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Abstract. This paper studies how intentional jamming can be used
for selective hiding communication in the 2D Signal-to-Interference-plus-
Noise-Ratio (SINR) model. We aim to place a set of additional jamming
stations to generate interference that blocks all the signals in a specified
restricted area, i.e., by making the SINR value of the genuine stations’
signal below a pre-defined threshold. We aim to optimize the accuracy of
the jamming strategy by minimizing the impact of the jamming stations
on the area of desired genuine communication while jamming the signals
in the given restricted zone. We present solutions in various network
settings for uniform and non-uniform networks. As a secondary aim, we
try to minimize the total energy of the jamming stations. Among others,
we show that, surprisingly, it is possible to jam arbitrarily large areas
by jammers using total energy arbitrarily close to zero. Our contribution
is an extension of recent results for the same problem in the 1D SINR
network. Let us stress, however, that a 2D environment is closer to real-
life settings. Still, the 2D model turned out to be much more complex in
analysis (even for the most uncomplicated cases) and required a different
approach to constructing algorithms.

Keywords: SINR · information hiding · jamming

1 Introduction

This paper considers limiting genuine communication in two-dimensional SINR
to protect it from eavesdropping selectively. We assume that there are some
restricted areas where we expect that any entity should not successfully receive
the genuine wireless communication signal. On the other hand, communication
outside the restricted areas should be untouched. As a motivation, we can point
to many scenarios, including military communication, preventing industrial espi-
onage, privacy protection by hiding personal communication, or providing wire-
less services in selected workspaces without being overheard in other ones. Such
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an approach is essential if it is not possible to use cryptographic mechanisms. A
good example is an ad hoc network of computationally restricted devices without
the possibility of pre-deployment of any cryptographic material. Finally, in some
cases, one needs to hide not only the content of the message but also the fact that
communication takes place (in systems providing anonymous communication).

Our paper assumes a standard SINR model (Signal to Interference plus Noise
Ratio; model formulated in [1]). In the SINR model, it is assumed that the sig-
nal’s power is fading with distance from the transmitting station and is impacted
by interference from other network devices. It makes a model close to reality and
acceptable from the technology perspective. On the other hand, analysis in this
model can be challenging.

We consider two configurations of SINR networks - uniform and non-uniform
in the 2D space. We construct algorithms for positioning the jamming stations
under these configurations, drawing out the chosen restricted areas while reduc-
ing the unnecessary impact on the original reception zones outside the restricted
areas. Below we recall the most important related work. We introduce the com-
munication model in Sect. 2 and formalize the addressed Zone-restriction with the
Max-coverage problem. Section 3 presents the algorithm for jamming network
configuration for stations that can be heard only inside some area delimited by
2D convex geometric shapes in the uniform network model. Section 4 focuses on
the non-uniform network and presents the 2D variant of noisy dust from [16]. It
utilizes jamming stations with small power levels to cover arbitrary fragments of a
2D plane with interference high enough to block chosen station’s signal. Notably,
this approach allows the reduction of overall energy with the increase of jamming
stations number, reducing its impact on protected station reception zone as well.
Section 5 presents conclusions and the most important future directions.

Related Work. This contribution can be seen as an extension of [16], wherein
a similar problem is considered in the 1D SINR model. The current paper uses
the same notation, describing the problem statement similarly. Note, however,
that the transition analysis of the 2D case is much more difficult. The class of
topological regions in 2D Euclidean space is substantially richer than on the 1D
line. Therefore, the presented analysis required a much more complex approach
and could not be reduced to re-using the methods from [16], which relied on the
interval-based representation of reception zones.

The approach taken in this paper, using jamming stations as a protective
security mechanism (called friendly jamming, has been considered in [3,4,13,17]
in the context of non-SINR models. Some similar approaches for other models
were proved to be practically feasible [14]. Due to the complexity of the SINR
model, our approach and the analysis needs to be completely different. Regarding
the SINR, [3,15] consider a model similar to the one used in this paper, but
with the additional assumption that some regions are restricted from positioning
jamming stations (so-called buffers). In contrast, our solutions are designed to
provide protection of arbitrary configurations without prior restrictions on their
construction and target the optimization of the energy cost of the additional
jamming stations. The directional antennas are also considered there, while this
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paper focuses solely on the omnidirectional antennas, what makes fitting the
noising substantially more challenging. Compared to another similar model in
[17], we target the reduction of the jamming network energy consumption rather
than limit the number of jamming stations. Moreover, a scheme for positioning
stations in a grid relies on the combined interference of adjacent stations, which
do not scale well with some of the network parameters we assume. Let us also
stress that the approach change (primarily focusing on energy usage rather than
limiting the number of stations) led to entirely different jamming strategies.
Some other proactive approaches to securing communication in similar models
can be found in [12].

Our paper can be seen as a continuation of a long list of results about the
SINR model motivated by many real-life wireless networks, including 5G [5].
Note that in [7] authors consider SINR in D-dimensional space for some D > 3.
Although such an assumption seems unjustified in the physical sense, the anal-
ysis of such a case turned out to be beneficial in analyzing algorithms of lower-
dimensional spaces. Geometrical properties of the SINR model were studied by
Avin et al. [2], who analyzed the properties of reception zones under the uni-
form SINR model, showing, among others, their convexity. Non-uniform network
properties were analyzed in [7], along with a new point location algorithm, and in
[8], where non-uniform SINR network model, combined with Voronoi Diagrams,
proved to retain some of the valuable properties of the uniform setting. There
is also a large amount of work considering the fundamental problems under the
SINR model, such as broadcasting [9], link scheduling [10] or power control [11].

2 Model and Problem Statement

Notation. In the following paper, we use the notation presented in [16] extended
and adapted to the 2D model. Let us stress that the rest of the technical part
of this contribution is completely different. Indeed, we failed to re-ruse the tech-
niques from the previous paper, possibly because the topology of 2D case is
much richer, and from the algorithmic point of view, one needs to use subtler
methods to limit communication even in regular-shaped regions.

We consider D-dimensional Euclidean spaces. Since D is always initially
fixed, we indicate a metric simply by d. We denote points as p = (p1, . . . , pD),
vectors as −→v =

−−−−−−−−→
(v1, . . . , vD) and line segments between points p0 and p1 as

(p0, p1). For some polygon P, we will denote the set of its edges as FP = {(x, y) :
x, y ∈ R}, where x, y for each edge will be consecutive vertices of the polygon P.
Moreover, for n ∈ N, we use the notation [n] = {1, . . . , n} and a D-ball of radius
r is denoted as B(r, p) = {x ∈ R

D : d(x, p) � r}.

Model of SINR network
The SINR network is a tuple A = 〈D,S,N, β, P, α〉, where:

– D ∈ N
+ is the dimension of the network,

– S = {s1, . . . , sn} is a set of positions of stations in R
D,

– N > 0 is an ambient background noise (fixed real number),
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– β � 1 is the reception threshold (fixed real number),
– P : S → R is a stations’ power function; by Pi = P (si) we denote the power

of station si,
– α � 2 is a path-loss parameter (fixed real number).

For a network A, we define the SINR function for station si ∈ S and a point
x ∈ R

D\S as:

SINRA(si, x) =
Pi · d(si, x)−α

N +
∑

sj∈S\{si}
Pj · d(sj , x)−α

.

If a network A is known from a context, we simplify the notation to SINR(s, x)
for any station s. For x ∈ S\{si} we put SINR(s, x) = 0 and it is not defined
for x = si. The model in which N = 0 is called SIR. Therefore we replace the
SINR function/model with SIR whenever it is admissible.
We define a reception zone of some station s in a network A as the space where
communication of the station s can be correctly received and we denote it as
HA

s = {x ∈ R
D : SINRA(s, x) � β}. HA

i will be equivalent to HA
si

. Finally, we
define a range of station s for a network with positive noise value (N > 0) as
range(s) =

(
P (Nβ)−1

) 1
α , which maximizes the radius of reception zone of s in

the network consisting of the single station s. This value is also an upper bound
for the possible range of s while other stations are present in the network. Due
to the lack of the noise component in the SIR model, the range definition does
not apply.
Formulation of the Zone-restriction with Max-coverage Problem. For a network
A, there is given a restricted area R: a subset of the space, wherein no station
should be heard. In other words, in all points in R, the SINR function of all
stations in the set S has to be lowered below the threshold β. It can be done
using two techniques. The first is to modify the network parameters – one can
increase the threshold value β, decrease the stations’ powers, or increase the
path-loss parameter α. Second, we can add special jamming stations to the
network to generate interference and change the shapes of the reception zones of
the original set of stations in the network A. An illustration of such approaches
for a single broadcasting station is presented in Fig. 1.

Assume that there is a network A = 〈D,S,N, β, P, α〉 and some subspace
R ⊂ R

D representing a restricted area to be excluded from any communication
involving stations from S. The problem of Zone-restriction with Max-coverage
is to find a set of jamming stations J = (S(J), P (J)) with positions in S(J) and
powers defined by the function P (J) in such a way that the resulting network
AJ = 〈D,S(J) ∪ S,N, β, P ∪ P (J), α〉 satisfies the following two conditions (1
and 2).

Condition 1. S(J) correctly protects R, i.e. (∀ s ∈ S)(∀ x ∈ R) SINR(s, x) < β.

Note that Condition 1 itself could be trivially solved by adding single stations
with appropriately high transmission powers in every connected component of
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Fig. 1. Sample problem for a single broadcasting station.

the restricted area within the ranges of broadcasting stations. It would, how-
ever, significantly suppress the desired communication in the reception zones of
the genuine network. In order to control the above-undesired issue, we define a
yardstick called a coverage – specifying how new reception areas correspond to
their original sizes, excluding the restricted area.

Condition 2. S(J) maximizes the following coverage (ratio) formula:

Cover(J ,A) =

∣
∣
∣
∣
∣

⋃

si∈S

(
HAJ

i ∩ (HA
i \ R)

)
∣
∣
∣
∣
∣
·
∣
∣
∣
∣
∣

⋃

si∈S

HA
i \ R

∣
∣
∣
∣
∣

−1

,

where |A| denotes the measure (volume) of a set A. The inverted part is the
size of the maximal area in which the station’s signal can be received, excluding
the restricted areas. The first part is the size of the real reception area with
jamming. Namely, for each station, we consider HAJ

i , which is cropped to the
maximal area where si can be heard i.e. (HA

i \ R). Note that Cover(J ,A) is
always properly defined, as long as N > 0. Moreover 0 � Cover(J ,A) � 1.
To summarize, the problem considered in this paper is specified as follows:

Zone-restriction with Max-coverage problem: For a given network
A and a restricted area R, find a set of jamming stations and their powers,
J = (S(J), P (J)), correctly protecting R and maximizing Cover(J ,A).

We also would like to minimize a total (jamming) power, defined as

Cost(J ) =
∑

s∈S(J)

P (J)(s) .

3 Uniform Networks Jamming

In this section, we consider networks of the form A = 〈D = 2, S,N, β, P ≡ 1, α〉,
i.e., uniform networks, for which every station will have identical power. Without
a loss of generality, this can be reduced to ((∀s ∈ S)(P (s) = 1)). Such networks
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have nice properties as described in [2], and some of the calculations simplify as
we can remove power parameters. We will start by describing the two stations’
mutual impact when positioned next to each other in this model in Subsect. 3.1,
and in the following sections, we will present different jamming approaches for
more specific network configurations.

3.1 Two Stations in the Uniform Model

In the following lemma, we describe how a single jamming station can split the
plane into two half-planes, such that one is jammed.

Lemma 1. For a network A = 〈D = 2, S = {s0, s1}, N, β, P ≡ 1, α〉 and some
point b = (bx, 0), where s0 = (0, 0) and s1 =

(
bx

(
1 + β

1
α

)
, 0

)
, for any point

p ∈ {(a, b) ∈ R
2 : a � bx}:

– SIR(s0, p) � β,
– SINR(s0, p) < β, for N > 0.

Proof. At first, we are trying to find the distance x = d(s1, b), such that
SIR(s0, b) = d(s0, b)−αd(s1, b)α = b−α

x xα = β. This will give us x = bxβ
1
α .

Now examine the point b∗ = (bx, h), located on the line perpendicular to the
segment s0s1 and crossing the point b. The distances from b∗ to stations s0 and
s1 are equal to d(s0, b∗) =

√
b2x + h2 and d(s1, b∗) =

√
x2 + h2 respectively, for

h = d(b, b∗). A value of SIR for s0 and such points take the form of:

SIR(s0, b∗) =
d(s0, b∗)−α

d(s1, b∗)−α
=

(
x2 + h2

b2x + h2

)α
2

=

(
b2xβ

2
α + h2

b2x + h2

)α
2

.

For h = 0 we get b∗ = b and SIR(s0, b∗) = β. On the other hand, for h > 0, we
get:

SIR(s0, b∗)
β

=

(
b2xβ

2
α + h2

b2xβ
2
α + h2β

2
α

)α
2

� 1 ,

as β � 1; and strict inequality for β > 1. Replacing SIR with SINR, where N > 0,
also gives us strict inequality. Realize, that any point (x∗, y∗), such that x∗ > bx,
will be closer to s1 and further away from s0 than some point b∗ = (bx, y∗),
meaning that SINR(s0, (x∗, y∗)) < SIR(s0, (x∗, y∗)) < SIR(s0, (bx, y∗)) � β. �

From Lemma 1, we immediately conclude that one can configure the position
of jamming station s1 for an arbitrary line and a given station s0 in such a way
that it guarantees the limitation of s0’s reception zone to one side of this line.

3.2 Jamming the Enclosing Area

Let us define a class of enclosing restricted areas, which will surround one or
more jamming stations. In this class, let us define two subclasses - polygonal,
denoted as Rep

P = R
2 \ P, where P is a convex polygon and circular, denoted as

Rec
(x,y),r = R

2 \ B(r, (x, y)).
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Algorithm 1: Assign 2D uniform jamming stations
Algorithm AssignUniformJammingStations(P, s)

S(J) ← {}
for (xj , yj) ← FP do

ldj ← GetLine(xj , yj)
lpj ← GetPerpendicularLine(ldj , s)
bj ← GetLinesCrossingPoint(ldj , lpj )

sj ← s +
−−−−−→
(bj − s) ·

(
1 + β

1
α

)

S(J) ← S(J) ∪ {sj}
return S(J)

Starting with the enclosing polygonal area, we will focus on the problem of
a single station s inside some polygon P, and we want to block the station’s
signal outside the polygon’s boundaries. The following functions are used in the
algorithm:

– GetLine(x, y) creates a line, which includes the segment (x, y),
– GetPerpendicularLine(l, s) generates a line passing through the point s

and being perpendicular to the line l,
– GetLinesCrossingPoint(l, l′) calculates the position of the crossing point

for the lines l and l′.

The algorithm uses Lemma 1 on each of the polygon edges to position one
station on the opposite side of the edge from the s position and within the
distance, which will provide enough interference along the edge to block a signal
of s.

Theorem 1. For a network A = 〈D = 2, S = {s}, N, β, P ≡ 1, α〉, a station
s ∈ P and some restricted area Rep

P = R
2\P, where P is a convex polygon, which

encloses s, Algorithm 1 returns a set of jamming stations’ positions S(J) such
that the set of jamming stations J = {S(J), P ≡ 1} correctly protects restricted
area Rep

P .

Proof. The algorithm constructs a straight line for each polygon segment, split-
ting space into two half-planes. Then the positioning of jamming station sj for
such a segment is done according to the scheme presented in Lemma 1, which
guarantees that all points on the half-plane at the opposite side of the line to
station s, are outside its reception zone. Since we operate for all segments of the
convex polygon, all of these half-planes could be united into the restricted area
Rep

P . An additional interference introduced from other stations can only reduce
the reception zone, so the restricted area will be correctly protected. �

This approach works well for the areas given as the convex polygon, but we
cannot apply it directly when the restricted areas contain some curvy or circular
fragments. Nevertheless, if we assume that some station s is in the center of some
circular enclosing area, it can be solved by applying the method from Fact 1.
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Fact 1. For a network A = 〈D = 2, S = {s}, N, β, P ≡ 1, α〉, a station s and
some restricted area Rec

s,r = R
2 \ B(r, s), Algorithm 1 with a regular polygon P,

inscribed into the disk B(r, s), as an input, returns a set of jamming stations’
positions S(J) such that a set of jamming stations J = {S(J), P ≡ 1} correctly
protects restricted area Rec

s,r.

By inscribing the polygon into the circular area, we can directly apply the
Algorithm 1, and it will correctly block the signal outside the polygon. We can
use different n-gons as the inscribed polygons. The choice of n impacts the cost
(i.e., Cost(J ) = n) and the coverage. In Fig. 2, we present numerical results for
some of the regular polygons. The coverage of a chosen regular polygon can be
bounded using Lemma 2.

Fig. 2. Approximations of different circular shapes. Red spaces represent the initial
disks, green spaces – the polygons – and blue spaces are the final reception zones.
(Color figure online)

Lemma 2. Let s be a single broadcasting station and 0 < r < range(s). If a
restricted area is given by Rec

s,r = R
2 \ B(r, s) and a jamming network J is

created by Algorithm 1 for some regular n-gon P, then coverage of the returned
network with a set of jamming stations J satisfies:

(b(βbαN + n)−
1
α )2

r2
� Cover(J ,A) � |P|

πr2
,

where b is the length of the polygon’s apothem (the distance between s and sides
of the polygon P).

The upper bound is obvious from Fact 1 — we limit the maximal reception
zone by some polygon P. The lower bound can be calculated by approximating
the maximal range of station s in a direction to one of the jamming stations sj . It
is realized by modifying the resulting network, which assumes that all jamming
stations are placed in the same point sj (this trick effectively increases the power
of sj n times). It allows us to calculate the station range in this scenario. We
skip the details of this proof due to space limitations.
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4 Noisy Dust for Non-uniform Networks

This section considers non-uniform networks, wherein the reception zones can be
concave, increasing the analytic complexity. We apply the noisy dust approach
from [16] to flood the restricted area with jamming stations having small power
levels. Note that despite the similarity of the problem and jamming strategy, the
2D case technically significantly differs from considerations in [16].

4.1 Single Station Effective Jamming Range

Consider a single station s = (0, 0) with power P (s) = 1 and some border
point b = (bx, 0) such that 0 < bx < range(s). Let us place a jamming station
sj = (bx(1 + Fj), 0) where Fj = (Pjβ)

1
α (from now on, we tacitly assume that

P (sj) = Pj) and r = bxFj (see the arrangement in Fig. 3a). Note that we require
Fj < 1, so we keep the α � 2 and Pj < β−1 (what also corresponds to the
forementioned property Pj � P ). Clearly the segment (bx, sj) is jammed. The
disk B(sj , r) could be used as an initial approximation of a space, where a single
disturbing station can effectively jam the signal emitted by s – however, it would
be imprecise if we would compare it with the real effective jamming space (see
Fig. 3b - blue space denotes B(r, sj) and a green curve represents a boundary of
the maximal region, where sj correctly jams s).

Fig. 3. Effective jamming range construction.

In the SIR model, the shape of the space, where sj blocks the signal of s,
is expected to form some oval, irregular shape. Surprisingly, it forms a circle,

centered at cj =
(

bx + d(s,b)

F −1
j −1

, 0
)

.

Theorem 2. Let A = 〈D = 2, S = {s, sj}, N, β, P, α〉 be a network, then for

any x ∈ B
(

d(s,b)

F −1
j −1

, cj

)

, the condition SINR(s, x) � β is satisfied.

Fix sj and s. We are looking for such points x, that SIR(s, x) = β. These points
form the border of the area where the signal is blocked (by continuity of SIR
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with respect to the tested position). We are using the radial approach, i.e., we
create a vector

−→
r∗
γ in some direction (γ ∈ [0, π] is an angle between the segment

ssj and the vector), such that x∗
γ = sj +

−→
r∗
γ and SIR(s, x∗

γ) = β (note that SIR
is monotonous in the direction of the vector, so there is exactly one appropriate
x∗

γ). This method is presented in Lemma 3 with construction depicted in Fig. 3c.
We must analyze only half of the reception zone, as the other half is symmetrical.

Lemma 3. Let A = 〈D = 2, S = {s, sj}, N, β, P, α〉 be a network. For γ ∈ [0, π],
we define r∗

γ = d(s, sj)((F−2
j −sin2 γ)

1
2 +cos γ)−1 and a point x∗

γ = sj+
−→
r∗
γ , where

−→
r∗
γ =

−−−−−−−−−−−−−−→
(−r∗

γ cos γ, r∗
γ sin γ). Then SIR(s, x∗

γ) = β and SINR(s, x∗
γ) � β. Moreover,

for any point x ∈ sjx∗
γ , we get SINR(s, x) � β.

Proof. Let us define a base vector −→r =
−−−−−→
(b − sj). The vector

−→
r∗
γ is acquired by

rotating −→r by angle γ in clockwise direction. Obviously, if r∗
γ = ‖−→

r∗
γ‖, then

−→
r∗
γ =−−−−−−−−−−−−−−→

(−r∗
γ cos γ, r∗

γ sin γ). Let us define a new vector
−→
b∗
γ =

−−−−→
x∗

γ − s of length b∗
γ and the

angle between
−→
b∗
γ and −−−→

sj − s as σ (see Fig. 3c). Note that sin γ = h
r∗

γ
, sinσ = h

b∗
γ
,

r∗
γ

b∗
γ
= sinσ

sin γ . Point x∗
γ has to keep the property SIR(s, x∗

γ) = β, so r∗
γ

b∗
γ
= Fj = sinσ

sin γ

and cosσ =
√

1 − F 2
j sin2 γ. By applying it to the d(s, sj) = b∗

γ cosσ + r∗
γ cos γ,

we get

d(s, sj) =
r∗
γ

√
1 − F 2

j sin2 γ

Fj
+ r∗

γ cos γ = r∗
γ

(√
F−2

j − sin2 γ + cos γ

)

.

Finally, we get: r∗
γ = d(s,sj)√

F −2
j −sin2 γ+cos γ

. By the properties of the construction it

is guaranteed that SIR(s, x∗
γ) = β for any γ, so in particular SINR(s, x∗

γ) � β.
From monotonicity of s and sj energy functions in the direction of

−→
r∗
γ , for any

point p ∈ x∗
γsj , SINR(s, x∗

δ) � SINR(s, p), making all such p correctly jammed.
�

In the next step, we want to convert the vector representation of
−→
r∗
γ to a

parametric one. In particular, we may specify h component of
−→
r∗
γ , basing on the

xγ argument as −→rγ =
−−−−−−−→
(xγ , r∗(x)), via a function r∗(x) = h, where x = d(b, xγ) ∈

[0, d(b, xπ)]. This transformation is presented in Lemma 4:

Lemma 4. For every point x∗
γ (γ ∈ [0, π]), there exists x such that x∗

γ = (bx +

x, r∗(x)), where r∗(x) =
(

−x2 +
(

2d(s,b)

F −1
j −1

)

x

) 1
2

and b = (bx, 0). Moreover, {x∗
γ :

γ ∈ [0, π]} forms a half of a circle.

Proof. Let x∗
γ = (bx + x, h), where x ∈ [0, d(b, xπ)]. We want to calculate h in

this formula. It depends on angle γ as follows:

r∗
γ cos γ = d(sj , b) − x , r∗

γ sin γ =
√(

r∗
γ

)2 − (d(sj , b) − x)2 . (1)
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Combining the previously calculated value of d(s, sj) with Eq. 1 brings
(
r∗
γ

)2 = ((d(s, b) + x)2 − (d(sj , b) − x)2)(F−2
j − 1)−1 .

This equation might have two real solutions for
(
r∗
γ

)2. However, we consider only
the positive one, which under assumptions d(s, b) � d(sj , b) and F−2

j − 1 > 0,
satisfies: r∗

γ = (((d(s, b) + x)2 − (d(sj , b) − x)2)(F−2
j − 1)−1)

1
2 . Finally, we can

use this result to calculate the parametrization r∗(x) = r∗
γ sin γ:

r∗(x) = r∗
γ sin γ =

√(
r∗
γ

)2 − (d(sj , b) − x)2 =

√
√
√
√−x2 +

(
2bx

F−1
j − 1

)

x .

Moreover, the last formula is a geometric mean of x and
(

2bx

F −1
j −1

− x

)

, hence

{x∗
γ : γ ∈ [0, π]} is a half of a circle of diameter 2bx

F −1
j −1

. Therefore, the considered

region is in fact B
(

d(s,b)

F −1
j −1

, cj

)

. �

Lemmas 3 and 4 conclude the proof of Theorem 2. If we know the point b and
the expected r = d(s,b)

F −1
j −1

, then we can calculate the power level of station sj as:

Pj = β−1
(
1 + d(s,b)

r

)−α

= β−1rαd(s, cj)−α. We will use this equation in the
following sections to calculate power levels for stations with fixed positions and
for predefined values of r.

4.2 Noisy Dust Algorithm

Using the effective jamming range of a single station, represented by some disk,
we can approximate such the disk by inscribing some hexagon inside. We may
use this fact to tile the 2D regions requiring the jamming. Let us define such
a hexagonal grid by H = {h0, h1 . . . } where hi are central points of equally
sized regular hexagons, each with radius r and assume such grid fully covers the
restricted zone inside the reception zone of some station s. Then the algorithm
for positioning stations for each hexagon is defined in Algorithm 2.

The center of the hexagon can be treated as the cj from the Theorem 2.
The algorithm will position the jamming station somewhere on the line going
through the h = cj and the s and assign enough power to cover the whole
disk circumscribed on the hexagon with center h, providing correct protection.
Correctness of the offset and power assignment comes directly from the Theorem
2 and related constructions.

One must create the hexagonal grid to use the algorithm - the process details
are not part of this paper. For the algorithm to work, the grid must densely fill
the restricted area region intersecting the reception zone of the protected station
s (note that details of the algorithm can be aligned to protect more than one
station).



544 D. Bojko et al.

Algorithm 2: Create noisy dust for s = (0, 0), restricted area R and
hexagonal grid H with circumradius equal to r.
Algorithm GenerateNoisyDust(s, H, r)

J ← {}
for h ← H do

Pj ←
(

1
β

) (
d(s,h)−r

r
+ 1

)−α

Fj ← (Pjβ)
1/α

sj ← h + (r − Fj(d(s, h) − r))
( −−→

s−h
d(s,h)

)

J ← J ∪ {sj , Pj}
return J

Let us consider the energy cost of Algorithm 2. We assume that the parts of
the restricted area located outside of the range of s are excluded and that the
required number of hexagons of circumradii r required to fill some restricted area
R is defined as n = (|R∩B(range(s), s)|+o(A(r)))A(r)−1 , where A(r) = 3

√
3r2

2
is the area of a hexagon with circumradius r (the assumption about the value
of n is fulfilled in all realistic scenarios). The area of the effectively restricted
region |R ∩ B(range(s), s)| is a constant (R and s are given a priori). It is nat-
urally bounded by the area of the initial disk around the broadcasting station
in SINR model: |R ∩ B(range(s), s)| � |B(range(s), s)| � π · range(s)2. Cumu-
lative energy required to set up jamming stations for arbitrary R is given by∑n−1

i=0 β−1rαd(s, ci)−α , where the circumradius of every single hexagon equals
r, and each jamming station si is positioned in a unique hexagonal cell and vice
versa. Each cell contains only one jamming station.

Observe that one can limit the value of d(s, ci) by a distance between s
and the closest single hex within the hexagonal grid — let us denote it by
ds = min{d(s, cj) : j = 1, 2, . . . , n}. Since d(s, ci) � ds for any hex cell:

n−1∑

i=0

β−1rαd(s, ci)−α <

n−1∑

i=0

β−1

(
r

dS

)α

=
nrα

βdα
S

≈ 2|R ∩ B(range(s), s)|
3
√
3βdα

s

rα−2 .

Remark that for α = 2, this upper bound is constant – 2|R|
3
√
3βdα

s

and one can
similarly find a lower bound of cumulative energy required to set up jamming
stations, by substitution of ds by its antipodal counterpart max{d(s, cj) : j =
1, 2, . . . , n} (which is also bounded by range(s) + r) and realizing that n �
|R∩B(range(s),s)|

A(r) , what shows that in this case (of α = 2), the cumulative energy
is O(1) as r → 0+. On the other hand, for α > 2, the upper bound converges to
0 as r → 0+, which upholds the zero-energy property from the 1D version of the
noisy dust algorithm. When α < 2, both upper and lower bounds are O(r2−α),
as r → 0+, so in this case, the total energy usually rises along with the number
of jamming stations.

We are going to check the actual coverage numerically. We consider four dif-
ferent scenarios for initial network configuration of A = 〈D = 2, S = {s}, N =
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1.0, β = 1.0, P, α = 3.0〉. Each experiment is conducted for hexagons with radii
r ∈ {0.125, 0.25, 0.5, 1} and the coverage results, along with example visualiza-
tion presented in Fig. 4. One can easily see that all cases hold the property that
the coverage value increases as the sizes of hexagons decrease. We see that the
method might not work very well for larger sizes of hexagons in some configura-
tions (like, e.g., the one presented in Fig. 4a), but generally, the method is quite
efficient in practice.

Fig. 4. Coverage obtained for four considered examples with respect to circumradius
r of each hexagon in the grid and illustration of examples with r = 0.025.

5 Conclusions and Future Work

In our paper, we study the problem of protecting communication in the 2D
SINR network. We introduced a formal, realistic model and presented algorithms
usable for uniform and non-uniform network settings. The idea for designing
these algorithms is to limit communication by introducing a carefully prepared
noise generated collectively by a set of stations.

Even though presented solutions are introduced only for some chosen, limited
scenarios, they should be capable of generalization for more complex ones since
more complicated (but still realistic) cases can be represented as combinations
of regular-shaped areas investigated here.

There are multiple directions in future research that can extend these results.
One such is the idea of dynamic environments, where stations and restricted
areas are not static space objects but can change locations and parameters with
time, modeling real-world scenarios like cars or drones. Another direction would
be extending the solutions to 3D or creating generic versions for any number of
dimensions. Finding the energy bounds for generic configurations or tighter cov-
erage bounds for presented solutions is also challenging. The model can also be



546 D. Bojko et al.

an object of modifications, e.g., assuming we have different receivers’ sensitivity
(e.g., like in [3], where adversary and legitimate receivers use different reception
thresholds).

References

1. Jurdzinski, T., Kowalski, D.R.: Distributed randomized broadcasting in wireless
networks under the SINR model. In: Encyclopedia of Algorithms, pp. 577–580
(2016)

2. Avin, C., Emek, Y., Kantor, E., Lotker, Z., Peleg, D., Roditty, L.: SINR diagrams:
towards algorithmically usable SINR models of wireless networks. In: ACM PODC,
pp. 200–209 (2009)

3. Allouche, Y., et al.: Secure communication through jammers jointly optimized in
geography and time. Pervasive Mob. Comput. 41, 83–105 (2017)

4. Deka, B., Gerdes, R.M., Li, M., Heaslip, K.: Friendly jamming for secure local-
ization in vehicular transportation. In: Tian, J., Jing, J., Srivatsa, M. (eds.)
SecureComm 2014. LNICST, vol. 152, pp. 212–221. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-23829-6_16

5. Busari, S.A., Mumtaz, S., Al-Rubaye, S., Rodriguez, J.: 5G millimeter-wave mobile
broadband: performance and challenges. IEEE Commun. Mag. 56(6), 137–143
(2018)

6. Goldsmith, A.: Wireless Communications. Cambridge University Press, USA
(2005)

7. Kantor, E., Lotker, Z., Parter, M., Peleg, D.: The topology of wireless communi-
cation. J. ACM 62(5), 1–32 (2015)

8. Kantor, E., Lotker, Z., Parter, M., Peleg, D.: Nonuniform SINR+Voronoi diagrams
are effectively uniform. Theoret. Comput. Sci. 878–879, 53–66 (2021)

9. Jurdzinski, T., Kowalski, D.R., Stachowiak, G.: Distributed deterministic broad-
casting in wireless networks of weak devices. In: Fomin, F.V., Freivalds, R.,
Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013. LNCS, vol. 7966, pp. 632–644.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39212-2_55

10. Halldórsson, M.M., Mitra, P.: Nearly optimal bounds for distributed wireless
scheduling in the SINR model. Distrib. Comput. 29(2), 77–88 (2016)

11. Lotker, Z., Parter, M., Peleg, D., Pignolet, Y.A.: Distributed power control in the
SINR model. In: IEEE INFOCOM, pp. 2525–2533 (2011)

12. Lashkari, A.H., Danesh, M.M.S., Samadi, B.: A survey on wireless security proto-
cols (WEP, WPA and WPA2/802.11i). In: ICCSIT, pp. 48–52 (2009)

13. Martinovic, I., Pichota, P., Schmitt, J.B.: Jamming for good: a fresh approach to
authentic communication in WSNs. In: WiSec, pp. 161–168 (2009)

14. Kim, Y.S., Tague, P., Lee, H., Kim, H.: Carving secure Wi-Fi zones with defensive
jamming. In: ACM ASIACCS, pp. 53–54 (2012)

15. Sankararaman, S., et al.: Optimization schemes for protective jamming. In: Mobi-
Hoc, pp. 65–74 (2012)

16. Bojko, D., Klonowski, M., Kowalski, D.R., Marciniak, M.: Exact and efficient pro-
tective jamming in SINR-based wireless networks. MASCOTS 2021, 1–8 (2021)

17. Commander, C.W., Pardalos, P., Ryabchenko, V., Shylo, O.V., Uryasev, S.,
Zrazhevsky, G.: Jamming communication networks under complete uncertainty.
Optim. Lett. 2, 53–70 (2008)

https://doi.org/10.1007/978-3-319-23829-6_16
https://doi.org/10.1007/978-3-642-39212-2_55

	Efficient Protective Jamming in 2D SINR Networks
	1 Introduction
	2 Model and Problem Statement
	3 Uniform Networks Jamming
	3.1 Two Stations in the Uniform Model
	3.2 Jamming the Enclosing Area

	4 Noisy Dust for Non-uniform Networks
	4.1 Single Station Effective Jamming Range
	4.2 Noisy Dust Algorithm

	5 Conclusions and Future Work
	References


