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Abstract Condition-Based Maintenance (CBM) is a maintenance strategy that 
reduces equipment downtime, production loss, and maintenance cost based on 
changes in equipment condition (e.g., changes in vibration, changes in power usage, 
changes in operating performance, changes in temperatures, changes in noise levels, 
changes in chemical composition, increase in debris content and changes in the 
volume of material). In this study, we present the newly developed Condition Moni-
toring Model (CMM) based on an ensemble machine-learning model that utilizes 
the random forest, support vector machine, and artificial neural network classifiers, 
to classify data points from the normal state of a rotating machine. The efficacy of 
the model in adequately detecting and diagnosing faults in the rotating machine for 
maintenance planning is discussed in this paper. The developed model can efficiently 
avoid unnecessary maintenance and make timely actions by analyzing the received 
vibration signals from the rotating machine. An illustrative example is demonstrated 
to present the application of the model. 
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1 Introduction 

The efficiency of any industrial setting is dependent on the uninterrupted opera-
tion of critical equipment. Different strategies exist for proper machine maintenance 
scheduling, each with its own benefits and drawbacks. These maintenance strategies 
can generally be grouped into three main categories: preventive maintenance (PM), 
corrective maintenance (CM), and CBM [1]. 

Traditional maintenance strategies largely fall into the corrective or preventative 
maintenance strategies. CM can be defined as maintenance that occurs after a machine 
has failed, while PM is conducted on a set schedule to prevent the occurrence of faults 
in the machinery [1]. While PM is preferable to CM in most cases due to CM generally 
being the most expensive form of maintenance since it occurs after a machine has 
already failed [2], PM has its own flaws because as it is conducted on a set schedule, 
it can result in unnecessary maintenance being conducted on a machine that is not 
in danger of failing. 

While some authors [3] equate CBM and PM, or consider CBM a type of PM, 
we consider CBM as a distinct maintenance strategy from PM. This is because that 
while CBM also aims to conduct maintenance on a machine before a failure occurs, 
it also uses analytical techniques to monitor the actual condition of the machine, and 
the maintenance is only conducted at the point right before the point of failure. This 
process reduces the potential for unnecessary maintenance that is often present in 
PM approaches. 

CBM is not without its own limitations, with a high investment cost resulting from 
the necessity to install adequate monitoring equipment, develop decision-making 
strategies, and train staff on the new technology and processes [1]. However, with 
modern advances in machine learning (ML) technology, these drawbacks can be 
addressed in a way that reduces costs and improves efficiency [4]. ML for main-
tenance has applications in the fields of Bayesian decision theory and artificial 
decision-making and can help improve maintenance loss functions. 

ML algorithms can be categorized in a variety of ways, but two simple learning 
categories can describe most ML methods: supervised learning and unsupervised 
learning. Supervised methods typically involve the process of classification, such as 
detecting faults in incoming data based on historical examples, while unsupervised 
methods typically involve clustering, an example being the grouping of data points 
to attempt to determine when a fault will occur. Ensemble learning is a method that 
combines both supervised and unsupervised approaches. 

This paper presents a Condition-based Maintenance Model (CMM) based on an 
ensemble model stacking approach to improve the performance of ML for CBM 
compared to traditional approaches. This model is capable of accurately classifying 
normal and faulty data from sensors placed on a rotating machine. This capability 
reduces the possibility of unnecessary maintenance and enables timely automated 
decision-making.
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2 Literature Review 

CBM is a maintenance strategy that focuses on real-time condition monitoring of 
industrial machines, only recommending action be taken if machine failure is immi-
nent, to eliminate unnecessary maintenance and costs. CBM would not be possible 
if not for the variety of sensors and other indicators that continuously send signals 
for analysis. There are two main factors in the analysis of these signals: diagnosis 
and prognosis [5]. 

Fault diagnosis can be defined as determining the type of fault that has occurred 
based on factors such as abnormal sounds or vibrations [6], while fault prognosis 
is defined as the estimation of the operating time before a failure occurs [7]. Tradi-
tionally, these tasks have been performed by large teams of engineers, which can 
cause low efficiency and suspect accuracy. These factors make fault diagnosis and 
prognosis ripe for ML support [6]. 

A survey of ML algorithms in Industry 4.0 literature [4] found that artificial 
neural networks (ANN), random forest (RF), and support vector machines (SVM) 
were the most used, with RF being the most prevalent. Decision tree (DT), Gradient 
boosting machine (GBM), and eXtreme gradient boosting (XGBoost) algorithms 
were also discovered to be common in the reviewed literature. Other algorithms 
discussed include logistic regression (LR), linear regression, convolutional neural 
network (CNN), and deep neural network (DNN). 

RF’s prevalence comes from its improved performance when compared to contem-
porary algorithms. A CBM approach based on a comparison of ANN, DT, and RF’s 
performance on the prediction of faults in a high-speed packing machine found that 
RF achieved the highest accuracy rating, with the caveat that the false positive rate 
is higher with RF than the other approaches [8]. A possible solution to this issue is 
to create a hybrid model that combines RF with other ML algorithms to strengthen 
the performance of each model and reduce any flaws that are present [4, 8]. 

Model stacking is an approach that aims to strengthen the performance of ML 
models by using previous predictions of individual models to form a hybrid model 
based on the best performing classifiers of each model [9]. Model stacking has been 
shown to achieve better classification accuracy for maintenance related tasks when 
compared to individual models by themselves [10]. LR is frequently used as the 
meta-model to combine the multiple ML models [9]. 

The improved accuracy of model stacking techniques is demonstrated in [11], 
where predictions from SVM, k-Nearest Neighbors (KNN), Bayes’ classifier (NB), 
and LR were stacked using RF as the meta-model. This study showed that the stacked 
model achieved better accuracy on the task of fault diagnosis on roller bearings 
than the individual models themselves. The stacking method used in this study is a 
heterogeneous approach, meaning that the algorithms stacked were different [12]. In 
contrast, homogeneous methods stack the same algorithm multiple times [12], such 
as in [13]. 

The research discussed in this paper focuses on an intelligence-based CMM for 
rotating machines. This is because the use of rotating machines since the Industrial
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Revolution has increased drastically [14], and failures of these machines can lead 
to severe economic or social impacts [15]. Because of the potential for severe nega-
tive impacts, early detection of faults is crucial, meaning that a CBM approach is 
preferable to different maintenance strategies [1]. 

3 Methodology 

This research project proposes an intelligence-based CMM for rotating machines. 
The methodology to create this CMM consists of four main steps: downsampling 
collected data, training individual ML models, stacking those models, and using the 
resultant ensemble model to diagnose machine faults. A block diagram of the system 
is shown in Fig. 1. The steps are described in the following sections. 

3.1 Machinery Fault Database 

A public database for machine faults was used for this research [16]. This database 
consists of data from ten simulated machine states: normal operation, imbalance fault, 
horizontal and vertical misalignment faults, and outer race, rolling element, and inner 
race faults for underhang and overhang bearings. The machine used to collect the 
data is shown in Fig. 2. The data was collected from three accelerometers, one triaxial 
accelerometer, one analog tachometer, one microphone, and two four-channel analog 
acquisition modules.

There were 1,951 total sequences in the database with 250,000 samples each, 
meaning that the total number of samples for the dataset is 487,750,000. Different 
parameters were used for each of the machine state simulations: 49 normal sequences 
were simulated with a fixed rotation speed between 737 to 3686 rpm, 333 imbalanced 
sequences were simulated with a load range from 6 to 35 g, 197 sequences had a 
horizontal misalignment with motor shaft shifts from 0.5 to 2.0 mm, 301 sequences 
had a vertical misalignment with motor shaft shifts from 0.51 to 1.90 mm, and 1,071

Data 
Collection 

Model 
Training 

Model 
Stacking 

Fault 
Diagnosis 

Downsampling 

Fig. 1 Proposed methodology for intelligence-based CMM 
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Fig. 2 The fault simulator 
used to generate the data

sequences were simulating either underhang or overhang bearings with roller element 
or inner and outer race faults with a mass between 0 to 35 g added [16]. 

3.2 Data Pre-processing 

Due to computational limits, the workable size of the database was downsampled to 
80,000 samples, with 8,000 samples per machine state. Data for the imbalance state 
was taken from the sequence with a 6 g load, data for the horizontal and vertical 
misalignment states were taken from sequences with 2.0- and 1.90-mm motor shaft 
shifts, respectively, and data from the underhang and overhang bearings were taken 
from bearings with 6 g masses applied. 

3.3 Model Training 

So far, research into intelligence-based CMMs has focused on the application of 
one ML model to a problem. We propose a model stacking approach to increase the 
accuracy of fault diagnosis in a rotating machine. The ensemble model generated 
from this approach is based on three of the most popular, accurate, and efficient ML 
algorithms in use. 

The system starts with the input data from the machine being split into training 
and testing sets so the ML models can be trained. The train and test split utilized 
by this research is 80% of the data in the training data, and 20% of the data in the 
testing set. Each model is trained individually and then combined by the metamodel 
to form the ensemble model that shapes the CMM.
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3.3.1 Random Forest 

RF is an ensemble method based on the combination of results of multiple DTs. 
Traditional DT methods have long been employed in both traditional and intelligence-
based maintenance strategies, due to their ability to aid data analysis and numbers-
based decision-making. The general process for using DTs in maintenance consists 
of the following steps: visually represent complex decisions and their potential 
outcomes, calculate a “cost” value for each decision and their consequences, and 
then compare the final values to determine the best course of action. Done by hand, 
this can be a time-consuming process, which is why the most common form of DT 
analysis in Industry 4.0 is ML-based DT. 

There exist several types of ML DT algorithms: classification trees, regression 
trees, and classification and regression trees. Each type of tree is named after the 
task it enables. Although DT is a very simple and powerful approach to implement, 
the chance of overfitting the data is high, especially in cases where a data set is very 
large. The RF approach is a solution to this issue. 

As a classification algorithm, the RF approach assembles a forest of classification 
trees to enable its predictions. One method to reduce data overfitting as well as data 
variance for DTs is called bootstrap aggregation (bagging). This approach repeatedly 
samples the training set with replacement and trains individual models on each of 
the samples, before averaging each prediction to generate the final predictions of the 
model. While generally effective in accomplishing its goal and generating accurate 
predictions, bagging can result in trees becoming correlated in the event that a strong 
estimator is found. RF extends the bagging approach by training the classification 
trees on a random sample of features from the training set, a process called the 
random subspace method. A DT taken from a subset of data in the RF of the CMM 
is shown in Fig. 3. 

Fig. 3 A sample decision 
tree based on a subset of the 
data
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3.3.2 Support Vector Machine 

SVM is one of the most popular classification algorithms, and offers robust prediction 
capabilities. Given a high-dimensional set of data, the SVM approach operates by 
finding a hyperplane, or decision boundary, that best divides the data points into 
distinct classes. The hyperplane is chosen based on the maximum distance between 
the closest data points, also called support vectors, from each class. Initially, this 
approach was only effective on a linearly separable data set, but advancements have 
been made to enable the classification of non-linear data via a process called the 
kernel trick. 

The kernel trick transforms non-linear data into a higher dimensional space where 
it can become linearly separable. This process works by computing the dot prod-
ucts between data points in the new higher dimensional space without explicitly 
computing the coordinates of the data. There exist a variety of kernel functions, each 
with their own benefits and drawbacks. This research utilizes a kernel function called 
radial basis function (RBF), which operates by measuring the similarity between two 
points in the higher dimensional space based on their radial distance from the origin 
[17]. 

As with kernels, there are also different implementations of the SVM algorithm 
itself. This research utilizes C-Support Vector Classification (C-SVC), where C 
is a parameter that determines the cost of misclassifications. By default, C-SVC 
only solves binary classification problems, so a one-versus-one approach is used to 
enable multi-class classification. The one-versus-one system considers a series of 
binary classifications, before selecting the classifier that gave the highest prediction 
confidence score when making its final predictions. 

SVM is one of the most common ML algorithms used in maintenance. One of 
the major contributing factors to this is that SVM is based on much of the same 
statistical learning theory as many of the traditional methods employed in quality 
control. It is a data-driven algorithm, and has been found to be more generalizable 
than techniques such as ANN. It is because of this generalizability that SVM finds 
many uses in maintenance and quality control, because it can be applied to many 
different situations without much editing of the process [18]. A visual representation 
of the decision boundaries for the SVM approach in the CMM on a subset of data is 
shown in Fig. 4.

3.3.3 Artificial Neural Network 

ANNs are unique compared to RF and SVM in that they are based on biological 
processes, specifically animal brains. ANNs generally consists of three layers: input, 
hidden, and output. The input layer is the first layer and is responsible for receiving 
information signals. These signals are passed to the hidden layers where patterns 
are extracted and analyzed. Finally, in the output layer, neurons process information 
from the previous layers to produce and present the final outputs of the ANN [19]. A 
feedforward ANN is an ANN where the connection between the nodes do not form
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Fig. 4 Decision boundaries of SVM on a subset of the data

a cycle. This research utilizes a feedforward ANN called the multi-layer perceptron 
(MLP). 

Each neuron in the MLP performs computations based on the weighted sum of its 
inputs and a non-linear activation function. This research uses the rectified linear unit 
(ReLU) as the activation function. ReLU will output the input, i , if it is positive, and 
0 otherwise. Research has shown that ANN is one of the most applied algorithms for 
maintenance [20]. A visual representation of the decision boundaries for the ANN 
approach in the CMM on a subset of data is shown in Fig. 5.

3.4 Model Stacking 

Once RF, SVM, and ANN have been trained on the training set of data, we use a 
model stacking approach to combine them into an ensemble model for improved 
results. LR is used as the meta-model to facilitate this hybridization. As a statistical 
model designed to analyze independent variables that lead to an outcome, LR is an 
ideal choice for a meta-model, as it can learn the non-linear relationships between 
the predictions of each model being stacked and the actual value. 

The LR model processes the three sets of predictions generated by RF, SVM, and 
ANN as input features, and the actual values as output features. The most accurate 
predictions from the three ML models are identified, and combined by the LR meta-
model. The goal of this approach is to improve on the overall performance metrics 
for each of the three ML models (Fig. 6).
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Fig. 5 Decision boundaries of ANN on a subset of the data

Fig. 6 Block diagram of the 
model stacking approach Training Data 

RF SVM ANN 

LR 

Intelligence Based CMM 

4 Results 

Table 1 shows the performance parameters of the ensemble model compared to 
traditional machine learning methods. The performance metrics used are given by 
the following formulas.



648 K. Jenab et al.

Table 1 Accuracy of ensemble model versus traditional methods 

Fault detection and diagnosis 

Classifier Accuracy (%) Recall (%) Precision (%) F1 (%) Jaccard (%) 

LR 28.11 28.40 28.23 24.75 15.14 

GNB 74.30 74.20 75.30 73.69 60.76 

GBM 76.54 76.44 76.95 76.42 63.94 

SVM 78.33 78.21 79.32 78.51 67.37 

KNN 82.77 82.67 83.21 82.82 72.48 

DT 88.13 88.03 88.01 88.02 79.74 

ANN 89.99 89.90 89.91 89.82 82.62 

RF 91.85 91.78 91.80 91.76 85.61 

Ensemble 92.38 92.31 92.27 92.27 86.40 

(1) Accuracy: the percentage of true positive (TP) and true negative (TN) predic-
tions, with false positive (FP) and false negatives (FN) included: 

A = T P  + T N  

T P  + T N  + FP  + FN  
(1) 

(2) Precision: the percentage of correctly classified positive predictions relative to 
predictions classified as positive: 

P = T P  

T P  + FP  
(2) 

(3) Recall: the percentage of true positive predictions that were correctly classified: 

R = T P  

T P  + FN  
(3) 

(4) f1-Score: the harmonic mean of the precision and recall: 

f 1 = 2 × 
P × R 
P + R 

(4) 

(5) Jaccard Score: the similarity of predicted labels (PL) to true labels (TL): 

J (PL , T L) = 
PL  ∩ T L  

PL  ∪ T L  
(5) 

Specifically, the ensemble model is compared to traditional implementations of 
LR, GNB, GBM, SVM, KNN, DT, ANN, and RF. 

A bar chart showing the accuracy breakdown per machine state is shown in Fig. 7.



Intelligence Based Condition Monitoring Model 649

Fig. 7 Bar graph showing the accuracy per machine state 

5 Conclusion 

In this research, we proposed an ensemble machine-learning model to classify data 
points from sensors on a rotating machine. With this ensemble model, we enhance 
maintenance planning by adequately detecting and diagnosing faults in the rotating 
machine. When tested against traditional machine learning methods of LR, ANN, 
GBM, SVM, DT, and RF, the ensemble method proposed in this research demon-
strated improved accuracy, recall, precision, F1-score, and Jaccard score on every 
traditional method. As a result, the ensemble model can reduce unnecessary main-
tenance and enhance automated decision-making. For future work in this area, the 
model stacking technique described in this paper can be applied to different use 
cases, and combinations of different machine learning algorithms can be tested to 
attempt to improve the accuracy of the ensemble model further. 
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