väänänen, J., Hirvonen, Å., de Queiroz, R. (eds.) WoLLIC 2016.
Lecture Notes in Computer Science, vol. 9803, pp. 83–103. Springer, Berlin (2016).
https://doi.org/10.1007/978-3-662-52921-8 6

3. van Benthem, J., Bezhanishvili, N., Enqvist, S., Yu, J.: Instantial neighbour-
hood logic. Rev. Symbolic Logic 10(1), 116–144 (2017). https://doi.org/10.1017/
s1755020316000447

4. van Benthem, J., Pacuit, E., Fernández-Duque, D.: Evidence and plausibility in
neighborhood structures. Ann. Pure Appl. Logic 165, 106–133 (2014)

5. Chellas, B.F.: Modal Logic: An Introduction. Cambridge University Press, Cam-
bridge (1980)

6. Ding, Y., Liu, J., Wang, Y.: Someone knows that local reasoning on hypergraphs is
a weakly aggregative modal logic. Synthese 201(2), 1–27 (2023). https://doi.org/
10.1007/s11229-022-04032-y

https://doi.org/10.2307/2275759
https://doi.org/10.2307/2275759
https://doi.org/10.1007/978-3-662-52921-8_6
https://doi.org/10.1017/s1755020316000447
https://doi.org/10.1017/s1755020316000447
https://doi.org/10.1007/s11229-022-04032-y
https://doi.org/10.1007/s11229-022-04032-y

160 T. D. P. Brunet and G. Payette

7. Jennings, R.E., Schotch, P.K.: The preservation of coherence. Stud. Logica. 43,
89–106 (1984). https://doi.org/10.1007/bf00935743

8. Jennings, R.E., Brown, B., Schotch, P.: On Preserving: Essays on Preservationism
and Paraconsistency. Toronto Studies in Philosophy, University of Toronto Press,
Toronto (2009)

9. Nicholson, D.: A dualization of neighbourhood structures. In: Jennings, R., Brown,
B., Schotch, P. (eds.) On Preserving: Essays on Preservationism and Paraconsistent
Logic, pp. 49–60. University of Toronto Press (2009)

10. Pacuit, E.: Neighborhood Semantics for Modal Logic. Springer, Cham, Switzerland
(2017). https://doi.org/10.1007/978-3-319-67149-9

11. Payette, G.: Getting the most out of inconsistency. J. Philos. Logic 44(5), 573–592
(2015). https://doi.org/10.1007/s10992-014-9343-5

12. Rescher, N., Manor, R.: On inferences from inconsistent premises. Theor. Decis.
1(2), 179–217 (1970). https://doi.org/10.1007/bf00154005

13. Schotch, P.K., Jennings, R.E.: Inference and necessity. J. Philos. Logic 9(3), 327–
340 (1980). https://doi.org/10.1007/bf00248398

14. Schotch, P.K., Jennings, R.E.: On detonating. In: Priest, G., Routley, R., Norman,
J. (eds.) Paraconsistent Logic: Essays On The Inconsistent, pp. 306–327 (1989)

https://doi.org/10.1007/bf00935743
https://doi.org/10.1007/978-3-319-67149-9
https://doi.org/10.1007/s10992-014-9343-5
https://doi.org/10.1007/bf00154005
https://doi.org/10.1007/bf00248398

A Separation Logic with Histories
of Epistemic Actions as Resources

Hans van Ditmarsch1(B), Didier Galmiche2, and Marta Gawek2

1 Université de Toulouse, CNRS, IRIT, Toulouse, France
hans.van-ditmarsch@irit.fr

2 Université de Lorraine, CNRS, LORIA, Nancy, France

Abstract. We propose a separation logic where resources are histories
(sequences) of epistemic actions so that resource update means concate-
nation of histories and resource decomposition means splitting of histo-
ries. This separation logic, called AMHSL, allows us to reason about the
past: does what is true now depend on what was true in the past, before
certain actions were executed? We show that the multiplicative connec-
tives can be eliminated from a logical language with also epistemic and
action model modalities, if the horizon of epistemic actions is bounded.

1 Introduction

In an action that is an informative update, what the agents know about facts
and about each other may change (I learn that it rains in Spain), and these facts
themselves may also change (it stopped raining). We present a logic wherein
the amount of change, as measured by sequences of actions that are informative
updates, is considered as a resource. In an epistemic context such updates often
depend on each other (after it stopped raining, I cannot learn that it rains in
Spain), so it is relevant when, as resources, they can be separated and combined
with the multiplicative connectives of the Bunched Implications logic (BI) [15].
Let us survey the relevant areas dynamic epistemic logic and bunched separation
logic, and describe prior proposals to combine both.

Knowledge and change of knowledge, and in particular for multiple agents,
are the abode of epistemic logic [19], a modal logic interpreted on relational
models consisting of possible worlds. The analysis of multiple agents publicly
informing each other of their ignorance and knowledge culminated in Public
Announcement Logic [14], and a further generalization non-public information
change such as private or secret announcements resulted in Action Model Logic
[3], further extended with factual change in [17]. Another source of our ideas is
the logic of Bunched Implications (BI) and its variants, like Boolean BI (BBI)
[15], that mainly focus on resource sharing and separation. These logics combine
additive (∧, →, ∨) and multiplicative (∗, −∗) connectives. The multiplicative
conjunction ∗ expresses separation of resources and the multiplicative implication
−∗ expresses resource update [15]. Here the term “separation logics” denotes the

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
H. H. Hansen et al. (Eds.): WoLLIC 2023, LNCS 13923, pp. 161–177, 2023.
https://doi.org/10.1007/978-3-031-39784-4_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-39784-4_10&domain=pdf
https://doi.org/10.1007/978-3-031-39784-4_10

162 H. Ditmarsch et al.

class of logics based on BI or BBI and their modal extensions, even if so-called
Separation Logic is such a logic with resources being memory areas [10].

How can we combine knowledge and resources? It is a two-way traffic. One
can go in the direction of modelling uncertainty about resources [7,8]. But one
can also go in the direction of modelling information as a resource. We very
clearly go in that, novel, direction. We notice that this is a dangerous road:
incoming information is highly dependent on context and may have side effects,
so it is difficult to separate/decompose, which goes against the grain of separation
logics. But it is therefore a challenge we propose to meet. Both directions, inasfar
as discussed here, have in common that we add modalities to separation logics
(either epistemic or dynamic) [8]. Epistemic extensions of separation logic include
Public Announcement Separation Logic [7], and the further generalization called
Action Model Separation Logic [18]. In these logics the states or worlds of an
epistemic model represent resources, resource decomposition and update relate
different states in the domain of the model, and the members of the domain of a
Kripke model should therefore represent a resource monoid. In [18] the valuation
of a state is a resource, instead of the state, so that different states with the same
valuation can represent the same resource.

In this work we consider histories of epistemic actions as resources. It is both
according to the philosophy of separation, as in many epistemic contexts one can
run of out resources, such as exceeding the permitted number of calls in a gossip
protocol or the number of manipulations in epistemic planning [5]; but also
somewhat against the philosophy of separation, as the knowledge consequences
of epistemic actions highly depend on their order and may also lack certain
monotonicity of knowledge consequences. However, in the special case where
factual change is absent, ignorance can only be lost, whereas positive knowledge
(the universal fragment) continues to grow.

We propose a new separation logic with sequences of actions (informative
updates) as resources, called Action Model History Separation Logic (AMHSL).
Instead of states we consider sequences of actions (histories) to be resources,
and consequently we define resource composition as the concatenation of histo-
ries. This requires another interpretation of the multiplicative connectives. As
the order of actions is non-trivial, the multiplicative conjunction interpreting
resource composition is non-commutative, and there are two ways of resource
update: appending a history to the end of a given history, or before its beginning.
We therefore need two multiplicative implications in the logical language. After
defining this logical semantics of separation and composition of actions histories
we illustrate the interest of AMHSL with an example about gossip protocols.
Finally we show that, given a maximum length of action histories, any AMHSL
formula with multiplicative connectives is equivalent to a formula without them:
a so-called reduction. As the latter is a formula in action model logic, we have
thus also axiomatized AMSHL.

2 Semantics with Informative Actions as Resources

We first present the syntax of the logical language and the semantical structures.

A Separation Logic with Histories of Epistemic Actions as Resources 163

Let a finite set of agents A and a (disjoint) countable set of atoms (or propo-
sitional variables) P be given.

Definition 1 (Language). The logical language LK∗⊗(A,P) is defined by a
BNF, where p ∈ P , a ∈ A, and Ee is a pointed action model, defined below.

ψ:: = p | I | ⊥ | ¬ψ | (ψ ∧ ψ) | (ψ ∗ ψ) | (ψ −∗ ψ) | (ψ ∗− ψ) | Kaψ | [Ee]ψ

The parameters A and P are often omitted from LK∗⊗(A,P). We also con-
sider the sublanguage LK⊗ without the constructs containing ∗, −∗ and ∗− and
without the constant I (the language of action model logic), the sublanguage
LK∗ without the construct [Ee]ψ (the language of epistemic separation logic),
and the sublanguage LK without either (the language of epistemic logic). It is
implicit in the definition that the pre- and postcondition formulas of E are in
LK⊗ (Definition 4). For the sublanguage of LK∗⊗ only allowing the unique action
model E we write LK∗E and similarly for other fragments. Other propositional
connectives are defined by notational abbreviation and also the dual modality
〈Ec〉ϕ := ¬[Ee]¬ϕ.

Definition 2 (Resource monoid). A partial resource monoid (or resource
monoid) is a structure R = (R, ◦, n) where R is a set of resources (denoted
r, r′, r1, r2, . . .) containing a neutral element n, and where ◦ : R × R → R is a
resource composition operator that is associative, that may be partial and such
for all r ∈ R, r ◦ n = n ◦ r = r. If r ◦ r′ is defined we write r ◦ r′↓ and if r ◦ r′ is
undefined we write r ◦ r′↑. When writing r ◦ r′ = r′′ we assume that r ◦ r′↓.
Definition 3 (Epistemic model). An epistemic model is a structure M =
(S,∼, V) such that S is a non-empty domain of states (or worlds), ∼ : A →
P(S × S) is a function that maps each agent a to an equivalence relation ∼a,
and V : P → P(S) is a valuation function, where V (p) denotes where variable p
is true. Given s ∈ S, the pair (M, s) is a pointed epistemic model, denoted Ms.

Definition 4 (Action model). An action model is a structure E = (E,≈,
pre, post), where E is a non-empty finite domain of actions (denoted e, f, g, . . .),
≈a an equivalence relation on E for all a ∈ A, pre : E → LK⊗ is a precondition
function, and post : E → P → LK⊗ is a postcondition function such that every
post(e) is only finitely different from the identity: we can see its domain as a
finite set of variables Q ⊆ P . Given e ∈ E, a pointed action model (or epistemic
action) is a pair (E , e), denoted Ee.

2.1 Knowledge and Informative Actions

We distinguish the semantics of knowledge and action model execution on epis-
temic models, from the more involved semantics of the full language on epistemic
history models. The distinction is made to keep the exposition transparant,
because we wish to focus on information change as separation and composition,
and because it allows us to use a simpler, abbreviated, notation for the latter.

164 H. Ditmarsch et al.

For the satisfaction relation of the former we write |=0 and for that of the latter
we write |=. The |=0 update semantics is standard fare (although less so with
the variation involving factual change) and can be found in, for example [13,17].
Definitions 5 and 6 are assumed to be given by simultaneous recursion.

Definition 5 (Satisfaction relation for the restricted language). The
satisfaction relation |=0 between pointed epistemic models Ms and formulas in
LK⊗(A,P), where M = (S,∼, V) and s ∈ S, is defined by induction on formula
structure.

Ms |=0 p iff s ∈ V (p)
Ms |=0 ⊥ iff false
Ms |=0 ¬ϕ iff Ms �|=0 ϕ
Ms |=0 ϕ ∧ ψ iff Ms |=0 ϕ and Ms |=0 ψ
Ms |=0 Kaϕ iff Ms′ |=0 ϕ for all s′ ∈ S such that s ∼a s′

Ms |=0 [Ee]ϕ iff Ms |=0 pre(e) implies (M ⊗ E)(s,e) |=0 ϕ

Definition 6 (Action model execution). Given are epistemic model M =
(S,∼, V) and action model E = (E,≈, pre, post). The updated epistemic model
M ⊗ E = (S′,∼′, V ′) is such that—where s, t ∈ S, a ∈ A, e, f ∈ E, p ∈ P :

S′ = {(s, e) | Ms |=0 pre(e)}
(s, e) ∼a (t, f) iff s ∼a t and e ≈a f
(s, e) ∈ V ′(p) iff Ms |=0 post(e)(p)

2.2 Semantics for Separation and Composition of Action Histories

We now present the |= semantics, that is defined on the full language. The
semantics interprets formulas with respect to states in an initial model and
sequences of informative actions (or events). This is known as a history-based
semantics, where the sequence of actions is the history of past actions [16].
The corresponding semantic objects are often known as ‘history-based models’
and called here history models. Updates of models with action models construct
such history models. However, as constructing history models requires evaluating
formulas and as formulas are interpreted in history models, the semantics are
given by simultaneous induction involving both.

Definition 7 (Epistemic history model). Given are epistemic model M =
(S,∼, V) and action model E = (E,≈, pre, post). First, we define M ⊗ En by
induction on n ∈ N as: M ⊗ E0 := M, and M ⊗ En+1 := (M ⊗ En) ⊗ E. The
epistemic history model MEω is now defined as ⊕n∈N(M ⊗ En), where ⊕ is the
direct sum. We also distinguish the bounded epistemic history model MEmax

defined as ⊕n≤max(M ⊗ En), where we assume that max ≥ 1.

Histories of Actions. The elements of the domain of MEω have the shape
(s, e1, . . . , en) where e1, . . . , en ∈ E for n ∈ N, and where for n = 0 the domain
element is s. The tuple of actions (e1, . . . , en) is called a history, denoted h,

A Separation Logic with Histories of Epistemic Actions as Resources 165

where ε is the empty history. Given (s, e1, . . . , en), we also say that the history
(e1, . . . , en) can be executed in the state s. For (s, e1, . . . , en) we write se1 . . . en

or sh, where h = e1 . . . en. In other words, we consider a history h to be a
member of E∗. Given history h, |h| denotes its length, and for concatenation of
histories h, h′ we write hh′. We let � be the prefix relation on histories, (ε � h,
and if h � h′, then h � h′e), and if h′ � h, then h\h′ is the ‘postfix’ fol-
lowing h′, that is, h = h′(h\h′). Indistinguishability of histories is defined as:
ε ∼a ε, and if h ∼a h′ for histories h, h′ and also e ∼a e′, then he ∼a h′e′.
Finally, given sh, s′h′ ∈ D(MEω), sh ∼a s′h′ means that s ∼a s′ and h ∼a h′.
Note that indistinguishable histories are of the same length (in this synchronous
semantics).

Alternative History Models. Another way to define history-based models seems
more common in the literature [16,20]. We then enrich the model MEω with
relations →e for all e ∈ E defined as: sh →e she for all sh, she ∈ D(MEω).
Note that this assumes MEω

sh |= pre(e). In other words, the model transforming
updates induced by action models E are internalized as transitions between the
(state,history) pairs of the domain of the epistemic history model. This modelling
facilitates the comparison with temporal epistemic logics.

Histories as Resources. Inspired by the action monoids of [6], we now take his-
tories as resources, such that the set of histories of actions is a resource monoid
with concatenation of histories as resource composition and the empty history
ε as neutral element. For h ◦ h′ we write hh′, as above. Evidently this ‘resource
composition’ (concatenation) is associative, and also ε◦h = h◦ε = h. As histories
can always be concatenated, resource composition is always defined. However,
for some applications there is a maximum length max of histories, such that
hh′↑ then means that |hh′| > max. Seeing histories as resources, it seems to
make sense that you run out of actions if you execute too many. As the order of
actions, and histories, matters, the multiplicative conjunction (∗) is not commu-
tative, and to maintain duality we need two different multiplicative implications:
one for what is true after appending an arbitrary history to a given history (−∗),
and another one for what is true after appending a given history to an arbitrary
history (∗−).

We now define the semantics. Instead of interpreting a formula in a state
of an epistemic model, we interpret it in a (state,history) pair of an epistemic
history model.

Below, ‘there is sh’ means ‘there is h such that sh ∈ D(MEω)’, in other
words, there is a history h such that h can be executed in state s; and similarly for
‘for all sh’. Note that both imply that h↓, that is, |h| ≤ max. For example, “for
all sh, shh′” in the clause for −∗ means “for all h′ ∈ E∗ such that |hh′| ≤ max
and shh′ ∈ D(M)”. We recall that h = h′h′′ means that h′h′′↓ and h = h′h′′.

Definition 8 (Satisfaction relation). The satisfaction relation |= between
a pointed epistemic history model MEω

sh and formulas in LK∗E(A,P), where
M = (S,∼, V), E = (E,≈, pre, post), s ∈ S, and h ∈ E∗, is defined by induction
on formula structure. Model MEω is left implicit in the notation, and E is left

166 H. Ditmarsch et al.

implicit in [Ee]ϕ.

sh |= p iff s |= post(h)(p)
sh |= I iff h = ε
sh |= ⊥ iff false
sh |= ¬ϕ iff sh �|= ϕ
sh |= ϕ ∧ ψ iff sh |= ϕ and sh |= ψ
sh |= ϕ ∗ ψ iff there are sh′, sh′′ with h = h′h′′ such that sh′ |= ϕ and sh′′ |= ψ
sh |= ϕ −∗ ψ iff for all sh′, shh′ : sh′ |= ϕ implies shh′ |= ψ
sh |= ϕ ∗− ψ iff for all sh′, sh′h : sh′ |= ϕ implies sh′h |= ψ
sh |= Kaϕ iff s′h′ |= ϕ for all s′h′ such that sh ∼a s′h′

sh |= [e]ϕ iff sh |= pre(e) implies she |= ϕ

On MEmax all clauses are the same except the last one, that then becomes:

sh |= [e]ϕ iff |h| < max and sh |= pre(e) imply she |= ϕ

For sε |= ϕ we write s |= ϕ. The simplified notation is justified because all formu-
las are interpreted in the one and only model MEω, unlike in the |=0 semantics.
We emphasize that the language of interpretation is LK∗E (with action modalities
only for E) and not LK∗⊗ (for arbitrary action model modalities).

There are two notions of validity. A formula ϕ is valid, notation |= ϕ, iff for
all M = (S,∼, V) and s ∈ S, s |= ϕ. A formula ϕ is ∗-valid, or always-valid,
notation |=∗ ϕ,1 iff for all M = (S,∼, V) and E = (E,≈, pre, post) and for all
sh ∈ D(MEω), sh |= ϕ. Validity is similarly defined on MEmax.

In fact we defined two semantics, one without a bound on action histories and
one with the bound max, but we write |= for both satisfaction relations (and
|=∗). The validities in Sect. 4 are restricted to the semantics with bound max.

Lemma 1.

1. For all ϕ ∈ LK∗E : |= ϕ iff |=∗ I → ϕ.
2. For all ϕ ∈ LK∗E : |=∗ ϕ implies |= ϕ.
3. For all ϕ ∈ LKE : |=0 ϕ iff |= ϕ.

Proof.

1. Observe that I is only true for the empty history.
2. If a formula is true for arbitrary histories, then also for the empty history.
3. Let M = (S,∼, V), and s ∈ S be given. Then Ms |=0 ϕ, iff s |= ϕ, where the

latter is in model MEω. The proof by induction on ϕ is obvious except for
the case [e]ϕ that directly follows from the semantics.

1 The ∗ of multiplicative conjunction ϕ ∗ ψ is as the ∗ in ∗-valid, but the latter is
motivated by the Kleene-∗ of arbitrary iteration.

A Separation Logic with Histories of Epistemic Actions as Resources 167

Histories in the Language. A fair number of properties of our history semantics
are more elegantly presented if we allow histories in the language. For example it
is convenient to think of the precondition or the postcondition of a history, not
only of an action. We recursively define by notational abbreviation: (i) [ε]ϕ := ϕ
and [he]ϕ := [h][e]ϕ; (ii) pre(ε) := � and pre(he) := 〈h〉pre(e); (iii) post(ε)(p) :=
p and post(he)(p) := 〈h〉post(e)(p).

Given modalities for histories, the usual reduction axioms for action model
logic can generalized in an obvious way. That is, all except the reduction axiom
[e][f]ϕ ↔ [e ◦ f]ϕ, where ◦ is action model composition, as E ◦ E is typically
another action model than E , that is not in the language LKE for the unique
action model E . As we reduce history modalities instead of action modalities we
do not need that axiom.

Proposition 1. All valid in the |=0 semantics are

[e]p ↔ pre(e) → post(e)(p) [h]p ↔ pre(h) → post(h)(p)
[e]¬ϕ ↔ pre(e) → ¬[e]ϕ [h]¬ϕ ↔ pre(h) → ¬[h]ϕ
[e](ϕ ∧ ψ) ↔ [e]ϕ ∧ [e]ψ [h](ϕ ∧ ψ) ↔ [h]ϕ ∧ [h]ψ
[e]Kaϕ ↔ pre(e) → ∧

e∼af Ka[f]ϕ [h]Kaϕ ↔ pre(h) → ∧
h∼ah′ Ka[h′]ϕ

Proof. All the left are standard [21]. All the right follow from the left. The
proof is by induction on the length of history h. The inductive clauses are all
elementary (omitted, however for inductive case [he]Kaϕ observe that he ∼a h′e′

if h ∼a h′ and e ∼a e′), and only the basic clause h = ε may need some attention.

– [ε]p = p which is equivalent to pre(ε) → post(ε)(p) = � → p.
– [ε]¬ϕ = ¬ϕ, which is equivalent to pre(ε) → ¬[ε]ϕ = � → ¬ϕ.
– [ε](ϕ ∧ ψ) = ϕ ∧ ψ, which is equivalent to [ε]ϕ ∧ [ε]ψ = ϕ ∧ ψ.
– [ε]Kaϕ = Kaϕ, which is equivalent to pre(ε) → ∧

ε∼ah′ Ka[h′]ϕ = � →
Ka[ε]ϕ = � → Kaϕ, which is equivalent to Kaϕ.

A corollary of Lemma 1 and Proposition 1 is that these history reduction
axioms are also valid for the |= semantics, where the formulas ϕ,ψ ocurring in
them are from LKE , and it is also straightforward to observe that they remain
|= valid if ϕ,ψ ∈ LK∗E . This is what we need in Sect. 4.2

3 Gossip Protocols with AMHSL

In gossip protocols we investigate dissemination of information through a net-
work by way of peer-to-peer calls. Each agent holds a ‘secret’, that is, some piece
of information private to that agent only. The goal of the information exchanges
is that all agents know all secrets. In a call the callers exchange all the secrets
they know. In an epistemic gossip protocol [22] only calls are permitted that

2 They are all even ∗-valid in the |= semantics, on models MEω, but not on models
MEmax as that would need relativization of each axiom to ¬[h]⊥ →. However we
will not use (nor claim) that.

168 H. Ditmarsch et al.

satisfy a certain logical condition. In the protocol LNS [1] you may only call
another agent if you do not know that agent’s secret. In the protocol CMO [22]
you may only call another agent if you have not been involved in a call with that
agent. Note that a LNS-permitted call is also CMO-permitted.

In our setting, a permitted call sequence is a resource, and a call is represented
as an action model [1]. We provide (novel) action models for synchronous CMO-
and LNS-calls.

Given a set A of n agents, and a, b ∈ A, propositional variables ab represent
that the secret of agent a is known by agent b, a call is a pair (a, b) denoted
ab, a call sequence σ is a finite sequence ab.cd. . . . of calls, and variables ab+

represent that call ab took place. A secret distribution is an n-tuple of subsets of
A. We execute gossip protocols in the model I with the initial secret distribution
wherein all agents only know their own secret (ab is only true when a = b, and all
ab+ are false). An agent who knows all secrets is an expert. We let Exp represent
that all agents know all secrets, that is,

∧
a,b∈A ab. In protocol LNS the condition

for making a call ab is ¬ba and in CMO the condition is ¬ab+ ∧ ¬ba+.
The action model representing a synchronous call in CMO is defined as G =

(E,≈, pre, post) where E = {ab | a, b ∈ A, a �= b}, ab ≈c de iff (c �= a, b, c, d, or
c = a = d and b = e, or c = b = e and a = d), pre(ab) = ¬ab+ ∧ ¬ba+, and
post(ab)(ca) = post(ab)(cb) = ca ∨ cb (a secret c is known by a after the call ab if
before the call it was known by a or by b, and similarly for b), post(ab)(ab+) = �,
and otherwise facts do not change value (i.e., post(ab)(p) = p). The action model
for a synchronous LNS call is the same except that pre(ab) = ¬ba.

Given n agents, we now investigate IGmax for synchronous CMO so that
max =

(
n
2

)
. Given three agents, a call sequence after which all agents are experts

is ab.ac.bc. We now represent some scenarios involving K, ∗, −∗, and ∗−.
– ab.ac |= cb −∗ Exp:

Given three agents a, b, c and call sequence ab.ac, after which a and c but not b
are experts (in the second call ac, a informs c of a, b and c informs a of c, so that
both are now experts), any subsequent call resulting in b knowing the secret of c
makes all agents experts. For example, bc |= cb and indeed ab.ac.bcbcbc |= Exp. But
also ac.ac.ab |= cb and ab.ac.ac.ac.abac.ac.abac.ac.ab |= Exp.

– |= ϕab ∗− KaKb(bc → ac): (where ϕab := ab ∧ ba ∧ ∧
c 	=a ¬cb ∧ ∧

c 	=b ¬ca)
Formula ϕab holds after any call sequence σ wherein the only call(s) involving
a and b was (were) to each other. Any extension στ of a σ satisfying ϕab will
pass along the secrets of a and b jointly. Therefore, |= ab+ ∗− (bc → ac) and also
|= ϕab ∗− KaKb(bc → ac). On the other hand, �|= ϕab −∗ KaKb(bc → ac): when
appending σ to a τ containing a call between b and another agent c, bc → ac is
false, and a subsequent call ab also fails to guarantee that it holds. For example,
cd.ab |= ϕab, and therefore cd.abcd.abcd.ab.bc |= bc → ac, whereas bc.cd.abcd.abcd.ab �|= bc → ac. So
this example showed that there are ϕ and ψ for which |= ϕ ∗− ψ but �|= ϕ −∗ ψ.

– �|= ac ∧ bc → ac ∗ bc:
Agent c may know the secrets of a and b now but not necessarily after fewer calls,
although agent c may still know the secret of a or the secret of b. For example,
ab.ac |= ac ∧ bc but ab.ac �|= ac ∗ bc.

A Separation Logic with Histories of Epistemic Actions as Resources 169

4 Reduction from LK∗E to LKE Given a Bound max

In this section we show that every formula in LK∗E (we recall that LK∗E is the
language LK∗⊗ where only action model E is allowed) is equivalent to a formula
in LKE , without ∗, −∗, and −∗ modalities, and without I. We show this by the
time-honoured technique of a reduction system: a number of validities that are
equivalences [11]. As every formula in LKE is equivalent to a formula in LK

[3,17], we then have shown that AMHSL is as expressive as the base multi-agent
epistemic logic S5.

Our result is restricted in two ways. First, it is with respect to truth in the
empty history models. Without that restriction already the language LK∗ is
more expressive than the language LK , as it is easy to see: a model wherein a
knows that p and p is announced, is different from a model wherein a is uncertain
about p and p is announced. However, after the announcement they satisfy the
same epistemic formulas. However, to restrict validities to those for models with
empty histories is usual in history-based semantics. The first restriction therefore
keeps our result still relevant. Second, we can only show this if there is a bound
max ∈ N on the number of actions that can be executed. Without that we
do not have a reduction, and we conjecture that one may not exist, given the
well-known theoretical issues with arbitrary iteration of updates (undecidable
logics, etc.) [12], and given that the semantics of −∗ and ∗− involve arbitrarily
large histories of actions. The second restriction makes our result less relevant.

A dual question is whether every formula in LK∗E is equivalent to a formula
in LK∗: can we also get rid of the action model modalities and stick with the
epistemic separation language only? We are uncertain about the answer to this
question. However, the language LK∗ wherein we can only indirectly refer to
actions by way of ∗ and −∗, already permits some ∗-validities of interest. It is
succinctly discussed in Sect. 5.

4.1 Validities for Empty Histories and a Bound Max

We assume bound max throughout Sect. 4, and also that E = (E,≈, pre, post).
The crucial validities in the reduction are as follows. They will be successively
shown in subsequent lemmas and propositions. Recall that |= is validity with
respect to empty history models. The obvious proof of Lemma 2 is omitted.

|= I ↔ �
|= [h]ϕ ↔ � where |h| > max
|= [h](ϕ ∗ ψ) ↔ pre(h) → ∨

h′
h(〈h′〉ϕ ∧ 〈h\h′〉ψ) where |h| ≤ max
|= [h](ϕ −∗ ψ) ↔ pre(h) → ∧

|h′|≤max−|h|(〈h′〉ϕ → [hh′]ψ) where |h| ≤ max
|= [h](ϕ ∗− ψ) ↔ pre(h) → ∧

|h′|≤max−|h|(〈h′〉ϕ → [h′h]ψ) where |h| ≤ max

Lemma 2. |= I ↔ �
Lemma 3. |= [h]ϕ ↔ �, where |h| > max.

170 H. Ditmarsch et al.

Proof. We show that |= [h]ϕ, which is equivalent to |= [h]ϕ ↔ �. Given MEmax

with s ∈ D(MEmax). Let h′ � h be the prefix of h with |h′| = max, and
assume s |= pre(h′). We need to show that sh′ |= [h\h′]ϕ. Let h\h′ = eh′′.
According to the semantics of dynamic modalities, sh′ |= [e][h′′]ϕ is equivalent
to (|h′| < max and sh′ |= pre(e) imply sh′e |= [h′′]ϕ). As |h′| < max is false,
the whole implication is true.

Proposition 2. |= [h](ϕ ∗ ψ) ↔ (pre(h) → ∨
h′
h(〈h′〉ϕ ∧ 〈h\h′〉ψ)), where

|h| ≤ max.

Proof. Given MEmax and s ∈ D(MEmax), assume s |= [h](ϕ ∗ ψ). In order
to prove that s |= pre(h) → ∨

h′
h(〈h′〉ϕ ∧ 〈h\h′〉ψ), let us further assume
that s |= pre(h). From that and the initial assumption we obtain that sh |=
ϕ ∗ ψ. Then, there are h′, h′′ such that h = h′h′′, sh′ |= ϕ, and sh′′ |= ψ
(note that h′′ = h\h′). From that we obtain s |= 〈h′〉ϕ respectively s |= 〈h′′〉ψ,
and therefore sh′ |= 〈h′〉ϕ ∧ 〈h′′〉ψ, and therefore (using that h′′ = h\h′) s |=∨

h′
h(〈h′〉ϕ ∧ 〈h\h′〉ψ), as required. For the other direction, now assume s |=
pre(h) → ∨

h′
h(〈h′〉ϕ ∧ 〈h\h′〉ψ), and towards showing that s |= [h](ϕ ∗ ψ), let
us again further assume that s |= pre(h). Thus s |= ∨

h′
h(〈h′〉ϕ ∧ 〈h\h′〉ψ). Let
h′ be such that s |= 〈h′〉ϕ ∧ 〈h\h′〉ψ. Then, as before, sh′ |= ϕ and s(h\h′) |= ψ
so that sh |= ϕ ∗ ψ.

Proposition 3. |= [h](ϕ −∗ ψ) ↔ (pre(h) → ∧
|h′|≤max−|h|(〈h′〉ϕ → [hh′]ψ)),

where |h| ≤ max.

Proof. Given MEmax and s ∈ D(MEmax), assume s |= [h](ϕ −∗ ψ). Towards
showing that s |= pre(h) → ∧

|h′|≤max−|h|(〈h′〉ϕ → [hh′]ψ), further assume
s |= pre(h), let h′ be such that |h′| ≤ max − |h| and let s |= 〈h′〉ϕ. It then
remains to show that s |= [hh′]ψ. In order to obtain that we make one final
assumption namely s |= pre(hh′), so that shh′ ∈ D(MEmax). It then remains to
show that shh′ |= ψ. From s |= 〈h′〉ϕ we obtain that s |= pre(h′) and sh′ |= ϕ.
From s |= [h](ϕ −∗ ψ) and s |= pre(h) we deduce sh |= ϕ −∗ ψ. From that,
sh′ |= ϕ, and shh′ ∈ D(MEmax) we then get shh′ |= ψ, as required.

For the other direction, we now assume s |= (pre(h) → ∧
|h′|≤max−|h|(〈h′〉ϕ

→ [hh′]ψ)), and towards showing that s |= [h](ϕ −∗ ψ) we further assume that
s |= pre(h), so that it remains to show that sh |= ϕ −∗ ψ. Let now h′ be such
that |h′| ≤ max − |h|, s |= pre(h′), s |= pre(hh′), and sh′ |= ϕ. We need to
show that shh′ |= ψ. From sh′ |= ϕ we get s |= 〈h′〉ϕ. Now using the initial
assumption, s |= pre(h), s |= 〈h′〉ϕ, and s |= pre(hh′), we obtain that shh′ |= ψ,
as required.

Proposition 4. |= [h](ϕ ∗− ψ) ↔ (pre(h) → ∧
|h′|≤max−|h|(〈h′〉ϕ → [h′h]ψ)),

where |h| ≤ max.

Proof. The proof is obtained from the proof of Proposition 3 by replacing hh′

by h′h everywhere in that proof. The order of h and h′ does not play a role in
the proof.

A Separation Logic with Histories of Epistemic Actions as Resources 171

From Propositions 2 and 3 it follows in particular, as the empty history can
only be decomposed into empty and empty, and as pre(ε) = �, that:

Corollary 1.
|= ϕ ∗ ψ ↔ ϕ ∧ ψ
|= ϕ −∗ ψ ↔ ∧

|h|≤max(〈h〉ϕ → [h]ψ)
|= ϕ ∗− ψ ↔ ∧

|h|≤max(〈h〉ϕ → [h]ψ)

4.2 Termination of Reduction from LK∗E to LKE

We now show termination of the reduction. We define a translation t from LK∗E

to LKE , and a complexity/weight measure c from LK∗E to N and we then show
that the translation is correct (is truth –value– preserving) and terminates.

For the translation it is of tantamount importance that we use an outside-in
reduction strategy. This is because the reductions are |= validities, they are not
|=∗ validities: they are validities with respect to models with empty histories. In
other words, the translation t to be defined is only correct when all modalities
[h] occurring in formulas are interpreted in models with empty histories only.
For example, given [h](Kap → [h′]q), we can only rewrite [h] and we cannot (at
this stage) rewrite [h′]. This can only happen at a later stage in the rewriting
procedure after the formula has been massaged into a shape wherein [h′] (or
some modality derived from it in the process of rewriting) can be interpreted in
an empty history model. It is for this reason that the translation below does not
contain a clause for [h][h′]ϕ: in such a case we are compelled to reduce [hh′]ϕ,
or more precisely (as the formulas are identical by notational abbreviation), to
find a clause in the translation function for the main logical connective of ϕ.

If an inside-out reduction had been possible, a proof by natural induction
on the number of ∗, −∗, and ∗− occurrences would have been possible (in a
slightly refined lexicographic way comparing triples of natural numbers). As the
reduction is outside-in, applying an equivalence such as [h](ϕ ∗ ψ) ↔ (pre(h) →∨

h′
h(〈h′〉ϕ ∧ 〈h\h′〉ψ) does not necessarily reduce the number of separation
connectives on the righthand side of the equation. Any further ∗ occurring
in ϕ on the left, will now occur as many times on the right as there as pre-
fixes h′ of h. Therefore we have to resort to the standard method of defining a
weight/complexity measure on formulas.

Definition 9 (Complexity).

c(p) = c(⊥) = c(I) = 1
c(¬ϕ) = 1 + c(ϕ)
c(ϕ ∧ ψ) = 1 + max{c(ϕ), c(ψ)}
c(ϕ ∗ ψ) = max + 1 + max{c(ϕ), c(ψ)}
c(ϕ −∗ ψ) = c(ϕ ∗− ϕ) = 3 + Σmax

i=0 |E|i + c(E)max · max{c(ϕ), c(ψ)}
c(Kaϕ) = 1 + c(ϕ)
c([e]ϕ) = c(E) · c(ϕ)
c(E) = 3 + |E| + max{pre(e), post(e)(p) | e ∈ E, p ∈ P}

172 H. Ditmarsch et al.

From c([e]ϕ) = c(E) · c(ϕ) we obtain that c([h]ϕ) = c(E)|h| · c(ϕ) for arbitrary
histories h. We may abuse the language and write c(h) for c(E)|h|. In c(ϕ −∗ ψ)
and c(ϕ −∗ ψ), the conjunction

∧
h≤max is over all histories of length at most

max, where each action e in that history can be one of |E|. The total number
of histories therefore involves a geometric series Σmax

i=0 |E|i.
Definition 10 (Translation). Where 1 ≤ |h| ≤ max except in clause t([h]ϕ).

t(p) = p
t(⊥) = ⊥
t(I) = �
t(¬ϕ) = ¬t(ϕ)
t(ϕ ∧ ψ) = t(ϕ) ∧ t(ψ)
t(Kaϕ) = Kat(ϕ)
t(ϕ ∗ ψ) = t(ϕ ∧ ψ)
t(ϕ −∗ ψ) = t(

∧
|h|≤max(〈h〉ϕ → [h]ψ))

t(ϕ ∗− ψ) = t(
∧

|h|≤max(〈h〉ϕ → [h]ψ))
t([h]ϕ) = � where |h| > max
t([h]p) = pre(h) → post(h)(p)
t([h]⊥) = ¬pre(h)
t([h]I) = ¬pre(h)
t([h]¬ϕ) = pre(h) → t(¬[h]ϕ)
t([h](ϕ ∧ ψ)) = t([h]ϕ ∧ [h]ψ)
t([h]Kaϕ) = pre(h) → t(

∧
h∼ah′ Ka[h′]ϕ)

t([h](ϕ ∗ ψ)) = pre(h) → t(
∨

h′
h(〈h′〉ϕ ∧ 〈h\h′〉ψ))
t([h](ϕ −∗ ψ)) = pre(h) → t(

∧
|h′|≤max−|h|(〈h′〉ϕ → [hh′]ψ))

t([h](ϕ ∗− ψ)) = pre(h) → t(
∧

|h′|≤max−|h|(〈h′〉ϕ → [h′h]ψ))

As action model pre- and postconditions are in LKE (contain no I, ∗, −∗, and
∗−), we need not to translate (i.e., eliminate those operators from) those parts.

Lemma 4. All the following hold:

1. c(E) ≥ 5
2. c(ϕ ∨ ψ) ≤ 3 + max{c(ϕ), c(ψ)}
3. c(ϕ → ψ) ≤ 3 + max{c(ϕ), c(ψ)}
4. c(pre(h)) ≤ c(h)

Proof. We prove the successive items.

1. c(E) = 3 + |E| + max{pre(e), post(e)(p) | e ∈ E, p ∈ P} ≥ 3 + 1 + 1 = 5.
2. c(ϕ ∨ ψ) = c(¬(¬ϕ ∧ ¬ψ)) = 1 + c(¬ϕ ∧ ¬ψ)) ≤ 3 + max{c(ϕ), c(ψ)}
3. c(ϕ → ψ) = c(¬(ϕ ∧ ¬ψ) = 1 + c(ϕ ∧ ¬ψ) = 2 + max{c(ϕ), c(ψ) + 1} ≤

3 + max{c(ϕ), c(ψ)}
4. This follows from: c(h) = c(E)|h|, c(pre(e)) ≤ max{c(pre(e)), c(post(e)(p)) |

e ∈ E, p ∈ P}, and (as |h| > 1 so that h = h′e′) pre(h) = 〈h′〉pre(e′).

A Separation Logic with Histories of Epistemic Actions as Resources 173

Lemma 5. The following inequalities hold for arbitrary formulas, where 1 ≤
|h| ≤ max except in the clause for c([h]ϕ).

c(ϕ ∗ ψ) > c(ϕ ∧ ψ)
c(ϕ −∗ ψ) > c(

∧
|h|≤max(〈h〉ϕ → [h]ψ))

c(ϕ ∗− ψ) > c(
∧

|h|≤max(〈h〉ϕ → [h]ψ))
c([h]ϕ) > c(�) where |h| > max
c([h]p) > c(pre(h) → post(h)(p))
c([h]⊥) > c(¬pre(h))
c([h]I) > c(¬pre(h))
c([h]¬ϕ) > c(pre(h) → ¬[h]ϕ)
c([h](ϕ ∧ ψ)) > c([h]ϕ ∧ [h]ψ)
c([h]Kaϕ) > c(pre(h) → ∧

h′∼ah Ka[h′]ϕ)
c([h](ϕ ∗ ψ)) > c(pre(h) → ∨

h′.h′′=h(〈h′〉ϕ ∧ 〈h′′〉ψ))
c([h](ϕ −∗ ψ)) > c(pre(h) → ∧

|h′|≤max−|h|(〈h′〉ϕ → [hh′]ψ))
c([h](ϕ ∗− ψ)) > c(pre(h) → ∧

|h′|≤max−|h|(〈h′〉ϕ → [h′h]ψ))

Proof. We prove the separate items one by one.

c(ϕ ∗ ψ) = max + 1 + max{c(ϕ), c(ψ)}
> 1 + max{c(ϕ), c(ψ)} this bound is sharp
= c(ϕ ∧ ψ)

c(ϕ −∗ ψ) = 3 + Σmax
i=0 |E|i + c(E)max · max{c(ϕ), c(ψ)}

> Σmax
i=0 |E|i − 1 + 3 + c(E)max · max{c(ϕ), c(ψ)} (@)

≥ c(
∧

|h|≤max(〈h〉ϕ → [h]ψ))

(@): The number of h with |h| ≤ max is bounded by Σmax
i=0 |E|i, so one less for

the number of ∧-symbols. Then, c(E)max is the weight of the largest such h.
The case c(ϕ ∗− ψ) is treated just as the case c(ϕ −∗ ψ).

c([h]ϕ) = c(h) · c(ϕ) ≥ 5c(ϕ) ≥ 5 > 2 = c(¬⊥) = c(�) when |h| ≥ max

Note that c(h) = c(E)|h| ≥ c(E) ≥ 5. We do not use |h| ≥ max but only |h| ≥ 1.

c([h]p) = c(E)|h| · c(p)
= c(E)|h| · 1
= c(E)|h|

≥ c(E)
= 3 + |E| + max{c(pre(e)), c(post(e)(p)) | e ∈ E, p ∈ P}
> 3 + max{c(pre(e)), c(post(e)(p)) | e ∈ E, p ∈ P}
≥ c(pre(e) → post(e)(p))

c([h]⊥) = c(E)|h| · c(⊥)
= c(E)|h|

≥ c(E)
= 3 + |E| + max{c(pre(e)), c(post(e)(p)) | e ∈ E, p ∈ P}
> 1 + c(pre(h))
= c(¬pre(h))

174 H. Ditmarsch et al.

c([h]I) > c(¬pre(h))

The case c([h]I) is treated as the case c([h]⊥), as c(I) = c(⊥) = 1.

c([h]¬ϕ) = c(E)|h| · c(¬ϕ)
= c(E)|h| · (1 + c(ϕ))
= c(E)|h| + c(E)|h| · c(ϕ) c(E) ≥ 5, |h| ≥ 1
≥ 5 + c(E)|h| · c(ϕ) note that this bound is sharp
> 4 + c(E)|h| · c(ϕ) use that c(pre(h)) ≤ c(h)
= 3 + max{c(pre(h)), 1 + c(E)|h| · c(ϕ)}
= 3 + max{c(pre(h)), 1 + c([h]ϕ)}
= 3 + max{c(pre(h)), c(¬[h]ϕ)}
≥ c(pre(h) → ¬[h]ϕ)

c([h](ϕ ∧ ψ)) = c(E)|h| · c(ϕ ∧ ψ)
= c(E)|h| · (1 + max{c(ϕ), c(ψ)})
= c(E)|h| + c(E)|h| · max{c(ϕ), c(ψ)}
> 1 + c(E)|h| · max{c(ϕ), c(ψ)}
= 1 + max{c(E)|h| · c(ϕ), c(E)|h| · c(ψ)}
= 1 + max{c([h]ϕ), c([h]ψ)}
= c([h]ϕ ∧ [h]ψ)

c([h]Kaϕ) = c(E)|h| · c(Kaϕ)
= c(E)|h| · (1 + c(ϕ))
= c(E)|h| + c(E)|h| · c(ϕ)
≥ c(E)|h| + c(E)|h| · c(ϕ)
≥ 3 + |E||h| + max{c(pre(e)), c(post(e)(p)) | . . . } + c(E)|h| · c(ϕ)
≥ 4 + |E||h| + c(E)|h| · c(ϕ) this bound is sharp when h = 1
> 3 + |E||h| + c(E)|h| · c(ϕ)
= 3 + |E||h| − 1 + c(Ka[h]ϕ) (∗)
≥ 3 + c(

∧
h′∼ah Ka[h′]ϕ) as c(pre(h)) ≤ c(h)

≥ 3 + max{c(pre(h)), c(
∧

h′∼ah Ka[h′]ϕ)}
≥ c(pre(h) → ∧

h′∼ah Ka[h′]ϕ)

(∗): There are at most |E| indistinguishable f from a given e, therefore there are
at most |E||h| indistinguishable h′ from a given h. Minus 1 when counting the
number of ∧-symbols in a conjunction of that length.

c([h](ϕ ∗ ψ)) = c(E)|h| · c(ϕ ∗ ψ)
= c(E)|h| · (max + 1 + max{c(ϕ), c(ψ)})
= max · c(E)|h| + c(E)|h| + c(E)|h| · max{c(ϕ), c(ψ)}
≥ 5 + 3max + c(E)|h| · max{c(ϕ), c(ψ)} max ≥ |h|
> 3 + 3h| + 1 + c(E)|h| · max{c(ϕ), c(ψ)} (∗∗)
≥ 3 + c(

∨
h′
h(〈h′〉ϕ ∧ 〈h\h′〉ψ))

= 3 + max{c(pre(e)), c(
∨

h′
h(〈h′〉ϕ ∧ 〈h\h′〉ψ))}
≥ c(pre(h) → ∨

h′
h(〈h′〉ϕ ∧ 〈h\h′〉ψ))

A Separation Logic with Histories of Epistemic Actions as Resources 175

(∗∗): Each of |h| disjunctions adds 3, plus 1 for the conjunction.

c([h](ϕ −∗ ψ)) = c(E)|h| · c(ϕ −∗ ψ)
= c(E)|h| · (3 + Σmax

i=0 |E|i + c(E)max · max{c(ϕ), c(ψ)})
> 2 · (3 + Σmax

i=0 |E|i + c(E)max · max{c(ϕ), c(ψ)})
> 3 + 3 + Σmax−1

i=0 |E|i − 1 + c(E)max · max{c(ϕ), c(ψ)}
≥ 3 + c(

∧
|h′|≤max−|h|(〈h′〉ϕ → [hh′]ψ))

= 3 + max{c(pre(h), c(
∧

|h′|≤max−|h|(〈h′〉ϕ → [hh′]ψ))}
≥ c(pre(h) → ∧

|h′|≤max−|h|(〈h′〉ϕ → [hh′]ψ))

The case c([h](ϕ −∗ ψ)) is serious overkill, as in c(ϕ −∗ ψ) weight c(h) is already
factored in. But in case c(ϕ −∗ ϕ) this was indispensable. We also use that the
h′ we quantify over must have length at most max − 1 (as |h| ≥ 1), one less
therefore than in the case c(ϕ −∗ ψ).

The case of [h](ϕ ∗− ψ) is similar to the case [h](ϕ ∗− ψ).

Theorem 1. Every formula in LK∗E is equivalent to a formula in LKE

Proof. We recall that the reduction is outside-in. Consider a formula ϕ ∈ LK∗E ,
and apply a clause of translation t (Definition 10) on ϕ. Consider c(ϕ). If ϕ is
one of p, ⊥, or �, termination is trivial (such as t(p) = p). If the main logical
connective of ϕ commutes with t (such as in t(ψ ∧ χ) = t(ψ) ∧ t(χ)), then it
is obvious that the complexities of subformulas of ϕ are strictly lower than the
complexities of ϕ (such as c(ψ) < c(ψ ∧ χ) above, since the complexity of a
conjunction is that of its conjuncts plus one). If the main logical connective of
ϕ does not commute with t, we have one of the cases spelled out in Lemma 5 and
use that for all those cases c(ϕ) > c(t(ϕ)). Therefore, in every step of translation
t that we apply, the weight c is strictly less. As c(ϕ) is a natural number, this is
bounded by 0. Therefore the reduction terminates.

Corollary 2. Every formula in LK∗E is equivalent to a formula in LK .

As a consequence, the logic AMHSL (for empty history models, and given
bound max) is therefore completely axiomatized by the reduction axioms of
Sect. 4.1 and the axiomatization of action model logic with factual change [17]
(where we recall Proposition 1) that extends S5.

5 Remarks and Perspectives

Considering the history-based logical semantics with the bound max of the epis-
temic history model, it appears that model checking is decidable. Satisfiability
may be a different matter as the −∗ and ∗− connectives quantify over histories
of arbitrary finite length, even if we know that quantifying over action models
results in a decidable logic [9]. If histories are unbounded, we are uncertain if
∗, ∗− and −∗ can be eliminated by reduction from the language LK∗E . It is also
highly uncertain if action model modalities can be eliminated by reduction from
the language LK∗E , so that we get a LK∗ formula.

176 H. Ditmarsch et al.

The logical semantics for the language LK∗ is interesting in its own right.
Dynamic epistemic logics allowing reasoning about the past are very rare [2,4].
In LK∗ we can refer to the past in novel and unexpected ways. For example, sh |=
ψ ∗� formalizes that ψ was true in the past (there must be h′, h′′ with h′h′′ = h
such that sh′ |= ψ and sh′′ |= �, where the latter is trivially true). A formula like
¬I∗¬I∗¬I is only true after at least three actions have been executed (etcetera).
Would such a logic be axiomatizable? We can see that (Kaϕ∗Kaψ) → Ka(ϕ∗ψ)
is valid. However, Ka(ϕ ∗ ψ) → (Kaϕ ∗ Kaψ) is invalid.

Finally, instead of decomposing action histories into prefixes and postfixes,
such that resource update required distinct −∗ (append postfix) and ∗− (append
prefix) connectives, and where ϕ∗ψ may not be equivalent to ψ∗ϕ, we could also
contemplate decomposing an action history into a subsequence and its comple-
ment (such as when decomposing a.b.c.d into a.c and b.d). Now, one −∗ connective
suffices that can be interpreting as ‘enriching’ a given history with bits and pieces
of action sequences where it pleases us, and ∗ has become commutative. This
comes closer to the philosophy of separation.

Acknowledgements. We very much wish to thank the reviewers for their comments.
A reviewer pointed out an error in the proof of the case c([h](ϕ ∗ψ)) of Lemma 5, that
needed repair by strengthening the weight of case c(ϕ ∗ ψ) in Definition 9. Another
reviewer mentioned that AMHSL allows to reason about the length of histories. We
added an example.

References

1. Attamah, M., van Ditmarsch, H., Grossi, D., van der Hoek, W.: Knowledge and
gossip. In: Proceedings of 21st ECAI, pp. 21–26. IOS Press (2014)

2. Balbiani, P., van Ditmarsch, H., Herzig, A.: Before announcement. In: Beklemishev,
L.D., Demri, S., Maté, A. (eds.) Advances in Modal Logic, vol. 11, pp. 58–77.
College Publications (2016)

3. Baltag, A., Moss, L.S., Solecki, S.: The logic of public announcements, common
knowledge, and private suspicions. In: Proceedings of 7th TARK, pp. 43–56 (1998)

4. Baltag, A., Özgün, A., Vargas Sandoval, A.L.: Arbitrary public announcement logic
with memory. J. Philos. Log. 52, 53–110 (2022). https://doi.org/10.1007/s10992-
022-09664-6

5. Belle, V., Bolander, T., Herzig, A., Nebel, B.: Epistemic planning: Perspectives on
the special issue. Artif. Intell. (2022). https://doi.org/10.1016/j.artint.2022.103842

6. Courtault, J.-R., Galmiche, D.: A modal separation logic for resource dynamics.
J. Log. Comput. 28(4), 733–778 (2018)

7. Courtault, J.-R., van Ditmarsch, H., Galmiche, D.: A public announcement sepa-
ration logic. Math. Struct. Comput. Sci. 29(6), 828–871 (2019)

8. Galmiche, D., Kimmel, P., Pym, D.: A substructural epistemic resource logic: the-
ory and modelling applications. J. Log. Comput. 29(8), 1251–1287 (2019)

9. Hales, J.: Arbitrary action model logic and action model synthesis. In: Proceedings
of 28th LICS, pp. 253–262. IEEE (2013)

10. Ishtiaq, S., O’Hearn, P.: BI as an assertion language for mutable data structures.
In: Proceedings of 28th POPL, pp. 14–26 (2001)

https://doi.org/10.1007/s10992-022-09664-6
https://doi.org/10.1007/s10992-022-09664-6
https://doi.org/10.1016/j.artint.2022.103842

A Separation Logic with Histories of Epistemic Actions as Resources 177

11. Kooi, B.: Expressivity and completeness for public update logics via reduction
axioms. J. Appl. Non-Classical Log. 17(2), 231–254 (2007)

12. Miller, J.S., Moss, L.S.: The undecidability of iterated modal relativization. Stud.
Log. 79(3), 373–407 (2005)

13. Moss, L.S.: Dynamic epistemic logic. In: van Ditmarsch, H., Halpern, J.Y., van
der Hoek, W., Kooi, B. (eds.) Handbook of Epistemic Logic, pp. 261–312. College
Publications (2015)

14. Plaza, J.A.: Logics of public communications. In: Proceedings of the 4th ISMIS,
pp. 201–216. Oak Ridge National Laboratory (1989)

15. Pym, D.: The Semantics and Proof Theory of the Logic of Bunched Implications.
Applied Logic Series, vol. 26. Springer, Heidelberg (2002). https://doi.org/10.1007/
978-94-017-0091-7

16. van Benthem, J., Gerbrandy, J.D., Hoshi, T., Pacuit, E.: Merging frameworks for
interaction. J. Philos. Log. 38, 491–526 (2009)

17. van Benthem, J., van Eijck, J., Kooi, B.: Logics of communication and change. Inf.
Comput. 204(11), 1620–1662 (2006)

18. van Ditmarsch, H., Galmiche, D., Gawek, M.: An epistemic separation logic with
action models. J. Logic Lang. Inform. 32(1), 89–116 (2023). https://doi.org/10.
1007/s10849-022-09372-z

19. van Ditmarsch, H., Halpern, J.Y., van der Hoek, W., Kooi, B.: An introduction to
logics of knowledge and belief. In: van Ditmarsch, H., Halpern, J.Y., van der Hoek,
W., Kooi, B. (eds.) Handbook of Epistemic Logic, pp. 1–51 (2015)

20. van Ditmarsch, H., Ruan, J., van der Hoek, W.: Connecting dynamic epistemic
and temporal epistemic logics. Log. J. IGPL 21(3), 380–403 (2013)

21. van Ditmarsch, H., van der Hoek, W., Kooi, B.: Dynamic Epistemic Logic. Syn-
these Library, vol. 337. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
1-4020-5839-4

22. van Ditmarsch, H., van Eijck, J., Pardo, P., Ramezanian, R., Schwarzentruber, F.:
Epistemic protocols for dynamic gossip. J. Appl. Log. 20, 1–31 (2017)

https://doi.org/10.1007/978-94-017-0091-7
https://doi.org/10.1007/978-94-017-0091-7
https://doi.org/10.1007/s10849-022-09372-z
https://doi.org/10.1007/s10849-022-09372-z
https://doi.org/10.1007/978-1-4020-5839-4
https://doi.org/10.1007/978-1-4020-5839-4

Conditional Obligations in Justification
Logic

Federico L. G. Faroldi, Atefeh Rohani(B), and Thomas Studer

Institute of Computer Science, University of Bern, Bern, Switzerland
{federico.faroldi,atefeh.rohani,thomas.studer}@unibe.ch

Abstract. This paper presents a justification counterpart for dyadic
deontic logic, which is often argued to be better than Standard Deontic
Logic at representing conditional and contrary-to-duty obligations, such
as those exemplified by the notorious Chisholm’s puzzle. We consider
the alethic-deontic system (E) and present the explicit version of this
system (JE) by replacing the alethic Box-modality with proof terms and
the dyadic deontic Circ-modality with justification terms. The explicit
representation of strong factual detachment (SFD) is given and finally
soundness and completeness of the system (JE) with respect to basic
models and preference models is established.

Keywords: dyadic deontic logic · justification logic · preference
models

1 Introduction

Dyadic Deontic Logic (DDL) is an extension of Monadic Deontic Logic (MDL)
that employs a dyadic conditional represented by ©(B/A), which is weaker than
the expression A → ©B from MDL. The conditional ©(B/A) is read as “B is
obligatory, given A” so that A is the antecedent and B is the consequent [7]. In
contrast to Monadic Deontic Logic, which relies on Kripke-style possible world
models, Dyadic Deontic Logic works with preference-based semantics, in which
the possible worlds are related according to their betterness or relative goodness.
Under this semantics, ©(B/A) is true when all best A-worlds are B-worlds [17].
One of the puzzles that is solved by preference models is the so-called Chisholm’s
set.

1.1 Chisholm’s Set

Chisholm [6] was the initiator of the so-called "contrary-to-duty" problem, which
deals with the question of what to do when primary obligations are violated. The
main goal of DDL was to deal with these obligations, which works with setting
an order on the set of worlds [15,23,24]. Here is an example of Chisholm’s set.
Consider the following sentences:

F. Faroldi was supported by the Ambizione grant PZ00P1_201906, A. Rohani
and T. Studer were supported by the Swiss National Science Foundation grant
200020_184625.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
H. H. Hansen et al. (Eds.): WoLLIC 2023, LNCS 13923, pp. 178–193, 2023.
https://doi.org/10.1007/978-3-031-39784-4_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-39784-4_11&domain=pdf
https://doi.org/10.1007/978-3-031-39784-4_11

Conditional Obligations in Justification Logic 179

1. Thomas should take the math exam.
2. If he takes the math exam, he should register for it.
3. If he does not take the math exam, he should not register for it.
4. He does not take the math exam.

(1) is a primary obligation. (2) is an according-to-duty (ATD) obligation, which
says what is obligatory when the primary obligation is satisfied. (3) is a contrary-
to-duty obligation (CTD), which says what is obligatory when the primary obli-
gation is violated. (4) is a descriptive premise, saying that the primary obligation
is violated. Now we consider how these sentences are formalized in MDL and
in DDL [25].

The paradox raises from formulating the set of formulas:

Γ = {(1), (2), (3), (4)}
in monadic deontic logic, where this set is either inconsistent or one sentence
is derivable from another sentence in this set. However, Chisholm’s set seems
intuitively consistent and they also seem to be logically independent sentences.
There are four ways to formalize this set in MDL as follows:

(1.1) © E (2.1) © E (3.1) © E (4.1) © E
(1.2)E → ©R (2.2) © (E → R) (3.2) © (E → R) (4.2)E → ©R
(1.3) © (¬E → ¬R) (2.3)¬E → ©¬R (3.3) © (¬E → ¬R) (4.3)¬E → ©¬R
(1.4)¬E (2.4)¬E (3.4)¬E (4.4)¬E

We use Γi to denote the set {(i.1), (i.2), (i.3), (i.4)}. Observe that

P → (¬P → Q) (1)

is a propositional tautology. Using (1) we find that (1.4) implies (1.2). The set
Γ2 is inconsistent: from (2.1) and (2.2) we get ©R whereas from (2.3) and (2.4)
we get ©¬R; but in MDL obligations must not contradict each other. For Γ3,
note that applying necessitation to (1) and then using distributivity of © over
→ yields

©P → ©(¬P → Q).

Therefore, (3.1) implies (3.3). For Γ4 we again obtain by (1) that (4.4) implies
(4.2).

In DDL, where there is a ranking on the set of worlds according to their
betterness, Chisholm’s set does not yield an inconsistency because of the layers
of betterness. This ranking can be defined based on the number of obligations
violated in each state. Where more obligations are violated, the distance to the
ideal state is bigger. The set Γ that models Chisholm’s set is given by

Γ := {©E,©(R/E),©(¬R/¬E),¬E}.

The following diagram shows a model for Γ . Both R and E are true in w1, so w1

is the best world since no obligation of Γ is violated there. E is true in w2 and
neither E nor R is true in w3. So w2, w3 are second best because one obligation
is violated there. R is true in w4 and w4 is the worst world where two obligations
of Γ are violated there.

180 F. L. G. Faroldi et al.

best •w1, R,E

2nd best •w2, E •w3

worst •w4, R

1.2 Factual Detachment (FD) and Strong Factual Detachment
(SFD)

In DDL, we do not have the validity of Factual Detachment (FD), which is
sometimes called "deontic modus-ponens" [16]:

(©(A/B) ∧ B) → ©A

However, a restricted form of factual detachment, namely strong factual
detachment (SFD),

(©(A/B) ∧ �B) → ©A

is valid in DDL. One can interpret SFD as if A is obligatory given B, and B is
settled or proved, then A is obligatory. An example is as follows:

1. It is obligatory to pay a fine in case someone doesn’t pay taxes. (©(F/¬T))
2. The deadline for paying taxes is over and it is proved that someone didn’t

pay the tax. (�¬T)
3. from (1) and (2) and SFD we conclude that it’s obligatory for this person to

pay the fine. (©F)

One can consider �A as A is proved, which guarantees that from now on we can
believe that the person has not paid the taxes. Another principle, which is not
valid in DDL, is the law of Strengtheninng of the Antecedent (SA):

©(A/B) → ©(A/B ∧ C)

However, the restricted form of strengthening the antecedent is valid in some
systems of DDL, which is called “Rational Monotony”, where P (A/B) is read
as A is permissible, given B:

P (A/B) ∧ ©(C/B) → ©(C/B ∧ A)

Replacing a modal operator with explicit justifications first appeared in the
Logic of Proofs [1], the first justification logic, which was developed by Artemov
in order to introduce an explicit counterpart of the modal logic S4 by using clas-
sical provability semantics. Various interpretations of justification logic combing
justifications with traditional possible worlds models were presented after Fit-
ting [14]. The combination of justification logic and traditional possible world
models leads to various interpretations of justification logics [3,21,22]. They
make it possible to apply justification logic in many different epistemic and
deontic contexts [2,5,18,29,32,33].

Conditional Obligations in Justification Logic 181

Using justification logic for resolving deontic puzzles is already discussed
by Faroldi in [9,10,12,13] where the advantages of using explicit reasons are
thoroughly explained. In particular, the fact that deontic modalities are hyper-
intensional, i.e., they can distinguish between logically equivalent formulas, is
a good motivation to use justification logic. By replacing the modal operator
with a justification term, hyperintensionality is guaranteed by design in justifica-
tion logic, because two logically equivalent formulas can be justified by different
terms. Moreover, the problem of conflicting obligations can be handled well in
justification logic [8,11].

This article aims to present an explicit version of DDL, where the �-operator
is replaced with proof terms satisfying an S5-type axioms and the ©-operator is
replaced with suitable justification terms. The idea of using two types of terms is
already used in [20] and also in our work on explicit non-normal modal logic [30,
31]. We are going to extend the latter framework so that justification terms
represent conditional obligations. One of the main motivations for developing
justification counterpart of DDL is to find explicit reasons for countrary-to-
duty and according-to-duty conditional obligations.

The problem with explicit non-normal logics is that the logic is too weak and
hardly derives a formula. In the present paper, we remedy this by introducing
an explicit version of dyadic deontic logic. This is much stronger than non-
normal modal logic and we have appropriate formulations of according-to-duty
and contrary-to-duty obligations.

In this article an axiomatization of the justification counterpart of the mini-
mal DDL system JE is presented and based on this axiomatization, we provide
examples that show the explicit derivation of some well-known formulas such as
strong factual detachment (SFD) in our new system. For semantics, basic models
are defined, and based on this, preference models are adopted for this system.
Soundness and completeness of system JECS with respect to basic models and
then preference models are established.

2 Proof Systems for Alethic-Deontic Logic

We consider the proof system for alethic-deontic logic as a basis for our work.
In this system, which is denoted by E, two types of modal operators are used:
the alethic �-operator and dyadic deontic ©-operator.

2.1 Modal System

Let Prop be a countable set of atomic propositions. The set of formulas of the
language of Dyadic Deontic Logic is constructed inductively as follows: [26]

F := Pi | ¬F | F → F | �F | © (F/F)

such that Pi ∈ Prop, �F is read as “F is settled true” and ©(F/G) as “F
is obligatory, given G”. P (F/G) is a short form for ¬ © (¬F/G), ♦F is a

182 F. L. G. Faroldi et al.

short form of ¬�¬F , and ©F is an abbreviation for ©(F/�) which is read
as “F is unconditionally obligatory”. Formulas with iterated modalities, such as
©(p/(©(p/q) ∧ q)), are well-formed formulas. System E with the two operators� and © is axiomatized as follows:

Axioms of classical propositional logic CL
S5-scheme axioms for � S5
©(B/A) → � © (B/A) (Abs)�A → ©(A/B) (Nec)�(A ↔ B) → (©(C/A) ↔ ©(C/B)) (Ext)
©(A/A) (Id)
©(C/A ∧ B) → ©(B → C/A) (Sh)
©(B → C/A) → (©(B/A) → ©(C/A)) (COK)

A A → B

B
(MP)

A

�A
(Neccesitation)

As we see, these axioms can be categorized as follows:

– The axioms containing one operator �. These are axiom schemas of S5,
namely K, T, and 5.

�(A → B) → (�A → �B) (K)�A → A (T)
♦A → �♦A (5)

– The axioms containing one operator ©. (COK) is a deontic version of the
K-axiom, (Id) is the principle of identity, and (Sh), named after Shoham, is
a deontic analogue of the deduction theorem.

– Finally, the axioms containing two operators � and ©. (Abs), which is Lewis’
principle of absoluteness, shows that the betterness relation is not world-
relative. (Nec) is a deontic version of necessitation. (Ext), extensionality,
makes it possible to replace necessarily equivalent sentences in the antecedent
of deontic conditionals.

The following principles are derived in system E:

if A ↔ B then © (C/A) ↔ ©(C/B) (LLE)
if A → B then © (A/C) → ©(B/C) (RW)
©(B/A) ∧ ©(C/A) → ©(B ∧ C/A) (AND)
©(C/A) ∧ ©(C/B) → ©(C/A ∨ B) (OR)
©(C/A) ∧ ©(D/B) → ©(C ∨ D/A ∨ B) (OR’)

2.2 Preference Models

Now we review the preference model semantics for system E as follows:

Definition 1 (Preference model). A preference model is a tuple

M = (W,	, V),

where:

Conditional Obligations in Justification Logic 183

– W is a non-empty set of worlds;
– 	 is a binary relation on W , called betterness relation, which orders the set

of worlds according to their relative goodness. So for w, v ∈ W we read w 	 v
as “state v is at least as good as state w";

– V is a valuation function assigning a set V (p) ⊆ W to each atomic formula
p.

Definition 2 (Truth under preference model). Given a preference model
M = (W,	, V), for w, v ∈ W and A,B ∈ Fm, the truth for formulas under M
is defined as follows:

– for propositional formulas is in standard way;
– M, w � �A iff, for all v ∈ W , M, v � A;
– M, w � ©(A/B) iff best‖B‖ ⊆ ‖A‖;
where ‖A‖ is truth set of A, i.e., the set of all worlds in which A is true. best‖B‖
is the subset of ‖B‖ which is best according to 	.

2.3 Justification Version of System E

Now we present the explicit version of E denoted by JE. We first define the set
of terms and formulas as follows.

Definition 3. The set of proof terms, shown by PTm, and justification terms,
shown by JTm, are defined as follows:

λ ::= αi | ξi | �t | (λ + λ) | (λ · λ) | !λ | ?λ

t ::= i | xi | t · t | ∇t | e(t, λ) | n(λ)
where αi are proof constants, ξi are proof variables, i is a justification constant
and xi are justification variables.

Formulas are inductively defined as follows:

F := Pi | ¬F | (F → F) | λ : F | [t](F/F),

where Pi ∈ Prop, λ ∈ PTm, and t ∈ JTm. [t]F is an abbreviation for [t](F/�).
We use Fm for the set of formulas.

184 F. L. G. Faroldi et al.

Definition 4 (Axiom Schemas of JE).

Axioms of Classical Propositional Logic CL
λ : (F → G) → (κ : F → λ · κ : G) j
(λ : F ∨ κ : F) → (λ + κ) : F j+
λ : F → F jt
λ : F → !λ : λ : F j4
¬λ : A →?λ : (¬λ : A) j5

[t](B/A) → �t : [t](B/A) (Abs)
λ : B → [n(λ)](B/A) (Nec)
λ : (A ↔ B) → ([t](C/A) → [e(t, λ)](C/B)) (Ext)
[i](A/A) (Id)
[t](C/A ∧ B) → [∇t](B → C/A) (Sh)
[t](B → C/A) → ([s](B/A) → [t · s](C/A)) (COK)

Definition 5 (Constant Specification). A constant specification CS is any
subset:

CS ⊆ {(α,A) | α is a proof constant and A is an axiom of JE}.

A constant specification CS is called axiomatically appropriate if for each
axiom A of JE, there is a constant α with (α,A) ∈ CS.

Definition 6 (System JECS). For a constant specification CS, the system JECS

is defined by a Hilbert-style system with the axioms of JE and the following
inference rules:

A A → B

B
(MP)

α : A
ANCS where (α : A) ∈ CS

As usual in justification logic [1,4,19], JECS internalizes its own notion of proof.

Lemma 1 (Internalization). Let CS be an axiomatically appropriate constant
specification. For any formula A with JECS A, there exists a proof term λ such
that JECS λ : A.

To have a better understanding of the axiomatic system of JE, we provide
Hilbert-style proofs of some typical formulas in the following examples. It is
notable how terms are constructed as a justification for obligations.

Example 1. The explicit version of

if A → B then © (A/C) → ©(B/C) (RW)

is derivable in JECS as follows for an axiomatically appropriate CS and a
suitable term λ:

A → B
λ : (A → B) (Internalization)
[n(λ)](A → B/C) (Nec)
[s](A/C) → [n(λ) · s](B/C) (COK)

Conditional Obligations in Justification Logic 185

Example 2. The explicit version of

©(B/A) ∧ ©(C/A) → ©(B ∧ C/A) (AND)

is derivable in JECS as follows for an axiomatically appropriate CS and a
suitable term λ:

[t](B/A) ∧ [s](C/A)
B → (C → B ∧ C) (Tautology)
[t](B/A) → [n(λ) · t](C → B ∧ C/A) (RW)
[n(λ) · t](C → B ∧ C/A) (MP)
[s](C/A) → [n(λ) · t · s](B ∧ C/A) (COK)
[n(λ) · t · s](B ∧ C/A) (MP)

Example 3. The explicit version of

(©(A/B) ∧ �B) → ©A (SFD)

strong factual detachment is derivable in JECS as follows for an axiomatically
appropriate CS and a suitable term γ:

[t](A/B) ∧ λ : B
γ : ((B ∧ �) ↔ B) Tautology and internalization
[t](A/B) → [e(t, γ)](A/B ∧ �) (Ext)
[e(t, γ)](A/B ∧ �) (MP)
[∇e(t, γ)](B → A/�) (Sh)
[n(λ)](B/�) (Nec)
[∇e(t, γ) · n(λ)](A/�) (COK)

3 Semantics

We first consider the following operations on the sets of formulas and sets of
pairs of formulas in order to define basic evaluations.

Definition 7. Let X,Y be sets of formulas, U, V be sets of pairs of formulas,
and λ be a proof term. We define the following operations:

λ : X := {λ : F | F ∈ X};
X · Y := {F | G → F ∈ X for some G ∈ Y };
U � V := {(F,G) | (H → F,G) ∈ U for some (H,G) ∈ V };
X � V := {(F,G) | (G ↔ H) ∈ X for some (F,H) ∈ V };
n(X) := {(F,G) | F ∈ X,G ∈ Fm};
∇U := {(F → G,H) | (G, (H ∧ F)) ∈ U}.

Definition 8 (Basic Evaluation). A basic evaluation for JECS is a function
ε that

186 F. L. G. Faroldi et al.

– maps atomic propositions to 0 and 1:

ε(Pi) ∈ {0, 1}, for Pi ∈ Prop

– maps proof terms to sets of formulas:

ε(λ) ∈ P(Fm) for λ ∈ PTm

such that for arbitrary λ, κ ∈ PTm:
(i) ε(λ) · ε(κ) ⊆ ε(λ · κ)
(ii) ε(λ) ∪ ε(κ) ⊆ ε(λ + κ)
(iii) F ∈ ε(α) if (α, F) ∈ CS
(iv) λ : ε(λ) ⊆ ε(!λ)
(v) F /∈ ε(λ) implies ¬λ : F ∈ ε(?λ)

– maps justification terms to sets of pairs of formulas:

ε(t) := {(A,B) | A,B ∈ Fm}, for t ∈ JTm

such that for any proof term λ and justification terms t, s:
1. ε(t) � ε(s) ⊆ ε(t · s)
2. ε(λ) � ε(t) ⊆ ε(e(t, λ))
3. n(ε(λ)) ⊆ ε(n(λ))
4. ∇ε(t) ⊆ ε(∇t)
5. ε(�t) = {[t](A/B) | (A,B) ∈ ε(t)}
6. ε(i) = {(A,A) | A ∈ Fm}.

Definition 9 (Truth Under a Basic Evaluation). We define truth of a for-
mula F under a basic evaluation ε inductively as follows:

1. ε � P iff ε(P) = 1 for P ∈ Prop;
2. ε � F → G iff ε � F or ε � G;
3. ε � ¬F iff ε � F ;
4. ε � λ : F iff F ∈ ε(λ);
5. ε � [t](F/G) iff (F,G) ∈ ε(t).

Definition 10 (Factive Basic Evaluation). A basic evaluation ε is called
factive if for any formula λ : F we have ε � λ : F implies ε � F .

Definition 11 (Basic Model). Given an arbitrary CS, a basic model for JECS

is a basic evaluation that is factive.

The following theorem gives us the expected soundness and completeness with
respect to basic models which is proved in Appendix A.

Theorem 1 (Soundness and Completeness w.r.t. Basic Models). Let CS
be an arbitrary constant specification. System JECS is sound and complete with
respect to the class of all basic models. For any formula F ,

JECS F iff ε � F for all basic models ε for JECS.

Conditional Obligations in Justification Logic 187

4 Preference Models

In this section, we introduce preference models for JECS, which feature a set of
possible worlds together with a betterness or comparative goodness relation on
them.

Definition 12 (Quasi-model). A quasi-model for JECS is a triple

M = 〈W,	, ε〉

where:

– W is a non-empty set of worlds;
– 	 ⊆ W × W is a binary relation on the set of worlds where w1 	 w2 is read

as world w2 is at least as good as world w1.
– ε is an evaluation function that asigns a basic evaluation εw to each world w.

Definition 13 (Truth in Quasi-model). Let M = 〈W,	, ε〉 be a quasi-model.
Truth of a formula at a world w in a quasi-model is defined inductively as follows:

1. M, w � P iff εw(P) = 1, for P ∈ Prop
2. M, w � F → G iff M, w � F or M, w � G
3. M, w � ¬F iff M, w � F
4. M, w � λ : F iff F ∈ εw(λ)
5. M, w � [t](F/G) iff (F,G) ∈ εw(t).

We will write M � F if M, w � F for all w ∈ W .

Remark 1. As usual for quasi-models for justification logic [3,19,21], truth is
local, i.e., for a quasi-model M = 〈W,	, ε〉 and w ∈ W , we have for any F ∈ Fm:

M, w � F iff εw � F.

Remark 2. Let M = 〈W,	, ε〉 be a quasi-model. The truth set of F ∈ Fm is the
set of all worlds in which F is true (denoted by ‖F‖M),

‖F‖M := {w ∈ W | M, w � F}.

Moreover, the best worlds in which F is true, according to 	, are called best
F -worlds and are denoted by best�‖F‖M. For simplicity we often write ‖F‖ for
‖F‖M and best‖F‖ for best�‖F‖M when the model is clear from the context.

Remark 3 (Two Notions of “Best”). There are two ways to formalize the notion
of “best world” respecting optimality and maximality [27]:

– best‖A‖ under “opt rule”:

opt�(‖A‖) = {w ∈ ‖A‖M | ∀v(M, v � A → v 	 w)}

188 F. L. G. Faroldi et al.

– best‖A‖ under “max rule”:

max�(‖A‖) = {w ∈ ‖A‖M | ∀v((M, v � A ∧ w 	 v) → v 	 w)}
Definition 14 (Preference Model). A preference model is a quasi-model
where εw is factive and satisfies the following condition:

for any t ∈ JTm and w ∈ W,

(A,B) ∈ εw(t) implies best‖B‖ ⊆ ‖A‖ (JYB)

in other words, all best B-worlds are A-worlds. This condition is called justifi-
cation yields belief.

Definition 15 (Properties of). We can require additional properties for the
relation 	 such as:

– reflexivity: for all w ∈ W,w 	 w
– totalness: for all w, v ∈ W,w 	 v or v 	 w
– limitedness: if ‖A‖ �= ∅ then best‖A‖ �= ∅.
Limitedness avoids the case of not having a best state, i.e., of having infinitely
many strictly better states. Morover, totalness yields reflexivity.

Lemma 2. max�(‖A‖) = opt�(‖A‖) if 	 is total.

Proof. If 	 is total, then clearly from the definition opt�(‖A‖) ⊆ max�(‖A‖).
For the converse inclusion, suppose w ∈ max�(‖A‖). By totalness, for any v ∈ W
with M, v � A, either v 	 w or w 	 v. In first case w ∈ opt�(‖A‖) and in latter
case, by definition of max�, v 	 w and w ∈ opt�(‖A‖).

4.1 Soundness and Completeness w.r.t. Preference Models

Theorem 2. System JECS is sound and complete with respect to the class of all
preference models under opt rule.

Proof. To prove soundness, suppose M = 〈W,	, ε〉 is a preference model and
JE A. We show that A is true in every world w ∈ W . By soundness of JE with
respect to basic models, we get εw � A for all εw and by locality of truth in
quasi-models, we conclude M, w � A.

To prove completeness, suppose that JE � A. By completeness of JE with
respect to basic models, there is a basic model ε such that ε � A. Now construct
a preference model M := 〈{w1},	, ε′〉 with ε′

w1
:= ε and 	 := ∅. Then by locality

of truth, we have M, w1 � A. It is easy to see that M is a preference model,
i.e., to show (JYB). For any t ∈ Tm if (B,C) ∈ ε(t), we have best‖C‖ ⊆ ‖B‖
since best‖C‖ = ∅.

Remark 4. The above proof does not give us completeness under the max rule.
The problem is that for the max rule, we cannot define the relation 	 such that
best‖C‖ = ∅.

Conditional Obligations in Justification Logic 189

However, by proving the following theorem we get desired results analogous to
result in [28].

Theorem 3. For every preference model M = 〈W,	, ε〉 under opt rule, there
is an equivalent preference model M′ = 〈W ′,	′, ε′〉, such that 	′ is total (and
hence reflexive).

Proof. Let M = 〈W,	, ε〉. We define M′ = 〈W ′,	′, ε′〉 as follows:

– W ′ = {〈w, n〉 | w ∈ W,n ∈ ω};
– 〈w, n〉 	′ 〈v,m〉 iff w 	 v or n ≤ m;
– ε′(p) = {〈w, n〉 | w ∈ ε(p)}, for p ∈ Prop;
– ε′

〈w,n〉(λ) = εw(λ);
– ε′

〈w,n〉(t) = εw(t);

where ω is the set of natural numbers. One can easily see that 	′ is total, since for
any 〈w, n〉 and 〈v,m〉 in W ′, we have either 〈w, n〉 	′ 〈v,m〉 or 〈v,m〉 	′ 〈w, n〉,
by totality of ≤ on the set of natural numbers. By locality of truth, for any
formula F ∈ Fm, we have M, w � F iff M′, 〈w, n〉 � F for all n ∈ ω.

In order to show (JYB) in M′, suppose M′, 〈w, n〉 � [t](A/B). By definition
of M′ we get (A,B) ∈ ε′

〈w,n〉(t) and so (A,B) ∈ εw(t).
By applying (JYB) in M, we get best‖B‖M ⊆ ‖A‖M. We need to

show that best‖B‖M′ ⊆ ‖A‖M′
. Suppose 〈v, k〉 ∈ best‖B‖M′

, which means
M′, 〈v, k〉 � B. Then by definition of M′ we have M, v � B. We will show
that v ∈ best‖B‖M. Suppose towards contradiction that v /∈ best‖B‖M. Based
on this, there is a world u ∈ W such that u � v and M, u � B. From this
we get 〈u, k〉 ∈ W ′ and 〈u, k + 1〉 ∈ W ′ as well. By definition of M′ we have
M′, 〈u, k + 1〉 � B, where 〈v, k〉 	′ 〈u, k + 1〉. This is a contradiction with the
assumption that 〈v, k〉 ∈ best‖B‖M′

. As a result v ∈ best‖B‖M and by (JYB)
in M we get v ∈ ‖A‖M, which means M, v � A. As a result M′, 〈v, k〉 � A,
which means 〈v, k〉 ∈ ‖A‖M′

.

We conclude that the following strengthening of Theorem 2 holds.

Corollary 1. System JECS is sound and complete with respect to preference
models with a total betterness relation.

By Lemma 2 this implies completeness of JECS with respect to preference models
under max rule.

Corollary 2. System JECS is sound and complete with respect to preference
models under max rule.

5 Conclusion and Future Work

Having explicit counterparts of modalities is valuable not only in epistemic but
also in deontic contexts, where justification terms can be interpreted as rea-
sons for obligations. Explicit non-normal modal logic [30] avoids the usual deon-
tic paradoxes at the cost of being very (too) weak with respect to deductive

190 F. L. G. Faroldi et al.

power [31]. In the present paper, we introduced an explicit version JECS of the
alethic-deontic system E, which features dyadic modalities to capture deontic
conditionals. Semantics for E is given in terms of preference models, where the
set of worlds is ordered according to a betterness relation. The language of JECS

includes proof terms for the alethic modality and justification terms for the
deontic modality.

We established soundness and completeness of JECS with respect to basic
models and preference models. In preference models, the property “justification
yields belief” (JYB) holds, which means justified formulas act like obligatory
formulas.

The converse direction, however, only holds in fully explanatory models. A
preference model is fully explanatory if the converse of (JYB) holds, that is for
any world w and any formulas A,B:

best‖B‖ ⊆ ‖A‖ implies (A,B) ∈ εw(t) for some t ∈ JTm.

To prove the completeness for JECS with respect to fully explanatory preference
models, one would have to follow the strategy of the completeness proof for the
modal system E [28]. That is define so-called selection function models for JECS,
establish completeness with respect to the selection function models, and show
that for each selection function model, there is an equivalent preference model.

Another line of future work is to study justification logic for preference mod-
els where the betterness relation satisfies the limitedness condition. The modal
axiom that corresponds to this is �A → (©(B/A) → P(B/A)), where �A and
P(B/A)) stand for ¬�¬A and ¬ © (¬B/A), respectively. The problem of find-
ing a justification logic version for this axiom is that terms in justification logic
usually stand for �-type modalities. A notable exception is the work on justified
constructive modal logic [20].

A Soundness and Completeness with Respect to Basic
Models

Theorem 4. System JECS is sound with respect to the class of all basic models.

Proof. The proof is by induction on the length of derivations in JECS. For an
arbitrary basic model ε, soundness of the propositional axioms is trivial and
soundness of S5 axioms j, jt, j4, j5, j+ immediately follows from the definition of
basic evaluation and factivity. We just check the cases for the axioms containing
justification terms. Suppose JECS F and F is an instance of:

– (COK): Suppose ε � [t](B → C/A) and ε � [s](B/A). Thus we have

(B → C,A) ∈ ε(t) and (B,A) ∈ ε(s).

By the definition of basic model, we have ε(t)� ε(s) ⊆ ε(t · s) and as a result
(C,A) ∈ ε(t · s), which means ε � [t · s](C/A).

Conditional Obligations in Justification Logic 191

– (Nec): Suppose ε � (λ : A). Thus A ∈ ε(λ). By the definition of n(ε(λ)) we
have (A,B) ∈ n(ε(λ)) for any B ∈ Fm and by the definition of basic evaluation
n(ε(λ)) ⊆ ε(n(λ)), so (A,B) ∈ ε(n(λ)), which means ε � [n(λ)](A/B).

– (Ext): Suppose ε � λ : (A ↔ B), so (A ↔ B) ∈ ε(λ). Since ε(λ) � ε(t) ⊆
ε(e(t, λ)), we have (C,B) ∈ ε(e(t, λ)) if (C,A) ∈ ε(t). Hence ε � ([t](C/A) →
[e(t, λ)](C/B)).

– (Sh): Suppose ε � [t](C/A ∧ B), then (C, (A ∧ B)) ∈ ε(t). By definition
of ∇(ε(t)) we have (B → C,A) ∈ ∇(ε(t)) and by definition of basic models,
∇ε(t) ⊆ ε(∇t). As a result, ((B → C), A) ∈ ε(∇t) which means ε � [∇t](B →
C/A).

For the axioms (Abs) and (Id) soundness is immediate from the definition of
basic evaluation. ��
Theorem 5. System JECS is complete with respect to the class of all basic mod-
els.

Proof. Given a maximal consistent Γ , we define the canonical model εc induced
by Γ as follows:

– εc
Γ (P) := 1, if P ∈ Γ and εc := 0, if P /∈ Γ ;

– εc
Γ (λ) := {F | λ : F ∈ Γ};

– εc
Γ (t) := {(F,G) | [t](F/G) ∈ Γ}.

We first show that εc is a basic evaluation. Conditions (i)–(v) follow immediately
from the maximal consistency of Γ and axioms of j − j5. Conditions (1)–(6) are
obtained from the axioms (Abs), (COK), (Nec), (Id), (Ext), and (Sh). Let us
only show (1) and (3).

To check condition (1), suppose (C,B) ∈ εc(t) � εc(s). Then there is an
A ∈ Fm such that (A → C,B) ∈ εc(t) and (A,B) ∈ εc(s). By the definition of
canonical model [t](A → C/B) ∈ Γ and [s](A/B) ∈ Γ , by maximal consistency
of Γ and axiom (COK) we have [t · s](C/B) ∈ Γ , which gives (C/B) ∈ εc(t · s).

To check condition (3), suppose (A,B) ∈ n(εc(λ)). Then A ∈ εc(λ), which
means λ : A ∈ Γ . By maximal consistency of Γ and axiom (Nec) we get
[n(λ)](A/B) ∈ Γ . By the definition of canonical model we conclude (A,B) ∈
εc(n(λ)). Thus εc is a basic evaluation.

The truth lemma states:

F ∈ Γ iff εc � F,

which is established as usual by induction on the structure of F . In case F =
[t](A/B), we have [t](A/B) ∈ Γ iff (A,B) ∈ εc(t) iff εc � [t](A/B).

Due to axiom jt, εc is factive by the following reasoning: if εc � λ : F , we get
by the truth lemma that λ : F ∈ Γ . By the maximal consistency of Γ we have
F ∈ Γ which means εc � F by the truth lemma. ��

192 F. L. G. Faroldi et al.

References

1. Artemov, S.: Explicit provability and constructive semantics. BSL 7(1), 1–36 (2001)
2. Artemov, S.: Justified common knowledge. TCS 357(1–3), 4–22 (2006). https://

doi.org/10.1016/j.tcs.2006.03.009
3. Artemov, S.: The ontology of justifications in the logical setting. Stud. Log. 100(1–

2), 17–30 (2012). https://doi.org/10.1007/s11225-012-9387-x
4. Artemov, S., Fitting, M.: Justification Logic: Reasoning with Reasons. Cambridge

Tracts in Mathematics, Cambridge University Press, Cambridge (2019). https://
doi.org/10.1017/9781108348034

5. Bucheli, S., Kuznets, R., Studer, T.: Justifications for common knowledge. Appl.
Non-Classical Log. 21(1), 35–60 (2011). https://doi.org/10.3166/JANCL.21.35-60

6. Chisholm, R.M.: Contrary-to-duty imperatives and deontic logic. Analysis 24(2),
33–36 (1963). https://doi.org/10.1093/analys/24.2.33

7. Danielsson, S.: Preference and Obligation. Studies in the Logic of Ethics. Filosofiska
föreningen (1968)

8. Faroldi, F., Ghari, M., Lehmann, E., Studer, T.: Impossible and conflicting obli-
gations in justification logic. In: Marra, A., Liu, F., Portner, P., Van De Putte, F.
(eds.) Proceedings of DEON 2020 (2020)

9. Faroldi, F.L.G.: Deontic modals and hyperintensionality. Log. J. IGPL 27, 387–410
(2019). https://doi.org/10.1093/jigpal/jzz011

10. Faroldi, F.L.G.: Hyperintensionality and Normativity. Springer, Heidelberg (2019).
https://doi.org/10.1007/978-3-030-03487-0

11. Faroldi, F.L.G., Ghari, M., Lehmann, E., Studer, T.: Consistency and permission
in deontic justification logic. J. Log. Comput. (2022). https://doi.org/10.1093/
logcom/exac045

12. Faroldi, F.L.G., Protopopescu, T.: All-things-considered ought via reasons in jus-
tification logic (2018). Preprint

13. Faroldi, F.L.G., Protopopescu, T.: A hyperintensional logical framework for deontic
reasons. Log. J. IGPL 27, 411–433 (2019). https://doi.org/10.1093/jigpal/jzz013

14. Fitting, M.: The logic of proofs, semantically. APAL 132(1), 1–25 (2005). https://
doi.org/10.1016/j.apal.2004.04.009

15. van Fraassen, B.C.: The logic of conditional obligation. J. Philos. Log. 1(3/4),
417–438 (1972)

16. Gabbay, D., Horty, J., Parent, X., van der Meyden, R., van der Torre, L.: Handbook
of Deontic Logic and Normative System, vol. 2. College Publications (2021)

17. Hansson, B.: An analysis of some deontic logics. Noûs 3(4), 373–398 (1969)
18. Kokkinis, I., Maksimović, P., Ognjanović, Z., Studer, T.: First steps towards prob-

abilistic justification logic. Log. J. IGPL 23(4), 662–687 (2015). https://doi.org/
10.1093/jigpal/jzv025

19. Kuznets, R., Studer, T.: Logics of Proofs and Justifications. Studies in Logic. Col-
lege Publications (2019)

20. Kuznets, R., Marin, S., Straßburger, L.: Justification logic for constructive modal
logic. J. Appl. Log. 8, 2313–2332 (2021)

21. Kuznets, R., Studer, T.: Justifications, ontology, and conservativity. In: Bolander,
T., Braüner, T., Ghilardi, S., Moss, L. (eds.) Advances in Modal Logic, vol. 9, pp.
437–458. College Publications (2012)

22. Lehmann, E., Studer, T.: Subset models for justification logic. In: Iemhoff, R.,
Moortgat, M., de Queiroz, R. (eds.) WoLLIC 2019. LNCS, vol. 11541, pp. 433–
449. Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-662-59533-6_26

https://doi.org/10.1016/j.tcs.2006.03.009
https://doi.org/10.1016/j.tcs.2006.03.009
https://doi.org/10.1007/s11225-012-9387-x
https://doi.org/10.1017/9781108348034
https://doi.org/10.1017/9781108348034
https://doi.org/10.3166/JANCL.21.35-60
https://doi.org/10.1093/analys/24.2.33
https://doi.org/10.1093/jigpal/jzz011
https://doi.org/10.1007/978-3-030-03487-0
https://doi.org/10.1093/logcom/exac045
https://doi.org/10.1093/logcom/exac045
https://doi.org/10.1093/jigpal/jzz013
https://doi.org/10.1016/j.apal.2004.04.009
https://doi.org/10.1016/j.apal.2004.04.009
https://doi.org/10.1093/jigpal/jzv025
https://doi.org/10.1093/jigpal/jzv025
https://doi.org/10.1007/978-3-662-59533-6_26

Conditional Obligations in Justification Logic 193

23. Lewis, D.K.: Counterfactuals. Blackwell, Cambridge (1973)
24. Lewis, D.K.: Semantic analyses for dyadic deontic logic. In: Stenlund, S., Henschen-

Dahlquist, A.M., Lindahl, L., Nordenfelt, L., Odelstad, J. (eds.) Logical Theory
and Semantic Analysis. Synthese Library, vol. 63, pp. 1–14. Springer, Dordrecht
(1974)

25. Parent, X., van der Torre, L.: Introduction to Deontic Logic and Normative Sys-
tems. Texts in Logic and Reasoning. College Publications (2018)

26. Parent, X.: A complete axiom set for Hansson’s deontic logic DSDL2. Log. J. IGPL
18(3), 422–429 (2010). https://doi.org/10.1093/jigpal/jzp050

27. Parent, X.: Maximality vs. optimality in dyadic deontic logic. J. Philos. Log. 43(6),
1101–1128 (2013). https://doi.org/10.1007/s10992-013-9308-0

28. Parent, X.: Completeness of Åqvist’s systems E and F. Rev. Symb. Log. 8(1),
164–177 (2015). https://doi.org/10.1017/S1755020314000367

29. Renne, B.: Dynamic epistemic logic with justification. Ph.D. thesis, City University
of New York (2008)

30. Rohani, A., Studer, T.: Explicit non-normal modal logic. In: Silva, A., Wassermann,
R., de Queiroz, R. (eds.) WoLLIC 2021. LNCS, vol. 13038, pp. 64–81. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-88853-4_5

31. Rohani, A., Studer, T.: Explicit non-normal modal logic. J. Log. Comput. (in print)
32. Studer, T.: Decidability for some justification logics with negative introspection.

JSL 78(2), 388–402 (2013). https://doi.org/10.2178/jsl.7802030
33. Xu, C., Wang, Y., Studer, T.: A logic of knowing why. Synthese 198, 1259–1285

(2021)

https://doi.org/10.1093/jigpal/jzp050
https://doi.org/10.1007/s10992-013-9308-0
https://doi.org/10.1017/S1755020314000367
https://doi.org/10.1007/978-3-030-88853-4_5
https://doi.org/10.2178/jsl.7802030

Structural Completeness
and Superintuitionistic Inquisitive Logics

Thomas Ferguson and Vı́t Punčochář(B)

Institute of Philosophy, Czech Academy of Sciences, Jilská 1, 11000 Prague, Czechia

tferguson@gradcenter.cuny.edu, puncochar@flu.cas.cz

Abstract. In this paper, the notion of structural completeness is
explored in the context of a generalized class of superintuitionistic logics
involving also systems that are not closed under uniform substitution.
We just require that each logic must be closed under D-substitutions
assigning to atomic formulas only ∨-free formulas. For these systems we
introduce four different notions of structural completeness and study how
they are related. We focus on superintuitionistic inquisitive logics that
validate a schema called Split and have the disjunction property. In these
logics disjunction can be interpreted in the sense of inquisitive semantics
as a question forming operator. It is shown that a logic is structurally
complete with respect to D-substitutions if and only if it includes the
weakest superintuitionistic inquisitive logic. Various consequences of this
result are explored. For example, it is shown that every superintuition-
istic inquisitive logic can be characterized by a Kripke model built up
from D-substitutions. Additionally, we resolve a conjecture concerning
superintuitionistic inquisitive logics due to Miglioli et al..

Keywords: Inquisitive logic · superintuitionistic logics · Structural
completeness · Substitution · Kripke semantics

1 Introduction

The property of structural completeness of a logic Λ is satisfied when every rule
admissible in Λ is also derivable in Λ. Since its introduction by Pogorzelski [25],
the property has been studied in a number of contexts, e.g. in substructural
logics in [24] or fuzzy logics in [8], but most exhaustively in the context of
superintuitionistic (also known as intermediate) logics (e.g. in [9,10]).

Research on structural completeness has largely assumed the requirement of
closure under uniform substitutions. A notable exception to this requirement is
found in inquisitive logic [6]. Inquisitive logic makes up a framework in which
declarative propositions (asserting information) are distinguished from inquisi-
tive propositions (in which a question is posed). In order to preserve the distinc-
tion, uniform substitution must be relaxed.

As [28] documents, there is an interesting class of superintuitionistic inquis-
itive logics that inhabit the space of theories extending intuitionistic logic but
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
H. H. Hansen et al. (Eds.): WoLLIC 2023, LNCS 13923, pp. 194–210, 2023.
https://doi.org/10.1007/978-3-031-39784-4_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-39784-4_12&domain=pdf
https://doi.org/10.1007/978-3-031-39784-4_12

Structural Completeness and Superintuitionistic Inquisitive Logics 195

are not closed under all substitutions. Both [22] and [20] touch on properties
concerning structural completeness relevant to inquisitive logics. [22] considers
variants of structural completeness over a wide range of theories in which sub-
stitutivity might fail, emphasizing two particular inquisitive logics, while [20]
considers the inquisitive logic InqB among related systems of logics of depen-
dency. While both studies have lessons for the structure of inquisitive logics,
neither focuses on the whole class of these logics.

In what follows, we investigate structural completeness from the perspec-
tive of intuitionistic inquisitive logic and its extensions. Several interesting facts
become clear from this standpoint, including the fact that all superintuition-
istic inquisitive logics enjoy a property of hereditary structural completeness
and that hereditary structural completeness coincides with structural complete-
ness simpliciter in the space of extensions of intuitionistic inquisitive logic. We
apply these results to expose a relationship with extensions of Gödel-Dummett
logic LC and to explore the features of Kripke models for inquisitive logics built
from substitutions. Along the way, we resolve a two-part conjecture concerning
inquisitive logics due to Miglioli et al. made in [22].

2 Intuitionistic Inquisitive Logic and Its Extensions

The standard inquisitive logic [2–4,6] is based on an “information-based” seman-
tics for classical logic that allows us to add to the language and characterize
semantically some question forming operators, like inquisitive disjunction on the
propositional level and an inquisitive existential quantifier on the first-order level.
Since we will focus in this paper on the propositional level, we will be concerned
only with inquisitive disjunction. This operator, when applied to statements
S1, S2, forms the question whether S1 or S2, which can be contrasted with the
statement that S1 or S2. Interestingly, this construction can be embedded under
other operators, thus allowing one to form, for example, conjunctive questions
and conditional questions. It is also possible to form disjunctive questions with
more than two alternatives (whether S1, S2, or S3, and so on), and polar (yes/no)
questions as a special kind of disjunctive question (whether S1 or not S1).

Inquisitive disjunction has some constructive features and resembles intu-
itionistic disjunction, though, as we will see, it is not identical with it. Standard
inquisitive logic can thus be viewed as classical logic extended with this con-
structive operator. It is possible to vary almost arbitrarily the background logic
of declarative sentences, while keeping fixed the most characteristic features of
inquisitive semantics. In this way we obtain non-classical inquisitive logics. A
general semantic and syntactic theory of these logics is developed in [30]. An
important example of such a logic is intuitionistic inquisitive logic [5,28,31]. It
can be presented in two different ways. One can take the standard language of
intuitionistic logic and add inquisitive disjunction to this language (as in [5,29]).
Alternatively, one can work just with the standard language involving only one
disjunction, which is however interpreted in the inquisitive way (as in [2,6,31]).
In this paper we will take the latter approach, which has the advantage that the

196 T. Ferguson and V. Punčochář

axiomatization of the corresponding logic is much simpler and more elegant, and
it can be compared directly with other logical systems in the same language that
have been already studied in the literature on superintuitionistic logics. But the
main reason for the decision to work with only one disjunction is that our main
results concerning structural completeness hold only for this restricted language
and they cease to be valid if the second disjunction is added. So, in this paper
we will work with this basic language:

ϕ ::= p | ⊥ | ϕ → ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ

where ∨ will be viewed as inquisitive disjunction. Negation, equivalence and a
constant for validity are defined in the following usual way: ¬ϕ =def ϕ → ⊥,
ϕ ↔ ψ =def (ϕ → ψ) ∧ (ψ → ϕ), � =def ⊥ → ⊥.

Fix any Hilbert style axiomatization of intuitionistic logic in this language,
which has modus ponens as the only rule of inference. Let IL denote the set
of its derivable formulas. We write �IL ϕ instead of ϕ ∈ IL, ϕ �IL ψ instead of
ϕ → ψ ∈ IL, and ϕ ≡IL ψ instead of ϕ ↔ ψ ∈ IL. (The same notation will be
used also for other logics).

An axiomatization of intuitionistic inquisitive logic is obtained by extending
the system for intuitionistic logic with the following schema called Split :

(α → (ψ ∨ χ)) → ((α → ψ) ∨ (α → χ)),

where α ranges over ∨-free formulas.1 The set of derivable formulas will be
denoted as InqIL. The Split schema can be viewed as a piece that is missing in
intuitionistic logic in order to prove inductively the following disjunctive form
theorem, which is a cornerstone of propositional inquisitive logic that has been
proved and used for many of its incarnations.

Theorem 1. For any formula ϕ there are ∨-free formulas α1, . . . , αn such that

ϕ ≡InqIL α1 ∨ . . . ∨ αn.

Proof. One can proceed by induction. We show just the inductive step for impli-
cation. Assume that ψ ≡InqIL β1 ∨ . . . ∨ βm and χ ≡InqIL γ1 ∨ . . . ∨ γn. Let
I = {1, . . . , m} and J = {1, . . . , n}. Then (using Split in the equivalence between
the second and the third line):

ψ → χ ≡InqIL

∨
i∈I βi → ∨

j∈J γj

≡InqIL

∧
i∈I(βi → ∨

j∈J γj)
≡InqIL

∧
i∈I

∨
j∈J(βi → γj)

≡InqIL

∨
f∈I→J

∧
i∈I(βi → γf(i)).

��

1 For a formulation of intuitionistic inquisitive logic as a system of natural deduction,
see [29].

Structural Completeness and Superintuitionistic Inquisitive Logics 197

The Split schema can be formulated in a stronger form, using the notion of
a Harrop formula. A formula is called a Harrop formula if disjunction occurs
in it only within antecedents of implications. So, the only allowed occurrences
of disjunction are in the following context: (. . . ((. . . ∨ . . .) → . . .) . . .). It can
be observed that for every Harrop formula ϕ there is a ∨-free formula α such
that ϕ ≡InqIL α. To see this, assume that ϕ contains a subformula ψ → χ. The
antecedent ψ may possibly involve a disjunction but all such disjunctions can be
eliminated, since, according to Theorem 1, there are ∨-free formulas β1, . . . , βn

such that ψ ≡InqIL β1∨. . .∨βm, and so ψ → χ ≡InqIL

∨
i βi → χ ≡InqIL

∧
i(βi → χ).

As a consequence of this observation, InqIL can be equivalently axiomatized by
extending intuitionistic logic with the schema that we can call H-Split and which
is like Split except that α ranges over arbitrary Harrop formulas.

Nevertheless, the restriction on the antecedents in Split (or H-Split) is impor-
tant and cannot be completely avoided. Not all substitutional instances of Split
hold in InqIL. For example, ((p ∨ q) → (p ∨ q)) → (((p ∨ q) → p) ∨ ((p ∨ q) →
q)) /∈ InqIL. In this respect, InqIL is an unusual logic because it is not closed
under uniform substitution. This fact is however well-motivated, given that the
logic deals with two different categories of propositions, statements and ques-
tions. Questions are generated only by the inquisitive operator, and so every
∨-free formula represents a statement. It is not surprising that questions behave
differently, and in some contexts cannot be substituted for statements.

In this paper, we want to explore InqIL within the context of superintuition-
istic logics. However, since superintuitionistic logics are required to be closed
under uniform substitution, we need to introduce a more general notion, that
will encompass also InqIL (and other inquisitive logics). For this purpose, we use
the following definitions.

Definition 1. A substitution is a function that assigns a formula to each atomic
formula. An H-substitution is a substitution that assigns to each atomic formula
a Harrop formula. A D-substitution is a substitution that assigns to each atomic
formula a ∨-free formula.2 If s is a substitution and ϕ is a formula then s(ϕ)
denotes the formula that is obtained from ϕ by replacing simultaneously every
occurrence of each atomic formula p in ϕ with the formula s(p).

Definition 2. A gsi-logic (generalized superintuitionistic logic) is any set of
formulas which (a) contains all intuitionistically valid formulas; (b) does not
contain ⊥; (c) is closed under every D-substitution; (d) is closed under modus
ponens.3 A gsi-logic is standard if it is closed under every substitution.

Note that the notion of a standard gsi-logic coincides with the standard notion
of a superintuitionistic logic. Next we define, in accordance with [31], the notion
of an inquisitive gsi-logic.
2 Intuitively, given the inquisitive interpretation of disjunction, D-substitutions assign

only declarative sentences to atomic formulas.
3 In [31] these sets of formulas were called superintuitionistic logics∗, using the star to

indicate that the notion of a logic is used in a non-standard way, since closure under
uniform substitution is not generally required.

198 T. Ferguson and V. Punčochář

Definition 3. We say that a gsi-logic Λ is inquisitive if it (a) contains all
instances of Split, and (b) has the disjunction property, i.e. α ∨ β ∈ Λ only
if α ∈ Λ or β ∈ Λ. Instead of saying that a gsi-logic Λ contains all instances of
Split we will sometimes say that Split is valid in Λ.

It is clear that InqIL is a gsi-logic, though not standard. Another example
of a non-standard gsi-logic is the classical inquisitive logic, often called basic
inquisitive logic and denoted as InqB (see [3]), which can be obtained by adding
to InqIL the restricted double negation law DN : ¬¬α → α, where α ranges over
∨-free (or, equivalently, Harrop) formulas. Note that the ∨-free fragment of InqB
is identical with classical logic, while it can be shown that the ∨-free fragment
of InqIL is identical with (the ∨-free fragment of) intuitionistic logic.

It can also be shown that both InqIL and InqB have the disjunction property
and thus are inquisitive also according to our general definition. In fact, InqIL is
the weakest and InqB the strongest inquisitive gsi-logic. No inquisitive gsi-logic
is standard. However, for any standard gsi-logic Λ there is exactly one inquisitive
gsi-logic that conservatively extends the ∨-free fragment of Λ. As a consequence,
there are uncountably many inquisitive gsi-logics. For a justification of these
claims, see [28], where inquisitive gsi-logics are called G-logics.

To the best of our knowledge, InqIL and InqB were both studied for the first
time in [22], under the names Fint and Fcl, where it was proved, for instance,
that the schematic fragment of InqB (called the standardization of Fcl in [22]),
i.e. the set S(InqB) = {ϕ | s(ϕ) ∈ InqB, for every substitution s}, is identical
with Medvedev’s logic of finite problems ML. Interestingly, the same was stated
without proof also for InqIL. That this quite non-trivial claim is true follows from
the main result of [17].

The system of InqB was later rediscovered in [2,6] and proved to be sound and
complete with respect to the modern version of inquisitive semantics. This logic
was applied to linguistic phenomena (see [4] for an overview) but also studied
from algebraic and topological perspectives [1,13,34]. There is also an extensive
literature on various modal extensions of InqB [7,14,15,27,32].

A generalization of inquisitive semantics that corresponds to InqIL was intro-
duced in [28]. Intuitionistic inquisitive logic was further studied in [5,29,35], and
from an algebraic perspective in [31,33]. A slightly different approach to intu-
itionistic inquisitive logic was proposed in [18]. This approach is based on a more
general framework that does not validate Split.

A recent interesting result also shows that the system of InqIL provides a
sound and complete axiomatization of proof-theoretic semantics [36]. This con-
nection to proof-theoretic semantics nicely stresses the significance of this logic.

3 Structural Completeness

In this section, we show that the Split schema is quite intimately connected to
the notion of structural completeness. Structural completeness is usually studied
in relation to logics that are closed under arbitrary substitutions. For a more gen-
eral notion of a logic we need a more flexible notion of structural completeness.

Structural Completeness and Superintuitionistic Inquisitive Logics 199

In particular, we can consider various kinds of structural completeness defined
in terms of some restricted classes of substitutions. Such notions were studied
in depth in [22] and they were employed also in [20] where it was shown that
InqB and some related propositional dependence logics are structurally com-
plete with respect to a suitably adapted sense of the term. In [22], the authors
considered, besides other options, structural completeness defined in terms of
H-substitutions and they called the corresponding notion H-smoothness. We
will call it SH-completeness. Besides that we introduce three other notions of
structural completeness.

Definition 4. Let Λ be a gsi-logic. By sub(Λ) we denote the set of all substitu-
tions under which Λ is closed, i.e., s ∈ sub(Λ) iff s(ϕ) ∈ Λ, for every ϕ ∈ Λ.
We say that Λ is SF -complete (structurally fully complete) if it holds:

ϕ �Λ ψ iff for any substitution s, if �Λ s(ϕ) then �Λ s(ψ).

We say that Λ is SG-complete (structurally generally complete) if it holds:

ϕ �Λ ψ iff for any s ∈ sub(Λ), if �Λ s(ϕ) then �Λ s(ψ).

We say that Λ is SH-complete (structurally Harrop complete) if it holds:

ϕ �Λ ψ iff for any H-substitution s, if �Λ s(ϕ) then �Λ s(ψ).

We say that Λ is SD-complete (structurally declaratively complete) if it holds:

ϕ �Λ ψ iff for any D-substitution s, if �Λ s(ϕ) then �Λ s(ψ).

We say that Λ is hereditarily SF -complete (SG-complete, SH-complete, SD-
complete) if every gsi-logic Λ′ ⊇ Λ is SF -complete (SG-complete, SH-complete,
SD-complete).

Note that the notions of SF -completeness and SG-completeness both generalize,
in a clear sense, the standard notion of structural completeness. For standard gsi-
logics both these notions are equivalent and coincide with the usual notion that
is restricted to this field. Even though the notion of SF -completeness preserves
the literal formulation of the usual definition and just applies it to a broader
context, we think that SG-completeness provides a more natural generalization
of structural completeness. This should be clear from the following observation
that indicates that the notion of SF -completeness is reasonably applicable only
to standard gsi-logics. We can also immediately observe that SD-completeness
is also stronger than SG-completeness.

Proposition 1. Let Λ be a gsi-logic. Then (a) if Λ is SD-complete then it is
SG-complete; (b) Λ is SF -complete if and only if it is standard and SG-complete.

Proof. (a) Assume that Λ is SD-complete. Obviously, if ϕ �Λ ψ then for any
s ∈ sub(Λ), if �Λ s(ϕ) then �Λ s(ψ). For the opposite direction, assume that for
any s ∈ sub(Λ), if �Λ s(ϕ) then �Λ s(ψ). Then also for any D-substitution s, if
�Λ s(ϕ) then �Λ s(ψ), and thus ϕ �Λ ψ.

200 T. Ferguson and V. Punčochář

(b) Assume that Λ is SF -complete and �Λ ϕ. Then also �Λ � → ϕ. Take
any substitution s. Since �Λ s(�), by SF -completeness we obtain �Λ s(ϕ). We
have shown that SF -complete gsi-logics are standard. The rest follows from
the observation that for standard gsi-logics the notions of SF -completeness and
SG-completeness coincide. ��

Our aim in this section is to show that Split is closely related to SH-
completeness and SD-completeness. Through this connection we will also be
able to see that these two notions of structural completeness are in fact equiva-
lent. First we can observe the following.

Proposition 2. Every gsi-logic in which Split is valid is closed under all H-
substitutions.

Proof. Assume that Λ is a gsi-logic in which Split is valid and take any H-
substitution s. We have already observed that Split guarantees that every Harrop
formula is equivalent to a ∨-free formula. In particular, for any p there is a ∨-free
formula αp such that s(p) ≡Λ αp. Now we can define a D-substitution s∗ fixing
s∗(p) = αp, for each atomic p. If �Λ ϕ then also �Λ s∗(ϕ), since Λ is closed under
D-substitutions. It follows that also �Λ s(ϕ). ��

Let Λ be a gsi-logic that validates Split. Proposition 2 says that if s is an
H-substitution then s ∈ sub(Λ). One can ask whether also the converse holds. If
we formulate the converse directly, it is false for trivial reasons. If a substitution
s assigns formulas that are not Harrop but are all equivalent to Harrop formulas
then Λ must be closed also under s. A more interesting question is whether
Λ may be closed also under substitutions that are not equivalent to any H-
substitution. Let us formulate it more precisely. We say that two substitutions,
s and t, are Λ-equivalent if s(p) ≡Λ t(p), for every atomic formula p. Then the
converse of Proposition 2 would state that if s ∈ sub(Λ) then s is Λ-equivalent to
an H-substitution. Interestingly, this is a property that distinguishes InqIL and
InqB.

Proposition 3. Every s ∈ sub(InqB) is InqB-equivalent to an H-substitution
(and even D-substitution). In contrast, there is an s ∈ sub(InqIL) that is not
InqIL-equivalent to any H-substitution.

Proof. For the first part, let s be a substitution under which InqB is closed and
let p be an arbitrary atomic formula. Then as InqB proves ¬¬p ↔ p, we obtain
¬¬s(p) ≡InqB s(p). Also, by Theorem 1, s(p) ≡InqB α1 ∨ . . . ∨ αn, where each αi

is ∨-free, whence s(p) ≡InqB ¬¬(α1 ∨ . . . ∨ αn). But as (¬ϕ ∧ ¬ψ) ↔ ¬(ϕ ∨ ψ)
holds intuitionistically, s(p) ≡InqB ¬(¬α1 ∧ . . . ∧ ¬αn), where ¬(¬α1 ∧ . . . ∧ ¬αn)
is ∨-free and thus Harrop.

For the second part of the proposition, fix an atomic formula p and take the
substitution s that assigns to every atomic formula the formula p ∨ ¬p. Assume,
for the sake of contradiction, that p ∨ ¬p ≡InqIL α, for some Harrop formula
α. Then, by Split and disjunction property, we would obtain �InqIL α → p or
�InqIL α → ¬p, and thus �InqIL (p ∨ ¬p) → p or �InqIL (p ∨ ¬p) → ¬p. This leads

Structural Completeness and Superintuitionistic Inquisitive Logics 201

to a contradiction because none of these formulas is valid in classical logic which
extends InqIL. So, s is not InqIL-equivalent to any H-substitution.

It remains to be shown that s ∈ sub(InqIL). In order to show that a logic
generated by modus ponens from a set of axioms is closed under a substitution
s, it is sufficient to show that s(χ) is provable for every axiom χ. So, we have to
show �InqIL s(χ), for our specific s and every instance χ of Split. First, observe
that for every formula χ, s(χ) is intuitionistically equivalent to one of these
formulas: ⊥, p∨¬p,�. To see this, note that ⊥ and � are generated from p∨¬p
by negation and the set {⊥, p∨¬p,�} is, up to intuitionistic equivalence, closed
under the operations →,∧,∨. But then, if s(α), s(ϕ), s(ψ) are intuitionistically
equivalent to any of the formulas ⊥, p ∨ ¬p,�, the formula

(s(α) → (s(ϕ) ∨ s(ψ))) → ((s(α) → s(ϕ)) ∨ (s(α) → s(ϕ)))

is intuitionistically valid. Hence, if we apply s to any instance of Split we always
obtain a formula that is valid in InqIL. ��

Proposition 3 shows that H-substitutions do not necessarily cover the space
of all substitutions under which a logic validating Split is closed. Nevertheless,
it will be clear from our main result, Theorem 2 below, that these substitutions
play a special role in these logics.

We will rely heavily on a standard technique of proving structural complete-
ness developed by Prucnal [26], or more precisely, on its refinement introduced
later in [23]. Let α be a Harrop formula such that �IL ¬α. Then there is a clas-
sical valuation v such that v(α) = 1. Following [23], we define, relative to α and
v, the following H-substitution:

sv
α(p) =

{
α → p if v(p) = 1
¬¬α ∧ (α → p) otherwise

Note that if α is a ∨-free formula, then sv
α is a D-substitution.

Lemma 1. Let ϕ be any formula, α, β Harrop formulas, and v a classical val-
uation such that v(β) = 1. Then (a) sv

α(ϕ) �IL α → ϕ; (b) sv
α(β) ≡IL α → β.

For a proof of this crucial result, see [23]. Note that, as a direct consequence of
Lemma 1-b, it holds that if α is a Harrop formula, and v(α) = 1 then �IL sv

α(α).
This lemma implies the following one that generalizes the main result of [23],
which was originally formulated for standard gsi-logics.

Lemma 2. Let Λ be a gsi-logic, ψ, χ any formulas, and α a Harrop formula.
Then if α → (ψ ∨ χ) ∈ Λ then (α → ψ) ∨ (α → χ) ∈ Λ.

Proof. Assume α → (ψ ∨ χ) ∈ Λ. We want to prove (α → ψ) ∨ (α → χ) ∈ Λ. If
¬α ∈ Λ then the required conclusion is immediate. Assume ¬α /∈ Λ. Then, due
to Glivenko’s theorem, ¬α is not classically valid and so there is a valuation v
such that v(α) = 1. Then, by Lemma 1-b, sv

α(α) ∈ Λ. Since Λ is closed under H-
substitutions, sv

α(α) → (sv
α(ψ) ∨ sv

α(χ)) ∈ Λ, and hence also sv
α(ψ) ∨ sv

α(χ) ∈ Λ.
Thus, by Lemma 1-a, (α → ψ) ∨ (α → χ) ∈ Λ. ��

202 T. Ferguson and V. Punčochář

The previous lemma plays a crucial role in the proof of one part of the
next theorem which is our main result relating Split with the notions of SH-
completeness and SD-completeness.

Theorem 2. For every gsi-logic Λ the following claims are equivalent: (a) Λ is
SH-complete; (b) Λ is SD-complete; (c) Split is valid in Λ.

Proof. First, assume that Λ is SH-complete. Let α be a ∨-free formula and ϕ,ψ
arbitrary formulas. By Lemma 2, for any H-substitution s, if s(α → (ψ∨χ)) ∈ Λ
then s((α → ψ) ∨ (α → χ)) ∈ Λ. It follows from SH-completeness that Split is
valid in Λ. In the same way, one can prove that SD-completeness implies the
validity of Split.

Second, assume that Split is valid in Λ. We show that ϕ �Λ ψ iff for any
H-substitution s, if �Λ s(ϕ) then �Λ s(ψ). The left-to-right direction follows
immediately from Proposition 2. We prove the right-to-left direction. Assume
that

(i) for any H-substitution s, if �Λ s(ϕ) then �Λ s(ψ).

We have to show that ϕ �Λ ψ. If �Λ ¬ϕ, we are done, so we can assume that
�Λ ¬ϕ. As Split is valid in Λ, we can take, due to the disjunctive form theorem,
Harrop formulas α1, . . . , αn such that

(ii) ϕ ≡Λ α1 ∨ . . . ∨ αn.

Let us assume that the disjunction is minimal, i.e. ϕ is not equivalent with the
disjunction of any proper subset of {α1, . . . , αn}. It follows that for every αi

(1 ≤ i ≤ n), �IL ¬αi (otherwise the disjunction in (ii) would not be minimal).
Thus, due to Glivenko’s theorem, for each 1 ≤ i ≤ n, �CL ¬αi, and so there is a
classical valuation vi such that vi(αi) = 1. Then the following holds:

1. �Λ svi
αi

(αi) (by Lemma 1-b),

2. �Λ svi
αi

(αi) → svi
αi

(ϕ) (since Λ is closed under H-substitutions),

3. �Λ svi
αi

(ϕ) (from 1. and 2.),

4. �Λ svi
αi

(ψ) (from 3. and the assumption (i)),

5. svi
αi

(ψ) �Λ αi → ψ (by Lemma 1-a),

6. αi �Λ ψ (from 4. and 5.).

Since the last point holds for any 1 ≤ i ≤ n we obtain ϕ �Λ ψ as required. In
the same way, one can prove that the validity of Split implies that the logic is
SD-complete. ��
In the rest of this paper, we will explore some consequences of this result.
The first one is immediate and it shows an interesting difference between SF -
completeness/SG-completeness (on the one hand) and SH-completeness/SD-
completeness (on the other).

Structural Completeness and Superintuitionistic Inquisitive Logics 203

Corollary 1. Every SH-complete (SD-complete) gsi-logic is hereditarily SH-
complete (SD-complete).

In contrast to this corollary, there are examples of gsi-logics that are SF - and SG-
complete but neither hereditarily SF -complete nor hereditarily SG-complete.
For instance, the logic of finite problems ML has this property (see [9,12]). The
next corollary is based on the observation that SD-completeness is a stronger
property than SG-completeness.

Corollary 2. InqIL is hereditarily SG-complete.

In other words, every gsi-logic that validates Split is SG-complete. The converse
does not hold. ML does not validate Split but it is SG-complete.

The relations between different kinds of structural completeness are summa-
rized in the following picture:

SD SH

SF SG

⇐⇒

=⇒�⇐=

=
⇒ �⇐=�=⇒�⇐=

ML is a counterexample to SF =⇒ SD(H) and SG =⇒ SD(H), and any inquis-
itive gsi-logic is a counterexample to SD(H) =⇒ SF and SG =⇒ SF .

4 Schematic Closures of Inquisitive Gsi-Logics

In this section we discuss some issues concerning SF -completeness and for this
purpose we employ the following notation. If Λ is a gsi-logic and Δ a set of
formulas then Λ ⊕ Δ will denote the set of formulas derivable from Λ ∪ Δ by
modus ponens. More precisely,

Λ ⊕ Δ = {ϕ | ψ ∧ χ1 ∧ . . . ∧ χn �IL ϕ for some ψ ∈ Λ and χ1, . . . , χn ∈ Δ}.

Note that if Δ is closed under D-substitutions then so is Λ ⊕ Δ, and if,
moreover, Λ∪Δ is consistent, i.e. ⊥ /∈ Λ⊕Δ, then Λ⊕Δ is the smallest gsi-logic
including Λ ∪ Δ.

Let us recall that LC is the Gödel-Dummett fuzzy logic [11,16]. It is often
presented as an extension of intuitionistic logic by the prelinearity schema:

(ϕ → ψ) ∨ (ψ → ϕ).

Let us denote the set of all instances of this schema as PreLin and let FullSplit
denote the set of instances of the schema (where χ is not restricted)

(χ → (ϕ ∨ ψ)) → ((χ → ϕ) ∨ (χ → ψ)).

An obvious connection of LC to the logics we are focused on in this paper is
given by the following observation made in [11].

204 T. Ferguson and V. Punčochář

Proposition 4. LC = IL ⊕ PreLin = IL ⊕ FullSplit.

So, LC is a standard extension of InqIL (= IL ⊕ Split). It is well-known that the
logic LC is hereditarily structurally complete in the class of standard gsi-logics
(shown in [12]). This result can also be obtained as a direct consequence of our
Corollary 2, if we recall that SG-completeness generalizes the usual structural
completeness. A natural question arises whether LC is also hereditarily SF -
complete over the space of gsi-logics in general.

When one considers results over the case of standard gsi-logics, there is rea-
son to be cautious before importing them to our general setting. That a logic
is hereditarily structurally complete over the standard gsi-logics does not a pri-
ori entail hereditary SF -completeness over the broader space of gsi-logics. To
see that LC is indeed hereditarily SF -complete, we need to use the following
observation that is due to Dummett [11].

Lemma 3. ϕ ∨ ψ ≡LC ((ϕ → ψ) → ψ) ∧ ((ψ → ϕ) → ϕ).

This result shows that disjunction is definable in LC. In fact, as pointed out in
[23], every (standard) gsi-logic in which disjunction is definable includes LC. The
previous lemma implies the following one.

Lemma 4. Every gsi-logic that includes LC is standard.

Proof. Take any gsi-logic Λ that includes LC, any ϕ ∈ Λ and any substitution
s. It follows from Lemma 3 that for every formula ψ there is a ∨-free formula
αψ such that ψ ≡Λ αψ. We define a D-substitution s∗ fixing s∗(p) = αs(p), for
every atom p. Note that s∗ is Λ-equivalent to s. Since s∗(ϕ) ∈ Λ, we also have
s(ϕ) ∈ Λ. Hence, Λ is standard. ��

Using this Lemma we can prove the following result.

Theorem 3. LC is hereditarily SF -complete over all gsi-logics.

We can even strengthen this result in the following way.

Theorem 4. Let Λ be a gsi-logic including InqIL. Then the following claims are
equivalent: (a) Λ is hereditarily SF -complete; (b) Λ is SF -complete; (c) Λ is
standard; (d) Λ includes all instances of FullSplit; (e) if �Λ ϕ → (ψ ∨ χ) then
�Λ (ϕ → ψ) ∨ (ϕ → χ); (f) LC ⊆ Λ.

Proof. (a) ⇒ (b) is immediate by definition. (b) ⇒ (c) is from Proposition 1.
(c) ⇒ (d): As a standard extension of InqIL, Λ must contain all instances of
FullSplit. (d) ⇒ (e) is immediate. (e) ⇒ (f): As an extension of IL, Λ includes
all instances of (ϕ∨ψ) → (ϕ∨ψ). By the assumption (e), we obtain ((ϕ∨ψ) →
ϕ)∨ ((ϕ∨ψ) → ψ) ∈ Λ. Since ψ → (ϕ∨ψ), ϕ → (ϕ∨ψ) are theorems, we obtain
(ϕ → ψ) ∨ (ψ → ϕ) ∈ Λ. By Proposition 4, LC ⊆ Λ. (f) ⇒ (a): By Theorem 3,
LC is hereditarily SF -complete, whence in virtue of the inclusion of LC in Λ, Λ
is hereditarily SF -complete. ��

Structural Completeness and Superintuitionistic Inquisitive Logics 205

It is clear that the logic LC is what we obtain if we close InqIL under all
substitutions. Let us consider this operation of schematic closure from a more
general perspective. We have already indicated that any gsi-logic Λ determines
its schematic fragment S(Λ) = {ϕ | s(ϕ) ∈ Λ, for every substitution s}, which is
a standard gsi-logic. All inquisitive gsi-logics have the same schematic fragment,
namely ML. The operation of schematic closure that we denote as C can be
generally defined as follows: ϕ ∈ C(Λ) iff s1(ψ1) ∧ . . . ∧ sn(ψn) �IL ϕ, for some
substitutions s1, . . . , sn and some ψ1, . . . , ψn ∈ Λ. Note that C(Λ) is indeed
a standard gsi-logic. In general, it holds that S(Λ) ⊆ Λ ⊆ C(Λ). S(Λ) is the
greatest standard gsi-logic below Λ, and C(Λ) is the smallest standard gsi-logic
above Λ. So, if Λ is itself standard, we obtain S(Λ) = Λ = C(Λ). In the rest of
this section we explore the schematic closures of inquisitive gsi-logics.

It is clear that C(InqIL) = LC and C(InqB) = CL. What do the schematic
closures of the other inquisitive gsi-logics look like? The standard gsi-logics that
include LC form a chain consisting of the multivalued logics Gn, n ≥ 3, plus the
classical logic CL on the top. If we denote classical logic as G2 and the logic LC
as Gω then we have (see [16]):

Gω ⊆ . . . ⊆ G5 ⊆ G4 ⊆ G3 ⊆ G2.

The schematic closure of every gsi-logic extending InqIL will be one of the G-
logics. For those gsi-logics which include InqIL and have the disjunction property,
i.e. for the inquisitive gsi-logics, we can characterize the schematic closures in an
elegant and systematic way.

For any set of formulas Δ, let Δdf denote the ∨-free fragment of Δ, i.e.
Δdf = {ϕ ∈ Δ | ϕ is ∨-free}. The disjunction property of inquisitive logics is
crucial for the proof of the following lemma.

Lemma 5. Let Λ be any inquisitive gsi-logic and Gn, where n ∈ {2, 3, 4, . . . , ω},
any gsi-logic including LC. Then (a) Λ = InqIL ⊕ Λdf ; (b) Gn = LC ⊕ Gdf

n .

Proof. (a) Let Λ be any inquisitive gsi-logic. Clearly, it holds that InqIL⊕ Λdf ⊆
Λ. Assume ϕ ∈ Λ. Let ϕ ≡InqIL α1 ∨ . . . ∨ αn, where each αi is ∨-free. By
the disjunction property, for some i, αi ∈ Λ and thus αi ∈ Λdf . Hence, ϕ ∈
InqIL ⊕ Λdf . (b) Clearly, LC ⊕ Gdf

n ⊆ Gn. Assume ϕ ∈ Gn. Then, by Lemma 3,
there is ∨-free α such that ϕ ≡LC α. Then α ∈ Gdf

n and thus ϕ ∈ LC ⊕ Gdf
n .

With the help of this lemma we can characterize the schematic closures of inquis-
itive gsi-logics in the following way.

Theorem 5. Let Λ be an inquisitive gsi-logic. Then

C(Λ) = LC ⊕ Λdf = Gn, for n = max{m | Λdf ⊆ Gdf
m}.

Proof. Assume that Λ is an inquisitive gsi-logic. Clearly, it holds that LC⊕Λdf ⊆
C(Λ). By Lemma 5-a, Λ = InqIL ⊕ Λdf and thus Λ ⊆ LC ⊕ Λdf . By Lemma 4,
LC⊕Λdf is standard and since C(Λ) is the smallest standard gsi-logic extending
Λ, we obtain C(Λ) ⊆ LC ⊕ Λdf . So, we have proved that C(Λ) = LC ⊕ Λdf .

206 T. Ferguson and V. Punčochář

Clearly, C(Λ) = Gn, for some n. Then it must hold Λdf ⊆ Gdf
n . Assume, for

the sake of contradiction, that n �= ω and Λdf ⊆ Gdf
n+1. Then, using Lemma

5-b, we obtain C(Λ) = LC ⊕ Λdf ⊆ LC ⊕ Gdf
n+1 = Gn+1. But C(Λ) ⊆ Gn+1 is in

contradiction with the assumption C(Λ) = Gn. Thus n = max{m | Λdf ⊆ Gdf
m}.

��
So, while Λ = InqIL⊕Λdf , C(Λ) = LC⊕Λdf . This result shows that the schematic
closure operation collapses the uncountable space of inquisitive gsi-logics to a
countable linear order of standard gsi-logics. Moreover, this mapping to Gn-logics
is surjective. In particular, each InqIL⊕Gdf

n is inquisitive and C(InqIL⊕Gdf
n) = Gn.

5 Kripke Models

Structural completeness is an important property of classical logic that intu-
itionistic logic lacks. On the other hand, the disjunction property is an impor-
tant property of intuitionistic logic that classical logic violates. An interesting
question is whether there are logics that have both these properties.

Definition 5. A gsi-logic is optimal if it is SG-complete and has the disjunction
property.

The only standard gsi-logic that is known to be optimal is ML (see [37]). As
another direct consequence of Theorem 2 we obtain the following result showing
that among non-standard gsi-logics there are uncountably many optimal logics.

Theorem 6. Every inquisitive gsi-logic is optimal.

Let us point out that at the end of [22] a conjecture is formulated which, when
translated in our terminology, says that (a) InqIL is optimal, and (b) InqIL and
InqB are the only optimal gsi-logics. Theorem 6 thus serves to prove the first
half of the conjecture and refutes the latter half.

In this section, we show that Theorem 6 is related to the possibility of an
interesting canonical model construction for inquisitive gsi-logics. For any gsi-
logic one can construct, in the usual way, a canonical Kripke model built out of
prime theories. A peculiar feature of inquisitive gsi-logics is that they can also
be characterized by a Kripke model built directly out of consistent ∨-free for-
mulas.4 We will briefly formulate this construction and compare it with another
unusual canonical model construction that we obtain as an application of our
main results. For the rest of this section, let us fix an inquisitive gsi-logic Λ.
Moreover, let us say that α is consistent if �Λ ¬α.

Now we introduce the Kripke semantics for intuitionistic logic. A Kripke
frame is a pair 〈S,≤〉 where ≤ is a preorder, i.e. a reflexive and transitive relation
on S. A Kripke model is a Kripke frame equipped with a valuation V , i.e. a

4 This is related to a fact that was already observed in [28], namely that any inquisitive
gsi-logic Λ can be characterized by a canonical Kripke model built up from the
Lindenbaum-Tarski algebra of the ∨-free fragment of Λ.

Structural Completeness and Superintuitionistic Inquisitive Logics 207

function that assigns to each atomic formula an upward closed subset of S (that
is, if w ∈ V (p) and w ≤ v then v ∈ V (p)). Given any Kripke model the relation
� between states of the model and formulas is defined in the usual recursive
way. For the atomic formulas, we set w � p iff w ∈ V (p). For the constant ⊥
and complex formulas, the relation is determined as follows:

(a) w � ⊥,
(b) w � ϕ → ψ iff for any v ≥ w, if v � ϕ then v � ψ,
(c) w � ϕ ∧ ψ iff w � ϕ and w � ψ,
(d) w � ϕ ∨ ψ iff w � ϕ or w � ψ.

The relation is persistent: if w � ϕ and w ≤ v then v � ϕ. We say that ϕ is valid
in a model 〈S,≤, V 〉 if w � ϕ holds in that model for every w ∈ S. It is well-
known that a formula is intuitionistically valid iff it is valid in all Kripke models
[21]. The recursive clauses for � actually mirror some characteristic properties
of � in inquisitive gsi-logics, as is shown in the following proposition.

Proposition 5. Let α be a consistent ∨-free formula and ϕ,ψ arbitrary formu-
las. Then

(a) α �Λ ⊥,
(b) α �Λ ϕ → ψ iff for any consistent ∨-free β s.t. β �Λ α if β �Λ ϕ then

β �Λ ψ,5
(c) α �Λ ϕ ∧ ψ iff α �Λ ϕ and α �Λ ψ,
(d) α �Λ ϕ ∨ ψ iff α �Λ ϕ or α �Λ ψ.

Proof. (a) and (c) are immediate. Due to Lemma 2, (d) holds for every gsi-logic
which has the disjunction property. Let us prove (b). The left-to-right direction
is immediate. For the right-to-left direction assume that for any consistent ∨-free
β �Λ α, if β �Λ ϕ then β �Λ ψ. Obviously, β �Λ ψ holds also in the case that β
is not consistent. Assume that ϕ ≡Λ γ1 ∨ . . . ∨ γn, where γ1, . . . , γn are ∨-free.
Then γi ∧ α �Λ α and γi ∧ α �Λ ϕ. Our assumption implies that γi ∧ α �Λ ψ.
So, for all i, γi �Λ α → ψ, and thus ϕ �Λ α → ψ. It follows that α �Λ ϕ → ψ. ��
This observation motivates the construction of a canonical Kripke model MΛ =
〈SΛ,≤Λ, VΛ〉, where SΛ = {α | α is ∨-free and consistent}, α ≤Λ β iff β �Λ α,
and α ∈ VΛ(p) iff α �Λ p. Then Proposition 5 directly implies that � in MΛ

coincides with �Λ.

Theorem 7. For each ϕ and each consistent ∨-free α, α � ϕ in MΛ if and
only if α �Λ ϕ. As a consequence, ϕ ∈ Λ if and only if ϕ is valid in MΛ.

There is also a remarkable correspondence between the semantic clauses of
Kripke semantics and the behaviour of D-substitutions in inquisitive gsi-logics.
This correspondence is based on Theorem 6. To make it more visible, let us write
s � ϕ instead of �Λ s(ϕ) and let us define for any D-substitutions s, t that s ≤ t
iff there is a D-substitution u such that t = u ◦ s (where ◦ is the composition of
substitutions).
5 The word “consistent” could be omitted here and the equivalence would hold too

but in a moment we will need this particular form of the statement that quantifies
over consistent formulas.

208 T. Ferguson and V. Punčochář

Proposition 6. Let s be a D-substitution and ϕ,ψ arbitrary formulas. Then

(a) s � ⊥,
(b) s � ϕ → ψ iff for any D-substitution t ≥ s, if t � ϕ then t � ψ,
(c) s � ϕ ∧ ψ iff s � ϕ and s � ψ,
(d) s � ϕ ∨ ψ iff s � ϕ or s � ψ.

Proof. All cases are straightforward. We will just comment on the case (b). This
case can be reformulated in this way: s(ϕ) � s(ψ) iff for any D-substitution t,
if � t(s(ϕ)) then � t(s(ψ)). But this is exactly SD-completeness applied to the
implication s(ϕ) → s(ψ). ��
Using this observation we can build from D-substitutions a particular canonical
Kripke model MΛ = 〈SΛ,≤Λ, V Λ〉, where SΛ is the set of all D-substitutions,
s ≤Λ t iff there is a D-substitution u such that t = u ◦ s, s ∈ V Λ(p) iff s � p.6

Let id be the identity function on atomic formulas. Then id is a D-
substitution and id ≤Λ s, for every D-substitution s. So, ϕ is valid in MΛ

iff id � ϕ in MΛ. Proposition 6 implies the following result.

Theorem 8. For each ϕ and each D-substitution s, s � ϕ in MΛ if and only
if s � ϕ. As a consequence, ϕ ∈ Λ if and only if ϕ is valid in MΛ.

6 Conclusion

Let us summarize the main results of this paper. We have studied four notions
of structural completeness (SF -, SG-, SH- and SD-completeness) in a class of
generalized superintuitionistic logics that are not required to be closed under all
substitutions but only under substitutions assigning disjunction free formulas.
We have shown a connection between these notions and the schema Split that
axiomatizes intuitionistic inquisitive logic InqIL. A characteristic feature of Split
is that it allows one to transform every formula to a disjunctive normal form
(Theorem 1).

Our main result (Theorem 2) shows that SH-completeness is equivalent to
SD-completeness and these properties hold exactly for those logics that validate
Split. As a consequence, SH(D)-completeness is hereditary (Corollary 1). We
have also shown that InqIL is hereditarily SG-complete (Corollary 2) and its clo-
sure under substitutions, i.e. the Gödel-Dummett logic LC, remains hereditarily
SF -complete (Theorem 3 and its extension Theorem 4).

We have further studied inquisitive logics, i.e. those logics that include InqIL
and have the disjunction property. We have proved that the operation that
closes every such logic under substitutions maps the uncountably large class
of inquisitive logics onto the countably infinite chain of those logics that include
LC (Theorem 5). It follows directly from our main result that inquisitive logics
are optimal, i.e. they are structurally complete and have disjunction property

6 An analogous construction was described in [37] for the standard optimal gsi-logic
ML.

Structural Completeness and Superintuitionistic Inquisitive Logics 209

(Theorem 6). They can be characterized by a canonical Kripke model built from
consistent disjunction free formulas (Theorem 7). Interestingly, their optimality
means that they can be alternatively characterized by a canonical Kripke model
built from substitutions assigning disjunction free formulas (Theorem 8).

In future work, we would like to study structural completeness in the more
general context of substructural inquisitive logics [30]. We also plan to explore
the notion of structural completeness for these logics in the setting of multi-
conclusion consequence relation [19].

Acknowledgements. This paper is an outcome of the project Logical Structure of
Information Channels, no. 21-23610M, supported by the Czech Science Foundation and
carried out at the Institute of Philosophy of the Czech Academy of Sciences.

References

1. Bezhanishvili, N., Grilletti, G., Holliday, W.H.: Algebraic and topological seman-
tics for inquisitive logic via choice-free duality. In: Iemhoff, R., Moortgat, M., de
Queiroz, R. (eds.) WoLLIC 2019. LNCS, vol. 11541, pp. 35–52. Springer, Heidel-
berg (2019). https://doi.org/10.1007/978-3-662-59533-6 3

2. Ciardelli, I.: Inquisitive semantics and intermediate logics. Master’s thesis, Univer-
sity of Amsterdam, Amsterdam (2009)

3. Ciardelli, I.: Questions in logic. Ph.D. thesis, University of Amsterdam, Amsterdam
(2016)

4. Ciardelli, I., Groenendijk, J., Roelofsen, F.: Inquisitive Semantics. Oxford Univer-
sity Press, Oxford (2019)

5. Ciardelli, I., Iemhoff, R., Yang, F.: Questions and dependency in intuitionistic logic.
Notre Dame J. Formal Log. 61, 75–115 (2020)

6. Ciardelli, I., Roelofsen, F.: Inquisitive logic. J. Philos. Log. 40, 55–94 (2011)
7. Ciardelli, I., Roelofsen, F.: Inquisitive dynamic epistemic logic. Synthese 192,

1643–1687 (2015)
8. Cintula, P., Metcalfe, G.: Structural completeness in fuzzy logics. Notre Dame J.

Formal Log. 50, 153–182 (2009)
9. Citkin, A.I.: On structurally complete superintuitionistic logics. Sov. Math. Dokl.

19, 816–819 (1978)
10. Citkin, A.I.: Hereditarily structurally complete superintuitionistic deductive sys-

tems. Stud. Log. 106, 827–856 (2018)
11. Dummett, M.: A propositional calculus with denumerable matrix. J. Symb. Log.

24, 97–106 (1959)
12. Dzik, D., Wroński, A.: Structural completeness of Gödel’s and Dummett’s propo-

sitional calculi. Stud. Log. 32, 69–73 (1973)
13. Frittella, S., Greco, G., Palmigiano, A., Yang, F.: A multi-type calculus for inquis-

itive logic. In: Väänänen, J., Hirvonen, Å., de Queiroz, R. (eds.) WoLLIC 2016.
LNCS, vol. 9803, pp. 215–233. Springer, Heidelberg (2016). https://doi.org/10.
1007/978-3-662-52921-8 14

14. Gessel, T.: Action models in inquisitive logic. Synthese 197, 3905–3945 (2020)
15. Gessel, T.: Questions in two-dimensional logic. Rev. Symb. Log. 15, 859–879 (2022)
16. Gödel, K.: Zum intuitionistischen Aussagenkalkül. Anzeiger Akad. Wissenschaften

Wien 69, 65–66 (1932)

https://doi.org/10.1007/978-3-662-59533-6_3
https://doi.org/10.1007/978-3-662-52921-8_14
https://doi.org/10.1007/978-3-662-52921-8_14

210 T. Ferguson and V. Punčochář

17. Grilletti, G.: Medvedev logic is the logic of finite distributive lattices without top
element. In: Fernández-Duque, D., Palmigiano, A., Pinchinat, S. (eds.) AiML 2022.
Advances in Modal Logic, vol. 14. College Publications (2022)

18. Holliday, W.H.: Inquisitive intuitionistic logic. In: Olivetti, N., Verbrugge, R.,
Negri, S., Sandu, G. (eds.) AiML 2020. Advances in Modal Logic, vol. 13, pp.
329–348. College Publications (2020)

19. Iemhoff, R.: Consequence relations and admissible rules. J. Philos. Log. 45, 327–
348 (2016)

20. Iemhoff, R., Yang, F.: Structural completeness in propositional logics of depen-
dence. Arch. Math. Log. 55, 955–975 (2016)

21. Kripke, S.A.: Semantical analysis of intuitionistic logic I. In: Dummett, M.A.E.,
Crossley, J.N. (eds.) Studies in Logic and the Foundations of Mathematics, vol. 40,
pp. 92–130. Elsevier (1965)

22. Miglioli, P., Moscato, U., Ornaghi, M., Quazza, S., Usberti, G.: Some results on
intermediate constructive logics. Notre Dame J. Formal Log. 30, 543–562 (1989)

23. Minari, P., Wroński, A.: The property (HD) in intermediate logics: a partial solu-
tion of a problem of H. Ono. Rep. Math. Log. 22, 21–25 (1988)

24. Olson, J., Raftery, J.G., van Alten, C.J.: Structural completeness in substructural
logics. Log. J. IGPL 16, 455–495 (2008)

25. Pogorzelski, W.A.: Structural completeness of the propositional calculus. Bull.
l’Acad. Polonaise Sci. Sér. Sci. Math. 19, 349–351 (1971)

26. Prucnal, T.: On the structural completeness of some pure implicational proposi-
tional calculi. Stud. Log. 32, 45–50 (1973)

27. Punčochář, V.: Weak negation in inquisitive semantics. J. Logic Lang. Inform. 23,
47–59 (2015)

28. Punčochář, V.: A generalization of inquisitive semantics. J. Philos. Log. 45, 399–
428 (2016)

29. Punčochář, V.: Algebras of information states. J. Log. Comput. 27, 1643–1675
(2017)

30. Punčochář, V.: Substructural inquisitive logics. Rev. Symb. Log. 12, 296–330
(2019)

31. Punčochář, V.: Inquisitive Heyting algebras. Stud. Log. 109, 995–1017 (2021)
32. Punčochář, V., Sedlár, I.: Inquisitive propositional dynamic logic. J. Log. Lang.

Inform. 30, 91–116 (2021)
33. Quadrellaro, D.E.: On intermediate inquisitive and dependence logics: an algebraic

study. Ann. Pure Appl. Log. 173 (2022). Article 103143
34. Roelofsen, F.: Algebraic foundations for the semantic treatment of inquisitive con-

tent. Synthese 190(1), 79–102 (2013). https://doi.org/10.1007/s11229-013-0282-
4

35. Sano, K.: Goldblatt-Thomason-style characterization for intuitionistic inquisitive
logic. In: Olivetti, N., Verbrugge, R., Negri, S., Sandu, G. (eds.) AiML 2020.
Advances in Modal Logic, vol. 13, pp. 541–560. College Publications (2020)

36. Stafford, W.: Proof-theoretic semantics and inquisitive logic. J. Philos. Log. 50,
1199–1229 (2021)

37. Wojtylak, P.: On a problem of H. Friedman and its solution by T. Prucnal. Rep.
Math. Log. 38, 69–86 (2004)

https://doi.org/10.1007/s11229-013-0282-4
https://doi.org/10.1007/s11229-013-0282-4

Validity in Choice Logics

A Game-Theoretic Investigation

Robert Freiman(B) and Michael Bernreiter

Institute of Logic and Computation, TU Wien, Vienna, Austria

robert@logic.at, michael.bernreiter@tuwien.ac.at

Abstract. Qualitative Choice Logic (QCL) is a framework for jointly
dealing with truth and preferences. We develop the concept of degree-
based validity by lifting a Hintikka-style semantic game [10] to a prov-
ability game. Strategies in the provability game are translated into proofs
in a novel labeled sequent calculus where proofs come in degrees. Fur-
thermore, we show that preferred models can be extracted from proofs.

Keywords: choice logics · game semantics · sequent calculus

1 Introduction

Preferences are important in many research areas, including computer science
and artificial intelligence [14]. A formalism for preference representation that
has gained considerable attention is Qualitative Choice Logic (QCL) [6], which
extends classical propositional logic with a connective #»× called ordered disjunc-
tion. F

#»×G expresses that F or G should be satisfied, but satisfying F is prefer-
able to satisfying only G. QCL and its variations [2,4,5] have been studied with
regards to applications [1,7,12,15,16], computational properties [4], and proof
systems [3].

Recently, QCL has been reexamined through the lens of game theoretic
semantics (GTS). Specifically, Game-induced Choice Logic (GCL) [10] was intro-
duced as an extension of Hintikka’s semantic game for classical logic [11]. In this
semantic game, two players – Me and You– play over a fixed formula F and
an interpretation I. Hintikka’s modeling of truth as a win for Me and falsity
as a loss is refined by more fine-grained outcomes. The more preferences I am
able to satisfy during the game, the higher the payoff for Me. Besides providing
a new understanding of ordered disjunction, GCL addresses some contentious
behavior of negation in QCL, where a formula F is not necessarily semantically
equivalent to the double negation ¬¬F . GCL redefines negation using game-
theoretic methods and thus provides semantics where F is equivalent to ¬¬F
and negation behaves more similarly to classical negation in general.

A natural question not yet addressed in existing work on GCL is whether
there is an algorithm that finds strategies for Me which guarantee a fixed payoff
for the game over a fixed formula F and all interpretations. Reduced to winning
strategies, this corresponds to the question of the validity of F . We answer this

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
H. H. Hansen et al. (Eds.): WoLLIC 2023, LNCS 13923, pp. 211–226, 2023.
https://doi.org/10.1007/978-3-031-39784-4_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-39784-4_13&domain=pdf
https://doi.org/10.1007/978-3-031-39784-4_13

212 R. Freiman and M. Bernreiter

question by lifting the GTS to a dialogue game (we prefer the term provability
game). Intuitively, in this game, the players play the semantic game over all
interpretations simultaneously but I am allowed to create backup copies of game
states. This technique has been demonstrated to lead to adequate proof systems
for a variety of logics [8,9,13]. Our approach is the first to interpret non-classical
truth values with non-binary outcomes in both the semantic and the disjunctive
game. Our main result states that from a strategy σ for Me in the disjunctive
game one can extract strategies for the semantic game over every interpretation
yielding a payoff at least as good as σ’s. Furthermore, from Your strategy one can
extract an interpretation I and a strategy for the semantic game over I yielding
at least the same payoff for You. In logical terminology, this corresponds to
counter-model extraction; in the realm of preference handling, this corresponds
to the construction of a preferred model.

While the exposition in this paper is mostly game-theoretic, we demonstrate
that strategies for Me in the disjunctive game can be formulated as proofs in a
labeled sequent calculus. Unlike the system for QCL [3], in our proof system GS∗,
proofs have degrees where positive degrees represent proofs of validity, while
negative degrees represent refutations of a formula.

This paper is structured as follows: In Sect. 2, we recall game-theoretic
notions and GCL. In Sect. 3, we lift the semantic game for GCL to a provability
game. In Sect. 4, we reformulate My strategies as a proof system.

2 Preliminaries

In this section, we recall the game-induced choice logic GCL and its two seman-
tics – game-theoretic and degree-based. The language of GCL is the same as
QCL’s, i.e., it extends the usual propositional language by the choice connec-
tive #»×. We assume an infinite countable set of propositional variables a, b,
Compound formulas are built according to the following grammar:

F ::= a | ¬F | F ∧ F | F ∨ F | F
#»×F.

An interpretation I is a set of propositional variables, with I |= a iff a ∈ I.

2.1 Game-Theoretic Semantics

We start by recalling Hintikka’s game [11] over a formula F in the language
restricted to the connectives ∨,∧,¬ and over a classical interpretation I. The
game is played between two players, Me and You, both of which can act either
in the role of Proponent (P) or Opponent (O). At formulas of the form G1 ∨G2,
P chooses a formula Gi that the game continues with. At formulas of the form
G1 ∧ G2 it is O’s choice. At negations ¬G, the game continues with G and
a role switch. Every outcome (final state of the game) is an occurrence of a
propositional variable a. The player currently in the role of P wins the game

Validity in Choice Logics 213

(and O loses) iff a ∈ I. The central result is that I have a winning strategy for
the game starting in P : F iff I |= F .

To deal with ordered disjunction (#»×), Hintikka’s game is extended as fol-
lows [10]: at G1

#»×G2 it is P’s choice whether to continue with G1 or with G2,
but this player prefers G1. The preferences of O are the exact opposite of P. For
both players, the aim in the game is now not only to win the game but to do so
with as little compromise to their preferences as possible. Thus, it is natural to
express P’s preference of G1-outcomes O1 over G2-outcomes O2 via the relation
O1 � O2. We leave the formal treatment of this game for the next section and
proceed with some standard game-theoretic definitions.

Definition 1. A game is a pair G = (T, d), where

1. T = (V,E, l) is a tree with set of nodes V (called (game) states) and edges
E. The leaves of T are called outcomes and are denoted O(G). The labeling
function l maps nodes of T to the set {I, Y }.

2. d is a payoff-function mapping outcomes to elements of a linear order (Λ,�).

We write x ≈ y if x � y and y � x. Λ is partitioned into two sets, W and L,
where W is upward-closed and L = Λ \ W . Outcomes O are called winning if
d(O) ∈ W and losing if d(O) ∈ L. A run of the game is a maximal path in T
starting at the root.

Hintikka’s game can be seen as a game in the sense of this definition: the
game tree is the formula tree of F where each occurrence of a subformula G of
F is decorated with either P or O, we write P : G and O : G, respectively. Let
F be decorated with Q0 ∈ {P,O}. If G = G1 ∨ G2, or G = G1 ∧ G2 then the
children of Q : G are decorated the same. If G = ¬G′, then the child of Q : G is
Q̄ : G′, where Q̄ is O if Q = P, and P otherwise. As for the labeling function,
game states of the form P : G1∨G2, O : G1∧G2 are I-states and all other states
are Y-states.

As for payoffs, we write I |= P : a iff I |= a and I |= O : a iff I �|= a. The
payoff functions maps outcomes to P = {0, 1}, where d(o) = 1 iff I |= o. P
carries the usual ordering 0 < 1 and W = {1}.

A strategy σ for Me in a game can be understood as My complete game plan.
For every node of the underlying game tree labeled “I”, σ tells Me to which node
I have to move. Here is a formal definition:

Definition 2. A strategy σ for Me for the game G is a subtree of the underlying
tree such that (1) the root of T is in σ and for all v in σ, (2) if l(v) = I, then
at least one successor of v is in σ and (3) if l(v) = Y , then all successors of v
are in σ. A strategy for You is defined symmetrically. We denote by ΣI and ΣY

the set of all strategies for Me and You, respectively.

Conditions (1) and (3) make sure that all possible moves by the other
player are taken care of by the game plan. Each pair of strategies σI ∈ ΣI ,
σY ∈ ΣY defines a unique outcome of G, denoted by O(σI , σY). We abbreviate
d(O(σI , σY)) by d(σI , σY). A strategy σ∗

I for Me is called winning if, playing
according to this strategy, I win the game, no matter how You move, i.e. for all

214 R. Freiman and M. Bernreiter

σY ∈ ΣY , d(σ∗
I , σY) ∈ W . Let k ∈ Λ. A strategy σk

I for Me guaranteeing a payoff
of at least k, i.e. min�

σY
(σk

I , σY) 	 k is called a k-strategy for Me. A strategy for
You guaranteeing a payoff of at most k is called a k-strategy for You. An outcome
O that maximizes My pay-off in light of Your best strategy is called maxmin-
outcome. Formally, O is a maxmin-outcome iff d(O) = max�

σI
min�

σY
d(σI , σY)

and d(O) is called the maxmin-value of the game. A strategy σ∗
I for Me is a

maxmin-strategy for G if σ∗
I ∈ arg max�

σI
min�

σY
d(σI , σY), i.e., the maximum is

reached at σ∗
I . Minmax values and strategies for You are defined symmetrically.

The class of games that we have defined falls into the category of zero-sum
games of perfect information in game theory. They are characterized by the fact
that the players have strictly opposing interests. In these games, the minimax
and maximin values always coincide and are referred to as the value of the game.

2.2 Game Choice Logics GCL

We now define the game semantics for GCL [10]. Let Q ∈ {P,O}. The game
over the interpretation I starting with Me in the role Q of formula F is denoted
by NG(Q : F, I). The game tree for the semantic game NG(Q : F, I) is the
same as in Hintikka’s game, where #»× is treated like ∨.

The main difference is that we now wish to deal with preferences induced by
#»×. My preferences are expressed via the strict partial order
 on outcomes of
the game tree: If P : G1

#»×G2 appears in the tree, then outcomes reachable from
P : G1 are in �-relation with outcomes reachable from P : G2. Similarly, for
O : G1

#»×G2, outcomes reachable from O : G1 are in
-relation with outcomes
reachable from O : G2.

A sensible payoff function must respect both truth (winning conditions) and
preferences (the relation
). Our payoff function δI takes values in the domain
Z := (Z \ {0},�). The ordering � is the inverse ordering on Z

+ and on Z
−,

for a ∈ Z
+, b ∈ Z

− we set b � a, i.e. −1 � −2 � . . . 2 � 1. For each outcome o,
let π�(o) be the longest
-chain starting in o, i.e. pairwise different outcomes
o1, . . . , on such that o = o1
 · · ·
 on. Let |π�(o)| = n denote its length. For
an interpretation I, and an outcome Q : a, we define1

δI(Q : a) =

{
|π�(Q : a)|, if I |= Q : a,

−|π�(Q : a)|, if I �|= Q : a.

By design, δI maps true outcomes to Z
+ and false outcomes to Z

−. We, therefore,
declare all outcomes with a payoff in Z

+ as winning, and all other outcomes as
losing for Me. The game can be thus seen as a refined extension of Hintikka’s
game. Indeed, let F ∗ be F with all #»×s replaced by ∨s. Then I have a winning
strategy for NG(P : F, I) iff I have a winning strategy for F ∗ in Hintikka’s
game over I. Furthermore, δI respects the relation
: if o1
 o2 and both are
winning (or both are losing) for Me, then δI(o1) � δI(o2).

1 Notice the flipped �-sign in the second case.

Validity in Choice Logics 215

Fig. 1. The game tree for NG(P : ((a
#»×b)

#»×c) ∧ ¬(a
#»×d)).

Example 1. Consider the formula ((a #»×b) #»×c) ∧ ¬(a #»×d). The game tree, where
I am initially the Proponent can be found in Fig. 1. The order on outcomes is
P : c
 P : b
 P : a and O : a
 O : d.

Let I = {b}. If You go to the left at the root node, I will move to reach the
outcome P : b, winning the game with payoff 2. Therefore, You might choose to
go right at the root to reach O : a or O : d with payoff 2 and 1 respectively. It
is better for You to reach O : a with payoff 2. Thus, the value of the game is 2.

Now consider the game starting in O : ((a #»×b) #»×c) ∧ ¬(a #»×d), again with
I = {b}. The game tree is the same, except that P and O are flipped everywhere,
as are the labels I, Y and the order over outcomes. You can now win the game:
if I go left at the root, You will move to O : b with payoff −2. The alternative
is not better for Me: if I go right, I can choose between P : a and P : d with
payoffs −1 and −2 respectively. Thus, the value of this game is −2.

2.3 Degree-Based Semantics for GCL

Although the motivation for GCL is game-theoretic, it also admits a degree
semantics that is more common in choice logics. We first need the following
notion of optionality:

Definition 3. The optionality of GCL-formulas is defined inductively as fol-
lows: (i) opt(a) = 1 for variables a, (ii) opt(¬F) = opt(F), (iii) opt(F ◦ G) =
max(opt(F), opt(G)) for ◦ ∈ {∨,∧}, and (iv) opt(F #»×G) = opt(F) + opt(G).

In [10], we show that opt(F) computes the length of the longest
-chain in
the outcomes reachable from P : F in the semantic game. The degree function
of GCL is denoted by degG

I .2 It assigns to each formula a degree relative to an
interpretation I and is defined inductively as follows:

degG
I (a) = 1 if a ∈ I,−1 otherwise

degG
I (¬F) = −degG

I (F)

degG
I (F ∧ G) = min(degG

I (F),degG
I (G))

2 The superscript G is used to differentiate from the standard degree function degI of
QCL used in the literature.

216 R. Freiman and M. Bernreiter

degG
I (F ∨ G) = max(degG

I (F),degG
I (G))

degG
I (F #»×G) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

degG
I (F) if degG

I (F) ∈ Z
+

opt(F) + degG
I (G) if degG

I (F) ∈ Z
−,

degG
I (G) ∈ Z

+

degG
I (F) − opt(G) otherwise

Here min and max are relative to �. If degG
I (F) ∈ Z

+ then we say that I
classically satisfies F , or that I is a model of F . A model I of F is preferred, if
for every other model I ′ of F we have degG

I (F) � degG
I′(F).

Theorem 4 (Theorem 4.7 in [10]). The value of NG(P : F, I) is degG
I (F).

The value of NG(O : F, I) is −degG
I (F).

3 A Provability Game

Usually, in a semantic view of a logic, validity of a formula F is defined as truth
of F in all interpretations. In our context of graded truth, however, we can refine
this notion to graded validity. Thus, we define the degree (of validity) of F to be
the least possible degree of F in an interpretation:

degG(F) := min
I

degG
I (F)

In this section, we give a game-theoretic characterization of this degree. To
this end, we lift the semantic game NG to a provability game that adequately
characterizes validity in GCL. Our framework will be able to deal with the
following central notion in preference handling:

Definition 5. An interpretation I is a preferred model of F iff degG
I (F) ∈ Z

+

and for all other interpretations J , degG
J (F) � degG

I (F).

We now describe the lifting of NG to the provability game DG (we call our
game disjunctive game). We want a winning strategy for Me for the provability
game starting at g to imply the existence of winning strategies in all semantic
games starting at g. Note that the game trees of g over different interpretations
I are identical, except for the payoff at outcomes. Therefore, a simultaneous play
can be modeled by changing the pay-off at outcomes o to be the worst possible
pay-off of o under all interpretations: δ(o) = minI(o).

However, this variant does not capture validity yet, as I do not have winning
strategies for this game even for simple cases, like P : a∨¬a. This variant of the
game is too restrictive, as it would require the existence of a uniform strategy –
a single strategy that works in all semantic games. To remedy this shortcoming,
we allow Me to create “backup copies” of game states during the provability
game. If the game is unfavorable for Me in one copy, I can always come back
to have another shot at the other copy. My goal is to win at least one of these
copies. The game states of this game can be thus read as disjunctions, and are
therefore called disjunctive game states3, (hence the name of the game).
3 To avoid confusion, we always refer to game states of the disjunctive game DG as

“disjunctive (game) states”. “(Game) states” is reserved for the semantic game NG.

Validity in Choice Logics 217

Formally, game states of the disjunctive game are finite multisets of game
states of the game NG. We prefer to write g1

∨
...

∨
gn for the disjunctive game

state D = {g1, ..., gn}, but keep the convenient notation g ∈ D if g belongs to
the multiset D. A disjunctive state is called elementary if all its game states
are leaf-states of NG. Following the intuition of backup states, the payoff at an
elementary disjunctive state D is the maximum of the payoffs of its game states:

δ(D) = min
I

max
1≤i≤n

δI(gi).

Additionally, I take the rule of a scheduler who decides which of the copies is
played upon next.

At the disjunctive state D
∨

g, I can point at a non-leaf state g, codified by
underlining: D

∨
g. After the corresponding player takes their turn in NG(gi, I)

and moves to a state, say g′, the game continues with D
∨

g′.
As mentioned, instead of pointing to a game state of the disjunctive state, I

can duplicate any of its states, i.e. create a backup copy. If I decide to duplicate
g, the game continues with D

∨
g

∨
g. Due to this rule, it is now possible to

have infinite runs of the game. In these runs, I repeatedly create backup copies.
To prevent such behavior, we punish the “delaying” of the game by declaring
infinite runs losing for Me with the worst possible pay-off −1.

Formally, we define the game tree of the disjunctive game DG(D, I) recur-
sively as follows. We say that D′ ∨ g is obtained from D = D′ ∨ g by underlining
a game state and D

∨
g

∨
g is obtained by duplicating a game state. If no states

in D are underlined, it is an “I”-disjunctive state and its successor nodes are all
disjunctive states obtainable by underlining, or duplicating a game state. If a
game state is underlined, say we are in D = D′ ∨ g, then this disjunctive state
is labeled the same as g in the semantic game. The children of D are all D′ ∨ g′,
where g′ ranges over the children of g in the semantic game. For example, if
D = D′ ∨P : G1 ∨ G2, then it is an “I”-disjunctive state and its children are
D′ ∨P : G1 and D′ ∨P : G2.

Example 2. Let F be ((a #»×b) #»×c) ∧ ¬(a #»×b). Figure 2 shows a compact represen-
tation of a strategy for Me for the game DG(O : F). Underlining moves are
clear from context and are therefore hidden. First, I duplicate O : F and move
to P : ((a #»×b) #»×c) in one copy and to O : ¬(a #»×d) in the other. The latter is
immediately converted to P : a

#»×d, for which I repeat the strategy of duplicat-
ing and moving into both options. Finally, I point to O : (a #»×b) #»×c, where it is
Your turn. All Your possible choices are shown in the strategy. The payoffs are

δ(O : a
∨

P : a
∨

P : d) = min
I

max{δI(O : a), δI(P : a), δI(P : d)}
= max{δ∅(O : a), δ∅(P : a), δ∅(P : d)} = max{3,−2,−1} = 3,

δ(O : b
∨

P : a
∨

P : d) = min
I

max{δI(O : b), δI(P : a), δI(P : d)}
= max{δ{b}(O : b), δ{b}(P : a), δ{b}(P : d)} = max{−2,−2,−1} = −2,

δ(O : c
∨

P : a
∨

P : d) = min
I

max{δI(O : c), δI(P : a), δI(P : d)}

218 R. Freiman and M. Bernreiter

Fig. 2. A compact representation of the strategy for Me for an instance of DG

= max{δ{c}(O : c), δ{c}(P : a), δ{c}(P : d)} = max{−3,−2,−1} = −3.

Given these payoffs, You prefer the second outcome, giving Me a payoff of −2.
We note two things. First, I cannot do better by playing another strategy. If
the outcomes do not contain game states resulting from O : (a #»×b) #»×c, then
their pay-offs are the same, or even less. The strategy of first duplicating, then
exploiting all possible moves is therefore – in a way – optimal for Me. Hence, we
can conclude that the value of the game is −2.

The remainder of this section is devoted to proving the adequacy of DG.

Theorem 6. I have a k-strategy in DG(D) iff for every interpretation I, there
is some g ∈ D such that I have a k-strategy in NG(g, I). You have a k-strategy
in DG(D) iff there is an interpretation I such that You have k-strategies in
NG(g, I), for all g ∈ D.

We prove the above theorem with the help of two lemmas.

Lemma 7. Let π be a finite run of the game DG(D) such that for every I-state
g in π, all of its children appear in π, too. Let k be the payoff of π. Then there
is a model I0 such that You have a k-strategy for NG(g, I0), for each g ∈ D.

Proof (of Lemma 7). Let Dfin be the outcome of π and let I0 be such that
δI0(Dfin) � k. For g0 ∈ D, let σg0 be the set of successors of g appearing in

Validity in Choice Logics 219

π. Note that σg0 carries the structure of a subtree of NG(g0, I). Indeed, it is a
strategy for You: by assumption, for every I-state in σg0 , all successors appear in
π, and thus in σg0 . Every Y-state g in σg0 comes from a disjunctive state D′ ∨ g
appearing in π. At some point, D′ ∨ g is in π. The next disjunctive state in π is
D′ ∨ g′, so g′ is the unique successor of the Y-state g in σg0 .

To verify that σg0 is a k-strategy, it is enough to notice that all outcomes o
in σg0 appear in Dfin. Thus, δI′(o) � maxh∈D δI0(h) � δI0(Dfin) � k. �
Lemma 8. Let σ be a strategy for Me for DG(D0) and let S be a set containing
exactly one game state of each outcome of σ. Then for every interpretation I,
there is a strategy for Me for NG(g0, I) with g0 ∈ D0 and outcomes in S.

Proof (of Lemma 8). We define recursively for each D ∈ σ a strategy σD for
NG(g, I), where g ∈ D and outcomes are in S. In the base case, D is an outcome
of σ, so we set σD to be the singleton S ∩ D.

If D is an I-state, and its unique child H ∈ σ is obtained by duplicating or
underlining a game state, we use the inductive hypothesis and set σD = σH .
If D = D′ ∨ g, where g is an I-state, then H = D′ ∨ g′, where g′ is a child of
g. If σH is a strategy for NG(h, I) with h ∈ D′, we can simply set σD = σH .
Otherwise, σH is a strategy for NG(g′, I). We can thus set σD = {g} ∪ σH .

If D is a Y-state, then it is of the form D = D′ ∨ g, where g is a Y-state.
The children of D are of the form D′ ∨ g′, where g′ ranges over the children of g.
Since σ is a strategy for Me, all these children appear in σ. If for some g′, σD′ ∨

g′

is a strategy for NG(h, I) and h ∈ D′, we can set σD = σD′ ∨
g′

. Otherwise, all
σD′ ∨

g′
are strategies for DG(g′, I), and we can set σD = {g} ∪ ⋃

σD′ ∨
g′

.
In all the inductive steps it is clear that σD contains only outcomes from S.

The claim follows for D = D0. �
Proof (of Theorem 6). We prove the left-to-right directions (ltr) of both state-
ments. The right-to-left directions (rtl) then follow easily: for example, suppose,
for every I, there is a g ∈ D, such that I have a k-strategy in NG(g, I). Let
l � k be maximal. We infer that for every I, there is some g ∈ D such that You
do not have a k-strategy in NG(g, I). By ltr of Statement 2, You do not have
an l-strategy for DG(g, I). Since You cannot enforce the payoff to be below k,
I have a k-strategy. The rtl of the other statement is similar.

Let us prove the ltr of Statement 1. Fix a k-strategy σ for Me in DG(D)
and an interpretation I. By assumption, for every outcome of the disjunctive
game O in σ, there is a game state o ∈ O such that δI(o) � k. Collect for each
outcome such an o into a set S. We apply Lemma 8 to obtain a strategy μ for
Me for NG(g, I), for some g ∈ D with outcomes in S. These outcomes have a
payoff of at least k, i.e., μ is a k-strategy.

Ltr of Statement 2: suppose You have a k-strategy for DG(D). Let π be the
run of the game where I play according to the following strategy: if the current
disjunctive state is H, I underline an arbitrary h ∈ H. If h is an I-state and
has only one child h′, I go to that child in the corresponding copy. If h has two
children h1 and h2, I first duplicate h, then go to h1 in the first and to h2 in the

220 R. Freiman and M. Bernreiter

second copy. Let L be the outcome of π. By assumption, δ(L) � k. By Lemma 7,
there is I such that You have k-strategies for NG(g, I), for each g ∈ D. �
Corollary 9. The values of the games DG(P : F) and DG(O : F) are given
by degG

I (F) = minI degG
I (F) and −maxI degG

I (F), respectively.

Proof. For each interpretation I, let vI be the value of DG(D, I). It follows
from the theorem that the value of DG(D) is minI vI . Thus, by Theorem 4, the
values of DG(P : F) and DG(O : F) are minI degG

I (F) and minI −degG
I (F)) =

−maxI degG
I (F), respectively. �

Corollary 10. Let I be a preferred model of F and let k be the value of DG(O :
F). Then k = −degG

I (F) and a preferred model of F can be extracted from Your
k-strategy for DG(O : F).

Proof. The first statement immediately follows from Corollary 9. Let σ be Your
k-strategy for DG(O : F). Since there is an interpretation making F true, k
must be negative and thus winning for You. By the proof of Theorem 6, all the
information for a preferred model is contained in the outcome of the run of the
game, where I play according to the strategy sketched in that proof and You
play according to σ. Let L be the outcome of that run. L must be winning for
You. We, therefore, set Iπ = {a | O : a ∈ L} and obtain a k-strategy for You
for DG(O : F, Iπ). Let v be the value of that game. We have that v � k, by the
existence of Your k-strategy and v � k, since by Theorem 4 and Corollary 9,
v = −degG

Iπ (F) � −maxI degG
I (F) = k.

This shows degG
Iπ (F) = maxI degG

I (F), i.e., Iπ is a preferred model of F . �

4 Proof Systems

In this section, we study the proof-theoretic content of the provability game
by reinterpreting strategies as proofs in three different labeled sequent calculi.
Essentially, proofs in these systems are nothing but representations of My strate-
gies for the disjunctive game. Sequents in these calculi consist of labeled formu-
las: each formula is decorated with two numbers k, l ≥ 1 and we write k

l F . The
intuitive reading is that all winning outcomes of Q : F have a longest
-chain
of at least l, and thus their payoff is at most l. Losing outcomes have a longest
�-chain of at least k and thus their payoff is at least −k.

Sequents are of the form Γ ⇒ Δ, where Γ and Δ are multisets of labeled for-
mulas. There is a direct translation from disjunctive states of the game DG(D0)
into sequents: Each disjunctive state D is translated into the sequent

{k
l F | O : F ∈ D} ⇒ {k

l F | P : F ∈ D},

where k = min{|π�(o)| : o ∈ O(Q : F)} and l = min{|π�(o)| : o ∈ O(Q : F)}.
In particular, we have k = l = 1 if the game starts at Q : F . We assign degrees
to sequents Γ ⇒ Δ as follows: for each interpretation I,

if k
l F ∈ Δ, we set degG

I (k
l F) =

{
l + degG

I (F) − 1, if degG
I (F) ∈ Z

+,

−k + degG
I (F) + 1, if degG

I (F) ∈ Z
−,

Validity in Choice Logics 221

if k
l F ∈ Γ , we set degG

I (k
l F) =

{
l − degG

I (F) − 1 if degG
I (F) ∈ Z

−,

−k − degG
I (F) + 1 if degG

I (F) ∈ Z
+.

We then set
degG(Γ ⇒ Δ) = min

I
max

k
l F∈Γ∪Δ

degG
I (k

l F).

In the simplest case, degG(⇒1
1 F) coincides with degG(F). We now have all

ingredients to present our proof systems.
The first proof system, GS in Fig. 1, is closer to the game-theoretic view.

Proofs are (bottom-up) representations of My strategies for the disjunctive game.
What is unusual is that all sequents consisting of labeled propositional variables
are allowed as initial sequents. A proof with all initial sequents of degree � k,
therefore, represents a k-strategy for Me. Hence, in this case, we speak of a k-
proof. Note that in accordance with a k-strategy, k-proofs are not per se optimal:
they merely witness that the degree of the proved sequent is at least k. In
particular, every k proof is also an l-proof, if k � l.

The second proof system is a proof-theoretically more orthodox system. In
fact, it is actually a family of proof systems: for each k ∈ Z, the system Sk is
defined in Fig. 1. These proof systems share all the rules with GS, but initial
sequents are valid iff their degree is at least k. Such initial sequents are axioms
in the usual sense.

The conceptual difference between the two approaches is as follows: in GS,
the value k can be computed from the initial sequents. In the second approach,
k is guessed (implicitly, by picking the proof system Sk, for a concrete k).

Example 3. Figure 3 shows a derivation of ((a #»×b) #»×c)∧¬(a #»×d) ⇒ in GS. Essen-
tially, it is My strategy from Example 2 bottom-up. Degrees of initial sequents:

degG(31a ⇒1
2 a,21 d) = degG

{a}(
3
1a ⇒1

2 a,21 d) = 2,

degG(22b ⇒1
2 a,21 d) = degG

{b}(
2
2b ⇒1

2 a,21 d) = −2,

degG(13c ⇒1
2 a,21 d) = degG

{c}(
1
3c ⇒1

2 a,21 d) = −3.

Therefore, the derivation is a −2-proof and thus a proof in S−2.

It follows directly from the translation of My strategies into proofs:

Theorem 11. The following are equivalent:

1. I have a k-strategy for DG(O : F1

∨
...

∨
O : Fn

∨
P : G1

∨
...

∨
P : Gm).

2. degG(11F1, ...,
1
1 Fn ⇒1

1 G1, ...,
1
1 Gm) � k.

3. There is a k-proof of 1
1F1, ...,

1
1 Fn ⇒1

1 G1, ...,
1
1 Gm in GS.

4. There is a proof of 1
1F1, ...,

1
1 Fn ⇒1

1 G1, ...,
1
1 Gm in Sk.

Corollary 12. Let k ∈ Z
−. Then there is a k-proof of 1

1F ⇒ in GS iff there is
a proof of 1

1F ⇒ in Sk iff the degree of F in a preferred model is at most −k.

222 R. Freiman and M. Bernreiter

Table 1. Proof systems GS and Sk.

Initial Sequents for GS

Γ ⇒ Δ, where Γ and Δ consist of labeled variables

Axioms for Sk

Γ ⇒ Δ, where degG(Γ ⇒ Δ) � k, and Γ and Δ consist of labeled variables

Structural Rules

Γ,kl F,kl F ⇒ Δ

Γ,kl F ⇒ Δ
(Lc)

Γ ⇒k
l F,kl F, Δ

Γ ⇒k
l F, Δ

(Rc)

Propositional rules

Γ,kl F ⇒ Δ Γ,kl G ⇒ Δ

Γ,kl (F ∨ G) ⇒ Δ
(L∨)

Γ ⇒k
l F, Δ

Γ ⇒k
l (F ∨ G), Δ

(R1
∨)

Γ,kl F ⇒ Δ

Γ,kl (F ∧ G) ⇒ Δ
(L1

∧)
Γ ⇒k

l G, Δ

Γ ⇒k
l (F ∨ G), Δ

(R2
∨)

Γ,kl G ⇒ Δ

Γ,kl (F ∧ G) ⇒ Δ
(L2

∧)
Γ ⇒k

l F, Δ Γ ⇒k
l G, Δ

Γ ⇒k
l (F ∧ G), Δ

(R∧)

Γ ⇒k
l F, Δ

Γ,kl ¬F ⇒ Δ
(L¬)

Γ,kl F ⇒ Δ

Γ ⇒k
l ¬F, Δ

(R¬)

Choice rules

Γ, k
l+opt(G)F ⇒ Δ Γ,

k+opt(F)
lG ⇒ Δ

Γ, kl(F
#»×G) ⇒ Δ

(L #»×)
Γ ⇒ k+opt(G)

lF, Δ

Γ ⇒ k
l(F

#»×G), Δ
(R1

#»×)

Γ ⇒ k
l+opt(G)G, Δ

Γ ⇒ k
l(F

#»×G), Δ
(R2

#»×)

My strategy in Example 2, is not only a −2-strategy but also a minmax-strategy
for Me. This implies that I cannot do better than −2, i.e. the value of the game is
−2. How does this translate into the proof-theoretic interpretation of Example 3?
There, the minmax-strategy takes the form of invertibility of rule applications:
rule applications S′/S and (S1, S2)/S are called invertible iff degG(S′) = degG(S)
and min{degG(S1),degG(S2)} = degG(S). In Example 3 only invertible rule
applications are used.

In Table 2 we give a calculus GS∗ which is equivalent to GS but has only
invertible rules, i.e. all rule applications are invertible. The contraction rules are
admissible in this system. The motivation behind this calculus is the same as in
My maxmin-strategy: in every I-state, I first duplicate and then exhaustively
take all the available options. Every proof produced in this system corresponds

Validity in Choice Logics 223

Fig. 3. A −2-proof in GS.

to an optimal strategy and has, therefore, an optimal degree. The below results
follow directly from the invertibility of the rules:

Proposition 13. Every GS∗-proof of a sequent S has degree degG(S).

Corollary 14. Let k = degG(11F ⇒) ∈ Z
−. Then the degree of F in a preferred

model is equal to −k. Furthermore, a preferred model of F can be extracted from
every GS∗-proof of 1

1F ⇒.

Example 4. Figure 4 shows a GS∗-proof of 1
1((a

#»×b) #»×c) ∧ ¬(a #»×d) ⇒. The proof
is essentially a compact representation of the proof in Fig. 3, and has therefore
degree −2. We conclude that in a preferred model, ((a #»×b) #»×c) ∧ ¬(a #»×d) has
degree 2. Furthermore, we can extract the preferred model {b} from the posi-
tion where the degG-function is minimal on the initial sequents, as computed in
Example 3.

Fig. 4. A proof in GS∗.

224 R. Freiman and M. Bernreiter

Table 2. The proof system GS∗ for GCL with invertible rules.

Initial Sequents

Γ ⇒ Δ, where Γ and Δ consist of labeled variables

Propositional rules

Γ,kl F ⇒ Δ Γ,kl G ⇒ Δ

Γ,kl (F ∨ G) ⇒ Δ
(L∨)

Γ ⇒k
l F,kl G, Δ

Γ ⇒k
l (F ∨ G), Δ

(R∨)

Γ,kl F,kl G, ⇒ Δ

Γ,kl (F ∧ G) ⇒ Δ
(L∧)

Γ ⇒k
l F, Δ Γ ⇒k

l G, Δ

Γ ⇒k
l (F ∧ G), Δ

(R∧)

Γ ⇒k
l F, Δ

Γ,kl ¬F ⇒ Δ
(L¬)

Γ,kl F ⇒ Δ

Γ ⇒k
l ¬F, Δ

(R¬)

Choice rules

Γ, k
l+opt(G)F ⇒ Δ Γ,

k+opt(F)
lG ⇒ Δ

Γ, kl(F
#»×G) ⇒ Δ

(L #»×)

Γ ⇒ k+opt(G)
lF, k

l+opt(F)G, Δ

Γ ⇒ k
l(F

#»×G), Δ
(R #»×)

Note that the following degree-version of cut does not hold. The existence
of k-strategies for D

∨
P : F and D

∨
O : F does not imply that a k-strategy

for D exists. For example, note that the values of O : �∨
O : ⊥ #»×� and O :

�∨
P : ⊥ #»×� are −2 and 2, respectively. But the value of the “conclusion” of

the cut, O : �, has value −1.
What is more, there is no function computing the value of the conclusion

of cut from the values of the premises. To see this, note that the values of
O : ⊥ #»×�∨

O : ⊥ #»×� and O : ⊥ #»×�∨
P : ⊥ #»×� are −2 and 2 respectively, as in

the above example. However, in contrast to the above example, the conclusion
of this cut, O : ⊥ #»×�, has value −2.

Lastly, we demonstrate that GS and Sk are useful systems, i.e. that comput-
ing the degree of initial sequents is easier than the degree of general sequents.

Proposition 15. Deciding whether degG(Γ ⇒ Δ) � k is coNP-hard in general.
If Γ ⇒ Δ is initial, then degG(Γ ⇒ Δ) can be computed in polynomial time.

Proof. coNP-hardness of deciding degG(Γ ⇒ Δ) � k follows by coNP-hardness
of the validity problem in classical logic: if F is a classical formula, then it holds
that degG(⇒1

1 F) ∈ Z
+ if and only if F is valid (true under all interpretations).

We now show that degG(Γ ⇒ Δ) can be computed in polynomial time if
Γ ⇒ Δ is initial. We start with the empty interpretation I = ∅. Now, go
through every variable x occurring in Γ ⇒ Δ. Consider Γx ⇒ Δx where l

kx ∈ Γx

iff l
kx ∈ Γ and l

kx ∈ Δx iff l
kx ∈ Δ. If we have degG

{x}(Γx ⇒ Δx)�degG
∅ (Γx ⇒ Δx)

Validity in Choice Logics 225

then let I = I∪{x}, otherwise leave I unchanged. In other words, since Γ ⇒ Δ is
initial, we can simply choose the ‘better’ option for any given variable x without
side effects. Thus, this procedure gives us the minimal I for Γ ⇒ Δ. �

5 Conclusion and Future Work

In this paper, we investigate the notion of validity in choice logics. Specifically,
we lift a previously established [10] semantic game NG for the language of QCL
to a provability game DG. This allows us to examine formulas with respect to
all interpretations. Similar to truth, validity in choice logic comes in degrees. We
show that the value of DG adequately models these validity degrees. Strategies
for Me in DG correspond to proofs in an analytic labeled sequent calculi GS.
The unique feature of this system is that its proofs have degrees that represent
the degree of validity. We give two variants of GS – GS∗ with invertible rules
corresponding to My optimal strategy, and the more orthodox system Sk where
proofs do not have degrees, but a “degree-profile” is guessed similar to [3].

For future work, it will be interesting to adapt NG to capture related logics
such as Conjunctive Choice Logic [5] or Lexicographic Choice Logic [4], both
of which introduce another choice connective in place of ordered disjunction.
Using the methods established in this paper, provability games for these semantic
games can then be derived. Indeed, our systems are quite modular in this sense,
since most aspects of our provability game and our calculi require no adaptation
if ordered disjunction were to be exchanged with another choice connective.

Acknowledgments. We thank all our anonymous reviewers for their valuable feed-
back. This work was funded by the Austrian Science Fund (FWF) under grants P32830
and P32684, the Vienna Science and Technology Fund (WWTF) under grant ICT19-
065, and partially funded by the EU (Marie Sk�lodowska-Curie RISE) project MOSAIC,
grant 101007624.

References

1. Benferhat, S., Sedki, K.: Alert correlation based on a logical handling of adminis-
trator preferences and knowledge. In: Fernández-Medina, E., Malek, M., Hernando,
J. (eds.) SECRYPT 2008, Porto, Portugal, 26–29 July 2008, SECRYPT is part of
ICETE, pp. 50–56. INSTICC Press (2008)

2. Benferhat, S., Sedki, K.: Two alternatives for handling preferences in qualitative
choice logic. Fuzzy Sets Syst. 159(15), 1889–1912 (2008). https://doi.org/10.1016/
j.fss.2008.02.014

3. Bernreiter, M., Lolic, A., Maly, J., Woltran, S.: Sequent calculi for choice logics. In:
Blanchette, J., Kovács, L., Pattinson, D. (eds.) IJCAR 2022. LNAI, vol. 13385, pp.
331–349. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-10769-6 20

4. Bernreiter, M., Maly, J., Woltran, S.: Choice logics and their computational proper-
ties. Artif. Intell. 311, 103755 (2022). https://doi.org/10.1016/j.artint.2022.103755

5. Boudjelida, A., Benferhat, S.: Conjunctive choice logic. In: ISAIM 2016, Fort Laud-
erdale, Florida, USA, 4–6 January 2016 (2016)

https://doi.org/10.1016/j.fss.2008.02.014
https://doi.org/10.1016/j.fss.2008.02.014
https://doi.org/10.1007/978-3-031-10769-6_20
https://doi.org/10.1016/j.artint.2022.103755

226 R. Freiman and M. Bernreiter

6. Brewka, G., Benferhat, S., Berre, D.L.: Qualitative choice logic. Artif. Intell.
157(1–2), 203–237 (2004). https://doi.org/10.1016/j.artint.2004.04.006

7. Brewka, G., Niemelä, I., Syrjänen, T.: Logic programs with ordered disjunction.
Comput. Intell. 20(2), 335–357 (2004). https://doi.org/10.1111/j.0824-7935.2004.
00241.x

8. Fermüller, C.G., Metcalfe, G.: Giles’s game and the proof theory of �Lukasiewicz
logic. Stud. Logica. 92(1), 27–61 (2009). https://doi.org/10.1007/s11225-009-9185-
2

9. Freiman, R.: Games for hybrid logic. In: Silva, A., Wassermann, R., de Queiroz,
R. (eds.) WoLLIC 2021. LNCS, vol. 13038, pp. 133–149. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-88853-4 9

10. Freiman, R., Bernreiter, M.: Truth and preferences - a game approach for qual-
itative choice logic. In: M-PREF@IJCAI (2022). https://doi.org/10.48550/arXiv.
2209.12777

11. Hintikka, J.: Logic, Language-Games and Information: Kantian Themes in the
Philosophy of Logic. Clarendon Press, Oxford (1973)

12. Liétard, L., Hadjali, A., Rocacher, D.: Towards a gradual QCL model for database
querying. In: Laurent, A., Strauss, O., Bouchon-Meunier, B., Yager, R.R. (eds.)
IPMU 2014. CCIS, vol. 444, pp. 130–139. Springer, Cham (2014). https://doi.org/
10.1007/978-3-319-08852-5 14

13. Pavlova, A., Freiman, R., Lang, T.: From semantic games to provability: the case
of Gödel logic. Stud. Logica. 110(2), 429–456 (2021). https://doi.org/10.1007/
s11225-021-09966-x

14. Onyepunuka, U., Alassad, M., Nwana, L., Agarwal, N.: Multilingual Analysis of
YouTube’s Recommendation System: Examining Topic and Emotion Drift in the
‘Cheng Ho’ Narrative (2023)

15. Sedki, K., Lamy, J., Tsopra, R.: Learning preferences in prioritized qualitative
choice logic. In: 32nd IEEE International Conference on Tools with Artificial Intel-
ligence, ICTAI 2020, Baltimore, MD, USA, 9–11 November 2020, pp. 368–375.
IEEE (2020). https://doi.org/10.1109/ICTAI50040.2020.00065

16. Sedki, K., Lamy, J., Tsopra, R.: Qualitative choice logic for modeling experts rec-
ommendations of antibiotics. In: Barták, R., Keshtkar, F., Franklin, M. (eds.) Pro-
ceedings of the Thirty-Fifth International Florida Artificial Intelligence Research
Society Conference, FLAIRS 2022, Hutchinson Island, Jensen Beach, Florida, USA,
15–18 May 2022 (2022). https://doi.org/10.32473/flairs.v35i.130677

https://doi.org/10.1016/j.artint.2004.04.006
https://doi.org/10.1111/j.0824-7935.2004.00241.x
https://doi.org/10.1111/j.0824-7935.2004.00241.x
https://doi.org/10.1007/s11225-009-9185-2
https://doi.org/10.1007/s11225-009-9185-2
https://doi.org/10.1007/978-3-030-88853-4_9
https://doi.org/10.48550/arXiv.2209.12777
https://doi.org/10.48550/arXiv.2209.12777
https://doi.org/10.1007/978-3-319-08852-5_14
https://doi.org/10.1007/978-3-319-08852-5_14
https://doi.org/10.1007/s11225-021-09966-x
https://doi.org/10.1007/s11225-021-09966-x
https://doi.org/10.1109/ICTAI50040.2020.00065
https://doi.org/10.32473/flairs.v35i.130677

Aleatoric Propositions: Reasoning About
Coins

Tim French(B)

School of Physics, Mathematics and Computing, The University of Western
Australia, Perth, WA, Australia

tim.french@uwa.edu.au

Abstract. Aleatoric propositions are a generalisation of Boolean propo-
sitions, that are intrinsically probabilistic, or determined by the toss of a
(biased) coin. Rather than let propositions take a true/false valuation, we
assume they act as a biased coin, that will sometimes land heads (true),
and sometimes land tails (false). Complex propositions then correspond
to a conditional series of tosses of these coins. We extend the syntax and
semantics for Aleatoric Logic to include a novel fixed-point operator that
is able to represent a weak form of iteration. We examine the expressivity
of the of the language, showing a correspondence to classes of rational
functions over (0, 1)

Keywords: Probabilistic Reasoning · Expressivity · Correspondence
Theory

1 Introduction

Logic is the study of truth and deduction. In both philosophical and mathemat-
ical contexts, a logic represents a reasoning process, where true statements are
composed via some rules to infer new truths. However, the commitment to the
study of true statements sets a very high bar for reasoning. In everyday live we
are beset with uncertainty and absolute truth can rarely be assumed. Nonethe-
less, reason persists and we are able to act rationally and perform deductions
within the bounds of our uncertainty. Furthermore, we are able to do this with-
out ever quantifying our uncertainty: some facts are simply recognised on being
contingent on things outside of our experience. As we accrue experience, our
confidence in our judgements increases as does our trust in our reasoning, even
though the standard of absolute truth is never attained. This is the experiential
logic described by Hume [8].

As automated reasoning and artificial intelligence become more capable, there
is a need for a foundation for reasoning and logic that is tolerant of the uncer-
tainty that we find in every day life. This paper presents such a formalism: an
analogue of propositional logic where the true false statements are replaced by
independent probabilistic events: what may thought of as tosses of a biased coin.
A coin toss is intrinsically uncertain, so while the proposition has a correspon-
dence to the coin, we suppose that an agent only has access to this proposition via
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
H. H. Hansen et al. (Eds.): WoLLIC 2023, LNCS 13923, pp. 227–243, 2023.
https://doi.org/10.1007/978-3-031-39784-4_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-39784-4_14&domain=pdf
http://orcid.org/0000-0002-0748-8040
https://doi.org/10.1007/978-3-031-39784-4_14

228 T. French

the sampling of tosses of the coin. Therefore, aleatoric propositions are defined
over a series of events, where atomic events correspond to the toss of some biased
coin. The complex expressions therefore describe coin-flipping protocols where
the next coin chosen to flip is contingent on the outcome of the prior coin flips.
Particularly, we introduce a fixed-point operator that is able to represent looping
coin flipping protocols.

1.1 Related Work

There has been a considerable number of works that have considered probabilistic
semantics. We will briefly cover some here and attempt to categorise them in
relation to this work.

Early work includes Kolmogorov’s [10] axiomatization, Ramsey’s [14] and
de Finetti’s [2] characterisation of subjective probability, These works provide
a foundation for what constitutes a probability distribution, and Hailperin [5]
gives a good overview of early work.

There have been a number of works applying probabilistic elements to auto-
mated reasoning and deduction, including probabilistic description logic [12],
reasoning about uncertainty [6], verification of randomised programs [11]. These
approaches include a modality for the probability of some event occurring. As
the probabilities are explicit in the syntax, these approaches reason about the
probabilities of events, in the sense that while a pair of dice landing as two ones
(snake eyes) is an uncertain statement, the statement “snake eyes has probability
1
36 ” is a Boolean (true/false) statement. Gardenfors [4] has approached the topic
of probability logics in a similar way, axiomatising a logic of relative probability,
which contains statements such as “A is at least as probable as B”.

We are interested in reasoning probabilistically, without necessarily quanti-
fying probabilities. In this vein also are the Fuzzy approaches to probabilistic
reasoning [16]. Fuzzy logic is typically applied to describe the concept of vague-
ness, where the semantics allow for the increasing or decreasing of plausibility,
without necessarily committing to the absolute certainty of a proposition. When
the product semantics are used (so the plausibility of two propositions taken
together are multiplied) there is a natural correspondence with independent
random events like the flipping of coins. While this has many similarities to our
approach, it does not have the fixed-point operator capable of expressing events
of unbounded magnitude.

This work is an extension of the propositional aleatoric calculus presented in
[3] which also considered the modal extension of the logic (not considered here)
but also did not include the fixed point operator discussed here.

1.2 Overview

The following section will present the syntax and semantics for aleatoric propo-
sitions, and provide some discussion of the novel operators. The next section will
consider the expressivity of the language, and give some illustrative examples,
such as the expression of fractional probabilities, and conditional reasoning. The

Aleatoric Propositions: Reasoning About Coins 229

main result of the paper is to show that the aleatoric propositions include the
set of all rational functions that map products of the closed interval [0, 1] to the
open interval (0, 1). This result is based on work by Mossel [13]. Finally we will
discuss some remaining open problems, and briefly discuss how we may extend
the system to talk about dependent events.

2 Syntax and Semantics

Here we present a minimal syntax and semantics for Aleatoric Propositions,
extending the aleatoric calculus presented in [3]. Aleatoric propositions are a
generalisation of Boolean propositions, and are defined over a set of atomic
propositions P. To avoid confusion, we will not refer to propositions being true
or false, but rather consider them as descriptions of sets of events (e.g. a coin
landing head side up) that occurs with some probability. For this reason we use
symbols � (heads) and � (tails) for atoms corresponding to probability 1 (always
heads) and probability 0 (always tails) respectively.

A complex proposition describes events comprised of sub-events. For exam-
ple, given propositions A and B, we may consider a proposition which corre-
sponds to events where the A-coin lands heads, and then the B-coin lands heads,
and then the A-coin (tossed for a second time) lands heads once more.

As we consider a proposition describing the occurrence of an event, we can
also consider a proposition describing an event failing to occur. Note, in this
context, we consider the failure of an event meaning the event is explicitly tested,
and that test fails. So given an event “the penny lands heads”, the negation would
be “the penny is flipped and and does not land heads”, but it would not be “the
penny is not flipped” or “the quarter is flipped and it lands heads”.

The propositions can also describe conditional events: we could consider a
proposition describing an event where the A-coin has the same result two times in
a row, so if the A-coin lands heads, then it is tossed again, and lands heads again,
but if it landed tails the first time, it is tossed again and lands tails the second time.

Finally, we also consider iterative events, where propositions are repeatedly
sampled until come condition is met. A famous example is the scheme devised
by von Neumann [15] to simulate a fair coin (with bias precisely 1/2) using any
coin with probability in (0, 1). Here the coin is flipped twice: if we see a head
followed by a tail, we report a (synthetic) head; if we see a tail followed by a
head we report a (synthetic) tail; and otherwise, if we see two heads or two tails,
we repeat the process. Since each coin flip is independently sampled with the
same probability regardless of the bias the likelihood of the synthetic head is the
same as the likelihood of the synthetic tail,

These complex propositions are built using a ternary if-then-else operator, a
negation operator, and a fixed-point operator.

Definition 1. The syntax of aleatoric propositions is given by:

α ::= � | A | ¬α | (α?α :α) | FXα

230 T. French

where A,X ∈ P, and X is linear in α. The set of aleatoric propositions is
denoted as L.

We let var(α) be the set of atomic propositions appearing in α, and say
X ∈ var(α) is free in α (X ∈ free(α)) if X does not appear in the scope of a FX
operator. If X ∈ var(α) does appear in the scope of a FX operator, we say X is
bound in α (X ∈ bnd(α)).

The fixed point operator required that X is linear in α, and this is to ensure
that the fixed point is unique and non-ambiguous.

Definition 2. An atomic proposition X ∈ P is linear in α if and only if for
every subformula (β?γ1 :γ2) of α, there is no occurrence of X appearing in β.

The meaning and significance of linearity will be discussed once the semantics
have been presented.

A brief description of these operators is as follows:

– � (heads) describes an event that invariably occurs (i.e. a coin that always
lands heads, or a double headed coin).

– A is an atom that describes an event that occurs with some probability p ∈
(0, 1).

– ¬α, (not α) describes the failure of an event to occur. That is, the event is
explicitly tested for, and that test fails.

– (α?β : γ) (if α then β else γ) describes a conditional event where the event
described by α is tested (or sampled) and if it occurs, then an event described
by β occurs, but if the alpha event does not occur, then an event described
by γ occurs.

– FXα (X where X = α) is the fixed point proposition, and it describes an
event with probability x such that if the event corresponding to the atom X
had likelihood x, so would α. An alternative way to consider this operation is
a description of a recursive event, so that whenever the proposition, X, is to
be tested instead a test of the proposition FXα is (recursively) substituted.
If this process continues forever, (e.g., in the evaluation of FXX, its value is
deemed to be 1

2 . See the proof of Lemma 1 for a discussion of this.

As an example of this syntax, we can represent the scheme of von Neumann,
mentioned above, as:

fair-coin = FX(A?(A?X :�) : (A?� :X)).

We note that the notion of uncertainty is intrinsic in these operators. That an
atomic proposition A “happened” does not mean that A is true in the common
sense: we could repeat the process and the subsequent event satisfies ¬A. The
propositions, themselves are mercurial and transient, so it does not make sense
to say a proposition is true. Rather, we are interested in the probability that an
event described by the proposition will occur, and this is what is presented in
the following semantics.

The semantics of these operators is given over an interpretation, I, which
assigns a probability between 0 and 1 to every atomic proposition.

Aleatoric Propositions: Reasoning About Coins 231

Definition 3. An interpretation for propositional aleatoric logic is a function
I : P −→ (0, 1). Given an interpretation, I, an atomic proposition X ∈ P
and some p ∈ (0, 1), we let the interpretation I[X : p] be such that for all
Y ∈ P\{X}, I[X : p](Y) = I(Y) and I[X : p] = p.

We will use the notation α[X\β] to represent the proposition α with all free
occurrences of X in α replaced by β, and we say β is free of X in α if for every
free variable Y in β, X is not in the scope of an operator FY in α. We can now
define the semantics as below1:

Definition 4. Given an interpretation, I, and some aleatoric proposition α, the
interpretation assigns the probability I(α) inductively as follows:

�I = 1
AI = I(A)

(¬α)I = 1 − αI

(α?β :γ)I = αI · βI + (1 − αI) · γI

(FXα)I =

⎧
⎪⎪⎨

⎪⎪⎩

1 if αI = 1
0 if αI = 0
x if x is the unique value such that αI[X:x] = x
1/2 if ∀x ∈ (0, 1), αI[X:x] = x

We must show that the semantic interpretation of the fixed point operator is well
defined; that is, the fixed point always exists and has uniquely defined value.

Lemma 1. The semantic interpretation of the fixed point operator is well
defined. Given any α where X is linear in α, given any interpretation I, either
αI ∈ {0, 1}, or there is a unique x ∈ (0, 1) such that αI[X:x] = x, or for every
x ∈ (0, 1), αI[X:x] = x.

Proof. This proof will be given by induction over the complexity of formulas, and
will also provide an alternative semantic definition for the fixed point operator.

The induction hypothesis is, for every aleatoric proposition α ∈ L, for each
atomic proposition X where X is linear in α, given any interpretation I, there
are unique values hα, iXα ∈ [0, 1] such that αI[X:x] = hα + iXα · x. For simplicity
we will assume that free(α) and bnd(α) are disjoint sets. The induction is given
over the complexity of formulas as follows:

– for ψ = �, hψ = 1 and iXψ = 0.
– for ψ = A ∈ var, where A /∈ bnd(α), let hψ = I(A) and iXψ = 0. Since

AI[X;x] = I(A), it is clear that hψ = I(A) and iXψ = 0 are the only values
that satisfy the induction hypothesis.

– for ψ = X, where X ∈ bnd(α), let hψ = 0 and iXψ = 1. Since XI[X:x] = x, it
is clear that hψ = 0 and iXψ = 1 are the only values that satisfy the induction
hypothesis.

1 We use the notation where given the probabilities x and y, x · y is interpreted as
the product of x and y.

232 T. French

– for ψ = (β?γ1 :γ2), hψ = hβ ·hγ1+(1−hβ)·hγ2 , and iXψ = hβ ·iXγ1
+(1−hβ)·iXγ2

.
Since I(ψ) = I(β) · I(γ1) + (1− I(β)) · I(γ2), it follows that hψ = hβ · hγ1 +
(1 − hβ) · hγ2 and iXψ = hβ · iXγ1

+ (1 − hβ) · iXγ2
, noting that as X is linear in

α, by the induction hypothesisiXβ = 0. The values for hψ and iXψ are unique
since these calculations are deterministic.

– for ψ = ¬β, let hψ = 1 − hβ , iXψ = −iXβ . This derivation follows from the
induction hypothesis; as βI[X:x] is described with respect to x by the function
βI[X:x] = hβ + iXβ · x, it follows that

1 − βI[X:x] = 1 − (hβ + iXβ · x) = (1 − hβ) + (−iXβ) · x)

as required.
– for ψ = FY β, hψ = hβ

1−iY
β

or hψ = 1/2 if iYβ = 1, and iXψ = iX
β

1−iY
β

or 0 if iYβ = 1.

For any y, we have βI[X:x,Y :y] = hX
β + iXβ · x + iYβ · y, noting the linearity of

both X and Y in β. As (FY β)I[X:x] = y where y = hX
β + iXβ ·x+ iYβ ·y, solving

for y, provided iYβ �= 1, the unique solution (FY β)I[X:x] = hX
β

1−iY
β

+ iX
β ·x

1−iY
β

gives

the definition of hX
ψ and iXψ . If iYβ = 1, the it must be the case that hβ = 0

and βI[Y :y] = y. Therefore, for every y ∈ (0, 1) we have βI[Y ;y] = y so the
fixed point semantics gives (FY β)I[X:x] = 1/2. It follows that hψ = 1/2 and
iXψ = 0.

These definitions are complete and deterministic, and from the induction hypoth-
esis, it follows (FXα)I = hα

1−iX
α

or 1
2 if iXα = 1. In either case, the semantic

interpretation of the fixed point operator is well defined.

The fixed point is a genuine fixed point and the fact that in the formula
FXα, X is always linear in α means that the fixed point is always unique (see
Fig. 1, which also demonstrates ¬FXα(X) = FX¬α(¬X)). This gives an alter-
native semantic formulation of the fixed point operator, and a convenient way to
visualise the fixed point as the intersection point of a line with intercept hα and
gradient iXα with the line with intercept 0 and gradient 1. This also motivates,
Definition 2, where X is linear in α if α is a linear function of the interpretation
of X, when all other arguments of α are fixed.

Definition 5. Given an interpretation I, and some α ∈ L the functional seman-
tics for propositional aleatoric logic assigns a value hα ∈ [0, 1] and a value iXα

Aleatoric Propositions: Reasoning About Coins 233

for each X ∈ bnd(α) as follows:

ψ = � : hψ = 1 iXψ = 0
ψ = A ∈ free(alpha) : hψ = I(A) iXψ = 0
ψ = X ∈ bnd(α) : hψ = 0 iXψ = 1
ψ = Y ∈ bnd(α) : hψ = 0 iXψ = 0
ψ = (α?β :γ) : hψ = hα · hβ + (1 − hα) · hγ iXψ = hα · iXβ + (1 − hα) · iXγ
ψ = ¬α : hψ = 1 − hα iXψ = −iXα
ψ = FXα, iXα �= 1 : hψ = hα

1−iX
α

iXψ = 0
ψ = FXα, iXα = 1 : hψ = 1/2 iXψ = 0

ψ = FY α, iYα �= 1 : hψ = hα

1−iY
α

iXψ = iX
α

1−iY
α

ψ = FY α, iYα = 1 : hψ = 1/2 iXψ = 0

Corollary 1. For any proposition α ∈ L, and any interpretation I, we have
αI = hα, where hα is given in Definition 5.

This corollary follows directly from the proof of Lemma 1

Fig. 1. The semantic interpretation of FXα(X), showing how the value of FXα cor-
responds to αI[X:x] with respect to x. The lower thick line is the function α(X)I[X:x],
with intercept hα and gradient iXα . The thick dashed line corresponds to the function
¬α(¬X)I[X:x]. The fixed point of each function is the point where the line crosses the
diagonal.

2.1 Abbreviations

Within these semantics we may define conventional logic operators where the
semantics loosely align with fuzzy logic using the product t-norm [16].

Table 1 contains some useful abbreviations. Note the notion of frequency in
this set of abbreviations. The formula α

n
m or α at least n out of m times refers to

the event that α when sampled m times, α occurred at least n times. This does

234 T. French

Table 1. Some useful abbreviations for aleatoric propositions.

Abbreviation Expression Description

� ¬� tails
�� FXX fair coin flip
α ∧ β (α?β :�) α and β

α ∨ β (α?� :β) α or β

α → β (α?β :�) α implies β

α ↔ β (α?β :¬β) α if and only if β

α
0
m � α 0 out of m times.

α
n
0 � α n out of 0 times (n > 0).

α
n
m (α?α

n−1
m−1 :α

n
m−1) α at least n out of m times

not suggest that probability of α is at least n
m . It simply describes an event: if

Pr(α) = 0.1 then α
10
10 is simply a very unlikely event. In experiential logic, this

gives a proxy for truth: α
100
100 is the case only when we are very confident in α.

2.2 Motivation and Discussion

With the semantics established and shown to be well-founded it is worth taking
some time to motivate the semantics choices made. We will consider the following
motivating example:

Example 1. Suppose that Venus and Serena are playing a game of tennis, and
are involved in a tie break. The tie break works by Venus serving first, then
Serena serving twice, and then Venus serving twice, and so on, until one of them
is two points ahead of the other. In tennis, it is often supposed the server has
the advantage, so we let V be the probability Venus wins on her serve, and S
be the probability that Serena wins on her serve. Then Venus winning the tie
break can be represented as the following aleatoric proposition:

FX(V ?(S?(S?(V ?X :�) : (V ?� :X)) :�) : (S?� : (S?(V ?X :�) : (V ?� :X))))

Applying Corollary 1 (and several algebraic reductions) we can describe the
probability of Venus winning the tie-break as a function of V and S:

VenusWins(V, S) =
V − S · V

S + V − 2 · S · V
(1)

with the contour plot given in Fig. 2.

This first example is effectively a representation of a Markov decision process.
Where the probabilities correspond to discrete events. However, aleatoric propo-
sitions can also be used to represent situations with unknown variables, such
as “Venus has an injury”, which are either true or false, but unknown to the
reasoner. The following example demonstrates how aleatoric propositions could
be applied to these epistemic variables

Aleatoric Propositions: Reasoning About Coins 235

Fig. 2. A contour diagram of the probability of Venus winning a tie break (1, given
Venus has probability V of winning on her own serve, and a probability of (1 − S) of
winning on Serena’s serve.

Example 2. It is Alex’s turn to get dinner and Blake is speculating what Alex
may do. If Alex is not too tired, a home cooked meal is likely, but if Alex can
afford it, Alex may (50%) order dinner from a food delivering service.

Blake considers Alex’s current state base on discussion they have had during
the week, and imagines alex_tired and alex_rich as two coins with biases reflect-
ing Blake’s assessment of Alex’s current state. Blake is then able to synthesise a
new coin representing whether there will be a home cooked meal:

home_cooked = (alex_rich?(��?¬alex_tired :⊥) :¬alex_tired)

In this example, if Alex is rich, there is a 50% chance that they will get a food
delivery service. Otherwise, if Alex is not too tired Alex will cook a home cooked
meal. Note that it is possible to similarly devise a coin for whether they will
order dinner from a service, but the outcomes of the coins will not necessarily be
mutually exclusive, nor necessarily sum to 1 (if Alex is poor and tired breakfast
cereal may be an option).

The use of aleatoric propositions can be thought of as mental simulations.
Given an agent’s experiences, they may imagine how the world might be: this is
a test. Blake can ponder “Is Alex rich”, and he may imagine it to be so or not.
These mental simulations reflect Blake’s belief. The structure of an aleatoric
proposition describes this mental simulation process: what beliefs are considered
and in what order.

236 T. French

3 A Correspondence for Aleatoric Propositions

In this section we will investigate the expressivity of aleatoric propositions,
and give a correspondence result. The correspondence is based on earlier work
by Keane and O’Brien [9] and Elchanan Mossel and Yuval Peres [13]. Keane
and O’Brien originally showed that “Bernoulli factories”, which are essentially
coin flipping protocols that transform one probability to another2, can simulate
any continuous polynomial bounded function over (0, 1), and Mossel and Peres
showed that with some restrictions on the coin flipping protocols, the resulting
set of functions correspond to the set of rational functions over (0, 1). We will
follow Mossel’s and Peres’s presentation here.

To be precise, we can consider a proposition α ∈ L to be a function that given
an interpretation, I, returns a probability αI . In turn, the interpretation, I, with
respect to α is simply an assignment from var(α) to (0, 1), so any aleatoric propo-
sition, α, may be considered as a function from (0, 1)var(α) to (0, 1). To char-
acterise the expressivity of aleatoric propositions, we will first describe the set
of rational functions from (0, 1)var(α) to (0, 1). The next subsection will express
the semantics of aleatoric propositions as functions, and establish a normal form
for aleatoric propositions, showing every aleatoric proposition corresponds to a
rational function. The final subsection completes the correspondence by showing
that every rational function from (0, 1)X to (0, 1) agrees with the semantics of
some aleatoric proposition defined over the atomic propositions X .

In this section we suppose that α ∈ L is an aleatoric proposition where
var(α) = {X1, . . . , Xn} = X , and fα : (0, 1)X −→ (0, 1) is a function such that
fα(X1 �→ XI

1 , . . . , Xn �→ XI
n) = αI .

In general, rational functions over X maybe thought of as fractions of poly-
nomials.

Definition 6. A rational function of degree k from (0, 1)X to [0, 1] is a function
of the form:

f(x) =

∑
a∈σk

X) �a

∏
x∈X xax

∑
a∈σk

X
ma

∏
x∈X xax

where σk
X = {a ∈ {0, . . . , k}X | ∑

x∈X ax = k} for all a ∈ σk
X , �a,ma ∈ Z, and

for all x ∈ (0, 1)X , f(x) ∈ (0, 1).

3.1 Aleatoric Functions

In this subsection we will define a special form for aleatoric propositions, and
through a series of semantically invariant transformations, show that every
aleatoric proposition can be represented in this form.

In this section we will suppose that we are dealing with formulas consisting
of the free variables A1, . . . , An, and the fixed point variables X1, . . . , Xm, which
are disjoint with the free variables.

The definition of block normal form for aleatoric propositions is as follows.
2 For example by twice flipping a coin with bias p, we construct an event with prob-
ability p2.

Aleatoric Propositions: Reasoning About Coins 237

Definition 7. A formula of aleatoric propositional logic is in k-block normal
form if it satisfies the following syntax for γ:

α0
1 ::= � | � | X0

αj+1
i ::= (Ai?α

j
i :X0) | (Ai?X0 :α

j
i)

α1
i+1 ::= (Ai+1?αk

i :X0) | (Ai+1?X0 :αk
i)

β0 ::= αk
n

βi+1 ::= (��?βi :βi)
γ ::= FX0β�

A representation of a formula in block form is given in Fig. 3. Here, the
formula FX(¬(A ∧ B) → (A ∧ X)) is converted to the 2-block normal form. As
the 2-block normal form uses the conditional statements (α?β : γ), where α is
guaranteed to be either a propositional atom Ai or ��, we use the convention of
drawing the formulas as a tree where β is on the left branch and γ is on the right
branch. The cut off branches at the αj

i levels are shorthand for X0. Similarly,
from the definition of k-block normal form the leaves are all labelled with �, �
or X0.

Fig. 3. A 2-block normal form representation of the formula FX(¬(A∧B) → (A∧X)),
Each internal node represents a proposition (Ai?α1 :α2) where α1 is the left child, and
α2 is the right child, except for the root which is a fixed point proposition. The entire
tree is repeated again as the right branch of the node at level β3.

238 T. French

Lemma 2. Every aleatoric proposition, where each distinct free variable occurs
at most k times is semantically equivalent to an aleatoric proposition in k-block-
form. Specifically, there is a function τ : L −→ L, such that:

1. for all α ∈ L, τ(α) is in k-block-form.
2. for all interpretations, I, I(α) = I(τ(α)).
Proof. The proof is given by construction where we give a set of semantically
valid transformations that: push negations down to only apply in the context of
abbreviation�; modify conditional statements (α?β :γ) so that α is either some
free variable (Ai) or ��; modify conditional statements (Ai?β : γ) so that either
β or γ or both are X0; order the atomic propositions, so in the subformulas
(Ai?β :γ), β and γ can only contain free variables Aj where j < i; and combine
all fixed point operators into a single fixed point operator at the highest level.

This is achieved through the following transformations, that preserve the
interpretation of the formulas. We write α ⇒ β to indicate that αI = βI , and
the form of α is a defect that needs to be corrected to move into the normal
form.

1. To move negations to occur only in the context �, we note:
– ¬FXα(X) ⇒ FX¬α(¬X) (see Fig. 1);
– ¬(α?β :γ) ⇒ (α?¬β :¬γ);
– (¬α?β :γ) ⇒ (α?γ :β);
– (α?¬Ai :β) ⇒ (α?(Ai?� :�) :β).

These can all be checked with basic algebraic reductions.
2. To ensure the internal branching nodes are only free variables or instances of��, we apply the following transformations:

– ((α?β1 : β2)?γ1 : γ2) ⇒ (α?(β1?γ1 : γ2) : (β2?γ1 : γ2)), when β1 and β2 are
not bound variables;

– ((α?X :β)?γ1 :γ2) ⇒ (α?X : (β?γ1 :γ2));
– ((α?β :X)?γ1 :γ2) ⇒ (α?(β?γ1 :γ2) :X);
– (FXα(X)?β : γ) ⇒ FX(α?β : γ), under the assumption that X does not

appear free in β or γ (or is renamed to a fresh variable if it does).
3. The previous two transformations are sufficient to give a tree structure, where

subformulas (α?β : γ) are such that α = Ai or α = ��. The next defect to
address is fixed points appearing anywhere other than the root. To address
this we apply the transformations:

– (α?FXβ :γ) ⇒ FX(α?β :β[�,�\γ]);
– (α?β :FXγ) ⇒ FX(α?γ[�,�\β] :γ).

The idea of this transformation is to move the fixed point operator to the root
of the conditional statement, so that when X is encountered (i.e. α was heads,
and the evaluation of β was X), the entire statement is re-evaluated from the
root. This would make favour the branch containing γ, so that branch is
similarly scaled by including the evaluation of β, but with every occurrence
of � or � replaced by γ. Effectively, this ensures that both branches are

Aleatoric Propositions: Reasoning About Coins 239

equally likely to be reevaluated from the root, so no branch is advantaged. To
show this is the case, we apply the function semantics given in Definition 5:

(FX(α?β :β[�,�\γ]))I =
hα · hβ + (1 − hα) · (1 − iXβ) · hγ

1 − (hα · iXβ + (1 − hα) · iXβ)

=
hα · hβ + (1 − hα) · (1 − iXβ) · hγ

1 − hα · iXβ − iXβ + hα · iXβ

=
hα · hβ + (1 − hα) · (1 − iXβ) · hγ

1 − iXβ

= hα · hβ

1 − iXβ
+ (1 − hα) · hγ

= (α?FXβ :γ)I

The second reduction is shown in a similar manner. Note that the first line
of the derivation used the property that (β[�,�\γ])I = (1 − iXβ) · hγ , which
assumes that all defects have been already removed from β.

4. Having enforced a tree structure, and moved all fixed point operators to
the root, the next defect to address is to ensure that, for all conditional
statements, (α?β :γ), either α = �� or one of β or γ is X0. To do this, given
α = Ai we can apply the following transformation:

(Ai?β :γ) ⇒ FX0(��?(Ai?β :X0) : (Ai?X0 :γ)).

This transformation uses a fair coin flip a fixed point operators to turn the
conditional statement into a series of independent tests. Essentially, a fair coin
is flipped to see whether we test the case where Ai is heads or the case where
Ai is tails. In each instance we first test if the hypothesis is right (e.g. Ai is
heads) and if it is not, we repeat the process. If Ai is heads, we then continue
to test β, and similarly for when the fair coin lands tails, we apply a similar
process to test, given that Ai is tails, γ. Using the notation of Lemma 1 we
have, when ψ = (��?(Ai?β :X0) : (Ai?X0 :γ)), hψ = (hα ·hβ +(1−hα) ·hγ)/2,
and iX0

ψ = 1/2. As hFXψ = hψ/(1 − iψ) the result follows.
5. To order the free variables we use the identities, for all interpretations, I:

(α?(β?γ1 :γ2) : (β?δ1 :δ2))I = (β?(α?γ1 :δ1) : (α?γ2 :δ2))I (2)
α = (β?α :α) (3)

These identities are proven and discussed in [3]. Using these identities we can
apply the following transformations:

(Aj?(Ak?β1 :β2) :γ) ⇒ (Ak?(Aj?β1 :γ) : (Aj?β2 :γ)) when k > j (4)
(Aj?γ : (Ak?β1 :β2)) ⇒ (Ak?(Aj?γ :β1) : (Aj?γ :β2)) when k > j (5)
(Aj?(��?β1 :β2) :γ) ⇒ (��?(Aj?β1 :γ) : (Aj?β2 :γ)) (6)
(Aj?γ : (��?β1 :β2)) ⇒ (��?(Aj?γ :β1) : (Aj?γ :β2)) (7)

Ajβγ ⇒ (Aj?(Aj?β :γ) : (Aj?β :γ)) (8)

240 T. French

This allows us to organise the tree representation of Fig. 3 so that all paths
from the leaves to the root go through exactly k instances of each free variable
in order, and then the nodes labelled by ��.

6. Finally, we combine the fixed point operators into one, noting that they have
all moved to the root, and we can apply the transformation FXFY α(X,Y) ⇒
FXα(X,X).

These transformations can be applied repeatedly until the formula is in k-block
normal form. As each transformation can be shown to preserve the interpretation
of the formula, this completes the proof.

From this formula we are able to define the notion of an aleatoric function:

Definition 8. Suppose that α is a formula in k-block normal form, defined over
the free atomic propositions var(α) = X = {A1, . . . , An}. Let the functions
hα(A1, . . . , An) and iα(A1, . . . , An) be defined as follows:

h�(X) = 1 i�(X) = 0
h�(X) = 0 i�(X) = 0
hAj

(X) = Aj iAj
(X) = 0

hX0(X) = 0 iX0(X) = 1
h(Aj?α:β)X = Aj · hα + (1 − Aj) · hβ i(Aj?α:β)X = Aj · iα + (1 − Aj) · iβ
h(��?α:β)X = (1/2) · hα + (1/2) · hβ i(��?α:β)X = (1/2) · iα + (1/2) · iβ
hFX0α(X) = hα(X)/(1 − iα(X))

Given any proposition α ∈ L where k is the maximum number of times a
single atomic proposition appears in α, the aleatoric function of α is the function
fα(X) = hτ(α)(X), where τ(α) is the k-block normal form reduction of α.

The following corollary is just a special case of Corollary 1

Corollary 2. Given any aleatoric proposition α ∈ L and any aleatoric inter-
pretation I:

I(α) = fα(1, I(X1), . . . , I(Xn)).

3.2 Positive Rational Functions

Here, we show that every rational function from (0, 1)X to (0, 1) is equivalent
to some aleatoric proposition defined of the atomic propositions X . This subsec-
tion follows the analysis of coin flipping polynomials by Mossel and Peres [13].
Particularly, the following Lemma is based on Lemma 2.7 of [13].

Definition 9. A rational function, f : (0, 1)X −→ (0, 1) is a k-block-function if
there exists polynomials � and m:

�(X) =
∑

a∈ρk
X

�a

∏
x∈X xa(x,+) · (1 − x)a(x,−)

m(X) =
∑

a∈ρk
X

ma

∏
x∈X xa(x,+) · (1 − x)a(x,−)

where ρk
X = {a ∈ {0, . . . , k}X×{+,−} | ∑

x∈X a(x,+)+a(x,−) = k}, for all a ∈ ρk
X ,

�a and ma are integers such that �a < ma and f(X) = �(X)/m(X).

Aleatoric Propositions: Reasoning About Coins 241

A k-block function is designed to correspond to the notion of k-block normal
form aleatoric propositions, and also has an elegant correspondence to rational
functions f : [0, 1]X −→ (0, 1).

Lemma 3. Given some rational function f : [0, 1]X −→ (0, 1), there is some
k-block function f ′ : [0, 1] −→ (0, 1) such that f(X) = f ′(X).

Proof. As f(X) is a rational function over [0, 1] we may assume that it may
be written L(X)/M(X), where L and M are relatively prime polynomials with
integer coefficients. We may therefore write L(X) =

∑
a∈A La · ∏

x∈X xax and
M(X) =

∑
b∈B Mb · ∏

x∈X xbx , where A,B ⊂ {0, . . . , k}X , for some k. We may
define homogeneous polynomials of degree k · |X |, by defining

L′(X ,X ′) =
∑

a∈A

La

∏

x∈X
xax · (x + x′)k−ax

and
M ′(X ,X ′) =

∑

b∈B

Mb

∏

x∈X
xbx · (x + x′)k−bx

so that L′(X , 1 − X) = L(X) and M ′(X , 1 − X) = M(X).
Then L′(X ,X ′) and M ′(X ,X ′) can be written as, respectively

L′(Y) =
∑

c∈C

L′
c

∏

y∈Y
ycy and M ′(Y) =

∑

c∈C

M ′
c

∏

y∈Y
ycy ,

where Y = X ∪ X and C = {c ∈ {0, . . . , k}Y | ∑
y∈Y cy = k · |X |}. We note that

L′(Y), M ′(Y) and M ′(Y) − L′(Y) are all homogeneous positive polynomials.
From Pólya [7] we have the following result:

Given f : [0, 1]Y −→ (0, 1), a homogeneous and positive polynomial, for
sufficiently large n, all the coefficients of (

∑
y∈Y y)n · f(Y) are positive.

It follows that for some n,

(
∑

y∈Y
y)n · L′(Y), (

∑

y∈Y
y)n · M ′(Y), and (

∑

y∈Y
y)n · (M ′(Y) − L′(Y))

all have positive coefficients. The result follows from the observations that

f(X) = L′(X , 1 − X)/M ′(X , 1 − X),

and L′(X , 1 − X)/M ′(X , 1 − X) is a k-block function.

A correspondence can now be given for the functional representation of
aleatoric propositions.

Theorem 1. 1. For every aleatoric proposition α ∈ L defined over the free
variables in X , fα(X) is a rational function from (0, 1) to (0, 1).

242 T. French

2. For k-block-function f(X) from (0, 1)X to (0, 1), there is some aleatoric propo-
sition α such that fα(X) = f(X).

3. For every rational function f(X) from [0, 1]X to (0, 1), there is some aleatoric
proposition α such that fα(X) = f(X).

Proof. The first part is immediate from the Definition 8.
The second part follows by noting the form of the polynomials �(X) and m(X)
in the proof of Lemma 3 agrees with the numerator and denominator of fα in
Definition 8 Particularly, noting the form of the tree in Fig. 3, constructing a
formula for a given �(X) and m(X) can be thought of as labelling the leaves of
the tree so that

1. exactly�a a-paths have the leaf labelled with � for each a ∈ ρk
X ,

2. exactly ma − �a a-paths have the leaf labelled with � for each a ∈ ρk
X ,

3. and all other paths are labelled with X0,

where an a-path is a branch of the tree with exactly a(x,+) positive instances of
x, for each x ∈ X .
Finally the third part follows from the second part, and Lemma 3

We note that [1] have given a complete characterisation of relaxations of Pòlya’s
theorem which could further generalise this result.

4 Conclusion and Future Work

This paper has given a description of aleatoric propositions, extending the work
of [3], introducing the fixed point operator FXα, and establishing a correspon-
dence with subclasses of rational functions over (0, 1). While this correspondence
is based on earlier work in [13], the presentation as a logical system is novel, and
this provides a foundation for future work on the logical aspects of this approach.

Future work will, taking aleatoric propositions as a base, extend the formal-
ism to first order concepts, or aleatoric predicates. In this setting, we suppose
that there is a probability space of domain elements, and a set of Boolean pred-
icates given over these domain elements. An expectation operator allows us to
express the expectation a proposition will be true when an element is drawn ran-
domly from the domain. The analogy is an urn of marbles, where the marbles
are labelled and predicates are defined over those labels.

We will also consider axiomatisations of these logics, the satisfiability prob-
lem, and combinations with modal necessity operators.

Acknowledgements. We thank the reviewers for their helpful feedback, as well an
anonymous reader who noted an error in an earlier version.

References

1. Castle, M., Powers, V., Reznik, B.: Pòlya’s theorem with zeros. J. Symbolic Com-
put. 46(9), 1039–1048 (2011)

Aleatoric Propositions: Reasoning About Coins 243

2. De Finetti, B.: Theory of Probability: A Critical Introductory Treatment. John
Wiley & Sons, Hoboken (1970)

3. French, T., Gozzard, A., Reynolds, M.: A modal aleatoric calculus for probabilistic
reasoning. In: Khan, M.A., Manuel, A. (eds.) ICLA 2019. LNCS, vol. 11600, pp.
52–63. Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-662-58771-3_6

4. Gärdenfors, P.: Qualitative probability as an intensional logic. J. Philos. Logic,
171–185 (1975)

5. Hailperin, T.: Boole’s Logic and Probability: A Critical Exposition from the Stand-
point of Contemporary Algebra, Logic and Probability Theory (1976)

6. Halpern, J.Y.: Reasoning about Uncertainty. MIT press, Cambridge (2017)
7. Hardy, G.H., Littlewood, J.E., Pòlya, G.: Inequalities. Cambridge University Press,

Cambridge (1959)
8. Hume, D.: A Treatise of Human Nature: Volume 1: Texts (1739)
9. Keane, M.S., O’Brien, G.L.: A Bernoulli factory. ACM Trans. Model. Comput.

Simul. 4, 213–219 (1994)
10. Kolmogorov, A.N.: The theory of probability. Math. Content Methods Meaning 2,

110–118 (1963)
11. Kozen, D.: A probabilistic PDL. J. Comput. Syst. Sci. 30(2), 162–178 (1985)
12. Lukasiewicz, T.: Expressive probabilistic description logics. Artif. Intell. 172(6–7),

852–883 (2008)
13. Mossel, E., Peres, Y.: New coins from old: computing with unknown bias. Combi-

natorica 25(6), 707–724 (2005)
14. Ramsey, F.P.: The foundations of mathematics (1925)
15. Von Neumann, J.: various techniques used in connection with random digits. Appl.

Math. Ser. 12(36–38), 3 (1951)
16. Zadeh, L.A.: Fuzzy sets. In: Fuzzy Sets, Fuzzy Logic, And Fuzzy Systems: Selected

Papers by Lotfi A Zadeh, pp. 394–432. World Scientific (1996)

https://doi.org/10.1007/978-3-662-58771-3_6

Towards an Induction Principle for Nested
Data Types

Peng Fu(B) and Peter Selinger(B)

Dalhousie University, Halifax, Canada
peng.frank.fu@gmail.com, selinger@mathstat.dal.ca

Abstract. A well-known problem in the theory of dependent types is
how to handle so-called nested data types. These data types are difficult
to program and to reason about in total dependently typed languages
such as Agda and Coq. In particular, it is not easy to derive a canonical
induction principle for such types. Working towards a solution to this
problem, we introduce dependently typed folds for nested data types.
Using the nested data type Bush as a guiding example, we show how
to derive its dependently typed fold and induction principle. We also
discuss the relationship between dependently typed folds and the more
traditional higher-order folds.

Keywords: dependent types · nested data types · induction
principles · folds

1 Introduction

Consider the following list data type and its fold function in Agda [1].

data List (a : Set) : Set where
nil : List a
cons : a -> List a -> List a

foldList : ∀ {a p : Set} -> p -> (a -> p -> p) -> List a -> p
foldList base step nil = base
foldList base step (cons x xs) = step x (foldList base step xs)

The keyword Set is a kind that classifies types. The function foldList has two
implicitly quantified type variables a and p. In Agda, implicit arguments are
indicated by braces (e.g., {a}), and can be omitted.

The function foldList is defined by structural recursion and is therefore ter-
minating. Agda’s termination checker automatically checks this. Once foldList
is defined, we can use it to define other terminating functions such as the fol-
lowing mapList and sumList. This is similar to using the iterator to define
terminating arithmetic functions in System T [6, Sect. 7].

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
H. H. Hansen et al. (Eds.): WoLLIC 2023, LNCS 13923, pp. 244–255, 2023.
https://doi.org/10.1007/978-3-031-39784-4_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-39784-4_15&domain=pdf
https://doi.org/10.1007/978-3-031-39784-4_15

Towards an Induction Principle for Nested Data Types 245

mapList : ∀ {a b : Set} -> (a -> b) -> List a -> List b
mapList f � = foldList nil (λ a r -> cons (f a) r) �

sumList : List Nat -> Nat
sumList � = foldList zero (λ x r -> add x r) �

When defining the mapList function, if the input list is empty, then we
just return nil, so the first argument for foldList is nil. If the input list is
of the form cons a as, then we want to return cons (f a) (mapList f as),
so the second argument for foldList is (λ a r -> cons (f a) r), where r
represents the result of the recursive call mapList f as. The function sumList
is defined similarly, assuming a natural numbers type Nat with zero and addition.

We can generalize the type of foldList to obtain the following induction
principle for lists.

indList : ∀ {a : Set} {p : List a -> Set} ->
(base : p nil) ->
(step : (x : a) -> (xs : List a) -> p xs -> p (cons x xs)) ->
(� : List a) -> p �

indList base step nil = base
indList base step (cons x xs) = step x xs (indList base step xs)

We can see that the definition of indList is almost the same as that of
foldList. Compared to the type of foldList, the type of indList is more
general as the kind of p is generalized from Set to List a -> Set. We call
p a property of lists. The induction principle indList states that to prove a
property p for all lists, one must first prove that nil has the property p, and
then assuming that p holds for any list xs as the induction hypothesis, prove
that p holds for cons x xs for any x.

We can now use the induction principle indList to prove that mapList has
the same behavior as the usual recursively defined mapList’ function.

mapList’ : ∀ {a b : Set} -> (a -> b) -> List a -> List b
mapList’ f nil = nil
mapList’ f (cons x xs) = cons (f x) (mapList’ f xs)

lemma-mapList : ∀ {a b : Set} -> (f : a -> b) -> (� : List a) ->
mapList f � == mapList’ f �

lemma-mapList f � =
indList {p = λ y -> mapList f y == mapList’ f y} refl

(λ x xs ih -> cong (cons (f x)) ih) �

In the proof of lemma-mapList, we use refl to construct a proof by reflexivity
and cong to construct a proof by congruence. The latter is defined such that
cong f is a proof of x == y -> f x == f y. The key to using the induction
principle indList is to specify which property of lists we want to prove. In this
case the property is (λ y -> mapList f y == mapList’ f y).

To summarize, the fold functions for ordinary data types (i.e., non-nested
inductive data types such as List and Nat) are well-behaved in the following

246 P. Fu and P. Selinger

sense. (1) The fold functions are defined by well-founded recursion. (2) The
fold functions can be used to define a range of terminating functions (including
maps). (3) The types of the fold functions can be generalized to the corresponding
induction principles.

Nested data types [2] are a class of data types that one can define in most
functional programming languages (OCaml, Haskell, Agda). They were initially
studied by Bird and Meertens [2]. They have since been used to represent de
Bruijn notation for lambda terms [3], and to give an efficient implementation of
persistent sequences [7]. In this paper, we will consider the following nested data
type.

data Bush (a : Set) : Set where
leaf : Bush a
cons : a -> Bush (Bush a) -> Bush a

According to Bird and Meertens [2], the type Bush a is similar to a list where at
each step down the list, entries are bushed. For example, a value of type Bush Nat
can be visualized as follows.

bush1 = [4, -- Nat
[8, [5], [[3]]], -- Bush Nat
[[7], [], [[[7]]]], -- Bush (Bush Nat)
[[[], [[0]]]] -- Bush (Bush (Bush Nat))

]

Here, for readability, we have written [x1,...,xn] instead of cons x1 (cons
x2 (...(cons xn leaf))).

Unlike ordinary data types such as lists, nested data types are difficult to
program with in total functional programming languages. For example, in the
dependently typed proof assistant Coq, the Bush data type is not definable at
all, since it does not pass Coq’s strict positivity test. In Agda, Bush can be
defined as a data type, but writing functions that use this type is not trivial.
For example, we must use general recursion (rather than structural recursion)
to define the following hmap function.

hmap : ∀ {b c : Set} -> (b -> c) -> Bush b -> Bush c
hmap f leaf = leaf
hmap f (cons x xs) = cons (f x) (hmap (hmap f) xs)

Note that, in contrast to the mapList’ function for lists, this definition is not
structurally recursive because the inner hmap is not applied to a subterm of
cons x xs. Therefore, Agda’s termination checker will reject this definition as
potentially non-terminating, unless we specify the unsafe –no-termination flag.

The following function hfold for Bush is called a higher-order fold in the
literature (e.g., [4,8]). Its definition uses hmap.

hfold : (b : Set -> Set) ->
(� : (a : Set) -> b a) ->
(c : (a : Set) -> a -> b (b a) -> b a) ->
(a : Set) -> Bush a -> b a

hfold b � c a leaf = � a
hfold b � c a (cons x xs) =

c a x (hfold b � c (b a) (hmap (hfold b � c a) xs))

Towards an Induction Principle for Nested Data Types 247

Observe that the type variable b in hfold has kind Set -> Set, unlike the type
variable p in foldList, which has type Set. The higher-order fold hfold presents
the following challenges. (1) The definition of hfold requires the auxiliary func-
tion hmap, and hmap cannot easily be defined from hfold. (2) The definition of
hfold, like that of hmap, is not structurally recursive and Agda’s termination
checker cannot prove it to be total. (3) Although it is possible (see below), it
is fairly difficult to define functions such as summation on Bush. (4) Unlike the
induction principle for lists, it is not clear how to obtain an induction principle
for Bush from the higher-order fold hfold.

Here is the definition of a function sum that sums up all natural numbers in
a data structure of type Bush Nat. Although sum is not a polymorphic function,
it requires an auxiliary function that is polymorphic and utilizes an argument k
that is reminiscent of continuation passing style [9].

sumAux : (a : Set) -> Bush a -> (k : a -> Nat) -> Nat
sumAux =

hfold (λ a -> (a -> Nat) -> Nat)
(λ a k -> zero) (λ a x xs k -> add (k x) (xs (λ r -> r k)))

sum : Bush Nat -> Nat
sum � = sumAux Nat � (λ n -> n)

1.1 Contributions

We present a new approach to defining fold functions for nested data types,
which we call dependently typed folds. For concreteness, we work within the
dependently typed language Agda. Dependently typed folds are defined by well-
founded recursion, hence their termination is easily confirmed by Agda. Map
functions and many other terminating functions can be defined directly from
the dependently typed folds. Moreover, the higher-order folds (such as hfold)
are definable from the dependently typed folds. In addition, the definitions of
dependently typed folds can easily be generalized to corresponding induction
principles. Thus we can formally reason about programs involving nested data
types in a total dependently typed language. While we illustrate these ideas by
focusing on the Bush example, our approach also works for other kinds of nested
data types; see Sect. 5 for an example.

2 Dependently Typed Fold for Bush

Let us continue the consideration of the Bush data type. The following is the
result of evaluating hmap f bush1, where bush1 is the data structure defined in
the introduction, and f : Nat -> b for some type b.

[f 4, -- b
[f 8, [f 5], [[f 3]]], -- Bush b
[[f 7], [], [[[f 7]]]], -- Bush (Bush b)
[[[], [[f 0]]]] -- Bush (Bush (Bush b))

]

248 P. Fu and P. Selinger

To motivate the definition of the dependently typed fold below, we first consider
the simpler question of how to define a map function for Bush by structural
recursion. The reason our definition of hmap in the introduction was not struc-
tural is that in order to define the map function for Bush Nat, we need to already
have the map functions defined for Bushn Nat = Bush (Bush (. . . (Bush Nat)))
for all n ≥ 0, which seems paradoxical. Our solution is to define a general map
function for Bushn, for all n ≥ 0. First we define a type-level function NTimes
such that NTimes n b = bn:

NTimes : (n : Nat) -> (b : Set -> Set) -> Set -> Set
NTimes zero b a = a
NTimes (succ n) b a = b (NTimes n b a)

We can now define the following map function for Bushn:

nmap : ∀ {a b : Set} -> (n : Nat) -> (a -> b) ->
NTimes n Bush a -> NTimes n Bush b

nmap zero f x = f x
nmap (succ n) f leaf = leaf
nmap (succ n) f (cons x xs) =

cons (nmap n f x) (nmap (succ (succ n)) f xs)

Note that nmap 1 corresponds to the map function for Bush a. The recursive
definition of nmap is well-founded because all the recursive calls are on the com-
ponents of the constructor cons. The Agda termination checker accepts this
definition of nmap.

We are now ready to introduce the dependently typed fold. The idea is to
define the fold over the type NTimes n Bush simultaneously for all n.

nfold : (p : Nat -> Set) ->
(� : (n : Nat) -> p (succ n)) ->
(c : (n : Nat) -> p n -> p (succ (succ n)) -> p (succ n)) ->
(a : Set) -> (z : a -> p zero) ->
(n : Nat) -> NTimes n Bush a -> p n

nfold p � c a z zero x = z x
nfold p � c a z (succ n) leaf = � n
nfold p � c a z (succ n) (cons x xs) =

c n (nfold p � c a z n x) (nfold p � c a z (succ (succ n)) xs)

The dependently typed fold nfold captures the most general form of com-
puting/traversal on the type NTimes n Bush a. Similarly to nmap, the definition
of nfold is well-founded. Note that unlike the hfold in the introduction, this
definition of fold does not require a map function to be defined first. In fact,
nmap is definable from nfold:

nmap : ∀ {a b : Set} -> (n : Nat) -> (a -> b) ->
NTimes n Bush a -> NTimes n Bush b

nmap {a} {b} n f � =
nfold (λ n -> NTimes n Bush b) (λ n -> leaf) (λ n -> cons) a f n �

We can also prove that nmap 1 satisfies the defining properties of hmap from
the introduction. Let hmap’ = nmap 1.

Towards an Induction Principle for Nested Data Types 249

lemma-nmap : ∀ {a b : Set} -> (f : a -> b) -> (m n : Nat) ->
(x : NTimes (add m n) Bush a) ->
nmap (add m n) f x == nmap m (nmap n f) x

lemma-nmap f zero n x = refl
lemma-nmap f (succ m) n leaf = refl
lemma-nmap f (succ m) n (cons x xs) =

cong2 cons (lemma-nmap f m n x) (lemma-nmap f (succ (succ m)) n xs)

hmap-leaf : ∀ {a b : Set} -> (f : a -> b) -> hmap’ f leaf == leaf
hmap-leaf f = refl

hmap-cons : ∀ {a b : Set} -> (f : a -> b) -> (x : a) ->
(xs : Bush (Bush a)) ->
hmap’ f (cons x xs) == cons (f x) (hmap’ (hmap’ f) xs)

hmap-cons f x xs = cong (cons (f x)) (lemma-nmap f 1 1 xs)

Many other terminating functions can also be conveniently defined in term
of nfold. For example, the summation of all the entries in Bush Nat and the
length function for Bush can be defined as follows:

sum : Bush Nat -> Nat
sum =

nfold (λ n -> Nat) (λ n -> zero) (λ n -> add) Nat (λ x -> x) 1

length : (a : Set) -> Bush a -> Nat
length a =

nfold (λ n -> Nat) (λ n -> zero) (λ n r1 r2 -> succ r2)
a (λ x -> zero) 1

Note that this definition of sum is much more natural and straightforward than
the one we gave in the introduction.

3 Induction Principle for Bush

While there is no obvious induction principle corresponding to the higher-order
fold hfold, we can easily generalize the dependently typed fold nfold to obtain
an induction principle for Bush. The following function ind is related to nfold in
the same way that the induction principle for List is related to its fold function.

ind : ∀ {a : Set} -> {p : (n : Nat) -> NTimes n Bush a -> Set} ->
(base : (x : a) -> p zero x) ->
(� : (n : Nat) -> p (succ n) leaf) ->
(c : (n : Nat) -> (x : NTimes n Bush a) ->

(xs : NTimes (succ (succ n)) Bush a) ->
p n x -> p (succ (succ n)) xs -> p (succ n) (cons x xs)) ->

(n : Nat) -> (xs : NTimes n Bush a) -> p n xs
ind base � c zero xs = base xs
ind base � c (succ n) leaf = � n
ind base � c (succ n) (cons x xs) =

c n x xs (ind base � c n x) (ind base � c (succ (succ n)) xs)

250 P. Fu and P. Selinger

Observe that ind follows the same structure as nfold. The type variable p
is generalized to a predicate of kind (n : Nat) -> NTimes n Bush a -> Set.
The type of ind specifies how to prove by induction that a property p holds for
all members of the type NTimes n Bush a. More specifically, for the base case,
we must show that p holds for any x of type NTimes zero Bush a (which equals
a), hence p zero x. For the leaf case, we must show that p holds for leaf of
type NTimes (succ n) Bush a. For the cons case, we assume as the induction
hypotheses that p holds for some x of type NTimes n Bush a and some xs of
type NTimes (succ (succ n)) Bush a, and then we must show that p holds
for cons x xs.

With ind, we can now prove properties of nmap. For example, the following
is a proof that nmap has the usual identity property of functors.

nmap-id : ∀ {a : Set} -> (n : Nat) -> (y : NTimes n Bush a) ->
nmap n (id a) y == y

nmap-id {a} n y =
ind {a} {λ n xs -> nmap n (id a) xs == xs} (λ x -> refl) (λ n -> refl)

(λ n x xs ih1 ih2 -> cong2 cons ih1 ih2) n y

We note that the usual way of proving things in Agda is by recursion, relying
on the Agda termination checker to prove termination. Our purpose here, of
course, is to illustrate that our induction principle is strong enough to prove
many properties without needing Agda’s recursion. Nevertheless, the above proof
is equivalent to the following proof by well-founded recursion.

nmap-id’ : ∀ {a : Set} -> (n : Nat) -> (y : NTimes n Bush a) ->
nmap n (id a) y == y

nmap-id’ zero y = refl
nmap-id’ (succ n) leaf = refl
nmap-id’ (succ n) (cons x y) =

cong2 cons (nmap-id’ n x) (nmap-id’ (succ (succ n)) y)

The first two clauses of nmap-id’ correspond to the two arguments (λ n ->
refl) for nmap-id. The recursive calls nmap-id’ n x and nmap-id’ (succ
(succ n)) y in the definition of nmap-id’ correspond to the inductive hypothe-
ses ih1 and ih2 in nmap-id.

4 Higher-Order Folds and Dependently Typed Folds

Comparing nfold, the dependently typed fold that was defined in Sect. 2, to
hfold, the higher-order fold defined in the introduction, we saw that nfold does
not depend on nmap, and nmap can be defined from nfold. We also saw that
the termination of nfold is obvious and that it can be used to define other
terminating functions.

In this section, we will show the hfold is actually equivalent to nfold in the
sense that they are definable from each other.

Towards an Induction Principle for Nested Data Types 251

4.1 Defining hfold from nfold

Using nfold, it is straightforward to define hfold, because the latter is essentially
the former instantiated to the case n = 1.

hfold : (b : Set -> Set) ->
(� : (a : Set) -> b a) ->
(c : (a : Set) -> a -> b (b a) -> b a) ->
(a : Set) -> Bush a -> b a

hfold b � c a x =
nfold (λ n -> NTimes n b a) (λ n -> � (NTimes n b a))

(λ n -> c (NTimes n b a)) a (λ x -> x) 1 x

We can prove that this version of hfold satisfies the defining properties of
the version of hfold that was defined in the introduction (and therefore the two
definitions agree). Since the proof of hfold-cons is rather long, we have omitted
it, but the full machine-checkable proof can be found at [5].

hfold-leaf : (a : Set) -> (p : Set -> Set) ->
(� : (b : Set) -> p b) ->
(c : (b : Set) -> b -> p (p b) -> p b) ->
hfold p � c a leaf == � a

hfold-leaf a p � c = refl

hfold-cons : (a : Set) -> (p : Set -> Set) ->
(� : (b : Set) -> p b) ->
(c : (b : Set) -> b -> p (p b) -> p b) ->
(x : a) -> (xs : Bush (Bush a)) ->
hfold p � c a (cons x xs)
== c a x (hfold p � c (p a) (hmap (hfold p � c a) xs))

hfold-cons a p � c x xs = ...

4.2 Defining nfold from hfold

The other direction is much trickier. In attempting to define nfold from hfold,
the main difficulty is that we must supply a type function b : Set -> Set
to hfold, and this b should somehow capture the quantification over natural
numbers. Ideally, we would like to define b such that bn a = pn for all n and
some suitable a. However, this is clearly impossible, because p is an arbitrary
type family, which can be defined so that p 0 = p 1 but p 1 �= p 2. This would
imply a = b a but b a �= b2 a, a contradiction.

Surprisingly, it is possible to work around this by arranging things so that
there is a canonical function bn a → pn, rather than an equality. This is done
by defining the following rather unintuitive type-level function PS.

PS : (p : Nat -> Set) -> Set -> Set
PS p A = (n : Nat) -> (A -> p n) -> p (succ n)

The type PS p is special because there is a map NTimes n (PS p) a → p n.

252 P. Fu and P. Selinger

PS-to-P : (p : Nat -> Set) -> (a : Set) -> (z : a -> p zero) ->
(n : Nat) -> NTimes n (PS p) a -> p n

PS-to-P p a z zero x = z x
PS-to-P p a z (succ n) hyp = hyp n ih

where
ih : NTimes n (PS p) a -> p n
ih = PS-to-P p a z n

So if we set b = PS p, we have the promised canonical map bn a → pn. We can
pass this b to hfold to go from Bush a to PS p a.

fold-PS : (p : Nat -> Set) ->
(� : (n : Nat) -> p (succ n)) ->
(c : (n : Nat) -> p n -> p (succ (succ n)) -> p (succ n)) ->
(a : Set) -> Bush a -> PS p a

fold-PS p � c =
hfold (PS p) (λ a n tr -> � n)

(λ a x xs n tr -> c n (tr x) (xs (succ n) (λ f -> f n tr)))

Now, provided that we are able to lift the function Bush a -> PS p a to its nth
iteration, i.e., NTimes n Bush a -> NTimes n (PS p) a, then we will be able
to define the dependently typed fold via the following.

nfold’ : (p : Nat -> Set) ->
(� : (n : Nat) -> p (succ n)) ->
(c : (n : Nat) -> p n -> p (succ (succ n)) -> p (succ n)) ->
(a : Set) -> (z : a -> p zero) ->
(n : Nat) -> NTimes n Bush a -> p n

nfold’ p � c a z n x = PS-to-P p a z n (lift n x)
where

lift : (n : Nat) -> NTimes n Bush a -> NTimes n (PS p) a
lift n x =

liftNTimes Bush (PS p) (λ a b -> hmap) n (fold-PS p � c) a x

The liftNTimes function can indeed be defined by induction on natural num-
bers.

liftNTimes : (b c : Set -> Set) ->
(∀ x y -> (x -> y) -> (b x -> b y)) ->
(n : Nat) -> (∀ a -> b a -> c a) ->
(a : Set) -> NTimes n b a -> NTimes n c a

liftNTimes b c m zero f a x = x
liftNTimes b c m (succ n) f a x =

f (NTimes n c a)
(m (NTimes n b a) (NTimes n c a) (liftNTimes b c m n f a) x)

Finally, we can prove that the function nfold’ that we just defined behaves
identically to the nfold that was defined in Sect. 2. Again, since the proof is
rather long and uses several lemmas, we do not reproduce it here. The machine-
checkable proof can be found at [5].

Towards an Induction Principle for Nested Data Types 253

theorem : ∀ p � c a z n x ->
nfold p � c a z n x == nfold’ p � c a z n x

theorem p � c a z n x = ...

5 Nested Data Types Beyond Bush

So far, we have focused on the Bush type, but our approach works for arbi-
trary nested data types, including ones that are defined by mutual recursion. To
illustrate this, consider the following pair of mutually recursive data types:
data Bob (a : Set) : Set
data Dylan (a b : Set) : Set

data Bob a where
robert : a -> Bob a
zimmerman : Dylan (Bob (Dylan a (Bob a))) (Bob a) -> Bob (Dylan a a) -> Bob a

data Dylan a b where
duluth : Bob a -> Bob b -> Dylan a b
minnesota : Dylan (Bob a) (Bob b) -> Dylan a b

As usual, the higher-order fold is easy to define. There are two separate such
folds, one for Bob and one for Dylan:
hfold-bob : (bob : Set -> Set) ->

(dylan : Set -> Set -> Set) ->
(rob : ∀ a -> a -> bob a) ->
(zim : ∀ a -> dylan (bob (dylan a (bob a))) (bob a) -> bob (dylan a a) -> bob a) ->
(dul : ∀ a b -> bob a -> bob b -> dylan a b) ->
(min : ∀ a b -> dylan (bob a) (bob b) -> dylan a b) ->
∀ a -> Bob a -> bob a

hfold-dylan : (bob : Set -> Set) ->
(dylan : Set -> Set -> Set) ->
(rob : ∀ a -> a -> bob a) ->
(zim : ∀ a -> dylan (bob (dylan a (bob a))) (bob a) -> bob (dylan a a) -> bob a) ->
(dul : ∀ a b -> bob a -> bob b -> dylan a b) ->
(min : ∀ a b -> dylan (bob a) (bob b) -> dylan a b) ->
∀ a b -> Dylan a b -> dylan a b

The dependent fold requires some explanation. Recall that for Bush, the only
type expressions of interest were of the form Bushn a, so we used the natural
number n to index these types. In the more general case, we must consider
more complicated type expressions such as Dylan (Bob a) (Dylan a b). Therefore,
we need to replace the natural numbers with a custom type. We define a type
BobDylanIndex, which represents expressions built up from type variables and
the type constructors Bob and Dylan.
data BobDylanIndex : Set where

varA : BobDylanIndex
varB : BobDylanIndex
BobC : BobDylanIndex -> BobDylanIndex
DylanC : BobDylanIndex -> BobDylanIndex -> BobDylanIndex

We can then give an interpretation function for these type expressions. This
plays the role that NTimes played in the Bush case:
I : (Set -> Set) -> (Set -> Set -> Set) -> Set -> Set -> BobDylanIndex -> Set
I bob dylan a b varA = a
I bob dylan a b varB = b
I bob dylan a b (BobC expr) = bob (I bob dylan a b expr)
I bob dylan a b (DylanC expr1 expr2) = dylan (I bob dylan a b expr1) (I bob dylan a b expr2)

254 P. Fu and P. Selinger

For example, if
i = DylanC (BobC varA) (DylanC varA varB),

then
I bob dylan a b i = dylan (bob a) (dylan a b).

The dependent fold is defined simultaneously for Bob and Dylan, and in fact for
all type expressions that are built from Bob and Dylan. Its type is the following:

nfold : (p : BobDylanIndex -> Set) ->
(rob : ∀ a -> p a -> p (BobC a)) ->
(zim : ∀ a -> p (DylanC (BobC (DylanC a (BobC a))) (BobC a))

-> p (BobC (DylanC a a)) -> p (BobC a)) ->
(dul : ∀ a b -> p (BobC a) -> p (BobC b) -> p (DylanC a b)) ->
(min : ∀ a b -> p (DylanC (BobC a) (BobC b)) -> p (DylanC a b)) ->
(a b : Set) ->
(baseA : a -> p varA) ->
(baseB : b -> p varB) ->
(∀ i -> I Bob Dylan a b i -> p i)

Note that although the types Bob and Dylan are complicated, the corresponding
nfold can be systematically derived from their definition. Moreover, as in the case
of Bush, the higher-order folds and the dependent fold are definable in terms of
each other. In addition, the induction principle, which generalizes nfold, can be
easily defined. Full details can be found in the accompanying code [5].

6 Discussion

We think that the equivalence of hfold and nfold is both surprising and use-
ful. The reason it is surprising is because it was informally believed among
researchers that hfold is too abstract for most useful programming tasks. The
reason it is potentially useful is that in the context of some dependently typed
programming languages or proof assistants (such as Coq), when the user writes
a data type declaration, the system should automatically derive the appropriate
folds and induction principles for the data type. In the case of nested data types,
there is currently no universally good way to do this (which is presumably one
of the reasons Coq does not support the Bush type). Now on the one hand, we
have nfold, which is a practical programming primitive, but its type is not easy
to generate from a user-defined data type declaration. For example, even stating
the type of nfold requires a reference to an ancillary data type, which is Nat in
the case of Bush but can be more complicated for a general nested type. On the
other hand, we have hfold, which is not very practical, but its type can be easily
read off from a data type declaration. The fact that we have shown nfold to
be definable in terms of hfold suggests a solution to this problem: given a data
type declaration, the system can generate its corresponding hfold, and then the
user can follow a generic recipe to derive the more useful nfold.

7 Conclusion and Future Work

Using Bush as an example, we showed how to define dependently typed folds
for nested data types. Unlike higher-order folds, dependently typed folds can be

Towards an Induction Principle for Nested Data Types 255

used to define maps and other terminating functions, and they have analogous
induction principles, similar to the folds for ordinary data types. We showed
how to reason about programs involving nested data types in Agda. Last but
not least, we also showed that dependently typed folds and higher-order folds
are mutually definable. This has some potential applications in implementations
of dependent type theories, because given a user-defined nested data type, the
corresponding higher-order fold can be automatically generated, and then the
user can derive the more useful dependent fold by following a generic recipe. All
of our proofs are done in Agda, without using any unsafe flag.

Our long term goal is to derive induction principles for any algebraic data
type (nested or non-nested). There is still a lot of work to be done. In this paper,
we only showed how to get the dependently typed fold and induction principle for
the single example of Bush. Although our approach also works for other nested
data types, we have not yet given a formal characterization of dependently typed
folds and their induction principles in the general case. Another research direc-
tion is to study the direct relationship between the induction principles (derived
from dependently typed folds) and higher-order folds. In the Bush example, it
corresponds to asking if we can define ind from hfold, possibly with some extra
properties that can also be read off from the data type definition.

Acknowledgements. We thank the referees for their thoughtful comments. This work
was supported by the Natural Sciences and Engineering Research Council of Canada
(NSERC) and by the Air Force Office of Scientific Research under Award No. FA9550-
21-1-0041.

References

1. Agda documentation. https://agda.readthedocs.io/. Accessed 05 Feb 2022
2. Bird, R., Meertens, L.: Nested datatypes. In: Jeuring, J. (ed.) MPC 1998. LNCS, vol.

1422, pp. 52–67. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054285
3. Bird, R., Paterson, R.: De Bruijn notation as a nested datatype. J. Funct. Program.

9(1), 77–91 (1999). https://doi.org/10.1017/S0956796899003366
4. Bird, R., Paterson, R.: Generalised folds for nested datatypes. Formal Aspects Com-

put. 11(2), 200–222 (1999). https://doi.org/10.1007/s001650050047
5. Fu, P., Selinger, P.: Agda code accompanying this paper (2023). https://www.

mathstat.dal.ca/~selinger/papers/downloads/Wollic.agda
6. Girard, J.Y., Lafont, Y., Taylor, P.: Proofs and Types. Cambridge University Press,

Cambridge (1989)
7. Hinze, R., Paterson, R.: Finger trees: a simple general-purpose data struc-

ture. J. Funct. Program. 16(2), 197–217 (2006). https://doi.org/10.1017/
S0956796805005769

8. Johann, P., Ghani, N.: Initial algebra semantics is enough! In: Della Rocca, S.R. (ed.)
TLCA 2007. LNCS, vol. 4583, pp. 207–222. Springer, Heidelberg (2007). https://
doi.org/10.1007/978-3-540-73228-0_16

9. Plotkin, G.D.: Call-by-name, call-by-value and the λ-calculus. Theor. Comput. Sci.
1, 125–159 (1975). https://doi.org/10.1016/0304-3975(75)90017-1

https://agda.readthedocs.io/
https://doi.org/10.1007/BFb0054285
https://doi.org/10.1017/S0956796899003366
https://doi.org/10.1007/s001650050047
https://www.mathstat.dal.ca/~selinger/papers/downloads/Wollic.agda
https://www.mathstat.dal.ca/~selinger/papers/downloads/Wollic.agda
https://doi.org/10.1017/S0956796805005769
https://doi.org/10.1017/S0956796805005769
https://doi.org/10.1007/978-3-540-73228-0_16
https://doi.org/10.1007/978-3-540-73228-0_16
https://doi.org/10.1016/0304-3975(75)90017-1

A Principled Approach to Expectation
Maximisation and Latent Dirichlet

Allocation Using Jeffrey’s Update Rule

Bart Jacobs(B)

Institute for Computing and Information Sciences, Radboud University Nijmegen,
Nijmegen, The Netherlands

bart@cs.ru.nl

Abstract. Expectation Maximisation (EM) and Latent Dirichlet Allo-
cation (LDA) are two frequently used inference algorithms, for finding
an appropriate mixture of latent variables, and for finding an allocation
of topics for a collection of documents. A recent insight in probabilistic
learning is that Jeffrey’s update rule gives a decrease of Kullback-Leibler
divergence. Its logic is error correction. It is shown that this same rule
and divergence decrease logic is at the heart of EM and LDA, ensuring
that successive iterations are decreasingly wrong.

1 Introduction

Learning can happen via encouragement or via discouragement, that is by rein-
forcing what goes well, or by slowing down what is going the wrong way.
Intuitively these differences are clear. In probabilistic learning one can dis-
tinguish rules of Pearl and Jeffrey for updating (conditioning, belief revision),
see [17,22] and [3,8,12,19] for comparisons. In [14] the difference between these
rules has been described mathematically: Pearl’s rule gives an increase of valid-
ity (expected value), whereas Jeffrey’s rule gives a decrease of (Kullback-Leibler)
divergence. The latter may be understood as error correction (or reduction of
free energy), like in predictive coding theory [9,11,23]—where the human mind
is studied as a Bayesian prediction and correction engine.

This paper demonstrates the relevance of Jeffrey’s update rule — with its
divergence decrease—for two fundamental inference algorithms, namely Expec-
tation Maximisation (EM) [7] and Latent Dirichlet Allocation (LDA) [2]. EM is
used for uncovering mixtures of latent variables. It has many applications, for
instance in natural language processing, computer vision, and genetics. LDA is
used to get a big-picture of (large) collections of documents by discovering the
topics that they cover. Both are unsupervised classification algorithms.

The paper gives an abstract reformulation of these two well-known algo-
rithms in machine learning that brings out the logic of divergence reduction
(or error correction) behind them. This reformulation is inspired by categorical
probability theory (see e.g. [4,10]), in which conditional probabilities p(y | x) are

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
H. H. Hansen et al. (Eds.): WoLLIC 2023, LNCS 13923, pp. 256–273, 2023.
https://doi.org/10.1007/978-3-031-39784-4_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-39784-4_16&domain=pdf
https://doi.org/10.1007/978-3-031-39784-4_16

A Principled Approach Using Jeffrey’s Update Rule 257

reinterpreted as probabilistic functions X → Y , also known as Kleisli maps or
channels, with a rich structure, among others for sequential composition, parallel
composition, and reversal. This paper does not assume knowledge of category
theory: the relevant constructions are described concretely, especially for reversal
(Bayesian inversian, dagger) since it plays a crucial role in Jeffrey’s rule.

Making explicit what these algorithms EM and LDA achieve, and how, is
relevant in times with a rising need that algorithms in machine learning and
AI explain their outcomes. A first requirement for such explanations is a clear
semantical understanding, including the underlying logic. Thus, the aim here is
to analyse (two) existing algorithms, in their basic forms. The algorithms are
not extended or improved, but studied as such.

This paper is organised as follows. It first introduces notation and basic termi-
nology for multisets and (discrete probability) distributions in Sect. 2, including
channels (probabilistic functions) and their reversals. Section 3 recalls Jeffrey’s
update rule and the associated divergence decrease. It includes a (new) strength-
ened version of this rule, with multiple channels, that will be used for LDA.
Subsequently, Sect. 4 describes the EM algorithm using channels and shows how
its correctness can be proved in just four lines, see the proof of Theorem 3.
Section 5 gives a similar reformulation and proof of correctness for LDA. Simple
illustrations are included for Jeffrey’s rule, EM and for LDA.

2 Multisets and Distributions

A multiset (or bag) is a subset in which elements may occur multiple times. We
borrow ‘ket’ notation | · 〉 from quantum theory and represent an urn with three
red, two blue and one green ball as a multiset 3|R〉 + 2|B 〉 + 1|G〉. In the ‘bag-
of-words’ model a document is understood as a multiset of words. A distribution
is like a multiset but its multiplicities are not natural numbers but probabilities,
from the unit interval [0, 1], that add up to one, as in 1

2 |R〉 + 1
3 |B 〉 + 1

6 |G〉.
More formally, a multiset on a set X is a function ϕ : X → N with finite sup-

port supp(ϕ) = {x ∈ X | ϕ(x) > 0}. Similarly, a distribution on X is a function
ω : X → [0, 1] with finite support, with

∑
x ω(x) = 1. We can equivalently write

them in ket notation as ϕ =
∑

x ϕ(x)|x〉 and ω =
∑

x ω(x)|x〉. We write M(X)
and D(X) for the sets of multisets and distributions on a set X.

Notice that we do not require that the set X is finite. But when X is finite,
we can say that a multiset ϕ ∈ M(X), or a distribution ω ∈ D(X), has full
support if supp(ϕ) = X, or supp(ω) = X. The unit multiset 1X :=

∑
x 1|x〉

and the uniform distribution unifX :=
∑

x
1
n |x〉, for the size n = |X | of the

set X, are examples with full support. A fair coin 1
2 |H 〉 + 1

2 |T 〉 and a fair dice
1
6 |1〉 + 1

6 |2〉 + 1
6 |3〉 + 1

6 |4〉 + 1
6 |5〉 + 1

6 |6〉 are examples of uniform distributions,
on the set {H,T} and on {1, 2, 3, 4, 5, 6}.

The size ‖ϕ‖ ∈ N of a multiset ϕ ∈ M(X) is the total number of elements,
including multiplicities: ‖ϕ‖ :=

∑
x ϕ(x). We use special notation for the set of

multisets of a particular size K.

M[K](X) := {ϕ ∈ M(X) | ‖ϕ‖ = K}.

258 B. Jacobs

The only multiset on X with size 0 is the constant-zero function 0 : X → N.
For a non-zero multiset ϕ ∈ M(X) we write Flrn(ϕ) ∈ D(X) for the distribu-

tion obtained via ‘frequentist learning’, that is via counting and normalisation:

Flrn(ϕ)(x) :=
ϕ(x)
‖ϕ‖ that is Flrn(ϕ) =

∑

x∈X

ϕ(x)
‖ϕ‖

∣
∣x

〉
.

The multinomial distribution describes draws with replacement from an urn
filled with coloured balls, represented as a distribution ω ∈ D(X), where X is
the set of colours. The number ω(x) ∈ [0, 1] is the probability/fraction of balls
of colour x ∈ X in the urn. For a fixed number K, the multinomial distribution
mn[K](ω) assigns a probability to a draw of K balls, represented as a multiset
ϕ ∈ M[K](X). It is defined as:

mn[K](ω) :=
∑

ϕ∈M[K](X)

(ϕ) ·
∏

x∈X

ω(x)ϕ(x)
∣
∣ϕ

〉 ∈ D
(
M[K](X)

)
, (1)

where (ϕ) := ‖ϕ‖!∏
x ϕ(x)! is the multinomial coefficient of ϕ, see e.g. [13,15] for

more details. For instance for a distribution ω = 1
8 |a〉+ 1

4 |b〉+ 5
8 |c〉 over the set

of colours X = {a, b, c} and for draws of size K = 2 we get:

mn[2](ω) = 1
64

∣
∣
∣2|a〉

〉
+ 1

16

∣
∣
∣1|a〉 + 1|b〉

〉
+ 1

16

∣
∣
∣2|b〉

〉
+ 5

32

∣
∣
∣1|a〉 + 1|c〉

〉

+ 5
16

∣
∣
∣1|b〉 + 1|c〉

〉
+ 25

64

∣
∣
∣2|c〉

〉
.

In Sect. 5 a distribution on words will be used to assign a multinomial probability
to a document, as a multiset (bag) of words.

What we describe in (1) is the so-called multivariate case, with multiple
colours. When there are just two colours, that is, when the set X has two ele-
ments, say X = {0, 1}, we are in the bivariate case. It will be used in Example 4.
Via the isomorphisms D({0, 1}) ∼= [0, 1] and M[K]({0, 1}) ∼= {0, 1, . . . ,K} one
gets the binomial distribution as special case of (1), for a bias r ∈ [0, 1],

bn[K](r) :=
∑

n∈{0,...,K}

(
K

n

)

· rn · (1−r)K−n
∣
∣n

〉 ∈ D
(
{0, . . . , K}

)
. (2)

2.1 Channels and Their Daggers

An essential element of the principled categorical approach to probability is the
use of channels, also known as Kleisli maps. For two sets X,Y , a channel from
X to Y is a probabilistic function, written as c : X → Y . It is an actual function
of the form c : X → D(Y) that assigns a distribution c(x) ∈ D(Y) to each
element x ∈ X. In traditional notation it is written as a conditional probability
distribution p(y | x). These channels (probabilistic functions) can be composed,
both sequentially and in parallel; moreover, they can be reversed, giving what is

A Principled Approach Using Jeffrey’s Update Rule 259

called a dagger channel [4,5,10], also known as the Bayesian inverse p(x | y) of
p(y | x). This gives a useful calculus of channels.

For a distribution ω ∈ D(X) on the domain of a channel c : X → Y we
may ‘push forward’ (or ‘transform’) the distribution along the channel, giving
a distribution c =� ω ∈ D(Y), on the codomain Y of the channel. This new
distribution c =�ω is also called the ‘prediction’. It is defined as:

(
c =�ω

)
(y) :=

∑

x∈X

ω(x) · c(x)(y). (3)

Using push forward =� we can define composition of channels c : X → Y and
d : Y → Z to a new channel d ◦· c : X → Z, namely as (d ◦· c)(x) := d =� c(x).
Notice that we use special notation ◦· for composition of channels.

We turn to the reversal of a channel c : X → Y in presence of a ‘prior’
distribution ω ∈ D(X). The result is a channel c†

ω : Y → X, defined as:

c†
ω(y) :=

∑

x∈X

ω(x) · c(x)(y)
(c =�ω)(y)

∣
∣x

〉
. (4)

For more details about this reversal we refer to the literature [4,5,10].

3 Jeffrey’s Update Rule and Its Decrease of Divergence

In probabilistic learning one can distinguish two different approaches to updat-
ing, namely following Pearl [22] (and Bayes) or following Jeffrey [17], see for
comparisons e.g. [3,8,12,16,19]. The two approaches may produce completely
different outcomes, but it is poorly understood when to use which approach. The
distinction between the rules is characterised mathematically in [14]: Pearl’s rule
increases validity (expected value) and Jeffrey’s rule decreases divergence.

In the present context we need only Jeffrey’s rule and refer to [8,12] for
Pearl’s counterpart. In the theorem below we first repeat (from [14]) the formu-
lation of Jeffrey’s rule in terms of the dagger of a channel (4), together with the
associated decrease of the divergence. The second item is new and contains a
generalisation of Jeffrey’s rule to multiple channels and data distributions. The
latter are typically obtained via frequentist learning Flrn, see Sects. 4 and 5. The
appendix contains a proof.

Kullback-Leibler divergence DKL is a standard comparison of distributions
on the same set. It is defined, for ω, ρ ∈ D(X), via the natural logarithm ln:

DKL(ω, ρ) :=
∑

x∈X

ω(x) · ln
(

ω(x)
ρ(x)

)

. (5)

Jeffrey’s rule reduces the divergence between data and prediction. In the cogni-
tive context of predictive coding [9,11,23] this is called ‘error correction’.

Theorem 1. Let ω ∈ D(X) be a distribution, used as prior.

260 B. Jacobs

1. (“Jeffrey’s divergence decrease”) For a channel c : X → Y and a ‘data’ dis-
tribution τ ∈ D(Y),

DKL

(
τ, c =�ω

) ≥ DKL

(
τ, c =�ω′) where ω′ := c†

ω =�τ. (6)

This mapping ω
→ ω′ := c†
ω =�τ is Jeffrey’s update rule, giving ω′ as updated,

posterior distribution.
2. (“Mixture divergence decrease”) Let ci : X → Yi be a finite collection of

channels with distributions τi ∈ D(Yi) and probabilities ri ∈ [0, 1] satisfy-
ing

∑
i ri = 1. Then:

∑

i
ri · DKL

(
τi, ci =�ω

) ≥
∑

i
ri · DKL

(
τi, ci =�ω′)

where ω′ :=
∑

i
ri ·

((
ci

)†
ω

=�τi

)
.

(7)

Proof. We refer to [14] for the details of the (non-trivial) proof of the diver-
gence decrease for Jeffrey’s update rule (6). It crucially depends on (8) below.
Let ω ∈ D(X) be a distribution with predicates p1, . . . , pn ∈ [0, 1]X satisfy-
ing

∑
i pi = 1, pointwise, and with probabilities r1, . . . , rn ∈ [0, 1] satisfying∑

i ri = 1. Assuming non-zero validities ω |= pi, for each i, one has:
∑

i

ri · (ω |= pi)∑
j rj · (ω|pj

|= pi)
≤ 1. (8)

See [14] for details about the validity (expected value) ω |= p of a predicate p
w.r.t. a distribution ω, and about the updated distribution ω|p.

We will use the inequality (8) to prove the second point of the theorem.
We use the disjoint union K :=

∐
i Yi as index set and with predicates and

probabilities, for (i, y) ∈ K,

p(i,y) := ci �= 1y = ci(−)(y) ∈ [0, 1]X s(i,y) := ri · τi(y) ∈ [0, 1].

The proof of (7) works as follows, basically as in [14], but with an extra
level of indexing, via the index set K. Recall in the mixture case the updated
distribution ω′ :=

∑
i ri · (

(ci)†
ω =�τi

)
.

∑

i
ri · DKL

(
τi, ci =�ω′) −

∑

i
ri · DKL

(
τi, ci =�ω

)

(5)
=

∑

i
ri ·

∑

y∈Yi

τi(y) ·
[

ln
(

τi(y)
(ci =�ω′)(y)

)

− ln
(

τi(y)
(ci =�ω)(y)

)]

=
∑

(i,y)∈K

s(i,y) · ln
(

(ci =�ω)(y)
(ci =�ω′)(y)

)

=
∑

(i,y)∈K

s(i,y) · ln
(

ω |= ci �= 1y

ω′ |= ci �= 1y

)

≤ ln

⎛

⎝
∑

(i,y)∈K

s(i,y) · ω |= p(i,y)

ω′ |= p(i,y)

⎞

⎠ by Jensen’s inequality
(∗)
≤ ln

(
1) = 0.

A Principled Approach Using Jeffrey’s Update Rule 261

The marked inequality
(∗)
≤ uses (8). It applies since for (i, y) ∈ K,

ω′ |= p(i,y) =
∑

j
rj · (

(cj)†
ω =�τj

) |= p(i,y)

=
∑

j
rj ·

∑

x∈X

(
(cj)†

ω =� τj

)
(x) · p(i,y)(x)

=
∑

j
rj ·

∑

x∈X

∑

z∈Yj

(cj)†
ω(z)(x) · τj(z) · p(i,y)(x)

(∗∗)
=

∑

(j,z)∈K

s(j,k) ·
∑

x∈X

ω|cj �= 1z
(x) · p(i,y)(x)

=
∑

(j,z)∈K

s(j,k) · (
ω|p(j,z) |= p(i,y)

)
.

The equation
(∗∗)
= uses that the dagger definition (4) can equivalently be

described as an update: (cj)†
ω(z) = ω|cj �= 1z

, see [14] for details. �
We include an illustration of Jeffrey’s rule, as in the above first item.

Example 2. The following update question is attributed to Jeffrey, and repro-
duced for instance in [3,6]. It involves three colors of clothes: green (g), blue (b)
and violet (v), in a space C = {g, b, v}. Clothes can be sold or not, as represented
by S = {s, s⊥}. The prior sales distribution ω ∈ D(S) is ω = 14

25 |s〉 + 11
25 |s⊥ 〉; it

tells that a bit more than half of the clothes are sold. The colour distributions
for sales and non-sales are provided via a channel c : S → D(C), of the form:

c(s) = 3
14 |g 〉 + 3

14 |b〉 + 4
7 |v 〉 c(s⊥) = 9

22 |g 〉 + 9
22 |b〉 + 2

11 |v 〉.
A cloth is inspected by candlelight and the following likelihoods are reported per
color: 70% certainty that it is green, 25% that it is blue, and 5% that it is violet.
This gives a data/evidence distribution τ = 7

10 |g 〉 + 1
4 |b〉 + 1

20 |v 〉 ∈ D(C). We
ask: what is the likelihood that the observed cloth will be sold?

The push-forward colour distribution c =� ω with its prior divergence from
the data are:

c =�ω
(3)
= 3

10 |g 〉 + 3
10 |b〉 + 2

5 |v 〉 DKL

(
τ, c =�ω

) (5)
= 0.444.

The formula (4) determines the dagger channel d := c†
ω : C → D(S) as:

d(g) = 2
5 |s〉 + 3

5 |s⊥ 〉 d(b) = 2
5 |s〉 + 3

5 |s⊥ 〉 d(v) = 4
5 |s〉 + 1

5 |s⊥ 〉.
We then get as updated (posterior) sales distribution ω′ := d =� τ ∈ D(S) with
decreased divergence:

ω′ := d =�τ = 21
50 |s〉 + 29

50 |s⊥ 〉 now with DKL

(
τ, c =�ω′) = 0.368.

The posterior sale probability 21
50 for the inspected cloth is lower than the

prior probability 14
25 = 28

50 . This outcome also occurs in [3, Ex. 1], [6, p.41] (as
marginal), but without the above dagger-channel and the divergence decrease.

262 B. Jacobs

4 Expectation Maximisation (EM)

Expectation Maximisation (EM) is an algorithm where two steps, called E-step
and M-step are alternated and iterated, as in E-M-E-M-E-M- · · · , until some
fixed point is reached. Its first general formulation occurs in [7], but it was
used in more specialised forms before, see [18, 1.8] for historical details. In gen-
eral, EM seeks an appropriate mixture of hidden/latent variables together with
appropriate parameter values in a statistical model, see [20].

Here we describe the model and algorithm in channel-based form, where the
divergence between data and predictions decreases with every iteration. The
setting involves a channel, with a ‘mixture’ distribution on its domain and a
‘data’ multiset on its codomain. The channel will have type Z → Y , where Z
is the space of classifications, and Y is the data space. Typically, the channel is
determined by a parameter θ, which we write as c[θ] : Z → Y . This θ may be a
single number, a list of numbers, or even a matrix, of some dimension.

Theorem 3. Let a ‘data’ multiset ψ ∈ M(Y) be given. We consider an initial
‘mixture’ distribution ω(0) ∈ D(Z) and a family of channels c[θ] : Z → Y , with
parameter θ, having an initial value θ(0).

Consider the following two steps at stage n ∈ N, to produce new distributions
and channels, assuming that we already have a distribution ω(n) ∈ D(Z) and
channel c(n) := c[θ(n)] : Z → Y , for parameter value θ(n).

E-step. Using Jeffrey’s update rule, from Theorem 1 (1), we obtain a next mix-
ture distribution as:

ω(n+1) := c[θ(n)]†
ω(n) =�Flrn(ψ) ∈ D(Z). (9)

M-step. We pick as next channel-parameter value the one with minimal
Kullback-Leibler divergence in:

θ(n+1) ∈ argmin
θ

DKL

(
Flrn(ψ), c[θ] =� ω(n)

)
. (10)

Take c(n+1) := c[θ(n+1)] as next channel.

These two steps result in decreasing divergences.

1. Each iteration yields a decrease of Kullback-Leibler divergence:

DKL

(
Flrn(ψ), c(n+1) =�ω(n+1)

)
≤ DKL

(
Flrn(ψ), c(n) =�ω(n)

)
. (11)

This means that the predicted data distribution is decreasingly wrong.
2. A next parameter θ(n+1) can (often) be found as solution to the equation:

∑

z∈Z, y∈Y

ψ(y) · (
c(n)

)†
ω(n)(y)(z) · d

dθ
ln

(
c[θ](z)(y)

)
= 0. (12)

This solution is not the minimal one in (10), but it still yields the relevant
decrease of divergence in (11).

A Principled Approach Using Jeffrey’s Update Rule 263

The word ‘often’ is inserted because finding a minimal parameter value via a
solution of (12) only works when the channel has suitable (partial) derivatives,
see Example 4 below.

Proof 1. The claimed decrease of divergence arises as follows.

DKL

(
Flrn(ψ), c[θ(n+1)] =� ω(n+1)

)

≤ DKL

(
Flrn(ψ), c[θ(n)] =�ω(n+1)

)
since θ(n+1) is argmin

≤ DKL

(
Flrn(ψ), c[θ(n)] =�(

c[θ(n)]†
ω(n) =�Flrn(ψ)

))
by definition of ω(n+1)

≤ DKL

(
Flrn(ψ), c[θ(n)] =�ω(n)

)
by Theorem 1 (1).

2. The minimum parameter value θ in the expression DKL

(
Flrn(ψ), c[θ] =�ω(n)

)

in (10) is located where the derivative d
dθ is zero. We thus calculate:

d

dθ
DKL

(
Flrn(ψ), c[θ] =� ω(n)

)

(5)
=

d

dθ

∑
y∈Y

Flrn(ψ)(y) · ln

(
Flrn(ψ)(y)

(c[θ] =� ω(n))(y)

)

=
d

dθ

∑
y∈Y

Flrn(ψ)(y) · ln
(
Flrn(ψ)(y)

)
−

∑
y∈Y

Flrn(ψ)(y) · ln
(
(c[θ] =� ω(n))(y)

)

=
−1

‖ψ‖ ·
∑
y∈Y

ψ(y) · d

dθ
ln

(
(c[θ] =� ω(n))(y)

)

=
−1

‖ψ‖ ·
∑
y∈Y

ψ(y)

(c[θ] =� ω(n))(y)
· d

dθ
(c[θ] =� ω(n))(y)

=
−1

‖ψ‖ ·
∑
y∈Y

ψ(y)

(c[θ] =� ω(n))(y)
· d

dθ

∑
z∈Z

c[θ](z)(y) · ω(n)(z)

=
−1

‖ψ‖ ·
∑

z∈Z, y∈Y

ψ(y) · ω(n)(z)

(c[θ] =� ω(n))(y)
· d

dθ
c[θ](z)(y)

=
−1

‖ψ‖ ·
∑

z∈Z, y∈Y

ψ(y) · ω(n)(z) · c[θ](z)(y)

(c[θ] =� ω(n))(y)
· d

dθ
ln

(
c[θ](z)(y)

)

(4)
=

−1

‖ψ‖ ·
∑

z∈Z, y∈Y

ψ(y) · c[θ]†
ω(n)(y)(z) · d

dθ
ln

(
c[θ](z)(y)

)
. (*)

At this stage we need two more observations to see why it suffices to solve
the Eq. (12).
(a) The leading factor −1

‖ψ‖ can be dropped from the above last line (∗) when
we seek a solution via setting it to zero; because of the minus sign −1, we
are not looking for a minimum, but for a maximum.

(b) The first θ in the dagger expression c[θ]†
ω(n) in (∗) can be replaced by θ(n),

which turns c[θ]†
ω(n) into

(
c(n)

)†
ω(n) , as in (12). This is a subtle point. As

we can see in the four line proof of Theorem 3 (1), we only need that

264 B. Jacobs

the solution θ(n+1) yields a divergence that is less than the divergence
for θ(n). Hence if one of the θ’s in (∗) equals θ(n), we do not get the real
minimum divergence for θ(n+1), but we still get a divergence that is less
than the one for θ(n). �

Example 4. Consider the histogram of 1000 data
elements on the right, on the space {0, 1, . . . , N}
for N = 25. The shape of the data suggests that
we have a mixture of three binomials at hand.
Indeed, we have obtained these data by sampling
1000 times from the mixture of binomials:

1
2 · bn[N]

(
1
2

)
+ 1

3 · bn[N]
(
1
8

)
+ 1

6 · bn[N]
(

9
10

)
. (13)

Our aim in this example is to see if we can recover the mixture weights (12 , 1
3 , 1

6)
and the biases (12 , 1

8 , 9
10) in (13) from these sampled data, via EM as described

in Theorem 3. Formally, the above plot is used as a multiset ψ = 14|0〉+29|1〉+
· · · + 9|25〉 ∈ M[1000]

({0, . . . , 25}).
We take a three element latent space, say Z = {1, 2, 3}, together with a

parameterised channel c[θ] : Z → {0, 1, . . . , N}, in this situation with N = 25.
The channel c[θ] consists of three binomial distributions, with a 3-tuple θ =
(θ1, θ2, θ3) ∈ [0, 1]3 as parameter, via c[θ](i) := bn[N](θi).

In this situation we illustrate how to solve Eq. (12), where, for convience we
abbreviate the dagger channel as dn :=

(
c(n)

)†
ω(n) : {0, . . . , N} → Z. We look at

the solution for partial derivatives, for each i ∈ Z, using the familiar equation
∂
∂x ln(x) = 1

x , plus the fact that the logarithm turns products into sums:

0
(12)
=

∑

z∈{1,2,3}

∑

k∈{0,...,N}
ψ(k) · dn(k)(z) · ∂

∂θi
ln

(
c[θ](z)(k)

)

(2)
=

∑

z∈{1,2,3}

∑

k∈{0,...,N}
ψ(k) · dn(k)(z) · ∂

∂θi
ln

((
N
k

) · θk
z · (1−θz)N−k

)

=
∑

k∈{0,...,N}
ψ(k) · dn(k)(i) ·

[
k

θi
− N −k

1 − θi

]

.

Via some elementary arithmethic we now get as solution:

θi =
∑

k ψ(k) · k · dn(k)(i)
N · ∑

k ψ(k) · dn(k)(i)
. (*)

At this stage we can put things together and give a concrete description of the
EM-algorithm (for the current example).

1. Pick arbitrary ω(0) ∈ D(Z) = D({1, 2, 3}) and θ(0) ∈ [0, 1]3;

2. Assume ω(n) ∈ D(Z) and θ(n) ∈ [0, 1]3 are already computed and use them
first to form the dagger channel dn := c

[
θ(n)

]†
ω(n) : {0, . . . , N} → Z as in (4).

A Principled Approach Using Jeffrey’s Update Rule 265

(E). Take the next mixture distribution ω(n+1) ∈ D(Z) via Jeffrey’s rule:

ω(n+1)(i)
(9)
=

(
dn =�Flrn(ψ)

)
(i) =

1
‖ψ‖ ·

∑

k∈{0,...,N}
dn(k)(i) · ψ(k).

(M). Take the next parameters θ(n+1) ∈ [0, 1]3 as:

θ
(n+1)
i

(∗)
=

∑
k ψ(k) · k · dn(k)(i)

N · ∑
k ψ(k) · dn(k)(i)

=
∑

k Flrn(ψ)(k) · k · dn(k)(i)
N · ω(n+1)(i)

.

The table below gives an overview of five runs of this algorithm, starting from
arbitrary values. Clearly, the divergences are decreasing, as prescribed in (11).

round KL-div mixtures ω(n) biases θ(n)

0 0.853 0.477|1〉 + 0.354|2〉 + 0.169|3〉 0.235, 0.389, 0.691

1 0.326 0.353|1〉 + 0.35|2〉 + 0.297|3〉 0.159, 0.46, 0.754

2 0.132 0.321|1〉 + 0.454|2〉 + 0.225|3〉 0.128, 0.478, 0.812

3 0.029 0.311|1〉 + 0.515|2〉 + 0.174|3〉 0.122, 0.488, 0.872

4 0.011 0.309|1〉 + 0.535|2〉 + 0.156|3〉 0.121, 0.493, 0.898

We see that in five rounds we already get quite close to the original mixture and
biases in (13). The order is different, but this is because the classification labels
in Z = {1, 2, 3} are meaningless and cannot be distinguished by the algorithm.

5 Latent Dirichlet Allocation (LDA)

The second model and inference algorithm in this paper was introduced in [2]
under the name Latent Dirichlet Allocation, commonly abbreviated as LDA.
It is used for what is called topic modeling: classifying documents according
to their topics. The set-up of the algorithm is more complicated then EM and
involves continuous Dirichlet distributions. In our analysis we show that LDA is
essentially about divergence reduction via Jeffrey’s rule—in multi-channel form,
as in Theorem 1 (2). The Dirichlet distributions introduce a certain level of
complexity, but turn out to play a limited role in the algorithm itself. We cover
the essentials and refer to the literature for further information (see e.g. [20,21]).

Dirichlet is a continuous distribution on discrete distributions. Writing G for
the Giry monad of continuous distributions, we have Dir(α) ∈ G(D(X)

)
, where

X is a finite set and α ∈ M(X) is a multiset with full support1. This Dir(α) is

1 In the current paper we use multisets with natural numbers as multiplicities; this
can be generalised to non-negative real numbers as multiplicities. The Dirichlet dis-
tribution Dir(α) can be defined for such more general multisets. But we shall not do
so here since it does not affect the LDA algorithm.

266 B. Jacobs

defined via a probability density function (pdf) dir(α) : D(X) → R≥0, namely:

dir(α)(ω) :=
(‖α‖ − 1)!

∏
x(α(x) − 1)!

·
∏

x∈X

ω(x)α(x)−1.

The continuous Dirichlet distribution Dir(α) ∈ G(D(X)
)

is the function that
assigns to a measurable subset M ⊆ D(X) the probability

∫
ω∈M

dir(α)(ω) dω.
We assume a finite set W of words and use the bag-of-words model for doc-

uments, so that a document is a multiset ψ ∈ M(W) over words. As data we
use a collection of such documents/multisets, written as ψ =

(
ψi

)
i∈I

, for some
finite index set I. We shall write it as ψ ∈ M(W)I and call it a corpus.

We also assume a finite set T of topics. This may simply be a set n :=
{0, 1, . . . , n − 1}, since topics do not have an interpretation.

We shall use multisets α ∈ M(T) and β ∈ M(W) as parameters for Dirichlet
distributions Dir(α) ∈ G(D(T)

)
and Dir(β) ∈ G(D(W)

)
, where α ∈ M(T) and

β ∈ M(W) are multisets with full support. We put them in parallel, using the
tensor ⊗ for continuous distributions, and thus get:

Dir(α)I := Dir(α) ⊗ · · · ⊗ Dir(α)
︸ ︷︷ ︸

|I | times

∈ G
(

D(T) × · · · × D(T)
︸ ︷︷ ︸

|I | times

)
= G(D(T)I

)
.

Similarly, we use Dir(β)T ∈ G(D(W)T
)
. These parallel products ⊗ of continuous

distributions work via the multiplication of the pdf’s involved, see e.g. [21].
These parallel Dirichlet’s are used as (continuous) distributions on θ ∈ D(T)I

and ζ ∈ D(W)T , that is on a document-topic channel θ : I → D(T) and a topic-
word channel ζ : T → D(W). This θ sends a document (index) i ∈ I to the topic
distribution θ(i) ∈ D(T) for document ψi ∈ M(W). Similarly, ζ sends a topic
t ∈ T to the distribution ζ(t) ∈ D(W) of words, for the topic t.

The LDA model consists of the following composite, where mn is multino-
mial.

D(T)I × D(W)T comp
�� D(W)I mnI

�� D(M(W)I
)

The function comp performs channel composition: comp
(
θ, ζ

)
= ζ ◦· θ : I →

D(W). The likelihood for document data ψ ∈ M(W)I , given hyperparameters
α, β is expressed by the (continuous) push forward:

(
(mnI ◦ comp) =� (

Dir(α)I ⊗ Dir(β)T
))

(ψ) ∈ [0, 1]. (14)

A Principled Approach Using Jeffrey’s Update Rule 267

We can write the expression (14) in terms of integrals:
∫

θ∈D(T)I

∫

ζ∈D(W)T

∏

i∈I

dir(α)
(
θ(i)

)·
∏

t∈T

dir(β)
(
ζ(t)

)·
∏

i∈I

mn
(
ζ =� θ(i)

)
(ψi) dζ dθ.

We are interested in the likelihood expression with θ and ζ as free variables:

Lα,β,ψ

(
θ, ζ

)
:=

∏

i∈I

dir(α)
(
θ(i)

) ·
∏

t∈T

dir(β)
(
ζ(t)

) ·
∏

i∈I

mn
(
ζ =� θ(i)

)
(ψi). (15)

The LDA aim is to find the document-topic channel θ : I → D(T) and the
topic-word ζ : T → D(W) that maximise this likelihood expression (15).

We shall use the (natural) logarithm ln of this expression, commonly called
the log-likelihood; it turns the above products

∏
into sums

∑
. Since ln is mono-

tone, we might as well maximise the log-likelihood. A crucial observation is that
this log-likelihood can be formulated in terms of Kullback-Leibler divergence.
This opens the door to applying Jeffrey’s update rule.

Lemma 5. Let α ∈ M(T) and β ∈ M(W) be multisets with full support and
let ψ ∈ M(W)I be corpus of documents. The log-likelihood ln Lα,β,ψ

(
θ, ζ

)
of the

expression (15) can be written as:

ln Lα,β,ψ

(
θ, ζ

)

= C −
∑

i∈I

(‖α−1‖ + ‖ψi‖
) ·

(‖α−1‖
‖α−1‖ + ‖ψi‖ · DKL

(
Flrn(α−1), θ(i)

)

+
‖ψi‖

‖α−1‖ + ‖ψi‖ · DKL

(
Flrn(ψi), ζ =� θ(i)

))

−
∑

t∈T

‖β−1‖ · DKL

(
Flrn(β−1), ζ(t)

)
,

(16)

where C is a constant depending on the parameters α, β,ψ but not on the vari-
ables θ, ζ. Recall that 1 is the multiset of singletons, so that (α−1)(x) = α(x)−1.
This subtraction is allowed since α has full support. The same holds for β.

Proof (of Lemma 5). We apply the logarithm ln to (15), expand the Dirichlet
and multinomial expressions, and write C for some constant, not depending on

268 B. Jacobs

θ, ζ.

ln Lα,β,ψ

(
θ, ζ

)

=
∑

i∈I

ln
(

(‖α‖ − 1)!
∏

t(α(t) − 1)!

)

+
∑

t∈T

(α(t) − 1) · ln
(
θ(i)(t)

)

+
∑

t∈T

ln
(

(‖β‖ − 1)!
∏

w(β(w) − 1)!

)

+
∑

w∈W

(β(w) − 1) · ln
(
ζ(t)(w)

)

+
∑

i∈I

ln
(
(ψi)

)
+

∑

w∈W

ψi(w) · ln
((

ζ =� θ(i)
)
(w)

)
.

= C +
∑

i∈I

‖α−1‖ ·
∑

t∈T

Flrn(α−1)(t) · ln
(
θ(i)(t)

)

− ‖α−1‖ ·
∑

t∈T

Flrn(α−1)(t) · ln
(
Flrn(α−1)(t)

)

+
∑

t∈T

‖β−1‖ ·
∑

w∈W

Flrn(β−1)(w) · ln
(
ζ(t)(w)

)

− ‖β−1‖ ·
∑

w∈W

Flrn(β−1)(w) · ln
(
Flrn(β−1)(w)

)

+
∑

i∈I

‖ψi‖ ·
∑

w∈W

Flrn(ψi)(w) · ln
((

ζ =� θ(i)
)
(w)

)

− ‖ψi‖ ·
∑

w∈W

Flrn(ψi)(w) · ln
(
Flrn(ψi)(w)

)

= C −
∑

i∈I

‖α−1‖ · DKL

(
Flrn(α−1), θ(i)

)
+ ‖ψi‖ · DKL

(
Flrn(ψi), ζ =� θ(i)

)

−
∑

t∈T

‖β−1‖ · DKL

(
Flrn(β−1), ζ(t)

)

= C −
∑

i∈I

ri ·
(
ri,1 · DKL

(
Flrn(α−1), θ(i)

)
+ ri,2 · DKL

(
Flrn(ψi), ζ =� θ(i)

))

−
∑

t∈T

‖β−1‖ · DKL

(
Flrn(β−1), ζ(t)

)
.

In the last line we use the abbreviations (21). �
This lemma tells us that in order to maximise the log-likelihood we have to

minimise the three Kullback-Leibler divergences in (16), because of the minus
sign − before the DKL expressions.

Theorem 6. Consider the LDA situation as described above, with multiset
parameters α ∈ M(T) and β ∈ M(W) and a corpus of documents ψ =

(
ψi

)
i∈I

.

An infinite series of channels θ(n) ∈ D(T)I and ζ(n) ∈ D(W)T with increas-
ing likelihoods:

Lα,β,ψ

(
θ(n+1), ζ(n+1)

)
≥ Lα,β,ψ

(
θ(n), ζ(n)

)
(17)

is obtained in the following manner.

A Principled Approach Using Jeffrey’s Update Rule 269

At stage 0, arbitrary channels θ(0) ∈ D(T)I and ζ(0) ∈ D(W)T are chosen.
Subsequent stages are handled as follows.

1. The next document-topic channel θ(n+1) ∈ D(T)I is defined via the mixture
version of Jeffrey’s rule in Theorem 1 (2), as convex combination, at i ∈ I:

θ(n+1)(i) :=
‖α−1‖

‖α−1‖ + ‖ψi‖ · Flrn(α−1)

+
‖ψi‖

‖α−1‖ + ‖ψi‖ ·
((

ζ(n)
)†
θ(n)(i)

=� Flrn(ψi)
)
.

(18)

This rule is used with the identity channel together with the channel ζ(n).
2. The next topic-word channel ζ(n+1) ∈ D(W)T at t ∈ T and w ∈ W is:

ζ(n+1)(t)(w) := argmin
ζ∈D(W)T

∑

i∈I

DKL

(
Flrn(ψi), ζ =� θ(n+1)(i)

)

+ DKL

(
Flrn(β−1), ζ(t)

)
.

(19)

Concretely, it can be chosen as:

ζ(n+1)(t)(w) =
β(w) − 1 +

∑
i∈I ψi(w) · (ζ(n)

)†
θ(n)(i)

(w)(t)

‖β−1‖ +
∑

i∈I ‖ψi‖ · ((
ζ(n)

)†
θ(n)(i)

=�Flrn(ψi)
)
(t)

. (20)

Proof. For the first point it sufficies to prove this for the log-likelihood lnL. We
drop the subscripts α, β,ψ for convenience. Also, we abbreviate:

ri := ‖α−1‖ + ‖ψi‖ ri,1 :=
‖α−1‖

r
ri,2 :=

‖ψi‖
r

(21)

Thus ri,1 + ri,2 = 1. Using the reformulation in Lemma 5 we get:

ln L(
θ(n+1), ζ(n+1)

)
= C −

∑

i∈I

ri ·
(
ri,1 · DKL

(
Flrn(α−1), θ(n+1)(i)

)

+ ri,2 · DKL

(
Flrn(ψi), ζ(n+1) =� θ(n+1)(i)

))

−
∑

t∈T

‖β−1‖ · DKL

(
Flrn(β−1), ζ(n+1)(t)

)

≥ C −
∑

i∈I

ri ·
(
ri,1 · DKL

(
Flrn(α−1), θ(n+1)(i)

)

+ ri,2 · DKL

(
Flrn(ψi), ζ(n) =� θ(n+1)(i)

))

−
∑

t∈T

‖β−1‖ · DKL

(
Flrn(β−1), ζ(n)(t)

)

≥ C −
∑

i∈I

ri ·
(
ri,1 · DKL

(
Flrn(α−1), θ(n)(i)

)

+ ri,2 · DKL

(
Flrn(ψi), ζ(n) =� θ(n)(i)

))

−
∑

t∈T

‖β−1‖ · DKL

(
Flrn(β−1), ζ(n)(t)

)

= lnL(
θ(n), ζ(n)

)
.

270 B. Jacobs

The first inequality ≥ holds because ζ(n+1) is defined as argmin in (19). The
second inequality ≥ follows from Jeffrey’s divergence reduction, in mixture form,
see Theorem 1 (2). We apply it with prior distribution ω := θ(n)(i), with two
channels, namely the identity c1 := id : T → T and c2 := ζ(n) : T → W , with
two distributions τ1 := Flrn(α−1) ∈ D(T) and τ2 := Flrn(ψi) ∈ D(W), and with
two probabilities r1,1 := ‖α−1‖

‖α−1‖+‖ψi‖ and ri,2 := ‖ψi‖
‖α−1‖+‖ψi‖ . The dagger of the

identity channel is the identity, so that (c1)†
ω =� τ1 = Flrn(α−1). The updated

state ω′ in Theorem 1 (2) is then θ(n+1)(i) as defined above.
We turn to formula (20). In order to find the argmin in (19) we use Lagrange’s

multiplier method, see e.g. [1, §2.2]. This method ensures that in the solution
gives convex combinations

Thus, we first extend the relevant equation with additional parameters κt, for
t ∈ T , in the function H defined as the log-likelihood plus an extra expression—
typical for Lagrange:

H
(
ζ,κ

)
= lnLα,β,ψ

(
θ, ζ

)
+

∑

t∈T

κ(t) ·
(

1 −
∑

w∈W

ζ(t)(w)

)

.

Thus we keep the hyperparameters α, β,ψ and also the channel θ fixed. We then
consider the partial derivatives, for s ∈ T and v ∈ W .

∂H

∂ζ(s)(v)
(
ζ,κ

)
=

(β(v) − 1)
ζ(s)(v)

+
∑

i∈I

ψi(v) · θ(i)(s)
(
ζ =�θ(i)

)
(v)

− κ(s)

=
1

ζ(s)(v)
·
(

β(v) − 1 +
∑

i∈I

ψi(v) · θ(i)(s) · ζ(s)(v)
(
ζ =�θ(i)

)
(v)

)

− κ(s)

=
β(v) − 1 +

∑
i∈I ψi(v) · ζ†

θ(i)(v)(s)

ζ(s)(v)
− κ(s)

∂H

∂κ(s)
(
ζ,κ

)
= 1 −

∑

w∈W

ζ(s)(w).

Setting all of these to zero yields:

ζ(s)(v) =
β(v) − 1 +

∑
i∈I ψi(v) · ζ†

θ(i)(v)(s)

κ(s)
.

Thus:

1 =
∑

v∈W

ζ(s)(v) =
∑

v∈W

β(v) − 1 +
∑

i∈I ψi(v) · ζ†
θ(i)(v)(s)

κ(s)

=
‖β−1‖ +

∑
i∈I

∑
v∈W ψi(v) · ζ†

θ(i)(v)(s)

κ(s)

=
‖β−1‖ +

∑
i∈I ‖ψi‖ · (

ζ†
θ(i) =�Flrn(ψi)

)
(s)

κ(s)
.

A Principled Approach Using Jeffrey’s Update Rule 271

But then:

ζ(s)(v) =
β(v) − 1 +

∑
i∈I ψi(v) · ζ†

θ(i)(v)(s)

‖β−1‖ +
∑

i∈I ‖ψi‖ · (
ζ†

θ(i) =�Flrn(ψi)
)
(s)

.

We may now use θ(n) and ζ(n) in the expression on the right-hand-side for the
next-stage choice of ζ(n+1), as in (20). �

We include a very simple example to illustrate LDA.

Example 7. We take a set W = {a, b, c, d, e, f} with the first six letters of the
alphabet as the set of words, and two topics: T = {1, 2}. We consider a corpus
with 3 multisets of words, in the middle column in the table below. We see
that the words b, d, f occur frequently in the first document, whereas the other
words a, c, e occur often in the second one. The frequencies of letters in the
third document is roughly equal. Hence we expect document 1 to be mostly
on one topic, and document 2 on the other topic, and document 3 on both.

data document multiset topic distribution

1 1|a〉 + 6|b〉 + 1|c〉 + 7|d〉 + 2|e〉 + 8|f 〉 0.831|1〉 + 0.169|2〉
2 10|a〉 + 1|b〉 + 8|c〉 + 2|d〉 + 9|e〉 + 1|f 〉 0.132|1〉 + 0.868|2〉
3 4|a〉 + 3|b〉 + 4|c〉 + 5|d〉 + 2|e〉 + 3|f 〉 0.512|1〉 + 0.488|2〉

The hyperparameter α ∈ M(T) and β ∈ M(W) are chosen as constants, with
multiplicity 2 for alpha and 1 for β. Running the LDA algorithm, as described in
Theorem 6, 25 times yields a document-topic channel θ with topic distributions
for each document, in the column on the right in the above table. As expected,
documents 1 and 2 are about different (opposite) topics.

The LDA-algorithm also produces a topic-word channel ζ : T → W . It assigns
in this simple example the following word probabilities to topics:

1
→ 0.0000665|a〉 + 0.278|b〉 + 0.000707|c〉 + 0.362|d〉 + 0.0223|e〉 + 0.337|f 〉
2
→ 0.362|a〉 + 0.00277|b〉 + 0.313|c〉 + 0.0274|d〉 + 0.295|e〉 + 0.000435|f 〉.

This is consistent with what we saw above: topic 1 makes makes words b, d, f
most likely, and topic 2 makes the other words a, c, e most likely.

6 Conclusions

EM and LDA are based on Jeffrey’s update rule. Even if in actual implemen-
tations the formulations in terms of channels and their daggers may not be
directly useful—for instance when results are approximated, typically via Gibbs
sampling—having a crisp description of the mathematical essentials may be use-
ful for understanding and reasoning about these fundamental EM and LDA
algorithms in machine learning.

272 B. Jacobs

Acknowledgements. Thanks to Dario Stein for many discussions about LDA.

References

1. Bishop, C.: Pattern Recognition and Machine Learning. Information Science and
Statistics. Springer, New York (2006)

2. Blei, D., Ng, A., Jordan, M.: Latent Dirichlet allocation. J. Mach. Learn. Res. 3,
993–1022 (2003). https://doi.org/10.5555/944919.944937

3. Chan, H., Darwiche, A.: On the revision of probabilistic beliefs using uncertain
evidence. Artif. Intell. 163, 67–90 (2005). https://doi.org/10.1016/j.artint.2004.
09.005

4. Cho, K., Jacobs, B.: Disintegration and Bayesian inversion via string diagrams.
Math. Struct. in Comp. Sci. 29(7), 938–971 (2019). https://doi.org/10.1017/
s0960129518000488

5. Clerc, F., Danos, V., Dahlqvist, F., Garnier, I.: Pointless learning. In: Esparza, J.,
Murawski, A.S. (eds.) FoSSaCS 2017. LNCS, vol. 10203, pp. 355–369. Springer,
Heidelberg (2017). https://doi.org/10.1007/978-3-662-54458-7 21

6. Darwiche, A.: Modeling and Reasoning with Bayesian Networks. Cambridge Uni-
versity Press, Cambridge (2009)

7. Dempster, A., Laird, N., Rubin, D.: Maximum likelihood from incomplete data via
the EM algorithm. J. Roy. Stat. Soc. 39(1), 1–38 (1977)

8. Dietrich, F., List, C., Bradley, R.: Belief revision generalized: a joint characteriza-
tion of Bayes’ and Jeffrey’s rules. J. Econ. Theory 162, 352–371 (2016). https://
doi.org/10.1016/j.jet.2015.11.006

9. Friston, K.: The free-energy principle: a unified brain theory? Nat. Rev. Neurosci.
11(2), 127–138 (2010). https://doi.org/10.1038/nrn2787

10. Fritz, T.: A synthetic approach to Markov kernels, conditional independence, and
theorems on sufficient statistics. Adv. Math. 370, 107239 (2020). https://doi.org/
10.1016/J.AIM.2020.107239

11. Hohwy, J.: The Predictive Mind. Oxford University Press, Oxford (2013). https://
doi.org/10.1093/acprof:oso/9780199682737.001.0001

12. Jacobs, B.: The mathematics of changing one’s mind, via Jeffrey’s or via Pearl’s
update rule. J. Artif. Intell. Res. 65, 783–806 (2019). https://doi.org/10.1613/jair.
1.11349

13. Jacobs, B.: From multisets over distributions to distributions over multisets. In:
Logic in Computer Science. IEEE, Computer Science Press (2021). https://doi.
org/10.1109/lics52264.2021.9470678

14. Jacobs, B.: Learning from what’s right and learning from what’s wrong. In:
Sokolova, A (ed.) Math. Found. of Programming Semantics, number 351 in Elect.
Proc. in Theor. Comp. Sci., pp. 116–133 (2021). https://doi.org/10.4204/EPTCS.
351.8

15. Jacobs, B.: Urns & tubes. Compositionality, 4(4) (2022). https://doi.org/10.32408/
compositionality-4-4

16. Jacobs, B., Stein, D.: Pearl’s and Jeffrey’s update as modes of learning in proba-
bilistic programming. In: Kerjean, M., Levy, P., (eds.) Math. Found. of Program-
ming Semantics, Electronic Notes in Theoretical Computer Science (2023)

17. Jeffrey, R.: The Logic of Decision, 2nd edn. The University of Chicago Press,
Chicago (1983)

18. McLachlan, G., Krishnan, T.: The EM Algorithm and Extensions. Probability and
Statistics. Wiley, Hoboken 2 edn. (2007). https://doi.org/10.1002/9780470191613

https://doi.org/10.5555/944919.944937
https://doi.org/10.1016/j.artint.2004.09.005
https://doi.org/10.1016/j.artint.2004.09.005
https://doi.org/10.1017/s0960129518000488
https://doi.org/10.1017/s0960129518000488
https://doi.org/10.1007/978-3-662-54458-7_21
https://doi.org/10.1016/j.jet.2015.11.006
https://doi.org/10.1016/j.jet.2015.11.006
https://doi.org/10.1038/nrn2787
https://doi.org/10.1016/J.AIM.2020.107239
https://doi.org/10.1016/J.AIM.2020.107239
https://doi.org/10.1093/acprof:oso/9780199682737.001.0001
https://doi.org/10.1093/acprof:oso/9780199682737.001.0001
https://doi.org/10.1613/jair.1.11349
https://doi.org/10.1613/jair.1.11349
https://doi.org/10.1109/lics52264.2021.9470678
https://doi.org/10.1109/lics52264.2021.9470678
https://doi.org/10.4204/EPTCS.351.8
https://doi.org/10.4204/EPTCS.351.8
https://doi.org/10.32408/compositionality-4-4
https://doi.org/10.32408/compositionality-4-4
https://doi.org/10.1002/9780470191613

A Principled Approach Using Jeffrey’s Update Rule 273

19. Mrad, A.B., Delcroix, V., Piechowiak, S., Leicester, P., Abid, M.: An explication
of uncertain evidence in Bayesian networks: likelihood evidence and probabilistic
evidence. Appl. Intell. 43(4), 802–824 (2015). https://doi.org/10.1007/s10489-015-
0678-6

20. Murphy, K.: Machine Learning. A Probabilistic Perspective. MIT Press, Cambridge
(2012)

21. Panangaden, P.: Labelled Markov Processes. Imperial College Press, London (2009)
22. Pearl, J.: Jeffrey’s rule, passage of experience, and neo-Bayesianism. In: Kyburg, Jr.

H. (ed.), Knowledge Representation and Defeasible Reasoning, pp. 245–265. Kluwer
Academic Publishers (1990). https://doi.org/10.1007/978-94-009-0553-5 10

23. Rao, R., Ballard, D.: Predictive coding in the visual cortex: a functional interpre-
tation of some extra-classical receptive-field effects. Nat. Neurosci. 2, 79–87 (1999).
https://doi.org/10.1038/4580

https://doi.org/10.1007/s10489-015-0678-6
https://doi.org/10.1007/s10489-015-0678-6
https://doi.org/10.1007/978-94-009-0553-5_10
https://doi.org/10.1038/4580

Parameterized Complexity
of Propositional Inclusion
and Independence Logic

Yasir Mahmood1(B) and Jonni Virtema2

1 DICE Group, Department of Computer Science, Paderborn University, Paderborn,
Germany

yasir.mahmood@uni-paderborn.de
2 Department of Computer Science, University of Sheffield, Sheffield, UK

j.t.virtema@sheffield.ac.uk

Abstract. We give a comprehensive account on the parameterized com-
plexity of model checking and satisfiability of propositional inclusion
and independence logic. We discover that for most parameterizations
the problems are either in FPT or paraNP-complete.

Keywords: Propositional Logic · Team Semantics · Model checking ·
Satisfiability · Parameterized Complexity

1 Introduction

The research program on team semantics was conceived in the early 2000s to
create a unified framework to study logical foundations of different notions of
dependence between variables. Soon after the introduction of first-order depen-
dence logic [28], the framework was extended to cover propositional and modal
logic [29]. In this context, a significant step was taken in [5], where the focus
shifted to study dependencies between formulas instead of variables. The frame-
work of team semantics has been proven to be remarkably malleable. During the
past decade the framework has been re-adapted for the needs of an array of dis-
ciplines. In addition to the modal variant, team semantics has been generalized
to temporal [19] and probabilistic [4] frameworks, and fascinating connections
to fields such as database theory [11], statistics [1], real valued computation [9],
verification [20], and quantum information theory [16] have been identified.

Boolean satisfiability problem (SAT) and quantified Boolean formula prob-
lem (QBF) have had a widespread influence in diverse research communities.
In particular, QBF solving techniques are important in application domains
such as planning, program synthesis and verification, adversary games, and non-
monotonic reasoning, to name a few [27]. Further generalizations of QBF are the
dependency quantified Boolean formula problem (DQBF) and alternating DQBF
which allow richer forms of variable dependence [10,24,25]. Propositional logics
with team semantics offer a fresh perspective to study enrichments of SAT and
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
H. H. Hansen et al. (Eds.): WoLLIC 2023, LNCS 13923, pp. 274–291, 2023.
https://doi.org/10.1007/978-3-031-39784-4_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-39784-4_17&domain=pdf
http://orcid.org/0000-0002-5651-5391
http://orcid.org/0000-0002-1582-3718
https://doi.org/10.1007/978-3-031-39784-4_17

Parameterized Complexity of PINC and PIND 275

Table 1. (Left) An example database with 5 attributes and universe size 15. (Right)
An encoding with 3 · �log2(3)� + �log2(5)� + �log2(4)� many propositional variables.

Instructor Time Room Course Responsible

Antti 09:00 A.10 Genetics Antti

Antti 11:00 A.10 Chemistry Juha

Antti 15:00 B.20 Ecology Antti

Jonni 10:00 C.30 Bio-LAB Jonni

Juha 10:00 C.30 Bio-LAB Jonni

Juha 13:00 A.10 Chemistry Juha

i1i2 t1t2t3 r1r2 c1c2 p1p2

00 110 11 11 00

00 111 11 00 10

00 000 00 01 00

01 001 01 10 01

10 001 01 10 01

10 010 11 00 10

QBF. Indeed, the so-called propositional dependence logic (PDL) is known to
coincide with DQBF, whereas quantified propositional logics with team seman-
tics have a close connection to alternating DQBF [10,30].

Propositional dependency logics extend propositional logic with atomic
dependency statements describing various forms of variable dependence. In this
setting, formulas are evaluated over propositional teams (i.e., sets of proposi-
tional assignments with common variable domain). An inclusion atom x ⊆ y is
true in a team T , if ∀s ∈ T ∃t ∈ T such that s(x) = t(y). An independence atom
x⊥zy expresses that in a team T , for any fixed value for the variables in z the
values for x and y are informationally independent. The extension of proposi-
tional logic with inclusion and independence atoms yield inclusion (PINC) and
independence (PIND) logics, respectively.

Example 1. Table 1 illustrates an example from relational databases. The set of
records corresponds to a team, that satisfies the dependency Responsible ⊆
Instructor. Moreover, it violates the independence Instructor⊥CourseTime as
witnessed by tuples (Antti, 11:00, A.10, Chemistry, Juha) and (Juha, 13:00, A.10,
Chemistry, Juha). In propositional logic setting, datavalues can be represented
as bit strings of appropriate length (as depicted in Table 1).

The complexity landscape of the classical (non-parameterized) decision prob-
lems — satisfiability, validity, and model checking — is well mapped in the propo-
sitional and modal team semantics setting (see [14, page 627] for an overview).
Parameterized complexity theory, pioneered by Downey and Fellows [2], is a
widely studied subarea of complexity theory. The motivation being that it pro-
vides a deeper analysis than the classical complexity theory by providing further
insights into the source of intractability. The idea here is to identify meaningful
parameters of inputs such that fixing those makes the problem tractable. One
example of a fruitful parameter is the treewidth of a graph. A parameterized
problem (PP) is called fixed parameter tractable, or in FPT for short, if for a
given input x with parameter k, the membership of x in PP can be decided in
time f(k) · p(|x|) for some computable function f and polynomial p. That is, for
each fixed value of k the problem is tractable in the classical sense of tractabil-
ity (in P), and the degree of the polynomial is independent of the parameter.

276 Y. Mahmood and J. Virtema

Table 2. Overview of parameterized complexity results with pointers to the results.
The paraNP-cases are complete, except for only membership in the first row. MCs

denotes model checking for strict semantics whereas MC/SAT refer to both semantics.

Parameter PIND PINC
MC SAT MCs SAT

formula-tw paraNP18 FPT19 paraNP17 in paraNP13

formula-team-tw FPT8 - FPT8 -

team-size FPT7 - FPT7 -

formula-size FPT8 Trivial FPT8 Trivial

formula-depth FPT8 FPT9 FPT8 FPT9

#variables FPT8 FPT9 FPT8 FPT9

#splits paraNP18 FPT19 paraNP17 P14 if #splits=0

arity paraNP18 paraNP19 paraNP17 paraNP10

The class paraNP consists of problems decidable in time f(k) · p(|x|) on a
non-deterministic machine.

In the propositional team semantics setting, the study of parameterized com-
plexity was initiated by Meier and Reinbold [23] in the context of parameter-
ized enumeration problems, and by Mahmood and Meier [22] in the context of
classical decision problems, for PDL. In the first-order team semantics setting,
Kontinen et al. [18] studied parameterized model checking of dependence and
independence logic, and in [17] introduced the weighted-definability problem for
dependence, inclusion and independence logic thereby establishing a connection
with the parameterized complexity classes in the well-known W-hierarchy.

We focus on the parameterized complexity of model checking (MC) and sat-
isfiability (SAT) of propositional inclusion and independence logic. We consider
both lax and strict semantics. The former is the prevailing semantics in the
team semantics literature. The past rejection of strict semantics was based on
the fact that it does not satisfy locality [8] (the locality principle dictates that
satisfaction of a formula should be invariant on the truth values of variables that
do not occur in the formula). Recent works have revealed that locality of strict
semantics can be recovered by moving to multiteam semantics (here teams are
multisets) [3]. Since, in propositional team semantics, the shift from teams to
multiteams has no complexity theoretic implications, we stick with the simpler
set based semantics for our logics. In the model checking problem, one is given
a team T and a formula φ, and the task is to determine whether T |= φ. In the
satisfiability problem, one is given a formula φ, and the task is to decide whether
there exists a non-empty satisfying team T for φ. Table 2 gives an overview of
our results. We consider only strict semantics for MC of PINC, since for lax
semantics the problem is tractable already in the non-parameterized setting [14,
Theorem 3.5].

Parameterized Complexity of PINC and PIND 277

2 Preliminaries

We assume familiarity with standard notions in complexity theory such as classes
P,NP and EXP [26]. We give a short exposition of relevant concepts from
parameterized complexity theory. For a broader introduction consider the text-
book of Downey and Fellows [2], or that of Flum and Grohe [7].

A parameterized problem (PP) Π ⊆ Σ∗ × N consists of tuples (x, k), where
x is called an instance and k is the (value of the) parameter.

FPT and paraNP. Let Π be a PP over Σ∗ × N. Then Π is fixed parameter
tractable (FPT for short) if it can be decided by a deterministic algorithm A in
time f(k) · p(|x|) for any input (x, k), where f is a computable function and p is
a polynomial. If the algorithm A is non-deterministic instead, then Π belongs
to the class paraNP.

The notion of hardness in parameterized setting is employed by fpt-
reductions.

fpt-reductions. Let Π ⊆ Σ∗ ×N and Θ ⊆ Γ ∗ ×N be two PPs. Then Π is fpt-
reducible to Θ, if there exists an fpt-computable function g : Σ∗ × N → Γ ∗ × N

such that (1) for all (x, k) ∈ Σ∗ ×N we have that (x, k) ∈ Π ⇔ g(x, k) ∈ Θ and
(2) there exists a computable function h : N → N such that for all (x, k) ∈ Σ∗×N

and g(x, k) = (x′, k′) we have that k′ ≤ h(k).
We will use the following result to prove paraNP-hardness. Let Π be a PP

over Σ∗ ×N. Then the �-slice of Π, for � ≥ 0, is the set Π� := {x | (x, �) ∈ Π }.

Proposition 2 ([7, Theorem 2.14]). Let Π be a PP in paraNP. If there
exists an � ≥ 0 such that Π� is NP-complete, then Π is paraNP-complete.

Moreover, we will use the following folklore result to get several upper bounds.

Proposition 3. Let Q be a problem such that (Q, k) is FPT and let � be a
parameter with k ≤ f(�) for some computable function f . Then (Q, �) is FPT.

Propositional Team Based Logics. Let Var be a countably infinite set of
variables. The syntax of propositional logic (PL) is defined via the following
grammar: φ ::= x | ¬x | φ ∨ φ | φ ∧ φ, where x ∈ Var. Observe that we allow
only atomic negations. As usual := x ∨ ¬x and ⊥ := x ∧ ¬x. Propositional
dependence logic PDL is obtained by extending PL by atomic formulas of the
form =(x;y), where x, y ⊂ Var are finite tuples of variables. Similarly, adding
inclusion atoms x ⊆ y where (|x| = |y|) and independence atoms x⊥zy gives
rise to propositional inclusion (PINC) and independence (PIND) logic, respec-
tively. When we wish to talk about any of the three considered logics, we simply
write L. That is, unless otherwise stated, L ∈ {PDL,PINC,PIND}. For an
assignment s and a tuple x = (x1, . . . , xn), s(x) denotes (s(x1), . . . , s(xn)).

Team Semantics. Let φ, ψ be L-formulas and x, y, z ⊂ Var be finite tuples of
variables. A team T is a set of assignments t : Var → { 0, 1 }. The satisfaction
relation |= is defined as follows:

278 Y. Mahmood and J. Virtema

T |= x iff ∀t ∈ T : t(x) = 1,
T |= ¬x iff ∀t ∈ T : t(x) = 0,
T |= φ ∧ ψ iff T |= φ and T |= ψ,

T |= φ ∨ ψ iff ∃T1, T2(T1 ∪ T2 = T) : T1 |= φ and T2 |= ψ,

T |= x ⊆ y iff ∀t ∈ T ∃t′ ∈ T : t(x) = t′(y),
T |= x⊥zy iff ∀t, t′ ∈ T : t(z) = t′(z), ∃t′′ : t′′(xzy) = t(xz)t′(y).

Intuitively, an inclusion atom x ⊆ y is true if the value taken by x under an
assignment t is also taken by y under some assignment t′. Moreover, the inde-
pendence atom x⊥zy has the meaning that whenever the value for z is fixed
under two assignments t and t′, then there is an assignment t′′ which maps
x and y according to t and t′, respectively. We can interpret the dependence
atom =(x;y) as the independence atom y⊥xy. The operator ∨ is also called a
split-junction in the context of team semantics. Note that in the literature there
exist two semantics for the split-junction: lax and strict semantics (e.g., Hella
et al. [14]). Strict semantics requires the “splitting of the team” to be a partition
whereas lax semantics allows an “overlapping” of the team. Regarding PDL and
PIND, the complexity for SAT and MC is the same irrespective of the consid-
ered semantics. However, the picture is different for MC in PINC as depicted
in [14, page 627]. For any logic L, we denote MC under strict (respectively, lax)
semantics by MCs(MCl). Moreover, MCl is in P for PINC and consequently,
we have only MCs in Table 2.

3 Graph Representation of the Input

In order to consider specific structural parameters, we need to agree on a rep-
resentation of an input instance. We follow the conventions given in [22]. Well-
formed L-formulas, for every L ∈ {PDL,PINC,PIND}, can be seen as binary
trees (the syntax tree) with leaves as atomic subformulas (variables and depen-
dency atoms). Similarly to PDL [22], we take the syntax structure (defined
below) rather than syntax tree as a graph structure in order to consider treewidth
as a parameter. We use the same graph representation for each logic L. That is,
when an atom =(x;y) is replaced by either x ⊆ y or x⊥∅y, the graph repre-
sentation, and hence, the treewidth of this graph remains the same. Also, in the
case of MC, we include assignments in the graph representation. In the latter
case, we consider the Gaifman graph of the structure that models both, the team
and the input formula.

Syntax Structure. Let φ be an L-formula with propositions {x1, . . . , xn}
and T = { s1, . . . sm } a team. The syntax structure AT,φ has the vocabu-
lary, τT,φ := {VAR1,SF1,�2,DEP2, isTrue2, isFalse2, r, c1, . . . , cm }, where the
superscript denote the arity of each relation. The universe of AT,φ is A :=
SF(φ) ∪ Var(φ) ∪ { cA

1 , . . . , cA
m }, where SF(φ) and Var(φ) denote the set of sub-

formulas and variables appearing in φ, respectively.

– SF and VAR are unary relations: ‘is a subformula of φ’ and ‘is a variable in
φ’.

Parameterized Complexity of PINC and PIND 279

Fig. 1. An example syntax tree (left) with the corresponding Gaifman graph (middle)
and a tree decomposition (right) for (x3 ∨¬x1)∧(

x3 ⊆ x4 ∨ (x1 ∧x2)
)
. We abbreviated

subformulas in the inner vertices of the Gaifman graph for better presentation.

– � is a binary relation such that ψ �A α iff α is an immediate subformula of
ψ. That is, either ψ = ¬α or there is a β ∈ SF(φ) such that ψ = α ⊕ β where
⊕ ∈ {∧,∨}. Moreover, r is a constant symbol representing φ.

– DEP is a binary relation connecting L-atoms and its parameters. For example,
if α = x ⊆ y and x, y ∈ x ∪ y, then DEP(α, x) and DEP(x, y) are true.

– The set { c1, . . . , cm } encodes the team T . Each ci ∈ τT,φ corresponds to an
assignment si ∈ T for i ≤ m, interpreted as cA

i ∈ A.
– isTrue and isFalse relate VAR with c1, . . . , cm. isTrue(c, x) (resp., isFalse(c, x))

is true iff x is mapped to 1 (resp., 0) by the assignment in T interpreted by
c.

The syntax structure Aφ over a vocabulary τφ is defined analogously. Here τφ

neither contains the team related relations nor the constants cA
i for 1 ≤ i ≤ m.

Gaifman Graph. Let T be a team, φ an L-formula, AT,φ and A as above.
The Gaifman graph GT,φ = (A,E) of the τT,φ-structure AT,φ is defined as
E :=

{ {u, v} ∣
∣ u, v ∈ A, such that there is an R ∈ τT,φ with (u, v) ∈ R

}
. Anal-

ogously, we let Gφ to be the Gaifman graph for the τφ-structure Aφ.
Note that for Gφ we have E = DEP ∪ � and for GT,φ we have that E =

DEP∪ � ∪ isTrue ∪ isFalse.

Treewidth. A tree decomposition of a graph G = (V,E) is a tree T = (B,ET),
where the vertex set B ⊆ P(V) is a collection of bags and ET is the edge relation
such that (1)

⋃
b∈B b = V , (2) for every {u, v } ∈ E there is a bag b ∈ B with

u, v ∈ b, and (3) for all v ∈ V the restriction of T to v (the subset with all bags
containing v) is connected. The width of a tree decomposition T = (B,ET) is
the size of the largest bag minus one: maxb∈B |b| − 1. The treewidth of a graph
G is the minimum over widths of all tree decompositions of G. The treewidth of
a tree is one. Intuitively, it measures the tree-likeness of a given graph.

Example 4 (Adapted from [22]). Figure 1 represents the Gaifman graph of the
syntax structure Aφ (in middle) with a tree decomposition (on the right). Since
the largest bag is of size 3, the treewidth of the given decomposition is 2. Figure 2
presents the Gaifman graph of AT,φ, that is, when the team T = {s1, s2} =
{0011, 1110} is part of the input (an assignment s is denoted as s(x1 . . . x4)).

280 Y. Mahmood and J. Virtema

Fig. 2. The Gaifman graph for 〈T, Φ〉 (Example 4) with a possible tree decomposition.

Parameterizations. We consider eight different parameters for MC and six for
SAT. For MC, we include formula-tw, formula-team-tw, team-size, formula-size,
#variables, formula-depth, #splits and arity. However, for SAT, formula-team-tw
and team-size are not meaningful. All these parameters arise naturally in prob-
lems we study. Let T be a team and φ an L-formula. #splits denotes the number
of times a split-junction (∨) appears in φ and #variables denotes the number
of distinct propositional variables. formula-depth is the depth of the syntax tree
of φ, that is, the length of the longest path from root to any leaf in the syntax
tree. team-size is the cardinality of the team T , and formula-size is |φ|. For a
dependence atom =(x;y) and inclusion atom x ⊆ y, the arity is defined as |x|
(recall that |x| = |y| for an inclusion atom), whereas, for an independence atom
x⊥zy, it is the number of distinct variables appearing in x⊥zy. Finally, arity
denotes the maximum arity of any L-atom in φ. Regarding treewidth, recall that
for MC, we also include the assignment-variable relation in the graph representa-
tion. This yields two graphs: Gφ for φ, and GT,φ for 〈T, φ〉. Consequently, there
are two treewidth notions. formula-tw is the treewidth of Gφ and formula-team-tw
is the treewidth of GT,φ. The name emphasises whether the team is also part
of the graph. As we pointed out formula-team-tw and team-size are both only
relevant for MC because an instance of SAT does not contain a team.

Given an instance 〈T, φ〉 and a parameterisation κ, then κ(T, φ) denotes
the parameter value of 〈T, φ〉. The following relationship between several of the
aforementioned parameters was proven for PDL. It is easy to observe that the
lemma also applies to PINC and PIND.

Lemma 5 ([22]). Let L ∈ {PDL,PINC,PIND}, φ an L-formula and T be a
team. Then, team-size(T, φ) ≤ 2#variables(T,φ), team-size(T, φ) ≤ 2formula-size(T,φ),
and formula-size(T, φ) ≤ 22·formula-depth(T,φ).

Moreover, recall that we use the same graph representation for PDL,PINC and
PIND. As a consequence, the following result also applies.

Corollary 6 ([22]). Let L ∈ {PDL,PINC,PIND}, φ an L-formula and T be
a team. Then formula-team-tw(T, φ) bounds team-size(T, φ).

Parameterized Complexity of PINC and PIND 281

4 Complexity of Inclusion and Independence Logic

We start with general complexity results that hold for any team based logic
whose atoms are P-checkable. An atom α is P-checkable if given a team T ,
T |= α can be checked in polynomial time. It is immediate that each atom
considered in this paper is P-checkable.

Theorem 7. Let L be a team based logic such that L-atoms are P-checkable,
then MC for L when parameterized by team-size is FPT.

Proof. We claim that the bottom up (brute force) algorithm for the model check-
ing of PDL [22, Theorem 17] works for any team based logic L such that L-
atoms are P-checkable. The algorithm begins by checking the satisfaction of
atoms against each subteam. This can be achieved in FPT-time since teamsize
and consequently the number of subteams is bounded. Moreover, by taking the
union of subteams for split-junction and keeping the same team for conjunction
the algorithm can find subteams for each subformula in FPT-time. Lastly, it
checks that the team T is indeed a satisfying team for the formula φ. For any
team based logic L, the FPT runtime is guaranteed if L-atoms are P-checkable.
Finally, the proof works for both strict and lax semantics. �

The following corollary to Theorem 7 is derived using Lemma 5 and Propo-
sition 3.

Corollary 8. Let L be a team based logic such that L-atoms are P-checkable,
then MC for L when parameterized by k is FPT, if k ∈ {formula-team-tw,
formula-depth,#variables, formula-size}.

The following theorem states results for satisfiability.

Theorem 9. Let L be a team based logic s.t. L-atoms are P-checkable, then
SAT for L when parameterized by k is FPT, if k ∈ {formula-depth,#variables}.
Proof. Notice first that the case for formula-size is trivial because any problem
parameterized by input size is FPT. Moving on, bounding formula-depth also
bounds formula-size, this yields FPT-membership for formula-depth in conjunc-
tion with Proposition 3. Finally, for #variables, one can enumerate all of the
22

#variables

-many teams in FPT-time and determine whether any of these satisfies
the input formula. The last step requires that the model checking parameter-
ized by team-size is FPT, which is true due to Theorem 7. This completes the
proof. �

Our main technical contributions are the following two theorems which estab-
lish that the satisfiability problem of PINC parameterized by arity is paraNP-
complete, and that SAT of PINC without disjunctions is tractable. We start
with the former. The hardness follows from the NP-completeness of PL. For
membership, we give a non-deterministic algorithm A solving SAT.

282 Y. Mahmood and J. Virtema

Theorem 10. There is a non-deterministic algorithm A that, given a PINC-
formula φ with arity k, runs in O(2k ·p(|φ|))-time and outputs a non-empty team
T such that T |= φ if and only if φ is satisfiable.

Proof. We present the proof for lax semantics first, towards the end we describe
some modifications that solve the case for strict semantics. Given an input
PINC-formula φ, the algorithm A operates on the syntax tree of φ and con-
structs a sequence of teams fi(ψ) for each ψ ∈ SF(φ) as follows. We let f0(ψ) := ∅
for each ψ ∈ SF(φ). Then, A begins by non-deterministically selecting a singleton
team f1(φ) for φ. For i ≥ 1, A implements the following steps recursively.

For odd i ∈ N, fi(ψ) is defined in a top-down fashion as follows.

1. fi(φ) := fi−1(φ) for i ≥ 3.
2. If ψ = ψ0 ∧ ψ1, let fi(ψ0) := fi(ψ) and fi(ψ1) := fi(ψ).
3. If ψ = ψ0 ∨ ψ1, then non-deterministically select two teams P0, P1 such that

P0 ∪ P1 = fi(ψ) \ fi−1(ψ) and set fi(ψj) := fi−1(ψj) ∪ Pj for j = 0, 1.
For even i, fi(ψ) is defined in a bottom-up fashion as follows.

4. If ψ ∈ SF(φ) is an atomic literal, then immediately reject if fi−1(ψ) �|= ψ
and set fi(ψ) := fi−1(ψ) otherwise. If ψ ∈ SF(φ) is an inclusion atom, then
construct fi(ψ) ⊇ fi−1(ψ) such that fi(ψ) |= ψ. For ψ := x ⊆ y, this is done
by (I) adding partial assignments t(y) := s(x) whenever an assignment s is a
cause for the failure of ψ, and (II) non-deterministically selecting extensions
of these assignments to the other variables.

5. If ψ = ψ0 ∧ ψ1, or ψ = ψ0 ∨ ψ1 let fi(ψ) := fi(ψ0) ∪ fi(ψ1).

A terminates by accepting when a fixed point is reached. That is, we obtain j ∈ N

such that fi(ψ) = fi+1(ψ) for each ψ ∈ SF(φ) when i ≥ j. Moreover, A rejects
if Step 4 triggers a rejection. Notice that the only step when new assignments
are added is at the atomic level. Whereas the split in Step 3 concerns those
assignments which arise from other subformulas through union in Step 5. We
first prove the following claim regarding the overall runtime for A.

Claim I. A runs in at most O(2k · p(|φ|)) steps for some polynomial p, where k
is the arity of φ. That is, a fixed point or rejection is reached in this time.

Proof of Claim. In each iteration i, either A rejects, or keeps adding new
assignments. Furthermore, new assignments are added only in the cases for
inclusion atoms. As a result, if A has not yet reached a fixed point the rea-
son is that some inclusion atom has generated new assignments. Since we take
union of subteams in the bottom-up step, the following top-down iteration in
Steps 2 and 3 may also add assignments in a subteam. That is, the subteams
from each ψ ∈ SF(φ) are propagated to other subformulas during each iteration.
Now, each inclusion atom of arity l ≤ k can generate at most 2l new assignments
due to Step 4 in the algorithm. Let n denote the number of inclusion atoms in
φ and k be their maximum arity. Then A iterates at most 2k · cn times, where
c is some constant due to the propagation of teams to other subformulas. This
implies that, if no rejection has occured, there is some j ≤ 2k · cn such that

Parameterized Complexity of PINC and PIND 283

fi(ψ) = fj(ψ) for each subformula ψ ∈ SF(φ) and i ≥ j. We denote this fixed
point by f∞(ψ) for each ψ ∈ SF(φ).

Now, we analyze the time it takes to compute each iteration. For odd i ≥ 1,
Steps 1 and 2 set the same team for each subformula and therefore take linear
time. Notice that the size of team in each iteration is bounded by 2k · n. This
holds because new assignments are added only in the case of inclusion atoms
and A starts with a singleton team. Consequently, Step 3 non-deterministically
splits the teams of size 2k · n in each iteration i for odd i ≥ 1. Moreover, Step 4
for even i requires (1) polynomial time in |fi(ψ)|, if ψ is an atomic literal, and
(2) non-deterministic polynomial time in 2l · |fi(ψ)| if ψ is an inclusion atom of
arity l ≤ k. Finally, the union in Step 5 again requires linear time. This implies
that each iteration takes at most a runtime of 2k · p(|φ|) for some polynomial p.
This completes the proof of Claim 1.

We now prove that A accepts the input formula φ if and only if φ is satisfiable.
Suppose that A accepts and let f∞(φ) denote the fixed point. We first prove by
induction that f∞(ψ) |= ψ for each subformula ψ of φ. Notice that there is some
i such that f∞(ψ) = fi(ψ). The case for atomic subformulas is clear due to
the Step 4 of A. For conjunction, observe that the team remains the same for
each conjunct. That is, when ψ = ψ0 ∧ ψ1 and the claim holds for f∞(ψi) and
ψi, then f∞(ψ) |= ψ0 ∧ ψ1 is true. For disjunction, if ψ = ψ0 ∨ ψ1 and f∞(ψi)
are such that f∞(ψi) |= ψi for i = 0, 1, then we have that f∞(ψ) |= ψ where
f∞(ψ) = f∞(ψ0) ∪ f∞(ψ1). In particular f∞(φ) |= φ and the correctness of our
algorithm follows.

For the other direction, suppose φ is satisfiable and T is a witnessing team.
Then there exists a labelling function for T and φ, given as follows.

I. The label for φ is T .
II. For every subformula ψ = ψ0 ⊕ ψ1 with subteam label P ⊆ T , the subteam

label for ψi is Pi (i = 0, 1) such that we have P0 = P1 = P , if ⊕ = ∧, and
P0 ∪ P1 = P if ⊕ = ∨,

III. Pψ |= ψ for every ψ ∈ SF(φ) with label Pψ.

Then we prove that there exists an accepting path when the non-deterministic
algorithm A operates on φ. We claim that when initiated on a subteam {s} ⊆
T , A constructs a fixed point f∞(φ) and halts by accepting φ. Recall that A

propagates teams back and forth until a fixed point is reached. Moreover, the new
assignments are added only at the atomic level. Let α := x ⊆ y be an inclusion
atom such that fi(α) �= ∅ for odd i, then A constructs a subteam fi+1(α) ⊇ fi(α)
(on a non-deterministic branch) containing assignments t from Pα such that
fi+1(α) |= α. Since, there are at most 2|y |-many different assignments for y, we
know that Step 4 applies to α at most 2|y | times. That is, once all the different
assignments for y have been checked in some iteration i: Step 4 does not add
any further assignments to fi′(α) for i′ ≥ i + 1. Finally, since there is a non-
empty team T such that T |= φ, this implies that A does not reject φ in any
iteration (because there is a choice for A to consider subteams guaranteed by
the labelling function). Consequently, A accepts by constructing a fixed point in

284 Y. Mahmood and J. Virtema

Fig. 3. The table (Right) indicates subteams for each ψ ∈ SF(φ) (Left). The teams
f1(ψ) and f3(ψ) are propagated top-down whereas f2(ψ) is propagated bottom-up. For
brevity we omit subformulas x1 and x2 of x1 ∧ x2.

at most O(2k ·p(|φ|))-steps (follows from Claim I). This completes the proof and
establishes the correctness.

A minor variation in the algorithm A solves SAT for the strict semantics.
When moving downwards, A needs to ensure that an assignment goes to only one
side of the split. Moreover, since the subteams are selected non-deterministically
for atomic subformulas, (in the bottom-up iteration) only subteams which can
split according to the strict semantics are considered. �

Example 11. We include an example to explain how A from the proof of Theo-
rem 10 operates. Figure 3 depicts the steps of A on a formula φ. An assignment
over {x1, . . . , x4} is seen as a tuple of length four. It is easy to observe that
the third iteration already yields a fixed point and that f3(ψ) = f4(ψ) for each
ψ ∈ SF(φ). In this example, the initial guess made by A is the team {0110}.

The following corollaries follow immediately from the proof of Theorem 10.

Corollary 12. Given a PINC-formula φ with arity k, then φ is satisfiable if
and only if there is a team T of size at most O(2k · p(|φ|)) such that T |= φ.

Proof. Simulate the algorithm A from the proof of Theorem 10. Since φ is satis-
fiable, A halts in at most O(2k · p(|φ|))-steps and thereby yields a team (namely,
f∞(φ)) of the given size. �

Corollary 13. SAT for PINC, when parameterized by formula-tw of the input
formula is in paraNP.

Proof. Recall the Graph structure where we allow edges between variables within
an inclusion atom. This implies that for each inclusion atom α, there is a bag
in the tree decomposition that contains all variables of α. As a consequence, a
formula φ with treewidth k has inclusion atoms of arity at most k. Consequently,
SAT parameterized by treewidth of the input formula can be solved using the
paraNP-time algorithm from the proof of Theorem 10. �

Regarding the parameter #splits, the precise parameterized complexity is
still open for now. However, we prove that if there is no split in the formula,
then SAT can be solved in polynomial time. This case is interesting in its own

Parameterized Complexity of PINC and PIND 285

right because it gives rise to the so-called Poor Man’s PINC, similar to the case
of Poor Man’s PDL [6,21,23]. The model checking for this fragment is in P;
this follows from the fact that MC for PINC with lax semantics is in P. In the
following, we prove that SAT for Poor Man’s PINC is also in P.

Theorem 14. There is a deterministic algorithm B that given a PINC-formula
φ with no splits runs in P-time and accepts if and only if φ is satisfiable.

Proof. We give a recursive labelling procedure (B) that runs in polynomial time
and accepts if and only if φ is satisfiable. The labelling consists of assigning a
value c ∈ {0, 1} to each variable x.

1. Begin by labelling all PL-literals in φ by the value that satisfies them, namely
x = 1 for x and x = 0 for ¬x.

2. For each inclusion atom p ⊆ q and a labelled variable qi ∈ q, label the
variable pi ∈ p with same value c as for qi. Where pi appears in p at the
same position, as qi in q.

3. Propagate the label for pi from the previous step. That is, consider pi as a
labelled variable and repeat Step 2 for as long as possible.

4. If some variable x is labelled with two opposite values, then reject. Otherwise,
accept.

The fact that B works in polynomial time is clear because each variable is labelled
at most once. If a variable is labelled to two different values, then it gives a
contradiction and the procedure stops.

For the correctness, notice first that if B accepts then we have a partition
of Var(φ) into a set X of labelled variables and a set Y = Var(φ)\X. When B

stops, due to step 3, φ does not contain an inclusion atom p ⊆ q such that qi ∈ q
and pi ∈ p for some qi ∈ X, pi ∈ Y , where pi appears in p at the same position
as qi in q. Let T = {s ∈ 2Var(φ) | x is labelled with s(x), for each x ∈ X}. Since
B accepts, each variable x ∈ X has exactly one label and therefore assignments
in T are well-defined. Moreover T includes all possible assignments over Y . One
can easily observe that T |= φ. T satisfies each literal because each s ∈ T satisfies
it. Let p ⊆ q be an inclusion atom and s ∈ T be an assignment. We know that
for each x ∈ q that is fixed by s, the corresponding variable y ∈ p is also fixed,
whereas, T contains every possible value for variables in q which are not fixed.
This makes the inclusion atom true.

To prove the other direction, suppose that B rejects. Then there are three
cases under which a variable contains contradictory labels. Either both labels of
the variable are caused by a literal (Case 1), or inclusion atoms are involved in
one (Case 2), or both (Case 3) labels. In other words, either φ contains x ∧ ¬x
as a subformula, or it contains x∧¬y and there is a sequence of inclusion atoms,
such that keeping x = 1 and y = 0 contradicts some inclusion atoms in φ (see
Fig. 4).

Case 1 Both labels of a variable x are caused by a literal. In this case, x takes two
labels because φ contains x ∧ ¬x. The proof is trivial since φ is unsatisfiable.

286 Y. Mahmood and J. Virtema

Fig. 4. Intuitive explanation of two cases in the proof. (Left) x and ¬y propagate a
conflicting value to eachother. (Right) x and ¬y propagate conflicting values to v.

Fig. 5. Labels for literals and their propagation to inclusion atoms (See Example 15).

Case 2 One label of a variable y is caused by a literal (¬y or y) and the other
by inclusion atoms. Then, there are inclusion atoms pj ⊆ qj and variables
zj for j ≤ n such that: z0 = x, zn = y, and zj and zj+1 occur in the same
position in qj and pj , respectively, for 0 ≤ j < n. This implies that φ is not
satisfiable since for any team T such that T |= x∧¬y, T does not satisfy the
subformula

∧
j pj ⊆ qj of φ. A similar reasoning applies if φ contains ¬x ∧ y

instead.
Case 3 Both labels of a variable v are caused by inclusion atoms. Then, there

are two collections of inclusion atoms pj ⊆ qj for j ≤ n, and rk ⊆ sk for
k ≤ m. Moreover, there are two sequences of variables zx

j for j ≤ n and zy
k

for k ≤ m, and a variable v such that, zx
0 = x, zy

0 = y, zx
n = v = zy

m, and
1. for each j ≤ n, zx

j appears in qj at the same position, as zx
j+1 in pj ,

2. for each k ≤ m, zy
k appears in sk at the same position, as zy

k+1 in rk.
This again implies that φ is not satisfiable since for any T such that T |=
x ∧ ¬y, it does not satisfy the subformula

∧
j pj ⊆ qj ∧ ∧

k rk ⊆ sk of φ.

Consequently, the correctness follows. This completes the proof. �

Example 15. We include an example to highlights how B operates. Let φ :=
(x1 ∧ x2 ∧ ¬x4) ∧ (x1x3 ⊆ x5x2) ∧ (x5 ⊆ x4). The table in Fig. 5 illustrates the
steps of B on φ. Clearly, B rejects φ since the variable x1 has conflicting labels.

The FPT cases for SAT of PINC follow from Theorem 9. Regarding MC,
recall that we consider strict semantics alone. The results of Theorem 17 are
obtained from the reduction for proving NP-hardness of MCs for PINC [14].
Here we confirm that their reduction is indeed an fpt-reduction with respect to
considered parameters. The following lemma is essential for proving Theorem 17
and we include it for self containment.

Lemma 16 ([14]). MC for PINC under strict semantics is NP-hard.

Parameterized Complexity of PINC and PIND 287

Proof Idea. The hardness is achieved through a reduction from the set split-
ting problem to the model checking problem for PINC with strict seman-
tics. An instance of set splitting problem consists of a family F of sub-
sets of a finite set S. The problem asks if there are S1, S2 ⊆ S such that
S1 ∪ S2 = S, S1 ∩ S2 = ∅ and for each A ∈ F there exists a1, a2 ∈ A such
that a1 ∈ S1, a2 ∈ S2. Let F = {B1, . . . , Bn} and

⋃ F = S = {a1, . . . , ak}.
Let pi and qj denote fresh variables for each ai ∈ S and Bj ∈ F . Moreover, let
VF = {p1, . . . , pk, q1, . . . , qn, p�, pc, pd}. Then define TF = {s1, . . . , sk, sc, sd},
where each assignment si is defined as follows:

si(p) :=

⎧
⎪⎨

⎪⎩

1, if p = pi or p = p�,

1, if p = qj and ai ∈ Bj for some j,

0, otherwise.

That is, TF includes an assignment si for each ai ∈ S. The reduction also yields
the following PINC-formula.

φF := (¬pc ∧
∧

i≤n

p� ⊆ qi) ∨ (¬pd ∧
∧

i≤n

p� ⊆ qi)

Clearly, the split of TF into T1, T2 ensures the split of S into S1 and S2 and vice
versa. Whereas, sc and sd ensure that none of the split is empty. �

Theorem 17. MCs for PINC when parameterized by k is paraNP-complete
if k ∈ {#splits, arity, formula-tw}. Whereas, it is FPT in other cases.

Proof. Consider the PINC-formula φF from Lemma 16, which includes only
one split-junction and the inclusion atoms have arity one. This gives the desired
paraNP-hardness for MCs when parameterized by #splits and arity.

The proof for formula-tw is more involved and we prove the following
claim. �

Claim. φF has fixed formula-tw. That is, the treewidth of φF is independent of
the input instance F of the set-spliting problem. Moreover formula-tw(φF) ≤ 4.

Proof of Claim. The PINC-formula φF is related to an input instance F of the
set splitting problem only through its input size, which is n. Therefore the for-
mula structure remains unchanged when we vary an input instance, only the size
of two big conjunctions vary. To prove the claim, we give a tree decomposition
for the formula with formula-tw(φF) = 4. Since the treewidth is minimum over
all tree decompositions, this proves the claim. We rewrite the formula as below.

φF := (¬pc ∧l

∧

i≤n

p� ⊆l
i qi) ∨ (¬pd ∧r

∧

i≤n

p� ⊆r
i qi)

That is, each subformula is renamed so that it is easy to identify as to which side
of the split it appears (e.g., p� ⊆l

i qi denotes the ith inclusion atom in the big
conjunction on the left, denoted as I l

i in the graph). The graphical representation

288 Y. Mahmood and J. Virtema

Fig. 6. The Gaifman graph (Left) and a tree decomposition (Right) for φF . Note that
we abbreviated subformulas in the inner vertices of the Gaifman graph for presentation
reasons. Also, edges between p� and variables qi are omitted for better presentation,
but those are covered in the decomposition on the right.

of φF with V = SF(φF) ∪ Var(φF), as well as, a tree decomposition, is given in
Fig. 6. Notice that there is an edge between x and y in the Gaifman graph if and
only if either y is an immediate subformula of x, or y is a variable appearing in
the inclusion atom x. It is easy to observe that the decomposition presented in
Fig. 6 is indeed a valid tree decomposition in which each node is labelled with
its corresponding bag. Moreover, since the maximum bag size is 5, the treewidth
of this decomposition is 4. This proves the claim. �

The remaining FPT-cases for MCs follow from Theorem 7 and Corollary 8. This
completes the proof to our theorem. �

Recall that a dependence atom =(x;y) is equivalent with the independence
atom y⊥xy. As a consequence, (in the classical setting) hardness results for PDL
immediately translate to those for PIND. Nevertheless, in the parameterized
setting, one has to further check whether this translation ‘respects’ the parameter
value of the two instances. This concerns the parameter arity and formula-tw. This
is due to the reason that, a dependence atom =(x;y) has arity |x|, whereas, the
equivalent independence atom y⊥xy has arity |x ∪ y|.
Theorem 18. MC for PIND, when parameterized by k is paraNP-complete
if k ∈ {#splits, arity, formula-tw}. Whereas, it is FPT in other cases.

Proof. Notice that MC for PDL when parameterized by k ∈ {arity,#splits,
formula-tw} is also paraNP-complete. We argue that in reductions for PDL,
replacing dependence atoms by the equivalent independence atoms yield fpt-
reduction for the above mentioned cases. Moreover, this holds for both strict
and lax semantics.

For formula-tw and arity, when proving paraNP-hardness of PDL, the result-
ing formula has treewidth of one [22, Cor. 16] and the arity is zero [22, The-
orem 15]. Moreover, only dependence atoms of the form =(; p) where p is a
propositional variable, are used and the syntax structure of the PDL-formula
is already a tree. Consequently, replacing =(; p) with p⊥∅p implies that only

Parameterized Complexity of PINC and PIND 289

independence atoms of arity 1 are used. Notice also that replacing dependence
atoms by independence atoms does not increase the treewidth of the input for-
mula. This is because when translating dependence atoms into independence
atoms, no new variables are introduced. As a result, the reduction also preserves
the treewidth. This proves the claim as 1-slice regarding both parameters arity
and formula-tw, is NP-hard.

Regarding the #splits, the claim follows due to Mahmood and Meier [22,
Theorem 18] because the reduction from the colouring problem uses only 2 splits.

Finally, the FPT cases follow from Theorem 7 and Corollary 8. �

Theorem 19. SAT for PIND, parameterized by arity is paraNP-complete.
Whereas, it is FPT in other cases.

Proof. Recall that PL is a fragment of PIND. This immediately gives paraNP-
hardness when parameterized by arity, because SAT for PL is NP-complete. The
paraNP-membership is clear since SAT for PIND is also NP-complete [12,
Theorem 1]. The FPT cases for k ∈ {formula-depth,#variables} follow because
of Theorem 9 . The cases for #splits and formula-tw follow due to a similar
reasoning as in PDL [22] because it is enough to find a singleton satisfying team
[13, Lemma 4.2]. This completes the proof. �

5 Concluding Remarks

We presented a parameterized complexity analysis for PINC and PIND. The
problems we considered were satisfiability and model checking. Interestingly, the
parameterized complexity results for PIND coincide with that of PDL [22] in
each case. Moreover, the complexity of model checking under a given parameter
remains the same for all three logics. We proved that for a team based logic L
such that L-atoms can be evaluated in P-time, MC for L when parameterized
by team-size is always FPT.

It is interesting to notice that for PDL and PIND, SAT is easier than MC
when parameterized by formula-tw. This is best explained by the fact that PDL is
downwards closed and a formula is satisfiable iff some singleton team satisfies it.
Moreover, PIND also satisfies this ‘satisfiable under singleton team’ property.
The parameters team-size and formula-team-tw are not meaningful for SAT due
to the reason that we do not impose a size restriction for the satisfying team
in SAT. Furthermore, arity is quite interesting because SAT for all three logics
is paraNP-complete. This implies that while the fixed arity does not lower the
complexity of SAT in PDL and PIND, it does lower it from EXP-completeness
to NP-completeness for PINC. As a byproduct, we obtain that the complexity
of satisfiability for the fixed arity fragment of PINC is NP-complete. Thereby,
we answer an open question posed by Hella and Stumpf [15, P.13]. The paraNP-
membership of SAT when parameterized by arity implies that one can encode the
problem into classical satisfiability and employ a SAT-solver to solve satisfiability
for the fixed arity fragment of PINC. We leave as a future work the suitable

290 Y. Mahmood and J. Virtema

SAT-encoding for PINC that runs in FPT-time and enables one to use SAT-
solvers. Further future work involves finding the precise complexity of SAT for
PINC when parameterized by #splits and formula-tw.

Acknowledgement. This work was supported by the European Union’s Horizon
Europe research and innovation programme within project ENEXA (101070305) and
by the German Research Foundation (DFG), project VI 1045/1-1.

References

1. Corander, J., Hyttinen, A., Kontinen, J., Pensar, J., Väänänen, J.: A logical app-
roach to context-specific independence. Ann. Pure Appl. Logic 170(9), 975–992
(2019). https://doi.org/10.1016/j.apal.2019.04.004

2. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. TCS,
Springer, London (2013). https://doi.org/10.1007/978-1-4471-5559-1

3. Durand, A., Hannula, M., Kontinen, J., Meier, A., Virtema, J.: Approximation and
dependence via multiteam semantics. Ann. Math. Artif. Intell. 83(3–4), 297–320
(2018). https://doi.org/10.1007/s10472-017-9568-4

4. Durand, A., Hannula, M., Kontinen, J., Meier, A., Virtema, J.: Probabilistic team
semantics. In: Ferrarotti, F., Woltran, S. (eds.) FoIKS 2018. LNCS, vol. 10833, pp.
186–206. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-90050-6 11

5. Ebbing, J., Hella, L., Meier, A., Müller, J.-S., Virtema, J., Vollmer, H.: Extended
modal dependence logic EMDL. In: Libkin, L., Kohlenbach, U., de Queiroz, R.
(eds.) WoLLIC 2013. LNCS, vol. 8071, pp. 126–137. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-39992-3 13

6. Ebbing, J., Lohmann, P.: Complexity of model checking for modal dependence
logic. In: Bieliková, M., Friedrich, G., Gottlob, G., Katzenbeisser, S., Turán, G.
(eds.) SOFSEM 2012. LNCS, vol. 7147, pp. 226–237. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-27660-6 19

7. Flum, J., Grohe, M.: Parameterized Complexity Theory. TTCSAES, Springer, Hei-
delberg (2006). https://doi.org/10.1007/3-540-29953-X

8. Galliani, P.: Inclusion and exclusion dependencies in team semantics - on some log-
ics of imperfect information. Ann. Pure Appl. Logic 163(1), 68–84 (2012). https://
doi.org/10.1016/j.apal.2011.08.005

9. Hannula, M., Kontinen, J., Van den Bussche, J., Virtema, J.: Descriptive complex-
ity of real computation and probabilistic independence logic. In: LICS 2020, pp.
550–563. ACM (2020). https://doi.org/10.1145/3373718.3394773

10. Hannula, M., Kontinen, J., Lück, M., Virtema, J.: On quantified propositional
logics and the exponential time hierarchy. In: GandALF. EPTCS, vol. 226, pp.
198–212 (2016)

11. Hannula, M., Kontinen, J., Virtema, J.: Polyteam semantics. J. Log. Comput.
30(8), 1541–1566 (2020). https://doi.org/10.1093/logcom/exaa048

12. Hannula, M., Kontinen, J., Virtema, J., Vollmer, H.: Complexity of propositional
independence and inclusion logic. In: Italiano, G.F., Pighizzini, G., Sannella, D.T.
(eds.) MFCS 2015. LNCS, vol. 9234, pp. 269–280. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-48057-1 21

13. Hannula, M., Kontinen, J., Virtema, J., Vollmer, H.: Complexity of propositional
logics in team semantic. ACM Trans. Comput. Log. 19(1), 2:1–2:14 (2018). https://
doi.org/10.1145/3157054

https://doi.org/10.1016/j.apal.2019.04.004
https://doi.org/10.1007/978-1-4471-5559-1
https://doi.org/10.1007/s10472-017-9568-4
https://doi.org/10.1007/978-3-319-90050-6_11
https://doi.org/10.1007/978-3-642-39992-3_13
https://doi.org/10.1007/978-3-642-27660-6_19
https://doi.org/10.1007/3-540-29953-X
https://doi.org/10.1016/j.apal.2011.08.005
https://doi.org/10.1016/j.apal.2011.08.005
https://doi.org/10.1145/3373718.3394773
https://doi.org/10.1093/logcom/exaa048
https://doi.org/10.1007/978-3-662-48057-1_21
https://doi.org/10.1145/3157054
https://doi.org/10.1145/3157054

Parameterized Complexity of PINC and PIND 291

14. Hella, L., Kuusisto, A., Meier, A., Virtema, J.: Model checking and validity in
propositional and modal inclusion logics. J. Log. Comput. 29(5), 605–630 (2019).
https://doi.org/10.1093/logcom/exz008

15. Hella, L., Stumpf, J.: The expressive power of modal logic with inclusion atoms.
In: Proceedings of the 6th GandALF, pp. 129–143 (2015)

16. Hyttinen, T., Paolini, G., Väänänen, J.: A logic for arguing about probabilities in
measure teams. Arch. Math. Logic 56(5–6), 475–489 (2017). https://doi.org/10.
1007/s00153-017-0535-x

17. Kontinen, J., Mahmood, Y., Meier, A., Vollmer, H.: Parameterized complexity of
weighted team definability (2023). https://doi.org/10.48550/arXiv.2302.00541

18. Kontinen, J., Meier, A., Mahmood, Y.: A parameterized view on the complexity
of dependence and independence logic. J. Log. Comput. 32(8), 1624–1644 (2022).
https://doi.org/10.1093/logcom/exac070

19. Krebs, A., Meier, A., Virtema, J.: A team based variant of CTL. In: TIME 2015,
pp. 140–149 (2015). https://doi.org/10.1109/TIME.2015.11

20. Krebs, A., Meier, A., Virtema, J., Zimmermann, M.: Team semantics for the specifi-
cation and verification of hyperproperties. In: MFCS 2018, vol. 117, pp. 10:1–10:16.
Dagstuhl, Germany (2018). https://doi.org/10.4230/LIPIcs.MFCS.2018.10

21. Lohmann, P., Vollmer, H.: Complexity results for modal dependence logic. Stud.
Logica 101(2), 343–366 (2013). https://doi.org/10.1007/s11225-013-9483-6

22. Mahmood, Y., Meier, A.: Parameterised complexity of model checking and satisfi-
ability in propositional dependence logic. Ann. Math. Artif. Intell. 90(2), 271–296
(2021). https://doi.org/10.1007/s10472-021-09730-w

23. Meier, A., Reinbold, C.: Enumeration complexity of poor man’s propositional
dependence logic. In: Ferrarotti, F., Woltran, S. (eds.) FoIKS 2018. LNCS, vol.
10833, pp. 303–321. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
90050-6 17

24. Peterson, G., Reif, J., Azhar, S.: Lower bounds for multiplayer noncooperative
games of incomplete information. Comput. Math. Appl. 41(7), 957–992 (2001)

25. Peterson, G.L., Reif, J.H.: Multiple-person alternation, pp. 348–363. IEEE Com-
puter Society (1979). https://doi.org/10.1109/SFCS.1979.25

26. Pippenger, N.: Theories of Computability. Cambridge University Press, Cambridge
(1997)

27. Shukla, A., Biere, A., Pulina, L., Seidl, M.: A survey on applications of quantified
Boolean formulas. In: ICTAI 2019 (2019). https://doi.org/10.1109/ICTAI.2019.
00020

28. Väänänen, J.: Dependence Logic. Cambridge University Press, Cambridge Cam-
bridge (2007)

29. Väänänen, J., Hodges, W.: Dependence of variables construed as an atomic formula
(2008)

30. Virtema, J.: Complexity of validity for propositional dependence logics. Inf. Com-
put. 253, 224–236 (2017). https://doi.org/10.1016/j.ic.2016.07.008

https://doi.org/10.1093/logcom/exz008
https://doi.org/10.1007/s00153-017-0535-x
https://doi.org/10.1007/s00153-017-0535-x
https://doi.org/10.48550/arXiv.2302.00541
https://doi.org/10.1093/logcom/exac070
https://doi.org/10.1109/TIME.2015.11
https://doi.org/10.4230/LIPIcs.MFCS.2018.10
https://doi.org/10.1007/s11225-013-9483-6
https://doi.org/10.1007/s10472-021-09730-w
https://doi.org/10.1007/978-3-319-90050-6_17
https://doi.org/10.1007/978-3-319-90050-6_17
https://doi.org/10.1109/SFCS.1979.25
https://doi.org/10.1109/ICTAI.2019.00020
https://doi.org/10.1109/ICTAI.2019.00020
https://doi.org/10.1016/j.ic.2016.07.008

Parallelism in Realizability Models

Satoshi Nakata(B)

Research Institute for Mathematical Sciences, Kyoto University, Kyoto, Japan
nakata@kurims.kyoto-u.ac.jp

Abstract. Study of parallel operations such as Plotkin’s parallel-or has
promoted the development of the theory of programming languages. In
this paper, we consider parallel operations in the framework of categor-
ical realizability. Given a partial combinatory algebra A equipped with
an “abstract truth value” Σ (called predominance), we introduce the
notions of Σ-or and Σ-and combinators in A. By choosing a suitable A
and Σ, a form of parallel-or may be expressed as a Σ-or combinator.
We then investigate the relationship between these combinators and the
realizability model Ass(A) (the category of assemblies over A) and show
the following: under a natural assumption on Σ, (i) A admits Σ-and
combinator iff for any assembly X ∈ Ass(A) the Σ-subsets (canonical
subassemblies) of X form a poset with respect to inclusion. (ii) A admits
both Σ-and and Σ-or combinators iff for any X ∈ Ass(A) the Σ-subsets
of X form a lattice with respect to intersection and union.

Keywords: Realizability · Partial combinatory algebra · Parallel-or
function

1 Introduction

Traditionally, the realizability interpretation has been introduced as semantics of
intuitionistic arithmetic. It rigorously defines “what it means to justify a propo-
sition by an algorithm.” While it is originally formulated in terms of recursive
functions [8], it is later generalized to a framework based on Partial Combinatory
Algebras (PCAs), which include various computational models. The interpreta-
tion itself has been given a categorical generalization, such as the realizability
topos and the category of assemblies. In particular, in the category Ass(A) of
assemblies over PCA A, we can discuss implementation of mathematical struc-
tures and functions by algorithms [19]. Moreover, Ass(A) provide effective mod-
els to higher-order programming languages such as PCF [1,9,14].

In this paper, we will consider how the structure of the realizability model
Ass(A) is affected by the choice of a computational model A. More specifically,
we focus on the following two concepts.

I. Parallel operations in PCA:
Comparing Kleene’s first algebra K1 and term models of lambda calculus
as PCA, there is a difference in the degree of parallelism. For example, term

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
H. H. Hansen et al. (Eds.): WoLLIC 2023, LNCS 13923, pp. 292–304, 2023.
https://doi.org/10.1007/978-3-031-39784-4_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-39784-4_18&domain=pdf
https://doi.org/10.1007/978-3-031-39784-4_18

Parallelism in Realizability Models 293

models exclude Plotkin’s parallel-or function [16], whereas K1 does not. While
such a parallel operation has received a lot of attention in the theory of
programming languages, it also plays an implicit role in elementary recursion
theory. For example, the union of two semi-decidable sets U, V ⊆ N is again
semi-decidable precisely because a Turing machine can check whether input
n ∈ N belongs to U or to V in parallel. In this paper, we first consider a pair
of nonempty subsets Σ = (T, F) of PCA A as an “abstract truth value” and
define combinators Σ-or and Σ-and in A. In a suitable A, these notions may
express a form of parallel operations.

II. Σ-subsets in Ass(A):
It is known that such a pair Σ = (T, F) may be identified with a predom-
inance t : 1 → Σ in Ass(A), which is a morphism obtained by weakening
the condition for being a subobject classifier [9]. An important feature is
that, for every assembly X over A, Σ induces a certain class of “canonical”
subassemblies of X. It is called the class of Σ-subsets of X and is written
SubΣ(X). Unlike the subobject lattice Sub(X), SubΣ(X) does not form a
poset in general. When it does, Σ is called dominance and used to construct
a subcategory of (internal) domains in the context of Synthetic domain theory
[7,9,13,14,18].
Interestingly, considering a suitable Σ in Ass(K1), the Σ-subsets of a natural
number object exactly correspond to the semi-decidable subsets of N [11].
That is, the notion of Σ-subset can be regarded as a generalization of semi-
decidable set. From the discussion in I., we can expect that if A admits Σ-or,
then SubΣ(X) is closed under union.

The purpose of this paper is to give a precise correspondence between these
two concepts. In particular, we prove the following results. Under a natural
assumption on a predominance Σ, A admits Σ-and combinator if and only if,
for every assembly X, the Σ-subsets of X form a poset with respect to inclusion
(Theorem 24). Furthermore, A admits both Σ-and and Σ-or combinators if and
only if, for every assembly X, the Σ-subsets of X form a lattice with respect to
intersection and union (Theorem 28).

Outline

The structure of this paper is as follows. In Sect. 2, we give some basic definitions
and properties about PCAs. In Sect. 3, we introduce the notions of Σ-or and Σ-
and combinators in a PCA relative to an “abstract truth value” (predominance)
Σ. In Sect. 4, we proceed to the category Ass(A) of assemblies over A and the
notion of Σ-subset. Lastly, in Sect. 5, we discuss the relationship between Σ-or
and Σ-and combinators in A and the structure of the Σ-subsets in Ass(A).

2 Preliminary

We review some basic concepts and notations in realizability theory.

294 S. Nakata

Definition 1 ([9]). A partial combinatory algebra (PCA) is a set A equipped
with a partial binary operation · : A × A ⇀ A such that there exist elements k,
s ∈ A satisfying the conditions

k · x ↓, (k · x) · y = x, (s · x) · y ↓, ((s · x) · y) · z ∼= (x · z) · (y · z)

for any x, y, z ∈ A. Here ↓ is to be read as “defined” (and ↑ as “undefined”) and
∼= means that if one side is defined, then so is the other and they are equal. We
often write xy instead of x · y, and axy instead of (ax)y. A PCA is called total
if its operation is total. Obviously, a singleton forms a total PCA, that is called
a trivial PCA.

PCA is often regarded as an “abstract machine” and there are many inter-
esting examples: Turing machines, λ-calculus, the continuous functions of type
ωω → ω, a reflexive object in any cartesian-closed category [19]. A common
feature of PCAs is that they can imitate untyped λ-calculus as follows.

Notation 2. Let T (A) denote the set of terms generated by constants a, b, · · · ∈
A, variables x, y, · · · and binary function symbol ·. We write FV (t) for the set
of free variables occurring in t ∈ T (A).

Given a term t ∈ T (A) and a variable x, we define a new term λ∗x. t by induction
on the structure of t. For instance, λ∗x. x is defined by skk, λ∗x. t by kt if t is
either a variable y �= x or a constant a, and λ∗x. tt′ by s(λ∗x. t)(λ∗x. t′). By
repetition, we obtain an element λ∗x. t(x) in A for any x = x1, · · · , xn.

Theorem 3 ([9,19]). Let A be a PCA and t(x) ∈ T (A). Then, for any a1, · · · ,
an ∈ A, (λ∗x. t(x))a1 · · · an−1 is defined and (λ∗x. t(x))a1 · · · an

∼= t(a1, · · · , an)
holds.

Remark 4. In particular, λ∗x. (ab) := s(ka)(kb) ∈ A is always defined even if
a · b ↑. This dummy λ-abstraction is useful to lock the evaluation. It may be
later unlocked by applying it to an arbitrary element c in A:

(λ∗x. ab) · c ∼= a · b.

This technique is used in Sects. 3 and 5.

Notation 5. We use the following notations: i := λ∗x. x, true := λ∗xy. x,
false := λ∗xy. y, (if b then x else y) := bxy, 〈x, y〉 := λ∗z. zxy, fst := λ∗p. p(true),
snd := λ∗p. p(false).

In this paper, we are mainly interested in the following examples.

Example 6. (i) Kleene’s first algebra K1: Consider the set of natural numbers
N with a partial operation · : N × N ⇀ N defined by n · m := [[n]](m), where
[[n]] is the n-th partial computable function (with respect to a fixed effective
numbering of Turing machines). This PCA is called Kleene’s first algebra and
is denoted by K1. The undefinedness ↑ of a · b can be regarded as divergence
of computation.

Parallelism in Realizability Models 295

(ii) λ-term models: Let Λ0 be the set of closed λ-terms and T a λ-theory, that
is, a congruence relation on λ-terms which contains β-equivalence. Consider-
ing the quotient modulo T , we obtain a total PCA Λ0/T equipped with the
application operation.
Another variation of λ-term model is given based on the call-by-value reduc-
tion strategy on Λ0. A value is either an abstraction λx.M or a variable x.
Values are denoted by V,W and the set of closed values by Λ0

v. According
to [5, Definition 7], we define →cbv by the following binary relation (where
N ≡ N1, · · · , Nn with n ≥ 0):

(λx.M)V N →cbv M [V/x]N
M →cbv M ′

V MN →cbv V M ′N

That is, one reduces a term from left to right with the constraint that the
β-reduction can be applied only when the argument is a value. The transitive
reflexive closure of →cbv is denoted by �cbv. Note that the above reduction
is called the left reduction in Plotkin’s seminal work [15].
Define a partial operation · : Λ0

v × Λ0
v ⇀ Λ0

v by:

V1 · V2 := W if V1V2 �cbv W and W ∈ Λ0
v.

Otherwise, V1 ·V2 is undefined. Together with combinators S := λxyz. xz(yz)
and K := λxy. x, we obtain a non-total PCA (Λ0

v, ·).

3 Parallel Combinators in PCA

Recall that Plotkin’s parallel-or function porp, originally introduced in the con-
text of PCF [16], behaves as follows:

porpMN ⇓ true if M ⇓ true or N ⇓ true,
porpMN ⇓ false if M ⇓ false and N ⇓ false,
porpMN ⇑ otherwise

(where M , N are terms and M ⇓ V means that M evaluates to a value V). The
point is that evaluation of a term may diverge. Hence one has to evaluate the
arguments M , N in parallel to check if porpMN ⇓ true. Given porp, we may
define a term por such that

(1) porMN ⇓ iff M ⇓ or N ⇓,

that may be seen as a weaker form of parallel-or. We now consider such opera-
tions in a PCA A. To make things as general as possible, we define them relative
to two nonempty subsets (T, F) of A, which stand for “true/termination” and
“false/failure”, respectively.

The idea of dealing with two nonempty subsets of A is due to Longley. Actu-
ally he considered a more general notion of divergence in [9,10]. As he pointed
out, these data correspond to a predominance in the category Ass(A) of assem-
blies.

296 S. Nakata

Definition 7. Given S0, S1 ⊆ A, we define S0 × S1 := { 〈a0, a1〉 ∈ A | a0 ∈
S0 and a1 ∈ S1 }.

We call a pair Σ = (T, F) of nonempty subsets of A, which need not be
disjoint, a predominance on A. An element orΣ ∈ A is called a Σ-or combinator
if it satisfies

orΣ(T × T) ⊆ T, orΣ(T × F) ⊆ T,

orΣ(F × T) ⊆ T, orΣ(F × F) ⊆ F.

To be precise, orΣ(T ×T) ⊆ T means that for every f, g ∈ T , orΣ〈f, g〉 is defined
and belongs to T . Dually, an element andΣ ∈ A is called a Σ-and combinator if
it satisfies

andΣ(T × T) ⊆ T, andΣ(T × F) ⊆ F,

andΣ(F × T) ⊆ F, andΣ(F × F) ⊆ F.

We say that A admits Σ-or if there exists orΣ in A, and similarly for Σ-and.

Example 8. Let Σd := ({ true }, { false }). Then, every PCA admits Σd-or and
Σd-and because orΣd can be defined as

λ∗p. (if fst · p then true else (if snd · p then true else false)),

and similarly for andΣd .

Example 9. Berry showed the following sequentiality theorem. Consider a λ-
theory TBT that identifies λ-terms which have the same Böhm tree. In the PCA
Λ0/TBT , there is no term M such that

M〈i, Ω〉 = M〈Ω, i〉 = i, M〈Ω,Ω〉 = Ω,

where Ω := (λx. xx)(λx. xx) (See [2]). Hence Λ0/TBT does not admit Σ-or with
respect to Σ = ({ i }, {Ω }).

We next introduce an important predominance, which works uniformly for
all non-total PCAs. This example is essentially due to Mulry.

Definition 10 ([11]). For a non-total A, define a predominance Σsd :=
(Tsd, Fsd) by

Tsd := { a ∈ A | a · i ↓ }, Fsd := { a ∈ A | a · i ↑ }.

By definition, every Σsd-or combinator satisfies orΣsd〈f, g〉 ↓ and

orΣsd〈f, g〉 · i ↓ iff f · i ↓ or g · i ↓

for every f, g ∈ A. In analogy with (1), we simply call orΣsd a parallel-or com-
binator and dually call andΣsd a parallel-and. We have chosen i as the “key” to
“unlock” the evaluation, but actually it can be anything.

Parallelism in Realizability Models 297

Proposition 11. For every non-total PCA A, A admits parallel-or orΣsd if and
only if A has a combinator poru that satisfies poru〈f, g〉 ↓ and

poru〈f, g〉 · a ↓ iff f · a ↓ or g · a ↓
for any f, g, a ∈ A.

Let dom(f) denote the set { a ∈ A | f · a ↓ }. Then we have dom(poru〈f, g〉) =
dom(f) ∪ dom(g). Since subsets of the form dom(f) are precisely the semi-
decidable sets (computably enumerable sets) in K1, we may claim that our
parallel-or combinator has a generalized ability to take the union of two semi-
decidable sets.

Let us now examine which PCA admits parallel-and (resp. parallel-or). We
may expect that any PCA has a combinator which behaves as follows: “evaluate
f ·i first; if it terminates, evaluate g ·i next.” If we try to express this by a λ-term,
we get a Σsd-and combinator (parallel-and).

Theorem 12. Every non-total PCA admits parallel-and.

On the other hand, parallel-or is more subtle. It is certainly true that Turing
machines can perform a computation like: “evaluate f · i and g · i in parallel until
one of them terminates.” However, such a computation cannot be performed in
λ-calculus due to its sequential nature. Consequently,

Proposition 13. K1 admits both parallel-and and parallel-or, while Λ0
v admits

parallel-and but not parallel-or.

4 Predominances in the Category of Assemblies

In the modern theory of realizability, one builds a category over a given PCA A,
in such a way that elements of A are used to implement a function or to justify
a proposition in the constructive sense. There are several examples such as the
realizability topos RT(A), the category Ass(A) of assemblies and the category
Mod(A) of modest sets [19]. In particular, considering RT(K1), we can obtain
the effective topos of Hyland [6] and the standard interpretation of first-order
number theory in RT(K1) precisely corresponds to Kleene’s traditional realiz-
ability interpretation [8]. In this sense, such categories are called “realizability
models” in the literature.

We here focus on Ass(A), a full subcategory of RT(A). Notably, the lat-
ter can be obtained from the former by the exact completion [3,9]. Ass(A) is
more primitive than RT(A) and is sufficiently rich as semantics of programming
languages [1,9,14].

Definition 14. An assembly over A is a pair X = (|X|, || · ||X), where |X| is a
set and || · ||X : |X| → P(A) is a function such that ||x||X is nonempty for any
x ∈ |X|. An element a ∈ A is called a realizer of x if a ∈ ||x||X . A morphism of
assemblies f : (|X|, || · ||X) → (|Y |, || · ||Y) is a function f : |X| → |Y | which has
a realizer rf ∈ A, that is, for any x ∈ |X| and a ∈ ||x||X , rfa is defined and in
||f(x)||Y . We say that rf realizes f .

298 S. Nakata

One can verify that the assemblies and morphisms over A form a category
Ass(A) (whose composition and identity are inherited from the category of sets).
It has a terminal object given by 1 := ({ ∗ }, || · ||1) with ||∗||1 := A. Furthermore,
Ass(A) always has a natural number object (NNO) N . For example, a canonical
NNO in Ass(K1) is given by N := (N, || · ||N) with ||n||N := {n }. The hom-set
on N exactly corresponds the set of total computable functions on N.

Ass(A) is a finitely complete locally cartesian-closed category [9,19]. This is a
common feature of toposes such as the category of sets and realizability toposes.
Every topos, in addition, has a subobject classifier, while Ass(A) does not unless
A is trivial. Nevertheless, as one can see in [9,14], there is a useful concept of a
“restricted classifier”. Recall that a morphism t : 1 � Σ in a finitely complete
category is a subobject classifier if for every monomorphism m : U � X there
is exactly one morphism χm : X → Σ which gives a pullback diagram

U 1

X Σ.

!

m t

χm

χm is called the characteristic map of m. By slightly weakening the condition,
we obtain the concept of predominance.

Definition 15 ([17]). Let C be a finitely complete category and Σ an object of
C. A monomorphism t : 1 � Σ is a predominance if every monomorphism
m : U � X has at most one characteristic map χm in the above sense.

A subobject [m] of X (that is the equivalence class of a monomorphism m :
U � X) is called Σ-subset of X and written U ⊆Σ X if m arises as a pullback
of 1 � Σ. Let SubΣ(X) denote the set of Σ-subsets of X.

By definition, SubΣ(X) is a subclass of Sub(X), the class of subobjects of X. If
t : 1 � Σ is a subobject classifier, we have SubΣ(X) = Sub(X) for every X. One
can easily show that a predominance t : 1 � Σ is an isomorphism iff SubΣ(X)
consists of the equivalence class of isomorphisms. Such a predominance is called
trivial.

Longley discussed the above notions in Ass(A) [9]. Suppose that a monomor-
phism t : 1 � Σ in Ass(A) is a predominance. Then we can observe that the
cardinality of the underlying set |Σ| is no more than two. Further if card|Σ| = 1,
Σ is a terminal object in Ass(A), hence t is trivial. Thus the non-triviality of t
implies that Σ has a doubleton |Σ| = { t, f } as the underlying set, so it deter-
mines a predominance (||t||Σ , ||f ||Σ) on A. Conversely, each predominance (T, F)
on A induces a non-trivial predominance t : 1 � Σ with |Σ| := { t, f }, ||t||Σ := T
and ||f ||Σ := F . To sum up:

Theorem 16 ([9, Subsection 4.2]). The non-trivial predominances in Ass(A)
are in bijective correspondence with the predominances on A.

Moreover, every monomorphism m : U � X that arises as a pullback of t :
1 � Σ is isomorphic to the inclusion U ′ � X whose domain is a canonical
subassembly defined below.

Parallelism in Realizability Models 299

Definition 17. Let X be an assembly in Ass(A). An assembly U = (|U |, || · ||U)
is a canonical subassembly of X if |U | ⊆ |X| and ||x||U = ||x||X for any x ∈ |U |.
As a convention, we identify each element of SubΣ(X) with the associated
canonical subassembly of X and Σ-subset relation U ⊆Σ X with the inclusion
|U | ⊆ |X|.

Here we give two examples.

Example 18. 1. Σd = ({ true }, { false }): In this case, for a Σd-subset U of X
and its characteristic map χ : X → Σd, we have

x ∈ |U | ⇐⇒ χ(x) = t ⇐⇒ ∀a ∈ ||x||X rχ · a = true,

where rχ is a realizer of χ. When A = K1 and X is the canonical NNO N
given above, |U | is nothing but a decidable subset of N. That is, SubΣd(N)
is equal to the set of decidable subsets of N.

2. Σsd = (Tsd, Fsd): Similarly to (1), we obtain

x ∈ |U | ⇐⇒ ∀a ∈ ||x||X rχa · i ↓ .

Thus when A = K1 and X is the canonical NNO, |U | is the domain of a
partial computable function eU := λ∗n. (rχn) · i. Hence SubΣsd(N) coincides
with the set of semi-decidable subsets of N.

It is obvious that ⊆Σ is a reflexive, antisymmetric relation on SubΣ(X) with
the greatest element X and the least element ∅ (the empty assembly). But ⊆Σ

is not an order in general.

Definition 19. ([7,17]). A dominance on A is a predominance Σ such that ⊆Σ

is transitive.

Longley gave the following characterization of being a dominance in Ass(A).

Theorem 20 ([9, Proposition 4.2.7]). Let Σ = (T, F) be a predominance on
A. The following are equivalent.

1. Σ is a dominance.
2. There exists a combinator rμ ∈ A such that

rμ(T × (A ⇒ T)) ⊆ T, rμ(T × (A ⇒ F)) ⊆ F, rμ(F × A) ⊆ F,

where S0 ⇒ S1 denotes { e ∈ A | whenever a ∈ S0, ea ∈ S1 }.
Remark 21. The notion of predominance has been studied in the context of
Synthetic domain theory (SDT). It is one of the necessary pieces to construct
a subcategory of “abstract domains” in a suitable category C (such as Ass(A),
Mod(A)). Various axioms for predominance have been investigated by Hyland,
Phoa, Taylor and others, and being dominance is the first step towards SDT
[7,13,14,18]. In fact, when a predominance t is a dominance, it induces a lifting
monad ⊥ on Ass(A). By using this monad, Longley concretely demonstrated
how to construct a model of an extension of PCF. In this process, he showed that
the predominance Σsd on an arbitrary non-total A is a dominance [9, Example
4.2.9 (ii)].

300 S. Nakata

5 Parallel Combinators with Respect to Σ and Σ-Subsets

In this section, we will make clear the correspondence between the parallel com-
binators on A considered in Sect. 3 and the structure of Σ-subsets in Sect. 4.
Interestingly, under a natural assumption on a predominance, our notion of Σ-
and and the condition (2) of Theorem 20 correspond perfectly, thus we obtain
that if A admits Σ-and then the Σ-subsets form a poset with respect to inclu-
sion. In addition, we show that A admits Σ-or iff the Σ-subsets are closed under
union. This is a generalization of the correspondence between parallel-or and
union of semi-decidable sets discussed in Sect. 1.

Lemma 22. Let Σ = (T, F) be a predominance on A. If Σ is a dominance,
then A admits Σ-and.

Proof. By Theorem 20, A has a combinator rμ that satisfies

rμ(T × (A ⇒ T)) ⊆ T, rμ(T × (A ⇒ F)) ⊆ F, rμ(F × A) ⊆ F.

Defining andΣ := λ∗p. rμ〈fst p, k(snd p)〉, we obtain a Σ-and in A.

The converse holds under an additional assumption and we obtain the first char-
acterization theorem:

Definition 23. Given a, b ∈ A, we write a ∼= b if a · x ∼= b · x for every x ∈ A.
A predominance Σ = (T, F) is a called Rice partition of A if T is closed under
∼= and F = A \ T .

Theorem 24. Let Σ = (T, F) be a Rice partition of A. Then A admits Σ-and
iff Σ is a dominance iff (SubΣ(X),⊆Σ) is a poset for every X ∈ Ass(A).

Proof. We only need to show the forward direction of the first equivalence. Sup-
pose that A admits Σ-and. Letting l := λ∗xy.(x · i · y), lb is always defined and
(bi) · y ∼= (lb) · y for any b, y ∈ A. Since (T, F) is a Rice partition, we have

⎧
⎪⎨

⎪⎩

b ∈ (A ⇒ T) =⇒ bi ∈ T =⇒ lb ∈ T

b ∈ (A ⇒ F) =⇒ bi ∈ F =⇒ lb ∈ F

b ∈ A =⇒ lb ∈ T ∪ F

for any b ∈ A. We thus have the following implications:

a ∈ T and b ∈ (A ⇒ T) =⇒ a ∈ T and lb ∈ T

=⇒ andΣ〈a, lb〉 ∈ T,

a ∈ T and b ∈ (A ⇒ F) =⇒ a ∈ T and lb ∈ F

=⇒ andΣ〈a, lb〉 ∈ F,

a ∈ F and b ∈ A =⇒ a ∈ F and (lb ∈ T or lb ∈ F)
=⇒ andΣ〈a, lb〉 ∈ F.

Therefore rμ := λ∗p. andΣ〈fst p, l (snd p)〉 satisfies condition (2) of Theorem 20.

Parallelism in Realizability Models 301

Notice that if A is non-total, A naturally has a Rice partition, that is, Σsd =
(Tsd, Fsd). In conjunction with Theorem 12, we obtain Longley’s result that Σsd

is a dominance (See Remark 21).
Now suppose that Σ is a dominance. Then for every object X, (SubΣ(X),⊆Σ

) is a poset with the least and greatest elements. Moreover, it is automatically
equipped with binary meets (intersections).

Definition 25. Let U and V be canonical subassemblies of X. U ∩V denotes the
canonical subassembly of X such that |U ∩ V | := |U | ∩ |V | and ||x||U∩V := ||x||X
for any x ∈ |U | ∩ |V |. Similarly for U ∪ V .

It is well-known that the set Sub(X) of subobjects of X forms a lattice in Ass(A).
On the other hand:

Lemma 26. If Σ is a dominance, then, for every assembly X, SubΣ(X) is
closed under intersection ∩ and (SubΣ(X),⊆Σ ,∩) forms a meet-semilattice.

Proof. Let U , V be canonical subassemblies of X and m : U � X, n : V � X
the inclusions, respectively. Then U ∩ V can be obtained as in the following
pullback diagram:

U ∩ V U

V X.

n−1(m) m

n

If both U and V are Σ-subsets of X, then U ∩ V is a Σ-subset of V since
SubΣ(X) is closed under pullback. Hence U ∩ V is a Σ-subset of X. Recalling
the structure of the subobject lattice Sub(X), the binary meet appears as a
pullback. Thus ∩ behaves as a meet with respect to ⊆Σ .

This means that (SubΣ(X),⊆Σ) is a sub-meet-semilattice of Sub(X) when Σ is
a dominance.

Let us finally discuss the effect of having a Σ-or combinator in A. As we
have already seen in Sect. 3, a parallel-or in K1 has the ability to take the join of
two semi-decidable subsets. This fact can be generalized and refined as follows.
Notice that the assumption of Rice partition implies that U is a Σ-subset of X
iff there exists a characteristic map χU : X → Σ with a realizer rχU

satisfying

x ∈ |U | ⇐⇒ χU (x) = t ⇐⇒ rχU
(||x||X) ⊆ T.

The second equivalence is ensured by T ∩F = ∅. We are now ready to prove the
second characterization theorem.

Theorem 27. Let Σ = (T, F) be a predominance with T ∩ F = ∅. Then A
admits Σ-or if and only if SubΣ(X) is closed under union ∪ for every assembly
X.

Proof. We first show the forward direction. Let U, V be Σ-subsets of X, χU , χV

their characteristic maps and rχU
, rχV

their realizers, respectively. Then the

302 S. Nakata

canonical subassembly U ∪ V naturally induces a function χU∪V : |X| → |Σ|
such that

x ∈ |U | ∪ |V | ⇐⇒ χU∪V (x) = t.

Since A admits Σ-or, we can define rχU∪V
as λ∗x. orΣ〈rχU

x, rχV
x〉 in A. Then

rχU∪V
behaves as follows:

rχU∪V
(||x||X) ⊆ T ⇐⇒ rχU

(||x||X) ⊆ T or rχV
(||x||X) ⊆ T

⇐⇒ x ∈ |U | or x ∈ |V |
⇐⇒ x ∈ |U | ∪ |V |.

Thus rχU∪V
is a realizer of χU∪V and U ∪ V is a Σ-subset of X.

To show the backward direction, let us note the following two facts:

– Given two assemblies X and Y , the product X × Y in Ass(A) can be con-
cretely described as

|X × Y | := |X| × |Y |, ||(x, y)||X×Y := ||x||X × ||y||Y .

– Every subset S of A induces an assembly S such that

|S| := S, ||a||S := { a }.

For example, there is an assembly T ∪ F × T ∪ F that corresponds to the set
{ 〈a, b〉 ∈ A | a, b ∈ T ∪ F }.

Let H := T ∪ F . Then we have T ⊆Σ H because there is a characteristic map
χT : H → Σ such that χT (a) = t iff a ∈ T , and it is realized by i. Similarly, one
can easily verify the following relations:

T × H ⊆Σ H × H, H × T ⊆Σ H × H.

Lastly, since SubΣ(H × H) is closed under union, we obtain

T × H ∪ H × T ⊆Σ H × H.

This induces a characteristic map χ : H × H → Σ and a realizer rχ such that
for any a, b ∈ T ∪ F ,

a ∈ T or b ∈ T ⇐⇒ χ((a, b)) = t ⇐⇒ rχ(||(a, b)||H×H) ⊆ T.

Note that ||(a, b)||H×H = { 〈a, b〉 }. Hence rχ satisfies the following property: for
any a, b ∈ T ∪ F ,

– rχ · 〈a, b〉 belongs to T if a ∈ T or b ∈ T .
– Otherwise, rχ · 〈a, b〉 belongs to F .

Thus rχ is nothing but a Σ-or combinator.

By restricting to the case of Rice partition, we can summarize the role of Σ-and
and Σ-or as follows.

Parallelism in Realizability Models 303

Theorem 28. Suppose that Σ = (T, F) is a Rice partition of A. Then A admits
both Σ-and and Σ-or if and only if (SubΣ(X),⊆Σ ,∩,∪) forms a lattice for every
assembly X.

Proof. The backward direction is obvious by Theorem 24 and Theorem 27.
For the forward direction, it remains to check that ∪ behaves as a join with

respect to ⊆Σ . It is sufficient to verify the following claims: if U, V ⊆Σ X then

U ⊆Σ U ∪ V, U ∪ V ⊆Σ X.

The latter is just closure under union, that is already established by Theorem 27.
For the former, let χU : X → Σ be the characteristic map of U � X, which
exists by U ⊆Σ X. Then χU ||U∪V | : U ∪ V → Σ is the characteristic map of
U � U ∪ V , which is realized by any realizer of χU .

By recalling that a non-total PCA always has Rice partition Σsd that is a dom-
inance, we finally conclude:

Corollary 29. Let A be a non-total PCA. Then A admits parallel-or in A if and
only if (SubΣsd(X),⊆Σsd ,∩,∪) forms a lattice for every object X in Ass(A).

As we have stated in Proposition 13, Λ0
v is an example of a non-total PCA

that does not admit parallel-or. Therefore, one cannot always take a union of
Σsd-subsets in Ass(Λ0

v) unlike in Ass(K1).

6 Future Work

In this paper we have focused on Ass(A) among other realizability models. In
Ass(A), (non-trivial) predominances Σ are exactly those that arise from pairs
(T, F) of nonempty subsets of A. This simplicity has led to a handy description of
Σ-subsets as canonical subassemblies, and consequently a clear correspondence
between Σ-and/or combinators and the structure of SubΣ(X). All the results in
this paper hold for the category Mod(A) of modest sets over A too, that is a
full subcategory of Ass(A).

On the other hand, the situation is entirely different if we consider the realiz-
ability topos RT(A), that is the exact completion of Ass(A). The predominances
in RT(A) include the subobject clasifier as well as those associated with a local
operator j (a.k.a. Lawvere-Tierney topology) such as the predominance classi-
fying j-dense subobjects and the one classifying j-closed subobjects. Studying
parallel operations in relation to these predominances could be interesting, since
local operators in RT(A) correspond to subtoposes of RT(A) on one hand, and
can be seen as “generalized Turing degrees” on the other [4,6,12]. It is left to
future work.

Acknowledgment. I am grateful to my supervisor, Kazushige Terui, and Naohiko
Hoshino for many useful discussions. This work is supported by JST Grant Number
JPMJFS2123.

304 S. Nakata

References

1. Abramsky, S., Lenisa, M.: Linear realizability and full completeness for typed
lambda-calculi. Ann. Pure Appl. Logic 134(2–3), 122–168 (2005)

2. Barendregt, H.P.: The Lambda Calculus: Its Syntax and Semantics, vol. 103. Stud-
ies in Logic and the Foundations of Mathematics. Elsevier, Amsterdam (1984)

3. Carboni, A., Freyd, P.J., Scedrov, A.: A categorical approach to realizability and
polymorphic types. In: Main, M., Melton, A., Mislove, M., Schmidt, D. (eds.)
MFPS 1987. LNCS, vol. 298, pp. 23–42. Springer, Heidelberg (1988). https://doi.
org/10.1007/3-540-19020-1_2

4. Faber, E., van Oosten, J.: More on geometric morphisms between realizability
toposes. Theory Appl. Categories 29, 874–895 (2014)

5. Guerrieri, G.: Head reduction and normalization in a call-by-value lambda-calculus.
In Chiba, Y., Escobar, S., Nishida, N., Sabel, D., Schmidt-Schauß, M. (eds.) 2nd
International Workshop on Rewriting Techniques for Program Transformations and
Evaluation (WPTE 2015), vol. 46 of OpenAccess Series in Informatics (OASIcs),
pp. 3–17, Dagstuhl, Germany (2015). Schloss Dagstuhl-Leibniz-Zentrum fuer Infor-
matik

6. Hyland, J.M.E.: The effective topos. In: The L E.J. Brouwer Centenary Sym-
posium, vol. 110 of Stud. Logic Foundations Math. North-Holland, pp. 165–216
(1982)

7. Hyland, J.M.E.: First steps in synthetic domain theory. In Category Theory, LNM,
vol. 1488, pp. 131–156 (1991)

8. Kleene, S.C.: On the interpretation of intuitionistic number theory. J. Symb. Log.
10, 109–124 (1945)

9. Longley, J.R.: Realizability Toposes and Language Semantics. PhD thesis, Univer-
sity of Edinburgh (1994)

10. Longley, J.R., Simpson, A.K.: A uniform approach to domain theory in realizability
models. Math. Struct. Comput. Sci. 7(5), 469–505 (1997)

11. Mulry, P.S.: Generalized Banach-Mazur functionals in the topos of recursive sets.
J. Pure Appl. Algebra 26(1), 71–83 (1982)

12. Phoa, W.: Relative computability in the effective topos. Math. Proc. Cambridge
Philos. Soc. 106, 419–422 (1989)

13. Phoa, W.: Domain Theory in Realizability Toposes. PhD thesis, University of
Cambridge (1990)

14. Phoa, W.: From term models to domains. Inf. Comput. 109(1), 211–255 (1994)
15. Plotkin, G.D.: Call-by-name, call-by-value and the λ-calculus. Theoret. Comput.

Sci. 1(2), 125–159 (1975)
16. Plotkin, G.D.: LCF considered as a programming language. Theoret. Comput. Sci.

5(3), 223–255 (1977)
17. Rosolini, G.: Continuity and Effectiveness in Topoi. PhD thesis, University of

Oxford (1986)
18. Taylor, P.: The fixed point property in synthetic domain theory. In: Proceedings

Sixth Annual IEEE Symposium on Logic in Computer Science, pp. 152–160 (1991)
19. van Oosten, J.: Realizability: an introduction to its categorical side, vol. 152 of

Studies in Logic and the Foundations of Mathematics. Elsevier (2008)

https://doi.org/10.1007/3-540-19020-1_2
https://doi.org/10.1007/3-540-19020-1_2

Bisimulations Between Verbrugge Models
and Veltman Models

Tin Perkov(B)

Faculty of Teacher Education, University of Zagreb, Zagreb, Croatia

tin.perkov@ufzg.hr

Abstract. Veltman semantics is the basic Kripke-like semantics for
interpretability logic. Verbrugge semantics is a generalization of Veltman
semantics. An appropriate notion of bisimulation between a Verbrugge
model and a Veltman model is developed in this paper. We show that
a given Verbrugge model can be transformed into a bisimilar Veltman
model.

Keywords: Modal logic · Interpretability logic · Bisimulations

1 Introduction

Interpretability logic is an extension of provability logic, which formalizes the
notion of relative interpretability between arithmetical first-order theories. Intu-
itively, we say that such a theory T interprets another theory T ′ if there is a
translation from the language of T ′ to the language of T such that all trans-
lations of axioms of T ′ are provable in T . Intepretability logic is a modal logic
which, together with usual unary modality �, whose intended interpretation in
this context is provability, has another modality �, which is binary. Formulas of
the form A � B are intended to mean that some base theory T extended with
the formula A interprets the theory obtained by extending the same base theory
T with the formula B. In this paper we will only deal with modal semantics
of interpretability logic in general, so we omit overviewing axiomatic systems of
interpretability logic (cf. e.g. [9] for this, and also for more details on arithmetical
aspects).

The basic semantics of interpretability logic is defined on Veltman mod-
els, Kripke-like structures built over standard Kripke models of provability
logic, which means that the accessibility relation is transitive and converse well
founded, by adding a family of relations Sw between worlds R-accessible from
w, for each world w in the model, satisfying certain properties, e.g. reflexivity
and transitivity (a precise definition is given in the next section). Verbrugge
semantics ([8], cf. also [1]) is a generalization in which relations Sw are no longer
between worlds, but between worlds and sets of worlds. This semantics proved
to be useful in showing some independence results which could not be proved
using Veltman semantics ([11]), in proving some completeness results in cases of

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
H. H. Hansen et al. (Eds.): WoLLIC 2023, LNCS 13923, pp. 305–317, 2023.
https://doi.org/10.1007/978-3-031-39784-4_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-39784-4_19&domain=pdf
http://orcid.org/0000-0001-8916-0489
https://doi.org/10.1007/978-3-031-39784-4_19

306 T. Perkov

incompleteness w.r.t. Veltman semantics ([2,5]), and it also enabled using filtra-
tion technique, which could not be used on Veltman models, in order to prove
finite model property and consequently some decidability results ([4,6]).

This paper addresses the following question: for a given Verbrugge model,
can we obtain a Veltman model which would be closely related with the initial
Verbrugge model, preferably by some appropriately defined notion of bisimula-
tion, or at least by modal equivalence. This question is natural, since Veltman
models are still appealing due to their relative simplicity, so we would like to keep
them as the basic semantics and it would be nice to have a bridge by which we
could possibly transfer some results from Verbrugge semantics back to Veltman
semantics, or better understand why some of them cannot be transferred.

It is not surprising that this question was being addressed from the very
beginning of work on Verbrugge semantics: already in [8] (cf. also [7]) a transfor-
mation of a given Verbrugge model to a modally equivalent Veltman model was
provided, but using different notion of Verbrugge model than the one used in the
present paper (different notions of Verbrugge models come from various possible
ways to define so-called quasi-transitivity, a property of Verbrugge models which
corresponds to transitivity of relations Sw in Veltman models). Similar attempt
in [10] resulted in Veltman model bisimilar to a given Verbrugge model in a cer-
tain sense, but under additional conditions of image-finiteness and inverse image-
finiteness. Also, this was an indirect result: bisimilarity was observed between
the same kind of structures, after a transformation. In the present paper we will
work with a directly defined notion of bisimulation between different kinds of
structures, namely between a Verbrugge model and a Veltman model, and we
will be able to avoid additional constraints on these structures.

In Sect. 2 we recall basic definitions and we define the notion of bisimulation
between a Verbrugge model and a Veltman model. In Sect. 3 we provide argu-
ments in favour of thus defined notion, e.g. we prove an analogue of Hennessy-
Milner theorem. In Sect. 4 we obtain a Veltman model bisimilar to a given Ver-
brugge model. In Sect. 5 we conclude with some remarks on future work.

2 Bisimulation Between Verbrugge and Veltman Model

The alphabet of interpretability logic consists of countably many propositional
variables and symbols ⊥, → and �. Formulas are given by

ϕ ::= p | ⊥ |ϕ1 → ϕ2 |ϕ1 � ϕ2,

where p ranges over the set of propositional variables. We use usual abbreviations
� := ¬⊥, ¬ϕ := ϕ → ⊥, ϕ1 ∨ ϕ2 := ¬ϕ1 → ϕ2, ϕ1 ∧ ϕ2 := ¬(¬ϕ1 ∨ ¬ϕ2),
ϕ1 ↔ ϕ2 := (ϕ1 → ϕ2) ∧ (ϕ2 → ϕ1), �ϕ := ¬ϕ � ⊥, ♦ϕ := ¬�¬ϕ.

A Veltman model is a tuple (W,R, {Sw : w ∈ W},�) such that:

– W 	= ∅ is a set called the domain, whose elements are called worlds
– R ⊆ W × W is a transitive and converse well-founded relation called the
accessibility relation

Bisimulations Between Verbrugge Models and Veltman Models 307

– Sw ⊆ R[w]×R[w], where R[w] = {u ∈ W : wRu}, is a reflexive and transitive
relation such that wRuRv always implies uSwv, for each w ∈ W

– � is a relation between worlds and formulas such that for all w ∈ W we have
w 	� ⊥, w � ϕ1 → ϕ2 if and only if w 	� ϕ1 or w � ϕ2, and w � ϕ1 � ϕ2 if
and only of for all u ∈ W such that wRu and u � ϕ1 there is v ∈ W such
that uSwv and v � ϕ2

1

A Verbrugge model is a tuple (W,R, {Sw : w ∈ W},�), where W and R are
as in the definition of Veltman models, while Sw ⊆ R[w] × (P(R[w]) \ {∅}) such
that:

– if wRu, then uSw{u} (quasi-reflexivity)
– if uSwV and vSwZv for all v ∈ V , then uSw

⋃
v∈V Zv (quasi-transitivity)

– if wRuRv, then uSw{v}
– if uSwV and V ⊆ Z ⊆ R[w], then uSwZ (monotonicity),

while � is defined similarly as in the definition of Veltman model, except the
following: w � ϕ1 � ϕ2 if and only if for all u such that wRu and u � ϕ1 there
is V such that uSwV and for all v ∈ V we have v � ϕ2 (we write V � ϕ2).

When we need to emphasize that w � ϕ is observed in the context of a
structure M, we will write M, w � ϕ.

As aforementioned, there are other variants of Verbrugge models in the liter-
ature, which differ from the above one only in the definition of quasi-transitivity
and in some cases in omitting monotonicity. In this paper we work only with the
above definition, since it is predominant in the literature (cf. a recent overview
[1], which includes a discussion on other possibilities).

Bisimulation is the basic equivalence between modal models. It has three
defining conditions: atomic equivalence between related worlds (at), the con-
dition describing how the first model is simulated in the second one (forth),
and the condition describing how the second model is simulated in the first one
(back). When we work with the same kind of structures, (forth) and (back) are
mutually symmetric. But now we will define the notion of bisimulation between
different kinds of structures, which will therefore lack this symmetry. In fact, the
direction from Verbrugge model to Veltman model (forth) will be much more
complex than the opposite one.

Definition 1. Let M = (W,R, {Sw : w ∈ W},�) be a Verbrugge model and
let M′ = (W ′, R′, {S′

w′ : w′ ∈ W ′},�) be a Veltman model. A bisimulation
between M and M′ is any non-empty relation Z ⊆ W × W ′ such that:

(at) M, w � p if and only if M′, w′ � p for all w ∈ W,w′ ∈ W ′ such that
wZw′, for each propositional variable p

(forth) if wZw′ and wRu, then there exists a non-empty U ′ ⊆ W ′ such that
w′R′u′ and uZu′ for all u′ ∈ U ′ and for any F : U ′ → W ′ such that
u′S′

w′F (u′) for all u′ ∈ U ′, there is V such that uSwV and for all v ∈ V
there is u′ ∈ U ′ such that vZF (u′)

1 Equivalently, we can define a Veltman model to be (W,R, {Sw : w ∈ W}, V), where
V maps each propositional variable to a subset of W , and then define satisfaction
relation � recursively, but this is non-essential and just a matter of style.

308 T. Perkov

(back) if wZw′ and w′R′u′, then there exists u ∈ W such that wRu, uZu′ and
for each V ⊆ W such that uSwV there are v ∈ V and v′ ∈ W ′ such that
u′S′

w′v′ and vZv′.2

Consider an example of thus defined bisimulation.

Example 1. Consider a Verbrugge model M such that:

– W = {0, 1, 2, 3}, R = {(0, 1), (0, 2), (0, 3)}, 1S0{2, 3}
– 1 � p, 2 � q, 3 � r

Now, consider a Veltman model M′ as follows:

– W ′ = {0′, 1′, 1′′, 2′, 3′}, R′ = {(0′, 1′), (0′, 1′′), (0′, 2′), (0′, 3′)},
1′S′

0′2′, 1′′S′
0′3′

– 1′ � p, 1′′ � p, 2′ � q, 3′ � r

Note that we omitted some pairs in S0 and S′
0′ , namely those enforced by

(quasi)-reflexivity and monotonicity.
It is easy to verify that Z = {(0, 0′), (1, 1′), (1, 1′′), (2, 2′), (3, 3′)} is a bisim-

ulation.

The following proposition shows that the necessary requirement on any
notion of bisimulation is satisfied: bisimilar worlds are modally equivalent.

Proposition 1. Let M = (W,R, {Sw : w ∈ W},�) be a Verbrugge model,
M′ = (W ′, R′, {S′

w′ : w′ ∈ W ′},�) a Veltman model and Z ⊆ W × W ′ a
bisimulation between M and M′. Then for all w,w′ such that wZw′ we have
that w and w′ are modally equivalent, i.e. M, w � ϕ if and only if M′, w′ � ϕ,
for each formula ϕ.

Proof. The claim is proved by induction on the complexity of a formula. We
only present the inductive step in the case of a formula of the form ϕ1 � ϕ2.

Assume M, w � ϕ1 � ϕ2 and wZw′. We need to prove M′, w′ � ϕ1 � ϕ2.
Let u′ ∈ W ′ such that w′R′u′ and u′ � ϕ1. Then (back) implies there is u such
that wRu and uZu′. By the induction hypothesis u � ϕ1. Since w � ϕ1 � ϕ2,
there is V such that uSwV and V � ϕ2. But (back) also implies that for any

2 As pointed out by a reviewer, one could alternatively generalize these conditions to
develop an analogous notion of bisimulation between Verbrugge models, and then
establish a connection between a Verbrugge and a Veltman model by composing a
bisimulation between Verbrugge models and a simple transformation from a Veltman
to a Verbrugge model described at the beginning of Sect. 4. The present approach
has an advantage that the already complex (forth) condition has an additional quan-
tifier in case of two Verbrugge models, and (back) condition would be symmetric to
(forth) when observed between two Verbrugge models, while in the present paper
it is much simpler. Nevertheless, an analogous notion of bisimulation between Ver-
brugge models is of independent interest and is thoroughly studied in a near future
paper [3].

Bisimulations Between Verbrugge Models and Veltman Models 309

Fig. 1. Illustration of Example 1

Sw-successor of u, thus also for V , there are v ∈ V and v′ ∈ W ′ such that vZv′

and u′Sw′v′. Again by the induction hypothesis v′ � ϕ2, as desired.
Conversely, assume M′, w′ � ϕ1 � ϕ2 and wZw′ and prove M, w � ϕ1 � ϕ2.

Let u ∈ W such that wRu and u � ϕ1. Then by (forth) there is U ′ 	= ∅ such that
w′R′u′ and uZu′, and thus by the induction hypothesis u′ � ϕ1, for all u′ ∈ U ′,
such that for any choice of one S′

w′ -successor for each world in U ′, there is V
such that uSwV and each world in V is bisimilar to some of those S′

w′ -successors.
Now for all u′ ∈ U ′, since w′ � ϕ1 �ϕ2 and u′ � ϕ1, there is v′ such that u′Sw′v′

and v′ � ϕ2. For such a world v′, put F (u′) = v′. Since the above holds for
any choice F of one S′

w′ -successor for each u′ ∈ U ′, it holds in particular for the
choice F . Thus there is V such that uSwV and each v ∈ V is bisimilar to some
F (u′), so by the induction hypothesis v � ϕ2 for all v ∈ V , as desired. �

Example 2. Since Z defined in Example 1 is a bisimulation, the previous propo-
sition implies that 0 and 0′ are modally equivalent (as are all pairs in Z).

3 Hennessy-Milner Theorem

As aforementioned, the first requirement of any notion of bisimulation is that
it implies modal equivalence. That requirement shows that the definition is not
too weak, i.e. structural relation between two models is strong enough to ensure
modal formulas cannot distinguish them. But on the other hand, some proposed
relation between models can be too strong. For example, isomorphism of course

310 T. Perkov

implies modal equivalence, but it is obviously unnecessarily strong, i.e. much
weaker structural relations can imply modal equivalence. In other words, one
would like to have a converse of the previous proposition, to see that the defined
notion of bisimulation is just enough strong. Unfortunately, it is well known
that the direct converse never holds (a counterexample can easily be constructed
from some of the known counterexamples for basic modal logic). But, there are
some approximations, notably Hennessy-Milner-like theorems, which say that
the converse holds in case of image-finite models. If Hennessy-Milner analogue
holds for some proposed notion, then it is a good sign that the notion is just
about as strong as bisimulation should be.

Theorem 1. Let M = (W,R, {Sw : w ∈ W},�) be a Verbrugge model and let
M′ = (W ′, R′, {S′

w′ : w′ ∈ W ′},�) be a Veltman model such that relations R and
R′ are image-finite, i.e. for all w ∈ W,w′ ∈ W ′ we have that R[w] and R′[w′]
are finite.

Then any w ∈ W and w′ ∈ W ′ are modally equivalent if and only if there is
a bisimulation Z between M and M′ such that wZw′.

Proof. Let Z ⊆ W × W ′ be the modal equivalence between worlds of M and
M′, i.e. wZw′ if and only if w and w′ satisfy exactly the same formulas. We will
prove that Z is a bisimulation between M and M′. Together with the previous
proposition, this clearly implies the claim.

Obviously (at) holds. Assume (back) does not hold, i.e. there are w,w′, u′

such that wZw′ and w′R′u′ and for all u such that wRu and uZu′ there is V
such that uSwV and for all v ∈ V and v′ such that u′Sw′v′ we have that v and
v′ are not modally equivalent.

For any x such that wRx which is not modally equivalent to u′ there is a
formula ϕx such that u′ � ϕx and x 	� ϕx. Since there are only finitely many
such worlds x, there is a finite conjunction ϕ of one such formula for each x, so
u′ � ϕ. Observe now that for any u such that wRu we have uZu′ if and only if
u � ϕ.

Now, let u ∈ W such that wRu and uZu′. By the assumption, there is
Vu ⊆ R[w] such that uSwVu and no v ∈ Vu is modally equivalent to any v′ such
that u′Sw′v′. For each y ∈ R[w] which is not modally equivalent to any v′ such
that u′Sw′v′, and for each such v′, there is a formula ψy,v′ which is satisfied at
y, but not at v′. Since Sw-successors of u′ are R-successors of w, there are only
finitely many of them, so there is a finite conjunction ψy of one such formula
for each v′, and we have y � ψy and v′ 	� ψy. But now we clearly have Vu � ψ,
where ψ is the disjunction of all ψy, where y ∈ R[w] is not modally equivalent
to u′. Hence, w � ϕ � ψ. Since wZw′, we have w′ � ϕ � ψ. Since u′ � ϕ, there
is v′ such that u′Sw′v′ and v′ � ψ, so v′ � ψy for some y and thus v′ � ψy,v′ ,
which is a contradiction.

It remains to prove (forth). Assume it does not hold, i.e. there are w,w′, u
such that wZw′, wRu and for any U ′ 	= ∅ such that w′R′u′ and uZu′ for all
u′ ∈ U ′, there is a choice F : U ′ → W ′ of one S′

w′-successor for each u′ ∈ U ′

such that for all V such that uSwV there is v ∈ V not equivalent to F (u′) for
any u′ ∈ U ′.

Bisimulations Between Verbrugge Models and Veltman Models 311

In particular, this holds if we take U ′ to be the set of all u′ ∈ R′[w′] such
that uZu′. Further in this proof U ′ will denote that set.

Similarly as in the proof of (back), we can show that there is a formula ϕ
such that u � ϕ and for all u′ ∈ R′[w′] we have uZu′ if and only if u′ � ϕ.
Furthermore, for any u′ ∈ U ′ and any V such that uSwV , there is a formula
ψu′,V which is satisfied at F (u′), but not at some v ∈ V . For each u′ ∈ U ′, let
ψu′ be the conjunction of all ψu′,V , ranging over all V such that uSwV . Again,
this is clearly a finite conjunction, and we have F (u′) � ψu′ .

Let ψ be the disjunction of all ψu′ , where u′ ∈ U ′. Clearly w′ � ϕ � ψ. Now
wZw′ implies w � ϕ � ψ. Since u � ϕ, there is V such that uSwV and V � ψ.
Hence, V � ψu′ for some u′ ∈ U ′. But then V � ψu′,V , which is a contradiction,
since there is v ∈ V not satisfying ψu′,V . �

The reader may be surprised to see that, in the definition of bisimulations
between Verbrugge models and Veltman models, the condition (forth) demands
the existence of a set of worlds U ′ instead of just the existence of at least one
world as usual. But without this, the notion of bisimulation would not be useful.
To see this, note that a seemingly more natural (forth) would demand: if wZw′

and wRu, then there is u′ such that w′R′u′, uZu′ and for all v′ such that u′S′
w′v′

there is V such that uSwV and vZv′ for all v ∈ V . It is easily checked that
this does imply modal equivalence, but nevertheless it is too restrictive, since it
has a consequence that all worlds in V are mutually modally equivalent, which
practically collapses Verbrugge semantics to Veltman semantics.

The following example illustrates why we need (forth) to be as complex as
it is, and also provides an idea how to proceed with the main goal of the paper:
find a bisimilar Veltman model for a given Verbrugge model.

Example 3. To illustrate usefulness of seemingly too complicated (forth), con-
sider again the bisimulation Z defined in Example 1. Let us consider just one
part of the verification that Z is a bisimulation, namely (forth) for 0R1 and 0Z0′.
Then the good choice for U ′ is {1′, 1′′}. Then e.g. for F defined by F (1′) = 2′,
F (1′′) = 3′, we have 1S0{2, 3}, 2Z2′, 3Z3′.

With the aforementioned more restrictive definition of bisimulation, we would
not have a bisimulation in this example, thus we can use it as a counterexample
for Hennessy-Milner analogue in that case. Namely, in the situation illustrated
above, for 0R1 and 0Z0′ the restrictive (forth) would force us to choose just
one R′-successor of 0′ bisimilar to 1. Then for both possible choices we would
not be able to satisfy the remaining requirement of (forth), e.g. for 1′ and its
S′
0′ -successor 2′, there is no V such that 1S0V and all elements of V are bisimilar

to 2′.

4 Obtaining a Veltman Model Bisimilar to a Given
Verbrugge Model

It is straightforward to obtain a Verbrugge model from a given Veltman model
M = (W,R, {Sw : w ∈ W},�): we use the same W and R, and define uS′

wV if

312 T. Perkov

and only if uSwv for some v ∈ V . It is very easy to see that Z = {(w,w) : w ∈ W}
is a bisimulation between thus obtained Verbrugge model and M.

Although it is very simple, our running example already illustrates that the
opposite direction is much more involved. The basic idea is that each world from
a given Verbrugge model will have multiple copies in the associated Veltman
model, to make it possible for Sw-connections with sets of worlds to be simulated
by connections with worlds which are representatives of these sets.

So, let M = (W,R, {Sw : w ∈ W},�) be a Verbrugge model. We will
define a Veltman model associated with M, which we will denote by V el(M) =
(W ′, R′, {S′

w′ : w′ ∈ W ′},�).
First we introduce some notation and terminology.

4.1 Sw -Paths

When we consider subsets of W , it will often be essential that they are repre-
sented as certain unions. We will keep track of such information in the following
way: instead of some X ⊆ W , we will consider a family X = {Xi : i ∈ I}
such that X =

⋃
i∈I Xi. We will use the notation X for the sake of simplicity,

although, of course, X is not uniquely determined by X. It will, however, always
be clear form the context what we mean by X.

For non-empty U, V ⊆ W such that U =
⋃

i∈I Ui and V =
⋃

u∈U Vu, we write
U Sw V if uSwVu for all u ∈ U . Observe that the quasi-transitivity can now be
expressed in the following way: if uSwV and V Sw Z, then uSwZ.

Observe also that uSwV is equivalent to {u} Sw V , where {u} = {{u}} and
V = {V } are singleton families, which is of course more complicated notation,
but useful for considering some sequences as Sw-paths, as follows.

Definition 2. Consider a finite path of the form {u} Sw V 1 Sw V2Sw . . . Sw Vk.
We call the sequence {u}, V 1, V2, . . . , Vk an Sw-path starting with u, or simply
an Sw-path if it is clear from the context what it starts with.

In what follows, to avoid repeating all properties each time we mention such
paths, and since we will not consider any other kind of paths, when we shortly
say that something is an Sw- path, we will always mean that it is a finite path
starting from a singleton family which has a singleton set as its only element. If
wRu, we will consider just {u} to be an Sw-path (of length zero).

If {u}, V1, V2, . . . , Vk, Vk+1, . . . , Vk+l is an Sw-path, then for a given v ∈ Vk

we denote by {v}, V ′
1 , V ′

2 , . . . , V
′
l the Sw-path such that V ′

i ⊆ Vk+i, i = 1, 2, . . . , l,
which is uniquely determined in the way that V ′

1 is the element of the family
Vk+1 which is determined by v, i.e. obtained as an Sw-successor of v, and V ′

i+1 is
the subfamily of Vk+i+1 consisting exactly of elements determined by elements
of V ′

i , for i = 1, 2, . . . , l − 1. We say that thus obtained Sw-path is induced by v.

4.2 Well Defined Choice of Representatives

For an Sw-path {u}, V1, V2, . . . , Vk, we say that (u, v1, v2, . . . , vk) is a well defined
sequence of representatives if vi ∈ Vi for all i = 1, . . . , k, and vi+1 is a world from

Bisimulations Between Verbrugge Models and Veltman Models 313

the element of the family Vi+1 which is determined by vi, i.e. obtained as an Sw-
successor of vi, for i = 1, . . . , k − 1.

Definition 3. Let w ∈ W and x ∈ W such that xRw, and let fx be a func-
tion which maps each Sx-path starting with w to a well defined sequence of
representatives (when needed, if fx({w}, V1, . . . , Vn) = (w, v1, . . . , vn), we write
fx({w}, V1, . . . , Vn)i = vi, i = 1, . . . , n, and fx({w}, V1, . . . , Vk)0 = w). Then
we say that fx is a well defined choice of representatives of Sx-paths
starting with w, if the following conditions hold:

– fx({w}, V1) = (w, v1), where v1 ∈ V1 is arbitrarily chosen, for each Sx-path
of length 1

– if fx({w}, V1, . . . , Vn) is defined for each Sx-path of length n, then for each
Sx-put of length n + 1 we have the following cases:

• fx({w}, V1, V2, . . . , Vn+1)i+1 = fx({w}, V2, . . . , Vn+1)i for i = 1, . . . , n, if
V1 = {u} is singleton and wRu

• fx({w}, V1, . . . , Vn+1) = (w, v1, . . . , vn+1), otherwise, where we have that
fx({w}, V1, . . . , Vn) = (w, v1, . . . , vn), and vn+1 is arbitrarily chosen so
that (w, v1, . . . , vn+1) is a well defined sequence of representatives and
fx({w}, V1, . . . , Vn, Vn+1)n+1 = fx({w}, V1, . . . , Vn, Vn+1

′
)n+1 whenever

the element of the family Vn+1 determined by vn equals the element of
the family Vn+1

′
determined by vn

4.3 A Veltman Model Associated with a Given Verbrugge Model

Now we are ready to define V el(M) and to prove that it is indeed a Veltman
model.

Definition 4. Let M = (W,R, {Sw : w ∈ W},�) be a Verbrugge model. By
V el(M) = (W ′, R′, {S′

w′ : w′ ∈ W ′},�) we denote a structure associated with
M, defined as follows:

– W ′ consists of all ordered pairs (w, f), where w ∈ W , and f is a function
which maps each x ∈ W such that xRw to a function fx which is a well
defined choice of representatives of Sx-paths starting with w

– (w, f)R′(u, g) if and only if wRu and for all x such that xRw, for each Sx-path
{u}, V1, . . . , Vk (observe that then {w}, {u}, V1, . . . , Vk is an Sx-path starting
with w) we have

fx({w}, {u}, V1, . . . , Vk)i+1 = gx({u}, V1, . . . , Vk)i, i = 1, . . . , k

– (u, g)S′
(w,f)(v, h) if and only if (w, f)R′(u, g), (w, f)R′(v, h) and there is an

Sw-path {u}, V1, . . . , Vk such that v = gw({u}, V1, . . . , Vk)k, for some k � 0,
and for any continuation, i.e. for any Sw-path {u}, V1, . . . , Vk, Vk+1, . . . , Vk+l

we have

gw({u}, V1, . . . , Vk+l)k+i = hw({v}, V ′
1 , . . . , V

′
l)i, i = 1, . . . , l

where Sw-path {v}, V ′
1 , . . . , V

′
l is induced by v

314 T. Perkov

– V el(M), (w, f) � p if and only if M, w � p, for all (w, f) ∈ W ′, for each
propositional variable p

Proposition 2. Let M be a Verbrugge model. Then V el(M) is a Veltman model.

Proof. Obviously R′ is converse well founded. To show that it is also transitive,
let (w, f)R′(u, g)R′(v, h). Then wRuRv and therefore wRv. Furthermore, for an
arbitrary x such that xRw and an arbitrary Sx-path {v}, V1, . . . , Vk we have

hx({v}, V1, . . . , Vk)i = gx({u}, {v}, V1, . . . , Vk)i+1

= fx({w}, {u}, {v}, V1, . . . , Vk)i+2 = fx({w}, {v}, V1, . . . , Vk)i+1, i = 1, . . . , k

(the last equality holds since fx is a well defined choice of representatives).
Now we verify properties of the relation S′

(w,f) for an arbitrary (w, f).

The reflexivity trivially follows from the convention that {u} is consid-
ered to be an Sw-path of length 0. To prove the transitivity, assume
(u, g)S′

(w,f)(v, h)S′
(w,f)(z, s). Since (u, g)S′

(w,f)(v, h), there is an Sw-path

{u}, V1, . . . , Vk such that v = vk = gw({u}, V1, . . . , Vk)k and other properties
from the definition of the relation S′

(w,f) hold. Also, since (v, h)S′
(w,f)(z, s), there

is an Sw-path {v}, V ′
1 , . . . , V

′
l such that z = zl = hw({v}, V ′

1 , . . . , V
′
l)l, with other

properties from the definition of S′
(w,f).

Put Vk+j = (Vk \{v})∪V ′
j and Vk+j = {{x} : x ∈ Vk \{v}}∪V ′

j , j = 1, . . . , l.
Since vSwV ′

1 i xSw{x} for all x ∈ Vk \ {v}, we have Vk Sw Vk+1. Similarly, since
V ′
j Sw V ′

j+1 for j = 1, . . . , l, we have that {u}, V1, . . . , Vk+l is an Sw-path. Then
(u, g)S′

(w,f)(v, h) implies gw({u}, V1, . . . , Vk+l)k+l = hw({v}, V ′
1 , . . . , V

′
l)l = z.

To check the remaining condition needed to conclude (u, g)S′
(w,f)(z, s), take

any finite sequence Z1, . . . , Zm such that {u}, V1, . . . , Vk+l, Z1, . . . , Zm is an Sw-
path. Consider the Sw-path {v}, V ′

1 , . . . , V
′
l , Z ′

1, . . . , Z
′
m induced by v and the

Sw-path {z}, Z ′′
1 , . . . , Z ′′

m induced by z. Then (u, g)S′
(w,f)(v, h)S′

(w,f)(z, s) implies

gw({u}, V1, . . . , Vk+l, Z1, . . . , Zm)k+l+j = hw({v}, V ′
1 , . . . , V

′
l , Z

′
1, . . . , Z

′
m)l+j =

sw({z}, Z ′′
1 , . . . , Z ′′

m)j , for all j = 1, . . . ,m.
Finally, assume (w, f)R′(u, g)R′(v, h) and show (u, g)S′

(w,f)(v, h). First, we

have wRuRv, so uSw{v}, i.e. {u}, {v} is an Sw-path and obviously it must be
gw({u}, {v})1 = v. Note that for any continuation {u}, {v}, V 2, . . . , Vl+1, the Sw-
path induced by v is actually {v}, V 2, . . . , Vl+1. Furthermore, since (u, g)R′(v, h),
by the definition of the relation R′ applied to the path {v}, V 2, . . . , Vl+1, we
have gw({u}, {v}, V2, . . . , Vl+1)i+1 = hw({v}, V2, . . . , Vl+1)i, i = 1, . . . , l, which
is exactly what we need to conclude (u, g)S′

(w,f)(v, h). �

4.4 The Main Result

Theorem 2. Let M = (W,R, {Sw : w ∈ W},�) be a Verbrugge model. Put
wZ(x, f) if and only if w = x. Then Z is a bisimulation between M and V el(M).

Bisimulations Between Verbrugge Models and Veltman Models 315

Proof. The condition (at) holds by the definition of satisfaction in V el(M).
To show (back), choose any (w, f) ∈ W ′ and suppose (w, f)R′(u, g). Then

wRu and uZ(u, g). Let V ⊆ W such that uSwV . Then for v = gw({u}, V)1
we have v ∈ V . It remains to define some h such that (u, g)S′

(w,f)(v, h). First,

to ensure (w, f)R′(v, h), for all x such that xRw put hx({v}, V1, V2, . . .)i =
fx({w}, {v}, V1, V2, . . .)i+1, i = 1, 2, . . . , for each Sw-path {v}, V1, V2, . . .

Now, we define hw as follows: for each Sw-path {v}, V1, V2, . . . , if Sw-path
{u}, V , V1

′
, V2

′
, . . . is such that {v}, V1, V2, . . . is induced by v with respect to

it, put hw({v}, V1, V2, . . .)i = gw({u}, V , V1
′
, V2

′
, . . .)i+1, i = 1, 2, . . . , which is

not ambiguous, i.e. does not depend on a choice of Sw-path {u}, V , V1
′
, V2

′
, . . . ,

due to the definition of well defined choice of representatives.
To be more precise, to conclude that hw is well defined, we need to show that

for any Sw-paths {u}, V , V ′
1 , . . . , V

′
k and {u}, V , V ′′

1 , . . . , V ′′
k such that the Sw-

path {v}, V1, . . . , Vk is induced by v with respect to both of those paths, we have
gw({u}, V , V ′

1 , . . . , V
′
k) = gw({u}, V , V ′′

1 , . . . , V ′′
k). We prove this by induction on

k. For k = 1, since {v}, V1 is induced by v with respect to both {u}, V , V ′
1

and {u}, V , V ′′
1 , the element of V ′

1 determined by v equals the element of V ′′
1

determined by v.
So, by definition of well defined choice of representatives, gw({u}, V , V ′

1)2 =
gw({u}, V , V ′′

1)2. Also, of course gw({u}, V , V ′
1)1 = gw({u}, V , V ′′

1)1 = v, so
gw({u}, V , V ′

1) = gw({u}, V , V ′′
1). Assume now that we have proved the claim

for k = n and let us prove it for k = n + 1. Let {v}, V1, . . . , Vn+1 be induced
by v with respect both to {u}, V , V ′

1 , . . . , V ′
n+1 and {u}, V , V ′

1 , . . . , V
′
n+1. By

induction hypothesis, we have gw({u}, V , V ′
1 , . . . , V

′
n) = gw({u}, V , V ′′

1 , . . . , V ′′
n).

Since {v}, V1, . . . , Vn+1 is induced by v with respect to both paths, and since
gw({u}, V)1 = v, the elements of families V ′

n+1 and V ′′
n+1 determined by the

world gw({u}, V , V ′
1 , . . . , V

′
n)n+1 must be equal, because they are determined in

the same way by the induced path. Hence, by the definition of well defined choice
of representatives, gw({u}, V , V ′

1 , . . . , V
′
n+1)n+2 = gw({u}, V , V ′′

1 , . . . , V ′′
n+1)n+2,

as needed.
For all other x such that xRv we can choose hx arbitrarily. It is easy to see

that for thus defined h we have (u, g)S′
(w,f)(v, h).

It remains to show (forth). Let w ∈ W , (w, f) ∈ W ′ and u such that wRu.
Let U ′ = {(x, g) ∈ W ′ : x = u and (w, f)R′(x, g)}. It is easy to see that U ′ 	= ∅.
We claim that this is a good choice of U ′ which shows that (forth) holds, i.e.
that for any choice of one S′

(w,f)-successor for each world in U ′ there is V such
that uSwV and each v ∈ V is bisimilar to some of those S′

(w,f)-successors, i.e.
the first component of some of them equals v (we will shortly say that such v is
covered). Assume the opposite, i.e. there exists a choice of one S′

(w,f)-successor
for each world in U ′ such that for any V such that uSwV there is v ∈ V which
is not bisimilar to any of those S′

(w,f)-successors. Let F : U ′ → W ′ be such a
choice of S′

(w,f)-successors.

316 T. Perkov

We will show that there exists a well defined choice of representatives of Sw-
paths starting with u such that each representative on any path is not covered,
i.e. does not equal the first component of any (v, h) ∈ F (U ′). For each path
{u}, V1, . . . , Vn, denote by V ′

1 the set of all uncovered elements in V1, and by V ′′
1

the set of all covered elements in V1. Then denote by V ′
2 the set of all uncovered

worlds belonging to those elements of the union V2 which are determined by
elements from V ′

1 , i.e. they are their Sw-successors, and denote by V ′′
2 the set of all

such worlds which are covered. Analogously define V ′
3 , V

′′
3 , . . . , V ′

n, V ′′
n . Obviously,

a desired well defined choice of representatives will exist if for any path all sets
V ′
1 , V

′
2 , . . . , V

′
n are non-empty. Now, the assumption implies V ′

1 	= ∅. Assuming
V ′
2 = ∅, by quasi-transitivity vSw{v} for all v ∈ V ′′

1 and V ′
1 Sw V ′′

2 would imply
uSw(V ′′

1 ∪V ′′
2), hence we would find an Sw-successor of u with all of its elements

covered, contrary to the assumption. Similarly, for any k we can see that, if
V ′
k = ∅ while all before it are non-empty, we would have uSw(V ′′

1 ∪ · · · ∪ V ′′
k),

where V ′′
1 ∪ · · · ∪ V ′′

k is covered, which contradicts the assumption.
Thus we proved that there is a well defined choice of representatives gw such

that all representatives on each path are uncovered. For all x such that xRw we
can choose gx such that the condition from the definition of R′ holds, and for
all other x ∈ W we can choose gx arbitrarily. In this way we obtain g such that
(w, f)R′(u, g). But, by the definition of S′

(w,f), the world F (u, g) is obtained as
a representative determined by gw, which is impossible, since all representatives
determined by gw are uncovered. �

Corollary 1. For any formula ϕ and for all (w, f) ∈ W ′ we have:
M, w � ϕ if and only if V el(M), (w, f) � ϕ.

5 Further Work

By analogy to other notions of bisimulation, it is to be expected that finite
approximations of bisimulation, so-called n-bisimulations, where n is a natu-
ral number, can be defined, as well as bisimulation games and n-games, with
desirable properties: (n-)bisimilarity is equivalent to the existence of Defender’s
winning strategy in bisimulation (n-)game, and n-bisimilarity implies n-modal
equivalence, i.e. the equivalence w.r.t. formulas of modal depth at most n. Fur-
thermore, we conjecture that the converse in the case of finite alphabet would also
hold. Together with Hennessy-Milner analogue we proved in Sect. 3, these results
would round up arguments in favour of the definition of bisimulation between
Verbrugge and Veltman models presented in this paper, but this exceeds limits
and purpose of this paper, the main purpose being to show how we can transform
a Verbrugge model to a bisimilar Veltman model.

More important further line of research, closely related to this purpose, is
to explore how this transformation behaves with respect to particular classes
of Verbrugge models and Veltman models, with additional constraints related
to various principles of interpretability, which are used as additional axioms of
many systems of interpretability logic in the literature. For example, if a given

Bisimulations Between Verbrugge Models and Veltman Models 317

Verbrugge model M is an ILM-model, i.e. belongs to the characteristic class
of Verbrugge models related to so-called Montagna’s principle, does V el(M)
belong to the corresponding characteristic class of Veltman models? An analo-
gous question may be addressed system by system, or more generally, if possible,
conditions may be provided under which such a preservation works. Or if it does
not work, can we modify the construction of V el(M) for a particular principle or
set of principles to make it work? Certainly, there is no general positive answer,
since obviously for systems complete w.r.t. Verbrugge semantics but incomplete
w.r.t. Veltman semantics, a transformation from a Verbrugge model to a modally
equivalent Veltman model does not exist (cf. [5] for the case of the system ILP0).

Acknowledgment. I am grateful to Mladen Vuković and the reviewers for careful
reading and valuable suggestions. I thank Sebastijan Horvat for allowing me to adapt
a picture from a manuscript of his PhD thesis to obtain Fig. 1 much easier than from
scratch.

References

1. Joosten, J., Mas Rovira, J., Mikec, L., Vuković, M.: An overview of Verbrugge
semantics, a.k.a. generalised Veltman semantics. In: Hansson, S.O., et al. (eds.)
Dick de Jongh on Intuitionistic and Provability Logic. Outstanding Contributions
to Logic, Springer. To appear (2023) Preprint available at https://arxiv.org/abs/
2007.04722. Accessed 16 Feb 2023

2. Kurahashi, T., Okawa, Y.: Modal completeness of sublogics of the interpretability
logic IL. Math. Log. Q. 67, 164–185 (2021)

3. Horvat, S., Perkov, T., Vuković, M.: Bisimulations and bisimulation games between
Verbrugge models. Mathematical Logic Quarterly. To appear (2023)

4. Mikec, L., Perkov, T., Vuković, M.: Decidability of interpretability logics ILM0 i
ILW*. Log. J. IGPL 25, 758–772 (2017)

5. Mikec, L., Vuković, M.: Interpretability logics and generalized Veltman semantics.
J. Symb. Log. 85, 749–772 (2020)

6. Perkov, T., Vuković, M.: Filtrations of generalized Veltman models. Math. Log. Q.
62, 412–419 (2016)

7. Mas Rovira, J.: Interpretability logics and generalized Veltman semantics in Agda.
Master’s thesis. University of Barcelona (2020). http://diposit.ub.edu/dspace/
handle/2445/173054. Accessed 16 Feb 2023

8. Verbrugge, R.: Verzamelingen-Veltman frames en modellen (Set-Veltman frames
and models). Unpublished manuscript (original scan included in [7]). Amsterdam
(1992)

9. Visser, A.: An overview of interpretability logic. In: Kracht, M., et al. (eds.)
Advances in Modal Logic, vol. 1, pp. 307–359. CSLI Publications (1998)

10. Vuković, M.: Bisimulations between generalized Veltman models and Veltman mod-
els. Math. Log. Q. 54, 368–373 (2008)

11. Vuković, M.: The principles of interpretability. Notre Dame J. Form. Log. 40,
227–235 (1999)

https://arxiv.org/abs/2007.04722
https://arxiv.org/abs/2007.04722
http://diposit.ub.edu/dspace/handle/2445/173054
http://diposit.ub.edu/dspace/handle/2445/173054

Focus-Style Proofs for the Two-Way
Alternation-Free µ-Calculus

Jan Rooduijn(B) and Yde Venema

ILLC, University of Amsterdam, Amsterdam, The Netherlands
j.m.w.rooduijn@uva.nl

Abstract. We introduce a cyclic proof system for the two-way
alternation-free modal μ-calculus. The system manipulates one-sided
Gentzen sequents and locally deals with the backwards modalities by
allowing analytic applications of the cut rule. The global effect of back-
wards modalities on traces is handled by making the semantics relative to a
specific strategy of the opponent in the evaluation game. This allows us to
augment sequents by so-called trace atoms, describing traces that the pro-
ponent can construct against the opponent’s strategy. The idea for trace
atoms comes from Vardi’s reduction of alternating two-way automata to
deterministic one-way automata. Using the multi-focus annotations intro-
duced earlier by Marti and Venema, we turn this trace-based system into
a path-based system. We prove that our system is sound for all sequents
and complete for sequents not containing trace atoms.

Keywords: two-way modal μ-calculus · alternation-free · cyclic proof
theory

1 Introduction

The modal μ-calculus, introduced in its present form by Kozen [10], is an exten-
sion of modal logic by least and greatest fixed point operators. It retains many
of the desirable properties of modal logic, such as bisimulation invariance, and
relatively low complexity of the model-checking and satisfiability problems. Nev-
ertheless, the modal μ-calculus achieves a great gain in expressive power, as the
fixed point operators can be used to capture a form of recursive reasoning. This
is illustrated by the fact that the modal μ-calculus embeds many well-known
extensions of modal logic, such as Common Knowledge Logic, Linear Temporal
Logic and Propositional Dynamic Logic.

A natural further extension is to add a converse modality ă for each modality
a. The resulting logic, called two-way modal μ-calculus, can be viewed as being
able to reason about the past. As such, it can interpret the past operator of
Tense Logic, and moreover subsumes PDL with converse. In this paper we are
concerned with the proof theory of the two-way modal μ-calculus.

The research of this author has been made possible by a grant from the Dutch Research
Council NWO, project number 617.001.857.
A version of this paper including an appendix with full proofs can be found on arXiv.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
H. H. Hansen et al. (Eds.): WoLLIC 2023, LNCS 13923, pp. 318–335, 2023.
https://doi.org/10.1007/978-3-031-39784-4_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-39784-4_20&domain=pdf
https://doi.org/10.1007/978-3-031-39784-4_20

Focus-Style Proofs for the Two-Way Alternation-Free μ-Calculus 319

Developing good proof systems for the modal μ-calculus is notoriously dif-
ficult. In [10], Kozen introduced a natural Hilbert-style axiomatisation, which
was proven to be complete only more than a decade later by Walukiewicz [24].
Central to this proof is the use of tableau systems introduced by Niwiński and
Walukiewicz in [17]. One perspective on these tableau systems is that they are
cut-free Gentzen-style sequent systems allowing infinite branches. A proof in
such a system, called a non-well-founded proof, is accepted whenever every infi-
nite branch satisfies a certain progress condition. In case this progress condition
is ω-regular (as it is in the case of the modal μ-calculus), automata-theoretic
methods show that for every non-well-founded proof there is a regular proof, i.e.
a proof tree containing only finitely many non-isomorphic subtrees. Since these
kind of proofs can be naturally presented as finite trees with back edges, they
are called cyclic proofs. As an alternative to non-well-founded proofs, one can
use proof rules with infinitely many premisses. We will not take this route, but
note that it has been applied to the two-way modal μ-calculus by Afshari, Jäger
and Leigh in [2].

In [12] Lange and Stirling, for the logics LTL and CTL, annotate formulas in
sequents with certain automata-theoretic information. This makes it possible to
directly construct cyclic proof systems, without the detour through automata
theory. This technique has been further developed by Jungteerapanich and Stir-
ling [7,21] for the modal μ-calculus. Moreover, certain fragments of the modal
μ-calculus, such as the alternation-free fragment [14] and modal logic with the
master modality [19] have received the same treatment. Encoding automata-
theoretic information in cyclic proofs, through annotating formulas, makes them
more amenable to proof-theoretic applications, such as the extraction of inter-
polants from proofs [3,13].

The logic at hand, the two-way modal μ-calculus, poses additional difficul-
ties. Already without fixed point operators, backwards modalities are known to
require more expressivity than offered by a cut-free Gentzen system [18]. A com-
mon solution is to add more structure to sequents, as e.g. the nested sequents of
Kashima [8]. This approach, however, does not combine well with cyclic proofs,
as the number of possible sequents in a given proof becomes unbounded. We
therefore opt for the alternative approach of still using ordinary sequents, but
allowing analytic applications of the cut rule (see [6] for more on the history of
this approach). The combination of analytic cuts and cyclic proofs has already
been shown to work well in the case of Common Knowledge Logic [20]. Choos-
ing analytic cuts over sequents with extended structure has recently also been
gaining interest in the proof theory of logics without fixed point operators [4].

Although allowing analytic cuts handles the backwards modalities on a local
level, further issues arise on a global level in the combination with non-well-
founded branches. The main challenge is that the progress condition should not
just hold on infinite branches, but also on paths that can be constructed by
moving both up and down a proof tree. Our solution takes inspiration from
Vardi’s reduction of alternating two-way automata to deterministic one-way
automata [22]. Roughly, the idea is to view these paths simply as upwards paths,
only interrupted by several detours, each returning to the same state as where it

320 J. Rooduijn and Y. Venema

departed. One of the main insights of the present research is that such detours
have a natural interpretation in terms of the game semantics of the modal μ-
calculus. We exploit this by extending the syntax with so-called trace atoms,
whose semantics corresponds with this interpretation. Our sequents will then
be one-sided Gentzen sequents containing annotated formulas, trace atoms, and
negations of trace atoms.

For the sake of simplicity we will restrict ourselves to the alternation-free
fragment of the modal μ-calculus. This roughly means that we will allow no
entanglement of least and greatest fixed point operators. In this setting it suffices
to annotate formulas with just a single bit of information, distinguishing whether
the formula is in focus [14]. This is a great simplification compared to the full
language, where annotations need to be strings and a further global annotation,
called the control, is often used [7,21]. Despite admitting simple annotations, the
trace structure of the alternation-free modal μ-calculus remains intricate. This
is mainly caused by the fact that disjunctions may still appear in the scope of
greatest fixed point operators, causing traces to split.

While this paper was under review, the preprint [1] by Enqvist et al.
appeared, in which a proof system is presented for the two-way modal μ-calculus
(with alternation). Like our system, their system is cyclic. Moreover, they also
extend the syntax in order to apply the techniques from Vardi in a proof-
theoretical setting. However, their extension, which uses so-called ordinal vari-
ables, is substantially different from ours, which uses trace atoms. It would be
interesting to see whether the two approaches are intertranslatable.

In Sect. 2 we define the two-way alternation-free modal μ-calculus. Section 3
is devoted to introducing the proof system, after which in Sect. 4 we show that
proofs correspond to winning strategies in a certain parity game. In Sect. 5 we
prove soundness and completeness. The concluding Sect. 6 contains a short sum-
mary and some ideas for further research.

2 The (Alternation-Free) Two-Way Modal µ-Calculus

For the rest of this paper we fix the countably infinite sets P of propositional
variables and D of actions. Since we want our modal logic to be two-way, we
define an involution operation ·̆ : D → D such that for every a ∈ D it holds that
ă �= a and ˘̆a = a. We work in negation normal form, where the language L2μ of
the two-way modal μ-calculus is generated by the following grammar:

ϕ:: = p | p | ϕ ∨ ψ | ϕ ∧ ψ | 〈a〉ϕ | [a]ϕ | μxϕ | νxϕ

where p, x ∈ P, a ∈ D and in the formation of ηxϕ (η ∈ {μ, ν}) the formula
x does not occur in ϕ. The language L2μ expresses 	 and ⊥, e.g. as νx.x and
μx.x. For the reader familiar with the ordinary modal μ-calculus, note that the
only distinctive feauture of L2μ is the assumed involution operator on D.

We use standard terminology for the binding of variables by a fixpoint oper-
ator η. In particular, we write FV (ϕ) for the set of variables x ∈ P that occur
freely in ϕ and BV (ϕ) for the set of those that are bound by some fixpoint oper-
ator. Note that for every x occurring in ϕ, we have x ∈ FV (ϕ). For technical

Focus-Style Proofs for the Two-Way Alternation-Free μ-Calculus 321

convenience, we assume that each formula ϕ is tidy, i.e. that FV (ϕ)∩BV (ϕ) = ∅.
The unfolding of a formula ψ = ηxϕ is the formula ϕ[ψ/x], obtained by substi-
tuting every free occurrence of x in ϕ by ψ. No free variables of ψ are captured
by this procedure, because FV (ψ)∩BV (ϕ) ⊆ FV (ϕ)∩BV (ϕ) = ∅. The closure
of a formula ξ ∈ L2μ is the least set Clos(ξ) ⊆ L2μ such that ξ ∈ Clos(ξ) and:

(i) ϕ ◦ ψ ∈ Clos(ξ) implies ϕ,ψ ∈ Clos(ξ) for each ◦ ∈ {∨,∧};
(ii) �ϕ ∈ Clos(ξ) implies ϕ ∈ Clos(ξ) for every � ∈ {〈a〉, [a] | a ∈ D};
(iii) ηxϕ ∈ Clos(ξ) implies ϕ[ηxϕ/x] ∈ Clos(ξ) for every η ∈ {μ, ν}.

It is well known that Clos(ξ) is always finite and that all formulas in Clos(ξ) are
tidy if ξ is so (see e.g. [23]).

Formulas of L2μ are interpreted in Kripke models S = (S, (Ra)a∈D, V), where
S is a set of states, for each a ∈ D we have an accessibility relation Ra ⊆ S × S,
and V : P → P(S) is a valuation function. We assume that each model is
regular, i.e. that Ra is the converse relation of Ră for every a ∈ D. Recall that
the converse relation of a relation R consists of those (y, x) such that (x, y) ∈ R.

We set Ra[s] := {t ∈ S : sRat} and let S[x �→ X] be the model obtained
from S by replacing the valuation function V by V [x �→ X], defined by setting
V [x �→ X](x) = X and V [x �→ X](p) = V (p) for every p �= x. The meaning
�ϕ�S ⊆ S of a formula ξ ∈ L2μ in S is inductively on the complexity of ξ:

�p�S := V (p) �p�S := S \ V (p)

�ϕ ∨ ψ�S := �ϕ�S ∪ �ψ�S �ϕ ∧ ψ�S := �ϕ�S ∩ �ψ�S

�〈a〉ϕ�S := {s ∈ S | Ra[s] ∩ �ϕ�S 	= ∅} �[a]ϕ�S := {s ∈ S | Ra[s] ⊆ �ϕ�S}
�μxϕ�S :=

⋂
{X ⊆ S | �ϕ�S[x �→X] ⊆ X} �νxϕ�S :=

⋃
{X ⊆ S | X ⊆ �ϕ�S[x �→X]}

We will use the definable (see [23]) negation operator · on L2μ, for which it
holds that �ξ�S = S \ �ξ�S.

In this paper we shall only work with an alternative, equivalent, definition
of the semantics, given by the evaluation game E(ξ,S). We refer the reader to
the appendix below for the basic notions of (parity) games. The game E(ξ,S)
is played on the board Clos(ξ) × S, and its ownership function and admissible
moves are given in the following table.

Position Owner Admissible moves

(p, s), s ∈ V (p) ∀ ∅
(p, s), s /∈ V (p) ∃ ∅
(ϕ ∨ ψ, s) ∃ {(ϕ, s), (ψ, s)}
(ϕ ∧ ψ, s) ∀ {(ϕ, s), (ψ, s)}
(〈a〉ϕ, s) ∃ {ϕ} × Ra[s]

([a]ϕ, s) ∀ {ϕ} × Ra[s]

(ηxϕ, s) − {(ϕ[ηxϕ/x], s)}

322 J. Rooduijn and Y. Venema

The following proposition is standard in the literature on the modal μ-
calculus. See [11, Proposition 6.7] for a proof.

Proposition 1. For every infinite E(ξ,S)-match M = (ϕn, sn)n∈ω, there is a
unique fixpoint formula ηxχ which occurs infinitely often in M and is a subfor-
mula of ϕn for cofinitely many n.

The winner of an infinite match E(ξ,S)-match is ∃ if in the previous proposition
η = ν, and ∀ if η = μ. It is well known that E(ξ,S) can be realised as a parity
game by defining a suitable priority function on Clos(ξ) × S (we again refer
the reader to [11] for a detailed proof of this fact). Because of this we may,
by Theorem 1 in Appendix A, assume that winning strategies are optimal and
positional. Finally, we state the known fact that the two approaches provide the
same meaning to formulas. For every ϕ ∈ Clos(ξ): (ϕ, s) ∈ Win∃(E(ξ,S))@(ϕ, s)
if and only if s ∈ �ϕ�S. If either is side of the bi-implication holds, we say that
ϕ is satisfied in S at s and write S, s � ϕ.

In this paper we are concerned with a fragment of L2μ containing only those
formulas ξ which are alternation free, i.e. such that for every subformula ηxϕ of
ξ it holds that no free occurrence of x in ϕ is in the scope of an η-operator in ϕ
(where η denotes the opposite fixed point operator of η). This fragment is called
the alternation-free two-way modal μ-calculus and denoted by Laf

2μ. We close this
section by stating some typical properties of the alternation-free fragment. For
η ∈ {μ, ν} we use the term η-formula for a formula of the form ηxϕ.

Proposition 2. Let ξ ∈ Laf
2μ be an alternation-free formula. Then:

• Every formula ϕ ∈ Clos(ξ) is alternation free.
• The negation ξ is alternation free.
• An infinite E(ξ,S)-match is won by ∃ precisely if it contains infinitely many

ν-formulas, and by ∀ precisely if it contains infinitely many μ-formulas.

3 The Proof System

We will call a set Σ of formulas negation-closed if for every ξ ∈ Σ it holds that
ξ ∈ Σ and Clos(ξ) ⊆ Σ. For the remainder of this paper we fix a finite and
negation-closed set Σ of Laf

2μ-formulas. For reasons of technical convenience, we
will assume that every formula is drawn from Σ. This does not restrict the scope
of our results, as any formula is contained in some finite negation-closed set.

3.1 Sequents

Syntax. Inspired by [14], we annotate formulas by a single bit of information.

Definition 1. An annotated formula is a formula with an annotation in {◦, •}.
The letters b, c, d, . . . are used as variables ranging over the annotations ◦ and •.
An annotated formula ϕb is said to be out of focus if b = ◦, and in focus if b = •.
The focus annotations will keep track of so-called traces on paths through proofs.

Focus-Style Proofs for the Two-Way Alternation-Free μ-Calculus 323

Roughly, a trace on a path is a sequence of formulas, such that the i-th formula
occurs in the i-th sequent on the path, and the i + 1-th formula ‘comes from’
the i-th formula in a way which we will define later. In Sect. 4 we will construct
a game in which the winning strategies of one player correspond precisely to the
proofs in our proof system. The focus mechanism enables us to formulate this
game as a parity game. This is essentially also the approach taken in [14].

Where traces usually only moves upwards in a proof, the backwards modali-
ties of our language will be enable them to go downwards as well. We will handle
this in our proof system by further enriching our sequents with the following
additional information.

Definition 2. For any two formulas ϕ,ψ, there is a trace atom ϕ � ψ and a
negated trace atom ϕ �� ψ.

The idea for trace atoms will become more clear later, but for now one can think
of ϕ � ψ as expressing that there is some kind of trace going from ϕ to ψ, and
of ϕ �� ψ as its negation. Finally, our sequents are built from the above three
entities.

Definition 3. A sequent is a finite set consisting of annotated formulas, trace
atoms, and negated trace atoms.

Whenever we want to refer to general elements of a sequent Γ , without specifying
whether we mean annotated formulas or (negated) trace atoms, we will use the
capital letters A,B,C,

Semantics. We will now define the semantics of sequents. Unlike annotations,
which do not affect the semantics but only serve as bookkeeping devices, the
trace atoms have a well-defined interpretation. We will work with a refinement
of the usual satisfaction relation that is defined with respect to a strategy for ∀
in the evaluation game. Most of the time, this strategy will be both optimal and
positional (see Appendix A for the precise definition of these terms). Because we
will frequently need to mention such optimal positional strategies, we will refer
to them by the abbreviation ops. We first define the interpretation of annotated
formulas. Note that the focus annotations play no role in this definition.

Definition 4. Let S be a model, let f be an ops for ∀ in E@(
∧

Σ,S) and let ϕb

be an annotated formula. We write S, s �f ϕb if f is not winning for ∀ at (ϕ, s).

The following proposition, which is an immediate consequence of Theorem 1 of
the appendix, relates �f to the usual satisfaction relation �.

Proposition 3. S, s � ϕ iff for every ops f for ∀ in E(∧ Σ,S): S, s �f ϕb.

The semantics of trace atoms is also given relative to an ops for ∀ in the game
E(∧ Σ,S) (in the following often abbreviated to E).

Definition 5. Given an ops f for ∀ in E, we say that ϕ � ψ is satisfied in S

at s with respect to f (and write S, s �f ϕ � ψ) if there is an f-guided match

(ϕ, s) = (ϕ0, s0) · (ϕ1, s1) · · · (ϕn, sn) = (ψ, s) (n ≥ 0)

324 J. Rooduijn and Y. Venema

such that for no i < n the formula ϕi is a μ-formula. We say that S satisfies
ϕ �� ψ at s with respect to f (and write S, s �f ϕ �� ψ) iff S, s ��f ϕ � ψ.

The idea behind the satisfaction of a trace atom ϕ � ψ at a state s is that ∃
can take the match from (ϕ, s) to (ψ, s) without passing through a μ-formula.
This is good for the player ∃. For instance, if ϕ � ψ and ψ � ϕ are satisfied
at s with respect to f for some ϕ �= ψ, then f is necessarily losing for ∀ at the
position (ϕ, s). We will later relate trace atoms to traces in infinitary proofs.

We interpret sequents disjunctively, that is: S, s �f Γ whenever S, s �f A
for some A ∈ Γ . The sequent Γ is said to be valid whenever S, s �f Γ for every
model S, state s of S, and ops f for ∀ in E .

Remark 1. There is another way in which one could interpret sequents, which
corresponds to what one might call strong validity, and which the reader should
note is different from our notion of validity. Spelling it out, we say that Γ is
strongly valid if for every model S and state s there is an A in Γ that such
that for every ops f for ∀ in E it holds that S, s �f A. While these two notions
coincide for sequents containing only annotated formulas, the sequent given by
{ϕ ∧ ψ � ϕ,ϕ ∧ ψ � ψ} shows that they do not in general.

We finish this subsection by defining three operations on sequents that, respec-
tively, extract the formulas contained annotated in some sequent, take all anno-
tated formulas out of focus, and put all formulas into focus.

Γ− := {χ | χb ∈ Γ for some b ∈ {◦, •}},

Γ ◦ := {ϕ � ψ | ϕ � ψ ∈ Γ} ∪ {ϕ �� ψ | ϕ �� ψ ∈ Γ} ∪ {χ◦ | χ ∈ Γ−},

Γ • := {ϕ � ψ | ϕ � ψ ∈ Γ} ∪ {ϕ �� ψ | ϕ �� ψ ∈ Γ} ∪ {χ• | χ ∈ Γ−}.

3.2 Proofs

In this subsection we give the rules of our proof system. Because the rule for
modalities is quite involved, its details are given in a separate definition.

Definition 6. Let Γ be a sequent and let [a]ϕb be an annotated formula. The
jump Γ [a]ϕb

of Γ with respect to [a]ϕb consists of:

1. (a) ϕs([a]ϕ,Γ);
(b) ψs(〈a〉ψ,Γ) for every 〈a〉ψc ∈ Γ ;
(c) [ă]χ◦ for every χd ∈ Γ such that [ă]χ ∈ Σ;

2. (a) ϕ � 〈ă〉χ for every [a]ϕ � χ ∈ Γ such that 〈ă〉χ ∈ Σ;
(b) 〈ă〉χ �� ϕ for every χ �� [a]ϕ ∈ Γ such that 〈ă〉χ ∈ Σ;
(c) ψ � 〈ă〉χ for every 〈a〉ψ � χ ∈ Γ such that 〈ă〉χ ∈ Σ;
(d) 〈ă〉χ �� ψ for every χ �� 〈a〉ψ ∈ Γ such that 〈ă〉χ ∈ Σ,

Focus-Style Proofs for the Two-Way Alternation-Free μ-Calculus 325

where s(ξ, Γ) is defined by:

s(ξ, Γ) =

⎧
⎪⎨

⎪⎩

• if ξ• ∈ Γ,

• if θ �� ξ ∈ Γ for some θ• ∈ Γ,

◦ otherwise.

Before we go on to provide the rest of the proof system, we will give some
intuition for the modal rule, by proving the lemma below. This lemma essentially
expresses that the modal rule is sound. Since the annotations play no role in the
soundness of an individual rule, we suppress the annotations in the proof below
for the sake of readability. Intuition for the annotations in the modal rule, and
in particular for the function s, is given later.

Lemma 1. Given a model S, a state s of S, and an ops f for ∀ in E such that
S, s ��f [a]ϕb, Γ , there is an a-successor t of s, such that S, t ��f Γ [a]ϕb

.

Proof. Let S, s ��f [a]ϕ be the state t chosen by f([a]ϕ, s). We claim that S, t ��f

Γ [a]ϕb

. To start with, since f is winning, we have S, t ��f ϕ. Moreover, if 〈a〉ψ
belongs to Γ , then S, s ��f 〈a〉ψ and thus S, s ��f ψ. Thirdly , if χ belongs to Γ
and [ă]χ ∈ Σ, then, by optimality, it holds that S, t ��f [ă]χ.

The above shows all conditions under item 1. For the conditions under item
2, suppose that 〈ă〉χ ∈ Σ. We only show 2(d), because the others are similar.
Suppose that χ �� 〈a〉ψ ∈ Γ . Then S, s ��f χ �� 〈a〉ψ, whence S, s �f χ � 〈a〉ψ.
That means that there is an f -guided E-match

(χ, s) = (ϕ0, s0) · (ϕ1, s1) · · · (ϕn, sn) = (〈a〉ψ, s) (n ≥ 0)

such that none of the ϕi’s is a μ-formula. But then the f -guided E-match

(〈ă〉χ, t) · (ϕ0, s0) · · · (ϕn, sn) · (ψ, t)

witnesses that S, t ��f 〈ă〉χ �� ψ, as required.

The rules of the system Focus2 are given in Fig. 1. In each rule, the annotated
formulas occurring in the set Γ are called side formulas. Moreover, the rules in
{R∨,R∧,Rμ,Rν ,R[a]} have precisely one principal formula, which by definition
is the annotated formula appearing to the left of Γ in the conclusion. Note that,
due to the fact that sequents are taken to be sets, an annotated formula may at
the same time be both a principal formula and a side formula.

We will now define the relation of immediate ancestry between formulas in the
conclusion and formulas in the premisses of some arbitrary rule application. For
any side formula in the conclusion of some rule, we let its immediate ancestors
be the corresponding side formulas in the premisses. For every rule except R[a],
if some formula in the conclusion is a principal formula, its immediate ancestors
are the annotated formulas occurring to the left of Γ in the premisses. Finally,
for the modal rule R[a], we stipulate that ϕs([a]ϕ,Γ) is an immediate ancestor of
the principal formula [a]ϕb, and that each ψs(〈a〉ψ,Γ) contained in Γ [a]ϕb

due to
clause 1(b) of Definition 6 is an immediate ancestor of 〈a〉ψb ∈ Γ .

326 J. Rooduijn and Y. Venema

Fig. 1. The proof rules of the system Focus2.

As mentioned before, the purpose of the focus annotations is to keep track of
traces of formulas on branches. Usually, a trace is a sequence of formulas (ϕn)n<ω

such that each ϕk is an immediate ancestor of ϕk+1. The idea is then that
whenever an infinite branch has cofinitely many sequents with a formula in focus,
this branch contains a trace on which infinitely many formulas are ν-formulas.
Disregarding the backwards modalities for now, this can be seen as follows. As
long as the focus rule is not applied, any focussed formula is an immediate
ancestor of some earlier focussed formula. Since the principal formula of Rμ

loses focus, while the principal formula of Rν preserves focus, a straightforward
application of Kőnig’s Lemma shows that every infinite branch contains a trace
with infinitely many ν-formulas. We refer the reader to [14] for more details.

Our setting is slightly more complicated, because the function s in Definition
6 additionally allows the focus to transfer along negated trace atoms, rather than
just from a formula to one of its immediate ancestors. This is inspired by [22],
as are the conditions in the second part of Definition 6. The main idea is that,
because of the backwards modalities, traces may move not only up, but also
down a proof tree. To get a grip on these more complex traces, we cut them up
in segments consisting of upward paths, which are the same as ordinary traces,
and loops, which are captured by the negated trace atoms. This intuitive idea
will become explicit in the proof of completeness in Sect. 5.

We are now ready to define a notion of infinitary proofs in Focus2.

Definition 7. A Focus2∞-proof is a (possibly infinite) derivation in Focus2 with:

1. All leaves are axioms.
2. On every infinite branch cofinitely many sequents have a formula in focus.
3. Every infinite branch has infinitely many applications of R[a].

Focus-Style Proofs for the Two-Way Alternation-Free μ-Calculus 327

As mentioned above, conditions 2 and 3 are meant to ensure that every infinite
trace contains infinitely many ν-formulas. We will use this in Sect. 5 to show
that infinitary proofs are sound. The key idea is to relate the traces in a proof
to matches in a purported countermodel of its conclusion.

We leave it to the reader to verify that each rule, apart from the modal rule,
is truth-preserving with respect to a given model S, state s of S, and ops f for
Refuter in E(∧ Σ,S). Since Lemma 1 already showed the soundness of the modal
rule, we obtain:

Proposition 4. Well-founded Focus2∞-proofs are sound.

We close this section with two examples of Focus2∞-proofs. The first example
demonstrates cut and item 1(c) of Definition 6. The second example demon-
strates trace atoms.

Example 1. Define the following two formulas:

ϕ := μx(〈ă〉x ∨ p), ψ := νy([a]x ∧ ϕ).

The formula ϕ expresses ‘there is a backwards a-path to some state where p
holds’. The formula ψ expresses ‘ϕ holds at every state reachable by a forwards
a-path’. As our context Σ we take least negation-closed set containing ϕ and ψ:

{ϕ, 〈ă〉ϕ ∨ p, 〈ă〉ϕ, p, ψ, [a]ψ ∧ ϕ, [a]ψ,ϕ, [ă]ϕ ∧ p, p, [ă]ϕ,ψ, 〈a〉ψ ∨ ϕ, 〈a〉ψ}.

The implication p → ψ is valid, and below we give a Focus2∞-proof. As this
particular proof does not rely on trace atoms, we omit them for readability.

Ax1
p•, ψ•, 〈ă〉ϕ◦, p◦

R∨
p•, ψ•, 〈ă〉ϕ ∨ p◦

Rμ
p•, ψ•, ϕ◦

π

ψ•, [ă]ϕ◦
R[a]

p•, [a]ψ•, ϕ◦ Ax1
p•, ϕ•, ϕ◦

R∧
p•, [a]ψ ∧ ϕ•, ϕ◦

Rν
p•, ψ•, ϕ◦

cut
p•, ψ•

In the above proof, the proof π is given by

Ax1
ϕ◦, ϕ◦

R[ă]
[a]ψ•, [ă]ϕ◦, 〈ă〉ϕ◦, p◦

R∨[a]ψ•, [ă]ϕ◦, 〈ă〉ϕ ∨ p◦
Rμ

[a]ψ•, [ă]ϕ◦, ϕ◦

...
ψ•, [ă]ϕ◦

R[a]
[a]ψ•, [ă]ϕ◦, ϕ◦

cut
[a]ψ•, [ă]ϕ◦

Ax1
ϕ◦, ϕ◦

R[ă]〈ă〉ϕ◦, p◦, [ă]ϕ◦
R∨〈ă〉ϕ ∨ p◦, [ă]ϕ◦
Rμ

ϕ•, [ă]ϕ◦
R∧[a]ψ ∧ ϕ•, [ă]ϕ◦

Rν
ψ•, [ă]ϕ◦

where the vertical dots indicate that the proof continues by repeating what
happens at the root of π. The resulting proof of p•, ψ• has a single infinite
branch, which can easily be seen to satisfy Condition 2 of Definition 7.

328 J. Rooduijn and Y. Venema

Example 2. Define ϕ := νx〈a〉〈ă〉x, i.e. ϕ expresses that there is an infinite path
of alternating a and ă transitions. Clearly this holds at every state with an a-
successor. Hence the implication 〈a〉p → ϕ is valid. As context Σ we consider
the least negation-closed set containing both 〈a〉p and ϕ, i.e.,

{〈a〉p, p, ϕ, 〈a〉〈ă〉ϕ, 〈ă〉ϕ, [a]p, p, ϕ, [a][ă]ϕ, [ă]ϕ}.

The following is a Focus2∞-proof of 〈a〉p → ϕ.

Ax2
p•, 〈ă〉ϕ•, 〈ă〉ϕ �� 〈ă〉ϕ, 〈ă〉ϕ � 〈ă〉ϕ

R[a]
[a]p•, 〈a〉〈ă〉ϕ•, ϕ �� 〈a〉〈ă〉ϕ, 〈a〉〈ă〉ϕ � ϕ

Rν[a]p•, ϕ•

Note that it is also possible to use Ax3 instead of Ax2 in the above proof.

4 The Proof Search Game

We will define a proof search game G(Σ) for the proof system Focus2∞ in the
standard way. First, we require a slightly more formal definition of the notion of
a rule instance.

Definition 8. A rule instance is a triple (Γ, r, 〈Δ1, . . . ,Δn〉) such that

Δ1 · · · Δn r
Γ

is a valid rule application in Focus2.

The set of positions of G(Σ) is SeqΣ∪InstΣ , where SeqΣ is the set of sequents and
InstΣ is the set of valid rule instances (containing only formulas in Σ). Since Σ is
finite, the game G(Σ) has only finitely many positions. The ownership function
and admissible moves of G(Σ) are as in the following table:

Position Owner Admissible moves

Γ ∈ SeqΣ Prover {i ∈ InstΣ | conc(i) = Γ}
(Γ, r, 〈Δ1, . . . , Δn〉) ∈ InstΣ Refuter {Δi | 1 ≤ i ≤ n}

In the above table, the expression conc(i) stands for the conclusion (i.e. the
first element of the triple) of the rule instance i. As usual, a finite match is lost
by the player who got stuck. An infinite G(Σ)-match is won by Prover if and
only it has a final segment

Γ0 · i0 · Γ1 · i1 · · ·
on which each Γk has at least one formula in focus and the instance ik is an
application of R[a] for infinitely many k. The two main observations about G(Σ)
that we will use are the following:

Focus-Style Proofs for the Two-Way Alternation-Free μ-Calculus 329

1. A Focus2∞-proof of Γ is the same as a winning strategy for Prover in G(Σ)@Γ .
2. G(Σ) is a parity game, whence positionally determined.

The first observation is immediate when viewing a winning strategy as a subtree
of the full game tree. To make the second observation more explicit, we give
the parity function Ω for G(Σ). On SeqΣ , we simply set Ω(Γ) := 0 for every
Γ ∈ SeqΣ . On InstΣ , we define:

Ω(Γ, r, 〈Δ1, . . . ,Δn〉) :=

⎧
⎪⎨

⎪⎩

3 if Γ has no formula in focus,
2 if Γ has a formula in focus and r = R[a],

1 if Γ has a formula in focus and r �= R[a].

As a result we immediately obtain a method to reduce general non-well-founded
proofs to cyclic proofs. Indeed, if Prover has a winning strategy, she also has
positional winning strategy, which clearly corresponds to a regular Focus2∞-proof
(that is, a proof containing only finitely many non-isomorphic subtrees.)

5 Soundness and Completeness

In this section we will prove the soundness and completeness of the system
Focus2∞. More specifically, for soundness we will show that if Γ is invalid, then
Refuter has a winning strategy in G(Σ)@Γ . Our completeness result is slightly
less wide in scope, showing only that if Refuter has a winning strategy in
G(Σ)@Γ , then Γ− is invalid.

5.1 Soundness

For soundness, we assume an ops f for ∀ in E := E(∧ Σ,S) for some S and s
such that S, s ��f Γ . The goal is to construct from f a strategy Tf for Refuter
in G := G(Σ). The key idea is to assign to each position p reached in G a state
s such that whenever p = Δ ∈ SeqΣ it holds that S, s ��f Δ. For p ∈ InstΣ , the
choice of Tf is then based on f(ϕ, s) where ϕ is a formula determined by the
rule instance p. The existence of such an s implies that p cannot be an axiom
and thus that Refuter never gets stuck. For infinite matches, the proof works by
showing that a Tf -guided G@Γ -match lost by Refuter induces an f -guided E@ϕ-
match lost by ∀. As mentioned above, the key idea here is to relate an f -guided
E@ϕ-match to a trace through the Tf -guided G@Γ -match. If the G@Γ -match is
losing for Refuter, it must contain a trace with infinitely many ν-formulas, which
gives us an E@ϕ-match lost by ∀. A novel challenge here is that not all steps in
a trace necessarily go from a formula to one of its immediate ancestors, but may
instead transfer along a negated trace atom. When this happens, say from ϕn to
ϕn+1, it holds for Δ as above that both ϕ•

n and ϕn �� ϕn+1 belong to Δ. Since,
by the above, it holds that S, s ��f Δ, we use the fact that S, s �f ϕn � ϕn+1

to take the E@ϕ-match from (ϕn, s) to (ϕn+1, s). In the end, we obtain:

Proposition 5. If Γ is the conclusion of a Focus2∞-proof, then Γ is valid.

330 J. Rooduijn and Y. Venema

5.2 Completeness

For completeness we conversely show that from a winning strategy T for Refuter
in G@Γ , we can construct a model S

T and a positional strategy fT for ∀ in
E(∧ Σ,ST) such that S

T falsifies Γ− with respect to fT . The strategy fT we
construct will not necessarily be optimal, but by Theorem 1 of Appendix A it
follows that there must also be an ops fT such that S

T ��f Γ−. We will view T
as a tree, and restrict attention a certain subtree. We first need to define two
relevant properties of rule applications.

Definition 9. A rule application is cumulative if all of the premisses are super-
sets of the conclusion. A rule application is productive if all of the premisses
are distinct from the conclusion.

Without renaming T , we restrict T to its subtree where Prover adheres to the
following (non-deterministic) strategy:

1. Exhaustively apply productive instances of cut and tc.
2. If applicable, apply the focus rule.
3. Exhaustively take applications of R∨, R∧, Rμ, Rν , trans that are both cumu-

lative and productive.
4. If applicable, apply an axiom.
5. If applicable, apply a modal rule and loop back to stage (1).

It is not hard to see that each of the above phases terminates. More precisely,
phases (2), (4) and (5) either terminate immediately or after applying a single
rule. By the productivity requirement and the finiteness of Σ, phases (1) and
(3) must terminate after a finite number of rule applications as well. Note also
that non-cumulative rule applications can only happen in phases (2) or (5).

We will now define the model ST . The set ST of states consists of maximal
paths in T not containing a modal rule. We write Γ (ρ) for

⋃{Γ : Γ occurs in ρ}.
Note that, since the only possibly non-cumulative rule application in ρ is the
focus rule, Γ (ρ)• = last(ρ)• for every state ρ of ST . Moreover, we write ρ1

a−→ ρ2
if ρ2 is directly above ρ1 in T , separated only by an application of R[a] (we
assume that trees grow upwards). We write → for the union

⋃{ a−→: a ∈ D}.
Clearly, under the relation → the states of S

T form a forest (not necessarily
a tree!). We write ρ ≤ τ if τ is a descendant of ρ in this forest, i.e. ≤ is the
reflexive-transitive closure of →. The relations RT

a of ST are defined as follows:

ρ1R
T
a ρ2 if and only if ρ1

a−→ ρ2 or ρ2
ă−→ ρ1.

Note that S
T is clearly regular. We define the valuation V T : ST → P(P) by

V T (ρ) := {p : p ∈ Γ (ρ)−}.

The restriction on T , together with the fact that it is winning for Refuter, guar-
antees that each Γ (ρ) satisfies certain saturation properties, which are spelled
out in the following lemma. We will later use these saturation conditions to
construct our positional strategy fT for ∀ in E(∧ Σ,ST) and to show that S

T

falsifies Γ with respect to fT .

Focus-Style Proofs for the Two-Way Alternation-Free μ-Calculus 331

Lemma 2. For every state ρ of ST , the set Γ (ρ) is saturated. That is, it satisfies
all of the following conditions:

– For no ϕ it holds that ϕ,ϕ ∈ Γ (ρ)−.
– For all ϕ it holds that ϕ◦ ∈ Γ (ρ) if and only if ϕ◦ /∈ Γ (ρ)
– For all ϕ it holds that ϕ � ψ ∈ Γ (ρ) if and only if ϕ �� ψ /∈ Γ (ρ).
– For no ϕ it holds that ϕ � ϕ ∈ Γ (ρ).
– If ψ1 ∨ ψ2 ∈ Γ (ρ)−, then for both i: ψ1 ∨ ψ2 �� ψi ∈ Γ (ρ) and ψi ∈ Γ (ρ)−.
– If ψ1 ∧ ψ2 ∈ Γ (ρ)−, then for some i: ψ1 ∧ ψ2 �� ψi ∈ Γ (ρ) and ψi ∈ Γ (ρ)−.
– If μxϕ ∈ Γ (ρ)−, then ϕ[μxϕ/x] ∈ Γ (ρ)−.
– If νxϕ ∈ Γ (ρ)−, then νxϕ �� ϕ[νxϕ/x] ∈ Γ (ρ) and ϕ[νxϕ/x] ∈ Γ (ρ)−.
– If νxϕ ∈ Γ (ρ)−, then ϕ[νxϕ/x] � νxϕ ∈ Γ (ρ).
– If ϕ �� ψ,ψ �� χ ∈ Γ (ρ), then ϕ �� χ ∈ Γ (ρ).

Now let ρ0 be a state of ST containing the root Γ and let ϕ0 be some formula
such that ϕ0 ∈ Γ−. We wish to show that ϕ0 is not satisfied at ρ0 in S

T . To this
end, we will construct a winning strategy fT for ∀ in the game E := E(∧ Σ,ST)
initialised at (ϕ0, ρ0). The strategy fT is defined as follows:

– At (ψ1 ∧ ψ2, ρ), pick a conjunct ψi ∈ Γ (ρ)− such that ψ1 ∧ ψ2 �� ψi ∈ Γ (ρ).
– At ([a]ϕ, ρ), choose (ϕ, τ) for some τ such that ρ

a−→ τ by virtue of some
application of R[a] with [a]ϕb principal for some b ∈ {◦, •}.

Before we show that fT is winning for ∀, we must first argue that it is well
defined. By saturation, for every formula ψ1 ∧ ψ2 contained in Γ (ρ)−, there is a
ψi ∈ Γ (ρ)− with ψ1 ∧ψ2 �� ψi ∈ Γ (ρ). Likewise, for every formula [a]ϕb ∈ Γ (ρ),
there is a τ directly above ρ in T , separated only by an application of R[a] with
[a]ϕb principal. The following lemma therefore suffices. Its proof is by induction
on the length of M and heavily relies on the saturation properties of Lemma 2.

Lemma 3. Let M be an fT -guided E-match initialised at (ϕ0, ρ0). Then for any
position (ϕ, ρ) occurring in M it holds that ϕ ∈ Γ (ρ)−. Moreover, if (ϕ, ρ) comes
directly after a modal step and the focus rule is applied in ρ, then ϕ• ∈ Γ (ρ).

The following lemma is key to the completeness proof. It shows that if an
fT -guided E@(ϕ0, ρ0)-match loops from some state ρ to itself, without pass-
ing through a μ-formula, then this information is already contained in ρ in the
form of a negated trace atom. The proof goes by induction on the number of
distinct states of ST occurring in N . The base case, where only ρ is visited, can
be shown by applying several instances of Lemma 2. For the inductive step, we
crucially rely on the conditions 2(a) – 2(d) of Definition 6 to relate the trace
atoms in two states τ and τ ′ such that τRT

a τ ′.

Lemma 4. Let ρ ∈ ST . Suppose that an fT -guided E@(ϕ0, ρ0)-match M has a
segment N of the form:

(ϕ, ρ) = (ψ0, s0) · (ψ1, s1) · · · (ψn, sn) = (ψ, ρ) (n ≥ 0)

such that for no i < n the formula ϕi is a μ-formula. Then ϕ �� ψ ∈ Γ (ρ).

332 J. Rooduijn and Y. Venema

With the above lemmata in place, we are ready to prove that ∀ wins every full
fT -guided E@(ϕ0, ρ0)-match M. If M is finite, it is not hard to show that it
must be ∃ who got stuck. If M is infinite, the proof depends on whether M visits
some single state infinitely often. If it does, one can show that if ∃ would win the
match M, then M would visit some state ρ with νxϕ, ϕ[νxϕ/x] �� ϕ ∈ Γ (ρ)−,
contradicting saturation. If, on the other hand, M visits each state at most
finitely often, the proof works by showing that a win for ∃ in M would imply
that T contains an infinite branch won by Prover, which is also a contradiction.
In the end, we obtain the following proposition.

Proposition 6. The strategy fT is winning for ∀ in E@(ϕ0, ρ0).

Since ϕ0 was chosen arbitrarily from Γ−, we find that S
T ��fT

Γ−. Hence, by
Theorem 1 of Appendix A, we obtain completeness for the formulas in a sequent.

Proposition 7. If Γ− is valid, then Γ has a Focus2∞-proof.

6 Conclusion

We have constructed a non-well-founded proof system Focus2∞ for the two-way
alternation-free modal μ-calculus Laf

2μ. This system naturally reduces to a cyclic
system when restricting to positional strategies in the proof search game.

Using the proof search game and the game semantics for the modal μ-
calculus, we have shown that the system is sound for all sequents, and complete
for those sequents not containing trace atoms. A natural first question for future
research is to see if a full completeness result can be obtained. For this, a logic
of trace atoms would have to be developed. One could for instance think of a
rule like

ϕ � χ, Γ ψ � χ, Γ
R∧ϕ ∧ ψ � χ, Γ

Following on this, we think it would be interesting to properly include trace
atoms in the syntax by allowing the Boolean, modal and perhaps even the fixed
point operators to apply to trace atoms. An example of a valid formula in this
syntax is given by ((ϕ � 〈a〉ψ) ∧ [a](ψ � 〈ă〉ϕ)) → ϕ.

Another pressing question is whether our system could be used to prove inter-
polation, as has been done for language without backwards modalities in [14].
To the best of our knowledge it is currently an open question whether Laf

2μ has
interpolation. At the same time, it is known that analytic applications of the cut
rule do not necessarily interfere with the process of extracting interpolants from
proofs [9,16].

Finally, it would be interesting to see if our system can be extended to the
full language L2μ. The main challenge would be to keep track of the most impor-
tant fixed point variable being unfolded on a trace. Perhaps this could be done
by employing an annotation system such as the one by Jungteerapanich and
Stirling [7,21], together with trace atoms that record the most important fixed
point variable unfolded on a loop.

Focus-Style Proofs for the Two-Way Alternation-Free μ-Calculus 333

Acknowledgement. We thank Johannes Marti for insightful conversations at the
outset of the present research. We also thank the anonymous reviewers for their helpful
comments.

A Parity games

Definition 10. A (two-player) game is a structure G = (B0, B1, E,W) where
E is a binary relation on B := B0 + B1, and W is a map Bω → {0, 1}.
The set B is called the board of G, and its elements are called positions. Whether
a position belongs to B0 or B1 determines which player owns that position. If a
player Π ∈ {0, 1} owns a position q, it is their turn to play and the set of their
admissible moves is given by the image E[q].

Definition 11. A match in G = (B0, B1, E,W) (or simply a G-match) is a path
M through the graph (B,E). A match is said to be full if it is a maximal path.

Note that a full match M is either finite, in which case E[last(M)] = ∅, or
infinite. For a Π ∈ {0, 1}, we write Π for the other player Π + 1 mod 2.

Definition 12. A full match M in G = (B0, B1, E,W) is won by player Π if
either M is finite and last(M) ∈ BΠ , or M is infinite and W (M) = Π.

If a full match M is finite, and last(M) belongs to BΠ for Π ∈ {0, 1}, we say
that the player Π got stuck. A partial match is a match which is not full.

Definition 13. In the context of a game G, we denote by PMΠ the set of partial
G-matches M such that last(M) belongs to the player Π.

Definition 14. A strategy for Π in a game G is a map f : PMΠ → B. More-
over, a G-match M is said to be f -guided if for any M0 � M with M0 ∈ PMΠ

it holds that M0 · f(M0) � M.

For a position q, the set PMΠ(q) contains all M ∈ PMΠ such that first(M) = q.

Definition 15. A strategy f for Π in G is surviving at a position q if f(M)
is admissible for every M ∈ PMΠ(q), and winning at q if in addition all full
f-guided matches starting at q are won by Π. A position q is said to be winning
for Π if Π has a strategy winning at q. We denote the set of all positions in G
that are winning for Π by WinΠ(G).
We write G@q for the game G initialised at the position q of G. A strategy f for
Π is surviving (winning) in G@q if it is surviving (winning) in G at q.

Definition 16. A strategy f is positional if it only depends on the last move,
i.e. if f(M) = f(M′) for all M,M′ ∈ PMΠ with last(M) = last(M′).

We will often present a positional strategy for Π as a map f : BΠ → B.

334 J. Rooduijn and Y. Venema

Definition 17. A priority map on some board B is a map Ω : B → ω of
finite range. A parity game is a game of which the winning condition is given
by WΩ(M) = max(InfΩ(M)) mod 2, where InfΩ(M) is the set of positions
occuring infinitely often in M.

The following theorem captures the key property of parity games: they are posi-
tionally determined. In fact, each player Π has a positional strategy fΠ that is
optimal, in the sense that fΠ is winning for Π in G@q for every q ∈ WinΠ(G).
Theorem 1 ([5,15]). For any parity game G, there are positional strategies
fΠ for each player Π ∈ {0, 1}, such that for every position q one of the fΠ is a
winning strategy for Π in G@q.

References

1. Afshari, B., Enqvist, S., Leigh, G.E., Marti, J., Venema, Y.: Proof Systems for
Two-way Modal mu-Calculus (2023). ILLC Prepublication Series, PP-2023-03

2. Afshari, B., Jäger, G., Leigh, G.E.: An infinitary treatment of full mu-calculus. In:
Iemhoff, R., Moortgat, M., de Queiroz, R. (eds.) WoLLIC 2019. LNCS, vol. 11541,
pp. 17–34. Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-662-59533-
6_2

3. Afshari, B., Leigh, G.E., Menéndez Turata, G.: Uniform interpolation from cyclic
proofs: the case of modal mu-calculus. In: Das, A., Negri, S. (eds.) TABLEAUX
2021. LNCS (LNAI), vol. 12842, pp. 335–353. Springer, Cham (2021). https://doi.
org/10.1007/978-3-030-86059-2_20

4. Ciabattoni, A., Lang, T., Ramanayake, R.: A theory of cut-restriction: first steps
(2022). arXiv: 2203.01600

5. Emerson, E.A., Jutla, C.S.: Tree automata, mu-calculus and determinacy
(extended abstract). In: 32nd Annual Symposium on Foundations of Computer
Science, San Juan, Puerto Rico, 1–4 October 1991, pp. 368–377. IEEE Computer
Society (1991)

6. Goré, R.: Tableau methods for modal and temporal logics. In: D’Agostino, M.,
Gabbay, D.M., Hähnle, R., Posegga, J. (eds.) Handbook of Tableau Methods, pp.
297–396. Springer, Netherlands, Dordrecht (1999). https://doi.org/10.1007/978-
94-017-1754-0_6

7. Jungteerapanich, N.: A tableau system for the modal μ-calculus. In: Giese, M.,
Waaler, A. (eds.) TABLEAUX 2009. LNCS (LNAI), vol. 5607, pp. 220–234.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02716-1_17

8. Kashima, R.: Cut-free sequent calculi for some tense logics. Stud. Logica 53(1),
119–136 (1994)

9. Kowalski, T., Ono, H.: Analytic cut and interpolation for bi-intuitionistic logic.
Rev. Symbol. Logic 10(2), 259–283 (2017)

10. Kozen, D.: Results on the propositional mu-calculus. Theoret. Comput. Sci. 27,
333–354 (1983)

11. Kupke, C., Marti, J., Venema, Y.: Size matters in the modal μ-calculus (2020).
arXiv: 2010.14430

12. Lange, M., Stirling, C.: Focus games for satisfiability and completeness of temporal
logic. In: LICS 2001, pp. 357–365 (2001)

https://doi.org/10.1007/978-3-662-59533-6_2
https://doi.org/10.1007/978-3-662-59533-6_2
https://doi.org/10.1007/978-3-030-86059-2_20
https://doi.org/10.1007/978-3-030-86059-2_20
http://arxiv.org/abs/2203.01600
https://doi.org/10.1007/978-94-017-1754-0_6
https://doi.org/10.1007/978-94-017-1754-0_6
https://doi.org/10.1007/978-3-642-02716-1_17
http://arxiv.org/abs/2010.14430

Focus-Style Proofs for the Two-Way Alternation-Free μ-Calculus 335

13. Marti, J., Venema, Y.: Focus-style proof systems and interpolation for the
alternation-free μ-calculus (2021). arXiv: 2103.01671

14. Marti, J., Venema, Y.: A focus system for the alternation-free μ-calculus. In: Das,
A., Negri, S. (eds.) TABLEAUX 2021. LNCS (LNAI), vol. 12842, pp. 371–388.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86059-2_22

15. Mostowski, A.: Games with forbidden positions. Technical report, Instytut Matem-
atyki, Uniwersytet Gdański, Poland (1991)

16. Nguyen, L.A.: Analytic tableau systems and interpolation for the modal logics KB,
KDB, K5, KD5. Stud. Logica 69(1), 41–57 (2001)

17. Niwiński, D., Walukiewicz, I.: Games for the mu-calculus. Theoret. Comput. Sci.
163(1&2), 99–116 (1996)

18. Ohnishi, M., Matsumoto, K.: Gentzen method in modal calculi. Osaka Math. J.
9(2), 113–130 (1957)

19. Rooduijn, J.: Cyclic hypersequent calculi for some modal logics with the mas-
ter modality. In: Das, A., Negri, S. (eds.) TABLEAUX 2021. LNCS (LNAI), vol.
12842, pp. 354–370. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
86059-2_21

20. Rooduijn, J.M.W., Zenger, L.: An analytic proof system for common knowledge
logic over S5. In: Fernández-Duque, A.P.D., Pinchinat, S. (eds.) AiML 2022, pp.
659–680. College Publications (2022)

21. Stirling, C.: A tableau proof system with names for modal μ-calculus. In: Voronkov,
A., Korovina, M.V. (eds.) HOWARD-60: A Festschrift on the Occasion of Howard
Barringer’s 60th Birthday, EPiC Series in Computing, vol. 42, pp. 306–318 (2014)

22. Vardi, M.Y.: Reasoning about the past with two-way automata. In: Larsen, K.G.,
Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, pp. 628–641. Springer,
Heidelberg (1998). https://doi.org/10.1007/BFb0055090

23. Venema, Y.: Lectures on the modal μ-calculus. Language and Computation, Uni-
versity of Amsterdam, Lecture notes. Institute for Logic (2020)

24. Walukiewicz, I.: Completeness of Kozen’s axiomatisation of the propositional μ-
calculus. Inf. Comput. 157(1–2), 142–182 (2000)

http://arxiv.org/abs/2103.01671
https://doi.org/10.1007/978-3-030-86059-2_22
https://doi.org/10.1007/978-3-030-86059-2_21
https://doi.org/10.1007/978-3-030-86059-2_21
https://doi.org/10.1007/BFb0055090

Relevant Reasoning and Implicit Beliefs

Igor Sedlár1(B) and Pietro Vigiani2

1 Institute of Computer Science, Czech Academy of Sciences, Prague, Czech Republic
sedlar@cs.cas.cz

2 Department of Philosophy, Scuola Normale Superiore, Pisa, Italy

pietro.vigiani@sns.it

Abstract. Combining relevant and classical modal logic is an approach
to overcoming the logical omniscience problem and related issues that
goes back at least to Levesque’s well known work in the 1980s. The
present authors have recently introduced a variant of Levesque’s frame-
work where explicit beliefs concerning conditional propositions can be for-
malized. However, our framework did not offer a formalization of implicit
belief in addition to explicit belief. In this paper we provide such a formal-
ization. Our main technical result is a modular completeness theorem.

Keywords: Epistemic logic · explicit belief · implicit belief ·
knowledge representation · modal logic · relevant logic

1 Introduction

Formal models of epistemic notions such as belief are often based on some form
of modal logic and possible-worlds semantics [4]. In this approach, beliefs of an
agent are modelled by a set of accessible possible worlds, and they are expressed
by means of a modal operator quantifying over possible worlds: a proposition is
believed if it is true in every accessible possible world. This endows the model
with many closure principles allowing to make predictions about an agent’s
beliefs given information about their prior beliefs. For instance, if a conjunc-
tion is believed, then so are both conjuncts since every possible world satisfying
the conjunction satisfies both conjuncts as well. However, such predictions are
often inaccurate when it comes to real-life agents. Such agents frequently fail
to realize consequence relations occurring between pieces of information (e.g. if
they do not have sufficient resources at their disposal, such as time and memory),
or they prioritize relevance over consequence (when the consequences at hand
are not relevant to the prior beliefs or the context in general).

The possible-worlds model provides a good rendering of what has to be true
given what is believed by the agent, or what is implicitly believed, but it fails
to model what is actively held to be true by the agent, or what is explicitly
believed. Many adjustments of the model exist that address the issue. Hector
Levesque [9] famously provided a model of explicit belief based on the logic of
First Degree Entailment, FDE, the implication-free fragment of Anderson and
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
H. H. Hansen et al. (Eds.): WoLLIC 2023, LNCS 13923, pp. 336–350, 2023.
https://doi.org/10.1007/978-3-031-39784-4_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-39784-4_21&domain=pdf
http://orcid.org/0000-0002-1942-7982
http://orcid.org/0000-0003-3385-0805
https://doi.org/10.1007/978-3-031-39784-4_21

Relevant Reasoning and Implicit Beliefs 337

Belnap’s relevant logic of entailment E [1]. In Levesque’s model, explicit beliefs
are modelled by a set of situations; unlike possible worlds, situations may be
incomplete or inconsistent [2], and so information supported by a situation is not
closed under consequences valid in classical propositional logic. This means that,
in Levesque’s model, explicit belief is not closed under classical consequence,
but it is closed under consequence valid in FDE. While closure under FDE is
a source of some criticism [3], it makes Levesque’s framework a simple model
of agents who prioritize relevance over consequence1. An important aspect of
Levesque’s model is that it combines an account of explicit belief with an account
of implicit belief: a proposition is believed implicitly if it holds in every possible
world satisfying the agent’s explicit beliefs.

Levesque’s model has been extended to allow for nesting of epistemic oper-
ators [8], which makes it possible to articulate various assumptions about the
interplay of explicit and implicit belief. However, the model fails to provide a
satisfactory account of explicit belief concerning conditional propositions. This
is related to the absence of a sensible conditional connective in FDE. In a recent
paper [13], we offered an extension of Levesque’s model using fully-fledged rele-
vant logic instead of the implication-free fragment. However, while our framework
represented explicit beliefs (truth in all accessible situations), it did not account
for implicit belief (truth in all accessible worlds). In this paper we extend the
framework of [13] with an account of implicit belief. Our main technical result is
a modular completeness theorem applying to a range of relevant epistemic logics
with implicit and explicit belief operators.

The rest of the paper is structured as follows. In Sect. 2 we introduce the
semantic framework for relevant epistemic logic of explicit and implicit belief,
and in Sect. 3 we provide sound and complete axiomatisations for several logics
based on the semantic framework. In the concluding Sect. 4 we summarise the
paper and point to interesting further lines of research.

2 Relevant Epistemic Logic with Classical Worlds

In this section we introduce our semantic framework, based on so-called W -
models introduced in [13]. These models combine the standard semantics for
relevant modal logic based on situations [6] with a representation of classical
possible worlds. The point of this combination is to represent agents as reasoning
according to relevant logic while being situated in classical possible worlds. In
our framework, a possible world is a special kind of situation where relevant
negation and implication turn out to behave like their Boolean counterparts.
We define validity as satisfaction in all possible worlds, and so logics based on
our framework extend classical propositional logic CPC.

When it comes to modelling explicit belief in this framework, it is crucial that
any situation (not only possible worlds) can be accessible from possible worlds.
1 Such agents can be seen as reasoning according to Harman’s clutter avoidance princi-
ple [7] in that they do not clutter their minds with trivial but unrelated consequences
of the given information.

338 I. Sedlár and P. Vigiani

Consequently, explicit beliefs as modelled by a relevant epistemic logic C.L are
closed under the underlying relevant logic L:

�L ϕ1 ∧ · · · ∧ ϕn → ψ

�C.L �ϕ1 ∧ · · · ∧ �ϕn → �ψ

Hence, relevant epistemic logics C.L model agents reasoning according to a rel-
evant logic L while being situated in classical possible worlds. In this paper we
add to the framework of [13] a representation of implicit belief using an addi-
tional epistemic accessibility relation on situations to obtain relevant epistemic
logics CI.L. Our semantics for implicit belief is set up with an eye to two crucial
principles concerning the properties of implicit belief, namely, that implicit belief
extends explicit belief and that it is closed under classical consequence:

�CI.L �ϕ → �Iϕ
�CPC ϕ1 ∧ · · · ∧ ϕn → ψ

�CI.L �Iϕ1 ∧ · · · ∧ �Iϕn → �Iψ

Consequently, implicit belief is the classical closure of explicit belief (see Propo-
sition 2):

�CPC ϕ1 ∧ · · · ∧ ϕn → ψ

�CI.L �ϕ1 ∧ · · · ∧ �ϕn → �Iψ

Definition 1 (Language). Let L be generated from a countable set of atomic
propositions At via the following grammar:

ϕ ∈ L ::= p | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ → ϕ | �ϕ | �Iϕ | �Lϕ

where p ∈ At. We abbreviate (ϕ → ψ) ∧ (ψ → ϕ) as ϕ ↔ ψ. Moreover, ∀,∃,⇒
,⇔ will denote, respectively, universal quantification, existential quantification,
implication and equivalence in the meta-language.

The modal operators � and �I have a clear epistemic interpretation, for-
malising explicit and implicit belief, respectively. On the other hand, �L has
a technical role in our framework, namely, internalising in the object language
validity in relevant logic. The role of �L becomes clear after the semantics is set
up.2

Definition 2 (L-model). Let a L-model be the tuple (S,L,≤, ∗, R,Q,QI ,
QL, V) such that (S,≤) is a poset; ∗ is an anti-monotonic function on S with
respect to ≤; R is a ternary relation on S which is downward (upward) mono-
tone in its first and second (third) argument; Q,QL are binary relations on S
which are downward (upward) monotone in their first (second) argument; QI is
a binary relation on S which is downward monotone in its first argument; and
L, V (p) are upward-closed subsets of S, for all p ∈ At. Moreover,

∀s∃x(x ∈ L & Rxss) (1)
s ∈ L & Rstu ⇒ t ≤ u (2)

2 �L can be seen as a sort of provability operator; see Lemma 7.

Relevant Reasoning and Implicit Beliefs 339

The definition of L-models is virtually the standard definition of models for
relevant modal logic (see e.g. [6]). L-models consist of a partially ordered set
of situations, or information states, ordered by the amount of information they
contain (support), and each component of the L-model satisfies the usual mono-
tonicity condition with respect to ≤. We say that ≤ models an information
order on situations in that s ≤ t means that t contains (supports) at least as
much information as s. The unary operation ∗ is the “Routley star”, mapping
each state s to its maximally compatible state, i.e. the state which is maximal
with respect to the information order ≤ among those states that do not sup-
port the negation of any formula supported by s. R is the usual ternary relation
interpreting →, where Rstu means that the result of combining the information
contained in s with that contained in t contains at least as much information
as that contained in u. L is the designated set of logical situations, contain-
ing situations carrying logical information, with Conditions (1–2) enforcing, as
usual, the semantic deduction theorem with respect to relevant implication →.
As in Levesque’s semantics, explicit beliefs are modelled by a set of situations.
In particular, Q is the epistemic accessibility relation associated with explicit
belief, associating with each state s the epistemic state Q(s) of the (contextu-
ally fixed) agent according to the (information contained in) situation s. More
specifically, Q(s) consists of the situations that contain the information that is
explicitly believed by the agent according to the information in s. In comparison
to standard epistemic relevant models, L-models feature two further accessibility
relations, QL and QI , associated with �L and �I , respectively.

Definition 3 (W-model). Let a W-model be the following tuple.

M = (S,W,L, 0, 1,≤, ∗, R,Q,QI , QL, V)

– (S,L,≤, ∗, R,Q,QI , QL, V) is a L-model;
– W ⊆ S such that for all w ∈ W and s, t ∈ S

w∗ = w (3)
Rwww (4)
Rwst ⇒ s = 0 or w ≤ t (5)
Rwst ⇒ t = 1 or s ≤ w (6)
QIws ⇒ s ∈ W (7)
QI(w) ⊆ Q(w) (8)
QL(W) = L (9)

– 0 �∈ V (p), 1 ∈ V (p) for all p ∈ At, such that for all s, t ∈ S, Q(LI) ∈
{Q,QL, QI}

0 ≤ s ≤ 1 (10)
1∗ = 0 & 0∗ = 1 (11)
Q(LI)00 (12)

340 I. Sedlár and P. Vigiani

Q(LI)1s ⇒ s = 1 (13)
R010 (14)
R1st ⇒ (s = 0 or t = 1) (15)

where for any relation A, A(x) = {y | Axy} and A(B) = {y | ∃x ∈ B(Axy)}.
As already mentioned, possible worlds are seen as a special kind of situations;

see Conditions (3–8). Conditions (3–6) enforce classical behaviour of negated and
implicative formulas when evaluated at possible worlds, as clarified by Lemma
3. Conditions (7–8) concerning QI yield the intended interpretation of QI(w),
which represents implicit beliefs of the agent in possible world w. In particular,
by Condition (7), QI(w) contains only possible worlds and so implicit beliefs
are closed under classical consequence, while by Condition (8) the “implicit”
epistemic state of the agent at w is a subset of the “explicit” epistemic state,
and so every explicit belief is an implicit belief. Note also that, contrary to Q
and QL, we do not assume that QI is upward monotone in its second argument3.
Finally, Condition (9) plays a fundamental role in connecting the classical and
the relevant layers of our semantics. Stipulating that the set of logical states L
is exactly the set of QL-accessible states from W yields a modified version of the
semantic deduction theorem, as clarified by Lemma 4 (item 1).

The last component of W-models are the bounds 0, 1, which represent the
empty situation and the full situation, respectively (the terminology is clarified
by Lemma 2). The bounds were used in [14] to provide a general frame semantics
for relevant modal logic. In our setting the bounds play a technical role that will
be clarified in the completeness proof; see also their discussion in [13].

Definition 4 (Satisfaction). Let the satisfaction relation in a W-model M
(notation |=) be a binary relation between states of M and formulas of L defined
recursively (on L) as follows.

M, s |= p ⇐⇒ s ∈ V (p)
M, s |= ¬ϕ ⇐⇒ M, s∗ �|= ϕ

M, s |= ϕ ∧ ψ ⇐⇒ M, s |= ϕ & M, s |= ψ

M, s |= ϕ ∨ ψ ⇐⇒ M, s |= ϕ or M, s |= ψ

M, s |= ϕ → ψ ⇐⇒ Rstu, M, t |= ϕ ⇒ M, u |= ψ

M, s |= �ϕ ⇐⇒ Qst ⇒ M, t |= ϕ

M, s |= �Iϕ ⇐⇒ QIst ⇒ M, t |= ϕ

M, s |= �Lϕ ⇐⇒ QLst ⇒ M, t |= ϕ

Let the proposition expressed by a formula ϕ in a W-model M be �ϕ�M = {s |
M, s |= ϕ}. Let a formula ϕ be valid in a W-model M, written M |= ϕ, iff for all
w ∈ W we have that M, w |= ϕ. Let a formula ϕ be entailed by a set of formulas

3 This condition has to do with the canonical model construction (see Sect. 3), since
in the canonical model Qc

I will not be upward monotone.

Relevant Reasoning and Implicit Beliefs 341

Γ in a W-model M, written Γ |=M ϕ iff for all s ∈ S, M, s |= ϕ if M, s |= ψ
for all ψ ∈ Γ . Let a formula ϕ be classically entailed by a set of formulas Γ in
a W-model M, written Γ |=c

M ϕ iff for all w ∈ W , M, w |= ϕ if M, w |= ψ for
all ψ ∈ Γ .

The intended properties of the semantics are highlighted in the following
series of lemmas. We omit reference to M whenever it is clear from the context.

Lemma 1 (Heredity). For every W-model M, s, t ∈ S and ϕ ∈ L: s ∈
�ϕ�M & s ≤ t ⇒ t ∈ �ϕ�M.

Proof. By induction on the structure of ϕ. The base case holds by the fact
that V (p) is upward monotone. The cases involving ∧,∨ are trivial, while the
cases involving ¬,→,�,�I ,�L hold thanks to monotonicity properties of the
corresponding accessibility relations (i.e., ∗, R,Q,QI , QL, respectively). ��
Lemma 2 (Full empty). For every W-model M and ϕ ∈ L: M, 1 |= ϕ and
M, 0 �|= ϕ.

Proof. The proof is by induction on the structure of ϕ, as given in [13]. The new
case of ϕ = �Iψ is established as follows. Assuming QI1s, we have by (13) that
s = 1, hence by induction hypothesis (IH) s |= ψ, by which we conclude that
1 |= �Iψ. Moreover, by (12) QI00, hence there is s, namely 0, such that QI0s
and (by IH) s �|= ψ, by which we conclude that 0 �|= �Iψ. ��
Lemma 3 (Worlds extensionality). For every W -model M, w ∈ W and
ϕ,ψ ∈ L:

M, w |= ¬ϕ ⇐⇒ M, w �|= ϕ

M, w |= ϕ → ψ ⇐⇒ M, w �|= ϕ or M, w |= ψ

Proof. The first claim follows from (3). The second claim follows by (4) in one
direction, while the other is established by case distinction, assuming Rwst and
s |= ϕ. If w �|= ϕ, by (6) either t = 1 (by which we conclude by Lemma 2 that
t |= ψ), or s ≤ w, (by which we conclude by Lemma 1 that w |= ϕ, which is
a contradiction). If w |= ψ, by (5) w ≤ t, hence by Lemma 1 we conclude that
t |= ψ. ��
Lemma 4 ((Classical) entailment). For every W-model M and ϕ,ψ ∈ L:

1. ϕ |=M ψ ⇔ M |= �L(ϕ → ψ);
2. ϕ |=c

M ψ ⇔ M |= ϕ → ψ.

Proof. The first item follows from (1–2, 9) and Lemma 1, while the second from
Lemma 3.

Distinguishing between explicit and implicit beliefs has interesting applica-
tions to the problem of logical omniscience. W-models help to identify the origin
of logical omniscience and circumvent the problem to some extent. To recall, the

342 I. Sedlár and P. Vigiani

logical omniscience problem for an epistemic logic extending classical proposi-
tional logic lies in the fact that whenever a set of formulas Γ classically entails ϕ
and the agent believes each formula in Γ , then the agent automatically believes
ϕ [5].

In the spirit of Levesque’s [9], omniscience is avoided since it is possible
that ϕ classically entails ψ in a model M without �ϕ�M ⊆ �ψ�M. Crucially, Q
is allowed to “reach out” to non-worldly situations from possible worlds, thus
providing counterexamples to classically valid entailments. On the other hand,
the situation with implicit belief is different: since QI connects possible worlds
only with possible worlds by Condition (7), it cannot reach counterexamples to
classically valid entailments. Thus, logical omniscience is restored, as clarified by
Proposition 1. We stress that this is a welcome result, since implicit belief cap-
tures the (classical) consequences of explicit belief, i.e. what an ideal, unbounded
agent would explicitly believe; see Proposition 2 at the end of the section.

Proposition 1 (Logical omniscience). For all Γ, {ϕ} ⊆ L and all W-models
M:

1. Γ |=c
M ϕ �⇒ �Γ |=c

M �ϕ;
2. Γ |=c

M ϕ ⇒ �IΓ |=c
M �Iϕ.

where �(I)Γ = {�(I)ψ | ψ ∈ Γ} for �(I) ∈ {�,�I}.
Proof. Item (1) follows from the fact that, for Γ = {ψi | i ∈ K},

⋂
i∈K(�ψi� ∩

W) ⊆ �ϕ� ∩ W does not in general imply
⋂

i∈K(�ψi� ∩ Q(W)) ⊆ �ϕ� ∩ Q(W).
For example, consider the formulas ¬p ∨ q and p → q, which are true in the
same possible worlds for all W -model M, hence ¬p ∨ q |=c

M p → q but the two
formulas may not be true in the same situations. In particular, take the W-model
M with S = {s, t} such that s∗ = t, t �∈ V (p), s ∈ V (p), s �∈ V (q), Qss and Rsss
(the remaining components can be specified so that M is indeed a W -model).
In M, we have s |= �(¬p ∨ q) but s �|= �(p → q). Item (2) follows from the
fact that, thanks to (7) we have that QI(W) ⊆ W , by which we conclude that⋂

i∈K(�ψi� ∩ W) ⊆ �ϕ� ∩ W does imply
⋂

i∈K(�ψi� ∩ QI(W)) ⊆ �ϕ� ∩ QI(W). ��
We note that, thanks to the above proposition, the logic of W-models is

hyperintensional, in that agents can distinguish between logically equivalent
propositions. The fact that in W-models agents are not logically omniscient
with respect to explicit belief has other interesting consequences. Most notably,
agents’ belief bases are not cluttered by irrelevant information. That is, explicit
belief is not closed under some implications valid in classical logic where the con-
sequent introduces information that is unrelated to the information expressed in
the antecedent. In our framework, “irrelevant” is seen simply as “not following
by relevant logic”. For instance, the following clutter principles fail for explicit
belief, but they do hold for implicit belief:

�ϕ → �(ψ → ϕ) (16)
�ϕ → �(ψ ∨ ¬ψ) (17)
�(ϕ ∧ ¬ϕ) → �ψ (18)

Relevant Reasoning and Implicit Beliefs 343

Avoidance of epistemic clutter in our framework is mediated by the fact that
relevant logics satisfy the variable sharing principle: an implication ϕ → ψ is
provable only if ϕ and ψ share at least one propositional variable. This means
that cases where ϕ and ψ are “totally unrelated” have counterexamples which
can then be exploited in our framework to give counterexamples to �ϕ → �ψ.
However, we note that some aspects of epistemic clutter, as one may understand
the notion, are preserved in our framework as, for instance, �ϕ → �(ϕ ∨ ψ) is
valid, for all ϕ and ψ (even if ψ is “totally unrelated” to ϕ).

We conclude this section by commenting on the relation of explicit and
implicit belief in our framework. Proposition 2 says that, in a specific sense,
implicit beliefs of an agent are the classical closure of the agent’s explicit beliefs.

Lemma 5 (Implicit-explicit). For every W-model M and ϕ ∈ L: �ϕ |=c
M

�Iϕ.

Proof. This follows from Condition (8).

Lemma 6 (Classical-implicit). For every W-model M and ϕ1, . . . , ϕn, ψ ∈
L: ϕ1, . . . , ϕn |=c

M ψ ⇒ �Iϕ1, . . . ,�Iϕn |=c
M �Iψ.

Proof. This follows from Condition (7).

Proposition 2 (Classical closure). For all ϕ1, . . . , ϕn, ψ ∈ L without occur-
rences of modal operators, the following are equivalent:

1. ϕ1 ∧ . . . ∧ ϕn → ψ is a classical tautology;
2. �ϕ1 ∧ . . . ∧ �ϕn → �Iψ is valid in all W-models.

Proof. 1 implies 2: If
∧

i≤n ϕi → ψ is a classical tautology, then
∧

i≤n ϕi |=c
M ψ

for all W-models M by Lemma 3. Then,
∧

i≤n �Iϕi |=c
M �Iψ by Lemma 6,

which entails
∧

i≤n �ϕi |=c
M �Iψ by Lemma 5. Consequently,

∧
i≤n �ϕi → �Iψ

is valid in all W-models M by Lemma 4 (item 2).
2 implies 1: If

∧
i≤n ϕi → ψ is a propositional formula that is not a classical

tautology, then there is a classical valuation v such that v(ϕi) = 1 for all ϕi and
v(ψ) = 0. We may turn this valuation into a W-model M with the set of states
S = {0, v, 1} and V such that v ∈ V (p) iff v(p) = 1 for all p ∈ At. Moreover,
we assume that W = {v}, Q(I)vv, and the rest is added so that this structure is
indeed a W-model4. It is obvious that �ϕ1 ∧ . . . ∧ �ϕn → �Iψ is not valid in
M.

From a semantic point of view, implicit belief is stronger than the classical
closure of explicit belief, as Conditions (7–8) ensure only that QI(w) ⊆ Q(w)∩W
for all w ∈ W and not the stronger condition QI(w) = Q(w) ∩ W . However, the
above proposition tells us that this does not matter in general. The present
weaker semantics is more amenable to the canonical model technique.
4 We can define M similarly as in the +-construction used in the proof of Lemma 7,

with the proviso that we do not add a new possible world w since v itself is seen as
the only possible world in the model.

344 I. Sedlár and P. Vigiani

3 Axiomatization

In this section we introduce a Hilbert-style axiomatisation for our logic of explicit
and implicit belief and prove that it is sound and complete with respect to the
class of W-models. In fact, we provide a modular soundness and completeness
result for a family of several logics CI.L, where L ranges over a number of relevant
logics, extending our basic system at the propositional and modal level. The
methods employed here are the same as the ones used in [13]. In particular,
we use a Henkin-style canonical model construction (see Definition 8) which
combines the usual strategies for completeness in classical propositional logic
(defining worlds as maximally consistent CI.L-theories) and relevant modal logics
(defining information states as prime L-theories). We note that a crucial step in
the proof is a model construction allowing to transform every L-model into a
suitable W -model, so that �L ϕ ⇒�CI.L �Lϕ is an admissible meta-rule (see
Lemma 7 Item (1)). A similar result for the framework without implicit belief
was proven in [13].

We begin by recalling Fuhrmann’s axiomatization of the basic conjunctively
regular relevant modal logic BM.C [6]. In our formulation, the logic contains
three modal operators, not one.

Definition 5 (Axiom system BM.C). Let BM.C be a conjunctively regular
multi-modal axiom system comprising the following axioms and rules:

– The following axioms and rules of the propositional relevant logic BM [12]:

(BM1) ϕ → ϕ (BM8) ¬(ϕ ∧ ψ) → (¬ϕ ∨ ¬ψ)
(BM2) (ϕ ∧ ψ) → ϕ (BM9) (¬ϕ ∧ ¬ψ) → ¬(ϕ ∨ ψ)
(BM3) (ϕ ∧ ψ) → ψ (BM10) ((ϕ → ψ) ∧ (ϕ → χ)) → (ϕ → (ψ ∧ χ))
(BM4) ϕ → (ϕ ∨ ψ) (BM11) ((ϕ → χ) ∧ (ψ → χ)) → ((ϕ ∨ ψ) → χ)
(BM5) ψ → (ϕ ∨ ψ) (BM12) (ϕ ∧ (ψ ∨ χ)) → ((ϕ ∧ ψ) ∨ (ϕ ∧ χ))

(BM6)
ϕ ϕ → ψ

ψ
(BM13)

ϕ → χ ψ → ξ

(ϕ → ψ) → (χ → ξ)

(BM7)
ϕ ψ

ϕ ∧ ψ
(BM14)

ϕ → ψ

¬ψ → ¬ϕ

– The following axioms and rules, for �(IC) ∈ {�,�I ,�L}:
(�(IC).C) �(IC)ϕ ∧ �(IC)ψ → �(IC)(ϕ ∧ ψ)

(�(IC).M)
ϕ → ψ

�(IC)ϕ → �(IC)ψ

Figure 1 lists further axioms and rules one may add to BM.C in order to
obtain well-known relevant axiom systems (see [6] for a taxonomy).

Our goal is to set up a general framework that allows the user to use the
relevant logic that is most suitable given their intuitions or the situation at hand.
Obvious candidates include modal extensions of the strong relevant logics E or
R, which received detailed discussion and motivation in [1] and [10], respectively.

Relevant Reasoning and Implicit Beliefs 345

In particular, the logic E.C (the conjunctively regular modal extension of E) is
obtained by adding (L1–L8) and (L11) to BM.C, and R.C results from E.C by
adding (L9).

In what follows, we use the variable L for an axiom system extending
BM.C with axioms and rules of Fig. 1, and we stipulate that Rstuv :=
∃x(Rstx & Rxuv), Rs(tu)v := ∃x(Rsxv & Rtux), RQ(I)stu := ∃x(Rstx
& Q(I)xu) and Q(I)Rstu := ∃x(Q(I)sx & Rxtu). Moreover, we assume that
in (L12)–(L17) the frame condition with the suitable accessibility relation Q(I)

∈ {Q,QI} corresponds to the �(I)-variant of each. Let a L-model be a W -model
satisfying the frame conditions corresponding to the axioms and rules of L from
Fig. 1. Finally, let the �L-version of a L-axiom (L-rule) be obtained by prefixing
�L to the axiom (to each of the premises and the conclusion of the rule).

Fig. 1. Frame conditions with the corresponding axioms and rules for L.

Definition 6 (Axiom system CI.L). Let the logic CI.L consist of the following:

– an axiomatisation of classical propositional logic (CPC);
– the �L-versions of axioms and rules of L;
– the following axioms and rules:

(��I) �ϕ → �Iϕ

(�I.K) �I(ϕ → ψ) → (�Iϕ → �Iψ)

(�I.N)
ϕ

�Iϕ

(BR)
�L(ϕ → ψ)

ϕ → ψ

Let provability of a formula ϕ in CI.L, written �CI.L ϕ, be defined as usual.

346 I. Sedlár and P. Vigiani

Theorem 1 (CI.L soundness). For every L-model M: �CI.L ϕ ⇒ M |= ϕ.

Proof. By induction on the length of CI.L-proofs. The axioms of CPC are valid
thanks to Lemma 3. The fact that, for each L, all L-axioms are satisfied in all
states s ∈ L in all L-models is established as usual in relevant modal logic;
see [13] for details. The cases corresponding to the �I -variants of (L13)–(L17)
are established similarly as their �-variant. Then, we infer that �Lϕ is valid
in each L-model for each L-axiom ϕ using (9). The fact that the �L-versions
of L-rules preserve validity is established similarly. The cases corresponding to
the remaining axioms and rules is established as follows. For (�I.K), assume
w |= �I(ϕ → ψ) and w |= �Iϕ for all w ∈ W . Hence, for all s such that
QIws, s |= ϕ → ψ and s |= ϕ. By (7) we have s ∈ W , hence s |= ψ, by which we
conclude that w |= �Iψ. For (��I), assume w |= �ϕ and QIws for some w ∈ W
and s ∈ S. By (8) we have Qws, hence by w |= �ϕ we have s |= ϕ. Hence, we
conclude that w |= �Iϕ. For (�I.N), assume w |= ϕ for all w ∈ W and QIws
for some arbitrary s ∈ S. By (7) we have s ∈ W , hence s |= ϕ, by which we
conclude that |= �Iϕ. For (BR), assume w |= �L(ϕ → ψ) for all w ∈ W . By
Lemma 4 we have �ϕ� ⊆ �ψ�, hence by W ⊆ S and Lemma 3 we conclude that
w |= ϕ → ψ. ��

The following lemma clarifies the relationship between the logics L and CI.L.
In particular, by item (1), the modal operator �L expresses L-provability within
CI.L, and items (2) and (3) state some interesting consequences of item (1). We
note that item (1) will be crucial in establishing that Condition (9) holds in the
canonical model.

Lemma 7 (L-CI.L). For every ϕ ∈ L:

1. �L ϕ ⇔ �CI.L �Lϕ;
2. �L ϕ ⇒ �CI.L ϕ, for L not containing (L12);
3. �CI.L �Lϕ ⇒ �CI.L ϕ, for L not containing (L12).

Proof. For item (1), one direction is established by induction on the length
of L-proofs. If ϕ is an L-axiom, by definition of CI.L �Lϕ is a CI.L-axiom.
If ϕ is obtained by a L-inference rule with premises ϕ1, . . . , ϕn, by IH �CI.L

�Lϕ1, . . . ,�CI.L �Lϕn, hence by application of the �L-version of the rule we
conclude �CI.L �Lϕ. For the other direction we construct a W-model M+ from
a L-model M = (S,≤, L,R, ∗, Q,QI , V) such that if M �|= ϕ, then M+ �|= �Lϕ
(the result then follows by 1). Let M+ = (S+,≤+,W+, R+, ∗+, Q+, Q+

L , Q+
I , V +)

be defined as follows:

S+ = S ∪ {w, 0, 1}
≤+ = ≤ ∪ {(w,w)} ∪ {(s, 1) | s ∈ S+} ∪ {(0, s) | s ∈ S+}
W = {w}
L+ = L ∪ {w, 1}
R+ = R ∪ {(w,w,w)} ∪ {(0, s, t), (s, 0, t), (s, t, 1) | s, t ∈ S+}

Relevant Reasoning and Implicit Beliefs 347

∗+ = ∗ ∪ {(w,w)} ∪ {(0, 1), (1, 0)}
Q+ = Q ∪ {(w,w)} ∪ {(s, 1) | s ∈ S+} ∪ {(0, s) | s ∈ S+}
Q+

L = QL ∪ {(w,w)} ∪ {(w, s) | s ∈ L} ∪ {(s, 1) | s ∈ S+} ∪ {(0, s) | s ∈ S+}
Q+

I = QI ∪ {(w,w)} ∪ {(0, s) | s ∈ S+}
V +(p) = V (p) ∪ {1} for all p

It suffices to prove (i) that M+ is a W-model; (ii) that for all s ∈ S, M, s |= ϕ ⇔
M+, s |= ϕ; and (iii) that each frame condition of Fig. 1 holds in M+ whenever
it holds in M. Putting (i)–(iii) together, we conclude that if there is l ∈ L such
that M, l �|= ϕ, then (M+, w) �|= �Lϕ. (i) is established as in [13], with the new
cases involving (9) and the monotonicity property of Q+

I holding by inspection
of the definition of M+. (ii) is established by induction on the structure of ϕ, as
in [13], with the new case ϕ = �Iψ established as follows. If M, s �|= �Iψ, then
M+, s �|= �Iψ by QI ⊆ Q+

I and IH. Conversely, if M+, s �|= �Iψ, then there is t
such that Q+

I st and M+, t �|= ψ. By inspection of the definition of Q+
I , t ∈ S and

so QIst, which implies using IH that M, s �|= �Iψ. (iii) is established virtually as
in [13] thanks to the observation that s ∈ L+ iff Q+

Lws (the case corresponding
to the �I -variants of (L12)–(L17) is almost identical as their �-variants).

Item (2) is established by induction on the length of L-proofs. All implica-
tional axioms and rules of L are provable (preserve provability) in CI.L by item
(1) and (BR), and (Adj) preserves provability thanks to �CPC ϕ → (ψ → (ϕ∧ψ))
for all ϕ,ψ5. Item (3) follows from items (1) and (2). ��
Definition 7 (Theories, Pairs). A L-theory is a set of formulas T closed
under provable implications and under conjunction, i.e. for all ϕ,ψ ∈ L (i)
ϕ ∈ T and �L ϕ → ψ implies ψ ∈ T and (ii) ϕ,ψ ∈ T implies ϕ ∧ ψ ∈ T . A
L-theory is regular if it contains all theorems of L; prime if for all ϕ,ψ ∈ L
ϕ ∨ ψ ∈ T implies ϕ ∈ T or ψ ∈ T ; proper if it does not contain all formulas of
L.

A pair of sets of formulas (Γ,Δ) is (C).L-independent (for (C.)L ∈ {CI.L, L})
iff there are no finite non-empty sets Γ ′ ⊆ Γ and Δ′ ⊆ Δ such that �(C).L∧

Γ ′ → ∨
Δ′.

Lemma 8 (Extension Lemma). If (Γ,Δ) is L-independent (CI.L-independent
and both Γ and Δ are non-empty), then there is a prime L-theory (non-empty
proper prime CI.L-theory) Σ such that Γ ⊆ Σ and Δ ∩ Σ = ∅.
Proof. [11]. ��
Definition 8 (Canonical model). Let the canonical CI.L-model be the follow-
ing tuple:

Mc = (Sc,W c, Lc, 0c, 1c ≤c, Rc, ∗c, Qc, Qc
L, V c)

– Sc is the set of prime L-theories;
5 Note that (L12) is problematic since ϕ in general is not an implication, so we cannot

use item (1) and (BR).

348 I. Sedlár and P. Vigiani

– W c is the set of non-empty proper prime CI.L-theories;
– Lc is the set of regular prime L-theories;
– 0c = ∅ and 1c = L;
– ≤c=⊆;
– ϕ ∈ s∗c

iff ¬ϕ �∈ s;
– Rcstu iff ϕ → ψ ∈ s & ϕ ∈ t ⇒ ψ ∈ u;
– Qcst iff �ϕ ∈ s ⇒ ϕ ∈ t;
– Qc

Lst iff �Lϕ ∈ s ⇒ ϕ ∈ t;

– Qc
Ist iff

{
�Iϕ ∈ s ⇒ ϕ ∈ t if s �∈ W c

(�Iϕ ∈ s ⇒ ϕ ∈ t) & t ∈ W c if s ∈ W c

– s ∈ V c(p) iff p ∈ s.

In what follows, we omit the superscript from the canonical CI.L-model Mc

whenever the context allows this.

Lemma 9 (Canonical model). Mc is a L-model.

Proof. First, the canonical model is well-defined since W ⊆ S (�L ϕ → ψ implies
�CI.L �L(ϕ → ψ) by the first item of Lemma 7, and �CI.L �L(ϕ → ψ) implies
�CI.L ϕ → ψ using (BR)). The monotonicity properties of ∗, R,Q,QL hold by
inspection of the definition of M. To show that QI is downward monotone in its
first argument, assume QIst, u ≤ s and �Iϕ ∈ u. If s ∈ W , then by QIst we
have t ∈ W and by u ≤ s we have �Iϕ ∈ s, by which we conclude that ϕ ∈ t.
If s �∈ W , then by u ≤ s we have �Iϕ ∈ s, by which we conclude by QIst that
ϕ ∈ t. The proof for 1–6 and 10–15 is as in [13]6. The remaining conditions are
established as follows. (7) holds since, assuming QIst and s ∈ W , by definition
of QI we have that t ∈ W . (8) holds since, assuming QIst, �ϕ ∈ s and s ∈ W ,
by (��I) we have �Iϕ ∈ s, hence by definition of QI we conclude that ϕ ∈ t.
(9) holds by the following argument. By contraposition, assume s �∈ L. i.e. ϕ �∈ s
for some ϕ such that �L ϕ. By Lemma 7 �CI.L �Lϕ, hence �Lϕ ∈ w for all
w ∈ W , which together with ϕ �∈ s implies that not QLws for all w ∈ W . Hence,
s �∈ QL(W). Conversely, assume s ∈ L. We have to prove that there is w ∈ W
such that QLws. If s = 1, then it is sufficient to show that W is non-empty. This
follows from the fact that each CI.L considered here is consistent by Theorem 1. If
s �= 1, then we reason as follows. Consider the pair ({ψ |�CI.L ψ}, {�Lϕ | ϕ /∈ s})
and note that both sets in the pair are non-empty. The pair is CI.L-independent,
since otherwise

6 The presence of the bounds 0, 1 is necessary for the following reason. The bound-free
versions of Conditions (5–6) are sufficient for Lemma 3, but these simpler versions
do not hold in the canonical model. For instance, ∅ is a perfectly legitimate prime L-
theory, and Rw∅t obviously holds for all w ∈ W c and t ∈ Sc. Hence, Rwst ⇒ w ⊆ t
fails. (The argument that Rwst ⇒ s ⊆ w fails is similar, exploiting the possibility
that t = L.) In this situation we can either add extensional truth constants to the
language, and so rule out ∅ and L as legitimate L-theories, or work with ∅ and L as
special kinds of states in the model while modifying the frame conditions (5–6) so
that they refer to these special states. We chose the second option.

Relevant Reasoning and Implicit Beliefs 349

– �CI.L

∨
i<n �Lϕi for some n > 0 only if (by �CI.L �Lϕ ∨ �Lψ → �L(ϕ ∨ ψ))

– �CI.L �L

∨
i<n ϕi only if (by Lemma 7)

– �L

∨
i<n ϕi only if (by s ∈ L)

–
∨

i<n ϕi ∈ s only if (since s is prime)
– ϕi ∈ s for some i < n

which contradicts ϕi �∈ s. It follows using Lemma 8 that there is a non-empty
proper prime CI.L-theory w such that QLws. Finally, the fact that the frame
conditions corresponding to (L1)–(L17) are canonical is established as in [13],
where the new cases of the conditions corresponding to the �I -variants of (L12)–
(L17) are virtually identical to their �-variants. ��
Lemma 10 (Truth). For every ϕ ∈ L: ϕ ∈ s ⇔ Mc, s |= ϕ.

Proof. By induction on the structure of ϕ. The proof employs the standard
arguments of relevant modal logic (using the fact that �,�L are conjunctively
regular modalities, see e.g. [6]), except for the case ϕ := �Iψ, which we show as
an illustration. For one direction, assume �Iϕ ∈ s and Qcst. Hence, ϕ ∈ t, by
which we conclude that t |= ϕ by IH. For the other direction, assume �Iψ �∈ s
and consider the pair t0 = ({χ | �Iχ ∈ s}, {ψ}). In case s ∈ W c, we have to
show that t0 is CI.L-independent. This holds, since otherwise

– �CI.L χ1 ∧ · · · ∧ χn → ψ only if (by (�I.C) and (�I.M), which are derivable
using (�I.K) and (�I.N) in the usual way)

– �CI.L �Iχ1 ∧ · · · ∧ �Iχn → �Iψ only if (by construction of t0)
– �Iψ ∈ s

contradicting �Iψ �∈ s. Hence, by Lemma 8 there is, t ∈ W c such that QIst and
ψ /∈ t. If s �∈ W c, then the argument is similar – we just need to show that t0 is
L-independent. In both cases, s �|= �Iψ, using the induction hypothesis. ��
Theorem 2 (Completeness). For all ϕ ∈ L: If M |= ϕ for every L-model M,
then �CI.L ϕ.

Proof. The theorem follows from Lemmas 9 and 10. ��

4 Conclusion

This paper extends our framework from [13] with a formalization of implicit
belief. In the spirit of Levesque [9], we model explicit beliefs of an agent by a
set of accessible situations that may contain counterexamples to classically valid
entailments, and we model implicit beliefs by a subset of accessible situations
that behave like classical possible worlds. In our setting, explicit belief is closed
under the underlying relevant logic, while implicit belief is closed under classical
logic and corresponds to the classical closure of explicit belief. The framework is
best seen as formalizing agents that reason using a relevant logic because they
prioritize relevance over classical consequence with the goal of not cluttering their

350 I. Sedlár and P. Vigiani

belief bases by irrelevant consequences of their information. Our main technical
result is a modular completeness theorem for a family of relevant epistemic logics
based on the framework, extending the completeness result of [13].

We note that undecidability of some relevant logics L (such as E and R, for
instance [15]) implies undecidability of CI.L in view of Lemma 7. We conjecture
that, conversely, if L is decidable, then so is CI.L.

Natural topics for future research include a study of extensions of the present
framework with a formalization of group-epistemic notions (common and dis-
tributed belief) and with a formalization of epistemic dynamics (public announce-
ment, or action models in general). Another topic is a deeper investigation of
possible applications in knowledge representation.

Acknowledgement. We thank the anonymous reviewers for comments. This work
was supported by the Czech Science Foundation grant no. GA22-01137S.

References

1. Anderson, A.R., Belnap, N.D.: Entailment: The Logic of Relevance and Necessity,
Volume I. Princeton University Press, Princeton (1975)

2. Barwise, J., Perry, J.: Situations and Attitudes. MIT Press, Cambridge (1983)
3. Fagin, R., Halpern, J.Y.: Belief, awareness, and limited reasoning. Artif. Intell.

34(1), 39–76 (1988)
4. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning About Knowledge.

MIT Press, Cambridge (1995)
5. Fagin, R., Halpern, J.Y., Vardi, M.: A nonstandard approach to the logical omni-

science problem. Artif. Intell. 79, 203–240 (1995)
6. Fuhrmann, A.: Models for relevant modal logics. Stud. Logica 49(4), 501–514

(1990). https://doi.org/10.1007/BF00370161
7. Harman, G.: Change in View: Principles of Reasoning. MIT Press, Cambridge

(1986)
8. Lakemeyer, G.: Tractable meta-reasoning in propositional logics of belief. In: IJCAI

1987, pp. 401–408. Morgan Kaufmann Publishers Inc. (1987)
9. Levesque, H.: A logic of implicit and explicit belief. In: Proceedings of AAAI 1984,

pp. 198–202 (1984)
10. Mares, E.D.: Relevant logic and the theory of information. Synthese 109(3), 345–

360 (1996). https://doi.org/10.1007/BF00413865
11. Restall, G.: An Introduction to Substructural Logics. Routledge, London (2000)
12. Routley, R., Plumwood, V., Meyer, R.K., Brady, R.T.: Relevant Logics and Their

Rivals, Volume 1. Ridgeview (1982)
13. Sedlár, I., Vigiani, P.: Relevant reasoners in a classical world. In: Duque, D.F.,

Palmigiano, A., Pichinat, S. (eds.) Advances in Modal Logic, London, vol. 14, pp.
697–718. College Publications (2022)

14. Seki, T.: General frames for relevant modal logics. Notre Dame J. Formal Log.
44(2), 93–109 (2003)

15. Urquhart, A.: The undecidability of entailment and relevant implication. J. Symb.
Log. 49(4), 1059–1073 (1984)

https://doi.org/10.1007/BF00370161
https://doi.org/10.1007/BF00413865

Decidability of Modal Logics
of Non-k-Colorable Graphs

Ilya Shapirovsky(B)

New Mexico State University, Las Cruces, USA

ilshapir@nmsu.edu

Abstract. We consider the bimodal language, where the first modality
is interpreted by a binary relation in the standard way, and the second is
interpreted by the relation of inequality. It follows from Hughes (1990),
that in this language, non-k-colorability of a graph is expressible for every
finite k. We show that modal logics of classes of non-k-colorable graphs
(directed or non-directed), and some of their extensions, are decidable.

Keywords: chromatic number · modal logic · difference modality ·
decidability · finite model property · filtration

1 Introduction

It is known that a non-k-colorability of a graph can be expressed by propositional
modal formulas [Hug90]. In [GHV04], such formulas were used to construct a
canonical logic which cannot be determined by a first-order definable class of
relational structures; this gave a solution of a long-standing problem by Fine
[Fin75].

In this paper, we are interested in decidability of modal logics given by axioms
of non-k-colorability, and some of their extensions. We consider the bimodal
language, where the first modality is interpreted by a binary relation in the
standard way, and the second (difference modality) is interpreted by the relation
of inequality.

The paper has the following structure. Section 2 provides preliminary syntac-
tic and semantic facts. In Sect. 3, the finite model property and decidability are
shown for logics of non-k-colorable graphs. In Sect. 4, these results are obtained
for the connected non-directed case. Further results on the finite model property
of logics of non-k-colorable graphs are obtained in Sect. 5. A discussion is given
in Sect. 6.

2 Preliminaries

We assume that the reader is familiar with basic notions in modal logic (see,
e.g., [CZ97,BdRV01] for the references). Below we briefly remind some of them.

The original version of the chapter has been revised. A correction to this chapter can
be found at
https://doi.org/10.1007/978-3-031-39784-4 25

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023, corrected publication 2023
H. H. Hansen et al. (Eds.): WoLLIC 2023, LNCS 13923, pp. 351–361, 2023.
https://doi.org/10.1007/978-3-031-39784-4_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-39784-4_22&domain=pdf
http://orcid.org/0000-0001-7434-5894
https://doi.org/10.1007/978-3-031-39784-4_25
https://doi.org/10.1007/978-3-031-39784-4_22

352 I. Shapirovsky

Modal Syntax and Relational Semantics. The set of n-modal formulas is
built from a countable set of variables PV = {p0, p1, . . .} using Boolean connec-
tives ⊥,→ and unary connectives ♦i, i < n (modalities). Other logical connec-
tives are defined as abbreviations in the standard way, in particular �iϕ denotes
¬♦i¬ϕ.

An n-frame is a structure F = (X, (Ri)i<n), where X is a non-empty set and
Ri ⊆ X × X for i < n. A valuation in a frame F is a map PV → P(X), where
P(X) is the set of all subsets of X. A (Kripke) model on F is a pair (F, θ), where
θ is a valuation. The truth of formulas in models is defined in the usual way:

– M,x |= pi iff x ∈ θ(pi);
– M,x �|= ⊥;
– M,x |= ϕ → ψ iff M,x |= ϕ implies M,x |= ψ;
– M,x |= ♦iϕ iff there exists y such that xRiy and M,y |= ϕ.

A formula ϕ is true in a model M , in symbols M � ϕ, if M,x � ϕ for all x
in M . A formula ϕ is valid in a frame F , in symbols F � ϕ, if ϕ is true in every
model on F . For a class C of structures (frames or models) and a set of formulas
Φ, we write C � Φ, if S � ϕ for all S ∈ C and ϕ ∈ Φ.

For the standard notions of generated and point-generated subframe and sub-
model, and p-morphism, we refer the reader to [CZ97, Section 3.3] or [BdRV01,
Sections 2.1 and 3.3].

Modal Logics. A (propositional normal n-modal) logic is a set L of n-modal
formulas that contains all classical tautologies, the axioms ¬♦i⊥ and ♦i(p0 ∨
p1) → ♦ip0 ∨♦ip1 for each i < n, and is closed under the rules of modus ponens,
substitution and monotonicity; the latter means that for each i < n, ϕ → ψ ∈ L
implies ♦iϕ → ♦iψ ∈ L.1 We write L � ϕ for ϕ ∈ L. For a set Φ of n-modal
formulas, L + Φ is the smallest normal logic containing L ∪ Φ. For a formula ϕ,
L + ϕ abbreviates L + {ϕ}. K denotes the smallest unimodal logic.

An L-frame is a frame where L is valid.
For a class C of n-frames, the set of n-modal formulas ϕ such that C � ϕ is

called the logic of C and is denoted by Log C. It is straightforward that Log C is a
normal logic. Such logics are called Kripke complete. A logic has the finite model
property (fmp), if it is the logic of a class of finite frames (by the cardinality of
a frame or model we mean the cardinality of its domain). We say that L has
the exponential fmp, if for every formula ϕ /∈ L, ϕ is falsified in an L-frame of
cardinality ≤ 2�(ϕ), where �(ϕ) is the number of subformulas of ϕ.

The canonical model ML = (XL, (Ri,L)i<n, θL) of L is built from maximal L-
consistent sets XL of n-modal formulas; the canonical relations and the valuation
are defined in the standard way. Namely, for Γ,Δ ∈ XL, put (Γ,Δ) ∈ Ri,L, if
{♦iϕ | ϕ ∈ Δ} ⊆ Γ , and set θL(p) = {Γ ∈ XL | p ∈ Γ} for p ∈ PV. The
following fact is well known, see e.g., [BdRV01, Chapter 4.2].

1 For this version of the definition of normal modal logic, see, e.g., [BdRV01, Remark
4.7].

Decidability of Modal Logics of Non-k-Colorable Graphs 353

Proposition 1 [Canonical model theorem]. L � ϕ iff ML � ϕ.

L is canonical, if L is valid in its canonical frame FL = (XL, (Ri,L)i<n). A
formula ϕ is canonical, if FL � ϕ whenever ϕ ∈ L.

Proposition 2. Let L be a canonical n-modal logic. Then for any n-modal logic
L′ ⊇ L, we have FL′ � L.

This fact is well known and follows from a simple observation that FL′ is a
generated subframe of FL.

Logics with the Difference Modality. It is known that adding the differ-
ence modality allows to increase the expressive power of propositional modal
language (see, e.g., [dR92,GG93] in the relational context, or [KS14] for topo-
logical semantics).

Is this paper we will consider bimodal (n = 2) and unimodal (n = 1) lan-
guages. We write ♦ for ♦0, and 〈�=〉 for ♦1; likewise for boxes. We also use
abbreviations ∃ϕ for 〈�=〉ϕ ∨ ϕ and ∀ϕ for [�=]ϕ ∧ ϕ.

For a unimodal frame F = (X,R), let F�= be the bimodal frame (X,R, �=X),
where �=X is the inequality relation on X, i.e., the set of pairs (x, y) ∈ X × X
such that x �= y. For a class F of frames, put F�= = {F �= | F ∈ F}

For a unimodal logic L, let L�= be the smallest bimodal logic that contains
L and the following formulas:

p → [�=]〈�=〉p, 〈�=〉〈�=〉p → ∃p, ♦p → ∃p. (1)

Recall that the validity of p → [�=]〈�=〉p in a frame (X,R,D) expresses that D
is symmetric, the formula 〈�=〉〈�=〉p → ∃p means that the relation D ∪ IdX is
transitive (IdX denotes the diagonal relation on X), and the formula ♦p → ∃p
expresses that R ⊆ D ∪ IdX ; see, e.g., [dR92] for details.

In particular, it follows that we have the following characterization of bimodal
point-generated frames that validate K�=:

Proposition 3. F = (X,R,D) is a point-generated K�=-frame iff �=X ⊆ D.

The formulas (1) are Sahlqvist formulas, and hence are canonical (see, e.g.,
[CZ97, Theorem 10.30]). In particular, it follows that K�= is Kripke complete. It
is well-known that this logic has the finite model property: for every non-theorem
ϕ of K�=, consider a submodel M of the canonical model of K�= generated by a
point x where ϕ is refuted, and take a filtration of M .

Proposition 4 ([dR92]). K�= is the logic of the class of all (finite) frames of
the form (X,R, �=X).

This proposition follows from Proposition 3 and the following standard move that
“repairs” D-reflexive points. For a point-generated K�=-frame F = (X,R,D), let
F (�=) be the frame (Y, S, �=Y), where

Y = {(x, 0) : x ∈ X} ∪ {(x, 1) : x ∈ X &xDx},

(x, i)S(y, j) iff xRy.

354 I. Shapirovsky

Let f : X → Y be the map defined by f(x, i) = x. Readily, f is a p-morphism
from F (�=) onto F . Now Proposition 4 follows from the p-morphism lemma (see,
e.g., [BdRV01, Theorem 3.14(i)]).

The frame F (�=) will be used later; we will call it the repairing of F .

3 Logics of Non-k-Colorable Graphs

By a graph we mean a unimodal frame (X,R) in which R is symmetric. A
directed graph is a unimodal frame. As usual, a partition A of a set X is a family
of non-empty pairwise disjoint sets such that X =

⋃ A.

Definition 1. Let X be a set, R ⊆ X × X. A partition A of X is proper, if
∀A ∈ A ∀x ∈ A∀y ∈ A ¬xRy. Let

C(X,R) = {|A| : A is a finite proper partition of X}.

Let χ(X,R) be the least k in C(X,R), if C(X,R) �= ∅, and ∞ otherwise.
In the case when R is symmetric, χ(X,R) is called the chromatic number of

the graph (X,R).

Put
χ>

k = ∀
∨

i<k

(pi ∧
∧

i�=j<k

¬pj) → ∃
∨

i<k

(pi ∧ ♦pi).

Proposition 5 ([Hug90,GHV04]). Let F = (X,R,D) be a point-generated K�=-
frame. Then χ(X,R) > k iff F � χ>

k .

Remark 1. Formulas considered in [Hug90,GHV04] are formally different.

Proof. The premise of χ>

k says that non-empty values of pi’s form a partition of
X, the conclusion says that this partition is not proper. ��

In particular, it follows that for every graph G,

the chromatic number of G > k iff G�= � χ>

k .

To show that logics of non-k-colorable graphs have the finite model property,
we will use filtrations.

For a model M = (X, (Ri)i<n, θ) and a set of n-modal formulas Γ , put

x ∼Γ y iff ∀ψ ∈ Γ (M,x |= ψ iff M,y |= ψ)

.
For a formula ϕ, let Subϕ be the set of all subformulas of ϕ. A set Γ of

formulas is Sub-closed, if Subϕ ⊆ Γ whenever ϕ ∈ Γ .

Definition 2. Let Γ be a Sub-closed set of formulas. A Γ -filtration of a model
M = (X, (Ri)i<n, θ) is a model M̂ = (X̂, (R̂i)i<n, θ̂) such that

Decidability of Modal Logics of Non-k-Colorable Graphs 355

1. X̂ = X/∼ for some equivalence relation ∼ such that ∼ ⊆ ∼Γ ;
2. M̂, [x] |= p iff M,x |= p for all p ∈ Γ . Here [x] is the ∼-class of x.
3. For all i < n, we have (Ri)∼ ⊆ R̂i ⊆ (Ri)

Γ
∼, where

[x] (Ri)∼ [y] iff ∃x′ ∼ x ∃y′ ∼ y (x′ Ri y′),

[x] (Ri)
Γ
∼ [y] iff ∀ψ (♦iψ ∈ Γ & M,y |= ψ ⇒ M,x |= ♦iψ).

The relations (Ri)∼ are called the minimal filtered relations.
If ∼ = ∼Ψ for some finite set of formulas Ψ ⊇ Γ , then M̂ is called a definable

Γ -filtration of the model M .

The following fact is well known, see, e.g., [CZ97]:

Proposition 6 (Filtration lemma). Suppose that Γ is a finite Sub-closed set
of formulas and M̂ is a Γ -filtration of a model M . Then, for all points x in M
and all formulas ϕ ∈ Γ , we have:

M,x |= ϕ iff M̂, [x] |= ϕ.

For a bimodal formula ϕ, let [ϕ] be the set of bimodal formulas that are
substitution instances of ϕ (the axiom scheme).

Lemma 1. Let M = (X,R,D, θ) be a bimodal model, k < ω, M � [χ>

k], and let
Γ be a finite Sub-closed set of bimodal formulas. Then for every finite Ψ ⊇ Γ ,
for every Γ -filtration M̂ = (X/∼Ψ , R̂, D̂, θ̂) of M , we have χ(X/∼Ψ , R̂) > k.

Remark 2. We do not make the assumption that (X,R,D) is a K �=-frame or even
that M � K �=. We also do not assume that χ(X,R) > k: in general, M � [χ>

k] is
a weaker condition.

Proof. Let X̂ = X/∼Ψ . Since Ψ is finite, for every A ∈ X̂ there is a modal
formula ψA such that

M,x � ψA iff x ∈ A. (2)

Hence, for every B ⊆ X̂, for the formula ϕB =
∨

A∈B ψA we have:

M,x � ϕB iff x ∈
⋃

B. (3)

We say that ϕB defines B.
Let B be a partition of X̂ and |B| = n ≤ k. Then {⋃

B : B ∈ B} is a partition
of X. Let ϕ0, . . . ϕn−1 be formulas that define elements of B. For n − 1 < i < k,
let ϕi = ⊥. By (3), we have

M � ∀
∨

i<k

(ϕi ∧
∧

i�=j<k

¬ϕj).

The result of substitution of ϕi’s for pi’s in χ>

k is true in M , so

M � ∃
∨

i<k

(ϕi ∧ ♦ϕi).

356 I. Shapirovsky

It follows from (3) that for some i, for some x, y ∈ ⋃
Bi we have xRy. Let [x]Ψ

denote the ∼Ψ -class of x. We have [x]Ψ , [y]Ψ ∈ Bi. Since R̂ contains the minimal
filtered relation, [x]Ψ R̂[y]Ψ . So B is not a proper partition of (X̂, R̂). ��

Recall that the modal formula p → �♦p expresses the symmetry of a binary
relation. Let KB be the smallest unimodal logic containing this formula. It is
well known that this logic is canonical.

Theorem 1. For each k < ω, the logics K �= + χ>

k and KB�= + χ>

k have the
exponential finite model property and are decidable.

Proof. Let M1 = (X1, R1,D1, θ1) and M2 = (X2, R2,D2, θ2) be the canonical
models of the logics K�= + χ>

k and KB�= + χ>

k , respectively. By Proposition 2,
the canonical frames (X1, R1,D1) and (X2, R2,D2) validate the logic K�=, and
also R2 is symmetric.

Let L be one of these logics, ϕ /∈ L. Then ϕ is false at a point x in the
canonical model of L. Let M = (Y,R,D, θ) be its submodel generated by x. By
Proposition 3, for all y, z ∈ Y we have:

if y �= z, then yDz. (4)

Let Γ = Subϕ, ∼ = ∼Γ . Put Ŷ = Y/∼, and consider the filtration M̂ =
(Ŷ , R∼,D∼, θ̂). Clearly, the size of Ŷ is bounded by 2�(ϕ)

By Filtration lemma (Proposition 6), ϕ is falsified in M̂ . Let us show that
the frame (Ŷ , R∼,D∼) validates L.

From (4), it follows that (Ŷ , R∼,D∼) validates the logic K �=. In the case of
symmetric R, the minimal filtered relation R∼ is also symmetric. Finally, by
Lemma 1, χ(Ŷ , R∼) > k. By Proposition 5, (Ŷ , R∼,D∼) validates L.

Hence L is complete with respect to its finite frames. ��
Theorem 2. Let G>k be the class of graphs G such that χ(G) > k, and let D>k

be the class of directed graphs G such that χ(G) > k. Then Log G>k
�= = KB�=+χ>

k ,
and Log D>k

�= = K�= + χ>

k .

Proof. By Theorem 1, the logics K�= + χ>

k and KB�= + χ>

k are complete with
respect to their finite point-generated frames.

Consider a point-generated K �=-frame F = (X,R,D) and its repairing
F (�=) = (Y, S, �=Y). Recall that F is a p-morphic image of F (�=). Let A be a
partition of Y , |A| ≤ k. Consider the following partition B of X: B ∈ B iff there
is A ∈ A such that B = {x : (x, 0) ∈ A} and B �= ∅.

Assume that χ(X,R) > k. It follows that for some B ∈ B and some x, y ∈ B
we have xRy. Then for some A ∈ A we have (x, 0), (y, 0) ∈ A and (x, 0)S(y, 0).
Thus, A is not a proper partition of (Y, S). Hence, χ(Y, S) > k. This completes
the proof in the directed case: Log D>k

�= = K �= + χ>

k .
Clearly, if R is symmetric, then S is symmetric is well. This observation

completes the proof in the non-directed case. ��

Decidability of Modal Logics of Non-k-Colorable Graphs 357

Remark 3. These theorems can be extended for the case of graphs where the
relation is irreflexive, if instead of the formula ♦p → ∃p in the definition of L�=
we use the formula ♦p → 〈�=〉p. Then in any frame (X,R,D) validating this
version of L�=, the second relation contains R, and so if a point is R-reflexive,
it is also D-reflexive. In this case, the repairing F (�=) should be modified in the
following way:

Y = {(x, 0) : x ∈ X} ∪ {(x, i) : x ∈ X &xDx& 0 < i ≤ k},

(x, i)S(y, j) iff xRy & ((x, i) �= (y, j)).

Then S is irreflexive, the map (x, i) �→ x remains a p-morphism, and R-reflexive
points in F become cliques of size > k. Also, it follows that χ(Y, S) > k whenever
χ(X,R) > k.

Remark 4. A related result was obtained very recently in [DLW23]: it was shown
that in neighborhood semantics of modal language, the non-k-colorability of
hypergraphs is expressible, and the resulting modal systems are decidable as
well.2

4 Logics of Connected Graphs

A frame F = (X,R) is connected, if for any points x, y in X, there are points
x0 = x, x1, . . . , xn = y such that for each i < n, xiRxi+1 or xi+1Rxi.

Let Con be the following formula:

∃p ∧ ∃¬p → ∃(p ∧ ♦¬p). (5)

Proposition 7. Let F = (X,R,D) be a point-generated KB�=-frame. Then
(X,R) is connected iff F � Con.

Proof. Assume that (X,R) is connected and M is a model on F such that
∃p ∧ ∃¬p is true (at some point) in M . Hence there are points x, y in M such
that M,x � p and M,y � ¬p. Then there are x0 = x, x1, . . . , xn = y such that
xiRxi+1 for each i < n. Let k = max{i : M,xi � p}. Then M,xk � p ∧ ♦¬p.
Hence Con is valid in F .

Assume that (X,R) is not connected. Then there are x, y in X such that
(x, y) /∈ R∗, where R∗ is the reflexive transitive closure of R. Put θ(p) ={z :
(x, z) ∈ R∗}s. In the model M = (F, θ), we have M � ∃p ∧ ∃¬p. On the other
hand, at every point z in M we have M, z � p → �p, so the conclusion of Con
is not true in M . So Con is not valid in F . ��

In particular, it follows that for every graph G,

G is connected iff G �= � Con.

2 I am grateful to Gillman Payette for sharing with me this reference after my talk at
WoLLIC.

358 I. Shapirovsky

Remark 5. There are different ways to express connectedness in propositional
modal languages [She90]. In particular, in the directed case, the connectedness
can be expressed by the following modification of (5):

∃p ∧ ∃¬p → ∃(p ∧ ♦¬p) ∨ ∃(¬p ∧ ♦p);

Following the line of [She90], one can modally express the property of a graph
to have at most n connected components for each finite n.

It is known that in many cases, adding axioms of connectedness preserves
the finite model property [She90,GH18]. The following lemma shows that this is
the case in our setting as well.

Lemma 2. Assume that (X,R,D) is a point-generated KB �=-frame. Let M =
(X,R,D, θ) be a model such that M � [Con], and let Γ be a finite Sub-closed
set of bimodal formulas. Then for every finite Ψ ⊇ Γ , for every Γ -filtration
M̂ = (X/∼Ψ , R̂, D̂, θ̂) of M , (X/∼Ψ , R̂) is connected.

Remark 6. Similarly to Lemma 1, connectedness of (X,R) does not follow from
M � [Con].

Proof. Let X̂ = X/∼Ψ , c the number of elements in X̂. We recursively define
c distinct elements A0, . . . , Ac−1 of X̂, and auxiliary sets Ŷn = {A0, . . . , An},
R̂n = R̂ ∩ (Ŷn × Ŷn) for n < c such that

the restriction (Ŷn, R̂n) of (X̂, R̂) to Ŷn is connected. (6)

Let A0 be any element of X̂. The frame (Ŷ0, R̂0) is connected, since it is a
singleton.

Assume 0 < n < c and define An. By the same reasoning as in Lemma 1,
there is a formula ϕn such that

M,x � ϕn iff x ∈ Ai for some i < n. (7)

The formula
∃ϕn ∧ ∃¬ϕn → ∃(ϕn ∧ ♦¬ϕn). (8)

is a substitution instance of Con, so it is true in M . Let V =
⋃

Ŷn−1. The set
Ŷn−1 has n < c elements, so there are points x, y in X such that x ∈ V , and
y /∈ V . So M,x � ϕn and M,y � ¬ϕn. By Proposition 3, the premise of (8) is
true in M . Hence we have M, z � ϕn ∧ ♦¬ϕn for some z in M . Then z ∈ V and
there exists u in X \V with zRu. Since R̂ contains the minimal filtered relation,
[z]Ψ R̂[u]Ψ . We put An = [u]Ψ . By the hypothesis (6), (Ŷn−1, R̂n−1) is connected,
and so (Ŷn, R̂n) is connected as well.

Finally, observe that (Ŷc−1, R̂c−1) is the frame (X̂, R̂). ��
Theorem 3. For each k < ω, the logics KB�= + {Con,♦�} and KB �= +
{χ>

k ,Con,♦�} have the exponential finite model property and are decidable.

Decidability of Modal Logics of Non-k-Colorable Graphs 359

Proof. Similar to the proof of Theorem 1. Let ϕ be a non-theorem of one these
logics, M a point-generated submodel of the canonical model of the logic where
ϕ is falsified. Consider the frame F of the minimal filtration of M via the sub-
formulas of ϕ. We only need to check that F validates ♦� and Con (validity of
other axioms was checked in the proof of Theorem 1). That ♦� is valid is trivial.
The validity of Con follows from Lemma 2 and Proposition 7. ��
Theorem 4. Let C be the class of connected non-singleton graphs, C>k the
class of non-k-colorable graphs in C. Then Log C�= = KB�= + {Con,♦�}, and
Log C>k

�= = KB �= + {χ>

k ,Con,♦�}.
Proof. Similar to the proof of Theorem 2. Completeness of KB�= + {Con,♦�}
and KB �= + {χ>

k ,Con,♦�} with respect to their finite point-generated frames
follows from Theorem 3.

Assume that F = (X,R,D) is a point-generated KB �=-frame, and (X,R)
is connected and validates ♦�. Consider the repairing F (�=) = (Y, S, �=Y) of F .
Clearly, ♦� is valid in F (�=). Let (x, i) and (y, j) be in Y . First, assume that
x �= y. Since (X,R) is connected, there is a path between x and y in (X,R),
which induces a path between (x, i) and (y, j) in (Y, S) by the definition of S.
Now consider two distinct points (x, i) and (x, j) in Y . Since ♦� is valid in F ,
we have xRy for some y in F . Then we have (x, i)S(y, 0) and (x, j)S(y, 0). It
follows that (Y, S) is connected and so F (�=) validates Con by Proposition 7.

That other axioms hold in (Y, S, �=Y) was shown in Theorem 2. Now the
theorem follows from the fact that F is a p-morphic image of F (�=). ��

5 Corollaries

Lemmas 1 and 2 were stated in a more general way than it was required for the
proofs of Theorems 1 and 3. The aim of using these, more technical, statements
is the following.

Definition 3. A logic L admits (rooted) definable filtration, if for any (point-
generated) model M with M � L, and for any finite Sub-closed set of formulas Γ ,
there exists a finite model M̂ with M̂ � L that is a definable Γ -filtration of M .

In [KSZ14,KSZ20], it was shown that if a modal logic L admits definable
filtration, then its enrichments with modalities for the transitive closure and
converse relations also admit definable filtration.

Notice that if L = K2 + ϕ, where K2 is the smallest bimodal logic and ϕ is
a bimodal formula, then M � L iff M � [ϕ]. In particular, the logics K2 + χ>

k

admit definable filtration by Lemma 1. This fact immediately extends to any
bimodal logic L + χ>

k , whenever L admits definable filtration.

Corollary 1. If a bimodal logic L admits definable filtration, then all L + χ>

k

admit definable filtration, and consequently have the finite model property.

Applying Lemmas 1 and 2 to the case of point-generated models, we obtain
the following version of Theorems 1 and 3.

360 I. Shapirovsky

Corollary 2. Assume that a bimodal logic L admits rooted definable filtration,
k < ω. Then L + χ>

k has the finite model property. If also L extends KB �=, then
L + {χ>

k ,Con} has the finite model property.

6 Discussion

We have shown that modal logics of different classes of non-k-colorable graphs
are decidable. It is of definite interest to consider logics of certain graphs, for
which the chromatic number is unknown.

Let F = (R2, R=1) be the unit distance graph of the real plane. It is a long-
standing open problem what is χ(F) (Hadwiger-Nelson problem). It is known
that 5 ≤ χ(F) ≤ 7 [DG18,EI20].

Let L=1 be the bimodal logic of the frame (R2, R=1, �=R2). In modal terms,
the problem asks whether χ>

5 , χ>

6 belong to L=1. We know that L=1 extends
L = KB �= + {χ>

4 ,Con,♦�,♦p → 〈�=〉p} (it is an easy corollary of the above
results that L is decidable). However, L=1 contains extra formulas. For example,
consider the formulas

P(k,m, n) =
∧

i<k

♦m�npi →
∨

i�=j<k

♦m(pi ∧ pj).

For various k,m, n, P(k,m, n) is in L=1 (and not in L); this can be obtained
from known solutions for problems of packing equal circles in a circle.

Problem 1. Is L=1 decidable? Finitely axiomatizable? Recursively enumerable?
Does it have the finite model property?

Notice that instead of considering the difference auxiliary modality, one can
consider the logic with the universal modality: this logic is a fragment of L=1,
but still can express formulas χ>

k .
Let Vr ⊆ R

2 be a disk of radius r. It follows from de Bruijn-Erdős theorem,
that if χ(F) > k, then χ(Vr, R=1) > k for some r.

Let L=1,r be the unimodal logic of the frame (Vr, R=1). If r > 1, then the
universal modality is expressible, and so are the formulas χ>

k . Hence, it is of
interest to consider axiomatization problems and algorithmic problems for these
logics.

Problem 2. To analyze the unimodal logics L=1,r.

Acknowledgement. The author would like to thank the reviewers for their helpful
comments on an earlier version of the paper.

References

[BdRV01] Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic, Volume 53 of Cam-
bridge Tracts in Theoretical Computer Science. Cambridge University Press,
Cambridge (2001)

Decidability of Modal Logics of Non-k-Colorable Graphs 361

[CZ97] Chagrov, A., Zakharyaschev, M.: Modal Logic, Volume 35 of Oxford Logic
Guides. Oxford University Press, Oxford (1997)

[DG18] De Grey, A.D.N.J.: The chromatic number of the plane is at least 5. arXiv
preprint arXiv:1804.02385 (2018)

[DLW23] Ding, Y., Liu, J., Wang, Y.: Someone knows that local reasoning on hyper-
graphs is a weakly aggregative modal logic. Synthese 201(2), 46 (2023)

[dR92] de Rijke, M.: The modal logic of inequality. J. Symb. Log. 57(2), 566–584
(1992)

[EI20] Exoo, G., Ismailescu, D.: The chromatic number of the plane is at least 5:
a new proof. Discrete Comput. Geom. 64(1), 216–226 (2020). https://doi.
org/10.1007/s00454-019-00058-1

[Fin75] Fine, K.: Some connections between elementary and modal logic. In: Kanger,
S. (ed.) Proceedings of the Third Scandinavian Logic Symposium, Volume
82 of Studies in Logic and the Foundations of Mathematics, pp. 15–31.
Elsevier (1975)

[GG93] Gargov, G., Goranko, V.: Modal logic with names. J. Philos. Log. 22(6),
607–636 (1993). https://doi.org/10.1007/BF01054038

[GH18] Goldblatt, R., Hodkinson, I.: The finite model property for logics with the
tangle modality. Stud. Logica 106(1), 131–166 (2018). https://doi.org/10.
1007/s11225-017-9732-1

[GHV04] Goldblatt, R., Hodkinson, I., Venema, Y.: Erdös graphs resolve Fine’s canon-
icity problem. Bull. Symb. Log. 10(2), 186–208 (2004)

[Hug90] Hughes, G.E.: Every world can see a reflexive world. Stud. Logica Int. J.
Symb. Log. 49(2), 175–181 (1990). https://doi.org/10.1007/BF00935597

[KS14] Kudinov, A., Shehtman, V.: Derivational modal logics with the difference
modality. In: Bezhanishvili, G. (ed.) Leo Esakia on Duality in Modal and
Intuitionistic Logics. OCL, vol. 4, pp. 291–334. Springer, Dordrecht (2014).
https://doi.org/10.1007/978-94-017-8860-1 11

[KSZ14] Kikot, S., Shapirovsky, I., Zolin, E.: Filtration safe operations on frames. In:
Goré, R., Kooi, B.P., Kurucz, A. (eds.) Advances in Modal Logic, no. 10,
pp. 333–352. College Publications (2014)

[KSZ20] Kikot, S., Shapirovsky, I., Zolin, E.: Modal logics with transitive closure:
completeness, decidability, filtration. In: Olivetti, N., Verbrugge, R., Negri,
S., Sandu, G. (eds.) 13th Conference on Advances in Modal Logic, AiML
2020, Helsinki, Finland, 24–28 August 2020, pp. 369–388. College Publica-
tions (2020)

[She90] Shehtman, V.: Derived sets in Euclidean spaces and modal logic. Technical
report, ITLI Prepublication Series, University of Amsterdam, X-1990-05
(1990)

http://arxiv.org/abs/1804.02385
https://doi.org/10.1007/s00454-019-00058-1
https://doi.org/10.1007/s00454-019-00058-1
https://doi.org/10.1007/BF01054038
https://doi.org/10.1007/s11225-017-9732-1
https://doi.org/10.1007/s11225-017-9732-1
https://doi.org/10.1007/BF00935597
https://doi.org/10.1007/978-94-017-8860-1_11

Subsumption-Linear Q-Resolution
for QBF Theorem Proving

Allen Van Gelder(B)

Computer Science Department, SOE–3, University of California,
Santa Cruz, CA 95064, USA

avg@cs.ucsc.edu

Abstract. Subsumption-Linear Q-Resolution (SLQR) is introduced for
proving theorems from Quantified Boolean Formulas. It is an adaptation
of SL-Resolution, which applies to propositional and first-order logic. In
turn SL-Resolution is closely related to model elimination and tableau
methods. A major difference from QDPLL (DPLL adapted for QBF) is
that QDPLL guesses variable assignments, while SLQR guesses clauses.

In prenex QBF (PCNF, all quantifier operations are outermost) a
propositional formula D is called a nontrivial consequence of a QBF Ψ if
Ψ is true (has at least one model) and D is true in every model of Ψ . Due
to quantifiers, one cannot simply negate D and look for a refutation, as
in propositional and first-order logic. Most previous work has addressed
only the case that D is the empty clause, which can never be a nontrivial
consequence.

This paper shows that SLQR with the operations of resolution on
both existential and universal variables as well as universal reduction is
inferentially complete for closed PCNF that are free of asymmetric tau-
tologies; i.e., if D is logically implied by Ψ , there is a SLQR derivation of
D from Ψ . A weaker form called SLQR–ures omits resolution on univer-
sal variables. It is shown that SLQR–ures is not inferentially complete,
but is refutationally complete for closed PCNF.

1 Introduction

Theorem proving, i.e., showing that a given formula F logically implies another
formula G, is a fundamental task in any logic. We assume the reader is familiar
with standard terminology of logic, as found in several texts [4,8]. Recent work
on high-performance solvers for propositional formulas and quantified boolean
formulas (QBFs) has focused on determining a given formula’s satisfiability, or
truth value. For propositional formulas this emphasis is partly justified by the
fact that F logically implies G if and only if (F ∧ ¬G) is unsatisfiable. The QBF
analogy of this simple relationship does not hold. That is,

−→
Q · (F ∧ ¬G) may be

false but
−→
Q · F does not logically imply

−→
Q · G, where QBF logical implication is

defined in Definition 1.1.

Definition 1.1. Let Φ =
−→
Q.F be a closed QBF; that is,

−→
Q is the quantifier

prenex, F is a propositional formula, and every variable in F appears in the
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
H. H. Hansen et al. (Eds.): WoLLIC 2023, LNCS 13923, pp. 362–376, 2023.
https://doi.org/10.1007/978-3-031-39784-4_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-39784-4_23&domain=pdf
https://doi.org/10.1007/978-3-031-39784-4_23

SLQR for QBF Theorem Proving 363

prenex. We say that a propositional formula D on the same set of variables as
F is a logical consequence of F , written F |= D, if D is true in every model
of F . We say that a propositional formula D on the same set of variables as F
is a nontrivial consequence of Φ if Φ is true (has at least one model tree) and
F |= D.

Due to quantifiers, one cannot simply negate D and look for a refutation,
as in propositional and first-order logic. Most previous work has addressed only
the case that D is an empty clause [3,17], which can never be a nontrivial
consequence. We say a proof system is inferentially complete if any Ψ that is
logically implied by Φ can be proven from Φ in the proof system; in other words
all logical consequences of Φ are provable in the proof system.

All propositional formulas have a logically equivalent formula in conjunctive
normal form (CNF), i.e., as a set of conjunctively joined clauses that are them-
selves disjunctively joined sets of literals. Propositional resolution is essentially
inferentially complete for propositional CNF; technically, clausal subsumption is
also needed in case a clause derived from F by resolution properly subsumes a
clause that is a logical consequence of F .

Alls QBFs have a logically equivalent formula in prenex conjunctive normal
form (PCNF), i.e., all quantifiers are outermost operations and the remaining
propositional formula, commonly called the matrix, is expressed in CNF. A QBF
is said to be closed if every variable is quantified.

A further technical condition is important for inferential completeness: A
QBF is said to be AT-free if it contains no asymmetric tautologies, as defined
and studied by Heule et al. [6]. QBFs translated from applications are normally
AT-free, but certain preprocessing operations might introduce asymmetric tau-
tologies.

Although the precise definition is quite technical, a simple example of asym-
metric tautology is a set of clauses in which a certain variable, say x is accom-
panied by some other variable, say y with the same polarity as x in each clause
containing x. The variable y may occur in some other clauses, as well. All resolu-
tions with x as the clashing variable are tautologous. Please see the cited paper
for further details.

Although it is known that QU-resolution is inferentially complete for closed
AT-free PCNF [20], we are not aware of any implemented QBF proof system
with this property.

For propositional CNF formulas a model is a partial assignment that satisfies
every clause. For closed PCNF formulas with k universal variables a model is
a set of 2k prefix-ordered total assignments that comprises a strategy for the
E-player, such that each assignment in the set has a different assignment to the
universal variables and satisfies every clause in the matrix [16,20,21]. The term
model tree is often used to emphasize the structural constraints. (See Definition
2.4 for structural details). For both logics Φ logically implies Ψ if and only if
every model of Φ is also a model of Ψ . The additional complexity of model trees
compared to a single assignment explains why many theorem-proving ideas do
not transfer easily from CNF to PCNF.

364 A. Van Gelder

This paper introduces Subsumption-Linear Q-Resolution (SLQR) for prov-
ing theorems from Quantified Boolean Formulas in PCNF. SLQR is an adap-
tation of SL-Resolution, which applies to propositional and first-order logic.

A major difference between SLQR and QDPLL (DPLL adapted for QBF)
is that QDPLL guesses and backtracks on variable assignments, while SLQR
guesses and backtracks on clauses. The inferential power of SLQR is compared
with other Q-Resolution and tableau strategies.

A primary motivation for the SLQR discipline is to reduce the search space
compared to ad-hoc heuristics for choosing the next resolution operation. Several
optimizations reduce the choices while preserving completeness:

1. One operand of every resolution operation is the immediately preceding
derived clause (linearity).

2. When a clashing literal needs to be chosen in the first operand, there are
restrictions on which literals need to be considered, and once a literal that
meets those restrictions has been chosen, alternative choices of clashing literal
need not be considered.

3. When backtrackable choices are made for the second clause operand, logical
analysis is used to rule out many unnecessary choices.

SL-Resolution is closely related to model elimination [2,12,13,15,18] and
tableau methods [11]. Discussions and thorough bibliographies may be found in
several texts [8,14]. Terminology varies among these sources.

Letz adapted a tableau-oriented point of view for QBF solving [10]. However,
his solver Semprop branches on variables, similarly to QDPLL solvers such as
depQBF, QuBE, and others.

After introducing and analyzing needed technical machinery for prefix-or-
dered QU-resolution in Sect. 2 this paper introduces Subsumption-Linear Q-
Resolution (SLQR) in Sect. 4, including the special operation ancestor resolution,
and proves that SLQR is inferentially complete.

2 Preliminaries

In their most general form, quantified boolean formulas (QBFs) generalize propo-
sitional formulas by adding universal and existential quantification of boolean
variables (often abbreviated to “variables”). A quantified variable is denoted by
∀u (variable u is universal) or ∃ e (variable e is existential). A literal is a variable
or a negated variable. See [8] for a thorough introduction and a review of any
unfamiliar terminology.

Definition 2.1. The truth value of a closed QBF is either 0 (false) or 1 (true),
as defined by induction on its principal operator.

1. (∃ e Ψ(e)) = 1 iff (Ψ(0) = 1 or Ψ(1) = 1).
2. (∀uΨ(u)) = 0 iff (Ψ(0) = 0 or Ψ(1) = 0).
3. Other operators have the same semantics as in propositional logic.

SLQR for QBF Theorem Proving 365

This definition emphasizes the connection of QBF to two-person games, in which
player E (Existential) tries to set existential variables to make the QBF evaluate
to 1, and player A (Universal) tries to set universal variables to make the QBF
evaluate to 0 (see [9] for more details).

Definition 2.2. For this paper QBFs are in prenex conjunctive normal

form (PCNF), and are closed ; i.e., Ψ =
−→
Q.F consists of a quantifier pre-

fix
−→
Q and a set of quantifier-free clauses F (often called the matrix) such that

every variable in F occurs in
−→
Q . The number of clauses in F is denoted by |F|.

In the context of a matrix, clauses are understood to be combined conjunctively.
A clause is a disjunctively connected set of literals. A clause is called tau-

tologous if it contains some literal and its complement; otherwise it is called
non-tautologous. Clauses are frequently written enclosed in square brackets (e.g.,
[p, q, r]) and [] denotes the empty clause.

We follow certain notational conventions for boolean variables and literals
(signed variables) to make reading easier: Lowercase letters near the beginning
of the alphabet (e.g., b, c, d, e) denote existential literals, while lowercase letters
near the end of the alphabet (e.g., u, v, w, x) denote universal literals, while
middle letters (e.g., p, q, r) are of unspecified quantifier type. Quantifier types
are implied frequently throughout the paper without restating this convention.

In contexts where a literal is expected, p might denote a positive or negative
literal, while p denotes the negation of p. To emphasize that p stands for a
variable , rather than a literal, the notation |p| is used. Clauses may be written
as [p, q, r]); [] denotes the empty clause.

For set-combining operations on clauses, besides ∪ for union and ∩ for inter-
section, we use + for disjoint union , − for set difference , and write p instead
of [p] when it is an operand for one of these operations. Thus C + p adds p to
a clause that does not already contain p, while C − p removes p from a clause
that might or might not contain p.

The symbols α, β, and γ denote (possibly empty) sequences of literals or sets
of literals, depending on context; vars(α) denotes the set of variables underlying
the literals of α. (Because a clause is a set, a notation like [p, α] implicitly
specifies that p is not in α.) The symbol ⊥ is sometimes used as a literal denoting
false and is treated as being outer to all other literals.

Definition 2.3. The quantifier prefix (often shortened to prenex) is a
sequence of quantified variables. A variable closer to the beginning (end) of
the sequence is said to be outer (inner) to another variable. The prenex is
partitioned into quantifier blocks (abbreviated to qblocks). Each quantifier
block is a maximal consecutive subsequence of the prenex with variables with the
same quantifier type, and has a unique quantifier depth , denoted as qdepth,
with the outermost qblock having qdepth = 1. The notation p ≺ q means that
p is in a qblock outer to the qblock of q. The notation p
 q means that p is
the same qblock as q or p ≺ q. There is no special notation for p and q being in
the same qblock. The notation is extended to sets of variables or literals in the
obvious ways; e.g., P ≺ q means that each p ∈ P satisfies p ≺ q. In situations

366 A. Van Gelder

where variables within a quantifier block are considered to have a fixed order,
p ≺≺ q means: p precedes q in the same quantifier block or p ≺ q.

A few special operations on sets of literals are defined. A prenex
−→
Q is assumed

to be known by the context. For a set S of literals:

exist(S) = {the existential literals in S} (1)
univ(S) = {the universal literals in S} (2)
(S ≺ q) = {the literals in S outer to q} (3)
(q ≺ S) = {the literals in S inner to q} (4)

Depending on context, the set of literals might be a clause, a prenex, a partial
assignment, or other logical expression.

Definition 2.4. Let a closed PCNF Ψ =
−→
Q.F be given. Let V denote the

variables of Ψ . A QBF strategy for Ψ is a set of boolean functions {pj(βj)},
where pj ranges over the variables of one quantifier type and βj consists of all
variables q of the opposite quantifier type such that q ≺ pj . The function pj(βj) is
called a Skolem function if pj is existential and is called an Herbrand function if
pj is universal. For Skolem functions βj = univ(V) ≺ pj ; for Herbrand functions
βj = exist(V) ≺ pj .

A winning strategy for player E is a QBF strategy in which pj ranges over
the existential variables such that F always evaluates to 1 if player E always
chooses pj = pj(βj) when pj is the outermost unassigned variable in the two-
person game mentioned in Definition 2.1. A winning strategy for player A is a
QBF strategy in which pj ranges over the universal variables such that F always
evaluates to 0 if player A always chooses pj = pj(βj) when pj is the outermost
unassigned variable in the same game. Exactly one of the players has a winning
strategy. Winning strategies can be generalized to closed QBFs that are not in
prenex conjunctive normal form, whose variables may have only a partial order
[9].

A clause D is said to be logically implied by Ψ if
−→
Q. (F∪{D}) has the same

set of winning strategies for player E as does Ψ . The term logical consequence
is also used. In this case, D is said to be a strategy-sound inference from Ψ ,
following [21]. As a less stringent requirement, a clause D is said to be a safe

inference from Ψ if
−→
Q. (F ∪ {D}) has the same truth value as Ψ (i.e., adding

D does not change the set of winning strategies for player E from nonempty to
empty).

Dually, deletion of a clause D from Ψ is said to be a strategy-sound oper-

ation if
−→
Q. (F − {D}) has the same set of winning strategies for player E as

does Ψ . A clause deletion is said to be a safe operation if
−→
Q. (F − {D}) has

the same truth value as Ψ (i.e., deleting D does not change the set of winning
strategies for player E from empty to nonempty).

Definition 2.5. The proof system known as Q-resolution consists of two oper-
ations, resolution and universal reduction. Resolution is defined as usual, except
that the clashing literal is always existential; resolvents must be non-tautologous
for Q-resolution. Universal reduction is special to QBF.

SLQR for QBF Theorem Proving 367

rese(C1, C2) = α ∪ β where C1 = [e , α] , C2 = [e, β] (5)
unrdu(C3) = γ where C3 = [γ, u] . (6)

unrdu(C3) is defined only if u is tailing for γ, which means that the qdepth of u
is greater than that of any existential literal in γ, i.e., (u ≺ exist(γ)) = ∅.

A clause is fully reduced if no universal reductions on it are possible. The
fully reduced form of C is denoted as unrd∗(C). For this paper all clauses in
given PCNFs are assumed to be fully reduced and non-tautological, unless stated
otherwise.

Q-resolution is of central importance for PCNFs because it is a strategy-
sound and refutationally complete proof system [7,8], as restated in Theorem
2.6 below. Recall that a clause-based proof system is refutationally complete if
the empty clause can be derived from every formula whose truth value is 0.

Theorem 2.6 [7]. Let the closed PCNF Ψ =
−→
Q.F be given. Ψ evaluates to

false if and only if [] can be derived from Ψ by Q-resolution.

We say that a proof system is inferentially complete if whenever D is logically
implied (see Definition 2.4), then some subset of D can be derived in the proof
system. Note that Q-resolution is not inferentially complete. A simple example
is

∀u ∃e∃f. {[u, e] , [u , f]} .

Nothing can be derived by Q-resolution, but the clause [e, f] is logically implied,
which can be seen by enumerating all the winning strategies {e(u), f(u)} and
observing that [e, f] evaluates to 1 for all values of u in each strategy.

The proof system known as QU-resolution is Q-resolution with the added
operation of resolution on universal variables. QU-resolution is inferentially com-
plete for closed PCNF and is able to provide exponentially shorter refutations
for certain QBF families [20]. However, the challenge for using QU-resolution in
practice is knowing when universal resolution is likely to be productive.

Definition 2.7. A QU-derivation or Q-derivation , often denoted as Π or
Γ or Σ, is a rooted directed acyclic graph (DAG) in which each vertex is either
an original clause (a DAG leaf), or a proof operation (an internal vertex). A
Q(U)-refutation is a Q(U)-derivation of the empty clause. This paper follows the
convention that DAG edges are directed away from the root. A Q(U)-derivation
is tree-like if every internal vertex has only one incoming edge, except that the
root has no incoming edge.

A subderivation of a Q(U)-derivation Π is any rooted sub-DAG of Π whose
vertices consist of some root vertex V and all DAG vertices of Π reachable from
V and whose edges are the induced edges for this vertex set.

In a proof DAG, each internal vertex is represented as a tuple with fields
consisting of:

– a specified operation type (resolution or universal reduction or “copy”),
– a specified clashing literal or universal-reduction literal (null for “copy”),

368 A. Van Gelder

– one or two directed edge(s) to its operand(s),
– a derived clause.

(See Fig. 1.) The same tuple may be used to represent a leaf, in which case the
operation type is “leaf”, the clashing literal is null, there are no outgoing edges,
and the clause is an original clause. When there is no confusion, a vertex may
be referred to by its clause; however, the same clause may appear in more than
one vertex.

The “copy” just transfers the same clause to another vertex, and is included
for technical reasons. A DAG containing copy operations (and correctly derived
clauses) is called a generalized derivation . The copy operations can be
“spliced out” in the obvious manner to produce a derivation: If V contains a
copy operation, replace all incoming edges to V by edges to the child of V . See
[19] for details on propositional derivations. The QBF variant is developed in
[5].

In the normal case of a resolution operation, the first, or left, edge goes to a
vertex whose clause contains the negation of the clashing literal, and the second,
or right, edge goes to a vertex whose clause contains the clashing literal. In any
case, the union of the two operand clauses may not contain any complementary
pair of literals other than the clashing literals.

We say that a literal q has a proof operation at the (internal) DAG vertex V
if q or q is the literal specified in V ; we say that a literal q has a proof operation
in Π if q has a proof operation at some DAG vertex in Π.

For a proof DAG Π, root(Π) is the clause at the root, leaves(Π) is the set
of clauses in the leaves, and

support(Π) =
−→
Q ′. leaves(Π), (7)

where
−→
Q ′ is the subsequence of

−→
Q that contains only the variables that appear

in leaves(Π).

Definition 2.8. An assignment is a partial function from variables to truth
values, and is usually represented as the set of literals that it maps to true.
Assignments are denoted by ρ, σ, τ , etc. A total assignment assigns a truth
value to every variable.

Application of an assignment σ to a logical expression, followed by truth-
value simplifications,1 is called a restriction . Restrictions are denoted by qσ,
Cσ, Fσ, etc. If σ assigns variables that are quantified in Ψ , those quantifiers
are deleted in Ψσ, and their variables receive the assignment specified by σ.

3 Prefix-Ordered QU-Resolution

This section examines the restriction on QU-resolution derivations to be prefix-
ordered, as defined below. The main result of this section is Lemma 3.6, which

1 I.e., simplifications where one operand is 0 or 1.

SLQR for QBF Theorem Proving 369

concludes that prefix-ordered QU-resolution is inferentially complete. This is a
stepping stone to the main results of the paper about SLQ resolution in Sect. 4.

In analogy with regular propositional resolution as defined by Kleine Büning
and Lettmann [8], who cite Tseitin’s classical paper, we define regularity for QU-
resolution derivations. Definition 3.1 is more precise than one that is often seen,
which specifies that no variable has more than one proof operation on any path
in Γ . The two definitions are equivalent for refutations, but not for derivations
in general.

For example, the four propositional clauses [b, ¬e] [e, ¬c] [c, ¬d] [b, e] derive
[d, e], but the derivation should not be called regular because a proof operation
on e is needed..

Definition 3.1. A QU-resolution derivation Γ is said to be regular in p if no
derived clause D that contains |p| has a proof operation on |p| on some path in
Γ from D to a leaf. A QU-resolution derivation Γ is said to be regular if it is
regular in p for all variables |p| that have proof operations in Γ .

Definition 3.2. We define QU-resolution to be prefix-ordered if the literals
that have proof operations appear in the quantifier-prefix order on every path
in the proof DAG, with the outermost closest to the root.

A prefix-ordered QU-refutation is necessarily regular, but other prefix-ordered
QU-derivations are not necessarily regular. The ensuing material requires some
technical terminology, defined next.

Definition 3.3. A clause C subsumes clause D if the literals of C comprise a
subset of the literals of D or if D is tautologous. Subsumption is proper if the
subset is proper. In this sense, any tautologous clause is treated as containing
every possible literal and is properly subsumed by any non-tautologous clause.

Minimality of clauses and sets of clauses is important in the technical mate-
rial. A set of clauses is minimal under stated conditions if no proper subset of
its clauses satisfies all of the conditions. Minimality of the set does not require
minimum cardinality.

A clause C is QU-minimal for a PCNF Ψ if it is derivable from Ψ by
QU-resolution and no proper subset of unrd∗(C) is derivable from Ψ by QU-
resolution. A clause C is Q-minimal for a PCNF Ψ if it is derivable from Ψ
by Q-resolution and no proper subset of unrd∗(C) is derivable from Ψ by Q-
resolution.

Q-minimality of C does not require minimum cardinality; that is, some other
clause E such that |E| < |C| may be derivable by Q-resolution, provided that E
does not properly subsume unrd∗(C). The same holds for QU-minimality.

Definition 3.4. A QU-derivation Π is QU-irreducible if:

1. The clause derived in root(Π), say D, is QU-minimal for support(Π),
2. leaves(Π) is minimal for the QU-derivation of D from support(Π),
3. Π contains no proof operations on variables in D,
4. all proper subderivations of Π are QU-irreducible.

370 A. Van Gelder

Fig. 1. PCNF Ψ in chart form (left) and proof DAG (right) for Example 3.5. Circles
enclose the clashing literal for resolution; triangles denote universal reduction. C3 is
not part of the DAG rooted at D2, but is its own trivial DAG.

Note that this definition does not require that the set of DAG vertices is minimal.
In particular, every QU-irreducible derivation has a tree-like version.

Q-irreducible derivations are defined analogously.

Example 3.5. To illustrate Q-minimality and QU-minimality, consider the for-
mula Ψ , shown in Fig. 1 as a clause-literal incidence graph (chart form for short).

No universal resolutions are possible so Q and QU properties are the same.
Let:

D1 = resf (C1, C2) = [d, e, u] Π1 = the subderivation whose root is D1

D2 = unrdu(D1) = [d, e] Π2 = the derivation of D2

Π3 = the zero-step derivation of C3.

Then D1 is Q-minimal for Ψ even though D2 is a proper subset, because the
difference is only tailing universal literals. Also, [d, f] is Q-derivable and narrower
than D1, but it is not a subset of D1.

However, C3 is not Q-minimal for Ψ even though it is an original clause,
because resd(C3, C2) is a proper subset of unrd∗(C3). But the trivial subderiva-
tion Π3 is Q-irreducible, because leaves(Π3) = {C3}.

To see that points 1 and 2 of Definition 3.4 are consistent, add a new “indica-
tor” literal aj to each clause Cj ∈ F , the matrix. Replace the clause to be derived

by
[
D,

∨
j aj

]
. Then points 1 and 2 are both true if and only if

[
D,

∨
j aj

]
is

Q-minimal for the modified clauses.
We need the following Lemma 3.6 for analyzing SLQR. QU-minimal clauses

and minimal sets of clauses are important in the ensuing material. Recall the
terminology in Definition 3.3 and Definition 3.4.

Lemma 3.6. Let the closed PCNF Ψ =
−→
Q.F be given. By convention, every

clause in F is non-tautological and fully reduced. Let clause D be QU-minimal
for Ψ . Then D can be derived from Ψ by a QU-derivation Γ such that Γ is
prefix-ordered, regular, tree-like and QU-irreducible.

SLQR for QBF Theorem Proving 371

Proof: Let G ⊆ F be any subset such that D is not logically implied by any
proper subset of G. Let Φ =

−→
Q.G. Then D is also QU-minimal for Φ. The

proof of inferential completeness of QU-resolution in [20, Th. 5.4] constructs a
QU-derivation of D from Φ with the required properties, and this is also a QU-
derivation from Ψ . The cited theorem promises to derive D(−) but by minimality
of D it must derive D exactly. �

4 Subsumption-Linear Q-Resolution

This section defines subsumption-linear Q-resolution (SLQR) derivations and
derives the main results of the paper.. We show that SLQR has the same infer-
ential power as full QU-resolution; i.e., SLQR is inferentially complete for AT-
free PCNF formulas. As mentioned in Sect. 1, a QBF is said to be AT-free if it
contains no asymmetric tautologies [6]. QBFs translated from applications are
normally AT-free, but certain preprocessing operations might introduce asym-
metric tautologies.

We also define a weaker variant SLQR–ures that does not include resolution
on clashing universal literals, and show that SLQR–ures has the same inferential
power as full Q-resolution when all literals in the derived clause are outermost.
Hence SLQR–ures is refutationally complete. Lemma 3.6 is an important step-
ping stone. We also show a PCNF and a Q-derivable clause for which there is
no SLQR–ures derivation.

Definition 4.1. Given a QBF Φ =
−→
Q.F and a target clause T , a

subsumption-linear Q-resolution (SLQR)) derivation of T consists of a
top clause D0 ∈ F and a sequence of m ≥ 0 derivation steps with Dm = T of
the form

Di =
{
resp(i)(Di−1, Ci) where p(i) is any literal and 1 ≤ i ≤ m
unrdu(i)(Di−1) where u(i) is universal and 2 ≤ i ≤ m

(8)

such that each Ci is either a clause in F or is an earlier derived clause Dj that
meets the precise criteria given below and is called an ancestor clause.

The Di are called center clauses. The Ci are called side clauses. The
literals of a side clause Ci are categorized as follows: p(i) is the clashing literal;
if Ci is derived, p(i) is also called an ancestor literal; q ∈ Ci is a target literal
if q ∈ T ; q ∈ Ci is a merge literal if q ∈ Di−1 and q is not a target literal; q ∈ Ci

is an extension literal if q ∈ Di and q is not in any of the preceding categories.
At the step where Di is to be derived let Dj (j ≤ i− 2) be an earlier derived

clause and let q ∈ Dj be the clashing literal for the derivation of Dj+1. Then Dj is
defined to be an ancestor clause at this step in the proof if Dj −{q} is a proper
subset of each subsequently derived clause Dj+1, . . ., Di−1. If q = p(i) (the
clashing literal in Di−1), then the resolution of Di−1 and Dj is called ancestor
resolution , p(i) is called the ancestor literal , and Di consists of all literals in
Di−1 except p(i) . The word “subsumption” in the name “SLQR” is explained

372 A. Van Gelder

by the last relationship. If ancestor resolution is possible, other choices for side
clause can be disregarded.

If Dj is an ancestor clause but q �= p(i) , q still plays a role as an ancestor
literal: Some original clause must be chosen to resolve with Di−1. If any extension
literal of this resolution would be q, then this clause is inadmissible as a side
clause at this step. A derivation that adheres to this policy (and also disallows
derivation of tautologous clauses) is called tight [14].

Considering SLQR as a proof search system, the procedure to extend Di−1

to Di consists of selecting a literal in Di−1 for the proof operation, and if the
operation is resolution, selecting a side clause. It is known from antiquity [1]
that propositional SL-resolution is complete for any literal-selection policy; i.e.,
it is not necessary to backtrack on the selected literal and try other selections.
For simplicity and attention to implementation concerns, we consider only the
LIFO policy for SLQR, defined next.

Definition 4.2. Given a QBF Φ =
−→
Q.F and a target clause T , the LIFO

selection policy , also called the most recently introduced policy is defined infor-
mally as follows. In a SLQR derivation, assume that each center clause Di−1 is
represented by a last-in, first-out stack (LIFO) of its literals that are not in T ,
called the L-stack , as well as a separate set of literals that are in T , which we
call the T-subset .

The L-stack is partitioned into contiguous sections such that all literals in a
given section were introduced into a center clause Dj , j ≤ i − 1, as extension
literals in the earlier resolution operation that derived Dj , and these literals are
in quantifier order within the section with the innermost closest to the top of
the L-stack. Further, this section has been intact for all center clauses between
Dj and Di−1. The L-stack as a whole may not be quantifier ordered. The LIFO
selection policy selects the literal on top of the L-stack of the current center
clause, say Di−1.

Whatever proof operation derives Di, the selected literal will not be in Di,
so the L-stack of Di may be formed by starting with that of Di−1, popping the
selected literal, and then possibly pushing a new section on top consisting of
extension literals. A SLQR derivation develops by working on the section on top
of the current L-stack until the current L-stack is empty. Readers familiar with
Prolog will recognize the similarity to how the Prolog interpreter works.

4.1 Derivation Power of SLQR

This section investigates when a QU-derivable clause T also has a SLQR deriva-
tion. For propositional resolution, it is well known that the answer is essentially
“always”.2 The situation for closed PCNF is not so simple.

2 If the derived clause is not minimal, propositional resolution may derive a subsuming
clause.

SLQR for QBF Theorem Proving 373

The proof of the next theorem employs the framework first published by
Anderson and Bledsoe [1]. Minimal clauses and minimal sets of clauses are impor-
tant in the ensuing material. Recall the terminology in Definition 3.3.

Theorem 4.3. Given a closed PCNF Ψ =
−→
Q.F , let T be a minimal clause such

that there is a QU-resolution derivation of T from Ψ , call it Π, and no proper
subset of F permits derivation of T . Then for every clause C0 ∈ F and for the
LIFO selection function (see Definition 4.2) there exists a SLQR derivation of T
from Ψ whose top clause is C0. Further, for each literal q ∈ T , q has no proof
operation in the SLQR derivation.

Proof: Please see https://users.soe.ucsc.edu/∼avg/Papers/slqr-long.pdf. �

4.2 Derivation Power of SLQR–ures

SLQR–ures is the same as SLQR except that resolution on clashing universal
literals is not permitted. This section investigates when a Q-derivable clause T
also has a SLQR–ures derivation. For propositional resolution, it is well known
that the answer is essentially “always,” and this is just a special case of Theorem
4.4 below.3 The situation for closed PCNF is not so simple.

The proof of the next theorem employs the framework first published by
Anderson and Bledsoe [1]. Minimal clauses and minimal sets of clauses are impor-
tant in the ensuing material. Recall the terminology in Definition 3.3.

Theorem 4.4. Given a closed PCNF Ψ =
−→
Q.F , let T be a minimal clause such

that there is a Q-resolution derivation of T from Ψ , call it Π, and no proper
subset of F permits derivation of T by Q-resolution. Further, let the literals of
T be outermost among the literals of F . Then for every clause C0 ∈ F there
exists a SLQR–ures derivation of T from Ψ whose top clause is C0. Further, for
each literal q ∈ T , q has no proof operation in the SLQR–ures derivation. In
particular, SLQR–ures is refutationally complete for closed PCNF.

Proof: The proof is similar to that of Theorem 4.3 and is omitted. The hypothesis
that T is outer to all literals with proof operations ensures that whenever a
universal literal is the selected literal universal reduction is available, so universal
resolution is not needed. Refutational completeness follows by letting T = []. �

The preceding Theorem 4.4 shows that SLQR–ures has the full inferential
power of Q-resolution for a very restricted set of derived clauses.

In fact, there are important clauses that can be derived by prefix-ordered
tree-like Q-resolution, but not by SLQR–ures.

Theorem 4.5. There exists a closed PCNF such that the clause [u, h] is deriv-
able by prefix-ordered tree-like Q-resolution and not by SLQR–ures, u is uni-
versal and outermost, h is existential and innermost, [u, h] is minimal, and the
matrix is minimal.

Proof: Please see https://users.soe.ucsc.edu/∼avg/Papers/slqr-long.pdf. �
3 If the derived clause is not minimal, propositional resolution may derive a subsuming

clause.

https://users.soe.ucsc.edu/~avg/Papers/slqr-long.pdf
https://users.soe.ucsc.edu/~avg/Papers/slqr-long.pdf

374 A. Van Gelder

4.3 Details for LIFO SLQR

Definition 4.6. The details of updating the stack are important, and some
helpful terminology is now introduced. Proof operations are classified as follows:

1. Reduction operation: a universal reduction on a universal literal;
2. Extension operation: a resolution that introduces at least one literal not in

the U-set or in the E-stack of the current center clause;
3. Contraction operation: a resolution that introduces no literals into the U-set

or the E-stack, but possibly adds some literals to the T-subset.

For a resolution operation, the literals in the side clause are classified as follows:

1. Clashing literal : does not appear in the resolvent; pop its complement from
the top of the E-stack;

2. Target literal : any literal in T ; union this with the T-subset;
3. Universal literal : any universal literal not in T ; union this with the U-set;
4. Merge literal : already in the E-stack; do not push this on the E-stack;
5. Extension literal : none of the above; all extension literals are pushed on the

E-stack in outer to inner prefix order; the innermost extension literal is on
top of the new E-stack.

Extension and merge literals are existential and the terminology stems from
model elimination.

To get the center-clause data structure started, define the initial center clause
to be �, a tautologous clause that contains all literals. We use the sound exten-
sion that rese(�, C) = C for all non-tautologous C that do not contain the
existential variable |e|. If the desired top clause is C0, the literal selection rule
simply chooses some literal whose variable is not among vars(C0). Then C0

becomes the side clause for step 0. This artificial protocol makes all original
clauses in the derivation appear as side clauses and simplifies later descriptions.
The literals of the C0 are processed as described in Definition 4.6.

The foregoing description can be formalized in mathematical terms of sets
and sequences. We only note that the center clauses, disregarding the T-subset
and U-set, can be regarded as existential literal sequences that can be partitioned
into contiguous subsequences such that each subsequence is in prefix order and
contains some subset of the extension literals of a single extension operation.

Definition 4.7. A LIFO SLQR is an SLQR that uses the LIFO selection func-
tion and also has an admissibility requirement for side clauses used for an exten-
sion operation.

At step i (to derive Di) suppose the selected literal is p . A side clause
C (which necessarily contains p) is inadmissible if for some j < i − 1, Dj

subsumes resp(Di−1, C) (including the case that the resolvent is tautologous).
A derivation attempt fails if the current center clause was formed by resolution
with an inadmissible side clause. In this case the LIFO-selected literal is ⊥.

SLQR for QBF Theorem Proving 375

Example 4.8. The motivation for inadmissible clauses is that it prevents loop-
ing [14]. Suppose the current center clause is Di = ({} , {β} ,

[
α, f

]
), where the

T-subset is empty, the U-set is β, and the E-stack is
[
α, f

]
. Thus f is selected.

Suppose there are clauses C1 = [f, g] and C2 =
[
g, f

]
. Resolving (extending)

Di with C1 gives Di+1 = ({} , {β} , [α, g]), then extending with C2 would give
Di+2 = ({} , {β} ,

[
α, f

]
), creating a cycle. So C2 is inadmissible to resolve with

Di+1. If no other side clause containing g is admissible, then the LIFO SLQR
selected literal at step i + 2 is ⊥, forcing the derivation attempt to fail. Thus a
successfully completed LIFO SLQR never contains an inadmissible side clause.

Corollary 4.9. Given a QBF Ψ =
−→
Q.F , let T be a minimal clause such that

there is a Q-resolution derivation of T from Ψ , call it Π, and no proper subset of
F permits derivation of T . Further, let the literals of T be outermost among the
literals of F . Then for every clause C0 ∈ F there exists a LIFO SLQR derivation
of T from Ψ whose top clause is C0. Further, for each literal q ∈ T , q has no
proof operation in the LIFO SLQR derivation.

Proof: Please see https://users.soe.ucsc.edu/∼avg/Papers/slqr-long.pdf. �

5 Conclusion

Subsumption-Linear Q-Resolution (SLQR) was introduced for proving theorems
from Quantified Boolean Formulas. It is an adaptation of SL-Resolution, which
in turn is closely related to model elimination and tableau methods. A major
difference from QDPLL (DPLL adapted for QBF) is that QDPLL guesses vari-
able assignments, while SLQR guesses clauses. Inferential completeness of SLQR
for AT-free PCNFs is shown when it is allowed to use resolution with universal
clashing variables; without that operation it is refutationally complete.

Future work should study heuristics for clause selection and lemma retention.

Acknowledgment. We thank the reviewers for their careful reading and suggestions
for clarifying the paper.

References

1. Anderson, R., Bledsoe, W.W.: A linear format for resolution with merging and a
new technique for establishing completeness. J. ACM 17(3), 525–534 (1970)

2. Astrachan, O.L., Loveland, D.W.: The use of lemmas in the model elimination
procedure. J. Autom. Reason. 19, 117–141 (1997)

3. Beyersdorff, O., Chew, L., Janota, M.: New resolution-based QBF calculi and their
proof complexity. ACM Trans. Comput. Theory 11, 1–42 (2019)

4. Burris, S.: Logic for Mathematics and Computer Science. Prentice Hall, Upper
Saddle River (1998)

5. Goultiaeva, A., Van Gelder, A., Bacchus, F.: A uniform approach for generating
proofs and strategies for both true and false QBF formulas. In: Proceedings of
IJCAI (2011)

https://users.soe.ucsc.edu/~avg/Papers/slqr-long.pdf

376 A. Van Gelder

6. Heule, M., Seidl, M., Biere, A.: Efficient extraction of skolem functions from QRAT
proofs. In: Proceedings of FMCAD (2014)

7. Kleine Büning, H., Karpinski, M., Flögel, A.: Resolution for quantified Boolean
formulas. Inf. Comput. 117, 12–18 (1995)

8. Kleine Büning, H., Lettmann, T.: Propositional Logic: Deduction and Algorithms.
Cambridge University Press, Cambridge (1999)

9. Klieber, W., Sapra, S., Gao, S., Clarke, E.: A non-prenex, non-clausal QBF solver
with game-state learning. In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS,
vol. 6175, pp. 128–142. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-14186-7 12

10. Letz, R.: Lemma and model caching in decision procedures for quantified Boolean
formulas. In: Egly, U., Fermüller, C.G. (eds.) TABLEAUX 2002. LNCS (LNAI),
vol. 2381, pp. 160–175. Springer, Heidelberg (2002). https://doi.org/10.1007/3-
540-45616-3 12

11. Letz, R., Mayr, K., Goller, C.: Controlled integration of the cut rule into connection
tableau calculi. JAR 13, 297–337 (1994)

12. Loveland, D.W.: Mechanical theorem-proving by model elimination. J. ACM 15(2),
236–251 (1968)

13. Loveland, D.W.: A simplified format for the model elimination theorem-proving
procedure. JACM 16(3), 349–363 (1969)

14. Loveland, D.W.: Automated Theorem Proving: A Logical Basis. Elsevier, Amster-
dam (1978)

15. Minker, J., Zanon, G.: An extension to linear resolution with selection function.
Inf. Process. Lett. 14(4), 191–194 (1982)

16. Samulowitz, H., Davies, J., Bacchus, F.: Preprocessing QBF. In: Benhamou, F.
(ed.) CP 2006. LNCS, vol. 4204, pp. 514–529. Springer, Heidelberg (2006). https://
doi.org/10.1007/11889205 37

17. Slivovsky, F.: Quantified CDCL with universal resolution. In: Proceedings of Sat
2022 (2022)

18. Van Gelder, A.: Autarky pruning in propositional model elimination reduces failure
redundancy. J. Autom. Reason. 23(2), 137–193 (1999)

19. Van Gelder, A.: Input distance and lower bounds for propositional resolution proof
length. In: Theory and Applications of Satisfiability Testing (SAT) (2005)

20. Van Gelder, A.: Contributions to the theory of practical quantified Boolean formula
solving. In: Proceedings of CP, pp. 647–673 (2012)

21. Van Gelder, A., Wood, S.B., Lonsing, F.: Extended failed literal detection for QBF.
In: Proceedings of SAT, pp. 86–99 (2012)

https://doi.org/10.1007/978-3-642-14186-7_12
https://doi.org/10.1007/978-3-642-14186-7_12
https://doi.org/10.1007/3-540-45616-3_12
https://doi.org/10.1007/3-540-45616-3_12
https://doi.org/10.1007/11889205_37
https://doi.org/10.1007/11889205_37

Maximally Multi-focused Proofs for Skew
Non-Commutative MILL

Niccolò Veltri(B)

Tallinn University of Technology, Tallinn, Estonia

niccolo@cs.ioc.ee

Abstract. Multi-focusing is a generalization of Andreoli’s focusing pro-
cedure which allows the parallel application of synchronous rules to
multiple formulae under focus. By restricting to the class of maximally
multi-focused proofs, one recovers permutative canonicity directly in the
sequent calculus without the need to switch to other formalisms, e.g.
proof nets, in order to represent proofs modulo permutative conversions.
This characterization of canonical proofs is also amenable for the mech-
anization of the normalization procedure and the performance of further
formal proof-theoretic investigations in interactive theorem provers.

In this work we present a sequent calculus of maximally multi-focused
proofs for skew non-commutative multiplicative linear logic (SkNMILL), a
logic recently introduced by Uustalu, Veltri and Wan which enjoys cat-
egorical semantics in the skew monoidal closed categories of Street. The
peculiarity of the multi-focused system for SkNMILL is the presence of at
most two foci in synchronous phase. This reduced complexity makes it
a good starting point for the formal investigations of maximally multi-
focused calculi for richer substructural logics.

Keywords: skew non-commutative MILL · maximal multi-focusing ·
skew monoidal closed categories · substructural logics · Agda

1 Introduction

Focusing is a technique introduced by Andreoli for reducing permutative non-
determinism in proof search. It was originally applied to the cut-free sequent
calculus of classical first-order linear logic [3] and subsequently ported to many
other proof systems [9]. Andreoli’s key idea was the organization of root-first
proof search in the alternation of two distinct phases: the asynchronous phase,
where invertible rules are eagerly applied, and the synchronous phase, where
non-invertible rules are applied on a selected formula which is brought under
focus.

We thank Alexis Saurin and Noam Zeilberger for valuable discussions. This work was
supported by the Estonian Research Council grant PSG749, the ESF funded Estonian
IT Academy research measure (project 2014-2020.4.05.19-0001) and COST CA19135 -
Connecting Education and Research Communities for an Innovative Resource Aware
Society.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
H. H. Hansen et al. (Eds.): WoLLIC 2023, LNCS 13923, pp. 377–393, 2023.
https://doi.org/10.1007/978-3-031-39784-4_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-39784-4_24&domain=pdf
http://orcid.org/0000-0002-7230-3436
https://doi.org/10.1007/978-3-031-39784-4_24

378 N. Veltri

Focusing still retains a large amount of non-determinism in proof search,
since many different formulae can possibly be brought under focus. Specifically,
the non-determinism introduced by inessential permutative conversions is not
resolved. Typically, a linear logician would solve this issue by leaving the sequent
calculus and moving to a graphical representation of proofs, such as Girard’s
proof nets [7]. Chaudhuri et al. [6] showed that it is not necessary to depart
from the sequent calculus formalism to represent canonical derivations wrt. the
equational theory generated by the permutative conversions. They introduce
a multi-focused sequent calculus where multiple formulae can simultaneously
be brought under focus and decomposed during the synchronous phase. They
then present a rewriting system on multi-focused proofs whose normal forms are
maximally multi-focused. These are derivations f which, at the beginning of each
synchronous phase, always pick the largest number of formulae to bring under
focus among the multi-focused derivations which are equivalent to f wrt. the
equational theory of permutative conversions. In this sense, maximally multi-
focused proofs exhibit the maximal amount of parallelism. Chaudhuri et al.
showed that these are equivalent to proof nets for unit-free multiplicative classical
linear logic. Multi-focusing and maximality have subsequently been applied to
other deductive systems [4,5], in particular variants of intuitionistic logic [12,13].

This work serves as a starting point for a comprehensive study of maxi-
mal multi-focused deductive systems for a large class of substructural logics.
It is well-known that many substructural logics enjoy normalization procedures
targeting variants of proof nets, e.g. the Lambek calculus [8]. Nevertheless, an
extensive study of maximally multi-focused proofs for these logics is missing.
We believe this to be especially beneficial for the development of proof-theoretic
investigations of logical systems in interactive theorem provers, such as Agda or
Coq, where the graphical syntax of proof nets would be harder to implement
than sequent calculi, whose inference rules are standard example of inductive
type families.

We initiate this endeavor by considering skew non-commutative multiplica-
tive linear logic (SkNMILL), a weak substructural logic recently introduced by
the author in collaboration with Uustalu and Wan [16]. This logic is a semi-
associative and semi-unital variant of Lambek calculus (with only one residual):
it validates structural rules of associativity (A ⊗ B) ⊗ C → A ⊗ (B ⊗ C) and
unitality I ⊗ A → A and A → A ⊗ I, but none of their inverses. Uustalu et
al. introduce a cut-free sequent calculus for SkNMILL whose sequents are triples
of the form S | Γ � A, where S is an optional formula (called stoup), Γ is an
ordered list of formulae and A is a single formula. A peculiarity of this calculus is
that left logical rules act exclusively on the formula in the stoup position, never
on formulae in context Γ . This makes this sequent calculus a good candidate
for initiating the formal study of maximal multi-focusing of substructural log-
ics: during the synchronous phase, at most two formulae can be brought under
focus, the stoup formula and the succedent formula. From this perspective, the
sequent calculus of SkNMILL is among the “simplest” deductive system which
enjoys non-trivial multi-focusing.

Maximally Multi-focused Proofs for Skew Non-Commutative MILL 379

The study of SkNMILL was initially motivated by its categorical semantics
in the skew monoidal closed categories of Street [15]. These categories arise
naturally in semantics of programming languages [1], while semi-associativity
has found strong connections with combinatorial structures such as the Tamari
lattice and Stasheff associahedra [10,20]. From a category-theoretic perspective,
the maximal multi-focusing procedure described in this paper provides a solution
to the coherence problem for skew monoidal closed categories.

The paper starts with a brief introduction of SkNMILL and its cut-free sequent
calculus. It continues with a presentation of a sound and complete multi-focused
sequent calculus. As expected, the latter does not resolve all the permutative
non-determinism, but its introduction is pedagogically useful as it sets the stage
for the more involved maximally multi-focused sequent calculus. The latter uses
a system of tags, similarly employed by Uustalu et al. in their calculus of normal
forms [16], which are inspired by Scherer and Rémy’s saturation technique [14].
Tags are used to keep track of new formulae appearing in context from the
application of invertible rules and to decide whether multi-focusing on both the
stoup and succedent formulae is admissible or not.

An important contribution of this project is the formalization of the maximal
multi-focusing calculus for SkNMILL and the proof of its correctness in the Agda
proof assistant. The code, containing all the material presented in the paper,
can be found at:

https://github.com/niccoloveltri/multifocus-sknmill

2 The Sequent Calculus of SkNMILL

We recall the definition of the sequent calculus for SkNMILL originally introduced
in [16]. Formulae are generated by the grammar A,B :: = X | I | A⊗B | A � B,
where X comes from a fixed set At of atomic formulae, I is a multiplicative unit,
⊗ is a multiplicative tensor and � is a linear implication. Formulae I and A⊗B
are positive while A � B is negative.

A sequent is a triple of the form S | Γ � A, where the succedent A is a
single formula (as in non-commutative multiplicative linear logic NMILL) and the
antecedent is divided in two parts: an optional formula S, called stoup, and an
ordered list of formulae Γ , called context. The metavariable S always denotes a
stoup, i.e. S can be a single formula or empty, in which case we write S = −.

Derivations of a sequent S | Γ � A are inductively generated by the rules in
Fig. 1. There are a few important differences with the sequent calculus of NMILL:
1) left rules can only act on the formula in stoup position, not on formulae
in context; 2) the right ⊗-rule, when read bottom-up, forces the formula in
the stoup (whenever it is present) to move to the stoup of the first premise, it
cannot move to the antecedent of the second premise; 3) as in NMILL, there are
no structural rules of exchange, weakening and contraction, but there is a new
structural rule pass which moves the leftmost formula in context to the stoup,
whenever the latter is empty.

https://github.com/niccoloveltri/multifocus-sknmill

380 N. Veltri

Fig. 1. Sequent calculus for SkNMILL.

Fig. 2. Equivalence of derivations in the sequent calculus.

As in NMILL rules IL, ⊗L and �R are invertible, while the other logical
rules are not. The structural rule pass is also non-invertible. Two forms of cut
are admissible, since the cut formula can either be located in the stoup or in
the context of the second premise. A general axiom, or identity, rule is also
admissible.

S | Γ � A A | Δ � C

S | Γ,Δ � C
scut

− | Γ � A S | Δ0, A,Δ1 � C

S | Δ0, Γ,Δ1 � C
ccut

A | � A
axA

A stoup S is called irreducible if it is either empty, an atom or a negative
formula. This means that the stoup formula cannot be further reduced using left
invertible rules IL and ⊗L in root-first proof search. Analogously, a succedent
formula A is irreducible when it is atomic or positive, so it cannot be reduced
by the right invertible rule �R.

We consider an equivalence relation � on sets of derivations. This is the
congruence generated by the pairs of derivations in Fig. 2, which are permutative
conversions. The congruence � has been chosen to serve as the proof-theoretic
counterpart of the equational theory of skew monoidal closed categories [15]. In
fact, there exists a syntactic skew monoidal closed category which has formulae
of SkNMILL as objects, and morphisms between formulae A and B are given by
the set of derivations of A | � B quotiented by the equivalence relation �. This
category is the free skew monoidal closed category generated by the set At. We
refer to [16] for more details on categorical semantics.

Maximally Multi-focused Proofs for Skew Non-Commutative MILL 381

Fig. 3. Multi-focused sequent calculus for SkNMILL.

We employ the following convention for naming formulae and stoups:

P positive formula
N negative formula
Q positive or atomic formula
M negative or atomic formula
T irreducible stoup (− or M)

3 A Multi-focused Sequent Calculus

We now present a multi-focused sequent calculus for SkNMILL, which draws inspi-
ration from the one given by Chaudhuri et al. for multiplicative-additive classical
linear logic [6]. Inference rules are given in Fig. 3. As in the original formulation
by Andreoli [3], the (multi-)focused calculus describes, in a declarative fashion,
a root-first proof search strategy in the original sequent calculus.

In this calculus, sequents can take four forms, corresponding to four distinct
phases of proof search:

S | Γ ⇑ A asynchronous (or invertible)
S | Γ ⇓ A synchronous (or focusing)
S | Γ ⇓lf Q left synchronous
T | Γ ⇓rf A right synchronous

Proof search starts in asynchronous phase S | Γ ⇑ A. In this phase, invertible
rules are repeatedly applied until both the stoup formula (when present) and

382 N. Veltri

the succedent formula become irreducible. We have fixed an order on invertible
rules and decided to apply �R before IL/⊗R, which is enforced by asking the
succedent formula in the left invertible rules to be positive or atomic (so we use
our notation Q).

Proof search then progresses to the synchronous phase via the rule foc. At
this point we can choose to focus on the stoup or succedent position.

If we pick the first option, the irreducible stoup T is brought under focus with
an application of rule focL. The context is split in two parts Γ and Δ and the
left focusing phase initiates in the first premise. A proof of T | Γ ⇓lf Q consists
of repeated application of left synchronous rules pass and �L on stoup T and
context Γ , until the stoup formula becomes the positive or atomic formula Q, at
which point the left focus is “blurred” by the rule blurL. In synchronous phase,
blurred formulae are surrounded by a dashed box A . We use notation A

b
, with

b a Boolean value, to denote a formula which is possibly blurred: A
1

= A and
A

0
= A. Blurred formulae are used to remember that a certain left or right

synchronous phase has been performed.
If we pick the second option, proof search proceeds by bringing the succedent

formula Q under focus with an application of rule focR. The context is split in two
parts Γ and Δ and the right focusing phase initiates in the second premise. The
right focusing phase consists of repeated applications of the right synchronous
rule ⊗R. The optional formula T in sequent T | Δ ⇓rf Q indicates whether the
right focusing phase terminates when the succedent formula becomes negative
or atomic (in which case T = M) or it terminates with an application of IR (in
which case T = −). In the first case, the succedent formula M is blurred by the
rule blurR. The notation S

b
| Γ ⇓ T is an abbreviation for: S

b
| Γ ⇓ M ,

when T = M , while its set of proofs is a singleton if T = −. In other words, focR
does not have a first premise in case the proof of the second premise ends with
IR.

A couple of observations on left- and right-focusing. A peculiarity of the
sequent calculus in Fig. 3, when compared with other (multi-)focused calculi
appearing in the literature, e.g. the one in [6], is that, during the application of
non-invertible rules in the focusing phase, one of the premises always releases the
focus. In rule ⊗R, the right premise releases the focus on the succedent formula,
and similarly for the first premise in rule �L. Without the loss of focus in these
premises, the multi-focused sequent calculus would not be complete wrt. the
calculus in Fig. 1, e.g. the sequent X | Y ⊗ Z ⇑ X ⊗ (Y ⊗ Z) would not admit
a derivation. This behaviour was already present in the focused sequent calculi
for the ⊗- and (I,⊗)-fragments of the sequent calculus, originally studied by
Zeilberger et al. [17,20].

The design of rule focL, with a whole left-focusing phase compressed in a
proof of T | Γ ⇓lf Q, is chosen specifically for the purpose of maximal multi-
focusing, where we will be interested in whether a certain left-focusing phase has
happened rather than the specific left synchronous rules that have been applied.
Notice also that in the first premise T | Γ ⇓lf Q of focL there is no need to keep
track of the succedent formula A since it is not affected by left synchronous rules,

Maximally Multi-focused Proofs for Skew Non-Commutative MILL 383

and similarly for the context Δ of the second premise. Analogous observations
apply to the second premise of focR.

When the (left-) right-focusing phase terminates, one can subsequently
choose to focus on the (succedent) stoup formula. If the execution of both left-
and right-focusing lead to a valid derivation, they can be performed in any order,
first left then right, or vice versa. When no formula is under focus anymore, we
unfocus and continue proof search in asynchronous phase. In order to unfocus,
formulae that were previously under focus, which are now blurred, must have
switched their polarity, which is reflected in the side condition UT(b, c, S,A) of
rule unfoc (UT stands for “unfocusing table”):

b c UT(b, c, S,A)
0 0 0
0 1 A = N
1 0 S = P
1 1 S = P ∨ (S = X ∧ A = N)

The stoup formula must be positive if it was under focus (b = 1) but the succe-
dent was not (c = 0). Dually, the succedent formula must be negative is it was
under focus (c = 1) and the stoup formula was not (b = 0). If both formulae
were under focus (b = 1 ∧ c = 1), one of them must have changed its polarity:
either the stoup formula has become positive or, if it had become (or stayed)
atomic, the succedent formula has become negative. Unfocusing also requires
that at least one formula was previously under focus, hence the condition b ∨ c
must be true.

For a sequent with atomic stoup and positive succedent X | Γ ⇑ P (or,
dually, negative stoup and atomic succedent), one can choose whether to focus
on the stoup formula or not, and both choices may lead to a valid proof. For an
example, consider the valid sequent X | ⇑ (Y � (X ⊗ Y)) ⊗ I. This situation
was also present in the multi-focused calculus for classical linear logic [6], where
in similar circumstances one was given the choice of focusing on negated atoms
or not.

Invertible rules are easily proved to be admissible in the ⇑ phase (with a
general formula as succedent), and similarly IR and ax.

Proposition 1. The following rules are admissible:

A | B,Γ ⇑ C

A ⊗ B | Γ ⇑ C
⊗L⇑

− | Γ ⇑ C

I | Γ ⇑ C
IL⇑ − | ⇑ I

IR⇑
X | ⇑ X

ax⇑

Rule ⊗R of Fig. 1, with � replaced everywhere by ⇑, is also admissible, but
showing this requires more work. We prove the admissibility of a macro inference
rule corresponding to multiple application of ⊗R. To this end, given a formula A
and a list of formulae Γ = B1, . . . , Bn, define A⊗∗ Γ = (((A⊗B1)⊗B2)⊗ . . .)⊗
Bn, which is simply A when Γ is empty. If Γ is non-empty, we write A ⊗+ Γ .
Define also Γ �∗ A = B1 � (B2 � (. . . � (Bn � A))) and similarly Γ �+ A
when Γ is non-empty.

384 N. Veltri

Proposition 2. Let
−→
Δ = Δ1, . . . ,Δn be a list of contexts and

−→
B = B1, . . . , Bn

a list of formulae, both non-empty. The following rule is admissible:

S | Γ ⇑ A {− | Δi ⇑ Bi}i
S | Γ,

−→
Δ ⇑ A ⊗+ −→

B
⊗R+

⇑

where {− | Δi ⇑ Bi}i is a collection of premises − | Δi ⇑ Bi for each 1 ≤ i ≤ n.

Proof. The proof proceeds by inspecting the polarity of formula A and then by
induction on the structure of the derivation f : S | Γ ⇑ A. When A is negative,
we need to strengthen the statement for the induction on f to succeed. So we
prove the admissibility of the more general rule:

S | Γ,Λ ⇑ A {− | Δi ⇑ Bi}i
S | Γ,

−→
Δ ⇑ (Λ �+ A) ⊗+ −→

B
⊗R+

⇑N

The context Λ serves as an accumulator for dealing with the case f = �R(f ′):

f ′
S | Γ,Λ,A′ ⇑ B′

S | Γ,Λ ⇑ A′�B′ �R {− | Δi ⇑ Bi}i
S | Γ,

−→
Δ ⇑ (Λ�+(A′�B′)) ⊗+ −→

B
⊗R+

⇑N

=

f ′
S | Γ,Λ,A′ ⇑ B′ {− | Δi ⇑ Bi}i
S | Γ,

−→
Δ ⇑ ((Λ,A′)�+B′) ⊗+ −→

B
⊗R+

⇑N

which type checks since Λ�+(A′�B′) = (Λ,A′)�+B′. Another representative
case is f = foc(f ′), where right-focusing can immediately be executed:

f ′

T | Γ, Λ ⇓ Q

T | Γ, Λ ⇑ Q
foc

T | Γ ⇑ Λ�+Q
�R+

T | Γ ⇓ Λ�+Q
unfoc

Λ�+Q | ⇓rf Λ�+Q
blurR {− | Δi ⇑ Bi}i

Λ�+Q | −→
Δ ⇓rf (Λ�+Q)⊗+−→

B
⊗R+

T | Γ,
−→
Δ ⇓ (Λ�+Q)⊗+−→

B
focR

T | Γ,
−→
Δ ⇑ (Λ�+Q)⊗+−→

B
foc

(1)

We now move to the admissibility of left-synchronous rules. To this end, we
introduce an inductive ternary (proof-relevant) relation A �li S | Γ which holds
when the antecedent S | Γ is obtained by repeated applications of left-invertible
rules on the antecedent A | , where A is in the stoup and the context is empty:

A �li I | Γ

A �li − | Γ
IL−1

A �li A′ ⊗ B′ | Γ

A �li A′ | B′, Γ ⊗L−1

A �li A | ε

Maximally Multi-focused Proofs for Skew Non-Commutative MILL 385

Given a proof � : A �li S | Γ , we can turn a derivation f : S | Γ,Δ ⇑ C into a
derivation invli(f, �) : A | Δ ⇑ C:

invli(f, �) =

f
S | Γ,Δ ⇑ C.... (left rules obtained by inverting �)
A | Δ ⇑ C

(2)

Proposition 3. The following rules are admissible:

A | Γ ⇑ C

− | A,Γ ⇑ C
pass⇑

{− | Γi ⇑ Ai}i B | Δ ⇑ C
−→
A �+ B | −→

Γ ,Δ ⇑ C
�L+⇑

Proof. We only discuss �L+. Proving its admissibility proceeds by inspecting
the polarity of formula B and then by induction on the structure of the derivation
g : B | Δ ⇑ C. When B is positive, we need to strengthen the statement for the
induction to succeed. We prove the admissibility of the more general rule:

{− | Γi ⇑ Ai}i B �li S | Λ S | Λ,Δ ⇑ C
−→
A �+ B | −→

Γ ,Δ ⇑ C
�L+⇑P

The additional assumption � : B �li S | Λ serves as an accumulator for dealing
with the cases when g is a left-invertible rule and it allows to state that the
proof of the third premise is a subderivation of sequent B | Δ ⇑ C in the sense
depicted in (2). A representative case is g = foc(g), where we can immediately
execute left-focusing, obtaining a derivation dual to the one in (1).

The multi-focused sequent calculus in Fig. 3 is sound and complete wrt. the
sequent calculus in Fig. 1. In the upcoming theorem and in the rest of the paper,
we also write S | Γ � A and S | Γ ⇑ A for the sets of proofs of the corresponding
sequents.

Theorem 1. There exist functions focus : S | Γ � A → S | Γ ⇑ A and
emb : S | Γ ⇑ A → S | Γ � A, turning sequent calculus derivations into
multi-focused derivations, and vice versa.

Proof. Function emb is obtained by erasing all phase-shifting rules and dashed
boxes around blurred formulae. Function focus is defined by induction on the
structure of the input derivation, noticing that each rule in Fig. 1 has an admissi-
ble counterpart in the multi-focused sequent calculus, which follows from Propo-
sitions 1, 2 and 3.

Multi-focused proofs are not canonical wrt. to the equational theory in Fig. 2.
When the stoup formula is negative and the succedent is positive, we have the
choice of whether left-focusing and subsequently unfocus, right-focusing and sub-
sequently unfocus, or performing both left- and right-focusing before unfocusing,
and the latter can also be achieved in two distinct ways. For example, there exist

386 N. Veltri

four distinct proofs of X � I | X,Y ⇑ (Z � Z) ⊗ Y which correspond to four
�-related derivations in the unfocused sequent calculus. As discussed before, in
general we also have the choice of whether focusing on atomic formulae or not,
which further increases the amount of non-determinism.

It is possible to fully capture this remaining non-determinism in a congruence
relation �⇑ on derivations of sequents S | Γ ⇑ A. This is inductively specified
simultaneously with congruences �⇓, �lf and �rf . The generators of this collec-
tion of relations are exhibited in Fig. 4. Notice that all these generators belong to
the relation �⇓. This means that �⇑ is the smallest equivalence relation which
rules �R, IL and ⊗L respect (in the sense that they send �⇑-related premises
to �⇑-related conclusions), and moreover f �⇓ g implies foc(f) �⇑ foc(g).

We can show that functions focus and emb respect congruences � and �⇑,
and moreover define an equivalence between sets of proofs in the different sequent
calculi, strengthening the statement of Theorem 1.

Theorem 2. Functions focus and emb underlie an isomorphism between the set
of proofs of a sequent S | Γ � A quotiented by the equivalence relation � and the
set of proofs of S | Γ ⇑ A quotiented by the equivalence relation �⇑.

Details about the proof can be found in our Agda formalization.

4 Maximal Multi-focusing Using Tags

In order to design a calculus of permutative-canonical derivations, we have to
answer the following question: in which situation does a right-focusing phase
need to be performed strictly before a left-focusing phase? And dually, when
must left-focusing be done before right-focusing? Consider the valid sequent
X � Y | Z ⇓ (X � Y) ⊗ Z. Attempting to focus on the stoup formula would
fail, because no splitting of the context, consisting of the singleton formula Z,
leads to a valid derivation. We would be able to appropriately split the context
only after performing right-focusing, specifically after an application of ⊗R, and
a subsequent application of �R. This is because the formula X, that we would
like to send to the first premise during left-focusing, is not initially in context,
it becomes available only after right-focusing.

Dually, consider the valid sequent X � (Y ⊗ Z) | X ⇓ Y ⊗ Z. It is not
hard to see that any attempt to focus on the succedent formula would fail. But
after left-focusing and an application of ⊗L, right-focusing becomes possible and
leads to a valid proof. This is because the formula Z, which should be sent to the
second premise by focR, appears in context only after executing the left-focusing
phase. Another simple example is given by the valid sequent − | X ⊗Y ⇓ X ⊗Y .
Again left-focusing, specifically pass, must happen before right-focusing, since
the formula Y is not in context and cannot otherwise be sent to the second
premise during right-focusing.

We need a mechanism for keeping track of new formulae appearing in context
from applications of invertible rules ⊗L and �R. In proof search, when we
choose to perform left-focusing but we decide to postpone right-focusing, after

Maximally Multi-focused Proofs for Skew Non-Commutative MILL 387

Fig. 4. Equivalence of derivations in the multi-focused sequent calculus.

388 N. Veltri

releasing the focus we have to justify this decision by showing that the subsequent
application of focR splits the context in-between new formulae that appeared in
context only after the termination of the left-focusing phase. And dually if right-
focusing strictly precedes left-focusing.

We employ a mechanism from the recent work of Uustalu et al. [16] which was
inspired by Scherer and Rémy’s saturation for intuitionistic logic [14]. Formulae
appearing in a sequent will now be decorated with a superscript Boolean value,
which we call a tag : A0 or A1. Stoups are also tagged: S0 or S1. Tagged contexts
consist of tagged formulae. Sequents in the maximally multi-focused sequent
calculus also take four forms:

S | Γ ⇑m A asynchronous
S | Γ ⇓m A synchronous
S | Γ ⇓lfm Q left synchronous
T | Γ ⇓rfm A right synchronous

The above are all triples consisting of a tagged stoup S (or an irreducible tagged
stoup T in the last case), a tagged context Γ and a tagged formula A (or an
irreducible tagged formula Q in the third case). If in a sequent we do not want
to specify the tag of a tagged formula, we simply write it without superscript.
Given a tagged formula A, we also write A0 when we want to replace the tag of
A by 0 and A1 when the tag is replaced by 1. These conventions also apply to
tagged stoups and contexts in a sequent.

Tags serve two purposes:

1. They are used to remember which (if any) among left- or right-focusing was
not performed during the preceding focusing phase. If the stoup is S1, only
right-focusing was previously executed. Dually, if the succedent formula is
A1, only left-focusing took place.

2. In case one (and only one) among the stoup and the succedent has tag 1,
new formulae moved to context via the application of invertible rules are also
assigned tag 1. So tags are used to remember which formulae in context are
new.

Inference rules for the maximally multi-focused sequent calculus are displayed
in Fig. 5. In the premise of rule �R, the stoup S and the formula A must have
the same tag t: if the stoup is S1 in the conclusion, so left-focusing did not
happen in the previous synchronous phase, we track the new formula A moving
to the right-most end of the context by assigning it tag 1. Similarly for tagged
formulae At and Qt in the premise of rule ⊗L.

Proof search starts again in asynchronous phase, where initially the sequent
is S0 | Γ 0 ⇑m A0. At this point of the search, this phase is analogous to the
one in the multi-focused calculus of Fig. 3. Tag 1 may start to appear with
an application of unfoc. If left-focusing was not performed, so b = 0, then the
stoup is given tag 1, which in the rule is denoted S¬b. If right-focusing was not
executed, so c = 0, then the succedent has given tag 1, so it becomes A¬c. If
either the stoup or the succedent has tag 1, new formulae moved to the context
via applications of �R and ⊗L are also assigned tag 1.

Maximally Multi-focused Proofs for Skew Non-Commutative MILL 389

Fig. 5. Maximally multi-focused sequent calculus for SkNMILL.

If we want to left-focus, we first inspect the tag of the stoup formula. If it is
T 1, we need to justify why left-focusing was not performed together with right-
focusing in the preceding synchronous phase. This can be done by requiring a
formula tagged with 1 to appear in Γ , which is the meaning of the side condition
1 ∈ Γ in the premise of foc1L. Proof search continues with a stoup formula Q0.
Dually, if we want to right-focus and the succedent is Q1, and moreover T is non-
empty, we require a formula tagged with 1 to appear in Δ when applying foc1R.
When T is empty, so the right-focusing phase terminates with IR, there is no need
to check whether Δ contains formulae tagged with 1, since right-focusing could
not have happened together with the preceding left-focusing phase. Phases ⇓lfm

and ⇓rfm are omitted in Fig. 5, since they are the same as ⇓lf and ⇓rf in Fig. 3 but
with all formulae in sequents having tag 0, and ⇑ replaced by ⇑m in the premises
of �L and ⊗R.

When releasing the focus via unfoc, stoup and succedent must have tag 0,
meaning that all the reasons for “not maximally focus” in a preceding focusing
phase must have been successfully justified. Apart from tags, there are a couple
of differences with the multi-focused system in Fig. 3.

1. In synchronous phase, we have the choice of first applying focL and then
applying focR, i.e. we remove non-determinism in the choice of left- or right-
focusing when both are executable. In Fig. 5 this can be observed in focL,
where succedents cannot be blurred.

390 N. Veltri

2. Another difference lays in the treatment of atomic formulae. The axiom rule ax
requires the atomic formula to have tag 0 and to be blurred in both positions.
More generally, each derivation of X | Γ ⇓m A necessarily focuses on the stoup
and each derivation of S | Γ ⇓m X necessarily focuses on the succedent.

All tags from a maximally multi-focused derivation can be removed to obtain
a proof in the non-maximally multi-focused sequent calculus. More interestingly,
each multi-focused derivation can be normalized to a maximally multi-focused
one.

Theorem 3. There exist functions

max� : S | Γ � A → S0 | Γ 0 �m A0

untag� : S0 | Γ 0 �m A0 → S | Γ � A

for all � ∈ {⇑,⇓,⇓lf ,⇓rf}, turning multi-focused proofs into maximally multi-
focused ones, and vice versa.

Proof. We only sketch the construction of max⇓, which is the most challeng-
ing function to define. We refer the interested reader to the associated Agda
formalization for the complete proof. The input derivation can either be: (i) an
application of focR followed by ax or unfoc; (ii) an application of focL followed by
ax or unfoc; (iii) an application of both focL and focR. In case (iii), we can safely
apply both focL and focR in the maximally multi-focused calculus. The most
interesting cases are (i) and (ii) when the focus is subsequently released. We only
look at case (i) when the input derivation is of the form f = focR(unfoc(f ′), r)
for some f ′ : S | Γ ⇑ M and r : M | Δ ⇓rf Q. To deal with this case, we prove
the following rule admissible:

S0 | Γ 0 ⇑m M0 M0 | Δ0 ⇓rfm Q0

S0 | Γ 0,Δ0 ⇑m Q0
focR⇑m

The proof proceeds by checking whether M is atomic or negative. In the latter
case we further need to generalize the statement and prove the admissibility of

T 0 | Γ 0, Λ0 ⇑m A0 Λ0 �+ A0 | Δ0 ⇓rfm Q0

T 0 | Γ 0,Δ0 ⇑m Q0
focR⇑mN

We proceed by induction on the structure of the proof of the first premise
g : T 0 | Γ 0, Λ0 ⇑m A0. We look at the case g = foc(focL(l, unfoc(h))) for some
l : T 0 | Ω0 ⇓lfm P 0 and h : P 0 | Ξ0 ⇑m A1. In this case, we have the equality of
contexts Ω,Ξ = Γ,Λ and we check whether Λ is split between Ω and Ξ, or it is
fully contained in Ξ.

Maximally Multi-focused Proofs for Skew Non-Commutative MILL 391

1. If Λ = Φ,Ξ and Ω = Γ,Φ for some non-empty Φ, then multi-focusing on both
stoup and succedent is not possible. We return:

l
T 0 | Ω0 ⇓lfm P 0

T 0 | Γ 0, Φ0 ⇓lfm P 0

h
P 0 | Ξ0 ⇑m A1

P 0 | Ξ1 ⇓m A0
unfoc

T 1 | Γ 0, Φ1, Ξ1 ⇓m A0 foc1L

T 1 | Γ 0, Φ1, Ξ1 ⇑m A0 foc

T 1 | Γ 0, Λ1 ⇑m A0

T 1 | Γ 0 ⇑m Λ0�+A0 �R+

T 0 | Γ 0 ⇓m Λ0�+A0
unfoc

Λ0�+A0 | Δ0 ⇓rfm Q0

T 0 | Γ 0, Δ0 ⇓m Q0
focR

T 0 | Γ 0, Δ0 ⇑m Q0 foc

The double-line rule is the equality rule (we simply rewrite the contexts).
2. If Γ = Ω,Φ and Ξ = Φ,Λ, then multi-focusing on both stoup and succedent

is possible. We return:

l
T 0 | Ω0 ⇓lfm P 0

h′

P 0 | Ξ0 ⇑m A0

P 0 | Φ0, Λ0 ⇑m A0

P 0 | Φ0 ⇑m Λ�+A0 �R+

P 0 | Φ0 ⇓m Λ�+A0
unfoc

Λ0�+A0 | Δ0 ⇓rfm Q0

P 0 | Φ0, Δ0 ⇓m Q0
focR

T 0 | Ω0, Φ0, Δ0 ⇓m Q0
focL

T 0 | Γ 0, Δ0 ⇓m Q0

T 0 | Γ 0, Δ0 ⇑m Q0 foc

where h′ is obtained from h by turning all applications of rules foc1L and foc1R
in h to focL and focR.

It is possible to show that proofs in the maximally multi-focused calculus
are canonical wrt. the equational theory in Fig. 4 on multi-focused derivations.
Therefore, by Theorem 2, they are also canonical wrt. the equational theory in
Fig. 2 on unfocused derivations.

Theorem 4. Functions max⇑ and untag⇑ underlie an isomorphism between the
set of proofs of a sequent S | Γ ⇑ A quotiented by the equivalence relation �⇑
and the set of proofs of S0 | Γ 0 ⇑m A0.

We refer the reader to our Agda formalization for details about the proofs.

Corollary 1. Functions max⇑◦focus and emb◦untag⇑ underlie an isomorphism
between the set of proofs of a sequent S | Γ � A quotiented by the equivalence
relation � and the set of proofs of S0 | Γ 0 ⇑m A0.

Proof. By Theorems 2 and 4.

392 N. Veltri

5 Conclusions

SkNMILL is a relatively weak logic, low in the substructural hierarchy and with
a restricted selection of logical connectives. Nevertheless, its simplicity allows to
properly investigate complex proof-theoretic procedure such as maximal multi-
focusing, which can be potentially extended to sequent calculi for richer logics.
Porting the technique to extensions of SkNMILL with other structural laws, such
as full associativity/unitality (recovering the Lambek calculus without left resid-
ual) or exchange (as in the sequent calculus of symmetric skew monoidal cate-
gories [18]), should be relatively straightforward. Extensions with additive con-
nectives will make things more complicated. To this end, it would be interesting
to study semantic approaches to maximal multi-focusing, akin to normalization-
by-evaluation [2,19] or (proof-relevant) semantic cut elimination [11].

Uustalu et al. [16] define a normalization procedure for SkNMILL using tags,
which is also inspired by focusing. Their canonical derivations arise as normal
forms of the confluent and strongly normalizing rewriting system obtained by
orienting the equations in Fig. 2 from left to right. This means that, during
root-first proof search, invertible rules are again applied first, but the appli-
cation of non-invertible rules pass and �L is prioritized over ⊗R. Moreover,
focus is released after each application of a non-invertible rule and the asyn-
chronous phase is immediately resumed. Maximal multi-focusing, on the other
hand, is unbiased with respect to the application of non-invertible rules. We
plan to further investigate the relationship between the normal forms of the two
normalization strategies, for SkNMILL and other substructural logics.

References

1. Altenkirch, T., Chapman, J., Uustalu, T.: Monads need not be endofunctors. Log.
Methods Comput. Sci. 11(1), 3 (2015). https://doi.org/10.2168/lmcs-11(1:3)2015

2. Altenkirch, T., Dybjer, P., Hofmann, M., Scott, P.J.: Normalization by evalua-
tion for typed lambda calculus with coproducts. In: Proceedings of 16th Annual
IEEE Symposium on Logic in Computer Science, LICS 2001, pp. 303–310. IEEE
Computer Society (2001). https://doi.org/10.1109/LICS.2001.932506

3. Andreoli, J.M.: Logic programming with focusing proofs in linear logic. J. Log.
Comput. 2(3), 297–347 (1992). https://doi.org/10.1093/logcom/2.3.297

4. Brock-Nannestad, T., Guenot, N.: Multi-focused cut elimination. Math. Struct.
Comput. Sci. 28(5), 614–650 (2018). https://doi.org/10.1017/S0960129516000451

5. Chaudhuri, K., Hetzl, S., Miller, D.: A multi-focused proof system isomorphic to
expansion proofs. J. Log. Comput. 26(2), 577–603 (2016). https://doi.org/10.1093/
logcom/exu030

6. Chaudhuri, K., Miller, D., Saurin, A.: Canonical sequent proofs via multi-focusing.
In: Ausiello, G., Karhumäki, J., Mauri, G., Ong, L. (eds.) TCS 2008. IIFIP, vol.
273, pp. 383–396. Springer, Boston, MA (2008). https://doi.org/10.1007/978-0-
387-09680-3 26

7. Girard, J.: Linear logic. Theor. Comput. Sci. 50, 1–102 (1987). https://doi.org/
10.1016/0304-3975(87)90045-4

https://doi.org/10.2168/lmcs-11(1:3)2015
https://doi.org/10.1109/LICS.2001.932506
https://doi.org/10.1093/logcom/2.3.297
https://doi.org/10.1017/S0960129516000451
https://doi.org/10.1093/logcom/exu030
https://doi.org/10.1093/logcom/exu030
https://doi.org/10.1007/978-0-387-09680-3_26
https://doi.org/10.1007/978-0-387-09680-3_26
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1016/0304-3975(87)90045-4

Maximally Multi-focused Proofs for Skew Non-Commutative MILL 393

8. Lamarche, F., Retoré, C.: Proof nets for the Lambek calculus - an overview. In:
Proceedings of 3rd Roma Workshop on Proofs and Linguistic Categories 1996, pp.
241–262 (1996). https://hal.archives-ouvertes.fr/inria-00098442

9. Liang, C.C., Miller, D.: Focusing and polarization in linear, intuitionistic, and
classical logics. Theor. Comput. Sci. 410(46), 4747–4768 (2009). https://doi.org/
10.1016/j.tcs.2009.07.041

10. Moortgat, M.: The Tamari order for d3 and derivability in semi-associative
Lambek-Grishin Calculus. In: Talk at 16th Workshop on Computational Logic
and Applications, CLA 2020 (2020). https://cla.tcs.uj.edu.pl/history/2020/pdfs/
CLA slides Moortgat.pdf

11. Okada, M.: Phase semantic cut-elimination and normalization proofs of first- and
higher-order linear logic. Theor. Comput. Sci. 227(1–2), 333–396 (1999). https://
doi.org/10.1016/S0304-3975(99)00058-4

12. Pimentel, E., Nigam, V., Neto, J.: Multi-focused proofs with different polarity
assignments. In: Benevides, M.R.F., Thiemann, R. (eds.) Proceedings of 10th
Workshop on Logical and Semantic Frameworks, with Applications, LSFA 2015.
Electron. Notes Theoretical Computer Science, vol. 323, pp. 163–179. Elsevier
(2015). https://doi.org/10.1016/j.entcs.2016.06.011

13. Scherer, G.: Multi-focusing on extensional rewriting with sums. In: Altenkirch, T.
(ed.) Proceedings of 13th International Conference on Typed Lambda Calculi and
Applications, TLCA 2015. LIPIcs, vol. 38, pp. 317–331. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik (2015). https://doi.org/10.4230/LIPIcs.TLCA.2015.317

14. Scherer, G., Rémy, D.: Which simple types have a unique inhabitant? In: Proceed-
ings of 20th ACM SIGPLAN International Conference on Functional Program-
ming, ICFP 2015, pp. 243–255. ACM (2015). https://doi.org/10.1145/2784731.
2784757

15. Street, R.: Skew-closed categories. J. Pure Appl. Alg. 217(6), 973–988 (2013).
https://doi.org/10.1016/j.jpaa.2012.09.020

16. Uustalu, T., Veltri, N., Wan, C.S.: Proof theory of skew non-commutative MILL.
In: Indrzejczak, A., Zawidzki, M. (eds.) Proceedings of 10th International Con-
ference on Non-classical Logics: Theory and Applications, NCL 2022. Electronics
Proceedings in Theoretical Computer Science, vol. 358, pp. 118–135. Open Pub-
lishing Association (2022). https://doi.org/10.4204/eptcs.358.9

17. Uustalu, T., Veltri, N., Zeilberger, N.: The sequent calculus of skew monoidal cate-
gories. In: Joachim Lambek: The Interplay of Mathematics, Logic, and Linguistics.
OCL, vol. 20, pp. 377–406. Springer, Cham (2021). https://doi.org/10.1007/978-
3-030-66545-6 11

18. Veltri, N.: Coherence via focusing for symmetric skew monoidal categories. In:
Silva, A., Wassermann, R., de Queiroz, R. (eds.) WoLLIC 2021. LNCS, vol. 13038,
pp. 184–200. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-88853-4
12

19. Veltri, N.: Normalization by evaluation for the lambek calculus. In: Indrzejczak,
A., Zawidzki, M. (eds.) Proceedings of 10th International Conference on Non-
Classical Logics: Theory and Applications, NCL 2022. Electronics Proceedings in
Theoretical Computer Science, vol. 358, pp. 102–117 (2022). https://doi.org/10.
4204/EPTCS.358.8

20. Zeilberger, N.: A sequent calculus for a semi-associative law. Log. Methods Com-
put. Sci. 15(1), 9 (2019). https://doi.org/10.23638/lmcs-15(1:9)2019

https://hal.archives-ouvertes.fr/inria-00098442
https://doi.org/10.1016/j.tcs.2009.07.041
https://doi.org/10.1016/j.tcs.2009.07.041
https://cla.tcs.uj.edu.pl/history/2020/pdfs/CLA_slides_Moortgat.pdf
https://cla.tcs.uj.edu.pl/history/2020/pdfs/CLA_slides_Moortgat.pdf
https://doi.org/10.1016/S0304-3975(99)00058-4
https://doi.org/10.1016/S0304-3975(99)00058-4
https://doi.org/10.1016/j.entcs.2016.06.011
https://doi.org/10.4230/LIPIcs.TLCA.2015.317
https://doi.org/10.1145/2784731.2784757
https://doi.org/10.1145/2784731.2784757
https://doi.org/10.1016/j.jpaa.2012.09.020
https://doi.org/10.4204/eptcs.358.9
https://doi.org/10.1007/978-3-030-66545-6_11
https://doi.org/10.1007/978-3-030-66545-6_11
https://doi.org/10.1007/978-3-030-88853-4_12
https://doi.org/10.1007/978-3-030-88853-4_12
https://doi.org/10.4204/EPTCS.358.8
https://doi.org/10.4204/EPTCS.358.8
https://doi.org/10.23638/lmcs-15(1:9)2019

Correction to: Decidability of Modal Logics
of Non-k-Colorable Graphs

Ilya Shapirovsky

Correction to:
Chapter 22 in: H. H. Hansen et al. (Eds.): Logic, Language,
Information, and Computation, LNCS 13923,
https://doi.org/10.1007/978-3-031-39784-4_22

The original version of this paper some information in Remark 4, the bibitem [DLW23]
and Footnote 2 on page 7 was missing. This has been corrected.

The updated version of this chapter can be found at
https://doi.org/10.1007/978-3-031-39784-4_22

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
H. H. Hansen et al. (Eds.): WoLLIC 2023, LNCS 13923, p. C1, 2023.
https://doi.org/10.1007/978-3-031-39784-4_25

http://orcid.org/0000-0001-7434-5894
https://doi.org/10.1007/978-3-031-39784-4_22
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-39784-4_25&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-39784-4_25&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-39784-4_25&domain=pdf
https://doi.org/10.1007/978-3-031-39784-4_22
https://doi.org/10.1007/978-3-031-39784-4_25

Author Index

A
Alves, Sandra 53

B
Baaz, Matthias 69
Banerjee, Arka 83
Bernreiter, Michael 211
Bílková, Marta 101
Blackburn, Patrick 118
Braüner, Torben 118
Brunet, Tyler D. P. 135

D
Ditmarsch, Hans van 161

F
Faroldi, Federico L. G. 178
Ferguson, Thomas 194
Freiman, Robert 211
French, Tim 227
Frittella, Sabine 101
Fu, Peng 244

G
Galmiche, Didier 161
Gawek, Marta 161

J
Jacobs, Bart 256

K
Kanazawa, Makoto 3
Kesner, Delia 53

Kofod, Julie Lundbak 118
Kozhemiachenko, Daniil 101

L
Lolić, Anela 69

M
Mahmood, Yasir 274
Majer, Ondrej 101

N
Nakata, Satoshi 292

O
Ortiz, Magdalena 19

P
Pavlovic, Dusko 33
Pavlovic, Temra 33
Payette, Gillman 135
Perkov, Tin 305
Punčochář, Vít 194

R
Ramos, Miguel 53
Rohani, Atefeh 178
Rooduijn, Jan 318

S
Sedlár, Igor 336
Selinger, Peter 244
Shapirovsky, Ilya 351
Studer, Thomas 178

V
Van Gelder, Allen 362
Veltri, Niccolò 377
Venema, Yde 318
Vigiani, Pietro 336
Virtema, Jonni 274

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2023
H. H. Hansen et al. (Eds.): WoLLIC 2023, LNCS 13923, p. 395, 2023.
https://doi.org/10.1007/978-3-031-39784-4

https://doi.org/10.1007/978-3-031-39784-4

	Preface
	Organization
	Abstracts of Invited Talks
	From Dynamic Epistemic Logic to Socially Intelligent Robots
	Learning Context-Free Grammars from Positive Data and Membership Queries
	Lambek Calculus and its Modal Extensions
	A Short Introduction to SHACL for Logicians
	Beliefs Based on Conflicting and Uncertain Evidence: Connecting Dempster-Shafer Theory and the Topology of Evidence
	From Incompleteness of Static Theories to Completeness of Dynamic Beliefs, in People and in Bots
	The Epsilon Calculus in Non-classical Logics: Recent Results and Open Questions
	Abstracts of Tutorials
	Compositionality: Categorial Variations on a Theme
	Description Logics and Other Decidable Logics for Graph-structured Data
	Dempster-Shafer Theory and Topological Models for Evidence
	Prerequisites for the Talk on Incompleteness of Static Theories and Completeness of Dynamic Beliefs, in People and in Bots
	Contents
	Invited Papers
	Learning Context-Free Grammars from Positive Data and Membership Queries*-8pt
	1 Introduction
	2 Regular Languages
	3 Context-Free Languages
	3.1 Examples
	3.2 Algorithm

	References

	A Short Introduction to SHACL for Logicians
	1 What is SHACL and Why Do We Need It?
	2 SHACL as a Logic
	2.1 Syntax
	2.2 Semantics

	3 SHACL, OWL and Description Logics
	3.1 Reasoning in SHACL and in OWL

	4 What has Logic Done for SHACL?
	4.1 Semantics of Recursive SHACL
	4.2 Explaining Non-Validation

	5 Conclusions and Outlook
	References

	From Gödel's Incompleteness Theorem to the Completeness of Bot Beliefs
	1 Introduction
	2 World as a Monoidal Category
	2.1 State Spaces as Objects
	2.2 Transitions as Morphisms
	2.3 Monoidal Category of State Spaces and Transitions

	3 String Diagrams
	4 Universal Language
	5 Self-explanations
	6 Unfalsifiable Explanations
	7 From Natural Science to Artificial Delusions
	7.1 What Did We Learn?
	7.2 Beyond True and False

	References

	Contributed Papers
	Quantitative Global Memory
	1 Introduction
	2 Weak Open CBV
	2.1 Syntax and Operational Semantics
	2.2 A Quantitative Type System for the Weak Open CBV

	3 A Lambda-Calculus with Global State
	3.1 Syntax and Operational Semantics
	3.2 A Quantitative Type System for the LambdaCC-Calculus
	3.3 Soundness and Completeness

	4 Conclusion and Related Work
	References

	Effective Skolemization
	1 Introduction
	2 Standard Skolemization and Andrews Skolemization
	3 Atomic Skolemization
	4 Speed-Up Result for Cut-Free Proofs
	5 Cut-Free LK-Proofs With Positive Existential/Negative Universal Quantifiers and Resolution
	6 Conclusion
	References

	Factive Complements are Not Always Unique Entities: A Case Study with Bangla remember
	1 Setting the Stage
	2 Existing Approaches Relating Factivity to Definiteness
	3 Is Bangla remember Lexically Factive?
	4 How to View Bangla remember
	5 Accounting for the Factive Reading with an Indefinite Nominalized Complement
	6 Summary and Future Work
	References

	Two-Layered Logics for Paraconsistent Probabilities
	1 Introduction
	2 Two Approaches to Paraconsistent Probabilities
	3 Logics for Paraconsistent Probabilities
	4 Hilbert-Style Axiomatisation of 4PrŁŁŁŁ
	5 Decidability and Complexity
	6 Conclusion
	References

	An Axiom System for Basic Hybrid Logic with Propositional Quantifiers
	1 Introduction
	2 Syntax and Substitution
	3 Semantics
	4 The Axiomatisation
	5 Strong Completeness
	6 Concluding Remarks
	References

	An Evidence Logic Perspective on Schotch-Jennings Forcing
	1 Introduction
	1.1 Evidence Models
	1.2 Forcing and Level

	2 Forcing and Modal Logic
	3 Covers: Syntactic vs. Semantic
	4 Semantics and Axiomatization for U
	5 Definability and the Logic F
	6 Soundness and Completeness of U
	6.1 Soundness
	6.2 Completeness

	References

	A Separation Logic with Histories of Epistemic Actions as Resources
	1 Introduction
	2 Semantics with Informative Actions as Resources
	2.1 Knowledge and Informative Actions
	2.2 Semantics for Separation and Composition of Action Histories

	3 Gossip Protocols with AMHSL
	4 Reduction from LKE to LKE Given a Bound max
	4.1 Validities for Empty Histories and a Bound Max
	4.2 Termination of Reduction from LKE to LKE

	5 Remarks and Perspectives
	References

	Conditional Obligations in Justification Logic
	1 Introduction
	1.1 Chisholm's Set
	1.2 Factual Detachment (FD) and Strong Factual Detachment (SFD)

	2 Proof Systems for Alethic-Deontic Logic
	2.1 Modal System
	2.2 Preference Models
	2.3 Justification Version of System E

	3 Semantics
	4 Preference Models
	4.1 Soundness and Completeness w.r.t. Preference Models

	5 Conclusion and Future Work
	A Soundness and Completeness with Respect to Basic Models
	References

	Structural Completeness and Superintuitionistic Inquisitive Logics
	1 Introduction
	2 Intuitionistic Inquisitive Logic and Its Extensions
	3 Structural Completeness
	4 Schematic Closures of Inquisitive Gsi-Logics
	5 Kripke Models
	6 Conclusion
	References

	Validity in Choice Logics
	1 Introduction
	2 Preliminaries
	2.1 Game-Theoretic Semantics
	2.2 Game Choice Logics GCL
	2.3 Degree-Based Semantics for GCL

	3 A Provability Game
	4 Proof Systems
	5 Conclusion and Future Work
	References

	Aleatoric Propositions: Reasoning About Coins
	1 Introduction
	1.1 Related Work
	1.2 Overview

	2 Syntax and Semantics
	2.1 Abbreviations
	2.2 Motivation and Discussion

	3 A Correspondence for Aleatoric Propositions
	3.1 Aleatoric Functions
	3.2 Positive Rational Functions

	4 Conclusion and Future Work
	References

	Towards an Induction Principle for Nested Data Types
	1 Introduction
	1.1 Contributions

	2 Dependently Typed Fold for Bush
	3 Induction Principle for Bush
	4 Higher-Order Folds and Dependently Typed Folds
	4.1 Defining hfold from nfold
	4.2 Defining nfold from hfold

	5 Nested Data Types Beyond Bush
	6 Discussion
	7 Conclusion and Future Work
	References

	A Principled Approach to Expectation Maximisation and Latent Dirichlet Allocation Using Jeffrey's Update Rule
	1 Introduction
	2 Multisets and Distributions
	2.1 Channels and Their Daggers

	3 Jeffrey's Update Rule and Its Decrease of Divergence
	4 Expectation Maximisation (EM)
	5 Latent Dirichlet Allocation (LDA)
	6 Conclusions
	References

	Parameterized Complexity of Propositional Inclusion and Independence Logic
	1 Introduction
	2 Preliminaries
	3 Graph Representation of the Input
	4 Complexity of Inclusion and Independence Logic
	5 Concluding Remarks
	References

	Parallelism in Realizability Models
	1 Introduction
	2 Preliminary
	3 Parallel Combinators in PCA
	4 Predominances in the Category of Assemblies
	5 Parallel Combinators with Respect to and -Subsets
	6 Future Work
	References

	Bisimulations Between Verbrugge Models and Veltman Models
	1 Introduction
	2 Bisimulation Between Verbrugge and Veltman Model
	3 Hennessy-Milner Theorem
	4 Obtaining a Veltman Model Bisimilar to a Given Verbrugge Model
	4.1 Sw-Paths
	4.2 Well Defined Choice of Representatives
	4.3 A Veltman Model Associated with a Given Verbrugge Model
	4.4 The Main Result

	5 Further Work
	References

	Focus-Style Proofs for the Two-Way Alternation-Free -Calculus
	1 Introduction
	2 The (Alternation-Free) Two-Way Modal -Calculus
	3 The Proof System
	3.1 Sequents
	3.2 Proofs

	4 The Proof Search Game
	5 Soundness and Completeness
	5.1 Soundness
	5.2 Completeness

	6 Conclusion
	A Parity games
	References

	Relevant Reasoning and Implicit Beliefs
	1 Introduction
	2 Relevant Epistemic Logic with Classical Worlds
	3 Axiomatization
	4 Conclusion
	References

	Decidability of Modal Logics of Non-k-Colorable Graphs
	1 Introduction
	2 Preliminaries
	3 Logics of Non-k-Colorable Graphs
	4 Logics of Connected Graphs
	5 Corollaries
	6 Discussion
	References

	Subsumption-Linear Q-Resolution for QBF Theorem Proving
	1 Introduction
	2 Preliminaries
	3 Prefix-Ordered QU-Resolution
	4 Subsumption-Linear Q-Resolution
	4.1 Derivation Power of SLQR
	4.2 Derivation Power of SLQR–ures
	4.3 Details for LIFO SLQR

	5 Conclusion
	References

	Maximally Multi-focused Proofs for Skew Non-Commutative MILL
	1 Introduction
	2 The Sequent Calculus of SkNMILL
	3 A Multi-focused Sequent Calculus
	4 Maximal Multi-focusing Using Tags
	5 Conclusions
	References

	Correction to: Decidability of Modal Logics of Non-k-Colorable Graphs
	Correction to: Chapter 22 in: H. H. Hansen et al. (Eds.): Logic, Language, Information, and Computation, LNCS 13923, https://doi.org/10.1007/978-3-031-39784-4_22

	Author Index

