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Abstract. Looking closely at the Top500 list of high-performance com-
puters (HPC) in the world, it becomes clear that computing power is not
the only number that has been growing in the last three decades. The
amount of power required to operate such massive computing machines
has been steadily increasing, earning HPC users a higher than usual car-
bon footprint. While the problem is well known in academia, the exact
energy requirements of hardware, software and how to optimize it are
hard to quantify. To tackle this issue, we need tools to understand the
software and its relationship with power consumption in today’s high
performance computers. With that in mind, we present perun, a Python
package and command line interface to measure energy consumption
based on hardware performance counters and selected physical mea-
surement sensors. This enables accurate energy measurements on var-
ious scales of computing, from a single laptop to an MPI-distributed
HPC application. We include an analysis of the discrepancies between
these sensor readings and hardware performance counters, with partic-
ular focus on the power draw of the usually overlooked non-compute
components such as memory. One of our major insights is their signif-
icant share of the total energy consumption. We have equally analyzed
the runtime and energy overhead perun generates when monitoring com-
mon HPC applications, and found it to be minimal. Finally, an analysis
on the accuracy of different measuring methodologies when applied at
large scales is presented.

Keywords: Energy Benchmarking · High-performance Computing ·
Artificial Intelligence · Distributed Memory System

1 Introduction

High-performance computing (HPC) is a key technology to tackle an increasing
amount of complex computational problems in science and industry. Example
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applications include fluid dynamics [1], molecular biology [2], and quantum chro-
modynamics [3]. Recently, HPC has accrued particular interest due to the large
computational demands and data quantities of artificial intelligence workloads.
With this paradigm shift, the utilized hardware has simultaneously changed
towards heterogeneous architectures with local storage, significant main mem-
ory, and accelerators like GPUs.

A commonly neglected conundrum of using such heterogeneous HPC systems
is their massive energy consumption. Modern supercomputers have a power draw
of up to 30 MW [4]. While the efficiency of individual hardware components has
improved over time, it has enabled manufacturers to pack transistors and com-
ponents more densely, to increase the number of computational processing units
and nodes as well as to expand auxiliary infrastructure. In turn, the increased
power consumption for large-scale computational tasks on HPC systems are out-
pacing individual hardware efficiency gains [5].

Due to the environmental impact of the corresponding energy generation
technologies, recent research has focused on estimating the carbon footprint of
compute-intensive workloads. A strong emphasis has been put on training and
inference with deep learning models on single nodes with multiple accelerators.
The overall conclusion: the utilized hardware, training time, and location are the
main factors contributing to carbon dioxide and equivalent gas emission (CO2e).

Yet, several unexplored research questions remain. How reliable are hardware
performance counters when estimating application power draw compared to the
actual consumption? Are non-compute components like memory, storage, and
network sufficiently taken into account? How reliable are current estimation
techniques when applied to distributed applications?

In an attempt to provide answers to the above questions, our contributions
are as follows:

– A novel MPI-parallelized Python package called perun1 facilitating energy
benchmarking on HPC systems. perun can utilize both estimates based on
sampling hardware performance counters and precise read-outs from energy
sensors.

– The assessment of the power estimation and measurement gap.
– An analysis of the power consumption of multi-node applications based on dif-

ferent estimation methodologies, including scaling artifacts for selected bench-
mark programs with an emphasis on data-intensive deep learning workflows.

– A quantification of the measuring overhead created by perun.

2 Related Work

Interest in energy-efficient computing is not novel. For example, the Green500
list [6] ranks the most energy-efficient supercomputers and HPC systems. Its
goal was to discourage the performance-at-any-cost design of supercomputing
systems by introducing the FLOPs-per-Watt (FLOPs W−1) metric. Yet, the

1 https://github.com/Helmholtz-AI-Energy/perun.

https://github.com/Helmholtz-AI-Energy/perun
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determination of the energy consumption is non-standardized and may vary
significantly based on the tooling used.

In recent years, several tools have appeared to aid researchers in compiling
carbon footprint statements. Carbontracker [7], one of the most widely used, is
a Python package primarily aimed at machine learning. It samples energy data
from hardware libraries for a single training epoch to extrapolate the energy
consumption during actual training, but is limited to a single device. Similar tools
include experiment-impact-tracker [8] and CodeCarbon [9], collecting information
using the same API endpoints. However, they do not predict the expected total
consumption but are meant to monitor the application throughout its execution.

Outside the Python ecosystem is the Machine Learning Emissions Calcu-
lator [10], which targets users of Cloud Service Providers (CSP) such as AWS
or Google Cloud. Users may input the training wallclock time, the used CSP,
hardware, and geolocation. In turn, this data is used to gather information from
public APIs to provide the estimated CO2e emissions. Green algorithms [11] is a
similar website targeted to both CSP and personal computer users, with a more
extensive set of configuration options.

Caspart et al. [12] collected energy measurements with physical sensors. The
data was used to compare the efficiency of CPUs and GPUs for single-node,
multi-accelerator machine learning applications. Hodak et al. [13] used a similar
setup, but instead focused on which hardware settings significantly reduce the
power draw without meaningfully increasing training time.

In the context of machine learning (ML), Strubell et al. [14] are among the
first to look at the environmental impact of natural language processing (NLP)
models. CO2e emissions are calculated as the sum of the energy consumption of
all CPUs and GPUs throughout training, multiplied by the data center’s power
usage effectiveness (PUE) and carbon efficiency in the data center location. In
that, the PUE is the ratio between the energy used by compute components
and the energy used for the entire data center infrastructure [15], and carbon
efficiency is the ratio of carbon and equivalent gas emissions in tonnes per kilo
Watt hour (t CO2e/(kW h)). While PUE has widespread use in the industry,
it has been critiqued because of the lack of data supporting published numbers,
working more as a publicity stunt than a relevant metric [16]. Patterson et al.
[17] analyzed modern NLP models based on the reported training time, hard-
ware, data center power efficiency, and energy supply mix. They highlighted
the importance of hardware and data center choice, as they have the highest
impact on CO2e emissions. At the same time, it showcased the energy efficiency
of sparse large-scale models like switch-transformers [18] when compared to a
densely activated model such as GPT-3 [19]. PaLM 540B [20], another represen-
tative of large language models, is one of the first and few works that includes a
carbon footprint statement, thou it lacks a clear electrical footprint report.
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3 Energy Benchmarking in High-Performance Computing

3.1 Background: Determining Energy Consumption

In the following, we will provide a brief overview of common methods used to
obtain energy consumption readings. Generally, we distinguish between measur-
ing energy, i.e., the process of using physical sensors connected to the compute
nodes or other components to monitor the hardware, and estimating energy,
i.e., using indirect methods to approximate the energy consumption. Leverag-
ing sensors to measure power draw has the highest accuracy, but requires the
hardware to be either equipped with additional monitoring devices or manu-
ally tapped. Practically, this may hinder sensor use due to additional costs or
access restrictions. Which components may be monitored depends on the com-
puting hardware. Past works have focused on individual components like power
source, CPU, cooling and memory [13], the individual components of internode
communication switches [21], or the consumption of entire nodes [12].

In contrast, energy estimation utilizes indirect, albeit more accessible, tools.
An increasingly common way is using the software interfaces provided by hard-
ware manufacturers. The data made available through these interfaces maps to
hardware performance counters, special registers embedded in the hardware with
the specific purpose of monitoring the device. The energy consumption of hard-
ware components is then estimated by regularly sampling the hardware counters
while the monitored device or application is running. These data samples are
then aggregated in a post-processing step. Overall, the accuracy of the complete
estimation is bound by the registers’ resolutions.

An example of such a hardware monitoring interface is Nvidia Management
Library (NVML) [22], making the power draw of their GPUs available. Figure 1
illustrates an example of the data obtained through its management interface.
Similarly, Intel provides access to the accumulated energy usage through the
Running Average Power Limit2 (RAPL) interface. It keeps track of the total
energy used on a socket granularity for CPU and DRAM, which can be used to
calculate the power draw. Which components may be monitored depends on the
individual hardware manufacturers and their interfaces. Additionally, access to
these interfaces is usually restricted to privileged users.

If no hardware monitoring interfaces are accessible, a rough estimate can be
made using the specifications of the utilized hardware. This method assumes that
each component requires the same amount of power throughout the runtime of
an application. Practically, the constant power draw is an unrealistic assumption,
leading to significant over- or underestimation and should be avoided if possible.

Regardless of the method used to obtain the power draw of individual com-
ponents, the energy consumption of the application running on a single node
can then be calculated by integrating the power draw P over the total runtime
T for each component in a computational node and summing up all of them up
to obtain the total energy of the node:

2 https://github.com/powercap/raplcap.

https://github.com/powercap/raplcap
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Fig. 1. Energy consumption of a single Nvidia A100 gathered from Nvidia-SMI running
the OC20 [23] MLPerf benchmark.

Enode =
∫ T

0

Pcpu(t) + Pgpu(t) + Pram(t) + Pothers(t)dt, (1)

where Enode is the consumed energy of the subscript components. When running
on multi-node applications, the energy of all the individual nodes has to be
aggregated and multiplied by the power usage effectiveness (PUE) of the system
to obtain the energy consumed of the application:

Etotal = PUE ·
#nodes∑

i

E
(i)
node. (2)

PUE is a factor obtained by dividing the total equipment consumption of
the data center by the power consumption of the compute equipment. This is a
common metric used to compare the efficiency of data centers around the world,
with the global average in 2020 being 1.58 [24] and some of the most efficient
centers having a 1.02 PUE [25].

For the purpose of this work, Eq. (2) is exhaustive to determine the energy
consumption of software running on HPC systems. If needed, the corresponding
carbon footprint can be derived by multiplying the resulting total energy Etotal

with an energy-to-CO2e conversion factor re. re signifies the emission rate of
the energy generation technologies. Just like PUE, this number depends on the
location where the software is being run, but additionally changes over time
depending on weather, seasons, and energy grid usage, as those factors have a
great effect on the available energy sources. The total monetary cost may be
derived similarly by replacing re with the energy-to-cost conversion ratio.

Both emissions and price fluctuate continuously, whereas it is reasonable to
expect that an algorithm would require a (close to) constant amount of power if
executed on the same or similar hardware.
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3.2 perun

To allow users to gather energy measurements of their Python applications on
multi-node environments, we have developed a Python package called perun.
It works by sampling information while a Python application is running. The
background process periodically collects information by querying hardware APIs.
If the right setup is available, it is capable of incorporating sensor readings into
the estimation process, including the power consumption of a single compute
node or the complete rack. As of the time of writing, we are not aware of any
other energy benchmarking tool capable of incorporating hardware performance
counters and sensor measurements of MPI distributed Python applications.

Currently, perun supports Intel-RAPL to sample CPU and DRAM informa-
tion, NVML for GPU information, and psutil3 to sample information on network
and filesystem I/O. Sensor data may be additionally collected using Lenovo
XClarityController4, a hardware management system provided by the manufac-
turer. psutil, Intel-RAPL and the hardware sensors report the energy con-
sumption of the whole system. To get more representative results, perun works
best when there are no other programs running in the system.

To handle distributed Python applications, perun makes use of the Message
Passing Interface (MPI). MPI defines a communication protocol standard for
parallel computers. When using MPI applications, perun has a coordination step
where each individual rank communicates its host name and the visible devices
to all other ranks. Based on this information, the first rank in each host is
selected to spawn the process and monitor the visible devices. This coordination
step ensures that only one monitoring process is spawned per host and that each
device is only accounted for once, keeping the overall overhead of perun low.
Synchronization between the main and monitoring process is handled by using
the multiprocessing events from the standard library.

All the raw data gathered during the execution of the monitored application is
saved in a HDF5 file, along with metadata about the individual devices, nodes,
and environment. perun then processes the data using Eqs. (1) and (2) and
returns a summarized report. All the results can be exported to human as well
as machine-readable formats, like JSON and YAML.

To facilitate usage in different environments, perun provides a command line
interface as a replacement for the Python command. Alternatively, a monitor
decorator can be used to target specific functions, as shown in Listing 1. perun’s
behavior can be modified using a configuration file, command line arguments,
decorator arguments, or environmental variables.

While most of the interfaces and software features described during this and
previous sections can be applied similarly to other programming languages, due
to the way perun manages the primary Python process when started from the
command line, its functionality is as of the time of writing limited to Python
applications.
3 https://github.com/giampaolo/psutil.
4 https://www.lenovo.com/in/en/data-center/software/systems-management/

XClarity-Controller/p/WMD00000367.

https://github.com/giampaolo/psutil
https://www.lenovo.com/in/en/data-center/software/systems-management/XClarity-Controller/p/WMD00000367
https://www.lenovo.com/in/en/data-center/software/systems-management/XClarity-Controller/p/WMD00000367
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import perun

@perun.monitor(data_out="results/", format="json")

def expensive_computation(input_args):

pass

Listing 1: Example decorator usage

4 Experimental Evaluation

The goal of the following experiments, as described in Sect. 1, are the follow-
ing: quantify the runtime and power overhead caused by sampling performance
counters using perun, determine the accuracy of the available performance coun-
ters when compared to measurements provided by hardware sensors embedded
in the system, observe the power consumption of non-compute components and
the impact they have on the overall system consumption, and compare different
energy estimation methodologies when applied at scale.

The following sections describe the different use cases used for the analysis,
and the system where the experiments were implemented.

4.1 Application Use Cases

As a calibration measure, the energy consumption of an idle node with and
without the monitoring software is compared. Based on sensor data obtained
during both types of execution, the runtime, and average power usage differ-
ence between monitored and non-monitored applications can be used to get an
estimate on the overhead caused by perun.

Two single-node use cases are considered, one running on CPU and the other
running on four GPUs. First, we apply perun to monitor Black-Scholes [26]
option pricing, an operation commonly used in finance, that can be computed in
an embarrassingly parallel way, as a common benchmark in the HPC community.
We monitor the energy consumption of solving one billion Black-Scholes opera-
tions using 76 CPU threads as a single-node high resource utilization example.
As a second example, we fine-tune the NLP model BERT [27] on the QUAD
1.2 question-answering dataset using a multi-GPU implementation based on the
huggingface5 libraries.

As a large-scale, multi-node example, we evaluate perun on two tasks from the
MLPerf HPC benchmark suite [28]. The BERT use case was also scaled to two
nodes, i.e. eight GPUs. DeepCam [29] is an image segmentation model trained on
the CAM 5 weather simulation dataset. OpenCatalyst 2020 (OC20) [23] dataset
consists of molecular simulation data and defines three supervised learning tasks,
where attributes of individual molecules are recreated based on the initial struc-
ture. Both models are trained to a pre-defined performance threshold. The imple-

5 https://huggingface.co.

https://huggingface.co
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mentation used is based on the closed submission by the Helmholtz AI group6.
The OC20 benchmark was run using up to 128 nodes, each one with four GPUs,
to observe how scaling affects the overall energy consumption of the application.
DeepCam was run using the same hardware setup. All single node programs were
run a total of 20 times, half using perun, and the other half without. MLPerf
programs were run only six times, five times using perun and once without.

4.2 Hardware Environment

The use cases were run using two different hardware configurations of the HoreKa
supercomputer at the Karlsruhe Institute for Technology: CPU-only nodes,
which have no accelerated hardware, and GPU nodes, which include four Nvidia
A100-40 GB GPUs. Each node in both partitions has two Intel Xeon Platinum
8368 processors, a 960 GB SSD, and is interconnected with an InfiniBand HDR
fabric. The CPU-only nodes have 256 GB, while the accelerated nodes have 512
GB of main memory.

Each node includes special hardware that gathers power measurements from
different components, including the CPU, GPU, and the entire node. This infor-
mation is consistently being collected via the Lenovo XClarity Controllers Red-
fish REST API and is transferred to an InfluxDB time series database. According
to the server documentation7, XClarity Controller measurements for GPU and
CPU has an 97% accuracy at a 100 Hz sampling rate. The system uses an energy-
efficient hot water cooling system, making it a highly efficient HPC system with
a PUE of 1.05.

4.3 Software

Two different stacks were used to run the different use cases: a container-based
environment, used for both MLPerf use cases, and a native environment, which
was used for the rest. The native environment makes use of Python 3.8.6,
OpenMPI 4.1.3, mip4py 3.1.4, and pytorch 1.12.1 with CUDA 11.6. The base con-
tainer used for the MLPerf Benchmarks is pytorch:22.08-py3-devel from the
Nvidia Container Registry. It contains Python 3.8.12, OpenMPI 4.1.2, mpi4py
1.13 and pytorch 1.13 with CUDA 11.7. The perun version used at the time of
the experiments is 0.1.0b16. All jobs were scheduled using SLURM8.

5 Results

5.1 Monitoring Overhead

First, we measured the overhead that running an application with perun entails
using hardware sensor data. Table 1 shows differences in runtime, average power
draw per node, and the total energy consumption for runs with and without
perun. Column N indicates the number of nodes used for each use case.
6 https://mlcommons.org/en/training-hpc-20/.
7 https://lenovopress.lenovo.com/lp1395-thinksystem-sd650-v2-server.
8 https://slurm.schedmd.com/overview.html.

https://mlcommons.org/en/training-hpc-20/
https://lenovopress.lenovo.com/lp1395-thinksystem-sd650-v2-server
https://slurm.schedmd.com/overview.html
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Table 1. Runtime and average node power consumption comparison between software
run with and without monitoring software, aggregated over multiple runs.

Name N Runtime Pnode

Unmonitored Monitored Δ Unmonitored Monitored Δ

[s] ± [s] ± Δ [W] ± [W] ± Δ

idle 1 78.58 1.73 81.71 1.64 3.13 293.67 12.53 292.26 13.34 −1.42

idle gpu 1 81.10 0.57 86.92 2.07 5.82 571.20 15.36 564.75 13.20 −6.45

black-scholes 1 1998.00 29.36 2085.56 150.11 87.56 618.55 18.44 634.35 31.27 15.80

BERT 1 1180.27 3.93 1190.15 18.10 9.88 1319.53 29.97 1301.74 43.31 −17.79

BERT 2 970.60 12.40 975.75 7.07 5.15 1058.19 58.22 1079.33 51.90 21.14

OC20 64 2542.00 – 2428.51 84.16 −113.49 1305.48 25.71 1300.41 31.74 −5.06

OC20 128 1752.00 – 1785.00 53.60 33.00 1096.76 33.16 1106.29 31.09 9.53

DeepCam 128 526.00 – 484.60 33.03 −41.40 1030.50 120.24 995.39 116.58 −35.11

The high variance makes identifying a clear trend from these results difficult,
as the overhead caused by perun is often in the same order of magnitude as the
variance. The variance in the software’s runtime seems to have the biggest impact
and makes it difficult to discern the effect running perun has on the monitored
software runtime and power consumption. From the execution time of the use
cases idle and BERT, we can expect an increase of 5 s to 10 s of execution time
on average. The results of OC20 and DeepCamp have low statistical relevance,
as those use cases were run only once without perun. Even then, perun seems
to have a small enough impact that some monitored applications had shorter
execution times than the monitored ones.

perun has the biggest impact on the runtime of the Black-Scholes use case.
As it is a CPU-intensive benchmark compared to the others, the extra process-
ing load from the monitoring process hurts the overall performance. Like the
runtime, the average power draw per node has a similarly high variance, often
larger than the difference between monitored and unmonitored runs. The high
variance can be explained in part by small changes in the hardware itself, as the
software was run on different nodes with the same hardware, and there were no
warm-up runs before running the use cases, putting the nodes in different stages
of idleness/activity when the software started.

Given that the difference in power draw between monitored and unmonitored
applications is close to zero, it is fair to assume that the background sampling
process does not meaningfully raise the power consumption.

5.2 Monitoring Accuracy and Missing Power Consumption

In order to assess the accuracy of perun’s estimates based on hardware per-
formance counters, we compare the difference between the power reported by
hardware libraries and sensor data for individual devices. Based on the power
consumption of the compute components and sensor data from the entire node,
the power draw of difficult to access components, e.g., internal fan, storage,
networking cards, can be quantified as a group.
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Table 2. Average power draw for component x as reported by performance counters
P x,p and the hardware sensors P x,s for each use case.

Name N P dram,p P dram,s P cpu,p P cpu,s P gpu,p P gpu,s P node,p P node,s

[W] ± [W] ± [W] ± [W] ± [W] ± [W] ± [W] ± [W] ±
idle 1 16.8 1.3 16.4 1.2 195.5 11.1 198.0 12.2 – – – – 212.4 11.8 289.4 14.2

idle gpu 1 24.6 0.8 24.5 1.1 210.5 5.3 208.2 9.2 218.6 3.3 218.6 3.4 453.6 5.8 560.4 13.8

black-scholes 1 17.8 0.8 17.7 0.8 529.4 28.2 531.5 28.4 – – – – 547.1 27.8 642.7 31.4

BERT 1 26.3 1.1 26.2 1.1 231.7 5.1 232.1 5.4 970.7 24.6 941.6 33.0 1228.7 24.1 1338.5 57.4

BERT 2 27.6 1.0 27.5 1.1 240.4 5.9 240.0 5.8 712.6 19.0 698.2 24.1 980.6 19.3 1115.6 63.6

OC20 16 26.2 1.2 26.1 1.2 256.7 6.8 257.3 6.8 1035.4 14.8 1031.4 15.5 1318.3 18.0 1473.7 22.7

OC20 32 26.4 1.2 26.3 1.2 258.8 7.2 259.3 7.0 1027.5 18.5 1022.4 19.6 1312.7 21.3 1465.3 29.3

OC20 64 26.6 1.2 26.6 1.2 266.9 7.2 267.1 7.4 882.8 16.5 874.6 19.2 1176.3 18.8 1316.2 29.5

OC20 128 26.8 1.2 27.5 23.1 268.4 7.7 269.0 8.0 692.1 13.7 686.1 19.1 987.3 17.3 1119.4 31.9

DeepCam 16 31.1 1.2 30.6 1.3 261.4 6.6 259.6 7.7 640.0 15.5 645.2 43.0 932.5 16.9 1032.9 74.6

DeepCam 128 30.3 1.3 30.1 1.8 246.6 7.0 251.1 11.5 681.8 12.6 692.0 83.6 958.7 15.7 1026.1 124.5

Table 2 shows the average power draw measured by each device throughout
the execution of the software, averaged over multiple runs. All DRAM, CPUs,
and GPUs in a node are grouped and summed together. P indicates the average
power draw from the compute nodes while the software was executed. The sub-
script indicates the hardware component and the data source, p for performance
counters and s for sensor data.

For DRAM and CPU, we observe almost no difference between the sen-
sor data and performance counters, with a maximum difference of 1 W for
DRAM and 0 W to 2 W for CPU power draw. This difference is more pro-
nounced for GPU devices, averaging at 5.68 ± 10.35 W overestimation from
performance counters. Data from performance counters and sensors have a higher
variance for GPUs than other hardware components, making it harder to approx-
imate. According to the official Nvidia System Management Library documen-
tation [22], the power values returned by the performance counters have an
accuracy of ±5 W. Additionally, the measured sensor includes the power con-
sumption of all components on the GPU board at a higher sampling frequency,
not only the GPU and High Bandwidth Memory (HBM) that are measured by
the performance counters.

When looking at the aggregated power consumption for the entire node,
there is a clear difference between what can be estimated using performance
counters and full node sensor data, providing a clearer picture on the power
draw of components lacking monitoring support. In this particular setup, this
means networking, storage, cooling systems, power supply and motherboard.
The power consumption of these components are also application dependent and
come with their own variance, adding uncertainty to the estimation process. For
nodes without GPUs, we have measured their required power draw to be 78.93
± 8.39 W, and for nodes with GPUs, the unaccounted power draw is on average
109.37 ± 30.51 W. The previous values can be inserted into Eq. (1) alongside
the estimates for CPU, GPU, and DRAM to correct the energy estimation of
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individual nodes, thus closing the gap between estimated and measured total
energy consumption seen in the last two columns.

In conclusion, the usage of performance counters provide a good estimation
of the energy consumption for individual components, reducing the need of dedi-
cated hardware unless precision is of utmost importance. Estimations of the total
node power draw can be improved by adding a constant power draw through-
out the runtime of the application. Finding an optimal value is difficult without
measuring equipment, and will need to be chosen carefully based on the system.

5.3 Impact of Non-compute Devices on the Overall Energy
Consumption

Table 3. Power draw percentage per device.

Name N P dram P cpu P gpu P rest P node [W]

[W] [%] [W] [%] [W] [%] [W] [%]

idle 1 16.4 5.7 198.0 68.4 – 0.0 75.1 25.9 289.4

idle gpu 1 24.5 4.4 208.2 37.1 218.6 39.0 109.1 19.5 560.4

black-scholes 1 17.7 2.7 531.5 82.7 – 0.0 93.6 14.6 642.7

BERT 1 26.2 2.0 232.1 17.3 941.6 70.3 138.7 10.4 1338.5

BERT 2 27.5 2.5 240.0 21.5 698.2 62.6 149.9 13.4 1115.6

OC20 16 26.1 1.8 257.3 17.5 1031.4 70.0 158.9 10.8 1473.7

OC20 32 26.3 1.8 259.3 17.7 1022.4 69.8 157.4 10.7 1465.3

OC20 64 26.6 2.0 267.1 20.3 874.6 66.4 147.9 11.2 1316.2

OC20 128 27.5 2.5 269.0 24.0 686.1 61.3 136.7 12.2 1119.4

DeepCam 16 30.6 3.0 259.6 25.1 645.2 62.5 97.5 9.4 1032.9

DeepCam 128 30.1 2.9 251.1 24.5 692.0 67.4 52.8 5.2 1026.1

As shown in the previous section, the power draw of non-compute components is
not negligible, contributing to a high percentage of the overall energy consump-
tion. Table 3 breaks up the total energy consumption by devices, assigning the
remainder to the non-compute components.

We observe that as the CPU and GPU utilization, and with it their power
draw, increases, the share of non-compute components in the total energy con-
sumption decreases. However, even under high utilization, non-compute compo-
nents make up about 15% of the energy consumption of CPU-only nodes and
more than 5% of GPU nodes.

5.4 Scaling Behavior for Multi-Node Applications

Using the OC20 use case, we compare the accuracy of different energy con-
sumption estimation methods on massively parallel applications. We consider
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Fig. 2. Reported total energy consumption of different estimation methods on the
OC20 tasks as a function of number of compute nodes.

performance counters (perun), performance counters including a “correction off-
set” of 110 W based on the analysis done in Sect. 5.2 (perun+offset), hardware
measurements (sensors), and a simpler estimation based on the hardware speci-
fications (specs) of the CPU and GPU. The analysis will also include estimations
based on the data of a single node (sn) for both sensors and performance coun-
ters, following the methodology described in Green500 benchmark tutorial [30]
from 2007.

Figure 2 displays the total energy calculated by the different estimations
methods. The transparent area around each line represents the standard devia-
tion. At a first glance, it becomes clear that using the specified Thermal Design
Power from the components leads to an overestimation of the consumed energy,
with the difference becoming bigger as the number of nodes increases and the
utilization of each component decrease. It can work as an upper bound if no
other source of information is available.

The results show, that for this particular use case, measuring a single full node
and multiplying by the number of nodes provides an accurate approximation
of the total energy usage during the application runtime. This might change
for different applications, if the load distribution is drastically different in the
individual compute nodes. A close second is perun+offset, which managed to
close the gap between sensors and performance counters by adding a flat offset
to the original estimation of perun. Estimations based on performance counters
(perun and sensor sn) slowly diverge as the number of nodes increases, with a
difference of around 25 MJ on the 128 node configuration. Still, performance
counter based estimations provide better results when run on all nodes, with a
difference in the order of MJ between multi-node and single-node estimations
on all node configurations. This supports the need for a distributed monitoring
tool when hardware sensors are not an option.
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6 Conclusion

In this study, we introduce perun, a novel Python package to facilitate energy
benchmarking of MPI-distributed workloads. We analyzed the impact such a
tool has on the overall runtime and energy consumption and found that the
overhead is negligible.

Making use of perun, an analysis of the energy estimations based on hard-
ware performance counters was presented alongside sensor data from those same
components and the entire node. The difference in reported power draw from the
two sources indicates that CPU and DRAM data matches the sensor readings
adequately. A larger distance is observed between power draw estimations and
measurements for GPUs.

From these results, an approximation could be made on the power draw of
often unaccounted hardware components, which can later be used to correct any
power estimations made using only CPUs, GPUs, and DRAM. The data shows
that the power of those components entails a non-minuscule percentage of the
total power consumption of each node, and its impact should be considered when
writing impact statements.

Finally, the difference between different energy estimation methodologies is
highlighted using the OC20 benchmark on different hardware configurations. The
results highlight the importance of making use of distributed monitoring tools
like perun and the need to account the power draw of non-compute components,
as their impact increases with the number of nodes.

6.1 Limitations

While the individual hardware components and software interfaces are common
in other HPC systems, the power measuring equipment is not so, complicating
the evaluation of the presented approach in other systems. Similar studies with
different hardware and workloads will further aid in understanding the energy
consumption of applications with high levels of parallelism.

In the making of this paper, a total of 2136.42 kWh were used, which based
on the location and time of our experiments, generated 841.75 kg CO2e.
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