
1Complex Numbers and Complex Plane 

Abstract 

In this chapter we recall some concepts from basic courses in mathematical 
analysis of real-valued functions of one and several variables as well as from 
a course in linear algebra, namely complex numbers and their various forms, 
arithmetic operations on them (Sect. 1.1), and basic topological notions in the 
vector space . R2 (Sect. 1.5). The novel notion of the stereographic projection 
in Sect. 1.2 provides a geometric interpretation of the extended complex plane. 
Complex-valued functions of a real variable and various curves in the complex 
plane are considered in more detail in Sects. 1.3 and 1.4, respectively. 

1.1 Complex Numbers 

A number is the basic concept of mathematics, which evolved throughout the history 
of humankind. The emergence and formation of this concept went hand in hand 
with the emergence and development of mathematics. Practical human activities, 
on the one hand, and internal needs of mathematics, on the other, determined the 
development of the concept of numbers. 

The necessity of counting objects led to the emergence of the concept of the set of 
natural numbers . (N). Starting with natural numbers, the number system expanded in 
response to the need to describe quantities that could not be accommodated within 
the existing (previous) number system. As a result, sets of integers . (Z), rational 
numbers . (Q), and real numbers .(R) appeared in mathematics such that . N ⊂ Z ⊂
Q ⊂ R. 

Complex numbers arose from the need to find solutions of polynomial equations, 
for example, .x2 + 1 = 0. The first written mention of complex numbers as square 
roots of negative numbers can be found in Girolamo Cardano’s book in 1545. For 
nearly two centuries, complex numbers remained mysterious, had a poor reputation 
and were generally not considered legitimate. The active use of complex numbers 
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2 1 Complex Numbers and Complex Plane

in calculations began with works of Leonard Euler (1707–1783), in particular, with 
his famous formula (1.9) introduced in 1748. The first systematic description of
complex numbers, arithmetic operations on them and their geometric interpretation
was conducted by Carl Gauss (1777–1855) in his memoir “Theoria residuorum
biquadraticorum” (1828, 1832). The term “complex number” is due to C. Gauss in
1831. The 2000-year and engaging history of complex numbers is presented in [7]. 

Definition 1.1 The set . C of complex numbers is the set of ordered pairs . (x, y)

of real numbers x and . y, equipped with algebraic operations of addition and 
multiplication: 

.(x1, y1) + (x2, y2)
def= (x1 + x2, y1 + y2), (1.1) 

.(x1, y1) · (x2, y2)
def= (x1x2 − y1y2, x1y2 + y1x2). (1.2) 

. �

It is clear that two complex numbers .(x1, y1) and .(x2, y2) are equal if and only if 
.x1 = x2 and .y1 = y2. From the definition it follows that 

.(x1, 0) + (x2, 0) = (x1 + x2, 0), (x1, 0) · (x2, 0) = (x1x2, 0). (1.3) 

Thus, addition and multiplication on complex numbers of the form .(x, 0) coincide 
with the corresponding algebraic operations on real numbers. Therefore, we can 
identify each real number x with the complex number .(x, 0), i.e., . R � x := (x, 0) ∈
C, and after this identification one can state that .R ⊂ C. In addition, one can verify 
that for any real number a 

.a · (x, y) = (a, 0) · (x, y) = (ax, ay). (1.4) 

The complex number .(0, 1) is called the imaginary unit and is denoted by the 
Latin letter i. It is easy to check that 

. i2 = (0, 1) · (0, 1) = (−1, 0) = −1 and (0, y) = (0, 1) · (y, 0) = iy.

Based on these notations, any complex number can be represented as 

. (x, y) = (x, 0) + (0, y) = x · (1, 0) + y · (0, 1) = x + iy,

which is called the algebraic form of a complex number. The algebraic form of a 
complex number is usually denoted by one letter .z := x + iy. Moreover, the number 
x is called the real part of the complex number . z and is denoted .Re(z), while the 
number . y is called the imaginary part of z and is denoted .Im(z).
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The conjugate of a complex number .z = x + iy is the complex number . z :=
x − iy. The  modulus or absolute value of z is defined by 

. |z| :=
√

x2 + y2.

Note that .|z| = |z| and . z · z = x2 + y2 = |z|2.
Subtraction and division of two complex numbers .z1 = x1+iy1 and . z2 = x2+iy2

are defined as follows: 

.z1 − z2 = (x1 − x2) + i(y1 − y2),
z1

z2
= z1 · z2

|z2|2 (z2 �= 0). (1.5) 

The set of complex numbers with respect to the introduced operations forms a
field, i.e., it is an Abelian group1 with respect to addition with .0 = (0, 0) as the 
additive identity; the nonzero elements in . C form an Abelian group with respect 
to multiplication with .1 = (1, 0) as the multiplicative identity; and multiplication 
distributes over addition. 

Exercise 1.1 Prove that all these field properties are fulfilled. 

From (1.3) it follows that the field of complex numbers includes the field of real
numbers as a subfield. The reader is invited to make sure that all extensions of the
field . R obtained by joining the root of the equation .x2 + 1 = 0 to it are isomorphic 
to the field . C. 

Based on Definition 1.1, (1.1) and (1.4) we can assert that the set of complex
numbers is a real vector space,2 or more precisely, the vector space . R2. This makes 
the complex numbers a Cartesian plane (coordinate plane), called the complex plane. 
Clearly that the real numbers lie on the horizontal x-axis, called the real axis, and 
the y-axis is called the imaginary axis of the complex plane. This allows to give 
the geometric interpretation of complex numbers and arithmetic operations defined 
on . C and, conversely, to express some geometric properties and constructions in 
terms of complex numbers. For instance, conjugation is the reflection symmetry 
with respect to the real axis; multiplication by . −1 is the central symmetry about the 
origin.

1 Recall that a group is a set of elements together with a binary operation on this set such that 
the following three requirements, known as group axioms, are satisfied: the binary operation is 
associative, there is a unique identity with respect to this operation, and every element of this 
set has an inverse with respect to this operation. In an Abelian group, the binary operation is 
additionally commutative. 
2 It is a set of objects called vectors, which may be added together and multiplied by real numbers 
(scalar multiplication). This set is an Abelian group under addition, and scalar multiplication has 
the following properties: .x(u + v) = xu + xv, .(x + y)v = xv + yv, .(xy)v = x(yv), and . 1v = v
for all .x, y ∈ R and all vectors . u and . v. 
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Fig. 1.1 Geometric 
interpretation of the sum and 
subtraction two complex 
numbers 

Fig. 1.2 The argument of z 

Furthermore, sum and subtraction of two complex numbers coincides with the 
sum and subtraction of the corresponding vectors in . R2 (Fig. 1.1). The absolute 
value of a complex number is the length of the corresponding vector (the usual 
Euclidean norm) in the vector space . R2. 

Other Forms of Writing Complex Numbers 
It is known that the position of the point .(x, y) is also determined by the pair 
.(r, ϕ), where r is the distance of .(x, y) to the origin and . ϕ is the counterclockwise 
angle (measured in radians) between the positive x-axis and the ray from the origin 
through .(x, y); the values r and . ϕ are called the polar coordinates of .(x, y), and 

.x = r cosϕ, y = r sinϕ. (1.6) 

Substituting these relations into the algebraic form of a complex number . z =
x + iy yields the trigonometric form: 

.z = |z| (cosϕ + i sinϕ), (1.7) 

where the angle . ϕ is called the argument of z (Fig. 1.2). 
Note that the argument of each nonzero complex number z is defined ambigu-

ously, and up to the term .2πk (k ∈ Z); in addition, there exists a unique angle 
.ϕ0 ∈ (−π, π] such that .ϕ = ϕ0 + 2πk. This angle . ϕ0 is called the principal value
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of the argument of z and is denoted .arg(z). The set of all arguments of z is denoted 
by 

. Arg(z) := {ϕ0 + 2πk : k ∈ Z}.

The argument of 0 is not defined. The principal value of the argument of z can 
be considered as a real-valued function defined on .C \ {0} and it can be expressed 
from the formulas (1.6) in terms of the inverse trigonometric function . arctan :

. arg(z) =

⎧
⎪⎪⎨
⎪⎪⎩

arctan y
x
, if x > 0;

π + arctan y
x
, if x < 0, y > 0;

π, if x < 0, y = 0;
−π + arctan y

x
, if x < 0, y < 0.

(1.8) 

Example 1.1 It is easy to verify that 

• the principal value of the argument of each positive number x .(y = 0) is zero, 
and the set of all arguments of x is . Arg(x) = {2πk : k ∈ Z};

• .arg(1 − i) = −π
4 , and . Arg(1 − i) = {−π

4 + 2πk : k ∈ Z};
• .arg(−3) = π, and .Arg(−3) = {π + 2πk : k ∈ Z}. 

Let us define the exponential function of an imaginary number . iα by the 
following way: 

.eiα def= cosα + i sinα (α ∈ R), (1.9) 

which is known as Euler’s formula (the proof is given in Example 5.4). From (1.9) 
it is clear that .|eiα| = 1. In addition, it is easy to verify that 

. eiα1 · eiα2 = (cosα1 + i sinα1)(cosα2 + i sinα2)

= (
cosα1 cosα2 − sinα1 sinα2

) + i
(
sinα1 cosα2 + cosα1 sinα2)

= cos(α1 + α2) + i sin(α1 + α2)

= ei(α1+α2). (1.10) 

In (1.10) we used the addition formulas for sine and cosine. Similarly, it is proved
that

.

(
eiα

)n = einα,
eiα1

eiα2
= ei(α1−α2).
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Using Euler’s formula (1.9), we get from (1.7) the  exponential form of a complex 
number: .z = |z| eiϕ . This form well illustrates the essence of multiplication and 
division of complex numbers. If .z1 = |z1| eiϕ1 and .z2 = |z2| eiϕ2 , then 

. z1 · z2 = |z1||z2| ei(ϕ1+ϕ2),
z1

z2
= |z1|

|z2| ei(ϕ1−ϕ2) (z2 �= 0).

Thus, when multiplying (respectively dividing) two complex numbers, their moduli 
are multiplied (resp. divided): 

. |z1 · z2| = |z1||z2|,
∣∣∣z1
z2

∣∣∣ = |z1|
|z2| ,

and arguments are added (resp. subtracted): 

. ϕ1 + ϕ2 ∈ Arg(z1 · z2), ϕ1 − ϕ2 ∈ Arg(
z1

z2
).

Definition 1.2 A complex number . z is called an . nth root of a complex number . a,

if .zn = a. Here, .n ∈ N and .a �= 0. . �

Let us derive a formula for finding . nth roots of a complex number . a = |a| eiθ

.(θ ∈ (−π, π)). If .z = |z| eiϕ is an . nth root of . a, then according to the definition 

. |z|n einϕ = |a| eiθ ⇐⇒
{

|z|n = |a|,
nϕ = θ + 2πk, k ∈ Z,

whence 

. 

{
|z| = n

√|a|,
ϕk = θ+2πk

n
, k ∈ Z,

that is, the . nth roots of a are numbers 

.zk = n
√|a| ei

(
θ
n
+ 2πk

n

)
, k ∈ Z. (1.11) 

It is easy to see that among these complex numbers there are exactly n different
numbers. Indeed, the numbers .z0, . . . , zn−1 are different since their arguments 

.ϕ0 = θ

n
, ϕ1 = θ + 2π

n
, . . . , ϕn−1 = θ + 2π(n − 1)

n
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Fig. 1.3 The . nth roots of a 
complex number a 

are various and differ from each other less than .2π. For any other number .zk, . k /∈
{0, . . . , n − 1} there exist numbers .p ∈ Z and .q ∈ {0, 1, . . . , n − 1} such that 
.k = pn + q. This means that .zk = zq . 

Thus, the equation .zn = a has n different roots .z0, . . . , zn−1, defined by the 
formula (1.11) and located at the vertices of a regular n-sided polygon inscribed in
a circle of radius .

n
√|a| centered at the point 0 (Fig. 1.3). 

1.2 Sequences in the Complex Plane: Extended Complex Plane 

Since the modulus of a complex number is just the usual Euclidean norm in the 
vector space .R2, it is natural to introduce the distance between two complex 
numbers as follows 

. d(z1, z2) := |z1 − z2| =
√

(x1 − x2)2 + (y1 − y2)2,

where .z1 = x1 + iy1, z2 = x2 + iy2. In addition, we can naturally introduce 
the convergence of a sequence of complex numbers as the convergence of a 
sequence of the corresponding vectors in . R2. We hope that the reader is familiar 
with the properties of convergent sequences from real analysis of several variables. 
Nevertheless, let us briefly recall the main definitions and properties. 

Definition 1.3 A sequence .{zn = xn + iyn}n∈N of complex numbers is said to 
converge to a complex number .a = α + iβ . (denoted as . lim

n→+∞ zn = a), if 

. lim
n→+∞ |zn − a| = 0,

i.e., for every .ε > 0, there exists an integer N such that 

. |zn − a| < ε for all n ≥ N.

.�
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From Definition 1.3 follows a statement, which is offered to the reader as an 
exercise. 

Exercise 1.2 Prove that a sequence .{zn = xn + iyn}n∈N converges to the complex 
number .a = α + iβ if and only if 

. lim
n→+∞ xn = α and lim

n→+∞ yn = β.

Definition 1.4 It is said that a sequence .{zn}n∈N of complex numbers converges to 
infinity .( lim

n→+∞ zn = ∞), if 

. lim
n→+∞ |zn| = +∞,

i.e., for every .R > 0, there exists an integer N such that 

. |zn| > R for all n ≥ N.

. �

The symbol ."∞" is called the point at infinity. 

Definition 1.5 The set .C := C ∪ {∞} is called the extended complex plane. 

Obviously, that each sequence in . C contains a convergent subsequence. This is 
called the principle of compactness in . C. The point at infinity does not participate 
in algebraic operations, i.e. it cannot be multiplied or added to complex numbers. In 
real analysis, points labeled .+∞ and .−∞ produce the two-point compactification 
of the set of real numbers. 

Geometric Interpretation of . C
Consider the space 

. R
3 = {

(ξ, η, ζ ) : ξ ∈ R, η ∈ R, ζ ∈ R
}
,

in which the .ξ -axis coincides with the real axis, .η-axis coincides with the imaginary 
axis, and .ζ -axis is perpendicular to the complex plane (Fig. 1.4). The sphere 

. S :=
{
(ξ, η, ζ ) ∈ R

3 : ξ2 + η2 +
(
ζ − 1

2

)2 = 1
4

}

is tangent to the complex plane at the origin. The point .N = (0, 0, 1), which lies 
on the sphere, will be called the “north pole”. Define a mapping .p : C 
→ S as
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Fig. 1.4 Riemann sphere 

follows: to each point .z ∈ C we assign an intersection point .Z(ξ, η, ζ ) where the 
line between z and N meets the sphere . S apart from N (Fig. 1.4), that is 

. C � z
p
−→ Z(ξ, η, ζ ) :=

(
S ∩ [z,N ]

)
\ {N}.

Obviously, if . lim
n→+∞ zn = ∞, then the images .{Zn}n∈N on the sphere approach 

to N . Therefore, it is naturally to determine . p at the point at infinity as follows: 

.∞ p
−→ N . The mapping .p : C 
→ S is called the stereographic projection. 
Let us examine properties of p. Obviously, this is a one-to-one mapping. To 

explicitly define the stereographic projection, we exclude the variable t from the 
parametric equations of the segment .[N, z]: .ξ = tx, .η = ty, .ζ = 1 − t, where 
.t ∈ [0, 1], and as a result we obtain formulas for the inverse mapping . p−1 :

.x = ξ

1 − ζ
, y = η

1 − ζ
. (1.12) 

Since the coordinates of the point .Z(ξ, η, ζ ) satisfy the relation 

. ξ2 + η2 +
(

ζ − 1

2

)2

= 1

4
⇐⇒ ξ2 + η2 = ζ(1 − ζ ),

then 

.x2 + y2 = ξ2 + η2

(1 − ζ )2
= ζ

1 − ζ
�⇒ ζ = x2 + y2

1 + x2 + y2
.
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From the last equation and formulas (1.12) we get formulas for the stereographic 
projection: 

.ξ = x

1 + x2 + y2 , η = y

1 + x2 + y2 , ζ = x2 + y2

1 + x2 + y2 . (1.13) 

It follows from (1.12) and (1.13) that .p : C 
→ S is a homeomorphism (by definition, 
it is a one-to-one, onto continuous mapping with a continuous inverse). 

Using the map p, we can identify the extended complex plane . C with the sphere 
. S. After this identification, the sphere S is called the Riemann sphere, or the sphere 
of complex numbers. 

Exercise 1.3 Prove that under the stereographic projection an arbitrary circle or 
straight line on . C maps to a circle on . S, and the angle between curves in . C is equal 
to the angle between the images these curves on . S. 

1.3 Complex-Valued Functions of a Real Variable 

Consider a function .f : R 
→ C. Such a complex-valued function of a real variable 
can be represented as .f (t) = u(t) + iv(t), t ∈ R, where .u(t) := Re(f (t)) and 
.v(t) := Im(f (t)). Thus, we see that each function .f : R 
→ C can be viewed as a 
vector-function . 

(
u
v

)
from . R in . R2 due to the geometrical interpretation of the set of 

complex numbers. Therefore, such concepts as the limit of a function, continuity, 
uniform continuity and many other properties of vector-functions of a real variable 
are automatically transferred to such functions. Let us recall some of them. 

Definition 1.6 A number .A = α + iβ is the limit of a function .f : R 
→ C at a 
point .t0 ∈ R . (denoted as . lim

t→t0
f (t) = A), if for each .ε > 0 there exists .δ > 0 such 

that 

. |f (t) − A| =
√

(u(t) − α)2 + (v(t) − β)2 < ε whenever |t − t0| < δ.

. �

As in the proof of the assertion in Exercise 1.2, the following statement can be 
easily proved. 

Proposition 1.1 The limit of a function .f : R 
→ C exists at a point .t0 ∈ R and it 
is equal to .A = α + iβ if and only if there exist the limits of its real and imaginary 
parts and they are equal to . α and . β, respectively, i.e., 

. lim
t→t0

f (t) = A ⇐⇒ lim
t→t0

u(t) = α and lim
t→t0

v(t) = β.
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Definition 1.7 A function .f : [a, b] 
→ C is called continuous on the closed 
interval .[a, b] ⊂ R . (denoted as .f ∈ C([a, b]) ), if for all . t0 ∈ [a, b]

. lim
t→t0

f (t) = f (t0).

The corresponding one-sided limits are considered at the endpoints a and b. 

Definition 1.8 The derivative of a function .f : R 
→ C at a point .t0 ∈ R . (denoted 
by .f ′(t0)) is called the limit 

. lim
t→t0

f (t) − f (t0)

t − t0
, (1.14) 

provided that it exists. . �

Suppose the limit (1.14) exists. Then, according to Proposition 1.1 

. f ′(t0) = lim
t→t0

(
u(t) − u(t0)

t − t0
+ i

v(t) − v(t0)

t − t0

)

= lim
t→t0

u(t) − u(t0)

t − t0
+ i lim

t→t0

v(t) − v(t0)

t − t0
= u′(t0) + iv′(t0).

Obviously, the reverse chain of equalities is also true. Thus, the following statement 
is correct. 

Proposition 1.2 The derivative of a function .f : R 
→ C at .t0 ∈ R exists if and 
only if the derivatives of its real and imaginary parts exist at . t0. 

Example 1.2 The function .f (t) = exp(it), t ∈ R, has the derivative at each point 
and .f ′(t) = i exp(it). Indeed, for any . t ∈ R

. (exp(it))′ = (cos t + i sin t)′ = − sin t + i cos t = i(cos t + i sin t) = i exp(it).

Due to Proposition 1.2 the equality .f ′(t0) = u′(t0) + iv′(t0) can be taken as 
an equivalent definition of the derivative of a complex-valued function of a real 
variable. We will apply this approach to define the integral of a complex-valued 
function of a real variable.
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Definition 1.9 Let .f (t) = u(t) + iv(t), t ∈ [a, b], and the functions . u and . v be 
Riemann-integrable on the segment .[a, b]. 

. 

b∫

a

f (t) dt
def=

b∫

a

u(t) dt + i

b∫

a

v(t) dt.

. �

Exercise 1.4 Prove that Definition 1.9 is equivalent to the definition of the integral 
introduced through the limit of the Riemann sums of f , i.e., 

. 

b∫

a

f (t) dt = lim
�→0

n∑
k=1

f (τk)Δtk,

where .a = t0 < t1 < . . . < tn = b, .Δtk := tk − tk−1, .tk−1 ≤ τk ≤ tk, . Δ =
maxk∈{1,...,n} Δtk . 

It is easy to check the following properties of integrals of complex-valued 
functions of a real variable: 

(1) . ∀ λ,μ ∈ C

∫ b

a

(λf (t) + μg(t)) dt = λ

∫ b

a

f (t) dt + μ

∫ b

a

g(t) dt;

(2) . ∀ c ∈ (a, b)

∫ b

a

f (t) dt =
∫ c

a

f (t) dt +
∫ b

c

f (t) dt;
(3) if . F is the antiderivative of . f, i.e., .F ′(t) = f (t) for all .t ∈ [a, b], then 

. 

∫ b

a

f (t) dt = F(b) − F(a);

(4) . 

∣∣∣∣
∫ b

a

f (t) dt

∣∣∣∣ ≤
∫ b

a

|f (t)| dt.

Exercise 1.5 Using Exercise 1.4, prove the fourth property. 

Remark 1.1 Not all properties of real-valued functions are automatically carried 
over to complex-valued functions of a real argument. For instance, the statement 
of the mean value theorem is incorrect. This fact is easy to check for such a 
continuous function: .eit , t ∈ [0, 2π ]. Evidently that .eit �= 0 for all .t ∈ [0, 2π ]. 
Therefore, on the one hand, assuming that the mean value theorem holds, we have 
that .

∫ 2π
0 eit dt �= 0. On the other hand, 

.

∫ 2π

0
eit dt =

∫ 2π

0
cos t dt + i

∫ 2π

0
sin t dt = 0.
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Exercise 1.6 Show that the statements of Rolle’s theorem and Cauchy’s mean value 
theorem are also incorrect for complex-valued functions of a real variable. Recall 
that Rolle’s theorem states the following: if a real-valued function f is continuous 
on a closed interval .[a, b], differentiable on .(a, b), and .f (a) = f (b), then there 
exists a point .ξ ∈ (a, b) such that .f ′(ξ) = 0. The second theorem establishes 
the relationship between the derivatives of two functions. Let functions f and g be 
continuous on .[a, b], differentiable on .(a, b), and .g′(x) �= 0 for all .x ∈ (a, b). Then 
there is a point .ξ ∈ (a, b) such that 

. 
f (b) − f (a)

g(b) − g(a)
= f ′(ξ)

g′(ξ)
.

Remark 1.2 Since it is impossible to introduce an order relation for complex 
numbers, the Weierstrass theorem for complex-valued functions of a real variable 
is formulated as follows: for a continuous function .f : [a, b] 
→ C, its modulus 
reaches its largest and smallest value on the closed interval .[a, b]. 

1.4 Curves in the Complex Plane 

A curve is a geometric concept, the exact and at the same time quite general 
definition of which presents significant difficulties and is given in various branches 
of mathematics and textbooks in different ways. For those branches in which 
methods of the theory of functions dominate, the natural definition of a curve is 
to define it by parametric equations. In this text, we will take this approach and give 
the following definition of a curve and its elements. 

Definition 1.10 A curve in . C . (in . C) is called a continuous complex-valued function 
of a real variable: .z = γ(t), .t ∈ [a, b] ⊂ R. 

Moreover, the points .γ(a) and .γ(b) are called the initial and end points of . γ,

respectively. The curve . γ is said to be closed if .γ(a) = γ(b). . �

Remark 1.3 In the notation of a curve .z = γ(t), t ∈ [a, b], or . γ : [a, b] 
→ C,

we will always mean that the closed interval .[a, b] is a real closed interval, i.e., 
.[a, b] ⊂ R. 

The image of such a continuous function is also often called a curve. In the course 
“Complex Analysis” it is convenient to distinguish between these concepts in order 
to better understand some new definitions and theorem proofs. The image of . γ, i.e., 
the set .γ

([a, b]), is called the trace of the curve . γ and is denoted by . Eγ. 
Each curve specifies an orientation that can be interpreted as the direction of 

movement of the point .γ(t) along the trace . Eγ from its initial point to its end as the 
parameter t increases from . a to .b.
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Example 1.3 Let .z1 ∈ C, .z2 ∈ C, and .γ(t) = z1 + t (z2 − z1), t ∈ [0, 1]. The  
initial point of this curve is .z1 = γ(0), the end point is .z2 = γ(1). We will denote 
its trace by .[z1, z2] and refer to it as the segment joining . z1 and . z2. 

Separating the real and imaginary parts in the equality .z = γ(t), we find the 
parametric equations, which are called a parametrization of the curve . γ, namely 
.x = Re(γ(t)), .y = Im(γ(t)), where the parameter .t ∈ [a, b]. 

Example 1.4 Let .z = γ1(t) = eit , t ∈ [0, 2π ]. Then 

. x + iy = cos t + i sin t ⇐⇒
{

x = cos t,

y = sin t,
t ∈ [0, 2π ].

The last two equations determine a parametrization of this curve, whose trace is the 
unit circle centered at the origin. It is a closed curve that starts at point .(1, 0) and is 
oriented counterclockwise. 

It is easy to see that the curve .z = γ2(t) = ei2πt , t ∈ [0, 1], has the same trace 
and orientation as the curve . γ1 from Example 1.4. For such curves, we will give the 
following definition. 

Definition 1.11 Two curves 

. z = γ1(t), t ∈ [a1, b1], and z = γ2(τ ), τ ∈ [a2, b2],

are called equivalent .(γ1 ∼ γ2), if there exists a real-valued function . τ = μ(t),

.t ∈ [a1, b1], such that 

(1) .μ ∈ C([a1, b1]) and it is strictly increasing on . [a1, b1];
(2) .μ(a1) = a2, . μ(b1) = b2;
(3) .γ1(t) = γ2(μ(t)) for all . t ∈ [a1, b1].

Exercise 1.7 Prove that this relation between two curves is the equivalence relation, 
i.e., it is reflexive, symmetric and transitive. 

Therefore, a curve can be understood as the corresponding equivalence class. It 
is clear that equivalent curves have the same trace and orientation. 

Example 1.5 The curve . γ1 from Example 1.4 and the curve 

. z = γ2(τ ) = ei2πτ , τ ∈ [0, 1],

are equivalent. To show this we need to take the function .τ = μ(t) = t/2π, . t ∈
[0, 2π ], and verify the conditions from Definition 1.11.
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Exercise 1.8 Prove that the curve . γ1 from Example 1.4 and the curve . z = γ3(τ ) =
e−iτ , τ ∈ [0, 2π ], are not equivalent. 

Definition 1.12 A point . z0 is called a self-intersection point of a curve . z = γ(t),

.t ∈ [a, b], if there are .t1 �= t2, .{t1, t2} ⊂ [a, b] such that 
. γ(t1) = γ(t2) = z0.

If a curve . γ is closed, then the point .γ(a) = γ(b) is not considered a self-
intersection point. . �

A curve without self-intersection points is called simple and a closed simple 
curve is said to be a Jordan curve. 

Let .z = γ(t), .t ∈ [a, b], be a Jordan curve in . C. Then the Jordan curve 
theorem asserts that the trace . Eγ divides the complex plane into an “interior” region, 
denoted by .int(γ), bounded by the trace, and an “exterior” region, denoted by . ext(γ)

(Fig. 1.5), i.e., 

. C \ Eγ = int(γ) ∪ ext(γ).

Intuitively, the statement of this theorem is obvious and there is no trouble 
verifying it when a curve is given explicitly. A rigorous proof of the general result 
is rather difficult, and we refer the reader to a topology text, e.g., [15]. The proof of 
the Jordan curve theorem for smooth Jordan curves can be found in [13, §4.8]. 

We will say that a Jordan curve . γ has the positive orientation (denoted by .γ+) if 
its interior remains on the left when traversing its trace for increasing values of the 
parameter t from a to . b (Fig. 1.5). Otherwise, it is negatively oriented .(γ−). 

Definition 1.13 A curve .z = γ(t), .t ∈ [a, b], is called smooth, if . γ is continuously 
differentiable on .[a, b], i.e., .γ ∈ C1([a, b]) and 

.γ ′(t) �= 0 for all t ∈ [a, b]. (1.15) 

If . γ is a closed curve, the condition .γ ′(a) = γ ′(b) must also be satisfied. . �

Fig. 1.5 The interior and 
exterior of a Jordan curve 
with the positive orientation
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Let us find out the geometric meaning of (1.15) . It is equivalent to
.x′(t) + iy′(t) �= 0 for all .t ∈ [a, b]. Since .(x′(t), y′(t)

)
is the tangent vector 

to . Eγ at the point .γ(t), then the condition (1.15) means that at each point of . Eγ

there is a nonzero tangent vector that changes continuously. 

Definition 1.14 A curve .z = γ(t), .t ∈ [a, b], is called piecewise smooth, if there 
is a partition .a = a0 < a1 < . . . < an = b of .[a, b] such that for each . k ∈
{0, 1, . . . , n − 1} the curve .z = γ(t), t ∈ [ak, ak+1], is smooth. 

Definition 1.15 A curve .z = γ(t), .t ∈ [a, b], is called rectifiable, if 

• . γ is differentiable on .[a, b] except, possibly, at a countable set of points and 
• there exists a finite integral 

. �γ :=
∫ b

a

|γ ′(t)| dt =
∫ b

a

√
(x′(t))2 + (y′(t))2 dt.

The value . �γ is called the length of . γ. 

An example of a piecewise smooth curve is a broken line. Note that a piecewise 
smooth curve is rectifiable. 

Example 1.6 The curve 

. z = γ5(t) = t3 + it2, t ∈ [−1, 1],

is simple, however it is not smooth and piecewise smooth (Fig. 1.6). 
The curve 

. z = γ6(t) = cos 2t exp(it), t ∈ [0, 2π ] (four petal rose curve)

is closed non-Jordan smooth curve that has the self-intersection point at the origin. 
The curve 

. z = γ7(t) = t
(
1 + i sin 1

t

)
, t ∈ [ − 1

π
, 1

π

]
,

is simple and non-rectifiable, so it is not piecewise-smooth.
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Fig. 1.6 The traces of curves . γ5 (left), . γ6 (right) and . γ7 (from below) 

1.5 Basic Topological Concepts of the Complex Plane 

Let us now recall some topological concepts. An open disk of radius .r > 0 centered 
at a point .a ∈ C is a set of all points of distance less than r from . a, i.e., 

. Br(a) := {z ∈ C : |z − a| < r}.
It is also called the r-neighborhood of a. The  R-neighborhood of the point at 
infinitely is the set 

. BR(∞) := {z ∈ C : |z| > R} ∪ {∞}.

Definition 1.16 A set  .D ⊂ C is called open, if each point of D is contained in D 
together with some of its r-neighborhood, i.e., 

. ∀ z0 ∈ D ∃ r > 0 such that Br(z0) ⊂ D.

Definition 1.17 Let .D ⊂ C and .z0 ∈ C. The point . z0 is called a limit point of the 
set . D if every r-neighborhood of . z0 contains at least one point of D different from 
. z0 itself, i.e., 

. ∀ r > 0 ∃ z ∈ D such that z ∈ Br(z0) \ {z0}.

Definition 1.18 A set .D ⊂ C is called closed if it contains all its limit points.
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Example 1.7 Let .D := Z. Then, the set D is closed in . C, since the set of its limit 
points is empty and .∅ ⊂ D. However, it is not closed in . C since it does not contain 
its limit point . ∞.

The joining to a set .D ⊂ C all its limit points is called the closure of D and 
denoted by . D. For example, the closure of the open disk .Br(a) is the closed disk 

. Br(a) := {z ∈ C : |z − a| ≤ r}.

A set .D ⊂ C is said to be path-connected if for any two distinct points in D there 
is a curve whose trace belongs to D and connects these points (starting at one point 
and ending at the other). 

A set .D ⊂ C is called a domain if it is open and path-connected. 

Definition 1.19 Let . D be a domain in . C. The  set  .∂D := D \ D is called the 
boundary of D. 

Exercise 1.9 Prove that the boundary of a domain is the closed set. 

There are several approaches to introducing the concept of simply connected 
domains: a domain is simply connected if its fundamental group is trivial; a domain 
. D in . Rm is simply connected if any closed curve in . D is homotopic to a point in this 
domain (see Definition 4.4 and Exercise 4.4); one can define simply connectedness 
through the general concept of connectedness of a set in a topological space. In this 
course an easier-to-understand definition of simply connectedness is proposed. 

Definition 1.20 A domain D is said to be simply connected (also called 1-
connected) in . C if for any Jordan curve . γ, whose trace belongs to . D, the interior of 
. γ is fully contained in D, i.e., .int(γ) ⊂ D. 

A domain D is said to be simply connected in . C if for any Jordan curve . γ, whose 
trace belongs to D and .∞ /∈ Eγ, obligatorily either .int(γ) ⊂ D or . ext(γ) ⊂ D.

Domains that are not simply connected are called multiply connected. . �

Intuitively, a simply connected domain is a domain “without holes”. 

Definition 1.21 The connectedness order of a domain .D ⊂ C is the number of 
path-connected closed components of the boundary .∂D, which do not intersect. 

Example 1.8 Consider the domain .D1 = {z : |z| > 1}. Obviously, it is multiply 
connected in . C, since the interior of the circle .{z : |z| = 2} is not a subset of . D1. In  
. C its connectedness order is 2, because the boundary of . D1 has two path-connected 
closed components that do not intersect, namely .{z : |z| = 1} and .{∞}. 

Example 1.9 Due to the second part of Definition 1.20 the domain . D2 = D1∪{∞}
is 1-connected in . C.
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Example 1.10 The connectedness order of the domain 

. D3 = {
z : |z| < 2

} \
( N⋃

k=1

{
z : z = x + i

2k
, x ∈ [ 14 , 3

4 ]
})

is equal to .N + 1, where .N ∈ N.
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