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Abstract The 2-Steps Smart Rotor Fault Diagnosis Model (SRFDM) is proposed. 
This consists of a supervised classic pattern recognition artificial neural network 
(ANN), which uses parameters extracted from the measured vibration signals from 
the machine. The Step-1 identifies the machine is healthy or faulty, and then the 
classification of faults in the Step-2 is performed. Earlier studies have used both 
time and frequency domain parameters as the input vectors to the ANN model. 
Currently these parameters are normalised with the speed synchronous vibration 
amplitude from the frequency domain analysis to remove the influence of the machine 
unbalance due to change in the machine speeds. Hence, the proposed model is likely 
to be applied to a typical machine irrespective of the machine operating speeds. 

Keywords Rotor fault diagnosis · ANN · Smart fault detection · Condition 
monitoring · Vibration-based condition monitoring ·Machine learning 

1 Introduction 

Over the last decades, an increased interest on the application of artificial intelligence 
(AI) to engineering processes has been observed, being one of the main fields of 
application the structural health monitoring [1–3]. 

A wide range of methods and techniques are found in literature, from classic 
machine learning approaches as well more recent developments such as deep 
learning. Independently of the approach, it is seen that the vast majority of studies 
targeting the fault diagnosis/detection in rotating machines and their components, 
are based on vibration signals.
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Among the most used classic techniques there are found Support Vector Machine 
(SVM) [4–7], k-Nearest Neighbour (k-NN) [8] and Artificial Neural Networks 
(ANN) [3]. Regarding deep learning, it is found that convolutional neural networks 
(CNN) is one of the most used approaches [9]. 

The mentioned techniques have been widely used to assess the fault detection 
in gearboxes and bearing elements, as well rotor related defects. Despite of the 
promising results and advances in the field, the smart methods still rely on quan-
tity and quality of available data. This becomes a restriction when the aim is to 
develop a generic model, capable to perform accurately within certain variations of 
the operational conditions of the machine. 

In previous research study [10], the authors have developed a 2-steps smart fault 
detection and diagnosis model based on ANN. The model is found to have high 
accuracy in the detection and diagnosis of rotor related faults [11]. In this paper, the 
earlier proposed model is further modified by the normalisation the optimised param-
eters. In the current study, the optimised parameters are normalised with the speed 
synchronous vibration amplitude from the frequency domain analysis to remove the 
influence of the machine unbalance due to change in the machine speeds. Hence, 
the proposed model is likely to be applied to a typical machine irrespective of the 
machine operating speeds. The papers presents the rotating rig, vibration data and 
the normalisation of the optimised parameters [11] and their results using the earlier 
proposed 2-steps ANN model [10]. 

2 Experimental Rig and Data 

The experimental rig, in Fig. 1, is made by 2 shafts, coupled by a rigid coupling, 
resting over 4 identical beating in pedestals. There are 3 balancing discs, 2 in the 
longer shaft and 1 in the shorter one. The rig is driven by an electric motor through 
a flexible coupling.

There are 4 rotor related faults simulated in the machine independently from each 
other, as well the healthy condition. The simulated defects are misalignment, bent 
shaft, looseness in pedestal and rotor rub. Vibration signals are collected through 
accelerometers simultaneously from the 4 bearing, B1 to B4. During the data collec-
tion the machine is running at a steady speed of 1800 RPM or 30 Hz. A random 
number of samples is taken for each of the 5 considered machine conditions, where 
each sample has a standard length of 5 s, and a sampling frequency of 10 k-samples/ 
second. In Fig. 2, there are shown the typical velocity spectra of the studied fault at 
B3 location, during steady operation.
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Fig. 1 Experimental setup of laboratory rig

3 Early Model Developed [10–12] 

The smart fault detection approach proposed in this study is based on a 2-steps 
implementation [10] of an earlier developed supervised multilayer perceptron ANN 
[12]. The developed ANN is made by the input and output layers, and 4 hidden 
layers. the hidden layers, 1 to 4, have 1000, 100, 100 and 10 non-linear neurons, 
respectively [11]. The former model is set by using the experimental vibration data 
[13]. 

3.1 2-Steps Application of Smart Fault Detection Model 

A schematic that summarises the proposed 2-Steps model is shown in Fig. 2. The  
method uses an ANN with same architecture for both steps, but with different possible 
outputs at each step, i.e. 2 classes in the output layer at Step-1 and 4 classes in the 
output layer at Step-2. 

The Step-1 is set to detect if the machine is subject of a defect or fault. At this stage 
there are 2 possible outputs, namely healthy or faulty. Then, the elements identified 
as faulty in Step-1 are taken into Step-2. In this second stage, the model is set to 
provide further information on the nature of the defect. In this particular case, there 
are 4 possible diagnoses, one per faulty condition studied (Fig. 3).
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Fig. 2 Typical velocity 
spectra of studied rotor 
faults. a Misalignment. 
b Bent shaft. c Looseness in 
pedestal. d Rotor rub



Generic Smart Rotor Fault Diagnosis Model with Normalised Vibration … 767

Fig. 3 Schematic of the 
proposed 2-Steps smart fault 
diagnosis model 

4 Optimised Parameters 

The optimised parameters are the time domain parameters [11]—acceleration RMS 
and acceleration Kurtosis, and the frequency domain parameters—velocity ampli-
tudes at 1x, 2x, 3x and the spectrum energy per bearing. Therefore, a total of 6 
parameters per bearing which makes altogether 24 parameters for 4 bearings. 

In order to remove the influence of the unbalance forces due the different opera-
tional speeds of the machine, further improvements are proposed by normalising 
the parameters by dividing the unbalance response amplitude at 1x. Hence, the 
normalised parameters are now reduced to 5 parameters per bearing. 

The input matrix, X, will be defined as per Eq. (1); where xi with i = 1 . . .  p are 
the input vectors, corresponding to the data samples 1 to p. 

X = [
x1 x2 x3 · · ·  xp

]
(1) 

Each input vector is made by data collected simultaneously from the 4 measuring 
locations, as per Eq. (2). From the signals collected at each of the bearings, the 
selected parameters from both domains are calculated. Equation (3) represents the 
values corresponding to the j-bearing, with j = 1 . . .  4, of the  i-sample, with i = 
1 . . .  p. 

xi = 
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where 2xn and 3xn are the normalised amplitudes at 2 and 3 times the rotational 
speed and SEn is the normalised spectrum energy from 0.4x to 7x.
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5 Results 

In total, there are processed 679 data samples, all collected at the steady speed of 
1800 RPM or 30 Hz. The quantities available per machine condition are listed in 
Table 1. 

The samples are randomly allocated into the 3 stages of the learning process, 
where 70% is used for training and de remaining samples equally distributed into 
validation and testing (15% each) early stopping method is used in this research, 
where a cross-validation is carried out [12]. 

5.1 Step-1:Fault Detection 

In the first step, the model has shown a 100% of accuracy to separate the faulty 
from the healthy samples. This performance is observed over the all 3 stages of the 
learning process (Fig. 4). The results are listed in Table 2.

5.2 Step-2: Fault Diagnosis 

After the samples subject of faults are accurately identified in Step-1, these are now 
used as inputs in the ANN at Step-2. 

The total inputs in Step-2 are 613, which are divided into 3 groups in order to 
conduct the learning process of the second network. The same allocation than in the 
first step is used, meaning that a 70% of the inputs are used for training, 15% for 
validation, and the remaining 15% of the samples is used for testing. 

Excellent results are obtained, delivering a 100% of accuracy on the specific fault 
diagnosis. These results are listed in Table 3. Figure 5 shows the correct diagnoses 
per rotor fault in the training, validation and test of the ANN in Step-2.

Table 1 Samples used per rotor condition, 1800RPM 

Rotor condition No. of samples 

Healthy (residual unbalance and residual misalignment) 66 

Misalignment 109 

Bent shaft 202 

Looseness in pedestal 190 

Rotor rub 112 

Total 679 
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Fig. 4 Performance (%) in Step-1, fault detection. Training, validation and testing 

Table 2 Overall performance (%) Step-1: fault detection 

Diagnosis Actual 

Healthy Faulty 

Healthy 100.0 0.0 

Faulty 0.0 100.0

Table 3 Overall performance (%) Step-2: fault diagnosis 

Diagnosis Actual 

Healthy Misalignment Bow Looseness Rub 

Healthy 0.0 0.0 0.0 0.0 0.0 

Misalignment 0.0 100.0 0.0 0.0 0.0 

Bow 0.0 0.0 100.0 0.0 0.0 

Looseness 0.0 0.0 0.0 100.0 0.0 

Rub 0.0 0.0 0.0 0.0 100.0

It is important to note that the appropriate selection of features (parameters) can 
fully map the machine dynamics correctly, and hence this is always advantageous 
for the development of any reliable machine learning model even using limited data 
sets. This is successfully demonstrated here.
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Fig. 5 Performance (%) in Step-2, fault detection. Training, validation and testing

6 Concluding Remarks 

In this study, the normalised vibration-based parameters are used in the earlier devel-
oped a 2-Steps SRFDM. The paper has successfully demonstrated the correct clas-
sification of the faults through a case study. The use of the normalised parameters is 
likely to lift limitation of the using SRFDM model for a typical machine operating 
at different speeds. This study is underway. 
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