
Enhancing the Effectiveness of Neural 
Networks in Predicting Railway Track 
Degradation 

Mahdieh Sedghi 

Abstract With the advancements in artificial intelligence and the emergence of 
shallow and deep learning algorithms, there is a growing demand for precise and 
efficient methods of predicting asset degradation across various industries. This has 
led to a resurgence of interest in artificial neural networks (ANNs) as a solution. In 
this study, the aim is to evaluate the potential of using ANNs, as well as specific 
types of ANNs that are equipped to handle sequential data, such as Recurrent Neural 
Networks (RNNs), Long Short-Term Memory (LSTMs), and Gated Recurrent Units 
(GRUs), for predicting individual track geometry degradation in railway systems. 
The performances of these ANNs were evaluated by comparing their ability to 
predict degradation patterns for 110 segments obtained from a 30-km track section 
in Northern Sweden. Hyperparameters, which include the number of hidden layers, 
the number of neurons per layer, the learning rate, the activation function, batch size, 
and the optimizer, play a crucial role in defining the architecture and behaviour of 
a neural network. Hyperparameter tuning can significantly impact the accuracy and 
generalization ability of the ANNs. Therefore, the impact of hyperparameter tuning 
on the performance of each algorithm was also explored. The results indicated that 
GRU outperformed simple RNN, LSTM, and feedforward ANN in terms of predic-
tion accuracy in predicting track geometry degradation. The results provide insights 
into using different ANN algorithms to predict asset degradation, emphasizing the 
importance of proper hyperparameter tuning in achieving optimal performance. 
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1 Introduction 

Accurate prediction of track geometry degradation is critical for efficient railway 
operations, as it can aid in accident prevention and improve maintenance planning [1]. 
However, predicting track degradation is challenging due to the complexity of factors 
that affect it, including traffic, load, maintenance, and environmental factors [2]. 
Predicting track degradation involves analyzing how these factors interact and affect 
the degradation rate or level at a specific point in time. Artificial Neural Networks 
(ANNs) have been suggested as a potential solution for predicting track degrada-
tion, considering multiple input features, including traffic patterns, load conditions, 
maintenance schedules, and environmental factors [3]. NNs are a machine learning 
model that mimics the information processing mechanism of the human brain. There 
are various types of ANNs, including Feedforward-ANNs (FF-ANN), Recurrent 
Neural Networks (RNN), Convolutional Neural Networks (CNNs), and Deep Belief 
Networks (DBNs), among others. It is a common approach to use historical degra-
dation data to train a NN model, and the resulting model is applied to forecast 
degradation in unseen data [4]. The degradation rate or level at a specific point in 
time can be the output variable of the ANN [4]. 

The degradation pattern of a railway track can also be treated as a time series, 
and predicting its future degradation can be approached as a time series forecasting 
problem [5]. Historically, there has been a common belief that ANNs are not ideal 
for time series, primarily due to the typically short length of most time series [3, 6]. 
However, in the recent large-scale forecasting competition organized by the Inter-
national Institute of Forecasters (IIF), called the M4 competition, RNN achieved 
impressive performance and a hybrid model combining exponential smoothing and 
RNN emerged as the winner [7]. Given the increasing use of sensors and condition 
monitoring tools for the predictive maintenance of railway tracks, a vast amount 
of data can be leveraged to predict degradation patterns and optimize track mainte-
nance. RNNs have shown great potential in dealing with sequential data [3, 8], such 
as degradation patterns, and can be used to forecast future trends in track conditions. 
LSTM and GRU are two variants of RNNs that have demonstrated strong perfor-
mance in learning long-term dependencies in sequential data [9]. However, most 
previous studies [4, 10–13] have neglected the high capabilities of RNNs in dealing 
with sequential data, such as degradation patterns. 

In addition, an essential aspect of utilizing ANNs for degradation analysis is the 
selection of suitable structures and hyperparameters. Hyperparameter tuning involves 
selecting the best values for NN model parameters, such as the number of hidden 
layers, the number of neurons per layer, the learning rate, the activation function, 
batch size, and the optimizer [14]. Finding the optimal combination of hyperparame-
ters is essential to enhance model accuracy [15]. However, in the reviewed literature 
on applying ANNs for railway track maintenance [4, 10–13, 16–18] in this paper, 
the issue of hyperparameter tuning has not received sufficient attention, and ANNs 
have typically been constructed using a manual search approach. To enhance the 
performance of ANNs in predicting degradation patterns, it may be necessary to
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further investigate the potential impact of advanced techniques, such as Bayesian 
optimization, for optimizing hyperparameters. 

This paper aims to investigate the performance of different ANNs, i.e., FF-ANN, 
Simple RNN, LSTM, and GRU, in predicting track geometry degradation. This study 
is the first of its kind to provide a comprehensive overview of the predictive capabil-
ities of these neural networks for track geometry predictions while also addressing 
the issue of hyperparameter tuning. 

The second section of the paper provides a literature review on the use of ANNs 
for predicting railway track geometry. In section three, the ANNs used in this study 
are explained. The fourth section elaborates on the hyperparameter tuning process 
adopted to optimize the performance of the neural network models. Section five 
presents a detailed analysis of the neural network models’ performance based on data 
from a case study on a track section with 110 segments. Finally, section six highlights 
the findings’ conclusions and implications for the railway track maintenance field. 

2 Review of the Literature 

ANNs have been suggested as a method for analyzing degradation in railway tracks, 
aiming to predict the degradation using diverse input features. [4, 10–12]. Several 
studies have used ANN to predict different aspects of railway track degradation. 
Guler [4] used ANN to predict track geometry degradation by considering track 
structure, traffic characteristics, layout, environmental factors, geometry, and main-
tenance and renewal data. Moridpour et al. [11] explored the impact of increased 
tram traffic on rail infrastructure and presented an ANN model to predict tram track 
degradation using existing data to reduce maintenance costs and improve system 
performance. Lee et al. [12] used an ANN and support vector regression to predict 
track geometry degradation based on several input variables, such as the track quality 
index value, curvature, velocity, and million gross tonnages. Ali et al. [13] applied 
a backpropagation-ANN to construct a deterioration model for railway tracks in the 
UK, using factors such as track geometry, ballast fouling index, train speed, catch 
pits, ballast age, and sleeper age. Gerum et al. [19] used RNN to predict the track 
defects and classify them into two groups of red and yellow defects. Falamarzi et al. 
[20] used a regression model and an ANN model to predict tram track gauge devia-
tion, and both showed good performance with determination coefficients above 0.7. 
Finally, Khajehei et al. [10] used track geometry measurements, asset information, 
and maintenance history to predict track geometry degradation by ANN. 

In other related studies, but not necessarily focused on degradation prediction, 
Bruin et al. [16] proposed using LSTM for fault detection and identification in railway 
track circuits based on commonly available measurement signals, achieving a correct 
classification rate of 99.7% and outperforming a convolutional network. Popov et al. 
[17] used ANN on data from a high-speed line in the UK to assess the efficiency of 
railway track maintenance.
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The review of the literature revealed two gaps in the research on using ANNs to 
predict railway track degradation patterns: 

• Firstly, none of the reviewed articles addressed the issue of hyperparameter tuning. 
The ANN structure was constructed using a manual search approach, which lacks 
a sophisticated hyperparameter tuning method. This could potentially limit the 
accuracy and efficiency of the model. 

• Secondly, all the reviewed articles used only one type of ANNs, mostly FF-ANN, 
while neglecting the high capabilities of RNN in dealing with sequential data as 
degradation patterns. Therefore, incorporating RNN into the degradation analysis 
could provide more precise track degradation predictions and help enhance the 
decision support system for railway track management. 

To address the above mentioned gaps, four ANNs, i.e., FF-ANN, RNN, LSTM, 
and GRU, are used for predicting track geometry degradation while using Bayesian 
optimization for hyperparameter optimization. 

3 Neural Network Methods 

3.1 FF-ANN 

The most frequently used form of ANNs is the FF-ANN model, which comprises 
three types of layers: input, output, and hidden. In this model, each output layer 
node is linked to a target variable, while the input layer nodes are associated with 
predictor variables, as shown in Fig. 1 [18, 21]. The number of hidden layers and 
the number of nodes (neurons) in each layer together determine how complex the 
FF-ANN model is. FF-ANNs with multiple non-linear hidden layers can capture 
complex relationships between input and output variables, but limited training data 
may lead to overfitting due to sampling noise creating a complex relationship that 
does not exist in the test data [18, 21].

The number of hidden layers in an FF-ANN model is proportional to the 
complexity of the research object, and experiments are used to determine the optimal 
number of hidden layers [18]. 

3.2 RNN 

RNNs are designed to handle sequential data, often used for time series analysis [3, 
8]. Therefore, RNNs can be used for degradation analysis, which aims to monitor and 
predict the system’s condition over time The RNN’s structure resembles a multilayer 
perceptron but with time-delay connections between hidden units to retain informa-
tion about the past and discover temporal correlations between distant events in the
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Fig. 1 FF-ANN structure

Fig. 2 RNN structure 

data. [22, 23], as shown in Fig. 2. This approach allows building ANNs to process 
and analyze data effectively over time. 

Even though RNNs can handle sequential data, such as time series, RNNs cannot 
learn long-term dependencies due to the vanishing-gradient problem [9, 24, 25]. The 
vanishing-gradient problem refers is a challenge encountered in RNNs that arises 
when the gradients computed for each time step are multiplied by the recurrent 
weight matrix, causing them to diminish in magnitude over time [9]. This problem 
causing current information to be prioritized over past events and hindering the 
learning of long-term dependencies [9]. As a result, LSTM and GRU models were 
developed to address these issues [24]. LSTM addresses this by controlling the flow 
of information within neurons using a gating mechanism that regulates the addition 
and deletion of information from an iteratively propagated cell state [9]. 

LSTM cells have three gates–input, forget, and output–to modify a cell state 
vector, which is iteratively propagated to capture long-term dependencies [9, 24, 
25]. The controlled information flow within the cell helps the network remember
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multiple time dependencies with varying characteristics [24]. GRU has a simpler 
cell structure than LSTM and uses a gating system with only an update and reset 
gate [3, 24]. Hewamalage et al. [3] provided further details on the mathematical 
models and structure of RNN, GRU, and LSTM. 

4 Hyperparameter Tuning 

Choosing the right architecture and hyperparameters is crucial for implementing 
ANNs in degradation analysis, as they heavily impact the behaviour of training 
algorithms and model performance [14]. The main hyperparameters of a NN include 
[14, 26]: 

• The number of hidden layers: ANNs can have one or more hidden layers. 
• The number of neurons per layer: An appropriate number of neurons should be 

selected to prevent overfitting or underfitting. 
• Activation functions: Different activation functions, such as ReLU, sigmoid, and 

Tanh, introduce nonlinearity into the NN. The choice of activation function can 
significantly impact the model’s performance. 

• Learning rate: The learning rate controls the step size during optimization and 
determines how quickly the model converges. 

• The number of epochs: The number of epochs determines how many times the 
training process will iterate over the entire training set. 

• Batch size: During training, data is processed in batches. The batch size is a 
hyperparameter that determines the number of samples in each batch. 

• Optimizer: The optimizer is used to update the model parameters during training. 
Different optimizers, such as stochastic gradient descent (SGD) and Adam, are 
available. 

4.1 Bayesian Optimization 

Bayesian optimization is a powerful and effective method for hyperparameter tuning 
in ANNs [14, 26]. A search space for hyperparameters is defined to implement 
Bayesian optimization, along with an acquisition function that balances exploitation 
and exploration [27, 28]. The acquisition function determines where to sample next 
based on the current state of the model and the target function [27]. The process is 
repeated until the optimal hyperparameters are found, or a stopping criterion is met 
[27].
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5 Results and Discussion 

Historical data from track Sect. 119 (TN-HO19), which spans 30 kms along the 
Swedish Iron ore line between Boden and Luleå, is utilized to assess the performance 
of investigated ANNs. 

5.1 Data Preparation 

5.1.1 Data Collections 

The data used in the study included the shortwave measure of the rail’s longitudinal 
level, which is an important track geometry variable. The shortwave measurement 
is defined as the amplitude of longitudinal waves with wavelengths between 3 and 
25 m, as per the EN 13,848–1:2017 standard [29]. The study utilizes data gathered 
between 2007 and 2022 using a measurement train that records shortwave amplitude 
for each 25 cm of both rails. This results in 800 measurements per 200 m segment. 

5.1.2 Data Cleaning 

To make the data less sensitive to errors, the measurement data was segmented into 
200-m lengths, and segment statistics were calculated. Missing observations were 
removed, and segments with less than 50% complete observations were considered 
missing. Data for objects such as switches, crossings, or platforms were removed as 
they were not relevant to the study. 

5.1.3 Data Scaling 

A standard scaling procedure is used to normalize the features of the dataset. Standard 
scaling involves subtracting the mean of each feature from its values and dividing it 
by its standard deviation. 

5.2 Application and Evaluation of ANNs 

5.2.1 Input Features 

For the input feature, the standard deviation of longitudinal level and history of 
maintenance actions for 110 segments of track Sect. 119 are used to train the ANNs.
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Table 1 Performance 
indicators Performance indicators Mathematical formulas 
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5.2.2 Performance Indicators 

Various performance indicators, including Mean Absolute Error (MAE), Mean 
Squared Error (MSE), Mean Absolute Percentage Error (MAPE), and prediction 
accuracy based on MAPE, are used to evaluate the performance of ANNs, as shown 
in Table 1. 

5.2.3 Pseudocode of ANNs 

Two scenarios are being considered in this paper. The first scenario is called N-HO and 
involves no hyperparameter optimization. In N-HO, no hyperparameter optimization 
is performed, meaning the hyperparameters are set to values found by manual search 
or suggested values in previous studies. The second scenario, HO, involves hyperpa-
rameter optimization by Bayesian optimization. Pseudocodes for both scenarios are 
presented in Tables 2 and 3. The hyperparameters tested in HO are the number of 
neurons per second and third layers, activation functions, and the number of epochs. 
In both scenarios, the Python programming language version 3.10 is used, along with 
the TensorFlow library [30]. Additionally, the BayesianOptimization package from 
the Bayes_opt library is utilized for hyperparameter optimization in HO.

The development of a NN model with TensorFlow in Python involves the 
following steps:

• Feature scaling: A standard feature scaling is applied. 
• Splitting data into train and test sets: 80% of the data are used as training set. 
• Building the NN model: The next step is identifying the number of layers, the 

activation functions, the number of neurons in each layer, and other hyperparame-
ters. This paper chooses a NN model with one input layer, two hidden layers, and 
one output layer. In N-HO, the ReLU activation function is selected for hidden 
layers, and the Linear activation function is selected for the output layer. 

• Training the model: Once the NN model has been defined, the next step is to train 
it on the data. Training the model involves optimizing the model’s parameters
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Table 2 Pseudocode for N-HO 

1 For s=1: Segments 

N 

Predict track geometries by ANNs based on 
hyperparameters space (Q) 

Input (Hyper parameters space Q) 

2.1 Scale data by Standard Scaler liberary 

2.2
Split the historical degradation data for each segment 
into training and test data 

2.3 

Add one input layer, two hidden layers, and one output 
layer for ANNs (FF-ANN, simple RNN, LSTM, GRU) 
structure based on Q with activation functions “ReLU” 
for hidden layers and “Linear” for the output layer.  

2.4 
Compile ANNs with TensorFlow (loss=Mean Squared 
Error (), optimizer=Adam (), metrics=Root Mean 
Squared Error ()) 

2.5
Fit ANNs (FF-ANN, simple RNN, LSTM, GRU) with 

TensorFlow 

2.6
Output MSE, MAE, and MAPE for test data and 
predicted values by the models

(weights and biases) using an Adam optimization algorithm. During training, the 
model is iteratively updated based on the mean squared error (loss) between its 
predictions and the true values in the training data.

• Evaluating the model: After training, various performance metrics explained in 
Table 1 are used. 

• Tuning the hyperparameters: In HO, Bayesian Optimization is used to find the 
optimal hyperparameters and run the model again based on the optimized values 
of hyperparameters. 

5.2.4 Comparing the Performance of ANNs 

Table 4 presents performance indicators for four different ANNs: FF-ANN, simple 
RNN, GRU, and LSTM. For each NN, two scenarios are considered: one without 
hyperparameter optimization (N-HO) and one with hyperparameter optimization 
(HO). For each performance indicator, the table presents the minimum, mean, 
and maximum values across all 110 segments. Based on the minimum, mean, 
and maximum values, the performance of the different ANNs and the impact of 
hyperparameter optimization are compared.

The range of values for hyperparameters is as follows:

• Number of neurons per second layer ∈ [1, 100] 
• Number of neurons per third layer ∈ [1, 100]
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Table 3 Pseudocode for HO 

1 For s=1: Segments 

2 

Hyperparameter optimization 

Input (Hyper parameters space Q, Target score function 

H(Q), number of initial iterations n0, max number of 

iterations n) 

2.1 Define Target score function H(Q) 

2.2 Scale data by Standard Scaler 

2.3
Split the historical degradation data for each 
segment into training and test data 

2.4 
Add one input layer, two hidden layers, and one 
output layer to ANNs (FF-ANN, simple RNN, 
LSTM, GRU) structure based on Q 

2.5 
Compile NN model with TensorFlow 
(loss=Mean Squared Error (), optimizer=Adam 
(), metrics=Root Mean Squared Error()) 

2.6
Fit NN model (FF-ANN, simple RNN, LSTM, 
GRU) with TensorFlow 

2.7 Calculate MSE for predicted values vs test set 

2.8 Return H(Q)=1- MSE 

2.9
Optimize H(Q) with Bayesian Optimization based on 
n0 and n values 

2.10 Output Optimal values of Q, Q* 

3 
Predict track geometries by ANNs based on Q* 
Input (Optimal Hyper parameters space Q*) 

Scale data by Standard Scaler 

3.1
Split the historical degradation data for each segment 
into training and test data 

3.2 
Add one input layer, two hidden layers, and one output 
layer to ANNs (FF-ANN, simple RNN, LSTM, GRU) 
structure based on Q 

3.3 
Compile ANNs with TensorFlow (loss=Mean Squared 
Error (), optimizer=Adam (), metrics=Root Mean 
Squared Error()) 

3.4
Fit ANNs (FF-ANN, simple RNN, LSTM, GRU) with 

TensorFlow 

3.5
Output MSE, MAE, and MAPE for test data and 
predicted values by the models
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Table 4 Comparison of ANNs’ performance 

Performance 
indicators 

FF-ANN Simple RNN GRU LSTM 

N-HO HO N-HO HO N-HO HO N-HO HO 

MSE Min 0.002 0.002 0.006 0.002 0.002 0.002 0.003 0.003 

Mean 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

Max 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 

MAE Min 0.03 0.04 0.06 0.04 0.04 0.04 0.04 0.04 

Mean 0.09 0.08 0.09 0.08 0.09 0.07 0.09 0.09 

Max 0.16 0.13 0.14 0.12 0.14 0.11 0.16 0.13 

MAPE Min 0.03 0.03 0.05 0.04 0.03 0.03 0.04 0.04 

Mean 0.08 0.08 0.08 0.07 0.08 0.06 0.08 0.07 

Max 0.13 0.12 0.12 0.10 0.13 0.08 0.14 0.10 

Prediction 
accuracy 
(1-MAPE) 

Min 86% 88% 87% 90% 87% 92% 86% 90% 

Mean 91% 92% 91% 93% 91% 93% 91% 92% 

Max 96% 96% 94% 95% 96% 96% 95% 95% 

The computational 
time for 110 segments 
(sec) 

81 1692 211 1750 268 1895 315 2106

• Activation functions∈{ReLU (Rectified Linear Unit), Sigmoid, Tanh (Hyperbolic 
Tangent), Softmax, ELU (Exponential Linear Unit), SELU (Scaled Exponential 
Linear Unit), and Swish} 

• Number of epochs ∈ [1, 200]. 

The results presented in Table 4 show that the hyperparameter optimization 
process, HO, leads to better performance compared to using default or suggested 
by experts hyperparameters, N-HO. The improvement is particularly evident in the 
minimum and maximum values of the performance indicators, such as MSE, MAE, 
and MAPE, as well as in the prediction accuracy. These results suggest that the 
hyperparameter optimization process can help identify better NN configurations that 
result in improved performance. 

Furthermore, with hyperparameter optimization (HO), the GRU model achieved 
the best overall performance among the four ANNs. In general, all variations of 
RNN performed better than FF-ANN in HO. However, in N-HO, LSTM and RNNs 
performed worse than FF-ANN. It can be concluded that hyperparameter optimiza-
tion has a higher impact on the performance of RNN, LSTM, and GRU compared to 
FF-ANN. 

It is also important to note that the computational time required to train the models 
varies depending on the scenario (N-HO or HO) and the ANNs model. Generally, 
the HO scenarios require more computational time than N-HO due to the additional 
hyperparameter optimization process. Additionally, the LSTM and GRU models 
typically require more computational time than ANN and RNNs.
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The choice between N-HO and HO depends on the specific problem and avail-
able resources. While HO can result in better performance, it also requires additional 
computational time. Therefore, it is important to consider the benefits of hyperpa-
rameter optimization against the costs before deciding on a particular approach. For 
practical implications, the computational time may not be critical when the real time 
prediction is not necessary. 

6 Conclusion 

The prediction of track geometry degradation poses significant challenges due to 
many factors influencing it. Developing advanced, efficient, and effective prediction 
models are imperative to ensure accurate prediction of track geometry degradation. 
The present study underscores the criticality of selecting appropriate NN architec-
tures capable of capturing the temporal dependencies inherent in the track geometry 
degradation process. This study provides insights into the effectiveness of different 
ANNs (FF-ANN, simple RNN, LSTM, and GRU) for predicting track geometry 
degradation. The GRU model exhibited the most promising overall performance of 
the four ANNs evaluated in this research. As such, it is recommended that future 
research endeavors prioritize the exploration and optimization of GRU and LSTM as 
RNN variants when developing prediction models for track geometry degradation. 

In addition, this study investigated the importance of hyperparameter tuning in 
improving predictive performance. While hyperparameter optimization can enhance 
the performance of ANNs, it is also important to consider the computational time 
required for this process. Therefore, future research should focus on developing more 
efficient hyperparameter optimization processes to achieve better performance while 
reducing computational time. 

Overall, the accurate prediction of track geometry degradation can significantly 
improve maintenance planning and prevent accidents in railway operations. The use 
of advanced sensors and condition monitoring tools, and machine learning models, 
such as ANNs, can help facilitate this task. Further research in this area can lead to 
the development of more accurate and efficient predictive models that can be used in 
practice to enhance railway maintenance and safety. track geometry degradation. A 
limitation of this study is using only track geometry data and previous maintenance 
history for training ANNs. In future studies, additional input features can be included 
in the model to improve the predictive performance of ANNs. 
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