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Preface

This volume contains the papers presented at Euro-Par 2023, the 29th International
European Conference on Parallel and Distributed Computing, held in Limassol, Cyprus
between August 28th and September 1st, 2023.

For over 25 years, Euro-Par has consistently brought together researchers in parallel
and distributed computing. Founded by pioneers as a merger of the three thematically
related European conference series PARLE and CONPAR-VAPP, Euro-Par started
with the aim to create the main annual scientific event on parallel and distributed
computing in Europe and to be the primary choice of professionals for the presentation
of their latest results. Since its inception, Euro-Par has covered all aspects of parallel
and distributed computing, ranging from theory to practice, scaling from the smallest to
the largest parallel and distributed systems, from fundamental computational problems
and models to full-fledged applications, from architecture and interface design and
implementation to tools, infrastructures and applications. Over time, Euro-Par has
forged a community that follows the latest developments in the field, at the same time
bringing together a broad and diverse audience, supporting young researchers and
promoting networking across borders.

Previous conference editions took place in Stockholm, Lyon, Passau, Southampton,
Toulouse, Munich, Manchester, Paderborn, Klagenfurt, Pisa, Lisbon, Dresden, Rennes,
Las Palmas, Delft, Ischia, Bordeaux, Rhodes, Aachen, Porto, Vienna, Grenoble, San-
tiago de Compostela, Turin, Göttingen, Warsaw, Lisbon and Glasgow.

The 29th edition of Euro-Par was organized by the Department of Computer Science
at the University of Cyprus.

Euro-Par 2023 accepted papers in the following 6 tracks:

– Programming, Compilers and Performance
– Scheduling, Resource Management, Cloud, Edge Computing and Workflows
– Architectures and Accelerators
– Data Analytics, AI and Computational Science
– Theory and Algorithms
– Multidisciplinary, Domain-Specific and Applied Parallel and Distributed

Computing

A total of 164 full papers were submitted by authors from 37 different countries. The
number of submitted papers, the range of topics, and the requirement to obtain
high-quality reviews mandated careful selection using a large pool of experts. The
chairs along with 164 members of the program committee and 90 external reviewers
produced a total of 654 single-blind reviews, an average of about 3.98 reviews per
paper. The accepted papers were selected in a two-phase process. Following initial



discussion, each track proposed sets of papers for acceptance, further discussion or
rejection. The papers from all tracks were reviewed and discussed in an online selection
meeting on 26th April 2023. The outcome was to select 49 papers to be presented at the
conference and published in these proceedings, a 29.9% acceptance rate.

Four of the accepted papers were selected to be presented in a plenary session and
compete for the Euro-Par 2023 best paper award, which was generously sponsored by
Springer. The four papers were:

“MMExit: Enabling Fast and Efficient Multi-modal DNN Inference with Adaptive
Network Exits”, Xiaofeng Hou, Jiacheng Liu, Xuehan Tang, Chao Li, Kwang-Ting
Cheng, Li Li and Minyi Guo

“Optimizing Data Movement for GPU-Based In-Situ Workflow Using GPUDirect
RDMA”, Bo Zhang, Philip E Davis, Nicolas Morales, Zhao Zhang, Keita Teranishi
and Manish Parashar

“Distributed k-Means with Outliers in General Metrics”, Enrico Dandolo, Andrea
Pietracaprina and Geppino Pucci

“An Efficient Parallel Adaptive GMG Solver for Large-Scale StokesProblems”,
S. Saberi, G. Meschke and A. Vogel

To increase reproducibility of the research appearing at Euro-Par, the conference
encourages authors to submit artifacts, such as source code, data sets and repro-
ducibility instructions. In the notification of acceptance authors were encouraged to
submit artifacts for evaluation. A total of 16 artifacts were submitted in support of
accepted papers and evaluated by the Artifact Evaluation Committee (AEC). The AEC
successfully reproduced results for 14 artifacts, or 28.5% of accepted papers. These
papers are marked in the proceedings by a special stamp and the artifacts are available
online in the Figshare repository (https://springernature.figshare.com/europar). Selected
artifacts will also be published in a Euro-Par special issue of the Journal of Open
Source Software.

In addition to the technical program, we had the pleasure of hosting three distin-
guished keynote talks by:

– Schahram Dustdar, Vienna University of Technology, Austria
– Enrique S. Quintana-Orti, Universitat Politècnica de València, Spain
– Jahna Otterbacher, Open University of Cyprus, Cyprus

Euro-Par 2023 started with two days of workshops, a tutorial and a PhD Sympo-
sium, and was followed by three days dedicated to the main conference sessions.
A poster and demo session ran alongside the main conference. Dora Blanco Heras and
Demetris Zeinalipour coordinated the workshops as workshop co-chairs. Herodotos
Herodotou and Demetris Trihinas coordinated the PhD Symposium. George Pallis
coordinated the poster and demo session. A selection of the papers presented at the
workshops are published in a separate Springer LNCS volume. Contributions presented
at the PhD symposium and the poster session are also published in the same volume.
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We would like to thank the authors, chairs, PC members and reviewers for con-
tributing to the success of Euro-Par 2023. Similarly, we would like to extend our
appreciation to the Euro-Par Steering Committee for its support.

August 2023 José Cano
Marios D. Dikaiakos

George A. Papadopoulos
Miquel Pericàs

Rizos Sakellariou
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Euro-Par 2023 Invited Talks



Distributed Intelligence in the Computing
Continuum

Schahram Dustdar

Vienna University of Technology, Austria

Modern distributed systems also deal with uncertain scenarios, where environments,
infrastructures, and applications are widely diverse. In the scope of IoT-Edge-
Fog-Cloud computing, leveraging these neuroscience-inspired principles and mecha-
nisms could aid in building more flexible solutions able to generalize over different
environments. A captivating set of hypotheses from the field of neuroscience suggests
that human and animal brain mechanisms result from a few powerful principles. If
proved to be accurate, these assumptions could open a deep understanding of the way
humans and animals manage to cope with the unpredictability of events and
imagination.



A Continuum of Matrix Multiplications: From
Scientific Computing to Deep Learning

Enrique S. Quintana-Orti

Universitat Politècnica de València, Spain

Matrix multiplication (GEMM) is a key, pervasive computational kernel that spans
across multiple domains. On the one hand, many applications arising in scientific
computing require the solution of linear systems of equations, least-square problems,
and eigenvalue problems. For portability, these applications often rely on linear algebra
routines from LAPACK (linear algebra package). In turn, in order to deliver high
performance, LAPACK heavily relies on GEMM and other Basic Linear algebra
subroutines (BLAS). On the other hand, to a large extent, the computational cost for the
convolutional neural networks (CNNs) that dominate machine learning algorithms for
signal processing and computer vision tasks, as well as the transformers behind recent
deep learning (DL) applications, such as ChatGPT, is largely determined by the per-
formance of GEMM.

In this talk we will first expose caveats of current instances of GEMM in linear
algebra libraries for conventional multicore architectures: suboptimal performance and
missing support for DL-oriented data types. Starting from that point, we will then
demonstrate how these problems can be overcome via tools for the (semi-)automatic
generation of the only architecture-specific piece of GEMM, known as the
micro-kernel, together with an analytical-based model to capture the cache hierarchy
configuration. In addition, we will show that this approach carries over to more
“exotic” architectures, from high-end vector accelerators and the Xilinx artificial
intelligence engine (AIE) to low-power designs such as RISC-V processors and
ARM-based (Arduino) micro-controllers.



Bias in Data and Algorithms: Problems,
Solutions and Stakeholders

Jahna Otterbacher

Open University of Cyprus, Cyprus

Mitigating bias in algorithmic processes and systems is a critical issue drawing
increasing attention across research communities within the computer and information
sciences. Given the complexity of the problem and the involvement of multiple
stakeholders – not only developers, but also end-users and third parties – there is a need
to understand the landscape of the sources of bias, as well as the solutions being
proposed to address them. In this talk, I present insights from a survey of 300+ articles
across four domains (Machine Learning, Information Retrieval, Human-Computer
Interaction, and Recommender Systems) in which a critical mass of work relating to
algorithmic bias has been produced, with the aim of providing a “fish-eye view” of the
field. In the second part of the talk, I will discuss examples of our ongoing work on
auditing proprietary computer vision systems for social biases, positioning this work
vis-à-vis the aforementioned framework as well as the emerging science of machine
behavior.
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Track 1: Programming, Compilers
and Performance

Biagio Cosenza and Thomas Fahringer

This track encompasses a broad range of topics related to programming tools and
system software for modern parallel and distributed computing systems. The track
emphasizes traditional subjects like compilation techniques and programming models
and tools for multi-/many-core and heterogeneous architectures. It also focuses on
contemporary approaches targeting emerging architectures, including low-power
accelerator hardware, reconfigurable hardware, processors-in-memory and emerging
exascale systems. Additionally, the track explores methods and tools for optimizing
non-functional properties such as performance, power and energy efficiency, reliability,
scalability, productivity, and performance portability. Among other topics, the track
sought papers in relation to the following:

– High-level programming models and tools for multi-/many-core and heterogeneous
architectures

– Programming environments, interoperable tool environments
– Productivity and performance portability
– Compiling for multithreaded/multi-core and heterogeneous processors/architectures
– Compiling for emerging architectures (low-power accelerator hardware, reconfig-

urable hardware, processors in memory)
– Iterative, just-in-time, feedback-oriented, dynamic, and machine-learning-based

compilation
– Static and dynamic program analysis
– Program transformation systems
– Interaction between compiler, runtime system, hardware, and operating system
– Compiler, run-time, and architectural support for dynamic adaptation
– Compilers for domain-specific languages
– Instrumentation, monitoring, evaluation and prediction of non-functional program

behaviour
– Auto-tuning and multi-objective code optimization
– Verification and validation of performance models
– Power consumption modelling and prediction
– Performance modelling and simulation of emerging exascale systems



Track 2: Scheduling, Resource Management,
Cloud, Edge Computing, and Workflows

Marco Aldinucci and Ivona Brandic

This track invited papers in a range of topics related to resource management, which
remains a core topic in parallel and distributed systems. Not surprisingly, this became
the track with the highest number of submissions. Among other topics, the track sought
papers in relation to the following:

– High-level programming models and tools for multi-/many-core and heterogeneous
architectures

– Scheduling algorithms for homogeneous and heterogeneous platforms
– Theoretical foundations of scheduling algorithms
– Real-time scheduling on parallel and distributed machines
– Scheduling, coordination and overhead at extreme scales
– Energy and temperature awareness in scheduling and load balancing
– Resource management for HPC and Clouds
– Workload characterization and modelling
– Workflow and job scheduling
– Performance models for scheduling and load balancing
– Heterogeneous parallel programming models for the computing continuum
– Workflow environments for the computing continuum
– Parallel programming in the edge and in the computing continuum



Track 3: Architectures and Accelerators

Jesus Carretero and Leonel Sousa

This track invited papers in all topics related to parallel and distributed computing
architectures. Among other topics, the track sought papers in relation to the following:

– Architectures for instruction-level and thread-level parallelism
– Manycores, multicores, accelerators, domain-specific and special-purpose archi-

tectures, reconfigurable architectures
– Cloud and HPC storage architectures and systems
– Memory technologies and hierarchies
– Exascale system designs; data center and warehouse-scale architectures
– Novel big data architectures
– Parallel I/O and storage systems
– Power-efficient and green computing systems
– Resilience, security, and dependable architectures
– Software architectures spanning IoT/Edge, Fog, Cloud, 5G and HPC computing
– Processing in Memory and Near-Memory Processing
– Interconnect/memory architectures



Track 4: Data Analytics, AI,
and Computational Science

Maciej Malawski and Radu Prodan

This track attracted papers covering timely areas of data analytics and AI, as these
topics are increasingly important in parallel and distributed processing applications.
The papers show the interest of the community in both traditional computer systems
research and in new developments of distributed processing for AI, including federated
learning. Among other topics, the track sought papers in relation to the following:

– Artificial Intelligence in the IoT-Edge-Cloud continuum
– Data management in Edge devices and the computing continuum
– Innovative applications and case studies
– Large-scale data processing applications in science, engineering, business and

healthcare
– Emerging trends for computing, machine learning, approximate computing, and

quantum computing.
– Parallel, replicated, and highly available distributed databases
– Scientific data analytics (Big Data or HPC-based approaches)
– Middleware for processing large-scale data
– Programming models for parallel and distributed data analytics
– Workflow management for data analytics
– Coupling HPC simulations with in situ data analysis
– Parallel data visualization
– Distributed and parallel transaction, query processing and information retrieval
– Internet-scale data-intensive applications
– Sensor network data management
– Data-intensive computing infrastructures
– Parallel data streaming and data stream mining
– New storage hierarchies in distributed data systems
– Parallel and distributed machine learning, knowledge discovery and data mining
– Privacy and trust in parallel and distributed data management and analytics systems
– IoT data management and analytics
– Parallel and distributed data science applications
– Data analysis in cloud and serverless models



Track 5: Theory and Algorithms

Chryssis Georgiou and Christos Kaklamanis

This track attracted papers spanning several topics from theory and algorithms, such as
parallel processing, networking, distributed learning and clustering, consensus and
blockchains, as well as graph partitioning and atomic storage. Among other topics, the
track sought papers in relation to the following:

– Theoretical foundations, models, and complexity issues
– Emerging paradigms for parallel and distributed computation
– Lower bounds
– Approximation and randomized algorithms
– Design, analysis and engineering of distributed and parallel algorithms
– Data structures for parallel and distributed algorithms
– Algorithms for combinatorial and graph problems
– Algorithms and models for big Data/Data-intensive computing
– Learning and mining algorithms
– Algorithms for routing and information dissemination in communication networks
– Algorithms for social networks
– Fault tolerant and self-stabilizing algorithms
– Power/energy-efficient algorithms
– Algorithms for distributed computing
– Algorithms and principles of distributed ledgers (blockchains)
– Algorithms for cloud and edge computing
– Algorithmic game theory related to parallel and distributed systems
– Theoretical aspects of dependable, secure and privacy-preserving distributed

systems



Track 6: Multidisciplinary, Domain-Specific
and Applied Parallel and Distributed

Computing

Francisco F. Rivera and Domenico Talia

This track invited papers in relation to all topics pertaining to parallel and distributed
applications. The track was particularly successful, with several papers considering the
use of HPC strategies in different applications with different requirements, particularly
those related to the use of GPUs. Among other topics, the track sought papers in
relation to the following:

– Applications of numerical algorithms in science and engineering
– Domain-specific libraries and languages in parallel and distributed computing
– Application case studies for benchmarking and comparative studies of parallel

programming models
– Numerical methods for large-scale data analysis
– High-dimensional problems and reduction methods
– Implementation and analysis of parallel numerical algorithms
– Optimization and non-linear problems in parallel and distributed computing
– Parallel numerical linear algebra for dense and sparse matrices
– Partial/ordinary and differential algebraic equations in parallel and distributed

computing
– Discrete and combinatorial parallel algorithms
– Parallel metaheuristics and hyperheuristics
– Innovative paradigms, programming models, languages, and libraries for parallel

and distributed applications
– Parallel and distributed programming productivity, usability, and component-based

parallel programming
– Tensor operations, low-rank approximations
– Data-centric parallel and distributed algorithms for exascale computing
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DIPPM: A Deep Learning Inference
Performance Predictive Model Using

Graph Neural Networks

Karthick Panner Selvam(B) and Mats Brorsson

SnT, University of Luxembourg, Kirchberg, Luxembourg
{karthick.pannerselvam,mats.brorsson}@uni.lu

Abstract. Deep Learning (DL) has developed to become a corner-stone
in many everyday applications that we are now relying on. However, mak-
ing sure that the DL model uses the underlying hardware efficiently takes a
lot of effort. Knowledge about inference characteristics can help to find the
right match so that enough resources are given to the model, but not too
much. We have developed a DL Inference Performance Predictive Model
(DIPPM) that predicts the inference latency, energy, and memory usage
of a given input DL model on the NVIDIA A100 GPU. We also devised
an algorithm to suggest the appropriate A100 Multi-Instance GPU profile
from the output of DIPPM. We developed a methodology to convert DL
models expressed in multiple frameworks to a generalized graph structure
that is used in DIPPM. It means DIPPM can parse input DL models from
various frameworks. Our DIPPM can be used not only helps to find suit-
able hardware configurations but also helps to perform rapid design-space
exploration for the inference performance of a model. We constructed a
graph multi-regression dataset consisting of 10,508 different DL models
to train and evaluate the performance of DIPPM, and reached a resulting
Mean Absolute Percentage Error (MAPE) as low as 1.9%.

Keywords: Performance Prediction · Multi Instance GPU · Deep
Learning Inference

1 Introduction

Many important tasks a now relying on Deep learning models, for instance in
computer vision and natural language processing domains [3,14]. In recent years,
researchers have focused on improving the efficiency of deep learning models to
reduce the computation cost, energy consumption and increase the throughput of
them without losing their accuracy. At the same time, hardware manufacturers
like NVIDIA increase their computing power. For example, the NVIDIA A1001

GPU half-precision Tensor Core can perform matrix operations at 312 TFLOPS.
But all deep learning models will not fully utilize the GPU because the workload

1 https://www.nvidia.com/en-us/data-center/a100/.

c© The Author(s) 2023
J. Cano et al. (Eds.): Euro-Par 2023, LNCS 14100, pp. 3–16, 2023.
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Fig. 1. DIPPM can predict the Latency, Energy, Memory requirement, and MIG Profile
for inference on an NVIDIA A100 GPU without actually running on it.

and number of matrix operations will vary according to the problem domain.
For this reason, NVIDIA created the Multi-Instance GPU (MIG2) technology
starting from the Ampere architecture; they split the single physical GPU into
multi-isolated GPU instances, so multiple applications can simultaneously run
on different partitions of the same GPU, which then can be used more efficiently.

However, determining the DL model’s efficiency on a GPU is not straight-
forward. If we could predict parameters such as inference latency, energy con-
sumption, and memory usage, we would not need to measure them on deployed
models which is a tedious and costly process. The predicted parameters could
then also support efficient Neural Architecture Search (NAS) [5], efficient DL
model design during development, and avoid job scheduling failures in data cen-
ters. According to Gao et al. [7], most failed deep learning jobs in data centers
are due to out-of-memory errors.

In order to meet this need, we have developed a novel Deep Learning Infer-
ence Performance Predictive Model (DIPPM) to support DL model developers
in matching their models to the underlying hardware for inference. As shown in
Fig. 1, DIPPM takes a deep learning model expressed in any of the frameworks:
PyTorch, PaddlePaddle, Tensorflow, or ONNX, and will predict the latency (ms),
energy (J), memory requirement (MB), and MIG profile for inference on an
Nvidia A100 GPU without running on it. At the moment, the model is restricted
to inference and the Nvidia A100 architecture, but we aim to relax these restric-
tions in future work. As far as we are aware, this is the first predictive model
that can take input from any of the mentioned frameworks and to predict all of
the metrics above.

Our contributions include the following:

– We have developed, trained and evaluated a performance predictive model
which predicts inference latency, energy, memory, and MIG profile for A100
GPU with high accuracy.

– We have developed a methodology to convert deep learning models from
various deep learning frameworks into generalized graph structures for graph
learning tasks in our performance predictive model.

2 https://docs.nvidia.com/datacenter/tesla/mig-user-guide/.

https://docs.nvidia.com/datacenter/tesla/mig-user-guide/
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– We have devised an algorithm to suggest the MIG profile from predicted
Memory for the given input DL model.

– We have created an open-sourced performance predictive model dataset con-
taining 10,508 graphs for graph-level multi-regression problems.

Next, we discuss our work in relation to previous work in this area before
presenting our methodology, experiments, and results.

2 Related Work

Performance prediction of deep learning models on modern architecture is a
rather new research field being attended to only since a couple of years back.
Bouhali et al. [2] and Lu et al. [15] have carried out similar studies where a
classical Multi-Layer Perceptron (MLP) is used to predict the inference latency
of a given input DL model. Their approach was to collect high-level DL model
features such as batch size, number of layers, and the total number of floating
point operations (FLOPS) needed. They then fed these features into an MLP
regressor as input to predict the latency of the given model. Bai et al. [1] used
the same MLP method but predicted both the latency and memory. However,
the classical MLP approach did not work very well due to the inability to capture
a detailed view of the given input DL model.

To solve the above problems, some researchers came up with a kernel addi-
tive method; they predict each kernel operation, such as convolution, dense, and
LSTM, individually and sum up all kernel values to predict the overall perfor-
mance of the DL model [9,16,19,21,23,25]. Yu et al. [24] used the wave-scaling
technique to predict the inference latency of the DL model on GPU, but this
technique requires access to a GPU in order to make the prediction.

Kaufman et al. and Dudziak et al. [4,10] used graph learning instead of
MLP to predict each kernel value. Still, they used the kernel additive method
for inference latency prediction. However, this kernel additive method did not
capture the overall network topology of the model, and instead it will affect the
accuracy of the prediction. To solve the above problem, Liu et al. [13] used a
Graph level task to generalize the entire DL model into node embeddings and
predicted the inference latency of the given DL model. However, they did not
predict other parameters, such as memory usage and energy consumption. Gao
et al. [6] used the same graph-level task to predict the single iteration time and
memory consumption for deep learning training but not for inference.

Li et al. [12] tried to predict the MIG profiles on A100 GPU for the DL
models. However, their methodology is not straightforward; they used CUDA
Multi-Process Service (MPS) values to predict the MIG, So the model must run
at least on the target hardware once to predict the MIG Profile.

Most of the previous research work concentrated on parsing the input DL
model from only one of the following frameworks (PyTorch, TensorFlow, Pad-
dlePaddle, ONNX). As far as we are aware, none of the previous performance
prediction models predicted Memory usage, Latency, Energy, and MIG profile
simultaneously.
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Table 1. Related Work comparison

Related Works A100 MIG GNNa Multi-SFb Latency Power Memory

Ours (DIPPM) � � � � � � �
Bai et al. [1] – – – – � – �
Bouhali et al. [2] – – – – � – –

Dudziak et al. [4] – – � – � – –

Gao et al. [6] – – � – � – �
Justus et al. [9] – – – – � – –

Kaufman et al. [10] – – � – � – –

Li et al. [12] � � – – – – –

Liu et al. [13] – – � – � – –

Lu et al. [15] – – – – � � �
Qi et al. [16] – – – – � – –

Sponner et al. [19] � – – – � � �
Wang et al. [21] – – – – � – –

Yang et al. [23] – – – – � – –

Yu et. al. [24] � – – – � – –

Zhang et al. [25] – – – – � – –
a Using Graph Neural Network for performance prediction
b Able to parse DL model expressed in Multiple DL Software Framework

Our novel Deep Learning Inference Performance Predictive Model (DIPPM)
fills a gap in previous work; a detailed comparison is shown in Table 1. DIPPM
takes a deep learning model as input from various deep learning frameworks such
as PyTorch, PaddlePaddle, TensorFlow, or ONNX and converts it to generalize
graph with node features. We used a graph neural network and MIG predictor to
predict the inference latency (ms), energy (J), memory (MB), and MIG profile
for A100 GPU without actually running on it.

3 Methodology

The architecture of DIPPM consists of five main components: Deep Learning
Model into Relay IR, Node Feature Generator, Static Feature Generator, Per-
formance Model Graph Network Structure (PMGNS), and MIG Predictor, as
shown in Fig. 2. We will explain each component individually in this section.

3.1 Deep Learning Model into Relay IR

The Relay Parser takes as input a DL model expressed in one of several sup-
ported DL frameworks, converts it to an Intermediate Representation (IR), and
passes this IR into the Node Feature Generator and the Static Feature Generator
components.
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Fig. 2. Overview of DIPPM Architecture

Most of the previously proposed performance models are able to parse the
given input DL model from a single DL framework, not from several, as we
already discussed in Sect. 2. To enable the use of multiple frameworks, we used
a relay, which is a high-level IR for DL models [17]. It has been used to compile
DL models for inference in the TVM3 framework.

We are inspired by the approach of converting DL models from different
frameworks into a high-level intermediate representation (IR), so we incor-
porated their techniques into our architecture. However, we couldn’t directly
employ relay IR in DIPPM. To overcome this, we developed a method explained
in Sect. 3.2. It involves parsing the Relay IR and transforming it into a graph
representation with node features.

It allows parsing given input DL models from various frameworks, including
PyTorch, TensorFlow, ONNX, and PaddlePaddle. However, for the purposes
of this study, we have focused on the implementation and evaluation of the
framework specifically within the PyTorch environment. We pass this DL IR to
the subsequent components in our DIPPM architecture.

3.2 Node Feature Generator

The Node Feature Generator (NFG) converts the DL IR into an Adjacency
Matrix (A) and a Node feature matrix (X ) and passes this data to the PMGNS
component.

The NFG takes the IR from the relay parser component. The IR is itself a
computational data flow graph containing more information than is needed for
our performance prediction. Therefore we filter and pre-process the graph by
post-order graph traversal to collect necessary node information. The nodes in
the IR contain useful features such as operator name, attributes, and output

3 https://tvm.apache.org/.

https://tvm.apache.org/
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Algorithm 1. Algorithm to convert DL model IR into a graph with node features
CreateGraph takes input IR and filters it by post-order traversal. Collect node features
for each node and generate a new graph G with node features, finally extract node
feature matrix X and adjacency matrix A from G.

1: function CreatGraph(IR) � IR from Relay Parser Component
2: N ← filter and preprocess(IR)
3: G ← ∅ � Create empty directed graph
4: for each node ∈ N do � where node is node in node list N
5: if node.op ∈ [operators] then � Check node is an operator
6: Foh ← one hot encoder(node.op)
7: Fattr ← ExtractAttributes(node)
8: Fshape ← ExtractOutshape(node)
9: Fnode ← Foh ⊕ Fattr ⊕ Fshape

10: G.add node(node.id, Fnode) � Nodes are added in sequence
11: end if
12: end for
13: A ← GetAdjacencyMatrix(G)
14: X ← GetNodeFeatureMatrix(G)
15: return A, X
16: end function

shape of the operator, which after this first filtering step are converted into a
suitable data format for our performance prediction. In the subsequent step,
we loop through the nodes and, for each operator node, generate node features
Fnode with a fixed length of 32 as discussed on line 9 in Algorithm 1.

The central part of the NFG is to generate an Adjacency Matrix (A) and
a Node feature matrix (X ) as expressed in Algorithm 1. X has the shape
of [Nop, Nfeatures], where Nop is the number of operator nodes in the IR and
Nfeatures is the number of features. In order to create node features Fn for each
node, first, we need to encode the node operator name into a one hot encoding
as can be seen on line 6 in Algorithm 1. Then extract the node attributes Fattr

and output shape Fshape into vectors. Finally, perform vector concatenation to
generate Fn for a node. We repeat this operation for each node and create the
G. From the G, we extract A, X that are passed to the main part of our model,
the Performance Model Graph Network Structure.

3.3 Static Feature Generator

The Static Feature Generator (SFG) takes the IR from the relay parser compo-
nent and generates static features Fs for a given DL model and passes them into
the graph network structure.

For this experiment, we limited ourselves to five static features. First, we calcu-
late the Fmac total multiply-accumulate (MACs) of the given DL model. We used
the TVM relay analysis API to calculate total MACs, but it is limited to calcu-
lating MACs for the following operators (in TVM notation): Conv2D, Conv2D
transpose, dense, and batch matmul. Then we calculate the total number of



DIPPM: A Deep Learning Inference Performance Predictive Model 9

convolutions FTconv, Dense FTdense, and Relu FTrelu operators from the IR. We
included batch size Fbatch as one of the static features because it gives the ability
to predict values for various batch sizes of a given model. Finally, we concatenate
all the features into a vector Fs as expressed in Eq. 1. The feature set Fs is subse-
quently passed to the following graph network structure.

Fs ← Fmac ⊕ Fbatch ⊕ FTconv ⊕ FTdense ⊕ FTrelu (1)

3.4 Performance Model Graph Network Structure (PMGNS)

The PMGNS takes the node feature matrix (X ), the adjacency matrix (A) from
the Node Feature Generator component, and the feature set (Fs) from the Static
feature generator and predicts the given input DL model’s memory, latency, and
energy, as shown in Fig. 2.

The PMGNS must be trained before prediction, as explained in Sect. 4. The
core idea of the PMGNS is to generate the node embedding z from X and A
and then to perform vector concatenation of z with Fs. Finally, we pass the
concatenated vector into a Fully Connected layer for prediction, as shown in
Fig. 2. In order to generate z, we used the graphSAGE algorithm suggested by
Hamilton et al. [8], because of its inductive node embedding, which means it
can generate embedding for unseen nodes without pretraining. GraphSAGE is
a graph neural network framework that learns node embeddings in large-scale
graphs. It performs inductive learning, generalizing to unseen nodes by aggregat-
ing information from nodes and neighbors. It generates fixed-size embeddings,
capturing features and local graph structure. With a neighborhood aggregation
scheme, it creates node embeddings sensitive to their local neighborhood, even
for new, unobserved nodes.

We already discussed that we generate node features of each node in the
Sect. 3.2. The graphSAGE algorithm will convert node features into a node
embedding z which is more amenable for model training. The PMGNS con-
tains three sequential graphSAGE blocks and three sequential Fully connected
(FC) blocks as shown in Fig. 2. At the end of the final graphSAGE block, we
get the generalized node embedding of given X and A, which we concatenate
with Fs. Then we pass the concatenated vector into FC to predict the memory
(MB), latency (ms), and energy (J).

3.5 MIG Predictor

The MIG predictor takes the memory prediction from PMGNS and predicts the
appropriate MIG profile for a given DL model, as shown in Fig. 2.

As mentioned in the introduction, the Multi-instance GPU (MIG) technology
allows to split an A100 GPU into multiple instances so that multiple applications
can use the GPU simultaneously. The different instances differ in their compute
capability and, most importantly, in the maximum memory limit that is allowed
to be used. The four MIG profiles of the A100 GPU that we consider here
are: 1g.5gb, 2g.10gb, 3g.20gb, and 7g.40gb, where the number in front of “gb”
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Fig. 3. MIG Profile comparison of three different DL models memory consumption on
A100 GPU. We used batch size 16 for VGG16 and Densenet121 model and batch size
8 for Swin base model

denotes the maximum amount of memory in GB that the application can use
on that instance. For example, the maximum memory limit of 1g.5gb is 5 GB,
and 7g.40gb is 40GB. For a given input DL model, PMGNS predicts memory for
7g.40gb MIG profile, which is the full GPU. We found that this prediction can
be used as a pessimistic value to guide the choice of MIG profile. Figure 3 shows
manual memory consumption measurements of the same DL model inference
on different profiles. The results show no significant difference in the memory
allocation of DL in the different MIG profiles even though the consumption
slightly increases with the capacity of the MIG profile. The memory consumption
is always the highest when running on the 7g.40gb MIG profile.

As mentioned, PMGNS predicts memory for 7g.40gb, so we claim that pre-
dicted memory will be an upper bound. Then we perform a rule-based prediction
to predict the MIG profile for the given input DL model, as shown in Eq. 2. Where
α is predicted memory from PMGNS.

MIG(α) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1g.5gb, if 0gb < α < 5gb
2g.10gb, if 5gb < α < 10gb
3g.20gb, if 10gb < α < 20gb
7g.40gb, if 20gb < α < 40gb
None, otherwise

(2)

4 Experiments and Results

4.1 The DIPPM Dataset

We constructed a graph-level multi-regression dataset containing 10,508 DL
models from different model families to train and evaluate our DIPPM. The
dataset distribution is shown in Table 2. To the best of our knowledge, the pre-
vious predictive performance model dataset doesn’t capture memory consump-
tion, inference latency, and energy consumption parameters for wide-range DL
models on A100 GPU so we created our own dataset for performance prediction
of DL models.
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Table 2. DIPPM Graph dataset distribution

Model Family # of Graphs Percentage (%)

Efficientnet 1729 16.45

Mnasnet 1001 9.53

Mobilenet 1591 15.14

Resnet 1152 10.96

Vgg 1536 14.62

Swin 547 5.21

Vit 520 4.95

Densenet 768 7.31

Visformer 768 7.31

Poolformer 896 8.53

Total 10508 100%

Our dataset consists of DL models represented in graph structure, as gener-
ated by the Relay parser described in Sect. 3.1. Each data point consists of four
variables: X , A, Y, and Fs, where X and A are the Node feature matrix and
Adjacency Matrix, respectively, as discussed in Sect. 3.2, and Fs is the static fea-
tures of the DL model as discussed in Sect. 3.3. We used the Nvidia Management
Library4 and the CUDA toolkit5 to measure the energy, memory, and inference
latency of each given model in the dataset. For each model, we ran the inference
five times to warm up the architecture and then the inference 30 times, and then
took the arithmetic mean of those 30 values to derive the Y, where Y consists
of inference latency (ms), memory usage (MB), and energy (J) for a given DL
on A100 GPU. We used a full A100 40 GB GPU, or it is equivalent to using
7g.40gb MIG profile to collect all the metrics.

4.2 Enviroment Setup

We used an HPC cluster at the Jülich research centre in Germany called JUWELS
Booster for our experiments6. It is equipped with 936 nodes, each with AMD
EPYC 7402 processors, 2 sockets per node, 24 cores per socket, 512 GB DDR4-
3200 RAM and 4 NVIDIA A100 Tensor Core GPUs with 40 GB HBM.

The main software packages used in the experiments are: Python 3.10, CUDA
11.7 torch 1.13.1, torch-geometric 2.2.0, torch-scatter 2.1.0, and torch-sparse
0.6.16.

4.3 Evaluation

The Performance Model Graph Network Structure is the main component in
DIPPM, and we used the PyTorch geometric library to create our model, as
4 https://developer.nvidia.com/nvidia-management-library-nvml.
5 https://developer.nvidia.com/cuda-toolkit.
6 https://apps.fz-juelich.de/jsc/hps/juwels/booster-overview.html.

https://developer.nvidia.com/nvidia-management-library-nvml
https://developer.nvidia.com/cuda-toolkit
https://apps.fz-juelich.de/jsc/hps/juwels/booster-overview.html
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Table 3. Settings in GNN comparison.

Setting Value

Dataset partition Train (70%) / Validation (15%) / Test (15%)

Nr hidden layers 512

Dropout probability 0.05

Optimizer Adam

Learning rate 2.754 · 10−5

Loss function Huber

Table 4. Comparison with different GNN algorithms and MLP with graphSAGE, we
trained all the models for 10 epochs and used Mean Average Percentage Error for
validation. The results indicate that DIPPM with graphSAGE performs significantly
better than other variants.

Model Training Validation Test

GAT 0.497 0.379 0.367

GCN 0.212 0.178 0.175

GIN 0.488 0.394 0.382

MLP 0.371 0.387 0.366

(Ours) GraphSAGE 0.182 0.159 0.160

shown in Fig. 2. We split our constructed dataset into three parts randomly:
training set 70%, validation set 15%, and a test set 15%.

In order to validate that graphSAGE performs better than other GNN algo-
rithms and plain MLP, we compared graphSAGE with the following other algo-
rithms:, GAT [20], GCN [11], GIN [22], and finally, plain MLP without GNN.
Table 3 summarizes the settings used. The learning rate was determined using a
learning rate finder as suggested by Smith [18]. The Huber loss function achieved
a higher accuracy than mean square error, which is why we chose that one. For
the initial experiment, we trained for 10 epochs and used Mean Average Percent-
age Error (MAPE) as an accuracy metric to validate DIPPM. A MAPE value
close to zero indicates good performance on regression prediction. Table 4 shows
that graphSAGE gives a lower MAPE value in all of the training, validation, and
test datasets. Without using a GNN, MLP gives 0.366 of MAPE. With graph-
SAGE, MAPE is 0.160 on the test dataset which is a significant improvement
on a multi-regression problem. We conclude that graphSAGE outperforms other
GNN algorithms, and MLP because of its inductive learning, as discussed in
Sect. 3.4. After this encouraging result we increased the number of epochs for
training our DIPPM with graphSAGE to increase the prediction accuracy. After
500 epochs, we attained MAPE of 0.041 on training and 0.023 on the validation
dataset. In the end, we attained 1.9% MAPE on the test dataset. Some of the
DIPPM predictions on the test dataset are shown in Fig. 4.



DIPPM: A Deep Learning Inference Performance Predictive Model 13

Fig. 4. Comparison of actual value with DIPPM predicted values on the test dataset.
Results show that DIPPM predictions are close to the actual predictions.

4.4 Prediction of MIG Profiles

In order to verify the MIG profile prediction for a given DL model, we compared
the actual MIG profile value with the predicted MIG profile from the DIPPM, as
shown in Table 5. To calculate the actual suitable MIG profile, we divide actual
memory consumption by the maximum memory limit of the MIG profiles. The
higher the value is, the more appropriate profile for the given DL model. For
example, the predicted memory consumption for densenet121 at batch size 8 is
2865 MB. The actual memory consumption for the 7g.40gb MIG profile is 3272
MB. The actual memory consumption of 1g.5GB is 2918 MB, the percentage
is 58%. Which is higher than other MIG profiles. Results show that DIPPM
correctly predicted the MIG profile 1g.5gb for densenet121. It is interesting to
note that the densent121 models are from our test dataset and the swin base
patch4 model is not in our DIPPM dataset but a similar swin base model family
was used to train DIPPM. The convnext models are completely unseen to our
DIPPM, but it’s still predicting the MIG profile correctly.

4.5 DIPPM Usability Aspects

DIPPM takes basic parameters like frameworks, model path, batch, and input
size, and finally, device type. As of now, we only considered A100 GPU; we
are working to extend DIPPM to various hardware platforms. With a simple
python API call, DIPPM predicts memory, latency, energy, and MIG profile for
the given model, as can be seen in Fig. 5.
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Table 5. DIPPM MIG profile prediction for seen and unseen DL model architectures.
(densenet*: seen, swin*: partially seen, convnext*: unseen).

Model Batch
size

Predicted Actual

MIG Mem Mem 1g.5gb 2g.10gb 3g.20gb 7g.40gb

densenet121 8 1g.5gb 2865 3272 58% 30% 15% 8%

densenet121 32 2g.10gb 5952 6294 60% 30% 16%

swin base patch4 2 1g.5gb 2873 2944 52% 27% 14% 7%

swin base patch4 16 2g.10gb 6736 6156 59% 30% 15%

convnext base 4 1g.5gb 4771 1652 61% 31% 16% 8%

convnext base 128 7g.40gb 26439 30996 77%

Fig. 5. An example code demonstrating the utilization of DIPPM for performance
prediction of a VGG16 deep learning model with a batch size of 8.

5 Conclusion

We have developed a novel Deep Learning (DL) Inference Performance Pre-
dictive Model (DIPPM) to predict the inference latency, energy, and memory
consumption of a given input DL model on an A100 GPU without running on
it. Furthermore, We devised an algorithm to select the appropriate MIG pro-
file from the memory consumption predicted by DIPPM. The model includes
a methodology to convert the DL model represented in various frameworks to
a generalized graph structure for performance prediction. To the best of our
knowledge, DIPPM can help to develop an efficient DL model to utilize the
underlying GPU effectively. Furthermore, we constructed and open-sourced7 a
multi-regression graph dataset containing 10,508 DL models for performance
prediction. It can even be used to evaluate other graph-based multi-regression
GNN algorithms. Finally, we achieved 1.9% MAPE on our dataset.
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Abstract. Looking closely at the Top500 list of high-performance com-
puters (HPC) in the world, it becomes clear that computing power is not
the only number that has been growing in the last three decades. The
amount of power required to operate such massive computing machines
has been steadily increasing, earning HPC users a higher than usual car-
bon footprint. While the problem is well known in academia, the exact
energy requirements of hardware, software and how to optimize it are
hard to quantify. To tackle this issue, we need tools to understand the
software and its relationship with power consumption in today’s high
performance computers. With that in mind, we present perun, a Python
package and command line interface to measure energy consumption
based on hardware performance counters and selected physical mea-
surement sensors. This enables accurate energy measurements on var-
ious scales of computing, from a single laptop to an MPI-distributed
HPC application. We include an analysis of the discrepancies between
these sensor readings and hardware performance counters, with partic-
ular focus on the power draw of the usually overlooked non-compute
components such as memory. One of our major insights is their signif-
icant share of the total energy consumption. We have equally analyzed
the runtime and energy overhead perun generates when monitoring com-
mon HPC applications, and found it to be minimal. Finally, an analysis
on the accuracy of different measuring methodologies when applied at
large scales is presented.

Keywords: Energy Benchmarking · High-performance Computing ·
Artificial Intelligence · Distributed Memory System

1 Introduction

High-performance computing (HPC) is a key technology to tackle an increasing
amount of complex computational problems in science and industry. Example
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applications include fluid dynamics [1], molecular biology [2], and quantum chro-
modynamics [3]. Recently, HPC has accrued particular interest due to the large
computational demands and data quantities of artificial intelligence workloads.
With this paradigm shift, the utilized hardware has simultaneously changed
towards heterogeneous architectures with local storage, significant main mem-
ory, and accelerators like GPUs.

A commonly neglected conundrum of using such heterogeneous HPC systems
is their massive energy consumption. Modern supercomputers have a power draw
of up to 30 MW [4]. While the efficiency of individual hardware components has
improved over time, it has enabled manufacturers to pack transistors and com-
ponents more densely, to increase the number of computational processing units
and nodes as well as to expand auxiliary infrastructure. In turn, the increased
power consumption for large-scale computational tasks on HPC systems are out-
pacing individual hardware efficiency gains [5].

Due to the environmental impact of the corresponding energy generation
technologies, recent research has focused on estimating the carbon footprint of
compute-intensive workloads. A strong emphasis has been put on training and
inference with deep learning models on single nodes with multiple accelerators.
The overall conclusion: the utilized hardware, training time, and location are the
main factors contributing to carbon dioxide and equivalent gas emission (CO2e).

Yet, several unexplored research questions remain. How reliable are hardware
performance counters when estimating application power draw compared to the
actual consumption? Are non-compute components like memory, storage, and
network sufficiently taken into account? How reliable are current estimation
techniques when applied to distributed applications?

In an attempt to provide answers to the above questions, our contributions
are as follows:

– A novel MPI-parallelized Python package called perun1 facilitating energy
benchmarking on HPC systems. perun can utilize both estimates based on
sampling hardware performance counters and precise read-outs from energy
sensors.

– The assessment of the power estimation and measurement gap.
– An analysis of the power consumption of multi-node applications based on dif-

ferent estimation methodologies, including scaling artifacts for selected bench-
mark programs with an emphasis on data-intensive deep learning workflows.

– A quantification of the measuring overhead created by perun.

2 Related Work

Interest in energy-efficient computing is not novel. For example, the Green500
list [6] ranks the most energy-efficient supercomputers and HPC systems. Its
goal was to discourage the performance-at-any-cost design of supercomputing
systems by introducing the FLOPs-per-Watt (FLOPs W−1) metric. Yet, the

1 https://github.com/Helmholtz-AI-Energy/perun.

https://github.com/Helmholtz-AI-Energy/perun
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determination of the energy consumption is non-standardized and may vary
significantly based on the tooling used.

In recent years, several tools have appeared to aid researchers in compiling
carbon footprint statements. Carbontracker [7], one of the most widely used, is
a Python package primarily aimed at machine learning. It samples energy data
from hardware libraries for a single training epoch to extrapolate the energy
consumption during actual training, but is limited to a single device. Similar tools
include experiment-impact-tracker [8] and CodeCarbon [9], collecting information
using the same API endpoints. However, they do not predict the expected total
consumption but are meant to monitor the application throughout its execution.

Outside the Python ecosystem is the Machine Learning Emissions Calcu-
lator [10], which targets users of Cloud Service Providers (CSP) such as AWS
or Google Cloud. Users may input the training wallclock time, the used CSP,
hardware, and geolocation. In turn, this data is used to gather information from
public APIs to provide the estimated CO2e emissions. Green algorithms [11] is a
similar website targeted to both CSP and personal computer users, with a more
extensive set of configuration options.

Caspart et al. [12] collected energy measurements with physical sensors. The
data was used to compare the efficiency of CPUs and GPUs for single-node,
multi-accelerator machine learning applications. Hodak et al. [13] used a similar
setup, but instead focused on which hardware settings significantly reduce the
power draw without meaningfully increasing training time.

In the context of machine learning (ML), Strubell et al. [14] are among the
first to look at the environmental impact of natural language processing (NLP)
models. CO2e emissions are calculated as the sum of the energy consumption of
all CPUs and GPUs throughout training, multiplied by the data center’s power
usage effectiveness (PUE) and carbon efficiency in the data center location. In
that, the PUE is the ratio between the energy used by compute components
and the energy used for the entire data center infrastructure [15], and carbon
efficiency is the ratio of carbon and equivalent gas emissions in tonnes per kilo
Watt hour (t CO2e/(kW h)). While PUE has widespread use in the industry,
it has been critiqued because of the lack of data supporting published numbers,
working more as a publicity stunt than a relevant metric [16]. Patterson et al.
[17] analyzed modern NLP models based on the reported training time, hard-
ware, data center power efficiency, and energy supply mix. They highlighted
the importance of hardware and data center choice, as they have the highest
impact on CO2e emissions. At the same time, it showcased the energy efficiency
of sparse large-scale models like switch-transformers [18] when compared to a
densely activated model such as GPT-3 [19]. PaLM 540B [20], another represen-
tative of large language models, is one of the first and few works that includes a
carbon footprint statement, thou it lacks a clear electrical footprint report.
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3 Energy Benchmarking in High-Performance Computing

3.1 Background: Determining Energy Consumption

In the following, we will provide a brief overview of common methods used to
obtain energy consumption readings. Generally, we distinguish between measur-
ing energy, i.e., the process of using physical sensors connected to the compute
nodes or other components to monitor the hardware, and estimating energy,
i.e., using indirect methods to approximate the energy consumption. Leverag-
ing sensors to measure power draw has the highest accuracy, but requires the
hardware to be either equipped with additional monitoring devices or manu-
ally tapped. Practically, this may hinder sensor use due to additional costs or
access restrictions. Which components may be monitored depends on the com-
puting hardware. Past works have focused on individual components like power
source, CPU, cooling and memory [13], the individual components of internode
communication switches [21], or the consumption of entire nodes [12].

In contrast, energy estimation utilizes indirect, albeit more accessible, tools.
An increasingly common way is using the software interfaces provided by hard-
ware manufacturers. The data made available through these interfaces maps to
hardware performance counters, special registers embedded in the hardware with
the specific purpose of monitoring the device. The energy consumption of hard-
ware components is then estimated by regularly sampling the hardware counters
while the monitored device or application is running. These data samples are
then aggregated in a post-processing step. Overall, the accuracy of the complete
estimation is bound by the registers’ resolutions.

An example of such a hardware monitoring interface is Nvidia Management
Library (NVML) [22], making the power draw of their GPUs available. Figure 1
illustrates an example of the data obtained through its management interface.
Similarly, Intel provides access to the accumulated energy usage through the
Running Average Power Limit2 (RAPL) interface. It keeps track of the total
energy used on a socket granularity for CPU and DRAM, which can be used to
calculate the power draw. Which components may be monitored depends on the
individual hardware manufacturers and their interfaces. Additionally, access to
these interfaces is usually restricted to privileged users.

If no hardware monitoring interfaces are accessible, a rough estimate can be
made using the specifications of the utilized hardware. This method assumes that
each component requires the same amount of power throughout the runtime of
an application. Practically, the constant power draw is an unrealistic assumption,
leading to significant over- or underestimation and should be avoided if possible.

Regardless of the method used to obtain the power draw of individual com-
ponents, the energy consumption of the application running on a single node
can then be calculated by integrating the power draw P over the total runtime
T for each component in a computational node and summing up all of them up
to obtain the total energy of the node:

2 https://github.com/powercap/raplcap.

https://github.com/powercap/raplcap
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Fig. 1. Energy consumption of a single Nvidia A100 gathered from Nvidia-SMI running
the OC20 [23] MLPerf benchmark.

Enode =
∫ T

0

Pcpu(t) + Pgpu(t) + Pram(t) + Pothers(t)dt, (1)

where Enode is the consumed energy of the subscript components. When running
on multi-node applications, the energy of all the individual nodes has to be
aggregated and multiplied by the power usage effectiveness (PUE) of the system
to obtain the energy consumed of the application:

Etotal = PUE ·
#nodes∑

i

E
(i)
node. (2)

PUE is a factor obtained by dividing the total equipment consumption of
the data center by the power consumption of the compute equipment. This is a
common metric used to compare the efficiency of data centers around the world,
with the global average in 2020 being 1.58 [24] and some of the most efficient
centers having a 1.02 PUE [25].

For the purpose of this work, Eq. (2) is exhaustive to determine the energy
consumption of software running on HPC systems. If needed, the corresponding
carbon footprint can be derived by multiplying the resulting total energy Etotal

with an energy-to-CO2e conversion factor re. re signifies the emission rate of
the energy generation technologies. Just like PUE, this number depends on the
location where the software is being run, but additionally changes over time
depending on weather, seasons, and energy grid usage, as those factors have a
great effect on the available energy sources. The total monetary cost may be
derived similarly by replacing re with the energy-to-cost conversion ratio.

Both emissions and price fluctuate continuously, whereas it is reasonable to
expect that an algorithm would require a (close to) constant amount of power if
executed on the same or similar hardware.
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3.2 perun

To allow users to gather energy measurements of their Python applications on
multi-node environments, we have developed a Python package called perun.
It works by sampling information while a Python application is running. The
background process periodically collects information by querying hardware APIs.
If the right setup is available, it is capable of incorporating sensor readings into
the estimation process, including the power consumption of a single compute
node or the complete rack. As of the time of writing, we are not aware of any
other energy benchmarking tool capable of incorporating hardware performance
counters and sensor measurements of MPI distributed Python applications.

Currently, perun supports Intel-RAPL to sample CPU and DRAM informa-
tion, NVML for GPU information, and psutil3 to sample information on network
and filesystem I/O. Sensor data may be additionally collected using Lenovo
XClarityController4, a hardware management system provided by the manufac-
turer. psutil, Intel-RAPL and the hardware sensors report the energy con-
sumption of the whole system. To get more representative results, perun works
best when there are no other programs running in the system.

To handle distributed Python applications, perun makes use of the Message
Passing Interface (MPI). MPI defines a communication protocol standard for
parallel computers. When using MPI applications, perun has a coordination step
where each individual rank communicates its host name and the visible devices
to all other ranks. Based on this information, the first rank in each host is
selected to spawn the process and monitor the visible devices. This coordination
step ensures that only one monitoring process is spawned per host and that each
device is only accounted for once, keeping the overall overhead of perun low.
Synchronization between the main and monitoring process is handled by using
the multiprocessing events from the standard library.

All the raw data gathered during the execution of the monitored application is
saved in a HDF5 file, along with metadata about the individual devices, nodes,
and environment. perun then processes the data using Eqs. (1) and (2) and
returns a summarized report. All the results can be exported to human as well
as machine-readable formats, like JSON and YAML.

To facilitate usage in different environments, perun provides a command line
interface as a replacement for the Python command. Alternatively, a monitor
decorator can be used to target specific functions, as shown in Listing 1. perun’s
behavior can be modified using a configuration file, command line arguments,
decorator arguments, or environmental variables.

While most of the interfaces and software features described during this and
previous sections can be applied similarly to other programming languages, due
to the way perun manages the primary Python process when started from the
command line, its functionality is as of the time of writing limited to Python
applications.
3 https://github.com/giampaolo/psutil.
4 https://www.lenovo.com/in/en/data-center/software/systems-management/

XClarity-Controller/p/WMD00000367.

https://github.com/giampaolo/psutil
https://www.lenovo.com/in/en/data-center/software/systems-management/XClarity-Controller/p/WMD00000367
https://www.lenovo.com/in/en/data-center/software/systems-management/XClarity-Controller/p/WMD00000367
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import perun

@perun.monitor(data_out="results/", format="json")

def expensive_computation(input_args):

pass

Listing 1: Example decorator usage

4 Experimental Evaluation

The goal of the following experiments, as described in Sect. 1, are the follow-
ing: quantify the runtime and power overhead caused by sampling performance
counters using perun, determine the accuracy of the available performance coun-
ters when compared to measurements provided by hardware sensors embedded
in the system, observe the power consumption of non-compute components and
the impact they have on the overall system consumption, and compare different
energy estimation methodologies when applied at scale.

The following sections describe the different use cases used for the analysis,
and the system where the experiments were implemented.

4.1 Application Use Cases

As a calibration measure, the energy consumption of an idle node with and
without the monitoring software is compared. Based on sensor data obtained
during both types of execution, the runtime, and average power usage differ-
ence between monitored and non-monitored applications can be used to get an
estimate on the overhead caused by perun.

Two single-node use cases are considered, one running on CPU and the other
running on four GPUs. First, we apply perun to monitor Black-Scholes [26]
option pricing, an operation commonly used in finance, that can be computed in
an embarrassingly parallel way, as a common benchmark in the HPC community.
We monitor the energy consumption of solving one billion Black-Scholes opera-
tions using 76 CPU threads as a single-node high resource utilization example.
As a second example, we fine-tune the NLP model BERT [27] on the QUAD
1.2 question-answering dataset using a multi-GPU implementation based on the
huggingface5 libraries.

As a large-scale, multi-node example, we evaluate perun on two tasks from the
MLPerf HPC benchmark suite [28]. The BERT use case was also scaled to two
nodes, i.e. eight GPUs. DeepCam [29] is an image segmentation model trained on
the CAM 5 weather simulation dataset. OpenCatalyst 2020 (OC20) [23] dataset
consists of molecular simulation data and defines three supervised learning tasks,
where attributes of individual molecules are recreated based on the initial struc-
ture. Both models are trained to a pre-defined performance threshold. The imple-

5 https://huggingface.co.

https://huggingface.co
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mentation used is based on the closed submission by the Helmholtz AI group6.
The OC20 benchmark was run using up to 128 nodes, each one with four GPUs,
to observe how scaling affects the overall energy consumption of the application.
DeepCam was run using the same hardware setup. All single node programs were
run a total of 20 times, half using perun, and the other half without. MLPerf
programs were run only six times, five times using perun and once without.

4.2 Hardware Environment

The use cases were run using two different hardware configurations of the HoreKa
supercomputer at the Karlsruhe Institute for Technology: CPU-only nodes,
which have no accelerated hardware, and GPU nodes, which include four Nvidia
A100-40 GB GPUs. Each node in both partitions has two Intel Xeon Platinum
8368 processors, a 960 GB SSD, and is interconnected with an InfiniBand HDR
fabric. The CPU-only nodes have 256 GB, while the accelerated nodes have 512
GB of main memory.

Each node includes special hardware that gathers power measurements from
different components, including the CPU, GPU, and the entire node. This infor-
mation is consistently being collected via the Lenovo XClarity Controllers Red-
fish REST API and is transferred to an InfluxDB time series database. According
to the server documentation7, XClarity Controller measurements for GPU and
CPU has an 97% accuracy at a 100 Hz sampling rate. The system uses an energy-
efficient hot water cooling system, making it a highly efficient HPC system with
a PUE of 1.05.

4.3 Software

Two different stacks were used to run the different use cases: a container-based
environment, used for both MLPerf use cases, and a native environment, which
was used for the rest. The native environment makes use of Python 3.8.6,
OpenMPI 4.1.3, mip4py 3.1.4, and pytorch 1.12.1 with CUDA 11.6. The base con-
tainer used for the MLPerf Benchmarks is pytorch:22.08-py3-devel from the
Nvidia Container Registry. It contains Python 3.8.12, OpenMPI 4.1.2, mpi4py
1.13 and pytorch 1.13 with CUDA 11.7. The perun version used at the time of
the experiments is 0.1.0b16. All jobs were scheduled using SLURM8.

5 Results

5.1 Monitoring Overhead

First, we measured the overhead that running an application with perun entails
using hardware sensor data. Table 1 shows differences in runtime, average power
draw per node, and the total energy consumption for runs with and without
perun. Column N indicates the number of nodes used for each use case.
6 https://mlcommons.org/en/training-hpc-20/.
7 https://lenovopress.lenovo.com/lp1395-thinksystem-sd650-v2-server.
8 https://slurm.schedmd.com/overview.html.

https://mlcommons.org/en/training-hpc-20/
https://lenovopress.lenovo.com/lp1395-thinksystem-sd650-v2-server
https://slurm.schedmd.com/overview.html
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Table 1. Runtime and average node power consumption comparison between software
run with and without monitoring software, aggregated over multiple runs.

Name N Runtime Pnode

Unmonitored Monitored Δ Unmonitored Monitored Δ

[s] ± [s] ± Δ [W] ± [W] ± Δ

idle 1 78.58 1.73 81.71 1.64 3.13 293.67 12.53 292.26 13.34 −1.42

idle gpu 1 81.10 0.57 86.92 2.07 5.82 571.20 15.36 564.75 13.20 −6.45

black-scholes 1 1998.00 29.36 2085.56 150.11 87.56 618.55 18.44 634.35 31.27 15.80

BERT 1 1180.27 3.93 1190.15 18.10 9.88 1319.53 29.97 1301.74 43.31 −17.79

BERT 2 970.60 12.40 975.75 7.07 5.15 1058.19 58.22 1079.33 51.90 21.14

OC20 64 2542.00 – 2428.51 84.16 −113.49 1305.48 25.71 1300.41 31.74 −5.06

OC20 128 1752.00 – 1785.00 53.60 33.00 1096.76 33.16 1106.29 31.09 9.53

DeepCam 128 526.00 – 484.60 33.03 −41.40 1030.50 120.24 995.39 116.58 −35.11

The high variance makes identifying a clear trend from these results difficult,
as the overhead caused by perun is often in the same order of magnitude as the
variance. The variance in the software’s runtime seems to have the biggest impact
and makes it difficult to discern the effect running perun has on the monitored
software runtime and power consumption. From the execution time of the use
cases idle and BERT, we can expect an increase of 5 s to 10 s of execution time
on average. The results of OC20 and DeepCamp have low statistical relevance,
as those use cases were run only once without perun. Even then, perun seems
to have a small enough impact that some monitored applications had shorter
execution times than the monitored ones.

perun has the biggest impact on the runtime of the Black-Scholes use case.
As it is a CPU-intensive benchmark compared to the others, the extra process-
ing load from the monitoring process hurts the overall performance. Like the
runtime, the average power draw per node has a similarly high variance, often
larger than the difference between monitored and unmonitored runs. The high
variance can be explained in part by small changes in the hardware itself, as the
software was run on different nodes with the same hardware, and there were no
warm-up runs before running the use cases, putting the nodes in different stages
of idleness/activity when the software started.

Given that the difference in power draw between monitored and unmonitored
applications is close to zero, it is fair to assume that the background sampling
process does not meaningfully raise the power consumption.

5.2 Monitoring Accuracy and Missing Power Consumption

In order to assess the accuracy of perun’s estimates based on hardware per-
formance counters, we compare the difference between the power reported by
hardware libraries and sensor data for individual devices. Based on the power
consumption of the compute components and sensor data from the entire node,
the power draw of difficult to access components, e.g., internal fan, storage,
networking cards, can be quantified as a group.
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Table 2. Average power draw for component x as reported by performance counters
P x,p and the hardware sensors P x,s for each use case.

Name N P dram,p P dram,s P cpu,p P cpu,s P gpu,p P gpu,s P node,p P node,s

[W] ± [W] ± [W] ± [W] ± [W] ± [W] ± [W] ± [W] ±
idle 1 16.8 1.3 16.4 1.2 195.5 11.1 198.0 12.2 – – – – 212.4 11.8 289.4 14.2

idle gpu 1 24.6 0.8 24.5 1.1 210.5 5.3 208.2 9.2 218.6 3.3 218.6 3.4 453.6 5.8 560.4 13.8

black-scholes 1 17.8 0.8 17.7 0.8 529.4 28.2 531.5 28.4 – – – – 547.1 27.8 642.7 31.4

BERT 1 26.3 1.1 26.2 1.1 231.7 5.1 232.1 5.4 970.7 24.6 941.6 33.0 1228.7 24.1 1338.5 57.4

BERT 2 27.6 1.0 27.5 1.1 240.4 5.9 240.0 5.8 712.6 19.0 698.2 24.1 980.6 19.3 1115.6 63.6

OC20 16 26.2 1.2 26.1 1.2 256.7 6.8 257.3 6.8 1035.4 14.8 1031.4 15.5 1318.3 18.0 1473.7 22.7

OC20 32 26.4 1.2 26.3 1.2 258.8 7.2 259.3 7.0 1027.5 18.5 1022.4 19.6 1312.7 21.3 1465.3 29.3

OC20 64 26.6 1.2 26.6 1.2 266.9 7.2 267.1 7.4 882.8 16.5 874.6 19.2 1176.3 18.8 1316.2 29.5

OC20 128 26.8 1.2 27.5 23.1 268.4 7.7 269.0 8.0 692.1 13.7 686.1 19.1 987.3 17.3 1119.4 31.9

DeepCam 16 31.1 1.2 30.6 1.3 261.4 6.6 259.6 7.7 640.0 15.5 645.2 43.0 932.5 16.9 1032.9 74.6

DeepCam 128 30.3 1.3 30.1 1.8 246.6 7.0 251.1 11.5 681.8 12.6 692.0 83.6 958.7 15.7 1026.1 124.5

Table 2 shows the average power draw measured by each device throughout
the execution of the software, averaged over multiple runs. All DRAM, CPUs,
and GPUs in a node are grouped and summed together. P indicates the average
power draw from the compute nodes while the software was executed. The sub-
script indicates the hardware component and the data source, p for performance
counters and s for sensor data.

For DRAM and CPU, we observe almost no difference between the sen-
sor data and performance counters, with a maximum difference of 1 W for
DRAM and 0 W to 2 W for CPU power draw. This difference is more pro-
nounced for GPU devices, averaging at 5.68 ± 10.35 W overestimation from
performance counters. Data from performance counters and sensors have a higher
variance for GPUs than other hardware components, making it harder to approx-
imate. According to the official Nvidia System Management Library documen-
tation [22], the power values returned by the performance counters have an
accuracy of ±5 W. Additionally, the measured sensor includes the power con-
sumption of all components on the GPU board at a higher sampling frequency,
not only the GPU and High Bandwidth Memory (HBM) that are measured by
the performance counters.

When looking at the aggregated power consumption for the entire node,
there is a clear difference between what can be estimated using performance
counters and full node sensor data, providing a clearer picture on the power
draw of components lacking monitoring support. In this particular setup, this
means networking, storage, cooling systems, power supply and motherboard.
The power consumption of these components are also application dependent and
come with their own variance, adding uncertainty to the estimation process. For
nodes without GPUs, we have measured their required power draw to be 78.93
± 8.39 W, and for nodes with GPUs, the unaccounted power draw is on average
109.37 ± 30.51 W. The previous values can be inserted into Eq. (1) alongside
the estimates for CPU, GPU, and DRAM to correct the energy estimation of
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individual nodes, thus closing the gap between estimated and measured total
energy consumption seen in the last two columns.

In conclusion, the usage of performance counters provide a good estimation
of the energy consumption for individual components, reducing the need of dedi-
cated hardware unless precision is of utmost importance. Estimations of the total
node power draw can be improved by adding a constant power draw through-
out the runtime of the application. Finding an optimal value is difficult without
measuring equipment, and will need to be chosen carefully based on the system.

5.3 Impact of Non-compute Devices on the Overall Energy
Consumption

Table 3. Power draw percentage per device.

Name N P dram P cpu P gpu P rest P node [W]

[W] [%] [W] [%] [W] [%] [W] [%]

idle 1 16.4 5.7 198.0 68.4 – 0.0 75.1 25.9 289.4

idle gpu 1 24.5 4.4 208.2 37.1 218.6 39.0 109.1 19.5 560.4

black-scholes 1 17.7 2.7 531.5 82.7 – 0.0 93.6 14.6 642.7

BERT 1 26.2 2.0 232.1 17.3 941.6 70.3 138.7 10.4 1338.5

BERT 2 27.5 2.5 240.0 21.5 698.2 62.6 149.9 13.4 1115.6

OC20 16 26.1 1.8 257.3 17.5 1031.4 70.0 158.9 10.8 1473.7

OC20 32 26.3 1.8 259.3 17.7 1022.4 69.8 157.4 10.7 1465.3

OC20 64 26.6 2.0 267.1 20.3 874.6 66.4 147.9 11.2 1316.2

OC20 128 27.5 2.5 269.0 24.0 686.1 61.3 136.7 12.2 1119.4

DeepCam 16 30.6 3.0 259.6 25.1 645.2 62.5 97.5 9.4 1032.9

DeepCam 128 30.1 2.9 251.1 24.5 692.0 67.4 52.8 5.2 1026.1

As shown in the previous section, the power draw of non-compute components is
not negligible, contributing to a high percentage of the overall energy consump-
tion. Table 3 breaks up the total energy consumption by devices, assigning the
remainder to the non-compute components.

We observe that as the CPU and GPU utilization, and with it their power
draw, increases, the share of non-compute components in the total energy con-
sumption decreases. However, even under high utilization, non-compute compo-
nents make up about 15% of the energy consumption of CPU-only nodes and
more than 5% of GPU nodes.

5.4 Scaling Behavior for Multi-Node Applications

Using the OC20 use case, we compare the accuracy of different energy con-
sumption estimation methods on massively parallel applications. We consider
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Fig. 2. Reported total energy consumption of different estimation methods on the
OC20 tasks as a function of number of compute nodes.

performance counters (perun), performance counters including a “correction off-
set” of 110 W based on the analysis done in Sect. 5.2 (perun+offset), hardware
measurements (sensors), and a simpler estimation based on the hardware speci-
fications (specs) of the CPU and GPU. The analysis will also include estimations
based on the data of a single node (sn) for both sensors and performance coun-
ters, following the methodology described in Green500 benchmark tutorial [30]
from 2007.

Figure 2 displays the total energy calculated by the different estimations
methods. The transparent area around each line represents the standard devia-
tion. At a first glance, it becomes clear that using the specified Thermal Design
Power from the components leads to an overestimation of the consumed energy,
with the difference becoming bigger as the number of nodes increases and the
utilization of each component decrease. It can work as an upper bound if no
other source of information is available.

The results show, that for this particular use case, measuring a single full node
and multiplying by the number of nodes provides an accurate approximation
of the total energy usage during the application runtime. This might change
for different applications, if the load distribution is drastically different in the
individual compute nodes. A close second is perun+offset, which managed to
close the gap between sensors and performance counters by adding a flat offset
to the original estimation of perun. Estimations based on performance counters
(perun and sensor sn) slowly diverge as the number of nodes increases, with a
difference of around 25 MJ on the 128 node configuration. Still, performance
counter based estimations provide better results when run on all nodes, with a
difference in the order of MJ between multi-node and single-node estimations
on all node configurations. This supports the need for a distributed monitoring
tool when hardware sensors are not an option.
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6 Conclusion

In this study, we introduce perun, a novel Python package to facilitate energy
benchmarking of MPI-distributed workloads. We analyzed the impact such a
tool has on the overall runtime and energy consumption and found that the
overhead is negligible.

Making use of perun, an analysis of the energy estimations based on hard-
ware performance counters was presented alongside sensor data from those same
components and the entire node. The difference in reported power draw from the
two sources indicates that CPU and DRAM data matches the sensor readings
adequately. A larger distance is observed between power draw estimations and
measurements for GPUs.

From these results, an approximation could be made on the power draw of
often unaccounted hardware components, which can later be used to correct any
power estimations made using only CPUs, GPUs, and DRAM. The data shows
that the power of those components entails a non-minuscule percentage of the
total power consumption of each node, and its impact should be considered when
writing impact statements.

Finally, the difference between different energy estimation methodologies is
highlighted using the OC20 benchmark on different hardware configurations. The
results highlight the importance of making use of distributed monitoring tools
like perun and the need to account the power draw of non-compute components,
as their impact increases with the number of nodes.

6.1 Limitations

While the individual hardware components and software interfaces are common
in other HPC systems, the power measuring equipment is not so, complicating
the evaluation of the presented approach in other systems. Similar studies with
different hardware and workloads will further aid in understanding the energy
consumption of applications with high levels of parallelism.

In the making of this paper, a total of 2136.42 kWh were used, which based
on the location and time of our experiments, generated 841.75 kg CO2e.
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Abstract. OpenSHMEM is a highly efficient one-sided communication
API that implements the PGAS parallel programming model, and is
known for its low latency communication operations that can be mapped
efficiently to RDMA capabilities of network interconnects. However,
applications that use OpenSHMEM can be sensitive to point-to-point
message rates, as many-to-many communication patterns can generate
large amounts of small messages which tend to overwhelm network hard-
ware that has predominantly been optimised for bandwidth over message
rate. Additionally, many important emerging classes of problems such as
data analytics are similarly troublesome for the irregular access patterns
they employ. Message aggregation strategies have been proven to sig-
nificantly enhance network performance, but their implementation often
involves complex restructuring of user code, making them unwieldy. This
paper shows how to combine the best qualities of message aggregation
within the communication model of OpenSHMEM such that applica-
tions with small and irregular access patterns can improve network per-
formance while maintaining their algorithmic simplicity. We do this by
providing a path to a message aggregation framework called convey-
ors through a minimally intrusive OpenSHMEM extension introducing
aggregation contexts that fit more naturally to the OpenSHMEM atom-
ics, gets, and puts model. We test these extensions using four of the bale
3.0 applications which contain essential many-to-many access patterns
to show how they can produce performance improvements of up to 65×.
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1 Introduction
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programming model and is known for providing a thin layer of abstraction over
remote direct memory access (RDMA) hardware resulting in extremely low small
message latencies. However, as modern systems have been primarily optimised
for bandwidth over larger and contiguous accesses, many OpenSHMEM applica-
tions can quickly overwhelm networks with large amounts of small messages on
common irregular and many-to-many communication patterns [6], limiting per-
formance scalability as the network reaches its maximum message rate capacity.
Given that the performance implications and relevant solutions for applications
with regular access patterns is already well-understood by the PGAS commu-
nity, we aim to focus particularly on improving the performance rate of small
messages in irregular access patterns.

The problem of small message rate performance is a result of hardware and
software limitations, and has typically been approached with message aggrega-
tion strategies [3,5,13,16]. This relies on intelligently deferring and grouping
together many small messages into much bigger operations to be executed later.
Such strategies have been shown to be very effective at overcoming message
rate performance issues, however they can often require significant and cumber-
some restructuring of user code that is difficult to maintain and is unintuitive to
work into application design. In particular, they may necessitate more complex
synchronisation models and memory access patterns, and can often constrain
applications to a particular aggregation strategy or library. These character-
istics detract from a clear representation of algorithmic intent and contribute
to productivity challenges when implementing them in application source code,
which serves to impede their widespread adoption.

This paper shows that it is possible to take advantage of message aggregation
while making minimal changes to application code and maintaining the simple
atomics, gets, and puts (AGP) operation that OpenSHMEM provides. To that
end, we will focus on the bale effort [10] and its message aggregation library
called conveyors, along with an associated series of applications demonstrating
access patterns that benefit from it. The conveyor interface is a low level API
for aggregation that aims to address message rate performance bottlenecks in
applications by providing a mechanism for packing and unpacking many small
messages into larger buffers for remote transfer and processing, along with a
contract for their use that promises particular behaviours and guarantees when
followed. However, its main purpose was to demonstrate that aggregation strate-
gies can be highly performant, and their more complex aggregation model was
developed out of a necessity rather than with the intention of replacing a simple
communication model in an application.

As a result, we aim to combine the benefits of conveyors with the simplicity
and natural use of OpenSHMEM through a minimally intrusive extension to the
latter that we call aggregation contexts. This extension builds upon the existing
OpenSHMEM 1.5 feature of communication contexts and extends it with the
option to support deferred execution of operations facilitated by conveyors in a
way that largely fits into its preexisting usage model.

Our paper demonstrates that our aggregation contexts extension is simple
to use, preserves the AGP model, and delivers good performance when used
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in applications. We demonstrate the benefits of our approach by comparing its
simplicity of use and performance to the use of conveyors directly in four of the
bale 3.0 applications.

The rest of this paper is organised as follows. Section 2 delves into the basic
history of OpenSHMEM and its memory/communication model along with some
background on the bale effort. Section 3 describes the design of our proposed
contexts extension to OpenSHMEM, while Sect. 4 applies this design to a number
of critical many-to-many access patterns and compares the result against what is
achievable with either a pure AGP approach or direct use of conveyors. Section 5
describes related work to the small message problem, aggregation strategies, and
their application to other PGAS programming models. Finally, Sect. 6 offers
some conclusions on the work and its utility and provides some insight into its
remaining deficits and how they may be improved upon in the future.

2 Background

This section provides a brief overview of OpenSHMEM and the bale effort that
is sufficient to be able to understand our work. For a more in-depth description
of either, see [10] and [15].

2.1 OpenSHMEM

OpenSHMEM is a community-based specification that builds upon Cray’s
SHMEM PGAS library, from which it originated. The specification has seen
rapid advancement in recent years to modernise it with new features intended to
better adapt to applications’ needs and new state-of-the-art network intercon-
nect capabilities. At the time of this writing, the latest OpenSHMEM version is
1.5. OpenSHMEM follows an SPMD model with an emphasis on one-sided AGP
operations on remotely accessible data objects, along with a set of collective
operations for synchronisation and data transfer (e.g. broadcast/reduction).

A distinguishing feature of the OpenSHMEM library is its use of symmetric
memory, which means that allocation within this memory is a collective oper-
ation and results in each participating processing element (PE) allocating an
equal portion of a remotely accessible distributed shared variable. All remote
communication operations exclusively access memory in this symmetric space.

Since communication in OpenSHMEM is one-sided, there is no direct way to
query completion of individual remote operations. Instead, its synchronisation
model requires use of barriers for process synchronisation, fences for ordering,
and quiet for ensuring all outstanding operations issued by a PE are complete.

To demonstrate what OpenSHMEM code looks like, we show a simple exam-
ple from the bale applications employing a pattern called histogram in Listing 1.
Histogram represents a communication pattern where PEs are updating random
locations of a distributed table accessible by all of the PEs (e.g. counting the
elements for each bin on a given data set). To simulate this in the histogram
application, each PE generates a uniform list of random indices in the table and
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then proceeds to update each location by incrementing its value. The OpenSH-
MEM portion of the code contains a single atomic increment operation for each
such index followed by a barrier at the end.

for (int64_t i = 0; i < data ->l_num_ups; i++) {
shmem_atomic_inc (&data ->counts[data ->pckindx[i] >> 20],

data ->pckindx[i] & 0xfffff);
}
shmem_barrier_all();

Listing 1. An OpenSHMEM Implementation of Histogram

2.2 Bale

The bale effort aims to address the many-to-many communication access pat-
terns that often arise in distributed applications using the PGAS paradigm by
providing message aggregation libraries along with a set of applications that
employ them for comparison. While our focus will be on its conveyor library, it
also provides two older libraries upon which it was partially based called exstack
and exstack2. Conveyors have been proven to be highly efficient and scalable
while also maintaining a high degree of modularity and portability, which makes
it well suited for addressing the discussion of aggregation in OpenSHMEM across
the wide variety of implmentations and system architectures its specification
spans. They are akin to stateful message queues, with operations to push/pull
messages to/from them along with a set of methods to manage them and their
completion. Thus, conveyors implicitly employ a two-sided execution model. To
efficiently aggregate messages, these queues generally contain a given number
of fixed-size items, though optionally elastic conveyors can be used to transmit
variable-sized items by adding size information to its internal packet structure
and employing epush/epull alternatives. Operation of conveyors is based on a
contract between them and the application, such that so long as the application
obeys its end of the contract, the conveyors will guarantee that all operations
are eventually completed without developers needing to be concerned about the
manner or timing of their execution. Conveyors are available in different types
that differ in their characteristics or how they are implemented (e.g. hops in
the network topology) to meet different application requirements on a given sys-
tem. This modularity allows for multiple conveyors of different qualities to be
dynamically selected or configured at run-time.

General use of conveyors involves worker threads pushing messages onto their
queues until they fail, then alternately advancing and pulling received messages
until they can push again, optionally “unpulling” the most recent item if it is
unable to be processed immediately. These messages are encoded and supplied
by the application developer through user-defined item structures and their sizes.
To properly use conveyors, however, the developer must carefully manage their
progress and the different states they transition between. Upon creation, con-
veyors begin in a dormant state, where they may either be freed or moved to
their working state via the convey begin operation. While within this working
state, data can be pushed and pulled freely, but must be manually progressed
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with calls to convey advance to ensure progress, typically when pushing an item
fails. The timing of when messages are sent is not guaranteed, but will happen
dynamically as buffers fill or if the conveyor is advanced to its endgame state
by indicating so via an argument to subsequent advance operations. Optionally,
steady conveyors can be used to ensure that no messages are withheld indefi-
nitely, even without filling output buffers. Once a process is done pushing data to
a conveyor, it advances it to its endgame, after which it must continue progress-
ing and pulling data until all other processes have also reached their endgame,
at which point it moves to its complete state and can be freed or reset.

3 Design

Implementing message aggregation in a parallel programming model requires
extensions to its memory and synchronisation model in order to manage the
completion semantics of communication operations. This includes a deferred
execution model that implicitly relaxes the guarantees of these operations. In our
case, making changes to OpenSHMEM’s semantics is unavoidable, but it’s crucial
to make sure that any extensions are implemented in a way that is both contained
and backward compatible with the existing memory and synchronisation model,
so that they do not have any negative impact on existing code.

OpenSHMEM 1.4 introduced communication contexts which we extended to
introduce message aggregation. Communication contexts allow for arbitrary sub-
sets of communication operations to be provided with ordering and completion
semantics that are independent from those outside the context. This feature is
particularly useful in avoiding contention, such as locks, in multithreaded exe-
cutions of network operations. While the completion semantics within an indi-
vidual context remain the same as outside of them, their abstraction provides
a clear opportunity to introduce an option to change them. That is what we
propose doing here—adding a SHMEM CTX AGGREGATE option to context creation
to change these semantics and implicitly aggregate communication performed
within them.

The completion semantics within these aggregation contexts are kept as
loose as possible—while local input buffers are reusable upon return, no level of
local or remote completion is guaranteed until the user requests a quiet oper-
ation on the context. These quiet operations implicitly advance the conveyors
to their endgame and continues progressing until complete, then reset them
before returning, effectively delineating communication epochs. This allows the
implementation to employ conveyors (or any alternative aggregation libraries or
strategies) without publicly exposing any of its details or usage requirements.
Thus, aggregation contexts are continuously available for use without any state
management until intentionally freed.

To implement conveyors within these contexts, we create a generic packet
structure for messages containing the operation type, local and remote addresses,
and value, as applicable. This has the implication that messages that require less
than the maximum storage size of the packet incur a communication overhead for
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it, which could limit the potential for performance improvement relative to con-
veyors. To counteract this, we added a second level of internal deferment in the
contexts extension to allow for multiple messages with small encoding require-
ments to fit into the same packet. For instance, since increment operations only
require a target address, up to three of them can be packed into a single conveyor
message for a given PE, thus leaving only the overhead of communicating the
message type.

Conveyors are created and put into working state upon context creation,
and progress is internally managed based on when local output buffers fill. They
can be forced to advance until complete upon a call to shmem ctx quiet().
Implementing communication calls is quite simple since the only requirement
for completion is that the operation is encoded into the previously described
packet structure and pushed onto the conveyor. See Listing 2 for an example
demonstrating this on a put call.

void shmem_ctx_int64_p(shmem_ctx_t ctx , int64_t *dest , int64_t value , int
pe) {
if (pe == shmem_my_pe ()) {

*dest = value;
return;

}
int64_message_packet_t item;
item.type = OP_PUT | SZ_INT64;
item.remote = dest;
item.value = value;
while (convey_push(ctx ->conveyor , &item , pe) != convey_OK)

ctx_progress(ctx , false);
}

Listing 2. Implementation of an Aggregated Put

The most important part at the core of implementing aggregation contexts
is in managing their progress. Progress is initiated either by a quiet operation or
upon failing to push a message onto the conveyor. Each progress call starts by
pulling all items waiting in the conveyor’s inbound buffer, checking the operation
types and applying them (e.g. adding a value to its local destination). For oper-
ations that require fetching data, this results in new items being pushed onto
the conveyor’s outbound buffer in response. To support variable-sized put/get
operations, we use an additional elastic conveyor for better performance. If the
context is servicing a fetching operation and fails to push its response, it unpulls
the request and ceases further processing of its inbound queue. Finally, it fin-
ishes with a call to advance the conveyors and directs them to transition to their
endgame state if the progress was called as part of a quiet operation, which must
repeatedly restart the progress function until the conveyors reach their complete
state.

4 Results

To evaluate the performance of aggregation contexts, we implemented four of
the bale applications with them and compared their code and performance to
both OpenSHMEM AGP and conveyors versions. The evaluation was conducted
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on the HPC Advisory Council’s Iris system, a Dell C6400 32-node cluster with
dual socket Intel Xeon 8280 CPUs, 192 GB of 2666 MHz DDR4 memory, and
NVIDIA ConnectX-6 HDR100 100 Gb/s InfiniBand/VPI NICs connected via
an NVIDIA HDR Quantum QM7800 switch. We used OpenSHMEM 1.4 from
OpenMPI 4.1.3 that uses UCX 1.12.1, and compiled the software with GCC
8.5.0. The tests were performed on 32 nodes with 1, 2, 4, 8, 16, 32, and 56
processes per node using weak scaling, with the exception of triangles that uses
strong scaling due to the nature of its graph generation making it nontrivial to
scale up by arbitrary factors. In our evaluation, we compare the performance
of using either the contexts extension or direct use of conveyors against the
OpenSHMEM AGP timings as a baseline. The results are reported as relative
performance improvements against this baseline as the goal of this work was to
achieve good performance while maintaining the simplicity of the AGP model
in applications.

4.1 Histogram

We modified the OpenSHMEM AGP version of histogram from Listing 1 by
incorporating the aggregation contexts extension. The modifications required to
use aggregation contexts were minimal, as shown in Listing 3. The first step was
to create the context, after which we replaced the atomic increment operation
used in the AGP version with its context-based counterpart. To ensure all com-
munication completes, we also performed a quiet on the context before the final
barrier.

shmem_ctx_t ctx;
if (shmem_ctx_create(SHMEM_CTX_AGGREGATE | SHMEM_CTX_PRIVATE , &ctx) != 0)

{
FAIL();

}
for (int64_t i = 0; i < data ->l_num_ups; i++) {

shmem_ctx_int64_atomic_inc(ctx , &data ->counts[data ->pckindx[i] >>
20], data ->pckindx[i] & 0xfffff);

}
shmem_ctx_quiet(ctx);
shmem_barrier_all();

Listing 3. Histogram Using Aggregation Contexts

In contrast, Listing 4 shows how the implementation using conveyors appears.
The code begins by creating the conveyor and starting it in its working state by
invoking convey begin with the desired message item size if successful. Next, it
performs a barrier to ensure all PEs are ready to begin before proceeding with its
primary progress loop. The first part of the loop is responsible for pushing requests
onto the conveyor, and it proceeds to the second part when it fails, which pulls
any data it has received and performs the actual increment operation. As can be
seen here, in the conveyor model the messages’ nature/operation is defined solely
by the receiver rather than the sender. Each loop iteration starts with a call to
convey advance, with the second argument determining when the sending PE is
done sending its share of messages and communicating that to the conveyor. It
exits out of the loop for the final barrier after the advance determines that the
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conveyor has also finished receiving and processing all of its messages. This illus-
trates how even such a simple communication pattern can become significantly
more complex to develop using message aggregation with conveyors.

convey_t* conveyor = convey_new(SIZE_MAX , 0, NULL , convey_opt_SCATTER);
if (! conveyor || convey_begin(conveyor , sizeof(int64_t), 0) < 0) {

FAIL();
}
shmem_barrier_all();
i = 0;
while (convey_advance(conveyor , i == data ->l_num_ups)) {

for (; i < data ->l_num_ups; i++) {
col = data ->pckindx[i] >> 20;
if(! convey_push(conveyor , &col , data ->pckindx[i] & 0xfffff))

break;
}
while (convey_pull(conveyor , &pop_col , NULL) == convey_OK) {

data ->lcounts[pop_col] += 1;
}

}
shmem_barrier_all();

Listing 4. Histogram Using Conveyors

The results comparing the different versions against each other across
2,000,000 updates per PE can be seen in Fig. 1. The contexts version signifi-
cantly outperformed the original AGP version with performance improvements
of up to 65× achieved with only minimal changes to the application. The con-
veyors version achieved even greater performance improvements of up to 85×.

To provide some perspective, we also compared our results with the net-
work utilisation numbers derived from the Ohio State University (OSU) micro-
benchmarks version 7.1 [1]. Specifically, we were interested in determining the
efficiency of our utilisation of the available network bandwidth compared to
regular accesses. To that end, we ran the message rate test for non-blocking
OpenSHMEM put routines on 56 processes per node. We adjusted the highest
performing message size to account for how quickly we could send the same
amount of data as in our histogram tests if we were able to maintain this level
of throughput. After normalising these results to the AGP histogram baseline,
we found that this would have accounted for an 82× speedup.

Fig. 1. Histogram Results Fig. 2. Indexgather Results
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4.2 Indexgather

Indexgather is similar to histogram but in the reverse direction, in that it rep-
resents a pattern where PEs are gathering data from random locations in a
distributed array into a local array. Each PE generates a list of random elements
and then performs back-to-back remote read operations to fetch all of them.
The bale version of the classic AGP code was modified to use non-blocking get
operations added to the more recent 1.4 OpenSHMEM specification for better
comparison. Without this modification, the performance of the AGP baseline
would be significantly worse and arguably less interesting. As a result, the AGP
version now also requires a quiet operation to ensure that its non-blocking oper-
ations are complete. A side-by-side comparison between the AGP and contexts
versions can be seen in Listing 5 and Listing 6. The listing again shows that min-
imal modifications are necessary to the AGP version to adapt it to aggregation
contexts. The conveyors version of indexgather, which is much more complex
due to requiring nested conveyors for read responses, can be found in [10].

Figure 2 shows the results across 8,000,000 requests per PE, and we can
see that even compared to OpenSHMEM’s non-blocking gets, aggregation con-
texts provides substantial performance improvements of up to 9× compared to
a maximum improvement of up to 16× for the conveyors version. Compared to
histogram, indexgather has a bit of additional headroom, much of which is due
to not achieving quite as of a high packet efficiency, roughly half of which is lost
compared to the conveyors version (i.e., the overhead for type and the unused
value member). This is clearly reflected in the results as pressure is increased on
the network, as it converges to about half the potential performance increase.
It may be possible to optimise the packet encoding further for operations like
these, but this is left for future work.

We conducted a similar comparison to the one described in Sect. 4.1, this time
using the OSU message rate test for non-blocking OpenSHMEM get routines,
which utilises a regular accesses. When comparing this to the AGP indexgather
results, we found that the OSU benchmark achieved a message rate improvement
of up to 47×. The relatively higher gains compared to what could be achieved with
conveyors or aggregation contexts are likely due to a combination of factors includ-
ing the OSU benchmark’s regular (as opposed to many-to-many) access pattern,
as well as the exclusive use of one-sided RDMA network primitives rather than the
more bidirectional active message style of processing upon which conveyors rely.

for (int64_t i = 0; i <
l_num_req; i++) {
shmem_int64_get_nbi (&tgt[i],

&table[pckindx[i] >>
16], 1, pckindx[i] &
0xffff);

}
shmem_quiet ();
shmem_barrier_all();

Listing 5. Indexgather Using AGP

for (int64_t i = 0; i <
l_num_req; i++) {
shmem_ctx_int64_get_nbi(ctx ,

&tgt[i],
&table[pckindx[i] >>
16], 1, pckindx[i] &
0xffff);

}
shmem_ctx_quiet(ctx);
shmem_barrier_all();

Listing 6. Indexgather Using Contexts
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4.3 Sparse Matrix Transpose

This application transposes a distributed sparse matrix, which is especially useful
in linear algebra and popular in machine learning algorithms (e.g. convolutional
neural networks). The input matrix is encoded in compressed sparse row (CSR)
format, which makes it difficult to aggregate since PEs need to synchronise in
order to find the appropriate target locations before writing data. The first phase
uses a histogram pattern to determine the number of nonzeroes in each column,
followed by a second phase that acquires the new locations for each value and
writes them to the destination PEs. An abbreviated snippet of the AGP version
of this second phase is shown in Listing 7.

for (int64_t row = 0; row < A->lnumrows; row++) {
for (int64_t j = A->loffset[row]; j < A->loffset[row + 1]; j++) {

int64_t pos = shmem_atomic_fetch_add(& shtmp[A->lnonzero[j] /
npes], npes , A->lnonzero[j] % npes);

shmem_int64_p (&(*At)->nonzero[pos / npes], row * npes + me, pos %
npes);

if (A->value != NULL)
shmem_double_p (&(*At)->value[pos / npes], A->lvalue[j], pos %

npes);
}

}
shmem_barrier_all();

Listing 7. Transpose Phase 2 Using AGP

The contexts version of sparse matrix transpose divides the second phase into
two steps. It first prefetches all the required locations into a buffer, and then uses
this buffer to perform the necessary writes. The result of this transformation can
be seen in Listing 8.

The performance of these compared against AGP is an improvement of up
to 17× for the contexts version and 72× for the conveyors version when run on
a matrix with 1,000,000 rows with an average of 4 non-zeroes per row per PE,
as shown in Fig. 3. While the contexts version demonstrates significant improve-
ment over AGP, its performance is still limited by the prefetch size/granularity
step, which significant stresses the memory subsystem capacity. We will look at
this problem further in Sect. 4.4.

int64_t *pos[A->lnumrows ];
for (int64_t row = 0; row < A->lnumrows; row++) {

pos[row] = (int64_t *) malloc((A->loffset[row + 1] - A->loffset[row])
* sizeof(int64_t));

if (pos[row] == NULL) {
FAIL();

}
for (int64_t j = 0, col = A->loffset[row]; col + j < A->loffset[row +

1]; j++)
shmem_ctx_int64_atomic_fetch_add_nbi(ctx , &pos[row][j],

&shtmp[A->lnonzero[col + j] / npes], npes , A->lnonzero[col +
j] % npes);

}
shmem_ctx_quiet(ctx);
shmem_barrier_all();
for (int64_t row = 0; row < A->lnumrows; row++) {

for (int64_t j = 0, col = A->loffset[row]; col + j < A->loffset[row +
1]; j++) {
shmem_ctx_int64_p_nbi(ctx , &(*At)->nonzero[pos[row][j] / npes],

row * npes + me, pos[row][j] % npes);
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if (A->value != NULL)
shmem_double_p (&(*At)->value[pos[row][j] / npes],

A->lvalue[col + j], pos[row][j] % npes);
}
free(pos[row]);

}
shmem_ctx_quiet(ctx);
shmem_barrier_all();

Listing 8. Transpose Phase 2 Using Contexts

Fig. 3. Transpose Results Fig. 4. Triangles Results

4.4 Triangle Counting

The final application counts triangles in undirected graphs by computing either
L�L×U or L�U ×L, where L and U represent the lower and upper triangular
matrices of its sparse input. This is an interesting application since it has two
very different ways to implement its algorithm based on whether PEs can put
their nonzeroes to other rows or PEs, which maps well to aggregation, or get
their data from other PEs for computing itself, which fits the AGP model better.

Similar to the transpose algorithm, the aggregation contexts version
prefetches future values in advance. However, the triangles algorithm requires
multiple levels of get operations to perform the calculation, meaning that
prefetching must similarly be implemented in a nested fashion. Despite this
limitation, our approach achieved up to 28× performance improvement over the
AGP version while maintaining its algorithmic intent. The conveyors version
achieved a performance improvement up to 61×. The results for both versions
are shown in Fig. 4, which was run on a matrix with 200,000 rows with an average
of 48 non-zeroes per row.

From a user’s perspective, our prefetching approach is convenient and intu-
itive, but it applies unnecessary memory pressure and can result in redundant
loop overhead as a result of the loop fission. This can become more pronounced
in nested scenarios as found in the triangles application. Although performance
can be improved by prefetching data in fixed-size chunks, this approach decreases
code readability and maintainability. Addressing these issues requires additional
extensions to our contexts approach, which we discuss as future work in Sect. 6.
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5 Related Work

There have been a number of diverse approaches to aggregation that are worth
consideration depending upon user requirements or preferences. Early aggre-
gation studies [14] show that message aggregation optimisations can be done
either at the lowest level of communication in a programming model or at the
application level. The benefits of such optimisations are also dependent on the
behavior of low-level communication protocols, which may change their strate-
gies at certain thresholds to move from handling small to large messages. The
study suggests that aggregation can be initiated by either the sender or receiver,
but that sender-initiated aggregation strategies are more efficient.

For a look at hardware-based aggregation, Scalable Hierarchical Aggregation
and Reduction Protocol (SHARP) [7] focuses on streaming-aggregation at the
network switch level and has been shown to improve performance by 2–5 times
for collective operations such as reductions. However, the benefits of this app-
roach can be offset by late arrivals to collective operations. Ozog [12] proposed
addressing the message rate problem in OpenSHMEM via the chaining of net-
work operations which is available on several interconnects. The approach com-
bines chainable calls to execute them in bulk later. However, this may increase
the overall message latency to that of the completion for the last operation added
to the chain. Another work [2] explores an optimisation that combines static coa-
lescing and the inspector-executor approach to reduce the latency of fine-grained
shared accesses for Unified Parallel C (UPC) applications by prefetching shared
data. It shows that the combination of these optimisations is effective in increas-
ing network efficiency, but is bounded by the overhead of the inspector loops,
which could benefit from data access summarisation. However, this can be chal-
lenging when accessing scattered or random data.

LAPPS [9] uses an access pattern prefetching technique introduced for
Chapel before execution of loops with specific patterns such as transpose, sten-
cil, etc. However, this technique requires application programmers to explicitly
identify the access patterns as such in hints they provide to the system. Fer-
guson [4] introduces a cache for put and get operations in the Chapel runtime
which can double application performance while being agnostic of the access pat-
terns. The Chapel Aggregation Library (CAL) [8] provides more general high
level abstractions for aggregation in the Chapel programming language and sup-
ports maps, scans, and reductions. These approaches require the introduction
of cache or aggregator objects to Chapel applications and increases code com-
plexity accordingly. The Berkeley Container Library (BCL) [3] takes a different
approach in that rather than a general communication model, it provides a
library for distributed data structures with aggregation abilities hidden within.
It uses a structure for buffering hash table insertions that works similarly to
other aggregation strategies like conveyors by deferring remote insertions until
internal buffers reach a certain size or the user has finished insertion and per-
forms a flush.

In contrast to our work, [13] shifts away from the classical AGP model Open-
SHMEM represents and introduces conveyor-style aggregation to the PGAS



44 A. Welch et al.

paradigm by proposing an extension to the task-parallel Habanero-C Library
(HCLib) using the actor model. In it, actors can have an arbitrary number of
mailboxes with which they can send/receive fine-grained active messages to each
other that are backed by conveyor aggregation. Although the abstraction around
the conveyor API is very thin, it does still remove the requirement for users to
explicitly manage conveyor state and progress along with the failure conditions
of push/pull operations due to buffer considerations. Nonetheless, users still
must design their communication around a conveyor-style active message sys-
tem, increasing flexibility but removing the ability to express simple one-sided
operations as such and making some operations such as remote reads compli-
cated.

Global Memory and Threading (GMT) [11] takes a similar approach to aggre-
gation but adds a programming model around it based on tasking and parallel
loop constructs, with a targeted focus on in-memory procesing of data from
domains with highly irregular memory accesses such as data analytics and pat-
tern recognition. It employs a hierarchy of worker/helper and communication
threads to hide latency, with workers taking up lightweight user-generated tasks
as their dependent requests are satisfied, including additional context switching
upon encountering blocking operations. These workers employ a two-stage aggre-
gation scheme where communication commands for given destinations are first
collected in local blocks before being copied in bulk the aggregation queue, the
contents of which eventually get dispatched by the communication thread when
either filled or a predetermined set of time has passed. While GMT does not
provide the generality of a complete PGAS programming model, it was shown
to be very performant at addressing the in-memory processing requirements of
its target domains, able to compete even with custom system architectures.

6 Conclusion and Future Work

In this paper, we have demonstrated how our aggregation contexts extension to
the OpenSHMEM AGP model can significantly improve small message rate per-
formance with minimal changes to the application code. Although our extension
may sacrifice some potential performance gains when compared to the direct
use of conveyors, it is able to retain an application’s algorithmic intent. Never-
theless, there is still considerable room for further improvements. For example,
there is potential to reduce communication overhead for some operation types,
particularly the commonly used put operation.

The transpose and triangle applications showed the limitations of our con-
texts approach and that additional extensions could be useful for not only defer-
ring and aggregating communication operations, but also for their associated
computations. Such an extension would reduce the complexity introduced by
the prefetching issues described in Sect. 4.4. In this case, a user could simply
“push” the relevant computations to the context associated with the commu-
nication primitives. This may require a feature akin to a rudimentary tasking
and futures design, where the completion of certain communication operations
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could be made to predicate the execution of a computation that could in turn
generate more communication or nested tasks. Further investigation into provid-
ing this additional extension to the model has the potential to greatly enhance
the power and natural expressivity of OpenSHMEM code, while also achieving
better message rate performance.
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Abstract. The increasing size of HPC systems indicates that execu-
tions involve more nodes and processes, making the faults’ presence a
more frequent eventuality. This issue becomes especially relevant since
MPI, the de-facto standard for inter-process communication, lacks proper
fault management functionalities. Past efforts produced extensions to
the MPI standard enabling fault management, including ULFM. While
providing powerful tools to handle faults, ULFM still faces limitations
like the collectiveness of the repair procedure. With this paper, we over-
come those limitations and achieve fault-aware group-collective commu-
nicator creation and repair. We integrate our solution into an existing
fault-resiliency framework and measure the overhead in the application
code. The experimental campaign shows that our solution is scalable and
introduces a limited overhead, and the group-collective repair is a viable
opportunity for ULFM-based applications.

Keywords: Fault Management · MPI · ULFM

1 Introduction

Computational science applications require more and more resources for their
computation, leading to the growth of current HPC systems in terms of per-
formance, energy efficiency and complexity. HPC systems have recently reached
the exascale boundary (1018 FLOPS)1, but the additional performance brings
new issues. The increase in the number of nodes brought a greater probability of
transient and persistent faults, and HPC systems (and their applications) must
be able to handle them. Studies [6,7,12] show that the impact of faults is already
relevant in HPC. This result also comes from the absence of fault management
techniques in the Message Passing Interface (MPI) [4], the de-facto standard for
inter-process communication. The latest version of the MPI standard (4.0) tried
to reduce the possible sources of faults, isolating them into single processes when
possible. While removing the faults’ impact on local functions, it neither avoids
their propagation with communication nor overcomes their effect.
1 https://www.top500.org/lists/top500/2023/06/.
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The issue of fault tolerance in MPI is not new to the field and led to the pro-
duction of fault-aware MPI implementations [3,8,9]. Most of these works received
limited support and did not solve the problem entirely and efficiently. The User-
Level Fault Mitigation (ULFM) MPI extension [1] is currently one of the most
relevant works in this direction. ULFM features a collection of functions for fault
detection and notification, structure repair, and execution resiliency. Among the
added functionalities of ULFM, the shrink, agree, and revoke functions enable
communicator repair, resilient agreement, and fault propagation, respectively.
From the point of view of ULFM, faults are sudden terminations of computa-
tion, while other fault types, like timing errors and silent data corruption, are
excluded from the analysis. ULFM is currently integrated directly into the latest
versions of OpenMPI and MPICH, the most relevant MPI implementations.

While ULFM provides users with powerful new possibilities for fault man-
agement, it still faces limitations, like its repair procedure’s collectiveness. In
this effort, we overcome the ULFM repair collectiveness constraint to intro-
duce fault handling in applications using group-collective calls. In particular,
we focus on applications using the group-collective communicator creation func-
tions (MPI Comm create group and MPI Comm create from group). These func-
tions do not involve all the processes inside a communicator (like their collective
counterparts), but only some of them. Previous works [5] have shown the rel-
evance of the first group-collective call, which has been included in the MPI
standard since version 3.0. The other function is a recent addition (version 4.0)
fundamental to the session execution model [13]. We propose a Liveness Dis-
covery Algorithm (LDA) to overcome the collectiveness constraint of the repair,
avoiding unnecessary synchronisations and allowing group-collective communi-
cator creation, even with faults among the caller processes. We integrate this
solution in the ULFM-based Legio fault resiliency framework [18] that trans-
parently manages the absence of failed processes in the application and enables
execution continuation.

The contributions of this paper are the following:

– We analyse the effects of faults considered by ULFM on the two group-
collective communicator creation calls;

– We design and implement a LDA to group-collectively detect the failed pro-
cesses and limit their impact on the analysed functions;

– We use the LDA to reimplement two of the most important ULFM function-
alities with group-collective behaviour.

– We integrate the solution into an existing fault resiliency framework to sim-
plify its usage inside the user code and evaluate the introduced overhead.

The paper is structured as follows: Sect. 2 discusses previous efforts on the
MPI fault management topic, focusing on ULFM and the frameworks using it.
Section 3 illustrates the behaviour of the two group-collective operations anal-
ysed. Section 4 discusses the Liveness Discovery Algorithm, its integration and
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the possibilities it enables. Section 5 covers the experimental campaign done to
evaluate the proposed solution overhead and scalability. Lastly, Sect. 6 concludes
the paper.

2 Background and Previous Work

The failure of an MPI process can impact an application execution since the
MPI standard does not specify the behaviour of the survivor processes. The
latest MPI standard (4.0) version introduced new functionalities to simplify fault
handling, limiting their impact when possible. While providing ways to represent
and react to faults, the standard still does not contain a defined method to
recover the execution. After a fault occurrence, the best outcome planned by the
MPI standard is the graceful termination of the application.

Many efforts proposed solutions to circumvent this limitation. The authors of
[11] proposed a transaction model to coordinate the fault management actions
needed. In [20], the authors designed the Stages model leveraging checkpoint
and restart functionalities. The Reinit solution proposed in [14] allowed the
execution to reinitialise itself, removing the fault impact from the execution.
Besides these efforts, the one receiving the most attention is ULFM [1], providing
tools for execution continuation after the incurrence of a fault. It is an MPI
standard extension proposal focusing on fault detection, propagation and repair.
While still under development, the ULFM extension got included in the latest
versions of OpenMPI and MPICH, the principal MPI implementations. The idea
behind ULFM is to allow application developers to manage faults by themselves,
changing the application code by introducing ULFM functions directly. This
approach allows maximum control of the fault management functionalities at
the cost of additional integration complexity: the programmer must know how
and when to handle faults, which is non-trivial.

The latest developments of the ULFM extension [2] introduced new func-
tionalities that can simplify the interaction between the application and the
fault tolerance functionalities. With the use of MPI Info structures, the user can
specify the error propagation policy and automate the failure notification phase
after fault detection. The authors also included the non-blocking communicator
repair functionality: it removes the need for coordination for multiple repairs and
enables overlaps between application-level recovery and communicator repair.

While introducing new functionalities to allow the execution past the rise of
a fault, ULFM does not provide any mechanism to recover the execution. This
decision comes from the fact that different applications may require different
types of recovery, while some do not even require any. The user should choose
the best recovery mechanism and integrate it directly into its code. This approach
gives maximum flexibility to the user but introduces unneeded complexity in its
code. For this reason, many efforts produced all-in-one frameworks that combine
ULFM with a recovery mechanism to simplify fault management integration
inside user code [10,16,18,19,21,22].

The principal research efforts in this direction are towards ULFM and Check-
point/Restart (C/R) functionalities integration [10,16,19,21,22]. This approach
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introduces fault tolerance (the ability to nullify the effect of a fault) in generic
MPI applications. All these efforts came to similar solutions, with the execution
restarting from the last consistent state, removing the fault impact. This app-
roach simplifies the introduction of fault tolerance in MPI applications since it
hides the complexity within the framework. Moreover, some efforts [16] removed
the need for code changes in the application by leveraging a heuristic code anal-
ysis to choose the best integration with their framework.

The solution adopted in Legio [18] is slightly different: the effort produced
a library that introduces fault resiliency (the ability to overcome a fault with-
out nullifying its effect) in embarrassingly parallel applications. Applications
using Legio continue after the fault detection, but the failed processes will not
resume: the execution proceeds only with the survivor processes, causing a loss
of correctness but resuming the execution faster. The authors claim that these
characteristics make Legio ideal for approximate computing applications, where
the algorithms already trade correctness for speed. Legio follows the policy of
transparent integration with the application: it does not require any code change.

While ULFM is evolving with its latest introductions [2], the repair procedure
still requires eventual participation from all the processes and is thus orthogonal
to group collectiveness. This assumption blocks the users from gaining the ben-
efits of group-collective communication creation, resulting in a potential loss of
efficiency. With this work, we contribute to the development of ULFM, removing
the collectiveness constraint and enabling group-collective fault handling.

3 Group-Collective Operations

A group-collective operation involves many processes inside an MPI communi-
cator, but not all need to participate. In the MPI standard, it is possible to find
two group-collective communicator creation calls, the MPI Comm create group
and MPI Comm create from group functions. The first was proposed in [5], and
it got introduced with version 3.0 of the standard. The function creates a com-
municator containing only the processes part of the group structure passed as
a parameter. This function must be called only by the group participants, not
by all the processes in the communicator (differently from the MPI Comm create
function). The second function behaves similarly but does not require a start-
ing communicator. Introduced with version 4.0 of the standard, it is part of the
functions that handle the Session execution model [13]. It allows the creation
of a communicator starting only from a group of processes. The absence of a
parent communicator makes this call unique and potentially problematic in case
of faults. While dealing with faults in group-collective calls, we encountered two
problems: the eventuality that the execution enters a state from which no repair
is possible and the need for collectiveness within the repair procedure.

Impossibility of Repair. To detect the first problem, we conducted prelim-
inary experiments injecting faults in MPI code with group-collective calls. To
better represent the fault occurrence in a communicator, we describe it as either
faulty or failed. In particular, faulty communicators contain some failed processes
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with no process acknowledging them. When a process discovers the failure, the
communicator becomes failed, and the failure propagation begins. We ran those
experiments using the latest version of OpenMPI featuring ULFM (v5.0.0) and
implementing the standard MPI 4.0. ULFM use is mandatory since the fault
presence would otherwise cause the crash of the application, nullifying any fault
resilience effort. Our tests on the function MPI Comm create group proved that:

– The call works if the communicator passed as a parameter is faulty as long
as no process that is part of the group has itself failed;

– The call deadlocks with a faulty communicator parameter if one process that
is part of the group has itself failed;

– The function fails with a failed communicator as a parameter, returning the
ULFM-defined error code MPIX ERR PROC FAILED, regardless of the presence
of failed processes inside the group.

While the deadlock eventuality may be an implementation flaw of the cur-
rent OpenMPI version, its removal is still non-trivial. ULFM should control the
presence of failed processes within the group, even the ones with unacknowl-
edged failures. ULFM provides a function to get the group of failed processes
inside a communicator (the MPIX Comm get failed), but it gives no guarantees
on whether the output is up to date. This limitation comes from the fact that the
function above is local, thus requiring no communication between the processes.
It does not actively check the presence of new faults inside the communicator
(proactively), but it just recalls the ones whose failure is known.

Our tests on the function MPI Comm create from group produced similar
results: the call works if failed processes are not part of the group passed as a
parameter and deadlocks otherwise. A fix for the first function can also solve
the deadlock eventuality on this one. Therefore, the approach described in this
paper aims to create an algorithm for removing failed processes from the group
parameters of the group-collective functions.

Collectiveness of Repair. This is a known limitation of the ULFM exten-
sion. The standard ULFM solution to fault presence consists of letting the MPI
call raise an error, eventually propagating it to processes not involved (with the
revoke function). For collective calls, all the processes must agree on the cor-
rectness of the operation (with the agree function) and, if an error is present,
repair the communicator (with the shrink function) and retry. The agreement
and repair procedure cannot happen without the participation of all the pro-
cesses inside a communicator and are mandatory to complete the communication
creation calls since we cannot use failed communicators. This constraint invali-
dates the benefits that come from the adoption of group-collective communicator
creation functions (less synchronisation). To introduce fault management in the
group-collective call, we would ideally not use any collective operation, including
the standard ULFM shrink and agree functions.
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Fig. 1. A representation of the LDA. Each column represents a process, while green
rectangles contain the data on the liveness of each participant. Black boxes represent
MPI operations, with the first character showing the type (Send/Recv) and the second
the rank of the other process. (Color figure online)

4 Liveness Discovery Algorithm

The problem of finding which processes failed within a group is dual to the one of
discovering the ones alive. In a collective scenario, we can solve the latter using
the MPI Allgather function: each process can share its rank with the others and
obtain data about all the processes sharing. If an error arises, all the participants
can share a communal view using the agree functionality and then proceed to
remove the failures from the communication with the shrink call. The execution
can repeat these steps until the function MPI Allgather completes correctly:
after the completion, each process has the list of survivor ranks since only the
survivors can communicate with no errors in a collective call.

This solution faces many problems when moving to the group-collective sce-
nario. All the needed functions are collective and not usable for fault-checking
group-collective calls without introducing unnecessary synchronisation. Another
possible solution comes from the authors of [17], who proposed a method to
avoid the repair and perform operations in a failed communicator. In their solu-
tion, they reproduce collective functions using point-to-point communication in
a fault-resilient way, using a series of messages to detect the failures of neighbour
processes. Their solution is compatible with our problem since we need to per-
form the MPI Allgather function in a possibly failed communicator. However,
the complete replacement of collective calls with point-to-point ones significantly
impacts the failure-free execution time, even for applications not using group-
collective calls. Moreover, the above solution includes its mechanisms to detect
faults in MPI communication introducing a series of messages like acknowledge-
ments and heartbeats, already covered by ULFM functionalities. In this work,
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we took inspiration from this latter solution, designing an ad-hoc Liveness Dis-
covery Algorithm (LDA), which proactively detects failed processes in a group
and uses ULFM fault detection functionalities.

Algorithm 1 contains the pseudo-code of our first naive design, while Fig. 1
shows a sample execution with six processes. The naive solution consists of the
recreation of the MPI Allgather function as a combination of gather and broad-
cast operations. The algorithm follows a tree structure and implements commu-
nication using point-to-point send and receive routines. While this naive solu-
tion works in a fault-free scenario, failed processes’ presence can compromise the
result’s correctness. This eventuality is not due to error propagation, MPI fault
management or additional ULFM functionalities but rather an algorithmic issue.
Each rank value has a single path towards all the other nodes: if it breaks, the
information will not arrive since no fallback strategy is present. Figure 2a shows
the erroneous behaviour in execution with two faults: the algorithm produces a
wrong result since processes agree on different sets. While the fault on the rank
5 process does not affect the result correctness, the one on rank 2 separates the
rank 3 one from the rest. We could prevent this behaviour by re-assigning the
duties of the failed process to another non-failed one.

Following the above concept, we update Algorithm 1 into Algorithm 2 to
consider the duties re-assignment. We use ULFM functionalities to test whether
a process failed. The call MPI Recv can manifest a MPIX ERR PROC FAILED error,
detecting the failure of the process sending information. Moreover, we already
use the receive function in the algorithm, thus removing the need for ad-hoc fault
detection mechanisms like message acknowledgement. After the fault detection,
the failed process duties move to the next non-failed one.

Algorithm 1: Naive version of the LDA
Input: A processes’ group of size s, each process with rank r (from 0 to s-1)
Output: A processes’ group containing only non-failed processes
// all ranks are encoded using the minimum number of bits

1 data.append(r); // data contains only own rank
2 root level = number of trailing zeros of r ;
3 root index = 1;
4 while root index ≤ root level do
5 partner = r + (1 << root index); // receive from rank far from root
6 if partner < s then
7 receive data from partner and append to known

8 root index++;

9 partner = r - (1 << root index); // send data to rank closet to root
10 if root index < bits used for encoding then
11 send all data to partner
12 receive full data from partner, substitute own data with the received one

// Start the propagation towards leaves
13 root index–;
14 while root index > 0 do
15 partner = r + (1 << root index);
16 if partner < s then
17 send full data to partner

// Now all the processes’ data contains all the non-failed ranks
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Fig. 2. The figure shows the algorithm adaptation in the presence of faults. Red rect-
angles represent failed processes and MPI calls. Crossed red squares indicate processes
known to have failed. Blue shapes represent additional or different calls due to processes
inheriting roles. (Color figure online)

The last assumption ensures that fallback routes exist in our algorithm, pre-
venting partitions. The fallback selection is also unequivocal, meaning that it is
unique, and all the processes agree on the same without communicating with
each other. Using these remarks, we can define the behaviour upon noticing a
fault. In particular, a process would try to contact the successors of the failed
one individually until receiving a response without errors. If all the successors
between the process and the failed one produce errors, it assumes to be the
closest live successor, so it inherits the failed process duties.

Figure 2b shows the behaviour of the updated algorithm in the presence of
faults. It is possible to see that the execution outcome is correct despite failed
processes because rank 3 gets the failed rank duties. Our changes affect the
algorithm complexity: the worst case goes from logarithmic to linear complexity
due to the single checks of all the failed process successors. Moreover, the changes
above do not deal with faults occurring during the algorithm execution, which
can compromise its correct execution. To solve this latter possibility, we must
introduce additional messages and follow approaches similar to the ones proposed
in [15]. While it is possible to consider faults happening during the algorithm, the
LDA should introduce limited overhead and thus run for a short time, making
a fault occurring during its execution improbable. In the end, we decided not to
cover that case.

With this algorithm, all the processes can adjust the group parameter to
remove failed ones. If we use this algorithm, the two group-collective calls do
not manifest the deadlock eventuality. In particular, the MPI Comm create group
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function exposes an error while the MPI Comm create from group completes cor-
rectly. This result has some remarkable implications for ULFM: the existence of
a call able to create a communicator despite faults’ presence and without collec-
tiveness opens the possibility for group-collective repair. Upon detecting a failure,
processes can substitute the communicator with a new one or partition it asyn-
chronously. This possibility overcomes one of the main limitations of ULFM
and opens new research directions in the field. The proposed method can also
remove the collectiveness constraint of the ULFM agree call. We can use the
LDA to group-collectively perform an all-reduce operation alongside the usual
calls, achieving agreement even with faults.

While the LDA solves the problems of deadlocks in group-collective commu-
nicator creation and improves the ULFM functionalities, its complexity makes it
unfeasible for user-level code. Being a distributed fault-aware algorithm, we think
encapsulating its structure in an existing framework makes it easier to leverage
by the users. For this reason, we integrated the LDA inside the state-of-the-art

Algorithm 2: Fault resilient version of the LDA
Input: A processes’ group of size s, each process with rank r (from 0 to s-1)
Output: A processes’ group containing only non-failed processes

1 get range(n,point)→ Adjusts global variables low and high to the value of point setting
the last n bits to 0 and 1 respectively.;

2 effective = r; data.append(r);
3 max level = number of trailing zeros of s’ next power of 2 ;
4 forall the level ∈ [1,max level] do
5 r level = number of trailing zeros of effective;
6 if r level < level then
7 get range(level, effective);
8 forall the root ∈ [low,high] do
9 if root == effective then break else

10 send data to root;
11 receive full data from root, substitute own data with the received one, if

no error break

12 if root == effective then
13 effective = low; level -= 1; continue; // We inherited the root role

14 else break

15 else
16 get range(level-1, effective - (1 << level-1));
17 forall the sender ∈ [low,high] do
18 if sender == r then break receive data from sender, append to own, if no

error break.

19 level root = number of trailing zeros of effective.;
20 r level = number of trailing zeros of r.;
21 for level = level root; level ≥ 1; level -= 1 do
22 if level == r level then
23 effective = r

24 get range(level-1, effective + (1 << level-1);
25 forall the searched ∈ [low,high] do
26 if searched ∈ data then break

27 send all data to searched if different from r.

// Now all the processes’ data contains all the non-failed ranks
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Fig. 3. Execution time distribution of the LDA over different group size and failure
percentage scenarios.

Legio framework2 [18] to introduce fault management support without changes
in the application code through the use of the PMPI layer. The integration with
Legio allows us to call the LDA before any group-collective communicator cre-
ation call, remove failed processes from the groups passed as parameters and
complete the functions correctly, even in a faulty scenario. We do not use Legio
functionalities to implement our solution but leverage it only as an encapsulation
medium.

5 Experimental Campaign

The experimental campaign we propose evaluates the scalability and overhead
of our solutions, both in the presence and absence of faults. We execute our
experiments on the IT4Innovations Karolina cluster, featuring nodes with 2 x
AMD Zen 2 EPYCTM 7H12, 2.6 GHz processors and 256 GB of RAM. Each
node can run up to 128 processes without overloading. We use the latest ver-
sion of OpenMPI featuring ULFM (v5.0.0), which implements MPI standard
4.0. In this experimental campaign, we first measure the proposed algorithm
scalability and then evaluate the cost of fault management (fault discovery and
removal) in group-collective communicator creation calls. Finally, we compare
the group-collective versions of the shrink and agree functions with their ULFM
counterparts. For all those tests, we designed simple ad-hoc applications that
allow us to selectively stress the aspects we want to measure without the effect
of other computations or synchronisations.

With the first experiment, we evaluate the time needed to complete the LDA
with different group sizes and different amounts of faults inside the system. We
run all the experiments using 16 nodes, each with 128 processes. We randomly
choose the processes to fail since their position affects the time needed to com-
plete the algorithm. This aspect comes from the tree topology of the algorithm:
a leaf process interacts with only one other while the root communicates with

2 Source code available here: https://github.com/Robyroc/Legio.

https://github.com/Robyroc/Legio
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Fig. 4. Mean execution time of the Legio-integrated group-collective operations (MPI *)
compared to the original fault unaware versions (PMPI *).

Fig. 5. The figure shows the correlation of the group-collective function mean over-
head with the group size and number of nodes. The dashed black line represents the
logarithmic trend followed by the measurements.

many more. This consideration implies that a failure in the root process causes
many more communication errors than one in a leaf one, significantly changing
the execution time and causing result variability.

We execute this test ten times for each group size and fault amount to better
evaluate the results’ variability. Figure 3 shows the results of this evaluation.
From the results, it is possible to see that the dimension of the group does not
significantly affect the time needed to complete the algorithm in a fault-free
scenario. Faults’ presence heavily impacts the time to complete the algorithm
due to the gradual shift towards linear complexity and the time to manage errors
at the ULFM level. In case of no faults, the execution completes in milliseconds,
showing reduced time variability. In the case of applications not using frequent
communicator creation functions, we think the observed overhead is negligible.
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Fig. 6. The figure compares the median execution times of the non-collective reparation
functions with their ULFM counterpart over different network and failure sizes. The
range bars show the dimension of the third quartile.

We also measured the amount of send/receive operations per process, and we
found that the average goes from 4 calls in a fault-free scenario to 4.4 and 5,
with 12.5% and 25% of failed processes, respectively. These values do not change
when varying the group size since the algorithm’s structure remains the same.

With the second experiment, we measure the overhead introduced in the
group-collective communicator creation calls in a fault-free scenario. We execute
the benchmark ten times, measuring the average time needed to complete the
calls. We compare the results with the time to complete the function without the
additional fault discovery and removal functionalities. We repeat the experiment
over networks of different sizes and with variable group dimensions to evaluate
the scalability of our proposed integration. We distribute the processes inside
the groups equally across the computing nodes. Figure 4 shows the evolution of
execution times with networks of 1024 and 2048 processes (8 and 16 nodes),
while Fig. 5 compares the overhead observed per function over different network
sizes. The results show that the group size influences the overhead more than the
network size, and the overhead follows a logarithmic trend. These considerations
prove the scalability of the proposed integration in a fault-free scenario.

With the last experiment, we evaluate the performance of the proposed
group-collective alternatives of the ULFM functions shrink and agree. We com-
pare the execution times over networks of different sizes (from 1 to 16 nodes) and
with various amounts of faults. We repeat each experiment ten times and extract
the times to complete the functions. Figure 6 shows the execution time compar-
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ison. The proposed group-collective alternatives require a little more execution
time than their ULFM counterparts. The additional time is noticeable in the
shrink operation, while the agree call performs similarly to its ULFM counter-
part. These experiments compare the performance in a collective scenario, which
should further benefit the ULFM approach. The results validate the proposed
group-collective ULFM alternatives, making them a promising addition to the
ULFM proposal.

6 Conclusions

This paper presented a methodology to manage faults in a group-collective way.
The proposed solution is helpful for applications leveraging group-collective com-
municator creation functions, which would incur unnecessary synchronisations
using only ULFM functionalities. The designed LDA proactively detects failed
processes, allowing their removal from the communicator creation and the sub-
sequent completion of the call.

The experimental campaign showed the effectiveness of the LDA design,
development and integration with low overhead. Its usage with ULFM enables
group-collective communication creation and opens for group-collective commu-
nicator repair. We also showed that the group-collective variants of the ULFM
shrink and agree have a manageable overhead compared to the collective ones.
This result is relevant since it removes one of the weaknesses of ULFM, expand-
ing its possible usage.

Nonetheless, we think integrating our proposed LDA directly with user appli-
cation code introduces excessive complexity, making the code difficult to read
and maintain. Moreover, the algorithm must execute before the group-collective
call, unlike most ULFM functions. This fact implies that the usual packaging
of ULFM functionalities inside error handlers is not feasible for this case. We
integrated the algorithm inside the Legio library to leverage it transparently in
our applications, but we think a ULFM extension is also possible.

Acknowledgements. This work was supported by the Italian Ministry of University
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Abstract. Multi-party interactive live video streaming applications
have attracted millions of daily active users and are anticipated a
blooming market in the next few years. A fundamental research prob-
lem in live streaming is bitrate coordination, which selects the proper
upload/download bitrate for multiple participants in the system to max-
imize the users’ quality of experience (QoE). The existing bitrate adap-
tation methods fail to achieve optimal performance across a broad set
of network conditions with conflict QoE objectives, and lack of the abil-
ity of adaptation to dynamic user requirements. In this paper, we pro-
posed a novel meta-reinforcement learning based solution called MetaL-
ive for multi-party live video streaming bitrate adaptation. The proposed
framework formulates the bitrate coordination problem as a reinforcement
learning task, and introduces a meta-training method to train an agent to
learn to carry out various complex tasks from historical experience, and
generate bitrate adaptation policies to maximize expected QoEs in diverse
environments. We implement MetaLive based on an emulation platform,
and use real-world network traces to evaluate its performance. Extensive
experiments show that MetaLive achieves the best comprehensive QoE
compared with the state-of-the-arts in a variety of network scenarios.

Keywords: Video Streaming · Adaptive Bitrate · Meta Learning ·
Multi-Party Live Streaming

1 Introduction

Live streaming applications have experienced rapid growth in the past 5 years.
According to the report1, online video conferencing market size exceeded USD
15 billion in 2020, and it is predicted to reach 75 billion in 2027, expanding
1 https://www.gminsights.com/industry-analysis/video-conferencing-market.
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at around 23% compound annual growth rate from 2021 to 2027. The global
live streaming market2 is projected to reach USD 534.37 billion by 2030, grow-
ing continually at 29.3% compound annual growth rate throughout the forecast
period. Live streaming platforms such as YouTube Live and Twitter Periscope
have attracted more and more daily active users with emerging new applications
such as online talent shows. In the multi-party interactive live video stream-
ing [19] applications, the users perform conference meeting, singing, acting, and
other activities together interactively by exchanging streams [14], where each
user acts as both a sender to upload his own video and a receiver to download
the composite videos from the server. In such applications, it is important for the
streaming server to coordinate the upload/download bitrates of the participants
to optimized the quality of experience (QoE) of the system.

Adaptive bitrate selection has been extensively studied in the past [9,18],
but in the context of multi-party live video streaming, both uplink and downlink
bitrates should be coordinated to optimize users’ various QoE goals, which has
not been addressed by the above methods. A pioneer work addressing multi-party
live video streaming is MultiLive [19], which proposed a non-linear programming
solution to the many-to-many bitrate selection problem.

However, MultiLive has drawbacks as a model-based solution. Firstly, the
mathematical model may not fit the real deployment environment, requiring
constant re-running of the bitrate coordination algorithm. Secondly, it fails to
achieve optimal performance across network conditions and QoE objectives.
Finally, it lacks the ability to adapt to dynamic user requirements.

To address these challenges, we proposed MetaLive. It is a meta-
reinforcement-learning-based solution for multi-party live video streaming
bitrate adaptation. It formulates the bitrate coordination problem as a rein-
forcement learning task and trains an AI model to maximize expected QoEs by
selecting the best upload and download bitrates. Unlike conventional client-side
bitrate selection methods, MetaLive introduces a novel meta-learning framework
that leverages prior learning experience to generate bitrate adaptation policies
that can adapt flexibly to dynamic environments. The contribution of our work
are summarized as follows.

– We address the novel research problem of collaborative upload/download
bitrate selection for multi-party live video streaming, which is important for
the emerging interactive live streaming applications. We discuss challenges
of multi-party bitrate coordination in coping with network heterogeneities,
achieving conflicting QoE goals, and dealing with dynamic network.

– We propose a novel meta-learning based framework called MetaLive for solv-
ing the collaborative bitrate adaptation problem. The proposed framework
formulates the bitrate coordination problem as a reinforcement learning task,
and introduces a meta-training method to train an agent to learn to carry out
various complex tasks from prior experience, and generate bitrate adaptation
policies to maximize expected QoEs in diverse environments.

2 https://www.marketresearchfuture.com/reports/live-streaming-market-10134.

https://www.marketresearchfuture.com/reports/live-streaming-market-10134
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– We implement the proposed MetaLive framework based on an emulation and
use real-world network traces to evaluate its performance. Extensive experi-
ments show that MetaLive achieves the best comprehensive QoE compared
with the state-of-the-art bitrate adaptation algorithms in a variety of network
scenarios.

2 Related Work

In this section, we summarize the related works on adaptive streaming bitrate
selection in three aspects: model-based methods, learning-based methods and
live streaming optimization methods.

The model-based methods model the network environment via a mathemati-
cal model. The model is used to estimate upcoming network conditions and make
change to the bitrate. Many previous works have been done about model-based
bitrate adaptation algorithms [8,17]. BBA [8] is a buffer-based method. It collects
historical buffer occupancy information and makes decisions to adjust bitrate.
BOLA [17] transforms the bitrate selection problem into a utility-maximization
problem, which can be solved by using the Lyapunov function [11].

Networks are usually dynamic and changeable, making heuristic algorithms
based on fixed simple rules unable to meet the demand for network resources for
future applications and difficult to guarantee QoS/QoE. To address this situation,
researchers have attempted to use machine learning to adjust network parameters
in real time based on the current network state to maximize QoS/QoE.

Reinforcement learning techniques have gained popularity in recent years for
learning-based bitrate adaptive algorithms. CS2P [18] analyzed real datasets and
found that sessions with similar characteristics have similar throughput patterns,
which can be used to cluster sessions and predict throughput evolution using a
hidden Markov model. Pensieve [9] and Deep Q-Learning DASH (D-DASH) [5]
use deep reinforcement learning to improve bitrate decisions. Pensieve does not
rely on assumptions and uses neural networks to adapt to different buffering
scenarios and network rates. D-DASH combines deep learning and reinforcement
learning to improve DASH’s QoE and achieve a good tradeoff between policy
optimality and convergence speed.

With the popularity of video conferencing, the optimization of live video
streaming, especially multi-party live streaming, is becoming increasingly impor-
tant. While the above model-based methods and learning-based methods mainly
focus on client side bitrate selection to optimize downlink QoEs, they seldom
study the problem of multi-party live video streaming. Prior works such as [6,7]
mainly focused on optimizing server selection and user-to-agent assignment. The
coordination of uplink and downlink bitrates of multiple clients to optimize over-
all QoEs has yet been explored. Multilive [19] is a model-based method for
multi-party live streaming bitrate selection. It uses non-linear programming to
determine the target bitrate for each sender-receiver pair. The target bitrate is
updated periodically based on buffer feedback to reducing modeling and mea-
surement errors.



68 Y. Yang et al.

Different from the existing works, we propose MetaLive that applies a novel
meta-learning approach to optimize QoEs for multi-party live streaming. To the
best of our knowledge, MetaLive is the first meta-reinforcement learning method
that coordinates uplink and downlink bitrates to achieve QoE maximization in
multi-party live streaming systems.

3 Problem Formulation

3.1 System Model

We consider a multi-party live streaming system as illustrated in Fig. 1, where
each client uploads their video frames to the server and downloads the live
stream from the server. Due to the differences in network capacities, clients have
varying link capacities. The streaming server periodically evaluates the QoE of
each client and collaboratively adjusts the upload and download bitrates of each
client to optimize the overall QoE of the system.

Fig. 1. The model of multi-party live streaming system.

Similar to the work of [19], we assume the Scalable Video Coding (SVC) [12]
is used for aggregating the streams with different bitrate sent from the sender,
and then the server can distribute the different layers among different receivers.

After receiving a frame, the server will cache it and relay the appropriate
SVC layer of the frame to each receiver to fulfill their quality requirement. In
the proposed scheme, the streaming server adopts a meta-reinforcement learning
method called MetaLive to generate bitrate adaptation policies that can cope
with dynamic varying network conditions.

3.2 QoE Metrics

To improve users’ experience, media streaming should consider goals such as
video quality, rebuffering time, and smoothness. The algorithm needs to optimize
conflicting goals, e.g., increasing bitrate may lead to longer rebuffering and delay.
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To quantify the QoE goals, we introduce several QoE metrics. The server
evaluate the QoEs periodically, and each period consists of the transmission of
k frames from the sender to the receivers.

For k frames transmitting from sender i to receiver j, we denote the video
quality that influences users’ experience as QoEij

hd, which is calculated by:

QoEij
hd =

k∑

n=1

q(Rij
n ), (1)

where Rij
n is the bitrate of the n-th frame from sender i to receiver j, and q(·) is a

non-decreasing function which maps the selected bitrate to the video quality per-
ceived by user. To describe the fluency of playback, we represent the rebuffering
time as QoEij

reb, which is computed by:

QoEij
reb =

k∑

n=1

T ij
n , (2)

where T ij
n = size of framen

Rij
n

is the time required by downloading the n-th frame
at the rate Rij

n .
To consider the frequent quality variations in streaming, we define the vari-

ation of quality as QoEij
var, which is calculated by:

QoEij
var =

k−1∑

n=1

|q(Rij
n+1) − q(Rij

n )|, (3)

which represents the changes in video quality to influence smoothness.
We further define the latency of k continuous frames from sender i to receiver

j as QoEij
del, which is computed by:

QoEij
del = T

down(ij)
k − T

up(i)
k + B

down(ij)
k , (4)

where T
down(ij)
k is the time when the receiver j received all k frames from i,

T
up(i)
k is the time when the sender i sent the first frame, and B

down(ij)
k is the

buffer usage when the last frame is received.
With the above notations, the server can form a comprehensive QoE evalua-

tion from sender i to receiver j representing by a weighted sum of the four QoE
metrics (i.e. video quality, smoothness, rebuffering time and latency), which is
written as

QoEij = μi,j
1 QoEij

hd − μi,j
2 QoEij

reb − μi,j
3 QoEij

var − μi,j
4 QoEij

del, (5)

where W = (μi,j
1 , μi,j

2 , μi,j
3 , μi,j

4 ) is a set of non-negative weights corresponding
to users’ preferences on the video stream (from sender i to receiver j) quality,
rebuffering time, variation, and latancy, respectively.
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3.3 Optimization Objective

The overall optimization objective of the multi-party live streaming system
intends to maximize the sum of QoEs of all of the senders and receivers in
the system:

max
∑

i

∑

j

QoEij , (6)

Table 1. Notations in MetaLive

Notation Description

Rt Bitrate of each link at time t

Jt Bitrate variation of each link between t and t − 1

Bt Buffer occupancy of each receiver relative to each sender at time t

Dt Delay of each link at time t

Mt QoE weights of each receiver relative to each sender at time t

ω Task potential variable

τ State-action trajectory

qφ Variational inference network

πθ Policy network

with regards to the following bandwidth constraints:

– The bitrate of an uploading frame is limited by the sender’s uplink bendwidth.
If we denote the uplink bandwidth of sender i for sending the n-th frame as
Cup(i,n), it requires

max
j

{Rij
n } ≤ Cup(i,n). (7)

– The sum of bitrates of all received frames is limited by the receiver’s downlink
bandwidth. If we denote the downlink bandwidth of receiver j when receiving
the n-th frame as Cdown(j,n), it requires

∑

i

Rij
n ≤ Cdown(j,n). (8)

The above problem is a non-linear programming problem which can be solved
by convex optimization or heuristics [19]. However, such a model-based solution
may encounter several drawbacks, e.g., failing to achieve optimal performance
across a broad set of network conditions with conflict QoE objectives, and lacking
of the ability of adaptation to dynamic user requirements. Therefore we consider
a learning-based bitrate adaptation approcah in our solution, which is introduced
in the following section.
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4 MetaLive Solution

4.1 Collaborative Bitrate Adaptation with Reinforcement Learning

In this section, we propose a novel meta-reinforcement learning (MRL) based
method called MetaLive for adaptive bitrate coordination for multi-party live
streaming, and ultimately improve the performance of learning new tasks.

The collaborative bitrate adaptation problem for multi-party live streaming
can be formulated with a deep reinforcement learning (DRL) framework, where
learner observes the network environment individually and take actions select
the best upload and download bitrates to maximize the expected QoE of the
system. The notations used in problem formulation are summarized in Table 1.

Specifically, the DRL framework consists of the following basic elements.

Fig. 2. The MetaLive Framework.

– Agent: In each decision period (i.e., transmitting k frames), an agent is trig-
gered to choose upload/download bitrates for each client in the live streaming
application.

– State: The state observed by the agent consists of a number of network
parameters that is used for QoE evaluations. In the t-th time period, the
state observed by the DRL agent is denoted by

st = (Rt ,Jt ,Dt ,Bt ,Mt), (9)

where Rt is the set of download bitrates of video streams in period t repre-
senting the quality of video; Jt is the set of bitrate differences of each stream
between period t and t− 1 representing the variation of quality; Dt is the set
of average latencies of each stream in period t, Bt is the set of buffer usages
of each stream in period t, and Mt is the set of weights of each stream for a
receiver in period t representing the client’s quality preferences on different
upload streams during the live streaming session.

– Action: Upon observing a state st, the agent takes an action at to coordi-
nate the bitrates for the clients. The agent is typically deployed in the server
side, and it selects upload bitrate for each sender and receive bitrate for each
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receiver based on the policy learned by the DRL model. In deep reinforce-
ment learning, the agent’s bitrate coordination policy is generated by a deep
neural network (DNN) model with parameters θ. Using θ, we can denote the
generated policy by πθ(st, at).

– Reward: In each time period t, the agent observes the state st, and chooses an
action at. After applying the action, the state of the environment transitions
to st+1 and the agent receives a reward rt representing by the overall QoE
metric. The goal of the learning agent is to maximize the expected cumulative
discounted reward:

E[
∞∑

t=0

γtrt], (10)

where γ ∈ (0, 1] is a factor discounting future rewards.

In multi-party live streaming, N clients work in heterogeneous network envi-
ronments. Reinforcement learning trains N different agents to learn environment-
specific policies, but lacks generalization and adaptivity. Meta-learning, also
known as “learning to learn”, enables an AI model to learn various complex
tasks and leverage prior learning experience to adapt to changing conditions
[10]. In this paper, we propose a meta-reinforcement learning method for collab-
orative bitrate adaptation in heterogeneous network environments.

4.2 MetaLive Framework

The framework of MetaLive is shown in Fig. 2. In this framework, it consists of
two neural networks for meta-training: an inference network and a policy net-
work. The inference network collects the information from different clients in live
streaming, and infers the latent distribution of the learning tasks. The inference
network collects information from different clients and infers the latent distri-
bution of learning tasks, while the policy network samples states from the task
distribution, takes actions to the environment, and obtains rewards to maximize
QoE. The state, action, and reward data are stored in a historical experiences
library, and used to update both the inference and policy networks through an
updatable prior knowledge. The process is repeated until convergence.

With the meta-learning framework, MetaLive is expected to better adapt
and perform system-level bitrate adaptation for QoE requirements with dynamic
requirements for different numbers of participants in diverse network conditions.

4.3 Meta-Training Algorithms

To cope with the diverse scenarios of multi-party online streaming, we train a
meta-reinforcement learning agent with complex historically relevant tasks to
generate flexible bitrate adaptation policies. To this end, we refer to the ideas of
TRIO (Tracking, Inference, and policy Optimization) [13] for meta-training the
proposed reinforcement learning model. Specifically, we train the DRL model
based on a given family of tasks from different prior distributions to infer the
correct prior distribution for future tasks in the test environment.
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We model the learning task as a Markov decision process [2]: M = (S,A,
R,P, s0, γ), where S is the state space, A is the action space, R is the reward
function, P is the policy, s0 is state distribution, and γ is the discount factor.

The goal of the agent is to find a policy that:

arg max
π

Eωt∼ρ[
T−1∑

t=0

E[
Ht−1∑

h=0

γhrt,h|Mωt
, π]], (11)

i.e., maximize the cumulative reward. We follows the settings similar to [13].
More precisely, the proposed meta-training process consists two parts:

– A variational inference module qφ(τ, z), which can fast infer the potential
distribution of parameters from an empirical sample of a given task sequence,
where φ represents the parameter of the model.

– A policy network module that acts on exploration and policy generation
πθ(s, qφ), where θ represents the parameter of the model. It selects the action
on the potential parameters of a given state and distribution. During testing,
we use curve fitting to track the evolution of potential parameters.

The inference module is used to infer the latent task distribution from the
clients in live streaming using trajectory from historical experience and prior
parameter z. Here we adopt the variational inference technique [3] to minimize
the expected Kullback-Leibler (KL) divergence between the output of the infer-
ence module and the real posterior distribution to train the inference network:

arg min
φ

E[Eω̂∼qφ
[logp(τ |ω̂, z)] + KL(qφ(τ, z)‖pz)]. (12)

This could be done by Monte Carlo sampling: the prior parameter z is sam-
pled from p(z) and the latent variable is sampled from p(z). Thus we get the
optimization objective [13]:

arg min
φ

n∑

i=1

(‖μφ(τi, zi) − ωi‖2 + Tr(
∑

φ

(τi, zi))

+
λ

Hi
KL(qφ(τi, zi)‖pzi

)).

(13)

The policy network aims to make its action for the highest reward while
considering exploration. We adopt a Bayesian optimization strategy to achieve
this goal. The strategy is meta-trained to directly maximize the rewards on the
observed state by proximal strategy optimization [13,16]:

arg min
θ

n∑

i=1

Hi−1∑

h=0

γhrh,i (14)
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5 Experiments

In this section, we conducted extensive experiments based on real-world network
traces to evaluate the performance of MetaLive. The evaluation mainly focuses
on answering the following questions.

1. How does MetaLive perform compared to the previous bitrate adaptations
algorithms in terms of QoEs? We found that MetaLive outperforms the best
available solutions in terms of QoE in all test scenarios, where up to 13.12%
QoE improvement was observed in the WiFi networks.

2. Whether MetaLive can adapt to more complex network environments and
user needs? We found that MetaLive can also achieve better QoE performance
than existing methods when user preferences are constantly changing.

The details of the experiments are discussed in the following.

5.1 Implementation

In our implementation of the proposed MetaLive scheme, the variational infer-
ence network qφ(τ, z) and the policy network πθ(s, qφ) are three-layer fully con-
nected neural networks using rectified linear units (ReLU) as the activation func-
tion for each neuron. We used RMSPropOptimizer to train the neural network
on TensorFlow 1.13.1 with learning rates of 0.01 (qφ) and 0.0001 (πθ), respec-
tively. By default, the reward discount factor γ = 0.99. The network structure
of MetaLive is shown in Table 2. We use the simulated multimedia real-time
streaming environment provided in [19], the number of clients in the system is
set to 5 by default. We also follow the paper of [19] to set the default parameters
for the simulations.

Table 2. Network Parameters of MetaLive.

Network Layers Parameters Layer hyper-parameter

qφ FC + Conv1d 128*5 + 128*4*1*3 bias = True; stride = 1

FC 128*1 bias = True

LSTM 128*1 dropout = 0.8

πθ FC + Conv1d 128*4 + 128*4*1*3 bias = True; stride = 1

FC 128*1 bias = True

FC 1*1 bias = True

5.2 QoE Parameters

In the experiments, we set the mapping function in Eq. (1) as q(Rn,v) = Rn.
We use different combinations of W to simulate different scenarios, where
W = (μij

1 , μij
2 , μij

3 , μij
4 ) is non-negative weighting parameters corresponding to
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users’ preference on the video quality, rebuffering time, variation, and latency,
respectively. Same as [19], we set μij

1 = 1, μij
2 = 1, μij

3 = 1 and μij
4 = 20 to

show the importance of latency, except for μ0,2
1 = 0.6, μ0,2

4 = 28 (indicating a
preference to sacrifice bitrate for reducing latency) and μ1,3

1 = 1.2, μ1,3
4 = 16

(indicating a preference to sacrifice latency for reducing bitrate).

5.3 Network Traces

To evaluate the algorithms on realistic network conditions, we generate several
network trace scenarios using three real-world network communication datasets.

1. 3G Scenario: We generate this trace using a 3G/HSDPA mobile dataset col-
lected in Norway [15].

2. WiFi Scenario: We generate this trace using the broadband dataset provided
by the FCC [1].

3. 4G Scenario: We generated this trace from a 4G network dataset collected in
Sydney [4].

We assign each of the three types of traces to a stream in the simulator and
generate frame sequences at a rate of 30 frames per second.

5.4 Baseline Algorithms

We compare MetaLive with three state-of-the-art bitrate adaptation algorithms
for multi-party live streaming coordination problem:

1. BBA [8]: is a buffer-based method that estimates future capacity based on
the playback buffer occupancy from past observations to select the bitrate.

2. MultiLive [19]: A model-based bitrate adaptation algorithm, which calculate
the bitrate for each pair of live streaming participants based on non-linear
programming, and then adjusts the bitrate based on buffering feedback to
avoid the accumulation of systematic errors.

3. MultiLive NLP [19]: A simpler version of MultiLive where buffering feedback
adjustment is not performed.

Fig. 3. CDFs of QoEs of different algorithms on the WiFi scenario.
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Fig. 4. CDFs of QoEs of different algorithms on the 3G, WiFi and 4G scenario.

5.5 Comparison of Performance on Three Network Scenarios

We compared the performance of MetaLive with the baseline algorithms on
three network scenarios. The Cumulative Distribution Functions (CDFs) of the
algorithms on different QoE metrics (on WiFi network) are illustrated in Fig. 3.
The overall QoE results are shown in Fig. 4, and the average results in all traces
are shown in Table 3.

We obtained the following results from the figures and table.

1. In the 3G scenario, MetaLive improves the overall QoE by 5.04% compared
to MultiLive, the best-performing algorithm in the baseline. This improve-
ment is mainly due to the improvement in average rebuffering time, average
bitrate variation and average latency improvement after sacrificing some of
the average bitrate.

2. In the WiFi scenario, compared with MultiLive, the SOTA algorithm for
multi-party live streaming, MetaLive improved 13.12% in average QoE, which
is the most among the three scenarios. The reason lies in that the baseline
algorithms cannot adapt to the network fluctuation caused by the dynamic
change of bandwidth in WiFi network, whereas the meta-reinforcement learn-
ing approach can effectively reduce the average rebuffering time, average
bitrate variation and average latency due to the power of meta-training.

3. In the 4G scenario, compared with MultiLive, MetaLive improved the average
QoE by 3.29%, which is not as significant as that of WiFi and 3G scenarios.
The reason could be that the bandwidth in the 4G scenario is sufficient and
stable, resulting in a good performance for both model-based and learning-
based solutions.

In summary, it can be seen from the table that MetaLive outperforms all baseline
algorithms in various QoE metrics in all network scenarios.
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Table 3. Comparison of average bitrate (kbps), rebuffering time (ms), variations, delay
(ms) and their corresponding QoE metrics on different network scenarios.

Trace Method Bitrate Reb. Variation Delay QoE

3G BBA 109.987 152.939 26.207 19.258 510.144

MultiLive 224.44 62.057 1.386 12.7 152.532

MultiLive NLP 107.138 137.765 2.691 26.207 507.739

MetaLive 206.817 53.592 1.200 11.444 542.425

WiFi BBA 825.792 146.833 8.966 14.475 721.003

MultiLive 938.246 56.458 8.370 11.5833 865.697

MultiLive NLP 728.368 127.551 11.560 13.383 644.557

MetaLive 1136.825 47.867 5.534 9.014 982.489

4G BBA 3254.97 233.200 20.884 15.231 3033.114

MultiLive 3370.257 143.56 19.748 15.096 3196.874

MultiLive NLP 3137.287 213.955 22.923 15.3980 2918.196

MetaLive 3543.39 134.575 16.898 15.493 3325.908

5.6 Comparison of Performance Adaptive Capability

We further explore the performance of different algorithms with dynamic chang-
ing of user preferences during the live streaming. We set the clients’ prefer-
ence weights W = (μij

1 , μij
2 , μij

3 , μij
4 ) within a predefined range, where μij

1 ∈
{0.6, 1.2, 1.8}, μij

2 ∈ {0.7, 1, 2}, μij
3 ∈ {0.5, 1.2, 3}, and μij

4 ∈ {16, 22, 28}. The
preference weights are dynamically changing every 5 s with random values from
the above ranges. This will test the adaptive capability of the algorithms.

Table 4. Comparison of average bitrate (kbps), rebuffering time (ms), variations, delay
(ms) and their corresponding QoE metrics on WiFi Scenario.

Method Bitrate Reb. Variation Delay QoE

BBA 745.92 160.723 9.876 15.662 648.927

MultiLive 934.322 50.501 8.801 9.844 809.947

MultiLive NLP 642.413 140.306 13.065 13.383 644.557

MetaLive 1035.510 48.628 6.654 8.962 961.844

The experiment is conduct on the WiFi scenario, and the results are com-
pared in Table 4. As shown in Table 4, MetaLive reveals an advantage due to
meta-learning, and its QoE improves by 18.76% compared to MultiLive.

Specifically, comparing to the second-best algorithm, MetaLive improves the
bitrate by 8.23%, reduces the rebuffering time by 3.71%, significantly reduced
the average variation in bitrate by 24.4%, and in terms of latency, it manages
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to reduce it by 8.96%. This confirms the adaptive capability of MetaLive in the
conditions of dynamic changing users’ preferences.

5.7 Trade-Off Between QoE Metrics

We also studied the trade-off between bitrate, rebuffering time, variance of
bitrate, and delay. The normalized results are visualized in Fig. 5. As shown
in the figure, BBA and MultiLive NLP yields much lower comprehensive QoEs
than the other algorithms. In the 3G scenario, MultiLive has higher Bitrate,
but its rebuffering time, variance, and delay are worse than MetaLive. MetaLive
outperforms all baselines in WiFi and 4G scenarios, achieves the best trade-off
between conflict QoE goals.

Fig. 5. Trade-off between bitrate, delay, rebuffering time, and variance.

6 Conclusion

In this paper, we addressed the challenging problem of collaborative bitrate adap-
tation in multi-party live streaming, and proposed a novel meta-reinforcement
learning based solution called MetaLive to solve the problem. MetaLive formu-
lated the bitrate coordination problem as a reinforcement learning task, where
a learner observes the environment to learn from the historical experiences, and
takes actions to interact with environment and select the best upload and down-
load bitrates for individual participants. We introduced a meta-training method
to train an agent to learn to carry out various complex tasks and generate bitrate
adaptation policies to maximize expected QoEs in diverse environments. Exten-
sive experiments based on real-world traces showed that MetaLive can provide
better QoEs when compared to the state-of-the-art methods in all test scenarios.
Moreover, MetaLive was able to achieve good performance in various dynamic
environments, demonstrating the superiority and adaptivity of the meta-learning
based solution.
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Abstract. Scheduling n independent tasks onto m identical processors
in order to minimize the makespan has been widely studied. As an alter-
native to classic heuristics, the Slack algorithm groups tasks by packs
of m tasks of similar execution times, and schedules first the packs with
the largest differences. It turns out to be very performant in practice,
but only few studies have been conducted on its theoretical properties.
We derive novel analytical results for Slack, and in particular, we study
the performance of this algorithm from an asymptotical point of view,
under the assumption that the execution time of the tasks follow a given
probability distribution. The study is building on a comparison of the
most heavily loaded machine compared to the least loaded one. Fur-
thermore, we extend the results when the objective is to minimize the
energy consumption rather than the makespan, since reducing the energy
consumption of the computing centers is an ever-growing concern for
economical and ecological reasons. Finally, we perform extensive simula-
tions to empirically assess the performance of the algorithms with both
synthetic and realistic execution time distributions.

1 Introduction

The problem of minimizing the computation time when scheduling n indepen-
dent tasks on m identical processors is at the basis of scheduling theory, and a
building block for solving many more complicated problems, hence it remains
very important even though it has already been widely studied. Using Graham’s
notation [15], this problem is denoted P ||Cmax.

While the problem is NP-complete (equivalent to 2-partition with two pro-
cessors, or 3-partition when the number of processors m is part of the input),
an easy way to get efficient solutions consist in ordering the n tasks according
to some criterion, and then perform a list schedule, i.e., schedule the next task
of the list on the least loaded processor, hence never leaving a processor idle.
A classic ordering is the one of Lpt (Longest Processing Time), which orders

*This work has been supported by the EIPHI Graduate School (contract ANR-17-
EURE-0002).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
J. Cano et al. (Eds.): Euro-Par 2023, LNCS 14100, pp. 81–95, 2023.
https://doi.org/10.1007/978-3-031-39698-4_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-39698-4_6&domain=pdf
https://doi.org/10.1007/978-3-031-39698-4_6


82 A. Benoit et al.

tasks from the longest to the smallest [16]. This algorithm has proven to have
good theoretical and even better practical performance. In particular, its rate of
convergence has been studied, and new results were recently established when
the distribution of task costs is generated using uniform integer compositions [5].

More recently, the Slack heuristic was proposed in [9], showing promis-
ing empirical performance compared to Lpt. Its principle is based on grouping
tasks of similar execution times into packs, sorting the resulting packs by non-
decreasing similarity (the similarity of a pack denoting the maximum difference
of execution times between its tasks), and then scheduling the tasks in the order
determined by the packs, following a list schedule (assign the next task to the
least loaded processor). The idea is that a single pack cannot bring the imbalance
of the processors too high, and the hope is that the packs balance each other.
The objective is that the tasks in the last scheduled packs are very close to
each other, hence they will not create a large imbalance at the end of the sched-
ule. While this Slack algorithm benefits from favorable empirical performance,
fewer analyses have been conducted on its theoretical properties.

These heuristics were proposed in order to minimize the makespan, i.e., the
maximum execution time among the processors. Another core problem consists
in minimizing the energy consumption, as the energy consumption of current
platforms is an ever-growing concern, both for economical and ecological reasons.
To optimize the energy consumption, modern processors can run at different
speeds, and their power consumption is then the sum of a static part (the cost
for a processor to be turned on) and a dynamic part, which is a strictly convex
function of the processor speed. More precisely, a processor running at speed s
dissipates a power of sα Watts, where 2 ≤ α ≤ 3 [2]. Hence, a higher speed allows
executing a task more rapidly, but at the price of a much higher amount of energy
consumed. Finding a schedule now consists in deciding on which processor to
execute each task and to decide at which speed the task is executed.

Therefore, we revisit this classic problem of scheduling n independent tasks
onto m identical processors, with the aim of deriving analytical results for Slack,
when the goal is to minimize the makespan or the energy consumption. We
study the performance of Slack from an asymptotical point of view, under
the assumption that the execution times of the tasks follow a given probability
distribution. The study is building on a comparison of the most heavily loaded
machine compared to the least loaded one, and hence it provides interesting
insights both for the study of the classic makespan objective function, and its
translation to the energy consumption. The goal of this paper is therefore to
answer two main questions left unresolved in the literature so far: (i) provide
a theoretical study to analyze the performance of Slack, and (ii) consider the
energy consumption in the theoretical and empirical analysis of the algorithms.
Our main contributions are the following:

– A fundamental bound related to the result of Slack (Sect. 4);
– A convergence rate for the makespan of Slack when using uniform and

exponential distributions, by applying the bound of Sect. 4 (Sect. 5.1);
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– A general result for bounding the energy consumption (agnostic of the algo-
rithm and the task distribution) and its application to Slack, by applying
the bound of Sect. 4 (Sect. 5.2);

– Simulations for comparison with the theoretical bounds that were computed
for Slack and Lpt (Sect. 6).

First, Sect. 2 summarizes the existing contributions related to either the
energy minimization problem or Lpt and Slack. Section 3 presents the prob-
lems and algorithms (Lpt and Slack). Then, Sect. 4 presents a useful bound on
the result given by Slack. Section 5 proposes applications of this bound: theo-
retical asymptotic results related to the minimization of the makespan and the
energy with Slack. In the case of the energy, Sect. 5.2 also gives a method to
derive energy related guarantees for any algorithm bounded similarly to Slack
in Sect. 4. Section 6 presents the experimental results of the empirical study of
Lpt and Slack. Finally, Sect. 7 concludes.

2 Related Work

Lowering the energy consumption of computational tasks has been widely stud-
ied in the last decades, be it in the context of High Performance Computing or
in other contexts, such as Cloud Computing. Many models have been proposed
for the energy consumption of CPUs. For instance, the energy consumption is
scaling quadratically with the speed of the CPU in [22], and there is a focus on
the online evaluation of the expected idle time. In [23], the only assumption is
that the energy consumption is a convex function of the speed of the CPU, and
clairvoyant online and offline solutions are proposed to the problem. The heuris-
tics presented in these two articles are then evaluated, either empirically in [22],
or with approximation ratios in [23]. In our work, we explore another way of
evaluating algorithms, following the remark that with large systems, stochastic
asymptotic results should be relevant.

Recent surveys such as [10] and [21] compile various techniques used for energy-
efficient computing, including scheduling techniques. These techniques may use
either Dynamic Voltage and Frequency Scaling (DVFS), as in [17], where the fre-
quency (and hence the speed) of processors may be chosen, or Dynamic Power
Management (DPM) as in [4]. These studies propose algorithms, but they mainly
focus on an empirical evaluation of these algorithms, without theoretical study.

As for scheduling algorithms that have low complexities (and therefore low
energy consumption), Lpt has been a well known algorithm for decades and is
known to provide good theoretical and practical performance while keeping a
low time complexity in O(n log n) [16]. A more recent algorithm, Slack, also
remains with an O(n log n) time complexity, while providing results that are
sometimes better than Lpt [5,9].

There are multiple results about the asymptotic behavior of Lpt under differ-
ent assumptions. Frenk and Rhinnooy Kan [14] and Coffman et al. [8] study the
difference between Lpt and the optimal solution in the case where the execution
times of the tasks follow a probability distribution of cumulative distribution
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function of the form F (x) = xα, where 0 < α < +∞. Loulou [18] and Piersma
and Romeijn [19] do not look at specific distributions, but instead they study Lpt
under the assumption that the execution times are independent and identically
distributed random variables. More recently, Benoit et al. [5] studied the asymp-
totic optimality of Slack and Lpt under the assumption that the execution
times are generated using a distribution called the uniform integer composition.

3 Framework

The P ||Cmax problem is a classic scheduling problem, where n tasks have to
be scheduled on m identical machines, with the objective function of makespan
minimization, i.e., minimize the execution time of the machine that completes
last (Cmax). There are no constraints on tasks, which can be assigned to any
machine in any order. Each task has a number of operations to perform, that we
call its work and denote by wi, and the time to execute the task is usually ti = wi,
assuming that the machine executes one operation per time unit (speed s = 1).
The problem complexity is well known, and in particular the associated decision
problem is NP-complete as soon as m ≥ 2.

List Scheduling and LPT. In order to solve this P ||Cmax problem, a sim-
ple but effective heuristic algorithm consists in never letting a machine idle,
i.e., as soon as a task completes on a machine, a new task is assigned to this
machine. This is called list scheduling, and it can be implemented as in Algo-
rithm 1, by keeping the load of each machine in a vector

−→
W of length m ini-

tialized to (0, 0, . . . , 0). For each task, we assign it to the currently least loaded
machine, and the makespan is the maximum value of the vector

−→
W at the end

of the execution. Any list schedule (whatever the order of tasks) is know to be a
(2− 1

m )-approximation algorithm [16]. A variant of the List Scheduling heuristic
consists in first sorting the list L by non-increasing task works, and it is called
Longest-Processing-Time-first (Lpt for short). This can be used if all tasks are
known beforehand (offline scheduling), and it improves the approximation ratio
of the algorithm to (43 − 1

3m ) [16].

Slack. In this paper, we mainly focus on the Slack algorithm, that was intro-
duced in [9] and consists in applying the List Scheduling heuristic with a partic-
ular pretreatment on the list of tasks, as detailed in Algorithm 2. We first fill the

Algorithm 1. ListScheduling(L,m)
Require: List L of n positive floats (task works); Number of processors m.

1: Let
−→
W be a vector of length m initialized to

−→
W = (0, 0, . . . , 0);

2: for w ∈ L in the order they appear in the list do

3: Let j be the index of a minimal element of
−→
W ;

4:
−→
W [j] =

−→
W [j] + w;

5: end for
6: return

−→
W ;
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Algorithm 2. Slack (L,m)
Require: List L of n positive floats (task works); Number of processors m ≤ n.
1: Add (−n mod m) elements of work 0 at the end of L;
2: r = n + (−n mod m);
3: L′ = [x1, . . . , xr] is obtained by sorting L non-increasingly;
4: for 0 ≤ i ≤ r

m
− 1 do

5: Ki = [xim+1, xim+2, . . . , xim+m];
6: αi = xim+1 − xim+m;
7: end for
8: Let H = [αi1 , . . . , αi r

m
] = [β1, . . . , β r

m
] be a non-increasing sequencing of the αi’s;

LSlack is obtained by concatenating the Ki’s in the same order as the α’s in H.

9:
−→
W =ListScheduling(LSlack, m);

list L to have a number of elements r that is a multiple of m, by adding dummy
tasks of work 0. Then, tasks are sorted by non-increasing works and grouped by
packs of m tasks, and then the packs are themselves sorted by non-increasing
difference between the work of the longest task of the pack and the smallest
one (αi’s). These differences are denoted βk, where β1 ≥ β2 . . . ≥ βr/m. They
correspond to the sorted αi’s.

Let us denote by ci(j) the load of processor j after i × m tasks (i.e., the i

first packs) have been scheduled. Hence, ci(j) =
−→
W [j] after i × m steps of the

loop line 2 of Algorithm 1. One has for instance c0(j) = 0 for all j (initial load),
and then at each iteration i, we schedule one more pack with m tasks. We then
define δi = max0≤j,j′<m(|ci(j) − ci(j′)|), which is the maximum difference of
load between two processors after iteration i.

Note that these values βi and δi can be extended to any list algorithm, in
particular Lpt, by simply considering the list of a tasks as a succession of n

m
packs.

From Makespan to Energy Consumption. When the goal is to minimize
the energy consumption, we further consider that the frequency of the processors
can be scaled using DVFS (Dynamic Voltage and Frequency Scaling). Hence,
these processors have a static power Pstat, and can be operated at any speed (or
frequency) s ∈ R

∗
+ [3], while we assumed so far that s = 1.

The execution time of task Ti at speed s then becomes ti,s = wi

s . In terms
of energy consumption, there is a static part, which corresponds to the power
consumed when the m processors are turned on, during a time Cmax, hence a
total of m × Cmax × Pstat. For each task Ti, there is also a dynamic energy
consumption, directly related to the speed s at which the processor operates the
task. Using a general model, the dynamic energy consumption is ti,s × sα [2],
where α > 1 (in general, 2 ≤ α ≤ 3). Finally, the total energy consumption of a
schedule of length Cmax, where Ti is operated at speed si, is:

E = m × Cmax × Pstat +
n∑

i=1

ti,si
× sα

i .
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Table 1. Main Notations

Symbol Definition

m number of processor

n number of tasks

{T1, . . . , Tn} the n tasks

wi work of Ti (corresponding to the number of operations required by the
task)

ti = wi the execution time of Ti at speed 1

ti,s = wi
s

execution time of Ti at speed s

m × Cmax × Pstat static energy consumption for a duration Cmax

ti,s × sα dynamic energy consumption of Ti at speed s

δi largest difference between the total execution times of two processors
after having processed i × m tasks (first i packs)

βi largest difference between the execution time of any two tasks in pack i

ci(j) total execution time of processor j after i × m tasks have been scheduled
(first i packs)

Wj =
∑

alloc(i)=j

wi total work (number of operations) on processor j; alloc(i) is the processor
on which Ti is allocated

Wmax = max
1≤j≤m

Wj maximal number of operations allocated to a processor

W =
∑

1≤i≤n

wi total number of operations to perform

−→
W = (W1, . . . , Wm) the −→. notation is used for m-length vectors (not only for W )

‖−→x ‖α = α
√∑

xα
i classic α-norm of a vector

For convenience, the main notations are summarized in Table 1.

4 A Bound for SLACK

This section is dedicated to proving a fundamental bound related to Slack.
Let X be a distribution with positive values. We denote by C(n,m,X ) the

random variable of the makespan returned by the Slack algorithm on m proces-
sors on a list of n tasks that are independent random variables of distribution X .
Let X1, . . . , Xn be n independent random variables distributed according to X .
Let X1:n ≤ X2:n ≤ . . . ≤ Xn:n be associated order statistics. Particularly X1:n is
the minimum of the Xi’s and Xn:n the maximum. Let Di = (Xi:n − Xi−1:n) for
every 1 ≤ i ≤ n, with the convention X0:n = 0. The Di’s are classically called
spacings of adjacent order statistics. Let ΔX ,n be the random variable of the
maximal value of Di’s, that is the maximal difference between two consecutive
Xi:n (and between 0 and X1:n).

Theorem 1. When using Slack (Algorithm 2), max
1≤i,j≤m

(Wi − Wj) ≤ mΔX ,n.

We provide here a sketch of the proof (see the companion research report [6]
for all the complete proofs).
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Proof (Sketch of proof). The proof is decomposed into a sequence of lemmas,
aiming at proving that for every j, δj+1 ≤ max(βj+1, δj). This inequality means
that the difference between the most loaded processor and the least loaded pro-
cessor after j rounds of task affectation is bounded by either the difference after
the previous round, or the maximum difference between the tasks handled at this
round of affectation. It is proved by disjunctive elimination depending on the
number of tasks allocated at the current step to the processor maximizing cj+1

(i.e., maximizing the total execution time after step j).
This result is then used for an induction on j to prove that max

1≤i,j≤m
(Wi −

Wj) ≤ β1. This result means that at the end of the execution of Slack, the load
difference between the most and the least loaded processors is bounded by β1,
the difference between the largest and the smallest tasks of the first round of
task affectation. Finally, we use the fact that β1 ≤ (m − 1) × ΔX ,n to derive the
desired result. �

5 Convergence Speed of SLACK

In this section, we use the fundamental bound found in Sect. 4 to derive asymp-
totic results on the optimality of Slack, first in terms of makespan in Sect. 5.1,
and then in terms of energy consumption in Sect. 5.2.

5.1 Convergence of the Makespan

This section is dedicated to prove asymptotic results on the optimality of Slack.
The following main result is a direct application of Theorem 1:

Proposition 1. The makespan of Slack differs from the optimal one by at
most mΔX ,n:

0 ≤ C(n,m,X ) − OPT ≤ mΔX ,n.

Now, we will use known results on order spacings to obtain convergence
results for Slack. It is proved in [20, corollary 1.4], [1, Section 3] that

E
(
ΔU [0,1],n

) ∼ ln n

n + 1
, (1)

where U [0, 1] is the uniform distribution between 0 and 1.
From Proposition 1 and Eq. (1), one has the following result, proving that

for a fixed m, the Slack algorithm provides a scheduling that converges in
expectation to the optimal (for the makespan):

Corollary 1. For any fixed m ≥ 2,

0 ≤ E (C(n,m,U [0, 1])) − E (OPT ) = O

(
m

ln n

n + 1

)
.
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As for the exponential distribution, it is shown in [12] that, almost surely,

lim sup
n→+∞

(
ΔE1,n

ln lnn

)
= 1, (2)

where E1 is the exponential distribution (with rate 1).
Using Proposition 1 and Eq. (2), we then have the following result:

Corollary 2. For any fixed m ≥ 2, one has almost surely

0 ≤ lim sup
n→+∞

(
C(n,m, E1) − OPT

m ln lnn

)
≤ 1.

Corollary 2 does not show a convergence of the makespan of Slack to the
optimal, but that, almost surely, the gap between their difference is under control
since ln ln n has a very slow growing speed.

5.2 Convergence of the Energy Consumption

Building upon the previous results bounding the δi’s for Slack and analyzing
its impact on the makespan, we now move to the problem of minimizing the
total energy consumption E, where the speed of each processor can take any
value in R

∗
+. The main result, stated in Theorem 2, shows how to adapt a classic

scheduling algorithm (without speed and energy consideration) into an energy-
oriented one. The quality of the solution is bounded by a factor depending on the
maximal difference δ between the execution times of the last finishing processor
and the first finishing processor.

We show in the companion research report [6] that a better solution can
always be achieved by using a constant speed per processor, and by modifying
the speeds so that all processors finish at the same time.

Theorem 2. If an algorithm without speeds outputs a schedule with max(Wi −
Wj) = δ, then we can transform it in polynomial time, with the optimal choice
of speeds, into a schedule with E ≤ (1 + mδ

W )OPT, where OPTis the minimal
energy consumption that could be attained.

Proof (Sketch of proof). We assume that the tasks are already assigned to the
processors, with processor j having a total work of Wj . We write �W the vec-
tor containing every Wj . In this case, we can choose optimally the speed of
processor j as sj = Wj

α
√

m×Pstat

‖ �W‖
α

α
√

α−1
.

We then bound the optimal energy EOPT by induction over m to show that:

P
α−1

α
stat ×

[
(α − 1)

1
α + (α − 1)

1−α
α

]
× W ≤ EOPT.

We also bound the worst case for the energy of the algorithm EA:

EA ≤ P
α−1

α
stat ×

[
(α − 1)

1
α + (α − 1)

1−α
α

]
× (W + mδ).

Finally, from these two bounds, we derive the desired result. �
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Proposition 2. The energy consumption of Slack differs from the optimal
one by at most m2ΔX ,n

OPT
W :

0 ≤ E(n,m,X ) − OPT
OPT

≤ m2ΔX ,n

W
.

Analogously to Proposition 1, Proposition 2 provides asymptotic results on
Slack used for optimizing the energy consumption. It is derived directly from
Theorems 1 and 2. Further results can be obtained both for the uniform distribu-
tion in Corollary 3 and for the exponential distribution in Corollary 4. Intuitively,
the result shows that the relative difference between the energy provided by the
adapted Slack algorithm and the optimal energy consumption converges to 0
almost surely, when n → +∞, with a speed at least m2 log n

n2 for the uniform
distribution and m2 log log n

n for an exponential distribution.
It is proved in [11] that, almost surely,

lim sup
n→+∞

(
nΔU [0,1],n − ln n

2 log n

)
= 1.

Corollary 3. When using Slack as a base scheduling algorithm with uniform
distribution for the tasks, one has almost surely

lim sup
n→+∞

(
ESlack (n,m,U [0, 1]) − OPT

OPT
× n2

2(2 + ln 2)m2 log n

)
≤ 1.

The proof is available in the companion research report [6].
As proved in [12], with E1 the exponential distribution of rate 1, almost surely,

lim sup
n→+∞

(
ΔE1,n

ln lnn

)
= 1.

The rate λ of an exponential distribution is a scaling parameter, so almost surely

lim sup
n→+∞

(
λΔEλ,n

ln lnn

)
= 1.

Corollary 4. With Slack as a base scheduling algorithm with exponential dis-
tribution of rate λ for the tasks, for any fixed m ≥ 2, one has almost surely

lim sup
n→+∞

(
ESlack (n,m, Eλ) − OPT

OPT
× n

m2 ln lnn

)
≤ 1.

6 Simulations

We first present the simulation setting in Sect. 6.1, before studying the δj ’s
and βj ’s in Sect. 6.2, and the energy consumption in Sect. 6.3.



90 A. Benoit et al.

6.1 Experimental Setting

All the following experiments have been conducted on Python 3.8.10. Two types
of instances have been used. Both instances have in common that the platform
is composed of m = 100 processors.

Theoretical instances have been generated using the random package. These
instances have been generated following commonly used random distributions:
the uniform distribution, U [0, 1]; the exponential distribution of rate 1, E1; the
distribution of cumulative distribution function F (x) = xα where 0 < α <
∞ [14]. These simple distributions correspond to the ones for which there exist
convergence results in the literature and they cover a wide range of situations.

Realistic instances have been generated using the experimental cumulative dis-
tribution functions of actual workloads [13]. These real workloads can be found
on the Parallel Workload Archive from the website https://www.cs.huji.ac.il/
labs/parallel/workload/. We used 3 specific instances: KIT ForHLR II with
114,355 tasks; NASA Ames iPSC/860 with 18066 tasks; and San Diego
Supercomputer Center (SDSC) DataStar with 84907 tasks.

6.2 Simulations: Study of δj and βj

In this section, we describe the results of our simulations comparing the values of
δj and βj (the largest differences between the execution times of the processors
and the tasks, as defined in Sect. 3) over the execution of Slack and Lpt.

In Figs. 1 and 2, we can see the evolution of the quantities studied in Sect. 4
when bounding the performance of Slack. The quantities are:

– βj the difference between the largest and the shortest task of pack j (i.e., at
step j of the algorithm), it describes the imbalance between consecutive tasks
during the execution of the algorithms;

– δj the difference between the largest processor and the shortest processor
after step j of the algorithm (i.e., after allocating j × m tasks), it describes
the imbalance between processors during the execution of the algorithms.

With these experiments, we can both investigate the relation we stated in Sect. 4,
and investigate the unexplained “wave pattern” presented in [5].

In the case of tasks drawn through a uniform distribution with Fig. 1, we
observe that δj , the imbalance between processors, alternates between high and
low values, in a sort of wave pattern. With a new representation of the pattern,
we now present more elements explaining it. This pattern can be explained by
the fact that the imbalance created by m consecutive tasks is then canceled
by the m following tasks, as they have similar relative differences. Once the
imbalance on the processors have decreased, the next m tasks will restore a new
but smaller imbalance.

For most other distributions, on Fig. 2, Slack and Lpt perform similarly in
terms of makespan, which is characterized by the last value δ n

m
. Out of our six

https://www.cs.huji.ac.il/labs/parallel/workload/
https://www.cs.huji.ac.il/labs/parallel/workload/
https://www.cs.huji.ac.il/labs/parallel/workload/l_kit_fh2/index.html
https://www.cs.huji.ac.il/labs/parallel/workload/l_nasa_ipsc/index.html
https://www.cs.huji.ac.il/labs/parallel/workload/l_sdsc_ds/index.html
https://www.cs.huji.ac.il/labs/parallel/workload/l_sdsc_ds/index.html
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Fig. 1. Evolution of δj and βj (as defined in Sect. 3) during the execution of Slack
and Lpt with the uniform distribution U [0, 1] for the tasks. Each execution is done
with m = 100 processors and n = 100 000 tasks. The right graph is a zoomed version of
the 100 first values of δj and βj . Each point represents the average value of δj (resp. βj)
over 30 executions.

Fig. 2. Evolution of δj and βj (as defined in Sect. 3) during the execution of Slack
and Lpt with various probability distributions for the tasks. Each execution is done
with m = 100 processors and n = 100 000 tasks. Each point represents the average
value of δj (resp. βj) over 30 executions.
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examples, the only distribution for which Slack performs significantly better
than Lpt is the distribution with cumulative distribution function F (x) = x10,
namely the one for which there are a few small tasks but many large ones.

A closer look at the evolution of δj and βj gives more insights about the
differences of execution between Slack and Lpt, and allows us to understand
why Slack performs better than Lpt in some cases. Generally speaking, Slack
balances the different processors more quickly than Lpt, and then keeps them
balanced. In the specific case of F (x) = x10, Lpt performs significantly worse
than Slack because there is a high density of big tasks, and a low density of
small tasks. It means that the big tasks are easy to balance whereas the small
tasks are very different from each other. Lpt finishes its execution with small
tasks that have a very high difference βj , whereas Slack is able to balance the
processors using big tasks.

6.3 Simulations: Energy Minimization

In this section, we describe the results of the simulations, evaluating the energy
consumed by the schedules of the algorithms derived from Lpt and Slack (as
defined in Sect. 3).

We normalize the energy E because the value of W can vary depending on the
instance. Instead, we consider the relative difference between the energy found

by the algorithm and a lower bound on OPT, i.e.,
E−E W

m
,..., W

m

E W
m

,..., W
m

. We have shown

in the proof of Theorem 2 that EW
m ,..., W

m
was indeed a lower bound on OPT.

Fig. 3. Relative difference between the energy found by Slack or Lpt with the speed
strategy described in Theorem 2 and a lower bound on OPT, with various theoretical
probability distributions for the tasks. Each execution is done with m = 100 processors.
Each point represents the average value of energy over 30 executions.
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Fig. 4. Relative difference between the energy found by Slack or Lpt with the speed
strategy described in Theorem 2 and a lower bound on OPT, with various empirical
probability distributions for the tasks. For each number of tasks, the execution is
repeated 30 times with m = 100 processors. The thick lines represent the moving
median, while the ribbons extend to the moving minimum and maximum over 45
values.

The main conclusion that we can get from Figs. 3 and 4 is that Lpt and
Slack both perform very well on all created instances, both theoretical and
realistic. The schedule that the two algorithms output is at most a few percents
away from the optimal for very small instances, and the room for improvement
rapidly decreases to less than 10−8% for larger instances. It can be noted that
Slack performs better than Lpt on average, even if they are both near optimal.

7 Conclusion

This paper proposes a bound for Slack, a recent and efficient heuristic for
scheduling independent tasks on homogeneous machines, from which two asymp-
totic results are derived: on the makespan, with either uniformly or exponen-
tially distributed task costs; and on the energy consumption, thanks to a general
mechanism that can adapt algorithms for the makespan to this criterion.

Data Availibility Statement. The data that support the findings of this study are
openly available in figshare [7].
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Abstract. A cloud scheduler packs tasks onto machines with contra-
dictory goals of (1) using the machines as efficiently as possible while
(2) avoiding overloading that might result in CPU throttling or out-of-
memory errors. We take a stochastic approach that models the uncer-
tainty of tasks’ resource requirements by random variables. We focus on
a little-explored case of items, each having a Bernoulli distribution that
corresponds to tasks that are either idle or need a certain CPU share.
RPAP, our online approximation algorithm, upper-bounds a subset of
items by Poisson distributions. Unlike existing algorithms for Bernoulli
items that prove the approximation ratio only up to a multiplicative
constant, we provide a closed-form expression. We derive RPAPC, a
combined approach having the same theoretical guarantees as RPAP. In
simulations, RPAPC’s results are close to FFR, a greedy heuristic with
no worst-case guarantees; RPAPC slightly outperforms FFR on datasets
with small items.

Keywords: cloud scheduling · stochastic bin packing · stochastic
optimization · approximation algorithms

1 Introduction

Modern virtualization technologies—virtual machines (VMs) and Linux
containers—allow execution in parallel of dozens of independent tasks on a
single physical machine. Given the planet-wide scale [2] of the largest public
(AWS, Azure, GCP) and private (e.g. Google) clouds, even small improvements
in resource utilization slow the growth rate of the hardware fleets and thus save
equipment and electricity [2,3,20].

Bin Packing (BP) [13] is perhaps the most fundamental model of datacen-
ter allocation [19,21,22]. In BP, the goal is to pack the given items into as few
equally-sized bins as only possible, without exceeding the capacity of any bin.
In cloud computing, bins correspond to machines, items to tasks (VMs or con-
tainers) to allocate and items’ sizes—to CPU or memory requirements.

However, there is a fundamental difference between packing boxes onto a truck
and Linux containers onto a machine. Boxes’ sizes are easy to measure and, barring
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
J. Cano et al. (Eds.): Euro-Par 2023, LNCS 14100, pp. 96–110, 2023.
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extreme events, unchanging. In contrast, the resource requirements of a task are
more difficult to estimate. Tasks are commonly packed by limits [6,21,22]: essen-
tially, the to-be-scheduled task declares (sometimes through automation [20]) to
the scheduler an upper bound on the resources it might request. Yet, packing by
limits is fundamentally inefficient [3]. Even if limits were clairvoyant (set to each
task’s exact maximal usage), using limits, the scheduler effectively assumes that
every task will always consume exactly its maximal usage—which is rarely the
case [12]. Even with overcommit [3], utilization remains low [16].

Stochastic Bin Packing (SBP) [11,15] models the uncertainty of tasks’
resource requirements by using random variables as items’ sizes. Accordingly,
the constraint of never overpacking any bin is generalized to a probabilistic
one—an upper bound α on the probability that each bin’s capacity is exceeded.
SBP can represent the cloud allocation problem [5,10,12]: the random variables
map to observed or estimated tasks’ resource usage; and α maps to a probabilis-
tic Service Level Objective, SLO. Notably, [3] combines declared limits (for new
tasks) with estimations of a machine’s predicted total usage (for long-running
ones); a prototype improved efficiency by 2% on 11,000 production machines in
the internal Google cloud. While SBP models have limitations (e.g.: not explic-
itly modeling variability over time [17], dynamic arrivals and departures [8], or
correlations between tasks [4]), we claim that solving a more general problem
usually requires at some point solving its more fundamental version.

Perhaps the most restrictive assumption we take is that all the items fol-
low scaled Bernoulli distributions. Such items correspond to tasks that for some
fraction of time compute with (approximately) constant intensity, and then idle
e.g. waiting for the next request. We claim that Bernoulli items are a reasonable
model: e.g., in the Google Cluster Trace [12,23] shows a large task group with
CPU requirements resembling the scaled Bernoulli distribution. One can argue
that if there were enough tasks in one bin, then, from the Central Limit Theo-
rem, the cumulative distribution of that bin would be close to normal. However,
if the tasks are large, few of them fit into a machine, which makes the normal
distribution inadequate [12]. Additionally, solving the special case of Bernoulli
items could bring us closer to a distributionally-robust solution. From the the-
oretical perspective, Bernoulli items seem to pose more difficulties than other
distributions like Poisson [11] or Gaussian [5,10] (Sect. 2).

The Contribution of this Paper is the Following:

– We design Refined Poisson Approximation Packing (RPAP), an online algo-
rithm that finds a viable packing of Bernoulli variables to bins while keeping
the overload probability of any bin below α. Our algorithm is easy to imple-
ment and schedules one item in O(log n) time (Sect. 4).

– We prove a closed-form formula of the RPAP approximation ratio, which
depends only on the (given) overload probability α (Sect. 6, Eq. 6).

– In simulations, we compare RPAP with [15] and FFR, a heuristic with no worst-
case guarantees. We propose RPAPC that combines RPAP with a heuristic,
maintaining RPAP’s guarantees. Our approaches outperform [15] and are close
to FFR; slightly improving upon FFR on datasets with small items.
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To the best of our knowledge, our paper shows the first proof of a closed-form
formula for the approximation ratio of an algorithm for Stochastic Bin Packing
with Bernoulli items ([15] shows only asymptotics) and the first experimental
evaluation of SBP algorithms on Bernoulli items.

2 Related Work

We focus below on theoretical approaches to stochastic bin packing. SBP is a
stochastic extension of a classic combinatorial optimization problem, an app-
roach called stochastic optimization [11]. Works on SBP usually assume that all
items’ sizes follow a known distribution. When items have normal distribution,
Breitgand and Epstein [5] show a (2+ε)-approximation algorithm, and an offline
2-approximation; Cohen et al. [10] show that First Fit is 9/4-approximation;
Martinovic and Selch [18] show improved lower bounds and discuss linearization
techniques; Yan et al. [25] propose a new metric of bin load, develop algorithms
and perform experiments on synthetic and real data. Other item distributions are
also considered, for example, Goel and Indyk [11] propose a PTAS for Poisson
and exponential items.

The Bernoulli distribution seems to be more difficult to work with. For a
bin, computing the overflow probability is O(n) for Poisson and Gaussian distri-
butions; yet it is #P hard for Bernoulli [15], i.e. as hard as counting the number
of solutions of an NP-complete problem (which is hypothesized to be harder
than finding any solution). Furthermore, a standard approach to stochastic bin
packing is to calculate each stochastic item’s effective size, which is then used
by a deterministic packing algorithm. For Poisson and normal items, one can
find an effective size that gives an O(1)-approximation algorithm [7]. However,
for Bernoulli items, any effective size-based algorithm has an Ω(α−1/2) approx-
imation ratio, where α is the maximal overflow probability [15]. [11] shows a

QPTAS for Bernoulli items. [15] shows an O
(√

log α−1

log log α−1

)
-approximation and

O(ε−1)-approximation for an ε-relaxed problem.

Our Approach Compared to Kleinberg et al. [15]: Like [15], our algorithm
also splits items into subgroups and similarly packs the small items (Sect. 5.1).
In contrast, for the most complex case of the standard items we use a Poisson
approximation (Sect. 5.2), while they use effective bandwidth and probabilistic
inequalities. Moreover, there is only asymptotic analysis of the approximation
factor in [15], which allows them to hide in the O notation the multiplicative con-
stant arising from splitting items into subgroups. We managed to avoid such mul-
tiplicative constant by proving the upper bound of the expected value of any cor-
rectly packed bin (Lemma 6). Moreover, to bound the approximation constant,
we proved a technical inequality on the inverse of Poisson CDF (Lemma 11). In
contrast, [15] used results on antichains to optimize the asymptotic approxima-
tion factor of their algorithm.
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3 Problem Formulation and Notation

We are given a sequence of items X1, . . . , Xn and an infinite sequence of identical
bins of capacity 1. The goal is to find a viable assignment of items to bins that
uses the minimal number of bins. We assume that all items are random variables
that follow scaled Bernoulli distributions. As in [11,15], we assume that random
variables are independent. Our problem is thus clairvoyant, as we receive full
information about an item on submission, although the sizes remain stochastic,
in contrast to an alternative model in which a size is drawn from a certain
distribution and then does not change.

We denote the Bernoulli distribution by Ber(p) and the Poisson distribution
by Poi(λ). We define scaled Bernoulli Ber(p, s) and Poisson Poi(λ, s) distribu-
tions, where s > 0 is the size: sX is scaled-Bernoulli distributed (sX ∼ Ber(p, s))
when X ∼ Ber(p) (Poisson is defined analogically). For example, if an item
Xi ∼ Ber(p, 1

3 ) then the item’s size is equal to 1
3 with probability p and 0 with

probability 1 − p.
For a random variable X, FX denotes its cumulative distribution function

(CDF), FX(t) = P(X ≤ t). We denote Q as the Poisson CDF: P(Poi(λ) ≤ x) =
Q(x, λ); and Q−1(x, γ) as its inverse with respect to the second argument.

We assume that items Xi ∼ Ber(pi, si), where pi ∈ (0, 1], and si ≤ smax.
smax ∈ (0, 1] is an additional parameter that increases the versatility of our
results. In the general case, smax = 1 (an item always fits in a single bin).

We denote the set of items in j-th bin by Bj , their sum by Bj and by α > 0
the maximal overflow probability. An assignment is viable if for every bin j the
probability of exceeding the bin’s capacity is at most α, P(

∑
i∈Bj

Xi > 1) ≤ α.
We argue that α should be treated as a constant in the context of the data

center allocation, where α corresponds to the service level objective (SLO) nego-
tiated between the provider and their clients. As only very rarely can the machine
be overloaded, usually, there are only a few groups of items with fixed and small
SLO values (e.g., 0.01, 0.005, 0.001). We thus also assume that 0 < α ≤ 1

2 .
We call a BP algorithm Any-Fit if it does not open a new bin if the current

item fits in any already opened bin [9] (e.g. First Fit or Best Fit). We use Any-Fit
algorithms as a building block for RPAP, but RPAP is not Any-Fit.

4 Refined Poisson Approximation Packing Algorithm

Refined Poisson Approximation Packing (RPAP, Algorithm 1), separates items
into three disjoint groups. Each group is packed separately into a disjoint set
of bins. We reduce the packing of each group to BP and pack with an Any-Fit
algorithm. In this section, we describe the algorithm; the following Sect. 5 proves
the viability of the allocation; and Sect. 6 proves the approximation ratio.

To separate items into three groups, we introduce two additional parameters:
pmax ∈ (0, 1), smin ∈ (0, smax) (we show in Sect. 6.2 how to choose the values
that minimize the approximation ratio). The groups are defined as follows:
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Algorithm 1: Refined Poisson Approximation Packing (RPAP)
Using : PackAnyFit(id, size) method that packs item id with an Any-Fit

algorithm to a bin of size 1.
1 ConfidentBins := EmptyPacking;
2 MinorBins := EmptyPacking;
3 kmin := �1/smax�;
4 kmax := �1/smin� − 1;
5 for each k ∈ {kmin, . . . , kmax} :
6 λk := Q−1(k + 1, 1 − α);
7 StandardBins[k] := EmptyPacking;
8 μ0 := (2α + smin − √

s2min + 4αsmin)/2α;
9 for each item i :

10 if pi > pmax then
11 ConfidentBins.PackAnyFit(i, si);
12 else if si ≤ smin then
13 MinorBins.PackAnyFit(i, pisi/μ0);
14 else
15 k := �1/si�;
16 StandardBins[k].PackAnyFit(i, log(1/(1 − pi))/λk);
17 return: (ConfidentBins, MinorBins, StandardBins[kmin], . . . , StandardBins[kmax])

– Confident items have non-zero load with high probability: p > pmax.
– Minor items are small: s ≤ smin, p ≤ pmax.
– Standard items are the remaining items: smin < s ≤ smax, p ≤ pmax.

The algorithm proceeds as follows. Confident items have large probabilities,
so we round their probabilities up to 1 and pack them by their sizes (line 11).
Minor items are small, so they have small variances because the variance of
X ∼ Ber(p, s) is s2p(1−p). Intuitively it means that with high probability small
items are close to their mean. Thus, we pack them (line 13) by their means scaled
by some factor μ0 (defined in line 8).

The core idea of our algorithm is to approximate the remaining, standard,
items by Poisson variables. The problem of packing Poisson variables turns out
to be equivalent to BP. We later prove that we can upper bound a Ber(p) variable
by a Poi(log(1/(1− p))) variable. As the items are scaled Bernoulli variables, we
also use scaled Poisson variables, but to reduce the problem to BP, we need these
sizes to be equal. Thus, we additionally group standard items into subgroups with
similar sizes and round their sizes up to the upper bound of such subgroup (line
16: k is the subgroup and λk scales all items’ sizes in that group).

5 Proof of Correctness

As RPAP packs the three groups into three disjoint sets of bins, we prove the
correctness of the allocation case by case: confident and minor items in Sect. 5.1;
and standard items in Sect. 5.2.
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5.1 Confident and Minor Items

Lemma 1. The packing of confident and minor items is viable.

Proof. Confident items are packed by their sizes si, so the sum of sizes in any
bin B is

∑
i si ≤ 1, and the probability of overflow is P(B > 1) = 0 < α.

For minor items we have ∀isi ≤ smin and we are packing them by their
expected value sipi, so if E(B) =

∑
i sipi ≤ μ0 < 1, then from Chebyshev

inequality:

P(B > 1) ≤ Var(B)
(1 − E(B))2

=
∑

i s2i pi(1 − pi)

(1 − E(B))2
<

smin

∑
i sipi

(1 − E(B))2
≤ smin

μ0

(1 − μ0)
2 .

The viability of the packing follows from μ0 (Algorithm 1, line 8) being a
solution of the equation: (1−μ0)

2

μ0
= smin

α . ��

5.2 Standard Items

To pack standard items, we upper-bound the probability of overflow by the tail of
the Poisson distribution. First, we separate items into subgroups, such that the
k-th group consists of items whose sizes are in the interval si ∈

(
1

k+1 , 1
k

]
, k ∈

{kmin, . . . , kmax} (Algorithm 1, lines 3–4). Inside a single subgroup, we round
items’ sizes up to the upper bound of the interval. Every subgroup is packed
into a separate set of bins.

The proof uses the following two lemmas (all proofs are in the appendix [1]):

Lemma 2. If X ∼ Ber(p), Y ∼ Poi(λ), and λ ≥ ln
(

1
1−p

)
, then ∀tFX(t) ≥

FY (t).

Lemma 3. If X1,X2, Y1, Y2 are discrete independent random variables with
countable support and ∀tFXi

(t) ≥ FYi
(t) for i ∈ {1, 2}, then ∀tFX1+X2(t) ≥

FY1+Y2(t).

The following lemma shows that a viable packing of Poisson variables is also
a viable packing of the original Bernoulli variables and is a direct consequence
of the above lemmas.

Lemma 4. Let Xi ∼ Ber(pi, si), Pi ∼ Poi
(
ln

(
1

1−pi

)
, s̄i

)
for i ∈ {1, . . . , m} be

independent and ∀is̄i ≥ si. Moreover let P =
∑m

i=1 Pi and B =
∑m

i=1 Xi. Then
P(B > 1) ≤ P(P > 1).

The following lemma shows that BP of scaled Poisson variables by their
means is viable:

Lemma 5. Packing of scaled Poisson variables Pi ∼ Poi(λi, s) is viable if and
only if it is correct packing of their means λi with bin size Q−1(

⌊
1
s

⌋
+1, 1−α), i.e.

for every Bj: P
(∑

i∈Bj
Pi > 1

)
≤ α ⇐⇒ ∑

i∈Bj
λi ≤ Q−1

(⌊
1
s

⌋
+ 1, 1 − α

)
.
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Proof. As variables Pi are independent, the load of any bin P =
∑

i∈B Pi is
also a scaled Poisson variable P ∼ Poi(λ, s), where λ =

∑
i∈B λi. We have

1
sP ∼ Poi(λ), so P(P ≤ 1) = P

(
1
sP ≤ ⌊

1
s

⌋)
= Q

(⌊
1
s

⌋
+ 1, λ

)
and the thesis

follows from applying Q−1
(⌊

1
s

⌋
+ 1, ·). ��

6 Approximation Ratio

We start in Sect. 6.1 by a formula for the approximation ratio of RPAP. Then,
in Sect. 6.2, we optimize the approximation ratio by adjusting parameters: the
least-probable confident item pmax and the largest minor item smin.

6.1 Proof of the Approximation Ratio

We prove the approximation factor by lower bounding the expected value of
an average bin for any packing produced by RPAP, and upper bounding this
average bin expected value for any viable packing, in particular the optimal one.

We will prove the upper bound by induction over the number of items in a bin.
We need a stronger induction assumption: we want to reward adding items that
increase the expected load of a bin without increasing the overflow probability. We
model that by introducing a discount function: C(X) =

∑
x∈[0,1](1−x)P(X = x)

(X has finite support, so the sum is well-defined).

Lemma 6. Assume that ∀i∈B Xi ∼ Ber(pi, si), si ≤ 1 are independent random
variables. If B =

∑
i∈B Xi, satisfies P(B > 1) ≤ α < 1, then E(B) ≤ 1+α

1−α .

Proof. Without loss of generality, assume that B = {1, . . . , N}, and denote Sn =∑n
i=1 Xi. We proceed by induction over n, with the following assumption:

E(Sn) ≤ 1
1 − α

(
1 + P(Sn > 1) − C(Sn)

)
.

Notice that it is enough to prove the induction, as C(Sn) ≥ 0.

Basis of Induction: for n = 0 we have P(S0 = 0) = 1 so P(S0 > 1) = 0,
C(S0) = 1 and the thesis follows.

Inductive Step: Let us denote Sn+1 = Sn + X, X ∼ Ber(p, s). From the
induction assumption

E(Sn+1) = E(Sn) + ps ≤ 1
1 − α

(
1 + P(Sn > 1) − C(Sn)

)
+ ps,

so it suffices to show that

P(Sn > 1) − C(Sn) + (1 − α)ps ≤ P(Sn+1 > 1) − C(Sn+1).
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We have recursive formulas:

P(Sn+1 > 1) = P(Sn + X > 1) = P(Sn > 1) + pP(Sn ∈ (1 − s, 1]);

C(Sn+1) = (1 − p)C(Sn) + p
∑

x∈[0,1]

(1 − x)P(Sn = x − s)

= C(Sn) − p
∑

x∈(1−s,1]

(1 − x)P(Sn = x) − psP(Sn ∈ [0, 1 − s]).

So after simplifications, we arrive at the inequality:

(1 − α)s ≤ P(Sn ∈ (1 − s, 1]) + sP(Sn ∈ [0, 1 − s])

+
∑

x∈(1−s,1]

(1 − x)P(Sn = x) = sP(Sn ∈ [0, 1]) + A

where

A = (1 − s)P(Sn ∈ (1 − s, 1]) +
∑

x∈(1−s,1]

(1 − x)P(Sn = x) ≥ 0

what completes the induction step, as P(Sn ∈ [0, 1]) ≥ 1 − α. ��
Next, we will prove the lower bound on the average expected value of all bins

in packing produced by RPAP. Recall that in all item groups, we used at some
point an Any-Fit algorithm, so we will need this slightly stronger version of the
classic lemma [9]:

Lemma 7. Assume that an Any-Fit algorithm packed real values x1, . . . , xn into
bins B1, . . . ,Bm where m ≥ 2. Then 1

m

∑m
j=1

∑
i∈Bj

xi > 1
2

Proof. Denote Bj :=
∑

i∈Bj
xi. An Any-Fit algorithm opens a new bin only if

the current item does not fit into any already open bin, so ∀j∀l �=jBj + Bl > 1.
If m is even then

∑m
j=1 Bj > m

2 , and the lemma is proved. If m is odd then

2
m∑

j=1

Bj =
m−1∑
j=1

Bj +
m∑

j=2

Bj + B1 + Bm > 2
m − 1

2
+ 1 = m.

��
As the lemma above does not hold for the special case with a single bin, we

proceed with the proof for the typical case of at least two bins and deal with the
special case directly in the proof of Theorem 1. We denote the average expected
value of bins B1, . . . ,Bm by AE(B) = 1

m

∑m
j=1

∑
i∈Bj

pisi. The following three
lemmas are very similar and follow easily from the Lemma 7, so we will prove
only the last (most complex) one.

Lemma 8. If B1, . . . ,Bm, m ≥ 2 are bins with the confident items, then their
average expected value fulfills AE(B) > pmax

2 .
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Lemma 9. If B1, . . . ,Bm, m ≥ 2 are bins with the minor items, then their
average expected value fulfills AE(B) > μ0

2 .

Lemma 10. If B1, . . . ,Bm, m ≥ 2 are bins with the standard items of the k-th
subgroup, then their average expected value fulfills AE(B) > λk(1−pmax)

2(k+1) .

Proof. We packed the standard items of the k-th subgroup by 1
λk

ln
(

1
1−pi

)

(Algorithm 1, line 16). For any such item Xi ∼ Ber(pi, si) we have si > 1
k+1 and

ln
(

1
1−pi

)
≤ pi

1−pi
≤ k+1

1−pmax
pisi. So from Lemma 7:

m

2
<

1
λk

m∑
j=1

∑
i∈Bj

ln
(

1
1 − pi

)
≤ k + 1

λk(1 − pmax)

m∑
j=1

∑
i∈Bj

pisi.

��
Additionally, we need the following result (proof in [1]) to find k for which

λk

k+1 is minimal:

Lemma 11. For β ∈ [
1
2 , 1

)
and k ∈ N, k ≥ 2: Q−1(k, β) ≤ k

k+1Q−1(k + 1, β).

Summing up Lemmas 8, 9, 10, 11 and using the expression for λk (Algorithm 1
line 6) we get:

Corollary 1. The average expected value of the bins in the subgroups having at
least 2 bins is lower bounded by

μmin :=
1
2
min (pmax, μ0, (1 − pmax)λmin) (1)

where
λmin =

1⌊
1

smax

⌋
+ 1

Q−1

(⌊
1

smax

⌋
+ 1, 1 − α

)
(2)

Theorem 1. If RPAP packed items X1, . . . , Xn to M bins, and the optimal
packing uses OPT bins then M ≤ C · OPT + kmax − kmin + 3, where C is the
(asymptotic) approximation constant and equals C = 1+α

(1−α)μmin
.

Proof. First, let us consider only the items that belong to the subgroups that
were packed into at least 2 bins by RPAP. Without loss of generality let us
assume that those are the items X1, . . . , Xm. Let us denote the number of bins
those items were packed to by M ′, the number of bins in the optimal packing
of those items by OPT ′, and their total expected value by S =

∑m
i=1 pisi. Then

from the Lemma 6 and Corollary 1:

1
OPT ′ S ≤ 1 + α

(1 − α)
,

1
M ′ S ≥ μmin, M ′ ≤ 1 + α

(1 − α)μmin
OPT ′ ≤ C · OPT.

Finally, notice that we divided the items into kmax − kmin + 3 subgroups, so
M − M ′ ≤ kmax − kmin + 3, which is a constant and thus M ′ is asymptotically
equivalent to M . ��
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6.2 Optimization of the Approximation Ratio

Recall that the approximation constant depends on the values of parameters
pmax and smin. To minimize the approximation constant C = 1+α

(1−α)μmin
, we need

to maximize the formula for μmin (Eq. 1). In case of pmax, it comes down to
solving the equation: pmax = (1 − pmax)λmin, thus the optimal value is

pmax =
λmin

1 + λmin
(3)

To optimize smin, notice that the expression for λmin (2) does not depend on
smin, so we can take arbitrarily small smin so that

μ0 =
2α + smin − √

s2min + 4αsmin

2α
smin→0−−−−−→ 1.

In particular, it is enough to take smin small enough to make μ0 ≥ pmax. Solving
this inequality for smin results in:

smin ≤ α(1 − pmax)
2

pmax
. (4)

After such optimizations, we get the approximation constant:

C = 2
1 + α

1 − α

1 + λmin

λmin
(5)

We recall that C depends only on α, as λmin (Eq. 2) depends on α and smax, but
smax ≤ 1. In the general case with smax = 1, we get

C = 2
1 + α

1 − α

(
1 +

2
Q−1(2, 1 − α)

)
. (6)

Values of C vary considerably depending on the values of α and smax. For
example for α = 0.1 and smax = 0.25: C ≈ 7.47, for α = 0.01 and smax = 1:
C ≈ 29.52, while for smax = 1 and α = 0.001: C ≈ 90.29.

To investigate asymptotics of C as α → 0, we need to investigate the asymp-
totic behavior of 1

λmin
. Expanding Q−1(a, z) near z = 1 with Q−1(a, z) =

(−(z − 1)Γ (a + 1))1/a + O((z − 1)2/a) [24],

C ∼ 1

λmin
∼ 1

Q−1
(⌊

1
smax

⌋
+ 1, 1 − α

) = O
(

α
− 1

� 1
smax �+1

)

= O
(

�1/smax�+1
√

1/α
)

and in the general case with smax = 1, we get C = O
(√

1/α
)
.

The resulting asymptotics is worse than Kleinberg’s [15] O
(√

log(1/α)
log log(1/α)

)
.

However, we recall that the asymptotic analysis in [15] hides the multiplicative
constant arising from splitting items into subgroups. Thus, the exact approxima-
tion ratio of their algorithm is better than ours most likely only for very small
α values. In cloud computing, the SLOs are usually not greater than 4 nines
(corresponding to α ≥ 0.0001) thus our analysis most likely results in a better
approximation constant for α relevant to the field.
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7 Dependence on the Maximal Overflow Probability

From the theoretical perspective, the dependence of the approximation constant
on α is not perfect, especially when for other distributions, like Poisson or normal,
there are approximation algorithms whose constant does not depend on α [5,10]
(for the Bernoulli distribution no such algorithm is known). [15] prove that any
algorithm based on a single effective size cannot achieve a better approximation
constant than Ω(α−1/2). The following theorem shows that the family of Any-
Fit algorithms (not using the effective size approach) has the same upper bound.
We start with a technical lemma (proof in [1]).

Lemma 12. If X1,X2, . . . , Xn ∼ Ber(2α) independent, then there exists n =
Ω(α−1/2) for which P(

∑n
i=1 Xi ≤ 1) ≥ 1 − α.

Theorem 2. Every Any-Fit for scaled Bernoulli trials has Ω(α−1/2) approxi-
mation ratio.

Proof. Let us fix the value of α′ = α + ε for an arbitrarily small ε. We consider
the variables Xi ∼ Ber(α′, 1 − ε2i−1), Yi ∼ Ber(1, ε2i), where ε1 =

√
α, εi =

εi−1 −
√

α
2i+2 . Then, we can pack Ω(α−1/2) items Yi to a single bin, as taking

the first α−1/2 of such items requires the capacity of at most α−1/2 · √
α = 1.

Similarly, from the Lemma 12 we can pack Ω(α−1/2) items Xi to a single bin.
Let us now consider the case when those items appear on the input in the

order X1, Y1,X2, Y2, . . .. Using induction, we prove that every Any-Fit algorithm
packs into the i-th bin just two items, Xi, Yi. First, for every i, Xi and Yi fit
into one bin, because 1 − ε2i−1 + ε2i < 1. It is easy to calculate that no further
item fits into the bin with items Xi and Yi. ��

8 Evaluation by Simulations

We study RPAP and derived algorithms in the average case by comparing it
with our modification of FF: First Fit Rounded (FFR), and our implementation
of Kleinberg et al. [15].

FFR rounds up items’ sizes to the integer multiple of ε > 0, i.e. finds the
smallest k such that ŝ := kε ≥ s and packs the rounded items using FF. We
cannot compare RPAP with First Fit, because First Fit computes overflow prob-
abilities, which is #P-hard for sums of scaled Bernoulli variables [15]. Yet, for
instances with few very small items (i.e. comparable to ε), the results of FFR
should be close to the results of FF. In our experiments, we take ε = 10−4.

We do not suspect RPAP to perform well compared to FFR, as RPAP was
designed for theoretical purposes, so we also analyze a derived algorithm, the
RPAP Combined (RPAPC). RPAPC separates the items into the same groups
as RPAP, but within each group, it packs an item into the first bin according
to RPAP or FFR. RPAPC in principle works like RPAP with First-Fit as an
Any-Fit algorithm. However, when an item does not fit into a bin, RPAPC, just
like FFR, approximates the probability of the overflow by rounding up items’
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Fig. 1. PDFs of items’ metrics in Google dataset. (a) is a PDF of pair-wise L1 distances
between the CDFs of the derived Bernoulli items and the original data.

sizes to the integer multiple of ε. This allows us to pack some items that RPAP
would not pack because of the upper bounds we made for the proofs. Notice,
that this means that RPAPC opens a new bin only if the current item does not
fit into any already open bin in its group, so the Lemma 7 holds and from it
follows the rest of the Sect. 6.1 and the following corollary:

Corollary 2. RPAPC is an approximation algorithm with an approximation
constant not greater than RPAP’s.

We also compare our algorithms against Kleinberg et.al. [15] and against its
combined version (KleinbergC)—designed analogically as RPAPC.

As cloud schedulers work with large volumes of tasks, we are interested in
analyzing performance on large instances: we performed experiments with n =
5000 items. The values of parameters smin and pmax for RPAP were set according
to the formulas (3) and (4) to show how RPAP performs without optimizing for
a particular dataset. Kleinberg’s algorithm does not have any parameters that
could be optimized. For RPAPC we tuned smin and pmax with respect to α, smax

and a dataset (as cloud workload is generally stable over time, schedulers are
typically tuned for the standard workload). To tune, we created new (smaller)
instances for every combination of α and smax and then did a grid search.

We tested α ∈ {0.1, 0.01, 0.001} and smax ∈ {1, 0.75, 0.5, 0.33, 0.25}. Each
dot on a plot is a median from 10 experiments (each having the same parameter
values but a different instance), then normalized by dividing by the average
expected value of an item in the dataset. The (very short) vertical lines are
the minimum and maximum of those 10 experiments—results are stable over
instances. The lines connecting the dots are introduced for readability.

We generated 3 datasets. The uniform dataset is sampled from the uniform
distribution: the sizes are sampled from the (0, smax] interval, and the proba-
bilities from (0, 1]. In the normal dataset, sizes are sampled from the normal
distribution N(0.1, 1), truncated to the (0, smax] interval, while the probabili-
ties are sampled from the uniform distribution on the (0, 1] interval. Its results
were very similar to the results for the uniform dataset, so we omit them. The
Google dataset is derived from [23]. We started with the instantaneous CPU
usage dataset [12]. For every task, we calculated the scaled Bernoulli distribu-
tion that is the closest to the task’s empirical CPU usage (as measured by the
L1 distance between CDFs). Finally, we filtered out the 10% of items that had
the highest distance from the original data (Fig. 1a), in order not to experiment
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Fig. 2. Number of bins the items were packed into for Uniform (the first 5 columns) and
Google (last column) instances, by the original (left) and combined (right) algorithms.
Each point is a median of 10 instances. Bars show a minimum and maximum of 10
instances.

on tasks for which the Bernoulli approximation is the least exact. As on Google,
a vast majority of items is small (Fig. 1b), results for different smax are very
similar, we only show smax = 1. Figure 2 shows results.

As expected, both RPAP and Kleinberg algorithms produce significantly
worse results than FFR for all datasets (with Google being particularly unsat-
isfactory). In contrast, RPAPC achieves even over 4% better results than FFR
on the Google dataset for small α values, and on the uniform dataset for small
smax values. Moreover, the overflow probabilities in bins packed by RPAPC are
on average lower than those in bins packed by FFR (Fig. 3 in the appendix [1]):
a good packing algorithm can result in both a lower number of bins and a lower
overflow probability. On the other side, the KleinbergC algorithm performs worse
than both FFR and RPAPC for all datasets, although for Google the difference
is small. There are significant differences between results on the uniform and
the Google datasets. A possible reason is that the Google dataset has a skewed
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distribution of sizes of items (Fig. 1b) with mean 0.044 and maximal size 0.773,
although probabilities are distributed reasonably uniformly (Fig. 1c).

9 Conclusions

We propose RPAP, an online algorithm for Stochastic Bin Packing with scaled
Bernoulli items. RPAP produces a viable packing that keeps the overflow prob-
ability of any bin below the requested parameter α. We also prove that RPAP is
an approximation algorithm with an approximation factor that depends only on
the maximal overflow probability α. We derive a combined approach, RPAPC,
that has the same guarantees as RPAP. In simulations, we compare RPAP and
RPAPC with [15], a state-of-the-art algorithm with proven worst-case guaran-
tees, and FFR, a heuristic with no guarantees. Our approaches consistently sur-
pass [15]. Additionally, RPAPC is close to FFR, outperforming it on Google by
4% and on Uniform datasets with small items.
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comments on the manuscript. This research is supported by a Polish National Science
Center grant Opus (UMO-2017/25/B/ST6/00116). Data supporting this study and the
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Abstract. The scale and heterogeneity of exascale systems increment
the complexity of programming applications exploiting them. Task-based
approaches with support for nested tasks are a good-fitting model for
them because of the flexibility lying in the task concept. Resembling
the hierarchical organization of the hardware, this paper proposes estab-
lishing a hierarchy in the application workflow for mapping coarse-grain
tasks to the broader hardware components and finer-grain tasks to the
lowest levels of the resource hierarchy to benefit from lower-latency and
higher-bandwidth communications and exploiting locality. Building on a
proposed mechanism to encapsulate within the task the management of
its finer-grain parallelism, the paper presents a hierarchical peer-to-peer
engine orchestrating the execution of workflow hierarchies with fully-
decentralized management. The tests conducted on the MareNostrum 4
supercomputer using a prototype implementation prove the validity of
the proposal supporting the execution of up to 707,653 tasks using 2,400
cores and achieving speedups of up to 106 times faster than executions
of a single workflow and centralized management.

Keywords: distributed systems · exascale · task-based · programming
model · workflow · hierarchy · runtime system · peer-to-peer ·
decentralized management

1 Introduction

Systems targeting exascale computing are becoming more and more powerful by
interconnecting a growing number of nodes equipping processors and accelera-
tors with an increasing number of physical cores and novel memory hierarchies.
The extreme scale and the heterogeneity of these systems increment the overall
complexity of programming applications while exploiting them efficiently. On
the one hand, developers have to identify enough parallelism inherent in the
application to employ all the compute devices; on the other hand, they have to
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face the heterogeneity of the system and deal with the specifics of each device
(i.e. architectures with a different number of physical cores, memory sizes and
hierarchies, network latency and bandwidth, and different programming models
to interact with the device). This results in system-tailored applications that can
not be ported to other systems without a significant performance loss.

Programming models overcome this development difficulty by providing an
infrastructure- and parallelism-agnostic mechanism to describe the logic of an
application. Then, at execution time, a runtime engine automatically handles the
inherent parallelism to exploit the host infrastructure. Task-based programming
models are a popular approach because of their high development productivity
and their flexibility to adapt to the infrastructure. They build on the concept
of task: an asynchronous operation processing a collection of input values to
generate a set of output values. Tasks can take values generated by other tasks
as input; hence, establishing data-dependency relationships among them. These
dependencies define the workflow of the application and determine its inherent
task-level parallelism; runtime engines orchestrate the parallel execution of all
the tasks of an application guaranteeing the fulfilment of these dependencies.

Tasks encapsulate logic operations; however, the actual implementation car-
rying them out can change depending on the available hardware or the current
workload of the system. Thus, the runtime engine can select an implementa-
tion leveraging a specific accelerator, running a multi-threaded implementation
on multi-core processors, or a distributed version using several nodes. Runtime
engines usually centralize the parallelism and resource management in one single
node of the infrastructure (the orchestrator); on extreme-scale computers, the
large number of tasks and nodes converts this management into a bottleneck.

Leveraging this task implementation versatility, applications can organize
their parallelism hierarchically embedding finer-grain tasks within intermediate
tasks to distribute the parallelism management overhead. Hence, the orchestra-
tor node handles only the coarsest-grain parallelism and passes on the burden of
managing the finer-grain parallelism along with the execution of the task. The
node running a task decides whether to execute the tasks composing the inner
workflow locally or offload them onto other nodes distributing the management
workload in a recursive manner. For that to succeed, each node of the infras-
tructure must be aware of the computing devices equipped on the node and
the amount of resources available on the other nodes of the infrastructure. This
deprecates the orchestrator node approach in favour of a peer-to-peer model.

This paper contributes with an analysis of what are the requirements to
bundle the fine-grain parallelism management within a task and the description
of the necessary mechanisms to implement in a runtime system to support it.
Besides, the article presents the results of evaluation tests using a prototype
implementation conducted on the MareNostrum 4 supercomputer running two
different applications (GridSearch and Random Forest) achieving higher degrees
of parallelism and reducing the management overhead drastically.

The article continues by casting a glance over related work that can be found
in the literature. Section 3 introduces the concepts of the proposed solution and
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Sect. 4 describes how runtime systems must handle data, resources and tasks to
adopt it. To validate the proposal, Sect. 5 contains the results of the evaluation
of a prototype implementation in two use cases. The last section concludes the
article and identifies potential lines for future work.

2 Related Work

Previous work has addressed the support for hierarchical or nested paral-
lel regions, especially in shared memory systems such as multi-core architec-
tures. Most of the widely-adopted shared memory programming models – e.g.,
OmpSs [5], Cilk [19] or OneAPI TBB [10] – support nested parallel regions
or tasks, and the OpenMP standard also supports nested tasks since version
4.5 [16]. The management of nested parallelism focuses on handling dependen-
cies between different nested parallel regions to allow their correct concurrent
processing. Having shared memory simplifies this management since data regions
can be directly identified by their memory addresses, and the different threads
processing these regions have shared access to the control data. The solution
presented in this article targets distributed systems where application and con-
trol data are spread across the infrastructure; thus, memory addresses no longer
uniquely identify data regions and control data is not shared among all the
computing nodes or devices making the parallelism management more complex.

In distributed systems, nested parallelism is typically achieved by combining
different programming models, one supporting the distributed system part and
another dealing with the execution within each shared memory system. This is
the case of the hybrid MPI + OpenMP model [18], StarSs [17] or the COMPSs
+ OmpSs combination [6]. Since the runtime systems supporting these models
do not share information, developers must master several models and manage
the coordination of different levels of parallelism. The proposal of this article
uses a single programming model to support parallelism at all granularity levels.

Current state-of-the-art workflow managers have done some efforts to enable
nested parallelism. Most of them allow the explicit sub-workflow definition (e.g.
Snakemake [15], NextFlow [4] and Galaxy [1]), or even allow the definition of
external workflows as modules (e.g. Snakemake), to enable the composition of
larger workflows. However, they rely on the dependency management of the
underlying queuing system (e.g., Slurm [21]) and submit each task as an indi-
vidual job with the required job dependencies. These systems are centralised and
this methodology leads to floods of jobs. Alternatively, Dask [3] allows launching
nested tasks within the same job by allowing the creation of clients that connect
to the main Dask scheduler to spawn a child task. Unfortunately, this approach
has the same essence as previous workflow managers since it also relies on a cen-
tralized scheduling system; besides, it is considered an experimental feature. The
methodology described in this work differentiates from these solutions by follow-
ing a decentralized approach to deal with this management. This feature has also
been explored by dataflow managers (e.g., Swift/T [20] and TTG [8]); however,
their management approach cannot be applied onto workflow managers.
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3 Workflow Management Encapsulation

Task-based approaches with support for nested tasks are a good-fitting model
for extreme-scale systems because of the flexibility of the task concept. Tasks
are asynchronous operations with a defined set of input and output data – in the
context of this article, the term data refers to individual files and objects. The
definition of a task establishes an operation to carry out but specifies nothing
about its implementation. Thus, a task can run sequentially or create new tasks
to open additional parallelism (nested task detection). This establishes relation-
ships among tasks. All the tasks created by the same task are child or nested
tasks of the creating task; inversely, the creating task is the parent of all the
tasks created by it. Tasks sharing the same parent are siblings.

It is during a task execution that nested tasks are discovered; thus, tasks
never start executing earlier than their parent. When it comes to finishing a
task, a parent task must wait until all of its nested tasks have been completed
before it can finish its execution. This is because the output of the parent task
relies on the outputs of its child tasks.

Task-based programming models build on data access atomicity to convert
an application into a workflow by establishing dependency relations among tasks
where the outputs of a task (task predecessor or value producer) are the inputs
of another (task successor or value consumer). By detecting nested tasks, each
task has the potential to become a new workflow, and thus, applications evolve
from being a single workflow into a hierarchy of workflows. The workflow of a
task can define data dependencies among its nested tasks based on the access to
its input data or newly created intermediate data. However, beyond the scope
of the task, only those values belonging to the output on the task definition are
significant; hence, all intermediate data is negligible and can be removed.

As with the implementation, the task definition does not specify which
resources should host its execution. Any node with access to such values can
host the execution of the task; thus, by transferring the necessary input data,
the workload of a task-based application can be distributed across large systems
and run the tasks in parallel.

Ensuring that data has the expected value when passed in as a task input
is crucial to guarantee that applications produce their expected results while
making the most of the underlying infrastructure. To identify more parallelism
between tasks, it is possible to maintain a duplicate of every value the data holds
throughout the execution. These replicas allow any task to read the expected
value even if another task has already updated it; thus, false dependencies are
no longer considered. The counterpoint of this method is the additional storage.
To orchestrate the parallel execution of tasks, it is crucial to keep track of the
values held by a data, the location of their duplicate copies, and the pending-
execution tasks reading each value. This tracking enables not only identifying
dependency-free tasks but also detecting obsolete values – i.e., old values with
no tasks reading them – that can be removed to free storage capacity.

Figure 1a illustrates the different values held by a data (data X ) that enters
as an input value of a task and is updated by three nested workflows. Data X
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Fig. 1. Example of data versioning where all tasks belonging to a three-level hierarchy
of nested workflows update one data.

enters the coarsest-grain task (green oval) as an input value (v1 ) and is updated
by the three-task workflow nested in the task (tasks within this workflow are
blue). The first blue task reads and updates the input value by generating a new
version (v2 ). This new version is passed in as the input of the second blue task,
and, during the execution, another three-task nested workflow is detected (tasks
within this workflow are depicted in orange). The first task of this finer-grain
workflow updates the data (v3 ), and the second task gets it as input. Again,
at run time, this second task becomes a workflow with two inner tasks (white)
modifying the data and, thus, generating two subsequent versions (v4 and v5 ).
Upon completing the second white task, the whole workflow in the second orange
task is completed; v5 becomes the output value of the second orange task, and
v4 becomes an irrelevant intermediate value. The third orange task takes the
v5 value and updates the data generating v6. At this point, the whole workflow
within the second blue task is completed; v6 becomes the output value of the
data for the blue task, and v3 and v5 become deprecated because they are
intermediate values within the second blue task. Finally, the third blue task can
be executed taking v6 as input value to generate v7, which becomes the output
value of the green task deprecating v2 and v6.

Determining an incremental version number at task discovery time, as done
in the previous example, is unfeasible. On the one hand, the execution of the
different tasks is distributed across the whole system; maintaining this version
record to ensure the proper handling of the dependencies requires a centralized
entity or implementing consensus. Both solutions entail a significant communi-
cation overhead. On the other hand, versions generated by a nested workflow
are detected at task execution time and not while the coarser-grain workflow is
detected. Thus, data versions generated by tasks in a parent workflow would be
detected earlier than the versions from its nested tasks. Hence, the data value
discovery would not match the incremental order of the versions.

To workaround these difficulties and overcome both problems, this work pro-
poses registering the intermediate values as versions from a different data and
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linking the corresponding versions to share the same copy of the value as depicted
in Fig. 1b. When a new task generates a workflow, all its input data values are
registered as the first version of a new data; intermediate values are considered
versions of that data. Thus, in the same case of the previous example, when the
green task starts executing, it only detects four versions of data X (the input
version: v1, v2 and v3 as intermediate values, and the final version: v4 ). When
the second blue task starts executing, the system registers the first version (v1 )
of a new data data Y, and links v1 of data Y with v2 of data X. The versions
generated by the orange tasks are registered only as versions of data Y. At the
end of the execution of all orange tasks, v4 of data Y is linked to v3 of data X.
Since data Y will no longer be available, all its versions are declared deprecated.
Thus, all the copies of the intermediate versions of data Y (v2 and v3 ) can be
removed. Still, the input and output versions (v1 and v4 ) are kept because they
are accessible through the versions of data X.

Following this proposal, the nested workflow management is encapsulated
within the task creating it. Once a node starts running a task, it can spawn the
nested tasks and orchestrate their execution independently from the execution of
other workflows. As with the computational workload, the management overhead
gets distributed to reduce the management bottleneck of centralized approaches.

4 Runtime System Architecture

The hardware of Exascale computers is already organized hierarchically. Sys-
tems are composed of thousands of nodes physically in racks interconnected by
switches; internally, each node can have several processors with multiple cores
and accelerators attached. This hierarchy can be put to use and define the dif-
ferent domain levels described to distribute the resource management. Thus,
coarser-grained tasks can be mapped to the broader domains of the infrastruc-
ture, and finer-grain tasks, where the bulk of parallelism is, achieve higher per-
formance by exploiting data locality and lower-latency and higher-bandwidth
communications offered within the lowest levels of the resource hierarchy.

To fully achieve their potential performance, task computations require exclu-
sive access to the resources running their logic to reduce the issues of con-
current execution on shared resources such as increasing the number of cache
misses or memory swapping. Runtime systems monitor the resource occupation
to orchestrate the task executions and grant this exclusivity. An orchestrator
node handling a large number of task executions on many workers becomes a
management bottleneck in extreme-scale infrastructures. Given the management
independence provided by workflow hierarchies, peer-to-peer architectures arise
as a promising architecture to efficiently support the detection of nested tasks
and distribute the management overhead. In this approach, each node hosts an
autonomous process (Agent) that establishes a collaborative data space with
other nodes and handles the execution of tasks.

Each Agent controls the computing devices equipped on the node to allocate
task executions and monitors the resources from neighbouring nodes with the
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Fig. 2. 12-node cluster with a total of 176 cores divided into a hierarchy of domains.
From the point of view of node0, the infrastructure is composed of two domains acces-
sible via node1 (subdomain1) and node2 (subdomain2).

purpose of offloading tasks onto them. Despite not being a limit on the number
of remote nodes, the more nodes being monitored, the larger the management
overhead and the complexity of scheduling task executions. To distribute the
management, the resources can be grouped into disjoint domains, each managed
by one of the nodes within it. Instead of monitoring the state of many nodes,
The orchestrator node only distributes the workload among a few resource-rich
domains interacting with the manager node within each. In the example depicted
in Fig. 2, a cluster is divided into two domains. The orchestrator node (node0)
considers only 3 options to host the execution: its 16 local CPU cores, 48 CPU
cores available in Domain1 through node1, or 128 CPU cores in Domain2 through
node2. The resources within a domain can still be too many to be handled by
a single node. To that end, domains can be subsequently divided into several
subdomains establishing a resource hierarchy as depicted in Domain2 of Fig. 2
where node2 considers 3 options: hosting it in its local 16 CPU cores, delegating
it to one of its subdomains (Subdomain21 with 48 cores or Subdomain22 with 64
cores) pushing it down the hierarchy, or offloading out from the domain ascending
through the hierarchy (64 cores available through node0).

Agents comprise five main components as illustrated in Fig. 3. The Agent
API offers users and other Agents an interaction interface to submit task exe-
cution requests and notify task completions. The Data Manager establishes a
distributed key-value store used by Agents to register data values and share their
values. The Task Scheduler monitors the data dependencies of the workflows gen-
erated by the tasks running on the node and decides the best moment to start a
task execution or offload it onto a domain. The Local Execution and Offloading
Engine respectively handle the execution of tasks on the local devices and their
offloading onto remote Agents. An internal API allows tasks implemented with
task-based programming models to notify the detection of nested workflows and
request the execution of their child tasks.
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Fig. 3. Components of the Agent deployed in node1 from Fig. 2.

Tasks arrive to the Agent through an API indicating the operation to perform
and its parameters (input data values and the expected results). Upon reception,
the Agent registers each parameter as a new piece of data and binds the first
version of all the input values with the corresponding version, as described in
Sect. 3. Then, the task becomes part of a pool of pending workload; the Agent
schedules the execution of these pending tasks considering the availability of the
local or remote resources, aiming for an optimal distribution while providing
resource exclusivity to the tasks. Arrived the time if the Agent decides to offload
the task onto a remote node, it reserves the resources required by the task in
the corresponding subdomain, submits via the API of the main Agent of the
subdomain, and waits asynchronously for its completion to release the resources.

Otherwise, if the Agent decides to host the execution locally, it allocates the
corresponding local resources, fetches all the missing input values and launches
its execution. If implemented following a task-based programming model, the
task becomes a workflow and spawns nested tasks with dependencies among
them, creating new pieces of data and new versions of the already existing param-
eters. As explained in the previous section, this data management, as well as the
parallelism among nested tasks, can be handled within the node with no need
to interact with other peers. Hence, the programming model notifies the newly
detected nested tasks and their dependencies to the local Agent. It manages
their execution with the parent task running them locally or offloading them
onto other nodes.

Workflow executions reach synchronization points where they wait for some
of their nested tasks to end producing data values. Every task that becomes a
workflow reaches at least one synchronization point at its end to wait for the
completion of all its nested tasks. During these waits, the resources allocated
for the parent task remain idle. For better exploitation of the infrastructure,
the task can release these resources so they can host another task execution; for
instance, one of its nested tasks. When the synchronization condition is met and
the nested task being waited for ends its execution, the execution of the parent
task can continue. At this point, the runtime system has to ensure that there are
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enough idle resources to host the parent task execution exclusively. If there are,
the task resumes its execution; otherwise, the runtime will hold the execution
until other tasks release their resources because they complete their execution
or they reach a synchronization point.

Regardless of whether a task has become a workflow or not, upon finishing its
execution (including its nested tasks), the Agent collects all the output values,
binds them to the corresponding version of its parent task data (passed in as
parameters) and removes all the references to the pieces of data created for the
task. At this point, the runtime system considers the task completed, releasing
its resources and dependencies. If the task was detected by a parent task running
in the same node, the Agent releases the local resources allocated for its exe-
cution and any data dependency with its successors. Otherwise, if the task was
offloaded from another node, the Agent notifies the completion of the task to the
Agent from where it was submitted to release the resources of the corresponding
domain. If the notified node is the Agent where the task was detected, it also
releases the dependencies; otherwise, the notification is forwarded to the Agent
that sent it, repeating the process until it reaches the source Agent to release
the data dependencies and continue with the execution of the parent workflow.

5 Evaluation

To validate the proposed idea, several tests have been conducted using a proto-
type implementation building on Colony [14]: a framework to handle task exe-
cutions on distributed infrastructures organizing the resources as a hierarchical
peer-to-peer network. The task-based programming model selected for defining
the nested workflows is COMPSs [13], for which Colony provides native support.

All the experiments have been run on the MareNostrum 4 supercomputer:
a 3,456-node (48 servers of 72 nodes) supercomputer where each node has two
24-core Intel Xeon Platinum 8160 and 96 GB of main memory. A Full-fat tree
100Gb Intel Omni-Path network interconnects the nodes which also have access
to a 14PB shared disk. Each node hosts the execution of an Agent managing its
48 cores. All the Agents within the same server join together as a domain and
one becomes the interconnection node for the domain; in turn, one of these nodes
interconnects all the domains and receives the main task of the application.

The scheduler within each Agent is the default Colony scheduler. Upon the
arrival of a dependency-free task, it attempts to assign it to an idle resource
considering the locality of its input values. If there are no available resources,
the scheduler adds the task to a set of pending tasks. When a task completes,
the scheduler releases the used resources and the successors and tries to employ
any idle resources with one of the just dependency-freed tasks or one from the
pending set computing a locality score for all the combinations and iteratively
selecting the one with a higher value until no task can be assigned. To avoid
loops where a task is being submitted between two Agents back and forth, the
scheduler dismisses offloading the task onto the Agent detecting it or any of its
parents; offloading is always down the hierarchy.
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5.1 GridSearch

The first test evaluates the performance of GridSearch [11] with cross-validation:
an algorithm that exhaustively looks for all the different combinations of hyper-
parameters for a particular estimator. With cross-validation, it trains and evalu-
ates several estimators for each combination (splits), and the final score obtained
for a combination is the average of the scoring of the corresponding splits. Grid-
Search is one of the algorithms offered within dislib [2], a Python library built on
top of COMPSs providing distributed mathematical and machine learning algo-
rithms. The conducted test finds the optimal solution among 25 combinations
of values for the Gamma (5 values from 0.1 to 0.5 ) and C (5 values from 0.1 to
0.5) hyper-parameters to train a Cascade-SVM classification model (CSVM) [7].

The implementation of GridSearch provided within dislib – Flat – delegates
the detection of the tasks to the implementation of the estimator and invokes
them sequentially expecting them to create all the finer-grain tasks at a time.
CSVM is an iterative algorithm that checks the convergence of the model at
the end of every iteration; hence, it stops the generation of tasks at the end
of each iteration. This affects the parallelism of GridSearch; it does not detect
tasks from a CSVM until the previous one converges. The Nested version of the
GridSearch algorithm encapsulates the fitting and evaluation of each estimator
within a coarse-grain task that generates the corresponding finer-grain tasks
achieving higher degrees of parallelism. Albeit both versions reach the same task
granularity, the Nested version overcomes the task generation blockage enabling
parallel convergence checks by encapsulating them within nested workflows.

The first test studies the behaviour when training a small dataset (the IRIS
dataset) using 4 Marenostrum nodes. Figure 4 depicts an execution trace with
the 192 cores when executing the Flat (Fig. 4a) and Nested (Fig. 4b) implemen-
tations. Given the small size of the dataset, the corresponding CSVM implemen-
tation does not detect many tasks to run in parallel. In the Flat version case,
where CSVMs run sequentially, the infrastructure is under-utilized and takes
116.27 s to run. Enabling nested task detection allows running several CSVMs
simultaneously; this increases the number of finer-grain tasks detected at a time,
and the infrastructure hosts more executions in parallel. The overall execution
time is reduced to 9.33 s (12× speedup).

When CSVM processes larger datasets (e.g., the Atrial Fibrillation (AT) com-
posed of 7,500 samples with 100 features characterizing an ECG), it can detect
enough parallelism to fully use the 4 nodes simultaneously as shown in Fig. 5a.
However, convergence checks reduce the parallelism in every iteration and a
large part of the infrastructure is under-used. By overlapping several CSVMs,
the Nested version employs these idle resources to compute tasks from other
CSVMs as depicted in Fig. 5b. For this experiment, the Nested version reduces
the time to find the optimal solution among 25 combinations from 27,887 s to
5,687 (4.9x speedup). Aiming at verifying the scalability of the solution, we run
a GridSearch to find the optimal solution among 50 combinations: 250 CSVMs
and 707,653 tasks. When processing the AT dataset, a CSVM generates paral-
lelism to employ up to 4 nodes. With the FLAT version, the estimated shortest
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Fig. 4. Execution trace of an IRIS model training with 4 nodes of 48 cores

Fig. 5. Execution trace of an AT model training with 4 nodes of 48 cores

execution time is 55,774 s. The Nested version expands this parallelism enabling
the usage of more nodes. With 16 nodes, it lasts 4,315 s (13x). With 50, the exe-
cution already shows some workload imbalance due to the variability between
CSVMs; it takes 1,824 s (30x).

5.2 Random Forest

The second experiment consists in training a classification model using the Ran-
domForest algorithm [9], which constructs a set of individual decision-trees –
estimators –, each classifying a given input into classes based on decisions taken
in random order. The model aggregates the classification of all the estimators;
thus, its accuracy depends on the number of estimators composing it. The train-
ing of an estimator has two tasks: the first one selects 30,000 random samples
from the training set, and the second one builds the decision tree. The training
of an estimator is independent of other estimators. The test uses two versions of
the algorithm: one – Flat – where the main task directly generates all the tasks
to train the estimators and the other – Nested – where the main task generates
intermediate tasks grouping the training of several estimators. In the conducted
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Fig. 6. Strong scaling results for a 1-, 1024-, 3072-, 6144-, 12288-estimator random
forest model training

tests, each batch trains at least 48 estimators, and if the number of estimators
allows it, the number of intermediate tasks matches the number of Agents.

Figure 6 depicts the speedup obtained when running a strong scaling test
with each of the versions when training 1, 1024, 3072, 6144 and 12288 estimators.
The results for the flat version (Fig. 6a) show the scalability limitation due to
the workload imbalance when a parallelism hierarchy is not established (seen in
the 1024-estimator case with not enough parallelism to exploit the 1536 cores
in 32 agents). In addition, this alternative suffers from the delay produced by
generating the tasks sequentially and from a scheduling overhead that grows
exponentially with the number of pending tasks.

Nested tasks diminish the impact of the latter two. Several coarse-grained
tasks can run at a time and generate finer-grain tasks in parallel; the faster tasks
are detected, the faster the runtime system can submit their execution and better
exploit the resources. Besides, the runtime system can distribute the scheduling
of these tasks; hence, its overhead is drastically reduced as the infrastructure
grows. As shown in Fig. 6b, mitigating these two issues allows a 130 times faster
training of a 12,288-estimator model when using 32 times more resources.

Figure 6c compares the execution times obtained with both algorithms when
training the same model using the same amount of resources. The larger the
model and the infrastructure are, the higher the benefit of establishing a par-
allelism hierarchy is. In the largest test case, training a 12,288-estimator model
using 32 nodes, the Nested algorithm achieves an execution time 106 times faster
than the Flat. The experiments using a single node, where tasks are detected
sequentially and the scheduler handles the same amount of tasks, do not reveal
any significant overhead due to the handling of the additional parent task.
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6 Conclusion

This manuscript describes a mechanism to organize the parallelism of task-based
applications in a hierarchical manner and proposes a mechanism to encapsulate
the management of the nested workflow along with the task to enable the dis-
tribution of the management overhead along the infrastructure. Matching the
application parallelism, the article also proposes a hierarchical approach for orga-
nizing the resources of the infrastructure; thus, the scheduling problem reduces
its complexity by handling fewer tasks and resources. The article also describes
the architecture of a runtime system supporting it.

The paper validates the proposal with two tests on a prototype implementa-
tion running on the MareNostrum 4 supercomputer. The results reveal that, by
establishing a task hierarchy, applications can achieve a higher degree of paral-
lelism without undergoing an in-depth refactoring of the code. Encapsulating the
finer-grain parallelism management within tasks to distribute the corresponding
overhead is beneficial for the application performance; results achieve a speedup
of up to 106 times faster than executions with centralized workflow management.

The tests also reveal some shortcomings of the prototype. The biggest concern
is the limitation of the task scheduler to request task executions to higher layers
of the resource hierarchy. Developing peer-to-peer scheduling strategies based
on task-stealing, reactive offloading or game theory are future lines of research
to improve. Also, the described work considers that the output of the task is
available only at the end of its execution. However, a nested task can compute
an output value of the parent task before its completion. Currently, other tasks
depending on the value must wait for the parent task to end even if the value
is already available. Enabling fine-grain dependency management that releases
the dependency upon the completion of the nested task is also future work.
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15. Mölder, F., et al.: Sustainable data analysis with snakemake. F1000Research 10(33)
(2021)

16. Perez, J.M., et al.: Improving the integration of task nesting and dependencies in
OpenMP. In: 2017 IEEE International Parallel and Distributed Processing Sym-
posium (IPDPS), pp. 809–818 (2017)

17. Planas, J., et al.: Hierarchical task-based programming with StarSs. Int J. High
Perform. Comput. Appl. 23(3), 284–299 (2009)

18. Rabenseifner, R., et al.: Hybrid MPI/OpenMP parallel programming on clusters
of multi-core SMP nodes. In: 2009 17th Euromicro International Conference on
Parallel, Distributed and Network-based Processing, pp. 427–436 (2009)

19. Vandierendonck, H., et al.: Parallel programming of general-purpose programs
using task-based programming models. In: 3rd USENIX Workshop on Hot Topics
in Parallelism (HotPar 11) (2011)

20. Wozniak, J.M., et al.: Swift/t: large-scale application composition via distributed-
memory dataflow processing. In: 2013 13th IEEE/ACM International Symposium
on Cluster, Cloud, and Grid Computing, pp. 95–102 (2013)

21. Yoo, A.B., et al.: SLURM: simple Linux utility for resource management. In: Job
Scheduling Strategies for Parallel Processing, pp. 44–60 (2003)

https://oneapi-src.github.io/oneTBB/main/tbb_userguide/Cancellation_and_Nested_Parallelism.html
https://oneapi-src.github.io/oneTBB/main/tbb_userguide/Cancellation_and_Nested_Parallelism.html
https://oneapi-src.github.io/oneTBB/main/tbb_userguide/Cancellation_and_Nested_Parallelism.html
https://doi.org/10.6084/m9.figshare.23552229
https://doi.org/10.1007/978-3-030-85665-6_17
https://doi.org/10.1007/978-3-030-85665-6_17


MESDD: A Distributed Geofence-Based
Discovery Method for the Computing

Continuum

Kurt Horvath1, Dragi Kimovski1(B), Christoph Uran1,2, Helmut Wöllik2,
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Abstract. Service discovery is a vital process that enables low latency
provisioning of Internet of Things (IoT) applications across the com-
puting continuum. Unfortunately, it becomes increasingly difficult to
identify a proper service within strict time constraints due to the high
heterogeneity of the computing continuum. Moreover, the plethora of
network technologies and protocols commonly used by IoT applications
further hinders service discovery. To address these issues, we introduce
a novel Mobile Edge Service Discovery using the DNS (MESDD) algo-
rithm, which uses a so-called Intermediate Discovery Code to identify
suitable service instances. MESDD uses geofences for fine-grained ser-
vice segmentation based on a naming scheme that identifies users’ loca-
tions across the computing continuum. We deployed a real-life distributed
computing continuum testbed and compared MESDD with three related
methods, outperformed by 60 % after eight update iterations.

Keywords: Fog and Edge computing · service discovery · geofence ·
DNS

1 Introduction

The computing continuum, encompassing Cloud and Edge infrastructures, pro-
vides compute services close to end users to reduce communication latency
and improve response time for various applications in the Internet of Things
(IoT) [13]. It contains a heterogeneous set of computing nodes ranging from
energy-efficient single-board devices to powerful cloud computing instances.

The heterogeneity of the computing continuum enables efficient support of
applications with conflicting requirements, such as low execution time and high
computing performance. These applications rely on various services, including
low-energy data exchange and massive multi-media-content streaming, which
further increases the requirements for computing infrastructures. To address
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
J. Cano et al. (Eds.): Euro-Par 2023, LNCS 14100, pp. 125–138, 2023.
https://doi.org/10.1007/978-3-031-39698-4_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-39698-4_9&domain=pdf
https://doi.org/10.1007/978-3-031-39698-4_9


126 K. Horvath et al.

this issue, the computing continuum enables the geographical distribution and
organization of services depending on the users’ location.

Unfortunately, managing the services across the computing continuum is dif-
ficult and limited by the plethora of computing infrastructures, network tech-
nologies, and protocols. The most critical step in the process of services man-
agement is service discovery, which includes identifying available services for a
given application distributed across the computing continuum. We, therefore,
identify two main service discovery and management challenges across the com-
puting continuum. Firstly, it is burdensome to orchestrate the services within the
computing continuum concerning predicting the users’ demand, primarily due
to the need for geographical awareness and the persisting interoperability issues
with the utilization of specific domain name (DNS) services [24]. The second
challenge pertains to the accessibility and discovery of services, which recently
moved towards using wireless technologies, such as 5G networks [3,16].

To address these issues, we propose a Mobile Edge Service Discovery using the
DNS (MESDD) method, which uses DNS to build a multi-access Edge computing
network [4] and exploits the geographical awareness of the Edge devices in the
computing continuum. MESDD uses a so-called Intermediate Discovery Code
(IDC) on the user side to analyze the network topology (i.e., within a state, city,
or district) and discover IoT services [10] while maintaining the structure of their
naming scheme with high geographical granularity. Furthermore, MESDD uses
geofences to define a custom overlay over the network topology, representing
user-defined areas defined around a geographical location [18]. Geofences can
overlap, assign a particular position, or belong to a specific area but introduce
additional lookup overheads from the current user location for service discovery.

Therefore, the main contributions of this work are:

– Geofence-based service discovery model tailored to IoT applications;
– Client-oriented discovery based on an IDC representation that identifies the

nearest service instance;
– Real-life implementation and evaluation of a testbed and representative traffic

warning IoT application.

We evaluate MESDD through extensive experiments with a real-world net-
work environment using a traffic warning application with service instances
widely distributed over three locations. We conducted an experimental study
comprising 100 sequential requests, revealing an improved MESDD service dis-
covery and update round-trip time after five service update iterations and out-
performing state-of-the-art solutions by 30% to 40% after 15 iterations. The
advantage of MESDD stems from its low discovery time within a specific geo-
graphical location, with a low 59.23 ms update round-trip time on Edge services.

The paper has seven sections. Section 2 reviews the related work. We describe
the formal model for the geofence-based service discovery in Sect. 3 and explain
the discovery method in Sect. 4. Section 5 describes the experimental setup, fol-
lowed by the evaluation results in Sect. 6. Section 7 concludes the paper.
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2 Related Work

This section revisits the centralized and decentralized related work on service
discovery on the computing continuum.

2.1 Centralized Service Discovery

Centralized discovery mechanisms rely on atomic functionalities, such as query
and register, and are accessible through traditional unsecured REpresentational
State Transfer (REST) interfaces [23] as an underlying low overhead protocol.

Recent research in centralized service discovery also addresses the naming
schemes using named data networking [14]. The work in [20] focuses on appli-
cations for semantic matching on information-centric networking. Similarly, [11]
presents a novel approach for services discovery, designed around a novel com-
munication network, such as 5G, as its native environment.

A discovery scheme designed for IoT applications is DisGB [7], which eval-
uates various methods to identify rendezvous points, such as nominal, flooding
events, flooding subscriptions, consistent hashing or grid quorum, for exchange
information among the brokers. DisGB aims to make services and information
discoverable but does not address the latency benefit of Edge computing.

Centralized service discovery solutions are relatively easy to implement and
deploy, suitable for various applications and services, such as DNS hierarchies
which are the foundation of service localization on the Internet today. How-
ever, they suffer from a single point of failure and rely on deterministic static
hierarchical algorithms unsuitable for the computing continuum.

2.2 Decentralized Service Discovery

Recently, decentralized solutions became popular for service discovery in the
computing continuum. The authors in [23] developed a constrained REST envi-
ronment, resource directory interface, and application protocol for decentralized
service discovery. Another example [16] elaborates on the capabilities of wireless
networks for peer-to-peer communication for decentralized discovery.

A more recent work [17] uses the Kademlia network to establish a hierarchy of
nodes differentiating between Edge devices and cluster and global coordinators.

Furthermore, [26] uses Web Service Description Language to improve ser-
vice description using multiple random walks and constrained flooding to enable
hybrid service discovery. Besides, the authors in [6] present a hybrid decentral-
ized system with an ontology-based naming scheme to discover services. Lastly,
[22] presents a decentralized approach defined by the Internet Engineering Task
Force [2] that sends a multicast DNS request to a local network group expecting
a suitable service to respond. This approach does not require a separate server
to manage the request, leading to multiple possible responses due to the vast
undirected broadcast traffic, which is impractical for open networks.

In general, decentralized approaches are resilient to failures and scale well but
suffer from interoperability issues, complex deployment, and high complexity, as
the protocol among the nodes might alter over time to different versions.
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3 Model

This section presents a formal model for the MESDD service discovery consisting
of four sections.

3.1 Service Model

We first define a service ω as a tuple:

ω = {Inω, Outω} ,

where Inω is a set of inputs required to invoke ω and Outω is the set of outputs
returned by ω after its execution. A service exists globally and is accessible by
its instances. For example, a traffic warning service provided to a mobile user
has the location and current traffic in a certain area as output. We define a user
as a person who consumes a service.

We define a service instance ι as a set of n Location Descriptors (LD):

ι = {λ1 . . . λn} .

An LD consists of m tags representing DNS records defined according to the
RFC 1034 domain concepts standard [15].

λ = {tag1 . . . tagm} ,

Figure 1 presents the structure of an LD consisting of four hierarchical stages
explained in Table 1. A higher stage level indicates a more precise service instance
selection accuracy.

– Stage 1 is the shortest tag corresponding to the largest area, such as major
cities or federal states (e.g., kaernten.app.domain in the Austrian region of
Carinthia). Remote Cloud data centers host the services at this stage.

– Stage 2 refines the granularity to a district or a state capital. For example,
klagenfurt.kaernten.app.domain increases the detail level of the assigned
service to the city of Klagenfurt in Carinthia, Austria. Local Fog data centers
host the services at this stage.

– Stage 3 further zooms the level of detail to an urban area, such as a city
center. In our example, the tag IS44.klagenfurt.kaernten.app.domain
addresses a busy intersection with the index 44. Edge devices in the user’s
proximity host the services at this stage.

– Stage 4 provides the ability to enhance the geographical assignment of ser-
vices with context-specific information. For example, Fig. 3 splits the inter-
section into four additional zones, including direction information (e.g.,
D3.IS43.klagenfurt.kaernten.app.domain)
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Fig. 1. Location Descriptor structure.

Table 1. Hierarchical LD stages and
associated data centers.

Stage Location Descriptor Data center

4 D4.IS43.klagenfurt.kaernten Edge

3 IS43.klagenfurt.kaernten Edge

2 klagenfurt.kaernten Fog

1 kaernten Cloud

3.2 Geofence Model

Geofences build the foundation for flexible zone definition and service instance
assignment. We define a geofence γ as a cyclic graph:

γ = (V,E),

where V = {v1 . . . vo} is a set of vertices representing locations and

E =
⋃

i∈[1,o−1]

(li, li+1) ∪ (lo, l1)

is the set of edges representing the geofence boundaries. A location li ∈ V is a
tuple identified by its GPS latitude and longitude coordinates.

We further define a hierarchical set of geofence levels:

Γ (k) ⊂ . . . ⊂ Γ (1),

where each
level consists of several overlapping geofences: Γ (k) =

{
γ
(k)
1 , . . . , γ

(k)
lk

}
. A level

k geofence surrounds and contains the level k − 1 geofence.
Each geofence γ

(k)
l ∈ Γ (k) has an associated LD λ consisting of k hierarchical

stages, as defined in Sect. 3.1 and exemplified in Table 1.
We define Γl = {γ1, . . . , γn} as the geofences surrounding a service con-

sumer’s location l. A location l ∈ Γl identified by the GPS position of a user
device is the set of their geofences’ LDs:

l = {λ1 . . . λn} ,

where λi is the LD of the geofence γi, where i ∈ [1, n].
Let Γω be the set of geofences associated with a service ω and Iω its service

instances. We define service provisioning as a function P : Iω → Γω that maps
each instance ι ∈ Iω to a geofence γ ∈ Γω. The service provisioning is:

1. balanced, if the function is bijective and provisions exactly one service in each
geofence, responsible for serving it with low latency: |Iω| = |Γω|;

2. overprovisioned, if the provisioning function is surjective and provisions more
redundant services in each geofence: |Iω| > |Γω|;

3. underprovisioned, if the function is injective, indicating service scarcity with
geofences lacking any provisioned instances and generating high latency to
the users by unnecessary geofance transitions: |Iω| < |Γω|.
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3.3 Service Discovery

We define the complete discovery round-trip time RTTD for acquiring a service
as the sum between the service IDC acquisition time, discovery time TD and
forwarding time TF for accessing the desired service as:

RTTD = TIDC + TD + TF .

We further split the discovery time into the location time Tloc to acquire
the user GPS position, lookup time Tlookup to identify all geofences surrounding
a user and its relevant service instances and selection time Tselect to validate
the instances using an nslookup operation and sort their LD tags based on
proximity:

TD = Tloc + Tlookup + Tselect .

A mobile user u travelling across geofences γu at an average speed vu must
repeat the discovery process at a certain discovery frequency fd(u) to ensure an
optimized service instance selection:

fd =
vu

d (γu)
.

where d (γu) describes the average distance of the user to the geofence border.
For example, a user with an average speed of 10 m/s traversing a cyclic

geofence with a diameter of 1000 m should run the discovery process every 500 m
with a discovery frequency of fd = 10

500 = 0.02 Hz. Considering the geofence
radius ensures sampling of each geozone at least once.

3.4 Service Runtime Update

Inside the geozone, a user must update the service information at a specific use
case-dependent update frequency fu. For example, critical safety-relevant services
need high frequency and low latency updates, while IoT services with soft time
constraints need fewer updates.

We define the update round-trip time RTTU as the forwarding time TF and
the service-specific information update time TF :

RTTU = TF + TU .

Discovery is unnecessary if a user remains inside a geofence since no better
service instance exists.

We quantify the accessibility of a service instance though the cumulative
discovery and update time TC , impacted by the update frequency fu:

TC = RTTD +
fu∑

j=1

RTT j
U ,

where RTT j
U is the update round-trip time in the jth update. Instances with a

lower TC and similar update frequency provide a lower risk of violating fu.
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Let us assume a service that requires an update frequency fu = 10 Hz for
smooth user interaction. We further assume the existence of a global Cloud
service instance that is easy to discover using conventional DNS approaches with
RTTDC = 100 ms. The Cloud instance offers a slow runtime update of RTTUC =
120 ms due to its far location away from the user, leading to a cumulative service
discovery and update time of TCC = 100 ms+10·120 ms = 1300 ms. On the other
hand, an Edge instance of the service, while harder to discover using MESDD
in RTTDE = 400 ms, would offer a lower update latency of RTTUE = 50 ms due
to its proximity and a lower cumulative discovery and runtime update overhead
of TCE = 400 ms + 10 · 50 ms = 900 ms < TCC .

3.5 Objective

We minimize the physical distance between the user location l and an instance ι
of a service ω located in a geofence γ(k) ∈ Γω, assuming that a shorter physical
distance leads to a lower cumulative discovery and update round-trip time, as
described in Sect. 3.4).

min
γ(k)∈Γω

d
(
l, γ(k)

)
.

To optimize the efficiency of our search, we must traverse the geofences ranked
by their level and return the one with the lowest level: � ∃γ(k) ∈ γ(k′) ∈ Γω, k′ <
k. The precision of the localization increases with the stage levels of an LD,
as described in Sect. 3.1. Thus, minimizing the geofence level leads to a more
accurate and better-performing service instance selection.

There are a range of algorithms to identify if a user location is within a
geofence [25], such as based on geofence hierarchies [12].

4 Methodology

MESDD uses the concept of geofences that consider users’ location for fine-
grained service discovery. Figure 2 represents the discovery process structured in
three phases: IDC acquisition, service instance discovery, and user forwarding to
the service instance, described in the next sections.

IDC acquisition: The first phase in the discovery requires the user to download
the IDC of a service hosted by the service provider on a Web server in the
cloud. This phase requires a DNS lookup, for example, idc.service.domain,
followed by an IDC download and execution in the user domain. In our reference
implementation released on GitHub [9], the IDC uses JavaScript and executes
in the user browser. The generic implementation applies to other services by
changing the domain and service name.
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Fig. 2. MESDD architecture overview.

Service instance discovery: The actual discovery process is the core phase imple-
mented in the IDC. This step aims to generate a valid service instance URL using
the LD provided to the user for access. For this purpose, it needs to identify all
LDs of the geofences surrounding a user and which contain valid service instances
in three steps.

1. GPS lookup is the first step of the IDC that acquires the user (device) location,
such as the navigator.geolocation JavaScript object used in our implemen-
tation. The output of this step is the location.

2. Geofence lookup uses an external interface provided by the Geofence-Solver
service that returns a list of geofences surrounding the user’s input location.
We implemented the solver as a geofence application hosted on the same
Web server as the IDC, accessed using a REST interface, and used a third-
party implementation to validate if a user is in a geofence [8]. The service
provider provisions the geozones in a GeoJson standard format [1] accessible
to the service. The localization problem solved by the geofence application
is a point-in-polygon with a vast number of algorithms [25] solving it. The
geofence application uses an R-tree representation and follows the search
method proposed in [5] (see Sect. 3.5).

3. Validation avoids selecting and forwarding the user to an invalid service
instance if the geofences provided to the Geofence-Solver do not match
the records maintained by the DNS server. The DNS server performs health
checks that avoid resolving invalid services. The validation uses the hierarchies
established in Sect. 3.1 and stops after finding a valid DNS address verified
by an nslookup operation.
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User forwarding: The last phase in the discovery process uses the URL the
service instance discovery provides. The IDC forwards the user to the selected
Edge service instance (e.g., IS44.klagenfurt.kaernten.app.domain). If the
discovery could assemble no service instance URL based on the user location,
the forwarding will target a global service instance (e.g., in the app.domain).
There is no validation for the global instance because it acts as a last resort. The
discovery process ends with the termination of the IDC in the user’s browser.

5 Experimental Setup

We describe in this section the experimental testbed and evaluation scenarios
involving three related methods and a real application.

5.1 Testbed

We deployed an experimental testbed using four servers in different geographical
locations hosting different services, which are either instances of the desired
service or are part of the discovery process.

Global Cloud server resides in the Google Cloud data center in Iowa, USA, and
hosts a worldwide instance of the target service used as a fallback if MESDD
cannot identify a closer service instance.

Service Cloud server resides in a data center in Vienna, Austria, and hosts an
instance of the target service and other components required by the discovery.

– Apache Web server provides the IDC via HTTP or HTTPS and addressed
using a static URL tag (e.g., idc.app.domain), and implementing the discov-
ery process to the user, as described in Sect. 4. The IDC is a static JavaScript
that requires no persistence (cookies) or personal data despite the interface
call to the Geofence-Solver;

– Geofence-Solver service addressed by a static URL (e.g., geo.app.domain)
manages the geofence application and performs a geofence lookup for a given
user location using a REST interface (see Sect. 3.2). The service provisions
geofences in a distinct directory as GeoJSON files (see Sect. 4).

DNS server resides in a different data center in Vienna and hosts the Consul [21]
service that provides name resolution [15] and health check monitoring capabil-
ities. The service provider is responsible for representing all geofences using an
LD registered with the service instances managed by Consul.

Edge server hosted in Klagenfurt, Austria, provides the Edge instances of the ser-
vice instances at the same location with the user and addressed according to the
scheme introduced in Sect. 3 (e.g., IS43.klagenfurt.kaernten.app.domain).
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Local personal computer at the university campus in Klagenfurt, Austria, rep-
resents the reference client that downloads the IDC and executes the discovery.

5.2 Related Work Comparison

We evaluate MESDD compared with three related methods.

Consul [19] is a DNS-based discovery registry that resolves the services addressed
in DNS syntax. Its architecture includes a master DNS server and slave service
instances that monitor the discoverable services. This state-of-the-art method
does not incorporate any information on the users’ location.

DNS Service Discovery (DNS-SD) [22], similar to Consul, uses the DNS protocol
for resolving services but relies on broadcasting instead of direct communication.
Instances providing a certain service listen to requests from any user consuming
this service. The benefit is zero configuration and simple selection of the instance
answering first on the broadcast with the lowest latency. The biggest limitation
is that the broadcast in public networks fails or gives insufficient results.

Discovery Geo-Broker (DisGB) [7] is a publish/subscribe service discovery and
data exchange approach that relies on a geographically distributed broker in
the Cloud and at the Edge. Users can subscribe to services in certain areas,
and publishers share their data on certain topics. A hierarchy of brokers effec-
tively exchanges data and propagates information at the expense of long delays.
Moreover, the overall publish/subscribe scheme is incompatible with most appli-
cations like video streaming or gaming.

5.3 Traffic Warning Application

We use a traffic warning application that requires low-latency communication
and location awareness to manage essential health and traffic services. A camera-
based emergency vehicle detection enables a local service at a specific intersection
to warn other vehicles of incoming emergency vehicles. Figure 3 depicts an exam-
ple of using geofences to segment an intersection and the four connecting alleys
denoted as D1, D2, D3, and D4. Sensors connected to an Edge server on the road-
side detect incoming emergency vehicles in the distance. User applications can
register on an Edge server assigned to the intersection for alleys. An emergency
vehicle entering from the north and traversing the geofence D1 triggers a call-
back indicating an imminent danger or additional attention. The alignment of
the geofences aids in informing drivers and pedestrians affected by the emergency
vehicle. For example, a driver traversing the intersection IS43 from geofence D2
to D3 and leaving the area might not be relevant. However, if another vehicle
enters D2, the emergency vehicle in D4 interferes with it. Nevertheless, informing
all drivers in this intersection area on their mobile devices is a recommendation.
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Fig. 3. Illistrative traffic warning application scenario.

We assume an emergency vehicle moving between geofences describing inter-
sections and designated directions. A single service instance using the service
in the fourth Edge geofence level (see Table 1) operates the intersection (IS43).
This constraint shows that customization on the IDC can provide additional
functionality in our scheme. To identify the transit between geofences, we dis-
tinguish between the initial service discovery and the runtime service update,
as presented in Sect. 4. In this example, the discovery executes on all geofence
levels, but the validation step will stop at the third level, beyond which there
are no more service instances.

6 Results

We evaluate the performance of MESDD in terms of the discovery round-trip
and runtime update performance compared to the three related approaches.

6.1 Service Discovery

The first evaluation focuses on the discovery round-trip time (see Sect. 3.3),
assuming no previous service discovery. We assume a local user at the University
of Klagenfurt and repeated the service discovery 100 times in sequence to assess
the stability of the measurements.

We observe in (Fig. 4) that MESDD shows a round trip discovery time of
545.23 ms, split among the IDC acquisition, instance discovery, and user for-
warding phases.

MESDD has 24 % longer discovery round-trip time than Consul and DNS-
SD, which use simple lookups without acquiring the IDC or considering the
user’s location. Consul benefits from direct access to cloud instances using DNS.
Still, there is no particular distribution of the users in this approach. DNS-
SD’s mean discovery time of 145.57 ms is more than three times longer than
Consul. DisGB exhibits very high discovery times of more than 1055 ms in 95 %
of the cases due to latency assumptions from the original simulation [7] based
on a publish/subscribe implementation using the message queuing telemetry
transport.
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Fig. 4. Discovery round-trip time. Fig. 5. Runtime service update.

6.2 Cumulative Service Discovery and Runtime Update

The second evaluation focuses on the runtime service update of a user remaining
inside a geofence after performing an initial service discovery on the testbed
described in Sect. 5.1.

The results in Fig. 5 extend the initial service discovery measurements from
Table 4 (replicated as the iteration 0) with 14 iterative updates, as described
in Sect. 3.4. MESDD geofence-aware method discovered service instances at the
Edge server, which provides a low average update round-trip time of 59 ms to
acquire service information. All the other approaches discovered services in the
Cloud and require a higher update duration of 145 ms is average. While Consul
and DNS-SD outperformed MESDD in the discovery round-trip time due to the
much simpler protocol as covered in Sect. 4, MESDD catches and outperforms
their cumulative service discovery and runtime update after only four update
iterations.

7 Conclusion

Service discovery and management are essential to operating low-latency IoT
applications on the computing continuum. Moving services from the Cloud to
the Edge enables service discovery and instantiation close to the users.

This paper introduced MESDD, a service discovery method that uses IDC
to identify suitable service instances based on users’ location in the computing
continuum. MESDD addresses services with their LD based on a naming scheme
used to determine their corresponding geofences. We deployed a testbed and
compared MESDD with three related discovery methods over a real-life traffic
warning application. Evaluation results show that the MESDD discovery of Edge
services close to the users compensates for its increased complexity after five
runtime update iterations and even improves the cumulative service discovery
and update time by 40 % after 17 iterations.

In the future, we plan to improve service discovery by restricting the validity
of results based on user mobility patterns to avoid unnecessary initial discovery
operations with high latency.



MESDD 137

Acknowledgement. This work received funding from the European Commission’s
Horizon 2020 program (grant 101016835, DataCloud) and Austrian Research Promo-
tion Agency (FFG) (grant 888098, Kärntner Fog).

References

1. Butler, H., Daly, M., Doyle, A., Gillies, S., Schaub, T., Hagen, S.: The GeoJSON
Format, RFC 7946 (2016)

2. Cheshire, S., Krochmal, M.: RFC 6763: DNS-based service discovery (2013)
3. Dharanyadevi, P., et al.: Internet of things-based service discovery for the 5G-

VANET Milieu. In: Cloud and IoT-Based Vehicular Ad Hoc Networks, pp. 31–45
(2021)

4. ETSI. Enhanced DNS support towards distributed MEC environment, WP, 39
(2020)

5. Guttman, A.: R-trees: a dynamic index structure for spatial searching. In: Pro-
ceedings of the 1984 ACM SIGMOD International Conference on Management of
Data (New York, NY, USA), SIGMOD 1984. Associate for Computing Machinery,
pp. 47–57 (1984)

6. Han, T., Sim, K.M.: An ontology-enhanced cloud service discovery system. In:
Proceedings of the International MultiConference of Engineers and Computer Sci-
entists, vol. 1, pp. 17–19 (2010)

7. Hasenburg, J., Bermbach, D.: DisGB: using geo-context information for efficient
routing in geo-distributed pub/sub systems. In: 2020 IEEE/ACM 13th Interna-
tional Conference on Utility and Cloud Computing, pp. 67–78 (2020)

8. Heroux, B.: Geofence service (2023)
9. Horvath, K.: MESDD reference implementation (2023)
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Abstract. We consider in this paper the scheduling problem defined by
a set of dependent jobs with release times and deadlines to be processed
by identical parallel machines. This problem is denoted by P |prec, ri, di|�
in the literature. Starting from an extension of the Branch-and-Bound
algorithm of Demeulemeester and Herroelen to take into account release
times and deadlines, we build a state graph of which longest paths rep-
resent all active schedule. New dominance rules are also proposed.

We establish that our state graph construction algorithm is fixed-pa-
rameter tractable. The two parameters are the pathwidth, which corre-
sponds to the maximum number of overlapping jobs time windows and
the maximum execution time of a job. The algorithm is experimented on
random instances. These experiments show that the pathwidth is also a
key factor of the practical complexity of the algorithm.

Keywords: Scheduling · Parallel machines · Release times and
deadlines · Branch-and-Bound · Fixed-parameter tractable

1 Introduction

Scheduling problems with resource limitation and precedence constraints have
many applications in various fields, such as production systems, the use of multi-
core parallel machines, or the design of embedded systems. Also, many authors
have developed exact or approximate algorithms to efficiently solve these prob-
lems since the beginning of the sixties. Several books and surveys are dedicated
to this class of combinatorial optimization problems [3,5,13].

This paper considers the basic scheduling problem defined by a set of n non-
preemptive jobs T to be executed by m identical machines. Each job i ∈ T
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has a positive processing time pi, a release time ri and a deadline di; all these
values are supposed to be integers. The starting time s(i) of any job i verifies
ri ≤ s(i) ≤ di − pi. Each job i ∈ T has to be scheduled on one machine, each
of which can process at most one job at a time. Lastly, a directed acyclic graph
G = (T , E) defines a set of precedence constraints: for each arc (i, j) ∈ E, the
associated constraint is s(i) + pi ≤ s(j). The problem is to find, if possible,
a feasible schedule. This problem is denoted by P |prec, rj , dj |� using the Gra-
ham notation [10]. This problem is difficult to be solved exactly; indeed the
P |prec, pj = 1|Cmax problem was proved to be NP-hard by Ullman [18].

The development of fixed-parameter tractable algorithms (FPT algorithms
in short) makes it possible to push a little further the study of the existence
of an efficient algorithm for some instances of a difficult problem [6,9]. A fixed-
parameter tractable algorithm solves any instance of size n of the problem with
parameter k in a time O(f(k)×poly(n)), where f is allowed to be a computable
superpolynomial function and poly(n) a polynome of n.

The article of Mnich and van Bevern [14] surveys the existence of a FPT
algorithm for classical scheduling problems and identifies 15 difficult questions
in this context. Most of the results obtained so far conclude the non-existence
of FPT algorithms for the considered parameters.

Among the key parameters with precedence constraints, several authors con-
sidered the parameter w(G), the width of the precedence graph, since it seems
to capture the parallelism of the instance. However, this parameter led mainly
to negative results. For example, even for unit processing times, Bodlaender and
Fellows [2] proved that the problem P |prec, pi = 1|Cmax is W[2]-hard parame-
terized by w(G) and the number of machines. This discards w(G) and the tuple
of parameters (w(G), pmax) to be good parameters of an FPT algorithm for our
problem. The only known positive result is a FPT by van Bevern et al. [1] for the
resource constrained scheduling problem with the tuple of parameter (w(G), λ)
where λ as the maximal allowed lag of a task computed from the earliest schedule
defined by precedence constraints defined.

Besides, Munier Kordon [15] developed recently a FPT algorithm based on
dynamic programming for the decision problem P |prec, rj , dj , pj = 1|�. The
parameter considered is the pathwidth μ = maxt≥0 |{i ∈ T s.t. ri ≤ t < di}|
which corresponds to the maximal number of overlapping jobs time windows
at a single time t. This parameter hence seems then to be more powerful than
the width of the precedence graph to obtain positive results. This approach was
extended by Hanen and Munier Kordon in [11] to handle different processing
times, but with the couple of parameters (μ, pmax) where pmax = maxi∈T pi;
the time complexity of this algorithm belongs to O(f(μ, pmax ) × n4). They also
proved that the scheduling problem P2|ri, di|� parameterized by the pathwidth
is para-NP-complete as well as P |prec, ri, di|� parameterized by pmax; it follows
that unless P = NP, there is no FPT algorithm for P |prec, ri, di|� parameterized
by only one of these parameters.

Branch-and-Bound methods are usually considered to develop efficient algo-
rithms for NP-complete scheduling problems. In the nineties, several authors
developed Branch-and-Bound methods to handle the resource-constrained
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project scheduling denoted by PS|prec|Cmax; see Brucker et al. [4] for the nota-
tion and a survey on these methods. The Demeulemeester and Herroelen algo-
rithm (denoted by the DH algorithm from now) [7] is one of the most efficient
Branch-and-Bound methods to solve efficiently this class of problems [8]. To our
knowledge, there is no worst-case complexity analysis of this algorithm.

We first proved that the tree-based exploration scheme of the DH algo-
rithm [7] can be transformed into the construction of a state graph G. The
nodes of the state graph G correspond to those of the exploration tree and its
path to feasible schedules. We also extended the initial DH definition of branch-
ing to handle release times and deadlines. Bounding techniques are not taken
into account.

Several new original dominance properties based on the time windows struc-
ture follow and constitute another important contribution of this paper. They
allowed us to prove that the number of states of the state graph is linear in the
number of jobs for fixed values of the parameters μ and pmax. Moreover, it can
be built by a fixed parameter tractable algorithm in O(h(μ, pmax ) × n3). This
indicates the potential of the proposed algorithm for scheduling problems with
tight time windows in which both parameters μ and pmax are not significantly
high. We observed that the complexity obtained here is better than the Hanen
and Munier Kordon algorithm [11].

Our approach also illustrates that FPT algorithms can be built from Branch-
and-Bound schemes that have been proven to be very efficient in practice only
with a small overhead. This is an original approach that could be further applied
to other problems.

The practical efficiency of the DH algorithm has already been measured [8]
and the purpose of this paper is not to pretend that the approach developed here
outperforms the existent ones. Instead, we aim to compare the performance of
our algorithm on randomly generated instances with small values of the parame-
ters with the theoretical upper bound of complexity. Our experiments show that
the practical time complexity of the state graph generation also strongly depends
on the pathwidth μ. We also observed that the state graph can be completely
generated for small values of the parameters even without bounding techniques.

The remainder of this paper is organized as follows. Section 2 is devoted
to the definition of the state graph G inspired by the DH approach [7]. We
specifically explain, in this section, the definition of states, how to generate
successor states from a given state and characteristics of the longest paths of the
state graph. Section 3 presents the new dominance rules that allow to restrict
the definition of the considered states; our general dynamic programming (DP
in short) algorithm to build the state graph G is also described. In the proposed
dominance rules, we identify two sets of jobs such that the first set includes the
jobs that have to be included in a partial feasible schedule with a given number
of jobs whereas the second set includes the jobs that cannot be included in this
partial feasible schedule. An upper bound on the number of states is established
in Sect. 4 followed by the proof that the DP algorithm is FPT. Computational
experiments for the DP algorithm are shared in Sect. 5. We conclude with final
remarks in Sect. 6.
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2 Definition of the State Graph G
We prove in this section that the set of feasible active schedules associated to
an instance of the considered scheduling problem can be represented by the
maximum paths of an acyclic state graph G. The definition of the nodes of this
graph, called the states, comes from the nodes of the Branch-and-Bound DH
algorithm [7] and is described in Subsect. 2.1. Each state v is associated with
a non-empty subset of partial schedules. Subsection 2.2 describes the definition
of the eligible jobs among which successor states of a given state v are built.
Subsection 2.3 defines the successors of a state v. The two main differences with
the DH algorithm are that release times and deadlines are considered and that,
as we tackle a decision problem, we do not consider bounding techniques to prune
states. Lastly, Subsect. 2.4 enhances the relation between the longest paths of
the state graph G and active feasible schedules.

In Fig. 1, we present an example for 11 jobs and 3 machines with the job
attributes and the precedence graph G = (T , E). This example will be used to
illustrate the components of the DP algorithm throughout the paper.

Fig. 1. An instance of a scheduling problem P |prec, ri, di|� for n = 11 jobs and m = 3
parallel machines.

2.1 Basic Definitions and States

Definition 1 (Active and Semi-active schedule [16]). A feasible schedule
is called semi-active (resp. active) if no job can be left shifted by one time unit
(resp. scheduled earlier) without changing the starting time of another job.

Definition 2 (Partial feasible schedule). Let V ⊆ T and GV = (V,E) be
the precedence sub-graph of G restrained to the set of jobs V . A partial feasible
schedule is a feasible schedule of a subset of jobs V following the precedence
graph GV = (V,E) and all the constraints on jobs following the initial problem
(release times, deadlines and machine limitations).

Definition 3 (States[7]). A state v is a quadruplet v = (V, t, P,M) where
V ⊆ T is a set of jobs, t ∈ N is a date, P ⊆ V , and M ∈ N

|P | is a vector
indexed following P . Moreover, there exists a partial feasible schedule s of jobs
V such that:
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1. Every job i ∈ V \P is completed before t, i.e. s(i) + pi < t;
2. Every job i ∈ P starts before t and is completed at time Mi ≥ t, i.e. s(i) =

Mi − pi < t ≤ Mi.

Hereafter, we use V (v), t(v), P (v), and M(v) to refer to set V , time moment t,
set P and function M of state v. The level of a state v is the number of jobs in
V (v).

Fig. 2. On the left, the state v with V (v) = {1, 2, 3, 4, 5}, t(v) = 6, P (v) = {4, 5},
M4(v) = 6 and M5(v) = 10. On the right, the state v′ with V (v′) = {1, 2, 3, 4, 6, 7, 8},
t(v′) = 10, P (v′) = {6, 7, 8}, M6(v

′) = 10, and M7(v
′) = M8(v

′) = 11.

Figure 2 presents two states v and v′. The exact completion times of the
jobs in set P (v) and P (v′) are respectively stored in M(v) and M(v′). Jobs in
V (v)\P (v) = {1, 2, 3} are completed in time period [0, 5] yet their completion
times are not recorded in the state. Similarly, jobs in V (v′)\P (v′) = {1, 2, 3, 4}
are completed in time period [0, 9].

2.2 Set R(v) of Candidate Jobs and tmin

This section aims at computing first the set R(v) of candidate jobs among which
maximal subsets of at most m jobs are selected to be scheduled in a new partial
schedule that defines a new candidate state.

Let us consider a state v and a time instant t ≥ t(v). For any job i we denote
by Γ−�(i) the set of all ancestors of i in the precedence graph G. We then define
the following three subsets of jobs:

– IP (v, t) = {i ∈ P (v),Mi(v) > t} is the set of jobs of P (v) that are in progress
at time t;

– E(v, t) = {i ∈ T \V (v), Γ−�(i) ⊆ V (v)\IP (v, t)} is the set of eligible jobs at
time t following v, i.e. these jobs are not in V (v) and all of their ancestors
are in V (v) and completed by time t;

– D(v, t) = E(v, t) ∩ {i ∈ T , ri ≤ t}, the set of tasks schedulable at time t
following precedence relations and release times.

Two particular dates are considered: the first one is defined by tmin = min{t, t ≥
t(v) and D(v, t) �= ∅} as the earliest time for which a new job j of T \V (v) can
start in any partial feasible schedule associated with state v.

Now, jobs from E(v, tmin )\D(v, tmin ) may be slightly delayed because of
their release time if ri > tmin . In order to consider all jobs from E(v, tmin ) that
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can be scheduled before the completion of a job i ∈ IP (v, tmin) ∪ (T \V (v)), we
define the earliest completion time of i by

ect(v, i) =

{
Mi(v) if i ∈ IP (v, tmin )
max{tmin , ri} + pi if i ∈ T \V (v).

If ect(v, i) > di for some job i ∈ IP (v, tmin) ∪ (T \V (v)) then the state v can be
pruned. Otherwise, the earliest completion time of any eligible job in progress
at tmin or starting not earlier than tmin is defined as ect�(v) = min{ect(v, i), i ∈
E(v, tmin ) ∪ IP (v, tmin )}. The set of candidates R(v) is defined as:

R(v) = IP (v, tmin ) ∪ (E(v, tmin ) ∩ {i ∈ T , ri < ect�(v)}).

One can observe that in any feasible schedule built from a partial schedule
associated with state v, jobs in T \(V (v) ∪ R(v)) cannot start their execution
in the interval [tmin , ect�(v)). Moreover, no job of R(v) will complete earlier
than ect�(v). Thus, no additional job T \(V (v)) is to be considered to build the
immediate successor states of state v.

Considering the example state v in Fig. 2, computation of set R(v) is per-
formed in the following three steps. Firstly we state tmin = 7, the earliest possible
starting time of a job in T \V (v). Jobs 6 and 7 can be scheduled at time 7, i.e.
D(v, tmin ) = {6, 7}. In the second step, we calculate ect�(v) which is the earliest
completion time among the jobs 6, 7 and job 5 (the in-progress job at time tmin ).
Here ect�(v) = 10 as the earliest completion time of jobs 5, 6 and 7 are 10, 10
and 11, respectively. In the third step, we check if there exists eligible jobs that
are released in (tmin , ect�(v)). In our example, job 8 is eligible to be started at
time 9 ∈ (7, 10). Eventually, set R(v) = {5, 6, 7, 8}.

2.3 Successors of a State v

Now, for each subset C ⊆ R(v) of |C| = min(m, |R(v)|) jobs, we derive if possible
a new state u successor of v as follows:

– Jobs from IP (v, tmin ) are discarded if not included in C, and thus V (u) =
(V (v)\IP (v, tmin )) ∪ C;

– P (u) = C and for every job j ∈ C, Mj(u) = ect(v, j);
– The time instant t(u) = minj∈C Mj(u).

An additional test is done to ensure that no job in a partial schedule associ-
ated with u derived from v can be locally left shifted. Let us first consider the
set Q = {i ∈ P (v),Mi(v) < tmin}, that is the set of jobs in P (v) that complete
before time tmin . We also consider the set IP (v, tmin )\C of jobs removed from
P (v) to build V (u). We observe that, if Q ∪ (IP (v, tmin )\C) �= ∅ then at least
one machine is empty in the interval [tmin − 1, tmin ). So, if a job i ∈ C\P (v) is
schedulable strictly before the instant tmin , then the state u can be discarded as
the associated schedule is not semi-active.
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Consider state v in Fig. 2. As R(v) = {5, 6, 7, 8} and m = 3, for each subset
of R(v) with 3 jobs, a successor state will be derived from state v. State v′ in
Fig. 2 is generated by considering subset C = {6, 7, 8}. While job 5 is included in
set V (v), it is not a part of V (v′) since it is not in subset C generating state v′.
Thus, V (v′) is equal to (V (v)\{5}) ∪ {6, 7, 8}. Set P (v′) is equal to subset C of
which job completion times are 10, 11 and 11 (as stored in M(v′)). Accordingly,
t(v′) is set to the minimum of the completion times in M(v′) which is 10. While
computing set R(v), we only consider the jobs that can be scheduled between
t(v) = 6 and ect�(v) = 10. Other jobs that can start at time 10 or later will be
handled in the successor states of state v′.

2.4 Longest Path of the State Graph

For any value α ∈ {1, . . . , n}, Vα denotes the set of states of level α. We set then
V0 = {u0 = (∅, 0, ∅, •)}. Here, • represents an empty vector M .

By definition of states, each path from the state u0 to a state un of Vn is
associated to a feasible schedule of makespan maxi∈P (un) Mi(un). We proved in
[17] that conversely, every active schedule corresponds to a path from u0 to a
state of Vn.

We conclude that any state u ∈ ∪n−1
α=0Vα which does not belong to such a

path can be discarded, if possible.

Definition 4 (Perfect state and schedule associated with a perfect
state). A state u is a perfect state if there exists a path from u0 to u and
from u to a state of Vn. If u is a perfect state, a schedule s is said to be
associated with u, if it satisfies the following properties:

1. Every job i ∈ V (u)\P (u) is completed before t(u), i.e. s(i) + pi < t(u);
2. Every job i ∈ T \V (u) starts after time t, i.e. s(i) ≥ t(u);
3. Every job i ∈ P (u) such that Mi = t(u) starts at time s(i) = Mi − pi.

Every job i ∈ P (u) with Mi > t(u) starts either at time Mi − pi or at time
s(i) ≥ t(u).

In the next section we define dominance properties satisfied by perfect states.

3 Implementation of the DP Algorithm

This section aims at developing an algorithm building the state graph G
described previously. In order to limit the number of states, two original prop-
erties on the perfect states structure are proved in Subsect. 3.1. Subsection 3.2
recalls a dominance property considered by the DH [7]. Our DP algorithm is
briefly presented in Subsect. 3.3.

3.1 Dominance on States Structure

For each value α ∈ {0, . . . , n}, we define Zα as the first max{0, α − μ} jobs (to
recall, μ = maxt≥0 |{i ∈ T s.t. ri ≤ t < di}|), when jobs are sorted in increasing
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order of their deadlines, i.e. d1 ≤ d2 ≤ ... ≤ dn. We note that if the job deadlines
are not all different, we break ties with job indexes. Thus, the size of set Zα is
always max{0, α − μ}.

Similarly, for each value α ∈ {0, . . . , n}, let Z ′
α be the set of the first min{n−

max{0, α − μ}, 2μ} jobs that are not included in Zα when jobs are sorted in
increasing order of their release times such that r1 ≤ r2 ≤ ... ≤ rn. Again, we
break ties considering the job indexes if necessary.

For convenience, we provide the cardinality of sets Zα and Z ′
α for different n

and α values in Table 1.

Table 1. Values |Zα| = max{0, α − μ}, |Z′
α| = min{n − max{0, α − μ}, 2μ} and

|Zα| + |Z′
α| following n, α and μ.

Case Subcase |Zα| |Z′
α| |Zα| + |Z′

α|
n < 2μ α ≤ μ

α > μ
0
α − μ

n
n − (α − μ)

n
n

n ≥ 2μ α ≤ μ
μ < α < n − μ
α ≥ n − μ

0
α − μ
α − μ

2μ
2μ
n − (α − μ)

2μ
α + μ
n

Lemma 1. For any value α ∈ {1, . . . , n} and any perfect state u ∈ Vα, Zα ⊆
V (u).

Proof. For α ≤ μ we have Zα = ∅. Therefore, we consider a state u ∈ Vα with
α > μ. Let also S be any feasible schedule associated with u. Let t be the starting
time of the job of V (u) starting the latest in S, i.e. t = maxj∈V (u) s(j). Thus,
for each job j ∈ V (s), rj ≤ s(j) ≤ t. Moreover, by definition of S and V (u), jobs
in T \V (u) can start at time t(u) at the earliest, i.e. t < t(u) ≤ s(j) for every
j ∈ T \V (u).

By contradiction, assume that there exists a job i ∈ Zα with i ∈ T \V (u).
Then, s(i) > t and thus di > t. Now, by definition of Zα, all jobs in V (u)\Zα

have a deadline greater than or equal to di i.e. dj ≥ di > t,∀j ∈ V (u)\Zα. Two
cases must be considered:

– If ri > t, then ∀j ∈ V (u)\Zα, rj ≤ t < ri < di ≤ dj . Since |V (u)\Zα| ≥ μ,
there will be at least μ jobs overlapping with the time window of job i which
contradicts the definition of μ.

– Similarly, if ri ≤ t, then ∀j ∈ (V (u)\Zα) ∪ {i}, rj ≤ t < di ≤ dj . All these at
least μ + 1 jobs overlap at time t, which contradicts the definition of μ. �

Lemma 2. For any value α ∈ {1, . . . , n} and any perfect state u ∈ Vα, V (u) ⊆
Zα ∪ Z ′

α.

Proof. If n < 2μ or if α ≥ n−μ, |Zα ∪Z ′
α| = |Zα|+ |Z ′

α| = n, and Zα ∪Zα′ = T
as shown in Table 1 and the proposition holds for these cases. Therefore, let us
consider n ≥ 2μ and a state u ∈ Vα with α < n − μ; in this case |Z ′

α| = 2μ.
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By contradiction, let us suppose the existence of a job i ∈ V (u)\(Zα ∪ Z ′
α).

We first prove that |Z ′
α\V (u)| ≥ μ + 1. Indeed, by Lemma 1, Zα ⊆ V (u). Thus,

V (u) can be partitioned into the 3 sets: Zα, {i} and the remaining jobs set R.
Here, |R| = |V (u)\(Zα ∪ {i})| = |V (u)| − |Zα| − 1 ≤ α − (α − μ) − 1 = μ − 1.
Now, since (Zα ∪{i})∩Z ′

α = ∅ and Z ′
α ∩V (u) ⊆ R, thus |Z ′

α\V (u)| ≥ |Z ′
α|−|R|.

Now, since |Z ′
α| = 2μ and |R| ≤ μ − 1, we get |Z ′

α\V (u)| ≥ μ + 1.
Let S be a semi-active schedule associated with u. Let us denote now by

t = maxj∈V (u) s(j) the starting time of the job of V (u) starting the latest in S.
We prove that, for each j ∈ Z ′

α\V (u), rj ≤ t < dj . Indeed, each job j ∈ Z ′
α\V (u)

verifies s(j) ≥ t(u) > t, thus dj > t. Now, since job i is scheduled before or at
time t, ri ≤ s(i) ≤ t. As i �∈ Zα ∪ Z ′

α and ri ≥ rj for every job j ∈ Z ′
α\V (u), we

get rj ≤ ri ≤ t.
Thus all the time windows of jobs in Z ′

α\V (u) overlap during interval (t, t+1).
Since |Z ′

α\Sα| ≥ μ + 1, this contradicts the definition of parameter μ. �

Theorem 1. For any value α ∈ {0, . . . , n} and any perfect state u ∈ Vα, P (u)∩
Zα = ∅, and thus Zα ⊆ V (u)\P (u) and P (u) ⊆ Z ′

α.

Proof. Since Zα = ∅ for α ≤ μ, we only consider α > μ. In this case, by Lemma 1,
|V (u)\Zα| = μ.

By contradiction, let us consider a job i ∈ P (u) ∩ Zα. Since i ∈ P (u), in the
partial semi-active schedule associated with u, i is either in-progress or completed
at time t(u) and therefore di ≥ t(u) > ri. Now, as i ∈ Zα, every job j ∈ V (u)\Zα

verifies dj ≥ di ≥ t(u). Moreover rj ≤ s(j) < t(u).
Thus, every job j ∈ {i} ∪ (V (u)\Zα) verifies rj < t(u) ≤ dj ; we deduce

that there are at least μ + 1 jobs j for which (t(u) − 1, t(u)) ⊂ (rj , dj ] which
contradicts the definition of μ.

Lastly, by Lemma 1, Zα ⊆ V (u), and thus Zα ⊆ V (u)\P (u). By Lemma 2
this implies that P (u) ⊂ Z ′

α, which achieves the proof. �

If a state u does not verify one of the inclusion properties expressed by Theorem
1, then u is not a perfect state and will be discarded.

For our example, the level of state v in Fig. 2 is 5, i.e. v ∈ V5, while Z5 = {1}
and Z ′

5 = {2, 3, 4, 5, 6, 7, 8, 9}. Both Lemmas 1 and 2 and Theorem 1 hold for
states v and v′.

3.2 Dominance of Demeulemeester and Herroelen

The following dominance property proved by Demeulemeester and Herroelen [7]
is still valid in the presence of release times and deadlines:

Proposition 1. [7] Consider two states v and v′ with V (v) = V (v′), and such
that t(v′) ≥ maxi∈P (v)\P (v′) Mi(v) and ∀i ∈ P (v)∩P (v′),Mi(v) ≤ Mi(v′). Then
if v′ is perfect then v is perfect, so v′ can be discarded.
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3.3 Steps of the Dynamic Programming Algorithm

The main steps of the DP algorithm are presented by Algorithm 1. Line 4 com-
putes R(v) and tmin as described in Sect. 2.2. The function NewState called
at line 6 builds a new state u following Subsect. 2.3. The conditions of Theo-
rem 1 are also checked and it returns false if the state is discarded. Function
AddDiscardOrReplace decides to add u or not to Vα and maintains Vα as a list
of undominated states according to Proposition 1.

Algorithm 1. DP algorithm for building the state graph G
1: V0 = {(∅, 0, ∅, ∅)}, Vα = ∅ for α ∈ {1, . . . , n}, A = ∅, S = V0

2: while S �= ∅ do
3: Pick a state v ∈ S and remove it from S
4: Compute R(v), tmin

5: for each subset C �= ∅ of R(v) s.t. |C| = min(m, |R(v)|) do
6: u ← NewState(v, tmin , C)
7: if u �= false then
8: u ← AddDiscardOrReplace(u, Vα′) where α′ = |V (u)|
9: if u �= false then

10: S = S ∪ {u}, A ← A ∪ {(v, u)}
11: end if
12: end if
13: end for
14: end while
15: return G(V, A) where V =

⋃n
α=0 Vα

Any search strategy (breadth-first, depth-first, other) can be used to build
the state graph G. To solve the decision problem, we just have to stop whenever
a state v such that V (v) = T is reached (i.e. belongs to G). If an optimization
function is considered for which active schedules are dominant, the DH dom-
inance can be modified and discarding states based on bounds can be easily
added to this framework.

4 Complexity Analysis of the DP Algorithm

This section establishes that when the breadth-first search is used, the DP algo-
rithm is fixed-parameter tractable for parameters (μ, pmax ). The following lemma
uses dominance properties to bound the whole number of states.

Lemma 3. For any perfect state v, the number of perfect states u such that
V (u) = V (v) is bounded by (2 × pmax )μ.

Proof. Consider a perfect state v of level α, i.e. |V (v)| = α.
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– By Theorem 1, Zα ⊆ V (v)\P (v) ⊆ V (v), thus |V (v)\Zα| = |V (v)| − |Zα| =
α − max{0, α − μ} ≤ μ. Now, by Theorem 1, we also get P (v) ⊆ V (v)\Zα;
since |V (v)\Zα| ≤ μ, the total number of possibilities for P (v) when V (v) is
fixed is then bounded by 2μ;

– Let us suppose now that V (v) and P (v) are fixed. Then, if t(v) is fixed, each
job i ∈ P (v) must have its completion time Mi(v) in {t(v), . . . , t(v)+ pi − 1}.
Thus, (pmax )|P (v)| is an upper bound of the total number of possible M(v)
vectors. Moreover, by Proposition 1, for any fixed M(v) vector, only the
smallest possible value of t(v) needs to be considered.

So, for a given subset V (v), the number of states is bounded by (2 × pmax )μ,
and the lemma is proved. �

Lemma 4. The total number of states of level α is bounded by f(μ, pmax ) with
f(μ, pmax ) =

(
2μ
μ

)
× (2 × pmax )μ.

Proof. Consider a perfect state v of level α, i.e. |V (v)| = α. As seen above, by
Theorem 1 we get |V (v)\Zα| ≤ μ. Moreover, by Lemma 2 V (v) ⊆ Zα ∪ Z ′

α and
by definition |Z ′

α| ≤ 2μ. Thus, V (v) contains Zα and at most μ elements of Z ′
α;

the number of possibilities for V (v) is thus bounded by
(
2μ
μ

)
.

Now, by Lemma 3, the total number of perfect states associated to a set
V (v) is bounded by (2 × pmax )μ. Thus, the total number of states of level α is
bounded by

(
2μ
μ

)
× (2 × pmax )μ, which achieves the proof. �

We can now state our main result.

Theorem 2. Algorithm 1 using breadth-first search is a FPT algorithm of time
complexity

O
(
24μ × p2μ

max × √
μ × n3

)
.

Proof. The complete proof is given in [17]. We just outline the main arguments.

1. According to Lemma 4, there are at most f(μ, pmax ) =
(
2μ
μ

)
× pμ

max × 2μ

states of level α for α ∈ {0, . . . , n}. Thus, the whole number of states is
O(f(μ, pmax ) × n);

2. For each state v of level α, we proved in [17] that |R(v)| ≤ μ, and that the
computation of R(v) and tmin is in time O(n2μ) (line 4 of Algorithm 1);

3. The number of subsets C in line 5 is bounded by
(

μ
�μ/2�

)
. A single call to

NewState(v, tmin , C) is in O(n), so that the complexity of lines 5:6 for a
state v is O(

(
μ

�μ/2�
)

× n);
4. Lastly, once a new state u is built, if the level of u is α, AddDiscardOrReplace

first recognizes if a state u′ with V (u′) = V (u) has already been stored in
Vα. As u fulfills Theorem 1, V (u′) and V (u) would only differ by how they
intersect Z ′

α. So, the set V (u) can be encoded with respect to set Z ′
α i.e. using

2μ bits. Using an appropriate data structure, V (u) can thus be searched in
O(μ2 ln(μ)). Then, by Lemma 3, at most (2 × pmax )μ states are compared to
u, each in O(μ). So g(μ, pmax ) = μ(μ ln(μ) + (2 × pmax )μ) steps are needed
for each new state u in line 8.



150 I. Tarhan et al.

So, we get the overall time complexity

O
(

f(μ, pmax )
(

n3 × μ + n2 ×
(

μ

μ/2�

)
+ n × g(μ, pmax )

(
μ

μ/2�

)))

We can then use Stirling’s formula (i.e. n! ∼
√

2πn
(

n
e

)n) to show that
(
2μ
μ

)
≤

22µ√
μ ) and to approximate

(
2μ
μ

)
and

(
μ

�μ/2�
)
, which achieves the proof. �

5 Computational Experiments

We conduct preliminary experiments in order to analyse the practical limit of
the complete state graph generation. We also measure the execution time when
the state graph generation is stopped as soon as a feasible schedule is found.

5.1 Data Generation

We develop a problem instance generator that takes values of n,m, μ and pmax as
inputs and returns an instance with the corresponding parameters. The details
of the data generation are presented in the companion paper [17].

We consider for our experiments μ ∈ {5, 10, 15, 20, 25}, n ∈
{50, 100, 250, 500} and m ∈ {2, 5, 10}. We first use small values of processing
times by setting pmax = μ. Then we consider the case pmax = n that may lead
to a high worst case complexity. We generate instances for all cross-combinations
of the possible parameter values except the cases where μ < m. For each distinct
tuple (n, μ,m, pmax ), we generate 15 instances. Instances with 50 and 100 jobs
are referred to moderate-size instances as the instances with 250 and 500 jobs
are referred to as large-size instances. Similarly, when pmax is equal to μ and n,
it is referred to as small and high, respectively.

5.2 Computational Results

In our computational experiments, we apply the depth-first search in accordance
with the objective of finding a feasible solution. The enumeration of subsets C
on line 5 of Algorithm 1 uses sorted earliest starting times of the jobs in R(v)
where ties are broken considering the ascending order of deadlines. Thus, the first
chosen new state schedules the jobs with the earliest starting times (and earliest
deadlines in case of ties) in set R(v) and thereby follows the Jackson’s rule [12].
We use one hour time limit for each instance such that the DP algorithm is
terminated after one hour if the state graph cannot be completely generated
yet.

In Table 2, we provide the percentage of the instances for which the state
graph can be generated completely. In our results, the impact of the instance size
on the complete state graph generation percentages is less significant according
to the impacts of other parameters, especially μ. This is consistent with the
complexity of the proposed FPT so that its complexity is polynomial in the
number of jobs n.
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Table 2. Complete state graph generation percentages for different tuples
(n, pmax , m, μ).

n pmax m μ

5 10 15 20 25

moderate small 2 – 100.0 100.0 66.7 0.0

5 – 100.0 80.0 0 0.0

10 – – 100.0 86.7 10.0

high 2 100.0 100.0 100.0 66.7 0.0

5 – 100.0 66.7 0.0 0.0

10 – – 100.0 73.3 13.3

large small 2 100.0 100.0 100.0 50.0 0.0

5 – 100.0 33.3 3.3 0.0

10 – – 100.0 70.0 16.7

high 2 100.0 100.0 83.3 10.0 0.0

5 – 100.0 13.3 0.0 0.0

10 – – 100.0 70.0 13.3

– We first note that μ seems to be a key parameter in practice, since the per-
centages are clearly decreasing with μ in every cases. For μ = 10 the whole
state graph can be generated, for μ = 25 it is hopeless;

– The value of m has an impact. We can observe that for m = 2 or m =
10 the percentages are often similar, whereas when m = 5 the percentage
dramatically decreases. This could be partially explained since the number of
enumerated sets C is bounded by

(
μ
m

)
which is lower for low or high values

of m;
– The impact of n is quite limited with respect to μ when m is either 2 or 10,

even for pmax = n.

Besides, we observed that higher number of states can be pruned by the domi-
nance criterion as the number of machines gets smaller. Specifically, the overall
percentages of the dominated states over the total number of states generated
are 63.5%, 45.5% and 28.7% when the number of machines is 2, 5 and 10, respec-
tively.

In all our experiments, when the state graph was completely generated,
instance required less than 1812.7 s on average. Most of the instances required
much less time.

We also analyzed when the first feasible solutions are found in the feasible
instances. For most of them, we can find a feasible solution in less than 0.01
s. For only 18 of all feasible instances, the first feasible solution finding time is
greater then 0.10 s and only for 5 of them, it is greater than 5 s.
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6 Conclusion

In this paper we developed a new dynamic programming approach to solve the
decision problem P |prec, ri, di|� starting from the Demeulemeester and Herroe-
len Branch-and-Bound algorithm [7]. We proved that the tree built by this algo-
rithm can be transformed into a state graph. New dominance rules based on the
release times and deadlines were provided allowing to bound the number of states
and proving that our algorithm is FPT with respect to parameters (μ, pmax )
when the breadth-first search is used. Preliminary experiments highlighted that
the practical efficiency of our algorithm depends mainly on parameter μ.

Branch-and-Bound methods are widely used and often efficient to solve prac-
tically scheduling problems; however, their worst case complexity is rarely stud-
ied. Parameterized complexity offers a new angle of approach to measure the
parameters that explain an efficiency or inefficiency for some instances. Thus, as
a perspective of this work, the study of other Branch-and-Bound-based methods
for more general scheduling problems and their adaptation in FPT, depending
on the parameters, seems promising.

Acknowledgments. This work was supported by the EASI project funded by Sor-
bonne Universités.
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Abstract. Edge Computing emerges as a stable and efficient solution
for IoT data processing and analytics. With big data distributed engines
to be deployed on edge infrastructures, users seek solutions to evalu-
ate the performance of their analytics queries. In this paper, we intro-
duce SparkEdgeEmu, an interactive framework designed for researchers
and practitioners who need to inspect the performance of Spark ana-
lytic jobs without the edge topology setup burden. SparkEdgeEmu pro-
vides: (i) parameterizable template-based use cases for edge infrastruc-
tures, (ii) real-time emulated environments serving ready-to-use Spark
clusters, (iii) a unified and interactive programming interface for the
framework’s execution and query submission, and (vi) utilization met-
rics from the underlying emulated topology as well as performance and
quantitative metrics from the deployed queries. We evaluate the usability
of our framework in a smart city use case and extract useful performance
hints for the Apache Spark code execution.

Keywords: Edge Computing · Internet of Things · Big Data

1 Introduction

The proliferation of the Internet of Things (IoT) has led to an explosion in instal-
lations of IoT devices and in the amount of IoT-generated data. Recent reports
estimate that by 2025 IoT will comprise around 41 billion devices in operation
worldwide, producing on a daily basis about 80ZB of data [9]. However, typi-
cal IoT devices do not have adequate storage capacity and processing power to
perform analytics tasks. Thus, application designers and operators recognized
the need to offload IoT data into more powerful computing platforms placed at
the proximity of IoT data sources, to cope with processing, storage, and latency
requirements of “earthbound” applications. This has led to the emergence of
the Edge Computing paradigm, which offers in-place processing, data transfer
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J. Cano et al. (Eds.): Euro-Par 2023, LNCS 14100, pp. 154–168, 2023.
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minimization, and on-time result calculation by deploying analytic tasks on edge-
driven compute nodes. A typical edge node, however, does not have the capacity
to host and run demanding analytics jobs that arise in many application use
cases. Therefore, big data engines, like Apache Spark, provide implementations,
which distribute computation and data to multiple edge nodes, and take advan-
tage of their aggregate capacity. These implementations hide the complexity
arising from machine communication, task scheduling, fault tolerant operation,
etc., behind higher-level abstractions for performing queries on IoT data [20].
However, predicting the resource needs and the performance behavior of ana-
lytic queries running on edge nodes that are deployed on a wide geographic
area, exposed to possibly sub-optimal environmental conditions with limited
computing resources and often unstable network connectivity, is a challenging
endeavor [17,19]. It is expensive and time-consuming to develop, configure, test,
and reproduce the conditions of large-scale, physical testbeds; consequently, test-
ing and performance evaluation become major barriers for edge processing.

To alleviate the difficulties of a physical testbed, users attempt to evaluate
the performance of their tasks via emulation frameworks [3,11], which mimic
the conditions and effects of a physical deployment on the deployed services.
Even if emulators achieve near-to-real conditions for the deployed services, users
have to describe, containerize, and configure these services. Furthermore, emu-
lation frameworks usually provide modeling toolkits that users require to define
every emulated node and its properties manually, including processing capabil-
ities, network configurations, deployed services, etc. Then, users need to evalu-
ate the performance of the submitted exploratory queries on scattered datasets
by extracting quantitative and utilization metrics from the deployed big data
distributed engine and the underlying infrastructure [13]. Considering that the
majority of analytic platform users are data scientists, they are not aware of
distributed engine deployment, configuration, and monitoring.

To address these challenges, we introduce SparkEdgeEmu, a framework for
interactive performance and bottleneck analysis of Apache Spark jobs deployed
over emulated edge testbeds. Users only need to fulfill use case templates, leaving
the framework to bootstrap the emulated testbed, deploy Spark services, inject
the respective datasets , and capture monitoring metrics for post-execution per-
formance analysis. The main contributions of this work are: (i) the Modeling
Abstractions for parameterizable templates of scalable edge topologies, through
which users select the respective use case and its parameters, as well as the topol-
ogy’s compute and network resources, (ii) an Open-source Implementation1 of
the SparkEdgeEmu that translates the use case model to a large-scale emulated
Apache Spark testbed, providing multi-host scalability, inherited from its under-
lying emulator [19], query- and topology-level metrics for post-experiment per-
formance evaluation and bottleneck identification analysis, which consequently
helps in the query optimization process, and (iii) an Experimental Study of ana-
lytic queries executed on a city-scale testbed that uncovers hidden insights of
the queries performance and the Apache Spark footprint.

1 https://www.github.com/UCY-LINC-LAB/SparkEdgeEmu.

https://www.github.com/UCY-LINC-LAB/SparkEdgeEmu
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The rest of the paper is structured as follows: Sect. 2 describes the related
work. Sections 3 and 4 show the framework and its implementation details,
respectively. Section 5 presents the experiments and Sect. 6 concludes the paper.

2 Related Work

To evaluate the performance of a system, users typically embrace benchmark-
ing suites that provide both workloads and monitoring capabilities. There is a
plethora of benchmarking tools related to big data analytics. For instance, Yahoo
YCSB [7] provides a range of diverse tools for DBMS benchmarking. Moreover,
SparkBench [15] introduces ML, graph computation, SQL queries, and stream-
ing workloads for Apache Spark. A study of latency and throughput between
big data streaming engines is presented in [6], while Karimov et al. [13] provide
a novel definition for the latency of stateful operators, a method to measure it
and decouple the underlying systems from the driver that controls the exper-
imentation to have fair results. An edge-oriented and automated approach is
proposed in [10]. The authors introduce BenchPilot, a framework that is capa-
ble of performing repeatable and reproducible experiments on Edge micro-DCs.
Even if the benchmarking studies alleviate the difficulties of analytic workload
creation and experimentation, they consider an already deployed edge infrastruc-
ture, which is sometimes unrealistic during the design phase.

To create realistic testing conditions without facing the cost and the config-
uration effort of a real edge cluster, users turn to emulation frameworks. Frame-
works like FogBed [8] and EmuEdge [22] notably expand network emulators (e.g.,
MiniNet [14]) to provide fog/edge resource and network heterogeneity. Interest-
ingly, Beilharz et al. introduce Marvis [3], a hybrid testbed that combines simu-
lated events with emulated infrastructure for evaluating distributed IoT applica-
tions. The system integrates the ns-3 network simulator with virtualization tech-
nologies and domain-specific simulators (e.g., traffic simulators). However, these
solutions inherit the restrictions of the network emulators like strict modeling
(i.e., the configuration of routers, gateways, IP masks) and limited scalability.
To tackle these issues, a series of emulation frameworks introduce distributed
cloud technologies via multi-host overlay networks and virtualization technolo-
gies. For example, MockFog [11] is a fog emulator that is deployable on AWS
and OpenStack clusters, provides the required heterogeneity, and enables users
to inject network faults at run-time. Moreover, other container-based Fog and
5G emulation frameworks [16,19,21] offer multi-host scalability, realistic emula-
tion via ad-hoc topology updates, automated service deployment, and emulation
monitoring. However, none of the above solutions are focused on Spark analytic
queries, leaving users to handle the barrier of containerization, configuration,
deployment, and monitoring of the distributed processing engines.

3 System Overview

The time-consuming infrastructure setup required for studying analytic queries’
performance on the edge increases product time-to-market and turns analysts’



SparkEdgeEmu 157

Fig. 1. System Overview

attention away from the actual purpose of query performance evaluation. To
ease understanding, let us consider a use case where a data scientist wants to
evaluate the performance of his/her analytic queries on a realistic smart city
edge deployment. In particular, the data scientist needs an installed city-scale
edge infrastructure along with a deployed big data engine to submit his/her
queries and monitor their performance. However, operators are almost impos-
sible to provide a ready-to-use infrastructure from the beginning of a project.
Thus, users can only evaluate the performance of the analytic queries in a local
virtualized environment or a rented Cloud cluster. This results in an error-prone
performance that may over- or under-estimate the edge capabilities.

Contrary to this approach, users can embrace the SparkEdgeEmu Frame-
work. The high-level overview of the framework is depicted in Fig. 1. The on-
boarding starts with the selection of a predefined use case via the framework’s
modeling abstractions, along with the definition of parameters like the number
and the density of edge nodes, processing, and network QoS, which are based
on statistical distributions extracted from real-world deployments [1,4,5,18]. For
instance, for a smart city use case, users select the number of neighborhoods,
the number of compute devices per neighborhood, cloud servers, and their capa-
bilities and connectivity characteristics. Then, users submit the parameterized
model to the platform via the Interactive Programming Interface.
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With the parameters at hand, the framework uses the Edge Deployment
Composer (EDC) to construct an in-memory data structure that keeps a set of
deployable elements, with each element being a materialized view of the user’s
preferences. To do that, the EDC invokes the Infrastructure Use Case Genera-
tor and provides the infrastructure parameters to it. The generator transforms
the parameters into statistically generated edge topologies and returns them to
the EDC. Then, EDC retrieves the Spark Cluster Templates and fills them with
service-level parameters, such as network addresses and node resources. With
both templates and infrastructure descriptions ready, EDC enriches the topolo-
gies with the Apache Spark services, IoT datasets, and placement preferences.
The output of EDC is a statistically generated ready-to-use deployment descrip-
tion. The system propagates the description to the Emulator Connector, which
instantiates the emulated infrastructure, deploys the services, and retrieves both
the emulated infrastructure metrics and metrics from the deployed Spark cluster.
In this paper, we opted not to utilize a distributed storage system such as HDFS
for distributing the IoT datasets. Instead, we introduce a shareable folder on each
node where the framework stores the corresponding IoT data files2. Regarding
Apache Spark services, the framework offers an online repository that contains
docker images which include the required executable artifacts and binaries.

When the emulation is ready and the Spark cluster deployed, the users can
submit analytical tasks through the framework’s Interactive Programming Inter-
face. Specifically, users execute the analytical tasks as code blocks via the pro-
gramming abstractions, and the system records the starting and ending times-
tamps of the respective code block, which may perform multiple sequential ana-
lytic queries. When they are finished, users are aware of the duration of the
queries and retrieve the captured metrics via the Post-query Analysis module.

The Post-query Analysis module requests the underlying infrastructure uti-
lization metrics and big data engine statistics from the Emulator Connector,
filtered by the code block’s starting and ending timestamps. Finally, users may
perform high-level analysis on the retrieved metrics generating a more clear
overview of the submitted queries’ performance.

4 Implementation Aspects

This section presents the framework’s implementation aspects for
SparkEdgeEmu key components.

Modeling Abstractions. There are several emulators that provide high-level
modeling abstractions [16,19]. However, their users need to describe every sin-
gle compute node and its network connections, which makes the design of a
large-scale deployment challenging. To bridge the gap between scalability and
expressivity, we introduce high-level template-based infrastructure and use case
modeling abstractions. Model 1.1 depicts an example of system’s modeling.
Specifically, the users introduce the types of the devices (devices types) and
2 Possible issues regarding storage, like security concerns, are out of our scope. How-

ever, we plan to introduce an emulated distributed storage as a future extension.
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connections (connection types). For the devices, users have to specify the name

of the device, the processor’s capabilities (including cores and clock speed),
the device’s memory, and the disk capabilities (e.g., technology, size, read &
write throughput, etc.). Moreover, a connection type has an identifier (name),
and uplink & downlink QoS that include data rate, latency, and error rate.

We note that SparkEdgeEmu provides out-of-the-box profiles for popular
edge devices, e.g., raspberries (rpi3b), and connections, e.g., 4G, 5G, and wifi

standards, which users use without having to define them again. Finally, the
usecase primitive materializes a randomized edge deployment. Specifically, use
case includes a usecase type that defines the selected template and a set
of parameters, through which users configure the template. For instance, in
Model 1.1, the use case refers to a smart city template and users set its param-
eters, such as number of regions, devices per region and their types, the network
type, etc.

1 i n f r a s t r u c t u r e :
2 devices types :
3 - name: sma l l −vm
4 proce s so r :
5 core s : 4
6 clock speed : 1 . 5 GHz
7 memory: 4GB
8 d i sk :
9 technology : SSD

10 s i z e : 32GB
11 read : 95MB/ s
12 wri te : 90MB/ s
13 . . . .
14 connect ion types :
15 - name: 5G
16 downlink :
17 data rate : 90MBps
18 l a t ency : 2ms
19 error rate : 0 . 1%
20 upl ink : . . . .
21 usecase :
22 usecase type : s m a r t c i t y
23 parameters :
24 num of regions : 3
25 num of devices per region : 7
26 edge devices : [ r p i 3 b , nuc ]
27 edge connection : 5G
28 c l o ud l e t s : [ sma l l −vm ]

Model 1.1. Infrastructure & Use Case Parameters

Interactive Programming Interface. Next, SparkEdgeEmu users start
the experimentation utilizing a Python-based programming interface (e.g.,
Code 1.1). The users execute the SparkEdgeEmu functions locally, while the
framework handles communication with the underlying emulator and the emu-
lated Apache Spark cluster. For the emulation, users submit the described use
case creating a connector object (lines 1–4), and deploy the use case to the under-
lying emulation framework (line 5). In addition, our choice of Python enables us
to leverage PySpark, a Python library that facilitates connectivity to an Apache
Spark cluster. By instantiating an Apache Spark session object, users can submit
their Spark code to the cluster simply by specifying the IP address of the mas-
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ter. Within the SparkEdgeEmu programming interface, we have implemented
the “create spark session” function, which generates a session object with a
pre-configured emulated Spark Master IP (lines 7–9). Through this function,
users identify the Spark connection’s configurations (e.g., executors’ process-
ing capabilities) and get an Apache Spark session object, which interactively
communicates with the underlying emulated Apache Spark cluster. When users
execute queries in code-blocks under the “with connector.timer()” statement
(line 10), the system captures the duration of their execution. In this way, the
system keeps the starting and ending point of the code block (lines 10–14) and
can retrieve metrics from this period (line 15). The metrics include statistics
from the deployed Apache Spark queries, e.g., the number of tasks (line 16) and
metrics from the emulated infrastructure, e.g., CPU utilization (line 17).

1 connector = EmulatorConnector(

2 controller_ip = '...',
3 usecase = 'usecase.yaml'
4 )

5 connector.deploy ()

6
7 spark_session = connector.create_spark_session(

8 app_name = 'app -1', configs = { ... } )

9
10 with connector.timer ():

11 df = spark_session.read.csv('data.csv')
12 df.groupBy('DOLocationID ') \

13 .agg({'driver_pay ':'avg'}).collect ()
14 ....

15 monitoring_data = connector.get_metrics ()

16 monitoring_data['rpi3_b_0 '].tasks.plot()
17 monitoring_data['rpi3_b_0 '].cpu_util.plot()

Code 1.1. Programming Interaction Primitives

Infrastructure Use Case Generator. To materialize the infrastructure gen-
erator, we adopt and extend Ether [18], which is a framework for synthesizing
plausible edge infrastructure configurations from a set of reference use cases,
which are grounded on empirical data, including smart cities [4], Industrial IoT
deployment [5], mobile edge clouds and vehicular networks [1]. Developers can
utilize Ether’s programming primitives and building blocks to create reusable
edge infrastructure configurations and topologies. In our case, the Infrastructure
Generator translates the use case modeling abstractions into Ether’s program-
ming primitives, and Ether creates an in-memory graph keeping all required
information for both networks and compute nodes. However, Ether does not
have all network or compute properties that our system needs. For example,
Ether defines processing power as CPU cycles without considering the number
of cores. For the latter, we extend Ether’s node abstraction to encapsulate also
CPU’s number of cores and clock frequency. Moreover, an Ether-enabled use
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Fig. 2. Ether’s Visualization for Smart City Use Case

case is framed in a geospatial context through which users evaluate the effects
of geographically distributed edge systems. In such a setup, the nodes are dis-
tributed across a region by following a specific distribution, e.g., uniform or log-
normal. Ether generates the respective connectivity for the nodes and produces
the underlying network fabric. We upgrade the latter functionality by introduc-
ing realistic wireless signal quality models for 5G MIMO channels [21]. Figure 2
shows a representation of an auto-generated smart city use case with three neigh-
borhoods and one cloudlet. The placement of nodes in a neighborhood follows
lognormal distribution, as is highlighted in [2,18], thus, each neighborhood has
a different number of nodes. For instance, rectangle 1© depicts a neighborhood
with three Intel’s Next Unit of Computing (NUC) nodes [12], while others have
more nodes or include RPi3s. The yellow 2© and green circles 3© depict network
components, like switches, and uplink/downlink connections, respectively.

Emulation & Deployment. With the edge topology created, the Edge Topol-
ogy Composer is responsible for the creation of the underlying emulation frame-
work model. Specifically, the system fills the Spark templates with proper param-
eters to generate the Spark services and place them on the auto-generated topol-
ogy. There are two types of templates for a Spark Cluster, one for the master node
and one for the workers’ nodes. In these templates, the Edge Topology Composer
provides properties, like topology nodes’ network addresses, hostnames, other
Spark parameters, etc. When the templates are ready, Edge Topology Composer
explores the in-memory graph of the infrastructure generator, utilizing Ether’s
exploration methods for graph and node-to-node analytics like, node’s properties
identification, uplink and downlink network QoS, link capacity, etc. Thus, the
composer keeps the compute nodes’ capabilities, identifies the network QoS links
among the edge nodes, and forms the underlying emulation model by utilizing
the Emulator Connector.

In our prototype, we create a connector for the Fogify emulation frame-
work [19]. Fogify provides a programmable way to produce its model, multi-host
scalability, and a less than 10% performance difference between emulation and
physical infrastructure. Fogify’s connector creates the emulation model and sub-
mits it through Fogify’s API. Fogify validates the submitted description and
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translates the model specification to a running multi-host emulated environ-
ment. The framework utilizes container-based cluster orchestrators (e.g., docker
swarm) to ensure the instantiation, and constraining of the services on the con-
tainerized emulated environment. Moreover, Fogify Agents, which are internal
services of the framework, apply the respective network QoS and monitor the
emulated instances. To this end, the output is a Spark cluster deployed on the
emulated edge infrastructure that awaits for incoming user’s queries.

Monitoring Metrics. By invoking the emulation connector, SparkEdgeEmu
retrieves monitoring metrics from the underlying emulation topology after the
execution of a batch of analytics queries. Specifically, the Fogify emulator offers
a wide range of infrastructure utilization metrics, including CPU utilization,
memory usage, network traffic, disk I/Os, etc. However, users do not only require
metrics from the underlying infrastructure but also metrics and statistics from
the running big data engine, e.g., the average execution time per task or the
number of assigned tasks for a specific cluster node. Moreover, holistic met-
rics, like the overall execution latency or the overall consumed resources, are
also important for the performance evaluation of analytics queries. For that rea-
son, we extended Fogify’s monitoring system to store metrics from a running
deployed Apache Spark cluster. Specifically, Fogify’s monitoring subsystem peri-
odically polls the internal monitoring API of the deployed Apache Spark cluster
and saves the retrieved measurements. The spark-related metrics refer to each
worker and include (i) assigned, completed, and failed tasks, (ii) JVM memory,
(iii) cached data size, (vi) CPU time, (v) per-task duration, and so on. Finally,
SparkEdgeEmu offers methods for exposing these metrics in a unified manner
through which users can combine, process, and analyze them.

5 Experimental Study

Next, we examine the use case of smart city deployment on Edge computing
topology and analytic queries.

Topology, Workload and IoT Data. For the topology generation, we utilize
the model of the smart city use case as introduced at Model 1.1 and the exem-
plary code snippet of Code 1.1. For the parameters of the use case, we set the
number of neighborhoods equals to 3, the average number of edge devices in each
neighborhood to 7, including Pi4 (4 GB), Pi3b+ raspberries, and NVIDIA Jet-
son Nanos. Except for the edge devices, we also introduce a cloudlet server with
8 CPUs@2.4 GHz and 8 GB memory. The generated topology includes 22 edge
nodes and one cloudlet, with the first neighborhood having 4xRPi4, 2xRPi3b,
and 1xJetson-Nano, the second neighborhood having 1xRPi4, 4xRPi3b, and
3xJetson-Nano, and, finally, the third neighborhood including 1xRPi4, 2xRPi3b,
and 4xJetson-Nano. As a representative dataset, we utilize a publically available
and real-world dataset comprised of For-Hire Vehicle (“FHV”) trip routes in the
first half of 2022 from New York city3. Each vehicle is equipped with an IoT
3 https://goo.gl/X9rCpq.

https://goo.gl/X9rCpq
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Table 1. Submitted Queries

Query Description

Q1 The average of payment grouped by the drop-off location

Q2 The number of trips (count) per company

Q3 The overall amount of tips that passengers provided

Fig. 3. Queries Execution Duration

tracking device to record 24 metrics for each route, including charged amount,
tip amount, pickup/dropoff location, etc. We set the dataset to be stored and
distributed over the edge nodes, and we submit three analytic queries on it with
their descriptions to be on Table 1. All queries include multiple stages with the
first stage digesting the input IoT data parquet4 files. Each trial is repeated
10 times with final results depicting the overall measurements of all runs. All
experiments are conducted with SparkEdgeEmu to be run on a server with
48cores@2.450 GHz and 176 GB memory.

5.1 Experiments and Results

Code-Block Performance Evaluation Differences. Firstly, we evaluated
the performance of the queries (Table 1) deployed on the emulated topology. We
examine each separate query but also all queries together as a code-block. Fur-
thermore, we examine also how the data fetching influences the performance of
the deployed queries. To evaluate the latter, we re-fetch the data at the beginning
of each code-block execution, while to avoid the re-fetching, we retrieve the data
once and keep them in memory. Figure 3 illustrates the average execution time
of ten runs of each configuration. We observe that the execution time follows
the same order (Q1>Q2>Q3) independently of the data-fetching approach. If we
evaluate the semantics of the queries, we easily recognize that the Q1 is a group-
by query that performs average, while Q2 is again a group-by query but only
counts the data points. Intuitively, the averaging of a batch of data is heavier
than a simple count. Furthermore, the group-by is performed in a different field,
with the cardinality of drop-off locations being much higher than the number of
car-sharing companies. For similar reasons, it is reasonable Q3 to be the most
light-weight query in execution. According to the data fetching, it influences
4 https://parquet.apache.org/.

https://parquet.apache.org/
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Fig. 4. CPU-related Metrics of the Experiment

the execution time in all experiments with an average overhead of about 25%.
The latter indicates that Apache Spark does not identify possible optimizations
in data-fetching during the repeatable executions and users should be aware of
that. In conclusion, SparkEdgeEmu Framework helps in performance analysis
and performance bottleneck identification. During the experimentation, we high-
light that the performance of group-by queries is characterized by the number of
key elements and aggregation function, while Apache Spark seems to be unaware
of data re-fetching and re-computations.

For the rest of the experiments, we use metrics captured from the execution
of all queries without data re-fetching.

CPU & Analytic Tasks. SparkEdgeEmu helps users to identify also the
workload placement and nodes’ utilization of the underlying cluster through its
wide range of monitoring metrics. For instance, Fig. 4 depicts three bar charts
from workload-related metrics, namely, the emulated node CPU utilization, the
assigning tasks of Apache spark, and the cumulative duration in seconds that
Apache Spark considers. Interestingly, we observe that the cloudlet VM was
underutilized during the experimentation even if Apache Spark was assigned to
it for most of the tasks. Moreover, Spark measured that cloudlet workers spent
much more CPU time (Duration Seconds) than edge devices. As benchmark-
ing efforts have already identified [10], distributed processing big data engines
tend to assign more tasks to more powerful nodes, while these nodes usually are
underutilized in Edge topologies.
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Fig. 5. Memory-related metrics of the Experiment

Memory Consumption. Another metric that influences the performance of the
Apache Spark cluster is the consumed memory of the cluster’s nodes. Figure 5
illustrates the consumed memory in bytes (x108) and the utilization percent-
age for every emulated node. We have to note here that we keep the default
Apache Spark parameters in all experiments, so the default memory that an
engine’s worker can utilize is 1 GB. One can clearly identify that all nodes have
about 700-750 MB occupied memory except for raspberries 3b which have about
400-500 MB. Since RPi3b has only 1 GB of memory, the average percentage of
occupied memory is 40% for this device. In summary, Apache Spark occupied
less memory on edge memory-constrained devices, even if it assigns to them a
similar number of tasks as the other Edge nodes (Fig. 4).

Network Traffic & Shuffling Data. Figure 6 depicts network-related data
extracted from both emulated infrastructure and Apache Spark cluster. Specifi-
cally, the first plot highlights the network traffic (both incoming and outgoing) in
bytes (x107), while the second and the third plot illustrate the bytes generated
from Spark’s Shuffling Read and Write, respectively. Apache Spark generates
shuffling data among different stages (usually when join or group operator is
performed). So, the Shuffle Write metric illustrates how many bytes are gen-
erated from a local stage and should be transferred to another operator, while
Shuffle Read metric is how many bytes are consumed by the current worker. An
interesting observation is that the size of the network traffic captured by the
emulator is higher than the traffic between the stages captured by the Apache
Spark engine. The extra traffic among the cluster nodes could be health-check
and the task-assigning messages that the engine uses to keep the cluster and
processing alive. To this end, the health-check and the task-assigning messages
contribute a non-negligible extra overhead in network traffic.
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Fig. 6. Network-related metrics of the Experiment

6 Conclusion and Future Work

In this paper, we introduce SparkEdgeEmu, an interactive framework that facil-
itates in performance evaluation and assessment of analytic processing on Edge-
enabled Apache Spark clusters. It provides a unified interface through which data
analysts can: (i) create auto-generated scenario-based Edge topologies, (ii) mate-
rialize the topologies into a real-time emulation with a deployed Apache Spark
cluster, (iii) submit analytic tasks and observe its results, (iv) inspect and moni-
tor the execution of the map-reduce tasks, and (v) perform post-experimentation
analysis on the captured measurements. Furthermore, we provided implemen-
tation details about the framework’s programming abstractions, infrastructure
generation, underlying emulation, and monitoring metrics extraction. Finally,
we evaluated the useability of our approach via a representative city-scale use
case and performed a wide analysis of IoT data and deployment performance.

Future Work. We plan to add more underlying emulators and test their accu-
racy by comparing them to real-world deployments. To evaluate them properly,
we’ll deploy edge devices in different locations, install Apache Spark on them,
and collect utilization and performance metrics. Next, we will use the same
parameters in our system and compare the metrics we collected with the emu-
lated results. Moreover, to enhance the realism of our deployment, we plan to
replace the data shareable folder with a distributed storage emulation, such as
HDFS.
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Abstract. As an increasing number of businesses becomes powered by
machine-learning, inference becomes a core operation, with a growing
trend to be offered as a service. In this context, the inference task must
meet certain service-level objectives (SLOs), such as high throughput
and low latency. However, these targets can be compromised by interfer-
ence caused by long- or short-lived co-located tasks. Prior works focus
on the generic problem of co-scheduling to mitigate the effect of inter-
ference on the performance-critical task. In this work, we focus on infer-
ence pipelines and propose ODIN, a technique to mitigate the effect
of interference on the performance of the inference task, based on the
online scheduling of the pipeline stages. Our technique detects interfer-
ence online and automatically re-balances the pipeline stages to mitigate
the performance degradation of the inference task. We demonstrate that
ODIN successfully mitigates the effect of interference, sustaining the
latency and throughput of CNN inference, and outperforms the least-
loaded scheduling (LLS), a common technique for interference mitiga-
tion. Additionally, it is effective in maintaining service-level objectives
for inference, and it is scalable to large network models executing on
multiple processing elements.

Keywords: CNN parallel pipelines · Online tuning · Design space
exploration · Interference mitigation · Inference serving

1 Introduction

As machine learning becomes the backbone of the digital world, there is an
increasing demand for predictions as a service. This has led to the advent
of inference-serving systems [7,19,21,24,25]. These systems deploy pre-trained
model pipelines, i.e. inference pipelines, on the cloud, serving inference queries to
users and applications, often under strict quality-of-service (QoS) requirements
for the response times and throughput of the queries [32], expressed as service
level objectives (SLOs). However, due to the limited availability of resources of
cloud systems, in combination with high demand, inference pipelines are often
co-located with other workloads, either as part of the inference-serving system,
which may opt to co-locate multiple inference pipelines [22,31], or as part of
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common multi-tenancy practices of cloud providers [9,10] to increase utilization.
The resulting interference from the co-located workload can have devastating
effects on inference performance, leading to violation of the SLOs.

The mitigation of the effect of interference from co-located workloads on
the performance of a critical application has been studied extensively. Sev-
eral scheduling techniques focus on the generic problem of workload colocation,
trying to retain or guarantee the performance of one critical or high-priority
workload under interference [4,5,9,10], while more recent works focus on the
problem of colocating inference pipelines specifically [17,22,25]. Most of these
techniques perform extensive offline profiling and/or characterization of work-
loads and workload colocations, and build pre-trained machine-learning models
or analytical models for each system, while a brief profiling phase may also be
required to characterize a workload [9,10]. These techniques proactively partition
resources to the workloads to mitigate the effect of interference, but may reac-
tively repartition resources or evict colocated workloads in response to changes
in the observed performance or interference. Finally, some techniques only focus
on interference effects affecting specific resources, such as GPU accelerators [4,5].

One way to achieve high throughput and low latency for inference pipelines
is pipeline parallelism. Pipeline parallelism in the form of layer pipelining has
been used extensively in training [12,14,20,23], and in inference [16,30], in
combination with operator parallelism, as it is able to reduce data movement
costs. To exploit pipelined parallelism, several techniques focus on finding near-
optimal pipeline schedules online, using heuristics to tackle the large search space
[3,15,28,29]. The ability to rebalance pipeline stages online leaves ample room
for the optimization of the execution of a pipeline under the presence of inter-
ference, where such a reactive technique can detect and mitigate performance
degradation, by making better utilization of the existing resources.

In this work, we propose ODIN, an online solution that dynamically detects
interference and adapts the execution of inference pipelines on a given set of pro-
cessing elements. Thus, inference-serving systems can exploit them to reduce SLO
violations in the presence of interference without eviction or resource repartition-
ing. ODIN does not require offline resource utilization profiles for the inference,
and relies only on runtime observed execution times of pipeline stages, therefore
being easily applicable to any system. Additionally, ODIN avoids the costly pro-
cess of building system-specific or pipeline-specific models to characterize inter-
ference. Instead, it dynamically reacts and adapts to the presence of interference
while executing the inference pipeline. ODIN by itself does not have a notion of
SLOs. It is a best-effort solution to quickly achieve near-optimal throughput and
latency in the presence of interference, which thereby results in improved SLO
conformance compared to a baseline least-loaded scheduler (LLS).

ODIN employs a heuristic pipeline scheduling algorithm, which uses the exe-
cution times of pipeline stages, compares them against interference-free perfor-
mance values, and then moves network layers between pipeline stages, with the
goal to reduce the work on the execution unit affected by interference, while
maximizing the overall throughput of the pipeline. To minimize the duration of
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the mitigation phase and quickly react to performance changes due to interfer-
ence, the heuristic takes into account the extent of the performance degradation.
We extensively test ODIN with 12 different scenarios of interference in 9 different
frequency-duration settings and compare against the baseline least-loaded sched-
uler (LLS), which selects the least-loaded execution unit to assign work to. Our
experiments show that ODIN sustains high throughput and low latency, includ-
ing tail latency, under the different interference scenarios, and reacts quickly
with a short mitigation phase, which takes 5–15 timesteps, outperforming LLS
by 15% in latency and 20% in throughput on average. Additionally, with an SLO
set at 80% of the original throughput, our solution is able to avoid 80% of SLO
violations under interference, in contrast to LLS, which only delivers 50% SLO
conformance. We also test the scalability of ODIN with a deep neural network
model on highly parallel platforms, showing that the quality of the solution is
independent of the number of execution units and depth of neural network.

2 Background and Motivation

Parallel inference pipelines provide a way to maximize the throughput of infer-
ence applications, as layer-wise parallelism offers reduced communication and
minimizes the need to copy weights between execution units [2]. The paral-
lelism exposed in parallel inference pipelines is across layers, with each layer
being assigned to a pipeline stage, as well as within layers, where operators
are parallelized for faster execution. A common way to execute pipelines is the
“bind-to-stage” approach [18], where each stage of the pipeline is assigned to a
unique set of compute units, i.e. an execution place, without sharing resources
with other stages. In our work, we also assume that execution places do not
share resources, therefore a pipeline stage will not experience interference from
pipeline stages running on other execution places. To achieve high throughput,
the pipeline stages need to be balanced, otherwise, throughput becomes limited
by pipeline stalls, as the pipeline stages have a linear dependence.

Figure 1 shows a motivating example of an inference pipeline for VGG16,
a CNN model. The pipeline consists of 4 stages, each consisting of 3 to 5 lay-
ers of the network model (Fig. 1a), in a configuration where the pipeline stages
are balanced in terms of execution time. Assuming a workload is colocated on
the execution place which executes the fourth stage of the pipeline, the execu-
tion time of this stage increases due to interference, causing the throughput to
decrease by 46% (Fig. 1b). A static solution would dedicate the resources to the
colocated workload, and would use only 3 execution places. To maintain high
throughput, the pipeline stages would also be reduced to 3, leading to a sub-
optimal solution (Fig. 1c). A dynamic solution would attempt to rebalance the
initial four pipeline stages, to mitigate the effect of interference on the execution
time of the fourth stage. An exhaustive search for an optimal new configuration
is able to restore the initial throughput loss (Fig. 1d), however this exhaustive
search required 42.5 min to complete.
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Fig. 1. Throughput and execution time of a 4-stage pipeline for VGG-16.

Fig. 2. System overview

This experiment allows us to make the following observations: First, the effect
of interference on a parallel inference pipeline can be mitigated by rebalancing
the pipeline stages. Second, partitioning the resources between the colocated
workload and the inference pipeline leads to a shorted pipeline and a suboptimal
throughput. Third, dynamic reaction to interference is able to largely restore
throughput loss on the inference pipeline. Fourth, an exhaustive search for an
optimal configuration is infeasible in a reactive, dynamic solution. The above
observations motivate our work, which proposes an online scheduling technique
for the pipeline stages of inference pipelines.

3 ODIN: A Dynamic Solution to Overcome Interference
on Inference Pipelines

3.1 Methodology

In this work, we consider a system with a set of resources named execution places
(EPs). Each execution place may consist of multiple cores, but execution places
do not share performance-critical resources between them, e.g. caches, memory
controllers/links. Inference pipelines are linear and are implemented with a bind-
to-stage approach, where a single pipeline stage (PS) is assigned to a single EP, i.e.
a unique set of resources of the system, and pipeline stages do not share resources.
Pipeline stages can exploit the multiple resources within an EP by other means
of parallelism, e.g. operator parallelism. A pipeline configuration defines the
mapping of pipeline stages to execution places and the assignment of layers of a
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neural network model to PSs. We additionally assume that, in an interference-free
system where the inference pipeline utilizes all the available execution places, the
stages are already effectively balanced across the execution places. If a workload is
colocated with a pipeline stage on one of the EPs, causing interference and increase
of the execution time of this stage, the heuristics which form the backbone of our
solution attempts to reduce the total work on the affected pipeline stage, moving
network layers to non-affected pipeline stages. A high-level overview of our app-
roach, ODIN, is presented in Fig. 2. Our approach operates online and is agnostic
to any other colocated application. At runtime, we monitor the execution time of
pipeline stages, and scan for changes in the performance of the slowest pipeline
stage. If its execution time has increased, we consider it as affected by an interfer-
ing application and trigger the online rebalancing of pipeline stages, to find a new
configuration, using our heuristic algorithm. If its execution time has decreased,
we consider that any effect of interference is no longer present, and once again trig-
ger online rebalancing to find a new configuration that reclaims resources from the
colocated, interfering workload.

3.2 ODIN: A Heuristic-Based Approach for Pipeline Stage
Re-balancing Under Interference

We describe our approach, ODIN, to mitigate the effect of interference on parallel
inference pipelines, and the heuristics it uses to find new configurations for the
pipeline stages at runtime. The complete steps of our approach are presented in
Algorithm 1. The algorithm takes as input the current configuration C, which
tracks the number of network layers belonging to each pipeline stage, and a
tuning parameter α. As the algorithm starts operating without interference, the
current configuration is considered to be optimal, and the pipeline throughput is
the one given by the current configuration. During execution, the execution time
of PSs is monitored. Interference is detected when the execution time t of one
of the pipeline stages increases. We identify the affected PS (PSaffected) as the
slowest stage in the current configuration, and this determines the throughput of
the pipeline. The goal of the algorithm is then to rebalance the pipeline stages by
removing layers from the affected PS, to reduce its work. We note that, removing
layers from the affected PS may reduce the length of the pipeline by 1. We apply
two heuristics to find a new configuration:

1) Set the direction for moving work: To remove layers from the affected PS,
we first determine the direction of moving the layers. As the layers of an infer-
ence pipeline execute one after the other (forward pass), we can only remove
layers from the head or tail of the PSaffected. At the first attempt, the algo-
rithm does not know which layers of the PSaffected have experienced perfor-
mance degradation due to interference, so we initially remove layers from both
ends, as shown in Lines 6–10, and move them to the preceding and subsequent
pipeline stages respectively. Next, we calculate the sum of the execution time of
PSs on both sides of the PSaffected and set the direction to move layers. We then
find the PS with the lowest execution time PSlightest in that direction, starting
from PSaffected, and move one layer to PSlightest, as shown in Lines 18–20.
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Algorithm 1. ODIN Algorithm
Require: C, α � C = pipeline configuration
1: T ← throughput(C) � T = throughput of the pipeline
2: Copt ← C � Optimal pipeline configuration
3: γ ← 0 � counter variable
4: while γ < α do
5: PSaffected ← get index(max(t(C)))
6: if γ = 0 then
7: C[PSaffected + 1] += 1
8: C[PSaffected − 1] += 1
9: C[PSaffected] −= 2

10: end if
11: Sleft ← sum(t(C[0], C[PSaffected]))
12: Sright ← sum(t(C[PSaffected + 1], C[N ]))
13: if Sleft < Sright then
14: direction ← left
15: else
16: direction ← right
17: end if
18: PSlightest ← get index(t(C, PSaffected, direction))
19: C[PSaffected] −= 1
20: C[PSlightest] += 1
21: Tnew ← throughput(C)
22: if Tnew < T then
23: γ += 1
24: else if Tnew = T then
25: C[PSaffected] −= 1
26: C[PSlightest] += 1
27: γ += 1
28: else
29: γ ← 0
30: T ← Tnew

31: Copt ← C
32: end if
33: end while
34: return Copt

2) Avoiding Local optimum: Our first heuristic may result in a local, rather
than a global optimum. A possible solution for this is to randomly choose
a completely new starting configuration, and rebalance again. However, this
can lead to loss of information. Since our initial configuration is optimal for
the execution of the pipeline in an interference-free case, in the case of a
local optimum, we deliberately move more layers from the PSaffected to the
PSlightest, to create a different configuration and continue the exploration.

The extent of exploration is controlled by variable α which is provided as an
input to the algorithm. As the algorithm is applied online, while the inference
pipeline is running, the value of α can be tuned to reduce the number of trials for
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Fig. 3. A timeline of a VGG16 inference pipeline, running with ODIN, which reacts
to mitigate interference at time steps 5, 10, 15, and 20.

faster exploration. Figure 3 shows a timeline of an inference pipeline for VGG16,
executing on four EPs with pipeline stages, where ODIN runs to mitigate the
effects of interference. Initially, there is no interference, the inference pipeline is
balanced with an optimal configuration and achieves its peak throughput. At time
steps 5, 10, and 15, a new workload is co-located on a different execution place,
slowing down the system for the inference pipeline, reducing what we define as the
resource-constrained throughput, i.e. the throughput the inference pipeline can
attain in the presence of interference. At each of these time steps, ODIN auto-
matically detects the throughput degradation and rebalances the pipeline until
it finds a successful solution. At time step 20, one of the interfering workloads is
removed, and ODIN executes again, to restore the pipeline throughput by claim-
ing back the resources previously used by the colocated workload.

3.3 Implementation Details

Database Creation: In our evaluation, we use simulation to be able to apply
ODIN on any type and size of the underlying system. We, therefore, replace
online monitoring with an offline database. We first collect the execution time of
the m individual network layers of the inference pipelines under consideration,
when executing alone (without any interference), on a real platform. On the
same platform, we collect the execution time of the individual network layers
when executing alongside co-located applications, producing n different inter-
ference scenarios. We then store these collected m × (n + 1) measurements in
a database, and use them in simulation. We consider the real platform to be
a single execution place for ODIN, and simulate multiple execution places of
the same type. To emulate interference, during simulation, we randomly select
an interference scenario for an execution place and look up the corresponding
execution time in the database.

Throughput Calculation: We use the measurements in our database D of
size m × n to calculate the throughput of a pipeline, as follows:

T =
1

maxN
i=0

∑P
l=0 D[l, k]
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where N is the number of pipeline stages, P is the number of layers in a pipeline
stage, and D[l, k] is the execution time of layer l under the type of interference
k, as recorded in the database D.

Implementation of the Least-Loaded Scheduler (LLS) as a Baseline:
LLS is an online interference mitigation technique [9,11,26]. We implement LLS
in the context of pipeline stages, as a baseline to compare against ODIN. We
calculate the utilization of each pipeline stage and move the layers from the
most utilized to the least utilized stage recursively until the throughput starts
decreasing. The utilization of a stage υi is calculated as:

υi =
(

1 − wi

wi + ti

)

where ti is the execution time of a pipeline stage, and wi is the waiting time of
the stage, calculated as wi = wi−1 + ti − 1 − ti, with w0 = 0.

Fig. 4. Performance impact

Table 1. Interference scenarios

Mode of
execution

Core assignment on Alder Lake

A CNN:[0–7]

B CNN: [0–7], IBench-MemBW: [0]

C CNN: [0–7], IBench-MemBW: [0–1]

D CNN: [0–7], IBench-MemBW: [0–3]

E CNN: [0–7], IBench-MemBW: [0–7]

F CNN: [0–7], IBench-CPU: [0]

G CNN: [0–7], IBench-CPU: [0–1]

H CNN: [0–7], IBench-CPU: [0–3]

I CNN: [0–7], IBench-CPU: [0–7]

J CNN: [0–3], IBench-MemBW: [4–7]

K CNN: [0–3], IBench-CPU: [4–7]

L CNN: [0–3], IBench-CPU: [4–7], IBench-MemBW[4–7]

4 Evaluation

4.1 Experimental Setup

We execute ODIN in a simulated system for inference serving, which consists of
multiple execution places, and each execution place consists of a fixed number
of 8 cores. To generate our database, we use an Intel i9-12900K (AlderLake)
server, which consists of 8 2xP-cores (Performance) and 8 2xE-cores (Efficient).
We consider the set of 8 P-cores as a single execution place in our system.

For the neural network models we examine as inference pipelines, our
database consists of measurements for each layer without interference, as well as
measurements for each layer with 12 different co-located workloads, in different
settings. To create the co-located workloads, we use two interference benchmarks
from the iBench suite [8], the CPU benchmark that stresses the CPU and the
memBW benchmark that stresses the memory bandwidth. We then create our 12
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scenarios of colocation by assigning the network layers and interference bench-
marks different numbers of threads, and pinning them to different cores. Table 1
showcases the colocation scenarios considered in our database, and Fig. 4 demon-
strates the performance impact of interference for all these colocation scenarios
on a single layer of the VGG16 network model.

For our evaluation, we consider the inference pipelines of three popular CNN
models: VGG16 [27], ResNet-50 and ResNet-152 [13], with 16, 50, and 152 layers
respectively, implemented with the Keras [6] framework.

4.2 Interference Mitigation with ODIN

To evaluate the effectiveness of ODIN, we compare its latency and throughput
for different values of α, which sets the extent of exploration, against LLS, in
several interference scenarios. In particular, we consider a system of 4 executions
places of 8 cores each, which serves inference queries with two network models,
VGG16, and ResNet-50. We assume a fixed number of 4000 queries, and induce
random interference on different execution places, based on the colocation sce-
narios described in Table 1. We consider different values for the frequency (fre-
quency periods of 2, 10, and 100 queries) and duration (2, 10, and 100 queries)
of interference, and evaluate the end-to-end latency and throughput distribution
of each inference pipeline.

Latency: Figure 5 shows the latency distribution of the two inference pipelines
under interference. We observe that ODIN outperforms LLS in all scenarios, deliv-
ering lower latency. We highlight the effect of the α parameter of ODIN on latency.
A higher value of α yields lower latency, because the longer exploration phase
allows ODIN to find an optimal configuration. On the other hand, if the frequency
of interference is high, a low value of α is able, in most cases, to produce an equally
good solution with lower exploration time. ODIN α = 10 yields better latency
than ODIN α = 2 this is because the former takes more trials to find a sched-
ule, however if the frequency of interference is high then it may take longer to find
a solution or end up with sub-optimal solution. We additionally note that both
ODIN and LLS are more effective in cases where interference appears with lower
frequency and for longer periods. This is particularly evident in Fig. 5. For the
pair of [frequency period = 2, duration = 2], the distribution of latency shows
many outliers, as an optimal configuration found by the algorithm for one period
of interference may be applied to the next period, where the pattern of interference
has changed. Overall, however, ODIN outperforms LLS in all scenarios, offering
15.8% better latency on average with α = 10 and 14.1% with α = 2.

Throughput: We then compare the throughput of the inference pipelines under
interference, for ResNet50 and VGG16, with ODIN and LLS, for the same inter-
ference scenarios, in Fig. 6. Again, ODIN offers higher throughput than LLS in
most cases. The case of VGG16 highlights our observation about the lower per-
formance in the case of high frequency, where all three techniques show outliers of
low throughput, however, ODIN is more able to adapt to interference of longer
duration compared to LLS. We observe additionally that for the case of the
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highest frequency period-duration pair [100, 100], LLS and ODIN have compa-
rable performance, as the near-optimal solutions were obtained with minimal
changes of the pipeline configurations. Overall, on average, ODIN achieves 19%
higher throughput than LLS with any choice of α.

Tail Latency: Besides the latency distribution, we separately examine the tail
latency (99th percentile), as it can be a critical metric in inference-serving sys-
tems, and it is also indicative of the quality of the solutions found by ODIN.
Figure 7 shows the distribution of the tail latency across all the queries consid-
ered in the interference scenarios examined in this Section. For both ResNet50
and VGG16, ODIN results in significantly lower tail latencies than LLS. For
the case of VGG16, we additionally observe that a higher value of α for ODIN
can produce better solutions, resulting in lower tail latencies. On average, ODIN
results in 14% lower tail latencies than LLS.

Exploration Overhead: Upon detection of interference, both ODIN and LLS
begin the rebalancing phase, during which queries as processed serially, until a
new configuration of the pipeline stages is found. On average, the number of
queries that will be processed serially during a rebalancing phase is 1 for LLS,
and 4 and 12 for ODIN with α = 2 and α = 10 respectively. Figure 8 shows
the percentage of time required to rebalance the pipeline stages, for the window
of 4000 queries. It is evident that, if the type of interference changes frequently
and is short-lived, the overhead of ODIN is higher, as the system is almost
continuously in a rebalancing phase. However, when the duration of interfer-
ence is longer, as the effect of interference on the inference pipeline may be the
same, rebalancing may not be triggered, as the selected configuration is already
optimal, therefore the rebalancing overhead decreases. Longer frequencies and
durations of interference are favored by both ODIN and LLS.

4.3 Maintaining QoS with ODIN

To evaluate the ability of ODIN to mitigate interference on an inference pipeline,
we consider its quality-of-service (QoS) in terms of SLO violations [1,25]. We use
throughput as the target QoS metric, and consider the SLO level as the percent-
age of the peak throughput, i.e. the throughput of the inference pipeline when
executing alone. We then profile the number of queries which violate this SLO
using ODIN and LLS. We additionally compare the SLO violations with respect
to the resource-constrained throughput, i.e. the throughput achieved when a colo-
cated workload causes interference, and an optimal configuration of the pipeline
is found through exhaustive search. We present the results in Fig. 9. Although nei-
ther ODIN or LLS are able to offer any performance guarantees, resulting in many
violations when the SLO level is strict, ODIN results in less than 20% of SLO vio-
lations for SLO levels lower than 85%, and can sustain 70% of the original through-
put for any interference scenario, in contrast to LLS, which, in the extreme case
of VGG16, violates even an SLO of 35% of the original throughput. Additionally,
the comparison of SLO violations for the SLO set w.r.t. the resource-constrained
throughput shows that ODIN is able to find near-optimal configurations in most
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cases, which are close to those found by the exhaustive search. Our conclusion is
that, while ODIN cannot provide any strict guarantee for a set SLO, it can sustain
high throughput under looser SLOs and therefore can be an effective solution for
overprovisioned systems. For example, an inference-serving system that can tol-
erate 10% of SLO violations would require to overprovision resources by 42% with
ODIN, compared to 150% for LLS.

Fig. 5. Inference pipeline latency (lower is better) with ODIN, in comparison to LLS,
over a window of 4000 queries, for interference of different frequency period and
duration.

Fig. 6. Inference pipeline throughput (higher is better) with ODIN, in comparison to
LLS, over a window of 4000 queries, for interference of different frequency period and
duration.
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4.4 Scalability Analysis of ODIN

We finally analyze the scalability of ODIN on high numbers of execution places,
with deep network models that can run with multiple pipeline stages. For this,
we use ResNet152, which consists of 152 layers. We consider, however, residual

Fig. 7. Tail latency distribution of ODIN, in comparison to LLS.

Fig. 8. Overhead analysis of ODIN, in comparison to LLS.

Fig. 9. Quality-of-service of ODIN, in comparison to LLS, for different SLO levels.
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blocks as a single unit, so the maximum number of pipeline stages ResNet152
could run with is 52. We scale the number of execution places from 4 up to 52,
and consider a window of 4000 queries, with interference of a frequency period
of 10 and duration of 10 queries. Figure 10 shows the latency and throughput
of ODIN for the different numbers of EPs. The latency is not affected as the
number of EPs increases, therefore ODIN is effective at finding optimal pipeline
configurations on multiple execution places. Equivalently, throughput increases
with the number of EPs, suggesting high parallelism of the pipeline, and for
52 EPs, the achieved throughput is comparable to the peak throughput of the
inference pipeline, under no interference.

Fig. 10. Scalability analysis of ODIN with ResNet152.

5 Conclusion

In this work, we have proposed ODIN, an online pipeline rebalancing technique
that mitigates the effect of interference on inference pipelines. ODIN utilizes the
execution times of the pipeline stages to readjust the assignment of layers to
pipeline stages, according to the available resources, rebalancing the pipeline.
We show that ODIN outperforms the baseline LLS in latency and throughput
under different interference scenarios. Additionally, ODIN maintains more than
70% of the peak throughput of the pipeline under interference, and achieves very
low SLO violations compared to LLS. Finally, ODIN scales well with deeper net-
works and large platforms. ODIN is online and dynamic, and requires minimal
information from the inference pipeline, therefore applies to any type of infer-
ence pipeline and interference scenario. The abstraction of the hardware into
execution places allows ODIN to be applied to different types of hardware plat-
forms. As future work, we plan to parallelize the pipeline during rebalancing,
and validate the utility of ODIN on heterogeneous platforms.
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Abstract. Blockchain technology is a distributed, decentralized, and
immutable ledger system. It is the platform of choice for managing smart
contract transactions (SCTs). Smart contracts are pieces of code that
capture business agreements between interested parties and are com-
monly implemented using blockchains. A block in a blockchain contains
a set of transactions representing changes to the system and a hash of
the previous block. The SCTs are executed multiple times during the
block production and validation phases across the network. In most of
the existing blockchains, transactions are executed sequentially.

In this work, we propose a parallel direct acyclic graph (DAG) based
scheduler module for concurrent execution of SCTs. This module can
be seamlessly integrated into the blockchain framework, and the SCTs
in a block can be executed efficiently, resulting in higher throughput.
The dependencies among the SCTs of a block are represented as a DAG
data structure which enables parallel execution of the SCTs. Further-
more, the DAG data structure is shared with block validators, allowing
resource conservation for DAG creation across the network. To ensure
secure parallel execution, we design a secure validator capable of validat-
ing and identifying incorrect DAGs shared by malicious block producers.
For evaluation, our framework is implemented in Hyperledger Sawtooth
V1.2.6. The performance across multiple smart contract applications is
measured for the various schedulers. We observed that our proposed
executor exhibits a 1.58 times performance improvement on average over
serial execution.

Keywords: Smart Contract Executions · Blockchains · Hyperledger
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1 Introduction

Blockchain platforms help establish and maintain a decentralized and distributed
ledger system between untrusting parties [14]. The blockchain is a collection
of immutable blocks, typically in the form of a chain. Each block points to
its previous block by storing its hash. A block in the blockchain consists of
several smart contract transactions (SCTs), which are self-executing contracts of
agreement between two or more parties that are written in the form of computer
code. These help in the execution of agreements among untrusted parties without
the necessity for a common trusted authority to oversee the execution. The
development and deployment of smart contracts on blockchain platforms are
growing rapidly.

A blockchain network usually consists of several nodes (ranging from thou-
sands to millions depending on the blockchain), each of which stores the entire
contents of the blockchain. Any node in the blockchain can act as a block pro-
ducer. A producer node selects transactions from a pool of available transactions
and packages them into a block. The proposed block is then broadcast to other
nodes in the network. A node receiving the block acts as a validator. It validates
the transactions in the block by executing them one after another. Thus a node
can act as a producer while producing the block and as a validator for blocks
produced by other nodes in the network.

Agreement on the proposed block by the nodes of the blockchain is performed
through various consensus mechanisms, like proof of work (PoW) [14], proof of
stake (PoS) [18], proof of elapsed time (PoET) [13], etc. For a block to be added
to the blockchain, the transactions of the block are processed in two contexts:
(a) first time by the block producer when the block is produced; (b) then by
all the block validators as a part of the block validation. Thus the SCT code is
executed multiple times by the producer and the validators.

The majority of blockchain technologies execute the SCTs in a block serially
during the block creation and validation phases. This is one of the bottlenecks for
higher throughput and scalability of blockchain models [10]. The throughput of
the blockchain can be improved by concurrent execution of transactions. In order
to enable concurrent transaction processing, it is crucial to ensure the avoidance
of running interdependent transactions simultaneously. Moreover, when execut-
ing transactions concurrently at each validator, they must yield an identical end
state in the database.

This work proposes a framework for executing transactions concurrently on
producers and validators. We have implemented our framework in Hyperledger
Sawtooth 1.2.6. [2]. We have chosen Sawtooth (explained in Sect. 2) as our plat-
form of choice due to its existing support for parallel execution of SCTs, which
provides us with an ideal environment to compare and test against both serial
and parallel schedulers. This approach could be implemented in any blockchain
with an order-execute blockchain model [4]. The major contributions of the paper
are as follows:
– We introduced two important modules: a parallel scheduler and a secure val-

idator are introduced in this work. The parallel scheduler module is respon-
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Fig. 1. Structure of a Hyperledger Sawtooth block.

sible for identifying transaction dependencies within a block and scheduling
them for conflict-free execution using a directed acyclic graph (DAG). The
DAG is shared along with the block and validated by the secure validator
module, which helps detect any malicious block producers. Section 3 provides
a comprehensive explanation of the framework.

– We observed that our proposed executor achieves average speedups of 1.58
times and 1.29 times over Sawtooth’s default serial executor and built-in par-
allel executor, respectively. The implementation details, experiment design,
and results are discussed in Sect. 4.

The overview of the related work aligned with the proposed approach is discussed
in Sect. 5, while the conclusion and future steps are discussed in Sect. 6.

2 Background on Hyperledger Sawtooth

The Hyperledger Foundation is an open-source collaboration project by the Linux
Foundation to establish and encourage cross-industry blockchain technologies.
Sawtooth is one of the most popular blockchain technologies being developed for
permission and permissionless networks. It is designed such that transaction rules,
permissions, and consensus algorithms can be customized according to the partic-
ular area of application. Some of the distinctive features of Sawtooth are modular-
ity, multi-language support, parallel transaction execution, and pluggable consen-
sus. The modular structure of Sawtooth helps in modifying particular operations
without needing to make changes throughout the architecture.

In Sawtooth, smart contracts are referred to as transaction families, and the
logic for the contract is present in the respective families’ transaction proces-
sors. Modifications to the state are performed through transactions, and they are
always wrapped inside a batch. A batch is the atomic unit of change in the sys-
tem, and multiple batches are combined to form a block (Fig. 1). The node archi-
tecture of Sawtooth includes five modules that play crucial roles in blockchain
development: global state, journal, transaction scheduler, transaction executor,
and transaction processor. The global state containing the data of transaction
families of Sawtooth is stored using a Merkle-Radix tree data structure. The Jour-
nal module contains a block completer, block validator, and block publishers that
deal with creating, verifying, and publishing blocks. It is the responsibility of the
Transaction Scheduler module to identify the dependencies between transactions
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and schedule transactions that result in conflict-free execution. In order to execute
a transaction, the transaction executor collects the context of the transaction.1

Hyperledger Sawtooth architecture includes a parallel transaction scheduler
(tree-scheduler) that uses a Merkle-Radix tree with nodes that are addressable
by state addresses. This tree is called the predecessor tree. Each node in the
tree represents one address in the Sawtooth state, and a read list and write list
are maintained at each node. Whenever an executor thread requests the next
transaction, the scheduler inspects the list of unscheduled transactions and the
status of their predecessors. The drawbacks of the tree scheduler are that the
status of predecessor transactions needs to be checked before a transaction can
be scheduled. The construction of the tree data structure is serial. The number
of addresses accessed in a block is generally higher than the total number of
transactions. A data structure based on addresses typically requires more mem-
ory space compared to a transaction-based data structure. The block producers
and validators both construct the tree at their end instead of the block producer
sharing the tree with the validators.

The proposed framework for transaction execution on the blockchain would
improve the throughput of SCTs by making the block creation and validation
process concurrent. SCTs that are independent of each other are executed in
parallel in the framework. The dependencies are represented as a DAG based
on transaction inputs and outputs. DAG sharing and secure validator module
designs are also included in the framework to further optimize block validation.

3 Proposed Framework

In this section, the proposed framework for parallel transaction execution in
blockchains through static analysis of the block is detailed. This framework
introduces parallel scheduler and secure validator modules into the blockchain
node architecture, as shown in Fig. 2. The parallel scheduler (SubSect. 3.1) is
responsible for identifying the dependencies among the transactions in the block
and scheduling them for conflict-free execution. This is done by determining the
dependencies among the transactions. The identified dependencies are repre-
sented by a DAG that is shared along with the block to minimize the validation
time of the blockchain, the idea explored in [6,7,10]. DAG shared along with
the blocks are received and validated by the secure validator (SubSection 3.2).
Through the validation process, the secure validator determines if any malicious
block producer has shared a graph with some crucial edge (dependency) miss-
ing. This section presents pseudo-codes for the modules as well as a detailed
framework.

3.1 Parallel Scheduler

The parallel scheduler module is part of the block producer in the proposed
framework. It performs the operations of DAG creation and conflict-free trans-
action execution. Both processes are multi-threaded for higher throughput.
1 The detailed architecture is explained in Appendix A of [15].
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Fig. 2. Proposed framework in the blockchain

Fig. 3. DAG represen-
tation of dependencies
in the block.

Fig. 4. Linked list representation of the DAG.

DAG Creation: The DAG creation is initiated when the block producer creates
the next block in the blockchain. In blockchains like Sawtooth, the addresses that
the transactions read from, and write to, are present in the transaction header.
Using this information, we can derive the addresses based on the transaction
details without having to execute the transaction. By examining the input (read)
and output (write), the parallel scheduler calculates the dependencies among
transactions, as described in the following explanation.

On receiving a block (from the block publisher module), the producer deploys
multiple threads to generate the DAG. Firstly, a unique id is assigned to the
transactions based on their order in the block (T1, T2, T3...) using a global atomic
counter as shown in the Algorithm 1, Line 3. The input addresses of the trans-
action (Ta) are compared with all the output addresses of transactions (e.g., Tb)
with a higher ID. Correspondingly, the output addresses of Ta are compared
with the input and output addresses of Tb as shown in Algorithm 1 from Line 10
to Line 24. If there are any common addresses identified in the above checks, an
edge is added from Ta to Tb in the DAG. An adjacency matrix data structure is
implemented for representing the graph, and an atomic array is used to maintain
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the indegree count of the vertices. We have also implemented a module with a
concurrent linked list structure, as shown in Fig. 4. The pseudo-code is detailed
in Algorithm 1, and one can refer to appendix C in [15] for an in-depth explana-
tion. We have also proved the safety of our proposed framework for concurrent
execution, available in Appendix B in [15].

Algorithm 1. Multi-threaded createDAG(): m threads concurrently create DAG
1: procedure createDAG(block) � The block to be produced or validated is the input
2: while true do
3: Ti ← txnCounter.get&inc() � Claim the next transaction available
4: if Ti > txn count then
5: txnCounter.dec()
6: return � Return if all the transactions are processed
7: end if
8: Graph Node ∗txn = new Graph Node
9: DAG→add node(Ti, txn) � adding the node to the graph
10: for Tj = Ti + 1 to txn count do � finding dependent transactions
11: flagEdge=false
12: if Ti.readList ∩ Tj .writeList then � Checking for RW and WW conflicts
13: flagEdge=True
14: end if
15: if Ti.writeList ∩ Tj .readList then
16: flagEdge=True
17: end if
18: if Ti.writeList ∩ Tj .writeList then
19: flagEdge=True
20: end if
21: if flagEdge then
22: DAG→add edge(Ti, Tj)
23: end if
24: end for
25: end while
26: end procedure � Threads join when the DAG is complete

Algorithm 2. Multi-threaded selectTxn(): threads concurrently search DAG
for the next transaction to execute
27: procedure selectTxn(DAG)
28: for Ti = pos To txn count do � iterate over until all transactions to find transaction for

execution
29: if Ti.indeg == 0 then � Checking for txn with zero indegree
30: if Ti.indeg.CAS(0, −1) then
31: pos ← Ti � store the last position for fast parsing
32: return Ti

33: end if
34: end if
35: end for
36: for Ti = 0 To pos do � iterate over until all transactions to find transaction for execution
37: if Ti.indeg == 0 then � Checking for txn with zero indegree
38: if Ti.indeg.CAS(0, −1) then
39: pos ← Ti � store the last position for fast parsing
40: return Ti

41: end if
42: end if
43: end for
44: return −1 � Threads returns when a transaction is selected or all transactions are executed.
45: end procedure

Transaction Execution: Once the dependency DAG is constructed, the block
producer proceeds to execute the transactions within the block in parallel. It ini-



190 M. Piduguralla et al.

Fig. 5. Example scenario of smart validator proposed by Anjana et al. in [6]

tiates multiple threads to process the transactions. Each thread selects a trans-
action for execution using the indegree array like in Line 30 of Algorithm 2.
If the indegree of a transaction is zero, it indicates that the transaction does not
have any predecessor-dependent transactions and can be executed (T1, T3, and
T2 in Fig. 3). If no such transactions are available, the threads wait until one is
available or end execution if all the transactions have completed execution. Upon
selecting a transaction, it is executed, and the indegrees of all the outgoing edge
transactions (T5 and T6 for T1) are decremented by 1. Then, the next transaction
with zero indegree is searched for. This search can be optimized by initiating the
search from the last transaction ID selected. The last transaction ID selected is
stored in the variable pos in the Algorithm 2 and is used in Line 28 and Line 36.
This further reduces the time it takes to find the next transaction as the search
starts from pos as shown in the Algorithm 2 Line 28. The pseudo-code for the
execution of each thread while selecting a transaction is present in Algorithm 2.

3.2 Secure Validator

DAG sharing and smart multi-threaded validation have been explored in [6] by
Anjana et al. Two important computation errors discussed in [6] are False Block
Rejection (FBR), where a valid block is incorrectly rejected by a validator, and
Edge Missing BG (EMB), where an edge is removed from DAG before sharing by
a malicious block producer. The solution proposed for the issue of EMB by Anjana
et al. in [6] focuses on identifying missing edges between transactions only when
they are executed concurrently. However, when a validator executes transactions
sequentially, the block may still be accepted. Consequently, a parallel validator
would reject the block, while a serial validator would accept it as depicted in the
Fig. 5. This discrepancy can potentially result in inconsistencies in the final states
of the blockchain across different nodes, which is undesirable. To address this issue
without sacrificing concurrent block execution, we propose a solution.

A malicious block producer can add extra edges to slow the validator by forc-
ing it to serially execute the block transaction. This case of malicious behaviour
is not considered by Anjana et al. [6]. We have denoted the condition as Extra
edge BG (EEB). In this work, we propose a solution overcoming the drawbacks
of the previous solution in resolving FBR and EMB while addressing EEB error.
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Fig. 6. Linked list address data for secure validator.

Algorithm 3. Multi-threaded secureValidator(): m threads concurrently verify
the DAG shared
46: procedure secureValidator(DAG)
47: while !mBlockProducer do
48: Adds ← addsCounter.get&inc() � Claim the next address for analyzing
49: if Adds > adds count then
50: addsCounter.dec()
51: return � Return if all the address are processed
52: end if
53: for i = 0 To lenght(Adds.readList) do � procedure for checking for missing edges
54: Ti ← Adds.readList[i]
55: for j = 0 To lenght(Adds.writeList) do � read-write dependencies
56: Tj ← Adds.writeList[j]
57: if !checkEdge(Ti, Tj) then
58: mBlockProducer ← True
59: return
60: end if
61: incDeg(Ti, Tj) � Increment the indegree of lower txn and mark the edge
62: end for
63: end for
64: for i = 0 To lenght(Adds.writeList) do
65: Ti ← Adds.writeList[i]
66: for j = 0 To lenght(Adds.writeList) do � write-write dependencies
67: Tj ← Adds.writeList[j]
68: if !checkEdge(Ti, Tj) then
69: mBlockProducer ← True
70: return
71: end if
72: incDeg(Ti, Tj) � Increment the indegree of lower txn and mark the edge
73: end for
74: end for
75: for i = 0 to txn count do � procedure for checking for extra edges
76: if Ti.inDeg �= Ti.calDeg then � if shared indegree is equal to calculated indegree
77: mBlockProducer ← True
78: return
79: end if
80: end for
81: end while
82: end procedure

DAG Validation: The DAG created by the block producer in the blockchain
network is shared with the validators in the network. This helps validators save
on the time taken for DAG creation. In order to address the issues caused by
FBR, EMB, and EEB errors due to DAG sharing, we have proposed secure
validator for verifying DAGs which is described in Algorithm 3. The secure
validator checks for missing edges and extra edges present in the DAG shared.
This is performed by multiple threads for swift graph verification. For all the
addresses accessed in the block, a read list and a write list are maintained as
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shown in the Fig. 6. By parsing the transactions in the block, transaction IDs
are added to the read and write lists of respective addresses. First, check for
missing edges is performed by making sure that transactions in the write list
of an address have an edge with all transactions present in the respective read
and write lists as shown in Algorithm 3 Line 57. A failed check indicates that
the DAG shared has a missing edge. During the check, the number of outgoing
edges is calculated for each transaction as in Line 72 Algorithm 3.

From Line 75 to Line 80, we compare the sum of the outgoing edges obtained
in the above operation with the in-degree array shared along the block. This func-
tion identifies if any extra edges are present in the DAG. As a result, the secure
validator verifies the DAG and recognizes malicious block producers (if any).
The procedure to handle such nodes depends on the type and functionalities of
blockchain technology. This way, we eliminate the FBR, EMB, and EEB errors
and validate the DAG shared. Detailed algorithms with extensive explanations
can be obtained by referring to appendix C in [15].

4 Experiments Analysis

4.1 Implementation Details

We have chosen Hyperledger Sawtooth as our testing platform since it has good
support for parallelism and already has an inbuilt parallel scheduler. To incorpo-
rate the DAG framework into the Sawtooth architecture, we have to modify the
current parallel scheduler module. Due to the modular nature of Sawtooth, any
modifications made to a module can be restricted within the module itself with-
out impacting the remaining modules of the architecture. Ensuring this however
requires that the modifications to modules are performed with great care.

We have now implemented the DAG sharing and secure validator modules
in Sawtooth 1.2.6. Our modules are in CPP language while the Sawtooth core
was developed in both Rust and Python. We have chosen CPP for its efficient
support for concurrent programming. For DAG sharing, we have modified the
block after the block producer has verified that all the transactions in the block
are valid. In Sawtooth 1.2.6 we used the input and output addresses present
in the transaction structure. Every transaction in the DAG is represented by a
graph node and the outgoing edges indicate dependent transactions. In order to
ensure efficient validation, the DAG is also stored in the block [5,6,10] and shared
across the blockchain network. We have used the dependencies list component
of the transaction structure (in Sawtooth) to incorporate DAG into the block.

Initially, we implemented the DAG using a linked list data structure. This is
ideal when the size of the graph is unknown and the graph needs to be dynamic.
Given that the number of transactions in a block does not change and the limit to
the number of transactions a block can contain, we have designed an adjacency
matrix implementation for DAG. The results have shown further improvement
over the linked list implementation. This is because the adjacency matrix is direct
access whereas the linked list implementation would require traversal across the
list to reach the desired node.
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In Sawtooth 1.2.6 block validators, the secure validator is implemented. The
DAG is recreated using the dependencies list provided in the transaction by the
block producer. This saves the time taken to create the DAG for concurrent
execution again in the validators. The secure validator performs various checks
for missing edges that should have been present in the DAG shared by the block
producer as explained in Subsect. 3.2.

Transaction Families: We implemented four transaction families to test the
performance of our approach: (a) SimpleWallet, (b) Intkey, (c) Voting and (d)
Insurance. In SimpleWallet one can create accounts, deposit, withdraw and
transfer money. In Intkey clients can increment and decrement values stored
in different variables. In Voting, the operations are ‘create parties’, ‘add vot-
ers’ and the voters can ‘vote’ one of the parties. The insurance family is a data
storage transaction family where user details like ID, name, and address details
are stored and manipulated.2 To control the percentage of conflicts between
transactions, one must have control over the keys created. We have modified the
batch creation technique in these transaction families to allow the user to sub-
mit multiple transactions in a batch. This way we can not only just control the
number of transactions in a batch but also the conflicts among the transactions
in a batch. We individually observed each transaction family behaviour under
various experiments and a mix of all four types of transactions in a block.

4.2 Experiments

We have conducted several experiments to extensively test our proposed frame-
work. In order to assess the framework’s performance across different scenarios,
we have devised three conflict parameters (CP) that indicate the level of depen-
dency among the transaction. The conflict parameters, CP1, CP2, and CP3, are
metrics used to assess different aspects of a DAG representing transactions. CP1
measures the proportion of transactions in the DAG that have at least one depen-
dency. It indicates how interconnected the transactions are, with higher values
suggesting a greater level of dependencies. CP2 represents the ratio of depen-
dencies to the total number of transactions in the DAG. It provides insights into
the density of dependencies within the graph. A higher CP2 value indicates a
higher density of dependencies among transactions. CP3 quantifies the degree
of parallelism in the DAG by calculating the number of disjoint components,
which are subgraphs without interconnections. A lower CP3 value suggests a
higher level of parallelism, indicating that transactions can be executed inde-
pendently in separate components. By evaluating these conflict ratios, one can
gain a deeper understanding of the interdependencies and parallelizability of
transactions within the DAG.

We have designed four experiments, each varying one parameter while the rest
of the parameters are constant. The four parameters are (1) the number of blocks,
(2) the number of transactions in the block, (3) the degree of dependency, and (4)
2 The transaction family code can be accessed here: https://github.com/PDCRL/

ConcSawtooth.

https://github.com/PDCRL/ConcSawtooth
https://github.com/PDCRL/ConcSawtooth
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Fig. 7. Detailed analysis of our proposed framework performance with both adjacency
matrix and linked list implementations in Sawtooth 1.2.6.

the number of threads. The experimental setup is named one to four, respectively.
We have named the adjacency matrix implementation of our proposed framework
as Adj DAG and linked list implementation as LL DAG. The Sawtooth inbuilt
parallel scheduler uses a tree data structure; accordingly, we have named it as
Tree and serial execution output as Serial in our results. We have observed
that due to the presence of global lock in Python, the change in the number of
threads has not impacted the performance significantly. Due to this, we have not
presented the results of the experiment (4) in this work.

It can be observed from Fig. 7 that the adjacency matrix and linked list
implementation of our proposed framework perform significantly better than
the tree-based parallel scheduling and serial execution. We have illustrated here
some of the experiments we have conducted, and the rest can be found in the
associated technical report [15] (Appendix D). Figure 7(a), (d), and (g) illustrate
the impact of change in the number of blocks on various schedulers. On average
the speedup of Adj DAG over Serial is 1.58 times and LL DAG is 1.43 times,
while Tree is 1.22 times. The average speedup of Adj DAG over Tree is 1.29 and
LL DAG is 1.17 times.
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Fig. 8. Comparison of data structure creation time for all the parallel schedulers

Experiment (2) results are depicted in Fig. 7(b), (e), and (h). We can observe
that the gap between serial and parallel schedulers increases with an increase in
the number of transactions in the block. We observe that the higher the number of
transactions greater the scope for concurrency. For Experiment (3), we have var-
ied the degree of dependency between the transactions and measured its impact
on the transactions per second (TPS). The dependency among the transactions is
increased by making multiple transactions access the same accounts/addresses.
Ideally, varying the conflict percentage without changing the number of trans-
actions should not impact serial execution throughput. However, a decrease in
the number of different memory accesses due to caching improves the execution
time. We can observe this phenomenon in serial execution time in Fig. 7(c), (f),
and (i). Interestingly these opposing effects, temporal locality, and increase in
conflicts balance each other, and a steady TPS is maintained for ADJ DAG and
LL DAG algorithms. But, in Tree scheduler, the performance further decreases
with increased conflicts as it dominates over the temporal locality.

Figure 7(d), (e), and (f) show the Voting transaction family behavior under
experiments (1), (2), and (3). Unlike the other transaction families, Serial exe-
cution is faster than Tree scheduler with this family. We discovered that the
reason for this is that the entire list of voters list and parties are accessed for
any transaction (operation) in this family instead of the one particular voter
and party address. This causes higher overheads which leads to the observation
that the design of the transaction family (smart contract) plays a crucial role in
performance optimization. One can observe that the ADJ DAG and LL DAG
still perform better as they use transactions to represent the dependency data
structure, unlike Tree scheduler that uses addresses.

The secure validator framework efficiently verifies the DAG shared by the
block producer and eliminates the need to reconstruct the DAG at every block
validator. The execution time of the secure validator and adjacency DAG sched-
uler will only vary in the dependency graph creation aspect. To highlight the
savings achieved through secure validator, we analyzed the dependency data
structure creation and verification time for various schedulers in Fig. 7. One can
observe that the secure validator takes the least execution time, as seen in the
Fig. 8(j), (k), and (l). Figure 8(l) shows that secure validator is stable against
the variations in the dependency in the graph. Due to lack of space, the remain-
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ing experimental results, including the ones on Intkey and Insurance transaction
families, are described in the technical report [15] (Appendix D).

5 Related Work

In the past few years, blockchain technology has gained tremendous popular-
ity and is used in a wide variety of fields. Although blockchains are capable of
offering a variety of advantages, one of the most cited concerns is scalability. Con-
sensus protocols and transaction throughput are the two significant bottlenecks
of blockchain performance. In contrast to PoW, alternative consensus proto-
cols like PoS and PoET are introduced to minimize consensus time. However,
transaction throughput continues to be a hindrance to scalability. Exercising
parallel execution of transactions in a block is one of the solutions to optimize
blockchains.

Dickerson et al. [10] introduced the concept of parallel execution of Ethereum
[1] transactions using Software Transactional Memory (STM). The block pro-
ducer executes transactions in the block using STM, and the serializable concur-
rent state is discovered. This is then shared with the validators to achieve deter-
ministic execution. Following this, there have been multiple STM-based concur-
rent transaction execution frameworks for blockchains [3,7,11]. Besides the sig-
nificant overhead associated with executing transactions through STMs, trans-
actions sometimes fail due to dependencies and must be re-executed. Another
drawback is that they cannot have operations that cannot be undone, which
is a significant obstacle to smart contract design. During concurrent execution,
STM-based approaches identify conflicts among transactions dynamically, i.e.,
during execution. This results in various transactions failing or rolling back to
resolve the conflict. This has a significant impact on throughput and is not opti-
mal for blocks with high interdependencies. In general, a dynamic approach is
ideal, but it is not necessary for blockchains whose addresses are either included
in the transactions or are easily inferred. For such systems, we propose a parallel
execution framework for transactions in a block.

Sharding is another popular technique to address scaling issues in blockchains.
In this, the nodes present in the network are categorized into small groups. Each
group processes transactions parallelly with the other groups. Sharding is being
explored earnestly as a solution to scalability issues [8,9,12,17,19,20]. The crite-
ria for sharding are different in each approach. Few are specifically designed for
monetary transactions in blockchains [12,19]. This leads to smart contract trans-
actions being processed on a single shard leading to an inefficient distribution
of computational work. The implementation of transactions that span across
smart contracts becomes intricate with sharding. Protocols have to be designed
specifically for inter-shard communication, further increasing the complexity of
the design [9].

The Aeolus blockchain [20], is specifically tailored for Internet of Things (IoT)
devices that face limitations in executing multiple transactions rapidly. Aeolus
addresses this challenge by harnessing the computing resources available in a
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cluster of nodes to reduce the time required for transaction execution, thereby
enhancing the overall performance of the blockchain. The sharding technique
limits the degree of parallelization to the number of shards irrespective of actual
capacity. If the shards are dynamic, in the worst case, the number of shards is
equal to the number of transactions. Sharding is considered unsuitable for trans-
actions with high inter-dependencies. In contrast, we designed an efficient par-
allel scheduler for blockchain nodes to execute block transactions concurrently.
Our proposed approach can be implemented on top of the sharding approach to
improve the efficiency of individual nodes within each shard, where transactions
in a block can be executed in parallel.

6 Conclusion and Future Work

In this paper, we proposed a concurrent transaction execution framework for
blockchains. We proposed a parallel scheduler and a secure validator module for
the blockchain node architecture. The parallel scheduler is responsible for identi-
fying the dependencies among the transactions in the block and scheduling them
for conflict-free execution. The dependencies are represented by a DAG and are
shared along with the block to minimize the validation time of validating nodes.
DAGs are validated using the secure validator, which determines if a malicious
block producer has shared inaccurate graphs. The proposed approach has been
thoroughly tested in Hyperledger Sawtooth 1.2.6 [2] and is flexible enough to
be implemented in any blockchain that follows the order-execute paradigm [4].
One possible future step would be to extend the implementation of the proposed
approach to different blockchain platforms and compare their performance. Fur-
ther, fault tolerance and scalability for each blockchain node on its own (i.e.,
horizontal scaling of each validator node) can be explored.
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Abstract. In-situ workflow is a type of workflow where multiple com-
ponents execute concurrently with data flowing continuously. The adop-
tion of in-situ workflows not only accelerates mission-critical scientific
discoveries but also enables responsive disaster predictions. Although
there are recent studies on the performance and efficiency aspects of in-
situ workflows, the support for portability and distributed computing
environments is limited. We present INSTANT, a runtime framework
to configure, plan, launch, and monitor in-situ workflows for distributed
computing environments. INSTANT provides intuitive interfaces to com-
pose abstract in-situ workflows, manages in-site and cross-site data trans-
fers with ADIOS2, and supports resource planning using profiled perfor-
mance data. We use two real-world workflows as use cases: a coupled
wildfire spreading workflow and a computational fluid dynamics (CFD)
workflow coupled with machine learning and visualization. Experiments
with the two real-world use cases show that INSTANT effectively stream-
lines the orchestration of complex in-situ workflows, and its resource
planning capability allows INSTANT to plan and carry out efficient in-
situ workflow executions under various computing resource availability.

Keywords: in-situ workflow · scientific computing · high-performance
computing · urgent computing

1 Introduction

Workflows have been widely used to enable scientific discoveries in different
domains. A workflow describes the sequence of operations and the data/control
dependencies among the operations. Traditionally, data dependencies of work-
flows are facilitated with offline file transfers, however with the increasing amount
of data in different scientific domains, there is a trend to pursue in-situ workflows,
where multiple components execute concurrently, with data flowing continuously
across the workflow’s lifespan. Although some researchers may use “in-situ” to
describe the situation where different components co-locate in the same comput-
ing environment to reduce data transfer overhead [1,2], “in-situ” in this paper
refers to “processing data as it is generated” as discussed in [3].
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There are continuous community efforts to support in-situ analysis for differ-
ent application domains, one of which is the ADIOS2 project. ADIOS2 (the sec-
ond generation of the Adaptable Input Output System [4]) provides applications
with a generic interface to switch among multiple file-based or streaming-based
data transport methods. Parallel applications can use ADIOS2 APIs to read or
write multi-dimensional data, and their choices of underlying I/O engines (trans-
port methods) can be delayed to the runtime, by providing an external XML
configuration file. This adaptive design makes it easier to conduct in-situ analy-
sis for traditional HPC applications. ADIOS2 allows a group of m MPI processes
each writing to a portion of multi-dimensional domain space, and another group
of n MPI processes reading concurrently with data layouts different from the
writer processes. There are also an increasing number of domain applications
that have recently adopted ADIOS2, such as OpenFOAM [5] (computational
fluid dynamics) and LAMMPS [6] (molecular dynamics).

Although the ADIOS2 library itself provides a universal interface to pair-
wisely connect various applications such as simulation, analysis, and visualiza-
tion, it lacks the ability to compose and manage complex in-situ workflows. The
loosely-couple model of ADIOS2 allows domain scientists to focus on each indi-
vidual component’s performance and usability, however, there is no high-level
control or view of a workflow as a whole. As a result, the performance of in-situ
workflows cannot be properly captured, and the in-situ workflows have limited
portability and reproducibility due to the hardcoded and low-level ADIOS2 con-
figurations.

Cheetah is a software framework to create “campaigns” for coupled
simulation-analysis-reduction (SAR) computations [7]. Although Cheetah uti-
lizes ADIOS2 to couple multiple component applications, it focuses on searching
for good runtime parameter combinations in a single site through parameter
sweeping, and it lacks the ability to compose workflows with a general DAG-like
layout. Traditional workflow systems use the high-level DAG (Directed Acyclic
Graph) abstraction to describe a workflow and allow the components of a work-
flow to be executed orderly following the precedence specified in the DAG. How-
ever, unlike traditional workflow, in-situ workflows feature in-situ data dependen-
cies, which require special handling from workflow systems [8]. The integration of
in-situ workflow and traditional task-based workflow has recently been explored
in PyCOMMPs and Pegasus workflow management systems [9,10]. However,
these two integrations both rely on the Decaf library [11] for in-situ data trans-
ports, such that the in-situ transfer is limited to a single HPC site.

In order to provide high-level composition and orchestration support for
complex in-situ workflows in distributed computing environments, we design
and implement a runtime framework called INSTANT. INSTANT takes in an
abstract workflow that consists of ADIOS2-enabled components, and gener-
ates executable workflows for running on distributed computing resources. The
resource planning capability of INSTANT allows an abstract in-situ workflow to
be mapped efficiently on different platforms, or across multiple platforms, based
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on workflow characteristics gathered through performance monitoring. The exe-
cution engine of INSTANT then launches the components of the workflow to the
mapped computing environments and configures dataflow correspondingly. The
flexible configuration interface of INSTANT not only makes the in-situ work-
flows portable and easily reproducible, but also enables instant deployment of
critical pipelines.

In our experiments, we use two high-impact real-world workflow applica-
tions as use cases: a wildfire spreading workflow, and a CFD workflow coupled
with real-time machine learning and visualization. Experiment results show that
INSTANT realizes flexible configurations of in-situ workflows and allows efficient
executions of in-situ workflows under different resource availabilities.

To the best of our knowledge, this work makes the following contributions:

1. A runtime framework to compose, plan, launch, and monitor complex in-situ
workflows across multiple distributed environments.

2. An customized DataX I/O engine that supports flexible data interactions for
wide-area networks.

3. Use case studies and performance analysis of real-world in-situ workflows,
including a wildfire spreading workflow and a real-time “CFD + machine
learning/visualization” workflow.

In the rest of this paper, we introduce the general design of the INSTANT
runtime system in Sect. 2. We show the experiments with two real-world use
cases in Sect. 3 and discuss the related work in Sect. 4. We assess the limitations
and practical design decisions in Sect. 5, and then conclude the paper in Sect. 6.

2 Methodology

INSTANT mainly includes two main components, a “mapper” and an “execution
engine”, as shown in colored boxes in the Fig. 1. The mapper takes in an abstract
workflow as input and decides how to map the components of the workflow to
a diverse set of sites. Such decisions are then instantiated as the “executable
workflow” in the figure. The executable workflow is launched by the “execution
engine” to the selected computing resources, which can be a grid, a computer
cluster, or the local execution environment. Besides orchestrating remote jobs,
the execution engine also sets up dataflows between workflow components (either
same-site or cross-site using ADIOS2), and collects performance data which are
used in turn for resource planning.

The separation of resource planning and execution engine are also seen in
traditional workflow systems. However components execute one-after-another
in a traditional task-based workflow system, and the data dependency is typi-
cally realized as offline file transfers. In comparison, INSTANT targets in-situ
workflows, where components execute concurrently and the data transfer is con-
tinuous data flow instead of one-time file transfers. INSTANT allows a workflow
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Fig. 1. Overview of the INSTANT runtime framework.

described similarly to traditional workflows as DAG, and it intelligently decides
the placements of workflow components and sets up the ADIOS2-based dataflow.

2.1 Mapper

The mapper takes in the abstraction of a workflow, site catalog and performance
catalog as input information and generates an “executable workflow” as the
intermediate result.

Workflow Abstraction. A workflow abstraction defines how each component
is invoked for execution, and how data flows between components. The abstrac-
tion is resource independent, meaning that the same workflow can be executed
on a local computer, a remote cluster, or a grid consisting of several clusters. The
abstraction is designed in a way that a workflow user only needs to interact with
the locally-install toolkit interfaces provided by INSTANT, without the need for
preparing individual job scripts for remote submissions.

Listing 1 shows an abstract workflow description of a simple HeatTransfer
workflow, which solves a 2D passion equation for temperature in homogeneous
media using finite differences [12]. The HeatTransfer workflow contains two com-
ponents, and the data writer runs iteratively and sends data to the reader con-
tinuously. In the abstraction file, the “name” field is the unique identifier of
each component, and “exe” and the “args” fields describe the relative path of
the component executable files and the runtime arguments, respectively. In the
“dataflows” section, each entry describes a data flow between a pair of compo-
nents. In this simple example, there is only a single data flow, which is from
the “producer” component to the “consumer” component. The “IOFrom” and
“IOTo” fields are the names of ADIOS2 IOs, and these IO names allow each
component to initialize its IO engines based on the configuration of ADIOS2
XML configuration files provided later during runtime. As shown in Fig. 2, the
two IOs only allocate a “virtual” communication channel of two components.
The corresponding engine choices for these IOs depend on the actual resource
planning, which we introduce below.
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1 {
2 "components ": [
3 {
4 "name": "producer",
5 "exe":" heatTransfer_write_adios2",
6 "args": [" adios2.xml", heat.bp, ...],
7 "deployment ": "$INSTANT_PATH /"
8 },
9 {

10 "name": "consumer",
11 "exe": "heatTransfer_read",
12 "args": [" adios2.xml", heat.bp, ...],
13 "deployment ": "$INSTANT_PATH /"
14 }],
15 "dataflows ": [
16 {
17 "componentFrom ": "producer",
18 "componentTo ":" consumer",
19 "IOFrom": "writer",
20 "IOTo": "reader",
21 "type": "Insitu"
22 }]
23 }

Listing 1. The abstract workflow file for an example Heat-
Transfer workflow.

Fig. 2. The abstract
workflow represented in
Listing 1.

Resource Planning. The resource planning utility decides where (which sites)
and how (the number of processing units) to launch each component.

In an in-situ workflow, data continuously flows between components during
the workflow lifetime in a pipeline fashion, and the overall speed of the workflow
depends on the slowest segment [9,13]. INSTANT utilizes existing site catalog,
collected performance data and resource planning to help an in-situ workflow to
achieve better efficiency. The site catalog contains two parts:

– Compute-capability information: number of processing units (e.g. CPU cores)
available at each site, and performance of each processing unit1.

– Connectivity information: latency and bandwidth matrices between available
sites.

The collected performance metrics mainly include the compute cost of each
component and transfer sizes between components.

Currently, we utilize CPLEX as our default resource planning method.
CPLEX together with its Optimization Programming Language (OPL) [14,15]
allows us to define and solve the in-situ workflow optimization problem using a
syntax similar to formal mathematical representations. The built-in optimiza-
tion model optimizes the “throughput”, which is the number of steps the whole
workflow can advance in a second. We first create the mathematical optimiza-
tion model using OPL, respecting the actual resource limits and the pipelined
execution constraints. Then CPLEX can build up a search space with reasonable
1 The per-processing-unit performance is currently recorded in the form of giga-

floating-point operations per second (GFLOP/S).
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combinations of different decision variables and search for the best solution. We
have also developed a more efficient heuristic-based algorithm for the same opti-
mization goal of maximizing workflow throughput, however we mainly discuss
the CPLEX resource planning method in this paper for its simplicity.

The resulting resource plan is the decision on where to place each component,
and how much computing resource to allocate for each component. Listing 2 then
shows a possible launching plan of the previous HeatTransfer workflow. In the
example workflow, the two components are assigned to two separate comput-
ing environments (PSC Bridges2 and IU Bigred 200) with different numbers of
processing units respectively.

1 {
2 "plans ":[
3 {
4 "name": "producer",
5 "site": "bridges2",
6 "nprocs": 4
7 },
8 {
9 "name": "consumer",

10 "site": "bigred200",
11 "nprocs": 2
12 }
13 ]
14 }

Listing 2. An example workflow
plan file (cross-site plan).

Fig. 3. Folder structure of an example exe-
cutable workflow.

Instantiation. Once the planning utility decides how to map each compo-
nent, it can generate the “executable workflow”. The executable workflow is an
instantiation of the workflow plan and contains the required recipes to launch
the workflow. The executable workflow is generated by first grouping compo-
nents based on their site choices and then creating submission folders for each
site group. Listing 3 shows the user interfaces of instantiating the executable
workflow, where the “heat-transfer-dag.json” is the abstract workflow file, and
“chosen-plan.json” is the plan file (either manually configured or generated by
INSTANT resource planning utility). The output folder “testbed folder” stores
all generated contents of the executable workflow.
1 python3 scripts/instant_instantiate.py -c heat -transfer -dag.json -p chosen -

plan.json -o testbed_folder

Listing 3. User interface to create a excutable executable workflow.

Figure 3 shows the contents of the output folder, where users can use the
launch/query/cancel interfaces to orchestrate the remote executions of the in-
situ workflow. Two submission sub-folders are created for the two sites planned
for workflow execution. Specifically, each site submission sub-folder includes a job
script to invoke individual components assigned to the site (run site group.sh),
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an ADIOS2 configuration file to specify the choices of I/O engines (adios xml),
and an environment setup script (site.env).

Fig. 4. INSTANT sets up either same-site or cross-site dataflow based on the plan.

The generated ADIOS2 XML configuration file allows the dataflow cor-
rectly configured in the later execution stage. Figure 4 shows how the generated
ADIOS2 XML configuration file is used to prepare the workflows for same-site
and cross-site launching. The original abstract workflow only defines the name of
the ADIOS2 IOs, however, the actual transport method (the choice of ADIOS2
engine) is not determined until the planning is finished. In Fig. 4, the “same-site”
plan sets the engine type of both ends to “SST”, which is the high-performance
in-cluster transport provided by ADIOS2. In contrast, for a cross-site plan, the
engine type is then configured as “DataX”. The “DataX” is our customized
ADIOS2 engine type to enable flexible data coupling across clusters, which we
introduce later in this paper in Sect. 2.2.

2.2 Execution Engine

When the executable workflow is ready, the “execution engine” can launch the
components to the target sites. The execution engine has three main goals:

– Job orchestration: launch, monitor and control the execution of remote jobs.
– Dataflow setup: set up and maintain the data communication channel for

both in-site and cross-site dataflows.
– Performance monitoring: collect performance data which can then be used

for resource planning to further improve the workflow execution efficiency.

Job Orchestration. As previously shown in Fig. 3, the executable workflow
exposes interfaces to launch, cancel and query the status of the workflow. The
“launch” interface first copies the site-specific submission folders to the target
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sites, and then submits the site-specific job scripts (run site group.sh) to the
HPC batch system. The query and cancel interfaces work similarly by issuing
corresponding batch system job control commands. The submission folder copied
to the target sites also contains the ADIOS2 XML configuration file, which allows
components to set up different transports for its dataflow.

Dataflow Setup. At the start of remote execution, each component sets up its
dataflow by initializing its I/O engines based on the specification defined in the
ADIOS2 XML configuration file. Inside the ADIOS2 configuration file, each IO
has the engine type specified, and the Adaptive I/O design of ADIOS2 allows
the transports to be realized as either in-site or cross-site transfers.

The ADIOS2 library provides a universal view of scientific data and allows
easy gluing of different applications using provided high-level language bindings.
ADIOS2 provides several “engines” for different usage scenarios: the SST engine
that max out transfer performance using high-performance interconnect; the
DataMan engine that connects two endpoints across networks. We designed and
developed a new engine called “DataX”, which reuses the DataMan engine’s
ZeroMQ communication patterns, with the following features added:

1. Support arbitrary m-to-n process mapping.
2. Support scenarios that both sites are behind the firewall.

For feature #1, the current DataMan engine2 only supports 1-to-1 process
mapping (i.e., both DataMan producer and consumer have to use a single pro-
cess), and DataMan is mainly used for cross-site communication between data
transfer nodes of two clusters. In comparison, the more general ADIOS2 inter-
face supports m-to-n process mapping: producer and consumer components can
each be a group of MPI processes and have different access patterns of the global
space. To provide such universal m-to-n process mapping for cross-site commu-
nication, our “DataX” engine adds additional support for data aggregation and
redistribution for MPI ranks on both sides of the communication. This feature
enables the support of the same flexible m-to-n process mapping even across
wide-area networks, which allows a dataflow easily configured as same-site or
cross-site.

For feature #2, the current implementation of DataMan requires the IP
address and port of the reader to be accessible to the data writers, in order to
establish the ZeroMQ data communication channel. However, it is common that
HPC compute nodes are behind firewalls and not exposed to the outside of the
institution, which makes it difficult to enable cross-site communication for in-
situ workflows. For this reason, the INSTANT framework also includes a “relay”
service, which creates endpoints in an accessible place that both ends can connect
to. The relay service is implemented as an array of ZeroMQ “queue” devices3

allocated in cloud virtual machines, which allows both sender and receiver to get
connected even if they are both behind firewalls.
2 As of March 2023 when we submitted this work.
3 ZeroMQ queue device: http://api.zeromq.org/2-1:zmq-device.

http://api.zeromq.org/2-1:zmq-device
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Performance Monitoring. Here we explain what information is needed for
INSTANT to support resource planning, and how the required performance data
is collected.

The resource planning utility mentioned in Sect. 2.1 requires several types of
performance data to conduct resource planning: the per-step compute work of
each component, the per-step transfer size of each data communication pair, and
environment-related information such as latency/bandwidth between sites. We
have added customized hooks for the BeginStep and EndStep ADIOS2 APIs, so
that the ADIOS2 library automatically records the start and end time of each
ADIOS2 step. For each component, the actual time spent on computing can
be inferred from the elapsed time between the EndStep for reader operations
and the BeginStep of the next write operations. The inferred compute time
Tcompute and the documented performance data of the environments can then
be used to calculate the actual computation work size work = core speed ×
num cores × Tcompute. In the customized hooks, we also record the number of
bytes written for each variable in each step. For component pairs that transfer
multiple variables, the recorded transfer sizes are added together to obtain the
per-step transfer size between the two components. The addition of customized
hooks is transparent to workflow composers because the same set of ADIOS2
APIs are used. The bandwidth and latency information between HPC sites are
obtained using iperftools and Linux ping command.

Our experiments in Sect. 3.2 demonstrate that through performance data
collected from a previously-executed in-situ workflow, INSTANT can produce
efficient resource plans for same-environment and cross-environment executions.

3 Use Cases

In this section, we show two real-world use cases of INSTANT. In the first
use case we WRF-SFIRE, a coupled atmosphere-fire model, and demonstrates
how INSTANT can help accelerate the model coupling, and at the same time
provide users with extensive flexibility/functionality. In the second use case, we
use a real-time “CFD + machine learning/visualization” workflow, and show the
advantage of INSTANT’s resource planning and launching capability especially
when computing resources are limited.

3.1 WRF-SFIRE

The first experiment uses WRF-SFIRE, which is a coupled atmosphere-fire
model that is used for urgent simulations and forecasting of wildfire propaga-
tion [16]. WRF-SFIRE combines the state-of-the-art Weather Research and Fore-
casting model (WRF) and a surface fire spreading model (SFIRE). The atmo-
sphere properties from WRF (e.g. surface air temperate, humidity, and wind)
drive the SFIRE model, which then calculates the spreading of the fire line. The
default/baseline WRF-SFIRE is a tightly-coupled model: the SFIRE model is
implemented as one of the physics plugins of WRF, and WRF and SFIRE are



208 F. Li and F. Song

built into the same binary executable. During runtime, the executable alternates
between WRF and SFIRE models, which share the same memory space and CPU
resources (i.e., time-division).

We compare the baseline tightly-coupled WRF-SFIRE method with the other
two methods enabled by INSTANT, as shown in Fig. 5a. Unlike the baseline
method where WRF and SFIRE are tightly coupled, the INSTANT-enabled
methods create decoupled in-situ workflows using ADIOS2. The “INSTANT
w/ 1fire” method has two executable binaries: a WRF model without SFIRE
component, and a standalone SFIRE executable. We developed the decoupled
method based on the recent ADIOS2 IO backend for WRF [17]4. Instead of uti-
lizing the NetCDF for periodical variable output, the output data from WRF are
sent out through ADIOS2 format for data streaming. For the data receiver side,
we added ADIOS2 support for the standalone SFIRE by changing the default
NetCDF I/O routines to corresponding ADIOS2 I/O routines. The “INSTANT
w/ 2fires” method uses the same two executable binaries, but the WRF model
sends data streams to two separate SFIRE simulations. This allows the workflow
to use the same WRF output data to predict fire lines under different ignition
conditions.

Fig. 5. Time comparison of the WRF-SFIRE workflow w/ and w/o INSTANT support.

For all three methods, we use the “hill” example included in the WRF-SFIRE
repository, which simulates 5 min of the fire propagation in a 60m × 60m hill
area. Figure 5b shows the time comparison with different execution methods.
For each method, we plot the total end-to-end time (from the first step of the
WRF model to the last step of the SFIRE model), and also the sfire model
time (elapsed time used for the SFIRE model execution). From Fig. 5b, we can
see that the default tightly-coupled method has the longest end-to-end time
of 422.6 seconds. This lengthy time is caused by the time-division pattern of
tightly-coupled execution: the same processors need to be time-sliced to alternate
through WRF and SFIRE executions.
4 The integration of ADIOS2 into the WRF is being added for future WRF releases

https://github.com/wrf-model/WRF/pull/1787.

https://github.com/wrf-model/WRF/pull/1787
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In comparison, the decoupled executions enabled by INSTANT deploy the
WRF and SFIRE models in separate computing resources, and allow the data
transfer to happen asynchronously without blocking the WRF atmosphere exe-
cution. For “INSTANT w/ 1fire” and “INSTANT w/ 2fires” methods, the total
time is greatly reduced to 206.5 and 205.1 s, respectively, both resulting in
more than 2 times speedup. In both cases, the end-to-end time is close to the
time spent on the sfire model. Moreover, compared with the base 1fire method,
the 2fire method does more with similar time: two separate SFIRE models are
concurrently executed, which gives more insights for disaster monitoring/pre-
vention, without running the WRF atmosphere model multiple times. Overall,
INSTANT enables flexible composition of in-situ workflows by allowing simula-
tion connected with interchangeable analytics components.

3.2 Computational Fluid Dynamics with Real-Time Machine
Learning/Visualization

In the second use case, we use a real-time “CFD + machine learning and visu-
alization” in-situ workflow application [18] to demonstrate how INSTANT can
process execution patterns through collected performance data, generate efficient
execution plans, and launch the proposed workflow to accelerate applications.

Figure 6a shows the workflow layout of the CFD-based workflow. The first
CFD component application is a parallel icoFoam CFD simulation implemented
with the OpenFOAM package to simulate a 2-D lid-driven cavity flow problem.
Then the simulation output is partitioned into a number of 2D regions based on
the geometric information, and the task is to cluster the regions into different
categories based on the flow pattern. The DivCal component, to calculate the L2
divergences between a group of sampled regions. Then, the K-MedoidsClustering
component groups all the sampled regions using k-medoid with the calculated
divergence information. After that, the AssignClusterIDs component assigns a
label for each region, based on its divergence from the medoid regions. Finally
the CatalystVis component visualizes the clustering results using the ParaView
Catalyst in-situ visualization toolkit [19].

We configure a grid size of 1024× 1024 for the CFD simulation and a region
size of 16 × 16, which results in a total number of 4096 regions. We compare
the following three cases: baseline, INSTANT-1site, and INSTANT-distrib. The
baseline case is a reference execution plan, which uses small-size allocation just
to gather performance data for resource planning5. The two other methods use
the collected performance data from the baseline execution and generate plans
for two different resource availability scenarios. The INSTANT-1site method
assumes there is a total of 32 cores available on a single HPC site (IU Quartz
HPC); while the INSTANT-distrib method assumes there are 32 cores available
in a distributed environment (two HPC systems: IU Quartz and Bridges2, each
with 16 cores).

5 We have used 4,2,1,2,1 processes for the 5 components, respectively.
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Fig. 6. A CFD simulation + machine learning/visualization in-situ workflow.
INSTANT achieves better throughput and resource efficiency through resource plan-
ning.

We use throughput and resource efficiency as the metrics to compare the
above three methods. Throughput is measured in “steps per minute”, which
corresponds to the speed the workflow can advance in a pipelined fashion. The
resource efficiency, on the other hand, is calculated by:

Eresource =

∑
ci∈C ncipciTcompute(ci)
(
∑

ci∈C ncipci)Tstep

Here C is the set of all components of the workflow, nci is the number of pro-
cessing units allocated to component ci, and pci denotes the performance of each
assigned processing unit. The Tstep is the workflow step time, which indicates the
time required for the whole workflow to advance a step in the pipelined fashion.
The Tcompute(ci) is the time a component ci uses for compute work instead of
idling caused by pipeline stall. Overall, a higher resource efficiency indicates that
components are assigned with the proper amount of computing resources, and
the whole workflow experiences less idling.

Figure 6b shows the throughput and resource efficiency of the CFD workflow
of the three methods. The upper part of the figure shows the throughput of the
three methods, where the base case has a relatively low throughput of 5.5 steps
per minute. With the performance gathered from the base case, the INSTANT
creates plans for the INSTANT-1site and INSTANT-distrib methods. For those
two methods, INSTANT can first give rough predictions of the throughput even
before the execution, based on the results of resource planning. After the actual
launching, INSTANT achieves 4.75 and 4.83 times better throughput for the 1-
site and distributed setups, respectively, compared with the baseline. SNL-based
methods also achieve better resource efficiency than the baseline, as shown in the
bottom part of Fig. 6b. Overall, INSTANT can help workflow users conveniently
gather performance data from historical runs, and generate adequate resource
plans for efficient executions at different resource availabilities.
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4 Related Work

Traditional workflow management systems such as Pegasus [20] and Kepler [21]
provide interfaces for workflow users to compose, launch and collect results for
task-based workflows. In these works, the data dependencies are carried out
through file transfers, and each task can only start only after all its predecessors
finish. Resource planning methods have also largely been developed following
such assumptions of execution precedence. Our INSTANT framework, however,
assumes a different pipelined execution pattern, and allows for special resource
planning methods to target the emerging in-situ workflows.

The Cheetah/Savanna workflow environment [7] is a toolset to automate per-
formance studies of coupled simulation-analysis-reduction HPC computations.
Cheetah is used to compose a campaign of workflows, considering large configu-
ration space such as process placement and I/O choices, and Savanna is a run-
time engine that orchestrates individual workflows on target platforms. Although
Cheetah/Savanna workflow environment supports different HPC platforms, it
focuses on the fine-grained performance study on each individual platform, and
the effect of collaboration of multiple platforms is largely unexplored.

BeeFlow [8] is a workflow management system that supports traditional
workflows and also workflows with in-situ data dependencies. It utilizes event-
synchronization primitives to enforce in-situ workflow logic. BeeFlow replies on
Docker containers for application deployment, and the execution is constrained
to one site for a single run. In comparison, INSTANT allows native parallel com-
ponent applications, and the applications can be planned and deployed across
multiple sites for efficient executions.

5 Discussion

5.1 Co-allocation of Computation Resources and Queue Time
Waste

Currently, different site groups of a workflow are submitted subsequently to the
planned sites, and we assume the components can start execution at around the
same time. In the case when an HPC site experiences long job queue waiting
time, the job submitted to the other sites will wait during the ADIOS2 environ-
ment initialization until the delayed job starts. For mission-critical applications,
allocation reservation or increasing job queue priority can also better ensure that
applications be launched and started around the same time.

5.2 Application Deployment in Distributed Computing
Environments

One challenge in supporting the flexible execution of in-situ workflows on vari-
ous platforms is the software deployment of component applications on different
computing environments. To let components have the flexibility to be placed
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on either of the available sites, executables of the components should also be
either available or deployable on those sites. Workflow systems such as Pega-
sus maintain a “transformation catalog”, to locate the executables for workflow
components. Other systems use container technologies to deploy applications
before execution. In our current implementation, we deploy component appli-
cations on the target sites using Spack environment [22]. INSTANT specifies a
list of required software packages (e.g., OpenFOAM and ParaView) as a Spack
environment file, which allows the same set of software environments to be easily
installed/reproduced on various platforms.

6 Conclusion

We design and implement a runtime framework called INSTANT, which allows
for easy configuration, planning, and deployment of in-situ workflows across
multiple execution environments. The INSTANT framework contains a mapper
component and an execution engine. The mapper can generate efficient execu-
tion plans based on available computing environments and workflow character-
istics, and the execution engine allows the execution workflow to be deployed
either on one site or across multiple sites. We conduct our experiments with a
wildfire-spreading workflow and a real-time “CFD with machine learning and
visualization” workflow. Experiment results show that INSTANT allows easier
composition of in-situ workflows and built-in resource planning functionality
improves the workflow throughput and resource efficiency. Future work includes
supporting more applications from various domains. This will also allow for a
more thorough performance study for a broad set of applications and workflows.
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Abstract. Scheduling is critical for achieving high performance for par-
allel applications executing on high performance computing (HPC) sys-
tems. Scheduling decisions can be taken at batch system, application, and
operating system (OS) levels. In this work, we investigate the interac-
tion between the Linux scheduler and various OpenMP scheduling options
during the execution of three multithreaded codes on two types of com-
puting nodes. When threads are unpinned, we found that OS schedul-
ing events significantly interfere with the performance of compute-bound
applications, aggravating their inherent load imbalance or overhead (by
additional context switches). While the Linux scheduler balances system
load in the absence of application-level load balancing, we also found it
decreases performance via additional context switches and thread migra-
tions. We observed that performing load balancing operations both at the
OS and application levels is advantageous for the performance of concur-
rently executing applications. These results show the importance of con-
sidering the role of OS scheduling in the design of application scheduling
techniques and vice versa. This work motivates further research into coor-
dination of scheduling within multithreaded applications and the OS.

Keywords: OS scheduling · Application thread-level scheduling ·
Linux · CFS · LB4OMP · lo2s · OpenMP

1 Introduction

The even distribution of work in a parallel system is a principal challenge for
achieving optimal efficiency, as uneven distribution (load imbalance) leads to
underutilized hardware. On the one hand, the application or its runtime needs
to distribute work evenly across threads (or processes), e.g., by OpenMP loop
scheduling. The operating system (OS) scheduler can amplify or mitigate load
imbalances by scheduling application threads among cores/hardware threads. OS
scheduling decisions are most impactful if there are more execution threads—
including application threads and background tasks—than processor cores.
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All supercomputers on the TOP500 list use Linux1 and therefore its Com-
pletely Fair Scheduler (CFS) [13]. OS-level load balancing operations such as
context switches and thread migrations can be costly and influence application
performance. Moreover, application characteristics can also influence the OS
scheduler actions regarding load balancing. The relation between OS-level and
application thread-level scheduling and load balancing is key to increasing per-
formance and utilization of today’s complex and extremely large supercomputers
but has not yet been explored. In this work, we investigate this interaction and
pursue answers to three specific research questions presented in Sect. 4.

We selected applications with different load imbalance characteristics to cre-
ate distinct scenarios for the OS scheduler. The applications contain loops paral-
lelized and scheduled with OpenMP. We modified the loop schedule clauses to
use LB4OMP [12], a load balancing library that provides dynamic and adaptive
loop self-scheduling techniques in addition to the standard options. To measure
the Linux OS scheduler events during the execution of parallel applications we use
lo2s [11], a lightweight node-level tool that monitors applications and the OS.

This work makes the following contributions: 1) An in-depth investiga-
tion of the interaction between OS- and application-level scheduling and load
balancing and its influence on system and application performance. 2) Exposes
opportunities for performance improvement by bridging OS- and application-
level schedulers. Overall, the presented results pave the way for cooperation
between these levels of scheduling.

This work is organized as follows. Section 2 reviews the related literature while
Sect. 3 contextualizes the scheduling considerations relevant to this work. The
approach proposed to study the interaction between scheduling levels is described
in Sect. 4. The experimental design and performance analysis are discussed Sect. 5.
The conclusions and outline directions for future work are presented in Sect. 6.

2 Related Work

Earlier work has exclusively studied the performance of different application
thread-/process-level scheduling techniques [7,12] or the relation between appli-
cation thread-level and application process-level scheduling [8,15,16].

The OS noise was investigated in different scenarios and experimentation
strategies [1,19,20]. The OS noise was evaluated as a single “composed compo-
nent” that consists of scheduling, kernel events, OS services, and maintenance
tasks. In this work, we break this noise into its constituents and assess the influ-
ence of Linux OS scheduler on the performance of multithreaded applications.

Wong et al. showed that local scheduling decisions in Linux with CFS are
efficient [21]. Bouron et al. showed that the FreeBSD ULE scheduler achieves
comparable performance to Linux CFS [6]. While CFS is in general efficient, Lozi
et al. [14] show that its implementation is still updated when bugs are found.

In contrast to the above-cited literature, this work investigates the influ-
ence of the Linux CFS on the performance of several multithreaded applications
1 https://www.top500.org/statistics/details/osfam/1/.

https://www.top500.org/statistics/details/osfam/1/
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and quantifies this interaction. Through selected specific kernels, benchmarks,
and mini-apps that exhibit varied load imbalance characteristics (which we also
modify by employing various OpenMP scheduling techniques) we observe their
effects on the OS scheduler’s behavior.

3 Scheduling in Context

3.1 Linux OS Scheduling

To rebalance work between different CPUs2, the Linux kernel uses scheduler
domains, which “mimic[...] the physical hardware” [5]. Figure 1 shows the sched-
uler domains of the dual socket system used in the experiments. The domains
include SMT (Symmetric Multi-Threading), MC (Multi-Core), NODE, and
NUMA (twice). While SMT includes all logical CPUs of a single processor core,
MC includes all cores with a common LLC (Last Level Cache), i.e., one core com-
plex [2, Sect. 1.8.1]. NODE refers to all CPUs of a NUMA node. NUMA refers
to properties of NUMA systems that are not matched by previous domains –
in our example, the two NUMA domains represent CPUs of one processor and
all CPUs, respectively. Each domain also serves as a scheduling group in the
higher level domain, e.g., the four SMT domains are scheduling groups in the
MC domain.

Fig. 1. Scheduler domains of a dual socket AMD Epyc 7502 system. Four cores are a
core complex, two core complexes define a NUMA node.

Bligh et al. [5] also state that work rebalancing is triggered at regular inter-
vals. This is done by stopper threads, which exist per CPU3. The threads visit
their scheduler domains and try to find more loaded scheduling groups from
which they steal work and enqueue it in their local group. The rebalancing
interval is typically between one and hundreds of milliseconds, depending on the
scheduler domain, and typically grows with the number of CPUs being included
in the domain. The exact values for each domain are listed as min interval and
max interval in the domains entries in Linux’ debugfs. Linux can also resched-
ule tasks (in our case OpenMP application threads) when they change state, e.g.,
when they switch between active (TASK RUNNING) and idle (TASK SUSPENDED).
To save energy, stopper threads can be turned off during idle periods on tickless
kernels. Here, a ”NOHZ balancer core is responsible [...] to run the periodic load
balancing routine for itself and on behalf of [...] idle cores.“ [14, Sect. 2.2.2].
2 In Linux systems, a CPU refers to a hardware thread managed by the OS.
3 https://github.com/torvalds/linux/blob/master/kernel/stop machine.c.

https://github.com/torvalds/linux/blob/master/kernel/stop_machine.c
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3.2 Application Thread-Level Scheduling

Application thread-level scheduling is used to improve the execution of a given
application. E.g., load-imbalanced loops with static scheduling leads to idle
application threads and therefore possibly underutilized CPUs while dynamic
scheduling leads to fewer idle application threads.

The applications considered in this work exhibit various load imbalance
characteristics and we modify their parallel loops to use techniques from the
LB4OMP library [12]. We select six scheduling techniques representing distinct
classes: static (static), work-stealing (static steal), dynamic self-scheduling
(SS, FAC2, GSS), and adaptive self-scheduling (AF). 1) static: straightforward
compile-time parallelization as per OpenMP standard, smallest to no schedul-
ing overhead and high data locality, no load rebalancing during execution.
2) static steal: LLVM’s implementation of static scheduling with work steal-
ing; Steal operations are costly with loss of data locality. 3) dynamic,1 (SS) [17]:
OpenMP standard-compliant. Each work request is assigned one loop iteration;
Best load balance at the cost of considerable scheduling overhead and severe
loss of data locality. 4) guided (GSS) [18] and (5) FAC2 [10] are dynamic & non-
adaptive scheduling techniques. Both assign large chunks of iterations early in
the loop execution and later gradually smaller chunks, achieving load balancing
at low scheduling overhead. 6) adaptive factoring (AF) [4] is a dynamic & adap-
tive scheduling technique. AF collects information about currently executing loop
iterations to adapt the next chunk size accordingly and achieve load balancing
at a possibly considerable scheduling overhead and loss of data locality.

4 Interaction Between OS and Application Scheduler

The next two subsections present our proposed methodology to answer the fol-
lowing research questions.

RQ.1 What is the influence of OS scheduling events on the performance of
applications with various load imbalance characteristics?
RQ.2 How does simultaneous load balancing at OS- and application thread-
level impact overall application performance and system cores load balance?
RQ.3 Does the OS exploit system idleness caused by application thread-level
load imbalance?

4.1 Quantifying OS Scheduler Influence on Application Performance

Quantifying the OS influence on application performance and core utilization is
challenging. For instance, an application may issue system calls to read a file
from the disk; the OS will do a context switch and may schedule other tasks
while the data is being read from the disk. In this case the application is not
delayed while it waits for the I/O. In other cases, the OS scheduler may decide
to migrate an application thread to another core. The OS scheduler often makes
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Table 1. Symbol definitions

P Total amount of processing elements (logical cores) assigned to an application

i CPU ID, 0 ≤ i < P

Tpar Parallel execution time of an application (maximum of execution times of each processing element)

Tc Parallel cost of executing an application on P processing elements, Tc = P × Tpar

x Event type: A (application), C (context switch), D (idle), and O (other)

Xi Set of events of type x occurring on the ith CPU

X Set of all events of type x, X =
P−1⋃

i=0

Xi

t(Xi) Duration of all events of type x on the ith CPU

f(X) Percentile influence of all events of type x on the application’s parallel cost Tc, f(X) =
∑P−1

i=0 t(Xi)

Tc
%

r(X) Average rate of events of type X, r(X) = |Xi|
Tpar

c.o.v Load imbalance based on σ (standard deviation) and μ (mean) of cores finishing times

such decisions to balance the system cores either globally via thread migrations or
locally via context switches. However, these scheduling decisions may ultimately
lead to load imbalance at the application level, i.e., context switches and thread
migrations cause performance variability between application threads.

To quantify the OS scheduler’s influence on a specific application, we monitor
and capture all events that occur while the OS schedules the application. The
captured events are classified into: application events A, context switches C,
idle events D, or other O. This classification allows to quantify and compare the
influence of individual event types in various scenarios (see Sect. 5).

Table 1 summarizes the notation and metrics employed in this work. In par-
ticular, f(X) represents the influence of a specific type of event as the percent-
age of the aggregated duration of all events of that specific type on all cores to
the parallel cost of the application. Events also have an indirect influence that is
observable but not explicitly measurable. For instance, frequent context switches
create locality loss and delay certain application threads. Thus, the influence of
these context switches goes beyond their duration. To infer such indirect influ-
ence, we measure the rate of a specific type of event. For instance, abnormally
high context switch rates may explain performance degradation (see Sect. 5.3).

4.2 Recording Linux OS Scheduling Events

We record Linux OS scheduling events with the lo2s performance measurement
tool [11]. lo2s leverages the Linux kernel to collect occurrences of hardware and
software events including two special context switch records: one for switching
away from a process and one for switching into the new current process. These
records are generated at the beginning and end of the scheduler context switch
implementation in kernel/sched/core.c. lo2s reads the buffers when reaching
a watermark or at the end of monitoring and writes them to OTF2 [9] files.

In this work, we use one buffer for each of the systems CPUs and register the
tracepoint event sched:sched migrate task, which is generated by the Linux
scheduler implementation of set task cpu in kernel/sched/core.c. This event
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is caused by different sources, e.g., when a program calls specific syscalls, or
when a stopper thread or the swapper re-balance work. Each occurrence of this
tracepoint translates to an OTF2 metric event that includes numeric values of
the involved process and CPU ids as well as priority. The OTF2 representation of
the context switch events gives complete information about when which thread
was (de)scheduled on any CPU. The information is recorded as calling-context
enter and leave events where each calling-context represents the process that was
(de)scheduled. This includes a calling-context for idle with a pid of 0. The full
lo2s command used in this work is lo2s -a -t sched:sched migrate task.

From the recorded data, we extract information on how often a context switch
was performed and how much time the context switch implementation took in
total in between the monitoring records. We specifically filter the (de)scheduling
of application threads to collect how often and for how long they were scheduled.
The same is true for the time spent idle (idle OS threads).

5 Performance Results and Discussion

We test the proposed methodology (see Sect. 4) through a performance anal-
ysis campaign and offer quantitative answers to the three research questions.
For the experiments, we use an application, a benchmark, and a kernel, which
we execute on two types of compute nodes (Table 2 and Sect. 5.1), operated
by distinct Linux kernel versions. All codes are compiled with Intel compiler
version 2021.6.0. We employ 6 different application thread-level scheduling tech-
niques from the LB4OMP library (Sect. 3.2). The LB4OMP library requires
OpenMP and we use the LLVM OpenMP runtime library version 8.0. For all
measurements regarding OS and application events, we use lo2s version v1.6.0
(Sect. 4.2). Each experiment configuration was repeated 5 times. The average
c.o.v. of all measurements considering parallel execution time was 0.0133. The
highest c.o.v. appears for NAS-BT.C executing on conway, active wait policy,
notPin, and static scheduling technique: 0.0937. The majority of all other mea-
surements are below 0.02 c.o.v.

5.1 Applications

Depending on their characteristics (memory-, compute-, and/or I/O-bound),
applications may drive the OS scheduler to perform more scheduling operations
(context switches, thread migration) than others. OS threads executing load-
imbalanced applications will naturally idle more often than when executing well-
balanced applications. These idle times can be exploited by the OS scheduler. Pre-
emption or migration of threads can also decrease data locality. To investigate
these aspects, we focus mainly on compute-bound applications with dif-
ferent characteristics regarding their load imbalance behavior.

Calculating the Mandelbrot set is a highly compute-bound kernel. We
implement this kernel in a time-stepping fashion. The code comprises an outer
loop enclosing three other loops that, when scheduled with static, present:
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constant, increasing, and decreasing load imbalance characteristics across time
steps. NAS-BT.C is a block tridiagonal solver for synthetic systems of nonlin-
ear partial differential equations, part of the NAS OpenMP parallel benchmarks
version 3.4.2 [3]. When NAS-BT.C is scheduled with static, it shows low load
imbalance. SPH-EXA4 is a Smoothed Particle Hydrodynamics (SPH) simula-
tion framework. In this work, SPH-EXA simulates a Sedov blast wave explosion.
This application exhibits both memory- and compute-bound characteristics and
when executed with static results in mild load imbalance.

These applications comprise loops and employ OpenMP loop paralleliza-
tion and scheduling to exploit hardware parallelism on shared memory systems.
We modified their most time-consuming loops to use the OpenMP schedule
(runtime) clause to call different scheduling techniques from LB4OMP [12].
Specifically, all OpenMP loops in Mandelbrot were changed from no schedule
clause (which defaults to static) to schedule(runtime). In NAS-BT.C, 12
out of 28 loops use the NOWAIT loop clause. The scheduling of these loops
cannot be changed from the current static scheduling as the correctness in
NAS-BT.C depends on those loops’ iterations executing in the predefined order.
Therefore, we only modified the 3 most time-consuming loops: x solve, y solve,
z solve. For SPH-EXA, the 4 most time-consuming loops: IAD, findPeersMac,
momentumAndEnergy, and updateSmoothingLength were modified, out of 16
OpenMP loops.

5.2 Design of Experiments

The experimental evaluation of the proposed methodology requires designing
and performing experiments with several factors, each with multiple values. This
yields a set of 2’520 factorial experiments, summarized in Table 2. N denotes
the number of iterations of an applications’ loop that we will schedule, S – the
number of time-steps, and P – the number of system cores. In the following
sections, we explore the interaction between OS-level and application thread-
level scheduling using the metrics described in Sect. 4.1 and Table 2.

5.3 Influence of OS Scheduling Events on Application Performance

Here, we decouple OS- from application-related events to answer RQ.1. This
allows us to investigate the direct impact of different OS scheduler-related oper-
ations on the parallel cost. Figure 2 shows several heat maps which represent
the influence of OS scheduler-related events on the parallel cost of the different
applications/configurations executing on the two systems. That is, the color of
the cells represents 1 − f(A).

Cells with a dark shade of red show a larger influence of non-
application events on parallel cost than cells with a blue shade. Infor-
mation about the cells’ annotations and x and y axis can be found in the caption
of Fig. 2. The title of each heat map identifies the application and system, and

4 https://github.com/unibas-dmi-hpc/SPH-EXA/tree/ccef6cc.

https://github.com/unibas-dmi-hpc/SPH-EXA/tree/ccef6cc
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Table 2. Design of factorial experiments (960 experiments in total)

Factors Values Properties

Program Mandelbrot set N = 262,144 S = 60 Total loops = 3 Mod. loops = 3

NAS-BT.C N = 164,836 S = 200 Total loops = 28 Mod. loops = 3

SPH-EXA Sedov N = 15,625 S = 60 Total loops = 16 Mod. loops = 4

OpenMP loop
scheduling

static Standard, straightforward parallelization

dynamic,1 (SS) Standard, dynamic and non-adaptive

guided (GSS) Standard, dynamic and non-adaptive

static steal LB4OMP, dynamic and non-adaptive

FAC2 LB4OMP, dynamic and non-adaptive

AF LB4OMP, dynamic and adaptive

OpenMP pinned OMP PROC BIND=close, OMP PLACES=cores

placement unpinned OMP PROC BIND=false, OMP PLACES={0:P}:1
OpenMP passive OMP WAIT POLICY=passive (LLVM default)

wait policy active OMP WAIT POLICY=active

Systems ariel Intel Xeon Gold Skylake 6154 (2 sockets, 18 cores each)

P = 36 cores, hyperthreading disabled

Ubuntu 22.04, Linux kernel 5.15.0-52 x86 64, CFS

conway AMD Epyc 7502 (2 sockets, 32 cores each))

P = 64 cores, no hardware multithreading

Ubuntu 22.04, Linux kernel 6.0.3 x86 64, CFS

reminds the key characteristics of the application. The application thread-level
scheduling techniques are ordered along the x axis according to their scheduling
overhead [12], from lowest (static), to the highest (SS).

In Fig. 2, one can observe that the largest OS influence is due to the time
spent idle during the execution (5th row of annotations on the cells of the heat
maps). Only results for experiments configured with the passive wait policy
are shown in Fig. 2. The results for active wait policy were subtracted, as they
show the same behavior for all applications and systems with the influence of
non-application events on the parallel cost close to 0%. This is due to application
threads never being allowed to become idle (they persist in busy wait at the
end of the OpenMP loops), which prevents the OS from freeing cores. This
phenomenon makes the idle times practically disappear and other events, such
as context switches, are significantly reduced.

The pinning strategies reveal a more general behavior. Unpinned executions
increase the amount of time spent idle during the execution of the applications,
indicating that the OS level load balancing attempts (via thread migrations) end
up increasing system idleness. One can observe that for the ariel system, the
performance impact of not pinning application threads is lower than on conway.
Since conway has almost twice the amount of cores than ariel, it increases the
likelihood that the OS load balancing operations (performed to preserve OS-level
load balance) will create short delays on application threads which can induce
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or increase application-level load imbalance. Thereby, increasing the amount of
time spent idle during the applications’ execution. We discuss this phenomenon
further in Sect. 5.4.

Fig. 2. Influence of OS scheduler-related events on the parallel cost of different appli-
cations/configurations executing on the two systems. The x axis shows the application
thread-level scheduling techniques, while the y axis identifies the different configura-
tions. The heat bar presents 1−f(A), which determines the heat map cells’ colors. The
annotations of each cell show: 1st line, the relative time spent in application events
f(A); 2nd line, the parallel cost Tc; 3rd line, the application related events time
t(Ai); 4th line, the relative time spent in context switch operations f(C); 5th line,
the relative time spent in idle events f(D); 6th line, the relative time spent in other
events f(O).

From Fig. 2, Mandelbrot executions with static scheduling show a large
percentage of time spent idle during the executions (ariel Pin 8.23%, not-
Pin 8.50% | conway Pin 9.04%, notPin 18.62%). This happens as the kernel
itself is highly load imbalanced which creates several opportunities for the OS to
schedule other tasks or, in this case, turn the cores idle. The load imbalance in
Mandelbrot greatly affects the performance of the kernel. This can be noticed as
all application thread-level scheduling techniques outperform static by improv-
ing application-level load balancing and also indirectly improving OS-level load
balancing by reducing the time spent idle on the cores.

NAS-BT.C (see Fig. 2) makes for an interesting case as it starts with 19 short
loops interconnected by the NOWAIT loop clause. These loops become slightly
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desynchronized during execution, which accumulates until the end of the loop
barrier in every time step. This causes a significant amount of idle time. Although
this desynchronization can create a considerable amount of time spent idle when
the application is executed with static on all loops (ariel Pin 4.11%, not-
Pin 5.75% | conway Pin 15.68%, notPin 21.09%), it does not translate into
considerable application performance loss.

For SPH-EXA, one can observe that the direct influence on parallel cost from
context switches f(C) and other events f(O) is very low (smaller than 1%) for all
experiments. SPH-EXA (see Fig. 2) loops are executed numerous times within
each time step. This makes the application threads encounter the OpenMP end
loop barriers also numerous times for each time step, creating very frequent and
short idle periods.

Fig. 3. Context switches per second, r(C), for SPH-EXA executing on both systems
ariel and conway. The x axis shows the different scheduling techniques and the y axis
identifies the different configurations. The heat bar shows the context switch rate, blue
cells show a lower rate while red cells show a higher rate. The annotations in each cell
show: 1st line, the actual context switches per second, r(C), represented by the cells’
color; 2nd line, the parallel cost Tc. (Color figure online)

We experiment with SPH-EXA to demonstrate the indirect influence that
excessive context switches can have on the performance of applications. Figure 3
shows the number of context switches per second, r(C), when SPH-EXA exe-
cuted on both systems ariel and conway. Figure 3 includes the results for wait
policy active to highlight the excessive context switches that were performed
when SPH-EXA was executed with passive wait policy.

Using the frequency of context switches, one can infer their indirect influence
on the performance of SPH-EXA. In Fig. 3, the executions configured with wait
policy passive, on both systems, show more than 10× context switches per
second than with wait policy active. This indirectly affects the performance
of SPH-EXA as not only the direct cost of context switches is increased, but also
thread wake-up times and loss of data locality. One can notice that by forcing
the application threads to stay in a busy wait state at the end of the OpenMP
loops (wait policy active), the OS does not preempt the threads so frequently,
which lowers the context switches per second (Fig. 3) and the amount of time
spent idle (Fig. 2).

Without wait policy active, the OS scheduler does not know the character-
istics of the application being executed and keeps trying to free the cores that
contain idle application threads even if the idle time is extremely short and
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rather frequent. Although wait policy active works as a solution for this case, it
will prevent the OS from exploiting idle times, which is not ideal for collocation.
A solution to this problem can be coordination and information exchange
between application thread-level and OS-level scheduling where the application
scheduler signals the OS scheduler that a few threads are in a busy wait state.
Also, the OS can be notified that the application is executing exclusively. This
would allow the OS to make more informed decisions. A common case for HPC
systems is exclusive execution where, instead of making the cores idle, the OS
could keep the application threads scheduled and only preempt them when there
is something that is actually ready to execute.

The results in Fig. 2 and Fig. 3 allow an answer to RQ.1. The influence
of OS scheduling events on the performance of applications manifests in different
ways, depending on the application characteristics. Extremely compute-bound
and load-imbalanced applications, such as Mandelbrot, can significantly
be affected by OS scheduling events when load balancing at OS-level is
allowed (not pinned threads). Results with unpinned threads show that the OS
balancing the load across cores ends up aggravating load imbalance in NAS-BT.C
and Mandelbrot, which increased idle time and directly increased the parallel
cost of the application (see Fig. 2). Finally, applications with very frequent
and short loops, such as SPH-EXA, can end up triggering the OS to
perform too frequent context switches to keep the system state updated
with idle cores, which creates a significant overhead on the application
execution.

5.4 Interaction Between OS- And Application-Level Scheduling

In this section, we first compare system level load imbalance and application
performance for Mandelbrot to answer RQ.2 (Fig. 4).

To calculate the c.o.v. shown in Fig. 4, we consider each system core indi-
vidually and measure the time spent in application-related events on each core,
t(Ai). This time is then used to calculate the c.o.v. of the system cores consider-
ing only application-related events (see c.o.v. in Table 2). The active wait policy
results were subtracted from the figure as they always show c.o.v. close to zero
due to threads practically never becoming idle.

For Mandelbrot with pinned threads (Pin) in Fig. 4, executed with
static, the application load imbalance directly translates to load imbalance
across the system cores as the OS is not allowed to migrate application
threads. Furthermore, all dynamic application thread-level scheduling techniques
achieved similar performance and balanced the execution of Mandelbrot achiev-
ing c.o.v. close to zero. This means that balancing the execution of pinned
threads, the system cores load is directly balanced too.

The results for Mandelbrot with unpinned threads (notPin), in
Fig. 4 allow an answer to RQ.2. During execution of Mandelbrot with
static, the OS reduced system cores load imbalance by migrating over-
loaded threads to idle cores. However, the additional context switches and thread
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migration operations lowered Mandelbrot’s performance in comparison to exe-
cutions with pinned threads. For example, the c.o.v. of the conway system with
pinned threads (Pin) was 0.0824 and the parallel cost was 2756.48 s while the
c.o.v. with unpinned threads (notPin) was 0.0468 and the parallel cost was
3071.69 s. In Sec. 5.3, fourth row of the heat maps at the top of Fig. 2, one can
observe that the additional operations required to improve the system
cores load balance end up increasing the amount of time spent idle
during the execution.

Fig. 4. System cores load imbalance using c.o.v. metric. The x axis shows the different
scheduling techniques at application thread-level while the y axis identifies the config-
urations. The heat bar shows the c.o.v. for the heat maps. Cells with a red shade show
higher c.o.v. than cells with a blue shade. Higher c.o.v. indicates a higher system level
load imbalance. The annotations show: 1st line, the actual c.o.v. shown by the cell
color; 2nd line, the parallel cost (Tc). (Color figure online)

One can observe in Fig. 4 that when the OS performs load balancing across
cores (notPin) and the application (Mandelbrot) also performs load balancing
with dynamic scheduling techniques, the resulting c.o.v. is higher than when the
OS does not interfere (Pin). This indicates that simultaneous load balanc-
ing operations both in the application thread-level and the OS-level
schedulers result in application performance loss and a higher system
cores load imbalance (higher c.o.v.).

This phenomenon is explained by the fact that the OS scheduler is designed
to achieve fairness for multiple applications which compete for resources. In
contrast, application thread-level scheduling is a cooperative approach for all
threads executing on resources with the common objective to keep the execution
flow balanced and complete the work as fast as possible. The key issue here
is that on most HPC systems, nodes are allocated exclusively, with
only one application executing at any time on each node. This decreases the
fairness requirement, making OS-level scheduling less competitive and
increasing the need for it to be more cooperative. One must consider
modifications to the Linux OS scheduler, for HPC systems to allow the
OS scheduler to receive information from other levels of scheduling
that would help avoid focusing on fairness when it is not needed.

To answer RQ.3, we evaluate whether the OS exploits system
idleness to collocate Mandelbrot and NAS-BT.C on the nodes. We
selected these applications as they show both the highest (Mandelbrot) and low-
est (NAS-BT.C) c.o.v. among all applications, respectively.
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Figure 5 presents the influence of OS scheduler-related events on the parallel
cost of Mandelbrot and NAS-BT.C when they execute concurrently. It shows
that for both systems and Pin/notPin strategies, when the applications were
executed concurrently and scheduled with static, the amount of idle time in
the system decreased compared to the same configurations when the applica-
tions were executed exclusively (as shown in Fig. 2 results for Mandelbrot and
NAS-BT.C, with static). This shows that the OS benefited from at least a por-
tion of the idleness generated by Mandelbrot to schedule NAS-BT.C and vice
versa (RQ.3).

Fig. 5. Influence of OS scheduler-related events on the parallel cost of Mandelbrot and
NAS-BT.C when executing concurrently on the two systems. For these experiments, we
consider application events as any event that is related to any of the two applications.
The axes and annotations to the cells of the heat maps follow the same pattern as
Fig. 2.

To confirm that the OS efficiently exploits system idleness (RQ.3), we ana-
lyze the executions with unpinned application threads (notPin) as the OS per-
forms balancing such threads across cores. As the OS can move threads, it should
migrate NAS-BT.C threads to cores where the threads from Mandelbrot are
underloaded. This is confirmed by the results in Fig. 5, which show that with
the exception of static, the executions with unpinned threads outperform exe-
cutions with pinned threads on both systems. For example, the parallel cost of
the applications executed on ariel with GSS scheduling technique and pinned
(Pin) threads was 4739.64 s, while for free threads (notPin), it was 4646.52 s.
This confirms that the OS exploits system idleness (RQ.3) and shows
that when there is competition in the system, performing load balanc-
ing at both OS- and application thread-level is advantageous (RQ.2).

6 Conclusion

This work investigates the interaction between OS-level and application thread-
level scheduling to explain and quantify their precise roles in application and
system performance. We distinguish OS-related events from application-related
events and proposed metrics to quantify the interaction between OS-level and
application thread-level scheduling strategies and decisions. Through an exten-
sive performance analysis campaign, we show that the interaction between OS
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and application scheduling significantly influences system load balance and appli-
cation performance. We also expose collaboration points between OS- and appli-
cation thread-level scheduling that can be leveraged to improve performance and
load balancing decisions at the OS-level scheduling.

Future work will consider memory-bound applications and tuning of the
Linux kernel parameters. Modifying the kernel to receive information about
application scheduling decisions will also help coordinate scheduling and load
balancing decisions at the OS level.
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scheduler: a decade of wasted cores. In: Proceedings of the EuroSys (2016)

15. Mohammed, A., Cavelan, A., Ciorba, F.M., Cabezón, R.M., Banicescu, I.: Two-
level dynamic load balancing for high performance scientific applications. In: Pro-
ceedings of the SIAM Conference on Parallel Processing for Scientific Computing,
pp. 69–80 (2020)

16. Mohammed, A., Korndörfer, J.H.M., Eleliemy, A., Ciorba, F.M.: Automated
scheduling algorithm selection and chunk parameter calculation in OpenMP. IEEE
TPDS 33(12), 4383–4394 (2022)

17. Peiyi, T., Pen-Chung, Y.: Processor self-scheduling for multiple-nested parallel
loops. In: Proceedings of the International Conference on Parallel Processing, pp.
528–535 (1986)

18. Polychronopoulos, C.D., Kuck, D.J.: Guided self-scheduling: a practical scheduling
scheme for parallel supercomputers. J. Trans. Comput. 100, 1425–1439 (1987)
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Abstract. Datacenters are an essential part of the internet, but their
continuous development requires finding sustainable solutions to limit
their impact on climate change. The Datazero2 project aims to design
datacenters running solely on local renewable energy. In this paper, we
tackle the problem of computing the minimum power demand to process
a workload under quality of service constraint in a green datacenter. To
solve this problem, we propose a binary search algorithm that requires
the computation of machine configurations with maximum computing
power. When machines are heterogeneous, we face the problem of choos-
ing the machines and their DVFS state. A MILP (Mixed-Integer Linear
Programming), to find the optimal solution, and four heuristics that give
satisfactory results in a reasonable time are proposed. The bests reach
an average deviation from the optimal solution of 0.03% to 0.65%.

Keywords: Green datacenter · Power consumption · Optimization

1 Introduction

Since a decade datacenters have become an essential part of the internet, either
being at the edge or at the center, and their number and size are continuously
increasing, as their global energy consumption. These datacenters represented
in 2018 1% of the global energy consumption, that is to say 6% more than
in 2010 [14]. It is estimated [4] that, by 2025, energy consumption will have
multiplied by 2.9 and greenhouse gas emissions by 3.1. To reduce the data-
center impact on climate change several research works propose solutions to
optimize their energy consumption [6,18]. These solutions are essential on the
way to efficiency, but cannot achieve a drastic reduction of the carbon foot-
print. Other projects and research works claim to reduce their brown energy
consumption [2,10]. The objective of the Datazero project [21] (2015–2019)
and Datazero2 (2020–2024) is to investigate the solutions to design and oper-
ate a datacenter only fueled by renewable energies. By design, this project builds
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on a negotiation [24] between the electrical management (power production and
storage) and the IT management (workload processing) to choose a power com-
mand that will be applied in the next time window, typically the coming 72 h. A
power command refers to the control commands that are asked to the electrical
side, so that the needed power is provided along the time window.

The negotiation is developed as a process based on game theory that loops
on asking for IT consumption and power production predictions over the time
window to converge after several iterations on an acceptable solution for both
the IT and electrical management. The result of the negotiation is a power com-
mand for the time window, represented as a time series of power values for
each time interval, called a power profile. This power command is then applied
on the infrastructure. The negotiation therefore needs predictions of the power
needs during the time window. In this article, we tackle the problem of com-
puting the minimum power profile required to process a workload forecast. We
do not address the problem of workload forecast that has been widely stud-
ied already [15]. Rather, we investigate the problem of transforming a workload
prediction to an optimized usage of a given infrastructure, called a plan, that
minimizes the electrical power needs. This plan is made for how the machine will
be switched-on and off based on the negotiated power profile. It is sent to an
online module, which applies it and adapts it to events, due to the uncertainty
of the plan. [8]. Since the negotiation process is interactive, this computation
must last a reasonable time [24]. It must be noted already that we consider a
consolidated workload, and not individual jobs. Therefore, a workload represents
the total amount of work units that have to be processed along time. A workload
possibly aggregates the work units of several jobs that may concurrently use the
infrastructure and share each of the machines of the infrastructure.

This paper contributes with multiple variants of an algorithm that computes
a minimized power profile. The algorithm realizes this computation in steps.
The main step iterates on each time interval of the time window. For each time
interval, a binary search algorithm is used to find a minimized power value. Last,
for each power value, the algorithm computes the maximum processing capacity
that can be reached using the datacenter machines and tries to schedule the
workload under quality of service (QoS) constraints, using the processing capac-
ity. We propose several solutions, a MILP and different heuristics, to compute
the maximum computing capacity for a power value.

In the following, related work is detailed in Sect. 2. Section 3 formally defines
the problem of computing a capping value from a workload forecast and max-
imizing a processing capacity within a given power value. Section 4 and Sect. 5
respectively present the binary search algorithm and the heuristics proposed to
solve the problem. Section 6 presents experiments and results. Finally, Sect. 7
summarizes the paper, highlighting the main conclusion.

2 Related Work

In order to minimize energy or power consumption while possibly meeting
another criteria, different online approaches are considered in the literature.
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In [27], an online method manages energy consumption and workload scheduling
for hybrid geo-distributed datacenters. Several variables are taken into account
such as the variation of the electricity price, the power consumption of the cool-
ing, machines, or constraints on renewable energy. In a similar way, in [20]
a genetic based online algorithm optimizes energy consumption, performance
degradation as well as power grid cost for multiple hybrid datacenters. Zhang et
al. [26] propose PoDD, an online power-capping algorithm to maximize perfor-
mances of homogeneous servers for dependent application workloads. The appli-
cations are composed of a front-end and a back-end, and the front-end produces
the data consumed by the back-end. A similar method is also proposed for het-
erogeneous nodes of a datacenter [7]. In [25], different online algorithms are intro-
duced to minimize the performance degradation and the total energy consumed:
LmsReg, based on regression, which detects overloaded servers and migrates
virtual machines, and MuP, which addresses the trade-off between power con-
sumption, number of migrations, server performance and the total number of
servers that have been switched-off in the selection of virtual machines. These
algorithms migrate virtual machines from over-loaded servers to under-loaded
servers. Other methods using virtual machine allocation and migration are pro-
posed [12,16,17]. In [13], an online holistic approach schedules virtual machines
to minimize the total energy consumption of the datacenter by considering the
datacenter as a whole and not trying to divide it into several parts to be treated
separately from each other. But these works focus only on the objective of reduc-
ing online energy consumption by allocating and migrating virtual machines. In
our case, we seek to minimize a forecast of power demand.

In [17], an online multi-objective algorithm optimizes energy consumption, by
taking into account QoS, energy, number of active servers and number of virtual
machine migrations on servers. A similar method in [9] is used by considering
DVFS (Dynamic Voltage and Frequency Scaling), temperature-dependent task
scheduling, dynamic resource provisioning, and cooling management. But the
optimization is also done online, with a non-clairvoyant approach.

In [11], in the context of cloud datacenters, an online clairvoyant method for
predicting the total energy consumption of the datacenter is proposed to improve
the datacenter energy management that controls and coordinates all the equip-
ment. This method evaluates the importance of the variables of the equipment
to make the prediction. Then a neural network computes the prediction on the
total energy consumption, a single value for the coming 20min. Finally, an online
module is in charge of updating the model based on the forecast errors.

In [8], the authors develop a complementary approach to ours. An online
module is based on offline decisions, adapting them to real-time events via dif-
ferent compensation policies, to stay as close to the offline plan. The module is
responsible for compensating energy utilization, scheduling and servers in a green
datacenter. Different compensation policies are evaluated according to five met-
rics. The results indicate that compensation are necessary and simply following
the plan is not enough, due to the uncertainty of the plan.
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Finally, all these studies address the online problem and, to the best of our
knowledge, there is no work addressing the offline minimization of power con-
sumption in the case of homogeneous or heterogeneous machines with different
amount of work to process, under the constraint of deadline violations.

3 Problem Definition, Model and Objective

The power management system, running solely on renewable energy, needs to
plan its power sources and storage usage to correctly fuel the machines. Due to
technical constraints [21], the power command delivered to the machines must be
constant over a minimum time duration, a time interval, that ranges from 15min
to one hour. To give the power usage over a time window, we thus need to define
a power profile that gives, for each time interval, a constant power need value.
Since the power supply only relies on intermittent renewable energies, saving as
much energy as possible, and storing it, is essential to operate the datacenter
during periods of underproduction. The problem we face is hence to compute
the minimum power profile needed to process a given workload.

On the other hand, the time intervals are independent. For this reason, in
the following we concentrate on finding the minimal value P for one interval,
then the same method is applied to each time interval of the time window. Note
that the problem is tackled as an offline problem, but it is also constrained
by the interactivity of the negotiation, which requires several exchanges before
converging to a solution. The problem must hence be resolved in a reasonable
time. In the following, we first define the problem and its associated model, then
we define the objectives.

In the context of this paper, the workload forecast is an input of the problem
and the solution must be able to handle any workload, whatever its charac-
teristics. Since the temporalities are different between the power and the load
variations, a time interval is subdivided into multiple time steps and the work-
load gives the variation of the load on time steps, which duration typically ranges
from 1 s to one minute. Formally, we denote by T the number of time steps, and
we normalize the time axis such that the tth time step begins at time t − 1, for
t ∈ T = {1, . . . , T}. We define Δt as the duration of a time step in seconds.

The workload is composed of several load parts, each arriving at a given time
step. We define the total workload as a set of W load parts, lk for k ∈ W =
{1, . . . , W}. A load part lk is defined by its release time rk (i.e. the time step
when lk arrives), its amount of operations to be processed pk and a deadline
dk such that, if the load part cannot be processed before dk, it is killed. For
instance, on the first time step of Fig. 1, the workload is composed of two load
parts, l1 and l2. p1, the amount of operations of l1, is two times larger than p2.
The deadline dk is defined as a duration. It enforces that load parts arriving in
the same time step may have different QoS constraints. A load part lk, which
arrives at the time step t = rk with a deadline dk must be finished no later
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Fig. 1. Load parts and amount of operations of a workload forecast.

than rk + dk. All the operations of a load part lk have the same deadline dk.
For instance, in Fig. 1 if load part l1 has a deadline d1 = 2 steps, then it can be
processed partially or completely during time steps 1 and/or 2.

The datacenter is composed of M machines which are noted machine i with
i ∈ M = {1, . . . , M}. Considering the power consumption, machine i dissipates
a power statici when it is idle. Each machine i can be set in Si different DVFS
states [9]. The DVFS state of a machine is noted j ∈ S(i) = {0, . . . , Si}. The
set of machines with their DVFS states defines the configuration of the datacen-
ter. We note S the set of DVFS states of all machines, S = {S(1), . . . ,S(M)}. A
DVFS state j defines g

(i)
maxj , the maximum amount of operations per second that

machine i can process, and power
(i)
j , the consumed power per operation per sec-

ond. For the sake of simplicity, we consider an average value for this consumed
power. The model could be extended to consider different power consumption for
different operations, since consumption can vary depending whether the work-
load is CPU, I/O, memory or network intensive. If machine i is switched-on,
it computes g(i) operations per second with 0 ≤ g(i) ≤ g

(i)
maxj while dissipating

power
(i)
j power per operation per second. Therefore, if a machine i computes

several load parts lk in state j during a time Δt with an amount of opera-
tions to be processed g(i)Δt =

∑
k∈W pk ≤ g

(i)
maxjΔt, it consumes a power of

Pi = statici + g(i) × power
(i)
j . We assume that, when a machine is off, its DVFS

state is j = 0 and it does not consume any power, nor does it process any oper-
ation. Last, the power consumption P of a configuration is P =

∑
i∈M Pi and

its maximum available computing power w(p) is w(p) =
∑

i∈M g(i)Δt.
The objective of this optimization problem is thus to find a machine configu-

ration (off, on and other DVFS states) that delivers enough computing power to
process the workload while consuming the lowest power P . In addition, to give
the users a flowtime guarantee, we define opk as the total amount of operations
missing their deadline and the ratio D as the amount of operations killed over
the amount of operations to be processed during the time interval (1). This ratio
must not exceed a fixed threshold Dmax (2) to meet the flowtime guarantee.
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D =
opk

∑
k∈W pk

(1) D ≤ Dmax (2)

4 Determining the Minimum Power Value

To address the problem of minimizing the power value for a time interval under
the deadline violation constraint we propose a binary search algorithm (Algo-
rithm 1). For a given power value P , the algorithm first computes a machine con-
figuration that maximises the computing power and then schedules the workload
to determine the deadline violation ratio D of the time interval.

Algorithm 1: Binary search algorithm to minimize the power need to run
a workload on a configuration violation ratio
Data: M, S, W, T , ε, Dmax, Δt
Result: minimize P

1 begin
2 Pmin ← 0; Pmax ←

∑
i∈M (statici + power

(i)
Si

× g
(i)
maxSi

)

3 while Pmax − Pmin ≥ ε do
4 P ← (Pmin + Pmax)/2

5 w(p) ← config(M, S, P, Δt)
6 opk ← 0; W̄ ← W
7 for t ∈ T do
8 w̄(p) ← w(p)

9 W̄, opk ← schedule(W̄, opk, w̄(p), t)

10 D ← opk/
∑

k∈W pk
11 if D ≤ Dmax then Pmax ← P else Pmin ← P

The dichotomy is initiated (line 1) by setting the maximum power Pmax to
the case where all the machines are used to their maximum capacity and the min-
imum power Pmin to 0. Then the algorithm iterates until the difference between
the two power values is lower than ε, the stopping criterion of the algorithm. At
each iteration the algorithm computes, with the config function [22] (line 5), the
machine configuration with the largest possible computing power w(p) for the
power value P of the current iteration. The schedule function is then used for
each time step t of the time interval T (lines 7 to 9) to determine the schedule
and the opk value, the number of killed operations. The schedule function sim-
ply uses EDF (Earliest Deadline First) algorithm to schedule the load parts on
the time steps. Then, if the ratio of violated deadlines D does not exceed the
threshold Dmax (line 11), it means that the computing power is sufficient and
the power value Pmax can be decreased to P . Otherwise, D exceeds Dmax and
the power Pmin must be increased to P .
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Several propositions of the config function are given in the following section.

5 Maximizing the Computing Power

The config function computes the most powerful machine configuration that can
be fueled with the power P , fixed by the binary search algorithm. This compu-
tation obviously depends on the machine characteristics. The simplest case is
when machines are homogeneous with only two DVFS states (switch-on or -off)
since machines are undifferentiated and it is sufficient to calculate how many
machines can be powered with P to provide the most powerful configuration. If
homogeneous machines have several DVFS states there is already a decision to
take between switching-on a new machine or setting an already started machine
in a higher DVFS state. In the heterogeneous case, several configurations are pos-
sible for a given power value, but all of them do not provide the same computing
power. It is therefore important to improve the power efficiently by determin-
ing an optimal machine configuration. The difficulty lies in the choice of the
machines to be switched-on and their DVFS state. In the following, we concen-
trate on the case of heterogeneous machines with multiple DVFS states, which
includes the homogeneous case.

From the complexity view point, the problem of computing the maximum
computing power w(p) with heterogeneous machines is at least as difficult as the
partition problem and is thus NP-Hard. The corresponding decision problem is
trivially in NP as we can verify a solution from the decision variables g(i) in
polynomial time. Besides, any instance of the partition problem can be directly
reduced to our problem: for each integer zi, we consider a machine such that
statici = 0 and g(i) has only two possible values, i.e. 0 or g

(i)
maxj = zi. Note

that, in the general case, the g(i) are coded in a discrete variable that ranges
from 0 to g

(i)
maxj . In this particular case, we just give the lowest possible value

to g
(i)
maxj . In that case, the power consumed by a computing machine becomes

constant, Pi = statici+g
(i)
maxj = zi. Furthermore, we set the total power available

P = 1
2

∑
i zi. There is a schedule with maximum computing power w(p) = P if

and only if the partition problem has a valid solution. Since this problem is
NP-Hard, we first designed a MILP (Mixed-Integer Linear Programming).

Mixed Integer Linear Programming: We define the decision variable xi,j

to determine the machines to be switched-on or -off and their DVFS state. For
each machine i and for each DVFS state j, xi,j = 1 if the DVFS state j
of machine i is selected, otherwise xi,j = 0. These variables hence define the
machine configuration. For a machine, we consider that only one DVFS state
can be selected and remains the same for the entire duration of the time interval.

The MILP is described in (3). The objective function is to maximize the
computing power of the machines. Using the binary decision variable xi,j , the
first constraint states that a machine i, for all i ∈ M, must have a single DVFS
state j among all possible DVFS states of the machine, from 0 to Si (including the
switched-off state j = 0). Depending on the selected DVFS state we express, for
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all i ∈ M, that the computing power must not exceed the maximum computing
capacity of the machine, with the second constraint. Then, knowing the DVFS
state and the computing power of the machine, the third constraint bounds the
power consumption of the machine, for all i ∈ M. Finally, the fourth constraint
imposes that the total power consumption of the machines must not exceed the
power P value given by the binary search algorithm.

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

maximize
∑M

i=1 g(i), s.t. :
∑Si

j=0 xi,j = 1
g(i) ≤

∑Si

j=0 (xi,j × g
(i)
maxj )

Pi =
∑Si

j=1 xi,j(statici + g(i)power (i)j )
∑M

i=1 Pi ≤ P

(3)

Under the following constraints.
⎧
⎪⎨

⎪⎩

∀i ∈ M,∀j ∈ S(i) xi,j ∈ {0, 1}
∀i ∈ M g(i) ≥ 0
∀i ∈ M Pi ≥ 0

As shown by the experiments in Sect. 6, the MILP calculation takes 2.83 s
in average and up to 50 s in complex cases. This calculation has to be repeated
for each iteration, usually more than 15, of the binary search algorithm. Its
runtime, including the configuration computation and the scheduling, then varies
from 42 s to more than 100 s, depending on the stopping criterion ε. Hence,
the total runtime ranges from 50 minutes to more than 2 hours to determine a
power profile. As previously explained the power profile is used in the negotiation
process to anticipate the power which makes several iterations before taking a
decision. Although based on offline calculations, the MILP is therefore used in an
interactive process for which waiting one hour for a proposition does not make
sense. For this reason, we propose in the following heuristics providing solutions
in a shorter time.

Random Choice Heuristic: A first trivial heuristic proposal is to randomly
choose the type of machine to switch-on. When a machine is switched-on, it
is allocated the power needed to provide the maximum computing power. The
DVFS state chosen is the one maximizing the computing power, according to
the remaining power. This step is repeated until the power is insufficient and/or
there are no more machines to switch-on. The advantage of this heuristic is its
fast execution time, but it provides unsatisfactory results compared to the other
presented in the following in the heterogeneous case.

Balance Power-Performance (BPP) Heuristic: The BPP heuristic eval-
uates the most suitable machines and its DVFS states to switch-on according
to two metrics: (i) computing power and (ii) performance ratio. The computing
power criteria is chosen since the objective is to maximize the total computing
power of the machines w(p). The performance ratio criteria is chosen to minimize
the power consumed per unit of computing power.
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These two metrics are used to compute a normalized score depending on a
given power and an α parameter. The α parameter (with 0 ≤ α ≤ 1), given as
input, controls the trade-off between computing power and performance ratio.
The nearer alpha is to 0, the more weight is given to the computing power in
the choice of the machine to be switched-on, and inversely. Depending on the
alpha parameter value, the configurations proposed by BPP can be different.
For this reason, several alpha values are assessed in order to produce different
machine configurations and the algorithm returns the one maximizing the total
computing power. BPP switches-on the machine with the highest score.

This heuristic is very efficient in the homogeneous and heterogeneous case
with a very satisfactory execution time.

Best State Redistribute Without Static (BSRWS) Heuristic: The
BSRWS heuristic focuses on the performance ratio of the machines. This heuris-
tic switches-on as many machines with the best performance ratio as it is possible
without exceeding the given power. If no more machine can be switched-on and
there is power left, either because all the machines are on or because there is not
enough power to switch-on more machines, the remaining power is redistributed
to the switched-on machines. This redistribution increases the DVFS state of
the switched-on machines and thus their computing power.

The advantage of this heuristic is its accuracy with a satisfactory execu-
tion time, which however increases with power. In the heterogeneous case, some
solutions deviate from the optimal because it switches-on too many machines.

Best State Redistribute Without Static and Removing (BSRWS-AR)
Heuristic: The BSRWS-AR heuristic focuses on the performance ratios of the
machines and explore more machine configurations. This heuristic is an improve-
ment of the BSRWS heuristic. The latter is run several times and, at each iter-
ation, it removes a machine of the configuration in order to test configurations
with fewer switched-on machines. More power can be redistributed to increase
the DVFS state and the computing power of the remaining machines.

The advantage of this heuristic is its accuracy compared to BSRWS in the
homogeneous and heterogeneous case. However, its execution time is much higher
and increases strongly with power.

6 Experiment and Results

We present here an experiment that considers the example of a medium-sized
datacenter of 267 kW [21] and 10 machine types. Note that, due to the paper
length constraint, we only present this example but different size of datacenter
are experimented and given in the research report [22] to completely assess our
heuristics. The machine types are taken from the GRID5000 platform [3]. We
have implemented the MILP and the heuristics in Python1,2. We remind the
1 The source code in zip file is available here.
2 Experiments have been run on Ubuntu 22.04.1 LTS, Intel Core i7-11850H processor,

32.0 Go of memory, Python 3.10 and PulP 2.6.0 with Gurobi 9.5.1 solver.

https://members.femto-st.fr/Laurent-Philippe/sites/femto-st.fr.Laurent-Philippe/files/content/articles/python-code-rr-1-2023.zip
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reader that on this part there is no related work in the literature to compare
to. Input data includes 1241 machines divided into the 10 types. Note that no
workload is used for the experiment, as we only assess the quality of the solutions
of the heuristics compared to the MILP in the determination of the computing
power. Data on the characteristics of the machines are known in advance [19,23].
For each type of machine, we know all the data described in Sect. 3. All data are
average values coming from experiments on Grid5000 performed in the context
of the ANR ENERGUMEN [1] project.

To illustrate the characteristics of the set of machines, Fig. 2 shows the best
performance ratio of the 10 machine types in W/GFlop depending on power,
taking into account static power of the machines (the leftmost of each curve)
and their DVFS states. It is worth noticing the continuity of the performance
ratio curves, even when changing the DVFS state, for almost all machines. The
Gemini machines, having the highest static power, are shown on the right figure.
The other machines are grouped on the left. The lower the static power of a
machine and the better the performance ratio, the more advantageous it is to
switch-on this machine, depending on power. For instance, on a simple case, if
the available power is 1000 W, the best is to use 9 Gros machines than any
other combination (visually and confirmed by the MILP solution), if we have
these 9 Gros machines at hand. Otherwise, with less Gros machines, a different
combination has to be used involving Gros and other types of machines. Also
note that some performance ratios of machine types cross others.

Fig. 2. Best performance ratio in W/GFlop depending on power.

Figure 3 shows the maximum computing power given by the MILP and the
heuristics for different power values, from 63W (the minimum power required
to switch-on a machine) to 267 kW (the maximum power that can be required
by all machines when running at maximum frequencies) by steps of 100W.

The RC (Random Choice) heuristic is run 100 times to show the dispersion
of the solutions and the average computing power for each power value. The
minimum and maximum computing power are shown in red.
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Fig. 3. (a): Comparison of the maximum computing power computed by the MILP
and heuristics depending on power value from 63 W to 267 kW by steps of 100W. (b):
Zoom on 200 kW to 267 kW by steps of 100W. (Color figure online)

The RC heuristic significantly deviates from the optimal solution with an
average deviation of 31.84% (Table 1). This is not surprising. Since the choice
of the machine type is random, the RC heuristic may switch-on the least effi-
cient machines. This occurs mostly in the heterogeneous case, according to our
experiences. The BPP (Balance Power-Performance) heuristic with alpha from 0
to 1 by steps of 0.05 for each power value and BSRWS-AR heuristic (Best State
Redistribute Without Static And Removing) are the closest to the optimal solu-
tion. Their average deviation from the optimal is 0.12% and 0.03% respectively
(Table 1). Note that the BSRWS-AR heuristic performs better than the BSRWS
(Best State Redistribute Without Static) heuristic, since it explores more con-
figurations. Also, BPP outperforms BSRWS and BSRWS-AR in other cases of
heterogeneity. From 150 kW to 260 kW, the deviation from the optimal is more
significant for BSRWS (Fig. 3). But our different experiences show that this is
not always the case. The BSRWS heuristic has an average deviation of 0.65%.
Note that from 260 kW, the BSRWS heuristic reduces its deviation from the
optimal because there is enough power to switch-on all the machines and redis-
tribute the remaining power to increase their DVFS state. In terms of accuracy,
BPP and BSRWS-AR are the most satisfying heuristics, but BPP is significantly
faster than BSRWS-AR. This is mostly the case in our experiments.

Figure 4 gives the runtimes of the MILP and the heuristics depending on
power. Note that the y-axis is plotted on a logarithmic scale. There is a gen-
eral trend for all the runtimes to increase with power. This is intuitive since the
more power, the more machines the heuristics have to consider. Compared to
the MILP that has an average runtime of 2.83 s per power value, the heuristics
are more time efficient to find a configuration. The runtime of the BPP heuris-
tic is of the order of milliseconds and increases slightly depending on power.
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Table 1. Average and median relative deviation in percentage of heuristics from opti-
mal solution.

MILP RC BPP BSRWS BSRWS-AR

Avg. dev. (%) – 31.84 0.12 0.65 0.03
Median dev. (%) – 34.57 0.04 0.09 0.00
Avg. Exec. Time (s) 2.83 1.15 × 10−3 9.07 × 10−3 1.03 × 10−3 1.61

While the BSRWS-AR heuristic runtime increases dramatically: from 0.4 ms to
more than 4 s depending on power. This is partly due to the fact that the more
machines are switched-on, the more configurations are explored. Note that the
use of the redistribute function in BSRWS heuristic when all the machines are
switched-on explains the increase of the runtime when the power is approxi-
mately 260 kW. When determining the power required over a time interval, the
runtime of the binary search algorithm varies from 0.11 s to 2.75 s, using the
BPP heuristic and depending on the stopping criterion ε.

Fig. 4. Runtime of the MILP and the heuristics depending on power

7 Conclusion

In this paper, we tackle the problem of minimizing a power value to switch-on
just enough machines to process a workload over a time interval while respecting
quality of service constraints. We propose a binary search algorithm to solve this
problem with multiple variants. This algorithm uses two functions, one that com-
putes the maximum computing power that is obtained knowing a given power,
and another that schedules the workload on the switched-on machines. Since
computing the maximum processing power is NP-Hard in the heterogeneous case,
we propose a MILP and 3 non-trivial heuristics and compare their performance
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and runtime. Heuristics give satisfactory results in a reasonable time, with an
average relative deviation from optimal solution of 0.12%, 0.65% and 0.03%.
Looking at the results and runtime, the BPP (Balance Power-Performance)
heuristic seems the most suitable to solve this problem in a reasonable time.

These different approaches show that using DVFS states in a heterogeneous
environment allows approaching the optimal configuration of the machines and
thus efficiently using energy. In future work, we plan to compare the BS approach
to an integrated solution, then we will take the switching-on and switching-off
and their consumption into consideration to integrate the cost of changing a
configuration between two time intervals. Last, we plan to introduce uncertainty
in the machine choice to better anticipate the workload variations.
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Abstract. Dataflow architectures can achieve much better performance
and higher efficiency than general-purpose core, approaching the perfor-
mance of a specialized design while retaining programmability. However,
dataflow architectures often face challenges of low utilization of com-
putational resources if the application algorithms are irregular. In this
paper, we propose a software and hardware co-design technique that
makes both regular and irregular applications efficient on dataflow archi-
tectures. First, we dispatch instructions between dataflow graph (DFG)
nodes to ensure load balance. Second, we decouple threads within the
DFG nodes into consecutive pipeline stages and provide architectural
support. By time-multiplexing these stages on each PE, dataflow hard-
ware can achieve much higher utilization and performance. We show that
our method improves performance by gmean 2.55× (and up to 3.71×)
over a conventional dataflow architecture (and by gmean 1.80× over
Plasticine) on a variety of challenging applications.

Keywords: Dataflow Architecture · Decoupled Architecture

1 Introduction

Dataflow architecture is an emerging class of reconfigurable arrays designed for
modern analytical workloads. The program offloaded to dataflow fabrics will be
converted to a dataflow graph (DFG) by dataflow compiler. A DFG consists
of a set of nodes and directed edges that connect the nodes. The nodes repre-
sent the computing, while the edges represent data dependencies between nodes.
Figure 1 illustrates a typical dataflow architecture, which consists of a PE (Pro-
cessing Element) array, a configuration buffer and a data buffer. The PE array
is formed by multiple PEs that are connected by the network-on-chip. Each PE
is composed of a router, a local buffer, a register file, and several function units.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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Fig. 1. A typical dataflow architecture.

Most dataflow architectures are restricted to regular applications, i.e., those
with structured access patterns and data reuse, like neural networks [1] and
dense linear algebra [2]. These characteristics are necessary to produce a high-
performance pipeline that can be spatially and statically mapped to a dataflow
fabric. However, dataflow architectures struggle with irregular applications, i.e.,
those with complex control flow and memory access patterns, lack data shar-
ing characteristics and data reuse. These applications arise in many impor-
tant domains, like graph analytic, sparse linear algebra and signal processing.
Dataflow architectures are ill-equipped to handle these operations.

Abundant prior works have been proposed to accelerate irregular applica-
tions on dataflow architectures (in Sect. 2): pipeline parallelism [3–5], decou-
pled access-execute architectures [6–9] and dedicated interfaces between cores or
threads [10,11]. Nevertheless, these solutions can be further improved because
they (in Sect. 3): (i) suffer from load imbalance, as they rarely take into account
the imbalance between DFG nodes, but we found the imbalance impacts the soft-
ware pipeline execution significantly. (ii) lack of fine-grained pipelining schedul-
ing. The schedule of each DFG node is coarse-grained and non-preemptive, which
miss opportunities to exploit more parallelism within DFG nodes to boost uti-
lization. To this end, we introduce a software and hardware co-design method
to improve the hardware utilization of dataflow architectures. In summary, we
make the following contributions:

– We present a method to solve the load imbalance between DFG nodes. This
approach dispatches instructions between DFG nodes to ensure load balance.

– We introduce decoupled execution model. It decouples the thread within DFG
node into four consecutive pipeline stages. Each stage is an atomic schedule
and execution unit. In this way, a PE can be shared by at most four different
DFG nodes at the same time and the memory access and data transfer latency
can be overlapped as much as possible.

– We provide architectural support for the decoupled execution model. By
decoupling the datapath of different stages and equipping with a dedicated
scheduler within each PE, the DFG nodes of different iterations can be
pipelined more efficiently.
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– We evaluate our methods on a wide range of applications, demonstrating their
applicability. Experiments show our methods improve performance by gmean
2.55× (and up to 3.71×) over a conventional dataflow architecture (and by
gmean 1.80× over Plasticine [4]).

2 Background and Related Works

In this section, we briefly introduce the background and works related to improv-
ing the utilization of dataflow architectures.

Pipeline Parallelism: Dataflow architectures are amenable to creating static spa-
tial pipelines, in which an application is split into DFG nodes and mapped to
functional units across the fabric [1–4,12]. To perform a particular computation,
operands are passed from one functional unit to the next in this fixed pipeline.
Pipette [5] structures irregular applications as a pipeline of DFG nodes con-
nected by queues. The queues hide latency when they allow producer nodes to
run far ahead of consumers. Zhongyuan et al. [13] design a global synchroniza-
tion mechanism, which help reducing the nodes and edges in modified DFG. and
propose a complete and systematic DFG modification flow which saves more
resources. These efforts may be inefficient for irregular workloads because they
rarely take into account the load imbalance between DFG nodes.

Decoupled Architectures: Fifer [6] decouples memory access datapath from com-
puting pipeline. Each DFG node is divided into two stages: access and execution.
Equipped with a dedicated scheduler, at most two DFG nodes can be executed
on the same PE at the same time. In this way, memory access latency can
be overlapped and the utilization can be further improved. DESC [7] proposes
a framework that has been inspired by decoupled access and execution, and
updates and expands for modern, heterogeneous processors. REVEL [8] extends
the traditional dataflow model with primitives for inductive data dependences
and memory access patterns, and develops a hybrid spatial architecture com-
bining systolic and dataflow execution. RAW [9] introduces hardware support
for decoupled communication between cores, which can stream values over the
network. Käsgen et al. [14] present a new mechanism that resolves data and
structural hazards in processing elements that feature in-order issue, but out-of-
order completion of operations. Different from these partial design, our methods
is fully decoupled PE.

Custom Interface: Chen et al. [11] propose subgraph decoupling and rescheduling
to accelerate irregular applications, which decouples the inconsistent regions into
control-independent subgraphs. Each subgraph can be rescheduled with zero-cost
context switching and parallelized to fully utilize the PE resources. TaskStream
[10] introduces a task execution model which annotates task dependences with
information sufficient to recover inter-task structure. It enables work-aware load
balancing, recovery of pipelined inter-task dependences, and recovery of inter-
task read sharing through multicasting. MANIC [15] introduces vector-dataflow
execution, allowing it to exploit the dataflow in a sequence of vector instructions
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and amortize instruction fetch and decode over a whole vector of operations.
By forwarding values from producers to consumers, MANIC avoids costly vector
register file accesses. However, the schedule mechanism of DFG nodes within
each PE is coarse-grained and non-preemptive. The PE can switch to the next
iteration or other nodes only after finishing all instructions of the current DFG
node.

3 Motivation

Irregular applications are common in real-life workloads and benchmark suites,
such as graph analytics, sparse linear algebra and databases. As reported in
Fig. 2 (a), the average percentage of unstructured access, complex control flow
and imperfect loops can be over 50% in three widely-used benchmarks. Figure 2
(b) reports the utilization of the dataflow fabrics using the methods we discussed
earlier (Sect. 2). Obviously, the hardware utilization is pretty low and at least
half of the PEs are under-utilized during execution. We obtain these results from
experiments with a dataflow simulator, using the methods introduced in [4] and
[6], respectively.

Fig. 2. (a) Percentage of irregular applications in several typical benchmark suites [11].
(b) Utilization of the fabrics using previous methods.

For a concrete example, we use BFS (Breadth First Search), a common graph
algorithm that searches the distance from a source vertex src to all vertices
reachable from it. BFS is a challenging irregular workload due to its multiple
levels of indirection: it uses elements from cur_fringe to access offsets, which is
then used to access neighbors, which in turn is used to access distances. It is a
typical irregular application consisting of imperfect loop, complex control flow
and unstructured memory access. Figure 3 shows the pseudo-code for BFS and
illustrate its implementation on dataflow fabric using pipeline parallelism and
decoupling access-execution [6].

Challenge 1: Load Imbalance. In Fig. 3 , the process current fringe node reads
vertices from cur_fringe, whose neighbors are identified in the enumerate neigh-
bors node. For each of these neighbors, the fetch distances node loads the distance
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Fig. 3. Illustration of breadth-first search (BFS) using pipeline parallelism and decou-
pling memory access and execution.

of this neighbor, which is checked against the current distance from the source by
the update data node. By decomposing a large graph into multiple subgraphs,
the BFS algorithm can be executed in a pipelined manner among these four
PEs, as shown at the top of Fig. 3. After instruction assembly, the number and
type of instructions are different between DFG nodes, and even the number of
iterations is different. The enumerate neighbor node contains loop, address cal-
culation. The updating node deals with branch, while the getting distance nodes
only requires getting distance. The node with the longest delay among the four
nodes will block the pipelined execution.

Challenge 2: Lack of Fine-Grained Pipelining Scheduling. The conventional,
coupled load interface is a simple connection to the memory hierarchy and stalls
the PE on cache misses. Simple memory access patterns, like streaming linearly
through memory, do not need to be decoupled, and would be suitable for this
interface, while some accesses are known to miss frequently, causing lengthy
stalls. Decoupled architecture allows these accesses to be further from DFG exe-
cution, which is equipped with a small finite state machine within the PE, as
shown in Fig. 3 (bottom). The access datapath now performs the memory access,
which will obtain the neighbor id ngh as a result. Once this value is available, ngh
is placed in the output queue to be sent to the consumer node. Even if a memory
access to the neighbor array results in a cache miss, the enumeration neighbor
node can still perform computations on other subgraphs at the same time, caus-
ing the DFG pipeline to stall only when the input queue of the computation is
empty or the access queue is full.

However, for irregular applications, it is not enough to only decouple com-
putation and memory access in a coarse-grained manner. In the dataflow-driven
model, a DFG node can be fired only if its source operands are ready. Thus, for
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programs that have complex control flow and complex DFG structure, the data
transfer (the flow operation in Fig. 3) needs to be executed as early as possible,
because these data activate the consumer nodes. In addtion, these methods are
limited to a program with small proportion of memory accesses, such as SHA
(Secure Hash Algorithm) in Fig. 2.

4 Our Design

Our goal is to address the challenges described in Sect. 3. Figure 4 shows the
process of transforming partitioned serial code into configurations for a dataflow
fabric. We highlight our contributions using red lines, while other steps are com-
mon techniques in previous works [1,6]. We generate LLVM intermediate repre-
sentation (IR) for each workload, and an automated tool examines the LLVM
IR and produces a DFG using the actual operations that can be performed by
PE’s functional units.

In order to solve the load imbalance among DFG nodes, DFG balancing is
introduced, which is a heuristic algorithm that achieves load balancing through
instruction scheduling among DFG nodes. To exploit more parallelism and accel-
erate irregular applications, we propose decoupled execution model, a novel exe-
cution and schedule mechanism for DFG threads. Moreover, a decoupled PE
architecture is provided to support the decoupled execution model efficiently.

Fig. 4. Workflow of our methods.

4.1 Load Balancing

DFG balancing is a heuristic algorithm and it intends to dispatch instructions
from high-load nodes to low-load nodes. Note that it is hard to generate an
absolutely balanced DFG because: 1) the delay of each nodes is unpredictable
during execution, like stalls caused by hazard or memory access. 2) allocating
the same number of instructions to each DFG node is expensive and is lim-
ited by the applications itself, which often leads to non-convergence. Thus, we
aim to generate a relatively balanced DFG based on the number and type of
instructions.

The algorithm of DFG balancing is described in Algorithm 1. A DFG G =
(V,E) generated by the earlier stages in the toolchain (Fig. 4) and a threshold
θ are the inputs. The first step is to sort the DFG nodes in depth-first order
and estimate their latency (Line 1–4). When estimating the latency of each
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Algorithm 1. Instruction Reschedule Algorithm
Input: a dataflow graph G = (V, E), and a threshold θ ∈ Z

+

Output: a more balanced dataflow graph G′ = (V ′, E′)
1: Init set CP ← sortbyDFS(G) � Step 1©
2: Init Cnum ← getNumofNodes(CP )
3: Init List[] ← getLatencyofEachNode(CP ,inst_latency)
4: Set χ ← ∑Cnum

n=1 List[] / Cnum

5: for each node ni in CP do � Step 2©
6: Set load ← List(ni)
7: if load � χ + θ then
8: dispInst2Downstream(selInst,ni,ni+1)
9: end if

10: if load � χ - θ then
11: dispInsfromDownstream(selInst,ni,ni+1)
12: end if
13: end for
14: return generate G′ ← refresh(G, CP ) � Step 3©

node (Line 3), we need to refer to the instruction type (inst_latency), because
the execution time of different instructions may be different, which is related
to the instruction set architecture (ISA). For simplicity, this evaluation only
considers the number of instructions and their latency, and the PE only support
partial RISC-V ISA (RV64I) and some dedicated dataflow instructions (flow). A
comparison factor χ is used in Algorithm 1, which is calculated in Line 4, where
the List[ ] array maintains the latency of each node on the critical path. It will
be used as a reference in Step 2.

The principle of Step 2 is to find the imbalance DFG nodes and perform
instruction redispatch (Line 5–13). The threshold θ and the comparison factor χ
are used to obtain an interval ( χ - θ, χ + θ). If a node’s latency is in this interval,
it is a suitable node. If a node’s latency is greater (or less) than this interval’s
upper (or lower) bound, it can be seen a heavy (or light) node, respectively. For
a heavy/light node, the algorithm will dispatch computing instructions to/from
its downstream node. If a heavy node has no downstream nodes, the node will
be split into two nodes. We found it difficult to find a threshold θ that fits
all applications. The smaller the θ is, the more balanced DFG is generated, but
Algorithm 1 becomes more complex and harder to converge. When the θ is larger,
the overhead of Algorithm 1 will decrease, but the performance of the application
will also decrease. We found that a good trade-off between performance and cost
can be achieved when the θ is set in a range of [3,5]. The final step of Algorithm
1 is to update the DFG according to the adjusted CP and to generate the final
DFG G′.

4.2 Decoupled Model

The decoupled execution model defines a novel scheme to schedule and trigger
DFG nodes and exploit instruction block level parallelism. The code of each
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node consists of up to four consecutive stages: Load stage, Calculating stage,
Flow stage and Store stage, which we describe below:

– Ld (Load) Stage: This stage loads data from the memory hierarchy to the
in-PE local memory.

– Cal (Calculating) Stage: This stage completes calculations. A node can enter
the Cal stage only when the following two conditions are met: first, its Ld
stage (if it exists) has already finished; second, it has received all the necessary
data from its predecessor nodes.

– Flow Stage: This stage transfers data from the current node to its successors.
– ST (Store) Stage: This stage transfers data from the in-PE operand memory

to the memory hierarchy.

Fig. 5. Comparison of three different execution models.

Correspondingly, instructions in a DFG node will be rearranged according to
their types and divided into four different blocks. The block is a basic schedule
and trigger unit. Different from traditional out-of-order execution, the decou-
pled execution model exploits more instruction-block level parallelism without
complex control logic, such as reorder buffer. Figure 5 takes the process of enu-
merating neighbor nodes of BFS (in Fig. 3) as an example to show the com-
parison between the decoupled execution model and the previous two execution
models. In the coupled model (top), the execution of DFG nodes adopts a non-
preemptive mechanism. The subgraph-1 will not release the PE resources until
the end of execution. After decoupling the memory access in DFG node (mid-
dle), the subgraph-2 can perform the memory access operation after the LD
stage of the subgraph-1 is finished. In this way, the PE can process up to two
subgraphs at the same time. But the execution of subgraph-3 requires a long
waiting delay. This is because the subgraph-2 occupies PE resources due to the
coarse-grained (partial) decoupling. Fortunately, this problem can be addressed
in the fully decoupled execution model (bottom). Through a more fine-grained
scheduling mechanism, PE can process more subgraphs at the same time, and
can overlap more delays, such as memory access and data flow.
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4.3 Decoupled Architecture

Figure 6 illustrates the top-level diagram of our dataflow architecture, which is
comprised of a set of identical decoupled processing elements (dPE). To support
the decoupled execution model, separated four-stage components are designed
within each PE to correspond to the four different states of the nodes. The
function of the controller is to maintain and schedule the execution of different
node states. And to ensure the correctness of the execution, separate operand
RAM space is provided for different iterations. And a shared operand RAM space
is set up to store the data that has dependencies between iterations, which are
marked by special registers in the instructions.

Fig. 6. The decoupled PE architecture.

The dPE consists of a calculation pipeline, a load unit, a store unit, a flow
unit, an instruction RAM module, an operand RAM module, a controller and
a router (in the middle of Fig. 6). These four separate functional components
(CAL, LOAD, FLOW, STORE) and the controller are designed for the decou-
pled model, which are different from previous structures. The calculation pipeline
is a data path for arithmetic operations and logical operations. It fetches instruc-
tions from the instruction RAM module and performs computations on source
data. The load/store unit transfers data from/to on-chip data memory to/from
operand RAM module, respectively. And the flow unit dispatches data to down-
stream dPEs. Each execution unit has a corresponding state, as described in
Fig. 5, and such a decoupling method is the key to improving the utilization.

The controller plays a non-negligible role in the state transition and DFG
nodes triggering. It consists of a kernel table, a status table, a free list, a dedicated
acknowledgment buffer (Ack port), and a scheduler module. The kernel table
stores the configurations of the nodes mapped to the dPE, which contain the
task ID (TID), node ID (NID), instance number (instance), instruction address
list (inst_addr) and data address (LD_base&ST_base). The TID and NID are
used to identify task and DFG node, because the PE array can be mapped to
multiple tasks at the same time, and a PE can be mapped to multiple nodes.
The instance is a value related to the pipeline parallelism, which indicates how
many times the DFG node needs to be executed. Taking BFS as an example, for
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a large graph, it may need to be decomposed into many subgraphs, such as 100,
then each DFG node needs to be executed 100 times. The inst_addr records the
location of the four-stage instruction of the DFG node in the instruction RAM.
The LD_base&ST_base are the base addresses for the source and destination,
which can work with the offset in the status table to access the data in the
operand RAM.

The status table maintains the runtime information for different instances. It
uses the instance_counter to record different instances of DFG nodes. Although
different instances share the same instructions, they handle different data. There-
fore, the offsets (offset) of different instances are different. In addtion, the status
table records the activations (Up_counter) and status informations. The value
of Up_counter decreases with the arrival of activation data. When this value is
0, it means that all the upstream data of the current node has arrived and it
can be triggered by the scheduler module.

The scheduler uses the instance_counter to evaluate the priority, and sched-
ules nodes according to their priority. We also tried other scheduler policies, such
as a round-robin scheduler or finer-grain multithreading, but found that these
did not work as well. This makes sense: the application work done is nearly con-
stant regardless of the scheduling strategy, so a simple scheduling mechanism is
effective. Also, simple scheduling principles reduce configuration overhead. The
Ack port is connected to the four pipeline units in order to obtain the status
of each section. Additionally, the Ack port uses this information to dynamically
modify the contents of the state table for scheduling by the scheduler. And the
free list queue maintains free entries in this buffer.

The instruction RAM module consists of multiple single-port SRAM banks.
Each bank can be occupied by a single functional unit at any time. The operand
RAM module consists of multiple 1-write-1-read SRAM banks. To ensure the
pipeline execution between instances, a separate context is allocated for each
iteration. Considering that there may be dependent data between instances, a
shared context is established in the operand RAM. Shared data are marked by
special registers in the instructions.

5 Methodology

Setup. We develop a cycle-accurate micro-architecture simulator for hardware
utilization and performance evaluation. The simulator is developed in C language
based on SimICT framework [16] and can simulate behaviors such as memory
access, data transfer, scheduling, etc. We calibrate the error to within ±7%
using RTL environment. We also implement our architecture using Verilog. We
use Synopsys Design Compiler and a TSMC 28nm GP standard VT library to
synthesize it and obtain area, delay and energy consumption, which meets timing
at 1GHz. Table 1 shows the hardware parameters.
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Table 1. Hardware Parameters.

Component Parameter Area (mm2) Power (mW)

dPE Func. Units INT&FP32 0.046(26.90%) 7.92(29.61%)
Controller – 0.012(7.27%) 1.20(4.97%)
Inst. RAM 4KB 0.003(1.81%) 0.38(1.56%)
Oper. RAM 64KB 0.812(47.27%) 9.93(41.18%)
Routers – 0.028(16.72%) 4.67(19.41%)
Total 0.1719 24.1019

PE Array 8 × 8 11(79.38%) 1542(84.45%)
NoC 2D mesh 0.65(4.72%) 70.65(3.86%)
Glo. Data Buf. 1MB(SPM) 1.67(12.06%) 150.57(8.79%)
Glo. Conf. Buf. 0.2MB(SPM) 0.35(2.50%) 38.11(2.08%)
DMA 2 channels 0.19(1.37%) 14.65(0.8%)
Total 13.8647 1826

Benchmarks. To evaluate our methods, we use the benchmarks from Fifer [6]
and literature [11]. These irregular workloads contain imperfect loops, complex
control flow and unstructured access. And we used the same input data as those
in the literatures [6,11]. Table 2 lists the selected workloads.

Table 2. Workloads for Evaluation.

Workload Characteristic Benchmark suite

GEMM, Viterbi(VIT)
Sort, FFT

Imperfect loop
Complex control flow

MachSuite
adopt from [11]

CFD
HotSpot(HS)
LUD, GE

Imperfect loop
Complex control flow
Loop dependency

Rodinia
adopt from [11]

Gesummv(GES)
Cholesky

Imperfect loop
Complex control flow

PolyBench
adopt from [11]

BFS,PageRank
CC, Radii

Unstructured access
Imperfect loop

Fifer [6]

6 Evaluation

6.1 Results and Analysis

To evaluate the effectiveness of the methods we proposed, we implement the
following four different experiments.

– Baseline (Base). It is our baseline, using only pipeline parallelism to accel-
erate irregular applications.
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– Baseline + DFG Reorganization (D1). It combines the pipeline paral-
lelism with DFG balancing technique.

– Baseline + Decoupled Model & Architecture (D2). It combines the
pipeline parallelism with decoupled model and hardware.

– Baseline + DFG Reorganization + Decoupled Model & Architec-
ture (D3). It combines the pipeline parallelism with our three methods.

Fig. 7. Utilization (in marker) and speedup (in bar) over the baseline.

Figure 7 demonstrates the effectiveness of our proposed methods in terms
of performance and utilization improvements. DFG balancing (D1) achieves an
average performance improvement of 1.31×. Decoupled execution technique (D2)
improves performance by gmean 2.03× over the baseline. By combining these
approaches (D3), the performance of the dataflow fabric can be improved by
2.55×, and the average computing resource utilization has also reached 65.12%.
In most cases, decoupled execution achieves better performance and utilization
improvements compared to DFG balancing.

For imperfect loop like GEMM, Gesummv and GE, the inner and outer loops
are almost equal in size and the load of each DFG node is more balanced. Thus
the effect of DFG balancing is not very obvious while the improvement of the
decoupled execution is obvious. Because decoupled execution can overlap the
delays caused by memory access and data transfer and improve the utilization
up to 96.8%. For dependency loop like LUD, data dependence reduces the uti-
lization by limiting inter sibling loops parallelism and explicit data barrier also
exacerbates the problem, which limit the effectiveness of decoupled model. For
kernels with branches such as Sort, FFT and HotSpot, the utilization is signif-
icantly degraded in baseline, especially in Sort (only 22.7%), which has plenty
of elseif statements. Our design decouples the data transfer stage so that acti-
vations can be delivered to downstream nodes as early as possible. Even though
we didn’t use prediction techniques, it still achieves a speedup of 2.75×.

Cost. The hardware overhead of decoupled execution is shown in Table 1. The
area and power consumption of the controller used for scheduling in dPE only
account for 7.27% and 4.97%, respectively. We evaluate Algorithm 1 on Intel(R)
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Core(TM) i7-7700 CPU@2.80GHz. This time is 5.1% of the execution time on
average, so it has negligible effect when performed at runtime.

6.2 Comparison with Other Dataflow Architectures

For comparison, we use three typical dataflow architectures, i.e. Plasticine [4],
Fifer [6] and Yin et al. [11]. Plasticine features pipeline parallelism. Fifer features
decoupling access and execution. Yin et al. [11] features subgraph rescheduling
(detailed in Sect. 2). The hardware parameters of the three architectures are
shown in Table 3, where we align them with similar peak performance. To model
their performance and utilization, we leverage the open source implementations
for Plasticine [4] and Fifer [6]. For work [11], we obtained data from the paper.

Fig. 8. Performance comparisons normalized to Plasticine.

Performance. Figure 8 illustrates the speedup comparisons normalized to Plas-
ticine. Our design (D3) outperforms the Plasticine by gmean 1.81× and by up
to 2.53×. This speedup comes from D3’s ability to further shorten the interval
between different iterations of the DFG pipeline execution. Compared with work
[11], D3 achieves average 1.34× performance improvement. The reason for limit-
ing the performance of paper [11] is that the execution of DFG nodes still adopts
a coarse-grained mechanism, resulting in an average utilization of only 39.04%.
Fifer achieves an average 1.54× performance improvement. These performance

Fig. 9. Energy efficiency comparisons normalized to Plasticine.
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gains come from decoupling memory access. However, for computationally inten-
sive applications like VIT (1.09×) and CFD (1.05×), the improvement is not
obvious.

Energy Efficiency. Figure 9 shows the energy efficiency (performance-per-
watt) comparisons normalized to Plasticine. On average, Our design (D3)
achieves 1.94× efficiency improvement over Plasticine, 1.58× over work [11] and
1.26× over Fifer. The coarse-grained scheduling mechanism employed in Plas-
ticine results in lower utilization, resulting in poor energy efficiency performance.
Work [11] achieves a relatively high energy efficiency in most cases by reschedul-
ing at software level. But for HotSpot and CFD, it consumes more energy on
buffer accesses due to the frequently subgraph switching. In Fifer, a large num-
ber of buffers are added between PEs to reduce the impact of load imbalance.
But the energy overhead of these buffers is very large.

Table 3. Hardware Comparisons.

Arch Plasticine [4] Yin et al. [11] Fifer [6] OURS(D3)

Tech (nm) 28 28 28 28

Area (mm2) 12.6 13.95 21.44 13.86

Power (W) 2.002 2.415 2.476 1.826

Freq (GHz) 1 0.8 2 1

PeakPerf (GFLOPS) 523 576 640 512

Efficiency (GFLOPS/W) 58.25∼99.79 27.85∼137.29 113.88∼218.17 116.64∼280.39

7 Conclusion

This paper presents a software and hardware co-design technique that makes
both regular and irregular applications efficient on dataflow architectures. We
propose an instruction schedule method to solve load imbalances and a more
fine-grained scheduling and trigger mechanism. Experiments exhibited by our
methods achieve significant utilization and performance improvement on key
application domains with small modifications.

Acknowledgment. This work was supported by the National Key Research and
Development Program (Grant No. 2022YFB4501404), CAS Project for Youth Inno-
vation Promotion Association, Open Research Projects of Zhejiang Lab (Grant NO.
2022PB0AB01), Beijing Nova Program (Grant No. 2022079).

References

1. Wu, X., Fan, Z., Liu, T.: LRP: predictive output activation based on SVD approach
for CNN s acceleration. In: DATE, pp. 831–836 (2022)



Improving Utilization of Dataflow Architectures 259

2. Ye, X., Tan, X., Wu, M., et al.: An efficient dataflow accelerator for scientific
applications. Future Gener. Comput. Syst. 112, 580–588 (2020)

3. Zhang, Y., Zhang, N., Zhao, T.: Sara: scaling a reconfigurable dataflow accelerator.
In: ISCA, pp. 1041–1054 (2021)

4. Prabhakar, R., Zhang, Y.: Plasticine: a reconfigurable architecture for parallel pat-
terns. In: ISCA, pp. 389–402 (2017)

5. Nguyen, Q.M., Sanchez, D.: Pipette: improving core utilization on irregular appli-
cations through intra-core pipeline parallelism. In: MICRO, pp. 596–608 (2020)

6. Nguyen, Q.M., Sanchez, D.: Fifer: practical acceleration of irregular applications
on reconfigurable architectures. In: MICRO, pp. 1064–1077 (2021)

7. Ham, T.J., Aragón, J.L., Martonosi, M.: DeSC: decoupled supply-compute com-
munication management for heterogeneous architectures. In: MICRO, pp. 191–203
(2015)

8. Weng, J., Liu, S., et al.: A hybrid systolic-dataflow architecture for inductive matrix
algorithms. In: HPCA, pp. 703–716 (2020)

9. Taylor, M.B., Kim, J., et al.: The raw microprocessor: a computational fabric for
software circuits and general-purpose programs. IEEE Micro 22(2), 25–35 (2002)

10. Dadu, V., Nowatzki, T.: Taskstream: accelerating task-parallel workloads by recov-
ering program structure. In: ASPLOS, pp. 1–13 (2022)

11. Yin, C., Wang, Q.: Subgraph decoupling and rescheduling for increased utilization
in CGRA architecture. In: DATE, pp. 1394–1399 (2021)

12. Capalija, D., Abdelrahman, T.S.: A high-performance overlay architecture for
pipelined execution of data flow graphs. In: 2013 23rd International Conference
on Field programmable Logic and Applications, pp. 1–8 (2013)

13. Zhao, Z., Sheng, W., Jing, N., He, W., et al.: Resource-saving compile flow for
coarse-grained reconfigurable architectures. In: ReConFig, pp. 1–8 (2015)

14. Kasgen, P.S., Weinhardt, M., Hochberger, C.: Dynamic scheduling of pipelined
functional units in coarse-grained reconfigurable array elements. In: Schoeberl, M.,
Hochberger, C., Uhrig, S., Brehm, J., Pionteck, T. (eds.) ARCS 2019. Lecture Notes
in Computer Science, vol. 11479, pp. 156–167. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-18656-2_12

15. Gobieski, G.: Manic: a vector-dataflow architecture for ultra-low-power embedded
systems. In: MICRO (2019)

16. Ye, X., Fan, D., Sun, N., Tang, S., Zhang, M., Zhang, H.: SimICT: a fast and flexible
framework for performance and power evaluation of large-scale architecture. In:
ISLPED, pp. 273–278 (2013)

https://doi.org/10.1007/978-3-030-18656-2_12
https://doi.org/10.1007/978-3-030-18656-2_12


A Multi-level Parallel
Integer/Floating-Point Arithmetic
Architecture for Deep Learning

Instructions

Hongbing Tan, Jing Zhang, Libo Huang(B), Xiaowei He, Dezun Dong,
Yongwen Wang, and Liquan Xiao

National University of Defense Technology, Changsha 410073, China
{tanhongbing,libohuang}@nudt.edu.cn

Abstract. The extensive instruction-set for deep learning (DL) signif-
icantly enhances the performance of general-purpose architectures by
exploiting data-level parallelism. However, it is challenging to design
arithmetic units capable of performing parallel operations on a wide
range of formats to perform DL instructions (DLIs) efficiently. This paper
presents a multi-level parallel arithmetic architecture capable of support-
ing intra- and inter-operation parallelism for integer and a wide range of
FP formats. For intra-operation parallelism, the proposed architecture
supports multi-term dot-product for integer, half-precision, and Brain-
Float16 formats using mixed-precision methods. For inter-operation par-
allelism, a dual-path execution is enabled to perform integer dot-product
and single-precision (SP) addition in parallel. Moreover, the architecture
supports the commonly used fused multiply-add (FMA) operations in
general-purpose architectures. The proposed architecture strictly adheres
to the computing requirements of DLIs and can efficiently implement
them. When using benchmarked DNN inference applications where both
integer and FP formats are needed, the proposed architecture can signif-
icantly improve performance by up to 15.7% compared to a single-path
implementation. Furthermore, compared with state-of-the-art designs,
the proposed architecture achieves higher energy efficiency and works
more efficiently in implementing DLIs.

Keywords: Deep Learning instruction · data-level parallelism ·
Arithmetic Architecture · Dot-Product · Mixed-Precision · Inter- and
Intra-operation Parallelism

1 Introduction

Recently, deep learning has enabled significant advances in a variety of applica-
tions, with performance that is comparable to or even surpassing that of humans
in certain scenarios. However, the rapidly increasing computing requirements
of advanced deep learning models have resulted in a performance bottleneck
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in hardware platforms [16]. Consequently, numerous research efforts have been
devoted to the efficient implementation of deep learning algorithms on hardware.
An interesting trend that has emerged is the exploitation of specific instructions
by many general-purpose architectures to facilitate the efficient implementation
of deep learning algorithms [2,3].

In most general-purpose architectures, deep neural networks (DNN) train-
ing and inference employ fused multiply-add (FMA) instructions using 32-bit
single-precision (SP) floating-point. However, the complex datapath of SP FMA
architecture is costly and results in large latency during hardware implementa-
tion, leading to high energy consumption during deep learning algorithm exe-
cution. To address this issue, some general-purpose architectures have extended
their instruction set to support low-precision operations to reduce hardware costs
and improve DNN performance. For example, mainstream instruction-set archi-
tectures such as AVX-512, Arm v8-SVE, and Arm v9-SME have introduced
16-bit half-precision (HP) and BrainFloat16 (BF16) formats. Due to the nar-
rower bitwidth, 16-bit numbers can not only save memory resources but can
also exploit more data-level parallelism than SP formats. However, the potential
of using HP or BF16 throughout the entire training process is not fully exploited
by any proposal. Numerical issues arise due to the reduced mantissa bits budget
of BF16 [9] and the limited dynamic range of HP [13]. To overcome these issues,
mixed-precision methods are utilized by performing low-precision multiplication
to improve performance while accumulating the products in higher precision to
maintain high accuracy. In comparison to DNN training, inference is more robust
to computation errors. Therefore, 8-bit integer operations are commonly used to
efficiently perform DNNs with higher energy efficiency [19].

In DNN tasks, low precision operations are primarily utilized in computation-
intensive layers, such as the general matrix multiplication (GEMM) layer. On
the other hand, precision-intensive layers, like BatchNorm and SoftMax, require
SP operations to prevent accuracy loss. In particular, BatchNorm layers neces-
sitate a larger number of SP additions during both DNN training and inference.
Therefore, in this paper, we propose a multi-level parallel integer/floating-point
arithmetic architecture to address the precision and parallelism requirements of
DLIs. The primary contribution of our research is summarized below.

– The proposed arithmetic architecture supports both inter- and intra-
operation parallelism, making it highly efficient at exploiting data-level and
instruction-level parallelism for deep learning instructions.

– The architecture supports both integer and FP formats on single-path or dual-
path execution, providing different latencies for integer and FP operations.
This enhances the performance of DNN training and inference.

– The architecture also supports mixed-precision dot-product, wherein multiple
products in low precision are accumulated into higher precision formats to
improve throughput and maintain accuracy. Specifically, 4-term operations
for HP or BF16 formats and 8-term operations for INT8 are performed at
each cycle.
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– The flexible dataflow of the proposed architecture allows for circuit reuse,
reducing area requirements and power consumption. As a result, it achieves
higher energy efficiency and operates more efficiently in implementing DLIs
than other designs.

The remainder of this paper is organized as follows. Section 2 introduces the
supported formats the functions of DLIs. Section 3 introduces the related works.
In Sect. 4, the multi-level parallel integer/floating-point arithmetic architecture
is presented. Section 5 covers the circuit implementation. Then the synthesis
results, the analysis and the comparison with the previous designs are presented
in Sect. 6. Finally, Sect. 7 gives the conclusion of the whole work.

2 Background

2.1 Integer and Floating-Point Formats

Standard floating-point formats are defined in IEEE754-2008 standard [6] which
consists of three components: the 1-bit sign (S), the e-bit biased exponent (E),
the m-bit mantissa (M). The sign bit determines whether the number is a posi-
tive or negative number. The mantissa determines the numerical accuracy while
the exponent determines the dynamic range. Although the BF16 format is not
included in IEEE 754-2008, it has the same components and also follows the
IEEE 754 rule. The integer representation is less complicated than floating-
point numbers, which only consists of two components, 1-bit sign and (N − 1)-
bit mantissa. The numerical formats of each operand supported by the proposed
arithmetic architecture are shown in Fig. 1.

Fig. 1. Supported numerical formats of the proposed arithmetic architecture.

2.2 The Computing Requirement of DLIs

General-purpose architectures have been leveraged for accelerating deep learn-
ing algorithms by exploiting DLIs. Unlike conventional SP instructions, DLIs
focus on data-level parallelism and low-precision computing to improve perfor-
mance and reduce energy consumption. For example, dot-product instructions
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can significantly enhance performance by combining multiple instructions into
one, thereby maximizing the use of computing resources and avoiding poten-
tial bandwidth bottlenecks when performing GEMM. Various DLIs have been
proposed for integer and FP formats on general-purpose architectures such as
Intel’s AVX-512, Arm’s v8-SVE and v9-SME, as shown in Table 1. The Vec-
tor Neural Network Instructions (VNNI) support 512-bit vector operations that
can be configured to perform 16 parallel dot-product operations for integer and
floating-point numbers [2]. SVE and SME have designed different DLIs for vec-
tor or matrix operations of varying formats, which can offer higher throughput
and enable efficient implementation of DNN algorithms.

Table 1. Computing requirement of the instructions in DLIs

Instruction ISA Bitwidth Function Format

VNNI AVX-512 512-bit 16 × [1, 2] × [2, 1] BF16 & HP & INT16

16 × [1, 4] × [4, 1] INT8

BFDOT Arm v8 SVE 32-bit [1, 2] × [2, 1] BF16

SDOT & UDOT Arm v8 SVE 64-bit [1, 8] × [8, 1] INT8

SMMLA Arm v8 SVE 128-bit [2, 8] × [8, 2] INT8

BFMMLA Arm v8 SVE 128-bit [2, 4] × [4, 2] BF16

Arm v9 SVE2 & SME [3]: wider vector operations and matrix multiplications

3 Related Work

Previous works have proposed various arithmetic architectures that support mul-
tiple precision and parallel operations for deep learning algorithms. The FMA
units proposed by [20] and [12] support a wide range of FP formats for flexible
use in different applications. While their supported FP formats can be efficiently
used in DNN training, they have higher costs in performing DNN inference than
integer operations. Sohn et al. [17] proposed a 4-term dot-product unit that
achieves better performance and accuracy compared to a network of traditional
FP units. However, it only supports SP format, which incurs more overhead
than reducing precision in performing DNN tasks. Zhang et al. [21] proposed
an integer and FP multiply-accumulate (MAC) unit for DNN algorithms. This
MAC unit supports scalar operations for HP format and dot-product for INT8
numbers. Although their integer dot-product offers high performance for DNN
inference, the scalar HP operations cause large latency in implementing DLIs
that require vector or matrix operations. Mach et al. [11] proposed an FMA
unit that exploits 8-bit FP format (FP8), which offers higher throughput than
16-bit FP formats with less overhead. However, the FP8 format can only be
used in limited scenarios of DNN training, and it costs more energy than INT8
in performing DNN inference. In general, it is significant to design arithmetic
architectures that support parallel operations for both integer and FP formats,
offering an efficient implementation for DLIs.
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4 The Configurable Integer/Floating-Point Arithmetic
Architecture

4.1 The Flexible Dataflow of the Dual-Path Architecture

Fig. 2. The datapath of the proposed arithmetic architecture.

To achieve both data-level and instruction-level parallelism for DLIs, we propose
an arithmetic architecture that supports dual-path and single-path execution for
a variety of operations. The configurable architecture, shown in Fig. 2, is divided
into two components to support dual-path operations, and the dataflow and
latency are optimized based on the datapath of the supported operations. Input
data is checked and then allocated to the corresponding component based on
the operation being performed. In deep learning tasks, subnormal data is often
flushed to zero to save hardware costs due to the high robustness of such tasks.
Exceptional data, such as NaN, will trigger an error and be logged without pro-
cessing. We re-use circuits to reduce hardware costs by rearranging the dataflow
of the proposed architecture. Specifically, a four-segment alignment shifter is
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utilized to align the four products of HP/BF16-DOT operations by rotating
the dataflow (red arrow). It can also be utilized to align the SP addends when
combined. These two components are controlled by a 1-bit signal, OP , which
determines whether single-path or dual-path execution is used. The 2-bit signal,
Prec, is used to determine the data format. For dual-path execution, the inte-
ger dot-product and SP addition operations run independently in parallel using
the two components, which not only improves throughput but also provides
instruction-level parallelism for DLIs. In single-path execution, the entire archi-
tecture is utilized and fully pipelined to perform SP FMA or 4-term dot-product
for BF16 and HP formats: BF16-DOT4 and HP-DOT4.

To save energy consumption, we use a coarse-grained low-power technology
in the proposed design, allowing unused logic to be gated in specific operations.
For example, when performing INT8-DOT8, the entire logic of component 1 can
be gated.

4.2 The Bit-Partitioning Method for Multiplier Design

To incorporate SP and reduced precision operations into the proposed archi-
tecture, we adopt a bit-partitioning approach to partition the bitwidth Wp of
SP operands into several segments. The bit-partitioning method must comply
with the requirement of DLIs that the number of parallel operations of vector
and matrix instructions are powers of two. Therefore, we need to comprehen-
sively analyze the bitwidth of the multiplier unit to maximize hardware usage.
We determine the number of segments N using bit-partitioning methods with
various bitwidths Wm of the supported formats.

N = 2
⌈
log2(

Wp
Wm

)
⌉

(1)

During partition processing, redundant bits are generated which can be used
to evaluate the utilization of the multiplier unit. The number of these redun-
dant bits, denoted as nr, can be calculated by subtracting the bit width of the
partition (Wp) from the total bit width of the multipliers.

nr = Wm ×N −Wp (2)

The number of redundant bits per segment, denoted as nrps, represents the
redundancy performance that is averaged over each segment. When calculat-
ing nrps, both the horizontal and vertical redundant bits should be taken into
account. This can be summarized as follows:

nrps =
nrh

Nh
+

nrv

Nv
(3)

where the Nh and Nv mean the segments in the horizontal and vertical parti-
tion. Based on the supported formats, the minimum value of Wm for INT8 is
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restricted to 7. To analyze the redundancy performance and parallel operations
per cycle, we have compiled a list of multiplier sizes ranging from 7 to 12. As
shown in Table 2, the parameter vector (NINT8, Nhp, Nsp, nrps) are listed, where
the NINT8, Nhp, Nsp denote the parallel multiplications for INT8, HP, SP oper-
ations, respectively. When the Wm between 7 to 11, more parallel operations are
supported for INT8 numbers, but it will cause a low redundancy performance.
The 12×12 multiplier will cause low redundancy performance and fewer parallel
operations for INT8 precision. So, the 12 × 7 multiplier is selected as the basic
unit to construct the multiplier array of the proposed design.

Table 2. Analysis of bitwidth for the configurable multiplier

Bitwidth (7-11)-bit 12-bit

(7-11)-bit (16, 4, 1, >10) (8, 4, 1, 5)

12-bit ( 8, 4, 1, 5) (4, 4, 1, 12)

5 Circuit Implementation

5.1 Configurable Multiple-Precision Multiplier Array

We implement a configurable multiplier array using low-precision-combination
(LPC) techniques, which utilizes eight 12 × 7 multiplier units. For the multi-
plier unit design, we employ the radix-4 modified Booth algorithm [4] to reduce
hardware costs. The sub-array organization, comprising two multiplier units, is
illustrated in Fig. 3, which includes the multiplicand, multiplier, and generated
partial product (PP) array. Before inputting the multiplicand and multiplier into
the sub-array, they must first be processed into a unified format, as depicted at
the top of Fig. 3. The sub-arrays can be configured to operate with different
numeric formats, including INT8, HP/BF16, and SP.

When performing INT8-DOT8 mode, the two products generated by two
multipliers are first right-aligned and then added by a 4-to-2 carry save adder
(CSA). However, in HP/BF16-DOT4 mode, the two multipliers are combined
to realize the 11-bit multiplication. As for SP mode, the sub-array generates a
12 × 12 result, and the entire multiplier array consists of four sub-array cells to
generate the complete SP result. Our proposed design constructs the complete
multiplier array by replicating four sub-arrays and summing up their results
through a 4-to-2 adder. This multiplier array is capable of performing eight
INT8 operations, four HP/BF16 operations, or one SP operation.
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Fig. 3. Partial product generation and partial product array of the sub-array.

5.2 Cascade Alignment Shifter and Product Processing

The proposed design saves costs by reusing the alignment shifter in both the
SP operations and HP/BF16-DOT4. The alignment shifting methods used are
similar to those in a previous FMA design [8]. To perform the alignment of
SP operations, a 76-bit shifter is required, while a 27-bit shifter is needed for
HP/BF16-DOT4. To implement the alignment of the supported operations, the
alignment shifter is split into four segments using LPC methods, as shown in
Fig. 4. Four 27-bit 5-level shifters and a 76-bit 2-level shifter are designed to
construct the entire 7-level alignment shifter in cascade methods. During HP-
DOT4 and BF16-DOT4, the four 27-bit shifters run independently to perform
the alignment of products. The aligned products are then added together using a
4-to-2 CSA to reduce latency. In SP operations, the lower three 27-bit shifters are
combined to perform the head 5-level alignment of addend C. The final shifting
is completed using a 76-bit shifter in the later 2-levels, which runs in cascade.

5.3 Adder, Leading Zero Anticipator, Normalization and Rounding

In the proposed design, a total of 76-bit vectors need to be added. For the most
significant 26 bits, an incrementer is used since only one of the two vectors
contains useful data. For the less significant 48 bits, a carry propagate adder
(CPA) is used for the addition. In SP operations, the whole 76-bit adder is used,
while only the 48-bit CPA is used in dot-product operations. To reduce latency,
a leading zero anticipator (LZA) [15] is used to anticipate both leading zeros and
leading ones, working in parallel with the addition. The leading zero numbers are
then used in both normalization and exponent adjustment, removing the heading
zeros of the addition results, and generating the exponent. The roundTiesToEven
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Fig. 4. Alignment of C operand and the datapath of the addition.

mode [1] is applied to the rounding of the normalized mantissa. Finally, the result
is generated by combining the processed sign, adjusted exponent, and rounded
mantissa.

6 Synthesis and Evaluation

The proposed design was implemented using Verilog HDL, and its correctness
was verified through extensive testing using vectors generated by testfloat [7].
In addition to the proposed architecture, we also implemented baseline FMA
designs for SP, BF16, HP, and INT8 formats to compare them with the proposed
arithmetic architecture. All of these designs were synthesized in the typical corner
of 28 nm CMOS technology using synthesis tools. Subsequently, we generated
timing and area metrics to evaluate the designs. We used the synthesized netlist
and the activity file generated from post-synthesis simulations, aided by Static
Timing Analysis (STA) tools, to estimate power consumption.

All designs were synthesized with a time constraint of 0.45 ns, and the syn-
thesis results are presented in Fig. 5. Due to its complex architecture and wider
datapath, the proposed architecture consumes more power and area than the
baseline designs. However, the proposed design can perform a broader range of
operations with higher performance, including INT8-DOT8, BF16-DOT4, HP-
DOT4, and standard SP FMA operations, as discussed in previous sections. This
is mainly due to two factors: firstly, the architecture of the baseline designs is
simple with a narrower datapath, and they are synthesized under a loose time
constraint. Secondly, the proposed design requires more logic to support a wide
range of formats and various operations. To achieve the same functionality as
the proposed arithmetic unit, we would require 4 HP MIX-FMAs, 4 BF MIX-
FMAs, 1 SP FMA, and 8 INT8 FMAs. However, the proposed arithmetic unit
is 67.2% more area-efficient than the combination (Comb) of these FMAs.
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Fig. 5. Synthesis results of the proposed design and baseline designs.

6.1 Comparisons with Related Works

Table 3 presents a comparison of the latency, performance, power consumption,
and energy efficiency of our proposed arithmetic architecture with those of pre-
vious works. As the previous works were synthesized under different processes,
we scaled their areas to the same process feature size to ensure a fair comparison.
The total area of a design is directly proportional to the area of a unit transistor;
therefore, we generated a normalized area (NArea) by dividing the total area
by the square of the process feature size (F 2). Furthermore, the performance
of an arithmetic unit in hardware implementation is strictly constrained by the
silicon area. Hence, we calculated the scaled throughput (S TP ) based on the
normalized area for performance comparison.

S TP = Freq × 1
NArea

×OPs (4)

where OPs represents the parallel operations per cycle, (1 MAC = 2 OPs), and
Freq refers to the frequency of the designs. In contemporary DL systems, 16-bit
FP and 8-bit integer formats are commonly used in DNN training and inference,
respectively. While SP formats offer a larger dynamic range and higher precision
than 16-bit FP numbers, their impact on the accuracy of DL models during
training is often negligible. This is due to the use of mixed-precision methods
that accumulate the HP numbers to the SP format, effectively reducing the accu-
racy gap between the two formats. Therefore, equivalent formats are utilized for
the evaluation of S TP and energy efficiency (EE) in DNN training and infer-
ence due to the limited support of formats in some works. For example, during
mixed-precision methods, 16-bit FP operation products are accumulated into
SP formats, enabling 32-bit SP formats and 16-bit FP formats to be considered
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equivalent formats for DNN training. Additionally, due to the support of dual-
path execution, coarse-grained low-power technologies can be easily utilized in
the dual-path architecture, leading to significant reduction in power consumption
in INT8-DOT8 operations compared to FP operations.

The FMA units proposed by [20] and [18] support SP FMA and 2-term dot-
product for 16-bit FP formats. Their supported 2-term FP dot-product can be
efficiently used in DNN training, but the lower utilization of the multiplier array
results in lower S TP and EE than the proposed design. Moreover, the pro-
posed design supports integer operations, which significantly improves the EE
for DNN inference. [17] proposed a 4-term SP dot-product unit to improve the
throughput by fully exploiting the utilization of the multiplier array. However,
the SP operations in [17] cost more hardware overhead than the integer and 16-
bit FP operations supported by the proposed design. The FMA units designed
by [10] and [11] support standard SP format and a wide range of low precision
FP formats. The FP20 and FP14 in [10] are used as the equivalent formats for
16-bit FP formats and INT8, respectively, which can be used for DNN train-
ing and inference. Also, the FP8 in [11] and INT8 are equivalent formats for
DNN inference. Due to coarse-grained lower techniques, the proposed design has
higher EE in DNN training and inference than [10] and [11]. The mixed-precision
operations for HP numbers are supported by [21] and [5], which are useful in
DNN training. However, the scalar operations for HP numbers result in lower
STP and higher EE than the proposed design. The FMA unit in [21] supports
INT8-DOT2 for DNN inference, but the proposed design exploits more parallel
operations to significantly enhance the throughput. In general, compared with
other works, the proposed design exploits more types of operations dedicated to
DNN training and inference, such as INT8-DOT8, HP-DOT4, and BF16-DOT4,
to achieve higher throughput and energy efficiency. The supported parallel oper-
ations can be efficiently used for the data-level parallelism of DLIs and accelerate
the implementation of DNN training and inference.

Table 3. Comparison of the proposed arithmetic architecture with previous works

Design Functions for DNN algorithms Cycle Delay Freq Area NArea Power S TP EE(GOPS/W)

ns GHz µm2 µm2/F2 (mW) If Tr If Tr

[20]-90 nm 1 SP, 2 HP DOT2 4 1.5 0.67 17,2014 21.2 26.2 0.13 0.13 102.3 102.3

[10]-32 nm 1 SP, 2 FP20‡, 4 FP14‡ FMA 3 0.69 1.45 45,000 43.9 60.0 0.13 14.1 96.7 193.3

[17]-45 nm 1 SP DOT4 4 0.64 1.56 63,200 31.2 32.7 0.4 0.4 381.7 381.7

[11]-22 nm 2 SP, 4 HP, 4 BF16, 8 FP8α FMA 3,2α 1.08 0.92 49,000 101.2 57.4 0.15 0.08 128.9 257.8

[21]-90 nm 1 HP FMA, 1 INT8β-DOT2 3,2β 0.8 1.25 42,711 5.3 14.1 0.47 0.24 354.6 177.3

[5]-28 nm 1 HP MIX-FMA 6 2.0 0.5 2,690 3.4 – 0.29 0.29 – –

[18]-28 nm 1 SP/2 HP FMA, 1 HP/BF16 DOT2 4 0.45 2.22 13,032 16.6 73.1 0.53 0.53 121.5 121.5

Prop-28 nm 1 INT8-DOT8 & 1 SP ADDγ 2,3γ 0.45 2.22 12,765 16.3 20.5† 2.18 – 1,734.4 –

1 SP FMAγ , 1 HP/BF16 DOT4 3γ ,4 0.45 2.22 12,765 16.3 57.9 – 1.09 – 307.0

‡ FP20 = SP using only 12 bit of precision, FP14 = SP using only 6 bit of precision
† power for INT8-DOT8; If : Inference; Tr: Training
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6.2 Evaluation of the DLIs Implementation

The Arm v8-SVE instruction-set architecture has been expanded to support
DLIs for DNN algorithms, including BFDOT, UDOT, SDOT, SMMLA, and
BFMMLA. The proposed arithmetic architecture supports dot-product compu-
tations for BF16, HP, and INT8 numbers, allowing for data-level parallelism to
efficiently execute DLIs. To implement these instructions, multiple arithmetic
units must be organized into vector or matrix formats, with 1× 1 or 2× 2 arith-
metic units required for these DLIs, as indicated in Table 4. Previous arithmetic
units support fewer formats and are unable to implement DLIs directly, so equiv-
alent formats are used to achieve the same function as the DLIs in performing
DNN tasks. By considering the throughput of DLIs and the number of parallel
operations for specific formats in prior research, the number of arithmetic units
(Num.U) is determined. Previous studies have focused on supporting FP for-
mats or short vector operations for integer formats, requiring additional units to
implement DLIs. As indicated in Table 4, the proposed arithmetic architecture
reduces energy costs by more than 90% for integer instructions U/SDOT and
SMMLA, compared to prior research. For the implementation of FP instruc-
tions BFDOT and BFMMLA, the proposed arithmetic architecture can achieve
a maximum energy cost reduction of 44%.

Table 4. Comparison of energy consumption for achieving the same functions of DLIs

Design BFDOT U/SDOT SMMLA BFMMLA

Num.U Energy(pJ) Num.U Energy(pJ) Num.U Energy(pJ) Num.U Energy(pJ)

[10] 1× 1 124.2 2× 1 248.4 8× 1 993.6 8× 1 993.6

[20] 1× 1 157.2 4× 1 628.8 16× 1 2,515.2 16× 1 2515.2

[11] 1× 1 185.98 1× 1 123.98 4× 1 495.92 4× 1 743.92

[21] – – 4× 1 90.24 16× 1 360.96 – –

[18] 1× 1 131.58 4× 1 526.32 16× 1 2,105.28 4× 1 526.32

Prop 1× 1 104.22 1× 1 18.45 2× 2 73.8 2× 2 416.88

Energy = Delay × Cycles× Power ×Num.U .

6.3 Evaluation of the Inter-operation Parallelism

The proposed arithmetic architecture supports inter-operation parallelism on
dual-path execution, enabling instruction-level parallelism for DLIs. This archi-
tecture enables instruction-level parallelism and can be evaluated against a
single-path implementation that supports the same functionalities but imple-
ments them serially. In DNN inference, both integer and FP formats are nec-
essary in different layers. INT8 operations are used for the GEMM layer, while
non-GEMM layers such as BatchNorm, SoftMax, ResNet-add, and All-Reduce
require a large number of SP operations. Although DNN models are structurally
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serial, dataflow parallelism can be exploited in certain layers to improve perfor-
mance. Therefore, practical DNN models require parallel INT8 and SP instruc-
tions to accelerate inference. The runtime of DNN models is determined by the
ratio of INT8 and SP operations. INT8 operations in GEMM layers account for
the majority of DNN inference computation, with a ratio of Rint. The ratio of
SP operations is Rsp (Rint +Rsp = 1), and only a portion of the SP operations,
Rpsp, can run in parallel with the integer operations, while the remainder runs
in serial in a ratio of Rssp (Rpsp+Rssp = 1). The scaled runtimes for single-path
and dual-path implementation can be calculated as follows:

Tsingle−path =
Rint

OPint
+

Rsp

OPsp
(5)

Tdual−path = max(
Rint

OPint
,
Rpsp
OPsp

) +
Rssp
OPsp

(6)

Fig. 6. The performance improvement than a single-path implementation.

In practical DNN inference tasks, the proportion of integer operations is
typically over 0.6, while the proportion of parallel SP operations is often less
than 0.2 [14]. Figure 6 shows a line chart comparing the performance of different
ratios of INT8 and FP operations. Due to the inter-parallelism on the dual-path
execution, the average performance improvement is up to 15.7% compared to
the single-path implementation.

7 Conclusion

In this paper, we present a multi-level parallel arithmetic architecture that sup-
ports integers and a wide range of FP formats. Our proposed architecture sup-
ports multi-term dot-product for integer, HP, and BF16 formats, which enables
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the exploitation of data-level parallelism in DLIs. The dot-product operation is
implemented using mixed-precision methods that use lower precision to improve
performance while accumulating to higher precision to avoid accuracy loss. Fur-
thermore, our proposed architecture supports dual-path execution, where the
INT8-DOT8 and SP addition can be performed in parallel. The inter-operation
parallelism in dual-path execution can be efficiently utilized in performing DNN
inference, resulting in a 15.7% improvement in performance compared to a single-
path implementation. Our proposed architecture exhibits higher energy efficiency
compared to state-of-the-art designs for implementing DLIs, making it more effi-
cient for DNN applications.
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Abstract. Concurrent hash tables are one of the fundamental building
blocks for cloud computing. In this paper, we introduce lock-free mod-
ifications to in-memory bucketized cuckoo hashing. We present a novel
concurrent strategy in designing a lock-free hash table, called LFBCH,
that paves the way towards scalability and high space efficiency. To the
best of our knowledge, this is the first attempt to incorporate lock-free
technology into in-memory bucketized cuckoo hashing, while still pro-
viding worst-case constant-scale lookup time and extremely high load
factor. All of the operations over LFBCH, such as get, put, “kick out”
and rehash, are guaranteed to be lock-free, without introducing notori-
ous problems like false miss and duplicated key. The experimental results
indicate that under mixed workloads with up to 64 threads, the through-
put of LFBCH is 14%–360% higher than other popular concurrent hash
tables.

Keywords: buckized cuckoo hashing · lock-free · data structure ·
multicore · parallel computing

1 Introduction

With the rapid growth of data volume in the Big Data era, the massive amount
of data puts increasing pressure on cloud computing systems [1,18]. As a key
component of these systems [3,7–9,15], a high-performance hash table is very
important for application usability. In step with Moore’s law, the improvement
in CPU performance has relied on the increase in the number of cores, leading
to higher demands for the scalability of hash tables [16]. Consequently, improv-
ing the concurrent performance of hash tables on multicore architectures has
become a crucial step in designing data-intensive platforms. In practice, the
open-addressing hash table is widely used due to its ability to limit the mem-
ory usage of the hash table. However, with the increase in application scale, it
is challenging to drive concurrent operations on a dense open-addressing hash
table.

As an open-addressing hash table, cuckoo hashing was first proposed in 2004
[14]. It utilizes two hash functions to guarantee a constant-time worst-case com-
plexity for the search operation. It introduces a critical step called “kick out”,
which will be invoked when other keys have occupied both of the positions cor-
responding to an insertion. The action involves kicking one of the occupying
c© The Author(s) 2023
J. Cano et al. (Eds.): Euro-Par 2023, LNCS 14100, pp. 275–288, 2023.
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keys to its alternative position, creating space for the incoming insertion. This
process is similar to that of a cuckoo bird, which always kicks out the eggs of
other birds and places its eggs in the nest, hence the name cuckoo hash. If the
alternative location of the kicked key is also occupied, a cascade kick is trig-
gered. As the cascade kick could easily form a loop, in general, the load factor of
the primitive design cannot exceed 50%. The bucketized cuckoo-hashing scheme
introduces multiple slots per bucket for alleviating the kicking loops. This makes
the process applicable for use cases with a load factor exceeding 95% [10].

Another essential problem is concurrency. In cuckoo hashing, it could be
very difficult to efficiently prevent the kicking process from affecting readers and
writers. As a widespread implementation of bucketized cuckoo hashing, libcuckoo
[13] conducts a fine-grained locking approach to reduce the blocking overhead
of concurrent threads. It can be shown that the throughput of libcuckoo signifi-
cantly degrades as long as the number of worker threads continuously increases,
e.g., with more than 16 worker threads. Lock-free technique [2] has also been
applied to cuckoo hashing. Lfcuckoo [13] accelerates the primitive cuckoo hash-
ing using atomic primitives, such as LOAD, STORE, and Compare-and-Swap
(CAS). Two correctness issues, i.e., false miss and duplicated key, have been
addressed in the presence of lock-freedom by lfcuckoo. However, the solution
can hardly be applied to the bucketized use case, making it impractical.

To implement a concurrent hash table that can efficiently exploit the increas-
ing number of cores, we introduce lock-free techniques to in-memory bucketized
cuckoo hashing. We use single-word atomic primitives to optimize concurrent
operations over the bucketized data structure, with thorough consideration of
the kicking process for cuckoo hashing. We revise lfcuckoo’s helper mechanism
for the use case with bucketized data structure. For the false miss problem,
inspired by hazard pointers [12], we present a mechanism based on hazard hash
value that detects the conflicting hash values when performing “kick out”. If a
search operation gets a miss and detects the hash value derived from its required
key conflict with a key being kicked out, it will retry to ensure that it does not
return a false miss when the key is present in the hash table. As for the prob-
lem of duplicated keys, we generate a snapshot of the target bucket and delete
any duplicated keys within it when necessary. In addition to addressing the
two issues that affect correctness, we have also presented lock-free lazy rehash
which has never been addressed in the previous studies. To address the issue of
data hotspots [4], we have also implemented the hotspot detection and adjust-
ment mechanism, improving the performance of the hash table under a highly
skewed workload. Ultimately, we implemented lock-free bucketized cuckoo hash-
ing, which is functionally correct, space-efficient, and scalable.

The rest of this paper is organized as follows. Section 2 gives the basic con-
cepts of libcuckoo and lfcuckoo. Section 3 presents the data structure of LFBCH
followed by its basic operations. Section 4 shows the implementation details of
the lock-free hash table. Section 5 evaluates the hash table based on benchmark
workloads. The related works and the conclusion of this paper are given in Sect. 6
and Sect. 7, respectively.
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2 Preliminaries

In this section, we present the basic concepts of bucketized cuckoo hashing and
the lock-free revision for primitive cuckoo hashing. Problems when driving lock-
free operations over a bucketized hash table are discussed.

2.1 Bucketized Cuckoo Hashing

Libcuckoo is a popular implementation of cuckoo hashing that supports lock-
based operations using a bucketized hash table. We will use it as an example to
illustrate the critical components of a bucketized hash table in the context of
cuckoo hashing.

Fig. 1. Demonstration of the kick-
ing process of libcuckoo, where a kick
path a → b → c → ∅ is found to
make free slot for a new insertion key
“x”. ∅ denotes an empty slot. The
three keys, i.e., c, b, a, will be moved
to their alternative slots following the
directions of the arrows.

Data Structure. Figure 1 demonstrates
the basic structure of libcuckoo by a typi-
cal configuration with two cuckoo-hashing
functions and a four-way set-associative
bucket. A key calculated by two hash func-
tions is mapped to two buckets, each con-
sisting of four set-associative slots. For con-
currency, libcuckoo employs a lock strip
technique. Each request first acquires locks
corresponding to both target buckets before
accessing them. Libcuckoo exhibits good
scalability when the user requests follow a
uniform distribution in their request keys.
However, due to the overhead incurred
by lock contention, the system perfor-
mance sharply degrades when the number
of worker threads increases on skewed work-
loads, even in read-only applications.

Kick Process. The kick process is divided into two stages, i.e., path search and
item movement along the kick path. The goal of the path search stage is to find
a path for cascade kicking out. For example, Fig. 1 shows how to kick item “a” to
make space for a new insertion “x”. Libcuckoo finds the kick path by evaluating
a BFS search, which guarantees the shortest path [10]. In the second stage, it
moves the keys reversely along the kick path. This will leave an empty slot in
the head of the kick path, which can be used to accommodate the new insertion
key. Rather than locking the entire kicking path, libcuckoo utilizes fine-grained
locks to ensure the correctness of the kicking process.

2.2 Difficulties when Supporting Lock-Free Operations

Next, we analyze the critical idea of introducing a lock-free technique into cuckoo
hashing. Based on a primitive revision, i.e., lfcuckoo, we highlight the difficulties
when considering lock freedom over bucketized cuckoo hashing.
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Fig. 2. The introduction of lock-free techniques into cuckoo hashing can potentially
result in two errors: false miss and duplicated key. The gray rounded box in the illustra-
tion represents the hash table, and the white boxes indicate the two possible positions
of Key A within the hash table. (Color figure online)

Lock-Free Kick. Lfcuckoo is built on a single-slot cuckoo hashing structure,
where each hash function corresponds to a single slot. The slots are designed
as single words such that atomic primitives can be applied for lock-free pur-
poses. The single item movement in the kicking process is shown in Fig. 2(a).
Lfcuckoo marks the least significant bit (LSB) of the source slot pointer at the
first step of the kick process. Marking the LSB on the source slot helps to pre-
vent the kick operation from blocking write operations. Other write operations
call a helper function to help the “kick out” thread when they detect the kick
mark. The helper function encapsulates the processes of slot copy and source
clearance, making the kicking process lock-free. While this mechanism makes
sense in single-slot cuckoo hashing, it cannot be directly applied to bucketized
cuckoo hashing. As multiple target slots in each bucket can be selected as evictee
by each movement, a helper thread cannot determine to which slot the marked
key should be kicked to.

False Miss. As shown in Fig. 2(b), a false miss refers to the scenario that a key is
present in the hash table but a search operation fails to find it. Lfcuckoo resolves
false misses by detecting the interleaving kicks based on a kicking counter in the
highest 16 bits of the slot. The search operation must be evaluated twice to detect
the modifications to the counter on each slot. A false miss might occur if the
counter changes within any of the two rounds. It then restarts the search process
to make sure whether the key exists. However, using a counter is not entirely safe
as there is a risk of fatal errors resulting from short, recycling counters conflicting
with each other. Additionally, the presence of version numbers occupies the space
available for tags, which is an essential part of reducing memory access and
speeding up searches. On the other hand, version numbers are also inapplicable
to bucketized cuckoo hashing due to the expansion of slot numbers.
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Duplicated Key. Figure 2(c) shows an example of the duplicated key caused by
three interleaved modifications. To address this issue, at any time a duplicated
key is found by a search process, lfcuckoo always removes the key in the later
slot of the search sequence. The solution of lfcuckoo makes sense since each
key has only two possible locations, both cannot be selected as evictees due to
the duplicate key in their alternative slot. However, in the bucketized cuckoo
hashing, a kicking process may be interleaved with the duplicated key check
process. It thus might cause the duplicated key check process to miss duplicated
keys or to get an intermediate state of the kicking out process.

3 Overview of LFBCH

In this section, we provide an overview of our bucketized cuckoo hashing, includ-
ing its data structure and fundamental operations.

3.1 Data Structure

Fig. 3. Data structure of LFBCH with the fine-grained division of its 64-bit slot espe-
cially for supporting lock-free operations.

The basic structure of LFBCH is an array-typed bucketized hash table with
two hash functions and four slots per bucket. Each slot is 64 bits wide and can
be manipulated by atomic primitives. The atomic LOAD result of the slot is
referred to as an entry.

As shown in Fig. 3, the entry can be divided into the following fields:

– Address. A 47-bit address is generally sufficient to locate a key-value pair for
purposes of alignment.

– Target. Used to identify the target slot index of an in-flight entry.
– Kick/Migrate. Mark that the entry is being kicked/rehash migrated.
– Hot. Identify whether an item is frequently accessed.
– Tag. A signature of the hash value for each key. Enhances query efficiency by

filtering out memory accesses to keys with different signatures.

The compact bucket structure of LFBCH is similar to that of libcuckoo,
enabling it to support a load factor of up to 95%. Additionally, with the intro-
duction of lock-free techniques, LFBCH offers significantly better scalability than
libcuckoo, which employs a lock strip for synchronization. Next, we show how
to drive lock-free operations based on the data structures.
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3.2 Basic Operations

In this section, we consider three basic operations, i.e., Get, Put, and Delete.
We focus on the use cases without the kicking and rehash processes and leave
more details of the two processes in Sect. 4.

Get. Given two distinct hash functions, we can determine two target buckets
based on the two hash values of a Get key. We refer to the two hash functions as
the primary hash function and the secondary hash function, and the buckets they
map to as the primary bucket and the secondary bucket, respectively. Searches
always start from the primary bucket and traverse all eight slots across both
buckets. It in turn considers each slot by triggering an atomic LOAD to obtain
the entry thereon. If all of the eight comparisons have failed, a result of a miss
will return. It is worth noting that an interleaving kicking process may issue false
misses, as demonstrated in Fig. 2(b). We will detail the resolution in Algorithm 1.

Put. The semantic of the put operation is inserting when the key is missing and
updating when the key is hit. We will discuss the two cases separately. For an
update operation, only one slot returned from the search process is considered.
Two update strategies are employed. For items whose value length is less than
8 bytes, an in-place update is performed by directly updating the value through
a CAS operation in the value field of the item. For items with larger values, a
Read-Copy-Update (RCU) operation is employed. A new item containing the
new key-value pair is created, and then a CAS operation is used to replace the
old item with the new item. For insertion, if the search process can find an empty
slot, we can employ the RCU-based update to insert the new item. If no empty
slot is found, the kick-out algorithm kicks out a key within the target buckets
to make room for the insertion. After the kick-out algorithm finishes, an empty
slot will appear within the target bucket, and we can perform insertion on the
empty slot. After the insertion, the action to check and resolve the duplicated
key starts. The details are described in Sect. 4.2. Note that if we find a kick
mark on the entry of the target key during the search process. We need to call
the helper function to help kick out and re-execute the PUT operation from the
beginning. The details are covered in Sect. 4.1.

Delete. The Delete operation has similar logic to the Put. If the key is not
found, a failure will be returned. Otherwise, we perform a CAS operation to
replace the target slot with an empty entry atomically.

4 Detailed Algorithm Description

This section will detail the critical designs in lock-free bucketized cuckoo hashing,
including lock-free kicking, preventing duplicated key, lock-free rehashing, and
hotspot perception.

4.1 Lock-Free Kick on Bucketized Cuckoo Hashing

Our lock-free kicking algorithm has two primary components: path search and
item movement along the kick path.
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Path Search. Regarding path search, we have adopted the BFS algorithm
employed by libcuckoo without locking. However, since other threads may mod-
ify the state of the hash table during the search process, the state of the hash
table may be modified by other threads during the path search process. For
example, the empty slot at the tail may be filled with a key after the search path
is formed. Any inconsistencies between the actual state and the kick path are
checked for in the following item movement along the kick path phase. If any
discrepancies are found, the kicking-out process is restarted from the beginning
to ensure correctness.

Item Movement Along Kick Path. Once a kick path is found, the items
need to be moved along the kick path. Proceeding from the tail towards the
head, the process moves one item at a time. The fundamental operations of the
single-item movement process are similar to those performed by lfcuckoo and can
be referred to in Fig. 2(a). We have added our method to prevent false misses
and improve the handling of bucketized environments. The specific method is
shown in Algorithm 1.

Meanings of the key variables adopted by the algorithm are as follows: The
table represents the entire hash table. The source bucket and source slot represent
the bucket and source slot indexes. We abbreviate the two variables as sb and
ss. Similarly, target bucket and target slot are respectively abbreviated as tb and
ts. The source entry represents the value of the uint64 t variable maintained on
the source slot. The kick marked entry is the kick-marked result of source entry.

Two global arrays are defined (lines 1–2) with lengths equal to the number of
global threads. Each thread is mapped to a specific position in the array accord-
ing to its thread id. Padding is used to avoid false sharing issues. The functions of
these global arrays are: hash record. The working thread stores the hazard hash
value of the key calculated by the primary hash function in the corresponding
position of the hash record array at the beginning of every operation, for conflict
detection performed by the kicking threads; retry flags. Once the hazard hash
value of another worker thread is found to conflict with the moving item, the
retry flag at the corresponding position of the reader will be set, indicating this
worker thread might be affected by movement.

The item move function (line 4) begins with two initial checks. The first “if”
statement (line 6) checks if the source slot is empty. If it is empty, the item move
function can return success directly. The second “if” statement (line 8) checks if
the source slot has been marked with a “kick mark” by other threads, indicating
that another thread is concurrently accessing it for an item move operation. A
helper function is then invoked to help the moving process and prevent blocking.
The target slot information has been added to the kick marked entry (line 11) for
a potential helper to obtain (line 18). Otherwise, other threads cannot determine
which slot they should help kick into. The helper will get the target bucket
information by calculating the two possible bucket locations of the intended key
based on the item associated with the kick marked entry. The bucket that differs
from the source bucket is identified as the target bucket.
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Algorithm 1. Lock Free Single Item Movement
1: atomic < bool > retry flags[thread num]
2: atomic < uint64 t > hash record[thread num]
3:
4: function single item move(sb, ss, tb, ts)
5: source entry ← table[sb][ss].LOAD()
6: if source entry == empty entry then
7: return true
8: if is kick marked(source entry) then
9: helper(sb, ss, source entry) � source entry here is kick marked
10: return false

11: kick marked entry ← source entry, ts
12: if !table[sb][ss].CAS(source entry, kick marked entry) then
13: return false

14: return copy(sb, ss, tb, ts, kick marked entry)

15:
16: function helper(sb, ss, kick marked entry)
17: key, hash ← kick marked entry
18: tb ← hash, sb; ts ← kick marked entry
19: copy(sb, ss, tb, ts, kick marked entry)

20:
21: function copy(sb, ss, tb, ts, kick marked entry)
22: if table[tb][ts].CAS(empty entry, source entry) then
23: hash ← source entry
24: set retry if hazard(hash)
25: if table[sb][ss].CAS(kick marked entry, empty entry) then
26: return true
27: if key in(ss, sb) == key in(ts, tb) then
28: hash ← source entry
29: set retry if hazard(hash)
30: table[sb][ss].CAS(kick marked entry, empty entry)
31: return false

32: table[sb][ss].CAS(kick marked entry, source entry)
33: return false

34:
35: function set retry if hazard(hash)
36: for i = 0 → thread num − 1 do
37: if hash record[i].LOAD() == hash then � Check hazard value
38: retry flags[i].STORE(true)

39:
40: function search(key)
41: hash record[thread id].STORE(hash) � Store hazard value
42: while true do
43: bool hit ← search two buckets(key)
44: if hit then
45: return key hit
46: else if retry flags[thread id].LOAD() then
47: retry flags[thread id].STORE(false)
48: continue
49: else
50: return key miss

51:

In the copy function (line 21), a CAS operation is first used to update the
target slot with the source entry (line 22). If the CAS operation succeeds, a CAS
operation is then used to clear the source slot (line 25). If this clearing operation
succeeds, the copy operation is considered successful and the function returns
true.

Before clearing the source slot (line 25), the function set retry if hazard is
invoked to prevent other threads from returning false misses that may have been
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affected by the item movement process. This function (line 35) traverses the
hash record array to determine if the hash value of the key being moved conflicts
with the hazard hash value of a key being operated on by another thread. If it
is, the retry flag of the corresponding thread is set, informing other threads that
the search may have been affected by the item movement process and a false
miss may have occurred. To avoid false misses, the search algorithm (line 40)
begins by storing the hash value of the target key in the corresponding position
of the hash record array. If it gets a miss and the corresponding retry flag is
set, it indicates that the miss may be a false miss. In this case, the retry flag is
cleared, and the search operation is performed again.

If either of the two CAS operations (line 22, line 25) fails, it indicates that
the state of the hash table has been modified by another thread, and failure
handling is required. Firstly, it is necessary to check whether the keys in the
target and source positions are the same. If they are the same, it means that
another thread has already completed the entry copying operation. In this case,
the source slot needs to be cleared (lines 28–30), and the function returns false. If
the keys are not the same, it means that either the target slot or the source slot
has already been modified by another thread. In either case, the copy operation
cannot succeed. At this point, a CAS operation is used to attempt to clear the
kick-out mark in the source slot (line 32) and restore it to its state before the
mark was set. The function then returns false.

4.2 Prevent Duplicated Key

Unlike the temporary duplicated keys that may arise during item movement, the
presence of duplicated keys resulting from distinct threads inserting the same
key into different empty slots can cause errors in the hash table. We conduct a
post-checking step after each insertion to solve this problem.

The specific methodology is shown in Algorithm 2. The check duplicate key
function is called after each successful insertion. The duplicated key check will
pass only when the number of target keys in the obtained snapshot equals 1.
Since in the vast majority of cases, post-checking only scans buckets that have
already been scanned during the search phase and passes the check without
introducing additional overhead, our post-checking mechanism is efficient.

4.3 Lock Free Rehash

When the load factor of the hash table is excessively high, rehash is necessary.
Similar to that of libcuckoo, our rehash mechanism employs a lazy rehash strat-
egy, whereby items are shallow-copied gradually from the old table to the newly
created table. However, unlike libcuckoo, we use a global atomic bitmap to iden-
tify whether each bucket has been migrated. Moreover, for each item migration
from the old table, we use a mechanism similar to the single item movement
within a table, but with migrate marks instead of kick marks. Therefore, the
guarantee of lock-free rehashing is ensured.
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Algorithm 2. Post-checking Process for Duplicated Key
1: //b : bucket index, s : slot index
2:
3: function check duplicate key(key)
4: Start :
5: Initialize snapshot
6: for each slot in two buckets do
7: snapshot.append(〈b, s, slot.LOAD()〉) � 8 slots in total

8: if retry flag[thread id].LOAD() then
9: retry flag[threadid].STORE(false)
10: goto Start

11: count = 0
12: for 〈b, s, entry〉 in snapshot do
13: if is kick marked(entry) then
14: helper(b, s, entry)
15: goto Start

16: key extract ← entry
17: if key equals key extract then
18: task ← b, s, entry
19: count++

20: if count ≤ 1 then
21: return
22: else
23: table[task.b][task.s].CAS(entry, empty entry)
24: goto Start

4.4 Hot Key Perception and Adjustment

Although bucketized cuckoo hashing minimizes memory access and cache misses
due to its compact slot layout, queries on keys in the secondary bucket result
in one additional cache miss compared to the primary bucket. Additionally, due
to skewed key distribution in practice, when a hotspot key is placed in the
secondary bucket, accessing it incurs additional overhead. Therefore, we have
optimized our implementation by placing hotspot keys as far forward as possible
in the primary bucket to reduce the number of comparisons required for access.

The specific method of adjusting hotspots is to displace the first non-hotspot
key located before the hotspot key in the search sequence and subsequently place
itself in the vacated position. The process of displacing a key is the same as the
kicking process, except that there is no cascading displacement. If the secondary
bucket of a non-hotspot key is full, it is skipped. Hotspot keys are determined
based on whether the slot has a “hot” mark, which is applied the first time
the key is updated. Considering the scenarios with their hotspots frequently
evolving, the “hot” marks on all the slots in the bucket will be cleared after each
successful adjustment of a hotspot key. If all the keys before the search sequence
of a hotspot key are hotspot keys, no adjustment is performed.

5 Experiments

In this section, we evaluate the performance of LFBCH using YCSB benchmarks.
We compare the throughput and scalability of LFBCH with that of libcuckoo
and the hash table faster [3] use. We also provide the results with the hotspot
optimization.
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Table 1. Load factor within differ-
ent slot number

Slot Per Bucket 1 2 4 8

Load Factor 50% 87% 95% 95%

Environment. We conducted experiments
on a machine comprising two AMD EPYC
7742 64-Core Processors with 1.50 GHz pro-
cessors. Each processor has two sockets, each
with 64 cores. The RAM capacity is 1024
GB. It runs Ubuntu 16.04.7 LTS OS with
Linux 4.4 kernel. Only 64 cores in one socket were utilized, and each thread was
bound to a specific core. Jemalloc library is used to allocate memory. All code
is compiled using gcc/g++−7.5.0 with parameter −O2. Memory reclamation
is not carried out to eliminate the influence of different memory reclamation
algorithms on the hash table throughput.

BaseLine and Workloads. We employed libcuckoo and the hash table faster
uses in contrast to LFBCH. As shown in Table 1, since each bucket in lfcuckoo

Fig. 4. The throughput under different load factors and different YCSB loads varies
with the worker threads.
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only has a single slot, the load factor cannot exceed 50%, making it impractical
and thus not included in the comparison experiments. In each test, the number
of buckets for Libcuckoo and LFBCH was set at 227. Because of the batch chain
structure of the faster hash table, it has half as many buckets. We conduct exper-
iments using the YCSB core workloads A, B, and C [6]. The Zipfian distribution
parameter in YCSB is set to 0.99. For each item, we set both the key size and
the value size to be 8 bytes.

Results. The throughput test result is shown in Fig. 4. We observed that the
throughput of libcuckoo decreases when the number of threads exceeds 16 in all
cases. At 64 threads, the throughput is less than five million requests per second.
In contrast, the throughput of LFBCH increases linearly for all thread counts.
When the load type is the same, the performance of each hash table is better
when the load factor is low, compared to when the load factor is high.

Fig. 5. Hotspot adjustment result

We focus on the situation with a load
factor of 46% to reflect general conditions.
Under YCSB A load, LFBCH achieved the
highest throughput of 148 million requests
per second at 64 threads, while faster’s
throughput was only 41 million requests
per second. Faster and libcuckoo achieved
their highest throughputs at 40 and 8
threads respectively, but LFBCH was still
127% and 428% higher than their high-
est throughputs, respectively. The reason
for the performance degradation of faster
is the result of RCU update contention.
Under YCSB B load, LFBCH had the highest throughput of 168 million requests
per second, 14% higher than faster’s highest throughput and 360% higher than
libcuckoo’s highest throughput. Under YCSB C load, LFBCH had the highest
throughput of 18 million requests per second, 6% higher than faster’s highest
throughput and 350% higher than libcuckoo’s highest throughput. Faster and
LFBCH perform similarly under YCSB C loads because faster uses the same
atomic load and tag acceleration mechanisms for search as LFBCH.

We used YCSB C load with a Zipf coefficient of 1.22 to experiment with our
hotspot adjustment strategy in skew workload. LFBCH-A represents the results
obtained after enabling the hotspot adjustment. As shown in Fig. 5, The perfor-
mance of LFBCH improved by 19% after hotspot adjustment and optimization.

6 Related Works

Various hash tables based on cuckoo hashing have been widely addressed. The
primitive cuckoo hash algorithm was first proposed in 2004 [14] in which each key
is mapped to two positions using two hash functions, and insertion is guaranteed
by the use of a “kick out” operation. The primitive version has a low load factor
and no concurrency scheme.
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Memc3 [8] allows multiple readers and a single writer concurrently access the
bucketized cuckoo hashing. Xiaozhou Li’s work [10] introduced HTM into bucke-
tized cuckoo hashing. It has inherent limitations of HTM, which can lead to sig-
nificant performance degradation when transactions fail frequently. As a widely
used cuckoo-based hash table, libcuckoo [11] employs a bucketized structure and
utilizes fine-grained locks to control concurrent access. However, the performance
degradation caused by the competition when the number of threads increases
cannot be avoided. Lfcuckoo [13] made a Lock-free improvement to the primi-
tive cuckoo hashing, but it has not been extended to bucketized cuckoo hashing,
leading to low space utilization efficiency. Level hash [5] has also employed a lock-
free technique in bucketized cuckoo hashing, but it is designed for the scenario
of persistent memory.

The work of hotspot adjustment for our hash table is inspired by hotring [4].
It speeds up the performance of the chained hash table in the case of data skew
by pointing the linked list header pointer to the hotspot key.

7 Conclusion

We introduced lock-free techniques into bucketized cuckoo hashing and proposed
LFBCH, which paves the way toward scalability and high space efficiency. All
of the operations over LFBCH are guaranteed to be lock-free, without intro-
ducing notorious problems like false miss and duplicated key. Lock-free rehash
and hotspot adjustment are also implemented in LFBCH. The throughput of
LFBCH is 14%–360% higher than other popular concurrent hash tables.

Accessing the same shared data structure introduces additional latency when
the working threads are distributed across CPU sockets. In the future, optimiza-
tions can be made to improve the performance of LFBCH in scenarios where it
is distributed across CPU sockets.
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Abstract. Memory and power-sensitive edge devices benefit from quan-
tized models based on precision-scalable CNN accelerators. These accel-
erators can process CNN models that with different data precisions,
which rely on the precision scalable multiply-accumulate (MAC) unit.
Among all types of MAC units, the spatial precision scalable MAC (SPM)
unit is an attractive one as it is flexible and can convert the decrease in
data width into an increase in throughput. However, it becomes energy-
inefficient due to the need for more shifters and high-width adders as
the bit width of the operand increases. Taking advantage of the limited
number of unique products of 2-bit unsigned multiplication in the exist-
ing SPM, this paper proposes a new MAC method based on the unique
product histogram, which is orthogonal to the existing methods. Based
on the proposed MAC method, this paper also proposes the BitHist,
an efficient DNN accelerator that exploits both bit-level and data-level
sparsity. The evaluation results illustrate that BitHist saves 57% of the
area compared to the BitFusion and provides up to 4.60× throughput
per area and 17.4× energy efficiency. Additionally, BitHist can achieve a
2.28× performance gain from sparsity exploitation.

Keywords: CNN accelerator · precision-scalable ·
multiply-accumulation · sparse exploration

1 Introduction

Convolutional Neural Network (CNN) based models have achieved gratifying
performance in computer vision [23], autonomous decision making [15], and nat-
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Fig. 1. Three types of precision-scalable MAC. (a) Traditional method. (b) TPM
method. (c) SPM method.

ural language processing [7]. However, due to the vast parameters and inten-
sive computing, the deployment of these models on edge devices is permanently
restricted by limited storage capacity and computing resources. Common com-
pression techniques, including low-rank compression [8], knowledge distillation
[5], pruning, and quantization [6] are employed to reduce the computational and
storage load on edge devices.

Quantization can reduce off-chip data access and power consumption by
reducing the weight or activation to 16bit or even 1bit without significantly
reducing the accuracy of the model [3,14,16,20,25]. There have been already
many CNN accelerators that can support quantized network deployment [1,2,
11,24]. Still, they generally only support one quantized data precision, which
cannot fully benefit from quantized models. Other work aims to fully exploit the
potential of quantization techniques to improve performance since the data bit
width of CNNs is variable among layers [17] or groups [4]. These multi-precision
accelerators [9,13,18] are compatible with the computation of multiple data bit
widths in CNN models.

The primary calculation mode of CNN is multiply-accumulate (MAC) calcu-
lation, so the accelerator’s ability to calculate the mixed-precision model comes
from the precision-scalable MAC unit. Figure 1 shows three designs of precision-
scalable MAC units. One traditional precision-scalable MAC [19] is designed to
compute multiplications of low-bit-width data by gating the computational unit.
But it is wasteful regarding throughput per area since it leaves many idle gates.
Another type is temporal precision-scalable MACs (TPM) such as Bit-Serial [12].
It produces and temporally accumulates several partial products for a multiplier.
However, the processing time of TPM increases quadratically with bit width in
the case of symmetric precision.
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Some other types of attractive design are spatial precision-scalable MACs
(SPM) such as BitFusion [22]. The subunits array in a high-bit-width MAC can
be recombined as several multipliers with reduced precision. SPM can translate
reductions in data precision into improvements in throughput and energy effi-
ciency while maintaining high hardware utilization. Even with the above exciting
benefits of SPM, the additional adder and shift logic will incur significant area
overhead as scale increases to support the parallel additions of partial products
into a single final product.

To overcome the shortcomings of the above MAC architectures, this paper
proposed a new precision-scalable MAC method orthogonal to existing work.
Based on the new MAC method, we propose an energy-efficient precision-scalable
DNN accelerator called BitHist. We highlight our contributions as follows:

– This paper proposes a method for bit-width scalable MAC based on his-
togram by taking advantage of the finite unique products (UPs) of the 2-bit
unsigned multiplication in the SPM method. It avoids many redundant 2-bit
multiplications in the SPM method and saves half of the area.

– The proposed method simultaneously exploits bit-level and data-level spar-
sity. The encoding we adopt avoids potential slice products with value 0. We
employ flag distillation to address the flag sparsity introduced in the proposed
method, which further improves the throughput per area of the MAC unit
and makes it sensitive to data-level sparsity.

– Based on the above method, we construct BitHist, an area-efficient precision-
scalable DNN accelerator. The evaluation results show that it is 4.60× area
and 17.4× energy efficient than the existing work without exploiting sparsity.
With exploiting sparsity, BitHist can achieve a 2.28× performance gain.

The rest of this paper is organized as follows. Section 2 reviews BitFusion
and its redundant computations. Section 3 describes our method based on the
histogram of UPs. Section 4 explains the architecture based on the method
mentioned in Sect. 3. Section 5 illustrates the performance of our architecture.
Finally, Sect. 6 gives the conclusion.

2 Motivation

2.1 Bit-Level Fusion and Decomposition

As a typical architecture of the SPM method, BitFusion can provide precision
flexibility by splitting the operands into bit slices. More specifically, when a
MAC operation involving L pair multiplications is performed spatially, the p-
bit x and q-bit y are split into 2-bit slices as shown in Fig. 2(a). M×N signed
multiplications of slice pairs are calculated. The partial sums of the result are
obtained by multiplying the product of signed multiplication with a shift factor
αm,n. The computing paradigm of 2-bit-based SPM can be described by (1) and
(2), where slc.x[m] is the (m+1)th 2-bit segment of x.



292 Z. Meng et al.

Fig. 2. The redundant computations in slice-level multiplications. (a) The operands
segmentation and sign extension in BitFusion. (b) The number of operations that can
be reduced to unsigned multiplication at different data precisions, S means signed
multiplication, and US means unsigned multiplication. (c) All combinations of 2-bit
unsigned multiplication.

SUM =

L−1∑

l=0

xpb,l · yqb,l =

L−1∑

l=0

M−1∑

m=0

N−1∑

n=0

slc.x[m] · slc.y[n] · αm,n,l (1)

with
M = p/2, N = q/2, αm,n = 22(m+n) (2)

2.2 The Redundant Computation in Bit-Level Computation

The multiplications between slice pairs are performed in the array shown in
Fig. 1(c). The basic unit consists of a multiplier called BitBrick (BB) and a
configurable shifter named BitBrick Shifter (BBS). All slices are extended to a
3-bit signed number according to their positions and source operands signs. The
slices without sign bit will be extended with sign bit 0, and the slices with sign
bit will be extended with the sign bit of the source operand. A basic observa-
tion is that multiplications between 3-bit signed numbers whose sign bit is 0
are equivalent to multiplications between 2-bit unsigned numbers. Figure 2(b)
lists the number of equivalent 2-bit unsigned multiplications when performing
different precision MAC operations in an array with 64 basic units. The num-
ber of equivalent unsigned operations increases as the bit width of the operand
becomes larger. Figure 2(c) shows the combinations of 2-bit number multipli-
cations. There are only nine valid combinations and six UPs of 2-bit unsigned
multiplication, which means that many calculations in the BBs are repeated.
Such redundancy increases with the improvement of data precision. The case
is further exacerbated when the sign of the operand is 0. This inspires us to
reduce the area overhead of the SPM method and to improve energy efficiency
by exploiting the redundancy.

3 MAC Based on Bit-Slices Products Histogram

This section describes the proposed histogram-based MAC method. It has been
mentioned that if the operands of a signed multiplication are positive, all of the
slice multiplications are equivalent to 2-bit unsigned multiplications. This is still
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Fig. 3. Calculation of Nk.

the case when both operands are negative. However, in a general MAC, not every
product is positive, which determines that the multiplication between bit slices
in Eq. (1) must be a signed operation. To unify all multiplications of bit slices
into unsigned multiplications, we use Eq.(3) to calculate the MAC of the absolute
values of the original operands and absorb the signs of the slc.x[m] · slc.y[n] into
the shift coefficients αm,n,l.

SUM =

L−1∑

l=0

|x|pb,l · |y|qb,l =

L−1∑

l=0

M−1∑

m=0

N−1∑

n=0

slc.|x|[m] · slc.|y|[n] · α′
m,n,l (3)

with
α′

m,n,l =

{
αm,n,l , xl · yl > 0

−αm,n,l , xl · yl < 0
(4)

As |x| and |y| are positive, slc.|x|[m] · slc.|y|m can be calculated as an unsigned
multiplication. As Fig. 1(c) shows, there are six UPs in the multiplication of 2-bit
unsigned segments, so we can further express (3) as

SUM =
∑

k=1,2,3,4,6,9

∑

α′∈A

α′
m,n,l · k =

∑

k=1,2,3,4,6,9

Nk · k (5)

Equation (5) provides a new method of MAC unit design. It shows that
we can convert the calculation of MAC result into solving the coefficients of
UPs, that is, building a histogram for UPs. We present an example in Fig. 3 to
illustrate how to calculate the coefficient Nk of the unique product k in a 16-bit
fixed-point multiplication. The left side of Fig. 3 is a simplified BitFusion array
that performs x16b×y16b. The black number indicates that the unique product k
appears at this position. We use ci,k to represent the total number of occurrences
of k in the area that needs to be shifted left by 2i bits. If x16b× y16b is a positive
number, one occurrence is recorded as +1; otherwise, it is recorded as −1. Then
Nk can be obtained by Nk =

∑14
i=0(ci,k×22i). It is worth mentioning that Nk can

be obtained by shifting and splicing ci,k without multiplication and too many
additions.

The compatibility to 8-bit MAC is shown in Fig. 4. It shows the calculation
of Nk when

∑3
l=0 x8b,l × y8b,l is performed. With 8-bit precision, the bit slice

product will be shifted to the left by fewer bits, but more products will be shifted
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Fig. 4. Precision compatible method. The architecture corresponding to the calculation
process shown in Fig. 3 is reused through data rearrangement. The gray background in
the figure indicates that the product of the operands is negative.

by the same number of bits. For instance, there are three bit slice products that
will be shifted by 4 bits in the 16-bit case, but there are twelve products in the
8-bit case that will be shifted by 4 bits. As a result, the architecture used to
compute c2,k,16b cannot be used directly to compute c2,k,8b. This problem can
be solved by rearranging the bit slice pairs. In this way, the calculation of c2,k,8b
is divided into two parts, which uses the calculation architecture of c4,k,16b and
c6,k,16b. The MACs of other precisions are processed in the same way, including
the calculation of asymmetric quantized data.

It is worth mentioning that the precision-scalable MAC method we proposed
is transparent to software stacks and programmers. It can be easily compatible
with the existing precision-scalable accelerators.

4 BitHist Accelerator

Based on the above MAC method, we proposed a precision-scalable sparse-
awareness DNN accelerator called BitHist. A single MAC’s architecture and data
flow is described in Sect. 4.1. Then Sect. 4.2 introduces the design of BitHist,
including data tiling, overall architecture, and sparsity exploration.

4.1 MAC Unit Based on Bitslices Products Histogram

The architecture of a single MAC that can calculate x16b×y16b,
∑3

l=0 x8b,l×y8b,l,∑15
l=0 x4b,l × y4b,l, and

∑127
l=0 x2b,l × y2b,l is shown in Fig. 5(a). The Preprocess

and Reshape Unit (PRU) converts all operands to positive numbers and splits
the positive numbers into 2-bit slices. In Unique Product Encoder (UPE), the
64 pairs of reshaped bit slices from PRU are encoded as six 64-bit vectors, each
giving the distribution of six unique products among these segment pairs. Each
vector is processed in a branch to generate the partial sum Nk · k. The branch
consists of two units, Histogram Generator (HG) and PSUM Generator (PG).
HG calculates the coefficients ci,k according to the vectors and generates Nk

by concatenating the coefficients ci,k. Next, the PSUMs of each unique product
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Fig. 5. (a) The overall architecture of BitHist. (b) Unique Product Encoder(UPE). (c)
Histogram Generator(HG). (d) PSUM Generator(PSUM Gen).

can be computed in PG in a hardware-friendly way. The MAC Result Genera-
tor(MRG) is a six-input binary tree adder that produces the final results.

Preprocess and Reshape Unit(PRU). The absolute values of operands are
split into 2-bit slices, and the slice pairs are rearranged in a pre-defined order
in the PRU. A sign bit of each multiplication result in a MAC is obtained from
original operands with XOR gates. The sign bits are reordered the same way as
the slice pairs are.

Unique Product Encoder(UPE). UPE generates a 6-bit one-hot vector for
each 4-bit slice pair to indicate which of the six unique products the product of
this slice pair is. As Fig. 5(b) shows, sixty-four 6-bit one-hot vectors generate six
64-bit flags for each unique product, each of which gives the positions where the
unique product appears. Based on the flags, we can get the number of occurrences
of each unique product. It is worth mentioning that each one-hot code generation
only uses a few gates instead of a 2-bit unsigned multiplier, and the overhead of
this unit can be amortized due to the data reuse in DNN.

Histogram Generator(HG). As Fig. 5(c) shows, HG receives the flagk from
UPE and signs from PRU to generate coefficients ci,k. Due to the rearrangement
of all pairs, we can get ci,k by adding the bits in a certain segment of flagk.
For example, c1,k,16b can be calculated by adding up the bit of flagk[2 : 1] , and
c13,k,16b can be computed from flagk[60 : 58]. The bits in the flag are signed (+1
or −1), and the sign depends on the original operands’ product at that position.
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Equation (9) explains that the Nk is the weighted sum of ci with powers
of 2. This paper achieves it by concatenating the coefficients ci,k instead of
using configurable shifters and adder trees. It is a hardware-friendly design as
we concatenate the number of unique products with a smaller width instead of
adding up partial sum with a larger width, which means we can concatenate
more ci in a fixed shift mode and get only three 30-bit numbers. The concat of
16-bit fixed-point multiplication is shown in Fig. 5(c) with

A6 × 25 + B6 =

{ {A6, b4, b3, b2, b1, b0} , b5 = 0
{(A6 − 1), b4, b3, b2, b1, b0}, b5 = 1

(6)

The bit width of the coefficients in Fig. 5(c) is determined by their maximum
possible value. For example, The absolute value of c7,k,16b ranges from 0 to 8, so
its bit width is 4.

PSUM Generator(PG). PG generates the PSUM of each unique product. PG
also executes Nk ·k in a very efficient way. Figure 5(d) shows how the partial sums
corresponding to the six unique products are generated. N ·1, N ·2, and N ·4 can
be implemented by simply splicing 0 after the LSB. N · 3 can be implemented
by adding up N and {N, 1′b0}, N · 6 can be achieved by adding up {N, 1′b0}
and {N, 2′b0}, and N · 9 can be achieved by adding up N and {N, 3′b0}.

The architecture is able to achieve the high throughput of 2-bit precision
MAC. The value range of a 2-bit signed number is -2, -1, 0, and 1. It only has
three unique products (i.e., 1, 2, and 4) when the precision of operands is 2bit.
N · 3, N · 6 and N · 9 can be reconfigured as {N, 1′b0}, {N, 2′b0}, and N , so the
six branches can calculate two MACs in 2-bit case.

Vector Implementation. As shown in Fig. 5(c), the sign bit in the splicing
mode is greater than 1 bit when calculating the multiplication of 16-bit fixed-
point numbers. It means that the value of coefficient ci can be further expanded,
and the splicing result is still correct. We can increase the bit width of flagk up
to 256bit to calculate

∑3
l=0 x16b,l × y16b,l,

∑15
l=0 x8b,l × y8b,l,

∑63
l=0 x4b,l × y4b,l,

and
∑511

l=0 x2b,l × y2b,l.

4.2 Dataflow and Architecture of BitHist

Mapping to Matrix Multiplication for Convolution Layers. BitHist
adopts NVDLA-like [10] dataflow. The input activation and kernels are divided
into several data cubes, and the channel of each data cube is c byte. BitHist
calculates the channels of the output activation in parallel. As what Fig. 6(b)
shows, matrix multiplication between data cubes W i

0(i = 1, 2, ..., k) and A0 are
performed in parallel. Then, W i

0 will be reused until all matrix multiplications
related to W i

0 during convolution have been performed (A0, A1, ..., As in block0,
see Fig. 6(a)). After that, W i

1(i = 1, 2..., k) is loaded, and A1, A2, ..., Ap in block1
will be calculated with them in serial. The activation data cube is updated in
the order of 1,2,3 in the circle which is shown in Fig. 6(a). The activation data
cube is reused in different blocks, and the weight data cube is reused within a
block.
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Fig. 6. Mapping to matrix multiplication for convolution layer.

Architecture of BitHist. The overall architecture of BitHist is shown in Fig. 7.
Activation and weight data are loaded from off-chip DRAM via DMA and sent
to the activation buffer (blue) and weight buffer (green). PRU and UPE serially
process the data in each buffer and generate the flags of rearranged bit slices.

The PE groups in BitHist calculate 16 output activation channels in parallel,
and each PE group computes activations in an output channel plane. There are
four sparsity-sensitive BHPEs in a PE group, and each BHPE consists of three
MAC units.

The unique product flags are generated in two steps. In step 1, the rearranged
bit slices’ flags of activation and weight are generated separately. In step 2, the
unique product flags are generated in the PE groups by bitwise AND of the
operands’ flags. For example, the rearranged flag of activation slices is flagat01 =
0011, and the rearranged flag of weight slices is flagwt11 = 1010. We can get
the flag of unique product 3 which is 0010 by flagUP0011 = flagat01&flagwt11,
which indicates that the product of the second slice pair among the rearranged
pairs is 3.

Sparsity Exploitation in BHPE. As shown in Fig. 5(b), the flag vector
obtained by UPE is sparse. Two factors cause this sparseness. First, when UPE
encodes the reordered slices, the combination with a product of 0 is naturally
encoded as 0. Second, the encoding vector generated by UPE for each pair is
one-hot, which makes it impossible for two 1 to appear in the same position of
the six flag vectors. This inherent property of the flag vector allows us to explore
sparsity to improve performance further. We take the distillation operation to
process the same flag vector (such as flag1) of different MAC units. As Fig. 7
shows, there are three flag1 vectors (flag11 , flag21 , and flag31) from three MAC
units in a BHPE, which represents the occurrence of the unique product 1 in
each MAC. It will take three cycles to generate coefficients for these vectors
sequentially without additional processing. Now, if we perform the distillation
operation on the vectors, that is, distilling all flag bit 1 into the upper position,
there will be a chance to shorten the execution time to two cycles or one cycle.
This mechanism effectively reduces the invalid calculation caused by sparse flags.
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Fig. 7. The overall architecture of BitHist.

It can also take advantage of data-level sparsity as the flags encoded from value
zero have only bit 0. When the flag bits in the six branches of the three mac are
all calculated, BHPE requests new data from the operands buffer.

5 Evaluation

5.1 Experiment Methodology

We implement the BitFusion [22] with 64 basic units as our baseline, and we
also implement two state-of-the-art precision-scalable CNN accelerators, Sub-
word Parallel [19]and Loom [21], which are shown in Fig. 1(a) and Fig. 1(b). All
the above architectures are designed to support up to 16-bit precision data cal-
culation. We implement them using Verilog RTL. We use Synopsys Design Com-
piler for synthesis and PrimeTime PX for the power evaluation. The technology
node is SMIC 28 nm, and the frequency is 200 MHz. Furthermore, we perform
inference on LeNet, ResNet18, and VGG16 using a custom cycle-accurate simu-
lators with the MNIST dataset. The proposed method and architecture do not
affect the accuracy of calculation, so the choice of models and datasets does not
affect the metrics at the architecture level. The metrics are obtained by averaging
the metrics of the three networks.

We first report the metrics of a single BitHist MAC unit and compare it with
BitFusion to demonstrate the effectiveness of our method in removing the redun-
dant 2-bit multiplications. Then we tested the throughput and energy efficiency
of the four architectures on the selected benchmark. In each precision case, the
activation and weight are quantized to 2bit, 4bit, 8bit, and 16bit, respectively.
Since none of the three comparison works has exploitation of sparsity, we use
the non-sparse version of BitHist (BH-NS) for the above comparison. Finally, we
show the performance gain of BitHist with the sparsity exploitation.
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Fig. 8. Area and power of BH-NS. (a) Area and power breakdown. (b) Area overhead
compared with BitFusion. All values in the figure are matrics of a single MAC rather
than vector MACs.

5.2 Area and Power at MAC Unit Level

Figure8(a) shows the area and power breakdown of a BitHist MAC unit. It can
be seen that HG generates the main area and power overhead. It is because HG
needs more adders to get the number of unique products. Besides, to achieve
precision compatibility shown in Fig. 5(c), an adder tree is implemented in HG.

Figure8(b) shows the area overhead comparison between a BitHist MAC unit
and a BitFusion MAC unit. We implement BitFusion in the same data reuse way
as BitHist to distribute the area overhead of its PRU. At a single MAC unit level,
BitHist MAC still saves 57% area overhead to BitFusion. It is mainly due to the
hardware-friendly design of the architecture. The bit width of the adder’s input in
HG is low, and Nk ·k can be calculated with low hardware cost. Evaluation results
show that calculation of PSUM0001, PSUM0010, and PSUM0100 does not incur
any area and power overhead. Another key area-saving design is that BitHist
uses concat operations instead of expensive shift logic and binary adder trees.
Six branches yield 18 partial sums in total, which greatly reduces the overhead
of the final adder tree compared to BitFusion’s 64 partial sums (the red part
in Fig. 8(b)). Besides, the area overhead of the concat and adder tree of HG
can be amortized due to the vector MAC design. In addition, data reuse will
further amortize the area overhead of UPE in BH-NS at the accelerator level,
which increases the throughput per unit area of BH-NS to nearly 2.33 × that of
BitFusion.

5.3 Performance Comparison

Latency. Both BitHist, BitFusion and Subword Parallel can be pipelined and
they can produce a valid result per cycle after several cycles latency. But the
Loom cannot be effectively pipelined as it divides a complete calculation into
several slices productions in the time dimension, and there is a considerable delay
before each valid result is produced.

Area and Power Efficiency. Figure 9(a) shows the normalized throughput
per area (NTPA) comparison, and Fig. 9(b) shows the normalized energy effi-
ciency (NEE) comparison. Metrics in the different precision cases are normalized
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Fig. 9. Evaluation results. (a) Comparison of normalized throughput per area (NTPA).
(b) Comparison of normalized energy efficiency (NEE). All accelerators are imple-
mented as symmetric precision scaling. (c) Comparison of TPA between BH-NS and
BH when executing the unpruned models. It shows the performance boost of BitHist
with bit-level sparsity exploitation. (d) Sparsity sensitivity of BitHist, and it shows the
performance boost with data-level sparsity exploitation.

to BitFusion’s performance ratio. Subword Parallel has more advantages when
computing high-precision data. But the TPA and EE decrease rapidly as the
data bit width decreases, mainly due to the waste of a large number of comput-
ing resources caused by gating. The bit-serial approach suffers from low TPA
and EE due to the register area and energy overhead. On the contrary, the TPA
and EE of BitFusion and BitHist can show quadratic growth with the reduction
of data bit width.

Furthermore, thanks to avoiding redundant bit slice multiplications and
adopting a hardware-friendly design, BitHist is superior to BitFusion in terms of
TPA and EE. In the 2-bit case, the TPA of BitHsit is 4.60× that of BitFusion,
and it is 2.30× that of BitFusion in other cases. In each precision case, the energy
efficiency of BitHist is 5.74×, 7.62×, 10.05×, and 17.40× that of the baseline.
It is worth mentioning that our work has extremely advantageous TPA and EE
in the 2-bit case. The branches of unique products 3, 6, and 9 can be reconfig-
ured to compute unique products 1, 2, and 4. Therefore, in the case of 2bit, the
throughput of BitHist is doubled, with a few additional bandwidth costs paid.
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5.4 Performance Boost with Sparse Exploitation

The distillation of the flags makes BH exploit the bit-level sparsity. It further
amortizes the hardware overhead of HG since it enables the generation logic
of coefficients ci in HG to handle more than one flag vector in a cycle. At the
same time, reducing the number of 0 in the flag vector also improves the effi-
ciency of HG. Yet, it must be pointed out that the distillation operation itself
introduces overhead. This is a design trade-off, and the overhead of distilling
four or more flags simultaneously is unacceptable. We implement three-flag dis-
tillation in BitHist. Figure 9(c) shows the boost of NTPA with flag distillation.
Compared with BH-NS, BH has achieved NTPA gain except for the 2-bit case.
This is because the unique product of 2-bit unsigned multiplication is less, and
the flag is denser. The distillation of the flags also makes BHPE benefit from
data-level sparsity. We manually pruned the models and evaluated the sparsity
sensitivity of BitHist. Figure 9(d) shows the performance improvement of BH at
different levels of model sparsity. The results show that BitHist can achieve a
performance gain of up to 2.28× from sparsity exploitation.

6 Conclusion

This paper proposes a multiply-accumulation method based on the histogram of
the unique products of unsigned 2-bit multiplication. It effectively alleviates the
high hardware overhead caused by the configurable logic of the spatial precision-
scalable MACs. This paper also introduces an accelerator based on the proposed
MAC method. The results demonstrate that the accelerator without sparsity
exploitation can provide at most 17.40× higher energy efficiency and 4.60×
higher throughput per area than baseline in various precision cases. Benefit-
ing from the bit-level and data-level sparsity, the accelerator’s performance is
further improved.
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Abstract. Near-storage data processing and computational storage
have recently received considerable attention from the industry as
energy- and cost-efficient ways to improve system performance. This
paper introduces a computational-storage solution to enhance the perfor-
mance and energy efficiency of an AI training system, especially for train-
ing a deep learning model with large datasets or high-dimensional data.
Our system leverages dimensionality reduction effectively by offloading
its operations to computational storage in a systematic manner. Our
experiment results show that it can reduce the training time of a deep
learning model by over 40.3%, while lowering energy consumption by
38.2%.

Keywords: Deep Neural Networks · Computational Storage ·
Near-Storage Data Preprocessing · Model Training · Energy Efficiency

1 Introduction

Deep neural networks (DNNs) have played a pivotal role in numerous domains
such as computer vision, natural language processing, biomedical analysis, and
robotics. However, their development and deployment present challenges. When
training a DNN model on a large dataset or high-dimensional data, storing all the
training data in GPUs can quickly become impractical due to the limited memory
capacity of GPUs, leading to out-of-memory errors and thus preventing further
training. To overcome this problem, one can access the data in smaller, buffered
chunks by partitioning the data. Nonetheless, even with data partitioning, there
are still limitations due to the relatively slower growth of memory performance.

The speed at which data can be read from memory is slower than the speed at
which data can be processed in GPUs, which makes accessing data from memory
become a bottleneck. This can slow down the training process and potentially
cause issues with model convergence. The problem is further compounded when
multiple epochs of training are required or when hyperparameter tuning is nec-
essary. In such cases, the same data must be repeatedly accessed, leading to
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J. Cano et al. (Eds.): Euro-Par 2023, LNCS 14100, pp. 304–319, 2023.
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even slower storage access and exacerbating the performance bottleneck. This is
known as the “GPU memory capacity wall” [17]. As the size of the dataset and
the complexity of the model increase rapidly, the amount of memory required to
store the data also goes up dramatically.

To cope with the memory problem associated with training a DNN model,
one common approach is to distribute the training of each model across multiple
GPUs [12]. This approach involves splitting the dataset or model variables across
the GPUs, resulting in faster training time and improved performance. However,
it can lead to a linear increase in GPU and energy costs. Another recent approach
is to take advantage of the host CPU memory as a buffer to offload some of the
impending tensors during training [9]. However, this approach can result in low
training throughput and significant CPU memory interference in practice, which
motivates the need to relieve the burden of utilizing the CPU during training.
Instead of addressing the memory problem at a hardware level, an orthogonal
approach is to preprocess the training data in a way that accelerates model
training while mitigating the memory problem.

Dimensionality reduction (DR) is one such approach that can be leveraged,
especially for high-dimensional data that often contain a lot of redundant fea-
tures and thus increase space and computational time complexity while being
prone to overfitting. In particular, random projection (RP) [2] can effectively
reduce the computation and storage burden of deep learning without significant
information loss. One of its key advantages is its tangible benefits to counteract
the burdensome computational requirements and its versatile ability to meet the
needs of real-time processing [8]. Besides, unlike other techniques such as prin-
cipal component analysis (PCA) and independent component analysis (ICA),
RP’s inherent simplicity and parallelism enable its efficient implementation in
field programmable gate arrays (FPGAs) [4,21], which is particularly useful for
developing high-performance computing systems.

In this work, we propose a computational-storage solution that provides
accelerated data preprocessing for DNN training by performing data prepro-
cessing steps, such as RP near the SSD to minimize overall data movement.
Computational storage (CS) enables us to achieve low end-to-end latency and
high energy efficiency. The system can greatly reduce the training time and
improve the accuracy of the model. This not only solves the memory problem
during DNN training but also ensures lower energy consumption.

Our contributions in this paper can be summarized as follows:

– We propose a CS solution that accelerates data preprocessing for AI training
by integrating dimensionality reduction into a compute component inside CS.

– The proposed CS solution can significantly reduce training time and energy
consumption of lightweight DNN models such as multilayer perceptron
(MLP). Experiment results on real-world datasets show a clear difference
in training time between systems with and without a CS. In particular, we
demonstrate that the computation offloading of RP as data processing to
CS can dramatically reduce energy consumption and even improve model
accuracy for datasets with a large number of features.
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– To amplify the benefits of near-storage data preprocessing in CS compared
with other accelerators, we propose a system that supports large dataset DNN
training, which can improve the performance of the convolutional recurrent
neural network (CRNN) model in text recognition. Experiment results on
large datasets show distinct benefits with RP compared to the one without
RP. Performing RP using CS can achieve similar accuracy to the CRNN
model while ensuring low end-to-end latency and high-energy efficiency.

2 Background and Related Work

Computational Storage on DNN. Computational storage, also known as
in-situ storage, is a technique that allows data to be processed in or near a
storage device, rather than the main CPU of a host. The idea of integrat-
ing in-memory computing with DNNs has gained significant attention recently,
enabling data processing to be performed directly in memory and significantly
reducing the latency and energy consumption of DNN operations. Specifically, it
has emerged as a promising solution for accelerating both convolutional neural
networks (CNNs) and recurrent neural networks (RNNs).

By using custom hardware designs, quantization methods, pruning tech-
niques, and memory access patterns, it is possible to significantly improve the
performance of CNN inference on CS devices like FPGAs, enabling the deploy-
ment of CNNs on resource-constrained devices and accelerating their use in large-
scale applications [1]. By leveraging the high parallelism and energy efficiency of
FPGAs, researchers have been able to dramatically speed up the training process
of CNNs. Qiu et al. [23] present a novel architecture optimized for the specific
characteristics of CNNs, including weight sharing, sparse connectivity, and con-
volutional operations. Guo et al. [6] present a design flow for mapping CNNs
onto an embedded FPGA. Ma et al. [20] optimize the convolution operation to
accelerate deep neural networks on FPGA.

CS has also been explored as a potential solution to overcome the computa-
tional limitations of traditional CPU and GPU implementations in RNNs. Nurvi-
tadhio et al. [22] evaluate the performance of various hardware accelerators for
RNNs and find that FPGA-based implementations outperform other baselines
by several orders of magnitude while providing better energy efficiency. Guan et
al. [5] propose an FPGA-based accelerator for long short-term memory RNNs,
which leverages a custom pipelined architecture with optimized memory access
patterns and quantization methods. Li et al. [19] present a hardware implemen-
tation of RNNs on an FPGA using a hybrid approach that combines fixed-point
and floating-point arithmetic to balance performance and energy consumption.
These studies demonstrate the potential of CS, specifically FPGAs, to enable
high-performance, low-power, and real-time processing of deep neural networks.

Random Projection. The Johnson-Lindenstrauss Lemma, which serves as the
theoretical underpinning of Random Projection (RP) [14], states that a set of
points in a high-dimensional space can be embedded into a space of much lower
dimension in a way that nearly preserves distances between the points. The level
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Fig. 1. Comparison of DNN training systems with data preprocessing

of distortion created by an RP p is validated by the capacity of p to determine
an ε-embedding with a reasonable probability. The definition is as follows: (1 −
ε)||u − v||2 ≤ ||p(u) − p(v)||2 ≤ (1 + ε)||u − v||2, where u and v are arbitrary
rows taken from a dataset matrix A with shape (n, d).

From an algorithmic perspective, p is implemented by multiplying the dataset
matrix A with a random matrix B, where B has dimensions d × k. The elements
of B are independent random variables, with numerous potential constructions
such as standard Gaussian or sub-Gaussian distributions. The latter is more
commonly used for sparse data. Of significance is the fact that the development
of B is independent of A, indicating that RP is data-insensitive and compatible
with partitioned or parallel computation for large datasets. The quantity of k is
calculated mathematically to attain a specific accuracy, which is indicated by the
value of ε. A desirable property is that k is dependent only on the logarithmic
size of the data, i.e., k = O(lnn). Considering that the complexity of many
algorithms increases exponentially with respect to d, the dimension reduction
from d to k is significantly beneficial. The storage requirement for n column
vectors is cut down from dn to kn = O(n log n).

RP has proven to be a powerful and versatile technique for feature extraction
in DNN. Piotr et al. [26] incorporate an RP layer into the DNN architecture to
deal with extremely high-dimensional data. Jiang et al. [11] present a lightweight
privacy-preserving collaborative learning approach for Internet of Things (IoT)
devices using Independent Random Projection (IRP) since it can preserve the
important features of the data while removing the sensitive information for indi-
viduals. Hashemifar et al. [7] efficiently combine deep Siamese-like convolutional
neural networks and RP to construct a DPPI model for predicting PPIs by
associating with protein evolutionary information. Jindal et al. [13] propose a
method for securing biometric data and preserving user privacy in face recogni-
tion systems, using a combination of deep CNN and RP.

3 Computational Storage for DNN Prepossessing

DRAM Buffered System. The traditional DRAM-buffered DNN training sys-
tem consists of three steps: data loading, preprocessing, and training. As shown
in Fig. 1a, assuming we have a data source outside the host, the lightweight DNN
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training process typically buffers the data in DRAM, preprocesses it, and loads
it into GPU memory during training. If the input data for training exceeds the
GPU memory capacity, the GPU needs to read the data from DRAM during
training to load the entire data batch from DRAM to GPU memory during each
epoch.

Storage Buffered System. In the case of large-dataset DNN training, we
need to use local storage to buffer the training data since it’s too large to fit into
DRAM. As depicted in Fig. 1b, the original data is first transmitted from the
objective storage to the local storage. Then, it is partitioned and preprocessed in
the CPU. After that, the data is buffered back into the local storage once again.
During training, these data are read as multiple training batches into DRAM by
the training batch generator and are finally fed into the GPU for training. Since
the process of reading the training batches is repeated for every epoch, the IO
time cost is non-negligible.

Computational Storage Buffered System. We propose a system that
offloads RP as data processing to the CS, as illustrated in Fig. 1c. This sys-
tem can minimize data movement in machine learning workloads by performing
preprocessing steps near the SSD. In most cases, reading data from the storage
is relatively slow. Therefore, instead of performing all the preprocessing on CPU
and buffering the preprocessed data on DRAM before training, we can apply DR
as an inline operation beside downsampling, and the reduced data can be stored
in the CS. To apply DR, the system first loads the downsampled data from the
host memory to the working memory on the CS. The compute unit on the CS
performs a DR and stores the reduced data in its storage. Then, the reduced
data is transferred to the GPU for training through peer-to-peer direct memory
access (P2P-DMA). By applying DR to the data writing process for buffering,
additional data movement and CPU usage for performing DR are eliminated,
and memory space on DRAM can be saved. Furthermore, the reduced data is
transmitted to the GPU, which can decrease both the data transfer time from
the storage to the GPU and the training time in the GPU as it will reduce the
training model size.

Our system will be more effective when dealing with large-dataset DNN train-
ing. Instead of relying heavily on CPU memory bandwidth, we use the CS to
perform the DR and store the reduced-size data for GPU training. On one hand,
the CS is utilized by the training batch generator to produce training batches
locally, avoiding consumption of host CPU cycles or DRAM bandwidth. On
the other hand, P2P-DMA enables direct memory access between a GPU and
CS without using the host DRAM buffer, minimizing host intervention during
SSD read/write. Thus, we fully utilize the benefits of CS and greatly relieve the
burden on the CPU.

4 System Implementation Details

We perform RP using a single precision general matrix multiply (SGEMM) ker-
nel with a U200 FPGA. The kernel is implemented using Xilinx OpenCL HLS.
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Fig. 2. Matrix-multiply CU layout: local
A and B tiles are double-buffered to
enable simultaneous writes from global
memory and computation of C tile

Fig. 3. Comparison of the layout of
tiles in memory between row-major
data layout and after data reordering

Under the HLS development flow, the FPGA is managed by the Xilinx Runtime
(XRT), which provides the APIs and drivers to reprogram and communicate with
the FPGA from the host. We use Xilinx Vitis 2021.2 and XRT 2.12.427 to develop
and evaluate the kernels, targeting the xilinx_u200_gen3x16_xdma_base_2
platform. The SGEMM accelerator consists of a portion running on the U200
FPGA, and management code using OpenCL running on the host.

SGEMM Kernel Using Xilinx OpenCL HLS. We implement a tiled
SGEMM accelerator function via multiple compute units (CUs) to compute tiles
of the output matrix in parallel. The SGEMM kernel is used to perform RP and
obtain the result matrix C = AB.

The design of the CU is shown in Fig. 2, and consists of DSP units to perform
multiply-add and BRAM blocks for storing the input/output tiles. As FPGA on-
chip memory resources are limited compared to external memory, full matrices
are first transferred to FPGA’s external DRAM, and tiles are loaded to BRAMs
on the CU as needed to perform the matrix multiplication. The input matrices
are double-buffered to overlap the write from external DRAM and the read for
computation of the output tile.

However, there is a tradeoff in employing double-buffering, as it comes at
the cost of doubling the BRAM requirement of the kernel. As FPGA on-chip
memory is limited, the tile size must be reduced to compensate, resulting in
a higher memory bandwidth requirement. For this reason, we buffer the input
A/B tiles, but do not double-buffer the output C tile. The number of A/B tile
accesses scales per-tile with the matrix size, while the number of C accesses does
not. For large matrices, the performance gain from double-buffering C is minimal
compared to the associated penalty for reducing tile size.

To take full advantage of the FPGA’s DRAM memory bandwidth, the data
access pattern must be sequential. Xilinx HLS provides two main optimizations
for memory accesses, burst transfers and read/write widening, which require
a sequential, regular access pattern. Under a standard row- or column-major
matrix layout, tiles are located in a non-contiguous region of memory, disabling
possible optimizations. To resolve this issue, the host performs a reordering of
input matrices to a tiled data format before transferring to the SGEMM kernel
as shown in Fig. 3. Applying a data reordering incurs a host memory bandwidth
overhead, but this cost reduces the overall execution time by setting up the
FPGA to burst read/write these tiles from a contiguous region of memory.
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Fig. 4. Computational storage prototype and training system testbed

OpenCL Host Application. The host application provides an API (C++,
scikit-learn) for the user to perform matrix-multiplications using the U200
FPGA. Internally, it uses OpenCL queues to schedule the I/O and kernel exe-
cution. Tiles of the output matrix are grouped into OpenCL work-items and
divided to CUs to compute the result in parallel.

Because the matrix data originally resides outside the FPGA DRAM (either
in host DRAM or in SSD), in practice there is an additional cost of loading data
to the FPGA. When considering the latency of a single matrix-multiply opera-
tion, this depends on both the PCIe transfer and kernel computation latencies.
To hide this latency, we implement an asynchronous API and pipeline the host-
FPGA I/O and kernel computation.

P2P-DMA. On a BIOS with support for large memory-mapped IO, the U200
FPGA can map its 64GB of DDR to the host memory space, allowing for peer-
to-peer (P2P) DMA transfer. If data is intended to be read or written to SSD,
PCIe bandwidth can be saved by enabling P2P DMA and transferring data
directly between FPGA and SSD, bypassing the buffer in host memory. We use
this feature in the output phase to directly write the reduced matrix to the SSD.

DNN Training System with Computational Storage. Figure 4 depicts
the basic setup of the testbed for our proposed CS-enabled training system.
This testbed consists of an object storage server and a training server that uses
GPUs and a CS prototype that employs the Xilinx AlveoTM U200 FPGA with
a 3.84 TB PE8010 SK hynix NVMe SSD. The prototype supports two types of
APIs: (1) C++ API and (2) scikit-learn API to apply DR in the CS and output
the result either to host DRAM or to the SSD via P2P-DMA.

The overall training tasks are managed and orchestrated by Apache Air-
Flow [3]. The data are originally stored in Ceph [25] and transferred to CS for
buffering, then copied to the GPU for training. To enable DNN services, we use
TensorFlow 2.9.1, which uses CUDA 11.4 and cuDNN 8.2 for GPU acceleration,
along with an NVIDIA®Tesla®P100 GPU with 16GB memory. The testbed
uses a 3.0GHz 48-core Intel®Xeon®Gold 6136 CPU with DDR4-2666 192GB
DRAM, along with the P100 GPU and CS prototype.

For DNN training system using CS, the original data (training, validation and
test dataset) are initially stored in different containers of Ceph in the storage
server. They are first transferred to DRAM of the local server for buffering, then
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downsampled by CPU, sent to CS for RP, and finally saved in CS. The down-
sampling typically includes data cleaning, data integration, data transformation
and data augmentation. Thus, downsampling as a necessary part of preprocess-
ing may increase the data size. For large scale training tasks, the training data
is too large to fit entirely into DRAM, so it must be first partitioned according
to the DRAM size and training batch size. The partitioned data are then down-
sampled in the CPU, processed, and stored in the CS. This process is repeated
to preprocess the entire training data.

5 Case Studies and Experiment Results

In this section, we present three case studies and extensive experiment results to
demonstrate the efficacy of our AI training system with CS compared to other
baselines, including deep learning models with large datasets or high dimensional
data. We evaluate the performance of different systems based on three standards:
AI task runtime, training accuracy, and energy cost.

Table 1. Dataset summary

Task # Dataset Size # of Samples # of Classes

1 Chest X-Ray Images 1.15 GB 5863 Pneumonia (P) and Normal (N)
2 Single-Cell RNA-Seq 71.9 MB 638 Non-Diabetic (ND) and Type 2 Diabetic (T2D)
3 MJSynth 32 GB 8919273 62 classes (0–9, a–z, A–Z)
3 ICDAR 2003 (Test) 33 MB 860 62 classes (0–9, a–z, A–Z)
3 ICDAR 2013 (Test) 65 MB 857 62 classes (0–9, a–z, A–Z)

Case Studies. In this work, we applied our lightweight DNN training system to
two real-world binary classification tasks using MLP: pediatric pneumonia chest
X-ray classification and RNA-seq cell types classification. For the first task, the
goal was to differentiate pneumonia and normal chests from chest radiograph
images [16]. For the second task, we used a real transcriptomics dataset from
single-cell RNA-seq studies [18]. We need to perform binary classification of ND
and T2D cell types for each RNA-seq sample. To demonstrate the performance
of our large-dataset DNN training system, we focus on an unconstrained scene
text recognition task. We use MJSynth [10], a synthetically generated word image
dataset containing 9 million samples, for training and validation. Note that there
is no lexicon as a reference to improve the training accuracy. ICDAR 2003 and
ICDAR 2013 [15] are two test datasets. All datasets are summarized in Table 1.

The MLP model in the first two tasks has four neural layers, including three
fully connected layers with Relu activation and dropout rate of 0.2, and a final
layer with 1 neuron and sigmoid activation. Binary cross-entropy is set as the
loss function. In the beginning of task 1, we have five groups of square images
with different pixels. The entire sample sets are split into training and validation
at a ratio of 4:1 for each group. We flattened the image data and applied RP to
these image samples in CS to reduce the dimension. The number of neurons for
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Fig. 5. Entire workflow for unconstrained scene text recognition

Fig. 6. CNN model training in CDRNN

each FC layer was set to be the same and equal to the number of pixels. In task
2, the dimension of the input data was 638 × 26616. In the preprocessing, we
split the data into training and test samples, with 95% and 5% respectively. The
training samples were further split into training and validation samples at a ratio
of 3:1. After RP, feature size in all samples was reduced to 1000. We changed
the batch size to show the performance robustness of our training system.

For task 3, we propose a large-dataset CS-based DNN training system using
CDRNN [27], whose main workflow is summarized in Fig. 5. To extract robust
features for text recognition, we first train a case-sensitive character classifier
using 0.1 million images samples (see Fig. 6). These word images are evenly
chopped into multiple character images based on the length of the label of each
word, in which each character image is given the corresponding label. There
are 0.65 million input samples for CNN training. Second, for each resized word
image sample with a height of 32, we use a sliding window of size equal to 32
to shift it, and convert the captured image patch to a multi-layer CNN feature
sequence by passing them through pre-trained CNN model in CPU. Specifically,
we extract the output of the flatten layer and the smallest fully connected layer,
and concatenate them into a feature sequence with 552 dimensions. Third, we
use RP to embed the original 552-dimension features into 80-dimension random
subspace in the CS. After such an 85% dimensionality reduction, we train a RNN
model, which recognizes reduced feature sequence sample, in the GPU. The RNN
model contains two bidirectional LSTM layers with each of 256 nodes. Finally,
we use connectionist temporal classification (CTC) to remove the repeated labels
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Fig. 7. CDRNN workflow

and non-character labels in its last output. The Adam optimizer is utilized with
a defaulted learning rate. We present the entire workflow in Fig. 7.

We use a customized training batch generator to generate the batch during
the training for each system. Note that we partition the original data based
on the determined batch size and ensure that each partition of data covers one
exact batch. During the data partition period, we write each batch from the
DRAM into local storage. We also include the well-known CRNN model [24] as
a baseline that uses a storage-buffered DNN training system for performance
comparison. The structure of the model is the same as the one in [24]. We make
the batch size used in CRNN the same as the size of input in our proposed
system. Comparing CDRNN with CRNN, the total model size has reduced from
8.7 million parameters to 3.2 million parameters, where the latter is obtained by
adding the number of model parameters in CNN and RNN.

All systems are tested with three different workloads (0.1M, 1M and 9M
images) under a large DNN training environment, indicating that all training
data are either buffered in local storage or CS before training, instead of stored
in DRAM. For each workload, we split the training data into training and vali-
dation at a ratio of 4:1. Note that though the raw size of 9M images dataset in
memory is 32GB, processed data size in memory will increase to 734.4GB after
downsampling, which is far larger than the DRAM size.

Experiment Results. We first evaluated the performance of different systems
on Task 1. We show the runtime of each baseline with different input image sizes
in Fig. 8. It is evident that the loading time of all systems is almost the same
with a fixed input image size. With the increase of image size, the runtime of the
baseline that has no RP preprocess increases linearly with the square of pixels,
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Fig. 8. Task 1: runtime in each system with different input sizes [pixel × pixel]

Fig. 9. Task 1: AI system performance comparison

but the training times of the two RP-involved systems are almost the same since
the reduced feature sizes are similar across different input sizes.

We next present the performance differences among the three systems. As
shown in Fig. 9a, the accuracy of the model is relatively higher with a larger
input size, as it will keep more features. The systems with RP have an apparent
edge over the non-RP ones. According to Fig. 9b, it is noticeable that the RP
process can reduce the training time by more than 50%. It can be seen that the
increase of training time for non-RP with increasing input size is much larger
than the increase of RP time in the RP-involved system. We present the average
power and total energy consumption collected under input size 500× 500 based
on the results in Fig. 9c. Average power and energy consumption measurements
exclude the idle power consumed in the background system. We find that, when
compared to the system without RP and the one using RP in CPU, our system
can save about 33% and 26% of average power, and further reduce 70% and 16%
of total energy consumption, respectively.

We then report the results from Task 2. As shown in Fig. 10a, the training
accuracy decreases significantly with increasing batch size for the system without
RP, but remains almost unchanged for the systems with RP, even with varying
batch sizes. As depicted in Fig. 10b, the training time for all systems decreases
with increasing batch size. RP-based systems have a greater advantage over the
non-RP system with smaller batch sizes in terms of training time and end-to-end
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Fig. 10. Task 2: AI system performance comparison under different batch sizes

runtime. The runtime performance between RP-CPU and RP-CS is very similar.
We can also observe that data loading time occupies more than half of the total
end-to-end runtime when the batch size is over 8. The average power and total
energy consumption are collected in Fig. 10c. Regarding the overall trend, the
average power for all systems increases with increasing batch size. However, the
energy consumption decreases with increase of batch size. It is worth noting that
when compared to the system without RP and the one using RP in CPU, by
taking the average power and energy values of four different batch sizes, our
system can save about 30% and 12% of average power, and further reduce 24%
and 4% of total energy consumption, respectively.

Table 2. Task 3: accuracy of model with different training data sizes and systems

Workload Size Accuracy Systems
Dataset Type Test dataset Test dataset validation dataset
Dataset Name ic03 ic13 MySynth

0.1M images 68.14 68.61 71.3 CRNN
67.33 68.26 74.6 CDRNN without RP
61.28 64.29 69 CDRNN RP in CPU
63.14 66.04 70 CDRNN RP in CS

1M images 77.67 77.36 83.23 CRNN
76.74 75.61 85.60 CDRNN without RP
73.72 73.16 80.40 CDRNN RP in CPU
72.84 72.23 79.80 CDRNN RP in CS

9M images 84.53 83.78 90.66 CRNN
83.72 82.15 88.27 CDRNN without RP
81.86 80.05 86.83 CDRNN RP in CPU
81.98 79.93 86.21 CDRNN RP in CS

We finally investigate the performance of each system in Task 3. We first
present a few examples of the test results for our system in Fig. 11, where the
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Fig. 11. Task 3: an example of model
prediction results

Fig. 12. Task 3: RP Phase Comparison

Fig. 13. Task 3: comparison of average
power and energy consumption for dif-
ferent number of training sample with
each system

predicted results are shown on the left caption above each word image, and
the ground truths are on its right. We compare the performance of different
systems in Table 2, which reports the accuracy under four different systems,
including our CDRNN system when the RP preprocessing is done in CS and
CPU. The only difference between the systems is where RP is conducted. We
also consider the case where RP is excluded and the original CNN feature is
directly fed into the RNN. We observe that the CRNN system is the best in terms
of accuracy. However, its advantage decreases with increasing dataset size. The
accuracy of CDRNN without RP is around 2% higher than the CDRNN with
RP due to a certain amount of distortion and information loss in RP. However,
we notice that the gap narrows greatly with the increase in workload size. The
accuracy difference between RP-CPU and RP-CS is negligible and purely due
to the randomness of the transformation matrix. We also observe that when the
dataset is small, for all systems, the accuracy on ic13 is higher than that on ic03.
However, the conclusion reverses for the large dataset.

Next, we examine the runtime of each system, which consists of four main
phases, including data loading, downsampling and data partitioning, RP, and
training. The end-to-end latency is the sum of the runtimes of all phases. Notice
that we include the feature extraction step into the downsampling step, which
consumes a certain amount of time for CDRNN-related systems. As shown in
Table 3, CDRNN with RP significantly outperforms CRNN and is remarkably
better than CDRNN without RP across different datasets. We find that, when
compared to the systems of CRNN and CDRNN without RP on the 9M dataset,
our system has a 40.3% and 10% percent training time reduction, respectively,
and a 29.3% and 8.2% percent end-to-end latency reduction, respectively.

Finally, we measured the average power and total energy consumption col-
lected under the systems, as shown in Fig. 13. Overall, both the average power
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Table 3. Task 3: runtime of systems with different training data sizes (hour)

Data Size Systems Data Loading Downsampling+
Partition

Random
Projection

Training End to End

0.1M images CRNN 0.0151 0.0035 0.0000 0.6050 0.6236

CDRNN without RP 0.0150 0.0313 0.0000 0.5058 0.5521

CDRNN RP in CPU 0.0152 0.0333 0.0021 0.4595 0.5101

CDRNN RP in CS 0.0151 0.0335 0.0032 0.4593 0.5111

1M images CRNN 0.1509 0.0355 0.0000 4.9887 5.1396

CDRNN without RP 0.1508 0.3307 0.0000 3.7417 4.2232

CDRNN RP in CPU 0.1508 0.3537 0.0201 3.1543 3.6790

CDRNN RP in CS 0.1507 0.3464 0.0324 3.0478 3.5773

9M images CRNN 1.3512 0.3172 0.0000 43.9855 44.3024

CDRNN without RP 1.3515 3.5569 0.0000 29.1916 34.1000

CDRNN RP in CPU 1.3514 3.5096 0.1477 26.1004 31.1486

CDRNN RP in CS 1.3517 3.3485 0.3251 26.2821 31.3074

and energy consumption for all systems increase with increasing dataset size.
The results demonstrate the superiority of our CS-based CDRNN system over
all other systems. Compared to the CRNN and CDRNN without RP systems,
by taking the average power and energy cost on the largest tested dataset, our
system can save about 13.2% and 10.7% of average power, and further reduce
38.2% and 18% of total energy consumption, respectively. Specifically, our sys-
tem can save up to 47.7% and 23.5% of average power, and further reduce 57.1%
and 17.4% of total energy consumption, respectively. To show the benefit of our
system over RP in the CPU system, we directly compare the energy consumption
and CPU time in RP Phase for 9M dataset in Fig. 12. The CPU usage of RP-
in-CPU is 40.6 times larger than RP-in-CS, and the energy cost of RP-in-CPU
is 58.3% larger than RP-in-CS.

6 Conclusion and Future Work

This paper has presented a computational storage prototype and its use case for
an AI training system. Our performance evaluation has shown that computa-
tional storage can be used to improve both training time and model performance
and reduce its overall power consumption. While we have demonstrated the effec-
tiveness of leveraging computational storage for an AI training system, there are
several interesting directions as future work. We plan to extend our implementa-
tion to enable general sparse matrix-matrix multiplication (SpGEMM) in FPGA
so that our system can deal with much higher dimensional data. Our system can
also be extended to accelerating in-storage AI inference by using dimensionality
reduction for feature extraction.
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Abstract. The extreme-scale computing landscape is increasingly dom-
inated by GPU-accelerated systems. At the same time, in-situ work-
flows that employ memory-to-memory inter-application data exchanges
have emerged as an effective approach for leveraging these extreme-scale
systems. In the case of GPUs, GPUDirect RDMA enables third-party
devices, such as network interface cards, to access GPU memory directly
and has been adopted for intra-application communications across GPUs.
In this paper, we present an interoperable framework for GPU-based in-
situ workflows that optimizes data movement using GPUDirect RDMA.
Specifically, we analyze the characteristics of the possible data move-
ment pathways between GPUs from an in-situ workflow perspective, and
design a strategy that maximizes throughput. Furthermore, we imple-
ment this approach as an extension of the DataSpaces data staging ser-
vice, and experimentally evaluate its performance and scalability on a
current leadership GPU cluster. The performance results show that the
proposed design reduces data-movement time by up to 53% and 40% for
the sender and receiver, respectively, and maintains excellent scalability
for up to 256 GPUs.

Keywords: In-Situ · Workflow · GPU · GPUDirect RDMA ·
Extreme-Scale Data Management

1 Introduction

Emerging HPC systems have widely adopted Graphic Processing Units (GPUs)
for their massive computing capability and high power efficiency. As of Novem-
ber 2022, seven of the top ten systems on the TOP500 list [23] have GPUs.
Scientific simulations and analyses benefit from both the parallelism and energy
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efficiency of GPUs’ architecture [12]. A variety of applications and tools, such
as LAMMPS [9] and ZFP [16], have released GPU-optimized versions.

However, a vast I/O gap still remains for the loosely-coupled in-situ work-
flow [15], which typically consists of several scientific applications as its compo-
nents. Within in-situ workflows, the component applications run on GPUs/CPUs
and exchange data through a high-speed network. Although individual appli-
cations can leverage GPUs, the inter-GPU and GPU-CPU I/O cross codes are
implemented in an ad hoc manner, which is prone to suboptimal performance. On
the other hand, the latest hardware-specific technique, i.e., GPUDirect RDMA
(GDR) [3], is available on many modern HPC systems and offers a performance
improvement opportunity, while requiring deep hardware knowledge and low-
level programming skills from domain scientists.

Existing solutions to the I/O across components in the workflows view the
devices (GPU) and hosts (CPU) as individual entities and employ a sequential
device � host � network pathway. As can be seen, the involvement of the hosts
is nonessential, and it slows down the I/O performance due to unnecessary data
movement to/from the hosts. This slowdown will be exacerbated at larger scales.
In addition, involving hosts during I/O across components requires the develop-
ers transfer data between hosts and devices with low-level GPU programming
APIs, such as CUDA, HIP, etc. It is nontrivial for domain scientists to program
with these low-level APIs, and such a programming approach often results in ad
hoc solutions that are limited in both interoperability and portability, especially
in cases of massive variables or complex I/O patterns.

Porting existing in-situ workflow to GPUs is an ongoing effort in many scien-
tific computing communities. Figure 1 illustrates the challenges of this workflow
porting problem: Some of the components have already been ready to run on
GPUs, whereas others are in the porting process or still left as legacies. This
heterogeneity complicates the I/O management between components in differ-
ent porting stages and thus makes the plug-n-play almost impossible. Complex
data communication patterns and a great number of variables make the situa-
tion even worse. For example, the I/O engine of MURaM workflow [19] contains
seven separate procedures with 50 1-D variables, 63 2-D variables, and 34 3-D
variables in total. We realized that although moving data between GPU and

Fig. 1. A typical ongoing GPU-based in-situ workflow porting process. The main sim-
ulation has already been ported to GPU. Other components are ported, being ported,
or still remain the CPU version. The I/O between components also has to change
according to the data source/destination.
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the host plus conventional communications between host buffers and the net-
work remains a solution, it requires greatly repetitive code refactoring efforts
during the porting process but still gains no flexibility of being ported to other
GPU ecosystems. In addition, we observed that the I/O performance degraded
severely due to consecutive staging at the host buffer, which can be bypassed to
reduce the I/O overhead for most cases.

Based on these insights, we investigate several designs for inter-application
bulk communications from/to GPUs and introduce a GDR design that cir-
cumvent unnecessary data movement path through the host. We therefore pro-
pose the first interoperable I/O abstraction for GPU-based in-situ workflow and
implement it as an extension of the DataSpaces [10] data staging service. We
make the following key contributions in this paper:

– We investigate several designs for bulk data exchanges between GPU appli-
cations with respect to the features of in-situ workflow, and then propose a
GDR design that reduces I/O overhead by circumventing the host.

– We propose the first interoperable I/O abstraction for GPU-based in-situ
workflow, implemented as the extension of the DataSpaces data staging ser-
vice, which reduces the software refactoring cost and enables plug-n-play in
the workflow porting process.

– We evaluate the proposed designs on current leadership GPU clusters using
both synthetic and real workflows running on up to 256 GPUs and demon-
strate that they can reduce up to 53% and 40% of the I/O time for sender
and receiver, respectively, in comparison to the baseline.

2 Background

2.1 In-Situ Workflow

The traditional scientific workflow model first writes the simulation data to per-
sistent storage, and then reads it back into memory for the analysis or visualiza-
tion later, which is defined as a post-hoc method since it reflects that the visu-
alization or analysis is performed “after the fact” [8]. We have witnessed a sig-
nificant performance slowdown for this method as the computational through-
put scaled up [5,6,17]. An alternative approach, which is named by the umbrella
term in-situ, saves the huge I/O cost by removing the nonessential involvement of

Fig. 2. A schematic illustration of in-situ workflow paradigms.



326 B. Zhang et al.

Fig. 3. Data flow paths between GPU and network interface card (NIC).

persistent storage. Two paradigms have emerged from the in-situ model: tightly-
coupled method and loosely-coupled method [15]. The tightly-coupled paradigm
is illustrated in Fig. 2a. Simulation and analysis run in the same process using
the same set of computing resources. They alternate in each iteration, sharing the
data stored in the memory, and finally output the refined result to the file system.
As for the loosely-coupled paradigm, simulation and analysis run asynchronously
in the separate process groups on their dedicated resources, as shown in Fig. 2b.
They exchange the shared data over the high-speed network with the help of a
staging server, which takes extra resources to manage the data forwarding.

The loosely-coupled in-situ workflow maintains its flexibility and modularity
by isolating the computational tasks at an appropriate granularity. We define
each isolated computational task that runs separately as an individual com-
ponent in the context of loosely-coupled in-situ workflow. Then, the flexibility
means that the running scale of each component can be configured individu-
ally according to its characteristics, avoiding the inefficiency under the holistic
resources allocation. Besides, the modularity supports easy plugin-and-play for
new components to join the workflow, which saves the significant development
cost and enables more complicated extensions. Both features offer great improve-
ment opportunities for in-situ workflows by leveraging the GPUs equipped in the
modern HPC systems. Assigning each component to its best-fit hardware will
finally improve the overall performance of the workflow.

2.2 GPUDirect Technologies

Direct Memory Access (DMA) requires memory registration before data access.
The DMA engine of GPU has to register a CPU memory region to enable
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asynchronous data movement, and the network interface card (NIC) also requires
this registration to transfer data over the network. Therefore, as shown in Fig. 3a,
either GPU and NIC registering the same host buffer sequentially or registering
two separate host buffers at the same time but introducing an extra data copy
is required for GPU data communication. Both the de-register/register process
and the extra memory copy can be summarized as the DMA overhead that
increases I/O latency. NVIDIA GPUDirect technologies eliminate unnecessary
memory copies between GPUs and other devices, decrease CPU overheads, and
reduce latency [3], thereby significantly enhancing data movement and access
for GPUs. Released with CUDA 4.0, the initial GPUDirect enabled both GPU
and NIC to register the same memory region on the CPU, avoiding the DMA
overhead at the host as shown in Fig. 3b. From CUDA 5.0, GPUDirect RDMA
(GDR) is released as the extension of GPUDirect, which supports GPU memory
registration by any third-party standard PCIe device. Figure 3c illustrates the
direct data exchange path between GPU and NIC.

AMD GPUs also support this peer-direct technique in their ROCm ecosys-
tem, namely ROCmRDMA [2]. In this work, however, we use the umbrella term
GPUDirect RDMA (GDR) to refer to all direct data exchange solutions between
GPU and NIC. We focus on NVIDIA GPUs with the CUDA programming
ecosystem and the RDMA-enabled network in the rest of the paper.

3 Related Work

Over last ten years, a fair amount of contributions from HPC community have
been made to accelerate GPU-related I/O in widely used programming mod-
els and network substrates by GPUDirect technologies. Wang et al. proposed
MVAPICH2-GPU [26], which is the first GPU-aware MPI implementation with
the GPUDirect optimization for CUDA-based GPUs. Potluri et al. upgraded
the GPU-aware MPI libraries using GPUDirect RDMA (GDR) and proposed
a hybrid solution that benefits from the best of both GDR and host-assisted
GPU communication [18]. Shi et al. designed GDRCopy [22], a low-latency copy
mechanism between GPU and host memory based on GDR, which improved the
efficiency of small message transfer. NVIDIA NCCL [13], as a popular backend
for leading deep learning frameworks, also supported GDR in its communication
routine set. In addition, programming frameworks that simplify the GPU appli-
cation porting process have been explored as well. Kokkos [24], RAJA [7] and
SYCL [20] support compile-time platform specification for applications written
in their abstractions. However, research work in either data movement opti-
mization or I/O abstraction from a workflow perspective is extremely limited.
ADIOS2 [11], a high-performance I/O framework that often plays as a data
coupler between components in a workflow, is extended to support GPU-aware
I/O [1]. However, its GPU I/O support works only for binary-pack version 4
(BP4) and BP5 file engines, which are still solutions based on persistent stor-
age. Zhang et al. explored the data layout mismatch in the CPU-GPU hybrid
loosely-coupled in-situ workflow and proposed a solution to minimize the data
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reorganization overhead [27]. However, they did not optimize the data movement
pathway for GPU components. Wang et al. presented a conceptual overview of
the GPU-aware data exchange in an in-situ workflow [25], but they proposed
only a preliminary idea with neither implementation details nor quantitative
evaluation at scale. Our work is distinguished from related efforts in being the
first interoperable GPU-aware I/O abstraction for the inter-component data
exchange in loosely-coupled in-situ workflows. We provide a systematically com-
prehensive evaluation of the GDR design at the largest scales we were able to
reach on a state-of-the-art production HPC system equipped with GPUs.

4 Design

In this section, we discuss the baseline and optimized designs for the inter-
application bulk data movement from/to GPUs. As shown in Fig. 1, compo-
nents in the workflow can be generally classified in three categories as staging
server, sender, and receiver. The staging server typically works as a memory-
bounded component that is responsible for storing the intermediate shared data
and processing the asynchronous I/O requests made by all other applications.
Therefore, even if the staging server may also run on nodes equipped with GPUs,
CPU main memory is still chosen as the primary storage media for its consid-
eration of capacity and cost. The sender is typically a simulation that produces
multidimensional data on GPUs and sends it out to the staging server. The
receiver is usually an analysis or a visualization that fetches the data from the
staging server and consumes it. A loosely-coupled in-situ workflow has only one
staging server component and at least one sender and one receiver. In the fol-
lowing subsections, we discuss these two parts, respectively. We also present the
implementation overview of the proposed I/O framework and demonstrate its
interoperability through a code snippet.

4.1 Sender Side

Baseline Design. To send the GPU data out to the staging server, the base-
line design simply uses CUDA memory copy from device to host and then
sets up a conventional CPU-CPU bulk data transfer between the sender and
staging server. This straightforward approach takes the bulk I/O as an ensem-
ble by concatenating the GPU to CPU and CPU to the staging server data
transfer together, which runs sequentially after the meta-data preparation phase
on the CPU. The DMA control sequence introduced in Sect. 2.2 must be gone
through between the two concatenated I/O procedures, which increases the over-
all latency. Although this design is intuitive and simple to implement, its weak-
ness becomes apparent when frequent and consecutive put requests are made
because the fixed overhead is incurred for every request.
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Fig. 4. A schematic illustration of sender side designs.

Fig. 5. Data Object Reassembly on the receiver side. 4 PEs of the sender put local
4× 4 2D arrays into a global 8× 8 domain. 2 PEs of the receiver expect to get a subset
of the 8× 8 shared domain, a 3× 3 array and a 3 × 2 array, respectively. Receiver PE1
has to find the data object A, copy the memory line once, and find data object C, copy
the memory line twice. Receiver PE2 has to find the data objects B, D and copy the
memory line accordingly.

Pipeline Design. We are able to optimize the baseline design by overlapping
independent tasks after splitting the entire send procedure into several stages and
analyzing their dependencies carefully. Figure 4a illustrates the pipeline design
that requires no additional prerequisites. The meta-data are prepared on the host
when the bulk data is copied from GPU to the host. Also, the DMA operations
partially overlap with the connection setup between the sender and the staging
server. This design exploits the potential overlaps between different stages of the
send procedure by leveraging the asynchrony on both the GPU and CPU.

GDR Design. As long as the GPU data are transferred to the staging server,
the less intermediate stages result in better performance. We fully circumvent
the host involvement by employing GDR in the bulk data transfer. Figure 4b
presents the neat GDR design. After the essential meta-data preparation and
connection setup phase, data are directly sent from GPU memory to the staging
server. No memory allocations and DMA overhead are incurred in this design.

4.2 Receiver Side

Due to the simplicity of the sender design, on the receiver side, a data object
reassembly stage is introduced in addition to the bulk data I/O for the scale
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flexibility mentioned in Sect. 2.1 and the random access to the multidimensional
data specified by a geometric descriptor. We discuss these two stages separately
in this subsection.

Data Object Reassembly. Every get request on the receiver side has to go
through the data reassembly stage before delivering the queried data to users.
Figure 5 demonstrates the necessity of data reassembly by an example. A 2-D
data domain is shared by two applications served as a sender with four processing
elements(PEs) and a receiver with two PEs, respectively. The sender puts four
data objects into the staging server, while the receiver expects to get a subset
of data in each of two PEs. Therefore, each PE in the receiver has to figure out
the original data objects, extract each subset, and finally reassemble the subset
to a contiguous data object accordingly. Even if the receiver query the entire
domain, reassembling the original data objects to the queried contiguous data
object is still essential as long as the two applications are running at different
scales.

Algorithm 1. CUDA Data Object Reassembly Kernel
Input: src obj, dst obj.bbox{bounding box descriptor}
Output: dst obj.data

its bbox ← Intersection(src obj.bbox, dst obj.bbox)
src nx, src ny, src nz ← Distance(src obj.bbox)
dst nx, dst ny, dst nz ← Distance(dst obj.bbox)
sub nx, sub ny, sub nz ← Distance(its bbox)
i ← blockIdx.x ∗ blockDim.x + threadIdx.x
j ← blockIdx.y ∗ blockDim.y + threadIdx.y
k ← blockIdx.z ∗ blockDim.z + threadIdx.z
if i < sub nx and j < sub ny and k < sub nz then

dst idx ← i + j ∗ dst nx + k ∗ dst nx ∗ dst ny
src idx ← i + j ∗ src nx + k ∗ src nx ∗ src ny
dst obj.data[dst idx] ← src obj.data[src idx]

end if

The existing solution for data object reassembly is based purely on CPU.
It iteratively calls Memcpy(), which moves a data line along the lowest dimen-
sion at once, for the multidimensional data. Since the data destination is ported
to GPU memory in the GPU applications, we design a CUDA kernel to accel-
erate this data object reassembly task by utilizing the intrinsic parallelism of
GPU architecture. Algorithm 1 describes the details of the kernel. Although
an individual kernel supports only up to 3-D data object reassembly, it can be
iteratively launched several times for data in more dimensions. Asynchronous
kernel launch is utilized for concurrency depending on the capability of the tar-
get CUDA device.
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Fig. 6. A schematic illustration of receiver side designs.

Bulk Data Transfer. The bulk data I/O path on the receiver side keeps the
same options as the sender side: CPU-CPU transfer plus CUDA memory copy
from host to device or GDR. Therefore, we propose three receiver designs as the
combination of bulk data transfer and data object reassembly options. Figure 6a
illustrates the baseline design that reassembles the received data objects on the
host to a new CPU buffer, and then transfers it to the GPU destination. Because
two buffers are used on the host and the data object reassembly intrinsically
finishes the memory copy between them, no DMA overhead is incurred in this
design. The hybrid design takes the conventional I/O path but uses the CUDA
kernel for data object reassembly. It holds only one buffer for both receiving
data from the staging server and transferring to the GPU, but its DMA overhead
partially overlaps with the CUDA kernel computation since multiple data objects
are received typically and the following work is done asynchronously. The GDR
design keeps clear as shown in Fig. 6b. There is no CPU involvement, and the
data object reassembly is done by CUDA kernels.

Fig. 7. Architecture of DataSpace-GPU. Existing modules are extended to support
both GPU computation and storage under the heterogeneous memory management
layer.

4.3 Implementation and Interoperability

Our designs are implemented in the existing DataSpaces staging framework as an
extension to support the data exchanges from/to GPU components inside an in-
situ workflow. Figure 7 presents a schematic overview of the DataSpaces-GPU.
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Fig. 8. Code example of porting a single variable I/O procedure to GPU with or
without DataSpaces-GPU.

It leverages the existing components by reusing its data transport, indexing,
and querying capabilities. The GDR capability of the Margo [21] communica-
tion layer is employed by the GPU memory extension of the data object storage
module at the application client. The object assembler module adds support to
launch the concurrent CUDA kernel when the target GPU is capable. All the
GPU extensions are organized by the heterogeneous memory management layer,
which determines whether the user data are located on the CPU or GPU. For
the purpose of minimizing the software porting cost, we design a set of unified
APIs for both CPU and GPU I/O to address the interoperability issue with the
legacy CPU workflows. Figure 8 presents a code example that compares the lines
of code (LOC) changes for a single variable I/O procedure with or without our
framework. After setting up the proper meta-data, only one LOC is needed to
send or receive the CPU data. When the data are located on the GPU, we need to
calculate the data size, manage the CPU memory buffer, and handle the CUDA
memory copy at the sender and receiver side, respectively. Approximately 10
LOC are added on each side for a single variable without any performance opti-
mization. However, with DataSpaces-GPU, the only effort that needs to be made
is changing the CPU pointer to the GPU pointer and no extra code is required,
which saves great software porting costs, especially when many variables are
communicated or the communication pattern is complex. DataSpaces-GPU thus
enables procedure-wise I/O plug-n-play in the entire workflow porting process.

5 Evaluation

In this section, we present an evaluation of the proposed GDR design compared
to the conventional host-based designs in terms of both time-to-solution and
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scalability. The end-to-end benchmark is tested using a synthetic workflow emu-
lator, and the weak scaling experiment is performed on a real scientific workflow
that consists of LULESH-CUDA [14] and ZFP-CUDA.

Our synthetic workflow emulator uses two application codes, namely writers
and readers, to simulate the inter-application data movement behaviors in real
loosely-coupled in-situ workflows. Writers produce simulation data and send it
to the staging servers, whereas readers fetch the data from staging servers and
then perform some analysis. In our real workflow experiment, LULESH is the
simulation that writes the data out and ZFP is the reader. The data are organized
in a 3-D Cartesian grid format with X × Y × Z scale in both workflows.

All the experiments were performed on the Phase 2 GPU nodes of the
Perlmutter supercomputer at National Energy Research Scientific Computing
(NERSC). Phase 2 GPU nodes have a single socket of an AMD EPYC 7763
(Milan) 64-core processor with 160GB of DDR4 RAM. Each node equips four
NVIDIA Ampere A100 GPUs with four Slingshot-11 Cassini NICs. All the nodes
run libfabric-1.15.0 with Cray Slingshot-11 cxi support. All four NICs are lever-
aged and evenly mapped to the PEs on each node. Concurrent CUDA kernel
launch is enabled, and the maximum number of concurrent kernel launch is set
to 32 as the default. In subsequent sections, all measured times refer to the wall
time of the blocking I/O routine that guarantees the message is sent to the desti-
nation. All the test runs have been executed three times, and the average result
is reported.

Table 1. Experimental setup configurations for end-to-end benchmark

No. of Parallel Writer Cores/GPUs/Nodes 128 / 64 / 16

No. of Parallel Reader Cores /GPUs/Nodes 128/64/16

No. of Staging Cores/Nodes 32/8

Total I/O Iterations 10

I/O Iteration Frequency Every 2 s

Fig. 9. Performance comparison per I/O iteration among proposed designs with
increasing message size.
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5.1 End-to-End Benchmark

This experiment compares the I/O performance between applications and stag-
ing servers for various message sizes using different designs introduced in Sect. 4.
Table 1 details the setup for all test cases in this experiment. In order to alleviate
the iterative interference, we set the I/O frequency to 2 s. The message size we
choose to evaluate starts from 8 MB, which is the smallest data size for a single
variable in each parallel PEs in a typical fine-grained domain decomposition.

Figure 9a presents the benchmark result for writers and readers, respectively.
In general, although GDR is designed to optimize small and frequent communi-
cation to/from GPUs, it achieves better performance in bulk data transfer than
other host-involved designs as well. On the writer side, the baseline method and
pipeline method show almost the same trend, which means the overhead of send-
ing metadata is negligible in the bulk data movement. Compared to the baseline
and pipeline methods, the GDR method reduces 53% of the put time for the 8
MB bulk transfer while still maintaining a 34% of reduction when sending 1024
MB messages.

On the reader side, the hybrid and GDR methods achieve up to 28% and 33%
reduction of the get time compared to the baseline. The GDR method always per-
forms slightly better than the hybrid method since it avoids the DMA overhead
introduced in Sect. 2.2. Both methods use the CUDA kernel for the data object
reassembly instead of the host Memcpy() function, which contributes mainly to
the performance improvement. Figure 9b extracts and compares the data object
reassembly performance from the overall I/O time. The CUDA kernel accelerates
the data object reassembly task by up to 90x as the message size increases. By
utilizing the asynchronous kernel execution feature of CUDA devices, launching
the kernels concurrently with a barrier that waits all kernels to complete can
even achieve an acceleration up to 6000x.

Table 2. Experimental setup configurations of data domain, core-allocations and size
of the staged data for shock hydrodynamics workflow

Data Domain 512 × 512 × 512 768 × 768 × 768 1024 × 1024 × 1024 1280 × 1280 × 1280 1536 × 1536 × 1536

No. of LULESH-CUDA
Cores/GPUs/Nodes

8/8/2 27/27/7 64/64/16 128/128/32 256/256/64

No. of ZFP-CUDA
Cores/GPUs/Nodes

8/8/2 27/27/7 64/64/16 128/128/32 256/256/64

No. of Staging Cores/Nodes 4/1 16/4 32/8 64/16 128/32

Total Staged Data Size (3 variables,
10 I/O Iterations)

30 GB 60 GB 120 GB 240 GB 480 GB

I/O Iteration Frequency Every 100 computing iteration
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Fig. 10. Weak scaling comparison of I/O time per I/O iteration among proposed
designs in the LULESH workflow.

5.2 Real Scientific Workflow

In addition to evaluations based on the synthetic workflow emulator, we also
apply our proposed designs to a CUDA-based shock hydrodynamics simulation
workflow. We use the LULESH-CUDA component for the simulation purpose,
which generates 3-D data and sends them to the staging servers. For the analysis,
the ZFP-CUDA component gets the data from the staging servers, compresses
and writes it to the persistent storage. We select three scalar data fields (energy,
pressure, mass) from 13 variables to perform the inter-application data exchange.
The experimental configurations of our hydrodynamics workflow tests are listed
in Table 2. Since LULESH supports only cubic PEs increment, our evaluation
was performed with 8, 27, 64 cores, with a 1 : 1 mapping to GPUs and a ∼4:1
mapping to nodes. The grid domain sizes were chosen such that each core was
assigned a spatial local domain of size 256 × 256 × 256. We keep this same data
volume per LULESH/ZFP core to perform a weak scaling test in this evaluation.

Figure 10 compares the proposed designs in the weak scaling workflow with
a fixed ratio of LULESH/ZFP resources to the staging server. The GDR design
still takes ∼24% less time to consecutively send the data fields out compared to
others, while performing ∼40% and ∼17% better in fetching the data fields than
the baseline and hybrid design, respectively. The I/O time remains relatively
constant for all designs as the overall problem size and total resources increase.
Little overhead is introduced as the amount of resources increases, which indi-
cates that all proposed designs maintain great scalability to solve the problem
in a larger scale.

From our synthetic and real scientific workflow evaluations, we can infer that
the straightforward baseline design of data movement between GPU applications
performs poorly at any scale due to the sequential device � host � network
pathway. Pipelining I/O design on the sender side and applying CUDA ker-
nels for data object reassembly on the receiver side improves the performance,
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but nonessential host involvement remains. In contrast, our GDR design enables
direct data movement between GPU memory and the RDMA-enabled network,
which reduces up to 53% of the I/O time compared to the baseline. In addi-
tion, our I/O abstraction for the GPU-based in-situ workflow shares the same
API with the conventional CPU-based workflow, which minimizes the software
porting effort. In summary, our GDR I/O optimization can effectively reduce the
overhead of data exchanges between GPU components in the scientific workflow,
while maintaining the interoperability with legacy CPU-based applications.

6 Conclusion and Future Work

GPUDirect RDMA has emerged as an effective optimization for inter-node com-
munications from/to GPUs, but it has been adopted only by I/O substrate
designed for individual applications. In this paper, we present a novel design that
applies GPUDirect RDMA to the bulk data movement between GPU applica-
tions within a workflow. Also, we propose the first interoperable I/O abstraction
for GPU-based in-situ workflows, which simplifies the GPU workflow porting
process and enables procedure-wise plug-n-play through the unified interface.
We implemented the proposed solution based on the DataSpaces framework and
evaluated it on the NERSC Perlmutter system. Our experimental results, using
both synthetic and real GPU workflows, demonstrate that the proposed solution
yields an I/O improvement of up to 53% and 40% for sender and receiver, respec-
tively, while maintaining great scalability for up to 256 processing elements on
256 GPUs. As future work, we plan to investigate the performance portability of
our design on other network hardware, such as Mellanox EDR and HDR inter-
connect. We also plan to provide comprehensive support to AMD GPUs in our
workflow I/O abstraction.
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Abstract. Federated learning is a distributed machine learning that
enables models to aggregate on the server after local training to pro-
tect privacy. However, user heterogeneity presents a challenge in fed-
erated learning. To address this issue, some recent work has proposed
using knowledge distillation. But the application of knowledge distilla-
tion in federated learning is dependent on the proxy dataset, which can
be difficult to obtain in practice. Additionally, the simple average aggre-
gation method of model parameters may fail to achieve a global model
with good generalization performance, and may also lead to potential
privacy breaches. To tackle these issues, we propose FedGM, a data-free
federated knowledge distillation method that combines generative learn-
ing with mutual distillation. FedGM addresses user heterogeneity while
also protecting user privacy. We use a conditional generator to extract
global knowledge to guide local model training and build a proxy dataset
on the server-side to perform mutual distillation. Extensive experiments
on benchmark datasets show that FedGM outperforms state-of-the-art
approaches in terms of generalization performance and privacy protection.

Keywords: Federated Learning · User heterogeneity · Knowledge
Distillation · Generative Learning

1 Introduction

With the advent of edge computing, edge devices such as mobile phones, vehicles,
and facilities are generating more data than ever before. However, integrating
this data directly can be challenging due to privacy restrictions and industry
competition. Federated Learning (FL) is a novel machine learning approach that
decentralizes computing power and data resources. It enables clients to leverage
their local data for most of the computation by generating a local model, while
the global server only aggregates and updates the model parameters based on
the information received from clients, thus can ensure a basic level of privacy
while also allowing for the use of decentralized data resources.
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Classic aggregation algorithms for FL, represented by FedAvg [1], typically
average model parameters trained by each client element-wise. However, FL
faces a practical challenge from user heterogeneity, that is, in a scenario with
K clients, the datasets {(X1,Y1) , · · · , (Xk,Yk)} that belong to different clients
i, j ∈ {1, 2, . . . ,K} may follow different data distributions (x, y) ∼ Pi(x, y) �= Pj .
This user heterogeneity can result in a significant reduction in accuracy for
FedAvg compared to Independent and Identically Distributed (IID) data.

To deal with user heterogeneity in Federated Learning, many approaches
have been suggested, primarily from two complementary perspectives: one is to
regulate the local model’s deviation from the global model in the parameter space
to stabilize local training, such as FedProx [2], while the other tries to enhance
the effectiveness of the model aggregation method, with knowledge distillation
emerging as an effective solution, such as FedDF [3]. By using a proxy dataset to
transfer ensemble knowledge from local models to the global model, knowledge
distillation can mitigate the model drift problem caused by user data heterogene-
ity more effectively than simple parameter-averaging. However, a proxy dataset
saved on the server-side is required for using knowledge distillation, which usu-
ally consists of partial data provided by users or collected unlabeled data. This
is not feasible in many application fields due to two reasons: 1) the risk of user
privacy leakage, and 2) the low quality of wild data.

Based on our observation of user heterogeneity and shortcomings of existing
methods, in this work, we introduce a novel approach for federated learning,
namely Heterogeneous Federated Learning via Generative Learning and Mutual
Distillation (FedGM), in response to the problem of user heterogeneity. Inspired
by FedGen [4] and Deep Mutual Learning (DML) [5], our FedGM combines
the strengths of generative learning to transfer global knowledge to clients with
mutual distillation to improve the performance of the global model and com-
munication effectiveness. FedGM learns the global data distribution from user
models’ prediction rules using a conditional generator, which can produce feature
representations that match user predictions for given target labels. As a result,
the purpose of transferring global knowledge is achieved by broadcasting the gen-
erator to clients and generating augmented samples to guide the training of local
models. In addition, a proxy dataset is constructed with the learned generator
to perform mutual distillation on the server-side, facilitating the ensemble of a
more robust and generalizable global model by learning secondary information
from the prediction of peer models.

Concretely, our main contributions are as follows:

– We propose a data-free approach to knowledge transfer in federated learning
using a generative model to learn the global data distribution and construct-
ing a proxy dataset on the server-side.

– Our proposed approach, FedGM, combines generative learning with mutual
distillation to overcome the challenges of user heterogeneity. The global gen-
erator is broadcasted to clients to adjust the update of their local models,
while mutual distillation is performed on the server-side to assemble a more
robust global model.
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– We evaluate FedGM on three benchmark datasets, and the results show that
our proposed approach outperforms the state-of-the-art in terms of general-
ization performance and communication rounds.

2 Related Work

Federated Learning. Federated learning involves training machine learning
models on remote devices or isolated data centers while keeping the data decen-
tralized [1]. Recent research in this area has focused on addressing various chal-
lenges associated with FL, such as communication efficiency, privacy, and data
heterogeneity [6]. A variety of approaches have been proposed to address het-
erogeneity, including personalized models that learn separate but related models
for each device [7], regularization techniques that impose a proximal term on
local training [2], and methods for sharing local or proxy data on the server-side
[8,9]. However, these approaches may not be practical and can impose a heavy
burden on network bandwidth. Furthermore, sending client’s local data to the
server violates the fundamental privacy principle of federated learning.

Knowledge Distillation. Knowledge distillation (KD) for neural networks is
first introduced in [10], using a pre-trained teacher neural network (generally
larger in size) on the dataset to guide and supervise the training of a student
neural network (generally much smaller than the teacher network). The main
problem solved by knowledge distillation is how to transfer the knowledge learned
by the teacher network to the student network [11]. In particular, DML [5] has
been proposed to weaken the fixed teacher-student relationship, where a group
of student networks learn collaboratively and transfer knowledge to each other
during the training process. Additionally, some data-free KD methods have been
developed to address the issue of unavailable data. In particular, in [12–14], the
transferred data is generated by GAN. Data-free distillation shows great poten-
tial when data is not available, and we aim to combine state-of-the-art knowledge
distillation techniques with federated learning to enhance the generalizability
and communication efficiency of models in heterogeneous federated learning.

KD in Federated Learning. To address user heterogeneity in federated
learning, knowledge distillation has materialized as an effective method. Several
approaches have been proposed, such as FD [8], which synchronizes the logits of
each label accumulated during local training, and then uses the average logits
of each label as the distillation regularizer for the next round of local training.
FedMD [15] and Cronus [16] consider learning by mean logits per sample on pub-
lic datasets. FedDistill [17] obtains the metrics of the logit vector output from
user models and shares this metadata with users for knowledge distillation. Fed-
Mix [18] uses a data augmentation approach, where local training is enhanced
with the help of batch average data shared by users. However, most of these
approaches perform data-dependent distillation, which poses privacy risks. In
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contrast, our FedGM extracts global knowledge from user models via generative
learning in a data-free way, reducing these risks. Moreover, FedGM performs
mutual distillation on the server-side to ensemble a global model, rather than
simple parameter averaging.

3 Preliminaries

3.1 Typical Federated Learning Setup

The goal of conventional federated learning (FedAvg) is to learn a shared model
over decentralized data, by optimizing the global objective function in a dis-
tributed manner, where the global view of the entire dataset is obtained by
taking the union of all the decentralized datasets. We consider an instance space
X ⊂ R

p, a latent feature space z ⊂ R
d with d < p, and an output space Y ⊂ R.

We consider private data, denoted as (Xk,Yk) drawn from distinct distribution
Pk(x, y) from K clients, federated learning on each client begins with download-
ing the global weight vector wg ∈ R

d from the server. To optimize the local
objective function, each client applies the gradient descent algorithm for a num-
ber of epochs on its local data and updates its local model parameters:

Fk(wk) := Ex∼Pk

[
l
(
f(wk), c∗(x)

)]
, (1)

wk ← wk − η∇Fk(wk) (2)

where Fk(wk) is the risk of the k-th client local model, f is the forward method, l
is the loss function, c∗ is a ground-truth labeling function, η is the learning rate,
and ∇Fk

(
wk

) ∈ R
d is the gradient of Fk(wk). After a period of local updates,

clients upload their local model weights wk to the server, and then the server
aggregates these weights by weighted averaging:

wg ←
K∑

k=1

nk

n
wk (3)

where wg is the weights of the global model, nk is the number of local pri-
vate samples of the k-th client, and n is the number of samples overall clients.
The training process continues until the global model reaches convergence. The
advantage of this approach is that it enables collaborative learning without
exposing the private local data of each client. However, a potential challenge
is that the local data distributions Pk may differ from the joint data distri-
bution Pjoint , which violates the assumption that EPk

[Fk(wk)] = f(wg) under
non-IID settings. In practical application scenarios, user data is often non-IID,
so FL faces the challenge of user heterogeneity. Thus, applying model averaging
directly for aggregation may not result in an optimal global model.
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3.2 Knowledge Distillation

Knowledge distillation can transfer dark knowledge from the large teacher model
with superior capability to the student model with fewer parameters while main-
taining performance. We can simplify the loss function of the student model as
follows:

Lstudent = LCE + DKL ( pteacher‖ pstudent) , (4)

pteacher =
exp(z/T )

∑
i exp (zi/T )

(5)

where LCE is Cross-Entropy Loss and DKL is Kullback Leibler (KL) Divergence,
pteacher and pstudent are the predictions of the teacher and student models, respec-
tively. Let T be a hyper-parameter that represents the temperature, zi be the
logits of the i-th student model, and z be the logits of the teacher model. Pre-
vious studies have shown that the prediction of the teacher model can provide
more informative guidance (soft targets) than a one-hot label (hard targets) for
knowledge distillation, which can significantly enhance the performance of the
student model.

4 Methodology

In this section, we clarify our proposed approach in detail. Algorithm 1 shows a
summary, and Fig. 1 visualizes the overview of its learning procedure.

4.1 Global Knowledge Extraction

Inspired by FedGen [4], we try to get a global view of the data distribution
without acquiring private data, which we call global knowledge. In the training
process, we try to use distilled global knowledge to guide the learning of local
models. In order to make the global knowledge as consistent as possible with
the ground-truth data distribution, we consider a conditional distribution to
represent the global knowledge:

P∗
joint = arg max

Pjoint:Y→X
Ey∼p(y)Ex∼Pjoint(x|y)[log p(y | x)]. (6)

In above equation, p(y) and p(y |x) are both unknown, where the former
is the ground-truth prior and the latter is the posterior distributions of the
target labels. To make Eq. (6) optimizable w.r.t Pjoint, we use the empirical
approximations to estimate p(y) and p(x | y). When applied in practice, we can
obtain p̂(y) by asking users to provide the training label count while they upload
models. Then we use the ensemble knowledge from user models to approximate
p(y |x):

log p̂(y | x) ∝ 1
K

K∑

k=1

log p
(
y | x;wk

)
. (7)
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Fig. 1. Overview of FedGM

Even though we can estimate the approximation by using the above method,
it is also challenging to optimize Eq. (6) by direct computation on the input
space X , due to two reasons: the computational overload brought by the high-
dimensional space and the leakage of user information. Therefore, we try to
recover a latent space with an induced distribution G∗ : Y → Z that is more
compact than the original space while avoiding user information leakage:

G∗ = arg max
G:Y→Z

Ey∼p̂(y)Ez∼G(z|y)

[
K∑

k=1

log p
(
y | z;wk

)
]

. (8)

Next, our goal is to learn a conditional generator G to perform knowledge
extraction. We set the parameter of G as θ, and optimize the following objective:

min
θ

J(θ) := Ey∼p̂(y)Ez∼Gθ(z|y)

[

l

(

σ

(
1
K

K∑

k=1

g
(
z;wk

)
)

, y

)]

(9)

where σ is the activation function and g is the logit-output. Specifically, to
diversify the outputs of G(· | y), we add the noise vector ε ∼ N (0, I) to the
generator. Therefore, z ∼ Gθ(· | y) ≡ Gθ(y, ε | ε ∼ N (0, I)). Given an arbitrary
target label, the generator is to be optimized so that the feature representation
produced by the generator can be ideally predicted in the user model, in other
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words, the generator simulates the consensus of local users, resulting in a global
view of the user data.

After learning the generator Gθ, we broadcast it to local users so that each
user model can use Gθ to generate new augmented samples z ∼ Gθ(· | y), and
add it to the training process to train along with the local data. Therefore, in
order to enable the local model wk to generate more accurate predictions for
augmented samples, we need to add another part of the objective function to
maximize the ideal predictions probability:

min
wk

J
(
wk

)
:= Fk(wk) + Êy∼p̂(y),z∼Gθ(z|y)

[
l
(
f

(
z;wk

)
; y

)]
(10)

where Fk(wk) := 1
nk

∑
xi∈Pk

[
l
(
f(xi, w

k), c∗(xi)
)]

is the empirical risk given
local data Pk.

4.2 Mutual Distillation

We use the learned generator to create pseudo-samples that reflect the global
consensus and form a proxy dataset. Then, we apply knowledge distillation to
optimize the original aggregation method on the server. However, we do not
have a well-trained teacher model in the training process before convergence.
Therefore, we adopt deep mutual learning (DML) [5] as our server aggregation
strategy, which is based on knowledge distillation. In contrast to the conventional
one-way knowledge transfer from a pre-trained teacher model to an untrained
student model, DML enables bidirectional learning between two models during
the training process. The loss functions of the two models are given by:

Lw1 = LC1 + DKL (p2‖p1) , (11)
Lw2 = LC2 + DKL (p1‖p2) (12)

where p1 and p2 denote the predictions of the two networks. The objective of the
two models is to learn from the proxy datasets while minimizing the discrepancy
between their predictions. The proposed DML approach can also be naturally
extended to multiple networks.

Therefore, when users upload their local models w1, w2, ..., wk to the server,
the local models are trained to learn from secondary information on the proxy
dataset. And the global model wg is obtained by aggregating the local models
after mutual distillation. The objective function for optimizing wk, (1 ≤ k ≤ K)
becomes

Lwk = LCk
+

1
K − 1

K∑

l=1,l �=k

DKL (pl‖pk) . (13)

For model fusion, the local models are evaluated on mini-batches (d) of the
proxy dataset and their logit outputs are used to integrate the global model.
Thus, the local models are ensembled into a global model wg that users can
download,

wg
j := wg

j−1 − η
∂ KL

(
σ

(
1

|St|
∑

k∈St
f

(
wk,d

))
, σ

(
f

(
wg

j−1,d
)))

∂wg
j−1

(14)
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where St is the random subset of the K clients.
Through all the steps above, our proposed method can now extract the global

knowledge and realize the mutual distillation among the models. During the
implementation, we used interactive learning to produce a lightweight generator
that relied on local model prediction rules, and further used this generator to
enable local users to learn from consensus knowledge. We also use it to build a
proxy dataset stored on the central server for mutual distillation, which allowed
local models to learn from each other and ensemble into a better performing
global model.

Algorithm 1. FedGM: Heterogeneous Federated Learning via Generative Model
and Mutual Distillation
Require: global model parameters wg, local model parameters

{
wk

}K

k=1
, gen-

erator parameters θ, p̂(y) uniformly initialized, local steps T , learning rate
α, β, batchsize B, local label counter ck, global mutual distillation epochs
N .

1: repeat
2: St → random subset (C fraction) of the K clients
3: server broadcast wg, θ, p̂(y) to St

4: for each client k ∈ St in parallel do
5: wk ← wg

6: for t = 1...T do
7: {xi, yi}B

i=1 ∼ Pk, {ẑi ∼ Gθ (· | ŷi) , ŷi ∼ p̂(y)}B
i=1

8: update label counter ck.
9: end for

10: user upload wk, ck to server
11: end for
12: server updates p̂(y) based on {ck}k∈St

13: θ ← θ − α∇θJ(θ)
14: build proxy dataset {ẑi ∼ Gθ (· | ŷi) , ŷi ∼ p̂(y)} → D̂
15: for j = 1...N do
16: sample a mini-batch of samples d ∈ D̂
17: local models

{
wk

}K

k=1
perform mutual distillation

18: Lwk = LCk
+ 1

K−1

∑K
l=1,l �=k DKL (pl‖pk)

19: ensemble global model

20: wg
j := wg

j−1 − η
∂ KL

(
σ

(
1

|St|
∑

k∈St
f(wk,d)

)
,σ(f(wg

j−1,d))
)

∂wg
j−1

21: end for
22: until training stop
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5 Experiments

In this section, we validate the performance of FedGM and compare the perfor-
mance of our approach with other key related work.

5.1 Datasets

To verify the effectiveness of our proposed FedGM, we conduct a series of exper-
iments on three benchmark datasets.

– MNIST [19] is a 10-classification handwriting digit dataset, with the number
of 0 to 9. The dataset consists of 60000 training images and 10000 testing
images, with 6000 and 1,000 images (28× 28 pixels) per digit, respectively.

– EMNIST [20] is an extension of MNIST to handwritten letters. The dataset
consists of 4800 training images and 800 testing images(28× 28 pixels) per
letter respectively in 26 classes.

– CIFAR-10 [21] consists of 50000 training images and 10000 test images in
10 classes, with 5000 and 1000 images per class.

5.2 Baseline

To validate the performance of our approach, we select the following work as the
baseline.

– FedAvg [1] is one of typical FL methods, which directly manipulate received
model parameters.

– FedProx [2] limits the local model updates with a proximal term for better
local training under heterogeneous systems.

– FedDF [3] performs ensemble distillation with unlabeled data on the server
for effective model fusion.

– FedGen [4] is a data-free federated distillation method with flexible param-
eter sharing.

5.3 Implementation Details

We use the following settings for our experiments if not specified otherwise:
200 rounds of global communication, 20 user models with an active-user ratio
C = 50%, a local update step size T = 20 with a mini-batch size B = 32 for
each step. We simulate the typical federated learning setting by using at most
50% of the total training dataset distributed to user models, and the whole
testing dataset for performance evaluation. We adopt the network architecture
of [1] for the classifier. We set the mutual distillation iterations N = 50 and the
distillation mini-batch d = 32 with the same size as B.

To simulate the non-iid federated setting, we follow prior work and use the
Dirichlet distribution Dir(α) to model non-iid data distributions. A higher α
value means lower data heterogeneity. Figure 2 shows the effects of different α
values on the heterogeneity for the MNIST dataset.
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Fig. 2. Visualization of different user heterogeneity on MNIST dataset

5.4 Overall Performance

Impacts of Data Heterogeneity: Table 1 records the top-1 average test accu-
racy of all methods involved in comparison on MNIST and EMNIST, and Table 2
records the top-3 average test accuracy on CIFAR10. As we can see from the
table, our proposed FedGM achieves better and more robust results at different
levels of user heterogeneity, and the greater the heterogeneity of data distribution
(the smaller the value of α), the greater the increase of FedGM.

Table 1. Performance overview given different data settings on MNIST and EMNIST.
A higher α value means lower data heterogeneity. T denotes the local training steps
(communication delay).

Top-1 Test Accuracy

Dataset Setting FedAvg FedProx FedDF FedGen FedGM

MNIST (T=20) α=0.05 87.70±2.07 87.49±2.05 90.02±0.96 91.30±0.74 93.06±0.78

α=0.1 90.16±0.59 90.10±0.39 91.11±0.43 93.03±0.32 94.31±0.45

α=1.0 93.84±0.25 93.83±0.29 93.37±0.40 95.52±0.07 95.82±0.10

EMNIST (T=20) α=0.05 62.25±2.82 61.93±2.31 70.40±0.79 68.53±1.17 69.72±0.64

α=0.1 66.21±2.43 65.29±2.94 70.94±0.76 72.15±0.21 73.50±0.40

α=10.0 74.83±0.69 74.24±0.81 74.36±0.40 78.43±0.74 79.02±0.14

EMNIST (α=1.0) T=20 74.83±0.99 74.12±0.88 75.43±0.37 78.48±1.04 80.03±0.21

T=40 77.02±1.09 75.93±0.95 77.58±0.37 78.92±0.73 80.31±0.19

Table 2. Performance overview given different data settings on CIFAR10. A higher α
value means lower data heterogeneity.

Top-3 Test Accuracy

Dataset Setting FedAvg FedProx FedDF FedGen FedGM

CIFAR10 (T=20) α=0.05 67.55±1.25 66.83±1.0 62.94±1.21 72.41±1.25 74.01±1.07

α=0.1 73.16±0.86 72.50±0.92 71.87±1.02 72.84±0.31 74.45±0.77

α=10.0 82.78±0.1 82.48±0.06 85.84±0.18 84.19±0.26 85.91±0.12
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This result confirms our motivation: FedProx and FedDF are optimized based
on the average of local model parameters by FedAvg, FedDF is extracted from
the global model obtained by FedAvg, so as the degree of non-iid increases,
there will be a certain effect, but the improvement is limited. Unlike FedDF, our
method achieves a significant performance gain compared to FedAvg. Among
the baselines, FedGen is one of the most competitive ones and achieves good
results in most cases. However, it does not fully exploit knowledge distillation.
We attribute our method’s better performance to the improved generalization
performance of both local and global models obtained by mutual distillation.
With the help of conditional generator, we distill local users’ knowledge into
global knowledge. Users supplement their local data by sampling from the gen-
erator which represents global knowledge so that the local objective function does
not deviate excessively from the global one and mitigates potential distribution
differences among users. Proxy dataset is constructed on the server-side with
pseudo-samples generated by the generator, allowing user models to perform
mutual distillation on the server to obtain a global model with better general-
ization performance, further alleviating the heterogeneity of data distribution.
Baselines such as FedAvg and FedProx do not address global knowledge transfer
or use a proxy dataset representing global data distribution for distillation.

Learning Efficiency: As shown in Fig. 3, FedGM achieves faster and more sta-
ble convergence, and outperforms other baselines on MNIST under α = 0.1, r =
50%. Although FedGen exhibits higher learning efficiency than other baselines,
with the help of the proxy dataset on sever side and mutual distillation, our
approach has less fluctuation in accuracy during the training process and results
in a better accuracy.

5.5 Sensitivity Analysis

Effects of Communication Frequency: We conduct a comparative analysis
of the impact of different local update steps T on the performance of FedGM
on EMNIST. A higher value of T will lead to longer communication delays
between global communications. Therefore, an appropriate local update step
can effectively improve global communication efficiency. As shown in Table 1, our
method maintains its performance under various communication delay scenarios.
In other words, our method has better communication efficiency.

Effects of Mutual Distillation Epochs: Figure 4 shows the performance of
our proposed method on EMNIST under different mutual distillation epochs.
The results show that the performance first improves significantly as the epoch
increases, but then decreases gradually. The reason is that when the epoch is small,
user models can not fully learn the secondary information from each other. When
the epoch becomes larger, user models have learned to overfit the proxy dataset,
resulting in the global model producing negative guidance for local training. After
comprehensive consideration, choosing epoch = 50 is more appropriate.
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Fig. 3. Performance on MNIST under
α = 0.1, r = 50%.

Fig. 4. The influence of global mutual
distillation epoch on MNIST

6 Conclusion

This paper presents FedGM, a solution to the challenging problem of user hetero-
geneity in federated learning. FedGM combines generative learning with mutual
distillation to improve generalization performance in a data-free manner. Empir-
ical experiments demonstrate that our proposed approach achieves significantly
better performance, with greater stability and fewer communication rounds than
previous methods.
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Abstract. The deployment of heuristic algorithms is extensively uti-
lized in the routing policy of Networks-on-Chip (NoCs). However,
the escalating complexity and heterogeneity of multi-core architectures
present a formidable task for human-designed efficient heuristic routing
policies. Although recent works have exhibited that machine learning
(ML) can learn efficacious routing policies that surpass human-designed
heuristics in simulation, the intricate design and costly hardware over-
head of ML-based routing algorithms preclude their practical application
in NoCs. In this paper, we propose a Decision Tree-based Adaptive Rout-
ing algorithm, DeTAR, which is effective yet simple. The key insight of
DeTAR is that routing decisions can be treated as selecting and prioritiz-
ing the key features among various NoCs’ metrics like free Virtual Chan-
nels (VCs), the buffer length, etc., that better affect the routing decision.
This reveals a natural match between the adaptive routing algorithm
and the Decision Tree (DT) model. We trained DeTAR from network
behavior datasets and evaluated the DeTAR routing algorithm against
existing routing algorithms. Our simulation results show that the aver-
age saturation throughput can be improved by up to 17.59% compared
with existing heuristic routing algorithms. Compared with the previous
ML-based adaptive routing algorithm, the area of our routing logic is
reduced by 88.95% without significant performance degradation.

Keywords: Networks-on-Chip · Machine Learning · Decision Tree
Model · Adaptive Routing Algorithm

1 Introduction

Routing algorithm plays a key role in the overall performance of Networks-on-
chip (NoCs), which select an output port by specific rules to determine packet
transmission paths [15]. Dimension Order Routing (DOR) [6] is a classical deter-
ministic routing algorithm and has low hardware cost. However, it suffers from
poor load balance across different routes in NoCs. Heuristic adaptive routing
algorithms (such as Dynamic XY (DyXY) [14], Regional Congestion Awareness
(RCA) [11], Destination-Based Adaptive Routing (DBAR) [15], Footprint [10],
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Fig. 1. Latency-throughput comparison of Footprint [10] and Footprint-variant with
4×4 2D mesh for uniform random and adversarial (such as transpose) traffic patterns,
where Footprint-variant changes the priority of Footprint’s decision metrics.

etc.) improve this problem by selecting routing ports based on the network state
information, including the number of free Virtual Channels (VCs), the buffer
length, etc. Designing an effective routing algorithm requires carefully deliberat-
ing complex trade-offs between network performance and hardware cost, which
is progressively more arduous for human designers. Therefore, experts have ini-
tiated exploring machine learning (ML) techniques to design routing policies.

Recent works have shown that ML techniques can learn effective routing poli-
cies. However, these works usually adopt reinforcement learning (RL) techniques
of ML and outperform human-designed heuristics in simulation. Boyan et al. [4]
first proposed the routing algorithm based on Q-learning, Q-Routing, which
employs a large Q-table (2KB overhead in 8 × 8 2D Mesh) to store the Q-value
for each state-action pair. Dual Reinforcement Q-Routing (DRQ-Routing [13])
uses backward exploration in addition to forwarding exploration (as that of Q-
Routing), which increases the cost of storing the Q-table. Reinforcement learn-
ing framework for adaptive routing (RELAR) [20] introduces a complex neural
network unit to approximate the state-action pair. This neural network still
requires tuning some model parameters for training and learning. However, RL-
based routing policies are hindered by two impediments. First, the RL model
must undergo the tuning and evaluation of numerous parameters to ensure effi-
cient performance [4]. Second, the RL-based routing policies face the substan-
tial hardware cost incurred during model deployment, which comprises complex
computation resources and large parameter memory space.

To solve the above problems, the key insight of this paper is that routing deci-
sions can be treated as selecting and prioritizing the key features among various
network state information like free VCs, the buffer length, etc., which significantly
impact the routing decision. We present an example to illustrate the impact of
changing the priority of decision metrics in Footprint [10]. We select the Footprint
since it is a state-of-the-art heuristic adaptive routing algorithm. Footprint uses
free VCs and footprint VCs (VCs with the same destination as the current packet)
as decision metrics. By reordering the priority of these metrics, we can observe
how the network performance is affected. Footprint’s decision-making metrics are
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reordered and called Footprint-variant. We evaluate the network performance of
both Footprint and Footprint-variant for uniform random and adversarial traf-
fic patterns, as shown in Fig. 1. For uniform random traffic (Fig. 1a), Footprint
improves throughput by nearly 8.33% over Footprint-variant. For adversarial traf-
fic (Fig. 1b), Footprint also improves throughput by nearly 17.64% over Footprint-
variant. This stimulates us to treat routing decisions from a perspective of prop-
erly selecting and prioritizing the key features among various network state infor-
mation. Therefore, the above verification provides a solid foundation for designing
routing strategies using the Decision Tree (DT) model, a typical supervised ML
model aiming to obtain and prioritize the key features that significantly impact the
target decision from a set of data features [17]. To this end, we propose a Decision
Tree-based Adaptive Routing (DeTAR) algorithm on 2D mesh network topology.

To the best of our knowledge, we are the first to employ the DT model in the
NoCs routing algorithm design, and we build the dataset for the DT model. We set
a relatively comprehensive collection of commonly used network state information
at the beginning, including packet size, free VCs [11], free buffer size [14], footprint
VCs, remaining hops, and crossbar demand (the number of active requesters for a
given output port). We then label routing decisions by comparing the real latency
with theoretical latency and achieve a balanced amount of positive and nega-
tive routing decisions via empirical parameter settings of the theoretical latency
model. Next, we exploit the dataset to train the DT model and assist in the design
of DeTAR. DeTAR prioritizes the network state information in an order as fol-
lows: packet size and free buffer size. Finally, we implement the DeTAR with three
comparators and three multiplexers in a router. The comparators help check the
routing state information and control the selection of multiplexers in a prioritized
manner, which enables us to achieve low hardware costs.

The major contributions of this paper are as follows:

(1) We are the first to employ the DT model for routing policy designs. We con-
struct the dataset for the DT model by extracting a comprehensive collection
of network states from simulation trajectories and label routing decisions.

(2) We propose a Decision Tree-based Adaptive Routing (DeTAR) algorithm
and implement DeTAR with a few comparators and multiplexers while
achieving low hardware cost.

(3) We evaluate the proposed DeTAR routing, and the simulation results show
that the average saturation throughput can be improved by up to 17.59%
compared with existing routing algorithms. Compared with Q-Routing, the
area of DeTAR is reduced by 88.95%.

2 Background and Related Work

2.1 Machine Learning in Adaptive Routing Design

ML techniques can effectively solve many critical problems in NoCs, such as low
power [9], arbitration policy [21], routing algorithm [4], and network congestion
determination [12]. One of the widely recognized applications of ML in NoCs is



DeTAR: A Decision Tree-Based Adaptive Routing in Networks-on-Chip 355

adaptive routing. The Q-Routing algorithm [4], founded on the Q-learning model
of RL, is a classical work. This algorithm involves the construction of a Q-table
for each router to store the Q-value. This value estimates the time it takes to send
a packet to its destination through neighboring routers. After the router selects
the next-hop router, it needs to return the new Q-value and update the Q-value
of the router. DRQ-Routing [13] incorporates a double-strengthening mechanism
that involves both forward and backward exploration techniques to update the
Q-value. Predictive Q-Routing (PQ-Routing [5]) uses memory to store experi-
ence by predicting traffic trends to increase the learning rate. Hierarchical cluster-
based adaptive routing (C-Routing [18]) divides the network into several clus-
ters; each cluster maintains a Q-table instead of each node and can reduce the
size of the Q-table by four times. A highly adaptive routing algorithm based on
Q-learning is proposed, HARAQ [8], which adopts a scalable Q-table and mini-
mizes storage overhead. However, researchers have employed deep reinforcement
learning (DRL) to optimize routing algorithm design to mitigate the storage over-
head attributed to Q-table. Wang et al. [20] proposed an adaptive routing frame-
work based on DRL, RELAR, where the framework utilizes a neural network to
approximate the Q-table. Initially, it is important to note that the previous works
utilizing RL for designing routing algorithms are primarily focused on enhancing
the precision of the Q-learning approach and minimizing the Q-table size. Sec-
ondly, these methods require adjusting multiple parameters and conducting online
training, leading to increased hardware costs and the complexity of actual deploy-
ment. Hence, this paper aims to develop a minimal adaptive routing algorithm
that reduces hardware costs, thereby facilitating deployment.

To address these issues, we propose a Decision Tree-based Adaptive Routing
(DeTAR) algorithm, which leverages the DT model to identify the key metrics
that affect network performance and prioritize them accordingly. Another factor
is that the DT model’s simple architecture makes it easy to deploy.

2.2 Decision Tree Models

Tree-based model is a supervised learning model widely used for decision-making
problems, which aims to identify crucial features significantly impacting the tar-
get decision [17]. Common tree-based models include decision trees, random
forests, and gradient-boosted trees [22]. In contrast, the random forests and
gradient-boosted trees are complex and have more parameters, which could
increase the difficulty of training and implementation [17]. In this paper, we
exploit the DT model because this model can be efficiently implemented in
hardware.

A decision tree comprises a root node and several internal and leaf nodes.
During training, this model first analyzes datasets and calculates the information
gain of all features. It selects the feature with the largest information gain value
as the root node and divides the dataset based on the feature value of the root
node. This procedure repeats until reaching the termination conditions. Thus,
the leaf nodes represent the decision result. The first selected feature is the root
node, which carries the most weight in the decision-making process, followed by
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Fig. 2. The overall framework of the DeTAR routing design scheme.

the second feature. Overall, decision tree generation is selecting and prioritizing
data features. This paper provides a key insight that treats routing decisions
from a perspective of properly selecting and prioritizing the key features among
various network state information. Therefore, the DT model reveals a natural
match to the design of the adaptive routing algorithm.

3 Design of DeTAR Routing

This section presents the design details of the DeTAR algorithm. The overall
framework of the DeTAR routing design scheme has been shown in Fig. 2. During
the simulation of NoCs, we collect network state information as features and
determine labels to create a training dataset. Then, we inject this dataset into
the DT model for training to generate a decision tree and convert it into an
achievable routing policy. Finally, we deploy the routing logic to the routing
computation unit to implement the DeTAR adaptive routing algorithm.

3.1 Construction of Dataset

DT model is a supervised learning approach that relies on constructing a dataset
by collecting network state information as features and assigning labels. Collect
network state information from simulation traces generated during NoCs routing
computation. We collect this information relevant to the output port for each
routing computation and form a feature vector. A feature vector consists of a
list of features from all messages via the same output port. We then use message
transfer times to evaluate how routing policies affect network latency, providing
a basis for data labeling. We explain the detailed design below.

(1) Determine data features. For routing design, we consider the com-
plete set of features, which include Packet Size, i.e., the size of the packet;



DeTAR: A Decision Tree-Based Adaptive Routing in Networks-on-Chip 357

Remaining hops, i.e., the number of hops from the packet’s current to desti-
nation router; Free VCs, i.e., the number of free VCs; Free Buffer Size, i.e.,
the number of the free buffer of input port; Footprint VCs, i.e., the number
of footprint VCs with the same destination as the current packet; Crossbar
Demand, i.e., the number of active requesters for a given output port. These
features (e.g., packet size) should significantly impact routing decisions. Packet
Size and Remaining hops are related to network latency. Free VCs and Free
Buffer Size may correlate to network states and decision behaviors. Footprint
VCs and Crossbar Demand are related to traffic patterns. Note that each mes-
sage needs six integers (one each for the six features).

(2) Determine data labels. Network latency is typically employed to eval-
uate the network performance, laying the foundation for the data labels. At
low loads, the theoretical latency (T ) can be roughly estimated as the sum of
header latency (Th) and serialization latency (Ts). The header latency equals the
packet’s hop count (H) multiplied by per-hop router latency (tr). The per-hop
router latency equals the number of pipeline stages (P ) multiplied by the cycle
time (tc). The resulting additional serialization latency (L/b) is the latency for
the body to travel across the channel. L is the length of a packet, and b is the
bandwidth of the channels. We estimate the T using the following equation.

T = Th + Ts = H × tr + L/b = H × P × tc + L/b (1)

However, this T calculation ignores the time of multiple packets competing for
the same output ports, which varies based on the actual transmission and is
known as contention time (Tc). Therefore, we take the sum of L/b, Tc collec-
tively called tolerance, can set the constants P and tc based on experimental
simulations, and their product can be replaced by a single constant a. We esti-
mate the actual latency (Actual T) using the following equation

Actual T = H × P × tc + L/b + Tc = H × a + tolerance. (2)

Similar to the principle of error analysis, we compare the difference value
between the Actual T and the T. If this value exceeds 0, the label is 0, rep-
resenting the negative samples; otherwise, the label is 1, meaning the positive
samples. Therefore, in this paper, we mitigate the issue of data imbalance by reg-
ulating the dataset’s sample size with the same labels by adjusting the tolerance
value. For example, through extensive experimental analysis for uniform random
traffic pattern, we found that setting the tolerance value to 17 determines the
label and solves the data imbalance problem. Still, we also evaluated other traf-
fic patterns and verified the generalization ability. In addition to marking the
dataset, this tolerance value can also control the number of dataset samples in
different categories. As mentioned, selecting features and determining labels to
construct datasets require human involvement.

3.2 Learning a Routing Policy

As introduced in the previous subsection, we have completed the construction of
the training dataset. This paper selects the minimal adaptive routing algorithm
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Fig. 3. Convert decision tree to implementable routing logic.

as the learning object since it can be transformed into a binary classification
problem. Then, the subsection mainly describes the training of the DT model
to obtain a decision tree, which is employed in designing the routing policy.

We utilize an online training-based method combined with obtaining global
state information that can be intuitively employed to achieve optimal perfor-
mance. Unfortunately, the following hinder the implementation of this method.
(1) It is expensive to store network state information; (2) Collecting network
state information and online training ML model increase latency. Therefore, we
adopt the offline training method to learn the routing policy. The advantage of
this method is that the DT model can be fully trained through a large number of
datasets to obtain a more accurate DT model and improve the decision-making
ability of the DeTAR algorithm. In addition, offline training can also avoid prob-
lems such as latency and resource occupation during online training.

This paper employs the ID3 (Iterative Dichotomiser) algorithm since its sim-
ple structure can be easily converted to a logic circuit with acceptable deploy-
ment overhead after offline training. The ID3 algorithm computes the informa-
tion gain of each feature, selects the optimal feature to divide the current dataset,
and generates child nodes. Then, the identical process is iteratively applied to
each child node until all data is correctly classified or no further divisions can
be made. The offline training process of the ID3 model uses information gain
to select the optimal features as nodes and build a decision tree. The result
of the ID3 model is a decision tree, as shown in Fig. 3(a). Figure 3(a) is a 2-
depth decision tree. Each non-leaf node in the decision tree represents a feature
(packet size or free buffer size). The leaf node represents the output port out-
comes (Outport X and Outport Y ). In this decision tree, any path from the root
node to the leaf node is a decision rule, a simple IF-THEN statement consisting
of conditions and predictions. Therefore, we can map each decision rule to a
piece of pseudocode. An essential parameter of the ID3 algorithm is the max-
depth, which can also be used as a termination condition. More details about
the max-depth parameter will be detailed in the evaluation section.

Figure 3(a) suggests that this decision tree tends to utilize the packet size
and free buffer size, where the root node is the feature of packet size with the
highest decision priority, followed by free buffer size. However, it is apparent that
the packet size is a significant feature since a larger packet tends to wait longer
at a router, which increases the likelihood of blocking other packets or holding
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Algorithm 1. DeTAR Routing Algorithm Description.
Input: Packetsize, FreeBufferx.
Output: The output direction, OutDir.

1: if Packetsize ≤ 3 then
2: if FreeBufferx ≤ 2 then OutDir = Py; else OutDir = Px;
3: else
4: if FreeBufferx ≤ 8 then OutDir = Py; else OutDir = Px;
5: end if

onto critical resources. Free buffer size also makes sense since a router with a
larger free buffer size is less likely to be congested. It is worth noting that this
analysis guides on selecting key features. However, converting these analyses into
practical routing policies still lies on human designers.

3.3 Analysis of the DeTAR Routing Algorithm

Algorithm 1 is the DeTAR routing algorithm learned by the decision tree with
a max-depth of 2. The routing policy utilizes packet size as a key feature, where
each packet is handled differently based on its size. This routing policy dictates
that larger packets should reserve more free buffers while smaller packets should
reserve fewer free buffers. This routing policy generated by our approach resem-
bles the dynamic buffer allocation concept, where buffer sizes are adjusted based
on packet size to mitigate network congestion.

DeTAR employs 2D mesh and has at most two possible output ports, one in
each dimension (Px or Py). DeTAR needs to count the packet size (Packetsize)
and free buffer size (FreeBufferx) of one output port (X or Y dimension, but
this paper selects X dimension) as input. These candidate ports only have X and
Y dimensions in the minimum adaptive routing algorithm. When selecting an
output port, DeTAR first determines which dimension is likely to be congested
based on the current network status and then avoids selecting the port on this
dimension. The metric values of packets are compared against the decision values
to determine the output port based on the packet size and free buffer size. By
the way, DeTAR is deadlock-free since it is based on Duato’s theory [7]. In this
theory, packets can be routed fully adaptive but should wait on escape channels
to avoid routing deadlock. The escape VC is added to handle the deadlock, and
the first VC in each port is used as an escape VC in our design. Once a deadlock
occurs, the corresponding packets are injected into the escape VC. Packets in the
escape VC are transmitted using the DOR algorithm while ensuring no deadlocks
occur.

3.4 Generating Implementable Routing Logic

According to the above steps, we have successfully constructed the dataset,
trained the DT model to generate a decision tree, and designed a routing algo-
rithm based on this decision tree. This subsection mainly describes transforming
the decision tree into achievable routing logic.
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Fig. 4. Analysis and comparison of two routing computation units in router architec-
ture: the heuristic adaptive routing algorithm and the DeTAR.

Figure 3 shows how the decision tree is converted into an implementable rout-
ing logic. Figure 3(a) is a 2-depth decision tree. Figure 3(b) is the implementable
routing logic converted according to the decision tree. Each non-leaf node is
implemented using a two-input multiplexer and a comparator. This routing logic
needs three comparators and three multiplexers, where the comparators check
whether the routing state information meets a certain threshold and control the
selection of multiplexers accordingly in a prioritized manner. In the last step, we
need to deploy the routing logic into the routing computation unit. We compare
and analyze two routing computation units in router architecture: the heuristic
adaptive routing algorithm and the DeTAR algorithm, as shown in Fig. 4. In the
minimum routing algorithm, the heuristic adaptive routing algorithm typically
involves considering two potential ports in the X and Y dimensions. This algo-
rithm relies on the network state information in two dimensions to determine
the output port. DeTAR only counts the metric value for the output port in the
X dimension of the router and compares it with the decision values to determine
the output port. It is worth noting that the decision values of the trained decision
tree model are shared with each router. Therefore, DeTAR is a hardware-efficient
design compared with the heuristic adaptive routing algorithms.

4 Evaluation

This paper employs the Garnet2.0 [1] network model in full-system simulator
Gem5 [3]. We have modified this platform for data collection as well as evalu-
ating the performance of the DeTAR. The offline training of the DT model is
implemented in Python, leveraging scikit-learn [16] tools. To evaluate the area,
we synthesize the generated routing logic modules using Synopsys Design Com-
piler, targeting a TSMC 90 nm technology library and 2 GHz clock frequency.

As DeTAR does not impose specific restrictions on router architecture, we
select an input-queued VC-based router architecture as our baseline router archi-
tecture. This router has 4 VCs per virtual network and 4-flit depth per VC
and variable packet size ({1,5}uniformly distributed). To obtain a wide range of
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Fig. 5. Latency-throughput comparison of alternative routing algorithms with 4 × 4
mesh network topology and variable packet size for different synthetic traffic patterns.

feature values, we use 4×4 2D mesh and DOR with an injection rate of 0.31 pack-
ets/node/cycle under uniform random traffic. We select this particular injection
rate since it is the network saturation point (the average packet latency increases
dramatically after this point) and can collect different network status data. We
collect network status information for the output ports in the X dimension of
a router since this paper focuses on the minimum adaptive routing algorithm.
Then, this router is located in the middle area of the network topology since
a transmission path involves multiple routing decisions that overlap and inter-
sect. However, collecting data this way aims to ensure the dataset’s quality. In
addition to evaluating performance under uniform random traffic patterns, we
also assess the routing algorithms using other synthetic traffic patterns (such
as transpose and shuffle) and PARSEC workloads [2] to check if the DeTAR is
scalability in real workloads. We compare DeTAR with other routing algorithms,
and the corresponding routing algorithms are as follows. (1) DOR, a dimension-
ordered deterministic routing algorithm [6]; (2) O1Turn, an oblivious routing
algorithm [19]; (3) RCA-1D, a regional congestion awareness adaptive routing
algorithm [11]; (4) DBAR, a destination-based adaptive routing algorithm [15];
(5) Footprint, a state-of-the-art adaptive routing algorithm [10]; (6) Q-Routing
(QR), an adaptive routing algorithm based on Q-Learning [4]. DeTAR uses the
decision tree with a max-depth of 2 to generate routing decisions.

During model training, we conducted simulations for a total of 50,000 cycles,
with 20,000 cycles dedicated to warming up the network, 20,000 cycles for DT
model training, and the remaining cycles for testing the DT model. In decision
tree generation, each node is evaluated before division. If the division of the
current node cannot improve the generalization ability of the decision tree, the
division is stopped, and the current node is marked as a leaf node.

4.1 Scalable to Different Injection Rates

Figure 5(a) shows the performance comparison between baseline routing algo-
rithms and DeTAR across different injection rates on the uniform random traffic
pattern. This figure only shows the region around the network saturation point,
as routing algorithms have little effect on NoCs performance under low injection
rates. Regarding network throughput, DeTAR performs superior to RCA-1D,
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Fig. 6. Comparison of DeTAR and alternative routing algorithms using PARSEC work-
loads. The average latency of adaptive routing algorithms is normalized to that of DOR.

DBAR, and Footprint while being close to DOR and O1Turn. The performance
of the DeTAR is slightly better than heuristic adaptive routing algorithms but
is slightly lower than the QR. This is because QR uses online training to make
routing decisions, and this method can better monitor network status. However,
QR also increases hardware overhead, making it challenging to adopt in NoCs.
Under the same traffic pattern, DeTAR can generalize in situations of different
injection rates and outperforms heuristic adaptive routing algorithms. Mainly,
DeTAR improves saturation throughput by 11.5% compared with Footprint.

4.2 Generalization to Different Traffic Patterns

Figure 5(b, c) shows the performance comparison between different routing algo-
rithms under non-uniform traffic patterns, such as transpose and shuffle traffic
patterns. Similarly, DeTAR outperforms the heuristic routing algorithm in aver-
age packet latency. While the DeTAR is trained using uniform random traffic,
its high generalization makes it outperform other routing algorithms under other
traffic patterns as well. However, DeTAR does have a little performance gap with
the QR [4], which is based on RL and relies on network environment exploration
to enable a more feasible global adaptive routing. Unlike QR, DeTAR adopts a
decision tree model to explore the priority of network state features, which is
an approximate local optimum. DeTAR exhibits poorer performance than QR,
which is dynamically updated based on the global network state environment,
and serves as an approximate global optimum. However, compared with heuristic
routing algorithms, DeTAR improves the saturation throughput by 23.69%.

4.3 Real Workloads

We demonstrate the scalability of DeTAR under PARSEC workloads in this
section. Figure 6 shows the average packet latency (normalized to DOR’s latency)
across PARSEC workloads, where the bars at the end show the average result
across all workloads. DeTAR achieves better results for all cases, where the aver-
age packet latency of DeTAR outperforms DOR by up to 2.61%. For blacksc-
holes, the DeTAR routing algorithm improves minimally over DOR. For facesim,
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Fig. 7. (a) Area comparison of different routing algorithms. (b) Throughput compar-
ison of different network features for uniform random traffic pattern. (c) Throughput
comparison of online trained DeTAR-online optimization with DeTAR and QR routing
algorithms under uniform random traffic pattern. (d) Impact of max-depth parameters
on the classification accuracy.

the average packet latency of DeTAR outperforms DOR by up to 10.3%. The
working set of facesim is larger than that of blackscholes, as blackscholes has
the smallest working set among all the PARSEC workloads [2]. However, in
the above experiment, we evaluate performance under uniform random traffic
patterns, other synthetic traffic patterns (transpose and shuffle), and PARSEC
workloads. These can all prove that DeTAR is scalability.

4.4 Area of the DeTAR Routing Logic

Figure 7(a) shows the area comparison of different adaptive routing algorithms.
The implementation overhead of DeTAR adds information about the free buffer
size. The count of the free buffer size does not need to add additional registers but
only uses the credit link in the router architecture. The QR shows the area of this
implementation where the Q-table should use memory to implement. Compared
with QR implementation, DeTAR can reduce the area overhead by 88.95% with
slight performance degradation. Compared with Footprint, DeTAR can reduce
the area overhead by 66.32% without significant performance degradation. As
the max-depth used in the decision tree model increases, the area of DeTAR also
increases. This is because the number of comparators and multiplexers used by
DeTAR also increases.

4.5 Discussion

In this subsection, we present an analysis of observations and parameters based
on our ML experience for NoCs adaptive routing.

(1) Verify the validity of DeTAR. The learning process of the DT model
relies on features and domain knowledge, which select decision metrics critical for
the overall network performance and set the priority of these metrics accordingly.
Figure 7(b) compares the impact of different features on network performance
when they are separately used in routing strategies. Not surprisingly, packet
size was the feature that performed best, which can be verified to be consistent
with the feature priority obtained from the result of the DT model learning. We
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then utilize a pair of features combining packet size and free buffer size to design
DeTAR. There may be multiple approaches for how a NoCs architect can extract
insights from the ML analysis. Designers must utilize their domain expertise to
choose an approach that suits their domain problem.

(2) Optimization of online trained DeTAR. Although the DT model
is trained offline to increase manual participation in the collection of datasets,
DeTAR can be extended to an online training method. We evaluate the online
version of DeTAR (DeTAR-online) and compare it with QR and DeTAR under
uniform random traffic pattern, as shown in Fig. 7(c). DeTAR-online outper-
forms QR and DeTAR with a 6.9% increase in throughput. This experiment
verifies that the design scheme of the DeTAR can be scalability in an online
training mode, reducing manual participation.

(3) Different max-depth of the DT model. To explore the impact
of the max-depth parameter of the DT model on performance, we discuss dif-
ferent max-depth values. Figure 7(d) shows the effect of max-depth values on
classification accuracy from 1 to 10. The larger the max-depth value, the lower
the classification accuracy. As suggested in previous studies, the max-depth is a
critical parameter, and ensure it is not too large to avoid overfitting. To make
a trade-off between hardware overhead and network performance, although the
accuracy when the max-depth value is 3 is greater than that when the max-
depth value is 2, the main research object of this paper is the maximum value
of 2. Therefore, a larger max-depth value can result in sub-optimal network per-
formance. On the other hand, aggressively lowering the max-depth values also
reduces hardware overhead.

5 Conclusion

This paper has presented a novel methodology for distilling routing logic, the
Decision Tree-based Adaptive Routing algorithm, DeTAR. We design DeTAR
from a key insight that routing decisions can be treated as selecting and priori-
tizing the key features of various network state information. The DT model can
select and prioritize critical factors for the target decision. This reveals a natural
match between the adaptive routing algorithm and the DT model. We collect
network state data from the NoCs simulation process and build the training
dataset. This method uses the ID3 algorithm and offline training to obtain a
decision tree. Then, this decision tree is transformed into implementable routing
logic. Finally, we implement DeTAR with a few comparators and multiplexers,
achieving low hardware costs. We demonstrate that DeTAR provides significant
improvement in performance across synthetic traffic patterns and real workloads.
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Abstract. Graph Neural Networks (GNNs) have gained considerable
attention in recent years for their exceptional performance on graph-
structured data. Sampling-based GNN training is the most common
method used for training GNNs on large-scale graphs, and it is often
accelerated by caching feature data on the GPU. However, the emer-
gence of more complex models and datasets with higher feature dimen-
sion requires more GPU memory for training, which limits the accel-
eration performance of GPU caching and can even result in out-of-
memory errors. To release more GPU memory for the cache in a trans-
parent way, we propose a subgraph division method, which trains sev-
eral smaller micrographs instead of an entire subgraph at each training
iteration. However, it is non-trivial to combine subgraph division with
GPU caching due to the redundancy between micrographs. To tackle
this challenge, we introduce an auto-profile method that searches for the
best-performing subgraph division scheme based on training perception
and probability analysis. Additionally, we develop an estimation-based
caching strategy to lift the caching hitting rate against the diverse graph
structures. These ideas are integrated to Auto-Divide GNN, a frame-
work for accelerating sampling-based GNN training. The multi-GPU
evaluations on three representative GNN models and five large graphs
demonstrate that Auto-Divide GNN achieves significant speedups of up
to 5.61× and 3.13× over two state-of-the-art GNN frameworks, DGL
and PaGraph, respectively.

Keywords: Graph Neural Networks · Accelerate Training · Subgraph
Division · GPU Caching

1 Introduction

Recently, Graph Neural Networks [5,9,13] the application of deep learning meth-
ods to graph-structured data, have achieved remarkable success, particularly in
node classification [9], link prediction [17], and graph classification [15] tasks.
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Real-world graphs are often large-scale and associated with rich feature data.
When dealing with such graphs, it is highly challenging to process the entire
graph as one batch for limited memory in GNN training. Consequently, recent
works [4,7] have turned to sampling-based GNN training, which repeatedly sam-
ples subgraphs from the original graph and collects feature data to form mini-
batch data for training. However, sampling-based GNN training suffers from
inefficiencies due to the data loading problem, which involves the heavy and fre-
quent transmission of data from host memory to GPU memory. To address this
challenge, PaGraph [11] introduced GPU caching that leverages free GPU mem-
ory to cache the feature data to reduce data transmission. And PaGraph pro-
poses a caching strategy based on the out-degree of nodes. Further, GNNLab [16]
adopts a more general caching strategy based on pre-sampling. BGL [12] employs
a dynamic cache engine to minimize feature retrieving traffic.

Unfortunately, the effectiveness of GPU caching is constrained by the two
main bottlenecks. Firstly, the limited GPU memory. On the one hand, the GPU
caching solutions listed above require a significant volume of GPU memory to
cache node features. On the other hand, GNN training also requires a large
memory footprint. Thus, the caching solution has to compete for GPU memory
with the GNN training. As the trend of deploying more model layers, wider layer
hidden sizes, and advanced aggregators (e.g. LSTM), this memory competition
becomes severe. In extreme cases, such as mobile devices or desktop GPUs, this
can even lead to out-of-memory errors. The default solution to release GPU
memory for caching involves manually changing the model training algorithm
or tuning hyperparameters (e.g., minibatch size). However, this manual tun-
ing method increases the users’ workload. What’s worse, the hyperparameters
changing may interfere with the model update information, such as gradients,
and thus deteriorate the model’s accuracy and training convergence [8].

Secondly, the efficacy of GPU caching is also determined by the caching strat-
egy. However, current strategies often overlook the diversity of graph structure.
For instance, the caching strategy of PaGraph [11] is only efficient when the
graph has a power-law degree distribution, otherwise, its performance is poor.

In such circumstances, we propose Auto-Divide GNN, a sampling-based
multi-GPU GNN training framework targeting large graphs. Auto-Divide GNN
focuses on unleashing the power of GPU caching to accelerate GNN training
by solving the GPU memory competition in a transparent way. Our key idea
of this framework is subgraph division, which trains several smaller micrographs
instead of an entire subgraph at each training iteration. This design can release
GPU memory for caching since training on micrographs consumes much less
GPU memory in model computation. To provide a transparent view for users
and guarantee the model accuracy and training convergence, we accumulate the
gradients yielding from each micrograph and defer updating the model param-
eters, until the end of an iteration. In this way, model training with subgraph
division is equivalent to using the user-defined minibatch size.

However, combining subgraph division directly with GPU caching is challeng-
ing because there is a large number of redundant nodes between micrographs,
i.e., a node could simultaneously be an input node to multiple micrographs.
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Such duplication will further cause extra massive computation and transmis-
sion. This conflicts with the training speedup brought by subgraph division. A
reasonable subgraph division scheme can maximize the available GPU caching
space while reducing redundancy to achieve the best acceleration performance.
The manual search for such an optimal subgraph division scheme is burdensome
for the researchers. To tackle this challenge, we propose an auto-profile method
to search for the optimal division scheme. We first identify the pattern of the
optimal subgraph division scheme. Then we estimate the end-to-end time of all
alternative schemes under this pattern by training perception and probability
analysis. Finally, we select the scheme that promises to be the best performance.

Besides the subgraph division scheme, to lift the cache hitting rate against
diverse graph structures, we propose estimation-based caching, a caching strategy
based on the auto-profile method. Specifically, it will cache the nodes estimated
to be sampled most frequently, thus, it can achieve robustness and efficiency.

We evaluate the performance of Auto-Divide GNN by executing three typical
GNN models (i.e., GraphSAGE [4], GCN [9], and GAT [13]) over five representa-
tive datasets, and compare it with the state-of-the-art GNN system DGL [14] and
PaGraph [11]. Experimental results show that Auto-Divide GNN outperforms
DGL and PaGraph by up to 5.61× and 3.13×, and reduces average 95.05% and
82.17% data loading time, respectively.

Contributions. We make the following contributions in this paper.

1. An analysis of the bottlenecks of GPU caching technology (Sect. 2.3).
2. A novel subgraph division design for sampling-based GNN training that

reduces GPU memory consumption without adjusting the training strategy
and hyperparameters (Sect. 3.1).

3. An auto-profile method searches for the optimal subgraph division scheme
to combine with GPU caching, as well as a derived caching strategy with
near-ideal performance (Sect. 3.2).

4. An extensive evaluation with three models and five GNN datasets to show
the efficacy of Auto-Divide GNN (Sect. 4).

2 Background and Motivation

2.1 Sampling-Based GNN Training

The basic idea behind Graph neural networks (GNNs) is that each node aggre-
gates features from its neighboring nodes and performs neural network-based
transformations. Minibatch training, i.e., sampling-based GNN training, is the
most widely used approach. This method is typically executed in a CPU-GPU
hybrid architecture, where the graph structure data and node feature data are
stored in the server host memory, while the model training is performed on the
GPU. The training process is shown in Algorithm 1. The training nodes are
first divided into multiple minibatches, which are then processed one by one.
In each iteration, three steps of subgraph sampling, feature loading and model
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Algorithm 1: Minibatch training procedure.
Input : graph G = (V,E), training nodes set Vt, node feature data H, GNN

model model, minibatch size bs

1 {V1, V2, ..., VB} ← Split(Vt, bs) // minibatches of training nodes

2 for b ← 1 to B do
3 Gb ← Sample(G, Vb)

4 Hinput ← LoadFeature(H, Gb)

5 loss ← L (model(Gb, Hinput), labelVb)
6 loss.backward()
7 UpdateParameters(model.parameters())

computation will be performed. The training nodes in each minibatch are also
the output nodes. This is because the predicted values for these nodes will be
used to compare with their labels for the subsequent calculation of loss.

2.2 Acceleration Based on GPU Caching

A significant challenge faced by sampling-based GNN training is the heavy bur-
den of data transfer from host memory to GPU memory in feature loading. This
problem is caused by the exponential growth of the number of input nodes and
their corresponding feature data, as well as the limited PCIe bandwidth.

To address this challenge, PaGraph [11] first proposed to selectively cache the
features associated with specific nodes in GPU memory. During the model train-
ing, the input features of the minibatch will be retrieved from the host memory
and GPU cache respectively. Those nodes that are sampled more frequently will
be cached. Thus GPU caching reduces the data movement from CPU to GPU
to a certain extent.

2.3 Bottlenecks of GPU Caching

There are two main bottlenecks in training with GPU caching.
Firstly, more model layers, wider layer hidden sizes, and advanced aggrega-

tors (e.g. LSTM) improve the performance of GNN models, but also significantly
increase the memory usage of GPU during model training. With limited GPU
memory capacity, this leaves very little memory for GPU caching, resulting in
poor acceleration as well. Table 1 presents the peak training memory footprint
for each Model-Dataset pair under the setting of Table 2 and Table 3. This shows
that in many cases, the peak memory usage is already approaching the upper
limit of desktop GPUs. Therefore, the effectiveness of GPU caching is greatly
diminished. While hyperparameter tuning and training strategy modification
can reduce excessive memory consumption, they often come at the cost of worse
model performance and convergence.

Secondly, the design of caching strategy is also influential. PaGraph adopts a
static caching strategy that chooses the nodes with a high out-degree to cache.
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Table 1. Peak training memory footprint. (GB)

Models Ogbn-Products Wikipedia Live-Journal Live-Journal-2008 Enwiki

GraphSAGE 9.92 6.45 9.04 8.95 8.67

GCN 6.90 8.82 11.64 11.60 10.69

GAT 12.62 7.34 10.44 10.48 10.18

But this strategy is based on the assumption that the graph has a highly skewed
power-low degree distribution, which is not always met. GNNLab [16] employs a
caching policy based on pre-sampling which requires pre-processing of multiple
epochs. BGL [12] design a dynamic cache engine to acquire a higher cache hitting
rate. The cost, however, is the decrease in model accuracy due to the need for
using the specified partition and sampling algorithm.

Therefore, it is urgent to develop a user-transparent approach to reduce the
training memory overhead and a more general caching strategy.

3 Design

Auto-Divide GNN reduces the memory consumption during model training by
subgraph division, which processes multiple smaller micrographs instead of one
subgraph in an iteration. The gradients of these micrographs are accumulated
to update the model parameters at the end of the iteration, ensuring that the
effective minibatch size for updating model parameters is equal to the user-
defined minibatch size. Subgraph division, therefore, reduces memory usage
during model training without the need to adjust hyperparameters or model
algorithms. More details about subgraph division are presented in Sect. 3.1.

Subgraph division reserves more available memory for GPU caching. How-
ever, combining subgraph division with GPU caching is challenging because it
introduces redundant nodes across micrographs, leading to an increase in com-
putation and transmission. This makes selecting the optimal subgraph division
scheme crucial for users. In Sect. 3.2, we introduce an auto-profile method that
selects the optimal subgraph division scheme based on an accurate estimation of
the end-to-end time of micrographs. This approach enables Auto-Divide GNN
to achieve significant acceleration performance when subgraph division is cou-
pled with GPU caching. Additionally, based on the auto-profile method, we have
derived a more general and effective caching strategy compared to others.

Figure 1 presents the training pipeline of the Auto-Divide GNN. After initial-
izing the Auto-Divide GNN framework, we execute several epochs to obtain the
necessary information about the performance of the machine, and then calculate
the best subgraph division scheme based on our auto-profile method. Then we
start model training with subgraph division until the model convergences.

3.1 Subgraph Division

We propose subgraph division, and introduce it into sampling-based GNN train-
ing. Algorithm 2 describes the training pipeline. At the start of training, mbs, the
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Fig. 1. Training pipeline of Auto-Divide GNN.

Algorithm 2: Training with subgraph division.
Input : graph G = (V,E), training nodes set Vt, node feature data H, GNN

model model, minibatch size bs

1 mbs, t ← AutoProfile(model, bs)
2 {V1, V2, ..., VB} ← Split(Vt, mbs) // microbatches of training nodes

3 for b ← 1 to B do
4 Gb ← Sample(G, Vb) // sample micrograph

5 Hinput ← LoadFeature(H, Gb)

6 loss ← L (model(Gb, Hinput), labelVb)
7 loss.backward()
8 if b mod t == 0 then // Every t micorbatches

9 UpdateParameters(model.parameters())

microbatch size and t, the number of microbatches in one iteration, are obtained
by pre-processing or manual setting in Line 1. Then training nodes are splitted
into microbatches based on mbs in Line 2. After that, the subgraph sampling,
feature loading and model computation in Line 4–7 are the same as the steps
in Algorithm 1. The difference, however, is that training with subgraph division
only updates the model parameters after t microbatches, as shown in Line 8–9.
And we refer to t microbatches and one parameter updating as one iteration.
While in minibatch training procedure, the model parameters are updated after
each minibatch has been processed.

Fig. 2. Schematic of subgraph division.

Figure 2 provides an example of subgraph division. Nodes 1, 2, 3, and 4 are
training nodes, while the other nodes are ordinary ones. With a user-definedmini-
batch size of 4, Fig. 2(b) shows a subgraph sampled from the 4 training nodes,
which are also the output nodes of the subgraph. As the training nodes will sam-
ple their 1-hop neighbors to form a subgraph, neighboring nodes beyond 1-hop will
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not be sampled (e.g., nodes 8, 11, 12, and 15). As a comparison, Fig. 2(c) illustrates
the two micrographs used to replace the subgraph in Fig. 2(b). One micrograph
is sampled from training nodes 1 and 2, while another is from nodes 3 and 4. The
sum of output nodes of the micrographs in one iteration is equal to the minibatch
size. Clearly, the micrograph is smaller than the subgraph, resulting in lower peak
memory overhead for training. However, the computations and transfers of redun-
dant nodes are also inevitable, such as the nodes 5 and 7 in Fig. 2(c).

While in training with subgraph division, the GNN model computes multiple
microbatches one by one in a single iteration. The gradients calculated from each
microbatch are not immediately used to update the model parameters after the
backward propagation; instead, they are accumulated and used to update the
model parameters together at the end of the iteration. This means that the model
parameters remain the same throughout this iteration until the final update.

So when the sum of the output nodes of the microbatches in a single iteration
is equivalent to minibatch size, the gradients for one update are calculated from
minibatch size samples, which means the effective minibatch size is equal to the
user-defined minibatch size. This demonstrates that subgraph division does not
affect model performance and convergence, and reduces peak training memory
overhead in a way that is transparent to the users.

3.2 Automatic Profiling

Pattern of Optimal Subgraph Division Scheme. Based on the analysis,
we propose three principles for the selection of the subgraph division scheme:

1. Reduce the size of micrographs to maximize available GPU memory for
caching feature data.

2. Minimize the number of micrographs in an iteration to reduce redundancy.
3. Ensure that the sum of output nodes of micrographs in an iteration is equal

to the user-defined minibatch size.

Under these constraints, we propose a model for the optimal subgraph divi-
sion scheme: in a single iteration, there will be k main micrographs (sampled
from main microbatch size training nodes) and 1 append micrograph (sam-
pled from append microbatch size training nodes) if the minibatch size is not
evenly divisible by main microbatch size. The following formula is more clear:{

minibatch size = k ×main microbatch size + append microbatch size

append microbatch size = minibatch size % main microbatch size

(1)

Searching Algorithm. We consider the search space to be all possible sub-
graph division schemes under Eq. 1, and we traverse this space to find the scheme
with the best performance by estimating the end-to-end time of each subgraph
division scheme, which can be easily achieved by estimating the end-to-end time
of a single micrograph.

We begin by modeling the end-to-end time of a micrograph, which is illus-
trated in Fig. 3 along with its various components and their relationships. This
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Fig. 3. The model for end-to-end processing time of single micrograph.

time can be divided into four parts: sampling time, micrograph copy time, model
computation time, and feature data load time. Our observations show that the
sampling time is directly proportional to the microbatch size, while the micro-
graph copy time, the model computation time, and the peak GPU memory
overhead during training are directly proportional to the number of input nodes
in the micrograph. The feature data load time is dependent on two parts: the
data loaded from the CPU to the GPU and the data copied from the GPU to
the GPU, which can also be estimated from the number of input nodes and the
cache hitting rate. Therefore, the key to estimating the end-to-end time of a
micrograph lies in the estimation of the number of input nodes and the cache
hitting rate, which can be calculated by computing Eu , the estimated number
of times that each node u will be sampled.

Algorithm 3 presents the complete process of estimating the end-to-end time
of a single micrograph. The algorithm first calculates the number of times each
node is sampled in Line 2–9. Line 10 computes the number of input nodes of the
micrograph. Finally, Line 11–14 estimate the end-to-end time of the micrograph
based on previous calculations.

In the algorithm, probability map PM is a hash map with node numbers
as keys and lists {p1, p2, ..., pn} as values. Here, pi represents the probability
that the i -th L-hop neighborhood training node of node u samples node u. We
obtain PM through pre-sampling. The function FuncPeakMem, FuncTimeSam-
ple, FuncTimeCopyMicrograph, and FuncTimeModelComputation are all uni-
variate linear functions, as we described before. The other three functions Group-
Probability, GetHittingRate, and FuncTimeDataLoad, are calculated using the
following equations:⎧⎪⎪⎪⎨
⎪⎪⎪⎩
GroupProbability({p1, p2, ..., pn}) = 1 −

n∏
i=1

(1 − pi)

GetHittingRate(m) =
∑

u∈Topm
Eu

∑
u∈N Eu

FuncT imeDataLoad(n, hitting rate) = n×hitting rate
vg2g

+ n×(1−hitting rate)
vc2g

(2)
where Topm is the set of the top m nodes with the highest frequencies of being
sampled, and the vg2g and vc2g are the transfer speed from GPU to GPU and
CPU to GPU respectively.
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Algorithm 3: Estimate the end-to-end time of one micrograph.
Input : graph G, microbatch size mbs, node set N , total GPU memory size

GPU size, node feature size feature size, probability map PM
Output: an estimated end-to-end time of a single micrograph

1 Total Eu ←− 0 ; // total sampled times of all nodes

2 foreach node u ∈ N do
3 {p1, p2, ..., pn} ←− RandomShuffle(PM [u])
4 Eu ←− 0 ; // sampled times of node u

5 k ←− n
|N|/mbs

; // split training neighbors into k group

6 for i ← 0 to |N|
mbs

− 1 do
7 start ←− i × k + 1, end ←− min((i + 1) × k, n)
8 Eu ←− Eu + GroupProbability({pstart, pstart+1, ..., pend})
9 Total Eu ←− Total Eu + Eu

10 num input nodes ←− Total Eu
|N|/mbs

; // number of input nodes

11 free memory ←− GPU size - FuncPeakMem(num input nodes)
12 num cache nodes ←− free memory / feature size
13 cache hitting rate ←− GetHittingRate(num cache nodes)
14 end2end time ←− FuncTimeSample(mbs) +

FuncTimeCopyMicrograph(num input nodes) +
FuncTimeModelComputation(num input nodes) +
FuncTimeDataLoad(num input nodes, cache hitting rate)

15 return end2end time

Estimation-Based Caching Strategy. Drawing on our previous analysis
and calculations, we propose an estimation-based caching strategy that priori-
tizes caching the nodes with the highest estimated frequency of being sampled.
This caching strategy has demonstrated near-ideal results in practice and is also
adaptable to a wider range of graph structures and sampling algorithms.

4 Evaluation

4.1 Experimental Setup

Environments. We use the server with 4 NVIDIA 3090 GPUs (24 GB memory),
two 24-core Intel Xeon CPUs (2.40 GHz), and 512 GB DDR4 host memory. The
machine is installed with Ubuntu 18.04, CUDA library v11.3. Our experiments
are carried out on PyTorch of version 1.13 and DGL [14] of version 0.9.2.

Datasets. We conduct the experiments on the following five representative
datasets, Ogbn-Products [6], Wikipedia-20070206 (for short, Wikipedia) [3],
Live-Journal [1], Live-Journal-2008 [3], Wikipedia-links-English (for short,
Enwiki) [10]. Table 2 shows the details of the datasets. As the four datasets
other than Ogbn-Products only provide graph structures, we generate random
feature data and labels for them based on specific dimensions, following the
setting of PaGraph [11].



376 H. Chen et al.

Models. We use three typical GNN models, GraphSAGE (for short, GSAGE)
[4], GCN [9], and GAT [13]. Specifically, we train GCN with neighborhood sam-
pling due to limited GPU memory, and GraphSAGE with mean aggregator.
Detailed parameter settings of GNN models and datasets are shown in Table 3.

Baselines. We evaluate our approach against two baselines: DGL [14], the most
widely-used industrial GNN framework, which performs sampling-based GNN
training without GPU caching, and PaGraph [11], a state-of-the-art GNN frame-
work that utilizes GPU caching with a node-degree based caching strategy. To
ensure fairness in the experiments, we reconstructed PaGraph in our software
environment. Unless stated otherwise, all the performance numbers are the aver-
age of results from 12 epochs.

Table 2. Statistics of datasets. (M: million)

Datasets Ogbn-Products Wikipedia Live-Journal Live-Journal-2008 Enwiki

vertex# 2.44M 3.57M 4.85M 5.36M 13.6M

edge# 123.7M 45.0M 68.99M 79.02M 437.2M

feature dimension 100 1000 600 600 600

Table 3. Parameter settings of GNN models.

Model layers Hidden size sampling minibatch size attention heads

GSAGE 3 512 (10, 15, 25) 4096 ×
GCN 3 512 (10, 15, 25) 4096 ×
GAT 3 128 (10, 15, 25) 2048 3

4.2 Overall Performance

We conduct the experiment of training three GNN models over five datasets with
four GPUs and present the end-to-end training performance of the three frame-
works in Fig. 4, 5, 6. Considering the impact of GPU memory on the experiment
and the specifications of common desktop GPUs, we manually set the available
total GPU memory to 10, 12, and 14 GB respectively.

Different Frameworks. DGL does not cache feature data on GPU, which
results in significant time consumption during data loading. As a result, Auto-
Divide GNN outperforms DGL by up to 5.61× (GAT + Wikipedia + 14 GB),
with an average speedup of 3.17×. PaGraph’s performance is better than DGL
because of GPU caching. Nevertheless, Auto-Divide GNN still achieves up to
3.13× speedup (GCN + Live-Journal-2008 + 12 GB), with an average speedup
of 1.71×. This is because of Auto-Divide GNN’s superior allocation of limited
GPU memory compared to PaGraph. With an equivalent GPU memory capac-
ity, Auto-Divide GNN has a larger cache space and can effectively reduce data
loading time. In addition, Auto-Divide GNN prevents the extreme case of out-
of-memory errors, which cannot be avoided by other baselines.
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Fig. 4. Training GraphSAGE model over 5 datasets.

Fig. 5. Training GCN model over 5 datasets.

Fig. 6. Training GAT model over 5 datasets.

Time Breakdown. We divided the end-to-end time into two parts, computa-
tion, and data loading. Computation time includes sampling time, micrograph
copy time, and model computation time, while data loading time refers to the
feature data load time. Compared to DGL and PaGraph, the average reduction
of data loading time by Auto-Divide GNN is 95.05% and 82.17%, respectively.
Furthermore, the average increase in computation time for Auto-Divide GNN is
only 9.08% and 11.07%, respectively. Given that data loading time dominates
the end-to-end time, the small increase in computation time is negligible.

4.3 Decrease of GPU Memory Overhead

To demonstrate the effectiveness of Auto-Divide GNN in reducing GPU mem-
ory consumption, we compared the GPU memory consumption of Auto-Divide
GNN and PaGraph in training the GraphSAGE model over five datasets while
achieving the same acceleration performance.

Table 4 compares the GPU memory overhead of Auto-Divide GNN and
PaGraph, with both frameworks achieving the same end-to-end training time.
Since the feature data of the Ogbn-Products dataset can be fully cached on a 12
GB GPU, subgraph division is unnecessary and both frameworks have the same
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GPU memory overhead. However, for the remaining four datasets, Auto-Divide
GNN reduces the GPU memory overhead by up to 38.3% compared to PaGraph.

We also provide the caching ratio and cache hitting rate for both frameworks
in Table 5 and Table 6, given the memory consumption presented in Table 4. This
indicates that, with reduced total GPU memory usage, Audo-Divide GNN gets
a comparable amount of GPU cache space as PaGraph, by decreasing the GPU
memory overhead during training. As a result, Auto-Divide GNN achieves a
similar or higher caching ratio, leading to a higher cache hitting rate and similar
speedup.

Table 4. GPU memory overheads for the same performance. (in GB)

Memory Overhead Ogbn-Products Wikipedia Live-Journal Live-Journal-2008 Enwiki

Auto-Divide GNN 10.71 9.70 7.99 8.20 7.40

PaGraph 10.70 12.00 12.00 11.99 12.00

Table 5. Caching Ratio under the memory overhead of Table 4.

Caching Ratio (%) Ogbn-Products Wikipedia Live-Journal Live-Journal-2008 Enwiki

Auto-Divide GNN 100.0 34.84 28.92 26.53 12.96

PaGraph 100.0 40.25 24.25 22.36 10.40

Table 6. Hitting Rate under the memory overhead of Table 4.

Hitting Rate (%) Ogbn-Products Wikipedia Live-Journal Live-Journal-2008 Enwiki

Auto-Divide GNN 100.0 85.43 80.64 79.52 75.71

PaGraph 100.0 79.15 63.47 62.39 55.21

Fig. 7. The end-to-end time using different dividing methods.

4.4 Benefit of Auto-profile Method

To demonstrate the impact of subgraph division scheme selection, we evaluate
three different dividing methods: no-division (using the original minibatch size),
2-division (using minibatch size/2 as the main microbatch size), and optimal-
division (using the microbatch sizes calculated by Auto-Divide GNN).
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The evaluation results (using GPU memory of 12 GB) in Fig. 7 show that
optimal-division achieves an average speedup of 1.12× (up to 1.31×) and 1.74×
(up to 3.06×) over 2-division and no-division, respectively. This result illustrates
the necessity of the auto-profile method for searching the optimal subgraph divi-
sion scheme.

Notably, in the following two scenarios, GAT on Wikipedia and GAT on
Enwiki, the optimal subgraph division is 2-division. Therefore, optimal-division
and 2-division have the same acceleration performance in these cases.

4.5 Ablation Experiments

We conducted an experiment to demonstrate the impact of our two acceleration
components, namely subgraph division and caching strategy. We introduced a
new baseline, cache estimation, which combines PaGraph with our estimation-
based caching strategy.

Fig. 8. The end-to-end time for 3 baselines including cache estimation.

Figure 8 presents the end-to-end time of the three baselines (using GPU mem-
ory of 12 GB). Compared with PaGraph, cache estimation achieves an average
speedup of 1.14× (up to 1.44×) in data loading, indicating the superiority of our
estimation-based caching strategy over PaGraph’s node-degree based strategy.

While the comparison between Auto-Divide GNN and cache estimation con-
firms the effectiveness of subgraph division: with a significant reduction in data
loading time and a slight increase in computation time, Auto-Divide GNN
achieves an average speedup of 1.72× (up to 3.10×) over cache estimation.

4.6 Scalability

We conduct the scalability evaluation of our framework. Figure 9 shows the
throughputs of training GraphSAGE, GCN, and GAT on two representative
real-world datasets (Live-Journal and Enwiki) with different numbers of GPUs.
Overall, Auto-Divide GNN outperforms PaGraph and DGL and achieves near-
linear scalability. For example, throughput on 4-GPU is 3.83× of which on the
one of a single GPU when training the GAT model on the Live-Journal dataset,
while PaGraph can only achieve a speedup of 2.97× in the same situation.
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Fig. 9. Scalability of DGL, PaGraph, and Auto-Divide GNN in training 3 GNN models
over 2 datasets.

4.7 Training Convergence

We evaluate the test accuracy of two widely used GNN models using DGL and
Auto-Divide GNN on the Ogbn-Products dataset with four GPUs to demon-
strate the correctness of our framework. As shown in Fig. 10, on both model
GraphSAGE and GCN, Auto-Divide GNN achieves similar convergence to the
original DGL within the same number of computation iterations.

Fig. 10. Test accuracy of DGL and Auto-Divide GNN during 4-GPU training.
(Dataset: Ogbn-Products dataset)

5 Related Works

Frameworks. We will discuss several sampling-based GNN training frameworks
that also rely on GPU caching. PaGraph [11] introduces a partitioning algorithm
to assign different cache contents to different GPUs in addition to GPU caching.
The core idea of GNNLab [16] is a factored design for multiple GPUs, where
each GPU focuses on either the sampling or training task. BGL [12] also isolates
resources between different data preprocessing stages to reduce contention.
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Auto-Divide GNN does not conflict with these developments and can benefit
from these novel designs. In addition, the subgraph division approach and auto-
profile method of Auto-Divide GNN have addressed the inefficiency challenge in
GPU caching that other frameworks are powerless to tackle.

6 Conclusion

In this paper, we introduce Auto-Divide GNN, a novel system designed for effi-
cient sampling-based GNN training over GPUs. Auto-Divide GNN employs sub-
graph division to reduce GPU memory consumption and adopts an auto-profile
method to combine subgraph division with GPU caching. Our experimental
results demonstrate that Auto-Divide GNN achieves up to 5.61× and 3.13×
speedup and reduces average 95.05% and 82.17% data loading time compared
to two state-of-the-art baselines, DGL and PaGraph, respectively.
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Abstract. Since its debut in 2016, Federated Learning (FL) has been tied
to the inner workings of Deep Neural Networks (DNNs); this allowed its
development as DNNs proliferated but neglected those scenarios in which
using DNNs is not possible or advantageous. The fact that most current
FL frameworks only support DNNs reinforces this problem. To address
the lack of non-DNN-based FL solutions, we propose MAFL (Model-
Agnostic Federated Learning). MAFL merges a model-agnostic FL algo-
rithm, AdaBoost.F, with an open industry-grade FL framework: Intel®

OpenFL. MAFL is the first FL system not tied to any machine learning
model, allowing exploration of FL beyond DNNs. We test MAFL from
multiple points of view, assessing its correctness, flexibility, and scaling
properties up to 64 nodes of an HPC cluster. We also show how we opti-
mised OpenFL achieving a 5.5× speedup over a standard FL scenario.
MAFL is compatible with x86-64, ARM-v8, Power and RISC-V.

Keywords: Machine Learning · Federated Learning · Federated
AdaBoost · Software Engineering

1 Introduction

Federated Learning (FL) is a Machine Learning (ML) technique that has gained
tremendous popularity in the last years [9]: a shared ML model is trained with-
out ever exchanging the data owned by each party or requiring it to be gathered
in one common computational infrastructure. The popularity of FL caused the
development of a plethora of FL frameworks, e.g., Flower [4], FedML [7], and
HPE Swarm Learning [23] to cite a few. These frameworks only support one ML
model type: Deep Neural Networks (DNNs). While DNNs have shown unprece-
dented results across a wide range of applications, from image recognition [11] to
natural language processing [22], from drug discovery [24] to fraud detection [10],
they are not the best model for every use case. DNNs require massive amounts
of data, which collecting and eventually labelling is often prohibitive; further-
more, DNNs are not well-suited for all types of data. For example, traditional
ML models can offer a better performance-to-complexity ratio on tabular data
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
J. Cano et al. (Eds.): Euro-Par 2023, LNCS 14100, pp. 383–396, 2023.
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than DNNs [17]. DNNs also behave as black-box, making them undesirable when
the model’s output has to be explained [8]. Lastly, DNNs require high computa-
tional resources, and modern security-preserving approaches, e.g. [16,21], only
exacerbate this issues [14].

We propose the open-source MAFL1 (Model-Agnostic Federated Learning)
framework to alleviate these problems. MAFL leverages Ensemble Learning to
support and aggregate ML models independently from their type. Ensemble
Learning exploits the combination of multiple weak learners to obtain a single
strong learner. A weak learner is a learning algorithm that only guarantees per-
formance better than a random guessing model; in contrast, a strong learner
provides a very high learning performance (at least on the training set). Since
weak learners are not bound to be a specific ML model, Ensemble Learning
techniques can be considered model-agnostic. We adopt the AdaBoost.F algo-
rithm [18], which leverages the AdaBoost algorithm [6] and adapts it to the FL
setting, and we marry it with an open-source industry-grade FL platform, i.e.,
Intel® OpenFL [5]. To our knowledge, MAFL is the first and only model-agnostic
FL framework available to researchers and industry at publication.

The rest of the paper introduces the basic concepts behind MAFL. We pro-
vide implementation details underlying its development, highlight the challenges
we overcame, and empirically assess our approach from the computational per-
formances and learning metrics points of view. To summarise, the contributions
of this paper are the following:

– we introduce MAFL, the first FL software able to work with any supervised
ML model, from heavy DNNs to lightweight trees;

– we describe the architectural challenges posed by a model-agnostic FL frame-
work in detail;

– we describe how Intel® OpenFL can be improved to boost computational
performances;

– we provide an extensive empirical evaluation of MAFL to showcase its cor-
rectness, flexibility, and performance.

2 Related Works

FL [15] usually refers to a centralised structure in which two types of entities, a
single aggregator and multiple collaborators, work together to solve a common
ML problem. A FL framework orchestrate the federation by distributing initial
models, collecting the model updates, merging them according to an aggregation
strategy, and broadcasting back the updated model. FL requires a higher-level
software infrastructure than traditional ML flows due to the necessity of exchang-
ing model parameters quickly and securely. Model training is typically delegated
to de-facto standard (deep) ML frameworks, e.g., PyTorch and TensorFlow.

Different FL frameworks are emerging. Riviera [19] provides a compelling list
of 36 open-source tools ranked by community adoption, popularity growth, and
1 https://github.com/alpha-unito/Model-Agnostic-FL.

https://github.com/alpha-unito/Model-Agnostic-FL
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feature maturity, and Beltrán [3] reviews 16 FL frameworks, identifying only
six as mature. All of the surveyed frameworks support supervised training of
DNNs, but only FATE [12], IBM-Federated [13], and NVIDIA FLARE [20] offer
support for a few different ML models, mainly implementing federated K-means
or Extreme Gradient Boosting (XGBoost): this is due to the problem of defining
a model-agnostic aggregation strategy. DNNs’ client updates consist of tensors
(mainly weights or gradients) that can be easily serialised and mathematically
combined (e.g., averaged), as are also the updates provided by federated K-means
and XGBoost. This assumption does not hold in a model-agnostic scenario,
where the serialisation infrastructure and the aggregation mechanism have to
be powerful enough to accommodate different update types. A truly model-
agnostic aggregation strategy should be able to aggregate not only tensors, but
also complex objects like entire ML model. AdaBoost.F is capable of doing that.
Section 3 delves deeper into the state-of-the-art of federated ensemble algorithms.

As a base for developing MAFL, we chose a mature, open-source framework
supporting only DNNs: Intel® OpenFL [5]. The reason for this choice is twofold:
(i) its structure and community support; and (ii) the possibility of leveraging
the existing ecosystem by maintaining the same use and feel. Section 4 delves
into the differences between plain OpenFL and its MAFL extension, showing
how much DNN-centric a representative modern FL framework can be.

3 Model-Agnostic Federated Algorithms

None of the frameworks mentioned in Sect. 2 supports model-agnostic FL algo-
rithms, i.e., they cannot handle different ML models seamlessly. The reason is
twofold. On the one hand, modern FL frameworks still try to achieve sufficient
technical maturity, rather than adding new functionalities. On the other hand,
model-agnostic federated algorithms are still new and little investigated.

Recently, [18] proposed three federated versions of AdaBoost: DistBoost.F,
PreWeak.F, and AdaBoost.F. All three algorithms are model-agnostic due to
their inherent roots in AdaBoost. Following the terminology commonly used in
ensemble learning literature, we call weak hypothesis a model learned at each
federated round and strong hypothesis the final global model produced by the
algorithms. The general steps of an AdaBoost-based FL algorithm are the fol-
lowing:

1. The aggregator receives the dataset size N from each collaborator and sends
them an initial version of the weak hypothesis.

2. The aggregator receives the weak hypothesis hi from each collaborator and
broadcasts the entire hypothesis space to every collaborator.

3. The errors ε committed by the global weak hypothesis on the local data are
calculated by each client and sent to the aggregator.

4. The aggregator exploits the error information to select the best weak hypoth-
esis c, adds it to the global strong hypothesis and sends the calculated
AdaBoost coefficient α to the collaborators.
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Fig. 1. The three protocols implied by DistBoost.F, PreWeak.F, and
AdaBoost.F. N is the dataset size, T is the number of training rounds, h the weak
hypothesis, ε the classification error, α the AdaBoost coefficient. The subscript i ∈ [1, n]
indices the collaborators and the superscript t the training rounds (with 0 standing for
an untrained weak hypothesis). c ∈ [1, n] is the index of the best weak hypothesis
in the hypothesis space. The red dotted line in PreWeak.F indicates the absence of
communication.

Note that N is needed to adequately weight the errors committed by the global
weak hypothesis on the local data, thus allowing to compute α correctly.

Figure 1 depicts the protocol specialisations for the three algorithms
described in [18]. They are similar once abstracted from their low-level details.
While step 1 is inherently a setup step, steps 2–4 are repeated cyclically by Dis-
tBoost.F and AdaBoost.F. PreWeak.F instead fuses steps 1 and 2 at setup time,
receiving from each collaborator T instances of already trained weak hypotheses
(one for each training round) and broadcasting n × T models to the federation.
Then, each federated round t loops only on steps 3 and 4 due to the different
hypothesis space the algorithms explore. While DistBoost.F and AdaBoost.F
create a weak hypothesis during each federated round, PreWeak.F creates the
whole hypothesis space during step 2 and then searches for the best solution
in it.

All three algorithms produce the same strong hypothesis and AdaBoost
model, but they differ in the selection of the best weak hypothesis at each round:

– DistBoost.F uses a committee of weak hypotheses;
– PreWeak.F uses the weak hypotheses from a fully trained AdaBoost model;
– AdaBoost.F uses the best weak hypothesis trained in the current round.

The generic model-agnostic federated protocol is more complex than the
standard FL one. It requires one more communication for each round and the
exchange of complex objects across the network (the weak hypotheses), impacting
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Fig. 2. OpenFL architecture from [5]. The proposed extension targets only the inner
components (coloured in blue). (Color figure online)

performance. Note that each arrow going from collaborator i to the aggregator
in Fig. 1 implies a synchronisation barrier among all the collaborators in the fed-
eration. Increasing the number of global synchronisation points reduces concur-
rency and increases the sensitivity to stragglers. It is worth noting that once an
FL framework can handle the common protocol structure, implementing any of
the three algorithms requires the same effort. For this study, we implemented
AdaBoost.F for two main reasons. First, its protocol covers the whole set of mes-
sages (like DistBoost.F), making it computationally more interesting to analyse
than PreWeak.F. Besides, AdaBoost.F achieves the best learning results out of
the three, also when data is heavily non-IID across the collaborators.

4 MAFL Architecture

Redesigning OpenFL comprises two main goals: allowing more flexible protocol
management and making the whole infrastructure model agnostic. During this
process, we aimed to make the changes the least invasive and respect the original
design principles whenever possible (see Fig. 2).

4.1 The Plan Generalization

The Plan guides the software components’ run time. It is a YAML file containing
all the directives handling the FL learning task, such as which software compo-
nents to use, where to save the produced models, how many rounds to train,
which tasks compose a federated round, and so on. The original OpenFL Plan is
rather primitive in its functions. It is not entirely customisable by the user, and
many of its fields are overwritten at run time with the default values. Due to its
unused power, the parsing of the plan file has been extended and empowered,
making it capable of handling new types of tasks, along with a higher range of
arguments (and also making it evaluate every parameter in the file).
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The new model-agnostic workflow can be triggered by specifying the nn:
False argument under the Aggregator and Collaborator keywords. The spe-
cific steps of the protocol can then be specified in the tasks section. In the
Intel® OpenFL framework, there are only three possible tasks:

– aggregated_model_validation: test set validation of aggregated model;
– train: local training of the model;
– locally_tuned_model_validation: test set validation of local model.

The three tasks are executed cyclically, with the Aggregator broadcasting the
aggregated model before the first task and gathering the local models after the
training step. In MAFL, the tasks vocabulary comprises three additional tasks:

– weak_learners_validate: test set validation of the weak learners;
– adaboost_update: update of the global parameters of AdaBoost.F on the

Collaborators and the ensemble model on the Aggregator;
– adaboost_validate: local test set validation of the aggregated AdaBoost.F

model.

The weak_learners_validate task is similar to aggregated_model_
validation. However, it returns additional information for AdaBoost.F, such as
which samples are correctly predicted/mispredicted and the norm of the samples’
weights.

The extended set of tasks allows users to use new FL algorithms, such as
AdaBoost.F. Additionally, if the adaboost_update task is omitted, it is possible
to obtain a simple Federated Bagging behaviour. Switching behaviour requires
small actions other than changing the Plan; however, both functionalities are
documented with tutorials in the code repository.

4.2 Expanded Communication Protocol

New messages have been implemented into the original communication protocol,
allowing the exchange of values other than ML models and performance metrics
since AdaBoost.F relies on exchanging locally calculated parameters. Further-
more, Intel® OpenFL only implements two synchronisation points in its original
workflow: one at the end of the federation round and one when the Collaborator
asks the Aggregator for the aggregated model. These synchronisation points are
hard-coded into the software and cannot be generalised for other uses.

For the AdaBoost.F workflow, a more general synchronisation point is
needed: not two consecutive steps can be executed before each Collaborator
has concluded the previous one. Thus a new synch message has been added
to the gRPC protocol. The working mechanism of this synchronisation point is
straightforward: the collaborators ask for a synch at the end of each task, and if
not all collaborators have finished the current task, it is put to sleep; otherwise,
it is allowed to continue to the next task. This solution, even if not the most
efficient, respects the Intel® OpenFL internal synchronisation mechanisms and
thus does not require any different structure or new dependency.
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4.3 Core Classes Extension

The following core classes of the framework have been modified to allow the
standard and model-agnostic workflows to coexist (see Fig. 2 for an overview).

The Collaborator class can now offer different behaviours according to the
ML model used in the computation. Suppose the Plan specifies that the training
will not involve DNNs. In that case, the Collaborator will actively keep track
of the parameters necessary to the AdaBoost.F algorithm, like the mispredicted
examples, the weight associated with each data sample, and the weighted error
committed by the models. Additionally, the handling of the internal database
used for storage will change behaviour, changing tags and names associated with
the entries to make possible finer requests to it.

The Aggregator can now generate any ML models (instead of only DNNs
weights), handle aggregation functions instantiated dynamically from the plan
file, and handle the synchronisation needed at the end of each step. New methods
allow the Aggregator to query the internal database more finely, thus allowing it
to read and write ML models with the same tags and name as the Collaborator.

TensorDB, the internal class used for storage, has been modified to accommo-
date the new behaviours described above. This class implements a simple Pandas
data frame responsible for all model storage and retrieving done by the Aggre-
gator and Collaborators. Furthermore, its clean_up method has been revised,
making it possible to maintain a fixed amount of data in memory. This fix has
an important effect on the computational performance since the query time to
this object is directly proportional to the amount of data it contains.

Finally, the more high-level and interactive classes, namely Director and
Envoy, and the serialization library have been updated to work correctly with
the new underlying code base. These software components are supposed to be
long-lived: they should constantly be running on the server and clients’ hosts.
When a new experiment starts, they will instantiate the necessary Aggregator
and Collaborators objects with the parameters for the specified workflow.

This effort results in a model-agnostic FL framework that supports the stan-
dard DNNs-based FL workflow and the new AdaBoost.F algorithm. Using the
software in one mode or another does not require any additional programming
effort from the user: a few simple configuration instructions are enough. Addi-
tionally, the installation procedure has been updated to incorporate all new
module dependencies of the software. Finally, a complete set of tutorials has
been added to the repository: this way, it should be easy for any developer to
get started with this experimental software.

5 Evaluation

The complete set of tutorials replicating the experiments from [18] are used to
assess MAFL’s correctness and efficiency. We run them on a cloud and HPC
infrastructure, both x86-64 based, and Monte Cimone, the first RISC-V based
HPC system; however, MAFL runs also on ARM-v8 and Power systems.
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5.1 Performance Optimizations

Using weak learners instead of DNNs drastically reduces the computational load.
As an example, [1] reports 18.5 vs 419.3 s to train a 10-leaves decision tree or
a DNN model, respectively, on the PRAISE training set (with comparable pre-
diction performance). Moreover, AdaBoost.F requires one additional communi-
cation phase per round. This exacerbates the impact of time spent in commu-
nication and synchronisation on the overall system performance. To reduce this
impact, we propose and evaluate different optimisations to reduce this overhead.
Applying all proposed optimisations, we achieve a 5.5× speedup on a represen-
tative FL task (see Fig. 3). As a baseline workload, we train a 10-leaves decision
tree on the Adult dataset over 100 rounds using 9 nodes (1 aggregator plus 8
collaborators). We use physical machines to obtain stable and reliable comput-
ing times, as execution times on bare-metal nodes are more deterministic than
cloud infrastructures. Each HPC node is equipped with two 18-core Intel® Xeon
E5-2697 v4 @2.30GHz and 126 GB of RAM. A 100 Gb/s Intel® Omni-Path net-
work interface (in IPoFabric mode) is used as interconnection network. Reported
times are average of five runs ± the 95% CI.

We start by measuring the execution time given by the baseline: 484.13 ±
15.80 s. The first optimisation is to adapt the buffer sizes used by gRPC to
accommodate larger models and avoid resizing operations. Increasing the buffer
from 2 MB to 32 MB using decision trees reduced the execution time to 477.0
± 17.5 s, an improvement of ∼ 1.5%. While this seems small, the larger the
models, the bigger the impact of this optimisation. The second optimisation is
the choice of the serialisation framework: by using Cloudpickle, we reduce the
execution time to 471.4 ± 6.1 s, an improvement of ∼2.6%. Next, we examine
TensorDB, which grows linearly in the number of federated rounds, thus slowing
down access time linearly. We modified the TensorDB to store only the essential
information of the last two federation rounds: this results in a stable memory
occupation and access time. With this change, the execution time drops to 414.8
± 0.9 s, an improvement of ∼14.4% over the baseline.

Lastly, two sleep are present in the MAFL code: one for the end-round
synchronisation and another for the synch general synchronisation point, fixed
respectively at 10 and 1 s. Both have been lowered to 0.01 s since we assessed
empirically that this is the lowest waiting time still improving the global exe-
cution time. This choice has also been made possible due to the computational
infrastructures exploited in this work; it may not be suitable for wide-scale imple-
mentations in which servers and clients are geographically distant or compute
and energy-constrained. With this sleep calibration, we obtained a global exe-
cution time of 250.8 ± 9.6 s, a ∼48.2% less than the baseline. Overall, with all
the optimisations applied together, we can achieve a final mean execution time
of 88.6± s, i.e. a 5.46× speedup over the baseline.

5.2 Correctness

We replicate the experiments from [18] and compare the ML results. These
experiments involve ten different datasets: adult, forestcover, kr-vs-kp,
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Fig. 3. Ablation study of the proposed software optimisations; the 95% CI has been
obtained over five executions.

Table 1. Mean F1 scores ± standard deviation over 5 runs.

Dataset Classes Reference MAFL

Adult 2 85.58 ± 0.06 85.60 ± 0.05
ForestCover 2 83.67 ± 0.21 83.94 ± 0.14
Kr-vs-kp 2 99.38 ± 0.29 99.50 ± 0.21
Splice 3 95.61 ± 0.62 96.97 ± 0.65
Vehicle 4 72.94 ± 3.40 80.04 ± 3.30
Segmentation 7 86.07 ± 2.86 85.58 ± 0.06
Sat 8 83.52 ± 0.58 84.89 ± 0.57
Pendigits 10 93.21 ± 0.80 92.06 ± 0.44
Vowel 11 79.80 ± 1.47 79.34 ± 3.31
Letter 26 68.32 ± 1.63 71.13 ± 2.02

splice, vehicle, segmentation, sat, pendigits, vowel, and letter. These
are standard ML datasets targeting classification tasks, both binary (adult,
forestcover, kr-vs-kp) and multi-class (all the others), with a varying num-
ber of features (from the 14 of adult up to the 61 of splice), and a different
number of samples (from the 846 of vehicle up to the 495.141 of forestcover).
Each training set has been split in an IID way across all the Collaborators, while
the testing has been done on the entire test set. A simple Decision Tree from
SciKit-Learn with ten leaves is used as a weak learner; instead, the AdaBoost
class has been created manually. We set the number of federated rounds to 300
and use 10 nodes: 1 aggregator plus 9 collaborators. We note that these opti-
mizations can also benefit the original OpenFL.

Table 1 reports each dataset’s reference and calculated F1 scores (mean value
± the standard deviation over five runs). The values reported are fully compati-
ble with the results reported in the original study, thus assessing the correctness
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of the implementation. In particular, it can be observed that the standard devi-
ation intervals are particularly high for the vehicle, segmentation, and vowel.
This fact can be due to the small size of the training set of these datasets, respec-
tively 677, 209, and 792 samples, which, when split up across ten Collaborators,
results in an even smaller quantity of data per client: this can thus determine the
creation of low-performance weak learners. Furthermore, also letter reported
a high standard deviation: this could be due to the difference between the clas-
sification capabilities of the employed weak learner (a 10-leaves Decision Tree)
compared to the high number of labels present in this dataset (26 classes), thus
making it hard to obtain high-performance weak learners.

The mean F1 score curve for each dataset can be observed in Fig. 4a. As
can be seen, after an initial dip in performance, almost each learning curve
continues to grow monotonically to higher values. This fact is expected since
the AdaBoost.F is supposed to improve its classification performance with more
weak learners. It has to be observed that, at each federated round, a new weak
learner will be added to the aggregated model: the AdaBoost.F grows linearly in
size with the number of federated rounds. This characteristic of the algorithm has
many consequences, like the increasingly longer time needed for inference and
for moving the aggregated model over the network. From Fig. 4a, we can observe
that, in the vast majority of cases, a few tens of federated rounds are more than
enough to obtain a decent level of F1 scores; this is interesting since it is possible
to obtain a small and efficient AdaBoost.F model in little training effort. Instead,
for the more complex datasets like letter and vowel, we can observe that it is
possible to obtain better performance with longer training efforts. This means
that is possible to use AdaBoost.F to produce bigger and heavier models at need,
according to the desired performance and inference complexity.

5.3 Flexibility

To demonstrate the model-agnostic property of MAFL, we choose the vowel
dataset and train different ML model types on it. In particular, one representa-
tive ML model has been chosen from each multi-label classifier family available
on SciKit-Learn: Extremely Randomized Tree (Trees), Ridge Linear Regression
(Linear models), Multi-Layer Perceptron (Neural Networks), K-Nearest Neigh-
bors (Neighbors), Gaussian Naive Bayes (Naive Bayes), and simple 10-leaves
Decision Trees as baselines. Figure 4b summarises the F1 curves for the different
ML models used as weak learners. Each model has been used out-of-the-box,
without hyper-parameter tuning using the default parameters set by SciKit-
Learn v1.1.2. All ML models work straightforwardly in the proposed software
without needing to code anything manually: it is sufficient to replace the class
name in the experiment file. This proves the ease with which data scientists can
leverage MAFL to experiment with different model types.
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Fig. 4. ML properties of MAFL

5.4 Scalability Analysis

We perform this scalability study using the HPC nodes from Sect. 5.1 and Monte
Cimone [2], the first available HPC-class cluster based on RISC-V processors.
It comprises eight computing nodes equipped with a U740 SoC from SiFive
integrating four U74 RV64GCB cores @ 1.2GHz, 16 GB RAM and a 1 Gb/s
interconnection network.

We select the forestcover dataset for running these experiments, being the
largest dataset used in this study, split into a 485K training samples and 10K
testing samples. The weak learner is the same 10-leaves SciKit-Learn Decision
Tree from Sect. 5.2. We lowered the number of federated training rounds to 100
since they are enough to provide an acceptable and stable result (10 on the RISC-
V system due to the longer computational times required). Different federations
have been tested, varying numbers of Collaborators from 2 to 64 by powers of
2. We went no further since OpenFL is designed to suit a cross-silo FL scenario,
which means a few tens of clients. We investigated two different scenarios: strong
scaling, where we increase the collaborators while keeping the same problem size
by spitting the dataset samples in uniform chunks across collaborators; and
weak scaling, where we scale the problem size with the number collaborators
by assigning each collaborator the entire dataset. In both cases, the baseline
reference time is the time taken by a federation comprising the aggregator and
a single collaborator. We report the mean over 5 runs for each experiment.

Figure 5 shows the strong and weak scaling properties of MAFL. The RISC-
V plot stops at 7 because we have just 8 nodes in the cluster, and we want to
avoid sharing a node between the aggregator and collaborator to maintain the
same experiment system setting. In the strong scaling scenario, the software does
not scale efficiently beyond 8 HPC nodes, as the execution becomes increasingly
communication-bound. The same also affects the weak scaling. Nevertheless, the
degradation is sublinear (each point on the x/axis doubles the number of nodes).
This is important because the main benefit in the FL scenario is the additional
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Fig. 5. Strong and weak scaling properties of MAFL.

training data brought in by each contributor node. The RISC-V cluster exhibits
better strong scalability when comparing the two clusters. This is justified by the
slower compute speed of the RISC-V cores leading to higher training times, mak-
ing the execution more compute-bound, especially for a low number of nodes.
The weak scalability on the RISC-V cluster suffers from the lower network speed.
Since real-world cross-silo federations rarely count more than a dozen partici-
pants, it can be assessed that MAFL is suitable for experimenting with such
real-world scenarios.

6 Discussion

The implementation experience of MAFL and the subsequent experimentation
made it evident that current FL frameworks are not designed to be as flexible as
the current research environment needs them to be. The fact that the standard
workflow of OpenFL was not customisable in any possible way without modifying
the code and that the serialisation structure is DNN-specific led the authors to
the idea that a new, workflow-based FL framework is needed. Such a framework
should not implement a fixed workflow but allow the user to express any number
of workflow steps, entities, the relations between them, and the objects that
must be exchanged. This property implies the generalisation of the serialisation
infrastructure, which cannot be limited to tensors only. Such an approach would
lead to a much more straightforward implementation of newer and experimental
approaches to FL, both from the architectural and ML perspective.

Furthermore, the use of asynchronous communication can help better manage
the concurrent architecture of the federation. These systems are usually slowed
down by stragglers that, since the whole system is supposed to wait for them,
will slow down the entire computation. In our experience implementing MAFL, a
significant part of the scalability issues is determined by the waiting time between
the different collaborators taking part in the training. While such an approach
would improve the scalability performance of any FL framework, it also underlies
the investigation of how to simultaneously handle newer and older updates. This
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capability would improve the computational performance of gradient and non-
gradient-based systems: the relative aggregation algorithms must be revised to
accommodate this new logic. This matter is not trivial and deserves research
interest. Lastly, due to the possibility of exploiting less computationally requiring
models, MAFL can easily be used to implement FL on low-power devices, such
as systems based on the new RISC-V.

7 Conclusions

A model-agnostic modified version of Intel® OpenFL implementing the
AdaBoost.F federated boosting algorithm, named MAFL, has been proposed.
The proposed software has been proven to implement the AdaBoost.F algorithm
correctly and can scale sufficiently to experiment efficiently with small cross-silo
federations. MAFL is open-source, freely available online, easily installable, and
has a complete set of already implemented examples. To our knowledge, MAFL
is the first FL framework to implement a model-agnostic, non-gradient-based
algorithm. This effort will allow researchers to experiment with this new concep-
tion of FL more freely, pushing the concept of model-agnostic FL even further.
Furthermore, this work aims to contribute directly to the RISC-V community,
enabling FL research on this innovative platform.
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Abstract. In the last years, there has been a significant increment in
the quantity of data available and computational resources. This leads
scientific and industry communities to pursue more accurate and efficient
Machine Learning (ML) models. Random Forest is a well-known algo-
rithm in the ML field due to the good results obtained in a wide range of
problems. Our objective is to create a parallel version of the algorithm
that can generate a model using data distributed across different pro-
cessors that computationally scales on available resources. This paper
presents two novel proposals for this algorithm with a data-parallel app-
roach. The first version is implemented using the PyCOMPSs framework
and its failure management mechanism, while the second variant uses the
new PyCOMPSs nesting paradigm where the parallel tasks can gener-
ate other tasks within them. Both approaches are compared between
them and against MLlib Apache Spark Random Forest with strong and
weak scaling tests. Our findings indicate that while the MLlib imple-
mentation is faster when executed in a small number of nodes, the scal-
ability of both new variants is superior. We conclude that the proposed
data-parallel approaches to the Random Forest algorithm can effectively
generate accurate and efficient models in a distributed computing envi-
ronment and offer improved scalability over existing methods.

Keywords: Random Forest · PyCOMPSs · COMPSs · Parallelism ·
Distributed Computing · Dislib · Machine Learning · HPC

1 Introduction

Machine Learning (ML) has gained importance recently and is becoming a
widespread tool. It allows the computer to analyze data, extract meaningful
information, make valuable predictions, or help the user make critical decisions.

Due to the large amount of data generated in the last years, it is becoming
very relevant and valuable. The improvement in computational capacity has led
ML to create very accurate models in less time.

Despite the improvements achieved during the previous years on the tech-
niques analysed, there is still a lot of work to be done. The amount of data is
growing much faster than the computational and storage systems’ capacity.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
J. Cano et al. (Eds.): Euro-Par 2023, LNCS 14100, pp. 397–410, 2023.
https://doi.org/10.1007/978-3-031-39698-4_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-39698-4_27&domain=pdf
http://orcid.org/0000-0001-5634-509X
http://orcid.org/0000-0001-6401-6229
http://orcid.org/0009-0003-8848-9436
http://orcid.org/0000-0003-2941-5499
https://doi.org/10.1007/978-3-031-39698-4_27


398 F. Vázquez-Novoa et al.

From this uneven growth arises the need for parallel computing. This tech-
nique aims to use multiple processors (or other resources) simultaneously, dis-
tributing the computation among them and reducing the time required. It can
also be used to solve large data problems when the data does not fit into the
memory of a single computing node by distributing data between several devices,
and each one processes the part of the data it has received.

The distributed computing library (dislib) [6] was born to solve the previ-
ously explained problems. This library built on top of PyCOMPSs [16] focuses
on implementing parallel and distributed ML algorithms, giving the user a com-
pletely agnostic interface and facilitating its use on distributed computing envi-
ronments like clusters or supercomputers.

Random Forest is a very widespread ML algorithm that reaches very good
results in many problems. This article is about its parallelization using the
PyCOMPSs framework in order to include it on dislib, the challenges that arisen
and the results obtained. The main contributions of the paper are:

– A new parallel version of Random Forest algorithm.
– An implementation of Random Forest with PyCOMPSs using its failure man-

agement mechanism.
– An implementation of Random Forest with PyCOMPSs using nested tasks.

The rest of the article is structured as follows: Sect. 2 presents an overview
of the current state of the art of the Random Forest algorithm. The sequen-
tial algorithm is presented in Sect. 3. Next, Sect. 4 describes the parallelization
performed, based on the parallel framework PyCOMPSs and the dislib (Sub-
sect. 4.1), the parallelization of the algorithm (Subsect. 4.2) and adaptation
to the nesting paradigm (Subsect. 4.3). Section 5 provides performance evalua-
tion and the behaviour analysis. Finally, Sect. 6 summarizes the conclusions and
future work.

2 Related Work

Random Forest [8] is a well known algorithm and it has been implemented in
popular ML libraries like scikit-learn [12] or Apache Spark MLlib [11]. Scikit-
learn offers a very efficient sequential implementation and also a parallel version.
The parallel versions of scikit-learn are limited to its execution on a single com-
puting node, except when using Joblib to control the parallelism. Joblib supports
the use of Dask [14] as backend, which allows the use of multiple nodes.

The approach used on MLlib to parallelize the random forest algorithm is
based on a data-parallel optimization. The construction of the decision trees on
this algorithm relies on the use of histograms [3] for discretizing the continuous
variables. This reduces the costs in computation and communication between
processes, but it also reduces the accuracy reached by the model. Our imple-
mentation maintains the same predictive performance as the original algorithm,
which has already shown very good results, without using histograms for dis-
cretizing continuous data.
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In [1], a simple parallelization approach for random forest building each tree
in parallel is presented, but its scalability is limited by the number of trees and
not the data. Our work improves scalability using distributed arrays, where the
number of tasks depend on the number of blocks and their duration depends on
the block size, without relying on arbitrary parameters.

In [5], a random forest algorithm is parallelized with Apache Spark [18], per-
forming feature selection and using vertical data partitioning to allocate subsets
to different workers. Two types of tasks are presented: gain-ratio computing
tasks and node-splitting tasks. While promising for classification, this approach
is not evaluated for regression. In this paper, we aim to develop a general par-
allel random forest algorithm that works for both classification and regression
problems.

3 Random Forest Algorithm

The random forest algorithm is an ensemble method that contains multiple deci-
sion tree models. To train each tree, a new subspace of the dataset is generated
via bootstrap sampling.

There are different approaches for this algorithm, all of them based on cre-
ating a model which consists on a set of simple rules inferred from the training
data. The nodes of the decision trees can be one of these three different types:

– Root node: Represents the entire dataset and is split into at least two subsets
assigned to two child sub-nodes.

– Decision node: Node that splits into another two sub-nodes.
– Leaf or Terminal node: Does not split further and is used to assign pre-

dicted classes or values to the samples.

As each decision tree is trained, a set of random attributes is selected for
each node splitting. Among these attributes, the most suitable one and its cor-
responding value (according to a specified criteria) are used to perform the split.

To make predictions with the decision tree, a sample is assigned to the root
node and follows the corresponding path down the tree based on its attributes
and their values. Once the sample reaches a leaf node, the value of that node is
used as the prediction value for the sample.

The prediction in the random forest is done by gathering the predictions from
all of the trees and making a voting for classification or an average between the
predictions for regression problems.

Using different subspaces for each tree and randomly selecting the features
evaluated for each split prevents the random forest from overfitting.

There are several decision tree algorithms that vary the splitting process of
the nodes. The most popular ones are ID3 [13], C4.5 [15] which is an improved
version of the previous approach and CART [4]. Of the algorithms mentioned,
only CART is capable of constructing both classification and regression trees.

The algorithm selected for this work is CART. It selects the best attribute
and value for each splitting using the Gini impurity (Eq. 1) for classification
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trees. When building a regression tree this algorithm uses the Sum of Squares
Error (Eq. 2) to select the best attribute and value for the splitting.

GiniImpurity = 1 −
classes∑

i=1

(pi)2 (1)

SSE =
n∑

i=1

(Yi−
∧
Yi)2 (2)

4 Parallelization

4.1 PyCOMPSs and dislib

COMPS superscalar [9] is a task-based programming model designed to sim-
plify the development of distributed applications. Its interface allows for easy
development and its runtime system can efficiently leverage parallelism during
execution. The use of PyCOMPSs has many benefits, including infrastructure
agnosticism, abstraction of memory and file system, and support for standard
programming languages such as Java, Python, and C/C++.

PyCOMPSs [16] provides support for Python. A regular Python script can
be easily transformed into a PyCOMPSs application by annotating functions to
be run in parallel with a decorator. The runtime system is then able to automati-
cally detect task dependencies and exploit parallelism for improved performance.
The runtime detects the tasks’ dependencies based on their input and output
arguments. A task that has at least one input argument that is the output of
another task has a dependency with that previous task.

The dislib library is parallelized using PyCOMPSs. The main concept of
the dislib is the distributed array. It works as a regular Python [17] object
from the user’s perspective but it stores the data in a distributed way. The
distributed array (or ds-array for short) is the input to the algorithms of the
dislib library. The ds-array is comprised of blocks arranged in a two-dimensional
format, with parallelism being achieved through the concurrent execution of
algorithmic operations on these blocks.

Because the method presented on this paper is an extension of the dislib
library, the input data will be stored in a ds-array structure. This means that
the user will be able to control the parallelism by adjusting the number of blocks
in the distributed array: with more blocks there will be more tasks in parallel
and with less blocks less parallelism and less communications. We will address
memory issues by ensuring that each block fits in memory. Our proposed app-
roach will achieve the same result quality as the sequential algorithm, and we
will leverage several PyCOMPSs mechanisms (detailed in Sect. 4) to optimize
memory usage and reduce synchronization requirements.
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4.2 Parallelization of the Algorithm

The input dataset for the algorithm is loaded as a ds-array. This means that
the data is divided into blocks stored separately in memory. The first step of
the Random Forest algorithm consists of generating the bootstraps (random
sampling of the dataset) of the dataset that are going to be used on each decision
tree. Then, the first level of each decision tree makes only one split, dividing
the dataset assigned to it into two (or more) smaller datasets. The sequential
algorithm computes the split for the first decision tree, then it computes the
next split, and so on until it ends with the first decision tree and starts with
the second one. The parallel version of the algorithm aims to make possible to
compute all the decision trees concurrently. The first change with respect to the
sequential algorithm is the order in which the splits of the decision trees are
computed. The parallel version tries to execute concurrently the splits at the
same depth for all the decision trees as it is described on Algorithm 1.

Reordering the algorithm’s task creation provides greater parallelism. When
all tasks at a given level are scheduled together rather than by trees, the later
levels of the tree have more parallel tasks to execute, resulting in increased
efficiency. By contrast, scheduling by trees leads to a reduction in parallel tasks
available as the first trees scheduled finish before the last ones, thereby limiting
parallelism.

Algorithm 1. Random Forest
1: procedure Random Forest (x training data, y labels data, nt number of trees, f number

features used)
2: for j=0 to NT do
3: Branches[j] ← X, Y, NewNode()

4: for i = 0 to DistrDepth do
5: for j=0 to NT do
6: for branch ∈ Branches[j] do
7: x, y, ActualNode ← branch
8: Node, Left, Right ← ComputeSplit(x, y)
9: ActualNode.Content ← Node
10: ActualNode.Left ← NewNode()
11: ActualNode.Right ← NewNode()
12: NewBranch ← Left, ActualNode.Left
13: NewBranch ← Right, ActualNode.Right

14: Branches[j] ← NewBranch

15: for j=0 to NT do
16: for branch ∈ Branches[j] do
17: x, y, ActualNode ← branch
18: ActualNode ← ConstructSbutree(x, y)

19: return

The pseudocode of the parallel version is present on Algorithm 2. The
functions that will run in parallel are annotated with a task decorator and
will be: GetSplitPoints, DataPerSplit, Gini, MSE, GetOptimalSplitPoint,
ApplySplitPoint, GenerateNode and EvaluateStop.

Following the pseudocode on Algorithm 2 the first step is to randomly select
a set of attributes that are evaluated to determine the optimal split point. Next,



402 F. Vázquez-Novoa et al.

the values of these attributes are sorted using the TeraSort algorithm (line 3).
This algorithm works also parallelized with PyCOMPSs to sort all features con-
currently. Otherwise, a sequential sorting operation will be performed for each
attribute.

After sorting the values, the algorithm generates the split points. A modifica-
tion introduced in the new approach is the use of a single subset of the possible
split points. This change does not affect the final accuracy of the model, and it
remarkably reduces the computation required on the first splits. For each split
point we obtain the necessary information for determining the optimal split point
from each block. This step is parallelized by invoking one task per block. To com-
pute the Gini Impurity, we need only the classes present and their number of
occurrences in each block partition.

For regression problems, we modified the formula to compute the error. From
each block partition, we obtain the mean, the sum of all Y values, and the
number of occurrences. With the mean of each partition block (represented in
the Equation as MEANi) and the number of instances it is possible to compute

the mean Y for the partition (represented as
∧
Y ). The new formula of the error

is Eq. 3 (S1 represents the first partition and S2 the second one).

Error =
blocks∑

i∈S1

(MEANi−
∧
Y1)2 +

blocks∑

i=1∈S2

(MEANi−
∧
Y2)2 (3)

The split that returns the lowest Gini Impurity or error is selected and it
is applied to all the blocks concurrently. This will divide the dataset into two
subsets that will be sent to the next Compute Split function.

Finally, there is a task called EvaluateStop which aims to avoid a syn-
chronization point. When PyCOMPSs tasks are submitted to the runtime, they
generate future objects as their result, which can be used as input to other tasks
and the runtime will recognize their dependencies and make all the required data
transfers. However, future objects cannot be accessed outside the tasks without
synchronization. If a synchronization is triggered, the generation of new tasks
is stopped, causing the runtime to only launch tasks for a specific split at a
time and hurting performance drastically. To avoid the need for synchronization
points, PyCOMPSs offers several mechanisms.

The algorithm developed uses the PyCOMPSs failure management mecha-
nism originally designed to enable the runtime to respond to task failures [7].
The way the algorithm is designed will create a large number of tasks, each with
finer granularity and therefore more overheads. To improve the situation, we use
the failure management mechanism to prune some tasks when we decide a node
is a leaf. A node is considered a leaf when it has four or less instances assigned,
or all of them are of the same class. When a task finds a leaf node, the task fails.
In addition, all tasks dependent on the output of the failed task are canceled
and will not be executed. This behavior is illustrated in Fig. 1.
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Fig. 1. Failure management behaviour. For the sake of simplicity each compute split
represents the tasks inside it.

The algorithm would also work fine without this cancellation mechanism.
However, it would launch and execute unnecessary tasks as it would have no
way to know when a leaf node is created and stop the generation of tasks.

The number of tasks in this algorithm grows exponentially with each level
of depth. In addition the granularity of the tasks in each deeper level will be
finer. In order to solve this problem, we introduced a parameter that limits
the maximum depth at which splits are computed using block level parallelism.
Beyond this depth, the task ConstructSubtree is called to complete for each
non-leaf node the construction of all branches in parallel using the Scikit-learn
Decision Tree [12] algorithm. Since these tasks can be successors of the eventually
failing tasks, the failure management may also cancel them executing only the
necessary ConstructSubtree tasks.

4.3 Nested Task Solution

On execution, a PyCOMPSs application is deployed following the master-worker
paradigm. The PyCOMPSs runtime runs on a master node. It is in charge of
analyzing the code, identifying the tasks and their dependencies, orchestrating
the data transfers and scheduling them for their execution. The computing nodes
that perform the tasks’ execution, making the actual computations, are called
worker nodes.

PyCOMPSs has recently introduced a new nested task approach [10], which
allows tasks to be called from other tasks. Under this paradigm each of the
worker nodes is in charge of scheduling their own tasks. A visual representation
is given on Fig. 2. On the figure we can see several levels of tasks. The nested
tasks are scheduled by the worker node that is executing the outer task. This
approach enables partial synchronizations without halting the entire execution.
For example, the synchronization only affects the corresponding Compute Split



404 F. Vázquez-Novoa et al.

Algorithm 2. Compute Split
procedure Compute Split (x training data, y labels data, f number features evaluated)( )

Features ← randomFeatureSelection(x, f)
3: SortedFeatures ← TeraSort(x, Features)

for Feature ∈ SortedFeatures do
ListSplitPoints ← GetSplitPoints(Feature)

6: for SplitValues ∈ ListSplitPoints do
for BlockX, BlockY in X, Y do

Left, Right ← DataPerSplit(BlockX, BlockY, SplitValues)

9: for Feature ∈ SortedFeatures do
for SplitValue ∈ ListSplitPoints[Feature] do

if Classification then
12: Values ← Gini(Left[Feature, SplitValue], Right[Feature, SplitValue])

else
Values ← MSE(Left[Feature, SplitValue], Right[Feature, SplitValue])

15: OptSplitPoint ← GetOptimalSplitPoint(Values, ListSplitPoints)
for BlockX, BlockY in X, Y do

Left, Right ← ApplySplitPoint(BlockX, BlockY, OptSplitPoint)

18: Node ← GenerateNode(OptimalSplitValue, BestAttribute, Left, Right)
EvaluateStop(Node, Left, Right)
return Node, Left, Right

task where it is launched, stopping the generation and scheduling of tasks inside
that specific Compute Split task without affecting the rest of the tasks.

A version of the Random Forest algorithm has also been implemented with
this new technique. The nested version has several differences with respect to the
previous one. The first difference is that the fit function of each decision tree
becomes a task. The ComputeSplit function is also defined as a task allowing
the runtime to schedule tasks within it and synchronize results without stopping
the global execution of the algorithm. This eliminates the need for the failure
management mechanism. The ComputeSplit functions will be executed in paral-
lel. However, some functions inside ComputeSplit are no longer defined as tasks
due to their fine granularity. Finally, the task generation order and the task
scheduling has changed. In the previous section it was mentioned that the trees
were generated following a width-depth approach. Now each decision tree’s fit
function is responsible for scheduling its inner tasks so the main program only
schedules these first functions and waits for their results. Algorithm 3 provides
a pseudocode representation of these changes. This way, in each decision tree,
the ComputeSplit tasks are scheduled by depth.

Algorithm 3. Random Forest
1: procedure Random Forest (x training data, y labels data, nt number of trees, f number

features used)
2: for j to NT do
3: Trees[j] ← X, Y, NewDT()

4: for j to NT do
5: x, y, ActualTree ← Trees[j]
6: Trees[j] ← ActualTree.fit(x, y)

7: Trees ← compss wait on(Trees)
8: return
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Fig. 2. Nested hierarchy tasks: each task schedules the tasks inside it recursively.

5 Evaluation

The solutions presented on this paper have been evaluated on a distributed exe-
cution environment. More specifically, we evaluated the solution on MareNos-
trum 4 supercomputer (MN4). It is composed of 3456 nodes, each node has two
Intel R©Xeon Platinum 8160 (24 cores at 2,1 GHz each), which means 48 cores
per node and 96 GB of main memory. 216 of the nodes are high memory nodes
with 380 GB of main memory. The peak performance of this supercomputer is
11.15 Petaflops. Its shared storage disks are managed using the Global Parallel
File System.

Two different datasets were used to evaluate the solution proposed on this
paper, one for classification and another one for regression:

– HIGGS [2]: kinematic data from particles, classification dataset with two
classes. Class 1 Higgs boson signal, class 0 background. It contains 28
attributes, all with continuous values and 11 million instances, 10.5 million
training instances and 500.000 test instances.

– High Pressure Turbulence (HPT): data from fluid particles under high pres-
sure and high temperature conditions. The prediction will be done on the c p
variable, that measures the heat capacity over the fluid mesh. It contains 5
attributes with continuous values and it is made up of 18.8 million training
instances and 4.2 million test instances.

To increase the size of the problem and have longer execution times, the
experiments performed with the HIGGS dataset the training data was doubled.
This allowed us to better measure the scalability.
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For the evaluation of the algorithm, two tests have been carried out. First,
a strong scaling test. On this test the number of processors is increased while
the problem size remains constant. The ideal scalability in this test is reached
by reducing the computational time proportional to the number of processors
increased.

Second, a weak scaling test. In the weak scaling test the size of the problem
is increased proportional with the number of processors. In the ideal scenario
the time will remain constant on all the executions.

Both tests were executed with the two datasets, using from one to 16 nodes
of the MareNostrum 4 supercomputer. In the weak scaling tests, the execution
with one worker node used three decision trees, growing up to 48 trees in the
largest case, doubling the number of trees when doubling the number of nodes.
The strong scaling tests were run with the configuration of the largest case of
the weak scaling tests (48 trees). Due to the memory requirements of the tasks,
the execution was configured to run a maximum of 12 tasks per node.

We compared the results of the two PyCOMPSs implementations against
MLlib. In MLlib the parameter maxDepth controls the maximum depth of the
tree and thus the number of splits made in the trees. This parameter has a
direct impact on the execution time, accuracy and error of the predictions of the
Random Forest. To make a fair comparison between the execution times of the
different approaches, this parameter was adjusted to reach the same accuracy and
error with the MLlib Random Forest than the accuracy and errors obtained with
both PyCOMPSs approaches. Table 1 shows an example of the results obtained.
The results presented here are from a single run, which may have some variability.
We found that the results obtained using both PyCOMPSs and Scikit-learn were
very similar. Therefore, we concluded that our approach does not alter the results
obtained by the traditional method. We also included the results obtained using
MLlib to provide a comprehensive overview of all the approaches we evaluated.

Table 1. Accuracy and Mean Absolute Error results obtained on the datasets with
different approaches.

HIGGS accuracy Mean Absolute Error HPT

Scikit-learn 0.753 169.605

PyCOMPSs 0.755 171.087

PyCOMPSs Nesting 0.754 170.482

MLlib 0.722 162.233

Figure 3 contains the execution times and speedup of the MLlib Random For-
est, PyCOMPSs Random Forest (referred as PyCOMPSs from now in advance)
and Nested Random Forest for the strong scaling test. Despite the MLlib solution
seems to be faster with a smaller number of nodes, its scalability is very limited
and with more than 4 compute nodes the execution time increases. This can be
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Fig. 3. HIGGS dataset execution times and Speedup.

Fig. 4. High Pressure Turbulence dataset execution times and Speedup.

caused by an increment in the communication time. The executions with four
and more nodes show that both PyCOMPSs implementations scale better than
the MLlib solution, especially the Nested version. The execution times with 1
and 16 worker nodes are practically the same when executing with MLlib. With
PyCOMPSs, the speedup reached is ×4 and ×6 with the nesting approach. For
the executions with the PyCOMPSs non-nested version it is required to use an
additional node in all the executions that works as master.

The strong scaling results obtained with the High Pressure Turbulence
dataset are shown in Fig. 4. The scalability of all the solutions seem to be worse
than with the previous dataset. This can be because a smaller dataset implies less
parallelism. The MLlib algorithm shows a worst scalability than in the previous
tests, obtaining worst execution times with 8 and 16 nodes than the execution
time obtained with one worker node. In this second case, the speed up of both
PyCOMPSs executions with 8 and 16 nodes is smaller. As said, the dataset is
smaller than the previous one and this causes a reduction in the parallelism
that limits the scalability. To compute the speedup, the execution time used
as baseline is the time obtained with the first PyCOMPSs solution using one
worker node. Both approaches proposed on this paper imply an improvement in
scalability over the MLlib solution.

Figure 5 shows the weak scaling results obtained with the HIGGS dataset
and Fig. 6 the corresponding ones for the HPT dataset. The execution time
used as baseline for computing the efficiency is the time obtained with the first
PyCOMPSs solution using one worker node. The MLlib Random Forest is the
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Fig. 5. HIGGS dataset execution times and Efficiency.

Fig. 6. High Pressure Turbulence dataset execution times and Efficiency.

fastest approach on both executions when using one and two nodes. Its bad
scalability causes the execution with for nodes to obtain a worst execution time
than PyCOMPSs in the classification problem and a very similar result with the
regression dataset. From 8 nodes and more, the MLlib approach is clearly worse
than both PyCOMPSs and Nesting approaches.

The nesting version starts with the worst execution time. However, its scal-
ability is better and its execution time increases very little, being the approach
with shortest execution time when running with 16 nodes on both datasets.

Finally, we experimented with different parameters to enhance MLlib per-
formance, such as the number of executors, number of partitions, etc. The
only parameter that had a positive effect on the execution times and scala-
bility was the number of partitions. However, the scalability was still worse than
PyCOMPSs scalabilities in all cases. Both PyCOMPSs versions were the optimal
choices when using 8 or more nodes.

6 Conclusions

Two new data-parallel approaches have been proposed for the Random Forest
algorithm. None of the two approaches causes any reduction in accuracy or error
obtained with the model. The scalability of both new versions is considerably
good, assuming an improvement over the MLlib Random Forest scalability.
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The nested approach shows better scalability and efficiency than the reg-
ular COMPSs version, demonstrating that nesting is a useful mechanism that
efficiently distributes work among multiple nodes.

The challenges faced during the development of the algorithm were the lack
of parallelism, which was solved by changing the order of generation of the
tasks, scheduling the tasks by depth in the different trees instead scheduling the
tasks by tree. The generation of tasks with a very fine granularity was avoided
using the COMPSs failure management system. We modified the error function
for regression problems to compute the error without synchronizing entire tree
nodes. Finally, we developed an approach based on task nesting that solves the
initial lack of parallelism and the necessity to use the failure management system
and improves the execution time and scalability of the PyCOMPSs algorithm.

Future work may imply exploring machine learning algorithms like Gradient
Boosting in order to extend dislib functionalities.
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Abstract. The edge computing paradigm helps handle the Internet of
Things (IoT) generated data in proximity to its source. Challenges occur
in transferring, storing, and processing this rapidly growing amount of
data on resource-constrained edge devices. Symbolic Representation (SR)
algorithms are promising solutions to reduce the data size by convert-
ing actual raw data into symbols. Also, they allow data analytics (e.g.,
anomaly detection and trend prediction) directly on symbols, benefiting
large classes of edge applications. However, existing SR algorithms are
centralized in design and work offline with batch data, which is infeasible
for real-time cases. We propose SymED - Symbolic Edge Data represen-
tation method, i.e., an online, adaptive, and distributed approach for
symbolic representation of data on edge. SymED is based on the Adap-
tive Brownian Bridge-based Aggregation (ABBA), where we assume low-
powered IoT devices do initial data compression (senders) and the more
robust edge devices do the symbolic conversion (receivers). We evaluate
SymED by measuring compression performance, reconstruction accuracy
through Dynamic Time Warping (DTW) distance, and computational
latency. The results show that SymED is able to (i) reduce the raw data
with an average compression rate of 9.5%; (ii) keep a low reconstruction
error of 13.25 in the DTW space; (iii) simultaneously provide real-time
adaptability for online streaming IoT data at typical latencies of 42ms
per symbol, reducing the overall network traffic.

Keywords: Internet of Things · Edge computing · Symbolic data
representation · Edge storage and analytics · Data compression · Time
series

1 Introduction

The Internet of Things (IoT) enables various physical devices to embed with sen-
sors and actuators to exchange data with smart systems over the Internet. Rapid
growing IoT data are traditionally transmitted to a centralized cloud to derive
insights for smart applications. However, this remote cloud-centric approach does
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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not satisfy time-critical IoT application requirements [19,20] and can create net-
work congestion [18]. Consequently, edge computing mitigates these issues by
delivering computing, storage, and network resources at the network edge.

Edge nodes are highly distributed resource-limited devices deployed in the
proximity of IoT data sources to deliver time-critical processing [19]. Unlike the
cloud, edge nodes have limited computation and storage resources. Therefore, it
becomes crucial for edge nodes to cope with the velocity and growing volume of
data generated and support applications within their resource constraints. Sev-
eral efforts have been made to reduce network traffic and improve data storage
using edge data processing techniques. In [15], authors target edge data reduc-
tion focusing on IoT data and adapting a posteriori data reduction techniques
to data streams. Nevertheless, this approach does not consider the impact of
reduced data on data analytics tasks. Consequently, Symbolic Representation
(SR) techniques are promising alternative methods to reduce the data size while
maintaining partial semantics of the data [11].

The SR helps reduce the dimension and volume of time series, enabling effi-
cient edge data storage management. The raw data in SR are segmented and
represented with symbols that can be reconstructed to their original dimension.
Unlike common raw data compression methods, the symbolically converted data
in SR can help to directly perform data mining tasks such as pattern matching,
substring search, motif discovery, and time series prediction, which are com-
monly used techniques in IoT applications [5]. However, the state-of-the-art SR
algorithms are designed for centralized batch processing systems and perform an
offline conversion, where often fixed parameters (e.g., window and alphabet size)
are needed, making them infeasible for streaming data in modern IoT systems.

We propose SymED (Symbolic Edge Data representation) approach, i.e., an
online distributed and adaptive SR method suiting edge data storage manage-
ment and transmission. SymED is based on the Adaptive Brownian bridge-based
symbolic aggregation (ABBA) algorithm, due to its adaptiveness in window and
alphabet size. We decompose the algorithm into distributed manner with two
main components: sender and receiver. We also incorporate online normaliza-
tion and clustering for adaptation to streaming data and symbol conversion.
Furthermore, SymED allows us to adaptively adjust the reconstruction error
and bandwidth usage between sender and receiver depending on hyperparame-
ter configurations. The main contributions include (i) a symbolic representation
approach for IoT sensor-based time series, investigating the benefits of edge
storage and transmission bandwidth scarcity; (ii) an online symbolic represen-
tation algorithm for real-time symbol generations in edge environments; (iii) an
empirical evaluation of the proposed solution on real-world data sets, showing
different performance profiles and achieving raw data compression of 9.5% on
average while minimizing reconstruction error.

2 Motivation and Background

Need for Symbolic Representation on Edge: SR methods are promising
solutions that allow analytic tasks to be performed directly on reduced data and



SymED: Adaptive and Online Symbolic Representation of Data on the Edge 413

(i) (ii) (iii)

Fig. 1. Illustration of ABBA [5]. (i) Creating polygonal chain of linear pieces (left side).
(ii) Clustering pieces (middle). (iii) Symbolizing (right side), i.e., abbacab.

enable the reconstruction of original data with minimal error. Existing symbolic
representation algorithms have limited applicability for edge due to the following
design requirements: (1) Online: Compression should be continuous and imme-
diate (i.e., stream-based). (2) Adaptive: A SR algorithm should be adaptive,
allowing flexible compression and reconstruction performance based on appli-
cation and resource constraints. (3) Distributed: A SR should be distributed
in edge as IoT sensors themselves do not have enough computational/network
capabilities. Existing SR algorithms assume apriori availability of batch data
and work offline in a centralized manner.

Symbolic Representation for Time Series Data: A SR algorithm trans-
forms time series into a string using finite alphabet size. Let us consider a
time series T = [t0, t1, ..., tN ] ∈ R

N+1 converted into a symbolic representa-
tion S = [s1, s2, ..., sn] ∈ A

n, with symbols si coming from an alphabet of k
symbols A = {a1, a2, ..., ak} [5]. The sequence S should be of considerably lower
dimension than the original time series T , that is n << N , and it should only
use a small number of meaningful symbols, that is k << n. The symbolic repre-
sentation must also allow a reconstruction, with (i) a minimal and controllable
error, and (ii) a shape suitably close to the original time series data.

Adaptive Brownian Bridge-based Aggregation (ABBA): Our SymED is
based on ABBA symbolic method and adapted for edge environments. Figure 1
shows an example of ABBA symbolic conversion, with the black line on the left
side as the original data, and the symbolically represented data on the rightmost
side. ABBA adaptively finds linear pieces (7 red dashed lines on the left), where
similar pieces are clustered together based on their length and increment values
(middle), and each cluster is mapped to a symbol from the alphabet, resulting in
a string (right). A tolerance hyperparameter tol sets boundaries for the allowed
reconstruction error, where a lower value results in a lower reconstruction error,
but also a lower compression rate with more symbols. In this example, 230 data
points are converted to a word of just 7 symbols (rightmost part of Fig. 1). A sim-
ilar inverse approach will be applied during the reconstruction of the data. How-
ever, many challenges arise when using such algorithms for online and resource-
constrained edge environments, which we address in this work.
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3 SymED: Symbolic Edge Data Representation

Fig. 2. SymED Components.

We present SymED as an online and adap-
tive symbolic representation method for
streaming IoT data. Figure 2 shows the
SymED components. Our goal is to enable
distributed symbolic representation where
raw data communication and storage usage
are limited in IoT-edge environments. A
sender (IoT node) normalizes and com-
presses all incoming data. A receiver (edge
node) collects transmitted data to (i) con-
struct linear pieces (line segments), (ii) converts them to symbols in the digiti-
zation phase, and (iii) optionally reconstructs pieces or symbols again.

3.1 Sender Side - Compression

The sender compresses data stream T = [t0, t1, ...., tN ] for each new data point
tj ∈ T step-wise. Our compression technique, leverages the existing method [5]
to an online setting, with additional online normalization, shown in Algorithm 1.
The sender collects and normalizes data stream points [t0, t1, ..., tm] (m << N),
and fits them to a linear line. After transmitting only the end point of this line
to the receiver, the whole process repeats.

Online Normalization: Using normalized data is mandatory for a uniform
conversion performance, as data can arrive with arbitrary scaling. A popular
normalization technique is the Min-Max-Normalization [1,7]. We use Z-Score-
Normalization (standardization) that provides scaling data with zero mean and
unit variance. Standardization in an online setting is used for, e.g., improving
batch normalization in continual learning [16].

Online normalization also requires a window of data points to consider. There
exist multiple windows models [22] for online streaming data. Mainly, (i) land-
mark windows, which span from a landmark of the past to the present, (ii) slid-
ing windows, which have a fixed size and data points passing through them in
a first-in-first-out fashion, (iii) damped windows, which give data points weights
decaying exponentially over time. We chose the damped window model due to
its simple iterative calculation and the advantage of not requiring extra stor-
age. The standardization parameters are set as exponentially weighted moving
average (EWMA) and exponentially weighted moving variance (EWMV) [14],
defined as follows:

EWMAj = αtj + (1 − α)EWMAj−1 (1)

EWMVj = α(tj − EWMAj)2 + (1 − α)EWMVj−1 (2)
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Algorithm 1. SymED - Sender
1: function onlineCompression(tol, lenmax)
2: get Ts from memory
3: err ← 0; bound ← 0; lents ← 0
4: while err <= bound and lents <= lenmax do
5: tj ← getNextDataPoint()
6: append tj to Ts

7: updateOnlineNormalizationParams(tj)
8: Tsn ← standardize Ts

9: err ← getError(Tsn)
10: lents ← length(Ts)
11: bound ← (lents − 2) ∗ tol
12: Ts ← last 2 elements of Ts

13: store Ts in memory
14: return first element of Ts

In Eq. 1 and 2, tj indicates the next data point of the processed stream. The
hyperparameter α serves as a weight, which has an exponentially decreasing
influence on past data points. Here, EWMA and EWMV have same α value, for
simplicity and consistency. Initially, EWMA0 = t0 and EWMV0 = 1.0 are set.
All data kept in memory are standardized newly each iteration with up-to-date
EWMA and EWMV. The update process of EWMA and EWMV, using Eqs. 1
and 2, can be found in Algorithm 1 (line 7). Standardization is done through
th−EWMAj√

EWMVj

, e.g., for each data point thwith h ≤ j (line 8).

Online Compression: In ABBA compression [5], data is approximated by
a polygonal chain of linear pieces, where each piece is bounded by length and
squared Euclidean distance error. Linear pieces are defined as P = [p1, p2, ..., pn],
where each linear piece p = (len, inc) is a tuple of length and increment value.
Our proposed online compression Algorithm 1 only works on one linear piece at
a time, instead of converting them all at once, like [5]. After checking the error
and maximal length limits in line 4, one of the following cases can happen, (i) no
boundaries are reached and the algorithm continues the compression in the next
iteration by trying to add another data point tj+1 to the time series segment Ts,
(ii) if lenmax is surpassed or the error including the current data point tj is out of
bounds (see line 11 for bound value), then the loop terminates. After the loop, Ts

is set from [t0, ..., tm] back to the points [tm−1, tm], to initialize the compression of
the next segment. Finally, the endpoint of the segment tm−1 is returned and sent
to the receiver. Originally, the ABBA compression [5] would use Ts to produce
a piece p = (m − 1, tm−1 − t0) here, before moving on to compressing the next
piece. However, in SymED, we move this step to the receiver. In this way, (i) the
size of payload needed to be transmitted is reduced by half, only sending one
numeric value (tm−1) instead of two (p), and (ii) making the receiver more robust
to missing sender values. Length and increment of a piece pi are always relative
to its predecessor pi−1. One missing piece would break up the polygonal chain
of pieces ABBA depends on. SymED avoids this problem by only transmitting
data points as absolute values from the sender to the receiver.
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Algorithm 2. SymED - Receiver
1: procedure SymED(tol, scl, kmin, kmax)
2: S ← []; C ← []; P ← []; ti−1 ← 0
3: while True do
4: ti ← getDataPointFromSender()
5: len ← timeSinceLastUpdate()
6: inc ← ti − ti−1
7: pi ← (len, inc)
8: append pi to P
9: S,C ← onlineDigitization(P,C, tol, scl, kmin, kmax)
10: ti−1 ← ti

Compressing m data points to one linear piece with length len = m − 1
requires O(m) iterations of the while loop (line 4) and recalculating the error
at line 9 in O(m) time, hence, Algorithm 1 runs in O(m2). For the whole data
stream of size N , assuming each linear piece compresses on average m data
points (m << N), the complexity is O(N) [5].

3.2 Receiver Side - Symbolic Conversion

The job of the receiver is to listen for data points t coming from sender devices
and convert each of two subsequent data points to a linear piece p. All pieces
P are clustered in an online fashion, to get the converted sequence of symbols
S, which essentially becomes one symbol longer after each received data point.
Optionally, a reconstruction of the data stream can be done on demand. We
decided to do the symbolic conversion at the receiver instead of the sender,
because (i) the sender is relieved of the computational demands, and (ii) symbolic
conversion at the sender would require frequent and costly transmissions of the
up-to-date reconstruction centers to the receiver.

Construction of Linear Pieces: The receiver Algorithm 2 receives data
point ti in iteration i from a sender. Along with data point ti−1 of the previous
iteration, the length and increment values (len, inc) of the current linear piece
pi can be constructed. We infer len by taking advantage of the real-time online
setting. To do that, the receiver saves timestamp timei upon the arrival of each
ti. Taking the difference in times with len = timei − timei−1 allows us not to
have the sender transfer this value. Consequently, inc = ti − ti−1 completes the
construction of pi. Afterwards, at line 9, all pieces P found so far get clustered
to centers C and converted to a symbolic string S through Online Digitization
in Algorithm 3, which also determines the time complexity of Algorithm 2.

Online Digitization: The Algorithm 3 uses clustering to group pieces P =
[p1, p2, ..., pn] to centers C = [c1, c2, ..., ck]. Each center c represents a character
of the alphabet A = [a1, a2, ..., ak], mapping P to the symbolic string S =
[s1, s2, ..., sn], and the center coordinates are responsible for the reconstruction of
length and increment values of P . A scaling factor scl is provided to weigh lengths
of pieces differently from increments during 2D clustering, for scl ∈ (0,∞). The
classical approach [5] also considers that scl ∈ {0,∞}, allowing for 1D-clustering
either the lengths or increments, while scl = 0 is selected to put more emphasis
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Algorithm 3. SymED - Receiver - Online Digitization
1: function onlineDigitization(P,C, tol, scl, kmin, kmax)
2: if length(C) < kmin then
3: L ← [0, 1, ..., length(P ) − 1]
4: S ← labelsToSymbols(L)
5: C ← P
6: return S,C
7: standardize P and C and scale with scl
8: tols ← getTolS(tol, P ); lenP ← length(P )
9: Cinit ← C; ko ← length(C); k ← ko − 1; err ← ∞
10: while k < kmax and k < lenP and err > bound do
11: k ← k + 1
12: if k = ko + 1 then
13: append last element of P to Cinit

14: else if k > ko + 1 then
15: randomly initialize Cinit

16: C,L ← kmeans(Cinit, k)
17: err ← maxClusterVariance(P,C, L, k)
18: de-standardize P , C and de-scale with scl
19: S ← labelsToSymbols(L)
20: return S,C

on the trends of the time series. Our proposed SymED clustering can also be
done either in 2D or in 1D, however, we focus mainly on 2D in this work.

For SymED, we use a customized online version of k-means for both 1D
and 2D clustering, because k-means is widely studied and provides a suitable
streaming-based version [17], feasible for our online implementation. The steps
of k-means, calculation of the cluster variances, and checking them against the
tolerance boundary tol2s , follow the standard processes [5].

In the online k-means function within Algorithm 3, instead of the default
initialization (randomized seeding), we initialize cluster centers Cinit with the
values from the previous old clusters C, to remove the need for restarting a
randomly initialized clustering [17]. Consequently, the number of clusters k for
the first run of k-means is set to ko, the number of old clusters in C, to avoid
trying many values of k. If an additional cluster is still needed, k is incremented
by one, and the clustering is re-run (line 10). We initialize the newly added
center with the newest piece, while the rest of the center initialization remains
the same, ensuring fast convergence (line 13). Random-based initialization of
centers is only chosen in line 15, if the previous attempts of re-using old cluster
centers fail. The kmin and kmax limit the number of clusters, as well as the size
of the alphabet. After clustering is done, labels L = [0, 1, ...], are mapped to
symbols [‘a’, ‘b’, ...] and returned as string S, along with updated centers C.

The runtime of Algorithm 3 is bounded by the complexity of k-means. The
average complexity to produce a new symbol is therefore O(kn) for k clusters
and n linear pieces, per k-means iteration. Due to initialized centers and adding
pieces one-by-one to the clusters, only very few iterations are needed. To convert
a data stream of size N to n symbols, the resulting complexity is O(kn2).

Reconstruction: Converting a sequence of symbols S back to a time series T̂
follows three steps [5]: (i) Inverse-Digitization, replacing S with length and incre-
ment values ( ˜len, ˜inc) of their corresponding reconstruction centers to reconstruct
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linear pieces, (ii) Quantization, rounding lengths of those linear pieces back to
whole numbers, generating ( ̂len, ̂inc), and (iii) Inverse-Compression, interpolat-
ing all-time series points for the chain of linear pieces, producing T̂ = [t̂0, t̂1, ..., ˆtN ]
This offline reconstruction procedure from symbols works for both ABBA and
SymED. Additionally, for SymED, a more accurate online reconstruction for
T̂ is possible by directly doing the Inverse-Compression step, with the original
(len, inc) values of pieces constructed by the receiver.

4 Performance Evaluation

4.1 Experimental Setup

Metrics: To measure the performance of SymED, we consider four main metrics.
Namely, (i) reconstruction error, (ii) compression rate, (iii) dimension reduction
rate, and (iv) computational latency. We measure reconstruction error (RE)
through the Dynamic Time Warping (DTW) distance [3] between the origi-
nal time series T and the reconstruction T̂ , i.e., RE = dtw(T, T̂ ), as in [5].
Additionally, for SymED, we evaluate the reconstruction error not only from
symbols S, but also from linear pieces P , since they are also available for the
SymED receiver. The compression rate (CR) for ABBA (CRABBA) and SymED
(CRSymED) is measured as defined in Eq. 3. Here, we measure how many bytes
are saved during transmission from the sender to the receiver, instead of just
sending an uncompressed raw data stream. We measure the dimension reduc-
tion rate (DRR), a measure of data size reduction while preserving the original
data properties, by comparing lengths of converted symbols S and true time
series T , i.e., DRR = len(S)

len(T ) . Here, len() returns the length of the input (count
of symbols or data points). Dimension reduction helps to cope with the curse of
dimensionality when working with high-dimensional data.

CRABBA =
bytes(C) + bytes(S)

bytes(T )
CRSymED =

bytes(P )/2
bytes(T )

(3)

In Eq. 3, bytes() returns a total number of bytes for the input. The assump-
tions of this experimental setting are, a symbol/character is a size of 1 byte, and
a numerical/float value has a size of 4 bytes. S is a series of symbols, T is a
series of floats, and C is a set of centers, where each center is defined through
2 float valued coordinates. P is a sequence of linear pieces, where a linear piece
p is defined over 2 float values. With ABBA, we assume the sender does the
symbolic conversion offline in a batch, then sends all symbols S and reconstruc-
tion centers C to the receiver. For SymED, we only need to transmit one float
value for each p, hence bytes(P )/2 for CRSymED in Eq. 3. For simplicity, any
other bytes regarding a transmission protocol between the sender and receiver
are omitted. For all metrics, a lower value means better performance.
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The final metric is computational latency, addressing the average amount of
computational time needed for each symbol in the online setting. We measure
the time required for a SymED sender to perform compression and a receiver to
do symbolic conversion and reconstruction on a per-symbol basis. Compared to
offline ABBA, we take the total time for all produced symbols, i.e., how long it
takes on average to fully convert time series to symbols and reconstruct it again.

Edge Scenario Setup: We emulate the sender-receiver setup, where sender
is an IoT sensor streaming pre-processed data towards receiver edge node for
further processing. The setup is implemented as a multi-thread Python appli-
cation. SymED is split up as explained in Sect. 3. For ABBA, we assume the
sender does offline symbolic conversion of the time series and sends symbols and
reconstruction centers to the receiver, where reconstruction happens. Evaluation
is done on a Raspberry Pi 4B (4 GB RAM).

Datasets: We use UCR Time Series Classification Archive [4] datasets as a rep-
resentative of IoT data [5]. We filter the test split for datasets with a minimal
length of 1000 data points, ensuring we have sufficient data for the online nor-
malization to adapt. We sample each dataset by selecting the first time series of
each class, e.g., for dataset ACSF1 with a size of 100 time series and 10 different
classes, we take a sample of 10 time series, each with a length of 1460. Table 1
shows 22 selected datasets containing 302 time series with mean length of 1673.

Baseline and Hyperparameters: We compare the results of our proposed
SymED to the original ABBA, a baseline for reconstruction accuracy. Compared
to ABBA, SymED has an additional hyperparameter α for adjusting the weights
of online normalization values EWMA and EWMV. Higher α values prefer the
most recent data, monitoring short-term variability of EWMA and EWMV, and
lower values focus on long-term estimation of mean and variance [14]. We set
0.01 ≤ α ≤ 0.02 based on empirical testing, suiting our chosen datasets. Further,
we set kmin = 3 for both ABBA and SymED, meaning that an alphabet of at
least three symbols will be used. The only exception is when |P | < kmin, where
too few linear pieces are in P to form kmin clusters, resulting kmin = |P |. We
set kmax = 100, the upper bound for the alphabet size.

For each algorithm and tolerance value, the mean of the results over all
datasets (Table 1) is taken. To compensate for the different sizes of datasets, we
assign equal weights in the evaluation, i.e., averaging results first for all time
series within a dataset, then taking the average once again over all datasets.
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Table 1. Selected datasets of the UCR Time Series Classification Archive [4].

Dataset Type Size Length

ACSF1 Device 10 1460

CinCECGTorso Sensor 4 1639

EOGHorizontalSignal EOG 12 1250

EOGVerticalSignal EOG 12 1250

EthanolLevel Spectro 4 1751

HandOutlines Image 2 2709

Haptics Motion 5 1092

HouseTwenty Device 2 2000

InlineSkate Motion 7 1882

Mallat Simulated 8 1024

MixedShapesRegularTrain Image 5 1024

MixedShapesSmallTrain Image 5 1024

PLAID Device 11 1344

Phoneme Sensor 39 1024

PigAirwayPressure Hemodynamics 52 2000

PigArtPressure Hemodynamics 52 2000

PigCVP Hemodynamics 52 2000

Rock Spectrum 4 2844

SemgHandGenderCh2 Spectrum 2 1500

SemgHandMovementCh2 Spectrum 6 1500

SemgHandSubjectCh2 Spectrum 5 1500

StarLightCurves Sensor 3 1024

Fig. 3. Running example for SymED sender (a-e) and receiver (f-j) algorithms.

4.2 Running Example

We provide a running example in Fig. 3, on a time series example of 230 data
points, similar to the ABBA [5]. Here, parameters are set as tol = 0.4, α = 0.02,



SymED: Adaptive and Online Symbolic Representation of Data on the Edge 421

and scl = 0 (1D clustering). In Fig. 3, the sender-side (IoT nodes) steps are
depicted in Figs. 3a–3e, the receiver side steps (edge nodes) in Figs. 3f–3j. Each
sub-figure shows the generation of one new linear piece and symbol, from left to
right. For brevity, we summarized the first seven iterations in Figs. 3a and 3f,
then showed the remaining iterations in the remaining figures.

The sender compresses the incoming data stream (solid black line) until a
linear piece pi is formed (red dashed line) and then sends the endpoint ti of pi to
the receiver. The receiver reconstructs pi (black dash-dotted line) from ti, and
ti−1, and does an online clustering to produce the symbol si (‘a’, ‘b’, or ‘c’ here).
SymED produces 11 symbols in total, namely, aaaabaabcba. At the beginning,
the first four symbols are produced in very short intervals, due to the online
normalization not having adapted to the data yet and also capturing noise. But
afterwards, longer linear pieces start to get formed to produce the remaining
symbols. Due to the nature of online clustering, older pieces may be assigned
to a different cluster after several updates. This can be seen for a linear piece
between t4 and t5, which changes from ‘c’ to ‘a’ (from Fig. 3g to Fig. 3h).

4.3 Results and Analysis

Figures 4a–4c show examples of SymED reconstruction on a few UCR time series,
using tolerance tol = 0.4. The following metrics in Fig. 5 are evaluated for a range
of tol values, going from 0.1 to 2.0 in 0.1 increments. Other common parameters
for Figs. 4–5 are α = 0.01 and scl = 1.0, using 2D clustering.

Reconstruction Error: Figure. 5a shows that SymED reconstruction error for
symbol generation follows the original ABBA curve, which is a desired behavior.
Reconstruction errors from symbols average around 29.25 for SymED and 29.60
for ABBA. In contrast, SymED online reconstruction from linear pieces has less
than half the error at 13.25, due to pieces being more true to the original data,
before being clustered and converted to symbols.

Fig. 4. SymED reconstruction example on three representational datasets from the
UCR archive: (a) CinCECGTorso, (b) HouseTwenty, (c) StarLightCurves
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Compression Rate: We compare the results of compression rates in Fig. 5b,
measuring the size reduction of transmitted data. As seen in Fig. 5b, ABBA
compresses data to 3.1% on average, by taking advantage of transmitting already
converted symbols, which are less byte expensive than numerical data points of
SymED. SymED’s online and distributed nature comes at the cost of having a
worse compression rate of 9.5% on average.

Dimension Reduction Rate: Figure 5c shows dimension reduction results.
Both ABBA and SymED have similar behavior, since their compression phases
work in a similar way. Differences occur due to the online normalization of
SymED, which takes time to adapt to the data and produces a higher number
of linear pieces/symbols early on, also evidenced in Fig. 3. Finally, the SymED
has a mean dimension reduction rate of 9.5%, ABBA averages at 7.7%.

Computational Latency: Figure 5d compares SymED sender and receiver,
how long processing takes per symbol. Lower tolerances produce many short
pieces, making clustering at the receiver dominant. In contrast, higher tolerance
values produce fewer and longer linear pieces, increasing the compression times
for the sender. On average, a SymED sender spends 30 ms on compressing, and
a receiver 12 ms on creating and reconstructing a symbol, summing up to 42 ms
total per symbol. In Fig. 5e we show the total latencies for processing an entire
time series offline. ABBA is overall faster with a mean of 2.0 s, compared to 5.3
s for SmyED, however, SymED is mainly designed for online processing.

To conclude, SymED provides the benefit of lower online reconstruction error
and real-time adaptability to streaming data, with a little cost on higher data
transmission needs and computational times compared to offline ABBA.

Fig. 5. Evaluation of ABBA and proposed SymED (averaged over all datasets).
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5 Related Work

Symbolic representation (SR) algorithms have been used to convert time series
data into symbols. The basic algorithm in the symbolic conversion is SAX [11].
Another variant of SAX is proposed in [12], dedicated to online load data com-
pression and reconstruction. The authors split the time series into the event and
steady-state segments, while using symbolic conversion only on the latter one.
In this version, the alphabet is fixed, while the window length is adaptive, by
dividing segments into windows of equal information content. Although they use
adaptive window sizes, as in our proposed SymED, they focus on event-based
data instead of arbitrary time series. In [9], the author converts sensor data
streams to symbols using SAX, followed by classification with a Support Vector
Machine (SVM). Works like [10] symbolize sensor data streams using SAX and
incorporate data stream annotation in a distributed environment, interacting
over a publish/subscribe messaging service. Further, SensorSAX [6], is a SAX
variation with dynamic window length, to reduce the energy consumption of
IoT sensor streams. While using symbolic conversion to process IoT data, other
works lack adaptability by either using a static window size [9,10] or fixed alpha-
bet [6,9,10]. They also sample the data stream and produce symbols in batches,
in contrast to producing symbols consecutively in SymED. Adaptive compres-
sion of IoT data based on different resource-limited edge conditions is proposed
by [13]. However, only the impact on edge-cloud bandwidth and data transfer
is considered, without addressing the impact on edge analytics. [17] targets an
adaptive streaming-based version of k-means. This solution starts with initial
candidate clusters, trying to assign each new data point in the online phase to
the nearest cluster, and only does a complete re-clustering if the clusters are not
valid anymore. A validity check is done by analyzing the input stream’s probabil-
ity density function, where high deviations signal a concept data drift and require
a new cluster initialization. Still, they do not consider the tolerance-dependent
variance checks of clusters, as in SymED. Similarly, [20] considers data-sharing
edge concepts, while [2] deals with the bandwidth limitation. However, no online
concepts are considered with IoT data streams.

Although there exist different techniques for raw data compression in cloud
and edge [21], we particularly focus on SR for the edge. SR allows for direct
analytics on compressed data, while also enabling reconstruction of the original
data. We believe this is a crucial advantage over other raw data compression
techniques, reducing both network and storage usage for critical IoT systems.

6 Conclusions and Future Work

We proposed SymED, a real-time online symbolic representation method for
resource-constrained edge environments. We distribute the symbolic conversion
workload between IoT sender and edge receiver devices, and also minimize the
number of transmitted bytes between them. Hyperparameters in SymED, such
as tol, balance reconstruction error and compression performance, while α deter-
mines the adaptability to streaming data through online normalization. SymED
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achieves on average 9.5% on compression rate and dimension reduction rate, with
a mean online reconstruction error of 13.25 in the DTW space, while taking a
mean time of 42 ms to compute a symbol. Online SymED improves on recon-
struction accuracy and adapting to data stream distribution, with a slight over-
head in compression and computational efficiency, compared to the offline base
algorithm ABBA. Our future plans involve enhancing SymED’s performance for
time-critical IoT applications by incorporating different clustering mechanisms.
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Abstract. Multi-modal DNNs have been demonstrated to outperform the best
uni-modal DNNs by fusing information from different modalities. However, the
performance improvement of multi-modal DNNs is always associated with an
incredible increase in computational cost (e.g., network parameters, MAC opera-
tions, etc.) to handle more modalities, which ultimately makes them impractical
for many real-world applications where computing capability is limited.

In this paper, we proposeMMExit, a multi-modal exit architecture that allows
for computing appropriate modalities and layers to predict results for different
data samples. To this end, we define a novel metric called utility of exit (UoE)
to measure the correlations of performance and computational cost for different
exits. We then use an equivalent modality serialization method to map the two-
dimensional exit space into an equivalent linear space and rank the exits accord-
ing to their UoE to achieve fast and adaptive inference. To train the MMExit
network, we devise a joint loss function which synthesizes the features of differ-
ent modalities and layers. Our results show that MMExit can slash up to 48.72%
of MAC operations with the best performance compared to SOTA multi-modal
architectures.

Keywords: Multi-modal DNNs · Energy-efficient AI · Adaptive Inference

1 Introduction

Multi-modal DNNs [11,16,27] have recently attracted lots of attention due to their
superior performance. As shown in Fig. 1, a multi-modal DNN typically consists of
multiple parallel encoder networks that take different modality data as inputs to obtain
the modality features and a subsequent fusion and decision network that fuses the dif-
ferent features as well as outputs the final decision. By fusing the information from dif-
ferent modalities, multi-modal DNNs have been demonstrated to outperform the best
uni-modal DNNs in many application domains. For example, in multimedia applica-
tions, the multi-modal DNNs have been shown to outperform the best uni-modal DNNs
by 5%–30% accuracy through fusing vast amounts of image, video and audio data [2].
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Fig. 1. The execution paths for different data samples in avmnist withMMExit.

Despite the performance advantages, multi-modal DNNs often involve more com-
putational costs such as network parameters and Multiply-Accumulate (MAC) opera-
tions [23]. It has been shown that multi-modal DNNs can lead to a 0.1×–80× increase
in network parameters compared to uni-modal DNNs [16,17]. This would ultimately
increase the latency and energy required by inference tasks. For example, experimen-
tal results on powerful servers with 17 GPUs and 32 CPUs installed show that the
increased parameters of the multi-modal DNNs can lead to a 10× increase in inference
latency and power consumption in affective computing applications [16]. This would
further make multi-modal DNNs prohibitive in many real-world scenarios such as next-
generation mobile robots where computational capability is limited.

In this paper, we propose MMExit, an adaptive multi-modal exit architecture that
enables the optimal performance and computational cost tradeoffs in multi-modal DNN
inference tasks for different data samples. MMExit exploits a unique feature of multi-
modal DNNs in that different modalities and layers can provide different levels of con-
fidence at different computational costs. For example, it has been shown that text-based
features perform better than visual or auditory features in a multi-modal language-
emotion analysis task [1]. Therefore, MMExit is designed to predict results for most
data samples with a minimal computational cost by exiting from appropriate modal-
ity and layers as shown in Fig. 1. For very complex data samples, which happen less
frequently, MMExit would compute more modalities to guarantee better accuracy.

Unlike the previous early-exit architectures for uni-modal DNNs, where exits are
explicitly related to the depth of layers, MMExit is a new problem of finding an opti-
mal exit in a 2-dimensional (2D) space composed of modalities and layers. In this
regard, one important challenge is to decide in which modality and layers to exit to
reduce the computation cost of the inference task while maintaining high accuracy. To
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Fig. 2. An overview of MMExit.

this end, we define a novel metric called utility of exit (UoE) to measure the correlations
of performance gain and computational effort for different exits. We also use an equiv-
alent serialization method to map the 2D exit space into an equivalent linear space
which enables us to find the optimal exit fast. Another challenge is how to train the
MMExit DNNs efficiently. We devise a joint loss function which synthesizes the fea-
tures of different modalities and layers. The experimental results show thatMMExit can
reduce 22.64%–48.72% MACs and 21.44%–45.02% parameters of multi-modal fusion
without any performance degradation. To sum up, we make the following contributions:

1. We propose MMExit, a multi-modal exit architecture to adaptively reduce the com-
putational cost in multi-modal DNN inference tasks with different data samples.

2. We design a new metric called the utility of exit and the equivalent serialization
method to navigate the multi-modal DNN inference tasks to exit adaptively.

3. We define a joint loss function that synthesizes the features of different modalities
and layers with a double-stage adaptive re-weighting method to train the MMExit.

4. We verifyMMExit with an extensive number of real-world multi-modal DNN mod-
els and datasets based on an open-sourced benchmark.

2 MMExit: Architecture Design

2.1 Problem Setup

Background. We first briefly introduce the fundamental multi-modal DNN archi-
tecture. Without loss of generality, we consider a classification task that leverages
the multi-modal DNN to process and fuse the features from n modalities. We use
m1, ...,mn to denote these modalities. To train the multi-modal DNN, we construct
a dataset that contains N data samples denoted as D = {(xi

m1
, xi

m2
, · · · , xi

mn
, yi)}N

i=1.
The goal is to predict the correct label y with the network and dataset. Figure 2 shows
the common structure of the multi-modal DNN. It consists of multiple, parallel modality
encoder sub-networks as well as a sequential fusion and classification sub-network, i.e.,
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icons highlighted by black border and white background. These encoder sub-networks
are responsible for obtaining the representations of different modalities. Typically, they
can be implemented with standard uni-modal DNNs, determined by the characteristics
of modality [16]. After that, the fusion and classification sub-network is used to merge
the representations of all modalities and produce the final prediction.

The MMExit Architecture. The key behind MMExit is that for most data samples, the
feature learned from a fraction of modalities is sufficient to produce the final prediction
y with high confidence. For example, it is widely accepted that most data samples can
be addressed using simple models [8]. In multi-modal settings, some modalities achieve
better performance than others in many cases [16].

Therefore, in theMMExit network, we obtain the prediction label y through the exits
from the modality encoder sub-networks or the exit after fusion. As shown in Fig. 2, we
define two classes of exits. The first is the encoder exit at each encoder sub-network
and the second is the fusion exit at the fusion and classification sub-network. Assuming
n modalities in the multi-modal DNN application, any inference task has n + 1 exits
including n encoder exits and one fusion exit. For the i-th sub-network, we assume the
j-th exit point in it is denoted as e(mi,j). We use a lightweight classification head to
transform the features learned at this point into the final predictions.

y(mi,j)
e = f (mi,j)

e (zi; θ(mi,j)
e ) (1)

where y
(mi,j)
e is a vector that represents the predicted probability. Then, we calculate

the normalized entropy as the confidence of the prediction result from exit e(i,j) as,

H(e(mi,j)) = − 1
log(C)

y(mi,j)
e log(y(mi,j)

e ) (2)

where C is the number of classes in the classification task.

2.2 Discussion on MMExit

In the DNN inference process, the optimal exit with minimal computational cost is
the earliest one to meet the accuracy. In the previous uni-modal early-exit architec-
ture [24], the accuracy and computational cost of an exit is only related to the depth
of layers. Thus, it is easy to find the optimal exit fast in the uni-modal network due
to the explicit relationship between different exits. However, in MMExit architecture,
there is no fixed relationship between performance and computational cost of the exits
on different modality encoder sub-networks. Thus, we have to determine which modal-
ity should be processed in advance in order to provide the expected prediction results
with the least amount of computation. In the training process, the uni-modal exit net-
work only needs to set different weights for different exits. However, when training
the MMExit networks, we must determine the weights for different modalities and exits,
which requires a joint training approach to improve the robustness ofMMExit.
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3 MMExit: Adaptive Inference

3.1 Utility Assessment Metric

We define a metric named utility of exit (UoE) to measure the benefit of an exit in
terms of its accuracy and computational cost. A larger UoE for an exit indicates the
benefit of the performance improvement from the exit outweighs its computational cost.
Conversely, a smaller UoE means that the utility of the exit is not good. The mission of
the inference process is to find the optimal exit that has the highest UoE, thus avoiding
the waste of computation while satisfying the performance.

To compute the UoE of an encoder exit, for the i-th modality, we denote its
modality encoder sub-network as f i

u(·). We assume modality mi has emi
differ-

ent exits, forming a set of exit classification network, which denoted by Emi
=

〈f (mi,1)
e , f

(mi,2)
e , ..., f

(mi,emi
)

e 〉. For the j-th exit f
(mi,j)
e ∈ Emi

of modality encoder
sub-network for modality mi, we assume that it can achieve an accuracy of aj

mi
with a

computational cost of cj
mi

. Then, we can define the utility of the encoder exit as,

U(ej
mi

) = λaj
mi

− (cj
mi

+
∑

f:1→i−1
g:1→emf

cg
mf

+
∑

f=i
g:1→j−1

cg
mf

) (3)

where λ represents the preference of different applications for performance and com-
putational cost. Notably, we compute the UoE of the fusion exits in a similar way.

Then, we assume that for a standalone exit network a data sample will exit from
f
(mi,j)
e with a probability of pj

mi
. Thus, in the MMExit network, we formulate the

probability of a sample exit from y-th exit in x-th modality as follows,

Pe(x, y) =
∏

i:1→x−1
j:1→emx

(1 − pj
mi

) ∗
∏

i=x
j:1→y−1

(1 − pj
mi

) ∗ py
mx

(4)

3.2 Equivalent Modality Serialization

In the inference process ofMMExit, the ultimate goal is to generate an order of exits that
can maximize the sum of the utility function for all data samples, which is formulated
as,

max
∑

i:1→n
j:1→emi

U(ej
mi

) (5)

As shown in Fig. 2, the order of exits in a modality encoder sub-network is fixed
and the order between the encoder exits and fusion exit is also fixed. We only need to
define the execution order of different modalities. Considering the execution order of
the modalities as O = {o1, o2, ..., oM}, the overall target turns to,

argmax
O

U(O) = argmax
O

∑

i:1→M
j:1→emi

Pe(oi, j) ∗ U(ej
oi
) (6)
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This is a hard problem that cannot be solved with a naive method. To order the
modalities, the most explicit way is to traverse all orders and select the order which
maximizes the utility sum. However, there is a drawback in that the computational
process requires traversing all possible modality orders, which leads to unacceptable
computational cost when the number of modalities is large. Therefore, we define an
equivalent metric φ, which defines a fast way to select the optimal modality execution
order. Assuming emi

is equal to em for all modalities and pj
mi

is approximately close
to p for all exits (the experiments show that our method is able to achieve near-optimal
performance even when these assumptions are not satisfied.), the φ is formulated as,

φ(i) = (1 − qem) ∗
∑

j:1→em

qj−1 ∗ p ∗ (λaj
mi

− cj
mi

−
∑

f=i
g:1→j−1

cg
mf

) −
∑

j:1→em

(qem ∗ qj−1 ∗ p ∗
∑

f=i
g:1→em

cg
mf

)
(7)

The validity of the proposed metric φ follows the following theorem (the proof is
omitted due to the limit of space, but can be easily established using proof by contra-
diction).

Theorem 1. Given a modality execution ordering O = {o1, o2, · · · , on}, if it is satis-
fied that for any i and j (i ≤ j) we have φ(i) ≥ φ(j). Then we can conclude that O is
the optimal modality execution ordering.

3.3 MMExit Inference Process

In the inference process, the mission of the inference process is to find the optimal
exit for a set of data samples. To this end, we can profile the correlation between
performance gain and computational cost for each modality by computing the UoE.
Then, we rank all the modalities according to their utility functions in an order O =
{o1, o2, · · · , on} with the equivalent serialization method. Notably that the accuracy
aj

mi
and the probability pj

mi
can be collected in the training phase. In addition, we

leverage a validation set to estimate it and then dynamically change the ordering.

4 MMExit: Joint Training

4.1 Joint Loss Function

To train the proposedMMExit classification network, we use the cross-entropy between
the predicted and real label as the loss function. We assume the loss function for the
j-th exit from the i-th modality encoder sub-network and the fusion sub-network is
respectively represented as Lj

i and Lc,

Lj
i (y

j
i , ŷ) = −

∑
ŷ log(yj

i ); Lc(yc, ŷ) = −
∑

ŷ log(yc) (8)

where ŷ is the real label and yj
i and yc is the predicted label.



432 X. Hou et al.

Considering that the MMExit network has n predicted labels from the n encoder
exits and one predicted label from the fusion exit, we formulate the overall loss function
using the weighted sum of the losses from all exits.

L =
M∑

i=1

emi∑

j=1

wijLj
i (y, ŷ) + Lc(y, ŷ) (9)

4.2 Objective Analysis

The training loss of the MMExit network is determined by the features of both the
modalities and exit layers. We first analyze the effect of the modalities on training loss.
We consider the multi-modal classification network fc(z; θc) with parameters θc =
{W ∈ Rdz1+dz2+··· ,+dzM , b ∈ RM} as shown in Sect. 2, the layer of which can be
represented as,

fc (xi) = W
[
f1

u

(
θ1u, xi

1

) ⊕ · · · ⊕ fM
u

(
θ1u, xi

M

)]
+ b (10)

It’s obvious that the weight matrix W can be split into several blocks represented as
W = [Wm1 ;Wm2 ; · · · ;WmM

], then we can rewrite the above equation as,

fc (xi) = Wm1 · f1
u

(
θ1u, xi

1

)
+ · · · + WmM

fM
u

(
θv, xi

M

)
+ b. (11)

The update of the weight parameter is,

W t+1
mi

== W t
mi

− η
1
N

N∑

j=1

∂L

∂fc (xj)
f i

u

(
θi

u, xj
i

)
(12)

Then, we can update the overall loss as,

∂L

∂f (xi)c
=

e(fc(xi))c

∑M
k=1 e(fc(xi))k

− 1c=yi
(13)

where f(xi)c is the logits output for class c. It is obvious that the overall gradient will
be dominated by the stronger modality (with a smaller gradient), which finally makes
the other modalities not converge to the optimal value. To alleviate this, we need to give
larger weights to the strong modalities (with lower loss).

Then, we consider the effect of the multi-exit network. We assume training the exits
at the sub-network for modality i with loss Li. Some previous studies have found that
training exits sequentially is sub-optimal compared to jointly optimizing all exits [12]. It
involves two aspects of the learning objective. On the one hand, the earlier features are
not sufficiently predictable and have larger gradients. On the other hand, the earlier part
of the network will receive gradient back-propagation from all later exits. The gradient
of the s-th block is contributed by the s-th node and the subsequent (emi

− s) exits
denoted as,

∇θi,s
u

Li =
emi∑

j=s

wj
mi

∇θi,s
u

Lj
i (14)
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Algorithm 1: MMExit Training Algorithm
Input: Trained model M, preference λ, threshold ε.
Output: TrainedMMExit model.

1 for i = 1, · · · , e do
2 Get the predictions from the model.
3 Calculate the losses and update the running mean according to Eq. (15).
4 if i % 2 = 0 then
5 Calculate {wmi

i }Mi=1 according to Eq. (16).
6 Calculate the loss Le according to Eq. (17).
7 else
8 Calculate exit weights according to Eq. (16).
9 Calculate the loss Lo according to Eq. (18).

10 Update model parameters with gradient descent.

where θi,s
u is the features at s-th block. This illustrates that the earlier exits usually have

more weight, making them more important in the optimization process and dominating
the training process. So, we need to give smaller weights to the earlier exits, which have
higher losses in the training process.

Training MMExit contains two conflict objectives in terms of the loss value [20].
For the multi-modal part, the training process can be dominated by strong modalities
(with less loss), which suppresses the training of weak modalities and is not conducive
to better performance of the overall multi-modal model. For the multi-exit part, its exit
structure leads to the fact that the early blocks receive the gradient back-propagate from
all the later exits, which leads to its possible domination of the whole training process,
resulting in poor performance of the whole network. Traditional adaptive methods tend
to solve one of these problems by weighting the losses according to the gradient values
(or similar metrics) in various ways. They cannot be directly applied to more complex
MMExit training.

4.3 MMExit Training Algorithm

Based on previous analysis, we propose a double-stage adaptive re-weighting method to
train theMMExit network. Firstly, we use the running average of the gradients to weigh
the predictive capabilities of different exits. A high gradient always implies a fairly
large gap between the predicted label and the true label. For exit j in each modality i,
we denote the gradient as g(i,j), then we can formulate the average gradient at step t as,

ḡt
(i,j) = αḡt−1

(i,j) + (1 − α)g(i,j) (15)

where α is the weight parameters to control the importance of the current value and
previous values. Then, we define the weight for different exits as,

wt
i,j =

exp(ḡt
(i,j)/τ)

(mi − j + 1)
∑

x∈Q exp(ḡt
x/τ)

(16)
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Table 1. Description of the multi-modal Datasets used.

Dataset Data Samples Modality (Encoder sub-network) Classes

sarcasm [5] 690 spoken language (BERT/GloVe),
visual (ResNet), audio (Librosa)

2

mosi [25] 2,199 5

mosei [25] 22,777 5

avmnist [21] 70,000 image (Raw), audio (Spectogram) 10

where Q is the set of exits considered in the update step, τ is the temperature parameter
for softmax function. We decrease the temperature parameter during training to help the
model focus on some hard parts of the model. With this, we can make better use of the
strong modalities and alleviate the effect of the earlier sub-network. Then we can train
MMExit effectively by balancing different components in the network.

Given the aforementioned discussions, we introduce a novel double-stage cross-
training strategy to train the MMExit network. The proposed training algorithm is
depicted in Algorithm 1. The training process comprises two stages that alternate in con-
secutive epochs. Specifically, in the even-numbered epochs, the training of the multi-
modal part of the network is achieved by using the following model representation,

minLe =
M∑

i=1

Lmi
i + Lc (17)

In the odd-numbered epochs, the model trains the remaining exits and is denoted as,

minLo =
M∑

i=1

mi−1∑

j=1

Lj
i (18)

5 Experiments and Evaluations

5.1 Experiment Setup

Implementation. We conduct our experiment based on 4 representative multi-modal
DNNs and datasets provided by theMultibench benchmark [16] from real-world appli-
cations (details are shown in Table 1). We construct the MMExit networks for each
dataset by adding 2 exits per modality to their late fusion (LF) networks. LF is the most
fundamental method that combines multiple modalities with the concatenation opera-
tion. We implement the exits by using one linear layer, which only results in an extra
computational cost of less than 0.02% to produce the prediction label. We train and
run all these models on a server with one GeForce RTX 2080Ti GPU. We run each
experiment 5 times with different random seeds for reliability. Notably that it is easy to
apply ourMMExit method to other state-of-the-art multi-modal networks such asMIM,
TF and LRTF to reduce their computational effort. However, for the space limitation,
we only apply the MMExit to the Humor Knowledge enriched Transformer (HKT) [9],
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Fig. 3. Visualization of MMExit under the avmnist dataset.

which is one of the latest multi-modal transformer networks and omit the most content
of the integration ofMMExit with other fusion methods.

Baselines and the State-of-the-Art. We use the late fusion (LF) method as our base-
line. We also compare MMExit with both the uni-modal methods and the most rep-
resentative multi-modal methods. In each of the uni-modal models (Uni1–Uni3), we
only use the encoder sub-network of one modality and connect it to the classification
network to obtain the output predictions. Among these multi-modal methods, Tensor
fusion network (TF) [26] uses tensor outer product to fuse information from different
modalities. Low rank tensor fusion network (LRTF) [18] leverages a modality-specific
set of low-rank factors to improve the efficiency of tensor fusion. Multiplicative inter-
action model (MIM) [13] further generalizes the tensor products to capture and learn
the interactions between different modalities. We also implement another multi-exit
method called RExit, which inserts exits without the equivalent serialization optimiza-
tion.

5.2 Visualization

We first illustrate thatMMExit has the ability to adaptively exit from appropriate modal-
ities and network layers for different data samples. In Fig. 3, we plot the results for the
avmnist dataset which classifies data samples based on two modalities including image
and audio. The data samples of image are represented in pixels, and the data samples of
audio are represented with a 112 × 112 spectrogram. First of all, we can see that for a
very “Easy” sample,MMExit is able to perform an accurate recognition at the first exit
which significantly saves the computational effort. For more complex sample, MMExit
extracts more features from the modality of image by exiting later at the second exit
to obtain the prediction result with high accuracy. For both “Easy” and “Medium”
samples, they can be classified accurately by exiting from different layers of the image
modality. However, for some “Hard” samples, which happens less frequently, it is dif-
ficult to obtain its correct label only from the image modality. In this case,MMExit has
to complete both image and audio modalities to compute the final prediction.
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Fig. 4. Computational effort under the two exit schemes.

5.3 Ablation Study

Utility Analysis: To evaluate the equivalent serialization method, we compare both the
performance and computation cost including network parameters and MAC operations
under RExit and MMExit. As shown in Fig. 4, both the RExit and MMExit can reduce
the number of MACs and parameters of the LF baseline method. For these datasets,
MMExit can reduce the computation load by 23%–49%. Although RExit can reduce
1.4%–44% computational effort as well, RExit cannot guarantee the performance (i.e.,
accuracy and F-scores) with unawareness of the trade-off between the accuracy gain
and computational effort as shown in Fig. 5. Overall, the proposedMMExit can always
find the optimal tradeoffs between computation load and performance.

Joint Training Algorithm: To verify the effectiveness of the training algorithm, we
compare it with two commonly-used training strategies. In Fig. 6, the Eloss represents
the ones which treat and train all the exits equally with the same weight [22]. The Sloss
stands for the ones which group different layers and assign different groups with static
weights increasing from previous to latter groups. In the figure, the more overlap of two
bars means requiring more computational effort to obtain the performance gains. For
example, Eloss and Sloss explicitly consumes more MACs than MMExit . We can see
that MMExit always intends to guarantee higher accuracy and less computation load
compared with other training loss functions under all the datasets.
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Fig. 5. Performance comparison of the two exit schemes.

Fig. 6. The impact of different training algorithms on the performance gain and computational
effort of MMExit.

5.4 Performance Evaluation

In Table 2, we compare the performance ofMMExit with both the uni-modal and multi-
modal methods under various datasets. It is evident that MMExit obtains better out-
put predictions than the uni-modal models by fusing multiple modalities. In addition,
MMExit can achieve the same or even higher accuracy and F-scores than the LF base-
line method in all the scenarios. It also achieves the best performance compared to
the most state-of-the-art multi-modal methods. It is notable that MMExit can be eas-
ily applied to more advanced multi-modal networks such as MIM, LRTF and HKT to
reduce their computational effort. Table 3 shows that applying the MMExit to HKT can
reduce its parameters, thus significantly reducing the inference latency and improving
the performance. Overall, MMExit can reduce the computational effort of multi-modal
networks without any performance degradation.

5.5 Reduction of Computation

An important design objective of MMExit is to reduce the computational effort of the
existing multi-modal methods. In this part, we compare the MACs and parameters of
different methods. As shown in Fig. 7, the MMExit reduces 22.64%–48.72% MACs
and 21.44%–45.02% parameters of the LF method. It even consumes less MACs and
parameters that the uni-modal networks. For example, MMExit has 13.0% less MACs
than the uni-modal network for the mosi dataset. Combined with the results in Table 2,
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Table 2. Accuracy and weighted F1 score of the 4 datasets.

sarcasm mosei mosi avmnist

Accuracy F1 Score Accuracy F1 Score Accuracy F1 Score Accuracy F1 Score

Uni1 0.536 0.538 0.573 0.422 0.286 0.130 0.651 0.649

Uni2 0.470 0.440 0.575 0.420 0.289 0.137 0.421 0.421

Uni3 0.613 0.611 0.612 0.571 0.287 0.128 – –

TF 0.535 0.492 0.612 0.567 0.287 0.130 0.712 0.710

LRTF 0.467 0.364 0.591 0.484 0.287 0.128 0.715 0.714

MIM 0.455 0.352 0.611 0.557 0.285 0.128 0.716 0.714

LF 0.588 0.583 0.614 0.570 0.288 0.134 0.717 0.715

MMExit 0.622 0.622 0.617 0.570 0.295 0.220 0.722 0.720

Table 3. The benefits of applying MMExit to HKT on sarcasm dataset.

Methods Accuracy F1 Score Parameters (MB) Time (ms)

HKT 0.7647 0.7639 12.12 28.43

MMExit+HKT 0.7941 0.7941 8.63 21.73

Improvements +0.0294 +0.0302 −3.50 (28.9%) −6.7 (23.6%)

MMExit offers the probability to improve the existing model in terms of performance
and efficiency, which is important for real-world deployments. Moreover, the reduction
in computation complexity would lead to additional benefits such as speeding up the
inference processes as shown in Table 3.

6 Related Work

Multi-modal DNNs: Multi-modal deep neural networks [27] are designed to merge
complementary information from various modalities like text, audio, image, etc. They
have been demonstrated to outperform the uni-modal networks in many application
fields [16]. The most typical multi-modal architecture consists of multiple heteroge-
neous encoders to obtain representations of different modalities. These representa-
tions are then fused using either early fusion methods [19] or late fusion methods [3].
Recently, multi-modal transformers [14] are proposed, which are powerful but com-
putationally intensive, using only transformers to obtain and fuse multi-modal features.
MMExit is orthogonal to all these methods. It can be used to reduce their computational
effort.

Early Exit Neural Network: Early exit which has been extensively studied for uni-
modal DNN inference tasks [8], is the most similar to our work. Compared to other
state-of-the-art neural network (NN) compression methods such as pruning [6] and
quantization [4], early exit [7,8,15,22] aims to reduce the computation of network lay-
ers adapted to different inference tasks, thus making DNNs more applicable in some
resource-limited application scenarios. For example, some previous work leverages
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Fig. 7. Comparison of computational effort.

early exit [8,10,22] to adapt edge DNN tasks to resource-limited AIoT devices.MMExit
is a new adaptive neural architecture for multi-modal DNNs.

7 Conclusion

While multi-modal DNNs have culminated in significant accuracy gain, they also lead
to an explosive increase in computational cost, which would hinder their deployment
in many real-world applications. To address this, we propose a novel multi-modal
exit architecture called MMExit. To the best of our knowledge, it is the first multi-
modal exit network that provides adaptive inference with minimal computational effort.
MMExit shows great potential in applying multi-modal networks to the next-generation
resource-constrained scenarios such as smart networking devices, mobile robots, etc.
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Abstract. We describe the engineering of the distributed-memory mul-
tilevel graph partitioner dKaMinPar. It scales to (at least) 8192 cores
while achieving partitioning quality comparable to widely used sequen-
tial and shared-memory graph partitioners. In comparison, previous dis-
tributed graph partitioners scale only in more restricted scenarios and
often induce a considerable quality penalty compared to non-distributed
partitioners. When partitioning into a large number of blocks, they even
produce infeasible solution that violate the balancing constraint. dKaM-
inPar achieves its robustness by a scalable distributed implementation of
the deep-multilevel scheme for graph partitioning. Crucially, this includes
new algorithms for balancing during refinement and coarsening.

Keywords: algorithms · distributed systems · graph partitioning ·
multilevel algorithm · balancing

1 Introduction

Graphs are a central concept of computer science used whenever we need to
model relations between objects. Consequently, handling large graphs is very
important for parallel processing. This often requires to partition these graphs
into blocks of approximately equal weight with most edges inside the blocks (bal-
anced graph partitioning). Applications include scientific computing, handling
social networks, route planning, and graph databases [3].

In principle, multilevel graph partitioners (MGP) achieve high quality parti-
tions for a wide range of input graphs G with a good trade-off between quality
and partitioning cost. They are based on first iteratively coarsening G by con-
tracting edges or small clusters. The resulting small graph G′ is then still a good
representation of the overall input and an initial partition of G′ already induces
a good partition of G. This is further improved by uncoarsening the graph and
improving the partition on each level through refinement algorithms.

However, parallelizing multi-level graph partitioning has proved challeng-
ing over several decades. While shared-memory graph partitioners have recently
matured to achieve high quality and reasonable scalability [1,9,10,14], current
distributed-memory partitioners [13,19,25] induce a severe quality deterioration
and often are not able to consistently achieve feasible (i.e. balanced) partitions.
In particular, high quality partitioners do not scale to the number of processing
c© The Author(s) 2023
J. Cano et al. (Eds.): Euro-Par 2023, LNCS 14100, pp. 443–457, 2023.
https://doi.org/10.1007/978-3-031-39698-4_30
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elements (PEs) available in large supercomputers. This situation is exacerbated
by the fact that often the number of blocks k should increase linearly in the
number of PEs. Previous systems are not able to directly handle large k running
into even larger problems with achieving feasibility.

In this paper, we present dKaMinPar which addresses all these issues. Its
basis is a distributed-memory adaptation of the deep-multilevel graph parti-
tioning concept [9] that continues the multilevel approach deep into the initial
partitioning phase. This makes the large k case much easier and eliminates a
parallelization bottleneck due to initial partitioning. Our coarsening and refine-
ment algorithms are based on the label propagation approach previously used
in several partitioners [13,19,25]. Label propagation [18,20] greedily moves ver-
tices to other clusters/blocks when this reduces cuts (and does not violate the
balance constraint). This is simple, fast, effective and robust even for complex
networks. We develop a distributed-memory version with improved scalability,
e.g., by using improved sparse-all-to-all primitives. Perhaps the main algorithmic
innovation are new scalable distributed techniques allowing to maintain the bal-
ance constraint. During coarsening, a maximum cluster weight is approximated
by unwinding contractions that lead to overweight clusters. During uncoarsening,
block weight constraints are achieved by finding, selecting and applying globally
“best” block moves.

The experiments described in Sect. 6 indicate that our implementation has
achieved the main goals. It scales to at least 8 192 cores even for complex net-
works that did not scale on previous distributed solvers. Feasibility is guaranteed,
even for large k and quality is typically within a few percent of the shared-
memory systems. Section 7 summarizes the results and discusses possible future
improvements.

Contributions

– Scalable distributed implementation of deep multilevel graph partitioning.
– Simplicity using label propagation for both contraction and refinement.
– New scalable balanced coarsening and uncoarsening algorithm.
– Extensive evaluation on both large real world networks and huge synthetic

networks from 3 input families.
– Quality comparable to shared-memory systems.
– Scalability up to (at least) 213 machine cores and 239 graph edges.
– Works both for complex networks and large number of blocks where previous

systems often fail.

2 Preliminaries

Notation and Definitions. Let G = (V,E, c, ω) be an undirected graph with
vertex weights c : V → N>0, edge weights ω : E → N>0, n := |V |, and m := |E|.
We extend c and ω to sets, i.e., c(V ′) :=

∑
v∈V ′ c(v) and ω(E′) :=

∑
e∈E′ ω(e).

N(v) := {u | {u, v} ∈ E} denotes the neighbors of v. For some V ′ ⊆ V , G[V ′]
denotes the subgraph of G induced by V ′. We are looking for blocks of nodes
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Π := {V1, . . . , Vk} that partition V , i.e., V1 ∪ · · · ∪ Vk = V and Vi ∩ Vj = ∅
for i �= j. The balance constraint demands that for all i ∈ {1, . . . , k}, c(Vi) ≤
Lmax := max{(1 + ε) c(V )

k , c(V )
k + maxv c(v)} for some imbalance parameter ε1.

The objective is to minimize cut(Π) :=
∑

i<j ω(Eij) (weight of all cut edges),
where Eij := {{u, v} ∈ E | u ∈ Vi and v ∈ Vj}. We call a vertex u ∈ Vi that has
a neighbor in Vj , i �= j, a boundary vertex. A clustering C := {C1, . . . , C�} is also
a partition of V , where the number of blocks � is not given in advance (there is
also no balance constraint).

Machine Model and Input Format. The distributed memory model used in this
work considers P processing elements (PEs) numbered 1..P , connected by a full-
duplex, single ported communication network. The input graph is given with a
(usually balanced) 1D vertex partition. Each PE is given a subgraph of the input
graph (i.e., a block of the 1D partition) with consecutive vertices. An undirected
edge {u, v} is represented by two directed edges (u, v), (v, u), which are stored on
the PEs owning the respective tail vertices. Vertices adjacent to vertices owned
by other PEs are called interface vertices and are replicated as ghost vertices
(i.e., without outgoing edges) on those PEs.

3 Related Work

There has been a huge amount of research on graph partitioning so that we refer
the reader to overview papers [2–4,24] for most of the general material. Here,
we focus on parallel algorithms for high-quality graph partitioning.

Distributed Graph Partitioning. Virtually all high-quality partitioners are based
on the multilevel paradigm, e.g., ParMETIS [12,13], ParHIP [19,22] and others [5,
27]. These algorithms partition a graph in three phases. First, they build a
hierarchy of successively coarse approximations of the input graph, usually by
contracting matchings or clusters. Once the graph has only few vertices left (e.g.,
n ≤ Ck for some contraction limit C), the graph is partitioned into k blocks.
Finally, this partition is successively projected onto finer levels of the hierarchy
and refined using local search algorithms.

The performance of multilevel algorithms is defined by the algorithmic com-
ponents used for these phases. Partitioners designed for mesh-partitioning usu-
ally contract matchings to coarsen the graph [5,13,27]. However, this technique
is not suitable for partitioning complex networks that only admit a small max-
imum matching. Thus, other partitioners use two-hop matchings [15] or size-
constrained label propagation [9,11,19]. Due to its simple yet effective nature,
the latter is also commonly used as a local search algorithm during refine-
ment [1,6,9,11,13,19,27].

Label propagation has also been used by non-multilevel graph partitioning
algorithms such as XtraPuLP [25], which reports scalability up to 217 cores, a

1 Traditionally, Lk := (1 + ε)� c(V )
k

� is used as balance constraint. We relax this con-
straint since it is otherwise NP-complete to find a feasible partition.
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level which has not been reached by multilevel algorithms. However, using label
propagation without the multilevel paradigm comes with a pronounced decline
in quality; Ref. [9] reports edge cuts for PuLP [26] (non-multilevel) that are on
average more than twice as large as those of KaMinPar (multilevel). Across a
large and diverse benchmark set, this is considered a lot; most multilevel algo-
rithms achieve average edge cuts within a few percentage points of each other.
Another class of highly scalable graph partitioners include geometric partition-
ers, which work on a geometric embedding of the graph. While these algorithms
are orders of magnitude faster than multilevel algorithms [16], they generally
compute larger edge cuts and only work on graphs with a meaningful geometric
embedding.

Deep Multilevel Graph Partitioning. As plain MGP algorithms usually shrink
the graph down to Ck vertices, large values for k break the assumption that the
coarsest graph is small. This causes their performance to deteriorate [9]. Instead,
recursive bipartitioning can be used to compute partitions with large k, but this
induces an additional log k factor in running time and makes it more difficult
to compute balanced partitions due to the lack of global view. Deep multilevel
graph partitioning (deep MGP) [9] circumvents these problems by continuing
coarsening deep into initial partitioning. More precisely, deep MGP coarsens the
graph until only 2C vertices are left, independent of k. After bipartitioning the
coarsest graphs, it maintains the invariant that a (coarse) graph with n vertices
is partitioned into min{k, n/C} blocks by using recursive bipartitioning on the
current level. By using additional balancing techniques, partitioners based on
deep MGP can obtain feasible high-quality partitions with a large number of
blocks (e.g., k ≈ 1M) while often being an order of magnitude faster than par-
titioners based on plain MGP. Compared to recursive bipartitioning the entire
graph, it reduces the additional log k factor to log kC/n. KaMinPar [9] is a scal-
able shared-memory implementation of deep MGP which uses size-constrained
label propagation during coarsening and refinement.

4 Distributed Deep Multilevel Graph Partitioning

In this section, we present dKaMinPar, a distributed graph partitioner that lever-
ages deep MGP. We first describe the distributed deep MGP scheme, which par-
titions a graph on P PEs into k blocks. For simplicity, we assume that k and
P are powers of two. Then, we explain the different algorithmic components for
coarsening, initial partitioning, refinement and balancing in more detail.

Distributed Deep Multilevel Partitioning. Recall that deep MGP [9] follows the
traditional multilevel graph partitioning scheme, but coarsens the graph down
to a small size independent of k. After partitioning the coarsest graph into a
small number of blocks, it maintains the invariant that each block of the current
partition contains roughly C vertices throughout the uncoarsening phase (until
there are k blocks).
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Fig. 1. Distributed deep multilevel graph partitioning on P = 4 PEs to partition
a graph G into k = 4 blocks. Unpartitioned graphs are labeled with their number of
vertices. During initial partitioning and uncoarsening, blocks are recursively partitioned
into K = 2 blocks. Bold horizontal lines illustrate PE groups working independently.

To adapt this scheme to the distributed setting, we use distributed algorithms
for graph clustering, contraction, and partition refinement (see below). Initial
partitioning of the coarsest graph and block-induced subgraphs is done using an
in-memory partitioner by gathering full copies of the graphs on individual PEs.
Since this process is communication heavy, we generalize the bipartitioning steps
of deep MGP to K-way partitioning for some tuning parameter K. The scheme
then works as follows.

We repeatedly coarsen the input graph until only K · C vertices are left,
building a hierarchy G1 =: G,G2, . . . , G� of successively coarser graphs. During
this process, we exploit parallelism and improve scalablility on coarse levels of
the hierarchy by maintaining the invariant that P PEs work on a graph with at
least P · C vertices [27]. This leads to more diversification on coarse levels due
to the randomized nature of the clustering, initial partitioning and refinement
algorithms. More precisely, we check on each level whether the current graph Gi

has more than P · C vertices. If so, we split the P PEs into two subgroups 1..P
2 ,

P
2 +1..P and mirror the parts of Gi between PEs j and P

2 + j, 0 ≤ j < P
2 , such

that each group obtains an identical copy of Gi. The subgroups then continue this
procedure recursively. In Fig. 1, we illustrate this process by using bold horizontal
lines, duplicating G�−1 and G�. The coarsest graph is then copied to each PE
and partitioned into min{k,K} blocks using an in-memory partitioner. The best
partition (within each group of PEs) is selected and projected onto G�−1 by
assigning fine vertices to the blocks of their corresponding coarse vertices. From
here, we maintain two invariants during uncoarsening:

1. The current partition is feasible, which we ensure using the distributed bal-
ancing algorithm described below, and

2. each block contains roughly C vertices (until there are k blocks).

To maintain the latter invariant, assume that the current graph with |V (Gi)|
vertices is partitioned into k′ < k blocks. Then, assign k′/P blocks to each PE
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and use all-to-all communication to gather full copies of the block-induced sub-
graphs. These subgraphs are then partitioned into min{k/k′,K} blocks using an
in-memory partitioner. Afterwards, we update the partition of the distributed
graph using all-to-all communication and subsequently improve it using a refine-
ment algorithm. We repeat this process until we obtain a partition where each
block contains roughly C vertices. Note that if k > |V (G1)|/C, the partition
computed on the finest graph has not enough blocks. In this case, we distribute
and partition the block-induced subgraphs once more to compute the missing
blocks.

Coarsening. We use a similar parallelization of size-constrained label propaga-
tion as ParHIP [19] and KaMinPar [9] to cluster the graphs. The algorithm works
by first assigning each vertex to its own cluster. In further iterations over the
vertices (we use {3, 5} iterations), they are then moved to adjacent clusters such
that the weight of intra-cluster edges is maximized without violating the maxi-
mum cluster weight Wi := ε c(V )

k′
i

, where k′
i := min{k, |V (Gi)|/C} [9] and i is the

current level of the graph hierarchy.
As noted in Ref. [1,18], the solution quality of label propagation is improved

when iterating over vertices in increased degree order. Since this is not cache
efficient and lacks diversification by randomization, we sort the vertices into
exponentially spaced degree buckets, i.e., bucket b contains all vertices with
degree 2b ≤ d < 2b+1, and rearrange the input graph accordingly. This happens
locally on each PE. Then, during label propagation, we split buckets into small
chunks and randomize traversal on a inter-chunk and intra-chunk level analogous
to the randomization of the matching algorithm used by Metis [12].

To communicate the current cluster assignment of interface vertices, we follow
ParHIP and split each iteration into max{α, β/P} (we use α = 8, β = 128)
batches. After each batch, we use a sparse all-to-all operation to notify adjacent
PEs of interface vertices that were moved to a different cluster. Since clusters
can span multiple PEs, enforcing the maximum cluster weight becomes more
challenging than in a shared-memory setting. ParHIP relaxes the weight limit
and only enforces it locally, consequently allowing clusters with weight up to
P · W . This can lead to very heavy coarse vertices, making it more difficult to
compute balanced partitions. Instead, we track the global cluster weights by
sending the change in cluster weight after each batch to the PE owning the
initial vertex of the cluster, which accumulates the changes and replies with the
total weight of the cluster. If a cluster becomes heavier than W , each PE reverts
moves proportional to its part of the total cluster weight. Those vertices can
then be moved to other clusters in subsequent iterations.

After clustering the graph, we contract the clusters to build the next graph
in the hierarchy. We give more details on this operation in Sect. 5.

Balancing. Balance constraint violations during deep MGP can occur after initial
partitioning or after projecting a coarse graph partition onto a finer level of the
graph hierarchy [9]. Since these balance constraint violations are bounded by the
weight of the heaviest vertex, we design the following balancing algorithm based
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Fig. 2. Illustration of the rebalancing algorithm with P = 4 PEs (background color),
two overloaded blocks V0, V2, and τ = 2 vertices per overloaded block and round.
Proposed moves are indicated by arrows, with their relative gains encoded by vertex
size.

on the assumption that only few vertex moves are necessary to restore balance.
Thus, it is feasible to invest a moderate amount of work per vertex move.

For each overloaded block B, each PE maintains a local priority queue PB of
vertices in block B ordered by their relative gain which we define as g·c(v) if g ≥ 0
and g/c(v) if g < 0. Here, g is the largest reduction in edge cut when moving
v to a non-overloaded block. This rating function prefers moving few heavy
vertices over many light vertices, supporting our assumption that few vertex
moves are sufficient to balance the partition. To keep the priority queues small,
we maintain the invariant that PB stores no more vertices than are necessary to
remove all excess weight o(B) := c(B)− Lmax from B. To this end, we initialize
PB by iterating over all vertices v in B and inserting v into PB if c(PB) < o(B).
Otherwise, we only insert v if it can replace another vertex with worse relative
gain.

To choose which vertices to move, we then use a global reduction tree as
illustrated in Fig. 2. Using the local PQs, each PE builds a sorted list per over-
loaded block containing up to τ (a tuning parameter) vertices. At each level of
the reduction tree, the sorted lists are then merged and truncated to the prefix
that is sufficient to remove all excess weight, but no more than τ vertices. Finally,
the root PE selects a subset of the proposed vertices such that no other block
becomes overloaded and broadcasts its decision to all PEs. Using this informa-
tion, PEs update the current partition state, remove moved vertices from their
PQs and update the relative gains of neighboring vertices. We repeat this process
until the partition is balanced.

Refinement. We also use size-constrained label propagation to improve the cur-
rent graph partition. In contrast to label propagation for clustering as described
above, vertices are initially assigned to clusters representing the blocks of the
partition, and the maximum block weight is used as weight constraint. We use
the same iteration order and number of batches as during coarsening to move
vertices to adjacent blocks such that the weight of intra-block edges is maximized
without violating the balance constraint. Ties are broken in favor of the lighter
block, or by coin flip if both blocks have the same weight.
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Since the number of blocks during refinement is usually much smaller than
the number of clusters during coarsening, we track the global block weights using
an allreduce operation after each vertex batch. Note that this does not prevent
violations of the balance constraint if multiple PEs move vertices to the same
block during the same vertex batch. In this case, we use our global balancing
algorithm described above afterwards to restore the balance constraint. This is
a downside compared to refinement via size-constrained label propagation in
shared-memory parallel graph partitioners, where the balance constraint can be
strictly enforced using atomic compare-and-swap operations.

5 Implementation Details

Vertex and Edge IDs. To reduce the communication overheads, we distinguish
between local- and global vertex- and edge identifiers. This allows us to use 64bit
data types for global and 32bit data types for local IDs.

Graph Contraction. Contracting a clustering consisting of nC clusters and con-
structing the corresponding coarse graph works as follows. First, the clustering
algorithm described above assigns a cluster ID to each vertex, which corresponds
to some vertex ID in the distributed graph. We say that a cluster is owned by
the PE owning the corresponding vertex. After contracting the local subgraphs
(i.e., deduplicating edges between clusters and accumulating vertex- and edge
weights), we map clusters to PEs such that each PE gets roughly the same num-
ber of coarse vertices while attempting to minimize the required communication
amount. We assign ≤ δ ·nC/P clusters owned by each PE to the same PE (in our
experiments, δ = 1.1). If a PE owns more clusters, we redistribute the remain-
ing clusters to PEs that have the smallest number of clusters assigned to them.
Afterwards, each PE sends outgoing edges of coarse vertices to the respective
PE using an all-to-all operation, then builds the coarse graph by deduplicating
edges and accumulating vertex- and edge weights.

Low-Latency Sparse All-to-All. Many steps of dKaMinPar require communica-
tion along the cut edges of the distributed graph, which translates to (often
very) sparse and irregular all-to-all communication. Since MPI_Alltoallv has
relatively high latency, we instead use a two-level approach that arranges PEs
in a grid [21]. Then, messages are first sent to the right row, then to the right
column, reducing the total number of messages send through the network from
O(P 2) to O(P ).

6 Experiments

We implemented the proposed algorithm dKaMinPar in C++ and compiled it
using g++-12.1 with flags -O3 -march=native. We use OpenMPI 4.0 as paral-
lelization library and growt [17] for hash tables. Raw experimental results are
available online2.
2 https://algo2.iti.kit.edu/seemaier/ddeep_mgp/.

https://algo2.iti.kit.edu/seemaier/ddeep_mgp/
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Setup. We evaluate the solution quality of our algorithm on a shared-memory
machine equipped with 1TB of main memory and one AMD EPYC 7702P proces-
sor with 64 cores (Machine A). Additionally, we perform scalability experiments
on a high-performance cluster where each compute node is equipped with 256GB
of main memory and two Intel Xeon Platinum 8368 processors (Machine B). The
compute nodes are connected by an InfiniBand 4X HDR 200GBit/s network with
approx. 1μ s latency. We only use 64 out of the available 78 cores since some of
the graph generators require the number of cores to be a power of two.

We compare dKaMinPar against the distributed versions of the algorithms
included in Ref. [9], i.e., ParHIP [19] (v3.14) and ParMETIS [13] (v4.0.3). ParHIP
offers two configurations, denoted ParHIP-Fast and ParHIP-Eco, which configure
a trade-off between running time and partition quality. We do not include the
distributed version PuLP [26] (XtraPuLP [25]) in our main comparison, since
its quality is not competitive with multilevel partitioners. Instead, a comparison
against XtraPuLP is available in the full version [23] of the paper. We evaluate two
configurations of our algorithm: dKaMinPar-Fast uses C = 2000 as contraction
limit (same as in Ref. [9]), KaMinPar [9] for initial partitioning and performs
3 iterations of label propagation during coarsening, whereas dKaMinPar-Strong
uses C = 5000 (same as in Ref. [19]), Mt-KaHyPar [11] for initial partitioning
and 5 iterations of label propagation during coarsening.

Instances. We evaluate our algorithm on the graphs from Benchmark Set B
of Ref. [9] and the graphs used in Ref. [19]. Additionally, we use KaGen [8] to
evaluate the scaling capabilities of our algorithm on huge randomly generated
2D and 3D geometric and hyperbolic graphs denoted rgg2DNdD, rgg3DNdD
and rhg3.0NdD. These graphs have 2N vertices per compute node (i.e., per 64
cores), average degree D and power-law exponent 3 (hyperbolic graphs only).

Methodology. We call a combination of a graph and the number of blocks an
instance. For each instance, we perform 5 repetitions with different seeds and
aggregate the edge cuts and running times using the arithmetic mean. To aggre-
gate over multiple instances, we use the geometric mean.

To compare the solution quality of different algorithms, we use performance
profiles [7]. Let A be the set of algorithms we want to compare, I the set of
instances, and qA(I) the quality of algorithm A ∈ A on instance I ∈ I. For each
algorithm A, we plot the fraction of instances |IA(τ)|

|I| (y-axis) where IA(τ) :=
{I ∈ I | qA(I) ≤ τ · minA′∈A qA′(I)} and τ is on the x-axis. Achieving higher
fractions at lower τ -values is considered better. For τ = 1, the y-value indicates
the percentage of instances for which an algorithm performs best.

Solution Quality and Running Time. To evaluate the quality and running time of
dKaMinPar we partition all graphs of our benchmark set into k ∈ {2, 4, . . . , 128}
blocks with ε = 3% using all 64 cores of Machine A and compare partition qual-
ities and running times against competing distributed MGP algorithms. Addi-
tionally, we compare the results against KaMinPar to evaluate the penalties of
dKaMinPar due to its distributed nature. Further experiments with larger values
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Fig. 3. Results for k = {2, 4, 8, 16, 32, 64, 128} with ε = 3% on Machine A. From left
to right: (a) edge cuts of dKaMinPar-Fast, ParHIP-Fast and ParMETIS, (b) edge cuts of
dKaMinPar-Fast, dKaMinPar-Strong and ParHIP-Eco, (c) running times of all algorithms.
The numbers above the x-axis are geometric mean running times [s] over all instances
for which all algorithms produced a result. Timeouts are marked with �, failed runs
or infeasible results are marked with ×.

for k are available in the full version [23] of the paper. We set the time limit
for a single instance to one hour, which is approx. 10 times the running time of
dKaMinPar-Fast on most instances3.

The results are summarized in Fig. 3a–c. In Fig. 3a, we can see that
dKaMinPar-Fast finds the lowest edge cuts on approx. 60% of all benchmark
instances, whereas ParMETIS and ParHIP-Fast only find better edge cuts on
approx. 30% resp. 10% of all instances. Moreover, both competing algorithms
frequently fail to compute feasible partitions—in particular, ParMETIS is unable
to partition most social networks, violating the balance constraint or crashing on
34% of all instances. When looking at running times (Fig. 3c), we therefore only
average over instances for which all partitioners computed a feasible partition or
ran into the timeout (145 out of 224 instances). dKaMinPar-Fast (4.93 s geomet-
ric mean running time) is 1.4 and 3.4 times faster than ParMETIS (6.98 s) and
ParHIP-Fast (16.77 s), respectively. While ParHIP-Eco achieves higher partition
quality than dKaMinPar-Fast, Fig. 3b shows that equipping dKaMinPar with a
stronger algorithm for initial partitioning is sufficient to achieve similar parti-
tion quality, while still being faster than ParHIP-Fast.

We evaluate the weak scalability of dKaMinPar using families of randomly
generated graphs, k = 16, and 64–8 192 cores (i.e., 1–128 compute nodes) of
Machine B. Throughputs are shown in Fig. 4, where we observe weak scalabil-
ity for dKaMinPar-Fast all the way to 8 192 cores on all three graph families.
ParMETIS achieves similar and in cases slightly higher throughputs than dKaM-
inPar, but is unable to efficiently partition hyperbolic graphs. ParHIP-Fast shows
a drop in scalability beyond 2 048 cores, which is most likely due to the extensive
and inefficient communication that it performs during graph contraction. More-
over, we note that ParHIP-Fast was originally designed to overlap local work and
global communication during label propagation through the use of nonblocking

3 Only twitter-2010 takes 6min resp. 7min for k = 64 resp. k = 128.
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Fig. 4. Throughput of rgg2D, rgg3D and rhg graphs with 226 vertices per compute node,
average degree ∈ {8, 32}, k = 16 and ε = 3% on 64–8 192 cores of Machine B.

Fig. 5. Throughput of rgg2D, rgg3D and rhg graphs with 226 vertices per compute
node, average degree 8, and ε = 3% on 64–8 192 cores of Machine B. The number of
blocks are scaled with the size of the graph such that each block contains 212 or 215

vertices.

MPI operations. This implementation relies on MPI progression threads, which
seem to be unavailable in modern OpenMPI versions.

Per-instance edge cut results are available in the full version [23] of the paper.
We observe that ParMETIS finds lower edge cuts than dKaMinPar-Fast on the
dense rgg2D26d32 graph and both rgg3D graphs by 5%–13%. However, on the
sparser rgg2D26d8 graph, dKaMinPar-Fast has 19% smaller cuts than ParMETIS
which is already a considerable improvement. The gap gets much larger for the
hyperbolic graph where ParMETIS only finds approx. 5.5–6.1 times larger cuts.
Such solutions will be unsuitable for many applications.

We now evaluate weak scalability in terms of graph size and number of blocks
by scaling k with the number of compute nodes used. This implies that the
number of blocks is large when using a large number of cores. The throughput
of each algorithm in this setting is summarized in Fig. 5. Note that we only use
the sparser graphs in this experiment, since ParMETIS and ParHIP are unable to
partition the dense versions of the graphs even on few compute nodes.

ParHIP-Fast is unable to obtain a feasible partition on all but 6 instances,
none of which uses more than 1 024 cores, and only shows increasing throughputs
up to 256 cores. While ParMETIS achieves decent weak scalability and computes
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Fig. 6. Strong scaling running times for the largest low- and high-degree graphs in our
benchmark set, with k = 16, ε = 3% on 64–8 192 cores of Machine B.

feasible solutions on the mesh-type graphs, it is unable to partition any graph
on 8 192 cores and often crashes on fewer cores (e.g., it only works on up to 1 024
cores on rgg2D with 212 vertices per block). On the random hyperbolic graph, it
only computes a feasible solution on 64 cores. Meanwhile, dKaMinPar-Fast shows
weak scalability up to 8 192 cores on every graph family, although it should be
noted that the throughput increase from 4 096 to 8 192 is rather small.

In terms of number of edges cut, we summarize that dKaMinPar finds on aver-
age 19.3% and 2.8% lower edge cuts than ParMETIS and ParHIP-Fast, respec-
tively (only averaging over instances for which the respective partitioner com-
puted a feasible partition), with improvements ranging from 0% on rgg3D26d8
to approx. 60% on rhg83.0d26 (215 vertices per block). For detailed per-instance
edge cut results, we refer to the full version [23] of the paper.

Strong Scalability of dKaMinPar. We partition three of the largest low- and high-
degree graphs from our benchmark set into k = 16 blocks using 64–8 192 cores
of Machine B and a time limit of 15min. The results are summarized in Fig. 6,
where we can observe strong scalability for up to 1 024–2 048 cores on high-degree
graphs. ParMETIS is unable to partition these graphs regardless of the number of
cores used. While ParHIP-Fast scales up to 2 048 cores on uk-2007-05, we observe
that its running time is still higher than dKaMinPar on just 64 cores. The twitter
graph is difficult to coarsen due to its highly skewed degree distribution; here,
we observe that only dKaMinPar can partition the graph within the time limit.

Turning towards graphs with small maximum degree, we observe strong scal-
ability for up to 2 048, 2 048 and 1 024 cores on kmer_V1r, nlpkkt240 and rgg2D27,
respectively. Similar to our weak scaling experiments, ParMETIS shows better
scalability and throughput on the mesh-type graph rgg2D as well as on nlpkkt240,
but fails to partition kmer_V1r on 8 192 cores.
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The edge cuts obtained remain relatively constant when scaling to large num-
ber of cores. Surprisingly, the geometric mean edge cut on 8 192 cores is slightly
better than on 64 cores (by 2.0%).

7 Conclusion and Future Work

Our distributed-memory graph partitioner dKaMinPar successfully partitions a
wide range of input graphs using many thousands of cores yielding high speed
and good quality. Further improvements of the implementation might be pos-
sible, for example making better use of shared-memory on each compute node.
Beyond that, one can explore the quality versus time trade off. By distributed
implementations of more powerful local improvement algorithms like local search
or flow-based techniques one could achieve better quality at the price of higher
execution time. It then also makes sense to look at a portfolio of different parti-
tioners variants that can be run in parallel achieving good quality for subsets of
inputs. For example, matching based coarsening as in ParMETIS might help for
mesh-like networks. On the other hand, more aggressive methods for handling
high-degree nodes might help with some social networks.
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Abstract. Training deep neural networks (DNNs) with half-precision
floating-point formats is widely supported on recent hardware and frame-
works. However, current training approaches using half-precision formats
neither obtain the optimal throughput due to the involvement of single-
precision format nor achieve state-of-the-art model accuracy due to lower
numerical digits. In this work, we present a new DNN training engine,
named TrainBF, which leverages a typical half-precision format BFloat16
to maximize training throughput while ensuring sufficient model accu-
racy. TrainBF deploys BFloat16 across the entire training process for best
throughput and improves model accuracy by introducing three proposed
normalization techniques. TrainBF is also lightweight by only applying
these normalization techniques to the layers that are most critical to
model accuracy. Furthermore, TrainBF implements a parallel strategy
that parallelizes the execution of operators in DNN training to make use
of the spare memory space saved by half-precision for better through-
put. Evaluating with six common DNN models and compared with the
state-of-the-art mixed-precision approach, TrainBF achieves competitive
model accuracy with an average throughput speedup of 1.21×, 1.74×,
and 1.16× on NVIDIA A100 GPU, AMD MI100 GPU, and an emerging
AI accelerator SambaNova, respectively.

1 Introduction

Recent advancements in Artificial Intelligence (AI) fueled by the resurgence of
Deep Neural Networks (DNNs) have a spectacular success in widespread fields.
Meanwhile, the increasingly complex DNN models require tremendous overhead
for training. As a result, there has been broad interest in leveraging half-precision
formats to reduce the training time [21]. A lot of DNN training frameworks
support various half-precision formats to offer significant speedups [5,14,22].

Among them, Float16 is a typical half-precision format, which consists of a
sign bit, a 5-bit exponent, and a 10-bit fraction. Compared with the customized
single-precision format TensorFloat-32 (TF32) that is used as the default for-
mat in NVIDIA Ampere architecture, Float16 has the same length of fraction
bits, but shorter exponent bits, causing a narrower dynamic range of the rep-
resentation than that of TF32. Thus, training DNN models with Float16 often
c© UChicago Argonne, LLC, Operator of Argonne National Laboratory 2023
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encounters overflow and underflow problems [15], which could degrade model
accuracy or even lead to non-convergence.

To solve this problem, a training approach called mixed-precision training [14,
18,20,21] is proposed. However, the mixed-precision training with Float16 is far
from achieving the theoretical performance improvement due to the involvement
of single-precision format. Mixed-precision training introduces a master copy of
the weights [21] in single-precision and a component called auto-casting [14] to
avoid overflow problem. Also, a component called loss scaling [21] is presented
to prevent underflow problem. These new components introduce a number of
additional operations and incur considerable overhead. Experiments [16] show
that, compared to TF32 training, mixed-precision training with Float16 brings
an average throughput speedup of 1.34× using 12 common DNN models on an
NVIDIA A100 GPU, which is lower than the theoretical performance speedup
of 2×, because of the above three additional components.

Fortunately, such high overhead can be avoided by using another half-
precision format, Brain Floating Point (BFloat16) [4], since it has the same
length of exponent bits as TF32 and hence keeps the same dynamic range of
representation. As a result, there is no overflow and underflow problems, and it
becomes possible to avoid the involvement of single-precision and format con-
versions. In this paper, we will reintroduce BFloat16 format into DNN training.
The motivation of this work is to achieve higher training throughput by apply-
ing BFloat16 format on all DNN operators. Thus, BFloat16 training, in nature,
stores all the training data and model parameters, and performs all the computa-
tion operators in BFloat16 format entirely. However, current BFloat16 training
cannot work well because of the following three challenges.

Accuracy Challenge. Recent studies [32] have shown that training DNN mod-
els in BFloat16 format alone can result in 17.3%–35.9% accuracy loss compared
to training in single-precision format. The reason for accuracy loss is that, com-
pared to single-precision, BFloat16 has only 7-bit fraction, which makes the
stored data more inaccurate in numerical precision, resulting in the absence of
partial model information. The more essential reason is that BFloat16 optimizes
the overflow and underflow problems at the cost of sacrificing decimal precision,
while the distribution of training data does not occupy the entire dynamic range
of BFloat16, and therefore the exponent bits in BFloat16 is underutilized.

Overhead Concern. Even though there are some methods (will be described
next) that can be applied to DNN layers to improve the bit utilization of
BFloat16, these operations are accompanied by a certain overhead. For example,
if we add such operations to each layer in DNN model to improve the floating-
point bit utilization and amend model accuracy, the training throughput will
be greatly affected and the performance advantage of half-precision will be lost.
Thus, how to apply these operations to layers is another challenge.

Parallel Efficiency. Using BFloat16 format entirely in training will result in
almost half of the memory (47.2% on average) being idle [2]. Traditional methods
of improving memory usage by increasing batch size may lead to a compromise
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in model accuracy and numerical instability due to extra noise and unstable loss
function. Thus, to utilize more memory and bring higher throughput, parallel
execution strategy must be redesigned without changing batch size.

To address these first challenges, we introduce a DNN training engine using
BFloat16 format, named TrainBF; TrainBF is accuracy-aware to training data
by optimizing the offset of sign bit and maximizing the variance of data distribu-
tion; TrainBF is overhead-aware to training throughput by applying normaliza-
tion selectively. TrainBF is parallel-aware to execution efficiency by parallelizing
training operators on multiple execution streams. We also evaluate TrainBF with
six typical DNN models, including three convolutional neural networks (CNNs),
a recurrent neural network (RNN), a graph neural network (GNN), and a sci-
entific model on three AI accelerators. TrainBF consistently outperforms the
state-of-the-art mixed-precision training approach and leads to an average of
1.21× (up to 1.67×), 1.74× (up to 1.83×), and 1.16× (up to 1.18×) speedup
on NVIDIA A100 GPU, AMD MI100 GPU, and an emerging AI accelerator
SambaNova, respectively.

2 Preliminaries

We now establish important preliminaries and discuss work related to ours.

Half-Precision Formats: Half-precision formats have gathered significant
interests in the industry and academia over the past few years [5,14,21,22].

Two formats namely Float16 and BFloat16 are the most popular half-
precision formats and are supported by Google TPUs, NVIDIA GPUs, AMD
Instinct MI GPUs, and the emerging AI accelerators, such as the next-generation
dataflow processor SambaNova. Compared to single-precision format (Float32),
Float16 has a 5-bit exponent and a 10-bit fraction thus resulting in a narrow
dynamic range (from 65504 to 2e−14) due to fewer fraction bits, and BFloat16
retains the same number of exponent bits (8-bit) as Float32 and therefore covers
the same dynamic range but at a lower numerical precision (7-bit fraction).

Both two half-precision formats have higher performance than single-
precision on the existing AI accelerators. For example, Float16 and BFloat16
can provide 16× the theoretical performance of single-precision and 2× the the-
oretical performance of TensorFloat-32 (TF32, which has an 8-bit exponent and
a 10-bit fraction, and it is a new optimized implementation for single-precision
format in NVIDIA Ampere architecture) on NVIDIA A100 GPU. However,
when training with Float16, many studies [16,17] have shown that lots of addi-
tional components are introduced to avoid underflow and overflow problems,
thus resulting in unavoidable overhead. Thus, this paper selects BFloat16 as the
basic half-precision format in DNN training engine to avoid such overhead.

Various Training Data in DNN Training: There are three kinds of train-
ing data involved in DNN training, namely, activations, weights, and gradients.
Concretely, the intermediate result in CNN models, the hidden state in RNN
models, and the activation matrix in GNN models are regarded as activations.
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The weights in CNN models, the weights of the hidden state in RNN models,
and the weight matrix in GNN models are considered as weights. The gradients
of all the weights in DNN models is regarded as gradients. The computation
between the three kinds of training data is the main numerical computation in
DNN training. In addition, the distribution of these training data is not the
same [7], therefore, we will give specific optimization techniques to improve the
bit utilization of each training data in BFloat16.

Fig. 1. Overview of TrainBF.

Essential Reasons for Accuracy Loss with Bfloat16: Besides, as per the
floating-point computation theory, when adding or multiplying numbers with
very different exponents can introduce a significant floating-point error prob-
lem [8,15]. For example, if we add 1.2 ∗ 245 and 3.4 ∗ 2−5 in Float32 will yields
the result of 1.2 ∗ 245, which drops the small one. Such error is even more pro-
nounced when the distribution of these data is completely different and short
fraction of Bfloat16 is used.

More seriously, the floating-point error caused by using low-precision format
in the first few layers of DNN models will propagate to subsequent layers along
with training proceeds, resulting in error amplification problem. The amplified
computation error in the last layer can distort the main numerical information
and greatly affect model accuracy.

Therefore, how to amend the information loss when converting from single-
precision to Bfloat16 format, alleviate the floating-point error in computations,
and avoid the error amplification problem will be the main focus in this paper.

3 Overview of TrainBF

We propose a high-performance DNN training engine using BFloat16 on AI
Accelerators, called TrainBF. Figure 1 outlines its main components. TrainBF
improves the training accuracy of DNN models in BFloat16 format by proposing
three normalization techniques to optimize the data distribution of three kinds
of training data. In addition, TrainBF introduces a lightweight module, adaptive
layer modifier, to apply these normalization techniques with minimal overhead
while ensuring model accuracy. Furthermore, TrainBF parallelizes the execution
of training operators using an efficient parallel strategy on AI accelerators.
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The workflow of TrainBF is divided into offline and online parts. Offline part
starts from selecting the appropriate layers to apply normalization through adap-
tive layer modification (Sect. 5). In each selected layer, the activations is normal-
ized to construct a bits utilization-friendly data distribution (Sect. 4.1). TrainBF
normalizes its weights using the same mean and variance of the normalized
activations (Sect. 4.2). During backward propagation, the training loss is ampli-
fied by a loss scaling factor provided by range-aware loss scaling to construct
scaled gradients (Sect. 4.3). Next, the scaled gradients of weights is descaled and
the weights is updated. In addition, online part analyses the data dependencies
between operators and execute them in parallel with multiple streams under the
management of its runtime component (Sect. 6).

4 Normalization Techniques in TrainBF

In this section, we will introduce three techniques to solve the problems of low
bits utilization and inconsistent data distribution between different training data.

4.1 Central and Range-Maximized Normalization for Activations

As an important training data, activations are involved in all computations in
forward and backward propagation to compute the gradients of previous layer
and the weights. If the bits utilization of activations can be improved and the
data distribution of weights and gradients can be shifted closer to it accord-
ingly, the accuracy of numerical computations can be greatly improved, thereby
amending model accuracy.

Based on our observations and existing work, the data distribution of activa-
tions is random and not centralized. Hence, the decentralized distribution cannot
make full use of the sign bit in BFloat16 format due to unequal numbers of pos-
itive and negative values [1,15]. The most extreme case is when all the data
is positive or negative, the sign bit is meaningless for storage. In addition, the
activations are not evenly distributed across all numerical ranges in BFloat16,
which makes it impossible to make full use of the exponential bits, thus resulting
in very low bits utilization. For example, if all values are distributed from 2k to
2k+1 in an extreme case, then the exponent bits are also meaningless.

Therefore, we propose a central and range-maximized normalization
(CR Norm) for activations, which is used to build a normalized data with zero-
mean distribution and makes its values are evenly distributed in a wider data
range to maximize the number of exponent ranges used by activations. We can
apply CR Norm after activations are generated, or replace the existing batch
normalization layer [13], which is widely applied in almost all DNN models to
ensure that the data is standardized over each mini-batch.

Maximizing the number of exponent ranges used by activations can improve
the utilization of exponent bits, however, the disadvantage of training with such
data is that it will lead to gradient explosion and oversensitive to input problems
due to excessive variance. Therefore, CR Norm designs a learnable parameter



TrainBF: DNN Training Engine Using BFloat16 on AI Accelerators 463

Rmax and includes Rmax to loss function to trade-off between the maximum
variance of normalized data and model accuracy.

The workflow of CR Norm is shown in Algorithm 1. Algorithm 1 takes the
activations over a mini-batch as input. Algorithm 1 includes two predetermined
parameters φ and η to adjust the weight in loss function and the learning rate
of Rmax, respectively. In Algorithm 1, A represents the values of activations
over a mini-batch, μA and σ2 are the mean and variance of A. ε is the minimal
amount (negligible) introduced to prevent division by zero. O is the output of
CR Norm and its variance is controlled by the learnable parameter Rmax. L is
the original loss function. In forward pass, the memorized statistics, including
mean and variance of activations in m mini-batches is calculated (Line 5 − 6).
Then, the normalization of A has two steps: step 1 standardizes the activations A
to a new distribution Â with zero-mean and unit-variance (Line 7); step 2 scales
Â to a new distribution O with zero-mean and a new variance of the learnable
parameter Rmax (Line 8). In backward pass, Rmax is added to loss function with
a predetermined learning rate φ (Line 10). Then, the gradients are calculated
(Line 11) and Rmax is updated with a predetermined learning rate η (Line 12).

Algorithm 1. Normalization for Activation

1: Input: Values of activation over a mini-batch
( A = A1, A2, ..., Am )

2: Input: Parameter to be learned: Rmax. Pre-
determined parameters: φ in loss function
and η in Rmax update

3: Output: Oi ← CR Norm(Ai)
4: Forward Propagation:
5: μA ← 1

m

∑m
i=1 Ai //memorized mean

6: σ2 ← 1
m

∑m
i=1(A

i − μA)2 //memorized
variance

7: Âi ← Ai−μA√
σ2+ε

//step 1: standardization

8: Oi ← Rmax ∗ Âi //step 2: scaling function
9: Backward Propagation:
10: Loss with range-maximized: L = L−φRmax

11: Compute Gradients: ∂�
∂O , ∂O

∂Rmax
, and

∂�
∂Rmax

12: Update Parameter: Rmax := Rmax −
η ∂�

∂Rmax

4.2 Activation-Aware Normalization for Weights

In the process of forward propagation, a large amount of computation occurs
between the weights and activations. Increasing the numerical similarity between
the two training data can alleviate the floating-point loss of numerical computa-
tion. Therefore, we normalize the weights according to the distribution of activa-
tions of the previous layer. Specifically, we normalize the weights with the same
learnable parameter Rmax. We call this normalization technique activation-aware
normalization. The formula is as follows:

Ŵ ← Rmax ∗ W − μW√
σ2

W + ε
, (1)

where μW and σ2
W are the mean and variance of weights W , ε is the minimal

amount introduced to prevent division by zero, Ŵ is the normalized weights.
Afterwards, the normalized weight will replace the original weights and partici-
pate in all forward and backward propagation.
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4.3 Range-Aware Loss Scaling for Gradients

In backward propagation, the gradients of the previous layer and weights are
computed by the gradients, activations, and weights of the current layer. There-
fore, constructing a normalized gradients that has the same distribution as acti-
vations and weights is also another part to improve the numerical accuracy of
computation. Therefore, this paper proposes a range-aware loss scaling and intro-
duce a loss scaling factor S to adjust the distribution of the gradients to match
the distribution of activations and weights.

Figure 2 illustrates the process of range-aware loss scaling. First, the loss
obtained from forward propagation can be scaled by multiplying by the loss
scaling factor S. Then, the backward propagation deduces based on the scaled
gradients and the scaled weight gradients. Weights are then updated by applying
re-scaling to the scaled weight gradients. In addition, the variance of the scaled
gradients is counted and compared with the learnable variance Rmax to adjust
the loss scaling factor S.

Fig. 2. Evaluation accuracy of four training approaches.

Specifically, the workflow of adjusting loss scaling factor S consists of three
steps: ❶ loss scaling factor S starts from a relatively high value (e.g., S ← 224)
because the gradient is generally small, and then the variance of the gradients
is checked over iterations; ❷ If the variance of the gradients is close to Rmax

within a threshold (e.g., 10% difference), the scaling factor will not be adjusted
and training continues; if the variance of the gradients is much larger than Rmax,
the loss scaling factor S will be halved to reduce the data distribution; Otherwise,
the loss scaling factor S will be doubled to build a wider data distribution; ❸
the adjustment process will go throughout the whole training process because
its overhead is almost negligible due to only a few multiplications are added.

5 Adaptive Layer Modifier in TrainBF

In this section, we discuss the opportunity of applying these normalization tech-
niques to few layers with acceptable overhead and sufficient accuracy.

5.1 Sensitivity Study

We use two data formats, ie, TF32 and BFloat16, and apply the normaliza-
tion techniques to different layers to study its affects on model accuracy and
overhead. We run eight models in Mlperf benchmark [19] on one NVIDIA A100
GPU using two data formats and apply normalization techniques to each layer
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separately. We use the exact same initialization values for both two data for-
mats and treat the output of each layer of using TF32 as the ground-truth
to calculate the computational error of using BFloat16. The computational
error εL of each activations AL in layer L between TF32 and BFloat16 can be
expressed as εL =

∑
(Ai

L TF32−Ai
L BF16)2/

∑
(Ai

L TF32)2, where Ai
L TF32

and Ai
L BF16 represent the activations in TF32 and BFloat16, respectively.

Results reveals that applying normalization to each layer always comes with
overhead but not always bring the same benefit to computational error. For
example, applying normalization to layer 7 in ResNet-50 model has a computa-
tional error of 0.926%, which is much better than not using normalization that
has a computational error of 2.754%. While adding normalization to two more
layers (e.g., layer 1 and 15) leads to a similar computational error of 0.927%. Nev-
ertheless, adding more normalization operations incurs larger overhead. In this
same example, the throughput of using normalization on three layers is 74.86% of
that of using normalization on one layer. Hence, blindly applying normalization
to all the layers in DNN models may result in unacceptable overhead.

We further analyze the collected results of throughput and computational
error in all eight models and summarize some interesting observations.

– Observation 1: Using normalization to too many layers largely reduces the
throughput of model training.

– Observation 2: Using normalization for each layer does not have the same
effect on reducing computational error. It strongly depends on where does
the normalization occur in the model.

– Observation 3: Inappropriate use of too many normalization operations may
not be necessary. Applying a small number of normalization operations can
also achieve the optimal throughput while meeting the accuracy requirement
of numerical computation.

– Observation 4: Computational error gradually propagates backwards. There
is no point in correcting error at the very beginning or at the end of the model.

5.2 Adaptive Layer Modifier

Driven by these observations, we introduce a lightweight and adaptive layer
modifier to apply normalization and maximize training throughput. Algorithm 2
depicts its workflow. Layer modifier first avoids applying normalization to the
first f and last l layers because of Observations 1 and 4 (Line 6), where f and l
are predefined values and are typically 5% of the number of layers. Then, layer
modifier collects activations of each layer using TF32/Float32 and BFloat16
formats to calculate the computational error between them (Line 8–12). Layer
modifier chooses the layer with the largest computational error and applies nor-
malization to it (Line 13–15). Next, the computational error of the last layer
between in two formats is tested (Line 16), and new normalization operations
continue to be added until the computational error is less than a threshold (Line
17–18). The algorithm happens only once before training, therefore, its overhead
has a negligible impact on end-to-end training time.
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Algorithm 2. Lightweight and Adaptive Layer Modifier

1: Input: DNN model with N layers ( L1, L2,
... ,LN )

2: Input: A batch of testing dataset B, first lay-
ers f , last layers l

3: Output: A set of layers S that need to be
normalized

4: All layers in DNN model M ← {1, 2, ..., N},
5: An empty set of errors E ← {}, An empty

set of layers S ← {}
6: Remove the first f and last l layers from set

M
7: while true do
8: for i ∈ set M do
9: Obtain activations AF P32

i of layer Li

using data B with TF32 format

10: Obtain activations ABF16
i of layer Li

using data B with BFloat16 format
11: Compute the computational error Ei

between AF P32
i and ABF16

i
12: Keep the computational error of each

layer E ← E + Ei

13: Choose the one with the greatest error in
set E with the index of o

14: Remove o from set M and add o to set S
15: Apply normalization techniques to layer o
16: Compute the final error Final E between

TF32 and BFloat16 format using data B
17: if Final E < threshold then
18: Return a set of layers S

6 Efficient Parallel Strategy in TrainBF

TrainBF is also a work aiming at efficiently training DNN models on AI accel-
erators that have high parallelism and large memory. We propose an efficient
parallel strategy to train DNN models using multiple execution streams. In addi-
tion, this strategy maintains the same batch size as single precision training to
avoid the non-convergence and gradient explosion problem.

Fig. 3. Evaluation accuracy of four training approaches.

We propose an efficient parallel strategy to maximize memory usage, it is
divided into two parts: the first one is an operator-to-stream mapping algorithm,
where the input is the compiled computational graph of the model (such as
TorchScript graph in PyTorch), and the output is the mapping between operators
and execution streams; The second one is a runtime algorithm that collects the
execution time of each operator and controls memory allocation of each stream.

Figure 3 describes the execution flow of the operator-to-stream mapping algo-
rithm. At step ❶, we first eliminate the unnecessary edges with the minimum
equivalent graph to avoid repeated and progressive data dependencies. For exam-
ple, there are data dependencies from V1 to V2 and V2 to V5, so the data depen-
dencies from V1 to V5 are repeated and can be removed. In addition, we collect
the execution time of each operator in the previous iteration and use them as
the weight of edges. Specifically, the weight of each edge is equal to the execu-
tion time of the outgoing node, because the incoming node must wait for all the
incoming edges to complete before starting. At step ❷, the weight of each edge is
accumulated with the weights of all the edges in the max-flow augmentation path
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to obtain the weight accumulation graph, which represents the minimum exe-
cution time for fully parallel execution. At steps ❸ and ❹, a weighted bipartite
graph is constructed based on the weight accumulation graph, and its maximum
matching is calculated by a typical graph algorithm, namely Kuhn-Munkres
algorithm [33]. Then the grouping strategy minimizes the sum of weighted data
dependence between groups, thereby minimizing the sum of the waiting time of
each group. At step ❺, synchronization points are added to each edge between
each group to ensure the correctness of the execution order, and each group is
assigned to a different execution stream.

After getting the operator-to-stream mapping, we start all execution streams
simultaneously at the beginning of training to maximize parallelism. However,
each operation performed in a different execution stream consumes a certain
amount of independent memory resources, and executing multiple memory-
consuming operators in different streams simultaneously could lead to Out-of-
Memory(OOM) issue. Therefore, we enable a memory table to check whether the
memory overflows before each operator is launched. In addition, the execution
time of each operator is recorded and passed to the operator-to-stream mapping
algorithm to update the weight of the computational graph.

7 Evaluation

7.1 Experimental Setup

Platforms and Formats: We evaluate TrainBF on three architectures, as
shown in Table 1. Two of them are GPU-based platforms equipped with NVIDIA
A100 GPU (A100 in short) and AMD MI100 GPU (MI100 in short), respectively.
The third is an AI accelerator-based platform, SambaNova SN10-8 (SambaNova
in short). A100 and MI100 GPUs support Float32, Float16, and BFloat16 for-
mats. A100 GPU also supports TF32 [3]. SambaNova supports Float32 and
BFloat16 formats.

Table 1. Evaluated hardware

NVIDIA GPU AMD GPU AI accelerator

Core Tesla A100 40 GB
56 SMs @1328 MHz

AMD Instinct MI100
120 Compute Units
@1502 MHz

SambaNova SN10-8
640 PCUs
640 PMUs

Caches L2: 40 MB L2: 8 MB On-chip: 300MB

Memory 40 GB HBM2 32 GB HBM2 12TB DDR4

Bandwidth 1555 GB/s 1200 GB/s 150TB/s

Table 2. DNN models, datasets, and con-
figurations

DNN Model Field Dataset Epoch Throughput Unit

Resnet50 Image Recognition ILSVRC2012 90 Images per second

VGG19 Image Recognition ILSVRC2012 100 Images per second

U-Net Image Segmentation Brain MRI Kaggle3m 30 Images per second

Social-LSTM Trajectory Prediction Trajnet++ 100 Sequences per second

GCN Graph Computation Cora Dataset 200 Items per second

UNO HPC model CCLE Dataset 50 Items per second

Dataset and Models: We use six DNN models with a public dataset that
cover a wide range of CNN, RNN, GNN, and scientific models. The details of
the models are summarized in Table 2. Epoch represents the number of epochs
trained before obtaining the final model accuracy, Throughput Unit is the unit
of throughput of each model during training. We use different batch sizes on
different platforms to fill all available memory to maximize memory utilization.
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Implementation and Baselines: This work is implemented based on PyTorch
1.11.0. We implement the three customized normalization techniques as three
new modules in PyTorch. The statistics of modification of TrainBF given by git
diff are 24 files changed, 1535 insertions (+), and 349 deletions (−).

We compare TrainBF with three solutions:
❶ A single-precision solution: pure Float32 or TF-32 training.
❷ A mixed-precision solution: Automatic Mixed Precision (AMP) with
Float16 [23].
❸ A half-precision solution: pure BFloat16 training.

For a fair comparison, we compare TrainBF with AMP using Float16 on
A100 since it provides the same theoretical performance for both Float16 and
BFloat16. For MI100 and SambaNova, neither platform supports the same per-
formance for Float16 and BFloat16, thus we compare the throughput and accu-
racy of TrainBF with the throughput of Float32 training and the accuracy of
BFloat16 training, respectively. In addition, all six models are tested on A100
and MI100. For SambaNova, only two models (U-Net and UNO) are tested,
because the support for LSTM and some kernels will not be released until Q4
2023.

7.2 Throughput and Accuracy

Figure 4 shows throughput and accuracy on all platforms. We run all models on
A100 and MI100 and two models on SambaNova due to its limited support.

Figure 4 shows that TrainBF performs much better than the state-of-the-art
training approaches. Specifically, for A100, TrainBF introduces 1.74×, 1.52×,
1.61×, 1.31×, 1.46×, 1.08× throughput improvement on six DNN models respec-
tively, compared to TF32 training, with only 0.48% accuracy degradation on
average, which is far below the accuracy loss of 1.5% that users can tolerate
for training [25]. TrainBF also introduces 1.31×, 1.15×, 1.09×, 1.13×, 1.37×,
1.67× throughput improvement, compared to AMP with Float16, with almost
the same accuracy. TrainBF improves the final accuracy by 15.7% on average
and up to 45.8% on UNO model, compared to BFloat16 training.

Fig. 4. Throughput and accuracy using four training methods on six models with three
different hardware platforms.

For MI100, TrainBF introduces 1.63×, 1.40×, 1.83×, 1.42×, 1.53×, 1.04×
throughput improvement on six DNN models respectively, compared to Float32



TrainBF: DNN Training Engine Using BFloat16 on AI Accelerators 469

training, with only 0.52% accuracy loss on average. TrainBF improves the finial
accuracy by 13.9% on average, compared to BFloat16 training.

For SambaNova platform, TrainBF introduces 1.15× and 1.18× throughput
improvement on U-Net, UNO models, compared to Float32 training, with the
accuracy loss of 0.32% on average. TrainBF improves the final accuracy by 3.59%
on average, compared to BFloat16 training.

We have the following three observations: (1) TrainBF brings larger benefits
to CNN models, because matrix multiplication as the main computation in CNN
models can take full advantage of the high performance of BFloat16 format. (2)
For RNN and GNN models, MI100 has higher speedup than A100, because these
models are memory intensive. The amount of data accessed is greatly reduced
by using BFloat16, which eliminates the bottleneck of lower memory bandwidth
on MI100 compared to A100. (3) For SambaNova, TrainBF achieves almost the
same throughput as BFloat16 training while maintaining the Float32 accuracy.

7.3 Breakdown for Accuracy Improvement

To quantify the contribution of three normalization techniques to accu-
racy improvement, i.e., (a) central and range-maximized normalization, (b)
activation-aware normalization, and (c) range-aware loss scaling, we apply the
three techniques one after another. The results in Fig. 5 are normalized by using
the accuracy of applying all of the three techniques.

We have three observations. (1) The central and range-maximized normaliza-
tion is very effective and accounts for 48.3% on average in improving model accu-
racy across all models, because this normalization is the cornerstone of reduc-
ing computational error, thus enabling more opportunities for all subsequent
techniques. (2) The activation-aware normalization is very effective (52.7% on
average) for the RNN model (e.g., social-LSTM) because a large number of
small matrix multiplication are computed in RNN training, and the normalized
weight could prevent the error of small matrix from propagating to the follow-
ing computations, thereby avoiding greater accuracy loss. (3) The range-aware
loss scaling contributes 33.1% on average to GNN and scientific models (e.g.,
GCN and UNO), because the loss in these models varies greatly, making the
distribution range of gradients very unstable without scaling.

Fig. 5. Quantifying the contributions of three normalization to accuracy improvement.
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Fig. 6. Number of exponent ranges used and bits utilization on three platforms.

7.4 Effectiveness of Three Modules in TrainBF

Quantifying Bits Utilization. We use number of exponent ranges used to
quantify the bits utilization. Results are shown in Fig. 6. With TrainBF, the
average number of exponent ranges used on all models is improved from 41.4
to 57.6 on A100, 40.7 to 51.3 on MI100, and 49.7 to 57.6 on SambaNova. With
TrainBF, the average bits utilization on all models is 92.7% on A100, 88.4% on
MI100, and 91.5% on SambaNova. The bits utilization of BFloat16 in TrainBF
is very close to the bits utilization of TF32/Float32 in single precision training
and even exceeds by 1.7% and 3.5% on average on A100 and MI100 for GCN
and UNO models. Based on the improvement of bits utilization, there is a large
increase in computational accuracy, further improving model accuracy.

Quantifying Learnable Parameter Rmax. TrainBF uses the learnable param-
eter Rmax to controls the variance of normalized output. In our experiments,
Rmax is initialized to 1 and reaches 2.5 in the first 25% of the training process
for most models, which implies that the primary (95%) data range of activations
and weights are 1.45 times larger than the initial data range. Among the eight
DNN models we evaluate, Rmax is stable for all three CNN models and three
scientific models in the last 75% of the training process, while Rmax changes
more drastically in the other two models, namely social-LSTM and GCN. The
main reason is that the data distribution of gradients on social-LSTM and GCN
differ greatly over epochs in model training, so Rmax is constantly tuned to find
the optimal value that matches the distribution of activations.

Quantifying Efficient Parallel Strategy. TrainBF leverages the memory
space saved by half-precision format to parallelize the execution of training oper-
ators and increase memory usage. Compared with TrainBF without an efficient
parallel strategy, TrainBF brings 1.13× and 1.29× performance improvement on
A100 and MI100, because the execution strategy of closed-source SambaNova
cannot be modified. Compared with the naive implementation of BFloat16 train-
ing, our efficient parallel strategy recognizes independent operators and executes
them simultaneously, and results show that the memory usage is 65.32% and
74.17% higher than naive implementation on A100 and MI100, respectively.
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7.5 Overhead Analysis

We explore the overhead of TrainBF by comparing the throughput of
TrainBF without the efficient parallel strategy and that of BFloat16 training
in Fig. 4. The throughput of BFloat16 training represents the optimal train-
ing performance regardless of model accuracy in single-stream execution. After
applying these normalization techniques to selected layers, the calculation of
throughput will include all of the runtime overhead. Compared with the through-
put of BFloat16 training, TrainBF introduces an average throughput degrada-
tion of 3.38%, 7.91%, and 9.67% on A100, MI100, and SambaNova, respectively.
Obviously, A100 and MI100 have lower overhead, because the normalization
operations can be merged by fusion optimization in GPU implementation.

8 Related Work

Reduced Precision Training: Using reduced precision for DNN training has
been an active topic of research [6,9–12,28,34]. Seide et al. [24] were able to
reduce the precision of gradients to one bit using Stochastic Gradient Descent.
However, these works mainly focus on a small number of models and lack gen-
erality to apply to a wider range of DNN models.

Mixed Precision Training: Mixed precision training demonstrates a broad
variety of DNN applications involving deep networks and larger datasets with
minimal loss compared to baseline FP32 results. Micikevicius et al. [21] showed
that Float16/Float32 mixed precision with autocasting and loss scaling can
achieve near-SOTA accuracy. The only concern is about performance improve-
ment by using Float16. TrainBF leverages BFloat16 format to avoid such over-
head and maintain SOTA accuracy.

Normalization: Normalization techniques are essential for improving the gener-
alization of DNN models [29–31]. Dmitry et al. [26] constructed instance normal-
ization to prevent instance-specific mean and covariance shifts. Yuxin et al. [27]
proposed group normalization to normalize features within each group. None of
these are designed to eliminate computational error, which is the main goal of
this paper.

9 Conclusion

BFloat16, as a typical half-precision format, has been neglected in recent AI
accelerators. This paper designs a new training approach, which includes three
normalization techniques, an adaptive layer modifier, and an efficient parallel
strategy to avoid accuracy loss and improve hardware utilization. Results show
that our approach yields better throughput than the state-of-the-art training
approaches. We expect more data formats can be inspired by our approach.
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Abstract. Center-based clustering is a pivotal primitive for unsuper-
vised learning and data analysis. A popular variant is the k-means prob-
lem, which, given a set P of points from a metric space and a parameter
k < |P |, requires finding a subset S ⊂ P of k points, dubbed centers,
which minimizes the sum of all squared distances of points in P from
their closest center. A more general formulation, introduced to deal with
noisy datasets, features a further parameter z and allows up to z points of
P (outliers) to be disregarded when computing the aforementioned sum.
We present a distributed coreset-based 3-round approximation algorithm
for k-means with z outliers for general metric spaces, using MapReduce
as a computational model. Our distributed algorithm requires sublinear
local memory per reducer, and yields a solution whose approximation
ratio is an additive term O(γ) away from the one achievable by the
best known polynomial-time sequential (possibly bicriteria) approxima-
tion algorithm, where γ can be made arbitrarily small. An important
feature of our algorithm is that it obliviously adapts to the intrinsic
complexity of the dataset, captured by its doubling dimension D. To the
best of our knowledge, no previous distributed approaches were able to
attain similar quality-performance tradeoffs for general metrics.

Keywords: Clustering · k-means · Outliers · MapReduce · Coreset

1 Introduction

Clustering is a fundamental primitive for data analysis and unsupervised learn-
ing, with applications to such diverse domains as pattern recognition, informa-
tion retrieval, bioinformatics, social networks, and many more [19]. Among the
many approaches to clustering, a prominent role is played by center-based clus-
tering, which aims at partitioning a set of data items into k groups, where k is an
input parameter, according to a notion of similarity modeled through a metric
distance over the data. Different variants of center-based clustering aim at min-
imizing different objective functions. The k-means problem is possibly the most
popular variant of center-based clustering. Given a set P of points in a general
metric space and a positive integer k < |P |, the discrete version of the problem
requires to determine a subset S ⊂ P of k points, called centers, so that the sum
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
J. Cano et al. (Eds.): Euro-Par 2023, LNCS 14100, pp. 474–488, 2023.
https://doi.org/10.1007/978-3-031-39698-4_32
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of all squared distances of the points of P from their closest center is minimized.
(In Euclidean spaces, centers may be chosen also outside the set P , giving rise
to a wider spectrum of feasible solutions.)

Since the objective function of k-means involves squares of distances, the
optimal solution is at risk of being impacted by few “distant” points, called
outliers, which may severely bias the optimal center selection towards reducing
such distances. In fact, the presence of outliers is inevitable in large datasets,
due to the presence of points which are artifacts of data collection, either repre-
senting noisy measurements or simply erroneous information. To cope with this
limitation, k-means admits a heavily studied robust formulation that takes into
account outliers [8]: when computing the objective function for a set of k centers,
the z largest squared distances from the centers are not included in the sum,
where z < |P | is an additional input parameter representing a tolerable level of
noise. This formulation of the problem is known as k-means with z outliers.

There is an ample and well-established literature on sequential strategies
for different instantiations of center-based clustering, with and without outliers.
However, with the advent of big data, the high volumes that need to be pro-
cessed often rule out the use of unscalable, sequential strategies. Therefore, it is
of paramount importance to devise efficient clustering strategies tailored to typ-
ical distributed computational frameworks for big data processing (e.g., MapRe-
duce [12]). The primary objective of this paper is to devise scalable, distributed
strategies for discrete k-means with z outliers for general metric spaces.

1.1 Related Work

The body of literature on solving k-means without outliers sequentially is huge.
For brevity, we report only the results relative to the discrete case on general
metrics, which is our target scenario. The best sequential algorithms to date for
this scenario are the deterministic (6.357 + ε)-approximation algorithm of [1],
or the randomized PTAS of [10] for spaces of constant doubling dimension. A
simpler and faster randomized option is the k-means++ algorithm of [2], whose
approximation ratio, which is O(log k) in expectation, can be lowered to a con-
stant by running the algorithm for ρk centers, with ρ = O(1) [27]. For the
distributed case, a 3-round MapReduce algorithm for k-means is presented in
[23]. For arbitrarily small γ > 0, the algorithm attains an approximation ratio
which is a mere O (γ) term away from the best sequential approximation attain-
able for the weighted variant of the problem, where the weight wp of each point
p ∈ P multiplies the square-distance contribution of p to the objective function.

A considerable number of sequential algorithms have also been proposed
for k-means with z outliers. Here, we report only on the works most relevant
to our framework, and refer to [13] for a more detailed overview of the liter-
ature. In [16], a randomized local search strategy is described, which runs in
time O

(|P |z + (1/ε)k2(k + z)2 log(|P |Δ)
)
, yielding a 274-approximate bicrite-

ria solution with k centers and O((1/ε)kz log(|P |Δ)) outliers, where Δ is the
ratio between the maximum and minimum pairwise distances. For spaces of
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doubling dimension D, [14] devises a different (deterministic) local search strat-
egy yielding a bicriteria solution with (1 + ε)k centers and z outliers, achieving
an approximation 1 + O (ε), in time O

(
(k/ε)|P |(D/ε)Θ(D/ε)

log(|P |Δ)
)
. Finally,

the LP-based approach of [21] yields the first non-bicriteria solution featuring
an expected 53.002 · (1 + ε)-approximation in time |P |O(1/ε3).

The literature on distributed approaches to k-means with outliers is more
scant. The simple, sequential coreset-based strategy of [26] can be easily made
into a 2-round MapReduce algorithm yielding a solution featuring a nonconstant
O (log(k + z)) approximation and local memory

√|P |(k + z). In [15], an LP-
based algorithm is developed for the coordinator model, yielding a O (1 + 1/ε)-
approximate bicriteria solution, with an excess factor (1+ε) either in the number
of outliers or in the number of centers, using Õ(Lk + z) communication words,
where L is the number of available workers. In the coordinator model, better
bounds have been obtained for the special case of Euclidean spaces in [9,22].

1.2 Our Contribution

We present a scalable coreset-based distributed MapReduce algorithm for k-
means with z outliers, targeting the solution of very large instances from general
metrics. The algorithm first computes, distributedly, a coreset of suitably selected
input points which act as representatives of the whole input, where each coreset
point is weighted in accordance to the number of input points it represents.
Then, the final solution is computed by running on the coreset an α-approximate
sequential algorithm for the weighted variant of the problem, defined similarly
to the case without outliers. Our approach is flexible, in the sense that the final
solution can also be extracted through a sequential bicriteria algorithm returning
a larger number ρk of centers and/or excluding a larger number τz of outliers.
Our distributed algorithm features an approximation ratio of α + O (γ), where
γ is a user-provided accuracy parameter which can be made arbitrarily small.
The algorithm requires 3 rounds and a local memory at each worker of size
O

(√|P |(ρk + τz)(c/γ)2D log2 |P |
)
, where c is a constant and D is the doubling

dimension of the input. For reasonable configurations of the parameters and,
in particular, low doubling dimension, the local space is substantially smaller
than the input size. It is important to remark that the algorithm is oblivious to
D, in the sense that while the actual value of this parameter (which is hard to
compute) influences the analysis, it is not needed for the algorithm to run. As a
proof of concept, we describe how the sequential bicriteria algorithms by [16] and
[14] can be extended to handle weighted instances, so that, when used within our
MapReduce algorithm, allow us to get comparable distributed approximations.

We remark that the main contributions of our algorithm are: (i) its simplicity,
since our coreset construction does not require multiple invocations of complex,
time-consuming sequential algorithms for k-means with outliers (as is the case
in [15]); and (ii) its versatility, since it is able to exploit any sequential algorithm
for the weighted case (bicriteria or not) which can be run on a small coreset,
with a minimal extra loss in accuracy. In fact, to the best of our knowledge, ours
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Table 1. Notations used throughout the paper: P is a set of n points, S is a subset of
P , and 0 < z < |P | is an integer parameter.

cost(P, S) =
∑

p∈P d(p, S)2

OPTk(P ) = minS⊂P,|S|=k cost(P, S)

outz(P, S) = z points of P farthest from S

OPTk,z(P ) = minS⊂P,|S|=k cost(P\outz(P, S), S)

cost(P,w, S) =
∑

p∈P wpd(p, S)2

OPTk(P,w) = minS⊂P,|S|=k cost(P,w, S)

OPTk,z(P,w) = minS⊂P,|S|=k cost(P, ŵ, S), where ŵ is obtained from w
by subtracting z units from points of P farthest from S

is the first distributed algorithm that can achieve an approximation arbitrarily
close to the best one achievable by a (possibly bicriteria) polynomial sequential
algorithm. Finally, we observe that our MapReduce algorithm can solve instances
of the problem without outliers with similar approximation guarantees, and its
memory requirements improve substantially upon those of [23].

Organization of the Paper. Section 2 contains the main definitions and some
preliminary concepts. Section 3 describes a simplified coreset construction (Sub-
sect. 3.1), the full algorithm (Subsect. 3.2), and a sketch of a more space-efficient
coreset construction, which yields our main result (Subsect. 3.3). Finally, Sect. 4
discusses the extension of the algorithms in [16] and [14] to handle weighted
instances. Section 5 provides some final remarks.

2 Preliminaries

Let P be a set of points from a metric space with distance function d(·, ·). For
any point p ∈ P and subset S ⊆ P , define the distance between p and S as
d(p, S) = minq∈S d(p, q). Also, we let pS denote a point of S closest to p, that
is, a point such that d(p, pS) = d(p, S), with ties broken arbitrarily. The discrete
k-means problem requires that, given P and an integer k < |P |, a set S ⊂ P of k
centers be determined, minimizing the cost function cost(P, S) =

∑
p∈P d(p, S)2.

We focus on a robust version of discrete k-means, known in the literature as k-
means with z outliers, where, given an additional integer parameter z < |P |, we
seek a set S ⊂ P of k centers minimizing the cost function cost(P\outz(P, S), S),
where outz(P, S) denotes the set of z points of P farthest from S, with ties broken
arbitrarily. We let OPTk(P ) (resp., OPTk,z(P )) denote the cost of the optimal
solution of k-means (resp., k-means with z outliers) on P . The following two facts
state technical properties that will be needed in the analysis. (Proofs, omitted
for brevity, can be found in the full version of this extended abstract [11].)

Fact 1. For every k, z > 0 we have OPTk+z(P ) ≤ OPTk,z(P ).
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Fact 2. For any p, q, t ∈ P , S ⊆ P , and c > 0, we have:

d(p, S) ≤ d(p, q) + d(q, S)
d(p, t)2 ≤ (1 + c)d(p, q)2 + (1 + 1/c)d(q, t)2.

In the weighted variant of k-means, each point p ∈ P carries a positive inte-
ger weight wp. Letting w : P → Z

+ denote the weight function, the problem
requires to determine a set S ⊂ P of k centers minimizing the cost function
cost(P,w, S) =

∑
p∈P wp · d(p, S)2. Likewise, the weighted variant of k-means

with z outliers requires to determine S ⊂ P which minimizes the cost function
cost(P, ŵ, S), where ŵ is obtained from w by decrementing the weights asso-
ciated with the points of P farthest from S, progressively until exactly z units
of weights overall are subtracted (again, with ties broken arbitrarily). We let
OPTk(P,w) and OPTk,z(P,w) denote the cost of the optimal solutions of the
two weighted variants above, respectively. Table 1 summarizes the main nota-
tions used in the paper.

Doubling Dimension. The algorithms presented in this paper are designed
for general metric spaces, and their performance is analyzed in terms of the
dimensionality of the dataset P , as captured by the well-established notion of
doubling dimension [18], extensively used in the analysis of clustering [6,10] and
other primitives [5,7], and defined as follows. For any p ∈ P and r > 0, let the
ball of radius r centered at p be the set of points of P at distance at most r
from p. The doubling dimension of P is the smallest value D such that for every
p ∈ P and r > 0, the ball of radius r centered at p is contained in the union of
at most 2D balls of radius r/2, centered at suitable points of P . The doubling
dimension can be regarded as a generalization of the Euclidean dimensionality
to general spaces. In fact, it is easy to see that any P ⊂ R

dim under Euclidean
distance has doubling dimension O (dim).

Model of Computation. We present and analyze our algorithms using the
MapReduce model of computation [12,24], which is one of the reference models
for the distributed processing of large datasets, and has been effectively used
for clustering problems (e.g., see [3,6,25]). A MapReduce algorithm specifies a
sequence of rounds, where in each round, a multiset X of key-value pairs is first
transformed into a new multiset X ′ of pairs by applying a given map function
in parallel to each individual pair, and then into a final multiset Y of pairs by
applying a given reduce function (referred to as reducer) in parallel to each subset
of pairs of X ′ having the same key. Key performance indicators are the number
of rounds and the maximum local memory required by individual executions of
the map and reduce functions. Efficient algorithms typically target few (possibly,
constant) rounds and substantially sublinear local memory. We expect that our
algorithms can be easily ported to the popular Massively Parallel Computation
(MPC) model [4].



Distributed k-Means with Outliers in General Metrics 479

3 MapReduce Algorithm for k-Means with z Outliers

In this section, we present a MapReduce algorithm for k-means with z outliers
running in O (1) rounds with sublinear local memory. As typical of many efficient
algorithms for clustering and related problems, our algorithm uses the following
coreset-based approach. First, a suitably small weighted coreset T is extracted
from the input P , such that each point p ∈ P has a “close” proxy π(p) ∈ T ,
and the weight wq of each q ∈ T is the number of points of P for which q is
proxy. Then, the final solution is obtained by running on T the best (possibly
slow) sequential approximation algorithm for weighted k-means with z outliers.
Essential to the success of this strategy is that T can be computed efficiently
in a distributed fashion, its size is much smaller than |P |, and it represents P
well, in the sense that: (i) the cost of any solution with respect to P can be
approximated well in T ; and (ii) T contains a good solution to P .

In Subsect. 3.1 we describe a coreset construction, building upon the one
presented in [17,23] for the case without outliers, but with crucial modifications
and a new analysis needed to handle the more general cost function, and to allow
the use of bicriteria approximation algorithms on the coreset. In Subsect. 3.2
we present and analyze the final algorithm, while in Subsect. 3.3 we outline
how a refined coreset construction can yield substantially lower local memory
requirements.

3.1 Flexible Coreset Construction

We first formally define two properties that capture the quality of the coreset
computed by our algorithm. Let T be a subset of P weighted according to a
proxy function π : P → T , where the weight of each q ∈ T is wq = |{p ∈ P :
π(p) = q}|.
Definition 1. For γ ∈ (0, 1), (T,w) is a γ-approximate coreset for P with
respect to k and z if for every S,Z ⊂ P , with |S| ≤ k and |Z| ≤ z, we have:

|cost(P\Z, S) − cost(T, ŵ, S)| ≤ γ · cost(P\Z, S),

where ŵ is such that for each q ∈ T , ŵq = wq − |{p ∈ Z : π(p) = q}|.
Definition 2. For γ ∈ (0, 1), (T,w) is a γ-centroid set for P with respect to k
and z if there exists a set X ⊆ T of at most k points such that

cost(P\outz(P,X),X) ≤ (1 + γ) · OPTk,z(P ).

In other words, a γ-approximate coreset can faithfully estimate (within relative
error γ) the cost of any solution with respect to the entire input dataset P ,
while a γ-centroid set is guaranteed to contain one good solution for P . The
following technical lemma states a sufficient condition for a weighted set to be
an approximate coreset.
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Lemma 1. Let (T,w) be such that
∑

p∈P d(p, π(p))2 ≤ δ · OPTk,z(P ). Then,
(T,w) is a γ-approximate coreset for P with respect to k and z, with γ = δ+2

√
δ.

Proof. Consider two arbitrary subsets S,Z ⊂ P with |S| = k and |Z| = z, and
let ŵ be obtained from w by subtracting the contributions of the elements in Z
from the weights of their proxies. We have:

|cost(P\Z, S) − cost(T, ŵ, S)| = |
∑

p∈P\Z

d(p, S)2 −
∑

q∈T

ŵqd(q, S)2|

≤
∑

p∈P\Z

∣
∣d(p, S)2 − d(π(p), S)2

∣
∣

≤
∑

p∈P\Z

(d(p, π(p)) + 2d(p, S))d(p, π(p))

(since, by Fact 2,−d(p, π(p) ≤ d(p, S) − d(π(p), S) ≤ d(p, π(p))

=
∑

p∈P\Z

d(p, π(p))2 + 2
∑

p∈P\Z

d(p, S) · d(p, π(p)).

By the hypothesis, we have that
∑

p∈P d(p, π(p))2 ≤ δ · OPTk,z(P ), and since
OPTk,z(P ) ≤ cost(P\Z, S), the first sum is upper bounded by δ · cost(P\Z, S).
Let us now concentrate on the second summation. It is easy to see that for any
a, b, c > 0, we have that 2ab ≤ ca2 + (1/c)b2. Therefore,

2
∑

p∈P\Z

d(p, S) · d(p, π(p)) ≤
√

δ
∑

p∈P\Z

d(p, S)2 +
(
1/

√
δ
) ∑

p∈P\Z

d(p, π(p))2

≤ 2
√

δ · cost(P\Z, S).

The lemma follows since γ = δ + 2
√

δ. �	
The first ingredient of our coreset construction is a primitive, called
CoverWithBalls, which, given any set X ⊂ P , a precision parameter δ, and
a distance threshold R, builds a weighted set Y ⊂ P whose size is not much
larger than X, such that for each p ∈ P , d(p, Y ) ≤ δmax{R, d(q,X)}. Specif-
ically, the primitive identifies, for each p ∈ P , a proxy π(p) ∈ Y such that
d(p, π(p)) ≤ δmax{R, d(p,X)}. For every q ∈ Y , the returned weight wq

is set equal to the number of points of P for which q is proxy. Primitive
CoverWithBalls has been originally introduced in [23] and is based on a sim-
ple greedy procedure. For completeness, we report the pseudocode below, as
Algorithm 1. We wish to remark that the proxy function π is not explicitly
represented and is reflected only in the vector w. In our coreset construction,
CoverWithBalls will be invoked multiple times to compute coresets of increas-
ingly higher quality.

The second ingredient of our distributed coreset construction is some sequen-
tial algorithm, referred to as SeqkMeans in the following, which, given in input a
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Algorithm 1: CoverWithBalls(P,X, δ,R)
1 Y ← ∅;
2 while P �= ∅ do
3 q ←− arbitrarily selected point in P ;
4 Y ←− Y ∪ {q};wq ←− 1;
5 foreach p ∈ P do
6 if d(p, q) ≤ δ max{R, d(p, X)} then
7 remove p from P ;
8 wq ←− wq + 1; {implicitly, q becomes the proxy π(p) of p}
9 end

10 end
11 end
12 return (Y,w)

dataset Q and an integer k, computes a β-approximate solution to the standard
k-means problem without outliers with respect to Q and k.

We are ready to present a 2-round MapReduce algorithm, dubbed MRcoreset,
that, on input a dataset P , the values k and z, and a precision parameter γ,
combines the two ingredients presented above to produce a weighted coreset
which is both an O(γ)-approximate coreset and an O(γ)-centroid set with respect
to k and z. The computation performed by MRcoreset(P, k, z, γ) in each round
is described below.

First Round. The dataset P is evenly partitioned into L equally sized sub-
sets, P1, P2, . . . , PL, through a suitable map function. Then, a reducer function
comprising the following steps is run, in parallel, on each Pi, with 1 ≤ i ≤ L:

1. SeqkMeans is invoked with input (Pi, k
′), where k′ is a suitable function of k

and z that will be fixed later in the analysis, returning a solution Si ⊂ Pi.
2. Let

Ri =
√
cost(Pi, Si)/|Pi|. The primitive CoverWithBalls(Pi, Si, γ/

√
2β,Ri)

is invoked, returning a weighted set of points (Ci,wCi).

Second Round. The same partition of P into P1, P2, . . . , PL is used. A suit-
able map function is applied so that each reducer receives, as input, a dis-
tinct Pi and the triplets (|Pj |, Rj , Cj) for all 1 ≤ j ≤ L from Round 1
(the weights wCj are ignored). Then, for 1 ≤ i ≤ L, in parallel, the reducer

in charge of Pi sets R =
√∑L

j=1 |Pj | · R2
j/|P |, C = ∪L

j=1Cj , and invokes
CoverWithBalls(Pi, C, γ/

√
2β,R). The invocation returns the weighted set

(Ti,wTi).
The final coreset returned by the algorithm is (T,wT ), where T = ∪L

i=1Ti and
wT is the weight function such that wTi is the projection of wT on Pi, for
1 ≤ i ≤ L.

We now analyze the main properties of the weighted coreset returned
by MRcoreset, which will be exploited in the next subsection to derive the
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performance-accuracy tradeoffs featured by our distributed solution to k-means
with z outliers. Recall that we assumed that SeqkMeans is instantiated with
an approximation algorithm that, when invoked on input (Pi, k

′), returns a set
Si ⊂ Pi of k′ centers such that cost(Pi, Si) ≤ β ·OPTk′(Pi), for some β ≥ 1. Let
D denote the doubling dimension of P . The following lemma is a consequence
of the analysis in [23] for the case without outliers, and its proof is a simple
composition of the proofs of Lemmas 3.6, 3.11, and 3.12 in that paper.

Lemma 2. Let (C,wC) and (T,wT ) be the weighted coresets computed by
MRcoreset(P, k, z, γ), and let πC , πT be the corresponding proxy functions. We
have: ∑

p∈P

d(p, πX(p))2 ≤ 4γ2 · OPTk′(P ), (withX = C, T )

and

|C| = O
(
|L| · k′ · (8

√
2β/γ)D · log |P |

)
,

|T | = O
(
|L|2 · k′ · (8

√
2β/γ)2D · log2 |P |

)
.

As noted in the introduction, while the doubling dimension D appears in the
above bounds, the algorithm does not require the knowledge of this value, which
would be hard to compute. The next theorem establishes the main result of this
section regarding the quality of the coreset (T,wT ) with respect to the k-means
problem with z outliers.

Theorem 1. Let γ be such that 0 < γ ≤ √
3/8 − 1/2. By setting k′ = k + z in

the first round, MRcoreset(P, k, z, γ) returns a weighted coreset (T,wT ) which
is a (4γ +4γ2)-approximate coreset and a 27γ-centroid set for P with respect to
k and z.

Proof. Define σ = 4γ + 4γ2 and, by the hypothesis on γ, note that σ ≤ 1/2.
The fact that (T,wT ) is a σ-approximate coreset for P with respect to k and
z, follows directly from Fact 1, Lemma 1 (setting δ = 4γ2), and Lemma 2. We
are left to show that (T,wT ) is a 27γ-centroid set for P with respect to k and
z. Let S∗ ⊂ P be the optimal set of k centers and let Z∗ = outz(P, S∗). Hence,
cost(P\Z∗, S∗) = OPTk,z(P ). Define X = {pT : p ∈ S∗} ⊂ T . We show that
X is a good solution for the k-means problem with z outliers for P . Clearly,
cost(P\outz(P,X),X) ≤ cost(P\Z∗,X), hence it is sufficient to upper bound
the latter term. To this purpose, consider the weighted set (C,wC) computed
at the end of Round 1, and let πC be the proxy function defining the weights
wC . Arguing as before, we can conclude that (C,wC) is also a σ-approximate
coreset for P with respect to k and z. Therefore, since σ ≤ 1/2,

cost(P\Z∗,X) ≤ 1
1 − σ

cost(C, ŵC ,X) ≤ (1 + 2σ)cost(C, ŵC ,X),



Distributed k-Means with Outliers in General Metrics 483

where ŵC is obtained from wC by subtracting the contributions of the elements
in Z∗ from the weights of their proxies. Then, we have:

cost(C, ŵC ,X) =
∑

q∈C

ŵC
q d(q,X)2

≤ (1 + γ)
∑

q∈C

ŵC
q d(q, qS∗

)2 + (1 + (1/γ))
∑

q∈C

ŵC
q d(qS∗

,X)2

(by Fact 2)

≤ (1 + γ)(1 + σ)OPTk,z(P ) + (1 + (1/γ))
∑

q∈C

ŵC
q d(qS∗

,X)2

(since (C,wT ) is a σ-approximate coreset).

We now concentrate on the term
∑

q∈C ŵC
q d(qS∗

,X)2. First observe that,
since X ⊂ T contains the point in T closest to qS∗

, we have d(qS∗
,X) = d(qS∗

, T )
and CoverWithBalls guarantees that d(qS∗

, T ) ≤ (γ/
√
2β)max{R, d(qS∗

, C)},
where R is the parameter used in CoverWithBalls. Also, for q ∈ C, d(qS∗

, C) ≤
d(qS∗

, q). Now,
∑

q∈C

ŵC
q d(qS∗

,X)2 ≤ (γ2/(2β))
∑

q∈C

ŵC
q (R2 + d(q, S∗)2)

≤ (γ2/(2β))

⎛

⎝((|P | − z)/|P |)
L∑

i=1

|Pi| · R2
i +

∑

q∈C

ŵC
q d(q, S∗)2

⎞

⎠

≤ (γ2/(2β))

⎛

⎝
L∑

i=1

cost(Pi, Si) +
∑

q∈C

ŵC
q d(q, S∗)2

⎞

⎠

≤ (γ2/(2β))

(

β
L∑

i=1

OPTk+z(Pi) + cost(C, ŵC , S∗)

)

≤ (γ2/2)

(
L∑

i=1

OPTk+z(Pi) + cost(C, ŵC , S∗)

)

(since β ≥ 1).

Using the triangle inequality and Fact 1, it is easy to show that∑L
i=1 OPTk+z(Pi) ≤ 4 ·OPTk,z(P ). Moreover, since (C,wC) is a σ-approximate

coreset for P with respect to k and z, cost(C, ŵC , S∗) ≤ (1 + σ)OPTk,z(P ).
Consequently,

∑
q∈C ŵC

q d(qS∗
,X)2 ≤ (γ2/2)(5 + σ)OPTk,z(P ). Putting it all

together and recalling that σ = 4γ+4γ2 ≤ 1/2, tedious computations yield that
cost(P\Z∗,X) ≤ (1 + 27γ)OPTk,z(P ). �	

3.2 Complete Algorithm

Let SeqWeightedkMeansOut be a sequential algorithm for weighted k-means with
z outliers, which, given in input a weighted set (T,wT ) returns a solution S of
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ρk centers such that cost(T, ŵT , S) ≤ α · OPTk,z(T,w), where ρ ≥ 1 and ŵT is
obtained from w by subtracting τz units of weight from the points of T farthest
from S, for some τ ≥ 1. Observe that values of ρ and τ greater than 1 allow
for sequential bicriteria algorithms, that is, those requiring more centers or more
outliers to achieve an approximation guarantee on OPTk,z(T,w).

For γ > 0, the complete algorithm first extracts a weighted coreset (T,wT ) by
running the 2-round MRcoreset(P, ρk, τz, γ) algorithm, setting k′ = ρk + τz in
its first round. Then, in a third round, the coreset is gathered in a single reducer
which runs SeqWeightedkMeansOut(T,wT , k, z) to compute the final solution S.
We have:

Theorem 2. For 0 < γ ≤ √
3/8− 1/2 and ρ, τ ≥ 1, the above 3-round MapRe-

duce algorithm computes a solution S of at most ρk centers such that

cost(P\outτz(P, S), S) ≤ (α + O (γ)) · OPTk,z(P ),

and requires O
(|P |2/3 · (ρk + τz)1/3 · (8√2β/γ)2D · log2 |P |) local memory.

Proof. Let T be the coreset computed at Round 2, and let Ẑ ⊆ P be such that
the weight function ŵT , associated to the solution S computed in Round 3, can
be obtained from wT by subtracting the contribution of each point in Ẑ from
the weight of its proxy in T . Clearly, |Ẑ| ≤ τz and cost(P\outτz(P, S), S) ≤
cost(P\Ẑ, S). Now, let σ = 4γ + 4γ2 ≤ 1/2. We know from Theorem 1 that
(T,wT ) is a σ-approximate coreset for P with respect to ρk and τz. We have:

cost(P\Ẑ, S) ≤ 1
1 − σ

cost(T, ŵT , S)

≤ (1 + 2σ)cost(T, ŵT , S) ≤ (1 + O (γ)) · α · OPTk,z(T,w).

Since OPTρk,τz(P ) ≤ OPTk,z(P ), Fact 1 and Lemma 2 can be used to prove that
both (C,wC) (computed in Round 1) and (T,wT ) are σ-approximate coresets
for P with respect to k and z. A simple adaptation of the proof of Theorem 1
shows that (T,wT ) is a 27γ-centroid set for P with respect to k and z. Now, let
X ⊆ T be the set of at most k points of Definition 2, and let wT be obtained
from wT by subtracting the contributions of the elements in outz(P,X) from
the weights of their proxies. By the optimality of OPTk,z(T,w) we have that

OPTk,z(T,w) ≤ cost(T,wT ,X)
≤ (1 + σ)cost(P\outz(P,X),X)
≤ (1 + σ)(1 + 27γ) · OPTk,z(P ) = (1 + O (γ)) · OPTk,z(P ).

Putting it all together, we conclude that

cost(P\outτz(P, S), S) ≤ cost(P\Ẑ, S) ≤ (α + O (γ)) · OPTk,z(P ).

The local memory bound follows from Lemma 2, setting L = (|P |/(ρk+ τz))1/3.
�	
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3.3 Improved Local Memory

The local memory of the algorithm presented in the previous subsections can
be substantially improved by modifying Round 2 of MRcoreset(P, k, z, γ) as
follows. Now, each reducer first determines a β-approximate solution SC to
weighted k-means (without outliers) on (C,wC), with k′ = k + z centers,
and then runs CoverWithBalls(C,SC , γ/

√
2β,R), yielding a weighted set C ′,

whose size is a factor |L| less than the size of C. Finally, the reducer runs
CoverWithBalls(Pi, C

′, γ/
√
2β,R). A small adaptation to CoverWithBalls is

required in this case: when point p ∈ C is mapped to a proxy q ∈ C ′, the weight
of q is increased by wC

p rather than by one. With this modification, we get the
result stated in the following theorem, whose proof follows the same lines as the
one of Theorem 2, and is found in the full version of this extended abstract [11].

Theorem 3. For 0 < γ ≤ (
√
3 − √

2)/6 and ρ, τ ≥ 1, the modified 3-round
MapReduce algorithm computes a solution S of at most ρk centers such that

cost(P\outτz(P, S), S) ≤ (α + O (γ)) · OPTk,z(P ),

and requires O
(|P |1/2 · (ρk + τz)1/2 · (8√2β/γ)2D · log2 |P |) local memory.

4 Instantiation with Different Sequential Algorithms
for Weighted k-Means

We briefly outline how to adapt two state-of-the-art sequential algorithms for
k-means with z outliers in general metrics, namely, LS-Outlier by [16] and
k-Means-Out by [14], to handle the weighted variant of the problem. Both
these algorithms are bicriteria, in the sense that the approximation guarantee is
obtained at the expense of a larger number of outliers (LS-Outlier), or a larger
number of centers (k-Means-Out). Then, we assess the accuracy-resource trade-
offs attained by the MapReduce algorithm of Sect. 3, when these algorithms are
employed in its final round.

Given a set of points P and parameters k and z, LS-Outlier starts with
a set C ⊂ P of k arbitrary centers and a corresponding set Z = outz(P,C)
of outliers. Then, for a number of iterations, it refines the selection (C,Z) to
improve the value cost(P\Z,C) by a factor at least 1 − ε/k, for a given ε > 0,
until no such improvement is possible. In each iteration, first a new set C ′ is
computed through a standard local-search [20] on P\Z, and then a new pair
(Cnew, Znew) with minimal cost(P\Znew, Cnew) is identified among the following
ones: (C ′, Z ∪ outz(P\Z,C ′) and (C ′′, Z ∪ outz(P,C ′′), where C ′′ is obtained
from C ′ with the most profitable swap between a point of P and a point of C ′.

It is shown in [16] that LS-Outlier returns a pair (C,Z) such that
cost(P\Z,C) ≤ 274·OPTk,z(P ) and |Z| = O ((1/ε)kz log(|P |Δ)), where Δ is the
ratio between the maximum and minimum pairwise distances in P . LS-Outlier
can be adapted for the weighted variant of the problem as follows. Let (P,w)
denote the input pointset. In this weighted setting, the role of a set Z of m
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outliers is played by a weight function wZ such that 0 ≤ wZ
p ≤ wp, for each

p ∈ P , and
∑

p∈P wZ
p = m. The union of two sets of outliers in the origi-

nal algorithm is replaced by the pointwise sum or pointwise maximum of the
corresponding weight functions, depending on whether the two sets are dis-
joint (e.g., Z and outz(P\Z,C ′)) or not (e.g., Z and outz(P,C ′′)). It can be
proved that with this adaptation the algorithm returns a pair (C,wZ) such that
cost(P,w−wZ , C) ≤ 274·OPTk,z(P,w) and

∑
p∈P wZ

p = O ((1/ε)kz log(|P |Δ)).
Algorithm k-Means-Out also implements a local search. For given ρ, ε >

0, the algorithm starts from an initial set C ⊂ P of k centers and per-
forms a number of iterations, where C is refined into a new set C ′ by
swapping a subset Q ⊂ C with a subset U ⊂ P\C (possibly of dif-
ferent size), such that |Q|, |U | ≤ ρ and |C ′| ≤ (1 + ε)k, as long as
cost(P\outz(P,C ′), C ′) < (1 − ε/k) · cost(P\outz(P,C), C). It is argued in [14]
that for ρ = (D/ε)Θ(D/ε), k-Means-Out returns a set C of at most (1 + ε)k
centers such that cost(P\outz(P,C), C) ≤ (1 + ε) · OPTk,z(P ), where D is the
doubling dimension of P . The running time is exponential in ρ, so the algorithm
is polynomial when D is constant.

The adaptation of k-Means-Out for the weighted variant for an input (P,w)
is straightforward and concerns the cost function only. It is sufficient to sub-
stitute cost(P\outz(P,C), C) with cost(P, ŵ, C), where ŵ is obtained from w
by decrementing the weights associated with the points of P farthest from C,
progressively until exactly z units of weights overall are subtracted. It can be
proved that with this adaptation the algorithm returns a set C of at most (1+ε)k
centers such that cost(P, ŵ, C) ≤ (1 + ε) · OPTk,z(P ).

By Theorems 2 and 3, these two sequential strategies can be invoked in Round
3 of our MapReduce algorithm to yield bicriteria solutions with an additive O (γ)
term in the approximation guarantee, for any sufficiently small γ > 0.

5 Conclusions

We presented a flexible, coreset-based framework able to yield a scalable, 3-round
MapReduce algorithm for k-means with z outliers, with an approximation qual-
ity which can be made arbitrarily close to the one of any sequential (bicriteria)
algorithm for the weighted variant of the problem, and requiring local memory
substantially sublinear in the size of the input dataset, when this dataset has
bounded dimensionality. Future research will target the adaptation of the state-
of-the-art non-bicriteria LP-based algorithm of [21] to the weighted case, and
the generalization of our approach to other clustering problems.
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Zürich, Switzerland

{anastasios.zouzias,bill.mccoll}@huawei.com

Abstract. We present a parallel scan (prefix sum) algorithm in the Ten-
sor Core Unit (TCU) model of computation. The TCU model assumes
that multiplication between two square matrices of constant size s is
a basic operation. In the (s2, �)-TCU model, we show that for inputs
of size n, the algorithm has depth at most 2�logs(n)� and runs in
O(n(1+ �/s2)/p+(s2 + �) logs(n)) assuming p tensor core units. Equiva-
lently, the algorithm performs O(n/s2) multiplications of square matrices
of size s.

Keywords: Prefix Sum · Scan · Matrix Multiplication · Tensor Core
Unit Model

1 Introduction

Prefix sum (scan) is an important computational primitive in parallel computing
with a plethora of applications [1,12]. An extensive literature on parallel scan
algorithms provides trade-offs between the depth (length of the critical path
of computation) and work (number of binary arithmetic operations) of several
approaches in the Parallel Random-Access Machine (PRAM) model of compu-
tation. Prefix computation also occurs in carry-lookahead adders where several
parallel scan algorithms have been (implicitly) designed (see [10,23] and refer-
ences therein). Moreover, the depth and size trade-offs for parallel optimal prefix
circuits are well-understood for binary operations [21,22]. In this work, we con-
sider prefix sums in an emerging model of computation. Following the seminal
work of [8], we present a parallel scan algorithm in a recently proposed Tensor
Core Unit (TCU) model of computation [6,7].

The TCU model, denoted1 by (s2, �)-TCU, is a standard RAM model where
there exists a circuit named tensor unit that performs matrix multiplication
between a matrix of size s×s and s×m (m ≥ s) in time O(ms+�), where s > 1
and � ≥ 0 are two model parameters [7]. The parameter � corresponds to the
latency of initiating a matrix multiplication operation on the tensor unit. Here,

1 The first parameter s2 of the TCU model is squared to avoid writing square roots
on the matrix sizes.
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in addition to the runtime analysis of the TCU model, we present a simplified
analysis of the work/depth model by assuming that the multiplication of two
square matrices of size s is a basic operation and counting the matrix multipli-
cations required by the algorithm. Then, we translate the bounds on the number
of matrix multiplications to a time complexity bound of the TCU model.

The reader might wonder why the TCU model is currently an emerging
domain-specific model of computation. The primary reason is that deep learning
and High-Performance Computing (HPC) workloads have increased the demand
for hardware that delivers more efficient matrix multiplication operations [14,16].
Hardware vendors have responded to such demand by manufacturing accelera-
tors with specialized hardware units known as tensor core units. A representative
list of specialized hardware units includes TPUs [13,14], Tensor Cores (TCs) [19]
and Huawei’s Ascend Cube Unit [17,18] to name a few. In short, today’s high-
performance hardware accelerators contain tensor core units that allow efficient
multiplication of constant-sized square matrices. As advocated recently in [7],
these tensor core units can be employed beyond deep learning and HPC appli-
cations to other essential computational primitives (matrix computations, graph
algorithms, etc.). Here, we aim to advance this line of work by studying the
computational primitive of parallel prefix sums.

The paper’s main contribution is the analysis of a parallel scan algorithm
(Algorithm 1) in the TCU model in terms of depth, number of matrix multi-
plications, work and time complexity. Interestingly enough, Algorithm 1 can be
viewed as a generalization of the Brent-Kung scan algorithm [3]; Brent-Kung is
a special case of Algorithm 1 where the matrices have size two, see Fig. 1 for
examples.

Our motivation to study the parallel scan primitive in the TCU model is
based on two applications: training gradient boosting trees models and parallel
sorting. Indeed, an inspection of the binary tree split computation for training
gradient boosting trees reveals that multiple prefix sum operations occur [5]. For
the application of parallel sorting, following Blelloch’s reduction of Radixsort to
prefix sums [1], we resolve in the affirmative the open question “can TCU sort?”
raised during the presentation of [6].

We conclude this section by introducing our notation. We use the terms prefix
sum and scan interchangeably. By prefix sum, we always refer to inclusive prefix
sum unless explicitly noted. All results are stated for the addition operator but
can be extended to any arbitrary associative operator. Vectors are denoted by
lower-case boldface font letters; vectors are always considered column vectors.
1s denotes the all-ones vector of size s. Let α be a scalar, and q be a vector
of size s − 1; we denote by [α; q] the column vector of size s whose first entry
is α concatenated by q. Matrices are denoted by upper-case bold-face letters.
Ls is the lower triangular all-ones square matrix of size s, including ones on the
diagonal. We use zero-based indexing for vectors and matrices. For a vector x, we
denote x[start :: step] the subvector of x starting from index start with a stride
of size step. We frequently use the ceiling inequality: �α� + �β� ≤ �α + β� + 1
for scalars α, β.
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Fig. 1. Examples of Algorithm 1 for input x = [1, 2, . . . , 16].

2 MatMulScan: Parallel Scan in the TCU Model

In this section, we present a parallel scan algorithm (Algorithm 1) designed to
take advantage of the computational speedup offered by the matrix multipli-
cation circuit of the TCU model. All numerical operations of Algorithm 1 are
multiplications between two square matrices of size s. Surprisingly enough, only
two special (constant) matrices take place as the left operand in all matrix mul-
tiplications. These two special matrices encode the computation of local prefix
sums and a scalar/vector add operation.

Let’s first define the matrix that encodes the (local) prefix sum operator.
Given a vector w of size s, it is straightforward to verify that the prefix sum
of w equals the matrix product Lsw (recall Ls is the lower triangular all-ones
square matrix). Next, we encode the addition between a vector q of size s − 1
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Algorithm 1. Parallel Matrix Multiplication Scan
1: procedure MatMulScan(x, s)
2: Let n ← len(x), k ← logs(n) � n := sk

3: for t = 0, 1, .., k − 1 do � 1st Phase (Up-sweep)
4: y ← Gather x with stride st starting from st − 1
5: z ← BatchMatMul(y,Ls)
6: Scatter z into x with stride st starting from st − 1
7: end for
8: for t = k − 1, . . . , 2, 1 do � 2nd Phase (Down-sweep)
9: y ← Gather x with stride st−1 starting from st − 1

10: z ← BatchMatMul(y,Bs)
11: Scatter z into x with stride st−1 starting from st − 1
12: end for
13: Output: Return x
14: end procedure
15: procedure BatchMatMul(y,As) � s × s matrix As

16: Let m ← len(y), s ← numCols(As)
17: Zero-pad y to size s2�m/s2� � Or, zero-pad y to size s�m/s�
18: T ← View y as a (�m/s2�, s, s)-tensor � Or, view y as s × �m/s� matrix
19: W ← Batch matrix multiplication As and T
20: z ← Flatten W to m-vector (drop zero-padding)
21: Output: Return z
22: end procedure

and a scalar α, i.e., q + α1s−1 as follows. The scalar/vector addition of α and
q can be extracted from the result of the matrix-vector product Bs[α; q] where
Bs is a square matrix of size s defined as:

Bs :=

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 . . . 0
1 1 0 . . . 0
1 0 1 . . . 0
... 0 0

. . . 0
1 0 . . . 0 1

⎤
⎥⎥⎥⎥⎥⎦

.

Now we are ready to define the main algorithm (MatMulScan). Algorithm 1
consists of two phases, as is typical in work-efficient parallel scan algorithms: the
up-sweep phase (Lines 3–7) and the down-sweep (Lines 8–11) phase. In the first
up-sweep phase, the prefix sums of the indices with exponentially increasing sizes
are computed: s, s2, s3, . . . , etc. At the end of the first phase, the prefix sums are
correct only on an exponentially increasing set of indices. The remaining indices
contain a “local prefix sum”, i.e., a prefix sum of s contiguous indices that
will be corrected in the second phase. The second down-sweep phase broadcasts
and adds all the precedent prefix sums to the remaining local prefix sums. At
each round of both phases, a strided subset of the input vector is viewed as a
matrix/tensor and pre-multiplied with a constant matrix of size s as is described
in the procedure BatchMatMul (Lines 15–22).
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Fig. 2. Execution of BatchMatMul(y = [1; 2; . . . ; 16],A2 = L2).

The BatchMatMul procedure takes a vector y and a square matrix As of
size s as input. BatchMatMul performs a multiplication between As and a
reshaped tensor view of y. The vector/tensor reshaping operations of the Batch-
MatMul method (Lines 18 and 20) need more clarification. In Line 18, a vector
is viewed as a three-dimensional tensor as follows. The zero-padded vector y
(Line 17) is split into multiple chunks of size s2, and each chunk is viewed as an
s × s matrix in column-major layout. Each s × s matrix is stacked into a three-
dimensional tensor of size (�m/s2�, s, s) following the natural ordering, i.e., the
first chunk is assigned to index zero of the first dimension of the tensor, the
second chunk to index one, etc.

Figure 2 provides an illustrative example of the execution of BatchMatMul
with inputs: a vector of size n = 16 and A2 = L2. In addition, we provide an end-
to-end functional implementation of Algorithm 1 as a reference implementation
in Appendix A.

2.1 Analysis

In this section, we analyse Algorithm 1 in terms of depth, the number of matrix
multiplications required, work and time complexity in the TCU model. In the
analysis, we ignore2 the cost of the gather-scatter memory operations and the
cost of vector/tensor reshaping operations. Recall that multiplication between
two square matrices of size s is a basic operation.

Lemma 1. Fix an integer s ≥ 2. Let x be a vector of size n = sk for some k.
Algorithm 1 has depth 2k−1 in the TCU model and performs at most � 2n

s(s−1)�+
2k − 2 matrix multiplications. Moreover, the number of scalar binary additions
executed by Algorithm 1 is �n(1 + s/2)� + O(s3 logs(n)).

Proof. The first phase takes k steps, and the second takes k − 1 steps. In total,
the depth is 2k − 1 = 2 logs(n) − 1 = 2 log2(n)/ log2(s) − 1 in the TCU model.

Let’s calculate the number of matrix multiplications required per phase. In
the first phase and at the t-th iteration (Line 4) y has length �(n− (st −1))/st�.
Hence, at most �n/st+2� matrix multiplications occur in Line 5. In total, the first
phase requires at most � n

s2

∑k−1
t=0

1
st � ≤ � n

s(s−1)� + k − 1 matrix multiplications

2 That said, the cost of memory operations (memory coalescing, bank conflicts, etc.)
is crucial to achieving high performance in an actual implementation.
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by multiple applications of the ceiling inequality. Similarly, in the second phase
and at the t-th iteration (Line 9), y has length �(n − (st − 1))/st−1�. Hence,
at most �n/st+1� matrix multiplications occur in Line 10. In total, the second
phase requires at most � n

s2

∑k−1
t=1

1
st−1 � ≤ � n

s(s−1)� + k − 2 by using the ceiling
inequality. In total, at most � 2n

s(s−1)�+2k−2 matrix multiplications are required
by the algorithm.

Now, let’s compute the work of the algorithm in terms of scalar binary addi-
tions when simulated in the RAM model, i.e., bound the number of arithmetic
operations of the matrix multiplications. The number of scalar binary additions
of matrix-vector multiplication between Ls and a vector of size s takes s(s−1)/2
scalar additions. Therefore, the work of the first phase is

(
� n

s(s − 1)
� + k − 1

)
· s · s(s − 1)

2
= �ns/2� + O(ks3).

Similarly, the work of the second phase is
(

� n

s(s − 1)
� + k − 2

)
· s · (s − 1) = n + O(ks2),

since each matrix multiplication between Bs and a square matrix of size s takes
s(s − 1) scalar additions. In total, the work of the algorithm is �n(1 + s/2)� +
O(s3 logs(n)).

We defer the correctness proof of Algorithm 1 to Appendix A.1.
Next, we translate the analysis of Lemma 1 into a time complexity bound in

the (s2, �)-TCU model with a minor modification of Algorithm 1. We view the
tensor T (Line 18) into a single rectangular matrix of size s×�m/s� by stacking
over its first dimension in Line 19. The stacking allows us to avoid excessive
matrix multiplication invocations, i.e., increased latency cost.

Theorem 1. Fix an integer s ≥ 2. Let x be a vector of size n = sk for some k.
Algorithm 1 takes O(n + �k) time in the (s2, �)-TCU model.

Proof. Let’s bound the latency cost and the matrix multiplication cost sep-
arately. Recall that the depth of the computation is 2k − 1. At each round,
the batched matrix multiplication (Line 19) can be viewed as a multiplica-
tion invocation between an s × s and s × �m/s� matrix (m is defined in
Line 17). Hence, the latency cost is (2k − 1)� since 2k − 1 matrix multiplica-
tion invocations take place. Next, let’s bound the time cost of matrix multipli-
cations. For all matrix multiplications of the first phase, the time required is∑k−1

j=0� n
sj

1
s�s ≤ s�n

s

∑k−1
j=0

1
sj �+ sk − s = O(n), where the first inequality follows

by the ceiling inequality and the second inequality since
∑k−1

j=0
1
sj ≤ 2 provided

that s ≥ 2. Similarly, the time required for the matrix multiplications in the sec-
ond phase is

∑k−2
j=0� n

sj
1
s�s = O(n). In total, the time complexity of Algorithm 1

in the (s2, �)-TCU model is O(n + � logs(n)).
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2.2 Extend Algorithm 1 to Arbitrary Input Length

Fig. 3. Execution diagram of the general case leveraging Algorithm 1 as a building
block. The diagram demonstrates that after the up-sweep phase of the first largest
chunks of size sk1 , the prefix sum computation of the maximum values of each chunk
(excluding the first one) can be interleaved with the down-sweep computation of the
largest chunks.

In this section, we extend Algorithm 1 for arbitrary input sizes (non-powers of s).
The approach is based on a folklore approach, see for example [12, Chapter 11].
Let n be an arbitrary positive number. Write n in base s as n =

∑
i μis

ki where
k1 := �logs(n)�, 0 ≤ μi < s, and k1 > k2 > · · · ≥ 0. We assume that n is given
in base s.

The algorithm is depicted in Fig. 3 and consists of the following four steps:

1. Execute Algorithm 1 in parallel for each contiguous segment of sizes: μ1 times
on chunks of size sk1 , μ2 times on chunks of size sk2 , . . . etc.

2. Gather the maximum values of each segment after the corresponding 1st phase
of Algorithm 1 into a vector w of size at most k1(s − 1). Indeed, there are at
most s − 1 multiples on each segment size and at most k1 distinct segment
sizes.

3. Zero-pad the vector of the maximum values to the smallest integer q so that
k1(s − 1) ≤ sq holds. Run Algorithm 1 with the zero-padded input vector of
length sq, drop the zero-padding and write back the results on w.

4. For each i-th entry of w, in parallel, broadcast and add the value wi on the
i + 1 chunk of size ski+1 using the BatchMatMul procedure of Algorithm 1.

Let us now analyse the above algorithm in terms of depth, number of matrix
multiplications and runtime in the TCU model.

Depth. The first step has depth at most 2k1−1 since the largest chunks have size
sk1 (Lemma 1). The execution of the second and third steps can be overlapped
with the 2nd phase of the execution of the first step for large enough n. The
fourth step takes an extra round to perform a scalar/vector addition using matrix
multiplications. In total, the depth is 2k1 − 1 + 1 = 2�log2(n)/ log2(s)�.
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Matrix Multiplications. Next, we upper bound the number of matrix multi-
plications. A direct application of Lemma 1 on the multiple segments of size
sk1 , sk2 , . . . implies that the number of matrix multiplications is at most

∑
i≥1

μi

(
� 2ski

s(s − 1)
� + 2ki − 1

)
≤

⎡
⎢⎢⎢

∑
i≥1

μi
2ski

s(s − 1)

⎤
⎥⎥⎥

+ 2
∑
i≥1

μiki

≤
⎡
⎢⎢⎢

∑
i≥1

μi
2ski

s(s − 1)

⎤
⎥⎥⎥

+ 2s
∑
i≥1

ki

≤ � 2n

s(s − 1)
� + O(s log2s(n))

where the first inequality follows from the ceiling inequality; the second inequal-
ity uses the fact that μi ≤ s; the third inequality follows since ki ≤ k1, and
there are at most k1 terms in the sum. The number of matrix multiplications
is negligible on steps 2 and 3 since the input size is O(sk1). The fourth step
performs a scalar/vector addition with matrix multiplications. Hence it takes at
most

∑
i≥1

μi

⌈
ski

(s − 1)2

⌉
≤

⎡
⎢⎢⎢

2
s(s − 1)

∑
i≥1

μis
ki

⎤
⎥⎥⎥

+
∑
i≥1

μi = � 2n

s(s − 1)
� + O(s logs(n)),

where in the first inequality, we used the ceiling inequality and the fact that
1

(s−1)2 ≤ 2
s(s−1) for s ≥ 2. In total, the number of matrix multiplications is

� 4n
s(s−1)� + O(s log2s(n)).

Time Analysis in TCU Model. Apply Theorem 1 on the μi segments of size ski

implies that the time complexity is at most in the order of
∑

i μi

(
ski + �ki

)
=

n + �
∑

i μiki ≤ n + �s
∑

i ki ≤ n + �sk2
1, where the first inequality holds since

μi < s and the second inequality since ki ≤ k1 and there are at most k1 terms
in the sum. In total, Step 1 takes O(n + �s log2s(n)) time.

Steps 2 and 3 are low-order terms and require O(s logs(n) + � logs logs(n))
time. Next, we bound step 4. At each segment of size ski , we view each segment
as an (s−1)×�ski/(s−1)� column-major matrix. Then, we prepend the constant
row to this matrix that contains the broadcasted value of the previous segment,
resulting in an s × �ski/(s − 1)� matrix. Similarly, the running time of step 4 in
the TCU model is

∑
i>1

μi

(
� ski

(s − 1)
� + �

)
≤

∑
i≥1

μi� ski

(s − 1)
� + �

∑
i≥1

μi = O(n/s + �s logs(n)).

The above discussion is summarized in the following corollary.

Corollary 1. Fix an integer s ≥ 2. Let x be a vector of size n. There is an
algorithm in the (s2, �)-TCU model that has depth at most 2�logs(n)�, and takes
O(n + s� log2s(n)) time. Equivalently, the algorithm performs O(n/s2) matrix
multiplications.
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Corollary 1 reveals that a single tensor core unit does not provide sufficient
parallelism for prefix sum computation since the runtime has an additional
O(s� log2s(n)) penalty. Therefore, an extension of the TCU model that con-
sists of p parallel tensor core units is essential to provide sufficient parallelism.
Recall that the depth of the computation is at most 2�logs(n)� and O(n/s2)
matrix multiplications are required in total. Each matrix multiplication takes
time O(s2+�). Hence an application of Brent’s theorem [4] implies that the run-
time is O(n(1 + �/s2)/p + (s2 + �) logs(n)) when having p parallel (s2, �)-TCUs
as advertised in the abstract.

2.3 Discussion

We shortly discuss some practical considerations of Algorithm 1. First, Algo-
rithm 1 on the case where s = 2 corresponds to the Brent-Kung scan algo-
rithm [2]. Moreover, for inputs of size n that is a power of s, the fan-in3 (and
fan-out) on all the computations of Algorithm 1 viewed as a circuit with adder
nodes are upper-bounded by s, see Fig. 1a. In a nutshell, there is a trade-off
between the fan-in/-out and the depth of the computation in Algorithm 1. This
trade-off is explicit in Lemma 1.

Next, we briefly discuss several implementation issues that could arise in an
efficient implementation of Algorithm 1. Developing a high-performant imple-
mentation of parallel scan is a highly non-trivial task and requires a deep under-
standing of the underlying hardware [12]. As is evident by the definition of the
matrices Ls and Bs, the utilization of the tensor core unit is low due to the
sparsity structure of these matrices. In the first phase, the tensor core unit could
be at most 50% utilized due to the lower triangular operand Ls. The utilization
is extremely low in the second phase, roughly speaking O(1/s), since the ten-
sor core unit is used for a scalar/vector add operation. However, in a practical
implementation, the second phase’s scalar/vector add operation can typically
be efficiently performed using a vector unit if one exists in proximity to the
tensor core unit. Last but not least, the scatter/gather memory operations of
Algorithm 1 could be a critical bottleneck to achieving high performance if the
tensor core units do not efficiently implement these operations.

3 Related Work

The study of accelerating the prefix sum (and reduction) operations using the
tensor cores was first initiated in the seminal paper of [8] (to the best of our
knowledge). The authors of [8] designed scan algorithms for the GPUs archi-
tecture, i.e., they proposed4 a warp-level scan algorithm [8, Algorithm 6], and
a block-level scan algorithm [8, Algorithm 7]. Moreover, they briefly mentioned
3 Fan-in is the maximum number of inputs an adder can have. Similarly, fan-out is

the maximum number of outputs.
4 The main goal of the authors is to provide highly optimized kernels and, hence, use

the terms of warp/block/grid of the CUDA programming model.
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Table 1. Comparison of a few representative parallel prefix sum algorithms. Work is
measured in terms of binary additions. (*) Depth is measured: in the PRAM model for
prior work; and in the TCU model for Algorithm 1 and [8, Alg. 7].

Method Depth∗ Work Comments

Sklansky [20] log2(n) n log2(n)/2 Unbounded fan-out

Hillis-Steele [11] log2(n) n log2(n) − n + 1 a.k.a. Kogge-Stone [15]

Blelloch [1] 2 log2(n) 2(n − 1) Exclusive Scan

Brent-Kung [2,3] 2 log2(n) − 1 2n − log2(n) − 2 Inclusive Scan

[8, Alg. 7] 5�n/s3� O(ns) TCU/GEMMs

Algorithm 1 (n = 2k) 2 log2(n) − 1 2n + O(log2(n)) TCU/(Fig. 1b)

Algorithm 1 (n = 4k) log2(n) − 1 3n + O(log2(n)) TCU/s = 4 (Fig. 1a)

Algorithm 1 (n = sk) 2 logs(n) − 1 n(1 + s/2) + O(s3 logs(n)) TCU/Lemma 1

that the device/grid level algorithm is based on the textbook approach, see
Sect. 2.2. Here, we compare Algorithm 1 against Algorithm 7 of [8] in asymptotic
analysis. A minor difference with our work is that GEneral Matrix Multiplication
(GEMM) is considered as a basic operation in [8]. GEMM is, roughly speaking,
a matrix multiplication followed by matrix addition on the output matrix prod-
uct. Indeed, most tensor core units offer an efficient matrix multiplication and
accumulation of the output result with no additional performance cost.

We should highlight that comparing the current work and [8] is not straight-
forward. The reason is that the goal of [8] was to improve the performance of the
state-of-the-art GPU scan kernels (a very challenging task), whereas our focus is
currently only limited to algorithmic design and analysis. Moreover, the authors
mentioned that their approach works best for small segment sizes [8], whereas
our approach might scale to larger input sizes. Nevertheless, we attempt to com-
pare Algorithm 1 against Algorithm 7 of [8] below. In addition, we assume that
GEMM operations are considered basic operation in the analysis below.

Algorithm 7 of [8] is expressed for the particular case s = 16, and it is assumed
that each warp takes 256 elements, and each block has at most 16 warps. For
comparison, we replace in [8, Alg. 7], the constants 16 and 256 with s and s2,
respectively. If n is large enough, Algorithm 7 of [8] serializes the processing on
the block level (for loop in Lines 7–23 of [8, Alg. 7]) and, hence, the depth of
the algorithm is at least 5�n/s3� since at most s warps exist per block and 3
GEMMS, an exclusive scan of size 16 and a broadcast is required. Regarding
work, each warp gets s2 elements, and each GEMM operation requires O(s3)
binary operations. Hence, the number of binary operations is O(ns).
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From an implementation point of view, the authors of [8] demonstrated that
by taking advantage of the additional computational power offered by the tensor
core units, it is possible to improve the performance of the state-of-the-art and
high-performance scan implementations for small segment sizes on GPUs. On
the other hand, we haven’t yet developed a high-performance implementation of
Algorithm 1, but we plan to investigate such a direction in the near future.

Table 1 summarises several representative parallel scan algorithms from the
literature. Prior work is evaluated on the PRAM model, whereas Algorithm 1
and [8, Alg. 7] are evaluated on the TCU model where we assume that multipli-
cation of square matrices of constant size s is a basic operation. As it is depicted
in the table, for s = 4, Algorithm 1 has depth log2(n) − 1 in the TCU model.
In this case, the work is 3n + O(log2(n)) when simulated in the PRAM model
(to have a fair comparison in terms of work with prior work). It is not possible
to make a fair comparison in terms of depth in the PRAM model since the fan-
in/fan-out of Algorithm 1 is also increased from two to four. Algorithm 7 of [8]
has linear depth in the TCU model, and its work is O(ns) when simulated in
the PRAM model.

4 Conclusion and Future Work

We presented a parallel scan algorithm (MatMulScan) designed for the TCU
model where matrix multiplication of square matrices of constant size is assumed
to be a basic operation. A future research direction is to enlarge the applicability
of the tensor core units to additional applications. Last but not least, we plan to
design and develop a high-performant implementation based on MatMulScan
using the Tensor Iterator Kernel (TIK) programming framework of the Ascend
cube unit [17].

A Appendix

We provide a functional end-to-end (but not high-performance) Python imple-
mentation of Algorithm 1 using NumPy (v1.24.1) [9]. The implementation
demonstrates the memory layout operations required to orchestrate the batched
matrix multiplications of Algorithm 1.
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import numpy as np

de f matmul scan (x , s , k ) :
L s = np . t r i l (np . ones ( s ) )
B s = np . eye ( s )
B s [ : , 0 ] = 1

f o r t in range (k ) :
s t a r t , s tep = s ∗∗ t − 1 , s ∗∗ t
y = x [ s t a r t : : s t ep ]
z = batch matmuls (y , L s )
x [ s t a r t : : s t ep ] = z

f o r t in range (k − 1 , 0 , −1) :
s t a r t , s tep = s ∗∗ t − 1 , s ∗∗ ( t − 1)
y = x [ s t a r t : : s t ep ]
z = batch matmuls (y , B s )
x [ s t a r t : : s t ep ] = z

de f batch matmuls (y , A s ) :
m, s = len (y ) , A s . shape [ 0 ]
y = y . f l a t t e n ( )
extra pad = in t ( ( s ∗∗ 2) ∗ np . c e i l (m / s ∗∗ 2) )
y . r e s i z e ( extra pad )

T = y . reshape (( −1 , s , s ) ) . t ranspose ( ( 0 , 2 , 1) )
W = A s @ T # batched matrix mu l t i p l i c a t i o n
z = np . reshape (W, (−1 , s ∗∗ 2) , order=’F ’ ) . f l a t t e n ( )
re turn z [ :m]

Listing 1.1. Reference implementation of Algorithm 1

A.1 Correctness of Algorithm 1

In this section, we prove the correctness of Algorithm 1. We reformulate Algo-
rithm 1 using recursion as stated in Algorithm 2. The recursive formulation
will enable us to prove the correctness using strong induction. Indeed, we prove
by induction that MatMulScanRecursive is correct for all inputs that are
powers of s, given an arbitrary s ≥ 2.

In particular, it suffices to show that the Recurse method with input z and
s has the following precondition/postcondition relation: given the precondition
that on all consecutive chunks of size s of z, i.e., (0, 1, . . . , s−1), (s, s+1, . . . , 2s−
1), . . . , the “local” prefix sums on each chunk is precomputed, Recurse returns
the prefix sum of z (postcondition). Indeed, by the definition of MatMulScan-
Recursive in Line 2 the “local” prefix sums of size s are computed and, in Line
3, the Recurse method is called with the precondition to be true.
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Algorithm 2. Parallel Matrix Multiplication Scan (Recursive version)
1: procedure MatMulScanRecursive(x, s) � s ≥ 2
2: z ← BatchMatMul(x,Ls) � BatchMatMul() of Algorithm 1
3: Output: Return Recurse(z, s)
4: end procedure
5: procedure Recurse(z, s)
6: If len(z) ≤ s, return z � Termination criterion
7: start ← s − 1, step ← s
8: z[start :: step] ← BatchMatMul(z[start :: step],Ls)
9: z[start :: step] ← Recurse(z[start :: step], s)

10: z[start :] ← BatchMatMul(z[start :],Bs)
11: Output: Return z
12: end procedure

Base Case. For inputs of size less than s, the termination criterion of Line 6 is
met, therefore the postcondition follows directly from the precondition since the
input size is less than s.

Inductive Step. The inductive hypothesis is that Recurse is correct for input
sizes strictly less than n. We will show that Recurse is correct for inputs of size
n. Indeed, given an input z where all its “local” prefix sums are precomputed,
we prove that Recurse with input z returns the prefix sum of z. Now, Line 8
computes the “local” prefix sums on the s-strided subvector x[start :: step]. The
prefix sum on x[start :: step] is computed on Line 9 by the inductive hypothesis.
Then, Line 11 broadcasts and add the correct prefix sum values of the s-strided
subvector of z to the corresponding s following indices of each subvector. Hence,
the postcondition of Recurse holds.
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Abstract. In the moldable job scheduling problem one has to assign
a set of n jobs to m machines, in order to minimize the time it takes
to process all jobs. Each job is moldable, so it can be assigned not
only to one but any number of the identical machines. We assume that
the work of each job is monotone and that jobs can be placed non-
contiguously. In this work we present a ( 3

2
+ ε)-approximation algorithm

with a worst-case runtime of O(n log2( 1
ε
+ log(εm)

ε
) + n

ε
log( 1

ε
)log(εm))

when m ≤ 16n. This is an improvement over the best known algorithm
of the same quality by a factor of 1

ε
and several logarithmic dependencies.

We complement this result with an improved FPTAS with running time
O(n log2( 1

ε
+ log(εm)

ε
)) for instances with many machines m > 8n

ε
. This

yields a 3
2
-approximation with runtime O(n log2(logm)) when m > 16n.

We achieve these results through one new core observation: In an
approximation setting one does not need to consider all m possible allot-
ments for each job. We will show that we can reduce the number of rele-
vant allotments for each job from m to O( 1

ε
+ log(εm)

ε
). Using this observa-

tion immediately yields the improved FPTAS. For the other result we use
a reduction to the knapsack problem first introduced by Mounié, Rapine
and Trystram. We use the reduced number of machines to give a new
elaborate rounding scheme and define a modified version of this knap-
sack instance. This in turn allows for the application of a convolution
based algorithm by Axiotis and Tzamos. We further back our theoretical
results through a practical implementation and compare our algorithm
to the previously known best result. These experiments show that our
algorithm is faster and generates better solutions.

Keywords: machine scheduling · moldable · compression · convolution

1 Introduction

The machine scheduling problem, where one assigns jobs to machines in order
to finish all jobs in a preferably short amount of time, has been a core problem
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of computer science. Its applications are not only limited to the usual context
of executing programs on a range of processor cores but it also has many appli-
cations in the real world. For example one can view machines as workers and
jobs as tasks or assignments that need to be done. In this setting we allow that
multiple workers can work on one task together to solve it more quickly. This
however gives rise to another layer of this problem, where one has to assign a
number of machines to each job and a starting time. The resulting problem is
called Parallel Task Scheduling with Moldable Jobs. Our goal is to minimize the
time when the last job finishes, which is called the makespan.

In this problem the time necessary for a job to be processed is dependent
on the number of assigned machines. The work of a job j with k machines is
defined as w(j, k) := t(j, k) ·k, which intuitively is the area of the job. We further
assume that this function for a fixed job j is non-decreasing in the number of
machines. This monotony assumption is natural since distributing the task on
multiple machines will not reduce the amount of work but actually induce a bit
of overhead due to communication among the machines.

Since finding an optimal solution to this problem is NP-hard [12] our goal is to
present approximation algorithms. Such an algorithm has to guarantee for every
instance I with optimal makespan OPT (I) to find a solution with a makespan
of at most c · OPT (I) for some multiplicative approximation ratio c > 1. In this
paper we introduce two algorithms that work with an accuracy ε > 0: The first
guarantees an approximation ratio of c1 = 1 + ε in time O(n log2( 4ε + log(εm)

ε ))
under the additional premise that m > 8n

ε . Our second algorithm achieves an
approximation ratio of c2 = 3

2 + ε with running time O(n log2( 1ε + log(εm)
ε ) +

n
ε log(1ε )log(εm)) when 16n ≥ m. If we apply the first algorithm for ε = 1

2 and
combine both algorithms we get in total an efficient (32 + ε)-approximation.

We achieve our results through a new core observation: Although a job can be
assigned to every possible number of machines, not all m different allotments may
be relevant when looking for an approximate solution. In fact we will show that
if m is large enough we can reduce the number of relevant machine allotments to
O( 1ε + log(εm)

ε ). This overall assessment is based on the concept of compression
introduced by Jansen and Land [11].

We use the reduced number of relevant allotments to schedule moldable jobs
via an instance of the knapsack problem. This approach was initially introduced
by Mounié, Rapine and Trystram [14]. We give a new rounding scheme to convert
moldable jobs into knapsack items to define a modified version of their knapsack
instance. We construct this knapsack instance in a way that the number of
different sizes and profits is small. This allows for the efficient application of
a knapsack algorithm introduced by Axiotis and Tzamos [1] using convolution.
Their algorithm works well on such instances and thanks to our rounding we can
even do the required pre-processing for their algorithm efficiently in linear time.

1.1 Problem Definitions and Notations

Two problems will play an important role in this paper: The first being parallel
task scheduling with moldable jobs, which we will call moldable job scheduling
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in the following. In this problem one is given a set J of n jobs and a set M of m
equal machines. We write [l] = {i ∈ N | 1 ≤ i ≤ l} for any l ∈ N. The processing
time of a job in the moldable setting is given through a function t : J×[m] → R≥0

where t(j, k) denotes the processing time of job j on k machines. We denote with
γ(j, d) = min{i ∈ [m] | t(j, i) ≤ d} the minimal number of machines required for
job j to achieve processing time smaller than d. If d is not achievable with m
machines, we say γ(j, d) is undefined.

For a solution of this problem we require two things: First an allotment
α : J → [m] and an assignment of starting times s : J → R≥0. For sim-
plicity we denote αj := α(j) and sj = s(j) respectively. A feasible solution
must now fulfill that at any time at most m machines are in use. Denote with
U(t) := {j ∈ J | t ∈ [sj , sj + t(j, αj)]} the jobs that are processed at time t. If at
all times t ∈ R≥0 we have that

∑
j∈U(t) αj ≤ m then the schedule defined by α

and s is feasible.
Finally we look to minimize the makespan of this schedule, which is the

time when the last job finishes. Given an allotment α and starting times s the
makespan is defined by maxj∈J{sj + t(j, αj)}. As mentioned before the work of
a job is defined as w(j, k) = k · t(j, k) and we assume the work for every job is
non-decreasing. More precisely for all jobs j and k, k′ ∈ [m] with k ≤ k′ we have
w(j, k) ≤ w(j, k′).

The second main problem we will consider in this work is the knapsack prob-
lem1. For our scheduling algorithm we will require to solve a knapsack instance.
In the knapsack problem one is given a knapsack with capacity t ∈ N and a set
of n items where each item i is identified with a profit value pi ∈ R>0 and a size
or weight wi ∈ N. The task is to find a maximum profit subset of these items
such that the total weight does not exceed the capacity t.

1.2 Related Work

The moldable job scheduling problem is known to be NP-hard [7] even with
monotone work functions [12]. Further there is no polynomial time approxima-
tion algorithm with a guarantee less than 3

2 unless P=NP [6]. Belkhale and
Banerjee gave a 2-approximation for the problem with monotony [3], which was
later improved to the non-monotone case by Turek et al. [16]. Ludwig and Tiwari
improved the running time further [13] and achieved a running time polyloga-
rithmic in m, which is especially important for compact input encoding, where
the length of the input is dependent on logm and not m.

Mounié et al. gave a (32 + ε)-approximate algorithm with running time
O(nm log 1

ε ) [14]. Jansen and Land later improved this result further by giv-
ing an FPTAS for instances with many machines and complementing this with
an algorithm that guarantees a ratio of ( 32 + ε) with polylogarithmic dependence
on m. They picked up on the idea of Mounié et al. to use a knapsack instance
to find a schedule distributing jobs in two shelves and modified the knapsack

1 We mainly consider 0-1 Knapsack, though some items may appear multiple times.
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problem to solve it more efficiently. In a recent result Wu et al. [17] gave a new
3
2 - approximation that works in time O(nm log(nm)).

The Knapsack problem as a generalization from Subset Sum is another core
problem of computer science that is NP-hard as well. For this problem pseu-
dopolynomial algorithms have been considered starting with Bellmans classical
dynamic programming approach in time O(nt) [4]. Many new results with pseu-
dopolynomial running times have recently been achieved in regards to various
parameters such as largest item size or number of different items [1,2,8,15].

One interesting connection has come up between Knapsack and the (max,+)-
convolution problem. In this problem one is given two sequences of length n
(ai)0≤i<n, (bi)0≤i<n and has to find the convolution c = a ⊕ b which is defined
through ci = maxj≤i(aj + bi−j) for all i ∈ N<n. This problem can be solved in
quadratic time O(n2). Cygan et al. [5] conjecture that a subquadratic algorithm
may not be possible and used this conjecture as a basis for many fine-grained
complexity results for Knapsack and similar problems. Axiotis and Tzamos
showed that with concave sequences, convolutions can be computed in linear
time O(n) and they used this to give a O(Dt) time algorithm for Knapsack
where D is the number of different item sizes [1]. This approach has also been
used by Polak et al. [15] in conjunction with proximity arguments from Eisen-
brand and Weismantel [8] to gain fast algorithms for knapsack with small item
sizes.

1.3 Our Results

We present a new algorithm, in particular a (32 +ε)-approximation algorithm, for
any accuracy parameter ε > 0, with a runtime polynomial in n, 1

ε and in logm.
With a running time polynomial in logm our algorithm will be able to handle
certain compact input encodings and will scale well into large m.

The main difficulty in moldable job scheduling is that for every job we need
to choose between m different allotments and then schedule jobs efficiently. We
will however show that not all m possible allotments have to be regarded. Since
we look for an approximate solution and we have monotone jobs, it is sufficient to
only consider O(1ε + log(εm)

ε )) different machine counts. This leads immediately
to a fully polynomial time approximation scheme (FPTAS) for instances with
many machines.

Theorem 1. Let ε > 0. For moldable job scheduling with instances where
m > 8n

ε there exists a (1 + ε)-approximation that runs in time O(n log2( 1ε +
log(εm)

ε )).

This result can be used for a 3
2 -approximation if we use ε = 1

2 .

Corollary 1. Consider moldable job scheduling on instances with m > 16n.
There exists a 3

2 -approximation in time O(n log2(logm)).

We complement this result with an efficient (32+ε)-approximation for the case
where m ≤ 16n. For this we follow the same approach as [11,14] and construct a
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knapsack instance. We will introduce a new rounding scheme for machine counts,
processing times and job works and convert these modified jobs into knapsack
items. The resulting knapsack instance will only have a small amount of different
item sizes. We then apply an algorithm introduced by Axiotis and Tzamos [1]
that works well on such instances. Thanks to our rounding we will be able to do
the pre-processing of their algorithm in linear time as well.

Theorem 2. For moldable job scheduling there exists an algorithm that for
instances with m ≤ 16n and for any ε > 0 yields a 3

2 + ε approximation in
time: O(n log2( 1ε + log(εm)

ε ) + n
ε log(1ε )log(εm))

These two results make up one (32 + ε)-approximation that improves on the
best known result by Jansen and Land [11] in multiple ways. For large m we man-
age to reduce the dependency on m even further. When m is small we improve on
their running time by reducing the dependency on ε by a factor of 1

ε and several
polylogarithmic factors. We also argue that our algorithm is overall simpler com-
pared to theirs, as we do not require to solve knapsack with compressible items
in a complicated manner. Instead our algorithm merely constructs the modified
knapsack instance and delegates to a simple and elegant algorithm from Axiotis
and Tzamos [1].

Result Jansen & Land [11] This paper

1 + ε, (m > 8n
ε ) O(n log(m)(log(m) + log( 1

ε ))) O(n log2( 1
ε +

log(εm)
ε ))

3
2 , (m > 16n) O(n log2(m)) O(n log2(log m))
3
2 + ε, (m ≤ 16n) O( n

ε2
log m( log m

ε + log3(εm))) O(n log2( 1
ε +

log(εm)
ε ) + n

ε log( 1
ε )log(εm))

2 General Techniques and FPTAS for Many Machines

The core technique used in this paper is the concept of compression introduced by
Jansen and Land [11]. Compression is the general idea of reducing the number
of machines a job is assigned to. Due to monotony the resulting increase of
processing time can be bound.

Lemma 1 ([11]). Let ρ ∈ (0, 1/4] be what we denote in the following as a com-
pression factor. Consider now a job j and a number of machines k ∈ N with
1
ρ ≤ k ≤ m, then we have that t(j, �(1 − ρ)k�) ≤ (1 + 4ρ)t(j, k).

The intuitive interpretation of this lemma is that if a job uses k ≥ 1
ρ machines

then we can free up to 	ρk
 machines and the processing time increases by a
factor of 1+ 4ρ. We are going to use this lemma in the following by introducing
a set of predetermined machine counts.

Definition 1. Let ρ be a compression factor and set b := 1
ρ . We define

Sρ := [�b�] ∪ {�(1 + ρ)ib� | i ∈ [ 	log1+ρ(
m
b )
 ]} as the set of ρ-compressed sizes.
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Note that reducing machine numbers to the next smaller size in Sρ corresponds
to a compression and processing time may only increase by a factor of at most
1 + 4ρ. We assume without loss of generality that 1/ε is integral by modifying
ε. With this assumption 1/ρ is also integral.

Corollary 2. Let ε ∈ (0, 1) be an accuracy parameter then ρ = ε
4 is a compres-

sion factor and |Sρ| ∈ O( 1ε + log(εm)
ε ).

Generally our algorithms will work on the set Sρ for ρ = ε
4 and only assign

machine counts in Sρ. If m ≤ 4
ε we work with any machine number as Sρ = [m].

The algorithms we present will work in a dual approximation framework.
A dual approximation framework is a classical approach for scheduling prob-

lems. The general idea is to use an approximation algorithm with constant ratio
c on a given instance and gain a solution with makespan T . While this is only
an approximation we can conclude that the makespan T ∗ of an optimal solution
must be in the interval [Tc , T ] and we can search this space via binary search.
We can then see a candidate d ∈ [Tc , T ] as a guess for the optimal makespan.

The approximation algorithm is then complemented with an estimation algo-
rithm, that receives an instance I and a guess for the makespan d as input. This
estimation algorithm then must be able to find a schedule with a makespan
of at most (1 + ε)d if such a schedule exists. If d was chosen too small, i.e.
(1 + ε)d < OPT (I), our algorithm can reject the value d and return false.

We continue to apply this algorithm for candidates, until we find d such that
the algorithm is successful for d but not for d

1+ε . Note that if the algorithm fails
for d

1+ε we have that d = (1+ε) d
1+ε < OPT (I). Therefore the solution generated

for d has a makespan of (1 + ε)d < (1 + ε)OPT (I). Using binary search we can
find such a candidate d in O(log 1

ε ) iterations [11].

2.1 Constant Factor Approximation

Our constant factor approximation is going to work in two steps: First we com-
pute an allotment and assign each job to a number of machines. Secondly we
will use list scheduling in order to schedule our now fixed parallel jobs. For the
first step we use an algorithm introduced by Ludwig and Tiwari [13].

Lemma 2 ([13]). Let there be an instance I for moldable job scheduling with n
jobs and m machines. For an allotment α : J → [m] we denote with

ωα := min(
1
m

∑

j∈J

w(j, α(j)),max
j∈J

t(j, α(j)))

the trivial lower bound for any schedule that follows the allotment α. Furthermore
for S ⊆ [m] we denote with ωS := min

α:J→S
ωα the trivial lower bound possible for

any allotment, which allots any job to a number of machines in S.
For any S ⊆ [m] we can compute an allotment α : J → S with ωα = ωS in

time O(n log2 |S|).
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We apply this lemma but limit machine numbers to ρ-compressed sizes Sρ

for ρ = ε
4 . With that we gain an approximate value of ω[m].

Lemma 3. Given an instance I for moldable job scheduling with n jobs, m

machines and accuracy ε < 1. In time O(n log2( 4ε +
log(εm)

ε )) we can compute an
allotment α : J → [m] such that ωα ≤ (1 + ε)ω[m].

Proof. Let ρ = ε
4 , b = 1

ρ and Sρ be the set of ρ-compressed sizes by Definition 1.
We now use Lemma 2 to compute an allotment α′ : [n] → Sρ such that ωα′ = ωSρ

and note that the proposed running time follows from Corollary 2 and Lemma
2. It remains to show that ωα′ ≤ (1 + ε)ω[m].

For this let α be an allotment with ωα = ω[m]. We now modify this allotment
by rounding its assigned number of machines down to the next value in Sρ. To
be more precise let α′′ : [n] → Sρ; j → max{s ∈ Sρ|s ≤ α(j)}. Note that based
on the definitions and Lemma 2 it follows immediately that ωα ≤ ωα′ ≤ ωα′′ .
We will conclude the proof by showing that ωα′′ ≤ (1 + ε)ωα.

We note that the rounding from α to α′′ is a compression. To see that consider
two consecutive item sizes �b(1+ ρ)(i−1)�, �b(1+ ρ)(i)� for some i and note that:

�b(1 + ρ)(i)� − �b(1 + ρ)(i−1)� ≤ b(1 + ρ)(i) − (b(1 + ρ)(i−1) − 1)

= b(1 + ρ)(i) − b(1 + ρ)(i−1) + 1

= ρb(1 + ρ)(i−1) + 1 ≤ ρb(1 + ρ)(i)

Since we only round a job down when α(j) < �b(1 + ρ)(i)� we get that
α(j)−α′′(j) ≤ ρα(j). According to Lemma 1 the processing time of the job may
only increase by a factor of at most 1 + 4ρ = 1 + ε. Therefore we have

max
j∈J

t(j, α′′(j)) ≤ max
j∈J

{(1 + ε)t(j, α(j))} = (1 + ε)max
j∈J

t(j, α(j)).

Since the work function is monotone ωα′′ ≤ (1 + ε)ωα follows directly. ��
With this allotment we use list scheduling to achieve a constant factor approx-

imation [9]. We use this in our dual-approximation framework. In the next sec-
tions we will assume that we are given a makespan guess d and give the required
estimation algorithms for the desired results.

Corollary 3. The proposed algorithm is an approximation algorithm with a
multiplicative ratio of 4 and requires time O(n log2( 4ε + log(εm)

ε )).

Proof. The running time results mainly from applying Lemma 3 to gain an
allotment α with ωα ≤ (1 + ε)ω[m]. Applying list scheduling to our computed
allotment yields a schedule with makespan 2ωα ≤ 2(1 + ε)ω[m] ≤ 4OPT (I). ��
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3 FPTAS for Large Machine Counts

In the following we assume that for every instance we have m > 8n
ε . Jansen and

Land showed that an FPTAS can be achieved by simply scheduling all jobs j with
γ(j, (1+ ε)d) machines at time 0. They consider all possible number of machines
for each job. We argue that it is sufficient to consider assigning a number in S ε

4

to achieve a similar result. We will however require another compression to make
sure our solution is feasible.

Lemma 4. Given an instance I with n jobs, m > 8n
ε machines and a target

makespan d, we can in time O(n log(4ε +
log(εm)

ε )) find a schedule with makespan
(1 + 3ε)d if d ≥ OPT (I) or confirm that d < OPT (I).

Proof. Let Sρ be the set of ρ-compressed sizes for ρ = ε
4 and b = 1

ρ . Let γ′(j, d) :=
max{s ∈ Sρ|s ≤ γ(j, d)} and denote a job as narrow when γ′(j, d) ≤ b or wide
when γ′(j, d) > b. The schedule we propose results from scheduling narrow jobs
with γ′(j, d) machines and wide jobs with a compressed number of machines,
that is �(1 − ρ)γ′(j, d)�. We schedule all jobs at time 0 next to each other. The
running time results from finding γ′(j, d) for all jobs via binary search. Note that
if γ(j, d) is undefined for some job, then d was chosen too small.

Every job j scheduled with γ(j, d) machines has processing time of at most d.
Rounding down the number of machines to γ′(j, d) may increase the processing
time by a factor of 1+4ρ, as this process corresponds to a compression. We then
apply another compression to wide jobs, which may increase the processing time
again by the same factor. In total the new processing time of a job is bound by:
(1 + 4ρ)((1 + 4ρ)t(j, γ(j, d))) ≤ (1 + ε)2d ≤ (1 + 3ε)d.

It remains to show that our schedule uses at most m machines in total. Jansen
and Land showed [11] that

∑
j∈J γ(j, d) ≤ m+n. We assume that

∑
j∈J γ(j, d) >

m, since otherwise our schedule would be feasible already. Denote with JW , JN

the set of wide and narrow jobs. We can see that that
∑

j∈JN
γ(j, d) ≤ n · b =

4n
ε < 1

2m and therefore
∑

j∈JW
γ(j, d) > 1

2m.
Consider a wide job j and write γ(j, d) = γ′(j, d) + r for some r. Since j was

assigned to �(1 − ρ)γ′(j, d)� machines, the number of freed up machines is at
least:

γ(j, d) − �(1 − ρ)γ′(j, d)� ≥ γ′(j, d) + r − (1 − ρ)γ′(j, d)
= ργ′(j, d) + r

≥ ρ(γ′(j, d) + r) = ρ(γ(j, d))

In total we free at least
∑

j∈JW
(ργ(j, d)) > ρ 1

2m > ε
44

n
ε = n machines. Our

schedule therefore uses at most
∑

j∈J γ(j, d)− n ≤ m+ n − n = m machines. ��
Note that we can apply this lemma with ε′ = ε

3 or an even more simplified
algorithm that results by rounding down γ(j, (1+ε)d), which also allows a simple
schedule with less than m machines [11]. If we use this algorithm in our dual
approximation framework we achieve the desired FPTAS.
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Proof (of Theorem 1). We conclude for the runtime that we have to apply our
dual approximation framework, meaning we apply the constant factor approx-
imation and then for log(1ε ) makespan guesses we apply Lemma 4. Combining
these running times we get a time of O(n log2( 1ε + log(εm)

ε )). ��

4 (3
2
+ ε)-Approximation

We will now consider the goal of achieving a 3
2 + ε multiplicative approximation

ratio. Our algorithm will operate again in the context of the dual approximation
framework. Therefore we assume a makespan guess d and give an estimation algo-
rithm. Our estimation algorithm will reduce the scheduling problem to a knap-
sack instance in a way that was initially introduced by Mounié et al. [14]. This
approach was also used by Jansen and Land [11] who gave a modified version of
this knapsack instance. We however propose a new simpler rounding scheme that
uses ρ-compressed sizes for ρ = ε

4 and further modify item profit. In that way we
do not need a complicated algorithm to solve the knapsack problem, but we can
actually apply the result from Axiotis and Tzamos [1] in an efficient manner.

At the start we split the set of jobs in small and big jobs J = JS(d) ∪ JB(d)
with JS(d) := {j ∈ J | t(j, 1) ≤ d

2} and JB(d) = J\JS(d). Since we can add
small items greedily at the end in linear time [11], we only need to schedule
large jobs. We give a short run-down on the most important results in regards
to the knapsack instance introduced by Mounié et al. .

Their main idea was to distribute all jobs into two shelves with width m.
The first shelf S1 has height d and the second shelf S2 has height d

2 . If a job
j was scheduled in either shelf with height s ∈ {d, d

2} then j would be allotted
to γ(j, s) machines. In order to assign jobs to a shelf, they use the following
knapsack instance:

Consider for each job j ∈ JB(d) an item with size sj(d) := γ(j, d) and profit
pj(d) := w(j, γ(j, d/2)) − w(j, γ(j, d)) and set the knapsack size to t := m.
Intuitively this knapsack instance chooses a set of jobs J ′ to be scheduled in S1.
These jobs are chosen such that their work increase in S2 would be large.

We will denote this problem as KP (JB(d),m, d) where the first two param-
eters declare the items and knapsack size and the third parameter is the target
makespan, which then determines the size and profits of the items. Given a
solution J ′ ⊆ J we denote the total work of the resulting two-shelf schedule by
W (J ′, d) and note that:

W (J ′, d) =
∑

j∈J ′
w(j, γ(j, d)) +

∑

j∈JB(d)\J ′
w(j, γ(j,

d

2
))

=
∑

j∈JB(d)

w(j, γ(j,
d

2
)) +

∑

j∈J ′
w(j, γ(j, d)) −

∑

j∈J ′
w(j, γ(j,

d

2
))

=
∑

j∈JB(d)

w(j, γ(j,
d

2
)) −

∑

j∈J ′
pj(d)
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As the knapsack profit is maximized, the total work W (J ′, d) is minimized.
The result from Mounié et al. which we use is summarized in these two lemmas.
We refer to either [11,14] for a detailed description of these results.

Lemma 5 ([14]). If there is a schedule for makespan d, then there is a solution
J ′ ⊆ JB(d) to the knapsack instance with W (J ′, d) ≤ md − W (JS(d), d).

Lemma 6 ([14]). If there is a solution J ′ ⊆ JB(d) to the knapsack instance
with W (J ′, d) ≤ md − W (JS(d), d), then we can find a schedule for all jobs J
with makespan 3

2d in time O(n log n).

Based on these lemmas we can easily reject a makespan guess d if W (J ′, d)
is larger than md − W (JS(d), d). We note as well that Lemma 6 can be applied
if we find a solution for a higher makespan.

Corollary 4 ([11]). Let d′ ≥ d and J ′ ⊆ JB(d) be a feasible solution of the
knapsack problem KP (JB(d),m, d′) with W (J ′, d′) ≤ md′ − W (JS(d), d). Then
we can find a schedule with makespan at most 3

2d′ in time O(n log n).

We now construct a modified knapsack instance in order to apply this corol-
lary for d′ = (1+4ε)d. First of all we reduce machine counts to ρ-compressed sizes
for ρ = ε

4 . Consider Sρ and b := 1
ρ and let γ′(j, s) := max{k ∈ Sρ|k ≤ γ(j, s)} for

any job j and s ∈ {d
2 , d}. With p̃j(d) := γ′(j, d

2 )t(j, γ
′(j, d

2 )) − γ′(j, d)t(j, γ′(j, d))
we denote the intermediary profit that is going to be further modified.

We further consider a job wide in a shelf if it uses more than b machines in
the respective shelf, that is if γ′(j, s) ≥ b for the respective s ∈ {d

2 , d}. If a job
is not wide we call it narrow instead, with respect to some shelf.

For jobs that are narrow in both shelves we will directly modify the
profits. Let j be a job with γ′(j, s) < b for both s ∈ {d

2 , d}, then we
round the intermediary profit up to the next multiple of εd by setting
p′

j(d) := min{iεd | iεd ≥ p̃j(d) and i ∈ N
∗
≤ 2

ε2
}. This is well defined since the orig-

inal profit in this case is bounded by w(j, d
2 ) < bd

2 = 2
ε2 εd. For later arguments

denote the modified work with w′(j, d
2 ) := w(j, d

2 ) and w′(j, d) := w′(j, d
2 )−p′

j(d).
For jobs j that are wide in both shelves, that is when γ′(j, d

2 ) ≥ γ′(j, d) ≥ b,
we will modify the processing time. In particular we set t′(j, s) := 1

1+4ρs for s ∈
{d
2 , d}, which results in modified work values w′(j, s) := t′(j, s)γ′(j, s). We then

define the new profit based on the modified works as: p′
j(d) := w′(j, d

2 )−w′(j, d).
That leaves jobs that are narrow in one shelf and wide in the other. Consider

such a job j with γ′(j, d
2 ) ≥ b > γ′(j, d). For the wide version we round again

the processing time t′(j, d
2 ) :=

1
1+4ρ

d
2 and obtain w′(j, d

2 ) := t′(j, d
2 )γ

′(j, d
2 ). As

for the narrow job we round down the work w(j, γ′(j, d)) to the next multiple of
iεd. To be precise we set w′(j, d) := max{iεd | iεd ≤ w(j, γ′(j, d)) and i ∈ N≤ 4

ε2
}.

Note that the unmodified work is bounded by w(j, d
2 ) ≤ w(j, d) < bd = 4

ε d =
4
ε2 εd. We then obtain the modified profit value p′

j(d) = w′(j, d
2 ) − w′(j, d).

With these modified profits and sizes s′
j(d) = γ′(j, d) we then solve the

resulting problem KP ′(JB(d),m, d, ρ) to obtain an optimal item set J ′. Due to
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spatial constraints we had to omit the proof for the following lemma, but note
that it can be found in the full version [10].

Lemma 7. Let J ′ be a solution to KP ′(JB(d),m, d, ρ) and d′ = (1+ 4ε)d, then
with unmodified processing times and machine numbers J ′ is also a solution to
KP (JB(d),m, d′). Furthermore if there is a schedule with makespan d, we have
that W (J ′, d′) ≤ md′ − W (JS(d), d).

4.1 Solving the Knapsack Problems

As we already mentioned we intend to use an algorithm from Axiotis and Tzamos
[1]. Their algorithm works in two main steps. In the first step the items of the
knapsack instance are partitioned into sets containing items of equal size. The
knapsack problem is then solved for each item set separately and for every item
size s with item set Is = {i ∈ I | si = s} a solution array Rs is generated where
Rs[t′] denotes the maximum profit achievable for a knapsack of size t′ ≤ t using
only items with size s. Note that by the nature of this problem Rs[t′] will always
be given by the sum of profits of the � t′

s � items with the highest profit in Is.
These solution arrays Rs have a special structure as Rs[k · s] = Rs[k · s+ s′]

for all s′ < s and k ∈ N. Further considering the unique entries we have that
Rs[(k+1) ·s]−Rs[k ·s] ≥ Rs[(k+2) ·s]−Rs[(k+1) ·s] for each k. This structure
is also called s-step concave as the unique entries build a concave sequence. In
the second step of their algorithm they combine the solution arrays in sequential
order via convolution to generate a final solution array R = R1⊕R2⊕· · ·⊕R[smax].

A very important result from Axiotis and Tzamos is that if these convolutions
are done in sequential order, then one sequence will always be s-concave for some
respective s. They proved in their paper that convolution with one s-step-concave
sequence can be done in linear time, opposed to the best known quadratic time.

Lemma 8 ([1]). Given any sequence A and Rh for some h ∈ N, each with t
entries, we can compute the convolution A ⊕ Rh in time O(t).

In our setting the knapsack capacity is given by t = m. Thanks to our
rounding we only have |Sρ| different item sizes, which defines the number of
convolutions we have to calculate. We however must also compute the initial
solutions that consist of the highest profit items for each size. Thanks to rounding
item profits we can also sort these efficiently to generate the initial solutions
arrays Rh.

Lemma 9. Given a modified knapsack instance KP ′(JB(d),m, d, ρ), we can
compute for all t′ ≤ t the entry Rh[t′] in time O(n + m(1ε + log(εm)

ε )).

Proof. Our goal is to sort items by profits and subsequently add up the highest
profits to fill the arrays Rh. We will sort items based on how they were rounded:

Consider jobs j with γ′(j, s) < b for both s ∈ {d
2 , d} and denote the number

of these jobs with n1. By scaling their profits with 1
ε
1
d we obtain profits of the
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form p̃j(d) = i for some i ∈ N≤ 2
ε2

. We can sort profits using radix sort in time
O(n1 + 1

ε ) where we encode them using O(1) digits ranging from 0 to 1
ε .

Consider now the n2 jobs j with γ′(j, d
2 ) ≥ γ′(j, d) ≥ b. If we scale the profit

of these items with 1+4ρ
d then we have that p̃j(d) = 1

2γ′(j, d
2 ) − γ′(j, d). These

items can be sorted by profit using bucket sort in O(n2 + m).
For the remaining n3 of the jobs j with γ′(j, d

2 ) ≥ b > γ′(j, d) we have to
consider the modified profits p′

j(d) :=
d

2(1+4ρ)γ
′(j, d

2 ) − iεd for some i ∈ N. We

scale these profits with 2(1+ε)
dε2 to obtain p̃j(d) = γ′(j, d

2 )
1
ε2 − 2i

ε − 2i ≤ m
ε2 . These

items can be sorted with radix sort in time O(n3 + m
ε ) by encoding profits with

two digits ranging from 0 to m
ε .

Putting these three steps together takes time O(n1+n2+n3+ 1
ε +m+ m

ε ) =
O(n + m

ε ). We can additionally merge the three sorted lists via merge sort in
O(n) and iterate through all items to fill the actual solution arrays. The number
of total entries we have to fill in is at most m(4ε +

log(εm)
ε ) since we have m entries

in each array, and one array for every item size. ��
Corollary 5. We can compute R1 ⊕ R2 ⊕ · · · ⊕ R|Sρ| in time O(m(|Sρ|)).

With this knapsack solution we apply Corollary 4. We note that this final
construction using the procedure from Mounié et al. [14] can be implemented
in time O(n) by using rounded processing times [11]. We note that combining
these results proves Theorem 2. A proof can be found in the full version [10].

5 Implementation

We implemented all algorithms introduced and used in this paper, along with
a version of the algorithm introduced by Jansen and Land [11]. We note that
we did not implement the final version of their algorithm to solve Knapsack
with compressible items, as it was very intricate and complicated. Instead our
implementation computes their modified knapsack instance and solves it via
their proposed dynamic programming approach.

Fig. 1. Average runtime difference in relation to machine numbers.
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The implementations and experiments were conducted on a Raspberry Pi
4 Model B and we limited the experiment to one CPU-core as we did not use
any mean of parallelization. We uploaded a version of our implementation to
GitHub (https://github.com/Felioh/MoldableJobScheduling). In the following
we mainly tested for the part where m ≤ 16n. We did not include all results
due to spatial constraints and refer to the full version [10] for more graphs and
comparisons.

We generated sets of randomized instances for moldable job scheduling.
Machine numbers mainly range from 30 to 100 and jobs from 10 to 120. We
tested on these instances for ε = 1

10 . Figure 1 shows the difference of average
runtime between our algorithm and the one by Jansen and Land. Note that the
runtime of their algorithm is subtracted from ours. Hence we can see that our
algorithm does slightly better for the analyzed number of jobs and machines and
that our algorithm seems to scale better with growing numbers of machines.

Fig. 2. Average makespan from both algorithms

In Fig. 2 we compare the makespans to compare solution quality. In most
cases that solution quality is quite similar but in some cases generally better for
our algorithm. We believe that is due to our rounding. For one our rounding
of machine numbers to values in Sρ is in its core a compression but does not
fully utilize the potential introduced in Lemma 1. Since we do not reduce the
machine counts by the maximal possible amount, our effective error is smaller.
In a similar manner do our knapsack modifications also induce a smaller error.

6 Conclusion and Open Questions

In this paper we presented our new 3
2 + ε-approximation, that results from the

combination of different techniques from moldable scheduling, knapsack and

https://github.com/Felioh/MoldableJobScheduling
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convolution. Not only do we achieve a theorical improvement on the runtime
upper bound for this approximation ratio, but our algorithm also proves to be
faster in practice as shown by our experiments.

For future research it remains open whether we can achieve even smaller
approximation ratios, such as 4

3 or 4
3 + ε by using monotone work. We believe

that a concept such as ρ-compressed sizes may help with simplifying moldable
job scheduling. Another interesting topic are lower bounds for running time and
how much room for improvement the currently known results have.
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Abstract. Execution of a protocol in a wireless sensor network may
reveal some information about its size. For example, the time required
to elect a leader or establish size approximation using the most popular
protocols is strongly correlated with the number of participating sta-
tions. This property may be very undesirable in many natural scenarios,
like e.g., the military area of applications.

This paper considers how much information about the network size
a passive adversary eavesdropping on the communication channel can
learn from the protocol execution. We formalize this problem in a gen-
eral form (modeling the system as a multiple access channel with various
feedbacks) and then present some practical results for the popular beep-
ing model . In particular, we demonstrate how to construct a universal
method that provably conceals the exact number of participating sta-
tions. Moreover, we explain the limitations of the presented approach.
Finally, we show that in the case of some particular problems, the size-
hiding property can be archived without any additional activities.

Keywords: Beeping model · Size hiding · Leader election

1 Introduction

We consider the problem of executing a distributed protocol in a multiple access
channel model that reveals no substantial information about the size of the
system (i.e., the number of stations). We focus on a popular single-hop radio
network using the beeping model, wherein one can find plenty of prominent
motivating examples to keep the number of stations secret (e.g., in a military
area or industrial espionage protection).

In Sect. 2, we present the model and formalize a size-hiding problem using
an approach analogous to differential privacy [5]. Section 3 is dedicated to a uni-
versal algorithm that may hide (to some extent) the size of the network in the
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beeping model while executing any underlying protocol. We also show that our
method can be combined with various fundamental algorithms to obtain desired
properties for the price of a minor or moderate overhead of the time execu-
tion. Among others, we show size approximation protocols that are additionally
size-hiding. These two properties are seemingly contradictory. Namely, on the
one hand, we need to estimate the number of stations in the network precisely.
On the other, we need to guarantee that this approximation is not too precise
(to keep the adversary uncertain about the actual value of stations). Section 4
demonstrates that some classic protocols are size-hiding by design and do not
reveal much information about the network size, even if we use a rigorous defini-
tion. The last part of this paper is devoted to the conclusion and the description
of further extensions.

Related Work. The introduced measure of hiding the size of stations can be
seen as an extended version of differential privacy from [3] that is currently
considered a benchmark in privacy protection research and related problems.
Most fundamental concepts related to differential privacy can be found in [5].

In [1,2], a similar problem of distributed protocol execution obfuscation in a
similar model is considered. However, these papers assume that stations share
a secret, established in advance, to simulate private channels and use standard
cryptographic methods. As we avoid such a predefined assumption, our model
requires a different approach, and hiding the information in it poses more chal-
lenges. Additionally, the approaches are not directly comparable as the protocol
in [2] allows to conceal all the details of the protocol execution (not only the
number of participating stations).

There is a well-developed body of literature devoted to communication hid-
ing in distributed systems based on the idea of key predistribution introduced
in [17], wherein devices have randomly assigned (pre-deployed) subset of keys
from a large, fixed set and then try to establish a one-to-one secure connec-
tion (possibly via a path of secure connections of other devices) using shared
keys. This idea has been extended in many directions ( [18–20]), recently in
the context of IoT systems security. Note, however, that this line of research
is somehow orthogonal to our approach, wherein the system cannot hide any
information from the adversary using any shared secret due to the lack of a
pre-deployment phase.

2 Formal Model

We consider a communication model with a single shared channel and n par-
ticipating stations. The parameter n is unknown in advance to the stations,
or, possibly, some limited knowledge about n is available (e.g., a rough upper
bound on n is given). Stations are anonymous, i.e., initially, they do not have
any individual identifiers. We assume that time is divided into separated and
synchronized rounds, and all stations can determine the round of communica-
tion. In every round, stations can transmit or listen to the channel following
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the beeping model [12]. Depending on the number of transmitting stations in a
given round, each station can recognize a present state amongst these in the set
S = {Beep, Silence}. The state of the channel is Beep in a given round if and
only if at least one station transmits. Otherwise, the state is Silence.

Adversary and Security Model. In our work, we consider an outer adversary
observing the channel while some protocol P (e.g., initialization, leader elec-
tion, or size approximation) is executed. Thus, its input can be described as
some s ∈ S∗, i.e., a finite sequence of states of the channel1. Even if P is ran-
domized, its distribution may depend on the number of participating stations
n. The adversary is passive and is limited to eavesdropping on the communica-
tion channel. The adversary aims to gain additional knowledge about n given
the sequence of states s̄. In other words, the adversary may have some a priori
knowledge about n before the execution of the protocol P; however, his goal is
to extend this by analyzing the observed execution. In contrast to previous work
(e.g., [1,2]), we do not assume that the stations share any secret information,
nor cryptographic key unknown to the adversary, that could be used to establish
a secure communication channel inaccessible to the adversary. This assumption
makes even passive adversaries very powerful, as they have the same information
as any legitimate station. However, we assume that the adversary has no access
to local sources of the randomness of stations.

Size-hiding Definition. Informally, we demand that protocols in networks with
similar sizes result in (almost) indistinguishable channel states. Let XP

n ∈ S∗

be a random variable denoting the states of the channel when executing the
protocol P by exactly n stations. For the sake of clarity, let us use a simplified
notation: pn,P(x) := Pr[XP

n = x]. Similarly, pn,P(A) := Pr[XP
n ∈ A]. Moreover,

whenever it is clear from the context, we skip the name of the protocol using
just pn(x).

Definition 1. We say that a protocol P is (d, ε, δ)-size-hiding when for any
possible set of channel states A ⊂ S∗:

pn,P(A) ≤ exp(ε)pm,P(A) + δ (1)

for n,m ∈ N+ such that |n − m| ≤ d.

Lemma 1. If there exist parameters ε, δ and a set A of channel states of protocol
P that, for any n, m such that |n − m| ≤ d:

1. Pr[XP
n /∈ A] ≤ δ and

2. (∀ x ∈ A) Pr[XP
n = x] ≤ exp(ε) Pr[XP

m = x],

then P is (d, ε, δ)-size-hiding.

1 Note that S can represent different sets of states. We are not limited to a two-state
beeping model.
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The above lemma is very intuitive, so we omit the proof. However, the reader
can find the analogous proof for differential privacy property of probabilistic
counters in [11].

Protocols with this property will yield similar results when performed by
networks having similar sizes, resulting in the probability of distinguishing the
network of size n from any network of size [n − d, n + d] negligible if ε and δ are
small.

In some cases, the definition is fulfilled only for n greater than some n0
2.

Let us note that Definition 1 can be seen as a counterpart of the very popu-
lar differential privacy introduced in [3]. The main difference is that we use the
parameter d instead of ”neighboring” states. Note also that one cannot directly
apply methods for preserving privacy in a distributed system (e.g., like the
Laplace mechanism in [4]) since we cannot ”add” negative values while mim-
icking the nodes.

Need of Randomness. First, let us note that any nontrivial protocol hiding the
size needs to be randomized. Clearly, if P is deterministic w.r.t the size n, then
pn,P(xn) = 1 for a unique xn. The deterministic protocol for a fixed network
size generates a fixed sequence of the states on the channel xn.

One can easily see that for any ε ≥ 0, and any n > 0, the inequality 1 from
the Definition 1 can be fulfilled for two consecutive sizes of networks n and n+1
only if xn = xn+1. Inductively, this reasoning can be extended for all n > 0.
Thus the Definition 1 can be fulfilled only if the algorithm returns trivially the
same value for any size n.

3 Universal Algorithm for Beeping Model

This section presents a universal algorithm that can be used as a preprocessing
for a broad class of algorithms. In a typical case, this approach moderately
extends the execution time.

The presented approach is based on the following trick. Each station addition-
ally mimics some random number of ”virtual” stations (called dummies). This
simple idea needs a precise calibration of parameters to be efficient. A careful
analysis of security is presented below.

This approach is universal in the sense that it can be applied to various
algorithms as a separate subroutine3. In particular, the stations do not need any
extra knowledge about the system and do not require any substantial changes
in the executed code. A station ”virtually” executes a code of a regular protocol
for itself and additionally in the name of dummies, so the number of mimicked
stations is never zero. This approach does not require global knowledge and
communication outside the shared channel.
2 That is, it is more difficult to mask the difference between executions when comparing
2 with 22 stations than when comparing 102 with 122 stations.

3 Note that it can be applied in many arrangements distinct from the beeping model
as well.
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On the other hand, one may need to notice some limitations of this approach,
namely it can be applied only in the system, where a single station can imitate
several stations.

It can be realized, for example, in the beeping model described in Sect. 2. If a
given station or any dummy station is scheduled to be transmitted, the station
transmits. Otherwise, it remains silent.

Moreover, this approach can be applied to some restricted classes of prob-
lems. We say that the randomized algorithm is size determined if its random
output Ξ has the same distribution while executed for any network of size given
a priori. Many fundamental problems considered in distributed systems are size
determined, including size approximation, leader election, waking-up, initial-
ization or naming [8]. However, note that some natural problems are not size
determined. One example is summing up all values kept by local stations.

Let us start with a fundamental observation:

Fact 1. Let A(n) be a size-determined protocol executed by n stations. Moreover,
let T be (d, ε, δ)-size-hiding protocol in values in N (independent of A). Then
A(T ) is (d, ε, δ)-size-hiding.

Proof. By the assumption about T , for any n,m ∈ N such that |n − m| ≤ d, we
have Pr(T (n) ∈ N) ≤ exp(ε) Pr(T (m) ∈ N) + δ. Thus, for any l ∈ N, one can
find values δn,m,l ≥ 0, such that Pr(T (n) = l) ≤ exp(ε) Pr(T (m) = l) + δn,m,l

and
∑

l∈N
δn,m,l = δ. Observe that

Pr[A(T )(n) ∈ S] =
∑

l∈N

Pr[A(l) ∈ S] Pr[T (n) = l]

≤
∑

l∈N

Pr[A(l) ∈ S] (exp(ε) Pr[T (m) = l] + δn,m,l)

≤ exp(ε)
∑

l∈N

Pr[A(l) ∈ S] Pr[T (m) = l] +
∑

l∈N

δn,m,l

= exp(ε) Pr[A(T )(m) ∈ S] + δ.

��
Let us note that this fact is a straightforward extension of the post-processing
theorem for differential privacy (e.g., [5]) changed in two aspects. Technically,
we need to consider randomized algorithms A and adapt the formulation to the
modified definition.

How many dummy stations a given real station shall mimic? As proved above,
this number has to be randomized. We assumed that there are n real stations.
The i-th station mimics Xi virtual stations, wherein Xi, for all i ∈ {1, . . . , n}, are
independently and identically distributed according to some fixed distribution
F . In result, the whole system mimics T (n) = n +

∑n
i=1 Xi stations.

A crucial decision is to choose the distribution F . Intuitively, F with higher
variance should have better size-hiding property; however, it may extend the
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expected time of protocol execution compared to the original protocol and wors-
ens the precision of size approximation.

Here, we present a binomial Strategy BS, depending on a parameter p ∈ [0, 1),
wherein each station chooses if it represents just itself (with probability 1−p) or
also mimics one extra station (plays two stations) with probability p. Note that
the analysis below assumes that the parameter p can be known to the adversary.4

In the case of BS Strategy, the total number of dummy stations has binomial
distribution Bin(n, p).

Analysis

Theorem 2. Let TBS(n) be the number of stations mimicked by n stations
applying binomial Strategy with parameter p. Let β(n) < 1

2 be such that:

[np(1 − β(n)), np(1 + β(n))] ∩ N 
= ∅ ,

d(n) ≤ min
{

(1 − β(n))np − 1, (1 − p(1 + β(n)))
n

2
− 1

2

}

for any considered size of the system n. Then TBS(n) is (ε(n), δ(n), d(n))-size
hiding, where

–

ε(n) =
d(n)(1 + p)β(n)

1 − p
+ d(n)β2(n)max

{
1
2
,

p2

(1 − p)2

}

+

(
2d(n)+1

2

)

n(1 − p)

(

1 +
pβ(n)
1 − p

)

+

(
d(n)+1

2

)

np
(1 − p + β(n))

+
d(n)β(n)

n
max

{
1
p
,

2p

(1 − p)2

}

+

(
4d(n)+2

3

)
+ 8d(n)

8n2p2(1 − p)2
,

– δ(n) = 2e−2np2β(n)2 .

Before we start a proof, we will introduce some auxiliary notation and a
related lemma.

Definition 2. For x ∈ R, m ∈ N and h ∈ R, we define a generalized shifted
rising factorial5

[x](h)m :=
m∏

i=1

(x + ih) .

One can define a generalized shifted falling factorial as (x)(h)m = [x](−h)
m . We omit

the upper index whenever h = 1.
4 Many other natural strategies can be considered. We have considered several of the

most natural approaches, and however surprisingly, they give similar results to BS,
so we have picked the most elegant one.

5 An adjective ”shifted” is due to a fact that product starts with i = 1 instead of
i = 0 as it is usually defined (in both versions, the product has m factors). Also
predominantly, h > 0, however we allow h ≤ 0.
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Lemma 2. If |x − 1 ± mh| < 1, then

m(x − 1) + h

(
m + 1

2

)

− m(x − 1)2

2
− h(x − 1)

(
m + 1

2

)

− h2
(
2m+2

3

)

8

≤ ln
(
[x](h)m

)
≤ m(x − 1) + h

(
m + 1

2

)

.

Proof. Note that ln
(
[x](h)m

)
=

m∑

i=1

ln(1 + (x − 1) + ih). Moreover, for |y| < 1,

y − y2

2 ≤ ln(1 + y) ≤ y (simple application of Maclaurin series). Therefore
m∑

i=1

(x − 1) + ih − (x − 1) + ih)2

2
≤ ln

(
[x](h)m

)
≤

m∑

i=1

(x − 1) + ih .

Now, the thesis follows from two classical facts:
∑m

i=1 i =
(
m+1
2

)
and

m∑

i=1

i2 =
m(m + 1)(2m + 1)

6
=

(
2m+2

3

)

4
.

��
Proof (of Theorem 2). Assume that f(n) is a sequence in N

N and f(n) � d(n).
Further, we write shortly f instead of f(n) for convenience. One can see that
Pr(TBS(n) = n + k) =

(
n
k

)
pk(1 − p)n−k , so

Pr(TBS(n ± f) = n + k) =
(

n ± f

k ∓ f

)

pk∓f (1 − p)n−k±2f .

Let us introduce u± as the following quotient of probabilities:

u± :=
Pr(TBS(n) = n + k)

Pr(TBS(n ± f) = n + k)
=

n!(k ∓ f)!(n − k ± 2f)!p±f

k!(n − k)!(n ± f)!(1 − p)±2f
. (2)

Note that E (TBS(n)) = n + np. A form of k of our interest is, therefore,
np(1 + b(n)), where |b(n)| ≤ β(n) (roughly speaking, we want to consider the
quotient only for the points in the vicinity of the mean). Let us consider the
”plus sign” case of (2) first, using generalized shifted factorials:

u+ =
[n − k]2fpf

[n]f (k + 1)f (1 − p)2f
=

[n − np(1 + b(n))]2fpf

[n]f (np(1 + b(n)) + 1)f (1 − p)2f

=
[1 − p(1 + b(n))](

1
n )

2f

[1](
1
n )

f [1 + b(n) + 1
np ]

(− 1
np )

f (1 − p)2f
=

[1 − pb(n)
1−p ]

( 1
n(1−p) )

2f

[1](
1
n )

f [1 + b(n) + 1
np ]

(− 1
np )

f

.

Dually, one can get similar:

u− =
(n + 1)f [k]f (1 − p)2f

(n − k + 1)2fpf
=

[1 + 1
n ](−

1
n )

f [1 + b(n)]
( 1
np )

f

[1 − pb
1−p + 1

n(1−p) ]
(− 1

n(1−p) )

2f

.
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By Lemma 1, one can realize that ε parameter is related to upper bounds of
| ln(u±)|. Namely, if

(∀ n ∈ N)(∃ A(n) ∈ P(N))(∀ k ∈ A) | ln(u±(n, k))| ≤ ε(n) ,

then the 2.condition of Lemma 1 is satisfied. Here, the discrete interval [np(1 −
β(n)), np(1+β(n))]∩N plays a role of the set A(n). At this point, let us remark
that the need for constraint on d(n) in the formulation of Theorem 2 is dic-
tated by the assumptions of Lemma 2. We are going to carefully analyze the
aforementioned upper bounds by utilizing Lemma 2 as follows:

ln(u+) ≤
(

−2fpb(n)
1 − p

+

(
2f+1

2

)

n(1 − p)

)

−
(
f+1
2

)

n
−

(

f

(

b(n) +
1
np

)

−
(
f+1
2

)

np

)

+

(
2f+2

3

)

8n2
+

⎛

⎜
⎝

f
(
b(n) + 1

np

)2

2
−

(
b(n) + 1

np

) (
f+1
2

)

np
+

(
2f+2

3

)

8n2p2

⎞

⎟
⎠

≤ d(n)(1 + p)β(n)
1 − p

+
d(n)β(n)2

2
+

(
2d(n)+1

2

)

n(1 − p)
+

(
d(n)+1

2

)
(1 − p)

np

+

(
d(n)+1

2

)
β(n)

np
+

d(n)β(n)
np

+

(
2d(n)+2

3

)
(1 + p2) + 4d(n)
8n2p2

.

Remark that we tacitly used inequalities 0 ≤ f(n) ≤ d(n) and |b(n)| ≤ β(n) in
the latter transformation. Analogously, we attain:

ln(u−) ≤
(

f

n
−

(
f+1
2

)

n

)

+

(

fb(n) +

(
f+1
2

)

np

)

−
(

2f

(−pb(n)
1 − p

+
1

n(1 − p)

)

−
(
2f+1

2

)

n(1 − p)

)

+

⎛

⎝f

(−pb(n)
1 − p

+
1

n(1 − p)

)2

−
(
f+1
2

) (
−pb(n)
1−p + 1

n(1−p)

)

n(1 − p)
+

(
4f+2

3

)

8n2(1 − p)2

⎞

⎠

≤ d(n)(1 + p)β(n)
1 − p

+
d(n)p2β(n)2

(1 − p)2
+

(
2d(n)+1

2

)

n(1 − p)
+

(
d(n)+1

2

)
(1 − p)

np

+

(
2d(n)+1

2

)
pβ(n)

n(1 − p)2
+

d(n)
n

+
2d(n)pβ(n)
n(1 − p)2

+

(
4d(n)+2

3

)
+ 8d(n)

8n2(1 − p)2
,

with a similar upper bound. However, we are also interested in the lower bounds,
so one can carefully use the same tricks and obtain the following:
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ln(u+) ≥
(

−2fpb(n)
1 − p

+

(
2f+1

2

)

n(1 − p)

)

−
(
f+1
2

)

n
−

(

f

(

b(n) +
1
np

)

−
(
f+1
2

)

np

)

−
(

fp2b(n)2

(1 − p)2
−

(
2f+1

2

)
pb(n)

n(1 − p)2
+

(
4f+2

3

)

8n2(1 − p)2

)

≥ −d(n)(1 + p)β(n)
1 − p

− d(n)p2β(n)2

(1 − p)2
− d(n)

np
−

(
2d(n)+1

2

)
pβ(n)

n(1 − p)2

−
(
4d(n)+2

3

)

8n2(1 − p)2
,

ln(u−) ≥ −d(n)(1 + p)β(n)
1 − p

− d(n)β(n)2

2
− 2d(n)

n(1 − p)

−
(
d(n)+1

2

)
β(n)

np
−

(
2d(n)+2

3

)
(1 + p2) + 4d(n)p2

8n2p2
.

In the end, by Hoeffding’s inequality, we get

Pr [|TBS(n) − n(1 + p)| � β(n)np] ≤ 2 exp
{−2β(n)2np2

}
. (3)

By Lemma 1, inequality (3) and the bunch of inequalities for | ln(u±)|, it emerges
that we can put δ(n) = 2 exp

{−2β(n)2np2
}

and

ε(n) =
d(n)(1 + p)β(n)

1 − p
+ d(n)β(n)max

{
1
2
,

p2

(1 − p)2

}

+

(
2d(n)+1

2

)

n(1 − p)

(

1 +
pβ(n)
1 − p

)

+

(
d(n)+1

2

)

np
(1 − p + β(n))

+
d(n)β(n)

n
max

{
1
p
,

2p

(1 − p)2

}

+

(
4d(n)+2

3

)
+ 8d(n)

8n2p2(1 − p)2
,

in order to attain (ε(n), δ(n), d(n))-size-hiding property of the universal
protocol. ��

Fig. 1. Examples of distributions for different stations with BS strategy. In the case of
a relatively small difference in the number of stations (parameter n), the behaviors of
networks are practically indistinguishable.
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Corollaries and Applications. Theorem 2 is very general and can be used in var-
ious scenarios offering various tradeoffs between the hiding range d and security
hiding quality parameters (ε, δ) . Let us mention three of them (Fig. 1).

Corollary 1. Fix p ∈ (0, 1). Let f1(p) := 1+p
1−p + max

{
1
2 , p2

(1−p)2

}
and f2(p) :=

2
1−p + 1−p

2p . Then there exists n0(p) such that, for any n > n0(p), TBS(n) is

1.
(
ε(n) = f1(p) + f2(p)

(ln(n))2 + O
(

1√
n ln(n)

)
, δ(n) = 2

n2p2 ln(n) , d(n) =
√

n
ln(n)

)

-size hiding;

2.
(

ε(n) = f1(p)

p
√

ln(n)
+ f2(p)

(ln(n))2 + O
(

1√
n ln(n)

)
, δ(n) = 2n−2, d(n) =

√
n

ln(n)

)

-size hiding;
3.

(
ε(n) = f1(p)

p 15√n
+ f2(p)

3√n
+ O

(
n−2/3

)
, δ(n) = 2 exp(−2 5

√
n), d(n) = 3

√
n
)

-size hiding;

These results are obtained from Theorem 2 by substituting the pointed d(n)

and β(n) equal respectively lnn√
n

, 1
p

√
ln(n)

n and 1
pn2/5 . Note that the n0(p) should

be chosen concerning the chosen parameter p ∈ (0, 1) in such a way that the
assumptions of Theorem 2 are true (for n ≤ n0(p) one can modify d(n) and β(n)
to satisfy the assumptions in order to apply the Theorem). Note that in the two
latter cases of Corollary 1, both security parameters tend to 0. On the other
hand, the bound ε(n) = Θ(1) is acceptable and commonly used in differential
privacy literature. Therefore, the first mentioned system of parameters is appro-
priate, especially when p is relatively small (however, we do not recommend
choosing very small p because it occurs that then f2(p) may be uncomfortably
big). Remark that ε(n) = Θ(1) may be obtained from Theorem 2 whenever
d(n)β(n) = Θ(1). Also, note that, if β(n) = O

(
n−1/2

)
, then we can only attain

δ(n) = Ω(1) from Theorem 2.
We demonstrate the power of Theorem 2 under application to some classic

results in the beeping model. We apply Binomial Strategy as a preprocessing
step before executing the algorithm.

Corollary 2. There exists an explicit algorithm that returns (1+ε) approxima-
tion of the size of the network in O(log log n + log f/ε2) with probability at least
1 − 1/f that is

(
ε(n) = 1 + o(1), δ(n) = O( 1

n2 ), d(n) =
√

n
lnn

)
size hiding.

This fact follows from [7] (Theorem 1). Note that in [6], the optimality for
this class of protocols has been proved.

Corollary 3. There exists an explicit algorithm that names n stations with run-
ning time O(n log n) that is correct with probability 1 − n−α and is:

(
ε(n) = o(1), δ(n) = o(1), d(n) = 3

√
n
) − size-hiding .
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This fact follows from the analysis of the naming algorithm in [8]. From the
energy-preserving perspective, a similar result appeared in [9].

In particular, the results listed below describe explicit algorithms as long as
they extend explicit procedures.

Let us note that the chosen decision about mimicking some extra station
can be kept for any number of executions of any algorithm. This approach pro-
tects from information leakage and security decay when the adversary observes
the system from a longer perspective. In effect, there is no need to apply any
composition-like theorems (cf. [5]).

Limitations of the Universal Strategy.
The BS Strategy presented above is adequate when we hide an exact number

of stations with excellent security parameters and negligible execution overhead.
The adversary cannot distinguish between n and n ± √

n stations. This is a
counterintuitive result since one may think that adding, say, a random number of
virtual stations uniformly distributed from {1, 2, . . . , n} could improve the hiding
effect and extend the approach for an arbitrary range of mimicked stations.
Fact 3. Let us consider a strategy such that each station mimics independently
X stations, where X has an expectation and variance μ and σ, respectively. No
such strategy can hide the number of stations for general n and d = ω(

√
n) .

The sketch of the proof would be as follows. Consider two cases for n and N
real stations (N > n). If, according to the algorithm, all stations mimic X
other stations, the total number of mimicked stations would be close to Tn ∼
N (nμ, nσ2) and TN ∼ N (Nμ,Nσ2) (Berry-Essen-type theorem). One can easily
see that T (n) and T (N) can be distinguished with probability greater than 0.977
if Nμ−2

√
Nσ > 2nμ+

√
nσ. The last relation is true even for n,N of moderate

size.

4 Size Hiding in Regular Protocols

Although the previous approach has clear merits, it is limited with respect to
the number of stations that can be hidden in networks of realistic sizes. More-
over, as demonstrated in the previous chapter, this type of approach cannot be
substantially improved when we insist on the assumption that the legitimate
stations do not share any knowledge and execute the same code.

One may suspect, however, that there are particular problems that can be
solved using some size-hiding algorithm offering better properties, in particular
higher d.

In this section, we demonstrate that GreenLeaderElection protocol intro-
duced in [15] by Jacquet et al. is size-hiding for parameter d = Θ(n) (comparing
d = O(

√
n) for the universal algorithm) keeping parameters δ and ε reason-

ably small. Explaining in application terms, the adversary cannot distinguish
between, say, 1000 and 1300 stations, which is a substantial improvement com-
pared to the previous approach. Moreover, we demonstrate that we do not need
to modify the original algorithm by Jacquet et al. to get the size-hiding property.
Note that this is a similar case as noiseless privacy (cf. [13,14]).
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Algorithm Description. The GreenLeaderElection algorithm consists of two
phases. In Phase I, stations transmit in consecutive slots with geometrically
decreasing probability until the silence on the channel. Only the stations trans-
mitting in the last slot with a beep (i.e., survivors) participate in Phase II. The
aim of Phase I is to reduce the size of competing stations. Note that Phase II
can be executed using any leader election protocol effectively since, with high
probability, the number of survivors is very small. This fact is proved in [15,16]).

Analysis. One can see that the information revealed to the adversary consists
of the time of the Phase I execution T and observable of the execution of the
leader election for the limited subset of stations. The latter, however, is entirely
determined by S, the number of stations that survived Phase I.

Algorithm GreenLeaderElection(p)
Phase I

t ← Geo(p)
for round ← 1, . . . , t do

Transmit()
end
channel = GetChannelState()
if channel = Silence then

status ← Candidate
else
status ← NotCandidate

Phase II
if status = Candidate then

LeaderElection()
end

Algorithm 1: Size-hiding leader election scheme for a single station.

Let the pair (Tn, Sn) be the observed random variable by the adversary if
the initial number of stations is n .

The conclusion is based on two observations 1. The expected length of the
Phase I, Tn for n stations, is logarithmic with respect to the network size n, and
it is difficult to distinguish even cases with n and 2n real stations. 2. Number
of survivors Sn that are promoted to Phase II is almost independent of n and
constant w.h.p. While the first observation is relatively intuitive, the second
is based on a careful analysis from [15,16], wherein authors prove some other
properties of this algorithm (mainly limited energy expenditure). This fact is
depicted in Fig. 2.
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Fig. 2. Distribution of the number of stations participating in Phase II for various
network sizes (parameter n). This distribution is almost independent of n (but depends
on p).

Using the exact formulas from [15,16] for distribution of Sn and a very
straightforward analysis of Tn we can numerically check that:

Fact 4. GreenLeaderElection with parameter p = 1/2 with n devices guar-
antees (ε, δ, d(n))-size hiding for ε = 2, δ = 0.0002 and d(n) = 0.25n and for
n > 10 .

Due to space constraints, our presentation is limited to proving that the
original algorithm hides a significant number of stations according to a rigorous
definition. Note that its analysis can be subject to many extensions upon the
needs of a particular scenario. In particular, accepting higher ε can make δ
completely negligible. Moreover, one can easily prove that the same observable
execution may occur for very different sizes much exceeding 25% specified in
Fact 4 with comparable probabilities. In effect, the adversary cannot be certain
even about the order of magnitude of the network size (Fig. 3).

Fig. 3. Maximal parameter δ for n in the range [5, 320] when d = 0.25n. Two examples
with different parameters ε, p.
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5 Conclusions and Future Work

In future work, we aim to answer many natural questions. Even for the beep-
ing model, it is still to be determined how to construct methods simulating the
number of stations much higher than the actual number n for a broader class
of protocols. We learned from 3 that this might only be possible by introduc-
ing shared information between a subset of the stations. It is also unclear how
to extend the results for other restricted communication models with different
feedbacks, especially in the case of classic MAC with or without collision detec-
tion. Next, we may extend this problem to multi-hop networks. It requires a
significant model extension and uses substantially different analytical methods.
Finally, one can see that the results can be significantly improved if we assume
sharing secrets between some of the stations (local cooperation). One may con-
sider investigating an intermediate model wherein only a part of the devices
knows the secret unknown to the outer adversary.
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Abstract. This paper studies how intentional jamming can be used
for selective hiding communication in the 2D Signal-to-Interference-plus-
Noise-Ratio (SINR) model. We aim to place a set of additional jamming
stations to generate interference that blocks all the signals in a specified
restricted area, i.e., by making the SINR value of the genuine stations’
signal below a pre-defined threshold. We aim to optimize the accuracy of
the jamming strategy by minimizing the impact of the jamming stations
on the area of desired genuine communication while jamming the signals
in the given restricted zone. We present solutions in various network
settings for uniform and non-uniform networks. As a secondary aim, we
try to minimize the total energy of the jamming stations. Among others,
we show that, surprisingly, it is possible to jam arbitrarily large areas
by jammers using total energy arbitrarily close to zero. Our contribution
is an extension of recent results for the same problem in the 1D SINR
network. Let us stress, however, that a 2D environment is closer to real-
life settings. Still, the 2D model turned out to be much more complex in
analysis (even for the most uncomplicated cases) and required a different
approach to constructing algorithms.
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1 Introduction

This paper considers limiting genuine communication in two-dimensional SINR
to protect it from eavesdropping selectively. We assume that there are some
restricted areas where we expect that any entity should not successfully receive
the genuine wireless communication signal. On the other hand, communication
outside the restricted areas should be untouched. As a motivation, we can point
to many scenarios, including military communication, preventing industrial espi-
onage, privacy protection by hiding personal communication, or providing wire-
less services in selected workspaces without being overheard in other ones. Such
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an approach is essential if it is not possible to use cryptographic mechanisms. A
good example is an ad hoc network of computationally restricted devices without
the possibility of pre-deployment of any cryptographic material. Finally, in some
cases, one needs to hide not only the content of the message but also the fact that
communication takes place (in systems providing anonymous communication).

Our paper assumes a standard SINR model (Signal to Interference plus Noise
Ratio; model formulated in [1]). In the SINR model, it is assumed that the sig-
nal’s power is fading with distance from the transmitting station and is impacted
by interference from other network devices. It makes a model close to reality and
acceptable from the technology perspective. On the other hand, analysis in this
model can be challenging.

We consider two configurations of SINR networks - uniform and non-uniform
in the 2D space. We construct algorithms for positioning the jamming stations
under these configurations, drawing out the chosen restricted areas while reduc-
ing the unnecessary impact on the original reception zones outside the restricted
areas. Below we recall the most important related work. We introduce the com-
munication model in Sect. 2 and formalize the addressed Zone-restriction with the
Max-coverage problem. Section 3 presents the algorithm for jamming network
configuration for stations that can be heard only inside some area delimited by
2D convex geometric shapes in the uniform network model. Section 4 focuses on
the non-uniform network and presents the 2D variant of noisy dust from [16]. It
utilizes jamming stations with small power levels to cover arbitrary fragments of a
2D plane with interference high enough to block chosen station’s signal. Notably,
this approach allows the reduction of overall energy with the increase of jamming
stations number, reducing its impact on protected station reception zone as well.
Section 5 presents conclusions and the most important future directions.

Related Work. This contribution can be seen as an extension of [16], wherein
a similar problem is considered in the 1D SINR model. The current paper uses
the same notation, describing the problem statement similarly. Note, however,
that the transition analysis of the 2D case is much more difficult. The class of
topological regions in 2D Euclidean space is substantially richer than on the 1D
line. Therefore, the presented analysis required a much more complex approach
and could not be reduced to re-using the methods from [16], which relied on the
interval-based representation of reception zones.

The approach taken in this paper, using jamming stations as a protective
security mechanism (called friendly jamming, has been considered in [3,4,13,17]
in the context of non-SINR models. Some similar approaches for other models
were proved to be practically feasible [14]. Due to the complexity of the SINR
model, our approach and the analysis needs to be completely different. Regarding
the SINR, [3,15] consider a model similar to the one used in this paper, but
with the additional assumption that some regions are restricted from positioning
jamming stations (so-called buffers). In contrast, our solutions are designed to
provide protection of arbitrary configurations without prior restrictions on their
construction and target the optimization of the energy cost of the additional
jamming stations. The directional antennas are also considered there, while this
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paper focuses solely on the omnidirectional antennas, what makes fitting the
noising substantially more challenging. Compared to another similar model in
[17], we target the reduction of the jamming network energy consumption rather
than limit the number of jamming stations. Moreover, a scheme for positioning
stations in a grid relies on the combined interference of adjacent stations, which
do not scale well with some of the network parameters we assume. Let us also
stress that the approach change (primarily focusing on energy usage rather than
limiting the number of stations) led to entirely different jamming strategies.
Some other proactive approaches to securing communication in similar models
can be found in [12].

Our paper can be seen as a continuation of a long list of results about the
SINR model motivated by many real-life wireless networks, including 5G [5].
Note that in [7] authors consider SINR in D-dimensional space for some D > 3.
Although such an assumption seems unjustified in the physical sense, the anal-
ysis of such a case turned out to be beneficial in analyzing algorithms of lower-
dimensional spaces. Geometrical properties of the SINR model were studied by
Avin et al. [2], who analyzed the properties of reception zones under the uni-
form SINR model, showing, among others, their convexity. Non-uniform network
properties were analyzed in [7], along with a new point location algorithm, and in
[8], where non-uniform SINR network model, combined with Voronoi Diagrams,
proved to retain some of the valuable properties of the uniform setting. There
is also a large amount of work considering the fundamental problems under the
SINR model, such as broadcasting [9], link scheduling [10] or power control [11].

2 Model and Problem Statement

Notation. In the following paper, we use the notation presented in [16] extended
and adapted to the 2D model. Let us stress that the rest of the technical part
of this contribution is completely different. Indeed, we failed to re-ruse the tech-
niques from the previous paper, possibly because the topology of 2D case is
much richer, and from the algorithmic point of view, one needs to use subtler
methods to limit communication even in regular-shaped regions.

We consider D-dimensional Euclidean spaces. Since D is always initially
fixed, we indicate a metric simply by d. We denote points as p = (p1, . . . , pD),
vectors as −→v =

−−−−−−−−→
(v1, . . . , vD) and line segments between points p0 and p1 as

(p0, p1). For some polygon P, we will denote the set of its edges as FP = {(x, y) :
x, y ∈ R}, where x, y for each edge will be consecutive vertices of the polygon P.
Moreover, for n ∈ N, we use the notation [n] = {1, . . . , n} and a D-ball of radius
r is denoted as B(r, p) = {x ∈ R

D : d(x, p) � r}.

Model of SINR network
The SINR network is a tuple A = 〈D,S,N, β, P, α〉, where:

– D ∈ N
+ is the dimension of the network,

– S = {s1, . . . , sn} is a set of positions of stations in R
D,

– N > 0 is an ambient background noise (fixed real number),
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– β � 1 is the reception threshold (fixed real number),
– P : S → R is a stations’ power function; by Pi = P (si) we denote the power

of station si,
– α � 2 is a path-loss parameter (fixed real number).

For a network A, we define the SINR function for station si ∈ S and a point
x ∈ R

D\S as:

SINRA(si, x) =
Pi · d(si, x)−α

N +
∑

sj∈S\{si}
Pj · d(sj , x)−α

.

If a network A is known from a context, we simplify the notation to SINR(s, x)
for any station s. For x ∈ S\{si} we put SINR(s, x) = 0 and it is not defined
for x = si. The model in which N = 0 is called SIR. Therefore we replace the
SINR function/model with SIR whenever it is admissible.
We define a reception zone of some station s in a network A as the space where
communication of the station s can be correctly received and we denote it as
HA

s = {x ∈ R
D : SINRA(s, x) � β}. HA

i will be equivalent to HA
si

. Finally, we
define a range of station s for a network with positive noise value (N > 0) as
range(s) =

(
P (Nβ)−1

) 1
α , which maximizes the radius of reception zone of s in

the network consisting of the single station s. This value is also an upper bound
for the possible range of s while other stations are present in the network. Due
to the lack of the noise component in the SIR model, the range definition does
not apply.
Formulation of the Zone-restriction with Max-coverage Problem. For a network
A, there is given a restricted area R: a subset of the space, wherein no station
should be heard. In other words, in all points in R, the SINR function of all
stations in the set S has to be lowered below the threshold β. It can be done
using two techniques. The first is to modify the network parameters – one can
increase the threshold value β, decrease the stations’ powers, or increase the
path-loss parameter α. Second, we can add special jamming stations to the
network to generate interference and change the shapes of the reception zones of
the original set of stations in the network A. An illustration of such approaches
for a single broadcasting station is presented in Fig. 1.

Assume that there is a network A = 〈D,S,N, β, P, α〉 and some subspace
R ⊂ R

D representing a restricted area to be excluded from any communication
involving stations from S. The problem of Zone-restriction with Max-coverage
is to find a set of jamming stations J = (S(J), P (J)) with positions in S(J) and
powers defined by the function P (J) in such a way that the resulting network
AJ = 〈D,S(J) ∪ S,N, β, P ∪ P (J), α〉 satisfies the following two conditions (1
and 2).

Condition 1. S(J) correctly protects R, i.e. (∀ s ∈ S)(∀ x ∈ R) SINR(s, x) < β.

Note that Condition 1 itself could be trivially solved by adding single stations
with appropriately high transmission powers in every connected component of
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Fig. 1. Sample problem for a single broadcasting station.

the restricted area within the ranges of broadcasting stations. It would, how-
ever, significantly suppress the desired communication in the reception zones of
the genuine network. In order to control the above-undesired issue, we define a
yardstick called a coverage – specifying how new reception areas correspond to
their original sizes, excluding the restricted area.

Condition 2. S(J) maximizes the following coverage (ratio) formula:

Cover(J ,A) =

∣
∣
∣
∣
∣

⋃

si∈S

(
HAJ

i ∩ (HA
i \ R)

)
∣
∣
∣
∣
∣
·
∣
∣
∣
∣
∣

⋃

si∈S

HA
i \ R

∣
∣
∣
∣
∣

−1

,

where |A| denotes the measure (volume) of a set A. The inverted part is the
size of the maximal area in which the station’s signal can be received, excluding
the restricted areas. The first part is the size of the real reception area with
jamming. Namely, for each station, we consider HAJ

i , which is cropped to the
maximal area where si can be heard i.e. (HA

i \ R). Note that Cover(J ,A) is
always properly defined, as long as N > 0. Moreover 0 � Cover(J ,A) � 1.
To summarize, the problem considered in this paper is specified as follows:

Zone-restriction with Max-coverage problem: For a given network
A and a restricted area R, find a set of jamming stations and their powers,
J = (S(J), P (J)), correctly protecting R and maximizing Cover(J ,A).

We also would like to minimize a total (jamming) power, defined as

Cost(J ) =
∑

s∈S(J)

P (J)(s) .

3 Uniform Networks Jamming

In this section, we consider networks of the form A = 〈D = 2, S,N, β, P ≡ 1, α〉,
i.e., uniform networks, for which every station will have identical power. Without
a loss of generality, this can be reduced to ((∀s ∈ S)(P (s) = 1)). Such networks
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have nice properties as described in [2], and some of the calculations simplify as
we can remove power parameters. We will start by describing the two stations’
mutual impact when positioned next to each other in this model in Subsect. 3.1,
and in the following sections, we will present different jamming approaches for
more specific network configurations.

3.1 Two Stations in the Uniform Model

In the following lemma, we describe how a single jamming station can split the
plane into two half-planes, such that one is jammed.

Lemma 1. For a network A = 〈D = 2, S = {s0, s1}, N, β, P ≡ 1, α〉 and some
point b = (bx, 0), where s0 = (0, 0) and s1 =

(
bx

(
1 + β

1
α

)
, 0

)
, for any point

p ∈ {(a, b) ∈ R
2 : a � bx}:

– SIR(s0, p) � β,
– SINR(s0, p) < β, for N > 0.

Proof. At first, we are trying to find the distance x = d(s1, b), such that
SIR(s0, b) = d(s0, b)−αd(s1, b)α = b−α

x xα = β. This will give us x = bxβ
1
α .

Now examine the point b∗ = (bx, h), located on the line perpendicular to the
segment s0s1 and crossing the point b. The distances from b∗ to stations s0 and
s1 are equal to d(s0, b∗) =

√
b2x + h2 and d(s1, b∗) =

√
x2 + h2 respectively, for

h = d(b, b∗). A value of SIR for s0 and such points take the form of:

SIR(s0, b∗) =
d(s0, b∗)−α

d(s1, b∗)−α
=

(
x2 + h2

b2x + h2

)α
2

=

(
b2xβ

2
α + h2

b2x + h2

)α
2

.

For h = 0 we get b∗ = b and SIR(s0, b∗) = β. On the other hand, for h > 0, we
get:

SIR(s0, b∗)
β

=

(
b2xβ

2
α + h2

b2xβ
2
α + h2β

2
α

)α
2

� 1 ,

as β � 1; and strict inequality for β > 1. Replacing SIR with SINR, where N > 0,
also gives us strict inequality. Realize, that any point (x∗, y∗), such that x∗ > bx,
will be closer to s1 and further away from s0 than some point b∗ = (bx, y∗),
meaning that SINR(s0, (x∗, y∗)) < SIR(s0, (x∗, y∗)) < SIR(s0, (bx, y∗)) � β. �

From Lemma 1, we immediately conclude that one can configure the position
of jamming station s1 for an arbitrary line and a given station s0 in such a way
that it guarantees the limitation of s0’s reception zone to one side of this line.

3.2 Jamming the Enclosing Area

Let us define a class of enclosing restricted areas, which will surround one or
more jamming stations. In this class, let us define two subclasses - polygonal,
denoted as Rep

P = R
2 \ P, where P is a convex polygon and circular, denoted as

Rec
(x,y),r = R

2 \ B(r, (x, y)).
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Algorithm 1: Assign 2D uniform jamming stations
Algorithm AssignUniformJammingStations(P, s)

S(J) ← {}
for (xj , yj) ← FP do

ldj ← GetLine(xj , yj)
lpj ← GetPerpendicularLine(ldj , s)
bj ← GetLinesCrossingPoint(ldj , lpj )

sj ← s +
−−−−−→
(bj − s) ·

(
1 + β

1
α

)

S(J) ← S(J) ∪ {sj}
return S(J)

Starting with the enclosing polygonal area, we will focus on the problem of
a single station s inside some polygon P, and we want to block the station’s
signal outside the polygon’s boundaries. The following functions are used in the
algorithm:

– GetLine(x, y) creates a line, which includes the segment (x, y),
– GetPerpendicularLine(l, s) generates a line passing through the point s

and being perpendicular to the line l,
– GetLinesCrossingPoint(l, l′) calculates the position of the crossing point

for the lines l and l′.

The algorithm uses Lemma 1 on each of the polygon edges to position one
station on the opposite side of the edge from the s position and within the
distance, which will provide enough interference along the edge to block a signal
of s.

Theorem 1. For a network A = 〈D = 2, S = {s}, N, β, P ≡ 1, α〉, a station
s ∈ P and some restricted area Rep

P = R
2\P, where P is a convex polygon, which

encloses s, Algorithm 1 returns a set of jamming stations’ positions S(J) such
that the set of jamming stations J = {S(J), P ≡ 1} correctly protects restricted
area Rep

P .

Proof. The algorithm constructs a straight line for each polygon segment, split-
ting space into two half-planes. Then the positioning of jamming station sj for
such a segment is done according to the scheme presented in Lemma 1, which
guarantees that all points on the half-plane at the opposite side of the line to
station s, are outside its reception zone. Since we operate for all segments of the
convex polygon, all of these half-planes could be united into the restricted area
Rep

P . An additional interference introduced from other stations can only reduce
the reception zone, so the restricted area will be correctly protected. �

This approach works well for the areas given as the convex polygon, but we
cannot apply it directly when the restricted areas contain some curvy or circular
fragments. Nevertheless, if we assume that some station s is in the center of some
circular enclosing area, it can be solved by applying the method from Fact 1.
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Fact 1. For a network A = 〈D = 2, S = {s}, N, β, P ≡ 1, α〉, a station s and
some restricted area Rec

s,r = R
2 \ B(r, s), Algorithm 1 with a regular polygon P,

inscribed into the disk B(r, s), as an input, returns a set of jamming stations’
positions S(J) such that a set of jamming stations J = {S(J), P ≡ 1} correctly
protects restricted area Rec

s,r.

By inscribing the polygon into the circular area, we can directly apply the
Algorithm 1, and it will correctly block the signal outside the polygon. We can
use different n-gons as the inscribed polygons. The choice of n impacts the cost
(i.e., Cost(J ) = n) and the coverage. In Fig. 2, we present numerical results for
some of the regular polygons. The coverage of a chosen regular polygon can be
bounded using Lemma 2.

Fig. 2. Approximations of different circular shapes. Red spaces represent the initial
disks, green spaces – the polygons – and blue spaces are the final reception zones.
(Color figure online)

Lemma 2. Let s be a single broadcasting station and 0 < r < range(s). If a
restricted area is given by Rec

s,r = R
2 \ B(r, s) and a jamming network J is

created by Algorithm 1 for some regular n-gon P, then coverage of the returned
network with a set of jamming stations J satisfies:

(b(βbαN + n)−
1
α )2

r2
� Cover(J ,A) � |P|

πr2
,

where b is the length of the polygon’s apothem (the distance between s and sides
of the polygon P).

The upper bound is obvious from Fact 1 — we limit the maximal reception
zone by some polygon P. The lower bound can be calculated by approximating
the maximal range of station s in a direction to one of the jamming stations sj . It
is realized by modifying the resulting network, which assumes that all jamming
stations are placed in the same point sj (this trick effectively increases the power
of sj n times). It allows us to calculate the station range in this scenario. We
skip the details of this proof due to space limitations.
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4 Noisy Dust for Non-uniform Networks

This section considers non-uniform networks, wherein the reception zones can be
concave, increasing the analytic complexity. We apply the noisy dust approach
from [16] to flood the restricted area with jamming stations having small power
levels. Note that despite the similarity of the problem and jamming strategy, the
2D case technically significantly differs from considerations in [16].

4.1 Single Station Effective Jamming Range

Consider a single station s = (0, 0) with power P (s) = 1 and some border
point b = (bx, 0) such that 0 < bx < range(s). Let us place a jamming station
sj = (bx(1 + Fj), 0) where Fj = (Pjβ)

1
α (from now on, we tacitly assume that

P (sj) = Pj) and r = bxFj (see the arrangement in Fig. 3a). Note that we require
Fj < 1, so we keep the α � 2 and Pj < β−1 (what also corresponds to the
forementioned property Pj � P ). Clearly the segment (bx, sj) is jammed. The
disk B(sj , r) could be used as an initial approximation of a space, where a single
disturbing station can effectively jam the signal emitted by s – however, it would
be imprecise if we would compare it with the real effective jamming space (see
Fig. 3b - blue space denotes B(r, sj) and a green curve represents a boundary of
the maximal region, where sj correctly jams s).

Fig. 3. Effective jamming range construction.

In the SIR model, the shape of the space, where sj blocks the signal of s,
is expected to form some oval, irregular shape. Surprisingly, it forms a circle,

centered at cj =
(

bx + d(s,b)

F −1
j −1

, 0
)

.

Theorem 2. Let A = 〈D = 2, S = {s, sj}, N, β, P, α〉 be a network, then for

any x ∈ B
(

d(s,b)

F −1
j −1

, cj

)

, the condition SINR(s, x) � β is satisfied.

Fix sj and s. We are looking for such points x, that SIR(s, x) = β. These points
form the border of the area where the signal is blocked (by continuity of SIR
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with respect to the tested position). We are using the radial approach, i.e., we
create a vector

−→
r∗
γ in some direction (γ ∈ [0, π] is an angle between the segment

ssj and the vector), such that x∗
γ = sj +

−→
r∗
γ and SIR(s, x∗

γ) = β (note that SIR
is monotonous in the direction of the vector, so there is exactly one appropriate
x∗

γ). This method is presented in Lemma 3 with construction depicted in Fig. 3c.
We must analyze only half of the reception zone, as the other half is symmetrical.

Lemma 3. Let A = 〈D = 2, S = {s, sj}, N, β, P, α〉 be a network. For γ ∈ [0, π],
we define r∗

γ = d(s, sj)((F−2
j −sin2 γ)

1
2 +cos γ)−1 and a point x∗

γ = sj+
−→
r∗
γ , where

−→
r∗
γ =

−−−−−−−−−−−−−−→
(−r∗

γ cos γ, r∗
γ sin γ). Then SIR(s, x∗

γ) = β and SINR(s, x∗
γ) � β. Moreover,

for any point x ∈ sjx∗
γ , we get SINR(s, x) � β.

Proof. Let us define a base vector −→r =
−−−−−→
(b − sj). The vector

−→
r∗
γ is acquired by

rotating −→r by angle γ in clockwise direction. Obviously, if r∗
γ = ‖−→

r∗
γ‖, then

−→
r∗
γ =−−−−−−−−−−−−−−→

(−r∗
γ cos γ, r∗

γ sin γ). Let us define a new vector
−→
b∗
γ =

−−−−→
x∗

γ − s of length b∗
γ and the

angle between
−→
b∗
γ and −−−→

sj − s as σ (see Fig. 3c). Note that sin γ = h
r∗

γ
, sinσ = h

b∗
γ
,

r∗
γ

b∗
γ
= sinσ

sin γ . Point x∗
γ has to keep the property SIR(s, x∗

γ) = β, so r∗
γ

b∗
γ
= Fj = sinσ

sin γ

and cosσ =
√

1 − F 2
j sin2 γ. By applying it to the d(s, sj) = b∗

γ cosσ + r∗
γ cos γ,

we get

d(s, sj) =
r∗
γ

√
1 − F 2

j sin2 γ

Fj
+ r∗

γ cos γ = r∗
γ

(√
F−2

j − sin2 γ + cos γ

)

.

Finally, we get: r∗
γ = d(s,sj)√

F −2
j −sin2 γ+cos γ

. By the properties of the construction it

is guaranteed that SIR(s, x∗
γ) = β for any γ, so in particular SINR(s, x∗

γ) � β.
From monotonicity of s and sj energy functions in the direction of

−→
r∗
γ , for any

point p ∈ x∗
γsj , SINR(s, x∗

δ) � SINR(s, p), making all such p correctly jammed.
�

In the next step, we want to convert the vector representation of
−→
r∗
γ to a

parametric one. In particular, we may specify h component of
−→
r∗
γ , basing on the

xγ argument as −→rγ =
−−−−−−−→
(xγ , r∗(x)), via a function r∗(x) = h, where x = d(b, xγ) ∈

[0, d(b, xπ)]. This transformation is presented in Lemma 4:

Lemma 4. For every point x∗
γ (γ ∈ [0, π]), there exists x such that x∗

γ = (bx +

x, r∗(x)), where r∗(x) =
(

−x2 +
(

2d(s,b)

F −1
j −1

)

x

) 1
2

and b = (bx, 0). Moreover, {x∗
γ :

γ ∈ [0, π]} forms a half of a circle.

Proof. Let x∗
γ = (bx + x, h), where x ∈ [0, d(b, xπ)]. We want to calculate h in

this formula. It depends on angle γ as follows:

r∗
γ cos γ = d(sj , b) − x , r∗

γ sin γ =
√(

r∗
γ

)2 − (d(sj , b) − x)2 . (1)
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Combining the previously calculated value of d(s, sj) with Eq. 1 brings
(
r∗
γ

)2 = ((d(s, b) + x)2 − (d(sj , b) − x)2)(F−2
j − 1)−1 .

This equation might have two real solutions for
(
r∗
γ

)2. However, we consider only
the positive one, which under assumptions d(s, b) � d(sj , b) and F−2

j − 1 > 0,
satisfies: r∗

γ = (((d(s, b) + x)2 − (d(sj , b) − x)2)(F−2
j − 1)−1)

1
2 . Finally, we can

use this result to calculate the parametrization r∗(x) = r∗
γ sin γ:

r∗(x) = r∗
γ sin γ =

√(
r∗
γ

)2 − (d(sj , b) − x)2 =

√
√
√
√−x2 +

(
2bx

F−1
j − 1

)

x .

Moreover, the last formula is a geometric mean of x and
(

2bx

F −1
j −1

− x

)

, hence

{x∗
γ : γ ∈ [0, π]} is a half of a circle of diameter 2bx

F −1
j −1

. Therefore, the considered

region is in fact B
(

d(s,b)

F −1
j −1

, cj

)

. �

Lemmas 3 and 4 conclude the proof of Theorem 2. If we know the point b and
the expected r = d(s,b)

F −1
j −1

, then we can calculate the power level of station sj as:

Pj = β−1
(
1 + d(s,b)

r

)−α

= β−1rαd(s, cj)−α. We will use this equation in the
following sections to calculate power levels for stations with fixed positions and
for predefined values of r.

4.2 Noisy Dust Algorithm

Using the effective jamming range of a single station, represented by some disk,
we can approximate such the disk by inscribing some hexagon inside. We may
use this fact to tile the 2D regions requiring the jamming. Let us define such
a hexagonal grid by H = {h0, h1 . . . } where hi are central points of equally
sized regular hexagons, each with radius r and assume such grid fully covers the
restricted zone inside the reception zone of some station s. Then the algorithm
for positioning stations for each hexagon is defined in Algorithm 2.

The center of the hexagon can be treated as the cj from the Theorem 2.
The algorithm will position the jamming station somewhere on the line going
through the h = cj and the s and assign enough power to cover the whole
disk circumscribed on the hexagon with center h, providing correct protection.
Correctness of the offset and power assignment comes directly from the Theorem
2 and related constructions.

One must create the hexagonal grid to use the algorithm - the process details
are not part of this paper. For the algorithm to work, the grid must densely fill
the restricted area region intersecting the reception zone of the protected station
s (note that details of the algorithm can be aligned to protect more than one
station).
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Algorithm 2: Create noisy dust for s = (0, 0), restricted area R and
hexagonal grid H with circumradius equal to r.
Algorithm GenerateNoisyDust(s, H, r)

J ← {}
for h ← H do

Pj ←
(

1
β

) (
d(s,h)−r

r
+ 1

)−α

Fj ← (Pjβ)
1/α

sj ← h + (r − Fj(d(s, h) − r))
( −−→

s−h
d(s,h)

)

J ← J ∪ {sj , Pj}
return J

Let us consider the energy cost of Algorithm 2. We assume that the parts of
the restricted area located outside of the range of s are excluded and that the
required number of hexagons of circumradii r required to fill some restricted area
R is defined as n = (|R∩B(range(s), s)|+o(A(r)))A(r)−1 , where A(r) = 3

√
3r2

2
is the area of a hexagon with circumradius r (the assumption about the value
of n is fulfilled in all realistic scenarios). The area of the effectively restricted
region |R ∩ B(range(s), s)| is a constant (R and s are given a priori). It is nat-
urally bounded by the area of the initial disk around the broadcasting station
in SINR model: |R ∩ B(range(s), s)| � |B(range(s), s)| � π · range(s)2. Cumu-
lative energy required to set up jamming stations for arbitrary R is given by∑n−1

i=0 β−1rαd(s, ci)−α , where the circumradius of every single hexagon equals
r, and each jamming station si is positioned in a unique hexagonal cell and vice
versa. Each cell contains only one jamming station.

Observe that one can limit the value of d(s, ci) by a distance between s
and the closest single hex within the hexagonal grid — let us denote it by
ds = min{d(s, cj) : j = 1, 2, . . . , n}. Since d(s, ci) � ds for any hex cell:

n−1∑

i=0

β−1rαd(s, ci)−α <

n−1∑

i=0

β−1

(
r

dS

)α

=
nrα

βdα
S

≈ 2|R ∩ B(range(s), s)|
3
√
3βdα

s

rα−2 .

Remark that for α = 2, this upper bound is constant – 2|R|
3
√
3βdα

s

and one can
similarly find a lower bound of cumulative energy required to set up jamming
stations, by substitution of ds by its antipodal counterpart max{d(s, cj) : j =
1, 2, . . . , n} (which is also bounded by range(s) + r) and realizing that n �
|R∩B(range(s),s)|

A(r) , what shows that in this case (of α = 2), the cumulative energy
is O(1) as r → 0+. On the other hand, for α > 2, the upper bound converges to
0 as r → 0+, which upholds the zero-energy property from the 1D version of the
noisy dust algorithm. When α < 2, both upper and lower bounds are O(r2−α),
as r → 0+, so in this case, the total energy usually rises along with the number
of jamming stations.

We are going to check the actual coverage numerically. We consider four dif-
ferent scenarios for initial network configuration of A = 〈D = 2, S = {s}, N =
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1.0, β = 1.0, P, α = 3.0〉. Each experiment is conducted for hexagons with radii
r ∈ {0.125, 0.25, 0.5, 1} and the coverage results, along with example visualiza-
tion presented in Fig. 4. One can easily see that all cases hold the property that
the coverage value increases as the sizes of hexagons decrease. We see that the
method might not work very well for larger sizes of hexagons in some configura-
tions (like, e.g., the one presented in Fig. 4a), but generally, the method is quite
efficient in practice.

Fig. 4. Coverage obtained for four considered examples with respect to circumradius
r of each hexagon in the grid and illustration of examples with r = 0.025.

5 Conclusions and Future Work

In our paper, we study the problem of protecting communication in the 2D
SINR network. We introduced a formal, realistic model and presented algorithms
usable for uniform and non-uniform network settings. The idea for designing
these algorithms is to limit communication by introducing a carefully prepared
noise generated collectively by a set of stations.

Even though presented solutions are introduced only for some chosen, limited
scenarios, they should be capable of generalization for more complex ones since
more complicated (but still realistic) cases can be represented as combinations
of regular-shaped areas investigated here.

There are multiple directions in future research that can extend these results.
One such is the idea of dynamic environments, where stations and restricted
areas are not static space objects but can change locations and parameters with
time, modeling real-world scenarios like cars or drones. Another direction would
be extending the solutions to 3D or creating generic versions for any number of
dimensions. Finding the energy bounds for generic configurations or tighter cov-
erage bounds for presented solutions is also challenging. The model can also be
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an object of modifications, e.g., assuming we have different receivers’ sensitivity
(e.g., like in [3], where adversary and legitimate receivers use different reception
thresholds).
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Abstract. We show the benefits of the novel MLIR compiler technol-
ogy to the generation of code from a DSL, namely EasyML used in
openCARP, a widely used simulator in the cardiac electrophysiology
community. Building on an existing work that deeply modified open-
CARP’s native DSL code generator to enable efficient vectorized CPU
code, we extend the code generation for GPUs (Nvidia CUDA and AMD
ROCm). Generating optimized code for different accelerators requires
specific optimizations and we review how MLIR has been used to enable
multi-target code generation from an integrated generator. Experiments
conducted on the 48 ionic models provided by openCARP show that the
GPU code executes 3.17× faster and delivers more than 7× FLOPS per
watt than the vectorized CPU code, on an Nvidia A100 GPU versus a
36-cores AVX-512 Intel CPU.

Keywords: automatic GPU code generation · code transformation ·
MLIR · domain-specific languages · heterogeneous architectures

1 Introduction

Cardiac electrophysiology is a medical specialty in which the research community
has long been using computational simulation. Understanding the heart’s behav-
ior (and in particular cardiac diseases) requires to model the ionic flows between
the muscular cells of cardiac tissue. Such models, called ionic models, describe
the way an electric current flows through the cell membranes. The widespread
practice in this field is for experts to describe their ionic model in a domain-
specific language (DSL), which essentially enables to model the current flow by
ordinary differential equations. The openCARP1 [15] simulation framework has
been created to promote the sharing of the cardiac simulation efforts from the
electrophysiology community. To describe ionic models, this framework offers a
DSL named EasyML [20], from which a code generator can derive C/C++ code.
1 https://opencarp.org.
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The next major advances in cardiac research will require to increase by several
orders of magnitude the number of cardiac cells that are simulated. The ultimate
goal is to simulate the whole human heart at the cell level [16], that will require
to run several thousands of time steps on a mesh of several billions of elements.

In order to achieve such simulations involving exascale supercomputers, the
generation of efficient code is a key challenge. This is the general purpose of our
work. We propose to extend the original openCARP code generator using the
state-of-the-art compiler technology MLIR (Multi-Level Intermediate Represen-
tation) [11] from LLVM [10].

MLIR offers a means to express code operations and types through an exten-
sible set of intermediate representations (IR), called dialects, each dedicated to a
specific concern, at different levels of abstractions. The code representation can
use a mix of operations and types from different IRs. Representing the code at an
appropriate level of abstraction enables transformation and optimizations that
would be difficult to achieve with a single general purpose IR. An example of a
high-level abstraction dialect is the linalg dialect which defines operations on
matrices, and comes with a set of optimizations that can take advantage of some
mathematical properties. The linalg operations can then be transformed into
operations expressed in a less abstract IR (this is called lowering). An intermedi-
ate level of abstraction is the scf dialect to represent control flow operations like
loops and conditional statements. Eventually the code is lowered in a dialect,
such as llvm, that has the ability to generate machine code.

In a previous paper [18], we introduced architectural modifications to open-
CARP to enable the generation of CPU vectorized code using MLIR. We have
shown that the MLIR generated vectorized code outperforms the original C/C++
code compiled (and optimized) by standard compilers (clang, gcc, and icc).

In this paper, we present our work to take further advantage of the capabili-
ties of MLIR, to extend the code generator to GPU code generation. This repre-
sents a stepping stone for the final objective of the MICROCARD2 project to be
able to combine instances of optimized CPU and GPU kernels, that will eventu-
ally be dynamically scheduled by a runtime on the varied computing resources of
a supercomputer. The main contributions of this work are: (i) a code generator
from a DSL to efficient heterogeneous code by leveraging MLIR; (ii) an integra-
tion of this code generator in the compilation flow of a cardiac electrophysiology
simulator (openCARP); (iii) a performance improvement of openCARP benefi-
cial to the electrophysiologists, paving the way to larger scale experiments.

The paper is organized as follows. Section 2 details the extension we propose
for the openCARP compilation flow. Section 3 presents our GPU code generation
using MLIR. A discussion about the challenges we faced and the reusability of
our work is provided in Sect. 4. Performance and energy efficiency is evaluated
on CPU and GPUs in Sect. 5 on all 48 ionic models available in openCARP.
Related work is covered in Sect. 6, and finally Sect. 7 concludes the paper.

2 https://microcard.eu.

https://microcard.eu
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1 Vm; .external(Vm); .nodal();
2 Iion; .external (); .nodal();
3 group { mu1 = 0.2; mu2 = 0.3; }. param();
4

5 t_norm = 12.9; vm_norm = 100; vm_rest = -80;
6 touAcm2 =100/12.9;
7 V_init = 0; Vm_init=vm_rest; K = 8; epsilon = 0.002; a = 0.15;
8

9 U = (Vm -vm_rest)/vm_norm;
10 diff_V = -(epsilon+mu1*V/(mu2+U))*(V+K*U*(U-a-1))/t_norm;
11

12 Iion = (K*U*(U-a)*(U-1)+U*V)*touAcm2;

Listing 1. AlievPanfilov ionic model written in EasyML

2 Compilation Flow in OpenCARP

2.1 EasyML: Description of Ionic Models

In openCARP, biomedical mathematicians use EasyML [20] as a DSL to write
ionic models (as mathematical equations) that represent the current that flows
through a cell of cardiac tissue from a given cell state. Many other languages
(e.g. CellML, SBML, MMT) used to write ionic models can be easily translated
to/from EasyML through scripts available in openCARP and Myokit [7]. Some
characteristics of EasyML are as follows:

1. SSA (static single assignment) [8] representation, so all variables are defined
as mathematical equalities in an arbitrary order;

2. specific variables prefixes/suffixes (such as init, diff , etc.);
3. calls to math library functions;
4. markup statements to specify various variable properties, such as: which

method to use for integrating differential equations (.method(m )), whether
to pre-compute a lookup table of predefined values over a given interval
(.lookup), which variables to output (.trace), etc.;

5. it is not Turing-complete since it cannot express loops, control flow, or
sequence of elements—but there can be tests expressed as restricted if/else
statements or as C-like ternary operators.

Example. Listing 1 shows the EasyML code for the very simple AlievPan-
filov [1] ionic model. The variables Vm and Iion (voltage and current) are
declared as external on lines 1–2 as they will be used by other parts of the open-
CARP simulator. Line 3 defines a group of runtime controllable parameters.
Lines 5–7 initialize some variables. Line 10 calls the Forward Euler (fe) default
integration method to recompute V by using the DSL diff prefix, and line 12
computes the Iion (current) flow out of the cell.

2.2 Code Generation in OpenCARP

The openCARP simulation handles a mesh of elements, potentially containing
many biological cells, but for simplification purposes we will refer to a mesh
element as a cell in the following. A simulation step is composed of two stages:
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1 void compute_AlievPanfilov (...) {
2 #pragma omp parallel for schedule(static)
3 for (int __i=start; __i <end; __i++) {
4 AlievPanfilov_state *sv = sv_base+__i;
5 // Initialize the ext vars to current values
6 Iion = Iion_ext[__i], Vm = Vm_ext[__i];
7 // Compute storevars and external modvars
8 U = ((Vm -( vm_rest))/vm_norm);
9 Iion = (((((K*U)*(U-(a)))*(U -(1.)))+(U*sv ->V))*touAcm2);

10 // Complete Forward Euler Update
11 diff_V = ((( -(0.002+((p->mu1*sv ->V)/(p->mu2+U))))*(sv ->V+((8.*U)*((U

-(0.15)) -(1.)))))/12.9);
12 V_new = sv->V+diff_V*dt;
13 // Finish the update
14 Iion = Iion , sv ->V = V_new;
15 // Save all external vars
16 Iion_ext[__i] = Iion , Vm_ext[__i] = Vm;
17 }

Listing 2. Baseline openCARP generated code snippet of the AlievPanfilov model
from Listing 1

– a compute stage: the ionic model is used to compute the current (Iion) that
flows in and out of each cell; all cells share read-only data and each one of
them updates its private state variables;

– a solver stage: the computed current is passed to a linear solver to recompute
each cell membrane electric potential (V). OpenCARP uses either PETSc [4]
or Ginkgo [2] as a linear solver.

In this paper, we only discuss the first stage compilation flow, code generation,
and optimization opportunities. The solver is out of the scope of this paper.

The upper part of Fig. 1 (so excluding the dashed line box) shows the original
code generation flow in openCARP. A python code generator called limpet fe
takes an EasyML model description as input and generates an Abstract Syntax
Tree (AST) from it. From the AST, limpet fe emits C/C++ output code with
(i) functions to initialize parameters, lookup tables, and state variables, and (ii) a
compute function that scans all cells in a for loop, to calculate the output Iion
current and update the state variables. Finally, the generated code is compiled
using a standard C/C++ compiler and the object file is used for simulation. We
call this original compilation flow of openCARP the baseline.

Listing 2 shows a snippet of the compute function emitted by the openCARP
baseline version for the AlievPanfilov model. The for loop at line 3 iterates
across all cells. Notice the preceding omp parallel for directive (line 2) as
there is no loop-carried dependency between iterations. Line 4 retrieves the state
variables pointer. Line 9 and 14 are the calculation of the new current (Iion)
and its flow. Lines 11–12 integrate the potential with the Forward Euler method.

2.3 Vectorized CPU Code Generation Using limpetMLIR

The fact that the main loop independently computes the cell’s states suggests
that we can parallelize computations further using different types of parallel
hardware. One possibility is to exploit the CPU SIMD units by vectorizing the
code. While the current mainstream compilers try to automatically generate



GPU Code Generation of Cardiac Electrophysiology Simulation with MLIR 553

Fig. 1. Overview of the code generation, from the EasyML model to an object file. The
dashed line box shows how limpetMLIR fits into the original code generation process,
to emit optimized code for CPU and GPU.

vectorized code, they fail to do so in the presence of complex control-flow opera-
tions, external function calls, or pointer arithmetic used in complex stride-based
memory accesses, which is the case in the openCARP generated code.

We have presented in a previous paper [18] how this limitation can be dealt
with by generating code represented in specific intermediate representations
(IR) suited to express vectorization. For that purpose, we used MLIR [11] from
the LLVM [10] compiler infrastructure. Using some of the conventional MLIR
dialects (namely vector, scf, arith, math, memref, and openmp) we have
integrated an extension called limpetMLIR in the openCARP code generator.
The most computationally intensive part of the code (the compute function’s
main loop) is generated in MLIR. The advantage of using MLIR lies in its
abstraction with respect to the final target: for example, instructions in the
vector dialect might be compiled for different hardware (SSE, AVX2, AVX-512,
or even SVE, NEON, ...) while being on par regarding performance with the equiv-
alent code using target specific intrinsics.

Another advantage is that MLIR can target completely different hardware,
like GPUs. We present in the following the challenges that we faced to generate
efficient GPU code from a real application DSL using the MLIR infrastructure.

3 Optimized GPU Code Generation

3.1 Overview of GPU Code Compilation Flow

Figure 1 shows the compilation flow of limpetMLIR. The process is as follows:

1© From the EasyML description the limpet fe python program creates an
AST, which serves as a common entry point for the baseline openCARP and
limpetMLIR.
2© Using python bindings, our limpetMLIR code generator emits MLIR code

using the scf, arith, math and memref dialects; the control flow expressed in
scf allows the latter MLIR passes to lower it to a parallel control flow in the
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gpu dialect. In Listing 3, lines 2–3 show the two scf.for loops, which will
be translated into an outer loop and an inner loop iterating over the GPU
blocks and threads within a block respectively.
3© The MLIR lowering pass converts the MLIR code into a GPU device code
part using a specific GPU low-level dialect. This low-level dialect can be either
nvvm (the Nvidia CUDA IR) or rocdl (the AMD ROCm IR) depending on
the target GPU architecture. This pass finally outputs a binary blob that will
be integrated by the next step.
4© The MLIR translator pass converts the MLIR code into a CPU host code
part (represented using the llvm dialect) to LLVM IR, and that calls the
kernel embedded in the binary blob.
5© Last is the linking phase, where C/C++ and LLVM IR GPU files are linked
together into an object file using LLVM.

3.2 LimpetMLIR for GPU

Some specific features of openCARP were adapted or extended by the CPU ver-
sion of limpetMLIR for their integration with MLIR and optimized code genera-
tion: lookup tables (LUTs), integration methods, multi-model support, and data
layout transformation. Similarly, the GPU version of limpetMLIR provides sup-
port for host/device memory management, integration methods, lookup tables,
and multi-model support. They are provided as a set of GPU helper functions
and as specific MLIR emitted code, and are described hereafter.

Memory Management. One well-known pitfall regarding performance is the
data transfers between host and device because of the PCIe bus bottleneck.
These necessary transfers are not part of the MLIR code generation process,
but are inserted into the code that wraps the ionic model computation for the
following reasons: (i) we want to keep the structure of the MLIR code as similar
as possible for all types of devices, so we focus on generating MLIR for the
compute function only, (ii) other openCARP software parts access this memory
(e.g. solvers), and (iii) we want to precisely control the data movements behavior
regarding performance. We implement the memory management preferably using
unified memory with cudaMallocManaged or hipMallocManaged. As a side note,
it happened on our AMD test platform that hipMallocManaged is not supported
and falls back to inefficient data transfers. In that case, we could easily change
it to explicit allocation and memory copies between host and device.

Integration Methods. The complex mathematical functions and equations in
the integration methods are represented using MLIR. The MLIR code that we
generate for GPU has the same structure as the one generated for the vectorized
version. They differ in the data type they use (vector<?xf64> vs. f64 data type)
and their respective memory load/store primitives. We only need the arith and
math dialects to represent the following methods: Forward euler, Runge-Kutta
with 2 and 4 steps (rk2 and rk4 ), Rush-larsen, Sundnes, and Markov be. Brief
information on these integration methods can be found in [18, Sect. 3.3.2] of
our previous work. In Listing 3 lines 10–26 show the MLIR representation for
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1 %7 = memref.load %6[% c0_3] : memref <?xf64 >
2 scf.for %arg9 = %0 to %3 step %c1 { // iterate over blocks
3 scf.for %arg10 = %c0 to %c512 step %c1 { // iterate over threads
4 // ... code skipped for space
5 scf.execute_region {
6 %11 = arith.cmpi slt , %9, %1 : index
7 cf.cond_br %11, ^bb1 , ^bb2
8 ^bb1: // pred: ^bb0
9 // ... code skipped for space

10 %cst_11 = arith.constant 8.000000e+00 : f64
11 %cst_12 = arith.constant 1.500000e-01 : f64
12 %cst_13 = arith.constant 1.000000e+00 : f64
13 %cst_18 = arith.constant 2.000000e-03 : f64
14 %35 = arith.mulf %5, %31 : f64
15 %36 = arith.addf %7, %24 : f64
16 %37 = arith.divf %35, %36 : f64
17 %38 = arith.addf %cst_18 , %37 : f64
18 %39 = arith.negf %38 : f64
19 %40 = arith.mulf %cst_11 , %24 : f64
20 %41 = arith.subf %24, %cst_12 : f64
21 %42 = arith.subf %41, %cst_13 : f64
22 %43 = arith.mulf %40, %42 : f64
23 %44 = math.fma %40, %42, %31 : f64
24 %45 = arith.mulf %39, %44 : f64
25 %cst_19 = arith.constant 1.290000e+01 : f64
26 %46 = arith.divf %45, %cst_19 : f64
27 // ... code skipped for space

Listing 3. MLIR code snippet for GPU generated by limpetMLIR for the
AlievPanfilov model from Listing 1

Forward euler. Line 10 in Listing 1 and lines 11–12 in Listing 2 represents the
same Forward euler code in EasyML and in the baseline generated openCARP
code, respectively. The Rosenbrock integration method using function calls was
implemented using GPU helper functions.

GPU Helper Functions. During the compute stage, openCARP performs
function calls to (i) lookup table based interpolation (to use pre-computed LUT
values for complex mathematical functions), and (ii) the Rosenbrock integration
method (to perform LU decomposition and integration). MLIR cannot inline a
function call and it is very hard to automatically generate MLIR code for those
function calls. So, we add those function calls during the MLIR code generation
and we write their respective implementations in GPU device code such that they
are called and executed on GPU without any call back to CPU. For example
in Listing 4, lines 5 and 7 are the function calls. Also, we provide accessor
functions that assist in loads and stores of external variables of ionic models and
state variables of cells.

Implementation Effort. For our implementation, we wrote about 10k source
lines of code (39% python, 26% MLIR, 23% C++, and some GPU kernel and
CMake code). The total auto generated lines of code for all 48 ionic models are
as follows: baseline: 39621; vectorized limpetMLIR: 111883; GPU: 78025.
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1 // ... code skipped for space
2 scf.execute_region {
3 // ... code skipped for space
4 %147 = memref.view %146[% c0_127 ][] : memref <?xi8 > to memref <1xi8 >
5 func.call LUT_interpRow (%144 ,%122 ,%147) :(f64 ,i32 ,memref <1xi8 >) ->()
6 // ... code skipped for space
7 func.call rosenbrock_StepX (%814 ,%830 ,%c3):(memref <1xi8 >,f32 , i32) ->()
8 // ... code skipped for space

Listing 4. MLIR code snippet generated for GPU by limpetMLIR for the
Bondarenko model

4 Discussion

We have explained above the overall software architecture of openCARP and
how we have fit into it our optimizations of the critical part concerning the ionic
model computation. We now discuss in this section the general principles and
caveats to consider when envisaging such an approach.

Writing Abstract Optimizations. The identification of a general pattern
of optimization can be an incentive to use MLIR to describe this pattern. For
instance in our case, the loop that carries no dependencies between iterations
can trigger the idea that it can be represented as a parallel loop, whatever the
available hardware to execute it in parallel. Generating only the loop control
flow in a language-independent representation enables to later generate special-
ized code for different programming models or accelerators, as we do in our
case for OpenMP, CPU vector processing units or GPUs. Although writing this
representation still requires to precisely understand the code semantics and the
optimization potential like an expert would do to optimize for a given device,
MLIR offers a more abstract and therefore portable way of coding these opti-
mizations. The programmer is indeed relieved from the burden of writing the
eventual implementation for each specific target architecture as he/she can rely
on the lowering passes included in MLIR. And as MLIR continues to evolve,
relying on LLVM as a back-end, it is expected that optimization improvements
and support for new targets will be integrated over time.

Choosing Dialects. One challenge lies in how to represent the input problem
using the large number of available dialects in MLIR. In our example, the con-
trol flow expressed by the loop can be represented in the scf dialect or in the
affine dialect. The affine dialect is more specific than scf as it represents
the particular case of affine loops (which matches our case). As MLIR offers a
transformation from affine into the gpu dialect it would be a possible choice.
However, our objective to have the most abstract representation makes us choose
scf because it allows to derive both GPU and vectorized CPU code. For the GPU
code, we wrote a simple pass to transform scf to affine and rely afterwards on
the affine to gpu pass provided by MLIR. For the vectorized version, we used
the MLIR pass that lowers scf to the cf dialect, which represents the control
flow using SSA blocks.
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A New Dialect? MLIR can be extended by defining new dialects along with
associated transformation passes. Hence, a legitimate question is to assess if the
problem would be better expressed in a new dialect, especially if optimizations
are more tractable using operations and types at this level. Some works [9,17]
have proposed such higher level dialects while interacting with other domains. In
this work, we have not felt the need for a new dialect as the set of existing ones
is expressive enough to represent the statements and mathematical operations
that we need to support heterogeneous code generation.

5 Experimental Results

We evaluate limpetMLIR on an A100 Nvidia GPU (9,700 GFLOP/s peak per-
formance on doubles, 400 W), on an AMD Radeon Instinct MI50 GPU (6,600
GFLOP/s, 300 W), and on a 2× 18-core Cascade Lake Intel Xeon Gold 6240 @2.6
GHz (850 GFLOP/s, 2× 150 W), turbo boost and hyperthreading disabled, 192
GB of RAM @2933MT/s. On CPU we ran (i) the 36 OpenMP threads baseline
openCARP, and (ii) the 36 OpenMP threads AVX-512 limpetMLIR version.

We implemented limpetMLIR on top of the openCARP source from the
git repository. We compiled them using the LLVM compiler infrastructure tag
15.0.2, which has all necessary compilation tools including Clang and MLIR.
We run all 48 ionic models available in the openCARP benchmarks, using the
bench executable to run the compute step alone and get a trace every 100 steps.
We used 819,200 cells with a 10,000 step simulation. Each model is run five
times, the two extreme measures are eliminated and the remaining three are
averaged.

The total number of floating point operations necessary to run each ionic
model was measured with the hardware counters on the CPU. The GPU probably
does less operations due to mathematical functions being optimized, but we used
the same baseline value measured on CPU for a fair comparison.

For the GPU execution we chose a block and thread dimension of 1, a number
of threads per block (CTA size) of 64, and a number of blocks of {number
of cells/64}. We empirically determined that this provides the best performance
results on our platforms for all models. This value can be easily adjusted if
running on different hardware.

5.1 Performance

Nvidia CUDA Performance. Figure 2 shows the floating-point operations
executed per second by the CPU baseline, limpetMLIR AVX-512 vectorized, and
A100 GPU versions of openCARP. The x-axis lists all 48 ionic models and the
y-axis is the GFLOP/s performance. On the x-axis, we sorted the ionic models
from the shortest to the longest execution time (of the baseline). We classified
them into three categories: 17 ionic models executing in less than one minute
into the small category, 19 ionic models executing in 1–5 min into the medium
category and the remaining 12 with more than 5 min execution time into the



558 T. Trevisan Jost et al.

Fig. 2. Performance on Nvidia A100, in giga floating operations per second

large category. Note that the large models are usually also the most realistic ones
(they are the closest to the physics) and are widely used in realistic physiological
simulations.

From Fig. 2 we can observe with no surprise that the GPU code performs
better than the CPU openCARP versions in all ionic models. GPU optimized
codes report the highest GFLOP/s for the large models, that perform the most
computations. Overall, considering the geometric mean, we reach 185 GFLOP/s
on this platform, the GPU optimized code executes 3.17× faster than the vec-
torized CPU code, and 7.4× faster than the baseline openCARP.

However, the model that exhibits the best performance reaches 713
GFLOP/s, that is only 1/13 of the raw performance the A100 can deliver. Also,
the A100 has 11.4x the raw performance of our test bed CPU (850 GFLOP/s) so
the average gain of 3.17x seems pretty low. The reason is that those ionic models,
taken from a real simulation application, have a pretty low compute intensity: a
geomean of 0.35 flop/byte. This means that they execute many memory opera-
tions along with floating point calculations. Better performance on large models
is explained by their greater compute intensity: a geomean of 3.02 flop/byte if we
exclude Bondarenko and Aslanidi. Those two specific models have lower per-
formance results than the other ones, as they have in common to call a memory
intensive integration method (Rosenbrock). Overall, the low compute intensity
explains that the GPU performance is far from the maximal hardware perfor-
mance, and that the CPU with multiple levels of fast and large caches is better
at this.

We also report that one of those best performing model (Steward) was
manually written in CUDA by our HPC expert, using explicit memory copies.
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Fig. 3. Performance on AMD MI50, in giga floating operations per second

We measured very similar performance between this code and the limpetMLIR
generated code (the handwritten code is less than 5% faster).

AMD ROCm Performance. We did the same experiments on the AMD MI50,
as reported in Fig. 3. We reach a geomean performance of 156 GFLOP/s on
this platform, and the overall results are pretty similar except for one point:
the MI50 performs better than the A100 on small and medium ionic models
while we can observe the opposite for the large models. The AMD version is
sometimes even outperformed by the CPU vectorized version (for example on
Grandi and Augustin). The difference in memory management (see Sect. 3.2)
between the CUDA and ROCm implementations is the main reason for this
lower performance on large models and better performance on small models.

Considering the geometric mean, the AMD ROCm limpetMLIR code exe-
cutes 2.67× faster on MI50 than the vectorized CPU version. This number com-
pares to 3.17× on A100, since the A100 has almost 50% more maximal raw
performance than the MI50.

5.2 Energy Efficiency

We reported GFLOP/s raw performance results as it is good practice, but those
numbers are not very meaningful when comparing completely different architec-
tures with very different raw computing power. The FLOP per consumed Joule is
a much better scale to compare them with the perspective of running on energy-
aware supercomputers. We measured the total energy consumption by running
the benchmarks on the CPU using the hardware counters, as the sum of package
and RAM consumption; on the Nvidia GPU, we used the nvidia-smi command
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Fig. 4. Energy efficiency on Nvidia A100, in GFLOP per Joule

to regularly poll instant power consumption during the kernels execution, and
averaged them; a similar command (rocm-smi) was used on AMD GPUs.

Figure 4 shows the energy efficiency (y-axis) of the limpetMLIR generated
code on the A100 GPU compared to the CPU baseline and vectorized versions,
for all 48 ionic models (x-axis). A first remark from this figure is that the
difference between small, medium, and large models is much less significant than
on the previous figure. Only the very small models performing very few floating
point operations, and in general the ones that have a small compute-intensity
(e.g., as already noticed, Bondarenko and Aslanidi), have a low efficiency on
GPU. The numbers reported in this plot pretty closely relate to the compute-
intensity of those different benchmarks. For example, ISAC Hu (col. 4) has an
intensity of 1.6 flop/byte, while DefibAshihara (col. 5) has only 0.28 flop/byte
and is much less power efficient.

Not reported in our previous work [18], the geomean energy gain of the CPU
AVX-512 vectorized version compared to the baseline openCARP CPU version
is 2.3×, and it is especially significant on the large models (7.1×): on CPU, the
largest benchmarks have the most energy gain when vectorized. On the other
hand, for all benchmarks, the efficiency of the GPU is consistently higher than
the best CPU version. Considering all ionic models the geomean energy gain of
the A100 GPU over the vectorized CPU version is 8.72×.

We performed the same measurements (not shown in the plot) on the AMD
MI50 GPU and obtained similar results: as reported before, the MI50 is faster
and has also better energy efficiency than the A100 on small models, but worse
efficiency on the medium and large ones. The geomean power efficiency of the
MI50 is 1.54 GFLOP/J, a bit lower than the A100 1.92 GFLOP/J, but still
much better than the vectorized CPU version 0.22 GFLOP/J.
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6 Related Work

Since we integrated our GPU code generation in limpetMLIR on top of the
vectorized code generator [18], it resembles our very close work and most of
related work intersects.

Fried Lionetti et al. [12,13] generated CUDA kernels for electrophysiology
simulations in cardiac modeling using python tools. With the help of python
sympy [6] they represented mathematical equations of cell models and translated
them into a C code. With python pycparser they build an AST from the emitted
C code. Finally, they traverse the AST to emit equivalent CUDA kernels, and
applied source-to-source optimizations on the CUDA kernels.

Myokit [7] is a python-based software used for the cardiac simulation of
myocytes (cardiac muscular cells). Myokit accepts inputs in multiple formats
and can generate heterogeneous source code (C, python, Matlab, CUDA, and
OpenCL), relying on the standard compilers for optimizations. Though open-
CARP and Myokit share very similar characteristics for ionic cardiac simula-
tion, their purpose is different, the first one targeting simulation of (parts of)
the whole organ, the second one considering individual biological cells.

Campos et al. [5] used GPU technology to utilize the parallelism in Lat-
tice Boltzmann method for cardiac simulations using the monodomain model,
a different ionic model. Zhang et al. [21] developed a GPU system for cardiac
simulation and visualization.

All these code generators rely on external systems or scripts to generate GPU
code, and perform source-to-source translation or depend on standard compilers
for optimizations. Our code generator differs from theirs, as we incorporate the
cardiac simulation code into the compiler IR, and then give hints to the compiler
for optimization and code generation for various architectures.

With respect to MLIR, there are works that generate GPU or heterogeneous
optimized code. Polygeist [14] acts as a C/C++ frontend to MLIR and gener-
ates affine dialect code to better utilize the polyhedral optimization and code
generation available in MLIR. As said in previous work [18], Polygeist cannot
handle complex codes (like ionic model descriptions) as input. Gysi et al. [9]
propose a new dialect for GPU-based stencil computations in weather and cli-
mate domains. Both those works followed a similar approach to ours but we have
different input requirements.

7 Conclusion

In this paper, we have presented how the quite recent multi-level intermediate
representation concept that arose from the research community in compilation
can be applied to a production-level scientific application, namely openCARP, a
cardiac electrophysiology simulator. The challenge is to integrate into the exist-
ing code base the generation of highly optimized code both for CPU and GPU.
We have explained the modifications we have brought to the code generation
process which originally generated C/C++ code from models expressed with a
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DSL. The paper discusses the design choices that arise when it comes to choose
among the available dialects to represent the code structures and statements
at the appropriate abstraction level. We show that we were able to factorize a
large part of the MLIR generated code that was used for vectorization in CPU,
and explain how the necessary additions to generate GPU code are implemented
through the lowering passes. Finally, MLIR allows us to produce code that has
the same level of performance as native code but in a more portable way. The
evaluation of our GPU version is carried out on the full set of models shipped
with openCARP and shows it brings a significant performance improvement
over the CPU vectorized version both in terms of execution time and energy
efficiency. As a perspective, we want to further extend this work by integrating
the code generator with a task-based runtime system like StarPU [3], in order
to exploit simultaneously CPU and GPU so able to run experiments at larger
scales.
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Abstract. Fluid instability plays a fundamental role in the research of
astrophysics, energy power, chemical industry and new materials. The
Smoothed Particle Hydrodynamics (SPH) method is a useful tool for sim-
ulating interfacial flows such as multiphase flow, high-velocity impact,
explosion phenomenon. However, SPH method harnesses an enormous
amount of particles for accuracy, which consumes a lot of computing
power. In this paper, we present a massively parallel SPH scheme on the
new Sunway supercomputer, SWSPH. In order to take full advantage
of large-scale heterogeneous many-core computing system, we propose a
series of parallel strategies and optimization methods. Experiments show
that SWSPH has the capability of handling hundred-billion-particles sim-
ulations of fluid instability phenomenon on 39 million cores with a per-
formance of 76% parallel efficiency.

Keywords: Smoothed Particle Hydrodynamics · Sunway
Supercomputer · Manycore computing · Large-scale simulation

1 Introduction

Fluid instability plays a fundamental role in the research of astrophysics [12],
energy power [17], chemical industry and new materials [11]. The macroscopic
fluid dynamics method based on grid discretization requires high order precision
algorithm to track the interface evolution accurately because of numerical dif-
fusion, and it is inconvenience to capture moving features such as free surfaces,
deformable boundaries and moving interfaces [18]. Smoothed Particle Hydrody-
namics (SPH) method, which adopts pure Lagrangian algorithm is a useful tool
for simulating interfacial flows such as multiphase flow, high-velocity impact,
explosion phenomena.

In SPH simulation, fluid is represented by a large number of freely moving
“particles” with physical properties such as density, velocity, pressure, and tem-
perature. The motion and thermodynamic state of these “particles” are governed
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by the conservation laws of mass, momentum, and energy in the Lagrangian
form. Its core algorithm evolves a system of particles via a set of pairwise inter-
actions. The interactions between particles are evaluated by calculating pairwise
distance and checking whether they reside in each other’s support domain, which
is typically the most time-consuming part for the simulation.

With the development of modern architecture, the growth rate of computing
power is faster than the speed of memory transfer. Therefore, memory access
becomes the bottleneck for various applications. Each strive for performance
portability, flexibility, and scalability across architecture with deep memory hier-
archies by providing optimized data structure, data layout, and data movement.
The New Sunway Supercomputer is the successor of the Sunway TaihuLight
[9], which is equipped with over 600000 SW26010pro processes cores and pro-
vide a theoretical peak performance of 1 EFlops/s. The homegrown many-core
SW26010pro is composed of 6 core-groups (CGs), each of which includes one
management processing element (MPE), and one 64 computing processing ele-
ments (CPEs) cluster arranged in an 8 by 8 grid, a total of 390 cores. It would
be a severe challenge for task partitioning and assignment strategies for 390-
cores CPU to achieve high performance, and it will be of exemplary significance
to study and evaluate how to optimize the performance of particle simulation
applications. As compared to its predecessor, SW26010pro’s 256 KB scratch
pad memory (SPM) can be configured as eith user-controlled local data memory
(LDM) or hardware cache for automatic data buffering. Compared with using
a software-emulated cache adopted by early efforts [7,8], the highly coalesced
global memory access can more naturally boost the memory access performance
by enhancing both the temporal and the spatial locality.

In this paper, we propose an implementation of massively parallel SPH on
New Sunway Supercomputer. Compared with GPU and other many-core accel-
erators, the unique master-slave architecture and deep memory hierarchical of
SW26010pro make the design of parallel programs significantly challenging. The
main contributions of this paper are summarized as follows:

– We implement SWSPH, a SPH package for simulating of fluid instability on
new generation Sunway supercomputer and scale it to 39 million heteroge-
neous cores handling one hundred billion particles and evaluate its perfor-
mance.

– We address a mesh refinement method towards large-scale distributed
computing system and a volume adaptive scheme for modeling strongly-
compressible multiphase flows. Aiming at the load balance in the simulation
application, we have adopted corresponding methods in the design of multi-
level parallelism.

– In the absence of a low overhead locking mechanism on the Sunway proces-
sor, we propose a fine-grained task partitioning and assignment strategies for
390-cores of the SW26010pro heterogeneous architecture. In the big sharing
model, we adopt compute core grouping scheme that partitions both hard-
ware resources and computing tasks, which achieves a trade-off between CPE
task-level load balance and avoiding write conflicts.
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The rest of this paper is organized as follows: Sect. 2 introduces the SPH
method, SW26010pro processor and summarizes related work. Section 3 presents
the optimization strategies and implementation details regarding SWSPH on the
new Sunway TaihuLight. Section 4 gives the performance test result and analysis.
Section 5 concludes this paper.

2 Background

2.1 Smooth Particle Hydrodynamic Method

Smoothed Particle Hydrodynamics (SPH) is a popular mesh-free method and
has potential to be the next generation of more effective computational methods
for more complicated problems [14,15]. In SPH simulation, the computational
domain is filled with a great number of ”SPH particles”. These particles all
possess physical properties we concerned like pressure, density, energy. During
the simulation, an SPH particle moves and refreshes its physical properties in
each time step following the conservation law of mass, momentum and energy
in Lagrangian form and equation of state of the particle’s material, based on a
set of nearby particles which forms its support domain. This support domain is
determined by each particle’s location and volume, thus it always needs to be
refreshed for each particle in each time step [13].

As for refreshing each particle’s physical properties, the SPH method can be
seen as replacing the Dirac delta function with a smoothed kernel W . Thus an
SPH approximate scalar function A can be defined as:

A (x) =
∫

A (x′)W (x − x′, h) dx′.

And the discretized form of smoothed variables A and its gradient vector can be
written as

〈A〉i =
n∑
j

AjWijVj

〈∇A〉i = −
n∑
j

Aj∇iWijVj

(1)

where Wij is W (xi − xj , hij), and in this progress we adopted a quintic spline
function as kernel function. h is the smoothing length of the particle pairs, V is
the volume, and the subscriptions i,j represents particle i and j.

2.2 Related Work and Analysis

The most time-consuming part of the SPH method is the pair-wise interaction
during the calculation of particle forces, which can be accelerated by many-
core devices. It is important for optimization to exploit the spatial locality and
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decompose the parallel domain reasonably, which can avoid invalid searches and
is beneficial for vectorization. Considering the scalability, the synchronization
operation induced by the neighborhood communication in each time integration
step has a significant impact on the parallel efficiency. With the development
of HPC system, there are many well-known SPH frameworks used in different
scenarios simulation. For example, DualSPHysics [5], implemented in SPHysics
[10] is validated for different problems of wave breaking, dam-break behavior and
interaction with coastal structures. It can achieve efficiencies of 85.9% using 128
GPUs of the Barcelona Supercomputing Center [6]. However, for problems such
as compressible explosion impact, it cannot effectively solve the problem of load-
imbalance. SWIFT [3,16] is a hydrodynamics and gravity code for astrophysics
and cosmology designed to run on hybrid shared/distributed-memory architec-
tures using task-based parallelism. It can maintain 75% weak-scalability with a
dynamic range of 104 in time-step size. Moreover, SPH-EXA [4], SPHERA [1]
and Gadget [2] etc. have used the SPH algorithm for gas dynamical cosmological
simulations, and achieve good parallel efficiency. As far as we know, there is no
large-scale fluid instability simulation involving complex material phase change
and interface tracking using the SPH algorithm.

2.3 Overview of the New Sunway System and SW26010pro
Many-Core Processor

The SW26010pro is composed of 6 core-groups (CGs), each of which includes
one management processing element (MPE), and one 64 computing processing
elements (CPEs) cluster arranged in an 8 by 8 grid, a total of 390 cores as
shown in Fig. 1. Within the CPE cluster, every four neighboring CPEs share
one local cluster management unit, with a router integrated for efficient message
forwarding. In each CG, the MPE is in charge of spawning threads for the 64
CPEs and handle management and communication tasks. The CPE cluster is
designed to provide high aggregated computing capability. The MPE support
256-bit vector instructions and CPEs adopt the SW64 instructions to support
512-bit SIMD. Each SW26010pro processor can provide a theoretical peak per-
formance of around 14 Tflop/s in double precision.

Fig. 1. Architecture of SW26010-pro many-core processor.
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SW26016pro is relatively moderate in terms of memory capacity. Each CG
has its own memory controller (MC), connecting to 16GB DDR4 memory, with
a bandwidth of 51.2 GB/s. Both MPE and the CPE within the same CG share
the same memory controlled by the MC. It is different from the heterogeneous
host-device architecture CPU-GPU that supports address mapping for memory
access, the MPE-CPE hybrid architecture can provide a unified address space for
each CPE to access the main memory directly with a low latency of below 0.2µs.
As compared to its predecessor, SW26010, the upgraded CPE in SW26010Pro
has 256 KB scratch pad memory (SPM). The SPM on CPE can be configured as
either user-controlled local data memory (LDM) or hardware cache for automatic
data buffering. Data transfer between LDM and main memory can be realized by
direct memory access (DMA). The data exchange between each two CPEs in the
same CPE cluster is achieved by the Remote Memory Access (RMA) interface
(an upgrade to the register communication feature in the previous generation).

3 Implementation and Optimization

3.1 Domain Decomposition Strategy

Cell-List Based Pair-Wise Interactions. The most time consuming kernels
in SWSPH include particle force calculation and density summation method,
both of them need pair-wise interactions. Due to the requirement for frequent
access to neighbor particle data, this type of computation results in a large
number of random memory accesses, resulting in low data reuse. We introduce
an uniformed spatial mesh allocated in the simulation domain, which decomposes
the space into cells of a certain size, and place the particles in the corresponding
cell according to their spatial coordinates as shown in Fig. 3.

During particle-pair interaction, each particle only needs to perform compu-
tations with particles in the same cell and surrounding neighbor cells, as shown
in Alg.1. The first loop iterates over the cell, and the second loop iterates its
surrounding neighbor cells through the recorded index. The conventional way is
to use the SPMD paradigm to achieve parallelism. We use MPI and OpenMP
to achieve parallelism between CPUs and CGs within the CPU respectively and
the third and fourth layer loops use the compute core grouping scheme for par-
allelism. Considering that the support radius of particles in the compressible
SPH algorithm will change with its density, We first determine whether the
shortest distance between particles and sub-cell exceeds the maximum support
domain radius and then reduce invalid particle searches. More importantly, since
adjacent particles are all located in the same or neighboring cell, cell-list based
pair-wise interactions can maintain good data locality, meanwhile, the improve-
ment of the success rate of particle search can reduce the number of branches,
which is beneficial to vectorization.

Adaptive Particle Partitioning for Load Balancing. To achieve computa-
tional load balancing, we have applied two categories on SWSPH. One includes
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Algorithm 1: Pair-wise interaction kernel
Data: Particle P is in the subcell of Cell C,C.neighbor is cell list of its

neighbor,rcut is radius of support domain
Function Dist(Ci, Cj); Dist(P , C); Dist(Pi, Pj):

Output: Distance between Cells, between Cell and Particle, between
Particles

for I ← 1, |C| do
for J ← 1, |CI .neighbor| do

for i ← 1, |CI .subcell| do
for j ← 1, |CJ .subcell| do

if Dist (CI .subcelli, CJ .subcellj) > CI .subcelli.r
cut
max then

continue;

for each Pm ∈ CI .subcelli do
if Dist (Pm, CJ .subcellj) > Pm.rcut then

continue;

for each Pn ∈ CJ .subcellj do
if Dist (Pm, Pn) < Pm.rcut then

Calculate particle force or density summation

adaptive domain decomposition for particle partitioning from the perspective
of parallel techniques and the other is physics-based particle volume adaptive
scheme. Due to the dynamics of massive particle migration and aggregation at
the macroscopic scale, e.g., fluid instabilities under simulated converging shock
wave, there will be serious load imbalance between node during the simulation.
The strategy adopted in the traditional SPH framework is to assign a uniform
number of particles to each node, however, it is not the most efficient strat-
egy(the computational complexity is O(N2) within the support domain). We
use the radius of the maximum support domain of the particles in each cell to
estimate the calculation amount of each cell and this can be used as a more
accurate measure of load. For the area where the particles converge, we use a
tree-like adaptive grid to refine it until the calculation amount of each sub-cell
is reduced below the average.

In the decomposition of the parallel domain, we use the Hilbert curve to
traverse the cell, which can traverse the adjacent cells as much as possible and
makes more of them reside on the same node. In addition, quite a few of invalid
searches can be avoided during particle search by setting the edge length of
the cell to be slightly than the radius of the support domain. After the spatial
mesh refinement, we build the task allocation and mapping table. The allocation
strategy is to ensure that the calculation amount of all nodes is close to the
average, which can effectively alleviate the problem of load imbalance between
processes.
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Volume Adaptive Scheme. When it comes to shock simulation, compressed
particles tend to clump together and increase local computing loads, while over-
expanded particles require larger support domain to collect enough particles for
SPH interpolation, which meanwhile requires higher zone length and increase
the computational load in the zones where there is no expansion wave. The vol-
ume adaptive particle method is adopted to deal with this problem as shown
in Figure 2. When particle volume becomes larger than a preset upper limit,
mother particles are split into eight daughter particles. The physical quantities
of daughter particles inherit those of mother particles. When a pair of daugh-
ter particles whose volumes are both less than a preset lower limit and center
distance is less than preset maximum length, they are merged into one mother
particle. The physical quantities of the mother particle is computed by mass
weighted sum of the daughter particles.

Fig. 2. When the mother particle expands to eight times volume of the initial volume,
it will be split into eight daughter particles sharing the same volume; when the particle
has a volume less than 3

√
3V0/2 of initial volume, it will merge with another particle

below the same volume within a distance of 3
√

3V0/2

3.2 Point-to-Point Asynchronous Communication and Task
Overlapping

Similar to other particle simulation applications, the process-level parallelism
of SPH adopts the parallel paradigm of SPMD. Since it needs to update the
neighborhood at each iteration, the inherent communication-intensive character-
istics have an important impact on the scalability. Therefore, the optimization
of communication inter-node and the balance of task division are crucial for the
scalability and parallel efficiency of SPH simulation.

There are two kinds of communication in the SPH algorithm: 1. atom-
migration: send displaced particles to the destination process; 2. halo-exchange:
update the particle data in the ghost area. By using the non-blocking interfaces
MPI Isend and MPI IProbe to accurately complete data transmission and recep-
tion, it can not only avoid invalid communication in the All-to-All mode, but
also reduce the idle waiting time of the process. In addition, the non-blocking
communication mode also provides the possibility of task overlap and delay
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concealment, which has a significant impact on the scaling efficiency of SPH
applications that are inherently communication-intensive.

We can divide the cells stored on each node into three types by analyzing
the data dependencies of cell-pair interactions: core cell, edge cell, ghost cell as
shown in Fig. 3. Each node is only responsible for the calculation of the local
cell (including the core cell and edge cell), while the data update of ghost cell
is completed by MPI communication. The core cell does not depend on the
data in the ghost cell, so we can achieve the overlap of communication and
computation for atom-migration and halo-exchange, respectively, as shown in
Fig. 3. For atom-migration, we can first find the displaced particles in the edge
cell, and then send them asynchronously. At the same time, we start sorting the
particles in each core cell, and then accept the displaced particles from neighbor
node and complete the particle sorting in the edge cell. For halo-exchange, we
can preferentially send data in edge cells asynchronously and start the pair-wise
interactions of core cells and edge cells, after accepting the data and updating
the ghost cell, we can proceed to complete the edge cell computation.

Fig. 3. Scheme of the communication:update of the ghost cell(neighbor particle support
domain radius will not exceed the sub-cell range, so only sub-cells are packed to remove
redundancy) communication and computation overlap.

The halo exchange in most frameworks does not need to preprocess the data
of the edge part, but directly packs and sends it to the neighbor process, which
will have a lot of redundant data. In fact, some particles in the ghost cell are
outside the range of the support domain, which not only increases the amount
of data communicated, but also causes redundant calculations that are not con-
ducive to the efficiency of vectorization. Using the refined sub-cell, by analyzing
the effective radius of the support domain, the redundant particle data in edge
cell can be eliminated before the communication, which not only reduces the
data volume of communication, but also improves the performance of particle
search,which is more conducive to the efficiency of vectorization.
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Fig. 4. Fine-grained CPE task mapping strategies.CPE group uses DMA to load the
corresponding cell-pair as a calculation task according to the neighbor cell index, then
uses RMA to reduce the data to the first cpe, and finally write back to the main
memory.

Compute Core Grouping Scheme and On-Chip Data Reduction. In
the node with 390 cores, task assignment and parallelism not only need to avoid
the write conflicts, but also minimize the idle waiting time of slave cores caused
by synchronization. We adopt a data-replica based many core grouping parallel
scheme and for the replica reduction in the slave core, we design a special intra-
group slave core reduction method using the RMA interface.

To keep the MPE busy, we adopted the strategy of grouping scheme, that
is, the 64 computing cores on the CPE cluster are divided into 4*16 computing
groups according to the row order as shown in Fig. 4. Each computing group is
responsible for the calculation of a cell list and each computing core in the com-
puting group is responsible for the calculation of a pair of cells. The grouping
strategy allows each CPE have a more even number of tasks and it is conflict-free
in each group because the same cell-pair does not exist in each group. However,
write conflict still exists between CPE groups. For this purpose, it only needs to
set up one data copy in the LDM of the column 0 CPE. When all of members of
one group complete the cell list, each CPEs reduce data to the replica of the 0th
column CPE, and then use DMA to update data in the memory. Data reduc-
tion on the CPE is implemented by the remote data transfer operation(RMA)
between LDMs. Since the runtime system does not provide an interface for the
specification of the CPE, we can only use the unilateral interface rma get pro-
vided by CPE to obtain the data in the specified LDM. In each CPE cluster,
every four adjacent CPEs share a local cluster management unit, which inte-
grates a router for efficient message forwarding. We design different reduction
methods for 4 and 8 CPEs respectively and test both B-tree and butterfly reduc-
tion methods for the row reduction. Since the B-tree reduction method is more
suitable for the interconnection structure of the slave core array, it is more suit-
able. As for the reduction method of four CPE, our test shows that the tree
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structure is not the optimal way, but a corresponding design is adopted. As
shown in Fig. 4, for the reduction method of 4 CPEs, our test shows that the
tree-based reduction is not the optimal method, but the corresponding design
is adopted. Due to the unique interconnection structure between the slave core
arrays, we adopt special RMA reduction method to achieves better performance.

Data-Layout Optimizations and Vectorization. In the process of vector-
ization, we first sort the particles in each cell-pair by their relative positions and
their own properties (The sorting is implemented in parallel by the CPEs) and
then convert the data layout of the AoS format in LDM to AoSoA, so that we can
use the simd load instruction to read 8 consecutive double data from LDM and
place them in the vector register, note that the AoSoA structure reserves high
cache locality for all fields of a given particle. In addition, SW26010pro 512bit
SIMD provides reciprocal and square root reciprocal vector instructions, which
are useful for calculating particle spacing and solving physical values. In addi-
tion, the vselect instructions unique to Sunway provide a vectorization method
for the ternary operation, which can make us very convenient to eliminate the
branch.

4 Evaluation

4.1 Single Node Evaluation

Fig. 5. The running time of different subroutine in each SPH iteration loop using 6
CGs. Here MPE, CPE and SIMD represent the MPE-only version, the CPE accelerated
version and the 512 bit SIMD vectorized version, respectively.

Figure 5 shows the speedup of the most time-consuming kernels in the simulation
of SPH. Due to the pair-wise interaction, the calculation of acceleration and sum of
density occupy most (90%) of the integration time. In all-shared mode, a process
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can use 6 OpenMP threads to control 6 MPEs. We perform performance evalua-
tion on a system with 2.5 billion particles using 5000 processes (CPUs) and each
process handles 500,000 particles. The single-step simulation time is 161s when
using MPEs and we take the performance of MPE-only version as baseline. After
communication optimization, the communication time of each step is reduced by
20%, and the performance of each step is improved by 1.3 times. After applying
adaptive particle partitioning and volume adaptive Scheme, the performance of
each step can be improved by 3.21 times. After parallelization with CPE clus-
ter, the calculation of acceleration and sum density can achieve 145 and 60 times
of performance improvement respectively and each integration step can achieved
81.41× performance improvement. In addition, we evaluated the performance of
CPE using DMA and Cache respectively and find that there is no difference as
a result of the CPE can take full advantage of the locality of data. The peak
bandwidth (DMA) utilization is 40.3/51.2GB/s=78.7%. After taking advantage
of CPE’s 512-bit vector floating-point instructions, it end up with a 121.62× per-
formance boost and each integration time can be reduced to 1.33s. Considering
that the high precision Riemann solver contains many square root and division
operation (need ˜30 cycles), the CPE pipeline cannot perform instruction-level
parallelism, resulting in performance loss, and the FLOP rate on a single node is
134.2/1079.7Gflop/s(12%), the peak is 145.9/1079.7Gflop/s(14%) based on the
sampled data of the PMU events.

4.2 Scalability

Fig. 6. Strong scalability for 100 billion
particles

Fig. 7. Weak scalability for 333 thou-
sand particles per process

This section shows the experiment results of the scalability of SWSPH on the
new Sunway supercomputer. To achieve a balance between simulation size for
strong scalability and the limited memory on SW26010pro (total 92 GB per
node), we take the performance of 60000 CGs (60000 MPEs with 3840000 CPEs)
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as a baseline, which simulates about 100 billion (1 x 1011) particles total and
the example used is the converging RM instability at a three-dimensional cube
air/SF6 interface. The weak scalability initializes the simulation from 60 CGs as
a baseline, which simulates about 333 thousand particles per process (CPU).
Fig. 6 shows the change in the iteration time of the test case when the number
of cores scaled from 3,900,000 to 39,000,000. We can see that computation time
occupies a larger proportion of the whole simulation, and both computation
and communication time decrease with the number of cores. However, with the
increase of the number of nodes, the proportion of the communication time
also increases. As shown in Fig. 6, when the number of cores is increased to 39
million, the parallel efficiency reaches 80%, which shows that SWSPH has good
scalability.

Figure 7 illustrates the weak scaling performance with a baseline of 60 CGs
and each process handles 3.33x105 particles. It can be seen that it keeps a
high parallel efficiency with growth of cores and ultimately reaches 600000
CGs(2x1011 particles total) with 76% efficiency. It is worth noting that when
the core count is less than 390000, almost all parallelization efficiency are close
to 100%. This shows that SWSPH has the ability to simulate large-scale fluid
dynamics with massive parallelism. From Fig. 7, it can be seen that the com-
putation time remains almost the same under different core counts. But the
communication time is slightly longer at 39 million cores, mainly due to the
contention of communication.

4.3 Load-Balance Test

We evaluate the load-balance of each process by an RMI simulation problem
of a 2.5 billion particles system. We extracted the most unbalance performance
data of 16 processes, and analyzed the computation, communication, and syn-
chronization wait times respectively. When the shock wave converges near the
interface between the two fluids, the particle density near the shock wave can
reach more than 1000 times the average value. If the adaptive method is not
used, the process with the smallest amount of tasks spends nearly 69% of the
time waiting idle, while the computing time of the process with the heaviest task
is more than 3 times that of the most idle process shownas shown in Fig. 8a. By
adopting our mesh refinement and volume adaptive particle method, the worst
idle process waiting time ratio can be reduced from 69% to 32% as shown in
Fig. 8b, and the iteration time of each step can be increased by more than 10
times due to the more even division of tasks.
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Fig. 8. Unbalance communication in SPH simulation with 2.5 billion particles using
5000 processes and extract the 16 most unbalanced processes for profiling.

5 Conclusion

In this paper, we present a massively multi-level parallel SPH scheme on the new
Sunway supercomputer. To exploit the data locality, the tree-like multi-level
cell division strategy is more suitable for Sunway’s deep memory hierarchies.
And the adaptive domain decomposition and particle volume adaptive scheme
can solve non-uniform large scale SPH simulations by reducing the imbalance
between nodes. In addition, the load-balancing strategy based on the amount of
calculation is more effective than the method based on the number of particles.
Considering the many-core architecture, the compute core grouping scheme and
on-chip data reduction can not only avoid the problem of write conflicts, but
also keep 64 CPEs busy. For communication-intensive behavioral features, the
non-blocking Point-to-Point communication can not only reduce the idle waiting
time of the process and it can also provides the possibility of task overlap and
delay concealment, which has a significant impact on the scaling efficiency of
SPH simulation.
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Abstract. Function-as-a-Service (FaaS, serverless) computing systems
use an actor-like model that executes a function asynchronously, atom-
ically and in an isolated context. However, a function must often also
access state, e.g., memory or a database. This mixed model can break
the actor guarantees, leading to bugs, crashes and data loss. To avoid
this, we define Transactional-Turn Causal Consistency (TTCC). TTCC
unifies the Turn of the actor model with the Transaction of the database
model, under asynchronous, atomic and isolated execution, and guaran-
tees mutual consistency of messages and memory. We define the model
formally and present a reference implementation, along with preliminary
experimental evaluation.

Keywords: causal consistency · actor model · message-passing ·
shared-memory · serverless

1 Introduction

This paper studies the issues that occur in a system that combines event- (or
message-)based and shared-memory communication, and proposes a solution.

For instance, in Function-as-a-Service (FaaS, serverless) computing, a compu-
tation is a set of functions that execute following the actor model [2,10]. When
an actor receives an event or a message, this triggers a computation called a
turn, to run the function being called. A turn runs in parallel with other actors,
executes in the actor’s separate memory space, and is uninterrupted until it
terminates. Its results become visible only by sending more messages. We say
an actor is asynchronous, isolated and atomic. These features are pleasing for
developers, who can leverage concurrency without having to worry about mem-
ory interference, locking or deadlocks.

However, business logic often requires state; examples include video encod-
ing, file conversion or collaborative workspaces [1,16]. For instance, a turn may
observe the memory state left by the previous turn in the same actor.1

Frameworks such as Orleans, Cloudflare Durable Objects, Lightbend Akka
Serverless or Azure Durable Entities allow an actor to store application state
in a database (Fig. 1). A database computation, called a transaction, runs in
1 This may create consistency anomalies known as glitches [12]. Although not well

known, they are an indication that the actor model is underspecified.
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Fig. 1. A stateful serverless construct. Fig. 2. An inconsistency leading to a
crash.

isolation and is atomic, i.e., its results become visible at once when the trans-
action commits. Transactions may be or not be asynchronous, depending on
the database’s isolation level (a.k.a. consistency model): under serializability,
transactions execute (logically) in lockstep; whereas under snapshot isolation
(SI), a transaction does not block but operates upon a private snapshot of the
database [4]. The lesser-known Transactional Causal Consistency (TCC) is fully
asynchronous, as it also supports concurrent writes [3,14]. In summary, TCC
is also asynchronous, isolated and atomic; developers may leverage concurrency
without having to worry about memory interference, locking or deadlocks.

Unfortunately, even though the buzzwords align, actors and database remain
different worlds. The guarantees of one do not extend to the other. For instance,
despite a turn accessing isolated local memory, it can still suffer interference
via the database; and conversely, messages between transactions can defeat the
consistency guarantees of the database.

To illustrate, consider Fig. 2, the timeline representation of Fig. 1. Database
data items x and y are initially set to 0, and replicated at all nodes. Node A
updates y to 1, and notifies B with message m1. Node B updates x to 2, notifies
node C with message m2. In response, C computes z = x/y. Unfortunately, in
existing systems, nothing stops m2 from being delivered before y is replicated on
node C. Because the message view and the database view are mutually inconsis-
tent, C computes z = 2/0, leading to a crash. Even if messages are delivered in
order, and even if the database guarantees strong consistency, maintaining sep-
arate consistency guarantees fails to maintain mutual consistency and violates
the fundamental causality assumption.

To avoid such anomalies, we unify the actor/message-passing and the
database/shared-memory views of the world with Transactional-Turn Causal
Consistency (TTCC). TTCC combines an actor-style execution model with
shared-memory access, and identifies turns with transactions. A transactional
turn is isolated and atomic, and executes asynchronously. TTCC ensures that
information remains consistent, whether carried in messages or in shared mem-
ory.



580 B. Martin et al.

This paper contains the following contributions:

– The design and formalization of TTCC, a unified transaction-turn and
memory-message model, in Sect. 3.

– Algorithms for TTCC for actors accessing a shared database, in Sect. 4.
– Reference implementations thereof, in Akka (Sect. 5).
– An experimental evaluation, showing that TTCC in addition to providing

superior guarantees, TTCC can perform better than a non-unified algorithm.

2 Background

In summary, existing FaaS environments provide a mixture of asynchronous, iso-
lated computation execution models, and of inter-actor communication models.
What is lacking is a unified, consistent view across them. Therefore, this work
defines a common asynchronous and isolated execution model, and a common
consistent communication model.

2.1 Groundwork

A (distributed) system consists of any number of sequential processes, called
actors. Actors execute in parallel, and communicate via messages and shared
memory. A message may be point-to-point (from one actor to another, or to
itself) or multicast (from one actor to several). Our current treatment does not
consider failures.

A system may become inconsistent if events are observed in the wrong order.
Intuitively, causal consistency is the property that if some event e might influence
(cause) some event f , no actor could observe f before observing e.2 For instance,
in Fig. 2, message m2 should not be delivered until after the update to y is
replicated to C.

Borrowing from Burckhardt [6] and Viotti and Vukolić [15], we model a
system execution using a multi-graph A = (E , vis) built on a set E of events.3

Events comprise send, receive, read and write operations. More specifically:

Program-order PO−−→ is a binary relation over E that expresses the natural
execution order of operations by a process.

Visibility vis is a binary relation over E that describes the propagation of
information through the system. It satisfies the following rules:

1 vis−→ is acyclic.
2 It is transitive: ∀e, f, g ∈ E : e vis−→ f ∧ f

vis−→ g =⇒ e
vis−→ g

3 Program order implies visibility: PO−→⊆ vis−→
For instance, a is visible to b (i.e., a vis−−→ b) means that the effects of a are
visible to the process invoking b. Two operations are said concurrent if they
are not ordered by vis.

2 Lamport [11] calls the relation between e and f “happened-before;” recent literature
uses the term “visible.” [6,7,15].

3 Burckhardt also defines a total arbitration order, but it is not necessary for our
purpose.
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2.2 Actor Execution Model

The classical actor model describes processes communicating only via messages.
An actor alternates between being ready to accept a message, and busy pro-
cessing a message. An actor responds to a message by doing local computation,
creating actors, and sending messages. A turn is the processing of a single mes-
sage. Actors conform to the following “Isolated-Turn Principle” of de Koster et
al. [9]:

– Continuous message processing: An actor’s turn terminates without interrup-
tion.

– Consecutive message processing: An actor processes messages from its own
inbox, and processes them one by one. Within a single actor, turns do not
interleave.

– Isolation: An actor can access its own memory only.

Thus, the actor is isolated, and the processing of a turn is free from low-level
data races. The programmer can reason about the application as a sequence of
isolated, functional turns.

2.3 Message-Based Communication Model and Causal Delivery

We note messages m,n (messages are assumed unique); message-related events
are send and receive, noted send(m) and recv(m) respectively. A message is
causally delivered if and only if it satisfies the common rules 1 – 3 , as well as
the following:

4 A received message must be sent: rcv(m) ∈ E =⇒ send(m) ∈ E
5 A send precedes the corresponding receive: send(m) vis−→ rcv(m)
6 A message does not overtake another message:

send(m) vis−→ send(n) =⇒ ¬(rcv(n) PO−→ rcv(m))

Rule 5 states that m is visible when it is received, which is after it was
sent. Rule 6 defines the order in which messages m and n are made visible
(delivered). If an actor sends m, and later an actor sends n, a destination actor
must observe m before n.4

2.4 Shared-Memory Transactional Execution Model

We borrow our shared-memory execution model from Cerone et al. [7]. They
consider a database consisting of objects Obj = {x, y, . . . }. Events consist of
wr(x, v), writing version v to object x, and rd(x, v), reading v from x; a write
associates a new, unique version to the object being updated.

4 We use negation (¬) because a destination might receive only one of the messages.
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Reads and writes are grouped into transactions. A transaction is a sequential
and isolated execution. Its writes become visible, atomically, to other trans-
actions only after it commits. Formally, we say transaction T is atomic iff:
∀e, f ∈ T ∧ g ∈ T ′ �= T =⇒ (e vis−−→ g ⇔ f

vis−−→ g), i.e., either all of T ’s
effects are visible (T is committed), or none are (T hasn’t terminated yet or
aborted). In what follows, we consider only committed transactions.

A transaction operates on its own snapshot [5], which is a copy of the state
of the database at a given point in time. The snapshot ensures the transaction
executes without interference from concurrent transactions.

To formalize this intuition, we define the predecessors for x in transaction
T as predT (x) = {y | y

vis−−→ x ∧ y /∈ T}. T has the snapshot property iff:
x ∈ T ∧ y ∈ T =⇒ predT (x) = predT (y). In other words, all the reads of a
transaction come from the same set of committed transactions.

2.5 Shared-Memory Communication and Causal Consistency

Transactions communicate through the shared memory. A transaction’s commit-
ted updates can be transmitted asynchronously to another transaction’s snap-
shot, without waiting; this might cause inconsistency. An execution is causally
consistent for shared memory if and only if it satisfies the common rules 1 – 3 ,
as well as the following:

7 A version read must be written: rd(x, v) ∈ E =⇒ wr(x, v) ∈ E
8 A write precedes the corresponding read: wr(x, v) vis−→ rd(x, v)
9 An update does not overtake another update:

wr(x, v1)
vis−→ wr(x, v2)

vis−→ wr(y, w) =⇒ ¬(rd(y, w) PO−→ rd(x, v1))

Rule 8 states that an update to object x with version v, is visible before
reading x. Rule 9 states that once an update, tagged with version v2, is visible,
then no subsequent operation can see a version prior to v2. In other words, only
the latest version of an object is visible.

3 Transactional-Turn Causal Consistency: Unifying
Messages and Shared Memory

To avoid the inconsistency in Fig. 2, while maintaining a familiar execution
model, we propose to unify the asynchronous, isolated and causally consistent
properties of the message and memory models. We call this model Transactional-
Turn Causal Consistency (TTCC).

3.1 TTCC Unified Execution Model

Our execution model equates an (actor) turn with a (database) transaction.
When an actor receives a message, this triggers a transactional turn. It reads
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from a snapshot that is causally consistent with the message received. When it
terminates, its writes and its sends become visible atomically.

The model allows a transaction to send no more than a single message per
destination actor. Otherwise, the result would not be atomic, as sending mul-
tiple messages to the same actor would cause multiple sequential turns, each
one observing only a subset of the transaction’s commit. If an actor must send
multiple message to the same destination, it can do so in multiple sequential
turns.

3.2 TTCC Unified Causally-Consistent Communication Model

In the unified model, actors communicate through any mixture of message-
passing and shared-memory access. An execution is causally consistent for shared
memory and messages if and only if it satisfies the common, message-passing,
and memory rules above 1 – 9 , as well as the following interaction rules:

10 An update does not overtake a message:

send(m) vis−→ wr(x, v) =⇒ ¬(rd(m, v) PO−→ rcv(m))

11 A message does not overtake an update:

wr(x, v1)
vis−→ wr(x, v2)

vis−→ send(m) =⇒ ¬(rcv(m) PO−→ rd(m, v1))

These rules define visibility when messages interact with shared-memory
operations. Rule 10 states that if an actor writes version v to x knowing
send(m), then the receiving actor must receive m before observing version v

for key x. Conversely, Rule 11 states that if an actor sends m while knowing
wr(x, v2), then the destination actor must no longer observe the earlier v1 after
receiving m. Indeed, upon receiving m, the receiving actor sees the causal depen-
dencies of send(m), i.e., wr(x, v1)

vis−→ wr(x, v2). Hence, the read must return
v2, the freshest visible version of x.

4 Unified Message-Memory Protocol

In this section, we present a reference protocol that uses a unified version vector
(with one entry per node) to track causal dependencies for both messages and
shared objects. We present the causal delivery mechanism for messages as well
as replication for shared objects.

Our protocol assumes that values in shared memory are conflict-free data
structures (CRDTs) [13], which is helpful to resolve conflicts in concurrent
updates without coordination.
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4.1 Overview

Our protocol executes in two phases: in an actor (when a transaction is executed
and when a message is received) and in a replicator actor that is unique per node.
Replicators of different nodes communicate with each other and are responsible
for maintaining transactions, snapshots and replication. A transaction opera-
tion (read, update, send message) runs inside an actor, and accesses an isolated
snapshot version that is managed by the local replicator. The replicator provides
the latest local, causally consistent snapshot to new transactions. A transaction
originating from the local node is immediately visible to local actors when it
commits, as local actors share the latest local snapshot. However, a transaction
arriving from a remote node is visible to local actors only after the preceding
transactions have committed locally.

Causal Message Delivery. To implement causal message delivery, TTCC delays
messages until all its causal dependencies are satisfied. Conversely, sending a
message is non-blocking. Causal dependencies are propagated by piggy-packing
metadata to messages. For instance, if an actor sends m then n, the metadata
of n indicates that n causally depends on m.

Causal Shared-Memory. To maintain causal consistency for shared memory,
TTCC maintains multiple versions of objects and exposes them through iso-
lated snapshots. Write operations are non-blocking and replication is done asyn-
chronously. When reading an object, TTCC materializes only the requested value
for the given object, as opposed to all objects in the snapshot, to reduce compute
and memory consumption.

Memory-Message Interactions. TTCC unifies causal consistency for shared
memory and causal message delivery, by considering the interactions between
the two memory models. Messages are delayed until causally dependent mes-
sages are delivered (Rule 6 ) and shared-memory is up-to-date (Rule 11 ). A
snapshot is causally visible, when causally dependent snapshots are available
(Rule 9 ). Visibility of a snapshot is not delayed by causally dependent mes-
sages as the reception of a message triggers an actor’s turn, which exposes a
causally consistent snapshot.

4.2 Notation and Definitions

Table 1 introduces the notation followed in this section to describe the execution
of our protocols on an actor and on a replicator. We assume a singleton Repli-
cator R on each node. A snapshot S is a tuple composed of a version vector vvS
and a dataset dataS . The GSS is a snapshot that is known to be available on
all nodes at a given point in time. LLSS stores a set of local snapshots that are
committed. When the protocol updates GSS, snapshots from LLSS are merged
into GSS using CRDT logic. An ongoing transaction T is stored in ongoing at
index T . R stores its neighbor n’s version vector in kvv at index n. When kvv
updates, the protocol recompute GSS. lastV V stores the latest Version Vector
seen by an actor.
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Table 1. Notation used in the protocol description.

R Local replicator actor

T Transaction

qT Queue containing messages for transaction T

S Snapshot

vvS Version vector of S

dataS Dataset of S

GSS Globally Stable Snapshot

LLSS Set of Locally Latest Stable Snapshots

ongoing[T ] Ongoing transaction is stored at index T

kvv[n] Known Version Vector for neighbor is stored at index n

m Message sent between a pair of actors

fromm Sender actor of m

vvm Version Vector of m

lastV V Last seen Version Vector

B Buffer for delayed messages

+= CRDT merge operation

4.3 Execution on an Actor

Algorithm 1 shows the pseudo-code of the protocol for executing transaction T
and the reception of message m on a causal actor. Algorithm 1 is responsible for
message delivery (and delay) and transaction operations (begin, read, update,
commit, abort). A message is delayed if the local shared memory is not up-to-
date.

A transaction begins by sending a synchronous StartTransaction message to
the local replicator R, which contains a transaction id; we use a locally-generated
UUID, as it is unique and does not require coordination. R responds with an
initialized transaction snapshot, which contains the latest locally available snap-
shot, which is stored in LLSS. LLSS contains the latest local committed snap-
shots that are not yet merged into the GSS. If LLSS is empty, we use vvGSS .
Finally, if GSS is empty, we use an empty version vector.

Read and update operations send a ReadObject or UpdateObject message
to R respectively. R returns the object’s value in the transaction’s snapshot.

A message sent in a transaction is stored in a buffer qT until T commits or
aborts (Algorithm 1, line 2). On commit, the actor sends a Commit message
containing the transaction id and qT to R. On abort, qT is emptied, and no
messages are sent.

When it receives a message (Algorithm 1, line 28), the actor checks if m is
causally deliverable. A message m is causally deliverable if: (1) vvm ≤ lastV V ;
(2) vvm[fromm] < lastV V [fromm]; and (3) ∀d ∈ (vvm − vvm[fromm]), d ==
lastV V [d]. (Algorithm 1, line 4 and 10). If m is not deliverable, it is appended
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to buffer B. After the delivery of m, the protocol checks B for any other deliver-
able messages. lastV V is updated by being merged with the received message’s
version vector.

Algorithm 1. Execution of Actor a

1: function send msg(m, to)
2: append m to qT [to]
3: end function
4: function check dependencies(m)
5: deps ← (vvm − fromm)
6: for all d ∈ deps do
7: return lastV V [d] == d
8: end for
9: end function
10: function is deliverable(m)
11: if vvm ≤ lastV V &
12: vvm[fromm] < lastV V [fromm] &
13: check dependencies(m) then
14: lastV V+ = vvm

15: return true
16: else
17: return false
18: end if
19: end function

20: function deliver causal messages
21: for all m ∈ B do
22: if is deliverable(m) then
23: deliver m
24: remove m from B
25: end if
26: end for
27: end function
28: function on message(m)
29: if is deliverable(m) then
30: deliver m
31: deliver causal messages
32: else
33: B ← m
34: end if
35: end function

4.4 Execution on Replication Actor

Algorithm 2 shows the pseudo-code of the protocol for executing transaction T
on R.

When R receives a StartTransaction for T and T /∈ ongoing, the protocol
initializes the transaction context by appending the latest snapshot in LLSS
to ongoing[T ]. R replies with a message containing the latest vvLLSS , which
represents the latest locally available snapshot.

When R receives ReadObject, the protocol materializes the requested data.
The protocol requires that T ∈ ongoing. Value v for key k is: (1) materialized
from GSS, v is initially set to dataGSS ; (2) all values ≤ vvT ∈ LLSS are merged
into v, using the underlying CRDT merge operation. (3) finally, dataongoing[T ]

is merged into v. (See Algorithm 2, line 7). An update for key k and value v
updates dataongoing[T ] for k with v. If T aborts, dataongoing[T ] is emptied and
updates are ignored.

When R receives Commit (Algorithm 2, line 16), commit version vector cvvT
is initially set to the latest vvLLSS . If ongoing[T ] contains update operations or
qT is not empty, cvvT in incremented. The protocol then updates kvv[self ]
with cvvT to maintain an updated version vector for the current node. Then,
to terminate the commit and make the new snapshot visible to other actors,
dataT moves from ongoing into LLSS at cvvT . Finally, the resulting snapshot
is broadcast to all nodes.

On reception of a snapshot broadcast update message (Algorithm 2, line
29), R checks if vvS is concurrent with a snapshot contained in LLSS. This
may be the case, as local transactions can commit without coordination with
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other nodes. If vvS is concurrent, we merge vvS and dataS with vvLLSS[vvS ] and
dataLLSS[vvS ] respectively. Then, we update LLSS with the resulting snapshot.
If vvS is not concurrent, we update LLSS with S. Finally, kvv[from] is set to
vvS before updating GSS.

The replicator leverages the GSS mechanism that ensures progress by peri-
odically broadcasting the latest local version vector to neighboring nodes [3].
This mechanism is useful to prune LLSS by merging snapshots into GSS for all
dataLLSS ≤ vvGSS . Note that high frequency updates may result in a high net-
work and compute overhead, while low frequency updates may result in longer
buffering and slow visibility of remote committed snapshots.

Algorithm 2. Protocol executed on Replicator R

1: function on prepare(T )
2: if ongoing[T ] does not exist then
3: ongoing[T ] ← latest LLSS
4: return latest vvLLSS

5: end if
6: end function
7: function on read object(T , key)
8: value = dataGSS for key
9: value+ = dataLLSS for key
10: value+ = dataongoing[T ] for key

11: return value
12: end function
13: function on upd object(T , k, v)
14: put v in ongoing[T ] at k
15: end function
16: function on commit(T, vvT )
17: commitV v ← latest vvLLSS

18: if upd or msg ∈ ongoing[T ], incr
commitV v[self ]

19: kvv[self ] ← commitV v
20: LLSS[commitV v] ← ongoing[T ]
21: remove T from ongoing
22: trigger bcast(LLSS[commitV v])
23: end function

24: function trigger bcast(S)
25: for all n ∈ allNodes do
26: send SnapshotUpdate(S) to n
27: end for
28: end function
29: function on snap upd(from, S)
30: if vvS is concurrent then
31: vvS+ = vvS , vvLLSS

32: dataS+ = dataS , dataLLSS

33: update LLSS with vvS and dataS

34: else
35: update LLSS with vvS and dataS

36: end if
37: update kvv[from] with vvS

38: update GSS
39: end function
40: function update GSS
41: for i = 1, 2, . . . , size(kvv) do
42: vvGSS ← min(kvv[i])
43: end for
44: dataGSS = data from GSS
45: dataGSS+ = dataLLSS from vvLLSS

until vvGSS

46: GSS ← (vvGSS , dataGSS)
47: remove merged data from LLSS
48: end function

5 Implementation

We implement our unified memory model on top of the Akka actor framework.5

Akka is open source and enables actors to share data using eventual consistency
guarantees. An actor accesses data in the shared store through a replicator actor
that provides a key-value API and that handles data replication. Each node
spawns a singleton instance per node of a replicator actor. The replicator actor
spreads object updates to its neighbors via direct replication and gossip-based
dissemination.

In Akka’s key-value API, a key is a unique identifier of a CRDT data value.
Our solution consists in applying TTCC next to the existing Akka key-value store
5 https://akka.io/.

https://akka.io/
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by including additional protocols for an actor (Algorithm 1) and replicator actor
(Algorithm 2), and additional metadata to guarantee transitive causal delivery
of messages and shared objects.

5.1 Causal Shared Memory

We add support for transactions by encapsulating an actor’s data in a causally
consistent snapshot. An actor sends a message and manipulates shared objects
within a transaction. A transaction begins by querying the local replicator for
the latest available snapshot from LLSS. Get and update operations affect only
the transaction’s snapshot. A get operation for a given key k, materializes the
value associated to k by reading from GSS, LLSS and the ongoing transaction
snapshot.

On commit, we compute a commit version vector and append the transac-
tion’s snapshot to LLSS (Sect. 4.4). Then, the gossip-based replication mecha-
nism is triggered, which asynchronously broadcasts the newly committed snap-
shot to other replicators.

5.2 Causal Message Delivery

A message sent in a transaction is associated with the transaction’s snapshot and
is causally sent to the recipient actor when the transaction commits. To ensure
atomicity, messages remain in a private buffer until the transaction commits. If
the transaction aborts, we delete the buffer.

On commit, we send the buffered messages, with an additional version vector
that represents the transaction snapshot, to the destination actor. On reception
of a message, the piggy-packed version vector is compared to the local replicator’s
version vector. Actors inherit the CausalActor class. This base class is responsible
for delaying delivery of messages until the context is causally consistent.

6 Evaluation

Our experimental evaluation address the following questions: What is the over-
head of unified causal consistency for messages and shared memory? How does
TTCC scale on multiple nodes?

6.1 Experimental Protocol

We implement four protocols in a transactional key-value store (KVS) that
supports messages. Protocol 1, which is our baseline that does not guarantee
causal order. Protocol 2, our reference protocol that uses a single version vector
(Sect. 4). Protocol 3, which adds a matrix to track causality with messages. Pro-
tocol 4, that ensures causality for messages and shared memory independently.
In this protocol, inconsistencies between messages and shared memory may hap-
pen if a message is delivered before shared memory is up-to-date. We implement
all four protocols using the Akka actor framework.
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To conduct performance benchmarks, we modify YCSB [8] (version 0.17.0)
to include messages and transactions6 that we call YCSB+MT.

We provide a custom YCSB+MT workload that is similar to the original
YCSB workload where read and write operations are run in equal proportion.
Our transactional Workloads A and B executes read, update and message opera-
tions in the following proportions: 90%/5%/5% for Workload A and 5%/90%/5%
for Workload B. We compare protocols 2 and 3 against protocol 4 to evaluate
the overhead of mutual causal consistency.

We run the performance experiments on multiple nodes, each equipped with
two Intel Xeon E5-2690v3 clocked at 2.60 GHz with 192 GB of memory.

We deploy up to ten instances (i.e., replicas) of our key-value service. Each
KVS instance has its corresponding YCSB+MT client that we configure (16
threads each), to reach maximum throughput (ops/s) on each KVS. We measure
the overall throughput and latency while increasing the number of nodes.

The size of a version vector is proportional to the number of nodes. In our
experiment, we scale up to ten nodes. In Protocol 3, the size of the matrix is
equal to the number of actor pairs, which in our experiment scales up to the
number of concurrent YCSB+MT threads (16 threads).

6.2 Results

We measure the overhead of protocol 2 and protocol 3 by comparing them with
protocol 4 (non-unified). Our results show that protocol 4 performs better in all
workloads. We explain this by the lesser number of constraints that the protocol
enforces (i.e., rules for interaction. Rules 10 and 11 ).

Protocol 3 (extra matrix), performs the worst and does not scale past 4 nodes.
We explain this by the cost of maintaining an extra matrix, which is both costly
in transferred data and computation. For this reason, we exclude protocol 3 in
the following result interpretation.

For read operations, protocol 2 (single unified version vector) performs with
an overhead of up to 1.55× compared to protocol 4. We explain this by the
required delay caused by our protocol to maintain mutual causal consistency.
Furthermore, data is re-materialized for all requested values. Caching material-
ized data would greatly benefit read performance.

Write operations show a similar trend to read operations. Protocol 2 per-
forms with an overhead of up to 1.14× compared to protocol 4. We explain
this by the use of isolated snapshots, which enables concurrent writes without
synchronization.

Our results show that message delivery also shows a similar trend compared
to protocol 4 but is more dependent on write operations. Workload B (90%
writes) shows a significant increase in message response time compared to work-
load A, where there are less write operations. This increase in message delay
is explained by the addition of required causal dependencies due to more write
operations. Protocol 2 performs with an overhead of up to 2.43× compared to
protocol 4.
6 GitHub link: https://github.com/benoitmartin88/YCSB.

https://github.com/benoitmartin88/YCSB
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Our experiments show that TTCC performs, in all workload conditions, sim-
ilarly than a non-unified causally consistent implementation. More importantly,
the overhead of maintaining mutual causal consistency scales up to ten nodes
while providing a reasonable response time (Figs. 3 and 4).

Fig. 3. Transactional workload A (90R/5W/5M)

Fig. 4. Transactional workload B (5R/90W/5M)

7 Conclusion

In this paper we describe a transactional, causally consistent, unified model for
message passing and shared memory, which supports asynchrony and isolated
execution. TTCC is compatible with actor-based frameworks and provides an
intuitive memory model that ensures that multiple pieces of information remain
mutually consistent, whether sent using messages or shared in a distributed
memory.

We presented our protocols and actor-based reference implementation. Our
evaluation shows an overhead in response time of 1.55×, 1.14× and 2.43× for
read, write and messages respectively, compared to two independent causally
consistent memory models.
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Abstract. Convolution is the most time-consuming operation in deep
neural network operations, so its performance is critical to the over-
all performance of the neural network. The commonly used methods for
convolution on GPU include the general matrix multiplication (GEMM)-
based convolution and the direct convolution. GEMM-based convolu-
tion relies on the im2col algorithm, which results in a large memory
footprint and reduced performance. Direct convolution does not have
the large memory footprint problem, but the performance is not on
par with GEMM-based approach because of the discontinuous memory
access. This paper proposes a window-order-based convolution paradigm
on GPU, called im2win, which not only reduces memory footprint but
also offers continuous memory accesses, resulting in improved perfor-
mance. Furthermore, we apply a range of optimization techniques on
the convolution CUDA kernel, including shared memory, tiling, micro-
kernel, double buffer, and prefetching. We compare our implementation
with the direct convolution, and PyTorch’s GEMM-based convolution
with cuBLAS and six cuDNN-based convolution implementations, with
twelve state-of-the-art DNN benchmarks. The experimental results show
that our implementation 1) uses less memory footprint by 23.1% and
achieves 3.5× TFLOPS compared with cuBLAS, 2) uses less memory
footprint by 32.8% and achieves up to 1.8× TFLOPS compared with
the best performant convolutions in cuDNN, and 3) achieves up to 155×
TFLOPS compared with the direct convolution. We further perform an
ablation study on the applied optimization techniques and find that the
micro-kernel has the greatest positive impact on performance.

Keywords: Convolution · CUDA · im2win · im2col · parallel
computing · CNN

1 Introduction

Convolutional neural network (CNN) is an important network model widely used
in computer vision, image processing, and scientific computing. CNN consists
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of an input layer, an output layer, and convolutional layers between them [7].
Convolutional operations can take 50%–90% of the total inference operations of
the neural network model [15]. Also, convolution operations often account for
over 90% of the total execution time of many neural networks [20]. Therefore, it
is critical to reduce the cost of convolutional operations to improve the overall
performance of neural networks.

Graphics processing unit (GPU) has been used to accelerate tensor convo-
lution operations. Popular deep learning frameworks, such as PyTorch [17] and
TensorFlow [3], use GPU to accelerate convolution operations with cuBLAS [1]
and cuDNN [5], both developed by NVIDIA. cuBLAS is a GPU-accelerated
library for the basic linear algebra subroutines. cuDNN is a set of primitives for
forward and backward convolution, pooling, normalization, and activation layers
used by neural networks.

There are mainly two types of convolution methods on GPU in terms of data
transformation: the im2col data transformation-based and no data transforma-
tion at all. The im2col-based convolution transforms the input tensor and the
filter tensor into two matrices, known as the im2col algorithm, followed by the
general matrix-matrix multiplication (GEMM) with cuBLAS or cuDNN, and
finally transforms the resultant matrix back to the output tensor [4]. The prob-
lem with the im2col-based convolution is that 1) the im2col operation generates
a high memory footprint and bandwidth overhead, which is exaggerated on GPU
where the memory/cache capacity is highly limited; 2) its performance is signif-
icantly affected by the performance of the GEMM operation in cuBLAS, which
takes the input im2col matrix and the filter im2col matrix as inputs while the
two matrices are significantly different in size, leading to bad performance [9,22].

A typical direct convolution has no data transformation, and is implemented
as seven nested for loops over the original input and filter tensors, with the scalar
a multiplied by x plus y (AXPY) computed in the innermost loop [22]. Compared
to the im2col-based convolution, the direct convolution has no additional mem-
ory overhead. However, its AXPY operations suffer from discontinuous memory
access, because of visiting distinct dimensions of the input tensor across the
nested for loops. This results in low data reuse and low cache hit rate. This
problem is seriously magnified on GPU.

To solve similar problems on CPU, we previously proposed a novel convolu-
tion algorithm, called im2win [14] (image to window), which rearranges the input
tensor in the access order of the dot product windows. In this paper, we evolve the
im2win algorithm and develop a memory-efficient and high-performance im2win-
based convolution paradigm on GPU. The im2win convolution paradigm first
transforms the input tensor into an im2win tensor using the im2win data trans-
formation (see Sect. 3.1). Next, the convolution is implemented as a three-level
nested loop structure akin to an implicit GEMM convolution, and the indices of
input tensor, filter tensor and output tensor can be mapped to the three levels
of for loops when performing an AXPY operation. Our im2win data transfor-
mation algorithm can significantly reduce memory consumption compared to
the im2col data transformation. We implement the im2win-based convolution
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paradigm in CUDA and propose a range of optimization techniques, including
tiling, micro-kernel, double buffer, and prefetching.

We compare our implementation with various convolution methods, including
the direct convolution, PyTorch’s GEMM-based convolution using cuBLAS, and
six different cuDNN-based convolution implementations, using twelve different
state-of-the-art deep neural network benchmarks. The results of our experiments
indicate that our implementation outperforms the others in different aspects.
Specifically, it uses less memory by 23.1% compared to cuBLAS and by 32.8%
compared to the best-performing convolution implementations in cuDNN, while
on average achieving 3.5× and 1.1× TFLOPS, respectively. Additionally, our
implementation achieves up to 155× TFLOPS compared with the direct con-
volution. We also conduct an ablation study to understand which optimization
technique has the greatest positive impact on performance, and find that the
micro-kernel has the most significant effect. We make our code publicly avail-
able at https://github.com/seth-lu/Im2win under cuda branch.

To summarize, this paper makes the following contributions:

1) We propose an innovative convolution paradigm on GPU, called im2win-based
convolution (Sect. 3.2), along with a set of optimizations that are specifi-
cally designed to improve its memory efficiency and performance (Sect. 3.3).
Our proposed convolution paradigm is shown to be both high-performance
and memory-efficient, offering a promising alternative to existing convolution
methods on GPU.

2) We implement our im2win-based convolution in CUDA and compare it
with the direct convolution, existing convolution algorithms in cuBLAS and
cuDNN. We conduct an experimental evaluation using twelve DNN bench-
marks of various dimensions that provides a comprehensive result of our pro-
posed method (Sect. 4.2).

3) We conduct an ablation study on the optimization techniques applied to
the proposed im2win-based convolution paradigm, which reveals that the
micro-kernel optimization technique has the most significant impact on per-
formance (see Sect. 4.4).

The rest of paper is organized as follow. Section 2 defines the notations used in
this paper, reviews existing convolution techniques and related works. Section 3
presents our convolution paradigm on GPU along with a set of optimizations that
are specifically designed to improve its memory efficiency and performance. We
conduct an experimental evaluation, an ablation study and present the perfor-
mance and memory usage of different convolution algorithms in Sect. 4. Finally,
we conclude our work in Sect. 5.

2 Preliminaries and Related Work

In this section, we define the notations used in this paper, review the related
works in the direct convolution, the GEMM-based convolution and other convo-
lutions.

https://github.com/seth-lu/Im2win
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2.1 Notations

Three main tensor data in the convolution operation are the Input tensor (I), the
Filter tensor (F), and the Output tensor (O). These tensors in NCHW layout
are expressed as I[Ni][Ci][Hi][Wi], F [Co][Ci][Hf ][Wf ] and O[Ni][Co][Ho][Wo].
The convolution is defined as:

O(i,j,m,n) =
Ci−1∑

j=0

Hf−1∑

m=0

Wf−1∑

n=0

(I(i,j,m×s+u,m×s+v) ×F(j,r,u,v)

)
, (1)

subject to

i = 0, 1, .., Ni − 1, j = 0, 1, .., Co − 1,m = 0, 1, ..,Ho − 1,
n = 0, 1, ..,Wo − 1, u = 0, 1, ..,Hf − 1, v = 0, 1, ..,Wf − 1,
r = 0, 1, .., Ci − 1.

Ni is the batch size, s is the stride size, Ci and Co are the number of input
and output channels, Hi/f/o and Wi/f/o denote height and width in spatial
dimensions.

2.2 The Direct Convolution

The direct convolution is one of the most naive implementations of convolutions.
A basic direct convolution has seven nested for loops. The outer four loops iterate
over the four dimensions of O, and the inner three loops iterate over F and I.
Each element of O is computed with an AXPY operation in the innermost loop.
These nested loops can be parallelized well on GPU. However, the larger O is,
the less data can fit in the cache. In this case, the direct convolution accesses
directly through the global memory. The data access is discontinuous and the
latency is high, resulting in poor performance [22]. It has been shown that the
performance of the direct convolution can be greatly improved by redesigning
specific data layouts and data flows on the GPU [19].

2.3 The GEMM-Based Convolution

The GEMM-based convolution proposed by Chellapilla et al. [4] is the most
commonly used convolution algorithm, and is widely used in existing deep learn-
ing frameworks [3,17]. Due to its fundamental and general nature, it is often
used as a benchmark for performance comparison. The GEMM-based convolu-
tion unrolls the convolution operation into a GEMM operation. The I of size
Ni × Ci × Hi × Wi is processed in Ni batches, each batch contains data I ′

of size Ci × Hi × Wi (i.e., a single image). As shown on the right in Fig. 1,
the im2col algorithm transforms I ′ into a 2D matrix; and F is unfolded into a
filter matrix. In im2col, the elements of each dot product window of I ′ is flat-
tened and copied into a single row of a matrix (see Fig. 1). Denoting the im2col
matrix as M and the filter matrix as N , the im2col algorithm can be written as:
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M(mWo +n, (rHf + u)Wf + v) = I ′(r,m+ u, n+ v), N((rHf + u)Wf + v, j) =
F(j, r, u, v). Next, a GEMM operation in BLAS library performs the matrix
product of the transformed input matrix and the transformed filter matrix to
get the output matrix: R′ = M ×N . The convolution result tensor R is trans-
formed from R′: R(j,m, n) = R′(mWo + n, j).

Fig. 1. The im2col and im2win data transformation examples with Ci = Hi = Wi =
3, Hf = Wf = 2, sh = sw = 1. The solid and dashed boxes indicate the different
dot product windows of the input tensor. We can see that the im2win tensor has less
elements than the im2col matrix.

Dongarra et al. has demonstrated that the GEMM-based convolution bene-
fits from the efficient implementation on GPU and the nature of GPU architec-
tures [8]. Due to the highly optimized cuBLAS library, GEMM-based convolution
has reliable performance and supports various input tensor sizes. However, this
approach requires a large memory to store the im2col matrix transformed from
the input tensor and the filter tensor. Because it has to store duplicated elements
due to overlap of the filter positions in the convolution, the im2col matrix is much
larger than the original tensor. What’s worse, the im2col matrix is much larger
than the filter matrix, this results the GEMM operation in significantly lower
performance than the best achievable performance [9,22]. MEC proposes a com-
pact lowering trick on the im2col matrix and splits a single GEMM into multiple
small GEMMs to reduce the memory footprint [6]. The small GEMM operations
are performed in parallel to complete the convolution. We intend to compare our
convolution with MEC on GPU, unfortunately, MEC is not open-sourced.

2.4 The Convolution Algorithms Implemented in cuDNN

cuDNN is a GPU-accelerated deep learning library from NVIDIA, which imple-
ments six convolution algorithms including the direct convolution, the GEMM-
based convolution, two implicit GEMM-based convolutions, the Fast Fourier
Transform (FFT) convolution, and the Winograd convolution. The implicit
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GEMM-based convolution is a variant of the direct convolution, which oper-
ates natively on the input tensors, converting the computation into a GEMM
on the fly. During the computation, the im2col matrices are implicitly formed.
There is another variant that precomputes offsets used in the implicit GEMM.
The FFT convolution uses the fast Fourier transform to achieve convolution. It
can achieve fast convolution with fewer operations the direct convolution, how-
ever, it requires more memory and is more difficult to implement as it works with
complex numbers instead of real numbers. The Winograd convolution is based
on the Winograd’s minimal filtering algorithm [13], which is computationally
efficient for some small convolution kernels.

cuDNN supports autotunning, which automatically selects an algorithm on a
per-layer basis based on the layer dimensions. But even so, cuDNN still has some
shortcomings. The cuDNN call parameter API is pre-defined, so it does not have
the flexibility to build some special convolutions. cuDNN often resorts to a slower
algorithm that fits the workspace size constraint. To alleviate this behavior of
cuDNN, u-cuDNN divides layers’ mini-batch computation into multiple micro-
batches transparently by decreasing the workspace size requirements [16]. We
refer the readers the performance evaluation of cuDNN convolution algorithms
in [12].

3 The Im2win-Based Convolution Paradigm on GPU

To reduce the huge memory usage of the im2col-based convolution and avoid
nonconsecutive memory access of the direct convolution, we use the im2win data
transformation and propose a high-performance and memory efficient im2win-
based convolution paradigm on GPU. Furthermore, we propose several optimiza-
tion techniques for our im2win-based convolution.

3.1 Motivations

Now we present the im2win data transformation algorithm and the implicit
GEMM-based convolution algorithm as the motivations of our im2win-based
convolution.

The im2win Data Transformation Algorithm. As shown on the left in Fig. 1,
our image to window algorithm (called im2win) rearranges the input tensor I
in the access order of the dot product windows. It dramatically reduces memory
overhead with more compact data arrangement compared with the im2col data
transformation algorithm. For the dot product windows in the same row, each
dot product operation reuses the elements of the previous loaded window except
for the first one. Our im2win algorithm supports great data reusability, temporal
and spatial data locality.

In the im2win algorithm, we divide each channel of I ′ into Ho×Wo windows
of size Hf ×Wf , and copy Wo windows in the same row to one row in our im2win
tensor. Performing the above operation for all windows on a single channel of
I ′, we obtain a tensor of size (Ho, Hf ×Wi) (see Fig. 1). This tensor is ordered
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by the dot product windows and has fewer redundant elements than what the
im2col matrix has. Performing the above algorithm for the batch and channel
dimensions in I, we will get a tensor of size (Ni, Ci, Ho, Wi ×Hf ) and call this
tensor as an im2win tensor. Denoting the im2win tensor as Î, the algorithm can
be written as:

Î(i, r,m, kHf + u) = I(i, r,m + u, n + v). (2)

subject to

m = 0, 1, ..,Ho − 1, n = 0, 1, ..,Wo − 1, u = 0, 1, ..,Hf − 1,
v = 0, 1, ..,Wf − 1, i = 0, 1, .., Ni − 1, r = 0, 1, .., Ci − 1,
k = 0, 1, ..,Wi − 1.

Recall in Fig. 1 s = 1, the im2col matrix has 48 elements, while in Fig. 1, the
im2win tensor has 36 elements. The im2win tensor has 1/3 less elements than the
im2col matrix in addition to provide better data locality and data reusability.

The Implicit GEMM-Based Convolution Algorithm. In addition to the
GEMM-based convolution algorithm with explicit im2col data transformation,
there is also an implicit GEMM-based convolution algorithm, shown in Algo-
rithm 1. Instead of an explicit data transformation process, a three-level nested
for loop structure is used in the algorithm to calculate the indices of I (Line
4 and Line 8 - Line 13), F (Line 2 and Line 8 - Line 11) and O (Line 2 - Line 6).
In the innermost loop, the AXPY operation is performed to result in O (Line 14).
Implicit GEMM-based convolution does not have the memory consumption of
data transformation. The name of implicit GEMM-based convolution algorithm
can be confusing. With no explicit input and filter matrices, it is impossible
to call cuBLAS GEMM API. In addition, the indices to perform an AXPY
must be computed on the fly. This algorithm is commonly viewed as a variant
of the direct convolution. Since Algorithm 1 has the same three-level nested
for loop structure as GEMM operation, the optimization techniques that are
proposed for GEMM can also be applied to implicit GEMM-based convolution
algorithm, such as shared memory, tiling, micro-kernel, vectorized load/store and
prefetching.
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Algorithm 1: Implicit GEMM-
based Convolution Algorithm
Input: Input I, Filter F , Stride s
Output: Output O
Dimensions: M = Co,N = No×Ho×

Wo,K = Cf ×Hf ×Wf

1 for m = 0 to M − 1 do
2 oc = fn = m

3 for n = 0 to N − 1 do

4 on = in = n/(Ho ×Wo)
5 oh = (n%(Ho ×Wo))/Wo

6 ow = (n%(Ho ×Wo))%Wo

7 for k = 0 to K − 1 do
8 fc = ic = k/(Hf ×Wf )
9 kres = k%(Hf ×Wf )

10 fh = kres/Wf

11 fw = kres%Wf

12 ih = oh × s+ fh
13 iw = ow × s+ fw
14 O(on, oc, oh, ow)+ =

I(in, ic, ih, iw)×
F(fn, fc, fh, fw)

Algorithm 2: Basic Im2win-
based Convolution On GPU
Input: Input I, Filter F , Stride s
Output: Output O
Im2winTensor: Î = Function

im2win(I,F , s)
Dimensions : M = Co,N =

No ×Ho ×Wo,K =
Cf ×Hf ×Wf

# of blocks : M/32×N/32
# of threads per block: 32× 32

1 m = bx× 32 + tx, n = by × 32 + ty

2 oc = m, on = in = n/(Ho ×Wo)
3 oh = (n%(Ho ×Wo))/Wo

4 ow = (n%(Ho ×Wo))%Wo

5 for k = 0 to K − 1 do
6 fc = ic = k/(Hf ×Wf )
7 kres = k%(Hf ×Wf )

8 fh = kres/Wf , fw = kres%Wf

9 ih = oh × s+ fh, iw = ow × s+ fw
10 O(on, oc, oh, ow)+ =

Î(in, ic, ih, iw)×F(fn, fc, fh, fw)

3.2 The im2win-based convolution on GPU

We propose a basic im2win-based convolution on GPU shown in Algorithm 2
implemented in CUDA. The input tensor I is initially transformed into the
im2win tensor Î based on Eq. (2). Next, the convolution is implemented as a
three-level nested for loop structure same as the implicit GEMM-based con-
volution. In Algorithm 2, dimension M and dimension N are mapped to grid
and block respectively, where each block includes 32× 32 threads, i.e., grid =
(M/32, N/32), block = (32, 32). The bx and by denote block indices in the x
and y dimensions respectively, and tx and ty denote thread indices in the x and
y dimensions respectively (Line 1). Within the kernel of each block, the three
levels of for loops are M = Co,N = No×Ho×Wo, and K = Cf ×Hf ×Wf . The
indices of Î (Line 2, Line 6 - Line 9), F (Line 6 - Line 8) and O (Line 2 - Line
4) tensor are computed on the fly within the kernel function. The innermost for
loop performs an AXPY operation.

In the kernel function, we first compute indices m and n from dimension
M and dimension N respectively from the global indices of the thread tx and
ty (Line 1 in Algorithm 2). Next, the indices of the four dimensions of the output
tensor required for the AXPY operation are calculated by performing division
and remainder operations on m and n (Line 2 - Line 4). Finally, we compute the
remaining indices of Î and F in a for loop in dimension K, and perform AXPY
operations after obtaining all the indices of O, Î and F (Line 5 - Line 10).

The most expensive computation in Algorithm 2 is the AXPY operation
at Line 10, which requires three read operations and one write operation. On
GPU, frequent read and write operations to the global memory have substantial
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Algorithm 3: High Performance Im2win Convolution Algorithm On GPU
Input: Input tensor I, Filter tensor F , Stride s
Output: Output tensor O
Im2winTensor: Î = Function im2win(I,F , s)
Dimensions : M = Co,N = No × Ho × Wo,K = Cf × Hf × Wf

# of blocks : M/MB × N/NB

# of threads per block: MB/MT × NB/NT

1 Registers: RÎ [2][NT ], RF [2][MT ], RO[MT × MT ] //double buffer
2 Shared memories: SÎ [2][KB × NB ], SF [2][MB × KB ] //double buffer

3 SÎ [0][kB × nB ] load←−− kB × nB of Î(0, by)

4 SF [0][mB × kB ] load←−− mB × kB of F(bx, 0)

5 syncthreads()
6 RÎ [0][nT ] vec load←−−−−− nT of SÎ [0][0 × nB ]

7 RF [0][mT ] vec load←−−−−− mT of SF [0][mB × 0]

8 for kk = 0 to Cf × Hf × Wf/Kf,b − 1 do
9 for k′ = 1 to Kf,b − 1 do

10 RÎ [load][nT ] vec load←−−−−− nT of SÎ [store][k′ × nB ] //prefetching

11 RF [load][mT ] vec load←−−−−− mT of SF [store][mB × k′] //prefetching

12 RO[mT × nT ] += RF [store][mT ] × RÎ [store][nT ] //micro-kernel

13 if kk �= Cf × Hf × Wf/Kf,b − 1 then

14 SÎ [load][kB × nB ] load←−− kB × nB of Î(kk + 1, by) //prefetching

15 SF [load][mB × kB ] load←−− mB × kB of F(bx, kk + 1) //prefetching

16 syncthreads()

17 RÎ [0][nT ] vec load←−−−−− nT of SÎ [store][0 × nB ]

18 RF [0][mT ] vec load←−−−−− mT of SF [store][mB × 0]

19 RO[mT × nT ] += RÎ [1][nT ] × RÎ [1][nT ] //micro-kernel

20 O(bx, by) store←−−− RO[mT × nT ]

latency. Therefore we need to cache as much data as possible used for AXPY
operations into shared memory and registers per block, which have much lower
latency. At Line 2 - Line 4 of the algorithm, we divide the index of outputs
based on the global id of the thread so that each individual thread is responsible
for a separate output. This data partition is obvious, but not computationally
efficient. We can use the micro-kernel technique (elaborated shortly) to partition
the MT × NT of O computation tasks for each individual thread, which will
increase the data reusability. We propose in the next subsection a composition
of optimizations making the best use of the im2win-based convolution on GPU.

3.3 Optimizations on GPU

Inspired by the optimization techniques used in GEMM on GPU, we apply
the following optimizations to Algorithm 2, including tiling, shared mem-
ory, micro-kernel, vectorized load/store, double buffer, and prefetching. Those
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optimizations are especially important to maximize workload and data paral-
lelism and reduce data access latency. We present our high-performance im2win-
based convolution on GPU as Algorithm 3.

Tiling. Since Algorithm 2 has a similar implicit GEMM-based convolution
implementation with three nested loops of M, N and K, the indices of the input
tensor can be divided into small blocks called tiles [21]. We tile the sizes of Î
and F into sizes of MB×NB×KB at the block level and MT ×NT at the thread
level in Algorithm 3. As the basic computational unit during computation, the
main effect of tiling is to improve computational performance by reducing data
accesses and improving data locality. For example, the size of the tile can be
adapted to match the size of the shared memory or the registers, which has
substantial lower latency, to improve the data reuse and to increase cache hit
rate.

Shared Memory and Register. The memory on a GPU device consists of four
levels of hierarchy: the global memory, the shared memory, the L1&L2 caches
(not programmable in CUDA) and the registers. From the global memory to
the shared memory, and to the registers, the access latency decreases and the
size also decreases. After tiling the input tensor and the filter tensor, we allocate
registers and shared memory blocks of size MB ×KB and size KB ×NB (Line
1 - Line 2), and we load Î and F located in global memory into the registers
and shared memory (Line 3 - Line 7) in Algorithm 3. Because each dot product
operation reuses the elements of the previous loaded dot product window from
the same row in the im2win tensor. To take advantage of this, we load the data
to the share memory of each block with as many dot product windows from
the same row as possible, to achieve highest possible data reusability and data
locality.

Micro-kernel. The micro-kernel technique can be used to increase the computa-
tional intensity. Without it, one AXPY operation in the innermost for loop of our
im2win-based convolution computes one element of O. Micro-kernel are typically
implemented as outer product multiplications of vectors. With each micro-kernel
used in each thread in a block, each thread is now responsible for computing mul-
tiple elements of O. We tile the size of the micro-kernel at MT × NT divided
at the thread level (Line 12 - Line 19 in Algorithm 3). The micro-kernel parti-
tions the matrix multiplication among multiple threads, reducing the number of
memory accesses and improving the parallelism and computational efficiency of
the AXPY operations.

Vectorized load/store. The vectorized load/store are techniques to improve
memory access efficiency by loading or storing multiple consecutive data ele-
ments from the shared memory into registers under single instruction (SIMD),
thereby improving data IO efficiency and memory throughput. Data IO and
memory throughput are often the performance bottlenecks when performing
convolutional computation on the GPU. Our im2win tensor data structure is
stored in a consecutive physical memory, with the dot product windows of the
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same row arranged continuously. Because each APXY operation loads consecu-
tive dot product windows in the micro-kernel, loading Î and F from the shared
memory of a block into the registers can be done using vectorized load (Line
6 - Line 7 in Algorithm 3).

Double Buffer and Prefetching. The double buffer optimization refers to the
use of two buffers to store the input and filter tensors for pipelined concurrent
computation. In Algorithm 3, we allocate two registers at Line 1 and two shared
memories at Line 2. Typically, one buffer is used for the ongoing computation and
the other is for prefetching the new data used into registers (or shared memory)
in the next computation. It hides the latency and overhead of loading data.
When the computation is completed, the roles of the two buffers are swapped,
i.e., the original buffer becomes the new load buffer and the original load buffer
becomes the new computation buffer. The prefetching technique is performed
on Î and F (Line 10 - Line 11 and Line 14 - Line 15 in Algorithm 3), followed
by a syncthread() that synchronizes the data among all the threads of a block
performing prefetching. The prefetching technique allows certain amount of data
(we prefetch 128 elements for the shared memory, and 8 elements for the register
in our implementation) to be prefetched before the computation, thus reducing
data waiting time and improving computational efficiency [11].

4 Experimental Results

In this section, we compare our im2win convolution algorithm with a naive direct
convolution, PyTorch’s im2col-based algorithm using cuBLAS and cuDNN’s con-
volution implementations, present the performance results and memory usages
of them, and perform an ablation study of our proposed optimization techniques.

4.1 Experimental Setup

Platform. We perform our experiments on a NVIDIA GeForce RTX 3090 GPU
which has 24GB memory and is connected to an Intel Xeon Silver 4214 CPU
server.

Software. The APIs of cuBLAS and cuDNN are pre-defined and are not avail-
able for the im2win-based convolution, so we implement our im2win convolu-
tion paradigm using CUDA 11.1. We use the tensor data structure of PyTorch
1.10.0 [2] with the single 32bit precision. We list the algorithms we compared,
theirs notations, and their descriptions in Table 1.
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Table 1. The convolution algorithms used in the experimental evaluations, the nota-
tions used in figures, and their implementation details.

Notation Description

im2col+cuBLAS the im2col-based convolution in PyTorch using cuBLAS 11.2

direct a naive direct convolution implemented in CUDA 11.1

cuDNN six convolutions in PyTorch using cuDNN 8.0.1

im2winGPU our im2win-based convolution implemented in CUDA 11.1

Benchmarks. We aim to check how well our convolution paradigm performs on
various convolutional layers in terms of dimensions. However, it is not persuasive
if we only benchmark with one neural network model. For example, all the
filters in VGG-16 [18] are 3× 3, and ResNet-50 [10] contains only three different
filters in sizes. Hence we select twelve state-of-the-art DNN benchmarks [6] in
our evalution, including twelve unique convolution layers, Conv1-Conv12 (the
parameters are shown in Table 2).

Table 2. Parameters of the twelve DNN benchmarks.

NAME INPUT FILTER, STRIDE OUTPUT

Ci × Hi × Wi Co × Hf × Wf , sh(sw) Co × Ho × Wo

Conv1 3 × 227 × 227 96 × 11 × 11, 4 96 × 55 × 55

Conv2 3 × 231 × 231 96 × 11 × 11, 4 96 × 56 × 56

Conv3 3 × 227 × 227 64 × 7 × 7, 2 64 × 111 × 111

Conv4 64 × 224 × 224 64 × 7 × 7, 2 64 × 109 × 109

Conv5 96 × 24 × 24 256 × 5 × 5, 1 256 × 20 × 20

Conv6 256 × 12 × 12 512 × 3 × 3, 1 512 × 10 × 10

Conv7 3 × 224 × 224 64 × 3 × 3, 1 64 × 222 × 222

Conv8 64 × 112 × 112 128 × 3 × 3, 1 128 × 110 × 110

Conv9 64 × 56 × 56 64 × 3 × 3, 1 64 × 54 × 54

Conv10 128 × 28 × 28 128 × 3 × 3, 1 128 × 26 × 26

Conv11 256 × 14 × 14 256 × 3 × 3, 1 256 × 12 × 12

Conv12 512 × 7 × 7 512 × 3 × 3, 1 512 × 5 × 5

Table 3. The fastest algo-
rithms selected by cuDNN
automatically on twelve
benchmarks.

cuDNN ALGORITHM

Fastest chosen

IMPLICIT GEMM

IMPLICIT GEMM

IMPLICIT GEMM

IMPLICIT GEMM

WINOGRAD

IMPLICIT GEMM

IMPLICIT GEMM

FFT

WINOGRAD

WINOGRAD

WINOGRAD

IMPLICIT GEMM

4.2 Performance

In the experiments, we use the wall-clock time in the standard C++ library to
measure the runtime of different algorithms. We run each algorithm 100 times
and record the best runtime among 100 runs. The batch size of each benchmark
input data is 128.

Figure 2 shows the TFLOPS of different convolution algorithms of twelve
different DNN benchmarks respectively on GPU. cuDNN has six convolution
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algorithms, with the fastest automatically chosen based on the input tensor
dimensions. Table 3 shows the fastest algorithm automatically chosen by cuDNN
at different benchmarks. Among the twelve benchmarks, our im2win-based con-
volution achieves about on average 3.5 × TFLOPS than that of im2col+cuBLAS
convolution, and achieves 5× to 155× TFLOPS compared with the direct con-
volution Our im2win-based convolution has comparable performance with the
cuDNN convolutions and achieves up to 1.8 × TFLOPS (the first benchmark)
than that of the fastest algorithm chosen by cuDNN. Thanks to our customized
optimizations tailored for our im2win-based convolution on GPU, we demon-
strate better performance than the im2col-based convolution and the direct
convolution of cuDNN, and show comparable performance with the implicit
GEMM-based convolution, the FFT convolution, and the Winograd convolu-
tion in cuDNN.

4.3 Memory Usage

Figure 3 shows the memory usages of different convolution algorithms on twelve
different DNN benchmarks respectively on GPU. Note that cuDNN auto-tunes
itself to use the fastest algorithms among its six convolution algorithms based on
the input tensor dimensions. The figure shows that our im2win-based convolu-
tion algorithm dominantly uses less memory footprint over all twelve benchmarks
compared with the im2col-based convolution in cuBLAS and the fastest convolu-
tion among the six algorithms in cuDNN. On average, our algorithm uses 23.1%
less memory than cuBLAS, and uses 32.8% less memory than cuDNN. Our algo-
rithm has slightly higher memory usage than the direct convolution. Considering
that the memory of a single GPU is usually not big (even Nvidia A100 has at
most 80 GB of memory), our convolution paradigm supports substantially larger
tensor to be processed on a single GPU over cuBLAS and cuDNN, which is much
preferable.

Fig. 2. Performance comparison of our im2win-based convolution with the direct con-
volution, the im2col-based convolution using cuBLAS and the convolutions in cuDNN
(see Table 3).
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Fig. 3. Memory usages of our convolution compared to the direct convolution as well
as PyTorch’s im2col+cuBLAS convolution and cuDNN convolutions.

Fig. 4. Performance comparison of the ablation study on the prefetching, the vectorized
load, and the micro-kernel optimization techniques. One technique is removed at a time.

4.4 Ablation Study

To explore the performance impact of the prefetching (along with double buffer),
the vectorized load, and the micro-kernel techniques we apply in our kernel, we
conduct an ablation study on our high-performance im2win-based convolution
paradigm. We have im2winGPU as the baseline, which includes all the optimiza-
tion techniques. For other three variants, we remove one technique at a time to
study its effectiveness. Figure 4 shows the performance impact of different opti-
mization techniques on our convolution paradigm in terms of the TFLOPS met-
ric. Among the twelve benchmarks, the micro-kernel technique gives the greatest
performance boost, followed by the vectorized load, and the prefetching gives the
poorest performance boost for our paradigm.

With the micro-kernel implemented as outer product multiplications of vec-
tors in a thread of a block, each thread computes multiple elements of the out-
put tensor O instead of one. This reduces the number of memory accesses and
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improves the parallelism and computational intensity of the AXPY operations.
The vectorized load improve data IO efficiency and memory throughput by load-
ing or storing multiple contiguous data elements from the shared memory into the
register. Allocating two buffers (one for prefetching, the other for computation)
cuts the size of the available shared memory and registers during computation
by half, resulting minimal performance improvement.

5 Conclusion

In this paper, we proposed a new convolution paradigm on GPU. We imple-
mented a window-order-based convolution (called im2win) on GPU using CUDA
along with a range of optimizations, including shared memory, tiling, micro-
kernel, double buffer, and prefetching. Using twelve DNN benchmarks, we com-
pared our algorithm with the direct convolution, PyTorch’s GEMM-based con-
volution implementation in cuBLAS and six convolution algorithms in cuDNN.
The experimental results demonstrate the superior memory and performance
efficiency of our im2win-based convolution paradigm compared with the direct
convolution and the im2col-based convolution and show comparable performance
with the implicit GEMM-based convolution, the FFT convolution, and the Wino-
grad convolution in cuDNN with much less memory footprint.
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Abstract. In drug discovery, molecular docking aims at characterizing
the binding of a drug-like molecule to a macromolecule. AutoDock-GPU,
a state-of-the-art docking software, estimates the geometrical conforma-
tion of a docked ligand-protein complex by minimizing a scoring func-
tion. Our profiling results indicate that the current reduction operation
that is heavily used in the scoring function is sub-optimal. Thus, we
developed a method to accelerate the sum reduction of four-element vec-
tors using matrix operations on NVIDIA Tensor Cores. We integrated
the new reduction operation into AutoDock-GPU and evaluated it on
multiple chemical complexes on three GPUs. Our results show that our
method for reduction operation is 4–7 times faster than the AutoDock-
GPU baseline. We also evaluated the impact of our method on the overall
simulation time in the real-world docking simulation and achieved a 27%
improvement on the average docking time.

Keywords: Molecular docking · AutoDock · GPU · Tensor Core ·
Drug Discovery

1 Introduction

The pharmacological effect of a drug is generally induced by the binding of
a drug molecule to a specific protein target. Thus, characterizing the ability of
binding is crucial for drug discovery. Once a target for a disease is identified, tens
of millions of chemical compounds, or ligands, will go through high-throughput
screening. For such vast search space, virtual screening that leverages computa-
tional approaches is becoming increasingly important for accelerating the process
and reducing the high cost required in experimental screenings [5,12]. In partic-
ular, structure-based virtual screening software uses molecular docking tools to
test a molecule drug candidate for binding a protein target (receptor). In recent
COVID-19 research, high-performance virtual screening software has been used
in combating the pandemic [5].

A typical molecular docking job consists of evaluating a large number of
ligands, each as an independent docking task. Further distributing individual
docking tasks onto high-performance computing (HPC) systems, with multi-core
CPU or GPUs, can significantly accelerate docking, e.g., AutoDock-GPU reports
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350-fold speedup over single-threaded implementation [8,12]. AutoDock is widely
used in the pharmaceutical industry to characterize protein-ligand complexes.
In recent efforts, AutoDock4 implements its search engine based on Lamarckian
Genetic Algorithm (LGA) and is ported to GPUs. A CUDA implementation
of AutoDock-GPU with enhanced workflow successfully scaled to leverage the
Summit supercomputer [5].

In this work, we focus on the CUDA implementation of AutoDock-GPU as it
represents the state-of-the-art of docking software on HPC systems. AutoDock-
GPU predicts the geometrical conformation of a ligand-protein complex by min-
imizing an energy-based scoring function that quantifies the free energy of a
given binding pose. A docking job typically have many LGA runs, each con-
sisting of multiple iterations till reaching the max number of score evaluations
or GA generations. Therefore, the scoring function is called many times, e.g.,
106 to 108, in a docking job, dominating the runtime [12]. The scoring function
parallelizes the computation of the energy and associated gradient values by dis-
tributing iterations across all threads in a block and computing the total energy
in a block-level reduction operation. Our profiling results show that the current
implementation of the reduction operation causes a significant proportion of the
overall number of warp stalls in the local search kernel.

We propose a Tensor Core based reduction operation to accelerate the
docking process – leveraging Tensor Core Units and reducing synchronization
points. We designed a multi-dimensional reduction algorithm based on previous
works [1,10]. Our design leverages compacted data layout in shared memory.
By merging multiple matrix multiplications into a single one, we dramatically
reduce the number of synchronization points. We implemented the new algo-
rithm in CUDA using the Nvidia WMMA API and integrated it in the energy
calculation function in AutoDock-GPU. We validated the implementation and
then evaluated its performance in single kernel and overall docking time on three
generations of NVIDIA GPUs, including T4, V100, and A100. The results show
that our method consistently outperform the AutoDock-GPU baseline, achieving
up to 6.7× and 4.7× speedup on A100 and V100, respectively. We summarize
our contributions as follows:

– Our performance charaterization of the AutoDock-GPU identified the scala-
bility bottleneck in reduction operation in scoring function

– We proposed a multi-dimension reduction operation leveraging the mixed-
precision Tensor Core Units

– We provided an implementation in CUDA using WMMA API in AutoDock-
GPU and validated the implementation

– We evaluated the performance within single kernel on three GPUs and
achieved 4.1–6.7× speedup, and a 27% improvement on average docking time

2 Background

In this section, we introduce the computation method in molecular docking and
the GPU implementation of AutoDock-GPU. We also introduce Tensor Core
Unit and its programming interfaces on NVIDIA GPUs.
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2.1 Computational Method in AutoDock-GPU

AutoDock [9] variants, e.g., AutoDock-Vina, AutoDock4, and AutoDock-GPU,
use an energy-based scoring function to measure the quality of a given binding
pose. The scoring function is a free-energy force field. It captures contributions
from various physical interactions between atom pairs to associate an energy
value to a ligand-receptor conformation. Recent development [12] introduces dif-
ferent search algorithms, such as the Solis-Wets and the ADADELTA methods,
to accelerate the docking.

In the docking method in AutoDock-GPU, the target molecule is fixed. Thus,
the ligand-receptor complex can be fully described by a set of variables related
to the position, rotation, and internal conformation of the ligand. This set of
variables, referred as ligand pose or genotype, is composed of seven dimensions,
i.e., x, y, z representing the ligand’s position in space, φ, θ, α characterizing the
rotation of the ligand, and Nrot dimensions characterizing the torsion angles of
rotatable bonds in the ligand by ψ1 . . . ψNrot

. These variables are the input to
the scoring function.

AutoDock-GPU uses a parallelized version of the original LGA [12]. The LGA
uses a genetic algorithm (GA) to perform a global search, which generates sev-
eral genotypes (denoted as Ω). Each genotype is then improved by a local search
algorithm (LS) that minimizes the scoring function (free energy). Two commonly
used local search algorithms are ADADELTA and Solis-Wets. ADADELTA [17]
is a gradient-based optimization algorithm. It updates the genotype Ω at each
iteration t by Ωt+1 = Ωt + ηtgt, where ηt depends on the history of previous
update and gradient values, and gt is the gradient of the scoring function at the
point Ωt. The computational cost of this method is dominated by the gradient
calculation. AutoDock-GPU parallelizes computation of the energy value by dis-
tributing iterations across all threads in a block. Each thread computes a partial
value of the total energy and a block-level reduction is used to compute the total
energy value. Similarly, each thread computes a partial value of the gradient for
each of the three geometrical dimensions x, y, z, as well as the torque generated
by physical interactions on the ligand, which is required for the calculation of the
rotation-related and torsion-related gradient values. In total, seven block-level
reductions are required for each evaluation of the scoring function, during the
local-search optimization process.

2.2 NVIDIA Tensor Cores

NVIDIA Tensor Cores were introduced in the Volta GPU microarchitecture,
providing tremendous computing power in reduced precision [6]. NVIDIA V100
features 640 first-generation Tensor Cores and a theoretical peak performance
of 125 Tflops/s in mixed precision. The Turing architecture extended Tensor
Cores abilities by adding support for computation using more data types. The
Tesla T4 offers 320 Tensor Cores, and provides a theoretical peak performance
of 65 Tflops/s. In the Ampere architecture, the A100 GPU features 432 Tensor
Cores, and provides a theoretical peak performance of 312 Tflops/s.
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Tensor Core Units (TCU) are designed to perform matrix multiply-and-
accumulate operations (i.e., V ← A ·B +V ) in high throughput, while enforcing
constraints on matrix sizes and precision. The operands of the multiplication
operation must be of size 16 × 16 and contain half-precision elements [11]. The
accumulator can use single-precision float representation.

Tensor Core operations use the half-precision data type, which relies on a 16-
bit binary representation. This level of precision is generally sufficient for deep
learning workloads, and scientific workloads resilient to precision loss can also
benefit from it. However, the half-precision data type requires explicit conversion
to the single-precision 32-bit float representation. Starting with the Ampere GPU
architecture, NVIDIA added support for both bfloat16 and tf32 in Tensor Cores.
While double-precision data type is also supported on Tensor Cores from the
Ampere GPU architecture, the matrix size in this precision is limited to 8 × 4
for the multiplication operands, and 8 × 8 for the accumulator.

The WMMA API (Warp Matrix Multiply-and-Add) provides a limited set of
functions for developers to use Tensor Cores. Codes using this API are portable
across different NVIDIA GPU architecture. This API exposes functions to set
up and perform multiply-and-accumulate operations on Tensor Cores. It defines
a data structure named fragment. A fragment is an abstraction to represent
a matrix. Each fragment holds the matrix metadata, i.e., the data type, the
matrix size, and the type of matrix as either an operand or an accumulator. The
actual matrix elements held by a fragment are spread across threads in the warp,
this data-to-threads mapping is not known by the developer [1]. Instead, the
WMMA API provides basic load and store functions to map generic CUDA data
structures, such as arrays, to fragments. A multiply-and-accumulate operation
is exposed as a function operating on fragments and requires the collaboration
of all threads in a warp.

3 Performance Characterization on GPU

In this section, we first provide an overview of the runtime breakdown of a
simulation and then focus on the GPU computation. We used the 7cpa protein-
ligand complex and ran with a block size of 64 threads on NVIDIA A100 GPU,
using all default parameters. The profiling results were obtained with NVIDIA
Nsight Systems. At high level, the runtime of a simulation is dominated by the
docking time, which is GPU bound, and then I/O pre-processing [7]. In Fig. 1,
NVIDIA Nsight Systems reports 90% time spent in docking.

Fig. 1. Profiling results of a docking process of the 7cpa protein-ligand complex.
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Fig. 2. The kernel launch timeline for iter-
ations of the optimization process.

Table 1. Time breakdown in CUDA ker-
nels

kernel name % of total

kernel runtime

gpu calc initprop kernel <0.1%

gpu sum evals kernel 0.1%

gpu gen and eval newpops kernel 0.3%

gpu gradient minAD kernel 99.6%

Fig. 3. Profiling results of the gpu gradient minAD kernel kernel.

In the docking process, the runtime is dominated by the local-search ker-
nel, gpu gradient minAD. As shown in Fig. 2, the gradient-based local search
dominates the docking time on GPU, i.e., 99.6% kernel time is spent in the
gpu gradient minAD kernel (the details are described in [12]). The breakdown
of GPU kernel runtime is reported in Table 1. In this kernel, seven reduction
operations are performed to compute the value and gradient of the scoring func-
tion, which happens at every iteration of the gradient-descent algorithm. This
reduction operation is defined as a C++ macro named REDUCEFLOATSUM
(denoted as ReduceFS in the remainder of this paper).

We observe a large number of warp stalls in each execution of ReduceFS in
Fig. 3, which reports four consecutive calls of ReduceFS macro. Moreover, these
lines of code are identified among the top ten lines of code causing high numbers
of warp stalls, indicating that the stalls could have a high impact on overall
kernel performance. From the causes for these warp stalls returned by NVIDIA
Nsight Compute, we observe that approximately 40% of warp stalls are caused
by memory barriers (“membar”), related to the use of memory fence operations.
Also, about 25% of warp stalls are caused by “short scoreboard”, which is often
caused by shared memory instruction latency.

The profiling results led us to investigate further the block-level reduction
in AutoDock-GPU. We established that REDUCEFLOATSUM(value, acc) per-
forms a block-level reduce-and-broadcast operation. Each thread provides one
single-precision number value, which will be reduced with all other values for
other threads in the block. At the end of the reduction, the result is placed back
in value. acc is a pointer to a float in shared memory, which is used internally
as an accumulator to perform reduction.

The current implementation mainly relies on three CUDA functions – warp
shuffle functions, atomic operations, and block-level synchronizations. First, a
warp-level reduction is performed through warp shuffle functions, which allow
data exchange between threads within a warp without using shared memory. In
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particular, the shfl sync function allows a thread to read a value from another
thread within the same warp, in a synchronized fashion.

In the warp-level reduction algorithm, this function is called multiple times
by each thread. At each call, each thread adds the value received from another
thread into its local copy. By organizing communication in a tree-like pattern,
five consecutive calls to shfl sync are sufficient for each thread to have its
own local copy of the total sum across all 32 threads (a warp). This warp-level
reduction algorithm is state-of-the-art [1].

After the warp-level reduction is completed, the first thread of each warp
performs an atomic add of the result to a shared memory accumulator. Finally,
each thread in a thread block performs a read from the accumulator in shared
memory to receive the reduction result, finishing the whole operation.

Takeaway 1: Atomic operations are used for value accumulation, and could cause
contention when a large number of warps is used.

As described in Sect. 2, the scoring function implementation needs to per-
form reduction over seven dimensions – one for the global energy value, three
for the gradient calculation, and three for the torque calculation. In the cur-
rent AutoDock-GPU version, this is implemented by sequentially calling the
ReduceFS macro seven times in the scoring function kernel.

Takeaway 2: each evaluation of the scoring function repeats the block-level reduc-
tion operation seven times sequentially.

For each use of ReduceFS, three explicit block-level thread synchronizations
are performed, which results in a total of 21 synchronizations for the seven-
dimensional reduction. This could drastically reduce the parallelism of the algo-
rithm.

Takeaway 3: Performing reduction operation on seven dimensions separately
results in 21 block-level synchronizations, a potential bottleneck for scalability.

4 Methodology

In this work, we leverage Tensor Core Units (TCU) to accelerate matrix-based
reduction. In [1], scan and reduction operations on an array are expressed as
matrix operations and accelerated on NVIDIA Tensor Cores. This method relies
on placing the elements to be reduced in a matrix, which is then multiplied by
a well-chosen matrix to perform summation on the rows. A similar operation
is then applied to perform summation on the columns. This line-then-column
summation process effectively sum up all elements, equivalent to performing a
reduction operation.

We propose an approach to replace the reduction operation in AutoDock-
GPU by an implementation of a reduction method which is able to leverage
Tensor Core Units. We first list the requirements that our method must meet to
be used in AutoDock-GPU code. Then, we describe how we adapt and optimize
the general Tensor Core-based reduction operation to meet the specific require-
ments in AutoDock-GPU. It is worth noting here that even though the method
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and implementation proposed in this paper are tailored to a specific application,
the performed operation is general. Therefore, our approach can be generalized
to other applications, with reasonable adaptation efforts.

4.1 Requirements and Design Choices

The scoring function in AutoDock-GPU performs seven consecutive reductions,
each time for one variable. Previous TCU-based reduction method only reduces
one variable at a time. To improve the efficiency, we propose to merge the reduc-
tion operations of four variables. This change would bring two main benefits.
First, the profiling results show that a single reduction operation inherently
requires synchronization between threads. Thus, merging four reductions would
ideally reduce the synchronization cost by four times, improving parallelism. Sec-
ond, we can improve the efficiency of data movement by reducing the number
of separate data transfers. As introduced in Sect. 2.2, data arrays needs to be
transferred (and mapped) from shared memory to be used on TCUs. By trans-
forming the data layout into one contiguous data layout in shared memory, this
overhead can be reduced.

The mapping between matrix elements and thread registers is not consistent
across different GPU architectures. For this reason, NVIDIA recommends using
the exposed API functions, i.e., load matrix sync() to load matrices data. When
this function is called, each thread copies a portion of shared memory array to
its registers. The matrix data is hence spread across all threads in the warp.
This process may be sub-optimal in applications where matrices elements are
already initially stored in registers, since those elements would first need to be
copied to shared memory and then loaded to registers while they only need
to be read back from registers. For this reason, previous work [3] has reverse-
engineered the memory mapping between matrix elements and corresponding
thread registers. Previous TCU-based reduction method [1] chose to use this
knowledge to manipulate matrix data directly in registers.

In AutoDock-GPU, matrix elements are initially stored in each thread’s reg-
isters. Thus, the reverse engineered memory mapping technique could squeeze
more performance. However, this technique also requires specific tuning for each
architecture. Therefore, for portability across different GPUs, we chose to use
the NVIDIA-recommended approach.

4.2 Matrix-Based Multi-dimensional Reduction Method

We design a method using matrix operations to perform sum reduction of a
set of four-element vectors. Our method aims at computing the sum of n four-
element vectors ui = (xi, yi, zi, ei). The result is also a four-element vector, which
contains on each of its coordinates the sum for each corresponding dimension,
i.e., yi = (

∑
i xi,

∑
i yi,

∑
i zi,

∑
i ei). We represent our input data as a 16 × 16

matrix A, containing coordinates of the first 64 vectors, organized in a column-
major fashion. We also declare two 16 × 16 matrices – P and Q. P is a matrix
filled with ones. Q is a block-matrix composed of 4 × 4 blocks, each being the
4 × 4 identity matrix I4.
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A =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

x0 x4 . . . x60

y0 y4 . . . y60
z0 z4 . . . z60
e0 e4 . . . e60
...

...
...

⎞

⎟
⎟
⎟
⎟
⎟
⎠

P =

⎛

⎜
⎝

1 . . . 1
...

. . .
...

1 . . . 1

⎞

⎟
⎠ Q =

⎛

⎜
⎜
⎝

I4 I4 I4 I4
I4 I4 I4 I4
I4 I4 I4 I4
I4 I4 I4 I4

⎞

⎟
⎟
⎠

We first compute the matrix product AP into V . This operation effectively
performs summation on the rows. If more than 64 vectors need to be reduced,
we iterate the same operation, each time with A containing elements for a new
set of 64 vectors in the input dataset and accumulating the results into V . We
then perform sum on every 4th column in V with the matrix operation QV and
save the result into W . At this point, the matrix W contains the desired result
as the four first elements on the first column.

V ← AP =
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⎜
⎜
⎜
⎜
⎜
⎜
⎜
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⎜
⎜
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∑
x4i . . .

∑
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y4i
∑

y4i . . .
∑

y4i∑
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z4i . . .

∑
z4i∑

e4i
∑

e4i . . .
∑

e4i∑
x4i+1

∑
x4i+1 . . .

∑
x4i+1∑

y4i+1

∑
y4i+1 . . .

∑
y4i+1∑

z4i+1

∑
z4i+1 . . .

∑
z4i+1∑

e4i+1

∑
e4i+1 . . .

∑
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...
...

...
...

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

V ← AP + V

W ← QV

W =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

∑
xi

∑
xi . . .

∑
xi∑

yi
∑

yi . . .
∑

yi∑
zi

∑
zi . . .

∑
zi∑

ei
∑

ei . . .
∑

ei
...

...
...

...

⎞

⎟
⎟
⎟
⎟
⎟
⎠

We implement our method as a CUDA device function using the NVIDIA
WMMA API to perform matrix operations. This function replaces four sequen-
tial uses of the ReduceFS macro in the energy-and-gradient calculation in
AutoDock-GPU. The four elements to be reduced for each thread are first con-
verted from float to half-precision using the CUDA half2float function, and then
loaded into a contiguous data array in shared memory. The data loading is col-
lectively performed by all threads in a block.

The accumulator V is a product of matrices A and P . Meanwhile, it is also an
operand for the matrix multiplication calculating W . Then, in order to compute
W using TCUs, V must be half-precision. Using single precision for accumulation
in V would require to convert it to half-precision before computing W , a casting
back to single precision would then be necessary. This approach requires two
non-trivial conversions between two levels of precision. Instead, we choose to use
half-precision for both operations.

In our implementation, two block-level synchronizations are needed in total.
A first one is performed before the first WMMA API call, to ensure that values
for all threads are available in shared memory before starting the reduction
process. The second synchronization is performed after the last WMMA API
call, to ensure that all threads in the block can read the results. Compared to
the 21 synchronizations in original AutoDock-GPU, our method significantly
reduces synchronization points.

Our implementation requires no memory barriers and atomic operations,
unlike the current AutoDock-GPU method. Note that those operations are
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responsible for a significant number of stalls (Sect. 3). In addition, the decreased
amount of those contention-causing operations could improve scalability.

5 Evaluation

We evaluated our implementation on four testbeds, featuring three GPU archi-
tectures, i.e., T4, V100, and A100. We summarize their system specifications
in Table 2. Docking experiments were performed using five protein-ligand com-
plexes, referred by their four-character Protein Data Bank identifier. We used
the following complexes: 1stp, 7cpa, 1ac8, 3tmn, 3ce3. Those five complexes,
which are real-world samples, are provided with AutoDock-GPU code as test
samples. Three of them were chosen for their particular molecular character-
istics, in order to validate various aspects of the docking implementation, in
particular the gradient calculation.

5.1 Validation of the Scoring Function

Our first step is to validate the TCU-based implementation in AutoDock-GPU
scoring function. For this, we leverage similar metrics defined in [12] to evaluate
the correctness in LGA run and overall simulations. In particular, we compare
simulation results to the baseline results to quantify the precision loss introduced
by the half-precision operations on TCU.

Figure 4 presents box-and-whisker plots for the best energy value reached
by the scoring function, as reported by AutoDock-GPU. As the initialization
process is random, we repeat 1000 runs for each protein-ligand complexes to
increase the statistical significance as in [12]. For each run, the pseudo-random
number generator is initialized with the same arbitrary seed for both our code,
and the original code.

Table 3 reports the absolute and relative errors in the energy value from our
method and the AutoDock-GPU baseline. For both 1ac8 and 3tmn, the best
energy values show no significant variance between runs for both implementa-
tions. For 1stp, 7cpa, and 3ce3, the statistical distribution produced by our
code is similar to the one produced by the original code. We notice that for all
tested complexes, the relative difference between the average best scores for each
method is below 0.18%. This observation leads us to conclude that our method
provides satisfactory results, and thus validates our approach to perform reduc-
tion in the context of AutoDock-GPU. The justification for this conclusion is
two-fold. First, the result of the reduction process is used as the energy value,

Table 2. A summary of four testbeds used for evaluation

Testbed GPU CPU Interconnect GPU Memory CPU Memory

TB1 NVIDIA Tesla T4 16 core Intel(R) Xeon(R) Gold PCIe 16 GB RAM 576 GB DDR4

TB2 NVIDIA Tesla V100 SXM2 8 core Intel(R) Xeon(R) Gold NVLink 32 GB HBM2 768 GB DDR4

TB3 NVIDIA Tesla V100 SXM2 16 core Intel(R) Xeon(R) Gold NVLink 32 GB HBM2 768 GB DDR4

TB4 NVIDIA Tesla A100 32 core Intel(R) Xeon(R) Gold NVLink 40 GB HBM2 576 GB DDR4
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Fig. 4. Distribution of average best energy values for five protein-ligand complexes
using the original code, and our method.

Table 3. Absolute difference and relative error in the best energy values and the
speedup by our method compared with the baseline.

Complex 1stp 7cpa 1ac8 3tmn 3ce3

|Ehalf − Eref | 2.00 · 10−5 3.72 · 10−2 0.0 1.92 · 10−3 5.78 · 10−3

Relative Error <0.01% 0.2% 0.00% 0.02% 0.04%

Speedup ×1.16 ×1.08 ×1.22 ×1.27 ×1.20

thus a low difference with the reference value shows that our implementation
provides a satisfactory level of accuracy for the application. Moreover, the result
of the reduction process is used in further computations. Any detrimental error
would thus accumulate, and the local-search algorithm would not yield satisfac-
tory results, which is not the case in our tests.

5.2 Runtime Per Evaluation of the Scoring Function

Next, we evaluate the performance of a single evaluation function. To isolate the
reduction process from the energy scoring function, we design a test kernel, where
each thread in a block holds a single vector of four single-precision elements. The
kernel performs a block-level reduce-and-broadcast operation over all threads.
After the reduction operation, the final result is accessible by each thread in
their respective local memory. We design two versions of the test kernel.

The first version uses the original AutoDock-GPU code. It first performs
a warp-level reduction using warp shuffle functions, which allows to exchange
data between threads without using shared memory. A block-level reduction is
then performed, where the first thread of each warp adds the value it holds
to a shared-memory accumulator, using an atomic operation. The value of the
accumulator is then read back by all threads in the block. This three-step process
is repeated for each variable that needs to be reduced. The second version of the
test kernel uses our TCU-based method.

We measure the elapsed walltime for 1000 launches of each version using
the CUDA Runtime API and report the average time. The only parameter
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Fig. 5. Average runtime of the two versions of the test reduction kernel on three
generations of NVIDIA GPUs: T4, A100, and V100.

influencing the runtime in both versions is the number of threads per block.
64 threads is the lower limit defined by our method – a 256-element matrix is
used to store the values to be reduced, and each threads holds exactly four val-
ues, which results in a minimum of 64 threads to fill a single matrix. Future
adaptation of the code may overcome this limitation. The upper limit of 1024 is
defined by the CUDA platform [11].

Figure 5 shows the average runtime for both versions. The results show that
our method consistently performs better than the AutoDock baseline for all
block sizes and on all GPUs. This first observation validates the potential of our
approach to perform faster block-level reduction in the context of the energy
scoring function of AutoDock-GPU.

We notice that performance for both methods is significantly lower on T4
GPU than on A100 and V100. The lower performance for T4 can be explained
by the lower performance Tensor Cores on T4. Performance on A100 and V100
are very similar utill the block size of 1024 threads. When using 1024 threads per
block, a significant runtime difference is shown on the two GPUs – the runtime
on A100 is 20 ms, which is half of the 39 ms runtime for V100. Our profiling
results from NVIDIA Nsight Compute show that the test kernel achieved 100%
occupancy on A100 but only 50% on V100. This low occupancy causes the
device to be under-utilized. Such low theoretical occupancy indicates that the
number of active threads per Streaming Multiprocessor is under the maximum
achievable value because the resource requirements for the kernel are too high
to be accommodated by the device. This could be, for example, the amount of
available shared memory.

We evaluate the scalability of our method at increased threads per block.
Figure 6 presents the speedup by our reduction method over the baseline on
three GPU architectures. Figure 7 compares the execution times of local search
kernel launches during a docking run, using our reduction method or the original
method. We observe an increased speedup at an increased number of threads.
For instance, the speedup increases from 2× at a block size of 64 on T4 to the
maximum of 8.1× on 1024 threads. Overall, the speedup by our method increases
linearly with the block size, up to 512 threads per block for all GPUs.

One interesting observation is that at the maximum block size of 1024
threads, the speedup on A100 increases to a maximum of 6.7× while the speedup
on V100 decreases to 4.1×. Before reaching the maximum block size, speedup
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Fig. 6. Speedup of the reduction operation
using our method over the AutoDock base-
line on three GPUs.

Fig. 7. Runtime of the local-search ker-
nel, using our TCU-based method and
AutoDock-GPU baseline.

Fig. 8. Docking time on A100 for several protein-ligand complexes, using both the
original code and our method.

on A100 and V100 GPUs show similar linear scalability. We investigate this
and found from the runtime measurements that the amount of shared memory
required when using 1024 threads per block exceeds the hardware limit on V100
GPU, thus resulting in a lower occupancy. Since the original method does not
rely on shared memory, this bottleneck only affects our TCU-based method.

5.3 Impact on the Docking Time

We evaluate the contribution of our method on the overall simulation. For this,
we integrated our block-level reduction method into the scoring function kernel in
AutoDock-GPU. We use the docking time, a widely used figure of metric (FoM)
in works on AutoDock-GPU [12,13]. The docking time is reported by AutoDock-
GPU, including all docking executions and excluding the I/O operations.

Figure 8 shows the distribution of docking times for five protein-ligand com-
plexes. Note that the docking time is significantly affected by the initial state,
which is randomly chosen in AutoDock-GPU. Thus, for a fair comparison, we
set the same random initialization seed for both methods. We also gather a large
number of samples (1000 runs) to ensure statistical significance of the measure-
ment. We observe that our method achieves a lower median, min, max, 25%,
and 75% percentile docking time compared to the original version. This indicates
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that our implementation is able to provide consistent speedup over the baseline
for general cases.

Distribution of docking times for 7cpa exhibits a larger interquartile range
compared to the distribution observed for 1stp. This difference is caused by the
presence of a significant number of non-convergent runs in the experiments for
7cpa. Non-convergent runs are observed when the search algorithm does not
detect convergence, and continues until the maximum number of iterations is
reached. This increased iteration count results in significantly higher docking
time values for non-convergent runs when compared to convergent ones, for
which the search algorithm is stopped earlier. We measured the proportion of
non-convergent runs to be 61% for both versions, when using the 7cpa complex.
This indicates that our implementation does not have any impact on convergence
of the search algorithm. Docking runs for other protein-ligand complexes did not
exhibit non-convergent runs.

For all test cases, our implementation exhibits a lower average docking time
compared to the original code. Table 3 (row 3) summarizes the speedup by our
method over the original AutoDock-GPU code. We achieved a maximum ×1.27
average speedup, observed for the 3tmn complex. Speedup for the longest-running
test case (7cpa complex) is ×1.08.

6 Related Works

Molecular docking methods are widely used in drug discovery [4,9,14]. Various
search techniques are used to find the best conformation between molecules [4],
they rely on scoring functions that aim at evaluating the quality of a specific
conformation [14]. AutoDock is a molecular docking program that relies on a
genetic algorithm to find the docking conformation by minimizing a energy-
based scoring function [9].

Several works have been conducted to accelerate the original AutoDock code.
AutoDock Vina improved AutoDock’s local-search method, and made use of
multicore and multi-CPU systems to improve performance [16]. AutoDock-GPU
added GPU acceleration to AutoDock by adapting the local-search method. Both
OpenCL and CUDA versions have been developed. It provided up to a ×50
speedup [12]. The recent addition of early stopping to AutoDock-GPU search
algorithm allowed to further increase performance [13]. Once adapted for the
Summit supercomputer, the CUDA version of AutoDock-GPU allowed to reach
a 10× speedup in a real-world docking pipeline [5]. Our work proposes a method
to increase performance of the CUDA implementation of AutoDock-GPU, by
using half-precision number representation in specific portions of the code.

Despite Tensor Cores being specialized in performing operations on small-
size matrices, especially for deep learning applications, efforts have been made
to make use of this hardware feature to accelerate other applications. For this
purpose, algorithms to perform various widely-used operations on Tensor Cores
have been developed, such as reduction and scan algorithms [1,10]. In our work,
we adapted those methods in order to use them in AutoDock-GPU. Extensive
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study of Tensor Cores characteristics have also been conducted. Benchmark-
ing allowed to evaluate Tensor Cores performances in details [15]. The impact
of using half-precision numbers for computation using Tensor Cores, and the
associated accuracy loss, have also been documented and precision-refinement
techniques have been developed [2,6].

7 Conclusions

In this work, we investigate a state-of-the-art GPU-accelerated molecular dock-
ing software for drug discovery – AutoDock-GPU. Our profiling results identified
a core reduction operation to be sub-optimal due to a large number of synchro-
nization points. We analyzed the specific requirements in the docking process and
propose a matrix-based multi-dimensional reduction algorithm for accelerating
the local search in AutoDock-GPU. We implemented our method by leveraging
NVIDIA Tensor Cores and integrated it in AutoDock-GPU code. We validated
our implementation and evaluated its performance on three GPUs. The results
show a 4–7× speedup of the reduction operation and a 27% improvement on the
average docking time for a real-world docking scenario.

Acknowledgments. This research is supported by the European Commission under
the Horizon project OpenCUBE (GA-101092984).
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Abstract. Federated learning (FL) enables multiple clients to collabo-
ratively train deep learning models under the supervision of a centralized
aggregator. Communicating or collecting the local private datasets from
multiple edge clients is unauthorized and more vulnerable to training het-
erogeneity data threats. Despite the fact that numerous studies have been
presented to solve this issue, we discover that deep learning models fail to
attain good performance in specific tasks or scenarios. In this paper, we
revisit the challenge and propose an efficient federated clustering mutual
learning framework (FedCML) with an semi-supervised strategy that can
avoid the need for the specific empirical parameter to be restricted. We
conduct extensive experimental evaluations on two benchmark datasets,
and thoroughly compare them to state-of-the-art studies. The results
demonstrate the promising performance from FedCML, the accuracy of
MNIST and CIFAR10 can be improved by 0.53% and 1.58% for non-IID
to the utmost extent while ensuring optimal bandwidth efficiency (4.69×
and 4.73× less than FedAvg/FeSem for the two datasets).

Keywords: Cosine similarity · Distributed computing · Federate
learning · Inter-clustering learning · non-IID data

1 Introduction

Recently, the pervasiveness of mobile and Internet-of-Things (IoT) [18,24] has
witnessed the number of clients has undergone a sharp increase, which presses
ahead with many applications to develop, such as drug discovery [6,15], medical
diagnosis [1,2], face recognition [19], etc. Instead of the traditional centralized
learning paradigm [12] gathering massive data from clients for training purposes,
Federated Learning (FL) [3,9] collaboratively trains in terms of uploaded local
model updates from clients for the global model with superior performance. More
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
J. Cano et al. (Eds.): Euro-Par 2023, LNCS 14100, pp. 623–636, 2023.
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generally, FL is an emerging distributed learning for improving efficiency, pri-
vacy, and scalability by training locally in parallel and uploading model updates
rather than datasets from each client. Despite its attractive advantages, it is more
vulnerable to training heterogeneity data threats [14]. Largely, this is because
datasets across multiple clients in practical application scenarios, particularly in
different organizations/companies, usually have heterogeneous characteristics,
called non-IID data. More concretely, FL is unauthorized to communicate or
collect local sensitive datasets. There are serious accuracy concerns caused by
the heterogeneity of training data. Hence, addressing the high statistical hetero-
geneity of local private dataset distribution [5] from multiple edge clients is a
fundamental challenge in FL.

Concerning data heterogeneity for FL, the conventional workaround of lim-
ited performance trains a consensus global model upon incongruent data for
responding to the non-IID challenge [4]. However, the problem is primarily the
following points: (1) The accuracy of the model is sensitive to the distribution
of labels. (2) The model robustness of the feature distribution is poor. (3) The
unique model scalability of quantity distribution is limited. Instead of training
a consensus global model, CFL divides clients into multiple clusters for opti-
mizing several sub-objectives, which can maintain higher performance in non-
IID scenarios. Sattler et al. [21] propose the CFL framework, which adopts a
recursive bi-partitioning algorithm to separate clients with incongruent descent
directions. Due to a lack of inter-cluster learning, CFL maintains unsatisfactory
performance in various degrees of non-IID settings. To improve the efficiency of
CFL, FeSem [16] introduces the Euclidean distance-based (�2-based) stochastic
expectation maximization to enhance inter-cluster learning, which needs to all
clients participate in each round. However, in high dimensions, the Euclidean
distance suffers in the HDLSS [20] situation, resulting in adverse effects on the
performance of distance-based clustering algorithms. In addition, FeSem defines
λ to balance the trade-off between distance and loss, which is difficult to con-
trol. Furthermore, FlexCFL [7,8] utilizes η to control inter-cluster learning, and
a decomposed data-driven measure to improve the effectiveness of clustering.

In response to the above-identified challenge, we propose an efficient Feder-
ated Clustering Mutual Learning framework (FedCML). Firstly, we adopt a one-
shot clustering approach, for intra-cluster learning over the first-round model
updates from all clients. Then, we make each cluster aggregate uploaded model
updates from selected clients in parallel for inter-cluster learning. Finally, the
cosine distance for the similarity measurement is utilized to tailor an inter-cluster
learning scheme for establishing dynamic inter-cluster weight, which will reduce
divergences between the local models and the global model in each cluster. In
this way, we can avoid the need for a specific empirical parameter to restrict
inter-cluster learning through expertise and experience. Extensive experimental
evaluations demonstrate that FedCML produces 98.98% and 87.47% accuracy
for MNIST and CIFAR10 in non-IID (ratio = 0.8) while maintaining the best
communication overhead from the prior art. In addition, FedCML performs pro-
gressively better with the gradual increase of the non-IID ratio.



FedCML: Federated Clustering Mutual Learning with non-IID Data 625

Our contributions are summarized below.

– In this work, we propose an efficient federated clustering mutual learn-
ing framework (FedCML) against non-IID scenarios in FL. Instead of the
empirical parameter to restrict inter-cluster learning, our FedCML maintains
stronger capabilities and performance of the aggregated model in non-IID
scenarios.

– Analyzing the type of non-IID distributions, we adopt one-shot clustering for
grouping data distributions into multiple clusters. Furthermore, we present
dynamic inter-cluster learning for compensating intra-cluster exclusive knowl-
edge.

– Theoretically, we give a detailed convergence analysis for supporting FedCML.
For fairness, experimental settings are consistent with prior work. Besides, we
tune the non-IID data rate to simulate the real data distribution. Compared
with state-of-the-art studies, the comprehensive experimental validation on
benchmark datasets reveals FedCML is practical and applicable to complex
scenarios.

The rest of this paper is organized as follows. In Sect. 2, we review the work of
FL and CFL for tackling the data heterogeneity problem. In Sect. 3, we formulate
the non-IID problem definition and optimization goal. In Sect. 4, we propose
federated clustering mutual learning framework. Then we give the proof for
convergence of FedCML in Sect. 5. Subsequently, performance evaluations are
presented in Sect. 6. Finally, Sect. 7 concludes this paper.

2 Related Work

2.1 Federated Learning

Federated learning (FL) is a modern distributed learning for improving effi-
ciency, privacy, and scalability, that intends to utilize clients’ uploaded models
for collaboratively training a remarkable global model. McMahan et al. [17] first
present federated learning and the vanilla FL optimization framework FedAvg. In
contrast to the traditional centralized learning paradigm, only each edge node’s
local model updates are uploaded, alleviating potential data privacy issues. In
particular, the optimization in the FL is:

min
w

f(w) =
N∑

i=1

piFi(wi), (1)

where N is the number of clients,
∑

i pi = 1, Fi(wi) is the i-th local loss function,
and wi is the i-th clients’ model parameter. Moreover, in a real-world scenario,
datasets across multiple clients have inherently heterogeneous characteristics
(i.e., non-IID) data. Despite the attractive advantages of FL, it is more vulner-
able to potential unstable convergence and poor model performance threats in
non-IID scenarios.
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2.2 Clustering Federated Learning

At present, there are many methods to tackle the statistical heterogeneity prob-
lem. Li et al. [13] first completely demonstrate the typical non-IID data skew,
including (1) label distribution skew, (2) feature distribution skew, and (3) quan-
tity skew. To consider such non-IID concerns, McMahan et al. [17] propose a
generic FL framework (FedAvg), and studies indicate that it can converge under
non-IID conditions. Nevertheless, Sattler et al. [23] validate that the system het-
erogeneity is not considered. In practice, if some local clients fail to complete the
training within the specified time, the server will discard these clients, thus los-
ing the accuracy of the trained global model. Hence, Sattler et al. [21,22] provide
Clustered Federated Learning (CFL) strategy to deal with the non-IID problem
by adopting a cluster approach to group data distribution. The complement to
CFL, Long et al. [16] design a novel framework (FeSem) by introducing stochastic
expectation maximization to reduce inter-cluster learning differences. Addition-
ally, they define a specific parameter λ to balance the trade-off between distance
and loss. Subsequently, Duan et al. [7,8] customize a novel semi-pluralistic archi-
tecture for CFL-based frameworks (FlexCFL) that adopt parameter η to achieve
stable equilibrium between accuracy and communication efficiency. In state-of-
the-art methods, certain parameters must be set to limit inter-cluster learning
and merely utilize a simple inter-cluster learning approach, which applies only
to specific datasets or scenarios.

3 Problem Formulation

3.1 Problem Definition

Concerning heterogeneous scenarios, the degree of non-IID can map as a series
of data distribution {X1, · · · ,XK}. For automatically dividing clients into mul-
tiple clusters of jointly trainable data distribution, CFL improves resilience and
flexibility. More detailed, the global joint optimization in FL can be regarded as
local joint optimization for clustering clients’X into multiple clusters, denoted
as c1, · · · , cK , and each cluster represents a group of clients with similar data
distributions and models. The multi-cluster optimization in the FL problem can
be formulated into K distributed sub-problems aiming to solve:

Ĝ∗
i = arg min

Ĝ∈Θ

N∑

j=1,j∈ci

|Dj |∑N
k∈ci

|Dk|
L(Dj ; Ĝ)

� ED∼χi
[P(D; Ĝ) = τ ],∀i ∈ [K]

(2)

where Θ is the parameter space of the uploaded models in i-th clusters, N is the
total number of clients, τ is a set of the target in training data, [r] denotes the
set of integers {1, · · · , r}, X is the training data distribution, each client-i holds
local datasets Di, ∀i ∈ [N ], | · | is size, L(·) is a general definition of the loss
function for supervised learning tasks, P(·) is inference function for evaluating
the uploaded model Ĝ, and min

∑N
j=1,j∈ci

|Dj |
∑N

k∈ci
|Dk|L(Dj ; Ĝ) is to minimize the

sum of loss from the same ci cluster.
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3.2 Optimization Goal

Since client-wise weights are inconsistent, weight coefficients are crucial to robust
FL aggregation. Generally, we establish weight coefficients for each cluster to
constrain potentially consistent clusters. Therefore, in various degrees of non-
IID scenarios, due to partial coherence between Xi and Xj (i �= j), the problem
can be approached by minimizing the distance between the goal clustering model
and other proximity clustering models, which can be formulated as:

min
1
K

K∑

i=1

K∑

j=1

λi,j × Dist(Δwi,Δwj), (3)

where Dist(·, ·) is distance metric, wi is the i-th clusters’ model update and λi,j

is weight coefficient between ci and cj .

4 Federated Clustering Mutual Learning

4.1 System Overview

Fig. 1. A system overview of FedCML.

Architecture. FedCML targets a typical scenario of CFL for training non-IID
data service. As shown in Fig. 1 and Algorithm 1, FedCML has four phases: 1

local model update (line 2 ∼ 5), 2 one-shot hierarchical clustering for all clients
(line 8 ∼ 11), 3 intra-cluster aggregation, and 4 inter-cluster aggregation. Ini-
tially, the server determines the local joint optimization of each cluster through
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Algorithm 1. FedCML Framework
Input: The number of clients N , the number of selected clients from each cluster per
round M , the number of communication rounds T , and the number of clusters K.
Output: Global models update Gt ← {Δwt

1, · · · , Δwt
K}

1: for each round t = {1, 2, · · · , T} do
2: for each client i = {1, 2, · · · , N} do
3: /* selected clients execute LocalUpdate*/

Δwi ← LocalUpdate(Di, w
t−1
i + Δwt−1

i )
4: Send Δwi to the server. � client-i is selected.
5: end for
6: Server selects M clients from each cluster or N clients.
7: # One-shot Clustering
8: if round t is 1 then
9: Gcos ← CostDist({Δw1, · · · , ΔwN}) � getting cosines distance.

10: {c1, · · · , cN} ← HierarchicalClustering(K, Gcos)
11: end if
12: # Intra-cluster Learning
13: for each cluster ci ∈ {c1, · · · , cK} parallelly do
14: Si ← {Δwi,j |j ∈ ci} � |Si| = M .
15: Δwi

intra ← Intra-clusterLearning(Si) � Equ.(4)
16: end for
17: # Inter-cluster Learning
18: Gintra ← {Δw1

intra, · · · , ΔwK
intra}

19: for each cluster ci ∈ {c1, · · · , cK} parallelly do
20: RCci ← RCDist(Δwi

intra, Gintra) � Equ.(5)
21: λci ← Coefficient(RCci) � Equ.(6)
22: Δwi

inter ← Inter-clusterLearning(λci , Gintra) � Equ.(7)
23: end for
24: Ginter ← {Δw1

inter, · · · , ΔwK
inter}

25: Gt = {Δwt
1, · · · , Δwt

K} ← FedAvg({Gintra, Ginter})
26: Send Δwt

i to each client among ci cluster. � ci ∈ {c1, · · · , cK}.
27: end for

the phase 2 by employing the updates in the first round 1 . Then, each cluster
collaboratively trains in terms of uploaded local model updates from a certain
set of clients for a more accurate global model. In particular, the server selects
clients for each cluster and aggregates their uploaded model updates in parallel
in phase 3 (line 6). After all intra-cluster aggregation is completed, the server
creates inter-cluster learning according to the cosine similarity between the goal
cluster and other clusters in the phase 4 to obtain the aggregated global model
(line 12 ∼ 26). Finally, the global model is sent to each client and continues to
loop phases 3 and 4 until the model converges.

4.2 One-Shot Clustering

In various degrees of non-IID, the prior studies [16,21] focus on iterative clus-
tering to distinguish clients from model updates in each communication round,
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such as FeSem. However, when faced with similar model parameters, FeSem is
vulnerable to transform into FedAvg from CFL through clustering in each round.
Obviously, the gap between data distribution X of each client can be measured
from the divergence of model updates at the first round. Hence, FlexCFL and
our FedCML leverage one-shot clustering at the first communication round for
optimizing communication overhead, which avoids rescheduling clients for each
round while maintaining performance. Besides, our one-shot clustering strategy
is static cosines distance-based method, avoiding HDLSS [20] situation.

4.3 Intra-cluster Learning

In general, based on the similarity of data statistics, our FedCML separates all
clients into K clusters at the first round in the serve aggregation through one-
shot clustering. For each subsequent round of aggregation, the server selects a
certain amount of intra-cluster local models in each cluster. In brief, our intra-
cluster aggregation is defined as follows:

Δwi
intra =

1
Mci

Mci∑

i∈ci

Δwi,j , (4)

where Mci is the number of selected clients in ci, Δwi,j is the model update
from client i belonging to ci, and Δwi

intra is intra-cluster model update of ci.

4.4 Inter-cluster Learning

The prior CFL-related studies lack inter-cluster learning [16,23], failing to ade-
quately address the non-IID data problem. Considering both magnitudes and
directions of the goal clustering model and other clustering models, the het-
erogeneity inter-cluster learning problem can be avoided by dynamically deter-
mining other proximity clustering models for model updates. In addition, the
Euclidean distance indicates an absolute discrepancy between the goal cluster-
ing model and other clustering models, and the cosine distance indicates a rel-
ative discrepancy. Hence, FedCML adopts dynamic formulation similarity RC
derived from the cosine distance. Note that RC ≤ 0 represents this clustering
model inevitably deviations from the target clustering model update. When the
ReLU-clipped technique is introduced, RC is defined as:

RCi,j = ReLU(
〈Δwi,Δwj〉

||Δwi|| · ||Δwj || ), (5)

where RCi,j is the clipped cosine distance between ci and cj , 〈·, ·〉 is the dot
product, Δwi is an intra-cluster model update of ci, and ReLU(·) = max(0, ·).

To compensate for intra-cluster exclusive knowledge from inter-cluster shared
knowledge, we establish an inter-cluster coefficient formula as follows:

λi,j =
RCi,j∑K

j=1 and i�=j RCi,j

, (6)
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Then, considering the value of
∑K

j=1 and i�=j λi,j , Δwi
inter can be described as:

Δwi
inter =

{
0,

∑K
j=1 and i�=j λi,j = 0∑K

j=1 and i�=j λi,j × Δwi,
∑K

j=1 and i�=j λi,j = 1
, (7)

where λi,j is weight coefficient between ci and cj , and Δwi
inter is inter-cluster

model update of ci.

5 Convergence Analysis

We analyze convergence for FedCML in this section. And we follow prior works
of assumptions [8,20,25].

Assumption 1. For any client i in cluster c, the loss function Fi,c(w)is convex.

Assumption 2. The loss function Fi,c(w)is M -Lipschitz continuous: for w1,
w2, ||Fi,c(w1) − Fi,c(w2)|| ≤ M ||w1 − w2||.
Assumption 3. The loss function Fi,c(w)is L-Lipschitz continuous: for w1, w2,
||∇Fi,c(w1) − ∇Fi,c(w2)|| ≤ L||w1 − w2||.
Definition 1. For ∀c cluster c ∈ {c1, c2, · · · , cK}, the cluster loss function is
Fc(·) �

∑
i,i∈c piFi,c(·), and

∑
i pi = 1.

Definition 2. Given any client-i, and c (c ∈ {c1, · · · , cK}), ξi,c denotes diver-
gence between the loss functions of client-i and c, which is expressed as: ξi,c �
maxw ||∇Fi,c(w) − ∇Fc(w)||, and the intra-cluster divergence is defined as:
ξc �

∑
c∈C

∑
i∈c pcpiξi,c, where

∑
c pc = 1, and

∑
i pi = 1.

Lemma 1. According to Assumptions 1 to 3, the cluster loss function Fc(w) is
convex, M -Lipschitz continuous, L-Lipschitz smooth for any c.

Proof. Following the Definition 1, Fc(w) �
∑

i,i∈c piFi,c(w). According to
Assumption 1 and Assumption 2, for any w1 and w2, we have:

||Fc(w1) − Fc(w2)|| = ||
∑
i,i∈c

piFi,c(w1) −
∑
i,i∈c

piFi,c(w2)|| ≤ M ||w1 − w2||

The proof of the M -Lipschitz continuous, L-Lipschitz smooth in Fc is similar,
and we omit it for brevity.

Lemma 2. Suppose Assumption 1 ∼ 3 hold, there is a virtual cluster model
ŵc

t,e that is centralized trained on the cluster c of clients’ data and is synchronized
with the federated model, and wi,c

t,e is c of client-i’model without inter-cluster
aggregation in local training epoch e and the communication round t. The upper
bound of divergence between wi,c

t,e and ŵc
t,e, for any t, e, and learning rate η has:

||wi,c
t,e − ŵc

t,e|| ≤ ξi,c

L
((ηL + 1)e − 1)
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Proof. For simplicity, the iterator of wi,c
t,e in FedCML can be introduced:

wi,c
t,e =

{
wc

t �
∑

i piw
i,c
t,E , e=0

wi,c
t,e−1 − η∇Fi,c(w

i,c
t,e−1), e ∈ [1, E]

For similarity, the ŵc
t,e as:

ŵc
t,e =

{
wc

t �
∑

i piw
i,c
t,E , e=0

ŵc
t,e−1 − η∇Fc(ŵ

c
t,e−1), e ∈ [1, E]

Under Assumption 3 and Definition 2, the divergence between wi,c
t,e and ŵc

t,e
is bounded as follows in each iteration:

||wi,c
t,e − ŵc

t,e|| = ||wi,c
t,e−1 − η∇Fi,c(w

i,c
t,e−1) − ŵc

t,e−1 + η∇Fc(ŵ
c
t,e−1)||

+ ∇Fi,c(ŵ
c
t,e−1) − ∇Fc(ŵ

c
t,e−1)||

≤ ||wi,c
t,e−1 − ŵc

t,e−1|| + η||∇Fi,c(w
i,c
t,e−1) − ∇Fi,c(ŵ

c
t,e−1)||

+ η||∇Fi,c(ŵ
c
t,e−1) − ∇Fc(ŵ

c
t,e−1)|| ≤ (ηL + 1)||wi,c

t,e−1 − ŵc
t,e−1|| + ηξi,c

Let h(e) = ||wi,c
t,e − ŵc

t,e||, we have:

h(e) ≤ (ηL + 1)h(e − 1) + ηξi,c

⇒(a) h(e) +
ξi,c

L
≤ (ηL + 1)eξi,c ⇒ h(e) ≤ ξi,c

L
((ηL + 1)e − 1)

⇒ ||wc
t − ŵc

t || ≤
∑

i

pi|||wi,c
t,E − ŵc

t,e|| ≤ ξc

L
((ηL + 1)E − 1)

where (a) is h(0) = ||wi,c
t,0−ŵc

t,0|| = 0. Consider the continuous of Fc(·) (Lemma
1 and Assumption 2), we have: ||Fc(wt) − Fc(ŵc

t,e)|| ≤ Mξc
L ((ηL + 1)E − 1).

Theorem 1. Support Assumption 1 ∼ 3 hold. Let w̃c
t,e define the model

parameter after inter-cluster learning. Combing Lemma 1 ∼ 2, for
∑

i pi = 1,
we get convergence bound of FedCML as:

||Fc(w̃
c
t ) − Fc(ŵ

c
t,e))|| ≤

{
Mξc

L
((ηL + 1)E − 1),

∑
i∈C,i�=c λi = 0

M((ηL+1)E−1)
L

(p1ξc + p2

∑
i∈C,i�=c λiξi),

∑
i∈C,i�=c λi = 1

Proof. The w̃c
t,e can be introduced as:

w̃c
t,e =

∑
i∈C

piλiw
c
t,e = p1w

c
t,e + p2

∑
i∈C,i�=c

λiw
i
t,e

Analysis for
∑

i∈C,i �=c λi = 0, we have:

||w̃c
t,e − ŵc

t,e|| = ||p1w
c
t − ŵc

t,e|| ≤(a) ξc

L
((ηL + 1)e − 1),
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where (a) is
∑

i pi = 1. Under Lemma 2, we have ||Fc(w̃c
t ) − Fc(ŵc

t,e))|| ≤
Mξc

L ((ηL + 1)E − 1).
Analysis for

∑
i∈C,i �=c λi = 1, we have:

||w̃c
t,e − ŵc

t,e|| = ||p1w
c
t − ŵc

t,e + p2

∑
i∈C,i�=c

λiw
i
t,e||

≤ p1||wc
t,e − ŵt,e|| + p2||

∑
i∈C,i�=c

λiw
i
t,c − ŵc

t,e||

=(b) p1||wc
t,e − ŵt,e|| + p2||

∑
i∈C,i�=c

λiw
i
t,c −

∑
i∈C,i�=c

λiŵ
c
t,e||

=(c) p1||wc
t,e − ŵt,e|| + p2

∑
i∈C,i�=c

λi||wi
t,c − ŵc

t,e||

≤(d) (ηL + 1)E − 1

L
(p1ξc + p2

∑
i∈C,i�=c

λiξi),

where (b) is because
∑

i∈C,i �=c λi = 1, (c) is because λi ≥ 0,∀i, and (d)
is because Lemma 2. Under Lemma 2, we have ||Fc(w̃c

t ) − Fc(ŵc
t,e))|| ≤

M((ηL+1)E−1)
L (p1ξc + p2

∑
i∈C,i �=c λiξi).

6 Experimental Evaluation

We implement a prototype of FedCML by PyTorch framework. All experiments
are conducted on the server equipped with 64-core CPUs, 128GB RAM, and
2 NVIDIA GeForce RTX 2080Ti. We evaluate FedCML with two benchmarking
datasets (MNIST [11] and CIFAR10 [10]) and compare it with three prior works
as baselines. For MNIST, we construct the CNN with two 5×5 convolution layers,
one 2 × 2 max pool layer, two fully connected layers, the ReLU function, and
the final softmax output layer. For CIFAR10, we adopt LetNet5 [11], a CNN
model with two 5 × 5 convolution layers, one 2 × 2 max pool layer, three fully
connected layers, one ReLU function, and one final softmax output layer. The
three baselines are introduced as follows in brevity.

• FedAvg: the SGD-based FL with model updates averaging.
• FlexCFL: semi-pluralistic architecture CFL-based that adopts the MADC-

based Agglomerative Clustering method for one-shot clustering, and follows
η to limit inter-cluster learning.

• FeSem: the �2-based CFL that adopts stochastic expectation maximization
to minimize the discrepancies inter-cluster learning and specific λ balance
between loss and distance.

We follow most of the prior works. In our experiment, we set the local epoch
E = 2, the number of all clients N = 50, the selected clients from each cluster
|ci| per round M = 0.2 × |ci|, i = [K], the number of clusters K = 5 and 10 for
MNIST and CIFAR10 datasets, respectively. Besides, non-IID ratio reflects the
degrees of non-IID distributed ratio. For example, when the non-IID ratio is 0.5,
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assigned data is consist of 50% images of one class and 50% images of the same
number of images in different classes in each client. The specific parameters λ
and η are set to 0.01 (FeSem) and 0.1 (FlexCFL), respectively.

6.1 Accuracy Comparison

We compare performance of FedCML in various degrees of non-IID ratio set-
tings with notable prior works: FedAvg, FlexCFL, and FeSem, to demonstrate
effectiveness of FedCML.

Fig. 2. Performance comparison of accuracy with different communication (comm.)
rounds over MNIST and CIFAR10.

The comparison results from Fig. 2 and Table 1 show the performance of
FedCML and 3 baselines on the MNIST dataset and the CIFAR10 dataset. As
shown in Fig. 2, FedCML converges smoothly and quickly, and has greater accu-
racy than the baselines, owing to adaptive formulas in inter-cluster learning
from other proximate clusters, while fixed η in inter-cluster learning in FlexCFL
is unstable on these two benchmark datasets. For MNIST, FedAvg and FeSem
have similar efficiency performance for non-IID MNIST dataset. Besides, FlexCFL
performs worst in non-IID distribution with different ratios. For CIFAR10, the
accuracy derived from FedAvg drops with the increase in non-IID distribution
ratio. FlexCFL has the opposite phenomenon of FedAvg, that is, FlexCFL per-
forms progressively better as the ratio of non-IID distribution increases. Despite
specific η in FlexCFL for determining inter-cluster learning, this methodology
cannot be applied to non-IID distributions or different datasets.

From Table 1, it is evident that FedCML has a significant advantage over
FlexCFL when ratio = 0.8, which is increased by 0.53% compared to FlexCFL. In
addition, FeSem has significant improvements over the non-IID CIFAR10 dataset
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Table 1. Test accuracy (%) of FedAvg, FeSem, FlexCFL, and FedCML (ours) over
MNIST, and CAFAR10 in different data distribution.

Dataset Method
non-IID

0.4 0.6 0.8

MNIST

FedAvg 98.82 98.62 98.29

FlexCFL 97.59 98.33 98.45

FeSem 98.81 98.36 98.14

FedCML 98.90 (↑0.08) 98.95(↑0.33) 98.98(↑0.53)

CIFAR10

FedAvg 56.28 57.32 52.01

FlexCFL 52.03 64.77 86.26

FeSem 59.20 67.90 85.80

FedCML 59.52(↑0.32) 69.48(↑1.58) 87.47(↑1.67)
Note. The ↑ and ↓ represent the increase or decrease of ours
FedCML accuracy relative to state-of-the-art works.

Fig. 3. Comm. costs of FedAvg, FlexCFL, FeSem and FedCML on benchmark datasets.

with ratio = 0.4, 2.92% ↑ and 7.17% ↑ in accuracy when compared with FedAvg
and FlexCFL, respectively. Moreover, its accuracy is lower than our FedCML at
ratios of 0.4, 0.6, and 0.8 by 0.32%, 1.58%, and 1.67%, respectively. Since FeSem
utilizes stochastic expectation maximization to partition the model update of
each client into balanced clusters based on �2, each client can learn from the
experience of another client who has a proximate model update. Consequently,
FeSem is powerful and more expressive than FedAvg and FlexCFL for most scenar-
ios. Nonetheless, FeSem is susceptible to transforming into FedAvg, and methods
to reduce the loss are difficult to identify in different cases. With improvements
of up to 0.08% ∼ 7.49%, our FedCML has been shown to be significantly more
efficient and effective than both FeSem and FlexCFL. Because FedCML introduces
dynamic inter-cluster formulas that prevent intra-cluster models from becoming
stuck in local overfitting, it maintains a better balance between inter-cluster and
intra-cluster shared knowledge. In a nutshell, our FedCML surpasses FedAvg,
FlexCFL, and FeSem in all degrees of non-IID settings.
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6.2 Communication Efficiency

In order to further measure the effectiveness of FedCML, we evaluate the effi-
ciency of the scheme from the communication cost between the server and each
client. The comparison of communication costs in FedCML, FedAvg, FeSem, and
FlexCFL under the different datasets is shown in Fig. 3. There is a major advan-
tage to FedCML in that it reduces the communication costs. The communication
costs of FedAvg and FeSem obviously are relatively large as expected, since
these two schemes upload model updates of all participants to get an accurate
global model. Unlike the above two schemes,FlexCFL and FedCML merely need
to upload model updates from selected clients within each cluster, resulting in
the close communication costs. Figure 3 shows that the communication costs of
FedAvg and FeSem is 4.69× (for MNIST) and 4.73× (for CIFAR) more than
FedCML.

7 Conclusion

In this work, we present FedCML, an efficient federated clustering mutual learn-
ing framework aiming at performance improvement in the non-IID FL setting.
Besides, our framework establishes an inter-cluster strategy to balance intra-
cluster learning and inter-cluster learning, which can eliminate the need to
restrict a specific empirical parameter for inter-cluster learning based on empiri-
cal or expert knowledge. In contrast to the widely known literature, FedCML uses
a one-shot clustering approach, which has lower communication costs. Compre-
hensive experimental validation on benchmark datasets demonstrates FedCML
practical and applicable for complex scenarios. Furthermore, we intend to apply
the proposed framework to some privacy-critical applications in future work.
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Abstract. A significant part in computational fluid dynamics (CFD)
simulations is the solving of large sparse systems of linear equations
resulting from implicit time integration of the Reynolds-averaged Navier-
Stokes (RANS) equations. The sparse linear system solver Spliss aims to
provide a linear solver library that, on the one hand, is tailored to these
requirements of CFD applications but, on the other hand, independent
of the particular CFD solver. Spliss allows leveraging a range of available
HPC technologies such as hybrid CPU parallelization and the possibility
to offload the computationally intensive linear solver to GPU accelera-
tors, while at the same time hiding this complexity from the CFD solver.

This work highlights the steps taken to establish multi-GPU capabil-
ities for the Spliss solver allowing for efficient and scalable usage of large
GPU systems. In addition, this work evaluates performance and scala-
bility on CPU and GPU systems using a representative CODA test case
as an example. CODA is the CFD software being developed as part of a
collaboration between the French Aerospace Lab ONERA, the German
Aerospace Center (DLR), Airbus, and their European research partners.
CODA is jointly owned by ONERA, DLR and Airbus. The evaluation
examines and compares performance and scalability in a strong scaling
approach on Nvidia A100 GPUs and the AMD Rome architecture.

Keywords: sparse linear solver · computational fluid dynamics · CFD
solver · high performance computing · heterogeneous computing · GPU

1 Introduction

Computational fluid dynamics (CFD) simulations for aircraft aerodynamics are
a non-negotiable part in today’s aircraft design process. They allow to reduce
cost and time of aircraft development and help accelerating the introduction of
progressive technologies and improvements. Moreover, high-precision CFD sim-
ulations are inevitable for the assessment of future aircraft designs by providing
reliable insight into new aircraft technologies and reach best overall aircraft per-
formance. They allow to design quieter, safer, and more fuel-efficient planes.
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For CFD simulations in the aircraft design process, solving the large systems
of linear equations that result from implicit time integration of the Reynolds-
averaged Navier-Stokes (RANS) equations plays a significant role. Consequently,
the utilized linear solver must be tailored to the requirements of the problems
and efficiently complete these computations. The sparse linear system solver
Spliss meets these requirements independently of a specific CFD solver while
leveraging various available HPC technologies [1].

Many current HPC systems take advantage of GPU compute power, as can
be seen in the current Top500 list [2]. Of the first ten systems on the list, six
have a heterogeneous architecture with accelerators available on compute nodes.
Spliss takes advantage of such architectures with the wide range of parallelization
approaches it implements, including a hybrid CPU parallelization and offloading
to GPU accelerators. Spliss provides CFD solvers the capabilities to efficiently
and transparently execute the computationally intensive linear solver on new
architectures and hardware accelerators such as GPUs. This way, the CFD solver
can leverage new architectures and hardware accelerators without the necessity
of any code adaptation in the CFD solver. One of the CFD solvers that utilize
Spliss is CODA. CODA is the CFD software being developed as part of a col-
laboration between the French Aerospace Lab ONERA, the German Aerospace
Center (DLR), Airbus, and their European research partners. CODA is jointly
owned by ONERA, DLR and Airbus.

The contribution of this work is, first, a presentation of the improvements
made to Spliss to allow an efficient scaling to a large number of GPUs and,
second, an evaluation of the achieved performance and scalability using a test
case with the CODA CFD software as an example. The evaluation includes a
performance assessment of GPU accelerated Spliss with CODA on the JUWELS
Booster system with Nvidia A100 GPUs in comparison to a CPU-only execution
on German Aerospace Center’s CARO HPC system based on AMD Rome CPUs.

This work starts by introducing the software ecosystem in Sect. 2, followed by
discussing the improvements to enable acceleration distributed among multiple
GPUs in Sect. 3 and their impact on overall performance. In Sect. 4, the evaluated
HPC systems and the test case are described and performance and scalability
results are presented and compared. Finally, Sect. 5 summarizes the presented
work and draws conclusions.

2 Background

At the German Aerospace Center (DLR), the development of computational
fluid dynamics software has a long history. Today, the TAU CFD package [3]
has been in production in the European aircraft industry, research organizations
and academia for more than 20 years and was, for instance, used for the Airbus
A380 and A350 wing design. As state-of-the-art for its time, TAU implements a
classical MPI parallelization to compute steady and unsteady external aerody-
namic flows using a second order finite-volumes discretization.

In 2012 DLR began the development of a new, flexible, unstructured CFD
solver called Flucs [4] from the ground up. The focus of this new development
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was set on, first, a flexible and comprehensive parallelization concept suited for
current and future HPC systems and, second, on algorithmic efficiency using
strong implicit solvers, higher-order spatial discretization via the Discontinuous
Galerkin method featuring hp-adaptation in addition to finite volumes with max-
imum code share, and seamless integration into Python-based multi-disciplinary
process chains via FlowSimulator [5,6]. While the development of Flucs had been
started at DLR, it since has become part of a larger cooperation that is driven
by Airbus, the French aerospace lab ONERA, and DLR. The joint development
of the CFD software based on Flucs was named CODA (CFD for ONERA, DLR
and Airbus) to honor the new collaboration and the involvement of all three
partners pursuing the joint effort and co-development.

Similar to TAU, the CODA CFD software uses classical domain decompo-
sition to utilize distributed-memory parallelism via MPI and, additionally, the
GASPI [7] implementation GPI-2 as an alternative to MPI, which allows for
efficient one-sided communication to reduce network traffic and latency. In addi-
tion, CODA supports the overlapping of halo-data communication with com-
putation to hide network latency and further increase scalability. Besides clas-
sical domain decomposition, CODA employs a hybrid two-level parallelization
to utilize shared-memory parallelism for multi- and many-core architectures [8].
CODA implements sub-domain decomposition, where each domain is further
partitioned into sub-domains, each of which being processed by a dedicated
software thread that is mapped one-to-one to a hardware thread to maximize
data locality. The hybrid approach allows utilizing all layers of parallelism and
providing a flexible adaption to different hardware architectures [9,10].

An integral part of the CODA software architecture is the integration of the
before mentioned sparse linear system solver Spliss [1]. Spliss is used for solving
linear equation systems for implicit time integration methods, e.g. for the test
case used in this work and is a linear solver library that, on the one hand, is
tailored to the requirements of CFD applications but, on the other hand, inde-
pendent of the particular CFD solver. It is specialized to solve large sparse sys-
tems of linear equations, providing a sparse matrix structure with dense blocks
of fixed or variable sizes and a range of different iterative solver components and
preconditioners that can be stacked as needed. Spliss leverages available com-
pute resources through mechanisms such as one-sided communication, hybrid
parallelization and the use of accelerators, i.e. GPUs, to take advantage of het-
erogenous architectures while hiding the complexity of these hardware-specific
optimizations from a CFD solver such as CODA.

3 Porting Spliss to GPU

This section takes a look at GPU acceleration for the sparse linear system solver
Spliss. This can be taken advantage of from CPU-only codes such as CODA by
simply linking against a version of Spliss compiled for GPU.

Porting the linear solver components to GPU consists of both the initial
implementation enabling single GPU usage through computation kernels as well
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as ensuring that performance scales to multiple GPUs. The process was aided by
the Nvidia performance analysis tools [11] NSight Systems (profiling the timeline
of GPU usage) and NSight Compute (analysis on a GPU kernel level) for multi-
ple iterations of improvements on general GPU usage and specific computation
kernels. The focus of this work is to enable efficient multi-GPU usage including
good scalability. This ensures that future improvements made on computation
kernel level can also benefit at scale for distributed execution.

A baseline for all following changes and measurements is established as the
initial GPU port with multi-GPU usage enabled in code. The computational load
is expected to be close to balanced across all processes since this is provided by
the according CFD solver. In addition, we assume that the targeted compute
architectures are comprised of multiple of the same type of GPU, which is the
case for most or all available systems. As a result, Spliss multi-GPU means each
process is offloading to a single GPU, which stays consistent throughout the
entire runtime. This baseline is displayed as the gray set of bars in Fig. 1, where
the solid bar represents the runtime of the entire iteration phase and the shaded
bar the time spent within the linear solver (including host to device and vice
versa data transfers), which makes up about 75 % of the runtime.

3.1 Implementation Changes

By performing an initial analysis we found that the following steps need to
be implemented to establish efficient multi-GPU capability and to enable the
acceleration that can be achieved by offloading computation to a single GPU
also to scale to a distributed use-case using multiple GPUs.

Data Movement. At the start, measurements showed an increased runtime
for distributed GPU usage. An analysis of the runtime behavior with the Nvidia
tools revealed redundant data copy operations from host to device as well as
within host memory. We resolved all redundant transfers from host to device
and all redundant copy operations in the host memory. The impact of these
improvements is highlighted with the blue set of bars in Fig. 1. The improved
version achieves a performance gain of about 20 % for the entire iteration phase
and about 30 % for linear solver.

CUDA-aware MPI. In addition, we identified that when offloading data and
computation to GPU the amount of time spent in point-to-point MPI communi-
cation needed for halo updates during the key computation of the matrix-vector
multiplication was significant. By taking advantage of CUDA-aware MPI capa-
bilities [12], we avoid the need to transfer notable amounts of data between host
and device when the MPI communication is executed via the CPU host. We used
this to improve the halo exchange by directly passing a pointer to GPU memory
to MPI. As a result, an explicit data transfer from device to host on the sender
and an explicit data transfer from host to device on the receiver is no longer
needed. In order to facilitate this halo exchange we pack the non-contiguous
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Fig. 1. Runtime of different improvements in relation to initial GPU port for a small
test case on four A100 GPUs with the entire time integration iterate phase in solid
colors and the linear solver within that in shaded colors.

halo data on the device to a contiguous GPU buffer that can be passed directly
to the CUDA-aware MPI installation. This allows the MPI library and under-
lying frameworks to make the decision if and when to copy relevant chunks of
data to host memory or communicate directly from and to device memory for
best performance. Figure 1 shows that the improvements using CUDA-aware
MPI reduce the runtime of the iteration phase to about 50 % of the baseline. In
this case, the time spent in the linear solver, i.e. the part running on GPUs, is
reduced to about half of the iteration time.

3.2 Adjustments at Runtime

Next to the above changes made to enable multi-GPU usage, we can take advan-
tage of optimizations at runtime: GPUDirect Accelerations [12,13] and Nvidia
Multi Process Service (MPS) [14]. While the former is automatically applied as
deemed appropriate by the CUDA-aware MPI software stack, the latter can be
enabled by the user when considered necessary.

Nvidia Multi Process Service. Generally, the goal for GPU acceleration is
using the hardware as efficiently as algorithmically possible while maintaining
little overhead. This favors having only one MPI process offload computation to
one distinct GPU each. However, other components of the software framework for
the CFD solver (except the linear solver) may benefit from not constricting the
number of processes by the number of available GPU accelerators. For instance,
with CODA when no GPU acceleration is used the time spent in the non-linear
part of the iteration phase is about 5–10 % and the time in the linear solver
about 90–95 %. With enabled GPU acceleration the ratio is closer to half and
half. As a result, all computation outside of the accelerated linear solver needs
to also be executed as efficiently as possible. As will be discussed in Sect. 4, for
example, on the AMD Naples and Rome architecture best hybrid performance
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can be achieved using only four OpenMP threads per MPI rank, i.e. using 16 or
32 MPI processes, respectively. This suggests that a further performance gain
could be achieved through using Nvidia’s MPS to mitigate a restriction on the
number of MPI processes given by the number of available GPUs. MPS enables
multiple processes to simultaneously offload to the same GPU as efficiently as
possible. While this predominately benefits the parts of computation that take
place on CPU by being able to use the best hybrid parallel configuration, there
is also a minimal benefit for the Spliss linear solver as long as there are only a
few processes submitting to each GPU. The observation can be traced back to
the host to device copies necessary at the start of the linear solver execution and
is negated by overhead when more processes offload work to the same GPU.

4 Evaluation

This section, first, introduces the test systems and the test case, second, provides
an assessment of the scalability of Spliss with CODA on the German Aerospace
Center’s CARO HPC production system and, third, compares the performance
and scalability of CODA with Spliss executed on Nvidia A100 GPUs on the
JUWELS Booster module at Jülich Supercomputing Center.

4.1 The Test Systems

The Cluster for Advanced Research in Aerospace CARO is one of the two German
Aerospace Center’s main HPC systems. It was ranked at 135 in the Top500 list of
11/2021 providing 3.5 TFlop/s out of 5.6 TFlop/s theoretical peak performance
[2]. The system offers 1364 compute nodes, whereas each compute node consists
of two AMD EPYC 7702 (64 cores at 2.0 GHz). In total, the system offers 174,592
compute cores.

Similar to the AMD Naples architecture, the AMD Rome architecture within
this system includes 16 NUMA (non-uniform memory access) domains and three
NUMA distances: first, to the memory of the seven other cores on the same die,
second, to the memory on the 7 other dies on the same chiplet (socket) and,
third, to the memory located on the other chiplet. In addition, only four of
the eight cores on each die share a last level cache (L3 cache), which presents
an additional difference in memory access latency depending on the locality of
the data; whether it is in the shared L3 cache of the according core or in the
adjoining L3 cache on the same die.

The second test system is the JUWELS Booster module at Jülich Supercom-
puting Center. The JUWELS Booster module was ranked at 7 in the Top500
list of 11/2020 providing 44.1 PFlop/s out of 71.0 PFlop/s theoretical peak
performance; making it the most powerful system in Europe at that time. The
system offers 936 compute nodes, whereas each compute node consists of two
AMD EPYC 7402 and four Nvidia A100 GPUs with four-times InfiniBand HDR
(Connect-X) interconnect. In total, the system offers 3744 GPUs.
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4.2 The Test Case

The test case for the evaluation is based on the NASA 3D Onera M6 wing test
case [15], which simulates the external airflow at transonic speed and computes
typical characteristics like air velocity and direction, pressure and turbulence via
a turbulence model. The NASA 3D Onera M6 wing test case is well studied and
provides experimental data as well as numerical solutions by other CFD appli-
cations for comparison. For the test case, CODA solves the Reynolds-averaged
Navier-Stokes equations (RANS) with a Spalart-Allmaras one-equation turbu-
lence model in its negative form (SAneg). It uses a second-order finite-volume
spatial discretization with an implicit Euler pseudo-time integration based on
local (pseudo) time steps scaled via an up-ramping CFL number starting at 5.0.
For the linear problem, a Block Inversion preconditioned Block-Jacobi Solver
is applied to solve the linear system. The flow conditions are outlined by the
following parameters: the Mach number is set to 0.84, the Reynolds number to
14.6e6, and a fixed 3.06◦ angle of attack is set.

For this case, the vast majority of the iteration phase is spent in the linear
solver, which makes it ideal to offload the computationally intensive linear sys-
tem solving to GPUs. Measuring the iteration time of CODA provides a very
close estimation of the performance and scalability of Spliss within a real-world
example. In addition, it highlights the performance of the entire simulation, i.e.
it includes all time spent for data transfer between CPU and GPU, CPU-only
sections as well as communication and synchronization; not just the time for
the GPU kernels. While results may be biased by CODA, the measurements
show the combined performance and scalability of CODA with Spliss since per-
formance degrading effects accumulate. In this sense, CODA and Spliss may
achieve better performance and scalability individually.

The test case operates with a medium-sized, unstructured mesh with 69.2
million volume elements. This way, it is large enough to achieve good perfor-
mance per GPU with the chosen linear solver components but still small enough
to allow for a reasonable strong scaling evaluation.

4.3 Measurement Setup

As a reference, we evaluated the scalability of CODA with the above test case
on the CARO HPC system. For the scalability evaluation all software threads
are bound to a hardware thread to ensure thread affinity and using one hard-
ware thread per core. For the reference, we compared different hybrid-parallel
setups suitable for the specific memory and NUMA layout of the AMD Rome
architecture. The comparison showed that best hybrid-parallel performance is
reached when using only four OpenMP threads per MPI process, so that these
threads share the same last level cache. This is consistent with its predecessor,
the AMD Naples architecture, and stands in contrast to other architectures, for
instance, the Intel Cascade Lake architecture, where comparable performance for
all hybrid setups was obtained [10,16]. Consequently, we chose the best hybrid
setup, i.e. with 32 MPI ranks and 4 OpenMP threads per node, as a reference.
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For the GPU measurements all software threads are bound to a hardware
thread to ensure thread affinity and using one hardware thread per core, too.
Similarly, we compared different hybrid-parallel setups that matched well with
specific memory and NUMA layout of the AMD Rome architecture on the host as
well as the number of installed GPUs, namely 4 MPI processes with 12 OpenMP
threads each, 8 process with 6 threads, 16 processes with 3 threads and 48
processes MPI-only. Out of these, the setup with 8 MPI processes and 6 OpenMP
threads each achieved the best overall performance and, as a result, was selected
to represent the GPU measurements.

For all GPU measurements the linear systems solving via Spliss is offloaded
to the Nvidia A100 GPUs, while the non-linear part in CODA is executed on the
host CPU. The offloading is achieved by simply linking against the GPU-version
of Spliss; without any modifications to the CODA source code or installation.

4.4 Comparing CPU and GPU Performance and Scalability

The CPU reference measurement runs the above described test case as strong
scaling setup, i.e. the problem size is fixed for increasing core counts, and contains
measurements from 2,048 to 12,288 cores or 16 to 96 nodes, respectively. This
represents an appropriate range for the given mesh size, with on average about
5600 elements per thread at the largest core count. In this range, the test case
achieves a near ideal speedup and a compute performance that matches experi-
ences from previous measurements, which makes it a valid and strong reference
to compare the GPU measurements against.

The GPU measurement runs the same strong-scaling test case from 8 to
128 GPUs or 2 to 32 nodes, respectively. This represents an appropriate range
for the given mesh size, where two nodes is the minimum number of nodes
to fit the simulation data into main memory and at 32 nodes the individual
GPU utilization starts to decline. At 32 nodes and 128 GPUs, respectively, the
given test case can theoretically achieve about 85 % of the maximum single GPU
performance since there is simply not enough computational load to meet the
massive demand of parallel load for the A100 GPUs. Since there is an additional
decrement for running multiple processes via MPS (two in this case) the resulting
utilization is about 70 % of the maximum single GPU performance. For further
increasing numbers of GPUs the resulting individual GPU utilization declines
faster than the parallel efficiency within Spliss or CODA, i.e. increasing the
number of GPUs would necessitate larger input data to match the GPUs demand
for computational load.

On the GPU system the test case achieves a scaling efficiency of 82 %, i.e. a
speedup of 13.1 of ideally 16 for 128 GPUs, for the entire CODA iteration phase
including the linear part in Spliss running on the GPUs, the non-linear part in
CODA running on the CPUs and all transfers between host and device. Whereas,
the linear part in Spliss makes up about 60 % for 8 GPUS up to 75 % for 128
GPUs of the iteration phase. The linear part in Spliss running on the GPUs on its
own, achieves a scaling efficiency of 66 %, i.e. a speedup of 10.5, which is mainly
due to the above described decreasing individual GPU utilization to about 70 %
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Fig. 2. Runtime comparison on CARO (AMD Rome) and JUWELS Booster (4x Nvidia
A100) with the M6 wing testcase in relation to power consumption.

on 128 GPUs. The remaining efficiency decrease of about 4 % is due to increasing
ratio of synchronization to computation, whereas the synchronization includes
MPI communication between the GPUs and transfers between host and device.

When comparing the relative performance per node, i.e. 16 CARO nodes (128
cores AMD Rome each) versus 16 JUWELS Booster nodes (48 cores AMD Rome
and 4 GPUs each), the GPU nodes outperform the CPU nodes by a factor of up
to 8.4, whereas with increasing scale the factor declines to 6.7 due to the above
described reduced GPU utilization for the given test case. While this node-wise
comparison matches two high-end nodes that were both state-of-the-art for CPU
and GPU systems at their similar installation time, it must be considered that
the GPU nodes are significantly more costly in both acquisition and operation,
the later due to their much higher power consumption.

To allow for a fairer assessment of both systems, we compare the runtime
in relation to estimated power consumption using the Thermal Design Power
(TDP) value, as well. A single CARO compute node has a power consumption
of about 400 W, which is composed of the 2× 200 W of the AMD Epyc 7702
CPUs. In comparison, a single JUWELS Booster node has a power consumption
of about 1960 W, which is made up of the 2× 180 W of the AMD Epyc 7402
CPUs and the 4× 400 W of the Nvidia A100 GPUs. Since both systems are pro-
duction systems it is infeasible to retrieve the proportionate power consumption
of further involved components such as network, storage or cooling. Nonethe-
less, their impact can be assumed to be insignificant in comparison to the nodes
themselves.

Figure 2 shows the runtime comparison for the test case on CARO and
JUWELS Booster in relation to power consumption. It depicts the runtime for
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2,048 to 12,288 cores on CARO and 8 to 128 GPUs on JUWELS Booster on
the vertical axis and the power consumption on the horizontal axis, which is
obtained by multiplying the number of nodes for each data point with the power
consumption of the according node. For the test case, Spliss achieves a signif-
icant speedup of 1.6 to 1.9 on the GPU system even when equated for power
consumption.

Key Results. The evaluation presents three key results: First, the above
described improvements enable CFD solvers such as CODA to leverage the ben-
efits of offloading the computationally intensive linear equation solver to GPU
accelerators without any modifications to the CFD solver itself and achieve a
speedup of up 8.4 in a node-wise comparison and a speedup up to 1.9 in a
power-equated comparison. Second, Spliss’ GPU version allows to achieve a sim-
ilar performance on significantly less compute nodes, which can provide better
scalability, particularly, towards exascale systems since fewer nodes allow for less
MPI processes, less MPI communication and, thus, less communication overhead.
Third, due to the significant acceleration of the linear part on GPUs, the non-
linear part that is executed on the CPU becomes more prominent: where it is
typically about 5–10 % of the iteration phase it increases to about 40 %. Since the
main purpose of the usage of Spliss is to hide the complexity of hardware-specific
optimizations from the CFD solver, the non-linear part in the CFD solver might
remain exclusive to CPUs by design. To further increase the performance in this
case would require a) larger workloads at the given scale, which would be quite
typical for industrial applications or b) move to systems that have more perfor-
mant CPUs in the GPU nodes. For instance, a hypothetical node that replaces
the CPU in the JUWELS Booster system with the state-of-the-art CPU from
the CARO system would provide an additional speedup of about 20 %, i.e. a
power-equated speedup of about 2.3 for the GPU version over the CPU version
on CARO.

5 Conclusion

The sparse linear system solver Spliss efficiently solves the large sparse systems of
linear equations that result from the time integration of the Reynolds-averaged
Navier Stokes (RANS) equations. It takes advantage of various current HPC
technologies while hiding the resulting complexity from the CFD solver. The
heterogenous compute node architecture consisting of CPUs and GPUs that can
be found on many current top HPC systems is one of them. In combination
with an efficient, hybrid CPU parallelization, Spliss and the improvements of
this work allow the performance gain achieved with a single GPU to scale to
large distributed systems consisting of hundreds of GPUs. We outlined the steps
taken to enable efficient multi-GPU usage for the Spliss linear solver reducing
the runtime in a distributed set-up on Nvidia A100 GPUs by up to 50 %. Addi-
tionally, using the NASA 3D Onera M6 wing test case for Spliss with the CODA
CFD software, we looked at performance in a strong scaling scenario on current
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HPC systems. We showed that GPU acceleration of Spliss can yield a up to 8.6
times speedup over state-of-the-art CPU systems or a up to 1.9 times speedup
when equated for power consumption.

Acknowledgements. Funded by the European Union. This work has received fund-
ing from the European High Performance Computing Joint Undertaking (JU) and Ger-
many, Italy, Slovenia, Spain, Sweden, and France under grant agreement No 101092621.

References

1. Krzikalla, O., Rempke, A., Bleh, A., Wagner, M., Gerhold, T.: Spliss: a sparse
linear system solver for transparent integration of emerging HPC technologies into
CFD solvers and applications. In: Dillmann, A., Heller, G., Krämer, E., Wagner, C.
(eds.) STAB/DGLR Symposium 2020. NNFMMD, vol. 151, pp. 635–645. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-79561-0 60

2. Strohmaier, E., Dongarra, J., Simon, H., Meuer, M.: The 60th Top500 list (2022).
https://www.top500.org/lists/top500/2022/11/ Accessed 23 Feb 2023

3. Schwamborn, D., Gerhold, T., Heinrich, R.: The DLR TAU Code: recent applica-
tions in research and industry. In: Proceedings of the European Conference on Com-
putational Fluid Dynamics, ECCOMAS CFD (2006). https://elib.dlr.de/22421

4. Leicht, T., et al.: DLR-project digital-X – next generation CFD solver ’Flucs’.
Deutscher Luft- und Raumfahrtkongress (2016). https://elib.dlr.de/111205

5. Meinel, M., Einarsson, G.: The FlowSimulator Framework for Massively Parallel
CFD Applications. In: PARA 2010 (2010).https://elib.dlr.de/67768

6. Huismann, I., et al.: Accelerating the FlowSimulator: profiling and scalability anal-
ysis of an industrial-grade CFD-CSM toolchain. In: 9th Edition of the International
Conference on Computational Methods for Coupled Problems in Science and Engi-
neering (COUPLED PROBLEMS 2021) (2021). https://doi.org/10.23967/coupled.
2021.008

7. Alrutz, T., et al.: GASPI - a partitioned global address space programming inter-
face. Facing Multicore-Challenge III, LNCS 7686, 135–136 (2013). https://doi.
org/10.1007/978-3-642-35893-7 18
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Abstract. Parallel-in-time algorithms provide an additional layer of
concurrency for the numerical integration of models based on time-
dependent differential equations. Methods like Parareal, which parallelize
across multiple time steps, rely on a computationally cheap and coarse
integrator to propagate information forward in time, while a paralleliz-
able expensive fine propagator provides accuracy. Typically, the coarse
method is a numerical integrator using lower resolution, reduced order
or a simplified model. Our paper proposes to use a physics-informed
neural network (PINN) instead. We demonstrate for the Black-Scholes
equation, a partial differential equation from computational finance, that
Parareal with a PINN coarse propagator provides better speedup than a
numerical coarse propagator. Training and evaluating a neural network
are both tasks whose computing patterns are well suited for GPUs. By
contrast, mesh-based algorithms with their low computational intensity
struggle to perform well. We show that moving the coarse propagator
PINN to a GPU while running the numerical fine propagator on the CPU
further improves Parareal’s single-node performance. This suggests that
integrating machine learning techniques into parallel-in-time integration
methods and exploiting their differences in computing patterns might
offer a way to better utilize heterogeneous architectures.

Keywords: Parareal · parallel-in-time integration · PINN · Machine
learning · GPUs · heterogeneous architectures

1 Introduction

Models based on differential equations are ubiquitous in science and engineering.
High-resolution requirements, often due to the multiscale nature of many prob-
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lems, typically require that these models are run on high-performance computers
to cope with memory demand and computational cost. Spatial parallelization
is already a widely used and effective approach to parallelize numerical algo-
rithms for partial differential equations but, on its own, will not deliver enough
concurrency for extreme-scale parallel architectures. Parallel-in-time integration
algorithms can help to increase the degree of parallelism in numerical models.
Combined space-time parallelization can improve speedup over spatial paral-
lelization alone on hundreds of thousands of cores [24].

Parallel-in-time methods like Parareal [14], PFASST [4] or MGRIT [5] rely
on serial coarse level integrators to propagate information forward in time.
These coarse propagators constitute an unavoidable serial bottleneck which lim-
its achievable speedup. Therefore, the coarse-level integrators must be as fast as
possible. However, these methods are iterative and speedup will also decrease as
the number of iterations goes up. A coarse propagator that is too inaccurate,
even when computationally cheap, will not provide good speedup because the
number of required iterations will be too large. Hence, a good coarse propagator
needs to be at least somewhat accurate but also needs to run as fast as possible.
This trade-off suggests that using neural networks as coarse propagators could
be promising: once trained, they are very fast to evaluate while still providing
reasonable accuracy. Furthermore, neural networks are well suited for running on
GPUs whereas mesh-based discretizations are harder to run efficiently because
of their lower computational intensity. Therefore, algorithms featuring a com-
bination of mesh-based components and neural network components would be
well suited to run on heterogeneous systems combining CPUs and GPUs or other
accelerators.

Our paper makes three novel contributions. It (i) provides the first study of
using a PINN as a coarse propagator in Parareal, (ii) shows that a PINN as a
coarse propagator can accelerate Parareal convergence and improve speedup and
(iii) illustrates that moving the PINN coarse propagator to a GPUs improves
speedup further. While we demonstrate our approach for the Black-Scholes equa-
tion, a model from computational finance, the idea is transferable to other types
of partial differential equations where Parareal was shown to be effective. We
only investigate performance on a single node with one GPU. Extending the
approach to parallelize in time across multiple nodes and to work in combina-
tion with spatial parallelization left for future work.

2 Related Work

Using machine learning (ML) to solve differential equations has become an active
field of research. Some papers aim to entirely replace the numerical solver by
neural networks [21,25]. Physics-informed neural networks (PINNs) [20], which
use the residual of a partial differential equation (PDE) as well as boundary-
and initial conditions in the loss function, are used in many applications. This
includes a demonstration for the Black Scholes equation (1), showing that a
PINN is capable of accurately pricing a range of options with complex payoffs,
and is significantly faster than traditional numerical methods [23]. However,
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solving differential equations with ML alone generally does not provide the high
accuracy that can be achieved by numerical solvers. This has led to a range of
ideas where ML is used as an ingredient of classical numerical methods instead
and not as a replacement [9].

Specific to parallel-in-time integration methods, there are two research direc-
tions aiming to connect them with machine learning. On the one hand, there are
attempts to use ML techniques to improve parallel-in-time algorithms. Our paper
falls into this category. Using a neural network as coarse propagator for Parareal
has been studied in two previous papers. Yalla and Enquist [26] were the first to
explore this approach. They use a neural network with one hidden layer of size
1000 and demonstrate for a high dimensional oscillator that it helps Parareal
converge faster compared to a numerical coarse propagator. However, no run-
times or speedups are reported. Agboh et al. [1] use a feed-forward deep neural
network as a coarse propagator to integrate an ordinary differential equation
modeling responses to a robot arm pushing multiple objects. They also observe
that the trained coarse propagator improves Parareal convergence compared to a
simplified analytical coarse model. Nguyen and Tsai [17] do not fully replace the
numerical coarse propagator but use supervised learning to enhance its accuracy
for wave propagation modeling. They observe that this enhances stability and
accuracy of Parareal, provided the training data contains sufficiently represen-
tative examples. Gorynina et al. [6] study the use of a machine-learned spectral
neighbor analysis potential in molecular dynamics simulations with Parareal.

A few papers go the opposite way and adopt ideas from parallel-in-time
integration methods to parallelize and accelerate the process of training deep
neural networks. Günther et al. [7] use a nonlinear multi-grid method to improve
the training process of a deep residual network. They use MGRIT, a multi-level
generalization of Parareal, to obtain layer-parallel training on CPUs, reporting
a speedup of up to 8.5 on 128 cores. Kirby et al. [11] extend their approach to
multiple GPUs, obtaining further performance gains. In a similar way, Meng et
al. [16] use Parareal to generate starting values for a series of PINNs to help with
the training process. Motivated by the observation that it becomes expensive to
train PINNs that integrate over long time intervals, they concatenate multiple
short-time PINNs instead. They use a cheap numerical coarse propagator and
a Parareal iteration to connect these PINNs with each PINN inheriting the
parameters from its predecessor. While they mention the possibility of using a
PINN as coarse propagator, they do not pursue this idea further in their paper.
Lorin [15] derives a parallel-in-time variant of neural ODEs to improve training
of deep Residual Neural Networks. Finally, Lee et al. [13] use a Parareal-like
procedure to train deep neural networks across multiple GPUs.

3 Algorithms and Benchmark Problem

The Black-Scholes equation is a widely used model to price options in financial
markets [3]. It is based on the assumption that the price of an asset follows a
geometric Brownian motion, so that the log-returns of the asset are normally
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distributed. Closed form solutions exist for the price of a European call or put
option [12], but not for more complex options such as American options or
options with multiple underlying assets. To be able to compute numerical errors,
we thus focus on the European call option, a financial derivative that gives
the buyer the right, but not the obligation, to buy an underlying asset at a
predetermined price (the strike price) on or before the expiration date. The
price V of the option can be modeled by

f(V ) =
∂V

∂t
(S, t) +

1
2
σ2 S2 ∂2 V

∂S2
(S, t) + rS

∂V

∂S
(S, t) − rV (S, t) = 0, (1)

where S denotes the current value of the underlying asset, t is time, r denotes
the no-risk interest rate (for example saving rates in a bank) and σ denotes
the volatility of the underlying asset. To fully determine the solution to (1), we
impose a final state at expiry time t = T and two boundary conditions with
respect to S, motivated by the behaviour of the option at S = 0 and as S → ∞.
For the call option, the expiry time condition is

V (T, S) = max(S − K, 0) for all S. (2)

If the underlying asset becomes worthless, then it will remain worthless, so the
option will also be worthless. Thus,

V (t, 0) = 0 for all t. (3)

On the other hand, if S becomes very large, then the option will almost certainly
be exercised, and the exercise price is negligible compared to S. Thus, the option
will have essentially the same value as the underlying asset itself and

V (t, S) ∼ 0 as S → ∞, for fixed t. (4)

For the European call option, we select an interval of t = 0 and T = 1 and an
artificial bound for the asset of S = 5000e.

3.1 Parareal

Parareal is an iterative algorithm to solve an initial value problem of the form

V ′(t) = φ(V (t)), t ∈ [0, T ], V (0) = V0, (5)

where in our case the right hand side function φ stems from the discretization
of the spatial derivatives in (1). Note that the coefficients in (1) do not depend
on time, so we can restrict our exposition to the autonomous case. Decompose
the time domain [0, T ] into N time-slices [Tn, Tn+1], n = 0, . . . , N − 1. Denote
as F a numerical time stepping algorithm with constant step size δt and high
accuracy and as

Vn+1 = F(Vn) (6)
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the result of integrating from some initial value Vn at the start time Tn of a
time slice until the end time Tn+1. Classical time stepping corresponds to eval-
uating (6) for n = 0, . . . , N − 1 in serial. Parareal replaces this serial procedure
with the iteration

V k+1
n+1 = G(V k+1

n ) + F(V k
n ) − G(V k

n ) (7)

where k = 1, . . . ,K counts the iterations. The key in (7) is that the computation-
ally expensive evaluation of F can be parallelized across all N time slices. Here,
we always assume that P = N many processes are used and each process holds a
single time slice. A visualization of the Parareal workflow as well as pseudocode
can be found in the literature [22]. As k → N , V k

n converges to the same solution
generated by serial evaluation of (6). However, to achieve speedup, we require
convergence in K � N iterations. An upper bound for speedup achievable with
Parareal using P processors to integrate over N = P time slices is given by

sbound(P ) =
1

(
1 + K

P

)
cc
cf

+ K
P

(8)

where K is the number of iterations, cc the runtime of G and cf the runtime of
F [22]. Since (8) neglects overhead and communication, it is an upper bound on
achievable speedups and measured speedups will be lower.

3.2 Numerical Solution of the Black-Scholes Equation

We approximate the spatial derivatives in (1) by second order centered finite
differences on an equidistant mesh

0 = S0 < S1 < . . . < SN = L (9)

with Si+1 − Si = ΔS for i = 0, . . . , N − 1. For the inner nodes, we obtain the
semi-discrete initial value problem

V
′
j (t) = −1

2
σ2S2

j

Vj+1 − 2Vj + Vj−1

ΔS2
− rSj

Vj+1 − Vj−1

2ΔS
+ rVj (10)

with j = 1, . . . ,. This is complemented by the boundary condition V0 = 0 for
a zero asset value. We also impose the asymptotic boundary condition (4) at
finite distance L so that VN = 0. In time, we use a second order Crank-Nicolson
method for F and a first order implicit Euler method as numerical G. Since we
have a final condition instead of an initial condition, we start at time T = 1
and solve the problem backwards. We use 200 steps for the fine method and 100
steps for the coarse.

3.3 Physics Informed Neural Network (PINN)

The PINN we use as coarse propagator gets a time slice [tstart, tend] ⊂ [0, T ],
the asset price V at tstart and stock values S, and outputs the predicted state
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of the asset price Ṽ at tend. To train it, we define three sets of collocation
points in time and stock price: (Si, ti), i = 1, . . . Nf in the interior of the space-
time domain for evaluating the residual f(V ) of the Black-Scholes eqation (1),
(Si, ti), i = 1, . . . Nb collocation points on the boundary to evaluate (2), and
Si, i = 1, . . . Nexp for the final state conditions (3), (4). The loss function to be
minimized is given by

MSEtotal = MSEf + MSEexp + MSEb, (11)

consisting of a term to minimize the PDE residual f(V )

MSEf =
1

Nf

Nf∑

i=1

|f(Ṽ (ti, Si))|2, (12)

the boundary loss term

MSEb =
1

Nb

Nb∑

i=1

∣
∣
∣Ṽ (ti, Si) − V (ti, Si)

∣
∣
∣
2

, (13)

and the loss at expiration

MSEexp =
1

Nexp

Nexp∑

i=1

∣
∣
∣Ṽ (T, Si) − max(Si − K, 0)

∣
∣
∣
2

, (14)

For our setup, we randomly generate Nf = 100, 000 collocation points within
the domain [0, 5000] × [0, 1], Nb = 10, 000 collocation points at the boundary
[0, 1] and Nexp = 10, 000 collocation points to sample the expiration condition
over [0, 5000]. The derivatives that are required to compute the PDE loss are
calculated by automatic differentiation [2]. We compute the PDE residual (12)
over the points inside the domain, the boundary condition loss (13) over the
spatial boundary and the expiration loss (14) over the end points. The sum
of the three forms the total loss function (11). Figure 1 shows a subset of the
generated collocation points to illustrate the approach.

The neural network consists of 10 fully connected layers with 50 neurons in
each and was implemented using Pytorch [18]. Figure 2 shows the principle of a
PINN but for a smaller network for the sake of readability. Every linear layer,
excluding the output layer, is followed by the ReLU activation function. The
weights for the neural network are initialized using Kaiming [8]. We focus here
on a proof-of-concept and have not undertaken a systematic effort to optimize the
network architecture but this would be an interesting avenue for future research.

We used the Adam optimizer [10] with a learning rate of 10−2 for the initial
round of training for 5000 epochs, followed by a second round of training with a
learning rate of 10−3 for 800 epochs. The training data (collocation points) was
shuffled during every epoch to prevent the model from improving predictions
based on data order rather than the underlying patterns in the data. Table 1
shows the behavior of the three loss function terms. The total training time for
this model was around 30min.
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Fig. 1. Subset of the randomly generated collocation nodes. The solution is forced
to satisfy the PDE at the inner nodes by minimizing the PDE residual, to satisfy
the boundary condition at the green nodes via the boundary loss and the expiration
condition at the red nodes via the expiration loss. (Color figure online)

4 Results

The numerical experiments were conducted on OpenSUSE Leap 15.4 running an
Intel Core 24× 12th Gen Intel i9-12900K with a base clock speed of 3.2GHz and
a maximum turbo frequency of 5.2GHz, with 62.6 GiB of RAM and an NVIDIA
GeForce RTX 3060/PCIe/SSE2 GPU. Implementations were done using Python
3.10, pytorch1.13.1+cu117, mpi4py3.1.4, as well as numba0.55.1 for the GPU
runs. All results shown in this paper are reproducible using the code and instruc-
tions available in the figshare or GitHub repository [19].

Parareal Convergence. Figure 3 shows the normalized �2 error for the serial fine,
numerical coarse and PINN-coarse propagator over time (left). As expected,
the fine propagator is the most accurate with an �2 error of around 10−3 at
the end of the simulation. The numerical coarse propagator is noticeably less
accurate. The PINN coarse propagator is more accurate than the numerical
coarse propagator but also does not reach the accuracy of the fine. To illustrate
the importance of encoding the differential equation in the loss function, we
also show a neural network (NN) trained only on data produced with the fine
propagator but without the terms encoding the differential equation. The neural
network without PDE residual is somewhat more accurate than the numerical
coarse method but not as good as the PINN. Note that the PINN used here
does not need numerically generated trajectories as training data, as the loss
function (11) only consists of PDE residual, boundary and expiration conditions
and does not include a data mismatch term.
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Fig. 2. Structure of the PINN. The network takes the time tstart, tend, asset values
V and stock values S as input and returns the predicted asset values Ṽ at tend. The
loss function encodes the PDE, the expiration condition and the boundary conditions.
Figure produced using https://alexlenail.me/NN-SVG/index.html.

Figure 3 (right) shows the normalized �2 error of Parareal against the number
of iterations. For all three coarse propagators, numerical, NN and PINN, Parareal
converges very quickly. Although PINN and NN are slightly more accurate than
the numerical coarse propagator, the impact on convergence is small. After one
iteration, the iteration error of Parareal is smaller than the discretization error
of the fine method. After K = 3 iterations, Parareal has reproduced the fine
solution up to round-off error. Below, we report runtimes and speedup for K =
3. With only a single iteration, the K/P term in (8) is less important and
reducing the runtime of the coarse propagator increases overall speedup even
more. Therefore, the case with K = 3 is the case where switching to the coarse
propagator will yield less improvement.

Generalization. Figure 4 shows how Parareal with a PINN coarse propagator
converges if applied to (1) with parameters different from those for which the
PINN was trained. As parameters become increasingly different from the train-
ing values, the coarse propagator will become less accurate. However, if Parareal
converges, it will produce the correct solution since the numerical fine propaga-
tor always uses the correct parameters. The combination of Parareal + PINN
generalizes fairly well. Even for parameters more than ten times larger than the
training values it only requires one additional iteration to converge. While the
additional iteration will somewhat reduce achievable speedup as given by (8), the
performance results presented below should not be overly sensitive to changes
in the model parameters.

Parareal Runtimes and Speedup. Reported runtimes are measured using the
time command in Linux and include the time required for setup, computation
and data movement. Table 2 shows the runtime in milliseconds of Parareal using
P = 16 cores for four different coarse propagator configurations. Shown are aver-
ages over five runs as well as the standard deviation. Replacing the numerical

https://alexlenail.me/NN-SVG/index.html
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Table 1. Evolution of the loss function during network training. The three columns
show the MSE for the three terms of the loss function related to the end condition (2),
boundary conditions (3) and (4) and residual (1). After 5000 epochs with training
rate 10−2, another 800 epochs of training with a reduced training rate of 10−3 were
performed.

Epoch Expiration Boundary Residual

0 9.21× 102 9.21× 102 7.33× 103

2000 5.58× 10−1 3.45× 10−2 2.50× 10−2

4000 4.11× 10−2 2.34× 10−2 5.00× 10−3

5000 5.92× 10−1 1.34× 10−2 4.22× 10−3

5300 4.19× 10−2 3.22× 10−3 1.94× 10−4

5500 6.46× 10−4 1.96× 10−4 5.73× 10−5

5800 2.92× 10−5 1.14× 10−5 3.19× 10−4

coarse propagator with a PINN on a CPU reduces Parareal execution time by a
factor of 2.4, increasing to 2.9 if the PINN is run on a GPU. For the numerical
coarse propagator, using the GPU offers no performance gain because the res-
olution and thus computational intensity is not high enough. The much faster
coarse propagator provided by the PINN significantly reduces the serial bottle-
neck in Parareal and will, as demonstrated below, yield a marked improvement
in speedup.

Table 2. Runtime cc in milliseconds of the coarse propagator C averaged over five runs
plus/minus standard deviation.

Numerical PINN Speedup over
CPU-Numerical

CPU 3.48± 0.056 1.47± 0.073 2.4

GPU 3.99± 0.651 1.21± 0.041 2.9

Speedup − 1.21

Table 3 shows runtimes for the full Parareal iteration averaged over five runs.
The fastest configuration is the one that runs the numerical fine propagator
on the CPU and the PINN coarse propagator on the GPU. Executing both
fine and coarse propagator on the CPU takes about a factor of three longer.
Importantly, moving both to the GPU, while somewhat faster than running all
on the CPU, is slower than the mixed version by a factor of about two. The
full GPU variant will eventually be faster if the resolution of the fine and coarse
propagator are both extremely high. However, the current resolution already
produces an error of around 10−3 which will be sufficient in most situations. This
illustrates how a combination of numerical method and PINN within Parareal
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Fig. 3. Normalized �2-error over time of coarse and fine propagator against the analyt-
ical solution (left). Normalized �2-error against the serial fine solution versus number
of iterations for three different variants of Parareal (right). The black line (squares)
is Parareal with a numerical coarse propagator, the green line (diamonds) is Parareal
with a neural network as coarse propagator that is trained only on data while the blue
line (circles) is Parareal with a PINN as coarse propagator that also uses the terms of
the differential equation in the loss function. Parareal uses P = 16 time slices in all
cases. (Color figure online)

can not only improve performance due to the lower cost of the PINN but also
help to better utilize a node that features both CPUs and GPUs or even neural
network accelerators. Thus, the different computing patters in finite difference
numerical methods and neural networks can be turned into an advantage.

Table 3. Runtimes in milliseconds for Parareal averaged over five runs plus/minus
standard deviation.

CPU-Coarse GPU-Coarse

CPU-Fine 128.48± 0.715 41.241970± 0.334

GPU-Fine 83.2545± 0.356 87.45234± 0.253

Figure 5 shows runtimes for Parareal with both a PINN and numerical coarse
propagator on a CPU (left) and GPU (right) against the number of cores/time
slices P . The numerical fine propagator is always run on the CPU. In both
cases, runtimes decrease at a similar rate as the number of time slices/cores
P increases. The numerical coarse propagator is consistently slower than the
PINN and the gap is similar on the CPU and GPU. Finally, Fig. 6 shows the
speedup (left) and parallel efficiency (right) for Parareal with a numerical, PINN-
CPU and PINN-GPU coarse propagator. The speedup bounds (8) are shown as
lines. Moving from a numerical coarse propagator to a PINN and moving the
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Fig. 4. Convergence of Parareal for different interest rates r (left) and volatilities σ
(right). In all cases, the coarse propagator is the PINN trained for values of r = 0.03
and σ = 0.4. Even for parameter values more than ten times larger than the ones
for which the PINN was trained, Parareal requires only one additional iteration to
converge to within machine precision of the fine integrator.

PINN from the CPU to a GPU each improves speedup significantly. For the
numerical coarse propagator, Parareal achieves a speedup of around S(16) ≈ 2.
Replacing the numerical integrator with a PINN improves speedup to S(16) ≈ 3.
Running this PINN on a GPU again improves speedup to S(16) ≈ 4.5, more
than double what we achieved with the numerical coarse propagator on a CPU.
The improvements in speedup translate into increased parallel efficiency, which
improves from around 30% for the numerical coarse propagator to around 60%
for the PINN-GPU coarse method. For smaller numbers of processors, the gains
in speedup are less pronounced, because the K/P term in (8) is more dominant.
But gains in parallel efficiency are fairly consistent from P = 2 cores to P =
16 cores. In summary, this demonstrates that replacing a CPU-run numerical
coarse propagator with a GPU-run PINN can greatly improve the performance
of Parareal by minimizing the serial bottleneck from the coarse propagator.
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Fig. 5. Runtimes in milliseconds for Parareal (dots) and the serial numerical fine prop-
agator (horizontal lines) on a CPU (left) and GPU (right)

Fig. 6. Speedup (left) and parallel efficiency (right) of Parareal over the serial numerical
fine propagator on a CPU. Because the PINN-GPU coarse propagator is faster, it
reduces the serial bottleneck of Parareal and allows for better speedup and parallel
efficiency.

5 Discussion

Parareal is a parallel-in-time method that iterates between a cheap coarse and a
parallel expensive fine integrator. To maintain causality, the coarse propagator
needs to run in serial and therefore reflects a bottleneck that limits achievable
speedup. Mostly, coarse propagators are similar to fine propagators and build
using numerical methods but with lower order, lower resolution or, in some
cases, models of reduced complexity. We investigate the use of a physics-informed
neural network (PINN) instead. The PINN is shown to be slightly more accurate
than a numerical coarse propagator but a factor of three faster. Using it does
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not affect convergence speed of Parareal but greatly reduces the serial bottleneck
from the coarse propagator.

We show that, on a single node with one GPU, a combination of a numerical
fine propagator run on a CPU with a PINN coarse propagator run on a GPU
provides more than twice the speedup than vanilla Parareal using a numerical
coarse propagator run on the CPU. Also, we demonstrate that moving both fine
and coarse propagator to the GPU is slower than moving just the PINN coarse
method to the GPU and keeping the numerical fine method on the CPU. The
reason is that unless the resolution of the fine propagator is extremely high, its
low computational intensity means there is little gain from computing on a GPU
and so overheads from data movement are dominant. By contrast, evaluating
PINNs is well suited for GPU computation. Our results demonstrate that using
PINNs to build coarse level models for parallel-in-time methods is a promising
approach to reduce the serial bottleneck imposed by causality. They also suggest
that parallel-in-time methods featuring a combination of numerical algorithms
and neural networks might be useful to better utilize heterogeneous systems.
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Abstract. Efficient parallel implementations of various sorting algo-
rithms on modern hardware platforms are essential to numerous applica-
tion areas. In this paper, we first measure the performance of the leading
segmented sort implementation on CUDA-enabled GPUs and determine
optimal setups using the resulting runtimes. Subsequently, we propose
a number of changes that improve efficiency for segments of specific
lengths. Furthermore, an alternative key-only version is introduced, that
is specifically optimized to just sort keys instead of key-value pairs, which
allows for further optimization. Performance is evaluated by comparing
runtimes of the original algorithm with our improved version for seg-
ments of different lengths resulting in average speedups between 1.26 and
1.35 on four GPUs of different generations (Pascal, Volta, Ampere, Ada
Lovelace). Furthermore, comparison to alternative segmented sort imple-
mentations from CUB and ModernGPU results in average speedups of
at least 2.2 and 2.5, respectively, across all tested architectures. To illus-
trate how our improved sorting algorithm can be beneficial in a practical
application, we have integrated it into the MetaCache-GPU pipeline for
metagenomic DNA classification resulting in speedups of up to 25.6% for
the sorting step. Code is publicly available at
https://gitlab.rlp.net/pararch/faster-segmented-sort-on-gpus.

Keywords: GPUs · Sorting · Massively Parallel Algorithms · CUDA ·
Bioinformatics

1 Introduction

Sorting is one of the most commonly discussed algorithmic problems in com-
puter science. Almost anyone in the discipline will have implemented a sorting
algorithm at one point and calculating their computational complexity is a com-
mon task for students of the field. Although the task of “putting elements of a
list into an order” is fairly simple, new research regarding the sorting problem
remains relevant. This is partly due to a large variety of different approaches
aiming to solve the problem efficiently and partly due to the need for sorted
data in a plethora of other algorithms and applications. Efficient sorting algo-
rithms are, for example, used in database systems [6], 3D computer graphics [7]
and bioinformatics [3].
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Fig. 1. Segmented sort example.

Using parallel platforms to implement sorting algorithms has become a pop-
ular approach. For more than a decade now, a lot of research has been focused
on implementing parallel sorting algorithms on GPUs [1,8,11,14]. This coincides
with a drastic improvement in computational power of new processors, especially
GPUs. GPUs have seen an increased use in big data processing and high perfor-
mance computing. Algorithms in both of these fields often have a need to sort
many independent arrays at the same time. Examples of this include process-
ing data warehousing queries [17], sparse matrix multiplication [12] and DNA
sequencing [9]. Because many of these tasks are now commonly performed on
GPUs, there is a need for efficient segmented sort algorithms, which can sort
many independent arrays on a GPU.

Segmented sort (see Fig. 1 for an illustrative example) corresponds to the
problem of sorting multiple independent lists (segments) of keys or key-value-
pairs of arbitrary sizes. In a sequential approach a single thread could simply
sort one segment after the other. However, in a parallel implementation load-
balancing problems may emerge from the varying number of elements per seg-
ment when distributing work among multiple threads. Different from CPUs,
GPUs employ a large number of execution units, making them well suited for an
implementation of segmented sort which not only processes a large number of
segments simultaneously, but also utilizes multiple cores to sort each individual
segment. A simple approach to implementing a segmented sort algorithm on a
GPU would be to handle each segment in the same manner. However, differ-
ent segments can drastically vary in length, which may lead to an uneven load
distribution. Handling every segment identically would waste resources on small
segments, while not assigning enough resources to large ones.

Hou et al. [8] addressed this problem by generating several different GPU
kernels each designed for a specific range of segment sizes. Depending on the size
these kernels utilize different memory resources (registers, shared memory, global
memory) for intermediate results and map a certain number of to-be-sorted
elements to each thread. Their approach focused on key-value segmented sort and
ignored the key-only case, which differs in memory requirements and likely favors
a different data to thread mapping. Since their publication a number of new
CUDA-enabled GPU generations have been released. One of the contributions of
this work is to determine the optimal sorting kernels for different segment lengths
on modern graphic devices. Additionally we provide an alternative to the original
algorithm, designed to sort key-value pairs. Our key-only version of segmented
sort efficiently utilizes the additional memory available by omitting the values
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and thus improves performance. We also introduce our own optimizations to the
sorting kernels and provide generator files that can create the original, optimized
and larger sorting kernels.

The key contributions can be summarized as follows:

– Improving the original fast segmented sort algorithm [8] by introducing a
“coarser” way of handling short segments

– Determining optimal sorting kernels on four different GPU architectures: Pas-
cal (GeForce 1080 GTX Ti), Volta (Quadro GV100), Ampere (A100), and
Ada Lovelace (GeForce RTX 4090).

– Adding sorting kernels that utilize more shared memory to sort longer seg-
ments.

– Offering a key-only algorithm, that only sorts keys while omitting the values
to achieve better performance.

– Providing kernel-generators that allow users to create and modify the sorting
kernels used by the fast segmented sort algorithm.

– Performance comparison of our optimized version to the original implemen-
tation and to current alternative segmented sort implementations from CUB
[13] and ModernGPU [2].

Our code with the improved algorithm, kernel generators and benchmark
programs is available on Gitlab1, and figshare [10].

The remainder of the paper is organized as follows. Section 2 provides an
overview of related work. Section 3 explains our approach in detail and highlights
changes to the original algorithm. Performance is evaluated and compared in
Sect. 4. Finally, Sect. 5 concludes.

2 Related Work

There have been a number of prior approaches to address segmented sort prob-
lems on GPUs. A simple solution is to transform the problem into a global sort
of a single list. In order to achieve this, the input data is augmented by adding
a segment ID to each element. Then a global sort primitive can be called which
respects the IDs as well as the original keys [4,5]. This not only adds mem-
ory overhead but also increases computational complexity. A similar approach
is used by other GPU programs [12,18] which reformulate their problems to be
able to call global sort from support libraries.

Fix sort [15] follows a hybrid approach by grouping segments into larger
chunks and sorting these chunks as a whole. Instead of adding separate seg-
ment IDs to each element, individual offsets are applied per segment in order to
ensure that every element in a given segment is larger than every element in the
previous segments. After sorting the whole group of segments, the elements of
each segment have been sorted while the order of the segments is still preserved.
Finally, the offsets have to be subtracted to regain the original values. This

1 https://gitlab.rlp.net/pararch/faster-segmented-sort-on-gpus.

https://gitlab.rlp.net/pararch/faster-segmented-sort-on-gpus
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strategy does not require additional memory to store segment IDs, because off-
sets are combined with the actual values of the elements. However, the pre- and
post-processing steps of calculating and applying offsets cause a non-negligible
runtime overhead and the strategy can only be applied if the values are in a
certain range to avoid overflows.

Another strategy, employed by ModernGPU [2], is to use a merge sort algo-
rithm which respects segment boundaries. It first assigns a fixed number of ele-
ments to each thread which are then rearranged using a sorting network without
crossing segments. Subsequently, neighboring blocks of elements are merged as
long as they contain elements from a common segment. The merge steps continue
until even the largest segments are completely sorted.

The CUB library [13] which is included in the CUDA toolkit uses radix sort
for global and segmented sort primitives. For segmented sort as many thread
blocks as there are segments are spawned. Each block is responsible for sorting
a designated segment regardless of segment size. This may waste resources on
small segments while larger segments could benefit from the use of more parallel
processing power than a single block can provide. CUB’s documentation states
that this strategy was suited for larger segment sizes (“tens of thousands of items
and more”2).

Since version 1.15 CUB also provides an alternative segmented sort algorithm
which improves runtimes for smaller or imbalanced segment sizes. Segments are
partitioned according to their size into different groups which are then processed
by different sorting strategies. Large segments are still sorted using radix sort
while smaller segments are sorted by a separate kernel using a merge sort imple-
mentation.

Hou et al. [8] try to take advantage of the data distribution by treating
segments of different size separately. Their segmented sort consists of multiple
kernels, each tailored to a specific range of segment sizes. In each CUDA kernel,
threads operate conjointly sorting the elements of a segment using bitonic sort.
The corresponding sorting networks can be implemented efficiently exploiting
fast register accesses and warp shuffles. For larger segments with more than 2048
elements they first sort chunks of elements with bitonic sort and subsequently
merge the partial results until the whole segments are sorted. Their implementa-
tion has been shown to outperform other libraries like CUB (radix sort version)
and ModernGPU. A recent paper [16] has compared these different approaches
on a variety of array dimensions and number of segments on different GPUs.

3 Improved Segmented Sort on GPUs

In 2017 Hou et al. introduced their “Fast Segmented Sort on GPUs” [8] algo-
rithm. At its core, the algorithm tries to fully utilize GPU resources by handling
segments differently according to their lengths. As bitonic sorting networks nat-
urally map to segment lengths of powers of two, the algorithm begins by cate-
gorizing all segments into bins depending on their segment lengths. All segment
2 https://nvlabs.github.io/cub/struct device segmented sort.html.

https://nvlabs.github.io/cub/struct_device_segmented_sort.html
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Fig. 2. Register sort example sorting 8 keys in 2 threads.

lengths between two powers of two are assigned to the same bin. The authors
chose to use 12 bins for sizes from 20 to 211 and an additional bin for all segments
of larger size. Segments in the same bin will be sorted in an identical manner,
optimized to exploit the resources for a given range of segment sizes.

Short segments are handled by a small group of up to 32 threads within
a single warp using only registers to store intermediate results. Communication
within the same warp can be performed efficiently using shuffle operations, which
allows short segments to be sorted extremely quickly using a bitonic sorting
network (see Fig. 2). Segments of medium lengths are processed by larger groups
of threads. First, they are sorted partially in a similar manner to short segments.
Then the sorted parts are merged by utilizing shared memory. Finally, the longest
segments are sorted using techniques from both short and medium segments until
the merged chunks become too large to fit into shared memory. Then the sorted
parts need to be merged by utilizing comparatively slow global memory. This
differentiated approach to sorting segments ensures to employ the fastest possible
type of memory for each segment length. Additionally, it forces every segment
to only use as many threads as needed for sorting, increasing the number of
segments the GPU can sort simultaneously.

A segment will consequently be sorted by a specific GPU kernel, according
to the bin the segment length falls into. For each range of segment sizes Hou et
al. tested a number of kernels, differing in terms of the amount of threads used
and the choice and size of utilized memory. During testing they found that the
best kernel for a specific segment length depends on the choice of GPU. This
resulted in two different optimal segmented sort algorithms for the two tested
GPUs, namely K80 (Kepler) and Titan X (Pascal).

In the following, we discuss common features and differences that we imple-
mented using the same three strategies (register-based sorting, shared memory
merging, and global memory merging) in order to improve performance on mod-
ern GPUs.
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Fig. 3. Example element transposition for strided kernels. A 16 element long segment
is distributed across 8 threads after sorting (2ppt). In each step elements of the same
colors are swapped between both threads. After three shuffle steps all elements are
distributed across all threads ready for coalesced memory writes.

3.1 Register Sort Kernels

Registers are the fastest form of memory available on GPUs. However, the num-
bers of registers per thread and per multiprocessor are limited. Solely register-
based kernels can thus be used to sort smaller segments, where all of the data
fit into registers of the 32 threads of a single warp. Threads within the same
warp are able to communicate through warp-level primitives, avoiding costly
data exchange through shared or global memory, which makes them the fastest
of the discussed sorting strategies.

Register sort kernels use bitonic sorting networks to sort segments in a certain
size range. Here, different choices of how many elements of a segment are assigned
to each individual thread are possible and lead to different performance. The
segment range 5–8, for instance, could be sorted using a group of 2 threads and
4 pairs per thread (ppt), 4 threads and 2 ppt, or 8 threads and 1 ppt. All of
these choices achieve the same task of sorting 8 elements. For group sizes of less
than 32 threads, each warp is divided into multiple groups, which each sort a
separate segment in the same size range.

Depending on the mapping of ppt, different communication steps are required
to perform sorting. Keys within the same thread can simply be compared by
using the respective registers. For comparisons of keys from different threads,
data needs to be exchanged via warp shuffle operations. Due to the layout of the
bitonic sorting network, different patterns emerge which can be used to generate
sorting networks for each ppt mapping and for arbitrary segment sizes. Figure 2
illustrates an example of a network for 2 threads with 4 ppt. For an in-depth
explanation of respective code generation we refer the inclined reader to the
original paper by Hou et al. [8].

After sorting a segment, results must be written to memory. Each thread
contains a number of consecutively sorted elements, however, memory accesses
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Fig. 4. Register sort variants for segments lengths between 9 and 16.

are performed by the whole warp at once. In order to improve write performance,
it might be beneficial to execute an additional communication step to reorder
the elements within a warp such that subsequent elements are stored along
subsequent threads. To achieve this in a quick fashion we utilize warp shuffles
over multiple steps. In each step, pairs of threads are selected with an increasing
offset, as shown in Fig. 3. Each thread pair performs a diagonal swap of two
elements, as depicted by the red box in Fig. 3. In practice this operation does not
only shuffle around elements of each individual segment, but across all segments
within the same warp to optimize the memory access pattern.

This strategy is denoted as strided kernels in our benchmarks which we used
to find the best performing kernel for each GPU. As an example, Fig. 4 shows
the different variants for sorting segments of lengths between 9 and 16. Since
each warp in the register sort kernels performs independent work, these kernels
can be executed with an arbitrary number of warps. When deciding whether to
use a strided kernel, we noticed that with a ppt of 8 or higher the strided kernels
are faster than their non-strided counterparts.

3.2 Shared Memory Sort Kernels

Shared memory is attached to each multiprocessor of the GPU and can be
accessed by all threads within the same CUDA thread block. Its size depends on
the employed GPU architecture and ranges in the tens to hundreds of kilobytes.
Shared memory kernels begin by sorting chunks of (up to) 128 elements using a
warp of 32 threads and 4 pairs per thread in the same manner as register sort
kernels. Once each warp has finished sorting its chunk of 128 elements and stored
the result in shared memory, threads in a block cooperatively merge chunks until
the whole segment is sorted. Similar to merge sort, each merge step combines two
chunks into a larger sorted chunk. A 512-element segment, for example, would
be merged in two steps. First a total of four pre-sorted 128-element chunks are
merged together, resulting in two 256-element chunks, which are then merged
together in a second step.

If a segment’s size is small enough, Hou et al. assign some warps only 64
elements instead of 128 to reduce the number of bitonic sorting steps. This con-
tinues in the merging phase where the warps either handle 64 or 128 elements. We
investigated a different strategy, where some warps skip the sorting and merge
phases if a segment can be handled by a lower number of warps. This approach



Faster Segmented Sort on GPUs 671

reduces code complexity while active warps can do more work in registers, which
improves runtime.

Similar to register kernels, shared memory kernels can either write the final
results to global memory in strided or unstrided fashion. Since the kernels are
already using shared memory, they can simply read the elements from shared
memory accordingly.

Because different GPU architectures feature different shared memory capac-
ities, the maximum segment size which fits into shared memory depends on the
employed GPU. To fully exploit shared memory, it is necessary to adapt the seg-
mented sort algorithm to the utilized GPU architecture. Avoiding slower global
memory as much as possible leads to significant speedup.

3.3 Global Memory Sort Kernels

All segments with sizes too large to fit into shared memory have to be sorted
using slower global memory for intermediate results. However, similar to the
shared memory approach partial results can be calculated using faster memory.
Thus, shared memory kernels are used to partially sort the segments up to a
certain chunk size. After that, a global merge kernel is executed multiple times,
each call merging two chunks into a larger one until even the largest segments
are sorted completely. Because every single merge step has to read from and
write to global memory, global sort is fairly slow when compared to previous
methods.

3.4 Kernel Selection

The original segmented sort algorithm uses a total of 13 unique kernels to sort
segments. Each kernel is responsible for all segments in a certain range of segment
lengths. Hou et al. employ register kernels for each power of two up to 256
elements and shared memory kernels for segment sizes between 257 and 2048
elements.

Based on our experiments we determined optimal kernels for four GPUs,
namely GeForce GTX 1080 Ti (Pascal), Quadro GV100 (Volta), A100 (Ampere),
and GeForce RTX 4090 (Ada Lovelace). Note, that the optimal kernel choices
differ noticeably between graphics cards. Additionally, our optimized versions
feature coarser bins for small segment lengths, using only two kernels (coarse
register kernel): one for segments of length 0–2 and another for lengths 3–16.
Using fewer kernels reduces code complexity and reduces kernel call overhead.
Furthermore, the larger shared memory available on V100, A100 and RTX 4090
GPUs allows us to use shared memory kernels for larger segment lengths. Table 1
shows an overview of employed kernels for the different GPUs.



672 R. Kobus et al.

Table 1. Optimal segmented sort kernels for different segment sizes.

Segment
Size

Hou
et al.

Opt. Key-Value Segsort Opt. Key-Only

1080 Ti GV100 A100 4090 1080 Tia 1080 Tib

0 – 1 C
}

CR

}
CR

}
CR

}
CR

}
CR

}
CR

2 R

3 – 4 R
⎫⎪⎬
⎪⎭ CR

⎫⎪⎬
⎪⎭ CR

⎫⎪⎬
⎪⎭ CR

⎫⎪⎬
⎪⎭ CR

⎫⎪⎬
⎪⎭ CR

⎫⎪⎬
⎪⎭ CR5 – 8 R

9 – 16 R

17 – 32 R R R R R R R

33 – 64 R R R R R R R

65 – 128 R R R R R R R

129 – 256 R R R R R R R

257 – 512 S S S S S R R

513 – 1024 S S S S S R S

1025 – 2048 S S S S S S S

2049 – 4096
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

G

S S S S S S

4097 – 8192
⎫⎪⎬
⎪⎭ G

S S S S
⎫⎪⎬
⎪⎭ G8193 – 16384

}
G

S
}

G

}
G≥ 16385 G

C = copy kernel, R = register kernel, CR = coarse register kernel,
S = shared merge kernel, G = global merge kernel
a 32-bit keys b 64-bit keys

3.5 Key-Only Segmented Sort

Key-only segmented sort has reduced memory requirements because values are
omitted. Thus, more registers and shared memory are available for keys and
larger segments can be sorted by register kernels and shared memory kernels
while the general approach from Sects. 3.1–3.3 stays the same. The two rightmost
columns in Table 1 show the optimal kernel selection for key-only segmented sort
on a GTX 1080 Ti for sorting 32-bit and 64-bit keys. Note, that compared to
the key-value segmented sort, segment sizes of up to 1024 elements can be sorted
in registers and only segments larger than 8192 elements (4096 for 64-bit keys)
need to be sorted with the global memory kernel.

4 Performance Evaluation

Our experiments have been conducted using the CUDA-enabled GPUs listed in
Table 2 and nvcc 11.8. Benchmarks are performed on n = 228 random integer
keys, with segment lengths randomly drawn from a uniform distribution between
a minimum segment length of 1 and various maximum lengths. In the key-value
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Table 2. Properties of utilized GPUs.

GTX 1080 Ti Quadro GV100 A100 RTX 4090

CUDA Cores 3584 5120 6912 16384

Boost Clock 1582MHz 1627MHz 1410MHz 2520MHz

Shared Memory per SM 48 KB 128 KB 192 KB 128 KB

Global memory 11 GB 32 GB 80 GB 24 GB

Memory Bandwidth 484 GB/s 870 GB/s 2039 GB/s 1008 GB/s

benchmarks the 32-bit keys are accompanied by 64-bit values stored in a sepa-
rate array. The key-only benchmarks have been performed on 32-bit as well as
on 64-bit keys. All data resides in device memory. Kernels are executed concur-
rently using CUDA streams in order to better utilize the GPU resources. We
compare our implementation to Hou’s segmented sort as well as the segmented
sort primitives from CUB v. 1.17 and ModernGPU v. 2.13. Temporary mem-
ory allocations required for binning the segments prior to sorting are excluded
from runtime measurements. CUB’s temporary memory allocations were also
excluded, while ModernGPU’s interface did not allow to do so. The reported
runtimes are average values of twenty executions of the entire sort algorithm for
each range of segment lengths.

4.1 Key-Value Segmented Sort

Figure 5 shows that the throughput of our algorithm scales proportionally with
the memory bandwidth, with the A100 beating the newer RTX 4090 slightly.
Although it is interesting to note that their respective peak performances are at
a different max segment size, with the A100 peaking at a max segment size of
128 compared to the RTX 4090 peaking at 2048, showing the impact of higher
CUDA core count of the RTX 4090.

To evaluate the impact of our coarse register kernel we now focus at max
segment sizes of ≤ 16. Across all four GPUs Hou’s implementation is beaten with
speedups of 2 to 2.5×, peaking for the smallest segment size of 2 and the largest
maximum size 16. At the smallest segment sizes of 2–3 our implementation beats
all other algorithms on all GPUs except for the A100, where CUB’s SegSort
prevails. It is also the only algorithm having a higher throughput on these GPUs
for max segment sizes between 4 and 16. The newer the GPU the bigger the
discrepancy in this region, except for the A100, where CUB SegSort is only
faster until a max segment size of 8, where its throughput drops drastically.

Approaching higher max segment sizes we can see the impact of our coarse
register kernel diminish, as Hou’s algorithm closes the performance gap on all
four GPUs, reaching a similar performance at around size 128 for all GPUs,
again except for the A100. By using the strategy of active and inactive warps
described in Sect. 3.2, our implementation regains a performance advantage for
segment sizes between 513 and 2048 elements. For larger segments the biggest
improvement can be seen where our algorithm keeps using shared merge kernels,
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Fig. 5. Key-Value Segmented Sort Benchmark on different GPUs.
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Table 3. Geometric Mean Speedup. Max segment sizes between 2 and 16384.

Key-Value Segsort Key-Only Segsort

1080 Ti GV100 A100 4090 1080 Tia 1080 Tib

Hou et al. 1.35 1.32 1.34 1.32 1.35 1.26

CUB SegRadixSort 59.28 44.58 59.00 36.64 110.18 135.34

CUB SegSort 2.82 2.33 2.72 2.27 2.95 4.1

moderngpu 2.77 2.73 2.53 3.52 2.59 2.53
a32-bit keys b 64-bit keys

while Hou et al. move to the global merge kernel, slowing down drastically by
losing more than a third of their throughput across all GPUs. As expected, we
see a similar drop for our implementation later, since we only delay the switch
to global memory based on shared memory sizes.

Across the board our algorithm is faster than all competitors except CUB
SegSort, which is generally faster for small segment sizes but drops drastically at
a max segment size of 128. Subsequently, CUB SegSort is only able to outpace
our algorithm again for max segment sizes beyond 10000. Although it has huge
performance spikes in the beginning, CUB is on average outperformed by our
algorithm with a speedup of > 2.2× over all GPUs as shown in Table 3. Hou’s
algorithm performs better and more consistent for larger segment sizes than CUB
SegSort, however, it is consistently surpassed by our algorithm with speedups
of > 1.3×. ModernGPU has a relatively consistent performance with no visible
spikes, but is generally slower, resulting in mean speedups of 2.53 to 3.52× in
favor of our algorithm. While these speedups are measured for segment sizes
smaller than 16384, CUB’s algorithms become faster beyond a certain segment
size, depending on the GPU used. The earliest being the RTX 4090, where CUB
SegSort is faster for max segment sizes > 10240.

4.2 Key-Only Segmented Sort

The key-Only version helps us observe the impact of the element sizes on perfor-
mance, as can be seen in Fig. 6. In general, using smaller element sizes, here the
key size, allows us to stay in a faster memory type for bigger segment sizes. This
results in a shift of the peak performance towards bigger segment sizes, from
128 to 256 for 64 and 32-bit keys, respectively. These peaks are not happening
at the switch from register to shared memory, showing that memory bandwidth
is the bottleneck for our algorithm here.

Comparing our algorithm to the version from Hou et al. we notice the same
relative behaviour as in the key-value benchmarks. Both algorithms scale similar
over the key sizes, resulting in a similar speedup to the key-value version of
1.35× for 32-bit keys, as seen in Table 3. CUB SegSort behaves similarly as well
for 64-bit key sizes, but with a bigger discrepancy in throughput, resulting in a
mean speedup of 4.1× for segment sizes ≤ 16384. However, looking at smaller
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Fig. 6. Key-Only Segmented Sort Benchmark on GTX 1080 Ti.

key size we only have a speedup of 2.95× over CUB SegSort, even though it
performs worse than our algorithm across all segment sizes. As for ModernGPU
the relative performance stays the same across key sizes and the Key-Value
version, resulting in a similar mean speedup of 2.59 for 32-bit keys and 2.53×
for 64-bit keys.

4.3 MetaCache

In the MetaCache GPU pipeline for metagenomic classification [9], sorting the
lists of potential target locations resulting from database queries is a time-
consuming step. For each batch of queries an adapted version of Hou’s segmented
sort algorithm is employed to efficiently sort multiple location lists in parallel,
where each location is stored as a 64-bit value. The results are then processed
further to perform the classification. Segmented sort takes the biggest share of
the pipeline and is responsible for about halve of the total runtime.

In order to investigate performance improvements by replacing Hou’s algo-
rithm by our segmented sort implementation decoupled from the complete Meta-
Cache pipeline, we extracted the segment sizes for all batches of four example
queries and stored them on disk. The statistical properties of the distribution
of segments sizes generated by querying two metagenomic read data sets (D1
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Table 4. Statistical properties of segment sizes generated by different metagenomic
dataset queries and corresponding speedups achieved on a GTX 1080 Ti for the sorting
step. Stddev = standard deviation.

Dataset Min Max Mean Stddev Skewness Total items Speedup

D1A 0 4064 591.5 588.3 −1.739 11.829 bn 9.1%

D1B 0 4064 576.5 568.5 −1.584 11,529 bn 6.6%

D2A 0 9846 1411.5 1133.7 −4.812 28.230 bn 25.6%

D2B 0 9866 1386.1 1110.9 −4.788 27.721 bn 25.5%

and D2) against the two different databases (A and B) are shown in Table 4. In
total all batches of D1 encompassed more than 11 billion items, while all batches
of D2 add up more than 27 billion items due to longer read lengths. The last
column of Table 4 presents the achieved speedup when performing a segmented
sort for all batches of a data set using our improved implementation instead of
the one by Hou et al. D1A and D1B contain smaller segments with mean lengths
of 591.5 and 576.5 elements, respectively, resulting in a speedup of 9.1 and 6.6%.
For larger segments in D2A and D2B we were able to achieve a speedup of 25.6%
and 25.5%, respectively.

5 Conclusion

We have introduced improvements of the algorithm of Hou et al. [8] and have
shown their performance impact in comparison to several modern segmented sort
implementations. Our improvements include a “coarser” way of treating small
segment sizes and a more efficient use of shared memory, resulting in bigger
segment sizes processed in the faster memory. We have also provided optimal
sorting kernels for four different GPU architectures and compared the perfor-
mance of our algorithm with other state-of-the-art algorithms. Here we have
shown that our algorithm outperforms on average all other algorithms across
all tested GPUs for segment sizes < 16384. Furthermore, we have implemented
our algorithm in the MetaCache-GPU pipeline for metagenomic classification
showing a speedup of up to 25.6% for the sorting step.

Possible future improvements of segmented sort could include the usage of
(bigger) distributed shared memory on Hopper architectures and named streams
for improving asynchronous kernel execution.
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1 Introduction

Current scientific and engineering applications running on today’s large-scale
supercomputers are usually characterised by a data-intensive nature. A single
application’s workflow easily generates tens of terabytes of data, mostly produced
by on-line operations. As M. Radulovic et al. [17] stated, from the performance
point of view, a set of tested applications behave as data intensive ones when
they spent a significant portion of time with a memory bandwidth utilisation
above 60% or even 80%. Due to the appearance of these data-demanding high-
performance applications, multiple software solutions have been introduced in
an attempt to cope with challenges along the entire I/O software stack [10], such
as high-level I/O libraries, parallel file systems, and I/O middleware, with a final
objective consisting on reducing the amount of file system calls and offloading
I/O functionalities from compute nodes, respectively. Those optimisations are
even more important for data-intensive workflows, consisting of interdependent
data processing tasks often connected in a DAG-style sequence, which commu-
nicate through intermediate storage abstractions, typically files. While workflow
management systems deployed on HPC systems (e.g., parallel machines) typi-
cally exploit a monolithic parallel file system that ensures a high efficiency in
data access [21], workflow systems implemented on distributed infrastructures
(most often, a public Cloud) must borrow techniques from the Big Data com-
puting field [11].

For several years, I/O-intensive HPC-based applications have been primarily
based on distributed object-based file systems, which separate data from meta-
data management and allow each client to communicate in parallel directly with
multiple storage servers. Exascale I/O raises the throughput and storage capac-
ity requirements by several orders of magnitude. Therefore, developing methods
that can manage the network and storage resources accordingly is a must [13].
It is assumed that the systems already developed for data analytics are not
directly applicable to HPC due to the fine-granularity I/O involved in scientific
applications. Another weakness of existing HPC I/O systems is the semantic gap
between the application requests and the way they are managed by the storage
backend at the block level.

Nowadays, many emerging data workloads are driven by machine learning
and other data analytics techniques that rely on workflow frameworks (e.g.,
Apache Spark), analytics packages (e.g., Horovod and TensorFlow [15]), and
domain-specific libraries that traditionally have not been used in HPC. As
demonstrated by Chowdhury et al. [5], machine learning applications are mainly
dominated by a large number of small files and read and seek POSIX operations.
Those I/O patterns do not perform well in current HPC I/O systems, that have
been designed for applications accessing a few very large files mostly sequentially.

Our hypothesis is that those applications can be accelerated by reducing
the I/O bottleneck induced by the file system, and that facilitating the storage
of temporal data in an ad-hoc file system can significantly impact the overall
performance. This work presents the design, implementation, and evaluation
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of a distributed ad-hoc in-memory storage system (Hercules1), a proposal to
enhance I/O in both traditional HPC and High-Performance Data Analytics
(HPDA) systems. The architectural design follows a client-server design model,
where the client itself will be responsible for the server entities deployment.
The client layer is in charge of dealing with data locality exploitation alongside
the implementation of multiple I/O patterns providing diverse data distribution
policies.

In a previous work, we presented a preliminary work of our ad-hoc file system
[8], where we propose two kind of deployments: an application-attached deploy-
ment constrained to application’s nodes, and an application-detached consid-
ering offshore nodes. We identified some limitations in this past implementa-
tion: first, it used ZeroMQ for communication, which offers various transports
such as in-process, inter-process, TCP, and multicast. However, it lacks of high-
performance network support and portability; second, that IMSS version offered
a library-based API, not offering a POSIX compliant interface, which still is
fairly used by the HPC community, but only an object-oriented interface. In the
version presented in this paper, we have solved both weaknesses by replacing
the communication layer to UCX and by providing a POSIX compliant library
for IMSS. Compared with the related work, the strengths of this new version of
Hercules are the use of main memory resources, full POSIX support and network
portability.

The rest of the paper is organised as follows. Section 2 shows related works
with Hercules. Section 3 describes the Hercules architecture. In Sect. 4, we depict
the design of our parallel file system based on POSIX. Section 5 focus on the inte-
gration of Hercules and UCX. Section 6 shows the performance results obtained
in the evaluation phase. Finally, Sect. 7 concludes the paper and lists future
works.

2 Related Work

General-purpose parallel file systems such as GPFS [19] and Lustre [2] have been
providing for a long time well-known solutions for long term persistent storage in
HPC systems. However, they are very rigid and cannot be modified or suited to
an application once they are deployed. Current HPC systems and applications
are not well suited to that kind of systems and intensive workloads.

Moreover, the growing complexity of the HPC I/O stack by adding new
I/O layers and devices, generates an increasing in I/O operations latency that
hampers applications’ performance. Thus, nowadays use cases have empowered
the proliferation of low-latency storage systems using local or remote in-memory
storage devices as a feasible approach to the problem [24]. Such has been the
impact of these storage systems [25] that multiple solutions, such as in-memory
relational databases, in-memory NoSQL databases, in-memory cache systems,
and in-memory data processing systems, have been implemented in the last
years.
1 Available at https://gitlab.arcos.inf.uc3m.es/admire/hercules.git.

https://gitlab.arcos.inf.uc3m.es/admire/hercules.git
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Another alternative that has been explored in order to approach the data
challenge is ad-hoc file systems [3]. Ad-hoc file systems provide a customised data
resource at application level, taking advantage of internal storage devices while
acting as a middleware between persistent storage entities and the application
itself. Major features are: (i) negligible deployment overhead, to be deployed
either on an HPC cluster for lifetimes as small as the runtime of a single job;
(ii) global name space for all nodes linked to the same ad-hoc file system; and
(iii) interaction with the backend storage system through data staging.

GekkoFS [22] is a high-performance, parallel, and distributed file system
designed to handle large scale data-intensive workloads in HPC environments.
It is a tier-based file system, meaning it can move data between different levels
of storage based on its usage, or “hotness”. This allows to balance performance
and cost-efficiency. GekkoFS supports parallel I/O operations, which enables it
to read and write data from multiple nodes at the same time, increasing the
overall performance of the file system. BurstFS [23] is a burst buffer file system
that provides I/O capabilities for HPC environments. BurstFS acts as a cache
between the compute nodes and the storage system, providing temporary stor-
age area for the data that is being generated. This buffer allows the compute
nodes to write data at high speeds, improving the overall performance of the
system. BurstFS system makes use of persistent storage devices while, in con-
trast, Hercules backend makes use primarily of main memory resources. As a
result, the benefits of the data-locality exploitation will be achieved more easily
using the Hercules tool.

In a previous work, we presented a hierarchical parallel storage system based
on distributed memory [7]. In this work, we present a new version that differs
in the following aspects. First, Hercules was based on Memcached [14] in terms
of front and backend layers. This approach suffers from the limitation of the
Memcached protocol for data transferring modes, such as inter-process commu-
nication and inter-thread communication. Second, it only provided a key-value
interface, while the new version also includes a POSIX compliant file system,
while keeping the previous object store features. To cope with the first limi-
tation we evolved the system to use ZeroMQ for communication, which offers
various transports such as in-process, inter-process, TCP, and multicast. How-
ever ZeroMQ has evolved more towards distributed systems with short messages,
and it was not able to cover the needs of HPC applications.

As an alternative, there are many communication frameworks available. GAS-
Net-EX [1] is a high-performance communication framework for Exascale. This
framework supports collective operations and many network devices such as
Infiniband, Omni-path, and ethernet. GASNet-EX also enables communications
over other well-known frameworks such as MPI or UPC. However, it lacks sup-
port for intra-node shared memory communication, useful for coupled deploy-
ments. A similar solution is UCX, a framework designed for HPC networks
[6,20]. This library supports many programming models (i.e., MPI, OpenSH-
MEM, PGAS), network devices (Infiniband, Omni-Path, Ethernet), as well as
CUDA and shared memory for intra-node communications. UCX offers two net-



Hercules Ad-Hoc File System 683

work APIs: UCT and UCP. UCT is a low-level transport layer that offers access
to hardware network resources efficiently. UCP is a high-level API that imple-
ments several communication interfaces. We ultimately chose UCX as the back-
bone of Hercules.

3 Hercules Architecture Design

As shown in Fig. 1, the architectural design of Hercules follows a client-server
design model. Hercules is an ad-hoc file system that can be deployed by each
application and it is responsible for the metadata and data server entities deploy-
ment. Each application process will be connected to Hercules through a frontend
layer. This way, each application can adjust the dimensions of each Hercules
deployment to fit its I/O needs. That means that there could be many deploy-
ments of Hercules in the same computer system, as we are going to show, but
they will be independent to protect data isolation.

Fig. 1. Architecture of an Hercules deployment.

The development of the present work was strictly conditioned by a set of well-
defined objectives. Firstly, Hercules provides flexibility in terms of deployment.
To achieve this, the Hercules API provides a set of deployment methods where
the number of servers conforming the instance, as well as their locations, buffer
sizes, and their coupled or decoupled nature, can be tuned. Second, parallelism
should be maximised. To achieve this, Hercules follows a multi-threaded design
architecture. Each server conforming an instance counts with a dispatcher thread
and a pool of worker threads. The dispatcher thread distributes the incoming
workload between the worker threads with the aim of balancing the workload in
a multi-threaded scenario. Main entities conforming the architectural design are
Hercules clients (frontend), Hercules data (1 to M) and metadata (1 to N) servers
(backend). Addressing the interaction between these components, the Hercules
frontend exclusively communicates with the Hercules metadata servers whenever
a metadata-related operation is performed, such as create and open. Data-related
operations (get and set) will be handled directly by the corresponding storage
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server calculated in the frontend side. Thus, global data mapping is not needed
at all levels. Finally, Hercules offers to the application a set of data distribution
policies at dataset level, increasing the application’s awareness about the location
of the data. As a result, the storage system will increase awareness in terms
of data distribution at the client side, providing benefits such as data locality
exploitation and load balancing.

3.1 Frontend Layer

The client application will handle Hercules and dataset instances through a
Hercules client library. The API provides a set of operations to create, release,
get, and set data, datasets, and Hercules instances.

Throughout a session, clients create and join multiple instances of Hercules.
A Hercules instance refers to an ad-hoc temporary storage entity composed
of multiple servers spread across a set of user-specified machines, using main
memory to store datasets. Each Hercules instance is assigned a unique Uniform
Resource Identifier (URI) and it is characterised by a data structure that stores
information such as the number of servers in the instance and their locations.
A dataset is a collection of data elements with a fixed size that are distributed
among the storage servers of a single Hercules instance, according to a specific
data distribution policy. Like Hercules instances, datasets are also identified by
a unique URI, reflecting the Hercules entity that stores them. A data structure
is created for each instance of the dataset, including information such as the
assigned distribution policy, the number of data elements in the dataset, and
the replication factor, among others.

3.2 Storage Backend Layer

In order to handle get and set requests, each worker thread provides direct
access to the data block location in the in-memory data container. In case of a
get operation, the requested data block is wrapped into a message and sent back
to the client. If the operation is a set, the worker thread overwrites the concerned
data block if it was already stored. Otherwise, the data block is written and a new
key-value pair representing the previous block is added to the map (implemented
as a C++ map). Thus, as may be seen, Hercules backends provide a key-value
based object store based on GLib balanced binary trees, boosting both insertions
and queries.

Hercules can use NVMe as a final persistent storage layer. If applications
require to store in a lower layer of the storage hierarchy, data persistence is
provided through periodic flushing operations that replicate all data blocks (data
and metadata) to persistence disks. The period can be different for each Hercules
instance and it is defined when that instance of Hercules is created. In the
future, we plan to use burst buffer modules that will enable Hercules to mostly
coordinate massive asynchronously data transfers to dump datasets [12].

In the current version, nodes list in the backend storage layer is static, defined
during the initial deployment. However, we are already working to dynamically
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update the backend nodes of a Hercules deployment with the aim of providing
storage malleability, shrinking and increasing the number of data and metadata
backend on run time.

4 File System Design

Figure 2 depicts the different abstraction designed in Hercules, from the appli-
cation perspective to the final in-memory layout. As shown in the Figure, a
UNIX-like file path is translated to a dataset entity, mapping the mounted path
to a global space URI (dataset view).

Fig. 2. Logical, dataset, and physical representation of a file in Hercules. Data path
is translated from logical to dataset shape. Later, file is divided into multiple blocks
under three data nodes. Inter-node metadata information is stored at the Metadata
node 0.

Each file or directory is mapped into a Hercules dataset composed of a list
of fixed-size blocks (physical view). Hercules allows block access by offset. Thus,
the frontend layer can request access to a particular block at a specific offset.
Sent requests contain the desired operation (read/write), dataset URI, block
to access, and the offset. In case of write operations, the request also contains
the size to write. This optimises data transfers by reducing the amount of data
transmitted.

The current version fully supports the entire POSIX standard (i.e., open,
close, write, rm, mkdir, etc.) and also libc library calls suc has fopen and fwrite. In
the next subsections, we will cover the following aspects of the file system running
on top of Hercules: memory pool, data replication, and metadata management.

4.1 Memory Pool

In order to eliminate the overhead of intensive dynamic memory allocations,
Hercules provides a memory pool per listening thread. This memory pool is
based on a lock-free solution. This pool is allocated at backend initialisation
and it offers memory aligned fixed-size blocks. In case the memory pool is fully
utilised, we implement an LRU block replacement policy, which forwards blocks
to persistent storage. Blocks are initially allocated under huge pages with the
aim of reducing the TLB table size and therefore to reduce the memory access
latency.
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4.2 Data Replication

Hercules offers a client-side replica manager. This replication mechanism is
mainly handled at client-side. When a dataset is created, the application can
specify the replication factor required for data. As Hercules’s dataset object
exposes the list of available data and metadata backends, at write and read
operations, data requests are sent to a subset of backend determined by the
replication factor. This subset is created applying sparsity polices based on max-
imum distance between the replicas. Once Hercules detects a failure in one or
more backends, it marks this specific backend as down/broken and uses the
following in the list. Eventually, the broken copy will be restored if the data
node is reachable. To reduce the communication overhead introduced by the
use of multiple transmissions, write operations are committed asynchronously.
Hercules ensures a strong consistency model managed by the UCX communi-
cation channels, which provide a message queue that guarantees the reception
order at the backend side. In the future, we plan to optimise data replication by
using asynchronous collective operations, such as gather and broadcast. These
communication paradigms are already supported by the unified collective com-
munication library (UCC).

4.3 Metadata

Hercules is based on two metadata tiers. The first tier is composed by multiple
distributed metadata entities to manage inter-node information related to each
dataset (i.e., dataset type, block distribution policy, replication factor). The
frontend layer selects the most adequate inter-node metadata server given the
data distribution policy (i.e., round-robin, CRC, bucket). This mechanism aims
to alleviate the overhead of metadata management, especially in applications
with a huge number of small files. It is important to highlight that a mix of
co-allocated and distributed metadata servers is feasible.

The second tier is composed by each file/folder metadata, that is stored at
Block 0 on each dataset including traditional POSIX-like metadata (struct stat).
First blocks are distributed like any other data node and accessed applying hash
functions to the dataset URI, thus avoiding the need of a new layer of metadata
servers and maximising parallelism. If replication is applied, in order to guarantee
data consistency, replication of Block 0 is orchestrated in the frontend layer.

First tier metadata is internally stored as an opaque data structure represent-
ing a balanced binary tree provided by the GLib library. The tree is automatically
balanced as key/value pairs are added, key lookup is O(logn), where n is the
number of key/value pairs in the tree. Therefore, given our distributed approach
of metadata management, we can assume that the O(logn /meta), where meta
is the number of metadata servers. It is important to note that the metadata
server is calculated at the frontend using our configurable distribution policies,
so there is a margin of optimisation in this aspect.
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5 Communication Layer

This section describes the communication model provided by Hercules, based
on Unified Communication X (UCX). The main components of the commu-
nication layer are the UCX workers. A UCX worker abstracts an instance of
network resources such as a host, network interface, or multiple resources such
as multiple network interfaces. UCX workers also represent virtual communi-
cation resources that can aggregate multiple devices, allowing Hercules to take
advantage of cross-transport multi-rail communications by delivering data in
multiple network interfaces in parallel (network bounding), without the need for
any special tuning. The frontend layer relies on two independent UCX workers to
enable point to point communication [16] with data and metadata servers. This
mechanism guaranties isolated transmission by using different communication
queues. The data consistency is managed by UCX, and by using UCX/UCP, the
appropriate transfer protocol is chosen and the fragmentation of the message
is doing when it is necessary. As future work, we are planning to work in the
consistency between data and metadata servers.

When the frontend layer is initialised, the client library requests to the back-
end dispatcher thread the UCX worker address. This address is employed for
the creation of endpoints at both sides that represent a connection from a local
worker to a remote worker (see Sect. 3). All get and set requests are sent through
these endpoints.

Metadata and data backends deploy a pool of worker threads and a single
dispatcher thread. First, the goal of the pool of worker threads is to overlap
data transfers and the internal memory management (i.e., seek, memory stag-
ing, garbage collection), exploiting the network utilisation by allowing a larger
number of concurrent clients. Second, a dispatcher thread listens for connection
requests from clients. Given this process is not network demanding, communi-
cation between clients and dispatchers is established by using TCP/IP protocol.

The storage backend maintains a list of active endpoints. This list is updated
at first request arrival and destroyed once the client library releases and finalised
the application execution. These end-points are cached and utilised for future
requests, reducing the creation cost. Finally, this mechanism eliminates the
necessity of dealing with a global ID, given that, UCX generates universally
unique identifiers (UUID) for each UCX worker.

Similarly to MPI, Hercules exploits tag-based message passing in multiple
ways. First, both request and raw data messages are tagged with different val-
ues, facilitating the message order at reception. UCX ensures the order in the
reception of messages, emulating the POSIX consistency model. Second, usage of
tag-based messages eliminates the need of dealing with a costly list of endpoints,
as UCX offers a similar approach to MPI Probe. Finally, this mechanism offers a
feasible alternative to RPC given that the tags identifies the message operation
as well.
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6 Experimental Evaluation

In this section we describe the experiments conducted to evaluate Hercules per-
formance, the evaluation environment setup, and the results obtained from the
tests made.

6.1 Experimental Setup

The hardware used to carry out the experiments consists of a 64-nodes cluster
running Ubuntu 20.04.5 LTS. Each node is equipped with two Intel Xeon CPU
E5-2697 v4 16-Core processors with a total of 32 physical cores and a clock speed
per core of 2.6 GHz. Network topology is created with three switches conforming
a fat-tree network of two levels. All the compute nodes are connected through
Intel Omni-path network reaching a peak performance of 100 Gbps. The software
employed is UCX 1.15, OpenMPI 4.1 and glib. UCX exposed OPA network
using ibverbs library, reaching a similar bandwidth comparing with the native
OpenMPI installation. The backend storage is provided by a BeeGFS installation
deployed as a single I/O server with 32 SSD organised as a RAID, with 8 SSD
per controller channel. It uses 64 I/O workers. BeeGFS runs under buffered mode
as the default cache type.

Experimental results were obtained using the IOR benchmark, a widely-used
solution for measuring I/O performance at scale, and IO500 [4], a benchmark
suite bundled with execution rules targeting throughput and metadata perfor-
mance. The evaluation metrics shown in this paper correspond with the average
value of 10 consecutive executions.

We evaluated five configurations of Hercules, where the main differences
between them are the number of data nodes (labelled as DN) launched (1 to
16), and for these experiments we only tested the application-detached deploy-
ment (labelled as dis). For example, Hercules 16DN/dis is the configuration of
16 data nodes and every client processes deployment on different nodes.

6.2 Strong Scalability

The first experimental evaluation consists of running an IOR strong scalability
test comparing the performance between Hercules and BeeGFS. In this eval-
uation, the total write/read size has been set at 1,024 MBytes, and as the
number of clients increases this valued is distributed between them as follows:
File Size Per Client = 1, 024/Number of Clients.

As can be seen in Fig. 3, the Hercules configuration with 16 data nodes (Her-
cules 16DN/dis) reaches the best averages throughput for write operations. For
8 processes, this solution gets a performance gain of 80.22% compared with
BeeGFS. On the other hand, for 16 processes reading the data, the same config-
uration got a performance gain of 69.35% compared with BeeGFS.

Compared with the Hercules 1DN/dis (the slower solution in all cases for
write operations), Hercules 16DN/dis get an average speedup of 7.04x. In con-
trast, for read operations, we notice that Hercules 1DN/dis works fine for 1,
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2 and 4 processes, but it remains with almost the same throughput for 8 and
16 processes. We can observe that BeeGFS is competitive for 1 and 2 process,
having a performance gain of 18.59% and 6.74% respectively against Hercules
16DN/dis, but for 4 to 16 processes this trend changes, and Hercules 16DN/dis
performance increases, resulting in a performance enhancement from 1.25x to
3.25x.

Fig. 3. Throughput (MB/s) obtained by BeeGFS and Hercules (1, 2, 4, 8 and 16 data
nodes) in a strong scalability evaluation when increasing the number of processes. Left:
write. Right: read.

6.3 Weak Scalability

We run an IOR weak scalability tests to assess Hercules performance compared
to BeeGFS. In this configuration, we increase the number of clients for 1 to 16,
varying also the numbers of data servers in Hercules from 1 to 16. Each client
write a single shared file of 100 MBytes, up to a total of 1.6 GBytes in the
largest configuration. Figure 4 plots the results of this experiment. As may be
seen, Hercules outperforms BeeGFS when we have more than 4 processes. It also
shows a very good scalability for both read and write operations. Reaching the
maximum bandwidth available in the network switch when deploying 16 clients
and 16 servers.

We can also observe that Hercules weak scalability is worse than strong
scalability with a small number of data node servers (from 1 to 8). The reason
could be because of the block size and transfer size that we used in every test.
Independently of the block size used by Hercules to store every dataset, the IOR
benchmark allows specifying its own block size and transfer size, and for the
result shown, we use the same value for both parameters. As you can see in
the Table 1, for Strong scalability evaluation these values decrease when there
is more number of processes available, but for the Weak scalability evaluation
we used the same value in all cases. Taking this under consideration, we assume
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Fig. 4. Throughput (MB/s) obtained by BeeGFS and Hercules (1 to 16 data nodes)
in a weak scalability evaluation when increasing the number of processes. Left: write.
Right: read.

that for less number of process, Hercules in Strong scalability performs fewer
operations with a bigger block and transfer size. But when we have 16 processes,
these values decrease, generating more but small operations.

Table 1. Block size and Transfer Size used in Weak and Strong scalability evaluations.

Processes Weak (MBytes) Strong (MBytes)

1 100 1024

2 100 512

4 100 256

8 100 128

16 100 64

Figure 5 plots the write throughput when using 16 processes per compute
node. This experiment aims to demonstrate the feasibility of Hercules in pres-
ence of I/O stress on the compute node. We demonstrate that Hercules reaches
the aggregated throughput limit for an increasing number of I/O processes.
Although BeeGFS reaches the achievable peak performance with a single I/O
node, Hercules allows to overcome the application needs (i.e., temporal data,
check-pointing).

6.4 Metadata

The objective of this experiment is to evaluate the metadata access performance
using the well-known benchmark suite IO500. The stonewall timer has been set
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Fig. 5. Write throughput (MB/s). Weak scalability evaluation when fixing 16 data
nodes and 16 processes per compute node. In case of Hercules 16, data nodes are
employed.

up to 30 and 90 s. Table 2 shows the results obtained comparing BeeGFS and
Hercules. Hercules is deployed on distributed compute nodes with remote meta-
data and data nodes. This setup aims to emulate the current BeeGFS deploy-
ment. Results denotes that Hercules reached a similar performance. We observe
a small performance degradation in find case, mainly motivated by the use of
GLib binary tree as index. In the future, this component can be replaced by
applying bulk namespace insertion for the creation of intensive workloads and
stateless consistent metadata caching at frontend layer [18].

Table 2. Results of IO500 benchmark comparing BeeGFS with Hercules using one
single data/metadata node in different compute nodes.

BeeGFS (30) Hercules (30) BeeGFS (90) Hercules (90)

find 1.056 8.120 8.088 23.538

mdtest-hard-write 31.062 34.565 92.322 73.179

mdtest-easy-stat 16.162 24.667 40.760 25.439

mdtest-hard-stat 9.860 8.332 32.482 22.165

mdtest-easy-delete 23.052 10.329 59.737 50.579

mdtest-hard-read 23.953 18.432 77.337 53.956

mdtest-hard-delete 14.648 19.887 48.321 60.104

As results depict, Hercules outperforms BeeGFS in the evaluated cluster.
Those results are very important, as we plan to use also Hercules for AI applica-
tions using millions of small files that have to be created/open and closed. The
results obtained are due to the two tier metadata structure provided in Hercules.
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7 Conclusions

This paper has presented a new version of Hercules, a network portable ad-hoc
file system that aims to accelerate classical and emerging machine learning appli-
cations, specially distributed frameworks like Horovod. The solution is based on
UCX framework, which offers generic abstractions that virtualised the access to
high performance networks. This paper has presented the design details of the
integration of Hercules and UCX. Evaluation results demonstrated that Hercules
is as competitive as commercial products for data intensive workloads, obtaining
2x to 3x performance enhancement. As future work, we plan to exploit intra-
node shared memory capabilities of UCX in the context of data staging. Current
preliminary results demonstrate that UCX’s transports such as sysv and POSIX
expose a negative impact in Hercules performance. More efficient shared-memory
accelerator like KNEM and XPMEM [9] should be considered.
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Abstract. We study the performance and scalability of the adaptive
geometric multigrid method with the recently developed restricted addi-
tive Vanka (RAV) smoother for the finite element solution of large-
scale Stokes problems on distributed-memory clusters. A comparison of
the RAV smoother and the classical multiplicative and additive Vanka
smoothers is presented. We present three cache policies for the smoother
operators that provide a balance between cached and on-the-fly compu-
tation and discuss their memory footprint and computational cost. It
is shown that the restricted additive smoother with the most efficient
cache policy has the smallest memory footprint and is computationally
cheaper in comparison with the other smoothers and can, therefore, be
used for large-scale problems even when the available main memory is
constrained. We discuss the parallelization aspects of the smoother oper-
ators and show that the RAV operator can be replicated exactly in parallel
with a very small communication overhead. We present strong and weak
scaling of the GMG solver for 2D and 3D examples with up to roughly
540 million degrees of freedom on up to 2048 MPI processes. The GMG
solver with the restricted additive smoother is shown to achieve rapid
convergence rates and scale well in both the strong and weak scaling
studies, making it an attractive choice for the solution of large-scale
Stokes problems on HPC systems.

Keywords: Multigrid · Stokes flow · Finite element method ·
Massively parallel

1 Introduction

The scalable solution of the Stokes equations is a challenging task and is relevant
to both scientific and industrial applications. While direct solvers can handle the
saddle-point systems that arise from the discretization of the Stokes problem
effectively, it is well known that their scalability typically suffers from their
computational complexity on the one hand and lack of sufficient concurrency
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on the other. Iterative methods seek to circumvent such algorithmic bottlenecks
and solvers based on Krylov methods [26], multigrid methods [15] and the Uzawa
method [21] have been proposed for the Stokes problem. Geometric multigrid
methods are among the most efficient iterative solvers and can achieve optimal
convergence, independent of the problem size [15]. The smoother operator, in
this regard, plays a decisive role insofar as determining the convergence and
scalability of the solver, rendering its choice indispensable to successful multigrid
methods. In this work, we consider a finite element discretization of the Stokes
equations and focus on adaptive geometric multigrid (GMG) methods based on
the recently developed restricted additive Vanka (RAV) smoother [27]. We employ
space tree data structures [5,28] for the adaptive resolution of the spatial domain.
We extend the work in [27] to the solution of large-scale problems on massively
parallel systems, propose three cache policies for the smoother operators and
discuss the parallelization aspects of the GMG solver. The performance of the
solver in terms of convergence, scalability and memory footprint are studied and
its suitability for the solution of large-scale problems on parallel machines is
evaluated. The contributions of this work can be summarized as follows:

– We present a parallel adaptive GMG solver with the recently developed RAV
smoother [27] for the Stokes equations and discuss its convergence and weak
and strong scaling for large-scale problems on distributed-memory clusters
using 2D and 3D benchmarks with up to roughly 540 million degrees of free-
dom and on up to 2048 MPI processes

– We compare the RAV smoother with the classical multiplicative and additive
Vanka smoothers [31] and discuss their performance, parallel application and
memory requirements

– We propose three cache policies for the smoother operators that provide a
balance between cached and on-the-fly computation and discuss their imple-
mentation details and memory footprint

– We show that the GMG solver based on the RAV smoother is favorable in terms
of convergence, communication overhead, computational cost and memory
footprint compared with the classical and additive Vanka smoothers and is,
therefore, attractive in high-performance computing environments

The remainder of this work is organized into the following sections. Related
works are discussed in Sect. 2. In Sect. 3, we briefly present the finite element
discretization of the model problem. In Sect. 4, we present the parallel adaptive
geometric multigrid solver for the model problem as well as the proposed cache
policies and discuss the memory requirements and parallelization aspects of the
smoother operators. We present the numerical benchmarks and scaling studies
in Sect. 5 and discuss the findings. Finally, we draw some conclusions based on
the obtained results in Sect. 6.

2 Related Work

A wide variety of solvers, including Uzawa methods, Krylov subspace solvers and
multigrid methods have been employed for the solution of saddle-point problems.
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A parallel solver based on the prediction-projection method for the finite differ-
ence formulation of fluid flow problems, for instance, was studied in [33], and
a parallel pressure Schur complement solver based on uniform mesh multipli-
cation for flow problems was presented in [17]. Multigrid methods are among
the most efficient iterative solvers, see, e.g., [15] and have been successfully
used for the solution of saddle-point systems, see, e.g., [9,29,32,34]. A multi-
grid solver based on incomplete LU factorization was proposed in [34]. The
classical Vanka smoother for the solution of the finite difference discretization
of the Navier-Stokes equation was proposed in [31]. Semi-implicit method for
pressure-linked equations (SIMPLE) pressure correction schemes as smoothers
were studies in [13]. The parallel performance of the Braess-Sarazin smoother [3]
and the classical Vanka smoother were studied in [18]. Inexact Uzawa methods as
smoothers have also been used for the Stokes equations, see, e.g., [8,12,20,22].
An early scalability study of multigrid algorithms on parallel computers was
presented in [23], and a survey of techniques for the parallelization of multigrid
methods can be found in [6], see also [7,25,28] for more recent scalability studies
of multigrid methods. A matrix-free multigrid method based on the Chebyshev
smoother was studied in [24], and a matrix-free multigrid method with the inex-
act Uzawa smoother for the Stokes system based on hierarchical hybrid grids
(HHG) was studied in [20]. In [14], a parallel multigrid method based on HHG
is applied to the velocity block of the Stokes system within a pressure correc-
tion scheme. A space-time multigrid solver for time-periodic incompressible flow
was presented in [2], and parallel multigrid methods based on Gauss-Seidel relax-
ation were studied in [4,16]. The RAV smoother was recently proposed in [27] and
shown to achieve competitive convergence rates in comparison to the classical
Vanka smoother.

3 Model Problem

We consider the incompressible Stokes equations for a viscous fluid which can
be written in strong form as

−η∇2u + ∇p = f in Ω,

∇ · u = 0 in Ω,

u = w on ΓD ⊂ ∂Ω,

η
∂u

∂n
− np = h on ΓN = ∂Ω \ ΓD,

(1)

where u is the fluid velocity, p is the fluid pressure, f is the body force, Ω is the
flow domain, ∂Ω denotes the boundary of the domain, w and h are prescribed
functions on the Dirichlet, ΓD, and Neumann, ΓN , parts of the boundary, respec-
tively, and n is the unit-length outer normal vector to the boundary. η is the
fluid viscosity. Following the standard finite element formulation, see, e.g., [10],
and denoting by (·, ·) the scalar L2 product, the discrete weak form of the model
problem can be written as seeking (uh, ph) ∈ (Vh, Qh) such that

a(vh,uh) + b(vh, ph) = f(vh) ∀vh ∈ Vh,0,

b(qh,uh) + c(qh, ph) = 0, ∀qh ∈ Qh,
(2)
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where Vh, Vh,0 and Qh are the appropriate finite-dimensional trial and test
spaces, Vh,0 is the restriction of Vh with zero Dirichlet boundary conditions, vh

and qh are the velocity and pressure test functions, respectively, and the bilinear
and linear forms are defined as

a(vh,uh) := (η∇vh,∇uh)Ωh
,

b(vh, ph) := −(∇ · vh, ph)Ωh
,

f(vh) := (vh,fh)Ωh
+ (vh,hh)ΓNh

,

(3)

where Ωh defines an approximation of the domain Ω such that Ωh := ∪nK
i=1Ki,

where Th := {Ki}nK
i=1 is a tessalation of Ω into compact, connected, Lipschitz

sets. ΓNh
is the discretization of the Neumann part of the boundary and hh :=

n · (η∇uh − phI). It is well known that either the pair (Vh, Qh) must satisfy the
inf-sup condition or the formulation must be stabilized. We employ a stabilized
Q1-Q1 discretization, see, e.g., [19], where the stabilization term is defined as

c(qh, ph) := −β
∑

Ki∈Th

h2
Ki

(∇qh,∇ph)Ki
, (4)

where the stabilization parameter β is a sufficiently large constant, and hKi
is the

diameter of Ki. We note that the equal-order pair Q1-Q1 is an attractive choice
compared to its higher order counterparts in terms of ease of implementation.
Equation (2) leads to a system of equations of the form

[
A B
BT C

] [
u
p

]
=

[
f
0

]
, (5)

where the matrices A, B, and C are defined according to the bilinear forms
in Eqs. (3) and (4), and the vector f is defined according to the linear form in
Eq. (3). The vectors u and p are the coefficients of expansion of the velocity and
pressure basis functions, respectively.

4 Parallel Adaptive Geometric Multigrid

We start by briefly presenting the geometric multigrid solver. We employ a mono-
lithic geometric multigrid method for the solution of the Stokes equations and
employ adaptive mesh refinement (AMR) using space tree data structures, see,
e.g., [5,28], whereby a flexible framework for the adaptive resolution of the solu-
tion in spatial regions of interest is provided, which in flow applications, for
instance, often includes the boundary layer. We treat hanging nodes as con-
straints and remove them from the global system of equations. A 2:1 balance is
imposed on the mesh, i.e., the difference between the refinement level of neighbor
elements is at most one. The nested grid hierarchy Ωi

h, i = 1, . . . , n is constructed
top down, where Ω1

h and Ωn
h are the coarsest and finest grids, respectively. In

order to maintain load balancing, each grid is distributed across the processes
such as to keep the number of elements per process roughly equal. In the presence



698 S. Saberi et al.

Fig. 1. The memory requirement of the smoother operators with the cache matrix and
cache inverse policies, assuming a regular neighborhood. Off-process subdomains are
neglected. Note that the cache matrix policy has the same memory requirement for all
smoother operators, and a distinction between Newtonian/non-Newtonian formulation
is not necessary for the cache inverse policy as the block inverse is in general dense.
It is assumed that the size of double is 8 Bytes

of AMR, refined child nodes are not guaranteed to remain on the same process as
their parent nodes, and data transfer between grids is consequently carried out in
two steps. Given a vector vi on Ωi

h, the restriction operator Ri−1
i : Ωi

h → Ωi−1
h

can be expressed as
Ri−1

i := T i−1R̃i−1
i , (6)

where R̃i−1
i : Ωi

h → Ω̃i−1
h first transfers vi to ṽi−1 on an intermediate process-

local coarse grid Ω̃i−1
e , followed by T i−1 : Ω̃i−1

h → Ωi−1
h that transfers ṽi−1 to

vi−1 on the coarse grid Ωi−1
h . The intermediate coarse grid Ω̃i−1

h is constructed
from the fine grid Ωi

h such as to guarantee that the parent of refined child nodes
are on the same process as Ωi

h, and R̃i−1
i is, therefore, a process local operator.

T i−1 is then responsible for transferring data between Ω̃i−1
h and the distributed

coarse grid Ωi−1
h . Similarly, the prolongation operator Pi

i−1 : Ωi−1
h → Ωi

h, which

can be expressed as Pi
i−1 := Ri−1

i

T
transfers vi−1 first to an intermediate grid

and then to the fine grid.

4.1 Smoother Operators

We discuss the RAV smoother as well as the classical multiplicative and additive
Vanka smoothers in the following. Note that the grid level index is dropped in
favor of legibility. Given a grid Ωh with np pressure nodes, the iterative correction
is defined as c := Sr, where r is the residual vector, and the smoother operator
S can be written as follows

SMV =
[
I −

np∏

i=1

(I − RT
i ωiL−1

i RiL)
]
L−1, (7)
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Table 1. The number of cached values in the cache none, cache matrix and
cache inverse policies for the MV, AV and RAV smoothers in d dimensions, assuming a
regular neighborhood. nproc

p is the number of locally owned pressure DoFs and noffp
S is

the number of off-process subdomains. We note that noffp
S is contained within nproc

p , and
the noffp

S term, therefore, does not appear under the cache inverse policy. a and b are
the number of subdomain DoFs and the number of non-zero entries in the subdomain
block in the regular neighborhood, respectively. Note that noffp

S � nproc
p and the nproc

p

terms are, therefore, dominant, as indicated by black and grey.

Smoother/
Cache
policy

cache none cache matrix cache inverse

MV noffp
S · a2 (nproc

p − noffp
S ) · b + noffp

S · a2 nproc
p · a2

AV noffp
S · a2 (nproc

p − noffp
S ) · b + noffp

S · a2 nproc
p · a2

RAV noffp
S · (d + 1)a (nproc

p − noffp
S ) · b + noffp

S · (d + 1)a nproc
p · (d + 1)a

a := 3dd + 1

b := l[2d(2dc + 1) + 4 · 3d−2(2d−1 · 3c + 1) + e + (3dc + 1)l] · d + (3dd + 1)

c :=

{
1 Newtonian fluids

d Full stress
e :=

{
0 d = 2

2 d(6 dc + 1) d = 3

SAV =
np∑

i=1

(RT
i ωiL−1

i Ri), (8)

SRAV =
np∑

i=1

(R̃T
i ωiL−1

i Ri), (9)

where SMV, SAV and SRAV denote the multiplicative Vanka (MV) [31], additive Vanka
(AV) and restricted additive Vanka (RAV) [27] smoother operators, respectively.
The smoother operators, understood as Schwarz domain decomposition meth-
ods [11], consist in the application of a set of subdomains Si, i = 1, . . . , np, where
Si is composed of the pressure degree of freedom pi and all the velocity degrees
of freedom that are connected to it, see [27]. L is the matrix corresponding to
the global system of equations, defined according to Equation (5). Given a sub-
domain Si, Ri is the subdomain restriction operator, Li is the subdomain block
and ωi is a diagonal damping matrix. The RAV restriction operator R̃i restricts
a given vector to the DoFs in a subset S̃i ⊂ Si, where S̃i only consists of the
pressure degree of freedom pi and the velocity degrees of freedom on the same
pressure node. We refer to [27] for more details.

4.2 Cache Policies

The application of each subdomain Si corresponds to the solution of a local
saddle-point problem that algebraically corresponds to the local block Li. There-
fore, the necessary operations for the application of Si can be summarized as
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retrieving the local block and solving the local problem. Note that in the general
case, where viscosity is spatially dependent, the local problem would be similarly
spatially dependent. Even for Newtonian fluids, where the viscosity is constant,
the local problem is dependent on the configuration of the elements to which the
corresponding pressure node is connected. Therefore, in order to remain relevant
to the general case, the subdomains are assumed to be spatially dependent in
the following. We assume that the global system is stored in a sparse matrix for-
mat, and the retrieving of the local problem, thereby, involves the lookup of its
associated entries, an operation most sparse formats are not optimized for and,
therefore, entails a noticeable computational cost. Given the relatively small size
of the local blocks, we solve the subdomain problems down to machine accuracy
using a direct solver. Hence, the solution step can be further divided into com-
puting the inverse and applying it to the subdomain residual. As the smoother
operator must typically be applied several times until convergence is achieved,
and given that the local systems remain constant during linear iterations, there
is a clear incentive to eliminate as much as possible the computations associ-
ated with the first two steps outlined above, namely the retrieving of the local
block and computing its inverse. Therefore, we present three caching policies in
the following, each offering a different balance between caching and on-the-fly
computation and discuss their memory footprint and computational cost.

Given a subdomain Si with ni degrees of freedom, the most aggressive policy,
denoted as cache inverse is to cache the inverse of the local system for each
subdomain, computed only once during the initialization of the system. As the
inverse of the local block is in general a dense matrix, such policy requires the
storage of n2

i values per subdomain for the MV and AV smoothers. On the other
hand, as the prolongation operator of the RAV smoother R̃T

i in Equation (9)
effectively acts only on a subset of the degrees of freedom in S̃i ⊂ Si, padding
the rest with zeros, it is sufficient to store only those rows of the local inverse
that belong to S̃i, see [27] for a detailed description of the RAV smoother. Given
that S̃i only consists of the pressure degree of freedom pi and the velocity degrees
of freedom on the same pressure node, amounting to a total of 1 + d DoFs in
d dimensions, the RAV smoother with the cache inverse policy requires the
storage of (1 + d) · ni values, and there exists a marked difference between the
memory footprint of the RAV smoother and the MV and AV smoothers. An alter-
native approach, denoted as cache matrix is to only store the entries of the
local block, which being sparse, can be stored using a sparse matrix format and
compute the inverse of the block on the fly at each iteration of the smoother.
The cache matrix policy, therefore, requires the storage of nnz(Li) values per
subdomain, where nnz indicates the number of non-zero entries. Finally, denoted
as the cache none policy, both the retrieving of the local block and the com-
putation of its inverse can be performed on the fly. Such policy is the most
computationally demanding of the three but offers the smallest memory foot-
print as no extra matrices need to be stored. Given that the global system is
stored in a sparse matrix format and the local problems are solved using LU
factorization, the cache inverse policy is expected to be virtually always more
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efficient than both the cache none and cache matrix policies as it eliminates
the costly solution of the local block.

4.3 Parallelization and Computational Aspects

A further distinction between the smoother operators is marked by their appli-
cation in parallel. The ownership of the subdomains follows the distribution of
the mesh such that Si is owned by the process that owns the pressure DoF pi.
As the degrees of freedom are uniquely owned, each subdomain is owned by
exactly one process, leading to nproc

p subdomains on a given process, where nproc
p

is the number of owned pressure DoFs. Si is process local if all of its DoFs are
locally owned, or off process, otherwise. The additive smoothers, AV and RAV,
entail the application of the subdomains in any arbitrary order without inter-
mediate updates to the residual. We note that the application of process-local
subdomains is then a process-local operation and does not require any commu-
nication as both the local system as well as the subdomain residual are stored
process locally. Therefore, the AV and RAV operators can be replicated exactly
in parallel without any communication, except for the communication necessary
for the off-process subdomains and the update of the residual after the appli-
cation of all subdomains. Note that such communication is nevertheless small
since noffp

S � nproc
p . On the other hand, the MV operator in Eq. 7 requires the

sequential application of the subdomains and updating the residual after each
subdomain correction. Replication of the MV operator in parallel is, therefore, a
non-trivial task that entails substantial orchestration and communication. Fur-
thermore, regardless of the communication cost, the operator is not agnostic to
the order in which the subdomains are applied. Therefore, the exact replication
of Eq. (7) in parallel would be essentially serial. We implement the parallel ver-
sion of the MV operator by relaxing the conditions outlined above, namely we
apply Eq. (7) multiplicatively process locally and additively on process inter-
faces, leading to the inexact MV operator in parallel, which is, nevertheless,
denoted as MV in the following in favor of brevity. The repercussion of such
relaxations is the dependence of the parallel version of the MV operator on the
number of processes, while the AV and RAV operators are process independent.
Furthermore, the application of the subdomain correction in the RAV operator
consists in the application of the 1 + d rows of the local inverse that appear in
S̃i, as opposed to the application of the entire local inverse, which is the case
for the MV and AV smoother operators. Therefore, the RAV smoother, by merit of
its prolongation operator R̃T

i , presents an optimization opportunity that can be
exploited not only in terms of memory footprint, as discussed in Sect. 4.2, but
also computational cost.

Assuming a regular neighborhood in d dimensions where each vertex is con-
nected to 2d elements, we present the memory requirement of each cache policy
in Table 1. We note that the terms a, b and c in Table 1 are derived by count-
ing the DoF connectivities in such a regular neighborhood. The velocity block
A in Eq. (5) is block diagonal for Newtonian fluids and fully coupled other-
wise, as reflected in the estimates. The number of off-process subdomains noffp

S
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Fig. 2. Strong scaling of the GMG solver with the RAV smoother using different cache
policies in the channel flow benchmark with Ω9

h as the fine grid, see Table 2 with
nproc = 1, . . . , 512. tS and tsol denote the runtime of the smoother per iteration on the
fine grid and the total solver runtime including the setup time, respectively. The GMG
solver converges in 9 iterations

is typically much smaller than their process-local counterparts, as they only
occur on process interfaces; therefore, we always use the cache inverse policy
for off-process subdomains in order to minimize the communication overhead
without incurring substantial penalty in terms of memory footprint. The mem-
ory requirement of the cache matrix and cache inverse policies is shown in
Fig. 1. It can be observed that the required memory for the MV and AV smoothers
with the cache inverse policy quickly surges past the cache matrix policy
which provides a more moderate alternative. It is important to note that the
cache inverse policy for the RAV smoother requires the least amount of main
memory even compared to the cache matrix policy, which highlights an attrac-
tive aspect of the RAV smoother given that the cache inverse policy is the most
efficient of the three policies. We further discuss the performance of each cache
policy in Sect. 5.

5 Numerical Experiments

We present a number of numerical experiments in this section in order to
investigate the performance and scalability of the GMG solver for large-scale
Stokes problems on distributed-memory clusters. Two well-known benchmarks
for flow applications, namely the channel flow benchmark [29] and the lid-driven
cavity benchmark [30] are employed. We present both strong and weak scaling
of the RAV, AV and MV smoothers and discuss the different cache policies. We note
that geometric multigrid method can be used as a preconditioner within Krylov
accelerator methods; nevertheless, in order to exclude such external effects, we
use GMG with a V cycle as a solver in the following benchmarks, where the
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Fig. 3. Strong scaling of the GMG solver with different smoothers in the channel flow
benchmark with Ω10

h as the fine grid, see Table 2 with nproc = 1, . . . , 512. (a) The
runtime per smoother iteration on the fine grid and (b) the total solver runtime. In
each case, the most efficient applicable cache policy in terms of runtime is reported. The
numbers above the MV smoother in (b) indicate the iteration count of the solver. We
note that the solver with the MV smoother does not converge for nproc = 32. The GMG
solver with the AV and RAV smoothers converges in 48 and 19 iterations, respectively

convergence criterion is the reduction of the relative residual by 108. We do not
observe any difference in the converged solution between the smoother opera-
tors. The coarse grid is solved using a direct solver down to machine accuracy.
Three pre- and post-smoothing steps are used. We note that MV in parallel is
the inexact operator described in Sect. 4.3. Furthermore, since the subdomains
on the process interfaces are applied additively in the parallel version of the MV
operator, the MV smoother uses the damping factor of the AV smoother for the
off-process subdomains in parallel. The runtime per smoother operation includes
the application of the smoother operator as well as the synchronization of the
residual vector at each smoothing step.

The numerical experiments are carried out on a distributed-memory CPU
cluster where each node is equipped with double-socket Intel Xeon Skylake Gold
6148 CPUs each with 20 cores at 2.4GHz, 27.5MB of L3 cache and 64kB of L1
cache per core and 180GB of DDR4 main memory, and a 100GBit/s Intel Omni-
Path Interconnect via PCIe x16 Gen 3 connects the nodes. The following studies
are carried out in pure MPI mode, i.e., without shared-memory parallelization,
where each node is filled with up to 32 MPI processes, and for a given number
of processes, always the smallest possible number of nodes is employed. An in-
house C++ implementation is used for the benchmarks. p4est [5] and PETSc [1]
are used for space tree and some linear algebra functionalities, respectively.
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Fig. 4. Weak scaling of the GMG solver in the 3D driven cavity benchmark. See Table 3
for the grid hierarchy. (a) The runtime per smoother iteration on the fine grid and (b)
the total solver runtime. All smoothers use the cache inverse policy. Note that the
solver with the AV smoother does not converge with Ω2

h as the fine problem

Table 2. The grid hierarchy for the strong scaling study of the channel flow benchmark.
ne and nDoF denote the number of elements and degrees of freedom, respectively. The
adaptive refinement of the channel is shown on the right

5.1 Strong Scaling

We first examine the strong scaling of the GMG solver using the channel flow
benchmark, where the fluid with a prescribed velocity flows through a 2D chan-
nel with a cylindrical obstacle towards the inflow of the domain, see [27] for
a detailed description of the problem. Therefore, a grid hierarchy, as shown in
Table 2, is effected through adaptive refinement of the domain towards the chan-
nel walls and the cylinder. A damping factor of 0.66 for the RAV and MV smoothers
and a damping factor of 0.1 for the AV smoother are used, which were observed
to be necessary for convergence. In order to provide a comparison between the
performance of the cache policies, the strong scaling of the GMG solver with the
RAV smoother for the problem with Ω9

h as the fine grid and Ω1
h as the coarse grid,

see Table 2, is shown in Fig. 2. We note that the fine grid Ω9
h is chosen such that
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Table 3. The grid hierarchy used for the weak scaling study of the 3D lid-driven
cavity benchmark. ne and nDoF denote the number of elements and degrees of freedom,
respectively. nproc is the number of processes. n·

it denotes the iteration count of the
GMG solver with a given smoother operator. Note that the solver with the AV smoother
does not converge with Ω2

h as the fine problem

Grid ne nDoF ni
DoF/ni−1

DoF nproc nMV
it nAV

it nRAV
it

Ω1
h 32,768 143,748 – – – – –

Ω2
h 262,144 1,098,500 7.64 4 41 – 4

Ω3
h 2,097,152 8,586,756 7.82 32 24 36 3

Ω4
h 16,777,216 67,898,372 7.91 256 11 19 2

Ω5
h 134,217,728 540,022,788 7.95 2,048 4 7 2

all three cache policies can be used throughout the entire range of the scaling
study, including the most restricted configurations in terms of the available main
memory, namely nproc = 1, . . . , 32 which are executed on a single node. It can
be seen that the cache inverse policy is, as expected, by far the fastest policy
per smoother iteration, and consequently, also in terms of the total solver run-
time. Likewise, the cache matrix policy is more efficient than the cache none
policy—up to more than 25% in this benchmark. However, its relative advan-
tage is overshadowed by the large gap between the cache inverse policy and the
cache matrix and cache none policies—up to well above 1000% in this bench-
mark. Furthermore, it is important to note that because of the efficiency of
the cache inverse policy, the effect of the parallelization of other GMG opera-
tions such as restriction, prolongation and the update of the residual at the end
of each smoother iteration can be felt sooner compared to the cache matrix
and cache none policies; as a result, it can be observed that while all cache
policies scale relatively well compared to the ideal speedup, the speedup of the
cache inverse policy, especially in terms of the total solver runtime slows down
towards the higher range of nproc. Similarly, given the deep multigrid hierarchy
and the stark contrast between the size of the grids, the micro-parallelization of
vector operations on coarser grids is increasingly manifest in the scaling of the
total solver runtime as the number of processes increase for all cache policies.

The strong scaling of the GMG solver with the different smoother operators
is presented in Fig. 3, where Ω10

h and Ω1
h are used as the fine and coarse grids,

respectively. In each case, the most efficient applicable cache policy is employed.
The MV and AV smoothers must use the cache none policy for nproc ≤ 32 as
the memory requirement of the other cache policies exceeds the available main
memory on a single node. On the other hand, the RAV smoother can employ
the cache inverse policy throughout the entire range of the scaling study, see
Sect. 4.2, which highlights the advantage of the RAV smoother in terms of its
memory footprint. Furthermore, while the GMG with the RAV and AV smoothers
require 19 and 48 iterations, respectively, independent of nproc, the iteration
count with the MV smoother heavily depends on nproc, as shown in Fig. 3. Conse-
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quently, although the MV operator scales well per smoother iteration, the scaling
of the solver suffers in the presence of significant jumps in the iteration count.
On the contrary, the exact replication of the additive smoother operators in par-
allel guarantees the iteration count to be independent of nproc. Given the lower
computational cost of the RAV smoother in addition to its higher convergence
rate compared to the MV and AV smoothers, the RAV smoother is by far the fastest
both per smoother iteration and in terms of the total solver runtime.

5.2 Weak Scaling

We present the weak scaling of the GMG solver in this section. In order to study
the scalability of the solver also in the 3D case, a second benchmark, namely
the 3D lid-driven cavity benchmark is used. The grid hierarchy, the number of
processes and the iteration count of the solver with different smoother operators
are shown in Table 3, where the number of elements per process is kept roughly
constant. Ω1

h is used as the coarse grid in all cases, i.e., finer problems use a
deeper grid hierarchy. Note that the coarse grid problem is relatively small, and
hence its solution is not a bottleneck for the scaling of the solver. A damping
factor of 0.66 for the MV smoother, 0.6 for the RAV smoother and 0.04 for the AV
smoother is observed to be necessary for convergence, see [27]. The weak scaling
of the solver is shown in Fig. 4. It can be observed that all of the smoother
operators scale well in terms of the runtime per smoother iteration. The slight
deviation from ideal speedup in Fig. 4(a) can be attributed to the overhead
associated with the synchronization of the residual vector and potentially sub-
optimal network topology, especially when larger number of nodes are employed.
On the other hand, as the iteration count of the solver with the MV and AV
smoothers fluctuates significantly with problem size, the total solver runtime
similarly varies, while the iteration count and, as a result, the total solver runtime
with the RAV smoother remain roughly constant independent of the problem size
and the number of processes. We note that the slight deviation from the ideal
speedup that is observed on the largest problems is due to the same coarse grid
overhead discussed in Sect. 5.1.

6 Conclusions

We presented a parallel adaptive GMG solver based on the RAV smoother for the
solution of large-scale Stokes problems. We proposed three cache policies and
discussed the memory footprint and parallelization aspects of the smoother oper-
ators. The convergence and scalability of the solver were evaluated using numer-
ical benchmarks on a distributed-memory cluster and a comparison between the
RAV smoother and the classical multiplicative and additive Vanka smoothers was
presented. The GMG solver with the RAV smoother was shown to have favorable
properties in terms of convergence, communication overhead, computational cost
and memory footprint, especially in high-performance computing environments.
It achieves rapid convergence rates and the iteration count of the solver remains
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bounded. Unlike the MV smoother, the RAV operator can be replicated exactly in
parallel with a very small communication overhead, meaning that the smoother
operator, and hence the GMG solver is independent of the number of processes.
The RAV smoother provides significant optimization opportunities both in terms
of computational cost and memory footprint compared to the MV and AV oper-
ators. One the one hand, the RAV smoother with the cache inverse policy has
a small memory footprint and allows for the accommodation of large problems
even when the available main memory is limited. On the other hand, the RAV is
considerably cheaper per iteration in terms of computational cost compared to
the MV and AV smoothers. As a result, the GMG solver with the RAV smoother
showed excellent scalability and achieved by far the fastest time to solution
compared to the MV and AV smoothers in both strong and weak scaling studies.
Therefore, the presented GMG solver with the RAV smoother is an attractive
choice for the solution of large-scale Stokes problems on HPC systems.
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20. Kohl, N., Rüde, U.: Textbook efficiency: massively parallel matrix-free multigrid
for the Stokes system. SIAM J. Sci. Comput. 44(2), C124–C155 (2022)

21. Maday, Y., Meiron, D., Patera, A.T., Rønquist, E.M.: Analysis of iterative meth-
ods for the steady and unsteady Stokes problem: application to spectral element
discretizations. SIAM J. Sci. Comput. 14(2), 310–337 (1993)

22. Maitre, J., Musy, F., Nigon, P.: A fast solver for the Stokes equations using multi-
grid with a Uzawa smoother. In: Braess, D., Hackbusch, W., Trottenberg, U. (eds.)
Advances in Multi-Grid Methods. Notes on Numerical Fluid Mechanics, vol. 11,
pp. 77–83. Springer, Cham (1985). https://doi.org/10.1007/978-3-663-14245-4 8

23. Matheson, L.R., Tarjan, R.E.: Analysis of multigrid algorithms on massively paral-
lel computers: architectural implications. J. Parallel Distrib. Comput. 33(1), 33–43
(1996)

24. May, D.A., Brown, J., Le Pourhiet, L.: A scalable, matrix-free multigrid precon-
ditioner for finite element discretizations of heterogeneous Stokes flow. Comput.
Methods Appl. Mech. Eng. 290, 496–523 (2015)

25. Reiter, S., Vogel, A., Heppner, I., Rupp, M., Wittum, G.: A massively parallel
geometric multigrid solver on hierarchically distributed grids. Comput. Vis. Sci.
16, 151–164 (2013)

26. Saad, Y.: Iterative Methods for Sparse Linear Systems, vol. 82. SIAM, Philadelphia
(2003)

27. Saberi, S., Meschke, G., Vogel, A.: A restricted additive Vanka smoother for geo-
metric multigrid. J. Comput. Phys. 459, 111123 (2022)

28. Sampath, R.S., Biros, G.: A parallel geometric multigrid method for finite elements
on octree meshes. SIAM J. Sci. Comput. 32(3), 1361–1392 (2010)

https://doi.org/10.1007/978-1-4757-4355-5
https://doi.org/10.1007/978-3-662-02427-0
https://doi.org/10.1007/978-3-662-02427-0
https://doi.org/10.1007/978-3-663-14245-4_8


An Efficient Parallel Adaptive GMG Solver for Large-Scale Stokes Problems 709
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parallel solver for incompressible fluid flows. Procedia Comput. Sci. 18, 439–448
(2013)

34. Wittum, G.: Multi-grid methods for Stokes and Navier-Stokes equations. Numer.
Math. 54(5), 543–563 (1989)

https://doi.org/10.1007/978-3-322-89849-4_39


Optimizing Distributed Tensor
Contractions Using Node-Aware

Processor Grids

Andreas Irmler1(B) , Raghavendra Kanakagiri3, Sebastian T. Ohlmann2,
Edgar Solomonik3, and Andreas Grüneis1
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Abstract. We propose an algorithm that aims at minimizing the inter-
node communication volume for distributed and memory-efficient ten-
sor contraction schemes on modern multi-core compute nodes. The key
idea is to define processor grids that optimize intra-/inter-node com-
munication volume in the employed contraction algorithms. We present
an implementation of the proposed node-aware communication algo-
rithm into the Cyclops Tensor Framework (CTF). We demonstrate that
this implementation achieves a significantly improved performance for
matrix-matrix-multiplication and tensor-contractions on up to several
hundreds modern compute nodes compared to conventional implemen-
tations without using node-aware processor grids. Our implementation
shows good performance when compared with existing state-of-the-art
parallel matrix multiplication libraries (COSMA and ScaLAPACK).
In addition to the discussion of the performance for matrix-matrix-
multiplication, we also investigate the performance of our node-aware
communication algorithm for tensor contractions as they occur in quan-
tum chemical coupled-cluster methods. To this end we employ a modified
version of CTF in combination with a coupled-cluster code (Cc4s). Our
findings show that the node-aware communication algorithm is also able
to improve the performance of coupled-cluster theory calculations for
real-world problems running on tens to hundreds of compute nodes.

1 Introduction

Matrix-matrix multiplication (MMM) is ubiquitous in the field of scientific com-
puting, computational physics, machine learning and many other areas of sig-
nificant technological and scientific relevance. One important area of application
of MMM in physics includes electronic structure theory, which is part of the
motivation for the present work. We note that electronic structure theory cal-
culations often involve operations on large matrices that need to be distributed
over many tens to hundreds of modern compute nodes in order to satisfy memory
requirements. Therefore, electronic structure theory calculations have evolved in
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parallel to hardware improvements and newly developed efficient linear alge-
bra libraries over the past few decades. In this paper, we seek to compare
and improve algorithms employed in popular MMM libraries including ScaLA-
PACK [9], COSMA [13] and CTF [18]. In particular, we focus on the effect of
network contention and inter-node communication within CTF.

In addition to MMM, the present work seeks to extend the presented develop-
ment to more general tensor algebraic operations. We note that tensor algebra is
yet another important technique widely-used in electronic structure theory, espe-
cially for highly accurate and computationally expensive many-electron methods.
With the development of more sophisticated distributed tensor algebra libraries,
however, their implementation becomes simpler and allows for efficient calcula-
tions of increasingly large problems on modern HPC clusters.

We also demonstrate a real-world application that involves coupled-cluster
theory calculations. Coupled-cluster theory is a many-electron perturbation the-
ory, which is widely-used in the field of computational chemistry and many-body
physics. The solution of the underlying set of nonlinear equations involves tensor
contractions. Already for the study of relatively few atoms, the memory footprint
of the required tensors typically exceeds even the main memory of modern nodes.
Furthermore, the computational cost required by these calculations also grows
rapidly with the number of atoms. This necessitates implementations of coupled-
cluster methods employing massively parallel tensor contraction libraries. Our
node-aware CTF implementation shows speed-ups of up to 3X relative to the
prior node-oblivious implementation for real-world coupled-cluster calculations.

Overall, our paper introduces the following contributions:

– node-aware parallel algorithms for matrix multiplication and tensor contrac-
tion, which minimize the inter-node communication volume,

– an implementation of these algorithms as part of the Cyclops library,
– an experimental evaluation comparing the implementation to other codes on

two supercomputers and as part of a quantum chemistry method.

2 Node-Aware Multiplication and Contraction

Distributed-memory algorithms for matrix multiplication generally aim to min-
imize communication cost (in terms of latency, i.e., the number of messages,
and bandwidth cost, i.e., the amount of data sent). Communication cost in this
setting is often measured by the amount of matrix entries (words) sent and
received by each processor, with matching sends and receives assumed to exe-
cute concurrently. In the memory-constrained setting, for multiplication of n×n
matrices, Cannon’s algorithm [7] achieves a communication cost of O(n2/

√
p)

when running with p processors. This cost is optimal according to known lower
bounds [12]. In practice, the SUMMA algorithm [2,20] or variants thereof are
most often implemented in libraries (e.g., ScaLAPACK and CTF both use
SUMMA). The SUMMA algorithm leverages broadcasts and reductions, which
have a slightly higher latency (require O(log p) messages) than the point-to-
point messages used in Cannon’s algorithm. However, large-message broadcasts
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and reductions can be done with the same asymptotic bandwidth cost as sends,
O(n) for a message of size n, so long as n = Ω(p) [8,19]. Further, the SUMMA
algorithm is easier to extend to non-square matrices than Cannon’s approach,
and use of similar collective communication also allows for implementation of
3D algorithms, which minimize communication cost when additional memory is
available [2,3,16,17].

On modern supercomputers and clusters, each node contains many CPUs
and/or GPUs. Even with the use of threading, most MPI-based codes achieve
highest efficiency when executed with multiple MPI processes per node (e.g.,
one per GPU or one per NUMA region). Given the presence of multiple com-
municating processes per node, the performance of collective communication
operations, such as broadcast and reduction, become dependent on the number
of distinct nodes in the subcommunicator used for the operation. In particular,
while we have mentioned that the per-processor communication-cost is largely
independent of p, the communication volume (total number of words sent or
received by any processor) for a broadcast of a message of n words to p nodes
is n(p − 1). Unlike the per-processor communication cost, the communication
volume does not directly model runtime, but a higher communication volume
entails increased contention for network and injection bandwidth. We propose an
algorithm to select an MPI-process-to-node mapping that minimizes the inter-
node communication volume for dense matrix multiplication (and later tensor
contractions) executed on any given initial processor grid. Similarly motivated
node-aware optimizations have previously been presented for accelerating point-
to-point communication in sparse matrix vector products [5,6,14,15].

2.1 Node-Aware Matrix Multiplication

We first propose a scheme to map processes to nodes for matrix multiplication,
aiming to accelerate 2D (SUMMA) and 3D matrix multiplication algorithms
used by CTF [18]. CTF generally selects a 3D processor grid p1 × p2 × p3 (1D or
2D processor grids may be obtained by setting of p1, p2, and p3 to 1) at runtime
so as to minimize cost (based on not just communication, but a more detailed
performance model that includes predicted cost of local work and redistribution).
All communication within the matrix multiplication algorithm is performed by
concurrent broadcasts and reductions among fibers of the 3D processor grid
(e.g., p1p2 concurrent broadcasts with p3 processors involved in each). Once a
processor grid mapping is selected, the counts of words communicated along each
fiber W1, W2, and W3 are known. When executing with m processors per node,
we consider the best choice of an m1 × m2 × m3 intra-node processor grid with
m1m2m3 = m and pi ≡ 0 mod mi, for all i. The p/m nodes are then arranged in
a 3D processor grid of dimensions p1/m1 ×p2/m2 ×p3/m3, so that each original
fiber of size pi stretches across pi/mi physical nodes. We choose the intra-node
processor grid, so as to minimize the communication volume,

V = W1(p1/m1 − 1) + W2(p2/m2 − 1) + W3(p3/m3 − 1).
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Fig. 1. Communication pattern of the SUMMA algorithm. A series of broadcast is
performed within each row/column. Boxes represent different ranks, color indicates
the resident node. Example shows 4 nodes with 6 ranks each. For each SUMMA block
row/column broadcast, default topology (left) yields 2 inter-node messages vertically
and 12 horizontally, while the node-aware topology (right) yields 6 and 4, respectively.

Once the mapping is chosen, we redistribute the matrix data, which can be
done with a single round of concurrent point-to-point messages (each processor
sends all of its matrix data to a single other processor in the new mapping).
For a given node-aware mapping, the SUMMA algorithm is unchanged, except
that the MPI communicators span different processor ranks, resulting in different
amounts of inter-node communication. Figure 1 provides an example of a default
and a node-aware mapping.

2.2 Node-Aware Tensor Contractions

CTF leverages nested SUMMA, in combination with 1D replication/reduction,
to generalize 2D and 3D algorithms for matrix multiplication to tensor contrac-
tion [18]. Processor grids p1 × · · · × pd with d > 3 are used to accommodate
nested SUMMA and to support symmetric-packed tensor formats efficiently
(only unique entries of a symmetric tensor are stored by CTF, e.g., only the
lower triangular part of a symmetric matrix). Each of these matrix multipli-
cation variants results in some amount of words broadcast or reduced along
each processor grid fiber, say Wi along fiber pi. Our node-aware mapping algo-
rithm proceeds analogously to the matrix multiplication case. We select the
best choice of m1 × · · · × md intra-node processor grid and combine it with a
p1/m1 × · · · × pd/md inter-node processor grid, so that the ith fiber of the grid
spans pi/mi distinct nodes. Again, we select the processor grid to minimize the
communication volume, V =

∑d
i=1 Wi(pi/mi − 1).

CTF chooses a processor grid and an associated plan for a nested SUMMA
algorithm based on a cost model of the cost of its nested SUMMA algorithm,
local products, and data redistribution. Our node-aware algorithm first allows
CTF to perform this search, then determines the cost-optimal factorization of
the chosen processor grid into inter-node and intra-node processor grids. We use
exhaustive search to enumerate all distinct factorizations of m = m1 · · · md such
that pi ≡ 0 mod mi. Provided a model of the affect of communication volume
on runtime, this search could be done together with the selection of the best
processor grid p1 × · · · × pd and the tensor mapping. However, if K plans are
considered, each having L different inter-node grids, the combined search space
is of size O(KL) instead of O(K + L).
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3 Evaluation Methodology

3.1 Hardware and Software Platform

Results are collected on the CPU partition of the Raven supercomputer at the
Max Planck Computing and Data Facility. It consists of 1592 compute nodes;
each node has an Intel Xeon IceLake-SP Platinum 8360Y processor with 72 cores
and 256 GB RAM per node. As interconnect, it uses Mellanox HDR InfiniBand
network (100 Gbit/s) with a pruned fat-tree topology and non-blocking islands
of 720 nodes; all jobs run inside one island. To demonstrate the robustness of
our approach, we also collect results (for a subset of the experiments) on the
Stampede2 supercomputer. Each node has an Intel Xeon Phi 7250 CPU with
68 cores and 96 GB of DDR4 RAM. We stress the fact that Stampede2 has a
distinct configuration when compared to that of Raven.

We evaluate our node-aware version of CTF (CTF-na) by comparing against
the default CTF (CTF-def) [18]1, ScaLAPACK [9], and COSMA [13]2. We use
ScaLAPACK as provided by Intel MKL (version 2022.0). All codes were compiled
using the Intel compiler (version 2021.5) with Intel MPI (version 2021.5). In all
our calculations, we use one core per MPI rank. All codes would in principle allow
a hybrid OpenMP/MPI approach. Our tests show that CTF performs equally
good with one to four cores per rank. In COSMA, the authors note that their
strategy performs best with one core per rank [13].

COSMA allows for communication-computation overlap. Our tests show that
for the chosen matrix dimensions the results with and without overlap strategy
are very similar. The differences are at most in the order of 5%. For a more
expressive comparison against CTF and ScaLAPACK, both of which do not
offer overlapping strategies, we do not use computation-communication overlap
in any of our COSMA calculations. Furthermore, it is possible to adjust the used
memory in a COSMA calculation. More memory possibly allows to employ more
efficient parallelization strategies, viz. a higher performance. In this work, we use
two values for the allowed memory. The lower limit is chosen to be 2.5-times the
size of storing the three matrices. The upper limit is chosen to be such that the
full memory of the machine can be utilized. In the following, we will label these
schemes as COSMA-lim and COSMA-unl.

3.2 Matrix-Multiplication Benchmarks

In this section, we present details about the dataset used for our main results,
which is collected from the Raven cluster. We investigate four cases of products
of an m × k matrix with a k × n matrix, namely, square (m = n = k), large
K (m = n � k), large M (m � n = k), and small K (m = n � k). The
ratio between small and large edge is chosen to be 10 for all systems. We exploit
results for different number of nodes ranging from 1 to 288 nodes using all node
1 CTF-def and CTF-na can be run with https://github.com/airmler/ctf, branch node-

awareness, commit ID 2f32bd6.
2 https://github.com/eth-cscs/COSMA.git commit ID fe98d3eb.

https://github.com/airmler/ctf
https://github.com/eth-cscs/COSMA.git


Optimizing Distributed Tensor Contractions 715

numbers which fulfill the following equation n = j · 2i, with: j ∈ [1, 3, 9], to
obtain results from an adequately large number of different ranks/nodes. We
consider both strong and weak scaling in our experiments. For strong scaling,
we choose the dataset size such that it is just large enough to be stored (and
contracted) on a single node which is approximately 150 GB. For weak scaling,
we use two different matrix dimensions (sizes), such that the matrices occupy
either 0.5% or 5% of the overall system memory. In subsequent sections, we
denote the strong scaling results as “strong”, while the weak scaling datasets
are referred to as “weak18” and “weak180”, corresponding to the 0.5% and 5%
memory occupation, respectively.

3.3 Experimental Methodology

For each combination of parameters considered, we perform five contrac-
tions (runs) using each of the five strategies (CTF-def, CTF-na, ScaLAPACK,
COSMA-lim and COSMA-unlim) on the same node allocation (i.e. via a single
job submission to the cluster). We exclude the two slowest runs and compute the
average based on the remaining three runs. We submit each job twice in order to
have two random node allocations. Consequently, all presented data points are
mean values averaged from 6 calculations, each. Typically, the standard devia-
tion of the mean value is below 1 GFLOPS/core, so we do not include any error
bars.

In the individual MMM and tensor contractions we employ the node-aware
mapping whenever an advantageous topology is found. This allows to study
possible situations where the required tensor redistribution time exceeds the
gain due to the favorable processor grid. In the CCSD calculations we asses
the performance of a variety of individual tensor contractions. Thus, we are
interested in an optimal overall performance. Therefore the redistribution time
was included in the cost model to optimize the overall performance.

4 Performance Results/Evaluation

4.1 Memory Footprint

Prior to comparing the performance of the various implementations, we analyze
their memory requirements. We refer to the maximum memory consumption
by the implementation (when executing the contraction) as high-water mark
(HWM). In Fig. 2, we present HWM for weak180 calculations for all consid-
ered matrices, representing the maximum memory consumption. If we exclude
the results for one to three nodes, we observe that ScaLAPACK maintains a
nearly constant ratio of HWM over storage size, averaging around 1.66. This
is true for all type of matrix contractions. For CTF, the ratio is between 2.5
and 5, depending on the number of nodes and the contraction type. The addi-
tional memory overhead compared to ScaLAPACK is explained by the extra
redistribution buffers and the 2.5D algorithm. COSMA-lim shows a very similar
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HWM as CTF with values between 4 and 7 for the ratio HWM over storage size.
This enables a fair comparison between CTF and COSMA in the case of simi-
lar memory constraints. Disregarding a handful of outliers COSMA-unl shows a
ratio between 10 and 18. We recall that for these calculations the storage size is
5% of the main memory, implying that the COSMA calculation utilizes a large
fraction of the total main memory. We note that CTF-na has the same memory
footprint as CTF-def.

Fig. 2. Ratio of computation’s HWM over storage size for different node counts.

4.2 Matrix Multiplication

In this section, we present one of the primary results of this work. Figure 3 shows
the performance results for all the matrix sizes and implementations considered
(see Sect. 3.3). We first note that for all contraction types and all scaling sce-
narios, COSMA-unl achieves the best performance. The improvement over the
second best method is very pronounced for situations where the operations per
core are low, i.e. large node numbers in strong scaling scenario and for the weak
scaling scenario with 18 MB. For the weak scaling scenario with 180 MB, the
improvements are much smaller. We note, however, that the memory footprint
of COSMA-unl is relatively high in all calculations as depicted in the previous
sections. The goal of the present work is to advance memory efficient tensor
contraction algorithms with high scalability on multi-core nodes.

Square: The performance for the square contractions is shown in the top panels
of Fig. 3. When employing more than ten nodes, CTF-na shows the second best
performance followed by COSMA-lim. ScaLAPACK and CTF-def perform simi-
larly and show the worst performance. For small node numbers the same trend is
generally present, however, the results are noisier here. We note that CTF-na is
particularly efficient for the large memory weak scaling scenario (180MB). Large
square MMM present one of the best application regimes of CTF-na compared
to the even more efficient but memory intense COSMA-unl implementation.
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Fig. 3. Performance in GFLOPS/core on Raven. From top to bottom, rows show results
for different matrix-matrix products: square, large K, large M , and small K.

The node-aware algorithm significantly improves the results compared to the
results with CTF in default topology. For more than 50 nodes the performance
improves by a factor of 1.5–5.5X in weak and strong scaling scenarios. Further,
CTF-na outperforms COSMA-lim when using more than ten nodes.



718 A. Irmler et al.

Large K: For the large K contraction (second row of Fig. 3) COSMA-unl
achieves the best performance and ScaLAPACK the worst performance. Here
COSMA-lim, CTF-def, and CTF-na show very similar results. There are two
reasons why CTF outperforms ScaLAPACK significantly for this contraction
type. First, within this contraction, CTF communicates the matrix C as it is the
smallest occurring matrix. Second, CTF employs the SUMMA 2.5D algorithm.
In this case, the node-aware topology does not lead to any further improvements
of the CTF-def algorithm. The reason for this is that the default processor grid
for these contractions already achieves low inter-node communication volume.

Large M : The performance for the large M contractions is shown in the third
row of Fig. 3. Once more, COSMA-unl exhibits throughout the best performance
for all calculations. However, all four other implementations show similar results.
CTF-na shows an improvement over CTF-def only on some node counts.

Small K: The performance for the small K contractions is shown in the bottom
row of Fig. 3. The small K results are similar to the results of the square contrac-
tion. The node-aware topology outperforms the default calculation especially for
large number of nodes. COSMA-unl outperforms all other implementations in
the strong scaling regime, as well as for the weak scaling scenario with 18 MB.
However, for the 180 MB scenario and more than 50 nodes CTF-na achieves
very similar results as COSMA-unl.

Fig. 4. Achieved performance on Stampede2 measured in GFLOPS/core. From left to
right each column shows results for a different matrix contractions: square, large K,
large M , and small K. The results use matrix sizes of 80 MB per processor.

Weak Scaling Performance on Stampede2: In addition to the results
obtained on Raven, we have also investigated the performance of the differ-
ent MMM libraries on Stampede2. The Stampede2 compute nodes are equipped
with significantly less main memory than Raven nodes, making it more diffi-
cult to perform calculations with implementations that exhibit a large memory
footprint such as COSMA. Figure 4 depicts performance results for weak scaling.
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Table 1. Measured speedup of CTF-na compared to the other algorithms for the
results obtained on the Raven system. Average values are carried out for calculations
with more than 50 nodes.

strong weak 18 weak 180 strong weak 18 weak 180

CTF-def square 2.6 2.5 1.7 large K 1.0 1.0 1.0

ScaLAPACK 2.3 2.1 1.8 4.1 3.9 2.5

COSMA-unl 0.7 0.8 1.0 0.6 0.6 0.8

COSMA-lim 1.8 1.5 1.2 1.3 1.2 1.0

CTF-def large M 1.3 1.3 1.2 small K 1.6 1.7 1.4

ScaLAPACK 1.3 1.3 1.3 1.5 1.6 1.4

COSMA-unl 0.7 0.7 0.9 0.7 0.8 1.0

COSMA-lim 1.6 1.3 1.1 1.7 1.5 1.2

Square and Small K: The results obtained are similar to those obtained for
Raven. ScaLAPACK exhibits the worst performance. CTF-na improves signifi-
cantly over CTF-def for large numbers of nodes. COSMA-unl and COSMA-lim
perform slightly worse than CTF-na for large numbers of nodes. While COSMA-
unl exceeded available memory in some cases, it outperforms COSMA-lim in
most cases. We also note that some node counts exhibit a much poorer perfor-
mance for all employed libraries. A performance analysis of these outliers reveals
that this reduction is not caused by increased communication volume, but by
performance drops in the GEMMs.

Large K: Here CTF-na shows no improvement over CTF-def and ScaLAPACK
yields the lowest performance. Interestingly the performance of COSMA is very
similar, whereas on the Raven system COSMA clearly outperformed CTF.

Large M : The large M contractions on Stampede2 show similar patterns to
Raven. CTF-na is not improving over CTF-def for large node counts due to
efficiency of the default mapping of CTF-def.

Summary
We now summarize the most important findings for the performance analysis.
Table 1 lists mean values of the achieved speedups for CTF-na compared to
the four other implementations. Averaged results are provided for calculations
employing more than 50 nodes. The values are smaller or equal than 1 only for
the case of COSMA-unl, indicating that COSMA-unl achieves in all scenarios the
best performance compared to the other methods at the price of a larger memory
footprint. All other reported values are equal to 1.0 or larger than 1.0, implying
that CTF-na achieves the same or better performance than CTF-def, COSMA-
lim and ScaLAPACK most cases. Compared to ScaLAPACK the speedup is on
average between 1.4 and 4.1 for square, large K and small K for all scenarios
when using more than 50 nodes. The speedup compared to ScaLAPACK is only
about 1.3 in the case of large M . Compared to COSMA-lim, CTF-na achieves
on average a speedup between 1.2 and 1.8 for more than 50 nodes in the cases
of square and small K MMMs. This speedup reduces to about 1.0 to 1.6 in the
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Fig. 5. Results for the drCCD contraction on Raven.

cases of large K and large M . Similarly, compared to CTF-def, which disregards
node-awareness, we see significant speedups for square and small K contractions.

5 Performance of Coupled-Cluster Calculations

We now present results for more general tensor contractions, going beyond
matrix multiplications. This section presents performance results obtained for
coupled cluster (CC) calculations as implemented in the Cc4s code [1], which
employs the CTF library. CC methods are widely used in the field of electronic
structure theory to study many-electron systems [4]. From a computational per-
spective, CC methods involve high order tensor contractions. The CC method,
which employs single and double particle-hole excitation operators, is called
CCSD. The computational cost of a CCSD calculation is dominated by solving
the nonlinear doubles amplitude equations given by

Dab
ij tabij = vab

ij + 2
∑

ck

vak
ic tcbkj +

∑

klcd

tadil vlk
dct

cb
kj +

∑

cd

vab
cdtcdij −

∑

ck

vak
ic tbckj + ..., (1)

where the dimensions are chosen such that dim(i) = dim(j) = dim(k) = dim(l)
and dim(a) = dim(b) = dim(c) = dim(d). The amplitude equations are solved
iteratively employing a Jacobi method such that most of the computational cost
originates from tensor contractions as defined by terms on the right-hand-side
of the above equation. CCSD exhibits a memory footprint and computational
cost that scales as O(N4) and O(N6), respectively. N is proportional to the
number of electrons in the system. The dimension of the indices i, j, k, ... and
a, b, c, ... corresponds to the number of occupied orbitals and the number of vir-
tual orbitals, respectively. In a typical calculation, the number of virtual orbitals
is 10–30 times larger than the number of occupied orbitals. As a result the so-
called particle-particle-ladder (ppl) term, rabij =

∑
cd vab

cdtcdij , is treated in a special
way to avoid storing the tensor vab

cd in main memory. This is achieved by com-
puting slices of vab

cd on-the-fly and contracting them consecutively.
In addition to the CCSD method, we also investigate the performance of

drCCD, which is a popular approximation to the CCSD method. The drCCD
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Table 2. Performance given in GFLOPS/core from different coupled-cluster calcula-
tions for three different node counts.

Method 32 nodes
dim(i) = 116
dim(a) = 1161

72 nodes
dim(i) = 142
dim(a) = 1422

128 nodes
dim(i) = 164
dim(a) = 1642

default node-aware default node-aware default node-aware

CCSD 19.4 21.0 20.5 24.0 25.0 25.0

CCSD no ppl 26.6 32.6 25.1 37.0 37.3 37.5

drCCD 37.4 37.9 24.7 39.0 38.6 38.5

method only includes so-called ring diagrams in the amplitude equations, corre-
sponding to terms given by rabij =

∑
ck vak

ic tcbkj .
We now seek to discuss the performance of the following types of CC calcu-

lations: drCCD, CCSD and CCSD excluding the ppl-term. Performance results
have been obtained using the default CTF version and the node-aware CTF
version. Figure 5 depicts the performance of drCCD calculations in strong and
weak scaling scenarios. Our findings show that the improvements are not as pro-
nounced as for the case of MMMs. Only for the strong scaling case we observe
significant improvements when comparing CTF-na to CTF-def for about 100
nodes. For the weak scaling case with smaller problem sizes, CTF-na achieves
no significant improvements compared to CTF-def. For weak scaling with large
problem sizes, CTF-na improves the performance of CTF-def for a few cases. We
find that higher-order tensors are more often already distributed in an communi-
cation efficient manner using the default topology, which is why the node-aware
distribution often has a negligible effect. However, improvements of up to 3X
are achieved on some node counts, and overall the performance of CTF-na is
more robust with respect to the choice of the node count than CTF-def. We also
explore the performance of CCSD calculations. These calculations are compu-
tationally even more expensive than drCCD. Table 2 lists results for a selected
number of nodes, including special cases described above for drCCD. In addition
to CCSD calculations, we also measure the performance of CCSD excluding the
ppl-term (CCSD no ppl). The presented results imply that the evaluation of the
ppl-term is performed at lower efficiency than the other tensor contractions. The
cause for the bad performance can be attributed to unsatisfactorily slow slicing
and redistribution operation of vab

cd and is therefore unrelated to this work. Con-
sequently, we will restrict the following discussion on CCSD calculation excluding
the ppl-term.

Similar to drCCD, we observe performance improvements of CCSD calcu-
lations when using CTF-na instead of CTF-def only for some node numbers.
There are cases where a drCCD calculation is not improved by node-awareness,
whereas the CCSD calculation improves by 10–20%. This is because the pro-
cessor grid for every single contraction is determined on runtime and generally
differs for different contractions as they appear in the CCSD equations.
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6 Related Work

There have been several works that derive communication-optimal algorithms for
matrix-matrix multiplication [10,13,17]. CARMA [10] has provided the first app-
roach to minimize communication for any M , N , K and any number of proces-
sors/available memory. COSMA [13] provides a theoretically optimal distributed
dense matrix-matrix algorithm as well as the current best known implementa-
tion. Similar to CTF, COSMA finds the best layout via a cost model subject
to memory constraints. It leverages RDMA, and a custom implementation of a
binary tree collective. It also proposes to overlap communication with compu-
tation. Both CTF and COSMA rely on an analytical model and minimize the
communication cost. In this work, we explore a cost model that goes beyond
what is considered in CTF and COSMA. We take into account the communica-
tion cost not just between MPI processes but also across nodes in the network.
Further, we are able to obtain nearly the same performance and in some cases
better, without low-level optimizations that may be less portable.

In [5], the authors propose a node-aware sparse matrix-vector multiply, where
values are gathered in processes local to each node before being sent across the
network, followed by a redistribution at the receiving node. This optimized point-
to-point communication leads to reduction in communication cost. A similar
technique is used in [14] when using enlarged conjugate gradient methods.

7 Conclusion

In this work we have presented a modification to the Cyclops Tensor Framework
that employs node-aware processor grids. We have shown that the achieved
performance improvements due to the node-aware topology in CTF are most
strongly pronounced in the case of square and small K matrix-matrix products.
In the case of large K and large M matrix multiplication, the default processor
grids employed by CTF are already efficient. Although the memory-unlimited
version COSMA achieves overall the best performance for matrix multiplication,
CTF with node-awareness is competitive and often more performant when the
same memory limit is imposed on COSMA.

In addition to the results for MMMs, we have also investigated the perfor-
mance of the modified version of CTF for tensor contractions in coupled-cluster
theory calculations. Our findings show that the improvements due to node-aware
topologies are less significant, but allow for more consistent performance across
different node counts. As the number of cores per node continues to grow on
modern architectures, the benefit of node-aware mapping is likely to be more
pronounced in the future.
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Abstract. Cholesky factorization is a method for solving linear systems
involving symmetric, positive-definite matrices, and can be an attrac-
tive choice in applications where a high degree of numerical stability is
needed. One such application is mathematical optimization, where direct
methods for solving linear systems are widely used and often a signifi-
cant performance bottleneck. An example where this is the case, and the
specific type of optimization problem motivating this work, is radiation
therapy treatment planning, where mathematical optimization is used
to create individual treatment plans for patients. To address this bot-
tleneck, we propose a task-based multi-threaded method for Cholesky
factorization of banded matrices with medium-sized bands. We imple-
ment our algorithm using OpenMP tasks and compare our performance
with state-of-the-art libraries such as Intel MKL. Our performance mea-
surements show a performance that is on par or better than Intel MKL
(up to ∼26% on a single CPU socket) for a wide range of matrix band-
widths on two different Intel CPU systems.

Keywords: Cholesky factorization · Task-Based Parallelism · Linear
Solver

1 Introduction

Cholesky factorization is a well known method for solving linear equations where
the matrix is symmetric and positive-definite and belongs to a class of algorithms
often referred to as direct methods for solving linear systems of equations [6].
While iterative methods are often considered the state-of-the-art for solving large
systems of linear equations, there are still applications where the use of direct
methods is the standard, due to issues with ill-conditioning of the linear sys-
tems, for instance. Examples of such fields include mathematical optimization,
where in some algorithms, the systems become increasingly ill-conditioned as the
algorithm progresses [14]. In many applications, matrices involved are not dense,
but rather have some structure. A common example of structure that arises is
banded matrices, where all non-zero elements are located no more than k rows
and columns from the main diagonal. In the context of banded matrices, the
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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number k is often referred to as the bandwidth of the matrix. With this defini-
tion, a diagonal matrix is a banded matrix with bandwidth zero. We emphasize
that this use of the term bandwidth is not to be confused with bandwidth when
referring to e.g. throughput of memory channels in computer hardware.

The specific problem motivating this work is mathematical optimization for
radiation therapy treatment planning (see e.g. [2,24] and references therein for
a background on optimization in radiation oncology), where mathematical opti-
mization is used to create specialized treatment plans (control parameters for the
treatment machine) for individual patients. In such problems, we have observed
certain cases which require factorization of banded matrices with bandwidths
in the hundreds. Furthermore, we have seen this be a significant computational
bottleneck, with banded matrix factorization representing more than 50% of the
total time spent in treatment plan optimization.

Of course, optimization problems also arise from a wide range of differ-
ent application domains, such as operations research, model predictive control
among many others. An example from model predictive control is the work of
Wang and Boyd [26], where they devise a computational method involving the
factorization of matrices with bandwidths up to about 100. We refer readers
interested in more details on algorithms for optimization to the review found
in [11]. For a more high-level overview on optimization methods and High-
Performance Computing (HPC) we refer the interested reader to the review
found in [19].

In this paper, we develop a task-based method for parallelizing Cholesky
factorization for banded matrices. We show that our method performs well com-
pared to state-of-the-art libraries on matrices with large bands and further give
some discussion and analysis of the performance. We summarize our claimed
contributions as follows:

– We design and implement a task-based parallel method for Cholesky factor-
ization of banded matrices using OpenMP.

– We assess the performance of our method compared to state-of-the-art
libraries for matrices with bandwidths between 50–2000, which can be found
in optimization problems from radiation therapy.

– We demonstrate an up to 26% performance improvement, on average, com-
pared to state-of-the-art libraries such as Intel MKL.

2 Related Work

Previous research on parallel Cholesky factorization for banded matrices with
similar ideas as ours include work by Quintana-Ort́ı et al. [22], which was imple-
mented in the SuperMatrix [4] framework. Our work differs from the work by
Quintana-Ort́ı et al. in that we use the standard packed LAPACK storage format
for banded matrices and OpenMP for tasking (OpenMP task implementations
were in their infancy at the time the work by Quintana-Ort́ı et al. was published).
We believe this lowers the barrier for adoption in existing codes, and removes
the need for potential overhead in converting the matrix into an internal storage
format.
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The topic of multithreaded Cholesky factorization is one which has been
studied extensively in the literature previously. For example, Remon et al. [23]
studied multithreaded performance for Cholesky factorization of band matrices.
In their work, they propose some performance optimization by slightly modifying
the storage scheme for band matrices used in LAPACK to allow merging some
computational steps described in Sect. 3.1 into single calls to BLAS-3 kernels,
increasing available parallelism for each BLAS kernel invocation. Similar work
on small modifications to the LAPACK storage scheme to merge kernels and
improve efficiency was also studied by Gustavson et al. [16].

Task parallel banded Cholesky factorization has also been previously studied
as part of more extensive efforts to utilize task-based parallelism for different
computational kernels in for instance the FLAME [25] and PLASMA [8] projects.
A part of this effort was the previously mentioned work by Quintana-Ort́ı et
al. in [22]. On the distributed computing side, parallel algorithms for banded
Cholesky has also been studied by e.g. Gupta et al. [15]. For general dense
matrices, the topic has been studied by Dorris et al. [9], where different variants of
Cholesky factorization algorithms and their suitability for task-based parallelism
were considered. For sparse matrices, task-based parallel Cholesky factorization
has been studied in the 1980s by Liu [20], as well as Geist and Ng [13], and
more recently by Hogg et al. [17]. Many recent works in the area of task-parallel
Cholesky factorization are for general sparse matrices, see for instance [18].

3 Background

Cholesky factorization is a well-known method for solving systems of linear equa-
tions with symmetric, positive-definite matrices. The method works based on the
observation that every symmetric positive-definite matrix A admits a factoriza-
tion of the form A = LLT where L is a lower triangular matrix. This factorization
is called the Cholesky factorization and is unique [7, Ch. 2.7 p. 77].

One application where banded systems with very large bandwidth can occur
is mathematical optimization (see e.g. [26,27]), where many algorithms rely on
solving a block-structured linear system of equations in each iteration. The cur-
rent state-of-the-art in optimization solvers often rely on matrix factorization
algorithms to perform this solution step. As an example, in interior point meth-
ods [11] – a popular choice of algorithm for many constrained optimization prob-
lems – the linear systems to solve will have specific structure depending on the
structure of the objective and constraints of the optimization problem. This
structure is often exploited in certain cases by, for instance, block-elimination,
which may result in the need to solve linear systems with specific structure,
where banded structures is one possibility [26].

3.1 Cholesky Factorization

The implementation that provided the initial inspiration for our method is the
one proposed by Du Croz et al. in [5]. The key idea is to organize the computa-
tions in the factorization into operations on dense sub-blocks, such that the use
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of level-3 BLAS kernels is enabled. The method of Du Croz et al. divides the
current active window in the non-zero band of the matrix into a 3×3 block grid,
as illustrated in Fig. 1a. To note is that only the upper triangular part of the A31

block lies within the band of the matrix. This is dealt with in the implementation
by using an internal square work array with the same dimensions as A31, but
with the lower triangular part set to zero. A basic outline of the method is:

1. Factorize A11 into L11L
T
11 using dense Cholesky

2. Compute L21 = A21(LT
11)

−1 using DTRSM
3. Compute A′

22 = A22 − L21L
T
21 using DSYRK

4. Copy the upper triangular part of A31 into the square work array
5. Compute L31 = A31(LT

11)
−1 using DTRSM (store L31 in the work array,

overwriting A31)
6. Compute A′

32 = A32 − L31L
T
21 using DGEMM

7. Compute A′
33 = A33 − L31L

T
31 using DSYRK

8. Copy the upper triangular part of L31 into the main matrix.

Here, we have used the BLAS routines DTRSM, DSYRK and DGEMM, which
are double precision routines for solving linear systems of equations with trian-
gular matrices, symmetric rank-k updates and general matrix-matrix multipli-
cation respectively. More detailed description of these routines can be found in,
for example, the Netlib website1.

Fig. 1. Illustrations of block-algorithms.

4 Method

The computational scheme outlined in the previous section lends itself naturally
to a task-based parallel formulation by inspection of the dependencies between
1 https://www.netlib.org/lapack/explore-html/.

https://www.netlib.org/lapack/explore-html/


Parallel Cholesky Factorization for Banded Matrices 729

Algorithm 1 Fine-grained Cholesky factorization
Require: n ≥ 0. {n is the dimension of the n × n grid in each iteration}
1: for each active window in the matrix do
2: Factorize A11 into L11L

T
11 using dense Cholesky

3: for i ← 2 to n − 1 do
4: Compute Li1 = Ai1(L

T
11)

−1 using DTRSM
5: for j ← 2 to i − 1 do
6: Compute A′

ij = Aij − Li1L
T
j1 using DGEMM

7: end for
8: Compute A′

ii = Aii − Li1L
T
i1 using DSYRK

9: end for
{The last row requires special handling, since the bottom-left block is cut off by
the banded structure of the matrix.}

10: Copy An1 to the work array (a square matrix with bottom left triangle explicitly
set to zero).

11: Compute Ln1 = Ai1(L
T
11)

−1 using DTRSM (overwriting the value in the work
array).

12: for k ← 2 to n − 1 do
13: Compute A′

nk = Ank − Ln1L
T
k1 using DGEMM (with Ln1 stored in the work

array)
14: end for
15: Compute A′

nn = Ann − Ln1L
T
n1 using DSYRK (with Ln1 stored in the work

array)
16: end for

the different steps. For instance, we see that step (2) depends on step (1) for LT
11

and step (3) depends on step (2) for L21, and so forth. One major drawback of
this parallelization scheme is that the 3×3 active windows may not yield enough
parallelism to exploit the hardware to its fullest.

In this work, we extend the 3× 3 block-based algorithm to be able to handle
more fine subdivisions of the active block into n × n sub-blocks. The benefit
of this is a finer task-granularity when parallelizing the algorithm (since each
task comprises an operation on a single cell in the grid). One advantage of
our method is the use of the standard LAPACK storage format, which lowers
the barrier for adoption of our method in existing codes, and avoids possible
overhead in converting the matrix to a specialized internal storage format. To
note is that we do not use any explicit barriers in our code, but rather all the task
dependencies and scheduling is handled by the OpenMP runtime. A pseudocode
implementation of our algorithm is shown in Algorithm 1.

The dependency analysis between the different steps shown in Algorithm 1 is
relatively straightforward when only considering the operations within one outer
iteration (one iteration of the loop on line 1 in Algorithm 1). Each DTRSM oper-
ation on the Ai1 blocks depends on the factorization of the A11 block (and the
copying to the work array in the case of the bottom left block), the DGEMM
operations depend on two of the updates using DTRSM, and the DSYRK oper-
ation on the Aii block depends on the DTRSM of the leftmost block on the
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same block-row. Some special care is required for the bottom block row, due to
the use of a temporary array to hold the upper right triangle of the An1 block.
To further decrease the amount of synchronization needed, we further extend
the analysis of task dependencies to include multiple outer iterations as well.
This is made possible by ensuring that the block-grid of the current iteration
partially overlaps the block grid from the previous outer iteration, see Fig. 1b
for an illustration of the n = 3 case. Thus, the updates on each Aij block that
overlaps the previous iteration also depends on the operations on the Ai+1,j+1

block from the previous iteration. This overlapping does however come with the
assumption that the dimension n − 1 of each n × n sub-grid evenly divides the
bandwidth k in our current implementation.

Finally, the question of how to select the number of sub-blocks to divide
each n×n active window into in the algorithm remains. Recall that we have the
requirement that n − 1 must divide the bandwidth k of the matrix. As a first
prototype, we have implemented a heuristic that tries to select an appropriate
value n that fulfills the divisibility requirement while giving the algorithm suffi-
cient parallelism and suitable block sizes to work with. Our heuristic works by
selecting a value n that balances the following requirements:

– n − 1 divides the bandwidth k of the matrix
– n is selected such that the block size for the level-3 BLAS operations is approx-

imately 50 by 50.
– n is not greater than the number of physical cores of the system.

These criteria were selected based on our experimental experience with tuning
the performance on our systems. However, this heuristic is still rather crude and
may not give optimal performance for all configurations and sizes. As such, users
with a priori knowledge of the approximate matrix bandwidths and hardware
configurations for their use case may tune the number of blocks separately to
achieve greater performance.

4.1 Implementation Using OpenMP Tasks

We implement a prototype for our method in C++, where we rely on BLAS
libraries to perform the block computations in Algorithm 1. To implement the
task-based parallel Cholesky factorization for banded matrices, we use OpenMP
tasks with task dependencies, a feature from OpenMP 4.0. The motivation for
using OpenMP is mainly one of availability and portability. OpenMP implemen-
tations are available for a number of the most widely used C/C++ compiler
suites, making our implementation accessible on a range of platforms. To specify
data-dependencies between tasks, OpenMP provides in, inout and out clauses
to the task pragma, which we use to define the task dependencies described in
the previous section. As seen in Listing 1.1, we use a dummy array to specify
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the task dependencies, which is not directly accessed by the actual tasks. This
works since the OpenMP implementation is agnostic to whether the task depen-
dencies are actually accessed and modified by the tasks, but simply builds the
dependency graphs as if the data was modified. Thus, the entry at index (i, j)
in our dummy array logically represents the block at row index i and column
index j in the current active window. For readers interested in other task-based
parallel programming frameworks, we refer to the study in [21]. The remainder of
our implementation also depends on some BLAS implementation for the level-3
BLAS kernels used (DTRSM, DSYRK and DGEMM, see Sect. 3.1), as well as an
implementation of dpotrf from LAPACK (for step (1)). One important point to
note is that our implementation assumes that the bandwidth k, defined as the
number of super- and sub-diagonals of the matrix, is divisible by n − 1, where
n is the dimension of the n × n block grid in each iteration. Our heuristic for
selecting n (described in Sect. 4) selects such a value when possible. Of course,
this requirement is impossible to fulfill in certain cases (the bandwidth may for
instance be prime). Thus, we have a minimum requirement that the bandwidth
of the input matrix is, at least, even such that a division into 3 × 3 blocks is
valid, which can be ensured by the user by zero-padding their matrix during
allocation. Our implementation is available as open source on GitHub2.

1 char task dep[BLOCK DIM][BLOCK DIM];

2 #pragma omp parallel

3 #pragma omp single

4 {
5 for (int i = 0; i < mat dim; i += nb) {
6 #pragma omp task depend(out:task dep[0][0]) depend(in: task dep[1][1])

7 dpotrf(...);

8

9 for (int blk i = 1; blk i < block dim−1; ++block i) {
10 #pragma omp task depend(in: task dep[0][0], task dep[block i + 1][1]) \
11 depend(out: task dep[block i][0])

12 cblas dtrsm(...);

13 for (int block j = 1; block j <= block i; ++block j) {
14 #pragma omp task depend(in: task dep[block i][0], task dep[block j][0]) \
15 depend(out: task dep[block i][block j])

16 cblas dgemm(...);

17 }
18 #pragma omp task depend(in: task dep[block i][0], \
19 task dep[block i + 1][block i + 1]) \
20 depend(out: task dep[block i][block i])

21 cblas dsyrk(...);

22 }
23 }
24 }
Listing 1.1. Skeletonized C++ code snippet illustrating the implementation of the
tasking using OpenMP. Function arguments are omitted for clarity.

2 https://github.com/felliu/BandCholesky.

https://github.com/felliu/BandCholesky
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Algorithm 2 Left-looking Cholesky for banded matrices
Input: Matrix A with dimension N and bandwidth k
Output: Factorized matrix L

1: for i ← 1 to N do
2: for j ← max(1, i − k) to i do
3: t ← 0
4: for l ← max(1, i − k) to j do
5: t ← t + L(i, l) ∗ L(j, l)
6: end for
7: if i == j then
8: L(i, i) ← √

A(i, i) − t
9: else

10: L(i, j) ← (A(i, j) − t)/L(j, j)
11: end if
12: end for
13: end for

4.2 Performance Model

The algorithm for Cholesky factorization for banded matrices discussed in this
paper mainly comprises calls to level-3 BLAS kernels, which are typically highly
compute-bound operations. A simple way to judge the performance of a compute-
bound algorithm’s implementation is to consider the number of floating point
operations required to factorize a matrix with given dimensions and (matrix)
bandwidth. Since Cholesky factorization is stable without pivoting, the mini-
mum number of floating point operations required to factorize any symmetric
positive definite matrix with given dimensions is constant and can be computed
relatively exactly. The number of floating point operations required can be com-
puted by considering a left-looking algorithm for Cholesky decomposition, where
some loops are truncated from the dense algorithm by the banded structure.
Pseudocode for the algorithm is shown in Algorithm 2. Computing the num-
ber of floating point operation required for the factorization can be done in a
straightforward way by simply replacing the computational statements in the
algorithm with their number of floating point operations and summing for the
total value. Let r = max(1, i − k), then the resulting sum is

N∑

i=1

i∑

j=r

j∑

l=r

2 +
N∑

i=1

i∑

j=r

2, (1)

if we consider the square root to be a single floating point operation. While this
sum can be evaluated exactly on a computer (which is how we derive the exact
FLOP-counts used for the benchmarks), one may also get an approximate value
on the order of the number of operations required. We have



Parallel Cholesky Factorization for Banded Matrices 733

N∑

i=1

i∑

j=r

j∑

l=r

2 +
N∑

i=1

i∑

j=r

2 ≈
i∑

j=i−k

j∑

l=i−k

2N + 2Nk =

i∑

j=i−k

2N(j − (i − k) + 1) + 2Nk = 2N
k∑

l=1

l + 2Nk

≈ Nk2 + 2Nk = O(Nk2),

where the first approximation is disregarding the truncation in max(1, i − k),
and the second approximation (in the second to last step) uses the observation
that the first term is an arithmetic progression.

5 Experimental Setup

We evaluate our methods on randomly generated positive-definite (which is
ensured by making the matrices diagonally dominant) banded matrices, since
the values of the entries do not matter for the number of operations required
for Cholesky decomposition (so long as the matrix remains symmetric positive-
definite). In all of the experiments below, we fix the dimension of the matrices
(the number of rows and columns) to 100,000, and vary the matrix bandwidth.

5.1 Benchmarking Systems

In the following, we list the benchmarking systems used in this work.

– Coffee Lake Workstation is a workstation laptop with a six-core Intel
Xeon E-2186M (Coffee Lake) CPU, running Ubuntu 22.04 LTS.

– Kebnekaise is an HPC cluster at HPC2N in Ume̊a, Sweden. Kebnekaise
with two Intel Xeon E5-2690v4 (Broadwell) per node. The nodes are running
Ubuntu 20.04 LTS.

For running benchmarks, we use the Google Benchmark3 suite, a C++ library
providing different utilities for running (micro)benchmarks. We let the bench-
mark suite decide the number of iterations to run the benchmark (typically
around 10) and then we repeat each run 10 times to gather statistics and esti-
mate noise, all done using the built-in functionality in Google Benchmark. In all
the plots below, the median time is reported, to exclude influence from outliers
affected by system noise and similar.

For our tasking implementation, we use Intel’s OpenMP runtime library,
linked with code compiled with GCC (Intel’s OpenMP runtime library has a
compatibility layer with GNU OpenMP symbols). We compiled our code using
GCC 11.2.0 and CMake, with the CMake build set to Release mode (implying
optimization level -O3 for GCC). The following software versions were used in
the experiments:

3 https://github.com/google/benchmark.

https://github.com/google/benchmark
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– Intel MKL version 2022.1.0 on Coffee Lake Workstation and 2022.2.0 on Keb-
nekaise

– BLIS version 0.9.0
– OpenBLAS version 0.3.20
– PLASMA version 21.8.29

6 Results

Table 1. Summary of average performance of the different implementations in
GFLOP/s over the different matrix bandwidth ranges, test systems and implemen-
tations. The specific matrix bandwidths benchmarked are the same as in Fig. 2 and 3.
The best performing implementation is shown in bold, with the improvements over the
best performing baseline (which are sequential and multithreaded MKL and PLASMA),
are shown in the bottom row.

Implementation Kebnekaise Coffee Lake Workstation

Problem setup
Low BW

(50–200)

High BW

(200–2000)

Full node

High BW

(200–2000)

Single socket

Low BW

(50–200)

High BW

(200–2000)

Task Parallel + MKL 22.544 218.574 269.133 32.158 168.402

Task Parallel + BLIS 12.224 176.513 186.601 17.9 139.82

MKL Multithread 17.256 161.078 249.022 25.089 162.2

MKL Sequential 17.852 – – 25.731 –

PLASMA – 127.361 128.636 – 88.705

Improvement over

best baseline
26.283% 35.694% 8.076% 24.978% 3.824%

In the following section, we present performance results comparing our parallel
Cholesky factorization with different state-of-the art libraries (Intel MKL and
PLASMA) and settings. Note that our implementation depends on a BLAS
implementation as well as an implementation of dpotrf from LAPACK. In some
results we will use Intel MKL for these dependencies in our algorithm. These
are not to be confused with the stand-alone MKL results, where MKL’s dpbtrf
(LAPACK kernel for Cholesky factorization of banded matrices) is used. In all
of the experiments involving our task-based implementation below, we use the
heuristic described in Sect. 4 to decide the dimension n of the block grid in
each iteration. In all plots, the performance is shown in GFLOP/s, with the
number of floating point operations required computed as described in Sect. 4.2
(in particular, the floating point operation count used to calculate the FLOP/s
is the same for all benchmarks). The plots also show the peak performance
of the CPU (or node for some Kebnekaise benchmarks) in terms of GFLOP/s
in double precision. The values for the peak performance is retrieved from the
export compliance metrics provided by Intel for their CPUs (available online4).

4 https://www.intel.com/content/www/us/en/support/articles/000005755/
processors.html).

https://www.intel.com/content/www/us/en/support/articles/000005755/processors.html
https://www.intel.com/content/www/us/en/support/articles/000005755/processors.html
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Fig. 2. Performance comparison of different Cholesky factorizations on the Coffee Lake
Workstation. The performance is shown in GFLOP/s. The left plot shows the perfor-
mance for smaller matrix bandwidths, and the right for larger matrix bandwidths. Note
the log scale on the y-axes.

The performance plots on the Coffee Lake Workstation are shown in Fig. 2
and the results on Kebnekaise are shown in Fig. 3. On Kebnekaise, the compute
nodes have two CPU sockets on different NUMA domains. For the larger matrix
bandwidths, we show results using both a single CPU socket (thus avoiding
NUMA effects) in Fig. 3b, and results using the full node in Fig. 3c. In cases where
the standard deviation in runtime as reported by Google Benchmark exceeds 5%
(which was only the case for the results in Fig. 3b), we show a (symmetric) offset
of the sample standard deviation as the shaded areas in the plot. The average
performance in GFLOP/s over the different matrix bandwidth ranges (50–200
for the low range and 200–2000 for the high range) is summarized in Table 1.

We find that our task-based implementation using MKL’s BLAS backend is
the best performing when considering the average performance across the range
of matrix bandwidths, with Intel MKL’s dpbtrf being the second best perform-
ing in most cases. However, Intel MKL performs better in certain configurations
and at certain bandwidths, as we can see in the plots. The difference in perfor-
mance at different matrix bandwidths for our task-based implementation may
be affected by the heuristic used to select sub-block sizes (described in Sect. 4),
which is still rather crude. Furthermore, we see that the performance of our
task-based approach using BLIS for the BLAS backend has a rather significant
drop in performance compared to using MKL for BLAS. One possible reason for
this is that MKL’s BLAS level-3 kernels may be better tuned for small matri-
ces (the matrix sizes in each BLAS call will often be approximately 50 × 50).
This performance difference for smaller matrices has also been observed in pre-
vious work [12]. PLASMA’s performance is lower than MKL in our experiments,
which we believe to be caused by overhead in converting the matrix format to
PLASMA’s internal storage format from the standard LAPACK format used in
our benchmarks. On average, we find that our performance improvement relative
to Intel MKL is larger for the smaller matrix bandwidth. The average perfor-
mance across the range of matrix bandwidths is far from the peak performance
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Fig. 3. Performance comparison of different Cholesky factorization implementations
on Kebnekaise. The performance is shown in GFLOP/s (higher is better). Two types
of runs are shown, one using the full node with two Intel Xeon E2690v4 CPUs (28
physical cores) and two corresponding NUMA domains, and two using a single socket
(14 physical cores) and a single NUMA domain.

of the CPUs in all cases, with the size of the gap increasing significantly as the
bandwidths of the matrix decreases. For the largest bandwidths, the best per-
forming implementations achieve approximately 70% of the peak performance
of the CPUs.

7 Conclusions and Future Work

In this paper, we have presented our work on evaluating the performance of a
task-based parallel algorithm for Cholesky factorization of banded matrices. Our
results demonstrate that our method performs, on average, better than state-of-
the-art libraries such as Intel MKL for matrices with dimensions and bandwidths
similar to those that may arise from our aforementioned optimization problems.
However, achieving the optimal performance may depend on a number of factors,
including the specific CPU hardware used, the dimensions of the input matrix,
among other things.
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Furthermore, the rapid rise in utilization of GPUs in HPC motivates an
investigation of the suitability of our algorithm for GPUs. Implementation wise,
using task based parallel programming models to target GPUs is possible, for
example using the OmpSS programming model [3,10]. Another possible approach
is to use the CUDA Graph functionality introduced in CUDA 10, whereby graphs
consisting of kernels and their dependencies can be built explicitly and executed
on the GPU. Regardless of the specific implementation used, one of the main
challenges we see is the limited amount of parallelism available in the Cholesky
factorization of banded matrices when the size of the bands is modest (our results
show that the performance is far from the peak performance of even CPUs at
smaller matrix bandwidths). GPUs often require a large amount of available
parallelism to run at their peak performance. Thus, the performance benefit
of porting to GPUs may be modest, but this is a question we leave for future
research.

In conclusion, our implementation performs competitively compared to Intel
MKL for our use case, all while keeping a LAPACK-compatible storage scheme
for the matrices. Finally, we hope to be able to evaluate our algorithm in a real
optimization pipeline for radiation therapy problems in the future to assess the
performance improvement in such cases.
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J., Waśniewski, J. (eds.) PARA 2006. LNCS, vol. 4699, pp. 608–616. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-75755-9 73

24. Unkelbach, J., et al.: Optimization approaches to volumetric modulated arc therapy
planning. Med. Phys. 42(3), 1367–1377 (2015)

https://doi.org/10.1007/978-3-319-46079-6_37
https://doi.org/10.1007/BF01407861
https://doi.org/10.1007/s11227-022-04555-8
https://doi.org/10.1007/978-3-540-92859-1_21
https://doi.org/10.1007/978-3-540-92859-1_21
https://doi.org/10.1007/978-3-540-75755-9_73


Parallel Cholesky Factorization for Banded Matrices 739

25. Van Zee, F.G., Chan, E., Van de Geijn, R.A., Quintana-Orti, E.S., Quintana-Orti,
G.: The libflame library for dense matrix computations. Comput. Sci. Eng. 11(6),
56–63 (2009)

26. Wang, Y., Boyd, S.: Fast model predictive control using online optimization. IEEE
Trans. Control Syst. Technol. 18(2), 267–278 (2009)

27. Wright, S.J.: Applying new optimization algorithms to more predictive control.
Technical report, Argonne National Lab. (ANL), Argonne, IL, United States (1996)



Author Index

A
Aldinucci, Marco 383, 679
An, Hong 564
An, Xuejun 245
Anjana, Parwat Singh 184

B
Badia, Rosa M. 111, 397
Benoit, A. 81
Birke, Robert 383
Bojko, Dominik 518, 533
Bramas, Bérenger 549
Brandic, Ivona 411
Brorsson, Mats 3

C
Canon, Louis-Claude 81, 229
Carlier, Jacques 139
Carretero, Jesus 679
Chakraborty, Saheli 184
Chen, Hongyu 367
Chen, Junshi 564
Chen, Yao 339
Chen, Yuan 275
Chen, Zekai 623
Cheng, Kwang-Ting 426
Cheng, Zhiling 275
Chu, Jun 592
Ciorba, Florina M. 214
Colin, Raphaël 549
Colonnelli, Iacopo 383
Conejero, Javier 111, 397

D
Dandolo, Enrico 474
Davis, Philip E. 323
Debus, Charlotte 17
Deng, Lingfeng 275

Dikaiakos, Marios D. 154
Dong, Dezun 260, 352

E
Ejarque, Jorge 111
Eleliemy, Ahmed 214
Elghazi, R. 81
Emani, Murali 458

F
Fan, Dongrui 245
Fan, Zhihua 245
Flügel, Katharina 17
Fredriksson, Albin 725

G
Gao, Xiaoyao 289
Garcia-Blas, Javier 679
Ge, Keshi 367
Genaud, Stéphane 549
Götschel, Sebastian 649
Götz, Markus 17
Grage, Kilian 503
Grüneis, Andreas 710
Guo, Luanzheng 592
Guo, Minyi 426
Guo, Yiming 339
Gutiérrez Hermosillo Muriedas, Juan Pedro

17

H
Hanen, Claire 139
Hao, Jie 289
He, Xiaowei 260
Héam, P.-C. 81
Henkys, Valentin 664
Hernandez, Oscar 32
Hofstätter, Daniel 411

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2023
J. Cano et al. (Eds.): Euro-Par 2023, LNCS 14100, pp. 741–743, 2023.
https://doi.org/10.1007/978-3-031-39698-4

https://doi.org/10.1007/978-3-031-39698-4


742 Author Index

Horvath, Kurt 125
Hou, Xiaofeng 426
Hu, Jiangyi 65
Huang, Libo 260
Huang, Shenghong 564

I
Ibrahim, Abdul Qadir 649
Ilager, Shashikant 411
Ilsche, Thomas 214
Irmler, Andreas 710

J
Jansen, Klaus 503
Jiang, Jingfei 367
Jouglet, Antoine 139

K
Kanakagiri, Raghavendra 710
Kanas, Tomasz 96
Kim, Jongryool 304
Kimovski, Dragi 125
Klonowski, Marek 518, 533
Kobus, Robin 664
Korndörfer, Jonas H. Müller 214
Kowalski, Dariusz R. 533

L
Lai, Zhiquan 367
Landré, Damien 229
Lee, Chul-Ho 304
Li, Ao 275
Li, Chao 426
Li, Cunlu 352
Li, Dongsheng 367
Li, Feng 199
Li, Li 426
Li, Shiju 304
Li, Wenhai 275
Li, Wenming 245
Li, Wenzhong 65
Li, Xiang 65
Li, Zhan 289
Lim, Jin 304
Liu, Felix 725
Liu, Jiacheng 426
Liu, Ximeng 623
Liu, Xu T. 592
Loechner, Vincent 549

Lordan, Francesc 111
Lu, Sanglu 65
Lu, Shuai 592
Lujic, Ivan 411
Luo, Yifan 564

M
Marciniak, Mateusz 518, 533
Markidis, Stefano 725
Martin, Benoît 578
Martinelli, Alberto Riccardo 679
McColl, William F. 489
Meng, Zhaoteng 289
Meschke, G. 694
Mittone, Gianluca 383
Mohnke, Jasmin 637
Morales, Nicolas 323
Munier Kordon, Alix 139

N
Nelgen, Johannes 664

O
Obermaier, Holger 17
Ohlmann, Sebastian T. 710
Ohnesorge, Felix 503

P
Palermo, Gianluca 47
Pallis, George 154
Panner Selvam, Karthick 3
Papadopoulou, Nikela 169
Parashar, Manish 323
Peng, Chao 339
Peng, Ivy 608
Peri, Sathya 184
Pericàs, Miquel 169
Petre, Cosmin 679
Philippe, Laurent 229
Piduguralla, Manaswini 184
Pierson, Jean-Marc 229
Pietracaprina, Andrea 474
Poole, Stephen 32
Prodan, Radu 125
Prosperi, Laurent 578
Pucci, Geppino 474
Puigdemunt, Gabriel 111



Author Index 743

R
Ran, Zhejiang 367
Raskar, Siddhisanket 458
Ren, Xiancheng 65
Renaud-Goud, Paul 229
Riviera, Walter 383
Rocco, Roberto 47
Rui, Qilin 339
Ruprecht, Daniel 649
Rzadca, Krzysztof 96

S
Saberi, S. 694
Sanchez-Gallegos, Genaro 679
Sanders, Peter 443
Schieffer, Gabin 608
Schmidt, Bertil 664
Schöne, Robert 214
Seemaier, Daniel 443
Shapiro, Marc 578
Shu, Lin 289
Simsek, Osman Seckin 214
Solomonik, Edgar 710
Song, Fengguang 199
Soomro, Pirah Noor 169
Streit, Achim 17
Syga, Piotr 518
Symeonides, Moysis 154

T
Tan, Hongbing 260
Tang, Kevin 304
Tang, Shengzhong 245
Tang, Xuehan 426
Tarhan, Istenc 139
Tatu, Cristian 397
Teranishi, Keita 323
Thangamani, Arun 549
Trevisan Jost, Tiago 549
Trihinas, Demetris 154

U
Uran, Christoph 125

V
Vázquez-Novoa, Fernando 397
Vergés, Pere 111
Vishwanath, Venkatram 458
Vogel, A. 694

W
Wagner, Michael 637
Wang, Fuyi 623
Wang, Shaocong 352
Wang, Yaohua 352
Wang, Yongwen 260
Wang, Zhanming 564
Welch, Aaron 32
Wöllik, Helmut 125

X
Xiao, Liquan 260, 352
Xiao, Long 289
Xie, Zhen 458
Xu, Chenyang 339
Xu, Taishan 65
Xu, Yeting 65

Y
Yang, Yi 65
Yang, Zhengfeng 339
Yao, Jineng 564
Ye, Xiaochun 245
Yu, Shengxing 623

Z
Zhang, Bo 323
Zhang, Jing 260
Zhang, Xiaoyun 352
Zhang, Zhao 323
Zhang, Ziyu 564
Zheng, Zhiwei 623
Zouzias, Anastasios 489


	Preface
	Organization
	Euro-Par 2023 Invited Talks
	Distributed Intelligence in the Computing Continuum
	A Continuum of Matrix Multiplications: From Scientific Computing to Deep Learning
	Bias in Data and Algorithms: Problems, Solutions and Stakeholders
	Euro-Par 2023 Track Overviews
	Track 1: Programming, Compilers and Performance
	Track 2: Scheduling, Resource Management, Cloud, Edge Computing, and Workflows
	Track 3: Architectures and Accelerators
	Track 4: Data Analytics, AI, and Computational Science
	Track 5: Theory and Algorithms
	Track 6: Multidisciplinary, Domain-Specific and Applied Parallel and Distributed Computing
	Contents
	Programming, Compilers and Performance
	DIPPM: A Deep Learning Inference Performance Predictive Model Using Graph Neural Networks
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Deep Learning Model into Relay IR
	3.2 Node Feature Generator
	3.3 Static Feature Generator
	3.4 Performance Model Graph Network Structure (PMGNS)
	3.5 MIG Predictor

	4 Experiments and Results
	4.1 The DIPPM Dataset
	4.2 Enviroment Setup
	4.3 Evaluation
	4.4 Prediction of MIG Profiles
	4.5 DIPPM Usability Aspects

	5 Conclusion
	References

	perun: Benchmarking Energy Consumption of High-Performance Computing Applications
	1 Introduction
	2 Related Work
	3 Energy Benchmarking in High-Performance Computing
	3.1 Background: Determining Energy Consumption
	3.2 perun

	4 Experimental Evaluation
	4.1 Application Use Cases
	4.2 Hardware Environment
	4.3 Software

	5 Results
	5.1 Monitoring Overhead
	5.2 Monitoring Accuracy and Missing Power Consumption
	5.3 Impact of Non-compute Devices on the Overall Energy Consumption
	5.4 Scaling Behavior for Multi-Node Applications

	6 Conclusion
	6.1 Limitations

	References

	Extending OpenSHMEM with Aggregation Support for Improved Message Rate Performance
	1 Introduction
	2 Background
	2.1 OpenSHMEM
	2.2 Bale

	3 Design
	4 Results
	4.1 Histogram
	4.2 Indexgather
	4.3 Sparse Matrix Transpose
	4.4 Triangle Counting

	5 Related Work
	6 Conclusion and Future Work
	References

	Fault-Aware Group-Collective Communication Creation and Repair in MPI
	1 Introduction
	2 Background and Previous Work
	3 Group-Collective Operations
	4 Liveness Discovery Algorithm
	5 Experimental Campaign
	6 Conclusions
	References

	Scheduling, Resource Management, Cloud, Edge Computing, and Workflows
	MetaLive: Meta-Reinforcement Learning Based Collective Bitrate Adaptation for Multi-Party Live Streaming*-4pt
	1 Introduction
	2 Related Work
	3 Problem Formulation
	3.1 System Model
	3.2 QoE Metrics
	3.3 Optimization Objective

	4 MetaLive Solution
	4.1 Collaborative Bitrate Adaptation with Reinforcement Learning
	4.2 MetaLive Framework
	4.3 Meta-Training Algorithms

	5 Experiments
	5.1 Implementation
	5.2 QoE Parameters
	5.3 Network Traces
	5.4 Baseline Algorithms
	5.5 Comparison of Performance on Three Network Scenarios
	5.6 Comparison of Performance Adaptive Capability
	5.7 Trade-Off Between QoE Metrics

	6 Conclusion
	References

	Asymptotic Performance and Energy Consumption of SLACK
	1 Introduction
	2 Related Work
	3 Framework
	4 A Bound for SLACK
	5 Convergence Speed of SLACK
	5.1 Convergence of the Makespan
	5.2 Convergence of the Energy Consumption

	6 Simulations
	6.1 Experimental Setting
	6.2 Simulations: Study of j and j
	6.3 Simulations: Energy Minimization

	7 Conclusion
	References

	A Poisson-Based Approximation Algorithm for Stochastic Bin Packing of Bernoulli Items
	1 Introduction
	2 Related Work
	3 Problem Formulation and Notation
	4 Refined Poisson Approximation Packing Algorithm
	5 Proof of Correctness
	5.1 Confident and Minor Items
	5.2 Standard Items

	6 Approximation Ratio
	6.1 Proof of the Approximation Ratio
	6.2 Optimization of the Approximation Ratio

	7 Dependence on the Maximal Overflow Probability
	8 Evaluation by Simulations
	9 Conclusions
	References

	Hierarchical Management of Extreme-Scale Task-Based Applications
	1 Introduction
	2 Related Work
	3 Workflow Management Encapsulation
	4 Runtime System Architecture
	5 Evaluation
	5.1 GridSearch
	5.2 Random Forest

	6 Conclusion
	References

	MESDD: A Distributed Geofence-Based Discovery Method for the Computing Continuum
	1 Introduction
	2 Related Work
	2.1 Centralized Service Discovery
	2.2 Decentralized Service Discovery

	3 Model
	3.1 Service Model
	3.2 Geofence Model
	3.3 Service Discovery
	3.4 Service Runtime Update
	3.5 Objective

	4 Methodology
	5 Experimental Setup
	5.1 Testbed
	5.2 Related Work Comparison
	5.3 Traffic Warning Application

	6 Results
	6.1 Service Discovery
	6.2 Cumulative Service Discovery and Runtime Update

	7 Conclusion
	References

	Parameterized Analysis of a Dynamic Programming Algorithm for a Parallel Machine Scheduling Problem
	1 Introduction
	2 Definition of the State Graph G
	2.1 Basic Definitions and States
	2.2 Set R(v) of Candidate Jobs and tmin
	2.3 Successors of a State v
	2.4 Longest Path of the State Graph

	3 Implementation of the DP Algorithm
	3.1 Dominance on States Structure
	3.2 Dominance of Demeulemeester and Herroelen
	3.3 Steps of the Dynamic Programming Algorithm

	4 Complexity Analysis of the DP Algorithm
	5 Computational Experiments
	5.1 Data Generation
	5.2 Computational Results

	6 Conclusion
	References

	SparkEdgeEmu: An Emulation Framework for Edge-Enabled Apache Spark Deployments
	1 Introduction
	2 Related Work
	3 System Overview
	4 Implementation Aspects
	5 Experimental Study
	5.1 Experiments and Results

	6 Conclusion and Future Work
	References

	ODIN: Overcoming Dynamic Interference in iNference Pipelines
	1 Introduction
	2 Background and Motivation
	3 ODIN: A Dynamic Solution to Overcome Interference on Inference Pipelines
	3.1 Methodology
	3.2 ODIN: A Heuristic-Based Approach for Pipeline Stage Re-balancing Under Interference
	3.3 Implementation Details

	4 Evaluation
	4.1 Experimental Setup
	4.2 Interference Mitigation with ODIN
	4.3 Maintaining QoS with ODIN
	4.4 Scalability Analysis of ODIN

	5 Conclusion
	References

	DAG-Based Efficient Parallel Scheduler for Blockchains: Hyperledger Sawtooth as a Case Study
	1 Introduction
	2 Background on Hyperledger Sawtooth
	3 Proposed Framework
	3.1 Parallel Scheduler
	3.2 Secure Validator

	4 Experiments Analysis
	4.1 Implementation Details
	4.2 Experiments

	5 Related Work
	6 Conclusion and Future Work
	References

	INSTANT: A Runtime Framework to Orchestrate In-Situ Workflows
	1 Introduction
	2 Methodology
	2.1 Mapper
	2.2 Execution Engine

	3 Use Cases
	3.1 WRF-SFIRE
	3.2 Computational Fluid Dynamics with Real-Time Machine Learning/Visualization

	4 Related Work
	5 Discussion
	5.1 Co-allocation of Computation Resources and Queue Time Waste
	5.2 Application Deployment in Distributed Computing Environments

	6 Conclusion
	References

	How Do OS and Application Schedulers Interact? An Investigation with Multithreaded Applications
	1 Introduction
	2 Related Work
	3 Scheduling in Context
	3.1 Linux OS Scheduling
	3.2 Application Thread-Level Scheduling

	4 Interaction Between OS and Application Scheduler
	4.1 Quantifying OS Scheduler Influence on Application Performance
	4.2 Recording Linux OS Scheduling Events

	5 Performance Results and Discussion
	5.1 Applications
	5.2 Design of Experiments
	5.3 Influence of OS Scheduling Events on Application Performance
	5.4 Interaction Between OS- And Application-Level Scheduling

	6 Conclusion
	References

	Assessing Power Needs to Run a Workload with Quality of Service on Green Datacenterspg*-2pt
	1 Introduction
	2 Related Work
	3 Problem Definition, Model and Objective
	4 Determining the Minimum Power Value
	5 Maximizing the Computing Power
	6 Experiment and Results
	7 Conclusion
	References

	Architectures and Accelerators
	Improving Utilization of Dataflow Architectures Through Software and Hardware Co-Design
	1 Introduction
	2 Background and Related Works
	3 Motivation
	4 Our Design
	4.1 Load Balancing
	4.2 Decoupled Model
	4.3 Decoupled Architecture

	5 Methodology
	6 Evaluation
	6.1 Results and Analysis
	6.2 Comparison with Other Dataflow Architectures

	7 Conclusion
	References

	A Multi-level Parallel Integer/Floating-Point Arithmetic Architecture for Deep Learning Instructions
	1 Introduction
	2 Background
	2.1 Integer and Floating-Point Formats
	2.2 The Computing Requirement of DLIs

	3 Related Work
	4 The Configurable Integer/Floating-Point Arithmetic Architecture
	4.1 The Flexible Dataflow of the Dual-Path Architecture
	4.2 The Bit-Partitioning Method for Multiplier Design

	5 Circuit Implementation
	5.1 Configurable Multiple-Precision Multiplier Array
	5.2 Cascade Alignment Shifter and Product Processing
	5.3 Adder, Leading Zero Anticipator, Normalization and Rounding

	6 Synthesis and Evaluation
	6.1 Comparisons with Related Works
	6.2 Evaluation of the DLIs Implementation
	6.3 Evaluation of the Inter-operation Parallelism

	7 Conclusion
	References

	Lock-Free Bucketized Cuckoo Hashing
	1 Introduction
	2 Preliminaries
	2.1 Bucketized Cuckoo Hashing
	2.2 Difficulties when Supporting Lock-Free Operations

	3 Overview of LFBCH
	3.1 Data Structure
	3.2 Basic Operations

	4 Detailed Algorithm Description
	4.1 Lock-Free Kick on Bucketized Cuckoo Hashing
	4.2 Prevent Duplicated Key
	4.3 Lock Free Rehash
	4.4 Hot Key Perception and Adjustment

	5 Experiments
	6 Related Works
	7 Conclusion
	References

	BitHist: A Precision-Scalable Sparse-Awareness DNN Accelerator Based on Bit Slices Products Histogram
	1 Introduction
	2 Motivation
	2.1 Bit-Level Fusion and Decomposition
	2.2 The Redundant Computation in Bit-Level Computation

	3 MAC Based on Bit-Slices Products Histogram
	4 BitHist Accelerator
	4.1 MAC Unit Based on Bitslices Products Histogram
	4.2 Dataflow and Architecture of BitHist

	5 Evaluation
	5.1 Experiment Methodology
	5.2 Area and Power at MAC Unit Level
	5.3 Performance Comparison
	5.4 Performance Boost with Sparse Exploitation

	6 Conclusion
	References

	Computational Storage for an Energy-Efficient Deep Neural Network Training System
	1 Introduction
	2 Background and Related Work
	3 Computational Storage for DNN Prepossessing
	4 System Implementation Details
	5 Case Studies and Experiment Results
	6 Conclusion and Future Work
	References

	Data Analytics, AI, and Computational Science
	Optimizing Data Movement for GPU-Based In-Situ Workflow Using GPUDirect RDMA*-6pt
	1 Introduction
	2 Background
	2.1 In-Situ Workflow
	2.2 GPUDirect Technologies

	3 Related Work
	4 Design
	4.1 Sender Side
	4.2 Receiver Side
	4.3 Implementation and Interoperability

	5 Evaluation
	5.1 End-to-End Benchmark
	5.2 Real Scientific Workflow

	6 Conclusion and Future Work
	References

	FedGM: Heterogeneous Federated Learning via Generative Learning and Mutual Distillation
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Typical Federated Learning Setup
	3.2 Knowledge Distillation

	4 Methodology
	4.1 Global Knowledge Extraction
	4.2 Mutual Distillation

	5 Experiments
	5.1 Datasets
	5.2 Baseline
	5.3 Implementation Details
	5.4 Overall Performance
	5.5 Sensitivity Analysis

	6 Conclusion
	References

	DeTAR: A Decision Tree-Based Adaptive Routing in Networks-on-Chip
	1 Introduction
	2 Background and Related Work
	2.1 Machine Learning in Adaptive Routing Design
	2.2 Decision Tree Models

	3 Design of DeTAR Routing
	3.1 Construction of Dataset
	3.2 Learning a Routing Policy
	3.3 Analysis of the DeTAR Routing Algorithm
	3.4 Generating Implementable Routing Logic

	4 Evaluation
	4.1 Scalable to Different Injection Rates
	4.2 Generalization to Different Traffic Patterns
	4.3 Real Workloads
	4.4 Area of the DeTAR Routing Logic
	4.5 Discussion

	5 Conclusion
	References

	Auto-Divide GNN: Accelerating GNN Training with Subgraph Division
	1 Introduction
	2 Background and Motivation
	2.1 Sampling-Based GNN Training
	2.2 Acceleration Based on GPU Caching
	2.3 Bottlenecks of GPU Caching

	3 Design
	3.1 Subgraph Division
	3.2 Automatic Profiling

	4 Evaluation
	4.1 Experimental Setup
	4.2 Overall Performance
	4.3 Decrease of GPU Memory Overhead
	4.4 Benefit of Auto-profile Method
	4.5 Ablation Experiments
	4.6 Scalability
	4.7 Training Convergence

	5 Related Works
	6 Conclusion
	References

	Model-Agnostic Federated Learning
	1 Introduction
	2 Related Works
	3 Model-Agnostic Federated Algorithms
	4 MAFL Architecture
	4.1 The Plan Generalization
	4.2 Expanded Communication Protocol
	4.3 Core Classes Extension

	5 Evaluation
	5.1 Performance Optimizations
	5.2 Correctness
	5.3 Flexibility
	5.4 Scalability Analysis

	6 Discussion
	7 Conclusions
	References

	Scalable Random Forest with Data-Parallel Computing
	1 Introduction
	2 Related Work
	3 Random Forest Algorithm
	4 Parallelization
	4.1 PyCOMPSs and dislib
	4.2 Parallelization of the Algorithm
	4.3 Nested Task Solution

	5 Evaluation
	6 Conclusions
	References

	SymED: Adaptive and Online Symbolic Representation of Data on the Edge
	1 Introduction
	2 Motivation and Background
	3 SymED: Symbolic Edge Data Representation
	3.1 Sender Side - Compression
	3.2 Receiver Side - Symbolic Conversion

	4 Performance Evaluation
	4.1 Experimental Setup
	4.2 Running Example
	4.3 Results and Analysis

	5 Related Work
	6 Conclusions and Future Work
	References

	MMExit: Enabling Fast and Efficient Multi-modal DNN Inference with Adaptive Network Exits
	1 Introduction
	2 MMExit: Architecture Design
	2.1 Problem Setup
	2.2 Discussion on MMExit 

	3 MMExit: Adaptive Inference
	3.1 Utility Assessment Metric
	3.2 Equivalent Modality Serialization
	3.3 MMExit Inference Process

	4 MMExit: Joint Training
	4.1 Joint Loss Function
	4.2 Objective Analysis
	4.3 MMExit Training Algorithm

	5 Experiments and Evaluations
	5.1 Experiment Setup
	5.2 Visualization
	5.3 Ablation Study
	5.4 Performance Evaluation
	5.5 Reduction of Computation

	6 Related Work
	7 Conclusion
	References

	Theory and Algorithms
	Distributed Deep Multilevel Graph Partitioning
	1 Introduction
	2 Preliminaries
	3 Related Work
	4 Distributed Deep Multilevel Graph Partitioning
	5 Implementation Details
	6 Experiments
	7 Conclusion and Future Work
	References

	TrainBF: High-Performance DNN Training Engine Using BFloat16 on AI Accelerators
	1 Introduction
	2 Preliminaries
	3 Overview of TrainBF
	4 Normalization Techniques in TrainBF
	4.1 Central and Range-Maximized Normalization for Activations
	4.2 Activation-Aware Normalization for Weights
	4.3 Range-Aware Loss Scaling for Gradients

	5 Adaptive Layer Modifier in TrainBF
	5.1 Sensitivity Study
	5.2 Adaptive Layer Modifier

	6 Efficient Parallel Strategy in TrainBF
	7 Evaluation
	7.1 Experimental Setup
	7.2 Throughput and Accuracy
	7.3 Breakdown for Accuracy Improvement
	7.4 Effectiveness of Three Modules in TrainBF
	7.5 Overhead Analysis

	8 Related Work
	9 Conclusion
	References

	Distributed k-Means with Outliers in General Metrics
	1 Introduction
	1.1 Related Work
	1.2 Our Contribution

	2 Preliminaries
	3 MapReduce Algorithm for k-Means with z Outliers
	3.1 Flexible Coreset Construction
	3.2 Complete Algorithm
	3.3 Improved Local Memory

	4 Instantiation with Different Sequential Algorithms for Weighted k-Means
	5 Conclusions
	References

	A Parallel Scan Algorithm in the Tensor Core Unit Model
	1 Introduction
	2 MatMulScan: Parallel Scan in the TCU Model
	2.1 Analysis
	2.2 Extend Algorithm 1 to Arbitrary Input Length
	2.3 Discussion

	3 Related Work
	4 Conclusion and Future Work
	A  Appendix
	A.1  Correctness of Algorithm 1

	References

	Improved Algorithms for Monotone Moldable Job Scheduling Using Compression and Convolution
	1 Introduction
	1.1 Problem Definitions and Notations
	1.2 Related Work
	1.3 Our Results

	2 General Techniques and FPTAS for Many Machines
	2.1 Constant Factor Approximation

	3 FPTAS for Large Machine Counts
	4 (32+ )-Approximation
	4.1 Solving the Knapsack Problems

	5 Implementation
	6 Conclusion and Open Questions
	References

	On Size Hiding Protocols in Beeping Model
	1 Introduction
	2 Formal Model
	3 Universal Algorithm for Beeping Model
	4 Size Hiding in Regular Protocols
	5 Conclusions and Future Work
	References

	Efficient Protective Jamming in 2D SINR Networks
	1 Introduction
	2 Model and Problem Statement
	3 Uniform Networks Jamming
	3.1 Two Stations in the Uniform Model
	3.2 Jamming the Enclosing Area

	4 Noisy Dust for Non-uniform Networks
	4.1 Single Station Effective Jamming Range
	4.2 Noisy Dust Algorithm

	5 Conclusions and Future Work
	References

	Multidisciplinary, Domain-Specific and Applied Parallel and Distributed Computing
	GPU Code Generation of Cardiac Electrophysiology Simulation with MLIRpg*-2pt
	1 Introduction
	2 Compilation Flow in OpenCARP
	2.1 EasyML: Description of Ionic Models
	2.2 Code Generation in OpenCARP
	2.3 Vectorized CPU Code Generation Using limpetMLIR

	3 Optimized GPU Code Generation
	3.1 Overview of GPU Code Compilation Flow
	3.2 LimpetMLIR for GPU

	4 Discussion
	5 Experimental Results
	5.1 Performance
	5.2 Energy Efficiency

	6 Related Work
	7 Conclusion
	References

	.26em plus .1em minus .1emSWSPH: A Massively Parallel SPH Implementation for Hundred-Billion-Particle Simulation on New Sunway Supercomputer
	1 Introduction
	2 Background
	2.1 Smooth Particle Hydrodynamic Method
	2.2 Related Work and Analysis
	2.3 Overview of the New Sunway System and SW26010pro Many-Core Processor

	3 Implementation and Optimization
	3.1 Domain Decomposition Strategy
	3.2 Point-to-Point Asynchronous Communication and Task Overlapping

	4 Evaluation
	4.1 Single Node Evaluation
	4.2 Scalability
	4.3 Load-Balance Test

	5 Conclusion
	References

	Transactional-Turn Causal Consistency
	1 Introduction
	2 Background
	2.1 Groundwork
	2.2 Actor Execution Model
	2.3 Message-Based Communication Model and Causal Delivery
	2.4 Shared-Memory Transactional Execution Model
	2.5 Shared-Memory Communication and Causal Consistency

	3 Transactional-Turn Causal Consistency: Unifying Messages and Shared Memory
	3.1 TTCC Unified Execution Model
	3.2 TTCC Unified Causally-Consistent Communication Model

	4 Unified Message-Memory Protocol
	4.1 Overview
	4.2 Notation and Definitions
	4.3 Execution on an Actor
	4.4 Execution on Replication Actor

	5 Implementation
	5.1 Causal Shared Memory
	5.2 Causal Message Delivery

	6 Evaluation
	6.1 Experimental Protocol
	6.2 Results

	7 Conclusion
	References

	Im2win: An Efficient Convolution Paradigm on GPU
	1 Introduction
	2 Preliminaries and Related Work
	2.1 Notations
	2.2 The Direct Convolution
	2.3 The GEMM-Based Convolution
	2.4 The Convolution Algorithms Implemented in cuDNN

	3 The Im2win-Based Convolution Paradigm on GPU
	3.1 Motivations
	3.2 The im2win-based convolution on GPU
	3.3 Optimizations on GPU

	4 Experimental Results
	4.1 Experimental Setup
	4.2 Performance
	4.3 Memory Usage
	4.4 Ablation Study

	5 Conclusion
	References

	Accelerating Drug Discovery in AutoDock-GPU with Tensor Cores
	1 Introduction
	2 Background
	2.1 Computational Method in AutoDock-GPU
	2.2 NVIDIA Tensor Cores

	3 Performance Characterization on GPU
	4 Methodology
	4.1 Requirements and Design Choices
	4.2 Matrix-Based Multi-dimensional Reduction Method

	5 Evaluation
	5.1 Validation of the Scoring Function
	5.2 Runtime Per Evaluation of the Scoring Function
	5.3 Impact on the Docking Time

	6 Related Works
	7 Conclusions
	References

	FedCML: Federated Clustering Mutual Learning with non-IID Data
	1 Introduction
	2 Related Work
	2.1 Federated Learning
	2.2 Clustering Federated Learning

	3 Problem Formulation
	3.1 Problem Definition
	3.2 Optimization Goal

	4 Federated Clustering Mutual Learning
	4.1 System Overview
	4.2 One-Shot Clustering
	4.3 Intra-cluster Learning
	4.4 Inter-cluster Learning

	5 Convergence Analysis
	6 Experimental Evaluation
	6.1 Accuracy Comparison
	6.2 Communication Efficiency

	7 Conclusion
	References

	A Look at Performance and Scalability of the GPU Accelerated Sparse Linear System Solver Spliss
	1 Introduction
	2 Background
	3 Porting Spliss to GPU
	3.1 Implementation Changes
	3.2 Adjustments at Runtime

	4 Evaluation
	4.1 The Test Systems
	4.2 The Test Case
	4.3 Measurement Setup
	4.4 Comparing CPU and GPU Performance and Scalability

	5 Conclusion
	References

	Parareal with a Physics-Informed Neural Network as Coarse Propagator*-4pt
	1 Introduction
	2 Related Work
	3 Algorithms and Benchmark Problem
	3.1 Parareal
	3.2 Numerical Solution of the Black-Scholes Equation
	3.3 Physics Informed Neural Network (PINN)

	4 Results
	5 Discussion
	References

	Faster Segmented Sort on GPUs*-6pt
	1 Introduction
	2 Related Work
	3 Improved Segmented Sort on GPUs
	3.1 Register Sort Kernels
	3.2 Shared Memory Sort Kernels
	3.3 Global Memory Sort Kernels
	3.4 Kernel Selection
	3.5 Key-Only Segmented Sort

	4 Performance Evaluation
	4.1 Key-Value Segmented Sort
	4.2 Key-Only Segmented Sort
	4.3 MetaCache

	5 Conclusion
	References

	Hercules: Scalable and Network Portable In-Memory Ad-Hoc File System for Data-Centric and High-Performance Applications
	1 Introduction
	2 Related Work
	3 Hercules Architecture Design
	3.1 Frontend Layer
	3.2 Storage Backend Layer

	4 File System Design
	4.1 Memory Pool
	4.2 Data Replication
	4.3 Metadata

	5 Communication Layer
	6 Experimental Evaluation
	6.1 Experimental Setup
	6.2 Strong Scalability
	6.3 Weak Scalability
	6.4 Metadata

	7 Conclusions
	References

	An Efficient Parallel Adaptive GMG Solver for Large-Scale Stokes Problems
	1 Introduction
	2 Related Work
	3 Model Problem
	4 Parallel Adaptive Geometric Multigrid
	4.1 Smoother Operators
	4.2 Cache Policies
	4.3 Parallelization and Computational Aspects

	5 Numerical Experiments
	5.1 Strong Scaling
	5.2 Weak Scaling

	6 Conclusions
	References

	Optimizing Distributed Tensor Contractions Using Node-Aware Processor Grids
	1 Introduction
	2 Node-Aware Multiplication and Contraction
	2.1 Node-Aware Matrix Multiplication
	2.2 Node-Aware Tensor Contractions

	3 Evaluation Methodology
	3.1 Hardware and Software Platform
	3.2 Matrix-Multiplication Benchmarks
	3.3 Experimental Methodology

	4 Performance Results/Evaluation
	4.1 Memory Footprint
	4.2 Matrix Multiplication

	5 Performance of Coupled-Cluster Calculations
	6 Related Work
	7 Conclusion
	8 Acknowledgments and Data Availability Statement
	References

	Parallel Cholesky Factorization for Banded Matrices Using OpenMP Tasks*-6pt
	1 Introduction
	2 Related Work
	3 Background
	3.1 Cholesky Factorization

	4 Method
	4.1 Implementation Using OpenMP Tasks
	4.2 Performance Model

	5 Experimental Setup
	5.1 Benchmarking Systems

	6 Results
	7 Conclusions and Future Work
	References

	Author Index

