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To Warriors of Light



Preface 

The proposed textbook contains theoretical material that corresponds to the edu-
cational program “Complex Analysis” of training specialists of the educational 
qualification level “Bachelor” for students of the Faculty of Mechanics and Mathe-
matics of the Taras Shevchenko National University of Kyiv. 

Being a student of Lviv State University, where the world-famous school of 
functional analysis was founded, headed by Professor Stefan Banach, as well as a 
graduate student of Moscow State University, where I attended Professor Shabbat’s 
course on Complex Analysis of Several Variables [10], I was given the opportunity 
to observe the best teaching traditions of these famous old universities. Taking them 
into account, I developed a two-semester course “Complex Analysis” in 1993 and 
since then I have been teaching this course regularly at the Faculty of Mechanics 
and Mathematics of the Taras Shevchenko National University of Kyiv. 

During this time, the prepared lectures have been expanded and modified. Since 
2004, they have been presented in electronic form (in Ukrainian) on the website 
of the Department of Mathematical Physics: http://www.matfiz.univ.kiev.ua/books. 
Then two new chapters and many figures were added to this electronic version. 
Several books [1, 2, 4, 9, 11] were useful guides in preparing lecture notes and then 
for the Ukrainian version of the textbook [5]. 

Since then, this textbook has been read and downloaded from my Research Gate 
webpage more than 2500 times by readers from different countries, although it was 
published in Ukrainian. I was also encouraged by the positive feedback from many 
readers and former students of mine who now teach at various universities (e.g., 
Professor Oleksandr Misiats used my lectures to teach a course on complex analysis 
for masters at the Courant Institute of Mathematical Sciences), and many of them 
recommended the publication of this book in English. 

The English version is a substantial extension of the Ukrainian one. Some 
important new theorems and their proofs are added, as well as many new examples, 
exercises, and figures. I am very grateful to Springer Publisher for supporting my 
proposal and publishing this textbook. 

What Advantages Does This Book Offer over Competitive Titles 
and What Is Unique About It?
• There are three concepts for constructing the theory of analytic functions, which 

are associated with Cauchy, Riemann, and Weierstrass, respectively. In most
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viii Preface

textbooks, the theory is based on the Cauchy or Weierstrass approach. Cauchy’s 
approach focuses on the integral calculus of functions of a complex variable, 
and the key topics are contour integration and the Cauchy integral formula. 
For Weierstrass’ approach, power series are central, and the key topic is spaces 
of analytic functions represented as power series. As a result, the concept 
of conformal mappings, which occupies a central place in complex analysis, 
appears only in the middle or at the end of textbooks (courses). 

In the textbook, I adhere to the Riemann concept, in which the differentiability 
of complex-valued functions of a complex variable is central. This approach 
makes it possible to introduce the concept of conformal mappings at the 
beginning (Chap. 2) and to study properties of such mappings, including their 
hydromechanical interpretation and geometric meaning of the modulus and 
argument of the derivative. In addition, the material in the textbook is selected 
in such a way as to simplify the proof of subsequent theorems. This leads to a 
significant reduction in the volume of the textbook.

• I was surprised to find that many textbooks limit themselves to linear-fractional, 
power, exponential, and logarithmic functions only. For example, the Joukowsky 
function, which is used in many applications, is not considered at all. Chap-
ter 3 examines in detail the properties of many elementary analytic functions, 
including trigonometric and hyperbolic functions, and their inverse functions. It 
is shown how to construct Riemann surfaces of these inverse functions. Such a 
detailed analysis of the properties of various elementary analytic functions allows 
students to better understand the general properties of analytic functions.

• There are many topics in this book that are often missing in other texts, 
namely the conformal mapping criterion and its proof; the equivalence of three 
approaches to the construction of the theory of analytic functions; the notion 
of an integral for an analytic function along an arbitrary curve (not necessarily 
piecewise-smooth) is extended thanks to the introduction and study of properties 
of an antiderivative along a curve; the theory of global analytic functions and their 
Riemann surfaces; the inverse function theorem in the general case, Lagrange-
Bürmann and Puiseux series.

• The Complex Analysis course is a natural continuation of the theory of real func-
tions. Therefore, the tutorial contains many examples that compare properties of 
analytic functions of a complex variable and real-valued functions, and also show 
their differences.

• Many textbooks contain a list of problems and exercises after each section, 
most of which are typical and standard. As there are many taskbooks for 
this course (e.g., [3, 6, 8, 12, 14]), the author has taken a different approach. 
Problems, many of them invented by the author, are presented in the textbook 
either immediately after the definition of a new concept in order to better 
understand it or immediately after the theorem that must be applied to solve 
it. These are theoretical tasks and their purpose is to help students actively and 
informally assimilate the material, as well as to illustrate the difficult points of 
the theory. Their solutions do not require sophisticated calculations, but only a 
good understanding. I like to call them “problems solved in three lines.”
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• In addition, the textbook contains many full-color figures that successfully 
illustrate the essence and basic properties of theoretical concepts. 

Description of the Contents 
The textbook contains a brief but fairly complete exposition of the main ideas 
of the theory of functions of a complex variable, with clear and rigorous proofs, 
the presence of which is mandatory in textbooks for mathematics departments. It 
consists of nine chapters. 

The first chapter is introductory and introduces complex numbers and their 
various forms. We then look at the complex plane, the extended complex plane with 
its geometric interpretation, and their basic topological concepts. Complex-valued 
functions of a real variable and various curves in the complex plane are considered 
in more detail. 

The second chapter introduces analytic functions as functions that are dif-
ferentiable with respect to a complex variable. This leads to the proof of the 
Cauchy-Riemann theorem and to the concept of harmonic conjugate functions. We 
also define conformal mappings and study properties of such mappings, including 
their hydromechanical interpretation and the geometric significance of the modulus 
and argument of the derivative. 

Chapter 3 examines in detail the properties of many elementary analytic func-
tions and their inverse. These inverse functions turn out to be multivalued functions. 
Therefore, we first introduce the empirical concept of a Riemann surface for such 
functions and show how to construct Riemann surfaces for these inverse functions. 
A rigorous topological approach for Riemann surfaces is given in Chap. 8. 

The theory of integration of complex-valued functions of a complex variable 
along a curve is considered in Chap. 4. Here we prove the Cauchy-Goursat theorem 
for triangles, the general Cauchy theorem for homotopic curves and corollaries to 
this theorem, as well as Cauchy’s integral formula. In addition, the notion of an 
integral for an analytic function along an arbitrary curve (not necessarily piecewise-
smooth) is expanded thanks to the introduction and study of properties of an 
antiderivative along a curve. Theorems on the existence of a local antiderivative, an 
antiderivative along a curve, and an antiderivative in the whole domain are proved. 

Chapter 5 presents the most important application of the Cauchy integral 
formula, namely the proof that an analytic function in a disk can be expanded in 
a power series. As a result, we get simple and nice proofs of Liouville’s theorem, 
the fundamental theorem of algebra, Morera’s theorem, and the equivalence of three 
approaches to the construction of the theory of analytic functions. The theorem on 
the uniqueness of analytic functions coinciding on a certain sequence is also proved. 
This theorem allows one to characterize isolated zeros of an analytic function and 
their concentration, and as a consequence, it is easy to prove the theorem about the 
factorization of polynomials. 

Chapter 6 deals with Laurent series. The properties of such series are studied 
and it is proved that an analytic function in an annulus can be expanded into 
a Laurent series. The connection between Laurent series and Fourier series is 
also demonstrated. Isolated singularities of analytic functions are classified and
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the behavior of analytic functions in neighborhoods of singularities, including the 
singularity at infinity, is studied. The chapter ends with the classification of analytic 
functions with respect to their isolated singularities and the proof of theorem on a 
meromorphic function. 

Residue theory is considered in Chap. 7. Here various formulas for the calcu-
lation of residues are proved and a wide variety of applications of this theory are 
demonstrated, namely different methods for calculating integrals, expansions of 
meromorphic functions into the series of elementary fractions, and expansions of 
entire functions into infinite products. In addition, logarithmic residues are defined, 
the argument principle and Rouché’s theorem are proved. Using the latter, we derive 
simple sufficient conditions for the conformity of a function, Hurwitz’s theorem, and 
other corollaries. 

The theory of analytic continuation is covered in Chap. 8. Here such important 
theorems as the principle of analytic continuation by continuity, the Schwarz 
reflection principle and the monodromy theorem are proved. The topological 
approach is used to present the theory of global analytic functions (such a function is 
a set of all analytic function elements obtained from some initial element by analytic 
continuation along all possible curves) and their Riemann surfaces. 

The purpose of Chap. 9, devoted to the qualitative properties of analytic func-
tions, is to prove the Riemann mapping theorem in the general case. Along the way, 
we prove the open mapping theorem, the maximum modulus principle, Schwarz’s 
lemma, the inverse function theorem, and Montel’s theorem. We also discuss 
the Lagrange-Bürmann formula and Puiseux series, and deduce the theorem on 
conformal automorphisms of canonical domains. 

For Which Courses Would the Textbook Be Suitable? 
The theory of complex-valued functions of a complex variable belongs in a 
basic course of mathematics faculties as well as physics and some engineering 
departments of many universities. Therefore, the book can be used in a two-semester 
course for undergraduate mathematics majors, a one-semester course for physics or 
engineering specialties, or a one-semester course for first-year graduate students in 
mathematics. Essential prerequisites include basic courses in mathematical analysis 
of real-valued functions of one and several variables as well as courses in linear 
algebra and elementary topology. 

There are several topics in this textbook that can be in one or another advanced 
course; notably, the theory of global analytic functions and the general approach to 
the theory of Riemann surfaces of global analytic functions (Sects. 8.3–8.6) can be 
included in advanced course in topology; Lagrange-Bürmann formula and Puiseux 
series (Sect. 9.2) can be in approximation theory or asymptotic analysis; conformal 
isomorphisms and automorphisms and Montel’s theorem (Sects. 9.3 and 9.4) will 
find their place in an advanced course in functional analysis.
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There are, of course, many other interesting topics in the theory of complex 
analysis. The interested reader can familiarize himself with them, for example, in 
books [4, 10, 13]. 

Please send your feedback and suggestions on the content of the textbook to the 
email address: melnyk@imath.kiev.ua 

Stuttgart, Germany Taras Mel’nyk 
June 2023



Acknowledgements 

It gives me great pleasure to thank those who have helped me to write this textbook. 
First, I would like to thank Dr. Remi Lodh at Springer Heidelberg for his support 
and cooperation, and for his motivational letters, which have been of more value to 
me than he can know. 

It took me more than two years to write this book, and much of that time 
coincided with the full-scale war unleashed by the Russian regime. Some sections 
were written in a bomb shelter in Kyiv during air and rocket attacks on the city. That 
is why I dedicate this book to all those who are part of the fight against this brutal 
and terrible aggression. 

The writing of this book took place in parallel with my research at the University 
of Stuttgart, following a persuasive invitation from Professor Christian Rohde in 
May 2022, and supported first by the Humboldt Foundation until the end of February 
2023, and then by the German Research Foundation (the research project SFB 1313, 
Number 327154368). I am therefore very grateful to a remarkable number of people 
who have made my family’s stay in Stuttgart safe, pleasant, and, for me, productive. 

I am sincerely grateful to my former graduate student Andriy Popov for 
transforming many of my figures into electronic format. Special thanks are due to 
Professor Andriy Olenko of La Trobe University and Professor Oleksandr Misiats of 
Virginia Commonwealth University, who read the first three chapters and provided 
a number of helpful comments and suggestions.

xiii



Instructions for Readers 

In the text, you will come across the following symbols: 

The equality sign with “def ” above .
( def= )

means that the left-hand side is being 
defined by the right-hand side. 

The equality sign with “. :” before .( := ) means that the left-hand side is the 
designation for the right-hand side. 

. � indicates the end of the proof; 

. � indicates the end of a definition, remark, or example where appropriate. 

Also, when a term is defined for the first time outside a formal “Definition,” the 
word is italicized. 

In addition to the generally accepted symbols 

Symbol Meaning 

.∃ There exists 

.∀ For all 

.! Unique 

.�⇒ Implies 

.⇐⇒ Is equivalent to 

which are often used when presenting mathematical arguments in statements, 
definitions, and proofs of theorems, the following symbols are also often found in 
the text: 

.

� domain (an open and path-connected set) in the complex plane

� the closure of �

∂� the boundary of �

A(�) ring of analytic functions in �

Br(a) open disk of radius r > 0 centered at a point a

Br(a) closed disk

Eγ trace of a curve γ

fn

M

⇒ f uniform convergence on a set M of a function sequence {fn}n∈N
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1Complex Numbers and Complex Plane 

Abstract 

In this chapter we recall some concepts from basic courses in mathematical 
analysis of real-valued functions of one and several variables as well as from 
a course in linear algebra, namely complex numbers and their various forms, 
arithmetic operations on them (Sect. 1.1), and basic topological notions in the 
vector space . R2 (Sect. 1.5). The novel notion of the stereographic projection 
in Sect. 1.2 provides a geometric interpretation of the extended complex plane. 
Complex-valued functions of a real variable and various curves in the complex 
plane are considered in more detail in Sects. 1.3 and 1.4, respectively. 

1.1 Complex Numbers 

A number is the basic concept of mathematics, which evolved throughout the history 
of humankind. The emergence and formation of this concept went hand in hand 
with the emergence and development of mathematics. Practical human activities, 
on the one hand, and internal needs of mathematics, on the other, determined the 
development of the concept of numbers. 

The necessity of counting objects led to the emergence of the concept of the set of 
natural numbers . (N). Starting with natural numbers, the number system expanded in 
response to the need to describe quantities that could not be accommodated within 
the existing (previous) number system. As a result, sets of integers . (Z), rational 
numbers . (Q), and real numbers .(R) appeared in mathematics such that . N ⊂ Z ⊂
Q ⊂ R. 

Complex numbers arose from the need to find solutions of polynomial equations, 
for example, .x2 + 1 = 0. The first written mention of complex numbers as square 
roots of negative numbers can be found in Girolamo Cardano’s book in 1545. For 
nearly two centuries, complex numbers remained mysterious, had a poor reputation 
and were generally not considered legitimate. The active use of complex numbers 
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2 1 Complex Numbers and Complex Plane

in calculations began with works of Leonard Euler (1707–1783), in particular, with 
his famous formula (1.9) introduced in 1748. The first systematic description of
complex numbers, arithmetic operations on them and their geometric interpretation
was conducted by Carl Gauss (1777–1855) in his memoir “Theoria residuorum
biquadraticorum” (1828, 1832). The term “complex number” is due to C. Gauss in
1831. The 2000-year and engaging history of complex numbers is presented in [7]. 

Definition 1.1 The set . C of complex numbers is the set of ordered pairs . (x, y)

of real numbers x and . y, equipped with algebraic operations of addition and 
multiplication: 

.(x1, y1) + (x2, y2)
def= (x1 + x2, y1 + y2), (1.1) 

.(x1, y1) · (x2, y2)
def= (x1x2 − y1y2, x1y2 + y1x2). (1.2) 

. �

It is clear that two complex numbers .(x1, y1) and .(x2, y2) are equal if and only if 
.x1 = x2 and .y1 = y2. From the definition it follows that 

.(x1, 0) + (x2, 0) = (x1 + x2, 0), (x1, 0) · (x2, 0) = (x1x2, 0). (1.3) 

Thus, addition and multiplication on complex numbers of the form .(x, 0) coincide 
with the corresponding algebraic operations on real numbers. Therefore, we can 
identify each real number x with the complex number .(x, 0), i.e., . R � x := (x, 0) ∈
C, and after this identification one can state that .R ⊂ C. In addition, one can verify 
that for any real number a 

.a · (x, y) = (a, 0) · (x, y) = (ax, ay). (1.4) 

The complex number .(0, 1) is called the imaginary unit and is denoted by the 
Latin letter i. It is easy to check that 

. i2 = (0, 1) · (0, 1) = (−1, 0) = −1 and (0, y) = (0, 1) · (y, 0) = iy.

Based on these notations, any complex number can be represented as 

. (x, y) = (x, 0) + (0, y) = x · (1, 0) + y · (0, 1) = x + iy,

which is called the algebraic form of a complex number. The algebraic form of a 
complex number is usually denoted by one letter .z := x + iy. Moreover, the number 
x is called the real part of the complex number . z and is denoted .Re(z), while the 
number . y is called the imaginary part of z and is denoted .Im(z).
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The conjugate of a complex number .z = x + iy is the complex number . z :=
x − iy. The  modulus or absolute value of z is defined by 

. |z| :=
√

x2 + y2.

Note that .|z| = |z| and . z · z = x2 + y2 = |z|2.
Subtraction and division of two complex numbers .z1 = x1+iy1 and . z2 = x2+iy2

are defined as follows: 

.z1 − z2 = (x1 − x2) + i(y1 − y2),
z1

z2
= z1 · z2

|z2|2 (z2 �= 0). (1.5) 

The set of complex numbers with respect to the introduced operations forms a
field, i.e., it is an Abelian group1 with respect to addition with .0 = (0, 0) as the 
additive identity; the nonzero elements in . C form an Abelian group with respect 
to multiplication with .1 = (1, 0) as the multiplicative identity; and multiplication 
distributes over addition. 

Exercise 1.1 Prove that all these field properties are fulfilled. 

From (1.3) it follows that the field of complex numbers includes the field of real
numbers as a subfield. The reader is invited to make sure that all extensions of the
field . R obtained by joining the root of the equation .x2 + 1 = 0 to it are isomorphic 
to the field . C. 

Based on Definition 1.1, (1.1) and (1.4) we can assert that the set of complex
numbers is a real vector space,2 or more precisely, the vector space . R2. This makes 
the complex numbers a Cartesian plane (coordinate plane), called the complex plane. 
Clearly that the real numbers lie on the horizontal x-axis, called the real axis, and 
the y-axis is called the imaginary axis of the complex plane. This allows to give 
the geometric interpretation of complex numbers and arithmetic operations defined 
on . C and, conversely, to express some geometric properties and constructions in 
terms of complex numbers. For instance, conjugation is the reflection symmetry 
with respect to the real axis; multiplication by . −1 is the central symmetry about the 
origin.

1 Recall that a group is a set of elements together with a binary operation on this set such that 
the following three requirements, known as group axioms, are satisfied: the binary operation is 
associative, there is a unique identity with respect to this operation, and every element of this 
set has an inverse with respect to this operation. In an Abelian group, the binary operation is 
additionally commutative. 
2 It is a set of objects called vectors, which may be added together and multiplied by real numbers 
(scalar multiplication). This set is an Abelian group under addition, and scalar multiplication has 
the following properties: .x(u + v) = xu + xv, .(x + y)v = xv + yv, .(xy)v = x(yv), and . 1v = v
for all .x, y ∈ R and all vectors . u and . v. 
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Fig. 1.1 Geometric 
interpretation of the sum and 
subtraction two complex 
numbers 

Fig. 1.2 The argument of z 

Furthermore, sum and subtraction of two complex numbers coincides with the 
sum and subtraction of the corresponding vectors in . R2 (Fig. 1.1). The absolute 
value of a complex number is the length of the corresponding vector (the usual 
Euclidean norm) in the vector space . R2. 

Other Forms of Writing Complex Numbers 
It is known that the position of the point .(x, y) is also determined by the pair 
.(r, ϕ), where r is the distance of .(x, y) to the origin and . ϕ is the counterclockwise 
angle (measured in radians) between the positive x-axis and the ray from the origin 
through .(x, y); the values r and . ϕ are called the polar coordinates of .(x, y), and 

.x = r cosϕ, y = r sinϕ. (1.6) 

Substituting these relations into the algebraic form of a complex number . z =
x + iy yields the trigonometric form: 

.z = |z| (cosϕ + i sinϕ), (1.7) 

where the angle . ϕ is called the argument of z (Fig. 1.2). 
Note that the argument of each nonzero complex number z is defined ambigu-

ously, and up to the term .2πk (k ∈ Z); in addition, there exists a unique angle 
.ϕ0 ∈ (−π, π] such that .ϕ = ϕ0 + 2πk. This angle . ϕ0 is called the principal value
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of the argument of z and is denoted .arg(z). The set of all arguments of z is denoted 
by 

. Arg(z) := {ϕ0 + 2πk : k ∈ Z}.

The argument of 0 is not defined. The principal value of the argument of z can 
be considered as a real-valued function defined on .C \ {0} and it can be expressed 
from the formulas (1.6) in terms of the inverse trigonometric function . arctan :

. arg(z) =

⎧
⎪⎪⎨
⎪⎪⎩

arctan y
x
, if x > 0;

π + arctan y
x
, if x < 0, y > 0;

π, if x < 0, y = 0;
−π + arctan y

x
, if x < 0, y < 0.

(1.8) 

Example 1.1 It is easy to verify that 

• the principal value of the argument of each positive number x .(y = 0) is zero, 
and the set of all arguments of x is . Arg(x) = {2πk : k ∈ Z};

• .arg(1 − i) = −π
4 , and . Arg(1 − i) = {−π

4 + 2πk : k ∈ Z};
• .arg(−3) = π, and .Arg(−3) = {π + 2πk : k ∈ Z}. 

Let us define the exponential function of an imaginary number . iα by the 
following way: 

.eiα def= cosα + i sinα (α ∈ R), (1.9) 

which is known as Euler’s formula (the proof is given in Example 5.4). From (1.9) 
it is clear that .|eiα| = 1. In addition, it is easy to verify that 

. eiα1 · eiα2 = (cosα1 + i sinα1)(cosα2 + i sinα2)

= (
cosα1 cosα2 − sinα1 sinα2

) + i
(
sinα1 cosα2 + cosα1 sinα2)

= cos(α1 + α2) + i sin(α1 + α2)

= ei(α1+α2). (1.10) 

In (1.10) we used the addition formulas for sine and cosine. Similarly, it is proved
that

.

(
eiα

)n = einα,
eiα1

eiα2
= ei(α1−α2).
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Using Euler’s formula (1.9), we get from (1.7) the  exponential form of a complex 
number: .z = |z| eiϕ . This form well illustrates the essence of multiplication and 
division of complex numbers. If .z1 = |z1| eiϕ1 and .z2 = |z2| eiϕ2 , then 

. z1 · z2 = |z1||z2| ei(ϕ1+ϕ2),
z1

z2
= |z1|

|z2| ei(ϕ1−ϕ2) (z2 �= 0).

Thus, when multiplying (respectively dividing) two complex numbers, their moduli 
are multiplied (resp. divided): 

. |z1 · z2| = |z1||z2|,
∣∣∣z1
z2

∣∣∣ = |z1|
|z2| ,

and arguments are added (resp. subtracted): 

. ϕ1 + ϕ2 ∈ Arg(z1 · z2), ϕ1 − ϕ2 ∈ Arg(
z1

z2
).

Definition 1.2 A complex number . z is called an . nth root of a complex number . a,

if .zn = a. Here, .n ∈ N and .a �= 0. . �

Let us derive a formula for finding . nth roots of a complex number . a = |a| eiθ

.(θ ∈ (−π, π)). If .z = |z| eiϕ is an . nth root of . a, then according to the definition 

. |z|n einϕ = |a| eiθ ⇐⇒
{

|z|n = |a|,
nϕ = θ + 2πk, k ∈ Z,

whence 

. 

{
|z| = n

√|a|,
ϕk = θ+2πk

n
, k ∈ Z,

that is, the . nth roots of a are numbers 

.zk = n
√|a| ei

(
θ
n
+ 2πk

n

)
, k ∈ Z. (1.11) 

It is easy to see that among these complex numbers there are exactly n different
numbers. Indeed, the numbers .z0, . . . , zn−1 are different since their arguments 

.ϕ0 = θ

n
, ϕ1 = θ + 2π

n
, . . . , ϕn−1 = θ + 2π(n − 1)

n
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Fig. 1.3 The . nth roots of a 
complex number a 

are various and differ from each other less than .2π. For any other number .zk, . k /∈
{0, . . . , n − 1} there exist numbers .p ∈ Z and .q ∈ {0, 1, . . . , n − 1} such that 
.k = pn + q. This means that .zk = zq . 

Thus, the equation .zn = a has n different roots .z0, . . . , zn−1, defined by the 
formula (1.11) and located at the vertices of a regular n-sided polygon inscribed in
a circle of radius .

n
√|a| centered at the point 0 (Fig. 1.3). 

1.2 Sequences in the Complex Plane: Extended Complex Plane 

Since the modulus of a complex number is just the usual Euclidean norm in the 
vector space .R2, it is natural to introduce the distance between two complex 
numbers as follows 

. d(z1, z2) := |z1 − z2| =
√

(x1 − x2)2 + (y1 − y2)2,

where .z1 = x1 + iy1, z2 = x2 + iy2. In addition, we can naturally introduce 
the convergence of a sequence of complex numbers as the convergence of a 
sequence of the corresponding vectors in . R2. We hope that the reader is familiar 
with the properties of convergent sequences from real analysis of several variables. 
Nevertheless, let us briefly recall the main definitions and properties. 

Definition 1.3 A sequence .{zn = xn + iyn}n∈N of complex numbers is said to 
converge to a complex number .a = α + iβ . (denoted as . lim

n→+∞ zn = a), if 

. lim
n→+∞ |zn − a| = 0,

i.e., for every .ε > 0, there exists an integer N such that 

. |zn − a| < ε for all n ≥ N.

.�
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From Definition 1.3 follows a statement, which is offered to the reader as an 
exercise. 

Exercise 1.2 Prove that a sequence .{zn = xn + iyn}n∈N converges to the complex 
number .a = α + iβ if and only if 

. lim
n→+∞ xn = α and lim

n→+∞ yn = β.

Definition 1.4 It is said that a sequence .{zn}n∈N of complex numbers converges to 
infinity .( lim

n→+∞ zn = ∞), if 

. lim
n→+∞ |zn| = +∞,

i.e., for every .R > 0, there exists an integer N such that 

. |zn| > R for all n ≥ N.

. �

The symbol ."∞" is called the point at infinity. 

Definition 1.5 The set .C := C ∪ {∞} is called the extended complex plane. 

Obviously, that each sequence in . C contains a convergent subsequence. This is 
called the principle of compactness in . C. The point at infinity does not participate 
in algebraic operations, i.e. it cannot be multiplied or added to complex numbers. In 
real analysis, points labeled .+∞ and .−∞ produce the two-point compactification 
of the set of real numbers. 

Geometric Interpretation of . C
Consider the space 

. R
3 = {

(ξ, η, ζ ) : ξ ∈ R, η ∈ R, ζ ∈ R
}
,

in which the .ξ -axis coincides with the real axis, .η-axis coincides with the imaginary 
axis, and .ζ -axis is perpendicular to the complex plane (Fig. 1.4). The sphere 

. S :=
{
(ξ, η, ζ ) ∈ R

3 : ξ2 + η2 +
(
ζ − 1

2

)2 = 1
4

}

is tangent to the complex plane at the origin. The point .N = (0, 0, 1), which lies 
on the sphere, will be called the “north pole”. Define a mapping .p : C 
→ S as
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Fig. 1.4 Riemann sphere 

follows: to each point .z ∈ C we assign an intersection point .Z(ξ, η, ζ ) where the 
line between z and N meets the sphere . S apart from N (Fig. 1.4), that is 

. C � z
p
−→ Z(ξ, η, ζ ) :=

(
S ∩ [z,N ]

)
\ {N}.

Obviously, if . lim
n→+∞ zn = ∞, then the images .{Zn}n∈N on the sphere approach 

to N . Therefore, it is naturally to determine . p at the point at infinity as follows: 

.∞ p
−→ N . The mapping .p : C 
→ S is called the stereographic projection. 
Let us examine properties of p. Obviously, this is a one-to-one mapping. To 

explicitly define the stereographic projection, we exclude the variable t from the 
parametric equations of the segment .[N, z]: .ξ = tx, .η = ty, .ζ = 1 − t, where 
.t ∈ [0, 1], and as a result we obtain formulas for the inverse mapping . p−1 :

.x = ξ

1 − ζ
, y = η

1 − ζ
. (1.12) 

Since the coordinates of the point .Z(ξ, η, ζ ) satisfy the relation 

. ξ2 + η2 +
(

ζ − 1

2

)2

= 1

4
⇐⇒ ξ2 + η2 = ζ(1 − ζ ),

then 

.x2 + y2 = ξ2 + η2

(1 − ζ )2
= ζ

1 − ζ
�⇒ ζ = x2 + y2

1 + x2 + y2
.
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From the last equation and formulas (1.12) we get formulas for the stereographic 
projection: 

.ξ = x

1 + x2 + y2 , η = y

1 + x2 + y2 , ζ = x2 + y2

1 + x2 + y2 . (1.13) 

It follows from (1.12) and (1.13) that .p : C 
→ S is a homeomorphism (by definition, 
it is a one-to-one, onto continuous mapping with a continuous inverse). 

Using the map p, we can identify the extended complex plane . C with the sphere 
. S. After this identification, the sphere S is called the Riemann sphere, or the sphere 
of complex numbers. 

Exercise 1.3 Prove that under the stereographic projection an arbitrary circle or 
straight line on . C maps to a circle on . S, and the angle between curves in . C is equal 
to the angle between the images these curves on . S. 

1.3 Complex-Valued Functions of a Real Variable 

Consider a function .f : R 
→ C. Such a complex-valued function of a real variable 
can be represented as .f (t) = u(t) + iv(t), t ∈ R, where .u(t) := Re(f (t)) and 
.v(t) := Im(f (t)). Thus, we see that each function .f : R 
→ C can be viewed as a 
vector-function . 

(
u
v

)
from . R in . R2 due to the geometrical interpretation of the set of 

complex numbers. Therefore, such concepts as the limit of a function, continuity, 
uniform continuity and many other properties of vector-functions of a real variable 
are automatically transferred to such functions. Let us recall some of them. 

Definition 1.6 A number .A = α + iβ is the limit of a function .f : R 
→ C at a 
point .t0 ∈ R . (denoted as . lim

t→t0
f (t) = A), if for each .ε > 0 there exists .δ > 0 such 

that 

. |f (t) − A| =
√

(u(t) − α)2 + (v(t) − β)2 < ε whenever |t − t0| < δ.

. �

As in the proof of the assertion in Exercise 1.2, the following statement can be 
easily proved. 

Proposition 1.1 The limit of a function .f : R 
→ C exists at a point .t0 ∈ R and it 
is equal to .A = α + iβ if and only if there exist the limits of its real and imaginary 
parts and they are equal to . α and . β, respectively, i.e., 

. lim
t→t0

f (t) = A ⇐⇒ lim
t→t0

u(t) = α and lim
t→t0

v(t) = β.



1.3 Complex-Valued Functions of a Real Variable 11

Definition 1.7 A function .f : [a, b] 
→ C is called continuous on the closed 
interval .[a, b] ⊂ R . (denoted as .f ∈ C([a, b]) ), if for all . t0 ∈ [a, b]

. lim
t→t0

f (t) = f (t0).

The corresponding one-sided limits are considered at the endpoints a and b. 

Definition 1.8 The derivative of a function .f : R 
→ C at a point .t0 ∈ R . (denoted 
by .f ′(t0)) is called the limit 

. lim
t→t0

f (t) − f (t0)

t − t0
, (1.14) 

provided that it exists. . �

Suppose the limit (1.14) exists. Then, according to Proposition 1.1 

. f ′(t0) = lim
t→t0

(
u(t) − u(t0)

t − t0
+ i

v(t) − v(t0)

t − t0

)

= lim
t→t0

u(t) − u(t0)

t − t0
+ i lim

t→t0

v(t) − v(t0)

t − t0
= u′(t0) + iv′(t0).

Obviously, the reverse chain of equalities is also true. Thus, the following statement 
is correct. 

Proposition 1.2 The derivative of a function .f : R 
→ C at .t0 ∈ R exists if and 
only if the derivatives of its real and imaginary parts exist at . t0. 

Example 1.2 The function .f (t) = exp(it), t ∈ R, has the derivative at each point 
and .f ′(t) = i exp(it). Indeed, for any . t ∈ R

. (exp(it))′ = (cos t + i sin t)′ = − sin t + i cos t = i(cos t + i sin t) = i exp(it).

Due to Proposition 1.2 the equality .f ′(t0) = u′(t0) + iv′(t0) can be taken as 
an equivalent definition of the derivative of a complex-valued function of a real 
variable. We will apply this approach to define the integral of a complex-valued 
function of a real variable.
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Definition 1.9 Let .f (t) = u(t) + iv(t), t ∈ [a, b], and the functions . u and . v be 
Riemann-integrable on the segment .[a, b]. 

. 

b∫

a

f (t) dt
def=

b∫

a

u(t) dt + i

b∫

a

v(t) dt.

. �

Exercise 1.4 Prove that Definition 1.9 is equivalent to the definition of the integral 
introduced through the limit of the Riemann sums of f , i.e., 

. 

b∫

a

f (t) dt = lim
�→0

n∑
k=1

f (τk)Δtk,

where .a = t0 < t1 < . . . < tn = b, .Δtk := tk − tk−1, .tk−1 ≤ τk ≤ tk, . Δ =
maxk∈{1,...,n} Δtk . 

It is easy to check the following properties of integrals of complex-valued 
functions of a real variable: 

(1) . ∀ λ,μ ∈ C

∫ b

a

(λf (t) + μg(t)) dt = λ

∫ b

a

f (t) dt + μ

∫ b

a

g(t) dt;

(2) . ∀ c ∈ (a, b)

∫ b

a

f (t) dt =
∫ c

a

f (t) dt +
∫ b

c

f (t) dt;
(3) if . F is the antiderivative of . f, i.e., .F ′(t) = f (t) for all .t ∈ [a, b], then 

. 

∫ b

a

f (t) dt = F(b) − F(a);

(4) . 

∣∣∣∣
∫ b

a

f (t) dt

∣∣∣∣ ≤
∫ b

a

|f (t)| dt.

Exercise 1.5 Using Exercise 1.4, prove the fourth property. 

Remark 1.1 Not all properties of real-valued functions are automatically carried 
over to complex-valued functions of a real argument. For instance, the statement 
of the mean value theorem is incorrect. This fact is easy to check for such a 
continuous function: .eit , t ∈ [0, 2π ]. Evidently that .eit �= 0 for all .t ∈ [0, 2π ]. 
Therefore, on the one hand, assuming that the mean value theorem holds, we have 
that .

∫ 2π
0 eit dt �= 0. On the other hand, 

.

∫ 2π

0
eit dt =

∫ 2π

0
cos t dt + i

∫ 2π

0
sin t dt = 0.
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Exercise 1.6 Show that the statements of Rolle’s theorem and Cauchy’s mean value 
theorem are also incorrect for complex-valued functions of a real variable. Recall 
that Rolle’s theorem states the following: if a real-valued function f is continuous 
on a closed interval .[a, b], differentiable on .(a, b), and .f (a) = f (b), then there 
exists a point .ξ ∈ (a, b) such that .f ′(ξ) = 0. The second theorem establishes 
the relationship between the derivatives of two functions. Let functions f and g be 
continuous on .[a, b], differentiable on .(a, b), and .g′(x) �= 0 for all .x ∈ (a, b). Then 
there is a point .ξ ∈ (a, b) such that 

. 
f (b) − f (a)

g(b) − g(a)
= f ′(ξ)

g′(ξ)
.

Remark 1.2 Since it is impossible to introduce an order relation for complex 
numbers, the Weierstrass theorem for complex-valued functions of a real variable 
is formulated as follows: for a continuous function .f : [a, b] 
→ C, its modulus 
reaches its largest and smallest value on the closed interval .[a, b]. 

1.4 Curves in the Complex Plane 

A curve is a geometric concept, the exact and at the same time quite general 
definition of which presents significant difficulties and is given in various branches 
of mathematics and textbooks in different ways. For those branches in which 
methods of the theory of functions dominate, the natural definition of a curve is 
to define it by parametric equations. In this text, we will take this approach and give 
the following definition of a curve and its elements. 

Definition 1.10 A curve in . C . (in . C) is called a continuous complex-valued function 
of a real variable: .z = γ(t), .t ∈ [a, b] ⊂ R. 

Moreover, the points .γ(a) and .γ(b) are called the initial and end points of . γ,

respectively. The curve . γ is said to be closed if .γ(a) = γ(b). . �

Remark 1.3 In the notation of a curve .z = γ(t), t ∈ [a, b], or . γ : [a, b] 
→ C,

we will always mean that the closed interval .[a, b] is a real closed interval, i.e., 
.[a, b] ⊂ R. 

The image of such a continuous function is also often called a curve. In the course 
“Complex Analysis” it is convenient to distinguish between these concepts in order 
to better understand some new definitions and theorem proofs. The image of . γ, i.e., 
the set .γ

([a, b]), is called the trace of the curve . γ and is denoted by . Eγ. 
Each curve specifies an orientation that can be interpreted as the direction of 

movement of the point .γ(t) along the trace . Eγ from its initial point to its end as the 
parameter t increases from . a to .b.
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Example 1.3 Let .z1 ∈ C, .z2 ∈ C, and .γ(t) = z1 + t (z2 − z1), t ∈ [0, 1]. The  
initial point of this curve is .z1 = γ(0), the end point is .z2 = γ(1). We will denote 
its trace by .[z1, z2] and refer to it as the segment joining . z1 and . z2. 

Separating the real and imaginary parts in the equality .z = γ(t), we find the 
parametric equations, which are called a parametrization of the curve . γ, namely 
.x = Re(γ(t)), .y = Im(γ(t)), where the parameter .t ∈ [a, b]. 

Example 1.4 Let .z = γ1(t) = eit , t ∈ [0, 2π ]. Then 

. x + iy = cos t + i sin t ⇐⇒
{

x = cos t,

y = sin t,
t ∈ [0, 2π ].

The last two equations determine a parametrization of this curve, whose trace is the 
unit circle centered at the origin. It is a closed curve that starts at point .(1, 0) and is 
oriented counterclockwise. 

It is easy to see that the curve .z = γ2(t) = ei2πt , t ∈ [0, 1], has the same trace 
and orientation as the curve . γ1 from Example 1.4. For such curves, we will give the 
following definition. 

Definition 1.11 Two curves 

. z = γ1(t), t ∈ [a1, b1], and z = γ2(τ ), τ ∈ [a2, b2],

are called equivalent .(γ1 ∼ γ2), if there exists a real-valued function . τ = μ(t),

.t ∈ [a1, b1], such that 

(1) .μ ∈ C([a1, b1]) and it is strictly increasing on . [a1, b1];
(2) .μ(a1) = a2, . μ(b1) = b2;
(3) .γ1(t) = γ2(μ(t)) for all . t ∈ [a1, b1].

Exercise 1.7 Prove that this relation between two curves is the equivalence relation, 
i.e., it is reflexive, symmetric and transitive. 

Therefore, a curve can be understood as the corresponding equivalence class. It 
is clear that equivalent curves have the same trace and orientation. 

Example 1.5 The curve . γ1 from Example 1.4 and the curve 

. z = γ2(τ ) = ei2πτ , τ ∈ [0, 1],

are equivalent. To show this we need to take the function .τ = μ(t) = t/2π, . t ∈
[0, 2π ], and verify the conditions from Definition 1.11.
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Exercise 1.8 Prove that the curve . γ1 from Example 1.4 and the curve . z = γ3(τ ) =
e−iτ , τ ∈ [0, 2π ], are not equivalent. 

Definition 1.12 A point . z0 is called a self-intersection point of a curve . z = γ(t),

.t ∈ [a, b], if there are .t1 �= t2, .{t1, t2} ⊂ [a, b] such that 
. γ(t1) = γ(t2) = z0.

If a curve . γ is closed, then the point .γ(a) = γ(b) is not considered a self-
intersection point. . �

A curve without self-intersection points is called simple and a closed simple 
curve is said to be a Jordan curve. 

Let .z = γ(t), .t ∈ [a, b], be a Jordan curve in . C. Then the Jordan curve 
theorem asserts that the trace . Eγ divides the complex plane into an “interior” region, 
denoted by .int(γ), bounded by the trace, and an “exterior” region, denoted by . ext(γ)

(Fig. 1.5), i.e., 

. C \ Eγ = int(γ) ∪ ext(γ).

Intuitively, the statement of this theorem is obvious and there is no trouble 
verifying it when a curve is given explicitly. A rigorous proof of the general result 
is rather difficult, and we refer the reader to a topology text, e.g., [15]. The proof of 
the Jordan curve theorem for smooth Jordan curves can be found in [13, §4.8]. 

We will say that a Jordan curve . γ has the positive orientation (denoted by .γ+) if 
its interior remains on the left when traversing its trace for increasing values of the 
parameter t from a to . b (Fig. 1.5). Otherwise, it is negatively oriented .(γ−). 

Definition 1.13 A curve .z = γ(t), .t ∈ [a, b], is called smooth, if . γ is continuously 
differentiable on .[a, b], i.e., .γ ∈ C1([a, b]) and 

.γ ′(t) �= 0 for all t ∈ [a, b]. (1.15) 

If . γ is a closed curve, the condition .γ ′(a) = γ ′(b) must also be satisfied. . �

Fig. 1.5 The interior and 
exterior of a Jordan curve 
with the positive orientation
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Let us find out the geometric meaning of (1.15) . It is equivalent to
.x′(t) + iy′(t) �= 0 for all .t ∈ [a, b]. Since .(x′(t), y′(t)

)
is the tangent vector 

to . Eγ at the point .γ(t), then the condition (1.15) means that at each point of . Eγ

there is a nonzero tangent vector that changes continuously. 

Definition 1.14 A curve .z = γ(t), .t ∈ [a, b], is called piecewise smooth, if there 
is a partition .a = a0 < a1 < . . . < an = b of .[a, b] such that for each . k ∈
{0, 1, . . . , n − 1} the curve .z = γ(t), t ∈ [ak, ak+1], is smooth. 

Definition 1.15 A curve .z = γ(t), .t ∈ [a, b], is called rectifiable, if 

• . γ is differentiable on .[a, b] except, possibly, at a countable set of points and 
• there exists a finite integral 

. �γ :=
∫ b

a

|γ ′(t)| dt =
∫ b

a

√
(x′(t))2 + (y′(t))2 dt.

The value . �γ is called the length of . γ. 

An example of a piecewise smooth curve is a broken line. Note that a piecewise 
smooth curve is rectifiable. 

Example 1.6 The curve 

. z = γ5(t) = t3 + it2, t ∈ [−1, 1],

is simple, however it is not smooth and piecewise smooth (Fig. 1.6). 
The curve 

. z = γ6(t) = cos 2t exp(it), t ∈ [0, 2π ] (four petal rose curve)

is closed non-Jordan smooth curve that has the self-intersection point at the origin. 
The curve 

. z = γ7(t) = t
(
1 + i sin 1

t

)
, t ∈ [ − 1

π
, 1

π

]
,

is simple and non-rectifiable, so it is not piecewise-smooth.
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Fig. 1.6 The traces of curves . γ5 (left), . γ6 (right) and . γ7 (from below) 

1.5 Basic Topological Concepts of the Complex Plane 

Let us now recall some topological concepts. An open disk of radius .r > 0 centered 
at a point .a ∈ C is a set of all points of distance less than r from . a, i.e., 

. Br(a) := {z ∈ C : |z − a| < r}.
It is also called the r-neighborhood of a. The  R-neighborhood of the point at 
infinitely is the set 

. BR(∞) := {z ∈ C : |z| > R} ∪ {∞}.

Definition 1.16 A set  .D ⊂ C is called open, if each point of D is contained in D 
together with some of its r-neighborhood, i.e., 

. ∀ z0 ∈ D ∃ r > 0 such that Br(z0) ⊂ D.

Definition 1.17 Let .D ⊂ C and .z0 ∈ C. The point . z0 is called a limit point of the 
set . D if every r-neighborhood of . z0 contains at least one point of D different from 
. z0 itself, i.e., 

. ∀ r > 0 ∃ z ∈ D such that z ∈ Br(z0) \ {z0}.

Definition 1.18 A set .D ⊂ C is called closed if it contains all its limit points.
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Example 1.7 Let .D := Z. Then, the set D is closed in . C, since the set of its limit 
points is empty and .∅ ⊂ D. However, it is not closed in . C since it does not contain 
its limit point . ∞.

The joining to a set .D ⊂ C all its limit points is called the closure of D and 
denoted by . D. For example, the closure of the open disk .Br(a) is the closed disk 

. Br(a) := {z ∈ C : |z − a| ≤ r}.

A set .D ⊂ C is said to be path-connected if for any two distinct points in D there 
is a curve whose trace belongs to D and connects these points (starting at one point 
and ending at the other). 

A set .D ⊂ C is called a domain if it is open and path-connected. 

Definition 1.19 Let . D be a domain in . C. The  set  .∂D := D \ D is called the 
boundary of D. 

Exercise 1.9 Prove that the boundary of a domain is the closed set. 

There are several approaches to introducing the concept of simply connected 
domains: a domain is simply connected if its fundamental group is trivial; a domain 
. D in . Rm is simply connected if any closed curve in . D is homotopic to a point in this 
domain (see Definition 4.4 and Exercise 4.4); one can define simply connectedness 
through the general concept of connectedness of a set in a topological space. In this 
course an easier-to-understand definition of simply connectedness is proposed. 

Definition 1.20 A domain D is said to be simply connected (also called 1-
connected) in . C if for any Jordan curve . γ, whose trace belongs to . D, the interior of 
. γ is fully contained in D, i.e., .int(γ) ⊂ D. 

A domain D is said to be simply connected in . C if for any Jordan curve . γ, whose 
trace belongs to D and .∞ /∈ Eγ, obligatorily either .int(γ) ⊂ D or . ext(γ) ⊂ D.

Domains that are not simply connected are called multiply connected. . �

Intuitively, a simply connected domain is a domain “without holes”. 

Definition 1.21 The connectedness order of a domain .D ⊂ C is the number of 
path-connected closed components of the boundary .∂D, which do not intersect. 

Example 1.8 Consider the domain .D1 = {z : |z| > 1}. Obviously, it is multiply 
connected in . C, since the interior of the circle .{z : |z| = 2} is not a subset of . D1. In  
. C its connectedness order is 2, because the boundary of . D1 has two path-connected 
closed components that do not intersect, namely .{z : |z| = 1} and .{∞}. 

Example 1.9 Due to the second part of Definition 1.20 the domain . D2 = D1∪{∞}
is 1-connected in . C.
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Example 1.10 The connectedness order of the domain 

. D3 = {
z : |z| < 2

} \
( N⋃

k=1

{
z : z = x + i

2k
, x ∈ [ 14 , 3

4 ]
})

is equal to .N + 1, where .N ∈ N.
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Abstract 

In this chapter and onwards, we study properties of complex-valued functions of 
a complex variable. It turns out that every complex-valued function is determined 
by the corresponding vector function from . R2 into . R2. This fact enables us 
to obtain some properties of complex-valued functions from the first section. 
Fundamentally new is the notion of differentiability of complex-valued functions, 
which we introduce in Sect. 2.2, although it formally coincides with the standard 
definition (from calculus) of the differentiability of real functions of one real 
variable. Complex-valued differentiable functions, which we will call analytic 
functions, have many remarkable and unexpected properties that do not exist 
for real-valued differentiable functions. For example, a complex-valued differen-
tiable function necessarily has derivatives of all orders, and many of its properties 
are determined by its values on arbitrary sets that have a limit point inside. These 
functions are of great importance both in various branches of mathematics and 
in many applications. The study of their properties is the main goal of complex 
analysis. In this section, we prove a criterion for the differentiability of complex-
valued functions, which includes equivalence to the Cauchy–Riemann equations. 
They are a system of two partial differential equations that relate the real and 
imaginary parts of a complex-valued function. This leads to the concept of 
conjugate harmonic functions in Sect. 2.3. In addition, using some properties 
of conjugate harmonic functions, the hydrodynamic interpretation of analytic 
functions is given in Sect. 2.4. The chapter ends with Sect. 2.5, which introduces 
conformal mappings as analytic functions with a nonzero derivative. It turns out 
that a conformal function at a point . z0 preserves angles between curves at . z0 and 
equally stretches all curves starting at . z0. These two properties of a conformal 
function are characterized by the argument and the modulus of its derivative at 
. z0, respectively. 
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2.1 Structure of Complex-Valued Functions of a Complex 
Variable 

Let . Ω be a subset of . C. Consider a function .f : Ω �→ C. Such functions are called 
complex-valued functions of a complex variable. For them, the notation . w = f (z),

.z ∈ Ω, will also be used. To visualize such mappings, we will consider two copies 
of the complex plane: . Cz and . Cw. The relationship between the complex variables 
. w and . z can be described by two real-valued functions of two real variables: 

. w = f (z) ⇐⇒ u + iv = Re
(
f (x + iy)

) + i Im
(
f (x + iy)

)

. ⇐⇒
{

u = Re
(
f (x + iy)

) =: u(x, y),

v = Im
(
f (x + iy)

) =: v(x, y).

Example 2.1 Consider the function .ω = z2 − iz, z ∈ C. Separating the real and 
imaginary parts in this equality, we get 

. u + iv = (x + iy)2 − i(x − iy) = x2 − y2 − y + i(2xy − x).

Thus, .u(x, y) = x2 − y2 − y and .v(x, y) = 2xy − x. 

Definition 2.1 Let .Ω ⊂ C, .f : Ω �→ C, .A = α + iβ ∈ C, and .z0 = x0 + iy0 be 
a limit point of the set . Ω . We say that the limit of the function f at . z0 is equal to A 
as z approaches . z0 , denoted by 

. lim
Ω�z→z0

f (z) = A,

if for any .ε > 0 there is a .δ > 0 such that when .z ∈ Ω and .0 < |z − z0| < δ, then 
.|f (z) − A| < ε, i.e., 

. ∀ ε > 0 ∃ δ > 0 ∀ z ∈ Ω : 0 < |z − z0| < δ �⇒ |f (z) − A| < ε.

. �

It is very important to understand that .f (z) tends to A no matter what direction 
z approaches . z0. For example, it is easy to show that there is no limit of the 
function.f (z) = z

z
as .z → 0. Indeed, if .z = x ∈ R \ {0}, then . f (x) = x

x
= 1,

so the limit of f as .z = x → 0 along the real axis is 1. On the other hand, on the 
imaginary axis we have .f (iy) = −iy

iy
= −1, and the limit of f as .z = iy → 0 is 

. −1. Since these two limits disagree, the limit of f as .z → 0 does not exist. 
Now let us try to understand how the limit of a function f at . z0 is related to the 

limits of its real and imaginary parts. The following statement holds.
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Proposition 2.1 Let .f (z) = u(x, y)+iv(x, y), .z = x+iy ∈ Ω, and . z0 = x0+iy0
be a limit point of .Ω; .A = α + iβ. 

There exists . lim
Ω�z→z0

f (z) = A if and only if there exist 

. lim
x→x0, y→y0

u(x, y) = α and lim
x→x0, y→y0

v(x, y) = β.

The proof follows directly from Definition 2.1 and the equalities 

. |z − z0| =
√

(x − x0)2 + (y − y0)2,

|f (z) − A| =
√

(u(x, y) − α)2 + (v(x, y) − β)2.

Definition 2.2 Let every point of a set .Ω ⊂ C be a limit point of . Ω and .z0 ∈ Ω . 

• A function .f : Ω �→ C is said to be continuous at . z0 if 

. lim
Ω�z→z0

f (z) = f (z0).

• A function .f : Ω �→ C is called continuous in . Ω if it is continuous at every point 
of . Ω . 

The set of all continuous functions on . Ω is denoted by .C(Ω). . �

Proposition 2.1 allows transferring some properties of limits of functions of 
two real variables to functions of a complex variable. In particular, a function . f
is continuous at a point .z0 = x0 + iy0 if and only if the functions . u and . v are 
continuous at the point .(x0, y0). From this we obtain theorems on the continuity of 
the sum, product, and division of two continuous functions of a complex variable. 

Since each function .f : C �→ C can be viewed as a vector-function . 
(
u
v

)
from 

. R2 in .R
2, many properties of such vector-functions are automatically transferred to 

complex-valued functions of a complex variable. Let us recall some of them. 

Theorem 2.1 Let . K be a path-connected and compact set (bounded and closed set) 
in .C, .ω = f (z), z ∈ K . If .f ∈ C(K), then 

1. the modulus of f is bounded on . K, i.e., 

. ∃ M > 0 ∀ z ∈ K : |f (z)| ≤ M;

2. its modulus takes its minimum and its maximum on . K, i.e., 

.∃ {z1, z2} ∈ K ∀ z ∈ K : |f (z1)| ≤ |f (z)| ≤ |f (z2)|;
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3. it is uniformly continuous on . K, i.e., for each .ε > 0 there exists a .δ > 0 such 
that 

. |f (z1) − f (z2)| < ε for all {z1, z2} ∈ K such that |z1 − z2| < δ.

Remark 2.1 We will say that a complex-valued function is bounded on a set if its 
modulus is bounded on that set. 

2.2 Differentiability of Complex-Valued Functions 
of a Complex Variable 

Hereinafter, we denote by . Ω a domain (open and path-connected set) in the complex 
plane . C. If . Ω is a domain in . C, this will be specified. 

Definition 2.3 The derivative of a given function .f : Ω �→ C at a point . z0 ∈ Ω

. (denoted by .f ′(z0)) is called the limit 

. lim
z→z0

f (z) − f (z0)

z − z0
,

provided this limit exists. . �

With derivatives there are several alternative notations, for example, 

. f ′(z0) = df (z)

dz

∣
∣∣
z=z0

= lim
Δz→0

f (z0 + Δz) − f (z0)

Δz

From Definition 2.3 and the limit properties, it follows that all formulas for 
calculating derivatives that are known in the course of mathematical analysis 
(derivative of the sum, product, division and superposition) are transferred to 
complex-valued functions of a complex variable. 

Example 2.2 Let us show that .
(
zn

)′ = n zn−1 for any .z ∈ C and for any .n ∈ N. 
Using the binomial formula, we deduce 

. 
(z + Δz)n − zn

Δz
=

∑n
k=0

(
n
k

)
zn−k(Δz)k − zn

Δz

= nzn−1 + n(n − 1)

2
zn−2Δz + . . . + (Δz)n−1.

Thus, 

.
(
zn

)′ = lim
Δz→0

(z + Δz)n − zn

Δz
= nzn−1 for all z ∈ C.
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Definition 2.4 A function .f : Ω �→ C is said to be differentiable at a point . z0 ∈ Ω

if its increment .Δf (z0) := f (z0 + Δz) − f (z0) can be represented as 

. Δf (z0) = A · Δz + o(Δz) as Δz → 0,

where A is a complex number; in this case, the linear part of the increment is called 
the differential of . f at . z0 and is denoted by 

. df (z0)
def= A · Δz =: A · dz,

and the second term has a higher order of smallness with respect to . Δz and is 
denoted by .o(Δz). . �

The symbol .o(Δz), pronounced “little oh of . Δz” is one of the Landau symbols 
that are used to symbolically express the behavior of some function with respect to 
another, in our case with respect to . Δz as .Δz → 0. By definition, one says that 
.g(Δz) = o(Δz) as .Δz → 0, if 

. lim
Δz→0

g(Δz)

Δz
= 0. (2.1) 

Remark 2.2 It is obvious that the limit (2.1) is equivalent to

. lim|Δz|→0

|g(Δz)|
|Δz| = 0.

Thus, .g(Δz) = o(Δz) as .Δz → 0, if and only if .g(Δz) = o(|Δz|) as .|Δz| → 0. 

Remark 2.3 Differentiable complex-valued functions of a complex value are 
sometimes called complex-differentiable or .C-differentiable. The authors of many 
textbooks, and I myself, are of the opinion that there is no need to complicate the 
name of the concept when it is clear that complex-valued functions of a complex 
variable are being considered. 

In the same way as for real functions of a real variable, such a statement is proved. 

Proposition 2.2 A function .f : Ω �→ C is differentiable at a point .z0 ∈ Ω if and 
only if there exists .f ′(z0). In addition, . df (z0) = f ′(z0)dz.

It is easy to see that if a function f is differentiable at a point . z0, then f is 
continuous at . z0. 

As noted above, the continuity of a complex-valued function at a point . z0 = x0+
iy0 is equivalent to the continuity at the point .(x0, y0) of its real and imaginary parts. 
Such a statement does not exist for a differentiable function of a complex variable, 
although this statement holds for a complex-valued function of a real variable (see
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Proposition 1.2). The connection between a differentiable function of a complex 
variable and the differentiability of its real and imaginary parts is established by the 
following theorem. 

Theorem 2.2 Let .f (z) = u(x, y) + iv(x, y), .z = x + iy ∈ Ω, and .z0 ∈ Ω . The 
function f is differentiable at the point .z0 = x0 + iy0 if and only if 

(1) the functions u and v are differentiable at the point . (x0, y0),
(2) the Cauchy–Riemann equations are satisfied at . (x0, y0) :

.
∂u

∂x
(x0, y0) = ∂v

∂y
(x0, y0), and

∂u

∂y
(x0, y0) = −∂v

∂x
(x0, y0). (2.2) 

Moreover, the derivative of f at . z0 is given by 

.f ′(z0) = ∂u

∂x
(x0, y0) + i

∂v

∂x
(x0, y0) = ∂v

∂y
(x0, y0) − i

∂u

∂y
(x0, y0). (2.3) 

Proof 

Necessity Due to Proposition 2.2 the function f has the derivative at the point . z0. 
Therefore, there exist the limit 

.f ′(z0) = lim
Δz→0

f (z0 + Δz) − f (z0)

Δz
, (2.4) 

where .Δz = Δx + iΔy, and we can compute this limit by letting . Δz approach zero 
from any direction in the complex plane. 

Putting first .Δz = Δx in this limit and taking Proposition 2.1 into account, we 
deduce 

. f ′(z0) = lim
Δx→0

f (z0 + Δx) − f (z0)

Δx

= lim
Δx→0

[
u(x0 + Δx, y0) − u(x0, y0)

Δx
+ i

v(x0 + Δx, y0) − v(x0, y0)

Δx

]

= lim
Δx→0

u(x0 + Δx, y0) − u(x0, y0)

Δx
+ i lim

Δx→0

v(x0 + Δx, y0) − v(x0, y0)

Δx

= ∂u

∂x
(x0, y0) + i

∂v

∂x
(x0, y0). (2.5)



2.2 Differentiability of Complex-Valued Functions of a Complex Variable 27

On the other hand, if . Δz approaches zero vertically, i.e., .Δz = iΔy in the limit 
(2.4), we find 

. f ′(z0) = lim
iΔy→0

f (z0 + iΔy) − f (z0)

iΔy

= lim
Δy→0

[
u(x0, y0 + Δy) − u(x0, y0)

iΔy
+ v(x0, y0 + Δy) − v(x0, y0)

Δy

]

= ∂v

∂y
(x0, y0) − i

∂u

∂y
(x0, y0). (2.6) 

From (2.5) and (2.6) follow the Cauchy–Riemann equations (2.2) and formulas 
(2.3). 

It remains to show that the functions u and v are differentiable at the point 
.(x0, y0). From Definition 2.4, Proposition 2.2 and (2.2) we get 

. Δf (z0) = Δu(x0, y0) + iΔv(x0, y0) = f ′(z0) · Δz + o(Δz)

=
(

∂u

∂x
(x0, y0) + i

∂v

∂x
(x0, y0)

)
(Δx + iΔy) + ε1 + iε2

=
(

∂u

∂x
(x0, y0)Δx + ∂u

∂y
(x0, y0)Δy + o

(√
(Δx)2 + (Δy)2

))

+ i

(
∂v

∂x
(x0, y0)Δx + ∂v

∂y
(x0, y0)Δy + o

(√
(Δx)2 + (Δy)2

))
,

(2.7) 

where .ε1 := Re
(
o(Δz)

)
, .ε2 := Im

(
o(Δz)

)
, and based on Remark 2.1 it is easy to 

verify that 

. εk = o(|Δz|) = o

(√
(Δx)2 + (Δy)2

)
, k = 1, 2.

Equating the real and imaginary parts in (2.7) , we obtain

.Δu(x0, y0) = ∂u

∂x
(x0, y0)Δx + ∂u

∂y
(x0, y0)Δy + o

(√
(Δx)2 + (Δy)2

)
, (2.8) 

.Δv(x0, y0) = ∂v

∂x
(x0, y0)Δx + ∂v

∂y
(x0, y0)Δy + o

(√
(Δx)2 + (Δy)2

)
, (2.9) 

as .Δx → 0, Δy → 0. The relations (2.8) and (2.9) imply that u and v are 
differentiable at the point .(x0, y0).
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Sufficiency Since the functions . u and . v are differentiable at .(x0, y0), this means 
that the relations (2.8) and (2.9) hold. Multiplying (2.9) by the imaginary unit . i and 
summing with (2.8), and taking the Cauchy–Riemann equations and Remark 2.1 
into account, we derive 

. Δu(x0, y0) + iΔv(x0, y0)

= ∂u

∂x
(x0, y0)

(
Δx + iΔy

) + ∂v

∂x
(x0, y0)

(−Δy + iΔx
) + o(|Δz|)

=
(

∂u

∂x
(x0, y0) + i

∂v

∂x
(x0, y0)

)
Δz + o(Δz) as Δz → 0.

This relation means that the function . f is differentiable at the point . z0. Formulas  
(2.3) follow from Proposition 2.2 and (2.2). 

��

Remark 2.4 For the first time, the Cauchy–Riemann equations were obtained in 
the works of d’Alembert (1752) and Euler (1755) on fluid dynamics. However, the 
implications of these conditions in terms of the differentiability of complex-valued 
functions of a complex variable were not identified. About 70 years later, in papers 
by Cauchy and then by Riemann, a clear definition of the differentiability of such 
functions was given. 

Theorem 2.2 shows that differentiable functions of a complex variable cannot be 
identified with differentiable vector-valued functions from .R2 �→ R

2 (differentia-
bility of the latter is equivalent to differentiability of each component). Obviously, 
the set of differentiable functions of a complex variable is narrower than the set of 
differentiable vector-valued functions from .R

2 �→ R
2. 

This distinction between the two concepts of differentiability leads to the fact that 
differentiable functions of a complex variable have significantly different properties. 
Because of these properties, the theory of differentiable functions of a complex 
variable has wide applications both in various branches of mathematics and directly 
in many other areas of natural science. 

Theorem 2.2 also highlights that only existence of partial derivatives of real-
valued functions u and v satisfying the Cauchy–Riemann equations at .(x0, y0) does 
not ensure differentiability of the function .f = u + iv at .z0 = (x0, y0). The  
functions u and v are required to be differentiable at .(x0, y0) as functions on . R2. 
This condition is stronger than existence of partial derivatives. 

The Cauchy-Riemann equations provide us with a direct way to test the 
differentiability of a function and calculate its derivative. 

Example 2.3 Consider the function .f (z) = 3
2z − 1

2 z̄, z ∈ C. It is easy to find that 

.u(x, y) = Ref (x + iy) = x, v(x, y) = Imf (x + iy) = 2y.
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Since the first Cauchy-Riemann equation is not satisfied .( ∂u
∂x

= 1 �= ∂v
∂y

= 2), the 
function f is not differentiable at any point of the complex plane. 

However, the corresponding vector-function .

(
x

2y

)
: R2 �→ R

2 is differentiable 

at each point of . R2. 

Example 2.4 Using Euler’s formula (1.9) , the exponential function of a complex
variable is defined as

. ez = ex+iy def= ex eiy = ex cos y + iex sin y for all z ∈ C.

The real and imaginary parts of . ez are as follows 

. u(x, y) = ex cos y and v(x, y) = ex sin y.

These real-valued functions are differentiable at each point of . R2 and 

. 
∂u

∂x
= ex cos y = ∂v

∂y
,

∂u

∂y
= −ex sin y = −∂v

∂x
for all (x, y) ∈ R

2.

Therefore, according to Theorem 2.2, the function . ez is differentiable in the complex 
plane and 

.(ez)′ = ∂u

∂x
+ i

∂v

∂x
= ex cos y + iex sin y = ez for all z ∈ C. (2.10) 

Definition 2.5 A function . f is called analytic in a domain .Ω ⊂ C, if it is 
differentiable at every point of this domain. 

Definition 2.6 A function f is called analytic at a point .z0 ∈ C, if it is 
differentiable in some neighborhood of this point. 

Definition 2.7 A function f is called analytic at . ∞, if the function . g(z) := f ( 1
z
)

is analytic at zero. 

This definition allows us to consider analytic functions on . C. Note that the notion 
of a derivative in ."∞" is meaningless. 

The set of all analytic functions in a domain . Ω is denoted by .A(Ω). 

Exercise 2.1 Prove that the set .A(Ω) forms a ring with respect to the operations 
of adding and multiplying two functions, i.e., it is an Abelian group with respect to 
addition, and multiplication distributes over addition.
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Example 2.5 Consider a function .f (z) = |z|2, z ∈ C. Its real and imaginary 
parts are .u(x, y) = x2 + y2 and .v(x, y) = 0. In addition, .

∂u
∂x

= 2x, . ∂u
∂y

= 2y,

.
∂v
∂x

= ∂v
∂y

= 0. Thus, due to Theorem2.2, the function f is differentiable only at one 
point .z = 0 and it is not analytic at any point of the complex plane. 

Exercise 2.2 Prove that if f is analytic in a domain and if . |f | is constant there, 
then f is constant. 

Definition 2.8 An analytic function whose domain is the whole complex plane is 
called an entire function. 

Examples 2.2 and 2.4 show that . ez and . zn are entire functions. 

2.3 Conjugate Harmonic Functions 

Let .f ∈ A(Ω) and .f (z) = u(x, y) + iv(x, y), z = x + iy ∈ Ω . In Sect. 5.3 we 
will prove that analytic functions have derivatives of all orders. This, in particular, 
implies that the functions u and v have partial derivatives of all orders with respect 
to x and y. Therefore, without loss of generality, we assume that . {u, v} ⊂ C2(Ω)

in this chapter. Then the following relations follow from the Cauchy-Riemann 
equations (2.2) :

. 

⎧
⎨

⎩

∂u
∂x

= ∂v
∂y

in Ω,

∂u
∂y

= − ∂v
∂x

in Ω,
�⇒

⎧
⎨

⎩

∂2u
∂x2

= ∂2v
∂y∂x

in Ω,

∂2u
∂y2

= − ∂2v
∂x∂y

in Ω,
�⇒ ∂2u

∂x2 + ∂2u

∂y2 = 0 in Ω.

Similar calculations show that .
∂2v

∂x2 + ∂2v

∂y2 = 0 in . Ω . In the mathematical literature, 

the sum of such second derivatives is called the Laplace operator or Laplacian, for  
which the following notation is introduced: 

. Δv := ∂2v

∂x2 + ∂2v

∂y2 .

Definition 2.9 A real-valued function .g ∈ C2(Ω) is called harmonic in . Ω if it is a 
solution the Laplace equation in . Ω, i.e., .Δg = 0 in . Ω . 

Definition 2.10 An ordered pair .〈h, g〉 of harmonic functions in . Ω satisfying the 
Cauchy-Riemann equations is called a conjugate pair of harmonic functions in . Ω . 

Thus, if a function . f is analytic in . Ω, then its real and imaginary parts form the 
conjugate pair .〈u, v〉 of harmonic functions in . Ω .
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Obviously, if .〈u, v〉 is a conjugate pair of harmonic functions in . Ω, then by 
Theorem 2.2 the function .f (z) := u(x, y)+ iv(x, y), .z = x+ iy ∈ Ω, is analytical 
in . Ω . As a result, the following statement follows from the above considerations. 

Proposition 2.3 A function .f (z) = u(x, y) + iv(x, y), .z = x + iy ∈ Ω, for 
which .{u, v} ⊂ C2(Ω), is analytic in . Ω if and only if .〈u, v〉 is a conjugate pair of 
harmonic functions in . Ω . 

A natural question arises whether it is possible to restore an analytical function 
of a complex variable for a given real or imaginary part, i.e., if u is a real-valued 
and harmonic function in . Ω, does there exist an analytic function f in . Ω such that 
.Ref = u in . Ω? The answer is given by Proposition 2.3 and the following theorem. 

Theorem 2.3 Let u be a harmonic function in a simply connected domain . Ω . Then 
there exists a function . v, which is determined up to an additive constant, such that 
.〈u, v〉 is a conjugate pair of harmonic functions in . Ω . 

Before the proof, we recall some facts from the course on mathematical analysis 
of several variables. A differential form is called an exact form if it is the exterior 
derivative of another differential form. A differential form . w = g1(x, y)dx +
g2(x, y)dy with coefficients of class . C1 is an exact form in a simply connected 

domain . Ω if and only if .
∂g1

∂y
= ∂g2

∂x
in . Ω . If the last condition is satisfied, then 

there exists a function .v ∈ C2(Ω), which is defined up to an additive constant, such 
that 

. dv = w ⇐⇒ ∂v

∂x
dx + ∂v

∂y
dy = g1 dx + g2 dy.

Proof Consider the differential form .w = −∂u

∂y
dx + ∂u

∂x
dy. Taking into account 

that u is harmonic, we have 

. 
∂

∂y

(
−∂u

∂y

)
= −∂2u

∂y2
= ∂2u

∂x2
= ∂

∂x

(
∂u

∂x

)
in Ω.

Since . Ω is simply connected, the differential form w is exact. This means that there 
is a function .v ∈ C2(Ω), which is defined up to an additive constant, such that 
.dv = w in . Ω, i.e., 

.
∂v

∂x
dx + ∂v

∂y
dy = −∂u

∂y
dx + ∂u

∂x
dy in Ω ⇐⇒

{
∂v
∂x

= − ∂u
∂y

∂v
∂y

= ∂u
∂x

in Ω.
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Thus, the Cauchy-Riemann equations in the domain . Ω are satisfied for the functions 
. u and . v. In addition, from the last relations it follows that 

. 

⎧
⎨

⎩

∂2v
∂x2

= − ∂2u
∂x∂y

,

∂2v
∂y2

= ∂2u
∂y∂x

,
�⇒ Δv = 0 in Ω.

Therefore, .〈u, v〉 is a conjugate pair of harmonic functions in . Ω . ��

Example 2.6 Find an analytic function in . C with the real part 

. u(x, y) = x2 − y2 − x.

Since u belongs to .C2(R2) and .Δu = 2 − 2 = 0 in the simply connected domain 
.Ω = C, by Theorem 2.3, there is a harmonic function v such that .f = u + iv is 
analytic in . C. 

It follows from the first equation in (2.2) that

. 
∂v

∂y
= ∂u

∂x
= 2x − 1.

Therefore, 

. v(x, y) = 2xy − y + ϕ(x),

where . ϕ is some differentiable function. Then, . ∂v
∂x

= 2y+ϕ′(x) and from the second 
equation in (2.2) we get

. − 2y − ϕ′(x) = −∂v

∂x
= ∂u

∂y
= −2y �⇒ ϕ′(x) = 0 �⇒ ϕ ≡ c,

where .c ∈ R. Thus, .v(x, y) = 2xy − y + c and 

. f (x + iy) = x2−y2−x + i(2xy −y +c) = (x + iy)2− (x + iy)+ ic = z2−z+ ic.

Exercise 2.3 Prove that if f and . f are analytic functions in . C, then f is constant 
in . C. 

Many properties of harmonic functions resemble those of analytic functions and 
will be discussed in the following chapters of this textbook. Harmonic functions 
occur in problems of electric, magnetic and gravitational potentials, in problems of 
steady-state temperatures and in problems of hydrodynamics.
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2.4 Hydrodynamic Interpretation of Analytical Functions 

Let .f ∈ A(Ω) and .f (z) = u(x, y) + iv(x, y), z = x + iy ∈ Ω . From results 
obtained in Sect. 2.3 it follows that .〈u, v〉 is a conjugate pair of harmonic functions 
in . Ω . We define a plane-parallel vector field 

. V(x, y) :=
(

∂u

∂x
(x, y),

∂u

∂y
(x, y), 0

)
, (x, y) ∈ Ω;

in this case, the function . u is called the potential of the vector field . V, and the 
function . f is called the complex potential of . V.

It is easy to verify that 

. divV = ∂

∂x

(
∂u

∂x

)
+ ∂

∂y

(
∂u

∂y

)
= Δu = 0 in Ω.

This means that the vector field . V is solenoidal (or incompressible) in . Ω (no sources 
and drains). 

Calculating 

. curlV =

∣∣
∣∣∣∣∣

i j k
∂
∂x

∂
∂y

∂
∂μ

∂u
∂x

∂u
∂y

0

∣∣
∣∣∣∣∣
=

(
0, 0,

∂

∂x

(
∂u

∂y

)
− ∂

∂y

(
∂u

∂x

))
= 0 in Ω,

we conclude that the vector field . V is irrotational (or curl-free) in . Ω . 

Thus, every analytical function f in a domain . Ω is the complex potential of 
some plane-parallel, solenoidal, and irrotational vector field in . Ω . 

Now let a solenoidal and irrotational vector field 

. V = (
ϕ1(x, y), ϕ2(x, y), 0

)

be given in a simply connected domain . Ω . We assume that the functions . ϕ1 and . ϕ2
belong to the space .C1(Ω) and .V �= 0 in . Ω . 

Since . V is irrotational, 

.curlV = 0 ⇐⇒

∣
∣∣∣∣∣
∣

i j k
∂
∂x

∂
∂y

∂
∂μ

ϕ1 ϕ2 0

∣
∣∣∣∣∣
∣
= 0 �⇒ ∂ϕ1

∂y
= ∂ϕ2

∂x
in Ω.
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Therefore, taking into account the simply connectedness of the domain . Ω, one can 
assert that the differential form .w1 = ϕ1dx +ϕ2dy is an exact form in . Ω . Then, due 
to Theorem 2.3 there exists a function .u ∈ C2(Ω) such that .du = w1. This means 
that 

.
∂u

∂x
= ϕ1,

∂u

∂y
= ϕ2 in Ω, (2.11) 

i.e., u is the potential of the vector field . V. 
Since . V is solenoidal, 

. divV = 0 �⇒ ∂ϕ1

∂x
+ ∂ϕ2

∂y
= 0 ⇐⇒ −∂ϕ2

∂y
= ∂ϕ1

∂x
in Ω.

Thus, the differential form .w2 = −ϕ2dx + ϕ1dy is an exact form in . Ω, which 
means there is a function .v ∈ C2(Ω) such that .dv = w2, whence 

.
∂v

∂x
= −ϕ2,

∂v

∂y
= ϕ1 in Ω. (2.12) 

It follows from (2.11) and (2.12) that the functions u and v satisfy the Cauchy– 
Riemann equations in . Ω . Therefore, one can determine a function . f := u + iv,

which, based on Theorem 2.2, will be analytic in . Ω . 

Therefore, any plane-parallel, solenoidal, irrotational vector field in a simply 
connected domain can be associated with an analytical function, which is the 
complex potential for that field. 

Let us see what v means in physical terms. Consider a curve that is implicitly 
given by the equation .v(x, y) = const. Then according to (2.12), 

. 
dy

dx
= −

∂v
∂x
∂v
∂y

= ϕ2

ϕ1
.

This means that the vector .
(
1, dy

dx
, 0

)
=

(
1, ϕ2

ϕ1
, 0

)
, which is the tangent vector to 

the curve .v(x, y) = const, is collinear to .V = (ϕ1, ϕ2, 0). Consequently, the curve 
.v(x, y) = const is the motion trajectory of particles of a fluid flow, the velocity 
vector of which coincides with . V. The function . v is called the stream function of 
the vector field .V.
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2.5 Conformal Mappings: Geometric Meaning of the Modulus 
and Argument of the Derivative 

Here, we take a closer look at the mapping properties of analytic functions. 

Definition 2.11 A function .f : Ω �→ C at a point .z0 ∈ Ω is called conformal at . z0
if f is analytic at . z0 and .f ′(z0) �= 0. The function f is said to be conformal in the 
domain . Ω if it is analytic in . Ω and conformal at every point of . Ω . . �

Let . f be conformal at a point .z0 ∈ C. Then for any smooth simple curve . z =
γ(t), t ∈ [a, b], with the origin at .z0 = γ(a), the limit 

. lim
z→z0, z∈Eγ

|f (z) − f (z0)|
|z − z0| = |f ′(z0)| �= 0 (2.13) 

exists, since f has the derivative at . z0 and the limit does not depend on how z tends 
to . z0. Thus, this limit is independent of . γ. On the other hand, 

. lim
z→z0, z∈Eγ

|f (z) − f (z0)|
|z − z0| = lim

t→a

|f (γ(t)) − f (γ(a))|
|γ(t) − γ(a)| ,

and this limit can be interpreted as a stretch coefficient (a scale factor) of the curve 
. γ at the point . z0 under the mapping f . 

Hence, a conformal function at . z0 stretches equally any smooth simple curve 
emanating from . z0, and the equality (2.13) expresses the geometric meaning of the 
modulus of the derivative .f ′(z0): this is the stretch coefficient at the point . z0 under 
the mapping f . 

This mapping property of the conformal function f can be commented as 
follows: . f stretches small circles centered at the point . z0 of radius . |Δz| = |z − z0|
in circles with center at .ω0 = f (z0) of radius .|f ′(z0)| |Δz| up to a value . o(|Δz|)
(Fig. 2.1). Indeed, 

. |ω−ω0| = |f (z)−f (z0)| = |f ′(z0)Δz+o(Δz)| ∼ |f ′(z0)| |Δz| as |Δz| → 0.

Definition 2.12 A mapping f is called a mapping with equal stretch at a point . z0 if 
it stretches equally any smooth simple curve outgoing from . z0, i.e., for any smooth 
simple curve .z = γ(t), t ∈ [a, b], with the origin at .z0 = γ(a), the limit 

. lim
t→a

|f (γ(t)) − f (γ(a))|
|γ(t) − γ(a)| (2.14) 

exists, is independent of . γ, and does not equal to zero.
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Fig. 2.1 Mapping small circles by a conformal mapping f 

Example 2.7 The function .f (z) = 2 z is not analytic at any point of the complex 
plane. However, its stretch coefficient of any smooth simple curve equals 2. Indeed, 

. lim
t→a

|f (γ(t)) − f (γ(a))|
|γ(t) − γ(a)| = 2 lim

t→a

|γ(t) − γ(a)|
|γ(t) − γ(a)| = 2 lim

t→a

|γ(t) − γ(a)|
|γ(t) − γ(a)| = 2.

Example 2.8 It is easy to verify that the stretch coefficient of any smooth simple 
curve under the mapping .f (z) = x + i2y at any point of the complex plane is 
equal to 1 in the horizontal direction, and it is 2 in the vertical direction. Hence, this 
function is not a mapping with equal stretch at any point of the complex plane. 

Example 2.9 Let . f be conformal at a point .z0 = x0 + iy0 ∈ C . (f (z) = u(x, y) +
iv(x, y)). Then the Jacobian of the corresponding vector-valued function 

. 

(
u

v

)
: Ω �−→ R

2

at the point .(x0, y0) in view of the Cauchy-Riemann equations is equal to 

.J (u, v)|(x0,y0) =
∣∣∣∣
∣

∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

∣∣∣∣
∣
=

(
∂u

∂x

)2

+
(

∂v

∂x

)2

= |f ′(z0)|2 > 0. (2.15) 

It is known from vector calculus that the Jacobian . J of the vector-valued function 
. 
(
u
v

)
is the linear stretch coefficient of infinitesimal areas. 

From example 2.9 and the theorem on the preservation of a domain under a 
continuously differentiable mapping .f : R

n �→ R
n, whose Jacobian is not equal 

to zero, the following statement follows. 

Proposition 2.4 (Open Mapping Property) A conformal function f in a domain 
. Ω maps this domain into a domain in . C.
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A stronger statement is proved in Sect. 9.1. Example 2.9 and the inverse function 
theorem for a continuously differentiable mapping .f : Rn �→ R

n, whose Jacobian is 
not equal to zero, lead to the following statement. 

Proposition 2.5 A conformal function f at a given point . z0 is a one-to-one 
mapping in some neighborhood of . z0. In addition, the inverse function is conformal 
at the point .w0 = f (z0) and by the chain rule 

.
(
f −1)′

(w0) = 1

f ′(z0)
. (2.16) 

The question of how to explicitly find the inverse function is discussed in Sect. 9.2. 
Let us now clarify the geometric meaning of the argument of the derivative of a 

conformal function . f at a point . z0.
It is known that for a smooth curve .z = γ(t) = x(t) + iy(t), t ∈ [a, b], with 

.γ(a) = z0, the value .γ ′(a) = (x′(a), y′(a)) is the tangent vector to the curve at . z0,
and .arg(γ ′(a)) is the angle of inclination of this vector to the real axis. Then for the 
curve .̃γ(t) = f (γ(t)), .t ∈ [a, b], we have 

.̃γ ′(a) = f ′(z0) · γ ′(a) �⇒ Arg γ̃ ′(a) = arg f ′(z0) + arg γ ′(a). (2.17) 

Equality (2.17) is understood as follows: one of the arguments of the complex 
number .̃γ ′(a) is equal to the sum .arg(f ′(z0)) + arg(γ ′(a)). 

From (2.17) it follows that .arg(f ′(z0)) is the angle by which you need to rotate 
the tangent vector to . γ to get the angle of inclination of the tangent vector to the 
image of this curve at the point .ω0 = f (z0), in other words: .arg(f ′(z0)) is the angle 
of rotation of an arbitrary smooth curve emanating from . z0 under the mapping . f
(Fig. 2.2). 

Consider another smooth curve .z = μ(t), .t ∈ [a, b], emanating from . z0. By  
. ̃μ we denote its image under the mapping . f, i.e., .̃μ(t) = f (μ(t)), .t ∈ [a, b]. 
Similarly, we deduce 

.̃μ ′(a) = f ′(z0) · μ′(a) �⇒ Arg μ̃ ′(a) = arg f ′(z0) + arg μ′(a). (2.18) 

Fig. 2.2 Angle of rotation of a curve . γ under a conformal mapping f
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It follows from (2.17) and (2.18) that 

. �(μ̃, γ̃)|ω0 := Arg μ̃ ′(a) − Arg γ̃ ′(a)

= arg(μ′(a)) − arg(γ′(a)) =: �(μ, γ)|z0 . (2.19) 

Here, the symbol .�(μ, γ)|z0 denotes the oriented angle between the curves . μ and . γ

at . z0; by definition, it is equal to the oriented angle between the vectors .μ′(a) and 
.γ′(a), i.e., .arg(μ′(a)) − arg(γ′(a)). 

Equality (2.19) means that the angle between the curves . μ and . γ at . z0 is equal to 
the angle between their images under the conformal mapping f both in magnitude 
and in the direction of readout. These properties of f are called angle-preserving 
and orientation-preserving at the point . z0. 

Example 2.10 The function from Example 2.7 is angle-preserving, but is not 
orientation-preserving. It reflects any smooth simple curve across the x-axis and 
then stretches it by 2. 

The function from Example 2.8 is not angle-preserving, but preserves the 
orientation since the Jacobian of the vector-valued function .

(
x
2y

) : R2 �→ R
2 is 

positive. 

Example 2.11 Let .f (z) = z2. Then .f ′(z) = 2z and .f ′(0) = 0. Thus, f in not 
conformal at 0. Let us show that f is not angle-preserving at 0. 

Indeed, consider two curves (their traces are segments) emanating from the 
origin: 

. γ1(t) = t eiα and γ2(t) = t eiβ, t ∈ [0, 1].

Then, .�(γ2, γ1)|z=0 = β − α. But the angle between their images 

. ̃γ1(t) = t2ei2α and γ̃2(t) = t2ei2β, t ∈ [0, 1],

is equal to .�(̃γ2, γ̃1)|ω=0 = 2(β − α). 

Let us summarize the above, proving the main theorem characterizing conformal 
mappings. 

Theorem 2.4 (Conformal Mapping Criterion) Let .f : Ω �→ C, . f (z) =
u(x, y) + iv(x, y), .z = x + iy ∈ Ω . The function f is conformal in the domain . Ω
if and only if 

(1) the real-valued functions u and v are differentiable in . Ω;
(2) . f is a mapping with equal stretch, angle-preserving and orientation-preserving 

at any point of . Ω .
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Proof The necessity follows from the considerations above in this paragraph. Let 
us prove the sufficiency. By Definition 2.12, the limit (2.14) exists, does not depend
on a curve and is not equal to zero for each point .z0 = x0 + iy0 of the domain . Ω . 
Then the following limit 

. lim
Δz→0

|Δf (z0)|2
|Δz|2 = lim

Δz→0

|Δu + iΔv|2
|Δx + iΔy|2 = lim

Δz→0

(Δu)2 + (Δv)2

(Δx)2 + (Δy)2
=: K �= 0,

exists, where the symbol . Δ refer to corresponding increments (see (2.8) , (2.9) ).
Putting first .Δz = Δx .(Δy = 0) in this limit and taking into account the first 

condition of the theorem, we find 

. K = lim
Δx→0

(u(x0 + Δx, y0) − u(x0, y0))
2 + (v(x0 + Δx, y0) − v(x0, y0))

2

(Δx)2

=
(∂u

∂x
(x0, y0)

)2 +
(∂v

∂x
(x0, y0)

)2
. (2.20) 

By the same way we find the limit in the case .Δx = 0: 

.K =
(∂u

∂y
(x0, y0)

)2 +
(∂v

∂y
(x0, y0)

)2
. (2.21) 

In the case .Δx = Δy we get 

.K = K + ∂u

∂x
(x0, y0)

∂u

∂y
(x0, y0) + ∂v

∂x
(x0, y0)

∂v

∂y
(x0, y0). (2.22) 

The Eqs. (2.20) , (2.21), and (2.22) lead to the system

. 

⎧
⎨

⎩

(
∂u
∂x

)2 + (
∂v
∂x

)2 = (
∂u
∂y

)2 + (
∂v
∂y

)2

∂u
∂x

∂u
∂y

+ ∂v
∂x

∂v
∂y

= 0

Since .K �= 0, one of the derivatives in this system is not equal to zero. We can 
regard that . ∂v

∂y
(x0, y0) �= 0. Then 

.
∂v

∂x
(x0, y0) = −

∂u
∂x

(x0, y0)
∂u
∂y

(x0, y0)

∂v
∂y

(x0, y0)
. (2.23) 

Substituting this expression in the first equality of the system, we find

.
∂u

∂x
(x0, y0) = ±∂v

∂y
(x0, y0). (2.24)
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Fig. 2.3 An angle-preserving map f 

Thus, we conclude from (2.23) and (2.24) that either the Cauchy-Riemann
equations

.
∂u

∂x
= ∂v

∂y
and

∂u

∂y
= −∂v

∂x
in Ω (2.25) 

hold or opposite to them, namely

.
∂u

∂x
= −∂v

∂y
and

∂u

∂y
= ∂v

∂x
in Ω. (2.26) 

Let us draw from the point . z0 two segments parallel to the coordinate axes, which 
belong to the domain . Ω (Fig. 2.3). Recall that .z0 = (x0, y0) is arbitrary point from 
. Ω . 

Since . f is angle-preserving, the images of these segments will be perpendicular 
curves emanating from .ω0 = f (z0). The vectors 

. 

(∂u

∂x
(x0, y0),

∂v

∂x
(x0, y0)

)
and

(∂u

∂y
(x0, y0),

∂v

∂y
(x0, y0)

)

are the tangent vectors to these curves at . ω0, respectively. 
Turning the vector .( ∂u

∂x
, ∂v

∂x
) at the angle . π2 counterclockwise and taking into 

account that f is orientation-preserving, we find that the directions of the vectors 
.(− ∂v

∂x
, ∂u

∂x
) and .( ∂u

∂y
, ∂v

∂y
) coincide (obviously, these are nonzero vectors). Therefore, 

.0 <

(
−∂v

∂x
,
∂u

∂x

)
·
(

∂u

∂y
,
∂v

∂y

)
= ∂u

∂x

∂v

∂y
− ∂v

∂x

∂u

∂y
= J (u, v). (2.27) 

If Eq. (2.26) are satisfied, then from (2.27) we get a contradiction: 

.0 <
∂u

∂x
(x0, y0)

∂v

∂y
(x0, y0) − ∂v

∂x
(x0, y0)

∂u

∂y
(x0, y0)

= −
(

∂v

∂y
(x0, y0)

)2

−
(

∂v

∂x
(x0, y0)

)2

< 0.
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Thus, the Cauchy-Riemann equations (2.25) hold. Then, taking into account the 
first condition of the theorem and Theorem 2.2, we conclude that .f ∈ A(Ω). From  
(2.27), based on (2.15), it follows that 

. 0 < J(u, v) = ∂u

∂x

∂v

∂y
− ∂v

∂x

∂u

∂y
=

(∂u

∂x

)2 +
(∂v

∂x

)2 = |f ′(z)|2.

This means that f is conformal in . Ω . ��

We now give a definition of the conformality of a function in the case when a 
point or its image is the point at infinity. 

Definition 2.13 Let .z0 = ∞ and .f (z0) �= ∞. A function . f is said to be conformal 

at . z0 if the function .g(z) := f
(
1
z

)
is conformal at . 0. 

Let .z0 �= ∞ and .f (z0) = ∞. A function . f is said to be conformal at . z0 if the 
function .g(z) := 1

f (z)
is conformal at . z0. 

Let .z0 = ∞ and .f (z0) = ∞. A function . f is said to be conformal at . z0 if the 
function .g(z) := 1

f ( 1
z
)
is conformal at . 0. 

Definition 2.14 An analytic function .f : Ω �→ C is called univalent in . Ω if it is 
injective in the domain . Ω, i.e., for any two different points . z1 and . z2 from . Ω we 
have that .f (z1) �= f (z2). 

In this case, . Ω is referred to as the domain of univalence of f . . �

One of the most important properties of a univalent function is the following: if 
.f : Ω �→ C is univalent, then the derivative of f is never zero, i.e., f is conformal 
in . Ω . This statement will be proved in Theorem 7.8. It should be noted here that this 
statement does not hold for real-valued smooth functions, e.g., .f (x) = x3, x ∈ R. 

The main theorem on conformal mappings is the following Riemann theorem, 
the proof of which will be presented in Sect. 9.5. 

Theorem 2.5 (Riemann Mapping Theorem) Let . Ω and G be two arbitrary 
simply connected domains in . C whose boundaries contain more than one point. 
Then for arbitrary points .z0 ∈ Ω and .ω0 ∈ G and any real number . α ∈ (−π, π ]
there exists a unique bijective conformal mapping .f : Ω �−→ G such that . ω0 =
f (z0) and .arg f ′(z0) = α. 

At first glance, the statement of this theorem seems implausible. Simply con-
nected domains in the complex plane can be very complicated. For instance, there 
are bounded domains such that the boundary is a nowhere-differentiable fractal 
curve of infinite length. And the fact that such a domain can be mapped onto a 
regular unit disk in an angle-preserving manner sounds counterintuitive. 

Therefore, conformal mappings are invaluable for solving problems in engineer-
ing and physics that can be expressed in terms of functions of a complex variable,



42 2 Analytic Functions

such as for example, boundary value problems involving Laplace’s equation in 
complicated domains. By choosing an appropriate mapping, the inconvenient 
geometry of such a domain can be transformed into a much more convenient one. 

To summarise what has been said so far in this section, conformal mappings 
preserve the shape of any sufficiently small figure, possibly rotating and scaling it 
(but not reflecting it).
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Abstract 

Conformal mappings are of immense importance in various branches of math-
ematics and in many applications. To solve many problems, one needs to be 
able to construct a bijective conformal mapping from one domain onto another 
in the complex plane. In this chapter we study how to construct such bijective 
conformal mappings. We will consider various elementary analytic functions, 
find domains of univalence and images of these domains. In addition, for many 
elementary analytic functions in . C we find their inverses, which in some cases 
turn out to be multivalued. We introduce the first (intuitive) concept of a Riemann 
surface for multivalued functions and show how to construct Riemann surfaces 
for the inverses of elementary analytic functions. As a result of these studies, 
we will establish facts that are incorrect in real analysis, for example, we can 
calculate the logarithm of negative numbers and solve the equation 

. sin z = 2.

3.1 Linear and Fractional-Linear Functions and Their Simplest 
Properties 

Since the largest domain in the complex plane . C is . C itself, it is natural to start our 
study of conformal mappings by considering the analytic functions from . C to itself, 
which are one-to-one and onto. 

Definition 3.1 A function of the form 

. w = az + b,

where .{a, b} ⊂ C and .a �= 0, is called a linear function of a complex variable. 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 
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Since .w′ = a �= 0, a linear function is entire, conformal and univalent in the 
complex plane . C. One can easily check that 

. z = w − b

a

is the inverse linear mapping from . C onto . C. In Sect. 9.3, we will prove the 
following statement: every conformal and univalent mapping from . C onto . C is 
a linear function. 

It is obvious that .limz→∞(az + b) = ∞. This suggests that each linear function 
can be determined at the point at infinity by setting it equal to . ∞. Let us show 
the conformality of a linear function in . ∞. In accordance with Definition 2.13, one 
should consider the function 

. g(z) = 1

az−1 + b
= z

a + bz

and check its conformality at zero: .g′(0) = 1
a

�= 0. 
Having written the number . a in the exponential form .a = |a| · ei arg(a), the 

function .w = az + b can be represented as 

. w = ei arg(a)|a| z + b,

whence it is visible that each linear function is the composition of three mappings: 

(1) .ξ = |a|z (homothety centered at the origin and with ratio . |a|);
(2) .τ = ei arg(a)ξ (rotation around the origin at the angle . arg(a));
(3) .w = τ + b (translation by the vector . b). 

Example 3.1 Figure 3.1 shows that the square 

. K1 = {z = x + iy : x ∈ (0, 1), y ∈ (0, 1)}

is mapped by the linear function 

. ω = (√
2 + i

√
2
)
z − i

√
2 = 2ei π

4 z − i
√
2

onto the square .{ω = u + iv : |u| + |v| <
√
2}. .�
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Fig. 3.1 The image of the 
square . K1

Also in Sect. 9.3, we will prove that conformal and univalent mappings from . C
onto . C are a special class of functions of the form 

. w = az + b

cz + d
, {a, d, b, c} ⊂ C.

One additional restriction .ad − bc �= 0 is needed to ensure that such a function is 
neither identically constant nor meaningless. It turns out that such functions have 
many interesting properties. We will explore them in detail in this and the next three 
sections. 

Definition 3.2 A fractional-linear function is a mapping of the form 

. w = az + b

cz + d
,

where .{a, d, b, c} ⊂ C and .ad − bc �= 0. 

When the coefficient .c = 0, then the fractional-linear function becomes linear, some 
of the properties of which were studied above. Therefore, in this section we assume 
that .c �= 0. Since 

. lim
z→∞

az + b

cz + d
= a

c
and lim

z→− d
c

az + b

cz + d
= ∞,
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it is naturally to extend the fractional-linear function to . C by continuity as follows: 

. w = F(z) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

az + b

cz + d
, z ∈ C \ {− d

c
},

∞, z = − d
c
,

a

c
, z = ∞.

Remark 3.1 Thus, every fractional-linear function is a continuous mapping from 
. C in . C. 

Theorem 3.1 A fractional-linear function is a homeomorphism from . C onto . C. 

Proof Recall that a homeomorphism is, by definition, a one-to-one, onto continuous 
mapping with a continuous inverse. First, let us show that . F is bijection, namely 

. ∀w ∈ C ∃ ! z ∈ C : F(z) = w.

To prove this, it suffices to show that the equation .F(z) = w for . z has only one root 
in . C. Indeed, 

. 
az + b

cz + d
= w �⇒ z = −dw + b

cw − a
if w ∈ C \ {a

c

};

in addition, if .w = ∞, then .z = − d
c
; and if .w = a

c
, then .z = ∞. 

Thus, for each fractional-linear mapping there is an inverse which is also a 
fractional-linear mapping determined by the formula 

.F−1(w) :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−dw + b

cw − a
, w ∈ C \ { a

c
},

∞, w = a
c
,

−d

c
, w = ∞.

(3.1) 

Remark 3.1 completes the proof. 
�

Theorem 3.2 A fractional-linear function is conformal in . C. 

Proof If .z �∈ {− d
c
,∞}, then 

.w′ = a(cz + d) − c(az + b)

(cz + d)2
= ad − bc

(cz + d)2
�= 0.
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If .z = − d
c
, then according to Definition 2.13 one should consider the function 

.g(z) = 1
F(z)

= cz+d
az+b

and find its derivative at . z = − d
c

:

. g′(z) = cb − ad

(az + b)2

∣∣∣
z=− d

c

= c2

cb − ad
�= 0.

If .z = ∞, then one should consider the function 

. g(z) := F

(
1

z

)
=

a
z

+ b

c
z

+ d
= a + bz

c + dz

and find its derivative at . z = 0 :

. g′(z) = bc − ad

(c + dz)2

∣∣
∣
z=0

= bc − da

c2
�= 0.


�

3.2 Group and Circular Properties of Fractional-Linear 
Functions 

By . Λ we denote the set of all fractional-linear mappings and define a binary 
operation on this set as the composition of fractional-linear mappings: 

. F2 ◦ F1 := F2
(
F1

)
.

Exercise 3.1 Let there be given two fractional-linear mappings 

. ξ = F 1(z) = a1z + b1

c1z + d1
and w = F 2(ξ) = a2ξ + b2

c2ξ + d2
,

where .a1d1 − c1b1 �= 0 and .a2d2 − c2b2 �= 0. Prove that their composition is a 
fractional-linear mapping 

. w = (
F2 ◦ F1

)
(z) = az + b

cz + d
,

where 

. 

(
a b

c d

)
=

(
a2 b2

c2 d2

)
·
(

a1 b1

c1 d1

)
, ad − bc �= 0.

Theorem 3.3 (The Group Property) The set .(Λ, ◦) is a noncommutative group.
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Proof Let us verify the group axioms: 

• associativity 

. ∀ {F1,F2,F3} ⊂ Λ : F3 ◦ (
F2 ◦ F1

) = (
F3 ◦ F2

) ◦ F1

follows from Exercise 3.1 and associativity of matrix multiplication; 
• the identity mapping .E(z) = z is the identity element in this group: 

. F ◦ E = E ◦ F = F;

• the existence of the inverse element follows from (3.1). 

To check non-commutativity, consider two fractional-linear mappings: . F1(z) =
1
z
and .F2(z) = z + 2. Then 

. F2 ◦ F1 = 1

z
+ 2 �= F1 ◦ F2 = 1

z + 2
.

The theorem is proved. 
�

Theorem 3.4 (The Circular Property) Each fractional-linear function maps a 
circle in . C onto a circle in . C.

It should be noted here that by a circle in . C we mean either a circle in . C or a line 
in . C together with the point .{∞}. 

Proof Each fractional-linear function .w = F(z) = az+b
cz+d

, .(ad − bc �= 0, . c �= 0)
can be represented as follows 

. F(z) =
a
c
(cz + d) − ad

c
+ b

cz + d
= a

c
− ad − bc

c2(z + d
c
)

=: A + B

z + C
,

where 

. A = a

c
, B = −ad − bc

c2
, C = d

c
.

Thus, .F(z) = F3
(
F2(F1(z))

)
, where 

.F1 : z �→ z + C, F2 : z �→ 1

z
, F3 : z �→ A + Bz, z ∈ C.
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The functions . F1 and . F3 are linear and map circles onto circles, since every linear 
function is a composition of homothety, rotation and translation (see Sect. 3.1). So, 
it remains to prove the theorem statement for . F2. 

A general equation of a circle in the coordinate plane is 

. E(x2 + y2) + F1x + F2y + G = 0,

where .{E,F1, F2,G} ⊂ R, E2 + F 2
1 + F 2

2 + G2 �= 0. It covers both the equation 
of a (standard) circle and the equation of a straight line, as well as a point (a circle 
with zero radius) and the empty set. 

Since .x = 1
2 (z+z) and .y = 1

2i (z−z) and .x2 +y2 = zz, the equation of a circle, 
written in a complex variable, has the form 

. Ezz + Fz + F z + G = 0,

where .F = 1
2 (F1 − iF2), .F = 1

2 (F1 + iF2). The mapping .w = 1
z
transforms a 

circle into a curve whose equation is 

. E
1

w
· 1

w
+ F

1

w
+ F

1

w
+ G = 0 ⇐⇒ Gw w + Fw + Fw + E = 0,

but this is the equation of a circle in the complex plane. 
�

It turns out that a fractional-linear function is uniquely determined by the images 
of any three different points in . C. 

Theorem 3.5 There is only one fractional-linear function . F that maps three 
different given points .{z1, z2, z3} ⊂ C to three different given points . {w1, w2, w3} ⊂
C, i.e., .F(zk) = wk for .k ∈ {1, 2, 3}. 

This fractional-linear mapping is defined by the formula 

.
w − w1

w − w2
· w3 − w2

w3 − w1
= z − z1

z − z2
· z3 − z2

z3 − z1
. (3.2) 

Proof 

1. Let us first consider the case when all the given complex numbers are finite, i.e., 
.{z1, z2, z3} ⊂ C and . {w1, w2, w3} ⊂ C.

Having found . w from (3.2), we check that (3.2) defines a fractional-linear 
function . F. In addition, it is easy to verify that .F(zk) = wk, .k ∈ {1, 2, 3}. Let us 
prove the uniqueness of such a function.
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Assume that there is another fractional-linear mapping . F1 such that . F1(zk) =
wk for .k ∈ {1, 2, 3}. Then, based on Theorem 3.3, we get the following three 
relations: 

.F(zk) = F1(zk) ⇐⇒ F
−1
1

(
F(zk)

) = zk ⇐⇒ azk + b

czk + d
= zk (3.3) 

for .k ∈ {1, 2, 3}. Here, .{a, b, c, d} ⊂ C and .ad − cd �= 0. It follows from 
(3.3) that the quadratic equation .cz2 + (d − a)z + b = 0 or the linear equation 
.(d − a)z + b = 0 (if .c = 0) has three different roots . z1, z2, z3 :

.cz2k + (d − a)zk + b = 0 for all k ∈ {1, 2, 3}. (3.4) 

This is possible only when .c = 0, d = a, b = 0, i.e., 

. F
−1
1

(
F(z)

) = z (∀ z ∈ C) ⇐⇒ F1 = F.

2. If one of the points .{z1, z2, z3} and .{w1, w2, w3} coincides with the point . {∞},
the corresponding numerator and denominator in (3.2), where this point appears, 
must be replaced by . 1 and then repeat the previous reasonings. For example, 
if .z1 = ∞ and .w3 = ∞, then the corresponding fractional-linear function is 
represented by the formula 

. 
w − w1

w − w2
· 1 − w1

w3

1 − w1
w3

=
z
z1

− 1

z − z2
· z3 − z2

z3
z1

− 1
⇐⇒ w − w1

w − w2
= z3 − z2

z − z2
.

The theorem is proved. 

�

Remark 3.2 The expression 

. 
z − z1

z − z2
· z3 − z2

z3 − z1

is called the cross-ratio of four points . z, .z1, .z2, . z3, and the equality (3.2) means 
invariance of the cross-ratio of four points under a fractional-linear mapping. 

Remark 3.3 It follows from the proof of Theorem 3.5 that a fractional-linear map 
.F �= E can have no more than two fixed different points .z1, z2, i.e., . F(zk) = zk,

.k = 1, 2. In this case, thanks to (3.2) this mapping it is given by the formula 

.
w − z1

w − z2
= A

z − z1

z − z2
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if .z1 �= ∞ and .z2 �= ∞, or .w − z1 = A(z − z1) if .z2 = ∞. Here the coefficient 
.A ∈ C \ {1}. 

Depending on the coefficient . A, such mappings are called hyperbolic fractional-
linear mappings if . A is positive and .A �= 1; elliptic if .A = eiθ , .θ �= 2πn; and 
loxodromic if .A = |A|eiα, .|A| �= 1, .α �= 2πn, where .n ∈ Z. 

A fractional-linear function is called a parabolic fractional-linear mapping if it 
has only one fixed point, i.e., the quadratic Eq. (3.4) has zero discriminant (fixed
points are coincided).

Exercise 3.2 Prove that every parabolic fractional-linear mapping can be repre-
sented in the form 

. 
1

w − z1
= 1

z − z1
+ β

if .z1 �= ∞, or .w = z + β if .z1 = ∞. Here, .β ∈ C, β �= 0. 

Corollary 3.1 Let . γ1 and . γ2 be two circles in . C. Then there exists a fractional-
linear mapping . F such that . γ2 = F(γ1).

To prove this, one needs to take three different points on one and the other circle, 
and then use the formula (3.2) and Theorem 3.4. 

Corollary 3.2 Let . B1 and . B2 be two disks in . C. Then there exists a fractional-linear 
mapping . F such that . B2 = F(B1).

Proof Recall that by a disk in . C we mean either a disk in . C or its exterior in . C or a 
half plane together with the point .{∞}. 

Let us take three different finite points .z1, z2, z3 on the boundary of the disk 
. B1 so that when they are successively traversed from . z1 trough . z2 to . z3, the disk 
remains to the left. By the same way we choose three different points .w1, w2, w3 on 
the boundary of . B2 (Fig. 3.2). Then a fractional-linear mapping . F, given by (3.2), 
is required. Let’s check it out. 

Fig. 3.2 Disks . B1 and .B2
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Since each linear fractional mapping is conformal in . C, then, based on statement 
Preposition 2.4, Theorem 3.1 and Corollary 3.1, the image of . B1 under the mapping 
. F can be either . B2 or the complement to . B2 in . C. Let us show that only the first 
option is possible. 

Obviously that the angle between the arc . ˜(z1, z2, z3) of the circle .∂B1 and 
the segment drawn from the point . z1 to the center of the disk . B1 is equal to . π2
(Fig. 3.2). Considering that each fractional-linear function is angle-preserving (it is 
conformal), the image of this segment will be an circular arc outgoing from . w1 and 

forming a right angle with the arc . ˜(w1, w2, w3) counterclockwise. This means that 
.F(B1) = B2. 
�

It follows from this proof that fractional-linear mappings preserve the orientation 
of the boundaries. It turns out that this is also true for other conformal mappings. 

Theorem 3.6 (Principle of Preserving Boundaries and Their Orientations [11]) 
Let . Ω and G be bounded simply connected domains with smooth boundaries. If a 
function . f conformally and univalently maps . Ω onto . G, then 

(1) the function f can be continuously extended to . Ω;
(2) this extended function is an orientation-preserving bijection between .∂Ω and 

. ∂G. 

3.3 Preservation of Symmetric Points by Fractional-Linear 
Mappings 

In this section, we will discover another interesting property of fractional-linear 
transformations: it turns out that they are symmetry preserving. 

Definition 3.3 Two points . z1 and . z∗
1 are called symmetric with respect to the circle 

.Γ = {z : |z − a| = R} (denoted by .z∗
1 = InvΓ (z1)) if 

(1) . arg(z∗
1 − a) = arg(z1 − a),

(2) . |z∗
1 − a| · |z1 − a| = R2.

By definitionition, we assume that .∞ = InvΓ (a). . �

The first condition in Definition 3.3 means that the points . z1 and . z∗
1 lie on the 

same ray emanating from the point . a, the second one means that these points are 
on opposite sides of the circle . Γ, or on . Γ (in this case .z∗

1 = z1 ∈ Γ ). Obviously, if 
.z∗
1 = InvΓ (z1), then .z1 = InvΓ (z∗

1). 
From Definition 3.3 it follows that 

.z∗
1 − a = k (z1 − a), (3.5)
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where .k > 0. Therefore, 

. k = |z∗
1 − a|

|z1 − a| = R2

|z1 − a|2 = R2

(z1 − a) · (z1 − a)
= R2

(z1 − a) · (z1 − a)
.

Substituting this expression for . k in (3.5) , we obtain

. z∗
1 = a + R2

z1 − a
⇐⇒ z1 = a + R2

z∗
1 − a

.

Using this formula, we define the function 

. z∗ = InvΓ (z) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

a + R2

z − a
, if z ∈ C \ {a},

∞, if z = a,

a, if z = ∞,

which is called inversion (symmetry) with respect to the circle . Γ . 

Example 3.2 Let .a = 0 and .R = 1. Then the inversion with respect to the unit 
circle .Γ1 = {z : |z| = 1} is given with the formula 

. InvΓ1(z) = 1

z
.

From this equality it follows that the fractional-linear function 

. w = 1

z
= 1

z

is the composition of the inversion with respect to the circle . Γ1 and the symmetry 
with respect to the real axis. 

Lemma 3.1 Two different points . z1 and . z∗
1 are symmetric with respect to the circle 

.Γ = {z : |z − a| = R} if and only if every circle . γ in . C, passing through the points 

. z1 and . z∗
1, intersects . Γ orthogonally. 

Proof 

Necessity Let .z∗
1 = InvΓ (z1) and . γ be a circle in . C passing through . z1 and . z∗

1. Let  
us draw a tangent line to . γ from the point . a and denote the point of tangency by . P.

Then the intersecting chord theorem states that .|P − a|2 = |z∗
1 − a| · |z1 − a|. Since 

the points . z1 and . z∗
1 are symmetric with respect to . Γ, we have that .|P − a| = R.
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Thus, the point . P is on . Γ and the segment .[a, P ] is a radius of the circle . Γ . This  
means that the circle . γ intersects . Γ orthogonally. 

Sufficiency Let an arbitrary circle in . C, passing through the points . z1 and . z∗
1,

intersects . Γ orthogonally. Then the line (a special case of circles in .C), which 
passes through these points, must also intersect the circle . Γ at a right angle. This 
is possible only when this line passes through the center of the circle . Γ, that is, 
through the point . a.

Moreover, the points . z1 and . z∗
1 lie on a ray emanating from the point . a and on 

opposite sides of . Γ, since otherwise the circle of radius . 12 |z∗
1 − z1|, which passes 

through these points, cannot intersect the circle . Γ orthogonally. Thus, . arg(z∗
1−a) =

arg(z1 − a).

It remains to verify the second condition of Definition 3.3. Now  let . γ be a circle 
in . C that passes through the points . z1 and . z∗

1 and intersects the circle . Γ at a right 
angle. Let us denote by . P one of the intersection points. Then the radius .[a, P ] is 
a segment of the tangent line to the circle . γ, and hence, based on the intersecting 
chord theorem, we have 

. R2 = |P − a|2 = |z∗
1 − a| · |z1 − a|.

The lemma is proved. 

�

Remark 3.4 The right part of the statement of Lemma 3.1 can be taken as a new 
definition of symmetric points with respect to a circle. This definition is more 
general because it includes the case when . Γ is a straight line (then it is the symmetry 
of points relative to this line). 

Theorem 3.7 (Symmetric Points Preservation Property) Let . Γ be a circle in  . C
and .z∗

1 = InvΓ (z1). Then for any fractional-linear mapping . F we have that 

. w∗
1 = InvF(Γ )(w1),

where .w1 = F(z1) and .w∗
1 = F(z∗

1); that is, symmetric points with respect to the 
circle . Γ under a fractional-linear mapping become symmetrical points relative to 
the image of this circle. 

Proof Note that based on Theorem3.4, .F(Γ ) is a circle in . C. Let  . ̃γ be a circle in  
. C passing through the points . w∗

1 and . w1. Then .γ := F−1(γ̃ ) is a circle that passes 
through the points . z1 and . z∗

1, and therefore, according to the preliminary lemma, the 
circle . γ intersects . Γ at a right angle. 

Considering the conformality of fractional-linear mappings, the circle . F(γ ) = γ̃

must intersect the circle .F(Γ ) also orthogonally. Then, by Lemma 3.1, we conclude 
that .w∗

1 = InvF(Γ )(w1). 
�
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3.4 Fractional-Linear Isomorphisms and Automorphisms 

Definition 3.4 Two domains Ω and Ω∗ in C are called fractional-linear isomorphic 
if there exists a fractional-linear mapping F such that Ω∗ = F(Ω). In this case, the 
mapping F : Ω �→ Ω∗ is called the fractional-linear isomorphism of Ω onto Ω∗. �

Obviously, that the inverse function F−1 maps the domain Ω∗ onto Ω . 

Proposition 3.1 Each fractional-linear isomorphism of the half-plane 
{z : Im z >  0} onto the unit disk B1 := {w : |w| < 1} can be represented in the form 

.w = eiα z − a

z − a
, (3.6) 

where Im a > 0 and α is a real number.

Proof Let F be a fractional-linear isomorphism of {z : Im z >  0} onto B2. The  
existence of at least one such isomorphism follows from Corollary 3.2. Then there 
exists a unique point a ∈ B1 such that F(a) = 0. Due to Theorem 3.7 we have that 
F(a) = ∞. 

Putting z1 = a, z2 = a, w1 = 0, w2 = ∞ in (3.2), we get 

.
w

1
· 1

w3
= z − a

z − a
· z3 − a

z3 − a
�⇒ w = A

z − a

z − a
, (3.7) 

where A is a complex number.
Let us show that |A| = 1. Since points of the real axis under the mapping F go

to points on the circle {w : |w| = 1}, we have for all x ∈ R that

. 1 = |F(x)| ⇐⇒ 1 = |A| |x − a|
|x − a| = |A| �⇒ A = eiα (α ∈ R).

It is easy to check that a mapping of the form (3.6) is a fractional-linear 
isomorphism of the upper half-plane onto B1. 
�

Definition 3.5 Fractional-linear isomorphism of a domain Ω onto itself is called a 
fractional-linear automorphism of Ω. 

Obviously, the set of all fractional-linear automorphisms of a domain Ω forms a 
subgroup of the group (Λ, ◦).
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Proposition 3.2 Each fractional-linear automorphism of the unit disk B1 = {z ∈ 
C : |z| < 1} can be represented in the form 

.w = eiβ z − b

1 − zb
, (3.8) 

where |b| < 1 and β is a real number.

Proof Let F be a fractional-linear automorphism of the disk B1. Then there exists 
a unique point b ∈ B1 such that F(b) = 0. Due to Theorem 3.7 we have that 
F (b∗) = ∞, where 

. b∗ = Inv∂B1(b) = 1

b
.

Substituting z1 = b, z2 = 1 
b , w1 = 0, w2 = ∞  in (3.2), we get 

. w = A
z − b

z − 1
b

= A1
z − b

1 − zb
.

Since F(1) ∈ ∂B1, we have the following 

. |F(1)| = 1 ⇐⇒ 1 = |A1| |1 − b|
|1 − b| = |A1| �⇒ A1 = eiβ (β ∈ R).

It is easy to check that a mapping of the form (3.8) is a fractional-linear 
automorphism of the disk B1. 
�

Exercise 3.3 Let F be a fractional-linear automorphism of the unit disk B1. It is  
known that 

. F

(1
2

+ i

2

)
= − i

8
.

Reasonably find the value of F
(√

2 ei π 
4
)
. 

Exercise 3.4 Prove that each fractional-linear automorphism of the half-plane {z : 
Im z >  0} can be represented in the form 

. w = az + b

cz + d
,

where a, b, c, d are real numbers and ad − cb > 0. 

For more properties of fractional-linear automorphisms, see Sect. 9.3.
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3.5 Power Functions with Natural Exponents 

Consider the power function 

. ω = f (z) := zn, z ∈ C (n ∈ N, n ≥ 2).

It follows from Example 2.2 that .f ′(z) = nzn−1 for any .z ∈ C. Thus, . f ∈ A(C)

and . f is conformal in . C \ {0}.
Let us find domains of univalence (see Definition 2.14) of  f . Let  .z1 �= z2 and 

.zn
1 = zn

2. Then 

. |z1|neinα1 = |z2|neinα2 �⇒
{

|z1| = |z2|,
α1 = α2 + 2πk

n
, k ∈ Z,

where .α1 ∈ Arg(z1), .α2 ∈ Arg(z2). 
Thus, a domain . Ω is the domain of univalence for the function . zn if it does not 

contain any pair of complex numbers with the same moduli and with the principal 
arguments that differ by . 2π

n
. In particular, the function .ω = zn is univalent in the 

corner 

. Kβ :=
{
z ∈ C : β < Arg(z) < β + 2π

n

}
(β ∈ R).

Here, by .Arg(z) we mean one of arguments of . z, which satisfies this inequality. Let 
us find the image of . Kβ under the power function f . 

It is easy to check that f maps the ray 

. z = t eiα, t ∈ (0,+∞),

into the ray .z = tneinα, .t ∈ (0,+∞) (Fig. 3.3). 
Now if . α changes from . β to .β + 2π

n
, then these rays will fill out the domain . C \

{ω : Arg(w) = nβ} (Fig. 3.4). This means that .ω = zn conformally and univalently 
maps the corner . Kβ onto .C \ {ω : Arg(ω) = nβ}. 

In particular, if .β = 0 and .n = 2, then the image of the upper half-plane under 
.w = z2 is the complex plane without the positive real half-axis. 

Fig. 3.3 The image of a ray under the power function .zn



58 3 Elementary Analytic Functions

Fig. 3.4 The image of the corner . Kβ under the power function . zn

Fig. 3.5 The image of the square . K1 under . w = z2

Example 3.3 Let us find the image of the unit square . K1 from Example 3.1 under 
the function .ω = z2. 

Since the square . K1 is symmetric with respect to the straight line .y = x, its 
image will be symmetric with respect to the imaginary axis, because .ω = z2 sends 
the points .|a| exp(iϕ) and .|a| exp(i(π

2 − ϕ)) . (here .ϕ ∈ (0, π
2 )) respectively to the 

points 

. |a|2 exp(i2ϕ) and |a|2 exp(i(π − 2ϕ)).

It is easy to verify that the function .ω = z2 maps the segment .[0, 1] onto itself, 
and the segment .[0, 1 + i] onto .[0, 2i]. 

Substituting the parameterization .z = 1+iy, y ∈ [0, 1], of the segment . [1, 1+i]
in .u + iv = z2, we find its image that is a part of the parabola 

. u = 1 − v2

4
, v ∈ [0, 2].

So the square . K1 is mapped by .ω = z2 onto a domain bounded by parabolas 

. u = 1 − v2

4
and u = −1 + v2

4
,

and the real axis (Fig. 3.5).
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3.6 The Inverse to a Power Function and Its Riemann Surface 

First, consider the function .w = z2. It is clear that there is no single-valued 
inverse function for .z2 : C �→ C, because every point from . C, except for the 
points . 0 and .∞, has two inverse images, i.e., the function .z = √

w is two-
valued. It is inconvenient to work with multi-valued functions because it is not clear, 
for example, how to introduce the concept of continuity, differentiation, etc. The 
German mathematician B. Riemann (1826–1866) in his dissertation proposed the 
following approach for transforming a multi-valued function into a single-valued 
one: 

it is necessary to separate points that have more than two images and consider 
them on different sheets of a surface, which is now called a Riemann surface. 

In this section and next one we will get acquainted with the concept of a Riemann 
surface on examples of some functions, and the abstract approach will be considered 
in Sect. 8.5. First, let us implement this approach for the two-valued function . z =√

w. Consider the upper and lower half-planes 

. D0 = {z ∈ C : 0 < arg z < π} and D1 = {z ∈ C : −π < arg z < 0} .

The previous section shows that the function .w = f (z) = z2 conformally and 
univalently maps . D0 and . D1 onto the domain .E = {w ∈ C : 0 < Argw < 2π}. 

Therefore, for each of these mappings there is a unique inverse function 
.f −1

k : E �−→ Dk .(k ∈ {0, 1}; Fig. 3.6), i.e., 

. f (f −1
k (w)) = w for all w ∈ E, and f −1

k (f (z)) = z for all z ∈ Dk.

Fig. 3.6 Branches .f −1
0 and .f −1

1 of the inverse function .z = √
w
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Fig. 3.7 Construction of the Riemann surface of the function . 
√

w

Using (1.11) , we get that

. f −1
k (w) = √|w| ei(

Argw
2 +πk) for all w ∈ E (0 < Argw < 2π).

Since 

. 
df −1

k (w)

dw
= 1

f ′(z)

∣∣∣
z=f −1

k (w)
= 1

2f −1
k (w)

�= 0 for all w ∈ E,

the function .f −1
k is conformal and univalent in . E . (k ∈ {0, 1}).

Take two sheets (instances) of the domain . E and place them one above the other 
(Fig. 3.7). The sheet from which the function .f −1

0 acts is called the 0th-sheet; and 
the sheet from which the function.f −1

1 acts is called the 1st-sheet. The point . w = 0
from the 0th-sheet is identified with the point .w = 0 from the 1st-sheet, because 
they have the same inverse image under the mapping .w = f (z) = z2; the same for  
.w = ∞. 

To understand how to glue (identify) points from different edges of the cuts of 
these two sheets, one should find the limits of the functions .f −1

0 and .f −1
1 as . w tends 

from each sheet to positive x from above and below. Since 

. lim
w→x>0, Imw>0

f −1
0 (w) = √

x = lim
w→x>0, Imw<0

f −1
1 (w),

points of the upper edge of the 0th-sheet cut must be glued (identified) with the 
corresponding points of the lower edge of the 1st-sheet cut. Since 

. lim
w→x>0, Imw<0

f −1
0 (w) = −√

x = lim
w→x>0, Imw>0

f −1
1 (w),

points of the lower edge of the 0th-sheet cut must be glued with the corresponding 
points of the upper edge of the 1st-sheet cut.
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The surface thus glued is called a Riemann surface of .
√

w and is denoted 
by .R√

w (Fig. 3.8). The function .
√

w becomes single-valued on its Riemann 
surface and conformal everywhere except for the points 0 and .∞, because 
the two values that the root assigns to each nonzero complex number are 
now images of two different points lying on different sheets above this 
number. Positive numbers are no exception, since over them there is no self-
intersection of the sheets of the Riemann surface. 

Example 3.4 Consider, for example, the complex number . −2. Over it there are 
two different points .−20 and .−21 lying on the 0th-sheet and 1st-sheet, respectively. 
Since .

√
w = f −1

0 (w) on the 0th-sheet and .
√

w = f −1
1 (w) on the 1th-sheet, we find 

. 
√−20 = f −1

0 (−2) = √| − 2| ei π
2 = √

2 i,

. 
√−21 = f −1

1 (−2) = √| − 2| ei( π
2 +π) = −√

2 i.

. �

Each of the points 0 and . ∞ is called a first-order branch point. The order of 
a branch point indicates the additional number of sheets of the Riemann surface 
that must be traversed around this point in order to return to the original position 
(Fig. 3.8). 

The functions .f −1
0 and .f −1

1 are called analytic branches of the single-valued 
function .

√
w given on its Riemann surface .R√

w. In 3D-space, we will not able to 
draw the Riemann surface of .z = √

w without self-intersection, but schematically 
it can be represented as shown in Fig. 3.8. 

Similarly, the Riemann surface of the function . n
√

w .(n ∈ N, n > 2) is 
constructed. To do this, we consider the angles 

. Dk =
{
z ∈ C : 2πk

n
< Arg z <

2π(k + 1)

n

}
, k ∈ {0, 1, . . . , n − 1},

that are domains of univalence for the function .w = f (z) = zn. It con-
formally and univalently maps each of these corners onto the domain . E =

Fig. 3.8 The Riemann 
surface .R√

w
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Fig. 3.9 The image of . Dk by the function . w = zn

{w ∈ C : 0 < Argw <  2π} (Fig. 3.9). Therefore, for each of these mappings there 
is a unique inverse function .f −1

k : E �→ Dk, i.e., 

. f (f −1
k (w)) = w for all w ∈ E, and f −1

k (f (z)) = z for all z ∈ Dk;

and 

. f −1
k (w) = n

√|w| ei(
Argw

n
+ 2πk

n
) for all w ∈ E (0 < Argw < 2π).

Since 

. 
df −1

k (w)

dw
= 1

f ′(z)

∣∣∣
z=f −1

k (w)
= f −1

k (w)

nw
�= 0 for all w ∈ E,

the function .f −1
k is conformal and univalent in . E .(k ∈ {0, 1, . . . , n − 1}). 

We take n sheets of E and place them on top of each other above the complex 
plane. The sheet from which the function .f −1

k acts is called the kth-sheet. Using 
the functions .{f −1

k }n−1
k=0, these sheets must be glued together to form a continuous 

function. 
The points .w = 0 from these sheets are identified because they have the same 

inverse image under the mapping .w = zn; the same for .w = ∞. Since for each 
. k ∈ {1, . . . , n − 2}

. lim
w→x>0, Imw>0

f −1
k (w) = n

√
x ei 2πk

n = lim
w→x>0, Imw<0

f −1
k−1(w)

and 

. lim
w→x>0, Imw<0

f −1
k (w) = n

√
x ei

2π(k+1)
n = lim

w→x>0, Imw>0
f −1

k+1(w),

points of the upper edge of the kth-sheet cut must be glued with the corresponding 
points of the lower edge of the .(k − 1)th-sheet cut, and points of the lower edge of
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Fig. 3.10 Riemann 
surface . R 4√w

the kth-sheet cut must be glued with the corresponding points of the upper edge of 
the .(k + 1)th-sheet cut. Since 

. lim
w→x>0, Imw<0

f −1
n−1(w) = n

√
x = lim

w→x>0, Imw>0
f −1
0 (w),

points of the lower edge of the .(n−1)th-sheet must be glued with the corresponding 
points of the upper edge of the 0-sheet. 

The surface thus glued is called a Riemann surface of the function . n
√

w and 
is denoted by .R n

√
w (Fig. 3.10). The function . n

√
w becomes single-valued on its 

Riemann surface and conformal everywhere except for the points 0 and . ∞ that are 
branch points of order .n − 1. The functions .{f −1

k }n−1
k=0 are called analytic branches 

of the single-valued function . n
√

w given on its Riemann surface .R n
√

w. Now above 
each nonzero complex number there are . n different points lying on different sheets 
of the Riemann surface .R n

√
w. 

3.7 Exponential Function, Logarithmic Function and Its 
Riemann Surface 

The exponential function is already defined in Example 2.4: 

. w = ez = ex+iy def= ex(cos y + i sin y), z ∈ C,

which also shows that it is an entire function and .(ez)′ = ez �= 0 for all .z ∈ C. Due  
to (1.10) we get .ez1+z2 = ez1 ez2 . 

A new property of the exponential function is its periodicity with the main period 
. 2πi. Indeed, .ez+2πi = ez e2πi = ez for all .z ∈ C. On the other hand, if we assume 
that there is another period .T = T1 + iT2, then for all . z ∈ C

. ez+T = ez �⇒ eT1 eiT2 = 1 �⇒ T1 = 0 and T2 = 2πk, k ∈ Z,

i.e., .T = i2πk, k ∈ Z \ {0}.
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Fig. 3.11 The image of a horizontal line by the function . ez

Fig. 3.12 The image of a 
horizontal strip by the 
function . ez

Consequently, a domain is a domain of univalence for . ez if it does not contain any 
pair of points connected by the relation .z1 − z2 = 2πik, .k ∈ Z \ {0}. In particular, 
the horizontal strips 

. Dk := {z : −π + 2kπ < Im z < π + 2πk}, k ∈ Z.

are domains of univalence for the exponential function. 
Let us find the image of the horizontal strip .{z : α < Im z < β} . (0 < β − α <

2π) under the mapping . ez. It is easy to check that the exponential function maps a 
horizontal line 

. z = x + ib, x ∈ (−∞,+∞),

into the ray .w = ex eib, .x ∈ (−∞,+∞) (see Fig. 3.11). 
Now if b changes from . α to . β, then . ez conformally and univalently maps the 

strip .{z : α < Im z < β} onto the corner .{w : α < Argw < β} (Fig. 3.12). 

Example 3.5 Similarly, we verify that the image of a vertical segment . z = a + iy,

.y ∈ [−π, π ], by .w = ez is the circle .w = eaey, .y ∈ [−π, π ], of radius . ea

centered at the origin (Fig. 3.13); here .a ∈ R. Thus, the image of the closed rectangle 
.[a, b] × [−iπ, iπ ] by .w = ez is the annulus .{w : ea < |w| < eb}. 

From the above it follows that for all .k ∈ Z the exponential function . f (z) := ez

conformally and univalently maps the horizontal strip . Dk onto the domain 

.E1 = {w : − π < arg(w) < π},
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Fig. 3.13 Images of a 
segment and rectangle by the 
function . ez

Fig. 3.14 The image of the strip . Dk by the function . ez

moreover, the lower part of the boundary of . Dk is mapped onto the lower edge 
of the cut .(−∞, 0], and the upper one is mapped onto the upper edge of this cut 
(Fig. 3.14). 

This means that for each such mapping there is an inverse .f −1
k : E1 �→ Dk , i.e., 

for all integer k 

. f (f −1
k (w)) = w for all w ∈ E1, and f −1

k (f (z)) = z for all z ∈ Dk.

In addition, since 

.
d f −1

k (w)

dw
= 1

(
ez

)′∣∣
z=f −1

k (w)

= 1

w
�= 0 for all w ∈ E1, (3.9) 

the function .f −1
k is conformal and univalent in .E1; .k ∈ Z.
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To deduce formula for the inverse function .f −1
k , one should find the unique root 

.z ∈ Dk of the equation .ez = w, where .w ∈ E1. From the equality of two complex 
numbers we derive 

. ez = w ⇐⇒ ex eiy = |w| ei arg(w) �⇒ x = log |w| and y = arg(w) + 2πk

. �⇒ z = x + iy = log |w| + i
(
arg(w) + 2πk

)
.

Thus, 

. f −1
k (w) = log |w| + i arg(w) + 2πik, w ∈ E1.

The functions .{f −1
k }k∈Z are called analytical branches of the multi-valued logarith-

mic function 

. Log (w) := log |w| + iArg(w), w ∈ C \ 0.

Recall that .Argw is the set of all arguments of a complex number w. 
The analytical branch .f −1

0 (w) = log |w|+i arg(w) is called the principal branch 
of . Log. 

Remark 3.5 As follows from (1.8), the function .arg(w), w = u + iv ∈ E1, is 
differentiable in . E1 as a function of two real variables u and . v, and it has a jump . 2π
as w crosses the negative real axis: 

. lim
w→x<0, Imw>0

arg(w) = π and lim
w→x<0, Imw<0

arg(w) = −π.

Thus, the values of each branch .f −1
k jump by .2πi when crossing the negative real 

axis. 

Exercise 3.5 By using the Cauchy–Riemann Theorem 2.2, check the differentia-
bility of each branch .f −1

k in . E1. 

To construct the Riemann surface of .Log we take a denumerable set of .E1-sheets 
and place them on top of each other over the complex plane. The sheet from which 
the function .f −1

k acts is called the kth-sheet. Using the functions .{f −1
k }k∈Z, these 

sheets must be glued together to form a continuous function. Since for each . k ∈ Z

. lim
w→x<0, Imw>0

f −1
k (w) = log |x| + i(π + 2πk) = lim

w→x<0, Imw<0
f −1

k+1(w)

and 

. lim
w→x<0, Imw<0

f −1
k (w) = log |x| + i(−π + 2πk) = lim

w→x<0, Imw>0
f −1

k−1(w),
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Fig. 3.15 Construction of the Riemann surface of the function . Log

Fig. 3.16 The Riemann 
surface . RLog

points of the upper edge of the kth-sheet cut must be glued with the corresponding 
points of the lower edge of the .(k + 1)th-sheet cut, and points of the lower edge of 
the kth-sheet cut must be glued with the corresponding points of the upper edge of 
the .(k − 1)th-sheet cut (Fig. 3.15). 

At the points .w = 0 and .w = ∞ the logarithm is not defined and, therefore, its 
Riemann surface is not contain points above .w = 0 and .w = ∞. The surface thus 
glued is a Riemann surface of the function .Log and is denoted by .RLog (infinite 
helical surface, Fig. 3.16). The function .Logw becomes single-value on .RLog and 
conformal everywhere except for the points 0 and . ∞ that are branch points of 
infinite order (or logarithmic branch points). 

Example 3.6 Consider the complex number . −2. There are countably many differ-
ent points .{−2k}k∈Z above .−2, each of them lies on the corresponding kth-sheet. 
Since .Logw = f −1

k (w) on the kth-sheet, we find 

.Log(−2k) = f −1
k (−2) = log | − 2| + i arg(−2) + 2πik = log 2 + i π + 2πik.
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3.8 Joukowsky Function 

Here we study an interesting function named after Nikolai Joukowsky (1847–1921), 
the founder of hydro and aeromechanics. He used this function to derive the formula 
for aircraft wing lift (1906), to develop the vortex theory of propellers, and to 
determine optimal wing and propeller blade profiles. This function was used to 
theoretically calculate the possibility of performing the “loop” aerobatic manoeuvre, 
first performed by P. Nesterov in Kyiv (1913). 

The Joukowsky (or Zhukovsky) function is a mapping of the form 

. w = J (z) := 1

2

(
z + 1

z

)
, z ∈ C \ {0}.

By continuity, we define J at zero, namely, since . lim
z→0

J (z) = ∞, we set 

. J (0)
def= ∞.

Obviously, .J (z) = J (1/z) for all .z ∈ C. Since 

. J ′(z) = 1

2

(
1 − 1

z2

)
(z �= 0)

and the derivative of the function .g(z) = 1
J (z)

= 2z
1+z2

at 0 is equal to . 2, the 

Joukowsky function is conformal in .C \ {±1}. 
Let there exist two different numbers .z1 �= z2 such that .J (z1) = J (z2), i.e., 

.z1 − z2 + 1
z1

− 1
z2

= 0. From here we deduce 

.(z1 − z2)

(
1 − 1

z1z2

)
= 0 �⇒ z1z2 = 1. (3.10) 

Thus, some domain is a domain of univalence for the Joukowsky function if it does 
not contain any pair of points that satisfy the relation (3.10). It is easy to understand 
that a domain of univalence of J cannot contain points .±1, because in arbitrary 
neighborhoods of these points there are always different points satisfying (3.10). 
Obviously, the following domains: .{z : |z| > 1}, .{z : |z| < 1}, .{z : Im z > 0} and 
.{z : Im z < 0} are domains of univalence for the Joukowsky function. 

Let us derive the so-called transition formulas for the Joukowsky function, which 
will help us to find images of various curves and regions. If the function J sends a 
point .z = r eiϕ to a point .w = u + iv, then 

. w = J (z) ⇐⇒ u + iv = 1

2

(
r + 1

r

)
cosϕ + i

1

2

(
r − 1

r

)
sinϕ

. ⇐⇒ u = 1

2

(
r + 1

r

)
cosϕ and v = 1

2

(
r − 1

r

)
sinϕ. (3.11)
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Fig. 3.17 The image of the 
unit circle 

Consider the circle 

. KR := {z : z = Reiϕ, ϕ ∈ [0, 2π ]}.

If .R = 1, then it follows from (3.11) that .u = cosϕ and .v = 0. Thus, the image of 
the unit circle is the segment .[−1, 1] that is traversed twice when . ϕ changes from 0 
to . 2π (Fig. 3.17). 

If .R �= 1, the image of . KR under the mapping J is the ellipse 

. 

⎧
⎪⎨

⎪⎩
w = u + iv : u2

[
1
2

(
R + R−1

)]2 + v2

[
1
2

(
R − R−1

)]2 = 1

⎫
⎪⎬

⎪⎭

with the semi-major axes 

. a = 1

2

(
R + R−1) and b = 1

2

∣
∣R − R−1

∣
∣,

and with foci at . ±1. However, for .R > 1, the orientation of the ellipse is preserved 
(this means that the upper semicircle is mapped to the upper half-ellipse, and the 
lower semicircle is mapped to the lower half-ellipse (see the upper part of Fig. 3.18), 
and when .R < 1, the orientation is reversed (this means that the upper semicircle 

Fig. 3.18 Images of circles 
by the Joukowsky function
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Fig. 3.19 Images of the 
exterior and interior of the 
unit disk by J 

is mapped to the lower half-ellipse, and the lower semicircle into the upper half-
ellipse). 

Let’s have a look at where the Joukowsky function maps its univalence domains: 
.{z : |z| > 1}, .{z : |z| < 1}, .{z : Im z > 0} and .{z : Im z < 0}. 

Since .{z : |z| > 1} = ⋃
R∈(1,+∞) KR, the image of the exterior of the unit disk by 

the Joukowsky function is .C\[−1, 1]; moreover, knowing the images of semicircles 
(see Fig. 3.18), we have 

. {z : |z| > 1, Im z > 0} J�−→ {w : Imw > 0}

and 

. {z : |z| > 1, Im z < 0} J�−→ {w : Imw < 0}

(see the upper part of Fig. 3.19). 
Since .J (z) = J ( 1

z
), the image of the unit disk .{z : |z| < 1} by the Joukowsky 

function is also .C \ [−1, 1], but now (see the lower part of Fig. 3.19) 

. {z : |z| < 1, Im z > 0} J�−→ {w : Imw < 0}

and 

. {z : |z| < 1, Im z < 0} J�−→ {w : Imw > 0}.

To find the image of the upper half-plane, we present it as a union of three sets, 
the images of which were found above: .{z : |z| > 1, Im z > 0}, . {z : |z| <

1, Im z > 0} and .{z : |z| = 1, Im z > 0}. Thus, 

.{z : Im z > 0} J�−→ C \ {
(−∞,−1] ∪ [1,+∞)

} =: E2 (3.12)
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Fig. 3.20 Images of the upper and lower half-planes by J 

(the complex plane with cuts along the rays .(−∞,−1] and .[1,+∞); see the upper 
part of Fig. 3.20). Similarly, we find that (the lower part of Fig. 3.20) 

.{z : Im z < 0} J�−→ E2. (3.13) 

Exercise 3.6 Find a conformal and univalent function that maps the domain 
.{z : |z| < 1, 0 < arg(z) < π

2 } onto the unit disk .B1(0). 

The mappings (3.12) and (3.13) are one-to-one. The inverse mappings 

. J−1
1 : E2 �−→ {z : Im z > 0} and J−1

2 : E2 �−→ {z : Im z < 0}

are called analytical branches of the multi-valued inverse function 

. J−1(w) = w +
√

w2 − 1.

Exercise 3.7 With the help of .J−1
1 and .J−1

2 construct the Riemann surface of the 
multi-value function .J−1(w) = w + √

w2 − 1. 

Now we find where Joukowsky’s function maps a ray 

. {z = r eiα : r ∈ (0,+∞)}.

By (3.11), we conclude that the image of this ray is the curve 

.

{
w = u + iv = 1

2

(
r + 1

r

)
cosα + i

1

2

(
r − 1

r

)
sinα : r ∈ (0,+∞)

}
.
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Fig. 3.21 Images of rays under Joukowsky function 

Fig. 3.22 Joukowsky wing profile (on the right) 

Here, . α is a fixed value from .(0, π) This is the right branch of the hyperbola 

. 
u2

cos2 α
− v2

sin2 α
= 1

with the foci at the points . ±1 if .α ∈ (0, π
2 ); this is the left branch of this hyperbola 

if .α ∈ (π
2 , π); and this is the imaginary axis if .α = π

2 . It should be noted that if the 
parameter r changes from 0 to .+∞, then the point on these branches moves from 
the bottom to top (Fig. 3.21). 

Exercise 3.8 Suppose that two circles . K1 and . K2 pass through the point .z = 1 at 
an angle . α to the real axis, and the circle . K1 also passes through the point . z = −1
and lies inside the circle . K2 (Fig. 3.22). 

Prove that the image of the domain .int(K2) ∩ ext(K1) under the Joukowsky 
function is a so called “Joukowsky wing profile” (Fig. 3.22). 

3.9 Trigonometric and Hyperbolic Functions and Their 
Inverses 

From the Euler formula (1.9) we derive

. cos x = eix + e−ix

2
, sin x = eix − e−ix

2i
.
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These relations are used to define the trigonometric functions of a complex variable: 

. cos z
def= eiz + e−iz

2
, sin z

def= eiz − e−iz

2i
, z ∈ C, . (3.14) 

tan z
def= sin z

cos z
= −i

ei2z − 1

ei2z + 1
, z ∈ C \

{π

2
+ πn : n ∈ Z

}
, . (3.15) 

cot z
def= cos z

sin z
= i

ei2z + 1

ei2z − 1
, z ∈ C \ {

πn : n ∈ Z
}
. (3.16) 

From these formulas and properties of the exponential function it follows that . cos
and . sin are .2π -periodic functions, and . tan and . cot are .π -periodic. Using (3.14) –
(3.16) , it can be verified that all formulas for the trigonometric functions of a real
argument remain true for a complex argument as well.

Applying (2.10), one finds the derivatives of .sin z and .cos z, namely 

. (sin z)′ = cos z, (cos z)′ = − sin z for all z ∈ C.

Therefore, .sin z and .cos z are entire functions. Then the quotient rule states 

. (tan z)′ = 1

cos2 z
for all z ∈ C \

{π

2
+ πn : n ∈ Z

}
,

(cot z)′ = − 1

sin2 z
for all z ∈ C \ {

πn : n ∈ Z
}
.

It is easy to see that the trigonometric functions are connected with the hyperbolic 
functions 

. cosh z
def= ez + e−z

2
, sinh z

def= ez − e−z

2
,

tanh z
def= sinh z

cosh z
= e2z − 1

e2z + 1
, coth z

def= cosh z

sinh z
= e2z + 1

e2z − 1
(3.17) 

through the following relations:

. cosh(iz) = cos z, cos (iz) = cosh z,

. sinh(iz) = i sin z, sin (iz) = i sinh z,

. tanh(iz) = i tan z, tan (iz) = i tanh z.

Hence, .cosh and .sinh are .2πi-periodic functions, and .tanh and .coth are .πi-periodic.
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A new property of the trigonometric functions .sin z and .cos z is that they are 
unbounded, which means that their moduli are unbounded functions. Indeed, 

. sin z = sin (x + iy) = sin x cosh y + i cos x sinh y

. �⇒ | sin z| =
√
sin2 x + sinh2 y = | sinh y|

√

1 + sin2 x

sinh2 y
∼ 1

2
e|y|,

as .|y| → +∞. Similarly, we show that .| cos z| ∼ 1
2 e|y| as .|y| → +∞. 

Remark 3.6 It turns out that every nonconstant entire function is unbounded. We 
will prove this statement in Sect. 5.2. 

Since .cos z = sin(z + π
2 ), we continue to consider the function 

.w = f (z) := sin z = sin x cosh y + i cos x sinh y, z = x + iy ∈ C. (3.18) 

Let there exist two different numbers .z1 �= z2 such that .sin z1 = sin z2. Then 
.2 sin z1−z2

2 cos z1+z2
2 = 0, which means 

.z1 − z2 = 2πn, n ∈ Z \ {0}, or z1 + z2 = π + 2πk, k ∈ Z. (3.19) 

Recalling the geometric interpretation of the sum and subtraction of complex
numbers, it follows from (3.19) that the domains 

. Dk :=
{
z : −π

2
+ πk < Re z <

π

2
+ πk

}
, k ∈ Z,

are domains of univalence for the sine. Let us find their images. 
If . sin sends a point .z = x + iy to a point .w = u + iv, we derive from (3.18) the  

transition formulas 

.u = sin x cosh y, v = cos x sinh y. (3.20) 

By (3.20) , we conclude that the image of a vertical straight line

. lα = {z = α + iy : y ∈ (−∞,+∞)},

where .α ∈ (0, π
2 ) (see Fig. 3.23), is the right branch of the hyperbola 

.

{
u = sinα cosh y,

v = cosα sinh y,
y ∈ R, �⇒ u2

(sinα)2
− v2

(cosα)2
= 1,
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Fig. 3.23 The image of a vertical line by mapping the sine function 

Fig. 3.24 The image of the strip . D0 by mapping the sine function 

and the left branch if .α ∈ (−π
2 , 0), and this is the imaginary axis if .α = 0. Moreover, 

the upper part of the line is mapped onto the upper part of the corresponding branch 
of the hyperbola, and the lower part into the lower one. 

Since .D0 = ⋃
α∈(− π

2 , π
2 ) lα and the right (left) branch of the hyperbola is shrunk 

into the cut .[1,+∞) .((−∞,−1]) as .α → π
2 − 0 .(α → −π

2 + 0), the image of the 
vertical strip . D0 by the function . sin is the complex plane with the cuts . (−∞,−1]
and .[1,+∞) along the real axis (Fig. 3.24). 
Such a domain was faced in the previous paragraph and was denoted by . E2
(see (3.12)). Also note that the part of the strip . D0 lying in the upper half-plane 
.{z : Im z > 0} is mapped onto the upper half-plane .{w : Imw > 0}, and the lower 
one is mapped onto the lower half-plane, respectively. 

Using the formula .sin z = (−1)k sin(z + kπ), we can assert that for each . k ∈ Z

the function .f (z) = sin z conformally and univalently maps the vertical strip . Dk

onto . E2. However, 

• for .k = 2p the part of the strip . Dk lying in the upper half-plane . {z : Im z >

0} is mapped onto the upper half-plane .{w : Imw > 0}, and the lower one, 
respectively, onto the lower half-plane; 

• for .k = 2p − 1 the part of . Dk lying in the upper half-plane is mapped onto 
the lower half-plane, and the lower one, respectively, onto the upper half-plane 
(Fig. 3.25).
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Fig. 3.25 The images of the strips . Dk by mapping the sine function 

Thus, for each .k ∈ Z there exists an inverse .f −1
k : E2 �→ Dk such that 

. f (f −1
k (w)) = w for all w ∈ E2, and f −1

k (f (z)) = z for all z ∈ Dk,

. 
df −1

k (w)

dw
= 1

cos z

∣∣∣
z=f −1

k (w)
= 1√

1 − w2
�= 0 for all w ∈ E2.

Therefore, the function .f −1
k is conformal and univalent in .E2. Obviously, that 

.f −1
k (0) = πk. The functions .{f −1

k }k∈Z are called analytical branches of the multi-
valued function .z = Arcsinw. To find the formula for .Arcsin, you need to solve the 
equation 

. sin z = w ⇐⇒ eiz − e−iz

2i
= w ⇐⇒ (eiz)2 − 2iweiz − 1 = 0

. �⇒ eiz = iw +
√
1 − w2 �⇒ z = −i Ln(iw +

√
1 − w2) =: Arcsinw.

In the same way, one can find other functions that are inverse to both trigonometric 
and hyperbolic functions, for example, 

. Arccosw = −i Ln(w +
√

w2 − 1), Arctanw = 1

2i
Ln

(
1 + iw

1 − iw

)
,

.Arcsinhw = Ln(w +
√
1 + w2), Arctanhw = 1

2
Ln

(
1 + w

1 − w

)
.
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To construct the Riemann surface of .Arcsin we take a denumerable set of .E2-
sheets and place them on top of each other over the complex plane. The sheet from 
which the function .f −1

k acts is called the kth sheet. Using the functions . {f −1
k }k∈Z,

these sheets must be glued together to form a continuous function. 
Take a sheet with an odd number .k = 2p − 1. Considering how the sine maps 

the upper and lower parts of the vertical strip . Dk (see Fig. 3.25), we get the rule for 
gluing the .E2-sheets. Since 

. lim
w→x<−1, Imw<0

f −1
k (w) = lim

w→x<−1, Imw>0
f −1

k+1(w)

and 

. lim
w→x<−1, Imw>0

f −1
k (w) = lim

w→x<−1, Imw<0
f −1

k+1(w),

points of the lower edge of the left kth sheet cut must be glued with the correspond-
ing points of the upper edge of the left .(k + 1)th sheet cut, and points of the upper 
edge of the left kth sheet cut must be glued with the corresponding points of the 
lower edge of the left .(k + 1)th sheet cut. 

Similarly, since 

. lim
w→x>1, Imw<0

f −1
k (w) = lim

w→x>1, Imw>0
f −1

k−1(w)

and 

. lim
w→x>1, Imw>0

f −1
k (w) = lim

w→x>1, Imw<0
f −1

k−1(w),

points of the lower edge of the right kth sheet cut must be glued with the 
corresponding points of the upper edge of the right .(k − 1)th sheet cut, and point 
of the upper edge of the right kth sheet cut must be glued with the corresponding 
points of the lower edge of the right .(k − 1)th sheet cut. 

The surface thus glued is the Riemann surface of .Arcsin and is denoted by 
.RArcsin. The function .Arcsinw becomes single-value on .RArcsin and conformal 
everywhere except for the points .±1 and . ∞. Over the points 1 and .−1 of the 
complex plane there is a denumerable set of first-order branch points, respectively. 
The point . ∞ is a logarithmic branch point. The scheme of the transition between 
the sheets of the Riemann surface is shown in Fig. 3.26, and a part of the Riemann 
surface is shown in Fig. 3.27. 

It turns out that the trigonometric functions .cos and . sin and the hyperbolic 
functions .cosh and .sinh can be represented as the corresponding compositions of 
the Joukowsky function and the exponential function, namely 

. cos z = J (eiz), sin z = −J (i eiz),

cosh z = J (ez), sinh z = −iJ (i ez).
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Fig. 3.26 Transition scheme between sheets of the Riemann surface of . Arcsin

Fig. 3.27 A part of the Riemann surface of . Arcsin

Therefore, to find the images of domains mapped by these functions, the properties 
of the exponential function and the Joukowsky function are used. 

To find the images of domains when mapped by the functions .tan, cot, tanh and 
.coth, the formulas (3.15) , (3.16) and (3.17) are used.

Example 3.7 The function 

. w = tan z = −i
e2iz − 1

e2iz + 1

is the composition of the linear function .ξ = 2iz, the exponential function . η = eξ ,

and the fractional-linear function 

.w = −i
η − 1

η + 1
.
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Fig. 3.28 The image of a vertical strip by mapping the function . w = tan z

Therefore, the tangent function maps the vertical strip 

. 

{
z : −π

4
< Re z <

π

4

}

onto the unit disk .B1(0), as shown in Fig. 3.28.



4Integration of Functions of a Complex Variable 

Abstract 

In the previous two chapters, it was shown that analytic complex-valued func-
tions enjoy excellent differentiability properties that their real counterparts do 
not share. It is well known that differentiation and integration are mutually 
inverse operations and they are the main concerns of calculus. To continue on, the 
next logical step is to consider the integration in the complex plane, as initiated 
by the French mathematician Augustin-Louis Cauchy (1789–1857). Integration 
is impossible without the concept of an antiderivative, which becomes much 
more complicated in complex analysis. For example, it turns out that there are 
analytic functions in some domains that have no antiderivatives. In this chapter, 
we will introduce a new concept of an antiderivative along a curve and study its 
properties. We will also show that the beauty of complex integration also goes 
far beyond real analysis and prove very important and interesting theorems. 

4.1 Line Integrals and Their Simplest Properties 

Definition 4.1 Let f be a continuous function in a domain Ω and let z = γ(t), 
t ∈ [a, b], be a piecewise smooth curve, whose trace belongs to Ω, i.e., Eγ ⊂ Ω . 
The integral of the function f along the curve γ is defined as follows 

.

∫
γ

f (z) dz
def=

∫ b

a

f (γ(t)) γ ′(t) dt. (4.1) 

�

The integrand function in the right-hand side of (4.1) is a complex-valued 
function of a real variable. Under the definition hypotheses, its real and imaginary 
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parts have only a finite number of first-order breakpoints of the kind, and are 
therefore Riemann-integrable on [a, b]. 

Let’s analyze several examples. 

Example 4.1 Compute the integral
∫
γ z dz,  where 

(1) the curve γ is the straight line from 0 to 1 − i, 
(2) γ is the broken line connecting in order the numbers 0, 1 and 1 − i. 

Solution 1 We take the parametrization γ(t) = t (1−i), t ∈ [0, 1]. Then γ ′ = 1−i 
and the line integral is 

. 

∫
γ

z dz =
∫ 1

0
t (1 + i)(1 − i) dt = 1.

Solution 2 Now we parameterize the the broken line by 

. γ(t) =
{

t, t ∈ [0, 1],
1 − i(t − 1), t ∈ [1, 2].

So, 

. γ ′(t) =
{

1, t ∈ [0, 1],
−i, t ∈ (1, 2],

and the integral becomes 

. 

∫
γ

z dz =
∫ 1

0
t dt +

∫ 2

1
(1 + i(t − 1))(−i) dt = 1

2
+ 1

2
− i = 1 − i.

Example 4.2 Let γ : [a, b] �→ C be a piecewise smooth curve; n ∈ Z \ {−1}, and 
moreover, if n <  0 then we also assume that {0} /∈ Eγ. Then 

. 

∫
γ

zn dz =
∫ b

a

(γ(t))n γ ′(t) dt = 1

n + 1

(
γ n+1(b) − γ n+1(a)

)
.

Example 4.3 Let z = γ(t) = a + reit , t  ∈ [0, 2π ], where a ∈ C, r  >  0; n ∈ Z. 
By Definition 4.1, we find 

.

∫
γ

(z − a)n dz = rn+1i

∫ 2π

0
ei(n+1)t dt =

{
2πi, n = −1,

0, n �= −1.
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Important 
Example 4.1 shows that the value of

∫
γ z dz  depends on the curve along which 

the integration takes place. 
On the other hand, the integral of the function zn (n �= −1) in Example 4.2 

is not depend on the integration curve and is determined only by its beginning 
and end. And if γ is closed, then

∫
γ z

n dz = 0. 
From Example 4.3 it follows that there exists a function whose integral, 

even over a closed curve, is not equal to zero. 
Why this happens, and when line integrals do not depend on the integration 

curve, but only on its start and end points, is what we need to find out in this 
chapter. 

Remark 4.1 Separating the real and imaginary parts in 

. γ ′(t) = x′(t) + iy′(t) and f (γ(t)) = u
(
x(t), y(t)

) + iv
(
x(t), y(t)

)
,

the integral (4.1) can be represented as the sum of two curvilinear integrals of the 
second kind 

.

∫
γ

f (z) dz =
∫

γ

u dx − v dy + i

∫
γ

u dy + v dx. (4.2) 

Now we list the main properties of line integrals of complex-valued functions. 
Later in this section, we assume that integrand functions are continuous and curves 
are piecewise smooth. 

1. Linearity. For any {λ, μ} ∈  C 

. 

∫
γ

(
λ f (z) + μg(z)

)
dz = λ

∫
γ

f (z) dz + μ

∫
γ

g(z) dz.

The proof follows directly from Definition 4.1 and the linearity of the Riemann 
integral. 

2. Additivity. Let z = γ1(t), t ∈ [a, b], and z = γ2(t), t ∈ [b, c], are piecewise 
smooth curves, for which γ1(b) = γ2(b). The union of these curves is called the 
curve 

.γ1 ∪ γ2 :=
{

γ1(t), t ∈ [a, b],
γ2(t), t ∈ [b, c]. (4.3)



84 4 Integration of Functions of a Complex Variable

Then 

. 

∫
γ1∪ γ2

f (z) dz =
∫

γ1

f (z) dz +
∫

γ2

f (z) dz.

The proof follows directly from Definition 4.1 and the additivity of the Riemann 
integral. 

3. Orientability. Let z = γ(t), t ∈ [a, b], is a given curve. Denote by γ− the 
curve 

. γ−(τ ) := γ(a + b − τ), τ ∈ [a, b].

It is easy to see that the curves γ and γ− have the same trace, but opposite 
orientations (the initial and end points are switched). 

Then 

.

∫
γ−

f (z) dz = −
∫

γ

f (z) dz. (4.4) 

Proof Since (γ−)′τ (τ ) = γ ′
t (a + b − τ) · (−1), 

. 

∫
γ−

f (z) dz =
∫ b

a

f
(
γ−(τ )

)
(γ−)′τ (τ ) dτ

=
∫ b

a

f (γ(a + b − τ)) · γ ′
t (a + b − τ) · (−1) dτ =

〈
t = a + b − τ

〉

= −
∫ b

a

f (γ(t)) · γ ′
t (t) dt = −

∫
γ

f (z) dz.

	


This property also follows from (4.2) and the fact that curvilinear integrals of the
second kind change sign when changing the orientation of the curve.

4. Invariance. If a curve z = γ1(t), t ∈ [a1, b1], is equivalent to a curve z =
γ2(τ ), τ ∈ [a2, b2] (see Definition 1.11; moreover, the function μ, realizing this 
equivalence is assumed to be continuously differentiable), then 

. 

∫
γ1

f (z) dz =
∫

γ2

f (z) dz.

Proof By the definition of the integral, 

.

∫
γ2

f (z) dz =
∫ b2

a2

f (γ2(τ ))(γ2)
′
τ (τ ) dτ.
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Substituting τ = μ(t) in the integral and taking into account that γ2(μ(t)) = 
γ1(t), t ∈ [a1, b1], we get 

. 

∫ b2

a2

f (γ2(τ ))(γ2)
′
τ (τ ) dτ =

∫ b1

a1

f
(
γ2(μ(t)

)
(γ2)

′
τ

(
μ(t)

)
μ′

t (t)︸ ︷︷ ︸
�

γ ′
1(t)

dt

=
∫ b1

a1

f (γ1(t)) · γ ′
1(t) dt =

∫
γ1

f (z) dz.

	


Remark 4.2 Since equivalent curves have the same trace and the same orientation, 
it is often, if it does not cause misunderstanding, one speaks of the integral over the 
trace and indicates its orientation. So, the result of Example 4.3 can be rewritten as 

. 

∫

{|z−a|=r}+
(z − a)n dz =

{
2πi, n = −1,

0, n �= −1.

Here “+” under the integral sign indicates the positive orientation of the circle. 

5. Estimation of the integral. The following inequality holds: 

.

∣∣∣∣
∫

γ

f (z) dz

∣∣∣∣ ≤
∫

γ

|f (z)| dl, (4.5) 

where dl = √
(x′(t))2 + (y′(t))2dt = |γ ′(t)|dt is the arc length differential; on the

right in (4.5) there is a curvilinear integral of the first kind of the function |f | along 
the curve γ. 

Proof Let us denote by I := ∫
γ f (z)  dz  and write this number in the exponent form 

I = |I|eiθ . Then 

. | I | = e−iθI =
∫

γ

e−iθ f (z) dz =
∫ b

a

e−iθ f (γ(t)) · γ ′(t) dt.

Since the integral on the right is a real nonnegative number and |Rez| ≤ |z|, then 

.| I | =
∫ b

a

Re
(
e−iθ f (γ(t)) · γ ′(t)

)
dt ≤

∫ b

a

|f (γ(t))| · |γ ′(t)| dt =
∫

γ

|f | dl.
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The estimate (4.5) implies the corollary.

Corollary 4.1 If the modulus of a function f is bounded by a constant M on the 
trace of a curve γ, i.e., ∃ M >  0 ∀ z ∈ Eγ : |f (z)| ≤  M, then 

. 

∣∣∣∣
∫

γ

f dz

∣∣∣∣ ≤
∫

γ

|f | dl ≤ M

∫
γ

dl = M �γ,

where �γ is the length of γ. 

4.2 An Antiderivative: Cauchy-Goursat Theorem 

As with functions of a real variable, we introduce the following definition of an 
antiderivative (a primitive) for a function f defined in a domain .Ω ⊂ C. 

Definition 4.2 Let .F ∈ A(Ω) and .f ∈ C(Ω). The function . F is called an 
antiderivative of . f in . Ω if 

. F ′(z) = f (z) for all z ∈ Ω.

. �

Obviously, if . F is an antiderivative of . f in .Ω, then for any complex number . c
the function .F + c is also an antiderivative of . f in . Ω . 

Let . F1 and . F2 be two antiderivatives of . f in . Ω . Then . F1 − F2 =: G ∈ A(Ω)

and certainly .G′(z) = 0 for all .z ∈ Ω . Denote by . u and . v the real and respectively 
the imaginary part of the function . G. Using Theorem 2.2, the last equality can be 
rewritten as 

. 0 = G′(z) = ∂u(x, y)

∂x
+ i

∂v(x, y)

∂x
= ∂v(x, y)

∂y
− i

∂u(x, y)

∂y
,

whence 

. 

⎧⎪⎪⎨
⎪⎪⎩

∂u

∂x
(x, y) = ∂u

∂y
(x, y) = 0 for all (x, y) ∈ Ω,

∂v

∂x
(x, y) = ∂v

∂y
(x, y) = 0 for all (x, y) ∈ Ω,

�⇒
{

u ≡ c1,

v ≡ c2.

Thus, .G ≡ c := c1 + ic2.
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Theorem 4.1 (The Cauchy–Goursat Theorem for Triangles) If .f ∈ A(Ω), then 
for any triangle . �, which together with its closure belongs to the domain . Ω (we 
write this fact as follows .� ⊆ Ω), we have 

. 

∫
∂+�

f (z) dz = 0,

where .∂+� is the positively oriented triangle boundary. 

Proof The proof is by contradiction. Suppose that there exist a positive number M 
and a triangle .�0 ⊆ Ω such that 

.

∣∣∣∣
∫

∂+�0

f (z) dz

∣∣∣∣ = M > 0. (4.6) 

Divide the triangle . �0 by the middle lines into four triangles .�1, .�2, .�3, . �4 with 
positively oriented boundaries as in Fig. 4.1. Then 

.

∫
∂+�0

f (z) dz =
4∑

k=1

∫
∂+�k

f (z) dz, (4.7) 

because on the right side of (4.7) the integrals along the middle lines are taken twice,
but in opposite directions, and by (4.4) their sum is zero.

It follows from (4.6) and (4.7) that there exists a number .k ∈ {1, 2, 3, 4} (let for 
definiteness .k = 1) such that 

. 

∣∣∣∣
∫

∂+�1

f (z) dz

∣∣∣∣ ≥ M

4
.

Fig. 4.1 Subdividing of a 
triangle
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Let us do the same procedure with triangle . �1 and subdivide it into four triangles 
.�11, .�12, .�13, .�14. It possible to find one of them, call it .�11, for which 

. 

∣∣∣∣
∫

∂+�11

f (z) dz

∣∣∣∣ ≥ M

42 .

Evidently, that .�11 ⊂ �1. 
Continuing the same considerations, we obtain a sequence of nested triangles 

. �0 ⊃ �1 ⊃ �11 ⊃ �111 . . .

such that for the nth triangle .�(n) := �11 . . . 1︸ ︷︷ ︸
n

the inequality 

.

∣∣∣
∫

∂+�(n)

f (z) dz

∣∣∣ ≥ M

4n
(4.8) 

holds and the intersection of their closures is some point

. {z0} =
+∞⋂
n=0

�(n),

which obviously belongs to the domain . Ω. Moreover, the perimeter .�(�(n)) is equal 
to 

.�(�(n)) = 1

2
�(�(n−1)) = . . . = 1

2n
�(�0). (4.9) 

Since . f is differentiable at . z0, the following statement is satisfied: for any . ε > 0
there are a number .δ > 0 and a function . α such that for all . z ∈ Bδ(z0)

.f (z) = f (z0) + f ′(z0)(z − z0) + α(z)(z − z0) and |α(z)| < ε. (4.10) 

From the sequence .{�(n)}n∈N0 we choose a triangle .�(k) that belongs to the disk 
.Bδ(z0). Then, on the one hand, the inequality (4.8) holds for this triangle. On the 
other hand, based on (4.10) and (4.9) we have  

.
M

4k
≤

∣∣∣∣
∫

∂+�(k)

f (z) dz

∣∣∣∣ =
∣∣∣∣f (z0)

∫
∂+�(k)

dz + f ′(z0)

∫
∂+�(k)

(z − z0) dz

+
∫

∂+�(k)

α(z)(z − z0)dz

∣∣∣∣ =
∣∣∣∣
∫

∂+�(k)

α(z)(z − z0)dz

∣∣∣∣
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≤ ε �(�(k) )

∫
∂�(k) 

dl = ε
(
�(�(k) )

)2 = ε

(
�(�(k) ) 

2k

)2 

= ε
(
�(�(k) )

)2 

4k . 

Here, in the first line, the integrals of . 1 and .z − z0 along the boundary of .�(k) are 
equal to zero (see Example 4.2). Thus, 

. 0 < M ≤ ε
(
�(∂�0)

)2

for any .ε > 0. It means that .M = 0. But this is a contradiction. 	


4.3 Local Existence of an Antiderivative: Antiderivative Along 
a Curve  

The question on the existence of an antiderivative in the whole domain is more 
complicated and will be considered in the next section. For now, we just note that not 
every analytic function has an antiderivative in the whole domain (see Remark 4.6). 
This statement does not agree with the fact from real analysis. Indeed, it is known 
that any continuous function . ϕ on an interval has the primitive . F(x) = ∫ x

x0
ϕ(t) dt.

Theorem 4.2 (On the Local Existence of an Antiderivative) Let .f ∈ A(Ω). 
Then there is an antiderivative of f in an arbitrary disk .Br(a) ⊂ Ω, which is 
determined by the formula 

.F(z) :=
∫

[a,z]
f (ξ) dξ, z ∈ Br(a). (4.11) 

In (4.11) the integral is taken along the segment .[a, z] from a to z. 

Proof Let us consider an arbitrary disk .Br(a) ⊂ Ω, then fix a complex number 
.z ∈ Br(a) and take any complex number . �z such that . z +�z ∈ Br(a).

Evidently, the closure of the triangle .�a,z,z+�z with vertices at the points .a, . z

and .z +�z belongs to the domain . Ω . Therefore, due to Theorem 4.1, 

. 

∫
∂+�a,z,z+�z

f (ξ) dξ = 0,

wherefrom 

.

∫
[a,z]

f (ξ) dξ +
∫

[z,z+�z]
f (ξ) dξ +

∫
[z+�z,a]

f (ξ) dξ = 0.
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According to the notation (4.11) and the orientability property, the last equality can 
be rewritten as 

. F(z+ �z) − F(z) =
∫

[z,z+�z]
f (ξ) dξ.

Dividing this equality by . �z and subtracting .f (z), we get 

.

∣∣∣∣F(z+ �z) − F(z)

�z
− f (z)

∣∣∣∣ = 1

| �z | ·
∣∣∣∣
∫

[z,z+�z]
(f (ξ) − f (z)) dξ

∣∣∣∣ . (4.12) 

Here we use the identity

. f (z) = 1

�z

∫
[z,z+�z]

f (z) dξ.

Since f is continuous, the following statement holds: for any .ε > 0 there is a 
positive number . δ that for all .�z ∈ C such that .| �z | < δ and for all . ξ ∈ [z, z + �z]
we have 

. |f (ξ) − f (z)| < ε.

Therefore, taking (4.12) into account, we get 

. 

∣∣∣∣F(z+ �z) − F(z)

�z
− f (z)

∣∣∣∣ ≤ 1

| �z |
∫

[z,z+�z]
∣∣f (ξ) − f (z)

∣∣ dl < ε.

This means that 

. lim
�z→0

F(z+ �z) − F(z)

�z
= f (z).

In view of the fact that z is an arbitrary point in the disk .Br(a), the function F 
defined by the formula (4.11) is a primitive of f in .Br(a). 	


Remark 4.3 The formula (4.11) cannot always be extended for the whole domain 
. Ω, for example, if . Ω is not simply connected. Therefore, the equality (4.11) is said  
to define only the local antiderivative for the function f . 

Remark 4.4 When proving this theorem, two facts were used, namely

• continuity of .f,

• and for an arbitrary triangle . � that .� ⊆ Ω, it is necessary .
∫
∂+� f dξ = 0.
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Therefore, instead of the analyticity of f in Theorem 4.2, we can require the above 
properties for the function . f to prove this theorem. . �

Now consider the intermediate concept of antiderivative between the notions of 
local antiderivative and antiderivative in the whole domain, namely the antideriva-
tive along a curve. 

Definition 4.3 Let .f ∈ C(Ω) and .γ : [a, b] �→ C be a curve, whose trace . Eγ

belongs to the domain . Ω . 
A continuous function .Ψ : [a, b] �→ C is called an antiderivative of the function 

f along the curve . γ, if in some neighborhood of each point on .Eγ there is an 
antiderivative of . f, whose restriction to the corresponding part of the trace . Eγ

coincides with . Ψ, i.e., 

. ∀ t0 ∈ [a, b] ∃ δ > 0 ∃ r > 0 ∃ Ft0 ∈ A
(
Br(γ(t0))

)
such that

. 

{
F ′

t0
(z) = f (z) for all z ∈ Br(γ(t0)) ⊂ Ω,

Ft0(γ(t)) = Ψ (t) for all t ∈ (t0 − δ, t0 + δ) ∩ [a, b].

Important 
This definition does not require the existence of an antiderivative of f in the 
whole domain . Ω . Moreover, the antiderivative . Ψ along the curve . γ does not 
necessarily have a derivative (it is only continuous). 

Remark 4.5 It is easy to understand that if there is an antiderivative . F of f in . Ω,

then for an arbitrary curve .γ : [a, b] �→ Ω the function .F(γ(t)), t ∈ [a, b], is an 
antiderivative of f along the curve . γ. 

Example 4.4 Let us find an antiderivative of .cos z along the curve 

. γ(t) = t + i|t |, t ∈ [−1, 1].

Since .sin z is an antiderivative of .cos z in . C, the function 

. Ψ (t) = sin(t + i|t |) = sin t cosh |t | + i cos t sinh |t |, t ∈ [−1, 1],

is an antiderivative of .cos z along . γ. Evidently, .Ψ /∈ C1([−1, 1]). 

Theorem 4.3 (The Existence of an Antiderivative Along a Curve) If . f ∈ A(Ω),

then there exists an antiderivative of the function f along any curve . γ whose trace 
belongs to the domain . Ω .
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Fig. 4.2 Construction an antiderivative along a curve 

This antiderivative is determined up to an additive constant. 

Proof Let .z = γ(t), t ∈ [a, b], be a curve, whose trace . Eγ is in . Ω . Then, due to 
Theorem 4.2, for every point on . Eγ there exists a disk centered at that point, which 
belongs to . Ω and in which there exists a primitive of f . Thus, we have obtained an 
infinite cover of . Eγ by disks. Since . Eγ is a compact, from this cover one can choose 
a finite subcover .{K1, . . . , Kn}. According to this subcover, we divide the segment 
.[a, b] by the segments .

{
Im := [tm, t ′m]}n

m=1 as follows: 

. t1 = a, t ′n = b, tm < tm+1 < t ′m, γ(Im) = Eγ ∩ Km

(see Fig. 4.2). A more general case, for example, when a curve has self-intersection 
points, is considered in [4, 9]. 

Now we fix an antiderivative . F1 of f in the disk . K1. If we consider an arbitrary 
antiderivative of f in the disk .K2, then at the intersection of .K1∩K2 these primitives 
can differ only by some constant, since they are two antiderivatives of the function 
f in .K1 ∩K2. Therefore, there exists a unique antiderivative . F2 of f in . K2 such that 
.F2 ≡ F1 in .K2 ∩ K1. Continuing these considerations, in each disk .Km we choose 
the unique antiderivative .Fm of . f such that 

. Fm ≡ Fm−1 in Km ∩ Km−1, m ∈ {2, . . . , n}.

Now we can determine the function 

.Ψ (t) := Fm(γ(t)), t ∈ Im, m ∈ {1, . . . , n}. (4.13)
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Then . Ψ is an antiderivative of the function f along the curve . γ. In fact, . Ψ ∈
C([a, b]) by construction. Also, for every .τ0 ∈ [a, b] there is a disk . Br(γ(τ0))

belonging to some disk .Km0 from the subcover .{K1, . . . , Kn}, and there is an 
antiderivative .Fm0 of f in .Br(γ(τ0)) for which, thanks to (4.13) , we have

. Fm0(γ(t)) = Ψ (t), t ∈ (τ0 − δ, τ0 + δ) ∩ [a, b]

for some .δ > 0. 
Now we prove the second part. Let . Ψ1 and . Ψ2 be two antiderivative of . f along 

. γ. Consider the function .ϕ(t) := Ψ1(t) − Ψ2(t), t ∈ [a, b]. Let us show that it is 
locally constant. Then, taking into account its continuity on .[a, b], this means that 
.ϕ ≡ const on .[a, b]. 

Based on Definition 4.3, we have the following statement: 

. ∀ t0 ∈ [a, b] ∃ δ > 0 ∃ r > 0 ∃ antiderivatives F
(1)
t0

and F
(2)
t0

of . f in the disk . Br(γ(t0)) such that 

. Ψ1(t) = F (1)(γ(t)), Ψ2(t) = F (2)(γ(t)), t ∈ Iδ := (t0 − δ, t0 + δ) ∩ [a, b].

Since .F (1)
t0

= F
(2)
t0

+ C in .Br(γ(t0)), the function . ϕ is constant in . Iδ . 	


Theorem 4.4 (Analog of the Newton-Leibniz Formula) Let .γ : [a, b] �→ Ω be a 
piecewise smooth curve. If a function f is continuous in the domain . Ω and has an 
antiderivative . Ψ along . γ, then 

.

∫
γ

f (z) dz = Ψ (b) − Ψ (a). (4.14) 

Proof Let us first consider the case when . γ is a smooth curve and its trace belongs 
to some disk .K ⊂ Ω, in which there exists an antiderivative F of f . Then the 
composition .F(γ(t)), .t ∈ [a, b], is an antiderivative of the function . f along the 
curve . γ, and from the second part of Theorem 4.3 it follows that 

. Ψ (t) = F(γ(t)) + C, t ∈ [a, b].

Since .F ′ = f in K and . γ is a smooth curve, 

. Ψ ′(t) = F ′(γ(t)) · γ ′(t) = f (γ(t)) · γ ′(t) for all t ∈ [a, b].

Therefore, 

.

∫
γ

f (z) dz =
∫ b

a

f (γ(t)) · γ ′(t) dt =
∫ b

a

Ψ ′(t) dt = Ψ (b) − Ψ (a). (4.15)
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In the general case, by virtue of the assumptions of the theorem and Defini-
tion 4.3, the curve . γ can be decomposed into a finite number of smooth curves 

. γm : [μm,μm+1] �→ Ω, m ∈ {0, 1, . . . , n − 1} (a = μ0 < . . . < μn = b),

so that the trace of each curve .γm belongs to a disk .Km in which there exists an 
antiderivative of f . 

Then, due to (4.15) we get

. 

∫
γ

f (z) dz =
n−1∑
m=0

∫
γm

f (z) dz =
n−1∑
m=0

(
Ψ (μm+1) − Ψ (μm)

)
= Ψ (b) − Ψ (a).

	


Remark 4.6 This theorem makes it possible to verify that not every analytic 
function in a domain has an antiderivative in that domain. 

Consider, for example, the function 

. f (z) = 1

z
, z ∈ Ω = {z : 0 < |z| < 2}.

Obviously, .f ∈ A(Ω). Assume that there is an antiderivative F of . f in . Ω . 
Take the circle .γ(t) = eit , t ∈ [−π, π ] (.Eγ ⊂ Ω). Then the function . F

(
γ(t)

)
,

.t ∈ [−π, π ], is an antiderivative of . f along . γ, and according to Theorem 4.4, 

. 

∫
γ

z−1 dz = F(eiπ ) − F(e−iπ ) = F(−1) − F(−1) = 0.

On the other hand, given the result of Example 4.3, we have  

.

∫
γ

z−1 dz = 2πi. (4.16) 

This contradiction indicates that there is no antiderivative of f in . Ω . 
However, the function f has an antiderivative along . γ thanks to Theorem 4.3. 

Due to (3.9) it is equal to 

. Ψ (t) = ln |eit | + i arg(eit ) + i2πk = it + i2πk, t ∈ [−π, π ],

for any fixed .k ∈ Z. Therefore, using (4.14) , we get the result

. 

∫
γ

z−1 dz = Ψ (π) − Ψ (−π) = 2πi

that coincides with (4.16).
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Remark 4.7 The Newton-Leibniz formula (4.14) and Theorem 4.3 make it possible 
to generalize the concept of the integral for an analytic function f in a domain . Ω
along an arbitrary curve .γ : [a, b] �→ Ω . Recall that Definition 4.1 requires the 
piecewise smoothness of . γ. Since every analytic function f has an antiderivative 
. Ψ along any continuous curve . γ, the integral of f along . γ can be determined as 
follows 

.

∫
γ

f (z) dz
def= Ψ (b) − Ψ (a). (4.17) 

Based on Remark 4.5 and Theorem 4.4, we have the statement. 

Proposition 4.1 If a function .f : Ω �→ C is continuous in . Ω and has an 
antiderivative F in . Ω, then for any two points . {z1, z2} ⊂ Ω

. 

∫
z̃1,z2

f (ξ) dξ = F(z2) − F(z1),

where .z̃1, z2 is an arbitrary piecewise smooth curve with initial point . z1 and the end 
point . z2, and its trace is in the domain . Ω . 

Taking Remark 4.7 and Proposition 4.1 into account and using the equalities 

. fg′ = (fg)′ − f ′g,

∫
z̃1z2

(
f (ξ)g(ξ)

)′
dξ = f (z2)g(z2) − f (z1)g(z1),

we deduce the statement. 

Proposition 4.2 If .f, g ∈ A(Ω), then for any . {z1, z2} ⊂ Ω

. 

∫
z̃1,z2

f (ξ) g′(ξ) dξ = f (z2)g(z2) − f (z1)g(z1) −
∫

z̃1,z2

f ′(ξ) g(ξ) dξ,

where .z̃1, z2 is an arbitrary curve with initial point . z1 and the end point . z2, and its 
trace is in . Ω . 

It follows from the above statements that the methods and formulas for inte-
grating complex-valued functions of a complex variable remain the same as for 
functions of a real variable. 

Example 4.5 For any . z1, z2 ∈ C

.

∫
z̃1,z2

eξ dξ = ez2 − ez1 .
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Sometimes curvilinear integrals of the second kind can be calculated using the 
Newton-Leibniz formula (4.14) .

Example 4.6 Let .γ(t), .t ∈ [a, b], be a piecewise smooth curve in . R2 with initial 
point .(0, 0) and the end point .(1, 1). Then due to (4.2) 

. 

∫
γ

sin x cosh y dx − cos x sinh y dy = Re

(∫
γ

sin z dz

)

. = Re
( − cos(γ(b)) + cos(γ(a))

) = Re
( − cos(1 + i) + cos 0

) = 1 − cos 1 cosh 1.

Exercise 4.1 Find an antiderivative for the function .cosh z along the segment 
.[0, 1 + i] with the orientation from 0 to .1 + i, and by the Newton-Leibniz formula 
calculate 

. Re

(∫
[0,1+i]

cosh z dz

)
.

4.4 The Cauchy Integral Theorem and Corollaries 

From the formula (4.17) and proving Theorem 4.3 it is visible that the integral of 
an analytical function along a curve will not change when the curve is continuously 
deformed so that its ends remain in place and its trace remains in the subcover 
.{K1, . . . , Kn}. How to understand the continuous deformation of a curve? For this 
purpose, we recall some definitions and facts from differential geometry. We will 
assume that curves considered in this section are defined on the closed interval . I :=
[0, 1]; this can always be done with the admissible change of a variable without 
leaving the curve equivalence class. 

Definition 4.4 (Homotopic Curves)

• Two curves 

. γ0 : I �→ Ω and γ1 : I �→ Ω

with the same start point .a = γ0(0) = γ1(0) and end point . b = γ0(1) = γ1(1)

.(a �= b) are called homotopic in a domain . Ω (denoted as .γ0 ≈ γ1 in .Ω) if there 
exists a continuous map .ϕ : I×I �→ Ω with the following properties (Fig. 4.3): 

(1) . ϕ(0, t) = γ0(t) and ϕ(1, t) = γ1(t) for all t ∈ I ;
(2) .ϕ(s, 0) = a and ϕ(s, 1) = b for all s ∈ I .
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Fig. 4.3 Homotopic curves

• Similarly, two closed curves .γ0 : I �→ Ω and .γ1 : I �→ Ω are said to be 
homotopic in a domain .Ω, if the previous first condition is satisfied and the 
second one reads as follows: 

. ϕ(s, 0) = ϕ(s, 1) for all s ∈ I.

If .γ1 ≡ const = γ1(0) ∈ Ω .(γ1 is a constant curve), then we write that . γ0 ≈ 0
in . Ω . 

Remark 4.8 The first part of Definition 4.4 means that for each .s ∈ I the curve 

.γs := ϕ(s, t), t ∈ I, (in red color in Fig. 4.3) (4.18) 

has the same initial and end points (.γs(0) = a and .γs = b), its trace belongs to the 
domain . Ω, and in addition, the family.{γs}s∈I is a continuous deformation of . γ0 into 
. γ1 inside of . Ω such that the endpoints are fixed during deformation. 

The same interpretation applies to the second part of Definition 4.4, but now all 
curves in the family.{γs}s∈I must be closed, and the start and end points, which now 
coincide, can move in . Ω without leaving . Ω . 

If . γ1 is a constant curve, i.e., its trace is a point in the domain .Ω, then we say 
that the curve . γ0 can be continuously deformed to this point while remaining in . Ω,

and . γ0 is said to be null-homotopic in . Ω . 

Example 4.7 Let . Ω be a convex domain, i.e, any two points in . Ω can be connected 
by a segment that entirely belongs to . Ω . Then, any two closed curves . γ0 and . γ1,

whose traces belong to . Ω, are homotopic in . Ω . 
Indeed, the homotopic function that deforms . γ0 into . γ1 is as follows 

.ϕ(s, t) = γ0(t) + s
(
γ1(t) − γ0(t)

)
, (s, t) ∈ I × I.
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Example 4.8 Any closed curve .γ : I �→ C is homotopic in . C to a point .a ∈ C via 
the homotopy 

. ϕ(s, t) = s a + (1 − s) γ(t), (s, t) ∈ I × I.

Example 4.9 The curve .γ(t) = ei2πt , t ∈ I, is not null-homotopic in .C \ {0}. 

Exercise 4.2 Prove that the homotopy relation of curves is an equivalence relation, 
that is, it is reflexive, symmetric, and transitive. 

Exercise 4.3 Prove if .γ1 ∼ γ2 (see Definition 1.11) and .γ2 ≈ γ3 in .Ω, then . γ1 ≈
γ3 in . Ω . 

Exercises 4.2 and 4.3 show that all curves in a domain . Ω with the same endpoints 
(or closed curves) can be divided into homotopy classes, and equivalent curves fall 
into the same homotopy class. 

Exercise 4.4 Prove that a domain in . C is simply connected (see Definition 1.20) if  
and only if an arbitrary closed curve is null-homotopic in this domain. 

Exercise 4.5 Prove that an arbitrary closed curve is null-homotopic in a domain if 
and only if two arbitrary curves with the same initial and end points are homotopic 
in that domain. 

Theorem 4.5 (Homotopy Version of the Cauchy Integral Theorem) If a func-
tion .f : Ω �→ C is analytic in a domain . Ω and .γ0 ≈ γ1 in . Ω, then 

.

∫
γ0

f (z) dz =
∫

γ1

f (z) dz. (4.19) 

Proof Let .ϕ : I × I �→ Ω be a homotopy between . γ0 and . γ1. By Theorem 4.3, for  
any .s0 ∈ I there is an antiderivative .Ψs0 of the function f along the curve . γs0(t) :=
ϕ(s0, t), t ∈ I . In addition, it follows from the construction of the antiderivative 
.Ψs0 that there is an .ε0 > 0 such that a curvilinear strip 

. Uε0(γs0) := {z ∈ C : dist
(
z;Eγs0

)
< ε0}

belongs to the union of the disks .{K1, . . . , Kn} (see the Proof of Theorem 4.3 and 
Fig. 4.2). Here, .dist

(
z;Eγs0

)
is the distance from z to the trace .Eγs0

of . γs0 . 
Due to the uniform continuity of . ϕ, there is a positive number . δ0 such that for all 

. s ∈ (s0 − δ0, s0 + δ0) ∩ I

.|γs(t) − γs0(t)| < ε0 for all t ∈ I,
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i.e., the trace .Eγs belongs to the curvilinear strip .Uε0(γs0). Moreover, this means that 
we can use the same functions .{F1, . . . , Fn} to determine an antiderivative . Ψs of the 
function f along the curve . γs as for defining .Ψs0 (see the Proof of Theorem 4.3). 
As a result, by using the formula (4.17) , we get

.

∫
γs0

f (z) dz =
∫

γs

f (z) dz for all s ∈ (s0 − δ0, s0 + δ0) ∩ I. (4.20) 

Since .I = [0, 1] is compact, it can be covered by a finite number of intervals, on 
each of which equalities (4.20) hold. Then, starting from .s0 = 0, in a finite number 
of steps we arrive at the equality (4.19) . 	


Corollary 4.2 If .f ∈ A(Ω) and .γ ≈ 0 in . Ω, then .
∫
γ
f (z) dz = 0. 

Proof Since .γ ≈ 0 in .Ω, there exists a constant curve .γ1 ≡ const = a ∈ Ω such 
that .γ ≈ γ1 in . Ω . Then due to Theorem 4.5, we have  

. 

∫
γ

f (z) dz =
∫

γ1

f (z) dz =
∫ 1

0
f (γ1(t)) γ ′

1(t)︸ ︷︷ ︸
�

0

dt = 0.

	


Corollary 4.3 If .f ∈ A(Ω) and the domain . Ω is simply connected, then for an 
arbitrary closed curve . γ : I �→ Ω

. 

∫
γ

f (z) dz = 0.

The proof follows directly from Exercise 4.4 and Corollary 4.2. 

Definition 4.5 A function f is analytic in the closure of a domain . Ω (.f ∈ A(Ω)), 
if there is a domain .G ⊃ Ω such that .f ∈ A(G). 

Corollary 4.4 If .f ∈ A(Ω) and the domain . Ω is bounded and simply connected, 
then 

. 

∫
∂+Ω

f (z) dz = 0.

Proof By Definition 4.5, there is a domain .G ⊃ Ω where .f ∈ A(G). Since . Ω is 
simply connected and bounded, the curve, whose trace coincides with .∂Ω, is null-
homotopic in G. Next we should apply Corollary 4.2. 	
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Fig. 4.4 Cuts of a domain . Ω

Corollary 4.5 Let . Ω be a bounded domain and .∂Ω =
n⋃

k=0
Eγk

, where

• .{γk}nk=0 are Jordan curves whose traces are pairwise disjoint,
• for any .k ∈ {1, . . . , n} the trace .Eγk

belongs to the interior of .γ0,

• for any .k ∈ {0, 1, . . . , n} the orientation of . γk coincides with the positive 
orientation of the boundary . ∂Ω . 

If .f ∈ A(Ω), then 

. 

∫
∂+Ω

f (z) dz = 0.

Remark 4.9 The positive orientation of the boundary .∂+Ω of a bounded domain 
. Ω is such an orientation of the closed curves whose traces form the domain 
boundary, in which the domain . Ω always remains on the left when traversing the 
traces. 

Figure 4.4 shows a domain . Ω with the positive orientation of the boundary, 
which is described in conditions of Corollary 4.5. Note that the curve . γ0 is oriented 
counterclockwise, and all other curves .{γk}nk=1 are clockwise. 

Proof There exists a domain .G ⊃ Ω such that .f ∈ A(G). Let .λ−
k and . λ+

k

be oppositely oriented curves whose traces coincide and connect .Eγk
with . Eγ0

(Fig. 4.4); here .k ∈ {1, . . . , n}. 
Then with the help of the curves .{γk}nk=0 and .{λ±

k }nk=1 we construct the closed 
curve 

.Λ := γ0 ∪ (λ−
1 ∪ γ1 ∪ λ+

1 ) ∪ (λ−
2 ∪ γ2 ∪ λ+

2 ) ∪ . . . ∪ (λ−
n ∪ γn ∪ λ+

n )
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with the positive orientation. It is easy to see that the curve . Λ is null-homotopic in 
G. Therefore, considering Corollary 4.2, we have  

. 0 =
∫

Λ

f dz =
∫

∂+Ω

f (z) dz +
n∑

k=1

(∫

λ+
k

f (z) dz +
∫

λ−
k

f (z) dz

︸ ︷︷ ︸
�

0

)
=

∫

∂+Ω

f (z) dz.

The corollary is proved. 	


Remark 4.10 The condition of Corollary 4.5 for the function f can be weaken, 
namely .f ∈ A(Ω)∩C(Ω). However, in this case the curves .{γk} must be piecewise 
smooth. Then also .

∫
∂+Ω

f (z) dz = 0. 

Theorem 4.6 (On the Global Existence of an Antiderivative) If .f ∈ A(Ω) and 
the domain . Ω is simply connected, then there exists an antiderivative of f in . Ω . 

Proof Since . Ω is simply connected, an arbitrary closed curve whose trace belongs 
to . Ω is null-homotopic in . Ω . According to Exercise 4.5, this means that any curves 
with the same endpoints, whose traces are in . Ω , are homotopic. 

Then, by Theorem 4.5, the integral of f along a curve depends only on the initial 
and end points of the curve, but not on the curve itself. Therefore, we can determine 
the single-valued function 

.F(z) :=
∫

ã,z

f (ξ) dξ, z ∈ Ω, (4.21) 

where .ã, z is an arbitrary curve with initial point .a ∈ Ω and the end point . z and its 
trace is in . Ω . 

Now we fix arbitrary .z ∈ Ω and take any complex number .� z such that the 
segment .[z, z+ �z] ⊂ Ω . Then the curve 

. Γ := (ã, z) ∪ [z, z + �z] ∪ ( ˜z + �z, a)

is closed and its trace belongs to . Ω (Fig. 4.5). 
Corollary 4.3 gives that 

. 

∫
Γ

f (ξ) dξ = 0,

or 

.

∫
ã,z

f (ξ) dξ +
∫

[z,z+�z]
f (ξ) dξ +

∫
z̃+�z,a

f (ξ) dξ = 0,
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Fig. 4.5 The curve . Γ

whence, using (4.21) , we get

. F(z + Δz) − F(z) =
∫

[z,z+Δz]
f (ξ) dξ.

Further, as in Theorem 4.2 (on the local existence of an antiderivative), we prove 
that the derivative of F exists and . F ′(z) = f (z). 	


When proving the theorem, we used only the continuity of the function f and the 
vanishing of the integral along any closed curve. Therefore, the corollary is true. 

Corollary 4.6 If a function f is continuous in a domain . Ω and the integral of f 
along any closed piecewise smooth curve, whose trace belongs to . Ω, is equal to 
zero, then the function 

. F(z) :=
∫

ã,z

f (ξ) dξ, z ∈ Ω,

is an antiderivative of f in . Ω . Here .ã, z is an arbitrary piecewise smooth curve with 
initial point .a ∈ Ω and the end point . z and its trace is in . Ω . 

It is clear that if a continuous function f in a domain . Ω has an antiderivative in 
. Ω , then the integral of f along an arbitrary closed piecewise smooth curve whose 
trace lies in . Ω is equal to zero. Thus, we have the following theorem on necessary 
and sufficient conditions for the existence of an antiderivative in the whole domain. 

Theorem 4.7 Let a function f be continuous in a domain . Ω . There exists an 
antiderivative of f in . Ω if and only if the integral of f along an arbitrary closed 
piecewise smooth curve whose trace lies in . Ω is equal to zero. 

Returning to Remark 4.6, we see that the sufficient condition of Theorem 4.7 
does not hold for the function .z−1 in the domain .{z : 0 < |z| < 2}, since the integral 
(4.16) does not vanish.
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4.5 The Cauchy Integral Formula 

From the Cauchy integral theorem we derive an integral representation for an 
analytic function, which has many important consequences. 

Theorem 4.8 (The Cauchy Integral Formula) Let . Ω be a bounded domain and 
.∂Ω = ⋃n

k=0 Eγk
, where

• .{γk}nk=0 are Jordan curves whose traces are pairwise disjoint,
• for any .k ∈ {1, . . . , n} the trace .Eγk

belongs to the interior of .γ0,

• for any .k ∈ {0, 1, . . . , n} the orientation of . γk coincides with the positive 
orientation of the boundary . ∂Ω . 

If .f ∈ A(Ω), then the following integral representation takes place: 

.f (z) = 1

2πi

∫
∂+Ω

f (ξ)

ξ − z
dξ for any z ∈ Ω. (4.22) 

Important 
The formula (4.22) expresses a very interesting fact: the value of an analytic
function in a domain is completely determined by its values on the boundary
of that domain. Therefore, this representation is very often used in both
theoretical and applied problems.

Proof Let us fix any .z ∈ Ω . Clearly, that there is a positive number . r0 such that for 
all .r ∈ (0, r0) the closed disk .Br(z) belongs to the domain . Ω . Consider the function 

. 
f (ξ)

ξ − z
, ξ ∈ Ωr := Ω\Br(z).

Obviously, that this function is analytic in . Ωr . Then Corollary 4.5 yields 

.0 =
∫

∂+Ωr

f (ξ)

ξ − z
dξ =

∫
∂+Ω

f (ξ)

ξ − z
dξ −

∫
∂+Br(z)

f (ξ)

ξ − z
dξ. (4.23) 

Here the positive orientation of .∂Ωr means that the circle .∂Br(z) is oriented 
clockwise, and this orientation is opposite to the positive orientation of the boundary 
of the disk .Br(z). Therefore, the minus appeared before the last integral in (4.23) . It
follows from (4.23) that for all . r ∈ (0, r0)

.
1

2πi

∫
∂+Ω

f (ξ)

ξ − z
dξ = 1

2πi

∫
∂+Br(z)

f (ξ)

ξ − z
dξ. (4.24)
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Since .f ∈ C(Ω), we have that 

. ∀ ε > 0 ∃ δ > 0 ∀ ξ ∈ Bδ(z) : |f (ξ) − f (z)| < ε.

Then, thanks to Example 4.3, for an arbitrary . r ∈ (0, min(δ, r0))

. 

∣∣∣∣f (z) − 1

2πi

∫
∂+Br(z)

f (ξ)

ξ − z
dξ

∣∣∣∣ =
∣∣∣∣ 1

2πi

∫
∂+Br(z)

f (z) − f (ξ)

ξ − z
dξ

∣∣∣∣

. ≤ 1

2π

∫
∂Br (z)

|f (ξ) − f (z)|
|ξ − z| dl <

1

2π
ε · 1

r
· 2πr = ε.

This means that 

. lim
r→0

1

2πi

∫
∂+Br(z)

f (ξ)

ξ − z
dξ = f (z).

Taking this fact into account and passing to the limit in (4.24), we obtain the Cauchy 
integral formula (4.22). 	


The Cauchy formula remains correct if .f ∈ A(Ω) ∩ C(Ω) and the boundary of 
the domain . Ω consists of a finite number of piecewise smooth closed curves. 

It follows from Corollary 4.5 that 

.
1

2πi

∫
∂+Ω

f (ξ)

ξ − z
dξ = 0 for all z �∈ Ω. (4.25) 

Using the Cauchy integral formula, it is sometimes possible to calculate integrals
from analytic functions along closed curves.

Example 4.10 Let us find the integral 

. I :=
∫

γ

sin ξ

ξ2 + 4
dξ,

where .z = γ(t) = i + 2 exp(it), t ∈ [0, 2π ]. 
The integral can be rewritten as follows 

.I = 1

4i

∫

γ

(
1

ξ − 2i
− 1

ξ + 2i

)
sin ξ dξ = 1

4i

∫

γ

sin ξ

ξ − 2i
dξ − 1

4i

∫

γ

sin ξ

ξ + 2i
dξ.
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The point 2i belongs to the interior of . γ and .−2i �∈ int(γ). Thus, thanks to (4.22) 
and (4.25) we have

. I = π

2
sin(2i) = i

π

2
sinh 2.

Theorem 4.9 (Mean Value Theorem) Let .f ∈ A(Ω). Then for any disk .BR(a), 
which together with its closure belongs to the domain . Ω , the value of f at the 
center of this disk is equal to the mean value of this function taken around the disk 
boundary .∂BR(a), i.e. 

.f (a) = 1

2π

∫ 2π

0
f (a + R eit ) dt. (4.26) 

Proof For any .a ∈ Ω there is a positive number R such that .BR(a) ⊂ Ω . Then, by 
virtue of the Cauchy integral formula, we have 

. f (a) = 1

2πi

∫
∂+BR(a)

f (ξ)

ξ − a
dξ =

〈
ξ = a + Reit , t ∈ [0, 2π ]

〉

= 1

2πi

∫ 2π

0

f (a + R eit )

R eit
· Rieit dt = 1

2π

∫ 2π

0
f (a + R eit ) dt.

The theorem is proved. 	


This theorem shows once again that analytic functions are very “nice functions” 
(the value of an analytic function at each point is closely related to the values of this 
function at neighboring points). In the next sections, using this fact, we will prove 
many of their other remarkable properties. 

Exercise 4.6 Does there exist an entire function that

• on the circle .{z : |z − 1 + i| = 4} takes the value . 3i,
• and on the circle .{z : |z − 1 + i| = 3} takes the value . 1 + i ?

Exercise 4.7 Let f be an analytic function in .{z : Im z ≥ 0} and .f (x) = 2 − i for 
all .x ∈ R. Find the value of f at the points .1 + i and .2 + i. 

Exercise 4.8 Using Theorem 4.9 and Exercise 2.2, prove the maximum modulus 
principle, which states that if f is an analytic function, then its modulus cannot 
have a strict local maximum in the domain of f . 

In a different way, this principle, as well as other properties of the modulus of an 
analytic function, will be proved in Sect. 9.1.



5Complex Power Series 

Abstract 

The main goal of this chapter is to show that analytic functions can be represented 
as infinite power series. The key to proving this theorem is the Cauchy integral 
formula established in the previous section. Here we generalize this formula for 
derivatives and prove the surprising fact that derivatives of analytic functions 
can be calculated by integration. Conversely, we will establish that the sum of a 
complex power series is an analytic function in the open disk where this series 
converges. This fact is then used to prove that an analytic function is infinitely 
differentiable. In addition, the reader can familiarize himself with the proofs of 
such remarkable statements as Liouville’s theorem, Maurer’s theorem, and the 
equivalence of three approaches to the construction of the theory of analytic 
functions. In the last section, applications of power series representations lead us 
to a statement about the coincidence of analytic functions when they coincide on 
some sequence, and to a statement characterising the isolated zeros of an analytic 
function and their concentration. 

5.1 Basic Definitions and Properties of Function Series and 
Power Series 

The main properties of infinite complex series are the same as real ones. Neverthe-
less, we briefly recall the fundamental definitions and some properties. 

Definition 5.1 Two sequences of complex numbers, one of which is a sequence 
.{an}n∈N, and the second is determined from the previous one as follows 

. 

{
Sn :=

n∑
k=1

ak

}
n∈N
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are called a series of complex numbers and are denoted by one symbol 

.

+∞∑
k=1

ak. (5.1) 

The sequence .{Sn}n∈N is said to be the sequence of partial sums of the series (5.1). If 
.{Sn}n∈N converges to a number .S ∈ C, then we say that the series (5.1) is convergent 
and the number S is the sum of (5.1); in this case, one also writes 

. S =
+∞∑
k=1

ak.

If there is no finite limit of .{Sn}n∈N, then the series (5.1) is called divergent. 

Example 5.1 The series .
∑+∞

k=1

(
i
2

)k
is convergent since 

. lim
n→+∞

n∑
k=1

(
i

2

)k

= lim
n→+∞

i

2

(
i
2

)n − 1
i
2 − 1

= i

2 − i
= −1

5
+ 2

5
i,

and its sum is equal to .− 1
5 + 2

5 i. 

From Exercise 1.2 it follows that a series is convergent if and only if the 
corresponding series of real and imaginary parts are convergent. Similarly, as for 
real series, we prove that the sum and difference of two convergent series are 
convergent, and the necessary condition for .

∑+∞
k=1 ak to be convergent is that 

.limk→+∞ ak = 0. 
A series  .

∑+∞
k=1 ak is said to be absolutely convergent if .

∑+∞
k=1 |ak| converges; a 

series is said to be conditionally convergent if it converges, but it does not converge 
absolutely. It is easy to verify that an absolutely convergent series converges. 

Let .{fn : Ω �→ C}n∈N be a sequence of functions. For each .z ∈ Ω consider the 
series 

.

+∞∑
n=1

fn(z) (5.2) 

and its sequence of partial sums .{Sn(z) := ∑n
k=1 fn(z)}n∈N. 

Definition 5.2 The set of such numbers .z ∈ Ω for which the series (5.2) converges 
is called the convergence set of the function series (5.2).
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Definition 5.3 A function series .
∑+∞

n=1 fn(z) is called uniformly convergent on a 
set .M ⊂ Ω to a function .f : M �→ C, if the sequence of its partial sums . {Sn(z), z ∈
Ω}n∈N uniformly converges to the function f on M .(Sn

M

⇒ f ), i.e., 

. ∀ ε > 0 ∃ n0 ∈ N ∀ n ≥ n0 ∀z ∈ M : |f (z) − Sn(z)| =
∣∣∣∣∣

+∞∑
k=n+1

fk(z)

∣∣∣∣∣ < ε.

As in real analysis, we establish the theorem. 

Theorem 5.1 (Weierstrass Criterion for Uniform Convergence) Let for a 
sequence of functions .{fn : Ω �→ C}n∈N the following conditions are satisfied: 

(1) . ∀ n ∈ N ∃ an ∈ R+ : sup
z∈Ω

|fn(z)| ≤ an;
(2) the series .

∑+∞
n=1 an is convergent. 

Then the function series .

+∞∑
n=1

fn(z) converges uniformly and absolutely on . Ω . 

Also, without any changes one can prove the theorem about the continuity of 
the sum of a function series and theorem about the term-by-term integration of a 
uniformly convergent function series. 

Definition 5.4 Let .{cn}n∈N be a sequence of complex numbers and .z0 ∈ C. A  
power series centered at . z0 is called a function series of the form 

.

+∞∑
n=0

cn(z − z0)
n. (5.3) 

The constants .{cn}n∈N are called the coefficients of this power series. . �

For the power series, we define the value 

.
1

R
:= lim sup

n→+∞
n
√|cn|. (5.4) 

Obviously, that .0 ≤ R ≤ +∞. 

Theorem 5.2 (Cauchy–Hadamard Theorem) If .R = +∞, then the series (5.3) 
is absolutely convergent in . C; when .R = 0 the series (5.3) converges only at the 
point .z = z0 and diverges if .z �= z0.
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If .R ∈ (0,+∞), the following statements hold: 

(1) the series (5.3) converges absolutely at every point 

. z ∈ BR(z0) = {z ∈ C : |z − z0| < R};

(2) the series (5.3) diverges at every point .z �∈ BR(z0); 
(3) the series (5.3) converges uniformly on any compact set .K ⊂ BR(z0). 

The proof is carried out in exactly the same way as for real power series. The disk 
.BR(z0) is called the disk of convergence of the power series (5.3) and the number . R

is called the convergence radius of (5.3). 
Note that the convergence set of a power series may also contain points that lie 

on the boundary of the disk of convergence. 

Example 5.2 Let us consider the following power series: 

. (A)

+∞∑
n=1

zn, (B)

+∞∑
n=1

zn

n
, (C)

+∞∑
n=1

zn

n2
.

By using (5.4), we conclude that .B1(0) = {z : |z| < 1} is the disk of convergence 
for these series. However, 

• the series .(A) diverges for all .z ∈ ∂B1(0) (the necessary convergence condition 
is not fulfilled); 

• the series .(B) diverges at the point .z = 1 (this is the harmonic series) and for the 
other points .z = eit ∈ ∂B1(0) \ {1}, t ∈ (0, 2π), this series 

. 

+∞∑
n=1

eint

n
=

+∞∑
n=1

cos(nt)

n
+ i

+∞∑
n=1

sin(nt)

n

converges only conditionally since its real and imaginary parts conditionally 
converge due to the Dirichlet criterion: 

. � the sequence .{ 1
n
}n∈N converges monotonically to zero, 

. � and the sequence of partial sums of the series .
∑+∞

n=1 cos(nt) is bounded 
for each .t ∈ (0, 2π) (the same for .(

∑+∞
n=1 sin(nt) ); 

• the series .(C) absolutely converges for all .z ∈ ∂B1(0) based on the Weierstrass 

criterion .
( ∣∣∣ zn

n2

∣∣∣ ≤ 1
n2

for all .z ∈ ∂B1(0)
)
.
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5.2 Expansion of a Differentiated Function Into a Power Series 

One of the main theorems of complex analysis is the following theorem. 

Theorem 5.3 Let . Ω be a domain in . C and .f ∈ A(Ω). Then, in arbitrary disk 
.K := BR(z0) ⊂ Ω, the function f can be represented as the sum of the power 
series 

.f (z) =
+∞∑
n=0

cn(z − z0)
n for all z ∈ K, (5.5) 

where

.cn = 1

2πi

∫

{|ξ−z0|=r}+

f (ξ)

(ξ − z0)n+1 dξ , ∀ r ∈ (0, R). (5.6) 

Proof Take any point .z0 ∈ Ω and a such positive number R that the disk . K =
BR(z0) belongs to . Ω . Then, taking into account the Cauchy integral formula (4.22), 
we have for any .z ∈ K that 

. f (z) = 1

2πi

∫

γr

f (ξ)

ξ − z
dξ ,

where .γr = z0 + r exp(it), .t ∈ [0, 2π ], and r is a number from the interval . 
(|z −

z0|, R
)
. 

The function .(ξ − z)−1, ξ ∈ Eγr , can be represented as sum of the following 
series (the sum of an infinite geometric series): 

. 
1

ξ − z
= 1

(ξ − z0)
(
1 − z−z0

ξ−z0

) = 1

ξ − z0

+∞∑
n=0

(
z − z0

ξ − z0

)n

.

This series uniformly converges on .Eγr , since 

. 
|z − z0|
|ξ − z0| = |z − z0|

r
=: q < 1 for all ξ ∈ Eγr , and

+∞∑
n=0

qn = 1

1 − q
.

Then the series 

.
1

2πi

f (ξ)

ξ − z
=

+∞∑
n=0

1

2πi

f (ξ)

(ξ − z0)n+1
· (z − z0)

n, (5.7)
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which is obtained from the previous one by the multiplication with the bounded 
function .

1
2πi

f (ξ), .ξ ∈ Eγr , also converges uniformly on . Eγr . 
Therefore, according to the theorem on the term-by-term integration of a function 

series, we can integrate the series (5.7) term by term. As a result, we obtain the 
representation (5.5), whose coefficients are defined by (5.6). It should be noted here 
that integrals in (5.6) are independent of .r ∈ (0, R) due to the Cauchy integral 
Theorem 4.5. �


Remark 5.1 The series (5.5) is called  a power series representation of f around 
the point . z0. It is clear that the radius of convergence of (5.5) is not less than the 
distance from . z0 to the boundary of . Ω . 

Remark 5.2 It follows from Theorem 5.3 that the expansion of an analytic function 
in a power series around a given point is a necessary condition for the analyticity of 
this function at this point (see Definition 2.6). 

Corollary 5.1 (Cauchy’s Inequalities for the Coefficients) Let .f ∈ A(Br(z0)). If  
f is bounded by a constant M on .∂Br(z0), then the coefficients of the power series 
(5.5) satisfy the inequalities 

.|cn| ≤ M

rn
for all n ∈ N0. (5.8) 

Proof From (5.6), due to the boundedness of f and (4.5) , we get

. |cn| =

∣∣∣∣∣∣∣
1

2πi

∫

∂+Br(z0)

f (ξ)

(ξ − z0)n+1 dξ

∣∣∣∣∣∣∣
≤ 1

2π

∫

∂Br (z0)

|f (ξ)|
|ξ − z0|n+1 dl ≤ M

rn
.

�


Theorem 5.4 (Liouville’s Theorem) If an entire function f is bounded, then it is 
constant. 

Proof Using Theorem 5.3, for any . R > 0

. f (z) =
+∞∑
n=0

cnz
n for all z ∈ BR(0).

Since f is bounded in . C, i.e. .∃ M > 0 .∀ z ∈ C : .|f (z)| ≤ M, it follows from (5.8) 
that

.|cn| ≤ M

Rn
for all n ∈ N0.
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Seeing that R can be taken arbitrarily large and .limR→+∞ M
Rn = 0 if .n ∈ N, we 

have .cn = 0 for all .n ∈ N. This means that .f (z) ≡ c0 for all .z ∈ C. �


One of the elegant applications of Liouville’s theorem is the following proof of 
the fundamental theorem of algebra. 

Theorem 5.5 Every polynomial .Pn(z) := cnz
n + cn−1z

n−1 + . . . + c1z + c0 with 
complex coefficient, where .n ∈ N and .cn �= 0, has at least one root. 

Proof Assume that .Pn(z) �= 0 for all .z ∈ C. Then, .f (z) := 1
Pn(z)

is an 
entire function. Moreover, f is bounded since .lim|z|→+∞ |Pn(z)| = +∞. So, by 
Liouville’s theorem, the function f is constant, which yields a contradiction because 
. Pn is not constant. Hence, . Pn must have a root in . C. �


Exercise 5.1 Prove that if .f ∈ A(C), then . f is constant. 

Exercise 5.2 Let .f ∈ A(C). Prove that 

(1) if .limz→∞ f (z) = ∞, then the set . {z ∈ C : f (z) = 0} �= ∅;
(2) if .Im f (z) > 0 for all .z ∈ C, then . f is constant. 

5.3 Analyticity of the Sum of a Power Series 

It turns out that the converse claim to Theorem 5.3 also holds. 

Theorem 5.6 The sum 

.f (z) :=
+∞∑
n=0

cn(z − a)n (5.9) 

is an analytic function in the convergence disk .BR(a) of the series (5.9). 
Moreover, the derivative of f is calculated by the formula 

.f ′(z) =
+∞∑
n=1

n cn (z − a)n−1 for all z ∈ BR(a). (5.10) 

Proof Since .BR(a) is the disk of convergence of the series (5.9), the radius R is 
determined with the formula (5.4) . It is easy to verify that this disk is also the disk
of convergence for the following series:

.φ(z) :=
+∞∑
n=1

n cn(z − a)n−1. (5.11)
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Due to the Cauchy–Hadamard Theorem 5.2 and theorem on the continuity of 
the sum of a function series, the function . φ is continuous in .BR(a). In addition, 
the series (5.11) uniformly converges on .∂�, where . � is an arbitrary triangle 
that, together with its closure, belongs to .BR(a). Using the theorem on termwise 
integration of a function series and the Cauchy-Goursat Theorem 4.1 for triangles, 
we get 

. 

∫

∂+�
φ(z)dz =

+∞∑
n=1

n cn

∫

∂+�
(z − a)n−1dz = 0.

Then, according to Remark 4.4, the function . φ has an antiderivative . Ψ in the disk 
.BR(a), which is defined by the formula .Ψ (z) = ∫

[a,z] φ(ξ)dξ, .z ∈ BR(a). 
On the other hand, 

. 

∫

[a,z]
φ(ξ) dξ =

+∞∑
n=1

ncn

∫

[a,z]
(ξ − a)n−1 dξ =

+∞∑
n=1

cn(z − a)n = f (z) − c0

for all .z ∈ BR(a), whence we obtain that .f = c0 + Ψ in .BR(a). Thus, the function 
f is also an antiderivative for . φ in .BR(a), i.e., .f ∈ A(BR(a)) and 

. f ′(z) = φ(z) =
+∞∑
n=1

n cn(z − a)n−1 for all z ∈ BR(a).

�


Corollary 5.2 The derivative of an analytic function in a domain . Ω is also analytic 
in this domain. 

Proof Let .f ∈ A(Ω). Consider an arbitrary point .z0 ∈ Ω and a disk  .Br(z0) that 
belongs to . Ω . Due to Theorem 5.3 the function f is represented as the sum of a 
power series 

.f (z) =
+∞∑
n=0

cn(z − z0)
n, z ∈ Br(z0). (5.12) 

Using the second claim of Theorem 5.6, the function f has the derivative that 
is obtained from (5.12) by termwise differentiation, i.e., the derivative . f ′ is also 
represented as a power series in the same disk. Then we apply the first assertion of 
Theorem 5.6 to . f ′ and obtain that .f ′ ∈ A(Br(z0)). Since . z0 is an arbitrary point of 
. Ω, the function . f ′ is analytic in . Ω . �


Applying Corollary 5.2 to . f ′ gives the statement.
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Corollary 5.3 Any analytic function in a domain . Ω has derivatives of all orders in 
. Ω . 

Corollary 5.2 implies the following necessary condition for the existence of an 
antiderivative. 

Corollary 5.4 If a continuous function . f in a domain . Ω has an antiderivative, then 
. f is analytic in . Ω.

Remark 5.3 From Theorems 5.3 and 5.6 it follows that the representation of a 
function as the sum of a convergent power series in some disk is a necessary and 
sufficient condition for the analyticity of this function in this disk. 

However, the convergence of a power series at points on the boundary of its disk 
of convergence is not related to the analyticity of its sum at those points. Indeed, let 
us return to Example 5.2. 

The sum of the series .(A) is equal to . z
1−z

in the disk .B1(0) and it diverges at 
each point of the boundary .∂B1(0). But the function . z

1−z
is analytic in the domain 

.C \ {1}. 
The series .(C) absolutely converges to some function f in the closed disk .B1(0). 

Assuming that . f is analytic at the point .z = 1, by Corollary 5.2 the derivative . f ′
must be also analytic at .z = 1. Thus, there must be a finite limit 

. lim
z→1−0, Im z=0

f ′(z) = f ′(1).

However, since 

. f ′(z) =
+∞∑
n=1

zn−1

n
for all z ∈ B1(0),

. lim
x→1−0

f ′(x) = − lim
x→1−0

1

x

+∞∑
n=1

(−1)n−1(−x)n

n
= − lim

x→1−0

1

x
ln(1 − x) = +∞.

This contradiction indicates that . f can not be analytic at . z = 1.

5.4 Uniqueness of Power Series Expansions: Morera’s 
Theorem 

A natural question that arises is: if for a given function we somehow get a kind of 
power series expansion about a given point, will this be the only expansion? For 
example, is the right-hand side of the identity 

.z2 + 1 = 2 + 2(z − 1) + (z − 1)2 (5.13)
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the unique power representation of the function .z2 + 1 around the point 1? The 
answer is given by the following theorem. 

Theorem 5.7 If a function f is equal to the sum of a power series in a disk . Br(z0),

then this series is its Taylor series, i.e., if 

.f (z) =
+∞∑
n=0

cn(z − z0)
n for all z ∈ Br(z0), (5.14) 

then

.cn = f (n)(z0)

n ! ∀ n ∈ N0 := N ∪ {0}, (5.15) 

where .f (n) denotes the n-th order derivative . 
dnf
dzn . 

Proof Theorem 5.6 implies that f in analytic in the disk .Br(z0) and Corollary 5.3 
implies that f has derivatives of all orders in this disk. In addition, from the formula 
(5.10) it follows that for any .k ∈ N the kth order derivative 

.f (k)(z) =
+∞∑
n=k

n!
(n − k)! cn(z − z0)

n−k for all z ∈ Br(z0). (5.16) 

Taking .z = z0 in (5.16), we find .f (k)(z0) = k! ck . That is, we get the formula (5.15) 
for the power series coefficients. �


Remark 5.4 Sometimes one can find such formulations of this theorem: 

• a power series is the Taylor series of its sum; 
• a function can be represented by a power series only in one way. 

Example 5.3 Using (5.15) , it is easy to check that the coefficients of the power
representation of .z2 + 1 around 1 are as follows: .c0 = c1 = 2, .c2 = 1, and . cn = 0
for .n > 2 (compare with (5.13) ).

It is often inexpedient to calculate coefficients using (5.15) or impractical
formulas (5.6). Based on Theorem 5.7 and with the help of known formulas for the 
coefficients of the Taylor series of elementary real functions, it is possible to write 
down the power representations of the corresponding elementary complex-valued 
entire functions: 

.ez =
+∞∑
n=0

zn

n ! , sin z =
+∞∑
n=1

(−1)n−1 z2n−1

(2n − 1) ! , cos z =
+∞∑
n=0

(−1)n
z2n

(2n) ! .
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Example 5.4 From the representations above, the following identity follows: 

. cos z + i sin z =
+∞∑
n=0

(−1)n
z2n

(2n) ! + i

+∞∑
n=1

(−1)n−1 z2n−1

(2n − 1) !

= 1 + i z − z2

2! − i
z3

3! + z4

4! + i
z5

5! − . . .

= 1 + i z + (iz)2

2! + (iz)3

3! + (iz)4

4! + (iz)5

5! + . . . = eiz

for all .z ∈ C. This identity coincides with Euler’s formula (1.9) when z is a real
number. . �

Comparing formulas (5.6) and (5.15) for finding power series coefficients, we 
get 

.f (n)(z0) = n!
2πi

∫

∂+Br(z0)

f (ξ)

(ξ − z0)n+1 dξ, n ∈ N0; (5.17) 

here .r ∈ (0, R) and R is the convergence radius of (5.14). 
What is interesting is that equalities (5.17) make it possible to estimate the 

derivative of an arbitrary order of an analytic function through the value of this 
function on the boundary of a disk. 

Proposition 5.1 Let .f ∈ A(Br(z0)). Then 

. |f (n)(z0)| ≤ n!
2π

∫

∂Br (z0)

|f (ξ)|
rn+1 dl ≤ n!

rn
max

ξ∈∂Br (z0)
|f (ξ)| for all n ∈ N.

Exercise 5.3 Let .f ∈ A(C) and there exist numbers .A > 0, .B > 0 and . n ∈ N

such that for all . r ∈ (0,+∞) :

. max|z|=r
|f (z)| ≤ Arn + B.

Show that . f is a polynomial whose degree is not greater than . n. 

Exercise 5.4 Let .Pn(z) = anz
n + an−1z

n−1 + . . . + a0, where .an �= 0, and 

. max|z|=1
|Pn(z)| ≤ M.

Show that 

.|Pn(z)| ≤ M|z|n for all z, |z| ≥ 1.
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Lemma 5.1 (The Cauchy Integral Formula for Derivatives) Let . f ∈ A(Ω)

and the other conditions of Theorem 4.8 be satisfied. Then for any .n ∈ N and any 
. z0 ∈ Ω :

.f (n)(z0) = n !
2πi

∫

∂+Ω

f (ξ)

(ξ − z0)n+1
dξ. (5.18) 

Proof Since .f ∈ A(Ω), there exists a domain .G ⊃ Ω such that .f ∈ A(G). Fix  
any point .z0 ∈ Ω and take any circle .βr = z0 + r eit , .t ∈ [0, 2π ], whose interior 
belongs in . Ω . Obviously, the curve . βr is null-homotopic in G (see Definition 4.4). 

Similarly, as in Corollary 4.5, we construct the closed curve . Λ with the positive 
orientation (see Sect. 1.4), which is null-homotopic in G and whose trace does not 
contain the point . z0. Then .Λ ≈ βr in .G \ {z0}. 

Now, based on the Cauchy integral Theorem 4.5 and the equality (5.17), just as 
in Corollary 4.5, we derive 

. f (n)(z0) = n !
2πi

∫

βr

f (ξ)

(ξ − z0)n+1 dξ = n !
2πi

∫

Λ

f (ξ)

(ξ − z0)n+1 dξ

= n !
2πi

∫

∂+Ω

f (ξ)

(ξ − z0)n+1 dξ.

�


Again, as in the case the Cauchy integral formula (see Example 4.1), it is 
sometimes possible to calculate integrals from analytic functions along closed 
curves with the help of the formula (5.18) .

Example 5.5 Compute .

∫

{|z|=2}+
cos iz

(z − 1)3
dz. 

Since .f (z) = cos(iz) is analytic in .B2(0) and .z0 = 1 ∈ B2(0), we use (5.18) 
with .n = 2 to get 

. 

∫

{|z|=2}+
cos iz

(z − 1)3
dz = πi f ′′(1) = πi cos i = πi cosh 1.

From mathematical analysis, it is known that any continuous function on a 
segment can be uniformly approximated by a polynomial with a given accuracy. A 
similar problem arises in complex analysis: can an analytic function on a compact 
set be approximated by a polynomial with a given accuracy? It is clear that if this 
compact set is a closed disk, then the problem is solved by Taylor polynomials. 
However, power series converge in disks, so Taylor polynomials are not suitable 
for approximating analytic functions in general domains. For simply connected 
domains, this problem was solved by the German mathematician Karl Runge (1856– 
1927) in 1885.
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Theorem 5.8 (Runge’s Theorem) Let f be an analytic function in a simply 
connected domain . Ω . Then for any compact set .K ⊂ Ω and any .ε > 0 there is 
a polynomial .Pn(z) = anz

n + an−1z
n−1 + . . . + a0 such that 

. max
z∈K

|f (z) − Pn(z)| < ε.

We do not present the proof of the theorem. The reader can find it in [4, Vol. 3].  
Runge’s theorem has many applications in various branches of complex analysis; its 
generalizations are Walsh’s theorem, Mergelyan’s theorem and Keldysh–Lavrent’ev 
theorem (see [4]). 

Now we can prove a converse statement of the Cauchy-Goursat Theorem 4.1. 
Surprisingly, the property described there is almost equivalent to analyticity. 

Theorem 5.9 (Morera’s Theorem) Let f be a continuous function in a domain 
. Ω . If the integral of f over the boundary of an arbitrary triangle, which together 
with its closure belongs to . Ω, is zero, then the function . f is analytic in . Ω . 

Proof Take any point .a ∈ Ω and any number .r > 0 such that .Br(a) ⊂ Ω . Based 
on Remark 4.4, the function 

. F(z) :=
∫

[a,z]
f (ξ)dξ, z ∈ Br(a),

is an antiderivative of f in .Br(a). Corollary 5.4 implies that .f ∈ A(BR(a)). Since 
the point a was chosen arbitrarily, . f ∈ A(Ω). �


As we will see further on, Morera’s theorem is useful in proving many important 
facts. Now consider an example. 

Example 5.6 Show that the function 

. f (z) =
∫ d

c

e−t t z−1 dt z ∈ Ωr := {z ∈ C : Im z > 0},

where .0 < c < d < +∞, is analytic in the right half-plane . Ωr . 
The first thing to note is that the function f is well defined and continuous in 

. Ωr because the integrand is a continuous function of two variables t and z in the 
domain of definition .(tz−1 = e(z−1) log t ). 

Now take an arbitrary triangle .� ⊆ Ωr and calculate the integral 

.

∫

∂+�
f (z) dz =

∫

∂+�

(∫ d

c

e−t t z−1 dt

)
dz

=
∫ d

c

e−t

(∫

∂+�
tz−1 dz

)
dt =

∫ d

c

0 dt = 0.
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Here we used the analyticity of the function .tz−1 = e(z−1) log t with respect to the 
variable z and the Cauchy-Goursat Theorem 4.1. Then, Morera’s theorem implies 
that .f ∈ A(Ωr). 

Exercise 5.5 Using the same approach, show that 

.g(z) =
∫ +∞

1

tz−1

et − 1
dt (5.19) 

is an entire function. . �

It is well known from mathematical analysis that the term-by-term differentiation 
of a functional series requires its convergence at some point and the uniform 
convergence of the corresponding series of derivatives. In complex analysis, the 
situation is simplified for functional series consisting of analytic functions. The 
following theorem holds. 

Theorem 5.10 Let .{fn}n∈N be a sequence of analytic functions in a domain . Ω . If  
for any compact set .K ⊂ Ω the series 

. 

+∞∑
n=1

fn(z)

converges uniformly on . K to a function . f, then .f ∈ A(Ω) and for all . k ∈ N

. f (k)(z) =
+∞∑
n=1

f (k)
n (z) for all z ∈ Ω.

Proof Fix a point a in . Ω and consider a closed disk .BR(a) ⊂ Ω . Since the series 
.
∑+∞

n=1 fn(z) converges uniformly on .BR(a) to . f and each term of this series is a 
continuous function, the function . f ∈ C

(
BR(a)

)
.

Now take any triangle .� ⊆ BR(a). Then, due to the uniform convergence and 
the Cauchy-Goursat Theorem 4.1 we have 

. 

∫

∂+Δ

f (z) dz =
∫

∂+Δ

+∞∑
n=1

fn(z) dz =
+∞∑
n=1

∫

∂+Δ

fn(z) dz

︸ ︷︷ ︸
�

0

= 0.

Based on Morera’s Theorem 5.9, .f ∈ A(BR(a)), and hence .f ∈ A(Ω), since a is 
an arbitrary point from . Ω .
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To prove the second statement, consider a circle .γr = a + reit , .t ∈ [0, 2π ], such 
that .Eγr ⊂ BR(a). Since the series 

. 
k !
2πi

+∞∑
n=1

fn(z)

(z − a)k+1
(k ∈ N)

converges uniformly on .Eγr to .
f (z)

(z−a)k+1 , it can be integrated term by term. Recalling 
the formulas (5.17), we get 

. f (k)(a) = k !
2πi

∫

γr

f (z)

(z − a)k+1
dz =

+∞∑
n=1

k !
2πi

∫

γr

fn(z)

(z − a)k+1
dz =

+∞∑
n=1

f (k)
n (a).

The theorem is proved. �


It follows from this theorem that analyticity is preserved in uniform limits, in 
contrast to differentiability in real analysis, where the uniform limit of differentiable 
functions may be nowhere differentiable. 

Corollary 5.5 Let .{fn}n∈N be a sequence of analytic functions in a domain . Ω . If  
for any compact set .K ⊂ Ω the sequence .{fn}n∈N converges uniformly on K to a 
function . f, then .f ∈ A(Ω) and for all . k ∈ N

. f (k)(z) = lim
n→+∞ f (k)

n (z) for all z ∈ Ω.

Example 5.7 Using the Weierstrass criterion (see Theorem 5.1), it is easy to 
verify that the function series .

∑+∞
n=1 n−z converges absolutely and uniformly in 

.{z ∈ C : Re ≥ 1+δ}, where . δ is an arbitrary positive number. To apply this criterion, 
you need the inequality 

. |n−z| = ∣∣e−(x+iy) log n
∣∣ = e−x log n ≤ 1

n1+δ
,

and the well-known fact that the numerical series .
∑+∞

n=1 n−(1+δ) converges. 
Since for every .n ∈ N the function .n−z = e−z log n is entire, Theorem 5.10 says 

that the sum 

.ζ(z) :=
+∞∑
n=1

1

nz
(5.20) 

is an analytic function in the half-plane .{z ∈ C : Re z > 1}. This function is called 
the Riemann zeta function. Note that . ζ has a singularity at .z = 1 and .limε→0 ζ(1 +
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ε) = +∞  since the partial sum .
∑N

n=1 n−1 of the harmonic series is equivalent to 
.logN as .N → +∞. 

Example 5.8 The real-valued gamma function 

.Γ (x) =
∫ +∞

0
e−t tx−1 dt, x ∈ (0,+∞), (5.21) 

is studied in mathematical analysis, and it is well known that .Γ ∈ C∞(0,+∞). 
We now define the gamma function in the right half-plane . Ωr by the formula 

.Γ (z) =
∫ +∞

0
e−t t z−1 dt, z ∈ Ωr = {ξ ∈ C : Im ξ > 0}. (5.22) 

Since

.|e−t t z−1| = |e−t e(z−1) log t | = e−t tx−1, (5.23) 

the inequality

. |Γ (z)| ≤
∫ +∞

0
e−t tx−1 dt < +∞

holds for all .z ∈ Ωr, where .Re z = x > 0. Thus, the gamma function is correctly 
defined in . Ωr . In addition, 

. Γ (z) = lim
n→+∞ fn(z), where fn(z) =

∫ n

1
n

e−t t z−1 dt.

Every function . fn is analytic in . Ωr (see Example 5.6). Using (5.23) , it is easy
to show that the sequence .{fn}n∈N converges uniformly on any compact . K ⊂ Ωr

(even on every vertical strip .{z : 0 < α ≤ Re z ≤ β < +∞}). By Corollary 5.5, the  
gamma function is analytic in the right half-plane . Ωr . 

Replacing the integration variable .(nt to t), where .n ∈ N, we get 

. 

∫ +∞

0
e−nt tz−1 dt = 1

nz

∫ +∞

0
e−t t z−1 dt = Γ (z)

nz
,

from where, we deduce for any .z ∈ {ξ ∈ C : Re ξ > 1} that 

.Γ (z)

+∞∑
n=1

1

nz
=

∫ +∞

0
tz−1 lim

N→+∞

N∑
n=1

e−nt dt =
∫ +∞

0

tz−1

et − 1
dt.
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As a result, we obtain the relation 

.Γ (z) ζ(z) =
∫ +∞

0

tz−1

et − 1
dt, z ∈ {ξ : Re ξ > 1}, (5.24) 

between the gamma and zeta functions. These functions have many applications in
physics, probability theory, and applied statistics; the Riemann zeta function plays a
central role in analytic number theory. We will continue our study of these functions
in Sect. 8.2. . �

In this section, we have proved several equivalent statements about the analyticity 
of a function. We summarise them in the following theorem. 

Theorem 5.11 The following three statements are equivalent: 

.(R) a function . f is differentiable in a disk . Br(a);

.(C) .f ∈ C(Br(a)) and for any triangle .� ⊆ Br(a) : . 

∫

∂+�
f (z) dz = 0;

.(W) .f (z) =
+∞∑
n=0

cn(z − a)n for all z ∈ Br(a). 

Remark 5.5 These three statements reflect three concepts in the development of 
the theory of analytic functions: 

(1) functions are called Riemann analytic or simply analytic if they satisfy 
the .(R) condition; 

(2) functions are called Cauchy analytic or holomorphic if they satisfy the .(C) con-
dition; 

(3) functions are called Weierstrass analytic or regular if they satisfy the .(W) con-
dition. 

Thus there were three different starting points in the development of the theory of 
complex-valued functions of a complex variable, and this explains why, even today, 
different words are used, such as “analytic”, “regular” and “holomorphic”. Now we 
see that these are equivalent concepts and we prefer the term “analytic”. . �

The proof of Theorem 5.11 is based on already proved theorems. The equivalence 
of the statements .(R) and .(C) is ensured by the Cauchy-Goursat Theorem 4.1 and 
Morera’s Theorem 5.9, and the equivalence of statements .(R) and .(W) is provided 
by Theorem 5.3 (on the expansion of a analitic function into a power series) and 
Theorem 5.6 (on the sum of a power series).
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5.5 Uniqueness Theorem for Analytic Functions: Zeros of 
Analytic Functions 

Let us now consider some applications of power series representations. We begin 
with the uniqueness theorem for analytic functions. 

Theorem 5.12 Suppose that f and g are analytic functions in a domain . Ω and 
there exists a sequence of distinct points .{zn}n∈N ⊂ Ω such that 

• . lim
n→+∞ zn = a ∈ Ω and .f (zn) = g(zn) for all .n ∈ N. 

Then .f ≡ g in . Ω . 

This theorem shows one more difference between differentiable complex-
valued functions and differentiable real-valued functions. It is easy to give 
many examples where two infinitely differentiable functions of a real variable 
may coincide on a certain segment of the domain of definition, but not be 
identically equal in the entire domain of definition. According to this theorem, 
if two analytic functions coincide on an arbitrary set that has a limit point 
in the domain of analyticity of these two functions, then they necessarily 
coincide identically in the entire domain. 

Proof 

1. Let us first show that these functions coincide in some neighborhood of the point 
a. Since .a ∈ Ω, there is a positive number . R such that the disk .BR(a) belongs 
to the domain . Ω. By Theorem 5.3, we have  

. f (z) =
+∞∑
k=0

ck(z − a)k and g(z) =
+∞∑
k=0

dk(z − a)k

for all .z ∈ BR(a). Consider the difference 

. h(z) := f (z) − g(z) =
+∞∑
k=0

(ck − dk)(z − a)k, z ∈ BR(a).

Since .limn→+∞ zn = a, for any .r0 ∈ (0, R) there exists a number . n0 ∈ N

such that 

.zn ∈ Br0(a) ⊂ BR(a) for all n ≥ n0.
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By the Cauchy-Hadamard Theorem 5.2, the series 

. 

+∞∑
k=0

(ck − dk)(z − a)k

converges uniformly on .Br0(a). Therefore, passing to the limit .(n → +∞) in the 
equality 

.0 = h(zn) =
+∞∑
k=0

(ck − dk)(zn − a)k (n ≥ n0), (5.25) 

we find that .0 = h(a) = c0 − d0, whence .c0 = d0. 
Now the equality (5.25) can be rewritten in the form 

.0 = h(zn) =
+∞∑
k=1

(ck − dk)(zn − a)k−1. (5.26) 

Passing to the limit in (5.26), we obtain .c1 = d1. Continuing this process, we find 
.ck = dk for all .k ∈ N ∪ {0}. This means that for all . z ∈ Br0(a)

. h(z) = 0 ⇐⇒ f (z) = g(z).

2. Consider now an arbitrary point .b ∈ Ω . Let  .γ(t), .t ∈ [0, 1], be a broken line 
whose trace . Eγ is contained in . Ω, starting at the point .a = γ(0) and ending at 
the point .b = γ(1). 

Denote by .δ := dist(Eγ, ∂Ω) (the distance from . Eγ to the boundary of . Ω). It  
is obvious that .δ > 0. In what follows, we assume that the number . r0 chosen in 
the first item of the proof satisfies the inequality .r0 < δ. 

Since the set . Eγ is compact, there are finitely many disks . {Br0(aj )}mj=0
covering .Eγ, and we can assume that the center of the next disk is contained 
in the previous one and .a0 = a, am = b. 

According to the just proved .h(z) ≡ 0 for all .z ∈ Br0(a0). Since the point 

.a1 ∈ Br0(a0), there exists an infinite sequence .{z(1)
n }n∈N of distinct points in 

.Br0(a1) ∩ Br0(a0) converging to . a1 and .h(z
(1)
n ) = 0 for all .n ∈ N. Similarly, as 

in the previous item, we show that .h ≡ 0 in .Br0(a1). 
Continuing this procedure, after a finite number of steps we get .h(z) = 0 for 

all .z ∈ Br0(b). 
�


Based on this theorem, we can immediately conclude about the structure of the 
set of zeros .Z := {z ∈ Ω : f (z) = 0} of an analytic function .f : Ω �→ C.
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Corollary 5.6 Let .f ∈ A(Ω) and .f �≡ 0. Then the following two cases are 
possible: 

(1) the set . Z consists only of a finite number of isolated points; 
(2) the set . Z is countable, and if . a is the limit point of . E, then .a ∈ ∂Ω . 

To prove this corollary, we should apply Theorem 5.12 to the functions f and .g ≡ 0. 
Let us consider an example showing that the second assertion of Corollary 5.6 is 

incorrect in real analysis. 

Example 5.9 (Counterexample from Mathematical Analysis) Consider the 
function 

. f (x) =
{

x2 sin 1
x
, x ∈ (−1, 1) \ {0};

0, x = 0.

This function is differentiable on the interval .(−1, 1) and is not identical to zero. 
However, the set of its zeros is countable and the limit point of the zeros, the point 
0, belongs to .(−1, 1). . �

Using the uniqueness theorem, one can prove functional identities in the complex 
plane, which are valid for real numbers. For example, let us show that . sin2 z +
cos2 z = 1 for all .z ∈ C. Consider the entire functions 

. f (z) = sin2 z + cos2 z − 1 and g ≡ 0.

Since .f (x) = 0 for all .x ∈ R, then by Theorem 5.12 .f (z) = 0 for all .z ∈ C. 
The next theorem shows the behavior of an analytic function in a neighborhood 

of its isolated zero. 

Theorem 5.13 Let .f ∈ A(Ω), .f �≡ 0, and .z0 ∈ Ω . If the point . z0 is a zero of . f,

then in some neighborhood of it the function f can be uniquely represented as 

.f (z) = (z − z0)
mϕ(z), (5.27) 

where .m ∈ N and the function . ϕ is analytic and not equal to zero in this 
neighborhood. 

Proof Consider a disk .BR(z0) ⊂ Ω. By Theorem 5.3, 

.f (z) =
+∞∑
k=0

ck(z − z0)
k for all z ∈ BR(z0). (5.28)
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Since .f �≡ 0, not all coefficients in (5.28) are zero. Hence, there is a unique natural
number m such that

.c0 = c1 = . . . = cm−1 = 0 and cm �= 0. (5.29) 

Then

. f (z) =
+∞∑
k=m

ck(z − z0)
k = (z − z0)

m
+∞∑
n=0

cn+m(z − z0)
n, z ∈ BR(z0).

Define the function 

. ϕ(z) :=
+∞∑
n=0

cn+m(z − z0)
n, z ∈ BR(z0).

It is clear that as the sum of the power series the function .ϕ ∈ A(BR(z0)) and 
.ϕ(z0) = cm �= 0. This means that there exists such a number .r ∈ (0, R) that 
.ϕ(z) �= 0 for all .z ∈ Br(z0). 

Thus, the function f has the form (5.27) in the disk .Br(z0). �


Definition 5.5 The number . m in (5.27) is called the order (multiplicity) of the zero 
. z0 of the function f . If .m = 1, then . z0 is called a simple zero of f . 

The representation (5.27) shows that an analytic function can be factorized 
in a neighbourhood of its isolated zero like polynomials (see Theorem 5.14). 
Factorization of entire functions in the complex plane will be discussed in 
Sect. 7.6. 

The following consequences follow from the proof of Theorem 5.13, namely 
from (5.29) and formulas (5.15). 

Corollary 5.7 Let .z0 ∈ Ω be a zero of multiplicity . m for an analytic function f in 
. Ω . Then 

. f (k)(z0) = 0 for all k ∈ {0, 1, . . . , m − 1} and f (m)(z0) �= 0.

Corollary 5.8 An analytic function that is not identical to zero cannot have zeros 
of infinite order (a point . z0 is a zero of infinite order of an analytic function . f, if 
.f (k)(z0) = 0 for all .k ∈ N0).
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Example 5.10 (Counterexample) Consider the following function: 

. f (x) =
{

e
− 1

x2 , x �= 0;
0, x = 0.

It is easy to verify that .f ∈ C∞(R), .f �≡ 0, but for all .n ∈ N0 : .f (n)(0) = 0. This  
counterexample shows that an infinitely differentiable non-zero real-valued function 
can have zeros of infinite order. 

Exercise 5.6 Let .f, g : Ω �→ C be two analytical functions. Prove that if there is a 
point . z0 in the domain . Ω such that 

. 
dnf

dzn
(z0) = dng

dzn
(z0) for all n ∈ N0,

then .f ≡ g in . Ω . 

Corollary 5.7 is useful for finding multiplicity of zeros of analytic functions. 

Example 5.11 Find the order of the zero .z0 = 1 of the function 

. f (z) = sin (z − 1) − z + 1.

Direct calculations give that .f (1) = 0, .f ′(1) = 0, .f ′′(1) = 0, . f ′′′(1) = −1 �= 0.
So the multiplicity of this zero is 3. 

In this case, it is easy to factorize this function 

. f (z) =
+∞∑
n=1

(−1)n−1 (z − 1)2n−1

(2n − 1) ! − (z − 1) = (z − 1)3ϕ(z),

where .ϕ(z) =
+∞∑
n=2

(−1)n−1 (z − 1)2n−4

(2n − 1) ! , ϕ(1) = −1

6
�= 0. Thus, .z0 = 1 is indeed 

the third order zero of the function f . 

Now we will prove a stronger assertion than in the fundamental theorem of 
algebra (Theorem 5.5). 

Theorem 5.14 The polynomial 

. Pn(z) = zn + cn−1z
n−1 + . . . + c1z + c0,

where .{cj }n−1
j=0 ⊂ C, n ∈ N, has, counted with multiplicity, exactly n zeros.
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In addition, the following factorization of . Pn is valid: 

.Pn(z) = (z − a1)
m1 · . . . · (z − ak)

mk for all z ∈ C, (5.30) 

where .{a1, . . . , ak} are distinct zeros of the polynomial . Pn of multiplicity . m1, . . . ,

.mk, respectively, and .m1 + . . . + mk = n. 

Proof Theorem 5.5 implies that . Pn has as least one zero; denote it by . a1. Then, 
according to Theorem 5.13 and the Euclidean division of polynomials, there exists 
a unique number .m1 ∈ N and a polynomial .Pn−m1 of degree .n − m1 such that 

. Pn(z) = (z − a1)
m1Pn−m1(z), and Pn−m1(a1) �= 0.

If .n − m1 ≥ 1, then again thanks to Theorem 5.5 there is a zero .a2 .(a2 �= a1) of 
the polynomial .Pn−m1 . Repeating the previous considerations , we get 

. Pn(z) = (z − a1)
m1(z − a2)

m2Pn−m1−m2(z),

where .Pn−m1−m2(ap) �= 0 for .p ∈ {1, 2}. Continuing these considerations, we 
obtain (5.30) . �


Definition 5.6 Let f be an analytic function at . ∞ (see Definition 2.7). The point at 
infinity is called a zero of order . m of the function . f, if .z0 = 0 is a zero of order m 
of the function .g(z) = f

(
1
z

)
. 

Recall that by definition .f (∞) = limz→∞ f (z). 

Theorem 5.15 Let f be an analytic function at . ∞ and let f have a zero of order 
m at . ∞. Then there exists a number .r1 > 0 and a unique function . ψ ∈ A

(
Br1(∞)

)
,

.ψ(z) �= 0 for all .z ∈ Br1(∞), such that 

. f (z) = ψ(z)

zm
for all z, |z| > r1.

Proof By Definition 5.6, the point .z0 = 0 is a zero of multiplicity . m of the function 

.g(z) = f
(
1
z

)
. Then, due to Theorem 5.13, there exists a disk .Br(0) and a unique 

function .ϕ ∈ A(Br(0)), .ϕ(z) �= 0 for all .z ∈ Br(0), such that 

.g(z) = zm ϕ(z) for all z ∈ Br(0).
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Returning to the function . f, we find 

. f (z) = g
( 1

z

) = 1

zm
ϕ
( 1

z

)
for all z, |z| > r1, where r1 = 1

r
.

It remains now to denote .ψ(z) := ϕ
(
1
z

)
. �




6Laurent Series: Isolated Singularities of 
Analytic Functions 

Abstract 

In this chapter, we continue the study of power series, but already their 
generalizations, namely power series containing terms .(z − z0)

n with a negative 
integer n. These series were introduced by the French mathematician Pierre 
Laurent (1813–1854) in 1843. Laurent series are a valuable tool for studying the 
behavior of analytic functions near their isolated singularities, a classification 
of which is given here. It is noteworthy that, knowing the behavior of an 
analytic function near its singular points, one can determine its behavior in 
the entire domain, as well as calculate other characteristics associated with that 
function. As a result, it became possible to classify analytic functions according 
to their isolated singularities (Sect. 6.5). Interestingly, Laurent series have an 
equivalent relationship to Fourier series (Sect. 6.2), which have real applications 
in engineering (signal processing, spectroscopy, computer tomography, and 
many others). 

6.1 Expansion of an Analytic Function Into a Laurent Series 

It is often possible to find a series representation for a function involving both 
positive and negative powers of z. Consider, for example, the function 

. f (z) = 1

(1 − z)(z + 2)
, z ∈ Ω := {z : 1 < |z| < 2}.

It can be presented as 

. f (z) = 1

3

(
1

1 − z
+ 1

z + 2

)
, z ∈ Ω := {z : 1 < |z| < 2}.
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If .|z| > 1, then the formula for the sum of an infinite geometric progression gives 
us 

. 
1

1 − z
= −1

z
· 1

1 − 1
z

= −
+∞∑
n=0

1

zn+1
= −

+∞∑
n=1

z−n = −
−∞∑

n=−1

zn.

If .|z| < 2, then in the same way we derive 

. 
1

z + 2
= 1

2

1

1 + z
2

=
+∞∑
n=0

(−1)n

2n+1
zn.

As a result, 

.f (z) = 1

3

(+∞∑
n=0

(−1)n

2n+1
zn −

−∞∑
n=−1

zn

)
=:

+∞∑
n=−∞

cnz
n for all z ∈ Ω, (6.1) 

where

. cn =

⎧⎪⎪⎨
⎪⎪⎩

(−1)n

3 · 2n+1
, n ∈ Z, n ≥ 0;

−1

3
, n ∈ Z, n < 0.

Thus, the function f , which is analytic in . Ω , has been expanded into a series in 
integer powers of z. Such series are often called generalized power series or Laurent 
series. Let us give a rigorous definition of such a series. 

Definition 6.1 Let .z0 ∈ C and .{cn}n∈Z ⊂ C. Laurent’s series around the point . z0 is 
called the following expression: 

. (L) :
+∞∑

n=−∞
cn(z − z0)

n.

The series .(L) is called convergent at a point . z, if the functional series 

. (R) :
+∞∑
n=0

cn(z − z0)
n

and 

.(P) :
−∞∑

n=−1

cn(z − z0)
n =

+∞∑
n=1

c−n

1

(z − z0)n
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converge at . z, and the sum of the Laurent series .(L) is defined as follows: 

. 

+∞∑
n=−∞

cn(z − z0)
n :=

+∞∑
n=0

cn(z − z0)
n +

+∞∑
n=1

c−n

1

(z − z0)n
.

The series .(R) is named the regular part, and the series .(P) is named the principal 
part of the Laurent series . (L). . �

Let us determine the sets of convergence of the series .(R) and . (P). The series . (R)

is a power series, so it is convergent in the disk .{z : |z−z0| < R}, where the number 
R is determined with the formula (5.4) .

If we make the substitution .η = 1
z−z0

, then the series .(P) is reduced to 

the power series .
∑+∞

n=1 c−n ηn, and therefore the series .(P) converges in the set 
.{z : |z − z0| > r} , where .r = lim supn→+∞ n

√|c−n|. Thus,

• if .r > R, then by Definition 6.1 the series .(L) is divergent;
• if .r = R, then the series .(L) can be both convergent and divergent at points on 

the circle .{z : |z − z0| = r};
• if the inequality .r < R holds, then the series .(L) converges in the annulus . {z : r <

|z − z0| < R}. 

Definition 6.2 The annulus .A := {z : 0 ≤ r < |z − z0| < R}, the inner radius of 
which is determined by the formula 

.r = lim sup
n→+∞

n
√|c−n|, (6.2) 

and the outer radius by the formula

.R =
(

lim sup
n→+∞

n
√|cn|

)−1

(6.3) 

is called the annulus of convergence of the Laurent series .(L). . �

The following statement follows from the Cauchy–Hadamard Theorem 5.2. 

Proposition 6.1 For the Laurent series . (L) the following assertions hold: 

(1) the series (L) absolutely converges at each point of the annulus . A;
(2) the series (L) diverges at each point of the set . C \ A;
(3) the series (L) can be both convergent and divergent at points on . ∂A;
(4) for any compact set .K ⊂ A the series (L) converges uniformly on K .
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Again using Cauchy’s integral formula, as in Theorem 5.3, we prove that an 
analytic function in an annulus can be represented as a Laurent series. 

Theorem 6.1 Let .0 ≤ ρ1 < ρ2 ≤ +∞ and . Aρ1,ρ2 := {z : ρ1 < |z − z0| < ρ2},
where .z0 ∈ C. If . f is an analytic function in the annulus .Aρ1,ρ2 , then 

.f (z) =
+∞∑

n=−∞
cn(z − z0)

n for all z ∈ Aρ1,ρ2 , (6.4) 

where

.cn = 1

2πi

∫
{|z−z0|=ρ}+

f (z)

(z − z0)n+1 dz, n ∈ Z, ∀ ρ ∈ (ρ1, ρ2). (6.5) 

Proof Fix any .z ∈ Aρ1,ρ2 . Obviously, there are numbers .r1 > 0 and .R1 > 0 such 
that .ρ1 < r1 < |z − z0| < R1 < ρ2. Then .Ar1,R1 ⊂ Aρ1,ρ2 and the function 
.f ∈ A

(
Ar1,R1

)
. By Cauchy’s integral formula (Theorem 4.8) 

. f (z) = 1

2πi

∫
∂+Ar1,R1

f (ξ)

ξ − z
dξ

= 1

2πi

∫
∂+BR1 (z0)

f (ξ)

ξ − z
dξ − 1

2πi

∫
∂+Br1 (z0)

f (ξ)

ξ − z
dξ. (6.6) 

The appearance of a minus before the last integral is explained in the same way as
in the equality (4.23) .

1. For any . ξ ∈ ∂BR1(z0)

. 
|z − z0|
|ξ − z0| = |z − z0|

R1
=: q < 1.

Therefore, 

. 
1

ξ − z
= 1

ξ − z0
· 1

1 − z−z0
ξ−z0

=
+∞∑
n=0

(z − z0)
n

(ξ − z0)n+1 ,

moreover, this series converges uniformly with respect to .ξ ∈ ∂BR1(z0). This  
means that the series 

.
1

2πi

f (ξ)

(ξ − z)
=

+∞∑
n=0

1

2πi

f (ξ)

(ξ − z0)n+1 · (z − z0)
n,
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which obtained from the previous one by the multiplication with the bounded 
function . 1

2πi
f (ξ), .ξ ∈ ∂BR1(z0), converges uniformly on the same circle as 

well. Hence, this series can be integrated term by term and we obtain 

.
1

2πi

∫
∂+BR1 (z0)

f (ξ)

ξ − z
dξ =

+∞∑
n=0

cn(z − z0)
n, (6.7) 

where

.cn = 1

2πi

∫
∂+BR1 (z0)

f (ξ)

(ξ − z0)n+1
dξ, n ∈ Z, n ≥ 0. (6.8) 

2. For .ξ ∈ ∂Br1(z0) we have 

. 
|ξ − z0|
|z − z0| = r1

|z − z0| =: q1 < 1.

And therefore, 

. 
1

ξ − z
= − 1

z − z0
· 1

1 − ξ−z0
z−z0

= −
+∞∑
n=0

(ξ − z0)
n

(z − z0)n+1 ,

and this series converges uniformly on .∂Br1(z0), as well as the series 

. 
1

2πi

f (ξ)

(ξ − z)
= −

+∞∑
n=1

1

2πi
f (ξ) · (ξ − z0)

n−1 · (z − z0)
−n;

here we shifted the summation index. Integrating this equality term by term and 
changing the summation index to the opposite, we get 

. − 1

2πi

∫
∂+Br1 (z0)

f (ξ

ξ − z
dξ =

−∞∑
n=−1

cn(z − z0)
n, (6.9) 

where

.cn = 1

2πi

∫
∂+Br1 (z0)

f (ξ)

(ξ − z0)n+1 dξ, n ∈ Z, n < 0. (6.10) 

From (6.6), (6.7) and (6.9) follows the representation (6.4). Based on Theo-
rem 4.5, the equalities (6.8) and (6.10) imply (6.5).


�
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Just as the Cauchy inequalities were proved for the coefficients of power series, 
we prove the Cauchy inequalities for the coefficients of Laurent series. 

Corollary 6.1 Let .f ∈ A(Aρ1,ρ2) and 

. ∃ ρ0 ∈ (ρ1, ρ2), ∃ M > 0 such that max
z∈{ξ : |ξ−z0|=ρ0}

|f (z)| ≤ M.

Then, .|cn| ≤ M

ρn
0

for all .n ∈ Z. 

In general, the integral formulas (6.5) are not practical for calculating Laurent 
coefficients. Instead, various algebraic techniques are used, such as those described 
at the beginning of this section. However, to justify the fact that the result is a 
Laurent series, we need a theorem on the uniqueness of the expansion, which is 
proved below. 

Theorem 6.2 Let 

. f (z) =
+∞∑

n=−∞
cn(z − z0)

n for all z ∈ A = {z : 0 ≤ r < |z − z0| < R}.

Then f is an analytic function in the annulus A and the coefficients are 
determined with the formulas 

.cn = 1

2πi

∫
{|ξ−a|=ρ}+

f (ξ)

(ξ − z0)n+1
dξ, n ∈ Z, (6.11) 

where . ρ is an arbitrary number from the interval . (r, R).

Proof The analyticity of f in the annulus A follows from the definition of the sum 
of a Laurent series (see Definition 6.1) and the theorem on the analyticity of the sum 
of a power series (see Theorem 5.6). 

Take any number .ρ ∈ (r, R). Then, according to the fourth item of Proposi-
tion 6.1, the series 

. f (z) =
+∞∑

n=−∞
cn(z − z0)

n

converges uniformly on the circle .{z : |z − z0| = ρ}. 
Multiplying this series by . 1

(z−z0)
m+1 , where m is an arbitrary integer, we obtain 

the series 

.
f (z)

(z − a)m+1
=

+∞∑
n=−∞

cn(z − z0)
n−m−1,
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that converges uniformly on the same circle. Integrating over the positively oriented 
circle and taking into account the results of Example 4.3, we get 

. 

∫
{|z−z0|=ρ}+

f (z)

(z − z0)m+1 dz =
+∞∑

n=−∞
cn

∫
{|z−z0|=ρ}+

(z − z0)
n−m−1 dz = cm2πi

from which the formulas (6.11) follow. 
�

Based on this theorem we can state that the expansion (6.1) is indeed a Laurent
series for the function .

1
(1−z)(z+2)

in the annulus .{z : 1 < |z| < 2}. 

6.2 Relationship Between Laurent Series and Fourier Series 

Let .ϕ ∈ C1(R) and . ϕ be a .2π -periodic function. It is known from calculus that such 
a function can be expanded into a Fourier series 

.ϕ(t) = a0

2
+

+∞∑
n=1

(
an cos (nt) + bn sin (nt)

)
, t ∈ R, (6.12) 

moreover, this series converges uniformly on . R, and its coefficients are determined 
by the formulas 

. an = 1

π

∫ π

−π

ϕ(t) cos (nt) dt, bn = 1

π

∫ π

−π

ϕ(t) sin (nt) dt.

By using the identities 

. cos (nt) = eint + e−int

2
and sin (nt) = eint − e−int

2i
, (6.13) 

we re-write the series (6.12) as follows  

.ϕ(t) = a0

2
+

+∞∑
n=1

[
an − ibn

2
eint + an + ibn

2
e−int

]
=

+∞∑
n=−∞

cne
int , (6.14) 

where

.cn =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

an − ibn

2
= 1

2π

π∫
−π

ϕ(t)e−int dt, n ∈ Z, n ≥ 0;

a−n + ib−n

2
= 1

2π

π∫
−π

ϕ(t)e−int dt, n ∈ Z, n < 0.
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The series (6.14) is the Fourier series (6.12) written in complex form. 
Let us introduce a new variable .z = eit , .t ∈ [−π, π ], in (6.14). Then .t = −i ln z. 

Denoting .f (z) := ϕ(−i ln z), we get 

. f (z) =
+∞∑

n=−∞
cnz

n for all z, |z| = 1,

where 

. cn = 1

2π

π∫
−π

f (eit )e−int dt = 1

2πi

∫
{|z|=1}+

f (z)

zn+1
dz.

This definition of the coefficients .{cn} is consistent with the formulas (6.5) for  
Laurent coefficients. So, we can make the following conclusion. 

The Fourier series of a function . ϕ written in complex form is the Laurent 
series of the function .f (z) := ϕ(−i ln z) on the unit circle centered at 
the point .z = 0. Conversely, the Laurent series of any analytic function f 
restricted to the unit circle (if the convergence annulus contains this circle) is 
the Fourier series of the function .ϕ(t) := f (eit ), . t ∈ [−π, π ].

Sometimes a Fourier series expansion is easier to obtain through a Laurent series. 
Consider the following example. 

Example 6.1 Expand the function 

. ϕ(t) = a sin t

1 − 2a cos t + a2 , t ∈ R, (a ∈ (−1, 1))

into a Fourier series. 

Solution Obviously, . ϕ is .2π -periodic. Using (6.13) for .n = 1, we obtain 

. ϕ(t) = 1

2i

a(eit − e−it )

1 − a(eit + e−it ) + a2
.

Introducing a new variable .z = eit , .t ∈ [−π, π ], we deduce 

.f (z) := ϕ(−i ln z) = 1

2i

a
(
z − 1

z

)

1 − a
(
z + 1

z

)
+ a2

= 1

2i

(
1

1 − az
− 1

1 − a/z

)
.
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Using the formula for the sum of an infinite geometric progression, we get 

. 
1

1 − az
=

+∞∑
n=0

anzn for |z| <
1

|a| , and
1

1 − a/z
=

+∞∑
n=0

an

zn
for |z| > |a|.

Hence, the Laurent series for f looks as follows 

. f (z) =
+∞∑
n=0

an 1

2i
(zn − z−n) for all z, |a| < |z| <

1

|a| .

Its restriction to the unit circle gives the Fourier series 

. ϕ(t) = f (eit ) =
+∞∑
n=0

an eint − e−int

2i
=

+∞∑
n=0

an sin (nt), t ∈ [−π, π ].

6.3 Isolated Singularities of Analytic Functions 

It is well known that discontinuities of a real-valued function of a single real variable 
can be classified as removable, jump, infinite, or mixed. In this section, we give a 
classification of isolated singular points of analytic functions, show how one can 
characterize their type using Laurent series, and study the behavior of analytic 
functions near their singularities. 

Definition 6.3 A point .z0 ∈ C is a called an isolated singular point (or isolated 
singularity) of an analytic function . f, if there exists a number .R > 0 such that . f is 
analytic in the punctured disk 

. B̆R(z0) :=
{ {z : 0 < |z − z0| < R}, if z0 
= ∞;

{z : |z| > R}, if z0 = ∞;

Depending on the behavior of the function . f in a punctured neighborhood of the 
point . z0, three types of isolated singularities are distinguished. 

Definition 6.4 (Classification of Singularities) An isolated singularity . z0 of an 
analytic function . f is

• a removable singularity if there exists a finite .limz→z0 f (z);
• a pole if .limz→z0 f (z) = ∞;
• an essential singularity if the limit of f as .z → z0 does not exist.
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Example 6.2 Consider examples of different types of isolated singular points:

• the point .z0 = 0 is removable for .f (z) = sin z

z
since . lim

z→0
f (z) = 1;

• the point .z0 = −1 is a pole for .f (z) = z

1 + z
since . lim

z→−1
f (z) = ∞;

• the point .z0 = ∞ is essential for . ez. Indeed, since 

. lim
x→+∞ ex = +∞ and lim

x→−∞ ex = 0,

the limit .limz→∞ ez does not exist. 

Important 
Note that an analytic function can also have non-isolated singular points. For 
example, the function 

.f (z) =
(

sin
π

z

)−1
(6.15) 

has poles at the points .
{
an = 1

n

}
n∈Z\{0}, whose limit point is 0. Thus, the 

point . 0 is a non-isolated singular point of f . 

Next, we prove theorems showing the connection between the type of an isolated 
singular point of f and the form of the Laurent series for f around that point. 

Theorem 6.3 Let .f ∈ A(B̆R(z0)), .z0 ∈ C. 
The point . z0 is removable for the function f if and only if the Laurent series of 

f around . z0 has no principal part, i.e., 

.f (z) =
+∞∑
n=0

cn(z − z0)
n for all z ∈ B̆R(z0). (6.16) 

Proof 

Necessity Theorem 6.1 implies that f expands into a Laurent series in . B̆R(z0),

whose coefficients are determined by the formulas (6.5) .
If .z0 ∈ C is removable for . f, then there exists finite .limz→z0 f (z), and this means 

that . f is bounded in a punctured neighborhood of the point . z0, i.e., 

.∃ R0 ∈ (0, R) ∃ M > 0 ∀ z ∈ B̆R0(z0) : |f (z)| ≤ M.
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In virtue of Corollary 6.1, the coefficients of this Laurent series satisfy the 
inequalities 

. |cn| ≤ M

ρn

for all .ρ ∈ (0, R0) and . n ∈ Z. But if . n is negative, then 

. |cn| ≤ M

ρn
→ 0 as ρ → 0.

Hence, .cn = 0 for .n ∈ Z, n < 0. 

Sufficiency If the Laurent series of f around . z0 has no principal part (see (6.16) ),
then it is a power series and its sum is an analytic function in .BR(z0). This means 
that . lim

z→z0
f (z) = c0.


�

The next corollary follows directly from the proof of Theorem 6.3. 

Corollary 6.2 A point .z0 ∈ C is removable for an analytic function f if and only if 
. f is bounded in a punctured neighborhood of . z0. 

In addition, the function f can be extended by continuity at its removable 
singular point . z0, namely we set .f (z0) := limz→z0 f (z), and as a result, f will 
be analytic in the whole disk .Br(z0). 

Example 6.3 From the first item of Example 6.2 and Corollary 6.2 it follows that 
the function 

.f (z) =
⎧⎨
⎩

sin z

z
, if z 
= 0;

1, if z = 0,

(6.17) 

is analytic in . C. In addition, its Laurent series is 

. f (z) =
+∞∑
n=1

(−1)n−1

(2n − 1)! z2n−2 for all z ∈ C.

Theorem 6.4 (About a Pole) Let .f ∈ A(B̆R(z0)) and .z0 ∈ C. 
The point . z0 is a pole for the function f if and only if the principal part of the 

Laurent series of f around . z0 contains a finite number of nonzero terms, i.e., there 
exists a unique positive integer N such that 

.f (z) =
+∞∑

n=−N

cn (z − z0)
n for all z ∈ B̆R(z0), and c−N 
= 0. (6.18)
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Proof 

Necessity We get from Theorem 6.1 that f is expanded into a Laurent series in 
.B̆R(z0), whose coefficients are determined by the formulas (6.5) .

If . z0 is a pole, then .limz→z0 f (z) = ∞, and this means that there exists a number 
.r0 ∈ (0, R) such that .f (z) 
= 0 for all .z ∈ B̆r0(z0). Hence, 

. 
1

f
=: ϕ ∈ A(B̆r0(z0)) and lim

z→z0
ϕ(z) = 0.

Thus, . z0 is a removable point for the function . ϕ, which can be extended by 
continuity at the point . z0, and as a result, we get the analytic function in the whole 
disk .Br0(z0); in addition, .ϕ(z0) = 0 and .ϕ(z) 
= 0 for . z ∈ B̆r0(z0).

From Theorem 5.13 (about a zero of an analytic function) it follows that there 
exists a unique number .N ∈ N and a unique function .ψ ∈ A(Br0(z0)) such that 

.ϕ(z) = (z − z0)
Nψ(z) and ψ(z) 
= 0 for all z ∈ Br0(z0). (6.19) 

Now consider the function . 1
ψ

that is also analytic in .Br0(z0), and therefore, by 
Theorem 5.3, it can be expanded into the power series 

.
1

ψ(z)
=

+∞∑
n=0

bn(z − a)n for all z ∈ Br0(z0), and b0 
= 0. (6.20) 

From (6.19) and (6.20) we have that 

.f (z) = 1

(z − z0)N

1

ψ(z)
=

+∞∑
n=−N

cn(z − z0)
n, z ∈ B̆r0(z0), (6.21) 

where .cn = bn+N, c−N = b0 
= 0. Due to the uniqueness of the expansion into a 
Laurent series (Theorem 6.2), the representation (6.21) holds in .B̆R(z0). 

Sufficiency Let the Laurent series of f around . z0 be of the form (6.18) . Then

. ϕ(z) := (z − z0)
Nf (z) = c−N + c−N+1(z − z0) + . . . , z ∈ B̆R(z0).

By Theorem 6.3, this means that . z0 is removable for the function . ϕ and 
.limz→z0 ϕ(z) = c−N 
= 0. Thus, 

. lim
z→z0

f (z) = lim
z→z0

ϕ(z)

(z − z0)N
= ∞,

that is, the point . z0 is a pole of the function f .

�
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From the proof of Theorem 6.4 it follows the corollary. 

Corollary 6.3 The point .z0 ∈ C is a pole of an analytic function . f in . B̆R(z0)

if and only if there exists a unique positive integer N and a unique function . ϕ ∈
A(BR(z0)), .ϕ 
= 0 in .BR(z0), such that 

.f (z) = ϕ(z)

(z − z0)N
for all z ∈ B̆R(z0). (6.22) 

Definition 6.5 The number N in (6.22) is named the order (multiplicity) of the pole 
. z0. 

Comparing Corollary 6.3 and Theorem 5.13, we get the statement. 

Corollary 6.4 A point .z0 ∈ C is a pole of order N of an analytic function . f if and 
only if . z0 is a zero of order N for the function . 1

f
. 

Remark 6.1 Simple zero and simple pole are terms used for zeroes and poles of 
order .N = 1. 

Example 6.4 The function .
sin z

z4 has a pole of order 3 at the point .z0 = 0. Indeed, 

it can be represented as 

. 
sin z

z4 = f (z)

z3 for all z ∈ B̆ π
2
(0),

where the analytic function f is determined in (6.17) and .f 
= 0 in . Bπ
2
(0). In  

addition, its Laurent series is of the form 

. 
sin z

z4 = 1

z3 − 1

6

1

z︸ ︷︷ ︸
the principal part

+
+∞∑
n=3

(−1)n−1

(2n − 1)! z2n−5 for all z ∈ C \ {0}.

Theorem 6.3 and Theorem 6.4 provide the following theorem. 

Theorem 6.5 (About an Essential Singularity) Let .f ∈ A(B̆R(z0)) and .z0 ∈ C. 
The point . z0 is essential for the function f if and only if the principal part of the 
Laurent series of f around . z0 contains infinitely many nonzero terms.
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Example 6.5 Clearly, the point .z0 = 0 is essential for .e
1
z .(limx→0− e

1
x = 0 and 

.limx→0+ e
1
x = +∞). Its Laurent series around 0 is of the form 

.e
1
z =

+∞∑
n=1

1

n!
1

zn

︸ ︷︷ ︸
the principal part

+ 1 for all z ∈ C \ {0}. (6.23) 

Isolated Singularity at Infinity 

Theorems 6.3, 6.4, 6.5 need to be clarified when .z0 = ∞. Let .f ∈ A(B̆R(∞)). 

Then the function .ϕ(ω) := f
(

1
ω

)
is analytic in .B̆ 1

R
(0) and expands there into a 

Laurent series 

. ϕ(ω) =
+∞∑

n=−∞
bn ωn =

−1∑
n=−∞

bn ωn

︸ ︷︷ ︸
the principal part

+
+∞∑
n=0

bn ωn

︸ ︷︷ ︸
the regular part

, ω ∈ B̆ 1
R
(0).

Returning to the variable .z = 1
ω
, we get the Laurent series for . f around . ∞ :

. f (z) = ϕ

(
1

z

)
=

−1∑
n=−∞

bn

1

zn

︸ ︷︷ ︸
the principal part

+
+∞∑
n=0

bn

1

zn

︸ ︷︷ ︸
the regular part

=
+∞∑
n=1

b−n zn

︸ ︷︷ ︸
the principal part

+
0∑

n=−∞
b−n zn

︸ ︷︷ ︸
the regular part

=
+∞∑

n=−∞
cnz

n, (6.24) 

where .cn = b−n. But now, the series .
∑+∞

n=1 cnz
n with positive powers of z is 

principal part of the Laurent series of f in .B̆R(∞), and .
∑0

n=−∞ cnz
n is the regular 

one. 

Summing up, we can state that the principal part of a Laurent series contains 
terms that become unbounded when approaching the isolated singularity (it 
can be both finite and the point at infinity).
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Therefore, the Theorems 6.3, 6.4 and 6.5 are reformulated with precision up to 
the definition of the principal part of a Laurent series around . ∞. For example, 
the point . ∞ is a pole of an analytic function . f if and only if the principal part of its 
Laurent series around . ∞ contains a finite number of nonzero terms. 

Example 6.6 Let us clarify the type of isolated singular points of the function . e
1
z . 

It is easy to see that these are the points 0 and . ∞. In Example 6.5 it was shown 

that 0 is an essential singularity for . e
1
z . The series (6.23) is also the Laurent series

of . e
1
z around . ∞. But now the principal part of the Laurent series (6.23) around

. ∞ is absent, so . ∞ is removable for the function . e
1
z . It is also easy to check that 

.limz→∞ e
1
z = 1. 

6.4 Behavior of an Analytic Function Near Its Essential 
Singularity 

The behavior of .f (z) is clear as z approaches a removable singularity or a pole of 
f . But the behavior of f near its essential singularity is “horrible” and needs further 
study. 

Theorem 6.6 (Casorati–Sokhotskyi–Weierstrass Theorem) Let . f ∈ A(B̆R(z0))

and .z0 ∈ C. If  . z0 is essential for . f, then for every .α ∈ C there exists a sequence 
.{zn}n∈N such that 

. lim
n→+∞ zn = z0 and lim

n→+∞ f (zn) = α,

i.e., the function f approaches any complex number, including . ∞, in any neighbor-
hood of . z0. 

Proof Let first .α = ∞. Since the function f cannot be bounded in an arbitrary 
punctured disk centered at . z0 (see Corollary 6.2), then there exists a point 

. z1 ∈ B̆R(z0) such that |f (z1)| > 1.

We use the same arguments to justify the existence of a point 

. z2 ∈ B̆ R
2
(z0) at which |f (z2)| > 2.

Continuing in the same way, we find .zn ∈ B̆ R
n
(z0) at which .|f (zn)| > n, .n ∈ N. 

Thus, 

. lim
n→+∞ zn = z0 and lim

n→+∞ f (zn) = ∞. (6.25)
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Now let .α 
= ∞. Then two cases are possible, namely 

1. for any .n ∈ N there is a point .zn ∈ B̆ 1
n
(z0) such that .f (zn) = α, but this is what 

needs to be proven; 
2. otherwise, there is a number .r ∈ (0, R) such that .f (z) 
= α for all .z ∈ B̆r (z0). 

Thus, we can determine the analytic function 

. ϕ(z) := 1

f (z) − α
, z ∈ B̆r (z0),

for which the point . z0 is also an essential singularity. Then, according to the first 
item of the proof, there exists a sequence .{zn}n∈N such that the limits (6.25) hold
(the second one for the function . ϕ). But then also 

. lim
n→+∞ f (zn) = α + lim

n→+∞
1

ϕ(zn)
= α.

The theorem is proved. 
�

Exercise 6.1 Prove the Casorati–Sokhotskyi–Weierstrass theorem in the case when 
. z0 = ∞.

Exercise 6.2 Prove the Casorati–Sokhotskyi–Weierstrass theorem in the case when 
. z0 is a limit point of the poles, i.e., . z0 is a non-isolated singular point (see, e.g., the 
function (6.15) ).

Let us present, without proof, a theorem that additionally characterizes the 
sophisticated behavior of an analytic function in a punctured neighborhood of an 
essential singular point (in fact, the first case from the proof of Theorem 6.6 takes 
place). 

Theorem 6.7 (Great Picard’s Theorem) Let .z0 ∈ C be an essential singular point 
of an analytic function f . Then, in an arbitrary punctured neighborhood of . z0, the  
function f takes an infinitely times arbitrary complex number, except perhaps one. 

We demonstrate the Great Picard Theorem using the following example. 

Example 6.7 The point . ∞ is essential for the function . ez (see Example 6.2). It is 
easy to verify that for every complex number . A 
= 0

. ez = A ⇐⇒ zk = ln |A| + i(arg A + 2πk), k ∈ Z.

Thus, .limk→+∞ zk = ∞ and .ezk = A for all .k ∈ Z.
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6.5 Classification of Analytic Functions with Respect to Their 
Isolated Singularities: Theorem on a Meromorphic 
Function 

Obviously, the point at infinity is an isolated singular point for any entire function. 
It turns out that by knowing the type of singularity at . ∞ for an entire function, one 
can determine its form and many other properties. 

Lemma 6.1 If . ∞ is removable for an entire function . f, then f is constant. 

Proof By Theorem 5.3, the function f can be represented as the sum of the power 
series centered at zero: 

.f (z) =
+∞∑
n=0

cn zn for all z ∈ C. (6.26) 

Due to the uniqueness of the Laurent series expansion (Theorem 6.2), the series 
(6.26) is also the Laurent series of f around . ∞ and .

∑+∞
n=1 cn zn is its principal part. 

Since . ∞ is removable for . f, the principal part must be absent, i.e., .cn = 0 for all 
.n ∈ N. Thus, .f ≡ c0. 
�

Lemma 6.2 If . ∞ is a pole for an entire function . f, then f is a polynomial. 

Proof Since . ∞ is a pole for . f, the principal part of the Laurent series (6.26) of f

around . ∞ must contain a finite number of nonzero terms, i.e., 

. f (z) = c0 + c1z + c2z
2 + . . . + cmzm, cm 
= 0 and cn = 0 for all n > m.

The lemma is proved. 
�

Definition 6.6 An entire function is called a transcendental entire function if . ∞ is 
its essential singular point. 

Example 6.8 Obviously, the following functions are entire transcendental func-
tions: .ez, .sin z, .cos z, .sinh z, .cosh z. 

From Liouville’s Theorem 5.4 it follows that the image of an entire non-
constant function must be unbounded. Based on the Great Picard Theorem 6.7 and 
the fundamental theorem of algebra (Theorem 5.5), the following more stronger 
statement becomes obvious. 

Theorem 6.8 (Little Picard’s Theorem) The domain of values of a non-constant 
entire function is the whole complex plane, except perhaps for only one point.
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Exercise 6.3 Give a reasoned answer to the question: 
Is there a non-constant analytic function f defined on .C \ {i} which maps . C \ {i}
into . {z : 0 < |z| < 1}?

Now consider an interesting class of analytic functions whose only isolated 
singularities are poles. 

Definition 6.7 A function f is said to be meromorphic in a domain . Ω if f is 
analytic in . Ω except for the poles. 

Clearly the class of meromorphic functions includes both analytic functions (the 
set of poles is empty) and rational functions (a ratio of two polynomials). 

Remark 6.2 Taking into account that poles are isolated singularities, it follows 
from Definition 6.7 that

• the set of poles of a meromorphic function is at most countable;
• if the set of poles of a meromorphic function in . Ω is countable, then the 

limit points of this set lie on the boundary of .Ω;
• the limit point of poles of a meromorphic function in . C can only be .∞;
• a meromorphic function in . C has a finite number of poles, and . ∞ is either 

its removable point or a pole. 

Example 6.9 Obviously, the functions 

. tan(z) and cot(z)

are meromorphic in the complex plane . C, each of which has a countable set of 
poles. The function .f (z) = (

sin π
z

)−1 is not meromorphic in . C, since the origin is 
its non-isolated singularity (see (6.15) ).

Similar as for entire functions, one can sometimes establish the form of a 
meromorphic function, knowing the structure of the set of its poles. 

Theorem 6.9 If f is a meromorphic function in . C, then f is rational. 

Proof It follows from the theorem condition and the fourth point of Remark 6.2 that 
f has a finite number of poles .{a1, . . . , an} and . ∞ is either a removable point or a 
pole for it.
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By Theorem 6.4, the principal part of the Laurent series of f around the pole . ak

has a finite number of nonzero terms; we denote this principal part as follows 

. pk(z) := c
(k)
−Nk

(z − ak)Nk
+ . . . + c

(k)
−1

(z − ak)
, c

(k)
−Nk


= 0.

If . ∞ is a pole, then we introduce the following notation for of the principal part of 
the Laurent series of f around . ∞: 

. p0(z) := c1z + c2z
2 + . . . + cNzN, cN 
= 0.

Now consider the function .ϕ := f − ∑n
k=0 pn. Since the principal part of 

the Laurent series of . ϕ around each point of the set .{a1, . . . , an,∞} is absent, 
Theorem 6.3 implies that the points .a1, . . . , an,∞ are removable for . ϕ. Extending 
the function . ϕ by continuity at these points (see Corollary 6.2), we obtain an analytic 
function in . C. But then it follows from Lemma 6.1 that .ϕ ≡ c0, whence 

.f (z) = c0 + c1z + . . . + cNzN +
n∑

k=1

(
c
(k)
−Nk

(z − ak)Nk
+ . . . + c

(k)
−1

(z − ak)

)
, (6.27) 

i.e., f is rational. 
�

Remark 6.3 The formula (6.27) obtained in the proof shows that an arbitrary
rational function can be decomposed into its integer part (polynomial) and the sum
of simple fractions.

Now we complete the picture of the behavior of a meromorphic function with a 
theorem, which is given here without proof. 

Theorem 6.10 (Little Picard’s Theorem for Meromorphic Functions) A non-
constant meromorphic function f in . C attains every complex number except maybe 
one or two. 

A number that is not assumed by a meromorphic function is called a Picard 
exceptional value for that function. 

Example 6.10 It is easy to check that the Picard exceptional values of the mero-
morphic function .tan z are the numbers . ±i. 

Zero is just one Picard exceptional value of the meromorphic function . 1
1−z

. 

In Sect. 7.6 we will show that every meromorphic function in . C is a ratio of two 
entire functions.



7Residue Calculus 

Abstract 

Just as a person’s character is manifested in extreme situations, so the properties 
of analytic functions are determined by their behavior in isolated singularities. In 
this chapter, we will illustrate this claim with examples of integral calculations. 
It turns out that in order to calculate the integral of an analytic function along a 
curve, it is necessary to determine some values, called residues, of that function 
at its singularities. The reader can appreciate both the power and the simplicity 
of the residue theory developed by Cauchy for calculating complicated integrals, 
including integrals of real-valued functions. This theory helps to deduce amazing 
formulas both for the decomposition of a meromorphic function, e.g. .cot z, into 
an infinite sum of simple fractions that are responsible for its poles, and for 
the factorization of an entire function, e.g. .sin z, into an infinite product of 
factors that are responsible for its zeros. The theory also supplies a ready-made 
framework for counting zeros and poles of a given meromorphic function or 
zeros of an analytic function, in particular, we prove the argument principle and 
Rouché’s theorem. 

7.1 Cauchy’s Residue Theorem 

One of the main theorems of complex analysis is proved here, which opens the door 
to the calculation of integrals of various kinds. 

Definition 7.1 Let . f be an analytic function in a punctured disk .B̆R(a), where 
.a ∈ C. The residue of . f at the point . a is the number 

. Res
z=a

f (z) := 1

2πi

∫

{|z−a|=ρ}+
f (z) dz, (7.1) 
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where . ρ is an arbitrary number from the interval .(0, R). 

Definition 7.2 Let .f ∈ A(B̆R(∞)). The residue of . f at . ∞ is the number 

. Res
z=∞ f (z) := − 1

2πi

∫

{|z|=ρ}+
f (z) dz, (7.2) 

where . ρ is an arbitrary number from the interval .(R,+∞). 

Remark 7.1 The integrals (7.1) and (7.2) are independent of . ρ due to Cauchy’s 
integral Theorem 4.5. By this theorem, .Resz=a g(z) = 0 if g is an analytic function 
in a. Since integration is a linear operation, finding the residue is also a linear 
operation: 

. Res
z=a

(
λ f (z) + μg(z)

) = λ Res
z=a

f (z) + μ Res
z=a

g(z) for all λ, μ ∈ C.

Theorem 7.1 (Cauchy’s Residue Theorem) Let

• the conditions of Theorem 4.8 be satisfied for a bounded domain . Ω ,
• a function f be analytic in the closure of . Ω except for a finite number of points 

.a1, . . . , ap from .Ω . (we denote this as follows: .f ∈ A(Ω \ {a1, ..., ap}) ). 

Then 

. 

∫
∂+Ω

f (z) dz = 2πi

p∑
k=1

Res
z=ak

f (z).

Proof There is a positive number r such that for all . k ∈ {1, . . . , p}

. Br(ak) ⊂ Ω, and Br(ak) ∩ Br(am) = ∅ for k �= m.

Denote by 

. Ωr := Ω \
p⋃

k=1

Br(ak).

By virtue of the theorem conditions, the function .f ∈ A(Ωr). Then it follows 
from Corollary 4.5 that .

∫
∂+Ωr

f (z) dz = 0 or, taking into account that 

.

∫
∂+Ωr

f (z) dz =
∫

∂+Ω

f (z) dz −
p∑

k=1

∫
∂+Br(ak)

f (z) dz,
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we get 

. 

∫
∂+Ω

f (z) dz =
p∑

k=1

∫
∂+Br(ak)

f (z) dz
by (7.1) = 2πi

p∑
k=1

Res
z=ak

f (z).

The theorem is proved. �	

Theorem 7.2 (On the Full Sum of Residues) Let a function f be analytic in . C
except for a finite number of points .{a1, a2, . . . , ap}, i.e., 
.f ∈ A(C\{a1, a2, . . . , ap}). Then 

. 

p∑
k=1

Res
z=ak

f (z) + Res
z=∞ f (z) = 0.

Proof It is clear that one can pick a positive number R such that .ak ∈ BR(0) for all 
.k ∈ {1, . . . , p}. According to the previous theorem, 

. 

∫
∂+BR(0)

f (z) dz = 2πi

p∑
k=1

Res
z=ak

f (z),

or 

. 

p∑
k=1

Res
z=ak

f (z) − 1

2πi

∫
∂+BR(0)

f (z) dz = 0,

from where, remembering Definition 7.2, we have  

. 

p∑
k=1

Res
z=ak

f (z) + Res
z=∞ f (z) = 0.

�	

7.2 Formulas for Calculating Residues 

To apply the theorems from the previous section, we need to be able to calculate 
residues. Below we derive the main formulas. 

1. Let .f ∈ A(B̆R(a)) and .a ∈ C. According to Theorem 6.1, the function f 
expands into a Laurent series in .B̆R(a), whose coefficients .{cn}n∈Z are deter-
mined by the formulas (6.5). Recalling Definition 7.1, we conclude that 

. Res
z=a

f (z) = c−1. (7.3)
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2. Let .f ∈ A(B̆R(∞)). The coefficients of the Laurent series of f in .B̆R(∞) are 
determined as follows 

. cn = 1

2πi

∫
{|z|=ρ}+

f (z)

zn+1
dz, n ∈ Z, ∀ρ ∈ (R,+∞).

Based on Definition 7.2, we conclude that 

. Res
z=∞ f (z) = −c−1. (7.4) 

3. Let .f ∈ A(B̆R(a)) and . a ∈ C. If . a is removable for the function f , then the 
principal part of the Laurent series of f around a is absent, i.e., .cn = 0 for all 
negative integer n. Thus, due to (7.3) we have . Resz=a f (z) = 0.

Important 
If . ∞ is a removable singular point of f , then it cannot be asserted that 
.Resz=∞ f (z) = 0, because the coefficient .c−1 is not included in the principal 
part of the Laurent series of f around . ∞ (see Sect. 6.3). 

But if . ∞ is a zero of order m for f (see Theorem 5.15) and .m ≥ 2, then 
.Resz=∞ f (z) = 0. 

4. Let .f ∈ A(B̆R(a)), .a ∈ C, and the point . a be a pole of order m for f ; . m ≥ 2. In  
this case, in virtue of Theorem 6.4 the Laurent series of f around a has the form 

. f (z) = c−m

(z − a)m
+ . . . + c−1

z − a
+

+∞∑
n=0

cn(z − a)n, z ∈ B̆R(a).

Multiplying this equality by .(z − a)m, we get 

. (z − a)mf (z) = c−m + c−m(z − a) + . . . + c−1(z − a)m−1 +
+∞∑
n=0

cn(z − a)n+m.

Then differentiating the previous equality .(m − 1) times, we obtain 

.
dm−1

dzm−1

(
(z−a)mf (z)

)
= (m−1)! c−1+

+∞∑
n=0

(n + m)!
(n + 1)! cn (z−a)n+1, z ∈ B̆R(a).
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Passing here to the limit as .z → a, we find the coefficient . c−1. Taking (7.3) into  
account, we conclude that the residue of . f at the mth order pole . a is calculated 
by the formula 

. Res
z=a

f (z) = 1

(m − 1)! lim
z→a

dm−1

dzm−1

(
(z − a)mf (z)

)
. (7.5) 

Example 7.1 By Corollary 6.3, the point 1 is a pole of order 2 for the function 

. f (z) = cos 2z

(z − 1)2 .

Using (7.5) with .m = 2, we obtain 

. Res
z=1

f (z) = lim
z→1

d

dz

(
(z − 1)2f (z)

)
= lim

z→1

d

dz

(
cos 2z

)
= −2 sin 2.

5. If .a ∈ C is a simple pole of f , then the Laurent series of f is as follows 

. f (z) = c−1

z − a
+

+∞∑
n=0

cn(z − a)n, z ∈ B̆R(a).

Finding the coefficient .c−1 from this equality, we have 

. Res
z=a

f (z) = lim
z→a

(z − a)f (z). (7.6) 

It should be noted that the formula (7.6) coincides with (7.5) for .m = 1. 
6. Let 

. f (z) = ψ(z)

ϕ(z)
, z ∈ B̆R(a),

where the functions . ϕ and . ψ are analytic in the disk .BR(a), the point .a ∈ C is a 
simple zero of . ϕ and .ψ(a) �= 0. Then, obviously, the point a is a simple pole of 
the function f . Applying the formula (7.6), we find 

. Res
z=a

f (z) = lim
z→a

(z − a)
ψ(z)

ϕ(z)
= lim

z→a

ψ(z)

ϕ(z)−ϕ(a)
z−a

= ψ(a)

ϕ′(a)
. (7.7)
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Example 7.2 The function .cot z = cos z
sin z

has isolated singularities at the points 
.zk = πk, .k ∈ Z. By Corollary 6.3 these points are simple poles since for each 
.k ∈ Z the representation 

. cot z = Ψ (z)

z − πk
, z ∈ B̆ π

2
(πk),

holds, where the function 

. Ψ (z) =
{

(−1)k cos z · z−πk
sin(z−πk)

, if z ∈ B̆ π
2
(πk);

1, if z = πk,

is analytic in the disk .Bπ
2
(πk) and is not equal to zero there (see Example 6.3). 

By using (7.7) , we have

. Res
z=πk

cot z = cos πk

(sin z)′|z=πk

= 1 for all k ∈ Z. (7.8) 

7. Let .f ∈ A(B̆R(∞)) and . ∞ be a pole of order m for f . Then the Laurent series 
of the function f around . ∞ is given by 

. f (z) =
0∑

n=−∞
cnz

n + c1z + ... + cmzm︸ ︷︷ ︸
the principal part

, z ∈ B̆R(∞)

(see Sect. 6.3). Consider the function 

. ϕ(z) = f
( 1

z

) =
−2∑

n=−∞
cn z−n + c−1 z + c0 + c1

z
+ ... + cm

zm
, z ∈ B̆ 1

R
(0).

Similarly, as in the fourth item above, we find the coefficient . c−1: 

. lim
z→0

dm+1

dzm+1

(
zmϕ(z)

) = (m + 1)! c−1.

Considering the formula (7.4) , we get

. Res
z=∞ f (z) = − 1

(m + 1)! lim
z→0

dm+1

dzm+1

(
zmf

( 1
z

))
. (7.9)
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Example 7.3 Consider the function 

.f (z) = 2

z
+ 1 + z2 (7.10) 

for which . ∞ is a pole of order 2. 
Due to Theorem 6.2 (on the uniqueness of a Laurent expansion), the right-

hand side of (7.10) is the Laurent series of f around .∞, whose principal part 
equals . z2, and the coefficient .c−1 = 2. Therefore, by using (7.4) , we get

. Res
z=∞ f (z) = −2.

The formula (7.9) gives the same result: 

. Res
z=∞ f (z) = − 1

3! lim
z→0

d3

dz3

(
z2(2z + 1 + 1

z2

))

= − 1

3! lim
z→0

d3

dz3

(
2z3 + z2 + 1

)
= −2.

8. If an analytic function f is even and the points 0 and . ∞ are its isolated singular 
points, then 

. Res
z=0

f (z) = 0 and Res
z=∞ f (z) = 0.

Indeed, if we consider, for example, the point 0, then for the function f the 
following representations hold: 

. f (z) =
+∞∑

n=−∞
cn zn and f (−z) =

+∞∑
n=−∞

cn (−z)n, z ∈ B̆R(0),

wherefrom, taking into account the evenness of . f, we get 

.0 =
+∞∑

k=−∞
c2k+1 z2k+1, z ∈ B̆R(0). (7.11) 

By Theorem 6.2, we get from (7.11) that .c2k+1 = 0 for all .k ∈ Z; so .c−1 = 0.
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7.3 Methods for Calculating Integrals 

The purpose of this section is to present a collection of methods and examples that 
can be used to calculate various types of integrals, including improper real integrals 
that often cannot be calculated using methods of real analysis. 

Integrals Over Closed Curves 

When calculating integrals over closed curves, Cauchy’s residue Theorems 7.1 and 
7.2 (on the full sum of residues) are used. 

Example 7.4 Compute .
∫

{|z|=2}+
cos z

z3
dz =: I . 

Solution For the function 

. f (z) := cos z

z3

there is only one isolated singularity .z = 0, which is inside the integration contour— 
the circle .{|z| = 2}. By Theorem 7.1, the integral .I = 2πi Resz=0 f (z). 

There are a number of ways to find the residue of f at 0. It is ease to see that 
the point 0 is a third order pole for f , so we can use the formula (7.5) with .m = 3. 
However, if it is easy to expand a function into a Laurent series, then it leads to the 
result faster. In our case 

. 
cos z

z3
= 1

z3

+∞∑
n=0

(−1)nz2n

(2n)! = z−3 − z−1

2
+

+∞∑
n=2

(−1)n

(2n)! z2n−3 for all z ∈ C \ {0}.

So, the coefficient .c−1 = − 1
2 . By  (7.3) we have

. I = 2πi Res
z=0

f (z) = −πi.

Example 7.5 Compute .
∫

{|z|=2}+
dz

(z7 + 1)3 =: I . 

Solution The function 

. f (z) := 1

(z7 + 1)3

has 7 poles, namely 

.ak = ei( π
7 + 2πk

7 ), k ∈ {0, 1, . . . , 6},
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inside the circle .{|z| = 2}, and all these poles have order 3. By Theorem 7.1 

. I = 2πi

6∑
k=0

Res
z=ak

f (z).

In this case, to avoid tedious calculations, it is better to use Theorem 7.2, which 
gives 

. 

6∑
k=0

Res
z=ak

f (z) = − Res
z=∞ f (z).

Since 

. f (z) = 1

(z7 + 1)3 ∼ 1

z21 as z → ∞,

the point at infinity is a zero of order 21 for f . Therefore, the coefficient .c−1 of the 
Laurent series of f around . ∞ is equal to 0 (see Important in Sect. 7.2). This means 
that .I = 0. 

Trigonometric Integrals 

Here we show how to calculate definite trigonometric integrals of the form 

.I :=
∫ 2π

0
R

(
cos (nϕ), sin (mϕ)

)
dϕ, (7.12) 

where .R(u, v) is a rational function of two real variables u and . v, i.e., it can be 
written as a ratio of two polynomials 

. R(u, v) = Q(u, v)

P (u, v)
for all (u, v) ∈ R

2,

and .P(u, v) �= 0 for all .(u, v) such that .u2 + v2 = 1. 
The trick is to use the substitution .z = eiϕ, ϕ ∈ [0, 2π ], to transform the integral 

(7.12) into a complex integral over the unit circle, to which one can use Cauchy’s
residue theorem.

It is easy to see that the parametrization .z = eiϕ, ϕ ∈ [0, 2π ], give us the 
positively oriented circle .{z : |z| = 1}. In addition, 

. dz = i eiϕdϕ �⇒ dϕ = −iz−1 dz,

. cos (nϕ) = einϕ + e−inϕ

2
= zn + z−n

2
, sin (mϕ) = zm − z−m

2i
.
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As a result, we get the integral 

. I =
∫

{|z|=1}+
R1(z)dz,

where 

. R1(z) = 1

iz
R

(
1
2 (zn + z−n), 1

2i
(zm − z−m)

)

is a new rational function of a complex variable, which can be evaluated using the 
residue theorem. 

Example 7.6 Compute the integral 

. I :=
∫ 2π

0

dϕ

1 − 2a cos ϕ + a2
,

where .a ∈ R and .|a| �= 1. 

Solution For .a = 0, the answer is obvious. Therefore, we further assume that 
.a �= 0. After the substitution .z = eiϕ, ϕ ∈ [0, 2π ], we get 

. I =
∫

{|z|=1}+

−iz−1dz

1 − a(z + z−1) + a2 = −i

∫

{|z|=1}+

dz

(a − z)(az − 1)

= i

a

∫

{|z|=1}+

dz

(z − a)(z − 1
a
)
.

We see that the integrand 

. f (z) = 1

(z − a)(z − 1
a
)

has two simple poles at .z = a and .z = 1
a
, and only one of which is inside of the 

circle .{|z| = 1} (it depends on a). Thus, by Theorem 7.1, we have

• if .|a| < 1, then 

.I = i

a
2πi Res

z=a
f (z) = −2π

a
lim
z→a

(z − a)f (z) = −2π

a
lim
z→a

1

z − 1
a

= 2π

1 − a2
;
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• if .|a| > 1, then 

. I = −2π

a
Res
z= 1

a

f (z) = −2π

a
lim
z→ 1

a

(
z − 1

a

)
f (z) = 2π

a2 − 1
.

Integrals Along the Real Line 

First, let us prove the lemma. 

Lemma 7.1 Let the following conditions be satisfied: 

1. .f ∈ A
({z : Im z ≥ 0}\{a1, . . . , am}), where .Im ak > 0, . k ∈ {1, 2, . . . , m};

2. there exist positive numbers .M, . R0 and .δ > 0 such that for all z from the set 
. {ξ : |ξ | > R0, Im ξ ≥ 0}

.|f (z)| ≤ M

|z|1+δ
. (7.13) 

Then 

. lim
r→+∞

∫
γr

f (z) dz = 0, where γr = reit , t ∈ [0, π ].

Proof It can be considered that .r > max{R0, |a1|, . . . , |am|}. Then, taking (4.5) 
and (7.13) into account, we deduce

. 

∣∣∣∣
∫

γr

f (z) dz

∣∣∣∣ ≤
∫

γr

M

|z|1+δ
dl = M

r1+δ

∫
γr

dl = Mπ

rδ
→ 0 as r → +∞.

The lemma is proved. �	

Theorem 7.3 Let the conditions of Lemma 7.1 be satisfied. Then 

.

∫ +∞

−∞
f (x) dx = 2πi

m∑
k=1

Res
z=ak

f (z). (7.14) 

Proof First, we note that, based on the second condition of Lemma 7.1, the  
improper integral .

∫ +∞
−∞ f (x) dx converges. 

Now let us take .r > max{R0, |a1|, . . . , |am|} and consider the positively oriented 
closed contour .[−r, r]∪γr , where .γr = reit , t ∈ [0, π ]. The interior of this contour
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contains all the isolated singularities .{a1, . . . , am} of f that are in the upper half-
plane. Under the Cauchy residue Theorem 7.1 we have 

. 

r∫

−r

f (x) dx +
∫

γr

f (z) dz =
∫

[−r,r]∪γr

f (z) dz = 2πi

m∑
k=1

Res
z=ak

f (z).

Letting r tend to infinity in this equality and using Lemma 7.1, we arrive at the  
formula (7.14). �	

Example 7.7 Compute the integral .
∫ +∞

0

x2 + 1

x4 + 1
dx =: I . 

Solution Since the integrand is even, 

. I = 1

2

∫ +∞

−∞
x2 + 1

x4 + 1
dx.

Let us verify the conditions of Lemma 7.1 for the function 

. f (z) = z2 + 1

z4 + 1
= ψ(z)

ϕ(z)
, where ψ(z) = z2 + 1, ϕ(z) = z4 + 1.

The function f is rational and has poles at the points where the function . ϕ vanishes; 
they are 

. a1 = ei π
4 , a2 = ei 3π

4 , a3 = ei 5π
4 , a4 = ei 7π

4 .

Only . a1 and . a2 lie in the upper half-plane .{z : Im z > 0}. They are simple poles 
because 

. ψ(ak) �= 0 and ϕ′(ak) = 4 a3
k �= 0, k ∈ {1, 2, 3, 4}.

If .|z| > 2, then 

. |f (z)| = 1

|z|2
∣∣∣1 + 1

z2

1 + 1
z4

∣∣∣ ≤ 1

|z|2
1 + 1

|z|2
1 − 1

|z|4
≤ 4

|z|2 .

Hence the second condition of Lemma 7.1 is satisfied .(M = 4, R0 = 2, δ = 1). 
By using (7.14) and (7.7) , we find

.I = 1

2

∫ +∞

−∞
x2 + 1

x4 + 1
dx = πi

(
Res
z=a1

f (z) + Res
z=a2

f (z)
)
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= πi
(ψ(a1) 
ϕ′(a1) 

+ 
ψ(a2) 
ϕ′(a2)

)
= πi

(e 
i π  
2 + 1 

4e 
i 3π 

4 

+ 
e 

i 3π 
2 + 1 

4e 
i 9π 

4

)

= −  
πi  
2

(
e 

i π  
4 − e− i π  

4

)
= π sin π 

4 = π 
√

2 
2 . 

Fourier Transform Type Integrals
∫ +∞ 

−∞ 
f (x)  eiλx dx (λ > 0) 

Such integrals occur in physical and engineering applications, and Jordan’s Lemma 
plays a fundamental role in their computation. 

Lemma 7.2 (Jordan’s Lemma) Let the following conditions be satisfied:

• .f ∈ A
({z : Im z ≥ 0}\({a1, . . . , am} ∪ {x1, . . . , xn}

))
, where .Im ak > 0 for . k ∈

{1, . . . , m}, and .{x1, . . . , xn} ⊂ R;
•

. max
z∈Eγr

|f (z)| =: Mr → 0 as r → +∞, (7.15) 

where .γr(t) = reit , t ∈ [0, π ]. 

Then 

. lim
r→+∞

∫
γr

f (z) eiλz dz = 0 (λ > 0). (7.16) 

Proof Take .r > max{|a1|, . . . , |am|, |x1|, . . . , |xn|}. Then the statement of this 
lemma follows from the following considerations: 

. 

∣∣∣∣
∫

γr

f (z)eiλz dz

∣∣∣∣ ≤
∫

γr

|f (z)|
∣∣∣eiλz

∣∣∣ dl ≤ Mr

∫ π

0

∣∣∣eiλr(cos t+i sin t)
∣∣∣ r dt

= Mr r

∫ π

0
e−λr sin t dt = 2Mrr

∫ π
2

0
e−λr sin t dt

≤ 2Mrr

∫ π
2

0
e−λr 2

π
t dt = Mrπ

λ
(1 − e−λr ) → 0 as r → +∞.

In the last line, we used the obvious inequality . 2
π

t ≤ sin t for .t ∈ [0, π
2 ]. �	
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Remark 7.2 Comparing the second condition of the Jordan lemma with the second 
condition of Lemma 7.1, we see that f can tend to zero at infinity more slowly. This 
is due to the presence of the factor .eiλz near f . 

Theorem 7.4 Let the conditions of Lemma 7.2 be satisfied and .{x1, . . . , xn} be 
simple poles of f and .x1 < x2 < . . . < xn. Then 

.p.v.

+∞∫

−∞
f (x)eiλx dx = 2πi

m∑
k=1

Res
z=ak

f (z)eiλz + πi

n∑
k=1

Res
z=xk

f (z)eiλz. (7.17) 

Before proving, we recall that the principal value of an improper integral, which 
is divergent, is the way in which we assign a finite value to it. For example, . 

∫ +∞
−∞

dx
x

is divergent, but 

. lim
r→+∞, ε→0

( ∫ −ε

−r

dx

x
+

∫ r

ε

dx

x

)
= 0.

So, .p.v.
∫ +∞
−∞

dx
x

= 0. In  (7.17) 

. p.v.

+∞∫

−∞
f (x)eiλx dx := lim

r → +∞
ε → 0

∫

Jr,ε

f (x)eiλx dx,

where .Jr,ε := [−r, r] \ (⋃n
k=1(xk − ε, xk + ε)

)
. 

Proof We choose r as in Jordan’s lemma. Let 

. ε0 := min
k ∈ {1, . . . , n}
l ∈ {1, . . . , m}

|xk − al |, ε1 := min
k∈{1,...,n−1} |xk+1 − xk|.

Then for any .ε ∈ (0, ε2), where .ε2 = min{ε0, ε1/2}, we have 

. Eγ ε
k

∩ Eγ ε
j

= ∅ for k �= j,

where .γ ε
k (t) = xk − εe−it , t ∈ [0, π ], k ∈ {1, . . . , n}. 

Now consider the closed positively oriented contour 

.Cr,ε := γr

⋃
Jr,ε

⋃ ( n⋃
k=1

γ ε
k

)
,
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where the upper semicircle . γr is defined in Jordan’s lemma. The interior of . Cr,ε

contains only the isolated singularities .{a1, . . . , am} of the function f ; the poles 
.{x1, . . . , xn} are in the exterior. 

The Cauchy residue Theorem 7.1 says that 

.

∫
Cr,ε

f (z)eiλz dz = 2πi

m∑
k=1

Res
z=ak

f (z)eiλz, (7.18) 

Considering (7.16) and passing to the limit in (7.18) as .r → +∞ and .ε → 0, we 
find 

.p.v.

+∞∫

−∞
f (x)eiλx dx = 2πi

m∑
k=1

Res
z=ak

f (z)eiλz −
n∑

k=1

lim
ε→0

∫

γ ε
k

f (z)eiλz dz. (7.19) 

It remains to find the limits in the right-hand side of (7.19). Since for any . k ∈
{1, . . . , n} the point . xk is a simple pole of the function .f (z)eiλz, its Laurent series 
is as follows 

. f (z)eiλz = c
(k)
−1

z − xk

+
+∞∑
j=0

c
(k)
j (z − xk)

j , z ∈ B̆δk
(xk),

where . δk is a positive number. Denote by .gk the sum of the power series 
.
∑+∞

j=0 c
(k)
j (z − xk)

j . Due to Theorem 5.6 the function . gk can be considered analytic 

in the closed disk .Bδk
(xk). 

In what follows, we assume that .ε < min{δ1, . . . , δn}. Using (7.3) , we get

. 

∫

γ ε
k

f (z)eiλz dz =
∫

γ ε
k

c
(k)
−1

z − xk

dz +
∫

γ ε
k

gk(z) dz =
π∫

0

c
(k)
−1

−εe−it
εie−it dt +

∫

γ ε
k

gk(z) dz

. = −πi c
(k)
−1 +

∫

γ ε
k

gk(z) dz = −πi Res
z=xk

f (z)eiλz +
∫

γ ε
k

gk(z) dz. (7.20) 

Since for any .k ∈ {1, . . . , n} the function .gk ∈ A(Bδk
(xk)), there exists a positive 

constant .Mk such that for all .z ∈ Bδk
(xk) the inequality .|gk(z)| ≤ Mk holds. Then 

.

∣∣∣∣∣
∫

γ ε
k

gk(z) dz

∣∣∣∣∣ ≤
∫

γ ε
k

|gk(z)| dl ≤ Mk π ε → 0 as ε → 0. (7.21) 

Based on (7.20) and (7.21), from (7.19) the equality (7.17) follows. �	
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Example 7.8 Compute the integral 

. p.v.

∫ +∞

−∞
eiλx

x
dx =: I (λ > 0).

Solution It is easy to check that the function .f (z) = 1
z

satisfies the conditions of 
Jordan’s lemma and the point 0 is its only simple pole. Therefore, from (7.17) and
(7.6) , we have

. I = πi Res
z=0

eiλz

z
= πi lim

z→0
eiλz = πi.

Using this result, we simply evaluate the Dirichlet integral 

. 

∫ +∞

0

sin λx

x
dx = 1

2

∫ +∞

−∞
sin λx

x
dx = 1

2
Im

(
p.v.

∫ +∞

−∞
eiλx

x
dx

)
= π

2
.

A key point here is the replacement .sin λx by .eiλx and the identity 

. sin λx = 1

2
Im eiλx.

Remark 7.3 It is known from mathematical analysis that an antiderivative of the 
integrand in the Dirichlet integral is not an elementary function. Nevertheless, the 
value of the integral can be obtained in various (not always short and simple) 
ways, including double integration and differentiation under the integral sign. In 
Example 7.8, the calculation of the Dirichlet integral takes one line! 

Example 7.9 Compute . 
∫ +∞

−∞
(x − 1) cos 5x

x2 − 2x + 5
dx =: I.

Solution As before, using the Euler formula, we get 

. I = Re

(
p.v.

∫ +∞

−∞
(x − 1)

x2 − 2x + 5
e5ix dx

)
.

The function 

.f (z) = z − 1

z2 − 2z + 5
∼ 1

z
as z → ∞,
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it has two singular points .a1 = 1 + 2i and .a2 = 1 − 2i. They are simple poles and 
only . a1 lies in the upper half-plane. So, all conditions of Theorem 7.4 are satisfied 
and it implies that 

. I = Re

(
2πi Res

z=a1

z − 1

(z − a1)(z − a2)
e5iz

)

= 2π Re

(
i

a1 − 1

a1 − a2
e5ia1

)
= −e−10π sin 5.

7.4 Argument Principle: Rouché’s Theorem and Its 
Applications 

In this section, we consider applications that help to count the zeros and poles of a 
given meromorphic function. Let . f be meromorphic in a domain D. 

Definition 7.3 The function .
f ′
f

, where it is defined, is called the logarithmic 
derivative of f . 

Remark 7.4 This definition is justified by the fact that 

. 
d

dz

(
logk f (z)

) = f ′(z)
f (z)

,

where .logk is any branch of the multi-valued function .Log (see (3.9) ).

Let . a be a zero of order . n for the function . f. According to Theorem 5.13 (on 
the zero of an analytic function), there is a positive number . δ and a unique function 
.ϕ ∈ A(Bδ(a)) such that 

. f (z) = (z − a)nϕ(z) and ϕ(z) �= 0 for all z ∈ Bδ(a).

Using this representation, we find that for all . z ∈ B̆δ(a)

. 
f ′(z)
f (z)

= n(z − a)n−1ϕ(z) + (z − a)nϕ′(z)
(z − a)nϕ(z)

= n

z − a
+ ϕ′(z)

ϕ(z)
,

whence, remembering Remark 7.1, we get 

. Res
z=a

f ′(z)
f (z)

= n. (7.22)



168 7 Residue Calculus

Let . b be a pole of order p for . f. Corollary 6.3 (on the pole of an analytic function) 
says there is a positive number . δ1 and a unique analytic nonzero function . ψ in 
.Bδ1(b) such that 

. f (z) = ψ(z)

(z − b)p
for all z ∈ B̆δ1(b).

As before, we find for all . z ∈ B̆δ1(b)

. 
f ′(z)
f (z)

=
− p

(z−b)p+1 ψ(z) + 1
(z−b)p

ψ ′(z)
1

(z−b)p
ψ(z)

= − p

z − b
+ ψ ′(z)

ψ(z)
,

from where 

. Res
z=b

f ′(z)
f (z)

= −p. (7.23) 

Let us now denote by .{ak} the set of zeros, and by .{bk} the set of poles of the 
function f . Consider a bounded domain . Ω , whose boundary is the union of a finite 
number of pairwise disjoint Jordan curves, such that 

. Ω ⊂ D,

∂Ω ∩ {ak} = ∅, ∂Ω ∩ {bk} = ∅,

Ω ∩ {ak} = {a1, . . . , aq}, Ω ∩ {bk} = {b1, . . . , bm}.

Under these assumptions, 

.
f ′

f
∈ A

(
Ω \ ({a1, . . . , aq} ∪ {b1, . . . , bm})). (7.24) 

Hereinafter we consider that there are neither zeros nor poles of f on . ∂Ω . 

Definition 7.4 Let the above assumptions hold. The logarithmic residue of f with 
respect to the positively oriented boundary of . Ω is the integral 

. 
1

2πi

∫
∂+Ω

f ′(z)
f (z)

dz.

Theorem 7.5 (On a Logarithmic Residue) Let the above assumptions be satis-
fied. Then 

.
1

2πi

∫
∂+Ω

f ′(z)
f (z)

dz = Z − P, (7.25)
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where .Z := n1 + n2 + . . . + nq, .P := p1 + p2 + . . . + pm, and . ni is the order of 
the zero . ai and . pi is the order of the pole . bi . 

Proof Since the inclusion (7.24) holds, the Cauchy residue Theorem 7.1 and 
formulas (7.22) and (7.23) yield 

. 
1

2πi

∫

∂+Ω

f ′(z)
f (z)

dz =
q∑

k=1

Res
z=ak

f ′(z)
f (z)

+
m∑

k=1

Res
z=bk

f ′(z)
f (z)

=
q∑

k=1

nk −
m∑

k=1

pk = Z −P.

�	

Example 7.10 The formula (7.25) can be used for calculation of integrals, for 
example, 

. 

∫
∂+B3(0)

dz

sin 2z
= 1

2

∫
∂+B3(0)

(tan z)′

tan z
dz = πi(1 − 2) = −πi.

Here it was easy to see that . tan has one zero and two poles in the disk .B3(0). 

Theorem 7.6 (Argument Principle) Let the conditions of Theorem 7.5 for a 
meromorphic function f be satisfied and . Ω be a simply connected domain. 

Then the difference between the number of its zeros . Z and the number of its poles 
. P inside . Ω is equal to the increment of the argument of .f (z) when z passes once 
along the positively oriented boundary .∂+Ω, divided by . 2π :

.Z − P = 1

2π
Δ∂+ΩArgf (z). (7.26) 

Before the proof, we explain what the increment of the argument along a curve 
is. Let .z = γ(t), .t ∈ [α, β], be a curve whose trace does not contain the origin, i.e., 
.Eγ ∩ {0} = ∅. The angle of rotation of the vector z when the point z moves along 
the trace of . γ from its initial point to the end point is called the increment of the 
argument z along . γ and is denoted by .ΔγArg z (see Fig. 7.1). 

Fig. 7.1 The increment of 
the argument along a curve .γ
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Example 7.11 It is easy to verify that

• if .z = γ(t) = 1 + it, .t ∈ [−1, 1], then .ΔγArg z = π
2 ;

• if .z = γ(t) = e−it , .t ∈ [0, π ], then .ΔγArg z = −π ;
• if .z = γ(t) = 2eit , .t ∈ [−π, π ], then .ΔγArg z = 2π ;
• If .z = γ(t) = 2 + eit , .t ∈ [−π, π ], then .ΔγArg z = 0. 

This example shows that the increment of the argument along a curve does not 
depend on the continuous branch of the argument that we choose at the beginning 
of the movement of the point z. Therefore, in this example, in the equality (7.26) 
and further in this section, any continuous branch of the multi-valued function . Arg
is assumed. 

Proof Since the inclusion (7.24) holds, there is a positive number .δ > 0 such that 
.
f ′
f

∈ A(Uδ(∂Ω)), where .Uδ(∂Ω) = {z : dist(z, ∂Ω) < δ}. 
Because the domain . Ω is simply connected, its boundary coincides with the trace 

of a positively oriented Jordan curve .z = γ(t), .t ∈ [α, β], i.e., .Eγ = ∂Ω . By  
Theorem 4.3 (on an antiderivative along a curve), there exists an antiderivative . Ψ of 
the function . f

′
f

along . γ. It follows from Theorem 4.3 and Remark 7.4 that 

. Ψ (t) = ln |f (γ(t))| + i Arg(f (γ(t)) + C, t ∈ [α, β].

Then by the Newton-Leibnitz formula (see Theorem 4.4), we have 

. 
1

2πi

∫
∂+Ω

f ′(z)
f (z)

dz = 1

2πi

(
Ψ (β) − Ψ (α)

)

= 1

2π

(
lim

t→β−0
Argf (γ(t)) − lim

t→α+0
Argf (γ(t))

)

=: 1

2π
Δ∂+ΩArgf (z). (7.27) 

From (7.25) and (7.27) it follows (7.26). �	

Example 7.12 Let’s check the formula (7.26) for the function .f (z) = z3 in the 
domain .Ω := B1(0); .γ = eit , t ∈ [0, 2π ], is a positively oriented Jordan curve 
whose trace coincides with . ∂Ω . 

On one hand it is easy to see that .Z = 3 and .P = 0 for f , and on the other hand 

. 
1

2π
Δ∂+ΩArgf (z) = 1

2π

(
Arg e3it

)∣∣∣2π

0
= 1

2π
(6π − 0) = 3.

Here we have fixed such a continuous branch that .Arg e3it |t=0 = 0.
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Important 
If f is analytic, i.e., .P = 0, then the formula (7.26) counts zeros (with their
multiplicities) of f in . Ω, i.e., 

.Z = 1

2π
Δ∂+ΩArgf (z). (7.28) 

Informally, this formula can be explained as follows: an analytic function
f has as many zeros in a simply connected domain . Ω as many times the 
radius vector .f (z) rotates around the origin when the point z passes once the 
boundary of . Ω counterclockwise. 

In the same way, we can count how many times an analytic function f takes the 
value . w0 (such points are called .w0-points of . f ). 

Definition 7.5 An analytic function f is said to take the value . w0 at a point . z0 ∈ Ω

with multiplicity .n ∈ N if 

.f (z) = w0 + (z − z0)
ng(z), z ∈ Bδ(z0), (7.29) 

where .g ∈ A(Bδ(z0)) and .g(z0) �= 0. . �

Similarly to how  (7.25) was proved, we obtain

.
1

2πi

∫
∂+Ω

f ′(z)
f (z) − w0

dz = Zf (w0), (7.30) 

where .Zf (w0) is the number of .w0-points of f in . Ω counting multiplicity. If . Ω is 
simply connected, then 

. Zf (w0) = 1

2π
Δ∂+ΩArg(f (z) − w0).

The argument principle is used indirectly through Rouche’s theorem, which has 
many important applications, some of which are proved in this subsection and others 
in Chap. 9. 

Theorem 7.7 (Rouché’s Theorem) Let . Ω be a simply connected domain and 
.f, g ∈ A(Ω). If  

.|g(z)| < |f (z)| for all z ∈ ∂Ω, (7.31)
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then f and .f + g have the same number of zeros (counting multiplicity) in the 
domain . Ω, i.e., 

. Zf = Zf +g in Ω,

where . Zf is the number of zeros (counting multiplicity) of f . 

Proof From the condition (7.31) it follows that

. |f (z)| �= 0 and |f (z) + g(z)| �= 0 for all z ∈ ∂Ω.

To argue the last relation we also used the inequality 

. |f (z) + g(z)| ≥ |f (z)| − |g(z)| > 0 for all z ∈ ∂Ω.

Then, recalling the properties of the argument (see Sect. 1.1), we obtain 

.Arg(f (z) + g(z)) = Argf (z) + Arg

(
1 + g(z)

f (z)

)
for all z ∈ ∂Ω. (7.32) 

Here, as in Theorem 7.6, .Arg(f + g) is any continuous branch of the multi-valued 
function .Arg. Again using (7.31) , we get

. 

∣∣∣∣
(

1 + g(z)

f (z)

)
− 1

∣∣∣∣ = |g(z)|
|f (z)| < 1 for all z ∈ ∂Ω.

This means that .1 + g(z)

f (z)
remains in the disk .B1(1) for all .z ∈ ∂Ω . Therefore, 

. Δ∂+ΩArg

(
1 + g(z)

f (z)

)
= 0.

Considering this and (7.32), Theorem 7.6 implies 

. Zf +g = 1

2π
Δ∂+ΩArg(f + g) = 1

2π
Δ∂+Ωf = Zf .

The theorem is proved. �	

This theorem is often used to find the number of roots of an equation in a given 
domain. 

Example 7.13 Find the number of roots of the equation 

.z9 − 6z4 + 3z − 1 = 0
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in the unit disk .B1(0). 

Solution Let .f (z) = −6z4 and .g(z) = z9 + 3z − 1. It is easy to see that 

. |g(z)| ≤ |z|9 + 3|z| + 1 = 5 < 6 = |f (z)| for all z ∈ ∂B1(0).

Thus, all conditions of the Rouché theorem are satisfied for the functions f and g 
in .B1(0). Therefore, .Zf +g = Zf = 4 in .B1(0). 

Recall that zeros are counted taking into account their multiplicities. Clearly, the 
function f has one zero in .B1(0) and this is a zero of order 4. 

Exercise 7.1 Prove the fundamental theorem of algebra using Rouché’s theorem. 

Exercise 7.2 Find the number of roots of the equation .z4 + 10z + 1 = 0 in the 
annulus .{z : 1 < |z| < 2}. 

Theorem 7.8 (Sufficient Conditions of Conformality) If a function f is analytic 
and univalent in a domain . Ω , then f is conformal in . Ω . 

Proof Let us prove the theorem by contradiction. Suppose there exists a point . z0 ∈
Ω such that .f ′(z0) = 0. Then . z0 is an isolated and finite multiple zero of the 
derivative . f ′. If this is not the case, then, according to Corollaries 5.6 and 5.8, 
.f ≡ const, and this contradicts the univalence of f . Thus, there is a positive number 
. δ, such that 

.f ′(z) �= 0 for all z ∈ Bδ(z0) \ {z0}. (7.33) 

By Theorem 5.3, we have  

.f (z) = c0 +
+∞∑
k=n

ck(z − z0)
k for all z ∈ Bδ(z0), (7.34) 

where .n ≥ 2 and .cn = f (n)(z0)
n! �= 0. It is easy to understand that .(n − 1) is the order 

of the zero . z0 of the derivative . f ′. Since .cn �= 0, there exists .δ1 ∈ (0, δ) such that 

.

+∞∑
k=n

ck(z − z0)
k−n �= 0 for all z ∈ Bδ1(z0). (7.35) 

Define the function

.ϕ(z) :=
+∞∑
k=n

ck(z − z0)
k = (z − z0)

n
+∞∑
k=n

ck(z − z0)
k−n, z ∈ Bδ1(z0).
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Obviously, .ϕ ∈ A
(
Bδ1(z0)

)
as the sum of a power series, and . z0 is a zero of 

multiplicity n of the function . ϕ. Due to (7.35) 

. m0 := min
z∈∂Bδ1 (z0)

|ϕ(z)| = δn
1 min

z∈∂Bδ1 (z0)

∣∣∣∣∣
+∞∑
k=n

ck(z − z0)
k−n

∣∣∣∣∣ �= 0.

Let .ψ(z) = −α for all .z ∈ Bδ1(z0), where . α is a fixed positive number less than 
.m0. Since .|ψ(z)| = α < m0 ≤ |ϕ(z)| for all .z ∈ ∂Bδ1(z0), Rouché’s theorem yields 
.Zϕ+ψ = Zϕ = n in .Bδ1(z0). But  

. ϕ(z) + ψ(z) = f (z) − c0 − α for all z ∈ Bδ1(z0).

Thus, 

. Zf −c0−α = n in Bδ1(z0),

or, more precisely, in .B̆δ1(z0), because .
(
f (z) − c0 − α

)|z=z0 = −α. 
Since 

. 
d

dz

(
f (z) − c0 − α

) = f ′(z) �= 0 for all z ∈ Bδ1(z0) \ {z0}

(see (7.33)), the function .f − c0 − α has .n (n ≥ 2) distinct simple zeros in . B̆δ1(z0).

This means that there are two points .z1 �= z2, z1, z2 ∈ B̆δ1(z0) such that . f (z1) =
f (z2). But this contradicts to the univalence of the function f . 

Hence, .f ′(z) �= 0 for all .z ∈ Ω, i.e., the function f is conformal in . Ω . �	

Remark 7.5 The conditions of Theorem 7.8 are not necessary for conformality. 
Indeed, the function .f (z) = ez is conformal in . C, but is not univalent in . C (see 
Sect. 3.7). 

The next statement shows how the zeros of analytic functions that form a 
uniformly convergent sequence are related to the zero of the limit function. 

Theorem 7.9 (Hurwitz’s Theorem) Let .{fn}n∈N be a sequence of analytic func-
tions in a domain . Ω, which converges uniformly on any compact set .K ⊂ Ω to a 
function f that is not identically equal to a constant. 

If .z0 ∈ Ω is  a zero of  . f, then for any disk .Br(z0) ⊂ Ω there exists .n0 ∈ N such 
that 

.Zfn > 0 in Br(z0) for any n ≥ n0.
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Proof The function f is continuous in . Ω as the limit of uniformly convergent 
continuous functions. Take any triangle . � which, together with its closure, belongs 
to . Ω . Then 

. 

∫
∂+�

f (z) dz = lim
n→+∞

∫
∂+�

fn(z) dz = 0,

and due to Morera’s Theorem 5.9 the function .f ∈ A(Ω). 
Since .f �= const, its zeros are isolated and finitely multiple (see Corollaries 5.6 

and 5.8). If .z0 ∈ Ω is a zero of . f, then for any .r > 0 such that .Br(z0) ⊂ Ω there 
exists a number .δ ∈ (0, r) that 

. f (z) �= 0 for all z ∈ Bδ(z0) \ {z0}.

Denote by .μ := min
z∈∂Bδ(z0)

|f (z)|. It is clear that .μ > 0. Since the sequence 

.{fn}n∈N converges uniformly on .Bδ(z0) to . f, there exists .n0 ∈ N such that for all 
integer . n ≥ n0 :

. |fn(z) − f (z)| < μ ≤ |f (z)| for all z ∈ ∂Bδ(z0).

This means that the Rouché theorem can be applied to the functions .fn − f and f . 
As a result, .Zfn = Z(fn−f )+f = Zf > 0 in .Bδ(z0). �	

Example 7.14 (Counterexample from Mathematical Analysis) For real func-
tions, the statement of Hurwitz’s theorem is incorrect. Indeed, consider the function 
sequence 

. fn(x) = x2 + 1

n
, x ∈ (−1, 1), n ∈ N.

Then, it is easy to verify that 

. fn

(−1,1)

⇒ f = x2 as n → +∞,

and .f (0) = 0. However, for all . n ∈ N

. fn(x) �= 0 for all x ∈ (−1, 1).

Corollary 7.1 If .{fn}n∈N is a sequence of analytic and univalent functions in a 
domain . Ω, which converges uniformly on any compact set .K ⊂ Ω to an analytic 
function . f, then either f is univalent or .f ≡ const in . Ω . 

Proof As in Theorem 7.9, we show that .f ∈ A(Ω). Next, we go on to prove the 
corollary by contradicting it.
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Suppose .f �≡ const and there are two points .z1 �= z2 in . Ω such that . f (z1) =
f (z2). Consider the function sequence 

. gn(z) := fn(z) − fn(z1), z ∈ Br(z2), n ∈ N,

where .r < |z1 − z2| and .Br(z2) ⊂ Ω . It is obvious that . gn ∈ A(Br(z2)),

. gn(z)
Br (z2)

⇒ g(z) = f (z) − f (z1) as n → +∞,

.g(z2) = 0, and .g �≡ const. Using Hurwitz’s theorem for .{gn}n∈N, we get 

. ∃ n0 ∈ N ∀ n ≥ n0 : Zgn > 0 in Br(z2).

This means that for any integer .n ≥ n0 there is a point .z∗
n ∈ Br(z2) such that 

. gn(z
∗
n) = fn(z

∗
n) − fn(z1) = 0.

This contradicts the univalence condition of . fn, because .z∗
n �= z1. �	

Example 7.15 (Counterexample from Mathematical Analysis) Consider the 
function sequence 

. fn(x) =
{

x3, x ∈ [0, 1),
1
n
x3, x ∈ (−1, 0),

n ∈ N.

It is easy to check that .fn ∈ C1
(
(−1, 1)

)
, . fn is an injection and 

. fn(x)
(−1,1)

⇒ f (x) :=
{

x3, x ∈ [0, 1),

0, x ∈ (−1, 0),

But, .f �≡ const and f is not univalent in .(−1, 1). 

Exercise 7.3 Prove that if .{fn}n∈N is a sequence of analytic functions in a domain 
.Ω, which converges uniformly on any compact .K ⊂ Ω to an analytic function . f,

and each . fn is nonzero everywhere in .Ω, then either .f ≡ 0 or f is also nowhere 
zero in . Ω . 

7.5 Partial Fraction Decomposition of a Meromorphic 
Function 

For a meromorphic function with a finite number of poles, the formula (6.27) about 
its decomposition into the sum of a polynomial and the sum of simple fractions was
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proved. In this section, we consider the case when a meromorphic function in . C
has a countable number of simple poles. As was noted in Remark 6.2 the point at 
infinity is the limit point of its poles in this case. 

Definition 7.6 A sequence of positively oriented Jordan curves .{γn}n∈N is said to 
be regular if the following conditions are satisfied: 

(1) for any .n ∈ N : .{0} ⊂ int(γn) and . int(γn) ⊂ int(γn+1);
(2) .dn := min

z∈Eγn

|z| → +∞ as . n → +∞;
(3) there exists a positive constant . C such that . �γn

dn
≤ C for all .n ∈ N. 

Remark 7.6 The first condition in Definition 7.6 means that the interior of the 
curve . γn with its closure belongs to the interior of .γn+1, and the origin is inside 
all these Jordan curves. The second condition says that the traces of these curves 
expand to infinity in any direction as .n → +∞; and the last one means that the 
traces expand uniformly in all directions. 

Example 7.16 The sequence of the circles .
{
γn(t) = neit , .t ∈ [0, 2π ]}

n∈N is 
regular because for it: .dn = n, �γn = 2 π n, C = 2π . 

Example 7.17 If the trace of . γn coincides with the boundary of the rectangle 
.[−n2, n2] × [−ni, ni], then the sequence .{γn}n∈N is not regular. Indeed, for this 
sequence .dn = n and .�γn = 2 n + 2 n2, but the value . �γn

dn
= 2(1 + n) is unbounded 

as .n → +∞. 

Theorem 7.10 Let

• f be a meromorphic function in . C and its poles .{an}n∈N be simple and 

.0 < |a1| ≤ |a2| ≤ . . . ≤ |an| ≤ . . . → +∞ as n → +∞;

• there be a regular sequence of positively oriented Jordan curves .{γn}n∈N and a 
positive constant M such that 

.|f (z)| ≤ M for all z ∈ Eγn and for all n ∈ N. (7.36) 

Then for all . z ∈ C \ {an}n∈N

.f (z) = f (0) +
+∞∑
k=1

Ak

( 1

z − ak

+ 1

ak

)
, (7.37)
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where .Ak := Resz=ak
f (z), and moreover, for an arbitrary bounded domain . Ω , the  

series (7.37) converges uniformly on .Ω\{an}n∈N. 

Proof For each .n ∈ N consider the integral 

. In(z) := 1

2 π i

∫
γn

zf (ξ)

ξ(ξ − z)
dξ, z ∈ int(γn)\{ak}k∈N.

Due to the theorem conditions, the integrand .F(ξ) := zf (ξ)

ξ(ξ − z)
has only simple 

poles .0, z, a1, . . . , amn in the interior of the curve . γn. 
Then, by Cauchy’s residue Theorem 7.1 we have 

. In(z) = Res
ξ=0

F(ξ) + Res
ξ=z

F (ξ) +
mn∑
k=1

Res
ξ=ak

F (ξ)

= − f (0) + f (z) +
mn∑
k=1

z

ak(ak − z)
Ak. (7.38) 

Since

. 
z

ak(ak − z)
= −

( 1

z − ak

+ 1

ak

)
,

we get from (7.38) that

.f (z) = f (0) +
mn∑
k=1

Ak

( 1

z − ak

+ 1

ak

)
+ In(z) (7.39) 

for all .z ∈ int(γn)\{ak}mn

k=1. 
Let us estimate .In(z). Take an arbitrary bounded domain . Ω . Since .{γn}n∈N is a 

regular sequence of Jordan curves, there exist numbers .R > 0 and .n0 ∈ N such that 

. Ω ⊂ BR(0) and BR(0) ⊂ int(γn) for all n ≥ n0.

Then, for all . z ∈ int(γn)\{ak}mn

k=1

. |In(z)| ≤ 1

2π

∫
γn

|z||f (ξ)|
|ξ ||ξ − z| dl ≤ M R lγn

2 π dn(dn − R)
≤ M R C

2 π(dn − R)
−→ 0

(7.40) 

as .n → +∞. Taking (7.40) into account and passing to the limit in (7.39) as . n →
+∞, we get (7.37). �	
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Remark 7.7 The summation in the formula (7.37) proceeds as follows: first, we 
sum the terms related to the poles from the interior of .int(γ1), then from . int(γ2) \
int(γ1) and so on. 

Remark 7.8 The condition (7.41) can be weaken and replaced by

.|f (z)| ≤ M |z|p for all z ∈ Eγn and for all n ∈ N, (7.41) 

where .p ∈ N. Then the following partial fraction decomposition will be valid: 

.f (z) =
p∑

m=0

f (m)(0)

m! zm +
+∞∑
k=1

Ak

(
1

z − ak

+
p∑

l=0

zl

al+1
k

)
. (7.42) 

The decomposition (7.42) coincides with (7.37) if .p = 0. 

Example 7.18 Perform the partial fraction decomposition of the cotangent. 

Solution We cannot directly apply the formula (7.37) since 0 is a pole of .cot z. 
Therefore we first expand the following meromorphic function: 

. f (z) =
⎧⎨
⎩

cot z − 1

z
, z �= {π n}n∈Z,

0, z = 0.

Using L’Hopital’s rule twice, we find 

. lim
z→0

(
cot z − 1

z

)
= lim

z→0

z cos z − sin z

z sin z
= 0.

Thus, poles of f are .{π n}n∈Z\{0} and all of them are simple (Example 7.2). 
Consider a sequence of positively oriented Jordan curves .{γn}n∈N, whose 

traces coincide with the boundaries of squares .{AnBnCnDn}n∈N (see Fig. 7.2), 
respectively, where .αn = π

2 + π n. It is easy to verify that this sequence is regular. 
Now we show that the inequality (7.41) holds for the function f . First take any

.z ∈ [Dn,Cn], i.e., .z = x + iαn, .x ∈ [−αn, αn]. Using (3.16) , we obtain

. | cot z| =
∣∣∣∣e

2iz + 1

e2iz − 1

∣∣∣∣ =
∣∣∣∣e

−2αne2ix + 1

e−2αne2ix − 1

∣∣∣∣ ≤ 1 + e−2αn

1 − e−2αn
≤ 1 + e−π

1 − e−π
.

Let us now consider any .z ∈ [Bn,Cn], i.e., .z = αn + iy, .y ∈ [−αn, αn]. Then 

.| cot z| =
∣∣∣cot

(π

2
+ πn + iy

)∣∣∣ = | tan (iy)| = | tanh y| ≤ e|y| − e−|y|

e|y| + e−|y| ≤ 1.
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Fig. 7.2 The regular 
sequence of Jordan curves 
. {γn}

Because .| cot(−z)| = | cot(z)|, then 

. |f (z)| ≤ 1 + e−π

1 − e−π
+ 1 for all z ∈ Eγn and for all n ∈ N.

In virtue of Remark 7.1 and (7.8) we have that

. Ak = Res
z=πk

f (z) = 1.

In .int(γk)\ int(γk−1) there are two poles .π k and .−π k of the function f . Therefore, 
according to the formula (7.37) and Remark 7.7, we get 

. cot z = 1

z
+

+∞∑
k=1

(
1

z + k π
− 1

k π
+ 1

z − k π
+ 1

k π

)

= 1

z
+

+∞∑
k=1

2z

z2 − k2π2 for all z ∈ C\{π k}k∈Z. (7.43) 

Example 7.19 Find the sum .
∑+∞

k=1
1

k2 + a2
, a ∈ R \ {0}. 

Solution In the formula (7.43) we put .z = i a π . Then 

. cot(iaπ) = − i

a π
− 2ai

π

+∞∑
k=1

1

k2 + a2 ,
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or 

. 

+∞∑
k=1

1

k2 + a2 = π

2a
coth(π a) − 1

2a2 .

Exercise 7.4 Perform the partial fraction decomposition of the following functions: 
. tan z, 1

sin2 z
, 1

ez−1 .

Exercise 7.5 Find the sum .
∑+∞

k=1
1

(k2 + a2)2 , a ∈ R \ {0}. 

7.6 Factorization of an Entire Function Into an Infinite Product 

It is known (see Theorem 5.14) that every polynomial can be factorized into a 
product of elementary factors. In this section, we will show that, under some 
additional assumptions, every entire function can also be decomposed into a product 
(possibly infinite) of elementary factors. 

Let an entire function f have a finite number of zeros .a1, . . . , am of order 
.n1, . . . , nm, respectively. Then the function 

.Φ(z) = f (z)

(z − a1)n1 · . . . · (z − am)nm
(7.44) 

has isolated singularities at the points .a1, . . . , am. By Theorem 5.13, they are  
removable, and therefore the function . Φ can be extended by continuity at these 
points (see Corollary 6.2). As a result, . Φ is an entire function without zeros. Hence 
.F(z) = log

(
Φ(z)

)
is also an entire function, where .log is the principal branch of 

the logarithm. From the last relation and (7.44) , we obtain

.f (z) = eF(z)(z − a1)
n1 · . . . · (z − am)nm, z ∈ C. (7.45) 

A natural question is: what decomposition does an entire function have if it has 
a countable number of zeros, e.g. .sin z? To answer this question, we recall some 
definitions from mathematical analysis and rewrite them in terms of complex values. 

Definition 7.7 An infinite product .
∏+∞

k=1

(
1 + fk(z)

)
is said to converge to a 

function f in a domain . Ω if .1 + fk(z) �= 0 for all .k ∈ N and for all . z ∈ Ω,

and 

. lim
n→+∞

n∏
k=1

(
1 + fk(z)

) = f (z). (7.46)
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If the limit (7.46) is uniform in .z ∈ Ω, then the product .
∏+∞

k=1

(
1 + fk(z)

)
is 

called uniformly convergent in . Ω to the function f . . �

If the product .
∏+∞

k=1

(
1 +fk(z)

)
uniformly in . Ω converges to f and . fk ∈ A(Ω),

then, based on Corollary 5.5, the function f is analytic in . Ω . 

Theorem 7.11 (Weierstrass’s Factorization Theorem) Let

• f be an entire function, .f (0) �= 0, and moduli of its zeros .{ak}k∈N form a non-
decreasing sequence: 

.0 < |a1| ≤ |a2| ≤ . . . ≤ . . . ≤ |ak| ≤ . . . , and lim
k→+∞ |ak| = +∞;

• the function .
f ′

f
be uniformly bounded on a regular sequence of positively 

oriented Jordan curves .{γk}k∈N. 

Then for all .z ∈ C we have 

.f (z) = f (0) exp
(f ′(0)

f (0)
z
) +∞∏

k=1

(
1 − z

ak

)nk

exp
(

nk

ak
z
)
, (7.47) 

where . nk is the order of zero . ak . Moreover, for any bounded domain . Ω the product 
(7.47) is uniformly convergent in . Ω . 

Proof It is easy to see that the function . 
f ′
f

is meromorphic in . C and has poles only at 
the points .{ak}k∈N; in addition, they are simple poles and due to the formula (7.22) 
.Resz=ak

f ′
f

= nk . Considering the theorem conditions, we can apply the formula 

(7.37) to . 
f ′
f

. As a result, 

.
f ′(z)
f (z)

= f ′(0)

f (0)
+

+∞∑
k=1

nk

( 1

z − ak

+ 1

ak

)
for all z ∈ C \ {ak}k∈N. (7.48) 

Furthermore, the series (7.48) is uniformly convergent in .Ω\{ak}k∈N, where . Ω is 
an arbitrary bounded domain. 

Fix any point .ξ ∈ C\ {ak}k∈N and take a curve .z = γ(t), t ∈ [α, β], whose trace 
does not pass through the zeros of . f, i.e., .Eγ ∩ {ak}k∈N = ∅, and whose endpoints 
are .0 = γ(α) and .ξ = γ(β). Integrating (7.48) along the curve . γ, we obtain 

.

∫
γ

f ′(z)
f (z)

dz = f ′(0)

f (0)

∫
γ

dz +
+∞∑
k=1

nk

∫
γ

( 1

z − ak

+ 1

ak

)
dz.
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With the help of the Newton-Leibnitz formula (see (4.17) ) we get

. log
f (ξ)

f (0)
= f ′(0)

f (0)
ξ +

+∞∑
k=1

nk

(
log

(
1 − ξ

ak

)
+ ξ

ak

)
, (7.49) 

whence

. f (ξ) = f (0) exp

(
f ′(0)

f (0)
ξ +

+∞∑
k=1

nk

(
log

(
1 − ξ

ak

)
+ ξ

ak

))

= f (0) exp

(
f ′(0)

f (0)
ξ

) +∞∏
k=1

(
1 − ξ

ak

)nk

exp
(

nk

ak
ξ
)
. (7.50) 

Obviously, we have the identity .0 = 0 for .ξ = ak in the product (7.50). Therefore, 
(7.50) holds for all .ξ ∈ C. The uniform convergence of (7.50) in any bounded 
domain . Ω is equivalent to the uniform convergence of the series 

. 

+∞∑
k=1

nk

(
log

(
1 − z

ak

)
+ z

ak

)

in .Ω \ {ak}k∈N. But this is a consequence of the uniform convergence of the series 
(7.48). �	

Remark 7.9 By using the formula (7.47), one can construct entire functions that 
have zeros of a given multiplicity at given points. 

Exercise 7.6 Prove that a meromorphic function in . C can be represented as a ratio 
of two entire functions. 

Example 7.20 Factorize the function .sin z into an infinite product. 

Solution Obviously, the function 

. f (z) =
{

sin z
z

, z �= 0,

1, z = 0.

is an entire function, .f (0) �= 0 and .{π k}k∈Z\{0} are simple poles of . f . In addition, 
the function 

.
f ′(z)
f (z)

=
z cos z−sin z

z2

sin z
z

= cot z − 1

z
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is uniformly bounded on the regular sequence of Jordan curves from Example 7.18, 
and .f ′(0) = 0. 

Thus, all conditions of Theorem 7.11 are satisfied for the function f and the 
formula (7.47) gives

. sin z = z

+∞∏
k=1

(
1 + z

π k

)
exp

(
− z

π k

) (
1 − z

π k

)
exp

( z

π k

)

= z

+∞∏
k=1

(
1 − z2

π2k2

)
for all z ∈ C. (7.51) 

Taking .z = π
2 in (7.51) , we get the Wallis formula

. 1 = π

2

+∞∏
k=1

(
1 − 1

(2k)2

)
⇐⇒ π

2
=

+∞∏
k=1

(2k)2

(2k − 1)(2k + 1)

or 

. 
π

2
= 2 · 2

1 · 3
· 4 · 4

3 · 5
· 6 · 6

5 · 7
· · ·

Exercise 7.7 Factorize the function .ez − 1 into an infinite product.



8Analytic Continuations 

Abstract 

Analytic functions have surprised us in previous chapters with their properties. In 
this chapter we will learn about another interesting property of analytic functions, 
namely the possibility of continuing an analytic function from the domain in 
which it is defined to a larger one. An important property of the analytic 
continuation procedure is that it is unique. In essence, this means that knowing 
the values of an analytic function in a small domain, or even on a curve, uniquely 
determines the value of the function at any other point where that function 
can be continued. This is a rather surprising and extremely strong assertion. 
Moreover, for some analytic functions, the analytic continuation can lead to a 
new concept of a function, which we have already experienced empirically in 
Sects. 3.6 and 3.7. Here we will find out under which conditions the analytic 
continuation leads to a multi-valued function, and under which conditions the 
newly extended function is single-valued. Along the way we will be introduced 
to various continuation techniques and other fundamental concepts of complex 
analysis such as monodromy, global analytic functions, their singularities and 
Riemann surfaces. 

8.1 Analytic Function Elements 

Thanks to the uniqueness theorem (see Theorem 5.12), the usual way to define 
analytic functions is to first specify the function only in a small domain, and then 
extend it by analytic continuation to the largest possible domain. Therefore, we now 
give some basic definitions of continuation. 

Definition 8.1 Let . Ω be a domain in . C and E be a subset of . Ω . An analytic 
function .F : Ω �→ C is called an analytic continuation of a function . f : E �→ C

from the set E into the domain . Ω if .F(z) = f (z) for all .z ∈ E. 
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In other words, the restriction of F to the set E is the function f . 

Definition 8.2 Let G be a domain in . C and .f ∈ A(G). An ordered pair .(f, G) is 
called an analytic function element. 

Definition 8.3 An analytic function element .
(
f, Br(a)

)
is said to be a canonic 

analytic function element if the radius of the disk .Br(a) is 

.r =
⎛

⎝lim sup
n→+∞

n

√
|f (n)(a)|

n!

⎞

⎠

−1

, (8.1) 

i.e., .Br(a) is the largest disk in which the function f can be expanded as the sum of 
a power series centered at a. 

Definition 8.4 Two analytic function elements .(f1,G1) and .(f2,G2) are called 
direct analytic continuations of each other if .G1 ∩ G2 =: D �= ∅, . D is a domain 
and .f1(z) = f2(z) for all .z ∈ D (Fig. 8.1). 

Lemma 8.1 Let .(f2,G2) and .(f3,G2) be two direct analytic continuations of an 
analytic function element .(f1,G1). Then .(f2,G2) = (f3,G2), i.e., no more than 
one function can be analytic in . G2 and coincides with . f1 in .D = G1 ∩ G2. 

Proof By Definition 8.4, .f1(z) = f2(z) = f3(z) for all .z ∈ D. Then, due to 
Theorem 5.12 we have that .f2 ≡ f3 in . G2. 
�

Example 8.1 Consider two canonic analytic function elements .(f1, G1) and 
.(f2, G2), where 

. f1(z) =
+∞∑

n=0

zn, z ∈ G1 := {z ∈ C : |z| < 1},

. f2(z) =
+∞∑

n=0

1

1 − i

(
z − i

1 − i

)n

, z ∈ G2 := {z ∈ C : |z − i| <
√
2}.

Fig. 8.1 Analytic function 
elements .(f1,G1) and 
.(f2,G2) that are direct 
analytic continuations of each 
other
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Since the sums of these series are 

. f1(z) = 1

1 − z
, z ∈ G1, and f2(z) = 1

1 − i

1

1 − z−i
1−i

= 1

1 − z
, z ∈ G2,

the function elements .(f1,G1) and .(f2,G2) are direct analytic continuations of 
each other. Obviously, each of these analytic function elements is the direct analytic 
continuation of the analytic function element .(f3,G3), where 

. f3(z) = 1

1 − z
, z ∈ G3 := C \ {1}.

The question naturally arises: how to construct an analytic continuation of a given 
analytic function, defined on some domain, into a larger domain? The mathemati-
cians Weierstrass and Riemann proposed a method of analytic continuation called 
the method of re-expansion of power series. Next, we have a look at how it works. 

Let .
(
f, Br(a)

)
be an analytic function element, where 

. f (z) =
+∞∑

n=0

cn(z − a)n, z ∈ Br(a).

Take any point .b ∈ Br(a) and rewrite this representation as follows 

. f (z) =
+∞∑

n=0

cn(z − a)n =
+∞∑

n=0

cn

(
(z − b) + (b − a)

)n

=
+∞∑

n=0

cn

n∑

k=0

(
k

n

)
(z − b)k(b − a)n−k =

+∞∑

n=0

dn(z − b)n, (8.2) 

where the coefficients .dn = f (n)(b)
n! , n ∈ N0, are uniquely determined by the 

theorem on the uniqueness of the expansion of an analytic function in a power series 
(see Theorem 5.7). 

Next we find the convergence radius of the power series . 
∑+∞

n=0 dn(z − b)n

. r1 =
(
lim sup
n→+∞

n

√
|f (n)(b)|

n!
)−1

and determine the function 

.f1(z) =
+∞∑

n=0

dn(z − b)n, z ∈ Br1(b).
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Fig. 8.2 The case 
. r1 > r − |b − a|

Then .
(
f1, Br1(b)

)
is a new canonic analytic function element. 

Due Theorem 5.3, the radius .r1 ≥ r − |b − a|. Two cases are possible, namely 

• if .r1 > r − |b − a| (see Fig. 8.2), then .
(
f1, Br1(b)

)
is the direct analytic 

continuation of the analytic function element . 
(
f,Br(a)

);
• if .r1 = r − |b − a|, then it is said that through the point . z0 = ∂Br(a) ∩ ∂Br1(b)

it is not possible to analytically extend the function element .
(
f, Br(a)

)
and the 

point . z0 is singular for .
(
f,Br(a)

)
. 

It is easy to see that the point .z0 = 1 is singular for the analytic function element 
.(f1, G1) from Example 8.1. We may apply this approach to any domain on which 
f is analytic. 

Definition 8.5 Let .(f, Ω) be an analytic function element and .z0 ∈ ∂Ω . 
We say that the analytic function element .(f, Ω) is continued through the point 

. z0 if there is an analytic function element .
(
F, Br(z0)

)
which is a direct analytic 

continuation of .(f, Ω). 
If such a continuation does not exist, then the point . z0 is called a singular point 

of the analytic function element .(f, Ω). 

Definition 8.6 A domain . Ω is called a domain of analyticity (domain of holomor-
phy or natural domain) of an analytic function f if every point on .∂Ω is a singular 
point of the analytic function element .(f, Ω). 

Example 8.2 Consider the function 

. f (z) =
+∞∑

k=1

z2
k

By the formula (5.4) , the convergence radius of this power series is 1, so f is analytic
in the unit circle .B1(0). If  . z from .B1(0) approaches . z0, where . z0 is a root of one 
of the equations .z2

k = 1, k ∈ N, then .f (z) → ∞. Therefore, f has a singularity
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at every . 2kth root of 1. Since these roots are dense on .∂B1(0), the disk .B1(0) is a 
domain of analyticity of f . 

Remark 8.1 Every domain in . C is a domain of analyticity of some analytic 
function. Indeed, it possible to define an analytic function with isolated zeros 
accumulating everywhere on the boundary of a given domain, which must then be 
its domain of analyticity. 

Theorem 8.1 (On a Singularity of a Canonic Analytic Element) Let . 
(
f, Br(a)

)

be a canonic analytic function element. Then it has a singular point .z0 ∈ ∂Br(a). 

Proof Since .
(
f, Br(a)

)
is a canonic analytic function element, the function f can 

be represented as the sum of the power series 

. f (z) =
+∞∑

n=0

cn(z − a)n in Br(a), where r =
(
lim sup
n→+∞

n
√|cn|

)−1
.

Assume that the canonic analytic function element .
(
f, Br(a)

)
has no singular 

points on .∂Br(a). Then for any point .z0 ∈ ∂Br(a) there is an analytic function 
element .

(
fz0 , Bδ(z0)(z0)

)
which is the direct analytic continuation of .

(
f, Br(a)

)
. 

As .∂Br(a) is compact, it is possible to choose a finite subcover (see Fig. 8.3) 

. {Brn(zn)}Nn=1 of the cover {Bδ(z0)(z0)}z0∈∂Br (a)

such that .∂Br(a) ⊂ ⋃N
n=1 Brn(zn). Denote by 

. G :=
( N⋃

n=1

Brn(zn)
)

∪ Br(a).

Fig. 8.3 The subcover 
. {Brn (zn)}Nn=1

}
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In the domain G we define the function 

.F(z) :=
{

f (z), z ∈ Br(a),

fn(z), z ∈ Brn(zn), n ∈ {1, . . . , N}. (8.3) 

Since .
{(

fn, Brn(zn)
)}N

n=1 are direct analytic continuations of the analytic function 
element .

(
f, Br(a)

)
, we have 

. fn(z) = fn+1(z) = f (z) for all z ∈ Brn(zn) ∩ Brn+1(zn+1) ∩ Br(a)

and for all .n ∈ {1, . . . , N − 1}, and 

. fN(z) = f1(z) = f (z) for all z ∈ BrN (zN) ∩ Br1(z1) ∩ Br(a).

Therefore, according to Theorem 5.12, for any . n ∈ {1, . . . , N − 1}

. fn(z) = fn+1(z) for all z ∈ Brn(zn) ∩ Brn+1(zn+1),

fN(z) = f1(z) for all z ∈ BrN (zN) ∩ Br1(z1).

Consequently, the formula (8.3) correctly defines the analytic function F in the 
domain G. 

It is easy to recognise (Fig. 8.3) that the distance from . ∂G to .Br(a) is positive; 
let us denote it by .α := dist

(
∂G,Br(a)

)
> 0. In virtue of the analyticity of F in the 

disk .Br+α(a), it can be expanded in the power series 

. F(z) =
+∞∑

n=0

dn(z − a)n for all z ∈ Br+α(a),

and it follows from (5.4) and (8.3) that

. 
1

r + α
≥ lim sup

n→+∞
n
√|dn| = lim sup

n→+∞
n

√
|F (n)(a)|

n! = lim sup
n→+∞

n

√
|f (n)(a)|

n! = 1

r
.

Since .α > 0, this inequality is a contradiction, which completes the proof. 
�

Remark 8.2 Theorem 8.1 can be used to find radii of convergence of power series. 
For example, the radius of convergence of the power series 

. tan z =
+∞∑

n=0

cnz
n, z ∈ Br(0),
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is equal to the distance from the point 0 to the nearest singular point of the function 
.tan z, i.e. .r = π

2 . 

It is clear that the method of re-expansion of power series is inefficient for 
constructing analytic continuations. In the next section, we will get to know more 
effective methods of analytic continuation, which can be used to construct new 
important non-elementary functions. 

8.2 Methods of Analytic Continuation: Schwarz’s Reflection 
Principle 

To feel the power statement of the following theorem, let us first consider an 
example. We define two real-valued functions 

. g1(x1, x2) = −x1, (x1, x2) ∈ (−1, 0) × (0, 1),

and 

. g2(x1, x2) = x1, (x1, x2) ∈ (0, 1) × (0, 1).

These functions are smooth in their domains and 

. lim
x1→0− g1(x1, x2) = lim

x1→0+ g2(x1, x2) for all x2 ∈ (0, 1).

But, the function 

. g(x1, x2) =
{

g1(x1, x2), (x1, x2) ∈ (−1, 0] × (0, 1),
g2(x1, x2), (x1, x2) ∈ (0, 1) × (0, 1),

is only continuous in the rectangle .(−1, 1) × (0, 1). 
For complex-valued analytic functions, the situation is quite different. The 

following theorem is true. 

Theorem 8.2 (Analytic Continuation by Continuity) Assume that the following 
conditions are satisfied: 

(1) domains . Ω1 and . Ω2 do not intersect, however the intersection of their closures 
is .Γ := Ω1 ∩ Ω2, and it is the trace of some smooth curve; 

(2) in each domain .Ωk, an analytic function . fk is given, which is also defined on . Γ

and is continuous on .Ωk ∪ Γ, i.e., . fk ∈ A(Ωk) ∩ C(Ωk ∪ Γ ), k ∈ {1, 2};
(3) for all . z ∈ Γ

.f1(z) = f2(z).
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Then the function 

. f (z) :=
{

f1(z), z ∈ Ω1 ∪ Γ,

f2(z), z ∈ Ω2,

is analytic in the domain D, where .D = Ω1 ∪ Ω2. 

Proof From the theorem’s conditions follows that .f ∈ C(D). Consider an arbitrary 
triangle . � which, together with its closure, belongs to the domain D. Then two 
cases are possible: either .� ∩ Γ = ∅, or .� ∩ Γ �= ∅. 

If .� ∩ Γ = ∅, then based on the Cauchy-Goursat theorem for triangles 
(Theorem 4.1) 

. 

∫

∂+�
f dz = 0.

Consider the case of .� ∩ Γ �= ∅. We assume that . Γ divides the triangle . � into 
two open sets . Ξ1 and . Ξ2 (see Fig. 8.4); other cases are either treated similarly or 
are obviously simplified, for example, when . Γ intersects only a side or a vertex of 
. �. Then 

.

∫

∂+�
f dz =

∫

∂+Ξ1

f1 dz +
∫

∂+Ξ2

f2 dz. (8.4) 

Since .fk ∈ A(Ξk) ∩ C(Ξk) for .k ∈ {1, 2} and taking into account Remark 4.10, 
each of the integrals on the right-hand side of (8.4) is equal to zero.

Thus, for an arbitrary triangle . � which, together with its closure, belongs to 
the domain .D, .

∫
∂+� f dz = 0. Then Morera’s theorem (Theorem 5.9) says that 

.f ∈ A(D). 
�

Remark 8.3 The theorem remains valid when . Γ is the union of at most a countable 
number of smooth curves. 

Exercise 8.1 Let .f ∈ A
(
B1(0)

) ∩ C(B1(0) ∪ Γ0), where . Γ0 is an arc of the circle 
.{z ∈ C : |z| = 1}, and .f (z) = 0 for all .z ∈ Γ0. Prove that .f = 0 in .B1(0). 

Fig. 8.4 Intersection of . Γ
with a triangle .�
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Example 8.3 Example 5.8 shows that the gamma function 

.Γ (z) =
∫ +∞

0
e−t t z−1 dt, z ∈ Ωr = {ξ : Re ξ > 0}, (8.5) 

is analytic in the right half-plane . Ωr . Let us show that this function can be continued 
in the complex plane with the exception of simple poles. 

Solution Integration by parts in the integral (8.5) gives

.Γ (z + 1) = z Γ (z) ⇐⇒ Γ (z) = Γ (z + 1)

z
for all z ∈ Ωr. (8.6) 

The last identity in (8.6) makes it possible to continue the gamma function in the half
plane .{z : Re z > −1}, except at the origin. Obviously, this extension is analytic in 
the vertical strip .{z : −1 < Re z < 0}. It is continuous at the points of the imaginary 
axis, except at the origin. Indeed, 

. lim
z→iy

Γ (z) = lim
z→iy

Γ (z + 1)

z
= Γ (iy + 1)

iy
= Γ (iy) for all y ∈ R \ {0}.

Considering that .Γ (n + 1) = n! for all .n ∈ N0, we get 

.Γ (z) = Γ (z + 1)

z
∼ Γ (1)

z
= 1

z
as z → 0. (8.7) 

Thus, Theorem 8.2 says that . Γ is analytic in .{z : Re z > −1} \ {0}, and the 
asymptotic relation (8.7) indicates that . Γ has a simple pole at the origin and 

. Resz=0Γ (z) = 1.

Continuing in the same way, we define 

. Γ (z) = Γ (z + 1)

z
= Γ (z + 2)

z(z + 1)
for all z ∈ {ξ : Re ξ > −2} \ {0,−1},

.Γ (z) = Γ (z + k + 1)

z(z + 1) · . . . · (z + k)
(8.8) 

for all .z ∈ {ξ : Re ξ > −k − 1} \ {0,−1, . . . ,−k}. It follows from (8.8) that

.Γ (z) ∼ (−1)k

k! (z + k)
as z → −k. (8.9)

Thus, the analytic continuation of the gamma function from the right half-
plane gives us a meromorphic function with simple poles at non-positive integers



194 8 Analytic Continuations

.{−k}k∈N0 at which the residue of . Γ is equal to . (−1)k

k! , respectively. In addition, its 
restriction on the positive real axis coincides with the real-valued gamma function 
(5.21), where it is positive, and due to (8.8) it is also positive on the intervals
.(−k − 1,−k), .k ∈ N0. 

Using the uniqueness Theorem 5.12, as in Sect. 5.5, one can prove functional 
identities for the gamma function in the complex plane that are valid for real 
numbers. For example, it is well known that 

. Γ (x) Γ (1 − x) = π

sinπx
for all x ∈ (0, 1).

Consequently, 

.Γ (z) Γ (1 − z) = π

sinπz
for all z ∈ C \ Z. (8.10) 

An immediate consequence of the identity (8.10) is the absence of zeros of the
gamma function. This means that . 1

Γ
is an entire function that has simple zeros at 

non-positive integers. 

Example 8.4 Example 5.7 shows that the Riemann zeta function is analytic in the 
half-plane .{z : Re z > 1}. From the functional Eq. (5.24) and the fact that . 1

Γ
is 

entire, it follows that 

.ζ(z) = 1

Γ (z)

(∫ 1

0

tz−1

et − 1
dt + g(z)

)
, (8.11) 

where the entire function g is defined in (5.19) . Taking into account the power
expansion for the function .z/(ez − 1) around .z = 0, namely 

. 
z

ez − 1
= 1 − 1

2
z +

+∞∑

k=2

ck zk for all z ∈ B2π (0)

(to find the radius of convergence, Remark 8.2 is used), and the third statement of 
Theorem 5.2, we deduce 

.

∫ 1

0

tz−1

et − 1
dt =

∫ 1

0
tz−1

(1
t

− 1

2
+

+∞∑

k=2

ck tk−1
)

dt

= 1

z − 1
− 1

2z
+

+∞∑

k=1

ck+1

z + k
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According to (8.11) , we get the formula

.ζ(z) = 1

Γ (z)
· 1

z − 1
+ 1

Γ (z)

(
− 1

2z
+

+∞∑

k=1

ck+1

z + k
+ g(z)

)
(8.12) 

which provides the analytic continuation of . ζ in .C\{1}. Indeed, despite the fact that 
the bracketed expression in (8.12) has a simple pole at each non-positive integer, all
these poles are cancelled by the zeros of . 1

Γ
based on the formula (8.9) ; moreover,

.ζ(0) = − 1
2 , and . ζ has a simple pole at .z = 1 with residue 1. . �

Remark 8.4 By modifying the contour integration, Riemann deduced from the 
identity (5.24) the surprisingly mysterious functional equation

.ζ(z) = Γ (1 − z) ζ(1 − z) 2zπz−1 sin
πz

2
(8.13) 

that relates values of the zeta function at the points z and .1 − z. In particular, it 
follows from (8.13) that the zeta function has a simple zero at the points . {zn =
−2n}n∈N, known as the trivial zeros of . ζ . When .z = 2m, .m ∈ N, the limit of the 
product .Γ (1 − z) sin πz

2 is equal to .(−1)mπ/2(2m − 1)! because of (8.9) ; due to
(8.12) the limit .ζ(1 − z) sin πz

2 is .−π
2 as z tends to zero. 

In 1859 Riemann famously conjectured that there are infinitely many non-trivial 
zeros of the zeta function and that all of these zeros lie on the line .Re z = 1

2 . The  
Riemann hypothesis has been confirmed by many theoretical and numerical studies, 
but still remains unproven. The Clay Mathematical Institute in 2000 announced a 
US$1million prize for the first correct solution of this conjecture. 

Theorem 8.3 (Schwarz’s Reflection Principle) Let . Ω be a domain in . C which 
is symmetric with respect to the real axis. We set . Ω+ = {z ∈ Ω : Imz > 0},
.Ω− = {z ∈ Ω : Imz < 0} and .J = Ω ∩ R (see Fig. 8.5). 

If f is an analytic function in .Ω+, continuous in .Ω+ ∪ J and takes real values 
on . J, then f has an analytic extension . f̃ to . Ω which determined by the formula 

. f̃ (z) =
{

f (z), z ∈ Ω+ ∪ J,

f (z), z ∈ Ω−.

Proof Take any point .z0 ∈ Ω−. Then 

.
f̃ (z) − f̃ (z0)

z − z0
= f (z) − f (z0)

z − z0
=
(

f (z) − f (z0)

z − z0

)
−→ f

′
(z0) as z → z0.
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Fig. 8.5 Domain 
. Ω = Ω+ ∪ Ω− ∪ J

This means that there is a derivative of . f̃ at . z0 and 

. 
df̃

dz
(z0) = f

′
(z0).

Hence, .f̃ ∈ A(Ω−). 
Since f is continuous in .Ω+ ∩ J and .f (x) ∈ R for all .x ∈ J , 

. lim
Ω+�z→x∈J

f̃ (z) = lim
Ω+�z→x∈J

f (z) = f (x)

and 

. lim
Ω−�z→x∈J

f̃ (z) = lim
Ω−�z→x∈J

f (z) = f (x) = f (x).

Then .f̃ ∈ A(Ω) according to Theorem 8.2. 
�

Corollary 8.1 Let conditions of Theorem 8.3 be satisfied and, moreover, 

• let the function f univalently map the domain .Ω+ onto a domain .G+ that is 
located in the upper half-plane .{w ∈ C : Imw > 0} and 

• the mapping .f : J �→ I be a bijection, where .I := ∂G+ ∩ R. 

Then the function 

.f̃ (z) =
{

f (z), z ∈ Ω+ ∪ J,

f (z), z ∈ Ω−,
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is a univalent and conformal mapping of the domain . Ω onto the domain . G, where 
.G = G+ ∪ I ∪ G− and .G− is the symmetric image of .G+ with respect to the real 
axis. 

Proof Based on Theorem 8.3, we have that .f̃ ∈ A(Ω). It follows from the corollary 
conditions that the mapping .f̃ : Ω �→ G is a bijection. Then, from Theorem 7.8 (on 
sufficient conditions of conformality), we have that . f̃ is conformal in . Ω . 
�

Example 8.5 Find a univalent and conformal mapping of the domain 
.Ω := C \ ([−1, 1] ∪ [−i, i]) onto the domain . G := C \ [−1, 1].

Solution The domains . Ω and G are symmetric with respect to the real axis and 

. Ω = Ω+ ∪ Ω− ∪ J, G = G+ ∪ G− ∪ I,

where .J := Ω ∩R = (−∞,−1)∪ (1,+∞), . I := G∩R = (−∞,−1)∪ (1,+∞),

. Ω+ := {z ∈ C : Im z > 0} \ [0, i], Ω− := {z ∈ C : Im z < 0} \ [−i, 0],
G+ := {w ∈ C : Imw > 0}, G− := {w ∈ C : Imw < 0}.

To apply Corollary 8.1, we must find a univalent and conformal mapping of . Ω+
onto . G+. It is easy to see that this is the function 

. f (z) := 1√
2

0
√

z2 + 1, z ∈ Ω+,

where . 0
√ · is the 0th-branch of the square root (see Sect. 3.6); in addition, it is a 

bijection of the interval .(1,+∞) onto .(1,+∞). Since 

. lim
Ω+�z→x<−1

1√
2

0
√

z2 + 1 =
√

x2 + 1√
2

eiπ = −
√

x2 + 1√
2

,

f is also a bijection of .(−∞,−1) onto .(−∞,−1). 
Thus, all the conditions of Corollary 8.1 are satisfied, which means that the 

function 

. f̃ (z) =

⎧
⎪⎨

⎪⎩

1√
2

0
√

z2 + 1, z ∈ Ω+ ∪ (−∞,−1) ∪ (1,+∞),

1√
2

0
√

(z)2 + 1 , z ∈ Ω−,

is the desired mapping.
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8.3 Analytic Continuation Along a Curve: The Monodromy 
Theorem 

In the previous section we introduced two specific methods of analytic continuation. 
Here we will study all the possible analytic extensions of a canonic analytic function 
element. 

Definition 8.7 A finite set of analytic function elements .
{
(fk,Dk)

}n

k=0 is called 
an analytic chain if consecutive pairs are analytic continuations of each other, i.e., 
.(fk−1,Dk−1) and .(fk,Dk) are direct analytic continuations of each other for all 
.k ∈ {1, . . . , n}. Hereby .(fn,Dn) is referred to as an analytic continuation of the 
analytic function element .(f0,D0) along the given chain. 

According to Lemma 8.1 the analytic continuation along an analytic chain is 
unique. 

Example 8.6 Let .(f0, B0), .(f1, B1), .(f2, B2) be analytic function elements, where 
.B0 := B1(0), .B1 := B1(i), . B2 := B1(−1),

. f0(z) = √|z| exp(i ϕ
2 ), z ∈ B0, ϕ ∈ Arg(z), ϕ ∈ (−π

2 , π
2 );

f1(z) = √|z| exp(i ϕ
2 ), z ∈ B1, ϕ ∈ Arg(z), ϕ ∈ (0, π);

f2(z) = √|z| exp(i ϕ
2 ), z ∈ B2, ϕ ∈ Arg(z), ϕ ∈ (π

2 , 3π
2 ).

It is easy to verify that .{(f0, B0), (f1, B1), (f2, B2)} is an analytic chain, and 
.(f2, B2) is the analytic continuation of the analytic function element .(f0, B0) along 
this chain. 

Similarly, we check that .{(f0, B0), (f−1,B−1), (f−2,B−2)} is also an analytic 
chain, where .B−1 := B1(−i), . B−2 := B1(−1),

. f−1(z) = √|z| exp(i ϕ
2 ), z ∈ B−1, ϕ ∈ Arg(z), ϕ ∈ (−π, 0);

f−2(z) = √|z| exp(i ϕ
2 ), z ∈ B−2, ϕ ∈ Arg(z), ϕ ∈ (− 3π

2 ,−π
2 ).

However, .f2(z) �= f−2(z) for all .z ∈ B2 = B−2. Thus, the results obtained by 
continuing .(f0, B0) along these two chains are different. And this is an illustration of 
how repeated continuation of a single-valued analytic function element can produce 
a multi-valued function or a single-value function given on the corresponding 
Riemann surface (see Sects. 3.6 and 3.7). . �

From this example, a natural question arises: under what conditions can it be 
guaranteed that the result of an analytic continuation along different analytic chains 
will be the same?
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Before answering this question, let us give a somewhat similar but more 
convenient definition of analytic continuation. As in Sect. 4.4, we assume that curves 
are given on the segment .I = [0, 1]. 

Definition 8.8 Let .
(
f0, Br0(a)

)
be a canonic analytic function element, and let 

.γ : I �→ C be a curve with the origin .a = γ(0) and the endpoint .b = γ(1). 
We say that .

(
f0, Br0(a)

)
is analytically continued along . γ if there exists a 

partition .{0 = t0 < t1 < . . . < tn = 1} of the segment I and an analytic chain 
.
{(

fk, Brk (γ(tk))
)}n

k=0 such that 

(1) .γ
([tk−1, tk]

) ⊂ Brk−1

(
γ(tk−1)

)
for all . k ∈ {1, . . . , n},

(2) and .
(
fn, Brn(b)

)
is a canonic analytic function element. 

Hereby, .
(
fn, Brn(b)

)
is called an analytic continuation of .

(
f0, Br0(a)

)
along the 

curve . γ ; this is denoted as follows 

. 
(
f0, Br0(a)

) a.c.−→
γ

(
fn, Brn(b)

)
.

Exercise 8.2 Prove that the analytic continuation of .
(
f0, Br0(a)

)
along . γ does not 

depend on a partition of the segment I . 

Remark 8.5 The reader may wonder why, in this definition, we need the canonic 
analytic function elements at the beginning and the end of the analytic continuation 
along . γ. There is no loss generality, since an analytic function element . 

(
f,Br(a)

)

can easily be made a canonic one. To do this, we need to use Theorem 5.3 (on the 
expansion of an analytic function in a power series) and find the convergence radius 
using the formula (8.1) . Also, without losing generality, we can replace the domains
in an analytic chain with disks.

Example 8.7 The analytic chain .{(f0, B0), (f1, B1), (f2, B2)} from Example 8.6 
can be replaced with the analytic continuation of .(f0, B0) along the curve 
.γ(t) = eiπt , t ∈ [0, 1]. The corresponding analytic chain is as follows 
.
{(

fk, B1(γ(tk))
)}4

k=0, where the partition 

. {0 = t0 < t1 = 1
4 < t2 = 1

2 < t3 = 3
4 < t4 = 1}

and 

. fk(z) = √|z| exp(i ϕ
2 ), z ∈ B1(γ(tk)), ϕ ∈ Arg(z), ϕ ∈ (−π

2 + πk
4 , π

2 + πk
4 ).

Thus, 

.(f0, B0)
a.c.−→
γ

(f2, B2). (8.14)
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Fig. 8.6 Curvilinear strip . Uε(γ)

Clearly (see Example 8.6), 

.(f0, B0)
a.c.−→
γ1

(f−2,B−2), (8.15) 

where .γ1(t) = e−iπt , t ∈ [0, 1]. . �

Remark 8.6 For the analytical chain .
{(

fk, Brk (γ(tk))
)}n

k=0 from Definition 8.8, the  
following properties hold: 

(1) there is a positive number . ε such that .rk ≥ ε for all . k ∈ {0, 1, . . . , n};
(2) for any curve .γ1 : I �→ C such that .γ1(0) = a, .γ1(1) = b and whose trace . Eγ1

belongs to the curvilinear strip 

.Uε(γ) := {z ∈ C : dist(z; Eγ) < ε}, (8.16) 

(see Fig. 8.6) there exists an analytic continuation of .
(
f0, Br0(a)

)
along . γ1 and 

. 
(
f0, Br0(a)

) a.c.−→
γ1

(
fn, Brn(b)

)
.

The same result of the analytic continuation of .
(
f0, Br0(a)

)
along . γ1 is guaran-

teed by Theorem 5.12. . �

It turns out that if an analytic function element can be analytically continued 
along homotopic curves (see Definition 4.4), then the results of the extension 
coincide. The following theorem proves this. 

Theorem 8.4 (Monodromy Theorem) Let .ϕ : I ×I �→ Ω be a homotopy between 
two curve 

.γ0 : I �→ Ω and γ1 : I �→ Ω,
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i.e., .γ0 ≈ γ1 in . Ω, and let .a = γ0(0) = γ1(0) and .b = γ0(1) = γ1(1). For each 
.s ∈ I , denote by 

. γs(t) := ϕ(s, t), t ∈ I.

If for every .s ∈ I a given canonic analytic function element .
(
f0, Br0(a)

)
is 

analytically continued along . γs and 

. 
(
f0, Br0(a)

) γs−−→
a.c.

(
f (s)

ns
, B

r
(s)
ns

(b)
)
,

then 

.
(
f (s)

ns
, B

r
(s)
ns

(b)
) = (

f (0)
n0

, B
r
(0)
n0

(b)
)

for all s ∈ I. (8.17) 

Proof Thanks to Definition 8.8, for every .s ∈ I there is an analytic chain 

. 
{(

f0, Br0(b)
)
,
(
f

(s)

r
(s)
1

, B
r
(s)
1

(γs(t
(s)
1 ))

)
, . . . ,

(
f (s)

ns
, B

r
(s)
ns

(b)
)}

which leads to the canonic analytic function element .
(
f

(s)
ns

, B
r
(s)
ns

(b)
)
as a result of 

the analytic continuation of .
(
f0, Br0(a)

)
along . γs . 

From the first point of Remark 8.6 we see that there exists .εs > 0 such that 
.r

(s)
k ≥ εs for all .k ∈ {0, 1, . . . , ns}. 
Due to the uniform continuity of . ϕ, there is a positive number . δs such that for all 

. μ ∈ Υδs := (s − δs , s + δs) ∩ I

. max
t∈[0,1] |γs(t) − γμ(t)| = max

t∈[0,1] |ϕ(s, t) − ϕ(μ, t)| < εs.

This means that the trace .Eγμ belongs to .Uε(γs) (see (8.16)) for all .μ ∈ Υδs . 
By the second point of Remark 8.6, 

.
(
f (μ)

nμ
, B

r
(μ)
nμ

(b)
) = (

f (s)
ns

, B
r
(s)
ns

(b)
)

for all μ ∈ Υδs . (8.18) 

Since .I = [0, 1] is compact, it can be covered by a finite number of intervals 
.{Υδs0

, . . . , Υδsp
}, where .s0 = 0, sp = 1, on each of which equality (8.18) holds for

any .μ ∈ Υδk
, .k ∈ {1, . . . , p}. Then, starting from .s0 = 0 and taking a finite number 

of steps, we arrive at .sp = 1, which means that the identity (8.17) is satisfied. 
�

The following corollary follows from the monodromy theorem and from the fact 
that arbitrary curves with a common origin and end are homotopic in a simply 
connected domain. 

Corollary 8.2 Let . Ω be a simply connected domain and .a ∈ Ω .
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If for any curve . γ starting at a and such that .Eγ ⊂ Ω there exists an analytic 
continuation of a given canonic analytic function element .

(
f,Br(a)

)
along . γ, 

then the result of the analytic continuation does not depend on . γ but is uniquely 
determined by its end. 

Remark 8.7 If the conditions of Corollary 8.2 hold, then a single-valued analytic 
function F is determined in . Ω such that the analytic function element .(F,Ω) is a 
direct analytic continuation of .

(
f,Br(a)

)
. 

Example 8.8 The curves . γ and . γ1 from Example 8.7 are homotopic in . C. However, 
the analytic continuations of the canonic analytic function element .(f0, B0) along 
these curves yields different results (see (8.14) and (8.15) ). The reason is that along
a curve whose trace contains the origin and connects the points 1 and . −1, it is  
impossible to analytically continue .(f0, B0) (see Sect. 3.6). This means that the 
condition of Theorem 8.4 is not satisfied. 

8.4 Global Analytic Functions 

Example 8.8 shows that all possible analytic continuations of a canonic analytic 
function element can lead to a new object, which is not necessarily a single-valued 
function. Such an object is called a global analytic function which appears as a 
collection of canonic analytic function elements related to each other in a prescribed 
way. 

Definition 8.9 A set of canonic analytic function elements 

. F := {
(fα, Bα)

}
α∈Ξ

is called a global analytic function if the following conditions are met: 

(1) for any .(fα1 , Bα1) ∈ F and .(fα2 , Bα2) ∈ F there is a curve . γ such that 

. (fα1 , Bα1)
a.c.−→
γ

(fα2, Bα2);

(2) if for some canonic analytic function element .(g, B) there exists an element 
.(fα3 , Bα3) ∈ F and a curve . γ0 such that 

. (fα3 , Bα3)
a.c.−→
γ0

(g, B),

then necessarily .(g, B) ∈ F . . �

It follows from Definition 8.9 that two global analytic functions . F1 and . F2 are 
equal if they have at least one element in common.
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Exercise 8.3 Check that the relation ."
a.c.−→
γ

" between canonic analytic function 

elements is an equivalence relation, i.e., it is reflexive, symmetric and transitive. . �

Therefore, the set of all canonic analytic function elements is partitioned into 

equivalence classes by the equivalence relation ."
a.c.−→
γ

", and these equivalence 

classes are different global analytic functions. 

Working with such bulky objects is not convenient. Next, a new definition is 
introduced which characterises the concept of a global analytic function in more 
detail. 

For each global analytic function .F = {
(fα, Bα)

}
α∈Ξ

we define the set 

.� :=
⋃

α∈Ξ
Bα. (8.19) 

It is easy to see that for each point .a ∈ � there exists a canonic analytic function 
element .(f, Br(a)) which belongs to the global analytic function . F . It also means 
that .Br(a) ∈ �, and therefore . � is an open set. 

Consider two arbitrary points a and b from . �. Then there are canonic analytic 
function elements .(f1, Br1(a)) and .(f2, Br2(b)) from . F . By Definition 8.9, there 
exists a curve . γ such that 

. (f1, Br1(a))
a.c.−→
γ

(f2, Br2(b)),

and this means (see Definition 8.8) that the trace of . γ belongs to . �. Thus, . � is a 
domain. 

If there is an analytic function element .(g,�) which is the direct analytic 
continuation of each .(fα, Bα) ∈ F (see examples below), then the global analytic 
function . F bijectively specifies the single-valued analytic function .g : � �→ C for 
which . � is its domain of analyticity. 

Therefore, we also call the domain . � defined by (8.19) a domain of analyticity
of the global analytic function . F . 

Definition 8.10 Let .F = {
(fα, Bα)

}
α∈Ξ

be a global analytic function, and D be a 
subdomain of .� = ⋃

α∈Ξ Bα. 
A single-valued continuous function g defined in D is called a branch of the 

global analytic function . F if for every .z0 ∈ D there exists a canonic analytic 
function element .(fα1 , Bα1) ∈ F such that .z0 ∈ Bα1 and 

. g(z) = fα1(z) for all z ∈ D ∩ Bα1 .

.�
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It follows from this definition that g is an analytic function in D. It is also obvious  
that for any index .α ∈ Ξ , the function . fα defined in . Bα is a branch of the global 
analytic function . F in the disk . Bα. Depending on the domain . �, the following cases 
are possible. 

1. If . � is a simply connected domain, then by Corollary 8.2 a unique branch is 
defined in . � and the domain . � is its domain of analyticity. In this case, the global 
analytic function is a single-valued analytic function. For example, for the global 
analytic function .F = {

(sin z,C)
}
the domain .� = C and .g(z) = sin z, .z ∈ C. 

2. If . � is multiply connected, then two cases are possible: 

• In the domain . � one can still pick out a unique branch of the global analytic 
function . F , and then . � is a domain of analyticity for this branch. For example, 
for the global analytic function 

. F = {( 1
z
, B|a|(a)

)}
a∈C\{0},

the domain .� = C \ {0} and .g(z) = 1
z
, .z ∈ C \ {0}. 

• A branch of . F cannot be selected in . � (see Example 8.9 below). 

Example 8.9 Consider the global analytic function 

.
{√

z
} = {(

f,B|a|(a)
)}

a∈C\{0}, (8.20) 

where .f (z) = √|z| exp(i Arg z
2 ), and .Arg z is a continuous in .B|a|(a) branch of the 

multi-valued function . Arg. From Example 8.7 it can be seen that for this global 
analytic function it is not possible to select a single-valued branch in the domain 
.� = C \ {0}. For any point .a ∈ C \ {0}, the global analytic function .{√z} has two 
different canonic analytic function elements, namely .(f, B|a|(a)) and .(−f,B|a|(a)). 

Remark 8.8 The French mathematician Henri Poincaré (1954–1912) and the 
Italian mathematician Vito Volterra (1860–1940) independently proved that a global 
analytic function can have at most a countable number of different canonic analytic 
function elements centred at the same point. . �

If it is impossible to select a single-valued branch for a global analytic function 
. F in its domain . � of analyticity, then we cut . � by connecting the components of 
its boundary to obtain a simply connected domain . ̃�. Next, we take an arbitrary 
canonic analytic function element of . F and, based on Corollary 8.2, select a branch 
of . F in . ̃�. According to Remark 8.8 there can be at most a countable number of 
such branches in . ̃�. Thus, instead of a global analytic function . F , one can consider 
the set of all its branches in the domain . ̃�.
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Example 8.10 Consider the global analytic function .{√z} (see Example 8.9). For 
this function, .� = C \ {0}. If we connect the points 0 and . ∞, the simplest and most 
convenient way to do this is to use a real positive semi-axis, then we get a simply 
connected domain 

. ̃� := C \ {z : Im z = 0, Re z ≥ 0}.

In . ̃� it is possible to select two different branches for the global analytic function 
.{√z}, namely 

. gk(z) = √|z| ei(
arg z
2 +πk), k ∈ {0, 1};

here .0 < arg z < 2π . For every canonic analytic function element of .{√z}, there 
exists a branch that is its direct analytic continuation onto some larger domain. 
For example, for .

(
f,B1(1)

)
, where .f (z) = √|z| exp(i ϕ

2 ) and .ϕ ∈ Arg(z), . ϕ ∈
(−π

2 , π
2 ), the direct analytic continuation onto the upper plane . D0 := {z : Im z > 0}

is the analytic function element .(g0,D0). 
Therefore, the specification of the global analytic function .{√z} is equivalent to 

the specification of its two branches: . g0 and . g1 in . ̃� (see Sect. 3.6). 

Example 8.11 Consider the following global analytic function 

. {Log} = {(
f,B|a|(a)

)}
a∈C\{0},

where .f (z) = log |z| + iArg z, and .Arg z is any continuous in .B|a|(a) branch of the 
multi-valued function . Arg. For this function, .� = C \ {0}, and there it is impossible 
to select a single-valued branch of .{Log}. However, by making a cut along the real 
negative semi-axis, we obtain the simply connected domain . ̃� = C \ {z : Im z =
0, Re z ≤ 0}, in which it is possible to pick out the following branches: 

.gk(z) = log |z| + i arg z + i2πk, k ∈ Z; (8.21) 

here .−π < arg z < π (see Sect. 3.7). For every canonic analytic function element 
of {Log}, there exists a branch which is the direct analytic continuation of it on a 
somewhat larger domain. For example, for .

(
f,B1(−1)

)
, where . f (z) = log |z| + iϕ

and .ϕ ∈ Arg(z), .ϕ ∈ (π
2 , 3π

2 ), the direct analytic continuation onto the upper plane 
. D0 is the analytic function element .(g0,D0). 

Therefore, specifying the global analytic function .{Log} is equivalent to specify-
ing its branches (8.21) in . ̃� (see Sect. 3.7). .�
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The following operations can be performed on global analytic functions: 

(1) multiplication by an arbitrary complex number or by an arbitrary single-valued 
analytic function (of course, it must be defined in the corresponding domain . �); 
for example: 

. sin z · F = {(
sin z · fα, Bα

)}
α∈Ξ

,

where .F = {
(fα, Bα)

}
α∈Ξ

is a global analytic function; 
(2) superposition with any single-valued analytic function; for example: 

. exp
(
F
) = {(

exp(fα), Bα

)}
α∈Ξ

;

(3) when integrating (differentiating) a global analytic function, one selects its 
branches in the corresponding domain . ̃�, and then integrates (differentiates) 
over the required branch. 

But, it is impossible to correctly determine the addition or multiplication of 
global analytic functions. For example, if we assume that the sum . {√z} + {√z}
(see (8.20) ) is uniquely determined as the sum of all possible canonic analytic
function elements of these functions, then, on the one hand, the sum of the elements
.(f, B|a|(a)) and .(−f,B|a|(a)) defines a function that is identically equal to zero; 
on the other hand, the sum of the elements .(f, B|a|(a)) and .(f, B|a|(a)) defines the 
global analytic function .{2√z}. 

8.5 Riemann Surfaces of Global Analytic Functions 

In Sects. 3.6 and 3.7 we showed how to construct Riemann surfaces of the multi-
valued functions .Log and . n

√· in a simple way. The aim of such constructions is 
to make a single-valued function out of a multi-valued one. The purpose of this 
section is to present a unified topological approach to the construction of Riemann 
surfaces for global analytic functions, in which the above examples are special cases 
and which shows that Riemann surfaces can be considered as mathematical objects 
worthy of independent study. 

In what follows, we will use the abbreviation . ̃fa for a given canonic analytic 
function element .(f, Br(a)) indicating the function f itself and, as an index, the 
point a (the center of this element). 

Next, we construct a set . R, in which elements (points) are ordered pairs . A :=
(a, f̃a), where a is an arbitrary point from . C, and . ̃fa is an arbitrary canonic analytic 
function element centered at a.
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On . R, we introduce a topology . τ1 generated by a set of .ε-neighbourhoods of 
each point .A = (

a, (f, Br(a))
) ∈ R, where . ε is any positive number from .(0, r). 

An .ε-neighbourhood of a point .A ∈ R is defined as follows 

. Uε(A) := {
B = (b, g̃b) ∈ R : |a − b| < ε

and g̃b is a direct analytic continuation of f̃a

}
. (8.22) 

It is easy to verify that 

• for every .A ∈ R, there is an .ε-neighbourhood such that . A ∈ Uε(A);
• if .C = (c, h̃c) ∈ Uε1(A) ∩ Uε2(B), then there is .Uε3(C) such that 

. C ∈ Uε3(C) ⊂ Uε1(A) ∩ Uε2(B).

To do this, we need to take . ε3 such that the disk .Bε3(c) ⊂ Bε1(a) ∩ Bε2(b). 

This means that the set of .ε-neighbourhoods of each point .A ∈ R is a basis of a 
topology, and a subset in . R is defined to be open if it is a union of .ε-neighbourhoods. 
Thus, the collection . τ of all open sets, including . ∅ by definition, is a topology on . R, 
and .(R, τ) is a topological space. 

Lemma 8.2 The space .(R, τ) is a Hausdorff space (for each pair of distinct points, 
there are their non-intersecting neighborhoods), i.e., for all .A �= B ∈ R there exists 
a number .ε > 0 such that . Uε(A) ∩ Uε(B) = ∅.

Proof Consider two distinct points .A = (a, f̃a) and .B = (b, g̃b) lying in . R. There 
are two possible cases. The first one is .a �= b. In this case, we set .ε = |a−b|

4 . 
Then, based on the definition of the .ε-neighbourhood of a point in the space . R (see 
(8.22)), it is clear that . Uε(A)

⋂
Uε(B) = ∅.

In the second case, we have .a = b and .f̃a �= g̃a, i.e., 

. (f, Br1(a)) �= (g, Br2(a)).

The last relation means that .f �= g at the intersection .Br1(a) ∩ Br2(a). Taking 
.ε < min{r1, r2}, we get that . Uε(A)

⋂
Uε(B) = ∅. 
�

Recall that a topological space Y is connected if there are no nonempty open sets 
.U,V ⊂ Y such that 

.U ∩ V = ∅ and U ∪ V = Y.

1 A topology . τ on a set Y is a collection of subsets of Y such that . ∅ and Y lie in . τ, the  finite  
intersection of subsets of . τ is in . τ, and the union of arbitrarily many subsets of . τ is also in . τ. An  
element of . τ is called an open set, and Y with . τ is called a topological space. 
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Lemma 8.3 The topological space .(R, τ) is not connected. 

Proof Consider the set .D = {(
a, (1,C)

) : a ∈ C
}
. It is an open set, since every 

point of D lies in D together with its .ε-neighbourhood 

. Uε

((
a, (1,C)

)) ⊂ D,

where .ε > 0. 
Now let us show that D is a closed set. Let .C = (c, h̃c) be a limit point of . D,

i.e., for every .ε > 0 there is a point .(b, (1,C)) which belongs to .Uε(C). This means 
that .|c − b| < ε and the canonic analytic function elements .(h, Br(c)) and . (1,C)

are direct analytic continuations of each other. This implies that .h ≡ 1 in . C. Thus, 
.C ∈ D. 

Therefore, . R can be represented as a union of two open sets D and .R\D, which 
do not intersect. 
�

Let .F = {
(̃fα)aα

}
α∈Ξ

be a global analytic function, where 

. (̃fα)aα
:= (

fα, Brα(aα)
)
.

The set 

. RF := {
Aα = (

aα, (̃fα)aα

)}
α∈Ξ

is said to be a Riemann surface of . F . 

Lemma 8.4 The set .RF is a domain in the topological space .(R, τ). 

Proof Let .F = {
(̃fα)aα

}
α∈Ξ

be a global analytic function. Consider any point 

. Aα = (
aα, (̃fα)aα

) ∈ RF .

Then .Uε(Aα) ⊂ RF , where .ε ∈ (0, rα). Indeed, if a point 

. B = (b, g̃b) ∈ Uε(Aα),

then .|b − aα| < ε and the canonic analytic function elements . ̃gb and .(̃fα)aα
are 

direct analytic continuations of each other. According to Definition 8.9, the element 
.g̃b ∈ F , and therefore .B ∈ RF . Thus, .Uε(Aα) ⊂ RF , i.e., .RF is an open set. 

Now let us show that .RF is path-connected. Consider two arbitrary points 

.Aα1 = (
aα1 , (̃fα1)aα1

) ∈ RF and Aα2 = (
aα2 , (̃fα2)aα2

) ∈ RF .
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Since .(̃fα1)aα1
∈ F and .(̃fα2)aα2

∈ F , based on Definition 8.9, there exists a curve 

.γ : I �→ C such that .γ(0) = aα1 , .γ(1) = aα2 and 

. ̃(fα1)aα1

a.c.−→
γ

(̃fα2)aα2
.

This means (see Definition 8.8) that there exists an analytic chain 

. 

{
(̃fα1)aα1

, (̃f1)γ(t1)
, . . . , (̃fn−1)γ(tn−1)

, (̃fα2)aα2

}

in which each analytic function element .(̃fk)γ(tk)
= (

fk, Brk (γ(tk))
)
can be 

considered canonic. 
According to the second part of Definition 8.9, the point 

. 
(
γ(tk), (̃fk)γ(tk)

)

belongs to . RF , where .k ∈ {1, . . . , n−1}. In addition, for every .t ∈ I = [0, 1] there 
is a number .k ∈ {1, . . . , n} and a unique canonic analytic function element . ̃(f )γ(t)

such that .t ∈ [tk−1, tk] and the elements .(̃f )γ(t) and .(̃fk)γ(tk)
are direct analytic 

continuations of each other. Then, thanks to Definitions 8.9 and 8.11, we have  

.
(
γ(t), (̃f )γ(t)

) ∈ RF for all t ∈ [0, 1]. (8.23) 

Since .γ : I �→ C is a curve, based on (8.23) and the definition of an .ε-neighbourhood 
of a point .A ∈ R, we can state that the function 

. Γ (t) := (
γ(t), (̃f )γ(t)

)
, t ∈ [0, 1],

is continuous as a function acting from the segment I into . RF . This means that . Γ
is a curve whose trace lies in .RF with the starting point .Γ (0) = Aα1 and ending 
point .Γ (1) = Aα2 . 
�

The definition of a Riemann surface given before Lemma 8.4 was slightly 
simplified in the notation in order to make it easier to understand the proof of the 
lemma and not to clutter it up with additional notation. By Remark 8.8, in general, 
a global analytic function can have a countable number of canonic analytic function 
elements centered at the same point, i.e. 

. ̃(fk,α)aα
= (

fk,α, Br(α,k)(aα)
)
, k ∈ N;

if the number of such elements is finite, we show how the index k changes. So, the 
next definition is proposed.



210 8 Analytic Continuations

Definition 8.11 Let 

. F = {
(̃fk,α)aα

}
α∈Ξ, k∈N

be a global analytic function. The set 

. RF :=
{
A(k)

α =
(
aα,

(̃
fk,α

)
aα

)}

α∈Ξ k∈N

is called a Riemann surface of . F . 

Important 
Summarizing the results proved in this section and recalling Definitions 8.9 
and 8.11, we can make the following conclusions: 

(1) for every global analytic function . F one can uniquely determine its 
Riemann surface . RF , which is a domain in the topological space . (R, τ);

(2) if .F1 �= F2, then .RF1 ∩ RF2 = ∅, i.e., the Riemann surfaces of two 
different global analytic functions cannot intersect; 

(3) each domain in the topological space .(R, τ) corresponds to a unique 
global analytic function; 

(4) every global analytic function . F can be associated with a single-valued 
function on its Riemann surface, namely the function .F : RF �→ C that 
maps each point 

. A(k)
α =

(
aα,

(̃
fk,α

)
aα

)
∈ RF

to the complex number .fk,α(aα). 

Example 8.12 The global analytic function from Example 8.11 can be rewritten as 
follows 

. {Log} = {(
fk, B|a|(a)

)}
k∈Z, a∈C\{0},

where .fk(z) = log |z| + i arg z + i2πk, and we assume that either . arg z ∈ (−π, π ]
or .arg z ∈ [0, 2π ] (it depends on a disk .B|a|(a)). 

Its Riemann surface (see Definition 8.11) is the  set  

.RLog = {(
a,
(
fk, B|a|(a)

))}
k∈Z, a∈C\{0};
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and if .k �= m, then .
(
a,
(
fk, B|a|(a)

))
and .

(
a,
(
fm,B|a|(a)

))
are two distinct points 

of the Riemann surface .RLog. 
The associated function .Log : RLog �→ C is single-valued because for each fixed 

.k ∈ Z and .a ∈ C \ {0} the point 

. 
(
a,
(
fk, B|a|(a)

)) ∈ RLog

is uniquely mapped to the complex number .fk(a) (see also Sect. 3.7). 

Exercise 8.4 For the global analytic function from Example 8.10, write down its 
Riemann surface and the single-valued function associated with it. 

8.6 Singularities of Global Analytic Functions 

As shown in Sects. 3.6 and 3.7, the multi-valued functions . n
√· and .Log have special 

isolated singularities called branch points (now we can talk about points around 
which a multiple-valued function has nontrivial monodromy). So in this section, we 
give a classification of singularities of global analytic functions using the abstract 
approach introduced in the previous sections. 

Definition 8.12 Let .F = {(̃
fk,α

)
aα

}
α∈Ξ, k∈N be a global analytic function. 

A point .b ∈ C is called an isolated singular point of . F if there exists a positive 
number r such that, for any point .aα ∈ B̆r (b), every canonic analytic function 

element .(̃fk,α)aα
is analytically continued along every curve . γ that starts at the point 

. aα and whose trace belongs to .B̆r (b). . �

Let us prove a lemma which allows to classify singularities of global analytic 
functions. 

Lemma 8.5 Let .F = {(̃
fk,α

)
aα

}
α∈Ξ, k∈N be a global analytic function, let a point 

b be an isolated singular point of . F , and let the following conditions be satisfied: 

(1) there exists a canonic analytic function element .(̃fk,α1)aα1
∈ F , where the point 

.aα1 ∈ B̆r (b), and a closed curve . γ0, whose trace .Eγ0 ⊂ B̆r (b) and . γ0(0) =
γ0(1) = aα1 (see Fig. 8.7), such that 

.(̃fk,α1)aα1

a.c.−−→
γ0

(̃fk,α1)aα1
;
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Fig. 8.7 Isolated singular 
point b of . F

(2) there exists a canonic analytic function element .(̃fm,α2)aα2
∈ F , where the 

point .aα2 ∈ B̆r (b), and a curve . μ, whose trace .Eμ ⊂ B̆r (b) and . μ(0) = aα1

and .μ(1) = aα2 , such that 

. (̃fk,α1)aα1

a.c.−−→
μ

(̃fm,α2)aα2
.

Then for any closed curve . γ for which .γ(0) = γ(1) = aα2 and which is homotopic 
to the curve . γ0 in .B̆r (b) .(γ ≈ γ0), we have 

.(̃fm,α2)aα2

a.c.−−→
γ

(̃fm,α2)aα2
. (8.24) 

Proof Consider the curve .̃γ := μ−1 ∪ γ0 ∪ μ (see (4.3)). It is easy to see (Fig. 8.7) 
that .̃γ ≈ γ0 in .B̆r (b) and 

. (̃fm,α2)aα2

a.c.−→̃
γ

(̃fm,α2)aα2
.

Since by the condition .γ ≈ γ0 in .B̆r (b), the curve .γ ≈ γ̃ in .B̆r (b). 

According to Definition 8.12, the canonic analytic function element .(̃fm,α2)aα2
is 

analytically continued along any curve whose trace belongs to .B̆r (b). Therefore, by 
Theorem 8.4, we have (8.24). 
�

Remark 8.9 If a closed curve .γ ≈ 0 in .B̆r (b) and it starts at .aα3 ∈ B̆r (b), then the 

analytic continuation of any canonic global function element .(̃fk,α3)aα3
∈ F along 

. γ results the same function element. In fact, the curve . γ is continuously deformed
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into a curve belonging to the disk of this canonic global function element, and the 
continuation along such a curve obviously does not change it. Next we have to apply 
Lemma 8.5. 

Definition 8.13 Let . F be a global analytic function and let a point b be its isolated 
singularity. 

The point . b is called an isolated single-valued singular point of . F if there exists a 
Jordan curve . γ whose trace . Eγ belongs to .B̆r (b) and the point b lies in the interior of 
. γ so that the analytic continuation along . γ of any canonic analytic function element 
of . F centered at .γ(0) does not change it. . �

Remark 8.10 If b is a single-valued singular point of a global analytic function 
. F , then, based on Lemma 8.5, the analytic continuation along any closed curve 
. γ, whose trace belongs to .B̆r (b), of any canonic analytic function element of . F
centered at a point in .B̆r (b) will result in the same element. Thus, single-valued 
branches of . F are distinguished in .B̆r (b), and the point b for them can be either a 
pole, or removable, or essential (Definition 6.4). 

Definition 8.14 Let .F = {(̃
fk,α

)
aα

}
α∈Ξ, k∈N be a global analytic function and let a 

point b be its isolated singularity. 
The point . b is called a branch point of . F if there exists a Jordan curve . γ,

.Eγ ⊂ B̆r (b) and .b ∈ int(γ), and two different canonic analytic function elements 

.(̃fk)γ(0) ∈ F and .(̃fm)γ(0) ∈ F such that 

. (̃fk)γ(0)
a.c.−→
γ

(̃fm)γ(0).

Moreover, 

(1) if there exists an integer .n ≥ 2 (the smallest selected) such that 

. (̃fk)γ(0)
a.c.−→
γ n

(̃fk)γ(0),

where .γ n := γ ∪ . . . ∪ γ
︸ ︷︷ ︸

n

, the point . b is said to be a branch point of finite order, 

namely of order .n − 1; 
(2) if such a number does not exist, then the point b is called a logarithmic branch 

point (or branch point of infinite order). . �

Remark 8.11 Thus, a branch point of a global analytic function is its isolated 
singular point such that the analytic continuation of a global analytic function 
element of that function along a Jordan curve enclosing this point leads to a new 
function element. Branch points are divided into two categories: If, after the analytic 
continuation along the specified Jordan curve (based on Lemma 8.5 it suffices to
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take one such curve) n times, we obtain the original function element again, then 
this point is a branch point of finite order; if this does not happen, then the point is 
a logarithmic branch point (branch point of infinite order). 

Example 8.13 Find isolated singular points of the global analytic function 
.{√1 + √

z} and characterize them. 

Solution It known that the point 0 is a first-order branch point for the global 
analytic function .{√z} (see Sect. 3.6) and two branches of .{√z} are selected (see 
Example 8.10). Let us denote . 0

√
z := √|z| ei

arg z
2 the zeroth branch, where . arg z ∈

(−π, π ]. Then in the disk .B 1
2
( 12 ), according to Corollary 8.2, four branches can be 

selected for the global analytic function .{√1 + √
z}, namely 

. f0(z) := 0
√
1 + 0

√
z, f1(z) := 0

√
1 − 0

√
z,

f2(z) := − 0
√
1 − 0

√
z, f3(z) := − 0

√
1 + 0

√
z.

It is clear that the points . 0, 1 and . ∞ are suspected to be branching points. 
Let .γ1(t) = 1

2 exp(it), t ∈ [0, 2π ]. Then the values of the outer roots in these 
branches are not changed by analytic continuations along . γ1. They only change the 
values of the inner root. Therefore, 

.(̃f0) 1
2

a.c.−→
γ1

(̃f1) 1
2

a.c.−→
γ1

(̃f0) 1
2
, (8.25) 

and

.(̃f2) 1
2

a.c.−→
γ1

(̃f3) 1
2

a.c.−→
γ1

(̃f2) 1
2
. (8.26) 

By Definition 8.14, the relations (8.25) and (8.25) mean that the global analytic
function .{√1 + √

z} has two first-order branch points at the origin. This is shown 
schematically in Fig. 8.8. 

Fig. 8.8 Diagram of branch points of the global analytic function .{√1 + √
z}
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Now consider the Jordan curve .γ2(t) = 1 − 1
2 exp(it), .t ∈ [0, 2π ]. Then 

the analytic continuation along . γ2 doesn’t change the canonic analytic function 
elements .(̃f0) 1

2
and .(̃f3) 1

2
. But,  

. (̃f1) 1
2

a.c.−→
γ2

(̃f2) 1
2

a.c.−→
γ2

(̃f1) 1
2
.

Thus, at the point 1, the global analytic function .{√1 + √
z} has only one first-

order branch point (Fig. 8.8). For the branches . f0 and . f3 the point 1 is a removable 
singular point. 

To study the point . ∞, consider the curve .γ3(t) = 9 exp(it), .t ∈ [0, 2π ]. Then 
.
0
√

γ3(t) = 3 exp(i t
2 ), t ∈ [0, 2π ]. For each value .k ∈ {0, 1, 2, 3} we consider the 

restriction .fk(γ3(t)), t ∈ [0, 2π ], and find its values at the points .t = 0 and .t = 2π . 
Considering these values, we conclude that 

. (̃f0)9
a.c.−→
γ3

(̃f1)9
a.c.−→
γ3

(̃f3)9
a.c.−→
γ3

(̃f2)9
a.c.−→
γ3

(̃f0)9.

Thus, the point . ∞ is a branch point of order 3 for the global analytic function 
.{√1 + √

z} (see Fig. 8.8). 

Exercise 8.5 Let .f ∈ A
(
B̆r (b)

)
and b is a simple zero or pole of f . 

Prove that 

• b is a branch point of order .n − 1 of the global analytic function . { n
√

f };
• b is a branch point of infinite order of the global analytic function .{Log(f )}. 

Exercise 8.6 Find isolated singular points of the global analytic function 
.{√z

√
z − 1} and characterize them.



9Qualitative Properties of Analytic Functions 

Abstract 

Inspired by the properties of analytic functions proved in the previous sections, in 
the last section we are ready to explore new, no less amazing properties of such 
functions. In Sect. 9.1 we show that analyticity is sufficient for a nonconstant 
function being an open map. This property indicates that the modulus of a 
non-constant analytic function cannot have a strict local maximum. A direct 
application of the maximum modulus principle is Schwarz’s Lemma, established 
by the German mathematician K. A. Schwarz (1943–1921) in 1869, which is 
important in the theory of bounded analytic functions, where it is fundamental 
to most estimates. Sect. 9.2 shows how methods of complex analysis can be 
used to efficiently find inverse functions and expand them into Lagrange series 
(for single-valued inverse functions) and Puiseux series (for multi-valued inverse 
functions). Sections 9.3 and 9.4 are a preparation for the proof of Riemann’s 
theorem, namely here we are interested in the conformal classification of 
domains of the complex plane and the finding of a sufficient condition for the 
precompactness of a family of analytic functions (Montel’s theorem). In the last 
section there is a proof of the Riemann mapping theorem, which is undoubtedly 
one of the most beautiful theorems in mathematics. 

9.1 Open Mapping Theorem, Maximum Modulus Principle, 
Schwarz Lemma 

In real analysis, there are many examples of differential functions that are not open 
mappings, for example, the function .f (x) = x2 maps the open interval .(−2, 2) onto 
the half-open interval .[0, 4). The following open mapping theorem once again points 
to the essential difference between the properties of analytic functions in complex 
analysis and smooth functions in real analysis. 
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Theorem 9.1 (Open Mapping Theorem) Let f be a non-constant analytic func-
tion in a domain . Ω . Then the image of . Ω under the mapping f is also a domain 
in . C. 

Proof Denote by .Ω∗ := f (Ω). Clearly, .Ω∗ is path-connected as a continuous 
image of a connected set. Indeed, for any two distinct points .w1, w2 from . Ω∗ there 
are two points .z1 �= z2 from . Ω such that 

. f (z1) = w1 and f (z2) = w2.

Since . Ω is a domain, there is a curve .z = γ(t), t ∈ [0, 1], such that . γ(0) = z1,

.γ(1) = z2, and its trace .Eγ ⊂ Ω . Then .w = f
(
γ(t)

)
, t ∈ [0, 1], is a curve that 

connects . w1 and . w2, whose trace belongs to . Ω∗. 
Let us show that .Ω∗ is open. For any point .w0 ∈ Ω∗ there is a point . z0 ∈ Ω

such that .f (z0) = w0. It follows from the theorem conditions that the .w0-point of 
the function f is isolated, i.e., there is an .r > 0 such that 

.Br(z0) ⊂ Ω and f (z) �= w0 for all z ∈ Br(z0) \ {z0}. (9.1) 

If this is not the case, then, by Theorem 5.12, the function .f ≡ w0 in . Ω . 
Denote by 

.μ := min
z∈∂Br (z0)

|f (z) − w0| > 0. (9.2) 

Since .|f (z) − w0| is a positive (see (9.1)) and continuous function on .∂Br(z0), the 
extreme value theorem guarantees the existence of its positive minimum. 

Consider any . w1 in the disk .Bμ(w0) and two functions 

. F(z) := f (z) − w0 and G(z) := w0 − w1 in Br(z0).

It is easy to see that .F,G ∈ A(Br(z0)) and 

. |F(z)| = |f (z) − w0| ≥ μ > |w1 − w0| = |G(z)| for all z ∈ ∂Br(z0).

Then by Rouché’s Theorem 7.7, these functions have the same number of zeros 
(counted with multiplicity), i.e., .ZF = ZF+G in .Br(z0) or 

.Zf (z)−w1 = Zf (z)−w0 > 0 in Br(z0), (9.3) 

because .Zf (z)−w0 > 0 and .F(z) + G(z) = f (z) − w1. 
This means that there is a point .z1 ∈ Br(z0) such that .f (z1) = w1. Hence, . w1 ∈

Ω∗. But  . w1 was arbitrary from .Bμ(w0). Therefore, the disk .Bμ(w0) is contained 
in . Ω∗. As  . w0 was also any point in . Ω∗, Definition 1.16 says that . Ω∗ is an open 
set. �	
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We can now gracefully prove a very interesting property of analytic functions, 
namely that the modulus of an analytic non-constant function f cannot have a strict 
local maximum within the domain of f . 

Theorem 9.2 (Maximum Modulus Principle) Let f be an analytic function in a 
domain . Ω and let there be a disk .BR(a) in . Ω such that 

.maxz∈BR(a) |f (z)| = |f (a)|. (9.4) 

Then .f ≡ const in . Ω . 

Proof Let .w0 := f (a) and assume that .f �= const in . Ω . Since in this case the 
.w0-point of the function f is isolated, there exists a number .r ∈ (0, R) such that 

. f (z) �= w0 for all z ∈ Br(a) \ {a}.

Then by the previous theorem .f (Ω) =: Ω∗ is a domain in . C and the disk . Bμ(w0)

belongs to .Ω∗, where . μ is determined by the formula (9.2). 
Obviously, there is a point .w1 ∈ Bμ(w0) such that . |w0| < |w1|. And this means 

that there exists a point .z1 ∈ Br(a) ⊂ BR(a) such that .f (z1) = w1. But this 
contradicts to (9.4) because 

. |f (a)| = |w0| < |w1| = |f (z1)|.

Thus, f is constant throughout . Ω . �	

Corollary 9.1 Let .f ∈ A(Ω) ∩ C(Ω) and . Ω be a bounded domain in . C. Then 

. maxz∈Ω |f (z)| = maxz∈∂Ω |f (z)|.

Proof If .f ≡ const, then the statement is obvious. Therefore, assume that . f �≡
const. Since .|f | ∈ C(Ω), the extreme value theorem assures the existence of . z0 ∈ Ω

such that 

. |f (z0)| = maxz∈Ω |f (z)|.

However, if .z0 ∈ Ω , then by Theorem 9.2 the function f is constant in . Ω , which 
contradicts the assumption. Therefore, .z0 ∈ ∂Ω . �	

Example 9.1 It is easy to see that the function .f (z) = z, z ∈ B1(0), is analytic 
and non-constant in the closed disk .B1(0) and 

.minz∈B1(0)
|f (z)| = |f (0)|.
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This example shows that both the assertion of Theorem 9.2 and the assertion of 
Corollary 9.1 fail for the minimum modulus of an analytic function. However, the 
following statements hold. 

Exercise 9.1 If a functionf is analytic, non-constant, and non-zero in a domain . Ω , 
then its modulus cannot have a strict local minimum in . Ω . 

Exercise 9.2 Let .f ∈ A(Ω) ∩ C(Ω), . Ω be an bounded domain and .f (z) �= 0 for 
all .z ∈ Ω . Prove that 

. minz∈Ω |f (z)| = minz∈∂Ω |f (z)|.

Exercise 9.3 Let .f ∈ A(Ω), .f = u + iv, and 

. sup
(x,y)∈Ω

u(x, y) = u(x1, y1)
(
or inf

(x,y)∈Ω
u(x, y) = u(x1, y1)

)
.

Prove that .u ≡ const in the domain . Ω . 

A direct application of the maximum modulus principle is Schwarz’s lemma 
which helps to prove the Riemann mapping theorem (see Sect. 9.5). 

Lemma 9.1 (Schwarz’s Lemma) Let the following conditions be satisfied: 

1. a function f is analytic in the unit disk .B1(0); 
2. .|f (z)| ≤ 1 for all . z ∈ B1(0); 
3. .f (0) = 0. 

Then 

. |f (z)| ≤ |z| for all z ∈ B1(0), and |f ′(0)| ≤ 1.

Moreover, if there is a point .z1 ∈ B1(0)\ {0} such that .|f (z1)| = |z1|, then f is a 
rotation, i.e., .f (z) = eiαz, where . α is some real number. The same statement holds 
if .|f ′(0)| = 1. 

Proof Consider the function .ϕ(z) = f (z)
z

, z ∈ B1(0) \ {0}. By virtue of the first 
and third conditions, the point 0 is removable for . ϕ and 

. lim
z→0

ϕ(z) = f ′(0).

By Corollary 6.2, . ϕ can be extended by continuity at . 0, i.e., .ϕ(0) = f ′(0), and as a 
result, .ϕ ∈ A

(
B1(0)

)
.
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Fix any point .z0 ∈ B1(0). Applying the maximum modulus principle to the 
function . ϕ in the disk .Br(0), where .r ∈ (|z0|, 1), we get 

. max
z∈Br (0)

|ϕ(z)| = max
z∈∂Br (0)

|ϕ(z)| = max
z∈∂Br (0)

|f (z)|
r

≤ 1

r
,

where the second condition is used. By letting .r → 1, we find that .|ϕ(z0)| ≤ 1 for 
all .z0 ∈ B1(0). Thus, .|f (z0)| ≤ |z0| for all .z0 ∈ B1(0), and .|f ′(0)| = |ϕ(0)| ≤ 1. 

We now prove the second assertion of this lemma. Let there be a point . z1 ∈
B1(0) \ {0} such that .|f (z1)| = |z1|. This means that .|ϕ(z1)| = 1, i.e., the modulus 
of . ϕ has a local maximum within the disk .B1(0), and therefore by Theorem 9.2 

. ϕ ≡ const in B1(0), and |ϕ| ≡ 1.

Consequently, .ϕ(z) = eiα for some .α ∈ R, or .f (z) = eiαz. The same reasoning 
can be applied to the case .|f ′(0)| = 1. �	

Exercise 9.4 Instead of the third condition of the Schwarz lemma, let the following 
condition be satisfied: 

. f (0) = f ′(0) = . . . = f (n−1)(0) = 0.

Then prove that . |f (z)| ≤ |z|n for all .z ∈ B1(0). 

Exercise 9.5 (Schwarz–Pick Theorem) Let f be an analytic function in . B1(0)

and .|f (z)| ≤ 1 for all .z ∈ B1(0). Prove that . |f ′(a)| ≤ 1 − |b|2
1 − |a|2 for all . a ∈ B1(0),

where .b = f (a). 

9.2 Inverse Function Theorem: Puiseux Series 

Assume that a function .f (z) = u(x, y) + iv(x, y) is analytic in a domain . Ω and 
.f ′(z0) �= 0, where .z0 = x0 + iy0 ∈ Ω . By Theorem 9.1, the image . Ω∗ := f (Ω)

is a domain in . C. In addition, based on (2.15), the Jacobian of the vector mapping 
.
(

u
v

) : R2 �→ R
2 at the point .(x0, y0) is equal to 

. J
(u

v

)∣
∣∣
(x0,y0)

= |f ′(z0)|2 �= 0.

It is well known frommultivariable calculus that this relation is a sufficient condition 
for the existence of an inverse vector function in some neighborhood of the point 
.w0 = f (z0). However, only methods of complex analysis make it possible to
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effectively determine this neighborhood and find the inverse function. We will now 
show how this can be done. 

By the same considerations as in the proof of Theorem 9.1, we obtain that there 
exists a number .r > 0 such that .Br(z0) ⊂ Ω and 

.f (z) �= w0 ∀ z ∈ Br(z0) \ {z0}, and f ′(z) �= 0 ∀ z ∈ Br(z0). (9.5) 

Take any .w1 ∈ Bμ(w0), where the radius . μ is determined by the formula (9.2). 
According to (9.3) and (9.5) ,

.Zf −w1 = Zf −w0 = 1 in Br(z0), (9.6) 

Thus, there exists a unique point .z1 ∈ Br(z0) such that .f (z1) = w1, i.e., the inverse 
mapping .f −1 : Bμ(w0) �→ Br(z0) is defined, for which, due to (2.16) and the right
relation in (9.5) , we have

. 
(
f −1(w)

)′ = 1
(
f ′(z)

)
∣
∣∣
z=f −1(w)

for all w ∈ Bμ(w0).

Since .f −1 ∈ A
(
Bμ(w0)

)
, it can be represented as the sum of the power series 

.f −1(w) =
+∞∑

n=0

dn (w − w0)
n for all w ∈ Bμ(w0). (9.7) 

The series (9.7) is called Bürmann-Lagrange series.
To find the coefficients . dn in (9.7), we fix a point .w ∈ Bμ(w0) and define the 

function 

. h(ξ) = ξ f ′(ξ)

f (ξ) − w
, ξ ∈ Br(z0).

It is easy to see that .h ∈ A
(
Br(z0) \ {f −1(w)}), and the point .z = f −1(w) is 

a simple pole of the function . h, because .f ′(z) �= 0 (see (9.5) ). Then applying
Cauchy’s residue theorem, we get

. 
1

2πi

∫

∂+Br(z0)

h(ξ) dξ = Resξ=z h(ξ) = lim
ξ→z

ξ f ′(ξ)

f (ξ) − w
(ξ − z) = z

or 

.f −1(w) = 1

2πi

∫

∂+Br(z0)

ξ f ′(ξ)
(
f (ξ) − w0

)(
1 − w−w0

f (ξ)−w0

) dξ. (9.8)
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Since 

. 
|w − w0|

|f (ξ) − w0| ≤ |w − w0|
μ

=: q < 1 for all ξ ∈ ∂Br(z0),

we obtain from (9.8) by the infinite geometric progression formula that 

. f −1(w) =
+∞∑

n=0

dn (w − w0)
n,

where 

.dn = 1

2πi

∫

∂+Br(z0)

ξ f ′(ξ)
(
f (ξ) − w0

)n+1
dξ, n ≥ 0. (9.9) 

Clearly, .d0 = f −1(w0) = z0. For  .n ≥ 1 we integrate by parts in (9.9) and use 
the Cauchy residue theorem, namely 

. dn = − 1

2πi n

∫

∂+Br(z0)

ξ d

(
1

(
f (ξ) − w0

)n

)

= 1

2πi n

∫

∂+Br(z0)

dξ
(
f (ξ) − w0

)n

= 1

n!
dn−1

dzn−1

[(
z − z0

f (z) − w0

)n]∣∣∣∣
z=z0

. (9.10) 

Thus, the following theorem has been proved.

Theorem 9.3 (Inverse Function Theorem) Let .f ∈ A(Ω), and let . f ′(z0) �= 0,
where .z0 ∈ Ω, and .w0 = f (z0). 

Then, there are numbers .r > 0 and . μ, where . μ is defined by (9.2) , and an inverse
function .f −1 : Bμ(w0) �→ Br(z0), which is the sum of the Bürmann-Lagrange 
series (9.7) whose coefficients are determined by formulas (9.10) .

From Theorem 9.3 and the theorem on sufficient conditions for conformality 
(see Theorem 7.8) we get immediately necessary and sufficient conditions for local 
univalence. 

Lemma 9.2 Let .f ∈ A(Ω) and .z0 ∈ Ω . The function f is univalent in a 
neighborhood of . z0 if and only if .f ′(z0) �= 0. 

Example 9.2 (Counterexample From Mathematical Analysis) For differenti-
ated mappings in real analysis, the condition .J

(
u
v

) |(x0,y0) �= 0 is not necessary
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for the local injectivity of the mapping . 
(

u
v

)
. Indeed, for injective mapping 

. 

(
x3

y

)
: R

2 → R
2,

we have 

. J

(
x3

y

)∣∣∣∣
(0,0)

=
∣∣∣∣
3x2 0
0 1

∣∣∣∣
(0,0)

= 0.

Example 9.3 Find the inverse function of the function .f (z) = ze−az in a 
neighborhood of the point .0 = f (0), where a is a positive number. 

Solution Since .f ′(0) = 1 �= 0, then according to the formula (9.10) we have  

. d0 = 0, dn = 1

n!
dn−1

dzn−1

((
z

ze−az

)n)∣∣
∣∣
z=0

= 1

n! an−1nn−1 for n ∈ N.

Thus, 

. z = f −1(w) =
+∞∑

n=1

an−1nn−1

n! wn for all w ∈ BR(0),

where . R = limn→+∞ dn

dn+1
= 1

a e
.

Bürmann-Lagrange series are often used in the search for the asymptotics of 
solutions to various transcendental equations. 

Example 9.4 Consider the transcendental equation 

. tan x = 1

x
, x ∈ (0,+∞). (9.11) 

It can be seen from Fig. 9.1 that each interval .(πp, πp + π
2 ) contains only one root 

of the Eq. (9.11) , i.e.

. ∀p ∈ N ∪ {0} ∃ ! xp ∈ (πp, πp + π
2 ) : tan xp = 1

xp

,

and, moreover, . xp − πp → 0 as .p → +∞. 
After the substitution .t = xp − πp, the equation becomes as follows 

. tan t = 1

t + πp
⇐⇒ 1

πp
= sin t

cos t − t sin t
. (9.12)
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Fig. 9.1 Roots of the transcendental Eq. (9.11) 

Now consider the complex-valued function 

. w = f (z) := sin z

cos z − z sin z
.

It is easy to verify that .f (0) = 0 and .f ′(0) = 1. Then, Theorem 9.3 says that the 
inverse function .f −1 exists in a neighborhood of the point .0 = f (0) and 

.z = f −1(w) =
+∞∑

n=1

dn wn, (9.13) 

where

. dn = 1

n!
dn−1

dzn−1

((
z(cos z − z sin z)

sin z

)n)∣∣
∣∣
z=0

, n ∈ N.

The function in these equalities is even. Therefore its odd derivative is odd, meaning 
.dn = 0 for all even .n ≥ 2. For .n = 1, we directly calculate .d1 = 1. 

The last equation in (9.12) can be rewritten with the help of the function f as 
follows 

. f (t) = 1

πp
, or t = f −1

( 1

πp

)
.

Keeping in mind that .t = xp − πp and using (9.13) , we find from the last equation
that

.xp − πp = 1

πp
+ d3

1

(πp)3
+ d5

1

(πp)5
+ . . . ,
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whence we obtain the following asymptotics of the roots of the transcendental 
Eq. (9.11) :

. xp = πp + 1

πp
+ O

( 1

p3

)
as p → +∞.

. �

Theorem 9.3 states that an analytic function f is invertible in some neighborhood 
of a given point . z0 if .f ′(z0) �= 0. But what can be said if this condition is not 
satisfied and we have the following: there exists a unique number . p ∈ N (p ≥ 2)
such that 

. f ′(z0) = . . . = f (p−1)(z0) = 0 and f (p)(z0) �= 0.

Then, as in (9.5), we can conclude that there exists a number .r > 0 such that 

. f (z) �= w0 and f ′(z) �= 0 for all z ∈ Br(z0) \ {z0}.

But now the Eq. (9.6) becomes

.Zf −w1 = Zf −w0 = p in Br(z0). (9.14) 

This means there exists a set of distinct points .{z1 �= . . . �= zp} ⊂ Br(z0)\ {z0} such 
that 

.f (zk) = w1 for all k ∈ {1, . . . , p}. (9.15) 

So we can speak of a p-valued inverse function .f −1 in the disk .Bμ(w0), where . μ
is defined by (9.2). 

To find its representation, we write the Taylor series of the function f around the 
point . z0

. f (z) = f (z0) + (z − z0)
p

+∞∑

n=p

f (n)(z0)

n! (z − z0)
n−p, z ∈ Br(z0).

Denoting 

.ϕ(z) :=
+∞∑

n=p

f (n)(z0)

n! (z − z0)
n−p, z ∈ Br(z0),
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we obtain from the previous equation that .f (z) = w0 + (z − z0)
pϕ(z). Obviously, 

.ϕ ∈ A
(
Br(z0)

)
and can regard that .ϕ(z) �= 0 for all .z ∈ Br(z0), since .f (p)(z0) �= 0. 

Thus, for all . z ∈ Br(z0)

.w − w0 = (z − z0)
pϕ(z) �⇒ p|0√w − w0 e

−i 2πk
p = ψ(z) (9.16) 

for .k ∈ {0, 1, . . . , p − 1}, where .ψ(z) := (z − z0)
p|0√ϕ(z) and 

. p|0√z := p
√|z| e

i
arg z
p

is the 0th-branch of the global analytic function .{ p
√

z}. 
Since .ϕ �= 0 in .Br(z0), the function . ψ is single-valued and analytic in . Br(z0),

and, moreover, .ψ(z0) = 0 and .ψ ′(z0) �= 0. Therefore, according to Theorem 9.3, 
the inverse function .ψ−1 : Bμ1(0) �→ Br(z0) exists and 

. ψ−1(ξ) =
+∞∑

n=0

dn ξn for all ξ ∈ Bμ1(0),

where .d0 = z0 and 

. dn = lim
z→z0

1

n!
dn−1

dzn−1

(
(z − z0)

n

ψn(z)

)
, n ∈ N.

Then, it follows from (9.16) that 

. zk = ψ−1( p|0√w − w0 e
−i 2πk

p
) =

+∞∑

n=0

dn

(
p|0√w − w0 e

−i 2πk
p

)n

,

for all .k ∈ {0, 1, . . . , p − 1}. Combining these branches into a global analytic 
function, the previous equalities can be rewritten as a series 

. z =
+∞∑

n=0

dn (w − w0)
n
p , w ∈ Bμ2(w0),

which is called Puiseux series. Here, .μ2 := μ
p

1 < μ. 

9.3 Conformal Isomorphisms and Automorphisms 

Section 3.4 studied fractional-linear isomorphisms and automorphisms. Here we 
generalize and continue these studies.
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Definition 9.1 Domains . Ω1 and . Ω2 in . C are said to be conformally equivalent if 
there exists a conformal univalent mapping f that maps . Ω1 onto . Ω2. In this case, 
the mapping .f : Ω1 �→ Ω2 is called a conformal isomorphism of . Ω1 onto . Ω2. . �

It is clear that if .f : Ω1 �→ Ω2 is a conformal isomorphism of . Ω1 onto .Ω2, then 
there exists an inverse mapping that is a conformal isomorphism of . Ω2 onto . Ω1. 

Definition 9.2 A conformal isomorphism of a domain . Ω onto itself is called a 
conformal automorphism of .Ω. . �

The set of all conformal automorphisms of a domain . Ω is a group concerning 
the composition of mappings. It is denoted by .Aut(Ω). 

Lemma 9.3 (On the Set of Conformal Isomorphisms) Let . f0 be a conformal 
isomorphism of . Ω1 onto . Ω2. Then for any conformal isomorphism . f : Ω1 �→ Ω2
there is a conformal automorphism .ϕ ∈ Aut(Ω2) such that 

. f = ϕ ◦ f0.

Proof For any conformal isomorphism .f : Ω1 �→ Ω2, we define the following 
mapping .ϕ := f ◦ f −1

0 : Ω2 �→ Ω2, which obviously belongs to .Aut(Ω2). Then 

. ϕ ◦ f0 = (f ◦ f −1
0 ) ◦ f0 = f ◦ (f −1

0 ◦ f0) = f

that had to be proved. �	

Exercise 9.6 Let . Ω1 and . Ω2 be conformally equivalent domains. Prove that the 
groups .Aut(Ω1) and .Aut(Ω2) are isomorphic (i.e., there is a one-to-one correspon-
dence between the elements of the groups that preserves the given group operations). 

The domains .C, . C, and .B1 := B1(0) are called canonical domains. Next,  for  
each canonical domain, we find the group of its conformal automorphisms. 

It follows from Theorems 3.2 and 3.3 that the set of all fractional-linear mappings 

. Λ =
{
F(z) = az + b

cz + d
: a, b, c, d ∈ C, ad − bc �= 0

}

is a subgroup of .Aut
(
C

)
, and from Proposition 3.2 that the set 

. 

{
F(z) = eiβ z − b

1 − b z
: b ∈ B1, β ∈ R

}

is a subgroup of .Aut
(
B1

)
. It is also clear that the set of all linear mappings 

.
{
w = az + b : a, b ∈ C, a �= 0

}



9.3 Conformal Isomorphisms and Automorphisms 229

is a subgroup of .Aut
(
C

)
. In fact, it is possible to put equal signs in these inclusions, 

as the following theorem shows. 

Theorem 9.4 (On Conformal Automorphisms of Canonical Domains) Every 
conformal automorphism of a canonical domain is its fractional-linear automor-
phism. 

Proof 

1. Let .ϕ ∈ Aut
(
C

)
. Then, there is a unique point .z0 ∈ C such that .ϕ(z0) = ∞. It  

can be assumed that .z0 ∈ C. In the opposite case, it is necessary to consider the 
function .ϕ( 1

z
). 

Thus . ϕ is a meromorphic function and . z0 is its unique pole. Suppose that it is 
of order n and .n ≥ 2. Then . z0 is a zero of multiplicity n for the function .f := 1

ϕ
. 

Therefore, 

. f ′(z)|z=z0 = . . . = f (n−1)(z)|z=z0 = 0, f (n)(z)|z=z0 �= 0,

and this means (see (9.15)) that f is not univalent in a neighborhood of . z0, which 
contradicts the univalence of the function . ϕ. Thus, . z0 is a simple pole of . ϕ. Then, 
by Theorem 6.9 (or more exactly by the formula (6.27) ),

. ϕ(z) = A

z − z0
+ B, if z0 �= ∞ (A �= 0),

ϕ(z) = Az + B, if z0 = ∞ (A �= 0).

Hence, . ϕ is a fractional-linear mapping. 
2. Let .ϕ ∈ Aut

(
C

)
. Then, the point at infinity is an isolated point of the function 

. ϕ. If  . ∞ is removable, then due to Lemma 6.1, .ϕ ≡ const. If  . ∞ is essential for 

. ϕ, then by Picard’s great theorem (Theorem 6.7) the function . ϕ is not univalent, 
which cannot be the case. Thus, . ∞ is a pole. Similar to the first point of the proof, 
we show that . ∞ is a simple pole of . ϕ and 

. ϕ(z) = Az + B (A �= 0).

3. Let .ϕ ∈ Aut
(
B1

)
. Then .ϕ(0) = w0 ∈ B1. 

Consider the function .ζ = f (z) := F
(
ϕ(z)

)
, z ∈ B1, where 

.F(w) = w − w0

1 − w0 w
(9.17) 

is a fractional-linear automorphism of . B1, which maps the point . w0 to the origin. 
Clearly, .f (0) = 0. Thus, the function .f ∈ Aut

(
B1

)
, and it satisfies all the 

conditions of Schwarz’s Lemma 9.1. Therefore, .|f (z)| ≤ |z| for all .z ∈ B1.



230 9 Qualitative Properties of Analytic Functions

Obviously, the inverse function 

. z = f −1(ζ ) = ϕ−1(F−1(ζ )
)
, ζ ∈ B1,

also satisfies the conditions of Schwartz’s lemma, and hence . |f −1(ζ )| ≤ |ζ |
for all .ζ ∈ B1. It follows from this inequality that .|z| ≤ |f (z)| for all . z ∈
B1. Given this inequality and considering the inverse inequality proved in the 
previous paragraph, we obtain that .|f (z)| = |z| for all .z ∈ B1. 

Then, according to the second statement of the Schwarz lemma, we get 

. f (z) = eiβz for all z ∈ B1,

where .β ∈ R, or .ϕ(z) = F−1(eiβz) for all .z ∈ B1. Thus, . ϕ is a fractional-linear 
automorphism of . B1. 

�	

Now we want to find out: Can canonical domains be conformally equivalent? 
If there is a conformal isomorphism .f : C �→ B1, then .f ∈ A(C) and . |f (z)| < 1

for all .z ∈ C. According to Liouville’s theorem (Theorem 5.4), the function f is 
constant, which cannot be the case. For the same reasons, there is no conformal 
isomorphism .f : C �→ B1. Now  let  .f : C → C be a conformal isomorphism. Then 
.f ∈ A(C) and .|f (∞)| < +∞, from which again .f ≡ const. This is why  the  
canonical domains cannot be conformally isomorphic to each other. 

Let’s find out when a domain . Ω is conformally equivalent to one of the canonical 
domains. If .∂Ω = ∅, then .Ω = C. If  .∂Ω = {z0}, then .Ω = C \ {z0} and the 
fractional-linear function . 1

z−z0
maps it onto . C. If  . Ω is a simply connected domain 

whose boundary contains more than one point, then according to Riemann’s theorem 
(see Theorem 2.5), which we are preparing to prove in Sect. 9.5, the domain . Ω is 
conformally equivalent to . B1. 

9.4 Montel’s Theorem 

Corollary 5.5 has introduced to us one of the characteristics of convergent analytic 
functions. Another fundamental convergence property is Montel’s theorem on 
compactness conditions for a family of analytic functions, obtained by the French 
mathematician Paul Montel (1876–1975). 

Definition 9.3 Let . M be a set of functions defined on a domain . Ω . The  set  . M is 
said to be locally uniformly bounded on . Ω if for any bounded domain G, which 
together with its closure, belongs to . Ω , there exists a constant C such that 

.|f (z)| ≤ C for all f ∈ M and for all z ∈ G.
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Definition 9.4 Let . M be a set of functions defined on a domain . Ω . The  set  . M is 
called locally equicontinuous on . Ω if for any bounded domain G, which together 
with its closure, belongs to . Ω and for an arbitrary .ε > 0 there is a . δ = δ(ε,G) > 0
such that 

. |f (z1) − f (z2)| < ε for all f ∈ M and for all z1, z2 ∈ G with |z1 − z2| < δ.

Lemma 9.4 Let . M be some set of analytic functions in a domain . Ω . If . M is locally 
uniformly bounded on . Ω , then it is locally equicontinuous on . Ω . 

Proof Take any bounded domain G, which together with its closure belongs to 
. Ω . We denote the distance from G to the boundary .∂Ω by . 2ρ. Then, the . ρ
neighborhood .Gρ := ∪z∈GBρ(z) of G also belongs to . Ω with its closure. 

It follows from the theorem’s condition and Definition 9.3 that there is a constant 
C such that 

. |f (z)| ≤ C for all f ∈ M and for all z ∈ Gρ.

Then, for all .z1 ∈ G, for all .z ∈ Bρ(z1) and for all .f ∈ M we have 

.|f (z) − f (z1)| ≤ |f (z)| + |f (z1)| ≤ 2C. (9.18) 

For an arbitrary function .f ∈ M define the function 

.g(ξ) := 1

2C

(
f (ρ ξ + z1) − f (z1)

)
for all ξ ∈ B1. (9.19) 

It is easy to see that the linear function .z = ρ ξ + z1 maps the unit disk . B1 onto the 
disk .Bρ(z1), and thanks to (9.18) the function g satisfies the conditions

. 1) g ∈ A(B1), 2) g : B1 �→ B1, 3) g(0) = 0.

Therefore, by Schwartz’s lemma, we have .|g(ξ)| ≤ |ξ | for all .ξ ∈ B1, or 

. 
∣∣g

( 1
ρ
(z − z1)

)∣∣ ≤ ∣∣ 1
ρ
(z − z1)

∣∣ for all z ∈ Bρ(z1).

In view of (9.19), the last inequality can be rewritten as 

.|f (z) − f (z1)| ≤ 2C

ρ
|z − z1| for all z ∈ Bρ(z1). (9.20) 

Thus, for any .ε > 0 one can choose 

.δ := min
{
ρ,

ε ρ

2 C

}
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so that for all .f ∈ M and for all .z1, z2 ∈ G with .|z1 − z2| < δ based on (9.20) we
have .|f (z1) − f (z2)| < ε. This means that the set . M is locally equicontinuous on 
. Ω . �	

Definition 9.5 A set  . M of functions defined on a domain . Ω is called locally 
precompact if, for any compact set (bounded and closed set) from .Ω, every 
sequence from . M contains a subsequence that converges uniformly on that compact. 

Theorem 9.5 (Montel’s Theorem) Let . M be a set of analytic functions defined 
on a domain . Ω . If . M is locally uniformly bounded, then . M is locally precompact. 

Proof 

1. Consider the set 

. E := Ω ∩ {Q × Q} = {zj }j∈N;

it is clear that it is a countable and dense subset of . Ω . 
Take an arbitrary sequence .{fn}n∈N from . M. 
According to the condition of the theorem, the sequence .{fn(z1)}n∈N is 

bounded. Therefore, there exists a convergent subsequence .{fnk
(z1)}k∈N, which 

we denote by .{fn,1(z1)}n∈N. Now consider the sequence .{fn,1(z2)}n∈N that is 
also bounded, hence there is a convergent subsequence 

. {fnk,1(z2)}k∈N =: {fn,2(z2)}n∈N.

Thus, the sequence .{fn,2(·)}n∈N already converges at two points . z1 and . z2. 
Continuing this process, we get a subsequence .{fn,k(·)}n∈N which is conver-

gent at the points .z1, . . . , zk from the set E .(k ∈ N). 
Now consider the diagonal sequence .{fn,n}n∈N. It converges at each point 

.zp ∈ E since .{fn,n(zp)}n∈N is a subsequence of .{fn,p(zp)}n∈N for .n ≥ p. 
2. Now take an arbitrary compact G from the domain . Ω and any .ε > 0. Thanks 

to Lemma 9.4, the  set  . M is locally equicontinuous on . Ω . Therefore, according 
to Definition 9.3, one can choose .δ > 0 such that for all .f ∈ M and for all 
.z1, z2 ∈ G with .|z1 − z2| < δ we have 

.|f (z1) − f (z2)| <
ε

3
. (9.21) 

Obviously, .Ω ⊂ ⋃+∞
j=1 Bδ(zj ). The compactness of G implies the existence 

of a finite subcover of G. We can assume, without loss of generality, that there 
exists a finite number of points .{z1, . . . , zp} ⊂ G such that .G ⊂ ⋃p

j=1 Bδ(zj ). 
According to what was proved in the first point, the sequences 

.{fn,n(z1)}n∈N, . . . , {fn,n(zp)}n∈N
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are Cauchy sequences. Therefore, 

. ∃ n0 ∈ N ∀ n ≥ n0, ∀m ≥ n0 ∀ j ∈ {1, 2, . . . , p} :
|fn,n(zj ) − fm,m(zj )| <

ε

3
. (9.22) 

Now take any .z ∈ G. Then there exists a .j0 ∈ {1, . . . , p} such that the point 
.z ∈ Bδ(zj0), and using (9.21) and (9.22) we deduce that 

. |fn,n(z) − fm,m(z)| ≤ |fn,n(z) − fn,n(zj0)| + |fn,n(zj0) − fm,m(zj0)|
+ |fm,m(zj0) − fm,m(z)| < ε.

Thus the Cauchy criterion for uniform convergence of .{fn,n(·)}n∈N on G is 
satisfied. According to Definition 9.5, the  set . M is locally precompact. 

�	

Definition 9.6 Let . M be a set of functions defined on a domain . Ω . 
A functional .J : M �−→ C is said to be continuous on . M if for any sequence 

.{fn}n∈N ⊂ M, which converges uniformly on any compact .G ⊂ Ω to a function 

.f0 ∈ M, 

. lim
n→+∞ J (fn) = J (f0).

Example 9.5 Let .M = A(Ω). Consider the functional 

. J (f ) = 1

p!
dpf (z)

dzp

∣∣∣
z=a

, f ∈ M,

where a is a point from . Ω and p is a fixed positive integer. Let us show that J is 
continuous on . M. 

Solution Take any sequence .{fn}n∈N ⊂ M, which converges uniformly on any 
compact .G ⊂ Ω to a function .f0 ∈ M. Then, for a closed disk .Br(a) ⊂ Ω and for 
any .ε > 0 there exists a .n0 ∈ N such that 

. |fn(z) − f0(z)| < ε for all n ≥ n0 and for all z ∈ Br(a).

Then, using Cauchy’s inequalities for the coefficients of a power series (see 
Corollary 5.1), we have that for all . n ≥ n0

. |J (fn) − J (f0)| =
∣∣∣
1

p!
dp(fn − f0)

dzp

∣∣∣
z=a

∣∣∣ ≤ ε

rp
.

This means that .limn→+∞ J (fn) = J (f0). .�
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Definition 9.7 Let . M be a locally precompact set of functions defined on a domain 
. Ω . The  set  . M is said to be locally compact if, for any sequence .{fn}n∈N ⊂ M that 
converges uniformly to . f0 on any compact set .G ⊂ Ω , the function . f0 necessarily 
belongs to . M. 

Lemma 9.5 Let . M be a locally compact set of functions defined on a domain . Ω , 
and let .J : M �−→ C be a continuous functional. 

Then there exists a function .f0 ∈ M such that 

. sup
f ∈M

|J (f )| = |J (f0)|.

Proof Denote by .A := supf ∈M |J (f )|. Then there exists a maximising sequence 
.{fn}n∈N ⊂ M such that .limn→+∞ |J (fn)| = A. Since the set . M is locally compact, 
there exists a subsequence .{fnk

}k∈N ⊂ {fn}n∈N and .f0 ∈ M such that . fnk
converges 

uniformly to . f0 on every compact set .G ⊂ Ω . The continuity of the functional J 
implies that 

. A = lim
k→+∞ J (fnk

) = J (f0),

which had to be proved. �	

9.5 Riemann Mapping Theorem 

We are now in a position to demonstrate the proof of Riemann’s mapping theorem 
(see Theorem 2.5). It was first formulated and proved in 1851 by B. Riemann, using 
potential theoretical methods that were not yet fully substantiated at that time. For 
most modern proofs, Montel’s theorem is used. This is the fastest way to prove this 
theorem. We will separate the formulation of Theorem 2.5 and carry out its proof in 
several steps. 

Theorem 9.6 An arbitrary simply connected domain .Ω ⊂ C whose boundary 
contains more than one point is conformally equivalent to the unit disk . B1. 

Proof 

1. The first thing we wand to do is to show that there is a univalent analytic function 
. f1 which maps . Ω into . B1. 

From the conditions of the theorem it follows that there are two different points 
.α �= β that lie on the boundary . ∂Ω . Since . Ω is simply connected, two single-
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valued analytic branches . ϕ1 and . ϕ2 can be distinguished in . Ω for the global 
analytic function 

. 

{√
z − α

z − β

}
.

Clearly, .ϕ1(z) = −ϕ2(z) for all .z ∈ Ω . Moreover, they are univalent. Indeed, if 
there are .z1, z2 ∈ Ω such that .ϕj (z1) = ϕj (z2) (j ∈ {1, 2}), then 

. 
z1 − α

z1 − β
= z2 − α

z2 − β
,

from which, based on the univalence of a fractional-linear mapping, we get . z1 =
z2. 

Theorem 9.1 says that .Ω∗
1 := ϕ1(Ω) and .Ω∗

2 := ϕ2(Ω) are domains. Assume 
that .Ω∗

1 ∩ Ω∗
2 �= ∅. Then there are two points .z1, z2 ∈ Ω such that . ϕ1(z1) =

ϕ2(z2). Hence 

. 
z1 − α

z1 − β
= z2 − α

z2 − β
,

which means .z1 = z2. So .ϕ1(z1) = ϕ2(z1) = −ϕ1(z1), whence .ϕ1(z1) = 0. This  
means that it is necessary .z1 = α. As a result, we have a contradiction, because 
.α /∈ Ω . Thus, .Ω∗

1 ∩ Ω∗
2 = ∅. 

Since .Ω∗
2 is a domain, for any .w0 ∈ Ω∗

2 there exists a .ρ > 0 such that 
.Bρ(w0) ⊂ Ω∗

2 . Define the function 

. f1(z) := ρ

ϕ1(z) − w0
, z ∈ Ω.

Here the denominator is not equal to zero, because .Ω∗
1 ∩Ω∗

2 = ∅. Then it is easy 
to see that .f1 ∈ A(Ω), .|f1(z)| < 1 for all .z ∈ Ω, and . f1 is univalent in . Ω as a 
composition of two univalent functions. 

2. Fix any point .a ∈ Ω . By Theorem 7.8 (on sufficient conditions of conformality), 
.|f ′

1(a)| > 0. Now define the following function set 

. M := {
f ∈ A(Ω) : f is univalent in Ω, |f ′(a)| ≥ |f ′

1(a)|, and

|f (z)| < 1 for all z ∈ Ω
}
.

The set .M �= ∅, since the function . f1 defined in the first item of the proof belongs 
to . M. It follows from the Montel Theorem 9.5 that . M is a locally precompact set. 
Let us show that . M is locally compact. 

Consider any sequence .{gn}n∈N ⊂ M that converges uniformly to a function 
g on any compact set .G ⊂ Ω . By Corollary 5.5, the function .g ∈ A(Ω). 
In addition, from Example 9.5 it follows that .limn→+∞ g′

n(a) = g′(a). Since
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.|g′
n(a)| ≥ |f ′

1(a)| > 0, then and .|g′(a)| ≥ |f ′
1(a)| > 0. By Corollary 7.1 from 

the Hurwitz theorem, either the function .g ≡ const in . Ω (which is impossible 
because .|g′(a)| > 0) or g is univalent in . Ω . Next, since 

. |gn(z)| < 1 for all z ∈ Ω and for all n ∈ N,

and .|g(z)| ≤ 1. But the maximum modulus principle gives (see Theorem 9.2) 
that .|g(z)| < 1 for all .z ∈ Ω . Thus, .g ∈ M and . M is locally compact. 

3. Now define the functional .J (f ) := |f ′(a)| for all .f ∈ M. According to 
Example 9.5, the functional J is continuous, and due to Lemma 9.5 there exists 
a function .f0 ∈ M such that 

. sup
f ∈M

|f ′(a)| = |f ′
0(a)|. (9.23) 

The next step will be a demonstration that . f0 is the conformal isomorphism of 
interest. 

First, we prove that .f0(a) = 0. Assume that is not the case, i.e., .f0(a) �= 0, 
and define the function 

. g0(z) := f0(z) − f0(a)

1 − f0(a) f0(z)
, z ∈ Ω.

Since . g0 is a composition of a fractional-linear automorphism of . B1 (see (9.18) )
and . f0, the function . g0 is analytic and univalent, and .|g(z)| < 1 for all .z ∈ Ω . It  
is easy to calculate that 

. |g′
0(a)| =

∣
∣∣∣

f ′
0(a)

1 − |f0(a)|2
∣
∣∣∣ = |f ′

0(a)|
1 − |f0(a)|2 > |f ′

0(a)| ≥ |f ′
1(a)| > 0.

Thus, .g ∈ M and .|g′(a)| > |f ′
0(a)|. However, the last inequality is in 

contradiction with the equality (9.23). Therefore, .f0(a) = 0. 
Now we show that the function .f0 : Ω �→ B1 is surjective. If this is not the 

case, then there exists a point .b ∈ B1 such that its preimage is empty, i.e., . f0(z) �=
b for all .z ∈ Ω . Since .f0(a) = 0, the point .b �= 0. We can therefore define the 
function 

. ψ(z) :=
√

f0(z) − b

1 − b f0(z)
, z ∈ Ω.

Here by .
√· we mean one of the branches of the global analytic function .{√ · }, 

which is uniquely defined in . Ω because .f0(z) �= b and .f0(z) �= 1
b
, (

∣∣ 1
b

∣∣ > 1) for 
all .z ∈ Ω . Thus, . ψ is a single-valued, analytic, and univalent function in . Ω , and 
also .|ψ(z)| < 1 for all .z ∈ Ω (see the explanation above in this item).
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Since .ψ(a) = √−b, then .|ψ(a)|2 = |b|. Next we find 

.ψ ′(a) = 1

2
√−b

f ′
0(a) − f ′

0(a) |b|2
1

= f ′
0(a)

1 − |b|2
2
√−b

. (9.24) 

Now define this function

. h(z) := ψ(z) − ψ(a)

1 − ψ(a) ψ(z)
, z ∈ Ω,

which is single-valued and analytic in . Ω , and .|h(z)| < 1 for all .z ∈ Ω . In  
addition, using (9.24) , we find

. |h′(a)| = |ψ ′(a)|
1 − |ψ(a)|2 = |f ′

0(a)| 1 − |b|2
2
√|b|

1

1 − |b| = |f ′
0(a)| 1 + |b|

2
√|b| .

Since .b �= 0, .
1+|b|
2
√|b| > 1. And therefore, 

. |h′(a)| > |f ′
0(a)| ≥ |f ′

1(a)| > 0.

Thus, .h ∈ M and .|h′(a)| > |f ′
0(a)|. However, the last inequality contradicts the 

equality (9.23). This means that the mapping .f0 : Ω �→ B1 is surjective. 
On the basis of sufficient conformality conditions (see Theorem 7.8), the 

function . f0 is conformal in the domain . Ω . Thereby, . f0 is conformal isomorphism 
of . Ω onto . B1. 

�	

From this theorem follows immediately the following statement. 

Corollary 9.2 Any two simply connected domains in . C whose boundaries contain 
more than one point are conformally equivalent. 

It is clear that there is no unique conformal isomorphism of the domain . Ω
onto the unit disk . B1. This follows from the fact that the set of all conformal 
automorphisms is infinite (see Theorem 9.4 (part 3) and Proposition 3.2). However, 
taking into account the form of all conformal automorphisms of . B1, the following 
statement gives additional conditions under which there exists a unique conformal 
isomorphism . Ω onto . B1.
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Theorem 9.7 (On Uniqueness of Conformal Isomorphism) Let . Ω be a simply 
connected domain .Ω ⊂ C whose boundary contains more than one point. Then for 
any .z0 ∈ Ω and any real number .α ∈ (−π, π ] there exists a unique conformal 
isomorphism .f : Ω �→ B1 such that 

.f (z0) = 0 and arg f ′(z0) = α. (9.25) 

Proof Let g be any conformal isomorphism of the domain . Ω onto . B1 which exists 
by Theorem 9.6. Then, by Lemma 9.3 and Theorem 9.4 (part 3), an arbitrary 
conformal isomorphism .f : Ω �→ B1 can be represented as .f = F ◦ g, where 
.F ∈ AutB1, i.e., 

. f (z) = eiθ g(z) − a

1 − a g(z)
, z ∈ Ω,

where a is an arbitrary point from . B1 and .θ ∈ R. 
Take .a = g(z0) and consider the following conformal isomorphism 

. f1(z) = eiθ g(z) − g(z0)

1 − g(z0) g(z)
, z ∈ Ω.

It is easy to verify that .f1(z0) = 0 and 

. f ′
1(z)|z=z0 = eiθ g′(z0)

1 − |g(z0)|2 , Arg f ′
1(z0) = θ + arg g′(z0).

Let us set .θ = α − arg g′(z0). Thus there exists a conformal isomorphism . Ω onto 
. B1 which satisfies the relations (9.25). Next, we will show that it is unique. 

Suppose there is another conformal isomorphism .f2 : Ω �→ B1 which satisfies 
the relations (9.25). Then .ϕ := f1 ◦ f −1

2 ∈ AutB1. Theorem 9.4 (part 3) says that 
. ϕ is a fractional-linear automorphism of . B1, and moreover, . ϕ(0) = 0,

. ϕ′(0) = f ′
1(z0)

f ′
2(z0)

and hence arg ϕ′(0) = 0.

These equalities mean that .ϕ(w) = w for all .w ∈ B1, whence we get that . f1(z) =
f2(z) for all .z ∈ Ω . �	
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A 
Abelian group, 3 
Analytic branches, 61, 63, 66, 203, 205 
Analytic continuation 

along a chain, 198 
along a curve, 199 
direct, 186 
Schwarz’s reflection, 195 

Analytic continuation by continuity, 191 
Analytic function element, 186 

canonic, 186 
Antiderivative, 86 

along a curve, 91 
global, 101, 102 
local, 89 

Argument, 4, 66 
increment along a curve, 169 

B 
Boundary of a domain, 18 
Boundary with positive orientation .∂+Ω , 100 
Branch point 

first-order, 61 
logarithmic, 67, 213 
.n − 1 order, 63, 213 

Bürmann-Lagrange series, 222 

C 
Casorati–Sokhotskyi–Weierstrass theorem, 

145 
Cauchy–Goursat theorem, 87 
Cauchy-Riemann equations, 26, 28 
Cauchy’s integral formula, 103 

for derivatives, 118 
Cauchy’s residue theorem, 152 
Cauchy’s theorem, 98 
Classification of isolated singularities 

removable, pole, essential, 139 

Closure of a set, 18 
Complex numbers, 2 
Complex plane, 3 
Complex potential, 33 
Conformal mapping, 35 

angle-preserving, 38 
conformal automorphism, 228 
conformal isomorphism, 228 
criterion, 38 
equal stretch at a point, 35 
at infinity, 41 
orientation-preserving, 38 
sufficient conditions, 173 

Conjugate pair of harmonic functions, 30 
Criterion of local univalence, 223 
Curves 

closed, 13 
equivalent .(γ1 ∼ γ2), 14 
homotopic .(γ0 ≈ γ1), 96 
Jordan, 15 
null-homotopic .(γ0 ≈ 0), 97 
piecewise smooth, 16 
rectifiable, 16 
simple, 15 
smooth, 15 

D 
Derivative, 24 

geometric meaning of the argument, 37 
geometric meaning of the modulus, 35 

Domains, 18 
of analyticity, 188 
canonical, 228 
conformally equivalent, 228 
convex, 97 
fractional-linear isomorphic, 55 
multiply connected, 18 
simply connected, 18 
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E 
Euler’s formula, 5, 117 
Exact differential form, 31 
Extended complex plane, 8 

F 
Field, 3 
Fractional-linear automorphism of a domain, 

55 
Fractional-linear mappings hyperbolic, elliptic 

loxodromic, parabolic, 51 
Function 

analytic at a point, 29 
analytic at infinity, 29 
analytic, holomorphic, regular, 123 
analytic in a domain, 29 
continuous at a point, 23 
continuous on a set, 23 
differentiable, 25 
entire, 30, 147 
exponential, 29, 63 
fractional-linear, 45 
hyperbolic, 73 
Joukowsky, 68 
linear, 43 
meromorphic, 148 
power . zn, 57 
rational, 148 
trigonometric, 73 
uniformly continuous, 24 
univalent, 41, 223 

Fundamental theorem of algebra, 113, 129, 173 

G 
Gamma function, 122, 193 
Global analytic function, 202 

.
{√

z
}
, 204, 205 

.{Log}, 205 
branch, 203 
domain of analyticity, 203 
isolated singular point, 211 

branch point, 213 
single-valued, 213 

Riemann surface, 208, 210 
Great Picard’s theorem, 146 

H 
Harmonic function, 30 
Homeomorphism, 10 
Hurwitz’s theorem, 174 

I 
Imaginary axis, 3 
Improper integral, 161 

principal value, 164 
Infinite product, 181 
Integral 

along a curve, 81, 95 
curvilinear of the first kind, 85 
curvilinear of the second kind, 83, 96 
Riemann, 12 

Interior .int(γ) of a Jordan curve, 15 
Inverse function theorem, 223 
Inversion with respect to a circle, 53 

J 
Jordan curve theorem, 15 
Jordan’s lemma, 163 
Joukowsky wing profile, 72 

L 
Landau symbol .o(z), 25 
Laplace operator, 30 
Laurent series, 132 

analysity of the sum, 136 
annulus of convergence, 133 
around . ∞, 145 
Cauchy inequalities, 136 
connection to Fourier series, 137 
expansion of an analytic function, 134 
regular and principal parts, 133 

Length of a curve, 16 
Limit point, 17 
Liouville’s theorem, 112 
Little Picard’s theorem, 147, 149 
Logarithmic derivative, 167 

M 
Mean value theorem, 105 
Modulus, 3 
Monodromy theorem, 200 
Montel’s theorem, 232 
Morera’s theorem, 119 

N 
Neighborhood 

.Br(a) of a point a, 17 
of . ∞, 17 
punctured, 139
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Newton-Leibniz formula (analog), 93 
Non-isolated singular point, 140 

O 
Open mapping theorem, 218 
Orientation of a curve, 13 

negative, 15 
positive, 15 

P 
Parametrization of a curve, 14 
Partial fraction decomposition of a 

meromorphic function, 148, 177 
Picard exceptional value, 149 
Point 

.w0-point of f , 171 
at infinity . ∞, 8 
isolated, 139 

Polar coordinates, 4 
Pole of order N , 143 
Power series, 109 

analyticity of the sum, 113 
Bürmann-Lagrange series, 222 
Cauchy–Hadamard theorem, 109 
Cauchy’s inequalities, 112 
disk of convergence, 110 
expansion of an analytic function, 111 
radius of convergence, 109 
Taylor series, 116 

Principal branch of . Log, 66 
Principle 

argument, 169 
maximum modulus, 105, 219 
preserving boundaries and their 

orientations, 52 
Schwarz’s reflection, 195 

Puiseux series, 227 

R 
Real axis, 3 
Regular sequence of Jordan curves, 177 
Residues, 151, 152 

formulas, 153 
logarithmic, 168 

Riemann mapping theorem, 41, 234 
Riemann sphere, 10 
Riemann surface, 59, 208, 210 

.RArcsin, 77 

.RLog, 67, 210 

.R n
√

w , 63 
.R√

w , 61 

Riemann zeta function, 121, 194, 195 
Rouché’s theorem, 171 
Runge’s theorem, 119 

S 
Schwarz–Pick theorem, 221 
Schwarz’s lemma, 220 
Sequence of functions 

analycity of the limit function, 121 
term-by-term differentiation, 121 
uniformly convergent, 109 
univalence of the limit function, 175 

Sequence of numbers convergence, 7 
Series of functions, 108 

power series (109 (see also Power series)) 
term-by-term differentiation, 120 
uniformly convergent, 109 
Weierstrass criterion, 109 

Series of numbers, 107 
absolutely convergent, 108 
conditionally convergent, 108 

Set 
closed, 17 
compact, 23 
open, 17 
path-connected, 18 

Set of functions 
locally compact, 234 
locally equicontinuous, 231 
locally precompact, 232 
locally uniformly bounded, 230 

Singular point of an analytic function element, 
188 

Stereographic projection, 9 
Stream function, 34 
Symmetric points with respect to a circle, 52 

T 
Taylor series, 116 
Topological space .(R, τ), 207 
Trace of a curve, 13 

U 
Uniqueness 

for analytic functions, 124 

V 
Vector field potential, solenoidal irrotational, 

33 
Vector space, 3
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W 
Wallis formula, 184 
Weierstrass’s factorization theorem, 182 

Z 
Zero of order m, 127 
Zero of order m at infinity, 129
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