
Improving Utilization of Dataflow
Architectures Through Software

and Hardware Co-Design

Zhihua Fan1,2, Wenming Li1,2(B), Shengzhong Tang1,2, Xuejun An1,2,
Xiaochun Ye1,2, and Dongrui Fan1,2

1 SKLP, Institute of Computing Technology, Chinese Academy of Sciences,
Beijing, China

{fanzhihua,tangshengzhong20s,axj,yexiaochun,fandr}@ict.ac.cn
2 University of Chinese Academy of Sciences, Beijing, China

liwenming@ict.ac.cn

Abstract. Dataflow architectures can achieve much better performance
and higher efficiency than general-purpose core, approaching the perfor-
mance of a specialized design while retaining programmability. However,
dataflow architectures often face challenges of low utilization of com-
putational resources if the application algorithms are irregular. In this
paper, we propose a software and hardware co-design technique that
makes both regular and irregular applications efficient on dataflow archi-
tectures. First, we dispatch instructions between dataflow graph (DFG)
nodes to ensure load balance. Second, we decouple threads within the
DFG nodes into consecutive pipeline stages and provide architectural
support. By time-multiplexing these stages on each PE, dataflow hard-
ware can achieve much higher utilization and performance. We show that
our method improves performance by gmean 2.55× (and up to 3.71×)
over a conventional dataflow architecture (and by gmean 1.80× over
Plasticine) on a variety of challenging applications.

Keywords: Dataflow Architecture · Decoupled Architecture

1 Introduction

Dataflow architecture is an emerging class of reconfigurable arrays designed for
modern analytical workloads. The program offloaded to dataflow fabrics will be
converted to a dataflow graph (DFG) by dataflow compiler. A DFG consists
of a set of nodes and directed edges that connect the nodes. The nodes repre-
sent the computing, while the edges represent data dependencies between nodes.
Figure 1 illustrates a typical dataflow architecture, which consists of a PE (Pro-
cessing Element) array, a configuration buffer and a data buffer. The PE array
is formed by multiple PEs that are connected by the network-on-chip. Each PE
is composed of a router, a local buffer, a register file, and several function units.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
J. Cano et al. (Eds.): Euro-Par 2023, LNCS 14100, pp. 245–259, 2023.
https://doi.org/10.1007/978-3-031-39698-4_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-39698-4_17&domain=pdf
https://doi.org/10.1007/978-3-031-39698-4_17

246 Z. Fan et al.

Fig. 1. A typical dataflow architecture.

Most dataflow architectures are restricted to regular applications, i.e., those
with structured access patterns and data reuse, like neural networks [1] and
dense linear algebra [2]. These characteristics are necessary to produce a high-
performance pipeline that can be spatially and statically mapped to a dataflow
fabric. However, dataflow architectures struggle with irregular applications, i.e.,
those with complex control flow and memory access patterns, lack data shar-
ing characteristics and data reuse. These applications arise in many impor-
tant domains, like graph analytic, sparse linear algebra and signal processing.
Dataflow architectures are ill-equipped to handle these operations.

Abundant prior works have been proposed to accelerate irregular applica-
tions on dataflow architectures (in Sect. 2): pipeline parallelism [3–5], decou-
pled access-execute architectures [6–9] and dedicated interfaces between cores or
threads [10,11]. Nevertheless, these solutions can be further improved because
they (in Sect. 3): (i) suffer from load imbalance, as they rarely take into account
the imbalance between DFG nodes, but we found the imbalance impacts the soft-
ware pipeline execution significantly. (ii) lack of fine-grained pipelining schedul-
ing. The schedule of each DFG node is coarse-grained and non-preemptive, which
miss opportunities to exploit more parallelism within DFG nodes to boost uti-
lization. To this end, we introduce a software and hardware co-design method
to improve the hardware utilization of dataflow architectures. In summary, we
make the following contributions:

– We present a method to solve the load imbalance between DFG nodes. This
approach dispatches instructions between DFG nodes to ensure load balance.

– We introduce decoupled execution model. It decouples the thread within DFG
node into four consecutive pipeline stages. Each stage is an atomic schedule
and execution unit. In this way, a PE can be shared by at most four different
DFG nodes at the same time and the memory access and data transfer latency
can be overlapped as much as possible.

– We provide architectural support for the decoupled execution model. By
decoupling the datapath of different stages and equipping with a dedicated
scheduler within each PE, the DFG nodes of different iterations can be
pipelined more efficiently.

Improving Utilization of Dataflow Architectures 247

– We evaluate our methods on a wide range of applications, demonstrating their
applicability. Experiments show our methods improve performance by gmean
2.55× (and up to 3.71×) over a conventional dataflow architecture (and by
gmean 1.80× over Plasticine [4]).

2 Background and Related Works

In this section, we briefly introduce the background and works related to improv-
ing the utilization of dataflow architectures.

Pipeline Parallelism: Dataflow architectures are amenable to creating static spa-
tial pipelines, in which an application is split into DFG nodes and mapped to
functional units across the fabric [1–4,12]. To perform a particular computation,
operands are passed from one functional unit to the next in this fixed pipeline.
Pipette [5] structures irregular applications as a pipeline of DFG nodes con-
nected by queues. The queues hide latency when they allow producer nodes to
run far ahead of consumers. Zhongyuan et al. [13] design a global synchroniza-
tion mechanism, which help reducing the nodes and edges in modified DFG. and
propose a complete and systematic DFG modification flow which saves more
resources. These efforts may be inefficient for irregular workloads because they
rarely take into account the load imbalance between DFG nodes.

Decoupled Architectures: Fifer [6] decouples memory access datapath from com-
puting pipeline. Each DFG node is divided into two stages: access and execution.
Equipped with a dedicated scheduler, at most two DFG nodes can be executed
on the same PE at the same time. In this way, memory access latency can
be overlapped and the utilization can be further improved. DESC [7] proposes
a framework that has been inspired by decoupled access and execution, and
updates and expands for modern, heterogeneous processors. REVEL [8] extends
the traditional dataflow model with primitives for inductive data dependences
and memory access patterns, and develops a hybrid spatial architecture com-
bining systolic and dataflow execution. RAW [9] introduces hardware support
for decoupled communication between cores, which can stream values over the
network. Käsgen et al. [14] present a new mechanism that resolves data and
structural hazards in processing elements that feature in-order issue, but out-of-
order completion of operations. Different from these partial design, our methods
is fully decoupled PE.

Custom Interface: Chen et al. [11] propose subgraph decoupling and rescheduling
to accelerate irregular applications, which decouples the inconsistent regions into
control-independent subgraphs. Each subgraph can be rescheduled with zero-cost
context switching and parallelized to fully utilize the PE resources. TaskStream
[10] introduces a task execution model which annotates task dependences with
information sufficient to recover inter-task structure. It enables work-aware load
balancing, recovery of pipelined inter-task dependences, and recovery of inter-
task read sharing through multicasting. MANIC [15] introduces vector-dataflow
execution, allowing it to exploit the dataflow in a sequence of vector instructions

248 Z. Fan et al.

and amortize instruction fetch and decode over a whole vector of operations.
By forwarding values from producers to consumers, MANIC avoids costly vector
register file accesses. However, the schedule mechanism of DFG nodes within
each PE is coarse-grained and non-preemptive. The PE can switch to the next
iteration or other nodes only after finishing all instructions of the current DFG
node.

3 Motivation

Irregular applications are common in real-life workloads and benchmark suites,
such as graph analytics, sparse linear algebra and databases. As reported in
Fig. 2 (a), the average percentage of unstructured access, complex control flow
and imperfect loops can be over 50% in three widely-used benchmarks. Figure 2
(b) reports the utilization of the dataflow fabrics using the methods we discussed
earlier (Sect. 2). Obviously, the hardware utilization is pretty low and at least
half of the PEs are under-utilized during execution. We obtain these results from
experiments with a dataflow simulator, using the methods introduced in [4] and
[6], respectively.

Fig. 2. (a) Percentage of irregular applications in several typical benchmark suites [11].
(b) Utilization of the fabrics using previous methods.

For a concrete example, we use BFS (Breadth First Search), a common graph
algorithm that searches the distance from a source vertex src to all vertices
reachable from it. BFS is a challenging irregular workload due to its multiple
levels of indirection: it uses elements from cur_fringe to access offsets, which is
then used to access neighbors, which in turn is used to access distances. It is a
typical irregular application consisting of imperfect loop, complex control flow
and unstructured memory access. Figure 3 shows the pseudo-code for BFS and
illustrate its implementation on dataflow fabric using pipeline parallelism and
decoupling access-execution [6].

Challenge 1: Load Imbalance. In Fig. 3 , the process current fringe node reads
vertices from cur_fringe, whose neighbors are identified in the enumerate neigh-
bors node. For each of these neighbors, the fetch distances node loads the distance

Improving Utilization of Dataflow Architectures 249

Fig. 3. Illustration of breadth-first search (BFS) using pipeline parallelism and decou-
pling memory access and execution.

of this neighbor, which is checked against the current distance from the source by
the update data node. By decomposing a large graph into multiple subgraphs,
the BFS algorithm can be executed in a pipelined manner among these four
PEs, as shown at the top of Fig. 3. After instruction assembly, the number and
type of instructions are different between DFG nodes, and even the number of
iterations is different. The enumerate neighbor node contains loop, address cal-
culation. The updating node deals with branch, while the getting distance nodes
only requires getting distance. The node with the longest delay among the four
nodes will block the pipelined execution.

Challenge 2: Lack of Fine-Grained Pipelining Scheduling. The conventional,
coupled load interface is a simple connection to the memory hierarchy and stalls
the PE on cache misses. Simple memory access patterns, like streaming linearly
through memory, do not need to be decoupled, and would be suitable for this
interface, while some accesses are known to miss frequently, causing lengthy
stalls. Decoupled architecture allows these accesses to be further from DFG exe-
cution, which is equipped with a small finite state machine within the PE, as
shown in Fig. 3 (bottom). The access datapath now performs the memory access,
which will obtain the neighbor id ngh as a result. Once this value is available, ngh
is placed in the output queue to be sent to the consumer node. Even if a memory
access to the neighbor array results in a cache miss, the enumeration neighbor
node can still perform computations on other subgraphs at the same time, caus-
ing the DFG pipeline to stall only when the input queue of the computation is
empty or the access queue is full.

However, for irregular applications, it is not enough to only decouple com-
putation and memory access in a coarse-grained manner. In the dataflow-driven
model, a DFG node can be fired only if its source operands are ready. Thus, for

250 Z. Fan et al.

programs that have complex control flow and complex DFG structure, the data
transfer (the flow operation in Fig. 3) needs to be executed as early as possible,
because these data activate the consumer nodes. In addtion, these methods are
limited to a program with small proportion of memory accesses, such as SHA
(Secure Hash Algorithm) in Fig. 2.

4 Our Design

Our goal is to address the challenges described in Sect. 3. Figure 4 shows the
process of transforming partitioned serial code into configurations for a dataflow
fabric. We highlight our contributions using red lines, while other steps are com-
mon techniques in previous works [1,6]. We generate LLVM intermediate repre-
sentation (IR) for each workload, and an automated tool examines the LLVM
IR and produces a DFG using the actual operations that can be performed by
PE’s functional units.

In order to solve the load imbalance among DFG nodes, DFG balancing is
introduced, which is a heuristic algorithm that achieves load balancing through
instruction scheduling among DFG nodes. To exploit more parallelism and accel-
erate irregular applications, we propose decoupled execution model, a novel exe-
cution and schedule mechanism for DFG threads. Moreover, a decoupled PE
architecture is provided to support the decoupled execution model efficiently.

Fig. 4. Workflow of our methods.

4.1 Load Balancing

DFG balancing is a heuristic algorithm and it intends to dispatch instructions
from high-load nodes to low-load nodes. Note that it is hard to generate an
absolutely balanced DFG because: 1) the delay of each nodes is unpredictable
during execution, like stalls caused by hazard or memory access. 2) allocating
the same number of instructions to each DFG node is expensive and is lim-
ited by the applications itself, which often leads to non-convergence. Thus, we
aim to generate a relatively balanced DFG based on the number and type of
instructions.

The algorithm of DFG balancing is described in Algorithm 1. A DFG G =
(V,E) generated by the earlier stages in the toolchain (Fig. 4) and a threshold
θ are the inputs. The first step is to sort the DFG nodes in depth-first order
and estimate their latency (Line 1–4). When estimating the latency of each

Improving Utilization of Dataflow Architectures 251

Algorithm 1. Instruction Reschedule Algorithm
Input: a dataflow graph G = (V, E), and a threshold θ ∈ Z

+

Output: a more balanced dataflow graph G′ = (V ′, E′)
1: Init set CP ← sortbyDFS(G) � Step 1©
2: Init Cnum ← getNumofNodes(CP)
3: Init List[] ← getLatencyofEachNode(CP ,inst_latency)
4: Set χ ← ∑Cnum

n=1 List[] / Cnum

5: for each node ni in CP do � Step 2©
6: Set load ← List(ni)
7: if load � χ + θ then
8: dispInst2Downstream(selInst,ni,ni+1)
9: end if

10: if load � χ - θ then
11: dispInsfromDownstream(selInst,ni,ni+1)
12: end if
13: end for
14: return generate G′ ← refresh(G, CP) � Step 3©

node (Line 3), we need to refer to the instruction type (inst_latency), because
the execution time of different instructions may be different, which is related
to the instruction set architecture (ISA). For simplicity, this evaluation only
considers the number of instructions and their latency, and the PE only support
partial RISC-V ISA (RV64I) and some dedicated dataflow instructions (flow). A
comparison factor χ is used in Algorithm 1, which is calculated in Line 4, where
the List[] array maintains the latency of each node on the critical path. It will
be used as a reference in Step 2.

The principle of Step 2 is to find the imbalance DFG nodes and perform
instruction redispatch (Line 5–13). The threshold θ and the comparison factor χ
are used to obtain an interval (χ - θ, χ + θ). If a node’s latency is in this interval,
it is a suitable node. If a node’s latency is greater (or less) than this interval’s
upper (or lower) bound, it can be seen a heavy (or light) node, respectively. For
a heavy/light node, the algorithm will dispatch computing instructions to/from
its downstream node. If a heavy node has no downstream nodes, the node will
be split into two nodes. We found it difficult to find a threshold θ that fits
all applications. The smaller the θ is, the more balanced DFG is generated, but
Algorithm 1 becomes more complex and harder to converge. When the θ is larger,
the overhead of Algorithm 1 will decrease, but the performance of the application
will also decrease. We found that a good trade-off between performance and cost
can be achieved when the θ is set in a range of [3,5]. The final step of Algorithm
1 is to update the DFG according to the adjusted CP and to generate the final
DFG G′.

4.2 Decoupled Model

The decoupled execution model defines a novel scheme to schedule and trigger
DFG nodes and exploit instruction block level parallelism. The code of each

252 Z. Fan et al.

node consists of up to four consecutive stages: Load stage, Calculating stage,
Flow stage and Store stage, which we describe below:

– Ld (Load) Stage: This stage loads data from the memory hierarchy to the
in-PE local memory.

– Cal (Calculating) Stage: This stage completes calculations. A node can enter
the Cal stage only when the following two conditions are met: first, its Ld
stage (if it exists) has already finished; second, it has received all the necessary
data from its predecessor nodes.

– Flow Stage: This stage transfers data from the current node to its successors.
– ST (Store) Stage: This stage transfers data from the in-PE operand memory

to the memory hierarchy.

Fig. 5. Comparison of three different execution models.

Correspondingly, instructions in a DFG node will be rearranged according to
their types and divided into four different blocks. The block is a basic schedule
and trigger unit. Different from traditional out-of-order execution, the decou-
pled execution model exploits more instruction-block level parallelism without
complex control logic, such as reorder buffer. Figure 5 takes the process of enu-
merating neighbor nodes of BFS (in Fig. 3) as an example to show the com-
parison between the decoupled execution model and the previous two execution
models. In the coupled model (top), the execution of DFG nodes adopts a non-
preemptive mechanism. The subgraph-1 will not release the PE resources until
the end of execution. After decoupling the memory access in DFG node (mid-
dle), the subgraph-2 can perform the memory access operation after the LD
stage of the subgraph-1 is finished. In this way, the PE can process up to two
subgraphs at the same time. But the execution of subgraph-3 requires a long
waiting delay. This is because the subgraph-2 occupies PE resources due to the
coarse-grained (partial) decoupling. Fortunately, this problem can be addressed
in the fully decoupled execution model (bottom). Through a more fine-grained
scheduling mechanism, PE can process more subgraphs at the same time, and
can overlap more delays, such as memory access and data flow.

Improving Utilization of Dataflow Architectures 253

4.3 Decoupled Architecture

Figure 6 illustrates the top-level diagram of our dataflow architecture, which is
comprised of a set of identical decoupled processing elements (dPE). To support
the decoupled execution model, separated four-stage components are designed
within each PE to correspond to the four different states of the nodes. The
function of the controller is to maintain and schedule the execution of different
node states. And to ensure the correctness of the execution, separate operand
RAM space is provided for different iterations. And a shared operand RAM space
is set up to store the data that has dependencies between iterations, which are
marked by special registers in the instructions.

Fig. 6. The decoupled PE architecture.

The dPE consists of a calculation pipeline, a load unit, a store unit, a flow
unit, an instruction RAM module, an operand RAM module, a controller and
a router (in the middle of Fig. 6). These four separate functional components
(CAL, LOAD, FLOW, STORE) and the controller are designed for the decou-
pled model, which are different from previous structures. The calculation pipeline
is a data path for arithmetic operations and logical operations. It fetches instruc-
tions from the instruction RAM module and performs computations on source
data. The load/store unit transfers data from/to on-chip data memory to/from
operand RAM module, respectively. And the flow unit dispatches data to down-
stream dPEs. Each execution unit has a corresponding state, as described in
Fig. 5, and such a decoupling method is the key to improving the utilization.

The controller plays a non-negligible role in the state transition and DFG
nodes triggering. It consists of a kernel table, a status table, a free list, a dedicated
acknowledgment buffer (Ack port), and a scheduler module. The kernel table
stores the configurations of the nodes mapped to the dPE, which contain the
task ID (TID), node ID (NID), instance number (instance), instruction address
list (inst_addr) and data address (LD_base&ST_base). The TID and NID are
used to identify task and DFG node, because the PE array can be mapped to
multiple tasks at the same time, and a PE can be mapped to multiple nodes.
The instance is a value related to the pipeline parallelism, which indicates how
many times the DFG node needs to be executed. Taking BFS as an example, for

254 Z. Fan et al.

a large graph, it may need to be decomposed into many subgraphs, such as 100,
then each DFG node needs to be executed 100 times. The inst_addr records the
location of the four-stage instruction of the DFG node in the instruction RAM.
The LD_base&ST_base are the base addresses for the source and destination,
which can work with the offset in the status table to access the data in the
operand RAM.

The status table maintains the runtime information for different instances. It
uses the instance_counter to record different instances of DFG nodes. Although
different instances share the same instructions, they handle different data. There-
fore, the offsets (offset) of different instances are different. In addtion, the status
table records the activations (Up_counter) and status informations. The value
of Up_counter decreases with the arrival of activation data. When this value is
0, it means that all the upstream data of the current node has arrived and it
can be triggered by the scheduler module.

The scheduler uses the instance_counter to evaluate the priority, and sched-
ules nodes according to their priority. We also tried other scheduler policies, such
as a round-robin scheduler or finer-grain multithreading, but found that these
did not work as well. This makes sense: the application work done is nearly con-
stant regardless of the scheduling strategy, so a simple scheduling mechanism is
effective. Also, simple scheduling principles reduce configuration overhead. The
Ack port is connected to the four pipeline units in order to obtain the status
of each section. Additionally, the Ack port uses this information to dynamically
modify the contents of the state table for scheduling by the scheduler. And the
free list queue maintains free entries in this buffer.

The instruction RAM module consists of multiple single-port SRAM banks.
Each bank can be occupied by a single functional unit at any time. The operand
RAM module consists of multiple 1-write-1-read SRAM banks. To ensure the
pipeline execution between instances, a separate context is allocated for each
iteration. Considering that there may be dependent data between instances, a
shared context is established in the operand RAM. Shared data are marked by
special registers in the instructions.

5 Methodology

Setup. We develop a cycle-accurate micro-architecture simulator for hardware
utilization and performance evaluation. The simulator is developed in C language
based on SimICT framework [16] and can simulate behaviors such as memory
access, data transfer, scheduling, etc. We calibrate the error to within ±7%
using RTL environment. We also implement our architecture using Verilog. We
use Synopsys Design Compiler and a TSMC 28nm GP standard VT library to
synthesize it and obtain area, delay and energy consumption, which meets timing
at 1GHz. Table 1 shows the hardware parameters.

Improving Utilization of Dataflow Architectures 255

Table 1. Hardware Parameters.

Component Parameter Area (mm2) Power (mW)

dPE Func. Units INT&FP32 0.046(26.90%) 7.92(29.61%)
Controller – 0.012(7.27%) 1.20(4.97%)
Inst. RAM 4KB 0.003(1.81%) 0.38(1.56%)
Oper. RAM 64KB 0.812(47.27%) 9.93(41.18%)
Routers – 0.028(16.72%) 4.67(19.41%)
Total 0.1719 24.1019

PE Array 8 × 8 11(79.38%) 1542(84.45%)
NoC 2D mesh 0.65(4.72%) 70.65(3.86%)
Glo. Data Buf. 1MB(SPM) 1.67(12.06%) 150.57(8.79%)
Glo. Conf. Buf. 0.2MB(SPM) 0.35(2.50%) 38.11(2.08%)
DMA 2 channels 0.19(1.37%) 14.65(0.8%)
Total 13.8647 1826

Benchmarks. To evaluate our methods, we use the benchmarks from Fifer [6]
and literature [11]. These irregular workloads contain imperfect loops, complex
control flow and unstructured access. And we used the same input data as those
in the literatures [6,11]. Table 2 lists the selected workloads.

Table 2. Workloads for Evaluation.

Workload Characteristic Benchmark suite

GEMM, Viterbi(VIT)
Sort, FFT

Imperfect loop
Complex control flow

MachSuite
adopt from [11]

CFD
HotSpot(HS)
LUD, GE

Imperfect loop
Complex control flow
Loop dependency

Rodinia
adopt from [11]

Gesummv(GES)
Cholesky

Imperfect loop
Complex control flow

PolyBench
adopt from [11]

BFS,PageRank
CC, Radii

Unstructured access
Imperfect loop

Fifer [6]

6 Evaluation

6.1 Results and Analysis

To evaluate the effectiveness of the methods we proposed, we implement the
following four different experiments.

– Baseline (Base). It is our baseline, using only pipeline parallelism to accel-
erate irregular applications.

256 Z. Fan et al.

– Baseline + DFG Reorganization (D1). It combines the pipeline paral-
lelism with DFG balancing technique.

– Baseline + Decoupled Model & Architecture (D2). It combines the
pipeline parallelism with decoupled model and hardware.

– Baseline + DFG Reorganization + Decoupled Model & Architec-
ture (D3). It combines the pipeline parallelism with our three methods.

Fig. 7. Utilization (in marker) and speedup (in bar) over the baseline.

Figure 7 demonstrates the effectiveness of our proposed methods in terms
of performance and utilization improvements. DFG balancing (D1) achieves an
average performance improvement of 1.31×. Decoupled execution technique (D2)
improves performance by gmean 2.03× over the baseline. By combining these
approaches (D3), the performance of the dataflow fabric can be improved by
2.55×, and the average computing resource utilization has also reached 65.12%.
In most cases, decoupled execution achieves better performance and utilization
improvements compared to DFG balancing.

For imperfect loop like GEMM, Gesummv and GE, the inner and outer loops
are almost equal in size and the load of each DFG node is more balanced. Thus
the effect of DFG balancing is not very obvious while the improvement of the
decoupled execution is obvious. Because decoupled execution can overlap the
delays caused by memory access and data transfer and improve the utilization
up to 96.8%. For dependency loop like LUD, data dependence reduces the uti-
lization by limiting inter sibling loops parallelism and explicit data barrier also
exacerbates the problem, which limit the effectiveness of decoupled model. For
kernels with branches such as Sort, FFT and HotSpot, the utilization is signif-
icantly degraded in baseline, especially in Sort (only 22.7%), which has plenty
of elseif statements. Our design decouples the data transfer stage so that acti-
vations can be delivered to downstream nodes as early as possible. Even though
we didn’t use prediction techniques, it still achieves a speedup of 2.75×.

Cost. The hardware overhead of decoupled execution is shown in Table 1. The
area and power consumption of the controller used for scheduling in dPE only
account for 7.27% and 4.97%, respectively. We evaluate Algorithm 1 on Intel(R)

Improving Utilization of Dataflow Architectures 257

Core(TM) i7-7700 CPU@2.80GHz. This time is 5.1% of the execution time on
average, so it has negligible effect when performed at runtime.

6.2 Comparison with Other Dataflow Architectures

For comparison, we use three typical dataflow architectures, i.e. Plasticine [4],
Fifer [6] and Yin et al. [11]. Plasticine features pipeline parallelism. Fifer features
decoupling access and execution. Yin et al. [11] features subgraph rescheduling
(detailed in Sect. 2). The hardware parameters of the three architectures are
shown in Table 3, where we align them with similar peak performance. To model
their performance and utilization, we leverage the open source implementations
for Plasticine [4] and Fifer [6]. For work [11], we obtained data from the paper.

Fig. 8. Performance comparisons normalized to Plasticine.

Performance. Figure 8 illustrates the speedup comparisons normalized to Plas-
ticine. Our design (D3) outperforms the Plasticine by gmean 1.81× and by up
to 2.53×. This speedup comes from D3’s ability to further shorten the interval
between different iterations of the DFG pipeline execution. Compared with work
[11], D3 achieves average 1.34× performance improvement. The reason for limit-
ing the performance of paper [11] is that the execution of DFG nodes still adopts
a coarse-grained mechanism, resulting in an average utilization of only 39.04%.
Fifer achieves an average 1.54× performance improvement. These performance

Fig. 9. Energy efficiency comparisons normalized to Plasticine.

258 Z. Fan et al.

gains come from decoupling memory access. However, for computationally inten-
sive applications like VIT (1.09×) and CFD (1.05×), the improvement is not
obvious.

Energy Efficiency. Figure 9 shows the energy efficiency (performance-per-
watt) comparisons normalized to Plasticine. On average, Our design (D3)
achieves 1.94× efficiency improvement over Plasticine, 1.58× over work [11] and
1.26× over Fifer. The coarse-grained scheduling mechanism employed in Plas-
ticine results in lower utilization, resulting in poor energy efficiency performance.
Work [11] achieves a relatively high energy efficiency in most cases by reschedul-
ing at software level. But for HotSpot and CFD, it consumes more energy on
buffer accesses due to the frequently subgraph switching. In Fifer, a large num-
ber of buffers are added between PEs to reduce the impact of load imbalance.
But the energy overhead of these buffers is very large.

Table 3. Hardware Comparisons.

Arch Plasticine [4] Yin et al. [11] Fifer [6] OURS(D3)

Tech (nm) 28 28 28 28

Area (mm2) 12.6 13.95 21.44 13.86

Power (W) 2.002 2.415 2.476 1.826

Freq (GHz) 1 0.8 2 1

PeakPerf (GFLOPS) 523 576 640 512

Efficiency (GFLOPS/W) 58.25∼99.79 27.85∼137.29 113.88∼218.17 116.64∼280.39

7 Conclusion

This paper presents a software and hardware co-design technique that makes
both regular and irregular applications efficient on dataflow architectures. We
propose an instruction schedule method to solve load imbalances and a more
fine-grained scheduling and trigger mechanism. Experiments exhibited by our
methods achieve significant utilization and performance improvement on key
application domains with small modifications.

Acknowledgment. This work was supported by the National Key Research and
Development Program (Grant No. 2022YFB4501404), CAS Project for Youth Inno-
vation Promotion Association, Open Research Projects of Zhejiang Lab (Grant NO.
2022PB0AB01), Beijing Nova Program (Grant No. 2022079).

References

1. Wu, X., Fan, Z., Liu, T.: LRP: predictive output activation based on SVD approach
for CNN s acceleration. In: DATE, pp. 831–836 (2022)

Improving Utilization of Dataflow Architectures 259

2. Ye, X., Tan, X., Wu, M., et al.: An efficient dataflow accelerator for scientific
applications. Future Gener. Comput. Syst. 112, 580–588 (2020)

3. Zhang, Y., Zhang, N., Zhao, T.: Sara: scaling a reconfigurable dataflow accelerator.
In: ISCA, pp. 1041–1054 (2021)

4. Prabhakar, R., Zhang, Y.: Plasticine: a reconfigurable architecture for parallel pat-
terns. In: ISCA, pp. 389–402 (2017)

5. Nguyen, Q.M., Sanchez, D.: Pipette: improving core utilization on irregular appli-
cations through intra-core pipeline parallelism. In: MICRO, pp. 596–608 (2020)

6. Nguyen, Q.M., Sanchez, D.: Fifer: practical acceleration of irregular applications
on reconfigurable architectures. In: MICRO, pp. 1064–1077 (2021)

7. Ham, T.J., Aragón, J.L., Martonosi, M.: DeSC: decoupled supply-compute com-
munication management for heterogeneous architectures. In: MICRO, pp. 191–203
(2015)

8. Weng, J., Liu, S., et al.: A hybrid systolic-dataflow architecture for inductive matrix
algorithms. In: HPCA, pp. 703–716 (2020)

9. Taylor, M.B., Kim, J., et al.: The raw microprocessor: a computational fabric for
software circuits and general-purpose programs. IEEE Micro 22(2), 25–35 (2002)

10. Dadu, V., Nowatzki, T.: Taskstream: accelerating task-parallel workloads by recov-
ering program structure. In: ASPLOS, pp. 1–13 (2022)

11. Yin, C., Wang, Q.: Subgraph decoupling and rescheduling for increased utilization
in CGRA architecture. In: DATE, pp. 1394–1399 (2021)

12. Capalija, D., Abdelrahman, T.S.: A high-performance overlay architecture for
pipelined execution of data flow graphs. In: 2013 23rd International Conference
on Field programmable Logic and Applications, pp. 1–8 (2013)

13. Zhao, Z., Sheng, W., Jing, N., He, W., et al.: Resource-saving compile flow for
coarse-grained reconfigurable architectures. In: ReConFig, pp. 1–8 (2015)

14. Kasgen, P.S., Weinhardt, M., Hochberger, C.: Dynamic scheduling of pipelined
functional units in coarse-grained reconfigurable array elements. In: Schoeberl, M.,
Hochberger, C., Uhrig, S., Brehm, J., Pionteck, T. (eds.) ARCS 2019. Lecture Notes
in Computer Science, vol. 11479, pp. 156–167. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-18656-2_12

15. Gobieski, G.: Manic: a vector-dataflow architecture for ultra-low-power embedded
systems. In: MICRO (2019)

16. Ye, X., Fan, D., Sun, N., Tang, S., Zhang, M., Zhang, H.: SimICT: a fast and flexible
framework for performance and power evaluation of large-scale architecture. In:
ISLPED, pp. 273–278 (2013)

https://doi.org/10.1007/978-3-030-18656-2_12
https://doi.org/10.1007/978-3-030-18656-2_12

	Improving Utilization of Dataflow Architectures Through Software and Hardware Co-Design
	1 Introduction
	2 Background and Related Works
	3 Motivation
	4 Our Design
	4.1 Load Balancing
	4.2 Decoupled Model
	4.3 Decoupled Architecture

	5 Methodology
	6 Evaluation
	6.1 Results and Analysis
	6.2 Comparison with Other Dataflow Architectures

	7 Conclusion
	References

