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Abstract. This paper addresses the issue of communication overhead
costs of federated learning including transmission bandwidth and syn-
chronisation efforts. These costs typically consist of locally observable
costs on executing components, but there are also hidden costs that can
only be measured from a system-wide perspective. The goal is to provide
insight into these hidden costs, measure them and identify strategies for
reducing them. We propose an approach to tackle the hidden costs by
establishing a methodology consisting of an eavesdropping concept and
an evaluation strategy. This way we obtain a refined analysis of directly
observable costs contrasting hidden costs, which is underpinned by exper-
iments based on a 40-client-spanning federated learning system and the
FEMNIST dataset.
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1 Introduction

Federated learning is a distributed machine learning approach that enables the
training of a model on decentralized data. This approach has gained popularity
recently due to its ability to handle sensitive data while maintaining privacy and
security [3,12]. However, the overhead cost of federated learning is an important
consideration, as it involves the transmission of large amounts of data over a
network, as well as the time spent synchronizing the clients [6]. In this paper, we
explore the cost of federated learning, including the directly observable cost in
terms of bytes generated, as well as hidden costs, such as bytes transmitted over
a network. Our goal is to provide a comprehensive understanding of the overhead
cost of federated learning and to identify potential strategies for reducing this
cost. This includes the definition of this overhead cost, how and where we can
measure it, the influence of the measurement towards the system and finally, the
scalability of this approach to large-scale federated learning systems.
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The paper is structured as follows. First, we provide a comprehensive
overview of the related work in Sect. 2, highlighting key contributions and limita-
tions of previous research. In Sect. 3 we present the methodology and techniques
used in our study. We also discuss the rationale behind our design choices and
how they contribute to achieving our research goal. Section 4 provides details
about a reference implementation, including used libraries, hardware specifi-
cations, software infrastructure, data sets, etc. We discuss the challenges we
encountered during our implementation and application of the novel framework
in Sect. 5. It is followed by the results in Sect. 6. We conclude with Sect. 7 in
which we highlight the potential areas for future research, including possible
extensions of the framework.

2 Related Work

Many studies have focused on optimizing the performance of federated learning
algorithms to minimize computational and communication costs [6]. One key
challenge in federated learning is the cost of implementing the approach in soft-
ware [11–13]. For example, a study by [7] developed a system called Federated
Averaging (FedAvg) that reduced the communication cost of federated learning
by using stochastic gradient descent (SGD) to aggregate updates from clients.
Similarly, a study by [10] developed a system called MOCHA that used model
compression techniques to reduce the computational cost of federated learning.

[8] propose a framework for deep learning at the edge. It aims to optimize
deep learning on low-energy edge devices by architecture awareness, considering
the target inference platform and introducing security and adaptiveness very
early in its design. In another study, [9], this framework has been optimized for
a cnn use case. The design of this framework is generic enough to also measure
the amount of data transferred between the components, although the authors
do not specifically mention it. We aim to provide such a mechanism to allow
further evaluation of such frameworks, which should also allow us to further
explain power consumption on edge devices.

Despite these efforts to optimize the cost and enhance the security of feder-
ated, and other machine learning, potential concerns still need to be addressed.
For example, studies by [11,13] demonstrated that an eavesdropper could infer
private data by analyzing client updates in a federated learning system. The
authors showed that this attack was particularly effective when the clients had
limited resources, such as memory. This highlights the effectiveness of an eaves-
dropper, allowing us to inspect (unencrypted) information during system execu-
tion.

These scientific works provide great additions to the field of federated learn-
ing, security and privacy-preserving machine learning, but none of them provides
hard facts on how to measure security or extra overhead incurred by security
measures. We aim to provide such a method, as well as a reference implementa-
tion to evaluate such overhead costs in the area of federated learning.
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3 Design

In this section, we describe the design of our federated learning system and
discuss the communication between clients and servers. We then introduce the
design additions necessary to measure and visualize the overhead cost of feder-
ated learning step by step.

Our system consists of a central server and multiple clients, each with access
to local data. An overview of the fundamental idea can be seen in Fig. 1. The goal
is to train a global model using the local data on each client without the need
to transfer the data to the server. We adopt the Federated Averaging algorithm
proposed in [7] implemented in flwr (Federated Learning frameWoRk) [1].

We aim to detect observable costs, which include the bytes generated by each
client and the time spent by each client waiting for the central server, as well as
the hidden cost, which includes the time spent outside of each client by external
influences, such as the network transmission, or the network topology.

Fig. 1. Design overview of the suggested federated learning system, introducing the
eavesdropper. Red marks the generation of hidden costs, green the observable costs.
(Color figure online)

Each client initializes their local model, registers to the federated learning
server, and starts training the first epochs, instead of synchronizing it before-
hand with the federated learning server. They then continue individually training
the model using its local data, which already generates bytes and thus directly
observable cost, as seen in Fig. 1, item 1. Each client then sends the updated
model parameters back to the server [3]. The server aggregates the updated
model parameters from all clients using Federated Averaging [7] and broadcasts
the updated model to all clients. This process continues for several rounds until
the model converges. The difference in cost between item 1 and item 2 is that
inside the clients any cost can be measured. Outside of the clients, in item 2, no
client can perceive the generated cost.
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The clients track the locally incurred overhead cost of the federated learning
training themselves. These values include but are not limited to the size of the
learning result that is to be sent to the server in bytes, the time spent calculating
the size of the learning result bytes, and the time spent waiting for this client
to be selected for the next training, i.e. the time spent synchronising. This local
reflection cannot be seen as absolutes. For example, the learning result size in
bytes in a network is just the payload of a message protocol, which itself creates
other overhead. The time spent on calculating the byte size of the learning result
again takes time to determine. Thus, the local overhead costs only provide an
inaccurate picture of the overhead, which needs to be sharpened by another,
external component.

We connect the clients to the server using GRPC [2] since this allows us
to keep the components connected throughout the training rounds. Thus, the
server can on the fly decide which clients to select for further training rounds
and see failed or disconnected clients. But by using such a direct connection
we cannot extract any meta-information about the communication, such as the
actual number of transmitted bytes, or the time taken for these bytes to be
received by one communication partner. To mitigate this problem we introduce
the eavesdropper, as seen in Fig. 1, item 3.

An eavesdropper is a software component that acts like a network proxy. It
is part of the communication network and can access the raw information trans-
mitted from and to clients, i.e. it can listen to, or eavesdrop on, the messages
transferred between the network clients. The basic premise is similar to the net-
work security concept of a man in the middle (mitm) attack [5]. We introduce
the eavesdropper as a central network component in the network. As the com-
munication between federated learning client and server is based on the clients
sending messages to the server and the server just responding, the eavesdropper
just needs to be aware of how to reach the server and intercept all messages for it.
By intercepting these messages we can, in addition to collecting the actual num-
ber of bytes being transferred over the network, including any protocol overhead
like HTTP-Headers, also pinpoint the time when a message enters and leaves
the network.

4 Reference Implementation

In this section, we propose a reference implementation of our federated learning
system in a Kubernetes cluster environment. First, we describe the standard
federated learning environment used in state-of-the-art applications, then we
introduce the additions necessary to measure the overhead cost. Kubernetes
is an open-source platform that automates the deployment, scaling, and man-
agement of containerized applications. Our federated learning system leverages
Kubernetes to provide a scalable, fault-tolerant, and easily deployable solution
for distributed machine learning.
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Fig. 2. Detailed overview based on our software environment. Node and pod assign-
ments have been chosen arbitrarily and may differ during test runs.

Our system architecture, as seen in Fig. 2, consists of a central server and
multiple nodes, where each node runs Kubernetes pods hosting clients. Note
that Fig. 2 does not show the full cluster environment for brevity and clarity.
The clients contain a containerized version of our federated learning algorithm
and their local training data.

Our federated learning system also utilizes an Nginx proxy as an eavesdropper
that listens to all communication between clients and the central server pod. The
Nginx proxy is extended using Lua scripts for enhanced logging capabilities. It
acts as a reverse proxy that sits between the clients and the central server pod.
All client requests are routed through the Nginx proxy to the server pod, and all
server responses are routed back through the proxy to the clients. By intercepting
and analyzing this traffic, we can gain insights into the behaviour of the system
and identify potential issues that may arise. For example, we can log the headers
and payloads of requests and responses and track metrics such as request and
response times. This way, we can gain a deeper understanding of how much
overhead is generated in the network as a whole.

This reference implementation of a federated learning system in a Kubernetes
cluster provides a scalable, fault-tolerant, and easily deployable solution for dis-
tributed machine learning. The use of Kubernetes StatefulSets, Jobs, Services
and ConfigMaps enables us to manage the deployment, scaling, and configuration
of our system effectively. The combination of the Nginx proxy and Lua scripts
as an eavesdropper, along with Kubernetes for hosting, provides an efficient and
scalable solution for monitoring and analyzing the traffic in our federated learn-
ing system. This allows us to not just monitor the overhead cost generated in the
training services, but also track the overhead cost incurred by communication
over the network.
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5 Challenges

Despite the benefits of using federated learning in a Kubernetes cluster, several
challenges must be overcome to ensure optimal performance and reliability of
the system. In this section, we discuss some key challenges that we have encoun-
tered during the development and deployment of our federated learning system,
such as the issue of simulation vs. real deployment, limitations of libraries, and
optimizing synchronization.

The first challenge is the issue of simulation vs. real deployment. While simu-
lation can be a useful tool for testing and validating a system before deployment,
it is important to recognize that the behaviour of a system in a simulated envi-
ronment may not necessarily reflect its behaviour in a real-world deployment.
This is especially true for federated learning systems, which rely on a large
number of distributed clients to perform computations and send updates to a
central server. As a result, it is important to test the system thoroughly in a real-
world deployment environment to ensure that it can perform optimally under
real-world conditions. While we do not provide a testing environment on multi-
ple, distributed client devices, we do deploy our reference implementation on a
distributed Kubernetes cluster. This cluster itself is a distributed environment,
which is closer to the real-world environment than typical federated learning
simulations.

The second challenge is the limitations of libraries. While there are several
libraries available for implementing federated learning systems, these libraries
have certain limitations that can impact the performance of the system. For
example, some libraries may not support certain types of machine learning mod-
els or may have limited support for the customization of the federated learning
algorithm. In addition, some libraries may be less efficient in terms of memory
usage or computation time, which can impact the scalability of the system. For
eavesdropping there are to our knowledge no suitable software libraries, only con-
figurable tools. While this is sufficient for our exploratory study, it could prove to
be difficult to integrate the results of the eavesdropper from such finished tools.
To address these limitations, it may be necessary to develop custom solutions or
modify existing libraries to meet the specific requirements of the system.

The third challenge is optimizing synchronization. Federated learning sys-
tems rely on the synchronization of client updates to a central server to update
the global model. However, the synchronization process can be a bottleneck in
the system, particularly when dealing with a large number of clients. To optimize
synchronization, it may be necessary to implement strategies such as batching
updates, compressing updates, or using more efficient communication protocols.

The final challenge we encountered is the credibility of our measurement.
As already mentioned in the previous sections, measuring possible overhead
costs can also be seen as overhead, as it takes computation time away from
machine learning processes. To address this challenge, we employed various tech-
niques such as measuring the overhead of individual components separately and
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comparing the results with those obtained from a control group that did not
use an eavesdropper. It is important to continually monitor and re-evaluate the
measurement process as the system evolves, to ensure that the measurement
results remain accurate and reliable.

6 Results

To evaluate the performance of our federated learning system in a Kubernetes
cluster, we conducted experiments to measure the bytes generated by training,
time spent synchronizing, and actual bytes sent over the network. The experi-
ments were conducted using a testbed consisting of 40 federated learning clients
running in Kubernetes pods. We also used a central Kubernetes pod to represent
the server in the system. In this testbed, we train the clients using the LEAF
FEMNIST dataset [4], 100 server epochs, i.E. the server triggers training and
evaluation 100 times on selected clients. We evaluate these clients by the bytes
they generate during the training, the time spent waiting on synchronisation and
selecting and the actual bytes sent over the network we perceive by employing
an eavesdropper. Further, we also evaluate the impact of the eavesdropper in
the federated learning system to create a hypothesis on the scalability of this
approach.

In the following subsections, we discuss the results shown in Table 1 in terms
of bytes generated and sent over the network and the time spent synchronising
the clients, before finally discussing the impact of introducing an eavesdropper
to the system, which is also shown in Table 1. We sampled ten random clients
for evaluation in these tables for brevity.

6.1 Bytes Sent

The size of bytes sent over the network is directly proportional to the data used to
train the network. Clients 2 and 4 for example have a more significant divergence
in training data sizes. Client 2 uses ∼ 3000 samples, while Client 4 uses about
twice as many samples, which is reflected in the size of the transmitted data.
Surprisingly, the structure of the network, while also relevant for the size of the
transmitted data, does not impact the overall size as much as the amount of
training data.

Most notable is the divergence in the number of bytes sent and the number
of bytes we have detected with an eavesdropper in place. As seen in Table 1, the
eavesdropper makes the communication size visible. Local measurements do not
include the overhead of the message protocols and networking procedures, which
is the decisive overhead in comparison. We attribute this divergence in size to
the selected communication protocol, GRPC fork-join streams.
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6.2 Synchronisation Time

Fig. 3. Time waited per client as per one test
run.

The larger the training data, the
longer one client needs to train
an epoch. In flwr [1], a finished
client that already transmitted its
results is idling and waiting for a
new selection round. We define this
time as part of the synchronisa-
tion time, hence we can assume the
synchronisation time per client to
be indirectly proportional to the
size of the training data. As seen
in Fig. 3, clients with few train-
ing samples, such as client 2, fin-
ish their training faster, resulting
in a longer idle time while they
wait for clients with larger train-
ing data sets to complete, such as client 5.

Comparing the average time spent synchronization with and without an
eavesdropper did not result in conclusive results. No major outliers were iden-
tified with 40 individual clients, all training individually on different training
data sizes. The major discrepancies here can be traced back to random CPU
allocations of the Kubernetes cluster.

Table 1. Performance Metrics for Federated Learning Clients, with eavesdropping.

Client ID Total Bytes Sent Avg. Time Synced Avg. Bytes Sent Eavesdropped Bytes Eavesdropped Avg. Time Synced

1 3.41 MB 12.70 s 17.14 KB 13.87 MB 11.90 s

2 2.08 MB 13.44 s 10.46 KB 13.24 MB 14.45 s

3 4.16 MB 8.49 s 21.02 KB 13.73 MB 7.53

4 4.16 MB 8.60 s 21.02 KB 14.07 MB 8.32 s

5 4.70 MB 5.72 s 23.77 KB 14.15 MB 7.10 s

6 4.10 MB 7.21 s 20.74 KB 13.78 MB 9.23 s

7 3.52 MB 9.89 s 17.77 KB 13.74 MB 9.76 s

8 2.07 MB 13.51 s 10.50 KB 13.86 MB 13.05 s

9 3.40 MB 9.19 s 17.20 KB 13.87 MB 9.94 s

10 2.07 MB 13.98 s 10.50 KB 13.87 MB 12.80 s

6.3 The Cost of Eavesdropping

The eavesdropper itself does need resources we can track, such as CPU and mem-
ory usage. We detected some minor peaks on larger loads, but nothing uncom-
mon when comparing it to state-of-the-art reverse proxies used in modern soft-
ware systems. We did find potentially larger costs for the system while inspecting
the memory usage of the eavesdropper. The RAM necessary to properly track the
federated learning clients without loss or noise is directly proportional to both
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the number of clients and the number of epochs they train. So we can formulate
the total memory necessary, just for the eavesdropper in MB as TotalMemory =
Clients × Epochs + k, where k is a constant representing the initial ram usage
of the eavesdropper. This formula was derived based on the observation of mem-
ory usage in a specific set of scenarios involving different numbers of clients and
epochs. While this formula may provide a useful estimate for similar scenarios, it
may not accurately predict memory usage in all cases. Other factors, such as the
size and complexity of the input data and the implementation of the eavesdropper
may also have an impact on memory usage.

This behaviour can be explained by the communication protocol we use in
our reference implementation, as the connection between the federated clients
and the server will not close until the federated model has finished training. This
could lead to performance issues when scaling the reference implementation to
even larger loads, which would independently occur on the federated learning
server, even without the eavesdropper.

7 Conclusion and Future Work

In conclusion, this paper presents a detailed examination of the cost of federated
learning using a reference implementation of federated learning on a Kubernetes
cluster and an Nginx proxy with Lua scripts for eavesdropping. The implementa-
tion was evaluated using the LEAF FEMNIST dataset and performance metrics
such as bytes sent and time spent synchronizing was measured. The results show
that the system is effective and scalable, with good performance even with a large
number of clients. However, the eavesdropper ’s RAM usage was found to be a
potential drawback, as it increased significantly with the number of clients and
epochs in the system.

Overall, the reference implementation presented in this paper provides a use-
ful starting point for those interested in exploring the overhead cost of their
federated learning environments. The performance metrics demonstrate the sys-
tem’s effectiveness and scalability, while the identified drawbacks can help guide
future improvements to the system. In particular, addressing the issue of RAM
usage for eavesdroppers will be an important area of future work.
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